Serveur d'exploration Chloroquine

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Novel dihydroartemisinin derivative DHA-37 induces autophagic cell death through upregulation of HMGB1 in A549 cells.

Identifieur interne : 000080 ( PubMed/Curation ); précédent : 000079; suivant : 000081

Novel dihydroartemisinin derivative DHA-37 induces autophagic cell death through upregulation of HMGB1 in A549 cells.

Auteurs : Xiufeng Liu [République populaire de Chine] ; Juanjuan Wu [République populaire de Chine] ; Menglin Fan [République populaire de Chine] ; Chen Shen [République populaire de Chine] ; Wenling Dai [République populaire de Chine] ; Yini Bao [République populaire de Chine] ; Ji-Hua Liu [République populaire de Chine] ; Bo-Yang Yu [République populaire de Chine]

Source :

RBID : pubmed:30323180

Descripteurs français

English descriptors

Abstract

Dihydroartemisinin (DHA) and its analogs are reported to possess selective anticancer activity. Here, we reported a novel DHA derivative DHA-37 that exhibited more potent anticancer activity on the cells tested. Distinct from DHA-induced apoptosis, DHA-37 triggered excessive autophagic cell death, and became the main contributor to DHA-37-induced A549 cell death. Incubation of the cells with DHA-37 but not DHA produced increased dots distribution of GFP-LC3 and expression ratio of LC3-II/LC3-I, and enhanced the formation of autophagic vacuoles as revealed by TEM. Treatment with the autophagy inhibitor 3-MA, LY294002, or chloroquine could reverse DHA-37-induced cell death. In addition, DHA-37-induced cell death was associated significantly with the increased expression of HMGB1, and knockdown of HMGB1 could reverse DHA-37-induced cell death. More importantly, the elevated HMGB1 expression induced autophagy through the activation of the MAPK signal but not PI3K-AKT-mTOR pathway. In addition, DHA-37 also showed a wonderful performance in A549 xenograft mice model. These findings suggest that HMGB1 as a target candidate for apoptosis-resistant cancer treatment and artemisinin-based drugs could be used in inducing autophagic cell death.

DOI: 10.1038/s41419-018-1006-y
PubMed: 30323180

Links toward previous steps (curation, corpus...)


Links to Exploration step

pubmed:30323180

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Novel dihydroartemisinin derivative DHA-37 induces autophagic cell death through upregulation of HMGB1 in A549 cells.</title>
<author>
<name sortKey="Liu, Xiufeng" sort="Liu, Xiufeng" uniqKey="Liu X" first="Xiufeng" last="Liu">Xiufeng Liu</name>
<affiliation wicri:level="1">
<nlm:affiliation>State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 210009, Nanjing, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 210009, Nanjing</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Wu, Juanjuan" sort="Wu, Juanjuan" uniqKey="Wu J" first="Juanjuan" last="Wu">Juanjuan Wu</name>
<affiliation wicri:level="1">
<nlm:affiliation>State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 210009, Nanjing, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 210009, Nanjing</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Fan, Menglin" sort="Fan, Menglin" uniqKey="Fan M" first="Menglin" last="Fan">Menglin Fan</name>
<affiliation wicri:level="1">
<nlm:affiliation>State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 210009, Nanjing, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 210009, Nanjing</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Shen, Chen" sort="Shen, Chen" uniqKey="Shen C" first="Chen" last="Shen">Chen Shen</name>
<affiliation wicri:level="1">
<nlm:affiliation>State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 210009, Nanjing, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 210009, Nanjing</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Dai, Wenling" sort="Dai, Wenling" uniqKey="Dai W" first="Wenling" last="Dai">Wenling Dai</name>
<affiliation wicri:level="1">
<nlm:affiliation>State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 210009, Nanjing, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 210009, Nanjing</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Bao, Yini" sort="Bao, Yini" uniqKey="Bao Y" first="Yini" last="Bao">Yini Bao</name>
<affiliation wicri:level="1">
<nlm:affiliation>State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 210009, Nanjing, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 210009, Nanjing</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Liu, Ji Hua" sort="Liu, Ji Hua" uniqKey="Liu J" first="Ji-Hua" last="Liu">Ji-Hua Liu</name>
<affiliation wicri:level="1">
<nlm:affiliation>State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 210009, Nanjing, China. liujihua@cpu.edu.cn.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 210009, Nanjing</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Yu, Bo Yang" sort="Yu, Bo Yang" uniqKey="Yu B" first="Bo-Yang" last="Yu">Bo-Yang Yu</name>
<affiliation wicri:level="1">
<nlm:affiliation>State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 210009, Nanjing, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 210009, Nanjing</wicri:regionArea>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2018">2018</date>
<idno type="RBID">pubmed:30323180</idno>
<idno type="pmid">30323180</idno>
<idno type="doi">10.1038/s41419-018-1006-y</idno>
<idno type="wicri:Area/PubMed/Corpus">000080</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">000080</idno>
<idno type="wicri:Area/PubMed/Curation">000080</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Curation">000080</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Novel dihydroartemisinin derivative DHA-37 induces autophagic cell death through upregulation of HMGB1 in A549 cells.</title>
<author>
<name sortKey="Liu, Xiufeng" sort="Liu, Xiufeng" uniqKey="Liu X" first="Xiufeng" last="Liu">Xiufeng Liu</name>
<affiliation wicri:level="1">
<nlm:affiliation>State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 210009, Nanjing, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 210009, Nanjing</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Wu, Juanjuan" sort="Wu, Juanjuan" uniqKey="Wu J" first="Juanjuan" last="Wu">Juanjuan Wu</name>
<affiliation wicri:level="1">
<nlm:affiliation>State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 210009, Nanjing, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 210009, Nanjing</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Fan, Menglin" sort="Fan, Menglin" uniqKey="Fan M" first="Menglin" last="Fan">Menglin Fan</name>
<affiliation wicri:level="1">
<nlm:affiliation>State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 210009, Nanjing, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 210009, Nanjing</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Shen, Chen" sort="Shen, Chen" uniqKey="Shen C" first="Chen" last="Shen">Chen Shen</name>
<affiliation wicri:level="1">
<nlm:affiliation>State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 210009, Nanjing, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 210009, Nanjing</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Dai, Wenling" sort="Dai, Wenling" uniqKey="Dai W" first="Wenling" last="Dai">Wenling Dai</name>
<affiliation wicri:level="1">
<nlm:affiliation>State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 210009, Nanjing, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 210009, Nanjing</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Bao, Yini" sort="Bao, Yini" uniqKey="Bao Y" first="Yini" last="Bao">Yini Bao</name>
<affiliation wicri:level="1">
<nlm:affiliation>State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 210009, Nanjing, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 210009, Nanjing</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Liu, Ji Hua" sort="Liu, Ji Hua" uniqKey="Liu J" first="Ji-Hua" last="Liu">Ji-Hua Liu</name>
<affiliation wicri:level="1">
<nlm:affiliation>State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 210009, Nanjing, China. liujihua@cpu.edu.cn.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 210009, Nanjing</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Yu, Bo Yang" sort="Yu, Bo Yang" uniqKey="Yu B" first="Bo-Yang" last="Yu">Bo-Yang Yu</name>
<affiliation wicri:level="1">
<nlm:affiliation>State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 210009, Nanjing, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 210009, Nanjing</wicri:regionArea>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Cell death & disease</title>
<idno type="eISSN">2041-4889</idno>
<imprint>
<date when="2018" type="published">2018</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>A549 Cells</term>
<term>Adenocarcinoma, Bronchiolo-Alveolar (drug therapy)</term>
<term>Adenocarcinoma, Bronchiolo-Alveolar (genetics)</term>
<term>Adenocarcinoma, Bronchiolo-Alveolar (metabolism)</term>
<term>Adenocarcinoma, Bronchiolo-Alveolar (pathology)</term>
<term>Animals</term>
<term>Antineoplastic Agents, Phytogenic (chemical synthesis)</term>
<term>Antineoplastic Agents, Phytogenic (pharmacology)</term>
<term>Artemisinins (chemical synthesis)</term>
<term>Artemisinins (pharmacology)</term>
<term>Autophagy (drug effects)</term>
<term>Autophagy (genetics)</term>
<term>Cell Cycle (drug effects)</term>
<term>Cell Cycle (genetics)</term>
<term>Gene Expression Regulation, Neoplastic</term>
<term>HMGB1 Protein (antagonists & inhibitors)</term>
<term>HMGB1 Protein (genetics)</term>
<term>HMGB1 Protein (metabolism)</term>
<term>Humans</term>
<term>Lung Neoplasms (drug therapy)</term>
<term>Lung Neoplasms (genetics)</term>
<term>Lung Neoplasms (metabolism)</term>
<term>Lung Neoplasms (pathology)</term>
<term>Male</term>
<term>Mice</term>
<term>Mice, Nude</term>
<term>Microtubule-Associated Proteins (genetics)</term>
<term>Microtubule-Associated Proteins (metabolism)</term>
<term>Mitogen-Activated Protein Kinase 1 (genetics)</term>
<term>Mitogen-Activated Protein Kinase 1 (metabolism)</term>
<term>Mitogen-Activated Protein Kinase 3 (genetics)</term>
<term>Mitogen-Activated Protein Kinase 3 (metabolism)</term>
<term>Mitogen-Activated Protein Kinase 8 (genetics)</term>
<term>Mitogen-Activated Protein Kinase 8 (metabolism)</term>
<term>RNA, Small Interfering (genetics)</term>
<term>RNA, Small Interfering (metabolism)</term>
<term>Signal Transduction</term>
<term>Tumor Burden (drug effects)</term>
<term>Vacuoles (drug effects)</term>
<term>Vacuoles (metabolism)</term>
<term>Vacuoles (ultrastructure)</term>
<term>Xenograft Model Antitumor Assays</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Adénocarcinome bronchioloalvéolaire (anatomopathologie)</term>
<term>Adénocarcinome bronchioloalvéolaire (génétique)</term>
<term>Adénocarcinome bronchioloalvéolaire (métabolisme)</term>
<term>Adénocarcinome bronchioloalvéolaire (traitement médicamenteux)</term>
<term>Animaux</term>
<term>Antinéoplasiques d'origine végétale (pharmacologie)</term>
<term>Antinéoplasiques d'origine végétale (synthèse chimique)</term>
<term>Artémisinines (pharmacologie)</term>
<term>Artémisinines (synthèse chimique)</term>
<term>Autophagie ()</term>
<term>Autophagie (génétique)</term>
<term>Cellules A549</term>
<term>Charge tumorale ()</term>
<term>Cycle cellulaire ()</term>
<term>Cycle cellulaire (génétique)</term>
<term>Humains</term>
<term>Mitogen-Activated Protein Kinase 1 (génétique)</term>
<term>Mitogen-Activated Protein Kinase 1 (métabolisme)</term>
<term>Mitogen-Activated Protein Kinase 3 (génétique)</term>
<term>Mitogen-Activated Protein Kinase 3 (métabolisme)</term>
<term>Mitogen-Activated Protein Kinase 8 (génétique)</term>
<term>Mitogen-Activated Protein Kinase 8 (métabolisme)</term>
<term>Mâle</term>
<term>Petit ARN interférent (génétique)</term>
<term>Petit ARN interférent (métabolisme)</term>
<term>Protéine HMGB1 (antagonistes et inhibiteurs)</term>
<term>Protéine HMGB1 (génétique)</term>
<term>Protéine HMGB1 (métabolisme)</term>
<term>Protéines associées aux microtubules (génétique)</term>
<term>Protéines associées aux microtubules (métabolisme)</term>
<term>Régulation de l'expression des gènes tumoraux</term>
<term>Souris</term>
<term>Souris nude</term>
<term>Tests d'activité antitumorale sur modèle de xénogreffe</term>
<term>Transduction du signal</term>
<term>Tumeurs du poumon (anatomopathologie)</term>
<term>Tumeurs du poumon (génétique)</term>
<term>Tumeurs du poumon (métabolisme)</term>
<term>Tumeurs du poumon (traitement médicamenteux)</term>
<term>Vacuoles ()</term>
<term>Vacuoles (métabolisme)</term>
<term>Vacuoles (ultrastructure)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="antagonists & inhibitors" xml:lang="en">
<term>HMGB1 Protein</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="chemical synthesis" xml:lang="en">
<term>Antineoplastic Agents, Phytogenic</term>
<term>Artemisinins</term>
</keywords>
<keywords scheme="MESH" qualifier="anatomopathologie" xml:lang="fr">
<term>Adénocarcinome bronchioloalvéolaire</term>
<term>Tumeurs du poumon</term>
</keywords>
<keywords scheme="MESH" qualifier="antagonistes et inhibiteurs" xml:lang="fr">
<term>Protéine HMGB1</term>
</keywords>
<keywords scheme="MESH" qualifier="drug effects" xml:lang="en">
<term>Autophagy</term>
<term>Cell Cycle</term>
<term>Tumor Burden</term>
<term>Vacuoles</term>
</keywords>
<keywords scheme="MESH" qualifier="drug therapy" xml:lang="en">
<term>Adenocarcinoma, Bronchiolo-Alveolar</term>
<term>Lung Neoplasms</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Adenocarcinoma, Bronchiolo-Alveolar</term>
<term>Autophagy</term>
<term>Cell Cycle</term>
<term>HMGB1 Protein</term>
<term>Lung Neoplasms</term>
<term>Microtubule-Associated Proteins</term>
<term>Mitogen-Activated Protein Kinase 1</term>
<term>Mitogen-Activated Protein Kinase 3</term>
<term>Mitogen-Activated Protein Kinase 8</term>
<term>RNA, Small Interfering</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Adénocarcinome bronchioloalvéolaire</term>
<term>Autophagie</term>
<term>Cycle cellulaire</term>
<term>Mitogen-Activated Protein Kinase 1</term>
<term>Mitogen-Activated Protein Kinase 3</term>
<term>Mitogen-Activated Protein Kinase 8</term>
<term>Petit ARN interférent</term>
<term>Protéine HMGB1</term>
<term>Protéines associées aux microtubules</term>
<term>Tumeurs du poumon</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Adenocarcinoma, Bronchiolo-Alveolar</term>
<term>HMGB1 Protein</term>
<term>Lung Neoplasms</term>
<term>Microtubule-Associated Proteins</term>
<term>Mitogen-Activated Protein Kinase 1</term>
<term>Mitogen-Activated Protein Kinase 3</term>
<term>Mitogen-Activated Protein Kinase 8</term>
<term>RNA, Small Interfering</term>
<term>Vacuoles</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Adénocarcinome bronchioloalvéolaire</term>
<term>Mitogen-Activated Protein Kinase 1</term>
<term>Mitogen-Activated Protein Kinase 3</term>
<term>Mitogen-Activated Protein Kinase 8</term>
<term>Petit ARN interférent</term>
<term>Protéine HMGB1</term>
<term>Protéines associées aux microtubules</term>
<term>Tumeurs du poumon</term>
<term>Vacuoles</term>
</keywords>
<keywords scheme="MESH" qualifier="pathology" xml:lang="en">
<term>Adenocarcinoma, Bronchiolo-Alveolar</term>
<term>Lung Neoplasms</term>
</keywords>
<keywords scheme="MESH" qualifier="pharmacologie" xml:lang="fr">
<term>Antinéoplasiques d'origine végétale</term>
<term>Artémisinines</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="pharmacology" xml:lang="en">
<term>Antineoplastic Agents, Phytogenic</term>
<term>Artemisinins</term>
</keywords>
<keywords scheme="MESH" qualifier="synthèse chimique" xml:lang="fr">
<term>Antinéoplasiques d'origine végétale</term>
<term>Artémisinines</term>
</keywords>
<keywords scheme="MESH" qualifier="traitement médicamenteux" xml:lang="fr">
<term>Adénocarcinome bronchioloalvéolaire</term>
<term>Tumeurs du poumon</term>
</keywords>
<keywords scheme="MESH" qualifier="ultrastructure" xml:lang="en">
<term>Vacuoles</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>A549 Cells</term>
<term>Animals</term>
<term>Gene Expression Regulation, Neoplastic</term>
<term>Humans</term>
<term>Male</term>
<term>Mice</term>
<term>Mice, Nude</term>
<term>Signal Transduction</term>
<term>Xenograft Model Antitumor Assays</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Animaux</term>
<term>Autophagie</term>
<term>Cellules A549</term>
<term>Charge tumorale</term>
<term>Cycle cellulaire</term>
<term>Humains</term>
<term>Mâle</term>
<term>Régulation de l'expression des gènes tumoraux</term>
<term>Souris</term>
<term>Souris nude</term>
<term>Tests d'activité antitumorale sur modèle de xénogreffe</term>
<term>Transduction du signal</term>
<term>Vacuoles</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Dihydroartemisinin (DHA) and its analogs are reported to possess selective anticancer activity. Here, we reported a novel DHA derivative DHA-37 that exhibited more potent anticancer activity on the cells tested. Distinct from DHA-induced apoptosis, DHA-37 triggered excessive autophagic cell death, and became the main contributor to DHA-37-induced A549 cell death. Incubation of the cells with DHA-37 but not DHA produced increased dots distribution of GFP-LC3 and expression ratio of LC3-II/LC3-I, and enhanced the formation of autophagic vacuoles as revealed by TEM. Treatment with the autophagy inhibitor 3-MA, LY294002, or chloroquine could reverse DHA-37-induced cell death. In addition, DHA-37-induced cell death was associated significantly with the increased expression of HMGB1, and knockdown of HMGB1 could reverse DHA-37-induced cell death. More importantly, the elevated HMGB1 expression induced autophagy through the activation of the MAPK signal but not PI3K-AKT-mTOR pathway. In addition, DHA-37 also showed a wonderful performance in A549 xenograft mice model. These findings suggest that HMGB1 as a target candidate for apoptosis-resistant cancer treatment and artemisinin-based drugs could be used in inducing autophagic cell death.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">30323180</PMID>
<DateCompleted>
<Year>2019</Year>
<Month>12</Month>
<Day>10</Day>
</DateCompleted>
<DateRevised>
<Year>2019</Year>
<Month>12</Month>
<Day>17</Day>
</DateRevised>
<Article PubModel="Electronic">
<Journal>
<ISSN IssnType="Electronic">2041-4889</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>9</Volume>
<Issue>11</Issue>
<PubDate>
<Year>2018</Year>
<Month>10</Month>
<Day>15</Day>
</PubDate>
</JournalIssue>
<Title>Cell death & disease</Title>
<ISOAbbreviation>Cell Death Dis</ISOAbbreviation>
</Journal>
<ArticleTitle>Novel dihydroartemisinin derivative DHA-37 induces autophagic cell death through upregulation of HMGB1 in A549 cells.</ArticleTitle>
<Pagination>
<MedlinePgn>1048</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1038/s41419-018-1006-y</ELocationID>
<Abstract>
<AbstractText>Dihydroartemisinin (DHA) and its analogs are reported to possess selective anticancer activity. Here, we reported a novel DHA derivative DHA-37 that exhibited more potent anticancer activity on the cells tested. Distinct from DHA-induced apoptosis, DHA-37 triggered excessive autophagic cell death, and became the main contributor to DHA-37-induced A549 cell death. Incubation of the cells with DHA-37 but not DHA produced increased dots distribution of GFP-LC3 and expression ratio of LC3-II/LC3-I, and enhanced the formation of autophagic vacuoles as revealed by TEM. Treatment with the autophagy inhibitor 3-MA, LY294002, or chloroquine could reverse DHA-37-induced cell death. In addition, DHA-37-induced cell death was associated significantly with the increased expression of HMGB1, and knockdown of HMGB1 could reverse DHA-37-induced cell death. More importantly, the elevated HMGB1 expression induced autophagy through the activation of the MAPK signal but not PI3K-AKT-mTOR pathway. In addition, DHA-37 also showed a wonderful performance in A549 xenograft mice model. These findings suggest that HMGB1 as a target candidate for apoptosis-resistant cancer treatment and artemisinin-based drugs could be used in inducing autophagic cell death.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Liu</LastName>
<ForeName>Xiufeng</ForeName>
<Initials>X</Initials>
<AffiliationInfo>
<Affiliation>State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 210009, Nanjing, China.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Jiangsu Key Laboratory of TCM Evaluation and Translational Research, China Pharmaceutical University, 210009, Nanjing, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Wu</LastName>
<ForeName>Juanjuan</ForeName>
<Initials>J</Initials>
<AffiliationInfo>
<Affiliation>State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 210009, Nanjing, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Fan</LastName>
<ForeName>Menglin</ForeName>
<Initials>M</Initials>
<AffiliationInfo>
<Affiliation>State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 210009, Nanjing, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Shen</LastName>
<ForeName>Chen</ForeName>
<Initials>C</Initials>
<AffiliationInfo>
<Affiliation>State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 210009, Nanjing, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Dai</LastName>
<ForeName>Wenling</ForeName>
<Initials>W</Initials>
<AffiliationInfo>
<Affiliation>State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 210009, Nanjing, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Bao</LastName>
<ForeName>Yini</ForeName>
<Initials>Y</Initials>
<AffiliationInfo>
<Affiliation>State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 210009, Nanjing, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Liu</LastName>
<ForeName>Ji-Hua</ForeName>
<Initials>JH</Initials>
<AffiliationInfo>
<Affiliation>State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 210009, Nanjing, China. liujihua@cpu.edu.cn.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Jiangsu Key Laboratory of TCM Evaluation and Translational Research, China Pharmaceutical University, 210009, Nanjing, China. liujihua@cpu.edu.cn.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Yu</LastName>
<ForeName>Bo-Yang</ForeName>
<Initials>BY</Initials>
<AffiliationInfo>
<Affiliation>State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 210009, Nanjing, China.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Jiangsu Key Laboratory of TCM Evaluation and Translational Research, China Pharmaceutical University, 210009, Nanjing, China.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2018</Year>
<Month>10</Month>
<Day>15</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>Cell Death Dis</MedlineTA>
<NlmUniqueID>101524092</NlmUniqueID>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D000972">Antineoplastic Agents, Phytogenic</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D037621">Artemisinins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D024243">HMGB1 Protein</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C585491">HMGB1 protein, human</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C477012">MAP1LC3A protein, human</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C502070">MAP1LC3B protein, human</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D008869">Microtubule-Associated Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D034741">RNA, Small Interfering</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>6A9O50735X</RegistryNumber>
<NameOfSubstance UI="C039060">dihydroartemisinin</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 2.7.11.24</RegistryNumber>
<NameOfSubstance UI="C535150">MAPK1 protein, human</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 2.7.11.24</RegistryNumber>
<NameOfSubstance UI="C000629649">MAPK3 protein, human</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 2.7.11.24</RegistryNumber>
<NameOfSubstance UI="D019950">Mitogen-Activated Protein Kinase 1</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 2.7.11.24</RegistryNumber>
<NameOfSubstance UI="D048052">Mitogen-Activated Protein Kinase 3</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 2.7.11.24</RegistryNumber>
<NameOfSubstance UI="D048055">Mitogen-Activated Protein Kinase 8</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000072283" MajorTopicYN="N">A549 Cells</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002282" MajorTopicYN="N">Adenocarcinoma, Bronchiolo-Alveolar</DescriptorName>
<QualifierName UI="Q000188" MajorTopicYN="Y">drug therapy</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
<QualifierName UI="Q000473" MajorTopicYN="N">pathology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000818" MajorTopicYN="N">Animals</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000972" MajorTopicYN="N">Antineoplastic Agents, Phytogenic</DescriptorName>
<QualifierName UI="Q000138" MajorTopicYN="N">chemical synthesis</QualifierName>
<QualifierName UI="Q000494" MajorTopicYN="Y">pharmacology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D037621" MajorTopicYN="N">Artemisinins</DescriptorName>
<QualifierName UI="Q000138" MajorTopicYN="N">chemical synthesis</QualifierName>
<QualifierName UI="Q000494" MajorTopicYN="Y">pharmacology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001343" MajorTopicYN="N">Autophagy</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="Y">drug effects</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002453" MajorTopicYN="N">Cell Cycle</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015972" MajorTopicYN="Y">Gene Expression Regulation, Neoplastic</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D024243" MajorTopicYN="N">HMGB1 Protein</DescriptorName>
<QualifierName UI="Q000037" MajorTopicYN="N">antagonists & inhibitors</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008175" MajorTopicYN="N">Lung Neoplasms</DescriptorName>
<QualifierName UI="Q000188" MajorTopicYN="Y">drug therapy</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
<QualifierName UI="Q000473" MajorTopicYN="N">pathology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008297" MajorTopicYN="N">Male</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D051379" MajorTopicYN="N">Mice</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008819" MajorTopicYN="N">Mice, Nude</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008869" MajorTopicYN="N">Microtubule-Associated Proteins</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D019950" MajorTopicYN="N">Mitogen-Activated Protein Kinase 1</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D048052" MajorTopicYN="N">Mitogen-Activated Protein Kinase 3</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D048055" MajorTopicYN="N">Mitogen-Activated Protein Kinase 8</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D034741" MajorTopicYN="N">RNA, Small Interfering</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015398" MajorTopicYN="N">Signal Transduction</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D047368" MajorTopicYN="N">Tumor Burden</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014617" MajorTopicYN="N">Vacuoles</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
<QualifierName UI="Q000648" MajorTopicYN="N">ultrastructure</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D023041" MajorTopicYN="N">Xenograft Model Antitumor Assays</DescriptorName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2018</Year>
<Month>01</Month>
<Day>29</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2018</Year>
<Month>08</Month>
<Day>27</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="revised">
<Year>2018</Year>
<Month>08</Month>
<Day>26</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2018</Year>
<Month>10</Month>
<Day>17</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2018</Year>
<Month>10</Month>
<Day>17</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2019</Year>
<Month>12</Month>
<Day>18</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">30323180</ArticleId>
<ArticleId IdType="doi">10.1038/s41419-018-1006-y</ArticleId>
<ArticleId IdType="pii">10.1038/s41419-018-1006-y</ArticleId>
<ArticleId IdType="pmc">PMC6189137</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Autophagy. 2010 Nov;6(8):1209-11</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20935509</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Sci Rep. 2017 Nov 9;7(1):15175</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29123239</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Semin Cancer Biol. 2015 Dec;35 Suppl:S78-S103</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25936818</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Lancet Respir Med. 2013 May;1(3):251-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24429131</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Semin Cancer Biol. 2017 Oct;46:65-83</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28254675</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Autophagy. 2011 Aug;7(8):904-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21487246</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Metab. 2014 Mar 4;19(3):539-47</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24606906</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 2016 Dec;1863(12):3050-3064</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27666506</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biomed Biotechnol. 2012;2012:247597</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22174561</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cancer Ther. 2014 Jun;13(6):1589-98</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24705351</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Invest New Drugs. 2013 Feb;31(1):230-46</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22935909</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Int J Clin Exp Pathol. 2014 Dec 01;7(12):8684-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25674233</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antioxid Redox Signal. 2011 Oct 15;15(8):2185-95</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21395369</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Nutr Biochem. 2017 Jan;39:145-155</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27840291</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2013 Dec 17;110(51):20699-704</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24302768</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Autophagy. 2010 Nov;6(8):1181-3</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20861675</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2016 Jan 12;113(2):E155-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26715748</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cancers (Basel). 2014 Sep 05;6(3):1769-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25198391</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Oncotarget. 2017 May 2;8(18):30077-30091</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28404910</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Oncotarget. 2015 Oct 6;6(30):28851-66</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26311737</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Int J Mol Sci. 2014 Feb 21;15(2):3145-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24566140</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Autophagy. 2016;12(1):1-222</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26799652</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Autophagy. 2014 Oct 1;10(10):1873-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25126737</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Environ Toxicol Pharmacol. 2016 Jul;45:202-11</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27318969</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Autophagy. 2015;11(7):1187-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26121576</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Med. 2011 Oct 11;17(10):1217-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21989013</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Autophagy. 2013 Apr;9(4):451-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23388380</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Autophagy. 2015;11(7):1189-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26043873</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eur J Med Chem. 2016 Jan 1;107:192-203</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26595184</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Cancer. 2013 Oct;13(10):714-26</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24060863</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Pharmacol Sci. 1999 May;20(5):199-205</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10354615</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Res. 2017 Jul;27(7):916-932</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28374746</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Oncotarget. 2016 Feb 16;7(7):8090-104</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26811496</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2009 Jun 12;137(6):1001-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19524504</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antimicrob Agents Chemother. 2008 Jan;52(1):98-109</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17938190</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Invest Ophthalmol Vis Sci. 2013 May 15;54(5):3400-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23611999</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Biol. 2010 Sep 6;190(5):881-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20819940</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eur J Med Chem. 2016 Nov 10;123:763-768</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27537924</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Physiol. 2015 Apr 07;6:93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25904867</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Signal. 2014 Dec;26(12):2694-701</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25173700</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Int J Mol Sci. 2017 May 18;18(5):null</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28524116</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Cancer. 2014 Aug;14(8):535-46</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25056707</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Sci Rep. 2014 Jul 01;4:5510</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24981420</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioorg Med Chem Lett. 2011 May 15;21(10):2882-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21489789</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/ChloroquineV1/Data/PubMed/Curation
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000080 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Curation/biblio.hfd -nk 000080 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    ChloroquineV1
   |flux=    PubMed
   |étape=   Curation
   |type=    RBID
   |clé=     pubmed:30323180
   |texte=   Novel dihydroartemisinin derivative DHA-37 induces autophagic cell death through upregulation of HMGB1 in A549 cells.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Curation/RBID.i   -Sk "pubmed:30323180" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Curation/biblio.hfd   \
       | NlmPubMed2Wicri -a ChloroquineV1 

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Wed Mar 25 22:43:59 2020. Site generation: Sun Jan 31 12:44:45 2021