Serveur d'exploration Chloroquine

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Subtilase cytotoxin produced by locus of enterocyte effacement-negative Shiga-toxigenic Escherichia coli induces stress granule formation.

Identifieur interne : 000221 ( PubMed/Corpus ); précédent : 000220; suivant : 000222

Subtilase cytotoxin produced by locus of enterocyte effacement-negative Shiga-toxigenic Escherichia coli induces stress granule formation.

Auteurs : Hiroyasu Tsutsuki ; Kinnosuke Yahiro ; Kohei Ogura ; Kimitoshi Ichimura ; Sunao Iyoda ; Makoto Ohnishi ; Sayaka Nagasawa ; Kazuko Seto ; Joel Moss ; Masatoshi Noda

Source :

RBID : pubmed:26749168

English descriptors

Abstract

Subtilase cytotoxin (SubAB) is mainly produced by locus of enterocyte effacement (LEE)-negative strains of Shiga-toxigenic Escherichia coli (STEC). SubAB cleaves an endoplasmic reticulum (ER) chaperone, BiP/Grp78, leading to induction of ER stress. This stress causes activation of ER stress sensor proteins and induction of caspase-dependent apoptosis. We found that SubAB induces stress granules (SG) in various cells. Aim of this study was to explore the mechanism by which SubAB induced SG formation. Here, we show that SubAB-induced SG formation is regulated by activation of double-stranded RNA-activated protein kinase (PKR)-like endoplasmic reticulum kinase (PERK). The culture supernatant of STEC O113:H21 dramatically induced SG in Caco2 cells, although subAB knockout STEC O113:H21 culture supernatant did not. Treatment with phorbol 12-myristate 13-acetate (PMA), a protein kinase C (PKC) activator, and lysosomal inhibitors, NH4 Cl and chloroquine, suppressed SubAB-induced SG formation, which was enhanced by PKC and PKD inhibitors. SubAB attenuated the level of PKD1 phosphorylation. Depletion of PKCδ and PKD1 by siRNA promoted SG formation in response to SubAB. Furthermore, death-associated protein 1 (DAP1) knockdown increased basal phospho-PKD1(S916) and suppressed SG formation by SubAB. However, SG formation by an ER stress inducer, Thapsigargin, was not inhibited in PMA-treated cells. Our findings show that SubAB-induced SG formation is regulated by the PERK/DAP1 signalling pathway, which may be modulated by PKCδ/PKD1, and different from the signal transduction pathway that results in Thapsigargin-induced SG formation.

DOI: 10.1111/cmi.12565
PubMed: 26749168

Links to Exploration step

pubmed:26749168

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Subtilase cytotoxin produced by locus of enterocyte effacement-negative Shiga-toxigenic Escherichia coli induces stress granule formation.</title>
<author>
<name sortKey="Tsutsuki, Hiroyasu" sort="Tsutsuki, Hiroyasu" uniqKey="Tsutsuki H" first="Hiroyasu" last="Tsutsuki">Hiroyasu Tsutsuki</name>
<affiliation>
<nlm:affiliation>Department of Microbiology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Yahiro, Kinnosuke" sort="Yahiro, Kinnosuke" uniqKey="Yahiro K" first="Kinnosuke" last="Yahiro">Kinnosuke Yahiro</name>
<affiliation>
<nlm:affiliation>Department of Molecular Infectiology, Graduate School of Medicine, Chiba University, Chiba, Japan.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Ogura, Kohei" sort="Ogura, Kohei" uniqKey="Ogura K" first="Kohei" last="Ogura">Kohei Ogura</name>
<affiliation>
<nlm:affiliation>Pathogenic Microbe Laboratory, Research Institute, National Centre for Global Health and Medicine, Tokyo, Japan.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Ichimura, Kimitoshi" sort="Ichimura, Kimitoshi" uniqKey="Ichimura K" first="Kimitoshi" last="Ichimura">Kimitoshi Ichimura</name>
<affiliation>
<nlm:affiliation>Department of Molecular Infectiology, Graduate School of Medicine, Chiba University, Chiba, Japan.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Iyoda, Sunao" sort="Iyoda, Sunao" uniqKey="Iyoda S" first="Sunao" last="Iyoda">Sunao Iyoda</name>
<affiliation>
<nlm:affiliation>Department of Bacteriology I, National Institute of Infectious Diseases, Tokyo, Japan.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Ohnishi, Makoto" sort="Ohnishi, Makoto" uniqKey="Ohnishi M" first="Makoto" last="Ohnishi">Makoto Ohnishi</name>
<affiliation>
<nlm:affiliation>Department of Bacteriology I, National Institute of Infectious Diseases, Tokyo, Japan.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Nagasawa, Sayaka" sort="Nagasawa, Sayaka" uniqKey="Nagasawa S" first="Sayaka" last="Nagasawa">Sayaka Nagasawa</name>
<affiliation>
<nlm:affiliation>Department of Legal Medicine, Graduate School of Medicine, Chiba University, Chiba, Japan.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Seto, Kazuko" sort="Seto, Kazuko" uniqKey="Seto K" first="Kazuko" last="Seto">Kazuko Seto</name>
<affiliation>
<nlm:affiliation>Division of Bacteriology, Osaka Prefectural Institute of Public Health, Osaka, Japan.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Moss, Joel" sort="Moss, Joel" uniqKey="Moss J" first="Joel" last="Moss">Joel Moss</name>
<affiliation>
<nlm:affiliation>Cardiovascular and Pulmonary Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Noda, Masatoshi" sort="Noda, Masatoshi" uniqKey="Noda M" first="Masatoshi" last="Noda">Masatoshi Noda</name>
<affiliation>
<nlm:affiliation>Department of Molecular Infectiology, Graduate School of Medicine, Chiba University, Chiba, Japan.</nlm:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2016">2016</date>
<idno type="RBID">pubmed:26749168</idno>
<idno type="pmid">26749168</idno>
<idno type="doi">10.1111/cmi.12565</idno>
<idno type="wicri:Area/PubMed/Corpus">000221</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">000221</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Subtilase cytotoxin produced by locus of enterocyte effacement-negative Shiga-toxigenic Escherichia coli induces stress granule formation.</title>
<author>
<name sortKey="Tsutsuki, Hiroyasu" sort="Tsutsuki, Hiroyasu" uniqKey="Tsutsuki H" first="Hiroyasu" last="Tsutsuki">Hiroyasu Tsutsuki</name>
<affiliation>
<nlm:affiliation>Department of Microbiology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Yahiro, Kinnosuke" sort="Yahiro, Kinnosuke" uniqKey="Yahiro K" first="Kinnosuke" last="Yahiro">Kinnosuke Yahiro</name>
<affiliation>
<nlm:affiliation>Department of Molecular Infectiology, Graduate School of Medicine, Chiba University, Chiba, Japan.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Ogura, Kohei" sort="Ogura, Kohei" uniqKey="Ogura K" first="Kohei" last="Ogura">Kohei Ogura</name>
<affiliation>
<nlm:affiliation>Pathogenic Microbe Laboratory, Research Institute, National Centre for Global Health and Medicine, Tokyo, Japan.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Ichimura, Kimitoshi" sort="Ichimura, Kimitoshi" uniqKey="Ichimura K" first="Kimitoshi" last="Ichimura">Kimitoshi Ichimura</name>
<affiliation>
<nlm:affiliation>Department of Molecular Infectiology, Graduate School of Medicine, Chiba University, Chiba, Japan.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Iyoda, Sunao" sort="Iyoda, Sunao" uniqKey="Iyoda S" first="Sunao" last="Iyoda">Sunao Iyoda</name>
<affiliation>
<nlm:affiliation>Department of Bacteriology I, National Institute of Infectious Diseases, Tokyo, Japan.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Ohnishi, Makoto" sort="Ohnishi, Makoto" uniqKey="Ohnishi M" first="Makoto" last="Ohnishi">Makoto Ohnishi</name>
<affiliation>
<nlm:affiliation>Department of Bacteriology I, National Institute of Infectious Diseases, Tokyo, Japan.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Nagasawa, Sayaka" sort="Nagasawa, Sayaka" uniqKey="Nagasawa S" first="Sayaka" last="Nagasawa">Sayaka Nagasawa</name>
<affiliation>
<nlm:affiliation>Department of Legal Medicine, Graduate School of Medicine, Chiba University, Chiba, Japan.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Seto, Kazuko" sort="Seto, Kazuko" uniqKey="Seto K" first="Kazuko" last="Seto">Kazuko Seto</name>
<affiliation>
<nlm:affiliation>Division of Bacteriology, Osaka Prefectural Institute of Public Health, Osaka, Japan.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Moss, Joel" sort="Moss, Joel" uniqKey="Moss J" first="Joel" last="Moss">Joel Moss</name>
<affiliation>
<nlm:affiliation>Cardiovascular and Pulmonary Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Noda, Masatoshi" sort="Noda, Masatoshi" uniqKey="Noda M" first="Masatoshi" last="Noda">Masatoshi Noda</name>
<affiliation>
<nlm:affiliation>Department of Molecular Infectiology, Graduate School of Medicine, Chiba University, Chiba, Japan.</nlm:affiliation>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Cellular microbiology</title>
<idno type="eISSN">1462-5822</idno>
<imprint>
<date when="2016" type="published">2016</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Apoptosis Regulatory Proteins (metabolism)</term>
<term>Caco-2 Cells (drug effects)</term>
<term>Caco-2 Cells (metabolism)</term>
<term>Caco-2 Cells (microbiology)</term>
<term>Carrier Proteins (genetics)</term>
<term>Carrier Proteins (metabolism)</term>
<term>Chloroquine (pharmacology)</term>
<term>Culture Media, Conditioned (pharmacology)</term>
<term>Cytoplasmic Granules (metabolism)</term>
<term>DNA Helicases</term>
<term>Escherichia coli Proteins (genetics)</term>
<term>Escherichia coli Proteins (metabolism)</term>
<term>Escherichia coli Proteins (pharmacology)</term>
<term>Gene Knockout Techniques</term>
<term>HeLa Cells</term>
<term>Host-Pathogen Interactions</term>
<term>Humans</term>
<term>Poly-ADP-Ribose Binding Proteins</term>
<term>Protein Kinase C-delta (metabolism)</term>
<term>RNA Helicases</term>
<term>RNA Recognition Motif Proteins</term>
<term>Shiga-Toxigenic Escherichia coli (metabolism)</term>
<term>Shiga-Toxigenic Escherichia coli (pathogenicity)</term>
<term>Signal Transduction (drug effects)</term>
<term>Stress, Physiological (drug effects)</term>
<term>Subtilisins (genetics)</term>
<term>Subtilisins (metabolism)</term>
<term>Subtilisins (pharmacology)</term>
<term>eIF-2 Kinase (metabolism)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>Carrier Proteins</term>
<term>Escherichia coli Proteins</term>
<term>Subtilisins</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Apoptosis Regulatory Proteins</term>
<term>Carrier Proteins</term>
<term>Escherichia coli Proteins</term>
<term>Protein Kinase C-delta</term>
<term>Subtilisins</term>
<term>eIF-2 Kinase</term>
</keywords>
<keywords scheme="MESH" qualifier="drug effects" xml:lang="en">
<term>Caco-2 Cells</term>
<term>Signal Transduction</term>
<term>Stress, Physiological</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Caco-2 Cells</term>
<term>Cytoplasmic Granules</term>
<term>Shiga-Toxigenic Escherichia coli</term>
</keywords>
<keywords scheme="MESH" qualifier="microbiology" xml:lang="en">
<term>Caco-2 Cells</term>
</keywords>
<keywords scheme="MESH" qualifier="pathogenicity" xml:lang="en">
<term>Shiga-Toxigenic Escherichia coli</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="pharmacology" xml:lang="en">
<term>Chloroquine</term>
<term>Culture Media, Conditioned</term>
<term>Escherichia coli Proteins</term>
<term>Subtilisins</term>
</keywords>
<keywords scheme="MESH" type="chemical" xml:lang="en">
<term>DNA Helicases</term>
<term>Gene Knockout Techniques</term>
<term>HeLa Cells</term>
<term>Host-Pathogen Interactions</term>
<term>Humans</term>
<term>Poly-ADP-Ribose Binding Proteins</term>
<term>RNA Helicases</term>
<term>RNA Recognition Motif Proteins</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Subtilase cytotoxin (SubAB) is mainly produced by locus of enterocyte effacement (LEE)-negative strains of Shiga-toxigenic Escherichia coli (STEC). SubAB cleaves an endoplasmic reticulum (ER) chaperone, BiP/Grp78, leading to induction of ER stress. This stress causes activation of ER stress sensor proteins and induction of caspase-dependent apoptosis. We found that SubAB induces stress granules (SG) in various cells. Aim of this study was to explore the mechanism by which SubAB induced SG formation. Here, we show that SubAB-induced SG formation is regulated by activation of double-stranded RNA-activated protein kinase (PKR)-like endoplasmic reticulum kinase (PERK). The culture supernatant of STEC O113:H21 dramatically induced SG in Caco2 cells, although subAB knockout STEC O113:H21 culture supernatant did not. Treatment with phorbol 12-myristate 13-acetate (PMA), a protein kinase C (PKC) activator, and lysosomal inhibitors, NH4 Cl and chloroquine, suppressed SubAB-induced SG formation, which was enhanced by PKC and PKD inhibitors. SubAB attenuated the level of PKD1 phosphorylation. Depletion of PKCδ and PKD1 by siRNA promoted SG formation in response to SubAB. Furthermore, death-associated protein 1 (DAP1) knockdown increased basal phospho-PKD1(S916) and suppressed SG formation by SubAB. However, SG formation by an ER stress inducer, Thapsigargin, was not inhibited in PMA-treated cells. Our findings show that SubAB-induced SG formation is regulated by the PERK/DAP1 signalling pathway, which may be modulated by PKCδ/PKD1, and different from the signal transduction pathway that results in Thapsigargin-induced SG formation.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">26749168</PMID>
<DateCompleted>
<Year>2017</Year>
<Month>02</Month>
<Day>15</Day>
</DateCompleted>
<DateRevised>
<Year>2017</Year>
<Month>11</Month>
<Day>16</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1462-5822</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>18</Volume>
<Issue>7</Issue>
<PubDate>
<Year>2016</Year>
<Month>07</Month>
</PubDate>
</JournalIssue>
<Title>Cellular microbiology</Title>
<ISOAbbreviation>Cell. Microbiol.</ISOAbbreviation>
</Journal>
<ArticleTitle>Subtilase cytotoxin produced by locus of enterocyte effacement-negative Shiga-toxigenic Escherichia coli induces stress granule formation.</ArticleTitle>
<Pagination>
<MedlinePgn>1024-40</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1111/cmi.12565</ELocationID>
<Abstract>
<AbstractText>Subtilase cytotoxin (SubAB) is mainly produced by locus of enterocyte effacement (LEE)-negative strains of Shiga-toxigenic Escherichia coli (STEC). SubAB cleaves an endoplasmic reticulum (ER) chaperone, BiP/Grp78, leading to induction of ER stress. This stress causes activation of ER stress sensor proteins and induction of caspase-dependent apoptosis. We found that SubAB induces stress granules (SG) in various cells. Aim of this study was to explore the mechanism by which SubAB induced SG formation. Here, we show that SubAB-induced SG formation is regulated by activation of double-stranded RNA-activated protein kinase (PKR)-like endoplasmic reticulum kinase (PERK). The culture supernatant of STEC O113:H21 dramatically induced SG in Caco2 cells, although subAB knockout STEC O113:H21 culture supernatant did not. Treatment with phorbol 12-myristate 13-acetate (PMA), a protein kinase C (PKC) activator, and lysosomal inhibitors, NH4 Cl and chloroquine, suppressed SubAB-induced SG formation, which was enhanced by PKC and PKD inhibitors. SubAB attenuated the level of PKD1 phosphorylation. Depletion of PKCδ and PKD1 by siRNA promoted SG formation in response to SubAB. Furthermore, death-associated protein 1 (DAP1) knockdown increased basal phospho-PKD1(S916) and suppressed SG formation by SubAB. However, SG formation by an ER stress inducer, Thapsigargin, was not inhibited in PMA-treated cells. Our findings show that SubAB-induced SG formation is regulated by the PERK/DAP1 signalling pathway, which may be modulated by PKCδ/PKD1, and different from the signal transduction pathway that results in Thapsigargin-induced SG formation.</AbstractText>
<CopyrightInformation>© 2016 John Wiley & Sons Ltd.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Tsutsuki</LastName>
<ForeName>Hiroyasu</ForeName>
<Initials>H</Initials>
<AffiliationInfo>
<Affiliation>Department of Microbiology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Yahiro</LastName>
<ForeName>Kinnosuke</ForeName>
<Initials>K</Initials>
<AffiliationInfo>
<Affiliation>Department of Molecular Infectiology, Graduate School of Medicine, Chiba University, Chiba, Japan.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Ogura</LastName>
<ForeName>Kohei</ForeName>
<Initials>K</Initials>
<AffiliationInfo>
<Affiliation>Pathogenic Microbe Laboratory, Research Institute, National Centre for Global Health and Medicine, Tokyo, Japan.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Ichimura</LastName>
<ForeName>Kimitoshi</ForeName>
<Initials>K</Initials>
<AffiliationInfo>
<Affiliation>Department of Molecular Infectiology, Graduate School of Medicine, Chiba University, Chiba, Japan.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Iyoda</LastName>
<ForeName>Sunao</ForeName>
<Initials>S</Initials>
<AffiliationInfo>
<Affiliation>Department of Bacteriology I, National Institute of Infectious Diseases, Tokyo, Japan.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Ohnishi</LastName>
<ForeName>Makoto</ForeName>
<Initials>M</Initials>
<AffiliationInfo>
<Affiliation>Department of Bacteriology I, National Institute of Infectious Diseases, Tokyo, Japan.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Nagasawa</LastName>
<ForeName>Sayaka</ForeName>
<Initials>S</Initials>
<AffiliationInfo>
<Affiliation>Department of Legal Medicine, Graduate School of Medicine, Chiba University, Chiba, Japan.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Seto</LastName>
<ForeName>Kazuko</ForeName>
<Initials>K</Initials>
<AffiliationInfo>
<Affiliation>Division of Bacteriology, Osaka Prefectural Institute of Public Health, Osaka, Japan.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Moss</LastName>
<ForeName>Joel</ForeName>
<Initials>J</Initials>
<AffiliationInfo>
<Affiliation>Cardiovascular and Pulmonary Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Noda</LastName>
<ForeName>Masatoshi</ForeName>
<Initials>M</Initials>
<AffiliationInfo>
<Affiliation>Department of Molecular Infectiology, Graduate School of Medicine, Chiba University, Chiba, Japan.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D052060">Research Support, N.I.H., Intramural</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2016</Year>
<Month>02</Month>
<Day>21</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>Cell Microbiol</MedlineTA>
<NlmUniqueID>100883691</NlmUniqueID>
<ISSNLinking>1462-5814</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D051017">Apoptosis Regulatory Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D002352">Carrier Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D017077">Culture Media, Conditioned</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C091572">DAP protein, human</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D029968">Escherichia coli Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D000075223">Poly-ADP-Ribose Binding Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D000067776">RNA Recognition Motif Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>886U3H6UFF</RegistryNumber>
<NameOfSubstance UI="D002738">Chloroquine</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 2.7.11.1</RegistryNumber>
<NameOfSubstance UI="C460640">EIF2AK3 protein, human</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 2.7.11.1</RegistryNumber>
<NameOfSubstance UI="D019892">eIF-2 Kinase</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 2.7.11.13</RegistryNumber>
<NameOfSubstance UI="D051745">Protein Kinase C-delta</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 3.4.21.-</RegistryNumber>
<NameOfSubstance UI="D013381">Subtilisins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 3.4.21.-</RegistryNumber>
<NameOfSubstance UI="C527234">subtilase cytotoxin, E coli</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 3.6.4.-</RegistryNumber>
<NameOfSubstance UI="D004265">DNA Helicases</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 3.6.4.12</RegistryNumber>
<NameOfSubstance UI="C116070">G3BP1 protein, human</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 3.6.4.13</RegistryNumber>
<NameOfSubstance UI="D020365">RNA Helicases</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D051017" MajorTopicYN="N">Apoptosis Regulatory Proteins</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018938" MajorTopicYN="N">Caco-2 Cells</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
<QualifierName UI="Q000382" MajorTopicYN="N">microbiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002352" MajorTopicYN="N">Carrier Proteins</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002738" MajorTopicYN="N">Chloroquine</DescriptorName>
<QualifierName UI="Q000494" MajorTopicYN="N">pharmacology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017077" MajorTopicYN="N">Culture Media, Conditioned</DescriptorName>
<QualifierName UI="Q000494" MajorTopicYN="N">pharmacology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D003594" MajorTopicYN="N">Cytoplasmic Granules</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004265" MajorTopicYN="N">DNA Helicases</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D029968" MajorTopicYN="N">Escherichia coli Proteins</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
<QualifierName UI="Q000494" MajorTopicYN="N">pharmacology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D055786" MajorTopicYN="N">Gene Knockout Techniques</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006367" MajorTopicYN="N">HeLa Cells</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D054884" MajorTopicYN="N">Host-Pathogen Interactions</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000075223" MajorTopicYN="N">Poly-ADP-Ribose Binding Proteins</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D051745" MajorTopicYN="N">Protein Kinase C-delta</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020365" MajorTopicYN="N">RNA Helicases</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000067776" MajorTopicYN="N">RNA Recognition Motif Proteins</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D054323" MajorTopicYN="N">Shiga-Toxigenic Escherichia coli</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
<QualifierName UI="Q000472" MajorTopicYN="N">pathogenicity</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015398" MajorTopicYN="N">Signal Transduction</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013312" MajorTopicYN="N">Stress, Physiological</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013381" MajorTopicYN="N">Subtilisins</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
<QualifierName UI="Q000494" MajorTopicYN="N">pharmacology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D019892" MajorTopicYN="N">eIF-2 Kinase</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
</MeshHeadingList>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">ER stress</Keyword>
<Keyword MajorTopicYN="N">protein kinases</Keyword>
<Keyword MajorTopicYN="N">stress granule</Keyword>
<Keyword MajorTopicYN="N">subtilase cytotoxin</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2015</Year>
<Month>08</Month>
<Day>09</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="revised">
<Year>2015</Year>
<Month>12</Month>
<Day>24</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2016</Year>
<Month>01</Month>
<Day>06</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2016</Year>
<Month>1</Month>
<Day>11</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2016</Year>
<Month>1</Month>
<Day>11</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2017</Year>
<Month>2</Month>
<Day>16</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">26749168</ArticleId>
<ArticleId IdType="doi">10.1111/cmi.12565</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/ChloroquineV1/Data/PubMed/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000221 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd -nk 000221 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    ChloroquineV1
   |flux=    PubMed
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:26749168
   |texte=   Subtilase cytotoxin produced by locus of enterocyte effacement-negative Shiga-toxigenic Escherichia coli induces stress granule formation.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/RBID.i   -Sk "pubmed:26749168" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a ChloroquineV1 

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Wed Mar 25 22:43:59 2020. Site generation: Sun Jan 31 12:44:45 2021