Serveur d'exploration Chloroquine

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Targeted rescue of a polycystic kidney disease mutation by lysosomal inhibition.

Identifieur interne : 000215 ( PubMed/Corpus ); précédent : 000214; suivant : 000216

Targeted rescue of a polycystic kidney disease mutation by lysosomal inhibition.

Auteurs : Alexis Hofherr ; Claudius J. Wagner ; Terry Watnick ; Michael Köttgen

Source :

RBID : pubmed:26924047

English descriptors

Abstract

Autosomal dominant polycystic kidney disease (ADPKD) is the most common monogenic cause of end-stage renal disease. The molecular pathogenesis of ADPKD is not completely known, and there is no approved therapy. To date, there is limited knowledge concerning the molecular consequences of specific disease-causing mutations. Here we show that the ADPKD missense variant TRPP2(D511V) greatly reduces TRPP2 protein stability, and that TRPP2(D511V) function can be rescued in vivo by small molecules targeting the TRPP2 degradation pathway. Expression of the TRPP2(D511V) protein was significantly reduced compared to wild-type TRPP2. Inhibition of lysosomal degradation of TRPP2(D511V) by the US Food and Drug Administration (FDA)-approved drug chloroquine strongly increased TRPP2 protein levels in vitro. The validation of these results in vivo requires appropriate animal models. However, there are currently no mouse models harboring human PKD2 missense mutations, and screening for chemical rescue of patient mutations in rodent models is time-consuming and expensive. Therefore, we developed a Drosophila melanogaster model expressing the ortholog of TRPP2(D511V) to test chemical rescue of mutant TRPP2 in vivo. Notably, chloroquine was sufficient to improve the phenotype of flies expressing mutant TRPP2. Thus, this proof-of-concept study highlights the potential of directed therapeutic approaches for ADPKD, and provides a rapid-throughput experimental model to screen PKD2 patient mutations and small molecules in vivo.

DOI: 10.1016/j.kint.2015.11.015
PubMed: 26924047

Links to Exploration step

pubmed:26924047

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Targeted rescue of a polycystic kidney disease mutation by lysosomal inhibition.</title>
<author>
<name sortKey="Hofherr, Alexis" sort="Hofherr, Alexis" uniqKey="Hofherr A" first="Alexis" last="Hofherr">Alexis Hofherr</name>
<affiliation>
<nlm:affiliation>Renal Division, Department of Medicine, Medical Center, University of Freiburg, Freiburg, Germany; Spemann Graduate School of Biology and Medicine, University of Freiburg, Freiburg, Germany; Faculty of Biology, University of Freiburg, Freiburg, Germany. Electronic address: alexis.hofherr@uniklinik-freiburg.de.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Wagner, Claudius J" sort="Wagner, Claudius J" uniqKey="Wagner C" first="Claudius J" last="Wagner">Claudius J. Wagner</name>
<affiliation>
<nlm:affiliation>Department of Translational Pulmonology, Translational Lung Research Center Heidelberg, University of Heidelberg, Heidelberg, Germany.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Watnick, Terry" sort="Watnick, Terry" uniqKey="Watnick T" first="Terry" last="Watnick">Terry Watnick</name>
<affiliation>
<nlm:affiliation>Division of Nephrology, University of Maryland School of Medicine, Baltimore, Maryland, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Kottgen, Michael" sort="Kottgen, Michael" uniqKey="Kottgen M" first="Michael" last="Köttgen">Michael Köttgen</name>
<affiliation>
<nlm:affiliation>Renal Division, Department of Medicine, Medical Center, University of Freiburg, Freiburg, Germany. Electronic address: michael.koettgen@uniklinik-freiburg.de.</nlm:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2016">2016</date>
<idno type="RBID">pubmed:26924047</idno>
<idno type="pmid">26924047</idno>
<idno type="doi">10.1016/j.kint.2015.11.015</idno>
<idno type="wicri:Area/PubMed/Corpus">000215</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">000215</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Targeted rescue of a polycystic kidney disease mutation by lysosomal inhibition.</title>
<author>
<name sortKey="Hofherr, Alexis" sort="Hofherr, Alexis" uniqKey="Hofherr A" first="Alexis" last="Hofherr">Alexis Hofherr</name>
<affiliation>
<nlm:affiliation>Renal Division, Department of Medicine, Medical Center, University of Freiburg, Freiburg, Germany; Spemann Graduate School of Biology and Medicine, University of Freiburg, Freiburg, Germany; Faculty of Biology, University of Freiburg, Freiburg, Germany. Electronic address: alexis.hofherr@uniklinik-freiburg.de.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Wagner, Claudius J" sort="Wagner, Claudius J" uniqKey="Wagner C" first="Claudius J" last="Wagner">Claudius J. Wagner</name>
<affiliation>
<nlm:affiliation>Department of Translational Pulmonology, Translational Lung Research Center Heidelberg, University of Heidelberg, Heidelberg, Germany.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Watnick, Terry" sort="Watnick, Terry" uniqKey="Watnick T" first="Terry" last="Watnick">Terry Watnick</name>
<affiliation>
<nlm:affiliation>Division of Nephrology, University of Maryland School of Medicine, Baltimore, Maryland, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Kottgen, Michael" sort="Kottgen, Michael" uniqKey="Kottgen M" first="Michael" last="Köttgen">Michael Köttgen</name>
<affiliation>
<nlm:affiliation>Renal Division, Department of Medicine, Medical Center, University of Freiburg, Freiburg, Germany. Electronic address: michael.koettgen@uniklinik-freiburg.de.</nlm:affiliation>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Kidney international</title>
<idno type="eISSN">1523-1755</idno>
<imprint>
<date when="2016" type="published">2016</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Animals</term>
<term>Antirheumatic Agents (pharmacology)</term>
<term>Antirheumatic Agents (therapeutic use)</term>
<term>Chloroquine (pharmacology)</term>
<term>Chloroquine (therapeutic use)</term>
<term>Drosophila melanogaster</term>
<term>Drug Evaluation, Preclinical</term>
<term>Female</term>
<term>HEK293 Cells</term>
<term>HeLa Cells</term>
<term>Humans</term>
<term>Lysosomes (drug effects)</term>
<term>Lysosomes (metabolism)</term>
<term>Male</term>
<term>Mutation, Missense</term>
<term>Polycystic Kidney, Autosomal Dominant (drug therapy)</term>
<term>Polycystic Kidney, Autosomal Dominant (genetics)</term>
<term>Polycystic Kidney, Autosomal Dominant (metabolism)</term>
<term>Protein Stability</term>
<term>TRPP Cation Channels (genetics)</term>
<term>TRPP Cation Channels (metabolism)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>TRPP Cation Channels</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>TRPP Cation Channels</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="pharmacology" xml:lang="en">
<term>Antirheumatic Agents</term>
<term>Chloroquine</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="therapeutic use" xml:lang="en">
<term>Antirheumatic Agents</term>
<term>Chloroquine</term>
</keywords>
<keywords scheme="MESH" qualifier="drug effects" xml:lang="en">
<term>Lysosomes</term>
</keywords>
<keywords scheme="MESH" qualifier="drug therapy" xml:lang="en">
<term>Polycystic Kidney, Autosomal Dominant</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Polycystic Kidney, Autosomal Dominant</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Lysosomes</term>
<term>Polycystic Kidney, Autosomal Dominant</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Animals</term>
<term>Drosophila melanogaster</term>
<term>Drug Evaluation, Preclinical</term>
<term>Female</term>
<term>HEK293 Cells</term>
<term>HeLa Cells</term>
<term>Humans</term>
<term>Male</term>
<term>Mutation, Missense</term>
<term>Protein Stability</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Autosomal dominant polycystic kidney disease (ADPKD) is the most common monogenic cause of end-stage renal disease. The molecular pathogenesis of ADPKD is not completely known, and there is no approved therapy. To date, there is limited knowledge concerning the molecular consequences of specific disease-causing mutations. Here we show that the ADPKD missense variant TRPP2(D511V) greatly reduces TRPP2 protein stability, and that TRPP2(D511V) function can be rescued in vivo by small molecules targeting the TRPP2 degradation pathway. Expression of the TRPP2(D511V) protein was significantly reduced compared to wild-type TRPP2. Inhibition of lysosomal degradation of TRPP2(D511V) by the US Food and Drug Administration (FDA)-approved drug chloroquine strongly increased TRPP2 protein levels in vitro. The validation of these results in vivo requires appropriate animal models. However, there are currently no mouse models harboring human PKD2 missense mutations, and screening for chemical rescue of patient mutations in rodent models is time-consuming and expensive. Therefore, we developed a Drosophila melanogaster model expressing the ortholog of TRPP2(D511V) to test chemical rescue of mutant TRPP2 in vivo. Notably, chloroquine was sufficient to improve the phenotype of flies expressing mutant TRPP2. Thus, this proof-of-concept study highlights the potential of directed therapeutic approaches for ADPKD, and provides a rapid-throughput experimental model to screen PKD2 patient mutations and small molecules in vivo. </div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">26924047</PMID>
<DateCompleted>
<Year>2017</Year>
<Month>01</Month>
<Day>31</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1523-1755</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>89</Volume>
<Issue>4</Issue>
<PubDate>
<Year>2016</Year>
<Month>Apr</Month>
</PubDate>
</JournalIssue>
<Title>Kidney international</Title>
<ISOAbbreviation>Kidney Int.</ISOAbbreviation>
</Journal>
<ArticleTitle>Targeted rescue of a polycystic kidney disease mutation by lysosomal inhibition.</ArticleTitle>
<Pagination>
<MedlinePgn>949-55</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1016/j.kint.2015.11.015</ELocationID>
<ELocationID EIdType="pii" ValidYN="Y">S0085-2538(15)00066-6</ELocationID>
<Abstract>
<AbstractText>Autosomal dominant polycystic kidney disease (ADPKD) is the most common monogenic cause of end-stage renal disease. The molecular pathogenesis of ADPKD is not completely known, and there is no approved therapy. To date, there is limited knowledge concerning the molecular consequences of specific disease-causing mutations. Here we show that the ADPKD missense variant TRPP2(D511V) greatly reduces TRPP2 protein stability, and that TRPP2(D511V) function can be rescued in vivo by small molecules targeting the TRPP2 degradation pathway. Expression of the TRPP2(D511V) protein was significantly reduced compared to wild-type TRPP2. Inhibition of lysosomal degradation of TRPP2(D511V) by the US Food and Drug Administration (FDA)-approved drug chloroquine strongly increased TRPP2 protein levels in vitro. The validation of these results in vivo requires appropriate animal models. However, there are currently no mouse models harboring human PKD2 missense mutations, and screening for chemical rescue of patient mutations in rodent models is time-consuming and expensive. Therefore, we developed a Drosophila melanogaster model expressing the ortholog of TRPP2(D511V) to test chemical rescue of mutant TRPP2 in vivo. Notably, chloroquine was sufficient to improve the phenotype of flies expressing mutant TRPP2. Thus, this proof-of-concept study highlights the potential of directed therapeutic approaches for ADPKD, and provides a rapid-throughput experimental model to screen PKD2 patient mutations and small molecules in vivo. </AbstractText>
<CopyrightInformation>Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Hofherr</LastName>
<ForeName>Alexis</ForeName>
<Initials>A</Initials>
<AffiliationInfo>
<Affiliation>Renal Division, Department of Medicine, Medical Center, University of Freiburg, Freiburg, Germany; Spemann Graduate School of Biology and Medicine, University of Freiburg, Freiburg, Germany; Faculty of Biology, University of Freiburg, Freiburg, Germany. Electronic address: alexis.hofherr@uniklinik-freiburg.de.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Wagner</LastName>
<ForeName>Claudius J</ForeName>
<Initials>CJ</Initials>
<AffiliationInfo>
<Affiliation>Department of Translational Pulmonology, Translational Lung Research Center Heidelberg, University of Heidelberg, Heidelberg, Germany.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Watnick</LastName>
<ForeName>Terry</ForeName>
<Initials>T</Initials>
<AffiliationInfo>
<Affiliation>Division of Nephrology, University of Maryland School of Medicine, Baltimore, Maryland, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Köttgen</LastName>
<ForeName>Michael</ForeName>
<Initials>M</Initials>
<AffiliationInfo>
<Affiliation>Renal Division, Department of Medicine, Medical Center, University of Freiburg, Freiburg, Germany. Electronic address: michael.koettgen@uniklinik-freiburg.de.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>P30 DK090868</GrantID>
<Acronym>DK</Acronym>
<Agency>NIDDK NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>R01 GM073704</GrantID>
<Acronym>GM</Acronym>
<Agency>NIGMS NIH HHS</Agency>
<Country>United States</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D052061">Research Support, N.I.H., Extramural</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2016</Year>
<Month>01</Month>
<Day>06</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Kidney Int</MedlineTA>
<NlmUniqueID>0323470</NlmUniqueID>
<ISSNLinking>0085-2538</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D018501">Antirheumatic Agents</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D050396">TRPP Cation Channels</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C099714">polycystic kidney disease 2 protein</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>886U3H6UFF</RegistryNumber>
<NameOfSubstance UI="D002738">Chloroquine</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000818" MajorTopicYN="N">Animals</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018501" MajorTopicYN="N">Antirheumatic Agents</DescriptorName>
<QualifierName UI="Q000494" MajorTopicYN="N">pharmacology</QualifierName>
<QualifierName UI="Q000627" MajorTopicYN="Y">therapeutic use</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002738" MajorTopicYN="N">Chloroquine</DescriptorName>
<QualifierName UI="Q000494" MajorTopicYN="N">pharmacology</QualifierName>
<QualifierName UI="Q000627" MajorTopicYN="Y">therapeutic use</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004331" MajorTopicYN="N">Drosophila melanogaster</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004353" MajorTopicYN="N">Drug Evaluation, Preclinical</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005260" MajorTopicYN="N">Female</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D057809" MajorTopicYN="N">HEK293 Cells</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006367" MajorTopicYN="N">HeLa Cells</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008247" MajorTopicYN="N">Lysosomes</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008297" MajorTopicYN="N">Male</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020125" MajorTopicYN="N">Mutation, Missense</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D016891" MajorTopicYN="N">Polycystic Kidney, Autosomal Dominant</DescriptorName>
<QualifierName UI="Q000188" MajorTopicYN="N">drug therapy</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D055550" MajorTopicYN="N">Protein Stability</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D050396" MajorTopicYN="N">TRPP Cation Channels</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
</MeshHeadingList>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">PKD2</Keyword>
<Keyword MajorTopicYN="N">chloroquine</Keyword>
<Keyword MajorTopicYN="N">lysosome</Keyword>
<Keyword MajorTopicYN="N">polycystic kidney disease</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2015</Year>
<Month>06</Month>
<Day>22</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="revised">
<Year>2015</Year>
<Month>08</Month>
<Day>25</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2015</Year>
<Month>09</Month>
<Day>24</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2016</Year>
<Month>3</Month>
<Day>1</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2016</Year>
<Month>3</Month>
<Day>1</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2017</Year>
<Month>2</Month>
<Day>1</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">26924047</ArticleId>
<ArticleId IdType="pii">S0085-2538(15)00066-6</ArticleId>
<ArticleId IdType="doi">10.1016/j.kint.2015.11.015</ArticleId>
<ArticleId IdType="pmc">PMC4801696</ArticleId>
<ArticleId IdType="mid">NIHMS750043</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>J Am Soc Nephrol. 1999 Nov;10(11):2342-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10541293</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2014 May 23;289(21):14854-67</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24719335</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Cell Biol. 2002 Mar;4(3):191-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11854751</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Appl Physiol (1985). 2002 Apr;92(4):1725-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11896043</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ann Hum Genet. 2003 Sep;67(Pt 5):471-85</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12940920</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Biol. 2003 Dec 16;13(24):2179-84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14680634</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 1996 May 31;272(5266):1339-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8650545</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 2005 Feb 23;24(4):705-16</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15692563</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 2005 Sep;25(18):8285-98</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16135816</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Clin J Am Soc Nephrol. 2008 May;3(3):790-3</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18322042</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2009 Jul 14;106(28):11558-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19556541</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2011;6(5):e20031</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21625494</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Genet. 2011 Jul;43(7):639-47</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21685914</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>N Engl J Med. 2011 Nov 3;365(18):1663-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22047557</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Drug Discov. 2012 May;11(5):349-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22543461</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2012 Dec 7;151(6):1163-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23217703</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2013;8(3):e59180</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23554992</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Am Soc Nephrol. 2013 May;24(6):868-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23687354</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Genet. 2013 Sep;45(9):1004-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23892607</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2013 Dec 12;504(7479):315-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24336289</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Handb Exp Pharmacol. 2014;222:675-711</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24756726</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2000 Dec 21-28;408(6815):990-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11140688</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/ChloroquineV1/Data/PubMed/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000215 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd -nk 000215 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    ChloroquineV1
   |flux=    PubMed
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:26924047
   |texte=   Targeted rescue of a polycystic kidney disease mutation by lysosomal inhibition.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/RBID.i   -Sk "pubmed:26924047" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a ChloroquineV1 

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Wed Mar 25 22:43:59 2020. Site generation: Sun Jan 31 12:44:45 2021