Serveur d'exploration Chloroquine

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Impaired Relaxation of Airway Smooth Muscle in Mice Lacking the Actin-Binding Protein Gelsolin.

Identifieur interne : 000179 ( PubMed/Corpus ); précédent : 000178; suivant : 000180

Impaired Relaxation of Airway Smooth Muscle in Mice Lacking the Actin-Binding Protein Gelsolin.

Auteurs : Maya Mikami ; Yi Zhang ; Jennifer Danielsson ; Tiarra Joell ; Hwan Mee Yong ; Elizabeth Townsend ; Seema Khurana ; Steven S. An ; Charles W. Emala

Source :

RBID : pubmed:28118027

English descriptors

Abstract

Diverse classes of ligands have recently been discovered that relax airway smooth muscle (ASM) despite a transient increase in intracellular calcium concentrations ([Ca2+]i). However, the cellular mechanisms are not well understood. Gelsolin is a calcium-activated actin-severing and -capping protein found in many cell types, including ASM cells. Gelsolin also binds to phosphatidylinositol 4,5-bisphosphate, making this substrate less available for phospholipase Cβ-mediated hydrolysis to inositol triphosphate and diacylglycerol. We hypothesized that gelsolin plays a critical role in ASM relaxation and mechanistically accounts for relaxation by ligands that transiently increase [Ca2+]i. Isolated tracheal rings from gelsolin knockout (KO) mice showed impaired relaxation to both a β-agonist and chloroquine, a bitter taste receptor agonist, which relaxes ASM, despite inducing transiently increased [Ca2+]i. A single inhalation of methacholine increased lung resistance to a similar extent in wild-type and gelsolin KO mice, but the subsequent spontaneous relaxation was less in gelsolin KO mice. In ASM cells derived from gelsolin KO mice, serotonin-induced Gq-coupled activation increased both [Ca2+]i and inositol triphosphate synthesis to a greater extent compared to cells from wild-type mice, possibly due to the absence of gelsolin binding to phosphatidylinositol 4,5-bisphosphate. Single-cell analysis showed higher filamentous:globular actin ratio at baseline and slower cytoskeletal remodeling dynamics in gelsolin KO cells. Gelsolin KO ASM cells also showed an attenuated decrease in cell stiffness to chloroquine and flufenamic acid. These findings suggest that gelsolin plays a critical role in ASM relaxation and that activation of gelsolin may contribute to relaxation induced by ligands that relax ASM despite a transient increase in [Ca2+]i.

DOI: 10.1165/rcmb.2016-0292OC
PubMed: 28118027

Links to Exploration step

pubmed:28118027

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Impaired Relaxation of Airway Smooth Muscle in Mice Lacking the Actin-Binding Protein Gelsolin.</title>
<author>
<name sortKey="Mikami, Maya" sort="Mikami, Maya" uniqKey="Mikami M" first="Maya" last="Mikami">Maya Mikami</name>
<affiliation>
<nlm:affiliation>1 Department of Anesthesiology, College of Physicians and Surgeons, Columbia University, New York, New York.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Zhang, Yi" sort="Zhang, Yi" uniqKey="Zhang Y" first="Yi" last="Zhang">Yi Zhang</name>
<affiliation>
<nlm:affiliation>1 Department of Anesthesiology, College of Physicians and Surgeons, Columbia University, New York, New York.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Danielsson, Jennifer" sort="Danielsson, Jennifer" uniqKey="Danielsson J" first="Jennifer" last="Danielsson">Jennifer Danielsson</name>
<affiliation>
<nlm:affiliation>1 Department of Anesthesiology, College of Physicians and Surgeons, Columbia University, New York, New York.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Joell, Tiarra" sort="Joell, Tiarra" uniqKey="Joell T" first="Tiarra" last="Joell">Tiarra Joell</name>
<affiliation>
<nlm:affiliation>2 Department of Environmental Health Sciences, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Yong, Hwan Mee" sort="Yong, Hwan Mee" uniqKey="Yong H" first="Hwan Mee" last="Yong">Hwan Mee Yong</name>
<affiliation>
<nlm:affiliation>2 Department of Environmental Health Sciences, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Townsend, Elizabeth" sort="Townsend, Elizabeth" uniqKey="Townsend E" first="Elizabeth" last="Townsend">Elizabeth Townsend</name>
<affiliation>
<nlm:affiliation>1 Department of Anesthesiology, College of Physicians and Surgeons, Columbia University, New York, New York.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Khurana, Seema" sort="Khurana, Seema" uniqKey="Khurana S" first="Seema" last="Khurana">Seema Khurana</name>
<affiliation>
<nlm:affiliation>3 Department of Biology and Biochemistry, University of Houston, Baylor College of Medicine, Houston, Texas; and.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="An, Steven S" sort="An, Steven S" uniqKey="An S" first="Steven S" last="An">Steven S. An</name>
<affiliation>
<nlm:affiliation>2 Department of Environmental Health Sciences, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Emala, Charles W" sort="Emala, Charles W" uniqKey="Emala C" first="Charles W" last="Emala">Charles W. Emala</name>
<affiliation>
<nlm:affiliation>1 Department of Anesthesiology, College of Physicians and Surgeons, Columbia University, New York, New York.</nlm:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2017">2017</date>
<idno type="RBID">pubmed:28118027</idno>
<idno type="pmid">28118027</idno>
<idno type="doi">10.1165/rcmb.2016-0292OC</idno>
<idno type="wicri:Area/PubMed/Corpus">000179</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">000179</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Impaired Relaxation of Airway Smooth Muscle in Mice Lacking the Actin-Binding Protein Gelsolin.</title>
<author>
<name sortKey="Mikami, Maya" sort="Mikami, Maya" uniqKey="Mikami M" first="Maya" last="Mikami">Maya Mikami</name>
<affiliation>
<nlm:affiliation>1 Department of Anesthesiology, College of Physicians and Surgeons, Columbia University, New York, New York.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Zhang, Yi" sort="Zhang, Yi" uniqKey="Zhang Y" first="Yi" last="Zhang">Yi Zhang</name>
<affiliation>
<nlm:affiliation>1 Department of Anesthesiology, College of Physicians and Surgeons, Columbia University, New York, New York.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Danielsson, Jennifer" sort="Danielsson, Jennifer" uniqKey="Danielsson J" first="Jennifer" last="Danielsson">Jennifer Danielsson</name>
<affiliation>
<nlm:affiliation>1 Department of Anesthesiology, College of Physicians and Surgeons, Columbia University, New York, New York.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Joell, Tiarra" sort="Joell, Tiarra" uniqKey="Joell T" first="Tiarra" last="Joell">Tiarra Joell</name>
<affiliation>
<nlm:affiliation>2 Department of Environmental Health Sciences, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Yong, Hwan Mee" sort="Yong, Hwan Mee" uniqKey="Yong H" first="Hwan Mee" last="Yong">Hwan Mee Yong</name>
<affiliation>
<nlm:affiliation>2 Department of Environmental Health Sciences, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Townsend, Elizabeth" sort="Townsend, Elizabeth" uniqKey="Townsend E" first="Elizabeth" last="Townsend">Elizabeth Townsend</name>
<affiliation>
<nlm:affiliation>1 Department of Anesthesiology, College of Physicians and Surgeons, Columbia University, New York, New York.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Khurana, Seema" sort="Khurana, Seema" uniqKey="Khurana S" first="Seema" last="Khurana">Seema Khurana</name>
<affiliation>
<nlm:affiliation>3 Department of Biology and Biochemistry, University of Houston, Baylor College of Medicine, Houston, Texas; and.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="An, Steven S" sort="An, Steven S" uniqKey="An S" first="Steven S" last="An">Steven S. An</name>
<affiliation>
<nlm:affiliation>2 Department of Environmental Health Sciences, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Emala, Charles W" sort="Emala, Charles W" uniqKey="Emala C" first="Charles W" last="Emala">Charles W. Emala</name>
<affiliation>
<nlm:affiliation>1 Department of Anesthesiology, College of Physicians and Surgeons, Columbia University, New York, New York.</nlm:affiliation>
</affiliation>
</author>
</analytic>
<series>
<title level="j">American journal of respiratory cell and molecular biology</title>
<idno type="eISSN">1535-4989</idno>
<imprint>
<date when="2017" type="published">2017</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Actins (metabolism)</term>
<term>Animals</term>
<term>Biomechanical Phenomena (drug effects)</term>
<term>Cell Separation</term>
<term>Chloroquine (pharmacology)</term>
<term>Electric Impedance</term>
<term>Gelsolin (metabolism)</term>
<term>Inositol Phosphates (metabolism)</term>
<term>Lung (drug effects)</term>
<term>Lung (physiology)</term>
<term>Male</term>
<term>Mice, Inbred C57BL</term>
<term>Mice, Knockout</term>
<term>Muscle Relaxation (drug effects)</term>
<term>Muscle Relaxation (physiology)</term>
<term>Muscle, Smooth (drug effects)</term>
<term>Muscle, Smooth (physiology)</term>
<term>Myocytes, Smooth Muscle (drug effects)</term>
<term>Myocytes, Smooth Muscle (metabolism)</term>
<term>Receptors, G-Protein-Coupled (antagonists & inhibitors)</term>
<term>Receptors, G-Protein-Coupled (metabolism)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="antagonists & inhibitors" xml:lang="en">
<term>Receptors, G-Protein-Coupled</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Actins</term>
<term>Gelsolin</term>
<term>Inositol Phosphates</term>
<term>Receptors, G-Protein-Coupled</term>
</keywords>
<keywords scheme="MESH" qualifier="drug effects" xml:lang="en">
<term>Biomechanical Phenomena</term>
<term>Lung</term>
<term>Muscle Relaxation</term>
<term>Muscle, Smooth</term>
<term>Myocytes, Smooth Muscle</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Myocytes, Smooth Muscle</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="pharmacology" xml:lang="en">
<term>Chloroquine</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>Lung</term>
<term>Muscle Relaxation</term>
<term>Muscle, Smooth</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Animals</term>
<term>Cell Separation</term>
<term>Electric Impedance</term>
<term>Male</term>
<term>Mice, Inbred C57BL</term>
<term>Mice, Knockout</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Diverse classes of ligands have recently been discovered that relax airway smooth muscle (ASM) despite a transient increase in intracellular calcium concentrations ([Ca
<sup>2+</sup>
]
<sub>i</sub>
). However, the cellular mechanisms are not well understood. Gelsolin is a calcium-activated actin-severing and -capping protein found in many cell types, including ASM cells. Gelsolin also binds to phosphatidylinositol 4,5-bisphosphate, making this substrate less available for phospholipase Cβ-mediated hydrolysis to inositol triphosphate and diacylglycerol. We hypothesized that gelsolin plays a critical role in ASM relaxation and mechanistically accounts for relaxation by ligands that transiently increase [Ca
<sup>2+</sup>
]
<sub>i</sub>
. Isolated tracheal rings from gelsolin knockout (KO) mice showed impaired relaxation to both a β-agonist and chloroquine, a bitter taste receptor agonist, which relaxes ASM, despite inducing transiently increased [Ca
<sup>2+</sup>
]
<sub>i</sub>
. A single inhalation of methacholine increased lung resistance to a similar extent in wild-type and gelsolin KO mice, but the subsequent spontaneous relaxation was less in gelsolin KO mice. In ASM cells derived from gelsolin KO mice, serotonin-induced Gq-coupled activation increased both [Ca
<sup>2+</sup>
]
<sub>i</sub>
and inositol triphosphate synthesis to a greater extent compared to cells from wild-type mice, possibly due to the absence of gelsolin binding to phosphatidylinositol 4,5-bisphosphate. Single-cell analysis showed higher filamentous:globular actin ratio at baseline and slower cytoskeletal remodeling dynamics in gelsolin KO cells. Gelsolin KO ASM cells also showed an attenuated decrease in cell stiffness to chloroquine and flufenamic acid. These findings suggest that gelsolin plays a critical role in ASM relaxation and that activation of gelsolin may contribute to relaxation induced by ligands that relax ASM despite a transient increase in [Ca
<sup>2+</sup>
]
<sub>i</sub>
.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">28118027</PMID>
<DateCompleted>
<Year>2017</Year>
<Month>07</Month>
<Day>31</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Print">
<Journal>
<ISSN IssnType="Electronic">1535-4989</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>56</Volume>
<Issue>5</Issue>
<PubDate>
<Year>2017</Year>
<Month>05</Month>
</PubDate>
</JournalIssue>
<Title>American journal of respiratory cell and molecular biology</Title>
<ISOAbbreviation>Am. J. Respir. Cell Mol. Biol.</ISOAbbreviation>
</Journal>
<ArticleTitle>Impaired Relaxation of Airway Smooth Muscle in Mice Lacking the Actin-Binding Protein Gelsolin.</ArticleTitle>
<Pagination>
<MedlinePgn>628-636</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1165/rcmb.2016-0292OC</ELocationID>
<Abstract>
<AbstractText>Diverse classes of ligands have recently been discovered that relax airway smooth muscle (ASM) despite a transient increase in intracellular calcium concentrations ([Ca
<sup>2+</sup>
]
<sub>i</sub>
). However, the cellular mechanisms are not well understood. Gelsolin is a calcium-activated actin-severing and -capping protein found in many cell types, including ASM cells. Gelsolin also binds to phosphatidylinositol 4,5-bisphosphate, making this substrate less available for phospholipase Cβ-mediated hydrolysis to inositol triphosphate and diacylglycerol. We hypothesized that gelsolin plays a critical role in ASM relaxation and mechanistically accounts for relaxation by ligands that transiently increase [Ca
<sup>2+</sup>
]
<sub>i</sub>
. Isolated tracheal rings from gelsolin knockout (KO) mice showed impaired relaxation to both a β-agonist and chloroquine, a bitter taste receptor agonist, which relaxes ASM, despite inducing transiently increased [Ca
<sup>2+</sup>
]
<sub>i</sub>
. A single inhalation of methacholine increased lung resistance to a similar extent in wild-type and gelsolin KO mice, but the subsequent spontaneous relaxation was less in gelsolin KO mice. In ASM cells derived from gelsolin KO mice, serotonin-induced Gq-coupled activation increased both [Ca
<sup>2+</sup>
]
<sub>i</sub>
and inositol triphosphate synthesis to a greater extent compared to cells from wild-type mice, possibly due to the absence of gelsolin binding to phosphatidylinositol 4,5-bisphosphate. Single-cell analysis showed higher filamentous:globular actin ratio at baseline and slower cytoskeletal remodeling dynamics in gelsolin KO cells. Gelsolin KO ASM cells also showed an attenuated decrease in cell stiffness to chloroquine and flufenamic acid. These findings suggest that gelsolin plays a critical role in ASM relaxation and that activation of gelsolin may contribute to relaxation induced by ligands that relax ASM despite a transient increase in [Ca
<sup>2+</sup>
]
<sub>i</sub>
.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Mikami</LastName>
<ForeName>Maya</ForeName>
<Initials>M</Initials>
<AffiliationInfo>
<Affiliation>1 Department of Anesthesiology, College of Physicians and Surgeons, Columbia University, New York, New York.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Zhang</LastName>
<ForeName>Yi</ForeName>
<Initials>Y</Initials>
<AffiliationInfo>
<Affiliation>1 Department of Anesthesiology, College of Physicians and Surgeons, Columbia University, New York, New York.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Danielsson</LastName>
<ForeName>Jennifer</ForeName>
<Initials>J</Initials>
<AffiliationInfo>
<Affiliation>1 Department of Anesthesiology, College of Physicians and Surgeons, Columbia University, New York, New York.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Joell</LastName>
<ForeName>Tiarra</ForeName>
<Initials>T</Initials>
<AffiliationInfo>
<Affiliation>2 Department of Environmental Health Sciences, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Yong</LastName>
<ForeName>Hwan Mee</ForeName>
<Initials>HM</Initials>
<AffiliationInfo>
<Affiliation>2 Department of Environmental Health Sciences, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Townsend</LastName>
<ForeName>Elizabeth</ForeName>
<Initials>E</Initials>
<AffiliationInfo>
<Affiliation>1 Department of Anesthesiology, College of Physicians and Surgeons, Columbia University, New York, New York.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Khurana</LastName>
<ForeName>Seema</ForeName>
<Initials>S</Initials>
<AffiliationInfo>
<Affiliation>3 Department of Biology and Biochemistry, University of Houston, Baylor College of Medicine, Houston, Texas; and.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>An</LastName>
<ForeName>Steven S</ForeName>
<Initials>SS</Initials>
<AffiliationInfo>
<Affiliation>2 Department of Environmental Health Sciences, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>4 Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Emala</LastName>
<ForeName>Charles W</ForeName>
<Initials>CW</Initials>
<AffiliationInfo>
<Affiliation>1 Department of Anesthesiology, College of Physicians and Surgeons, Columbia University, New York, New York.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>R01 DK098120</GrantID>
<Acronym>DK</Acronym>
<Agency>NIDDK NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>R01 GM065281</GrantID>
<Acronym>GM</Acronym>
<Agency>NIGMS NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>T32 GM008464</GrantID>
<Acronym>GM</Acronym>
<Agency>NIGMS NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>R01 HL107361</GrantID>
<Acronym>HL</Acronym>
<Agency>NHLBI NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>R01 HL122340</GrantID>
<Acronym>HL</Acronym>
<Agency>NHLBI NIH HHS</Agency>
<Country>United States</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
<PublicationType UI="D052061">Research Support, N.I.H., Extramural</PublicationType>
</PublicationTypeList>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Am J Respir Cell Mol Biol</MedlineTA>
<NlmUniqueID>8917225</NlmUniqueID>
<ISSNLinking>1044-1549</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D000199">Actins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D018260">Gelsolin</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D007295">Inositol Phosphates</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D043562">Receptors, G-Protein-Coupled</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>886U3H6UFF</RegistryNumber>
<NameOfSubstance UI="D002738">Chloroquine</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000199" MajorTopicYN="N">Actins</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000818" MajorTopicYN="N">Animals</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001696" MajorTopicYN="N">Biomechanical Phenomena</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002469" MajorTopicYN="N">Cell Separation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002738" MajorTopicYN="N">Chloroquine</DescriptorName>
<QualifierName UI="Q000494" MajorTopicYN="N">pharmacology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017097" MajorTopicYN="N">Electric Impedance</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018260" MajorTopicYN="N">Gelsolin</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D007295" MajorTopicYN="N">Inositol Phosphates</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008168" MajorTopicYN="N">Lung</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008297" MajorTopicYN="N">Male</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008810" MajorTopicYN="N">Mice, Inbred C57BL</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018345" MajorTopicYN="N">Mice, Knockout</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009126" MajorTopicYN="N">Muscle Relaxation</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009130" MajorTopicYN="N">Muscle, Smooth</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D032389" MajorTopicYN="N">Myocytes, Smooth Muscle</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D043562" MajorTopicYN="N">Receptors, G-Protein-Coupled</DescriptorName>
<QualifierName UI="Q000037" MajorTopicYN="N">antagonists & inhibitors</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
</MeshHeadingList>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="Y">actin cytoskeleton</Keyword>
<Keyword MajorTopicYN="Y">bitter taste receptor agonist</Keyword>
<Keyword MajorTopicYN="Y">cell stiffness</Keyword>
<Keyword MajorTopicYN="Y">flexiVent</Keyword>
<Keyword MajorTopicYN="Y">smooth muscle relaxation</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="pubmed">
<Year>2017</Year>
<Month>1</Month>
<Day>25</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2017</Year>
<Month>8</Month>
<Day>2</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2017</Year>
<Month>1</Month>
<Day>25</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">28118027</ArticleId>
<ArticleId IdType="doi">10.1165/rcmb.2016-0292OC</ArticleId>
<ArticleId IdType="pmc">PMC5449493</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Nat Med. 2010 Nov;16(11):1299-304</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20972434</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am J Physiol Lung Cell Mol Physiol. 2008 Jun;294(6):L1206-16</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18408071</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1988 Jun 15;263(17):8239-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2836420</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Appl Physiol (1985). 2004 Jan;96(1):25-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12730154</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am J Respir Cell Mol Biol. 2013 Feb;48(2):157-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23065130</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am J Respir Cell Mol Biol. 2006 Jul;35(1):55-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16484685</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 1986 Oct 2-8;323(6087):455-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3020431</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1984 Apr 25;259(8):5271-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">6325429</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am J Physiol. 1999 Mar;276(3 Pt 1):L405-11</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10070103</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am Rev Respir Dis. 1993 Nov;148(5):1220-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8239157</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Cell Biol. 1995 Feb;7(1):111-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7755982</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am Rev Respir Dis. 1993 Feb;147(2):405-10</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8430966</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Scientifica (Cairo). 2013;2013:549252</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24455432</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 1979 Oct 18;281(5732):583-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">492320</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am Rev Respir Dis. 1993 Sep;148(3):720-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8368645</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am J Physiol Lung Cell Mol Physiol. 2005 May;288(5):L924-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15821021</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 1995 Apr 7;81(1):41-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7720072</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem Biophys Res Commun. 2007 Apr 6;355(2):324-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17303084</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 1994 Feb 18;263(5149):969-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8310295</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am J Physiol Cell Physiol. 2002 Sep;283(3):C792-801</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12176736</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Int Rev Cytol. 2007;258:1-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17338919</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Am Thorac Soc. 2008 Jan 1;5(1):32-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18094082</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Biol. 2013;11(3):e1001501</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23472053</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am J Physiol Lung Cell Mol Physiol. 2013 Nov 1;305(9):L625-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23997176</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Am Thorac Soc. 2008 Jan 1;5(1):97-105</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18094091</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2015 Jun 29;10 (6):e0131582</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26121686</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1999 Nov 19;274(47):33179-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10559185</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Appl Physiol (1985). 2004 May;96(5):1701-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14729728</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Chest. 2003 Mar;123(3 Suppl):392S-8S</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12629000</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Pharmacol Exp Ther. 1996 May;277(2):753-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8627555</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Can J Physiol Pharmacol. 2005 Oct;83(10):923-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16333364</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Appl Physiol (1985). 1997 Jun;82(6):1836-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9173948</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>N Engl J Med. 2004 Aug 5;351(6):531-2</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15295045</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Respir Physiol Neurobiol. 2003 Sep 16;137(2-3):209-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14516727</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Allergy Clin Immunol. 2005 Sep;116(3):544-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16159622</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biophys J. 1998 Dec;75(6):3101-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9826630</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 1987 Jan 22-28;325(6102):362-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3027569</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Semin Cell Biol. 1994 Jun;5(3):193-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7919233</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Allergy Clin Immunol. 2003 Feb;111(2):215-25; quiz 226</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12589337</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eur Respir J. 2007 May;29(5):834-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17470619</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am J Physiol Cell Physiol. 2008 Sep;295(3):C576-87</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18596210</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/ChloroquineV1/Data/PubMed/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000179 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd -nk 000179 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    ChloroquineV1
   |flux=    PubMed
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:28118027
   |texte=   Impaired Relaxation of Airway Smooth Muscle in Mice Lacking the Actin-Binding Protein Gelsolin.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/RBID.i   -Sk "pubmed:28118027" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a ChloroquineV1 

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Wed Mar 25 22:43:59 2020. Site generation: Sun Jan 31 12:44:45 2021