Serveur d'exploration Chloroquine

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Ochratoxin A-induced autophagy in vitro and in vivo promotes porcine circovirus type 2 replication.

Identifieur interne : 000158 ( PubMed/Corpus ); précédent : 000157; suivant : 000159

Ochratoxin A-induced autophagy in vitro and in vivo promotes porcine circovirus type 2 replication.

Auteurs : Gang Qian ; Dandan Liu ; Junfa Hu ; Fang Gan ; Lili Hou ; Xingxiang Chen ; Kehe Huang

Source :

RBID : pubmed:28661479

English descriptors

Abstract

Ochratoxin A (OTA) is a mycotoxin produced by Aspergillus and Penicillium. Porcine circovirus type 2 (PCV2) is recognized as the causative agent of porcine circovirus-associated diseases. Recently, we reported that low doses of OTA promoted PCV2 replication in vitro and in vivo, but the underlying mechanism needed further investigation. The present studies further confirmed OTA-induced PCV2 replication promotion as measured by cap protein expression, viral titer, viral DNA copies and the number of infected cells. Our studies also showed that OTA induced autophagy in PK-15 cells, as assessed by the markedly increased expression of microtubule-associated protein 1 light chain 3 (LC3)-II, autophagy-related protein 5 (ATG5), and Beclin-1 and the accumulation of green fluorescent protein (GFP)-LC3 dots. OTA induced complete autophagic flux, which was detected by monitoring p62 degradation and LC3-II turnover using immunoblotting. Inhibition of autophagy by 3-methylademine (3-MA) and chloroquine (CQ) significantly attenuated OTA-induced PCV2 replication promotion. The observed phenomenon was further confirmed by the knock-down of ATG5 or Beclin-1 by specific siRNA. Further studies showed that N-acetyl-L-cysteine (NAC), an ROS scavenger could block autophagy induced by OTA, indicating that ROS may be involved in the regulation of OTA-induced autophagy. Furthermore, we observed significant increases in OTA concentrations in lung, spleen, kidney, liver and inguinal lymph nodes (ILN) and bronchial lymph nodes (BLN) of pigs fed 75 and 150 μg/kg OTA compared with controls in vivo. Administration of 75 μg/kg OTA significantly increased PCV2 replication and autophagy in the lung, spleen, kidney and BLN of pigs. Taken together, it could be concluded that OTA-induced autophagy in vitro and in vivo promotes PCV2 replication.

DOI: 10.1038/cddis.2017.303
PubMed: 28661479

Links to Exploration step

pubmed:28661479

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Ochratoxin A-induced autophagy in vitro and in vivo promotes porcine circovirus type 2 replication.</title>
<author>
<name sortKey="Qian, Gang" sort="Qian, Gang" uniqKey="Qian G" first="Gang" last="Qian">Gang Qian</name>
<affiliation>
<nlm:affiliation>College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Liu, Dandan" sort="Liu, Dandan" uniqKey="Liu D" first="Dandan" last="Liu">Dandan Liu</name>
<affiliation>
<nlm:affiliation>College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Hu, Junfa" sort="Hu, Junfa" uniqKey="Hu J" first="Junfa" last="Hu">Junfa Hu</name>
<affiliation>
<nlm:affiliation>College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Gan, Fang" sort="Gan, Fang" uniqKey="Gan F" first="Fang" last="Gan">Fang Gan</name>
<affiliation>
<nlm:affiliation>College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Hou, Lili" sort="Hou, Lili" uniqKey="Hou L" first="Lili" last="Hou">Lili Hou</name>
<affiliation>
<nlm:affiliation>College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Chen, Xingxiang" sort="Chen, Xingxiang" uniqKey="Chen X" first="Xingxiang" last="Chen">Xingxiang Chen</name>
<affiliation>
<nlm:affiliation>College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Huang, Kehe" sort="Huang, Kehe" uniqKey="Huang K" first="Kehe" last="Huang">Kehe Huang</name>
<affiliation>
<nlm:affiliation>College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, China.</nlm:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2017">2017</date>
<idno type="RBID">pubmed:28661479</idno>
<idno type="pmid">28661479</idno>
<idno type="doi">10.1038/cddis.2017.303</idno>
<idno type="wicri:Area/PubMed/Corpus">000158</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">000158</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Ochratoxin A-induced autophagy in vitro and in vivo promotes porcine circovirus type 2 replication.</title>
<author>
<name sortKey="Qian, Gang" sort="Qian, Gang" uniqKey="Qian G" first="Gang" last="Qian">Gang Qian</name>
<affiliation>
<nlm:affiliation>College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Liu, Dandan" sort="Liu, Dandan" uniqKey="Liu D" first="Dandan" last="Liu">Dandan Liu</name>
<affiliation>
<nlm:affiliation>College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Hu, Junfa" sort="Hu, Junfa" uniqKey="Hu J" first="Junfa" last="Hu">Junfa Hu</name>
<affiliation>
<nlm:affiliation>College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Gan, Fang" sort="Gan, Fang" uniqKey="Gan F" first="Fang" last="Gan">Fang Gan</name>
<affiliation>
<nlm:affiliation>College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Hou, Lili" sort="Hou, Lili" uniqKey="Hou L" first="Lili" last="Hou">Lili Hou</name>
<affiliation>
<nlm:affiliation>College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Chen, Xingxiang" sort="Chen, Xingxiang" uniqKey="Chen X" first="Xingxiang" last="Chen">Xingxiang Chen</name>
<affiliation>
<nlm:affiliation>College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Huang, Kehe" sort="Huang, Kehe" uniqKey="Huang K" first="Kehe" last="Huang">Kehe Huang</name>
<affiliation>
<nlm:affiliation>College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, China.</nlm:affiliation>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Cell death & disease</title>
<idno type="eISSN">2041-4889</idno>
<imprint>
<date when="2017" type="published">2017</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Animals</term>
<term>Autophagy (drug effects)</term>
<term>Autophagy (genetics)</term>
<term>Autophagy-Related Protein 5 (genetics)</term>
<term>Beclin-1 (genetics)</term>
<term>Circoviridae Infections (genetics)</term>
<term>Circoviridae Infections (veterinary)</term>
<term>Circoviridae Infections (virology)</term>
<term>Circovirus (drug effects)</term>
<term>Circovirus (genetics)</term>
<term>Circovirus (pathogenicity)</term>
<term>DNA, Viral (drug effects)</term>
<term>Gene Expression Regulation, Viral (genetics)</term>
<term>Microtubule-Associated Proteins</term>
<term>Ochratoxins (administration & dosage)</term>
<term>Swine</term>
<term>Tissue Distribution</term>
<term>Virus Replication (drug effects)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="administration & dosage" xml:lang="en">
<term>Ochratoxins</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="drug effects" xml:lang="en">
<term>DNA, Viral</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>Autophagy-Related Protein 5</term>
<term>Beclin-1</term>
</keywords>
<keywords scheme="MESH" qualifier="drug effects" xml:lang="en">
<term>Autophagy</term>
<term>Circovirus</term>
<term>Virus Replication</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Autophagy</term>
<term>Circoviridae Infections</term>
<term>Circovirus</term>
<term>Gene Expression Regulation, Viral</term>
</keywords>
<keywords scheme="MESH" qualifier="pathogenicity" xml:lang="en">
<term>Circovirus</term>
</keywords>
<keywords scheme="MESH" qualifier="veterinary" xml:lang="en">
<term>Circoviridae Infections</term>
</keywords>
<keywords scheme="MESH" qualifier="virology" xml:lang="en">
<term>Circoviridae Infections</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Animals</term>
<term>Microtubule-Associated Proteins</term>
<term>Swine</term>
<term>Tissue Distribution</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Ochratoxin A (OTA) is a mycotoxin produced by Aspergillus and Penicillium. Porcine circovirus type 2 (PCV2) is recognized as the causative agent of porcine circovirus-associated diseases. Recently, we reported that low doses of OTA promoted PCV2 replication in vitro and in vivo, but the underlying mechanism needed further investigation. The present studies further confirmed OTA-induced PCV2 replication promotion as measured by cap protein expression, viral titer, viral DNA copies and the number of infected cells. Our studies also showed that OTA induced autophagy in PK-15 cells, as assessed by the markedly increased expression of microtubule-associated protein 1 light chain 3 (LC3)-II, autophagy-related protein 5 (ATG5), and Beclin-1 and the accumulation of green fluorescent protein (GFP)-LC3 dots. OTA induced complete autophagic flux, which was detected by monitoring p62 degradation and LC3-II turnover using immunoblotting. Inhibition of autophagy by 3-methylademine (3-MA) and chloroquine (CQ) significantly attenuated OTA-induced PCV2 replication promotion. The observed phenomenon was further confirmed by the knock-down of ATG5 or Beclin-1 by specific siRNA. Further studies showed that N-acetyl-L-cysteine (NAC), an ROS scavenger could block autophagy induced by OTA, indicating that ROS may be involved in the regulation of OTA-induced autophagy. Furthermore, we observed significant increases in OTA concentrations in lung, spleen, kidney, liver and inguinal lymph nodes (ILN) and bronchial lymph nodes (BLN) of pigs fed 75 and 150 μg/kg OTA compared with controls in vivo. Administration of 75 μg/kg OTA significantly increased PCV2 replication and autophagy in the lung, spleen, kidney and BLN of pigs. Taken together, it could be concluded that OTA-induced autophagy in vitro and in vivo promotes PCV2 replication.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">28661479</PMID>
<DateCompleted>
<Year>2018</Year>
<Month>04</Month>
<Day>10</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Electronic">
<Journal>
<ISSN IssnType="Electronic">2041-4889</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>8</Volume>
<Issue>6</Issue>
<PubDate>
<Year>2017</Year>
<Month>06</Month>
<Day>29</Day>
</PubDate>
</JournalIssue>
<Title>Cell death & disease</Title>
<ISOAbbreviation>Cell Death Dis</ISOAbbreviation>
</Journal>
<ArticleTitle>Ochratoxin A-induced autophagy in vitro and in vivo promotes porcine circovirus type 2 replication.</ArticleTitle>
<Pagination>
<MedlinePgn>e2909</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1038/cddis.2017.303</ELocationID>
<Abstract>
<AbstractText>Ochratoxin A (OTA) is a mycotoxin produced by Aspergillus and Penicillium. Porcine circovirus type 2 (PCV2) is recognized as the causative agent of porcine circovirus-associated diseases. Recently, we reported that low doses of OTA promoted PCV2 replication in vitro and in vivo, but the underlying mechanism needed further investigation. The present studies further confirmed OTA-induced PCV2 replication promotion as measured by cap protein expression, viral titer, viral DNA copies and the number of infected cells. Our studies also showed that OTA induced autophagy in PK-15 cells, as assessed by the markedly increased expression of microtubule-associated protein 1 light chain 3 (LC3)-II, autophagy-related protein 5 (ATG5), and Beclin-1 and the accumulation of green fluorescent protein (GFP)-LC3 dots. OTA induced complete autophagic flux, which was detected by monitoring p62 degradation and LC3-II turnover using immunoblotting. Inhibition of autophagy by 3-methylademine (3-MA) and chloroquine (CQ) significantly attenuated OTA-induced PCV2 replication promotion. The observed phenomenon was further confirmed by the knock-down of ATG5 or Beclin-1 by specific siRNA. Further studies showed that N-acetyl-L-cysteine (NAC), an ROS scavenger could block autophagy induced by OTA, indicating that ROS may be involved in the regulation of OTA-induced autophagy. Furthermore, we observed significant increases in OTA concentrations in lung, spleen, kidney, liver and inguinal lymph nodes (ILN) and bronchial lymph nodes (BLN) of pigs fed 75 and 150 μg/kg OTA compared with controls in vivo. Administration of 75 μg/kg OTA significantly increased PCV2 replication and autophagy in the lung, spleen, kidney and BLN of pigs. Taken together, it could be concluded that OTA-induced autophagy in vitro and in vivo promotes PCV2 replication.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Qian</LastName>
<ForeName>Gang</ForeName>
<Initials>G</Initials>
<AffiliationInfo>
<Affiliation>College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, China.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Institute of Nutritional and Metabolic Disorders in Domestic Animals and Fowls, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Liu</LastName>
<ForeName>Dandan</ForeName>
<Initials>D</Initials>
<AffiliationInfo>
<Affiliation>College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, China.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Institute of Nutritional and Metabolic Disorders in Domestic Animals and Fowls, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Hu</LastName>
<ForeName>Junfa</ForeName>
<Initials>J</Initials>
<AffiliationInfo>
<Affiliation>College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, China.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Institute of Nutritional and Metabolic Disorders in Domestic Animals and Fowls, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Gan</LastName>
<ForeName>Fang</ForeName>
<Initials>F</Initials>
<AffiliationInfo>
<Affiliation>College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, China.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Institute of Nutritional and Metabolic Disorders in Domestic Animals and Fowls, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Hou</LastName>
<ForeName>Lili</ForeName>
<Initials>L</Initials>
<AffiliationInfo>
<Affiliation>College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, China.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Institute of Nutritional and Metabolic Disorders in Domestic Animals and Fowls, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Chen</LastName>
<ForeName>Xingxiang</ForeName>
<Initials>X</Initials>
<AffiliationInfo>
<Affiliation>College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, China.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Institute of Nutritional and Metabolic Disorders in Domestic Animals and Fowls, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Huang</LastName>
<ForeName>Kehe</ForeName>
<Initials>K</Initials>
<AffiliationInfo>
<Affiliation>College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, China.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Institute of Nutritional and Metabolic Disorders in Domestic Animals and Fowls, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, China.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2017</Year>
<Month>06</Month>
<Day>29</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>Cell Death Dis</MedlineTA>
<NlmUniqueID>101524092</NlmUniqueID>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D000071187">Autophagy-Related Protein 5</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D000071186">Beclin-1</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D004279">DNA, Viral</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D008869">Microtubule-Associated Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D009793">Ochratoxins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>1779SX6LUY</RegistryNumber>
<NameOfSubstance UI="C025589">ochratoxin A</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000818" MajorTopicYN="N">Animals</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001343" MajorTopicYN="N">Autophagy</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000071187" MajorTopicYN="N">Autophagy-Related Protein 5</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000071186" MajorTopicYN="N">Beclin-1</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018173" MajorTopicYN="N">Circoviridae Infections</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
<QualifierName UI="Q000662" MajorTopicYN="N">veterinary</QualifierName>
<QualifierName UI="Q000821" MajorTopicYN="N">virology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017925" MajorTopicYN="N">Circovirus</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
<QualifierName UI="Q000472" MajorTopicYN="N">pathogenicity</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004279" MajorTopicYN="N">DNA, Viral</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015967" MajorTopicYN="N">Gene Expression Regulation, Viral</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008869" MajorTopicYN="N">Microtubule-Associated Proteins</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009793" MajorTopicYN="N">Ochratoxins</DescriptorName>
<QualifierName UI="Q000008" MajorTopicYN="Y">administration & dosage</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013552" MajorTopicYN="N">Swine</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014018" MajorTopicYN="N">Tissue Distribution</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014779" MajorTopicYN="N">Virus Replication</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="Y">drug effects</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2017</Year>
<Month>03</Month>
<Day>01</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="revised">
<Year>2017</Year>
<Month>05</Month>
<Day>19</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2017</Year>
<Month>05</Month>
<Day>29</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2017</Year>
<Month>6</Month>
<Day>30</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2017</Year>
<Month>7</Month>
<Day>1</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2018</Year>
<Month>4</Month>
<Day>11</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">28661479</ArticleId>
<ArticleId IdType="pii">cddis2017303</ArticleId>
<ArticleId IdType="doi">10.1038/cddis.2017.303</ArticleId>
<ArticleId IdType="pmc">PMC5520947</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Food Addit Contam. 2000 Feb;17(2):167-75</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10793848</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Drug Metab. 2011 Jan;12(1):1-10</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21222585</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Vet J. 2011 Jan;187(1):23-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20211570</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2008 Dec;82(23):11976-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18799585</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 2005 Feb;25(3):1025-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15657430</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2009 Aug 18;106(33):14046-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19666601</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Free Radic Biol Med. 2015 Mar;80:33-47</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25542137</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Death Dis. 2013 Oct 03;4:e822</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24091665</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2007 Aug 17;282(33):24131-45</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17580304</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Toxicol Lett. 2014 Apr 21;226(2):182-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24530352</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 1982 Jan 7;295(5844):64-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7057875</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Autophagy. 2009 Jul;5(5):713-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19372752</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Cell. 2008 May;19(5):2092-100</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18321988</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Vet Microbiol. 2008 Dec 10;132(3-4):260-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18614300</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Crit Rev Toxicol. 2012 Feb;42(2):147-68</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22276591</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Virology. 2012 Aug 1;429(2):136-47</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22564420</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1982 Mar;79(6):1889-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">6952238</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Autophagy. 2010 Oct;6(7):838-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20505317</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 1998 Nov;72 (11):8586-96</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9765397</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 2000 Nov 1;19(21):5720-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11060023</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2007 Mar 2;282(9):6763-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17192262</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Anim Health Res Rev. 2010 Dec;11(2):217-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21087576</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mycotoxin Res. 2009 Dec;25(4):233-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23605153</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Arch Toxicol. 2012 Jan;86(1):97-107</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21739216</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2000 Jan 14;275(2):992-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10625637</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Proteomics. 2013 Jan 14;78:398-415</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23088929</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Autophagy. 2007 May-Jun;3(3):181-206</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17224625</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Biol. 2005 Nov 21;171(4):603-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16286508</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Autophagy. 2008 Oct;4(7):947-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18769161</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2008 Dec 9;105(49):19211-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19050071</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Autophagy. 2013 Apr;9(4):595-603</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23412639</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Autophagy. 2006 Jan-Mar;2(1):24-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16874088</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Host Microbe. 2010 Nov 18;8(5):422-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21075353</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Food Addit Contam. 2005;22 Suppl 1:26-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16332618</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Autophagy. 2014 Oct 1;10(10):1692-701</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25207555</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Virology. 2012 Apr 25;426(1):66-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22330204</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cancer Epidemiol Biomarkers Prev. 2008 Jul;17(7):1596-610</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18628411</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2012 Nov;86(22):12003-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22915817</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2014 Jan;88(1):525-37</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24173218</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2007 Nov;81(22):12543-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17804493</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Toxicol Appl Pharmacol. 2013 Apr 15;268(2):123-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23391613</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Autophagy. 2007 Nov-Dec;3(6):542-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17611390</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2008 Jan;82(2):617-29</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17959661</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Autophagy. 2011 Jun;7(6):613-28</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21460631</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Cell Biol. 2006 Oct;8(10 ):1045-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17013414</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Chromatogr B Analyt Technol Biomed Life Sci. 2013 Apr 15;925:46-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23523799</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2004 Nov 5;306(5698):990-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15528435</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 1999 Dec 9;402(6762):672-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10604474</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell. 2010 Oct 22;40(2):280-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20965422</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Autophagy. 2005 Jul;1(2):84-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16874052</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Biol. 2001 Feb 19;152(4):657-68</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11266458</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Cell Biol. 2010 Sep;12(9):814-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20811353</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cancer Res Clin Oncol. 2014 Jun;140(6):909-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24659340</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Autophagy. 2009 Apr;5(3):321-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19066474</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2008 Jan 11;132(1):27-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18191218</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Autophagy. 2006 Apr-Jun;2(2):138-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16874037</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mycotoxin Res. 2016 Aug;32(3):145-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27056395</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Food Chem Toxicol. 2014 Jul;69:202-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24755393</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Neurovirol. 2007 Oct;13(5):416-25</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17994426</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Virus Res. 2012 Feb;163(2):476-85</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22134092</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 1987 Feb;53(2):266-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3566267</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/ChloroquineV1/Data/PubMed/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000158 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd -nk 000158 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    ChloroquineV1
   |flux=    PubMed
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:28661479
   |texte=   Ochratoxin A-induced autophagy in vitro and in vivo promotes porcine circovirus type 2 replication.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/RBID.i   -Sk "pubmed:28661479" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a ChloroquineV1 

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Wed Mar 25 22:43:59 2020. Site generation: Sun Jan 31 12:44:45 2021