Serveur d'exploration Chloroquine

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

TAS2R activation promotes airway smooth muscle relaxation despite β(2)-adrenergic receptor tachyphylaxis.

Identifieur interne : 000347 ( PubMed/Checkpoint ); précédent : 000346; suivant : 000348

TAS2R activation promotes airway smooth muscle relaxation despite β(2)-adrenergic receptor tachyphylaxis.

Auteurs : Steven S. An [États-Unis] ; Wayne C H. Wang ; Cynthia J. Koziol-White ; Kwangmi Ahn ; Danielle Y. Lee ; Richard C. Kurten ; Reynold A. Panettieri ; Stephen B. Liggett

Source :

RBID : pubmed:22683571

Descripteurs français

English descriptors

Abstract

Recently, bitter taste receptors (TAS2Rs) were found in the lung and act to relax airway smooth muscle (ASM) via intracellular Ca(2+) concentration signaling generated from restricted phospholipase C activation. As potential therapy, TAS2R agonists could be add-on treatment when patients fail to achieve adequate bronchodilation with chronic β-agonists. The β(2)-adrenergic receptor (β(2)AR) of ASM undergoes extensive functional desensitization. It remains unknown whether this desensitization affects TAS2R function, by cross talk at the receptors or distal common components in the relaxation machinery. We studied intracellular signaling and cell mechanics using isolated human ASM, mouse tracheal responses, and human bronchial responses to characterize TAS2R relaxation in the context of β(2)AR desensitization. In isolated human ASM, magnetic twisting cytometry revealed >90% loss of isoproterenol-promoted decrease in cell stiffness after 18-h exposure to albuterol. Under these same conditions of β(2)AR desensitization, the TAS2R agonist chloroquine relaxation response was unaffected. TAS2R-mediated stimulation of intracellular Ca(2+) concentration in human ASM was unaltered by albuterol pretreatment, in contrast to cAMP signaling, which was desensitized by >90%. In mouse trachea, β(2)AR desensitization by β-agonist amounted to 92 ± 6.0% (P < 0.001), while, under these same conditions, TAS2R desensitization was not significant (11 ± 3.5%). In human lung slices, chronic β-agonist exposure culminated in 64 ± 5.7% (P < 0.001) desensitization of β(2)AR-mediated dilation of carbachol-constricted airways that was reversed by chloroquine. We conclude that there is no evidence for physiologically relevant cross-desensitization of TAS2R-mediated ASM relaxation from chronic β-agonist treatment. These findings portend a favorable therapeutic profile for TAS2R agonists for the treatment of bronchospasm in asthma or chronic obstructive lung disease.

DOI: 10.1152/ajplung.00126.2012
PubMed: 22683571


Affiliations:


Links toward previous steps (curation, corpus...)


Links to Exploration step

pubmed:22683571

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">TAS2R activation promotes airway smooth muscle relaxation despite β(2)-adrenergic receptor tachyphylaxis.</title>
<author>
<name sortKey="An, Steven S" sort="An, Steven S" uniqKey="An S" first="Steven S" last="An">Steven S. An</name>
<affiliation wicri:level="2">
<nlm:affiliation>Program in Respiratory Biology and Lung Disease, Johns Hopkins University, Bloomberg School of Public Health, 615 N Wolfe St., Rm. E-7616, Baltimore, MD 21205, USA. san@jhsph.edu</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Program in Respiratory Biology and Lung Disease, Johns Hopkins University, Bloomberg School of Public Health, 615 N Wolfe St., Rm. E-7616, Baltimore, MD 21205</wicri:regionArea>
<placeName>
<region type="state">Maryland</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Wang, Wayne C H" sort="Wang, Wayne C H" uniqKey="Wang W" first="Wayne C H" last="Wang">Wayne C H. Wang</name>
</author>
<author>
<name sortKey="Koziol White, Cynthia J" sort="Koziol White, Cynthia J" uniqKey="Koziol White C" first="Cynthia J" last="Koziol-White">Cynthia J. Koziol-White</name>
</author>
<author>
<name sortKey="Ahn, Kwangmi" sort="Ahn, Kwangmi" uniqKey="Ahn K" first="Kwangmi" last="Ahn">Kwangmi Ahn</name>
</author>
<author>
<name sortKey="Lee, Danielle Y" sort="Lee, Danielle Y" uniqKey="Lee D" first="Danielle Y" last="Lee">Danielle Y. Lee</name>
</author>
<author>
<name sortKey="Kurten, Richard C" sort="Kurten, Richard C" uniqKey="Kurten R" first="Richard C" last="Kurten">Richard C. Kurten</name>
</author>
<author>
<name sortKey="Panettieri, Reynold A" sort="Panettieri, Reynold A" uniqKey="Panettieri R" first="Reynold A" last="Panettieri">Reynold A. Panettieri</name>
</author>
<author>
<name sortKey="Liggett, Stephen B" sort="Liggett, Stephen B" uniqKey="Liggett S" first="Stephen B" last="Liggett">Stephen B. Liggett</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2012">2012</date>
<idno type="RBID">pubmed:22683571</idno>
<idno type="pmid">22683571</idno>
<idno type="doi">10.1152/ajplung.00126.2012</idno>
<idno type="wicri:Area/PubMed/Corpus">000360</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">000360</idno>
<idno type="wicri:Area/PubMed/Curation">000360</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Curation">000360</idno>
<idno type="wicri:Area/PubMed/Checkpoint">000347</idno>
<idno type="wicri:explorRef" wicri:stream="Checkpoint" wicri:step="PubMed">000347</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">TAS2R activation promotes airway smooth muscle relaxation despite β(2)-adrenergic receptor tachyphylaxis.</title>
<author>
<name sortKey="An, Steven S" sort="An, Steven S" uniqKey="An S" first="Steven S" last="An">Steven S. An</name>
<affiliation wicri:level="2">
<nlm:affiliation>Program in Respiratory Biology and Lung Disease, Johns Hopkins University, Bloomberg School of Public Health, 615 N Wolfe St., Rm. E-7616, Baltimore, MD 21205, USA. san@jhsph.edu</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Program in Respiratory Biology and Lung Disease, Johns Hopkins University, Bloomberg School of Public Health, 615 N Wolfe St., Rm. E-7616, Baltimore, MD 21205</wicri:regionArea>
<placeName>
<region type="state">Maryland</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Wang, Wayne C H" sort="Wang, Wayne C H" uniqKey="Wang W" first="Wayne C H" last="Wang">Wayne C H. Wang</name>
</author>
<author>
<name sortKey="Koziol White, Cynthia J" sort="Koziol White, Cynthia J" uniqKey="Koziol White C" first="Cynthia J" last="Koziol-White">Cynthia J. Koziol-White</name>
</author>
<author>
<name sortKey="Ahn, Kwangmi" sort="Ahn, Kwangmi" uniqKey="Ahn K" first="Kwangmi" last="Ahn">Kwangmi Ahn</name>
</author>
<author>
<name sortKey="Lee, Danielle Y" sort="Lee, Danielle Y" uniqKey="Lee D" first="Danielle Y" last="Lee">Danielle Y. Lee</name>
</author>
<author>
<name sortKey="Kurten, Richard C" sort="Kurten, Richard C" uniqKey="Kurten R" first="Richard C" last="Kurten">Richard C. Kurten</name>
</author>
<author>
<name sortKey="Panettieri, Reynold A" sort="Panettieri, Reynold A" uniqKey="Panettieri R" first="Reynold A" last="Panettieri">Reynold A. Panettieri</name>
</author>
<author>
<name sortKey="Liggett, Stephen B" sort="Liggett, Stephen B" uniqKey="Liggett S" first="Stephen B" last="Liggett">Stephen B. Liggett</name>
</author>
</analytic>
<series>
<title level="j">American journal of physiology. Lung cellular and molecular physiology</title>
<idno type="eISSN">1522-1504</idno>
<imprint>
<date when="2012" type="published">2012</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Adrenergic beta-Agonists (pharmacology)</term>
<term>Albuterol (pharmacology)</term>
<term>Animals</term>
<term>Chloroquine (pharmacology)</term>
<term>Humans</term>
<term>In Vitro Techniques</term>
<term>Isoproterenol (pharmacology)</term>
<term>Methacholine Chloride (pharmacology)</term>
<term>Mice</term>
<term>Muscle Relaxation (drug effects)</term>
<term>Muscle Relaxation (physiology)</term>
<term>Muscle, Smooth (drug effects)</term>
<term>Muscle, Smooth (physiology)</term>
<term>Receptors, Adrenergic, beta-2 (metabolism)</term>
<term>Receptors, G-Protein-Coupled (agonists)</term>
<term>Receptors, G-Protein-Coupled (metabolism)</term>
<term>Respiratory Physiological Phenomena (drug effects)</term>
<term>Respiratory System (drug effects)</term>
<term>Respiratory System (metabolism)</term>
<term>Tachyphylaxis (physiology)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Agonistes bêta-adrénergiques (pharmacologie)</term>
<term>Animaux</term>
<term>Appareil respiratoire ()</term>
<term>Appareil respiratoire (métabolisme)</term>
<term>Chloroquine (pharmacologie)</term>
<term>Chlorure de méthacholine (pharmacologie)</term>
<term>Humains</term>
<term>Isoprénaline (pharmacologie)</term>
<term>Muscles lisses ()</term>
<term>Muscles lisses (physiologie)</term>
<term>Phénomènes physiologiques respiratoires ()</term>
<term>Relâchement musculaire ()</term>
<term>Relâchement musculaire (physiologie)</term>
<term>Récepteurs bêta-2 adrénergiques (métabolisme)</term>
<term>Récepteurs couplés aux protéines G (agonistes)</term>
<term>Récepteurs couplés aux protéines G (métabolisme)</term>
<term>Salbutamol (pharmacologie)</term>
<term>Souris</term>
<term>Tachyphylaxie (physiologie)</term>
<term>Techniques in vitro</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="agonists" xml:lang="en">
<term>Receptors, G-Protein-Coupled</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Receptors, Adrenergic, beta-2</term>
<term>Receptors, G-Protein-Coupled</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="pharmacology" xml:lang="en">
<term>Adrenergic beta-Agonists</term>
<term>Albuterol</term>
<term>Chloroquine</term>
<term>Isoproterenol</term>
<term>Methacholine Chloride</term>
</keywords>
<keywords scheme="MESH" qualifier="agonistes" xml:lang="fr">
<term>Récepteurs couplés aux protéines G</term>
</keywords>
<keywords scheme="MESH" qualifier="drug effects" xml:lang="en">
<term>Muscle Relaxation</term>
<term>Muscle, Smooth</term>
<term>Respiratory Physiological Phenomena</term>
<term>Respiratory System</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Respiratory System</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Appareil respiratoire</term>
<term>Récepteurs bêta-2 adrénergiques</term>
<term>Récepteurs couplés aux protéines G</term>
</keywords>
<keywords scheme="MESH" qualifier="pharmacologie" xml:lang="fr">
<term>Agonistes bêta-adrénergiques</term>
<term>Chloroquine</term>
<term>Chlorure de méthacholine</term>
<term>Isoprénaline</term>
<term>Salbutamol</term>
</keywords>
<keywords scheme="MESH" qualifier="physiologie" xml:lang="fr">
<term>Muscles lisses</term>
<term>Relâchement musculaire</term>
<term>Tachyphylaxie</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>Muscle Relaxation</term>
<term>Muscle, Smooth</term>
<term>Tachyphylaxis</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Animals</term>
<term>Humans</term>
<term>In Vitro Techniques</term>
<term>Mice</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Animaux</term>
<term>Appareil respiratoire</term>
<term>Humains</term>
<term>Muscles lisses</term>
<term>Phénomènes physiologiques respiratoires</term>
<term>Relâchement musculaire</term>
<term>Souris</term>
<term>Techniques in vitro</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Recently, bitter taste receptors (TAS2Rs) were found in the lung and act to relax airway smooth muscle (ASM) via intracellular Ca(2+) concentration signaling generated from restricted phospholipase C activation. As potential therapy, TAS2R agonists could be add-on treatment when patients fail to achieve adequate bronchodilation with chronic β-agonists. The β(2)-adrenergic receptor (β(2)AR) of ASM undergoes extensive functional desensitization. It remains unknown whether this desensitization affects TAS2R function, by cross talk at the receptors or distal common components in the relaxation machinery. We studied intracellular signaling and cell mechanics using isolated human ASM, mouse tracheal responses, and human bronchial responses to characterize TAS2R relaxation in the context of β(2)AR desensitization. In isolated human ASM, magnetic twisting cytometry revealed >90% loss of isoproterenol-promoted decrease in cell stiffness after 18-h exposure to albuterol. Under these same conditions of β(2)AR desensitization, the TAS2R agonist chloroquine relaxation response was unaffected. TAS2R-mediated stimulation of intracellular Ca(2+) concentration in human ASM was unaltered by albuterol pretreatment, in contrast to cAMP signaling, which was desensitized by >90%. In mouse trachea, β(2)AR desensitization by β-agonist amounted to 92 ± 6.0% (P < 0.001), while, under these same conditions, TAS2R desensitization was not significant (11 ± 3.5%). In human lung slices, chronic β-agonist exposure culminated in 64 ± 5.7% (P < 0.001) desensitization of β(2)AR-mediated dilation of carbachol-constricted airways that was reversed by chloroquine. We conclude that there is no evidence for physiologically relevant cross-desensitization of TAS2R-mediated ASM relaxation from chronic β-agonist treatment. These findings portend a favorable therapeutic profile for TAS2R agonists for the treatment of bronchospasm in asthma or chronic obstructive lung disease.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">22683571</PMID>
<DateCompleted>
<Year>2012</Year>
<Month>10</Month>
<Day>24</Day>
</DateCompleted>
<DateRevised>
<Year>2020</Year>
<Month>03</Month>
<Day>05</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1522-1504</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>303</Volume>
<Issue>4</Issue>
<PubDate>
<Year>2012</Year>
<Month>Aug</Month>
<Day>15</Day>
</PubDate>
</JournalIssue>
<Title>American journal of physiology. Lung cellular and molecular physiology</Title>
<ISOAbbreviation>Am. J. Physiol. Lung Cell Mol. Physiol.</ISOAbbreviation>
</Journal>
<ArticleTitle>TAS2R activation promotes airway smooth muscle relaxation despite β(2)-adrenergic receptor tachyphylaxis.</ArticleTitle>
<Pagination>
<MedlinePgn>L304-11</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1152/ajplung.00126.2012</ELocationID>
<Abstract>
<AbstractText>Recently, bitter taste receptors (TAS2Rs) were found in the lung and act to relax airway smooth muscle (ASM) via intracellular Ca(2+) concentration signaling generated from restricted phospholipase C activation. As potential therapy, TAS2R agonists could be add-on treatment when patients fail to achieve adequate bronchodilation with chronic β-agonists. The β(2)-adrenergic receptor (β(2)AR) of ASM undergoes extensive functional desensitization. It remains unknown whether this desensitization affects TAS2R function, by cross talk at the receptors or distal common components in the relaxation machinery. We studied intracellular signaling and cell mechanics using isolated human ASM, mouse tracheal responses, and human bronchial responses to characterize TAS2R relaxation in the context of β(2)AR desensitization. In isolated human ASM, magnetic twisting cytometry revealed >90% loss of isoproterenol-promoted decrease in cell stiffness after 18-h exposure to albuterol. Under these same conditions of β(2)AR desensitization, the TAS2R agonist chloroquine relaxation response was unaffected. TAS2R-mediated stimulation of intracellular Ca(2+) concentration in human ASM was unaltered by albuterol pretreatment, in contrast to cAMP signaling, which was desensitized by >90%. In mouse trachea, β(2)AR desensitization by β-agonist amounted to 92 ± 6.0% (P < 0.001), while, under these same conditions, TAS2R desensitization was not significant (11 ± 3.5%). In human lung slices, chronic β-agonist exposure culminated in 64 ± 5.7% (P < 0.001) desensitization of β(2)AR-mediated dilation of carbachol-constricted airways that was reversed by chloroquine. We conclude that there is no evidence for physiologically relevant cross-desensitization of TAS2R-mediated ASM relaxation from chronic β-agonist treatment. These findings portend a favorable therapeutic profile for TAS2R agonists for the treatment of bronchospasm in asthma or chronic obstructive lung disease.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>An</LastName>
<ForeName>Steven S</ForeName>
<Initials>SS</Initials>
<AffiliationInfo>
<Affiliation>Program in Respiratory Biology and Lung Disease, Johns Hopkins University, Bloomberg School of Public Health, 615 N Wolfe St., Rm. E-7616, Baltimore, MD 21205, USA. san@jhsph.edu</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Wang</LastName>
<ForeName>Wayne C H</ForeName>
<Initials>WC</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Koziol-White</LastName>
<ForeName>Cynthia J</ForeName>
<Initials>CJ</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Ahn</LastName>
<ForeName>Kwangmi</ForeName>
<Initials>K</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Lee</LastName>
<ForeName>Danielle Y</ForeName>
<Initials>DY</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Kurten</LastName>
<ForeName>Richard C</ForeName>
<Initials>RC</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Panettieri</LastName>
<ForeName>Reynold A</ForeName>
<Initials>RA</Initials>
<Suffix>Jr</Suffix>
</Author>
<Author ValidYN="Y">
<LastName>Liggett</LastName>
<ForeName>Stephen B</ForeName>
<Initials>SB</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>HL097796</GrantID>
<Acronym>HL</Acronym>
<Agency>NHLBI NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>HL104119</GrantID>
<Acronym>HL</Acronym>
<Agency>NHLBI NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>HL107361</GrantID>
<Acronym>HL</Acronym>
<Agency>NHLBI NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>UL1RR029884</GrantID>
<Acronym>RR</Acronym>
<Agency>NCRR NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>R01 HL107361</GrantID>
<Acronym>HL</Acronym>
<Agency>NHLBI NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>HL045967</GrantID>
<Acronym>HL</Acronym>
<Agency>NHLBI NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>ES013508</GrantID>
<Acronym>ES</Acronym>
<Agency>NIEHS NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>R01 HL071609</GrantID>
<Acronym>HL</Acronym>
<Agency>NHLBI NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>HL071609</GrantID>
<Acronym>HL</Acronym>
<Agency>NHLBI NIH HHS</Agency>
<Country>United States</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D052061">Research Support, N.I.H., Extramural</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2012</Year>
<Month>06</Month>
<Day>08</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Am J Physiol Lung Cell Mol Physiol</MedlineTA>
<NlmUniqueID>100901229</NlmUniqueID>
<ISSNLinking>1040-0605</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D000318">Adrenergic beta-Agonists</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D018343">Receptors, Adrenergic, beta-2</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D043562">Receptors, G-Protein-Coupled</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C406821">taste receptors, type 2</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0W5ETF9M2K</RegistryNumber>
<NameOfSubstance UI="D016210">Methacholine Chloride</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>886U3H6UFF</RegistryNumber>
<NameOfSubstance UI="D002738">Chloroquine</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>L628TT009W</RegistryNumber>
<NameOfSubstance UI="D007545">Isoproterenol</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>QF8SVZ843E</RegistryNumber>
<NameOfSubstance UI="D000420">Albuterol</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<CommentsCorrectionsList>
<CommentsCorrections RefType="CommentIn">
<RefSource>Am J Physiol Lung Cell Mol Physiol. 2012 Dec 1;303(11):L953-5</RefSource>
<PMID Version="1">23023969</PMID>
</CommentsCorrections>
</CommentsCorrectionsList>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000318" MajorTopicYN="N">Adrenergic beta-Agonists</DescriptorName>
<QualifierName UI="Q000494" MajorTopicYN="N">pharmacology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000420" MajorTopicYN="N">Albuterol</DescriptorName>
<QualifierName UI="Q000494" MajorTopicYN="N">pharmacology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000818" MajorTopicYN="N">Animals</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002738" MajorTopicYN="N">Chloroquine</DescriptorName>
<QualifierName UI="Q000494" MajorTopicYN="N">pharmacology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D066298" MajorTopicYN="N">In Vitro Techniques</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D007545" MajorTopicYN="N">Isoproterenol</DescriptorName>
<QualifierName UI="Q000494" MajorTopicYN="N">pharmacology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D016210" MajorTopicYN="N">Methacholine Chloride</DescriptorName>
<QualifierName UI="Q000494" MajorTopicYN="N">pharmacology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D051379" MajorTopicYN="N">Mice</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009126" MajorTopicYN="N">Muscle Relaxation</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009130" MajorTopicYN="N">Muscle, Smooth</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018343" MajorTopicYN="N">Receptors, Adrenergic, beta-2</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D043562" MajorTopicYN="N">Receptors, G-Protein-Coupled</DescriptorName>
<QualifierName UI="Q000819" MajorTopicYN="N">agonists</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012143" MajorTopicYN="Y">Respiratory Physiological Phenomena</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012137" MajorTopicYN="N">Respiratory System</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013618" MajorTopicYN="N">Tachyphylaxis</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="entrez">
<Year>2012</Year>
<Month>6</Month>
<Day>12</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2012</Year>
<Month>6</Month>
<Day>12</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2012</Year>
<Month>10</Month>
<Day>25</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">22683571</ArticleId>
<ArticleId IdType="pii">ajplung.00126.2012</ArticleId>
<ArticleId IdType="doi">10.1152/ajplung.00126.2012</ArticleId>
<ArticleId IdType="pmc">PMC3423830</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Nature. 2002 Aug 8;418(6898):591</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12167838</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Am J Physiol. 1995 Nov;269(5 Pt 1):L709-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7491992</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Sci Signal. 2011 Aug 9;4(185):pe36</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21868354</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Am J Respir Cell Mol Biol. 2011 Dec;45(6):1232-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21719794</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Drug Saf. 1994 Oct;11(4):259-83</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7848546</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Am J Physiol Lung Cell Mol Physiol. 2008 Jan;294(1):L69-78</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17993590</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Nat Med. 2012 May 04;18(5):650-1</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22561815</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Respir Res. 2011 Jan 13;12:8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21232113</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Nat Med. 2011 Jul 07;17(7):776-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21738150</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Clin Invest. 1985 Sep;76(3):1096-101</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2995446</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>N Engl J Med. 1992 Oct 22;327(17):1198-203</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1357550</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Phys Rev Lett. 2001 Oct 1;87(14):148102</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11580676</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Br J Pharmacol. 2011 Jun;163(3):521-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21306583</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Drug Saf. 1997 May;16(5):295-308</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9187530</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Am J Respir Cell Mol Biol. 2011 Nov;45(5):1069-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21642585</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Nat Rev Drug Discov. 2004 Oct;3(10):831-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15459674</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Br Med Bull. 2000;56(4):1054-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11359637</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Science. 2009 Aug 28;325(5944):1131-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19628819</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Mol Pharmacol. 1998 Jul;54(1):44-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9658188</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Clin Invest. 2007 May;117(5):1391-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17415415</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Clin Invest. 2003 Aug;112(4):619-26</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12925702</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Allergy Clin Immunol. 1999 Aug;104(2 Pt 2):S18-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10452785</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Am J Respir Cell Mol Biol. 2006 Jul;35(1):55-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16484685</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Am J Physiol Cell Physiol. 2002 Sep;283(3):C792-801</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12176736</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Biol Chem. 1992 Dec 15;267(35):25473-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1334095</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Pharmacol Res. 1991 Aug;24 Suppl 1:29-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1661007</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Am J Respir Crit Care Med. 1997 Sep;156(3 Pt 1):988-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9310023</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Life Sci. 1993;52(26):2101-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8389953</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Physiol Genomics. 2006 Oct 11;27(2):171-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16849635</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Allergy Clin Immunol. 2008 Oct;122(4):734-740</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18774166</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Am J Respir Crit Care Med. 1996 Dec;154(6 Pt 1):1603-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8970342</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Cell. 2000 Mar 17;100(6):703-11</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10761935</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Cell Signal. 2006 Dec;18(12):2105-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16828259</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Am J Med. 2010 Apr;123(4):322-8.e2</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20176343</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Chem Senses. 2010 Feb;35(2):157-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20022913</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Nat Med. 2010 Nov;16(11):1299-304</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20972434</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Am J Physiol. 1989 Feb;256(2 Pt 1):C329-35</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2645779</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Br J Pharmacol. 2009 Nov;158(6):1429-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19814732</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2009 Sep 1;106(35):15007-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19706446</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Cell. 2000 Mar 17;100(6):693-702</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10761934</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2008 Apr 1;105(13):5230-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18362331</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Annu Rev Physiol. 1984;46:119-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">6324653</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Allergy Clin Immunol. 1985 Oct;76(4):628-36</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">4056250</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Rev Physiol Biochem Pharmacol. 2005;154:37-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16032395</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Nature. 1994 Nov 17;372(6503):231-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7969467</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Clin Invest. 2006 May;116(5):1400-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16670773</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
<region>
<li>Maryland</li>
</region>
</list>
<tree>
<noCountry>
<name sortKey="Ahn, Kwangmi" sort="Ahn, Kwangmi" uniqKey="Ahn K" first="Kwangmi" last="Ahn">Kwangmi Ahn</name>
<name sortKey="Koziol White, Cynthia J" sort="Koziol White, Cynthia J" uniqKey="Koziol White C" first="Cynthia J" last="Koziol-White">Cynthia J. Koziol-White</name>
<name sortKey="Kurten, Richard C" sort="Kurten, Richard C" uniqKey="Kurten R" first="Richard C" last="Kurten">Richard C. Kurten</name>
<name sortKey="Lee, Danielle Y" sort="Lee, Danielle Y" uniqKey="Lee D" first="Danielle Y" last="Lee">Danielle Y. Lee</name>
<name sortKey="Liggett, Stephen B" sort="Liggett, Stephen B" uniqKey="Liggett S" first="Stephen B" last="Liggett">Stephen B. Liggett</name>
<name sortKey="Panettieri, Reynold A" sort="Panettieri, Reynold A" uniqKey="Panettieri R" first="Reynold A" last="Panettieri">Reynold A. Panettieri</name>
<name sortKey="Wang, Wayne C H" sort="Wang, Wayne C H" uniqKey="Wang W" first="Wayne C H" last="Wang">Wayne C H. Wang</name>
</noCountry>
<country name="États-Unis">
<region name="Maryland">
<name sortKey="An, Steven S" sort="An, Steven S" uniqKey="An S" first="Steven S" last="An">Steven S. An</name>
</region>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/ChloroquineV1/Data/PubMed/Checkpoint
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000347 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Checkpoint/biblio.hfd -nk 000347 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    ChloroquineV1
   |flux=    PubMed
   |étape=   Checkpoint
   |type=    RBID
   |clé=     pubmed:22683571
   |texte=   TAS2R activation promotes airway smooth muscle relaxation despite β(2)-adrenergic receptor tachyphylaxis.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Checkpoint/RBID.i   -Sk "pubmed:22683571" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Checkpoint/biblio.hfd   \
       | NlmPubMed2Wicri -a ChloroquineV1 

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Wed Mar 25 22:43:59 2020. Site generation: Sun Jan 31 12:44:45 2021