Serveur d'exploration Chloroquine

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Bitter tasting compounds dilate airways by inhibiting airway smooth muscle calcium oscillations and calcium sensitivity.

Identifieur interne : 000303 ( PubMed/Checkpoint ); précédent : 000302; suivant : 000304

Bitter tasting compounds dilate airways by inhibiting airway smooth muscle calcium oscillations and calcium sensitivity.

Auteurs : Xiahui Tan [États-Unis] ; Michael J. Sanderson

Source :

RBID : pubmed:24117140

Descripteurs français

English descriptors

Abstract

While selective, bitter tasting, TAS2R agonists can relax agonist-contracted airway smooth muscle (ASM), their mechanism of action is unclear. However, ASM contraction is regulated by Ca²⁺ signalling and Ca²⁺ sensitivity. We have therefore investigated how the TAS2R10 agonists chloroquine, quinine and denotonium regulate contractile agonist-induced Ca²⁺ signalling and sensitivity.

DOI: 10.1111/bph.12460
PubMed: 24117140


Affiliations:


Links toward previous steps (curation, corpus...)


Links to Exploration step

pubmed:24117140

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Bitter tasting compounds dilate airways by inhibiting airway smooth muscle calcium oscillations and calcium sensitivity.</title>
<author>
<name sortKey="Tan, Xiahui" sort="Tan, Xiahui" uniqKey="Tan X" first="Xiahui" last="Tan">Xiahui Tan</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, MA, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, MA</wicri:regionArea>
<placeName>
<region type="state">Massachusetts</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Sanderson, Michael J" sort="Sanderson, Michael J" uniqKey="Sanderson M" first="Michael J" last="Sanderson">Michael J. Sanderson</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2014">2014</date>
<idno type="RBID">pubmed:24117140</idno>
<idno type="pmid">24117140</idno>
<idno type="doi">10.1111/bph.12460</idno>
<idno type="wicri:Area/PubMed/Corpus">000323</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">000323</idno>
<idno type="wicri:Area/PubMed/Curation">000323</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Curation">000323</idno>
<idno type="wicri:Area/PubMed/Checkpoint">000303</idno>
<idno type="wicri:explorRef" wicri:stream="Checkpoint" wicri:step="PubMed">000303</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Bitter tasting compounds dilate airways by inhibiting airway smooth muscle calcium oscillations and calcium sensitivity.</title>
<author>
<name sortKey="Tan, Xiahui" sort="Tan, Xiahui" uniqKey="Tan X" first="Xiahui" last="Tan">Xiahui Tan</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, MA, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, MA</wicri:regionArea>
<placeName>
<region type="state">Massachusetts</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Sanderson, Michael J" sort="Sanderson, Michael J" uniqKey="Sanderson M" first="Michael J" last="Sanderson">Michael J. Sanderson</name>
</author>
</analytic>
<series>
<title level="j">British journal of pharmacology</title>
<idno type="eISSN">1476-5381</idno>
<imprint>
<date when="2014" type="published">2014</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Airway Resistance (drug effects)</term>
<term>Animals</term>
<term>Bronchodilator Agents (pharmacology)</term>
<term>Caffeine (antagonists & inhibitors)</term>
<term>Caffeine (pharmacology)</term>
<term>Calcium Channel Blockers (chemistry)</term>
<term>Calcium Channel Blockers (pharmacology)</term>
<term>Calcium Signaling (drug effects)</term>
<term>Chloroquine (pharmacology)</term>
<term>Drug Resistance (drug effects)</term>
<term>Female</term>
<term>In Vitro Techniques</term>
<term>Inositol 1,4,5-Trisphosphate (analogs & derivatives)</term>
<term>Inositol 1,4,5-Trisphosphate (metabolism)</term>
<term>Inositol 1,4,5-Trisphosphate Receptors (agonists)</term>
<term>Inositol 1,4,5-Trisphosphate Receptors (metabolism)</term>
<term>Lung (cytology)</term>
<term>Lung (drug effects)</term>
<term>Lung (metabolism)</term>
<term>Mice</term>
<term>Mice, Inbred BALB C</term>
<term>Muscle Relaxation (drug effects)</term>
<term>Muscle, Smooth (cytology)</term>
<term>Muscle, Smooth (drug effects)</term>
<term>Muscle, Smooth (metabolism)</term>
<term>Phosphodiesterase Inhibitors (chemistry)</term>
<term>Phosphodiesterase Inhibitors (pharmacology)</term>
<term>Quaternary Ammonium Compounds (pharmacology)</term>
<term>Quinine (pharmacology)</term>
<term>Receptors, G-Protein-Coupled (agonists)</term>
<term>Receptors, G-Protein-Coupled (metabolism)</term>
<term>Ryanodine (antagonists & inhibitors)</term>
<term>Ryanodine (pharmacology)</term>
<term>Taste</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Animaux</term>
<term>Bronchodilatateurs (pharmacologie)</term>
<term>Caféine (antagonistes et inhibiteurs)</term>
<term>Caféine (pharmacologie)</term>
<term>Chloroquine (pharmacologie)</term>
<term>Composés d'ammonium quaternaire (pharmacologie)</term>
<term>Femelle</term>
<term>Goût</term>
<term>Inhibiteurs de la phosphodiestérase ()</term>
<term>Inhibiteurs de la phosphodiestérase (pharmacologie)</term>
<term>Inhibiteurs des canaux calciques ()</term>
<term>Inhibiteurs des canaux calciques (pharmacologie)</term>
<term>Inositol 1,4,5-trisphosphate (analogues et dérivés)</term>
<term>Inositol 1,4,5-trisphosphate (métabolisme)</term>
<term>Muscles lisses ()</term>
<term>Muscles lisses (cytologie)</term>
<term>Muscles lisses (métabolisme)</term>
<term>Poumon ()</term>
<term>Poumon (cytologie)</term>
<term>Poumon (métabolisme)</term>
<term>Quinine (pharmacologie)</term>
<term>Relâchement musculaire ()</term>
<term>Ryanodine (antagonistes et inhibiteurs)</term>
<term>Ryanodine (pharmacologie)</term>
<term>Récepteurs couplés aux protéines G (agonistes)</term>
<term>Récepteurs couplés aux protéines G (métabolisme)</term>
<term>Récepteurs à l'inositol 1,4,5-triphosphate (agonistes)</term>
<term>Récepteurs à l'inositol 1,4,5-triphosphate (métabolisme)</term>
<term>Résistance aux substances ()</term>
<term>Résistance des voies aériennes ()</term>
<term>Signalisation du calcium ()</term>
<term>Souris</term>
<term>Souris de lignée BALB C</term>
<term>Techniques in vitro</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="agonists" xml:lang="en">
<term>Inositol 1,4,5-Trisphosphate Receptors</term>
<term>Receptors, G-Protein-Coupled</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="analogs & derivatives" xml:lang="en">
<term>Inositol 1,4,5-Trisphosphate</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="antagonists & inhibitors" xml:lang="en">
<term>Caffeine</term>
<term>Ryanodine</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="chemistry" xml:lang="en">
<term>Calcium Channel Blockers</term>
<term>Phosphodiesterase Inhibitors</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Inositol 1,4,5-Trisphosphate</term>
<term>Inositol 1,4,5-Trisphosphate Receptors</term>
<term>Receptors, G-Protein-Coupled</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="pharmacology" xml:lang="en">
<term>Bronchodilator Agents</term>
<term>Caffeine</term>
<term>Calcium Channel Blockers</term>
<term>Chloroquine</term>
<term>Phosphodiesterase Inhibitors</term>
<term>Quaternary Ammonium Compounds</term>
<term>Quinine</term>
<term>Ryanodine</term>
</keywords>
<keywords scheme="MESH" qualifier="agonistes" xml:lang="fr">
<term>Récepteurs couplés aux protéines G</term>
<term>Récepteurs à l'inositol 1,4,5-triphosphate</term>
</keywords>
<keywords scheme="MESH" qualifier="analogues et dérivés" xml:lang="fr">
<term>Inositol 1,4,5-trisphosphate</term>
</keywords>
<keywords scheme="MESH" qualifier="antagonistes et inhibiteurs" xml:lang="fr">
<term>Caféine</term>
<term>Ryanodine</term>
</keywords>
<keywords scheme="MESH" qualifier="cytologie" xml:lang="fr">
<term>Muscles lisses</term>
<term>Poumon</term>
</keywords>
<keywords scheme="MESH" qualifier="cytology" xml:lang="en">
<term>Lung</term>
<term>Muscle, Smooth</term>
</keywords>
<keywords scheme="MESH" qualifier="drug effects" xml:lang="en">
<term>Airway Resistance</term>
<term>Calcium Signaling</term>
<term>Drug Resistance</term>
<term>Lung</term>
<term>Muscle Relaxation</term>
<term>Muscle, Smooth</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Lung</term>
<term>Muscle, Smooth</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Inositol 1,4,5-trisphosphate</term>
<term>Muscles lisses</term>
<term>Poumon</term>
<term>Récepteurs couplés aux protéines G</term>
<term>Récepteurs à l'inositol 1,4,5-triphosphate</term>
</keywords>
<keywords scheme="MESH" qualifier="pharmacologie" xml:lang="fr">
<term>Bronchodilatateurs</term>
<term>Caféine</term>
<term>Chloroquine</term>
<term>Composés d'ammonium quaternaire</term>
<term>Inhibiteurs de la phosphodiestérase</term>
<term>Inhibiteurs des canaux calciques</term>
<term>Quinine</term>
<term>Ryanodine</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Animals</term>
<term>Female</term>
<term>In Vitro Techniques</term>
<term>Mice</term>
<term>Mice, Inbred BALB C</term>
<term>Taste</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Animaux</term>
<term>Femelle</term>
<term>Goût</term>
<term>Inhibiteurs de la phosphodiestérase</term>
<term>Inhibiteurs des canaux calciques</term>
<term>Muscles lisses</term>
<term>Poumon</term>
<term>Relâchement musculaire</term>
<term>Résistance aux substances</term>
<term>Résistance des voies aériennes</term>
<term>Signalisation du calcium</term>
<term>Souris</term>
<term>Souris de lignée BALB C</term>
<term>Techniques in vitro</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">While selective, bitter tasting, TAS2R agonists can relax agonist-contracted airway smooth muscle (ASM), their mechanism of action is unclear. However, ASM contraction is regulated by Ca²⁺ signalling and Ca²⁺ sensitivity. We have therefore investigated how the TAS2R10 agonists chloroquine, quinine and denotonium regulate contractile agonist-induced Ca²⁺ signalling and sensitivity.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">24117140</PMID>
<DateCompleted>
<Year>2014</Year>
<Month>10</Month>
<Day>07</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Print">
<Journal>
<ISSN IssnType="Electronic">1476-5381</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>171</Volume>
<Issue>3</Issue>
<PubDate>
<Year>2014</Year>
<Month>Feb</Month>
</PubDate>
</JournalIssue>
<Title>British journal of pharmacology</Title>
<ISOAbbreviation>Br. J. Pharmacol.</ISOAbbreviation>
</Journal>
<ArticleTitle>Bitter tasting compounds dilate airways by inhibiting airway smooth muscle calcium oscillations and calcium sensitivity.</ArticleTitle>
<Pagination>
<MedlinePgn>646-62</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1111/bph.12460</ELocationID>
<Abstract>
<AbstractText Label="BACKGROUND AND PURPOSE" NlmCategory="OBJECTIVE">While selective, bitter tasting, TAS2R agonists can relax agonist-contracted airway smooth muscle (ASM), their mechanism of action is unclear. However, ASM contraction is regulated by Ca²⁺ signalling and Ca²⁺ sensitivity. We have therefore investigated how the TAS2R10 agonists chloroquine, quinine and denotonium regulate contractile agonist-induced Ca²⁺ signalling and sensitivity.</AbstractText>
<AbstractText Label="EXPERIMENTAL APPROACH" NlmCategory="METHODS">Airways in mouse lung slices were contracted with either methacholine (MCh) or 5HT and bronchodilation assessed using phase-contrast microscopy. Ca²⁺ signalling was measured with 2-photon fluorescence microscopy of ASM cells loaded with Oregon Green, a Ca²⁺-sensitive indicator (with or without caged-IP₃). Effects on Ca²⁺ sensitivity were assessed on lung slices treated with caffeine and ryanodine to permeabilize ASM cells to Ca²⁺ .</AbstractText>
<AbstractText Label="KEY RESULTS" NlmCategory="RESULTS">The TAS2R10 agonists dilated airways constricted by either MCh or 5HT, accompanied by inhibition of agonist-induced Ca²⁺ oscillations. However, in non-contracted airways, TAS2R10 agonists, at concentrations that maximally dilated constricted airways, did not evoke Ca²⁺ signals in ASM cells. Ca²⁺ increases mediated by the photolysis of caged-IP₃ were also attenuated by chloroquine, quinine and denotonium. In Ca²⁺-permeabilized ASM cells, the TAS2R10 agonists dilated MCh- and 5HT-constricted airways.</AbstractText>
<AbstractText Label="CONCLUSIONS AND IMPLICATIONS" NlmCategory="CONCLUSIONS">TAS2R10 agonists reversed bronchoconstriction by inhibiting agonist-induced Ca²⁺ oscillations while simultaneously reducing the Ca²⁺ sensitivity of ASM cells. Reduction of Ca²⁺ oscillations may be due to inhibition of Ca²⁺ release through IP₃ receptors. Further characterization of bronchodilatory TAS2R agonists may lead to the development of novel therapies for the treatment of bronchoconstrictive conditions.</AbstractText>
<CopyrightInformation>© 2013 The British Pharmacological Society.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Tan</LastName>
<ForeName>Xiahui</ForeName>
<Initials>X</Initials>
<AffiliationInfo>
<Affiliation>Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, MA, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Sanderson</LastName>
<ForeName>Michael J</ForeName>
<Initials>MJ</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>R01 HL103405</GrantID>
<Acronym>HL</Acronym>
<Agency>NHLBI NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>HL103405</GrantID>
<Acronym>HL</Acronym>
<Agency>NHLBI NIH HHS</Agency>
<Country>United States</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D003160">Comparative Study</PublicationType>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D052061">Research Support, N.I.H., Extramural</PublicationType>
</PublicationTypeList>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>Br J Pharmacol</MedlineTA>
<NlmUniqueID>7502536</NlmUniqueID>
<ISSNLinking>0007-1188</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D001993">Bronchodilator Agents</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D002121">Calcium Channel Blockers</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D053496">Inositol 1,4,5-Trisphosphate Receptors</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D010726">Phosphodiesterase Inhibitors</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D000644">Quaternary Ammonium Compounds</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D043562">Receptors, G-Protein-Coupled</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C000592154">Tas2r107 protein, mouse</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>15662-33-6</RegistryNumber>
<NameOfSubstance UI="D012433">Ryanodine</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>3G6A5W338E</RegistryNumber>
<NameOfSubstance UI="D002110">Caffeine</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>85166-31-0</RegistryNumber>
<NameOfSubstance UI="D015544">Inositol 1,4,5-Trisphosphate</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>886U3H6UFF</RegistryNumber>
<NameOfSubstance UI="D002738">Chloroquine</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>A7V27PHC7A</RegistryNumber>
<NameOfSubstance UI="D011803">Quinine</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000403" MajorTopicYN="N">Airway Resistance</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000818" MajorTopicYN="N">Animals</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001993" MajorTopicYN="N">Bronchodilator Agents</DescriptorName>
<QualifierName UI="Q000494" MajorTopicYN="Y">pharmacology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002110" MajorTopicYN="N">Caffeine</DescriptorName>
<QualifierName UI="Q000037" MajorTopicYN="N">antagonists & inhibitors</QualifierName>
<QualifierName UI="Q000494" MajorTopicYN="N">pharmacology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002121" MajorTopicYN="N">Calcium Channel Blockers</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000494" MajorTopicYN="N">pharmacology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020013" MajorTopicYN="N">Calcium Signaling</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="Y">drug effects</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002738" MajorTopicYN="N">Chloroquine</DescriptorName>
<QualifierName UI="Q000494" MajorTopicYN="Y">pharmacology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004351" MajorTopicYN="N">Drug Resistance</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005260" MajorTopicYN="N">Female</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D066298" MajorTopicYN="N">In Vitro Techniques</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015544" MajorTopicYN="N">Inositol 1,4,5-Trisphosphate</DescriptorName>
<QualifierName UI="Q000031" MajorTopicYN="N">analogs & derivatives</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D053496" MajorTopicYN="N">Inositol 1,4,5-Trisphosphate Receptors</DescriptorName>
<QualifierName UI="Q000819" MajorTopicYN="N">agonists</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008168" MajorTopicYN="N">Lung</DescriptorName>
<QualifierName UI="Q000166" MajorTopicYN="N">cytology</QualifierName>
<QualifierName UI="Q000187" MajorTopicYN="Y">drug effects</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D051379" MajorTopicYN="N">Mice</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008807" MajorTopicYN="N">Mice, Inbred BALB C</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009126" MajorTopicYN="N">Muscle Relaxation</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009130" MajorTopicYN="N">Muscle, Smooth</DescriptorName>
<QualifierName UI="Q000166" MajorTopicYN="N">cytology</QualifierName>
<QualifierName UI="Q000187" MajorTopicYN="Y">drug effects</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010726" MajorTopicYN="N">Phosphodiesterase Inhibitors</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000494" MajorTopicYN="N">pharmacology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000644" MajorTopicYN="N">Quaternary Ammonium Compounds</DescriptorName>
<QualifierName UI="Q000494" MajorTopicYN="N">pharmacology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011803" MajorTopicYN="N">Quinine</DescriptorName>
<QualifierName UI="Q000494" MajorTopicYN="Y">pharmacology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D043562" MajorTopicYN="N">Receptors, G-Protein-Coupled</DescriptorName>
<QualifierName UI="Q000819" MajorTopicYN="Y">agonists</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012433" MajorTopicYN="N">Ryanodine</DescriptorName>
<QualifierName UI="Q000037" MajorTopicYN="N">antagonists & inhibitors</QualifierName>
<QualifierName UI="Q000494" MajorTopicYN="N">pharmacology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013649" MajorTopicYN="N">Taste</DescriptorName>
</MeshHeading>
</MeshHeadingList>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">2-photon microscopy</Keyword>
<Keyword MajorTopicYN="N">TAS2R</Keyword>
<Keyword MajorTopicYN="N">asthma</Keyword>
<Keyword MajorTopicYN="N">mouse lung slice</Keyword>
<Keyword MajorTopicYN="N">β2-adrenergic receptor agonists</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2013</Year>
<Month>02</Month>
<Day>06</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="revised">
<Year>2013</Year>
<Month>09</Month>
<Day>09</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2013</Year>
<Month>09</Month>
<Day>21</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2013</Year>
<Month>10</Month>
<Day>15</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2013</Year>
<Month>10</Month>
<Day>15</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2014</Year>
<Month>10</Month>
<Day>8</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">24117140</ArticleId>
<ArticleId IdType="doi">10.1111/bph.12460</ArticleId>
<ArticleId IdType="pmc">PMC3969078</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>J Biol Chem. 2010 Jan 15;285(3):2203-10</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19920135</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1994 Mar 25;269(12):8701-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8132598</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am J Respir Cell Mol Biol. 2010 Mar;42(3):373-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19502388</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Gen Physiol. 2010 Mar;135(3):247-59</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20176853</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am J Respir Cell Mol Biol. 2010 Aug;43(2):179-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19767449</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Med. 2010 Nov;16(11):1299-304</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20972434</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am J Respir Cell Mol Biol. 2011 Nov;45(5):1069-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21642585</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2012 Jan;40(Database issue):D413-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21940398</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Acta Physiol (Oxf). 2012 Feb;204(2):158-68</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21481196</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Med. 2012 May;18(5):648-50; author reply 650-1</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22561814</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am J Physiol Heart Circ Physiol. 2012 Jun 1;302(11):H2190-210</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22447942</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am J Physiol Lung Cell Mol Physiol. 2012 Dec 1;303(11):L956-66</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22962016</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2012 Dec 7;287(50):41706-19</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23095746</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Gen Physiol. 2013 Feb;141(2):165-78</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23359281</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Pulm Pharmacol Ther. 2013 Feb;26(1):121-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22750270</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Biol. 2013;11(3):e1001501</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23472053</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Br J Pharmacol. 2013 Dec;170(8):1449-58</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24528237</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2000 Mar 9;404(6774):197-201</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10724174</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2000 Mar 17;100(6):703-11</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10761935</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Methods Mol Biol. 2001;154:407-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11218662</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2003 Feb 7;112(3):293-301</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12581520</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am J Physiol Lung Cell Mol Physiol. 2004 May;286(5):L909-17</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14617522</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Pharmacol Sci. 1988 Jun;9(6):195-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2854671</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Biochem. 1997 Feb;64(2):225-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9027583</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am J Physiol. 1997 Apr;272(4 Pt 1):L659-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9142939</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Appl Physiol (1985). 1997 Jun;82(6):1836-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9173948</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eur J Cell Biol. 1998 Nov;77(3):253-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9860142</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Gen Physiol. 2005 Jun;125(6):535-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15928401</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Gen Physiol. 2005 Jun;125(6):555-67</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15928402</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Respir Res. 2006;7:34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16504084</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am J Physiol Lung Cell Mol Physiol. 2006 Aug;291(2):L208-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16461427</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem J. 2007 May 1;403(3):537-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17253962</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am J Respir Cell Mol Biol. 2007 May;36(5):600-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17170384</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Am Thorac Soc. 2008 Jan 1;5(1):23-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18094081</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am J Respir Cell Mol Biol. 2008 May;38(5):524-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18063837</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eur Respir J. 2008 Aug;32(2):275-84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18353852</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am J Physiol Lung Cell Mol Physiol. 2009 Jun;296(6):L947-58</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19346434</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am J Physiol Lung Cell Mol Physiol. 2009 Aug;297(2):L347-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19465516</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2009 Aug 28;325(5944):1131-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19628819</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1991 Apr 1;88(7):2951-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1849282</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Chem Senses. 2010 Feb;35(2):157-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20022913</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
<region>
<li>Massachusetts</li>
</region>
</list>
<tree>
<noCountry>
<name sortKey="Sanderson, Michael J" sort="Sanderson, Michael J" uniqKey="Sanderson M" first="Michael J" last="Sanderson">Michael J. Sanderson</name>
</noCountry>
<country name="États-Unis">
<region name="Massachusetts">
<name sortKey="Tan, Xiahui" sort="Tan, Xiahui" uniqKey="Tan X" first="Xiahui" last="Tan">Xiahui Tan</name>
</region>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/ChloroquineV1/Data/PubMed/Checkpoint
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000303 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Checkpoint/biblio.hfd -nk 000303 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    ChloroquineV1
   |flux=    PubMed
   |étape=   Checkpoint
   |type=    RBID
   |clé=     pubmed:24117140
   |texte=   Bitter tasting compounds dilate airways by inhibiting airway smooth muscle calcium oscillations and calcium sensitivity.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Checkpoint/RBID.i   -Sk "pubmed:24117140" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Checkpoint/biblio.hfd   \
       | NlmPubMed2Wicri -a ChloroquineV1 

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Wed Mar 25 22:43:59 2020. Site generation: Sun Jan 31 12:44:45 2021