Serveur d'exploration Chloroquine

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Autophagy flux inhibition mediated by celastrol sensitized lung cancer cells to TRAIL‑induced apoptosis via regulation of mitochondrial transmembrane potential and reactive oxygen species.

Identifieur interne : 000064 ( PubMed/Checkpoint ); précédent : 000063; suivant : 000065

Autophagy flux inhibition mediated by celastrol sensitized lung cancer cells to TRAIL‑induced apoptosis via regulation of mitochondrial transmembrane potential and reactive oxygen species.

Auteurs : Uddin Md Nazim [Corée du Sud] ; Honghua Yin [Corée du Sud] ; Sang-Youel Park [Corée du Sud]

Source :

RBID : pubmed:30569150

Descripteurs français

English descriptors

Abstract

Tumor necrosis factor‑related apoptosis-inducing ligand (TRAIL) is well known as a transmembrane cytokine and has been proposed as one of the most effective anti‑cancer therapeutic agents, owing to its efficiency to selectively induce cell death in a variety of tumor cells. Suppression of autophagy flux has been increasingly acknowledged as an effective and novel therapeutic intervention for cancer. The present study demonstrated that the anti‑cancer and anti‑inflammatory drug celastrol, through its anti‑metastatic properties, may initiate TRAIL‑mediated apoptotic cell death in lung cancer cells. This sensitization was negatively affected by N‑acetyl‑l‑cysteine, which restored the mitochondrial membrane potential (ΔΨm) and inhibited reactive oxygen species (ROS) generation. Notably, treatment with celastrol caused an increase in microtubule‑associated proteins 1A/1B light chain 3B‑II and p62 levels, whereas co‑treatment of celastrol and TRAIL increased active caspase 3 and 8 levels compared with the control, confirming inhibited autophagy flux. The combined use of TRAIL with celastrol may serve as a safe and adequate therapeutic technique for the treatment of TRAIL‑resistant lung cancer, suggesting that celastrol‑mediated autophagy flux inhibition sensitized TRAIL‑initiated apoptosis via regulation of ROS and ΔΨm.

DOI: 10.3892/mmr.2018.9757
PubMed: 30569150


Affiliations:


Links toward previous steps (curation, corpus...)


Links to Exploration step

pubmed:30569150

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Autophagy flux inhibition mediated by celastrol sensitized lung cancer cells to TRAIL‑induced apoptosis via regulation of mitochondrial transmembrane potential and reactive oxygen species.</title>
<author>
<name sortKey="Nazim, Uddin Md" sort="Nazim, Uddin Md" uniqKey="Nazim U" first="Uddin Md" last="Nazim">Uddin Md Nazim</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Biochemistry, Biosafety Research Institute, College of Veterinary Medicine, Chonbuk National University, Iksan, Jeonbuk 54596, Republic of Korea.</nlm:affiliation>
<country xml:lang="fr">Corée du Sud</country>
<wicri:regionArea>Department of Biochemistry, Biosafety Research Institute, College of Veterinary Medicine, Chonbuk National University, Iksan, Jeonbuk 54596</wicri:regionArea>
<wicri:noRegion>Jeonbuk 54596</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Yin, Honghua" sort="Yin, Honghua" uniqKey="Yin H" first="Honghua" last="Yin">Honghua Yin</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Biochemistry, Biosafety Research Institute, College of Veterinary Medicine, Chonbuk National University, Iksan, Jeonbuk 54596, Republic of Korea.</nlm:affiliation>
<country xml:lang="fr">Corée du Sud</country>
<wicri:regionArea>Department of Biochemistry, Biosafety Research Institute, College of Veterinary Medicine, Chonbuk National University, Iksan, Jeonbuk 54596</wicri:regionArea>
<wicri:noRegion>Jeonbuk 54596</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Park, Sang Youel" sort="Park, Sang Youel" uniqKey="Park S" first="Sang-Youel" last="Park">Sang-Youel Park</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Biochemistry, Biosafety Research Institute, College of Veterinary Medicine, Chonbuk National University, Iksan, Jeonbuk 54596, Republic of Korea.</nlm:affiliation>
<country xml:lang="fr">Corée du Sud</country>
<wicri:regionArea>Department of Biochemistry, Biosafety Research Institute, College of Veterinary Medicine, Chonbuk National University, Iksan, Jeonbuk 54596</wicri:regionArea>
<wicri:noRegion>Jeonbuk 54596</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2019">2019</date>
<idno type="RBID">pubmed:30569150</idno>
<idno type="pmid">30569150</idno>
<idno type="doi">10.3892/mmr.2018.9757</idno>
<idno type="wicri:Area/PubMed/Corpus">000073</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">000073</idno>
<idno type="wicri:Area/PubMed/Curation">000073</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Curation">000073</idno>
<idno type="wicri:Area/PubMed/Checkpoint">000064</idno>
<idno type="wicri:explorRef" wicri:stream="Checkpoint" wicri:step="PubMed">000064</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Autophagy flux inhibition mediated by celastrol sensitized lung cancer cells to TRAIL‑induced apoptosis via regulation of mitochondrial transmembrane potential and reactive oxygen species.</title>
<author>
<name sortKey="Nazim, Uddin Md" sort="Nazim, Uddin Md" uniqKey="Nazim U" first="Uddin Md" last="Nazim">Uddin Md Nazim</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Biochemistry, Biosafety Research Institute, College of Veterinary Medicine, Chonbuk National University, Iksan, Jeonbuk 54596, Republic of Korea.</nlm:affiliation>
<country xml:lang="fr">Corée du Sud</country>
<wicri:regionArea>Department of Biochemistry, Biosafety Research Institute, College of Veterinary Medicine, Chonbuk National University, Iksan, Jeonbuk 54596</wicri:regionArea>
<wicri:noRegion>Jeonbuk 54596</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Yin, Honghua" sort="Yin, Honghua" uniqKey="Yin H" first="Honghua" last="Yin">Honghua Yin</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Biochemistry, Biosafety Research Institute, College of Veterinary Medicine, Chonbuk National University, Iksan, Jeonbuk 54596, Republic of Korea.</nlm:affiliation>
<country xml:lang="fr">Corée du Sud</country>
<wicri:regionArea>Department of Biochemistry, Biosafety Research Institute, College of Veterinary Medicine, Chonbuk National University, Iksan, Jeonbuk 54596</wicri:regionArea>
<wicri:noRegion>Jeonbuk 54596</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Park, Sang Youel" sort="Park, Sang Youel" uniqKey="Park S" first="Sang-Youel" last="Park">Sang-Youel Park</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Biochemistry, Biosafety Research Institute, College of Veterinary Medicine, Chonbuk National University, Iksan, Jeonbuk 54596, Republic of Korea.</nlm:affiliation>
<country xml:lang="fr">Corée du Sud</country>
<wicri:regionArea>Department of Biochemistry, Biosafety Research Institute, College of Veterinary Medicine, Chonbuk National University, Iksan, Jeonbuk 54596</wicri:regionArea>
<wicri:noRegion>Jeonbuk 54596</wicri:noRegion>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Molecular medicine reports</title>
<idno type="eISSN">1791-3004</idno>
<imprint>
<date when="2019" type="published">2019</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>A549 Cells</term>
<term>Acetylcysteine (pharmacology)</term>
<term>Antineoplastic Agents, Phytogenic (antagonists & inhibitors)</term>
<term>Antineoplastic Agents, Phytogenic (pharmacology)</term>
<term>Apoptosis (drug effects)</term>
<term>Apoptosis (genetics)</term>
<term>Autophagy (drug effects)</term>
<term>Autophagy (genetics)</term>
<term>Caspase 8 (genetics)</term>
<term>Caspase 8 (metabolism)</term>
<term>Cell Line, Tumor</term>
<term>Chloroquine (pharmacology)</term>
<term>Drug Combinations</term>
<term>Drug Synergism</term>
<term>Gene Expression Regulation, Neoplastic</term>
<term>Humans</term>
<term>Membrane Potential, Mitochondrial (drug effects)</term>
<term>Microtubule-Associated Proteins (genetics)</term>
<term>Microtubule-Associated Proteins (metabolism)</term>
<term>Mitochondria (drug effects)</term>
<term>Mitochondria (metabolism)</term>
<term>Reactive Oxygen Species (agonists)</term>
<term>Reactive Oxygen Species (metabolism)</term>
<term>Sequestosome-1 Protein (genetics)</term>
<term>Sequestosome-1 Protein (metabolism)</term>
<term>Signal Transduction</term>
<term>TNF-Related Apoptosis-Inducing Ligand (pharmacology)</term>
<term>Triterpenes (antagonists & inhibitors)</term>
<term>Triterpenes (pharmacology)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Acétylcystéine (pharmacologie)</term>
<term>Antinéoplasiques d'origine végétale (antagonistes et inhibiteurs)</term>
<term>Antinéoplasiques d'origine végétale (pharmacologie)</term>
<term>Apoptose ()</term>
<term>Apoptose (génétique)</term>
<term>Association médicamenteuse</term>
<term>Autophagie ()</term>
<term>Autophagie (génétique)</term>
<term>Caspase 8 (génétique)</term>
<term>Caspase 8 (métabolisme)</term>
<term>Cellules A549</term>
<term>Chloroquine (pharmacologie)</term>
<term>Espèces réactives de l'oxygène (agonistes)</term>
<term>Espèces réactives de l'oxygène (métabolisme)</term>
<term>Humains</term>
<term>Ligand TRAIL (pharmacologie)</term>
<term>Lignée cellulaire tumorale</term>
<term>Mitochondries ()</term>
<term>Mitochondries (métabolisme)</term>
<term>Potentiel de membrane mitochondriale ()</term>
<term>Protéines associées aux microtubules (génétique)</term>
<term>Protéines associées aux microtubules (métabolisme)</term>
<term>Régulation de l'expression des gènes tumoraux</term>
<term>Synergie des médicaments</term>
<term>Séquestosome-1 (génétique)</term>
<term>Séquestosome-1 (métabolisme)</term>
<term>Transduction du signal</term>
<term>Triterpènes (antagonistes et inhibiteurs)</term>
<term>Triterpènes (pharmacologie)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="agonists" xml:lang="en">
<term>Reactive Oxygen Species</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="antagonists & inhibitors" xml:lang="en">
<term>Antineoplastic Agents, Phytogenic</term>
<term>Triterpenes</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>Caspase 8</term>
<term>Microtubule-Associated Proteins</term>
<term>Sequestosome-1 Protein</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Caspase 8</term>
<term>Microtubule-Associated Proteins</term>
<term>Reactive Oxygen Species</term>
<term>Sequestosome-1 Protein</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="pharmacology" xml:lang="en">
<term>Acetylcysteine</term>
<term>Antineoplastic Agents, Phytogenic</term>
<term>Chloroquine</term>
<term>TNF-Related Apoptosis-Inducing Ligand</term>
<term>Triterpenes</term>
</keywords>
<keywords scheme="MESH" qualifier="agonistes" xml:lang="fr">
<term>Espèces réactives de l'oxygène</term>
</keywords>
<keywords scheme="MESH" qualifier="antagonistes et inhibiteurs" xml:lang="fr">
<term>Antinéoplasiques d'origine végétale</term>
<term>Triterpènes</term>
</keywords>
<keywords scheme="MESH" qualifier="drug effects" xml:lang="en">
<term>Apoptosis</term>
<term>Autophagy</term>
<term>Membrane Potential, Mitochondrial</term>
<term>Mitochondria</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Apoptosis</term>
<term>Autophagy</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Apoptose</term>
<term>Autophagie</term>
<term>Caspase 8</term>
<term>Protéines associées aux microtubules</term>
<term>Séquestosome-1</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Mitochondria</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Caspase 8</term>
<term>Espèces réactives de l'oxygène</term>
<term>Mitochondries</term>
<term>Protéines associées aux microtubules</term>
<term>Séquestosome-1</term>
</keywords>
<keywords scheme="MESH" qualifier="pharmacologie" xml:lang="fr">
<term>Acétylcystéine</term>
<term>Antinéoplasiques d'origine végétale</term>
<term>Chloroquine</term>
<term>Ligand TRAIL</term>
<term>Triterpènes</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>A549 Cells</term>
<term>Cell Line, Tumor</term>
<term>Drug Combinations</term>
<term>Drug Synergism</term>
<term>Gene Expression Regulation, Neoplastic</term>
<term>Humans</term>
<term>Signal Transduction</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Apoptose</term>
<term>Association médicamenteuse</term>
<term>Autophagie</term>
<term>Cellules A549</term>
<term>Humains</term>
<term>Lignée cellulaire tumorale</term>
<term>Mitochondries</term>
<term>Potentiel de membrane mitochondriale</term>
<term>Régulation de l'expression des gènes tumoraux</term>
<term>Synergie des médicaments</term>
<term>Transduction du signal</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Tumor necrosis factor‑related apoptosis-inducing ligand (TRAIL) is well known as a transmembrane cytokine and has been proposed as one of the most effective anti‑cancer therapeutic agents, owing to its efficiency to selectively induce cell death in a variety of tumor cells. Suppression of autophagy flux has been increasingly acknowledged as an effective and novel therapeutic intervention for cancer. The present study demonstrated that the anti‑cancer and anti‑inflammatory drug celastrol, through its anti‑metastatic properties, may initiate TRAIL‑mediated apoptotic cell death in lung cancer cells. This sensitization was negatively affected by N‑acetyl‑l‑cysteine, which restored the mitochondrial membrane potential (ΔΨm) and inhibited reactive oxygen species (ROS) generation. Notably, treatment with celastrol caused an increase in microtubule‑associated proteins 1A/1B light chain 3B‑II and p62 levels, whereas co‑treatment of celastrol and TRAIL increased active caspase 3 and 8 levels compared with the control, confirming inhibited autophagy flux. The combined use of TRAIL with celastrol may serve as a safe and adequate therapeutic technique for the treatment of TRAIL‑resistant lung cancer, suggesting that celastrol‑mediated autophagy flux inhibition sensitized TRAIL‑initiated apoptosis via regulation of ROS and ΔΨm.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">30569150</PMID>
<DateCompleted>
<Year>2019</Year>
<Month>05</Month>
<Day>24</Day>
</DateCompleted>
<DateRevised>
<Year>2020</Year>
<Month>03</Month>
<Day>09</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1791-3004</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>19</Volume>
<Issue>2</Issue>
<PubDate>
<Year>2019</Year>
<Month>Feb</Month>
</PubDate>
</JournalIssue>
<Title>Molecular medicine reports</Title>
<ISOAbbreviation>Mol Med Rep</ISOAbbreviation>
</Journal>
<ArticleTitle>Autophagy flux inhibition mediated by celastrol sensitized lung cancer cells to TRAIL‑induced apoptosis via regulation of mitochondrial transmembrane potential and reactive oxygen species.</ArticleTitle>
<Pagination>
<MedlinePgn>984-993</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.3892/mmr.2018.9757</ELocationID>
<Abstract>
<AbstractText>Tumor necrosis factor‑related apoptosis-inducing ligand (TRAIL) is well known as a transmembrane cytokine and has been proposed as one of the most effective anti‑cancer therapeutic agents, owing to its efficiency to selectively induce cell death in a variety of tumor cells. Suppression of autophagy flux has been increasingly acknowledged as an effective and novel therapeutic intervention for cancer. The present study demonstrated that the anti‑cancer and anti‑inflammatory drug celastrol, through its anti‑metastatic properties, may initiate TRAIL‑mediated apoptotic cell death in lung cancer cells. This sensitization was negatively affected by N‑acetyl‑l‑cysteine, which restored the mitochondrial membrane potential (ΔΨm) and inhibited reactive oxygen species (ROS) generation. Notably, treatment with celastrol caused an increase in microtubule‑associated proteins 1A/1B light chain 3B‑II and p62 levels, whereas co‑treatment of celastrol and TRAIL increased active caspase 3 and 8 levels compared with the control, confirming inhibited autophagy flux. The combined use of TRAIL with celastrol may serve as a safe and adequate therapeutic technique for the treatment of TRAIL‑resistant lung cancer, suggesting that celastrol‑mediated autophagy flux inhibition sensitized TRAIL‑initiated apoptosis via regulation of ROS and ΔΨm.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Nazim</LastName>
<ForeName>Uddin Md</ForeName>
<Initials>UM</Initials>
<AffiliationInfo>
<Affiliation>Department of Biochemistry, Biosafety Research Institute, College of Veterinary Medicine, Chonbuk National University, Iksan, Jeonbuk 54596, Republic of Korea.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Yin</LastName>
<ForeName>Honghua</ForeName>
<Initials>H</Initials>
<AffiliationInfo>
<Affiliation>Department of Biochemistry, Biosafety Research Institute, College of Veterinary Medicine, Chonbuk National University, Iksan, Jeonbuk 54596, Republic of Korea.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Park</LastName>
<ForeName>Sang-Youel</ForeName>
<Initials>SY</Initials>
<AffiliationInfo>
<Affiliation>Department of Biochemistry, Biosafety Research Institute, College of Veterinary Medicine, Chonbuk National University, Iksan, Jeonbuk 54596, Republic of Korea.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2018</Year>
<Month>12</Month>
<Day>12</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>Greece</Country>
<MedlineTA>Mol Med Rep</MedlineTA>
<NlmUniqueID>101475259</NlmUniqueID>
<ISSNLinking>1791-2997</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D000972">Antineoplastic Agents, Phytogenic</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D004338">Drug Combinations</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C502070">MAP1LC3B protein, human</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D008869">Microtubule-Associated Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D017382">Reactive Oxygen Species</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C099718">SQSTM1 protein, human</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D000071456">Sequestosome-1 Protein</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D053221">TNF-Related Apoptosis-Inducing Ligand</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C505653">TNFSF10 protein, human</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D014315">Triterpenes</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>886U3H6UFF</RegistryNumber>
<NameOfSubstance UI="D002738">Chloroquine</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 3.4.22.-</RegistryNumber>
<NameOfSubstance UI="C505530">CASP8 protein, human</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 3.4.22.-</RegistryNumber>
<NameOfSubstance UI="D053181">Caspase 8</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>L8GG98663L</RegistryNumber>
<NameOfSubstance UI="C050414">tripterine</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>WYQ7N0BPYC</RegistryNumber>
<NameOfSubstance UI="D000111">Acetylcysteine</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000072283" MajorTopicYN="N">A549 Cells</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000111" MajorTopicYN="N">Acetylcysteine</DescriptorName>
<QualifierName UI="Q000494" MajorTopicYN="N">pharmacology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000972" MajorTopicYN="N">Antineoplastic Agents, Phytogenic</DescriptorName>
<QualifierName UI="Q000037" MajorTopicYN="N">antagonists & inhibitors</QualifierName>
<QualifierName UI="Q000494" MajorTopicYN="Y">pharmacology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017209" MajorTopicYN="N">Apoptosis</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="Y">drug effects</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001343" MajorTopicYN="N">Autophagy</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D053181" MajorTopicYN="N">Caspase 8</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D045744" MajorTopicYN="N">Cell Line, Tumor</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002738" MajorTopicYN="N">Chloroquine</DescriptorName>
<QualifierName UI="Q000494" MajorTopicYN="N">pharmacology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004338" MajorTopicYN="N">Drug Combinations</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004357" MajorTopicYN="N">Drug Synergism</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015972" MajorTopicYN="Y">Gene Expression Regulation, Neoplastic</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D053078" MajorTopicYN="N">Membrane Potential, Mitochondrial</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="Y">drug effects</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008869" MajorTopicYN="N">Microtubule-Associated Proteins</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008928" MajorTopicYN="N">Mitochondria</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017382" MajorTopicYN="N">Reactive Oxygen Species</DescriptorName>
<QualifierName UI="Q000819" MajorTopicYN="Y">agonists</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000071456" MajorTopicYN="N">Sequestosome-1 Protein</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015398" MajorTopicYN="N">Signal Transduction</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D053221" MajorTopicYN="N">TNF-Related Apoptosis-Inducing Ligand</DescriptorName>
<QualifierName UI="Q000494" MajorTopicYN="Y">pharmacology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014315" MajorTopicYN="N">Triterpenes</DescriptorName>
<QualifierName UI="Q000037" MajorTopicYN="N">antagonists & inhibitors</QualifierName>
<QualifierName UI="Q000494" MajorTopicYN="Y">pharmacology</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2018</Year>
<Month>04</Month>
<Day>11</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2018</Year>
<Month>11</Month>
<Day>15</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2018</Year>
<Month>12</Month>
<Day>21</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2019</Year>
<Month>5</Month>
<Day>28</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2018</Year>
<Month>12</Month>
<Day>21</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">30569150</ArticleId>
<ArticleId IdType="doi">10.3892/mmr.2018.9757</ArticleId>
<ArticleId IdType="pmc">PMC6323218</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Eur J Pharmacol. 2005 Apr 11;512(2-3):231-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15840409</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Altern Lab Anim. 2001 May-Jun;29(3):243-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11387021</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Biol Chem. 1996 May 31;271(22):12687-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8663110</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Oncogene. 2013 Mar 14;32(11):1341-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22580613</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Nat Med. 1999 Feb;5(2):157-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9930862</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Nat Med. 2002 Mar;8(3):274-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11875499</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Mol Cancer Ther. 2008 Jan;7(1):162-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18202019</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>PLoS One. 2015 Mar 23;10(3):e0120426</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25799586</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Autophagy. 2005 Jul;1(2):84-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16874052</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Biochem Biophys Res Commun. 2004 Sep 24;322(3):778-86</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15336532</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Blood. 2007 Apr 1;109(7):2727-35</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17110449</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Mol Nutr Food Res. 2011 Feb;55(2):300-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20669244</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Gastrointest Cancer. 2017 Jun;48(2):121-128</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28303435</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Clin Cancer Res. 2007 Nov 15;13(22 Pt 1):6769-78</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18006779</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Cancer Res. 2008 Mar 1;68(5):1485-94</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18316613</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Biochim Biophys Acta. 2009 Jan;1792(1):3-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19022377</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>FEBS Lett. 2001 Aug 10;503(1):69-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11513857</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Cancer Res. 2006 May 1;66(9):4758-65</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16651429</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Drug Resist Updat. 2004 Dec;7(6):345-58</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15790545</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Clin Invest. 1999 Jul;104(2):155-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10411544</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Cell. 2011 Nov 11;147(4):728-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22078875</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>BMB Rep. 2014 Dec;47(12):697-702</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24667175</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Oncogene. 2003 Nov 24;22(53):8628-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14634624</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Genes Dev. 2007 Nov 15;21(22):2861-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18006683</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Autophagy. 2012 Apr;8(4):445-544</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22966490</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Oncogene. 2010 Aug 26;29(34):4752-65</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20531300</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Autophagy. 2008 Feb;4(2):151-75</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18188003</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Rev Recent Clin Trials. 2009 Jan;4(1):34-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19149761</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Apoptosis. 2011 Oct;16(10):1028-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21786165</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Biomed Pharmacother. 2010 Nov;64(9):609-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20888174</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Prostate. 2012 Sep 1;72(12):1374-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22241682</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Oncotarget. 2017 Apr 18;8(16):26819-26831</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28460464</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Nat Med. 2000 May;6(5):513-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10802706</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Nat Rev Immunol. 2003 Sep;3(9):745-56</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12949498</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Drug Resist Updat. 2004 Apr;7(2):139-56</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15158769</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Nat Rev Cancer. 2008 Oct;8(10):782-98</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18813321</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Drug Discov Today. 2016 Jul;21(7):1189-95</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27240777</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Cell Biol. 1981 Sep;90(3):665-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">6169733</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Cell. 2003 Feb 21;112(4):481-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12600312</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Int J Biochem Cell Biol. 2016 Aug;77(Pt A):80-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27247025</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Mol Cell Biol. 1999 May;19(5):3299-311</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10207055</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Mol Cell Biol. 2005 Feb;25(3):1025-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15657430</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Neurochem. 2005 Aug;94(4):995-1004</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16092942</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Biol Chem. 2011 Feb 25;286(8):6602-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21148553</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Cell. 1997 Feb 7;88(3):355-65</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9039262</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Ann Rheum Dis. 2003 Apr;62(4):377-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12634249</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Oncotarget. 2017 Apr 4;8(14):22414-22432</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26461472</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Immunity. 2000 Jun;12(6):611-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10894161</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Invest Ophthalmol Vis Sci. 2010 Nov;51(11):6030-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20574031</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>EMBO J. 2000 Nov 1;19(21):5720-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11060023</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Biosci Biotechnol Biochem. 2003 Sep;67(9):1883-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14519971</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Bioorg Med Chem. 2006 May 1;14(9):3218-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16413786</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Neoplasia. 2001 Nov-Dec;3(6):535-46</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11774036</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Food Chem Toxicol. 2011 Feb;49(2):527-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21134410</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Corée du Sud</li>
</country>
</list>
<tree>
<country name="Corée du Sud">
<noRegion>
<name sortKey="Nazim, Uddin Md" sort="Nazim, Uddin Md" uniqKey="Nazim U" first="Uddin Md" last="Nazim">Uddin Md Nazim</name>
</noRegion>
<name sortKey="Park, Sang Youel" sort="Park, Sang Youel" uniqKey="Park S" first="Sang-Youel" last="Park">Sang-Youel Park</name>
<name sortKey="Yin, Honghua" sort="Yin, Honghua" uniqKey="Yin H" first="Honghua" last="Yin">Honghua Yin</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/ChloroquineV1/Data/PubMed/Checkpoint
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000064 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Checkpoint/biblio.hfd -nk 000064 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    ChloroquineV1
   |flux=    PubMed
   |étape=   Checkpoint
   |type=    RBID
   |clé=     pubmed:30569150
   |texte=   Autophagy flux inhibition mediated by celastrol sensitized lung cancer cells to TRAIL‑induced apoptosis via regulation of mitochondrial transmembrane potential and reactive oxygen species.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Checkpoint/RBID.i   -Sk "pubmed:30569150" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Checkpoint/biblio.hfd   \
       | NlmPubMed2Wicri -a ChloroquineV1 

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Wed Mar 25 22:43:59 2020. Site generation: Sun Jan 31 12:44:45 2021