Serveur d'exploration Chloroquine

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Towards extracellular matrix normalization for improved treatment of solid tumors

Identifieur interne : 000B11 ( Pmc/Corpus ); précédent : 000B10; suivant : 000B12

Towards extracellular matrix normalization for improved treatment of solid tumors

Auteurs : Hoda Soleymani Abyaneh ; Maximilian Regenold ; Trevor D. Mckee ; Christine Allen ; Marc A. Gauthier

Source :

RBID : PMC:6993244

Abstract

It is currently challenging to eradicate cancer. In the case of solid tumors, the dense and aberrant extracellular matrix (ECM) is a major contributor to the heterogeneous distribution of small molecule drugs and nano-formulations, which makes certain areas of the tumor difficult to treat. As such, much research is devoted to characterizing this matrix and devising strategies to modify its properties as a means to facilitate the improved penetration of drugs and their nano-formulations. This contribution presents the current state of knowledge on the composition of normal ECM and changes to ECM that occur during the pathological progression of cancer. It also includes discussion of strategies designed to modify the composition/properties of the ECM as a means to enhance the penetration and transport of drugs and nano-formulations within solid tumors. Moreover, a discussion of approaches to image the ECM, as well as ways to monitor changes in the ECM as a function of time are presented, as these are important for the implementation of ECM-modifying strategies within therapeutic interventions. Overall, considering the complexity of the ECM, its variability within different tissues, and the multiple pathways by which homeostasis is maintained (both in normal and malignant tissues), the available literature - while promising - suggests that improved monitoring of ECM remodeling in vivo is needed to harness the described strategies to their full potential, and match them with an appropriate chemotherapy regimen.


Url:
DOI: 10.7150/thno.39995
PubMed: 32042347
PubMed Central: 6993244

Links to Exploration step

PMC:6993244

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Towards extracellular matrix normalization for improved treatment of solid tumors</title>
<author>
<name sortKey="Abyaneh, Hoda Soleymani" sort="Abyaneh, Hoda Soleymani" uniqKey="Abyaneh H" first="Hoda Soleymani" last="Abyaneh">Hoda Soleymani Abyaneh</name>
<affiliation>
<nlm:aff id="A1">Institut National de la Recherche Scientifique (INRS), EMT Research Center, 1650 boul. Lionel-Boulet, Varennes, J3X 1S2, Canada.</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="A2">Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College Street, Toronto, Ontario M5S 3M2, Canada.</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Regenold, Maximilian" sort="Regenold, Maximilian" uniqKey="Regenold M" first="Maximilian" last="Regenold">Maximilian Regenold</name>
<affiliation>
<nlm:aff id="A2">Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College Street, Toronto, Ontario M5S 3M2, Canada.</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Mckee, Trevor D" sort="Mckee, Trevor D" uniqKey="Mckee T" first="Trevor D." last="Mckee">Trevor D. Mckee</name>
<affiliation>
<nlm:aff id="A3">STTARR Innovation Centre, University Health Network, 101 College Street Room 7-504, Toronto, Ontario M5G 1L7, Canada</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Allen, Christine" sort="Allen, Christine" uniqKey="Allen C" first="Christine" last="Allen">Christine Allen</name>
<affiliation>
<nlm:aff id="A2">Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College Street, Toronto, Ontario M5S 3M2, Canada.</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Gauthier, Marc A" sort="Gauthier, Marc A" uniqKey="Gauthier M" first="Marc A." last="Gauthier">Marc A. Gauthier</name>
<affiliation>
<nlm:aff id="A1">Institut National de la Recherche Scientifique (INRS), EMT Research Center, 1650 boul. Lionel-Boulet, Varennes, J3X 1S2, Canada.</nlm:aff>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PMC</idno>
<idno type="pmid">32042347</idno>
<idno type="pmc">6993244</idno>
<idno type="url">http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6993244</idno>
<idno type="RBID">PMC:6993244</idno>
<idno type="doi">10.7150/thno.39995</idno>
<date when="2020">2020</date>
<idno type="wicri:Area/Pmc/Corpus">000B11</idno>
<idno type="wicri:explorRef" wicri:stream="Pmc" wicri:step="Corpus" wicri:corpus="PMC">000B11</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a" type="main">Towards extracellular matrix normalization for improved treatment of solid tumors</title>
<author>
<name sortKey="Abyaneh, Hoda Soleymani" sort="Abyaneh, Hoda Soleymani" uniqKey="Abyaneh H" first="Hoda Soleymani" last="Abyaneh">Hoda Soleymani Abyaneh</name>
<affiliation>
<nlm:aff id="A1">Institut National de la Recherche Scientifique (INRS), EMT Research Center, 1650 boul. Lionel-Boulet, Varennes, J3X 1S2, Canada.</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="A2">Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College Street, Toronto, Ontario M5S 3M2, Canada.</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Regenold, Maximilian" sort="Regenold, Maximilian" uniqKey="Regenold M" first="Maximilian" last="Regenold">Maximilian Regenold</name>
<affiliation>
<nlm:aff id="A2">Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College Street, Toronto, Ontario M5S 3M2, Canada.</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Mckee, Trevor D" sort="Mckee, Trevor D" uniqKey="Mckee T" first="Trevor D." last="Mckee">Trevor D. Mckee</name>
<affiliation>
<nlm:aff id="A3">STTARR Innovation Centre, University Health Network, 101 College Street Room 7-504, Toronto, Ontario M5G 1L7, Canada</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Allen, Christine" sort="Allen, Christine" uniqKey="Allen C" first="Christine" last="Allen">Christine Allen</name>
<affiliation>
<nlm:aff id="A2">Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College Street, Toronto, Ontario M5S 3M2, Canada.</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Gauthier, Marc A" sort="Gauthier, Marc A" uniqKey="Gauthier M" first="Marc A." last="Gauthier">Marc A. Gauthier</name>
<affiliation>
<nlm:aff id="A1">Institut National de la Recherche Scientifique (INRS), EMT Research Center, 1650 boul. Lionel-Boulet, Varennes, J3X 1S2, Canada.</nlm:aff>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Theranostics</title>
<idno type="eISSN">1838-7640</idno>
<imprint>
<date when="2020">2020</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<p>It is currently challenging to eradicate cancer. In the case of solid tumors, the dense and aberrant extracellular matrix (ECM) is a major contributor to the heterogeneous distribution of small molecule drugs and nano-formulations, which makes certain areas of the tumor difficult to treat. As such, much research is devoted to characterizing this matrix and devising strategies to modify its properties as a means to facilitate the improved penetration of drugs and their nano-formulations. This contribution presents the current state of knowledge on the composition of normal ECM and changes to ECM that occur during the pathological progression of cancer. It also includes discussion of strategies designed to modify the composition/properties of the ECM as a means to enhance the penetration and transport of drugs and nano-formulations within solid tumors. Moreover, a discussion of approaches to image the ECM, as well as ways to monitor changes in the ECM as a function of time are presented, as these are important for the implementation of ECM-modifying strategies within therapeutic interventions. Overall, considering the complexity of the ECM, its variability within different tissues, and the multiple pathways by which homeostasis is maintained (both in normal and malignant tissues), the available literature - while promising - suggests that improved monitoring of ECM remodeling
<italic>in vivo</italic>
is needed to harness the described strategies to their full potential, and match them with an appropriate chemotherapy regimen.</p>
</div>
</front>
<back>
<div1 type="bibliography">
<listBibl>
<biblStruct>
<analytic>
<author>
<name sortKey="Perry, Jl" uniqKey="Perry J">JL Perry</name>
</author>
<author>
<name sortKey="Reuter, Kg" uniqKey="Reuter K">KG Reuter</name>
</author>
<author>
<name sortKey="Luft, Jc" uniqKey="Luft J">JC Luft</name>
</author>
<author>
<name sortKey="Pecot, Cv" uniqKey="Pecot C">CV Pecot</name>
</author>
<author>
<name sortKey="Zamboni, W" uniqKey="Zamboni W">W Zamboni</name>
</author>
<author>
<name sortKey="Desimone, Jm" uniqKey="Desimone J">JM DeSimone</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Tran, S" uniqKey="Tran S">S Tran</name>
</author>
<author>
<name sortKey="Degiovanni, P J" uniqKey="Degiovanni P">P-J DeGiovanni</name>
</author>
<author>
<name sortKey="Piel, B" uniqKey="Piel B">B Piel</name>
</author>
<author>
<name sortKey="Rai, P" uniqKey="Rai P">P Rai</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Tredan, O" uniqKey="Tredan O">O Trédan</name>
</author>
<author>
<name sortKey="Galmarini, Cm" uniqKey="Galmarini C">CM Galmarini</name>
</author>
<author>
<name sortKey="Patel, K" uniqKey="Patel K">K Patel</name>
</author>
<author>
<name sortKey="Tannock, If" uniqKey="Tannock I">IF Tannock</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Maeda, H" uniqKey="Maeda H">H Maeda</name>
</author>
<author>
<name sortKey="Tsukigawa, K" uniqKey="Tsukigawa K">K Tsukigawa</name>
</author>
<author>
<name sortKey="Fang, J" uniqKey="Fang J">J Fang</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Azzi, S" uniqKey="Azzi S">S Azzi</name>
</author>
<author>
<name sortKey="Hebda, Jk" uniqKey="Hebda J">JK Hebda</name>
</author>
<author>
<name sortKey="Gavard, J" uniqKey="Gavard J">J Gavard</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Carmeliet, P" uniqKey="Carmeliet P">P Carmeliet</name>
</author>
<author>
<name sortKey="Jain, Rk" uniqKey="Jain R">RK Jain</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Martin, Jd" uniqKey="Martin J">JD Martin</name>
</author>
<author>
<name sortKey="Seano, G" uniqKey="Seano G">G Seano</name>
</author>
<author>
<name sortKey="Jain, Rk" uniqKey="Jain R">RK Jain</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Baluk, P" uniqKey="Baluk P">P Baluk</name>
</author>
<author>
<name sortKey="Hashizume, H" uniqKey="Hashizume H">H Hashizume</name>
</author>
<author>
<name sortKey="Mcdonald, Dm" uniqKey="Mcdonald D">DM McDonald</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ozawa, Mg" uniqKey="Ozawa M">MG Ozawa</name>
</author>
<author>
<name sortKey="Yao, Vj" uniqKey="Yao V">VJ Yao</name>
</author>
<author>
<name sortKey="Chanthery, Yh" uniqKey="Chanthery Y">YH Chanthery</name>
</author>
<author>
<name sortKey="Troncoso, P" uniqKey="Troncoso P">P Troncoso</name>
</author>
<author>
<name sortKey="Uemura, A" uniqKey="Uemura A">A Uemura</name>
</author>
<author>
<name sortKey="Varner, As" uniqKey="Varner A">AS Varner</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Gerhardt, H" uniqKey="Gerhardt H">H Gerhardt</name>
</author>
<author>
<name sortKey="Semb, H" uniqKey="Semb H">H Semb</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Hobbs, Sk" uniqKey="Hobbs S">SK Hobbs</name>
</author>
<author>
<name sortKey="Monsky, Wl" uniqKey="Monsky W">WL Monsky</name>
</author>
<author>
<name sortKey="Yuan, F" uniqKey="Yuan F">F Yuan</name>
</author>
<author>
<name sortKey="Roberts, Wg" uniqKey="Roberts W">WG Roberts</name>
</author>
<author>
<name sortKey="Griffith, L" uniqKey="Griffith L">L Griffith</name>
</author>
<author>
<name sortKey="Torchilin, Vp" uniqKey="Torchilin V">VP Torchilin</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Yuan, F" uniqKey="Yuan F">F Yuan</name>
</author>
<author>
<name sortKey="Dellian, M" uniqKey="Dellian M">M Dellian</name>
</author>
<author>
<name sortKey="Fukumura, D" uniqKey="Fukumura D">D Fukumura</name>
</author>
<author>
<name sortKey="Leunig, M" uniqKey="Leunig M">M Leunig</name>
</author>
<author>
<name sortKey="Berk, Da" uniqKey="Berk D">DA Berk</name>
</author>
<author>
<name sortKey="Torchilin, Vp" uniqKey="Torchilin V">VP Torchilin</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Forster, Jc" uniqKey="Forster J">JC Forster</name>
</author>
<author>
<name sortKey="Harriss Phillips, Wm" uniqKey="Harriss Phillips W">WM Harriss-Phillips</name>
</author>
<author>
<name sortKey="Douglass, Mj" uniqKey="Douglass M">MJ Douglass</name>
</author>
<author>
<name sortKey="Bezak, E" uniqKey="Bezak E">E Bezak</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Stapleton, S" uniqKey="Stapleton S">S Stapleton</name>
</author>
<author>
<name sortKey="Milosevic, M" uniqKey="Milosevic M">M Milosevic</name>
</author>
<author>
<name sortKey="Tannock, If" uniqKey="Tannock I">IF Tannock</name>
</author>
<author>
<name sortKey="Allen, C" uniqKey="Allen C">C Allen</name>
</author>
<author>
<name sortKey="Jaffray, Da" uniqKey="Jaffray D">DA Jaffray</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Sheth, Ra" uniqKey="Sheth R">RA Sheth</name>
</author>
<author>
<name sortKey="Hesketh, R" uniqKey="Hesketh R">R Hesketh</name>
</author>
<author>
<name sortKey="Kong, Ds" uniqKey="Kong D">DS Kong</name>
</author>
<author>
<name sortKey="Wicky, S" uniqKey="Wicky S">S Wicky</name>
</author>
<author>
<name sortKey="Oklu, R" uniqKey="Oklu R">R Oklu</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kobayashi, H" uniqKey="Kobayashi H">H Kobayashi</name>
</author>
<author>
<name sortKey="Watanabe, R" uniqKey="Watanabe R">R Watanabe</name>
</author>
<author>
<name sortKey="Choyke, Pl" uniqKey="Choyke P">PL Choyke</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Jain, Rk" uniqKey="Jain R">RK Jain</name>
</author>
<author>
<name sortKey="Martin, Jd" uniqKey="Martin J">JD Martin</name>
</author>
<author>
<name sortKey="Stylianopoulos, T" uniqKey="Stylianopoulos T">T Stylianopoulos</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Stylianopoulos, T" uniqKey="Stylianopoulos T">T Stylianopoulos</name>
</author>
<author>
<name sortKey="Munn, Ll" uniqKey="Munn L">LL Munn</name>
</author>
<author>
<name sortKey="Jain, Rk" uniqKey="Jain R">RK Jain</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Jain, Rk" uniqKey="Jain R">RK Jain</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Baxter, Lt" uniqKey="Baxter L">LT Baxter</name>
</author>
<author>
<name sortKey="Jain, Rk" uniqKey="Jain R">RK Jain</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Yuan, F" uniqKey="Yuan F">F Yuan</name>
</author>
<author>
<name sortKey="Leunig, M" uniqKey="Leunig M">M Leunig</name>
</author>
<author>
<name sortKey="Huang, Sk" uniqKey="Huang S">SK Huang</name>
</author>
<author>
<name sortKey="Berk, Da" uniqKey="Berk D">DA Berk</name>
</author>
<author>
<name sortKey="Papahadjopoulos, D" uniqKey="Papahadjopoulos D">D Papahadjopoulos</name>
</author>
<author>
<name sortKey="Jain, Rk" uniqKey="Jain R">RK Jain</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Chauhan, Vp" uniqKey="Chauhan V">VP Chauhan</name>
</author>
<author>
<name sortKey="Stylianopoulos, T" uniqKey="Stylianopoulos T">T Stylianopoulos</name>
</author>
<author>
<name sortKey="Boucher, Y" uniqKey="Boucher Y">Y Boucher</name>
</author>
<author>
<name sortKey="Jain, R K" uniqKey="Jain R">R.K Jain</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Eetezadi, S" uniqKey="Eetezadi S">S Eetezadi</name>
</author>
<author>
<name sortKey="Ekdawi, Sn" uniqKey="Ekdawi S">SN Ekdawi</name>
</author>
<author>
<name sortKey="Allen, C" uniqKey="Allen C">C Allen</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Miao, L" uniqKey="Miao L">L Miao</name>
</author>
<author>
<name sortKey="Lin, Cm" uniqKey="Lin C">CM Lin</name>
</author>
<author>
<name sortKey="Huang, L" uniqKey="Huang L">L Huang</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Sharma, A" uniqKey="Sharma A">A Sharma</name>
</author>
<author>
<name sortKey="Arambula, Jf" uniqKey="Arambula J">JF Arambula</name>
</author>
<author>
<name sortKey="Koo, S" uniqKey="Koo S">S Koo</name>
</author>
<author>
<name sortKey="Kumar, R" uniqKey="Kumar R">R Kumar</name>
</author>
<author>
<name sortKey="Singh, H" uniqKey="Singh H">H Singh</name>
</author>
<author>
<name sortKey="Sessler, Jl" uniqKey="Sessler J">JL Sessler</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Sahu, A" uniqKey="Sahu A">A Sahu</name>
</author>
<author>
<name sortKey="Choi, Wi" uniqKey="Choi W">WI Choi</name>
</author>
<author>
<name sortKey="Tae, G" uniqKey="Tae G">G Tae</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Soleymani Abyaneh, H" uniqKey="Soleymani Abyaneh H">H Soleymani Abyaneh</name>
</author>
<author>
<name sortKey="Soleimani, Ah" uniqKey="Soleimani A">AH Soleimani</name>
</author>
<author>
<name sortKey="Vakili, Mr" uniqKey="Vakili M">MR Vakili</name>
</author>
<author>
<name sortKey="Soudy, R" uniqKey="Soudy R">R Soudy</name>
</author>
<author>
<name sortKey="Kaur, K" uniqKey="Kaur K">K Kaur</name>
</author>
<author>
<name sortKey="Cuda, F" uniqKey="Cuda F">F Cuda</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Folkman, J" uniqKey="Folkman J">J Folkman</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Pluen, A" uniqKey="Pluen A">A Pluen</name>
</author>
<author>
<name sortKey="Boucher, Y" uniqKey="Boucher Y">Y Boucher</name>
</author>
<author>
<name sortKey="Ramanujan, S" uniqKey="Ramanujan S">S Ramanujan</name>
</author>
<author>
<name sortKey="Mckee, Td" uniqKey="Mckee T">TD McKee</name>
</author>
<author>
<name sortKey="Gohongi, T" uniqKey="Gohongi T">T Gohongi</name>
</author>
<author>
<name sortKey="Di Tomaso, E" uniqKey="Di Tomaso E">E di Tomaso</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Jain, Rk" uniqKey="Jain R">RK Jain</name>
</author>
<author>
<name sortKey="Martin, Jd" uniqKey="Martin J">JD Martin</name>
</author>
<author>
<name sortKey="Stylianopoulos, T" uniqKey="Stylianopoulos T">T Stylianopoulos</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Chauhan, Vp" uniqKey="Chauhan V">VP Chauhan</name>
</author>
<author>
<name sortKey="Boucher, Y" uniqKey="Boucher Y">Y Boucher</name>
</author>
<author>
<name sortKey="Ferrone, Cr" uniqKey="Ferrone C">CR Ferrone</name>
</author>
<author>
<name sortKey="Roberge, S" uniqKey="Roberge S">S Roberge</name>
</author>
<author>
<name sortKey="Martin, Jd" uniqKey="Martin J">JD Martin</name>
</author>
<author>
<name sortKey="Stylianopoulos, T" uniqKey="Stylianopoulos T">T Stylianopoulos</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Whatcott, Cj" uniqKey="Whatcott C">CJ Whatcott</name>
</author>
<author>
<name sortKey="Han, H" uniqKey="Han H">H Han</name>
</author>
<author>
<name sortKey="Von Hoff, Dd" uniqKey="Von Hoff D">DD Von Hoff</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Lampi, Mc" uniqKey="Lampi M">MC Lampi</name>
</author>
<author>
<name sortKey="Reinhart King, Ca" uniqKey="Reinhart King C">CA Reinhart-King</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Jiang, H" uniqKey="Jiang H">H Jiang</name>
</author>
<author>
<name sortKey="Hegde, S" uniqKey="Hegde S">S Hegde</name>
</author>
<author>
<name sortKey="Denardo, Dg" uniqKey="Denardo D">DG DeNardo</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Mccarthy, Jb" uniqKey="Mccarthy J">JB McCarthy</name>
</author>
<author>
<name sortKey="El Ashry, D" uniqKey="El Ashry D">D El-Ashry</name>
</author>
<author>
<name sortKey="Turley, Ea" uniqKey="Turley E">EA Turley</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Pietras, K" uniqKey="Pietras K">K Pietras</name>
</author>
<author>
<name sortKey="Ostman, A" uniqKey="Ostman A">A Ostman</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kalluri, R" uniqKey="Kalluri R">R Kalluri</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Frantz, C" uniqKey="Frantz C">C Frantz</name>
</author>
<author>
<name sortKey="Stewart, Km" uniqKey="Stewart K">KM Stewart</name>
</author>
<author>
<name sortKey="Weaver, Vm" uniqKey="Weaver V">VM Weaver</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Lu, P" uniqKey="Lu P">P Lu</name>
</author>
<author>
<name sortKey="Weaver, Vm" uniqKey="Weaver V">VM Weaver</name>
</author>
<author>
<name sortKey="Werb, Z" uniqKey="Werb Z">Z Werb</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Piperigkou, Z" uniqKey="Piperigkou Z">Z Piperigkou</name>
</author>
<author>
<name sortKey="Gotte, M" uniqKey="Gotte M">M Gotte</name>
</author>
<author>
<name sortKey="Theocharis, Ad" uniqKey="Theocharis A">AD Theocharis</name>
</author>
<author>
<name sortKey="Karamanos, Nk" uniqKey="Karamanos N">NK Karamanos</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Huang, H" uniqKey="Huang H">H Huang</name>
</author>
<author>
<name sortKey="Winter, Ee" uniqKey="Winter E">EE Winter</name>
</author>
<author>
<name sortKey="Wang, H" uniqKey="Wang H">H Wang</name>
</author>
<author>
<name sortKey="Weinstock, Kg" uniqKey="Weinstock K">KG Weinstock</name>
</author>
<author>
<name sortKey="Xing, H" uniqKey="Xing H">H Xing</name>
</author>
<author>
<name sortKey="Goodstadt, L" uniqKey="Goodstadt L">L Goodstadt</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Pevzner, P" uniqKey="Pevzner P">P Pevzner</name>
</author>
<author>
<name sortKey="Tesler, G" uniqKey="Tesler G">G Tesler</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Wang, L" uniqKey="Wang L">L Wang</name>
</author>
<author>
<name sortKey="Liu, H" uniqKey="Liu H">H Liu</name>
</author>
<author>
<name sortKey="Jiao, Y" uniqKey="Jiao Y">Y Jiao</name>
</author>
<author>
<name sortKey="Wang, E" uniqKey="Wang E">E Wang</name>
</author>
<author>
<name sortKey="Clark, Sh" uniqKey="Clark S">SH Clark</name>
</author>
<author>
<name sortKey="Postlethwaite, Ae" uniqKey="Postlethwaite A">AE Postlethwaite</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Fietz, Sa" uniqKey="Fietz S">SA Fietz</name>
</author>
<author>
<name sortKey="Lachmann, R" uniqKey="Lachmann R">R Lachmann</name>
</author>
<author>
<name sortKey="Brandl, H" uniqKey="Brandl H">H Brandl</name>
</author>
<author>
<name sortKey="Kircher, M" uniqKey="Kircher M">M Kircher</name>
</author>
<author>
<name sortKey="Samusik, N" uniqKey="Samusik N">N Samusik</name>
</author>
<author>
<name sortKey="Schroder, R" uniqKey="Schroder R">R Schroder</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Shao, X" uniqKey="Shao X">X Shao</name>
</author>
<author>
<name sortKey="Taha, In" uniqKey="Taha I">IN Taha</name>
</author>
<author>
<name sortKey="Clauser, Kr" uniqKey="Clauser K">KR Clauser</name>
</author>
<author>
<name sortKey="Gao, Y" uniqKey="Gao Y">Y Gao</name>
</author>
<author>
<name sortKey="Naba, A" uniqKey="Naba A">A Naba</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Eble, Ja" uniqKey="Eble J">JA Eble</name>
</author>
<author>
<name sortKey="Niland, S" uniqKey="Niland S">S Niland</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Malik, R" uniqKey="Malik R">R Malik</name>
</author>
<author>
<name sortKey="Lelkes, Pi" uniqKey="Lelkes P">PI Lelkes</name>
</author>
<author>
<name sortKey="Cukierman, E" uniqKey="Cukierman E">E Cukierman</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Andrzejewska, A" uniqKey="Andrzejewska A">A Andrzejewska</name>
</author>
<author>
<name sortKey="Lukomska, B" uniqKey="Lukomska B">B Lukomska</name>
</author>
<author>
<name sortKey="Janowski, M" uniqKey="Janowski M">M Janowski</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kalluri, R" uniqKey="Kalluri R">R Kalluri</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Croft, Cb" uniqKey="Croft C">CB Croft</name>
</author>
<author>
<name sortKey="Tarin, D" uniqKey="Tarin D">D Tarin</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Muller, Ga" uniqKey="Muller G">GA Muller</name>
</author>
<author>
<name sortKey="Rodemann, Hp" uniqKey="Rodemann H">HP Rodemann</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Seidman, Jc" uniqKey="Seidman J">JC Seidman</name>
</author>
<author>
<name sortKey="Castor, Cw" uniqKey="Castor C">CW Castor</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Tomasek, Jj" uniqKey="Tomasek J">JJ Tomasek</name>
</author>
<author>
<name sortKey="Gabbiani, G" uniqKey="Gabbiani G">G Gabbiani</name>
</author>
<author>
<name sortKey="Hinz, B" uniqKey="Hinz B">B Hinz</name>
</author>
<author>
<name sortKey="Chaponnier, C" uniqKey="Chaponnier C">C Chaponnier</name>
</author>
<author>
<name sortKey="Brown, Ra" uniqKey="Brown R">RA Brown</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Parsonage, G" uniqKey="Parsonage G">G Parsonage</name>
</author>
<author>
<name sortKey="Filer, Ad" uniqKey="Filer A">AD Filer</name>
</author>
<author>
<name sortKey="Haworth, O" uniqKey="Haworth O">O Haworth</name>
</author>
<author>
<name sortKey="Nash, Gb" uniqKey="Nash G">GB Nash</name>
</author>
<author>
<name sortKey="Rainger, Ge" uniqKey="Rainger G">GE Rainger</name>
</author>
<author>
<name sortKey="Salmon, M" uniqKey="Salmon M">M Salmon</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Micallef, L" uniqKey="Micallef L">L Micallef</name>
</author>
<author>
<name sortKey="Vedrenne, N" uniqKey="Vedrenne N">N Vedrenne</name>
</author>
<author>
<name sortKey="Billet, F" uniqKey="Billet F">F Billet</name>
</author>
<author>
<name sortKey="Coulomb, B" uniqKey="Coulomb B">B Coulomb</name>
</author>
<author>
<name sortKey="Darby, Ia" uniqKey="Darby I">IA Darby</name>
</author>
<author>
<name sortKey="Desmouliere, A" uniqKey="Desmouliere A">A Desmouliere</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kronenberg, Hm" uniqKey="Kronenberg H">HM Kronenberg</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Egeblad, M" uniqKey="Egeblad M">M Egeblad</name>
</author>
<author>
<name sortKey="Rasch, Mg" uniqKey="Rasch M">MG Rasch</name>
</author>
<author>
<name sortKey="Weaver, Vm" uniqKey="Weaver V">VM Weaver</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Theocharis, Ad" uniqKey="Theocharis A">AD Theocharis</name>
</author>
<author>
<name sortKey="Skandalis, Ss" uniqKey="Skandalis S">SS Skandalis</name>
</author>
<author>
<name sortKey="Gialeli, C" uniqKey="Gialeli C">C Gialeli</name>
</author>
<author>
<name sortKey="Karamanos, Nk" uniqKey="Karamanos N">NK Karamanos</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="An, B" uniqKey="An B">B An</name>
</author>
<author>
<name sortKey="Lin, Ys" uniqKey="Lin Y">YS Lin</name>
</author>
<author>
<name sortKey="Brodsky, B" uniqKey="Brodsky B">B Brodsky</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Schuppan, D" uniqKey="Schuppan D">D Schuppan</name>
</author>
<author>
<name sortKey="Ashfaq Khan, M" uniqKey="Ashfaq Khan M">M Ashfaq-Khan</name>
</author>
<author>
<name sortKey="Yang, At" uniqKey="Yang A">AT Yang</name>
</author>
<author>
<name sortKey="Kim, Yo" uniqKey="Kim Y">YO Kim</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Demou, Zn" uniqKey="Demou Z">ZN Demou</name>
</author>
<author>
<name sortKey="Awad, M" uniqKey="Awad M">M Awad</name>
</author>
<author>
<name sortKey="Mckee, T" uniqKey="Mckee T">T McKee</name>
</author>
<author>
<name sortKey="Perentes, Jy" uniqKey="Perentes J">JY Perentes</name>
</author>
<author>
<name sortKey="Wang, X" uniqKey="Wang X">X Wang</name>
</author>
<author>
<name sortKey="Munn, Ll" uniqKey="Munn L">LL Munn</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Wells, A" uniqKey="Wells A">A Wells</name>
</author>
<author>
<name sortKey="Nuschke, A" uniqKey="Nuschke A">A Nuschke</name>
</author>
<author>
<name sortKey="Yates, Cc" uniqKey="Yates C">CC Yates</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Lucero, Ha" uniqKey="Lucero H">HA Lucero</name>
</author>
<author>
<name sortKey="Kagan, Hm" uniqKey="Kagan H">HM Kagan</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Wise, Sg" uniqKey="Wise S">SG Wise</name>
</author>
<author>
<name sortKey="Weiss, As" uniqKey="Weiss A">AS Weiss</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Jarvelainen, H" uniqKey="Jarvelainen H">H Jarvelainen</name>
</author>
<author>
<name sortKey="Sainio, A" uniqKey="Sainio A">A Sainio</name>
</author>
<author>
<name sortKey="Koulu, M" uniqKey="Koulu M">M Koulu</name>
</author>
<author>
<name sortKey="Wight, Tn" uniqKey="Wight T">TN Wight</name>
</author>
<author>
<name sortKey="Penttinen, R" uniqKey="Penttinen R">R Penttinen</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Schaefer, L" uniqKey="Schaefer L">L Schaefer</name>
</author>
<author>
<name sortKey="Schaefer, Rm" uniqKey="Schaefer R">RM Schaefer</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Iozzo, Rv" uniqKey="Iozzo R">RV Iozzo</name>
</author>
<author>
<name sortKey="Schaefer, L" uniqKey="Schaefer L">L Schaefer</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Scott, Je" uniqKey="Scott J">JE Scott</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Rozario, T" uniqKey="Rozario T">T Rozario</name>
</author>
<author>
<name sortKey="Desimone, Dw" uniqKey="Desimone D">DW DeSimone</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Xu, J" uniqKey="Xu J">J Xu</name>
</author>
<author>
<name sortKey="Mosher, D" uniqKey="Mosher D">D Mosher</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Afratis, Na" uniqKey="Afratis N">NA Afratis</name>
</author>
<author>
<name sortKey="Nikitovic, D" uniqKey="Nikitovic D">D Nikitovic</name>
</author>
<author>
<name sortKey="Multhaupt, Ha" uniqKey="Multhaupt H">HA Multhaupt</name>
</author>
<author>
<name sortKey="Theocharis, Ad" uniqKey="Theocharis A">AD Theocharis</name>
</author>
<author>
<name sortKey="Couchman, Jr" uniqKey="Couchman J">JR Couchman</name>
</author>
<author>
<name sortKey="Karamanos, Nk" uniqKey="Karamanos N">NK Karamanos</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Bonnans, C" uniqKey="Bonnans C">C Bonnans</name>
</author>
<author>
<name sortKey="Chou, J" uniqKey="Chou J">J Chou</name>
</author>
<author>
<name sortKey="Werb, Z" uniqKey="Werb Z">Z Werb</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Sanderson, Rd" uniqKey="Sanderson R">RD Sanderson</name>
</author>
<author>
<name sortKey="Elkin, M" uniqKey="Elkin M">M Elkin</name>
</author>
<author>
<name sortKey="Rapraeger, Ac" uniqKey="Rapraeger A">AC Rapraeger</name>
</author>
<author>
<name sortKey="Ilan, N" uniqKey="Ilan N">N Ilan</name>
</author>
<author>
<name sortKey="Vlodavsky, I" uniqKey="Vlodavsky I">I Vlodavsky</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Cruz Munoz, W" uniqKey="Cruz Munoz W">W Cruz-Munoz</name>
</author>
<author>
<name sortKey="Khokha, R" uniqKey="Khokha R">R Khokha</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Jackson, Hw" uniqKey="Jackson H">HW Jackson</name>
</author>
<author>
<name sortKey="Defamie, V" uniqKey="Defamie V">V Defamie</name>
</author>
<author>
<name sortKey="Waterhouse, P" uniqKey="Waterhouse P">P Waterhouse</name>
</author>
<author>
<name sortKey="Khokha, R" uniqKey="Khokha R">R Khokha</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ronnov Jessen, L" uniqKey="Ronnov Jessen L">L Ronnov-Jessen</name>
</author>
<author>
<name sortKey="Petersen, Ow" uniqKey="Petersen O">OW Petersen</name>
</author>
<author>
<name sortKey="Bissell, Mj" uniqKey="Bissell M">MJ Bissell</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Koivisto, L" uniqKey="Koivisto L">L Koivisto</name>
</author>
<author>
<name sortKey="Heino, J" uniqKey="Heino J">J Heino</name>
</author>
<author>
<name sortKey="Hakkinen, L" uniqKey="Hakkinen L">L Hakkinen</name>
</author>
<author>
<name sortKey="Larjava, H" uniqKey="Larjava H">H Larjava</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Schnittert, J" uniqKey="Schnittert J">J Schnittert</name>
</author>
<author>
<name sortKey="Bansal, R" uniqKey="Bansal R">R Bansal</name>
</author>
<author>
<name sortKey="Storm, G" uniqKey="Storm G">G Storm</name>
</author>
<author>
<name sortKey="Prakash, J" uniqKey="Prakash J">J Prakash</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Schultz, Gs" uniqKey="Schultz G">GS Schultz</name>
</author>
<author>
<name sortKey="Wysocki, A" uniqKey="Wysocki A">A Wysocki</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Velnar, T" uniqKey="Velnar T">T Velnar</name>
</author>
<author>
<name sortKey="Bailey, T" uniqKey="Bailey T">T Bailey</name>
</author>
<author>
<name sortKey="Smrkolj, V" uniqKey="Smrkolj V">V Smrkolj</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kalluri, R" uniqKey="Kalluri R">R Kalluri</name>
</author>
<author>
<name sortKey="Weinberg, Ra" uniqKey="Weinberg R">RA Weinberg</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kalluri, R" uniqKey="Kalluri R">R Kalluri</name>
</author>
<author>
<name sortKey="Neilson, Eg" uniqKey="Neilson E">EG Neilson</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Hynes, Ro" uniqKey="Hynes R">RO Hynes</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Conroy, Kp" uniqKey="Conroy K">KP Conroy</name>
</author>
<author>
<name sortKey="Kitto, Lj" uniqKey="Kitto L">LJ Kitto</name>
</author>
<author>
<name sortKey="Henderson, Nc" uniqKey="Henderson N">NC Henderson</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Liu, S" uniqKey="Liu S">S Liu</name>
</author>
<author>
<name sortKey="Shi Wen, X" uniqKey="Shi Wen X">X Shi-wen</name>
</author>
<author>
<name sortKey="Blumbach, K" uniqKey="Blumbach K">K Blumbach</name>
</author>
<author>
<name sortKey="Eastwood, M" uniqKey="Eastwood M">M Eastwood</name>
</author>
<author>
<name sortKey="Denton, Cp" uniqKey="Denton C">CP Denton</name>
</author>
<author>
<name sortKey="Eckes, B" uniqKey="Eckes B">B Eckes</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Afratis, Na" uniqKey="Afratis N">NA Afratis</name>
</author>
<author>
<name sortKey="Klepfish, M" uniqKey="Klepfish M">M Klepfish</name>
</author>
<author>
<name sortKey="Karamanos, Nk" uniqKey="Karamanos N">NK Karamanos</name>
</author>
<author>
<name sortKey="Sagi, I" uniqKey="Sagi I">I Sagi</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Simian, M" uniqKey="Simian M">M Simian</name>
</author>
<author>
<name sortKey="Hirai, Y" uniqKey="Hirai Y">Y Hirai</name>
</author>
<author>
<name sortKey="Navre, M" uniqKey="Navre M">M Navre</name>
</author>
<author>
<name sortKey="Werb, Z" uniqKey="Werb Z">Z Werb</name>
</author>
<author>
<name sortKey="Lochter, A" uniqKey="Lochter A">A Lochter</name>
</author>
<author>
<name sortKey="Bissell, Mj" uniqKey="Bissell M">MJ Bissell</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Peyrol, S" uniqKey="Peyrol S">S Peyrol</name>
</author>
<author>
<name sortKey="Raccurt, M" uniqKey="Raccurt M">M Raccurt</name>
</author>
<author>
<name sortKey="Gerard, F" uniqKey="Gerard F">F Gerard</name>
</author>
<author>
<name sortKey="Gleyzal, C" uniqKey="Gleyzal C">C Gleyzal</name>
</author>
<author>
<name sortKey="Grimaud, Ja" uniqKey="Grimaud J">JA Grimaud</name>
</author>
<author>
<name sortKey="Sommer, P" uniqKey="Sommer P">P Sommer</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="De Wever, O" uniqKey="De Wever O">O De Wever</name>
</author>
<author>
<name sortKey="Demetter, P" uniqKey="Demetter P">P Demetter</name>
</author>
<author>
<name sortKey="Mareel, M" uniqKey="Mareel M">M Mareel</name>
</author>
<author>
<name sortKey="Bracke, M" uniqKey="Bracke M">M Bracke</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Tlsty, Td" uniqKey="Tlsty T">TD Tlsty</name>
</author>
<author>
<name sortKey="Hein, Pw" uniqKey="Hein P">PW Hein</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Bissell, Mj" uniqKey="Bissell M">MJ Bissell</name>
</author>
<author>
<name sortKey="Radisky, D" uniqKey="Radisky D">D Radisky</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Dvorak, Hf" uniqKey="Dvorak H">HF Dvorak</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Walker, Ra" uniqKey="Walker R">RA Walker</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Desmouliere, A" uniqKey="Desmouliere A">A Desmouliere</name>
</author>
<author>
<name sortKey="Guyot, C" uniqKey="Guyot C">C Guyot</name>
</author>
<author>
<name sortKey="Gabbiani, G" uniqKey="Gabbiani G">G Gabbiani</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Goetz, Jg" uniqKey="Goetz J">JG Goetz</name>
</author>
<author>
<name sortKey="Minguet, S" uniqKey="Minguet S">S Minguet</name>
</author>
<author>
<name sortKey="Navarro Lerida, I" uniqKey="Navarro Lerida I">I Navarro-Lerida</name>
</author>
<author>
<name sortKey="Lazcano, Jj" uniqKey="Lazcano J">JJ Lazcano</name>
</author>
<author>
<name sortKey="Samaniego, R" uniqKey="Samaniego R">R Samaniego</name>
</author>
<author>
<name sortKey="Calvo, E" uniqKey="Calvo E">E Calvo</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Northcott, Jm" uniqKey="Northcott J">JM Northcott</name>
</author>
<author>
<name sortKey="Dean, Is" uniqKey="Dean I">IS Dean</name>
</author>
<author>
<name sortKey="Mouw, Jk" uniqKey="Mouw J">JK Mouw</name>
</author>
<author>
<name sortKey="Weaver, Vm" uniqKey="Weaver V">VM Weaver</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Butcher, Dt" uniqKey="Butcher D">DT Butcher</name>
</author>
<author>
<name sortKey="Alliston, T" uniqKey="Alliston T">T Alliston</name>
</author>
<author>
<name sortKey="Weaver, Vm" uniqKey="Weaver V">VM Weaver</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Werb, Z" uniqKey="Werb Z">Z Werb</name>
</author>
<author>
<name sortKey="Lu, P" uniqKey="Lu P">P Lu</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Keely, Pj" uniqKey="Keely P">PJ Keely</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Toole, Bp" uniqKey="Toole B">BP Toole</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Erkan, M" uniqKey="Erkan M">M Erkan</name>
</author>
<author>
<name sortKey="Reiser Erkan, C" uniqKey="Reiser Erkan C">C Reiser-Erkan</name>
</author>
<author>
<name sortKey="Michalski, Cw" uniqKey="Michalski C">CW Michalski</name>
</author>
<author>
<name sortKey="Kleeff, J" uniqKey="Kleeff J">J Kleeff</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Yu, M" uniqKey="Yu M">M Yu</name>
</author>
<author>
<name sortKey="Tannock, If" uniqKey="Tannock I">IF Tannock</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Rafii, R" uniqKey="Rafii R">R Rafii</name>
</author>
<author>
<name sortKey="Juarez, Mm" uniqKey="Juarez M">MM Juarez</name>
</author>
<author>
<name sortKey="Albertson, Te" uniqKey="Albertson T">TE Albertson</name>
</author>
<author>
<name sortKey="Chan, Al" uniqKey="Chan A">AL Chan</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Selvaggio, As" uniqKey="Selvaggio A">AS Selvaggio</name>
</author>
<author>
<name sortKey="Noble, Pw" uniqKey="Noble P">PW Noble</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Mccormack, Pl" uniqKey="Mccormack P">PL McCormack</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Wahyudi, H" uniqKey="Wahyudi H">H Wahyudi</name>
</author>
<author>
<name sortKey="Reynolds, Aa" uniqKey="Reynolds A">AA Reynolds</name>
</author>
<author>
<name sortKey="Li, Y" uniqKey="Li Y">Y Li</name>
</author>
<author>
<name sortKey="Owen, Sc" uniqKey="Owen S">SC Owen</name>
</author>
<author>
<name sortKey="Yu, Sm" uniqKey="Yu S">SM Yu</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Desogere, P" uniqKey="Desogere P">P Desogere</name>
</author>
<author>
<name sortKey="Montesi, Sb" uniqKey="Montesi S">SB Montesi</name>
</author>
<author>
<name sortKey="Caravan, P" uniqKey="Caravan P">P Caravan</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Zhao, X" uniqKey="Zhao X">X Zhao</name>
</author>
<author>
<name sortKey="Psarianos, P" uniqKey="Psarianos P">P Psarianos</name>
</author>
<author>
<name sortKey="Ghoraie, Ls" uniqKey="Ghoraie L">LS Ghoraie</name>
</author>
<author>
<name sortKey="Yip, K" uniqKey="Yip K">K Yip</name>
</author>
<author>
<name sortKey="Goldstein, D" uniqKey="Goldstein D">D Goldstein</name>
</author>
<author>
<name sortKey="Gilbert, R" uniqKey="Gilbert R">R Gilbert</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Zion, O" uniqKey="Zion O">O Zion</name>
</author>
<author>
<name sortKey="Genin, O" uniqKey="Genin O">O Genin</name>
</author>
<author>
<name sortKey="Kawada, N" uniqKey="Kawada N">N Kawada</name>
</author>
<author>
<name sortKey="Yoshizato, K" uniqKey="Yoshizato K">K Yoshizato</name>
</author>
<author>
<name sortKey="Roffe, S" uniqKey="Roffe S">S Roffe</name>
</author>
<author>
<name sortKey="Nagler, A" uniqKey="Nagler A">A Nagler</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Pines, M" uniqKey="Pines M">M Pines</name>
</author>
<author>
<name sortKey="Knopov, V" uniqKey="Knopov V">V Knopov</name>
</author>
<author>
<name sortKey="Genina, O" uniqKey="Genina O">O Genina</name>
</author>
<author>
<name sortKey="Lavelin, I" uniqKey="Lavelin I">I Lavelin</name>
</author>
<author>
<name sortKey="Nagler, A" uniqKey="Nagler A">A Nagler</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Juarez, P" uniqKey="Juarez P">P Juarez</name>
</author>
<author>
<name sortKey="Mohammad, Ks" uniqKey="Mohammad K">KS Mohammad</name>
</author>
<author>
<name sortKey="Yin, Jj" uniqKey="Yin J">JJ Yin</name>
</author>
<author>
<name sortKey="Fournier, Pg" uniqKey="Fournier P">PG Fournier</name>
</author>
<author>
<name sortKey="Mckenna, Rc" uniqKey="Mckenna R">RC McKenna</name>
</author>
<author>
<name sortKey="Davis, Hw" uniqKey="Davis H">HW Davis</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Diop Frimpong, B" uniqKey="Diop Frimpong B">B Diop-Frimpong</name>
</author>
<author>
<name sortKey="Chauhan, Vp" uniqKey="Chauhan V">VP Chauhan</name>
</author>
<author>
<name sortKey="Krane, S" uniqKey="Krane S">S Krane</name>
</author>
<author>
<name sortKey="Boucher, Y" uniqKey="Boucher Y">Y Boucher</name>
</author>
<author>
<name sortKey="Jain, Rk" uniqKey="Jain R">RK Jain</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Zhao, Y" uniqKey="Zhao Y">Y Zhao</name>
</author>
<author>
<name sortKey="Cao, J" uniqKey="Cao J">J Cao</name>
</author>
<author>
<name sortKey="Melamed, A" uniqKey="Melamed A">A Melamed</name>
</author>
<author>
<name sortKey="Worley, M" uniqKey="Worley M">M Worley</name>
</author>
<author>
<name sortKey="Gockley, A" uniqKey="Gockley A">A Gockley</name>
</author>
<author>
<name sortKey="Jones, D" uniqKey="Jones D">D Jones</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Murphy, Je" uniqKey="Murphy J">JE Murphy</name>
</author>
<author>
<name sortKey="Wo, Jy L" uniqKey="Wo J">JY-L Wo</name>
</author>
<author>
<name sortKey="Ferrone, C" uniqKey="Ferrone C">C Ferrone</name>
</author>
<author>
<name sortKey="Jiang, W" uniqKey="Jiang W">W Jiang</name>
</author>
<author>
<name sortKey="Yeap, By" uniqKey="Yeap B">BY Yeap</name>
</author>
<author>
<name sortKey="Blaszkowsky, Ls" uniqKey="Blaszkowsky L">LS Blaszkowsky</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Murphy, Je" uniqKey="Murphy J">JE Murphy</name>
</author>
<author>
<name sortKey="Wo, Jy" uniqKey="Wo J">JY Wo</name>
</author>
<author>
<name sortKey="Ryan, Dp" uniqKey="Ryan D">DP Ryan</name>
</author>
<author>
<name sortKey="Clark, Jw" uniqKey="Clark J">JW Clark</name>
</author>
<author>
<name sortKey="Jiang, W" uniqKey="Jiang W">W Jiang</name>
</author>
<author>
<name sortKey="Yeap, By" uniqKey="Yeap B">BY Yeap</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Liu, J" uniqKey="Liu J">J Liu</name>
</author>
<author>
<name sortKey="Liao, S" uniqKey="Liao S">S Liao</name>
</author>
<author>
<name sortKey="Diop Frimpong, B" uniqKey="Diop Frimpong B">B Diop-Frimpong</name>
</author>
<author>
<name sortKey="Chen, W" uniqKey="Chen W">W Chen</name>
</author>
<author>
<name sortKey="Goel, S" uniqKey="Goel S">S Goel</name>
</author>
<author>
<name sortKey="Naxerova, K" uniqKey="Naxerova K">K Naxerova</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Chauhan, Vp" uniqKey="Chauhan V">VP Chauhan</name>
</author>
<author>
<name sortKey="Martin, Jd" uniqKey="Martin J">JD Martin</name>
</author>
<author>
<name sortKey="Liu, H" uniqKey="Liu H">H Liu</name>
</author>
<author>
<name sortKey="Lacorre, Da" uniqKey="Lacorre D">DA Lacorre</name>
</author>
<author>
<name sortKey="Jain, Sr" uniqKey="Jain S">SR Jain</name>
</author>
<author>
<name sortKey="Kozin, Sv" uniqKey="Kozin S">SV Kozin</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Haque, S" uniqKey="Haque S">S Haque</name>
</author>
<author>
<name sortKey="Morris, Jc" uniqKey="Morris J">JC Morris</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Akhurst, Rj" uniqKey="Akhurst R">RJ Akhurst</name>
</author>
<author>
<name sortKey="Hata, A" uniqKey="Hata A">A Hata</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Sussman, Bj" uniqKey="Sussman B">BJ Sussman</name>
</author>
<author>
<name sortKey="Bromley, Jw" uniqKey="Bromley J">JW Bromley</name>
</author>
<author>
<name sortKey="Gomez, Jc" uniqKey="Gomez J">JC Gomez</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Desai, Ss" uniqKey="Desai S">SS Desai</name>
</author>
<author>
<name sortKey="Hentz, Vr" uniqKey="Hentz V">VR Hentz</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ozcan, C" uniqKey="Ozcan C">C Özcan</name>
</author>
<author>
<name sortKey="Ergun, O" uniqKey="Ergun O">O Ergün</name>
</author>
<author>
<name sortKey="Celik, A" uniqKey="Celik A">A Çelik</name>
</author>
<author>
<name sortKey="Corduk, N" uniqKey="Corduk N">N Çördük</name>
</author>
<author>
<name sortKey="Ozok, G" uniqKey="Ozok G">G Özok</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Dolor, A" uniqKey="Dolor A">A Dolor</name>
</author>
<author>
<name sortKey="Szoka, Fc Jr" uniqKey="Szoka F">FC Jr Szoka</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Mckee, Td" uniqKey="Mckee T">TD McKee</name>
</author>
<author>
<name sortKey="Grandi, P" uniqKey="Grandi P">P Grandi</name>
</author>
<author>
<name sortKey="Mok, W" uniqKey="Mok W">W Mok</name>
</author>
<author>
<name sortKey="Alexandrakis, G" uniqKey="Alexandrakis G">G Alexandrakis</name>
</author>
<author>
<name sortKey="Insin, N" uniqKey="Insin N">N Insin</name>
</author>
<author>
<name sortKey="Zimmer, Jp" uniqKey="Zimmer J">JP Zimmer</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kato, M" uniqKey="Kato M">M Kato</name>
</author>
<author>
<name sortKey="Hattori, Y" uniqKey="Hattori Y">Y Hattori</name>
</author>
<author>
<name sortKey="Kubo, M" uniqKey="Kubo M">M Kubo</name>
</author>
<author>
<name sortKey="Maitani, Y" uniqKey="Maitani Y">Y Maitani</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Goodman, Tt" uniqKey="Goodman T">TT Goodman</name>
</author>
<author>
<name sortKey="Olive, Pl" uniqKey="Olive P">PL Olive</name>
</author>
<author>
<name sortKey="Pun, Sh" uniqKey="Pun S">SH Pun</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Bond, Md" uniqKey="Bond M">MD Bond</name>
</author>
<author>
<name sortKey="Van Wart, He" uniqKey="Van Wart H">HE Van Wart</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Zinger, A" uniqKey="Zinger A">A Zinger</name>
</author>
<author>
<name sortKey="Koren, L" uniqKey="Koren L">L Koren</name>
</author>
<author>
<name sortKey="Adir, O" uniqKey="Adir O">O Adir</name>
</author>
<author>
<name sortKey="Poley, M" uniqKey="Poley M">M Poley</name>
</author>
<author>
<name sortKey="Alyan, M" uniqKey="Alyan M">M Alyan</name>
</author>
<author>
<name sortKey="Yaari, Z" uniqKey="Yaari Z">Z Yaari</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Unemori, En" uniqKey="Unemori E">EN Unemori</name>
</author>
<author>
<name sortKey="Amento, Ep" uniqKey="Amento E">EP Amento</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Brown, E" uniqKey="Brown E">E Brown</name>
</author>
<author>
<name sortKey="Mckee, T" uniqKey="Mckee T">T McKee</name>
</author>
<author>
<name sortKey="Ditomaso, E" uniqKey="Ditomaso E">E diTomaso</name>
</author>
<author>
<name sortKey="Pluen, A" uniqKey="Pluen A">A Pluen</name>
</author>
<author>
<name sortKey="Seed, B" uniqKey="Seed B">B Seed</name>
</author>
<author>
<name sortKey="Boucher, Y" uniqKey="Boucher Y">Y Boucher</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Eikenes, L" uniqKey="Eikenes L">L Eikenes</name>
</author>
<author>
<name sortKey="Tufto, I" uniqKey="Tufto I">I Tufto</name>
</author>
<author>
<name sortKey="Schnell, Ea" uniqKey="Schnell E">EA Schnell</name>
</author>
<author>
<name sortKey="Bjorkoy, A" uniqKey="Bjorkoy A">A Bjorkoy</name>
</author>
<author>
<name sortKey="De Lange Davies, C" uniqKey="De Lange Davies C">C De Lange Davies</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Lu, P" uniqKey="Lu P">P Lu</name>
</author>
<author>
<name sortKey="Takai, K" uniqKey="Takai K">K Takai</name>
</author>
<author>
<name sortKey="Weaver, Vm" uniqKey="Weaver V">VM Weaver</name>
</author>
<author>
<name sortKey="Werb, Z" uniqKey="Werb Z">Z Werb</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Coussens, Lm" uniqKey="Coussens L">LM Coussens</name>
</author>
<author>
<name sortKey="Fingleton, B" uniqKey="Fingleton B">B Fingleton</name>
</author>
<author>
<name sortKey="Matrisian, Lm" uniqKey="Matrisian L">LM Matrisian</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Overall, Cm" uniqKey="Overall C">CM Overall</name>
</author>
<author>
<name sortKey="L Pez Otin, C" uniqKey="L Pez Otin C">C López-Otín</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Parks, Wc" uniqKey="Parks W">WC Parks</name>
</author>
<author>
<name sortKey="Wilson, Cl" uniqKey="Wilson C">CL Wilson</name>
</author>
<author>
<name sortKey="Lopez Boado, Ys" uniqKey="Lopez Boado Y">YS Lopez-Boado</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Fang, M" uniqKey="Fang M">M Fang</name>
</author>
<author>
<name sortKey="Yuan, J" uniqKey="Yuan J">J Yuan</name>
</author>
<author>
<name sortKey="Peng, C" uniqKey="Peng C">C Peng</name>
</author>
<author>
<name sortKey="Li, Y" uniqKey="Li Y">Y Li</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Page Mccaw, A" uniqKey="Page Mccaw A">A Page-McCaw</name>
</author>
<author>
<name sortKey="Ewald, Aj" uniqKey="Ewald A">AJ Ewald</name>
</author>
<author>
<name sortKey="Werb, Z" uniqKey="Werb Z">Z Werb</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Li, Y" uniqKey="Li Y">Y Li</name>
</author>
<author>
<name sortKey="Foss, Ca" uniqKey="Foss C">CA Foss</name>
</author>
<author>
<name sortKey="Summerfield, Dd" uniqKey="Summerfield D">DD Summerfield</name>
</author>
<author>
<name sortKey="Doyle, Jj" uniqKey="Doyle J">JJ Doyle</name>
</author>
<author>
<name sortKey="Torok, Cm" uniqKey="Torok C">CM Torok</name>
</author>
<author>
<name sortKey="Dietz, Hc" uniqKey="Dietz H">HC Dietz</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Erler, Jt" uniqKey="Erler J">JT Erler</name>
</author>
<author>
<name sortKey="Bennewith, Kl" uniqKey="Bennewith K">KL Bennewith</name>
</author>
<author>
<name sortKey="Cox, Tr" uniqKey="Cox T">TR Cox</name>
</author>
<author>
<name sortKey="Lang, G" uniqKey="Lang G">G Lang</name>
</author>
<author>
<name sortKey="Bird, D" uniqKey="Bird D">D Bird</name>
</author>
<author>
<name sortKey="Koong, A" uniqKey="Koong A">A Koong</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Georges, Pc" uniqKey="Georges P">PC Georges</name>
</author>
<author>
<name sortKey="Hui, Jj" uniqKey="Hui J">JJ Hui</name>
</author>
<author>
<name sortKey="Gombos, Z" uniqKey="Gombos Z">Z Gombos</name>
</author>
<author>
<name sortKey="Mccormick, Me" uniqKey="Mccormick M">ME McCormick</name>
</author>
<author>
<name sortKey="Wang, Ay" uniqKey="Wang A">AY Wang</name>
</author>
<author>
<name sortKey="Uemura, M" uniqKey="Uemura M">M Uemura</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Cox, Tr" uniqKey="Cox T">TR Cox</name>
</author>
<author>
<name sortKey="Bird, D" uniqKey="Bird D">D Bird</name>
</author>
<author>
<name sortKey="Baker, Am" uniqKey="Baker A">AM Baker</name>
</author>
<author>
<name sortKey="Barker, He" uniqKey="Barker H">HE Barker</name>
</author>
<author>
<name sortKey="Ho, Mw" uniqKey="Ho M">MW Ho</name>
</author>
<author>
<name sortKey="Lang, G" uniqKey="Lang G">G Lang</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Gilkes, Dm" uniqKey="Gilkes D">DM Gilkes</name>
</author>
<author>
<name sortKey="Chaturvedi, P" uniqKey="Chaturvedi P">P Chaturvedi</name>
</author>
<author>
<name sortKey="Bajpai, S" uniqKey="Bajpai S">S Bajpai</name>
</author>
<author>
<name sortKey="Wong, Cc" uniqKey="Wong C">CC Wong</name>
</author>
<author>
<name sortKey="Wei, H" uniqKey="Wei H">H Wei</name>
</author>
<author>
<name sortKey="Pitcairn, S" uniqKey="Pitcairn S">S Pitcairn</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Miller, Bw" uniqKey="Miller B">BW Miller</name>
</author>
<author>
<name sortKey="Morton, Jp" uniqKey="Morton J">JP Morton</name>
</author>
<author>
<name sortKey="Pinese, M" uniqKey="Pinese M">M Pinese</name>
</author>
<author>
<name sortKey="Saturno, G" uniqKey="Saturno G">G Saturno</name>
</author>
<author>
<name sortKey="Jamieson, Nb" uniqKey="Jamieson N">NB Jamieson</name>
</author>
<author>
<name sortKey="Mcghee, E" uniqKey="Mcghee E">E McGhee</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kanapathipillai, M" uniqKey="Kanapathipillai M">M Kanapathipillai</name>
</author>
<author>
<name sortKey="Mammoto, A" uniqKey="Mammoto A">A Mammoto</name>
</author>
<author>
<name sortKey="Mammoto, T" uniqKey="Mammoto T">T Mammoto</name>
</author>
<author>
<name sortKey="Kang, Jh" uniqKey="Kang J">JH Kang</name>
</author>
<author>
<name sortKey="Jiang, E" uniqKey="Jiang E">E Jiang</name>
</author>
<author>
<name sortKey="Ghosh, K" uniqKey="Ghosh K">K Ghosh</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Benson, Ab Rd" uniqKey="Benson A">AB 3rd Benson</name>
</author>
<author>
<name sortKey="Wainberg, Za" uniqKey="Wainberg Z">ZA Wainberg</name>
</author>
<author>
<name sortKey="Hecht, Jr" uniqKey="Hecht J">JR Hecht</name>
</author>
<author>
<name sortKey="Vyushkov, D" uniqKey="Vyushkov D">D Vyushkov</name>
</author>
<author>
<name sortKey="Dong, H" uniqKey="Dong H">H Dong</name>
</author>
<author>
<name sortKey="Bendell, J" uniqKey="Bendell J">J Bendell</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Allen, Pb" uniqKey="Allen P">PB Allen</name>
</author>
<author>
<name sortKey="Olivera, P" uniqKey="Olivera P">P Olivera</name>
</author>
<author>
<name sortKey="Emery, P" uniqKey="Emery P">P Emery</name>
</author>
<author>
<name sortKey="Moulin, D" uniqKey="Moulin D">D Moulin</name>
</author>
<author>
<name sortKey="Jouzeau, Jy" uniqKey="Jouzeau J">JY Jouzeau</name>
</author>
<author>
<name sortKey="Netter, P" uniqKey="Netter P">P Netter</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Whatcott, Cj" uniqKey="Whatcott C">CJ Whatcott</name>
</author>
<author>
<name sortKey="Han, H" uniqKey="Han H">H Han</name>
</author>
<author>
<name sortKey="Posner, Rg" uniqKey="Posner R">RG Posner</name>
</author>
<author>
<name sortKey="Hostetter, G" uniqKey="Hostetter G">G Hostetter</name>
</author>
<author>
<name sortKey="Von Hoff, Dd" uniqKey="Von Hoff D">DD Von Hoff</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Koike, C" uniqKey="Koike C">C Koike</name>
</author>
<author>
<name sortKey="Mckee, Td" uniqKey="Mckee T">TD McKee</name>
</author>
<author>
<name sortKey="Pluen, A" uniqKey="Pluen A">A Pluen</name>
</author>
<author>
<name sortKey="Ramanujan, S" uniqKey="Ramanujan S">S Ramanujan</name>
</author>
<author>
<name sortKey="Burton, K" uniqKey="Burton K">K Burton</name>
</author>
<author>
<name sortKey="Munn, Ll" uniqKey="Munn L">LL Munn</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Provenzano, Pp" uniqKey="Provenzano P">PP Provenzano</name>
</author>
<author>
<name sortKey="Cuevas, C" uniqKey="Cuevas C">C Cuevas</name>
</author>
<author>
<name sortKey="Chang, Ae" uniqKey="Chang A">AE Chang</name>
</author>
<author>
<name sortKey="Goel, Vk" uniqKey="Goel V">VK Goel</name>
</author>
<author>
<name sortKey="Von Hoff, Dd" uniqKey="Von Hoff D">DD Von Hoff</name>
</author>
<author>
<name sortKey="Hingorani, Sr" uniqKey="Hingorani S">SR Hingorani</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kudo, D" uniqKey="Kudo D">D Kudo</name>
</author>
<author>
<name sortKey="Suto, A" uniqKey="Suto A">A Suto</name>
</author>
<author>
<name sortKey="Hakamada, K" uniqKey="Hakamada K">K Hakamada</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Baumgartner, G" uniqKey="Baumgartner G">G Baumgartner</name>
</author>
<author>
<name sortKey="Gomar Hoss, C" uniqKey="Gomar Hoss C">C Gomar-Hoss</name>
</author>
<author>
<name sortKey="Sakr, L" uniqKey="Sakr L">L Sakr</name>
</author>
<author>
<name sortKey="Ulsperger, E" uniqKey="Ulsperger E">E Ulsperger</name>
</author>
<author>
<name sortKey="Wogritsch, C" uniqKey="Wogritsch C">C Wogritsch</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Bookbinder, Lh" uniqKey="Bookbinder L">LH Bookbinder</name>
</author>
<author>
<name sortKey="Hofer, A" uniqKey="Hofer A">A Hofer</name>
</author>
<author>
<name sortKey="Haller, Mf" uniqKey="Haller M">MF Haller</name>
</author>
<author>
<name sortKey="Zepeda, Ml" uniqKey="Zepeda M">ML Zepeda</name>
</author>
<author>
<name sortKey="Keller, Ga" uniqKey="Keller G">GA Keller</name>
</author>
<author>
<name sortKey="Lim, Je" uniqKey="Lim J">JE Lim</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Buhren, Ba" uniqKey="Buhren B">BA Buhren</name>
</author>
<author>
<name sortKey="Schrumpf, H" uniqKey="Schrumpf H">H Schrumpf</name>
</author>
<author>
<name sortKey="Hoff, Np" uniqKey="Hoff N">NP Hoff</name>
</author>
<author>
<name sortKey="Bolke, E" uniqKey="Bolke E">E Bolke</name>
</author>
<author>
<name sortKey="Hilton, S" uniqKey="Hilton S">S Hilton</name>
</author>
<author>
<name sortKey="Gerber, Pa" uniqKey="Gerber P">PA Gerber</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Mcatee, Co" uniqKey="Mcatee C">CO McAtee</name>
</author>
<author>
<name sortKey="Barycki, Jj" uniqKey="Barycki J">JJ Barycki</name>
</author>
<author>
<name sortKey="Simpson, Ma" uniqKey="Simpson M">MA Simpson</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Shepard, Hm" uniqKey="Shepard H">HM Shepard</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Wong, Km" uniqKey="Wong K">KM Wong</name>
</author>
<author>
<name sortKey="Horton, Kj" uniqKey="Horton K">KJ Horton</name>
</author>
<author>
<name sortKey="Coveler, Al" uniqKey="Coveler A">AL Coveler</name>
</author>
<author>
<name sortKey="Hingorani, Sr" uniqKey="Hingorani S">SR Hingorani</name>
</author>
<author>
<name sortKey="Harris, Wp" uniqKey="Harris W">WP Harris</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Hingorani, Sr" uniqKey="Hingorani S">SR Hingorani</name>
</author>
<author>
<name sortKey="Zheng, L" uniqKey="Zheng L">L Zheng</name>
</author>
<author>
<name sortKey="Bullock, Aj" uniqKey="Bullock A">AJ Bullock</name>
</author>
<author>
<name sortKey="Seery, Te" uniqKey="Seery T">TE Seery</name>
</author>
<author>
<name sortKey="Harris, Wp" uniqKey="Harris W">WP Harris</name>
</author>
<author>
<name sortKey="Sigal, Ds" uniqKey="Sigal D">DS Sigal</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Doherty, Gj" uniqKey="Doherty G">GJ Doherty</name>
</author>
<author>
<name sortKey="Tempero, M" uniqKey="Tempero M">M Tempero</name>
</author>
<author>
<name sortKey="Corrie, Pg" uniqKey="Corrie P">PG Corrie</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ramanathan, Rk" uniqKey="Ramanathan R">RK Ramanathan</name>
</author>
<author>
<name sortKey="Mcdonough, Sl" uniqKey="Mcdonough S">SL McDonough</name>
</author>
<author>
<name sortKey="Philip, Pa" uniqKey="Philip P">PA Philip</name>
</author>
<author>
<name sortKey="Hingorani, Sr" uniqKey="Hingorani S">SR Hingorani</name>
</author>
<author>
<name sortKey="Lacy, J" uniqKey="Lacy J">J Lacy</name>
</author>
<author>
<name sortKey="Kortmansky, Js" uniqKey="Kortmansky J">JS Kortmansky</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Wang Gillam, A" uniqKey="Wang Gillam A">A Wang-Gillam</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Bernkop Schnurch, A" uniqKey="Bernkop Schnurch A">A Bernkop-Schnurch</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Nakamura, T" uniqKey="Nakamura T">T Nakamura</name>
</author>
<author>
<name sortKey="Takagaki, K" uniqKey="Takagaki K">K Takagaki</name>
</author>
<author>
<name sortKey="Shibata, S" uniqKey="Shibata S">S Shibata</name>
</author>
<author>
<name sortKey="Tanaka, K" uniqKey="Tanaka K">K Tanaka</name>
</author>
<author>
<name sortKey="Higuchi, T" uniqKey="Higuchi T">T Higuchi</name>
</author>
<author>
<name sortKey="Endo, M" uniqKey="Endo M">M Endo</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kultti, A" uniqKey="Kultti A">A Kultti</name>
</author>
<author>
<name sortKey="Pasonen Seppanen, S" uniqKey="Pasonen Seppanen S">S Pasonen-Seppanen</name>
</author>
<author>
<name sortKey="Jauhiainen, M" uniqKey="Jauhiainen M">M Jauhiainen</name>
</author>
<author>
<name sortKey="Rilla, Kj" uniqKey="Rilla K">KJ Rilla</name>
</author>
<author>
<name sortKey="Karna, R" uniqKey="Karna R">R Karna</name>
</author>
<author>
<name sortKey="Pyoria, E" uniqKey="Pyoria E">E Pyoria</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Hajime, M" uniqKey="Hajime M">M Hajime</name>
</author>
<author>
<name sortKey="Shuichi, Y" uniqKey="Shuichi Y">Y Shuichi</name>
</author>
<author>
<name sortKey="Makoto, N" uniqKey="Makoto N">N Makoto</name>
</author>
<author>
<name sortKey="Masanori, Y" uniqKey="Masanori Y">Y Masanori</name>
</author>
<author>
<name sortKey="Ikuko, K" uniqKey="Ikuko K">K Ikuko</name>
</author>
<author>
<name sortKey="Atsushi, K" uniqKey="Atsushi K">K Atsushi</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kohli, Ag" uniqKey="Kohli A">AG Kohli</name>
</author>
<author>
<name sortKey="Kivimae, S" uniqKey="Kivimae S">S Kivimae</name>
</author>
<author>
<name sortKey="Tiffany, Mr" uniqKey="Tiffany M">MR Tiffany</name>
</author>
<author>
<name sortKey="Szoka, Fc" uniqKey="Szoka F">FC Szoka</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Papageorgis, P" uniqKey="Papageorgis P">P Papageorgis</name>
</author>
<author>
<name sortKey="Polydorou, C" uniqKey="Polydorou C">C Polydorou</name>
</author>
<author>
<name sortKey="Mpekris, F" uniqKey="Mpekris F">F Mpekris</name>
</author>
<author>
<name sortKey="Voutouri, C" uniqKey="Voutouri C">C Voutouri</name>
</author>
<author>
<name sortKey="Agathokleous, E" uniqKey="Agathokleous E">E Agathokleous</name>
</author>
<author>
<name sortKey="Kapnissi Christodoulou, Cp" uniqKey="Kapnissi Christodoulou C">CP Kapnissi-Christodoulou</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Polydorou, C" uniqKey="Polydorou C">C Polydorou</name>
</author>
<author>
<name sortKey="Mpekris, F" uniqKey="Mpekris F">F Mpekris</name>
</author>
<author>
<name sortKey="Papageorgis, P" uniqKey="Papageorgis P">P Papageorgis</name>
</author>
<author>
<name sortKey="Voutouri, C" uniqKey="Voutouri C">C Voutouri</name>
</author>
<author>
<name sortKey="Stylianopoulos, T" uniqKey="Stylianopoulos T">T Stylianopoulos</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Vennin, C" uniqKey="Vennin C">C Vennin</name>
</author>
<author>
<name sortKey="Chin, Vt" uniqKey="Chin V">VT Chin</name>
</author>
<author>
<name sortKey="Warren, Sc" uniqKey="Warren S">SC Warren</name>
</author>
<author>
<name sortKey="Lucas, Mc" uniqKey="Lucas M">MC Lucas</name>
</author>
<author>
<name sortKey="Herrmann, D" uniqKey="Herrmann D">D Herrmann</name>
</author>
<author>
<name sortKey="Magenau, A" uniqKey="Magenau A">A Magenau</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Incio, J" uniqKey="Incio J">J Incio</name>
</author>
<author>
<name sortKey="Suboj, P" uniqKey="Suboj P">P Suboj</name>
</author>
<author>
<name sortKey="Chin, Sm" uniqKey="Chin S">SM Chin</name>
</author>
<author>
<name sortKey="Vardam Kaur, T" uniqKey="Vardam Kaur T">T Vardam-Kaur</name>
</author>
<author>
<name sortKey="Liu, H" uniqKey="Liu H">H Liu</name>
</author>
<author>
<name sortKey="Hato, T" uniqKey="Hato T">T Hato</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Martin, Jd" uniqKey="Martin J">JD Martin</name>
</author>
<author>
<name sortKey="Panagi, M" uniqKey="Panagi M">M Panagi</name>
</author>
<author>
<name sortKey="Wang, C" uniqKey="Wang C">C Wang</name>
</author>
<author>
<name sortKey="Khan, Tt" uniqKey="Khan T">TT Khan</name>
</author>
<author>
<name sortKey="Martin, Mr" uniqKey="Martin M">MR Martin</name>
</author>
<author>
<name sortKey="Voutouri, C" uniqKey="Voutouri C">C Voutouri</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Weniger, M" uniqKey="Weniger M">M Weniger</name>
</author>
<author>
<name sortKey="Honselmann, Kc" uniqKey="Honselmann K">KC Honselmann</name>
</author>
<author>
<name sortKey="Liss, As" uniqKey="Liss A">AS Liss</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Lewis, Cj" uniqKey="Lewis C">CJ Lewis</name>
</author>
<author>
<name sortKey="Mardaryev, An" uniqKey="Mardaryev A">AN Mardaryev</name>
</author>
<author>
<name sortKey="Sharov, Aa" uniqKey="Sharov A">AA Sharov</name>
</author>
<author>
<name sortKey="Fessing, My" uniqKey="Fessing M">MY Fessing</name>
</author>
<author>
<name sortKey="Botchkarev, Va" uniqKey="Botchkarev V">VA Botchkarev</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Rupaimoole, R" uniqKey="Rupaimoole R">R Rupaimoole</name>
</author>
<author>
<name sortKey="Slack, Fj" uniqKey="Slack F">FJ Slack</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Snipstad, S" uniqKey="Snipstad S">S Snipstad</name>
</author>
<author>
<name sortKey="Berg, S" uniqKey="Berg S">S Berg</name>
</author>
<author>
<name sortKey="Morch, Y" uniqKey="Morch Y">Y Morch</name>
</author>
<author>
<name sortKey="Bjorkoy, A" uniqKey="Bjorkoy A">A Bjorkoy</name>
</author>
<author>
<name sortKey="Sulheim, E" uniqKey="Sulheim E">E Sulheim</name>
</author>
<author>
<name sortKey="Hansen, R" uniqKey="Hansen R">R Hansen</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Rossmann, C" uniqKey="Rossmann C">C Rossmann</name>
</author>
<author>
<name sortKey="Mccrackin, Ma" uniqKey="Mccrackin M">MA McCrackin</name>
</author>
<author>
<name sortKey="Armeson, Ke" uniqKey="Armeson K">KE Armeson</name>
</author>
<author>
<name sortKey="Haemmerich, D" uniqKey="Haemmerich D">D Haemmerich</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Haemmerich, D" uniqKey="Haemmerich D">D Haemmerich</name>
</author>
<author>
<name sortKey="Motamarry, A" uniqKey="Motamarry A">A Motamarry</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Apte, Mv" uniqKey="Apte M">MV Apte</name>
</author>
<author>
<name sortKey="Pirola, Rc" uniqKey="Pirola R">RC Pirola</name>
</author>
<author>
<name sortKey="Wilson, Js" uniqKey="Wilson J">JS Wilson</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ferdek, Pe" uniqKey="Ferdek P">PE Ferdek</name>
</author>
<author>
<name sortKey="Jakubowska, Ma" uniqKey="Jakubowska M">MA Jakubowska</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Gabasa, M" uniqKey="Gabasa M">M Gabasa</name>
</author>
<author>
<name sortKey="Ikemori, R" uniqKey="Ikemori R">R Ikemori</name>
</author>
<author>
<name sortKey="Hilberg, F" uniqKey="Hilberg F">F Hilberg</name>
</author>
<author>
<name sortKey="Reguart, N" uniqKey="Reguart N">N Reguart</name>
</author>
<author>
<name sortKey="Alcaraz, J" uniqKey="Alcaraz J">J Alcaraz</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Lopez, B" uniqKey="Lopez B">B Lopez</name>
</author>
<author>
<name sortKey="Gonzalez, A" uniqKey="Gonzalez A">A Gonzalez</name>
</author>
<author>
<name sortKey="Diez, J" uniqKey="Diez J">J Diez</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Perentes, Jy" uniqKey="Perentes J">JY Perentes</name>
</author>
<author>
<name sortKey="Mckee, Td" uniqKey="Mckee T">TD McKee</name>
</author>
<author>
<name sortKey="Ley, Cd" uniqKey="Ley C">CD Ley</name>
</author>
<author>
<name sortKey="Mathiew, H" uniqKey="Mathiew H">H Mathiew</name>
</author>
<author>
<name sortKey="Dawson, M" uniqKey="Dawson M">M Dawson</name>
</author>
<author>
<name sortKey="Padera, Tp" uniqKey="Padera T">TP Padera</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Chen, W" uniqKey="Chen W">W Chen</name>
</author>
<author>
<name sortKey="Cormode, Dp" uniqKey="Cormode D">DP Cormode</name>
</author>
<author>
<name sortKey="Vengrenyuk, Y" uniqKey="Vengrenyuk Y">Y Vengrenyuk</name>
</author>
<author>
<name sortKey="Herranz, B" uniqKey="Herranz B">B Herranz</name>
</author>
<author>
<name sortKey="Feig, Je" uniqKey="Feig J">JE Feig</name>
</author>
<author>
<name sortKey="Klink, A" uniqKey="Klink A">A Klink</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Wang, Y" uniqKey="Wang Y">Y Wang</name>
</author>
<author>
<name sortKey="Lin, T" uniqKey="Lin T">T Lin</name>
</author>
<author>
<name sortKey="Zhang, W" uniqKey="Zhang W">W Zhang</name>
</author>
<author>
<name sortKey="Jiang, Y" uniqKey="Jiang Y">Y Jiang</name>
</author>
<author>
<name sortKey="Jin, H" uniqKey="Jin H">H Jin</name>
</author>
<author>
<name sortKey="He, H" uniqKey="He H">H He</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Schuerle, S" uniqKey="Schuerle S">S Schuerle</name>
</author>
<author>
<name sortKey="Dudani, Js" uniqKey="Dudani J">JS Dudani</name>
</author>
<author>
<name sortKey="Christiansen, Mg" uniqKey="Christiansen M">MG Christiansen</name>
</author>
<author>
<name sortKey="Anikeeva, P" uniqKey="Anikeeva P">P Anikeeva</name>
</author>
<author>
<name sortKey="Bhatia, Sn" uniqKey="Bhatia S">SN Bhatia</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Pham, Ht" uniqKey="Pham H">HT Pham</name>
</author>
<author>
<name sortKey="Block, Nl" uniqKey="Block N">NL Block</name>
</author>
<author>
<name sortKey="Lokeshwar, Vb" uniqKey="Lokeshwar V">VB Lokeshwar</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Lee, H" uniqKey="Lee H">H Lee</name>
</author>
<author>
<name sortKey="Lee, K" uniqKey="Lee K">K Lee</name>
</author>
<author>
<name sortKey="Kim, Ik" uniqKey="Kim I">IK Kim</name>
</author>
<author>
<name sortKey="Park, Tg" uniqKey="Park T">TG Park</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ozdemir, Bc" uniqKey="Ozdemir B">BC Ozdemir</name>
</author>
<author>
<name sortKey="Pentcheva Hoang, T" uniqKey="Pentcheva Hoang T">T Pentcheva-Hoang</name>
</author>
<author>
<name sortKey="Carstens, Jl" uniqKey="Carstens J">JL Carstens</name>
</author>
<author>
<name sortKey="Zheng, X" uniqKey="Zheng X">X Zheng</name>
</author>
<author>
<name sortKey="Wu, Cc" uniqKey="Wu C">CC Wu</name>
</author>
<author>
<name sortKey="Simpson, Tr" uniqKey="Simpson T">TR Simpson</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Rhim, Ad" uniqKey="Rhim A">AD Rhim</name>
</author>
<author>
<name sortKey="Oberstein, Pe" uniqKey="Oberstein P">PE Oberstein</name>
</author>
<author>
<name sortKey="Thomas, Dh" uniqKey="Thomas D">DH Thomas</name>
</author>
<author>
<name sortKey="Mirek, Et" uniqKey="Mirek E">ET Mirek</name>
</author>
<author>
<name sortKey="Palermo, Cf" uniqKey="Palermo C">CF Palermo</name>
</author>
<author>
<name sortKey="Sastra, Sa" uniqKey="Sastra S">SA Sastra</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Raave, R" uniqKey="Raave R">R Raave</name>
</author>
<author>
<name sortKey="Van Kuppevelt, Th" uniqKey="Van Kuppevelt T">TH van Kuppevelt</name>
</author>
<author>
<name sortKey="Daamen, Wf" uniqKey="Daamen W">WF Daamen</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Mariathasan, S" uniqKey="Mariathasan S">S Mariathasan</name>
</author>
<author>
<name sortKey="Turley, Sj" uniqKey="Turley S">SJ Turley</name>
</author>
<author>
<name sortKey="Nickles, D" uniqKey="Nickles D">D Nickles</name>
</author>
<author>
<name sortKey="Castiglioni, A" uniqKey="Castiglioni A">A Castiglioni</name>
</author>
<author>
<name sortKey="Yuen, K" uniqKey="Yuen K">K Yuen</name>
</author>
<author>
<name sortKey="Wang, Y" uniqKey="Wang Y">Y Wang</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Salmon, H" uniqKey="Salmon H">H Salmon</name>
</author>
<author>
<name sortKey="Franciszkiewicz, K" uniqKey="Franciszkiewicz K">K Franciszkiewicz</name>
</author>
<author>
<name sortKey="Damotte, D" uniqKey="Damotte D">D Damotte</name>
</author>
<author>
<name sortKey="Dieu Nosjean, Mc" uniqKey="Dieu Nosjean M">MC Dieu-Nosjean</name>
</author>
<author>
<name sortKey="Validire, P" uniqKey="Validire P">P Validire</name>
</author>
<author>
<name sortKey="Trautmann, A" uniqKey="Trautmann A">A Trautmann</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Hartmann, N" uniqKey="Hartmann N">N Hartmann</name>
</author>
<author>
<name sortKey="Giese, Na" uniqKey="Giese N">NA Giese</name>
</author>
<author>
<name sortKey="Giese, T" uniqKey="Giese T">T Giese</name>
</author>
<author>
<name sortKey="Poschke, I" uniqKey="Poschke I">I Poschke</name>
</author>
<author>
<name sortKey="Offringa, R" uniqKey="Offringa R">R Offringa</name>
</author>
<author>
<name sortKey="Werner, J" uniqKey="Werner J">J Werner</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Huang, Bw" uniqKey="Huang B">BW Huang</name>
</author>
<author>
<name sortKey="Gao, Jq" uniqKey="Gao J">JQ Gao</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Huang, K" uniqKey="Huang K">K Huang</name>
</author>
<author>
<name sortKey="Boerhan, R" uniqKey="Boerhan R">R Boerhan</name>
</author>
<author>
<name sortKey="Liu, C" uniqKey="Liu C">C Liu</name>
</author>
<author>
<name sortKey="Jiang, G" uniqKey="Jiang G">G Jiang</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Zanoni, M" uniqKey="Zanoni M">M Zanoni</name>
</author>
<author>
<name sortKey="Piccinini, F" uniqKey="Piccinini F">F Piccinini</name>
</author>
<author>
<name sortKey="Arienti, C" uniqKey="Arienti C">C Arienti</name>
</author>
<author>
<name sortKey="Zamagni, A" uniqKey="Zamagni A">A Zamagni</name>
</author>
<author>
<name sortKey="Santi, S" uniqKey="Santi S">S Santi</name>
</author>
<author>
<name sortKey="Polico, R" uniqKey="Polico R">R Polico</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kondo, J" uniqKey="Kondo J">J Kondo</name>
</author>
<author>
<name sortKey="Inoue, M" uniqKey="Inoue M">M Inoue</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Talele, Np" uniqKey="Talele N">NP Talele</name>
</author>
<author>
<name sortKey="Fradette, J" uniqKey="Fradette J">J Fradette</name>
</author>
<author>
<name sortKey="Davies, Je" uniqKey="Davies J">JE Davies</name>
</author>
<author>
<name sortKey="Kapus, A" uniqKey="Kapus A">A Kapus</name>
</author>
<author>
<name sortKey="Hinz, B" uniqKey="Hinz B">B Hinz</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Wynn, Ta" uniqKey="Wynn T">TA Wynn</name>
</author>
</analytic>
</biblStruct>
</listBibl>
</div1>
</back>
</TEI>
<pmc article-type="review-article">
<pmc-dir>properties open_access</pmc-dir>
<front>
<journal-meta>
<journal-id journal-id-type="nlm-ta">Theranostics</journal-id>
<journal-id journal-id-type="iso-abbrev">Theranostics</journal-id>
<journal-id journal-id-type="publisher-id">thno</journal-id>
<journal-title-group>
<journal-title>Theranostics</journal-title>
</journal-title-group>
<issn pub-type="epub">1838-7640</issn>
<publisher>
<publisher-name>Ivyspring International Publisher</publisher-name>
<publisher-loc>Sydney</publisher-loc>
</publisher>
</journal-meta>
<article-meta>
<article-id pub-id-type="pmid">32042347</article-id>
<article-id pub-id-type="pmc">6993244</article-id>
<article-id pub-id-type="doi">10.7150/thno.39995</article-id>
<article-id pub-id-type="publisher-id">thnov10p1960</article-id>
<article-categories>
<subj-group subj-group-type="heading">
<subject>Review</subject>
</subj-group>
</article-categories>
<title-group>
<article-title>Towards extracellular matrix normalization for improved treatment of solid tumors</article-title>
</title-group>
<contrib-group>
<contrib contrib-type="author">
<name>
<surname>Abyaneh</surname>
<given-names>Hoda Soleymani</given-names>
</name>
<xref ref-type="aff" rid="A1">1</xref>
<xref ref-type="aff" rid="A2">2</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Regenold</surname>
<given-names>Maximilian</given-names>
</name>
<xref ref-type="aff" rid="A2">2</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>McKee</surname>
<given-names>Trevor D.</given-names>
</name>
<xref ref-type="aff" rid="A3">3</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Allen</surname>
<given-names>Christine</given-names>
</name>
<xref ref-type="aff" rid="A2">2</xref>
<xref ref-type="corresp" rid="FNA_envelop"></xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Gauthier</surname>
<given-names>Marc A.</given-names>
</name>
<xref ref-type="aff" rid="A1">1</xref>
<xref ref-type="corresp" rid="FNA_envelop"></xref>
</contrib>
</contrib-group>
<aff id="A1">
<label>1</label>
Institut National de la Recherche Scientifique (INRS), EMT Research Center, 1650 boul. Lionel-Boulet, Varennes, J3X 1S2, Canada.</aff>
<aff id="A2">
<label>2</label>
Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College Street, Toronto, Ontario M5S 3M2, Canada.</aff>
<aff id="A3">
<label>3</label>
STTARR Innovation Centre, University Health Network, 101 College Street Room 7-504, Toronto, Ontario M5G 1L7, Canada</aff>
<author-notes>
<corresp id="FNA_envelop">✉ Corresponding authors:
<email>cj.allen@utoronto.ca</email>
(CA);
<email>gauthier@emt.inrs.ca</email>
(MAG)</corresp>
<fn fn-type="COI-statement">
<p>Competing Interests: The authors have declared that no competing interest exists.</p>
</fn>
</author-notes>
<pub-date pub-type="collection">
<year>2020</year>
</pub-date>
<pub-date pub-type="epub">
<day>12</day>
<month>1</month>
<year>2020</year>
</pub-date>
<volume>10</volume>
<issue>4</issue>
<fpage>1960</fpage>
<lpage>1980</lpage>
<history>
<date date-type="received">
<day>4</day>
<month>9</month>
<year>2019</year>
</date>
<date date-type="accepted">
<day>9</day>
<month>12</month>
<year>2019</year>
</date>
</history>
<permissions>
<copyright-statement>© The author(s)</copyright-statement>
<copyright-year>2020</copyright-year>
<license license-type="open-access">
<license-p>This is an open access article distributed under the terms of the Creative Commons Attribution License (
<ext-link ext-link-type="uri" xlink:href="https://creativecommons.org/licenses/by/4.0/">https://creativecommons.org/licenses/by/4.0/</ext-link>
). See
<ext-link ext-link-type="uri" xlink:href="http://ivyspring.com/terms">http://ivyspring.com/terms</ext-link>
for full terms and conditions.</license-p>
</license>
</permissions>
<abstract>
<p>It is currently challenging to eradicate cancer. In the case of solid tumors, the dense and aberrant extracellular matrix (ECM) is a major contributor to the heterogeneous distribution of small molecule drugs and nano-formulations, which makes certain areas of the tumor difficult to treat. As such, much research is devoted to characterizing this matrix and devising strategies to modify its properties as a means to facilitate the improved penetration of drugs and their nano-formulations. This contribution presents the current state of knowledge on the composition of normal ECM and changes to ECM that occur during the pathological progression of cancer. It also includes discussion of strategies designed to modify the composition/properties of the ECM as a means to enhance the penetration and transport of drugs and nano-formulations within solid tumors. Moreover, a discussion of approaches to image the ECM, as well as ways to monitor changes in the ECM as a function of time are presented, as these are important for the implementation of ECM-modifying strategies within therapeutic interventions. Overall, considering the complexity of the ECM, its variability within different tissues, and the multiple pathways by which homeostasis is maintained (both in normal and malignant tissues), the available literature - while promising - suggests that improved monitoring of ECM remodeling
<italic>in vivo</italic>
is needed to harness the described strategies to their full potential, and match them with an appropriate chemotherapy regimen.</p>
</abstract>
<kwd-group>
<kwd>tumor extracellular matrix</kwd>
<kwd>collagen</kwd>
<kwd>hyaluronic acid</kwd>
<kwd>fibrosis</kwd>
<kwd>nano-formulations</kwd>
</kwd-group>
</article-meta>
</front>
<body>
<sec sec-type="intro">
<title>Introduction</title>
<p>Most chemotherapy regimens involve the systemic administration of cytotoxic drugs and are often associated with dose-limiting toxicities due to off-target effects. To address this concern, novel nano-formulations that rely on nano-sized particles or entities formed from organic (e.g., polymer or lipid) or inorganic materials (e.g., gold) have been developed for drug delivery. These formulations alter the pharmacokinetics of the drug and exploit the unique tumor biology in a manner that promotes accumulation at the tumor site, rather than in healthy tissue
<xref rid="B1" ref-type="bibr">1</xref>
. This approach has led to reductions in side effects, with less prominent improvements in treatment efficacy and clinical outcomes
<xref rid="B2" ref-type="bibr">2</xref>
. This is in part due to obstacles that prevent the homogenous distribution of drugs and nano-formulations throughout the bulk of solid tumors
<xref rid="B3" ref-type="bibr">3</xref>
. Although some physical characteristics of tumors promote the accumulation and retention of nano-formulations at the site of the tumor, the same and other characteristics can restrict convective as well as diffusive transport of these systems within the tumor itself. More specifically, drug accumulation and retention in tumors can be promoted by the leaky vasculature and impaired lymphatic drainage present within some solid tumors, leading to a phenomenon known as the enhanced permeability and retention (EPR) effect
<xref rid="B4" ref-type="bibr">4</xref>
. During tumorigenesis, the increased secretion of vascular growth factors leads to formation of abnormal vasculature with intercellular gaps and endothelial fenestrae that contribute to an overall leakiness of these vessels
<xref rid="B5" ref-type="bibr">5</xref>
. For instance, the tumor vessel basement membrane has a heterogeneous thickness, is often loosely associated with endothelial cells and has reduced pericyte coverage compared to healthy vessels
<xref rid="B6" ref-type="bibr">6</xref>
. Pericytes are perivascular cells that lie within the basement membrane, structurally stabilize the endothelium, and interact with endothelial cells
<xref rid="B7" ref-type="bibr">7</xref>
. They are mainly responsible for reducing endothelial cell proliferation, which explains why tumor vessels often lack pericyte coverage
<xref rid="B8" ref-type="bibr">8</xref>
,
<xref rid="B9" ref-type="bibr">9</xref>
. Moreover, in the case of low pericyte coverage the shedding of cancer cells from the tumor is increased since pericytes are known to prevent breach of the vessel wall
<xref rid="B10" ref-type="bibr">10</xref>
. These vasculature abnormalities result in the formation of pores that are 100 times larger than those in healthy vessels
<xref rid="B11" ref-type="bibr">11</xref>
and thus permit the extravasation of nanoparticles below 400 - 600 nm in size from blood into the tumor
<xref rid="B12" ref-type="bibr">12</xref>
. While this can be seen as advantageous for promoting the accumulation of nano-formulations, these phenomena also result in decreased total length and penetration of blood vessels within the tissue volume, leading to reduced blood flow
<xref rid="B13" ref-type="bibr">13</xref>
. This causes some tumor areas to be poorly perfused and inaccessible to nano-formulations, whose primary mode for tumor delivery relies on travelling within the systemic vasculature
<xref rid="B14" ref-type="bibr">14</xref>
. Once delivered to the tumor site, the predominant mechanism underlying nano-formulation transport into the tumor mass is convection, driven by hydrostatic pressure gradients between the tumor microvasculature and the tumor interstitium
<xref rid="B15" ref-type="bibr">15</xref>
.</p>
<p>While in normal tissue, a balance exists between blood flow and lymphatic drainage, many solid tumors lack functional lymphatic drainage due to a number of mechanisms, resulting in reduced clearance of interstitial fluid containing biomolecules, immune cells, or nano-formulations
<xref rid="B16" ref-type="bibr">16</xref>
,
<xref rid="B17" ref-type="bibr">17</xref>
. The combination of enhanced vascular permeability and an absence of functional lymphatics thus leads to an elevated interstitial fluid pressure exhibiting a complex gradient throughout the tumor mass compared to healthy tissue
<xref rid="B18" ref-type="bibr">18</xref>
. Along the tumor periphery, a functioning lymphatic system reduces the interstitial fluid pressure, resulting in a pressure gradient that promotes convective transport towards the tumor mass. This leads to the accumulation of nano-formulations mostly along the tumor periphery
<xref rid="B18" ref-type="bibr">18</xref>
-
<xref rid="B20" ref-type="bibr">20</xref>
. However, within the core of the tumor mass, the interstitial fluid pressure is significantly elevated, which in particular impedes the homogeneous distribution of nano-formulations throughout the tumor volume
<xref rid="B14" ref-type="bibr">14</xref>
,
<xref rid="B19" ref-type="bibr">19</xref>
-
<xref rid="B23" ref-type="bibr">23</xref>
. Thus, within these areas, diffusion is the main driving force for transport of nano-formulations
<xref rid="B22" ref-type="bibr">22</xref>
. For similar reasons, it is particularly difficult for nano-formulations to reach hypoxic regions, which are mostly found within the poorly perfused core of the tumor and are commonly associated with abnormal vasculature, resulting in a decreased supply of oxygen, nutrients, and drugs to these regions
<xref rid="B24" ref-type="bibr">24</xref>
,
<xref rid="B25" ref-type="bibr">25</xref>
. Many strategies have been tested to overcome this challenge, such as by developing hypoxia- or pH-specific nano-formulations
<xref rid="B26" ref-type="bibr">26</xref>
,
<xref rid="B27" ref-type="bibr">27</xref>
. Another strategy to overcome this challenge is vessel normalization. It has been shown that direct or indirect blockade of vascular endothelial growth factor (VEGF) signaling pathways with therapeutic agents have the potential to repair vessel disorganization (i.e., vessel normalization)
<xref rid="B6" ref-type="bibr">6</xref>
,
<xref rid="B7" ref-type="bibr">7</xref>
. Of note, this approach is different from traditional anti-angiogenic strategies that aim to reduce the total number of immature and mature vessels by destroying existing vessels and/or inhibiting the formation of new vessels as a means to starve the tumor
<xref rid="B28" ref-type="bibr">28</xref>
. The aim of vessel normalization is to decrease tumor interstitial fluid pressure, increase perfusion and oxygenation, and sustain vessel normalization by reducing the number of some immature vessels while increasing the maturity of the average remaining vessels
<xref rid="B6" ref-type="bibr">6</xref>
,
<xref rid="B7" ref-type="bibr">7</xref>
. This approach is expected to increase the exposure of cancer cells to anticancer therapies as well as to decrease the number of hypoxic areas responsible for tumor progression and metastasis
<xref rid="B7" ref-type="bibr">7</xref>
.</p>
<p>In addition to the features discussed above, the dense and aberrant extracellular matrix (ECM) of solid tumors is another major contributor to the heterogeneous distribution of nano-formulations within tumors
<xref rid="B29" ref-type="bibr">29</xref>
. The combined forces of dividing tumor cells, and the production and deposition of ECM components (such as collagen and hyaluronic acid), leads to the presence of high solid stress in tumors
<xref rid="B18" ref-type="bibr">18</xref>
,
<xref rid="B30" ref-type="bibr">30</xref>
. Solid stress is distinct from the interstitial fluid pressure. The interstitial fluid pressure is derived from the leaky vasculature causing equilibration of intra- and extra-blood vessel pressures within tumor. Solid stress arises from mechanical forces of the solid phase of the tumor. Components of the tumor tissue contributing to solid stress include dividing tumor cells, and the combination of forces arising from collagen, which has high tensile properties, and hyaluronic acid and glycosaminoglycans, which exert a gelation pressure due to retention of fluid. The combination of these forces can collapse blood vessels in tumors, further impeding drug delivery
<xref rid="B31" ref-type="bibr">31</xref>
.</p>
<p>ECM normalization, similar to vessel normalization, is a new approach that focuses on remodeling the microenvironment to resemble that of healthy tissue rather than complete destruction of the ECM components
<xref rid="B7" ref-type="bibr">7</xref>
,
<xref rid="B32" ref-type="bibr">32</xref>
. It is suggested by Von Hoff et al., that this approach will be most successful with therapeutic agents that have overall effects on transcription and cellular reprogramming
<xref rid="B32" ref-type="bibr">32</xref>
. This contribution presents the current state of knowledge regarding the composition of normal ECM, changes to ECM that occur during the pathological progression of cancer, and strategies designed to modify its composition/properties to enhance the tumor penetration and interstitial diffusion of drugs and nano-formulations within solid tumors. Particular emphasis will be placed on the non-cellular components of the ECM, and the reader is referred to other recent reviews for a discussion on targeting cellular components such as fibroblasts or immune cells
<xref rid="B33" ref-type="bibr">33</xref>
-
<xref rid="B36" ref-type="bibr">36</xref>
.</p>
</sec>
<sec>
<title>ECM components and their roles</title>
<p>The ECM is a complex biomaterial that exists between clusters of cells in all tissues
<xref rid="B37" ref-type="bibr">37</xref>
-
<xref rid="B39" ref-type="bibr">39</xref>
, and is often interchangeably referred to as the interstitial matrix, or the acellular portion of the stroma. Fundamentally, the ECM consists of polysaccharides, proteins, and water (
<bold>Figure
<xref ref-type="fig" rid="F1">1</xref>
</bold>
). It provides mechanical support for cells, as well as biochemical and physical cues, which are necessary for tissue development, differentiation, and homeostasis
<xref rid="B38" ref-type="bibr">38</xref>
,
<xref rid="B39" ref-type="bibr">39</xref>
. All ECM constituents are produced by the various cell types residing within the scaffold, including fibroblasts, epithelial cells, endothelial cells, and immune cells
<xref rid="B40" ref-type="bibr">40</xref>
. However, the composition of the ECM and its structure can vary significantly between tissues (e.g., kidneys vs. liver), within one tissue (e.g., renal cortex vs. renal medulla), and between different physiological states (e.g., normal vs. pathological)
<xref rid="B38" ref-type="bibr">38</xref>
. These differences in composition and structure of the ECM also exist among species (humans versus rodents). Rodents, notably mice, are commonly used as models of multiple human diseases. This is mostly due to the high degree of similarity in the sequences of genes between humans and mice
<xref rid="B41" ref-type="bibr">41</xref>
,
<xref rid="B42" ref-type="bibr">42</xref>
. However, minor differences in their genetic makeup may cause profound differences in cellular development. For instance, genes responsible for normal collagen I fibrillogenesis such as
<italic>collagen, type III, alpha-1</italic>
(
<italic>COL3A1</italic>
) are known to be instrumental in development and function of the ECM of the lung. However, the
<italic>COL3A1</italic>
gene network and regulation are different between humans and mice, which complicates the use of mouse models to study certain types of human lung diseases
<xref rid="B43" ref-type="bibr">43</xref>
. Another example of such a discrepancy is a higher expression of the ECM components in the human brain compared to that of the mouse. This evolutionary expansion of the human brain leads to higher cognitive function
<xref rid="B44" ref-type="bibr">44</xref>
. Fortunately, newly developing proteomic and computational approaches have significantly helped in understanding and characterizing the differences in ECM composition of healthy and diseased tissue in humans as well as in model organisms (i.e., matrisome project)
<xref rid="B45" ref-type="bibr">45</xref>
.</p>
<p>Organs are divided into stromal and parenchymal constituents based on histology. The parenchymal component is the part of the organ that completes its function, such as myocardial cells in the heart or hepatocytes in the liver. The parenchyma is surrounded by the stromal compartments of the organ such as blood vessels, nerves, and connective tissue
<xref rid="B46" ref-type="bibr">46</xref>
. For any given tissue, a basement membrane separates the parenchyma from the stroma
<xref rid="B37" ref-type="bibr">37</xref>
,
<xref rid="B38" ref-type="bibr">38</xref>
. The ECM within the basement membrane is biochemically and structurally distinct from the mesenchymal/interstitial stromal ECM (hereafter referred to as stromal ECM for the sake of simplicity) (
<bold>Figure
<xref ref-type="fig" rid="F1">1</xref>
</bold>
)
<xref rid="B47" ref-type="bibr">47</xref>
. Mesenchyme, also known as mesenchymal tissue, refers to a group of cells which are derived from the mesoderm
<xref rid="B48" ref-type="bibr">48</xref>
. Mesenchymal cells (such as fibroblasts) are responsible for the development of haematopoietic and connective tissues such as the bone marrow, bones, cartilage, muscles, tendons, and ligaments
<xref rid="B48" ref-type="bibr">48</xref>
,
<xref rid="B49" ref-type="bibr">49</xref>
.</p>
<sec>
<title>The basement membrane</title>
<p>When the basement membrane was first visualized by transmission electron microscopy, it was considered to be similar to stromal ECM
<xref rid="B37" ref-type="bibr">37</xref>
. However, it was later realized that the basement membrane was more compact and less porous than stromal ECM, and was always associated with cells
<xref rid="B37" ref-type="bibr">37</xref>
,
<xref rid="B39" ref-type="bibr">39</xref>
. Thus, the basement membrane can be considered a specialized ECM-like material that is associated with epithelial and endothelial cells lining blood vessels
<xref rid="B37" ref-type="bibr">37</xref>
,
<xref rid="B49" ref-type="bibr">49</xref>
. All cells within a tissue produce basement membrane constituents. However, the molecular composition of the basement membrane is unique to each tissue. This biochemical variability is considered to provide the cellular microenvironment necessary for conferring specific functionality to tissues.</p>
</sec>
<sec>
<title>Cellular components of stroma</title>
<p>Virchow, and later Duvall's first reports of cells within connective tissue were published in the mid-19th century. Later, these cells were named fibroblasts and found to produce collagen
<xref rid="B49" ref-type="bibr">49</xref>
. Fibroblasts are non-immune, non-epithelial cells, originating from the mesenchyme and exhibit a spindle-shaped morphology
<xref rid="B49" ref-type="bibr">49</xref>
,
<xref rid="B50" ref-type="bibr">50</xref>
. In healthy tissue, they are mostly found as non-activated isolated cells within the stromal ECM. However, non-activated fibroblasts have the ability to become activated when needed
<xref rid="B49" ref-type="bibr">49</xref>
. When comparing fibroblasts derived from either healthy tissue or a healing wound, the latter have been found to produce larger amounts of ECM and proliferate faster
<xref rid="B49" ref-type="bibr">49</xref>
,
<xref rid="B51" ref-type="bibr">51</xref>
. These fibroblasts are called activated
<xref rid="B52" ref-type="bibr">52</xref>
, and are responsible for secretion of chemokines and cytokines, recruitment of immune cells, production of ECM components and enforcing mechanical control over the tissue structure (
<italic>vide infra</italic>
)
<xref rid="B49" ref-type="bibr">49</xref>
,
<xref rid="B53" ref-type="bibr">53</xref>
,
<xref rid="B54" ref-type="bibr">54</xref>
. Activated fibroblasts are commonly called myofibroblasts due to the expression of α‑smooth muscle actin (αSMA), which is a cytoskeletal protein found in smooth muscle cells
<xref rid="B49" ref-type="bibr">49</xref>
,
<xref rid="B55" ref-type="bibr">55</xref>
. An activated fibroblast also has the ability to differentiate into other cell types of the mesenchymal lineage, including chondrocytes (primary cell type of cartilage
<xref rid="B56" ref-type="bibr">56</xref>
), adipocytes (fat cells), and endothelial cells (
<bold>Figure
<xref ref-type="fig" rid="F2">2</xref>
</bold>
). This is because non-activated fibroblasts possess characteristics that are similar to mesenchymal stem cell (MSC) precursors. MSCs are multipotent stromal cells that have the ability to differentiate into different types of cells that form the connective tissue of many organs. Thus, as suggested by Kalluri, a non-activated fibroblast can be thought of as an adult tissue-resident mesenchymal stem cell
<xref rid="B49" ref-type="bibr">49</xref>
.</p>
</sec>
<sec>
<title>ECM proteins, glycoproteins, and proteoglycans</title>
<p>In contrast to the basement membrane, the bulk of the stromal ECM is rich in fibrous proteins, glycoproteins, and proteoglycans (
<bold>Figure
<xref ref-type="fig" rid="F1">1</xref>
</bold>
). Due to the highly charged and hydrated nature of the stromal ECM, it confers resistance towards compressive stressors to the tissue
<xref rid="B39" ref-type="bibr">39</xref>
,
<xref rid="B57" ref-type="bibr">57</xref>
. The most prevalent fibrous protein within the stromal ECM is collagen. The collagen family contains at least 28 distinct types, with types I and III being the most commonly found
<xref rid="B58" ref-type="bibr">58</xref>
,
<xref rid="B59" ref-type="bibr">59</xref>
. Most collagens self-assemble into triple-helical structures. However, the type of collagen determines the overall supramolecular organization into structures such as fibrils and networks
<xref rid="B38" ref-type="bibr">38</xref>
. Fibers consist of a heterogeneous mixture of various collagen types, although tissues commonly contain only one type. Cross-linking can occur either intra-molecularly (i.e., within the triple helix) or inter-molecularly (i.e., between neighbouring triple helices), and is often assisted by the presence of non-helical telopeptides in the NH
<sub>2</sub>
and COOH regions of the collagen molecule
<xref rid="B60" ref-type="bibr">60</xref>
,
<xref rid="B61" ref-type="bibr">61</xref>
. Fibril bundles within the stromal ECM are composed of fibrous collagens, while network collagens are integrated into the basement membrane
<xref rid="B38" ref-type="bibr">38</xref>
. Fibrillar collagens are responsible for providing tensile strength, whereas network collagens (e.g., collagen IV) are essential for connecting the ECM to the vasculature
<xref rid="B40" ref-type="bibr">40</xref>
,
<xref rid="B62" ref-type="bibr">62</xref>
. Elastin is another important fibrous ECM protein. It provides tissues that are frequently stretched with the elasticity required to maintain such functions. Secreted tropoelastins, precursors of elastin, assemble into fibers and become highly cross-linked to one another by the lysyl oxidase (LOX) enzyme family. LOXs are mainly responsible for cross-linking ECM components such as collagen and elastin, which results in stiffening of the ECM
<xref rid="B38" ref-type="bibr">38</xref>
,
<xref rid="B63" ref-type="bibr">63</xref>
. The cooperation between elastin and collagen plays a crucial role in limiting the extent of elastin stretching
<xref rid="B38" ref-type="bibr">38</xref>
,
<xref rid="B64" ref-type="bibr">64</xref>
.</p>
<p>The other major class of macromolecules in stromal ECM are proteoglycans
<xref rid="B65" ref-type="bibr">65</xref>
,
<xref rid="B66" ref-type="bibr">66</xref>
. Most proteoglycans are composed of glycosaminoglycan (GAG) chains that are connected to a protein core by a covalent bond with the exception of hyaluronic acid that is present in its free form
<xref rid="B66" ref-type="bibr">66</xref>
,
<xref rid="B67" ref-type="bibr">67</xref>
. GAGs are long unbranched polysaccharide chains that contain repeating disaccharide units composed (except for keratan) of a galactose or an uronic sugar (D-glucuronic or L-iduronic acid) along with an amino sugar (N-acetylgalactosamine or N-acetylglucosamine). These polymers are often sulfated, which introduces a high negative charge and structural heterogeneity (e.g., heparan sulfate, keratan sulfate, and chondroitin sulfate). An example of a non-sulfated GAG is hyaluronic acid
<xref rid="B66" ref-type="bibr">66</xref>
. Moreover, proteoglycans consist of different types of GAG chains with varying length and composition, adding to their heterogeneity. They are very hydrophilic and can assume extended conformations that allow them to form hydrogels. The interaction of the hydrated GAG network with fibrous ECM molecules is responsible for the resistance of tissues to compressive stressors
<xref rid="B68" ref-type="bibr">68</xref>
. Moreover, like collagen, proteoglycans demonstrate the ability to bind and store bioactive molecules such as cytokines and growth factors, essentially making them a reservoir of these molecules within the stromal ECM
<xref rid="B40" ref-type="bibr">40</xref>
,
<xref rid="B69" ref-type="bibr">69</xref>
.</p>
</sec>
<sec>
<title>Cellular adhesion & ECM modification in the stroma</title>
<p>ECM molecules interact with cells by binding to cell surface receptors such as integrins, cell-surface proteoglycans, glypicans, syndecans, discoidin domain receptors, as well as hyaluronic acid receptors CD44 (cluster of differentiation 44) and RHAMM (receptor for hyaluronic acid-mediated motility). The adherence of cells to the cell-surface receptor is commonly mediated through adhesive glycoproteins such as entactins (or nidogens), fibronectin, fibrinogen, laminins, tenascins, thrombospondins, vitronectin, nephronectin, and others
<xref rid="B70" ref-type="bibr">70</xref>
. This interaction activates intracellular signaling pathways that subsequently control a myriad of cellular functions
<xref rid="B58" ref-type="bibr">58</xref>
,
<xref rid="B71" ref-type="bibr">71</xref>
. It also acts as a physical link between the interior and the exterior of a cell, which enables bidirectional sensing of signals that control cell fate and function(s) for maintaining tissue homeostasis. Tissue homeostasis is heavily dependent on active ECM remodeling, which constantly happens via the dynamic equilibrium of ECM production and degradation under both physiological and pathological conditions. LOXs are mostly responsible for cross-linking and stiffening the ECM
<xref rid="B63" ref-type="bibr">63</xref>
, while various other families of digestive enzymes are involved in ECM breakdown. ECM degrading enzymes include: a) proteases such as matrix metalloproteinase (MMP), a disintegrin and metalloproteinase (ADAM), ADAM with thrombospondin motifs (ADAMTS), cathepsin, plasminogen activator, and b) GAG-degrading enzymes like hyaluronidase and heparanase (that cleave hyaluronic acid and heparan sulfate chains, respectively)
<xref rid="B72" ref-type="bibr">72</xref>
,
<xref rid="B73" ref-type="bibr">73</xref>
. There also exist tissue inhibitors of metalloproteases (TIMPs), a family of endogenous proteins that modulate MMP and ADAM activity in healthy and diseased tissues
<xref rid="B74" ref-type="bibr">74</xref>
,
<xref rid="B75" ref-type="bibr">75</xref>
. Upon ECM degradation, matrix-stored growth factors and cytokines are released. These released molecules can then act on the cell surface receptors of ECM-resident cells to modulate their functions for maintenance of tissue homeostasis
<xref rid="B40" ref-type="bibr">40</xref>
,
<xref rid="B72" ref-type="bibr">72</xref>
.</p>
</sec>
</sec>
<sec>
<title>Dysregulation of ECM homeostasis in pathologic conditions</title>
<p>Homeostasis in a healthy tissue depends on crosstalk between parenchymal cells and cells in the surrounding stroma, which would primarily be composed of non-activated fibroblasts, adipocytes, and non-stimulated immune cells existing in the steady-state
<xref rid="B38" ref-type="bibr">38</xref>
,
<xref rid="B76" ref-type="bibr">76</xref>
. Under such conditions, non-activated tissue fibroblasts produce and organize type I and III collagens, elastin, and various proteoglycans including hyaluronic acid. As such, they maintain the functional and structural integrity of the stromal ECM. In the case of tissue injury, the classic wound healing response involves inflammation and the recruitment of immune cells and fibroblasts to promote angiogenesis as well as the production of ECM (
<bold>Figure
<xref ref-type="fig" rid="F3">3</xref>
</bold>
)
<xref rid="B38" ref-type="bibr">38</xref>
,
<xref rid="B49" ref-type="bibr">49</xref>
.</p>
<p>The early process of the wound response includes activation of the coagulation cascade that results in the formation of a fibrin clot in order to seal the vascular damage and prevent infection
<xref rid="B38" ref-type="bibr">38</xref>
,
<xref rid="B40" ref-type="bibr">40</xref>
. A subsequent event is the inflammatory response, which includes the production and secretion of growth factors and cytokines, as well as the recruitment of inflammatory cells
<xref rid="B40" ref-type="bibr">40</xref>
. During inflammation, immune cells including granulocytes and neutrophils are first recruited to the site of the wound, and are then followed by mast cells, lymphocytes, and macrophages. These immune cells release cytokines and chemokines that mobilize fibroblasts to the periphery of the wound
<xref rid="B77" ref-type="bibr">77</xref>
,
<xref rid="B78" ref-type="bibr">78</xref>
. In response to these stimuli, the non-activated fibroblasts become activated in order to repair and regenerate the wounded area. Activated fibroblasts are able to produce large amounts of ECM components, including hyaluronic acid, and collagen type I and III (
<bold>Figure
<xref ref-type="fig" rid="F4">4</xref>
</bold>
). Such extensive ECM production and remodeling induces the differentiation of other tissue-resident cells, such as epithelial cells, into activated fibroblasts via an epithelial to mesenchymal transition (EMT)
<xref rid="B79" ref-type="bibr">79</xref>
,
<xref rid="B80" ref-type="bibr">80</xref>
. During the EMT, a polarized epithelial cell acquires a mesenchymal phenotype. This phenotype enables the cell to move and gain access to distal sites. An endothelial cell can also undergo a similar process and acquire a mesenchymal cell phenotype via the endothelial to mesenchymal transition (EndMT)
<xref rid="B81" ref-type="bibr">81</xref>
,
<xref rid="B82" ref-type="bibr">82</xref>
. During the wound healing process, integrin receptors allow the ECM molecules to interact with cells. Integrins not only contribute to adhesion, but also play an active role in intracellular signaling
<xref rid="B83" ref-type="bibr">83</xref>
. They facilitate communication between ECM, parenchymal cells, and non-parenchymal cells including inflammatory cells and activated fibroblasts
<xref rid="B78" ref-type="bibr">78</xref>
,
<xref rid="B84" ref-type="bibr">84</xref>
. Integrin deficiency inhibits the activation of fibroblasts, resulting in delayed wound closure
<xref rid="B78" ref-type="bibr">78</xref>
,
<xref rid="B85" ref-type="bibr">85</xref>
.</p>
<p>Once a wound is repaired, strict feedback mechanisms are in place to ensure that tissue homeostasis is restored and fibrosis is resolved
<xref rid="B79" ref-type="bibr">79</xref>
,
<xref rid="B80" ref-type="bibr">80</xref>
. During the resolution of fibrosis, ECM-remodeling enzymes reduce the volume of fibrotic matrix, in particular through the competing activities of LOXs and MMPs. Of note, some members of the MMP family are pro-fibrotic
<xref rid="B86" ref-type="bibr">86</xref>
. Activated fibroblasts are a main source of MMPs
<xref rid="B87" ref-type="bibr">87</xref>
and LOXs
<xref rid="B88" ref-type="bibr">88</xref>
, underlining their key role in maintaining ECM homeostasis. Once the wound healing is completed, there is a significant reduction in the number of activated fibroblasts due to either apoptosis or reprogramming, which restores them to their non-activated phenotype
<xref rid="B49" ref-type="bibr">49</xref>
.</p>
<p>Tissue or organ fibrosis, also known as chronic tissue wound healing, is an unresolved form of a wound maintained in part due to persistent inflammation
<xref rid="B81" ref-type="bibr">81</xref>
. In pathology, fibrosis is referred to as scarring that can be commonly visualized by different histological stains (often leading to ECM band-like patterns that resemble a scar)
<xref rid="B49" ref-type="bibr">49</xref>
. The imbalance between ECM production and degradation due to the persistent presence of activated fibroblasts results in fibrosis
<xref rid="B72" ref-type="bibr">72</xref>
. If the insult is perpetual, activated fibroblasts may adopt further secretory phenotypes, an enhanced ability to remodel ECM, and increase their immunomodulatory signalling functions. An unabated wound can help promote the propensity to evolve into a cancerous tumor phenotype
<xref rid="B89" ref-type="bibr">89</xref>
,
<xref rid="B90" ref-type="bibr">90</xref>
. Therefore, the tumor stroma shares some of the features that are characteristic of a chronic wound
<xref rid="B83" ref-type="bibr">83</xref>
,
<xref rid="B91" ref-type="bibr">91</xref>
.</p>
</sec>
<sec>
<title>'Cancer is an unresolved wound'</title>
<p>As first suggested by Dvorak, cancer behaves similarly to an unresolved wound
<xref rid="B92" ref-type="bibr">92</xref>
. The constituents of tumor stroma include the basement membrane, capillaries, activated fibroblasts, immune cells, and ECM surrounding the cancer cells
<xref rid="B49" ref-type="bibr">49</xref>
,
<xref rid="B76" ref-type="bibr">76</xref>
. Activated fibroblasts are a main cellular component of the tumor stroma and play a prominent role in promoting tissue desmoplasia (the abundance of collagenous stroma surrounding the tumor
<xref rid="B93" ref-type="bibr">93</xref>
) to facilitate cancer progression
<xref rid="B89" ref-type="bibr">89</xref>
,
<xref rid="B94" ref-type="bibr">94</xref>
. Note that the desmoplastic reaction, tumor stroma, and tumor microenvironment are used interchangeably
<xref rid="B49" ref-type="bibr">49</xref>
,
<xref rid="B83" ref-type="bibr">83</xref>
. Fibroblasts associated with cancer are referred to as tumour-associated fibroblasts (TAFs), cancer-associated fibroblasts (CAFs), cancer-associated mesenchymal stem cells, activated myofibroblasts, and activated fibroblasts. On the other hand, activated fibroblasts associated with chronic tissue fibrosis are termed fibrosis-associated fibroblasts (FAFs). At the cellular level, FAFs and CAFs are very similar and potential functional differences at the molecular level, remain to be determined
<xref rid="B49" ref-type="bibr">49</xref>
.</p>
<p>Fibroblasts are able to exert tension on the matrix and thus can significantly re-organize the structure of collagen fibers. In a healthy tissue, the arrangement of ECM components is random, whereas in a desmoplastic stroma, ECM fibers are aligned in an ordered fashion
<xref rid="B47" ref-type="bibr">47</xref>
,
<xref rid="B95" ref-type="bibr">95</xref>
. Activated fibroblasts deposit abundant quantities of ECM proteins and secrete MMPs, growth factors, and cytokines to remodel the ECM
<xref rid="B89" ref-type="bibr">89</xref>
,
<xref rid="B94" ref-type="bibr">94</xref>
. As discussed previously, the release of growth factors such as VEGF promotes new vessel growth and enhances vascular permeability, leading to increased interstitial pressure. Tumor growth and impaired lymphatic drainage further contribute to the high interstitial fluid pressure within the tumor mass. This causes an outward flow of fluid from the tumor core to the periphery, facilitating dissemination of cancer cells from the primary tumor
<xref rid="B17" ref-type="bibr">17</xref>
. Overall, the ECM re-organization, along with solid stress and high interstitial fluid pressure promote tumor progression and metastasis. Notably, the migration of cancer cells towards the vasculature may happen along tension-oriented collagen fibers
<xref rid="B96" ref-type="bibr">96</xref>
.</p>
<p>Tumor tissue is generally stiffer compared to its healthy counterpart
<xref rid="B97" ref-type="bibr">97</xref>
. This is due to the increased production of ECM by activated fibroblasts along with an increased contractility of the altered epithelium. Such a fibrotic response is an important feature of certain cancers, including pancreatic cancer, esophageal cancer, prostate cancer, colon cancer, lung cancer, ovarian cancer, and some subsets of breast cancer (
<bold>Figure
<xref ref-type="fig" rid="F5">5</xref>
</bold>
)
<xref rid="B30" ref-type="bibr">30</xref>
,
<xref rid="B34" ref-type="bibr">34</xref>
,
<xref rid="B98" ref-type="bibr">98</xref>
-
<xref rid="B100" ref-type="bibr">100</xref>
. For instance, in the case of pancreatic cancer, the fibrotic stroma can make up to over 80% of the total tumor volume
<xref rid="B101" ref-type="bibr">101</xref>
,
<xref rid="B102" ref-type="bibr">102</xref>
. Unfortunately, in general, treatment and diagnosis of fibrosis are limited. Currently, only a few drugs are approved to treat fibrotic diseases. Pirfenidone is a small-molecule that inhibits the transforming growth factor beta (TGF-β) signaling pathways, and is approved to treat idiopathic pulmonary fibrosis
<xref rid="B103" ref-type="bibr">103</xref>
,
<xref rid="B104" ref-type="bibr">104</xref>
. Nintedanib, is a small-molecule tyrosine kinase inhibitor that blocks the action of fibroblast growth factor (FGF), platelet-derived growth factor (PDGF), and VEGF that is also used for treatment of idiopathic pulmonary fibrosis
<xref rid="B105" ref-type="bibr">105</xref>
. Moreover, there are limited clinical methods to monitor disease progression with the detection and diagnosis of fibrosis being mainly dependent on tissue sampling. Therefore, there is a need to design new therapeutic and diagnostic agents for fibrotic conditions
<xref rid="B106" ref-type="bibr">106</xref>
,
<xref rid="B107" ref-type="bibr">107</xref>
. For example, ECM homeostatic disruption in radiation-induced skin fibrosis can be assessed in part by monitoring and imaging metabolic changes in dermal fibroblasts
<xref rid="B108" ref-type="bibr">108</xref>
. Due to the central role of ECM components in fibrosis, these molecules can be attractive pharmacological targets for both therapeutic and diagnostic purposes.</p>
</sec>
<sec>
<title>Collagen as a therapeutic target to remodel ECM</title>
<p>Collagen is the major structural component of the ECM and its overproduction/deposition is a significant contributor to fibrosis. Thus, there has been great interest in developing therapeutic strategies that target the collagenous component of the ECM. These approaches are classified as: (1) inhibition of collagen synthesis; (2) degradation of stromal collagen; (3) inhibition of collagen cross-linking; and (4) blocking of collagen interactions.</p>
<sec>
<title>Inhibiting collagen synthesis</title>
<p>Collagen can be found in either its triple helical intact state or its unfolded denatured state. In fibrotic conditions such as cancer, there is an overproduction of intact collagens
<xref rid="B59" ref-type="bibr">59</xref>
,
<xref rid="B106" ref-type="bibr">106</xref>
. The most common approach to reduce collagen synthesis has been to inhibit TGF-β signaling and thus alter its regulatory role in collagen synthesis. Halofuginone inhibits type I collagen synthesis and has been shown to be effective in reducing fibrosis in murine pancreatic and liver cancer models
<xref rid="B109" ref-type="bibr">109</xref>
,
<xref rid="B110" ref-type="bibr">110</xref>
. Similar promising results were obtained in murine melanoma models
<xref rid="B111" ref-type="bibr">111</xref>
. In 2011, the common anti-hypertensive drug losartan was repurposed to improve the efficacy of nano-formulations of drugs and viruses by inhibiting collagen synthesis
<xref rid="B112" ref-type="bibr">112</xref>
. In a series of pre-clinical studies, losartan was administered by intraperitoneal injection to mice bearing human sarcoma or human melanoma tumor xenografts. Two weeks after losartan administration, mice were treated with either intravenous injection of PEGylated liposomal doxorubicin (Doxil) or intratumoral injection of oncolytic herpes simplex viruses
<xref rid="B112" ref-type="bibr">112</xref>
. Losartan treatment has since been shown to be effective in other cancer models
<xref rid="B113" ref-type="bibr">113</xref>
. Later, the clinical benefits of the anti-fibrotic effect of losartan were shown in a Phase II clinical trial testing a combination of losartan with the FOLFIRINOX (leucovorin, 5-fluorouracil, irinotecan, and oxaliplatin) chemotherapy regimen in pancreatic cancer (clinicaltrials.gov identifier: NCT01821729). The R0 resection rate (i.e., rate of conversion of unresectable to resectable tumor, mainly due to tumor shrinkage) was 61% among eligible participants. Moreover, 52% of treated patients had no detectable cancer cells after tumor resection
<xref rid="B114" ref-type="bibr">114</xref>
,
<xref rid="B115" ref-type="bibr">115</xref>
. Overall, the inhibition of TGF-β signaling has been shown to be effective in enhancing the penetration of small-molecule drugs and nano-formulations into tumors
<xref rid="B116" ref-type="bibr">116</xref>
,
<xref rid="B117" ref-type="bibr">117</xref>
. However, as suggested by Lampi et al., strategies involving growth factors such as TGF-β are not without their caveats, since growth factors can have a multifaceted impact on cell behavior beyond ECM cross-linking
<xref rid="B33" ref-type="bibr">33</xref>
. Moreover, TGF-β is important for inflammatory regulation and can have both pro- and anti-tumorigenic effects in cancer
<xref rid="B33" ref-type="bibr">33</xref>
. These paradoxical roles underscore the complexity of modifying the ECM by this approach and have thus encouraged the development of different classes of therapeutics for targeting specific components of the TGF-β pathway
<xref rid="B118" ref-type="bibr">118</xref>
,
<xref rid="B119" ref-type="bibr">119</xref>
.</p>
</sec>
<sec>
<title>Degradation of stromal collagen</title>
<p>In the 1980s, patients suffering from severe back pain were treated using collagenase injections into their spinal discs (to dissolve excess collagen)
<xref rid="B120" ref-type="bibr">120</xref>
. Xiaflex
<sup>®</sup>
, an injectable form of bacterial clostridium histolyticum collagenase, was approved for the treatment of Dupuytren's contracture, a condition that results in hand deformity
<xref rid="B121" ref-type="bibr">121</xref>
. Additionally, collagenases are used clinically to improve the tissue healing process in burn injuries
<xref rid="B122" ref-type="bibr">122</xref>
. Since collagen is the most prevalent component of tumor ECM, it is also an attractive therapeutic target in cancer therapy
<xref rid="B123" ref-type="bibr">123</xref>
and thus, collagenases are used to improve drug and nano-formulation penetration into tumors. In this context, several studies have investigated the concurrent and subsequent administration of nano-formulations with collagenase. In one study, the co-injection of collagenase along with oncolytic herpes simplex virus vector MGH2, directly into the tumor, resulted in enhanced and more homogenous distribution of the viral vector within tumors in a human xenograft model of melanoma
<xref rid="B124" ref-type="bibr">124</xref>
. In another study, intravenous injection of type I collagenase improved gene expression of a cationic liposome/plasmid DNA complex (lipoplex) in a lung tumor xenograft model. It was shown, that the favorable accumulation of lipoplex was due to a decrease in the interstitial pressure within the tumor
<xref rid="B125" ref-type="bibr">125</xref>
. In comparison to carboxylated 100 nm polystyrene nanoparticles, analogs decorated with collagenase penetrated four-fold more into the core of human cervical carcinoma spheroids
<italic>in vitro</italic>
<xref rid="B126" ref-type="bibr">126</xref>
. In a recent study, to enhance the extremely short half-life of collagenase in the circulatory system (i.e., minutes)
<xref rid="B127" ref-type="bibr">127</xref>
and increase its accumulation at the tumor site, a liposomal formulation of collagenase type-I (i.e., collagozome) was developed
<xref rid="B128" ref-type="bibr">128</xref>
. Collagozome was shown to be effective in degrading collagen in mice bearing pancreatic tumors or with fibrotic livers. For instance, histological staining showed that collagen levels within the tumors were reduced 15% more with collagozome relative to treatment with free collagenase. Moreover, in a series of experiments, mice bearing pancreatic tumor xenografts were pretreated with intravenous injection of collagozome 24 hours in advance of treatment with a micelle formulation of paclitaxel. The combination therapy resulted in an 87% reduction in tumor size compared to mice pretreated with empty liposomes and paclitaxel micelles. Whereas only a 60% reduction in tumor size was achieved following administration of free collagenase and paclitaxel micelles in comparison to the empty liposome and paclitaxel micelle control
<xref rid="B128" ref-type="bibr">128</xref>
. In addition to administering exogenous collagenase, an alternative approach is to administer relaxin, which stimulates the synthesis of collagenase and down-regulates collagen production
<xref rid="B129" ref-type="bibr">129</xref>
,
<xref rid="B130" ref-type="bibr">130</xref>
. Administration of relaxin promoted the enhanced penetration of fluorescent-labeled dextran into human osteosarcoma spheroids
<italic>in vitro</italic>
<xref rid="B131" ref-type="bibr">131</xref>
. Overall, multiple studies have shown that collagenase treatment leads to improved drug transport and penetration into tumors. For a detailed discussion on this topic, the reader is directed to a recent review by Dolor et al.
<xref rid="B123" ref-type="bibr">123</xref>
.</p>
<p>The interaction of MMPs with collagen is another active area of research. Overall, 23 different MMPs that target different components of the ECM are known
<xref rid="B132" ref-type="bibr">132</xref>
. MMPs are classified according to their proteolytic substrate. For instance, gelatinases (MMP-2 and -9) digest denatured collagen types IV, VII, and X and collagenases (MMP-1, -8, -13 and -18) cut intact triple-helical collagen I, II, and IV
<xref rid="B86" ref-type="bibr">86</xref>
. Thus, there has been great interest in developing therapeutic strategies that influence MMP activity
<xref rid="B133" ref-type="bibr">133</xref>
,
<xref rid="B134" ref-type="bibr">134</xref>
.</p>
<p>Depletion of tumor collagen is not without its caveats. It can result in the release of bioactive molecules such as cytokines and growth factors embedded within the stromal ECM as well as the recruitment of inflammatory cells. This can lead to a cascade of immuno-inflammatory responses that can enhance tumorigenesis
<xref rid="B135" ref-type="bibr">135</xref>
. Moreover, depletion of tumor collagen can enhance tumor invasion by facilitating the access of tumor cells to the blood stream
<xref rid="B136" ref-type="bibr">136</xref>
,
<xref rid="B137" ref-type="bibr">137</xref>
. Lastly, it may affect the efficacy of collagen-targeted nano-formulations, although the magnitude of the effect is unclear and warrants further investigation. Of note, degradation of collagen results in an abundance of denatured collagen that can be targeted by collagen mimetic peptides (CMP), which bind specifically to the latter
<xref rid="B138" ref-type="bibr">138</xref>
. Thus, functionalization of the surface of nano-formulations with CMP may be a better approach when combining ECM normalizing therapies aimed at collagen removal with collagen targeted nano-formulations.</p>
</sec>
<sec>
<title>Prevention of collagen cross-linking by inhibition of LOXs</title>
<p>Preventing collagen cross-linking is another therapeutic approach to reduce fibrosis. LOX activity is frequently elevated in tumors and results in stiffening of tissues
<xref rid="B139" ref-type="bibr">139</xref>
. Reduction in LOX activity has been shown to reduce tissue stiffness, prevent fibrosis
<xref rid="B140" ref-type="bibr">140</xref>
, and tumor progression in multiple tumor models
<xref rid="B141" ref-type="bibr">141</xref>
,
<xref rid="B142" ref-type="bibr">142</xref>
. For instance, LOX inhibition, using 1 mg/kg LOX-blocking antibody, in a mouse model of pancreatic cancer enhanced the efficacy of the anti-cancer drug gemcitabine
<xref rid="B143" ref-type="bibr">143</xref>
. In another study, the functionalization of poly(lactide-
<italic>co</italic>
-glycolide) nanoparticles with a LOX inhibiting antibody to prevent breast tumor growth was investigated. The results revealed that LOX-targeted nanoparticles were more effective when compared to a soluble anti-LOX antibody (which was not accompanied by nanoparticles)
<italic>in vitro</italic>
in mouse mammary cancer cells and
<italic>in vivo</italic>
in a mouse breast cancer xenograft model
<xref rid="B144" ref-type="bibr">144</xref>
. However, in spite of preclinical success, this approach may be of limited usefulness. As suggested by Dolor et al., this is because impeding matrix synthesis when a dense matrix is already formed is not beneficial. For instance, the combination of gemcitabine with simtuzumab (anti-LOXL2) in a Phase II trial in metastatic pancreatic cancer patients failed to show improvement in clinical outcomes (clinicaltrials.gov identifier: NCT01472198). This was attributed to the advanced stage of the cancers
<xref rid="B123" ref-type="bibr">123</xref>
,
<xref rid="B145" ref-type="bibr">145</xref>
. Of note, defects in either LOX activity
<xref rid="B88" ref-type="bibr">88</xref>
, or absence of sites of LOX crosslinking (e.g., collagen telopeptides) have been shown to play a role in tumor invasion and metastasis
<xref rid="B61" ref-type="bibr">61</xref>
.</p>
</sec>
<sec>
<title>Blocking collagen and integrin signaling</title>
<p>Blocking collagen signaling is another anti-fibrotic therapeutic strategy, and many attempts have been made to disrupt the interactions between collagen and its partners. Integrins are the partner receptors of collagen, to which collagen binds and activates
<xref rid="B59" ref-type="bibr">59</xref>
,
<xref rid="B83" ref-type="bibr">83</xref>
. Integrins play an important role in fibrosis, and their inhibition has resulted in prevention of disease progression
<xref rid="B78" ref-type="bibr">78</xref>
. Vedolizumab is an integrin inhibitor that is currently approved for Crohn's disease and ulcerative colitis. Vedolizumab binds exclusively to the α4β7 integrin of pathogenic gut-homing lymphocytes, and thus acts as a gut-selective anti-inflammatory biologic
<xref rid="B146" ref-type="bibr">146</xref>
. Due to its clinical efficacy as an anti-inflammatory agent and the fact that persistent inflammation often leads to fibrosis, it can be construed that integrin-specific inhibitors may have the potential to be used therapeutically as anti-fibrotic agents. An overview of therapies based on integrins has recently been provided by Schnittert et al.
<xref rid="B78" ref-type="bibr">78</xref>
.</p>
</sec>
</sec>
<sec>
<title>Hyaluronic acid as a therapeutic target to remodel ECM</title>
<p>As one of the major non-sulfated glycosaminoglycans, hyaluronic acid (also termed hyaluronate or hyaluronan) is another attractive component of the ECM to target in fibrotic stroma
<xref rid="B100" ref-type="bibr">100</xref>
. Hyaluronic acid accumulation correlates with reduced elasticity and increased gelation pressure within tumor tissues
<xref rid="B147" ref-type="bibr">147</xref>
. In fact, hyaluronic acid production has been shown to be increased in prostate cancer tumor spheroids exposed to high solid stress environments
<xref rid="B148" ref-type="bibr">148</xref>
. High interstitial solid stress
<xref rid="B31" ref-type="bibr">31</xref>
can ultimately result in the collapse of blood vessels within the tumor tissue, leading to reduced accumulation of therapeutics
<xref rid="B149" ref-type="bibr">149</xref>
. Thus, the degradation of hyaluronic acid in fibrotic stroma is expected to relieve solid stress. The therapeutic approaches aimed at influencing hyaluronic acid can be classified into three categories: (1) degradation of hyaluronic acid; (2) inhibition of hyaluronic acid synthesis; and (3) blocking hyaluronic acid signaling. The utility of blocking hyaluronic acid signaling has been reviewed elsewhere and will not be elaborated upon here
<xref rid="B150" ref-type="bibr">150</xref>
. Of note, hyaluronic acid has been shown to act as a stromal tumor-suppressing factor. The reasons behind such a paradoxical effect remain to be explained. However, variability in hyaluronic acid metabolism and the regulation of its molecular weight are sugested as possible reasons
<xref rid="B35" ref-type="bibr">35</xref>
.</p>
<sec>
<title>Degradation of hyaluronic acid</title>
<p>The delivery of hyaluronidase to degrade existing tumor hyaluronic acid has been explored in clinical trials in oncology since the 1980s
<xref rid="B151" ref-type="bibr">151</xref>
, and improved outcomes in bladder, brain, gastrointestinal, and head and neck cancers, have been observed
<xref rid="B123" ref-type="bibr">123</xref>
,
<xref rid="B147" ref-type="bibr">147</xref>
. However, the bovine hyaluronidase administered in these studies caused immunogenic responses, which encouraged the development of a recombinant human hyaluronidase
<xref rid="B152" ref-type="bibr">152</xref>
. For a detailed discussion of the utility of hyaluronidase for improving tumor penetration, readers are referred to comprehensive reviews on this topic
<xref rid="B35" ref-type="bibr">35</xref>
,
<xref rid="B147" ref-type="bibr">147</xref>
,
<xref rid="B152" ref-type="bibr">152</xref>
-
<xref rid="B156" ref-type="bibr">156</xref>
. Currently, a PEGylated human hyaluronidase (PEGPH20) has entered late stage clinical trial evaluation. This polymer-modified formulation of recombinant hyaluronidase has reduced immunogenicity and prolonged circulation time as compared to unmodified native enzyme of non-human origin
<xref rid="B156" ref-type="bibr">156</xref>
. A combination of PEGPH20 with gemcitabine in Phase I (clinicaltrials.gov identifier: NCT01453153) and gemcitabine/nab-paclitaxel in Phase II (clinicaltrials.gov identifier: NCT01839487) clinical trials have been successfully evaluated
<xref rid="B157" ref-type="bibr">157</xref>
and is now in Phase III clinical development (clinicaltrials.gov identifier: NCT02715804) (
<bold>Table
<xref rid="T1" ref-type="table">1</xref>
</bold>
)
<xref rid="B158" ref-type="bibr">158</xref>
. Surprisingly, in a parallel Phase II clinical trial where a combination of PEGPH20 with modified fluorouracil (FU), leucovorin, irinotecan, and oxaliplatin (mFOLFIRINOX) was evaluated (clinicaltrials.gov identifier: NCT01959139), the combination of PEGPH20 with mFOLFIRINOX worsened outcomes and reduced the overall survival by ~53%. Apparently, in this study the combination of PEGPH20 and mFOLFIRINOX resulted in increased toxicity that required reductions in dose and treatment duration of mFOLFIRINOX. Thus, the reduced overall exposure of patients to mFOLFIRINOX was likely a major contributor to the inferior outcomes in the PEGPH20/mFOLFIRINOX arm of the study
<xref rid="B159" ref-type="bibr">159</xref>
,
<xref rid="B160" ref-type="bibr">160</xref>
.</p>
<p>It is worth noting that hyaluronidase is overproduced in many types of cancer
<xref rid="B100" ref-type="bibr">100</xref>
and has been used to overcome issues faced by the delivery of polycationic agents (e.g., cationic cell penetrating peptides, chitosan, polyethyleneimine, and cationic lipids) to cancer cells, as discussed by Bernkop-Schnürch
<xref rid="B161" ref-type="bibr">161</xref>
. In a fibrotic ECM with high expression of hyaluronic acid, the transport of drug delivery systems consisting of polycationic agents is impeded due to ionic interactions between the positively charged agents and negatively charged hyaluronic acid. To overcome this issue, many pre-clinical studies have shown improved transport of these systems by masking their positive charge through prior complexation with hyaluronic acid. In the presence of elevated levels of hyaluronidase at the tumor site, the degradation of the outer hyaluronic acid shell and subsequent release of the encapsulated polycationic cargo occurs
<xref rid="B161" ref-type="bibr">161</xref>
.</p>
</sec>
<sec>
<title>Inhibition of hyaluronic acid synthesis</title>
<p>Inhibitors of hyaluronic acid synthesis are used alone or in combination with hyaluronidase to enhance therapeutic efficacy
<xref rid="B150" ref-type="bibr">150</xref>
. One of the inhibitors of hyaluronic acid is a compound known as 4-methylumbelliferone (4-MU). 4-MU is a coumarin derivative and was initially reported to suppress the synthesis of hyaluronic acid in cultured human skin
<xref rid="B150" ref-type="bibr">150</xref>
,
<xref rid="B162" ref-type="bibr">162</xref>
. 4-MU reduces hyaluronic acid synthesis by inhibiting hyaluronic acid synthases (HAS), and in mouse models 4-MU has been shown to reduce tumor progression
<xref rid="B163" ref-type="bibr">163</xref>
,
<xref rid="B164" ref-type="bibr">164</xref>
. Additionally, a combination therapy of liposomal doxorubicin with a liposome-encapsulated 4-MU prodrug improved overall survival in an orthotopic mouse model of breast cancer
<xref rid="B165" ref-type="bibr">165</xref>
. This was attributed to the enhanced transport of the liposomal doxorubicin into the tumor tissue.</p>
</sec>
</sec>
<sec>
<title>Additional therapeutic strategies</title>
<p>Several other clinically-approved drugs have been investigated for their anti-fibrotic effects, including tranilast
<xref rid="B166" ref-type="bibr">166</xref>
, pirfenidone
<xref rid="B167" ref-type="bibr">167</xref>
, fasudil
<xref rid="B168" ref-type="bibr">168</xref>
, metformin
<xref rid="B169" ref-type="bibr">169</xref>
and, dexamethasone
<xref rid="B170" ref-type="bibr">170</xref>
. Clinical trials involving repurposed drugs such as hydroxychloroquine, defactinib, retinoic acid receptor agonists, macropinocytosis inhibitors, and focal adhesion kinase (FAK) inhibitors have recently been reviewed elsewhere
<xref rid="B33" ref-type="bibr">33</xref>
,
<xref rid="B171" ref-type="bibr">171</xref>
. As pointed out by Dolor et al., the results of the Phase III losartan trial (clinicaltrials.gov identifier: NCT01821729) will be a good indicator of whether or not modifications to tumor ECM using orally-bioavailable small molecules is feasible
<xref rid="B114" ref-type="bibr">114</xref>
,
<xref rid="B115" ref-type="bibr">115</xref>
,
<xref rid="B123" ref-type="bibr">123</xref>
. Investigating the role of epigenetics in fibrosis is another active area of research
<xref rid="B40" ref-type="bibr">40</xref>
. In this context, special attention has been paid to a subfamily of non-coding RNAs, named microRNAs, because of their important role in the wound healing response
<xref rid="B172" ref-type="bibr">172</xref>
. Currently, several microRNA nano-formulations for targeted therapy of fibrotic diseases have shown potential for clinical development
<xref rid="B173" ref-type="bibr">173</xref>
. However, there is still a pressing need to develop disease-specific and efficient microRNA carriers to improve diagnosis and treatment of fibrotic diseases.</p>
<p>In addition to pharmacological modifications, the physical disruption of tumor microvasculature using focused ultrasound and microbubbles is also proving to be a promising strategy to improve nano-formulation transport into tumors. Ultrasound can cause the cavitation of circulating microbubbles resulting in localized shear stress on the surrounding vessels. This approach has been shown to result in increased accumulation of drugs and nano-formulations at the target site
<xref rid="B174" ref-type="bibr">174</xref>
. Another exciting area of research focused on circumventing the dense ECM, as a significant barrier to nano-formulation transport, is the use of mild hyperthermia in combination with thermosensitive liposomes. As illustrated in
<bold>Figure
<xref ref-type="fig" rid="F6">6</xref>
</bold>
, this approach does not rely on the extravasation and distribution of the nano-formulation into the tumor interstitium. Instead, drug release is triggered within the tumor vasculature and subsequently the free drug molecules diffuse along the concentration gradient into the tumor interstitium. To trigger intravascular burst release, the target tissue is heated using focused, localized mild hyperthermia (39-43 °C) prior to administration of the liposomes. Heating is commonly continued for up to one hour to assure maximum drug release and accumulation at the target site
<xref rid="B175" ref-type="bibr">175</xref>
. Thermosensitive liposomes loaded with doxorubicin (ThermoDox®) are currently being evaluated in a Phase III clinical trial in combination with radiofrequency ablation for the treatment of hepatocellular carcinoma (clinicaltrials.gov identifier: NCT02112656), as well as a Phase I clinical trial in combination with magnetic resonance guided high-intensity focused ultrasound for the treatment of pediatric refractory solid tumors (clinicaltrials.gov identifier: NCT02536183). An alternate strategy is to allow long-circulating thermosensitive liposomes to accumulate at the tumor site via the EPR effect and subsequently trigger extravascular release of the significantly smaller drug payload by applying localized mild hyperthermia
<xref rid="B176" ref-type="bibr">176</xref>
. Overall, it has been shown that drug delivery using thermosensitive liposomes can result in increased drug accumulation and improved distribution throughout the tumor tissue and overcome many of the challenges previously reported with other nano-formulations that rely on passive targeting via the EPR effect.</p>
</sec>
<sec>
<title>Imaging the ECM and monitoring ECM remodeling</title>
<p>Enhancing drug and nano-formulation transport into solid tumors by modifying their ECM has clinical potential. To this end, different combinations of nano-formulations and drugs with ECM remodeling effects have been investigated in cancers with fibrotic stroma such as pancreatic, ovarian, and lung cancers (
<bold>Table
<xref rid="T1" ref-type="table">1</xref>
</bold>
). In addition to hyaluronidase and its PEGylated form (PEGPH20), for their use as ECM remodeling enzymes, other therapeutic agents such as paricalcitol, metformin, and nintedanib have been studied because of their potential anti-fibrotic effects. For instance, paricalcitol (a vitamin D analog) has been shown to be effective in reprogramming pancreatic stellate cells and restoring them to their non-activated phenotype. In normal pancreatic tissue, pancreatic stellate cells play an important role in ECM remodeling by producing ECM-degrading enzymes and ECM proteins
<xref rid="B177" ref-type="bibr">177</xref>
. However, when they become activated, they acquire a myofibroblast-like phenotype and deposit abundant amounts of ECM
<xref rid="B178" ref-type="bibr">178</xref>
. A reduction in ECM production by reprogramming the activated pancreatic stellate cells has also been documented for metformin (a glucose-lowering drug)
<xref rid="B169" ref-type="bibr">169</xref>
. As for nintedanib, its anti-fibrotic and inhibitory effects on activated fibroblasts have been demonstrated in lung adenocarcinoma patients
<xref rid="B179" ref-type="bibr">179</xref>
.</p>
<p>However, enhancing drug and nano-formulation transport into solid tumors by modifying their ECM is not without its caveats. For instance, this type of intervention may foster tumor cell migration and metastasis, compromising or even worsening outcomes. It is thus imperative to identify the appropriate pathological stage during which the implementation of such strategies is most appropriate. The duration and magnitude of the effects on the ECM are also important factors, due to the vastly different rates of turnover of ECM components. As such, time-dependent stromal changes should be monitored either by visualizing the ECM remodeling process with time, or by monitoring certain circulating biomarkers. For instance, several studies have compared injected hyaluronidases to collagenases for their ability to increase drug penetration into tumors. Overall, results showed that collagenases generally performed equal to- or better than hyaluronidases
<xref rid="B123" ref-type="bibr">123</xref>
. However, differences in mechanism of action, safety, and the duration of the effect should be considered. For instance, as pointed out by Dolor et al., there are large differences between the degradation products produced by collagenase and hyaluronidase, as well as differences in rates of ECM turnover for collagen and hyaluronic acid. Hyaluronidase degrades linear hyaluronic acid into short oligosaccharides, while collagenase digests collagen into large fragments that may be difficult to isolate from collagen fibers (this only results in minimal changes of the collagen network structure on the macroscopic scale)
<xref rid="B123" ref-type="bibr">123</xref>
. Hyaluronic acid has a rapid rate of turnover (days to weeks), while collagen's turnover is significantly slower (months to years)
<xref rid="B123" ref-type="bibr">123</xref>
,
<xref rid="B180" ref-type="bibr">180</xref>
. Thus, due to the slow recovery rate, potential changes within the collagen structure would have a profound effect on drug penetration. As such, it would be advantageous, if not necessary, to develop tools to image and monitor stromal ECM and ECM remodeling
<italic>in vivo</italic>
, as a means to optimize the interventions discussed in previous sections. Imaging of interactions between the tumor ECM and cancer-associated fibroblasts has been achieved with intravital imaging methods
<xref rid="B181" ref-type="bibr">181</xref>
, but it would be beneficial to move towards non-invasive methods. A key barrier to the ability to measure efficacy of MMP inhibitors in clinical trials is the inability to monitor whether the inhibitors are reaching sufficiently high concentrations within the tumor tissue to perform their function. Non-invasive (or minimally-invasive) methods to image ECM remodeling would have been beneficial in a number of clinical trials
<xref rid="B133" ref-type="bibr">133</xref>
,
<xref rid="B134" ref-type="bibr">134</xref>
.</p>
<p>Within tumors, an abundance of denatured collagen can be found due to degradation of collagen by MMPs, which can be exploited for the purposes of imaging/diagnosis. Denatured collagen can be visualized with collagen mimetic peptides (CMP) that can bind to the latter. To monitor ECM-remodeling, CMPs have been tagged with a near infrared fluorophore and were shown to accumulate at denatured collagen sites in the tumor tissue of a xenograft model of human prostate cancer in mice
<xref rid="B138" ref-type="bibr">138</xref>
. In a similar context, the functionalization of the surface of nanoparticles with collagen-binding molecules was investigated for improved imaging of the collagen matrix. For instance, high-density lipoprotein nanoparticles were labeled with a magnetic resonance contrast agent and the collagen-binding peptide EP3533, to monitor compositional changes in atherosclerotic plaques in a murine model of atherosclerosis regression
<xref rid="B182" ref-type="bibr">182</xref>
. Alternatively, MMP-2 activity has been considered pre-clinically for detection of cancer using an MMP-2-responsive nanoprobe system, due to the overexpression of this enzyme in tumors. Such a system is commonly comprised of a quenched fluorophore that recovers its fluorescence upon digestion by MMP-2. In the absence of MMP-2, the fluorescence of this system is quenched, while the presence of high levels of MMP-2 in the tumor restores fluorescence. The
<italic>in vivo</italic>
imaging application of this system was demonstrated in xenograft models of human fibrosarcoma and glioma
<xref rid="B183" ref-type="bibr">183</xref>
. In another interesting study evaluating MMP activity at the tumor site, a nanosensor for protease-activity was developed. The system was composed of thermosensitive liposomes that were coated with heat sensitive magnetic nanoparticles and encapsulated protease substrates. The use of an external magnetic field resulted in a localized increase in temperature that triggered the release of the encapsulated protease substrates from the thermosensitive liposomes. MMP present within tumor tissues degraded the substrates and the products of this reaction were detected by enzyme-linked immunosorbent assay (ELISA)
<xref rid="B184" ref-type="bibr">184</xref>
.</p>
<p>Similar to collagen, hyaluronidase is over-produced in many types of cancer
<xref rid="B100" ref-type="bibr">100</xref>
and has been used as a diagnostic cue for high-grade bladder cancer
<xref rid="B185" ref-type="bibr">185</xref>
. While this may suggest an incompatibility regarding the use of hyaluronidase for some types of cancer
<xref rid="B147" ref-type="bibr">147</xref>
,
<xref rid="B185" ref-type="bibr">185</xref>
, the high metabolism of hyaluronic acid due to elevated expression of hyaluronidase provides an opportunity for tumor detection/visualization. For instance, hyaluronic acid-tagged fluorescent gold nanoparticles have been used pre-clinically as a detection tool in metastatic ovarian cancer. When the surface-immobilized hyaluronic acid was cleaved by hyaluronidase, an increase in fluorescence signal was used to detect the cancerous tissues in a xenograft model of ovarian cancer in mice
<xref rid="B186" ref-type="bibr">186</xref>
.</p>
</sec>
<sec>
<title>Outlook</title>
<p>Overall, considering the complexity of the ECM, its variability within different tissues, and the multiple pathways by which homeostasis is maintained (in both normal and malignant tissues), the interventions discussed in this contribution produce inevitably complicated results. Although existing literature supports targeting ECM components as a promising therapeutic strategy, near depletion of stroma may compromise or even worsen the outcomes. This was shown in genetically- modified mouse models exhibiting a reduced stromal content. Both fibroblast-depleted mouse tumors
<xref rid="B187" ref-type="bibr">187</xref>
and sonic hedgehog-deficient tumors showed more aggressive pancreatic cancer behavior
<xref rid="B188" ref-type="bibr">188</xref>
. Moreover, when a combination of a hedgehog inhibitor (IPI-926) with gemcitabine was evaluated in a Phase II clinical trial (ClinicalTrials.gov Identifier: NCT01130142), this combination resulted in a lower overall survival than what was historically achieved with gemcitabine alone
<xref rid="B160" ref-type="bibr">160</xref>
. Excessive removal of ECM components may also result in tumor collapse and decreased drug penetration
<xref rid="B18" ref-type="bibr">18</xref>
,
<xref rid="B19" ref-type="bibr">19</xref>
,
<xref rid="B72" ref-type="bibr">72</xref>
,
<xref rid="B147" ref-type="bibr">147</xref>
,
<xref rid="B155" ref-type="bibr">155</xref>
. Thus, regardless of the approach employed, normalization of the ECM rather than its depletion should be the primary goal. Of course, a substantial complementary effort must be made to develop formulations to transport the therapeutic agent(s) to the tumor, which may be anywhere in the body. This holds especially true as the interventions above need to be coordinated with additional drugs destined to act on either cancer cells and/or cancer-supportive cells (e.g., activated fibroblasts) as elegantly proposed by Daamen et al.
<xref rid="B189" ref-type="bibr">189</xref>
. Notably, efforts to modify the ECM will be most beneficial to macromolecular therapeutics, since their transport is more sensitive to the ECM density than low molecular weight drugs
<xref rid="B131" ref-type="bibr">131</xref>
. Similar beneficial effects can be obtained for immunotherapy where a dense desmoplastic stroma can act as a physical barrier to T-cell infiltration
<xref rid="B190" ref-type="bibr">190</xref>
,
<xref rid="B191" ref-type="bibr">191</xref>
. T-cells that infiltrate pancreatic cancers frequently become trapped in the dense stroma and do not contact tumor cells
<xref rid="B192" ref-type="bibr">192</xref>
and thus show lower sensitivity to immunotherapeutic agents such as immune checkpoint inhibitors
<xref rid="B190" ref-type="bibr">190</xref>
.</p>
<p>Selection of the treatment of choice based on its mechanism of action, safety, and durability of effects is of the utmost importance. For instance, there are large differences between the degradation products resulting from collagenase and hyaluronidase treatment (i.e., collagen fragments and hyaluronic acid, respectively). Hyaluronic acid has a rapid turnover (days to weeks), while collagen's turnover is significantly slower (months to years)
<xref rid="B123" ref-type="bibr">123</xref>
,
<xref rid="B180" ref-type="bibr">180</xref>
. This slow turnover of collagen generates safety concerns around the effect of removing collagen in healthy tissues. Moreover, bacterial collagenases can cause immune reactions because of their non-human origin, whereas PEGylated human hyaluronidases are already under investigation in clinical trials. Of note, long-term use of hyaluronidase is associated with some side effects. For instance, it can interfere with the process of wound healing or can cause thromboembolic and musculoskeletal events as observed in clinical trials
<xref rid="B160" ref-type="bibr">160</xref>
. Aspects of timing or co-delivery will be a major technological challenge that should be addressed in parallel to research on ECM normalization (
<bold>Figure
<xref ref-type="fig" rid="F7">7</xref>
</bold>
). Indeed, the development of better imaging modalities to monitor the effects of therapeutic interventions on the ECM and ECM remodeling will contribute greatly to advancements in this field. Moreover, better preclinical models are needed to help close the gap between experimental results and clinical outcomes
<xref rid="B193" ref-type="bibr">193</xref>
. Traditional 2-D cell cultures are not the preferred model for studying the effect of ECM modifications due to an absence of proper ECM structure
<xref rid="B194" ref-type="bibr">194</xref>
. On the other hand, 3-D tumor spheroids may provide more reliable results since they recapitulate some features of the non-vascularized tumor such as an inhibitory ECM, epithelial tight junctions, and an outer proliferating region that surrounds intermediate layers of quiescent cells along with a necrotic core
<xref rid="B195" ref-type="bibr">195</xref>
. Recent advances in the development of cancer organoids may also enable higher throughput
<italic>in vitro</italic>
assessment of therapeutic strategies to address the tumor ECM
<xref rid="B196" ref-type="bibr">196</xref>
.</p>
</sec>
</body>
<back>
<ack>
<p>MAG acknowledges funding from the Natural Sciences and Engineering Council of Canada (NSERC) grant number RGPIN-2015-04254. CA acknowledges funding from a Canadian Institutes of Health Research (CIHR) project grant (PJT 155905) and a research chair from GlaxoSmithKline Inc. HSA acknowledges a postdoctoral scholarship from NSERC. MR holds a Centre for Pharmaceutical Oncology scholarship. MAG is a Research Scholar of the FRQS. The authors would like to acknowledge the Spatio-Temporal Targeting and Amplification of Radiation Response (STTARR) program and its affiliated funding agencies.</p>
<sec>
<title>Author Contributions</title>
<p>All authors contributed to the writing, reviewing, and editing of this article.</p>
</sec>
</ack>
<glossary>
<title>Abbreviations</title>
<def-list>
<def-item>
<term id="GL1">4-MU</term>
<def>
<p>4-methylumbelliferone</p>
</def>
</def-item>
<def-item>
<term id="GL2">ADK</term>
<def>
<p>adenosine kinase</p>
</def>
</def-item>
<def-item>
<term id="GL3">ADAM</term>
<def>
<p>a disintegrin and metalloproteinase</p>
</def>
</def-item>
<def-item>
<term id="GL4">ADAMTs</term>
<def>
<p>ADAMs with thrombospondin motifs</p>
</def>
</def-item>
<def-item>
<term id="GL5">BM</term>
<def>
<p>basement membrane</p>
</def>
</def-item>
<def-item>
<term id="GL6">CAF</term>
<def>
<p>cancer-associated fibroblast</p>
</def>
</def-item>
<def-item>
<term id="GL7">CD44</term>
<def>
<p>cluster of differentiation 44</p>
</def>
</def-item>
<def-item>
<term id="GL8">CMP</term>
<def>
<p>collagen mimetic peptides</p>
</def>
</def-item>
<def-item>
<term id="GL9">ECM</term>
<def>
<p>extracellular matrix</p>
</def>
</def-item>
<def-item>
<term id="GL10">ELISA</term>
<def>
<p>enzyme-linked immunosorbent assay</p>
</def>
</def-item>
<def-item>
<term id="GL11">EMT</term>
<def>
<p>epithelial to mesenchymal transition</p>
</def>
</def-item>
<def-item>
<term id="GL12">EndMT</term>
<def>
<p>endothelial to mesenchymal transition</p>
</def>
</def-item>
<def-item>
<term id="GL13">EPR</term>
<def>
<p>enhanced permeability an retention</p>
</def>
</def-item>
<def-item>
<term id="GL14">FAF</term>
<def>
<p>fibrosis-associated fibroblasts</p>
</def>
</def-item>
<def-item>
<term id="GL15">FGF</term>
<def>
<p>fibroblast growth factor</p>
</def>
</def-item>
<def-item>
<term id="GL16">FOLFIRINOX</term>
<def>
<p>chemotherapy regimen is a combination of the drugs 5-fluorouracil, leucovorin and oxaliplatin</p>
</def>
</def-item>
<def-item>
<term id="GL17">GAG</term>
<def>
<p>glycosaminoglycan</p>
</def>
</def-item>
<def-item>
<term id="GL18">HAS</term>
<def>
<p>hyaluronic acid synthases</p>
</def>
</def-item>
<def-item>
<term id="GL19">HSC</term>
<def>
<p>hepatic stellate cell</p>
</def>
</def-item>
<def-item>
<term id="GL20">IFP</term>
<def>
<p>interstitial fluid pressure</p>
</def>
</def-item>
<def-item>
<term id="GL21">Lipoplex</term>
<def>
<p>liposome/plasmid DNA complex</p>
</def>
</def-item>
<def-item>
<term id="GL22">LOX</term>
<def>
<p>lysyl oxidase</p>
</def>
</def-item>
<def-item>
<term id="GL23">MMP</term>
<def>
<p>matrix metalloproteinase</p>
</def>
</def-item>
<def-item>
<term id="GL24">MMPI</term>
<def>
<p>MMP inhibitor</p>
</def>
</def-item>
<def-item>
<term id="GL25">MSC</term>
<def>
<p>mesenchymal stem cell</p>
</def>
</def-item>
<def-item>
<term id="GL26">PDGF</term>
<def>
<p>platelet-derived growth factor</p>
</def>
</def-item>
<def-item>
<term id="GL27">RHAMM</term>
<def>
<p>hyaluronic acid-mediated motility</p>
</def>
</def-item>
<def-item>
<term id="GL28">RNA</term>
<def>
<p>ribonucleic acid</p>
</def>
</def-item>
<def-item>
<term id="GL29">siRNA</term>
<def>
<p>small Interfering RNA</p>
</def>
</def-item>
<def-item>
<term id="GL30">TAF</term>
<def>
<p>tumor-associated fibroblasts</p>
</def>
</def-item>
<def-item>
<term id="GL31">TGF-β</term>
<def>
<p>transforming growth factor beta</p>
</def>
</def-item>
<def-item>
<term id="GL32">TME</term>
<def>
<p>tumor microenvironment</p>
</def>
</def-item>
<def-item>
<term id="GL33">VEGF</term>
<def>
<p>vascular endothelial growth factor</p>
</def>
</def-item>
<def-item>
<term id="GL34">αSMA</term>
<def>
<p>α‑smooth muscle actin</p>
</def>
</def-item>
</def-list>
</glossary>
<ref-list>
<ref id="B1">
<label>1</label>
<element-citation publication-type="journal">
<name>
<surname>Perry</surname>
<given-names>JL</given-names>
</name>
<name>
<surname>Reuter</surname>
<given-names>KG</given-names>
</name>
<name>
<surname>Luft</surname>
<given-names>JC</given-names>
</name>
<name>
<surname>Pecot</surname>
<given-names>CV</given-names>
</name>
<name>
<surname>Zamboni</surname>
<given-names>W</given-names>
</name>
<name>
<surname>DeSimone</surname>
<given-names>JM</given-names>
</name>
<article-title>Mediating Passive Tumor Accumulation through Particle Size, Tumor Type, and Location</article-title>
<source>Nano Lett</source>
<year>2017</year>
<volume>17</volume>
<fpage>2879</fpage>
<lpage>86</lpage>
<pub-id pub-id-type="pmid">28287740</pub-id>
</element-citation>
</ref>
<ref id="B2">
<label>2</label>
<element-citation publication-type="journal">
<name>
<surname>Tran</surname>
<given-names>S</given-names>
</name>
<name>
<surname>DeGiovanni</surname>
<given-names>P-J</given-names>
</name>
<name>
<surname>Piel</surname>
<given-names>B</given-names>
</name>
<name>
<surname>Rai</surname>
<given-names>P</given-names>
</name>
<article-title>Cancer nanomedicine: a review of recent success in drug delivery</article-title>
<source>Clin Transl Med</source>
<year>2017</year>
<volume>6</volume>
<fpage>44</fpage>
<pub-id pub-id-type="pmid">29230567</pub-id>
</element-citation>
</ref>
<ref id="B3">
<label>3</label>
<element-citation publication-type="journal">
<name>
<surname>Trédan</surname>
<given-names>O</given-names>
</name>
<name>
<surname>Galmarini</surname>
<given-names>CM</given-names>
</name>
<name>
<surname>Patel</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Tannock</surname>
<given-names>IF</given-names>
</name>
<article-title>Drug Resistance and the Solid Tumor Microenvironment</article-title>
<source>J Natl Cancer Inst</source>
<year>2007</year>
<volume>99</volume>
<fpage>1441</fpage>
<lpage>54</lpage>
<pub-id pub-id-type="pmid">17895480</pub-id>
</element-citation>
</ref>
<ref id="B4">
<label>4</label>
<element-citation publication-type="journal">
<name>
<surname>Maeda</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Tsukigawa</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Fang</surname>
<given-names>J</given-names>
</name>
<article-title>A Retrospective 30 Years After Discovery of the Enhanced Permeability and Retention Effect of Solid Tumors: Next-Generation Chemotherapeutics and Photodynamic Therapy—Problems, Solutions, and Prospects</article-title>
<source>Microcirculation</source>
<year>2016</year>
<volume>23</volume>
<fpage>173</fpage>
<lpage>82</lpage>
<pub-id pub-id-type="pmid">26237291</pub-id>
</element-citation>
</ref>
<ref id="B5">
<label>5</label>
<element-citation publication-type="book">
<name>
<surname>Azzi</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Hebda</surname>
<given-names>JK</given-names>
</name>
<name>
<surname>Gavard</surname>
<given-names>J</given-names>
</name>
<source>Vascular Permeability and Drug Delivery in Cancers</source>
<publisher-name>Front Oncol</publisher-name>
<year>2013</year>
<fpage>3</fpage>
</element-citation>
</ref>
<ref id="B6">
<label>6</label>
<element-citation publication-type="journal">
<name>
<surname>Carmeliet</surname>
<given-names>P</given-names>
</name>
<name>
<surname>Jain</surname>
<given-names>RK</given-names>
</name>
<article-title>Principles and mechanisms of vessel normalization for cancer and other angiogenic diseases</article-title>
<source>Nat Rev Drug Discov</source>
<year>2011</year>
<volume>10</volume>
<fpage>417</fpage>
<lpage>27</lpage>
<pub-id pub-id-type="pmid">21629292</pub-id>
</element-citation>
</ref>
<ref id="B7">
<label>7</label>
<element-citation publication-type="journal">
<name>
<surname>Martin</surname>
<given-names>JD</given-names>
</name>
<name>
<surname>Seano</surname>
<given-names>G</given-names>
</name>
<name>
<surname>Jain</surname>
<given-names>RK</given-names>
</name>
<article-title>Normalizing Function of Tumor Vessels: Progress, Opportunities, and Challenges</article-title>
<source>Annu Rev Physiol</source>
<year>2019</year>
<volume>81</volume>
<fpage>505</fpage>
<lpage>34</lpage>
<pub-id pub-id-type="pmid">30742782</pub-id>
</element-citation>
</ref>
<ref id="B8">
<label>8</label>
<element-citation publication-type="journal">
<name>
<surname>Baluk</surname>
<given-names>P</given-names>
</name>
<name>
<surname>Hashizume</surname>
<given-names>H</given-names>
</name>
<name>
<surname>McDonald</surname>
<given-names>DM</given-names>
</name>
<article-title>Cellular abnormalities of blood vessels as targets in cancer</article-title>
<source>Curr Opin Genet Dev</source>
<year>2005</year>
<volume>15</volume>
<fpage>102</fpage>
<lpage>11</lpage>
<pub-id pub-id-type="pmid">15661540</pub-id>
</element-citation>
</ref>
<ref id="B9">
<label>9</label>
<element-citation publication-type="journal">
<name>
<surname>Ozawa</surname>
<given-names>MG</given-names>
</name>
<name>
<surname>Yao</surname>
<given-names>VJ</given-names>
</name>
<name>
<surname>Chanthery</surname>
<given-names>YH</given-names>
</name>
<name>
<surname>Troncoso</surname>
<given-names>P</given-names>
</name>
<name>
<surname>Uemura</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Varner</surname>
<given-names>AS</given-names>
</name>
<etal></etal>
<article-title>Angiogenesis with pericyte abnormalities in a transgenic model of prostate carcinoma</article-title>
<source>Cancer</source>
<year>2005</year>
<volume>104</volume>
<fpage>2104</fpage>
<lpage>15</lpage>
<pub-id pub-id-type="pmid">16208706</pub-id>
</element-citation>
</ref>
<ref id="B10">
<label>10</label>
<element-citation publication-type="journal">
<name>
<surname>Gerhardt</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Semb</surname>
<given-names>H</given-names>
</name>
<article-title>Pericytes: gatekeepers in tumour cell metastasis?</article-title>
<source>J Mol Med (Berl)</source>
<year>2008</year>
<volume>86</volume>
<fpage>135</fpage>
<lpage>44</lpage>
<pub-id pub-id-type="pmid">17891366</pub-id>
</element-citation>
</ref>
<ref id="B11">
<label>11</label>
<element-citation publication-type="journal">
<name>
<surname>Hobbs</surname>
<given-names>SK</given-names>
</name>
<name>
<surname>Monsky</surname>
<given-names>WL</given-names>
</name>
<name>
<surname>Yuan</surname>
<given-names>F</given-names>
</name>
<name>
<surname>Roberts</surname>
<given-names>WG</given-names>
</name>
<name>
<surname>Griffith</surname>
<given-names>L</given-names>
</name>
<name>
<surname>Torchilin</surname>
<given-names>VP</given-names>
</name>
<etal></etal>
<article-title>Regulation of transport pathways in tumor vessels: role of tumor type and microenvironment</article-title>
<source>Proc Natl Acad Sci U S A</source>
<year>1998</year>
<volume>95</volume>
<fpage>4607</fpage>
<lpage>12</lpage>
<pub-id pub-id-type="pmid">9539785</pub-id>
</element-citation>
</ref>
<ref id="B12">
<label>12</label>
<element-citation publication-type="journal">
<name>
<surname>Yuan</surname>
<given-names>F</given-names>
</name>
<name>
<surname>Dellian</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Fukumura</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Leunig</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Berk</surname>
<given-names>DA</given-names>
</name>
<name>
<surname>Torchilin</surname>
<given-names>VP</given-names>
</name>
<etal></etal>
<article-title>Vascular Permeability in a Human Tumor Xenograft: Molecular Size Dependence and Cutoff Size</article-title>
<source>Cancer Res</source>
<year>1995</year>
<volume>55</volume>
<fpage>3752</fpage>
<lpage>6</lpage>
<pub-id pub-id-type="pmid">7641188</pub-id>
</element-citation>
</ref>
<ref id="B13">
<label>13</label>
<element-citation publication-type="journal">
<name>
<surname>Forster</surname>
<given-names>JC</given-names>
</name>
<name>
<surname>Harriss-Phillips</surname>
<given-names>WM</given-names>
</name>
<name>
<surname>Douglass</surname>
<given-names>MJ</given-names>
</name>
<name>
<surname>Bezak</surname>
<given-names>E</given-names>
</name>
<article-title>A review of the development of tumor vasculature and its effects on the tumor microenvironment</article-title>
<source>Hypoxia</source>
<year>2017</year>
<volume>5</volume>
<fpage>21</fpage>
<lpage>32</lpage>
<pub-id pub-id-type="pmid">28443291</pub-id>
</element-citation>
</ref>
<ref id="B14">
<label>14</label>
<element-citation publication-type="journal">
<name>
<surname>Stapleton</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Milosevic</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Tannock</surname>
<given-names>IF</given-names>
</name>
<name>
<surname>Allen</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Jaffray</surname>
<given-names>DA</given-names>
</name>
<article-title>The intra-tumoral relationship between microcirculation, interstitial fluid pressure and liposome accumulation</article-title>
<source>J Control Release</source>
<year>2015</year>
<volume>211</volume>
<fpage>163</fpage>
<lpage>70</lpage>
<pub-id pub-id-type="pmid">26070245</pub-id>
</element-citation>
</ref>
<ref id="B15">
<label>15</label>
<element-citation publication-type="journal">
<name>
<surname>Sheth</surname>
<given-names>RA</given-names>
</name>
<name>
<surname>Hesketh</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Kong</surname>
<given-names>DS</given-names>
</name>
<name>
<surname>Wicky</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Oklu</surname>
<given-names>R</given-names>
</name>
<article-title>Barriers to drug delivery in interventional oncology</article-title>
<source>J Vasc Interv Radiol</source>
<year>2013</year>
<volume>24</volume>
<fpage>1201</fpage>
<lpage>7</lpage>
<pub-id pub-id-type="pmid">23735316</pub-id>
</element-citation>
</ref>
<ref id="B16">
<label>16</label>
<element-citation publication-type="journal">
<name>
<surname>Kobayashi</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Watanabe</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Choyke</surname>
<given-names>PL</given-names>
</name>
<article-title>Improving conventional enhanced permeability and retention (EPR) effects; what is the appropriate target?</article-title>
<source>Theranostics</source>
<year>2013</year>
<volume>4</volume>
<fpage>81</fpage>
<lpage>9</lpage>
<pub-id pub-id-type="pmid">24396516</pub-id>
</element-citation>
</ref>
<ref id="B17">
<label>17</label>
<element-citation publication-type="journal">
<name>
<surname>Jain</surname>
<given-names>RK</given-names>
</name>
<name>
<surname>Martin</surname>
<given-names>JD</given-names>
</name>
<name>
<surname>Stylianopoulos</surname>
<given-names>T</given-names>
</name>
<article-title>The role of mechanical forces in tumor growth and therapy</article-title>
<source>Annu Rev Biomed Eng</source>
<year>2014</year>
<volume>16</volume>
<fpage>321</fpage>
<lpage>46</lpage>
<pub-id pub-id-type="pmid">25014786</pub-id>
</element-citation>
</ref>
<ref id="B18">
<label>18</label>
<element-citation publication-type="journal">
<name>
<surname>Stylianopoulos</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Munn</surname>
<given-names>LL</given-names>
</name>
<name>
<surname>Jain</surname>
<given-names>RK</given-names>
</name>
<article-title>Reengineering the Physical Microenvironment of Tumors to Improve Drug Delivery and Efficacy: From Mathematical Modeling to Bench to Bedside</article-title>
<source>Trends Cancer</source>
<year>2018</year>
<volume>4</volume>
<fpage>292</fpage>
<lpage>319</lpage>
<pub-id pub-id-type="pmid">29606314</pub-id>
</element-citation>
</ref>
<ref id="B19">
<label>19</label>
<element-citation publication-type="journal">
<name>
<surname>Jain</surname>
<given-names>RK</given-names>
</name>
<article-title>Delivery of molecular and cellular medicine to solid tumors</article-title>
<source>Adv Drug Deliv Rev</source>
<year>2012</year>
<volume>64</volume>
<fpage>353</fpage>
<lpage>65</lpage>
<pub-id pub-id-type="pmid">24511174</pub-id>
</element-citation>
</ref>
<ref id="B20">
<label>20</label>
<element-citation publication-type="journal">
<name>
<surname>Baxter</surname>
<given-names>LT</given-names>
</name>
<name>
<surname>Jain</surname>
<given-names>RK</given-names>
</name>
<article-title>Transport of fluid and macromolecules in tumors. I. Role of interstitial pressure and convection</article-title>
<source>Microvasc Res</source>
<year>1989</year>
<volume>37</volume>
<fpage>77</fpage>
<lpage>104</lpage>
<pub-id pub-id-type="pmid">2646512</pub-id>
</element-citation>
</ref>
<ref id="B21">
<label>21</label>
<element-citation publication-type="journal">
<name>
<surname>Yuan</surname>
<given-names>F</given-names>
</name>
<name>
<surname>Leunig</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Huang</surname>
<given-names>SK</given-names>
</name>
<name>
<surname>Berk</surname>
<given-names>DA</given-names>
</name>
<name>
<surname>Papahadjopoulos</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Jain</surname>
<given-names>RK</given-names>
</name>
<article-title>Microvascular permeability and interstitial penetration of sterically stabilized (stealth) liposomes in a human tumor xenograft</article-title>
<source>Cancer Res</source>
<year>1994</year>
<volume>54</volume>
<fpage>3352</fpage>
<lpage>6</lpage>
<pub-id pub-id-type="pmid">8012948</pub-id>
</element-citation>
</ref>
<ref id="B22">
<label>22</label>
<element-citation publication-type="journal">
<name>
<surname>Chauhan</surname>
<given-names>VP</given-names>
</name>
<name>
<surname>Stylianopoulos</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Boucher</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Jain</surname>
<given-names>R.K</given-names>
</name>
<article-title>Delivery of Molecular and Nanoscale Medicine to Tumors: Transport Barriers and Strategies</article-title>
<source>Annu Rev Chem Biomol Eng</source>
<year>2011</year>
<volume>2</volume>
<fpage>281</fpage>
<lpage>98</lpage>
<pub-id pub-id-type="pmid">22432620</pub-id>
</element-citation>
</ref>
<ref id="B23">
<label>23</label>
<element-citation publication-type="journal">
<name>
<surname>Eetezadi</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Ekdawi</surname>
<given-names>SN</given-names>
</name>
<name>
<surname>Allen</surname>
<given-names>C</given-names>
</name>
<article-title>The challenges facing block copolymer micelles for cancer therapy: In vivo barriers and clinical translation</article-title>
<source>Adv Drug Deliv Rev</source>
<year>2015</year>
<volume>91</volume>
<fpage>7</fpage>
<lpage>22</lpage>
<pub-id pub-id-type="pmid">25308250</pub-id>
</element-citation>
</ref>
<ref id="B24">
<label>24</label>
<element-citation publication-type="journal">
<name>
<surname>Miao</surname>
<given-names>L</given-names>
</name>
<name>
<surname>Lin</surname>
<given-names>CM</given-names>
</name>
<name>
<surname>Huang</surname>
<given-names>L</given-names>
</name>
<article-title>Stromal Barriers and Strategies for the Delivery of Nanomedicine to Desmoplastic Tumors</article-title>
<source>J Control Release</source>
<year>2015</year>
<volume>219</volume>
<fpage>192</fpage>
<lpage>204</lpage>
<pub-id pub-id-type="pmid">26277065</pub-id>
</element-citation>
</ref>
<ref id="B25">
<label>25</label>
<element-citation publication-type="journal">
<name>
<surname>Sharma</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Arambula</surname>
<given-names>JF</given-names>
</name>
<name>
<surname>Koo</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Kumar</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Singh</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Sessler</surname>
<given-names>JL</given-names>
</name>
<etal></etal>
<article-title>Hypoxia-targeted drug delivery</article-title>
<source>Chem Soc Rev</source>
<year>2019</year>
<volume>48</volume>
<fpage>771</fpage>
<lpage>813</lpage>
<pub-id pub-id-type="pmid">30575832</pub-id>
</element-citation>
</ref>
<ref id="B26">
<label>26</label>
<element-citation publication-type="journal">
<name>
<surname>Sahu</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Choi</surname>
<given-names>WI</given-names>
</name>
<name>
<surname>Tae</surname>
<given-names>G</given-names>
</name>
<article-title>Recent Progress in the Design of Hypoxia-Specific Nano Drug Delivery Systems for Cancer Therapy</article-title>
<source>Adv Ther</source>
<year>2018</year>
<volume>1</volume>
<fpage>1800026</fpage>
</element-citation>
</ref>
<ref id="B27">
<label>27</label>
<element-citation publication-type="book">
<name>
<surname>Soleymani Abyaneh</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Soleimani</surname>
<given-names>AH</given-names>
</name>
<name>
<surname>Vakili</surname>
<given-names>MR</given-names>
</name>
<name>
<surname>Soudy</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Kaur</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Cuda</surname>
<given-names>F</given-names>
</name>
<etal></etal>
<source>Modulation of Hypoxia-Induced Chemoresistance to Polymeric Micellar Cisplatin: The Effect of Ligand Modification of Micellar Carrier Versus Inhibition of the Mediators of Drug Resistance</source>
<publisher-name>Pharmaceutics</publisher-name>
<year>2018</year>
<fpage>10</fpage>
</element-citation>
</ref>
<ref id="B28">
<label>28</label>
<element-citation publication-type="journal">
<name>
<surname>Folkman</surname>
<given-names>J</given-names>
</name>
<article-title>Tumor angiogenesis: therapeutic implications</article-title>
<source>N Engl J Med</source>
<year>1971</year>
<volume>285</volume>
<fpage>1182</fpage>
<lpage>6</lpage>
<pub-id pub-id-type="pmid">4938153</pub-id>
</element-citation>
</ref>
<ref id="B29">
<label>29</label>
<element-citation publication-type="journal">
<name>
<surname>Pluen</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Boucher</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Ramanujan</surname>
<given-names>S</given-names>
</name>
<name>
<surname>McKee</surname>
<given-names>TD</given-names>
</name>
<name>
<surname>Gohongi</surname>
<given-names>T</given-names>
</name>
<name>
<surname>di Tomaso</surname>
<given-names>E</given-names>
</name>
<etal></etal>
<article-title>Role of tumor-host interactions in interstitial diffusion of macromolecules: Cranial vs. subcutaneous tumors</article-title>
<source>Proc Natl Acad Sci U S A</source>
<year>2001</year>
<volume>98</volume>
<fpage>4628</fpage>
<lpage>33</lpage>
<pub-id pub-id-type="pmid">11274375</pub-id>
</element-citation>
</ref>
<ref id="B30">
<label>30</label>
<element-citation publication-type="journal">
<name>
<surname>Jain</surname>
<given-names>RK</given-names>
</name>
<name>
<surname>Martin</surname>
<given-names>JD</given-names>
</name>
<name>
<surname>Stylianopoulos</surname>
<given-names>T</given-names>
</name>
<article-title>The Role of Mechanical Forces in Tumor Growth and Therapy</article-title>
<source>Annu Rev Biomed Eng</source>
<year>2014</year>
<volume>16</volume>
<fpage>321</fpage>
<lpage>46</lpage>
<pub-id pub-id-type="pmid">25014786</pub-id>
</element-citation>
</ref>
<ref id="B31">
<label>31</label>
<element-citation publication-type="journal">
<name>
<surname>Chauhan</surname>
<given-names>VP</given-names>
</name>
<name>
<surname>Boucher</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Ferrone</surname>
<given-names>CR</given-names>
</name>
<name>
<surname>Roberge</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Martin</surname>
<given-names>JD</given-names>
</name>
<name>
<surname>Stylianopoulos</surname>
<given-names>T</given-names>
</name>
<etal></etal>
<article-title>Compression of pancreatic tumor blood vessels by hyaluronan is caused by solid stress and not interstitial fluid pressure</article-title>
<source>Cancer Cell</source>
<year>2014</year>
<volume>26</volume>
<fpage>14</fpage>
<lpage>5</lpage>
<pub-id pub-id-type="pmid">25026209</pub-id>
</element-citation>
</ref>
<ref id="B32">
<label>32</label>
<element-citation publication-type="journal">
<name>
<surname>Whatcott</surname>
<given-names>CJ</given-names>
</name>
<name>
<surname>Han</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Von Hoff</surname>
<given-names>DD</given-names>
</name>
<article-title>Orchestrating the Tumor Microenvironment to Improve Survival for Patients With Pancreatic Cancer: Normalization, Not Destruction</article-title>
<source>Cancer J</source>
<year>2015</year>
<volume>21</volume>
<fpage>299</fpage>
<lpage>306</lpage>
<pub-id pub-id-type="pmid">26222082</pub-id>
</element-citation>
</ref>
<ref id="B33">
<label>33</label>
<element-citation publication-type="book">
<name>
<surname>Lampi</surname>
<given-names>MC</given-names>
</name>
<name>
<surname>Reinhart-King</surname>
<given-names>CA</given-names>
</name>
<source>Targeting extracellular matrix stiffness to attenuate disease: From molecular mechanisms to clinical trials</source>
<publisher-name>Sci Transl Med</publisher-name>
<year>2018</year>
<fpage>10</fpage>
</element-citation>
</ref>
<ref id="B34">
<label>34</label>
<element-citation publication-type="journal">
<name>
<surname>Jiang</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Hegde</surname>
<given-names>S</given-names>
</name>
<name>
<surname>DeNardo</surname>
<given-names>DG</given-names>
</name>
<article-title>Tumor-associated fibrosis as a regulator of tumor immunity and response to immunotherapy</article-title>
<source>Cancer Immunol Immunother</source>
<year>2017</year>
<volume>66</volume>
<fpage>1037</fpage>
<lpage>48</lpage>
<pub-id pub-id-type="pmid">28451791</pub-id>
</element-citation>
</ref>
<ref id="B35">
<label>35</label>
<element-citation publication-type="journal">
<name>
<surname>McCarthy</surname>
<given-names>JB</given-names>
</name>
<name>
<surname>El-Ashry</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Turley</surname>
<given-names>EA</given-names>
</name>
<article-title>Hyaluronan, Cancer-Associated Fibroblasts and the Tumor Microenvironment in Malignant Progression</article-title>
<source>Front Cell Dev Biol</source>
<year>2018</year>
<volume>6</volume>
<fpage>48</fpage>
<pub-id pub-id-type="pmid">29868579</pub-id>
</element-citation>
</ref>
<ref id="B36">
<label>36</label>
<element-citation publication-type="journal">
<name>
<surname>Pietras</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Ostman</surname>
<given-names>A</given-names>
</name>
<article-title>Hallmarks of cancer: interactions with the tumor stroma</article-title>
<source>Exp Cell Res</source>
<year>2010</year>
<volume>316</volume>
<fpage>1324</fpage>
<lpage>31</lpage>
<pub-id pub-id-type="pmid">20211171</pub-id>
</element-citation>
</ref>
<ref id="B37">
<label>37</label>
<element-citation publication-type="journal">
<name>
<surname>Kalluri</surname>
<given-names>R</given-names>
</name>
<article-title>Basement membranes: structure, assembly and role in tumour angiogenesis</article-title>
<source>Nat Rev Cancer</source>
<year>2003</year>
<volume>3</volume>
<fpage>422</fpage>
<lpage>33</lpage>
<pub-id pub-id-type="pmid">12778132</pub-id>
</element-citation>
</ref>
<ref id="B38">
<label>38</label>
<element-citation publication-type="journal">
<name>
<surname>Frantz</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Stewart</surname>
<given-names>KM</given-names>
</name>
<name>
<surname>Weaver</surname>
<given-names>VM</given-names>
</name>
<article-title>The extracellular matrix at a glance</article-title>
<source>J Cell Sci</source>
<year>2010</year>
<volume>123</volume>
<fpage>4195</fpage>
<lpage>200</lpage>
<pub-id pub-id-type="pmid">21123617</pub-id>
</element-citation>
</ref>
<ref id="B39">
<label>39</label>
<element-citation publication-type="journal">
<name>
<surname>Lu</surname>
<given-names>P</given-names>
</name>
<name>
<surname>Weaver</surname>
<given-names>VM</given-names>
</name>
<name>
<surname>Werb</surname>
<given-names>Z</given-names>
</name>
<article-title>The extracellular matrix: A dynamic niche in cancer progression</article-title>
<source>J Cell Biol</source>
<year>2012</year>
<volume>196</volume>
<fpage>395</fpage>
<lpage>406</lpage>
<pub-id pub-id-type="pmid">22351925</pub-id>
</element-citation>
</ref>
<ref id="B40">
<label>40</label>
<element-citation publication-type="journal">
<name>
<surname>Piperigkou</surname>
<given-names>Z</given-names>
</name>
<name>
<surname>Gotte</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Theocharis</surname>
<given-names>AD</given-names>
</name>
<name>
<surname>Karamanos</surname>
<given-names>NK</given-names>
</name>
<article-title>Insights into the key roles of epigenetics in matrix macromolecules-associated wound healing</article-title>
<source>Adv Drug Deliv Rev</source>
<year>2018</year>
<volume>129</volume>
<fpage>16</fpage>
<lpage>36</lpage>
<pub-id pub-id-type="pmid">29079535</pub-id>
</element-citation>
</ref>
<ref id="B41">
<label>41</label>
<element-citation publication-type="journal">
<name>
<surname>Huang</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Winter</surname>
<given-names>EE</given-names>
</name>
<name>
<surname>Wang</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Weinstock</surname>
<given-names>KG</given-names>
</name>
<name>
<surname>Xing</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Goodstadt</surname>
<given-names>L</given-names>
</name>
<etal></etal>
<article-title>Evolutionary conservation and selection of human disease gene orthologs in the rat and mouse genomes</article-title>
<source>Genome Biol</source>
<year>2004</year>
<volume>5</volume>
<fpage>R47</fpage>
<pub-id pub-id-type="pmid">15239832</pub-id>
</element-citation>
</ref>
<ref id="B42">
<label>42</label>
<element-citation publication-type="journal">
<name>
<surname>Pevzner</surname>
<given-names>P</given-names>
</name>
<name>
<surname>Tesler</surname>
<given-names>G</given-names>
</name>
<article-title>Human and mouse genomic sequences reveal extensive breakpoint reuse in mammalian evolution</article-title>
<source>Proc Natl Acad Sci U S A</source>
<year>2003</year>
<volume>100</volume>
<fpage>7672</fpage>
<lpage>7</lpage>
<pub-id pub-id-type="pmid">12810957</pub-id>
</element-citation>
</ref>
<ref id="B43">
<label>43</label>
<element-citation publication-type="journal">
<name>
<surname>Wang</surname>
<given-names>L</given-names>
</name>
<name>
<surname>Liu</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Jiao</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Wang</surname>
<given-names>E</given-names>
</name>
<name>
<surname>Clark</surname>
<given-names>SH</given-names>
</name>
<name>
<surname>Postlethwaite</surname>
<given-names>AE</given-names>
</name>
<etal></etal>
<article-title>Differences between Mice and Humans in Regulation and the Molecular Network of Collagen, Type III, Alpha-1 at the Gene Expression Level: Obstacles that Translational Research Must Overcome</article-title>
<source>Int J Mol Sci</source>
<year>2015</year>
<volume>16</volume>
<fpage>15031</fpage>
<lpage>56</lpage>
<pub-id pub-id-type="pmid">26151842</pub-id>
</element-citation>
</ref>
<ref id="B44">
<label>44</label>
<element-citation publication-type="journal">
<name>
<surname>Fietz</surname>
<given-names>SA</given-names>
</name>
<name>
<surname>Lachmann</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Brandl</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Kircher</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Samusik</surname>
<given-names>N</given-names>
</name>
<name>
<surname>Schroder</surname>
<given-names>R</given-names>
</name>
<etal></etal>
<article-title>Transcriptomes of germinal zones of human and mouse fetal neocortex suggest a role of extracellular matrix in progenitor self-renewal</article-title>
<source>Proc Natl Acad Sci U S A</source>
<year>2012</year>
<volume>109</volume>
<fpage>11836</fpage>
<lpage>41</lpage>
<pub-id pub-id-type="pmid">22753484</pub-id>
</element-citation>
</ref>
<ref id="B45">
<label>45</label>
<element-citation publication-type="journal">
<name>
<surname>Shao</surname>
<given-names>X</given-names>
</name>
<name>
<surname>Taha</surname>
<given-names>IN</given-names>
</name>
<name>
<surname>Clauser</surname>
<given-names>KR</given-names>
</name>
<name>
<surname>Gao</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Naba</surname>
<given-names>A</given-names>
</name>
<article-title>MatrisomeDB: the ECM-protein knowledge database</article-title>
<source>Nucleic Acids Res</source>
<year>2020</year>
<volume>48</volume>
<issue>D1</issue>
<fpage>D1136</fpage>
<lpage>D1144</lpage>
<pub-id pub-id-type="pmid">31586405</pub-id>
</element-citation>
</ref>
<ref id="B46">
<label>46</label>
<element-citation publication-type="journal">
<name>
<surname>Eble</surname>
<given-names>JA</given-names>
</name>
<name>
<surname>Niland</surname>
<given-names>S</given-names>
</name>
<article-title>The extracellular matrix in tumor progression and metastasis</article-title>
<source>Clin Exp Metastasis</source>
<year>2019</year>
<volume>36</volume>
<fpage>171</fpage>
<lpage>198</lpage>
<pub-id pub-id-type="pmid">30972526</pub-id>
</element-citation>
</ref>
<ref id="B47">
<label>47</label>
<element-citation publication-type="journal">
<name>
<surname>Malik</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Lelkes</surname>
<given-names>PI</given-names>
</name>
<name>
<surname>Cukierman</surname>
<given-names>E</given-names>
</name>
<article-title>Biomechanical and biochemical remodeling of stromal extracellular matrix in cancer</article-title>
<source>Trends Biotechnol</source>
<year>2015</year>
<volume>33</volume>
<fpage>230</fpage>
<lpage>6</lpage>
<pub-id pub-id-type="pmid">25708906</pub-id>
</element-citation>
</ref>
<ref id="B48">
<label>48</label>
<element-citation publication-type="journal">
<name>
<surname>Andrzejewska</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Lukomska</surname>
<given-names>B</given-names>
</name>
<name>
<surname>Janowski</surname>
<given-names>M</given-names>
</name>
<article-title>Concise Review: Mesenchymal Stem Cells: From Roots to Boost</article-title>
<source>Stem Cells</source>
<year>2019</year>
<volume>37</volume>
<fpage>855</fpage>
<lpage>864</lpage>
<pub-id pub-id-type="pmid">30977255</pub-id>
</element-citation>
</ref>
<ref id="B49">
<label>49</label>
<element-citation publication-type="journal">
<name>
<surname>Kalluri</surname>
<given-names>R</given-names>
</name>
<article-title>The biology and function of fibroblasts in cancer</article-title>
<source>Nat Rev Cancer</source>
<year>2016</year>
<volume>16</volume>
<fpage>582</fpage>
<lpage>98</lpage>
<pub-id pub-id-type="pmid">27550820</pub-id>
</element-citation>
</ref>
<ref id="B50">
<label>50</label>
<element-citation publication-type="journal">
<name>
<surname>Croft</surname>
<given-names>CB</given-names>
</name>
<name>
<surname>Tarin</surname>
<given-names>D</given-names>
</name>
<article-title>Ultrastructural studies of wound healing in mouse skin. I. Epithelial behaviour</article-title>
<source>J Anat</source>
<year>1970</year>
<volume>106</volume>
<fpage>63</fpage>
<lpage>77</lpage>
<pub-id pub-id-type="pmid">5413643</pub-id>
</element-citation>
</ref>
<ref id="B51">
<label>51</label>
<element-citation publication-type="journal">
<name>
<surname>Muller</surname>
<given-names>GA</given-names>
</name>
<name>
<surname>Rodemann</surname>
<given-names>HP</given-names>
</name>
<article-title>Characterization of human renal fibroblasts in health and disease: I. Immunophenotyping of cultured tubular epithelial cells and fibroblasts derived from kidneys with histologically proven interstitial fibrosis</article-title>
<source>Am J Kidney Dis</source>
<year>1991</year>
<volume>17</volume>
<fpage>680</fpage>
<lpage>3</lpage>
<pub-id pub-id-type="pmid">2042649</pub-id>
</element-citation>
</ref>
<ref id="B52">
<label>52</label>
<element-citation publication-type="journal">
<name>
<surname>Seidman</surname>
<given-names>JC</given-names>
</name>
<name>
<surname>Castor</surname>
<given-names>CW</given-names>
</name>
<article-title>Connective tissue activation in guinea pig lung fibroblast cultures: regulatory effects of glucocorticoids</article-title>
<source>In Vitro</source>
<year>1981</year>
<volume>17</volume>
<fpage>133</fpage>
<lpage>8</lpage>
<pub-id pub-id-type="pmid">6765898</pub-id>
</element-citation>
</ref>
<ref id="B53">
<label>53</label>
<element-citation publication-type="journal">
<name>
<surname>Tomasek</surname>
<given-names>JJ</given-names>
</name>
<name>
<surname>Gabbiani</surname>
<given-names>G</given-names>
</name>
<name>
<surname>Hinz</surname>
<given-names>B</given-names>
</name>
<name>
<surname>Chaponnier</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Brown</surname>
<given-names>RA</given-names>
</name>
<article-title>Myofibroblasts and mechano-regulation of connective tissue remodelling</article-title>
<source>Nat Rev Mol Cell Biol</source>
<year>2002</year>
<volume>3</volume>
<fpage>349</fpage>
<lpage>63</lpage>
<pub-id pub-id-type="pmid">11988769</pub-id>
</element-citation>
</ref>
<ref id="B54">
<label>54</label>
<element-citation publication-type="journal">
<name>
<surname>Parsonage</surname>
<given-names>G</given-names>
</name>
<name>
<surname>Filer</surname>
<given-names>AD</given-names>
</name>
<name>
<surname>Haworth</surname>
<given-names>O</given-names>
</name>
<name>
<surname>Nash</surname>
<given-names>GB</given-names>
</name>
<name>
<surname>Rainger</surname>
<given-names>GE</given-names>
</name>
<name>
<surname>Salmon</surname>
<given-names>M</given-names>
</name>
<etal></etal>
<article-title>A stromal address code defined by fibroblasts</article-title>
<source>Trends Immunol</source>
<year>2005</year>
<volume>26</volume>
<fpage>150</fpage>
<lpage>6</lpage>
<pub-id pub-id-type="pmid">15745857</pub-id>
</element-citation>
</ref>
<ref id="B55">
<label>55</label>
<element-citation publication-type="journal">
<name>
<surname>Micallef</surname>
<given-names>L</given-names>
</name>
<name>
<surname>Vedrenne</surname>
<given-names>N</given-names>
</name>
<name>
<surname>Billet</surname>
<given-names>F</given-names>
</name>
<name>
<surname>Coulomb</surname>
<given-names>B</given-names>
</name>
<name>
<surname>Darby</surname>
<given-names>IA</given-names>
</name>
<name>
<surname>Desmouliere</surname>
<given-names>A</given-names>
</name>
<article-title>The myofibroblast, multiple origins for major roles in normal and pathological tissue repair</article-title>
<source>Fibrogenesis Tissue Repair</source>
<year>2012</year>
<volume>5</volume>
<fpage>S5</fpage>
<pub-id pub-id-type="pmid">23259712</pub-id>
</element-citation>
</ref>
<ref id="B56">
<label>56</label>
<element-citation publication-type="journal">
<name>
<surname>Kronenberg</surname>
<given-names>HM</given-names>
</name>
<article-title>Developmental regulation of the growth plate</article-title>
<source>Nature</source>
<year>2003</year>
<volume>423</volume>
<fpage>332</fpage>
<lpage>6</lpage>
<pub-id pub-id-type="pmid">12748651</pub-id>
</element-citation>
</ref>
<ref id="B57">
<label>57</label>
<element-citation publication-type="journal">
<name>
<surname>Egeblad</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Rasch</surname>
<given-names>MG</given-names>
</name>
<name>
<surname>Weaver</surname>
<given-names>VM</given-names>
</name>
<article-title>Dynamic interplay between the collagen scaffold and tumor evolution</article-title>
<source>Curr Opin Cell Biol</source>
<year>2010</year>
<volume>22</volume>
<fpage>697</fpage>
<lpage>706</lpage>
<pub-id pub-id-type="pmid">20822891</pub-id>
</element-citation>
</ref>
<ref id="B58">
<label>58</label>
<element-citation publication-type="journal">
<name>
<surname>Theocharis</surname>
<given-names>AD</given-names>
</name>
<name>
<surname>Skandalis</surname>
<given-names>SS</given-names>
</name>
<name>
<surname>Gialeli</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Karamanos</surname>
<given-names>NK</given-names>
</name>
<article-title>Extracellular matrix structure</article-title>
<source>Adv Drug Deliv Rev</source>
<year>2016</year>
<volume>97</volume>
<fpage>4</fpage>
<lpage>27</lpage>
<pub-id pub-id-type="pmid">26562801</pub-id>
</element-citation>
</ref>
<ref id="B59">
<label>59</label>
<element-citation publication-type="journal">
<name>
<surname>An</surname>
<given-names>B</given-names>
</name>
<name>
<surname>Lin</surname>
<given-names>YS</given-names>
</name>
<name>
<surname>Brodsky</surname>
<given-names>B</given-names>
</name>
<article-title>Collagen interactions: Drug design and delivery</article-title>
<source>Adv Drug Deliv Rev</source>
<year>2016</year>
<volume>97</volume>
<fpage>69</fpage>
<lpage>84</lpage>
<pub-id pub-id-type="pmid">26631222</pub-id>
</element-citation>
</ref>
<ref id="B60">
<label>60</label>
<element-citation publication-type="journal">
<name>
<surname>Schuppan</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Ashfaq-Khan</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Yang</surname>
<given-names>AT</given-names>
</name>
<name>
<surname>Kim</surname>
<given-names>YO</given-names>
</name>
<article-title>Liver fibrosis: Direct antifibrotic agents and targeted therapies</article-title>
<source>Matrix Biol</source>
<year>2018</year>
<volume>68-69</volume>
<fpage>435</fpage>
<lpage>51</lpage>
<pub-id pub-id-type="pmid">29656147</pub-id>
</element-citation>
</ref>
<ref id="B61">
<label>61</label>
<element-citation publication-type="journal">
<name>
<surname>Demou</surname>
<given-names>ZN</given-names>
</name>
<name>
<surname>Awad</surname>
<given-names>M</given-names>
</name>
<name>
<surname>McKee</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Perentes</surname>
<given-names>JY</given-names>
</name>
<name>
<surname>Wang</surname>
<given-names>X</given-names>
</name>
<name>
<surname>Munn</surname>
<given-names>LL</given-names>
</name>
<etal></etal>
<article-title>Lack of Telopeptides in Fibrillar Collagen I Promotes the Invasion of a Metastatic Breast Tumor Cell Line</article-title>
<source>Cancer Res</source>
<year>2005</year>
<volume>65</volume>
<fpage>5674</fpage>
<lpage>82</lpage>
<pub-id pub-id-type="pmid">15994941</pub-id>
</element-citation>
</ref>
<ref id="B62">
<label>62</label>
<element-citation publication-type="journal">
<name>
<surname>Wells</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Nuschke</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Yates</surname>
<given-names>CC</given-names>
</name>
<article-title>Skin tissue repair: Matrix microenvironmental influences</article-title>
<source>Matrix Biol</source>
<year>2016</year>
<volume>49</volume>
<fpage>25</fpage>
<lpage>36</lpage>
<pub-id pub-id-type="pmid">26278492</pub-id>
</element-citation>
</ref>
<ref id="B63">
<label>63</label>
<element-citation publication-type="journal">
<name>
<surname>Lucero</surname>
<given-names>HA</given-names>
</name>
<name>
<surname>Kagan</surname>
<given-names>HM</given-names>
</name>
<article-title>Lysyl oxidase: an oxidative enzyme and effector of cell function</article-title>
<source>Cell Mol Life Sci</source>
<year>2006</year>
<volume>63</volume>
<fpage>2304</fpage>
<lpage>16</lpage>
<pub-id pub-id-type="pmid">16909208</pub-id>
</element-citation>
</ref>
<ref id="B64">
<label>64</label>
<element-citation publication-type="journal">
<name>
<surname>Wise</surname>
<given-names>SG</given-names>
</name>
<name>
<surname>Weiss</surname>
<given-names>AS</given-names>
</name>
<article-title>Tropoelastin</article-title>
<source>Int J Biochem Cell Biol</source>
<year>2009</year>
<volume>41</volume>
<fpage>494</fpage>
<lpage>7</lpage>
<pub-id pub-id-type="pmid">18468477</pub-id>
</element-citation>
</ref>
<ref id="B65">
<label>65</label>
<element-citation publication-type="journal">
<name>
<surname>Jarvelainen</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Sainio</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Koulu</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Wight</surname>
<given-names>TN</given-names>
</name>
<name>
<surname>Penttinen</surname>
<given-names>R</given-names>
</name>
<article-title>Extracellular matrix molecules: potential targets in pharmacotherapy</article-title>
<source>Pharmacol Rev</source>
<year>2009</year>
<volume>61</volume>
<fpage>198</fpage>
<lpage>223</lpage>
<pub-id pub-id-type="pmid">19549927</pub-id>
</element-citation>
</ref>
<ref id="B66">
<label>66</label>
<element-citation publication-type="journal">
<name>
<surname>Schaefer</surname>
<given-names>L</given-names>
</name>
<name>
<surname>Schaefer</surname>
<given-names>RM</given-names>
</name>
<article-title>Proteoglycans: from structural compounds to signaling molecules</article-title>
<source>Cell Tissue Res</source>
<year>2010</year>
<volume>339</volume>
<fpage>237</fpage>
<lpage>46</lpage>
<pub-id pub-id-type="pmid">19513755</pub-id>
</element-citation>
</ref>
<ref id="B67">
<label>67</label>
<element-citation publication-type="journal">
<name>
<surname>Iozzo</surname>
<given-names>RV</given-names>
</name>
<name>
<surname>Schaefer</surname>
<given-names>L</given-names>
</name>
<article-title>Proteoglycan form and function: A comprehensive nomenclature of proteoglycans</article-title>
<source>Matrix Biol</source>
<year>2015</year>
<volume>42</volume>
<fpage>11</fpage>
<lpage>55</lpage>
<pub-id pub-id-type="pmid">25701227</pub-id>
</element-citation>
</ref>
<ref id="B68">
<label>68</label>
<element-citation publication-type="journal">
<name>
<surname>Scott</surname>
<given-names>JE</given-names>
</name>
<article-title>Elasticity in extracellular matrix 'shape modules' of tendon, cartilage, etc. A sliding proteoglycan-filament model</article-title>
<source>J Physiol</source>
<year>2003</year>
<volume>553</volume>
<fpage>335</fpage>
<lpage>43</lpage>
<pub-id pub-id-type="pmid">12923209</pub-id>
</element-citation>
</ref>
<ref id="B69">
<label>69</label>
<element-citation publication-type="journal">
<name>
<surname>Rozario</surname>
<given-names>T</given-names>
</name>
<name>
<surname>DeSimone</surname>
<given-names>DW</given-names>
</name>
<article-title>The extracellular matrix in development and morphogenesis: a dynamic view</article-title>
<source>Dev Biol</source>
<year>2010</year>
<volume>341</volume>
<fpage>126</fpage>
<lpage>40</lpage>
<pub-id pub-id-type="pmid">19854168</pub-id>
</element-citation>
</ref>
<ref id="B70">
<label>70</label>
<element-citation publication-type="book">
<person-group person-group-type="author">
<name>
<surname>Xu</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Mosher</surname>
<given-names>D</given-names>
</name>
</person-group>
<article-title>Fibronectin and Other Adhesive Glycoproteins</article-title>
<person-group person-group-type="editor">
<name>
<surname>Mecham</surname>
<given-names>R</given-names>
</name>
</person-group>
<source>The Extracellular Matrix: an Overview, 1st ed</source>
<publisher-loc>Germany</publisher-loc>
<publisher-name>Springer</publisher-name>
<year>2011</year>
<fpage>41</fpage>
<lpage>75</lpage>
</element-citation>
</ref>
<ref id="B71">
<label>71</label>
<element-citation publication-type="journal">
<name>
<surname>Afratis</surname>
<given-names>NA</given-names>
</name>
<name>
<surname>Nikitovic</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Multhaupt</surname>
<given-names>HA</given-names>
</name>
<name>
<surname>Theocharis</surname>
<given-names>AD</given-names>
</name>
<name>
<surname>Couchman</surname>
<given-names>JR</given-names>
</name>
<name>
<surname>Karamanos</surname>
<given-names>NK</given-names>
</name>
<article-title>Syndecans - key regulators of cell signaling and biological functions</article-title>
<source>FEBS J</source>
<year>2017</year>
<volume>284</volume>
<fpage>27</fpage>
<lpage>41</lpage>
<pub-id pub-id-type="pmid">27790852</pub-id>
</element-citation>
</ref>
<ref id="B72">
<label>72</label>
<element-citation publication-type="journal">
<name>
<surname>Bonnans</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Chou</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Werb</surname>
<given-names>Z</given-names>
</name>
<article-title>Remodelling the extracellular matrix in development and disease</article-title>
<source>Nat Rev Mol Cell Biol</source>
<year>2014</year>
<volume>15</volume>
<fpage>786</fpage>
<lpage>801</lpage>
<pub-id pub-id-type="pmid">25415508</pub-id>
</element-citation>
</ref>
<ref id="B73">
<label>73</label>
<element-citation publication-type="journal">
<name>
<surname>Sanderson</surname>
<given-names>RD</given-names>
</name>
<name>
<surname>Elkin</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Rapraeger</surname>
<given-names>AC</given-names>
</name>
<name>
<surname>Ilan</surname>
<given-names>N</given-names>
</name>
<name>
<surname>Vlodavsky</surname>
<given-names>I</given-names>
</name>
<article-title>Heparanase regulation of cancer, autophagy and inflammation: new mechanisms and targets for therapy</article-title>
<source>FEBS J</source>
<year>2017</year>
<volume>284</volume>
<fpage>42</fpage>
<lpage>55</lpage>
<pub-id pub-id-type="pmid">27758044</pub-id>
</element-citation>
</ref>
<ref id="B74">
<label>74</label>
<element-citation publication-type="journal">
<name>
<surname>Cruz-Munoz</surname>
<given-names>W</given-names>
</name>
<name>
<surname>Khokha</surname>
<given-names>R</given-names>
</name>
<article-title>The role of tissue inhibitors of metalloproteinases in tumorigenesis and metastasis</article-title>
<source>Crit Rev Clin Lab Sci</source>
<year>2008</year>
<volume>45</volume>
<fpage>291</fpage>
<lpage>338</lpage>
<pub-id pub-id-type="pmid">18568853</pub-id>
</element-citation>
</ref>
<ref id="B75">
<label>75</label>
<element-citation publication-type="journal">
<name>
<surname>Jackson</surname>
<given-names>HW</given-names>
</name>
<name>
<surname>Defamie</surname>
<given-names>V</given-names>
</name>
<name>
<surname>Waterhouse</surname>
<given-names>P</given-names>
</name>
<name>
<surname>Khokha</surname>
<given-names>R</given-names>
</name>
<article-title>TIMPs: versatile extracellular regulators in cancer</article-title>
<source>Nat Rev Cancer</source>
<year>2017</year>
<volume>17</volume>
<fpage>38</fpage>
<lpage>53</lpage>
<pub-id pub-id-type="pmid">27932800</pub-id>
</element-citation>
</ref>
<ref id="B76">
<label>76</label>
<element-citation publication-type="journal">
<name>
<surname>Ronnov-Jessen</surname>
<given-names>L</given-names>
</name>
<name>
<surname>Petersen</surname>
<given-names>OW</given-names>
</name>
<name>
<surname>Bissell</surname>
<given-names>MJ</given-names>
</name>
<article-title>Cellular changes involved in conversion of normal to malignant breast: importance of the stromal reaction</article-title>
<source>Physiol Rev</source>
<year>1996</year>
<volume>76</volume>
<fpage>69</fpage>
<lpage>125</lpage>
<pub-id pub-id-type="pmid">8592733</pub-id>
</element-citation>
</ref>
<ref id="B77">
<label>77</label>
<element-citation publication-type="journal">
<name>
<surname>Koivisto</surname>
<given-names>L</given-names>
</name>
<name>
<surname>Heino</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Hakkinen</surname>
<given-names>L</given-names>
</name>
<name>
<surname>Larjava</surname>
<given-names>H</given-names>
</name>
<article-title>Integrins in Wound Healing</article-title>
<source>Adv Wound Care (New Rochelle)</source>
<year>2014</year>
<volume>3</volume>
<fpage>762</fpage>
<lpage>83</lpage>
<pub-id pub-id-type="pmid">25493210</pub-id>
</element-citation>
</ref>
<ref id="B78">
<label>78</label>
<element-citation publication-type="journal">
<name>
<surname>Schnittert</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Bansal</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Storm</surname>
<given-names>G</given-names>
</name>
<name>
<surname>Prakash</surname>
<given-names>J</given-names>
</name>
<article-title>Integrins in wound healing, fibrosis and tumor stroma: High potential targets for therapeutics and drug delivery</article-title>
<source>Adv Drug Deliv Rev</source>
<year>2018</year>
<volume>129</volume>
<fpage>37</fpage>
<lpage>53</lpage>
<pub-id pub-id-type="pmid">29414674</pub-id>
</element-citation>
</ref>
<ref id="B79">
<label>79</label>
<element-citation publication-type="journal">
<name>
<surname>Schultz</surname>
<given-names>GS</given-names>
</name>
<name>
<surname>Wysocki</surname>
<given-names>A</given-names>
</name>
<article-title>Interactions between extracellular matrix and growth factors in wound healing</article-title>
<source>Wound Repair Regen</source>
<year>2009</year>
<volume>17</volume>
<fpage>153</fpage>
<lpage>62</lpage>
<pub-id pub-id-type="pmid">19320882</pub-id>
</element-citation>
</ref>
<ref id="B80">
<label>80</label>
<element-citation publication-type="journal">
<name>
<surname>Velnar</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Bailey</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Smrkolj</surname>
<given-names>V</given-names>
</name>
<article-title>The wound healing process: an overview of the cellular and molecular mechanisms</article-title>
<source>J Int Med Res</source>
<year>2009</year>
<volume>37</volume>
<fpage>1528</fpage>
<lpage>42</lpage>
<pub-id pub-id-type="pmid">19930861</pub-id>
</element-citation>
</ref>
<ref id="B81">
<label>81</label>
<element-citation publication-type="journal">
<name>
<surname>Kalluri</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Weinberg</surname>
<given-names>RA</given-names>
</name>
<article-title>The basics of epithelial-mesenchymal transition</article-title>
<source>J Clin Invest</source>
<year>2009</year>
<volume>119</volume>
<fpage>1420</fpage>
<lpage>8</lpage>
<pub-id pub-id-type="pmid">19487818</pub-id>
</element-citation>
</ref>
<ref id="B82">
<label>82</label>
<element-citation publication-type="journal">
<name>
<surname>Kalluri</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Neilson</surname>
<given-names>EG</given-names>
</name>
<article-title>Epithelial-mesenchymal transition and its implications for fibrosis</article-title>
<source>J Clin Invest</source>
<year>2003</year>
<volume>112</volume>
<fpage>1776</fpage>
<lpage>84</lpage>
<pub-id pub-id-type="pmid">14679171</pub-id>
</element-citation>
</ref>
<ref id="B83">
<label>83</label>
<element-citation publication-type="journal">
<name>
<surname>Hynes</surname>
<given-names>RO</given-names>
</name>
<article-title>Integrins: bidirectional, allosteric signaling machines</article-title>
<source>Cell</source>
<year>2002</year>
<volume>110</volume>
<fpage>673</fpage>
<lpage>87</lpage>
<pub-id pub-id-type="pmid">12297042</pub-id>
</element-citation>
</ref>
<ref id="B84">
<label>84</label>
<element-citation publication-type="journal">
<name>
<surname>Conroy</surname>
<given-names>KP</given-names>
</name>
<name>
<surname>Kitto</surname>
<given-names>LJ</given-names>
</name>
<name>
<surname>Henderson</surname>
<given-names>NC</given-names>
</name>
<article-title>alphav integrins: key regulators of tissue fibrosis</article-title>
<source>Cell Tissue Res</source>
<year>2016</year>
<volume>365</volume>
<fpage>511</fpage>
<lpage>9</lpage>
<pub-id pub-id-type="pmid">27139180</pub-id>
</element-citation>
</ref>
<ref id="B85">
<label>85</label>
<element-citation publication-type="journal">
<name>
<surname>Liu</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Shi-wen</surname>
<given-names>X</given-names>
</name>
<name>
<surname>Blumbach</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Eastwood</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Denton</surname>
<given-names>CP</given-names>
</name>
<name>
<surname>Eckes</surname>
<given-names>B</given-names>
</name>
<etal></etal>
<article-title>Expression of integrin β1 by fibroblasts is required for tissue repair in vivo</article-title>
<source>J Cell Sci</source>
<year>2010</year>
<volume>123</volume>
<fpage>3674</fpage>
<lpage>82</lpage>
<pub-id pub-id-type="pmid">20940256</pub-id>
</element-citation>
</ref>
<ref id="B86">
<label>86</label>
<element-citation publication-type="journal">
<name>
<surname>Afratis</surname>
<given-names>NA</given-names>
</name>
<name>
<surname>Klepfish</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Karamanos</surname>
<given-names>NK</given-names>
</name>
<name>
<surname>Sagi</surname>
<given-names>I</given-names>
</name>
<article-title>The apparent competitive action of ECM proteases and cross-linking enzymes during fibrosis: Applications to drug discovery</article-title>
<source>Adv Drug Deliv Rev</source>
<year>2018</year>
<volume>129</volume>
<fpage>4</fpage>
<lpage>15</lpage>
<pub-id pub-id-type="pmid">29627371</pub-id>
</element-citation>
</ref>
<ref id="B87">
<label>87</label>
<element-citation publication-type="journal">
<name>
<surname>Simian</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Hirai</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Navre</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Werb</surname>
<given-names>Z</given-names>
</name>
<name>
<surname>Lochter</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Bissell</surname>
<given-names>MJ</given-names>
</name>
<article-title>The interplay of matrix metalloproteinases, morphogens and growth factors is necessary for branching of mammary epithelial cells</article-title>
<source>Development</source>
<year>2001</year>
<volume>128</volume>
<fpage>3117</fpage>
<lpage>31</lpage>
<pub-id pub-id-type="pmid">11688561</pub-id>
</element-citation>
</ref>
<ref id="B88">
<label>88</label>
<element-citation publication-type="journal">
<name>
<surname>Peyrol</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Raccurt</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Gerard</surname>
<given-names>F</given-names>
</name>
<name>
<surname>Gleyzal</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Grimaud</surname>
<given-names>JA</given-names>
</name>
<name>
<surname>Sommer</surname>
<given-names>P</given-names>
</name>
<article-title>Lysyl oxidase gene expression in the stromal reaction to in situ and invasive ductal breast carcinoma</article-title>
<source>Am J Pathol</source>
<year>1997</year>
<volume>150</volume>
<fpage>497</fpage>
<lpage>507</lpage>
<pub-id pub-id-type="pmid">9033266</pub-id>
</element-citation>
</ref>
<ref id="B89">
<label>89</label>
<element-citation publication-type="journal">
<name>
<surname>De Wever</surname>
<given-names>O</given-names>
</name>
<name>
<surname>Demetter</surname>
<given-names>P</given-names>
</name>
<name>
<surname>Mareel</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Bracke</surname>
<given-names>M</given-names>
</name>
<article-title>Stromal myofibroblasts are drivers of invasive cancer growth</article-title>
<source>Int J Cancer</source>
<year>2008</year>
<volume>123</volume>
<fpage>2229</fpage>
<lpage>38</lpage>
<pub-id pub-id-type="pmid">18777559</pub-id>
</element-citation>
</ref>
<ref id="B90">
<label>90</label>
<element-citation publication-type="journal">
<name>
<surname>Tlsty</surname>
<given-names>TD</given-names>
</name>
<name>
<surname>Hein</surname>
<given-names>PW</given-names>
</name>
<article-title>Know thy neighbor: stromal cells can contribute oncogenic signals</article-title>
<source>Curr Opin Genet Dev</source>
<year>2001</year>
<volume>11</volume>
<fpage>54</fpage>
<lpage>9</lpage>
<pub-id pub-id-type="pmid">11163151</pub-id>
</element-citation>
</ref>
<ref id="B91">
<label>91</label>
<element-citation publication-type="journal">
<name>
<surname>Bissell</surname>
<given-names>MJ</given-names>
</name>
<name>
<surname>Radisky</surname>
<given-names>D</given-names>
</name>
<article-title>Putting tumours in context</article-title>
<source>Nat Rev Cancer</source>
<year>2001</year>
<volume>1</volume>
<fpage>46</fpage>
<lpage>54</lpage>
<pub-id pub-id-type="pmid">11900251</pub-id>
</element-citation>
</ref>
<ref id="B92">
<label>92</label>
<element-citation publication-type="journal">
<name>
<surname>Dvorak</surname>
<given-names>HF</given-names>
</name>
<article-title>Tumors: wounds that do not heal-redux</article-title>
<source>Cancer Immunol Res</source>
<year>2015</year>
<volume>3</volume>
<fpage>1</fpage>
<lpage>11</lpage>
<pub-id pub-id-type="pmid">25568067</pub-id>
</element-citation>
</ref>
<ref id="B93">
<label>93</label>
<element-citation publication-type="journal">
<name>
<surname>Walker</surname>
<given-names>RA</given-names>
</name>
<article-title>The complexities of breast cancer desmoplasia</article-title>
<source>Breast Cancer Res</source>
<year>2001</year>
<volume>3</volume>
<fpage>143</fpage>
<lpage>5</lpage>
<pub-id pub-id-type="pmid">11305947</pub-id>
</element-citation>
</ref>
<ref id="B94">
<label>94</label>
<element-citation publication-type="journal">
<name>
<surname>Desmouliere</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Guyot</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Gabbiani</surname>
<given-names>G</given-names>
</name>
<article-title>The stroma reaction myofibroblast: a key player in the control of tumor cell behavior</article-title>
<source>Int J Dev Biol</source>
<year>2004</year>
<volume>48</volume>
<fpage>509</fpage>
<lpage>17</lpage>
<pub-id pub-id-type="pmid">15349825</pub-id>
</element-citation>
</ref>
<ref id="B95">
<label>95</label>
<element-citation publication-type="journal">
<name>
<surname>Goetz</surname>
<given-names>JG</given-names>
</name>
<name>
<surname>Minguet</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Navarro-Lerida</surname>
<given-names>I</given-names>
</name>
<name>
<surname>Lazcano</surname>
<given-names>JJ</given-names>
</name>
<name>
<surname>Samaniego</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Calvo</surname>
<given-names>E</given-names>
</name>
<etal></etal>
<article-title>Biomechanical remodeling of the microenvironment by stromal caveolin-1 favors tumor invasion and metastasis</article-title>
<source>Cell</source>
<year>2011</year>
<volume>146</volume>
<fpage>148</fpage>
<lpage>63</lpage>
<pub-id pub-id-type="pmid">21729786</pub-id>
</element-citation>
</ref>
<ref id="B96">
<label>96</label>
<element-citation publication-type="journal">
<name>
<surname>Northcott</surname>
<given-names>JM</given-names>
</name>
<name>
<surname>Dean</surname>
<given-names>IS</given-names>
</name>
<name>
<surname>Mouw</surname>
<given-names>JK</given-names>
</name>
<name>
<surname>Weaver</surname>
<given-names>VM</given-names>
</name>
<article-title>Feeling Stress: The Mechanics of Cancer Progression and Aggression</article-title>
<source>Front Cell Dev Biol</source>
<year>2018</year>
<volume>6</volume>
<fpage>17</fpage>
<pub-id pub-id-type="pmid">29541636</pub-id>
</element-citation>
</ref>
<ref id="B97">
<label>97</label>
<element-citation publication-type="journal">
<name>
<surname>Butcher</surname>
<given-names>DT</given-names>
</name>
<name>
<surname>Alliston</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Weaver</surname>
<given-names>VM</given-names>
</name>
<article-title>A tense situation: forcing tumour progression</article-title>
<source>Nat Rev Cancer</source>
<year>2009</year>
<volume>9</volume>
<fpage>108</fpage>
<lpage>22</lpage>
<pub-id pub-id-type="pmid">19165226</pub-id>
</element-citation>
</ref>
<ref id="B98">
<label>98</label>
<element-citation publication-type="journal">
<name>
<surname>Werb</surname>
<given-names>Z</given-names>
</name>
<name>
<surname>Lu</surname>
<given-names>P</given-names>
</name>
<article-title>The Role of Stroma in Tumor Development</article-title>
<source>Cancer J</source>
<year>2015</year>
<volume>21</volume>
<fpage>250</fpage>
<lpage>3</lpage>
<pub-id pub-id-type="pmid">26222075</pub-id>
</element-citation>
</ref>
<ref id="B99">
<label>99</label>
<element-citation publication-type="journal">
<name>
<surname>Keely</surname>
<given-names>PJ</given-names>
</name>
<article-title>Mechanisms by which the extracellular matrix and integrin signaling act to regulate the switch between tumor suppression and tumor promotion</article-title>
<source>J Mammary Gland Biol Neoplasia</source>
<year>2011</year>
<volume>16</volume>
<fpage>205</fpage>
<lpage>19</lpage>
<pub-id pub-id-type="pmid">21822945</pub-id>
</element-citation>
</ref>
<ref id="B100">
<label>100</label>
<element-citation publication-type="journal">
<name>
<surname>Toole</surname>
<given-names>BP</given-names>
</name>
<article-title>Hyaluronan: from extracellular glue to pericellular cue</article-title>
<source>Nat Rev Cancer</source>
<year>2004</year>
<volume>4</volume>
<fpage>528</fpage>
<lpage>39</lpage>
<pub-id pub-id-type="pmid">15229478</pub-id>
</element-citation>
</ref>
<ref id="B101">
<label>101</label>
<element-citation publication-type="journal">
<name>
<surname>Erkan</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Reiser-Erkan</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Michalski</surname>
<given-names>CW</given-names>
</name>
<name>
<surname>Kleeff</surname>
<given-names>J</given-names>
</name>
<article-title>Tumor microenvironment and progression of pancreatic cancer</article-title>
<source>Exp Oncol</source>
<year>2010</year>
<volume>32</volume>
<fpage>128</fpage>
<lpage>31</lpage>
<pub-id pub-id-type="pmid">21403605</pub-id>
</element-citation>
</ref>
<ref id="B102">
<label>102</label>
<element-citation publication-type="journal">
<name>
<surname>Yu</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Tannock</surname>
<given-names>IF</given-names>
</name>
<article-title>Targeting tumor architecture to favor drug penetration: a new weapon to combat chemoresistance in pancreatic cancer?</article-title>
<source>Cancer Cell</source>
<year>2012</year>
<volume>21</volume>
<fpage>327</fpage>
<lpage>9</lpage>
<pub-id pub-id-type="pmid">22439929</pub-id>
</element-citation>
</ref>
<ref id="B103">
<label>103</label>
<element-citation publication-type="journal">
<name>
<surname>Rafii</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Juarez</surname>
<given-names>MM</given-names>
</name>
<name>
<surname>Albertson</surname>
<given-names>TE</given-names>
</name>
<name>
<surname>Chan</surname>
<given-names>AL</given-names>
</name>
<article-title>A review of current and novel therapies for idiopathic pulmonary fibrosis</article-title>
<source>J Thorac Dis</source>
<year>2013</year>
<volume>5</volume>
<fpage>48</fpage>
<lpage>73</lpage>
<pub-id pub-id-type="pmid">23372951</pub-id>
</element-citation>
</ref>
<ref id="B104">
<label>104</label>
<element-citation publication-type="journal">
<name>
<surname>Selvaggio</surname>
<given-names>AS</given-names>
</name>
<name>
<surname>Noble</surname>
<given-names>PW</given-names>
</name>
<article-title>Pirfenidone Initiates a New Era in the Treatment of Idiopathic Pulmonary Fibrosis</article-title>
<source>Annu Rev Med</source>
<year>2016</year>
<volume>67</volume>
<fpage>487</fpage>
<lpage>95</lpage>
<pub-id pub-id-type="pmid">26565677</pub-id>
</element-citation>
</ref>
<ref id="B105">
<label>105</label>
<element-citation publication-type="journal">
<name>
<surname>McCormack</surname>
<given-names>PL</given-names>
</name>
<article-title>Nintedanib: first global approval</article-title>
<source>Drugs</source>
<year>2015</year>
<volume>75</volume>
<fpage>129</fpage>
<lpage>39</lpage>
<pub-id pub-id-type="pmid">25430078</pub-id>
</element-citation>
</ref>
<ref id="B106">
<label>106</label>
<element-citation publication-type="journal">
<name>
<surname>Wahyudi</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Reynolds</surname>
<given-names>AA</given-names>
</name>
<name>
<surname>Li</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Owen</surname>
<given-names>SC</given-names>
</name>
<name>
<surname>Yu</surname>
<given-names>SM</given-names>
</name>
<article-title>Targeting collagen for diagnostic imaging and therapeutic delivery</article-title>
<source>J Control Release</source>
<year>2016</year>
<volume>240</volume>
<fpage>323</fpage>
<lpage>31</lpage>
<pub-id pub-id-type="pmid">26773768</pub-id>
</element-citation>
</ref>
<ref id="B107">
<label>107</label>
<element-citation publication-type="journal">
<name>
<surname>Desogere</surname>
<given-names>P</given-names>
</name>
<name>
<surname>Montesi</surname>
<given-names>SB</given-names>
</name>
<name>
<surname>Caravan</surname>
<given-names>P</given-names>
</name>
<article-title>Molecular Probes for Imaging Fibrosis and Fibrogenesis</article-title>
<source>Chemistry</source>
<year>2019</year>
<volume>25</volume>
<fpage>1128</fpage>
<lpage>41</lpage>
<pub-id pub-id-type="pmid">30014529</pub-id>
</element-citation>
</ref>
<ref id="B108">
<label>108</label>
<element-citation publication-type="journal">
<name>
<surname>Zhao</surname>
<given-names>X</given-names>
</name>
<name>
<surname>Psarianos</surname>
<given-names>P</given-names>
</name>
<name>
<surname>Ghoraie</surname>
<given-names>LS</given-names>
</name>
<name>
<surname>Yip</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Goldstein</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Gilbert</surname>
<given-names>R</given-names>
</name>
<etal></etal>
<article-title>Metabolic regulation of dermal fibroblasts contributes to skin extracellular matrix homeostasis and fibrosis</article-title>
<source>Nat Metab</source>
<year>2019</year>
<volume>1</volume>
<fpage>147</fpage>
<lpage>57</lpage>
</element-citation>
</ref>
<ref id="B109">
<label>109</label>
<element-citation publication-type="journal">
<name>
<surname>Zion</surname>
<given-names>O</given-names>
</name>
<name>
<surname>Genin</surname>
<given-names>O</given-names>
</name>
<name>
<surname>Kawada</surname>
<given-names>N</given-names>
</name>
<name>
<surname>Yoshizato</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Roffe</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Nagler</surname>
<given-names>A</given-names>
</name>
<etal></etal>
<article-title>Inhibition of transforming growth factor beta signaling by halofuginone as a modality for pancreas fibrosis prevention</article-title>
<source>Pancreas</source>
<year>2009</year>
<volume>38</volume>
<fpage>427</fpage>
<lpage>35</lpage>
<pub-id pub-id-type="pmid">19188864</pub-id>
</element-citation>
</ref>
<ref id="B110">
<label>110</label>
<element-citation publication-type="journal">
<name>
<surname>Pines</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Knopov</surname>
<given-names>V</given-names>
</name>
<name>
<surname>Genina</surname>
<given-names>O</given-names>
</name>
<name>
<surname>Lavelin</surname>
<given-names>I</given-names>
</name>
<name>
<surname>Nagler</surname>
<given-names>A</given-names>
</name>
<article-title>Halofuginone, a specific inhibitor of collagen type I synthesis, prevents dimethylnitrosamine-induced liver cirrhosis</article-title>
<source>J Hepatol</source>
<year>1997</year>
<volume>27</volume>
<fpage>391</fpage>
<lpage>8</lpage>
<pub-id pub-id-type="pmid">9288615</pub-id>
</element-citation>
</ref>
<ref id="B111">
<label>111</label>
<element-citation publication-type="journal">
<name>
<surname>Juarez</surname>
<given-names>P</given-names>
</name>
<name>
<surname>Mohammad</surname>
<given-names>KS</given-names>
</name>
<name>
<surname>Yin</surname>
<given-names>JJ</given-names>
</name>
<name>
<surname>Fournier</surname>
<given-names>PG</given-names>
</name>
<name>
<surname>McKenna</surname>
<given-names>RC</given-names>
</name>
<name>
<surname>Davis</surname>
<given-names>HW</given-names>
</name>
<etal></etal>
<article-title>Halofuginone inhibits the establishment and progression of melanoma bone metastases</article-title>
<source>Cancer Res</source>
<year>2012</year>
<volume>72</volume>
<fpage>6247</fpage>
<lpage>56</lpage>
<pub-id pub-id-type="pmid">23002206</pub-id>
</element-citation>
</ref>
<ref id="B112">
<label>112</label>
<element-citation publication-type="journal">
<name>
<surname>Diop-Frimpong</surname>
<given-names>B</given-names>
</name>
<name>
<surname>Chauhan</surname>
<given-names>VP</given-names>
</name>
<name>
<surname>Krane</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Boucher</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Jain</surname>
<given-names>RK</given-names>
</name>
<article-title>Losartan inhibits collagen I synthesis and improves the distribution and efficacy of nanotherapeutics in tumors</article-title>
<source>Proc Natl Acad Sci U S A</source>
<year>2011</year>
<volume>108</volume>
<fpage>2909</fpage>
<lpage>14</lpage>
<pub-id pub-id-type="pmid">21282607</pub-id>
</element-citation>
</ref>
<ref id="B113">
<label>113</label>
<element-citation publication-type="journal">
<name>
<surname>Zhao</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Cao</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Melamed</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Worley</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Gockley</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Jones</surname>
<given-names>D</given-names>
</name>
<etal></etal>
<article-title>Losartan treatment enhances chemotherapy efficacy and reduces ascites in ovarian cancer models by normalizing the tumor stroma</article-title>
<source>Proc Natl Acad Sci U S A</source>
<year>2019</year>
<volume>116</volume>
<fpage>2210</fpage>
<lpage>9</lpage>
<pub-id pub-id-type="pmid">30659155</pub-id>
</element-citation>
</ref>
<ref id="B114">
<label>114</label>
<element-citation publication-type="journal">
<name>
<surname>Murphy</surname>
<given-names>JE</given-names>
</name>
<name>
<surname>Wo</surname>
<given-names>JY-L</given-names>
</name>
<name>
<surname>Ferrone</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Jiang</surname>
<given-names>W</given-names>
</name>
<name>
<surname>Yeap</surname>
<given-names>BY</given-names>
</name>
<name>
<surname>Blaszkowsky</surname>
<given-names>LS</given-names>
</name>
<etal></etal>
<article-title>TGF-B1 inhibition with losartan in combination with FOLFIRINOX (F-NOX) in locally advanced pancreatic cancer (LAPC): Preliminary feasibility and R0 resection rates from a prospective phase II study</article-title>
<source>J Clin Oncol</source>
<year>2017</year>
<volume>35</volume>
<fpage>386</fpage>
</element-citation>
</ref>
<ref id="B115">
<label>115</label>
<element-citation publication-type="journal">
<name>
<surname>Murphy</surname>
<given-names>JE</given-names>
</name>
<name>
<surname>Wo</surname>
<given-names>JY</given-names>
</name>
<name>
<surname>Ryan</surname>
<given-names>DP</given-names>
</name>
<name>
<surname>Clark</surname>
<given-names>JW</given-names>
</name>
<name>
<surname>Jiang</surname>
<given-names>W</given-names>
</name>
<name>
<surname>Yeap</surname>
<given-names>BY</given-names>
</name>
<etal></etal>
<article-title>Total Neoadjuvant Therapy With FOLFIRINOX in Combination With Losartan Followed by Chemoradiotherapy for Locally Advanced Pancreatic Cancer: A Phase 2 Clinical TrialNeoadjuvant FOLFIRINOX With Losartan Followed by Chemoradiotherapy in Advanced Pancreatic CancerNeoadjuvant FOLFIRINOX With Losartan Followed by Chemoradiotherapy in Advanced Pancreatic Cancer</article-title>
<source>JAMA Oncolo</source>
<year>2019</year>
<volume>5</volume>
<fpage>1020</fpage>
<lpage>1027</lpage>
</element-citation>
</ref>
<ref id="B116">
<label>116</label>
<element-citation publication-type="journal">
<name>
<surname>Liu</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Liao</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Diop-Frimpong</surname>
<given-names>B</given-names>
</name>
<name>
<surname>Chen</surname>
<given-names>W</given-names>
</name>
<name>
<surname>Goel</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Naxerova</surname>
<given-names>K</given-names>
</name>
<etal></etal>
<article-title>TGF-beta blockade improves the distribution and efficacy of therapeutics in breast carcinoma by normalizing the tumor stroma</article-title>
<source>Proc Natl Acad Sci U S A</source>
<year>2012</year>
<volume>109</volume>
<fpage>16618</fpage>
<lpage>23</lpage>
<pub-id pub-id-type="pmid">22996328</pub-id>
</element-citation>
</ref>
<ref id="B117">
<label>117</label>
<element-citation publication-type="journal">
<name>
<surname>Chauhan</surname>
<given-names>VP</given-names>
</name>
<name>
<surname>Martin</surname>
<given-names>JD</given-names>
</name>
<name>
<surname>Liu</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Lacorre</surname>
<given-names>DA</given-names>
</name>
<name>
<surname>Jain</surname>
<given-names>SR</given-names>
</name>
<name>
<surname>Kozin</surname>
<given-names>SV</given-names>
</name>
<etal></etal>
<article-title>Angiotensin inhibition enhances drug delivery and potentiates chemotherapy by decompressing tumour blood vessels</article-title>
<source>Nat Commun</source>
<year>2013</year>
<volume>4</volume>
<fpage>2516</fpage>
<pub-id pub-id-type="pmid">24084631</pub-id>
</element-citation>
</ref>
<ref id="B118">
<label>118</label>
<element-citation publication-type="journal">
<name>
<surname>Haque</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Morris</surname>
<given-names>JC</given-names>
</name>
<article-title>Transforming growth factor-beta: A therapeutic target for cancer</article-title>
<source>Hum Vaccin Immunother</source>
<year>2017</year>
<volume>13</volume>
<fpage>1741</fpage>
<lpage>50</lpage>
<pub-id pub-id-type="pmid">28575585</pub-id>
</element-citation>
</ref>
<ref id="B119">
<label>119</label>
<element-citation publication-type="journal">
<name>
<surname>Akhurst</surname>
<given-names>RJ</given-names>
</name>
<name>
<surname>Hata</surname>
<given-names>A</given-names>
</name>
<article-title>Targeting the TGFbeta signalling pathway in disease</article-title>
<source>Nat Rev Drug Discov</source>
<year>2012</year>
<volume>11</volume>
<fpage>790</fpage>
<lpage>811</lpage>
<pub-id pub-id-type="pmid">23000686</pub-id>
</element-citation>
</ref>
<ref id="B120">
<label>120</label>
<element-citation publication-type="journal">
<name>
<surname>Sussman</surname>
<given-names>BJ</given-names>
</name>
<name>
<surname>Bromley</surname>
<given-names>JW</given-names>
</name>
<name>
<surname>Gomez</surname>
<given-names>JC</given-names>
</name>
<article-title>Injection of collagenase in the treatment of herniated lumbar disk. Initial clinical report</article-title>
<source>JAMA</source>
<year>1981</year>
<volume>245</volume>
<fpage>730</fpage>
<lpage>2</lpage>
<pub-id pub-id-type="pmid">6257939</pub-id>
</element-citation>
</ref>
<ref id="B121">
<label>121</label>
<element-citation publication-type="journal">
<name>
<surname>Desai</surname>
<given-names>SS</given-names>
</name>
<name>
<surname>Hentz</surname>
<given-names>VR</given-names>
</name>
<article-title>The treatment of Dupuytren disease</article-title>
<source>J Hand Surg Am</source>
<year>2011</year>
<volume>36</volume>
<fpage>936</fpage>
<lpage>42</lpage>
<pub-id pub-id-type="pmid">21527148</pub-id>
</element-citation>
</ref>
<ref id="B122">
<label>122</label>
<element-citation publication-type="journal">
<name>
<surname>Özcan</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Ergün</surname>
<given-names>O</given-names>
</name>
<name>
<surname>Çelik</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Çördük</surname>
<given-names>N</given-names>
</name>
<name>
<surname>Özok</surname>
<given-names>G</given-names>
</name>
<article-title>Enzymatic debridement of burn wound with collagenase in children with partial-thickness burns</article-title>
<source>Burns</source>
<year>2002</year>
<volume>28</volume>
<fpage>791</fpage>
<lpage>4</lpage>
<pub-id pub-id-type="pmid">12464480</pub-id>
</element-citation>
</ref>
<ref id="B123">
<label>123</label>
<element-citation publication-type="journal">
<name>
<surname>Dolor</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Szoka</surname>
<given-names>FC Jr</given-names>
</name>
<article-title>Digesting a Path Forward: The Utility of Collagenase Tumor Treatment for Improved Drug Delivery</article-title>
<source>Mol Pharm</source>
<year>2018</year>
<volume>15</volume>
<fpage>2069</fpage>
<lpage>83</lpage>
<pub-id pub-id-type="pmid">29767984</pub-id>
</element-citation>
</ref>
<ref id="B124">
<label>124</label>
<element-citation publication-type="journal">
<name>
<surname>McKee</surname>
<given-names>TD</given-names>
</name>
<name>
<surname>Grandi</surname>
<given-names>P</given-names>
</name>
<name>
<surname>Mok</surname>
<given-names>W</given-names>
</name>
<name>
<surname>Alexandrakis</surname>
<given-names>G</given-names>
</name>
<name>
<surname>Insin</surname>
<given-names>N</given-names>
</name>
<name>
<surname>Zimmer</surname>
<given-names>JP</given-names>
</name>
<etal></etal>
<article-title>Degradation of fibrillar collagen in a human melanoma xenograft improves the efficacy of an oncolytic herpes simplex virus vector</article-title>
<source>Cancer Res</source>
<year>2006</year>
<volume>66</volume>
<fpage>2509</fpage>
<lpage>13</lpage>
<pub-id pub-id-type="pmid">16510565</pub-id>
</element-citation>
</ref>
<ref id="B125">
<label>125</label>
<element-citation publication-type="journal">
<name>
<surname>Kato</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Hattori</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Kubo</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Maitani</surname>
<given-names>Y</given-names>
</name>
<article-title>Collagenase-1 injection improved tumor distribution and gene expression of cationic lipoplex</article-title>
<source>Int J Pharm</source>
<year>2012</year>
<volume>423</volume>
<fpage>428</fpage>
<lpage>34</lpage>
<pub-id pub-id-type="pmid">22197775</pub-id>
</element-citation>
</ref>
<ref id="B126">
<label>126</label>
<element-citation publication-type="journal">
<name>
<surname>Goodman</surname>
<given-names>TT</given-names>
</name>
<name>
<surname>Olive</surname>
<given-names>PL</given-names>
</name>
<name>
<surname>Pun</surname>
<given-names>SH</given-names>
</name>
<article-title>Increased nanoparticle penetration in collagenase-treated multicellular spheroids</article-title>
<source>Int J Nanomedicine</source>
<year>2007</year>
<volume>2</volume>
<fpage>265</fpage>
<lpage>74</lpage>
<pub-id pub-id-type="pmid">17722554</pub-id>
</element-citation>
</ref>
<ref id="B127">
<label>127</label>
<element-citation publication-type="journal">
<name>
<surname>Bond</surname>
<given-names>MD</given-names>
</name>
<name>
<surname>Van Wart</surname>
<given-names>HE</given-names>
</name>
<article-title>Characterization of the individual collagenases from Clostridium histolyticum</article-title>
<source>Biochemistry</source>
<year>1984</year>
<volume>23</volume>
<fpage>3085</fpage>
<lpage>91</lpage>
<pub-id pub-id-type="pmid">6087888</pub-id>
</element-citation>
</ref>
<ref id="B128">
<label>128</label>
<element-citation publication-type="journal">
<name>
<surname>Zinger</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Koren</surname>
<given-names>L</given-names>
</name>
<name>
<surname>Adir</surname>
<given-names>O</given-names>
</name>
<name>
<surname>Poley</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Alyan</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Yaari</surname>
<given-names>Z</given-names>
</name>
<etal></etal>
<article-title>Collagenase Nanoparticles Enhance the Penetration of Drugs into Pancreatic Tumors</article-title>
<source>ACS Nano</source>
<year>2019</year>
<volume>13</volume>
<fpage>11008</fpage>
<lpage>21</lpage>
<pub-id pub-id-type="pmid">31503443</pub-id>
</element-citation>
</ref>
<ref id="B129">
<label>129</label>
<element-citation publication-type="journal">
<name>
<surname>Unemori</surname>
<given-names>EN</given-names>
</name>
<name>
<surname>Amento</surname>
<given-names>EP</given-names>
</name>
<article-title>Relaxin modulates synthesis and secretion of procollagenase and collagen by human dermal fibroblasts</article-title>
<source>J Biol Chem</source>
<year>1990</year>
<volume>265</volume>
<fpage>10681</fpage>
<lpage>5</lpage>
<pub-id pub-id-type="pmid">2162358</pub-id>
</element-citation>
</ref>
<ref id="B130">
<label>130</label>
<element-citation publication-type="journal">
<name>
<surname>Brown</surname>
<given-names>E</given-names>
</name>
<name>
<surname>McKee</surname>
<given-names>T</given-names>
</name>
<name>
<surname>diTomaso</surname>
<given-names>E</given-names>
</name>
<name>
<surname>Pluen</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Seed</surname>
<given-names>B</given-names>
</name>
<name>
<surname>Boucher</surname>
<given-names>Y</given-names>
</name>
<etal></etal>
<article-title>Dynamic imaging of collagen and its modulation in tumors in vivo using second-harmonic generation</article-title>
<source>Nat Med</source>
<year>2003</year>
<volume>9</volume>
<fpage>796</fpage>
<lpage>800</lpage>
<pub-id pub-id-type="pmid">12754503</pub-id>
</element-citation>
</ref>
<ref id="B131">
<label>131</label>
<element-citation publication-type="journal">
<name>
<surname>Eikenes</surname>
<given-names>L</given-names>
</name>
<name>
<surname>Tufto</surname>
<given-names>I</given-names>
</name>
<name>
<surname>Schnell</surname>
<given-names>EA</given-names>
</name>
<name>
<surname>Bjorkoy</surname>
<given-names>A</given-names>
</name>
<name>
<surname>De Lange Davies</surname>
<given-names>C</given-names>
</name>
<article-title>Effect of collagenase and hyaluronidase on free and anomalous diffusion in multicellular spheroids and xenografts</article-title>
<source>Anticancer Res</source>
<year>2010</year>
<volume>30</volume>
<fpage>359</fpage>
<lpage>68</lpage>
<pub-id pub-id-type="pmid">20332440</pub-id>
</element-citation>
</ref>
<ref id="B132">
<label>132</label>
<element-citation publication-type="book">
<name>
<surname>Lu</surname>
<given-names>P</given-names>
</name>
<name>
<surname>Takai</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Weaver</surname>
<given-names>VM</given-names>
</name>
<name>
<surname>Werb</surname>
<given-names>Z</given-names>
</name>
<source>Extracellular matrix degradation and remodeling in development and disease</source>
<publisher-name>Cold Spring Harb Perspect Biol</publisher-name>
<year>2011</year>
<fpage>3</fpage>
</element-citation>
</ref>
<ref id="B133">
<label>133</label>
<element-citation publication-type="journal">
<name>
<surname>Coussens</surname>
<given-names>LM</given-names>
</name>
<name>
<surname>Fingleton</surname>
<given-names>B</given-names>
</name>
<name>
<surname>Matrisian</surname>
<given-names>LM</given-names>
</name>
<article-title>Matrix Metalloproteinase Inhibitors and Cancer—Trials and Tribulations</article-title>
<source>Science</source>
<year>2002</year>
<volume>295</volume>
<fpage>2387</fpage>
<lpage>92</lpage>
<pub-id pub-id-type="pmid">11923519</pub-id>
</element-citation>
</ref>
<ref id="B134">
<label>134</label>
<element-citation publication-type="journal">
<name>
<surname>Overall</surname>
<given-names>CM</given-names>
</name>
<name>
<surname>López-Otín</surname>
<given-names>C</given-names>
</name>
<article-title>Strategies for MMP inhibition in cancer: innovations for the post-trial era</article-title>
<source>Nat Rev Cancer</source>
<year>2002</year>
<volume>2</volume>
<fpage>657</fpage>
<lpage>72</lpage>
<pub-id pub-id-type="pmid">12209155</pub-id>
</element-citation>
</ref>
<ref id="B135">
<label>135</label>
<element-citation publication-type="journal">
<name>
<surname>Parks</surname>
<given-names>WC</given-names>
</name>
<name>
<surname>Wilson</surname>
<given-names>CL</given-names>
</name>
<name>
<surname>Lopez-Boado</surname>
<given-names>YS</given-names>
</name>
<article-title>Matrix metalloproteinases as modulators of inflammation and innate immunity</article-title>
<source>Nat Rev Immunol</source>
<year>2004</year>
<volume>4</volume>
<fpage>617</fpage>
<lpage>29</lpage>
<pub-id pub-id-type="pmid">15286728</pub-id>
</element-citation>
</ref>
<ref id="B136">
<label>136</label>
<element-citation publication-type="journal">
<name>
<surname>Fang</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Yuan</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Peng</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Li</surname>
<given-names>Y</given-names>
</name>
<article-title>Collagen as a double-edged sword in tumor progression</article-title>
<source>Tumour Biol</source>
<year>2014</year>
<volume>35</volume>
<fpage>2871</fpage>
<lpage>82</lpage>
<pub-id pub-id-type="pmid">24338768</pub-id>
</element-citation>
</ref>
<ref id="B137">
<label>137</label>
<element-citation publication-type="journal">
<name>
<surname>Page-McCaw</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Ewald</surname>
<given-names>AJ</given-names>
</name>
<name>
<surname>Werb</surname>
<given-names>Z</given-names>
</name>
<article-title>Matrix metalloproteinases and the regulation of tissue remodelling</article-title>
<source>Nat Rev Mol Cell Biol</source>
<year>2007</year>
<volume>8</volume>
<fpage>221</fpage>
<lpage>33</lpage>
<pub-id pub-id-type="pmid">17318226</pub-id>
</element-citation>
</ref>
<ref id="B138">
<label>138</label>
<element-citation publication-type="journal">
<name>
<surname>Li</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Foss</surname>
<given-names>CA</given-names>
</name>
<name>
<surname>Summerfield</surname>
<given-names>DD</given-names>
</name>
<name>
<surname>Doyle</surname>
<given-names>JJ</given-names>
</name>
<name>
<surname>Torok</surname>
<given-names>CM</given-names>
</name>
<name>
<surname>Dietz</surname>
<given-names>HC</given-names>
</name>
<etal></etal>
<article-title>Targeting collagen strands by photo-triggered triple-helix hybridization</article-title>
<source>Proc Natl Acad Sci U S A</source>
<year>2012</year>
<volume>109</volume>
<fpage>14767</fpage>
<lpage>72</lpage>
<pub-id pub-id-type="pmid">22927373</pub-id>
</element-citation>
</ref>
<ref id="B139">
<label>139</label>
<element-citation publication-type="journal">
<name>
<surname>Erler</surname>
<given-names>JT</given-names>
</name>
<name>
<surname>Bennewith</surname>
<given-names>KL</given-names>
</name>
<name>
<surname>Cox</surname>
<given-names>TR</given-names>
</name>
<name>
<surname>Lang</surname>
<given-names>G</given-names>
</name>
<name>
<surname>Bird</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Koong</surname>
<given-names>A</given-names>
</name>
<etal></etal>
<article-title>Hypoxia-induced lysyl oxidase is a critical mediator of bone marrow cell recruitment to form the premetastatic niche</article-title>
<source>Cancer Cell</source>
<year>2009</year>
<volume>15</volume>
<fpage>35</fpage>
<lpage>44</lpage>
<pub-id pub-id-type="pmid">19111879</pub-id>
</element-citation>
</ref>
<ref id="B140">
<label>140</label>
<element-citation publication-type="journal">
<name>
<surname>Georges</surname>
<given-names>PC</given-names>
</name>
<name>
<surname>Hui</surname>
<given-names>JJ</given-names>
</name>
<name>
<surname>Gombos</surname>
<given-names>Z</given-names>
</name>
<name>
<surname>McCormick</surname>
<given-names>ME</given-names>
</name>
<name>
<surname>Wang</surname>
<given-names>AY</given-names>
</name>
<name>
<surname>Uemura</surname>
<given-names>M</given-names>
</name>
<etal></etal>
<article-title>Increased stiffness of the rat liver precedes matrix deposition: implications for fibrosis</article-title>
<source>Am J Physiol Gastrointest Liver Physiol</source>
<year>2007</year>
<volume>293</volume>
<fpage>G1147</fpage>
<lpage>54</lpage>
<pub-id pub-id-type="pmid">17932231</pub-id>
</element-citation>
</ref>
<ref id="B141">
<label>141</label>
<element-citation publication-type="journal">
<name>
<surname>Cox</surname>
<given-names>TR</given-names>
</name>
<name>
<surname>Bird</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Baker</surname>
<given-names>AM</given-names>
</name>
<name>
<surname>Barker</surname>
<given-names>HE</given-names>
</name>
<name>
<surname>Ho</surname>
<given-names>MW</given-names>
</name>
<name>
<surname>Lang</surname>
<given-names>G</given-names>
</name>
<etal></etal>
<article-title>LOX-mediated collagen crosslinking is responsible for fibrosis-enhanced metastasis</article-title>
<source>Cancer Res</source>
<year>2013</year>
<volume>73</volume>
<fpage>1721</fpage>
<lpage>32</lpage>
<pub-id pub-id-type="pmid">23345161</pub-id>
</element-citation>
</ref>
<ref id="B142">
<label>142</label>
<element-citation publication-type="journal">
<name>
<surname>Gilkes</surname>
<given-names>DM</given-names>
</name>
<name>
<surname>Chaturvedi</surname>
<given-names>P</given-names>
</name>
<name>
<surname>Bajpai</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Wong</surname>
<given-names>CC</given-names>
</name>
<name>
<surname>Wei</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Pitcairn</surname>
<given-names>S</given-names>
</name>
<etal></etal>
<article-title>Collagen prolyl hydroxylases are essential for breast cancer metastasis</article-title>
<source>Cancer Res</source>
<year>2013</year>
<volume>73</volume>
<fpage>3285</fpage>
<lpage>96</lpage>
<pub-id pub-id-type="pmid">23539444</pub-id>
</element-citation>
</ref>
<ref id="B143">
<label>143</label>
<element-citation publication-type="journal">
<name>
<surname>Miller</surname>
<given-names>BW</given-names>
</name>
<name>
<surname>Morton</surname>
<given-names>JP</given-names>
</name>
<name>
<surname>Pinese</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Saturno</surname>
<given-names>G</given-names>
</name>
<name>
<surname>Jamieson</surname>
<given-names>NB</given-names>
</name>
<name>
<surname>McGhee</surname>
<given-names>E</given-names>
</name>
<etal></etal>
<article-title>Targeting the LOX/hypoxia axis reverses many of the features that make pancreatic cancer deadly: inhibition of LOX abrogates metastasis and enhances drug efficacy</article-title>
<source>EMBO Mol Med</source>
<year>2015</year>
<volume>7</volume>
<fpage>1063</fpage>
<lpage>76</lpage>
<pub-id pub-id-type="pmid">26077591</pub-id>
</element-citation>
</ref>
<ref id="B144">
<label>144</label>
<element-citation publication-type="journal">
<name>
<surname>Kanapathipillai</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Mammoto</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Mammoto</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Kang</surname>
<given-names>JH</given-names>
</name>
<name>
<surname>Jiang</surname>
<given-names>E</given-names>
</name>
<name>
<surname>Ghosh</surname>
<given-names>K</given-names>
</name>
<etal></etal>
<article-title>Inhibition of mammary tumor growth using lysyl oxidase-targeting nanoparticles to modify extracellular matrix</article-title>
<source>Nano Lett</source>
<year>2012</year>
<volume>12</volume>
<fpage>3213</fpage>
<lpage>7</lpage>
<pub-id pub-id-type="pmid">22554317</pub-id>
</element-citation>
</ref>
<ref id="B145">
<label>145</label>
<element-citation publication-type="journal">
<name>
<surname>Benson</surname>
<given-names>AB 3rd</given-names>
</name>
<name>
<surname>Wainberg</surname>
<given-names>ZA</given-names>
</name>
<name>
<surname>Hecht</surname>
<given-names>JR</given-names>
</name>
<name>
<surname>Vyushkov</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Dong</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Bendell</surname>
<given-names>J</given-names>
</name>
<etal></etal>
<article-title>A Phase II Randomized, Double-Blind, Placebo-Controlled Study of Simtuzumab or Placebo in Combination with Gemcitabine for the First-Line Treatment of Pancreatic Adenocarcinoma</article-title>
<source>Oncologist</source>
<year>2017</year>
<volume>22</volume>
<fpage>241</fpage>
<lpage>e15</lpage>
<pub-id pub-id-type="pmid">28246206</pub-id>
</element-citation>
</ref>
<ref id="B146">
<label>146</label>
<element-citation publication-type="journal">
<name>
<surname>Allen</surname>
<given-names>PB</given-names>
</name>
<name>
<surname>Olivera</surname>
<given-names>P</given-names>
</name>
<name>
<surname>Emery</surname>
<given-names>P</given-names>
</name>
<name>
<surname>Moulin</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Jouzeau</surname>
<given-names>JY</given-names>
</name>
<name>
<surname>Netter</surname>
<given-names>P</given-names>
</name>
<etal></etal>
<article-title>Review article: moving towards common therapeutic goals in Crohn's disease and rheumatoid arthritis</article-title>
<source>Aliment Pharmacol Ther</source>
<year>2017</year>
<volume>45</volume>
<fpage>1058</fpage>
<lpage>72</lpage>
<pub-id pub-id-type="pmid">28247573</pub-id>
</element-citation>
</ref>
<ref id="B147">
<label>147</label>
<element-citation publication-type="journal">
<name>
<surname>Whatcott</surname>
<given-names>CJ</given-names>
</name>
<name>
<surname>Han</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Posner</surname>
<given-names>RG</given-names>
</name>
<name>
<surname>Hostetter</surname>
<given-names>G</given-names>
</name>
<name>
<surname>Von Hoff</surname>
<given-names>DD</given-names>
</name>
<article-title>Targeting the tumor microenvironment in cancer: why hyaluronidase deserves a second look</article-title>
<source>Cancer Discov</source>
<year>2011</year>
<volume>1</volume>
<fpage>291</fpage>
<lpage>6</lpage>
<pub-id pub-id-type="pmid">22053288</pub-id>
</element-citation>
</ref>
<ref id="B148">
<label>148</label>
<element-citation publication-type="journal">
<name>
<surname>Koike</surname>
<given-names>C</given-names>
</name>
<name>
<surname>McKee</surname>
<given-names>TD</given-names>
</name>
<name>
<surname>Pluen</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Ramanujan</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Burton</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Munn</surname>
<given-names>LL</given-names>
</name>
<etal></etal>
<article-title>Solid stress facilitates spheroid formation: potential involvement of hyaluronan</article-title>
<source>Br J Cancer</source>
<year>2002</year>
<volume>86</volume>
<fpage>947</fpage>
<lpage>53</lpage>
<pub-id pub-id-type="pmid">11953828</pub-id>
</element-citation>
</ref>
<ref id="B149">
<label>149</label>
<element-citation publication-type="journal">
<name>
<surname>Provenzano</surname>
<given-names>PP</given-names>
</name>
<name>
<surname>Cuevas</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Chang</surname>
<given-names>AE</given-names>
</name>
<name>
<surname>Goel</surname>
<given-names>VK</given-names>
</name>
<name>
<surname>Von Hoff</surname>
<given-names>DD</given-names>
</name>
<name>
<surname>Hingorani</surname>
<given-names>SR</given-names>
</name>
<article-title>Enzymatic targeting of the stroma ablates physical barriers to treatment of pancreatic ductal adenocarcinoma</article-title>
<source>Cancer Cell</source>
<year>2012</year>
<volume>21</volume>
<fpage>418</fpage>
<lpage>29</lpage>
<pub-id pub-id-type="pmid">22439937</pub-id>
</element-citation>
</ref>
<ref id="B150">
<label>150</label>
<element-citation publication-type="book">
<name>
<surname>Kudo</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Suto</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Hakamada</surname>
<given-names>K</given-names>
</name>
<source>The Development of a Novel Therapeutic Strategy to Target Hyaluronan in the Extracellular Matrix of Pancreatic Ductal Adenocarcinoma</source>
<publisher-name>Int J Mol Sci</publisher-name>
<year>2017</year>
<fpage>18</fpage>
</element-citation>
</ref>
<ref id="B151">
<label>151</label>
<element-citation publication-type="journal">
<name>
<surname>Baumgartner</surname>
<given-names>G</given-names>
</name>
<name>
<surname>Gomar-Hoss</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Sakr</surname>
<given-names>L</given-names>
</name>
<name>
<surname>Ulsperger</surname>
<given-names>E</given-names>
</name>
<name>
<surname>Wogritsch</surname>
<given-names>C</given-names>
</name>
<article-title>The impact of extracellular matrix on the chemoresistance of solid tumors-experimental and clinical results of hyaluronidase as additive to cytostatic chemotherapy</article-title>
<source>Cancer Lett</source>
<year>1998</year>
<volume>131</volume>
<fpage>85</fpage>
<lpage>99</lpage>
<pub-id pub-id-type="pmid">9839623</pub-id>
</element-citation>
</ref>
<ref id="B152">
<label>152</label>
<element-citation publication-type="journal">
<name>
<surname>Bookbinder</surname>
<given-names>LH</given-names>
</name>
<name>
<surname>Hofer</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Haller</surname>
<given-names>MF</given-names>
</name>
<name>
<surname>Zepeda</surname>
<given-names>ML</given-names>
</name>
<name>
<surname>Keller</surname>
<given-names>GA</given-names>
</name>
<name>
<surname>Lim</surname>
<given-names>JE</given-names>
</name>
<etal></etal>
<article-title>A recombinant human enzyme for enhanced interstitial transport of therapeutics</article-title>
<source>J Control Release</source>
<year>2006</year>
<volume>114</volume>
<fpage>230</fpage>
<lpage>41</lpage>
<pub-id pub-id-type="pmid">16876899</pub-id>
</element-citation>
</ref>
<ref id="B153">
<label>153</label>
<element-citation publication-type="journal">
<name>
<surname>Buhren</surname>
<given-names>BA</given-names>
</name>
<name>
<surname>Schrumpf</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Hoff</surname>
<given-names>NP</given-names>
</name>
<name>
<surname>Bolke</surname>
<given-names>E</given-names>
</name>
<name>
<surname>Hilton</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Gerber</surname>
<given-names>PA</given-names>
</name>
<article-title>Hyaluronidase: from clinical applications to molecular and cellular mechanisms</article-title>
<source>Eur J Med Res</source>
<year>2016</year>
<volume>21</volume>
<fpage>5</fpage>
<pub-id pub-id-type="pmid">26873038</pub-id>
</element-citation>
</ref>
<ref id="B154">
<label>154</label>
<element-citation publication-type="journal">
<name>
<surname>McAtee</surname>
<given-names>CO</given-names>
</name>
<name>
<surname>Barycki</surname>
<given-names>JJ</given-names>
</name>
<name>
<surname>Simpson</surname>
<given-names>MA</given-names>
</name>
<article-title>Emerging roles for hyaluronidase in cancer metastasis and therapy</article-title>
<source>Adv Cancer Res</source>
<year>2014</year>
<volume>123</volume>
<fpage>1</fpage>
<lpage>34</lpage>
<pub-id pub-id-type="pmid">25081524</pub-id>
</element-citation>
</ref>
<ref id="B155">
<label>155</label>
<element-citation publication-type="journal">
<name>
<surname>Shepard</surname>
<given-names>HM</given-names>
</name>
<article-title>Breaching the Castle Walls: Hyaluronan Depletion as a Therapeutic Approach to Cancer Therapy</article-title>
<source>Front Oncol</source>
<year>2015</year>
<volume>5</volume>
<fpage>192</fpage>
<pub-id pub-id-type="pmid">26380222</pub-id>
</element-citation>
</ref>
<ref id="B156">
<label>156</label>
<element-citation publication-type="journal">
<name>
<surname>Wong</surname>
<given-names>KM</given-names>
</name>
<name>
<surname>Horton</surname>
<given-names>KJ</given-names>
</name>
<name>
<surname>Coveler</surname>
<given-names>AL</given-names>
</name>
<name>
<surname>Hingorani</surname>
<given-names>SR</given-names>
</name>
<name>
<surname>Harris</surname>
<given-names>WP</given-names>
</name>
<article-title>Targeting the Tumor Stroma: the Biology and Clinical Development of Pegylated Recombinant Human Hyaluronidase (PEGPH20)</article-title>
<source>Curr Oncol Rep</source>
<year>2017</year>
<volume>19</volume>
<fpage>47</fpage>
<pub-id pub-id-type="pmid">28589527</pub-id>
</element-citation>
</ref>
<ref id="B157">
<label>157</label>
<element-citation publication-type="journal">
<name>
<surname>Hingorani</surname>
<given-names>SR</given-names>
</name>
<name>
<surname>Zheng</surname>
<given-names>L</given-names>
</name>
<name>
<surname>Bullock</surname>
<given-names>AJ</given-names>
</name>
<name>
<surname>Seery</surname>
<given-names>TE</given-names>
</name>
<name>
<surname>Harris</surname>
<given-names>WP</given-names>
</name>
<name>
<surname>Sigal</surname>
<given-names>DS</given-names>
</name>
<etal></etal>
<article-title>HALO 202: Randomized Phase II Study of PEGPH20 Plus Nab-Paclitaxel/Gemcitabine Versus Nab-Paclitaxel/Gemcitabine in Patients With Untreated, Metastatic Pancreatic Ductal Adenocarcinoma</article-title>
<source>J Clin Oncol</source>
<year>2018</year>
<volume>36</volume>
<fpage>359</fpage>
<lpage>66</lpage>
<pub-id pub-id-type="pmid">29232172</pub-id>
</element-citation>
</ref>
<ref id="B158">
<label>158</label>
<element-citation publication-type="journal">
<name>
<surname>Doherty</surname>
<given-names>GJ</given-names>
</name>
<name>
<surname>Tempero</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Corrie</surname>
<given-names>PG</given-names>
</name>
<article-title>HALO-109-301: a Phase III trial of PEGPH20 (with gemcitabine and nab-paclitaxel) in hyaluronic acid-high stage IV pancreatic cancer</article-title>
<source>Future Oncol</source>
<year>2018</year>
<volume>14</volume>
<fpage>13</fpage>
<lpage>22</lpage>
</element-citation>
</ref>
<ref id="B159">
<label>159</label>
<element-citation publication-type="journal">
<name>
<surname>Ramanathan</surname>
<given-names>RK</given-names>
</name>
<name>
<surname>McDonough</surname>
<given-names>SL</given-names>
</name>
<name>
<surname>Philip</surname>
<given-names>PA</given-names>
</name>
<name>
<surname>Hingorani</surname>
<given-names>SR</given-names>
</name>
<name>
<surname>Lacy</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Kortmansky</surname>
<given-names>JS</given-names>
</name>
<etal></etal>
<article-title>Phase IB/II Randomized Study of FOLFIRINOX Plus Pegylated Recombinant Human Hyaluronidase Versus FOLFIRINOX Alone in Patients With Metastatic Pancreatic Adenocarcinoma: SWOG S1313</article-title>
<source>J Clin Oncol</source>
<year>2019</year>
<volume>37</volume>
<fpage>1062</fpage>
<lpage>9</lpage>
<pub-id pub-id-type="pmid">30817250</pub-id>
</element-citation>
</ref>
<ref id="B160">
<label>160</label>
<element-citation publication-type="journal">
<name>
<surname>Wang-Gillam</surname>
<given-names>A</given-names>
</name>
<article-title>Targeting Stroma: A Tale of Caution</article-title>
<source>J Clin Oncol</source>
<year>2019</year>
<volume>37</volume>
<fpage>1041</fpage>
<lpage>3</lpage>
<pub-id pub-id-type="pmid">30860950</pub-id>
</element-citation>
</ref>
<ref id="B161">
<label>161</label>
<element-citation publication-type="journal">
<name>
<surname>Bernkop-Schnurch</surname>
<given-names>A</given-names>
</name>
<article-title>Strategies to overcome the polycation dilemma in drug delivery</article-title>
<source>Adv Drug Deliv Rev</source>
<year>2018</year>
<volume>136-137</volume>
<fpage>62</fpage>
<lpage>72</lpage>
<pub-id pub-id-type="pmid">30059702</pub-id>
</element-citation>
</ref>
<ref id="B162">
<label>162</label>
<element-citation publication-type="journal">
<name>
<surname>Nakamura</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Takagaki</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Shibata</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Tanaka</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Higuchi</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Endo</surname>
<given-names>M</given-names>
</name>
<article-title>Hyaluronic-acid-deficient extracellular matrix induced by addition of 4-methylumbelliferone to the medium of cultured human skin fibroblasts</article-title>
<source>Biochem Biophys Res Commun</source>
<year>1995</year>
<volume>208</volume>
<fpage>470</fpage>
<lpage>5</lpage>
<pub-id pub-id-type="pmid">7695595</pub-id>
</element-citation>
</ref>
<ref id="B163">
<label>163</label>
<element-citation publication-type="journal">
<name>
<surname>Kultti</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Pasonen-Seppanen</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Jauhiainen</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Rilla</surname>
<given-names>KJ</given-names>
</name>
<name>
<surname>Karna</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Pyoria</surname>
<given-names>E</given-names>
</name>
<etal></etal>
<article-title>4-Methylumbelliferone inhibits hyaluronan synthesis by depletion of cellular UDP-glucuronic acid and downregulation of hyaluronan synthase 2 and 3</article-title>
<source>Exp Cell Res</source>
<year>2009</year>
<volume>315</volume>
<fpage>1914</fpage>
<lpage>23</lpage>
<pub-id pub-id-type="pmid">19285976</pub-id>
</element-citation>
</ref>
<ref id="B164">
<label>164</label>
<element-citation publication-type="journal">
<name>
<surname>Hajime</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Shuichi</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Makoto</surname>
<given-names>N</given-names>
</name>
<name>
<surname>Masanori</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Ikuko</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Atsushi</surname>
<given-names>K</given-names>
</name>
<etal></etal>
<article-title>Inhibitory effect of 4-methylesculetin on hyaluronan synthesis slows the development of human pancreatic cancer in vitro and in nude mice</article-title>
<source>Int J Cancer</source>
<year>2007</year>
<volume>120</volume>
<fpage>2704</fpage>
<lpage>9</lpage>
<pub-id pub-id-type="pmid">17354230</pub-id>
</element-citation>
</ref>
<ref id="B165">
<label>165</label>
<element-citation publication-type="journal">
<name>
<surname>Kohli</surname>
<given-names>AG</given-names>
</name>
<name>
<surname>Kivimae</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Tiffany</surname>
<given-names>MR</given-names>
</name>
<name>
<surname>Szoka</surname>
<given-names>FC</given-names>
</name>
<article-title>Improving the distribution of Doxil(R) in the tumor matrix by depletion of tumor hyaluronan</article-title>
<source>J Control Release</source>
<year>2014</year>
<volume>191</volume>
<fpage>105</fpage>
<lpage>14</lpage>
<pub-id pub-id-type="pmid">24852095</pub-id>
</element-citation>
</ref>
<ref id="B166">
<label>166</label>
<element-citation publication-type="journal">
<name>
<surname>Papageorgis</surname>
<given-names>P</given-names>
</name>
<name>
<surname>Polydorou</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Mpekris</surname>
<given-names>F</given-names>
</name>
<name>
<surname>Voutouri</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Agathokleous</surname>
<given-names>E</given-names>
</name>
<name>
<surname>Kapnissi-Christodoulou</surname>
<given-names>CP</given-names>
</name>
<etal></etal>
<article-title>Tranilast-induced stress alleviation in solid tumors improves the efficacy of chemo- and nanotherapeutics in a size-independent manner</article-title>
<source>Sci Rep</source>
<year>2017</year>
<volume>7</volume>
<fpage>46140</fpage>
<pub-id pub-id-type="pmid">28393881</pub-id>
</element-citation>
</ref>
<ref id="B167">
<label>167</label>
<element-citation publication-type="journal">
<name>
<surname>Polydorou</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Mpekris</surname>
<given-names>F</given-names>
</name>
<name>
<surname>Papageorgis</surname>
<given-names>P</given-names>
</name>
<name>
<surname>Voutouri</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Stylianopoulos</surname>
<given-names>T</given-names>
</name>
<article-title>Pirfenidone normalizes the tumor microenvironment to improve chemotherapy</article-title>
<source>Oncotarget</source>
<year>2017</year>
<volume>8</volume>
<fpage>24506</fpage>
<lpage>17</lpage>
<pub-id pub-id-type="pmid">28445938</pub-id>
</element-citation>
</ref>
<ref id="B168">
<label>168</label>
<element-citation publication-type="book">
<name>
<surname>Vennin</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Chin</surname>
<given-names>VT</given-names>
</name>
<name>
<surname>Warren</surname>
<given-names>SC</given-names>
</name>
<name>
<surname>Lucas</surname>
<given-names>MC</given-names>
</name>
<name>
<surname>Herrmann</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Magenau</surname>
<given-names>A</given-names>
</name>
<etal></etal>
<source>Transient tissue priming via ROCK inhibition uncouples pancreatic cancer progression, sensitivity to chemotherapy, and metastasis</source>
<publisher-name>Sci Transl Med</publisher-name>
<year>2017</year>
<fpage>9</fpage>
</element-citation>
</ref>
<ref id="B169">
<label>169</label>
<element-citation publication-type="journal">
<name>
<surname>Incio</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Suboj</surname>
<given-names>P</given-names>
</name>
<name>
<surname>Chin</surname>
<given-names>SM</given-names>
</name>
<name>
<surname>Vardam-Kaur</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Liu</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Hato</surname>
<given-names>T</given-names>
</name>
<etal></etal>
<article-title>Metformin Reduces Desmoplasia in Pancreatic Cancer by Reprogramming Stellate Cells and Tumor-Associated Macrophages</article-title>
<source>PLoS One</source>
<year>2015</year>
<volume>10</volume>
<fpage>e0141392</fpage>
<pub-id pub-id-type="pmid">26641266</pub-id>
</element-citation>
</ref>
<ref id="B170">
<label>170</label>
<element-citation publication-type="journal">
<name>
<surname>Martin</surname>
<given-names>JD</given-names>
</name>
<name>
<surname>Panagi</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Wang</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Khan</surname>
<given-names>TT</given-names>
</name>
<name>
<surname>Martin</surname>
<given-names>MR</given-names>
</name>
<name>
<surname>Voutouri</surname>
<given-names>C</given-names>
</name>
<etal></etal>
<article-title>Dexamethasone Increases Cisplatin-Loaded Nanocarrier Delivery and Efficacy in Metastatic Breast Cancer by Normalizing the Tumor Microenvironment</article-title>
<source>ACS Nano</source>
<year>2019</year>
<volume>13</volume>
<fpage>6396</fpage>
<lpage>408</lpage>
<pub-id pub-id-type="pmid">31187975</pub-id>
</element-citation>
</ref>
<ref id="B171">
<label>171</label>
<element-citation publication-type="book">
<name>
<surname>Weniger</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Honselmann</surname>
<given-names>KC</given-names>
</name>
<name>
<surname>Liss</surname>
<given-names>AS</given-names>
</name>
<source>The Extracellular Matrix and Pancreatic Cancer: A Complex Relationship</source>
<publisher-name>Cancers (Basel)</publisher-name>
<year>2018</year>
<fpage>10</fpage>
</element-citation>
</ref>
<ref id="B172">
<label>172</label>
<element-citation publication-type="journal">
<name>
<surname>Lewis</surname>
<given-names>CJ</given-names>
</name>
<name>
<surname>Mardaryev</surname>
<given-names>AN</given-names>
</name>
<name>
<surname>Sharov</surname>
<given-names>AA</given-names>
</name>
<name>
<surname>Fessing</surname>
<given-names>MY</given-names>
</name>
<name>
<surname>Botchkarev</surname>
<given-names>VA</given-names>
</name>
<article-title>The Epigenetic Regulation of Wound Healing</article-title>
<source>Adv Wound Care (New Rochelle)</source>
<year>2014</year>
<volume>3</volume>
<fpage>468</fpage>
<lpage>75</lpage>
<pub-id pub-id-type="pmid">25032066</pub-id>
</element-citation>
</ref>
<ref id="B173">
<label>173</label>
<element-citation publication-type="journal">
<name>
<surname>Rupaimoole</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Slack</surname>
<given-names>FJ</given-names>
</name>
<article-title>MicroRNA therapeutics: towards a new era for the management of cancer and other diseases</article-title>
<source>Nat Rev Drug Discov</source>
<year>2017</year>
<volume>16</volume>
<fpage>203</fpage>
<lpage>22</lpage>
<pub-id pub-id-type="pmid">28209991</pub-id>
</element-citation>
</ref>
<ref id="B174">
<label>174</label>
<element-citation publication-type="journal">
<name>
<surname>Snipstad</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Berg</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Morch</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Bjorkoy</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Sulheim</surname>
<given-names>E</given-names>
</name>
<name>
<surname>Hansen</surname>
<given-names>R</given-names>
</name>
<etal></etal>
<article-title>Ultrasound Improves the Delivery and Therapeutic Effect of Nanoparticle-Stabilized Microbubbles in Breast Cancer Xenografts</article-title>
<source>Ultrasound Med Biol</source>
<year>2017</year>
<volume>43</volume>
<fpage>2651</fpage>
<lpage>69</lpage>
<pub-id pub-id-type="pmid">28781149</pub-id>
</element-citation>
</ref>
<ref id="B175">
<label>175</label>
<element-citation publication-type="journal">
<name>
<surname>Rossmann</surname>
<given-names>C</given-names>
</name>
<name>
<surname>McCrackin</surname>
<given-names>MA</given-names>
</name>
<name>
<surname>Armeson</surname>
<given-names>KE</given-names>
</name>
<name>
<surname>Haemmerich</surname>
<given-names>D</given-names>
</name>
<article-title>Temperature sensitive liposomes combined with thermal ablation: Effects of duration and timing of heating in mathematical models and in vivo</article-title>
<source>PLoS One</source>
<year>2017</year>
<volume>12</volume>
<fpage>e0179131</fpage>
<pub-id pub-id-type="pmid">28604815</pub-id>
</element-citation>
</ref>
<ref id="B176">
<label>176</label>
<element-citation publication-type="journal">
<name>
<surname>Haemmerich</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Motamarry</surname>
<given-names>A</given-names>
</name>
<article-title>Thermosensitive Liposomes for Image-Guided Drug Delivery</article-title>
<source>Adv Cancer Res</source>
<year>2018</year>
<volume>139</volume>
<fpage>121</fpage>
<lpage>46</lpage>
<pub-id pub-id-type="pmid">29941102</pub-id>
</element-citation>
</ref>
<ref id="B177">
<label>177</label>
<element-citation publication-type="journal">
<name>
<surname>Apte</surname>
<given-names>MV</given-names>
</name>
<name>
<surname>Pirola</surname>
<given-names>RC</given-names>
</name>
<name>
<surname>Wilson</surname>
<given-names>JS</given-names>
</name>
<article-title>Pancreatic stellate cells: a starring role in normal and diseased pancreas</article-title>
<source>Front Physiol</source>
<year>2012</year>
<volume>3</volume>
<fpage>344</fpage>
<pub-id pub-id-type="pmid">22973234</pub-id>
</element-citation>
</ref>
<ref id="B178">
<label>178</label>
<element-citation publication-type="journal">
<name>
<surname>Ferdek</surname>
<given-names>PE</given-names>
</name>
<name>
<surname>Jakubowska</surname>
<given-names>MA</given-names>
</name>
<article-title>Biology of pancreatic stellate cells-more than just pancreatic cancer</article-title>
<source>Pflugers Arch</source>
<year>2017</year>
<volume>469</volume>
<fpage>1039</fpage>
<lpage>50</lpage>
<pub-id pub-id-type="pmid">28382480</pub-id>
</element-citation>
</ref>
<ref id="B179">
<label>179</label>
<element-citation publication-type="journal">
<name>
<surname>Gabasa</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Ikemori</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Hilberg</surname>
<given-names>F</given-names>
</name>
<name>
<surname>Reguart</surname>
<given-names>N</given-names>
</name>
<name>
<surname>Alcaraz</surname>
<given-names>J</given-names>
</name>
<article-title>Nintedanib selectively inhibits the activation and tumour-promoting effects of fibroblasts from lung adenocarcinoma patients</article-title>
<source>Br J Cancer</source>
<year>2017</year>
<volume>117</volume>
<fpage>1128</fpage>
<lpage>38</lpage>
<pub-id pub-id-type="pmid">28898237</pub-id>
</element-citation>
</ref>
<ref id="B180">
<label>180</label>
<element-citation publication-type="journal">
<name>
<surname>Lopez</surname>
<given-names>B</given-names>
</name>
<name>
<surname>Gonzalez</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Diez</surname>
<given-names>J</given-names>
</name>
<article-title>Circulating biomarkers of collagen metabolism in cardiac diseases</article-title>
<source>Circulation</source>
<year>2010</year>
<volume>121</volume>
<fpage>1645</fpage>
<lpage>54</lpage>
<pub-id pub-id-type="pmid">20385961</pub-id>
</element-citation>
</ref>
<ref id="B181">
<label>181</label>
<element-citation publication-type="journal">
<name>
<surname>Perentes</surname>
<given-names>JY</given-names>
</name>
<name>
<surname>McKee</surname>
<given-names>TD</given-names>
</name>
<name>
<surname>Ley</surname>
<given-names>CD</given-names>
</name>
<name>
<surname>Mathiew</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Dawson</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Padera</surname>
<given-names>TP</given-names>
</name>
<etal></etal>
<article-title>In vivo imaging of extracellular matrix remodeling by tumor-associated fibroblasts</article-title>
<source>Nat Methods</source>
<year>2009</year>
<volume>6</volume>
<fpage>143</fpage>
<lpage>5</lpage>
<pub-id pub-id-type="pmid">19151720</pub-id>
</element-citation>
</ref>
<ref id="B182">
<label>182</label>
<element-citation publication-type="journal">
<name>
<surname>Chen</surname>
<given-names>W</given-names>
</name>
<name>
<surname>Cormode</surname>
<given-names>DP</given-names>
</name>
<name>
<surname>Vengrenyuk</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Herranz</surname>
<given-names>B</given-names>
</name>
<name>
<surname>Feig</surname>
<given-names>JE</given-names>
</name>
<name>
<surname>Klink</surname>
<given-names>A</given-names>
</name>
<etal></etal>
<article-title>Collagen-specific peptide conjugated HDL nanoparticles as MRI contrast agent to evaluate compositional changes in atherosclerotic plaque regression</article-title>
<source>JACC Cardiovasc Imaging</source>
<year>2013</year>
<volume>6</volume>
<fpage>373</fpage>
<lpage>84</lpage>
<pub-id pub-id-type="pmid">23433925</pub-id>
</element-citation>
</ref>
<ref id="B183">
<label>183</label>
<element-citation publication-type="journal">
<name>
<surname>Wang</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Lin</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Zhang</surname>
<given-names>W</given-names>
</name>
<name>
<surname>Jiang</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Jin</surname>
<given-names>H</given-names>
</name>
<name>
<surname>He</surname>
<given-names>H</given-names>
</name>
<etal></etal>
<article-title>A Prodrug-type, MMP-2-targeting Nanoprobe for Tumor Detection and Imaging</article-title>
<source>Theranostics</source>
<year>2015</year>
<volume>5</volume>
<fpage>787</fpage>
<lpage>95</lpage>
<pub-id pub-id-type="pmid">26000052</pub-id>
</element-citation>
</ref>
<ref id="B184">
<label>184</label>
<element-citation publication-type="journal">
<name>
<surname>Schuerle</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Dudani</surname>
<given-names>JS</given-names>
</name>
<name>
<surname>Christiansen</surname>
<given-names>MG</given-names>
</name>
<name>
<surname>Anikeeva</surname>
<given-names>P</given-names>
</name>
<name>
<surname>Bhatia</surname>
<given-names>SN</given-names>
</name>
<article-title>Magnetically Actuated Protease Sensors for in Vivo Tumor Profiling</article-title>
<source>Nano Lett</source>
<year>2016</year>
<volume>16</volume>
<fpage>6303</fpage>
<lpage>10</lpage>
<pub-id pub-id-type="pmid">27622711</pub-id>
</element-citation>
</ref>
<ref id="B185">
<label>185</label>
<element-citation publication-type="journal">
<name>
<surname>Pham</surname>
<given-names>HT</given-names>
</name>
<name>
<surname>Block</surname>
<given-names>NL</given-names>
</name>
<name>
<surname>Lokeshwar</surname>
<given-names>VB</given-names>
</name>
<article-title>Tumor-derived hyaluronidase: a diagnostic urine marker for high-grade bladder cancer</article-title>
<source>Cancer Res</source>
<year>1997</year>
<volume>57</volume>
<fpage>778</fpage>
<lpage>83</lpage>
<pub-id pub-id-type="pmid">9044860</pub-id>
</element-citation>
</ref>
<ref id="B186">
<label>186</label>
<element-citation publication-type="journal">
<name>
<surname>Lee</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Lee</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Kim</surname>
<given-names>IK</given-names>
</name>
<name>
<surname>Park</surname>
<given-names>TG</given-names>
</name>
<article-title>Synthesis, characterization, and in vivo diagnostic applications of hyaluronic acid immobilized gold nanoprobes</article-title>
<source>Biomaterials</source>
<year>2008</year>
<volume>29</volume>
<fpage>4709</fpage>
<lpage>18</lpage>
<pub-id pub-id-type="pmid">18817971</pub-id>
</element-citation>
</ref>
<ref id="B187">
<label>187</label>
<element-citation publication-type="journal">
<name>
<surname>Ozdemir</surname>
<given-names>BC</given-names>
</name>
<name>
<surname>Pentcheva-Hoang</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Carstens</surname>
<given-names>JL</given-names>
</name>
<name>
<surname>Zheng</surname>
<given-names>X</given-names>
</name>
<name>
<surname>Wu</surname>
<given-names>CC</given-names>
</name>
<name>
<surname>Simpson</surname>
<given-names>TR</given-names>
</name>
<etal></etal>
<article-title>Depletion of carcinoma-associated fibroblasts and fibrosis induces immunosuppression and accelerates pancreas cancer with reduced survival</article-title>
<source>Cancer Cell</source>
<year>2014</year>
<volume>25</volume>
<fpage>719</fpage>
<lpage>34</lpage>
<pub-id pub-id-type="pmid">24856586</pub-id>
</element-citation>
</ref>
<ref id="B188">
<label>188</label>
<element-citation publication-type="journal">
<name>
<surname>Rhim</surname>
<given-names>AD</given-names>
</name>
<name>
<surname>Oberstein</surname>
<given-names>PE</given-names>
</name>
<name>
<surname>Thomas</surname>
<given-names>DH</given-names>
</name>
<name>
<surname>Mirek</surname>
<given-names>ET</given-names>
</name>
<name>
<surname>Palermo</surname>
<given-names>CF</given-names>
</name>
<name>
<surname>Sastra</surname>
<given-names>SA</given-names>
</name>
<etal></etal>
<article-title>Stromal elements act to restrain, rather than support, pancreatic ductal adenocarcinoma</article-title>
<source>Cancer Cell</source>
<year>2014</year>
<volume>25</volume>
<fpage>735</fpage>
<lpage>47</lpage>
<pub-id pub-id-type="pmid">24856585</pub-id>
</element-citation>
</ref>
<ref id="B189">
<label>189</label>
<element-citation publication-type="journal">
<name>
<surname>Raave</surname>
<given-names>R</given-names>
</name>
<name>
<surname>van Kuppevelt</surname>
<given-names>TH</given-names>
</name>
<name>
<surname>Daamen</surname>
<given-names>WF</given-names>
</name>
<article-title>Chemotherapeutic drug delivery by tumoral extracellular matrix targeting</article-title>
<source>J Control Release</source>
<year>2018</year>
<volume>274</volume>
<fpage>1</fpage>
<lpage>8</lpage>
<pub-id pub-id-type="pmid">29382546</pub-id>
</element-citation>
</ref>
<ref id="B190">
<label>190</label>
<element-citation publication-type="journal">
<name>
<surname>Mariathasan</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Turley</surname>
<given-names>SJ</given-names>
</name>
<name>
<surname>Nickles</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Castiglioni</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Yuen</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Wang</surname>
<given-names>Y</given-names>
</name>
<etal></etal>
<article-title>TGFbeta attenuates tumour response to PD-L1 blockade by contributing to exclusion of T cells</article-title>
<source>Nature</source>
<year>2018</year>
<volume>554</volume>
<fpage>544</fpage>
<lpage>8</lpage>
<pub-id pub-id-type="pmid">29443960</pub-id>
</element-citation>
</ref>
<ref id="B191">
<label>191</label>
<element-citation publication-type="journal">
<name>
<surname>Salmon</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Franciszkiewicz</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Damotte</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Dieu-Nosjean</surname>
<given-names>MC</given-names>
</name>
<name>
<surname>Validire</surname>
<given-names>P</given-names>
</name>
<name>
<surname>Trautmann</surname>
<given-names>A</given-names>
</name>
<etal></etal>
<article-title>Matrix architecture defines the preferential localization and migration of T cells into the stroma of human lung tumors</article-title>
<source>J Clin Invest</source>
<year>2012</year>
<volume>122</volume>
<fpage>899</fpage>
<lpage>910</lpage>
<pub-id pub-id-type="pmid">22293174</pub-id>
</element-citation>
</ref>
<ref id="B192">
<label>192</label>
<element-citation publication-type="journal">
<name>
<surname>Hartmann</surname>
<given-names>N</given-names>
</name>
<name>
<surname>Giese</surname>
<given-names>NA</given-names>
</name>
<name>
<surname>Giese</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Poschke</surname>
<given-names>I</given-names>
</name>
<name>
<surname>Offringa</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Werner</surname>
<given-names>J</given-names>
</name>
<etal></etal>
<article-title>Prevailing role of contact guidance in intrastromal T-cell trapping in human pancreatic cancer</article-title>
<source>Clin Cancer Res</source>
<year>2014</year>
<volume>20</volume>
<fpage>3422</fpage>
<lpage>33</lpage>
<pub-id pub-id-type="pmid">24763614</pub-id>
</element-citation>
</ref>
<ref id="B193">
<label>193</label>
<element-citation publication-type="journal">
<name>
<surname>Huang</surname>
<given-names>BW</given-names>
</name>
<name>
<surname>Gao</surname>
<given-names>JQ</given-names>
</name>
<article-title>Application of 3D cultured multicellular spheroid tumor models in tumor-targeted drug delivery system research</article-title>
<source>J Control Release</source>
<year>2018</year>
<volume>270</volume>
<fpage>246</fpage>
<lpage>59</lpage>
<pub-id pub-id-type="pmid">29233763</pub-id>
</element-citation>
</ref>
<ref id="B194">
<label>194</label>
<element-citation publication-type="journal">
<name>
<surname>Huang</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Boerhan</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Liu</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Jiang</surname>
<given-names>G</given-names>
</name>
<article-title>Nanoparticles Penetrate into the Multicellular Spheroid-on-Chip: Effect of Surface Charge, Protein Corona, and Exterior Flow</article-title>
<source>Mol Pharm</source>
<year>2017</year>
<volume>14</volume>
<fpage>4618</fpage>
<lpage>27</lpage>
<pub-id pub-id-type="pmid">29096441</pub-id>
</element-citation>
</ref>
<ref id="B195">
<label>195</label>
<element-citation publication-type="journal">
<name>
<surname>Zanoni</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Piccinini</surname>
<given-names>F</given-names>
</name>
<name>
<surname>Arienti</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Zamagni</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Santi</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Polico</surname>
<given-names>R</given-names>
</name>
<etal></etal>
<article-title>3D tumor spheroid models for in vitro therapeutic screening: a systematic approach to enhance the biological relevance of data obtained</article-title>
<source>Sci Rep</source>
<year>2016</year>
<volume>6</volume>
<fpage>19103</fpage>
<pub-id pub-id-type="pmid">26752500</pub-id>
</element-citation>
</ref>
<ref id="B196">
<label>196</label>
<element-citation publication-type="book">
<name>
<surname>Kondo</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Inoue</surname>
<given-names>M</given-names>
</name>
<source>Application of Cancer Organoid Model for Drug Screening and Personalized Therapy</source>
<publisher-name>Cells</publisher-name>
<year>2019</year>
<fpage>8</fpage>
</element-citation>
</ref>
<ref id="B197">
<label>197</label>
<element-citation publication-type="journal">
<name>
<surname>Talele</surname>
<given-names>NP</given-names>
</name>
<name>
<surname>Fradette</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Davies</surname>
<given-names>JE</given-names>
</name>
<name>
<surname>Kapus</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Hinz</surname>
<given-names>B</given-names>
</name>
<article-title>Expression of alpha-Smooth Muscle Actin Determines the Fate of Mesenchymal Stromal Cells</article-title>
<source>Stem Cell Reports</source>
<year>2015</year>
<volume>4</volume>
<fpage>1016</fpage>
<lpage>30</lpage>
<pub-id pub-id-type="pmid">26028530</pub-id>
</element-citation>
</ref>
<ref id="B198">
<label>198</label>
<element-citation publication-type="journal">
<name>
<surname>Wynn</surname>
<given-names>TA</given-names>
</name>
<article-title>Common and unique mechanisms regulate fibrosis in various fibroproliferative diseases</article-title>
<source>J Clin Invest</source>
<year>2007</year>
<volume>117</volume>
<fpage>524</fpage>
<lpage>9</lpage>
<pub-id pub-id-type="pmid">17332879</pub-id>
</element-citation>
</ref>
</ref-list>
</back>
<floats-group>
<fig id="F1" position="float">
<label>Figure 1</label>
<caption>
<p>
<bold> Towards extracellular matrix (ECM) normalization for improved treatment of solid tumors.</bold>
Healthy ECM versus aberrant tumor ECM (left and right panels, respectively). Healthy ECM is characterized by the presence of an intact basement membrane, non-activated fibroblasts and random arrangement of collagen fibers (left panel). Aberrant tumor ECM features the tumor vessel basement membrane with a heterogeneous thickness that allows the dissemination of tumor cells as well as accumulation of nano-formulations. The presence of collagen fibers which are aligned in an ordered fashion and activated fibroblasts are other characteristics of tumor ECM.</p>
</caption>
<graphic xlink:href="thnov10p1960g001"></graphic>
</fig>
<fig id="F2" position="float">
<label>Figure 2</label>
<caption>
<p>
<bold> Fibroblasts are highly plastic and exhibit multi-potency.</bold>
Activated fibroblasts readily differentiate into adipocytes, chondrocytes and endothelial cells, among others. Adapted with permission from
<xref rid="B49" ref-type="bibr">49</xref>
, Copyright 2016 Springer Nature. Of note, there are conflicting reports on the differentiation of activated fibroblasts into adipocytes
<xref rid="B197" ref-type="bibr">197</xref>
.</p>
</caption>
<graphic xlink:href="thnov10p1960g002"></graphic>
</fig>
<fig id="F3" position="float">
<label>Figure 3</label>
<caption>
<p>
<bold> Molecular processes involved in wound repair and fibrosis</bold>
. LOX: lysyl oxidase, LOXL2: lysyl oxidase like 2, MMP: matrix metalloproteinase, PDGF: platelet-derived growth factor, and TGF-β: transforming growth factor beta. Adapted with permission from
<xref rid="B198" ref-type="bibr">198</xref>
, Copyright 2007 American Society for Clinical Investigation.</p>
</caption>
<graphic xlink:href="thnov10p1960g003"></graphic>
</fig>
<fig id="F4" position="float">
<label>Figure 4</label>
<caption>
<p>
<bold> Interactions of tumor-associated fibroblasts and collagen.</bold>
Daily multiphoton laser scanning microscopy images were acquired in a tumor growing in a dorsal skinfold window chamber. Two channels were acquired: Second harmonic generation (SHG) signal arising from collagen (shown in red), and green fluorescent protein (GFP) present in cancer associated fibroblasts (shown in green). Image montage presents a maximum intensity projection of a few images each, acquired 24 hours apart for four consecutive days. Fibroblasts are seen to migrate within the tumor to varying degrees, and occasionally interact with collagen fibers. Figure is generated from data provided by Dr. Trevor D. McKee which was originally captured and analyzed in
<xref rid="B181" ref-type="bibr">181</xref>
. With permission from
<xref rid="B181" ref-type="bibr">181</xref>
, Copyright 2009 Springer Nature.</p>
</caption>
<graphic xlink:href="thnov10p1960g004"></graphic>
</fig>
<fig id="F5" position="float">
<label>Figure 5</label>
<caption>
<p>
<bold> Fibrosis in cancer.</bold>
Representative trichrome (blue) staining for collagen in normal pancreas and different cancerous tissues. Magnification ×20. Reprinted with permission from
<xref rid="B34" ref-type="bibr">34</xref>
, Copyright 2017 Springer Nature.</p>
</caption>
<graphic xlink:href="thnov10p1960g005"></graphic>
</fig>
<fig id="F6" position="float">
<label>Figure 6</label>
<caption>
<p>
<bold> Heat-triggered intravascular drug release from thermosensitive liposomes.</bold>
Localized mild hyperthermia is employed to heat the tumor area by a few degrees (39-43°C) which can trigger rapid drug release within the tumor microvasculature. The released drug enters the tumor interstitium via diffusion along the existing concentration gradient.</p>
</caption>
<graphic xlink:href="thnov10p1960g006"></graphic>
</fig>
<fig id="F7" position="float">
<label>Figure 7</label>
<caption>
<p>Schematic model of therapeutic interventions for normalization of the extracellular matrix (ECM) in solid tumors.</p>
</caption>
<graphic xlink:href="thnov10p1960g007"></graphic>
</fig>
<table-wrap id="T1" position="float">
<label>Table 1</label>
<caption>
<p>Overview of clinical trials investigating drugs with ECM remodeling properties in combination with nano-formulations for cancer therapy, as of July 17 2019</p>
</caption>
<table frame="hsides" rules="groups">
<thead valign="top">
<tr>
<th rowspan="1" colspan="1">ECM remodeling drug</th>
<th rowspan="1" colspan="1">Design</th>
<th rowspan="1" colspan="1">Cancer type</th>
<th rowspan="1" colspan="1"></th>
<th rowspan="1" colspan="1">Clinical Phase</th>
<th rowspan="1" colspan="1">Clinicaltrials.gov identifier</th>
</tr>
</thead>
<tbody valign="top">
<tr>
<td colspan="6" align="center" rowspan="1">
<bold>Liposomal Irinotecan, Onivyde
<sup> ®</sup>
</bold>
</td>
</tr>
<tr>
<td rowspan="1" colspan="1">Paricalcitol</td>
<td rowspan="1" colspan="1">Liposomal Irinotecan + 5-FU + Leucovorin + Paricalcitol</td>
<td rowspan="1" colspan="1">Pancreatic cancer</td>
<td rowspan="1" colspan="1"></td>
<td rowspan="1" colspan="1">1</td>
<td rowspan="1" colspan="1">NCT03883919</td>
</tr>
<tr>
<td colspan="6" align="center" rowspan="1">
<bold>Protein-bound paclitaxel, Nab-Paclitaxel (nanoparticle albumin-bound paclitaxel), Abraxane
<sup>®</sup>
</bold>
</td>
</tr>
<tr>
<td rowspan="3" colspan="1">PEGPH20
<break></break>
(PEGylated hyaluronidase)</td>
<td rowspan="1" colspan="1">PEGPH20 + Nab-paclitaxel + Gemcitabine VS Nab-paclitaxel + Gemcitabine</td>
<td rowspan="1" colspan="1">Pancreatic cancer</td>
<td rowspan="1" colspan="1"></td>
<td rowspan="1" colspan="1">2</td>
<td rowspan="1" colspan="1">NCT01839487</td>
</tr>
<tr>
<td rowspan="1" colspan="1">PEGPH20 + Nab-paclitaxel + Gemcitabine + Rivaroxaban</td>
<td rowspan="1" colspan="1">Pancreatic cancer</td>
<td rowspan="1" colspan="1"></td>
<td rowspan="1" colspan="1">N/A</td>
<td rowspan="1" colspan="1">NCT02921022</td>
</tr>
<tr>
<td rowspan="1" colspan="1">PEGPH20 + Nab-Paclitaxel + Gemcitabine VS Placebo + Nab-Paclitaxel + Gemcitabine</td>
<td rowspan="1" colspan="1">Pancreatic cancer</td>
<td rowspan="1" colspan="1"></td>
<td rowspan="1" colspan="1">3</td>
<td rowspan="1" colspan="1">NCT02715804</td>
</tr>
<tr>
<td rowspan="1" colspan="1"></td>
<td rowspan="1" colspan="1">PEGPH20 monotherapy followed by combination therapy of PEGPH20 + Nab-Paclitaxel + Gemcitabine</td>
<td rowspan="1" colspan="1">Pancreatic cancer</td>
<td rowspan="1" colspan="1"></td>
<td rowspan="1" colspan="1">2</td>
<td rowspan="1" colspan="1">NCT02487277</td>
</tr>
<tr>
<td rowspan="1" colspan="1"></td>
<td rowspan="1" colspan="1"></td>
<td rowspan="1" colspan="1"></td>
<td rowspan="1" colspan="1"></td>
<td rowspan="1" colspan="1"></td>
<td rowspan="1" colspan="1"></td>
</tr>
<tr>
<td rowspan="1" colspan="1">Paricalcitol</td>
<td rowspan="1" colspan="1">Paricalcitol IV + Nab-paclitaxel + Gemcitabine VS Paricalcitol oral + Nab-paclitaxel + Gemcitabine VS Placebo + Nab-paclitaxel + Gemcitabine</td>
<td rowspan="1" colspan="1">Pancreatic cancer</td>
<td rowspan="1" colspan="1"></td>
<td rowspan="1" colspan="1">1/2</td>
<td rowspan="1" colspan="1">NCT03520790</td>
</tr>
<tr>
<td rowspan="1" colspan="1"></td>
<td rowspan="1" colspan="1">Paricalcitol + Nab-paclitaxel + Gemcitabine + Nivolumab VS Nab-paclitaxel + Gemcitabine + Nivolumab</td>
<td rowspan="1" colspan="1">Pancreatic cancer</td>
<td rowspan="1" colspan="1"></td>
<td rowspan="1" colspan="1">Early 1</td>
<td rowspan="1" colspan="1">NCT03519308</td>
</tr>
<tr>
<td rowspan="1" colspan="1"></td>
<td rowspan="1" colspan="1">Paricalcitol + Nab-paclitaxel + Gemcitabine + Cisplatin</td>
<td rowspan="1" colspan="1">Pancreatic cancer</td>
<td rowspan="1" colspan="1"></td>
<td rowspan="1" colspan="1">2</td>
<td rowspan="1" colspan="1">NCT03138720</td>
</tr>
<tr>
<td rowspan="1" colspan="1"></td>
<td rowspan="1" colspan="1">Paricalcitol IV + Nab-paclitaxel + Gemcitabine</td>
<td rowspan="1" colspan="1">Pancreatic cancer</td>
<td rowspan="1" colspan="1"></td>
<td rowspan="1" colspan="1">N/A</td>
<td rowspan="1" colspan="1">NCT02030860</td>
</tr>
<tr>
<td rowspan="1" colspan="1"></td>
<td rowspan="1" colspan="1">Paricalcitol + Nab-paclitaxel + Cisplatin + Gemcitabine</td>
<td rowspan="1" colspan="1">Pancreatic cancer</td>
<td rowspan="1" colspan="1"></td>
<td rowspan="1" colspan="1">2</td>
<td rowspan="1" colspan="1">NCT03415854</td>
</tr>
<tr>
<td rowspan="1" colspan="1"></td>
<td rowspan="1" colspan="1">Paricalcitol IV + Nab-paclitaxel + Cisplatin + Gemcitabine + Nivolumab</td>
<td rowspan="1" colspan="1">Pancreatic cancer</td>
<td rowspan="1" colspan="1"></td>
<td rowspan="1" colspan="1">2</td>
<td rowspan="1" colspan="1">NCT02754726</td>
</tr>
<tr>
<td rowspan="1" colspan="1">Nintedanib</td>
<td rowspan="1" colspan="1">Nintedanib monotherapy followed by combination therapy of Nintedanib + Gemcitabine + Nab-Paclitaxel</td>
<td rowspan="1" colspan="1">Pancreatic cancer</td>
<td rowspan="1" colspan="1"></td>
<td rowspan="1" colspan="1">1/2</td>
<td rowspan="1" colspan="1">NCT02902484</td>
</tr>
<tr>
<td rowspan="1" colspan="1">Nintedanib</td>
<td rowspan="1" colspan="1">Nintedanib + Nab-Paclitaxel VS Placebo + Nab-paclitaxel</td>
<td rowspan="1" colspan="1">Non-small cell lung cancer</td>
<td rowspan="1" colspan="1"></td>
<td rowspan="1" colspan="1">1/2</td>
<td rowspan="1" colspan="1">NCT03361319</td>
</tr>
<tr>
<td rowspan="1" colspan="1">Metformin</td>
<td rowspan="1" colspan="1">Metformin + Nab-Paclitaxel + Gemcitabine + Dietary supplement</td>
<td rowspan="1" colspan="1">Pancreatic cancer</td>
<td rowspan="1" colspan="1"></td>
<td rowspan="1" colspan="1">1</td>
<td rowspan="1" colspan="1">NCT02336087</td>
</tr>
<tr>
<td rowspan="1" colspan="1">Hyaluronidase</td>
<td rowspan="1" colspan="1">VCN-01 (genetically modified human adenovirus encoding human PH20 hyaluronidase) + Gemcitabine + Nab-Paclitaxel</td>
<td rowspan="1" colspan="1">Pancreatic cancer</td>
<td rowspan="1" colspan="1"></td>
<td rowspan="1" colspan="1">1</td>
<td rowspan="1" colspan="1">NCT02045589</td>
</tr>
<tr>
<td rowspan="1" colspan="1">Hyaluronidase</td>
<td rowspan="1" colspan="1">VCN-01+ Nab-Paclitaxel + Gemcitabine VS VCN-01</td>
<td rowspan="1" colspan="1">Pancreatic cancer</td>
<td rowspan="1" colspan="1"></td>
<td rowspan="1" colspan="1">1</td>
<td rowspan="1" colspan="1">NCT02045602</td>
</tr>
<tr>
<td colspan="6" align="center" rowspan="1">
<bold>PEGylated Liposomal Doxorubicin (PLD), Doxil
<sup>®</sup>
, Caelyx
<sup>®</sup>
</bold>
</td>
</tr>
<tr>
<td rowspan="1" colspan="1">Nintedanib (BIBF 1120)</td>
<td rowspan="1" colspan="1">Nintedanib + PLD + Carboplatin</td>
<td rowspan="1" colspan="1">Ovarian cancer, or peritoneal cancer</td>
<td rowspan="1" colspan="1"></td>
<td rowspan="1" colspan="1">1</td>
<td rowspan="1" colspan="1">NCT01314105</td>
</tr>
<tr>
<td rowspan="1" colspan="1"></td>
<td rowspan="1" colspan="1">Nintedanib + PLD</td>
<td rowspan="1" colspan="1">Ovarian cancer</td>
<td rowspan="1" colspan="1"></td>
<td rowspan="1" colspan="1">Terminated (funding withdrawn due to drug unavailability)</td>
<td rowspan="1" colspan="1">NCT01485874</td>
</tr>
<tr>
<td rowspan="1" colspan="1"></td>
<td rowspan="1" colspan="1">Nintedanib + PLD + Carboplatin</td>
<td rowspan="1" colspan="1">Ovarian cancer</td>
<td rowspan="1" colspan="1"></td>
<td rowspan="1" colspan="1">Terminated</td>
<td rowspan="1" colspan="1">NCT01329549</td>
</tr>
</tbody>
</table>
<table-wrap-foot>
<fn>
<p>ECM, extracellular matrix; 5-FU, 5-fluorouracil.</p>
</fn>
</table-wrap-foot>
</table-wrap>
<table-wrap id="T2" position="float">
<label>Table 2</label>
<caption>
<p>Summary of ECM targeting strategies</p>
</caption>
<table frame="hsides" rules="groups">
<thead valign="top">
<tr>
<th rowspan="1" colspan="1">Mechanism</th>
<th rowspan="1" colspan="1">Agent</th>
<th rowspan="1" colspan="1">Treatment objective</th>
<th rowspan="1" colspan="1">Pathological conditions</th>
</tr>
</thead>
<tbody valign="top">
<tr>
<td colspan="4" align="center" rowspan="1">
<bold>Collagen</bold>
</td>
</tr>
<tr>
<td rowspan="3" colspan="1">Inhibition of collagen synthesis via TGF-β signaling</td>
<td rowspan="1" colspan="1">Intraperitoneal injection
<xref rid="B109" ref-type="bibr">109</xref>
or oral administration
<xref rid="B110" ref-type="bibr">110</xref>
of Halofuginone</td>
<td rowspan="1" colspan="1">Reduce fibrosis</td>
<td rowspan="1" colspan="1">Murine models of pancreas
<xref rid="B109" ref-type="bibr">109</xref>
and liver fibrosis
<xref rid="B110" ref-type="bibr">110</xref>
</td>
</tr>
<tr>
<td rowspan="1" colspan="1">Intraperitoneal injection of Halofuginone</td>
<td rowspan="1" colspan="1">Inhibit the establishment and progression of melanoma bone metastases</td>
<td rowspan="1" colspan="1">Murine melanoma
<xref rid="B111" ref-type="bibr">111</xref>
</td>
</tr>
<tr>
<td rowspan="1" colspan="1">Oral administration of Losartan</td>
<td rowspan="1" colspan="1">Enhance the efficacy of FOLFIRINOX chemotherapy</td>
<td rowspan="1" colspan="1">Human pancreatic cancer (NCT01821729)
<xref rid="B114" ref-type="bibr">114</xref>
</td>
</tr>
<tr>
<td rowspan="3" colspan="1">Degradation of stromal collagen</td>
<td rowspan="1" colspan="1">Intratumoral injection of collagenase</td>
<td rowspan="1" colspan="1">Enhance the distribution of a herpes simplex virus vector</td>
<td rowspan="1" colspan="1">Human melanoma xenograft
<xref rid="B124" ref-type="bibr">124</xref>
</td>
</tr>
<tr>
<td rowspan="1" colspan="1">Intravenous injection of collagenase</td>
<td rowspan="1" colspan="1">Improve the accumulation of a liposome/plasmid DNA complex</td>
<td rowspan="1" colspan="1">Murine lung tumor model
<xref rid="B125" ref-type="bibr">125</xref>
</td>
</tr>
<tr>
<td rowspan="1" colspan="1">Collagenase-functionalized polystyrene nanoparticles</td>
<td rowspan="1" colspan="1">Enhance the penetration of the nanoparticles in multicellular spheroids</td>
<td rowspan="1" colspan="1">Human cervical carcinoma multicellular tumor spheroids
<xref rid="B126" ref-type="bibr">126</xref>
</td>
</tr>
<tr>
<td rowspan="1" colspan="1">Stimulation of collagenase synthesis and downregulation of collagen production</td>
<td rowspan="1" colspan="1">Relaxin</td>
<td rowspan="1" colspan="1">Enhance the penetration of fluorescent-labeled dextran</td>
<td rowspan="1" colspan="1">Human osteosarcoma spheroids
<xref rid="B131" ref-type="bibr">131</xref>
</td>
</tr>
<tr>
<td rowspan="1" colspan="1">Binding to denatured collagen</td>
<td rowspan="1" colspan="1">Collagen mimetic peptides</td>
<td rowspan="1" colspan="1">Monitor ECM-remodeling</td>
<td rowspan="1" colspan="1">Human prostate cancer xenograft
<xref rid="B138" ref-type="bibr">138</xref>
</td>
</tr>
<tr>
<td rowspan="1" colspan="1">Binding to intact collagen</td>
<td rowspan="1" colspan="1">High density lipoprotein nanoparticles decorated with collagen binding molecules</td>
<td rowspan="1" colspan="1">Imaging of exposed collagen network</td>
<td rowspan="1" colspan="1">Murine model of atherosclerosis regression
<xref rid="B182" ref-type="bibr">182</xref>
</td>
</tr>
<tr>
<td rowspan="1" colspan="1">Inhibition of collagen cross-linking</td>
<td rowspan="1" colspan="1">Simtuzumab (anti-LOXL2)</td>
<td rowspan="1" colspan="1">Enhance the efficacy of combination therapy with gemcitabine</td>
<td rowspan="1" colspan="1">Pancreatic cancer (NCT01472198)
<xref rid="B145" ref-type="bibr">145</xref>
</td>
</tr>
<tr>
<td rowspan="1" colspan="1">Inhibition of collagen cross-linking</td>
<td rowspan="1" colspan="1">Poly(lactide-co-glycolide) nanoparticles decorated with LOX inhibitory antibody</td>
<td rowspan="1" colspan="1">Reduce tumor growth</td>
<td rowspan="1" colspan="1">Breast cancer xenograft mouse model
<xref rid="B144" ref-type="bibr">144</xref>
</td>
</tr>
<tr>
<td rowspan="1" colspan="1">Imaging MMP-overexpressing cells</td>
<td rowspan="1" colspan="1">Nanoprobe system with a MMP-labile linker</td>
<td rowspan="1" colspan="1">Image MMP-2-overexpressing tumors</td>
<td rowspan="1" colspan="1">Human fibrosarcoma and glioma xenografts
<xref rid="B183" ref-type="bibr">183</xref>
</td>
</tr>
<tr>
<td rowspan="1" colspan="1">Binding to integrins</td>
<td rowspan="1" colspan="1">Nanoparticles decorated with integrin binding molecules</td>
<td rowspan="1" colspan="1">Enhance tumor treatment and imaging</td>
<td rowspan="1" colspan="1">Multiple models
<xref rid="B78" ref-type="bibr">78</xref>
</td>
</tr>
<tr>
<td colspan="4" align="center" rowspan="1">
<bold>Hyaluronic acid</bold>
</td>
</tr>
<tr>
<td rowspan="1" colspan="1">Degradation of hyaluronic acid</td>
<td rowspan="1" colspan="1">Intravenous infusion of PEGylated human hyaluronidase (PEGPH20)</td>
<td rowspan="1" colspan="1">Enhance the efficacy of combination therapy with gemcitabine and nab-paclitaxel</td>
<td rowspan="1" colspan="1">Human pancreatic cancer (NCT02715804)
<xref rid="B158" ref-type="bibr">158</xref>
</td>
</tr>
<tr>
<td rowspan="1" colspan="1">Hyaluronidase substrate</td>
<td rowspan="1" colspan="1">Hyaluronic acid tagged-gold nanoparticles</td>
<td rowspan="1" colspan="1">Detect hyaluronidase-overexpressing tumors</td>
<td rowspan="1" colspan="1">Ovarian tumor xenograft
<xref rid="B186" ref-type="bibr">186</xref>
</td>
</tr>
<tr>
<td rowspan="1" colspan="1">Hyaluronidase substrate</td>
<td rowspan="1" colspan="1">Complexation of hyaluronic acid and cationic agent</td>
<td rowspan="1" colspan="1">Enhanced tumor penetration of polycationic agents</td>
<td rowspan="1" colspan="1">Multiple models
<xref rid="B161" ref-type="bibr">161</xref>
</td>
</tr>
<tr>
<td rowspan="1" colspan="1">Inhibition of hyaluronic acid synthesis</td>
<td rowspan="1" colspan="1">4-methylumbelliferone</td>
<td rowspan="1" colspan="1">Reduce tumor progression</td>
<td rowspan="1" colspan="1">Multiple cell lines (
<italic>in vitro</italic>
)
<xref rid="B163" ref-type="bibr">163</xref>
,
<xref rid="B164" ref-type="bibr">164</xref>
</td>
</tr>
<tr>
<td rowspan="1" colspan="1">Inhibition of hyaluronic acid synthesis</td>
<td rowspan="1" colspan="1">Liposome-encapsulated 4-methylumbelliferone</td>
<td rowspan="1" colspan="1">Enhance the efficacy of combination therapy with liposomal doxorubicin</td>
<td rowspan="1" colspan="1">4T1 murine breast tumor model
<xref rid="B165" ref-type="bibr">165</xref>
</td>
</tr>
</tbody>
</table>
<table-wrap-foot>
<fn>
<p>ECM, extracellular matrix; FOLFIRINOX, the FOLFIRINOX chemotherapy regimen is a combination of the drugs 5-fluorouracil, leucovorin and oxaliplatin; LOXL2, Lysyl oxidase‐like 2; MMPs, matrix metalloproteinases; TGF-β, transforming growth factor beta.</p>
</fn>
</table-wrap-foot>
</table-wrap>
</floats-group>
</pmc>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/ChloroquineV1/Data/Pmc/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000B11 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Pmc/Corpus/biblio.hfd -nk 000B11 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    ChloroquineV1
   |flux=    Pmc
   |étape=   Corpus
   |type=    RBID
   |clé=     PMC:6993244
   |texte=   Towards extracellular matrix normalization for improved treatment of solid tumors
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Pmc/Corpus/RBID.i   -Sk "pubmed:32042347" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Pmc/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a ChloroquineV1 

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Wed Mar 25 22:43:59 2020. Site generation: Sun Jan 31 12:44:45 2021