Serveur d'exploration Chloroquine

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Unraveling the Potential Role of Glutathione in Multiple Forms of Cell Death in Cancer Therapy

Identifieur interne : 000A89 ( Pmc/Corpus ); précédent : 000A88; suivant : 000A90

Unraveling the Potential Role of Glutathione in Multiple Forms of Cell Death in Cancer Therapy

Auteurs : Huanhuan Lv ; Chenxiao Zhen ; Junyu Liu ; Pengfei Yang ; Lijiang Hu ; Peng Shang

Source :

RBID : PMC:6590529

Abstract

Glutathione is the principal intracellular antioxidant buffer against oxidative stress and mainly exists in the forms of reduced glutathione (GSH) and oxidized glutathione (GSSG). The processes of glutathione synthesis, transport, utilization, and metabolism are tightly controlled to maintain intracellular glutathione homeostasis and redox balance. As for cancer cells, they exhibit a greater ROS level than normal cells in order to meet the enhanced metabolism and vicious proliferation; meanwhile, they also have to develop an increased antioxidant defense system to cope with the higher oxidant state. Growing numbers of studies have implicated that altering the glutathione antioxidant system is associated with multiple forms of programmed cell death in cancer cells. In this review, we firstly focus on glutathione homeostasis from the perspectives of glutathione synthesis, distribution, transportation, and metabolism. Then, we discuss the function of glutathione in the antioxidant process. Afterwards, we also summarize the recent advance in the understanding of the mechanism by which glutathione plays a key role in multiple forms of programmed cell death, including apoptosis, necroptosis, ferroptosis, and autophagy. Finally, we highlight the glutathione-targeting therapeutic approaches toward cancers. A comprehensive review on the glutathione homeostasis and the role of glutathione depletion in programmed cell death provide insight into the redox-based research concerning cancer therapeutics.


Url:
DOI: 10.1155/2019/3150145
PubMed: 31281572
PubMed Central: 6590529

Links to Exploration step

PMC:6590529

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Unraveling the Potential Role of Glutathione in Multiple Forms of Cell Death in Cancer Therapy</title>
<author>
<name sortKey="Lv, Huanhuan" sort="Lv, Huanhuan" uniqKey="Lv H" first="Huanhuan" last="Lv">Huanhuan Lv</name>
<affiliation>
<nlm:aff id="I1">School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="I2">Research & Development Institute of Northwestern Polytechnical University in Shenzhen, Shenzhen 518057, China</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="I3">Zhejiang Heye Health Technology Co. Ltd., Anji, Zhejiang 313300, China</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="I4">Research Centre of Microfluidic Chip for Health Care and Environmental Monitoring, Yangtze River Delta Research Institute of Northwestern Polytechnical University in Taicang, Suzhou, Jiangsu 215400, China</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="I5">Key Laboratory for Space Bioscience and Biotechnology, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Zhen, Chenxiao" sort="Zhen, Chenxiao" uniqKey="Zhen C" first="Chenxiao" last="Zhen">Chenxiao Zhen</name>
<affiliation>
<nlm:aff id="I1">School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="I2">Research & Development Institute of Northwestern Polytechnical University in Shenzhen, Shenzhen 518057, China</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="I5">Key Laboratory for Space Bioscience and Biotechnology, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Liu, Junyu" sort="Liu, Junyu" uniqKey="Liu J" first="Junyu" last="Liu">Junyu Liu</name>
<affiliation>
<nlm:aff id="I1">School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="I2">Research & Development Institute of Northwestern Polytechnical University in Shenzhen, Shenzhen 518057, China</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="I5">Key Laboratory for Space Bioscience and Biotechnology, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Yang, Pengfei" sort="Yang, Pengfei" uniqKey="Yang P" first="Pengfei" last="Yang">Pengfei Yang</name>
<affiliation>
<nlm:aff id="I1">School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="I2">Research & Development Institute of Northwestern Polytechnical University in Shenzhen, Shenzhen 518057, China</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="I4">Research Centre of Microfluidic Chip for Health Care and Environmental Monitoring, Yangtze River Delta Research Institute of Northwestern Polytechnical University in Taicang, Suzhou, Jiangsu 215400, China</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="I5">Key Laboratory for Space Bioscience and Biotechnology, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Hu, Lijiang" sort="Hu, Lijiang" uniqKey="Hu L" first="Lijiang" last="Hu">Lijiang Hu</name>
<affiliation>
<nlm:aff id="I3">Zhejiang Heye Health Technology Co. Ltd., Anji, Zhejiang 313300, China</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Shang, Peng" sort="Shang, Peng" uniqKey="Shang P" first="Peng" last="Shang">Peng Shang</name>
<affiliation>
<nlm:aff id="I2">Research & Development Institute of Northwestern Polytechnical University in Shenzhen, Shenzhen 518057, China</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="I4">Research Centre of Microfluidic Chip for Health Care and Environmental Monitoring, Yangtze River Delta Research Institute of Northwestern Polytechnical University in Taicang, Suzhou, Jiangsu 215400, China</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="I5">Key Laboratory for Space Bioscience and Biotechnology, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China</nlm:aff>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PMC</idno>
<idno type="pmid">31281572</idno>
<idno type="pmc">6590529</idno>
<idno type="url">http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6590529</idno>
<idno type="RBID">PMC:6590529</idno>
<idno type="doi">10.1155/2019/3150145</idno>
<date when="2019">2019</date>
<idno type="wicri:Area/Pmc/Corpus">000A89</idno>
<idno type="wicri:explorRef" wicri:stream="Pmc" wicri:step="Corpus" wicri:corpus="PMC">000A89</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a" type="main">Unraveling the Potential Role of Glutathione in Multiple Forms of Cell Death in Cancer Therapy</title>
<author>
<name sortKey="Lv, Huanhuan" sort="Lv, Huanhuan" uniqKey="Lv H" first="Huanhuan" last="Lv">Huanhuan Lv</name>
<affiliation>
<nlm:aff id="I1">School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="I2">Research & Development Institute of Northwestern Polytechnical University in Shenzhen, Shenzhen 518057, China</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="I3">Zhejiang Heye Health Technology Co. Ltd., Anji, Zhejiang 313300, China</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="I4">Research Centre of Microfluidic Chip for Health Care and Environmental Monitoring, Yangtze River Delta Research Institute of Northwestern Polytechnical University in Taicang, Suzhou, Jiangsu 215400, China</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="I5">Key Laboratory for Space Bioscience and Biotechnology, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Zhen, Chenxiao" sort="Zhen, Chenxiao" uniqKey="Zhen C" first="Chenxiao" last="Zhen">Chenxiao Zhen</name>
<affiliation>
<nlm:aff id="I1">School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="I2">Research & Development Institute of Northwestern Polytechnical University in Shenzhen, Shenzhen 518057, China</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="I5">Key Laboratory for Space Bioscience and Biotechnology, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Liu, Junyu" sort="Liu, Junyu" uniqKey="Liu J" first="Junyu" last="Liu">Junyu Liu</name>
<affiliation>
<nlm:aff id="I1">School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="I2">Research & Development Institute of Northwestern Polytechnical University in Shenzhen, Shenzhen 518057, China</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="I5">Key Laboratory for Space Bioscience and Biotechnology, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Yang, Pengfei" sort="Yang, Pengfei" uniqKey="Yang P" first="Pengfei" last="Yang">Pengfei Yang</name>
<affiliation>
<nlm:aff id="I1">School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="I2">Research & Development Institute of Northwestern Polytechnical University in Shenzhen, Shenzhen 518057, China</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="I4">Research Centre of Microfluidic Chip for Health Care and Environmental Monitoring, Yangtze River Delta Research Institute of Northwestern Polytechnical University in Taicang, Suzhou, Jiangsu 215400, China</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="I5">Key Laboratory for Space Bioscience and Biotechnology, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Hu, Lijiang" sort="Hu, Lijiang" uniqKey="Hu L" first="Lijiang" last="Hu">Lijiang Hu</name>
<affiliation>
<nlm:aff id="I3">Zhejiang Heye Health Technology Co. Ltd., Anji, Zhejiang 313300, China</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Shang, Peng" sort="Shang, Peng" uniqKey="Shang P" first="Peng" last="Shang">Peng Shang</name>
<affiliation>
<nlm:aff id="I2">Research & Development Institute of Northwestern Polytechnical University in Shenzhen, Shenzhen 518057, China</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="I4">Research Centre of Microfluidic Chip for Health Care and Environmental Monitoring, Yangtze River Delta Research Institute of Northwestern Polytechnical University in Taicang, Suzhou, Jiangsu 215400, China</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="I5">Key Laboratory for Space Bioscience and Biotechnology, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China</nlm:aff>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Oxidative Medicine and Cellular Longevity</title>
<idno type="ISSN">1942-0900</idno>
<idno type="eISSN">1942-0994</idno>
<imprint>
<date when="2019">2019</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<p>Glutathione is the principal intracellular antioxidant buffer against oxidative stress and mainly exists in the forms of reduced glutathione (GSH) and oxidized glutathione (GSSG). The processes of glutathione synthesis, transport, utilization, and metabolism are tightly controlled to maintain intracellular glutathione homeostasis and redox balance. As for cancer cells, they exhibit a greater ROS level than normal cells in order to meet the enhanced metabolism and vicious proliferation; meanwhile, they also have to develop an increased antioxidant defense system to cope with the higher oxidant state. Growing numbers of studies have implicated that altering the glutathione antioxidant system is associated with multiple forms of programmed cell death in cancer cells. In this review, we firstly focus on glutathione homeostasis from the perspectives of glutathione synthesis, distribution, transportation, and metabolism. Then, we discuss the function of glutathione in the antioxidant process. Afterwards, we also summarize the recent advance in the understanding of the mechanism by which glutathione plays a key role in multiple forms of programmed cell death, including apoptosis, necroptosis, ferroptosis, and autophagy. Finally, we highlight the glutathione-targeting therapeutic approaches toward cancers. A comprehensive review on the glutathione homeostasis and the role of glutathione depletion in programmed cell death provide insight into the redox-based research concerning cancer therapeutics.</p>
</div>
</front>
<back>
<div1 type="bibliography">
<listBibl>
<biblStruct>
<analytic>
<author>
<name sortKey="Meister, A" uniqKey="Meister A">A. Meister</name>
</author>
<author>
<name sortKey="Anderson, M E" uniqKey="Anderson M">M. E. Anderson</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Wu, G" uniqKey="Wu G">G. Wu</name>
</author>
<author>
<name sortKey="Fang, Y Z" uniqKey="Fang Y">Y. Z. Fang</name>
</author>
<author>
<name sortKey="Yang, S" uniqKey="Yang S">S. Yang</name>
</author>
<author>
<name sortKey="Lupton, J R" uniqKey="Lupton J">J. R. Lupton</name>
</author>
<author>
<name sortKey="Turner, N D" uniqKey="Turner N">N. D. Turner</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Sies, H" uniqKey="Sies H">H. Sies</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Moloney, J N" uniqKey="Moloney J">J. N. Moloney</name>
</author>
<author>
<name sortKey="Cotter, T G" uniqKey="Cotter T">T. G. Cotter</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Galadari, S" uniqKey="Galadari S">S. Galadari</name>
</author>
<author>
<name sortKey="Rahman, A" uniqKey="Rahman A">A. Rahman</name>
</author>
<author>
<name sortKey="Pallichankandy, S" uniqKey="Pallichankandy S">S. Pallichankandy</name>
</author>
<author>
<name sortKey="Thayyullathil, F" uniqKey="Thayyullathil F">F. Thayyullathil</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Circu, M L" uniqKey="Circu M">M. L. Circu</name>
</author>
<author>
<name sortKey="Aw, T Y" uniqKey="Aw T">T. Y. Aw</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Traverso, N" uniqKey="Traverso N">N. Traverso</name>
</author>
<author>
<name sortKey="Ricciarelli, R" uniqKey="Ricciarelli R">R. Ricciarelli</name>
</author>
<author>
<name sortKey="Nitti, M" uniqKey="Nitti M">M. Nitti</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Schumacker, P T" uniqKey="Schumacker P">P. T. Schumacker</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Hatem, E" uniqKey="Hatem E">E. Hatem</name>
</author>
<author>
<name sortKey="El Banna, N" uniqKey="El Banna N">N. el Banna</name>
</author>
<author>
<name sortKey="Huang, M E" uniqKey="Huang M">M. E. Huang</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Anderson, M E" uniqKey="Anderson M">M. E. Anderson</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Dalton, T P" uniqKey="Dalton T">T. P. Dalton</name>
</author>
<author>
<name sortKey="Chen, Y" uniqKey="Chen Y">Y. Chen</name>
</author>
<author>
<name sortKey="Schneider, S N" uniqKey="Schneider S">S. N. Schneider</name>
</author>
<author>
<name sortKey="Nebert, D W" uniqKey="Nebert D">D. W. Nebert</name>
</author>
<author>
<name sortKey="Shertzer, H G" uniqKey="Shertzer H">H. G. Shertzer</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Lu, S C" uniqKey="Lu S">S. C. Lu</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Diaz Vivancos, P" uniqKey="Diaz Vivancos P">P. Diaz Vivancos</name>
</author>
<author>
<name sortKey="Wolff, T" uniqKey="Wolff T">T. Wolff</name>
</author>
<author>
<name sortKey="Markovic, J" uniqKey="Markovic J">J. Markovic</name>
</author>
<author>
<name sortKey="Pallard, F V" uniqKey="Pallard F">F. V. Pallardó</name>
</author>
<author>
<name sortKey="Foyer, C H" uniqKey="Foyer C">C. H. Foyer</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Briviba, K" uniqKey="Briviba K">K. BRIVIBA</name>
</author>
<author>
<name sortKey="Fraser, G" uniqKey="Fraser G">G. Fraser</name>
</author>
<author>
<name sortKey="Sies, H" uniqKey="Sies H">H. Sies</name>
</author>
<author>
<name sortKey="Ketterer, B" uniqKey="Ketterer B">B. Ketterer</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Soderdahl, T" uniqKey="Soderdahl T">T. Söderdahl</name>
</author>
<author>
<name sortKey="Enoksson, M" uniqKey="Enoksson M">M. Enoksson</name>
</author>
<author>
<name sortKey="Lundberg, M" uniqKey="Lundberg M">M. Lundberg</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Diaz Vivancos, P" uniqKey="Diaz Vivancos P">P. Diaz-Vivancos</name>
</author>
<author>
<name sortKey="De Simone, A" uniqKey="De Simone A">A. de Simone</name>
</author>
<author>
<name sortKey="Kiddle, G" uniqKey="Kiddle G">G. Kiddle</name>
</author>
<author>
<name sortKey="Foyer, C H" uniqKey="Foyer C">C. H. Foyer</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Meredith, M J" uniqKey="Meredith M">M. J. Meredith</name>
</author>
<author>
<name sortKey="Reed, D J" uniqKey="Reed D">D. J. Reed</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Hwang, C" uniqKey="Hwang C">C. Hwang</name>
</author>
<author>
<name sortKey="Sinskey, A" uniqKey="Sinskey A">A. Sinskey</name>
</author>
<author>
<name sortKey="Lodish, H" uniqKey="Lodish H">H. Lodish</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Morgan, B" uniqKey="Morgan B">B. Morgan</name>
</author>
<author>
<name sortKey="Ezeri A, D" uniqKey="Ezeri A D">D. Ezeriņa</name>
</author>
<author>
<name sortKey="Amoako, T N E" uniqKey="Amoako T">T. N. E. Amoako</name>
</author>
<author>
<name sortKey="Riemer, J" uniqKey="Riemer J">J. Riemer</name>
</author>
<author>
<name sortKey="Seedorf, M" uniqKey="Seedorf M">M. Seedorf</name>
</author>
<author>
<name sortKey="Dick, T P" uniqKey="Dick T">T. P. Dick</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Lu, S C" uniqKey="Lu S">S. C. Lu</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Morgan, B" uniqKey="Morgan B">B. Morgan</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Meyer, A J" uniqKey="Meyer A">A. J. Meyer</name>
</author>
<author>
<name sortKey="Brach, T" uniqKey="Brach T">T. Brach</name>
</author>
<author>
<name sortKey="Marty, L" uniqKey="Marty L">L. Marty</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Calabrese, G" uniqKey="Calabrese G">G. Calabrese</name>
</author>
<author>
<name sortKey="Morgan, B" uniqKey="Morgan B">B. Morgan</name>
</author>
<author>
<name sortKey="Riemer, J" uniqKey="Riemer J">J. Riemer</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Mari, M" uniqKey="Mari M">M. Marí</name>
</author>
<author>
<name sortKey="Morales, A" uniqKey="Morales A">A. Morales</name>
</author>
<author>
<name sortKey="Colell, A" uniqKey="Colell A">A. Colell</name>
</author>
<author>
<name sortKey="Garcia Ruiz, C" uniqKey="Garcia Ruiz C">C. García-Ruiz</name>
</author>
<author>
<name sortKey="Fernandez Checa, J C" uniqKey="Fernandez Checa J">J. C. Fernández-Checa</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Lash, L H" uniqKey="Lash L">L. H. Lash</name>
</author>
<author>
<name sortKey="Visarius, T M" uniqKey="Visarius T">T. M. Visarius</name>
</author>
<author>
<name sortKey="Sall, J M" uniqKey="Sall J">J. M. Sall</name>
</author>
<author>
<name sortKey="Qian, W" uniqKey="Qian W">W. Qian</name>
</author>
<author>
<name sortKey="Tokarz, J J" uniqKey="Tokarz J">J. J. Tokarz</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Schnellmann, R G" uniqKey="Schnellmann R">R. G. Schnellmann</name>
</author>
<author>
<name sortKey="Gilchrist, S M" uniqKey="Gilchrist S">S. M. Gilchrist</name>
</author>
<author>
<name sortKey="Mandel, L J" uniqKey="Mandel L">L. J. Mandel</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kojer, K" uniqKey="Kojer K">K. Kojer</name>
</author>
<author>
<name sortKey="Bien, M" uniqKey="Bien M">M. Bien</name>
</author>
<author>
<name sortKey="Gangel, H" uniqKey="Gangel H">H. Gangel</name>
</author>
<author>
<name sortKey="Morgan, B" uniqKey="Morgan B">B. Morgan</name>
</author>
<author>
<name sortKey="Dick, T P" uniqKey="Dick T">T. P. Dick</name>
</author>
<author>
<name sortKey="Riemer, J" uniqKey="Riemer J">J. Riemer</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Becker, T" uniqKey="Becker T">T. Becker</name>
</author>
<author>
<name sortKey="Gebert, M" uniqKey="Gebert M">M. Gebert</name>
</author>
<author>
<name sortKey="Pfanner, N" uniqKey="Pfanner N">N. Pfanner</name>
</author>
<author>
<name sortKey="Van Der Laan, M" uniqKey="Van Der Laan M">M. van der Laan</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Tatsuta, T" uniqKey="Tatsuta T">T. Tatsuta</name>
</author>
<author>
<name sortKey="Scharwey, M" uniqKey="Scharwey M">M. Scharwey</name>
</author>
<author>
<name sortKey="Langer, T" uniqKey="Langer T">T. Langer</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Cogliati, S" uniqKey="Cogliati S">S. Cogliati</name>
</author>
<author>
<name sortKey="Enriquez, J A" uniqKey="Enriquez J">J. A. Enriquez</name>
</author>
<author>
<name sortKey="Scorrano, L" uniqKey="Scorrano L">L. Scorrano</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Lash, L H" uniqKey="Lash L">L. H. Lash</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Lash, L H" uniqKey="Lash L">L. H. Lash</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Chen, Z" uniqKey="Chen Z">Z. Chen</name>
</author>
<author>
<name sortKey="Putt, D A" uniqKey="Putt D">D. A. Putt</name>
</author>
<author>
<name sortKey="Lash, L H" uniqKey="Lash L">L. H. Lash</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Markovic, J" uniqKey="Markovic J">J. Markovic</name>
</author>
<author>
<name sortKey="Borras, C" uniqKey="Borras C">C. Borras</name>
</author>
<author>
<name sortKey="Ortega, A" uniqKey="Ortega A">A. Ortega</name>
</author>
<author>
<name sortKey="Sastre, J" uniqKey="Sastre J">J. Sastre</name>
</author>
<author>
<name sortKey="Vina, J" uniqKey="Vina J">J. Vina</name>
</author>
<author>
<name sortKey="Pallardo, F V" uniqKey="Pallardo F">F. V. Pallardo</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Vivancos, P D" uniqKey="Vivancos P">P. D. Vivancos</name>
</author>
<author>
<name sortKey="Dong, Y" uniqKey="Dong Y">Y. Dong</name>
</author>
<author>
<name sortKey="Ziegler, K" uniqKey="Ziegler K">K. Ziegler</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Holmgren, A" uniqKey="Holmgren A">A. Holmgren</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Valko, M" uniqKey="Valko M">M. Valko</name>
</author>
<author>
<name sortKey="Leibfritz, D" uniqKey="Leibfritz D">D. Leibfritz</name>
</author>
<author>
<name sortKey="Moncol, J" uniqKey="Moncol J">J. Moncol</name>
</author>
<author>
<name sortKey="Cronin, M T D" uniqKey="Cronin M">M. T. D. Cronin</name>
</author>
<author>
<name sortKey="Mazur, M" uniqKey="Mazur M">M. Mazur</name>
</author>
<author>
<name sortKey="Telser, J" uniqKey="Telser J">J. Telser</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Holmgren, A" uniqKey="Holmgren A">A. Holmgren</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Wang, M" uniqKey="Wang M">M. Wang</name>
</author>
<author>
<name sortKey="Kaufman, R J" uniqKey="Kaufman R">R. J. Kaufman</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Montero, D" uniqKey="Montero D">D. Montero</name>
</author>
<author>
<name sortKey="Tachibana, C" uniqKey="Tachibana C">C. Tachibana</name>
</author>
<author>
<name sortKey="Rahr Winther, J" uniqKey="Rahr Winther J">J. Rahr Winther</name>
</author>
<author>
<name sortKey="Appenzeller Herzog, C" uniqKey="Appenzeller Herzog C">C. Appenzeller-Herzog</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Cao, S S" uniqKey="Cao S">S. S. Cao</name>
</author>
<author>
<name sortKey="Kaufman, R J" uniqKey="Kaufman R">R. J. Kaufman</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Anderson, M E" uniqKey="Anderson M">M. E. Anderson</name>
</author>
<author>
<name sortKey="Bridges, R J" uniqKey="Bridges R">R. J. Bridges</name>
</author>
<author>
<name sortKey="Meister, A" uniqKey="Meister A">A. Meister</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="H Berle, D" uniqKey="H Berle D">D. Häberle</name>
</author>
<author>
<name sortKey="Wahll Nder, A" uniqKey="Wahll Nder A">A. Wahlländer</name>
</author>
<author>
<name sortKey="Sies, H" uniqKey="Sies H">H. Sies</name>
</author>
<author>
<name sortKey="Linke, I" uniqKey="Linke I">I. Linke</name>
</author>
<author>
<name sortKey="Lachenmaier, C" uniqKey="Lachenmaier C">C. Lachenmaier</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Hahn, R" uniqKey="Hahn R">R. Hahn</name>
</author>
<author>
<name sortKey="Wendel, A" uniqKey="Wendel A">A. Wendel</name>
</author>
<author>
<name sortKey="Flohe, L" uniqKey="Flohe L">L. Flohé</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Lash, L H" uniqKey="Lash L">L. H. Lash</name>
</author>
<author>
<name sortKey="Putt, D A" uniqKey="Putt D">D. A. Putt</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Chen, X" uniqKey="Chen X">X. Chen</name>
</author>
<author>
<name sortKey="Tsukaguchi, H" uniqKey="Tsukaguchi H">H. Tsukaguchi</name>
</author>
<author>
<name sortKey="Chen, X Z" uniqKey="Chen X">X. Z. Chen</name>
</author>
<author>
<name sortKey="Berger, U V" uniqKey="Berger U">U. V. Berger</name>
</author>
<author>
<name sortKey="Hediger, M A" uniqKey="Hediger M">M. A. Hediger</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Inoue, M" uniqKey="Inoue M">M. Inoue</name>
</author>
<author>
<name sortKey="Morino, Y" uniqKey="Morino Y">Y. Morino</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ballatori, N" uniqKey="Ballatori N">N. Ballatori</name>
</author>
<author>
<name sortKey="Hammond, C L" uniqKey="Hammond C">C. L. Hammond</name>
</author>
<author>
<name sortKey="Cunningham, J B" uniqKey="Cunningham J">J. B. Cunningham</name>
</author>
<author>
<name sortKey="Krance, S M" uniqKey="Krance S">S. M. Krance</name>
</author>
<author>
<name sortKey="Marchan, R" uniqKey="Marchan R">R. Marchan</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Li, L" uniqKey="Li L">L. Li</name>
</author>
<author>
<name sortKey="Lee, T K" uniqKey="Lee T">T. K. Lee</name>
</author>
<author>
<name sortKey="Meier, P J" uniqKey="Meier P">P. J. Meier</name>
</author>
<author>
<name sortKey="Ballatori, N" uniqKey="Ballatori N">N. Ballatori</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Bachhawat, A K" uniqKey="Bachhawat A">A. K. Bachhawat</name>
</author>
<author>
<name sortKey="Thakur, A" uniqKey="Thakur A">A. Thakur</name>
</author>
<author>
<name sortKey="Kaur, J" uniqKey="Kaur J">J. Kaur</name>
</author>
<author>
<name sortKey="Zulkifli, M" uniqKey="Zulkifli M">M. Zulkifli</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Hanigan, M H" uniqKey="Hanigan M">M. H. Hanigan</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kumar, S" uniqKey="Kumar S">S. Kumar</name>
</author>
<author>
<name sortKey="Kaur, A" uniqKey="Kaur A">A. Kaur</name>
</author>
<author>
<name sortKey="Chattopadhyay, B" uniqKey="Chattopadhyay B">B. Chattopadhyay</name>
</author>
<author>
<name sortKey="Bachhawat, A K" uniqKey="Bachhawat A">A. K. Bachhawat</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kumar, A" uniqKey="Kumar A">A. Kumar</name>
</author>
<author>
<name sortKey="Tikoo, S" uniqKey="Tikoo S">S. Tikoo</name>
</author>
<author>
<name sortKey="Maity, S" uniqKey="Maity S">S. Maity</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Oakley, A J" uniqKey="Oakley A">A. J. Oakley</name>
</author>
<author>
<name sortKey="Yamada, T" uniqKey="Yamada T">T. Yamada</name>
</author>
<author>
<name sortKey="Liu, D" uniqKey="Liu D">D. Liu</name>
</author>
<author>
<name sortKey="Coggan, M" uniqKey="Coggan M">M. Coggan</name>
</author>
<author>
<name sortKey="Clark, A G" uniqKey="Clark A">A. G. Clark</name>
</author>
<author>
<name sortKey="Board, P G" uniqKey="Board P">P. G. Board</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kaur, A" uniqKey="Kaur A">A. Kaur</name>
</author>
<author>
<name sortKey="Gautam, R" uniqKey="Gautam R">R. Gautam</name>
</author>
<author>
<name sortKey="Srivastava, R" uniqKey="Srivastava R">R. Srivastava</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Gorrini, C" uniqKey="Gorrini C">C. Gorrini</name>
</author>
<author>
<name sortKey="Harris, I S" uniqKey="Harris I">I. S. Harris</name>
</author>
<author>
<name sortKey="Mak, T W" uniqKey="Mak T">T. W. Mak</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ortega, A L" uniqKey="Ortega A">A. L. Ortega</name>
</author>
<author>
<name sortKey="Mena, S" uniqKey="Mena S">S. Mena</name>
</author>
<author>
<name sortKey="Estrela, J M" uniqKey="Estrela J">J. M. Estrela</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Murphy, M P" uniqKey="Murphy M">M. P. Murphy</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ouyang, L" uniqKey="Ouyang L">L. Ouyang</name>
</author>
<author>
<name sortKey="Shi, Z" uniqKey="Shi Z">Z. Shi</name>
</author>
<author>
<name sortKey="Zhao, S" uniqKey="Zhao S">S. Zhao</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Su, Z" uniqKey="Su Z">Z. Su</name>
</author>
<author>
<name sortKey="Yang, Z" uniqKey="Yang Z">Z. Yang</name>
</author>
<author>
<name sortKey="Xu, Y" uniqKey="Xu Y">Y. Xu</name>
</author>
<author>
<name sortKey="Chen, Y" uniqKey="Chen Y">Y. Chen</name>
</author>
<author>
<name sortKey="Yu, Q" uniqKey="Yu Q">Q. Yu</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Elmore, S" uniqKey="Elmore S">S. Elmore</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Zhao, Y F" uniqKey="Zhao Y">Y. F. Zhao</name>
</author>
<author>
<name sortKey="Zhang, C" uniqKey="Zhang C">C. Zhang</name>
</author>
<author>
<name sortKey="Suo, Y R" uniqKey="Suo Y">Y. R. Suo</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Franco, R" uniqKey="Franco R">R. Franco</name>
</author>
<author>
<name sortKey="Panayiotidis, M I" uniqKey="Panayiotidis M">M. I. Panayiotidis</name>
</author>
<author>
<name sortKey="Cidlowski, J A" uniqKey="Cidlowski J">J. A. Cidlowski</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Khan, M" uniqKey="Khan M">M. Khan</name>
</author>
<author>
<name sortKey="Yi, F" uniqKey="Yi F">F. Yi</name>
</author>
<author>
<name sortKey="Rasul, A" uniqKey="Rasul A">A. Rasul</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Armstrong, J S" uniqKey="Armstrong J">J. S. Armstrong</name>
</author>
<author>
<name sortKey="Steinauer, K K" uniqKey="Steinauer K">K. K. Steinauer</name>
</author>
<author>
<name sortKey="Hornung, B" uniqKey="Hornung B">B. Hornung</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ghibelli, L" uniqKey="Ghibelli L">L. Ghibelli</name>
</author>
<author>
<name sortKey="Fanelli, C" uniqKey="Fanelli C">C. Fanelli</name>
</author>
<author>
<name sortKey="Rotilio, G" uniqKey="Rotilio G">G. Rotilio</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Hammond, C L" uniqKey="Hammond C">C. L. Hammond</name>
</author>
<author>
<name sortKey="Marchan, R" uniqKey="Marchan R">R. Marchan</name>
</author>
<author>
<name sortKey="Krance, S M" uniqKey="Krance S">S. M. Krance</name>
</author>
<author>
<name sortKey="Ballatori, N" uniqKey="Ballatori N">N. Ballatori</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Zou, X" uniqKey="Zou X">X. Zou</name>
</author>
<author>
<name sortKey="Feng, Z" uniqKey="Feng Z">Z. Feng</name>
</author>
<author>
<name sortKey="Li, Y" uniqKey="Li Y">Y. Li</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Akhtar, M J" uniqKey="Akhtar M">M. J. Akhtar</name>
</author>
<author>
<name sortKey="Ahamed, M" uniqKey="Ahamed M">M. Ahamed</name>
</author>
<author>
<name sortKey="Alhadlaq, H A" uniqKey="Alhadlaq H">H. A. Alhadlaq</name>
</author>
<author>
<name sortKey="Alshamsan, A" uniqKey="Alshamsan A">A. Alshamsan</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Chen, G" uniqKey="Chen G">G. Chen</name>
</author>
<author>
<name sortKey="Chen, Z" uniqKey="Chen Z">Z. Chen</name>
</author>
<author>
<name sortKey="Hu, Y" uniqKey="Hu Y">Y. Hu</name>
</author>
<author>
<name sortKey="Huang, P" uniqKey="Huang P">P. Huang</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Circu, M L" uniqKey="Circu M">M. L. Circu</name>
</author>
<author>
<name sortKey="Yee Aw, T" uniqKey="Yee Aw T">T. Yee Aw</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Guha, P" uniqKey="Guha P">P. Guha</name>
</author>
<author>
<name sortKey="Dey, A" uniqKey="Dey A">A. Dey</name>
</author>
<author>
<name sortKey="Sen, R" uniqKey="Sen R">R. Sen</name>
</author>
<author>
<name sortKey="Chatterjee, M" uniqKey="Chatterjee M">M. Chatterjee</name>
</author>
<author>
<name sortKey="Chattopadhyay, S" uniqKey="Chattopadhyay S">S. Chattopadhyay</name>
</author>
<author>
<name sortKey="Bandyopadhyay, S K" uniqKey="Bandyopadhyay S">S. K. Bandyopadhyay</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Honda, T" uniqKey="Honda T">T. Honda</name>
</author>
<author>
<name sortKey="Coppola, S" uniqKey="Coppola S">S. Coppola</name>
</author>
<author>
<name sortKey="Ghibelli, L" uniqKey="Ghibelli L">L. Ghibelli</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Vandenabeele, P" uniqKey="Vandenabeele P">P. Vandenabeele</name>
</author>
<author>
<name sortKey="Galluzzi, L" uniqKey="Galluzzi L">L. Galluzzi</name>
</author>
<author>
<name sortKey="Vanden Berghe, T" uniqKey="Vanden Berghe T">T. vanden Berghe</name>
</author>
<author>
<name sortKey="Kroemer, G" uniqKey="Kroemer G">G. Kroemer</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Berghe, T V" uniqKey="Berghe T">T. V. Berghe</name>
</author>
<author>
<name sortKey="Linkermann, A" uniqKey="Linkermann A">A. Linkermann</name>
</author>
<author>
<name sortKey="Jouan Lanhouet, S" uniqKey="Jouan Lanhouet S">S. Jouan-Lanhouet</name>
</author>
<author>
<name sortKey="Walczak, H" uniqKey="Walczak H">H. Walczak</name>
</author>
<author>
<name sortKey="Vandenabeele, P" uniqKey="Vandenabeele P">P. Vandenabeele</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Christofferson, D E" uniqKey="Christofferson D">D. E. Christofferson</name>
</author>
<author>
<name sortKey="Yuan, J" uniqKey="Yuan J">J. Yuan</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Galluzzi, L" uniqKey="Galluzzi L">L. Galluzzi</name>
</author>
<author>
<name sortKey="Kroemer, G" uniqKey="Kroemer G">G. Kroemer</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Nagai, H" uniqKey="Nagai H">H. Nagai</name>
</author>
<author>
<name sortKey="Matsumaru, K" uniqKey="Matsumaru K">K. Matsumaru</name>
</author>
<author>
<name sortKey="Feng, G" uniqKey="Feng G">G. Feng</name>
</author>
<author>
<name sortKey="Kaplowitz, N" uniqKey="Kaplowitz N">N. Kaplowitz</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Xu, X" uniqKey="Xu X">X. Xu</name>
</author>
<author>
<name sortKey="Chua, C C" uniqKey="Chua C">C. C. Chua</name>
</author>
<author>
<name sortKey="Kong, J" uniqKey="Kong J">J. Kong</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Chauhan, A K" uniqKey="Chauhan A">A. K. Chauhan</name>
</author>
<author>
<name sortKey="Min, K J" uniqKey="Min K">K. J. Min</name>
</author>
<author>
<name sortKey="Kwon, T K" uniqKey="Kwon T">T. K. Kwon</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Xie, X" uniqKey="Xie X">X. Xie</name>
</author>
<author>
<name sortKey="Zhao, Y" uniqKey="Zhao Y">Y. Zhao</name>
</author>
<author>
<name sortKey="Ma, C Y" uniqKey="Ma C">C. Y. Ma</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Chen, M S" uniqKey="Chen M">M. S. Chen</name>
</author>
<author>
<name sortKey="Wang, S F" uniqKey="Wang S">S. F. Wang</name>
</author>
<author>
<name sortKey="Hsu, C Y" uniqKey="Hsu C">C. Y. Hsu</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Dixon, S J" uniqKey="Dixon S">S. J. Dixon</name>
</author>
<author>
<name sortKey="Lemberg, K M" uniqKey="Lemberg K">K. M. Lemberg</name>
</author>
<author>
<name sortKey="Lamprecht, M R" uniqKey="Lamprecht M">M. R. Lamprecht</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Reed, J C" uniqKey="Reed J">J. C. Reed</name>
</author>
<author>
<name sortKey="Pellecchia, M" uniqKey="Pellecchia M">M. Pellecchia</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Yang, W S" uniqKey="Yang W">W. S. Yang</name>
</author>
<author>
<name sortKey="Stockwell, B R" uniqKey="Stockwell B">B. R. Stockwell</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Yu, X" uniqKey="Yu X">X. Yu</name>
</author>
<author>
<name sortKey="Long, Y C" uniqKey="Long Y">Y. C. Long</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Gao, M" uniqKey="Gao M">M. Gao</name>
</author>
<author>
<name sortKey="Monian, P" uniqKey="Monian P">P. Monian</name>
</author>
<author>
<name sortKey="Quadri, N" uniqKey="Quadri N">N. Quadri</name>
</author>
<author>
<name sortKey="Ramasamy, R" uniqKey="Ramasamy R">R. Ramasamy</name>
</author>
<author>
<name sortKey="Jiang, X" uniqKey="Jiang X">X. Jiang</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Sui, X" uniqKey="Sui X">X. Sui</name>
</author>
<author>
<name sortKey="Zhang, R" uniqKey="Zhang R">R. Zhang</name>
</author>
<author>
<name sortKey="Liu, S" uniqKey="Liu S">S. Liu</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Friedmann Angeli, J P" uniqKey="Friedmann Angeli J">J. P. Friedmann Angeli</name>
</author>
<author>
<name sortKey="Schneider, M" uniqKey="Schneider M">M. Schneider</name>
</author>
<author>
<name sortKey="Proneth, B" uniqKey="Proneth B">B. Proneth</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Seibt, T M" uniqKey="Seibt T">T. M. Seibt</name>
</author>
<author>
<name sortKey="Proneth, B" uniqKey="Proneth B">B. Proneth</name>
</author>
<author>
<name sortKey="Conrad, M" uniqKey="Conrad M">M. Conrad</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Hirschhorn, T" uniqKey="Hirschhorn T">T. Hirschhorn</name>
</author>
<author>
<name sortKey="Stockwell, B R" uniqKey="Stockwell B">B. R. Stockwell</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Yang, W S" uniqKey="Yang W">W. S. Yang</name>
</author>
<author>
<name sortKey="Stockwell, B R" uniqKey="Stockwell B">B. R. Stockwell</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Yang, W S" uniqKey="Yang W">W. S. Yang</name>
</author>
<author>
<name sortKey="Sriramaratnam, R" uniqKey="Sriramaratnam R">R. SriRamaratnam</name>
</author>
<author>
<name sortKey="Welsch, M E" uniqKey="Welsch M">M. E. Welsch</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Shimada, K" uniqKey="Shimada K">K. Shimada</name>
</author>
<author>
<name sortKey="Skouta, R" uniqKey="Skouta R">R. Skouta</name>
</author>
<author>
<name sortKey="Kaplan, A" uniqKey="Kaplan A">A. Kaplan</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Miess, H" uniqKey="Miess H">H. Miess</name>
</author>
<author>
<name sortKey="Dankworth, B" uniqKey="Dankworth B">B. Dankworth</name>
</author>
<author>
<name sortKey="Gouw, A M" uniqKey="Gouw A">A. M. Gouw</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="D Herde, K" uniqKey="D Herde K">K. D'Herde</name>
</author>
<author>
<name sortKey="Krysko, D V" uniqKey="Krysko D">D. V. Krysko</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Stoyanovsky, D A" uniqKey="Stoyanovsky D">D. A. Stoyanovsky</name>
</author>
<author>
<name sortKey="Tyurina, Y Y" uniqKey="Tyurina Y">Y. Y. Tyurina</name>
</author>
<author>
<name sortKey="Shrivastava, I" uniqKey="Shrivastava I">I. Shrivastava</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kagan, V E" uniqKey="Kagan V">V. E. Kagan</name>
</author>
<author>
<name sortKey="Mao, G" uniqKey="Mao G">G. Mao</name>
</author>
<author>
<name sortKey="Qu, F" uniqKey="Qu F">F. Qu</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Angeli, J P F" uniqKey="Angeli J">J. P. F. Angeli</name>
</author>
<author>
<name sortKey="Shah, R" uniqKey="Shah R">R. Shah</name>
</author>
<author>
<name sortKey="Pratt, D A" uniqKey="Pratt D">D. A. Pratt</name>
</author>
<author>
<name sortKey="Conrad, M" uniqKey="Conrad M">M. Conrad</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Louandre, C" uniqKey="Louandre C">C. Louandre</name>
</author>
<author>
<name sortKey="Ezzoukhry, Z" uniqKey="Ezzoukhry Z">Z. Ezzoukhry</name>
</author>
<author>
<name sortKey="Godin, C" uniqKey="Godin C">C. Godin</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Louandre, C" uniqKey="Louandre C">C. Louandre</name>
</author>
<author>
<name sortKey="Marcq, I" uniqKey="Marcq I">I. Marcq</name>
</author>
<author>
<name sortKey="Bouhlal, H" uniqKey="Bouhlal H">H. Bouhlal</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Dikic, I" uniqKey="Dikic I">I. Dikic</name>
</author>
<author>
<name sortKey="Johansen, T" uniqKey="Johansen T">T. Johansen</name>
</author>
<author>
<name sortKey="Kirkin, V" uniqKey="Kirkin V">V. Kirkin</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Green, D R" uniqKey="Green D">D. R. Green</name>
</author>
<author>
<name sortKey="Levine, B" uniqKey="Levine B">B. Levine</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Filomeni, G" uniqKey="Filomeni G">G. Filomeni</name>
</author>
<author>
<name sortKey="De Zio, D" uniqKey="De Zio D">D. De Zio</name>
</author>
<author>
<name sortKey="Cecconi, F" uniqKey="Cecconi F">F. Cecconi</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Filomeni, G" uniqKey="Filomeni G">G. Filomeni</name>
</author>
<author>
<name sortKey="Desideri, E" uniqKey="Desideri E">E. Desideri</name>
</author>
<author>
<name sortKey="Cardaci, S" uniqKey="Cardaci S">S. Cardaci</name>
</author>
<author>
<name sortKey="Rotilio, G" uniqKey="Rotilio G">G. Rotilio</name>
</author>
<author>
<name sortKey="Ciriolo, M R" uniqKey="Ciriolo M">M. R. Ciriolo</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Mancilla, H" uniqKey="Mancilla H">H. Mancilla</name>
</author>
<author>
<name sortKey="Maldonado, R" uniqKey="Maldonado R">R. Maldonado</name>
</author>
<author>
<name sortKey="Cereceda, K" uniqKey="Cereceda K">K. Cereceda</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ogier Denis, E" uniqKey="Ogier Denis E">E. Ogier-Denis</name>
</author>
<author>
<name sortKey="Codogno, P" uniqKey="Codogno P">P. Codogno</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Guo, W" uniqKey="Guo W">W. Guo</name>
</author>
<author>
<name sortKey="Zhao, Y" uniqKey="Zhao Y">Y. Zhao</name>
</author>
<author>
<name sortKey="Zhang, Z" uniqKey="Zhang Z">Z. Zhang</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Desideri, E" uniqKey="Desideri E">E. Desideri</name>
</author>
<author>
<name sortKey="Filomeni, G" uniqKey="Filomeni G">G. Filomeni</name>
</author>
<author>
<name sortKey="Ciriolo, M R" uniqKey="Ciriolo M">M. R. Ciriolo</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Seo, G" uniqKey="Seo G">G. Seo</name>
</author>
<author>
<name sortKey="Kim, S K" uniqKey="Kim S">S. K. Kim</name>
</author>
<author>
<name sortKey="Byun, Y J" uniqKey="Byun Y">Y. J. Byun</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kang, R" uniqKey="Kang R">R. Kang</name>
</author>
<author>
<name sortKey="Tang, D" uniqKey="Tang D">D. Tang</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ott, C" uniqKey="Ott C">C. Ott</name>
</author>
<author>
<name sortKey="Konig, J" uniqKey="Konig J">J. Konig</name>
</author>
<author>
<name sortKey="Hohn, A" uniqKey="Hohn A">A. Hohn</name>
</author>
<author>
<name sortKey="Jung, T" uniqKey="Jung T">T. Jung</name>
</author>
<author>
<name sortKey="Grune, T" uniqKey="Grune T">T. Grune</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Torii, S" uniqKey="Torii S">S. Torii</name>
</author>
<author>
<name sortKey="Shintoku, R" uniqKey="Shintoku R">R. Shintoku</name>
</author>
<author>
<name sortKey="Kubota, C" uniqKey="Kubota C">C. Kubota</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Wu, Z" uniqKey="Wu Z">Z. Wu</name>
</author>
<author>
<name sortKey="Geng, Y" uniqKey="Geng Y">Y. Geng</name>
</author>
<author>
<name sortKey="Lu, X" uniqKey="Lu X">X. Lu</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Gao, M" uniqKey="Gao M">M. Gao</name>
</author>
<author>
<name sortKey="Monian, P" uniqKey="Monian P">P. Monian</name>
</author>
<author>
<name sortKey="Pan, Q" uniqKey="Pan Q">Q. Pan</name>
</author>
<author>
<name sortKey="Zhang, W" uniqKey="Zhang W">W. Zhang</name>
</author>
<author>
<name sortKey="Xiang, J" uniqKey="Xiang J">J. Xiang</name>
</author>
<author>
<name sortKey="Jiang, X" uniqKey="Jiang X">X. Jiang</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Hou, W" uniqKey="Hou W">W. Hou</name>
</author>
<author>
<name sortKey="Xie, Y" uniqKey="Xie Y">Y. Xie</name>
</author>
<author>
<name sortKey="Song, X" uniqKey="Song X">X. Song</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Santana Codina, N" uniqKey="Santana Codina N">N. Santana-Codina</name>
</author>
<author>
<name sortKey="Mancias, J D" uniqKey="Mancias J">J. D. Mancias</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Mancias, J D" uniqKey="Mancias J">J. D. Mancias</name>
</author>
<author>
<name sortKey="Wang, X" uniqKey="Wang X">X. Wang</name>
</author>
<author>
<name sortKey="Gygi, S P" uniqKey="Gygi S">S. P. Gygi</name>
</author>
<author>
<name sortKey="Harper, J W" uniqKey="Harper J">J. W. Harper</name>
</author>
<author>
<name sortKey="Kimmelman, A C" uniqKey="Kimmelman A">A. C. Kimmelman</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Dowdle, W E" uniqKey="Dowdle W">W. E. Dowdle</name>
</author>
<author>
<name sortKey="Nyfeler, B" uniqKey="Nyfeler B">B. Nyfeler</name>
</author>
<author>
<name sortKey="Nagel, J" uniqKey="Nagel J">J. Nagel</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Du, J" uniqKey="Du J">J. Du</name>
</author>
<author>
<name sortKey="Wang, T" uniqKey="Wang T">T. Wang</name>
</author>
<author>
<name sortKey="Li, Y" uniqKey="Li Y">Y. Li</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Chen, H H W" uniqKey="Chen H">H. H. W. Chen</name>
</author>
<author>
<name sortKey="Kuo, M T" uniqKey="Kuo M">M. T. Kuo</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Roh, J L" uniqKey="Roh J">J. L. Roh</name>
</author>
<author>
<name sortKey="Kim, E H" uniqKey="Kim E">E. H. Kim</name>
</author>
<author>
<name sortKey="Jang, H J" uniqKey="Jang H">H. J. Jang</name>
</author>
<author>
<name sortKey="Park, J Y" uniqKey="Park J">J. Y. Park</name>
</author>
<author>
<name sortKey="Shin, D" uniqKey="Shin D">D. Shin</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Habermann, K J" uniqKey="Habermann K">K. J. Habermann</name>
</author>
<author>
<name sortKey="Grunewald, L" uniqKey="Grunewald L">L. Grunewald</name>
</author>
<author>
<name sortKey="Van Wijk, S" uniqKey="Van Wijk S">S. van Wijk</name>
</author>
<author>
<name sortKey="Fulda, S" uniqKey="Fulda S">S. Fulda</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Lo, M" uniqKey="Lo M">M. Lo</name>
</author>
<author>
<name sortKey="Wang, Y Z" uniqKey="Wang Y">Y. Z. Wang</name>
</author>
<author>
<name sortKey="Gout, P W" uniqKey="Gout P">P. W. Gout</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Wang, J" uniqKey="Wang J">J. Wang</name>
</author>
<author>
<name sortKey="Luo, B" uniqKey="Luo B">B. Luo</name>
</author>
<author>
<name sortKey="Li, X" uniqKey="Li X">X. Li</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Barattin, R" uniqKey="Barattin R">R. Barattin</name>
</author>
<author>
<name sortKey="Perrotton, T" uniqKey="Perrotton T">T. Perrotton</name>
</author>
<author>
<name sortKey="Trompier, D" uniqKey="Trompier D">D. Trompier</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Lewerenz, J" uniqKey="Lewerenz J">J. Lewerenz</name>
</author>
<author>
<name sortKey="Hewett, S J" uniqKey="Hewett S">S. J. Hewett</name>
</author>
<author>
<name sortKey="Huang, Y" uniqKey="Huang Y">Y. Huang</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Wada, F" uniqKey="Wada F">F. Wada</name>
</author>
<author>
<name sortKey="Koga, H" uniqKey="Koga H">H. Koga</name>
</author>
<author>
<name sortKey="Akiba, J" uniqKey="Akiba J">J. Akiba</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Toyoda, M" uniqKey="Toyoda M">M. Toyoda</name>
</author>
<author>
<name sortKey="Kaira, K" uniqKey="Kaira K">K. Kaira</name>
</author>
<author>
<name sortKey="Ohshima, Y" uniqKey="Ohshima Y">Y. Ohshima</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Habib, E" uniqKey="Habib E">E. Habib</name>
</author>
<author>
<name sortKey="Linher Melville, K" uniqKey="Linher Melville K">K. Linher-Melville</name>
</author>
<author>
<name sortKey="Lin, H X" uniqKey="Lin H">H. X. Lin</name>
</author>
<author>
<name sortKey="Singh, G" uniqKey="Singh G">G. Singh</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Sugano, K" uniqKey="Sugano K">K. Sugano</name>
</author>
<author>
<name sortKey="Maeda, K" uniqKey="Maeda K">K. Maeda</name>
</author>
<author>
<name sortKey="Ohtani, H" uniqKey="Ohtani H">H. Ohtani</name>
</author>
<author>
<name sortKey="Nagahara, H" uniqKey="Nagahara H">H. Nagahara</name>
</author>
<author>
<name sortKey="Shibutani, M" uniqKey="Shibutani M">M. Shibutani</name>
</author>
<author>
<name sortKey="Hirakawa, K" uniqKey="Hirakawa K">K. Hirakawa</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Lo, M" uniqKey="Lo M">M. Lo</name>
</author>
<author>
<name sortKey="Ling, V" uniqKey="Ling V">V. Ling</name>
</author>
<author>
<name sortKey="Wang, Y Z" uniqKey="Wang Y">Y. Z. Wang</name>
</author>
<author>
<name sortKey="Gout, P W" uniqKey="Gout P">P. W. Gout</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Okuno, S" uniqKey="Okuno S">S. Okuno</name>
</author>
<author>
<name sortKey="Sato, H" uniqKey="Sato H">H. Sato</name>
</author>
<author>
<name sortKey="Kuriyama Matsumura, K" uniqKey="Kuriyama Matsumura K">K. Kuriyama-Matsumura</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ishimoto, T" uniqKey="Ishimoto T">T. Ishimoto</name>
</author>
<author>
<name sortKey="Nagano, O" uniqKey="Nagano O">O. Nagano</name>
</author>
<author>
<name sortKey="Yae, T" uniqKey="Yae T">T. Yae</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Savaskan, N E" uniqKey="Savaskan N">N. E. Savaskan</name>
</author>
<author>
<name sortKey="Hahnen, E" uniqKey="Hahnen E">E. Hahnen</name>
</author>
<author>
<name sortKey="Eyupoglu, I Y" uniqKey="Eyupoglu I">I. Y. Eyüpoglu</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Chen, R S" uniqKey="Chen R">R. S. Chen</name>
</author>
<author>
<name sortKey="Song, Y M" uniqKey="Song Y">Y. M. Song</name>
</author>
<author>
<name sortKey="Zhou, Z Y" uniqKey="Zhou Z">Z. Y. Zhou</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Larraufie, M H" uniqKey="Larraufie M">M. H. Larraufie</name>
</author>
<author>
<name sortKey="Yang, W S" uniqKey="Yang W">W. S. Yang</name>
</author>
<author>
<name sortKey="Jiang, E" uniqKey="Jiang E">E. Jiang</name>
</author>
<author>
<name sortKey="Thomas, A G" uniqKey="Thomas A">A. G. Thomas</name>
</author>
<author>
<name sortKey="Slusher, B S" uniqKey="Slusher B">B. S. Slusher</name>
</author>
<author>
<name sortKey="Stockwell, B R" uniqKey="Stockwell B">B. R. Stockwell</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Roh, J L" uniqKey="Roh J">J. L. Roh</name>
</author>
<author>
<name sortKey="Kim, E H" uniqKey="Kim E">E. H. Kim</name>
</author>
<author>
<name sortKey="Jang, H" uniqKey="Jang H">H. Jang</name>
</author>
<author>
<name sortKey="Shin, D" uniqKey="Shin D">D. Shin</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ma, M Z" uniqKey="Ma M">M. Z. Ma</name>
</author>
<author>
<name sortKey="Chen, G" uniqKey="Chen G">G. Chen</name>
</author>
<author>
<name sortKey="Wang, P" uniqKey="Wang P">P. Wang</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Sleire, L" uniqKey="Sleire L">L. Sleire</name>
</author>
<author>
<name sortKey="Skeie, B S" uniqKey="Skeie B">B. S. Skeie</name>
</author>
<author>
<name sortKey="Netland, I A" uniqKey="Netland I">I. A. Netland</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Narang, V S" uniqKey="Narang V">V. S. Narang</name>
</author>
<author>
<name sortKey="Pauletti, G M" uniqKey="Pauletti G">G. M. Pauletti</name>
</author>
<author>
<name sortKey="Gout, P W" uniqKey="Gout P">P. W. Gout</name>
</author>
<author>
<name sortKey="Buckley, D J" uniqKey="Buckley D">D. J. Buckley</name>
</author>
<author>
<name sortKey="Buckley, A R" uniqKey="Buckley A">A. R. Buckley</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Wang, Z" uniqKey="Wang Z">Z. Wang</name>
</author>
<author>
<name sortKey="Ding, Y" uniqKey="Ding Y">Y. Ding</name>
</author>
<author>
<name sortKey="Wang, X" uniqKey="Wang X">X. Wang</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Zhou, B N" uniqKey="Zhou B">B. N. Zhou</name>
</author>
<author>
<name sortKey="Ying, B P" uniqKey="Ying B">B. P. Ying</name>
</author>
<author>
<name sortKey="Song, G Q" uniqKey="Song G">G. Q. Song</name>
</author>
<author>
<name sortKey="Chen, Z X" uniqKey="Chen Z">Z. X. Chen</name>
</author>
<author>
<name sortKey="Han, J" uniqKey="Han J">J. Han</name>
</author>
<author>
<name sortKey="Yan, Y F" uniqKey="Yan Y">Y. F. Yan</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Chen, Y" uniqKey="Chen Y">Y. Chen</name>
</author>
<author>
<name sortKey="Shertzer, H G" uniqKey="Shertzer H">H. G. Shertzer</name>
</author>
<author>
<name sortKey="Schneider, S N" uniqKey="Schneider S">S. N. Schneider</name>
</author>
<author>
<name sortKey="Nebert, D W" uniqKey="Nebert D">D. W. Nebert</name>
</author>
<author>
<name sortKey="Dalton, T P" uniqKey="Dalton T">T. P. Dalton</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Shi, S" uniqKey="Shi S">S. Shi</name>
</author>
<author>
<name sortKey="Hudson, F N" uniqKey="Hudson F">F. N. Hudson</name>
</author>
<author>
<name sortKey="Botta, D" uniqKey="Botta D">D. Botta</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kim, J Y" uniqKey="Kim J">J. Y. Kim</name>
</author>
<author>
<name sortKey="Yim, J H" uniqKey="Yim J">J. H. Yim</name>
</author>
<author>
<name sortKey="Cho, J H" uniqKey="Cho J">J. H. Cho</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Liu, M" uniqKey="Liu M">M. Liu</name>
</author>
<author>
<name sortKey="Zhao, Y" uniqKey="Zhao Y">Y. Zhao</name>
</author>
<author>
<name sortKey="Zhang, X" uniqKey="Zhang X">X. Zhang</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Hoang, Y D" uniqKey="Hoang Y">Y. D. Hoang</name>
</author>
<author>
<name sortKey="Avakian, A P" uniqKey="Avakian A">A. P. Avakian</name>
</author>
<author>
<name sortKey="Luderer, U" uniqKey="Luderer U">U. Luderer</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Debiton, E" uniqKey="Debiton E">E. Debiton</name>
</author>
<author>
<name sortKey="Madelmont, J C" uniqKey="Madelmont J">J. C. Madelmont</name>
</author>
<author>
<name sortKey="Legault, J" uniqKey="Legault J">J. Legault</name>
</author>
<author>
<name sortKey="Barthomeuf, C" uniqKey="Barthomeuf C">C. Barthomeuf</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ehrke, E" uniqKey="Ehrke E">E. Ehrke</name>
</author>
<author>
<name sortKey="Arend, C" uniqKey="Arend C">C. Arend</name>
</author>
<author>
<name sortKey="Dringen, R" uniqKey="Dringen R">R. Dringen</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="El Sayed, S M" uniqKey="El Sayed S">S. M. El Sayed</name>
</author>
<author>
<name sortKey="Baghdadi, H" uniqKey="Baghdadi H">H. Baghdadi</name>
</author>
<author>
<name sortKey="Zolaly, M" uniqKey="Zolaly M">M. Zolaly</name>
</author>
<author>
<name sortKey="Almaramhy, H H" uniqKey="Almaramhy H">H. H. Almaramhy</name>
</author>
<author>
<name sortKey="Ayat, M" uniqKey="Ayat M">M. Ayat</name>
</author>
<author>
<name sortKey="Donki, J G" uniqKey="Donki J">J. G. Donki</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Cardaci, S" uniqKey="Cardaci S">S. Cardaci</name>
</author>
<author>
<name sortKey="Desideri, E" uniqKey="Desideri E">E. Desideri</name>
</author>
<author>
<name sortKey="Ciriolo, M R" uniqKey="Ciriolo M">M. R. Ciriolo</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ko, Y H" uniqKey="Ko Y">Y. H. Ko</name>
</author>
<author>
<name sortKey="Smith, B L" uniqKey="Smith B">B. L. Smith</name>
</author>
<author>
<name sortKey="Wang, Y" uniqKey="Wang Y">Y. Wang</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Amjad, A I" uniqKey="Amjad A">A. I. Amjad</name>
</author>
<author>
<name sortKey="Parikh, R A" uniqKey="Parikh R">R. A. Parikh</name>
</author>
<author>
<name sortKey="Appleman, L J" uniqKey="Appleman L">L. J. Appleman</name>
</author>
<author>
<name sortKey="Hahm, E R" uniqKey="Hahm E">E. R. Hahm</name>
</author>
<author>
<name sortKey="Singh, K" uniqKey="Singh K">K. Singh</name>
</author>
<author>
<name sortKey="Singh, S V" uniqKey="Singh S">S. V. Singh</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Cheung, K L" uniqKey="Cheung K">K. L. Cheung</name>
</author>
<author>
<name sortKey="Kong, A N" uniqKey="Kong A">A. N. Kong</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Gupta, P" uniqKey="Gupta P">P. Gupta</name>
</author>
<author>
<name sortKey="Kim, B" uniqKey="Kim B">B. Kim</name>
</author>
<author>
<name sortKey="Kim, S H" uniqKey="Kim S">S. H. Kim</name>
</author>
<author>
<name sortKey="Srivastava, S K" uniqKey="Srivastava S">S. K. Srivastava</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Gupta, P" uniqKey="Gupta P">P. Gupta</name>
</author>
<author>
<name sortKey="Wright, S E" uniqKey="Wright S">S. E. Wright</name>
</author>
<author>
<name sortKey="Kim, S H" uniqKey="Kim S">S. H. Kim</name>
</author>
<author>
<name sortKey="Srivastava, S K" uniqKey="Srivastava S">S. K. Srivastava</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Clarke, J D" uniqKey="Clarke J">J. D. Clarke</name>
</author>
<author>
<name sortKey="Dashwood, R H" uniqKey="Dashwood R">R. H. Dashwood</name>
</author>
<author>
<name sortKey="Ho, E" uniqKey="Ho E">E. Ho</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Huang, S H" uniqKey="Huang S">S. H. Huang</name>
</author>
<author>
<name sortKey="Hsu, M H" uniqKey="Hsu M">M. H. Hsu</name>
</author>
<author>
<name sortKey="Hsu, S C" uniqKey="Hsu S">S. C. Hsu</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Gordillo, G M" uniqKey="Gordillo G">G. M. Gordillo</name>
</author>
<author>
<name sortKey="Biswas, A" uniqKey="Biswas A">A. Biswas</name>
</author>
<author>
<name sortKey="Khanna, S" uniqKey="Khanna S">S. Khanna</name>
</author>
<author>
<name sortKey="Spieldenner, J M" uniqKey="Spieldenner J">J. M. Spieldenner</name>
</author>
<author>
<name sortKey="Pan, X" uniqKey="Pan X">X. Pan</name>
</author>
<author>
<name sortKey="Sen, C K" uniqKey="Sen C">C. K. Sen</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Da Evi, M" uniqKey="Da Evi M">M. Dačević</name>
</author>
<author>
<name sortKey="Isakovi, A" uniqKey="Isakovi A">A. Isaković</name>
</author>
<author>
<name sortKey="Podolski Reni, A" uniqKey="Podolski Reni A">A. Podolski-Renić</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Circu, M L" uniqKey="Circu M">M. L. Circu</name>
</author>
<author>
<name sortKey="Stringer, S" uniqKey="Stringer S">S. Stringer</name>
</author>
<author>
<name sortKey="Rhoads, C A" uniqKey="Rhoads C">C. A. Rhoads</name>
</author>
<author>
<name sortKey="Moyer, M P" uniqKey="Moyer M">M. P. Moyer</name>
</author>
<author>
<name sortKey="Aw, T Y" uniqKey="Aw T">T. Y. Aw</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Benlloch, M" uniqKey="Benlloch M">M. Benlloch</name>
</author>
<author>
<name sortKey="Ortega, A" uniqKey="Ortega A">A. Ortega</name>
</author>
<author>
<name sortKey="Ferrer, P" uniqKey="Ferrer P">P. Ferrer</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Brechbuhl, H M" uniqKey="Brechbuhl H">H. M. Brechbuhl</name>
</author>
<author>
<name sortKey="Kachadourian, R" uniqKey="Kachadourian R">R. Kachadourian</name>
</author>
<author>
<name sortKey="Min, E" uniqKey="Min E">E. Min</name>
</author>
<author>
<name sortKey="Chan, D" uniqKey="Chan D">D. Chan</name>
</author>
<author>
<name sortKey="Day, B J" uniqKey="Day B">B. J. Day</name>
</author>
</analytic>
</biblStruct>
</listBibl>
</div1>
</back>
</TEI>
<pmc article-type="review-article">
<pmc-dir>properties open_access</pmc-dir>
<front>
<journal-meta>
<journal-id journal-id-type="nlm-ta">Oxid Med Cell Longev</journal-id>
<journal-id journal-id-type="iso-abbrev">Oxid Med Cell Longev</journal-id>
<journal-id journal-id-type="publisher-id">OMCL</journal-id>
<journal-title-group>
<journal-title>Oxidative Medicine and Cellular Longevity</journal-title>
</journal-title-group>
<issn pub-type="ppub">1942-0900</issn>
<issn pub-type="epub">1942-0994</issn>
<publisher>
<publisher-name>Hindawi</publisher-name>
</publisher>
</journal-meta>
<article-meta>
<article-id pub-id-type="pmid">31281572</article-id>
<article-id pub-id-type="pmc">6590529</article-id>
<article-id pub-id-type="doi">10.1155/2019/3150145</article-id>
<article-categories>
<subj-group subj-group-type="heading">
<subject>Review Article</subject>
</subj-group>
</article-categories>
<title-group>
<article-title>Unraveling the Potential Role of Glutathione in Multiple Forms of Cell Death in Cancer Therapy</article-title>
</title-group>
<contrib-group>
<contrib contrib-type="author">
<contrib-id contrib-id-type="orcid" authenticated="false">http://orcid.org/0000-0002-4869-4908</contrib-id>
<name>
<surname>Lv</surname>
<given-names>Huanhuan</given-names>
</name>
<xref ref-type="aff" rid="I1">
<sup>1</sup>
</xref>
<xref ref-type="aff" rid="I2">
<sup>2</sup>
</xref>
<xref ref-type="aff" rid="I3">
<sup>3</sup>
</xref>
<xref ref-type="aff" rid="I4">
<sup>4</sup>
</xref>
<xref ref-type="aff" rid="I5">
<sup>5</sup>
</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Zhen</surname>
<given-names>Chenxiao</given-names>
</name>
<xref ref-type="aff" rid="I1">
<sup>1</sup>
</xref>
<xref ref-type="aff" rid="I2">
<sup>2</sup>
</xref>
<xref ref-type="aff" rid="I5">
<sup>5</sup>
</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Liu</surname>
<given-names>Junyu</given-names>
</name>
<xref ref-type="aff" rid="I1">
<sup>1</sup>
</xref>
<xref ref-type="aff" rid="I2">
<sup>2</sup>
</xref>
<xref ref-type="aff" rid="I5">
<sup>5</sup>
</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Yang</surname>
<given-names>Pengfei</given-names>
</name>
<xref ref-type="aff" rid="I1">
<sup>1</sup>
</xref>
<xref ref-type="aff" rid="I2">
<sup>2</sup>
</xref>
<xref ref-type="aff" rid="I4">
<sup>4</sup>
</xref>
<xref ref-type="aff" rid="I5">
<sup>5</sup>
</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Hu</surname>
<given-names>Lijiang</given-names>
</name>
<xref ref-type="aff" rid="I3">
<sup>3</sup>
</xref>
</contrib>
<contrib contrib-type="author" corresp="yes">
<contrib-id contrib-id-type="orcid" authenticated="false">http://orcid.org/0000-0001-5418-6240</contrib-id>
<name>
<surname>Shang</surname>
<given-names>Peng</given-names>
</name>
<email>shangpeng@nwpu.edu.cn</email>
<xref ref-type="aff" rid="I2">
<sup>2</sup>
</xref>
<xref ref-type="aff" rid="I4">
<sup>4</sup>
</xref>
<xref ref-type="aff" rid="I5">
<sup>5</sup>
</xref>
</contrib>
</contrib-group>
<aff id="I1">
<sup>1</sup>
School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China</aff>
<aff id="I2">
<sup>2</sup>
Research & Development Institute of Northwestern Polytechnical University in Shenzhen, Shenzhen 518057, China</aff>
<aff id="I3">
<sup>3</sup>
Zhejiang Heye Health Technology Co. Ltd., Anji, Zhejiang 313300, China</aff>
<aff id="I4">
<sup>4</sup>
Research Centre of Microfluidic Chip for Health Care and Environmental Monitoring, Yangtze River Delta Research Institute of Northwestern Polytechnical University in Taicang, Suzhou, Jiangsu 215400, China</aff>
<aff id="I5">
<sup>5</sup>
Key Laboratory for Space Bioscience and Biotechnology, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China</aff>
<author-notes>
<fn fn-type="other">
<p>Guest Editor: Kanhaiya Singh</p>
</fn>
</author-notes>
<pub-date pub-type="collection">
<year>2019</year>
</pub-date>
<pub-date pub-type="epub">
<day>10</day>
<month>6</month>
<year>2019</year>
</pub-date>
<volume>2019</volume>
<elocation-id>3150145</elocation-id>
<history>
<date date-type="received">
<day>11</day>
<month>4</month>
<year>2019</year>
</date>
<date date-type="accepted">
<day>21</day>
<month>5</month>
<year>2019</year>
</date>
</history>
<permissions>
<copyright-statement>Copyright © 2019 Huanhuan Lv et al.</copyright-statement>
<copyright-year>2019</copyright-year>
<license xlink:href="http://creativecommons.org/licenses/by/4.0/">
<license-p>This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.</license-p>
</license>
</permissions>
<abstract>
<p>Glutathione is the principal intracellular antioxidant buffer against oxidative stress and mainly exists in the forms of reduced glutathione (GSH) and oxidized glutathione (GSSG). The processes of glutathione synthesis, transport, utilization, and metabolism are tightly controlled to maintain intracellular glutathione homeostasis and redox balance. As for cancer cells, they exhibit a greater ROS level than normal cells in order to meet the enhanced metabolism and vicious proliferation; meanwhile, they also have to develop an increased antioxidant defense system to cope with the higher oxidant state. Growing numbers of studies have implicated that altering the glutathione antioxidant system is associated with multiple forms of programmed cell death in cancer cells. In this review, we firstly focus on glutathione homeostasis from the perspectives of glutathione synthesis, distribution, transportation, and metabolism. Then, we discuss the function of glutathione in the antioxidant process. Afterwards, we also summarize the recent advance in the understanding of the mechanism by which glutathione plays a key role in multiple forms of programmed cell death, including apoptosis, necroptosis, ferroptosis, and autophagy. Finally, we highlight the glutathione-targeting therapeutic approaches toward cancers. A comprehensive review on the glutathione homeostasis and the role of glutathione depletion in programmed cell death provide insight into the redox-based research concerning cancer therapeutics.</p>
</abstract>
<funding-group>
<award-group>
<funding-source>Northwestern Polytechnical University Foundation for Fundamental Research</funding-source>
<award-id>3102018JGC012</award-id>
</award-group>
<award-group>
<funding-source>Fundamental Research Funds for the Central Universities</funding-source>
<award-id>3102017OQD111</award-id>
</award-group>
<award-group>
<funding-source>National Natural Science Foundation of China</funding-source>
<award-id>51777171</award-id>
<award-id>11872316</award-id>
<award-id>81803032</award-id>
</award-group>
</funding-group>
</article-meta>
</front>
<body>
<sec id="sec1">
<title>1. Introduction</title>
<p>Glutathione is a thiol-containing tripeptide consisting of L-glutamate, cysteine, and glycine [
<xref rid="B1" ref-type="bibr">1</xref>
]. It is abundantly distributed in mammalian cells and mainly exists in the forms of reduced glutathione (GSH) and oxidized glutathione (glutathione disulfide (GSSG)). GSH is predominately distributed in the cytosol and to a lesser content in the subcellular organelles, such as the mitochondria, nucleus, and endoplasmic reticulum (ER). GSH takes part in many cellular metabolic activities including reactive oxygen species (ROS) removal, DNA and protein syntheses, and signal transduction [
<xref rid="B2" ref-type="bibr">2</xref>
,
<xref rid="B3" ref-type="bibr">3</xref>
].</p>
<p>As for cancer cells, they need a greater ROS level than normal cells for the enhanced metabolism and vicious proliferation [
<xref rid="B4" ref-type="bibr">4</xref>
,
<xref rid="B5" ref-type="bibr">5</xref>
]. Nevertheless, the higher ROS level can also be counteracted by an increased activity of the antioxidant defense system which copes with the higher oxidant state. The GSH system is one of the major cellular antioxidant systems that cooperatively maintain and synergize the redox balance [
<xref rid="B6" ref-type="bibr">6</xref>
]. The increased GSH level has been observed in different human cancer cells and is an important contributor to cancer pathology and the resistance to anticancer therapy [
<xref rid="B7" ref-type="bibr">7</xref>
]. As a contrary, GSH depletion increases the susceptibility of cancer cells to various forms of programmed cell death and sensitivity to chemotherapies [
<xref rid="B8" ref-type="bibr">8</xref>
]. Consequently, the role of GSH in the initiation of programmed cell death in cancer cells has been well implicated in accumulative studies. There are crosstalks and interrelationships between these different forms of programmed cell death induced by GSH.</p>
<p>Here, we highlight the GSH homeostasis, the relationship between GSH and oxidative stress, the recent findings of GSH depletion in multiple forms of programmed cell death, and GSH-targeting therapeutic approaches toward cancers. The review may help to better understand the role of GSH modulation in cell death and shed light on the possibility of finding new therapeutic approaches based on the redox system for cancers.</p>
</sec>
<sec id="sec2">
<title>2. GSH Homeostasis</title>
<sec id="sec2.1">
<title>2.1. GSH Synthesis</title>
<p>The biosynthesis of glutathione was obtained by catalyzing of L-glutamate, cysteine, and glycine through continuous two-step enzymatic reactions which depend on ATP [
<xref rid="B9" ref-type="bibr">9</xref>
]. Glutamine is hydrolyzed by glutaminase (GLS1/2) to form glutamate after being absorbed into the cell via a transmembrane amino acid transporter (ASCT2). Cysteine can be directly absorbed by an amino acid transporter (ASC) or can be obtained by reduction of cystine absorbed by system X
<sub>c</sub>
<sup></sup>
. The intracellular glycine can be directly absorbed by a glycine transporter (GlyT). The synthesis of glutathione is through two-step enzymatic reactions by glutamate-cysteine ligase (GCL) and glutathione synthetase (GS) (
<xref ref-type="fig" rid="fig1">Figure 1</xref>
). In the first step, GCL catalyzes the reaction of cysteine with glutamate to produce
<italic>γ</italic>
-glutamylcysteine; next step,
<italic>γ</italic>
-glutamylcysteine is combined with glycine to produce glutathione under the catalysis of GS [
<xref rid="B10" ref-type="bibr">10</xref>
]. Since the concentration of
<italic>γ</italic>
-glutamylcysteine is negligible when GS is present, GCL determines the rate of GSH synthesis during this process [
<xref rid="B11" ref-type="bibr">11</xref>
].</p>
<p>Glutathione exists in the reduced GSH form and oxidized GSSG form. The content of glutathione is in a dynamic balance through the regulation of synthesis, utilization, metabolism, and efflux. Under physiological condition, GSH is the predominant form which is more than 98%, while GSSG is less than 1% [
<xref rid="B12" ref-type="bibr">12</xref>
].</p>
</sec>
<sec id="sec2.2">
<title>2.2. GSH Distribution</title>
<p>The glutathione-centered redox system participates in the redox signal network and controls cell growth, development, and oxidant defense [
<xref rid="B13" ref-type="bibr">13</xref>
]. In addition to the cytoplasm, glutathione also presents in various subcellular organelles, including the nucleus, mitochondria, and ER (
<xref ref-type="fig" rid="fig2">Figure 2</xref>
). There is a significant difference in glutathione distribution among these subcellular organelles [
<xref rid="B14" ref-type="bibr">14</xref>
,
<xref rid="B15" ref-type="bibr">15</xref>
]. The distribution of glutathione in different intervals is critical because it establishes a redox environment that supports various metabolic and signaling events [
<xref rid="B16" ref-type="bibr">16</xref>
]. The maintenance of redox homeostasis of the nucleus, mitochondria, ER, and other organelles as well as the extracellular environment is inseparable from glutathione.</p>
<sec id="sec2.2.1">
<title>2.2.1. Cytosolic GSH</title>
<p>In mammalian cells, glutathione is exclusively synthesized in the cytosol and about 85% of it remains where it was synthesized [
<xref rid="B17" ref-type="bibr">17</xref>
,
<xref rid="B18" ref-type="bibr">18</xref>
]. In the cytosol, glutathione is mainly in the reduced form. The ratio of GSH : GSSG in the cytosol is conservatively estimated at about 10000 : 1~50000 : 1 [
<xref rid="B19" ref-type="bibr">19</xref>
]. Reports show that the concentration of the cytosolic GSH is as high as 10 mM, while GSSG in the cytosol is as low as nanomolar concentration. The redox potential of E
<sub>GSH</sub>
in the cytosol is about 320 mV [
<xref rid="B20" ref-type="bibr">20</xref>
]. The highly reduced GSH pool has also been found in a variety of species [
<xref rid="B21" ref-type="bibr">21</xref>
,
<xref rid="B22" ref-type="bibr">22</xref>
]. The cytosol contains the largest GSH pool, which does not contradict its distribution of GSH in other subcellular organelles. Due to the lack of GS in subcellular compartmentation, GSH must be imported into the subcellular organelles from the cytosol.</p>
</sec>
<sec id="sec2.2.2">
<title>2.2.2. Mitochondrial GSH</title>
<p>Mitochondria are coated by two membranes and separated into two spaces, the matrix surrounded by the inner mitochondrial membrane (IMM) and the intermembrane space (IMS) between the IMM and the outer mitochondrial membrane (OMM). Although the enzymes in these two separate chambers, the IMS and matrix, are not identical, each is providing NADPH and exchanging molecules through its mechanism. Mitochondria are the main sites for aerobic respiration and producing ROS, mainly O
<sub>2</sub>
<sup></sup>
. Mn-dependent superoxide dismutase (MnSOD) reduces O
<sub>2</sub>
<sup></sup>
to H
<sub>2</sub>
O
<sub>2</sub>
, and the gradual accumulation of H
<sub>2</sub>
O
<sub>2</sub>
further generates free radicals. In the mitochondria, catalase reduces H
<sub>2</sub>
O
<sub>2</sub>
to H
<sub>2</sub>
O and O
<sub>2</sub>
but due to the low catalase content, a certain amount of GSH is required to maintain the redox balance. During the oxidation of GSH to GSSG by glutathione peroxidase (GPX), H
<sub>2</sub>
O
<sub>2</sub>
is reduced to H
<sub>2</sub>
O, which can offset the H
<sub>2</sub>
O
<sub>2</sub>
produced by MnSOD [
<xref rid="B23" ref-type="bibr">23</xref>
,
<xref rid="B24" ref-type="bibr">24</xref>
].</p>
<p>The mitochondrial glutathione (mGSH) pool only accounts for 10%~15% of the total glutathione pool, and the internal glutathione is mainly present in a reduced state [
<xref rid="B25" ref-type="bibr">25</xref>
,
<xref rid="B26" ref-type="bibr">26</xref>
]. Considering the mitochondrial volume, the concentration of mGSH per mitochondria is similar to that of cytosolic GSH and there is no concentration gradient in the mitochondrial inner membrane space. Mitochondria are not able to synthesize GSH as for lacking GS, but they can take up GSH from the cytosol [
<xref rid="B23" ref-type="bibr">23</xref>
]. GSH in the cytosol passes through the two layers of the OMM and IMM to reach the destination in the mitochondria. The monotonous uptake of GSH through the OMM is facilitated by the pore proteins, which allow molecules less than ~5 kDa to freely pass [
<xref rid="B27" ref-type="bibr">27</xref>
]. The concentration of small molecules in the IMS is equivalent to the concentration in the outer cytoplasm. Small molecules entering the IMS cannot penetrate into the mitochondrial matrix because of the different lipid composition between the IMM and OMM [
<xref rid="B28" ref-type="bibr">28</xref>
<xref rid="B30" ref-type="bibr">30</xref>
]. Since GSH exists in an anionic form at physiological pH [
<xref rid="B31" ref-type="bibr">31</xref>
], the task of GSH entering the mitochondrial matrix is borne by the two anion transporters localized on the IMM, dicarboxylate carrier (DCC), and 2-oxoglutarate carrier (OGC) [
<xref rid="B32" ref-type="bibr">32</xref>
]. DCC exchanges inorganic phosphate, Pi
<sup>2</sup>
-, or OGC exchanges 2-oxoglutarate (2-OG
<sup>2-</sup>
) when GSH enters the matrix [
<xref rid="B33" ref-type="bibr">33</xref>
]. These specialties in the IMM make it possible for GSH to transport into the mitochondria. Thus far, the exact mechanism of GSH transporting in mitochondria needs further verification.</p>
</sec>
<sec id="sec2.2.3">
<title>2.2.3. Nucleus GSH</title>
<p>In spite of the minimal GSH concentration in the nucleus, studies have confirmed the important role of nuclear GSH in the cell cycle [
<xref rid="B16" ref-type="bibr">16</xref>
,
<xref rid="B34" ref-type="bibr">34</xref>
,
<xref rid="B35" ref-type="bibr">35</xref>
]. Cells that are ready for division have higher levels of nuclear GSH [
<xref rid="B13" ref-type="bibr">13</xref>
,
<xref rid="B36" ref-type="bibr">36</xref>
]. Although there is no definitive proof for this mechanism, it cannot neglect the fact that GSH accumulates in the nucleus at an early stage of cell growth, and when the cells reach confluence, it is reuniformly distributed between the nucleus and the cytosol [
<xref rid="B34" ref-type="bibr">34</xref>
]. The study concerning the correlation between GSH and cell cycle may be helpful for us to better understand cell physiology and cellular metabolic processes.</p>
<p>Lower and medium levels of ROS are generally recognized as inducing mitosis and having beneficial effects in cell growth, while excessive ROS can cause DNA strand breaks, DNA mutations, and DNA double-strand aberrations, further leading to oxidative stress. The sulfhydryl group in GSH is essential in maintaining the status of DNA repair and expression in the nucleus [
<xref rid="B37" ref-type="bibr">37</xref>
]. In the process of ribonucleic acid reduction, GSH acting as a donor of hydrogen catalyzes the reduction of ribonucleic acid to deoxyribonucleic acid, which plays a contributory role in DNA synthesis [
<xref rid="B38" ref-type="bibr">38</xref>
].</p>
</sec>
<sec id="sec2.2.4">
<title>2.2.4. ER GSH</title>
<p>ER is interlaced in the cytoplasm and performs a variety of functions, including protein biosynthesis, folding, translocation, and glycosylation and formation of disulfide bonds [
<xref rid="B39" ref-type="bibr">39</xref>
]. The formation of disulfide bonds is the key process for the protein synthesis in ER and also benefits this highly oxidative environment. Accumulation of unfolded or misfolded proteins results in ER stress. The ER glutathione seems to be a special case where the oxidized form accounts for the most. The ratio of GSH : GSSG in ER is as high as 1~15 : 1 [
<xref rid="B40" ref-type="bibr">40</xref>
]. A highly oxidizing environment is a necessary condition for ER to perform its function [
<xref rid="B41" ref-type="bibr">41</xref>
]. Changes in the redox state of ER significantly affect the formation of disulfide bonds in which in this process, GSH is oxidized to GSSG.</p>
</sec>
</sec>
<sec id="sec2.3">
<title>2.3. GSH Transport</title>
<p>GSH in tissues is mainly derived from hepatocytes, which can only be synthesized in hepatocytes and cannot be degraded. Part of GSH is discharged to the blood through the transport proteins of the hepatocytes, and the other part is discharged to the bile through the bile duct [
<xref rid="B42" ref-type="bibr">42</xref>
,
<xref rid="B43" ref-type="bibr">43</xref>
].</p>
<p>In mammalian tissues, the kidney is the main organ that takes up plasma GSH. 80% of GSH in the plasma is absorbed by the kidney, and 3/8 of them are rapidly decomposed by
<italic>γ</italic>
-glutamyltransferase (GGT) and dipeptidase (DP) which are located in the brush border membrane (BBM) of the renal tubule after glomerular filtration, and the amino acids absorbed by the renal cells are used to resynthesize proteins or GSH. In addition, the other 5/8 of GSH enters the renal tubule and is absorbed by the specific transporter on the basolateral plasma membrane (BLM) in the form of intact tripeptide [
<xref rid="B42" ref-type="bibr">42</xref>
,
<xref rid="B44" ref-type="bibr">44</xref>
] (
<xref ref-type="fig" rid="fig3">Figure 3</xref>
). There are two main transporters that facilitate BLM to ingest GSH through a nonfiltering mechanism, and the difference between them is that whether or not they rely on Na
<sup>+</sup>
[
<xref rid="B31" ref-type="bibr">31</xref>
]. Organic anion transporter 1 (OAT1) and OAT3 can absorb GSH through exchanging 2-oxoglutarate (2OG). Probenecid and p-aminohippurate (PAH) are two classical inhibitors of OATs that significantly inhibit GSH uptake [
<xref rid="B45" ref-type="bibr">45</xref>
]. Dimethyl succinate (DMS) is a substrate of sodium-dicarboxylate 2 (SDCT2) which significantly inhibits the absorption of GSH by isolated proximal tubule cells [
<xref rid="B46" ref-type="bibr">46</xref>
]. The stoichiometry of Na
<sup>+</sup>
-GSH cotransportation indicates that at least two Na
<sup>+</sup>
couplings are required for absorption per GSH molecule during transport through the SDOT-2 carrier [
<xref rid="B31" ref-type="bibr">31</xref>
].</p>
<p>The process of the GSH outflow in BBM is important for the overall GSH transport. Through the study on the vesicles isolated from the rat kidney cortex, it can be concluded that GSH transport in BBM is a process that is dependent on membrane potential. Unlike GSH transport through BLM, ion coupling is not involved in GSH transport through BBM [
<xref rid="B47" ref-type="bibr">47</xref>
]. Although there is still no evidence to prove the exact vectors that play the direct role in the GSH transport through BBM, it can lead to assumptions based on existing knowledge. There are two types of transporters that contribute to GSH transport [
<xref rid="B48" ref-type="bibr">48</xref>
]. One of the currently more convincing vectors is the organic anion-transporting polypeptide 1 (OATP1), which is expressed in the sinusoidal membrane and demonstrated to transport GSH [
<xref rid="B49" ref-type="bibr">49</xref>
]. Another type of vector that may play a role in the GSH efflux process is multidrug resistance proteins (MRPs) [
<xref rid="B50" ref-type="bibr">50</xref>
]. GSH excreted to the bile is hydrolyzed by GGT and DP on the surface of bile duct epithelial cells or small intestinal epithelial cells. The cysteine produced by hydrolysis can be reused by the small intestine to synthesize GSH and participate in the enterohepatic circulation.</p>
</sec>
<sec id="sec2.4">
<title>2.4. GSH Metabolism</title>
<p>The structure of GSH is unique in the condensation of glutamate and cysteine producing a
<italic>γ</italic>
-carboxyl group rather than the usual
<italic>α</italic>
-carboxyl group. Most enzymes cannot hydrolyze
<italic>γ</italic>
-carboxyl groups. GGT is the only enzyme expressed on a specific cell surface that is capable of hydrolyzing this particular group [
<xref rid="B51" ref-type="bibr">51</xref>
]. GSH transported by the cell reaches to the GGT active site and is degraded to L-glutamate and cysteinylglycine or cystinylglycine and is then released as glutamate, cysteine, cystine, and glycine under the catalysis of DP. These single amino acids or dipeptides are taken up by the cells to complete the synthesis of GSH (
<xref ref-type="fig" rid="fig4">Figure 4</xref>
).</p>
<p>New pathways for GSH metabolism have also been discovered in recent years. Unlike GGT, the newly discovered ChaC family can enzymatically degrade GSH localized to the cytoplasm [
<xref rid="B52" ref-type="bibr">52</xref>
,
<xref rid="B53" ref-type="bibr">53</xref>
]. ChaC1 is discovered in bacterial BtrG proteins and mammalian
<italic>γ</italic>
-GCT proteins, which hydrolyze GSH to produce cysteinyl-free Cys-Gly and 5-oxoproline [
<xref rid="B54" ref-type="bibr">54</xref>
]. It is worth noting that ChaC1 only works on reduced GSH. ChaC2 is another member of the ChaC family, which is found in E.
<italic>coli</italic>
, yeast, and humans. Its specificity for GSH is similar to that of ChaC1, producing 5-oxoproline and Cys-Gly. Enzyme kinetic studies showed that the catalytic activity of the two was significantly different. The efficiency of the ChaC2 enzyme in degrading GSH was 1/20~1/10 times higher compared to that of the ChaC1 enzyme [
<xref rid="B55" ref-type="bibr">55</xref>
]. GSH metabolism plays a key role in maintaining GSH homeostasis, nutrient recycling and recovery, and signal transduction.</p>
</sec>
</sec>
<sec id="sec3">
<title>3. Antioxidant Role of Cellular GSH</title>
<p>ROS is a product of normal cellular metabolism and involved in physiological and biochemical processes. Therefore, balancing the generation and elimination of ROS to maintain the favorable physiological and suitable environment is of great importance [
<xref rid="B56" ref-type="bibr">56</xref>
]. Oxidative stress is caused when the normal oxidation/antioxidant equilibrium state is destroyed. In general, cells are able to cope with mild oxidative stress, while the severe oxidative stress beyond the cell antioxidant capacity can cause damage to lipids, proteins, and DNA, even leading to cell death. There are two main possible strategies to inducing oxidative stress: one is to directly increase the level of ROS and the other is to impair the antioxidant defense system. The GSH system is one of the important antioxidant defense lines against ROS (
<xref ref-type="fig" rid="fig5">Figure 5</xref>
).</p>
<p>Maintenance of cellular redox balance is essential for cell fate. The cellular redox state is often referred to the balance of NAD
<sup>+</sup>
/NADH, NADP
<sup>+</sup>
/NADPH, and GSH/GSSG [
<xref rid="B57" ref-type="bibr">57</xref>
]. Among those redox-balancing partners, the two forms of glutathione can be interconverted by enzyme catalysis. Under normal physiological conditions, the vast majority of glutathione is the reduced form. Mitochondria are sites of cellular oxidative respiration, in which ROS are produced by enzymatic or nonenzymatic reactions [
<xref rid="B58" ref-type="bibr">58</xref>
]. Although mGSH accounts for only 10%~15% of the total GSH, its role as an antioxidant cannot be ignored. H
<sub>2</sub>
O
<sub>2</sub>
is a product of aerobic metabolism and is primarily reduced by glutathione peroxidase (GPX) in which in this process, GSH is oxidized to GSSG. GPX is an important peroxide-degrading enzyme. It can catalyze the conversion of GSH to GSSG, reduce toxic peroxides to nontoxic hydroxyl compounds, and promote the decomposition of H
<sub>2</sub>
O
<sub>2</sub>
, thereby protecting the structure and function of cell membranes from peroxide interference and damage. GSSG is then reduced to GSH by glutathione reductase (GR) which is associated with NADPH which is oxidized to NADP
<sup>+</sup>
, thereby forming a redox cycle to prevent oxidative damage [
<xref rid="B20" ref-type="bibr">20</xref>
]. At the same time, GPX reduces lipid peroxides (Lipid-OOH) to nontoxic lipid alcohols (Lipid-OH) with GSH as a substrate. This cycle of mutual transformation enables the continuous elimination of free radicals in the cells [
<xref rid="B7" ref-type="bibr">7</xref>
].</p>
</sec>
<sec id="sec4">
<title>4. Role of GSH in Programmed Cell Death</title>
<p>Cancer cells exhibit a higher ROS level and also develop a greater GSH antioxidant system in order to avoid causing oxidative stress. Programmed cell death, including apoptosis, autophagy, necroptosis, and ferroptosis, is initiated by serials of intracellular programs [
<xref rid="B59" ref-type="bibr">59</xref>
]. In some cases, GSH depletion not only triggers one form of programmed cell death but also may initiate multiple forms of cell death. These different forms of cell death may be simultaneously or successively initiated and then interact with each other, and finally, one cell death form may mainly exist [
<xref rid="B60" ref-type="bibr">60</xref>
].</p>
<sec id="sec4.1">
<title>4.1. GSH and Apoptosis</title>
<p>Apoptosis is the most recognized form of programmed cell death which is initiated and executed by the caspase family. It is a genetically controlled and actively cascading cell death process that is characterized by membrane shrinkage, chromatin condensation, and formation of apoptotic bodies [
<xref rid="B61" ref-type="bibr">61</xref>
]. Studies have shown that the GSH/GSSG redox status is an important indicator of apoptosis in cancer cells. Apoptosis is consistently associated with a reduction in the GSH/GSSG ratio [
<xref rid="B62" ref-type="bibr">62</xref>
]. The decrease in GSH impairs the antioxidant system and leads to the increase in ROS generation which accelerates mitochondrial damage and induces apoptosis (
<xref ref-type="fig" rid="fig6">Figure 6</xref>
).</p>
<p>Intracellular GSH loss precedes the destruction of mitochondrial integrity, cytochrome c release, and caspase activation and is recognized as an early event in the progression of apoptosis in response to different stimuli. GSH depletion occurs in both intrinsic apoptosis and extrinsic apoptosis [
<xref rid="B63" ref-type="bibr">63</xref>
,
<xref rid="B64" ref-type="bibr">64</xref>
]. A decline in GSH induced ROS generation and the release of cytochrome c, following depletion of the mitochondrial GSH level and caspase 3 activation [
<xref rid="B65" ref-type="bibr">65</xref>
]. Cellular GSH exported into the extracellular space is also demonstrated in the initiation of apoptotic signaling or promotion of apoptotic progression [
<xref rid="B66" ref-type="bibr">66</xref>
]. Cancer cells undergoing apoptosis release a large amount of intracellular GSH into the extracellular environment [
<xref rid="B67" ref-type="bibr">67</xref>
]. Reducing GSH efflux in the apoptotic process could attenuate cell death. Contrarily, stimulation of GSH synthesis could efficiently protect mitochondrial membrane potential loss and inhibit apoptosis [
<xref rid="B68" ref-type="bibr">68</xref>
]. In addition, the exogenous supply with N-acetyl-L-cysteine (NAC) restores the cellular GSH level and prevents the GSH depletion-induced apoptosis [
<xref rid="B69" ref-type="bibr">69</xref>
].</p>
<p>The elevated level of ROS and mGSH/GSSG imbalance can stimulate the intrinsic apoptosis pathway. Impairment of GSH uptake to the mitochondria directly affects the mitochondrial function. Depletion of mGSH leads to the instability of the mitochondrial structure and release of proapoptotic proteins from the outer mitochondrial membrane [
<xref rid="B70" ref-type="bibr">70</xref>
]. The stimuli cause mitochondrial membrane permeabilization through mitochondrial permeability transition (MPT) opening or pores formed by bax and bcl2, resulting in apoptosis-inducing factor release, apoptosome complex formation, and caspase activation [
<xref rid="B71" ref-type="bibr">71</xref>
<xref rid="B73" ref-type="bibr">73</xref>
].</p>
</sec>
<sec id="sec4.2">
<title>4.2. GSH and Necroptosis</title>
<p>Although necrosis is originally thought to be a passive and unregulated form of cell death, studies have shown that some form of necrosis can be regulated by intracellular proteins, which is also termed as necroptosis [
<xref rid="B74" ref-type="bibr">74</xref>
,
<xref rid="B75" ref-type="bibr">75</xref>
]. Necroptosis is an alternative form of programmed cell death with distinct characters in the mitochondria, lysosome, and plasma membrane, exhibiting a translucent cytoplasm, swelling organelles, increased cell volumes, and disruption of the plasma membrane [
<xref rid="B76" ref-type="bibr">76</xref>
,
<xref rid="B77" ref-type="bibr">77</xref>
]. Necroptosis could be initiated in a way that is similar to extrinsic apoptosis. Receptor-interacting protein kinases 1 (RIPK1) and 3 (RIPK3) are two key regulators involved in the execution of necroptosis. GSH depletion by pharmacological inhibition causes oxidative stress-induced necroptosis [
<xref rid="B78" ref-type="bibr">78</xref>
]. Necrostatin-1, an inhibitor of RIPK1, can protect cell from GSH depletion inducing cell death in HT-22 cells through inhibition on GCL [
<xref rid="B79" ref-type="bibr">79</xref>
]. Artesunate triggers necroptosis by decreasing the GSH/GSSG ratio and increasing ROS generation in human renal carcinoma cells which can be reduced by necrostatin-1 or knockdown of
<italic>RIPK1</italic>
[
<xref rid="B80" ref-type="bibr">80</xref>
]. To our knowledge, an excess level of ROS induces apoptosis, while massive ROS may lead to necroptosis. GSH depletion-induced ROS generation can simultaneously induce apoptosis and necrosis in cancer cells in some cases (
<xref ref-type="fig" rid="fig6">Figure 6</xref>
). Dimethyl fumarate (DMF) induced typical features of necroptosis-like excessive autophagy, disintegration of mitochondrial membrane potential, LDH release, and accumulation of ROS in colon cancer cells by depleting the cellular GSH level [
<xref rid="B81" ref-type="bibr">81</xref>
]. GSH depletion by cystine starvation or the GSH degradation results in oxidative stress which leads to necroptosis and ferroptosis by directly oxidizing lipids [
<xref rid="B82" ref-type="bibr">82</xref>
].</p>
</sec>
<sec id="sec4.3">
<title>4.3. GSH and Ferroptosis</title>
<p>Ferroptosis, a kind of programmed cell death, is morphologically, biochemically, and genetically different from other well-known forms of cell death [
<xref rid="B83" ref-type="bibr">83</xref>
]. The characterized features of ferroptosis are iron dependent, GPX4 inactivation, and lipid ROS accumulation [
<xref rid="B84" ref-type="bibr">84</xref>
]. Ferroptosis can be induced by small molecules or GSH biosynthesis inhibitions or GPX4 impairment or some physiological conditions [
<xref rid="B85" ref-type="bibr">85</xref>
] (
<xref ref-type="fig" rid="fig7">Figure 7</xref>
). Cysteine starvation and further GSH depletion cooperate to elevate lipid ROS. Cystine deprivation induced GSH efflux and extracellular degradation for balancing the intracellular cysteine level [
<xref rid="B86" ref-type="bibr">86</xref>
]. GSH depletion through inhibition on cystine uptake is essential for erastin-induced ferroptosis. Additionally, the knockout of
<italic>GCL</italic>
could sensitize cells to ferroptosis induced by cysteine starvation [
<xref rid="B87" ref-type="bibr">87</xref>
]. Erastin treatment impairs the antioxidant defenses of the cell by indirectly inactivating GPX4 activity resulting in the increase in the cytoplasmic ROS and lipid ROS accumulation.</p>
<p>GPX4 can convert Lipid-OOH to nontoxic Lipid-OH. GPX4 reduced Lipid-OOH using GSH as a cosubstrate. Pharmacological inhibition or genetical depletion of
<italic>GPX4</italic>
promotes lipid ROS generation or, what is more, is lethal, while upregulation of
<italic>GPX4</italic>
can diminish lipid ROS [
<xref rid="B88" ref-type="bibr">88</xref>
<xref rid="B90" ref-type="bibr">90</xref>
]. Lipid-OOH formation and membrane damage are sufficient inducers in ferroptosis [
<xref rid="B91" ref-type="bibr">91</xref>
]. RSL3 is identified as a small molecule that enhances the lethality toward oncogene-harboring cancer cells by increasing oxidative stress through altering the iron regulatory proteins and genes [
<xref rid="B92" ref-type="bibr">92</xref>
]. Afterwards, RSL3 is proved to be a ferroptosis inducer by covalently targeting the active site of selenocysteine of GPX4 and resulting in the accumulation of lipid ROS. But the mechanism of RSL3-induced ferroptosis is not by depleting GSH but by inactivating GPX4.
<italic>GPX4</italic>
silence sensitizes cells to RSL3-induced ferroptosis which is accompanied by lipid ROS accumulation [
<xref rid="B93" ref-type="bibr">93</xref>
]. Consequently, direct inactivation of GPX4 can also induce ferroptotic cell death even when cellular cysteine and GSH levels are normal. FIN 56 is a special inducer of ferroptosis that can cause a slower accumulation of ROS as for the downregulation of GPX4 protein abundance [
<xref rid="B94" ref-type="bibr">94</xref>
]. Together, all these types of small molecules can induce ferroptosis by different modulatory profiles, while ultimately, all of them cause the loss of GPX4 activity and generation of lipid ROS. Therefore, it can conclude that GPX4 is the key regulator of ferroptosis and the GSH antioxidant system plays a central role in the regulation of ferroptosis [
<xref rid="B90" ref-type="bibr">90</xref>
,
<xref rid="B95" ref-type="bibr">95</xref>
].</p>
<p>Ferroptotic oxidative signals are mainly produced by iron-mediated Fenton reaction or enzymatic reaction via lipoxygenases (LOXs) or when the GSH antioxidant system is impaired [
<xref rid="B96" ref-type="bibr">96</xref>
,
<xref rid="B97" ref-type="bibr">97</xref>
]. GSH deficiency or GPX4 inactivation in inducing ferroptosis involves the enhanced production of oxygenated phosphatidylethanolamine (PE) species [
<xref rid="B98" ref-type="bibr">98</xref>
]. Suppression on the formation of oxygenated PE species can inhibit ferroptosis [
<xref rid="B99" ref-type="bibr">99</xref>
]. Depletion of GSH through the inhibiting system X
<sub>c</sub>
<sup></sup>
induces ferroptosis that could be prevented by liproxstatin-1 (Lip-1), ferrostatin-1 (Fer-1), and iron chelator deferoxamine (DFO) [
<xref rid="B83" ref-type="bibr">83</xref>
,
<xref rid="B100" ref-type="bibr">100</xref>
,
<xref rid="B101" ref-type="bibr">101</xref>
].</p>
</sec>
<sec id="sec4.4">
<title>4.4. GSH and Autophagy</title>
<p>Autophagy is a catabolic process by degrading cytoplasmic constituents or impaired organelles in autolysosomes for recycling under stress condition. Autophagy has long been considered a cell protective mechanism, while excessive autophagy can also trigger cell death and be regarded as a tumor suppressive mechanism [
<xref rid="B102" ref-type="bibr">102</xref>
,
<xref rid="B103" ref-type="bibr">103</xref>
].</p>
<p>Growing evidence supports the role of ROS in the regulation of autophagy, but evidence about the mechanism and interplay between GSH and the initiation and promotion of autophagy is still elusive [
<xref rid="B104" ref-type="bibr">104</xref>
]. GSH, one of the principal molecules in the thiol network, has been indicated as the suspect for induction of autophagy [
<xref rid="B105" ref-type="bibr">105</xref>
]. The low level of GSH acts as a signal to activate autophagy as an adaptive stress response [
<xref rid="B106" ref-type="bibr">106</xref>
,
<xref rid="B107" ref-type="bibr">107</xref>
]. The ways that modulate the intracellular GSH state can drive autophagic response at multiple levels (
<xref ref-type="fig" rid="fig8">Figure 8</xref>
). The dysfunction of system X
<sub>c</sub>
<sup></sup>
by pharmacologic inhibition (sulfasalazine) causes GSH decrease and ROS generation and triggers autophagic cell death [
<xref rid="B108" ref-type="bibr">108</xref>
]. Nutrition starvation can result in the modulation of the cellular GSH content which is mediated by GSH extrusion, GCL inhibition, and the formation of GS-R [
<xref rid="B109" ref-type="bibr">109</xref>
]. Under the GSH depletion case, H
<sub>2</sub>
O
<sub>2</sub>
induced autophagic cell death with increased LC3 conversation and p62 degradation and enhanced autophagic vacuole formation [
<xref rid="B110" ref-type="bibr">110</xref>
]. Together, the decreased cellular GSH level contributes to autophagy and affects the autophagic process. Overall, the possible relationship between GSH and autophagy still deserves to be further investigated.</p>
<p>Ferroptosis is a form of cell death that is dependent on the induction of the autophagic process via a form of cargo-specific autophagy known as ferritinophagy [
<xref rid="B111" ref-type="bibr">111</xref>
]. Autophagy plays a decisive role in the degradation of cytosolic proteins. The impaired autophagic process can induce protein accumulation [
<xref rid="B112" ref-type="bibr">112</xref>
]. The proper function of lysosomes plays an essential role in ferroptotic cell death [
<xref rid="B113" ref-type="bibr">113</xref>
]. The activity of lysosomes is increased in ferroptosis in order to enhance chaperone-mediated autophagy to degrade GPX4 [
<xref rid="B114" ref-type="bibr">114</xref>
]. Inhibition of lysosomal function by bafilomycin A1 (BalfA1) and chloroquine (CQ) can significantly delay the ferroptosis process induced by erastin [
<xref rid="B115" ref-type="bibr">115</xref>
]. Autophagy flux is associated with ferroptosis for promoting the turnover of ferritin in erastin-treated cancer cells [
<xref rid="B116" ref-type="bibr">116</xref>
]. Ferritin degradation is dependent on autophagy where nuclear receptor coactivator 4 (NCOA4) acts as a cargo receptor targeting ferritin to autophagosome [
<xref rid="B117" ref-type="bibr">117</xref>
<xref rid="B119" ref-type="bibr">119</xref>
]. Dihydroartemisinin (DHA) induced ferroptosis in acute myeloid leukemia cells through activating the autophagy process with decreased GSH, ferritin degradation, and labile iron accumulation [
<xref rid="B120" ref-type="bibr">120</xref>
]. The exact mechanism of the connection between autophagy and ferroptosis still remains largely unknown.</p>
</sec>
</sec>
<sec id="sec5">
<title>5. GSH Depletion as a Means of Cancer Therapy</title>
<p>A relationship between the increased GSH level and resistance to chemotherapies was observed in many cancers [
<xref rid="B121" ref-type="bibr">121</xref>
]. Impairment in the GSH antioxidant defense system could sensitize cancer cells to current chemotherapeutics. It suggested that the moderate decline in the GSH level would be an effective strategy to improve the sensitivity of cancer cells to chemotherapies. Therefore, depletion of cellular GSH in cancer cells will make them more susceptible and sensitive to oxidative stress and chemotherapies. Cysteine insufficiency or glutamate sufficiency or pharmacological and genetic inhibition of system X
<sub>c</sub>
<sup></sup>
can reduce the resistance of cancer cells to chemotherapies [
<xref rid="B122" ref-type="bibr">122</xref>
]. GSH depletion promotes cancer cell undergoing different forms of programmed cell death, such as apoptosis, necroptosis, autophagy, and ferroptosis. Ways for depleting the cellular GSH level to induce oxidative stress include the following: creation of the source shortage for GSH synthesis, inhibition of the GSH synthesis process, direct conjugation with GSH, and promotion of cellular GSH efflux [
<xref rid="B123" ref-type="bibr">123</xref>
<xref rid="B126" ref-type="bibr">126</xref>
].</p>
<sec id="sec5.1">
<title>5.1. Inhibition on System X
<sub>c</sub>
<sup></sup>
</title>
<p>Cysteine is the main source for protein synthesis. Undoubtedly, it is of critical importance for maintaining the GSH level. Cysteine typically presents in its oxidized form in the extracellular space and can be taken up into the intracellular space via a system X
<sub>c</sub>
<sup></sup>
antiporter. System X
<sub>c</sub>
<sup></sup>
, consisting of SLC3A2 (4F2, solute carrier family 3, membrane 2) and SLC7A11 (xCT, solute carrier family 7, membrane 11), forms as a glutamate/cysteine antiporter in the cell membrane [
<xref rid="B127" ref-type="bibr">127</xref>
]. xCT is the light chain of system X
<sub>c</sub>
<sup></sup>
. Elevated expression of xCT has been demonstrated in many types of cancer and is related to chemoresistance and poor prognosis in cancer patients [
<xref rid="B128" ref-type="bibr">128</xref>
<xref rid="B133" ref-type="bibr">133</xref>
].</p>
<p>A reduction in the uptake of extracellular cysteine can directly cause intracellular GSH depletion. Inhibition on xCT expression triggers cysteine starvation and subsequently induces cell growth arrest in cancer cells. Stabilization of xCT promotes the uptake of cysteine for GSH synthesis and protects cancer cells from high levels of ROS [
<xref rid="B134" ref-type="bibr">134</xref>
]. Therefore, regulation of xCT is considered a promising therapeutic target for cancer therapy [
<xref rid="B135" ref-type="bibr">135</xref>
]. Pharmacological inhibition of system X
<sub>c</sub>
<sup></sup>
inhibits cancer cells
<italic>in vitro</italic>
and delays tumor growth
<italic>in vivo</italic>
. Disruption on xCT function inhibits cell invasion and tumor metastasis [
<xref rid="B136" ref-type="bibr">136</xref>
]. The inhibitory effects on cancer cells can be ascribed for the rapid depletion of GSH by xCT dysfunction and subsequently increase in ROS generation.</p>
<p>Erastin is an inhibitor of system X
<sub>c</sub>
<sup></sup>
that can lead to the depletion of GSH [
<xref rid="B83" ref-type="bibr">83</xref>
]. GSH-depleting effects of erastin could be reversed by supplying with GSH and N-acetylcysteine (NAC). Imidazole ketone erastin (IKE), a carbonyl erastin analogue, also exhibits system X
<sub>c</sub>
<sup></sup>
inhibition activity and displays more potency to selective lethality to cancer cells than erastin [
<xref rid="B137" ref-type="bibr">137</xref>
]. Sorafenib promotes ferroptosis in HCC cells by its ability to inhibit system X
<sub>c</sub>
<sup></sup>
and deplete GSH [
<xref rid="B101" ref-type="bibr">101</xref>
]. Sorafenib can also potentiate cisplatin cytotoxicity in resistant head and neck cancer cells through the inhibitory effect on xCT [
<xref rid="B138" ref-type="bibr">138</xref>
]. Sulfasalazine is an anti-inflammatory drug which can be used for the treatment of inflammatory bowel disease and rheumatoid arthritis and is also proved to be a potent inhibitor of system X
<sub>c</sub>
<sup></sup>
. It can sensitize cancer cells not only to chemotherapies but also to radiotherapies [
<xref rid="B139" ref-type="bibr">139</xref>
<xref rid="B141" ref-type="bibr">141</xref>
]. Pseudolaric acid B, a natural diterpene acid isolated from the root and bark of
<italic>Pseudolarix kaempferi</italic>
, can trigger ferroptosis in glioma cells by depleting cellular GSH through inhibition of xCT [
<xref rid="B142" ref-type="bibr">142</xref>
,
<xref rid="B143" ref-type="bibr">143</xref>
].</p>
</sec>
<sec id="sec5.2">
<title>5.2. Inhibition on GCL</title>
<p>
<italic>γ</italic>
-GCL plays a key role in the synthesis and maintenance of the cellular GSH level. It is the first and rate-limiting enzyme in GSH synthesis consisting of the GCLC catalytic subunit and GCLM modifier subunit [
<xref rid="B144" ref-type="bibr">144</xref>
]. Overexpression of GCL increases the cellular GSH level, and cells exhibit more resistance to oxidative stress [
<xref rid="B145" ref-type="bibr">145</xref>
]. Adrenomedullin induces the expression of
<italic>GCLC</italic>
and protects cells against oxidative stress [
<xref rid="B146" ref-type="bibr">146</xref>
]. On the contrary, knockdown of
<italic>GCLC</italic>
could elevate the cellular ROS level [
<xref rid="B147" ref-type="bibr">147</xref>
]. L-Buthionine-(S,R)-sulfoximine (BSO) is an inhibitor of
<italic>γ</italic>
-GCL. It has been shown to increase the efficacy of nifurtimox against cancer cells and be an effective modulator of GSH-mediated chemoresistance by increasing the
<italic>in vitro</italic>
cytotoxicity of alkylating agents and radiation [
<xref rid="B148" ref-type="bibr">148</xref>
].</p>
</sec>
<sec id="sec5.3">
<title>5.3. Conjugation with GSH</title>
<p>The most direct strategy to deprive GSH is to react with it. Some natural molecules exhibit good affinity to GSH. Sanguinarine directly reacts with cellular GSH and causes a rapid and sever depletion of GSH. It results in the subsequent modification of the membrane integrity and relates to a promotion of apoptotic response dependent on caspase 3 and caspase 7 activation in PC3 human prostatic adenocarcinoma cells [
<xref rid="B149" ref-type="bibr">149</xref>
]. 3-Bromopyruvate (3-BP), an alkylating agent, has high reactivity toward thiols and rapidly conjugates with GSH in the cell-free system and many cell types [
<xref rid="B150" ref-type="bibr">150</xref>
,
<xref rid="B151" ref-type="bibr">151</xref>
]. It has been proved to have antitumor activities [
<xref rid="B152" ref-type="bibr">152</xref>
,
<xref rid="B153" ref-type="bibr">153</xref>
]. Isothiocyanates (ITCs) are natural phytochemicals abundantly existing in cruciferous vegetables. The central carbon of the ITCs is highly electrophilic and can react with thiols. At physiological pH, ITCs react predominantly with the sulfhydryl group of cysteine residues in GSH. Accumulative evidence has proved that ITCs, such as sulforaphane (SFN), phenethyl isothiocyanate (PEITC), and ally isothiocyanate (AITC), are highly effective in chemoprevention and have antitumor activities
<italic>in vitro</italic>
and
<italic>in vivo</italic>
[
<xref rid="B154" ref-type="bibr">154</xref>
<xref rid="B158" ref-type="bibr">158</xref>
]. PEITC exhibits potential ability against not only solid tumor but also leukemia cells through the rapid deprive of mitochondrial GSH and elevation of ROS [
<xref rid="B70" ref-type="bibr">70</xref>
,
<xref rid="B159" ref-type="bibr">159</xref>
].</p>
</sec>
<sec id="sec5.4">
<title>5.4. Enhancement of GSH Efflux</title>
<p>The development of the multidrug resistance (MDR) phenotype poses as a major clinical problem that limits the curative potential of anticancer drugs. The characterized phenotype of MDR is the typically increased expressions of P-glycoprotein (P-gp) and MRPs. P-gp and MRPs can extrude anticancer agents out of cell consuming ATP and result in the chemotherapy failure. Inhibition of MRPs could reduce drug resistance in cancer cells, and MRPs act as a potential target in cancer therapy. MRP-1 is identified as a GSSG transporter. Evidence has shown that inhibition on MRP activity promotes the accumulation of GSSG which is cytotoxic to endothelial cell tumors [
<xref rid="B160" ref-type="bibr">160</xref>
]. Sulfinosine has the potential to induce apoptosis and autophagy by decreasing GSH, generating ROS, and inhibiting P-pg and then sensitizes cancer cells to chemotherapies [
<xref rid="B161" ref-type="bibr">161</xref>
]. Modulation of GSH efflux is also a potential strategy to induce cell death in cancers. Staurosporine causes apoptosis in cancer cells associated with exporting cellular GSH [
<xref rid="B162" ref-type="bibr">162</xref>
]. Cancer cells are sensitized to cell death when intracellular GSH is depleted through stimulation of GSH efflux pumps [
<xref rid="B163" ref-type="bibr">163</xref>
]. Natural compound chrysin induces GSH efflux by MRPs to maintain the depleted GSH level and sensitizes cancer cells to chemotherapeutic agents like doxorubicin [
<xref rid="B164" ref-type="bibr">164</xref>
]. Verapamil derivatives can effectively kill cancer cell through leading to apoptosis with the mechanism of stimulating GSH efflux by MRPs [
<xref rid="B126" ref-type="bibr">126</xref>
].</p>
</sec>
</sec>
<sec id="sec6">
<title>6. Conclusions</title>
<p>In this review, accumulative evidence has demonstrated the important role of GSH depletion in the initiation of multiple forms of programmed cell death in cancers and we have highlighted the GSH-based strategies for cancer therapies. As mentioned, some agents trigger not only one type of programmed cell death solely but also multiple forms of cell death simultaneously through altering cellular GSH in cancer cells. While the crosstalks and interrelationships between the multiple forms of cell death induced by GSH modulation in cancer cells are still elusive, the exact death events along with GSH depletion in inducing cell death are still needed to be further explored. In the future work, a better understanding on the mechanism of GSH in triggering different forms of programmed cell death and whether GSH has a role in deciding cell fate will give more implications on the redox-based research concerning cancer therapeutics.</p>
</sec>
</body>
<back>
<ack>
<title>Acknowledgments</title>
<p>This work was supported by the National Natural Science Fund of China (No. 81803032, No. 11872316, and No. 51777171), the Fundamental Research Funds for the Central Universities (No. 3102017OQD111), and the Northwestern Polytechnical University Foundation for Fundamental Research (No. 3102018JGC012).</p>
</ack>
<sec>
<title>Conflicts of Interest</title>
<p>The authors declare no conflict of interest.</p>
</sec>
<sec>
<title>Authors' Contributions</title>
<p>Huanhuan Lv, Chenxiao Zhen, and Junyu Liu contributed equally.</p>
</sec>
<ref-list>
<ref id="B1">
<label>1</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Meister</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Anderson</surname>
<given-names>M. E.</given-names>
</name>
</person-group>
<article-title>Glutathione</article-title>
<source>
<italic toggle="yes">Annual Review of Biochemistry</italic>
</source>
<year>1983</year>
<volume>52</volume>
<issue>1</issue>
<fpage>711</fpage>
<lpage>760</lpage>
<pub-id pub-id-type="doi">10.1146/annurev.bi.52.070183.003431</pub-id>
</element-citation>
</ref>
<ref id="B2">
<label>2</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Wu</surname>
<given-names>G.</given-names>
</name>
<name>
<surname>Fang</surname>
<given-names>Y. Z.</given-names>
</name>
<name>
<surname>Yang</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Lupton</surname>
<given-names>J. R.</given-names>
</name>
<name>
<surname>Turner</surname>
<given-names>N. D.</given-names>
</name>
</person-group>
<article-title>Glutathione metabolism and its implications for health</article-title>
<source>
<italic toggle="yes">The Journal of Nutrition</italic>
</source>
<year>2004</year>
<volume>134</volume>
<issue>3</issue>
<fpage>489</fpage>
<lpage>492</lpage>
<pub-id pub-id-type="doi">10.1093/jn/134.3.489</pub-id>
<pub-id pub-id-type="pmid">14988435</pub-id>
</element-citation>
</ref>
<ref id="B3">
<label>3</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Sies</surname>
<given-names>H.</given-names>
</name>
</person-group>
<article-title>Glutathione and its role in cellular functions</article-title>
<source>
<italic toggle="yes">Free Radical Biology and Medicine</italic>
</source>
<year>1999</year>
<volume>27</volume>
<issue>9-10</issue>
<fpage>916</fpage>
<lpage>921</lpage>
<pub-id pub-id-type="doi">10.1016/S0891-5849(99)00177-X</pub-id>
<pub-id pub-id-type="other">2-s2.0-0033230043</pub-id>
<pub-id pub-id-type="pmid">10569624</pub-id>
</element-citation>
</ref>
<ref id="B4">
<label>4</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Moloney</surname>
<given-names>J. N.</given-names>
</name>
<name>
<surname>Cotter</surname>
<given-names>T. G.</given-names>
</name>
</person-group>
<article-title>ROS signalling in the biology of cancer</article-title>
<source>
<italic toggle="yes">Seminars in Cell & Developmental Biology</italic>
</source>
<year>2018</year>
<volume>80</volume>
<fpage>50</fpage>
<lpage>64</lpage>
<pub-id pub-id-type="doi">10.1016/j.semcdb.2017.05.023</pub-id>
<pub-id pub-id-type="other">2-s2.0-85020436220</pub-id>
<pub-id pub-id-type="pmid">28587975</pub-id>
</element-citation>
</ref>
<ref id="B5">
<label>5</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Galadari</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Rahman</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Pallichankandy</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Thayyullathil</surname>
<given-names>F.</given-names>
</name>
</person-group>
<article-title>Reactive oxygen species and cancer paradox: to promote or to suppress?</article-title>
<source>
<italic toggle="yes">Free Radical Biology and Medicine</italic>
</source>
<year>2017</year>
<volume>104</volume>
<fpage>144</fpage>
<lpage>164</lpage>
<pub-id pub-id-type="doi">10.1016/j.freeradbiomed.2017.01.004</pub-id>
<pub-id pub-id-type="other">2-s2.0-85009354511</pub-id>
<pub-id pub-id-type="pmid">28088622</pub-id>
</element-citation>
</ref>
<ref id="B6">
<label>6</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Circu</surname>
<given-names>M. L.</given-names>
</name>
<name>
<surname>Aw</surname>
<given-names>T. Y.</given-names>
</name>
</person-group>
<article-title>Reactive oxygen species, cellular redox systems, and apoptosis</article-title>
<source>
<italic toggle="yes">Free Radical Biology and Medicine</italic>
</source>
<year>2010</year>
<volume>48</volume>
<issue>6</issue>
<fpage>749</fpage>
<lpage>762</lpage>
<pub-id pub-id-type="doi">10.1016/j.freeradbiomed.2009.12.022</pub-id>
<pub-id pub-id-type="other">2-s2.0-76049083966</pub-id>
<pub-id pub-id-type="pmid">20045723</pub-id>
</element-citation>
</ref>
<ref id="B7">
<label>7</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Traverso</surname>
<given-names>N.</given-names>
</name>
<name>
<surname>Ricciarelli</surname>
<given-names>R.</given-names>
</name>
<name>
<surname>Nitti</surname>
<given-names>M.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Role of glutathione in cancer progression and chemoresistance</article-title>
<source>
<italic toggle="yes">Oxidative Medicine and Cellular Longevity</italic>
</source>
<year>2013</year>
<volume>2013</volume>
<fpage>10</fpage>
<pub-id pub-id-type="publisher-id">972913</pub-id>
<pub-id pub-id-type="doi">10.1155/2013/972913</pub-id>
<pub-id pub-id-type="other">2-s2.0-84878711134</pub-id>
<pub-id pub-id-type="pmid">23766865</pub-id>
</element-citation>
</ref>
<ref id="B8">
<label>8</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Schumacker</surname>
<given-names>P. T.</given-names>
</name>
</person-group>
<article-title>Reactive oxygen species in cancer: a dance with the devil</article-title>
<source>
<italic toggle="yes">Cancer Cell</italic>
</source>
<year>2015</year>
<volume>27</volume>
<issue>2</issue>
<fpage>156</fpage>
<lpage>157</lpage>
<pub-id pub-id-type="doi">10.1016/j.ccell.2015.01.007</pub-id>
<pub-id pub-id-type="other">2-s2.0-84922763809</pub-id>
<pub-id pub-id-type="pmid">25670075</pub-id>
</element-citation>
</ref>
<ref id="B9">
<label>9</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Hatem</surname>
<given-names>E.</given-names>
</name>
<name>
<surname>el Banna</surname>
<given-names>N.</given-names>
</name>
<name>
<surname>Huang</surname>
<given-names>M. E.</given-names>
</name>
</person-group>
<article-title>Multifaceted roles of glutathione and glutathione-based systems in carcinogenesis and anticancer drug resistance</article-title>
<source>
<italic toggle="yes">Antioxidants & Redox Signaling</italic>
</source>
<year>2017</year>
<volume>27</volume>
<issue>15</issue>
<fpage>1217</fpage>
<lpage>1234</lpage>
<pub-id pub-id-type="doi">10.1089/ars.2017.7134</pub-id>
<pub-id pub-id-type="other">2-s2.0-85031751093</pub-id>
<pub-id pub-id-type="pmid">28537430</pub-id>
</element-citation>
</ref>
<ref id="B10">
<label>10</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Anderson</surname>
<given-names>M. E.</given-names>
</name>
</person-group>
<article-title>Glutathione: an overview of biosynthesis and modulation</article-title>
<source>
<italic toggle="yes">Chemico-Biological Interactions</italic>
</source>
<year>1998</year>
<volume>111-112</volume>
<fpage>1</fpage>
<lpage>14</lpage>
<pub-id pub-id-type="doi">10.1016/S0009-2797(97)00146-4</pub-id>
<pub-id pub-id-type="other">2-s2.0-3042802690</pub-id>
<pub-id pub-id-type="pmid">9679538</pub-id>
</element-citation>
</ref>
<ref id="B11">
<label>11</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Dalton</surname>
<given-names>T. P.</given-names>
</name>
<name>
<surname>Chen</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Schneider</surname>
<given-names>S. N.</given-names>
</name>
<name>
<surname>Nebert</surname>
<given-names>D. W.</given-names>
</name>
<name>
<surname>Shertzer</surname>
<given-names>H. G.</given-names>
</name>
</person-group>
<article-title>Genetically altered mice to evaluate glutathione homeostasis in health and disease</article-title>
<source>
<italic toggle="yes">Free Radical Biology and Medicine</italic>
</source>
<year>2004</year>
<volume>37</volume>
<issue>10</issue>
<fpage>1511</fpage>
<lpage>1526</lpage>
<pub-id pub-id-type="doi">10.1016/j.freeradbiomed.2004.06.040</pub-id>
<pub-id pub-id-type="other">2-s2.0-5344280431</pub-id>
<pub-id pub-id-type="pmid">15477003</pub-id>
</element-citation>
</ref>
<ref id="B12">
<label>12</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Lu</surname>
<given-names>S. C.</given-names>
</name>
</person-group>
<article-title>Glutathione synthesis</article-title>
<source>
<italic toggle="yes">Biochimica et Biophysica Acta (BBA) - General Subjects</italic>
</source>
<year>2013</year>
<volume>1830</volume>
<issue>5</issue>
<fpage>3143</fpage>
<lpage>3153</lpage>
<pub-id pub-id-type="doi">10.1016/j.bbagen.2012.09.008</pub-id>
<pub-id pub-id-type="other">2-s2.0-84875744148</pub-id>
<pub-id pub-id-type="pmid">22995213</pub-id>
</element-citation>
</ref>
<ref id="B13">
<label>13</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Diaz Vivancos</surname>
<given-names>P.</given-names>
</name>
<name>
<surname>Wolff</surname>
<given-names>T.</given-names>
</name>
<name>
<surname>Markovic</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Pallardó</surname>
<given-names>F. V.</given-names>
</name>
<name>
<surname>Foyer</surname>
<given-names>C. H.</given-names>
</name>
</person-group>
<article-title>A nuclear glutathione cycle within the cell cycle</article-title>
<source>
<italic toggle="yes">Biochemical Journal</italic>
</source>
<year>2010</year>
<volume>431</volume>
<issue>2</issue>
<fpage>169</fpage>
<lpage>178</lpage>
<pub-id pub-id-type="doi">10.1042/bj20100409</pub-id>
<pub-id pub-id-type="other">2-s2.0-77957930036</pub-id>
<pub-id pub-id-type="pmid">20874710</pub-id>
</element-citation>
</ref>
<ref id="B14">
<label>14</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>BRIVIBA</surname>
<given-names>K.</given-names>
</name>
<name>
<surname>Fraser</surname>
<given-names>G.</given-names>
</name>
<name>
<surname>Sies</surname>
<given-names>H.</given-names>
</name>
<name>
<surname>Ketterer</surname>
<given-names>B.</given-names>
</name>
</person-group>
<article-title>Distribution of the monochlorobimane-glutathione conjugate between nucleus and cytosol in isolated hepatocytes</article-title>
<source>
<italic toggle="yes">Biochemical Journal</italic>
</source>
<year>1993</year>
<volume>294</volume>
<issue>3</issue>
<fpage>631</fpage>
<lpage>633</lpage>
<pub-id pub-id-type="doi">10.1042/bj2940631</pub-id>
<pub-id pub-id-type="other">2-s2.0-0027379264</pub-id>
<pub-id pub-id-type="pmid">8379916</pub-id>
</element-citation>
</ref>
<ref id="B15">
<label>15</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Söderdahl</surname>
<given-names>T.</given-names>
</name>
<name>
<surname>Enoksson</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Lundberg</surname>
<given-names>M.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Visualization of the compartmentalization of glutathione and protein-glutathione mixed disulfides in cultured cells</article-title>
<source>
<italic toggle="yes">Journal of Biological Chemistry</italic>
</source>
<year>2003</year>
<volume>281</volume>
<fpage>6372</fpage>
<lpage>6379</lpage>
</element-citation>
</ref>
<ref id="B16">
<label>16</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Diaz-Vivancos</surname>
<given-names>P.</given-names>
</name>
<name>
<surname>de Simone</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Kiddle</surname>
<given-names>G.</given-names>
</name>
<name>
<surname>Foyer</surname>
<given-names>C. H.</given-names>
</name>
</person-group>
<article-title>Glutathione – linking cell proliferation to oxidative stress</article-title>
<source>
<italic toggle="yes">Free Radical Biology and Medicine</italic>
</source>
<year>2015</year>
<volume>89</volume>
<fpage>1154</fpage>
<lpage>1164</lpage>
<pub-id pub-id-type="doi">10.1016/j.freeradbiomed.2015.09.023</pub-id>
<pub-id pub-id-type="other">2-s2.0-84946606666</pub-id>
<pub-id pub-id-type="pmid">26546102</pub-id>
</element-citation>
</ref>
<ref id="B17">
<label>17</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Meredith</surname>
<given-names>M. J.</given-names>
</name>
<name>
<surname>Reed</surname>
<given-names>D. J.</given-names>
</name>
</person-group>
<article-title>Status of the mitochondrial pool of glutathione in the isolated hepatocyte</article-title>
<source>
<italic toggle="yes">The Journal of Biological Chemistry</italic>
</source>
<year>1982</year>
<volume>257</volume>
<issue>7</issue>
<fpage>3747</fpage>
<lpage>3753</lpage>
<pub-id pub-id-type="pmid">7061508</pub-id>
</element-citation>
</ref>
<ref id="B18">
<label>18</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Hwang</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>Sinskey</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Lodish</surname>
<given-names>H.</given-names>
</name>
</person-group>
<article-title>Oxidized redox state of glutathione in the endoplasmic reticulum</article-title>
<source>
<italic toggle="yes">Science</italic>
</source>
<year>1992</year>
<volume>257</volume>
<issue>5076</issue>
<fpage>1496</fpage>
<lpage>1502</lpage>
<pub-id pub-id-type="doi">10.1126/science.1523409</pub-id>
<pub-id pub-id-type="other">2-s2.0-0026698060</pub-id>
<pub-id pub-id-type="pmid">1523409</pub-id>
</element-citation>
</ref>
<ref id="B19">
<label>19</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Morgan</surname>
<given-names>B.</given-names>
</name>
<name>
<surname>Ezeriņa</surname>
<given-names>D.</given-names>
</name>
<name>
<surname>Amoako</surname>
<given-names>T. N. E.</given-names>
</name>
<name>
<surname>Riemer</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Seedorf</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Dick</surname>
<given-names>T. P.</given-names>
</name>
</person-group>
<article-title>Multiple glutathione disulfide removal pathways mediate cytosolic redox homeostasis</article-title>
<source>
<italic toggle="yes">Nature Chemical Biology</italic>
</source>
<year>2013</year>
<volume>9</volume>
<issue>2</issue>
<fpage>119</fpage>
<lpage>125</lpage>
<pub-id pub-id-type="doi">10.1038/nchembio.1142</pub-id>
<pub-id pub-id-type="other">2-s2.0-84872687926</pub-id>
<pub-id pub-id-type="pmid">23242256</pub-id>
</element-citation>
</ref>
<ref id="B20">
<label>20</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Lu</surname>
<given-names>S. C.</given-names>
</name>
</person-group>
<article-title>Regulation of glutathione synthesis</article-title>
<source>
<italic toggle="yes">Molecular Aspects of Medicine</italic>
</source>
<year>2009</year>
<volume>30</volume>
<issue>1-2</issue>
<fpage>42</fpage>
<lpage>59</lpage>
<pub-id pub-id-type="doi">10.1016/j.mam.2008.05.005</pub-id>
<pub-id pub-id-type="other">2-s2.0-65049089113</pub-id>
<pub-id pub-id-type="pmid">18601945</pub-id>
</element-citation>
</ref>
<ref id="B21">
<label>21</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Morgan</surname>
<given-names>B.</given-names>
</name>
</person-group>
<article-title>Reassessing cellular glutathione homoeostasis: novel insights revealed by genetically encoded redox probes</article-title>
<source>
<italic toggle="yes">Biochemical Society Transactions</italic>
</source>
<year>2014</year>
<volume>42</volume>
<issue>4</issue>
<fpage>979</fpage>
<lpage>984</lpage>
<pub-id pub-id-type="doi">10.1042/BST20140101</pub-id>
<pub-id pub-id-type="other">2-s2.0-84905821900</pub-id>
<pub-id pub-id-type="pmid">25109989</pub-id>
</element-citation>
</ref>
<ref id="B22">
<label>22</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Meyer</surname>
<given-names>A. J.</given-names>
</name>
<name>
<surname>Brach</surname>
<given-names>T.</given-names>
</name>
<name>
<surname>Marty</surname>
<given-names>L.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Redox-sensitive GFP in arabidopsis thaliana is a quantitative biosensor for the redox potential of the cellular glutathione redox buffer</article-title>
<source>
<italic toggle="yes">The Plant Journal</italic>
</source>
<year>2007</year>
<volume>52</volume>
<issue>5</issue>
<fpage>973</fpage>
<lpage>986</lpage>
<pub-id pub-id-type="doi">10.1111/j.1365-313X.2007.03280.x</pub-id>
<pub-id pub-id-type="other">2-s2.0-36349007756</pub-id>
<pub-id pub-id-type="pmid">17892447</pub-id>
</element-citation>
</ref>
<ref id="B23">
<label>23</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Calabrese</surname>
<given-names>G.</given-names>
</name>
<name>
<surname>Morgan</surname>
<given-names>B.</given-names>
</name>
<name>
<surname>Riemer</surname>
<given-names>J.</given-names>
</name>
</person-group>
<article-title>Mitochondrial glutathione: regulation and functions</article-title>
<source>
<italic toggle="yes">Antioxidants & Redox Signaling</italic>
</source>
<year>2017</year>
<volume>27</volume>
<issue>15</issue>
<fpage>1162</fpage>
<lpage>1177</lpage>
<pub-id pub-id-type="doi">10.1089/ars.2017.7121</pub-id>
<pub-id pub-id-type="other">2-s2.0-85031391493</pub-id>
<pub-id pub-id-type="pmid">28558477</pub-id>
</element-citation>
</ref>
<ref id="B24">
<label>24</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Marí</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Morales</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Colell</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>García-Ruiz</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>Fernández-Checa</surname>
<given-names>J. C.</given-names>
</name>
</person-group>
<article-title>Mitochondrial glutathione, a key survival antioxidant</article-title>
<source>
<italic toggle="yes">Antioxidants & Redox Signaling</italic>
</source>
<year>2009</year>
<volume>11</volume>
<issue>11</issue>
<fpage>2685</fpage>
<lpage>2700</lpage>
<pub-id pub-id-type="doi">10.1089/ars.2009.2695</pub-id>
<pub-id pub-id-type="other">2-s2.0-73449124480</pub-id>
<pub-id pub-id-type="pmid">19558212</pub-id>
</element-citation>
</ref>
<ref id="B25">
<label>25</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Lash</surname>
<given-names>L. H.</given-names>
</name>
<name>
<surname>Visarius</surname>
<given-names>T. M.</given-names>
</name>
<name>
<surname>Sall</surname>
<given-names>J. M.</given-names>
</name>
<name>
<surname>Qian</surname>
<given-names>W.</given-names>
</name>
<name>
<surname>Tokarz</surname>
<given-names>J. J.</given-names>
</name>
</person-group>
<article-title>Cellular and subcellular heterogeneity of glutathione metabolism and transport in rat kidney cells</article-title>
<source>
<italic toggle="yes">Toxicology</italic>
</source>
<year>1998</year>
<volume>130</volume>
<issue>1</issue>
<fpage>1</fpage>
<lpage>15</lpage>
<pub-id pub-id-type="doi">10.1016/S0300-483X(98)00093-6</pub-id>
<pub-id pub-id-type="other">2-s2.0-0031769774</pub-id>
<pub-id pub-id-type="pmid">9846992</pub-id>
</element-citation>
</ref>
<ref id="B26">
<label>26</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Schnellmann</surname>
<given-names>R. G.</given-names>
</name>
<name>
<surname>Gilchrist</surname>
<given-names>S. M.</given-names>
</name>
<name>
<surname>Mandel</surname>
<given-names>L. J.</given-names>
</name>
</person-group>
<article-title>Intracellular distribution and depletion of glutathione in rabbit renal proximal tubules</article-title>
<source>
<italic toggle="yes">Kidney International</italic>
</source>
<year>1988</year>
<volume>34</volume>
<issue>2</issue>
<fpage>229</fpage>
<lpage>233</lpage>
<pub-id pub-id-type="doi">10.1038/ki.1988.169</pub-id>
<pub-id pub-id-type="other">2-s2.0-0023789159</pub-id>
<pub-id pub-id-type="pmid">3184599</pub-id>
</element-citation>
</ref>
<ref id="B27">
<label>27</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Kojer</surname>
<given-names>K.</given-names>
</name>
<name>
<surname>Bien</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Gangel</surname>
<given-names>H.</given-names>
</name>
<name>
<surname>Morgan</surname>
<given-names>B.</given-names>
</name>
<name>
<surname>Dick</surname>
<given-names>T. P.</given-names>
</name>
<name>
<surname>Riemer</surname>
<given-names>J.</given-names>
</name>
</person-group>
<article-title>Glutathione redox potential in the mitochondrial intermembrane space is linked to the cytosol and impacts the Mia40 redox state</article-title>
<source>
<italic toggle="yes">The EMBO Journal</italic>
</source>
<year>2012</year>
<volume>31</volume>
<issue>14</issue>
<fpage>3169</fpage>
<lpage>3182</lpage>
<pub-id pub-id-type="doi">10.1038/emboj.2012.165</pub-id>
<pub-id pub-id-type="other">2-s2.0-84864119697</pub-id>
<pub-id pub-id-type="pmid">22705944</pub-id>
</element-citation>
</ref>
<ref id="B28">
<label>28</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Becker</surname>
<given-names>T.</given-names>
</name>
<name>
<surname>Gebert</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Pfanner</surname>
<given-names>N.</given-names>
</name>
<name>
<surname>van der Laan</surname>
<given-names>M.</given-names>
</name>
</person-group>
<article-title>Biogenesis of mitochondrial membrane proteins</article-title>
<source>
<italic toggle="yes">Current Opinion in Cell Biology</italic>
</source>
<year>2009</year>
<volume>21</volume>
<issue>4</issue>
<fpage>484</fpage>
<lpage>493</lpage>
<pub-id pub-id-type="doi">10.1016/j.ceb.2009.04.002</pub-id>
<pub-id pub-id-type="other">2-s2.0-67949123336</pub-id>
<pub-id pub-id-type="pmid">19423316</pub-id>
</element-citation>
</ref>
<ref id="B29">
<label>29</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Tatsuta</surname>
<given-names>T.</given-names>
</name>
<name>
<surname>Scharwey</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Langer</surname>
<given-names>T.</given-names>
</name>
</person-group>
<article-title>Mitochondrial lipid trafficking</article-title>
<source>
<italic toggle="yes">Trends in Cell Biology</italic>
</source>
<year>2014</year>
<volume>24</volume>
<issue>1</issue>
<fpage>44</fpage>
<lpage>52</lpage>
<pub-id pub-id-type="doi">10.1016/j.tcb.2013.07.011</pub-id>
<pub-id pub-id-type="other">2-s2.0-84890872873</pub-id>
<pub-id pub-id-type="pmid">24001776</pub-id>
</element-citation>
</ref>
<ref id="B30">
<label>30</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Cogliati</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Enriquez</surname>
<given-names>J. A.</given-names>
</name>
<name>
<surname>Scorrano</surname>
<given-names>L.</given-names>
</name>
</person-group>
<article-title>Mitochondrial cristae: where beauty meets functionality</article-title>
<source>
<italic toggle="yes">Trends in Biochemical Sciences</italic>
</source>
<year>2016</year>
<volume>41</volume>
<issue>3</issue>
<fpage>261</fpage>
<lpage>273</lpage>
<pub-id pub-id-type="doi">10.1016/j.tibs.2016.01.001</pub-id>
<pub-id pub-id-type="other">2-s2.0-84959521117</pub-id>
<pub-id pub-id-type="pmid">26857402</pub-id>
</element-citation>
</ref>
<ref id="B31">
<label>31</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Lash</surname>
<given-names>L. H.</given-names>
</name>
</person-group>
<article-title>Role of glutathione transport processes in kidney function</article-title>
<source>
<italic toggle="yes">Toxicology and Applied Pharmacology</italic>
</source>
<year>2005</year>
<volume>204</volume>
<issue>3</issue>
<fpage>329</fpage>
<lpage>342</lpage>
<pub-id pub-id-type="doi">10.1016/j.taap.2004.10.004</pub-id>
<pub-id pub-id-type="other">2-s2.0-17444419341</pub-id>
<pub-id pub-id-type="pmid">15845422</pub-id>
</element-citation>
</ref>
<ref id="B32">
<label>32</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Lash</surname>
<given-names>L. H.</given-names>
</name>
</person-group>
<article-title>Mitochondrial glutathione transport: physiological, pathological and toxicological implications</article-title>
<source>
<italic toggle="yes">Chemico-Biological Interactions</italic>
</source>
<year>2006</year>
<volume>163</volume>
<issue>1-2</issue>
<fpage>54</fpage>
<lpage>67</lpage>
<pub-id pub-id-type="doi">10.1016/j.cbi.2006.03.001</pub-id>
<pub-id pub-id-type="other">2-s2.0-33750011601</pub-id>
<pub-id pub-id-type="pmid">16600197</pub-id>
</element-citation>
</ref>
<ref id="B33">
<label>33</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Chen</surname>
<given-names>Z.</given-names>
</name>
<name>
<surname>Putt</surname>
<given-names>D. A.</given-names>
</name>
<name>
<surname>Lash</surname>
<given-names>L. H.</given-names>
</name>
</person-group>
<article-title>Enrichment and functional reconstitution of glutathione transport activity from rabbit kidney mitochondria further evidence for the role of the dicarboxylate and 2-oxoglutarate carriers in mitochondrial glutathione transport</article-title>
<source>
<italic toggle="yes">Archives of Biochemistry and Biophysics</italic>
</source>
<year>2000</year>
<volume>373</volume>
<issue>1</issue>
<fpage>193</fpage>
<lpage>202</lpage>
<pub-id pub-id-type="doi">10.1006/abbi.1999.1527</pub-id>
<pub-id pub-id-type="other">2-s2.0-0033963540</pub-id>
<pub-id pub-id-type="pmid">10620338</pub-id>
</element-citation>
</ref>
<ref id="B34">
<label>34</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Markovic</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Borras</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>Ortega</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Sastre</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Vina</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Pallardo</surname>
<given-names>F. V.</given-names>
</name>
</person-group>
<article-title>Glutathione is recruited into the nucleus in early phases of cell proliferation</article-title>
<source>
<italic toggle="yes">Journal of Biological Chemistry</italic>
</source>
<year>2007</year>
<volume>282</volume>
<issue>28</issue>
<fpage>20416</fpage>
<lpage>20424</lpage>
<pub-id pub-id-type="doi">10.1074/jbc.M609582200</pub-id>
<pub-id pub-id-type="other">2-s2.0-34547110841</pub-id>
<pub-id pub-id-type="pmid">17452333</pub-id>
</element-citation>
</ref>
<ref id="B35">
<label>35</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Vivancos</surname>
<given-names>P. D.</given-names>
</name>
<name>
<surname>Dong</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Ziegler</surname>
<given-names>K.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Recruitment of glutathione into the nucleus during cell proliferation adjusts whole-cell redox homeostasis in Arabidopsis thaliana and lowers the oxidative defence shield</article-title>
<source>
<italic toggle="yes">The Plant Journal</italic>
</source>
<year>2010</year>
<volume>64</volume>
<issue>5</issue>
<fpage>825</fpage>
<lpage>838</lpage>
<pub-id pub-id-type="doi">10.1111/j.1365-313X.2010.04371.x</pub-id>
<pub-id pub-id-type="other">2-s2.0-78649560974</pub-id>
<pub-id pub-id-type="pmid">21105929</pub-id>
</element-citation>
</ref>
<ref id="B36">
<label>36</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Holmgren</surname>
<given-names>A.</given-names>
</name>
</person-group>
<article-title>Hydrogen donor system for Escherichia coli ribonucleoside-diphosphate reductase dependent upon glutathione</article-title>
<source>
<italic toggle="yes">Proceedings of the National Academy of Sciences of the United States of America</italic>
</source>
<year>1976</year>
<volume>73</volume>
<issue>7</issue>
<fpage>2275</fpage>
<lpage>2279</lpage>
<pub-id pub-id-type="doi">10.1073/pnas.73.7.2275</pub-id>
<pub-id pub-id-type="other">2-s2.0-2042476756</pub-id>
<pub-id pub-id-type="pmid">7783</pub-id>
</element-citation>
</ref>
<ref id="B37">
<label>37</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Valko</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Leibfritz</surname>
<given-names>D.</given-names>
</name>
<name>
<surname>Moncol</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Cronin</surname>
<given-names>M. T. D.</given-names>
</name>
<name>
<surname>Mazur</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Telser</surname>
<given-names>J.</given-names>
</name>
</person-group>
<article-title>Free radicals and antioxidants in normal physiological functions and human disease</article-title>
<source>
<italic toggle="yes">The International Journal of Biochemistry & Cell Biology</italic>
</source>
<year>2007</year>
<volume>39</volume>
<issue>1</issue>
<fpage>44</fpage>
<lpage>84</lpage>
<pub-id pub-id-type="doi">10.1016/j.biocel.2006.07.001</pub-id>
<pub-id pub-id-type="other">2-s2.0-33749986298</pub-id>
<pub-id pub-id-type="pmid">16978905</pub-id>
</element-citation>
</ref>
<ref id="B38">
<label>38</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Holmgren</surname>
<given-names>A.</given-names>
</name>
</person-group>
<article-title>The function of thioredoxin and glutathione in deoxyribonucleic acid synthesis</article-title>
<source>
<italic toggle="yes">Biochemical Society Transactions</italic>
</source>
<year>1977</year>
<volume>5</volume>
<issue>3</issue>
<fpage>611</fpage>
<lpage>612</lpage>
<pub-id pub-id-type="doi">10.1042/bst0050611</pub-id>
<pub-id pub-id-type="other">2-s2.0-0017396030</pub-id>
<pub-id pub-id-type="pmid">332555</pub-id>
</element-citation>
</ref>
<ref id="B39">
<label>39</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Wang</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Kaufman</surname>
<given-names>R. J.</given-names>
</name>
</person-group>
<article-title>Protein misfolding in the endoplasmic reticulum as a conduit to human disease</article-title>
<source>
<italic toggle="yes">Nature</italic>
</source>
<year>2016</year>
<volume>529</volume>
<issue>7586</issue>
<fpage>326</fpage>
<lpage>335</lpage>
<pub-id pub-id-type="doi">10.1038/nature17041</pub-id>
<pub-id pub-id-type="other">2-s2.0-84955445779</pub-id>
<pub-id pub-id-type="pmid">26791723</pub-id>
</element-citation>
</ref>
<ref id="B40">
<label>40</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Montero</surname>
<given-names>D.</given-names>
</name>
<name>
<surname>Tachibana</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>Rahr Winther</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Appenzeller-Herzog</surname>
<given-names>C.</given-names>
</name>
</person-group>
<article-title>Intracellular glutathione pools are heterogeneously concentrated</article-title>
<source>
<italic toggle="yes">Redox Biology</italic>
</source>
<year>2013</year>
<volume>1</volume>
<issue>1</issue>
<fpage>508</fpage>
<lpage>513</lpage>
<pub-id pub-id-type="doi">10.1016/j.redox.2013.10.005</pub-id>
<pub-id pub-id-type="other">2-s2.0-84887381362</pub-id>
<pub-id pub-id-type="pmid">24251119</pub-id>
</element-citation>
</ref>
<ref id="B41">
<label>41</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Cao</surname>
<given-names>S. S.</given-names>
</name>
<name>
<surname>Kaufman</surname>
<given-names>R. J.</given-names>
</name>
</person-group>
<article-title>Endoplasmic reticulum stress and oxidative stress in cell fate decision and human disease</article-title>
<source>
<italic toggle="yes">Antioxidants & Redox Signaling</italic>
</source>
<year>2014</year>
<volume>21</volume>
<issue>3</issue>
<fpage>396</fpage>
<lpage>413</lpage>
<pub-id pub-id-type="doi">10.1089/ars.2014.5851</pub-id>
<pub-id pub-id-type="other">2-s2.0-84903795970</pub-id>
<pub-id pub-id-type="pmid">24702237</pub-id>
</element-citation>
</ref>
<ref id="B42">
<label>42</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Anderson</surname>
<given-names>M. E.</given-names>
</name>
<name>
<surname>Bridges</surname>
<given-names>R. J.</given-names>
</name>
<name>
<surname>Meister</surname>
<given-names>A.</given-names>
</name>
</person-group>
<article-title>Direct evidence for inter-organ transport of glutathione and that the non-filtration renal mechanism for glutathione utilization involves
<italic>γ</italic>
-glutamyl transpeptidase</article-title>
<source>
<italic toggle="yes">Biochemical and Biophysical Research Communications</italic>
</source>
<year>1980</year>
<volume>96</volume>
<issue>2</issue>
<fpage>848</fpage>
<lpage>853</lpage>
<pub-id pub-id-type="doi">10.1016/0006-291X(80)91433-3</pub-id>
<pub-id pub-id-type="other">2-s2.0-0019194680</pub-id>
<pub-id pub-id-type="pmid">6107079</pub-id>
</element-citation>
</ref>
<ref id="B43">
<label>43</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Häberle</surname>
<given-names>D.</given-names>
</name>
<name>
<surname>Wahlländer</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Sies</surname>
<given-names>H.</given-names>
</name>
<name>
<surname>Linke</surname>
<given-names>I.</given-names>
</name>
<name>
<surname>Lachenmaier</surname>
<given-names>C.</given-names>
</name>
</person-group>
<article-title>Assessment of the kidney function in maintenance of plasma glutathione concentration and redox state in anaesthetized rats</article-title>
<source>
<italic toggle="yes">FEBS Letters</italic>
</source>
<year>1979</year>
<volume>108</volume>
<issue>2</issue>
<fpage>335</fpage>
<lpage>340</lpage>
<pub-id pub-id-type="doi">10.1016/0014-5793(79)80558-X</pub-id>
<pub-id pub-id-type="other">2-s2.0-0018562617</pub-id>
<pub-id pub-id-type="pmid">520571</pub-id>
</element-citation>
</ref>
<ref id="B44">
<label>44</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Hahn</surname>
<given-names>R.</given-names>
</name>
<name>
<surname>Wendel</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Flohé</surname>
<given-names>L.</given-names>
</name>
</person-group>
<article-title>The fate of extracellular glutathione in the rat</article-title>
<source>
<italic toggle="yes">Biochimica et Biophysica Acta (BBA) - General Subjects</italic>
</source>
<year>1978</year>
<volume>539</volume>
<issue>3</issue>
<fpage>324</fpage>
<lpage>337</lpage>
<pub-id pub-id-type="doi">10.1016/0304-4165(78)90037-5</pub-id>
<pub-id pub-id-type="other">2-s2.0-0017876204</pub-id>
<pub-id pub-id-type="pmid">24477</pub-id>
</element-citation>
</ref>
<ref id="B45">
<label>45</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Lash</surname>
<given-names>L. H.</given-names>
</name>
<name>
<surname>Putt</surname>
<given-names>D. A.</given-names>
</name>
</person-group>
<article-title>Renal cellular transport of exogenous glutathione: heterogeneity at physiological and pharmacological concentrations</article-title>
<source>
<italic toggle="yes">Biochemical Pharmacology</italic>
</source>
<year>1999</year>
<volume>58</volume>
<issue>5</issue>
<fpage>897</fpage>
<lpage>907</lpage>
<pub-id pub-id-type="doi">10.1016/S0006-2952(99)00155-0</pub-id>
<pub-id pub-id-type="other">2-s2.0-0032797004</pub-id>
<pub-id pub-id-type="pmid">10449202</pub-id>
</element-citation>
</ref>
<ref id="B46">
<label>46</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Chen</surname>
<given-names>X.</given-names>
</name>
<name>
<surname>Tsukaguchi</surname>
<given-names>H.</given-names>
</name>
<name>
<surname>Chen</surname>
<given-names>X. Z.</given-names>
</name>
<name>
<surname>Berger</surname>
<given-names>U. V.</given-names>
</name>
<name>
<surname>Hediger</surname>
<given-names>M. A.</given-names>
</name>
</person-group>
<article-title>Molecular and functional analysis of SDCT2, a novel rat sodium-dependent dicarboxylate transporter</article-title>
<source>
<italic toggle="yes">The Journal of Clinical Investigation</italic>
</source>
<year>1999</year>
<volume>103</volume>
<issue>8</issue>
<fpage>1159</fpage>
<lpage>1168</lpage>
<pub-id pub-id-type="doi">10.1172/JCI5392</pub-id>
<pub-id pub-id-type="other">2-s2.0-0033560937</pub-id>
<pub-id pub-id-type="pmid">10207168</pub-id>
</element-citation>
</ref>
<ref id="B47">
<label>47</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Inoue</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Morino</surname>
<given-names>Y.</given-names>
</name>
</person-group>
<article-title>Direct evidence for the role of the membrane potential in glutathione transport by renal brush-border membranes</article-title>
<source>
<italic toggle="yes">Journal of Biological Chemistry</italic>
</source>
<year>1985</year>
<volume>260</volume>
<issue>1</issue>
<fpage>326</fpage>
<lpage>331</lpage>
<pub-id pub-id-type="pmid">2856921</pub-id>
</element-citation>
</ref>
<ref id="B48">
<label>48</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Ballatori</surname>
<given-names>N.</given-names>
</name>
<name>
<surname>Hammond</surname>
<given-names>C. L.</given-names>
</name>
<name>
<surname>Cunningham</surname>
<given-names>J. B.</given-names>
</name>
<name>
<surname>Krance</surname>
<given-names>S. M.</given-names>
</name>
<name>
<surname>Marchan</surname>
<given-names>R.</given-names>
</name>
</person-group>
<article-title>Molecular mechanisms of reduced glutathione transport: role of the MRP/CFTR/ABCC and OATP/SLC21A families of membrane proteins</article-title>
<source>
<italic toggle="yes">Toxicology and Applied Pharmacology</italic>
</source>
<year>2005</year>
<volume>204</volume>
<issue>3</issue>
<fpage>238</fpage>
<lpage>255</lpage>
<pub-id pub-id-type="doi">10.1016/j.taap.2004.09.008</pub-id>
<pub-id pub-id-type="other">2-s2.0-17444419342</pub-id>
<pub-id pub-id-type="pmid">15845416</pub-id>
</element-citation>
</ref>
<ref id="B49">
<label>49</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Li</surname>
<given-names>L.</given-names>
</name>
<name>
<surname>Lee</surname>
<given-names>T. K.</given-names>
</name>
<name>
<surname>Meier</surname>
<given-names>P. J.</given-names>
</name>
<name>
<surname>Ballatori</surname>
<given-names>N.</given-names>
</name>
</person-group>
<article-title>Identification of glutathione as a driving force and leukotriene C
<sub>4</sub>
as a substrate for oatp1, the hepatic sinusoidal organic solute transporter</article-title>
<source>
<italic toggle="yes">Journal of Biological Chemistry</italic>
</source>
<year>1998</year>
<volume>273</volume>
<issue>26</issue>
<fpage>16184</fpage>
<lpage>16191</lpage>
<pub-id pub-id-type="doi">10.1074/jbc.273.26.16184</pub-id>
<pub-id pub-id-type="other">2-s2.0-0032568838</pub-id>
<pub-id pub-id-type="pmid">9632674</pub-id>
</element-citation>
</ref>
<ref id="B50">
<label>50</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Bachhawat</surname>
<given-names>A. K.</given-names>
</name>
<name>
<surname>Thakur</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Kaur</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Zulkifli</surname>
<given-names>M.</given-names>
</name>
</person-group>
<article-title>Glutathione transporters</article-title>
<source>
<italic toggle="yes">Biochimica et Biophysica Acta (BBA) - General Subjects</italic>
</source>
<year>2013</year>
<volume>1830</volume>
<issue>5</issue>
<fpage>3154</fpage>
<lpage>3164</lpage>
<pub-id pub-id-type="doi">10.1016/j.bbagen.2012.11.018</pub-id>
<pub-id pub-id-type="other">2-s2.0-84875741978</pub-id>
<pub-id pub-id-type="pmid">23206830</pub-id>
</element-citation>
</ref>
<ref id="B51">
<label>51</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Hanigan</surname>
<given-names>M. H.</given-names>
</name>
</person-group>
<article-title>Gamma-glutamyl transpeptidase: redox regulation and drug resistance</article-title>
<source>
<italic toggle="yes">Advances in Cancer Research</italic>
</source>
<year>2014</year>
<volume>122</volume>
<fpage>103</fpage>
<lpage>141</lpage>
<pub-id pub-id-type="doi">10.1016/b978-0-12-420117-0.00003-7</pub-id>
<pub-id pub-id-type="other">2-s2.0-84902978991</pub-id>
<pub-id pub-id-type="pmid">24974180</pub-id>
</element-citation>
</ref>
<ref id="B52">
<label>52</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Kumar</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Kaur</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Chattopadhyay</surname>
<given-names>B.</given-names>
</name>
<name>
<surname>Bachhawat</surname>
<given-names>A. K.</given-names>
</name>
</person-group>
<article-title>Defining the cytosolic pathway of glutathione degradation in
<italic>Arabidopsis thaliana</italic>
: role of the ChaC/GCG family of
<italic>γ</italic>
-glutamyl cyclotransferases as glutathione-degrading enzymes and AtLAP1 as the Cys-Gly peptidase</article-title>
<source>
<italic toggle="yes">Biochemical Journal</italic>
</source>
<year>2015</year>
<volume>468</volume>
<issue>1</issue>
<fpage>73</fpage>
<lpage>85</lpage>
<pub-id pub-id-type="doi">10.1042/BJ20141154</pub-id>
<pub-id pub-id-type="other">2-s2.0-84934919324</pub-id>
<pub-id pub-id-type="pmid">25716890</pub-id>
</element-citation>
</ref>
<ref id="B53">
<label>53</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Kumar</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Tikoo</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Maity</surname>
<given-names>S.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Mammalian proapoptotic factor ChaC1 and its homologues function as
<italic>γ</italic>
-glutamyl cyclotransferases acting specifically on glutathione</article-title>
<source>
<italic toggle="yes">EMBO Reports</italic>
</source>
<year>2012</year>
<volume>13</volume>
<issue>12</issue>
<fpage>1095</fpage>
<lpage>1101</lpage>
<pub-id pub-id-type="doi">10.1038/embor.2012.156</pub-id>
<pub-id pub-id-type="other">2-s2.0-84870599383</pub-id>
<pub-id pub-id-type="pmid">23070364</pub-id>
</element-citation>
</ref>
<ref id="B54">
<label>54</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Oakley</surname>
<given-names>A. J.</given-names>
</name>
<name>
<surname>Yamada</surname>
<given-names>T.</given-names>
</name>
<name>
<surname>Liu</surname>
<given-names>D.</given-names>
</name>
<name>
<surname>Coggan</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Clark</surname>
<given-names>A. G.</given-names>
</name>
<name>
<surname>Board</surname>
<given-names>P. G.</given-names>
</name>
</person-group>
<article-title>The identification and structural characterization of C7orf24 as
<italic>γ</italic>
-glutamyl cyclotransferase: an essential enzyme in the
<italic>γ</italic>
-glutamyl cycle</article-title>
<source>
<italic toggle="yes">Journal of Biological Chemistry</italic>
</source>
<year>2008</year>
<volume>283</volume>
<issue>32</issue>
<fpage>22031</fpage>
<lpage>22042</lpage>
<pub-id pub-id-type="doi">10.1074/jbc.M803623200</pub-id>
<pub-id pub-id-type="other">2-s2.0-52049115466</pub-id>
<pub-id pub-id-type="pmid">18515354</pub-id>
</element-citation>
</ref>
<ref id="B55">
<label>55</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Kaur</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Gautam</surname>
<given-names>R.</given-names>
</name>
<name>
<surname>Srivastava</surname>
<given-names>R.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>ChaC2, an enzyme for slow turnover of cytosolic glutathione</article-title>
<source>
<italic toggle="yes">Journal of Biological Chemistry</italic>
</source>
<year>2017</year>
<volume>292</volume>
<issue>2</issue>
<fpage>638</fpage>
<lpage>651</lpage>
<pub-id pub-id-type="doi">10.1074/jbc.M116.727479</pub-id>
<pub-id pub-id-type="other">2-s2.0-85009727667</pub-id>
<pub-id pub-id-type="pmid">27913623</pub-id>
</element-citation>
</ref>
<ref id="B56">
<label>56</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Gorrini</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>Harris</surname>
<given-names>I. S.</given-names>
</name>
<name>
<surname>Mak</surname>
<given-names>T. W.</given-names>
</name>
</person-group>
<article-title>Modulation of oxidative stress as an anticancer strategy</article-title>
<source>
<italic toggle="yes">Nature Reviews Drug Discovery</italic>
</source>
<year>2013</year>
<volume>12</volume>
<issue>12</issue>
<fpage>931</fpage>
<lpage>947</lpage>
<pub-id pub-id-type="doi">10.1038/nrd4002</pub-id>
<pub-id pub-id-type="other">2-s2.0-84889575198</pub-id>
<pub-id pub-id-type="pmid">24287781</pub-id>
</element-citation>
</ref>
<ref id="B57">
<label>57</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Ortega</surname>
<given-names>A. L.</given-names>
</name>
<name>
<surname>Mena</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Estrela</surname>
<given-names>J. M.</given-names>
</name>
</person-group>
<article-title>Glutathione in cancer cell death</article-title>
<source>
<italic toggle="yes">Cancers</italic>
</source>
<year>2011</year>
<volume>3</volume>
<issue>1</issue>
<fpage>1285</fpage>
<lpage>1310</lpage>
<pub-id pub-id-type="doi">10.3390/cancers3011285</pub-id>
<pub-id pub-id-type="other">2-s2.0-79953715374</pub-id>
<pub-id pub-id-type="pmid">24212662</pub-id>
</element-citation>
</ref>
<ref id="B58">
<label>58</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Murphy</surname>
<given-names>M. P.</given-names>
</name>
</person-group>
<article-title>How mitochondria produce reactive oxygen species</article-title>
<source>
<italic toggle="yes">Biochemical Journal</italic>
</source>
<year>2009</year>
<volume>417</volume>
<issue>1</issue>
<fpage>1</fpage>
<lpage>13</lpage>
<pub-id pub-id-type="doi">10.1042/BJ20081386</pub-id>
<pub-id pub-id-type="other">2-s2.0-58249093939</pub-id>
<pub-id pub-id-type="pmid">19061483</pub-id>
</element-citation>
</ref>
<ref id="B59">
<label>59</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Ouyang</surname>
<given-names>L.</given-names>
</name>
<name>
<surname>Shi</surname>
<given-names>Z.</given-names>
</name>
<name>
<surname>Zhao</surname>
<given-names>S.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Programmed cell death pathways in cancer: a review of apoptosis, autophagy and programmed necrosis</article-title>
<source>
<italic toggle="yes">Cell Proliferation</italic>
</source>
<year>2012</year>
<volume>45</volume>
<issue>6</issue>
<fpage>487</fpage>
<lpage>498</lpage>
<pub-id pub-id-type="doi">10.1111/j.1365-2184.2012.00845.x</pub-id>
<pub-id pub-id-type="other">2-s2.0-84868197448</pub-id>
<pub-id pub-id-type="pmid">23030059</pub-id>
</element-citation>
</ref>
<ref id="B60">
<label>60</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Su</surname>
<given-names>Z.</given-names>
</name>
<name>
<surname>Yang</surname>
<given-names>Z.</given-names>
</name>
<name>
<surname>Xu</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Chen</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Yu</surname>
<given-names>Q.</given-names>
</name>
</person-group>
<article-title>Apoptosis, autophagy, necroptosis, and cancer metastasis</article-title>
<source>
<italic toggle="yes">Molecular Cancer</italic>
</source>
<year>2015</year>
<volume>14</volume>
<issue>1</issue>
<fpage>p. 48</fpage>
<pub-id pub-id-type="doi">10.1186/s12943-015-0321-5</pub-id>
<pub-id pub-id-type="other">2-s2.0-84924266024</pub-id>
</element-citation>
</ref>
<ref id="B61">
<label>61</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Elmore</surname>
<given-names>S.</given-names>
</name>
</person-group>
<article-title>Apoptosis: a review of programmed cell death</article-title>
<source>
<italic toggle="yes">Toxicologic Pathology</italic>
</source>
<year>2012</year>
<volume>29</volume>
<issue>6</issue>
<fpage>997</fpage>
<lpage>1003</lpage>
</element-citation>
</ref>
<ref id="B62">
<label>62</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Zhao</surname>
<given-names>Y. F.</given-names>
</name>
<name>
<surname>Zhang</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>Suo</surname>
<given-names>Y. R.</given-names>
</name>
</person-group>
<article-title>MMPT as a reactive oxygen species generator induces apoptosis via the depletion of intracellular GSH contents in A549 cells</article-title>
<source>
<italic toggle="yes">European Journal of Pharmacology</italic>
</source>
<year>2012</year>
<volume>688</volume>
<issue>1-3</issue>
<fpage>6</fpage>
<lpage>13</lpage>
<pub-id pub-id-type="doi">10.1016/j.ejphar.2012.05.003</pub-id>
<pub-id pub-id-type="other">2-s2.0-84863530720</pub-id>
<pub-id pub-id-type="pmid">22609960</pub-id>
</element-citation>
</ref>
<ref id="B63">
<label>63</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Franco</surname>
<given-names>R.</given-names>
</name>
<name>
<surname>Panayiotidis</surname>
<given-names>M. I.</given-names>
</name>
<name>
<surname>Cidlowski</surname>
<given-names>J. A.</given-names>
</name>
</person-group>
<article-title>Glutathione depletion is necessary for apoptosis in lymphoid cells independent of reactive oxygen species formation</article-title>
<source>
<italic toggle="yes">Journal of Biological Chemistry</italic>
</source>
<year>2007</year>
<volume>282</volume>
<issue>42</issue>
<fpage>30452</fpage>
<lpage>30465</lpage>
<pub-id pub-id-type="doi">10.1074/jbc.M703091200</pub-id>
<pub-id pub-id-type="other">2-s2.0-35649013187</pub-id>
<pub-id pub-id-type="pmid">17724027</pub-id>
</element-citation>
</ref>
<ref id="B64">
<label>64</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Khan</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Yi</surname>
<given-names>F.</given-names>
</name>
<name>
<surname>Rasul</surname>
<given-names>A.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Alantolactone induces apoptosis in glioblastoma cells via GSH depletion, ROS generation, and mitochondrial dysfunction</article-title>
<source>
<italic toggle="yes">IUBMB life</italic>
</source>
<year>2012</year>
<volume>64</volume>
<issue>9</issue>
<fpage>783</fpage>
<lpage>794</lpage>
<pub-id pub-id-type="doi">10.1002/iub.1068</pub-id>
<pub-id pub-id-type="other">2-s2.0-84865331826</pub-id>
<pub-id pub-id-type="pmid">22837216</pub-id>
</element-citation>
</ref>
<ref id="B65">
<label>65</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Armstrong</surname>
<given-names>J. S.</given-names>
</name>
<name>
<surname>Steinauer</surname>
<given-names>K. K.</given-names>
</name>
<name>
<surname>Hornung</surname>
<given-names>B.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Role of glutathione depletion and reactive oxygen species generation in apoptotic signaling in a human B lymphoma cell line</article-title>
<source>
<italic toggle="yes">Cell Death & Differentiation</italic>
</source>
<year>2002</year>
<volume>9</volume>
<issue>3</issue>
<fpage>252</fpage>
<lpage>263</lpage>
<pub-id pub-id-type="doi">10.1038/sj.cdd.4400959</pub-id>
<pub-id pub-id-type="other">2-s2.0-0036122504</pub-id>
<pub-id pub-id-type="pmid">11859408</pub-id>
</element-citation>
</ref>
<ref id="B66">
<label>66</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Ghibelli</surname>
<given-names>L.</given-names>
</name>
<name>
<surname>Fanelli</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>Rotilio</surname>
<given-names>G.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Rescue of cells from apoptosis by inhibition of active GSH extrusion</article-title>
<source>
<italic toggle="yes">The FASEB Journal</italic>
</source>
<year>1998</year>
<volume>12</volume>
<issue>6</issue>
<fpage>479</fpage>
<lpage>486</lpage>
<pub-id pub-id-type="doi">10.1096/fasebj.12.6.479</pub-id>
<pub-id pub-id-type="pmid">9535220</pub-id>
</element-citation>
</ref>
<ref id="B67">
<label>67</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Hammond</surname>
<given-names>C. L.</given-names>
</name>
<name>
<surname>Marchan</surname>
<given-names>R.</given-names>
</name>
<name>
<surname>Krance</surname>
<given-names>S. M.</given-names>
</name>
<name>
<surname>Ballatori</surname>
<given-names>N.</given-names>
</name>
</person-group>
<article-title>Glutathione export during apoptosis requires functional multidrug resistance-associated proteins</article-title>
<source>
<italic toggle="yes">The Journal of Biological Chemistry</italic>
</source>
<year>2007</year>
<volume>282</volume>
<issue>19</issue>
<fpage>14337</fpage>
<lpage>14347</lpage>
<pub-id pub-id-type="doi">10.1074/jbc.M611019200</pub-id>
<pub-id pub-id-type="other">2-s2.0-34347230130</pub-id>
<pub-id pub-id-type="pmid">17374608</pub-id>
</element-citation>
</ref>
<ref id="B68">
<label>68</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Zou</surname>
<given-names>X.</given-names>
</name>
<name>
<surname>Feng</surname>
<given-names>Z.</given-names>
</name>
<name>
<surname>Li</surname>
<given-names>Y.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Stimulation of GSH synthesis to prevent oxidative stress-induced apoptosis by hydroxytyrosol in human retinal pigment epithelial cells: activation of Nrf2 and JNK-p62/SQSTM1 pathways</article-title>
<source>
<italic toggle="yes">The Journal of Nutritional Biochemistry</italic>
</source>
<year>2012</year>
<volume>23</volume>
<issue>8</issue>
<fpage>994</fpage>
<lpage>1006</lpage>
<pub-id pub-id-type="doi">10.1016/j.jnutbio.2011.05.006</pub-id>
<pub-id pub-id-type="other">2-s2.0-84864010629</pub-id>
<pub-id pub-id-type="pmid">21937211</pub-id>
</element-citation>
</ref>
<ref id="B69">
<label>69</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Akhtar</surname>
<given-names>M. J.</given-names>
</name>
<name>
<surname>Ahamed</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Alhadlaq</surname>
<given-names>H. A.</given-names>
</name>
<name>
<surname>Alshamsan</surname>
<given-names>A.</given-names>
</name>
</person-group>
<article-title>Nanotoxicity of cobalt induced by oxidant generation and glutathione depletion in MCF-7 cells</article-title>
<source>
<italic toggle="yes">Toxicology in Vitro</italic>
</source>
<year>2017</year>
<volume>40</volume>
<fpage>94</fpage>
<lpage>101</lpage>
<pub-id pub-id-type="doi">10.1016/j.tiv.2016.12.012</pub-id>
<pub-id pub-id-type="other">2-s2.0-85007592796</pub-id>
<pub-id pub-id-type="pmid">28024936</pub-id>
</element-citation>
</ref>
<ref id="B70">
<label>70</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Chen</surname>
<given-names>G.</given-names>
</name>
<name>
<surname>Chen</surname>
<given-names>Z.</given-names>
</name>
<name>
<surname>Hu</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Huang</surname>
<given-names>P.</given-names>
</name>
</person-group>
<article-title>Inhibition of mitochondrial respiration and rapid depletion of mitochondrial glutathione by
<italic>β</italic>
-phenethyl isothiocyanate: mechanisms for anti-leukemia activity</article-title>
<source>
<italic toggle="yes">Antioxidants & Redox Signaling</italic>
</source>
<year>2011</year>
<volume>15</volume>
<issue>12</issue>
<fpage>2911</fpage>
<lpage>2921</lpage>
<pub-id pub-id-type="doi">10.1089/ars.2011.4170</pub-id>
<pub-id pub-id-type="other">2-s2.0-80155134262</pub-id>
<pub-id pub-id-type="pmid">21827296</pub-id>
</element-citation>
</ref>
<ref id="B71">
<label>71</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Circu</surname>
<given-names>M. L.</given-names>
</name>
<name>
<surname>Yee Aw</surname>
<given-names>T.</given-names>
</name>
</person-group>
<article-title>Glutathione and apoptosis</article-title>
<source>
<italic toggle="yes">Free Radical Research</italic>
</source>
<year>2008</year>
<volume>42</volume>
<issue>8</issue>
<fpage>689</fpage>
<lpage>706</lpage>
<pub-id pub-id-type="doi">10.1080/10715760802317663</pub-id>
<pub-id pub-id-type="other">2-s2.0-50849141073</pub-id>
<pub-id pub-id-type="pmid">18671159</pub-id>
</element-citation>
</ref>
<ref id="B72">
<label>72</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Guha</surname>
<given-names>P.</given-names>
</name>
<name>
<surname>Dey</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Sen</surname>
<given-names>R.</given-names>
</name>
<name>
<surname>Chatterjee</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Chattopadhyay</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Bandyopadhyay</surname>
<given-names>S. K.</given-names>
</name>
</person-group>
<article-title>Intracellular GSH depletion triggered mitochondrial Bax translocation to accomplish resveratrol-induced apoptosis in the U937 cell line</article-title>
<source>
<italic toggle="yes">Journal of Pharmacology and Experimental Therapeutics</italic>
</source>
<year>2011</year>
<volume>336</volume>
<issue>1</issue>
<fpage>206</fpage>
<lpage>214</lpage>
<pub-id pub-id-type="doi">10.1124/jpet.110.171983</pub-id>
<pub-id pub-id-type="other">2-s2.0-78650763353</pub-id>
<pub-id pub-id-type="pmid">20876229</pub-id>
</element-citation>
</ref>
<ref id="B73">
<label>73</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Honda</surname>
<given-names>T.</given-names>
</name>
<name>
<surname>Coppola</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Ghibelli</surname>
<given-names>L.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>GSH depletion enhances adenoviral bax-induced apoptosis in lung cancer cells</article-title>
<source>
<italic toggle="yes">Cancer Gene Therapy</italic>
</source>
<year>2004</year>
<volume>11</volume>
<issue>4</issue>
<fpage>249</fpage>
<lpage>255</lpage>
<pub-id pub-id-type="doi">10.1038/sj.cgt.7700684</pub-id>
<pub-id pub-id-type="other">2-s2.0-9444272026</pub-id>
<pub-id pub-id-type="pmid">15002033</pub-id>
</element-citation>
</ref>
<ref id="B74">
<label>74</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Vandenabeele</surname>
<given-names>P.</given-names>
</name>
<name>
<surname>Galluzzi</surname>
<given-names>L.</given-names>
</name>
<name>
<surname>vanden Berghe</surname>
<given-names>T.</given-names>
</name>
<name>
<surname>Kroemer</surname>
<given-names>G.</given-names>
</name>
</person-group>
<article-title>Molecular mechanisms of necroptosis: an ordered cellular explosion</article-title>
<source>
<italic toggle="yes">Nature Reviews Molecular Cell Biology</italic>
</source>
<year>2010</year>
<volume>11</volume>
<issue>10</issue>
<fpage>700</fpage>
<lpage>714</lpage>
<pub-id pub-id-type="doi">10.1038/nrm2970</pub-id>
<pub-id pub-id-type="other">2-s2.0-77957105977</pub-id>
<pub-id pub-id-type="pmid">20823910</pub-id>
</element-citation>
</ref>
<ref id="B75">
<label>75</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Berghe</surname>
<given-names>T. V.</given-names>
</name>
<name>
<surname>Linkermann</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Jouan-Lanhouet</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Walczak</surname>
<given-names>H.</given-names>
</name>
<name>
<surname>Vandenabeele</surname>
<given-names>P.</given-names>
</name>
</person-group>
<article-title>Regulated necrosis: the expanding network of non-apoptotic cell death pathways</article-title>
<source>
<italic toggle="yes">Nature Reviews Molecular Cell Biology</italic>
</source>
<year>2014</year>
<volume>15</volume>
<issue>2</issue>
<fpage>135</fpage>
<lpage>147</lpage>
<pub-id pub-id-type="doi">10.1038/nrm3737</pub-id>
<pub-id pub-id-type="other">2-s2.0-84894550453</pub-id>
<pub-id pub-id-type="pmid">24452471</pub-id>
</element-citation>
</ref>
<ref id="B76">
<label>76</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Christofferson</surname>
<given-names>D. E.</given-names>
</name>
<name>
<surname>Yuan</surname>
<given-names>J.</given-names>
</name>
</person-group>
<article-title>Necroptosis as an alternative form of programmed cell death</article-title>
<source>
<italic toggle="yes">Current Opinion in Cell Biology</italic>
</source>
<year>2010</year>
<volume>22</volume>
<issue>2</issue>
<fpage>263</fpage>
<lpage>268</lpage>
<pub-id pub-id-type="doi">10.1016/j.ceb.2009.12.003</pub-id>
<pub-id pub-id-type="other">2-s2.0-77951251430</pub-id>
<pub-id pub-id-type="pmid">20045303</pub-id>
</element-citation>
</ref>
<ref id="B77">
<label>77</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Galluzzi</surname>
<given-names>L.</given-names>
</name>
<name>
<surname>Kroemer</surname>
<given-names>G.</given-names>
</name>
</person-group>
<article-title>Necroptosis: a specialized pathway of programmed necrosis</article-title>
<source>
<italic toggle="yes">Cell</italic>
</source>
<year>2008</year>
<volume>135</volume>
<issue>7</issue>
<fpage>1161</fpage>
<lpage>1163</lpage>
<pub-id pub-id-type="doi">10.1016/j.cell.2008.12.004</pub-id>
<pub-id pub-id-type="other">2-s2.0-57649167477</pub-id>
<pub-id pub-id-type="pmid">19109884</pub-id>
</element-citation>
</ref>
<ref id="B78">
<label>78</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Nagai</surname>
<given-names>H.</given-names>
</name>
<name>
<surname>Matsumaru</surname>
<given-names>K.</given-names>
</name>
<name>
<surname>Feng</surname>
<given-names>G.</given-names>
</name>
<name>
<surname>Kaplowitz</surname>
<given-names>N.</given-names>
</name>
</person-group>
<article-title>Reduced glutathione depletion causes necrosis and sensitization to tumor necrosis factor-alpha-induced apoptosis in cultured mouse hepatocytes</article-title>
<source>
<italic toggle="yes">Hepatology</italic>
</source>
<year>2002</year>
<volume>36</volume>
<issue>1</issue>
<fpage>55</fpage>
<lpage>64</lpage>
<pub-id pub-id-type="doi">10.1053/jhep.2002.33995</pub-id>
<pub-id pub-id-type="other">2-s2.0-0036293621</pub-id>
<pub-id pub-id-type="pmid">12085349</pub-id>
</element-citation>
</ref>
<ref id="B79">
<label>79</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Xu</surname>
<given-names>X.</given-names>
</name>
<name>
<surname>Chua</surname>
<given-names>C. C.</given-names>
</name>
<name>
<surname>Kong</surname>
<given-names>J.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Necrostatin-1 protects against glutamate-induced glutathione depletion and caspase-independent cell death in HT-22 cells</article-title>
<source>
<italic toggle="yes">Journal of Neurochemistry</italic>
</source>
<year>2007</year>
<volume>103</volume>
<issue>5</issue>
<fpage>2004</fpage>
<lpage>2014</lpage>
<pub-id pub-id-type="doi">10.1111/j.1471-4159.2007.04884.x</pub-id>
<pub-id pub-id-type="other">2-s2.0-36248933743</pub-id>
<pub-id pub-id-type="pmid">17760869</pub-id>
</element-citation>
</ref>
<ref id="B80">
<label>80</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Chauhan</surname>
<given-names>A. K.</given-names>
</name>
<name>
<surname>Min</surname>
<given-names>K. J.</given-names>
</name>
<name>
<surname>Kwon</surname>
<given-names>T. K.</given-names>
</name>
</person-group>
<article-title>RIP1-dependent reactive oxygen species production executes artesunate-induced cell death in renal carcinoma Caki cells</article-title>
<source>
<italic toggle="yes">Molecular and Cellular Biochemistry</italic>
</source>
<year>2017</year>
<volume>435</volume>
<issue>1-2</issue>
<fpage>15</fpage>
<lpage>24</lpage>
<pub-id pub-id-type="doi">10.1007/s11010-017-3052-7</pub-id>
<pub-id pub-id-type="other">2-s2.0-85018370502</pub-id>
<pub-id pub-id-type="pmid">28466458</pub-id>
</element-citation>
</ref>
<ref id="B81">
<label>81</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Xie</surname>
<given-names>X.</given-names>
</name>
<name>
<surname>Zhao</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Ma</surname>
<given-names>C. Y.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Dimethyl fumarate induces necroptosis in colon cancer cells through GSH depletion/ROS increase/MAPKs activation pathway</article-title>
<source>
<italic toggle="yes">British Journal of Pharmacology</italic>
</source>
<year>2015</year>
<volume>172</volume>
<issue>15</issue>
<fpage>3929</fpage>
<lpage>3943</lpage>
<pub-id pub-id-type="doi">10.1111/bph.13184</pub-id>
<pub-id pub-id-type="other">2-s2.0-84937397576</pub-id>
<pub-id pub-id-type="pmid">25953698</pub-id>
</element-citation>
</ref>
<ref id="B82">
<label>82</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Chen</surname>
<given-names>M. S.</given-names>
</name>
<name>
<surname>Wang</surname>
<given-names>S. F.</given-names>
</name>
<name>
<surname>Hsu</surname>
<given-names>C. Y.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>CHAC1 degradation of glutathione enhances cystine-starvation-induced necroptosis and ferroptosis in human triple negative breast cancer cells via the GCN2-eIF2
<italic>α</italic>
-ATF4 pathway</article-title>
<source>
<italic toggle="yes">Oncotarget</italic>
</source>
<year>2017</year>
<volume>8</volume>
<issue>70</issue>
<fpage>114588</fpage>
<lpage>114602</lpage>
<pub-id pub-id-type="doi">10.18632/oncotarget.23055</pub-id>
<pub-id pub-id-type="other">2-s2.0-85039736160</pub-id>
<pub-id pub-id-type="pmid">29383104</pub-id>
</element-citation>
</ref>
<ref id="B83">
<label>83</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Dixon</surname>
<given-names>S. J.</given-names>
</name>
<name>
<surname>Lemberg</surname>
<given-names>K. M.</given-names>
</name>
<name>
<surname>Lamprecht</surname>
<given-names>M. R.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Ferroptosis: an iron-dependent form of nonapoptotic cell death</article-title>
<source>
<italic toggle="yes">Cell</italic>
</source>
<year>2012</year>
<volume>149</volume>
<issue>5</issue>
<fpage>1060</fpage>
<lpage>1072</lpage>
<pub-id pub-id-type="doi">10.1016/j.cell.2012.03.042</pub-id>
<pub-id pub-id-type="other">2-s2.0-84861541814</pub-id>
<pub-id pub-id-type="pmid">22632970</pub-id>
</element-citation>
</ref>
<ref id="B84">
<label>84</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Reed</surname>
<given-names>J. C.</given-names>
</name>
<name>
<surname>Pellecchia</surname>
<given-names>M.</given-names>
</name>
</person-group>
<article-title>Ironing out cell death mechanisms</article-title>
<source>
<italic toggle="yes">Cell</italic>
</source>
<year>2012</year>
<volume>149</volume>
<issue>5</issue>
<fpage>963</fpage>
<lpage>965</lpage>
<pub-id pub-id-type="doi">10.1016/j.cell.2012.05.009</pub-id>
<pub-id pub-id-type="other">2-s2.0-84861535833</pub-id>
<pub-id pub-id-type="pmid">22632964</pub-id>
</element-citation>
</ref>
<ref id="B85">
<label>85</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Yang</surname>
<given-names>W. S.</given-names>
</name>
<name>
<surname>Stockwell</surname>
<given-names>B. R.</given-names>
</name>
</person-group>
<article-title>Ferroptosis: death by lipid peroxidation</article-title>
<source>
<italic toggle="yes">Trends in Cell Biology</italic>
</source>
<year>2016</year>
<volume>26</volume>
<issue>3</issue>
<fpage>165</fpage>
<lpage>176</lpage>
<pub-id pub-id-type="doi">10.1016/j.tcb.2015.10.014</pub-id>
<pub-id pub-id-type="other">2-s2.0-84958103915</pub-id>
<pub-id pub-id-type="pmid">26653790</pub-id>
</element-citation>
</ref>
<ref id="B86">
<label>86</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Yu</surname>
<given-names>X.</given-names>
</name>
<name>
<surname>Long</surname>
<given-names>Y. C.</given-names>
</name>
</person-group>
<article-title>Crosstalk between cystine and glutathione is critical for the regulation of amino acid signaling pathways and ferroptosis</article-title>
<source>
<italic toggle="yes">Scientific Reports</italic>
</source>
<year>2016</year>
<volume>6, article 30033</volume>
<issue>1</issue>
<pub-id pub-id-type="doi">10.1038/srep30033</pub-id>
<pub-id pub-id-type="other">2-s2.0-84979031823</pub-id>
</element-citation>
</ref>
<ref id="B87">
<label>87</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Gao</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Monian</surname>
<given-names>P.</given-names>
</name>
<name>
<surname>Quadri</surname>
<given-names>N.</given-names>
</name>
<name>
<surname>Ramasamy</surname>
<given-names>R.</given-names>
</name>
<name>
<surname>Jiang</surname>
<given-names>X.</given-names>
</name>
</person-group>
<article-title>Glutaminolysis and transferrin regulate ferroptosis</article-title>
<source>
<italic toggle="yes">Molecular Cell</italic>
</source>
<year>2015</year>
<volume>59</volume>
<issue>2</issue>
<fpage>298</fpage>
<lpage>308</lpage>
<pub-id pub-id-type="doi">10.1016/j.molcel.2015.06.011</pub-id>
<pub-id pub-id-type="other">2-s2.0-84937525519</pub-id>
<pub-id pub-id-type="pmid">26166707</pub-id>
</element-citation>
</ref>
<ref id="B88">
<label>88</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Sui</surname>
<given-names>X.</given-names>
</name>
<name>
<surname>Zhang</surname>
<given-names>R.</given-names>
</name>
<name>
<surname>Liu</surname>
<given-names>S.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>RSL3 drives ferroptosis through GPX4 inactivation and ROS production in colorectal cancer</article-title>
<source>
<italic toggle="yes">Frontiers in Pharmacology</italic>
</source>
<year>2018</year>
<volume>9</volume>
<fpage>p. 1371</fpage>
<pub-id pub-id-type="doi">10.3389/fphar.2018.01371</pub-id>
<pub-id pub-id-type="other">2-s2.0-85057865494</pub-id>
</element-citation>
</ref>
<ref id="B89">
<label>89</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Friedmann Angeli</surname>
<given-names>J. P.</given-names>
</name>
<name>
<surname>Schneider</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Proneth</surname>
<given-names>B.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Inactivation of the ferroptosis regulator Gpx4 triggers acute renal failure in mice</article-title>
<source>
<italic toggle="yes">Nature Cell Biology</italic>
</source>
<year>2014</year>
<volume>16</volume>
<issue>12</issue>
<fpage>1180</fpage>
<lpage>1191</lpage>
<pub-id pub-id-type="doi">10.1038/ncb3064</pub-id>
<pub-id pub-id-type="other">2-s2.0-84925286831</pub-id>
<pub-id pub-id-type="pmid">25402683</pub-id>
</element-citation>
</ref>
<ref id="B90">
<label>90</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Seibt</surname>
<given-names>T. M.</given-names>
</name>
<name>
<surname>Proneth</surname>
<given-names>B.</given-names>
</name>
<name>
<surname>Conrad</surname>
<given-names>M.</given-names>
</name>
</person-group>
<article-title>Role of GPX4 in ferroptosis and its pharmacological implication</article-title>
<source>
<italic toggle="yes">Free Radical Biology and Medicine</italic>
</source>
<year>2019</year>
<volume>133</volume>
<fpage>144</fpage>
<lpage>152</lpage>
<pub-id pub-id-type="doi">10.1016/j.freeradbiomed.2018.09.014</pub-id>
<pub-id pub-id-type="other">2-s2.0-85053774882</pub-id>
<pub-id pub-id-type="pmid">30219704</pub-id>
</element-citation>
</ref>
<ref id="B91">
<label>91</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Hirschhorn</surname>
<given-names>T.</given-names>
</name>
<name>
<surname>Stockwell</surname>
<given-names>B. R.</given-names>
</name>
</person-group>
<article-title>The development of the concept of ferroptosis</article-title>
<source>
<italic toggle="yes">Free Radical Biology and Medicine</italic>
</source>
<year>2019</year>
<volume>133</volume>
<fpage>130</fpage>
<lpage>143</lpage>
<pub-id pub-id-type="doi">10.1016/j.freeradbiomed.2018.09.043</pub-id>
<pub-id pub-id-type="other">2-s2.0-85054595148</pub-id>
<pub-id pub-id-type="pmid">30268886</pub-id>
</element-citation>
</ref>
<ref id="B92">
<label>92</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Yang</surname>
<given-names>W. S.</given-names>
</name>
<name>
<surname>Stockwell</surname>
<given-names>B. R.</given-names>
</name>
</person-group>
<article-title>Synthetic lethal screening identifies compounds activating iron-dependent, nonapoptotic cell death in oncogenic-RAS-harboring cancer cells</article-title>
<source>
<italic toggle="yes">Chemistry & Biology</italic>
</source>
<year>2008</year>
<volume>15</volume>
<issue>3</issue>
<fpage>234</fpage>
<lpage>245</lpage>
<pub-id pub-id-type="doi">10.1016/j.chembiol.2008.02.010</pub-id>
<pub-id pub-id-type="other">2-s2.0-40849085503</pub-id>
<pub-id pub-id-type="pmid">18355723</pub-id>
</element-citation>
</ref>
<ref id="B93">
<label>93</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Yang</surname>
<given-names>W. S.</given-names>
</name>
<name>
<surname>SriRamaratnam</surname>
<given-names>R.</given-names>
</name>
<name>
<surname>Welsch</surname>
<given-names>M. E.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Regulation of ferroptotic cancer cell death by GPX4</article-title>
<source>
<italic toggle="yes">Cell</italic>
</source>
<year>2014</year>
<volume>156</volume>
<issue>1-2</issue>
<fpage>317</fpage>
<lpage>331</lpage>
<pub-id pub-id-type="doi">10.1016/j.cell.2013.12.010</pub-id>
<pub-id pub-id-type="other">2-s2.0-84892685001</pub-id>
<pub-id pub-id-type="pmid">24439385</pub-id>
</element-citation>
</ref>
<ref id="B94">
<label>94</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Shimada</surname>
<given-names>K.</given-names>
</name>
<name>
<surname>Skouta</surname>
<given-names>R.</given-names>
</name>
<name>
<surname>Kaplan</surname>
<given-names>A.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Global survey of cell death mechanisms reveals metabolic regulation of ferroptosis</article-title>
<source>
<italic toggle="yes">Nature Chemical Biology</italic>
</source>
<year>2016</year>
<volume>12</volume>
<issue>7</issue>
<fpage>497</fpage>
<lpage>503</lpage>
<pub-id pub-id-type="doi">10.1038/nchembio.2079</pub-id>
<pub-id pub-id-type="other">2-s2.0-84965000436</pub-id>
<pub-id pub-id-type="pmid">27159577</pub-id>
</element-citation>
</ref>
<ref id="B95">
<label>95</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Miess</surname>
<given-names>H.</given-names>
</name>
<name>
<surname>Dankworth</surname>
<given-names>B.</given-names>
</name>
<name>
<surname>Gouw</surname>
<given-names>A. M.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>The glutathione redox system is essential to prevent ferroptosis caused by impaired lipid metabolism in clear cell renal cell carcinoma</article-title>
<source>
<italic toggle="yes">Oncogene</italic>
</source>
<year>2018</year>
<volume>37</volume>
<issue>40</issue>
<fpage>5435</fpage>
<lpage>5450</lpage>
<pub-id pub-id-type="doi">10.1038/s41388-018-0315-z</pub-id>
<pub-id pub-id-type="other">2-s2.0-85048036712</pub-id>
<pub-id pub-id-type="pmid">29872221</pub-id>
</element-citation>
</ref>
<ref id="B96">
<label>96</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>D'Herde</surname>
<given-names>K.</given-names>
</name>
<name>
<surname>Krysko</surname>
<given-names>D. V.</given-names>
</name>
</person-group>
<article-title>Ferroptosis: oxidized PEs trigger death</article-title>
<source>
<italic toggle="yes">Nature Chemical Biology</italic>
</source>
<year>2017</year>
<volume>13</volume>
<issue>1</issue>
<fpage>4</fpage>
<lpage>5</lpage>
<pub-id pub-id-type="doi">10.1038/nchembio.2261</pub-id>
<pub-id pub-id-type="other">2-s2.0-84995460774</pub-id>
<pub-id pub-id-type="pmid">27842067</pub-id>
</element-citation>
</ref>
<ref id="B97">
<label>97</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Stoyanovsky</surname>
<given-names>D. A.</given-names>
</name>
<name>
<surname>Tyurina</surname>
<given-names>Y. Y.</given-names>
</name>
<name>
<surname>Shrivastava</surname>
<given-names>I.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Iron catalysis of lipid peroxidation in ferroptosis: regulated enzymatic or random free radical reaction?</article-title>
<source>
<italic toggle="yes">Free Radical Biology and Medicine</italic>
</source>
<year>2019</year>
<volume>133</volume>
<fpage>153</fpage>
<lpage>161</lpage>
<pub-id pub-id-type="doi">10.1016/j.freeradbiomed.2018.09.008</pub-id>
<pub-id pub-id-type="other">2-s2.0-85053768228</pub-id>
<pub-id pub-id-type="pmid">30217775</pub-id>
</element-citation>
</ref>
<ref id="B98">
<label>98</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Kagan</surname>
<given-names>V. E.</given-names>
</name>
<name>
<surname>Mao</surname>
<given-names>G.</given-names>
</name>
<name>
<surname>Qu</surname>
<given-names>F.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Oxidized arachidonic and adrenic PEs navigate cells to ferroptosis</article-title>
<source>
<italic toggle="yes">Nature Chemical Biology</italic>
</source>
<year>2017</year>
<volume>13</volume>
<issue>1</issue>
<fpage>81</fpage>
<lpage>90</lpage>
<pub-id pub-id-type="doi">10.1038/nchembio.2238</pub-id>
<pub-id pub-id-type="other">2-s2.0-84995452435</pub-id>
<pub-id pub-id-type="pmid">27842066</pub-id>
</element-citation>
</ref>
<ref id="B99">
<label>99</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Angeli</surname>
<given-names>J. P. F.</given-names>
</name>
<name>
<surname>Shah</surname>
<given-names>R.</given-names>
</name>
<name>
<surname>Pratt</surname>
<given-names>D. A.</given-names>
</name>
<name>
<surname>Conrad</surname>
<given-names>M.</given-names>
</name>
</person-group>
<article-title>Ferroptosis inhibition: mechanisms and opportunities</article-title>
<source>
<italic toggle="yes">Trends in Pharmacological Sciences</italic>
</source>
<year>2017</year>
<volume>38</volume>
<issue>5</issue>
<fpage>489</fpage>
<lpage>498</lpage>
<pub-id pub-id-type="doi">10.1016/j.tips.2017.02.005</pub-id>
<pub-id pub-id-type="other">2-s2.0-85016725885</pub-id>
<pub-id pub-id-type="pmid">28363764</pub-id>
</element-citation>
</ref>
<ref id="B100">
<label>100</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Louandre</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>Ezzoukhry</surname>
<given-names>Z.</given-names>
</name>
<name>
<surname>Godin</surname>
<given-names>C.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Iron-dependent cell death of hepatocellular carcinoma cells exposed to sorafenib</article-title>
<source>
<italic toggle="yes">International Journal of Cancer</italic>
</source>
<year>2013</year>
<volume>133</volume>
<issue>7</issue>
<fpage>1732</fpage>
<lpage>1742</lpage>
<pub-id pub-id-type="doi">10.1002/ijc.28159</pub-id>
<pub-id pub-id-type="other">2-s2.0-84880296973</pub-id>
<pub-id pub-id-type="pmid">23505071</pub-id>
</element-citation>
</ref>
<ref id="B101">
<label>101</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Louandre</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>Marcq</surname>
<given-names>I.</given-names>
</name>
<name>
<surname>Bouhlal</surname>
<given-names>H.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>The retinoblastoma (Rb) protein regulates ferroptosis induced by sorafenib in human hepatocellular carcinoma cells</article-title>
<source>
<italic toggle="yes">Cancer Letters</italic>
</source>
<year>2015</year>
<volume>356</volume>
<issue>2</issue>
<fpage>971</fpage>
<lpage>977</lpage>
<pub-id pub-id-type="doi">10.1016/j.canlet.2014.11.014</pub-id>
<pub-id pub-id-type="other">2-s2.0-84919432703</pub-id>
<pub-id pub-id-type="pmid">25444922</pub-id>
</element-citation>
</ref>
<ref id="B102">
<label>102</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Dikic</surname>
<given-names>I.</given-names>
</name>
<name>
<surname>Johansen</surname>
<given-names>T.</given-names>
</name>
<name>
<surname>Kirkin</surname>
<given-names>V.</given-names>
</name>
</person-group>
<article-title>Selective autophagy in cancer development and therapy</article-title>
<source>
<italic toggle="yes">Cancer Research</italic>
</source>
<year>2010</year>
<volume>70</volume>
<issue>9</issue>
<fpage>3431</fpage>
<lpage>3434</lpage>
<pub-id pub-id-type="doi">10.1158/0008-5472.CAN-09-4027</pub-id>
<pub-id pub-id-type="other">2-s2.0-77951750296</pub-id>
<pub-id pub-id-type="pmid">20424122</pub-id>
</element-citation>
</ref>
<ref id="B103">
<label>103</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Green</surname>
<given-names>D. R.</given-names>
</name>
<name>
<surname>Levine</surname>
<given-names>B.</given-names>
</name>
</person-group>
<article-title>To be or not to be? How selective autophagy and cell death govern cell fate</article-title>
<source>
<italic toggle="yes">Cell</italic>
</source>
<year>2014</year>
<volume>157</volume>
<issue>1</issue>
<fpage>65</fpage>
<lpage>75</lpage>
<pub-id pub-id-type="doi">10.1016/j.cell.2014.02.049</pub-id>
<pub-id pub-id-type="other">2-s2.0-84897143522</pub-id>
<pub-id pub-id-type="pmid">24679527</pub-id>
</element-citation>
</ref>
<ref id="B104">
<label>104</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Filomeni</surname>
<given-names>G.</given-names>
</name>
<name>
<surname>De Zio</surname>
<given-names>D.</given-names>
</name>
<name>
<surname>Cecconi</surname>
<given-names>F.</given-names>
</name>
</person-group>
<article-title>Oxidative stress and autophagy: the clash between damage and metabolic needs</article-title>
<source>
<italic toggle="yes">Cell Death & Differentiation</italic>
</source>
<year>2015</year>
<volume>22</volume>
<issue>3</issue>
<fpage>377</fpage>
<lpage>388</lpage>
<pub-id pub-id-type="doi">10.1038/cdd.2014.150</pub-id>
<pub-id pub-id-type="other">2-s2.0-84922489435</pub-id>
<pub-id pub-id-type="pmid">25257172</pub-id>
</element-citation>
</ref>
<ref id="B105">
<label>105</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Filomeni</surname>
<given-names>G.</given-names>
</name>
<name>
<surname>Desideri</surname>
<given-names>E.</given-names>
</name>
<name>
<surname>Cardaci</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Rotilio</surname>
<given-names>G.</given-names>
</name>
<name>
<surname>Ciriolo</surname>
<given-names>M. R.</given-names>
</name>
</person-group>
<article-title>Under the ROS: Thiol network is the principal suspect for autophagy commitment</article-title>
<source>
<italic toggle="yes">Autophagy</italic>
</source>
<year>2010</year>
<volume>6</volume>
<issue>7</issue>
<fpage>999</fpage>
<lpage>1005</lpage>
<pub-id pub-id-type="doi">10.4161/auto.6.7.12754</pub-id>
<pub-id pub-id-type="other">2-s2.0-77957674533</pub-id>
<pub-id pub-id-type="pmid">20639698</pub-id>
</element-citation>
</ref>
<ref id="B106">
<label>106</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Mancilla</surname>
<given-names>H.</given-names>
</name>
<name>
<surname>Maldonado</surname>
<given-names>R.</given-names>
</name>
<name>
<surname>Cereceda</surname>
<given-names>K.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Glutathione depletion induces spermatogonial cell autophagy</article-title>
<source>
<italic toggle="yes">Journal of Cellular Biochemistry</italic>
</source>
<year>2015</year>
<volume>116</volume>
<issue>10</issue>
<fpage>2283</fpage>
<lpage>2292</lpage>
<pub-id pub-id-type="doi">10.1002/jcb.25178</pub-id>
<pub-id pub-id-type="other">2-s2.0-84939177096</pub-id>
<pub-id pub-id-type="pmid">25833220</pub-id>
</element-citation>
</ref>
<ref id="B107">
<label>107</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Ogier-Denis</surname>
<given-names>E.</given-names>
</name>
<name>
<surname>Codogno</surname>
<given-names>P.</given-names>
</name>
</person-group>
<article-title>Autophagy: a barrier or an adaptive response to cancer</article-title>
<source>
<italic toggle="yes">Biochimica et Biophysica Acta (BBA) - Reviews on Cancer</italic>
</source>
<year>2003</year>
<volume>1603</volume>
<issue>2</issue>
<fpage>113</fpage>
<lpage>128</lpage>
<pub-id pub-id-type="doi">10.1016/S0304-419X(03)00004-0</pub-id>
<pub-id pub-id-type="other">2-s2.0-0037451783</pub-id>
<pub-id pub-id-type="pmid">12618311</pub-id>
</element-citation>
</ref>
<ref id="B108">
<label>108</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Guo</surname>
<given-names>W.</given-names>
</name>
<name>
<surname>Zhao</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Zhang</surname>
<given-names>Z.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Disruption of xCT inhibits cell growth via the ROS/autophagy pathway in hepatocellular carcinoma</article-title>
<source>
<italic toggle="yes">Cancer Letters</italic>
</source>
<year>2011</year>
<volume>312</volume>
<issue>1</issue>
<fpage>55</fpage>
<lpage>61</lpage>
<pub-id pub-id-type="doi">10.1016/j.canlet.2011.07.024</pub-id>
<pub-id pub-id-type="other">2-s2.0-80053304909</pub-id>
<pub-id pub-id-type="pmid">21906871</pub-id>
</element-citation>
</ref>
<ref id="B109">
<label>109</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Desideri</surname>
<given-names>E.</given-names>
</name>
<name>
<surname>Filomeni</surname>
<given-names>G.</given-names>
</name>
<name>
<surname>Ciriolo</surname>
<given-names>M. R.</given-names>
</name>
</person-group>
<article-title>Glutathione participates in the modulation of starvation-induced autophagy in carcinoma cells</article-title>
<source>
<italic toggle="yes">Autophagy</italic>
</source>
<year>2012</year>
<volume>8</volume>
<issue>12</issue>
<fpage>1769</fpage>
<lpage>1781</lpage>
<pub-id pub-id-type="doi">10.4161/auto.22037</pub-id>
<pub-id pub-id-type="other">2-s2.0-84870925187</pub-id>
<pub-id pub-id-type="pmid">22964495</pub-id>
</element-citation>
</ref>
<ref id="B110">
<label>110</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Seo</surname>
<given-names>G.</given-names>
</name>
<name>
<surname>Kim</surname>
<given-names>S. K.</given-names>
</name>
<name>
<surname>Byun</surname>
<given-names>Y. J.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Hydrogen peroxide induces Beclin 1-independent autophagic cell death by suppressing the mTOR pathway via promoting the ubiquitination and degradation of Rheb in GSH-depleted RAW 264.7 cells</article-title>
<source>
<italic toggle="yes">Free Radical Research</italic>
</source>
<year>2011</year>
<volume>45</volume>
<issue>4</issue>
<fpage>389</fpage>
<lpage>399</lpage>
<pub-id pub-id-type="doi">10.3109/10715762.2010.535530</pub-id>
<pub-id pub-id-type="other">2-s2.0-79952424876</pub-id>
<pub-id pub-id-type="pmid">21067284</pub-id>
</element-citation>
</ref>
<ref id="B111">
<label>111</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Kang</surname>
<given-names>R.</given-names>
</name>
<name>
<surname>Tang</surname>
<given-names>D.</given-names>
</name>
</person-group>
<article-title>Autophagy and ferroptosis - what's the connection?</article-title>
<source>
<italic toggle="yes">Current Pathobiology Reports</italic>
</source>
<year>2017</year>
<volume>5</volume>
<issue>2</issue>
<fpage>153</fpage>
<lpage>159</lpage>
<pub-id pub-id-type="doi">10.1007/s40139-017-0139-5</pub-id>
<pub-id pub-id-type="pmid">29038744</pub-id>
</element-citation>
</ref>
<ref id="B112">
<label>112</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Ott</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>Konig</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Hohn</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Jung</surname>
<given-names>T.</given-names>
</name>
<name>
<surname>Grune</surname>
<given-names>T.</given-names>
</name>
</person-group>
<article-title>Reduced autophagy leads to an impaired ferritin turnover in senescent fibroblasts</article-title>
<source>
<italic toggle="yes">Free Radical Biology and Medicine</italic>
</source>
<year>2016</year>
<volume>101</volume>
<fpage>325</fpage>
<lpage>333</lpage>
<pub-id pub-id-type="doi">10.1016/j.freeradbiomed.2016.10.492</pub-id>
<pub-id pub-id-type="other">2-s2.0-84994607507</pub-id>
<pub-id pub-id-type="pmid">27789294</pub-id>
</element-citation>
</ref>
<ref id="B113">
<label>113</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Torii</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Shintoku</surname>
<given-names>R.</given-names>
</name>
<name>
<surname>Kubota</surname>
<given-names>C.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>An essential role for functional lysosomes in ferroptosis of cancer cells</article-title>
<source>
<italic toggle="yes">Biochemical Journal</italic>
</source>
<year>2016</year>
<volume>473</volume>
<issue>6</issue>
<fpage>769</fpage>
<lpage>777</lpage>
<pub-id pub-id-type="doi">10.1042/BJ20150658</pub-id>
<pub-id pub-id-type="other">2-s2.0-84975132567</pub-id>
<pub-id pub-id-type="pmid">26759376</pub-id>
</element-citation>
</ref>
<ref id="B114">
<label>114</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Wu</surname>
<given-names>Z.</given-names>
</name>
<name>
<surname>Geng</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Lu</surname>
<given-names>X.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Chaperone-mediated autophagy is involved in the execution of ferroptosis</article-title>
<source>
<italic toggle="yes">Proceedings of the National Academy of Sciences of the United States of America</italic>
</source>
<year>2019</year>
<volume>116</volume>
<issue>8</issue>
<fpage>2996</fpage>
<lpage>3005</lpage>
<pub-id pub-id-type="doi">10.1073/pnas.1819728116</pub-id>
<pub-id pub-id-type="other">2-s2.0-85061867890</pub-id>
<pub-id pub-id-type="pmid">30718432</pub-id>
</element-citation>
</ref>
<ref id="B115">
<label>115</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Gao</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Monian</surname>
<given-names>P.</given-names>
</name>
<name>
<surname>Pan</surname>
<given-names>Q.</given-names>
</name>
<name>
<surname>Zhang</surname>
<given-names>W.</given-names>
</name>
<name>
<surname>Xiang</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Jiang</surname>
<given-names>X.</given-names>
</name>
</person-group>
<article-title>Ferroptosis is an autophagic cell death process</article-title>
<source>
<italic toggle="yes">Cell Research</italic>
</source>
<year>2016</year>
<volume>26</volume>
<issue>9</issue>
<fpage>1021</fpage>
<lpage>1032</lpage>
<pub-id pub-id-type="doi">10.1038/cr.2016.95</pub-id>
<pub-id pub-id-type="other">2-s2.0-84982123825</pub-id>
<pub-id pub-id-type="pmid">27514700</pub-id>
</element-citation>
</ref>
<ref id="B116">
<label>116</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Hou</surname>
<given-names>W.</given-names>
</name>
<name>
<surname>Xie</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Song</surname>
<given-names>X.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Autophagy promotes ferroptosis by degradation of ferritin</article-title>
<source>
<italic toggle="yes">Autophagy</italic>
</source>
<year>2016</year>
<volume>12</volume>
<issue>8</issue>
<fpage>1425</fpage>
<lpage>1428</lpage>
<pub-id pub-id-type="doi">10.1080/15548627.2016.1187366</pub-id>
<pub-id pub-id-type="other">2-s2.0-84976292806</pub-id>
<pub-id pub-id-type="pmid">27245739</pub-id>
</element-citation>
</ref>
<ref id="B117">
<label>117</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Santana-Codina</surname>
<given-names>N.</given-names>
</name>
<name>
<surname>Mancias</surname>
<given-names>J. D.</given-names>
</name>
</person-group>
<article-title>The role of NCOA4-mediated ferritinophagy in health and disease</article-title>
<source>
<italic toggle="yes">Pharmaceuticals</italic>
</source>
<year>2018</year>
<volume>11</volume>
<issue>4</issue>
<fpage>p. 114</fpage>
<pub-id pub-id-type="doi">10.3390/ph11040114</pub-id>
<pub-id pub-id-type="other">2-s2.0-85056582020</pub-id>
<pub-id pub-id-type="pmid">30360520</pub-id>
</element-citation>
</ref>
<ref id="B118">
<label>118</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Mancias</surname>
<given-names>J. D.</given-names>
</name>
<name>
<surname>Wang</surname>
<given-names>X.</given-names>
</name>
<name>
<surname>Gygi</surname>
<given-names>S. P.</given-names>
</name>
<name>
<surname>Harper</surname>
<given-names>J. W.</given-names>
</name>
<name>
<surname>Kimmelman</surname>
<given-names>A. C.</given-names>
</name>
</person-group>
<article-title>Quantitative proteomics identifies NCOA4 as the cargo receptor mediating ferritinophagy</article-title>
<source>
<italic toggle="yes">Nature</italic>
</source>
<year>2014</year>
<volume>509</volume>
<issue>7498</issue>
<fpage>105</fpage>
<lpage>109</lpage>
<pub-id pub-id-type="doi">10.1038/nature13148</pub-id>
<pub-id pub-id-type="other">2-s2.0-84899746695</pub-id>
<pub-id pub-id-type="pmid">24695223</pub-id>
</element-citation>
</ref>
<ref id="B119">
<label>119</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Dowdle</surname>
<given-names>W. E.</given-names>
</name>
<name>
<surname>Nyfeler</surname>
<given-names>B.</given-names>
</name>
<name>
<surname>Nagel</surname>
<given-names>J.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Selective VPS34 inhibitor blocks autophagy and uncovers a role for NCOA4 in ferritin degradation and iron homeostasis in vivo</article-title>
<source>
<italic toggle="yes">Nature Cell Biology</italic>
</source>
<year>2014</year>
<volume>16</volume>
<issue>11</issue>
<fpage>1069</fpage>
<lpage>1079</lpage>
<pub-id pub-id-type="doi">10.1038/ncb3053</pub-id>
<pub-id pub-id-type="other">2-s2.0-84908466248</pub-id>
<pub-id pub-id-type="pmid">25327288</pub-id>
</element-citation>
</ref>
<ref id="B120">
<label>120</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Du</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Wang</surname>
<given-names>T.</given-names>
</name>
<name>
<surname>Li</surname>
<given-names>Y.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>DHA inhibits proliferation and induces ferroptosis of leukemia cells through autophagy dependent degradation of ferritin</article-title>
<source>
<italic toggle="yes">Free Radical Biology and Medicine</italic>
</source>
<year>2019</year>
<volume>131</volume>
<fpage>356</fpage>
<lpage>369</lpage>
<pub-id pub-id-type="doi">10.1016/j.freeradbiomed.2018.12.011</pub-id>
<pub-id pub-id-type="other">2-s2.0-85059146401</pub-id>
<pub-id pub-id-type="pmid">30557609</pub-id>
</element-citation>
</ref>
<ref id="B121">
<label>121</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Chen</surname>
<given-names>H. H. W.</given-names>
</name>
<name>
<surname>Kuo</surname>
<given-names>M. T.</given-names>
</name>
</person-group>
<article-title>Role of glutathione in the regulation of cisplatin resistance in cancer chemotherapy</article-title>
<source>
<italic toggle="yes">Metal-Based Drugs</italic>
</source>
<year>2010</year>
<volume>2010</volume>
<fpage>7</fpage>
<pub-id pub-id-type="publisher-id">430939</pub-id>
<pub-id pub-id-type="doi">10.1155/2010/430939</pub-id>
<pub-id pub-id-type="other">2-s2.0-77957890686</pub-id>
</element-citation>
</ref>
<ref id="B122">
<label>122</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Roh</surname>
<given-names>J. L.</given-names>
</name>
<name>
<surname>Kim</surname>
<given-names>E. H.</given-names>
</name>
<name>
<surname>Jang</surname>
<given-names>H. J.</given-names>
</name>
<name>
<surname>Park</surname>
<given-names>J. Y.</given-names>
</name>
<name>
<surname>Shin</surname>
<given-names>D.</given-names>
</name>
</person-group>
<article-title>Induction of ferroptotic cell death for overcoming cisplatin resistance of head and neck cancer</article-title>
<source>
<italic toggle="yes">Cancer Letters</italic>
</source>
<year>2016</year>
<volume>381</volume>
<issue>1</issue>
<fpage>96</fpage>
<lpage>103</lpage>
<pub-id pub-id-type="doi">10.1016/j.canlet.2016.07.035</pub-id>
<pub-id pub-id-type="other">2-s2.0-84979872952</pub-id>
<pub-id pub-id-type="pmid">27477897</pub-id>
</element-citation>
</ref>
<ref id="B123">
<label>123</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Habermann</surname>
<given-names>K. J.</given-names>
</name>
<name>
<surname>Grunewald</surname>
<given-names>L.</given-names>
</name>
<name>
<surname>van Wijk</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Fulda</surname>
<given-names>S.</given-names>
</name>
</person-group>
<article-title>Targeting redox homeostasis in rhabdomyosarcoma cells: GSH-depleting agents enhance auranofin-induced cell death</article-title>
<source>
<italic toggle="yes">Cell Death & Disease</italic>
</source>
<year>2017</year>
<volume>8</volume>
<issue>10, article e3067</issue>
<pub-id pub-id-type="doi">10.1038/cddis.2017.412</pub-id>
<pub-id pub-id-type="other">2-s2.0-85048135991</pub-id>
<pub-id pub-id-type="pmid">28981107</pub-id>
</element-citation>
</ref>
<ref id="B124">
<label>124</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Lo</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Wang</surname>
<given-names>Y. Z.</given-names>
</name>
<name>
<surname>Gout</surname>
<given-names>P. W.</given-names>
</name>
</person-group>
<article-title>The x
<sub>c</sub>
<sup></sup>
cystine/glutamate antiporter: a potential target for therapy of cancer and other diseases</article-title>
<source>
<italic toggle="yes">Journal of Cellular Physiology</italic>
</source>
<year>2008</year>
<volume>215</volume>
<issue>3</issue>
<fpage>593</fpage>
<lpage>602</lpage>
<pub-id pub-id-type="doi">10.1002/jcp.21366</pub-id>
<pub-id pub-id-type="other">2-s2.0-42949126711</pub-id>
<pub-id pub-id-type="pmid">18181196</pub-id>
</element-citation>
</ref>
<ref id="B125">
<label>125</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Wang</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Luo</surname>
<given-names>B.</given-names>
</name>
<name>
<surname>Li</surname>
<given-names>X.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Inhibition of cancer growth in vitro and in vivo by a novel ROS-modulating agent with ability to eliminate stem-like cancer cells</article-title>
<source>
<italic toggle="yes">Cell Death & Disease</italic>
</source>
<year>2017</year>
<volume>8</volume>
<issue>6</issue>
<fpage>p. e2887</fpage>
<pub-id pub-id-type="doi">10.1038/cddis.2017.272</pub-id>
<pub-id pub-id-type="other">2-s2.0-85041088495</pub-id>
<pub-id pub-id-type="pmid">28640251</pub-id>
</element-citation>
</ref>
<ref id="B126">
<label>126</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Barattin</surname>
<given-names>R.</given-names>
</name>
<name>
<surname>Perrotton</surname>
<given-names>T.</given-names>
</name>
<name>
<surname>Trompier</surname>
<given-names>D.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Iodination of verapamil for a stronger induction of death, through GSH efflux, of cancer cells overexpressing MRP1</article-title>
<source>
<italic toggle="yes">Bioorganic & Medicinal Chemistry</italic>
</source>
<year>2010</year>
<volume>18</volume>
<issue>17</issue>
<fpage>6265</fpage>
<lpage>6274</lpage>
<pub-id pub-id-type="doi">10.1016/j.bmc.2010.07.031</pub-id>
<pub-id pub-id-type="other">2-s2.0-77955980791</pub-id>
<pub-id pub-id-type="pmid">20691599</pub-id>
</element-citation>
</ref>
<ref id="B127">
<label>127</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Lewerenz</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Hewett</surname>
<given-names>S. J.</given-names>
</name>
<name>
<surname>Huang</surname>
<given-names>Y.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>The cystine/glutamate antiporter system x
<sub>c</sub>
<sup></sup>
in health and disease: from molecular mechanisms to novel therapeutic opportunities</article-title>
<source>
<italic toggle="yes">Antioxidants & Redox Signaling</italic>
</source>
<year>2013</year>
<volume>18</volume>
<issue>5</issue>
<fpage>522</fpage>
<lpage>555</lpage>
<pub-id pub-id-type="doi">10.1089/ars.2011.4391</pub-id>
<pub-id pub-id-type="other">2-s2.0-84872191631</pub-id>
<pub-id pub-id-type="pmid">22667998</pub-id>
</element-citation>
</ref>
<ref id="B128">
<label>128</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Wada</surname>
<given-names>F.</given-names>
</name>
<name>
<surname>Koga</surname>
<given-names>H.</given-names>
</name>
<name>
<surname>Akiba</surname>
<given-names>J.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>High expression of CD44v9 and xCT in chemoresistant hepatocellular carcinoma: potential targets by sulfasalazine</article-title>
<source>
<italic toggle="yes">Cancer Science</italic>
</source>
<year>2018</year>
<volume>109</volume>
<issue>9</issue>
<fpage>2801</fpage>
<lpage>2810</lpage>
<pub-id pub-id-type="doi">10.1111/cas.13728</pub-id>
<pub-id pub-id-type="other">2-s2.0-85052517714</pub-id>
<pub-id pub-id-type="pmid">29981246</pub-id>
</element-citation>
</ref>
<ref id="B129">
<label>129</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Toyoda</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Kaira</surname>
<given-names>K.</given-names>
</name>
<name>
<surname>Ohshima</surname>
<given-names>Y.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Prognostic significance of amino-acid transporter expression (LAT1, ASCT2 and xCT) in surgically resected tongue cancer</article-title>
<source>
<italic toggle="yes">British Journal of Cancer</italic>
</source>
<year>2014</year>
<volume>110</volume>
<issue>10</issue>
<fpage>2506</fpage>
<lpage>2513</lpage>
<pub-id pub-id-type="doi">10.1038/bjc.2014.178</pub-id>
<pub-id pub-id-type="other">2-s2.0-84900542750</pub-id>
<pub-id pub-id-type="pmid">24762957</pub-id>
</element-citation>
</ref>
<ref id="B130">
<label>130</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Habib</surname>
<given-names>E.</given-names>
</name>
<name>
<surname>Linher-Melville</surname>
<given-names>K.</given-names>
</name>
<name>
<surname>Lin</surname>
<given-names>H. X.</given-names>
</name>
<name>
<surname>Singh</surname>
<given-names>G.</given-names>
</name>
</person-group>
<article-title>Expression of xCT and activity of system x
<sub>c</sub>
<sup></sup>
are regulated by NRF2 in human breast cancer cells in response to oxidative stress</article-title>
<source>
<italic toggle="yes">Redox Biology</italic>
</source>
<year>2015</year>
<volume>5</volume>
<fpage>33</fpage>
<lpage>42</lpage>
<pub-id pub-id-type="doi">10.1016/j.redox.2015.03.003</pub-id>
<pub-id pub-id-type="other">2-s2.0-84925686332</pub-id>
<pub-id pub-id-type="pmid">25827424</pub-id>
</element-citation>
</ref>
<ref id="B131">
<label>131</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Sugano</surname>
<given-names>K.</given-names>
</name>
<name>
<surname>Maeda</surname>
<given-names>K.</given-names>
</name>
<name>
<surname>Ohtani</surname>
<given-names>H.</given-names>
</name>
<name>
<surname>Nagahara</surname>
<given-names>H.</given-names>
</name>
<name>
<surname>Shibutani</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Hirakawa</surname>
<given-names>K.</given-names>
</name>
</person-group>
<article-title>Expression of xCT as a predictor of disease recurrence in patients with colorectal cancer</article-title>
<source>
<italic toggle="yes">Anticancer Research</italic>
</source>
<year>2015</year>
<volume>35</volume>
<issue>2</issue>
<fpage>677</fpage>
<lpage>682</lpage>
<pub-id pub-id-type="pmid">25667445</pub-id>
</element-citation>
</ref>
<ref id="B132">
<label>132</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Lo</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Ling</surname>
<given-names>V.</given-names>
</name>
<name>
<surname>Wang</surname>
<given-names>Y. Z.</given-names>
</name>
<name>
<surname>Gout</surname>
<given-names>P. W.</given-names>
</name>
</person-group>
<article-title>The x
<sub>c</sub>
<sup></sup>
cystine/glutamate antiporter: a mediator of pancreatic cancer growth with a role in drug resistance</article-title>
<source>
<italic toggle="yes">British Journal of Cancer</italic>
</source>
<year>2008</year>
<volume>99</volume>
<issue>3</issue>
<fpage>464</fpage>
<lpage>472</lpage>
<pub-id pub-id-type="doi">10.1038/sj.bjc.6604485</pub-id>
<pub-id pub-id-type="other">2-s2.0-48349114983</pub-id>
<pub-id pub-id-type="pmid">18648370</pub-id>
</element-citation>
</ref>
<ref id="B133">
<label>133</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Okuno</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Sato</surname>
<given-names>H.</given-names>
</name>
<name>
<surname>Kuriyama-Matsumura</surname>
<given-names>K.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Role of cystine transport in intracellular glutathione level and cisplatin resistance in human ovarian cancer cell lines</article-title>
<source>
<italic toggle="yes">British Journal of Cancer</italic>
</source>
<year>2003</year>
<volume>88</volume>
<issue>6</issue>
<fpage>951</fpage>
<lpage>956</lpage>
<pub-id pub-id-type="doi">10.1038/sj.bjc.6600786</pub-id>
<pub-id pub-id-type="other">2-s2.0-0242499988</pub-id>
<pub-id pub-id-type="pmid">12644836</pub-id>
</element-citation>
</ref>
<ref id="B134">
<label>134</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Ishimoto</surname>
<given-names>T.</given-names>
</name>
<name>
<surname>Nagano</surname>
<given-names>O.</given-names>
</name>
<name>
<surname>Yae</surname>
<given-names>T.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>CD44 variant regulates redox status in cancer cells by stabilizing the xCT subunit of system x
<sub>c</sub>
<sup></sup>
and thereby promotes tumor growth</article-title>
<source>
<italic toggle="yes">Cancer Cell</italic>
</source>
<year>2011</year>
<volume>19</volume>
<issue>3</issue>
<fpage>387</fpage>
<lpage>400</lpage>
<pub-id pub-id-type="doi">10.1016/j.ccr.2011.01.038</pub-id>
<pub-id pub-id-type="other">2-s2.0-79952528125</pub-id>
<pub-id pub-id-type="pmid">21397861</pub-id>
</element-citation>
</ref>
<ref id="B135">
<label>135</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Savaskan</surname>
<given-names>N. E.</given-names>
</name>
<name>
<surname>Hahnen</surname>
<given-names>E.</given-names>
</name>
<name>
<surname>Eyüpoglu</surname>
<given-names>I. Y.</given-names>
</name>
</person-group>
<article-title>The x
<sub>c</sub>
<sup></sup>
cystine/glutamate antiporter (xCT) as a potential target for therapy of cancer: yet another cytotoxic anticancer approach?</article-title>
<source>
<italic toggle="yes">Journal of Cellular Physiology</italic>
</source>
<year>2009</year>
<volume>220</volume>
<issue>2</issue>
<fpage>531</fpage>
<lpage>532</lpage>
<pub-id pub-id-type="doi">10.1002/jcp.21795</pub-id>
<pub-id pub-id-type="other">2-s2.0-67649352655</pub-id>
<pub-id pub-id-type="pmid">19415694</pub-id>
</element-citation>
</ref>
<ref id="B136">
<label>136</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Chen</surname>
<given-names>R. S.</given-names>
</name>
<name>
<surname>Song</surname>
<given-names>Y. M.</given-names>
</name>
<name>
<surname>Zhou</surname>
<given-names>Z. Y.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Disruption of xCT inhibits cancer cell metastasis via the caveolin-1/beta-catenin pathway</article-title>
<source>
<italic toggle="yes">Oncogene</italic>
</source>
<year>2009</year>
<volume>28</volume>
<issue>4</issue>
<fpage>599</fpage>
<lpage>609</lpage>
<pub-id pub-id-type="doi">10.1038/onc.2008.414</pub-id>
<pub-id pub-id-type="other">2-s2.0-59149104276</pub-id>
<pub-id pub-id-type="pmid">19015640</pub-id>
</element-citation>
</ref>
<ref id="B137">
<label>137</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Larraufie</surname>
<given-names>M. H.</given-names>
</name>
<name>
<surname>Yang</surname>
<given-names>W. S.</given-names>
</name>
<name>
<surname>Jiang</surname>
<given-names>E.</given-names>
</name>
<name>
<surname>Thomas</surname>
<given-names>A. G.</given-names>
</name>
<name>
<surname>Slusher</surname>
<given-names>B. S.</given-names>
</name>
<name>
<surname>Stockwell</surname>
<given-names>B. R.</given-names>
</name>
</person-group>
<article-title>Incorporation of metabolically stable ketones into a small molecule probe to increase potency and water solubility</article-title>
<source>
<italic toggle="yes">Bioorganic & Medicinal Chemistry Letters</italic>
</source>
<year>2015</year>
<volume>25</volume>
<issue>21</issue>
<fpage>4787</fpage>
<lpage>4792</lpage>
<pub-id pub-id-type="doi">10.1016/j.bmcl.2015.07.018</pub-id>
<pub-id pub-id-type="other">2-s2.0-84944279993</pub-id>
<pub-id pub-id-type="pmid">26231156</pub-id>
</element-citation>
</ref>
<ref id="B138">
<label>138</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Roh</surname>
<given-names>J. L.</given-names>
</name>
<name>
<surname>Kim</surname>
<given-names>E. H.</given-names>
</name>
<name>
<surname>Jang</surname>
<given-names>H.</given-names>
</name>
<name>
<surname>Shin</surname>
<given-names>D.</given-names>
</name>
</person-group>
<article-title>Aspirin plus sorafenib potentiates cisplatin cytotoxicity in resistant head and neck cancer cells through xCT inhibition</article-title>
<source>
<italic toggle="yes">Free Radical Biology and Medicine</italic>
</source>
<year>2017</year>
<volume>104</volume>
<fpage>1</fpage>
<lpage>9</lpage>
<pub-id pub-id-type="doi">10.1016/j.freeradbiomed.2017.01.002</pub-id>
<pub-id pub-id-type="other">2-s2.0-85008704819</pub-id>
<pub-id pub-id-type="pmid">28057599</pub-id>
</element-citation>
</ref>
<ref id="B139">
<label>139</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Ma</surname>
<given-names>M. Z.</given-names>
</name>
<name>
<surname>Chen</surname>
<given-names>G.</given-names>
</name>
<name>
<surname>Wang</surname>
<given-names>P.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Xc
<sup></sup>
inhibitor sulfasalazine sensitizes colorectal cancer to cisplatin by a GSH-dependent mechanism</article-title>
<source>
<italic toggle="yes">Cancer Letters</italic>
</source>
<year>2015</year>
<volume>368</volume>
<issue>1</issue>
<fpage>88</fpage>
<lpage>96</lpage>
<pub-id pub-id-type="doi">10.1016/j.canlet.2015.07.031</pub-id>
<pub-id pub-id-type="other">2-s2.0-84940467392</pub-id>
<pub-id pub-id-type="pmid">26254540</pub-id>
</element-citation>
</ref>
<ref id="B140">
<label>140</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Sleire</surname>
<given-names>L.</given-names>
</name>
<name>
<surname>Skeie</surname>
<given-names>B. S.</given-names>
</name>
<name>
<surname>Netland</surname>
<given-names>I. A.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Drug repurposing: sulfasalazine sensitizes gliomas to gamma knife radiosurgery by blocking cystine uptake through system Xc
<sup></sup>
, leading to glutathione depletion</article-title>
<source>
<italic toggle="yes">Oncogene</italic>
</source>
<year>2015</year>
<volume>34</volume>
<issue>49</issue>
<fpage>5951</fpage>
<lpage>5959</lpage>
<pub-id pub-id-type="doi">10.1038/onc.2015.60</pub-id>
<pub-id pub-id-type="other">2-s2.0-84949322403</pub-id>
<pub-id pub-id-type="pmid">25798841</pub-id>
</element-citation>
</ref>
<ref id="B141">
<label>141</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Narang</surname>
<given-names>V. S.</given-names>
</name>
<name>
<surname>Pauletti</surname>
<given-names>G. M.</given-names>
</name>
<name>
<surname>Gout</surname>
<given-names>P. W.</given-names>
</name>
<name>
<surname>Buckley</surname>
<given-names>D. J.</given-names>
</name>
<name>
<surname>Buckley</surname>
<given-names>A. R.</given-names>
</name>
</person-group>
<article-title>Sulfasalazine-induced reduction of glutathione levels in breast cancer cells: enhancement of growth-inhibitory activity of Doxorubicin</article-title>
<source>
<italic toggle="yes">Chemotherapy</italic>
</source>
<year>2007</year>
<volume>53</volume>
<issue>3</issue>
<fpage>210</fpage>
<lpage>217</lpage>
<pub-id pub-id-type="doi">10.1159/000100812</pub-id>
<pub-id pub-id-type="other">2-s2.0-34147198321</pub-id>
<pub-id pub-id-type="pmid">17356269</pub-id>
</element-citation>
</ref>
<ref id="B142">
<label>142</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Wang</surname>
<given-names>Z.</given-names>
</name>
<name>
<surname>Ding</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Wang</surname>
<given-names>X.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Pseudolaric acid B triggers ferroptosis in glioma cells via activation of Nox4 and inhibition of xCT</article-title>
<source>
<italic toggle="yes">Cancer Letters</italic>
</source>
<year>2018</year>
<volume>428</volume>
<fpage>21</fpage>
<lpage>33</lpage>
<pub-id pub-id-type="doi">10.1016/j.canlet.2018.04.021</pub-id>
<pub-id pub-id-type="other">2-s2.0-85046753094</pub-id>
<pub-id pub-id-type="pmid">29702192</pub-id>
</element-citation>
</ref>
<ref id="B143">
<label>143</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Zhou</surname>
<given-names>B. N.</given-names>
</name>
<name>
<surname>Ying</surname>
<given-names>B. P.</given-names>
</name>
<name>
<surname>Song</surname>
<given-names>G. Q.</given-names>
</name>
<name>
<surname>Chen</surname>
<given-names>Z. X.</given-names>
</name>
<name>
<surname>Han</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Yan</surname>
<given-names>Y. F.</given-names>
</name>
</person-group>
<article-title>Pseudolaric acids from pseudolarix kaempferi</article-title>
<source>
<italic toggle="yes">Planta Medica</italic>
</source>
<year>1983</year>
<volume>47</volume>
<issue>1</issue>
<fpage>35</fpage>
<lpage>38</lpage>
<pub-id pub-id-type="doi">10.1055/s-2007-969944</pub-id>
<pub-id pub-id-type="other">2-s2.0-0020639963</pub-id>
<pub-id pub-id-type="pmid">17405089</pub-id>
</element-citation>
</ref>
<ref id="B144">
<label>144</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Chen</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Shertzer</surname>
<given-names>H. G.</given-names>
</name>
<name>
<surname>Schneider</surname>
<given-names>S. N.</given-names>
</name>
<name>
<surname>Nebert</surname>
<given-names>D. W.</given-names>
</name>
<name>
<surname>Dalton</surname>
<given-names>T. P.</given-names>
</name>
</person-group>
<article-title>Glutamate cysteine ligase catalysis</article-title>
<source>
<italic toggle="yes">Journal of Biological Chemistry</italic>
</source>
<year>2005</year>
<volume>280</volume>
<issue>40</issue>
<fpage>33766</fpage>
<lpage>33774</lpage>
<pub-id pub-id-type="doi">10.1074/jbc.M504604200</pub-id>
<pub-id pub-id-type="other">2-s2.0-26644449682</pub-id>
<pub-id pub-id-type="pmid">16081425</pub-id>
</element-citation>
</ref>
<ref id="B145">
<label>145</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Shi</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Hudson</surname>
<given-names>F. N.</given-names>
</name>
<name>
<surname>Botta</surname>
<given-names>D.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Over expression of glutamate cysteine ligase increases cellular resistance to H2O2-induced DNA single-strand breaks</article-title>
<source>
<italic toggle="yes">Cytometry Part A</italic>
</source>
<year>2007</year>
<volume>71</volume>
<issue>9</issue>
<fpage>686</fpage>
<lpage>692</lpage>
<pub-id pub-id-type="doi">10.1002/cyto.a.20434</pub-id>
<pub-id pub-id-type="other">2-s2.0-34548316361</pub-id>
<pub-id pub-id-type="pmid">17623891</pub-id>
</element-citation>
</ref>
<ref id="B146">
<label>146</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Kim</surname>
<given-names>J. Y.</given-names>
</name>
<name>
<surname>Yim</surname>
<given-names>J. H.</given-names>
</name>
<name>
<surname>Cho</surname>
<given-names>J. H.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Adrenomedullin regulates cellular glutathione content via modulation of
<italic>γ</italic>
-glutamate-cysteine ligase catalytic subunit expression</article-title>
<source>
<italic toggle="yes">Endocrinology</italic>
</source>
<year>2006</year>
<volume>147</volume>
<issue>3</issue>
<fpage>1357</fpage>
<lpage>1364</lpage>
<pub-id pub-id-type="doi">10.1210/en.2005-0895</pub-id>
<pub-id pub-id-type="other">2-s2.0-32644439228</pub-id>
<pub-id pub-id-type="pmid">16322067</pub-id>
</element-citation>
</ref>
<ref id="B147">
<label>147</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Liu</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Zhao</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Zhang</surname>
<given-names>X.</given-names>
</name>
</person-group>
<article-title>Knockdown of glutamate cysteine ligase catalytic subunit by siRNA causes the gold nanoparticles-induced cytotoxicity in lung cancer cells</article-title>
<source>
<italic toggle="yes">Plos One</italic>
</source>
<year>2015</year>
<volume>10</volume>
<issue>3, article e0118870</issue>
<pub-id pub-id-type="doi">10.1371/journal.pone.0118870</pub-id>
<pub-id pub-id-type="other">2-s2.0-84926026344</pub-id>
<pub-id pub-id-type="pmid">25789740</pub-id>
</element-citation>
</ref>
<ref id="B148">
<label>148</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Hoang</surname>
<given-names>Y. D.</given-names>
</name>
<name>
<surname>Avakian</surname>
<given-names>A. P.</given-names>
</name>
<name>
<surname>Luderer</surname>
<given-names>U.</given-names>
</name>
</person-group>
<article-title>Minimal ovarian upregulation of glutamate cysteine ligase expression in response to suppression of glutathione by buthionine sulfoximine</article-title>
<source>
<italic toggle="yes">Reproductive Toxicology</italic>
</source>
<year>2006</year>
<volume>21</volume>
<issue>2</issue>
<fpage>186</fpage>
<lpage>196</lpage>
<pub-id pub-id-type="doi">10.1016/j.reprotox.2005.07.011</pub-id>
<pub-id pub-id-type="other">2-s2.0-30644473111</pub-id>
<pub-id pub-id-type="pmid">16183247</pub-id>
</element-citation>
</ref>
<ref id="B149">
<label>149</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Debiton</surname>
<given-names>E.</given-names>
</name>
<name>
<surname>Madelmont</surname>
<given-names>J. C.</given-names>
</name>
<name>
<surname>Legault</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Barthomeuf</surname>
<given-names>C.</given-names>
</name>
</person-group>
<article-title>Sanguinarine-induced apoptosis is associated with an early and severe cellular glutathione depletion</article-title>
<source>
<italic toggle="yes">Cancer Chemotherapy and Pharmacology</italic>
</source>
<year>2003</year>
<volume>51</volume>
<issue>6</issue>
<fpage>474</fpage>
<lpage>482</lpage>
<pub-id pub-id-type="doi">10.1007/s00280-003-0609-9</pub-id>
<pub-id pub-id-type="pmid">12700925</pub-id>
</element-citation>
</ref>
<ref id="B150">
<label>150</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Ehrke</surname>
<given-names>E.</given-names>
</name>
<name>
<surname>Arend</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>Dringen</surname>
<given-names>R.</given-names>
</name>
</person-group>
<article-title>3-bromopyruvate inhibits glycolysis, depletes cellular glutathione, and compromises the viability of cultured primary rat astrocytes</article-title>
<source>
<italic toggle="yes">Journal of Neuroscience Research</italic>
</source>
<year>2015</year>
<volume>93</volume>
<issue>7</issue>
<fpage>1138</fpage>
<lpage>1146</lpage>
<pub-id pub-id-type="doi">10.1002/jnr.23474</pub-id>
<pub-id pub-id-type="other">2-s2.0-84929653621</pub-id>
<pub-id pub-id-type="pmid">25196479</pub-id>
</element-citation>
</ref>
<ref id="B151">
<label>151</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>El Sayed</surname>
<given-names>S. M.</given-names>
</name>
<name>
<surname>Baghdadi</surname>
<given-names>H.</given-names>
</name>
<name>
<surname>Zolaly</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Almaramhy</surname>
<given-names>H. H.</given-names>
</name>
<name>
<surname>Ayat</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Donki</surname>
<given-names>J. G.</given-names>
</name>
</person-group>
<article-title>The promising anticancer drug 3-bromopyruvate is metabolized through glutathione conjugation which affects chemoresistance and clinical practice: an evidence-based view</article-title>
<source>
<italic toggle="yes">Medical Hypotheses</italic>
</source>
<year>2017</year>
<volume>100</volume>
<fpage>67</fpage>
<lpage>77</lpage>
<pub-id pub-id-type="doi">10.1016/j.mehy.2017.01.014</pub-id>
<pub-id pub-id-type="other">2-s2.0-85012308659</pub-id>
<pub-id pub-id-type="pmid">28236852</pub-id>
</element-citation>
</ref>
<ref id="B152">
<label>152</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Cardaci</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Desideri</surname>
<given-names>E.</given-names>
</name>
<name>
<surname>Ciriolo</surname>
<given-names>M. R.</given-names>
</name>
</person-group>
<article-title>Targeting aerobic glycolysis: 3-bromopyruvate as a promising anticancer drug</article-title>
<source>
<italic toggle="yes">Journal of Bioenergetics and Biomembranes</italic>
</source>
<year>2012</year>
<volume>44</volume>
<issue>1</issue>
<fpage>17</fpage>
<lpage>29</lpage>
<pub-id pub-id-type="doi">10.1007/s10863-012-9422-7</pub-id>
<pub-id pub-id-type="other">2-s2.0-84858698219</pub-id>
<pub-id pub-id-type="pmid">22328057</pub-id>
</element-citation>
</ref>
<ref id="B153">
<label>153</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Ko</surname>
<given-names>Y. H.</given-names>
</name>
<name>
<surname>Smith</surname>
<given-names>B. L.</given-names>
</name>
<name>
<surname>Wang</surname>
<given-names>Y.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Advanced cancers: eradication in all cases using 3-bromopyruvate therapy to deplete ATP</article-title>
<source>
<italic toggle="yes">Biochemical and Biophysical Research Communications</italic>
</source>
<year>2004</year>
<volume>324</volume>
<issue>1</issue>
<fpage>269</fpage>
<lpage>275</lpage>
<pub-id pub-id-type="doi">10.1016/j.bbrc.2004.09.047</pub-id>
<pub-id pub-id-type="other">2-s2.0-4744341871</pub-id>
<pub-id pub-id-type="pmid">15465013</pub-id>
</element-citation>
</ref>
<ref id="B154">
<label>154</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Amjad</surname>
<given-names>A. I.</given-names>
</name>
<name>
<surname>Parikh</surname>
<given-names>R. A.</given-names>
</name>
<name>
<surname>Appleman</surname>
<given-names>L. J.</given-names>
</name>
<name>
<surname>Hahm</surname>
<given-names>E. R.</given-names>
</name>
<name>
<surname>Singh</surname>
<given-names>K.</given-names>
</name>
<name>
<surname>Singh</surname>
<given-names>S. V.</given-names>
</name>
</person-group>
<article-title>Broccoli-derived sulforaphane and chemoprevention of prostate cancer: from bench to bedside</article-title>
<source>
<italic toggle="yes">Current Pharmacology Reports</italic>
</source>
<year>2015</year>
<volume>1</volume>
<issue>6</issue>
<fpage>382</fpage>
<lpage>390</lpage>
<pub-id pub-id-type="doi">10.1007/s40495-015-0034-x</pub-id>
<pub-id pub-id-type="other">2-s2.0-85016847247</pub-id>
<pub-id pub-id-type="pmid">26557472</pub-id>
</element-citation>
</ref>
<ref id="B155">
<label>155</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Cheung</surname>
<given-names>K. L.</given-names>
</name>
<name>
<surname>Kong</surname>
<given-names>A. N.</given-names>
</name>
</person-group>
<article-title>Molecular targets of dietary phenethyl isothiocyanate and sulforaphane for cancer chemoprevention</article-title>
<source>
<italic toggle="yes">The AAPS Journal</italic>
</source>
<year>2010</year>
<volume>12</volume>
<issue>1</issue>
<fpage>87</fpage>
<lpage>97</lpage>
<pub-id pub-id-type="doi">10.1208/s12248-009-9162-8</pub-id>
<pub-id pub-id-type="other">2-s2.0-77449106593</pub-id>
<pub-id pub-id-type="pmid">20013083</pub-id>
</element-citation>
</ref>
<ref id="B156">
<label>156</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Gupta</surname>
<given-names>P.</given-names>
</name>
<name>
<surname>Kim</surname>
<given-names>B.</given-names>
</name>
<name>
<surname>Kim</surname>
<given-names>S. H.</given-names>
</name>
<name>
<surname>Srivastava</surname>
<given-names>S. K.</given-names>
</name>
</person-group>
<article-title>Molecular targets of isothiocyanates in cancer: recent advances</article-title>
<source>
<italic toggle="yes">Molecular Nutrition & Food Research</italic>
</source>
<year>2014</year>
<volume>58</volume>
<issue>8</issue>
<fpage>1685</fpage>
<lpage>1707</lpage>
<pub-id pub-id-type="doi">10.1002/mnfr.201300684</pub-id>
<pub-id pub-id-type="other">2-s2.0-84904649739</pub-id>
<pub-id pub-id-type="pmid">24510468</pub-id>
</element-citation>
</ref>
<ref id="B157">
<label>157</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Gupta</surname>
<given-names>P.</given-names>
</name>
<name>
<surname>Wright</surname>
<given-names>S. E.</given-names>
</name>
<name>
<surname>Kim</surname>
<given-names>S. H.</given-names>
</name>
<name>
<surname>Srivastava</surname>
<given-names>S. K.</given-names>
</name>
</person-group>
<article-title>Phenethyl isothiocyanate: a comprehensive review of anti-cancer mechanisms</article-title>
<source>
<italic toggle="yes">Biochimica et Biophysica Acta (BBA) - Reviews on Cancer</italic>
</source>
<year>2014</year>
<volume>1846</volume>
<issue>2</issue>
<fpage>405</fpage>
<lpage>424</lpage>
<pub-id pub-id-type="doi">10.1016/j.bbcan.2014.08.003</pub-id>
<pub-id pub-id-type="other">2-s2.0-84907692711</pub-id>
<pub-id pub-id-type="pmid">25152445</pub-id>
</element-citation>
</ref>
<ref id="B158">
<label>158</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Clarke</surname>
<given-names>J. D.</given-names>
</name>
<name>
<surname>Dashwood</surname>
<given-names>R. H.</given-names>
</name>
<name>
<surname>Ho</surname>
<given-names>E.</given-names>
</name>
</person-group>
<article-title>Multi-targeted prevention of cancer by sulforaphane</article-title>
<source>
<italic toggle="yes">Cancer Letters</italic>
</source>
<year>2008</year>
<volume>269</volume>
<issue>2</issue>
<fpage>291</fpage>
<lpage>304</lpage>
<pub-id pub-id-type="doi">10.1016/j.canlet.2008.04.018</pub-id>
<pub-id pub-id-type="other">2-s2.0-51349088974</pub-id>
<pub-id pub-id-type="pmid">18504070</pub-id>
</element-citation>
</ref>
<ref id="B159">
<label>159</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Huang</surname>
<given-names>S. H.</given-names>
</name>
<name>
<surname>Hsu</surname>
<given-names>M. H.</given-names>
</name>
<name>
<surname>Hsu</surname>
<given-names>S. C.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Phenethyl isothiocyanate triggers apoptosis in human malignant melanoma A375.S2 cells through reactive oxygen species and the mitochondria-dependent pathways</article-title>
<source>
<italic toggle="yes">Human & Experimental Toxicology</italic>
</source>
<year>2013</year>
<volume>33</volume>
<issue>3</issue>
<fpage>270</fpage>
<lpage>283</lpage>
<pub-id pub-id-type="doi">10.1177/0960327113491508</pub-id>
<pub-id pub-id-type="other">2-s2.0-84893945845</pub-id>
<pub-id pub-id-type="pmid">23760257</pub-id>
</element-citation>
</ref>
<ref id="B160">
<label>160</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Gordillo</surname>
<given-names>G. M.</given-names>
</name>
<name>
<surname>Biswas</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Khanna</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Spieldenner</surname>
<given-names>J. M.</given-names>
</name>
<name>
<surname>Pan</surname>
<given-names>X.</given-names>
</name>
<name>
<surname>Sen</surname>
<given-names>C. K.</given-names>
</name>
</person-group>
<article-title>Multidrug resistance-associated protein-1 (MRP-1)-dependent glutathione disulfide (GSSG) efflux as a critical survival factor for oxidant-enriched tumorigenic endothelial cells</article-title>
<source>
<italic toggle="yes">Journal of Biological Chemistry</italic>
</source>
<year>2016</year>
<volume>291</volume>
<issue>19</issue>
<fpage>10089</fpage>
<lpage>10103</lpage>
<pub-id pub-id-type="doi">10.1074/jbc.M115.688879</pub-id>
<pub-id pub-id-type="other">2-s2.0-84966350067</pub-id>
<pub-id pub-id-type="pmid">26961872</pub-id>
</element-citation>
</ref>
<ref id="B161">
<label>161</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Dačević</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Isaković</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Podolski-Renić</surname>
<given-names>A.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Purine nucleoside analog - sulfinosine modulates diverse mechanisms of cancer progression in multi-drug resistant cancer cell lines</article-title>
<source>
<italic toggle="yes">Plos One</italic>
</source>
<year>2013</year>
<volume>8</volume>
<issue>1, article e54044</issue>
<pub-id pub-id-type="doi">10.1371/journal.pone.0054044</pub-id>
<pub-id pub-id-type="other">2-s2.0-84872229958</pub-id>
<pub-id pub-id-type="pmid">23326571</pub-id>
</element-citation>
</ref>
<ref id="B162">
<label>162</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Circu</surname>
<given-names>M. L.</given-names>
</name>
<name>
<surname>Stringer</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Rhoads</surname>
<given-names>C. A.</given-names>
</name>
<name>
<surname>Moyer</surname>
<given-names>M. P.</given-names>
</name>
<name>
<surname>Aw</surname>
<given-names>T. Y.</given-names>
</name>
</person-group>
<article-title>The role of GSH efflux in staurosporine-induced apoptosis in colonic epithelial cells</article-title>
<source>
<italic toggle="yes">Biochemical Pharmacology</italic>
</source>
<year>2009</year>
<volume>77</volume>
<issue>1</issue>
<fpage>76</fpage>
<lpage>85</lpage>
<pub-id pub-id-type="doi">10.1016/j.bcp.2008.09.011</pub-id>
<pub-id pub-id-type="other">2-s2.0-56649115864</pub-id>
<pub-id pub-id-type="pmid">18840413</pub-id>
</element-citation>
</ref>
<ref id="B163">
<label>163</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Benlloch</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Ortega</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Ferrer</surname>
<given-names>P.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Acceleration of glutathione efflux and inhibition of
<italic>γ</italic>
-glutamyltranspeptidase sensitize metastatic B16 melanoma cells to endothelium-induced cytotoxicity</article-title>
<source>
<italic toggle="yes">Journal of Biological Chemistry</italic>
</source>
<year>2005</year>
<volume>280</volume>
<issue>8</issue>
<fpage>6950</fpage>
<lpage>6959</lpage>
<pub-id pub-id-type="doi">10.1074/jbc.M408531200</pub-id>
<pub-id pub-id-type="other">2-s2.0-14844286405</pub-id>
<pub-id pub-id-type="pmid">15561710</pub-id>
</element-citation>
</ref>
<ref id="B164">
<label>164</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Brechbuhl</surname>
<given-names>H. M.</given-names>
</name>
<name>
<surname>Kachadourian</surname>
<given-names>R.</given-names>
</name>
<name>
<surname>Min</surname>
<given-names>E.</given-names>
</name>
<name>
<surname>Chan</surname>
<given-names>D.</given-names>
</name>
<name>
<surname>Day</surname>
<given-names>B. J.</given-names>
</name>
</person-group>
<article-title>Chrysin enhances doxorubicin-induced cytotoxicity in human lung epithelial cancer cell lines: the role of glutathione</article-title>
<source>
<italic toggle="yes">Toxicology and Applied Pharmacology</italic>
</source>
<year>2012</year>
<volume>258</volume>
<issue>1</issue>
<fpage>1</fpage>
<lpage>9</lpage>
<pub-id pub-id-type="doi">10.1016/j.taap.2011.08.004</pub-id>
<pub-id pub-id-type="other">2-s2.0-84855470386</pub-id>
<pub-id pub-id-type="pmid">21856323</pub-id>
</element-citation>
</ref>
</ref-list>
</back>
<floats-group>
<fig id="fig1" orientation="portrait" position="float">
<label>Figure 1</label>
<caption>
<p>Two-step enzymatic reaction of glutathione synthesis. The first step is the coupling of L-glutamate and cysteine to produce
<italic>γ</italic>
-glutamylcysteine under the catalysis of glutamate-cysteine ligase (GCL). The second step is the coupling of
<italic>γ</italic>
-glutamylcysteine to glycine catalyzing by glutathione synthetase (GS). Each reaction consumes one ATP molecule. Glutathione exists in the forms of reduced GSH and oxidized GSSG.</p>
</caption>
<graphic xlink:href="OMCL2019-3150145.001"></graphic>
</fig>
<fig id="fig2" orientation="portrait" position="float">
<label>Figure 2</label>
<caption>
<p>Distribution of intracellular GSH. GSH is distributed in the cytosol, nucleus, mitochondria, and ER.</p>
</caption>
<graphic xlink:href="OMCL2019-3150145.002"></graphic>
</fig>
<fig id="fig3" orientation="portrait" position="float">
<label>Figure 3</label>
<caption>
<p>Transport of GSH. The liver is the main source of GSH, the kidney is the main organ that ingests and degrades GSH, and the small intestine participates in the GSH enterohepatic circulation. The renal proximal tubule is the place where the whole process of GSH transport, synthesis, and degradation is completed.</p>
</caption>
<graphic xlink:href="OMCL2019-3150145.003"></graphic>
</fig>
<fig id="fig4" orientation="portrait" position="float">
<label>Figure 4</label>
<caption>
<p>Two degradation pathways of GSH. One way occurs outside the cell where GSH is degraded by
<italic>γ</italic>
-glutamyltransferase (GGT) which is expressed only on the outer surface of particular cell; the other newly discovered pathway occurs in the cytoplasm where GSH is degraded through ChaC1 and ChaC2.</p>
</caption>
<graphic xlink:href="OMCL2019-3150145.004"></graphic>
</fig>
<fig id="fig5" orientation="portrait" position="float">
<label>Figure 5</label>
<caption>
<p>The antioxidant role of cellular GSH. Glutathione peroxidase (GPX) converts H
<sub>2</sub>
O
<sub>2</sub>
and Lipid-OOH to H
<sub>2</sub>
O and Lipid-OH where GSH is oxidized to GSSG, and glutathione reductase (GR) reduced GSSG to GSH dependent on NADPH, thereby forming a redox cycle to prevent oxidative damage.</p>
</caption>
<graphic xlink:href="OMCL2019-3150145.005"></graphic>
</fig>
<fig id="fig6" orientation="portrait" position="float">
<label>Figure 6</label>
<caption>
<p>The role of cellular GSH in apoptosis and necroptosis. GSH depletion through nutrition starvation or GSH synthesis inhibition or conjugation with GSH or GSH efflux or GSH degradation induces ROS generation which results in the occurrence of proapoptotic signals, such as the disruption of MMP, increased bax, decreased bcl2, cytochrome c release, and caspase activation. Excess ROS accumulation induces necroptosis.</p>
</caption>
<graphic xlink:href="OMCL2019-3150145.006"></graphic>
</fig>
<fig id="fig7" orientation="portrait" position="float">
<label>Figure 7</label>
<caption>
<p>The mechanism of GSH depletion in induction of ferroptosis. Lipid-OOHs can be formed by autoxidation via Fenton reaction or by enzymatic reaction via lipoxygenases (LOXs). Lipid-OOHs are regulated by the balance between the activities of GPX4 and LOXs or Fenton reaction. System X
<sub>c</sub>
<sup></sup>
impairment or GPX4 inactivation leads to Lipid-OOH accumulation which cannot be effectively cleared under the loss of GPX4 activity. Ultimately, the accumulation of Lipid-OOH triggers ferroptosis. Ferroptosis can be inhibited by DFO, liproxstatin-1 (Lip-1), and ferrostatin-1 (Fer-1).</p>
</caption>
<graphic xlink:href="OMCL2019-3150145.007"></graphic>
</fig>
<fig id="fig8" orientation="portrait" position="float">
<label>Figure 8</label>
<caption>
<p>The role of cellular GSH in autophagy. GSH depletion through nutrition starvation or GSH synthesis inhibition or conjugation with GSH or GSH efflux induces ROS generation. ROS accumulation promotes changes in autophagy-related proteins, such as LC3 I/II conversion, p62 degradation, and autophagic vacuole formation. Additionally, ROS induce NCOA4-mediated ferritin degradation in an autophagy process, called ferritinophagy, which is promoting free iron release and accelerating ROS generation.</p>
</caption>
<graphic xlink:href="OMCL2019-3150145.008"></graphic>
</fig>
</floats-group>
</pmc>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/ChloroquineV1/Data/Pmc/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000A89 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Pmc/Corpus/biblio.hfd -nk 000A89 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    ChloroquineV1
   |flux=    Pmc
   |étape=   Corpus
   |type=    RBID
   |clé=     PMC:6590529
   |texte=   Unraveling the Potential Role of Glutathione in Multiple Forms of Cell Death in Cancer Therapy
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Pmc/Corpus/RBID.i   -Sk "pubmed:31281572" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Pmc/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a ChloroquineV1 

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Wed Mar 25 22:43:59 2020. Site generation: Sun Jan 31 12:44:45 2021