Serveur d'exploration Chloroquine

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Biological Roles and Mechanisms of Circular RNA in Human Cancers

Identifieur interne : 000A82 ( Pmc/Corpus ); précédent : 000A81; suivant : 000A83

Biological Roles and Mechanisms of Circular RNA in Human Cancers

Auteurs : Qing Tang ; Swei Sunny Hann

Source :

RBID : PMC:7069569

Abstract

Abstract

Circular RNA (circRNA) is an intriguing class of RNA with covalently closed-loop structure and is highly stable and conservative. As new members of the ncRNAs, the function, mechanism, potential diagnostic biomarker, and therapeutic target have raised increased attention. Most circRNAs are presented with characteristics of abundance, stability, conservatism, and often exhibiting tissue/developmental-stage-specific manner. Over 30,000 circRNAs have been identified with their unique structures to maintain stability more easily than linear RNAs. An increased numbers of circRNAs are dysregulated and involved in several biological processes of malignance, such as tumorigenesis, growth, invasion, metastasis, apoptosis, and vascularization. Emerging evidence suggests that circRNAs play important roles by acting as miRNA sponge or protein scaffolding, autophagy regulators, and interacting with RNA-binding protein (RBP), which may potentially serve as a novel promising biomarker for prevention, diagnosis and therapeutic target for treatment of human cancer with great significance either in scientific research or clinic arena. This review introduces concept, major features of circRNAs, and mainly describes the major biological functions and clinical relevance of circRNAs, as well as expressions and regulatory mechanisms in various types of human cancer, including pathogenesis, mode of action, potential target, signaling regulatory pathways, drug resistance, and therapeutic biomarkers. All of which provide evidence for the potential utilities of circRNAs in the diagnosis and treatment of cancer.


Url:
DOI: 10.2147/OTT.S233672
PubMed: NONE
PubMed Central: 7069569

Links to Exploration step

PMC:7069569

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Biological Roles and Mechanisms of Circular RNA in Human Cancers</title>
<author>
<name sortKey="Tang, Qing" sort="Tang, Qing" uniqKey="Tang Q" first="Qing" last="Tang">Qing Tang</name>
<affiliation>
<nlm:aff id="AFF0001">
<institution>Laboratory of Tumor Biology, The Second Clinical College of Guangzhou University of Chinese Medicine</institution>
,
<addr-line>Guangzhou</addr-line>
<addr-line>510120</addr-line>
,
<addr-line>Guangdong Province</addr-line>
,
<country>People’s Republic of China</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Hann, Swei Sunny" sort="Hann, Swei Sunny" uniqKey="Hann S" first="Swei Sunny" last="Hann">Swei Sunny Hann</name>
<affiliation>
<nlm:aff id="AFF0001">
<institution>Laboratory of Tumor Biology, The Second Clinical College of Guangzhou University of Chinese Medicine</institution>
,
<addr-line>Guangzhou</addr-line>
<addr-line>510120</addr-line>
,
<addr-line>Guangdong Province</addr-line>
,
<country>People’s Republic of China</country>
</nlm:aff>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PMC</idno>
<idno type="pmc">7069569</idno>
<idno type="url">http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7069569</idno>
<idno type="RBID">PMC:7069569</idno>
<idno type="doi">10.2147/OTT.S233672</idno>
<idno type="pmid">NONE</idno>
<date when="2020">2020</date>
<idno type="wicri:Area/Pmc/Corpus">000A82</idno>
<idno type="wicri:explorRef" wicri:stream="Pmc" wicri:step="Corpus" wicri:corpus="PMC">000A82</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a" type="main">Biological Roles and Mechanisms of Circular RNA in Human Cancers</title>
<author>
<name sortKey="Tang, Qing" sort="Tang, Qing" uniqKey="Tang Q" first="Qing" last="Tang">Qing Tang</name>
<affiliation>
<nlm:aff id="AFF0001">
<institution>Laboratory of Tumor Biology, The Second Clinical College of Guangzhou University of Chinese Medicine</institution>
,
<addr-line>Guangzhou</addr-line>
<addr-line>510120</addr-line>
,
<addr-line>Guangdong Province</addr-line>
,
<country>People’s Republic of China</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Hann, Swei Sunny" sort="Hann, Swei Sunny" uniqKey="Hann S" first="Swei Sunny" last="Hann">Swei Sunny Hann</name>
<affiliation>
<nlm:aff id="AFF0001">
<institution>Laboratory of Tumor Biology, The Second Clinical College of Guangzhou University of Chinese Medicine</institution>
,
<addr-line>Guangzhou</addr-line>
<addr-line>510120</addr-line>
,
<addr-line>Guangdong Province</addr-line>
,
<country>People’s Republic of China</country>
</nlm:aff>
</affiliation>
</author>
</analytic>
<series>
<title level="j">OncoTargets and therapy</title>
<idno type="eISSN">1178-6930</idno>
<imprint>
<date when="2020">2020</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<title>Abstract</title>
<p>Circular RNA (circRNA) is an intriguing class of RNA with covalently closed-loop structure and is highly stable and conservative. As new members of the ncRNAs, the function, mechanism, potential diagnostic biomarker, and therapeutic target have raised increased attention. Most circRNAs are presented with characteristics of abundance, stability, conservatism, and often exhibiting tissue/developmental-stage-specific manner. Over 30,000 circRNAs have been identified with their unique structures to maintain stability more easily than linear RNAs. An increased numbers of circRNAs are dysregulated and involved in several biological processes of malignance, such as tumorigenesis, growth, invasion, metastasis, apoptosis, and vascularization. Emerging evidence suggests that circRNAs play important roles by acting as miRNA sponge or protein scaffolding, autophagy regulators, and interacting with RNA-binding protein (RBP), which may potentially serve as a novel promising biomarker for prevention, diagnosis and therapeutic target for treatment of human cancer with great significance either in scientific research or clinic arena. This review introduces concept, major features of circRNAs, and mainly describes the major biological functions and clinical relevance of circRNAs, as well as expressions and regulatory mechanisms in various types of human cancer, including pathogenesis, mode of action, potential target, signaling regulatory pathways, drug resistance, and therapeutic biomarkers. All of which provide evidence for the potential utilities of circRNAs in the diagnosis and treatment of cancer.</p>
</div>
</front>
<back>
<div1 type="bibliography">
<listBibl>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
</listBibl>
</div1>
</back>
</TEI>
<pmc article-type="review-article">
<pmc-dir>properties open_access</pmc-dir>
<front>
<journal-meta>
<journal-id journal-id-type="nlm-ta">Onco Targets Ther</journal-id>
<journal-id journal-id-type="iso-abbrev">Onco Targets Ther</journal-id>
<journal-id journal-id-type="publisher-id">OTT</journal-id>
<journal-id journal-id-type="pmc">ott</journal-id>
<journal-title-group>
<journal-title>OncoTargets and therapy</journal-title>
</journal-title-group>
<issn pub-type="epub">1178-6930</issn>
<publisher>
<publisher-name>Dove</publisher-name>
</publisher>
</journal-meta>
<article-meta>
<article-id pub-id-type="pmc">7069569</article-id>
<article-id pub-id-type="publisher-id">233672</article-id>
<article-id pub-id-type="doi">10.2147/OTT.S233672</article-id>
<article-categories>
<subj-group subj-group-type="heading">
<subject>Review</subject>
</subj-group>
</article-categories>
<title-group>
<article-title>Biological Roles and Mechanisms of Circular RNA in Human Cancers</article-title>
<alt-title alt-title-type="running-authors">Tang and Hann</alt-title>
<alt-title alt-title-type="running-title">Tang and Hann</alt-title>
</title-group>
<contrib-group>
<contrib contrib-type="author">
<name>
<surname>Tang</surname>
<given-names>Qing</given-names>
</name>
<xref ref-type="aff" rid="AFF0001">1</xref>
</contrib>
<contrib contrib-type="author">
<contrib-id contrib-id-type="orcid" authenticated="false">http://orcid.org/0000-0003-2030-5285</contrib-id>
<name>
<surname>Hann</surname>
<given-names>Swei Sunny</given-names>
</name>
<xref ref-type="corresp" rid="AN0001"></xref>
<xref ref-type="aff" rid="AFF0001">1</xref>
</contrib>
<aff id="AFF0001">
<label>1</label>
<institution>Laboratory of Tumor Biology, The Second Clinical College of Guangzhou University of Chinese Medicine</institution>
,
<addr-line>Guangzhou</addr-line>
<addr-line>510120</addr-line>
,
<addr-line>Guangdong Province</addr-line>
,
<country>People’s Republic of China</country>
</aff>
</contrib-group>
<author-notes>
<corresp id="AN0001">Correspondence: Swei Sunny Hann
<institution>Laboratory of Tumor Biology, The Second Clinical College of Guangzhou University of Chinese Medicine</institution>
,
<addr-line>No. 111, Dade Road</addr-line>
,
<addr-line>Guangzhou</addr-line>
<addr-line>510120</addr-line>
,
<addr-line>Guangdong Province</addr-line>
,
<country>People’s Republic of China</country>
<phone>Tel +86 20-39318472</phone>
Email hann2012@outlook.com</corresp>
</author-notes>
<pub-date pub-type="epub">
<day>09</day>
<month>3</month>
<year>2020</year>
</pub-date>
<pub-date pub-type="collection">
<year>2020</year>
</pub-date>
<volume>13</volume>
<fpage>2067</fpage>
<lpage>2092</lpage>
<history>
<date date-type="received">
<day>07</day>
<month>10</month>
<year>2019</year>
</date>
<date date-type="accepted">
<day>20</day>
<month>2</month>
<year>2020</year>
</date>
</history>
<permissions>
<copyright-statement>© 2020 Tang and Hann.</copyright-statement>
<copyright-year>2020</copyright-year>
<copyright-holder>Tang and Hann.</copyright-holder>
<license license-type="open-access" xlink:href="http://creativecommons.org/licenses/by-nc/3.0/">
<license-p>This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at
<ext-link ext-link-type="uri" xlink:href="https://www.dovepress.com/terms.php">https://www.dovepress.com/terms.php</ext-link>
and incorporate the Creative Commons Attribution – Non Commercial (unported, v3.0) License (
<ext-link ext-link-type="uri" xlink:href="http://creativecommons.org/licenses/by-nc/3.0/">http://creativecommons.org/licenses/by-nc/3.0/</ext-link>
). By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms (
<ext-link ext-link-type="uri" xlink:href="https://www.dovepress.com/terms.php">https://www.dovepress.com/terms.php</ext-link>
).</license-p>
</license>
</permissions>
<abstract>
<title>Abstract</title>
<p>Circular RNA (circRNA) is an intriguing class of RNA with covalently closed-loop structure and is highly stable and conservative. As new members of the ncRNAs, the function, mechanism, potential diagnostic biomarker, and therapeutic target have raised increased attention. Most circRNAs are presented with characteristics of abundance, stability, conservatism, and often exhibiting tissue/developmental-stage-specific manner. Over 30,000 circRNAs have been identified with their unique structures to maintain stability more easily than linear RNAs. An increased numbers of circRNAs are dysregulated and involved in several biological processes of malignance, such as tumorigenesis, growth, invasion, metastasis, apoptosis, and vascularization. Emerging evidence suggests that circRNAs play important roles by acting as miRNA sponge or protein scaffolding, autophagy regulators, and interacting with RNA-binding protein (RBP), which may potentially serve as a novel promising biomarker for prevention, diagnosis and therapeutic target for treatment of human cancer with great significance either in scientific research or clinic arena. This review introduces concept, major features of circRNAs, and mainly describes the major biological functions and clinical relevance of circRNAs, as well as expressions and regulatory mechanisms in various types of human cancer, including pathogenesis, mode of action, potential target, signaling regulatory pathways, drug resistance, and therapeutic biomarkers. All of which provide evidence for the potential utilities of circRNAs in the diagnosis and treatment of cancer.</p>
</abstract>
<kwd-group kwd-group-type="author">
<title>Keywords</title>
<kwd>circRNA</kwd>
<kwd>cancer</kwd>
<kwd>miRNA sponge</kwd>
<kwd>protein scaffolding</kwd>
<kwd>gene splicing and transcription</kwd>
<kwd>biomarker</kwd>
<kwd>therapeutic target</kwd>
</kwd-group>
<counts>
<fig-count count="2"></fig-count>
<table-count count="2"></table-count>
<ref-count count="263"></ref-count>
<page-count count="26"></page-count>
</counts>
</article-meta>
</front>
<body>
<sec sec-type="intro" id="S0001">
<title>Introduction</title>
<p>CircRNA has a covalent closed-loop structure and is highly stable and conservative special RNA, which exists widely in various tissues and organs with variable expression levels, and broadly participates in the occurrence and development of diseases including cancer in various ways. Currently, with the development of deep RNA sequencing (RNA-seq) technologies and novel bioinformatic approaches, over 30,000 circRNAs have been identified with the unique structures and have attracted increasing attention given its high biological and functional interest. CircRNAs are resistant to exonuclease RNase R and maintain stability more easily than linear RNAs. Increasing evidences have shown that part of circRNAs containing miRNA binding sites may act as sponge to interact with miRNA and regulate its biological functions, thereby affecting the expression and function of its downstream target genes.
<xref rid="CIT0001" ref-type="bibr">1</xref>
,
<xref rid="CIT0002" ref-type="bibr">2</xref>
CircRNAs with binding sites of enzymes and substrates may act as proteins scaffolding to mediate the interaction of protein-protein. For example, circFoxo3, containing the binding sites of mouse double minute 2 (MDM2) and p53, was involved in the interaction between MDM2 and p53 by functioning as a protein scaffold.
<xref rid="CIT0003" ref-type="bibr">3</xref>
,
<xref rid="CIT0004" ref-type="bibr">4</xref>
Moreover, circRNA also play important roles in regulating biological functions of cancers through involvement in gene alternative splicing, transcription and translation, cell autophagy and interacting with RNA-binding proteins (RBPs).
<xref rid="CIT0004" ref-type="bibr">4</xref>
<xref rid="CIT0006" ref-type="bibr">6</xref>
In this review, we describe the major biological functions and clinical relevance of circRNAs, as well as its expression and regulatory mechanisms in various types of human cancer including pathogenesis, mode of action, potential target, signaling regulatory pathways, therapeutic biomarkers, drug resistance and clinical application.</p>
</sec>
<sec id="S0002">
<title>Major Features of circRNAs</title>
<p>CircRNAs, first identified in RNA viruses in 1976
<xref rid="CIT0007" ref-type="bibr">7</xref>
and once considered “splicing noise” in organisms, have recently become interest research focus as the results of improvements in high-throughput sequencing technology and bioinformatics, circRNAs have become a research hotspot.
<xref rid="CIT0004" ref-type="bibr">4</xref>
As a new type of RNA molecule, circRNAs are single-stranded circularized RNA with no 5′ caps and 3′ poly(A) tails; and commonly generated from the precursor mRNA (pre-mRNA) by a process called back-splicing in which an upstream acceptor site is joined with a donor site.
<xref rid="CIT0008" ref-type="bibr">8</xref>
Most circRNAs are evolutionarily conserved across species.
<xref rid="CIT0009" ref-type="bibr">9</xref>
The vast majorities of circRNAs are often located in the cytoplasm, which are derived from known protein-coding genes containing one or several exons that are toward the 5′ of the gene and are flanked by longer introns. The long introns containing flank regions that will become circRNAs usually contain specific sequences which induce circRNA formation either by complementarity and/or by binding to circRNA-promoting factors, and are generally expressed in cell type-specific and tissue-specific manners.
<xref rid="CIT0010" ref-type="bibr">10</xref>
,
<xref rid="CIT0011" ref-type="bibr">11</xref>
Based on the different structures, and cycling mechanisms, circRNA molecules are divided into four categories: exonic circRNAs (ecRNAs), intronic circRNAs (ciRNAs), exon-intron circRNAs (eIciRNAs), and intergenic circRNAs. Unlike linear RNAs, circRNAs are stable and resistant to exonucleases (including RNase R) due to the lack of a poly(A) tail and have longer median half-life than that of their linear mRNAs due to the lack of free 3′ or 5′ ends, which makes them resistant to regular mechanisms of linear RNA decay.
<xref rid="CIT0010" ref-type="bibr">10</xref>
<xref rid="CIT0012" ref-type="bibr">12</xref>
</p>
</sec>
<sec id="S0003">
<title>Functions of cirRNAs</title>
<sec id="S0003-S2001">
<title>Acting as miRNA Sponges</title>
<p>Accumulating evidence has revealed that numerous circRNAs regulate gene expression by functioning as miRNA sponge molecules. Compared with other competing endogenous RNAs (ceRNAs) (such as lncRNA or pseudogenes), circRNAs exhibit a greater preference to bind to miRNAs and are called “super sponges.”
<xref rid="CIT0013" ref-type="bibr">13</xref>
Many circRNAs contain miRNA response elements and binding sites, therefore, acting as “miRNA sponge” is the most important function and mechanism of regulating the growth and progression of human cancer (
<xref rid="F0001" ref-type="fig">Figure 1</xref>
). For example, circ_0004771 was identified to restrain cell proliferation and accelerate cell apoptosis in breast cancer cells. circ_0004771 acted as a miRNA sponge to decrease expression of miR-653, this in turn targeted mesenchymal marker zinc finger E-box-binding homeobox 2 (ZEB2) gene expression by binding to its 3ʹ-untranslated region (3ʹUTR) of ZEB2 mRNA.
<xref rid="CIT0014" ref-type="bibr">14</xref>
In addition, circAGFG1 was correlated with advanced clinical stage, poor prognosis and pathological grade of triple-negative breast cancer patients, mechanistically, circAGFG1 might directly sponge miR-195-5p, which targeted and repressed cyclin E1 expression.
<xref rid="CIT0015" ref-type="bibr">15</xref>
<fig id="F0001" fig-type="figure" orientation="portrait" position="float">
<label>Figure 1</label>
<caption>
<p>circRNAs involve in cancer progression by acting as “miRNA sponge” or protein scaffolding. (
<bold>A</bold>
) circRNAs competitively bind to miRNA with the participation of Ago2 protein by acting as “miRNA sponge,” consequently release the target gene of miRNA. (
<bold>B</bold>
) circRNAs directly interact with RNA-binding proteins (RBPs), or mediate the interaction between proteins by serving as protein scaffolding to regulate the expression of downstream targets.</p>
</caption>
<graphic content-type="print-only" xlink:href="OTT-13-2067-g0001"></graphic>
</fig>
</p>
</sec>
<sec id="S0003-S2002">
<title>Regulating Gene Splicing, Transcription and Translation</title>
<p>Although most circRNA is located in cytoplasm, some are still existed in nucleus. The part of circRNA retained in nucleus acted as transcriptional or splicing regulators to interfere with gene expression and involved in alternative splicing and transcription process (
<xref rid="F0002" ref-type="fig">Figure 2</xref>
). For example, circPOK, derived from the Zbtb7a gene in tumor cells, was involved in gene transcription by encoding the pokemon transcription factor, thereby regulating the pro-proliferative and pro-angiogenic factors through activating the interleukin enhancer-binding factor 2 and 3 complex (ILF2/3) complex.
<xref rid="CIT0016" ref-type="bibr">16</xref>
Moreover, circITGA7 was found to increase the transcription of its host gene integrin alpha 7 (ITGA7) by inhibiting a transcription factor RAS-responsive element-binding protein 1 (RREB1) through Ras pathway.
<xref rid="CIT0017" ref-type="bibr">17</xref>
In addition, circ-UBR5 was significantly decreased in non-small cell lung cancer (NSCLC) tissues and associated with tumor differentiation. Mechanically, circ-UBR5 might be involved in RNA splicing regulatory process through binding to splicing regulatory factor QKI, NOVA alternative splicing regulator 1 (NOVA1) and U1 small nuclear RNA (snRNA) in the NSCLC cells.
<xref rid="CIT0018" ref-type="bibr">18</xref>
Furthermore, circRNA containing AUG sites and open reading frame (ORF) could be driven by the internal ribosome entry site (IRES) and translated into the functional protein (
<xref rid="F0002" ref-type="fig">Figure 2</xref>
). However, the relevance of role of circRNA translational function needs to be further explored in terms of mediating occurrence and progression of human cancer.
<xref rid="CIT0003" ref-type="bibr">3</xref>
,
<xref rid="CIT0004" ref-type="bibr">4</xref>
Overall, gene alternative splicing, transcription and translation are important processes to exert biological functions in cancers, while circRNA plays a crucial role in these processes (
<xref rid="F0002" ref-type="fig">Figure 2</xref>
).
<fig id="F0002" fig-type="figure" orientation="portrait" position="float">
<label>Figure 2</label>
<caption>
<p>circRNAs involve in cancer progression by regulation of gene splicing, transcription, translation and cell autophagy. (
<bold>A</bold>
) circRNAs influence the progression of human cancers by regulating gene splicing, transcription and translation via interaction with U1 small nuclear RNA (snRNA), RNA polymerase II (Pol II), and alternative splicing regulator. Moreover, circRNA containing AUG sites and open reading frame (ORF) driven by the internal ribosome entry site (IRES) may translate into the functional protein. (
<bold>B</bold>
) circRNAs are associated with the tumor cell autophagy through regulating the autophagy-related signaling pathways.</p>
</caption>
<graphic content-type="print-only" xlink:href="OTT-13-2067-g0002"></graphic>
</fig>
</p>
</sec>
<sec id="S0003-S2003">
<title>Acting as Autophagy Regulator</title>
<p>Autophagy is a highly conserved and successive self-degradative process that plays an important role in cellular stress responses and survival, which often occurs during tumorigenesis, progression, metastasis and chemotherapy leading to drug resistance in the treatment of cancer.
<xref rid="CIT0019" ref-type="bibr">19</xref>
,
<xref rid="CIT0020" ref-type="bibr">20</xref>
Emerging evidence showed that circRNA was involved in the tumor autophagy affecting occurrence and progression of human cancer (
<xref rid="F0002" ref-type="fig">Figure 2</xref>
). For example, circHIPK3 was found to act as an autophagy regulator in STK11 mutant lung cancer cells. The results showed that missing expression of circHIPK3 could induce cell autophagy through regulating the miR124-3p/signal transducer and activator of transcription 3 (STAT3)/protein kinase AMP-activated catalytic subunit alpha 2 (PRKAA)/AMP-activated protein kinase (AMPKα) signaling regulatory pathways. Moreover, the ratio of circHIPK3 to linHIPK3 (liner HIPK3) reflected the level of autophagy in cancer cells.
<xref rid="CIT0021" ref-type="bibr">21</xref>
Moreover, circ_104075 was correlated with apoptosis and autophagy of glioma cells. Overexpression of circ_104075 neutralized the inhibitory effects of matrine on proliferation and promoted the cell autophagy in glioma U251 cells.
<xref rid="CIT0022" ref-type="bibr">22</xref>
Nevertheless, the research of circRNA in the tumor autophagy process is still in the initial stage, the true role and function, potential mechanism underlying this required to be explored in the future.</p>
</sec>
<sec id="S0003-S2004">
<title>Interacting with RNA-Binding Proteins (RBPs) and Acting as Protein Scaffolding</title>
<p>RNA-binding proteins (RBPs) are a group of proteins widely involved in gene transcription and translation. Increasing evidences suggested that circRNA could bind RBPs and affect its function
<xref rid="CIT0023" ref-type="bibr">23</xref>
(
<xref rid="F0001" ref-type="fig">Figure 1</xref>
). CircRNA could also sequester, store and sort RBPs and thus control the intracellular localization.
<xref rid="CIT0024" ref-type="bibr">24</xref>
,
<xref rid="CIT0025" ref-type="bibr">25</xref>
Conversely, RBPs could also regulate the function and expression level of circRNA. RNA-binding protein 3 (RBM3) dynamically regulated the production of SCD-circRNA2, rooted in the 3ʹ-UTR of the stearoyl-CoA desaturase (SCD) gene, thereby ultimately regulating proliferation in hepatocellular carcinoma cells.
<xref rid="CIT0026" ref-type="bibr">26</xref>
Recent studies have shown that RBP quaking could also modulate the formation of circRNA through forming RNA-protein complexes (RPCs).
<xref rid="CIT0027" ref-type="bibr">27</xref>
Moreover, RNA-binding motif protein 20 (RBM20) was associated with the formation of subset of circRNAs and formed the class of RBM20-dependent circRNAs.
<xref rid="CIT0028" ref-type="bibr">28</xref>
Thus, circRNA and RPBs are closely associated with each other in the occurrence and development of cancer. Overall, circRNAs are abnormally expressed and related to the occurrence and progression of human cancer via influencing cell growth, proliferation, migration, invasion, and other pathological processes (
<xref rid="T0001" ref-type="table">Table 1</xref>
). In addition, circRNAs were also correlated with clinical relevance, such as TNM stage, lymph node metastasis, differentiation, tumor size and overall survival (
<xref rid="T0002" ref-type="table">Table 2</xref>
). All of these provided evidences for the potential biomarker and therapeutic target in the diagnosis and treatment of human cancers. In addition to interacting with RBPs, another function of circRNA is its interaction with protein. It can function as protein sponges by adsorbing one or more proteins via the binding sites, thereby directly mediating the interaction between proteins by acting as protein scaffolding, thus regulating gene expression (
<xref rid="F0001" ref-type="fig">Figure 1</xref>
). For example, cyclin-dependent kinase 2 (CDK2) and p21 proteins were associated with cell cycle regulation in tumor. CircFOXO3 could mediate the formation of circFOXO3-p21-CDK2 ternary complex by serving as scaffolding, which blocked the function of CDK2, thereby affecting the cell cycle progression of cancer.
<xref rid="CIT0029" ref-type="bibr">29</xref>
<table-wrap id="T0001" orientation="portrait" position="float">
<label>Table 1</label>
<caption>
<p>Expression and Functional Characterization of circRNAs in Cancers</p>
</caption>
<table frame="hsides" rules="groups">
<thead>
<tr>
<th rowspan="1" colspan="1">Type of Cancers</th>
<th rowspan="1" colspan="1">Name of circRNAs</th>
<th rowspan="1" colspan="1">Levels</th>
<th rowspan="1" colspan="1">Target Genes</th>
<th rowspan="1" colspan="1">Mode of Functions</th>
<th rowspan="1" colspan="1">Functional Phenotypes</th>
<th rowspan="1" colspan="1">References</th>
</tr>
</thead>
<tbody>
<tr>
<td rowspan="4" colspan="1">Lung cancer</td>
<td rowspan="1" colspan="1">Circ-UBR5</td>
<td rowspan="1" colspan="1">Down</td>
<td rowspan="1" colspan="1">QK/NOVA1/U1 snRNA</td>
<td rowspan="1" colspan="1">Regulate RNA splicing</td>
<td rowspan="1" colspan="1">Correlate with tumor differentiation</td>
<td rowspan="1" colspan="1">[
<xref rid="CIT0018" ref-type="bibr">18</xref>
]</td>
</tr>
<tr>
<td rowspan="1" colspan="1">CircNOL10</td>
<td rowspan="1" colspan="1">Down</td>
<td rowspan="1" colspan="1">SCML1</td>
<td rowspan="1" colspan="1">Regulate transcription</td>
<td rowspan="1" colspan="1">Inhibit cell proliferation and promote cell apoptosis</td>
<td rowspan="1" colspan="1">[
<xref rid="CIT0038" ref-type="bibr">38</xref>
]</td>
</tr>
<tr>
<td rowspan="1" colspan="1">CircPTPRA</td>
<td rowspan="1" colspan="1">Down</td>
<td rowspan="1" colspan="1">miR-96-5p</td>
<td rowspan="1" colspan="1">MiRNA sponge</td>
<td rowspan="1" colspan="1">Suppress EMT and invasion</td>
<td rowspan="1" colspan="1">[
<xref rid="CIT0039" ref-type="bibr">39</xref>
]</td>
</tr>
<tr>
<td rowspan="1" colspan="1">Circ_0012673</td>
<td rowspan="1" colspan="1">Up</td>
<td rowspan="1" colspan="1">miR-22</td>
<td rowspan="1" colspan="1">MiRNA sponge</td>
<td rowspan="1" colspan="1">Promote cell proliferation</td>
<td rowspan="1" colspan="1">[
<xref rid="CIT0053" ref-type="bibr">53</xref>
]</td>
</tr>
<tr>
<td rowspan="1" colspan="1"></td>
<td rowspan="1" colspan="1">Circ_0007766</td>
<td rowspan="1" colspan="1">Up</td>
<td rowspan="1" colspan="1">Cyclin</td>
<td rowspan="1" colspan="1">Cell cycle regulator</td>
<td rowspan="1" colspan="1">Induce the cell proliferation and migration</td>
<td rowspan="1" colspan="1">[
<xref rid="CIT0059" ref-type="bibr">59</xref>
]</td>
</tr>
<tr>
<td rowspan="3" colspan="1">Breast cancer</td>
<td rowspan="1" colspan="1">CircRNA-MTO1</td>
<td rowspan="1" colspan="1">Down</td>
<td rowspan="1" colspan="1">TRAF4/Eg5</td>
<td rowspan="1" colspan="1">Regulate gene translation</td>
<td rowspan="1" colspan="1">Suppress cell viability and reverse monastrol resistance</td>
<td rowspan="1" colspan="1">[
<xref rid="CIT0067" ref-type="bibr">67</xref>
]</td>
</tr>
<tr>
<td rowspan="1" colspan="1">CircTADA2A-E6</td>
<td rowspan="1" colspan="1">Down</td>
<td rowspan="1" colspan="1">miR-203a-3p</td>
<td rowspan="1" colspan="1">MiRNA sponge</td>
<td rowspan="1" colspan="1">Suppress breast cancer progression and metastasis</td>
<td rowspan="1" colspan="1">[
<xref rid="CIT0068" ref-type="bibr">68</xref>
]</td>
</tr>
<tr>
<td rowspan="1" colspan="1">CircPLK1</td>
<td rowspan="1" colspan="1">Up</td>
<td rowspan="1" colspan="1">miR-296-5p</td>
<td rowspan="1" colspan="1">MiRNA sponge</td>
<td rowspan="1" colspan="1">Promote cell growth and invasion</td>
<td rowspan="1" colspan="1">[
<xref rid="CIT0070" ref-type="bibr">70</xref>
]</td>
</tr>
<tr>
<td rowspan="1" colspan="1"></td>
<td rowspan="1" colspan="1">CircBMPR2</td>
<td rowspan="1" colspan="1">Down</td>
<td rowspan="1" colspan="1">miR-553</td>
<td rowspan="1" colspan="1">MiRNA sponge</td>
<td rowspan="1" colspan="1">Inhibit cell proliferation migration and invasion</td>
<td rowspan="1" colspan="1">[
<xref rid="CIT0072" ref-type="bibr">72</xref>
]</td>
</tr>
<tr>
<td rowspan="2" colspan="1">Colorectal cancer</td>
<td rowspan="1" colspan="1">CircITGA7</td>
<td rowspan="1" colspan="1">Down</td>
<td rowspan="1" colspan="1">ITGA7</td>
<td rowspan="1" colspan="1">Regulate gene transcription</td>
<td rowspan="1" colspan="1">Inhibit cell growth and metastasis</td>
<td rowspan="1" colspan="1">[
<xref rid="CIT0017" ref-type="bibr">17</xref>
]</td>
</tr>
<tr>
<td rowspan="1" colspan="1">Circ_0009361</td>
<td rowspan="1" colspan="1">Down</td>
<td rowspan="1" colspan="1">miR-582</td>
<td rowspan="1" colspan="1">MiRNA sponge</td>
<td rowspan="1" colspan="1">Suppress colorectal cancer progression</td>
<td rowspan="1" colspan="1">[
<xref rid="CIT0081" ref-type="bibr">81</xref>
]</td>
</tr>
<tr>
<td rowspan="1" colspan="1"></td>
<td rowspan="1" colspan="1">Circ_001569</td>
<td rowspan="1" colspan="1">Up</td>
<td rowspan="1" colspan="1">miR-145</td>
<td rowspan="1" colspan="1">MiRNA sponge</td>
<td rowspan="1" colspan="1">Promote cell proliferation and invasion</td>
<td rowspan="1" colspan="1">[
<xref rid="CIT0088" ref-type="bibr">88</xref>
]</td>
</tr>
<tr>
<td rowspan="2" colspan="1">Esophageal Squamous Cell Carcinoma</td>
<td rowspan="1" colspan="1">Circ-PRKCI</td>
<td rowspan="1" colspan="1">Up</td>
<td rowspan="1" colspan="1">miR-3680-3p</td>
<td rowspan="1" colspan="1">MiRNA sponge</td>
<td rowspan="1" colspan="1">Stimulate cell migration and proliferation</td>
<td rowspan="1" colspan="1">[
<xref rid="CIT0095" ref-type="bibr">95</xref>
]</td>
</tr>
<tr>
<td rowspan="1" colspan="1">CiRS-7</td>
<td rowspan="1" colspan="1">Up</td>
<td rowspan="1" colspan="1">miR-7</td>
<td rowspan="1" colspan="1">MiRNA sponge</td>
<td rowspan="1" colspan="1">Promote growth and metastasis</td>
<td rowspan="1" colspan="1">[
<xref rid="CIT0098" ref-type="bibr">98</xref>
]</td>
</tr>
<tr>
<td rowspan="1" colspan="1"></td>
<td rowspan="1" colspan="1">Circ_0000337</td>
<td rowspan="1" colspan="1">Up</td>
<td rowspan="1" colspan="1">miR-670-5p</td>
<td rowspan="1" colspan="1">MiRNA sponge</td>
<td rowspan="1" colspan="1">Promote cell proliferation, migration and invasion</td>
<td rowspan="1" colspan="1">[
<xref rid="CIT0099" ref-type="bibr">99</xref>
]</td>
</tr>
<tr>
<td rowspan="3" colspan="1">Gastric cancer</td>
<td rowspan="1" colspan="1">CircYAP1</td>
<td rowspan="1" colspan="1">Down</td>
<td rowspan="1" colspan="1">miR-367-5p</td>
<td rowspan="1" colspan="1">MiRNA sponge</td>
<td rowspan="1" colspan="1">Suppress cell proliferation and invasion</td>
<td rowspan="1" colspan="1">[
<xref rid="CIT0105" ref-type="bibr">105</xref>
]</td>
</tr>
<tr>
<td rowspan="1" colspan="1">Circ-NOTCH1</td>
<td rowspan="1" colspan="1">Up</td>
<td rowspan="1" colspan="1">miR-637</td>
<td rowspan="1" colspan="1">MiRNA sponge</td>
<td rowspan="1" colspan="1">Enhance cell proliferation and invasion;reduce apoptosis;</td>
<td rowspan="1" colspan="1">[
<xref rid="CIT0108" ref-type="bibr">108</xref>
]</td>
</tr>
<tr>
<td rowspan="1" colspan="1">Circ-DONSON</td>
<td rowspan="1" colspan="1">Up</td>
<td rowspan="1" colspan="1">NURF complex</td>
<td rowspan="1" colspan="1">Protein scaffolding</td>
<td rowspan="1" colspan="1">Facilitate gastric cancer growth and invasion</td>
<td rowspan="1" colspan="1">[
<xref rid="CIT0119" ref-type="bibr">119</xref>
]</td>
</tr>
<tr>
<td rowspan="1" colspan="1"></td>
<td rowspan="1" colspan="1">CircAGO2</td>
<td rowspan="1" colspan="1">Up</td>
<td rowspan="1" colspan="1">HuR protein</td>
<td rowspan="1" colspan="1">Interact with RBPs</td>
<td rowspan="1" colspan="1">Promote the tumorigenesis and aggressiveness</td>
<td rowspan="1" colspan="1">[
<xref rid="CIT0120" ref-type="bibr">120</xref>
]</td>
</tr>
<tr>
<td rowspan="4" colspan="1">Hepatocellular carcinoma</td>
<td rowspan="1" colspan="1">Circ_0101432</td>
<td rowspan="1" colspan="1">Up</td>
<td rowspan="1" colspan="1">miR-1258/miR-622</td>
<td rowspan="1" colspan="1">MiRNA sponge</td>
<td rowspan="1" colspan="1">Inhibit cell apoptosis, promote cell proliferation and invasive</td>
<td rowspan="1" colspan="1">[
<xref rid="CIT0126" ref-type="bibr">126</xref>
]</td>
</tr>
<tr>
<td rowspan="1" colspan="1">CircZNF652</td>
<td rowspan="1" colspan="1">Up</td>
<td rowspan="1" colspan="1">miR-203/miR-502-5p</td>
<td rowspan="1" colspan="1">MiRNA sponge</td>
<td rowspan="1" colspan="1">Promote cell metastasis</td>
<td rowspan="1" colspan="1">[
<xref rid="CIT0127" ref-type="bibr">127</xref>
]</td>
</tr>
<tr>
<td rowspan="1" colspan="1">Circ_101280</td>
<td rowspan="1" colspan="1">Up</td>
<td rowspan="1" colspan="1">miR-375</td>
<td rowspan="1" colspan="1">MiRNA sponge</td>
<td rowspan="1" colspan="1">Promote cell proliferation and suppress apoptosis</td>
<td rowspan="1" colspan="1">[
<xref rid="CIT0134" ref-type="bibr">134</xref>
]</td>
</tr>
<tr>
<td rowspan="1" colspan="1">CircSLC3A2</td>
<td rowspan="1" colspan="1">Up</td>
<td rowspan="1" colspan="1">miR-490-3p</td>
<td rowspan="1" colspan="1">MiRNA sponge</td>
<td rowspan="1" colspan="1">Promote cell proliferation and invasion;</td>
<td rowspan="1" colspan="1">[
<xref rid="CIT0135" ref-type="bibr">135</xref>
]</td>
</tr>
<tr>
<td rowspan="1" colspan="1"></td>
<td rowspan="1" colspan="1">CircARSP91</td>
<td rowspan="1" colspan="1">Down</td>
<td rowspan="1" colspan="1">ULBP1</td>
<td rowspan="1" colspan="1">Immune-association</td>
<td rowspan="1" colspan="1">Increase cell susceptibility to NK cell cytotoxicity;</td>
<td rowspan="1" colspan="1">[
<xref rid="CIT0137" ref-type="bibr">137</xref>
]</td>
</tr>
<tr>
<td rowspan="2" colspan="1">Bladder cancer</td>
<td rowspan="1" colspan="1">CircBCRC-3</td>
<td rowspan="1" colspan="1">Down</td>
<td rowspan="1" colspan="1">miR-182-5p</td>
<td rowspan="1" colspan="1">MiRNA sponge</td>
<td rowspan="1" colspan="1">Suppress cell proliferation</td>
<td rowspan="1" colspan="1">[
<xref rid="CIT0150" ref-type="bibr">150</xref>
]</td>
</tr>
<tr>
<td rowspan="1" colspan="1">CircUVRAG</td>
<td rowspan="1" colspan="1">Up</td>
<td rowspan="1" colspan="1">miR-223</td>
<td rowspan="1" colspan="1">MiRNA sponge</td>
<td rowspan="1" colspan="1">Inhibit cell growth and metastasis</td>
<td rowspan="1" colspan="1">[
<xref rid="CIT0151" ref-type="bibr">151</xref>
]</td>
</tr>
<tr>
<td rowspan="1" colspan="1"></td>
<td rowspan="1" colspan="1">CircGprc5a</td>
<td rowspan="1" colspan="1">Up</td>
<td rowspan="1" colspan="1">Gprc5a-Peptide</td>
<td rowspan="1" colspan="1">Peptide-dependent manner</td>
<td rowspan="1" colspan="1">Promote Bladder Oncogenesis and Metastasis</td>
<td rowspan="1" colspan="1">[
<xref rid="CIT0156" ref-type="bibr">156</xref>
]</td>
</tr>
<tr>
<td rowspan="3" colspan="1">Pancreatic cancer</td>
<td rowspan="1" colspan="1">Circ_0006215</td>
<td rowspan="1" colspan="1">Up</td>
<td rowspan="1" colspan="1">miR-378a-3p</td>
<td rowspan="1" colspan="1">MiRNA sponge</td>
<td rowspan="1" colspan="1">Promote cell viability, apoptosis and migration</td>
<td rowspan="1" colspan="1">[
<xref rid="CIT0161" ref-type="bibr">161</xref>
]</td>
</tr>
<tr>
<td rowspan="1" colspan="1">CircRNA_100782</td>
<td rowspan="1" colspan="1">Up</td>
<td rowspan="1" colspan="1">miR-124</td>
<td rowspan="1" colspan="1">MiRNA sponge</td>
<td rowspan="1" colspan="1">Promote cell proliferation</td>
<td rowspan="1" colspan="1">[
<xref rid="CIT0162" ref-type="bibr">162</xref>
]</td>
</tr>
<tr>
<td rowspan="1" colspan="1">CircZMYM2</td>
<td rowspan="1" colspan="1">Up</td>
<td rowspan="1" colspan="1">miR-335-5p</td>
<td rowspan="1" colspan="1">MiRNA sponge</td>
<td rowspan="1" colspan="1">Promote cell proliferation and induce cell apoptosis</td>
<td rowspan="1" colspan="1">[
<xref rid="CIT0163" ref-type="bibr">163</xref>
]</td>
</tr>
<tr>
<td rowspan="1" colspan="1"></td>
<td rowspan="1" colspan="1">CircRHOT1</td>
<td rowspan="1" colspan="1">Up</td>
<td rowspan="1" colspan="1">miR-26b/miR-125a/miR-330</td>
<td rowspan="1" colspan="1">MiRNA sponge</td>
<td rowspan="1" colspan="1">Promote cell proliferation and cell invasion</td>
<td rowspan="1" colspan="1">[
<xref rid="CIT0164" ref-type="bibr">164</xref>
]</td>
</tr>
<tr>
<td rowspan="3" colspan="1">Papillary thyroid carcinoma</td>
<td rowspan="1" colspan="1">CircBACH2</td>
<td rowspan="1" colspan="1">Up</td>
<td rowspan="1" colspan="1">miR-139-5p</td>
<td rowspan="1" colspan="1">MiRNA sponge</td>
<td rowspan="1" colspan="1">Promote cell proliferation, migration and invasion</td>
<td rowspan="1" colspan="1">[
<xref rid="CIT0172" ref-type="bibr">172</xref>
]</td>
</tr>
<tr>
<td rowspan="1" colspan="1">CircRAPGEF5</td>
<td rowspan="1" colspan="1">Up</td>
<td rowspan="1" colspan="1">miR-198</td>
<td rowspan="1" colspan="1">MiRNA sponge</td>
<td rowspan="1" colspan="1">Promote cell proliferation, migration and invasion</td>
<td rowspan="1" colspan="1">[
<xref rid="CIT0173" ref-type="bibr">173</xref>
]</td>
</tr>
<tr>
<td rowspan="1" colspan="1">CircRNA_102171</td>
<td rowspan="1" colspan="1">Up</td>
<td rowspan="1" colspan="1">CTNNBIP1</td>
<td rowspan="1" colspan="1">Protein scaffolding</td>
<td rowspan="1" colspan="1">Promote cell proliferation, migration and invasion;promote cell apoptosis.</td>
<td rowspan="1" colspan="1">[
<xref rid="CIT0175" ref-type="bibr">175</xref>
]</td>
</tr>
<tr>
<td rowspan="1" colspan="1"></td>
<td rowspan="1" colspan="1">Circ-ITCH</td>
<td rowspan="1" colspan="1">Down</td>
<td rowspan="1" colspan="1">miR-22-3p</td>
<td rowspan="1" colspan="1">MiRNA sponge</td>
<td rowspan="1" colspan="1">Suppress cell proliferation and invasion;Promote cell apoptosis</td>
<td rowspan="1" colspan="1">[
<xref rid="CIT0176" ref-type="bibr">176</xref>
]</td>
</tr>
<tr>
<td rowspan="1" colspan="1">Osteosarcoma</td>
<td rowspan="1" colspan="1">CircFAT1</td>
<td rowspan="1" colspan="1">Up</td>
<td rowspan="1" colspan="1">miR-375</td>
<td rowspan="1" colspan="1">MiRNA sponge</td>
<td rowspan="1" colspan="1">Promote cell migration, invasion and tumorigenesis</td>
<td rowspan="1" colspan="1">[
<xref rid="CIT0186" ref-type="bibr">186</xref>
]</td>
</tr>
<tr>
<td rowspan="1" colspan="1"></td>
<td rowspan="1" colspan="1">CircTADA2A</td>
<td rowspan="1" colspan="1">Up</td>
<td rowspan="1" colspan="1">miR-203a-3p</td>
<td rowspan="1" colspan="1">MiRNA sponge</td>
<td rowspan="1" colspan="1">Promotes tumor progression and metastasis</td>
<td rowspan="1" colspan="1">[
<xref rid="CIT0188" ref-type="bibr">188</xref>
]</td>
</tr>
<tr>
<td rowspan="2" colspan="1">Glioblastoma</td>
<td rowspan="1" colspan="1">Circ_0001946</td>
<td rowspan="1" colspan="1">Down</td>
<td rowspan="1" colspan="1">miR-671-5p</td>
<td rowspan="1" colspan="1">MiRNA sponge</td>
<td rowspan="1" colspan="1">Reduce cell proliferation, migration</td>
<td rowspan="1" colspan="1">[
<xref rid="CIT0191" ref-type="bibr">191</xref>
]</td>
</tr>
<tr>
<td rowspan="1" colspan="1">CircNT5E</td>
<td rowspan="1" colspan="1">Up</td>
<td rowspan="1" colspan="1">miR-422a</td>
<td rowspan="1" colspan="1">MiRNA sponge</td>
<td rowspan="1" colspan="1">Promote cell proliferation, migration and invasion</td>
<td rowspan="1" colspan="1">[
<xref rid="CIT0193" ref-type="bibr">193</xref>
]</td>
</tr>
<tr>
<td rowspan="1" colspan="1"></td>
<td rowspan="1" colspan="1">Circ-SHPRH</td>
<td rowspan="1" colspan="1">Down</td>
<td rowspan="1" colspan="1">SHPRH-146aa</td>
<td rowspan="1" colspan="1">Protein translation</td>
<td rowspan="1" colspan="1">Suppress tumor progression and tumorigenesis</td>
<td rowspan="1" colspan="1">[
<xref rid="CIT0196" ref-type="bibr">196</xref>
]</td>
</tr>
<tr>
<td rowspan="2" colspan="1">Ovarian cancer</td>
<td rowspan="1" colspan="1">circPUM1</td>
<td rowspan="1" colspan="1">Up</td>
<td rowspan="1" colspan="1">miR-615-5p and miR-6753-5p</td>
<td rowspan="1" colspan="1">MiRNA sponge</td>
<td rowspan="1" colspan="1">Promote cell proliferation, migration and invasion and inhibited cell apoptosis</td>
<td rowspan="1" colspan="1">[
<xref rid="CIT0199" ref-type="bibr">199</xref>
]</td>
</tr>
<tr>
<td rowspan="1" colspan="1">circWHSC1</td>
<td rowspan="1" colspan="1">Up</td>
<td rowspan="1" colspan="1">miR-145 and miR-1182</td>
<td rowspan="1" colspan="1">MiRNA sponge</td>
<td rowspan="1" colspan="1">Promote cell proliferation, migration and invasion and inhibited cell apoptosis</td>
<td rowspan="1" colspan="1">[
<xref rid="CIT0200" ref-type="bibr">200</xref>
]</td>
</tr>
<tr>
<td rowspan="1" colspan="1"></td>
<td rowspan="1" colspan="1">circ_0061140</td>
<td rowspan="1" colspan="1">Up</td>
<td rowspan="1" colspan="1">miR-370</td>
<td rowspan="1" colspan="1">MiRNA sponge</td>
<td rowspan="1" colspan="1">Promote cell proliferation, migration and the EMT</td>
<td rowspan="1" colspan="1">[
<xref rid="CIT0207" ref-type="bibr">207</xref>
]</td>
</tr>
<tr>
<td rowspan="2" colspan="1">Prostate cancer</td>
<td rowspan="1" colspan="1">circUCK2</td>
<td rowspan="1" colspan="1">Down</td>
<td rowspan="1" colspan="1">miR-767-5p</td>
<td rowspan="1" colspan="1">MiRNA sponge</td>
<td rowspan="1" colspan="1">Inhibit cell invasion
<break></break>
and proliferation</td>
<td rowspan="1" colspan="1">[
<xref rid="CIT0217" ref-type="bibr">217</xref>
]</td>
</tr>
<tr>
<td rowspan="1" colspan="1">circFOXO3</td>
<td rowspan="1" colspan="1">Up</td>
<td rowspan="1" colspan="1">
<italic>miR‐29a‐3p</italic>
</td>
<td rowspan="1" colspan="1">MiRNA sponge</td>
<td rowspan="1" colspan="1">Promote cell cycle, proliferation and inhibit cell apoptosis</td>
<td rowspan="1" colspan="1">[
<xref rid="CIT0218" ref-type="bibr">218</xref>
]</td>
</tr>
<tr>
<td rowspan="1" colspan="1"></td>
<td rowspan="1" colspan="1">circHIPK3</td>
<td rowspan="1" colspan="1">Up</td>
<td rowspan="1" colspan="1">miRNA-338-3p</td>
<td rowspan="1" colspan="1">MiRNA sponge</td>
<td rowspan="1" colspan="1">Inhibit the proliferative and invasive</td>
<td rowspan="1" colspan="1">[
<xref rid="CIT0220" ref-type="bibr">220</xref>
]</td>
</tr>
<tr>
<td rowspan="1" colspan="1">Myeloid leukemia</td>
<td rowspan="1" colspan="1">circ_0009910</td>
<td rowspan="1" colspan="1">Up</td>
<td rowspan="1" colspan="1">miR-20a-5p</td>
<td rowspan="1" colspan="1">MiRNA sponge</td>
<td rowspan="1" colspan="1">Promote cell proliferation and induced apoptosis</td>
<td rowspan="1" colspan="1">[
<xref rid="CIT0229" ref-type="bibr">229</xref>
]</td>
</tr>
<tr>
<td rowspan="1" colspan="1"></td>
<td rowspan="1" colspan="1">circ_100290</td>
<td rowspan="1" colspan="1">Up</td>
<td rowspan="1" colspan="1">MiR-203</td>
<td rowspan="1" colspan="1">MiRNA sponge</td>
<td rowspan="1" colspan="1">Promote cell proliferation and inhibit apoptosis</td>
<td rowspan="1" colspan="1">[
<xref rid="CIT0230" ref-type="bibr">230</xref>
]</td>
</tr>
</tbody>
</table>
<table-wrap-foot>
<fn>
<p>
<bold>Note:</bold>
The expression, molecular targets, functional phenotypes of cirRNA in different cancers were summarized.</p>
</fn>
</table-wrap-foot>
</table-wrap>
<table-wrap id="T0002" orientation="portrait" position="float">
<label>Table 2</label>
<caption>
<p>The Roles in Clinical Relevance and Prognosis of circRNAs in Human Cancers</p>
</caption>
<table frame="hsides" rules="groups">
<thead>
<tr>
<th rowspan="1" colspan="1">Type of Cancers</th>
<th rowspan="1" colspan="1">Name of circRNAs</th>
<th rowspan="1" colspan="1">Levels</th>
<th rowspan="1" colspan="1">Clinical Relevancies</th>
<th rowspan="1" colspan="1">References</th>
</tr>
</thead>
<tbody>
<tr>
<td rowspan="6" colspan="1">Lung cancer</td>
<td rowspan="1" colspan="1">Circ_0016760</td>
<td rowspan="1" colspan="1">Up</td>
<td rowspan="1" colspan="1">Associated with advanced TNM stages, lymph node metastasis and adverse prognosis</td>
<td rowspan="1" colspan="1">[
<xref rid="CIT0042" ref-type="bibr">42</xref>
]</td>
</tr>
<tr>
<td rowspan="1" colspan="1">CircFADS2</td>
<td rowspan="1" colspan="1">Up</td>
<td rowspan="1" colspan="1">Correlated with advanced TNM stage, lymph node metastasis, poor differentiation, tumor size and shorter overall survival</td>
<td rowspan="1" colspan="1">[
<xref rid="CIT0046" ref-type="bibr">46</xref>
]</td>
</tr>
<tr>
<td rowspan="1" colspan="1">Circ-FOXM1</td>
<td rowspan="1" colspan="1">Up</td>
<td rowspan="1" colspan="1">Associated with lymph node invasion, higher TNM stage and unfavorable prognosis.</td>
<td rowspan="1" colspan="1">[
<xref rid="CIT0048" ref-type="bibr">48</xref>
]</td>
</tr>
<tr>
<td rowspan="1" colspan="1">CircMTO1</td>
<td rowspan="1" colspan="1">Down</td>
<td rowspan="1" colspan="1">Associated with malignant features and prognosis</td>
<td rowspan="1" colspan="1">[
<xref rid="CIT0050" ref-type="bibr">50</xref>
]</td>
</tr>
<tr>
<td rowspan="1" colspan="1">Circ_003645</td>
<td rowspan="1" colspan="1">Up</td>
<td rowspan="1" colspan="1">Related to advanced TNM stages, positive lymph node invasion and unfavorable prognosis</td>
<td rowspan="1" colspan="1">[
<xref rid="CIT0051" ref-type="bibr">51</xref>
]</td>
</tr>
<tr>
<td rowspan="1" colspan="1">Circ_0020123</td>
<td rowspan="1" colspan="1">Up</td>
<td rowspan="1" colspan="1">Correlated with positive lymph node metastasis, advanced TNM stages, and adverse prognosis</td>
<td rowspan="1" colspan="1">[
<xref rid="CIT0054" ref-type="bibr">54</xref>
]</td>
</tr>
<tr>
<td rowspan="1" colspan="1"></td>
<td rowspan="1" colspan="1">CircVANGL1</td>
<td rowspan="1" colspan="1">Up</td>
<td rowspan="1" colspan="1">Associated with tumor size, TNM stage and overall survival</td>
<td rowspan="1" colspan="1">[
<xref rid="CIT0060" ref-type="bibr">60</xref>
]</td>
</tr>
<tr>
<td rowspan="4" colspan="1">Breast cancer</td>
<td rowspan="1" colspan="1">CircANKS1B</td>
<td rowspan="1" colspan="1">Up</td>
<td rowspan="1" colspan="1">Associated with lymph node metastasis and advanced clinical stage</td>
<td rowspan="1" colspan="1">[
<xref rid="CIT0065" ref-type="bibr">65</xref>
]</td>
</tr>
<tr>
<td rowspan="1" colspan="1">CircKIF4A</td>
<td rowspan="1" colspan="1">Up</td>
<td rowspan="1" colspan="1">Associated with tumor size, lymph node metastasis and TNM Stage</td>
<td rowspan="1" colspan="1">[
<xref rid="CIT0069" ref-type="bibr">69</xref>
]</td>
</tr>
<tr>
<td rowspan="1" colspan="1">Circ-UBE2D2</td>
<td rowspan="1" colspan="1">Up</td>
<td rowspan="1" colspan="1">Associated with tumor size, lymph node metastasis and TNM Stage and differentiation</td>
<td rowspan="1" colspan="1">[
<xref rid="CIT0071" ref-type="bibr">71</xref>
]</td>
</tr>
<tr>
<td rowspan="1" colspan="1">Circ_0025202</td>
<td rowspan="1" colspan="1">Down</td>
<td rowspan="1" colspan="1">Correlated with lymphatic metastasis and histological grade</td>
<td rowspan="1" colspan="1">[
<xref rid="CIT0073" ref-type="bibr">73</xref>
]</td>
</tr>
<tr>
<td rowspan="1" colspan="1"></td>
<td rowspan="1" colspan="1">Circ_001783</td>
<td rowspan="1" colspan="1">Up</td>
<td rowspan="1" colspan="1">Correlated with tumor size, lymph node status, TNM stage, ER status, PR status, molecular subtype and Ki-67 index</td>
<td rowspan="1" colspan="1">[
<xref rid="CIT0076" ref-type="bibr">76</xref>
]</td>
</tr>
<tr>
<td rowspan="2" colspan="1">Colorectal cancer</td>
<td rowspan="1" colspan="1">CircVAPA</td>
<td rowspan="1" colspan="1">Up</td>
<td rowspan="1" colspan="1">Correlated with tumor size, Lymphovascular invasion, Differentiation, Distant metastasis lymph node metastasis and TNM stage</td>
<td rowspan="1" colspan="1">[
<xref rid="CIT0082" ref-type="bibr">82</xref>
]</td>
</tr>
<tr>
<td rowspan="1" colspan="1">Circ_0026344</td>
<td rowspan="1" colspan="1">Down</td>
<td rowspan="1" colspan="1">Correlated with CRC advance and lymphoid node metastasis</td>
<td rowspan="1" colspan="1">[
<xref rid="CIT0086" ref-type="bibr">86</xref>
]</td>
</tr>
<tr>
<td rowspan="1" colspan="1"></td>
<td rowspan="1" colspan="1">CircHIPK3</td>
<td rowspan="1" colspan="1">Up</td>
<td rowspan="1" colspan="1">Correlated with Pathological T category, Lymph node metastasis, Distant metastasis and TNM stage</td>
<td rowspan="1" colspan="1">[
<xref rid="CIT0087" ref-type="bibr">87</xref>
]</td>
</tr>
<tr>
<td rowspan="2" colspan="1">Esophageal Squamous Cell Carcinoma</td>
<td rowspan="1" colspan="1">Circ-TTC17</td>
<td rowspan="1" colspan="1">Up</td>
<td rowspan="1" colspan="1">Associated with TNM stage and Lymph node metastasis</td>
<td rowspan="1" colspan="1">[
<xref rid="CIT0094" ref-type="bibr">94</xref>
]</td>
</tr>
<tr>
<td rowspan="1" colspan="1">Circ_0006168</td>
<td rowspan="1" colspan="1">Up</td>
<td rowspan="1" colspan="1">Associated with lymph node metastasis and TNM stage</td>
<td rowspan="1" colspan="1">[
<xref rid="CIT0096" ref-type="bibr">96</xref>
]</td>
</tr>
<tr>
<td rowspan="1" colspan="1"></td>
<td rowspan="1" colspan="1">Circ-DLG1</td>
<td rowspan="1" colspan="1">Up</td>
<td rowspan="1" colspan="1">Associated with TNM stage</td>
<td rowspan="1" colspan="1">[
<xref rid="CIT0097" ref-type="bibr">97</xref>
]</td>
</tr>
<tr>
<td rowspan="2" colspan="1">Gastric cancer</td>
<td rowspan="1" colspan="1">CircNRIP1</td>
<td rowspan="1" colspan="1">Up</td>
<td rowspan="1" colspan="1">Associated with Lymphatic invasion and tumor size</td>
<td rowspan="1" colspan="1">[
<xref rid="CIT0106" ref-type="bibr">106</xref>
]</td>
</tr>
<tr>
<td rowspan="1" colspan="1">Circ_006100</td>
<td rowspan="1" colspan="1">Up</td>
<td rowspan="1" colspan="1">Associated with TNM stage, poor cell differentiation and lymphnode metastasis</td>
<td rowspan="1" colspan="1">[
<xref rid="CIT0107" ref-type="bibr">107</xref>
]</td>
</tr>
<tr>
<td rowspan="1" colspan="1"></td>
<td rowspan="1" colspan="1">Circ-DCAF6</td>
<td rowspan="1" colspan="1">Up</td>
<td rowspan="1" colspan="1">Associated with deeper tumor invasion, positive lymph node metastasis and higher TNM stages</td>
<td rowspan="1" colspan="1">[
<xref rid="CIT0109" ref-type="bibr">109</xref>
]</td>
</tr>
<tr>
<td rowspan="1" colspan="1">Hepatocellular carcinoma</td>
<td rowspan="1" colspan="1">Circ-ZEB1.33</td>
<td rowspan="1" colspan="1">Up</td>
<td rowspan="1" colspan="1">Associated with HBV infection, TNM stages and tumor size</td>
<td rowspan="1" colspan="1">[
<xref rid="CIT0124" ref-type="bibr">124</xref>
]</td>
</tr>
<tr>
<td rowspan="1" colspan="1"></td>
<td rowspan="1" colspan="1">CircDAMTS13</td>
<td rowspan="1" colspan="1">Down</td>
<td rowspan="1" colspan="1">Associated with cirrhosis, tumor size and stage</td>
<td rowspan="1" colspan="1">[
<xref rid="CIT0132" ref-type="bibr">132</xref>
]</td>
</tr>
<tr>
<td rowspan="1" colspan="1"></td>
<td rowspan="1" colspan="1">CircTRIM33-12</td>
<td rowspan="1" colspan="1">Down</td>
<td rowspan="1" colspan="1">Associated with tumor size, encapsulation invasion, vascular invasion and tumor number</td>
<td rowspan="1" colspan="1">[
<xref rid="CIT0136" ref-type="bibr">136</xref>
]</td>
</tr>
<tr>
<td rowspan="3" colspan="1">Bladder cancer</td>
<td rowspan="1" colspan="1">CircCEP128</td>
<td rowspan="1" colspan="1">Up</td>
<td rowspan="1" colspan="1">Associated with tumor size, TNM stage and Lymphatic metastasis</td>
<td rowspan="1" colspan="1">[
<xref rid="CIT0149" ref-type="bibr">149</xref>
]</td>
</tr>
<tr>
<td rowspan="1" colspan="1">Circ-BPTF</td>
<td rowspan="1" colspan="1">Up</td>
<td rowspan="1" colspan="1">Associated with histological grade and prognosis</td>
<td rowspan="1" colspan="1">[
<xref rid="CIT0152" ref-type="bibr">152</xref>
]</td>
</tr>
<tr>
<td rowspan="1" colspan="1">Circ-cTFRC</td>
<td rowspan="1" colspan="1">Up</td>
<td rowspan="1" colspan="1">Associated with tumor stage, grade, number of tumors and Lymphatic metastasis</td>
<td rowspan="1" colspan="1">[
<xref rid="CIT0154" ref-type="bibr">154</xref>
]</td>
</tr>
<tr>
<td rowspan="1" colspan="1"></td>
<td rowspan="1" colspan="1">CircUBXN7</td>
<td rowspan="1" colspan="1">Down</td>
<td rowspan="1" colspan="1">Associated with tumor grade and Pathology stage</td>
<td rowspan="1" colspan="1">[
<xref rid="CIT0155" ref-type="bibr">155</xref>
]</td>
</tr>
<tr>
<td rowspan="1" colspan="1">Pancreatic cancer</td>
<td rowspan="1" colspan="1">Circ-PDE8A</td>
<td rowspan="1" colspan="1">Up</td>
<td rowspan="1" colspan="1">Correlated with lymphatic invasion, TNM stage and survival rate</td>
<td rowspan="1" colspan="1">[
<xref rid="CIT0165" ref-type="bibr">165</xref>
]</td>
</tr>
<tr>
<td rowspan="1" colspan="1">Papillary thyroid carcinoma</td>
<td rowspan="1" colspan="1">CircZFR</td>
<td rowspan="1" colspan="1">Up</td>
<td rowspan="1" colspan="1">Correlated with TNM stage and overall survival</td>
<td rowspan="1" colspan="1">[
<xref rid="CIT0177" ref-type="bibr">177</xref>
]</td>
</tr>
<tr>
<td rowspan="1" colspan="1">Osteosarcoma</td>
<td rowspan="1" colspan="1">CircCDR1</td>
<td rowspan="1" colspan="1">Up</td>
<td rowspan="1" colspan="1">Correlated with tumor size, localization, stage and metastasis</td>
<td rowspan="1" colspan="1">[
<xref rid="CIT0187" ref-type="bibr">187</xref>
]</td>
</tr>
<tr>
<td rowspan="1" colspan="1">Glioblastoma</td>
<td rowspan="1" colspan="1">Circ_0029426</td>
<td rowspan="1" colspan="1">Up</td>
<td rowspan="1" colspan="1">Correlated with tumor grade</td>
<td rowspan="1" colspan="1">[
<xref rid="CIT0194" ref-type="bibr">194</xref>
]</td>
</tr>
<tr>
<td rowspan="1" colspan="1">Ovarian cancer</td>
<td rowspan="1" colspan="1">circSETDB1</td>
<td rowspan="1" colspan="1">Up</td>
<td rowspan="1" colspan="1">Associated with advanced clinical stage, lymph node metastasis and increased chemoresistance</td>
<td rowspan="1" colspan="1">[
<xref rid="CIT0209" ref-type="bibr">209</xref>
]</td>
</tr>
<tr>
<td rowspan="1" colspan="1">Prostate cancer</td>
<td rowspan="1" colspan="1">CircITCH</td>
<td rowspan="1" colspan="1">Down</td>
<td rowspan="1" colspan="1">Related with preoperative PSA, tumor stage and Gleason score</td>
<td rowspan="1" colspan="1">[
<xref rid="CIT0216" ref-type="bibr">216</xref>
]</td>
</tr>
<tr>
<td rowspan="1" colspan="1"></td>
<td rowspan="1" colspan="1">circABCC4</td>
<td rowspan="1" colspan="1">Up</td>
<td rowspan="1" colspan="1">Correlated with advanced stage, metastasis and overall survival</td>
<td rowspan="1" colspan="1">[
<xref rid="CIT0219" ref-type="bibr">219</xref>
]</td>
</tr>
<tr>
<td rowspan="2" colspan="1">Myeloid leukemia</td>
<td rowspan="1" colspan="1">Circ-Foxo3</td>
<td rowspan="1" colspan="1">Down</td>
<td rowspan="1" colspan="1">Correlated with overall survival</td>
<td rowspan="1" colspan="1">[
<xref rid="CIT0233" ref-type="bibr">233</xref>
]</td>
</tr>
<tr>
<td rowspan="1" colspan="1">circ_100053</td>
<td rowspan="1" colspan="1">Up</td>
<td rowspan="1" colspan="1">Associated with clinical stage, BCR/ABL mutant status and imatinib resistance</td>
<td rowspan="1" colspan="1">[
<xref rid="CIT0236" ref-type="bibr">236</xref>
]</td>
</tr>
</tbody>
</table>
<table-wrap-foot>
<fn>
<p>
<bold>Note:</bold>
The role of cirNA in clinical relevance and prognosis in different cancers was summarized.</p>
</fn>
</table-wrap-foot>
</table-wrap>
</p>
</sec>
</sec>
<sec id="S0004">
<title>circRNAs in Human Cancers</title>
<sec id="S0004-S2001">
<title>Lung Cancer</title>
<p>Lung cancer is the leading cause of cancer death and accounts for approximately 13% of all cancer cases and 23% of all cancer-related deaths worldwide.
<xref rid="CIT0030" ref-type="bibr">30</xref>
Increasing evidence suggested that circRNA might participate in the cell proliferation, migration and invasion of lung cancer, and serve as an important diagnostic marker for the treatment of lung cancer.
<xref rid="CIT0031" ref-type="bibr">31</xref>
<xref rid="CIT0037" ref-type="bibr">37</xref>
For example, circNOL10 increased the expression of transcription factor sex comb on midleg-like 1 (SCML1) by inhibiting ubiquitination and regulating the humanin (HN) polypeptide family through affecting multiple signaling pathways. This ultimately inhibited proliferation and induced cell cycle arrest in lung cancer cells.
<xref rid="CIT0038" ref-type="bibr">38</xref>
Recent study revealed that circPTPRA suppressed the epithelial-mesenchymal transition (EMT) and metastasis of NSCLC cells by sponging miR-96-5p, thereby regulating the expression of downstream tumor suppressor ras association domain family 8 (RASSF8) gene.
<xref rid="CIT0039" ref-type="bibr">39</xref>
In line with this, other circRNAs, such as circP4HB, circMTO1, circ_0026134, circ-FOXM1, circ_003645, circ_0006427, circABCB10, circ-BANP, circFADS2, circ_103809, circMAN2B2, circ_0012673 and circ_0020123 showed similar roles that were served as sponge of miRNAs to regulate the occurrence and development of lung cancer.
<xref rid="CIT0040" ref-type="bibr">40</xref>
<xref rid="CIT0054" ref-type="bibr">54</xref>
Emerging evidences demonstrated that cancer-associated chromosomal translocations and encoding fusion gene could generate circRNA, contributing to tumorigenesis.
<xref rid="CIT0055" ref-type="bibr">55</xref>
For instance, SLC34A2-ROS1 fusion gene could produce circRNA F-circSR, which promoted cell migration of NSCLC cells.
<xref rid="CIT0056" ref-type="bibr">56</xref>
CircRNA F-circEA-2a, and circRNAF-circEA deriving from oncogenic fusion gene echinoderm microtubule-associated protein-like 4-anaplastic lymphoma kinase (EML4-ALK), enhanced the cell migration and invasion in NSCLC, and might act as a novel liquid biopsy biomarker in NSCLC.
<xref rid="CIT0057" ref-type="bibr">57</xref>
,
<xref rid="CIT0058" ref-type="bibr">58</xref>
Moreover, some circRNAs regulated cell pathogenesis, development and prognosis of lung cancer by affecting the cell cycle-related signaling pathway. Circ_0007766 induced the proliferation and migration of lung cancer cells through regulating and modulating the cyclin D1/cyclin E1/CDK4 regulatory axis.
<xref rid="CIT0059" ref-type="bibr">59</xref>
Also, others were involved in the influencing the expression of apoptosis-related protein, circVANGL1 contributed to proliferation, migration, invasion, and progression of NSCLC via competing endogenous RNA (ceRNA), becoming a sink for miR-195 thereby modulating the expression of Bcl-2 in NSCLC cells.
<xref rid="CIT0060" ref-type="bibr">60</xref>
Overall, circRNA have been involved in the pathogenesis, development and prognosis of lung cancer, and provided potential biomarker and prospective targets for lung cancer treatment.</p>
</sec>
<sec id="S0004-S2002">
<title>Breast Cancer</title>
<p>Breast cancer (BC) is one of the leading causes of cancer-related mortality and the second most common cancer in females. Recently, an increasing number of circRNAs have been identified and correlated with clinical-pathological characteristics in the progression of BC. CircRNAs also participated in the biological functions and progression of BC, such as tumorigenesis, proliferation, apoptosis, cell cycle, vascularization, invasion, migration and metastasis.
<xref rid="CIT0061" ref-type="bibr">61</xref>
<xref rid="CIT0065" ref-type="bibr">65</xref>
For example, circ_001569 was identified to be associated with clinical-pathological features and prognosis in BC patients, and knockdown of circ_001569 remarkably inhibited the activation of PI3-K/Akt signal pathway,
<xref rid="CIT0066" ref-type="bibr">66</xref>
Moreover, circRNA-MTO1 (also known as circRNA-007874) could significantly suppress cell viability and reverse monastrol resistance in BC. Mechanistic studies showed that circRNA-MTO1 reduced the Eg5 protein expression but not mRNA level through preventing TNFα receptor-associated factor (TRAF) 4 from activating Eg5 translation.
<xref rid="CIT0067" ref-type="bibr">67</xref>
CircRNAs were also widely involved in the occurrence and development of BC by acting as “miRNA sponge.” For instance, circTADA2A-E6 could sponge miR-203a-3p to reduce the expression of miR-203a-3p; thereby restoring the expression of suppressor of cytokine signaling 3 (SOCS3), a target gene of miR-203a-3p, resulting in suppressed the progression and metastasis of BC.
<xref rid="CIT0068" ref-type="bibr">68</xref>
In addition, circKIF4A promoted proliferation and migration of triple-negative breast cancer (TNBC), cells by directly sponging miR-375 to relieve the suppression of KIF4A target gene.
<xref rid="CIT0069" ref-type="bibr">69</xref>
Moreover, more circRNAs, such as circPLK1, circ-UBE2D2, circBMPR2, circ_0025202, circ_0103552, circ_0072309, circ_001783, involved in the occurrence and development of BC by acting as miRNA sponge have been reported.
<xref rid="CIT0070" ref-type="bibr">70</xref>
<xref rid="CIT0076" ref-type="bibr">76</xref>
Together, circRNA is broadly expressed in BC tissues and cells with variable levels associated with clinical pathogenesis of BC, and could be used as a potential biomarker and therapeutic target in the treatment of BC.</p>
</sec>
<sec id="S0004-S2003">
<title>Colorectal Cancer</title>
<p>Colorectal cancer (CRC) is the third most common malignant cancer and the fourth leading cause of cancer death around the world.
<xref rid="CIT0077" ref-type="bibr">77</xref>
In recent years, circRNA is considered as an important regulator for the tumorigenesis and progression in CRC. CircRNA was reported to be associated with the development of CRC, and acted as potential biomarkers and therapeutic target for the diagnosis and treatment of CRC.
<xref rid="CIT0078" ref-type="bibr">78</xref>
Recently, circRNA expression profiles in CRC patients were performed through high-throughput RNA sequencing (RNA-seq) and total of 448 significantly dysregulated circRNAs were identified. Among those, 394 were up-regulated and 54 were down-regulated, all of which were involved in cell proliferation, migration, invasion and apoptosis in CRC.
<xref rid="CIT0079" ref-type="bibr">79</xref>
circRNA-0000523 activated the activity of Wnt/β-catenin signaling pathway to regulate the proliferation and apoptosis of CRC cells by sponging miR-31.
<xref rid="CIT0080" ref-type="bibr">80</xref>
Also, circ_0009361 acted as the sponge of miR-582 to enhance the expression of adenomatous polyposis coli 2 (APC2) and blocked the Wnt/β-catenin signaling; resulting in suppressing cell growth and metastasis of CRC.
<xref rid="CIT0081" ref-type="bibr">81</xref>
Furthermore, many other circRNAs, such as circVAPA, circ_0136666, circRNA_103809, circRNA_100290, circ_0026344, circHIPK3, and circ_001569 were also acted as sponge of miRNAs to regulate the tumorigenesis and progression of CRC have been reported.
<xref rid="CIT0082" ref-type="bibr">82</xref>
<xref rid="CIT0088" ref-type="bibr">88</xref>
In addition, circRNA was also associated with chemoradiation resistance (CRR) of CRC. One study showed that among 71 circRNAs expressed in 5-FU chemo-resistant CRC cells by microarray analysis, 47 circRNAs were increased and 24 circRNAs were decreased significantly. The study provided a useful database for further understanding of CRR and presented potential targets to reverse CRR in CRC.
<xref rid="CIT0089" ref-type="bibr">89</xref>
To this end, circRNA play an important role in the occurrence and development of CRC, and could also be involved in diagnosis and treatment of CRC.</p>
</sec>
<sec id="S0004-S2004">
<title>Esophageal Squamous Cell Carcinoma</title>
<p>Esophageal squamous cell carcinoma (ESCC) is the globally predominant aggressive malignancies of the gastrointestinal tract.
<xref rid="CIT0090" ref-type="bibr">90</xref>
,
<xref rid="CIT0091" ref-type="bibr">91</xref>
CircRNAs have been studied to serve as biomarkers of diagnosis and treatment for ESCC and been involved in the regulation of the cell proliferation, migration, invasion and metastasis of ESCC.
<xref rid="CIT0092" ref-type="bibr">92</xref>
,
<xref rid="CIT0093" ref-type="bibr">93</xref>
Increasing number of studies have shown that circRNA modulated the occurrence and progression of ESCC via acting as “miRNA sponge.” For example, circ-TTC17, deriving from tetratricopeptide repeat domain 17 (TTC17) gene, showed to promote proliferation and migration of ESCC cells by serving as “miRNA sponge.” The bioinformatics analysis observed a network of circ-TTC17 with its targeted miRNA interactions and corresponding mRNAs, and found that a total of 20 miRNAs were predicted to have binding sites with circ_TTC17 suggesting that circ-TTC17 might regulate progress of ESCC by acting as a sponge for miRNAs.
<xref rid="CIT0094" ref-type="bibr">94</xref>
Moreover, circ-PRKCI promoted cell migration and proliferation through enhancing the expression of AKT serine/threonine kinase 3 by sponging miR-3680-3p in ESCC cells.
<xref rid="CIT0095" ref-type="bibr">95</xref>
Circ_0006168 could regulate the mammalian target of rapamycin (mTOR) expression by sponging miR-100 to facilitate ESCC cell proliferation, migration and invasion. Thus, circ_0006168 has been considered to be a promising prognostic biomarker and effective therapeutic target for ESCC patients.
<xref rid="CIT0096" ref-type="bibr">96</xref>
In line with this, other studies also found that circRNAs, such as circ-DLG1, circular RNA ciRS-7, circ_0000337, could interact with miRNAs by acting as sponge or competing endogenous RNA in the progression of ESCC.
<xref rid="CIT0097" ref-type="bibr">97</xref>
<xref rid="CIT0099" ref-type="bibr">99</xref>
Together, these findings suggested that circRNA were involved in the carcinogenesis and progression of ESCC, and could be a promising diagnostic biomarker and potential therapeutic target in patients with ESCC.</p>
</sec>
<sec id="S0004-S2005">
<title>Gastric Cancer</title>
<p>Gastric cancer (GC) is one of the most common malignant tumors in the digestive system and most GC is found at an advanced stage, which poses a great challenge to the treatment of this malignancy.
<xref rid="CIT0100" ref-type="bibr">100</xref>
,
<xref rid="CIT0101" ref-type="bibr">101</xref>
An increasing number of studies have suggested that circRNA play critical roles and act as potential biomarker for the diagnosis and treatment of GC.
<xref rid="CIT0102" ref-type="bibr">102</xref>
<xref rid="CIT0104" ref-type="bibr">104</xref>
However, the functions and underlying mechanisms of circRNAs in GC remain to be further studied. Likewise, “miRNA sponge” is also the main mechanism of circRNAs to participate in the progression of GC. For instance, circYAP1 was identified to suppress cell proliferation and invasion of GC by sponging miR-367-5p, then inhibited the expression of p27
<sup>Kip1</sup>
.
<xref rid="CIT0105" ref-type="bibr">105</xref>
Also, circNRIP1 was found to sponge miR-149-5p to further regulate AKT/mTOR signaling axis and effected the cell proliferation, migration and invasion in GC.
<xref rid="CIT0106" ref-type="bibr">106</xref>
Likewise, several other circRNAs such as circ_00610, circ-NOTCH1, circ-DCAF6, circ_0008035, circ_0001368, circPSMC3, cir-NF1, circ-SFMBT2, circFAT1(e2), circPDSS1, circ_0027599, and circ-0081143, could also serve as “miRNA sponge” to modulate other gene expressions in GC.
<xref rid="CIT0107" ref-type="bibr">107</xref>
<xref rid="CIT0118" ref-type="bibr">118</xref>
</p>
<p>In addition, circRNA could also perform the biofunctions by serving as protein scaffolding in the progression pathogenesis of GC. For example, circ-DONSON was identified to promote cell proliferation, migration and invasion while inhibiting cell apoptosis in GC. Mechanistically, circ-DONSON could significantly recruit the NURF complex by acting as a protein scaffolding, to regulate a transcription factor Sex-determining region Y (SRY)-related high-mobility group box 4 (SOX4) promoter activity and stimulate transcription.
<xref rid="CIT0119" ref-type="bibr">119</xref>
Moreover, circAGO2, deriving from Argonaute 2 (AGO2), the core component of miRNA-induced silencing complex, physically interacted with human antigen R (HuR) protein to activate its activities and enrichment on the 3ʹ-UTR of target gene, which significantly reduced the binding activation of AGO2 and thereby overcoming the effect of AGO2/miRNA-mediated gene silencing that was associated with the progression of GC.
<xref rid="CIT0120" ref-type="bibr">120</xref>
Overall, circRNA played an important role in the tumorigenesis and progression through multiple mechanisms, and unveiled significant potential for the prevention and treatment of GC.</p>
</sec>
<sec id="S0004-S2006">
<title>Hepatocellular Carcinoma</title>
<p>Hepatocellular carcinoma (HCC) is one of the most common cancers and the second cause of cancer mortality worldwide; nearly two-thirds of all patients with HCC are diagnosed at advanced stages.
<xref rid="CIT0121" ref-type="bibr">121</xref>
<xref rid="CIT0123" ref-type="bibr">123</xref>
Growing evidences indicated that the expression alterations of circRNAs have a significant impact on biological characteristics of HCC. Recent study showed that circ-ZEB1.33 was a potential biomarker for the prognosis of HCC patients. They found that the expression of circ-ZEB1.33 was related to different TMN stages in HCC patients. Moreover, there were significant interactions between circ-ZEB1.33 and miR-200a-3p, as well as cyclin-dependent kinase 6 (CDK6) indicating that circ-ZEB1.33-miR-200a-3p-CDK6 regulatory pathway played a critical role in the progression of HCC.
<xref rid="CIT0124" ref-type="bibr">124</xref>
Increasing number of studies have focused circRNA on their functions as efficient miRNA sponges in HCC as well. For example, circHIAT1 could act the miR-3171 sponge to further regulate the expression of PTEN that was a target of miR-3171, thereby inhibiting cell growth of HCC.
<xref rid="CIT0125" ref-type="bibr">125</xref>
Likewise, cirRNAs, such as circ_0101432 sponge miR-1258/miR-622,
<xref rid="CIT0126" ref-type="bibr">126</xref>
circZNF652 sponge miR-203/miR-502-5p,
<xref rid="CIT0127" ref-type="bibr">127</xref>
circSETD3 sponge miR-421,
<xref rid="CIT0128" ref-type="bibr">128</xref>
circ_103809 sponge miR-620,
<xref rid="CIT0129" ref-type="bibr">129</xref>
circ_0000267 sponge miR-646,
<xref rid="CIT0130" ref-type="bibr">130</xref>
circ_0008450 sponge miR-548p,
<xref rid="CIT0131" ref-type="bibr">131</xref>
circDAMTS13 sponge miR-484,
<xref rid="CIT0132" ref-type="bibr">132</xref>
circ_0078710 sponge miR-31,
<xref rid="CIT0133" ref-type="bibr">133</xref>
circ_101280 sponge miR-375,
<xref rid="CIT0134" ref-type="bibr">134</xref>
circSLC3A2 sponge miR-490-3p,
<xref rid="CIT0135" ref-type="bibr">135</xref>
and circTRIM33-12 sponge miR-191
<xref rid="CIT0136" ref-type="bibr">136</xref>
have also been shown. All of these circRNAs were involved in the occurrence and progression of HCC by acting as “miRNA sponge.” In addition, some circRNAs could serve as immune-associated biomarker to regulate the tumourigenesis and metastasis. For example, circARSP91 regulated the progression of HCC through enhancing the activation of natural killer (NK) cells and increasing the susceptibility of HCC cells to NK cell cytotoxicity associated with cell immune surveillance.
<xref rid="CIT0137" ref-type="bibr">137</xref>
Overall, circRNAs played key roles in tumorigenesis and development, epigenetic regulation, drug resistance, and could be considered as immune-associated biomarker and therapeutic target in HCC.
<xref rid="CIT0138" ref-type="bibr">138</xref>
<xref rid="CIT0144" ref-type="bibr">144</xref>
Regardless, more in-depth study of circRNA biofunctions in HCC is greatly desired.</p>
</sec>
<sec id="S0004-S2007">
<title>Bladder Cancer</title>
<p>Bladder cancer is the 9th most common cancer around the world with an estimated 165,000 deaths per year.
<xref rid="CIT0145" ref-type="bibr">145</xref>
,
<xref rid="CIT0146" ref-type="bibr">146</xref>
Increased number of studies indicated that circRNAs were involved in the occurrence and development of bladder cancer.
<xref rid="CIT0147" ref-type="bibr">147</xref>
<xref rid="CIT0150" ref-type="bibr">150</xref>
For instance, circUVRAG derived from the exon from the UV radiation resistance-associated gene (UVRAG) was highly increased in bladder cancer cells, and regulated the aggressive biological phenotype through targeting the miR-223/fibroblast growth factor receptor 2 (FGFR2) signaling pathway. Downregulation of circUVRAG promoted miR-223, but suppressed FGFR2 expressions.
<xref rid="CIT0151" ref-type="bibr">151</xref>
Circ-BPTF was also increased in bladder cancer tissues compared with noncancerous ones, and promoted the progression and recurrence of bladder cancer by regulating the miR-31-5p/RAB27A signaling pathway.
<xref rid="CIT0152" ref-type="bibr">152</xref>
Moreover, circLPAR1 inhibited the activity of miR-762 by directly binding to miR-762 thereby regulating invasion and metastasis of muscle-invasive bladder cancer cells.
<xref rid="CIT0153" ref-type="bibr">153</xref>
circRNA-cTFRC regulated cell invasion and proliferation through acting as a ceRNA for miR-107 to affect the expression of TFRC expression in bladder cancer cells.
<xref rid="CIT0154" ref-type="bibr">154</xref>
CircUBXN7 showed to inhibit the proliferation and invasion of bladder cancer cells through binding to miR-1247-3p to elevate the expression of β-1, 4-Galactosyltransferase III (B4GALT3), which is the direct target gene of miR-1247-3p.
<xref rid="CIT0155" ref-type="bibr">155</xref>
Thus, circRNAs were involved in regulation of bladder cancer progression by serving as ceRNA. Interestingly, circRNAs could be also involved in the bladder oncogenesis and metastasis through regulating self-renewal function of cancer stem cells (CSCs). For example, knockdown of circGprc5a, a circRNA with peptide-coding potential and functions through a peptide-dependent manner, impaired the self-renewal and metastasis of bladder CSCs.
<xref rid="CIT0156" ref-type="bibr">156</xref>
Together, data demonstrated that circRNA may provide a potential biomarker and therapeutic target for the management of bladder cancer.</p>
</sec>
<sec id="S0004-S2008">
<title>Pancreatic Cancer</title>
<p>Pancreatic cancer is one of the most common malignancy and the fourth leading cause of cancer-related death worldwide with low 5-year overall survival rate of less than 7%.
<xref rid="CIT0157" ref-type="bibr">157</xref>
,
<xref rid="CIT0158" ref-type="bibr">158</xref>
An increasing number of studies showed that circRNAs were associated with the occurrence and progression of pancreatic cancer.
<xref rid="CIT0157" ref-type="bibr">157</xref>
,
<xref rid="CIT0159" ref-type="bibr">159</xref>
Circ-LDLRAD3 was reported to be increased in both cells and tumor tissues. High expression of circ-LDLRAD3 was significantly associated with venous invasion, lymphatic invasion and metastasis, indicating that circ-LDLRAD3 might be a critical biomarker in the diagnosis and treatment of pancreatic cancer.
<xref rid="CIT0160" ref-type="bibr">160</xref>
Circ_0006215 was also regulated the progression of pancreatic cancer cells through the circ_0006215/miR-378a-3p/serpina family A member 4 (SERPINA4) signaling pathway.
<xref rid="CIT0161" ref-type="bibr">161</xref>
Moreover, circRNA_100782 regulated the miR-124/IL6/STAT3 pathway. Knockdown of circRNA_100782 significantly modulated miR-124 expression, and reduced miR-124 target genes interleukin-6 receptor (IL-6R) and STAT3 expressions in pancreatic cancer cells.
<xref rid="CIT0162" ref-type="bibr">162</xref>
Similarly, knockdown of circZMYM2 significantly repressed the tumorigenesis through sponging miR-335-5p, followed by affecting the expression of histone lysine demethylases jumonji domain-containing 2c (JMJD2C), which is the target gene of miR-335-3p in pancreatic cancer cells.
<xref rid="CIT0163" ref-type="bibr">163</xref>
In line with this, the results of bioinformatics analysis showed that miR-26b-3p, miR-125a-3p, miR-330-5p and miR-382-5p had binding sites for circRHOT1 suggesting that circRHOT1 might act as “miRNA sponge” to promote proliferation and invasion in pancreatic cancer cells.
<xref rid="CIT0164" ref-type="bibr">164</xref>
In addition, exosomal circRNAs also contributed to tumor invasion and metastasis. For example, exosomal circ-PDE8A stimulated cell growth and invasive ability by acting as ceRNA to sponge miR-338 and regulated miR-338/metastasis-associated in colon cancer-1 (MACC1)/MET or hepatocyte growth factor (HGF) receptor regulatory axis in pancreatic cancer cells.
<xref rid="CIT0165" ref-type="bibr">165</xref>
Moreover, exosomal circ-IRAS significantly promoted invasion and metastasis of pancreatic cancer cells by down-regulating miR-122 and ZO-1 levels, and up-regulating RhoA and RhoA-GTP levels, F-actin expression, regulating endothelial monolayer permeability.
<xref rid="CIT0166" ref-type="bibr">166</xref>
We believed that circRNAs could provide a new promising biomarker for diagnosis and therapeutic target for the treatment of pancreatic cancer.</p>
</sec>
<sec id="S0004-S2009">
<title>Papillary Thyroid Carcinoma</title>
<p>Thyroid cancer is one of the most common malignant endocrine tumors, with an incidence of 1–2% of all types of cancer, Despite of a good and overall prognosis, papillary thyroid cancer (PTC), which accounts for 75% of thyroid cancer, could still affect the quality of life of PTC patients.
<xref rid="CIT0167" ref-type="bibr">167</xref>
,
<xref rid="CIT0168" ref-type="bibr">168</xref>
A large number of circRNAs showed promising as potential prognostic biomarkers for the PTC patients, and played a critical role in the pathogenesis and progression of PTC.
<xref rid="CIT0169" ref-type="bibr">169</xref>
<xref rid="CIT0171" ref-type="bibr">171</xref>
For example, knockdown of circBACH2 inhibited the cell proliferation, migration and invasion of PTC cells in vitro and suppressed the growth of PTC xenografts in vivo. Mechanistically, circBACH2 directly interacted with miR-139-5p and relieved inhibition of its target gene LIM-domain only protein 4 (LMO4). Therefore, circBACH2/miR-139-5p/LMO4 regulatory axis could be a promising treatment strategy for PTC patients.
<xref rid="CIT0172" ref-type="bibr">172</xref>
Likewise, low expression of circRAPGEF5 plays an important role in suppressing the aggressive biological behaviors of PTC by sponging miR-198, this subsequently downregulated the expression of fibroblast growth factor receptor 1 (FGFR1), a target gene of miR-198.
<xref rid="CIT0173" ref-type="bibr">173</xref>
Moreover, overexpression of circ_0025033 promoted proliferation and invasion of PTC by directly sponging miR-1231 and miR-1304, therefore, circ_0025033/miR-1231/miR-1304 signaling pathway was considered to be a new regulatory mechanism in PTC initiation and progression.
<xref rid="CIT0174" ref-type="bibr">174</xref>
Recent study found that knockdown of circRNA_102171 inhibited PTC progression. CircRNA_102171 could interact with catenin beta interacting protein 1 (CTNNBIP1) and block its association with the β-catenin/TCF complex to further activate the activity of Wnt/β-catenin pathway in PTC cells.
<xref rid="CIT0175" ref-type="bibr">175</xref>
In a similar way, circ-ITCH was also correlative with Wnt/β-catenin pathway. Bioinformatics analysis and luciferase reporter assays showed that circ-ITCH could sponge miR-22-3p to increase the expression of CBL, an E3 ligase of nuclear β-catenin. This led to suppress activation of the Wnt/β-catenin pathway and consequently inhibited the progression of PTC.
<xref rid="CIT0176" ref-type="bibr">176</xref>
Moreover, circZFR was negative correlated with clinical severity of PTC patients. Knockdown of circZFR significantly activated C8orf4 (chromosome 8 open reading frame 4), an activator of Wnt signaling pathway via sponging miR-1261 thereby inhibiting proliferation, migration and invasion of PTC cells.
<xref rid="CIT0177" ref-type="bibr">177</xref>
In addition, circ_0058124 acted as a ceRNA to directly regulate the expression of miRNA-218-5p and its target gene NUMB, and consequently inhibited the activation of the NOTCH3/GATA zinc finger domain-containing 2A (GATAD2A) signaling axis. This let to promote cell proliferation, tumorigenicity, invasion, and metastasis of PTC, thus highlighting a novel therapeutic target for intervening PTC.
<xref rid="CIT0178" ref-type="bibr">178</xref>
Growing evidences have also shown that circRNA not only play an important role in carcinogenesis and development of PTC, but also have great diagnostic and prognostic value for PTC. One study showed the expression of circRNAs in PTC tissues and adjacent noncancerous tissues, and assess the diagnostic value of circRNAs through analyzing the correlation between cirRNAs and aggressive clinic-pathologic characteristics of PTC indicated that circ_0137287 had a potential diagnostic value in predicting severity of malignancy, extra thyroidal extension and lymph node metastasis, and may act as a novel biomarker for PTC.
<xref rid="CIT0179" ref-type="bibr">179</xref>
Taken together, circRNA might play an important role in the progression and pathogenesis and be considered as potential biomarkers of PTC.</p>
</sec>
<sec id="S0004-S2010">
<title>Osteosarcoma</title>
<p>Osteosarcoma is a malignant bone tumor that has the highest morbidity in adolescent and childhood with 60% of patient aged under 25 years; however, there is a second peak of incidence in later life with 30% of patients being over 40 years of age.
<xref rid="CIT0180" ref-type="bibr">180</xref>
<xref rid="CIT0182" ref-type="bibr">182</xref>
Several studies have indicated the correlations between circRNA and occurrence and progression of osteosarcoma.
<xref rid="CIT0183" ref-type="bibr">183</xref>
<xref rid="CIT0185" ref-type="bibr">185</xref>
CircFAT1, deriving from exon 2 of FAT atypical cadherin 1 (FAT1) gene, significantly inhibited the cell migration, invasion and tumorigenesis of osteosarcoma by sponging miR-375 to enhance the expression of yes-associated protein 1 (YAP1) protein.
<xref rid="CIT0186" ref-type="bibr">186</xref>
Similarly, knockdown of circCDR1as significantly suppressed tumor growth of osteosarcoma through directly targeting miR-7 and subsequently reduced EGFR, Cyclin E1 (CCNE1), phosphatidylinositol-4, 5-bisphosphate 3-kinase catalytic subunit delta (PI3KCD) and RAF1 proto-oncogene serine/threonine-protein kinase (RAF1) expressions.
<xref rid="CIT0187" ref-type="bibr">187</xref>
As we know, transcription factor CREB3 is a driver gene in osteosarcoma. CircTADA2A could upregulate the expression of CREB3 by sponging miR-203-3p thereby significantly promoting the progression and metastasis in osteosarcoma cells.
<xref rid="CIT0188" ref-type="bibr">188</xref>
In addition, circ_0081001 was highly expressed in the osteosarcoma tissues and cells, which may be a potential biomarker for diagnosis and therapeutic target of osteosarcoma. Moreover, serum circ_0081001 might be a better diagnostic and independent prognostic factor than alkaline phosphatase (ALP) and lactate dehydrogenase (LDH) in osteosarcoma patients.
<xref rid="CIT0189" ref-type="bibr">189</xref>
More importantly, some of circRNAs are closely related to chem-resistance of osteosarcoma. For example, upregulation of circ_001569 not only promoted cell proliferation, but also enhanced the cisplatin resistance of osteosarcoma cells through activating the Wnt/β-catenin signaling pathway.
<xref rid="CIT0190" ref-type="bibr">190</xref>
Thus, the abnormal expression of circRNAs is an important factor in regulating the occurrence and development of osteosarcoma. We believed that circRNA could be served as the valuable biomarker for the prevention, diagnosis and treatment of osteosarcoma in the future.</p>
</sec>
<sec id="S0004-S2011">
<title>Glioblastoma</title>
<p>Glioblastoma is the most common and fatal primary malignant brain tumor. The published data have shown a strong association between circRNA and glioblastoma. The results from microarray analysis showed that most circRNAs were dysregulated in glioblastoma. circ_0001946 was downregulated in glioblastoma and overexpression of circ_0001946 significantly inhibited cell proliferation, migration, invasion and induced apoptosis through upregulating the expression of cerebellar degeneration-related auto-antigen 1(CDR1) by suppressing miR-671-5p expression in glioblastoma cell.
<xref rid="CIT0191" ref-type="bibr">191</xref>
Obviously, circRNA could also act as “miRNA sponge” to regulate glioblastoma progression. CircMMP9 could regulate the expression of eukaryotic initiation factor 4A3 (eIF4A3) to further accelerate proliferation, migration and invasion via sponging miR-124 in glioblastoma cells.
<xref rid="CIT0192" ref-type="bibr">192</xref>
Moreover, circNT5E, deriving from ecto-5ʹ-nucleotidase (NT5E) gene and regulating by adenosine deaminase, RNA-specific B2 (ADARB2), also acted as the sponge of miR-422a and reduced its expression, thereby promoting glioblastoma tumorigenesis.
<xref rid="CIT0193" ref-type="bibr">193</xref>
Furthermore, circ_0029426 served as the sponge of miR-197 to promote cell proliferation, migration and invasion, inhibited cell apoptosis of glioblastoma cells as well.
<xref rid="CIT0194" ref-type="bibr">194</xref>
Taken together, acting as “miRNA sponge” is one of the most important functions and mechanisms for circRNA to modulation of miRNA and downstream target gene. Recently, comparative results of circRNAs expression profiles showed that 254 circRNAs were up-regulated and 361 circRNAs were down-regulated in IDH-wt glioblastoma compared with the adjacent normal brain tissues. Gene Ontology (GO) analysis revealed that differentially expressions of circRNAs were correlated with cell division, DNA damage repair, cytoskeleton, and protein ubiquitination.
<xref rid="CIT0195" ref-type="bibr">195</xref>
Their results suggested that differential expressions of circRNAs might serve as biomarkers for prognosis and treatment targets for IDH-wt glioblastoma.
<xref rid="CIT0195" ref-type="bibr">195</xref>
In addition, there was evidence that endogenous circRNA was involved in gene translation. CircRNA containing an ORF could translate a functional protein through driving by Internal Ribosome Entry Site (IRES) elements.
<xref rid="CIT0196" ref-type="bibr">196</xref>
For example, circ-SHPRH could produce a 17 kDa protein, the circular form of the SNF2 histone linker PHD RING helicase (SHPRH) gene encoded a novel protein that we termed SHPRH-146aa, which was a tumor suppressor in human glioblastoma. Excessive expressed SHPRH-146aa reduced malignant behavior and tumorigenicity in U251 and U373 glioblastoma cells by protecting SHPRH from degradation through the ubiquitin proteasome. An increased patient survival was observed with elevated levels of SHPRH-146aa in glioblastoma patients.
<xref rid="CIT0196" ref-type="bibr">196</xref>
,
<xref rid="CIT0197" ref-type="bibr">197</xref>
Collectively, these results showed that circRNA was a group of important regulatory factor and related to the occurrence and progression of glioblastoma. Thus, circRNA could serve as potential and valuable biomarker for diagnosis and treatment for glioblastoma patients in the future.</p>
</sec>
<sec id="S0004-S2012">
<title>Ovarian Cancer</title>
<p>Ovarian cancer is the leading cause of death from gynecological malignancies worldwide. The overall 5-year survival rate was particularly low for patients with advanced stages. In recent years, numerous studies focused on differentially expressed circRNAs and their function in this malignancy indicating that circRNAs may act as potentially novel biomarkers or therapeutic agents in this cancer type.
<xref rid="CIT0198" ref-type="bibr">198</xref>
Increasing number of circRNAs have been reported to be involved in the progression and tumorigenesis of ovarian cancer. One study revealed that circPUM1 promoted cell proliferation, migration, invasion, and metastasis through increased the expression of nuclear factor kappa B (NF-κB) and matrix metallopeptidase 2 (MMP2) by sponging miR-615-5p and miR-6753-5p in ovarian cancer cells.
<xref rid="CIT0199" ref-type="bibr">199</xref>
CircWHSC1 increased proliferation, migration and invasion, and inhibited apoptosis by sponging miR-145 and miR-1182 thereby increasing the expression of downstream targets mucin 1 (MUC1) and human telomerase reverse transcriptase (hTERT) in ovarian cancer cells.
<xref rid="CIT0200" ref-type="bibr">200</xref>
Similarly, scores of circRNAs performed their biological functions through acting as sponge of miRNAs in ovarian cancer, such as circUBAP2 sponge miR-144, circCDR1 sponge miR-135b-5p, circ-CSPP1 sponge miR-1236-3p, circ_0051240 sponge miR-637, circEPSTI1 sponge miR-942, circ-ITCH sponge miR-10a, circ_0061140 sponge miR-370, and circGFRA1 sponge miR-449a.
<xref rid="CIT0201" ref-type="bibr">201</xref>
<xref rid="CIT0208" ref-type="bibr">208</xref>
In addition, study showed that circSETDB1 expression levels were closely associated with advanced clinical stage and lymph node metastasis of high-grade serous ovarian cancer patients. Patients with higher levels of circSETDB1 had a shorter progression-free survival time. Thus, circSETDB1 might be a promising biomarker for the treatment and relapse in high-grade serous ovarian cancer.
<xref rid="CIT0209" ref-type="bibr">209</xref>
Moreover, upregulation of circ-FAM53B accelerated the proliferation, migration, and invasion of ovarian cancer via regulating the miR-646/vesicle associated membrane protein 2 (VAMP2) and miR-647/mouse double minute 2 (MDM2) signaling regulatory pathways.
<xref rid="CIT0210" ref-type="bibr">210</xref>
Also, circPLEKHM3 could inhibit cell growth, migration and EMT via miR-9/BRCA1/DnaJ/Hsp40 homolog, subfamily B, member 6 (DNAJB6)/Kruppel-like factor 4 (KLF4)/AKT1 regulatory axis in ovarian cancer suggesting that circPLEKHM3 might act as a prognostic indicator and therapeutic target in ovarian cancer patients.
<xref rid="CIT0211" ref-type="bibr">211</xref>
In addition, circ-SMAD7 enhanced cell metastasis, proliferation and progression of ovarian cancer via suppressing the expression of Krüppel-like factor 6.
<xref rid="CIT0212" ref-type="bibr">212</xref>
Overall, the differentially expressed circRNAs may participate in the pathogenesis of ovarian cancer, and may be novel diagnostic and prognostic biomarkers for ovarian cancer although more studies are still needed to be evaluated.</p>
</sec>
<sec id="S0004-S2013">
<title>Prostate Cancer</title>
<p>Prostate cancer (PCa) is one of the most common cancers and the third leading cause of deaths with high mortality and morbidity, especially for elderly men around the world.
<xref rid="CIT0213" ref-type="bibr">213</xref>
,
<xref rid="CIT0214" ref-type="bibr">214</xref>
CircRNAs play important roles in the regulation of cell proliferation, apoptosis, angiogenesis and metastasis in a series of cancers including prostate cancer. Most of them could be used for the promising biomarkers and therapeutic target for the treatment of prostate cancer.
<xref rid="CIT0215" ref-type="bibr">215</xref>
One recent study have found that circITCH was significantly down-regulated in PCa cells and tissues, and inhibited the malignant phenotype of PCa via increasing the expression of homeobox protein B13 (HOXB13) through sponging miR-17-5p.
<xref rid="CIT0216" ref-type="bibr">216</xref>
Likewise, circRNA-UCK2 inhibited cell proliferation and invasion via increasing tet methylcytosine dioxygenase 1 (TET1) expression by sponging miR-767-5p in prostate cancer.
<xref rid="CIT0217" ref-type="bibr">217</xref>
Similarly, circFOXO3 sponged miR-29a-3p, circABCC4 sponged miR-1182, circHIPK3 sponged miRNA-338-3p and miR-193a-3p, and circAMOTL1L sponge dmiR-193a-5p were also reported in other studies.
<xref rid="CIT0218" ref-type="bibr">218</xref>
<xref rid="CIT0222" ref-type="bibr">222</xref>
This may be one the main mechanisms of circRNAs to function as miRNA sponges in many cancers including prostate cancer. Moreover, circ_KATNAL1 significantly inhibited cell proliferation, invasion, migration of prostate cancer through the miR-145-3p/Wnt1 inducible signaling pathway protein 1 (WISP1) pathway, which might be a new mechanism for the progression of prostate cancer.
<xref rid="CIT0223" ref-type="bibr">223</xref>
More interestingly, recent study revealed that some of circRNAs could perform their functions by cooperating with their host genes. For example, X-linked inhibitor of apoptosis protein (XIAP), a host gene for circRNA0005276, showed to interact with circ0005276 to mediate the progression of prostate cancer through activating the transcription of XIAP via interacting with FUS binding protein.
<xref rid="CIT0224" ref-type="bibr">224</xref>
Thus, circRNAs are important regulators in gene expression and play a crucial role in prostate cancer, however, the detailed mechanisms for the tumorigenesis and progression should be more explored in the future.</p>
</sec>
<sec id="S0004-S2014">
<title>Myeloid Leukemia</title>
<p>There are two main types of myeloid leukemia, acute myeloid leukemia (AML) and chronic myeloid leukemia (CML). AML is one of the most common myeloid malignancy in adults, characterized by the proliferation of abnormal and immature myeloid blasts in the bone marrow and presented great biological and clinical heterogeneity.
<xref rid="CIT0225" ref-type="bibr">225</xref>
CircRNAs were served as potential biomarkers for the diagnosis and treatment of AML because of their stability against exo-nuclear degradation, diversity of action modes, tissue specificity and richness in body fluids.
<xref rid="CIT0225" ref-type="bibr">225</xref>
,
<xref rid="CIT0226" ref-type="bibr">226</xref>
Through high-throughput sequencing and bioinformatics analysis, 1824 circRNAs were detected as differentially expressed in AML cells.
<xref rid="CIT0227" ref-type="bibr">227</xref>
In addition, a total of 273 circRNAs were increased and 296 were decreased in pediatric AML. Among them, circ-0004136 was significantly increased and promoted cell proliferation by acting as a sponge of miR-142.
<xref rid="CIT0228" ref-type="bibr">228</xref>
Similarly, the following circRNAs also function as a miRNA sponge in acute myeloid leukemia, such as circ_0009910 sponging miR-20a-5p, circ_100290 sponging to miR-203 and circ-ANAPC7 sponging to miR-181.
<xref rid="CIT0229" ref-type="bibr">229</xref>
<xref rid="CIT0231" ref-type="bibr">231</xref>
Furthermore, recent studies observed that circ-Foxo3 could compete with Foxo3 for binding to some miRNAs and then regulated the expression of Foxo3.
<xref rid="CIT0232" ref-type="bibr">232</xref>
Circ-Foxo3 and Foxo3 were frequently decreased in AML and positively associated with each other. Circ-Foxo3 might be a promising biomarker for the prognosis and treatment of AML.
<xref rid="CIT0233" ref-type="bibr">233</xref>
In addition, some circRNAs might be related to drug resistance in acute myeloid leukemia. For example, silence of circPAN3 significantly restored drug sensitivity to ADM in the two ADM-resistant cell lines, and overexpression of circPAN3 had the opposite effect. The results suggested that circPAN3 might facilitate AML drug resistance through regulating the AMPK/mTOR signaling pathway.
<xref rid="CIT0234" ref-type="bibr">234</xref>
In chronic myeloid leukemia (CML), recent study found that expressions of circHIPK3 and circRNA_100053 were significantly increased compared with healthy controls. Induced circHIPK3 expression predicted a poor outcome of CML patients, and circ_100053 might be associated with imatinib resistance in CML.
<xref rid="CIT0235" ref-type="bibr">235</xref>
,
<xref rid="CIT0236" ref-type="bibr">236</xref>
In addition, circ_0080145 was found to be up-regulated in CML, and silence of circ_0080145 significantly inhibited cell proliferation of CML by sponging miR-29b.
<xref rid="CIT0237" ref-type="bibr">237</xref>
Taken together, circRNAs were distributed broadly in myeloid leukemia, and abnormal expressions of circRNAs were closely related to the progression and tumorigenesis of myeloid leukemia including AML and CML. Nevertheless, further studies are still required to determine the potential roles of circRNAs in diagnostic biomarker and therapeutic targets.</p>
</sec>
<sec id="S0004-S2015">
<title>circRNAs in Cancer Stem Cells</title>
<p>Cancer stem cells (CSCs), a small proportion of cells that possess self-renewal and tumor-initiating capabilities, are considered to be responsible for metastatic dissemination and therapeutic failure. Several lines of evidence have suggested that circRNAs might contribute to the stemness of cancer.
<xref rid="CIT0238" ref-type="bibr">238</xref>
For example, around 27 dysregulated circRNA were observed through high-throughput sequencing to screen the circRNA expression profiles in breast CSCs (BCSCs) and matched non-BCSCs. Among these, expression of circVRK1 was reduced and was able to inhibit the self-renewal capacity of BCSCs, thereby displaying an inhibiting role in the stemness of BCSCs. Breast cancer cells with silenced circVRK1 demonstrated an enhanced capacity to form mammospheres and colonies, and an increased expression of CSC-related markers and core pluripotency genes (OCT4, SOX2, NANOG), indicating that circVRK1 was involved in suppressing the stemness of BCSCs.
<xref rid="CIT0239" ref-type="bibr">239</xref>
MiR-153-5p was one of the targets of circVRK1 and was involved in stemness maintenance of breast cancer cells via reducing the expression of KLF5. Thus, circVRK1 was negatively correlated with stemness of BCSCs through the miR-153-5p/krüppel-like factor 5 (KLF5) regulatory pathways.
<xref rid="CIT0240" ref-type="bibr">240</xref>
Stem cell plasticity and identity are also controlled by master regulatory genes and complex circuits involving circRNAs as well. One study showed that compared to differentiated mesodermal derivatives, circFOXP1 levels were enriched in mesenchymal stem cell (MSC) and silencing of circFOXP1 dramatically impaired MSC differentiation in vitro and in vivo. A direct interaction between circFOXP1 and miR-17-3p/miR-127-5p resulted in the modulation of the epidermal growth factor receptor (EGFR) and noncanonical Wnt pathways suggesting the regulatory role for circFOXP1 as a gatekeeper of pivotal stem cell molecular networks.
<xref rid="CIT0241" ref-type="bibr">241</xref>
In addition, the underlying correlation between circRNAs and cancer stem cells (CSCs) has been reported in HCC. For example, the absence of circZKSCAN1 endowed several malignant properties including cancer stemness and closely correlated with poor overall and recurrence-free survival in HCC. Bioinformatics analysis and RNA immunoprecipitation-sequencing (RIP-seq) experiments revealed that circZKSCAN1 showed inhibitory role by competitively binding RBP fragile X mental retardation protein (FMRP), thereby blocking the binding between FMRP and the downstream target gene cell cycle and apoptosis regulator 1 (CCAR1) mRNA, and subsequently retarded the transcriptional activity of Wnt signaling resulting in suppressing cell stemness in HCC cells.
<xref rid="CIT0242" ref-type="bibr">242</xref>
CD133+CD44+ cancer stem cells (TDP cells) previously isolated from laryngeal squamous cell carcinoma (LSCC) cells showed strong malignancy and tumorigenicity. These TDP cells were shown to highly express the stem-cell markers SOX2 and OCT4. Hg19_circ_0005033 was one of the upregulated circRNAs in TDP cells promoted the proliferation, migration, invasion, and resistance to chemotherapy of TDP cells.
<xref rid="CIT0243" ref-type="bibr">243</xref>
The expression of stem cell marker Kruppel-like factor-4 (KLF-4), which has been reported as the target of miR7, increased significantly in ciRS-7 transfected ESCC cells. Knockdown of KLF-4 also attenuated over expression of ciRS-7 induced cell invasion.
<xref rid="CIT0098" ref-type="bibr">98</xref>
Overall, the potential regulatory mechanism of circRNAs in CSC phenotypes and potential clinical applications in CSC-targeted therapy, including functioning as new biomarkers, acting as vaccines and breaking the therapeutic resistance of CSCs have been summarized.
<xref rid="CIT0244" ref-type="bibr">244</xref>
Researches regarding the regulatory roles of circRNAs on CSCs are still in the initial stages although the increased numbers of studies have demonstrated that the aberrant expression of circRNAs play a key role in the regulation and progression of cancers and CSCs. Thus, the practical application of circRNAs in clinic arena still remains to be determined. Future studies are needed to explore how circRNAs change in the CSC environment, among others.</p>
</sec>
</sec>
<sec id="S0005">
<title>Discussion and Prospective</title>
<p>CircRNAs have attracted increasing attention over the last decade. With the rapid development of biotechnology, bioinformatics analysis and publicly available high-throughput RNA-Seq data from the ENCODE consortium, a large numbers of circRNAs have been identified in recent years. CircRNAs can be detectable in body fluids, such as blood and saliva, urine, and breast milk including membrane-bound vesicles, such as exosome, and has widely involved in a variety of cancer-related physiological and pathology processes, including cancer initiation, progression and metastasis, drug resistance and played an important role in the diagnostic and prognostic biomarker and the therapeutic target in human cancer.
<xref rid="CIT0245" ref-type="bibr">245</xref>
<xref rid="CIT0247" ref-type="bibr">247</xref>
It has become increasingly clear that circRNAs regulate gene expression through various actions and play diverse roles in many fields of human cancer biology. Recently, investigating the presence and expression levels of exosomal circRNAs could allow us to discriminate cancer patients from healthy individuals, identifying new potential exosome-based cancer biomarkers.
<xref rid="CIT0248" ref-type="bibr">248</xref>
Exosomal circRNAs are a novel frontier in cancer research and exploring the mysterious connection of exosome and circRNA may provide a vital hint to understand the biological functions of exosomal circRNAs. New studies show that exosomal circRNAs originating from tumor cells or other cells can transfer biological information to the specific cells to achieve the efficient transmission of phenotypical changes and thereby promoting cancer metastasis. Taking advantage of the stability and high specificity of exosomal circRNAs, these molecules might serve as promising cancer biomarkers with early detection and powerful prediction for patients to receive the most suitable therapy and might have potential for monitoring cancer progression or recurrence, and even to successfully develop therapeutic methods for the treatment of cancer although gaps in our current understanding of the connection of circRNAs with exosome still remain, such as the mechanism by which exosomal circRNAs travel in bodily fluids and the roles of exosomal circRNAs in cancer. Upon complete elucidation of exosomal circRNA functionality and molecular mechanisms relevant to human cancer, avenues of new insight will be opened, providing novel therapeutic approaches in malignant tumors.
<xref rid="CIT0011" ref-type="bibr">11</xref>
</p>
<p>CircRNAs may also play a key role in the development of drug resistance. Recently, multiple studies have highlighted the key roles of ncRNAs in chemoresistance of cancer, such as HCC,
<xref rid="CIT0142" ref-type="bibr">142</xref>
,
<xref rid="CIT0249" ref-type="bibr">249</xref>
lung cancer,
<xref rid="CIT0250" ref-type="bibr">250</xref>
,
<xref rid="CIT0251" ref-type="bibr">251</xref>
gastric cancer,
<xref rid="CIT0252" ref-type="bibr">252</xref>
,
<xref rid="CIT0253" ref-type="bibr">253</xref>
breast cancer,
<xref rid="CIT0254" ref-type="bibr">254</xref>
,
<xref rid="CIT0255" ref-type="bibr">255</xref>
multiple myeloma,
<xref rid="CIT0256" ref-type="bibr">256</xref>
acute myeloid leukemia,
<xref rid="CIT0234" ref-type="bibr">234</xref>
prostate cancer,
<xref rid="CIT0257" ref-type="bibr">257</xref>
bladder cancer,
<xref rid="CIT0258" ref-type="bibr">258</xref>
among others. The up-to-date information regarding the role of circRNAs in the resistance of tumors to chemotherapy has been recently summarized with multiple mechanisms, such as modulating various regulatory pathways and processes including the ceRNA regulatory network axis, EMT process, regulation of ABC transporters, apoptosis, autophagy, and CSCs, among others although many physiological processes and biological signaling pathways through which circRNAs are involved in drug resistance still remained unknown.
<xref rid="CIT0259" ref-type="bibr">259</xref>
Thus, more mechanisms of action of chemoresistance-related circRNAs need to be explored in the future.</p>
<p>Importantly, the unique cellular stability and function of circRNAs to sponge miRNA and proteins may also indicate that circRNA is a promising vehicle for targeted drug delivery.
<xref rid="CIT0004" ref-type="bibr">4</xref>
So far, there has been no preclinical data demonstrating that circRNAs alone have been used as targets or therapeutic vectors for cancer treatment, but this direction will likely show promising in the future. The unique cellular stability and capacity of circRNA to sponge miRNA and protein may place circRNA as a promising vehicle for the delivery of cancer therapeutics. It is reasonable to believe that circRNAs will bring a new revolution for the diagnosis and treatment of human cancer in the near future.</p>
<p>However, there are also a number of challenges that need to be addressed. First of all, the expression level of most circRNAs are relative low in human cancer, therefore, we will require more advanced and sensitive technologies and tools to detect the molecular function of specific circRNA in the future.
<xref rid="CIT0010" ref-type="bibr">10</xref>
Secondly, owing to the fact that the majority of circRNA sequence is shared with the mRNA generated from the host gene. Hence, there are some troublesome technical problems need to be solved, such as circRNA quantification and validation, as well as overexpression and silencing strategies.
<xref rid="CIT0010" ref-type="bibr">10</xref>
,
<xref rid="CIT0260" ref-type="bibr">260</xref>
Thirdly, the names of many circRNAs have not yet been standardized. As a result, many independent studies cannot be unified and generalized, which were not conducive to the sustainability and refer ability of circRNA research.
<xref rid="CIT0025" ref-type="bibr">25</xref>
Finally, the study of circRNAs in cancer is still in its infancy, and the functional role and mechanism of circRNA in distinct human cancers remains unclear. The current knowledge of circRNAs in tumorigenesis as well as their potential in diagnostic and prognostic biomarkers and possible therapeutic targets still remained to be elucidated. Thus, the in-depth underlying mechanism of circRNA in cancer biology needs to be explored further. It also speculated that the aberrant expression of circRNAs observed in cancer might also be explained by genetic and/or epigenetic changes of genes involved in their biogenesis. By addressing these issues and challenges with the advanced technology, improved experimental approaches and further research, we believe that circRNA could become a medically valuable diagnostic tool and an effective biological target for various cancers in the near future. Therefore, revealing cancer pathogenesis mechanisms and seeking novel potential diagnostic biomarkers or therapeutic targets will be popular topics in the future.
<xref rid="CIT0261" ref-type="bibr">261</xref>
Future detection of circRNA should also be explored the utilities of some new technologies, such as Oxford Nanopore sequencing, which can potentially provide information on the entire circRNA and could be an important addition to the mammalian transcriptomics toolbox
<xref rid="CIT0262" ref-type="bibr">262</xref>
and the NanoString nCounter Analysis System, which can quantify RNA molecules quantitative data output without amplification and reverse transcription.
<xref rid="CIT0004" ref-type="bibr">4</xref>
,
<xref rid="CIT0263" ref-type="bibr">263</xref>
In conclusion, this study describes major features of circRNAs, summarizes the biological functions and mechanisms of circRNA associated with the occurrence, growth, progression, metastasis, drug resistance of human cancers. CircRNA can be used as potential diagnostic, prognostic biomarker and therapeutic target for personalized therapeutic for human cancer.</p>
</sec>
</body>
<back>
<ack>
<title>Acknowledgments</title>
<p>This work was supported in part by the grants from the National Natural Scientific Foundation of China (Nos. 81703551, 81871863) and the Major Program of National Natural Science Foundation of Guangdong (No. 2018B030311061).</p>
</ack>
<sec id="S0006">
<title>Abbreviations</title>
<p>circRNA, Circular RNA; MDM2, mouse double minute 2; RBPs, RNA-binding proteins; 3ʹUTRs, 3ʹ-untranslated regions; ILF2/3, interleukin enhancer-binding factor 2 and 3 complex; ITGA7, integrin alpha 7; RREB1, RAS-responsive element-binding protein 1; NSCLC, non-small cell lung cancer; NOVA1, NOVA alternative splicing regulator 1; snRNA, U1 small nuclear RNA; ORF, open reading frame; IRES, internal ribosome entry site; STAT3, signal transducer and activator of transcription 3; PRKAA, protein kinase AMP-activated catalytic subunit alpha 2; AMPKα, AMP-activated protein kinase; RBPs, RNA-binding proteins; RBM3, RNA-binding protein 3; SCD, stearoyl-CoA desaturase; RPCs, RNA-protein complexes; CDK2, cyclin-dependent kinase 2; SCML1, sex comb on midleg-like 1; HN, humanin; EMT, epithelial mesenchymal transitioning; RASSF8, ras association domain family 8; EML4-ALK, echinoderm microtubule-associated protein-like 4-anaplastic lymphoma kinase; ceRNA, endogenous RNA; BC, breast cancer; TRAF, TNFα receptor associated factor; TNBC, triple-negative breast cancer; CRC, colorectal cancer; RNA-seq, RNA sequencing; APC2, adenomatous polyposis coli 2; CRR, chemoradiation resistance; ESCC, Esophageal squamous cell carcinoma; TTC17, tetratricopeptide repeat domain 17; mTOR, mammalian target of rapamycin; GC, gastric cancer; SRY sex-determining region Y; SOX4, SRY-related high-mobility group box 4; AGO2, argonaute 2; HuR, human antigen R; HCC, hepatocellular carcinoma; CDK6, cyclin-dependent kinase 6; NK, natural killer; UVRAG, UV radiation resistance associated gene; FGFR2, fibroblast growth factor receptor 2; B4GALT3, β-1, 4-Galactosyltransferase III; CSCs, cancer stem cells; SERPINA4, serpina family A member 4; IL-6R, interleukin-6 receptor; JMJD2C, jumonji domain containing 2c; MACC1, metastasis-associated in colon cancer-1; HGF, hepatocyte growth factor; PTC, papillary thyroid cancer; LMO4, LIM-domain only protein 4; FGFR1, fibroblast growth factor receptor 1; CTNNBIP1, catenin beta interacting protein 1; C8orf4, chromosome 8 open reading frame 4; GATAD2A, GATA zinc finger domain containing 2A; FAT1, FAT atypical cadherin 1; YAP1, yes-associated protein 1; CCNE1, Cyclin E1; PI3KCD, phosphatidylinositol-4, 5-bisphosphate 3-kinase catalytic subunit delta; RAF1, RAF1 proto-oncogene serine/threonine-protein kinase; ALP, alkaline phosphatase; LDH, lactate dehydrogenase; CDR1, cerebellar degeneration-related auto-antigen 1; ADARB2, adenosine deaminase, RNA-specific B2; GO, Gene Ontology; SHPRH, SNF2 histone linker PHD RING helicase; SOCS3, suppressor of cytokine signaling 3; RIP-seq, RNA immunoprecipitation-sequencing; CCAR1, cell cycle and apoptosis regulator 1; FMRP, fragile X mental retardation protein; EGFR, epidermal growth factor receptor; MSC, mesenchymal stem cell; KLF5, krüppel-like factor 5; BCSCs, breast CSCs; KLF-4, Kruppel-like factor-4; ecRNAs, exonic circRNAs; ciRNAs, intronic circRNAs; eIciRNAs, exon-intron circRNAs; LSCC, laryngeal squamous cell carcinoma; TDP cells, CD133+CD44+ cancer stem cells; NF-κB, nuclear factor kappa B; MMP2, matrix metallopeptidase 2; MUC1, mucin 1; hTERT, human telomerase reverse transcriptase; VAMP2, vesicle-associated membrane protein 2; MDM2, miR-647mouse double minute 2; DNAJB6, DnaJ/Hsp40 homolog, subfamily B, member 6; PCa, prostate cancer; HOXB13, homeobox protein B13; TET1, tet methylcytosine dioxygenase 1; WISP1, Wnt1 inducible signaling pathway protein 1; XIAP, X-linked inhibitor of apoptosis protein.</p>
</sec>
<sec id="S0007">
<title>Author Contributions</title>
<p>All authors made substantial contributions to conception and design, acquisition of data, or analysis and interpretation of data; took part in drafting the article or revising it critically for important intellectual content; gave final approval of the version to be published; and agree to be accountable for all aspects of the work.</p>
</sec>
<sec id="S0008" sec-type="COI-statement">
<title>Disclosure</title>
<p>The authors report no conflicts of interest in this work.</p>
</sec>
<ref-list>
<title>References</title>
<ref id="CIT0001">
<label>1.</label>
<mixed-citation publication-type="journal">
<string-name>
<surname>Chen</surname>
<given-names>G</given-names>
</string-name>
,
<string-name>
<surname>Wang</surname>
<given-names>Q</given-names>
</string-name>
,
<string-name>
<surname>Yang</surname>
<given-names>Q</given-names>
</string-name>
, et al.
<article-title>Circular RNAs hsa_circ_0032462, hsa_circ_0028173, hsa_circ_0005909 are predicted to promote CADM1 expression by functioning as miRNAs sponge in human osteosarcoma</article-title>
.
<source>
<italic toggle="yes">PLoS One</italic>
</source>
.
<year>2018</year>
;
<volume>13</volume>
:
<fpage>e0202896</fpage>
. doi:
<pub-id pub-id-type="doi">10.1371/journal.pone.0202896</pub-id>
<pub-id pub-id-type="pmid">30153287</pub-id>
</mixed-citation>
</ref>
<ref id="CIT0002">
<label>2.</label>
<mixed-citation publication-type="journal">
<string-name>
<surname>Liu</surname>
<given-names>X</given-names>
</string-name>
,
<string-name>
<surname>Abraham</surname>
<given-names>JM</given-names>
</string-name>
,
<string-name>
<surname>Cheng</surname>
<given-names>Y</given-names>
</string-name>
, et al.
<article-title>Synthetic circular RNA functions as a miR-21 sponge to suppress gastric carcinoma cell proliferation</article-title>
.
<source>
<italic toggle="yes">Mol Ther Nucleic Acids</italic>
</source>
.
<year>2018</year>
;
<volume>13</volume>
:
<fpage>312</fpage>
<lpage>321</lpage>
. doi:
<pub-id pub-id-type="doi">10.1016/j.omtn.2018.09.010</pub-id>
<pub-id pub-id-type="pmid">30326427</pub-id>
</mixed-citation>
</ref>
<ref id="CIT0003">
<label>3.</label>
<mixed-citation publication-type="journal">
<string-name>
<surname>Du</surname>
<given-names>WW</given-names>
</string-name>
,
<string-name>
<surname>Fang</surname>
<given-names>L</given-names>
</string-name>
,
<string-name>
<surname>Yang</surname>
<given-names>W</given-names>
</string-name>
, et al.
<article-title>Induction of tumor apoptosis through a circular RNA enhancing Foxo3 activity</article-title>
.
<source>
<italic toggle="yes">Cell Death Differ</italic>
</source>
.
<year>2017</year>
;
<volume>24</volume>
:
<fpage>357</fpage>
<lpage>370</lpage>
. doi:
<pub-id pub-id-type="doi">10.1038/cdd.2016.133</pub-id>
<pub-id pub-id-type="pmid">27886165</pub-id>
</mixed-citation>
</ref>
<ref id="CIT0004">
<label>4.</label>
<mixed-citation publication-type="journal">
<string-name>
<surname>Kristensen</surname>
<given-names>LS</given-names>
</string-name>
,
<string-name>
<surname>Hansen</surname>
<given-names>TB</given-names>
</string-name>
,
<string-name>
<surname>Veno</surname>
<given-names>MT</given-names>
</string-name>
,
<string-name>
<surname>Kjems</surname>
<given-names>J</given-names>
</string-name>
.
<article-title>Circular RNAs in cancer: opportunities and challenges in the field</article-title>
.
<source>
<italic toggle="yes">Oncogene</italic>
</source>
.
<year>2018</year>
;
<volume>37</volume>
:
<fpage>555</fpage>
<lpage>565</lpage>
. doi:
<pub-id pub-id-type="doi">10.1038/onc.2017.361</pub-id>
<pub-id pub-id-type="pmid">28991235</pub-id>
</mixed-citation>
</ref>
<ref id="CIT0005">
<label>5.</label>
<mixed-citation publication-type="journal">
<string-name>
<surname>Li</surname>
<given-names>Z</given-names>
</string-name>
,
<string-name>
<surname>Huang</surname>
<given-names>C</given-names>
</string-name>
,
<string-name>
<surname>Bao</surname>
<given-names>C</given-names>
</string-name>
, et al.
<article-title>Exon-intron circular RNAs regulate transcription in the nucleus</article-title>
.
<source>
<italic toggle="yes">Nat Struct Mol Biol</italic>
</source>
.
<year>2015</year>
;
<volume>22</volume>
:
<fpage>256</fpage>
<lpage>264</lpage>
. doi:
<pub-id pub-id-type="doi">10.1038/nsmb.2959</pub-id>
<pub-id pub-id-type="pmid">25664725</pub-id>
</mixed-citation>
</ref>
<ref id="CIT0006">
<label>6.</label>
<mixed-citation publication-type="journal">
<string-name>
<surname>Liu</surname>
<given-names>F</given-names>
</string-name>
,
<string-name>
<surname>Zhang</surname>
<given-names>J</given-names>
</string-name>
,
<string-name>
<surname>Qin</surname>
<given-names>L</given-names>
</string-name>
, et al.
<article-title>Circular RNA EIF6 (Hsa_circ_0060060) sponges miR-144-3p to promote the cisplatin-resistance of human thyroid carcinoma cells by autophagy regulation</article-title>
.
<source>
<italic toggle="yes">Aging (Albany NY)</italic>
</source>
.
<year>2018</year>
;
<volume>10</volume>
:
<fpage>3806</fpage>
<lpage>3820</lpage>
. doi:
<pub-id pub-id-type="doi">10.18632/aging.v10i12</pub-id>
<pub-id pub-id-type="pmid">30540564</pub-id>
</mixed-citation>
</ref>
<ref id="CIT0007">
<label>7.</label>
<mixed-citation publication-type="journal">
<string-name>
<surname>Sanger</surname>
<given-names>HL</given-names>
</string-name>
,
<string-name>
<surname>Klotz</surname>
<given-names>G</given-names>
</string-name>
,
<string-name>
<surname>Riesner</surname>
<given-names>D</given-names>
</string-name>
,
<string-name>
<surname>Gross</surname>
<given-names>HJ</given-names>
</string-name>
,
<string-name>
<surname>Kleinschmidt</surname>
<given-names>AK</given-names>
</string-name>
.
<article-title>Viroids are single-stranded covalently closed circular RNA molecules existing as highly base-paired rod-like structures</article-title>
.
<source>
<italic toggle="yes">Proc Natl Acad Sci U S A</italic>
</source>
.
<year>1976</year>
;
<volume>73</volume>
:
<fpage>3852</fpage>
<lpage>3856</lpage>
. doi:
<pub-id pub-id-type="doi">10.1073/pnas.73.11.3852</pub-id>
<pub-id pub-id-type="pmid">1069269</pub-id>
</mixed-citation>
</ref>
<ref id="CIT0008">
<label>8.</label>
<mixed-citation publication-type="journal">
<string-name>
<surname>Chen</surname>
<given-names>LL</given-names>
</string-name>
.
<article-title>The biogenesis and emerging roles of circular RNAs</article-title>
.
<source>
<italic toggle="yes">Nat Rev Mol Cell Biol</italic>
</source>
.
<year>2016</year>
;
<volume>17</volume>
:
<fpage>205</fpage>
<lpage>211</lpage>
. doi:
<pub-id pub-id-type="doi">10.1038/nrm.2015.32</pub-id>
<pub-id pub-id-type="pmid">26908011</pub-id>
</mixed-citation>
</ref>
<ref id="CIT0009">
<label>9.</label>
<mixed-citation publication-type="journal">
<string-name>
<surname>Pamudurti</surname>
<given-names>NR</given-names>
</string-name>
,
<string-name>
<surname>Bartok</surname>
<given-names>O</given-names>
</string-name>
,
<string-name>
<surname>Jens</surname>
<given-names>M</given-names>
</string-name>
, et al.
<article-title>Translation of circRNAs</article-title>
.
<source>
<italic toggle="yes">Mol Cell</italic>
</source>
.
<year>2017</year>
;
<volume>66</volume>
:
<fpage>9</fpage>
<lpage>21 e7</lpage>
. doi:
<pub-id pub-id-type="doi">10.1016/j.molcel.2017.02.021</pub-id>
<pub-id pub-id-type="pmid">28344080</pub-id>
</mixed-citation>
</ref>
<ref id="CIT0010">
<label>10.</label>
<mixed-citation publication-type="journal">
<string-name>
<surname>Patop</surname>
<given-names>IL</given-names>
</string-name>
,
<string-name>
<surname>Kadener</surname>
<given-names>S</given-names>
</string-name>
.
<article-title>circRNAs in cancer</article-title>
.
<source>
<italic toggle="yes">Curr Opin Genet Dev</italic>
</source>
.
<year>2018</year>
;
<volume>48</volume>
:
<fpage>121</fpage>
<lpage>127</lpage>
. doi:
<pub-id pub-id-type="doi">10.1016/j.gde.2017.11.007</pub-id>
<pub-id pub-id-type="pmid">29245064</pub-id>
</mixed-citation>
</ref>
<ref id="CIT0011">
<label>11.</label>
<mixed-citation publication-type="journal">
<string-name>
<surname>Shi</surname>
<given-names>X</given-names>
</string-name>
,
<string-name>
<surname>Wang</surname>
<given-names>B</given-names>
</string-name>
,
<string-name>
<surname>Feng</surname>
<given-names>X</given-names>
</string-name>
,
<string-name>
<surname>Xu</surname>
<given-names>Y</given-names>
</string-name>
,
<string-name>
<surname>Lu</surname>
<given-names>K</given-names>
</string-name>
,
<string-name>
<surname>Sun</surname>
<given-names>M</given-names>
</string-name>
.
<article-title>circRNAs and exosomes: a mysterious frontier for human cancer</article-title>
.
<source>
<italic toggle="yes">Mol Ther Nucleic Acids</italic>
</source>
.
<year>2019</year>
;
<volume>19</volume>
:
<fpage>384</fpage>
<lpage>392</lpage>
. doi:
<pub-id pub-id-type="doi">10.1016/j.omtn.2019.11.023</pub-id>
<pub-id pub-id-type="pmid">31887549</pub-id>
</mixed-citation>
</ref>
<ref id="CIT0012">
<label>12.</label>
<mixed-citation publication-type="journal">
<string-name>
<surname>Shang</surname>
<given-names>Q</given-names>
</string-name>
,
<string-name>
<surname>Yang</surname>
<given-names>Z</given-names>
</string-name>
,
<string-name>
<surname>Jia</surname>
<given-names>R</given-names>
</string-name>
,
<string-name>
<surname>Ge</surname>
<given-names>S</given-names>
</string-name>
.
<article-title>The novel roles of circRNAs in human cancer</article-title>
.
<source>
<italic toggle="yes">Mol Cancer</italic>
</source>
.
<year>2019</year>
;
<volume>18</volume>
:
<fpage>6</fpage>
. doi:
<pub-id pub-id-type="doi">10.1186/s12943-018-0934-6</pub-id>
<pub-id pub-id-type="pmid">30626395</pub-id>
</mixed-citation>
</ref>
<ref id="CIT0013">
<label>13.</label>
<mixed-citation publication-type="journal">
<string-name>
<surname>Hansen</surname>
<given-names>TB</given-names>
</string-name>
,
<string-name>
<surname>Jensen</surname>
<given-names>TI</given-names>
</string-name>
,
<string-name>
<surname>Clausen</surname>
<given-names>BH</given-names>
</string-name>
, et al.
<article-title>Natural RNA circles function as efficient microRNA sponges</article-title>
.
<source>
<italic toggle="yes">Nature</italic>
</source>
.
<year>2013</year>
;
<volume>495</volume>
:
<fpage>384</fpage>
<lpage>388</lpage>
. doi:
<pub-id pub-id-type="doi">10.1038/nature11993</pub-id>
<pub-id pub-id-type="pmid">23446346</pub-id>
</mixed-citation>
</ref>
<ref id="CIT0014">
<label>14.</label>
<mixed-citation publication-type="journal">
<string-name>
<surname>Xie</surname>
<given-names>R</given-names>
</string-name>
,
<string-name>
<surname>Tang</surname>
<given-names>J</given-names>
</string-name>
,
<string-name>
<surname>Zhu</surname>
<given-names>X</given-names>
</string-name>
,
<string-name>
<surname>Jiang</surname>
<given-names>H</given-names>
</string-name>
.
<article-title>Silencing of hsa_circ_0004771 inhibits proliferation and induces apoptosis in breast cancer through activation of miR-653 by targeting ZEB2 signaling pathway</article-title>
.
<source>
<italic toggle="yes">Biosci Rep</italic>
</source>
.
<year>2019</year>
;
<volume>39</volume>
. doi:
<pub-id pub-id-type="doi">10.1042/BSR20181919</pub-id>
</mixed-citation>
</ref>
<ref id="CIT0015">
<label>15.</label>
<mixed-citation publication-type="journal">
<string-name>
<surname>Yang</surname>
<given-names>R</given-names>
</string-name>
,
<string-name>
<surname>Xing</surname>
<given-names>L</given-names>
</string-name>
,
<string-name>
<surname>Zheng</surname>
<given-names>X</given-names>
</string-name>
,
<string-name>
<surname>Sun</surname>
<given-names>Y</given-names>
</string-name>
,
<string-name>
<surname>Wang</surname>
<given-names>X</given-names>
</string-name>
,
<string-name>
<surname>Chen</surname>
<given-names>J</given-names>
</string-name>
.
<article-title>The circRNA circAGFG1 acts as a sponge of miR-195-5p to promote triple-negative breast cancer progression through regulating CCNE1 expression</article-title>
.
<source>
<italic toggle="yes">Mol Cancer</italic>
</source>
.
<year>2019</year>
;
<volume>18</volume>
:
<fpage>4</fpage>
. doi:
<pub-id pub-id-type="doi">10.1186/s12943-018-0933-7</pub-id>
<pub-id pub-id-type="pmid">30621700</pub-id>
</mixed-citation>
</ref>
<ref id="CIT0016">
<label>16.</label>
<mixed-citation publication-type="journal">
<string-name>
<surname>Guarnerio</surname>
<given-names>J</given-names>
</string-name>
,
<string-name>
<surname>Zhang</surname>
<given-names>Y</given-names>
</string-name>
,
<string-name>
<surname>Cheloni</surname>
<given-names>G</given-names>
</string-name>
, et al.
<article-title>Intragenic antagonistic roles of protein and circRNA in tumorigenesis</article-title>
.
<source>
<italic toggle="yes">Cell Res</italic>
</source>
.
<year>2019</year>
;
<volume>29</volume>
:
<fpage>628</fpage>
<lpage>640</lpage>
. doi:
<pub-id pub-id-type="doi">10.1038/s41422-019-0192-1</pub-id>
<pub-id pub-id-type="pmid">31209250</pub-id>
</mixed-citation>
</ref>
<ref id="CIT0017">
<label>17.</label>
<mixed-citation publication-type="journal">
<string-name>
<surname>Li</surname>
<given-names>X</given-names>
</string-name>
,
<string-name>
<surname>Wang</surname>
<given-names>J</given-names>
</string-name>
,
<string-name>
<surname>Zhang</surname>
<given-names>C</given-names>
</string-name>
, et al.
<article-title>Circular RNA circITGA7 inhibits colorectal cancer growth and metastasis by modulating the Ras pathway and upregulating transcription of its host gene ITGA7</article-title>
.
<source>
<italic toggle="yes">J Pathol</italic>
</source>
.
<year>2018</year>
;
<volume>246</volume>
:
<fpage>166</fpage>
<lpage>179</lpage>
. doi:
<pub-id pub-id-type="doi">10.1002/path.2018.246.issue-2</pub-id>
<pub-id pub-id-type="pmid">29943828</pub-id>
</mixed-citation>
</ref>
<ref id="CIT0018">
<label>18.</label>
<mixed-citation publication-type="journal">
<string-name>
<surname>Qin</surname>
<given-names>M</given-names>
</string-name>
,
<string-name>
<surname>Wei</surname>
<given-names>G</given-names>
</string-name>
,
<string-name>
<surname>Sun</surname>
<given-names>X</given-names>
</string-name>
.
<article-title>Circ-UBR5: an exonic circular RNA and novel small nuclear RNA involved in RNA splicing</article-title>
.
<source>
<italic toggle="yes">Biochem Biophys Res Commun</italic>
</source>
.
<year>2018</year>
;
<volume>503</volume>
:
<fpage>1027</fpage>
<lpage>1034</lpage>
. doi:
<pub-id pub-id-type="doi">10.1016/j.bbrc.2018.06.112</pub-id>
<pub-id pub-id-type="pmid">29944885</pub-id>
</mixed-citation>
</ref>
<ref id="CIT0019">
<label>19.</label>
<mixed-citation publication-type="journal">
<string-name>
<surname>Li</surname>
<given-names>YJ</given-names>
</string-name>
,
<string-name>
<surname>Lei</surname>
<given-names>YH</given-names>
</string-name>
,
<string-name>
<surname>Yao</surname>
<given-names>N</given-names>
</string-name>
, et al.
<article-title>Autophagy and multidrug resistance in cancer</article-title>
.
<source>
<italic toggle="yes">Chin J Cancer</italic>
</source>
.
<year>2017</year>
;
<volume>36</volume>
:
<fpage>52</fpage>
. doi:
<pub-id pub-id-type="doi">10.1186/s40880-017-0219-2</pub-id>
<pub-id pub-id-type="pmid">28646911</pub-id>
</mixed-citation>
</ref>
<ref id="CIT0020">
<label>20.</label>
<mixed-citation publication-type="journal">
<string-name>
<surname>Mowers</surname>
<given-names>EE</given-names>
</string-name>
,
<string-name>
<surname>Sharifi</surname>
<given-names>MN</given-names>
</string-name>
,
<string-name>
<surname>Macleod</surname>
<given-names>KF</given-names>
</string-name>
.
<article-title>Autophagy in cancer metastasis</article-title>
.
<source>
<italic toggle="yes">Oncogene</italic>
</source>
.
<year>2017</year>
;
<volume>36</volume>
:
<fpage>1619</fpage>
<lpage>1630</lpage>
. doi:
<pub-id pub-id-type="doi">10.1038/onc.2016.333</pub-id>
<pub-id pub-id-type="pmid">27593926</pub-id>
</mixed-citation>
</ref>
<ref id="CIT0021">
<label>21.</label>
<mixed-citation publication-type="journal">
<string-name>
<surname>Chen</surname>
<given-names>X</given-names>
</string-name>
,
<string-name>
<surname>Mao</surname>
<given-names>R</given-names>
</string-name>
,
<string-name>
<surname>Su</surname>
<given-names>W</given-names>
</string-name>
, et al.
<article-title>Circular RNA circHIPK3 modulates autophagy via MIR124-3p-STAT3-PRKAA/AMPKalpha signaling in STK11 mutant lung cancer</article-title>
.
<source>
<italic toggle="yes">Autophagy</italic>
</source>
.
<year>2019</year>
;
<fpage>1</fpage>
<lpage>13</lpage>
. doi:
<pub-id pub-id-type="doi">10.1080/15548627.2019.1634945</pub-id>
</mixed-citation>
</ref>
<ref id="CIT0022">
<label>22.</label>
<mixed-citation publication-type="journal">
<string-name>
<surname>Chi</surname>
<given-names>G</given-names>
</string-name>
,
<string-name>
<surname>Xu</surname>
<given-names>D</given-names>
</string-name>
,
<string-name>
<surname>Zhang</surname>
<given-names>B</given-names>
</string-name>
,
<string-name>
<surname>Yang</surname>
<given-names>F</given-names>
</string-name>
.
<article-title>Matrine induces apoptosis and autophagy of glioma cell line U251 by regulation of circRNA-104075/BCL-9</article-title>
.
<source>
<italic toggle="yes">Chem Biol Interact</italic>
</source>
.
<year>2019</year>
;
<volume>308</volume>
:
<fpage>198</fpage>
<lpage>205</lpage>
. doi:
<pub-id pub-id-type="doi">10.1016/j.cbi.2019.05.030</pub-id>
<pub-id pub-id-type="pmid">31112718</pub-id>
</mixed-citation>
</ref>
<ref id="CIT0023">
<label>23.</label>
<mixed-citation publication-type="journal">
<string-name>
<surname>Zang</surname>
<given-names>J</given-names>
</string-name>
,
<string-name>
<surname>Lu</surname>
<given-names>D</given-names>
</string-name>
,
<string-name>
<surname>Xu</surname>
<given-names>A</given-names>
</string-name>
.
<article-title>The interaction of circRNAs and RNA binding proteins: an important part of circRNA maintenance and function</article-title>
.
<source>
<italic toggle="yes">J Neurosci Res</italic>
</source>
.
<year>2020</year>
;
<volume>98</volume>
(
<issue>1</issue>
):
<fpage>87</fpage>
<lpage>97</lpage>
.
<pub-id pub-id-type="pmid">30575990</pub-id>
</mixed-citation>
</ref>
<ref id="CIT0024">
<label>24.</label>
<mixed-citation publication-type="journal">
<string-name>
<surname>Hentze</surname>
<given-names>MW</given-names>
</string-name>
,
<string-name>
<surname>Preiss</surname>
<given-names>T</given-names>
</string-name>
.
<article-title>Circular RNAs: splicing’s enigma variations</article-title>
.
<source>
<italic toggle="yes">EMBO J</italic>
</source>
.
<year>2013</year>
;
<volume>32</volume>
:
<fpage>923</fpage>
<lpage>925</lpage>
. doi:
<pub-id pub-id-type="doi">10.1038/emboj.2013.53</pub-id>
<pub-id pub-id-type="pmid">23463100</pub-id>
</mixed-citation>
</ref>
<ref id="CIT0025">
<label>25.</label>
<mixed-citation publication-type="journal">
<string-name>
<surname>Xu</surname>
<given-names>S</given-names>
</string-name>
,
<string-name>
<surname>Zhou</surname>
<given-names>L</given-names>
</string-name>
,
<string-name>
<surname>Ponnusamy</surname>
<given-names>M</given-names>
</string-name>
, et al.
<article-title>A comprehensive review of circRNA: from purification and identification to disease marker potential</article-title>
.
<source>
<italic toggle="yes">PeerJ</italic>
</source>
.
<year>2018</year>
;
<volume>6</volume>
:
<fpage>e5503</fpage>
. doi:
<pub-id pub-id-type="doi">10.7717/peerj.5503</pub-id>
<pub-id pub-id-type="pmid">30155370</pub-id>
</mixed-citation>
</ref>
<ref id="CIT0026">
<label>26.</label>
<mixed-citation publication-type="journal">
<string-name>
<surname>Dong</surname>
<given-names>W</given-names>
</string-name>
,
<string-name>
<surname>Dai</surname>
<given-names>ZH</given-names>
</string-name>
,
<string-name>
<surname>Liu</surname>
<given-names>FC</given-names>
</string-name>
, et al.
<article-title>The RNA-binding protein RBM3 promotes cell proliferation in hepatocellular carcinoma by regulating circular RNA SCD-circRNA 2 production</article-title>
.
<source>
<italic toggle="yes">EBioMedicine</italic>
</source>
.
<year>2019</year>
. doi:
<pub-id pub-id-type="doi">10.1016/j.ebiom.2019.06.030</pub-id>
</mixed-citation>
</ref>
<ref id="CIT0027">
<label>27.</label>
<mixed-citation publication-type="journal">
<string-name>
<surname>Conn</surname>
<given-names>SJ</given-names>
</string-name>
,
<string-name>
<surname>Pillman</surname>
<given-names>KA</given-names>
</string-name>
,
<string-name>
<surname>Toubia</surname>
<given-names>J</given-names>
</string-name>
, et al.
<article-title>The RNA binding protein quaking regulates formation of circRNAs</article-title>
.
<source>
<italic toggle="yes">Cell</italic>
</source>
.
<year>2015</year>
;
<volume>160</volume>
:
<fpage>1125</fpage>
<lpage>1134</lpage>
. doi:
<pub-id pub-id-type="doi">10.1016/j.cell.2015.02.014</pub-id>
<pub-id pub-id-type="pmid">25768908</pub-id>
</mixed-citation>
</ref>
<ref id="CIT0028">
<label>28.</label>
<mixed-citation publication-type="journal">
<string-name>
<surname>Khan</surname>
<given-names>MA</given-names>
</string-name>
,
<string-name>
<surname>Reckman</surname>
<given-names>YJ</given-names>
</string-name>
,
<string-name>
<surname>Aufiero</surname>
<given-names>S</given-names>
</string-name>
, et al.
<article-title>RBM20 regulates circular RNA production from the titin gene</article-title>
.
<source>
<italic toggle="yes">Circ Res</italic>
</source>
.
<year>2016</year>
;
<volume>119</volume>
:
<fpage>996</fpage>
<lpage>1003</lpage>
. doi:
<pub-id pub-id-type="doi">10.1161/CIRCRESAHA.116.309568</pub-id>
<pub-id pub-id-type="pmid">27531932</pub-id>
</mixed-citation>
</ref>
<ref id="CIT0029">
<label>29.</label>
<mixed-citation publication-type="journal">
<string-name>
<surname>Du</surname>
<given-names>WW</given-names>
</string-name>
,
<string-name>
<surname>Yang</surname>
<given-names>W</given-names>
</string-name>
,
<string-name>
<surname>Liu</surname>
<given-names>E</given-names>
</string-name>
,
<string-name>
<surname>Yang</surname>
<given-names>Z</given-names>
</string-name>
,
<string-name>
<surname>Dhaliwal</surname>
<given-names>P</given-names>
</string-name>
,
<string-name>
<surname>Yang</surname>
<given-names>BB</given-names>
</string-name>
.
<article-title>Foxo3 circular RNA retards cell cycle progression via forming ternary complexes with p21 and CDK2</article-title>
.
<source>
<italic toggle="yes">Nucleic Acids Res</italic>
</source>
.
<year>2016</year>
;
<volume>44</volume>
:
<fpage>2846</fpage>
<lpage>2858</lpage>
. doi:
<pub-id pub-id-type="doi">10.1093/nar/gkw027</pub-id>
<pub-id pub-id-type="pmid">26861625</pub-id>
</mixed-citation>
</ref>
<ref id="CIT0030">
<label>30.</label>
<mixed-citation publication-type="journal">
<string-name>
<surname>Ji</surname>
<given-names>X</given-names>
</string-name>
,
<string-name>
<surname>Bosse</surname>
<given-names>Y</given-names>
</string-name>
,
<string-name>
<surname>Landi</surname>
<given-names>MT</given-names>
</string-name>
, et al.
<article-title>Identification of susceptibility pathways for the role of chromosome 15q25.1 in modifying lung cancer risk</article-title>
.
<source>
<italic toggle="yes">Nat Commun</italic>
</source>
.
<year>2018</year>
;
<volume>9</volume>
:
<fpage>3221</fpage>
. doi:
<pub-id pub-id-type="doi">10.1038/s41467-018-05074-y</pub-id>
<pub-id pub-id-type="pmid">30104567</pub-id>
</mixed-citation>
</ref>
<ref id="CIT0031">
<label>31.</label>
<mixed-citation publication-type="journal">
<string-name>
<surname>Chen</surname>
<given-names>Y</given-names>
</string-name>
,
<string-name>
<surname>Wei</surname>
<given-names>S</given-names>
</string-name>
,
<string-name>
<surname>Wang</surname>
<given-names>X</given-names>
</string-name>
,
<string-name>
<surname>Zhu</surname>
<given-names>X</given-names>
</string-name>
,
<string-name>
<surname>Han</surname>
<given-names>S</given-names>
</string-name>
.
<article-title>Progress in research on the role of circular RNAs in lung cancer</article-title>
.
<source>
<italic toggle="yes">World J Surg Oncol</italic>
</source>
.
<year>2018</year>
;
<volume>16</volume>
:
<fpage>215</fpage>
. doi:
<pub-id pub-id-type="doi">10.1186/s12957-018-1515-2</pub-id>
<pub-id pub-id-type="pmid">30400981</pub-id>
</mixed-citation>
</ref>
<ref id="CIT0032">
<label>32.</label>
<mixed-citation publication-type="journal">
<string-name>
<surname>Liu</surname>
<given-names>XX</given-names>
</string-name>
,
<string-name>
<surname>Yang</surname>
<given-names>YE</given-names>
</string-name>
,
<string-name>
<surname>Liu</surname>
<given-names>X</given-names>
</string-name>
, et al.
<article-title>A two-circular RNA signature as a noninvasive diagnostic biomarker for lung adenocarcinoma</article-title>
.
<source>
<italic toggle="yes">J Transl Med</italic>
</source>
.
<year>2019</year>
;
<volume>17</volume>
:
<fpage>50</fpage>
. doi:
<pub-id pub-id-type="doi">10.1186/s12967-019-1800-z</pub-id>
<pub-id pub-id-type="pmid">30777071</pub-id>
</mixed-citation>
</ref>
<ref id="CIT0033">
<label>33.</label>
<mixed-citation publication-type="journal">
<string-name>
<surname>Ma</surname>
<given-names>Y</given-names>
</string-name>
,
<string-name>
<surname>Zhang</surname>
<given-names>X</given-names>
</string-name>
,
<string-name>
<surname>Wang</surname>
<given-names>YZ</given-names>
</string-name>
,
<string-name>
<surname>Tian</surname>
<given-names>H</given-names>
</string-name>
,
<string-name>
<surname>Xu</surname>
<given-names>S</given-names>
</string-name>
.
<article-title>Research progress of circular RNAs in lung cancer</article-title>
.
<source>
<italic toggle="yes">Cancer Biol Ther</italic>
</source>
.
<year>2019</year>
;
<volume>20</volume>
:
<fpage>123</fpage>
<lpage>129</lpage>
. doi:
<pub-id pub-id-type="doi">10.1080/15384047.2018.1523848</pub-id>
<pub-id pub-id-type="pmid">30403899</pub-id>
</mixed-citation>
</ref>
<ref id="CIT0034">
<label>34.</label>
<mixed-citation publication-type="journal">
<string-name>
<surname>Cheng</surname>
<given-names>XY</given-names>
</string-name>
,
<string-name>
<surname>Shen</surname>
<given-names>H</given-names>
</string-name>
.
<article-title>Circular RNA in lung cancer research: biogenesis, functions and roles</article-title>
.
<source>
<italic toggle="yes">Zhongguo Fei Ai Za Zhi</italic>
</source>
.
<year>2018</year>
;
<volume>21</volume>
:
<fpage>50</fpage>
<lpage>56</lpage>
. doi:
<pub-id pub-id-type="doi">10.3779/j.issn.1009-3419.2018.01.07</pub-id>
<pub-id pub-id-type="pmid">29357973</pub-id>
</mixed-citation>
</ref>
<ref id="CIT0035">
<label>35.</label>
<mixed-citation publication-type="journal">
<string-name>
<surname>Ding</surname>
<given-names>X</given-names>
</string-name>
,
<string-name>
<surname>Zhang</surname>
<given-names>S</given-names>
</string-name>
,
<string-name>
<surname>Li</surname>
<given-names>X</given-names>
</string-name>
, et al.
<article-title>Profiling expression of coding genes, long noncoding RNA, and circular RNA in lung adenocarcinoma by ribosomal RNA-depleted RNA sequencing</article-title>
.
<source>
<italic toggle="yes">FEBS Open Bio</italic>
</source>
.
<year>2018</year>
;
<volume>8</volume>
:
<fpage>544</fpage>
<lpage>555</lpage>
. doi:
<pub-id pub-id-type="doi">10.1002/feb4.2018.8.issue-4</pub-id>
</mixed-citation>
</ref>
<ref id="CIT0036">
<label>36.</label>
<mixed-citation publication-type="journal">
<string-name>
<surname>Hu</surname>
<given-names>W</given-names>
</string-name>
,
<string-name>
<surname>Bi</surname>
<given-names>ZY</given-names>
</string-name>
,
<string-name>
<surname>Chen</surname>
<given-names>ZL</given-names>
</string-name>
, et al.
<article-title>Emerging landscape of circular RNAs in lung cancer</article-title>
.
<source>
<italic toggle="yes">Cancer Lett</italic>
</source>
.
<year>2018</year>
;
<volume>427</volume>
:
<fpage>18</fpage>
<lpage>27</lpage>
. doi:
<pub-id pub-id-type="doi">10.1016/j.canlet.2018.04.006</pub-id>
<pub-id pub-id-type="pmid">29653267</pub-id>
</mixed-citation>
</ref>
<ref id="CIT0037">
<label>37.</label>
<mixed-citation publication-type="journal">
<string-name>
<surname>Zhao</surname>
<given-names>J</given-names>
</string-name>
,
<string-name>
<surname>Li</surname>
<given-names>L</given-names>
</string-name>
,
<string-name>
<surname>Wang</surname>
<given-names>Q</given-names>
</string-name>
,
<string-name>
<surname>Han</surname>
<given-names>H</given-names>
</string-name>
,
<string-name>
<surname>Zhan</surname>
<given-names>Q</given-names>
</string-name>
,
<string-name>
<surname>Xu</surname>
<given-names>M</given-names>
</string-name>
.
<article-title>CircRNA expression profile in early-stage lung adenocarcinoma patients</article-title>
.
<source>
<italic toggle="yes">Cell Physiol Biochem</italic>
</source>
.
<year>2017</year>
;
<volume>44</volume>
:
<fpage>2138</fpage>
<lpage>2146</lpage>
. doi:
<pub-id pub-id-type="doi">10.1159/000485953</pub-id>
<pub-id pub-id-type="pmid">29241190</pub-id>
</mixed-citation>
</ref>
<ref id="CIT0038">
<label>38.</label>
<mixed-citation publication-type="journal">
<string-name>
<surname>Nan</surname>
<given-names>A</given-names>
</string-name>
,
<string-name>
<surname>Chen</surname>
<given-names>L</given-names>
</string-name>
,
<string-name>
<surname>Zhang</surname>
<given-names>N</given-names>
</string-name>
, et al.
<article-title>Circular RNA circNOL10 inhibits lung cancer development by promoting SCLM1-mediated transcriptional regulation of the humanin polypeptide family</article-title>
.
<source>
<italic toggle="yes">Adv Sci (Weinh)</italic>
</source>
.
<year>2019</year>
;
<volume>6</volume>
:
<fpage>1800654</fpage>
. doi:
<pub-id pub-id-type="doi">10.1002/advs.201800654</pub-id>
<pub-id pub-id-type="pmid">30693177</pub-id>
</mixed-citation>
</ref>
<ref id="CIT0039">
<label>39.</label>
<mixed-citation publication-type="journal">
<string-name>
<surname>Wei</surname>
<given-names>S</given-names>
</string-name>
,
<string-name>
<surname>Zheng</surname>
<given-names>Y</given-names>
</string-name>
,
<string-name>
<surname>Jiang</surname>
<given-names>Y</given-names>
</string-name>
, et al.
<article-title>The circRNA circPTPRA suppresses epithelial-mesenchymal transitioning and metastasis of NSCLC cells by sponging miR-96-5p</article-title>
.
<source>
<italic toggle="yes">EBioMedicine</italic>
</source>
.
<year>2019</year>
. doi:
<pub-id pub-id-type="doi">10.1016/j.ebiom.2019.05.032</pub-id>
</mixed-citation>
</ref>
<ref id="CIT0040">
<label>40.</label>
<mixed-citation publication-type="journal">
<string-name>
<surname>Chen</surname>
<given-names>D</given-names>
</string-name>
,
<string-name>
<surname>Ma</surname>
<given-names>W</given-names>
</string-name>
,
<string-name>
<surname>Ke</surname>
<given-names>Z</given-names>
</string-name>
,
<string-name>
<surname>Xie</surname>
<given-names>F</given-names>
</string-name>
.
<article-title>CircRNA hsa_circ_100395 regulates miR-1228/TCF21 pathway to inhibit lung cancer progression</article-title>
.
<source>
<italic toggle="yes">Cell Cycle</italic>
</source>
.
<year>2018</year>
;
<volume>17</volume>
:
<fpage>2080</fpage>
<lpage>2090</lpage>
. doi:
<pub-id pub-id-type="doi">10.1080/15384101.2018.1515553</pub-id>
<pub-id pub-id-type="pmid">30176158</pub-id>
</mixed-citation>
</ref>
<ref id="CIT0041">
<label>41.</label>
<mixed-citation publication-type="journal">
<string-name>
<surname>Han</surname>
<given-names>J</given-names>
</string-name>
,
<string-name>
<surname>Zhao</surname>
<given-names>G</given-names>
</string-name>
,
<string-name>
<surname>Ma</surname>
<given-names>X</given-names>
</string-name>
, et al.
<article-title>CircRNA circ-BANP-mediated miR-503/LARP1 signaling contributes to lung cancer progression</article-title>
.
<source>
<italic toggle="yes">Biochem Biophys Res Commun</italic>
</source>
.
<year>2018</year>
;
<volume>503</volume>
:
<fpage>2429</fpage>
<lpage>2435</lpage>
. doi:
<pub-id pub-id-type="doi">10.1016/j.bbrc.2018.06.172</pub-id>
<pub-id pub-id-type="pmid">29969631</pub-id>
</mixed-citation>
</ref>
<ref id="CIT0042">
<label>42.</label>
<mixed-citation publication-type="journal">
<string-name>
<surname>Li</surname>
<given-names>Y</given-names>
</string-name>
,
<string-name>
<surname>Hu</surname>
<given-names>J</given-names>
</string-name>
,
<string-name>
<surname>Li</surname>
<given-names>L</given-names>
</string-name>
, et al.
<article-title>Upregulated circular RNA circ_0016760 indicates unfavorable prognosis in NSCLC and promotes cell progression through miR-1287/GAGE1 axis</article-title>
.
<source>
<italic toggle="yes">Biochem Biophys Res Commun</italic>
</source>
.
<year>2018</year>
;
<volume>503</volume>
:
<fpage>2089</fpage>
<lpage>2094</lpage>
. doi:
<pub-id pub-id-type="doi">10.1016/j.bbrc.2018.07.164</pub-id>
<pub-id pub-id-type="pmid">30103946</pub-id>
</mixed-citation>
</ref>
<ref id="CIT0043">
<label>43.</label>
<mixed-citation publication-type="journal">
<string-name>
<surname>Liu</surname>
<given-names>W</given-names>
</string-name>
,
<string-name>
<surname>Ma</surname>
<given-names>W</given-names>
</string-name>
,
<string-name>
<surname>Yuan</surname>
<given-names>Y</given-names>
</string-name>
,
<string-name>
<surname>Zhang</surname>
<given-names>Y</given-names>
</string-name>
,
<string-name>
<surname>Sun</surname>
<given-names>S</given-names>
</string-name>
.
<article-title>Circular RNA hsa_circRNA_103809 promotes lung cancer progression via facilitating ZNF121-dependent MYC expression by sequestering miR-4302</article-title>
.
<source>
<italic toggle="yes">Biochem Biophys Res Commun</italic>
</source>
.
<year>2018</year>
;
<volume>500</volume>
:
<fpage>846</fpage>
<lpage>851</lpage>
. doi:
<pub-id pub-id-type="doi">10.1016/j.bbrc.2018.04.172</pub-id>
<pub-id pub-id-type="pmid">29698681</pub-id>
</mixed-citation>
</ref>
<ref id="CIT0044">
<label>44.</label>
<mixed-citation publication-type="journal">
<string-name>
<surname>Tian</surname>
<given-names>X</given-names>
</string-name>
,
<string-name>
<surname>Zhang</surname>
<given-names>L</given-names>
</string-name>
,
<string-name>
<surname>Jiao</surname>
<given-names>Y</given-names>
</string-name>
,
<string-name>
<surname>Chen</surname>
<given-names>J</given-names>
</string-name>
,
<string-name>
<surname>Shan</surname>
<given-names>Y</given-names>
</string-name>
,
<string-name>
<surname>Yang</surname>
<given-names>W</given-names>
</string-name>
.
<article-title>CircABCB10 promotes nonsmall cell lung cancer cell proliferation and migration by regulating the miR-1252/FOXR2 axis</article-title>
.
<source>
<italic toggle="yes">J Cell Biochem</italic>
</source>
.
<year>2019</year>
;
<volume>120</volume>
:
<fpage>3765</fpage>
<lpage>3772</lpage>
. doi:
<pub-id pub-id-type="doi">10.1002/jcb.v120.3</pub-id>
<pub-id pub-id-type="pmid">30417418</pub-id>
</mixed-citation>
</ref>
<ref id="CIT0045">
<label>45.</label>
<mixed-citation publication-type="journal">
<string-name>
<surname>Yao</surname>
<given-names>Y</given-names>
</string-name>
,
<string-name>
<surname>Hua</surname>
<given-names>Q</given-names>
</string-name>
,
<string-name>
<surname>Zhou</surname>
<given-names>Y</given-names>
</string-name>
.
<article-title>CircRNA has_circ_0006427 suppresses the progression of lung adenocarcinoma by regulating miR-6783-3p/DKK1 axis and inactivating Wnt/beta-catenin signaling pathway</article-title>
.
<source>
<italic toggle="yes">Biochem Biophys Res Commun</italic>
</source>
.
<year>2019</year>
;
<volume>508</volume>
:
<fpage>37</fpage>
<lpage>45</lpage>
. doi:
<pub-id pub-id-type="doi">10.1016/j.bbrc.2018.11.079</pub-id>
<pub-id pub-id-type="pmid">30470570</pub-id>
</mixed-citation>
</ref>
<ref id="CIT0046">
<label>46.</label>
<mixed-citation publication-type="journal">
<string-name>
<surname>Zhao</surname>
<given-names>F</given-names>
</string-name>
,
<string-name>
<surname>Han</surname>
<given-names>Y</given-names>
</string-name>
,
<string-name>
<surname>Liu</surname>
<given-names>Z</given-names>
</string-name>
,
<string-name>
<surname>Zhao</surname>
<given-names>Z</given-names>
</string-name>
,
<string-name>
<surname>Li</surname>
<given-names>Z</given-names>
</string-name>
,
<string-name>
<surname>Jia</surname>
<given-names>K</given-names>
</string-name>
.
<article-title>circFADS2 regulates lung cancer cells proliferation and invasion via acting as a sponge of miR-498</article-title>
.
<source>
<italic toggle="yes">Biosci Rep</italic>
</source>
.
<year>2018</year>
;
<volume>38</volume>
. doi:
<pub-id pub-id-type="doi">10.1042/BSR20180570</pub-id>
</mixed-citation>
</ref>
<ref id="CIT0047">
<label>47.</label>
<mixed-citation publication-type="journal">
<string-name>
<surname>Chang</surname>
<given-names>H</given-names>
</string-name>
,
<string-name>
<surname>Qu</surname>
<given-names>J</given-names>
</string-name>
,
<string-name>
<surname>Wang</surname>
<given-names>J</given-names>
</string-name>
,
<string-name>
<surname>Liang</surname>
<given-names>X</given-names>
</string-name>
,
<string-name>
<surname>Sun</surname>
<given-names>W</given-names>
</string-name>
.
<article-title>Circular RNA circ_0026134 regulates non-small cell lung cancer cell proliferation and invasion via sponging miR-1256 and miR-1287</article-title>
.
<source>
<italic toggle="yes">Biomed Pharmacother</italic>
</source>
.
<year>2019</year>
;
<volume>112</volume>
:
<fpage>108743</fpage>
. doi:
<pub-id pub-id-type="doi">10.1016/j.biopha.2019.108743</pub-id>
<pub-id pub-id-type="pmid">30970529</pub-id>
</mixed-citation>
</ref>
<ref id="CIT0048">
<label>48.</label>
<mixed-citation publication-type="journal">
<string-name>
<surname>Liu</surname>
<given-names>G</given-names>
</string-name>
,
<string-name>
<surname>Shi</surname>
<given-names>H</given-names>
</string-name>
,
<string-name>
<surname>Deng</surname>
<given-names>L</given-names>
</string-name>
, et al.
<article-title>Circular RNA circ-FOXM1 facilitates cell progression as ceRNA to target PPDPF and MACC1 by sponging miR-1304-5p in non-small cell lung cancer</article-title>
.
<source>
<italic toggle="yes">Biochem Biophys Res Commun</italic>
</source>
.
<year>2019</year>
;
<volume>513</volume>
:
<fpage>207</fpage>
<lpage>212</lpage>
. doi:
<pub-id pub-id-type="doi">10.1016/j.bbrc.2019.03.213</pub-id>
<pub-id pub-id-type="pmid">30954221</pub-id>
</mixed-citation>
</ref>
<ref id="CIT0049">
<label>49.</label>
<mixed-citation publication-type="journal">
<string-name>
<surname>Wang</surname>
<given-names>T</given-names>
</string-name>
,
<string-name>
<surname>Wang</surname>
<given-names>X</given-names>
</string-name>
,
<string-name>
<surname>Du</surname>
<given-names>Q</given-names>
</string-name>
, et al.
<article-title>The circRNA circP4HB promotes NSCLC aggressiveness and metastasis by sponging miR-133a-5p</article-title>
.
<source>
<italic toggle="yes">Biochem Biophys Res Commun</italic>
</source>
.
<year>2019</year>
;
<volume>513</volume>
:
<fpage>904</fpage>
<lpage>911</lpage>
. doi:
<pub-id pub-id-type="doi">10.1016/j.bbrc.2019.04.108</pub-id>
<pub-id pub-id-type="pmid">31005252</pub-id>
</mixed-citation>
</ref>
<ref id="CIT0050">
<label>50.</label>
<mixed-citation publication-type="journal">
<string-name>
<surname>Zhang</surname>
<given-names>B</given-names>
</string-name>
,
<string-name>
<surname>Chen</surname>
<given-names>M</given-names>
</string-name>
,
<string-name>
<surname>Jiang</surname>
<given-names>N</given-names>
</string-name>
,
<string-name>
<surname>Shi</surname>
<given-names>K</given-names>
</string-name>
,
<string-name>
<surname>Qian</surname>
<given-names>R</given-names>
</string-name>
.
<article-title>A regulatory circuit of circ-MTO1/miR-17/QKI-5 inhibits the proliferation of lung adenocarcinoma</article-title>
.
<source>
<italic toggle="yes">Cancer Biol Ther</italic>
</source>
.
<year>2019</year>
;
<volume>20</volume>
(
<issue>8</issue>
):
<fpage>1</fpage>
<lpage>9</lpage>
.
<pub-id pub-id-type="pmid">30188759</pub-id>
</mixed-citation>
</ref>
<ref id="CIT0051">
<label>51.</label>
<mixed-citation publication-type="journal">
<string-name>
<surname>An</surname>
<given-names>J</given-names>
</string-name>
,
<string-name>
<surname>Shi</surname>
<given-names>H</given-names>
</string-name>
,
<string-name>
<surname>Zhang</surname>
<given-names>N</given-names>
</string-name>
,
<string-name>
<surname>Song</surname>
<given-names>S</given-names>
</string-name>
.
<article-title>Elevation of circular RNA circ_0003645 forecasts unfavorable prognosis and facilitates cell progression via miR-1179/TMEM14A pathway in non-small cell lung cancer</article-title>
.
<source>
<italic toggle="yes">Biochem Biophys Res Commun</italic>
</source>
.
<year>2019</year>
;
<volume>511</volume>
:
<fpage>921</fpage>
<lpage>925</lpage>
. doi:
<pub-id pub-id-type="doi">10.1016/j.bbrc.2019.03.011</pub-id>
<pub-id pub-id-type="pmid">30853176</pub-id>
</mixed-citation>
</ref>
<ref id="CIT0052">
<label>52.</label>
<mixed-citation publication-type="journal">
<string-name>
<surname>Ma</surname>
<given-names>X</given-names>
</string-name>
,
<string-name>
<surname>Yang</surname>
<given-names>X</given-names>
</string-name>
,
<string-name>
<surname>Bao</surname>
<given-names>W</given-names>
</string-name>
, et al.
<article-title>Circular RNA circMAN2B2 facilitates lung cancer cell proliferation and invasion via miR-1275/FOXK1 axis</article-title>
.
<source>
<italic toggle="yes">Biochem Biophys Res Commun</italic>
</source>
.
<year>2018</year>
;
<volume>498</volume>
:
<fpage>1009</fpage>
<lpage>1015</lpage>
. doi:
<pub-id pub-id-type="doi">10.1016/j.bbrc.2018.03.105</pub-id>
<pub-id pub-id-type="pmid">29550475</pub-id>
</mixed-citation>
</ref>
<ref id="CIT0053">
<label>53.</label>
<mixed-citation publication-type="journal">
<string-name>
<surname>Wang</surname>
<given-names>X</given-names>
</string-name>
,
<string-name>
<surname>Zhu</surname>
<given-names>X</given-names>
</string-name>
,
<string-name>
<surname>Zhang</surname>
<given-names>H</given-names>
</string-name>
, et al.
<article-title>Increased circular RNA hsa_circ_0012673 acts as a sponge of miR-22 to promote lung adenocarcinoma proliferation</article-title>
.
<source>
<italic toggle="yes">Biochem Biophys Res Commun</italic>
</source>
.
<year>2018</year>
;
<volume>496</volume>
:
<fpage>1069</fpage>
<lpage>1075</lpage>
. doi:
<pub-id pub-id-type="doi">10.1016/j.bbrc.2018.01.126</pub-id>
<pub-id pub-id-type="pmid">29366790</pub-id>
</mixed-citation>
</ref>
<ref id="CIT0054">
<label>54.</label>
<mixed-citation publication-type="journal">
<string-name>
<surname>Wan</surname>
<given-names>J</given-names>
</string-name>
,
<string-name>
<surname>Hao</surname>
<given-names>L</given-names>
</string-name>
,
<string-name>
<surname>Zheng</surname>
<given-names>X</given-names>
</string-name>
,
<string-name>
<surname>Li</surname>
<given-names>Z</given-names>
</string-name>
.
<article-title>Circular RNA circ_0020123 promotes non-small cell lung cancer progression by acting as a ceRNA for miR-488-3p to regulate ADAM9 expression</article-title>
.
<source>
<italic toggle="yes">Biochem Biophys Res Commun</italic>
</source>
.
<year>2019</year>
;
<volume>515</volume>
:
<fpage>303</fpage>
<lpage>309</lpage>
. doi:
<pub-id pub-id-type="doi">10.1016/j.bbrc.2019.05.158</pub-id>
<pub-id pub-id-type="pmid">31153639</pub-id>
</mixed-citation>
</ref>
<ref id="CIT0055">
<label>55.</label>
<mixed-citation publication-type="journal">
<string-name>
<surname>Guarnerio</surname>
<given-names>J</given-names>
</string-name>
,
<string-name>
<surname>Bezzi</surname>
<given-names>M</given-names>
</string-name>
,
<string-name>
<surname>Jeong</surname>
<given-names>JC</given-names>
</string-name>
, et al.
<article-title>Oncogenic role of fusion-circRNAs derived from cancer-associated chromosomal translocations</article-title>
.
<source>
<italic toggle="yes">Cell</italic>
</source>
.
<year>2016</year>
;
<volume>166</volume>
:
<fpage>1055</fpage>
<lpage>1056</lpage>
. doi:
<pub-id pub-id-type="doi">10.1016/j.cell.2016.07.035</pub-id>
</mixed-citation>
</ref>
<ref id="CIT0056">
<label>56.</label>
<mixed-citation publication-type="journal">
<string-name>
<surname>Wu</surname>
<given-names>K</given-names>
</string-name>
,
<string-name>
<surname>Liao</surname>
<given-names>X</given-names>
</string-name>
,
<string-name>
<surname>Gong</surname>
<given-names>Y</given-names>
</string-name>
, et al.
<article-title>Circular RNA F-circSR derived from SLC34A2-ROS1 fusion gene promotes cell migration in non-small cell lung cancer</article-title>
.
<source>
<italic toggle="yes">Mol Cancer</italic>
</source>
.
<year>2019</year>
;
<volume>18</volume>
:
<fpage>98</fpage>
. doi:
<pub-id pub-id-type="doi">10.1186/s12943-019-1028-9</pub-id>
<pub-id pub-id-type="pmid">31118036</pub-id>
</mixed-citation>
</ref>
<ref id="CIT0057">
<label>57.</label>
<mixed-citation publication-type="journal">
<string-name>
<surname>Tan</surname>
<given-names>S</given-names>
</string-name>
,
<string-name>
<surname>Sun</surname>
<given-names>D</given-names>
</string-name>
,
<string-name>
<surname>Pu</surname>
<given-names>W</given-names>
</string-name>
, et al.
<article-title>Circular RNA F-circEA-2a derived from EML4-ALK fusion gene promotes cell migration and invasion in non-small cell lung cancer</article-title>
.
<source>
<italic toggle="yes">Mol Cancer</italic>
</source>
.
<year>2018</year>
;
<volume>17</volume>
:
<fpage>138</fpage>
. doi:
<pub-id pub-id-type="doi">10.1186/s12943-018-0887-9</pub-id>
<pub-id pub-id-type="pmid">30236141</pub-id>
</mixed-citation>
</ref>
<ref id="CIT0058">
<label>58.</label>
<mixed-citation publication-type="journal">
<string-name>
<surname>Tan</surname>
<given-names>S</given-names>
</string-name>
,
<string-name>
<surname>Gou</surname>
<given-names>Q</given-names>
</string-name>
,
<string-name>
<surname>Pu</surname>
<given-names>W</given-names>
</string-name>
, et al.
<article-title>Circular RNA F-circEA produced from EML4-ALK fusion gene as a novel liquid biopsy biomarker for non-small cell lung cancer</article-title>
.
<source>
<italic toggle="yes">Cell Res</italic>
</source>
.
<year>2018</year>
;
<volume>28</volume>
:
<fpage>693</fpage>
<lpage>695</lpage>
. doi:
<pub-id pub-id-type="doi">10.1038/s41422-018-0033-7</pub-id>
<pub-id pub-id-type="pmid">29628502</pub-id>
</mixed-citation>
</ref>
<ref id="CIT0059">
<label>59.</label>
<mixed-citation publication-type="journal">
<string-name>
<surname>Zhang</surname>
<given-names>S</given-names>
</string-name>
,
<string-name>
<surname>Xia</surname>
<given-names>W</given-names>
</string-name>
,
<string-name>
<surname>Dong</surname>
<given-names>G</given-names>
</string-name>
,
<string-name>
<surname>Xu</surname>
<given-names>W</given-names>
</string-name>
,
<string-name>
<surname>Li</surname>
<given-names>M</given-names>
</string-name>
,
<string-name>
<surname>Xu</surname>
<given-names>L</given-names>
</string-name>
.
<article-title>Cyclic RNA molecule circ_0007766 promotes the proliferation of lung adenocarcinoma cells by up-regulating the expression of Cyclin D1/CyclinE1/CDK4]</article-title>
.
<source>
<italic toggle="yes">Zhongguo Fei Ai Za Zhi</italic>
</source>
.
<year>2019</year>
;
<volume>22</volume>
:
<fpage>271</fpage>
<lpage>279</lpage>
. doi:
<pub-id pub-id-type="doi">10.3779/j.issn.1009-3419.2019.05.03</pub-id>
<pub-id pub-id-type="pmid">31109436</pub-id>
</mixed-citation>
</ref>
<ref id="CIT0060">
<label>60.</label>
<mixed-citation publication-type="journal">
<string-name>
<surname>Wang</surname>
<given-names>L</given-names>
</string-name>
,
<string-name>
<surname>Ma</surname>
<given-names>H</given-names>
</string-name>
,
<string-name>
<surname>Kong</surname>
<given-names>W</given-names>
</string-name>
,
<string-name>
<surname>Liu</surname>
<given-names>B</given-names>
</string-name>
,
<string-name>
<surname>Zhang</surname>
<given-names>X</given-names>
</string-name>
.
<article-title>Up-regulated circular RNA VANGL1 contributes to progression of non-small cell lung cancer through inhibition of miR-195 and activation of Bcl-2</article-title>
.
<source>
<italic toggle="yes">Biosci Rep</italic>
</source>
.
<year>2019</year>
;
<volume>39</volume>
(
<issue>6</issue>
).</mixed-citation>
</ref>
<ref id="CIT0061">
<label>61.</label>
<mixed-citation publication-type="journal">
<string-name>
<surname>Zhou</surname>
<given-names>SY</given-names>
</string-name>
,
<string-name>
<surname>Chen</surname>
<given-names>W</given-names>
</string-name>
,
<string-name>
<surname>Yang</surname>
<given-names>SJ</given-names>
</string-name>
, et al.
<article-title>The emerging role of circular RNAs in breast cancer</article-title>
.
<source>
<italic toggle="yes">Biosci Rep</italic>
</source>
.
<year>2019</year>
;
<volume>39</volume>
. doi:
<pub-id pub-id-type="doi">10.1042/BSR20190621</pub-id>
</mixed-citation>
</ref>
<ref id="CIT0062">
<label>62.</label>
<mixed-citation publication-type="journal">
<string-name>
<surname>Wang</surname>
<given-names>H</given-names>
</string-name>
,
<string-name>
<surname>Xiao</surname>
<given-names>Y</given-names>
</string-name>
,
<string-name>
<surname>Wu</surname>
<given-names>L</given-names>
</string-name>
,
<string-name>
<surname>Ma</surname>
<given-names>D</given-names>
</string-name>
.
<article-title>Comprehensive circular RNA profiling reveals the regulatory role of the circRNA-000911/miR-449a pathway in breast carcinogenesis</article-title>
.
<source>
<italic toggle="yes">Int J Oncol</italic>
</source>
.
<year>2018</year>
;
<volume>52</volume>
:
<fpage>743</fpage>
<lpage>754</lpage>
. doi:
<pub-id pub-id-type="doi">10.3892/ijo.2018.4265</pub-id>
<pub-id pub-id-type="pmid">29431182</pub-id>
</mixed-citation>
</ref>
<ref id="CIT0063">
<label>63.</label>
<mixed-citation publication-type="journal">
<string-name>
<surname>Nair</surname>
<given-names>AA</given-names>
</string-name>
,
<string-name>
<surname>Niu</surname>
<given-names>N</given-names>
</string-name>
,
<string-name>
<surname>Tang</surname>
<given-names>X</given-names>
</string-name>
, et al.
<article-title>Circular RNAs and their associations with breast cancer subtypes</article-title>
.
<source>
<italic toggle="yes">Oncotarget</italic>
</source>
.
<year>2016</year>
;
<volume>7</volume>
:
<fpage>80967</fpage>
<lpage>80979</lpage>
. doi:
<pub-id pub-id-type="doi">10.18632/oncotarget.13134</pub-id>
<pub-id pub-id-type="pmid">27829232</pub-id>
</mixed-citation>
</ref>
<ref id="CIT0064">
<label>64.</label>
<mixed-citation publication-type="journal">
<string-name>
<surname>Wang</surname>
<given-names>X</given-names>
</string-name>
,
<string-name>
<surname>Fang</surname>
<given-names>L</given-names>
</string-name>
.
<article-title>Advances in circular RNAs and their roles in breast cancer</article-title>
.
<source>
<italic toggle="yes">J Exp Clin Cancer Res</italic>
</source>
.
<year>2018</year>
;
<volume>37</volume>
:
<fpage>206</fpage>
. doi:
<pub-id pub-id-type="doi">10.1186/s13046-018-0870-8</pub-id>
<pub-id pub-id-type="pmid">30157902</pub-id>
</mixed-citation>
</ref>
<ref id="CIT0065">
<label>65.</label>
<mixed-citation publication-type="journal">
<string-name>
<surname>Zeng</surname>
<given-names>K</given-names>
</string-name>
,
<string-name>
<surname>He</surname>
<given-names>B</given-names>
</string-name>
,
<string-name>
<surname>Yang</surname>
<given-names>BB</given-names>
</string-name>
, et al.
<article-title>The pro-metastasis effect of circANKS1B in breast cancer</article-title>
.
<source>
<italic toggle="yes">Mol Cancer</italic>
</source>
.
<year>2018</year>
;
<volume>17</volume>
:
<fpage>160</fpage>
. doi:
<pub-id pub-id-type="doi">10.1186/s12943-018-0914-x</pub-id>
<pub-id pub-id-type="pmid">30454010</pub-id>
</mixed-citation>
</ref>
<ref id="CIT0066">
<label>66.</label>
<mixed-citation publication-type="journal">
<string-name>
<surname>Xu</surname>
<given-names>JH</given-names>
</string-name>
,
<string-name>
<surname>Wang</surname>
<given-names>Y</given-names>
</string-name>
,
<string-name>
<surname>Xu</surname>
<given-names>D</given-names>
</string-name>
.
<article-title>Hsa_circ_001569 is an unfavorable prognostic factor and promotes cell proliferation and metastasis by modulating PI3K-AKT pathway in breast cancer</article-title>
.
<source>
<italic toggle="yes">Cancer Biomark</italic>
</source>
.
<year>2019</year>
;
<volume>25</volume>
:
<fpage>193</fpage>
<lpage>201</lpage>
. doi:
<pub-id pub-id-type="doi">10.3233/CBM-182293</pub-id>
<pub-id pub-id-type="pmid">31104012</pub-id>
</mixed-citation>
</ref>
<ref id="CIT0067">
<label>67.</label>
<mixed-citation publication-type="journal">
<string-name>
<surname>Liu</surname>
<given-names>Y</given-names>
</string-name>
,
<string-name>
<surname>Dong</surname>
<given-names>Y</given-names>
</string-name>
,
<string-name>
<surname>Zhao</surname>
<given-names>L</given-names>
</string-name>
,
<string-name>
<surname>Su</surname>
<given-names>L</given-names>
</string-name>
,
<string-name>
<surname>Luo</surname>
<given-names>J</given-names>
</string-name>
.
<article-title>Circular RNAMTO1 suppresses breast cancer cell viability and reverses monastrol resistance through regulating the TRAF4/Eg5 axis</article-title>
.
<source>
<italic toggle="yes">Int J Oncol</italic>
</source>
.
<year>2018</year>
;
<volume>53</volume>
:
<fpage>1752</fpage>
<lpage>1762</lpage>
. doi:
<pub-id pub-id-type="doi">10.3892/ijo.2018.4485</pub-id>
<pub-id pub-id-type="pmid">30015883</pub-id>
</mixed-citation>
</ref>
<ref id="CIT0068">
<label>68.</label>
<mixed-citation publication-type="journal">
<string-name>
<surname>Xu</surname>
<given-names>JZ</given-names>
</string-name>
,
<string-name>
<surname>Shao</surname>
<given-names>CC</given-names>
</string-name>
,
<string-name>
<surname>Wang</surname>
<given-names>XJ</given-names>
</string-name>
, et al.
<article-title>circTADA2As suppress breast cancer progression and metastasis via targeting miR-203a-3p/SOCS3 axis</article-title>
.
<source>
<italic toggle="yes">Cell Death Dis</italic>
</source>
.
<year>2019</year>
;
<volume>10</volume>
:
<fpage>175</fpage>
. doi:
<pub-id pub-id-type="doi">10.1038/s41419-019-1382-y</pub-id>
<pub-id pub-id-type="pmid">30787278</pub-id>
</mixed-citation>
</ref>
<ref id="CIT0069">
<label>69.</label>
<mixed-citation publication-type="journal">
<string-name>
<surname>Tang</surname>
<given-names>H</given-names>
</string-name>
,
<string-name>
<surname>Huang</surname>
<given-names>X</given-names>
</string-name>
,
<string-name>
<surname>Wang</surname>
<given-names>J</given-names>
</string-name>
, et al.
<article-title>circKIF4A acts as a prognostic factor and mediator to regulate the progression of triple-negative breast cancer</article-title>
.
<source>
<italic toggle="yes">Mol Cancer</italic>
</source>
.
<year>2019</year>
;
<volume>18</volume>
:
<fpage>23</fpage>
. doi:
<pub-id pub-id-type="doi">10.1186/s12943-019-0946-x</pub-id>
<pub-id pub-id-type="pmid">30744636</pub-id>
</mixed-citation>
</ref>
<ref id="CIT0070">
<label>70.</label>
<mixed-citation publication-type="journal">
<string-name>
<surname>Kong</surname>
<given-names>Y</given-names>
</string-name>
,
<string-name>
<surname>Yang</surname>
<given-names>L</given-names>
</string-name>
,
<string-name>
<surname>Wei</surname>
<given-names>W</given-names>
</string-name>
, et al.
<article-title>CircPLK1 sponges miR-296-5p to facilitate triple-negative breast cancer progression</article-title>
.
<source>
<italic toggle="yes">Epigenomics</italic>
</source>
.
<year>2019</year>
;
<volume>11</volume>
:
<fpage>1163</fpage>
<lpage>1176</lpage>
. doi:
<pub-id pub-id-type="doi">10.2217/epi-2019-0093</pub-id>
<pub-id pub-id-type="pmid">31337246</pub-id>
</mixed-citation>
</ref>
<ref id="CIT0071">
<label>71.</label>
<mixed-citation publication-type="journal">
<string-name>
<surname>Wang</surname>
<given-names>Y</given-names>
</string-name>
,
<string-name>
<surname>Li</surname>
<given-names>J</given-names>
</string-name>
,
<string-name>
<surname>Du</surname>
<given-names>C</given-names>
</string-name>
, et al.
<article-title>Upregulated circular RNA circ-UBE2D2 predicts poor prognosis and promotes breast cancer progression by sponging miR-1236 and miR-1287</article-title>
.
<source>
<italic toggle="yes">Transl Oncol</italic>
</source>
.
<year>2019</year>
;
<volume>12</volume>
:
<fpage>1305</fpage>
<lpage>1313</lpage>
. doi:
<pub-id pub-id-type="doi">10.1016/j.tranon.2019.05.016</pub-id>
<pub-id pub-id-type="pmid">31336316</pub-id>
</mixed-citation>
</ref>
<ref id="CIT0072">
<label>72.</label>
<mixed-citation publication-type="journal">
<string-name>
<surname>Liang</surname>
<given-names>Y</given-names>
</string-name>
,
<string-name>
<surname>Song</surname>
<given-names>X</given-names>
</string-name>
,
<string-name>
<surname>Li</surname>
<given-names>Y</given-names>
</string-name>
, et al.
<article-title>Targeting the circBMPR2/miR-553/USP4 axis as a potent therapeutic approach for breast cancer</article-title>
.
<source>
<italic toggle="yes">Mol Ther Nucleic Acids</italic>
</source>
.
<year>2019</year>
;
<volume>17</volume>
:
<fpage>347</fpage>
<lpage>361</lpage>
. doi:
<pub-id pub-id-type="doi">10.1016/j.omtn.2019.05.005</pub-id>
<pub-id pub-id-type="pmid">31302495</pub-id>
</mixed-citation>
</ref>
<ref id="CIT0073">
<label>73.</label>
<mixed-citation publication-type="journal">
<string-name>
<surname>Sang</surname>
<given-names>Y</given-names>
</string-name>
,
<string-name>
<surname>Chen</surname>
<given-names>B</given-names>
</string-name>
,
<string-name>
<surname>Song</surname>
<given-names>X</given-names>
</string-name>
, et al.
<article-title>circRNA_0025202 regulates tamoxifen sensitivity and tumor progression via regulating the miR-182-5p/FOXO3a axis in breast cancer</article-title>
.
<source>
<italic toggle="yes">Mol Ther</italic>
</source>
.
<year>2019</year>
;
<volume>27</volume>
:
<fpage>1638</fpage>
<lpage>1652</lpage>
. doi:
<pub-id pub-id-type="doi">10.1016/j.ymthe.2019.05.011</pub-id>
<pub-id pub-id-type="pmid">31153828</pub-id>
</mixed-citation>
</ref>
<ref id="CIT0074">
<label>74.</label>
<mixed-citation publication-type="journal">
<string-name>
<surname>Yang</surname>
<given-names>L</given-names>
</string-name>
,
<string-name>
<surname>Song</surname>
<given-names>C</given-names>
</string-name>
,
<string-name>
<surname>Chen</surname>
<given-names>Y</given-names>
</string-name>
,
<string-name>
<surname>Jing</surname>
<given-names>G</given-names>
</string-name>
,
<string-name>
<surname>Sun</surname>
<given-names>J</given-names>
</string-name>
.
<article-title>Circular RNA circ_0103552 forecasts dismal prognosis and promotes breast cancer cell proliferation and invasion by sponging miR-1236</article-title>
.
<source>
<italic toggle="yes">J Cell Biochem</italic>
</source>
.
<year>2019</year>
;
<volume>120</volume>
:
<fpage>15553</fpage>
<lpage>15560</lpage>
. doi:
<pub-id pub-id-type="doi">10.1002/jcb.v120.9</pub-id>
<pub-id pub-id-type="pmid">31056795</pub-id>
</mixed-citation>
</ref>
<ref id="CIT0075">
<label>75.</label>
<mixed-citation publication-type="journal">
<string-name>
<surname>Yan</surname>
<given-names>L</given-names>
</string-name>
,
<string-name>
<surname>Zheng</surname>
<given-names>M</given-names>
</string-name>
,
<string-name>
<surname>Wang</surname>
<given-names>H</given-names>
</string-name>
.
<article-title>Circular RNA hsa_circ_0072309 inhibits proliferation and invasion of breast cancer cells via targeting miR-492</article-title>
.
<source>
<italic toggle="yes">Cancer Manag Res</italic>
</source>
.
<year>2019</year>
;
<volume>11</volume>
:
<fpage>1033</fpage>
<lpage>1041</lpage>
. doi:
<pub-id pub-id-type="doi">10.2147/CMAR.S186857</pub-id>
<pub-id pub-id-type="pmid">30774431</pub-id>
</mixed-citation>
</ref>
<ref id="CIT0076">
<label>76.</label>
<mixed-citation publication-type="journal">
<string-name>
<surname>Liu</surname>
<given-names>Z</given-names>
</string-name>
,
<string-name>
<surname>Zhou</surname>
<given-names>Y</given-names>
</string-name>
,
<string-name>
<surname>Liang</surname>
<given-names>G</given-names>
</string-name>
, et al.
<article-title>Circular RNA hsa_circ_001783 regulates breast cancer progression via sponging miR-200c-3p</article-title>
.
<source>
<italic toggle="yes">Cell Death Dis</italic>
</source>
.
<year>2019</year>
;
<volume>10</volume>
:
<fpage>55</fpage>
. doi:
<pub-id pub-id-type="doi">10.1038/s41419-018-1287-1</pub-id>
<pub-id pub-id-type="pmid">30670688</pub-id>
</mixed-citation>
</ref>
<ref id="CIT0077">
<label>77.</label>
<mixed-citation publication-type="journal">
<string-name>
<surname>Taborda</surname>
<given-names>MI</given-names>
</string-name>
,
<string-name>
<surname>Ramirez</surname>
<given-names>S</given-names>
</string-name>
,
<string-name>
<surname>Bernal</surname>
<given-names>G</given-names>
</string-name>
.
<article-title>Circular RNAs in colorectal cancer: possible roles in regulation of cancer cells</article-title>
.
<source>
<italic toggle="yes">World J Gastrointest Oncol</italic>
</source>
.
<year>2017</year>
;
<volume>9</volume>
:
<fpage>62</fpage>
<lpage>69</lpage>
. doi:
<pub-id pub-id-type="doi">10.4251/wjgo.v9.i2.62</pub-id>
<pub-id pub-id-type="pmid">28255427</pub-id>
</mixed-citation>
</ref>
<ref id="CIT0078">
<label>78.</label>
<mixed-citation publication-type="journal">
<string-name>
<surname>Zhang</surname>
<given-names>P</given-names>
</string-name>
,
<string-name>
<surname>Zuo</surname>
<given-names>Z</given-names>
</string-name>
,
<string-name>
<surname>Shang</surname>
<given-names>W</given-names>
</string-name>
, et al.
<article-title>Identification of differentially expressed circular RNAs in human colorectal cancer</article-title>
.
<source>
<italic toggle="yes">Tumour Biol</italic>
</source>
.
<year>2017</year>
;
<volume>39</volume>
:
<fpage>1010428317694546</fpage>
.
<pub-id pub-id-type="pmid">28349836</pub-id>
</mixed-citation>
</ref>
<ref id="CIT0079">
<label>79.</label>
<mixed-citation publication-type="journal">
<string-name>
<surname>Li</surname>
<given-names>XN</given-names>
</string-name>
,
<string-name>
<surname>Wang</surname>
<given-names>ZJ</given-names>
</string-name>
,
<string-name>
<surname>Ye</surname>
<given-names>CX</given-names>
</string-name>
,
<string-name>
<surname>Zhao</surname>
<given-names>BC</given-names>
</string-name>
,
<string-name>
<surname>Li</surname>
<given-names>ZL</given-names>
</string-name>
,
<string-name>
<surname>Yang</surname>
<given-names>Y</given-names>
</string-name>
.
<article-title>RNA sequencing reveals the expression profiles of circRNA and indicates that circDDX17 acts as a tumor suppressor in colorectal cancer</article-title>
.
<source>
<italic toggle="yes">J Exp Clin Cancer Res</italic>
</source>
.
<year>2018</year>
;
<volume>37</volume>
:
<fpage>325</fpage>
. doi:
<pub-id pub-id-type="doi">10.1186/s13046-018-1006-x</pub-id>
<pub-id pub-id-type="pmid">30591054</pub-id>
</mixed-citation>
</ref>
<ref id="CIT0080">
<label>80.</label>
<mixed-citation publication-type="journal">
<string-name>
<surname>Jin</surname>
<given-names>Y</given-names>
</string-name>
,
<string-name>
<surname>Yu</surname>
<given-names>LL</given-names>
</string-name>
,
<string-name>
<surname>Zhang</surname>
<given-names>B</given-names>
</string-name>
,
<string-name>
<surname>Liu</surname>
<given-names>CF</given-names>
</string-name>
,
<string-name>
<surname>Chen</surname>
<given-names>Y</given-names>
</string-name>
.
<article-title>Circular RNA hsa_circ_0000523 regulates the proliferation and apoptosis of colorectal cancer cells as miRNA sponge</article-title>
.
<source>
<italic toggle="yes">Braz J Med Biol Res</italic>
</source>
.
<year>2018</year>
;
<volume>51</volume>
:
<fpage>e7811</fpage>
. doi:
<pub-id pub-id-type="doi">10.1590/1414-431x20187811</pub-id>
<pub-id pub-id-type="pmid">30403259</pub-id>
</mixed-citation>
</ref>
<ref id="CIT0081">
<label>81.</label>
<mixed-citation publication-type="journal">
<string-name>
<surname>Geng</surname>
<given-names>Y</given-names>
</string-name>
,
<string-name>
<surname>Zheng</surname>
<given-names>X</given-names>
</string-name>
,
<string-name>
<surname>Hu</surname>
<given-names>W</given-names>
</string-name>
, et al.
<article-title>Hsa_circ_0009361 acts as the sponge of miR-582 to suppress colorectal cancer progression by regulating APC2 expression</article-title>
.
<source>
<italic toggle="yes">Clin Sci (Lond)</italic>
</source>
.
<year>2019</year>
;
<volume>133</volume>
:
<fpage>1197</fpage>
<lpage>1213</lpage>
. doi:
<pub-id pub-id-type="doi">10.1042/CS20190286</pub-id>
<pub-id pub-id-type="pmid">31109967</pub-id>
</mixed-citation>
</ref>
<ref id="CIT0082">
<label>82.</label>
<mixed-citation publication-type="journal">
<string-name>
<surname>Li</surname>
<given-names>XN</given-names>
</string-name>
,
<string-name>
<surname>Wang</surname>
<given-names>ZJ</given-names>
</string-name>
,
<string-name>
<surname>Ye</surname>
<given-names>CX</given-names>
</string-name>
,
<string-name>
<surname>Zhao</surname>
<given-names>BC</given-names>
</string-name>
,
<string-name>
<surname>Huang</surname>
<given-names>XX</given-names>
</string-name>
,
<string-name>
<surname>Yang</surname>
<given-names>L</given-names>
</string-name>
.
<article-title>Circular RNA circVAPA is up-regulated and exerts oncogenic properties by sponging miR-101 in colorectal cancer</article-title>
.
<source>
<italic toggle="yes">Biomed Pharmacother</italic>
</source>
.
<year>2019</year>
;
<volume>112</volume>
:
<fpage>108611</fpage>
. doi:
<pub-id pub-id-type="doi">10.1016/j.biopha.2019.108611</pub-id>
<pub-id pub-id-type="pmid">30797148</pub-id>
</mixed-citation>
</ref>
<ref id="CIT0083">
<label>83.</label>
<mixed-citation publication-type="journal">
<string-name>
<surname>Jin</surname>
<given-names>C</given-names>
</string-name>
,
<string-name>
<surname>Wang</surname>
<given-names>A</given-names>
</string-name>
,
<string-name>
<surname>Liu</surname>
<given-names>L</given-names>
</string-name>
,
<string-name>
<surname>Wang</surname>
<given-names>G</given-names>
</string-name>
,
<string-name>
<surname>Li</surname>
<given-names>G</given-names>
</string-name>
.
<article-title>Hsa_circ_0136666 promotes the proliferation and invasion of colorectal cancer through miR-136/SH2B1 axis</article-title>
.
<source>
<italic toggle="yes">J Cell Physiol</italic>
</source>
.
<year>2019</year>
;
<volume>234</volume>
:
<fpage>7247</fpage>
<lpage>7256</lpage>
. doi:
<pub-id pub-id-type="doi">10.1002/jcp.27482</pub-id>
<pub-id pub-id-type="pmid">30370521</pub-id>
</mixed-citation>
</ref>
<ref id="CIT0084">
<label>84.</label>
<mixed-citation publication-type="journal">
<string-name>
<surname>Bian</surname>
<given-names>L</given-names>
</string-name>
,
<string-name>
<surname>Zhi</surname>
<given-names>X</given-names>
</string-name>
,
<string-name>
<surname>Ma</surname>
<given-names>L</given-names>
</string-name>
, et al.
<article-title>Hsa_circRNA_103809 regulated the cell proliferation and migration in colorectal cancer via miR-532-3p/FOXO4 axis</article-title>
.
<source>
<italic toggle="yes">Biochem Biophys Res Commun</italic>
</source>
.
<year>2018</year>
;
<volume>505</volume>
:
<fpage>346</fpage>
<lpage>352</lpage>
. doi:
<pub-id pub-id-type="doi">10.1016/j.bbrc.2018.09.073</pub-id>
<pub-id pub-id-type="pmid">30249393</pub-id>
</mixed-citation>
</ref>
<ref id="CIT0085">
<label>85.</label>
<mixed-citation publication-type="journal">
<string-name>
<surname>Fang</surname>
<given-names>G</given-names>
</string-name>
,
<string-name>
<surname>Ye</surname>
<given-names>BL</given-names>
</string-name>
,
<string-name>
<surname>Hu</surname>
<given-names>BR</given-names>
</string-name>
,
<string-name>
<surname>Ruan</surname>
<given-names>XJ</given-names>
</string-name>
,
<string-name>
<surname>Shi</surname>
<given-names>YX</given-names>
</string-name>
.
<article-title>CircRNA_100290 promotes colorectal cancer progression through miR-516b-induced downregulation of FZD4 expression and Wnt/beta-catenin signaling</article-title>
.
<source>
<italic toggle="yes">Biochem Biophys Res Commun</italic>
</source>
.
<year>2018</year>
;
<volume>504</volume>
:
<fpage>184</fpage>
<lpage>189</lpage>
. doi:
<pub-id pub-id-type="doi">10.1016/j.bbrc.2018.08.152</pub-id>
<pub-id pub-id-type="pmid">30173892</pub-id>
</mixed-citation>
</ref>
<ref id="CIT0086">
<label>86.</label>
<mixed-citation publication-type="journal">
<string-name>
<surname>Yuan</surname>
<given-names>Y</given-names>
</string-name>
,
<string-name>
<surname>Liu</surname>
<given-names>W</given-names>
</string-name>
,
<string-name>
<surname>Zhang</surname>
<given-names>Y</given-names>
</string-name>
,
<string-name>
<surname>Zhang</surname>
<given-names>Y</given-names>
</string-name>
,
<string-name>
<surname>Sun</surname>
<given-names>S</given-names>
</string-name>
.
<article-title>CircRNA circ_0026344 as a prognostic biomarker suppresses colorectal cancer progression via microRNA-21 and microRNA-31</article-title>
.
<source>
<italic toggle="yes">Biochem Biophys Res Commun</italic>
</source>
.
<year>2018</year>
;
<volume>503</volume>
:
<fpage>870</fpage>
<lpage>875</lpage>
. doi:
<pub-id pub-id-type="doi">10.1016/j.bbrc.2018.06.089</pub-id>
<pub-id pub-id-type="pmid">29928882</pub-id>
</mixed-citation>
</ref>
<ref id="CIT0087">
<label>87.</label>
<mixed-citation publication-type="journal">
<string-name>
<surname>Zeng</surname>
<given-names>K</given-names>
</string-name>
,
<string-name>
<surname>Chen</surname>
<given-names>X</given-names>
</string-name>
,
<string-name>
<surname>Xu</surname>
<given-names>M</given-names>
</string-name>
, et al.
<article-title>CircHIPK3 promotes colorectal cancer growth and metastasis by sponging miR-7</article-title>
.
<source>
<italic toggle="yes">Cell Death Dis</italic>
</source>
.
<year>2018</year>
;
<volume>9</volume>
:
<fpage>417</fpage>
. doi:
<pub-id pub-id-type="doi">10.1038/s41419-018-0454-8</pub-id>
<pub-id pub-id-type="pmid">29549306</pub-id>
</mixed-citation>
</ref>
<ref id="CIT0088">
<label>88.</label>
<mixed-citation publication-type="journal">
<string-name>
<surname>Xie</surname>
<given-names>H</given-names>
</string-name>
,
<string-name>
<surname>Ren</surname>
<given-names>X</given-names>
</string-name>
,
<string-name>
<surname>Xin</surname>
<given-names>S</given-names>
</string-name>
, et al.
<article-title>Emerging roles of circRNA_001569 targeting miR-145 in the proliferation and invasion of colorectal cancer</article-title>
.
<source>
<italic toggle="yes">Oncotarget</italic>
</source>
.
<year>2016</year>
;
<volume>7</volume>
:
<fpage>26680</fpage>
<lpage>26691</lpage>
. doi:
<pub-id pub-id-type="doi">10.18632/oncotarget.8589</pub-id>
<pub-id pub-id-type="pmid">27058418</pub-id>
</mixed-citation>
</ref>
<ref id="CIT0089">
<label>89.</label>
<mixed-citation publication-type="journal">
<string-name>
<surname>Xiong</surname>
<given-names>W</given-names>
</string-name>
,
<string-name>
<surname>Ai</surname>
<given-names>YQ</given-names>
</string-name>
,
<string-name>
<surname>Li</surname>
<given-names>YF</given-names>
</string-name>
, et al.
<article-title>Microarray analysis of circular RNA expression profile associated with 5-fluorouracil-based chemoradiation resistance in colorectal cancer cells</article-title>
.
<source>
<italic toggle="yes">Biomed Res Int</italic>
</source>
.
<year>2017</year>
;
<volume>2017</volume>
:
<fpage>8421614</fpage>
. doi:
<pub-id pub-id-type="doi">10.1155/2017/8421614</pub-id>
<pub-id pub-id-type="pmid">28656150</pub-id>
</mixed-citation>
</ref>
<ref id="CIT0090">
<label>90.</label>
<mixed-citation publication-type="journal">
<string-name>
<surname>Kang</surname>
<given-names>M</given-names>
</string-name>
,
<string-name>
<surname>Li</surname>
<given-names>Y</given-names>
</string-name>
,
<string-name>
<surname>Zhu</surname>
<given-names>S</given-names>
</string-name>
,
<string-name>
<surname>Zhang</surname>
<given-names>S</given-names>
</string-name>
,
<string-name>
<surname>Guo</surname>
<given-names>S</given-names>
</string-name>
,
<string-name>
<surname>Li</surname>
<given-names>P</given-names>
</string-name>
.
<article-title>MicroRNA-193b acts as a tumor suppressor gene in human esophageal squamous cell carcinoma via target regulation of KRAS</article-title>
.
<source>
<italic toggle="yes">Oncol Lett</italic>
</source>
.
<year>2019</year>
;
<volume>17</volume>
:
<fpage>3965</fpage>
<lpage>3973</lpage>
. doi:
<pub-id pub-id-type="doi">10.3892/ol.2019.10039</pub-id>
<pub-id pub-id-type="pmid">30881513</pub-id>
</mixed-citation>
</ref>
<ref id="CIT0091">
<label>91.</label>
<mixed-citation publication-type="journal">
<string-name>
<surname>Wen</surname>
<given-names>J</given-names>
</string-name>
,
<string-name>
<surname>Hu</surname>
<given-names>Y</given-names>
</string-name>
,
<string-name>
<surname>Liu</surname>
<given-names>Q</given-names>
</string-name>
, et al.
<article-title>miR-424 coordinates multilayered regulation of cell cycle progression to promote esophageal squamous cell carcinoma cell proliferation</article-title>
.
<source>
<italic toggle="yes">EBioMedicine</italic>
</source>
.
<year>2018</year>
;
<volume>37</volume>
:
<fpage>110</fpage>
<lpage>124</lpage>
. doi:
<pub-id pub-id-type="doi">10.1016/j.ebiom.2018.10.043</pub-id>
<pub-id pub-id-type="pmid">30361064</pub-id>
</mixed-citation>
</ref>
<ref id="CIT0092">
<label>92.</label>
<mixed-citation publication-type="journal">
<string-name>
<surname>Fan</surname>
<given-names>L</given-names>
</string-name>
,
<string-name>
<surname>Cao</surname>
<given-names>Q</given-names>
</string-name>
,
<string-name>
<surname>Liu</surname>
<given-names>J</given-names>
</string-name>
,
<string-name>
<surname>Zhang</surname>
<given-names>J</given-names>
</string-name>
,
<string-name>
<surname>Li</surname>
<given-names>B</given-names>
</string-name>
.
<article-title>Circular RNA profiling and its potential for esophageal squamous cell cancer diagnosis and prognosis</article-title>
.
<source>
<italic toggle="yes">Mol Cancer</italic>
</source>
.
<year>2019</year>
;
<volume>18</volume>
:
<fpage>16</fpage>
. doi:
<pub-id pub-id-type="doi">10.1186/s12943-018-0936-4</pub-id>
<pub-id pub-id-type="pmid">30674324</pub-id>
</mixed-citation>
</ref>
<ref id="CIT0093">
<label>93.</label>
<mixed-citation publication-type="journal">
<string-name>
<surname>Wang</surname>
<given-names>Y</given-names>
</string-name>
,
<string-name>
<surname>Lu</surname>
<given-names>T</given-names>
</string-name>
,
<string-name>
<surname>Wang</surname>
<given-names>Q</given-names>
</string-name>
,
<string-name>
<surname>Liu</surname>
<given-names>J</given-names>
</string-name>
,
<string-name>
<surname>Jiao</surname>
<given-names>W</given-names>
</string-name>
.
<article-title>Circular RNAs: crucial regulators in the human body (review)</article-title>
.
<source>
<italic toggle="yes">Oncol Rep</italic>
</source>
.
<year>2018</year>
;
<volume>40</volume>
:
<fpage>3119</fpage>
<lpage>3135</lpage>
. doi:
<pub-id pub-id-type="doi">10.3892/or.2018.6733</pub-id>
<pub-id pub-id-type="pmid">30272328</pub-id>
</mixed-citation>
</ref>
<ref id="CIT0094">
<label>94.</label>
<mixed-citation publication-type="journal">
<string-name>
<surname>Wang</surname>
<given-names>Q</given-names>
</string-name>
,
<string-name>
<surname>Zhang</surname>
<given-names>Q</given-names>
</string-name>
,
<string-name>
<surname>Sun</surname>
<given-names>H</given-names>
</string-name>
, et al.
<article-title>Circ-TTC17 promotes proliferation and migration of esophageal squamous cell carcinoma</article-title>
.
<source>
<italic toggle="yes">Dig Dis Sci</italic>
</source>
.
<year>2019</year>
;
<volume>64</volume>
:
<fpage>751</fpage>
<lpage>758</lpage>
. doi:
<pub-id pub-id-type="doi">10.1007/s10620-018-5382-z</pub-id>
<pub-id pub-id-type="pmid">30519852</pub-id>
</mixed-citation>
</ref>
<ref id="CIT0095">
<label>95.</label>
<mixed-citation publication-type="journal">
<string-name>
<surname>Shi</surname>
<given-names>N</given-names>
</string-name>
,
<string-name>
<surname>Shan</surname>
<given-names>B</given-names>
</string-name>
,
<string-name>
<surname>Gu</surname>
<given-names>B</given-names>
</string-name>
,
<string-name>
<surname>Song</surname>
<given-names>Y</given-names>
</string-name>
,
<string-name>
<surname>Chu</surname>
<given-names>H</given-names>
</string-name>
,
<string-name>
<surname>Qian</surname>
<given-names>L</given-names>
</string-name>
.
<article-title>Circular RNA circ-PRKCI functions as a competitive endogenous RNA to regulate AKT3 expression by sponging miR-3680-3p in esophageal squamous cell carcinoma</article-title>
.
<source>
<italic toggle="yes">J Cell Biochem</italic>
</source>
.
<year>2019</year>
;
<volume>120</volume>
:
<fpage>10021</fpage>
<lpage>10030</lpage>
. doi:
<pub-id pub-id-type="doi">10.1002/jcb.v120.6</pub-id>
<pub-id pub-id-type="pmid">30659640</pub-id>
</mixed-citation>
</ref>
<ref id="CIT0096">
<label>96.</label>
<mixed-citation publication-type="journal">
<string-name>
<surname>Shi</surname>
<given-names>Y</given-names>
</string-name>
,
<string-name>
<surname>Guo</surname>
<given-names>Z</given-names>
</string-name>
,
<string-name>
<surname>Fang</surname>
<given-names>N</given-names>
</string-name>
, et al.
<article-title>hsa_circ_0006168 sponges miR-100 and regulates mTOR to promote the proliferation, migration and invasion of esophageal squamous cell carcinoma</article-title>
.
<source>
<italic toggle="yes">Biomed Pharmacother</italic>
</source>
.
<year>2019</year>
;
<volume>117</volume>
:
<fpage>109151</fpage>
. doi:
<pub-id pub-id-type="doi">10.1016/j.biopha.2019.109151</pub-id>
<pub-id pub-id-type="pmid">31229921</pub-id>
</mixed-citation>
</ref>
<ref id="CIT0097">
<label>97.</label>
<mixed-citation publication-type="journal">
<string-name>
<surname>Rong</surname>
<given-names>J</given-names>
</string-name>
,
<string-name>
<surname>Wang</surname>
<given-names>Q</given-names>
</string-name>
,
<string-name>
<surname>Zhang</surname>
<given-names>Y</given-names>
</string-name>
, et al.
<article-title>Circ-DLG1 promotes the proliferation of esophageal squamous cell carcinoma</article-title>
.
<source>
<italic toggle="yes">Onco Targets Ther</italic>
</source>
.
<year>2018</year>
;
<volume>11</volume>
:
<fpage>6723</fpage>
<lpage>6730</lpage>
. doi:
<pub-id pub-id-type="doi">10.2147/OTT</pub-id>
<pub-id pub-id-type="pmid">30349305</pub-id>
</mixed-citation>
</ref>
<ref id="CIT0098">
<label>98.</label>
<mixed-citation publication-type="journal">
<string-name>
<surname>Huang</surname>
<given-names>H</given-names>
</string-name>
,
<string-name>
<surname>Wei</surname>
<given-names>L</given-names>
</string-name>
,
<string-name>
<surname>Qin</surname>
<given-names>T</given-names>
</string-name>
,
<string-name>
<surname>Yang</surname>
<given-names>N</given-names>
</string-name>
,
<string-name>
<surname>Li</surname>
<given-names>Z</given-names>
</string-name>
,
<string-name>
<surname>Xu</surname>
<given-names>Z</given-names>
</string-name>
.
<article-title>Circular RNA ciRS-7 triggers the migration and invasion of esophageal squamous cell carcinoma via miR-7/KLF4 and NF-kappaB signals</article-title>
.
<source>
<italic toggle="yes">Cancer Biol Ther</italic>
</source>
.
<year>2019</year>
;
<volume>20</volume>
:
<fpage>73</fpage>
<lpage>80</lpage>
. doi:
<pub-id pub-id-type="doi">10.1080/15384047.2018.1507254</pub-id>
<pub-id pub-id-type="pmid">30207835</pub-id>
</mixed-citation>
</ref>
<ref id="CIT0099">
<label>99.</label>
<mixed-citation publication-type="journal">
<string-name>
<surname>Song</surname>
<given-names>H</given-names>
</string-name>
,
<string-name>
<surname>Xu</surname>
<given-names>D</given-names>
</string-name>
,
<string-name>
<surname>Shi</surname>
<given-names>P</given-names>
</string-name>
, et al.
<article-title>Upregulated circ RNA hsa_circ_0000337 promotes cell proliferation, migration, and invasion of esophageal squamous cell carcinoma</article-title>
.
<source>
<italic toggle="yes">Cancer Manag Res</italic>
</source>
.
<year>2019</year>
;
<volume>11</volume>
:
<fpage>1997</fpage>
<lpage>2006</lpage>
. doi:
<pub-id pub-id-type="doi">10.2147/CMAR.S195546</pub-id>
<pub-id pub-id-type="pmid">30881124</pub-id>
</mixed-citation>
</ref>
<ref id="CIT0100">
<label>100.</label>
<mixed-citation publication-type="journal">
<string-name>
<surname>Song</surname>
<given-names>Z</given-names>
</string-name>
,
<string-name>
<surname>Wu</surname>
<given-names>Y</given-names>
</string-name>
,
<string-name>
<surname>Yang</surname>
<given-names>J</given-names>
</string-name>
,
<string-name>
<surname>Yang</surname>
<given-names>D</given-names>
</string-name>
,
<string-name>
<surname>Fang</surname>
<given-names>X</given-names>
</string-name>
.
<article-title>Progress in the treatment of advanced gastric cancer</article-title>
.
<source>
<italic toggle="yes">Tumour Biol</italic>
</source>
.
<year>2017</year>
;
<volume>39</volume>
:
<fpage>1010428317714626</fpage>
. doi:
<pub-id pub-id-type="doi">10.1177/1010428317714626</pub-id>
<pub-id pub-id-type="pmid">28671042</pub-id>
</mixed-citation>
</ref>
<ref id="CIT0101">
<label>101.</label>
<mixed-citation publication-type="journal">
<string-name>
<surname>Chevallay</surname>
<given-names>M</given-names>
</string-name>
,
<string-name>
<surname>Jung</surname>
<given-names>M</given-names>
</string-name>
,
<string-name>
<surname>Morel</surname>
<given-names>P</given-names>
</string-name>
,
<string-name>
<surname>Monig</surname>
<given-names>S</given-names>
</string-name>
.
<article-title>Gastric cancer: management and multidisciplinary treatment</article-title>
.
<source>
<italic toggle="yes">Rev Med Suisse</italic>
</source>
.
<year>2018</year>
;
<volume>14</volume>
:
<fpage>2221</fpage>
<lpage>2225</lpage>
.
<pub-id pub-id-type="pmid">30516891</pub-id>
</mixed-citation>
</ref>
<ref id="CIT0102">
<label>102.</label>
<mixed-citation publication-type="journal">
<string-name>
<surname>Tian</surname>
<given-names>M</given-names>
</string-name>
,
<string-name>
<surname>Chen</surname>
<given-names>R</given-names>
</string-name>
,
<string-name>
<surname>Li</surname>
<given-names>T</given-names>
</string-name>
,
<string-name>
<surname>Xiao</surname>
<given-names>B</given-names>
</string-name>
.
<article-title>Reduced expression of circRNA hsa_circ_0003159 in gastric cancer and its clinical significance</article-title>
.
<source>
<italic toggle="yes">J Clin Lab Anal</italic>
</source>
.
<year>2018</year>
;
<volume>32</volume>
. doi:
<pub-id pub-id-type="doi">10.1002/jcla.22281</pub-id>
</mixed-citation>
</ref>
<ref id="CIT0103">
<label>103.</label>
<mixed-citation publication-type="journal">
<string-name>
<surname>Chen</surname>
<given-names>S</given-names>
</string-name>
,
<string-name>
<surname>Li</surname>
<given-names>T</given-names>
</string-name>
,
<string-name>
<surname>Zhao</surname>
<given-names>Q</given-names>
</string-name>
,
<string-name>
<surname>Xiao</surname>
<given-names>B</given-names>
</string-name>
,
<string-name>
<surname>Guo</surname>
<given-names>J</given-names>
</string-name>
.
<article-title>Using circular RNA hsa_circ_0000190 as a new biomarker in the diagnosis of gastric cancer</article-title>
.
<source>
<italic toggle="yes">Clin Chim Acta</italic>
</source>
.
<year>2017</year>
;
<volume>466</volume>
:
<fpage>167</fpage>
<lpage>171</lpage>
. doi:
<pub-id pub-id-type="doi">10.1016/j.cca.2017.01.025</pub-id>
<pub-id pub-id-type="pmid">28130019</pub-id>
</mixed-citation>
</ref>
<ref id="CIT0104">
<label>104.</label>
<mixed-citation publication-type="journal">
<string-name>
<surname>Jiang</surname>
<given-names>F</given-names>
</string-name>
,
<string-name>
<surname>Hong</surname>
<given-names>F</given-names>
</string-name>
,
<string-name>
<surname>Shah</surname>
<given-names>MW</given-names>
</string-name>
,
<string-name>
<surname>Shen</surname>
<given-names>X</given-names>
</string-name>
.
<article-title>Circular RNAs as diagnostic biomarkers in gastric cancer: a meta-analysis review</article-title>
.
<source>
<italic toggle="yes">Pathol Res Pract</italic>
</source>
.
<year>2019</year>
;
<volume>215</volume>
:
<fpage>152419</fpage>
. doi:
<pub-id pub-id-type="doi">10.1016/j.prp.2019.04.011</pub-id>
<pub-id pub-id-type="pmid">31043351</pub-id>
</mixed-citation>
</ref>
<ref id="CIT0105">
<label>105.</label>
<mixed-citation publication-type="journal">
<string-name>
<surname>Liu</surname>
<given-names>H</given-names>
</string-name>
,
<string-name>
<surname>Liu</surname>
<given-names>Y</given-names>
</string-name>
,
<string-name>
<surname>Bian</surname>
<given-names>Z</given-names>
</string-name>
, et al.
<article-title>Circular RNA YAP1 inhibits the proliferation and invasion of gastric cancer cells by regulating the miR-367-5p/p27 (Kip1) axis</article-title>
.
<source>
<italic toggle="yes">Mol Cancer</italic>
</source>
.
<year>2018</year>
;
<volume>17</volume>
:
<fpage>151</fpage>
. doi:
<pub-id pub-id-type="doi">10.1186/s12943-018-0902-1</pub-id>
<pub-id pub-id-type="pmid">30336780</pub-id>
</mixed-citation>
</ref>
<ref id="CIT0106">
<label>106.</label>
<mixed-citation publication-type="journal">
<string-name>
<surname>Zhang</surname>
<given-names>X</given-names>
</string-name>
,
<string-name>
<surname>Wang</surname>
<given-names>S</given-names>
</string-name>
,
<string-name>
<surname>Wang</surname>
<given-names>H</given-names>
</string-name>
, et al.
<article-title>Circular RNA circNRIP1 acts as a microRNA-149-5p sponge to promote gastric cancer progression via the AKT1/mTOR pathway</article-title>
.
<source>
<italic toggle="yes">Mol Cancer</italic>
</source>
.
<year>2019</year>
;
<volume>18</volume>
:
<fpage>20</fpage>
. doi:
<pub-id pub-id-type="doi">10.1186/s12943-018-0935-5</pub-id>
<pub-id pub-id-type="pmid">30717751</pub-id>
</mixed-citation>
</ref>
<ref id="CIT0107">
<label>107.</label>
<mixed-citation publication-type="journal">
<string-name>
<surname>Liang</surname>
<given-names>M</given-names>
</string-name>
,
<string-name>
<surname>Huang</surname>
<given-names>G</given-names>
</string-name>
,
<string-name>
<surname>Liu</surname>
<given-names>Z</given-names>
</string-name>
, et al.
<article-title>Elevated levels of hsa_circ_006100 in gastric cancer promote cell growth and metastasis via miR-195/GPRC5A signalling</article-title>
.
<source>
<italic toggle="yes">Cell Prolif</italic>
</source>
.
<year>2019</year>
;
<volume>52</volume>
(
<issue>5</issue>
):
<fpage>e12661</fpage>
.
<pub-id pub-id-type="pmid">31318114</pub-id>
</mixed-citation>
</ref>
<ref id="CIT0108">
<label>108.</label>
<mixed-citation publication-type="journal">
<string-name>
<surname>Guan</surname>
<given-names>EC</given-names>
</string-name>
,
<string-name>
<surname>Xu</surname>
<given-names>XG</given-names>
</string-name>
,
<string-name>
<surname>Xue</surname>
<given-names>FX</given-names>
</string-name>
.
<article-title>circ-NOTCH1 acts as a sponge of miR-637 and affects the expression of its target gene apelin to regulate gastric cancer cell growth</article-title>
.
<source>
<italic toggle="yes">Biochem Cell Biol</italic>
</source>
.
<year>2019</year>
. doi:
<pub-id pub-id-type="doi">10.1139/bcb-2019-0079</pub-id>
</mixed-citation>
</ref>
<ref id="CIT0109">
<label>109.</label>
<mixed-citation publication-type="journal">
<string-name>
<surname>Wu</surname>
<given-names>L</given-names>
</string-name>
,
<string-name>
<surname>Liu</surname>
<given-names>D</given-names>
</string-name>
,
<string-name>
<surname>Yang</surname>
<given-names>Y</given-names>
</string-name>
.
<article-title>Enhanced expression of circular RNA circ-DCAF6 predicts adverse prognosis and promotes cell progression via sponging miR-1231 and miR-1256 in gastric cancer</article-title>
.
<source>
<italic toggle="yes">Exp Mol Pathol</italic>
</source>
.
<year>2019</year>
;
<volume>110</volume>
:
<fpage>104273</fpage>
. doi:
<pub-id pub-id-type="doi">10.1016/j.yexmp.2019.104273</pub-id>
<pub-id pub-id-type="pmid">31226266</pub-id>
</mixed-citation>
</ref>
<ref id="CIT0110">
<label>110.</label>
<mixed-citation publication-type="journal">
<string-name>
<surname>Huang</surname>
<given-names>S</given-names>
</string-name>
,
<string-name>
<surname>Zhang</surname>
<given-names>X</given-names>
</string-name>
,
<string-name>
<surname>Guan</surname>
<given-names>B</given-names>
</string-name>
, et al.
<article-title>A novel circular RNA hsa_circ_0008035 contributes to gastric cancer tumorigenesis through targeting the miR-375/YBX1 axis</article-title>
.
<source>
<italic toggle="yes">Am J Transl Res</italic>
</source>
.
<year>2019</year>
;
<volume>11</volume>
:
<fpage>2455</fpage>
<lpage>2462</lpage>
.
<pub-id pub-id-type="pmid">31105852</pub-id>
</mixed-citation>
</ref>
<ref id="CIT0111">
<label>111.</label>
<mixed-citation publication-type="journal">
<string-name>
<surname>Lu</surname>
<given-names>J</given-names>
</string-name>
,
<string-name>
<surname>Zhang</surname>
<given-names>PY</given-names>
</string-name>
,
<string-name>
<surname>Li</surname>
<given-names>P</given-names>
</string-name>
, et al.
<article-title>Circular RNA hsa_circ_0001368 suppresses the progression of gastric cancer by regulating miR-6506-5p/FOXO3 axis</article-title>
.
<source>
<italic toggle="yes">Biochem Biophys Res Commun</italic>
</source>
.
<year>2019</year>
;
<volume>512</volume>
:
<fpage>29</fpage>
<lpage>33</lpage>
. doi:
<pub-id pub-id-type="doi">10.1016/j.bbrc.2019.02.111</pub-id>
<pub-id pub-id-type="pmid">30853185</pub-id>
</mixed-citation>
</ref>
<ref id="CIT0112">
<label>112.</label>
<mixed-citation publication-type="journal">
<string-name>
<surname>Rong</surname>
<given-names>D</given-names>
</string-name>
,
<string-name>
<surname>Lu</surname>
<given-names>C</given-names>
</string-name>
,
<string-name>
<surname>Zhang</surname>
<given-names>B</given-names>
</string-name>
, et al.
<article-title>CircPSMC3 suppresses the proliferation and metastasis of gastric cancer by acting as a competitive endogenous RNA through sponging miR-296-5p</article-title>
.
<source>
<italic toggle="yes">Mol Cancer</italic>
</source>
.
<year>2019</year>
;
<volume>18</volume>
:
<fpage>25</fpage>
. doi:
<pub-id pub-id-type="doi">10.1186/s12943-019-0958-6</pub-id>
<pub-id pub-id-type="pmid">30777076</pub-id>
</mixed-citation>
</ref>
<ref id="CIT0113">
<label>113.</label>
<mixed-citation publication-type="journal">
<string-name>
<surname>Wang</surname>
<given-names>Z</given-names>
</string-name>
,
<string-name>
<surname>Ma</surname>
<given-names>K</given-names>
</string-name>
,
<string-name>
<surname>Pitts</surname>
<given-names>S</given-names>
</string-name>
, et al.
<article-title>Novel circular RNA NF1 acts as a molecular sponge, promoting gastric cancer by absorbing miR-16</article-title>
.
<source>
<italic toggle="yes">Endocr Relat Cancer</italic>
</source>
.
<year>2019</year>
;
<volume>26</volume>
(
<issue>3</issue>
):
<fpage>265</fpage>
<lpage>277</lpage>
.
<pub-id pub-id-type="pmid">30576282</pub-id>
</mixed-citation>
</ref>
<ref id="CIT0114">
<label>114.</label>
<mixed-citation publication-type="journal">
<string-name>
<surname>Sun</surname>
<given-names>H</given-names>
</string-name>
,
<string-name>
<surname>Xi</surname>
<given-names>P</given-names>
</string-name>
,
<string-name>
<surname>Sun</surname>
<given-names>Z</given-names>
</string-name>
, et al.
<article-title>Circ-SFMBT2 promotes the proliferation of gastric cancer cells through sponging miR-182-5p to enhance CREB1 expression</article-title>
.
<source>
<italic toggle="yes">Cancer Manag Res</italic>
</source>
.
<year>2018</year>
;
<volume>10</volume>
:
<fpage>5725</fpage>
<lpage>5734</lpage>
. doi:
<pub-id pub-id-type="doi">10.2147/CMAR</pub-id>
<pub-id pub-id-type="pmid">30510446</pub-id>
</mixed-citation>
</ref>
<ref id="CIT0115">
<label>115.</label>
<mixed-citation publication-type="journal">
<string-name>
<surname>Fang</surname>
<given-names>J</given-names>
</string-name>
,
<string-name>
<surname>Hong</surname>
<given-names>H</given-names>
</string-name>
,
<string-name>
<surname>Xue</surname>
<given-names>X</given-names>
</string-name>
, et al.
<article-title>A novel circular RNA, circFAT1(e2), inhibits gastric cancer progression by targeting miR-548g in the cytoplasm and interacting with YBX1 in the nucleus</article-title>
.
<source>
<italic toggle="yes">Cancer Lett</italic>
</source>
.
<year>2019</year>
;
<volume>442</volume>
:
<fpage>222</fpage>
<lpage>232</lpage>
. doi:
<pub-id pub-id-type="doi">10.1016/j.canlet.2018.10.040</pub-id>
<pub-id pub-id-type="pmid">30419346</pub-id>
</mixed-citation>
</ref>
<ref id="CIT0116">
<label>116.</label>
<mixed-citation publication-type="journal">
<string-name>
<surname>Ouyang</surname>
<given-names>Y</given-names>
</string-name>
,
<string-name>
<surname>Li</surname>
<given-names>Y</given-names>
</string-name>
,
<string-name>
<surname>Huang</surname>
<given-names>Y</given-names>
</string-name>
, et al.
<article-title>CircRNA circPDSS1 promotes the gastric cancer progression by sponging miR-186-5p and modulating NEK2</article-title>
.
<source>
<italic toggle="yes">J Cell Physiol</italic>
</source>
.
<year>2019</year>
;
<volume>234</volume>
:
<fpage>10458</fpage>
<lpage>10469</lpage>
. doi:
<pub-id pub-id-type="doi">10.1002/jcp.27714</pub-id>
<pub-id pub-id-type="pmid">30417526</pub-id>
</mixed-citation>
</ref>
<ref id="CIT0117">
<label>117.</label>
<mixed-citation publication-type="journal">
<string-name>
<surname>Wang</surname>
<given-names>L</given-names>
</string-name>
,
<string-name>
<surname>Shen</surname>
<given-names>J</given-names>
</string-name>
,
<string-name>
<surname>Jiang</surname>
<given-names>Y</given-names>
</string-name>
.
<article-title>Circ_0027599/PHDLA1 suppresses gastric cancer progression by sponging miR-101-3p.1</article-title>
.
<source>
<italic toggle="yes">Cell Biosci</italic>
</source>
.
<year>2018</year>
;
<volume>8</volume>
:
<fpage>58</fpage>
. doi:
<pub-id pub-id-type="doi">10.1186/s13578-018-0252-0</pub-id>
<pub-id pub-id-type="pmid">30410722</pub-id>
</mixed-citation>
</ref>
<ref id="CIT0118">
<label>118.</label>
<mixed-citation publication-type="journal">
<string-name>
<surname>Xue</surname>
<given-names>M</given-names>
</string-name>
,
<string-name>
<surname>Li</surname>
<given-names>G</given-names>
</string-name>
,
<string-name>
<surname>Fang</surname>
<given-names>X</given-names>
</string-name>
,
<string-name>
<surname>Wang</surname>
<given-names>L</given-names>
</string-name>
,
<string-name>
<surname>Jin</surname>
<given-names>Y</given-names>
</string-name>
,
<string-name>
<surname>Zhou</surname>
<given-names>Q</given-names>
</string-name>
.
<article-title>hsa_circ_0081143 promotes cisplatin resistance in gastric cancer by targeting miR-646/CDK6 pathway</article-title>
.
<source>
<italic toggle="yes">Cancer Cell Int</italic>
</source>
.
<year>2019</year>
;
<volume>19</volume>
:
<fpage>25</fpage>
. doi:
<pub-id pub-id-type="doi">10.1186/s12935-019-0737-x</pub-id>
<pub-id pub-id-type="pmid">30733646</pub-id>
</mixed-citation>
</ref>
<ref id="CIT0119">
<label>119.</label>
<mixed-citation publication-type="journal">
<string-name>
<surname>Ding</surname>
<given-names>L</given-names>
</string-name>
,
<string-name>
<surname>Zhao</surname>
<given-names>Y</given-names>
</string-name>
,
<string-name>
<surname>Dang</surname>
<given-names>S</given-names>
</string-name>
, et al.
<article-title>Circular RNA circ-DONSON facilitates gastric cancer growth and invasion via NURF complex dependent activation of transcription factor SOX4</article-title>
.
<source>
<italic toggle="yes">Mol Cancer</italic>
</source>
.
<year>2019</year>
;
<volume>18</volume>
:
<fpage>45</fpage>
. doi:
<pub-id pub-id-type="doi">10.1186/s12943-019-1006-2</pub-id>
<pub-id pub-id-type="pmid">30922402</pub-id>
</mixed-citation>
</ref>
<ref id="CIT0120">
<label>120.</label>
<mixed-citation publication-type="journal">
<string-name>
<surname>Chen</surname>
<given-names>Y</given-names>
</string-name>
,
<string-name>
<surname>Yang</surname>
<given-names>F</given-names>
</string-name>
,
<string-name>
<surname>Fang</surname>
<given-names>E</given-names>
</string-name>
, et al.
<article-title>Circular RNA circAGO2 drives cancer progression through facilitating HuR-repressed functions of AGO2-miRNA complexes</article-title>
.
<source>
<italic toggle="yes">Cell Death Differ</italic>
</source>
.
<year>2019</year>
;
<volume>26</volume>
:
<fpage>1346</fpage>
<lpage>1364</lpage>
. doi:
<pub-id pub-id-type="doi">10.1038/s41418-018-0220-6</pub-id>
<pub-id pub-id-type="pmid">30341421</pub-id>
</mixed-citation>
</ref>
<ref id="CIT0121">
<label>121.</label>
<mixed-citation publication-type="journal">
<string-name>
<surname>Boyvat</surname>
<given-names>F</given-names>
</string-name>
.
<article-title>Interventional radiologic treatment of hepatocellular carcinoma</article-title>
.
<source>
<italic toggle="yes">Exp Clin Transplant</italic>
</source>
.
<year>2017</year>
;
<volume>15</volume>
:
<fpage>25</fpage>
<lpage>30</lpage>
. doi:
<pub-id pub-id-type="doi">10.6002/ect.TOND16.L8</pub-id>
<pub-id pub-id-type="pmid">28301995</pub-id>
</mixed-citation>
</ref>
<ref id="CIT0122">
<label>122.</label>
<mixed-citation publication-type="journal">
<string-name>
<surname>Chen</surname>
<given-names>S</given-names>
</string-name>
,
<string-name>
<surname>Cao</surname>
<given-names>Q</given-names>
</string-name>
,
<string-name>
<surname>Wen</surname>
<given-names>W</given-names>
</string-name>
,
<string-name>
<surname>Wang</surname>
<given-names>H</given-names>
</string-name>
.
<article-title>Targeted therapy for hepatocellular carcinoma: challenges and opportunities</article-title>
.
<source>
<italic toggle="yes">Cancer Lett</italic>
</source>
.
<year>2019</year>
;
<volume>460</volume>
:
<fpage>1</fpage>
<lpage>9</lpage>
.
<pub-id pub-id-type="pmid">31207320</pub-id>
</mixed-citation>
</ref>
<ref id="CIT0123">
<label>123.</label>
<mixed-citation publication-type="journal">
<string-name>
<surname>Grandhi</surname>
<given-names>MS</given-names>
</string-name>
,
<string-name>
<surname>Kim</surname>
<given-names>AK</given-names>
</string-name>
,
<string-name>
<surname>Ronnekleiv-Kelly</surname>
<given-names>SM</given-names>
</string-name>
,
<string-name>
<surname>Kamel</surname>
<given-names>IR</given-names>
</string-name>
,
<string-name>
<surname>Ghasebeh</surname>
<given-names>MA</given-names>
</string-name>
,
<string-name>
<surname>Pawlik</surname>
<given-names>TM</given-names>
</string-name>
.
<article-title>Hepatocellular carcinoma: from diagnosis to treatment</article-title>
.
<source>
<italic toggle="yes">Surg Oncol</italic>
</source>
.
<year>2016</year>
;
<volume>25</volume>
:
<fpage>74</fpage>
<lpage>85</lpage>
. doi:
<pub-id pub-id-type="doi">10.1016/j.suronc.2016.03.002</pub-id>
<pub-id pub-id-type="pmid">27312032</pub-id>
</mixed-citation>
</ref>
<ref id="CIT0124">
<label>124.</label>
<mixed-citation publication-type="journal">
<string-name>
<surname>Gong</surname>
<given-names>Y</given-names>
</string-name>
,
<string-name>
<surname>Mao</surname>
<given-names>J</given-names>
</string-name>
,
<string-name>
<surname>Wu</surname>
<given-names>D</given-names>
</string-name>
, et al.
<article-title>Circ-ZEB1.33 promotes the proliferation of human HCC by sponging miR-200a-3p and upregulating CDK6</article-title>
.
<source>
<italic toggle="yes">Cancer Cell Int</italic>
</source>
.
<year>2018</year>
;
<volume>18</volume>
:
<fpage>116</fpage>
.
<pub-id pub-id-type="pmid">30123094</pub-id>
</mixed-citation>
</ref>
<ref id="CIT0125">
<label>125.</label>
<mixed-citation publication-type="journal">
<string-name>
<surname>Wang</surname>
<given-names>Z</given-names>
</string-name>
,
<string-name>
<surname>Zhao</surname>
<given-names>Y</given-names>
</string-name>
,
<string-name>
<surname>Wang</surname>
<given-names>Y</given-names>
</string-name>
,
<string-name>
<surname>Jin</surname>
<given-names>C</given-names>
</string-name>
.
<article-title>Circular RNA circHIAT1 inhibits cell growth in hepatocellular carcinoma by regulating miR-3171/PTEN axis</article-title>
.
<source>
<italic toggle="yes">Biomed Pharmacother</italic>
</source>
.
<year>2019</year>
;
<volume>116</volume>
:
<fpage>108932</fpage>
. doi:
<pub-id pub-id-type="doi">10.1016/j.biopha.2019.108932</pub-id>
<pub-id pub-id-type="pmid">31108351</pub-id>
</mixed-citation>
</ref>
<ref id="CIT0126">
<label>126.</label>
<mixed-citation publication-type="journal">
<string-name>
<surname>Zou</surname>
<given-names>H</given-names>
</string-name>
,
<string-name>
<surname>Xu</surname>
<given-names>X</given-names>
</string-name>
,
<string-name>
<surname>Luo</surname>
<given-names>L</given-names>
</string-name>
, et al.
<article-title>Hsa_circ_0101432 promotes the development of hepatocellular carcinoma (HCC) by adsorbing miR-1258 and miR-622</article-title>
.
<source>
<italic toggle="yes">Cell Cycle</italic>
</source>
.
<year>2019</year>
;
<volume>18</volume>
:
<fpage>2398</fpage>
<lpage>2413</lpage>
. doi:
<pub-id pub-id-type="doi">10.1080/15384101.2019.1618120</pub-id>
<pub-id pub-id-type="pmid">31095447</pub-id>
</mixed-citation>
</ref>
<ref id="CIT0127">
<label>127.</label>
<mixed-citation publication-type="journal">
<string-name>
<surname>Guo</surname>
<given-names>J</given-names>
</string-name>
,
<string-name>
<surname>Duan</surname>
<given-names>H</given-names>
</string-name>
,
<string-name>
<surname>Li</surname>
<given-names>Y</given-names>
</string-name>
,
<string-name>
<surname>Yang</surname>
<given-names>L</given-names>
</string-name>
,
<string-name>
<surname>Yuan</surname>
<given-names>L</given-names>
</string-name>
.
<article-title>A novel circular RNA circ-ZNF652 promotes hepatocellular carcinoma metastasis through inducing snail-mediated epithelial-mesenchymal transition by sponging miR-203/miR-502-5p</article-title>
.
<source>
<italic toggle="yes">Biochem Biophys Res Commun</italic>
</source>
.
<year>2019</year>
;
<volume>513</volume>
:
<fpage>812</fpage>
<lpage>819</lpage>
. doi:
<pub-id pub-id-type="doi">10.1016/j.bbrc.2019.03.214</pub-id>
<pub-id pub-id-type="pmid">31000195</pub-id>
</mixed-citation>
</ref>
<ref id="CIT0128">
<label>128.</label>
<mixed-citation publication-type="journal">
<string-name>
<surname>Xu</surname>
<given-names>L</given-names>
</string-name>
,
<string-name>
<surname>Feng</surname>
<given-names>X</given-names>
</string-name>
,
<string-name>
<surname>Hao</surname>
<given-names>X</given-names>
</string-name>
, et al.
<article-title>CircSETD3 (Hsa_circ_0000567) acts as a sponge for microRNA-421 inhibiting hepatocellular carcinoma growth</article-title>
.
<source>
<italic toggle="yes">J Exp Clin Cancer Res</italic>
</source>
.
<year>2019</year>
;
<volume>38</volume>
:
<fpage>98</fpage>
. doi:
<pub-id pub-id-type="doi">10.1186/s13046-019-1041-2</pub-id>
<pub-id pub-id-type="pmid">30795787</pub-id>
</mixed-citation>
</ref>
<ref id="CIT0129">
<label>129.</label>
<mixed-citation publication-type="journal">
<string-name>
<surname>Li</surname>
<given-names>X</given-names>
</string-name>
,
<string-name>
<surname>Shen</surname>
<given-names>M</given-names>
</string-name>
.
<article-title>Circular RNA hsa_circ_103809 suppresses hepatocellular carcinoma proliferation and invasion by sponging miR-620</article-title>
.
<source>
<italic toggle="yes">Eur Rev Med Pharmacol Sci</italic>
</source>
.
<year>2019</year>
;
<volume>23</volume>
:
<fpage>555</fpage>
<lpage>566</lpage>
. doi:
<pub-id pub-id-type="doi">10.26355/eurrev_201902_16868</pub-id>
<pub-id pub-id-type="pmid">30720163</pub-id>
</mixed-citation>
</ref>
<ref id="CIT0130">
<label>130.</label>
<mixed-citation publication-type="journal">
<string-name>
<surname>Pan</surname>
<given-names>H</given-names>
</string-name>
,
<string-name>
<surname>Tang</surname>
<given-names>L</given-names>
</string-name>
,
<string-name>
<surname>Jiang</surname>
<given-names>H</given-names>
</string-name>
, et al.
<article-title>Enhanced expression of circ_0000267 in hepatocellular carcinoma indicates poor prognosis and facilitates cell progression by sponging miR-646</article-title>
.
<source>
<italic toggle="yes">J Cell Biochem</italic>
</source>
.
<year>2019</year>
. doi:
<pub-id pub-id-type="doi">10.1002/jcb.28411</pub-id>
</mixed-citation>
</ref>
<ref id="CIT0131">
<label>131.</label>
<mixed-citation publication-type="journal">
<string-name>
<surname>Zhang</surname>
<given-names>J</given-names>
</string-name>
,
<string-name>
<surname>Chang</surname>
<given-names>Y</given-names>
</string-name>
,
<string-name>
<surname>Xu</surname>
<given-names>L</given-names>
</string-name>
,
<string-name>
<surname>Qin</surname>
<given-names>L</given-names>
</string-name>
.
<article-title>Elevated expression of circular RNA circ_0008450 predicts dismal prognosis in hepatocellular carcinoma and regulates cell proliferation, apoptosis, and invasion via sponging miR-548p</article-title>
.
<source>
<italic toggle="yes">J Cell Biochem</italic>
</source>
.
<year>2019</year>
;
<volume>120</volume>
:
<fpage>9487</fpage>
<lpage>9494</lpage>
. doi:
<pub-id pub-id-type="doi">10.1002/jcb.v120.6</pub-id>
<pub-id pub-id-type="pmid">30556306</pub-id>
</mixed-citation>
</ref>
<ref id="CIT0132">
<label>132.</label>
<mixed-citation publication-type="journal">
<string-name>
<surname>Qiu</surname>
<given-names>L</given-names>
</string-name>
,
<string-name>
<surname>Huang</surname>
<given-names>Y</given-names>
</string-name>
,
<string-name>
<surname>Li</surname>
<given-names>Z</given-names>
</string-name>
, et al.
<article-title>Circular RNA profiling identifies circADAMTS13 as a miR-484 sponge which suppresses cell proliferation in hepatocellular carcinoma</article-title>
.
<source>
<italic toggle="yes">Mol Oncol</italic>
</source>
.
<year>2019</year>
;
<volume>13</volume>
:
<fpage>441</fpage>
<lpage>455</lpage>
. doi:
<pub-id pub-id-type="doi">10.1002/1878-0261.12424</pub-id>
<pub-id pub-id-type="pmid">30537115</pub-id>
</mixed-citation>
</ref>
<ref id="CIT0133">
<label>133.</label>
<mixed-citation publication-type="journal">
<string-name>
<surname>Xie</surname>
<given-names>B</given-names>
</string-name>
,
<string-name>
<surname>Zhao</surname>
<given-names>Z</given-names>
</string-name>
,
<string-name>
<surname>Liu</surname>
<given-names>Q</given-names>
</string-name>
,
<string-name>
<surname>Wang</surname>
<given-names>X</given-names>
</string-name>
,
<string-name>
<surname>Ma</surname>
<given-names>Z</given-names>
</string-name>
,
<string-name>
<surname>Li</surname>
<given-names>H</given-names>
</string-name>
.
<article-title>CircRNA has_circ_0078710 acts as the sponge of microRNA-31 involved in hepatocellular carcinoma progression</article-title>
.
<source>
<italic toggle="yes">Gene</italic>
</source>
.
<year>2019</year>
;
<volume>683</volume>
:
<fpage>253</fpage>
<lpage>261</lpage>
. doi:
<pub-id pub-id-type="doi">10.1016/j.gene.2018.10.043</pub-id>
<pub-id pub-id-type="pmid">30342168</pub-id>
</mixed-citation>
</ref>
<ref id="CIT0134">
<label>134.</label>
<mixed-citation publication-type="journal">
<string-name>
<surname>Cao</surname>
<given-names>S</given-names>
</string-name>
,
<string-name>
<surname>Wang</surname>
<given-names>G</given-names>
</string-name>
,
<string-name>
<surname>Wang</surname>
<given-names>J</given-names>
</string-name>
,
<string-name>
<surname>Li</surname>
<given-names>C</given-names>
</string-name>
,
<string-name>
<surname>Zhang</surname>
<given-names>L</given-names>
</string-name>
.
<article-title>Hsa_circ_101280 promotes hepatocellular carcinoma by regulating miR-375/JAK2</article-title>
.
<source>
<italic toggle="yes">Immunol Cell Biol</italic>
</source>
.
<year>2019</year>
;
<volume>97</volume>
:
<fpage>218</fpage>
<lpage>228</lpage>
. doi:
<pub-id pub-id-type="doi">10.1111/imcb.2019.97.issue-2</pub-id>
<pub-id pub-id-type="pmid">30302825</pub-id>
</mixed-citation>
</ref>
<ref id="CIT0135">
<label>135.</label>
<mixed-citation publication-type="journal">
<string-name>
<surname>Wang</surname>
<given-names>H</given-names>
</string-name>
,
<string-name>
<surname>Chen</surname>
<given-names>W</given-names>
</string-name>
,
<string-name>
<surname>Jin</surname>
<given-names>M</given-names>
</string-name>
, et al.
<article-title>CircSLC3A2 functions as an oncogenic factor in hepatocellular carcinoma by sponging miR-490-3p and regulating PPM1F expression</article-title>
.
<source>
<italic toggle="yes">Mol Cancer</italic>
</source>
.
<year>2018</year>
;
<volume>17</volume>
:
<fpage>165</fpage>
. doi:
<pub-id pub-id-type="doi">10.1186/s12943-018-0909-7</pub-id>
<pub-id pub-id-type="pmid">30470261</pub-id>
</mixed-citation>
</ref>
<ref id="CIT0136">
<label>136.</label>
<mixed-citation publication-type="journal">
<string-name>
<surname>Zhang</surname>
<given-names>PF</given-names>
</string-name>
,
<string-name>
<surname>Wei</surname>
<given-names>CY</given-names>
</string-name>
,
<string-name>
<surname>Huang</surname>
<given-names>XY</given-names>
</string-name>
, et al.
<article-title>Circular RNA circTRIM33-12 acts as the sponge of MicroRNA-191 to suppress hepatocellular carcinoma progression</article-title>
.
<source>
<italic toggle="yes">Mol Cancer</italic>
</source>
.
<year>2019</year>
;
<volume>18</volume>
:
<fpage>105</fpage>
. doi:
<pub-id pub-id-type="doi">10.1186/s12943-019-1031-1</pub-id>
<pub-id pub-id-type="pmid">31153371</pub-id>
</mixed-citation>
</ref>
<ref id="CIT0137">
<label>137.</label>
<mixed-citation publication-type="journal">
<string-name>
<surname>Ma</surname>
<given-names>Y</given-names>
</string-name>
,
<string-name>
<surname>Zhang</surname>
<given-names>C</given-names>
</string-name>
,
<string-name>
<surname>Zhang</surname>
<given-names>B</given-names>
</string-name>
,
<string-name>
<surname>Yu</surname>
<given-names>H</given-names>
</string-name>
,
<string-name>
<surname>Yu</surname>
<given-names>Q</given-names>
</string-name>
.
<article-title>circRNA of AR-suppressed PABPC1 91 bp enhances the cytotoxicity of natural killer cells against hepatocellular carcinoma via upregulating UL16 binding protein 1</article-title>
.
<source>
<italic toggle="yes">Oncol Lett</italic>
</source>
.
<year>2019</year>
;
<volume>17</volume>
:
<fpage>388</fpage>
<lpage>397</lpage>
. doi:
<pub-id pub-id-type="doi">10.3892/ol.2018.9606</pub-id>
<pub-id pub-id-type="pmid">30655779</pub-id>
</mixed-citation>
</ref>
<ref id="CIT0138">
<label>138.</label>
<mixed-citation publication-type="journal">
<string-name>
<surname>Wang</surname>
<given-names>M</given-names>
</string-name>
,
<string-name>
<surname>Yu</surname>
<given-names>F</given-names>
</string-name>
,
<string-name>
<surname>Li</surname>
<given-names>P</given-names>
</string-name>
.
<article-title>Circular RNAs: characteristics, function and clinical significance in hepatocellular carcinoma</article-title>
.
<source>
<italic toggle="yes">Cancers (Basel)</italic>
</source>
.
<year>2018</year>
;
<volume>10</volume>
:
<fpage>258</fpage>
. doi:
<pub-id pub-id-type="doi">10.3390/cancers10080258</pub-id>
</mixed-citation>
</ref>
<ref id="CIT0139">
<label>139.</label>
<mixed-citation publication-type="journal">
<string-name>
<surname>Fu</surname>
<given-names>L</given-names>
</string-name>
,
<string-name>
<surname>Jiang</surname>
<given-names>Z</given-names>
</string-name>
,
<string-name>
<surname>Li</surname>
<given-names>T</given-names>
</string-name>
,
<string-name>
<surname>Hu</surname>
<given-names>Y</given-names>
</string-name>
,
<string-name>
<surname>Guo</surname>
<given-names>J</given-names>
</string-name>
.
<article-title>Circular RNAs in hepatocellular carcinoma: functions and implications</article-title>
.
<source>
<italic toggle="yes">Cancer Med</italic>
</source>
.
<year>2018</year>
. doi:
<pub-id pub-id-type="doi">10.1002/cam4.1574</pub-id>
</mixed-citation>
</ref>
<ref id="CIT0140">
<label>140.</label>
<mixed-citation publication-type="journal">
<string-name>
<surname>Wang</surname>
<given-names>S</given-names>
</string-name>
,
<string-name>
<surname>Cui</surname>
<given-names>S</given-names>
</string-name>
,
<string-name>
<surname>Zhao</surname>
<given-names>W</given-names>
</string-name>
, et al.
<article-title>Screening and bioinformatics analysis of circular RNA expression profiles in hepatitis B-related hepatocellular carcinoma</article-title>
.
<source>
<italic toggle="yes">Cancer Biomark</italic>
</source>
.
<year>2018</year>
;
<volume>22</volume>
:
<fpage>631</fpage>
<lpage>640</lpage>
. doi:
<pub-id pub-id-type="doi">10.3233/CBM-170910</pub-id>
<pub-id pub-id-type="pmid">29914004</pub-id>
</mixed-citation>
</ref>
<ref id="CIT0141">
<label>141.</label>
<mixed-citation publication-type="journal">
<string-name>
<surname>Su</surname>
<given-names>Y</given-names>
</string-name>
,
<string-name>
<surname>Xu</surname>
<given-names>C</given-names>
</string-name>
,
<string-name>
<surname>Liu</surname>
<given-names>Y</given-names>
</string-name>
,
<string-name>
<surname>Hu</surname>
<given-names>Y</given-names>
</string-name>
,
<string-name>
<surname>Wu</surname>
<given-names>H</given-names>
</string-name>
.
<article-title>Circular RNA hsa_circ_0001649 inhibits hepatocellular carcinoma progression via multiple miRNAs sponge</article-title>
.
<source>
<italic toggle="yes">Aging (Albany NY)</italic>
</source>
.
<year>2019</year>
. doi:
<pub-id pub-id-type="doi">10.18632/aging.101988</pub-id>
</mixed-citation>
</ref>
<ref id="CIT0142">
<label>142.</label>
<mixed-citation publication-type="journal">
<string-name>
<surname>Ding</surname>
<given-names>B</given-names>
</string-name>
,
<string-name>
<surname>Lou</surname>
<given-names>W</given-names>
</string-name>
,
<string-name>
<surname>Xu</surname>
<given-names>L</given-names>
</string-name>
,
<string-name>
<surname>Fan</surname>
<given-names>W</given-names>
</string-name>
.
<article-title>Non-coding RNA in drug resistance of hepatocellular carcinoma</article-title>
.
<source>
<italic toggle="yes">Biosci Rep</italic>
</source>
.
<year>2018</year>
;
<volume>38</volume>
. doi:
<pub-id pub-id-type="doi">10.1042/BSR20180915</pub-id>
</mixed-citation>
</ref>
<ref id="CIT0143">
<label>143.</label>
<mixed-citation publication-type="journal">
<string-name>
<surname>Yao</surname>
<given-names>R</given-names>
</string-name>
,
<string-name>
<surname>Zou</surname>
<given-names>H</given-names>
</string-name>
,
<string-name>
<surname>Liao</surname>
<given-names>W</given-names>
</string-name>
.
<article-title>Prospect of circular RNA in hepatocellular carcinoma: a novel potential biomarker and therapeutic target</article-title>
.
<source>
<italic toggle="yes">Front Oncol</italic>
</source>
.
<year>2018</year>
;
<volume>8</volume>
:
<fpage>332</fpage>
. doi:
<pub-id pub-id-type="doi">10.3389/fonc.2018.00332</pub-id>
<pub-id pub-id-type="pmid">30191143</pub-id>
</mixed-citation>
</ref>
<ref id="CIT0144">
<label>144.</label>
<mixed-citation publication-type="journal">
<string-name>
<surname>Qiu</surname>
<given-names>LP</given-names>
</string-name>
,
<string-name>
<surname>Wu</surname>
<given-names>YH</given-names>
</string-name>
,
<string-name>
<surname>Yu</surname>
<given-names>XF</given-names>
</string-name>
,
<string-name>
<surname>Tang</surname>
<given-names>Q</given-names>
</string-name>
,
<string-name>
<surname>Chen</surname>
<given-names>L</given-names>
</string-name>
,
<string-name>
<surname>Chen</surname>
<given-names>KP</given-names>
</string-name>
.
<article-title>The emerging role of circular RNAs in hepatocellular carcinoma</article-title>
.
<source>
<italic toggle="yes">J Cancer</italic>
</source>
.
<year>2018</year>
;
<volume>9</volume>
:
<fpage>1548</fpage>
<lpage>1559</lpage>
. doi:
<pub-id pub-id-type="doi">10.7150/jca.24566</pub-id>
<pub-id pub-id-type="pmid">29760792</pub-id>
</mixed-citation>
</ref>
<ref id="CIT0145">
<label>145.</label>
<mixed-citation publication-type="journal">
<string-name>
<surname>Ferlay</surname>
<given-names>J</given-names>
</string-name>
,
<string-name>
<surname>Soerjomataram</surname>
<given-names>I</given-names>
</string-name>
,
<string-name>
<surname>Dikshit</surname>
<given-names>R</given-names>
</string-name>
, et al.
<article-title>Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012</article-title>
.
<source>
<italic toggle="yes">Int J Cancer</italic>
</source>
.
<year>2015</year>
;
<volume>136</volume>
:
<fpage>E359</fpage>
<lpage>E386</lpage>
. doi:
<pub-id pub-id-type="doi">10.1002/ijc.29210</pub-id>
<pub-id pub-id-type="pmid">25220842</pub-id>
</mixed-citation>
</ref>
<ref id="CIT0146">
<label>146.</label>
<mixed-citation publication-type="journal">
<string-name>
<surname>Lodewijk</surname>
<given-names>I</given-names>
</string-name>
,
<string-name>
<surname>Duenas</surname>
<given-names>M</given-names>
</string-name>
,
<string-name>
<surname>Rubio</surname>
<given-names>C</given-names>
</string-name>
, et al.
<article-title>Liquid biopsy biomarkers in bladder cancer: a current need for patient diagnosis and monitoring</article-title>
.
<source>
<italic toggle="yes">Int J Mol Sci</italic>
</source>
.
<year>2018</year>
;
<volume>19</volume>
:
<fpage>2514</fpage>
. doi:
<pub-id pub-id-type="doi">10.3390/ijms19092514</pub-id>
</mixed-citation>
</ref>
<ref id="CIT0147">
<label>147.</label>
<mixed-citation publication-type="journal">
<string-name>
<surname>Geng</surname>
<given-names>Y</given-names>
</string-name>
,
<string-name>
<surname>Jiang</surname>
<given-names>J</given-names>
</string-name>
,
<string-name>
<surname>Wu</surname>
<given-names>C</given-names>
</string-name>
.
<article-title>Function and clinical significance of circRNAs in solid tumors</article-title>
.
<source>
<italic toggle="yes">J Hematol Oncol</italic>
</source>
.
<year>2018</year>
;
<volume>11</volume>
:
<fpage>98</fpage>
. doi:
<pub-id pub-id-type="doi">10.1186/s13045-018-0643-z</pub-id>
<pub-id pub-id-type="pmid">30064463</pub-id>
</mixed-citation>
</ref>
<ref id="CIT0148">
<label>148.</label>
<mixed-citation publication-type="journal">
<string-name>
<surname>Liu</surname>
<given-names>H</given-names>
</string-name>
,
<string-name>
<surname>Bi</surname>
<given-names>J</given-names>
</string-name>
,
<string-name>
<surname>Dong</surname>
<given-names>W</given-names>
</string-name>
, et al.
<article-title>Invasion-related circular RNA circFNDC3B inhibits bladder cancer progression through the miR-1178-3p/G3BP2/SRC/FAK axis</article-title>
.
<source>
<italic toggle="yes">Mol Cancer</italic>
</source>
.
<year>2018</year>
;
<volume>17</volume>
:
<fpage>161</fpage>
. doi:
<pub-id pub-id-type="doi">10.1186/s12943-018-0908-8</pub-id>
<pub-id pub-id-type="pmid">30458784</pub-id>
</mixed-citation>
</ref>
<ref id="CIT0149">
<label>149.</label>
<mixed-citation publication-type="journal">
<string-name>
<surname>Wu</surname>
<given-names>Z</given-names>
</string-name>
,
<string-name>
<surname>Huang</surname>
<given-names>W</given-names>
</string-name>
,
<string-name>
<surname>Wang</surname>
<given-names>X</given-names>
</string-name>
, et al.
<article-title>Circular RNA CEP128 acts as a sponge of miR-145-5p in promoting the bladder cancer progression via regulating SOX11</article-title>
.
<source>
<italic toggle="yes">Mol Med</italic>
</source>
.
<year>2018</year>
;
<volume>24</volume>
:
<fpage>40</fpage>
. doi:
<pub-id pub-id-type="doi">10.1186/s10020-018-0039-0</pub-id>
<pub-id pub-id-type="pmid">30134837</pub-id>
</mixed-citation>
</ref>
<ref id="CIT0150">
<label>150.</label>
<mixed-citation publication-type="journal">
<string-name>
<surname>Xie</surname>
<given-names>F</given-names>
</string-name>
,
<string-name>
<surname>Li</surname>
<given-names>Y</given-names>
</string-name>
,
<string-name>
<surname>Wang</surname>
<given-names>M</given-names>
</string-name>
, et al.
<article-title>Circular RNA BCRC-3 suppresses bladder cancer proliferation through miR-182-5p/p27 axis</article-title>
.
<source>
<italic toggle="yes">Mol Cancer</italic>
</source>
.
<year>2018</year>
;
<volume>17</volume>
:
<fpage>144</fpage>
. doi:
<pub-id pub-id-type="doi">10.1186/s12943-018-0892-z</pub-id>
<pub-id pub-id-type="pmid">30285878</pub-id>
</mixed-citation>
</ref>
<ref id="CIT0151">
<label>151.</label>
<mixed-citation publication-type="journal">
<string-name>
<surname>Yang</surname>
<given-names>C</given-names>
</string-name>
,
<string-name>
<surname>Wu</surname>
<given-names>S</given-names>
</string-name>
,
<string-name>
<surname>Wu</surname>
<given-names>X</given-names>
</string-name>
,
<string-name>
<surname>Zhou</surname>
<given-names>X</given-names>
</string-name>
,
<string-name>
<surname>Jin</surname>
<given-names>S</given-names>
</string-name>
,
<string-name>
<surname>Jiang</surname>
<given-names>H</given-names>
</string-name>
.
<article-title>Silencing circular RNA UVRAG inhibits bladder cancer growth and metastasis by targeting the microRNA-223/fibroblast growth factor receptor 2 axis</article-title>
.
<source>
<italic toggle="yes">Cancer Sci</italic>
</source>
.
<year>2019</year>
;
<volume>110</volume>
:
<fpage>99</fpage>
<lpage>106</lpage>
. doi:
<pub-id pub-id-type="doi">10.1111/cas.2019.110.issue-1</pub-id>
<pub-id pub-id-type="pmid">30387298</pub-id>
</mixed-citation>
</ref>
<ref id="CIT0152">
<label>152.</label>
<mixed-citation publication-type="journal">
<string-name>
<surname>Bi</surname>
<given-names>J</given-names>
</string-name>
,
<string-name>
<surname>Liu</surname>
<given-names>H</given-names>
</string-name>
,
<string-name>
<surname>Cai</surname>
<given-names>Z</given-names>
</string-name>
, et al.
<article-title>Circ-BPTF promotes bladder cancer progression and recurrence through the miR-31-5p/RAB27A axis</article-title>
.
<source>
<italic toggle="yes">Aging (Albany NY)</italic>
</source>
.
<year>2018</year>
;
<volume>10</volume>
:
<fpage>1964</fpage>
<lpage>1976</lpage>
. doi:
<pub-id pub-id-type="doi">10.18632/aging.v10i8</pub-id>
<pub-id pub-id-type="pmid">30103209</pub-id>
</mixed-citation>
</ref>
<ref id="CIT0153">
<label>153.</label>
<mixed-citation publication-type="journal">
<string-name>
<surname>Lin</surname>
<given-names>G</given-names>
</string-name>
,
<string-name>
<surname>Sheng</surname>
<given-names>H</given-names>
</string-name>
,
<string-name>
<surname>Xie</surname>
<given-names>H</given-names>
</string-name>
, et al.
<article-title>circLPAR1 is a novel biomarker of prognosis for muscle-invasive bladder cancer with invasion and metastasis by miR-762</article-title>
.
<source>
<italic toggle="yes">Oncol Lett</italic>
</source>
.
<year>2019</year>
;
<volume>17</volume>
:
<fpage>3537</fpage>
<lpage>3547</lpage>
. doi:
<pub-id pub-id-type="doi">10.3892/ol.2019.9970</pub-id>
<pub-id pub-id-type="pmid">30867795</pub-id>
</mixed-citation>
</ref>
<ref id="CIT0154">
<label>154.</label>
<mixed-citation publication-type="journal">
<string-name>
<surname>Su</surname>
<given-names>H</given-names>
</string-name>
,
<string-name>
<surname>Tao</surname>
<given-names>T</given-names>
</string-name>
,
<string-name>
<surname>Yang</surname>
<given-names>Z</given-names>
</string-name>
, et al.
<article-title>Circular RNA cTFRC acts as the sponge of MicroRNA-107 to promote bladder carcinoma progression</article-title>
.
<source>
<italic toggle="yes">Mol Cancer</italic>
</source>
.
<year>2019</year>
;
<volume>18</volume>
:
<fpage>27</fpage>
. doi:
<pub-id pub-id-type="doi">10.1186/s12943-019-0951-0</pub-id>
<pub-id pub-id-type="pmid">30782157</pub-id>
</mixed-citation>
</ref>
<ref id="CIT0155">
<label>155.</label>
<mixed-citation publication-type="journal">
<string-name>
<surname>Liu</surname>
<given-names>H</given-names>
</string-name>
,
<string-name>
<surname>Chen</surname>
<given-names>D</given-names>
</string-name>
,
<string-name>
<surname>Bi</surname>
<given-names>J</given-names>
</string-name>
, et al.
<article-title>Circular RNA circUBXN7 represses cell growth and invasion by sponging miR-1247-3p to enhance B4GALT3 expression in bladder cancer</article-title>
.
<source>
<italic toggle="yes">Aging (Albany NY)</italic>
</source>
.
<year>2018</year>
;
<volume>10</volume>
:
<fpage>2606</fpage>
<lpage>2623</lpage>
. doi:
<pub-id pub-id-type="doi">10.18632/aging.v10i10</pub-id>
<pub-id pub-id-type="pmid">30312173</pub-id>
</mixed-citation>
</ref>
<ref id="CIT0156">
<label>156.</label>
<mixed-citation publication-type="journal">
<string-name>
<surname>Gu</surname>
<given-names>C</given-names>
</string-name>
,
<string-name>
<surname>Zhou</surname>
<given-names>N</given-names>
</string-name>
,
<string-name>
<surname>Wang</surname>
<given-names>Z</given-names>
</string-name>
, et al.
<article-title>circGprc5a promoted bladder oncogenesis and metastasis through Gprc5a-targeting peptide</article-title>
.
<source>
<italic toggle="yes">Mol Ther Nucleic Acids</italic>
</source>
.
<year>2018</year>
;
<volume>13</volume>
:
<fpage>633</fpage>
<lpage>641</lpage>
. doi:
<pub-id pub-id-type="doi">10.1016/j.omtn.2018.10.008</pub-id>
<pub-id pub-id-type="pmid">30497053</pub-id>
</mixed-citation>
</ref>
<ref id="CIT0157">
<label>157.</label>
<mixed-citation publication-type="journal">
<string-name>
<surname>Guo</surname>
<given-names>S</given-names>
</string-name>
,
<string-name>
<surname>Xu</surname>
<given-names>X</given-names>
</string-name>
,
<string-name>
<surname>Ouyang</surname>
<given-names>Y</given-names>
</string-name>
, et al.
<article-title>Microarray expression profile analysis of circular RNAs in pancreatic cancer</article-title>
.
<source>
<italic toggle="yes">Mol Med Rep</italic>
</source>
.
<year>2018</year>
;
<volume>17</volume>
:
<fpage>7661</fpage>
<lpage>7671</lpage>
. doi:
<pub-id pub-id-type="doi">10.3892/mmr.2018.8827</pub-id>
<pub-id pub-id-type="pmid">29620241</pub-id>
</mixed-citation>
</ref>
<ref id="CIT0158">
<label>158.</label>
<mixed-citation publication-type="journal">
<string-name>
<surname>Chen</surname>
<given-names>W</given-names>
</string-name>
,
<string-name>
<surname>Zheng</surname>
<given-names>R</given-names>
</string-name>
,
<string-name>
<surname>Zeng</surname>
<given-names>H</given-names>
</string-name>
,
<string-name>
<surname>Zhang</surname>
<given-names>S</given-names>
</string-name>
.
<article-title>The incidence and mortality of major cancers in China, 2012</article-title>
.
<source>
<italic toggle="yes">Chin J Cancer</italic>
</source>
.
<year>2016</year>
;
<volume>35</volume>
:
<fpage>73</fpage>
. doi:
<pub-id pub-id-type="doi">10.1186/s40880-016-0137-8</pub-id>
<pub-id pub-id-type="pmid">27484217</pub-id>
</mixed-citation>
</ref>
<ref id="CIT0159">
<label>159.</label>
<mixed-citation publication-type="journal">
<string-name>
<surname>Wei</surname>
<given-names>DM</given-names>
</string-name>
,
<string-name>
<surname>Jiang</surname>
<given-names>MT</given-names>
</string-name>
,
<string-name>
<surname>Lin</surname>
<given-names>P</given-names>
</string-name>
, et al.
<article-title>Potential ceRNA networks involved in autophagy suppression of pancreatic cancer caused by chloroquine diphosphate: a study based on differentially expressed circRNAs, lncRNAs, miRNAs and mRNAs</article-title>
.
<source>
<italic toggle="yes">Int J Oncol</italic>
</source>
.
<year>2019</year>
;
<volume>54</volume>
:
<fpage>600</fpage>
<lpage>626</lpage>
. doi:
<pub-id pub-id-type="doi">10.3892/ijo.2018.4660</pub-id>
<pub-id pub-id-type="pmid">30570107</pub-id>
</mixed-citation>
</ref>
<ref id="CIT0160">
<label>160.</label>
<mixed-citation publication-type="journal">
<string-name>
<surname>Yang</surname>
<given-names>F</given-names>
</string-name>
,
<string-name>
<surname>Liu</surname>
<given-names>DY</given-names>
</string-name>
,
<string-name>
<surname>Guo</surname>
<given-names>JT</given-names>
</string-name>
, et al.
<article-title>Circular RNA circ-LDLRAD3 as a biomarker in diagnosis of pancreatic cancer</article-title>
.
<source>
<italic toggle="yes">World J Gastroenterol</italic>
</source>
.
<year>2017</year>
;
<volume>23</volume>
:
<fpage>8345</fpage>
<lpage>8354</lpage>
. doi:
<pub-id pub-id-type="doi">10.3748/wjg.v23.i47.8345</pub-id>
<pub-id pub-id-type="pmid">29307994</pub-id>
</mixed-citation>
</ref>
<ref id="CIT0161">
<label>161.</label>
<mixed-citation publication-type="journal">
<string-name>
<surname>Zhu</surname>
<given-names>P</given-names>
</string-name>
,
<string-name>
<surname>Ge</surname>
<given-names>N</given-names>
</string-name>
,
<string-name>
<surname>Liu</surname>
<given-names>D</given-names>
</string-name>
, et al.
<article-title>Preliminary investigation of the function of hsa_circ_0006215 in pancreatic cancer</article-title>
.
<source>
<italic toggle="yes">Oncol Lett</italic>
</source>
.
<year>2018</year>
;
<volume>16</volume>
:
<fpage>603</fpage>
<lpage>611</lpage>
. doi:
<pub-id pub-id-type="doi">10.3892/ol.2018.8652</pub-id>
<pub-id pub-id-type="pmid">29930719</pub-id>
</mixed-citation>
</ref>
<ref id="CIT0162">
<label>162.</label>
<mixed-citation publication-type="journal">
<string-name>
<surname>Chen</surname>
<given-names>G</given-names>
</string-name>
,
<string-name>
<surname>Shi</surname>
<given-names>Y</given-names>
</string-name>
,
<string-name>
<surname>Zhang</surname>
<given-names>Y</given-names>
</string-name>
,
<string-name>
<surname>Sun</surname>
<given-names>J</given-names>
</string-name>
.
<article-title>CircRNA_100782 regulates pancreatic carcinoma proliferation through the IL6-STAT3 pathway</article-title>
.
<source>
<italic toggle="yes">Onco Targets Ther</italic>
</source>
.
<year>2017</year>
;
<volume>10</volume>
:
<fpage>5783</fpage>
<lpage>5794</lpage>
. doi:
<pub-id pub-id-type="doi">10.2147/OTT</pub-id>
<pub-id pub-id-type="pmid">29255366</pub-id>
</mixed-citation>
</ref>
<ref id="CIT0163">
<label>163.</label>
<mixed-citation publication-type="journal">
<string-name>
<surname>An</surname>
<given-names>Y</given-names>
</string-name>
,
<string-name>
<surname>Cai</surname>
<given-names>H</given-names>
</string-name>
,
<string-name>
<surname>Zhang</surname>
<given-names>Y</given-names>
</string-name>
, et al.
<article-title>circZMYM2 competed endogenously with miR-335-5p to regulate JMJD2C in pancreatic cancer</article-title>
.
<source>
<italic toggle="yes">Cell Physiol Biochem</italic>
</source>
.
<year>2018</year>
;
<volume>51</volume>
:
<fpage>2224</fpage>
<lpage>2236</lpage>
. doi:
<pub-id pub-id-type="doi">10.1159/000495868</pub-id>
<pub-id pub-id-type="pmid">30537731</pub-id>
</mixed-citation>
</ref>
<ref id="CIT0164">
<label>164.</label>
<mixed-citation publication-type="journal">
<string-name>
<surname>Qu</surname>
<given-names>S</given-names>
</string-name>
,
<string-name>
<surname>Hao</surname>
<given-names>X</given-names>
</string-name>
,
<string-name>
<surname>Song</surname>
<given-names>W</given-names>
</string-name>
, et al.
<article-title>Circular RNA circRHOT1 is upregulated and promotes cell proliferation and invasion in pancreatic cancer</article-title>
.
<source>
<italic toggle="yes">Epigenomics</italic>
</source>
.
<year>2019</year>
;
<volume>11</volume>
:
<fpage>53</fpage>
<lpage>63</lpage>
. doi:
<pub-id pub-id-type="doi">10.2217/epi-2018-0051</pub-id>
<pub-id pub-id-type="pmid">30444423</pub-id>
</mixed-citation>
</ref>
<ref id="CIT0165">
<label>165.</label>
<mixed-citation publication-type="journal">
<string-name>
<surname>Li</surname>
<given-names>Z</given-names>
</string-name>
,
<string-name>
<surname>Yanfang</surname>
<given-names>W</given-names>
</string-name>
,
<string-name>
<surname>Li</surname>
<given-names>J</given-names>
</string-name>
, et al.
<article-title>Tumor-released exosomal circular RNA PDE8A promotes invasive growth via the miR-338/MACC1/MET pathway in pancreatic cancer</article-title>
.
<source>
<italic toggle="yes">Cancer Lett</italic>
</source>
.
<year>2018</year>
;
<volume>432</volume>
:
<fpage>237</fpage>
<lpage>250</lpage>
. doi:
<pub-id pub-id-type="doi">10.1016/j.canlet.2018.04.035</pub-id>
<pub-id pub-id-type="pmid">29709702</pub-id>
</mixed-citation>
</ref>
<ref id="CIT0166">
<label>166.</label>
<mixed-citation publication-type="journal">
<string-name>
<surname>Li</surname>
<given-names>J</given-names>
</string-name>
,
<string-name>
<surname>Li</surname>
<given-names>Z</given-names>
</string-name>
,
<string-name>
<surname>Jiang</surname>
<given-names>P</given-names>
</string-name>
, et al.
<article-title>Circular RNA IARS (circ-IARS) secreted by pancreatic cancer cells and located within exosomes regulates endothelial monolayer permeability to promote tumor metastasis</article-title>
.
<source>
<italic toggle="yes">J Exp Clin Cancer Res</italic>
</source>
.
<year>2018</year>
;
<volume>37</volume>
:
<fpage>177</fpage>
. doi:
<pub-id pub-id-type="doi">10.1186/s13046-018-0822-3</pub-id>
<pub-id pub-id-type="pmid">30064461</pub-id>
</mixed-citation>
</ref>
<ref id="CIT0167">
<label>167.</label>
<mixed-citation publication-type="journal">
<string-name>
<surname>Trabzonlu</surname>
<given-names>L</given-names>
</string-name>
,
<string-name>
<surname>Paksoy</surname>
<given-names>N</given-names>
</string-name>
.
<article-title>Cytomorphological analysis of thyroid nodules diagnosed as follicular variant of papillary thyroid carcinoma: a fine needle aspiration study of diagnostic clues in 42 cases and the impact of using bethesda system in reporting-an institutional experience</article-title>
.
<source>
<italic toggle="yes">Endocr Pathol</italic>
</source>
.
<year>2018</year>
;
<volume>29</volume>
:
<fpage>351</fpage>
<lpage>356</lpage>
. doi:
<pub-id pub-id-type="doi">10.1007/s12022-018-9550-7</pub-id>
<pub-id pub-id-type="pmid">30315491</pub-id>
</mixed-citation>
</ref>
<ref id="CIT0168">
<label>168.</label>
<mixed-citation publication-type="journal">
<string-name>
<surname>Yang</surname>
<given-names>C</given-names>
</string-name>
,
<string-name>
<surname>Wei</surname>
<given-names>Y</given-names>
</string-name>
,
<string-name>
<surname>Yu</surname>
<given-names>L</given-names>
</string-name>
,
<string-name>
<surname>Xiao</surname>
<given-names>Y</given-names>
</string-name>
.
<article-title>Identification of altered circular RNA expression in serum exosomes from patients with papillary thyroid carcinoma by high-throughput sequencing</article-title>
.
<source>
<italic toggle="yes">Med Sci Monit</italic>
</source>
.
<year>2019</year>
;
<volume>25</volume>
:
<fpage>2785</fpage>
<lpage>2791</lpage>
. doi:
<pub-id pub-id-type="doi">10.12659/MSM.915658</pub-id>
<pub-id pub-id-type="pmid">30988274</pub-id>
</mixed-citation>
</ref>
<ref id="CIT0169">
<label>169.</label>
<mixed-citation publication-type="journal">
<string-name>
<surname>Lan</surname>
<given-names>X</given-names>
</string-name>
,
<string-name>
<surname>Xu</surname>
<given-names>J</given-names>
</string-name>
,
<string-name>
<surname>Chen</surname>
<given-names>C</given-names>
</string-name>
, et al.
<article-title>The landscape of circular RNA expression profiles in papillary thyroid carcinoma based on RNA sequencing</article-title>
.
<source>
<italic toggle="yes">Cell Physiol Biochem</italic>
</source>
.
<year>2018</year>
;
<volume>47</volume>
:
<fpage>1122</fpage>
<lpage>1132</lpage>
. doi:
<pub-id pub-id-type="doi">10.1159/000490188</pub-id>
<pub-id pub-id-type="pmid">29847813</pub-id>
</mixed-citation>
</ref>
<ref id="CIT0170">
<label>170.</label>
<mixed-citation publication-type="journal">
<string-name>
<surname>Peng</surname>
<given-names>N</given-names>
</string-name>
,
<string-name>
<surname>Shi</surname>
<given-names>L</given-names>
</string-name>
,
<string-name>
<surname>Zhang</surname>
<given-names>Q</given-names>
</string-name>
,
<string-name>
<surname>Hu</surname>
<given-names>Y</given-names>
</string-name>
,
<string-name>
<surname>Wang</surname>
<given-names>N</given-names>
</string-name>
,
<string-name>
<surname>Ye</surname>
<given-names>H</given-names>
</string-name>
.
<article-title>Microarray profiling of circular RNAs in human papillary thyroid carcinoma</article-title>
.
<source>
<italic toggle="yes">PLoS One</italic>
</source>
.
<year>2017</year>
;
<volume>12</volume>
:
<fpage>e0170287</fpage>
. doi:
<pub-id pub-id-type="doi">10.1371/journal.pone.0170287</pub-id>
<pub-id pub-id-type="pmid">28288173</pub-id>
</mixed-citation>
</ref>
<ref id="CIT0171">
<label>171.</label>
<mixed-citation publication-type="journal">
<string-name>
<surname>Ren</surname>
<given-names>H</given-names>
</string-name>
,
<string-name>
<surname>Liu</surname>
<given-names>Z</given-names>
</string-name>
,
<string-name>
<surname>Liu</surname>
<given-names>S</given-names>
</string-name>
, et al.
<article-title>Profile and clinical implication of circular RNAs in human papillary thyroid carcinoma</article-title>
.
<source>
<italic toggle="yes">PeerJ</italic>
</source>
.
<year>2018</year>
;
<volume>6</volume>
:
<fpage>e5363</fpage>
. doi:
<pub-id pub-id-type="doi">10.7717/peerj.5363</pub-id>
<pub-id pub-id-type="pmid">30123704</pub-id>
</mixed-citation>
</ref>
<ref id="CIT0172">
<label>172.</label>
<mixed-citation publication-type="journal">
<string-name>
<surname>Cai</surname>
<given-names>X</given-names>
</string-name>
,
<string-name>
<surname>Zhao</surname>
<given-names>Z</given-names>
</string-name>
,
<string-name>
<surname>Dong</surname>
<given-names>J</given-names>
</string-name>
, et al.
<article-title>Circular RNA circBACH2 plays a role in papillary thyroid carcinoma by sponging miR-139-5p and regulating LMO4 expression</article-title>
.
<source>
<italic toggle="yes">Cell Death Dis</italic>
</source>
.
<year>2019</year>
;
<volume>10</volume>
:
<fpage>184</fpage>
. doi:
<pub-id pub-id-type="doi">10.1038/s41419-019-1439-y</pub-id>
<pub-id pub-id-type="pmid">30796202</pub-id>
</mixed-citation>
</ref>
<ref id="CIT0173">
<label>173.</label>
<mixed-citation publication-type="journal">
<string-name>
<surname>Liu</surname>
<given-names>W</given-names>
</string-name>
,
<string-name>
<surname>Zhao</surname>
<given-names>J</given-names>
</string-name>
,
<string-name>
<surname>Jin</surname>
<given-names>M</given-names>
</string-name>
,
<string-name>
<surname>Zhou</surname>
<given-names>M</given-names>
</string-name>
.
<article-title>circRAPGEF5 contributes to papillary thyroid proliferation and metastasis by regulation miR-198/FGFR1</article-title>
.
<source>
<italic toggle="yes">Mol Ther Nucleic Acids</italic>
</source>
.
<year>2019</year>
;
<volume>14</volume>
:
<fpage>609</fpage>
<lpage>616</lpage>
. doi:
<pub-id pub-id-type="doi">10.1016/j.omtn.2019.01.003</pub-id>
<pub-id pub-id-type="pmid">30785065</pub-id>
</mixed-citation>
</ref>
<ref id="CIT0174">
<label>174.</label>
<mixed-citation publication-type="journal">
<string-name>
<surname>Pan</surname>
<given-names>Y</given-names>
</string-name>
,
<string-name>
<surname>Xu</surname>
<given-names>T</given-names>
</string-name>
,
<string-name>
<surname>Liu</surname>
<given-names>Y</given-names>
</string-name>
,
<string-name>
<surname>Li</surname>
<given-names>W</given-names>
</string-name>
,
<string-name>
<surname>Zhang</surname>
<given-names>W</given-names>
</string-name>
.
<article-title>Upregulated circular RNA circ_0025033 promotes papillary thyroid cancer cell proliferation and invasion via sponging miR-1231 and miR-1304</article-title>
.
<source>
<italic toggle="yes">Biochem Biophys Res Commun</italic>
</source>
.
<year>2019</year>
;
<volume>510</volume>
:
<fpage>334</fpage>
<lpage>338</lpage>
. doi:
<pub-id pub-id-type="doi">10.1016/j.bbrc.2019.01.108</pub-id>
<pub-id pub-id-type="pmid">30709584</pub-id>
</mixed-citation>
</ref>
<ref id="CIT0175">
<label>175.</label>
<mixed-citation publication-type="journal">
<string-name>
<surname>Bi</surname>
<given-names>W</given-names>
</string-name>
,
<string-name>
<surname>Huang</surname>
<given-names>J</given-names>
</string-name>
,
<string-name>
<surname>Nie</surname>
<given-names>C</given-names>
</string-name>
, et al.
<article-title>CircRNA circRNA_102171 promotes papillary thyroid cancer progression through modulating CTNNBIP1-dependent activation of beta-catenin pathway</article-title>
.
<source>
<italic toggle="yes">J Exp Clin Cancer Res</italic>
</source>
.
<year>2018</year>
;
<volume>37</volume>
:
<fpage>275</fpage>
. doi:
<pub-id pub-id-type="doi">10.1186/s13046-018-0936-7</pub-id>
<pub-id pub-id-type="pmid">30424816</pub-id>
</mixed-citation>
</ref>
<ref id="CIT0176">
<label>176.</label>
<mixed-citation publication-type="journal">
<string-name>
<surname>Wang</surname>
<given-names>M</given-names>
</string-name>
,
<string-name>
<surname>Chen</surname>
<given-names>B</given-names>
</string-name>
,
<string-name>
<surname>Ru</surname>
<given-names>Z</given-names>
</string-name>
,
<string-name>
<surname>Cong</surname>
<given-names>L</given-names>
</string-name>
.
<article-title>CircRNA circ-ITCH suppresses papillary thyroid cancer progression through miR-22-3p/CBL/beta-catenin pathway</article-title>
.
<source>
<italic toggle="yes">Biochem Biophys Res Commun</italic>
</source>
.
<year>2018</year>
;
<volume>504</volume>
:
<fpage>283</fpage>
<lpage>288</lpage>
. doi:
<pub-id pub-id-type="doi">10.1016/j.bbrc.2018.08.175</pub-id>
<pub-id pub-id-type="pmid">30190130</pub-id>
</mixed-citation>
</ref>
<ref id="CIT0177">
<label>177.</label>
<mixed-citation publication-type="journal">
<string-name>
<surname>Wei</surname>
<given-names>H</given-names>
</string-name>
,
<string-name>
<surname>Pan</surname>
<given-names>L</given-names>
</string-name>
,
<string-name>
<surname>Tao</surname>
<given-names>D</given-names>
</string-name>
,
<string-name>
<surname>Li</surname>
<given-names>R</given-names>
</string-name>
.
<article-title>Circular RNA circZFR contributes to papillary thyroid cancer cell proliferation and invasion by sponging miR-1261 and facilitating C8orf4 expression</article-title>
.
<source>
<italic toggle="yes">Biochem Biophys Res Commun</italic>
</source>
.
<year>2018</year>
;
<volume>503</volume>
:
<fpage>56</fpage>
<lpage>61</lpage>
. doi:
<pub-id pub-id-type="doi">10.1016/j.bbrc.2018.05.174</pub-id>
<pub-id pub-id-type="pmid">29842886</pub-id>
</mixed-citation>
</ref>
<ref id="CIT0178">
<label>178.</label>
<mixed-citation publication-type="journal">
<string-name>
<surname>Yao</surname>
<given-names>Y</given-names>
</string-name>
,
<string-name>
<surname>Chen</surname>
<given-names>X</given-names>
</string-name>
,
<string-name>
<surname>Yang</surname>
<given-names>H</given-names>
</string-name>
, et al.
<article-title>Hsa_circ_0058124 promotes papillary thyroid cancer tumorigenesis and invasiveness through the NOTCH3/GATAD2A axis</article-title>
.
<source>
<italic toggle="yes">J Exp Clin Cancer Res</italic>
</source>
.
<year>2019</year>
;
<volume>38</volume>
:
<fpage>318</fpage>
. doi:
<pub-id pub-id-type="doi">10.1186/s13046-019-1321-x</pub-id>
<pub-id pub-id-type="pmid">31324198</pub-id>
</mixed-citation>
</ref>
<ref id="CIT0179">
<label>179.</label>
<mixed-citation publication-type="journal">
<string-name>
<surname>Lan</surname>
<given-names>X</given-names>
</string-name>
,
<string-name>
<surname>Cao</surname>
<given-names>J</given-names>
</string-name>
,
<string-name>
<surname>Xu</surname>
<given-names>J</given-names>
</string-name>
, et al.
<article-title>Decreased expression of hsa_circ_0137287 predicts aggressive clinicopathologic characteristics in papillary thyroid carcinoma</article-title>
.
<source>
<italic toggle="yes">J Clin Lab Anal</italic>
</source>
.
<year>2018</year>
;
<volume>32</volume>
:
<fpage>e22573</fpage>
. doi:
<pub-id pub-id-type="doi">10.1002/jcla.2018.32.issue-8</pub-id>
<pub-id pub-id-type="pmid">29790216</pub-id>
</mixed-citation>
</ref>
<ref id="CIT0180">
<label>180.</label>
<mixed-citation publication-type="journal">
<string-name>
<surname>El-Naggar</surname>
<given-names>AM</given-names>
</string-name>
,
<string-name>
<surname>Clarkson</surname>
<given-names>PW</given-names>
</string-name>
,
<string-name>
<surname>Negri</surname>
<given-names>GL</given-names>
</string-name>
, et al.
<article-title>HACE1 is a potential tumor suppressor in osteosarcoma</article-title>
.
<source>
<italic toggle="yes">Cell Death Dis</italic>
</source>
.
<year>2019</year>
;
<volume>10</volume>
:
<fpage>21</fpage>
. doi:
<pub-id pub-id-type="doi">10.1038/s41419-018-1276-4</pub-id>
<pub-id pub-id-type="pmid">30622235</pub-id>
</mixed-citation>
</ref>
<ref id="CIT0181">
<label>181.</label>
<mixed-citation publication-type="journal">
<string-name>
<surname>Zhao</surname>
<given-names>GS</given-names>
</string-name>
,
<string-name>
<surname>Gao</surname>
<given-names>ZR</given-names>
</string-name>
,
<string-name>
<surname>Zhang</surname>
<given-names>Q</given-names>
</string-name>
, et al.
<article-title>TSSC3 promotes autophagy via inactivating the Src-mediated PI3K/Akt/mTOR pathway to suppress tumorigenesis and metastasis in osteosarcoma, and predicts a favorable prognosis</article-title>
.
<source>
<italic toggle="yes">J Exp Clin Cancer Res</italic>
</source>
.
<year>2018</year>
;
<volume>37</volume>
:
<fpage>188</fpage>
. doi:
<pub-id pub-id-type="doi">10.1186/s13046-018-0856-6</pub-id>
<pub-id pub-id-type="pmid">30092789</pub-id>
</mixed-citation>
</ref>
<ref id="CIT0182">
<label>182.</label>
<mixed-citation publication-type="journal">
<string-name>
<surname>Zuo</surname>
<given-names>D</given-names>
</string-name>
,
<string-name>
<surname>Shogren</surname>
<given-names>KL</given-names>
</string-name>
,
<string-name>
<surname>Zang</surname>
<given-names>J</given-names>
</string-name>
, et al.
<article-title>Inhibition of STAT3 blocks protein synthesis and tumor metastasis in osteosarcoma cells</article-title>
.
<source>
<italic toggle="yes">J Exp Clin Cancer Res</italic>
</source>
.
<year>2018</year>
;
<volume>37</volume>
:
<fpage>244</fpage>
. doi:
<pub-id pub-id-type="doi">10.1186/s13046-018-0914-0</pub-id>
<pub-id pub-id-type="pmid">30286779</pub-id>
</mixed-citation>
</ref>
<ref id="CIT0183">
<label>183.</label>
<mixed-citation publication-type="journal">
<string-name>
<surname>Wang</surname>
<given-names>C</given-names>
</string-name>
,
<string-name>
<surname>Ren</surname>
<given-names>M</given-names>
</string-name>
,
<string-name>
<surname>Zhao</surname>
<given-names>X</given-names>
</string-name>
,
<string-name>
<surname>Wang</surname>
<given-names>A</given-names>
</string-name>
,
<string-name>
<surname>Wang</surname>
<given-names>J</given-names>
</string-name>
.
<article-title>Emerging roles of circular RNAs in osteosarcoma</article-title>
.
<source>
<italic toggle="yes">Med Sci Monit</italic>
</source>
.
<year>2018</year>
;
<volume>24</volume>
:
<fpage>7043</fpage>
<lpage>7050</lpage>
. doi:
<pub-id pub-id-type="doi">10.12659/MSM.912092</pub-id>
<pub-id pub-id-type="pmid">30282962</pub-id>
</mixed-citation>
</ref>
<ref id="CIT0184">
<label>184.</label>
<mixed-citation publication-type="journal">
<string-name>
<surname>Xi</surname>
<given-names>Y</given-names>
</string-name>
,
<string-name>
<surname>Fowdur</surname>
<given-names>M</given-names>
</string-name>
,
<string-name>
<surname>Liu</surname>
<given-names>Y</given-names>
</string-name>
,
<string-name>
<surname>Wu</surname>
<given-names>H</given-names>
</string-name>
,
<string-name>
<surname>He</surname>
<given-names>M</given-names>
</string-name>
,
<string-name>
<surname>Zhao</surname>
<given-names>J</given-names>
</string-name>
.
<article-title>Differential expression and bioinformatics analysis of circRNA in osteosarcoma</article-title>
.
<source>
<italic toggle="yes">Biosci Rep</italic>
</source>
.
<year>2019</year>
;
<volume>39</volume>
. doi:
<pub-id pub-id-type="doi">10.1042/BSR20181514</pub-id>
</mixed-citation>
</ref>
<ref id="CIT0185">
<label>185.</label>
<mixed-citation publication-type="journal">
<string-name>
<surname>Zhu</surname>
<given-names>K</given-names>
</string-name>
,
<string-name>
<surname>Niu</surname>
<given-names>L</given-names>
</string-name>
,
<string-name>
<surname>Wang</surname>
<given-names>J</given-names>
</string-name>
, et al.
<article-title>Circular RNA hsa_circ_0000885 levels are increased in tissue and serum samples from patients with osteosarcoma</article-title>
.
<source>
<italic toggle="yes">Med Sci Monit</italic>
</source>
.
<year>2019</year>
;
<volume>25</volume>
:
<fpage>1499</fpage>
<lpage>1505</lpage>
. doi:
<pub-id pub-id-type="doi">10.12659/MSM.914899</pub-id>
<pub-id pub-id-type="pmid">30802235</pub-id>
</mixed-citation>
</ref>
<ref id="CIT0186">
<label>186.</label>
<mixed-citation publication-type="journal">
<string-name>
<surname>Liu</surname>
<given-names>G</given-names>
</string-name>
,
<string-name>
<surname>Huang</surname>
<given-names>K</given-names>
</string-name>
,
<string-name>
<surname>Jie</surname>
<given-names>Z</given-names>
</string-name>
, et al.
<article-title>CircFAT1 sponges miR-375 to promote the expression of yes-associated protein 1 in osteosarcoma cells</article-title>
.
<source>
<italic toggle="yes">Mol Cancer</italic>
</source>
.
<year>2018</year>
;
<volume>17</volume>
:
<fpage>170</fpage>
. doi:
<pub-id pub-id-type="doi">10.1186/s12943-018-0917-7</pub-id>
<pub-id pub-id-type="pmid">30514309</pub-id>
</mixed-citation>
</ref>
<ref id="CIT0187">
<label>187.</label>
<mixed-citation publication-type="journal">
<string-name>
<surname>Xu</surname>
<given-names>B</given-names>
</string-name>
,
<string-name>
<surname>Yang</surname>
<given-names>T</given-names>
</string-name>
,
<string-name>
<surname>Wang</surname>
<given-names>Z</given-names>
</string-name>
,
<string-name>
<surname>Zhang</surname>
<given-names>Y</given-names>
</string-name>
,
<string-name>
<surname>Liu</surname>
<given-names>S</given-names>
</string-name>
,
<string-name>
<surname>Shen</surname>
<given-names>M</given-names>
</string-name>
.
<article-title>CircRNA CDR1as/miR-7 signals promote tumor growth of osteosarcoma with a potential therapeutic and diagnostic value</article-title>
.
<source>
<italic toggle="yes">Cancer Manag Res</italic>
</source>
.
<year>2018</year>
;
<volume>10</volume>
:
<fpage>4871</fpage>
<lpage>4880</lpage>
. doi:
<pub-id pub-id-type="doi">10.2147/CMAR</pub-id>
<pub-id pub-id-type="pmid">30425578</pub-id>
</mixed-citation>
</ref>
<ref id="CIT0188">
<label>188.</label>
<mixed-citation publication-type="journal">
<string-name>
<surname>Wu</surname>
<given-names>Y</given-names>
</string-name>
,
<string-name>
<surname>Xie</surname>
<given-names>Z</given-names>
</string-name>
,
<string-name>
<surname>Chen</surname>
<given-names>J</given-names>
</string-name>
, et al.
<article-title>Circular RNA circTADA2A promotes osteosarcoma progression and metastasis by sponging miR-203a-3p and regulating CREB3 expression</article-title>
.
<source>
<italic toggle="yes">Mol Cancer</italic>
</source>
.
<year>2019</year>
;
<volume>18</volume>
:
<fpage>73</fpage>
. doi:
<pub-id pub-id-type="doi">10.1186/s12943-019-1007-1</pub-id>
<pub-id pub-id-type="pmid">30940151</pub-id>
</mixed-citation>
</ref>
<ref id="CIT0189">
<label>189.</label>
<mixed-citation publication-type="journal">
<string-name>
<surname>Kun-Peng</surname>
<given-names>Z</given-names>
</string-name>
,
<string-name>
<surname>Chun-Lin</surname>
<given-names>Z</given-names>
</string-name>
,
<string-name>
<surname>Jian-Ping</surname>
<given-names>H</given-names>
</string-name>
,
<string-name>
<surname>Lei</surname>
<given-names>Z</given-names>
</string-name>
.
<article-title>A novel circulating hsa_circ_0081001 act as a potential biomarker for diagnosis and prognosis of osteosarcoma</article-title>
.
<source>
<italic toggle="yes">Int J Biol Sci</italic>
</source>
.
<year>2018</year>
;
<volume>14</volume>
:
<fpage>1513</fpage>
<lpage>1520</lpage>
. doi:
<pub-id pub-id-type="doi">10.7150/ijbs.27523</pub-id>
<pub-id pub-id-type="pmid">30263004</pub-id>
</mixed-citation>
</ref>
<ref id="CIT0190">
<label>190.</label>
<mixed-citation publication-type="journal">
<string-name>
<surname>Zhang</surname>
<given-names>H</given-names>
</string-name>
,
<string-name>
<surname>Yan</surname>
<given-names>J</given-names>
</string-name>
,
<string-name>
<surname>Lang</surname>
<given-names>X</given-names>
</string-name>
,
<string-name>
<surname>Zhuang</surname>
<given-names>Y</given-names>
</string-name>
.
<article-title>Expression of circ_001569 is upregulated in osteosarcoma and promotes cell proliferation and cisplatin resistance by activating the Wnt/beta-catenin signaling pathway</article-title>
.
<source>
<italic toggle="yes">Oncol Lett</italic>
</source>
.
<year>2018</year>
;
<volume>16</volume>
:
<fpage>5856</fpage>
<lpage>5862</lpage>
. doi:
<pub-id pub-id-type="doi">10.3892/ol.2018.9410</pub-id>
<pub-id pub-id-type="pmid">30344736</pub-id>
</mixed-citation>
</ref>
<ref id="CIT0191">
<label>191.</label>
<mixed-citation publication-type="journal">
<string-name>
<surname>Li</surname>
<given-names>X</given-names>
</string-name>
,
<string-name>
<surname>Diao</surname>
<given-names>H</given-names>
</string-name>
.
<article-title>Circular RNA circ_0001946 acts as a competing endogenous RNA to inhibit glioblastoma progression by modulating miR-671-5p and CDR1</article-title>
.
<source>
<italic toggle="yes">J Cell Physiol</italic>
</source>
.
<year>2019</year>
;
<volume>234</volume>
:
<fpage>13807</fpage>
<lpage>13819</lpage>
. doi:
<pub-id pub-id-type="doi">10.1002/jcp.28061</pub-id>
<pub-id pub-id-type="pmid">30663767</pub-id>
</mixed-citation>
</ref>
<ref id="CIT0192">
<label>192.</label>
<mixed-citation publication-type="journal">
<string-name>
<surname>Wang</surname>
<given-names>R</given-names>
</string-name>
,
<string-name>
<surname>Zhang</surname>
<given-names>S</given-names>
</string-name>
,
<string-name>
<surname>Chen</surname>
<given-names>X</given-names>
</string-name>
, et al.
<article-title>EIF4A3-induced circular RNA MMP9 (circMMP9) acts as a sponge of miR-124 and promotes glioblastoma multiforme cell tumorigenesis</article-title>
.
<source>
<italic toggle="yes">Mol Cancer</italic>
</source>
.
<year>2018</year>
;
<volume>17</volume>
:
<fpage>166</fpage>
. doi:
<pub-id pub-id-type="doi">10.1186/s12943-018-0911-0</pub-id>
<pub-id pub-id-type="pmid">30470262</pub-id>
</mixed-citation>
</ref>
<ref id="CIT0193">
<label>193.</label>
<mixed-citation publication-type="journal">
<string-name>
<surname>Wang</surname>
<given-names>R</given-names>
</string-name>
,
<string-name>
<surname>Zhang</surname>
<given-names>S</given-names>
</string-name>
,
<string-name>
<surname>Chen</surname>
<given-names>X</given-names>
</string-name>
, et al.
<article-title>CircNT5E acts as a sponge of miR-422a to promote glioblastoma tumorigenesis</article-title>
.
<source>
<italic toggle="yes">Cancer Res</italic>
</source>
.
<year>2018</year>
;
<volume>78</volume>
:
<fpage>4812</fpage>
<lpage>4825</lpage>
. doi:
<pub-id pub-id-type="doi">10.1158/0008-5472.CAN-18-0532</pub-id>
<pub-id pub-id-type="pmid">29967262</pub-id>
</mixed-citation>
</ref>
<ref id="CIT0194">
<label>194.</label>
<mixed-citation publication-type="journal">
<string-name>
<surname>Zhang</surname>
<given-names>G</given-names>
</string-name>
,
<string-name>
<surname>Sun</surname>
<given-names>W</given-names>
</string-name>
,
<string-name>
<surname>Zhu</surname>
<given-names>L</given-names>
</string-name>
,
<string-name>
<surname>Feng</surname>
<given-names>Y</given-names>
</string-name>
,
<string-name>
<surname>Wu</surname>
<given-names>L</given-names>
</string-name>
,
<string-name>
<surname>Li</surname>
<given-names>T</given-names>
</string-name>
.
<article-title>Overexpressed circ_0029426 in glioblastoma forecasts unfavorable prognosis and promotes cell progression by sponging miR-197</article-title>
.
<source>
<italic toggle="yes">J Cell Biochem</italic>
</source>
.
<year>2019</year>
;
<volume>120</volume>
:
<fpage>10295</fpage>
<lpage>10302</lpage>
. doi:
<pub-id pub-id-type="doi">10.1002/jcb.v120.6</pub-id>
<pub-id pub-id-type="pmid">30548670</pub-id>
</mixed-citation>
</ref>
<ref id="CIT0195">
<label>195.</label>
<mixed-citation publication-type="journal">
<string-name>
<surname>Wang</surname>
<given-names>HX</given-names>
</string-name>
,
<string-name>
<surname>Huang</surname>
<given-names>QL</given-names>
</string-name>
,
<string-name>
<surname>Shen</surname>
<given-names>JY</given-names>
</string-name>
, et al.
<article-title>Expression profile of circular RNAs in IDH-wild type glioblastoma tissues</article-title>
.
<source>
<italic toggle="yes">Clin Neurol Neurosurg</italic>
</source>
.
<year>2018</year>
;
<volume>171</volume>
:
<fpage>168</fpage>
<lpage>173</lpage>
. doi:
<pub-id pub-id-type="doi">10.1016/j.clineuro.2018.06.020</pub-id>
<pub-id pub-id-type="pmid">29920451</pub-id>
</mixed-citation>
</ref>
<ref id="CIT0196">
<label>196.</label>
<mixed-citation publication-type="journal">
<string-name>
<surname>Begum</surname>
<given-names>S</given-names>
</string-name>
,
<string-name>
<surname>Yiu</surname>
<given-names>A</given-names>
</string-name>
,
<string-name>
<surname>Stebbing</surname>
<given-names>J</given-names>
</string-name>
,
<string-name>
<surname>Castellano</surname>
<given-names>L</given-names>
</string-name>
.
<article-title>Novel tumour suppressive protein encoded by circular RNA, circ-SHPRH, in glioblastomas</article-title>
.
<source>
<italic toggle="yes">Oncogene</italic>
</source>
.
<year>2018</year>
;
<volume>37</volume>
:
<fpage>4055</fpage>
<lpage>4057</lpage>
. doi:
<pub-id pub-id-type="doi">10.1038/s41388-018-0230-3</pub-id>
<pub-id pub-id-type="pmid">29706655</pub-id>
</mixed-citation>
</ref>
<ref id="CIT0197">
<label>197.</label>
<mixed-citation publication-type="journal">
<string-name>
<surname>Zhang</surname>
<given-names>M</given-names>
</string-name>
,
<string-name>
<surname>Huang</surname>
<given-names>N</given-names>
</string-name>
,
<string-name>
<surname>Yang</surname>
<given-names>X</given-names>
</string-name>
, et al.
<article-title>A novel protein encoded by the circular form of the SHPRH gene suppresses glioma tumorigenesis</article-title>
.
<source>
<italic toggle="yes">Oncogene</italic>
</source>
.
<year>2018</year>
;
<volume>37</volume>
:
<fpage>1805</fpage>
<lpage>1814</lpage>
. doi:
<pub-id pub-id-type="doi">10.1038/s41388-017-0019-9</pub-id>
<pub-id pub-id-type="pmid">29343848</pub-id>
</mixed-citation>
</ref>
<ref id="CIT0198">
<label>198.</label>
<mixed-citation publication-type="journal">
<string-name>
<surname>Shabaninejad</surname>
<given-names>Z</given-names>
</string-name>
,
<string-name>
<surname>Vafadar</surname>
<given-names>A</given-names>
</string-name>
,
<string-name>
<surname>Movahedpour</surname>
<given-names>A</given-names>
</string-name>
, et al.
<article-title>Circular RNAs in cancer: new insights into functions and implications in ovarian cancer</article-title>
.
<source>
<italic toggle="yes">J Ovarian Res</italic>
</source>
.
<year>2019</year>
;
<volume>12</volume>
:
<fpage>84</fpage>
. doi:
<pub-id pub-id-type="doi">10.1186/s13048-019-0558-5</pub-id>
<pub-id pub-id-type="pmid">31481095</pub-id>
</mixed-citation>
</ref>
<ref id="CIT0199">
<label>199.</label>
<mixed-citation publication-type="journal">
<string-name>
<surname>Guan</surname>
<given-names>X</given-names>
</string-name>
,
<string-name>
<surname>Zong</surname>
<given-names>ZH</given-names>
</string-name>
,
<string-name>
<surname>Liu</surname>
<given-names>Y</given-names>
</string-name>
,
<string-name>
<surname>Chen</surname>
<given-names>S</given-names>
</string-name>
,
<string-name>
<surname>Wang</surname>
<given-names>LL</given-names>
</string-name>
,
<string-name>
<surname>Zhao</surname>
<given-names>Y</given-names>
</string-name>
.
<article-title>circPUM1 promotes tumorigenesis and progression of ovarian cancer by sponging miR-615-5p and miR-6753-5p</article-title>
.
<source>
<italic toggle="yes">Mol Ther Nucleic Acids</italic>
</source>
.
<year>2019</year>
;
<volume>18</volume>
:
<fpage>882</fpage>
<lpage>892</lpage>
. doi:
<pub-id pub-id-type="doi">10.1016/j.omtn.2019.09.032</pub-id>
<pub-id pub-id-type="pmid">31751911</pub-id>
</mixed-citation>
</ref>
<ref id="CIT0200">
<label>200.</label>
<mixed-citation publication-type="journal">
<string-name>
<surname>Zong</surname>
<given-names>ZH</given-names>
</string-name>
,
<string-name>
<surname>Du</surname>
<given-names>YP</given-names>
</string-name>
,
<string-name>
<surname>Guan</surname>
<given-names>X</given-names>
</string-name>
,
<string-name>
<surname>Chen</surname>
<given-names>S</given-names>
</string-name>
,
<string-name>
<surname>Zhao</surname>
<given-names>Y</given-names>
</string-name>
.
<article-title>CircWHSC1 promotes ovarian cancer progression by regulating MUC1 and hTERT through sponging miR-145 and miR-1182</article-title>
.
<source>
<italic toggle="yes">J Exp Clin Cancer Res</italic>
</source>
.
<year>2019</year>
;
<volume>38</volume>
:
<fpage>437</fpage>
. doi:
<pub-id pub-id-type="doi">10.1186/s13046-019-1437-z</pub-id>
<pub-id pub-id-type="pmid">31666098</pub-id>
</mixed-citation>
</ref>
<ref id="CIT0201">
<label>201.</label>
<mixed-citation publication-type="journal">
<string-name>
<surname>Sheng</surname>
<given-names>M</given-names>
</string-name>
,
<string-name>
<surname>Wei</surname>
<given-names>N</given-names>
</string-name>
,
<string-name>
<surname>Yang</surname>
<given-names>HY</given-names>
</string-name>
,
<string-name>
<surname>Yan</surname>
<given-names>M</given-names>
</string-name>
,
<string-name>
<surname>Zhao</surname>
<given-names>QX</given-names>
</string-name>
,
<string-name>
<surname>Jing</surname>
<given-names>LJ</given-names>
</string-name>
.
<article-title>CircRNA UBAP2 promotes the progression of ovarian cancer by sponging microRNA-144</article-title>
.
<source>
<italic toggle="yes">Eur Rev Med Pharmacol Sci</italic>
</source>
.
<year>2019</year>
;
<volume>23</volume>
:
<fpage>7283</fpage>
<lpage>7294</lpage>
. doi:
<pub-id pub-id-type="doi">10.26355/eurrev_201909_18833</pub-id>
<pub-id pub-id-type="pmid">31539115</pub-id>
</mixed-citation>
</ref>
<ref id="CIT0202">
<label>202.</label>
<mixed-citation publication-type="journal">
<string-name>
<surname>Chen</surname>
<given-names>H</given-names>
</string-name>
,
<string-name>
<surname>Mao</surname>
<given-names>M</given-names>
</string-name>
,
<string-name>
<surname>Jiang</surname>
<given-names>J</given-names>
</string-name>
,
<string-name>
<surname>Zhu</surname>
<given-names>D</given-names>
</string-name>
,
<string-name>
<surname>Li</surname>
<given-names>P</given-names>
</string-name>
.
<article-title>Circular RNA CDR1as acts as a sponge of miR-135b-5p to suppress ovarian cancer progression</article-title>
.
<source>
<italic toggle="yes">Onco Targets Ther</italic>
</source>
.
<year>2019</year>
;
<volume>12</volume>
:
<fpage>3869</fpage>
<lpage>3879</lpage>
. doi:
<pub-id pub-id-type="doi">10.2147/OTT.S207938</pub-id>
<pub-id pub-id-type="pmid">31190886</pub-id>
</mixed-citation>
</ref>
<ref id="CIT0203">
<label>203.</label>
<mixed-citation publication-type="journal">
<string-name>
<surname>Li</surname>
<given-names>QH</given-names>
</string-name>
,
<string-name>
<surname>Liu</surname>
<given-names>Y</given-names>
</string-name>
,
<string-name>
<surname>Chen</surname>
<given-names>S</given-names>
</string-name>
, et al.
<article-title>circ-CSPP1 promotes proliferation, invasion and migration of ovarian cancer cells by acting as a miR-1236-3p sponge</article-title>
.
<source>
<italic toggle="yes">Biomed Pharmacother</italic>
</source>
.
<year>2019</year>
;
<volume>114</volume>
:
<fpage>108832</fpage>
. doi:
<pub-id pub-id-type="doi">10.1016/j.biopha.2019.108832</pub-id>
<pub-id pub-id-type="pmid">30965236</pub-id>
</mixed-citation>
</ref>
<ref id="CIT0204">
<label>204.</label>
<mixed-citation publication-type="journal">
<string-name>
<surname>Zhang</surname>
<given-names>M</given-names>
</string-name>
,
<string-name>
<surname>Xia</surname>
<given-names>B</given-names>
</string-name>
,
<string-name>
<surname>Xu</surname>
<given-names>Y</given-names>
</string-name>
, et al.
<article-title>(hsa_circ_0051240) promotes cell proliferation, migration and invasion in ovarian cancer through miR-637/KLK4 axis</article-title>
.
<source>
<italic toggle="yes">Artif Cells Nanomed Biotechnol</italic>
</source>
.
<year>2019</year>
;
<volume>47</volume>
:
<fpage>1224</fpage>
<lpage>1233</lpage>
. doi:
<pub-id pub-id-type="doi">10.1080/21691401.2019.1593999</pub-id>
<pub-id pub-id-type="pmid">30945557</pub-id>
</mixed-citation>
</ref>
<ref id="CIT0205">
<label>205.</label>
<mixed-citation publication-type="journal">
<string-name>
<surname>Xie</surname>
<given-names>J</given-names>
</string-name>
,
<string-name>
<surname>Wang</surname>
<given-names>S</given-names>
</string-name>
,
<string-name>
<surname>Li</surname>
<given-names>G</given-names>
</string-name>
, et al.
<article-title>circEPSTI1 regulates ovarian cancer progression via decoying miR-942</article-title>
.
<source>
<italic toggle="yes">J Cell Mol Med</italic>
</source>
.
<year>2019</year>
;
<volume>23</volume>
:
<fpage>3597</fpage>
<lpage>3602</lpage>
. doi:
<pub-id pub-id-type="doi">10.1111/jcmm.2019.23.issue-5</pub-id>
<pub-id pub-id-type="pmid">30887698</pub-id>
</mixed-citation>
</ref>
<ref id="CIT0206">
<label>206.</label>
<mixed-citation publication-type="journal">
<string-name>
<surname>Luo</surname>
<given-names>L</given-names>
</string-name>
,
<string-name>
<surname>Gao</surname>
<given-names>YQ</given-names>
</string-name>
,
<string-name>
<surname>Sun</surname>
<given-names>XF</given-names>
</string-name>
.
<article-title>Circular RNA ITCH suppresses proliferation and promotes apoptosis in human epithelial ovarian cancer cells by sponging miR-10a-alpha</article-title>
.
<source>
<italic toggle="yes">Eur Rev Med Pharmacol Sci</italic>
</source>
.
<year>2018</year>
;
<volume>22</volume>
:
<fpage>8119</fpage>
<lpage>8126</lpage>
. doi:
<pub-id pub-id-type="doi">10.26355/eurrev_201812_16503</pub-id>
<pub-id pub-id-type="pmid">30556849</pub-id>
</mixed-citation>
</ref>
<ref id="CIT0207">
<label>207.</label>
<mixed-citation publication-type="journal">
<string-name>
<surname>Chen</surname>
<given-names>Q</given-names>
</string-name>
,
<string-name>
<surname>Zhang</surname>
<given-names>J</given-names>
</string-name>
,
<string-name>
<surname>He</surname>
<given-names>Y</given-names>
</string-name>
,
<string-name>
<surname>Wang</surname>
<given-names>Y</given-names>
</string-name>
.
<article-title>hsa_circ_0061140 knockdown reverses FOXM1-mediated cell growth and metastasis in ovarian cancer through miR-370 sponge activity</article-title>
.
<source>
<italic toggle="yes">Mol Ther Nucleic Acids</italic>
</source>
.
<year>2018</year>
;
<volume>13</volume>
:
<fpage>55</fpage>
<lpage>63</lpage>
. doi:
<pub-id pub-id-type="doi">10.1016/j.omtn.2018.08.010</pub-id>
<pub-id pub-id-type="pmid">30236833</pub-id>
</mixed-citation>
</ref>
<ref id="CIT0208">
<label>208.</label>
<mixed-citation publication-type="journal">
<string-name>
<surname>Liu</surname>
<given-names>J</given-names>
</string-name>
,
<string-name>
<surname>Yu</surname>
<given-names>F</given-names>
</string-name>
,
<string-name>
<surname>Wang</surname>
<given-names>S</given-names>
</string-name>
, et al.
<article-title>circGFRA1 promotes ovarian cancer progression by sponging miR-449a</article-title>
.
<source>
<italic toggle="yes">J Cancer</italic>
</source>
.
<year>2019</year>
;
<volume>10</volume>
:
<fpage>3908</fpage>
<lpage>3913</lpage>
. doi:
<pub-id pub-id-type="doi">10.7150/jca.31615</pub-id>
<pub-id pub-id-type="pmid">31417634</pub-id>
</mixed-citation>
</ref>
<ref id="CIT0209">
<label>209.</label>
<mixed-citation publication-type="journal">
<string-name>
<surname>Wang</surname>
<given-names>W</given-names>
</string-name>
,
<string-name>
<surname>Wang</surname>
<given-names>J</given-names>
</string-name>
,
<string-name>
<surname>Zhang</surname>
<given-names>X</given-names>
</string-name>
,
<string-name>
<surname>Liu</surname>
<given-names>G</given-names>
</string-name>
.
<article-title>Serum circSETDB1 is a promising biomarker for predicting response to platinum-taxane-combined chemotherapy and relapse in high-grade serous ovarian cancer</article-title>
.
<source>
<italic toggle="yes">Onco Targets Ther</italic>
</source>
.
<year>2019</year>
;
<volume>12</volume>
:
<fpage>7451</fpage>
<lpage>7457</lpage>
. doi:
<pub-id pub-id-type="doi">10.2147/OTT.S220700</pub-id>
<pub-id pub-id-type="pmid">31686850</pub-id>
</mixed-citation>
</ref>
<ref id="CIT0210">
<label>210.</label>
<mixed-citation publication-type="journal">
<string-name>
<surname>Sun</surname>
<given-names>D</given-names>
</string-name>
,
<string-name>
<surname>Liu</surname>
<given-names>J</given-names>
</string-name>
,
<string-name>
<surname>Zhou</surname>
<given-names>L</given-names>
</string-name>
.
<article-title>Upregulation of circular RNA circFAM53B predicts adverse prognosis and accelerates the progression of ovarian cancer via the miR646/VAMP2 and miR647/MDM2 signaling pathways</article-title>
.
<source>
<italic toggle="yes">Oncol Rep</italic>
</source>
.
<year>2019</year>
;
<volume>42</volume>
:
<fpage>2728</fpage>
<lpage>2737</lpage>
. doi:
<pub-id pub-id-type="doi">10.3892/or.2019.7366</pub-id>
<pub-id pub-id-type="pmid">31638250</pub-id>
</mixed-citation>
</ref>
<ref id="CIT0211">
<label>211.</label>
<mixed-citation publication-type="journal">
<string-name>
<surname>Zhang</surname>
<given-names>L</given-names>
</string-name>
,
<string-name>
<surname>Zhou</surname>
<given-names>Q</given-names>
</string-name>
,
<string-name>
<surname>Qiu</surname>
<given-names>Q</given-names>
</string-name>
, et al.
<article-title>CircPLEKHM3 acts as a tumor suppressor through regulation of the miR-9/BRCA1/DNAJB6/KLF4/AKT1 axis in ovarian cancer</article-title>
.
<source>
<italic toggle="yes">Mol Cancer</italic>
</source>
.
<year>2019</year>
;
<volume>18</volume>
:
<fpage>144</fpage>
. doi:
<pub-id pub-id-type="doi">10.1186/s12943-019-1080-5</pub-id>
<pub-id pub-id-type="pmid">31623606</pub-id>
</mixed-citation>
</ref>
<ref id="CIT0212">
<label>212.</label>
<mixed-citation publication-type="journal">
<string-name>
<surname>Zhao</surname>
<given-names>Y</given-names>
</string-name>
,
<string-name>
<surname>Qin</surname>
<given-names>XP</given-names>
</string-name>
,
<string-name>
<surname>Lang</surname>
<given-names>YP</given-names>
</string-name>
,
<string-name>
<surname>Kou</surname>
<given-names>D</given-names>
</string-name>
,
<string-name>
<surname>Shao</surname>
<given-names>ZW</given-names>
</string-name>
.
<article-title>Circular RNA circ-SMAD7 promoted ovarian cancer cell proliferation and metastasis by suppressing KLF6</article-title>
.
<source>
<italic toggle="yes">Eur Rev Med Pharmacol Sci</italic>
</source>
.
<year>2019</year>
;
<volume>23</volume>
:
<fpage>5603</fpage>
<lpage>5610</lpage>
. doi:
<pub-id pub-id-type="doi">10.26355/eurrev_201907_18294</pub-id>
<pub-id pub-id-type="pmid">31298312</pub-id>
</mixed-citation>
</ref>
<ref id="CIT0213">
<label>213.</label>
<mixed-citation publication-type="journal">
<string-name>
<surname>Zhang</surname>
<given-names>C</given-names>
</string-name>
,
<string-name>
<surname>Xiong</surname>
<given-names>J</given-names>
</string-name>
,
<string-name>
<surname>Yang</surname>
<given-names>Q</given-names>
</string-name>
, et al.
<article-title>Profiling and bioinformatics analyses of differential circular RNA expression in prostate cancer cells</article-title>
.
<source>
<italic toggle="yes">Future Sci OA</italic>
</source>
.
<year>2018</year>
;
<volume>4</volume>
:
<fpage>FSOA340</fpage>
. doi:
<pub-id pub-id-type="doi">10.4155/fsoa-2018-0046</pub-id>
<pub-id pub-id-type="pmid">30416748</pub-id>
</mixed-citation>
</ref>
<ref id="CIT0214">
<label>214.</label>
<mixed-citation publication-type="journal">
<string-name>
<surname>Xia</surname>
<given-names>Q</given-names>
</string-name>
,
<string-name>
<surname>Ding</surname>
<given-names>T</given-names>
</string-name>
,
<string-name>
<surname>Zhang</surname>
<given-names>G</given-names>
</string-name>
, et al.
<article-title>Circular RNA expression profiling identifies prostate cancer- specific circRNAs in prostate cancer</article-title>
.
<source>
<italic toggle="yes">Cell Physiol Biochem</italic>
</source>
.
<year>2018</year>
;
<volume>50</volume>
:
<fpage>1903</fpage>
<lpage>1915</lpage>
. doi:
<pub-id pub-id-type="doi">10.1159/000494870</pub-id>
<pub-id pub-id-type="pmid">30396163</pub-id>
</mixed-citation>
</ref>
<ref id="CIT0215">
<label>215.</label>
<mixed-citation publication-type="journal">
<string-name>
<surname>Yan</surname>
<given-names>Z</given-names>
</string-name>
,
<string-name>
<surname>Xiao</surname>
<given-names>Y</given-names>
</string-name>
,
<string-name>
<surname>Chen</surname>
<given-names>Y</given-names>
</string-name>
,
<string-name>
<surname>Luo</surname>
<given-names>G</given-names>
</string-name>
.
<article-title>Screening and identification of epithelial-to-mesenchymal transition-related circRNA and miRNA in prostate cancer</article-title>
.
<source>
<italic toggle="yes">Pathol Res Pract</italic>
</source>
.
<year>2020</year>
;
<volume>216</volume>
(
<issue>2</issue>
):
<fpage>152784</fpage>
.
<pub-id pub-id-type="pmid">31882179</pub-id>
</mixed-citation>
</ref>
<ref id="CIT0216">
<label>216.</label>
<mixed-citation publication-type="journal">
<string-name>
<surname>Wang</surname>
<given-names>X</given-names>
</string-name>
,
<string-name>
<surname>Wang</surname>
<given-names>R</given-names>
</string-name>
,
<string-name>
<surname>Wu</surname>
<given-names>Z</given-names>
</string-name>
,
<string-name>
<surname>Bai</surname>
<given-names>P</given-names>
</string-name>
.
<article-title>Circular RNA ITCH suppressed prostate cancer progression by increasing HOXB13 expression via spongy miR-17-5p</article-title>
.
<source>
<italic toggle="yes">Cancer Cell Int</italic>
</source>
.
<year>2019</year>
;
<volume>19</volume>
:
<fpage>328</fpage>
. doi:
<pub-id pub-id-type="doi">10.1186/s12935-019-0994-8</pub-id>
<pub-id pub-id-type="pmid">31827402</pub-id>
</mixed-citation>
</ref>
<ref id="CIT0217">
<label>217.</label>
<mixed-citation publication-type="journal">
<string-name>
<surname>Xiang</surname>
<given-names>Z</given-names>
</string-name>
,
<string-name>
<surname>Xu</surname>
<given-names>C</given-names>
</string-name>
,
<string-name>
<surname>Wu</surname>
<given-names>G</given-names>
</string-name>
,
<string-name>
<surname>Liu</surname>
<given-names>B</given-names>
</string-name>
,
<string-name>
<surname>Wu</surname>
<given-names>D</given-names>
</string-name>
.
<article-title>CircRNA-UCK2 increased TET1 inhibits proliferation and invasion of prostate cancer cells via sponge MiRNA-767-5p</article-title>
.
<source>
<italic toggle="yes">Open Med (Wars)</italic>
</source>
.
<year>2019</year>
;
<volume>14</volume>
:
<fpage>833</fpage>
<lpage>842</lpage>
. doi:
<pub-id pub-id-type="doi">10.1515/med-2019-0097</pub-id>
<pub-id pub-id-type="pmid">31844675</pub-id>
</mixed-citation>
</ref>
<ref id="CIT0218">
<label>218.</label>
<mixed-citation publication-type="journal">
<string-name>
<surname>Kong</surname>
<given-names>Z</given-names>
</string-name>
,
<string-name>
<surname>Wan</surname>
<given-names>X</given-names>
</string-name>
,
<string-name>
<surname>Lu</surname>
<given-names>Y</given-names>
</string-name>
, et al.
<article-title>Circular RNA circFOXO3 promotes prostate cancer progression through sponging miR-29a-3p</article-title>
.
<source>
<italic toggle="yes">J Cell Mol Med</italic>
</source>
.
<year>2020</year>
;
<volume>24</volume>
:
<fpage>799</fpage>
<lpage>813</lpage>
. doi:
<pub-id pub-id-type="doi">10.1111/jcmm.v24.1</pub-id>
<pub-id pub-id-type="pmid">31733095</pub-id>
</mixed-citation>
</ref>
<ref id="CIT0219">
<label>219.</label>
<mixed-citation publication-type="journal">
<string-name>
<surname>Huang</surname>
<given-names>C</given-names>
</string-name>
,
<string-name>
<surname>Deng</surname>
<given-names>H</given-names>
</string-name>
,
<string-name>
<surname>Wang</surname>
<given-names>Y</given-names>
</string-name>
, et al.
<article-title>Circular RNA circABCC4 as the ceRNA of miR-1182 facilitates prostate cancer progression by promoting FOXP4 expression</article-title>
.
<source>
<italic toggle="yes">J Cell Mol Med</italic>
</source>
.
<year>2019</year>
;
<volume>23</volume>
:
<fpage>6112</fpage>
<lpage>6119</lpage>
. doi:
<pub-id pub-id-type="doi">10.1111/jcmm.v23.9</pub-id>
<pub-id pub-id-type="pmid">31270953</pub-id>
</mixed-citation>
</ref>
<ref id="CIT0220">
<label>220.</label>
<mixed-citation publication-type="journal">
<string-name>
<surname>Cai</surname>
<given-names>C</given-names>
</string-name>
,
<string-name>
<surname>Zhi</surname>
<given-names>Y</given-names>
</string-name>
,
<string-name>
<surname>Wang</surname>
<given-names>K</given-names>
</string-name>
, et al.
<article-title>CircHIPK3 overexpression accelerates the proliferation and invasion of prostate cancer cells through regulating miRNA-338-3p</article-title>
.
<source>
<italic toggle="yes">Onco Targets Ther</italic>
</source>
.
<year>2019</year>
;
<volume>12</volume>
:
<fpage>3363</fpage>
<lpage>3372</lpage>
. doi:
<pub-id pub-id-type="doi">10.2147/OTT.S196931</pub-id>
<pub-id pub-id-type="pmid">31118688</pub-id>
</mixed-citation>
</ref>
<ref id="CIT0221">
<label>221.</label>
<mixed-citation publication-type="journal">
<string-name>
<surname>Chen</surname>
<given-names>D</given-names>
</string-name>
,
<string-name>
<surname>Lu</surname>
<given-names>X</given-names>
</string-name>
,
<string-name>
<surname>Yang</surname>
<given-names>F</given-names>
</string-name>
,
<string-name>
<surname>Xing</surname>
<given-names>N</given-names>
</string-name>
.
<article-title>Circular RNA circHIPK3 promotes cell proliferation and invasion of prostate cancer by sponging miR-193a-3p and regulating MCL1 expression</article-title>
.
<source>
<italic toggle="yes">Cancer Manag Res</italic>
</source>
.
<year>2019</year>
;
<volume>11</volume>
:
<fpage>1415</fpage>
<lpage>1423</lpage>
. doi:
<pub-id pub-id-type="doi">10.2147/CMAR.S190669</pub-id>
<pub-id pub-id-type="pmid">30863152</pub-id>
</mixed-citation>
</ref>
<ref id="CIT0222">
<label>222.</label>
<mixed-citation publication-type="journal">
<string-name>
<surname>Yang</surname>
<given-names>Z</given-names>
</string-name>
,
<string-name>
<surname>Qu</surname>
<given-names>CB</given-names>
</string-name>
,
<string-name>
<surname>Zhang</surname>
<given-names>Y</given-names>
</string-name>
, et al.
<article-title>Dysregulation of p53-RBM25-mediated circAMOTL1L biogenesis contributes to prostate cancer progression through the circAMOTL1L-miR-193a-5p-Pcdha pathway</article-title>
.
<source>
<italic toggle="yes">Oncogene</italic>
</source>
.
<year>2019</year>
;
<volume>38</volume>
:
<fpage>2516</fpage>
<lpage>2532</lpage>
. doi:
<pub-id pub-id-type="doi">10.1038/s41388-018-0602-8</pub-id>
<pub-id pub-id-type="pmid">30531834</pub-id>
</mixed-citation>
</ref>
<ref id="CIT0223">
<label>223.</label>
<mixed-citation publication-type="journal">
<string-name>
<surname>Zheng</surname>
<given-names>Y</given-names>
</string-name>
,
<string-name>
<surname>Chen</surname>
<given-names>CJ</given-names>
</string-name>
,
<string-name>
<surname>Lin</surname>
<given-names>ZY</given-names>
</string-name>
, et al.
<article-title>Circ_KATNAL1 regulates prostate cancer cell growth and invasion through miR-145-3p/WISP1 pathway</article-title>
.
<source>
<italic toggle="yes">Biochem Cell Biol</italic>
</source>
.
<year>2019</year>
. doi:
<pub-id pub-id-type="doi">10.1139/bcb-2019-0211</pub-id>
</mixed-citation>
</ref>
<ref id="CIT0224">
<label>224.</label>
<mixed-citation publication-type="journal">
<string-name>
<surname>Feng</surname>
<given-names>Y</given-names>
</string-name>
,
<string-name>
<surname>Yang</surname>
<given-names>Y</given-names>
</string-name>
,
<string-name>
<surname>Zhao</surname>
<given-names>X</given-names>
</string-name>
, et al.
<article-title>Circular RNA circ0005276 promotes the proliferation and migration of prostate cancer cells by interacting with FUS to transcriptionally activate XIAP</article-title>
.
<source>
<italic toggle="yes">Cell Death Dis</italic>
</source>
.
<year>2019</year>
;
<volume>10</volume>
:
<fpage>792</fpage>
. doi:
<pub-id pub-id-type="doi">10.1038/s41419-019-2028-9</pub-id>
<pub-id pub-id-type="pmid">31624242</pub-id>
</mixed-citation>
</ref>
<ref id="CIT0225">
<label>225.</label>
<mixed-citation publication-type="journal">
<string-name>
<surname>Jamal</surname>
<given-names>M</given-names>
</string-name>
,
<string-name>
<surname>Song</surname>
<given-names>T</given-names>
</string-name>
,
<string-name>
<surname>Chen</surname>
<given-names>B</given-names>
</string-name>
, et al.
<article-title>Recent progress on circular RNA research in acute myeloid leukemia</article-title>
.
<source>
<italic toggle="yes">Front Oncol</italic>
</source>
.
<year>2019</year>
;
<volume>9</volume>
:
<fpage>1108</fpage>
. doi:
<pub-id pub-id-type="doi">10.3389/fonc.2019.01108</pub-id>
<pub-id pub-id-type="pmid">31781482</pub-id>
</mixed-citation>
</ref>
<ref id="CIT0226">
<label>226.</label>
<mixed-citation publication-type="journal">
<string-name>
<surname>Liu</surname>
<given-names>Y</given-names>
</string-name>
,
<string-name>
<surname>Cheng</surname>
<given-names>Z</given-names>
</string-name>
,
<string-name>
<surname>Pang</surname>
<given-names>Y</given-names>
</string-name>
, et al.
<article-title>Role of microRNAs, circRNAs and long noncoding RNAs in acute myeloid leukemia</article-title>
.
<source>
<italic toggle="yes">J Hematol Oncol</italic>
</source>
.
<year>2019</year>
;
<volume>12</volume>
:
<fpage>51</fpage>
. doi:
<pub-id pub-id-type="doi">10.1186/s13045-019-0734-5</pub-id>
<pub-id pub-id-type="pmid">31126316</pub-id>
</mixed-citation>
</ref>
<ref id="CIT0227">
<label>227.</label>
<mixed-citation publication-type="journal">
<string-name>
<surname>Li</surname>
<given-names>M</given-names>
</string-name>
,
<string-name>
<surname>Meng</surname>
<given-names>F</given-names>
</string-name>
,
<string-name>
<surname>Lu</surname>
<given-names>Q</given-names>
</string-name>
.
<article-title>Expression profile screening and bioinformatics analysis of circrna, lncRNA and mRNA in acute myeloid leukemia drug-resistance cells</article-title>
.
<source>
<italic toggle="yes">Turk J Haematol</italic>
</source>
.
<year>2019</year>
. doi:
<pub-id pub-id-type="doi">10.4274/tjh</pub-id>
</mixed-citation>
</ref>
<ref id="CIT0228">
<label>228.</label>
<mixed-citation publication-type="journal">
<string-name>
<surname>Yuan</surname>
<given-names>DM</given-names>
</string-name>
,
<string-name>
<surname>Ma</surname>
<given-names>J</given-names>
</string-name>
,
<string-name>
<surname>Fang</surname>
<given-names>WB</given-names>
</string-name>
.
<article-title>Identification of non-coding RNA regulatory networks in pediatric acute myeloid leukemia reveals circ-0004136 could promote cell proliferation by sponging miR-142</article-title>
.
<source>
<italic toggle="yes">Eur Rev Med Pharmacol Sci</italic>
</source>
.
<year>2019</year>
;
<volume>23</volume>
:
<fpage>9251</fpage>
<lpage>9258</lpage>
. doi:
<pub-id pub-id-type="doi">10.26355/eurrev_201911_19417</pub-id>
<pub-id pub-id-type="pmid">31773676</pub-id>
</mixed-citation>
</ref>
<ref id="CIT0229">
<label>229.</label>
<mixed-citation publication-type="journal">
<string-name>
<surname>Ping</surname>
<given-names>L</given-names>
</string-name>
,
<string-name>
<surname>Jian-Jun</surname>
<given-names>C</given-names>
</string-name>
,
<string-name>
<surname>Chu-Shu</surname>
<given-names>L</given-names>
</string-name>
,
<string-name>
<surname>Guang-Hua</surname>
<given-names>L</given-names>
</string-name>
,
<string-name>
<surname>Ming</surname>
<given-names>Z</given-names>
</string-name>
.
<article-title>Silencing of circ_0009910 inhibits acute myeloid leukemia cell growth through increasing miR-20a-5p</article-title>
.
<source>
<italic toggle="yes">Blood Cells Mol Dis</italic>
</source>
.
<year>2019</year>
;
<volume>75</volume>
:
<fpage>41</fpage>
<lpage>47</lpage>
. doi:
<pub-id pub-id-type="doi">10.1016/j.bcmd.2018.12.006</pub-id>
<pub-id pub-id-type="pmid">30612066</pub-id>
</mixed-citation>
</ref>
<ref id="CIT0230">
<label>230.</label>
<mixed-citation publication-type="journal">
<string-name>
<surname>Fan</surname>
<given-names>H</given-names>
</string-name>
,
<string-name>
<surname>Li</surname>
<given-names>Y</given-names>
</string-name>
,
<string-name>
<surname>Liu</surname>
<given-names>C</given-names>
</string-name>
,
<string-name>
<surname>Liu</surname>
<given-names>Y</given-names>
</string-name>
,
<string-name>
<surname>Bai</surname>
<given-names>J</given-names>
</string-name>
,
<string-name>
<surname>Li</surname>
<given-names>W</given-names>
</string-name>
.
<article-title>Circular RNA-100290 promotes cell proliferation and inhibits apoptosis in acute myeloid leukemia cells via sponging miR-203</article-title>
.
<source>
<italic toggle="yes">Biochem Biophys Res Commun</italic>
</source>
.
<year>2018</year>
;
<volume>507</volume>
:
<fpage>178</fpage>
<lpage>184</lpage>
. doi:
<pub-id pub-id-type="doi">10.1016/j.bbrc.2018.11.002</pub-id>
<pub-id pub-id-type="pmid">30424877</pub-id>
</mixed-citation>
</ref>
<ref id="CIT0231">
<label>231.</label>
<mixed-citation publication-type="journal">
<string-name>
<surname>Chen</surname>
<given-names>H</given-names>
</string-name>
,
<string-name>
<surname>Liu</surname>
<given-names>T</given-names>
</string-name>
,
<string-name>
<surname>Liu</surname>
<given-names>J</given-names>
</string-name>
, et al.
<article-title>Circ-ANAPC7 is upregulated in acute myeloid leukemia and appears to target the MiR-181 family</article-title>
.
<source>
<italic toggle="yes">Cell Physiol Biochem</italic>
</source>
.
<year>2018</year>
;
<volume>47</volume>
:
<fpage>1998</fpage>
<lpage>2007</lpage>
. doi:
<pub-id pub-id-type="doi">10.1159/000491468</pub-id>
<pub-id pub-id-type="pmid">29969755</pub-id>
</mixed-citation>
</ref>
<ref id="CIT0232">
<label>232.</label>
<mixed-citation publication-type="journal">
<string-name>
<surname>Yang</surname>
<given-names>W</given-names>
</string-name>
,
<string-name>
<surname>Du</surname>
<given-names>WW</given-names>
</string-name>
,
<string-name>
<surname>Li</surname>
<given-names>X</given-names>
</string-name>
,
<string-name>
<surname>Yee</surname>
<given-names>AJ</given-names>
</string-name>
,
<string-name>
<surname>Yang</surname>
<given-names>BB</given-names>
</string-name>
.
<article-title>Foxo3 activity promoted by non-coding effects of circular RNA and Foxo3 pseudogene in the inhibition of tumor growth and angiogenesis</article-title>
.
<source>
<italic toggle="yes">Oncogene</italic>
</source>
.
<year>2016</year>
;
<volume>35</volume>
:
<fpage>3919</fpage>
<lpage>3931</lpage>
. doi:
<pub-id pub-id-type="doi">10.1038/onc.2015.460</pub-id>
<pub-id pub-id-type="pmid">26657152</pub-id>
</mixed-citation>
</ref>
<ref id="CIT0233">
<label>233.</label>
<mixed-citation publication-type="journal">
<string-name>
<surname>Zhou</surname>
<given-names>J</given-names>
</string-name>
,
<string-name>
<surname>Zhou</surname>
<given-names>LY</given-names>
</string-name>
,
<string-name>
<surname>Tang</surname>
<given-names>X</given-names>
</string-name>
, et al.
<article-title>Circ-Foxo3 is positively associated with the Foxo3 gene and leads to better prognosis of acute myeloid leukemia patients</article-title>
.
<source>
<italic toggle="yes">BMC Cancer</italic>
</source>
.
<year>2019</year>
;
<volume>19</volume>
:
<fpage>930</fpage>
. doi:
<pub-id pub-id-type="doi">10.1186/s12885-019-5967-8</pub-id>
<pub-id pub-id-type="pmid">31533653</pub-id>
</mixed-citation>
</ref>
<ref id="CIT0234">
<label>234.</label>
<mixed-citation publication-type="journal">
<string-name>
<surname>Shang</surname>
<given-names>J</given-names>
</string-name>
,
<string-name>
<surname>Chen</surname>
<given-names>WM</given-names>
</string-name>
,
<string-name>
<surname>Liu</surname>
<given-names>S</given-names>
</string-name>
, et al.
<article-title>CircPAN3 contributes to drug resistance in acute myeloid leukemia through regulation of autophagy</article-title>
.
<source>
<italic toggle="yes">Leuk Res</italic>
</source>
.
<year>2019</year>
;
<volume>85</volume>
:
<fpage>106198</fpage>
. doi:
<pub-id pub-id-type="doi">10.1016/j.leukres.2019.106198</pub-id>
<pub-id pub-id-type="pmid">31401408</pub-id>
</mixed-citation>
</ref>
<ref id="CIT0235">
<label>235.</label>
<mixed-citation publication-type="journal">
<string-name>
<surname>Feng</surname>
<given-names>XQ</given-names>
</string-name>
,
<string-name>
<surname>Nie</surname>
<given-names>SM</given-names>
</string-name>
,
<string-name>
<surname>Huang</surname>
<given-names>JX</given-names>
</string-name>
, et al.
<article-title>Circular RNA circHIPK3 serves as a prognostic marker to promote chronic myeloid leukemia progression</article-title>
.
<source>
<italic toggle="yes">Neoplasma</italic>
</source>
.
<year>2019</year>
.</mixed-citation>
</ref>
<ref id="CIT0236">
<label>236.</label>
<mixed-citation publication-type="journal">
<string-name>
<surname>Ping</surname>
<given-names>L</given-names>
</string-name>
,
<string-name>
<surname>Jian-Jun</surname>
<given-names>C</given-names>
</string-name>
,
<string-name>
<surname>Chu-Shu</surname>
<given-names>L</given-names>
</string-name>
,
<string-name>
<surname>Guang-Hua</surname>
<given-names>L</given-names>
</string-name>
,
<string-name>
<surname>Ming</surname>
<given-names>Z</given-names>
</string-name>
.
<article-title>High circ_100053 predicts a poor outcome for chronic myeloid leukemia and is involved in imatinib resistance</article-title>
.
<source>
<italic toggle="yes">Oncol Res</italic>
</source>
.
<year>2019</year>
. doi:
<pub-id pub-id-type="doi">10.3727/096504018X15412701483326</pub-id>
</mixed-citation>
</ref>
<ref id="CIT0237">
<label>237.</label>
<mixed-citation publication-type="journal">
<string-name>
<surname>Liu</surname>
<given-names>J</given-names>
</string-name>
,
<string-name>
<surname>Kong</surname>
<given-names>F</given-names>
</string-name>
,
<string-name>
<surname>Lou</surname>
<given-names>S</given-names>
</string-name>
,
<string-name>
<surname>Yang</surname>
<given-names>D</given-names>
</string-name>
,
<string-name>
<surname>Gu</surname>
<given-names>L</given-names>
</string-name>
.
<article-title>Global identification of circular RNAs in chronic myeloid leukemia reveals hsa_circ_0080145 regulates cell proliferation by sponging miR-29b</article-title>
.
<source>
<italic toggle="yes">Biochem Biophys Res Commun</italic>
</source>
.
<year>2018</year>
;
<volume>504</volume>
:
<fpage>660</fpage>
<lpage>665</lpage>
. doi:
<pub-id pub-id-type="doi">10.1016/j.bbrc.2018.08.154</pub-id>
<pub-id pub-id-type="pmid">30205959</pub-id>
</mixed-citation>
</ref>
<ref id="CIT0238">
<label>238.</label>
<mixed-citation publication-type="journal">
<string-name>
<surname>Su</surname>
<given-names>M</given-names>
</string-name>
,
<string-name>
<surname>Xiao</surname>
<given-names>Y</given-names>
</string-name>
,
<string-name>
<surname>Ma</surname>
<given-names>J</given-names>
</string-name>
, et al.
<article-title>Circular RNAs in cancer: emerging functions in hallmarks, stemness, resistance and roles as potential biomarkers</article-title>
.
<source>
<italic toggle="yes">Mol Cancer</italic>
</source>
.
<year>2019</year>
;
<volume>18</volume>
:
<fpage>90</fpage>
. doi:
<pub-id pub-id-type="doi">10.1186/s12943-019-1002-6</pub-id>
<pub-id pub-id-type="pmid">30999909</pub-id>
</mixed-citation>
</ref>
<ref id="CIT0239">
<label>239.</label>
<mixed-citation publication-type="journal">
<string-name>
<surname>Yan</surname>
<given-names>N</given-names>
</string-name>
,
<string-name>
<surname>Xu</surname>
<given-names>H</given-names>
</string-name>
,
<string-name>
<surname>Zhang</surname>
<given-names>J</given-names>
</string-name>
, et al.
<article-title>Circular RNA profile indicates circular RNA VRK1 is negatively related with breast cancer stem cells</article-title>
.
<source>
<italic toggle="yes">Oncotarget</italic>
</source>
.
<year>2017</year>
;
<volume>8</volume>
:
<fpage>95704</fpage>
<lpage>95718</lpage>
. doi:
<pub-id pub-id-type="doi">10.18632/oncotarget.v8i56</pub-id>
<pub-id pub-id-type="pmid">29221160</pub-id>
</mixed-citation>
</ref>
<ref id="CIT0240">
<label>240.</label>
<mixed-citation publication-type="journal">
<string-name>
<surname>Liu</surname>
<given-names>R</given-names>
</string-name>
,
<string-name>
<surname>Shi</surname>
<given-names>P</given-names>
</string-name>
,
<string-name>
<surname>Nie</surname>
<given-names>Z</given-names>
</string-name>
, et al.
<article-title>Mifepristone suppresses basal triple-negative breast cancer stem cells by down-regulating KLF5 expression</article-title>
.
<source>
<italic toggle="yes">Theranostics</italic>
</source>
.
<year>2016</year>
;
<volume>6</volume>
:
<fpage>533</fpage>
<lpage>544</lpage>
. doi:
<pub-id pub-id-type="doi">10.7150/thno.14315</pub-id>
<pub-id pub-id-type="pmid">26941846</pub-id>
</mixed-citation>
</ref>
<ref id="CIT0241">
<label>241.</label>
<mixed-citation publication-type="journal">
<string-name>
<surname>Cherubini</surname>
<given-names>A</given-names>
</string-name>
,
<string-name>
<surname>Barilani</surname>
<given-names>M</given-names>
</string-name>
,
<string-name>
<surname>Rossi</surname>
<given-names>RL</given-names>
</string-name>
, et al.
<article-title>FOXP1 circular RNA sustains mesenchymal stem cell identity via microRNA inhibition</article-title>
.
<source>
<italic toggle="yes">Nucleic Acids Res</italic>
</source>
.
<year>2019</year>
;
<volume>47</volume>
:
<fpage>5325</fpage>
<lpage>5340</lpage>
. doi:
<pub-id pub-id-type="doi">10.1093/nar/gkz199</pub-id>
<pub-id pub-id-type="pmid">30937446</pub-id>
</mixed-citation>
</ref>
<ref id="CIT0242">
<label>242.</label>
<mixed-citation publication-type="journal">
<string-name>
<surname>Zhu</surname>
<given-names>YJ</given-names>
</string-name>
,
<string-name>
<surname>Zheng</surname>
<given-names>B</given-names>
</string-name>
,
<string-name>
<surname>Luo</surname>
<given-names>GJ</given-names>
</string-name>
, et al.
<article-title>Circular RNAs negatively regulate cancer stem cells by physically binding FMRP against CCAR1 complex in hepatocellular carcinoma</article-title>
.
<source>
<italic toggle="yes">Theranostics</italic>
</source>
.
<year>2019</year>
;
<volume>9</volume>
:
<fpage>3526</fpage>
<lpage>3540</lpage>
. doi:
<pub-id pub-id-type="doi">10.7150/thno.32796</pub-id>
<pub-id pub-id-type="pmid">31281495</pub-id>
</mixed-citation>
</ref>
<ref id="CIT0243">
<label>243.</label>
<mixed-citation publication-type="journal">
<string-name>
<surname>Wu</surname>
<given-names>Y</given-names>
</string-name>
,
<string-name>
<surname>Zhang</surname>
<given-names>Y</given-names>
</string-name>
,
<string-name>
<surname>Niu</surname>
<given-names>M</given-names>
</string-name>
, et al.
<article-title>Whole-transcriptome analysis of CD133+CD144+ cancer stem cells derived from human laryngeal squamous cell carcinoma cells</article-title>
.
<source>
<italic toggle="yes">Cell Physiol Biochem</italic>
</source>
.
<year>2018</year>
;
<volume>47</volume>
:
<fpage>1696</fpage>
<lpage>1710</lpage>
. doi:
<pub-id pub-id-type="doi">10.1159/000490992</pub-id>
<pub-id pub-id-type="pmid">29949786</pub-id>
</mixed-citation>
</ref>
<ref id="CIT0244">
<label>244.</label>
<mixed-citation publication-type="journal">
<string-name>
<surname>Feng</surname>
<given-names>Z</given-names>
</string-name>
,
<string-name>
<surname>Meng</surname>
<given-names>S</given-names>
</string-name>
,
<string-name>
<surname>Zhou</surname>
<given-names>H</given-names>
</string-name>
, et al.
<article-title>Functions and potential applications of circular RNAs in cancer stem cells</article-title>
.
<source>
<italic toggle="yes">Front Oncol</italic>
</source>
.
<year>2019</year>
;
<volume>9</volume>
:
<fpage>500</fpage>
. doi:
<pub-id pub-id-type="doi">10.3389/fonc.2019.00500</pub-id>
<pub-id pub-id-type="pmid">31263676</pub-id>
</mixed-citation>
</ref>
<ref id="CIT0245">
<label>245.</label>
<mixed-citation publication-type="journal">
<string-name>
<surname>Shi</surname>
<given-names>P</given-names>
</string-name>
,
<string-name>
<surname>Sun</surname>
<given-names>J</given-names>
</string-name>
,
<string-name>
<surname>He</surname>
<given-names>B</given-names>
</string-name>
, et al.
<article-title>Profiles of differentially expressed circRNAs in esophageal and breast cancer</article-title>
.
<source>
<italic toggle="yes">Cancer Manag Res</italic>
</source>
.
<year>2018</year>
;
<volume>10</volume>
:
<fpage>2207</fpage>
<lpage>2221</lpage>
. doi:
<pub-id pub-id-type="doi">10.2147/CMAR</pub-id>
<pub-id pub-id-type="pmid">30087579</pub-id>
</mixed-citation>
</ref>
<ref id="CIT0246">
<label>246.</label>
<mixed-citation publication-type="journal">
<string-name>
<surname>Wu</surname>
<given-names>J</given-names>
</string-name>
,
<string-name>
<surname>Qi</surname>
<given-names>X</given-names>
</string-name>
,
<string-name>
<surname>Liu</surname>
<given-names>L</given-names>
</string-name>
, et al.
<article-title>Emerging epigenetic regulation of circular RNAs in human cancer</article-title>
.
<source>
<italic toggle="yes">Mol Ther Nucleic Acids</italic>
</source>
.
<year>2019</year>
;
<volume>16</volume>
:
<fpage>589</fpage>
<lpage>596</lpage>
. doi:
<pub-id pub-id-type="doi">10.1016/j.omtn.2019.04.011</pub-id>
<pub-id pub-id-type="pmid">31082792</pub-id>
</mixed-citation>
</ref>
<ref id="CIT0247">
<label>247.</label>
<mixed-citation publication-type="journal">
<string-name>
<surname>Liu</surname>
<given-names>W</given-names>
</string-name>
,
<string-name>
<surname>Zhang</surname>
<given-names>J</given-names>
</string-name>
,
<string-name>
<surname>Zou</surname>
<given-names>C</given-names>
</string-name>
, et al.
<article-title>Microarray expression profile and functional analysis of circular RNAs in osteosarcoma</article-title>
.
<source>
<italic toggle="yes">Cell Physiol Biochem</italic>
</source>
.
<year>2017</year>
;
<volume>43</volume>
:
<fpage>969</fpage>
<lpage>985</lpage>
. doi:
<pub-id pub-id-type="doi">10.1159/000481650</pub-id>
<pub-id pub-id-type="pmid">28957794</pub-id>
</mixed-citation>
</ref>
<ref id="CIT0248">
<label>248.</label>
<mixed-citation publication-type="journal">
<string-name>
<surname>Fanale</surname>
<given-names>D</given-names>
</string-name>
,
<string-name>
<surname>Taverna</surname>
<given-names>S</given-names>
</string-name>
,
<string-name>
<surname>Russo</surname>
<given-names>A</given-names>
</string-name>
,
<string-name>
<surname>Bazan</surname>
<given-names>V</given-names>
</string-name>
.
<article-title>Circular RNA in exosomes</article-title>
.
<source>
<italic toggle="yes">Adv Exp Med Biol</italic>
</source>
.
<year>2018</year>
;
<volume>1087</volume>
:
<fpage>109</fpage>
<lpage>117</lpage>
.
<pub-id pub-id-type="pmid">30259361</pub-id>
</mixed-citation>
</ref>
<ref id="CIT0249">
<label>249.</label>
<mixed-citation publication-type="journal">
<string-name>
<surname>Chen</surname>
<given-names>H</given-names>
</string-name>
,
<string-name>
<surname>Liu</surname>
<given-names>S</given-names>
</string-name>
,
<string-name>
<surname>Li</surname>
<given-names>M</given-names>
</string-name>
,
<string-name>
<surname>Huang</surname>
<given-names>P</given-names>
</string-name>
,
<string-name>
<surname>Li</surname>
<given-names>X</given-names>
</string-name>
.
<article-title>circ_0003418 inhibits tumorigenesis and cisplatin chemoresistance through Wnt/beta-Catenin pathway in hepatocellular carcinoma</article-title>
.
<source>
<italic toggle="yes">Onco Targets Ther</italic>
</source>
.
<year>2019</year>
;
<volume>12</volume>
:
<fpage>9539</fpage>
<lpage>9549</lpage>
. doi:
<pub-id pub-id-type="doi">10.2147/OTT.S229507</pub-id>
<pub-id pub-id-type="pmid">31807029</pub-id>
</mixed-citation>
</ref>
<ref id="CIT0250">
<label>250.</label>
<mixed-citation publication-type="journal">
<string-name>
<surname>Di</surname>
<given-names>X</given-names>
</string-name>
,
<string-name>
<surname>Jin</surname>
<given-names>X</given-names>
</string-name>
,
<string-name>
<surname>Li</surname>
<given-names>R</given-names>
</string-name>
,
<string-name>
<surname>Zhao</surname>
<given-names>M</given-names>
</string-name>
,
<string-name>
<surname>Wang</surname>
<given-names>K</given-names>
</string-name>
.
<article-title>CircRNAs and lung cancer: biomarkers and master regulators</article-title>
.
<source>
<italic toggle="yes">Life Sci</italic>
</source>
.
<year>2019</year>
;
<volume>220</volume>
:
<fpage>177</fpage>
<lpage>185</lpage>
. doi:
<pub-id pub-id-type="doi">10.1016/j.lfs.2019.01.055</pub-id>
<pub-id pub-id-type="pmid">30711537</pub-id>
</mixed-citation>
</ref>
<ref id="CIT0251">
<label>251.</label>
<mixed-citation publication-type="journal">
<string-name>
<surname>Yu</surname>
<given-names>W</given-names>
</string-name>
,
<string-name>
<surname>Peng</surname>
<given-names>W</given-names>
</string-name>
,
<string-name>
<surname>Sha</surname>
<given-names>H</given-names>
</string-name>
,
<string-name>
<surname>Li</surname>
<given-names>J</given-names>
</string-name>
.
<article-title>Hsa_circ_0003998 promotes chemoresistance via modulation of miR-326 in lung adenocarcinoma cells</article-title>
.
<source>
<italic toggle="yes">Oncol Res</italic>
</source>
.
<year>2019</year>
;
<volume>27</volume>
:
<fpage>623</fpage>
<lpage>628</lpage>
. doi:
<pub-id pub-id-type="doi">10.3727/096504018X15420734828058</pub-id>
<pub-id pub-id-type="pmid">30764896</pub-id>
</mixed-citation>
</ref>
<ref id="CIT0252">
<label>252.</label>
<mixed-citation publication-type="journal">
<string-name>
<surname>Xu</surname>
<given-names>QY</given-names>
</string-name>
,
<string-name>
<surname>Xie</surname>
<given-names>MJ</given-names>
</string-name>
,
<string-name>
<surname>Huang</surname>
<given-names>J</given-names>
</string-name>
,
<string-name>
<surname>Wang</surname>
<given-names>ZW</given-names>
</string-name>
.
<article-title>Effect of circ MTHFD2 on resistance to pemetrexed in gastric cancer through regulating expression of miR-124</article-title>
.
<source>
<italic toggle="yes">Eur Rev Med Pharmacol Sci</italic>
</source>
.
<year>2019</year>
;
<volume>23</volume>
:
<fpage>10290</fpage>
<lpage>10299</lpage>
. doi:
<pub-id pub-id-type="doi">10.26355/eurrev_201912_19667</pub-id>
<pub-id pub-id-type="pmid">31841184</pub-id>
</mixed-citation>
</ref>
<ref id="CIT0253">
<label>253.</label>
<mixed-citation publication-type="journal">
<string-name>
<surname>Huang</surname>
<given-names>X</given-names>
</string-name>
,
<string-name>
<surname>Li</surname>
<given-names>Z</given-names>
</string-name>
,
<string-name>
<surname>Zhang</surname>
<given-names>Q</given-names>
</string-name>
, et al.
<article-title>Circular RNA AKT3 upregulates PIK3R1 to enhance cisplatin resistance in gastric cancer via miR-198 suppression</article-title>
.
<source>
<italic toggle="yes">Mol Cancer</italic>
</source>
.
<year>2019</year>
;
<volume>18</volume>
:
<fpage>71</fpage>
. doi:
<pub-id pub-id-type="doi">10.1186/s12943-019-0969-3</pub-id>
<pub-id pub-id-type="pmid">30927924</pub-id>
</mixed-citation>
</ref>
<ref id="CIT0254">
<label>254.</label>
<mixed-citation publication-type="journal">
<string-name>
<surname>Yang</surname>
<given-names>W</given-names>
</string-name>
,
<string-name>
<surname>Gu</surname>
<given-names>J</given-names>
</string-name>
,
<string-name>
<surname>Wang</surname>
<given-names>X</given-names>
</string-name>
, et al.
<article-title>Inhibition of circular RNA CDR1as increases chemosensitivity of 5-FU-resistant BC cells through up-regulating miR-7</article-title>
.
<source>
<italic toggle="yes">J Cell Mol Med</italic>
</source>
.
<year>2019</year>
;
<volume>23</volume>
:
<fpage>3166</fpage>
<lpage>3177</lpage>
. doi:
<pub-id pub-id-type="doi">10.1111/jcmm.2019.23.issue-5</pub-id>
<pub-id pub-id-type="pmid">30884120</pub-id>
</mixed-citation>
</ref>
<ref id="CIT0255">
<label>255.</label>
<mixed-citation publication-type="journal">
<string-name>
<surname>Chi</surname>
<given-names>BJ</given-names>
</string-name>
,
<string-name>
<surname>Zhao</surname>
<given-names>DM</given-names>
</string-name>
,
<string-name>
<surname>Liu</surname>
<given-names>L</given-names>
</string-name>
, et al.
<article-title>Downregulation of hsa_circ_0000285 serves as a prognostic biomarker for bladder cancer and is involved in cisplatin resistance</article-title>
.
<source>
<italic toggle="yes">Neoplasma</italic>
</source>
.
<year>2019</year>
;
<volume>66</volume>
:
<fpage>197</fpage>
<lpage>202</lpage>
. doi:
<pub-id pub-id-type="doi">10.4149/neo_2018_180318N185</pub-id>
<pub-id pub-id-type="pmid">30509102</pub-id>
</mixed-citation>
</ref>
<ref id="CIT0256">
<label>256.</label>
<mixed-citation publication-type="journal">
<string-name>
<surname>Gao</surname>
<given-names>M</given-names>
</string-name>
,
<string-name>
<surname>Li</surname>
<given-names>C</given-names>
</string-name>
,
<string-name>
<surname>Xiao</surname>
<given-names>H</given-names>
</string-name>
, et al.
<article-title>hsa_circ_0007841: a novel potential biomarker and drug resistance for multiple myeloma</article-title>
.
<source>
<italic toggle="yes">Front Oncol</italic>
</source>
.
<year>2019</year>
;
<volume>9</volume>
:
<fpage>1261</fpage>
. doi:
<pub-id pub-id-type="doi">10.3389/fonc.2019.01261</pub-id>
<pub-id pub-id-type="pmid">31803627</pub-id>
</mixed-citation>
</ref>
<ref id="CIT0257">
<label>257.</label>
<mixed-citation publication-type="journal">
<string-name>
<surname>Greene</surname>
<given-names>J</given-names>
</string-name>
,
<string-name>
<surname>Baird</surname>
<given-names>AM</given-names>
</string-name>
,
<string-name>
<surname>Casey</surname>
<given-names>O</given-names>
</string-name>
, et al.
<article-title>Circular RNAs are differentially expressed in prostate cancer and are potentially associated with resistance to enzalutamide</article-title>
.
<source>
<italic toggle="yes">Sci Rep</italic>
</source>
.
<year>2019</year>
;
<volume>9</volume>
:
<fpage>10739</fpage>
. doi:
<pub-id pub-id-type="doi">10.1038/s41598-019-47189-2</pub-id>
<pub-id pub-id-type="pmid">31341219</pub-id>
</mixed-citation>
</ref>
<ref id="CIT0258">
<label>258.</label>
<mixed-citation publication-type="journal">
<string-name>
<surname>Su</surname>
<given-names>Y</given-names>
</string-name>
,
<string-name>
<surname>Yang</surname>
<given-names>W</given-names>
</string-name>
,
<string-name>
<surname>Jiang</surname>
<given-names>N</given-names>
</string-name>
, et al.
<article-title>Hypoxia-elevated circELP3 contributes to bladder cancer progression and cisplatin resistance</article-title>
.
<source>
<italic toggle="yes">Int J Biol Sci</italic>
</source>
.
<year>2019</year>
;
<volume>15</volume>
:
<fpage>441</fpage>
<lpage>452</lpage>
. doi:
<pub-id pub-id-type="doi">10.7150/ijbs.26826</pub-id>
<pub-id pub-id-type="pmid">30745833</pub-id>
</mixed-citation>
</ref>
<ref id="CIT0259">
<label>259.</label>
<mixed-citation publication-type="journal">
<string-name>
<surname>Hua</surname>
<given-names>X</given-names>
</string-name>
,
<string-name>
<surname>Sun</surname>
<given-names>Y</given-names>
</string-name>
,
<string-name>
<surname>Chen</surname>
<given-names>J</given-names>
</string-name>
, et al.
<article-title>Circular RNAs in drug resistant tumors</article-title>
.
<source>
<italic toggle="yes">Biomed Pharmacother</italic>
</source>
.
<year>2019</year>
;
<volume>118</volume>
:
<fpage>109233</fpage>
. doi:
<pub-id pub-id-type="doi">10.1016/j.biopha.2019.109233</pub-id>
<pub-id pub-id-type="pmid">31351436</pub-id>
</mixed-citation>
</ref>
<ref id="CIT0260">
<label>260.</label>
<mixed-citation publication-type="journal">
<string-name>
<surname>Szabo</surname>
<given-names>L</given-names>
</string-name>
,
<string-name>
<surname>Salzman</surname>
<given-names>J</given-names>
</string-name>
.
<article-title>Detecting circular RNAs: bioinformatic and experimental challenges</article-title>
.
<source>
<italic toggle="yes">Nat Rev Genet</italic>
</source>
.
<year>2016</year>
;
<volume>17</volume>
:
<fpage>679</fpage>
<lpage>692</lpage>
. doi:
<pub-id pub-id-type="doi">10.1038/nrg.2016.114</pub-id>
<pub-id pub-id-type="pmid">27739534</pub-id>
</mixed-citation>
</ref>
<ref id="CIT0261">
<label>261.</label>
<mixed-citation publication-type="journal">
<string-name>
<surname>Wang</surname>
<given-names>Y</given-names>
</string-name>
,
<string-name>
<surname>Liu</surname>
<given-names>J</given-names>
</string-name>
,
<string-name>
<surname>Ma</surname>
<given-names>J</given-names>
</string-name>
, et al.
<article-title>Exosomal circRNAs: biogenesis, effect and application in human diseases</article-title>
.
<source>
<italic toggle="yes">Mol Cancer</italic>
</source>
.
<year>2019</year>
;
<volume>18</volume>
:
<fpage>116</fpage>
. doi:
<pub-id pub-id-type="doi">10.1186/s12943-019-1041-z</pub-id>
<pub-id pub-id-type="pmid">31277663</pub-id>
</mixed-citation>
</ref>
<ref id="CIT0262">
<label>262.</label>
<mixed-citation publication-type="journal">
<string-name>
<surname>Soneson</surname>
<given-names>C</given-names>
</string-name>
,
<string-name>
<surname>Yao</surname>
<given-names>Y</given-names>
</string-name>
,
<string-name>
<surname>Bratus-neuenschwander</surname>
<given-names>A</given-names>
</string-name>
,
<string-name>
<surname>Patrignani</surname>
<given-names>A</given-names>
</string-name>
,
<string-name>
<surname>Robinson</surname>
<given-names>MD</given-names>
</string-name>
,
<string-name>
<surname>Hussain</surname>
<given-names>S</given-names>
</string-name>
.
<article-title>A comprehensive examination of Nanopore native RNA sequencing for characterization of complex transcriptomes</article-title>
.
<source>
<italic toggle="yes">Nat Commun</italic>
</source>
.
<year>2019</year>
;
<volume>10</volume>
:
<fpage>3359</fpage>
. doi:
<pub-id pub-id-type="doi">10.1038/s41467-019-11272-z</pub-id>
<pub-id pub-id-type="pmid">31366910</pub-id>
</mixed-citation>
</ref>
<ref id="CIT0263">
<label>263.</label>
<mixed-citation publication-type="journal">
<string-name>
<surname>Warren</surname>
<given-names>S</given-names>
</string-name>
.
<article-title>Simultaneous, multiplexed detection of RNA and protein on the NanoString((R)) nCounter((R)) Platform</article-title>
.
<source>
<italic toggle="yes">Methods Mol Biol</italic>
</source>
.
<year>2018</year>
;
<volume>1783</volume>
:
<fpage>105</fpage>
<lpage>120</lpage>
.
<pub-id pub-id-type="pmid">29767359</pub-id>
</mixed-citation>
</ref>
</ref-list>
</back>
</pmc>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/ChloroquineV1/Data/Pmc/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000A82 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Pmc/Corpus/biblio.hfd -nk 000A82 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    ChloroquineV1
   |flux=    Pmc
   |étape=   Corpus
   |type=    RBID
   |clé=     PMC:7069569
   |texte=   Biological Roles and Mechanisms of Circular RNA in Human Cancers
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Pmc/Corpus/RBID.i   -Sk "pubmed:NONE" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Pmc/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a ChloroquineV1 

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Wed Mar 25 22:43:59 2020. Site generation: Sun Jan 31 12:44:45 2021