Serveur d'exploration Chloroquine

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.
***** Acces problem to record *****\

Identifieur interne : 000A69 ( Pmc/Corpus ); précédent : 000A689; suivant : 000A700 ***** probable Xml problem with record *****

Links to Exploration step


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Penfluridol as a Candidate of Drug Repurposing for Anticancer Agent</title>
<author>
<name sortKey="Tuan, Nguyen Minh" sort="Tuan, Nguyen Minh" uniqKey="Tuan N" first="Nguyen Minh" last="Tuan">Nguyen Minh Tuan</name>
</author>
<author>
<name sortKey="Lee, Chang Hoon" sort="Lee, Chang Hoon" uniqKey="Lee C" first="Chang Hoon" last="Lee">Chang Hoon Lee</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PMC</idno>
<idno type="pmid">31614431</idno>
<idno type="pmc">6832311</idno>
<idno type="url">http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6832311</idno>
<idno type="RBID">PMC:6832311</idno>
<idno type="doi">10.3390/molecules24203659</idno>
<date when="2019">2019</date>
<idno type="wicri:Area/Pmc/Corpus">000A69</idno>
<idno type="wicri:explorRef" wicri:stream="Pmc" wicri:step="Corpus" wicri:corpus="PMC">000A69</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a" type="main">Penfluridol as a Candidate of Drug Repurposing for Anticancer Agent</title>
<author>
<name sortKey="Tuan, Nguyen Minh" sort="Tuan, Nguyen Minh" uniqKey="Tuan N" first="Nguyen Minh" last="Tuan">Nguyen Minh Tuan</name>
</author>
<author>
<name sortKey="Lee, Chang Hoon" sort="Lee, Chang Hoon" uniqKey="Lee C" first="Chang Hoon" last="Lee">Chang Hoon Lee</name>
</author>
</analytic>
<series>
<title level="j">Molecules</title>
<idno type="eISSN">1420-3049</idno>
<imprint>
<date when="2019">2019</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<p>Penfluridol has robust antipsychotic efficacy and is a first-generation diphenylbutylpiperidine. Its effects last for several days after a single oral dose and it can be administered once a week to provide better compliance and symptom control. Recently; strong antitumour effects for penfluridol were discovered in various cancer cell lines; such as breast; pancreatic; glioblastoma; and lung cancer cells via several distinct mechanisms. Therefore; penfluridol has drawn much attention as a potentially novel anti-tumour agent. In addition; the anti-cancer effects of penfluridol have been demonstrated in vivo: results showed slight changes in the volume and weight of organs at doses tested in animals. This paper outlines the potential for penfluridol to be developed as a next-generation anticancer drug.</p>
</div>
</front>
<back>
<div1 type="bibliography">
<listBibl>
<biblStruct>
<analytic>
<author>
<name sortKey="Bray, F" uniqKey="Bray F">F. Bray</name>
</author>
<author>
<name sortKey="Ferlay, J" uniqKey="Ferlay J">J. Ferlay</name>
</author>
<author>
<name sortKey="Soerjomataram, I" uniqKey="Soerjomataram I">I. Soerjomataram</name>
</author>
<author>
<name sortKey="Siegel, R L" uniqKey="Siegel R">R.L. Siegel</name>
</author>
<author>
<name sortKey="Torre, L A" uniqKey="Torre L">L.A. Torre</name>
</author>
<author>
<name sortKey="Jemal, A" uniqKey="Jemal A">A. Jemal</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Gordon, N" uniqKey="Gordon N">N. Gordon</name>
</author>
<author>
<name sortKey="Stemmer, S M" uniqKey="Stemmer S">S.M. Stemmer</name>
</author>
<author>
<name sortKey="Greenberg, D" uniqKey="Greenberg D">D. Greenberg</name>
</author>
<author>
<name sortKey="Goldstein, D A" uniqKey="Goldstein D">D.A. Goldstein</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Howard, D H" uniqKey="Howard D">D.H. Howard</name>
</author>
<author>
<name sortKey="Bach, P B" uniqKey="Bach P">P.B. Bach</name>
</author>
<author>
<name sortKey="Berndt, E R" uniqKey="Berndt E">E.R. Berndt</name>
</author>
<author>
<name sortKey="Conti, R M" uniqKey="Conti R">R.M. Conti</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Janssen, P A" uniqKey="Janssen P">P.A. Janssen</name>
</author>
<author>
<name sortKey="Niemegeers, C J" uniqKey="Niemegeers C">C.J. Niemegeers</name>
</author>
<author>
<name sortKey="Schellekens, K H" uniqKey="Schellekens K">K.H. Schellekens</name>
</author>
<author>
<name sortKey="Lenaerts, F M" uniqKey="Lenaerts F">F.M. Lenaerts</name>
</author>
<author>
<name sortKey="Verbruggen, F J" uniqKey="Verbruggen F">F.J. Verbruggen</name>
</author>
<author>
<name sortKey="Van Nueten, J M" uniqKey="Van Nueten J">J.M. Van Nueten</name>
</author>
<author>
<name sortKey="Schaper, W K" uniqKey="Schaper W">W.K. Schaper</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Soares, B G" uniqKey="Soares B">B.G. Soares</name>
</author>
<author>
<name sortKey="Lima, M S" uniqKey="Lima M">M.S. Lima</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Shintomi, K" uniqKey="Shintomi K">K. Shintomi</name>
</author>
<author>
<name sortKey="Yamamura, M" uniqKey="Yamamura M">M. Yamamura</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kline, C L B" uniqKey="Kline C">C.L.B. Kline</name>
</author>
<author>
<name sortKey="Ralff, M D" uniqKey="Ralff M">M.D. Ralff</name>
</author>
<author>
<name sortKey="Lulla, A R" uniqKey="Lulla A">A.R. Lulla</name>
</author>
<author>
<name sortKey="Wagner, J M" uniqKey="Wagner J">J.M. Wagner</name>
</author>
<author>
<name sortKey="Abbosh, P H" uniqKey="Abbosh P">P.H. Abbosh</name>
</author>
<author>
<name sortKey="Dicker, D T" uniqKey="Dicker D">D.T. Dicker</name>
</author>
<author>
<name sortKey="Allen, J E" uniqKey="Allen J">J.E. Allen</name>
</author>
<author>
<name sortKey="El Deiry, W S" uniqKey="El Deiry W">W.S. El-Deiry</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Santi, C M" uniqKey="Santi C">C.M. Santi</name>
</author>
<author>
<name sortKey="Cayabyab, F S" uniqKey="Cayabyab F">F.S. Cayabyab</name>
</author>
<author>
<name sortKey="Sutton, K G" uniqKey="Sutton K">K.G. Sutton</name>
</author>
<author>
<name sortKey="Mcrory, J E" uniqKey="Mcrory J">J.E. McRory</name>
</author>
<author>
<name sortKey="Mezeyova, J" uniqKey="Mezeyova J">J. Mezeyova</name>
</author>
<author>
<name sortKey="Hamming, K S" uniqKey="Hamming K">K.S. Hamming</name>
</author>
<author>
<name sortKey="Parker, D" uniqKey="Parker D">D. Parker</name>
</author>
<author>
<name sortKey="Stea, A" uniqKey="Stea A">A. Stea</name>
</author>
<author>
<name sortKey="Snutch, T P" uniqKey="Snutch T">T.P. Snutch</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ashraf Uz Zaman, M" uniqKey="Ashraf Uz Zaman M">M. Ashraf-Uz-Zaman</name>
</author>
<author>
<name sortKey="Sajib, M S" uniqKey="Sajib M">M.S. Sajib</name>
</author>
<author>
<name sortKey="Cucullo, L" uniqKey="Cucullo L">L. Cucullo</name>
</author>
<author>
<name sortKey="Mikelis, C M" uniqKey="Mikelis C">C.M. Mikelis</name>
</author>
<author>
<name sortKey="German, N A" uniqKey="German N">N.A. German</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ranjan, A" uniqKey="Ranjan A">A. Ranjan</name>
</author>
<author>
<name sortKey="Gupta, P" uniqKey="Gupta P">P. Gupta</name>
</author>
<author>
<name sortKey="Srivastava, S K" uniqKey="Srivastava S">S.K. Srivastava</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ranjan, A" uniqKey="Ranjan A">A. Ranjan</name>
</author>
<author>
<name sortKey="Srivastava, S K" uniqKey="Srivastava S">S.K. Srivastava</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ranjan, A" uniqKey="Ranjan A">A. Ranjan</name>
</author>
<author>
<name sortKey="Srivastava, S K" uniqKey="Srivastava S">S.K. Srivastava</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Wu, L" uniqKey="Wu L">L. Wu</name>
</author>
<author>
<name sortKey="Liu, Y Y" uniqKey="Liu Y">Y.Y. Liu</name>
</author>
<author>
<name sortKey="Li, Z X" uniqKey="Li Z">Z.X. Li</name>
</author>
<author>
<name sortKey="Zhao, Q" uniqKey="Zhao Q">Q. Zhao</name>
</author>
<author>
<name sortKey="Wang, X" uniqKey="Wang X">X. Wang</name>
</author>
<author>
<name sortKey="Yu, Y" uniqKey="Yu Y">Y. Yu</name>
</author>
<author>
<name sortKey="Wang, Y Y" uniqKey="Wang Y">Y.Y. Wang</name>
</author>
<author>
<name sortKey="Wang, Y Q" uniqKey="Wang Y">Y.Q. Wang</name>
</author>
<author>
<name sortKey="Luo, F" uniqKey="Luo F">F. Luo</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Hanahan, D" uniqKey="Hanahan D">D. Hanahan</name>
</author>
<author>
<name sortKey="Weinberg, R A" uniqKey="Weinberg R">R.A. Weinberg</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Chien, W" uniqKey="Chien W">W. Chien</name>
</author>
<author>
<name sortKey="Sun, Q Y" uniqKey="Sun Q">Q.-Y. Sun</name>
</author>
<author>
<name sortKey="Lee, K L" uniqKey="Lee K">K.L. Lee</name>
</author>
<author>
<name sortKey="Ding, L W" uniqKey="Ding L">L.-W. Ding</name>
</author>
<author>
<name sortKey="Wuensche, P" uniqKey="Wuensche P">P. Wuensche</name>
</author>
<author>
<name sortKey="Torres Fernandez, L A" uniqKey="Torres Fernandez L">L.A. Torres-Fernandez</name>
</author>
<author>
<name sortKey="Tan, S Z" uniqKey="Tan S">S.Z. Tan</name>
</author>
<author>
<name sortKey="Tokatly, I" uniqKey="Tokatly I">I. Tokatly</name>
</author>
<author>
<name sortKey="Zaiden, N" uniqKey="Zaiden N">N. Zaiden</name>
</author>
<author>
<name sortKey="Poellinger, L" uniqKey="Poellinger L">L. Poellinger</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Schonthal, A H" uniqKey="Schonthal A">A.H. Schonthal</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Labi, V" uniqKey="Labi V">V. Labi</name>
</author>
<author>
<name sortKey="Erlacher, M" uniqKey="Erlacher M">M. Erlacher</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Gupta, N" uniqKey="Gupta N">N. Gupta</name>
</author>
<author>
<name sortKey="Gupta, P" uniqKey="Gupta P">P. Gupta</name>
</author>
<author>
<name sortKey="Srivastava, S K" uniqKey="Srivastava S">S.K. Srivastava</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Wittekind, C" uniqKey="Wittekind C">C. Wittekind</name>
</author>
<author>
<name sortKey="Neid, M" uniqKey="Neid M">M. Neid</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Viallard, C" uniqKey="Viallard C">C. Viallard</name>
</author>
<author>
<name sortKey="Larrivee, B" uniqKey="Larrivee B">B. Larrivee</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Dakir, E H" uniqKey="Dakir E">E.H. Dakir</name>
</author>
<author>
<name sortKey="Pickard, A" uniqKey="Pickard A">A. Pickard</name>
</author>
<author>
<name sortKey="Srivastava, K" uniqKey="Srivastava K">K. Srivastava</name>
</author>
<author>
<name sortKey="Mccrudden, C M" uniqKey="Mccrudden C">C.M. McCrudden</name>
</author>
<author>
<name sortKey="Gross, S R" uniqKey="Gross S">S.R. Gross</name>
</author>
<author>
<name sortKey="Lloyd, S" uniqKey="Lloyd S">S. Lloyd</name>
</author>
<author>
<name sortKey="Zhang, S D" uniqKey="Zhang S">S.D. Zhang</name>
</author>
<author>
<name sortKey="Margariti, A" uniqKey="Margariti A">A. Margariti</name>
</author>
<author>
<name sortKey="Morgan, R" uniqKey="Morgan R">R. Morgan</name>
</author>
<author>
<name sortKey="Rudland, P S" uniqKey="Rudland P">P.S. Rudland</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Schluter, A" uniqKey="Schluter A">A. Schluter</name>
</author>
<author>
<name sortKey="Weller, P" uniqKey="Weller P">P. Weller</name>
</author>
<author>
<name sortKey="Kanaan, O" uniqKey="Kanaan O">O. Kanaan</name>
</author>
<author>
<name sortKey="Nel, I" uniqKey="Nel I">I. Nel</name>
</author>
<author>
<name sortKey="Heusgen, L" uniqKey="Heusgen L">L. Heusgen</name>
</author>
<author>
<name sortKey="Hoing, B" uniqKey="Hoing B">B. Hoing</name>
</author>
<author>
<name sortKey="Hasskamp, P" uniqKey="Hasskamp P">P. Hasskamp</name>
</author>
<author>
<name sortKey="Zander, S" uniqKey="Zander S">S. Zander</name>
</author>
<author>
<name sortKey="Mandapathil, M" uniqKey="Mandapathil M">M. Mandapathil</name>
</author>
<author>
<name sortKey="Dominas, N" uniqKey="Dominas N">N. Dominas</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Delisser, H M" uniqKey="Delisser H">H.M. DeLisser</name>
</author>
<author>
<name sortKey="Christofidou Solomidou, M" uniqKey="Christofidou Solomidou M">M. Christofidou-Solomidou</name>
</author>
<author>
<name sortKey="Strieter, R M" uniqKey="Strieter R">R.M. Strieter</name>
</author>
<author>
<name sortKey="Burdick, M D" uniqKey="Burdick M">M.D. Burdick</name>
</author>
<author>
<name sortKey="Robinson, C S" uniqKey="Robinson C">C.S. Robinson</name>
</author>
<author>
<name sortKey="Wexler, R S" uniqKey="Wexler R">R.S. Wexler</name>
</author>
<author>
<name sortKey="Kerr, J S" uniqKey="Kerr J">J.S. Kerr</name>
</author>
<author>
<name sortKey="Garlanda, C" uniqKey="Garlanda C">C. Garlanda</name>
</author>
<author>
<name sortKey="Merwin, J R" uniqKey="Merwin J">J.R. Merwin</name>
</author>
<author>
<name sortKey="Madri, J A" uniqKey="Madri J">J.A. Madri</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Gorgun, G T" uniqKey="Gorgun G">G.T. Gorgun</name>
</author>
<author>
<name sortKey="Whitehill, G" uniqKey="Whitehill G">G. Whitehill</name>
</author>
<author>
<name sortKey="Anderson, J L" uniqKey="Anderson J">J.L. Anderson</name>
</author>
<author>
<name sortKey="Hideshima, T" uniqKey="Hideshima T">T. Hideshima</name>
</author>
<author>
<name sortKey="Maguire, C" uniqKey="Maguire C">C. Maguire</name>
</author>
<author>
<name sortKey="Laubach, J" uniqKey="Laubach J">J. Laubach</name>
</author>
<author>
<name sortKey="Raje, N" uniqKey="Raje N">N. Raje</name>
</author>
<author>
<name sortKey="Munshi, N C" uniqKey="Munshi N">N.C. Munshi</name>
</author>
<author>
<name sortKey="Richardson, P G" uniqKey="Richardson P">P.G. Richardson</name>
</author>
<author>
<name sortKey="Anderson, K C" uniqKey="Anderson K">K.C. Anderson</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Yang, R" uniqKey="Yang R">R. Yang</name>
</author>
<author>
<name sortKey="Cai, Z" uniqKey="Cai Z">Z. Cai</name>
</author>
<author>
<name sortKey="Zhang, Y" uniqKey="Zhang Y">Y. Zhang</name>
</author>
<author>
<name sortKey="Yutzy, W H" uniqKey="Yutzy W">W.H. Yutzy</name>
</author>
<author>
<name sortKey="Roby, K F" uniqKey="Roby K">K.F. Roby</name>
</author>
<author>
<name sortKey="Roden, R B" uniqKey="Roden R">R.B. Roden</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Mantovani, A" uniqKey="Mantovani A">A. Mantovani</name>
</author>
<author>
<name sortKey="Marchesi, F" uniqKey="Marchesi F">F. Marchesi</name>
</author>
<author>
<name sortKey="Malesci, A" uniqKey="Malesci A">A. Malesci</name>
</author>
<author>
<name sortKey="Laghi, L" uniqKey="Laghi L">L. Laghi</name>
</author>
<author>
<name sortKey="Allavena, P" uniqKey="Allavena P">P. Allavena</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ranjan, A" uniqKey="Ranjan A">A. Ranjan</name>
</author>
<author>
<name sortKey="Wright, S" uniqKey="Wright S">S. Wright</name>
</author>
<author>
<name sortKey="Srivastava, S K" uniqKey="Srivastava S">S.K. Srivastava</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Lee, C H" uniqKey="Lee C">C.H. Lee</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Alfonso De Matte, M Y" uniqKey="Alfonso De Matte M">M.Y. Alfonso-De Matte</name>
</author>
<author>
<name sortKey="Moses Soto, H" uniqKey="Moses Soto H">H. Moses-Soto</name>
</author>
<author>
<name sortKey="Kruk, P A" uniqKey="Kruk P">P.A. Kruk</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Gutschner, T" uniqKey="Gutschner T">T. Gutschner</name>
</author>
<author>
<name sortKey="Diederichs, S" uniqKey="Diederichs S">S. Diederichs</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Yao, Y" uniqKey="Yao Y">Y. Yao</name>
</author>
<author>
<name sortKey="Dai, W" uniqKey="Dai W">W. Dai</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Hung, W Y" uniqKey="Hung W">W.Y. Hung</name>
</author>
<author>
<name sortKey="Chang, J H" uniqKey="Chang J">J.H. Chang</name>
</author>
<author>
<name sortKey="Cheng, Y" uniqKey="Cheng Y">Y. Cheng</name>
</author>
<author>
<name sortKey="Cheng, G Z" uniqKey="Cheng G">G.Z. Cheng</name>
</author>
<author>
<name sortKey="Huang, H C" uniqKey="Huang H">H.C. Huang</name>
</author>
<author>
<name sortKey="Hsiao, M" uniqKey="Hsiao M">M. Hsiao</name>
</author>
<author>
<name sortKey="Chung, C L" uniqKey="Chung C">C.L. Chung</name>
</author>
<author>
<name sortKey="Lee, W J" uniqKey="Lee W">W.J. Lee</name>
</author>
<author>
<name sortKey="Chien, M H" uniqKey="Chien M">M.H. Chien</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Weissenrieder, J S" uniqKey="Weissenrieder J">J.S. Weissenrieder</name>
</author>
<author>
<name sortKey="Neighbors, J D" uniqKey="Neighbors J">J.D. Neighbors</name>
</author>
<author>
<name sortKey="Mailman, R B" uniqKey="Mailman R">R.B. Mailman</name>
</author>
<author>
<name sortKey="Hohl, R J" uniqKey="Hohl R">R.J. Hohl</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Brami Cherrier, K" uniqKey="Brami Cherrier K">K. Brami-Cherrier</name>
</author>
<author>
<name sortKey="Valjent, E" uniqKey="Valjent E">E. Valjent</name>
</author>
<author>
<name sortKey="Garcia, M" uniqKey="Garcia M">M. Garcia</name>
</author>
<author>
<name sortKey="Pages, C" uniqKey="Pages C">C. Pages</name>
</author>
<author>
<name sortKey="Hipskind, R A" uniqKey="Hipskind R">R.A. Hipskind</name>
</author>
<author>
<name sortKey="Caboche, J" uniqKey="Caboche J">J. Caboche</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kang, S" uniqKey="Kang S">S. Kang</name>
</author>
<author>
<name sortKey="Dong, S M" uniqKey="Dong S">S.M. Dong</name>
</author>
<author>
<name sortKey="Kim, B R" uniqKey="Kim B">B.R. Kim</name>
</author>
<author>
<name sortKey="Park, M S" uniqKey="Park M">M.S. Park</name>
</author>
<author>
<name sortKey="Trink, B" uniqKey="Trink B">B. Trink</name>
</author>
<author>
<name sortKey="Byun, H J" uniqKey="Byun H">H.J. Byun</name>
</author>
<author>
<name sortKey="Rho, S B" uniqKey="Rho S">S.B. Rho</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Mao, M" uniqKey="Mao M">M. Mao</name>
</author>
<author>
<name sortKey="Yu, T" uniqKey="Yu T">T. Yu</name>
</author>
<author>
<name sortKey="Hu, J" uniqKey="Hu J">J. Hu</name>
</author>
<author>
<name sortKey="Hu, L" uniqKey="Hu L">L. Hu</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Park, S H" uniqKey="Park S">S.H. Park</name>
</author>
<author>
<name sortKey="Chung, Y M" uniqKey="Chung Y">Y.M. Chung</name>
</author>
<author>
<name sortKey="Ma, J" uniqKey="Ma J">J. Ma</name>
</author>
<author>
<name sortKey="Yang, Q" uniqKey="Yang Q">Q. Yang</name>
</author>
<author>
<name sortKey="Berek, J S" uniqKey="Berek J">J.S. Berek</name>
</author>
<author>
<name sortKey="Hu, M C" uniqKey="Hu M">M.C. Hu</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Zhou, W" uniqKey="Zhou W">W. Zhou</name>
</author>
<author>
<name sortKey="Chen, M K" uniqKey="Chen M">M.K. Chen</name>
</author>
<author>
<name sortKey="Yu, H T" uniqKey="Yu H">H.T. Yu</name>
</author>
<author>
<name sortKey="Zhong, Z H" uniqKey="Zhong Z">Z.H. Zhong</name>
</author>
<author>
<name sortKey="Cai, N" uniqKey="Cai N">N. Cai</name>
</author>
<author>
<name sortKey="Chen, G Z" uniqKey="Chen G">G.Z. Chen</name>
</author>
<author>
<name sortKey="Zhang, P" uniqKey="Zhang P">P. Zhang</name>
</author>
<author>
<name sortKey="Chen, J J" uniqKey="Chen J">J.J. Chen</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Das, A" uniqKey="Das A">A. Das</name>
</author>
<author>
<name sortKey="Pushparaj, C" uniqKey="Pushparaj C">C. Pushparaj</name>
</author>
<author>
<name sortKey="Bahi, N" uniqKey="Bahi N">N. Bahi</name>
</author>
<author>
<name sortKey="Sorolla, A" uniqKey="Sorolla A">A. Sorolla</name>
</author>
<author>
<name sortKey="Herreros, J" uniqKey="Herreros J">J. Herreros</name>
</author>
<author>
<name sortKey="Pamplona, R" uniqKey="Pamplona R">R. Pamplona</name>
</author>
<author>
<name sortKey="Vilella, R" uniqKey="Vilella R">R. Vilella</name>
</author>
<author>
<name sortKey="Matias Guiu, X" uniqKey="Matias Guiu X">X. Matias-Guiu</name>
</author>
<author>
<name sortKey="Marti, R M" uniqKey="Marti R">R.M. Marti</name>
</author>
<author>
<name sortKey="Canti, C" uniqKey="Canti C">C. Canti</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Antal, L" uniqKey="Antal L">L. Antal</name>
</author>
<author>
<name sortKey="Martin Caraballo, M" uniqKey="Martin Caraballo M">M. Martin-Caraballo</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Dziegielewska, B" uniqKey="Dziegielewska B">B. Dziegielewska</name>
</author>
<author>
<name sortKey="Gray, L S" uniqKey="Gray L">L.S. Gray</name>
</author>
<author>
<name sortKey="Dziegielewski, J" uniqKey="Dziegielewski J">J. Dziegielewski</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Takahashi, M" uniqKey="Takahashi M">M. Takahashi</name>
</author>
<author>
<name sortKey="Seagar, M J" uniqKey="Seagar M">M.J. Seagar</name>
</author>
<author>
<name sortKey="Jones, J F" uniqKey="Jones J">J.F. Jones</name>
</author>
<author>
<name sortKey="Reber, B F" uniqKey="Reber B">B.F. Reber</name>
</author>
<author>
<name sortKey="Catterall, W A" uniqKey="Catterall W">W.A. Catterall</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Catterall, W A" uniqKey="Catterall W">W.A. Catterall</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ertel, S I" uniqKey="Ertel S">S.I. Ertel</name>
</author>
<author>
<name sortKey="Ertel, E A" uniqKey="Ertel E">E.A. Ertel</name>
</author>
<author>
<name sortKey="Clozel, J P" uniqKey="Clozel J">J.P. Clozel</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Enyeart, J J" uniqKey="Enyeart J">J.J. Enyeart</name>
</author>
<author>
<name sortKey="Biagi, B A" uniqKey="Biagi B">B.A. Biagi</name>
</author>
<author>
<name sortKey="Day, R N" uniqKey="Day R">R.N. Day</name>
</author>
<author>
<name sortKey="Sheu, S S" uniqKey="Sheu S">S.S. Sheu</name>
</author>
<author>
<name sortKey="Maurer, R A" uniqKey="Maurer R">R.A. Maurer</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Costello, L C" uniqKey="Costello L">L.C. Costello</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Valerie, N C" uniqKey="Valerie N">N.C. Valerie</name>
</author>
<author>
<name sortKey="Dziegielewska, B" uniqKey="Dziegielewska B">B. Dziegielewska</name>
</author>
<author>
<name sortKey="Hosing, A S" uniqKey="Hosing A">A.S. Hosing</name>
</author>
<author>
<name sortKey="Augustin, E" uniqKey="Augustin E">E. Augustin</name>
</author>
<author>
<name sortKey="Gray, L S" uniqKey="Gray L">L.S. Gray</name>
</author>
<author>
<name sortKey="Brautigan, D L" uniqKey="Brautigan D">D.L. Brautigan</name>
</author>
<author>
<name sortKey="Larner, J M" uniqKey="Larner J">J.M. Larner</name>
</author>
<author>
<name sortKey="Dziegielewski, J" uniqKey="Dziegielewski J">J. Dziegielewski</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kim, H" uniqKey="Kim H">H. Kim</name>
</author>
<author>
<name sortKey="Chong, K" uniqKey="Chong K">K. Chong</name>
</author>
<author>
<name sortKey="Ryu, B K" uniqKey="Ryu B">B.-K. Ryu</name>
</author>
<author>
<name sortKey="Park, K J" uniqKey="Park K">K.-J. Park</name>
</author>
<author>
<name sortKey="Yu, M O" uniqKey="Yu M">M.O. Yu</name>
</author>
<author>
<name sortKey="Lee, J" uniqKey="Lee J">J. Lee</name>
</author>
<author>
<name sortKey="Chung, S" uniqKey="Chung S">S. Chung</name>
</author>
<author>
<name sortKey="Choi, S" uniqKey="Choi S">S. Choi</name>
</author>
<author>
<name sortKey="Park, M J" uniqKey="Park M">M.-J. Park</name>
</author>
<author>
<name sortKey="Chung, Y G" uniqKey="Chung Y">Y.-G. Chung</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Levite, M" uniqKey="Levite M">M. Levite</name>
</author>
<author>
<name sortKey="Chowers, Y" uniqKey="Chowers Y">Y. Chowers</name>
</author>
<author>
<name sortKey="Ganor, Y" uniqKey="Ganor Y">Y. Ganor</name>
</author>
<author>
<name sortKey="Besser, M" uniqKey="Besser M">M. Besser</name>
</author>
<author>
<name sortKey="Hershkovits, R" uniqKey="Hershkovits R">R. Hershkovits</name>
</author>
<author>
<name sortKey="Cahalon, L" uniqKey="Cahalon L">L. Cahalon</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Lambert, A W" uniqKey="Lambert A">A.W. Lambert</name>
</author>
<author>
<name sortKey="Ozturk, S" uniqKey="Ozturk S">S. Ozturk</name>
</author>
<author>
<name sortKey="Thiagalingam, S" uniqKey="Thiagalingam S">S. Thiagalingam</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Muller, P A" uniqKey="Muller P">P.A. Muller</name>
</author>
<author>
<name sortKey="Caswell, P T" uniqKey="Caswell P">P.T. Caswell</name>
</author>
<author>
<name sortKey="Doyle, B" uniqKey="Doyle B">B. Doyle</name>
</author>
<author>
<name sortKey="Iwanicki, M P" uniqKey="Iwanicki M">M.P. Iwanicki</name>
</author>
<author>
<name sortKey="Tan, E H" uniqKey="Tan E">E.H. Tan</name>
</author>
<author>
<name sortKey="Karim, S" uniqKey="Karim S">S. Karim</name>
</author>
<author>
<name sortKey="Lukashchuk, N" uniqKey="Lukashchuk N">N. Lukashchuk</name>
</author>
<author>
<name sortKey="Gillespie, D A" uniqKey="Gillespie D">D.A. Gillespie</name>
</author>
<author>
<name sortKey="Ludwig, R L" uniqKey="Ludwig R">R.L. Ludwig</name>
</author>
<author>
<name sortKey="Gosselin, P" uniqKey="Gosselin P">P. Gosselin</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Gobira, P H" uniqKey="Gobira P">P.H. Gobira</name>
</author>
<author>
<name sortKey="Ropke, J" uniqKey="Ropke J">J. Ropke</name>
</author>
<author>
<name sortKey="Aguiar, D C" uniqKey="Aguiar D">D.C. Aguiar</name>
</author>
<author>
<name sortKey="Crippa, J A" uniqKey="Crippa J">J.A. Crippa</name>
</author>
<author>
<name sortKey="Moreira, F A" uniqKey="Moreira F">F.A. Moreira</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Hedrick, E" uniqKey="Hedrick E">E. Hedrick</name>
</author>
<author>
<name sortKey="Li, X" uniqKey="Li X">X. Li</name>
</author>
<author>
<name sortKey="Safe, S" uniqKey="Safe S">S. Safe</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Safe, S" uniqKey="Safe S">S. Safe</name>
</author>
<author>
<name sortKey="Abdelrahim, M" uniqKey="Abdelrahim M">M. Abdelrahim</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Liou, G Y" uniqKey="Liou G">G.-Y. Liou</name>
</author>
<author>
<name sortKey="Storz, P" uniqKey="Storz P">P. Storz</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Darnell, J E" uniqKey="Darnell J">J.E. Darnell</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Clement, V" uniqKey="Clement V">V. Clement</name>
</author>
<author>
<name sortKey="Sanchez, P" uniqKey="Sanchez P">P. Sanchez</name>
</author>
<author>
<name sortKey="De Tribolet, N" uniqKey="De Tribolet N">N. De Tribolet</name>
</author>
<author>
<name sortKey="Radovanovic, I" uniqKey="Radovanovic I">I. Radovanovic</name>
</author>
<author>
<name sortKey="Ruiz, I" uniqKey="Ruiz I">I. Ruiz</name>
</author>
<author>
<name sortKey="Altaba, A" uniqKey="Altaba A">A. Altaba</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ignatova, T N" uniqKey="Ignatova T">T.N. Ignatova</name>
</author>
<author>
<name sortKey="Kukekov, V G" uniqKey="Kukekov V">V.G. Kukekov</name>
</author>
<author>
<name sortKey="Laywell, E D" uniqKey="Laywell E">E.D. Laywell</name>
</author>
<author>
<name sortKey="Suslov, O N" uniqKey="Suslov O">O.N. Suslov</name>
</author>
<author>
<name sortKey="Vrionis, F D" uniqKey="Vrionis F">F.D. Vrionis</name>
</author>
<author>
<name sortKey="Steindler, D A" uniqKey="Steindler D">D.A. Steindler</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Beaulieu, J M" uniqKey="Beaulieu J">J.-M. Beaulieu</name>
</author>
<author>
<name sortKey="Tirotta, E" uniqKey="Tirotta E">E. Tirotta</name>
</author>
<author>
<name sortKey="Sotnikova, T D" uniqKey="Sotnikova T">T.D. Sotnikova</name>
</author>
<author>
<name sortKey="Masri, B" uniqKey="Masri B">B. Masri</name>
</author>
<author>
<name sortKey="Salahpour, A" uniqKey="Salahpour A">A. Salahpour</name>
</author>
<author>
<name sortKey="Gainetdinov, R R" uniqKey="Gainetdinov R">R.R. Gainetdinov</name>
</author>
<author>
<name sortKey="Borrelli, E" uniqKey="Borrelli E">E. Borrelli</name>
</author>
<author>
<name sortKey="Caron, M G" uniqKey="Caron M">M.G. Caron</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Amaravadi, R" uniqKey="Amaravadi R">R. Amaravadi</name>
</author>
<author>
<name sortKey="Kimmelman, A C" uniqKey="Kimmelman A">A.C. Kimmelman</name>
</author>
<author>
<name sortKey="White, E" uniqKey="White E">E. White</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ktistakis, N T" uniqKey="Ktistakis N">N.T. Ktistakis</name>
</author>
<author>
<name sortKey="Tooze, S A" uniqKey="Tooze S">S.A. Tooze</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Wang, D" uniqKey="Wang D">D. Wang</name>
</author>
<author>
<name sortKey="Ji, X" uniqKey="Ji X">X. Ji</name>
</author>
<author>
<name sortKey="Liu, J" uniqKey="Liu J">J. Liu</name>
</author>
<author>
<name sortKey="Li, Z" uniqKey="Li Z">Z. Li</name>
</author>
<author>
<name sortKey="Zhang, X" uniqKey="Zhang X">X. Zhang</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Visa, A" uniqKey="Visa A">A. Visa</name>
</author>
<author>
<name sortKey="Sallan, M C" uniqKey="Sallan M">M.C. Sallán</name>
</author>
<author>
<name sortKey="Maiques, O" uniqKey="Maiques O">O. Maiques</name>
</author>
<author>
<name sortKey="Alza, L" uniqKey="Alza L">L. Alza</name>
</author>
<author>
<name sortKey="Talavera, E" uniqKey="Talavera E">E. Talavera</name>
</author>
<author>
<name sortKey="L Pez Ortega, R" uniqKey="L Pez Ortega R">R. López-Ortega</name>
</author>
<author>
<name sortKey="Santacana, M" uniqKey="Santacana M">M. Santacana</name>
</author>
<author>
<name sortKey="Herreros, J" uniqKey="Herreros J">J. Herreros</name>
</author>
<author>
<name sortKey="Canti, C" uniqKey="Canti C">C. Cantí</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Das, A" uniqKey="Das A">A. Das</name>
</author>
<author>
<name sortKey="Pushparaj, C" uniqKey="Pushparaj C">C. Pushparaj</name>
</author>
<author>
<name sortKey="Herreros, J" uniqKey="Herreros J">J. Herreros</name>
</author>
<author>
<name sortKey="Nager, M" uniqKey="Nager M">M. Nager</name>
</author>
<author>
<name sortKey="Vilella, R" uniqKey="Vilella R">R. Vilella</name>
</author>
<author>
<name sortKey="Portero, M" uniqKey="Portero M">M. Portero</name>
</author>
<author>
<name sortKey="Pamplona, R" uniqKey="Pamplona R">R. Pamplona</name>
</author>
<author>
<name sortKey="Matias Guiu, X" uniqKey="Matias Guiu X">X. Matias-Guiu</name>
</author>
<author>
<name sortKey="Marti, R M" uniqKey="Marti R">R.M. Martí</name>
</author>
<author>
<name sortKey="Canti, C" uniqKey="Canti C">C. Cantí</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Rashid, H O" uniqKey="Rashid H">H.-O. Rashid</name>
</author>
<author>
<name sortKey="Yadav, R K" uniqKey="Yadav R">R.K. Yadav</name>
</author>
<author>
<name sortKey="Kim, H R" uniqKey="Kim H">H.-R. Kim</name>
</author>
<author>
<name sortKey="Chae, H J" uniqKey="Chae H">H.-J. Chae</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Cubillos Ruiz, J R" uniqKey="Cubillos Ruiz J">J.R. Cubillos-Ruiz</name>
</author>
<author>
<name sortKey="Bettigole, S E" uniqKey="Bettigole S">S.E. Bettigole</name>
</author>
<author>
<name sortKey="Glimcher, L H" uniqKey="Glimcher L">L.H. Glimcher</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Hetz, C" uniqKey="Hetz C">C. Hetz</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Urra, H" uniqKey="Urra H">H. Urra</name>
</author>
<author>
<name sortKey="Dufey, E" uniqKey="Dufey E">E. Dufey</name>
</author>
<author>
<name sortKey="Avril, T" uniqKey="Avril T">T. Avril</name>
</author>
<author>
<name sortKey="Chevet, E" uniqKey="Chevet E">E. Chevet</name>
</author>
<author>
<name sortKey="Hetz, C" uniqKey="Hetz C">C. Hetz</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ranjan, A" uniqKey="Ranjan A">A. Ranjan</name>
</author>
<author>
<name sortKey="German, N" uniqKey="German N">N. German</name>
</author>
<author>
<name sortKey="Mikelis, C" uniqKey="Mikelis C">C. Mikelis</name>
</author>
<author>
<name sortKey="Srivenugopal, K" uniqKey="Srivenugopal K">K. Srivenugopal</name>
</author>
<author>
<name sortKey="Srivastava, S K" uniqKey="Srivastava S">S.K. Srivastava</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Wu, S Y" uniqKey="Wu S">S.-Y. Wu</name>
</author>
<author>
<name sortKey="Wen, Y C" uniqKey="Wen Y">Y.-C. Wen</name>
</author>
<author>
<name sortKey="Ku, C C" uniqKey="Ku C">C.-C. Ku</name>
</author>
<author>
<name sortKey="Yang, Y C" uniqKey="Yang Y">Y.-C. Yang</name>
</author>
<author>
<name sortKey="Chow, J M" uniqKey="Chow J">J.-M. Chow</name>
</author>
<author>
<name sortKey="Yang, S F" uniqKey="Yang S">S.-F. Yang</name>
</author>
<author>
<name sortKey="Lee, W J" uniqKey="Lee W">W.-J. Lee</name>
</author>
<author>
<name sortKey="Chien, M H" uniqKey="Chien M">M.-H. Chien</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Freeman, M R" uniqKey="Freeman M">M.R. Freeman</name>
</author>
<author>
<name sortKey="Solomon, K R" uniqKey="Solomon K">K.R. Solomon</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Llaverias, G" uniqKey="Llaverias G">G. Llaverias</name>
</author>
<author>
<name sortKey="Danilo, C" uniqKey="Danilo C">C. Danilo</name>
</author>
<author>
<name sortKey="Mercier, I" uniqKey="Mercier I">I. Mercier</name>
</author>
<author>
<name sortKey="Daumer, K" uniqKey="Daumer K">K. Daumer</name>
</author>
<author>
<name sortKey="Capozza, F" uniqKey="Capozza F">F. Capozza</name>
</author>
<author>
<name sortKey="Williams, T M" uniqKey="Williams T">T.M. Williams</name>
</author>
<author>
<name sortKey="Sotgia, F" uniqKey="Sotgia F">F. Sotgia</name>
</author>
<author>
<name sortKey="Lisanti, M P" uniqKey="Lisanti M">M.P. Lisanti</name>
</author>
<author>
<name sortKey="Frank, P G" uniqKey="Frank P">P.G. Frank</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Wiklund, E D" uniqKey="Wiklund E">E.D. Wiklund</name>
</author>
<author>
<name sortKey="Catts, V S" uniqKey="Catts V">V.S. Catts</name>
</author>
<author>
<name sortKey="Catts, S V" uniqKey="Catts S">S.V. Catts</name>
</author>
<author>
<name sortKey="Ng, T F" uniqKey="Ng T">T.F. Ng</name>
</author>
<author>
<name sortKey="Whitaker, N J" uniqKey="Whitaker N">N.J. Whitaker</name>
</author>
<author>
<name sortKey="Brown, A J" uniqKey="Brown A">A.J. Brown</name>
</author>
<author>
<name sortKey="Lutze Mann, L H" uniqKey="Lutze Mann L">L.H. Lutze-Mann</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Goldstein, J L" uniqKey="Goldstein J">J.L. Goldstein</name>
</author>
<author>
<name sortKey="Debose Boyd, R A" uniqKey="Debose Boyd R">R.A. DeBose-Boyd</name>
</author>
<author>
<name sortKey="Brown, M S" uniqKey="Brown M">M.S. Brown</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Horton, J D" uniqKey="Horton J">J.D. Horton</name>
</author>
<author>
<name sortKey="Goldstein, J L" uniqKey="Goldstein J">J.L. Goldstein</name>
</author>
<author>
<name sortKey="Brown, M S" uniqKey="Brown M">M.S. Brown</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Janssens, V" uniqKey="Janssens V">V. Janssens</name>
</author>
<author>
<name sortKey="Goris, J" uniqKey="Goris J">J. Goris</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Banreti, A" uniqKey="Banreti A">Á. Bánréti</name>
</author>
<author>
<name sortKey="Lukacsovich, T" uniqKey="Lukacsovich T">T. Lukácsovich</name>
</author>
<author>
<name sortKey="Csik S, G" uniqKey="Csik S G">G. Csikós</name>
</author>
<author>
<name sortKey="Erdelyi, M" uniqKey="Erdelyi M">M. Erdélyi</name>
</author>
<author>
<name sortKey="Sass, M" uniqKey="Sass M">M. Sass</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Zhang, Y" uniqKey="Zhang Y">Y. Zhang</name>
</author>
<author>
<name sortKey="Jiang, X" uniqKey="Jiang X">X. Jiang</name>
</author>
<author>
<name sortKey="Qin, C" uniqKey="Qin C">C. Qin</name>
</author>
<author>
<name sortKey="Cuevas, S" uniqKey="Cuevas S">S. Cuevas</name>
</author>
<author>
<name sortKey="Jose, P A" uniqKey="Jose P">P.A. Jose</name>
</author>
<author>
<name sortKey="Armando, I" uniqKey="Armando I">I. Armando</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Clerkin, J" uniqKey="Clerkin J">J. Clerkin</name>
</author>
<author>
<name sortKey="Naughton, R" uniqKey="Naughton R">R. Naughton</name>
</author>
<author>
<name sortKey="Quiney, C" uniqKey="Quiney C">C. Quiney</name>
</author>
<author>
<name sortKey="Cotter, T" uniqKey="Cotter T">T. Cotter</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Wainszelbaum, M J" uniqKey="Wainszelbaum M">M.J. Wainszelbaum</name>
</author>
<author>
<name sortKey="Liu, J" uniqKey="Liu J">J. Liu</name>
</author>
<author>
<name sortKey="Kong, C" uniqKey="Kong C">C. Kong</name>
</author>
<author>
<name sortKey="Srikanth, P" uniqKey="Srikanth P">P. Srikanth</name>
</author>
<author>
<name sortKey="Samovski, D" uniqKey="Samovski D">D. Samovski</name>
</author>
<author>
<name sortKey="Su, X" uniqKey="Su X">X. Su</name>
</author>
<author>
<name sortKey="Stahl, P D" uniqKey="Stahl P">P.D. Stahl</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Figueroa, C" uniqKey="Figueroa C">C. Figueroa</name>
</author>
<author>
<name sortKey="Galvez Cancino, F" uniqKey="Galvez Cancino F">F. Gálvez-Cancino</name>
</author>
<author>
<name sortKey="Oyarce, C" uniqKey="Oyarce C">C. Oyarce</name>
</author>
<author>
<name sortKey="Contreras, F" uniqKey="Contreras F">F. Contreras</name>
</author>
<author>
<name sortKey="Prado, C" uniqKey="Prado C">C. Prado</name>
</author>
<author>
<name sortKey="Valeria, C" uniqKey="Valeria C">C. Valeria</name>
</author>
<author>
<name sortKey="Cruz, S" uniqKey="Cruz S">S. Cruz</name>
</author>
<author>
<name sortKey="Lladser, A" uniqKey="Lladser A">A. Lladser</name>
</author>
<author>
<name sortKey="Pacheco, R" uniqKey="Pacheco R">R. Pacheco</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Condamine, T" uniqKey="Condamine T">T. Condamine</name>
</author>
<author>
<name sortKey="Ramachandran, I" uniqKey="Ramachandran I">I. Ramachandran</name>
</author>
<author>
<name sortKey="Youn, J I" uniqKey="Youn J">J.-I. Youn</name>
</author>
<author>
<name sortKey="Gabrilovich, D I" uniqKey="Gabrilovich D">D.I. Gabrilovich</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kohanbash, G" uniqKey="Kohanbash G">G. Kohanbash</name>
</author>
<author>
<name sortKey="Okada, H" uniqKey="Okada H">H. Okada</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Yang, L" uniqKey="Yang L">L. Yang</name>
</author>
<author>
<name sortKey="Edwards, C M" uniqKey="Edwards C">C.M. Edwards</name>
</author>
<author>
<name sortKey="Mundy, G R" uniqKey="Mundy G">G.R. Mundy</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Du, J" uniqKey="Du J">J. Du</name>
</author>
<author>
<name sortKey="Shang, J" uniqKey="Shang J">J. Shang</name>
</author>
<author>
<name sortKey="Chen, F" uniqKey="Chen F">F. Chen</name>
</author>
<author>
<name sortKey="Zhang, Y" uniqKey="Zhang Y">Y. Zhang</name>
</author>
<author>
<name sortKey="Yin, N" uniqKey="Yin N">N. Yin</name>
</author>
<author>
<name sortKey="Xie, T" uniqKey="Xie T">T. Xie</name>
</author>
<author>
<name sortKey="Zhang, H" uniqKey="Zhang H">H. Zhang</name>
</author>
<author>
<name sortKey="Yu, J" uniqKey="Yu J">J. Yu</name>
</author>
<author>
<name sortKey="Liu, F" uniqKey="Liu F">F. Liu</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Mahaney, B L" uniqKey="Mahaney B">B.L. Mahaney</name>
</author>
<author>
<name sortKey="Meek, K" uniqKey="Meek K">K. Meek</name>
</author>
<author>
<name sortKey="Lees Miller, S P" uniqKey="Lees Miller S">S.P. Lees-Miller</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Li, Y H" uniqKey="Li Y">Y.-H. Li</name>
</author>
<author>
<name sortKey="Wang, X" uniqKey="Wang X">X. Wang</name>
</author>
<author>
<name sortKey="Pan, Y" uniqKey="Pan Y">Y. Pan</name>
</author>
<author>
<name sortKey="Lee, D H" uniqKey="Lee D">D.-H. Lee</name>
</author>
<author>
<name sortKey="Chowdhury, D" uniqKey="Chowdhury D">D. Chowdhury</name>
</author>
<author>
<name sortKey="Kimmelman, A C" uniqKey="Kimmelman A">A.C. Kimmelman</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Hait, W" uniqKey="Hait W">W. Hait</name>
</author>
<author>
<name sortKey="Gesmonde, J" uniqKey="Gesmonde J">J. Gesmonde</name>
</author>
<author>
<name sortKey="Lazo, J" uniqKey="Lazo J">J. Lazo</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Hudis, C A" uniqKey="Hudis C">C.A. Hudis</name>
</author>
<author>
<name sortKey="Gianni, L" uniqKey="Gianni L">L. Gianni</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="O Oole, S A" uniqKey="O Oole S">S.A. O’Toole</name>
</author>
<author>
<name sortKey="Beith, J M" uniqKey="Beith J">J.M. Beith</name>
</author>
<author>
<name sortKey="Millar, E K" uniqKey="Millar E">E.K. Millar</name>
</author>
<author>
<name sortKey="West, R" uniqKey="West R">R. West</name>
</author>
<author>
<name sortKey="Mclean, A" uniqKey="Mclean A">A. McLean</name>
</author>
<author>
<name sortKey="Cazet, A" uniqKey="Cazet A">A. Cazet</name>
</author>
<author>
<name sortKey="Swarbrick, A" uniqKey="Swarbrick A">A. Swarbrick</name>
</author>
<author>
<name sortKey="Oakes, S R" uniqKey="Oakes S">S.R. Oakes</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Magnon, C" uniqKey="Magnon C">C. Magnon</name>
</author>
<author>
<name sortKey="Hall, S J" uniqKey="Hall S">S.J. Hall</name>
</author>
<author>
<name sortKey="Lin, J" uniqKey="Lin J">J. Lin</name>
</author>
<author>
<name sortKey="Xue, X" uniqKey="Xue X">X. Xue</name>
</author>
<author>
<name sortKey="Gerber, L" uniqKey="Gerber L">L. Gerber</name>
</author>
<author>
<name sortKey="Freedland, S J" uniqKey="Freedland S">S.J. Freedland</name>
</author>
<author>
<name sortKey="Frenette, P S" uniqKey="Frenette P">P.S. Frenette</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Sloan, E K" uniqKey="Sloan E">E.K. Sloan</name>
</author>
<author>
<name sortKey="Priceman, S J" uniqKey="Priceman S">S.J. Priceman</name>
</author>
<author>
<name sortKey="Cox, B F" uniqKey="Cox B">B.F. Cox</name>
</author>
<author>
<name sortKey="Yu, S" uniqKey="Yu S">S. Yu</name>
</author>
<author>
<name sortKey="Pimentel, M A" uniqKey="Pimentel M">M.A. Pimentel</name>
</author>
<author>
<name sortKey="Tangkanangnukul, V" uniqKey="Tangkanangnukul V">V. Tangkanangnukul</name>
</author>
<author>
<name sortKey="Arevalo, J M" uniqKey="Arevalo J">J.M. Arevalo</name>
</author>
<author>
<name sortKey="Morizono, K" uniqKey="Morizono K">K. Morizono</name>
</author>
<author>
<name sortKey="Karanikolas, B D" uniqKey="Karanikolas B">B.D. Karanikolas</name>
</author>
<author>
<name sortKey="Wu, L" uniqKey="Wu L">L. Wu</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Reiche, E M V" uniqKey="Reiche E">E.M.V. Reiche</name>
</author>
<author>
<name sortKey="Nunes, S O V" uniqKey="Nunes S">S.O.V. Nunes</name>
</author>
<author>
<name sortKey="Morimoto, H K" uniqKey="Morimoto H">H.K. Morimoto</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Wang, X" uniqKey="Wang X">X. Wang</name>
</author>
<author>
<name sortKey="Wang, Z B" uniqKey="Wang Z">Z.-B. Wang</name>
</author>
<author>
<name sortKey="Luo, C" uniqKey="Luo C">C. Luo</name>
</author>
<author>
<name sortKey="Mao, X Y" uniqKey="Mao X">X.-Y. Mao</name>
</author>
<author>
<name sortKey="Li, X" uniqKey="Li X">X. Li</name>
</author>
<author>
<name sortKey="Yin, J Y" uniqKey="Yin J">J.-Y. Yin</name>
</author>
<author>
<name sortKey="Zhang, W" uniqKey="Zhang W">W. Zhang</name>
</author>
<author>
<name sortKey="Zhou, H H" uniqKey="Zhou H">H.-H. Zhou</name>
</author>
<author>
<name sortKey="Liu, Z Q" uniqKey="Liu Z">Z.-Q. Liu</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Li, Y H" uniqKey="Li Y">Y.H. Li</name>
</author>
<author>
<name sortKey="Yu, C Y" uniqKey="Yu C">C.Y. Yu</name>
</author>
<author>
<name sortKey="Li, X X" uniqKey="Li X">X.X. Li</name>
</author>
<author>
<name sortKey="Zhang, P" uniqKey="Zhang P">P. Zhang</name>
</author>
<author>
<name sortKey="Tang, J" uniqKey="Tang J">J. Tang</name>
</author>
<author>
<name sortKey="Yang, Q" uniqKey="Yang Q">Q. Yang</name>
</author>
<author>
<name sortKey="Fu, T" uniqKey="Fu T">T. Fu</name>
</author>
<author>
<name sortKey="Zhang, X" uniqKey="Zhang X">X. Zhang</name>
</author>
<author>
<name sortKey="Cui, X" uniqKey="Cui X">X. Cui</name>
</author>
<author>
<name sortKey="Tu, G" uniqKey="Tu G">G. Tu</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Bhowmik, A" uniqKey="Bhowmik A">A. Bhowmik</name>
</author>
<author>
<name sortKey="Khan, R" uniqKey="Khan R">R. Khan</name>
</author>
<author>
<name sortKey="Ghosh, M K" uniqKey="Ghosh M">M.K. Ghosh</name>
</author>
</analytic>
</biblStruct>
</listBibl>
</div1>
</back>
</TEI>
<pmc article-type="review-article">
<pmc-dir>properties open_access</pmc-dir>
<front>
<journal-meta>
<journal-id journal-id-type="nlm-ta">Molecules</journal-id>
<journal-id journal-id-type="iso-abbrev">Molecules</journal-id>
<journal-id journal-id-type="publisher-id">molecules</journal-id>
<journal-title-group>
<journal-title>Molecules</journal-title>
</journal-title-group>
<issn pub-type="epub">1420-3049</issn>
<publisher>
<publisher-name>MDPI</publisher-name>
</publisher>
</journal-meta>
<article-meta>
<article-id pub-id-type="pmid">31614431</article-id>
<article-id pub-id-type="pmc">6832311</article-id>
<article-id pub-id-type="doi">10.3390/molecules24203659</article-id>
<article-id pub-id-type="publisher-id">molecules-24-03659</article-id>
<article-categories>
<subj-group subj-group-type="heading">
<subject>Review</subject>
</subj-group>
</article-categories>
<title-group>
<article-title>Penfluridol as a Candidate of Drug Repurposing for Anticancer Agent</article-title>
</title-group>
<contrib-group>
<contrib contrib-type="author">
<name>
<surname>Tuan</surname>
<given-names>Nguyen Minh</given-names>
</name>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Lee</surname>
<given-names>Chang Hoon</given-names>
</name>
<xref rid="c1-molecules-24-03659" ref-type="corresp">*</xref>
</contrib>
</contrib-group>
<contrib-group>
<contrib contrib-type="editor">
<name>
<surname>Miyata</surname>
<given-names>Yasuyoshi</given-names>
</name>
<role>Academic Editor</role>
</contrib>
</contrib-group>
<aff id="af1-molecules-24-03659">College of Pharmacy, Dongguk University, Seoul 04620, Korea;
<email>tuank67a5@gmail.com</email>
</aff>
<author-notes>
<corresp id="c1-molecules-24-03659">
<label>*</label>
Correspondence:
<email>uatheone@dongguk.edu</email>
; Tel.: +82-10-9755-1746</corresp>
</author-notes>
<pub-date pub-type="epub">
<day>11</day>
<month>10</month>
<year>2019</year>
</pub-date>
<pub-date pub-type="collection">
<month>10</month>
<year>2019</year>
</pub-date>
<volume>24</volume>
<issue>20</issue>
<elocation-id>3659</elocation-id>
<history>
<date date-type="received">
<day>20</day>
<month>8</month>
<year>2019</year>
</date>
<date date-type="accepted">
<day>08</day>
<month>10</month>
<year>2019</year>
</date>
</history>
<permissions>
<copyright-statement>© 2019 by the authors.</copyright-statement>
<copyright-year>2019</copyright-year>
<license license-type="open-access">
<license-p>Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (
<ext-link ext-link-type="uri" xlink:href="http://creativecommons.org/licenses/by/4.0/">http://creativecommons.org/licenses/by/4.0/</ext-link>
).</license-p>
</license>
</permissions>
<abstract>
<p>Penfluridol has robust antipsychotic efficacy and is a first-generation diphenylbutylpiperidine. Its effects last for several days after a single oral dose and it can be administered once a week to provide better compliance and symptom control. Recently; strong antitumour effects for penfluridol were discovered in various cancer cell lines; such as breast; pancreatic; glioblastoma; and lung cancer cells via several distinct mechanisms. Therefore; penfluridol has drawn much attention as a potentially novel anti-tumour agent. In addition; the anti-cancer effects of penfluridol have been demonstrated in vivo: results showed slight changes in the volume and weight of organs at doses tested in animals. This paper outlines the potential for penfluridol to be developed as a next-generation anticancer drug.</p>
</abstract>
<kwd-group>
<kwd>penfluridol</kwd>
<kwd>antipsychotic</kwd>
<kwd>drug repositioning</kwd>
<kwd>hallmarks of cancer</kwd>
<kwd>autophagy</kwd>
<kwd>glioblastoma</kwd>
</kwd-group>
</article-meta>
</front>
<body>
<sec sec-type="intro" id="sec1-molecules-24-03659">
<title>1. Introduction</title>
<p>According to the World Health Organization, the burden from cancer in 2018 was around 18.1 million new cases and 9.6 million cancer fatalities in 2018 [
<xref rid="B1-molecules-24-03659" ref-type="bibr">1</xref>
]. Several cancers such as glioblastoma (GBM), metastasis of breast cancer, and pancreatic are a leading cause of mortality. GBM is an incurable brain tumour with a 12% survival rate. Based on statistics from several institutions, breast cancer is the most diagnosed cancer and ranked second among leading causes of death. Pancreatic cancer is ranked fourth among leading cause of cancer-related death. The onset of pancreatic cancer is mostly undetected, and patients with this condition are typically diagnosed at late stages, when the disease is almost resistant to chemotherapies. </p>
<p>According to the US National Cancer Institute, cancer patients may have to pay more than $10,000 a month for individual drugs. Several anticancer drugs have witnessed a dramatic increase in price year-on-year after launch. In an eight-year appraisal of 24 injectable cancer-drug price in the United States, it was concluded that anticancer drugs tend to increase, regardless of competition in the anticancer drug markets [
<xref rid="B2-molecules-24-03659" ref-type="bibr">2</xref>
]. In another study assessing price trends for 58 anticancer drugs approved in 1995 to 2003, price increases from launch, after adjusting for inflation and health benefits, were 10% per year (i.e., $8500 annually) [
<xref rid="B3-molecules-24-03659" ref-type="bibr">3</xref>
]. Moreover, various treatments, ranging from surgery to systematic treatments, are needed for a cancer patient, ranging from surgery to systematic treatment. Hence, financial burden is a perennial problem for cancer patients that is gradually exacerbated. Drug repositioning may be a major way of overcoming the ‘economic toxicity’ of anticancer therapeutics. In searching for novel anticancer activity by drug repurposing, penfluridol was identified as a potent agent against malignant tumours. </p>
</sec>
<sec id="sec2-molecules-24-03659">
<title>2. What is the Penfluridol?</title>
<p>Penfluridol, discovered in 1968 at Janssen Pharmaceutical, is an established first-generation antipsychotic drugs used in the treatment of chronic schizophrenia and other psychotic disorders. It has a long elimination half-life up to one week [
<xref rid="B4-molecules-24-03659" ref-type="bibr">4</xref>
]. Clinical research suggested that the appropriate dosage for penfluridol was 40 to 80 mg/week [
<xref rid="B5-molecules-24-03659" ref-type="bibr">5</xref>
].</p>
<p>The mechanism of penfluridol action against the positive symptoms of schizophrenia and other psychotic disorders is thought to be blockade of dopamine receptors, especially to postsynaptic D
<sub>2</sub>
receptor [
<xref rid="B6-molecules-24-03659" ref-type="bibr">6</xref>
,
<xref rid="B7-molecules-24-03659" ref-type="bibr">7</xref>
] (
<xref ref-type="fig" rid="molecules-24-03659-f001">Figure 1</xref>
). Penfluridol also acts as a T-type calcium- channel blocker (Kd value ≈ 70–100 nM) [
<xref rid="B8-molecules-24-03659" ref-type="bibr">8</xref>
]. </p>
<p>Recently, measured binding affinity values, Ki (nM), for central nervous system G protein coupled receptors (GPCRs) and transporters related to the efficacy and side effects of penfluridol were 356 (5-hydroxytryptamine [serotonin] receptor 1A; 5HT
<sub>1A</sub>
), 3560 (5HT
<sub>1D</sub>
), 361 (5HT
<sub>2A</sub>
), 184 (5HT
<sub>2B</sub>
), 881 (5HT
<sub>2C</sub>
), 10,000 (5HT
<sub>5A</sub>
), 10,000 (5HT
<sub>6</sub>
), 280 (5HT
<sub>7</sub>
), 147 (dopamine receptor D1), 159 (D
<sub>2</sub>
), 136 (D
<sub>3</sub>
), 10,000 (D
<sub>4</sub>
), 125 (D
<sub>5</sub>
), 10,000 (κ-opioid receptor), 867 (μ-opioid receptor), 1714 (δ-opioid receptor), 10,000 (histamine receptor 1 H
<sub>1</sub>
), 10,000 (H
<sub>2</sub>
), 588 (norepinephrine transporter), 10,000 (serotonin transporter), 1714 (dopamine transporter), 602 (α
<sub>1D</sub>
-adrenoreceptor), 401 (α
<sub>2B</sub>
), 455 (α
<sub>2C</sub>
), and 515 nM (β
<sub>3</sub>
) [
<xref rid="B9-molecules-24-03659" ref-type="bibr">9</xref>
]. These values were reported by Ashraf-Uz-Zamanem et al. [
<xref rid="B9-molecules-24-03659" ref-type="bibr">9</xref>
] and supported by the National Institute of Mental Health’s Psychoactive Drug Screening Program. In particular, the Ki values of 184 (5HT
<sub>2B</sub>
), 147 (D
<sub>1</sub>
), 159 (D
<sub>2</sub>
), 136 (D
<sub>3</sub>
), and 125 nM (D
<sub>5</sub>
) seem to be more significant.</p>
</sec>
<sec id="sec3-molecules-24-03659">
<title>3. Anti-Cancer Effects of Penfluridol</title>
<p>Penfluridol has anticancer effects against various cancer cell lines via several underlying mechanisms (
<xref rid="molecules-24-03659-t001" ref-type="table">Table 1</xref>
). For instance, in an orthotopic model of breast cancer, penfluridol suppressed breast cancer growth by 49% [
<xref rid="B10-molecules-24-03659" ref-type="bibr">10</xref>
]. More compellingly, penfluridol suppressed the growth of metastatic brain tumours, after breast cancer cells were introduced by intracardiac and intracranial injection, by 90% and 72%, respectively [
<xref rid="B10-molecules-24-03659" ref-type="bibr">10</xref>
]. Furthermore, penfluridol inhibited the growth of GBM cell lines, such as U87MG, after subcutaneous and intracranial in vivo GBM tumour models, by 65% and 72%, respectively [
<xref rid="B11-molecules-24-03659" ref-type="bibr">11</xref>
]. Penfluridol also inhibited the growth of Panc-1, BxPC-3, and AsPC-1 pancreatic cancer cells with concentrations needed for 50% inhibition (IC
<sub>50</sub>
) of 6–7 μM after 24 h treatment [
<xref rid="B12-molecules-24-03659" ref-type="bibr">12</xref>
].</p>
<p>We have described the anticancer activity of penfluridol in terms of the 10 hallmark aspects of cancer [
<xref rid="B14-molecules-24-03659" ref-type="bibr">14</xref>
] (
<xref ref-type="fig" rid="molecules-24-03659-f002">Figure 2</xref>
).</p>
<sec id="sec3dot1-molecules-24-03659">
<title>3.1. Penfluridol Suppresses Cell Proliferation</title>
<p>Cell proliferation plays a pivotal role in tumourigenesis (
<xref ref-type="fig" rid="molecules-24-03659-f002">Figure 2</xref>
). In research performed in 2015, penfluridol suppressed pancreatic cancer cell proliferation in various cell lines, such as Panc-1, BxPc 3, and SU8686, at 12.0, 9.3, and 16.2 µM, respectively. The postulated mechanism was via protein phosphatase 2A (PP2A) [
<xref rid="B15-molecules-24-03659" ref-type="bibr">15</xref>
], which is thought to be crucially involved in controlling cellular growth and has proved to be a potent anti-tumour target [
<xref rid="B16-molecules-24-03659" ref-type="bibr">16</xref>
]. Subsequent studies supported these findings of antiproliferative activity via the autophagy [
<xref rid="B12-molecules-24-03659" ref-type="bibr">12</xref>
]. In another study, cyclin D and Myc, which are associated with cell growth, were inhibited by penfluridol [
<xref rid="B15-molecules-24-03659" ref-type="bibr">15</xref>
] (
<xref ref-type="fig" rid="molecules-24-03659-f003">Figure 3</xref>
).</p>
</sec>
<sec id="sec3dot2-molecules-24-03659">
<title>3.2. Penfluridol Induces Cell Death</title>
<p>Apoptosis is implicated in the suppression of tumourigenesis but is often impaired in cancer [
<xref rid="B17-molecules-24-03659" ref-type="bibr">17</xref>
] (
<xref ref-type="fig" rid="molecules-24-03659-f002">Figure 2</xref>
). Recently, penfluridol promoted apoptosis and autophagy, notably the apoptosis of metastatic breast cancer, even relative to paclitaxel (an established first-line treatment for metastatic cancer) in paclitaxel-resistant patients. Interestingly, penfluridol also reversed the resistance of breast cancer cells to paclitaxel [
<xref rid="B18-molecules-24-03659" ref-type="bibr">18</xref>
]. Penfluridol had IC
<sub>50</sub>
values of approximately 2 to 3 µM and 4 to 5 µM against cell lines sensitive to or resistant to paclitaxel, respectively [
<xref rid="B18-molecules-24-03659" ref-type="bibr">18</xref>
]. </p>
<p>Moreover, penfluridol induced apoptosis in GBM cells and pancreatic tumours [
<xref rid="B11-molecules-24-03659" ref-type="bibr">11</xref>
,
<xref rid="B12-molecules-24-03659" ref-type="bibr">12</xref>
]. Cyclin B1 and p21, which act as biomarkers of G-2 cell-cycle arrest, indicated suppression of MiaPaCa2 cells treated with 10 µM after 24h [
<xref rid="B15-molecules-24-03659" ref-type="bibr">15</xref>
]. </p>
</sec>
<sec id="sec3dot3-molecules-24-03659">
<title>3.3. Penfluridol Impedes Metastasis and Invasion</title>
<p>Malignant tumours of one organ tend to invade surrounding tissues and spread to other organs; this process is called metastasis. Such invasion is one of the prominent characteristics of aggressive tumours and is also the biggest cause of cancer death [
<xref rid="B19-molecules-24-03659" ref-type="bibr">19</xref>
] (
<xref ref-type="fig" rid="molecules-24-03659-f002">Figure 2</xref>
).</p>
<p>In a recent study, penfluridol proved to be a potential solution to in vivo metastasis of breast cancer to the brain. In vitro, a wound-healing assay revealed that penfluridol 4 µM inhibited 4T1 cell migration by up to 61% and 76% at 18 and 36 h, respectively [
<xref rid="B11-molecules-24-03659" ref-type="bibr">11</xref>
]. This result was also supported by a Transwell-invasion assay, in which 60% of the cells migrated compared to the controls. In vivo, in a model of triple-negative breast cancer (TNBC), penfluridol had 90% and 72% anti-metastatic activity after intracardiac or intracranial injection, respectively, of 4T1 cancer cells [
<xref rid="B10-molecules-24-03659" ref-type="bibr">10</xref>
].</p>
</sec>
<sec id="sec3dot4-molecules-24-03659">
<title>3.4. Penfluridol Hinders Angiogenesis</title>
<p>Tumour secretes factors for angiogenesis for rapid growth, and new blood vessels form to support tumour growth [
<xref rid="B20-molecules-24-03659" ref-type="bibr">20</xref>
] (
<xref ref-type="fig" rid="molecules-24-03659-f002">Figure 2</xref>
). To the best of our knowledge, no previous research exists about a direct relationship between penfluridol and suppression of angiogenesis; pimozide—a penfluridol derivative—has shown suppression of angiogenesis, potentially via inhibition of the Akt-signalling pathway [
<xref rid="B21-molecules-24-03659" ref-type="bibr">21</xref>
]. CD31 level, a biomarker of angiogenesis [
<xref rid="B22-molecules-24-03659" ref-type="bibr">22</xref>
,
<xref rid="B23-molecules-24-03659" ref-type="bibr">23</xref>
]; was reduced by 78% in pimozide-treated mice compared with controls, and VEGFR1 and VEGFR2 levels (also biomarkers of angiogenesis) recorded in relative RNA expression of fibroblast cells were 4.33-fold and 1.66-fold lower than in controls, respectively [
<xref rid="B21-molecules-24-03659" ref-type="bibr">21</xref>
]. These findings suggest that penfluridol may possess anti-angiogenic effect such as pimozide.</p>
</sec>
<sec id="sec3dot5-molecules-24-03659">
<title>3.5. Penfluridol and Evading Immune Destruction</title>
<p>Regulatory T cells (Treg) have an important role in immunosuppression of tumour microenvironment [
<xref rid="B24-molecules-24-03659" ref-type="bibr">24</xref>
] (
<xref ref-type="fig" rid="molecules-24-03659-f002">Figure 2</xref>
). Myeloid-derived suppressor cells (MDSCs) saturating malignant GBM may stimulate Tregs [
<xref rid="B25-molecules-24-03659" ref-type="bibr">25</xref>
]. Tregs may also suppress M1 macrophages, which could kill malignant cells [
<xref rid="B26-molecules-24-03659" ref-type="bibr">26</xref>
].</p>
<p>In 2007, penfluridol was shown to suppress Tregs that highly expressed FoxP3 and CD4
<sup>+</sup>
. In addition, M1 Macrophage (which produce CD86 and interleukin-12) increased after treatment with penfluridol. Thus, it is likely that penfluridol has highly potential to hinder the ability of cancer cells to avoid immune destruction [
<xref rid="B27-molecules-24-03659" ref-type="bibr">27</xref>
].</p>
</sec>
<sec id="sec3dot6-molecules-24-03659">
<title>3.6. Penfluridol and Inflammation</title>
<p>Inflammation is a feature of cancer that contributes significantly to tumour progression (
<xref ref-type="fig" rid="molecules-24-03659-f002">Figure 2</xref>
). Recent advances in resolution of inflammation suggest new perspectives about the role of inflammation in cancer [
<xref rid="B28-molecules-24-03659" ref-type="bibr">28</xref>
].</p>
<p>One recent study evaluated lysis of U87MG tumours derived from nonobese diabetic/severe combined immunodeficiency mice injected with human peripheral blood mononuclear cells. Interferon-γ and C-C motif chemokine ligand 4, two biomarkers of inflammation with key roles in tumour progression, showed decrease expression in penfluridol-treated groups compared to control groups [
<xref rid="B27-molecules-24-03659" ref-type="bibr">27</xref>
].</p>
</sec>
<sec id="sec3dot7-molecules-24-03659">
<title>3.7. Penfluridol and Replicative Immortality</title>
<p>The population of most normal cells undergoes a finite number of doublings. Conversely, tumour cells require unlimited propagation for malignant growth. Cell proliferation without limitation in numbers is known as the replicative immortality [
<xref rid="B14-molecules-24-03659" ref-type="bibr">14</xref>
] (
<xref ref-type="fig" rid="molecules-24-03659-f002">Figure 2</xref>
). There is no report that penfluridol directly inhibits replicative immortality. However, there is a report that voltage-gated calcium and L-type voltage-gated calcium channels are related to telomerase activity for unlimited replicative potential, which indicates that penfluridol may be involved in replicative immortality [
<xref rid="B29-molecules-24-03659" ref-type="bibr">29</xref>
].</p>
</sec>
<sec id="sec3dot8-molecules-24-03659">
<title>3.8. Penfluridol Increases the Efficiency of Growth Suppressors</title>
<p>Cancer cells tend to avoid growth suppressors associated with the downregulation of cell proliferation (
<xref ref-type="fig" rid="molecules-24-03659-f002">Figure 2</xref>
). Several tumour suppressors such as phosphatase and tensin homologue (PTEN), retinoblastoma protein (RB), and Tp53 may exert bona fide suppressive effects on cancer growth in various ways [
<xref rid="B14-molecules-24-03659" ref-type="bibr">14</xref>
,
<xref rid="B30-molecules-24-03659" ref-type="bibr">30</xref>
]. It has been reported that penfluridol activates PP2A, a growth suppressor, to inhibit the growth of pancreatic cancer [
<xref rid="B15-molecules-24-03659" ref-type="bibr">15</xref>
].</p>
</sec>
<sec id="sec3dot9-molecules-24-03659">
<title>3.9. Penfluridol and Genome Instability and Mutation</title>
<p>Normal cells transform into cancerous ones after the accumulation of gene mutations associated with cell growth suppressors and cell division [
<xref rid="B31-molecules-24-03659" ref-type="bibr">31</xref>
]; genome instability and mutations are characteristic of most cancers [
<xref rid="B14-molecules-24-03659" ref-type="bibr">14</xref>
] (
<xref ref-type="fig" rid="molecules-24-03659-f002">Figure 2</xref>
). There have been no reports about the use of penfluridol in relation to genome instability and mutation-related machinery. However, penfluridol has shown therapeutic efficacy in adult GBM patients with
<italic>IDH1</italic>
mutations [
<xref rid="B11-molecules-24-03659" ref-type="bibr">11</xref>
].</p>
</sec>
<sec id="sec3dot10-molecules-24-03659">
<title>3.10. Penfluridol and Deregulating Cellular Energetics</title>
<p>Reprogramming of energy metabolism is a characteristics of cancer [
<xref rid="B14-molecules-24-03659" ref-type="bibr">14</xref>
] (
<xref ref-type="fig" rid="molecules-24-03659-f002">Figure 2</xref>
). Cancer cells appear to decrease effectiveness of ATP production, but it increases glucose uptake via compensatory upregulation of glucose transporters [
<xref rid="B14-molecules-24-03659" ref-type="bibr">14</xref>
] (
<xref ref-type="fig" rid="molecules-24-03659-f002">Figure 2</xref>
). Penfluridol has not been associated with Warburg effects; however, it has shown anticancer activity via dysregulation of cholesterol homeostasis [
<xref rid="B13-molecules-24-03659" ref-type="bibr">13</xref>
]. ATP deprivation mediated by penfluridol-induced accumulation of autophagosomes results in nonapoptotic cell death through unfolded protein response in lung cancer cell lines [
<xref rid="B32-molecules-24-03659" ref-type="bibr">32</xref>
].</p>
</sec>
</sec>
<sec id="sec4-molecules-24-03659">
<title>4. Mechanism of Action of Penfluridol on Cancer</title>
<sec id="sec4dot1-molecules-24-03659">
<title>4.1. The Antipsychotic-Related Mechanism of Action of Penfluridol on Cancer</title>
<sec id="sec4dot1dot1-molecules-24-03659">
<title>4.1.1. The Relationship between Dopamine Receptor D2 and Cancer</title>
<p>From 2003 onwards, several screening studies were conducted to evaluate D
<sub>2</sub>
-receptor antagonists as potential agents for cancer treatment, given that D
<sub>2</sub>
-receptors are present in various cancer cell lines. D
<sub>2</sub>
-receptor antagonists showed biological effects against cancer in vitro and in vivo [
<xref rid="B33-molecules-24-03659" ref-type="bibr">33</xref>
]. Moreover, D
<sub>2</sub>
-receptor agonists increased phosphorylation at threonine 308 of Akt in neurons [
<xref rid="B34-molecules-24-03659" ref-type="bibr">34</xref>
], and Akt phosphorylation is known to plays a vital role in cell proliferation; this suggests that D
<sub>2</sub>
- receptors are associated with tumourigenesis. Unlike D
<sub>2</sub>
- agonist, D
<sub>2</sub>
-antagonists decreased cell viability and encouraged apoptosis in several cancer cell lines in vitro [
<xref rid="B10-molecules-24-03659" ref-type="bibr">10</xref>
,
<xref rid="B12-molecules-24-03659" ref-type="bibr">12</xref>
,
<xref rid="B34-molecules-24-03659" ref-type="bibr">34</xref>
,
<xref rid="B35-molecules-24-03659" ref-type="bibr">35</xref>
,
<xref rid="B36-molecules-24-03659" ref-type="bibr">36</xref>
,
<xref rid="B37-molecules-24-03659" ref-type="bibr">37</xref>
,
<xref rid="B38-molecules-24-03659" ref-type="bibr">38</xref>
].</p>
<p>The molecular mechanisms of D
<sub>2</sub>
-receptor antagonists against cancer cell growth have been recorded in attractive therapeutic targets such as signal transducer and activator of transcription, receptor tyrosine kinase, Wnt, phosphoinositide 3-kinase, and mitogen-activated protein kinase/extracellular signal-regulated kinase. Recently, D
<sub>2</sub>
-receptor antagonists mitigated cell proliferation and induce apoptosis in vitro in various cancer cell lines. In addition, D
<sub>2</sub>
-receptor antagonists had potent effects in some cancer xenograft animal models, suggesting that D
<sub>2</sub>
-receptor antagonist may be used as a chemotherapeutic target [
<xref rid="B33-molecules-24-03659" ref-type="bibr">33</xref>
]. However, there is no direct evidence that the anticancer activity of penfluridol is due to D
<sub>2</sub>
-receptor antagonism. It is difficult to find a report explaining various mechanisms of anticancer activity involving of D
<sub>2</sub>
-receptor antagonism. In addition, penfluridol derivatives showed distinct anticancer and antipsychotic activities, thus suggesting that D
<sub>2</sub>
-receptor antagonism may or may not contribute to the anticancer activity of penfluridol [
<xref rid="B9-molecules-24-03659" ref-type="bibr">9</xref>
]. </p>
</sec>
<sec id="sec4dot1dot2-molecules-24-03659">
<title>4.1.2. The Relationship between T-type Calcium Channels and Cancer</title>
<p>Calcium is an important second messenger with a pivotal role in cellular processes associated with cell proliferation, growth, and differentiation [
<xref rid="B39-molecules-24-03659" ref-type="bibr">39</xref>
]. Overexpression of T-type calcium channels was recorded in many cancer cell lines compared with normal cells [
<xref rid="B40-molecules-24-03659" ref-type="bibr">40</xref>
,
<xref rid="B41-molecules-24-03659" ref-type="bibr">41</xref>
]. In addition, T-type calcium channels prevail in various cells in the body [
<xref rid="B42-molecules-24-03659" ref-type="bibr">42</xref>
,
<xref rid="B43-molecules-24-03659" ref-type="bibr">43</xref>
], and these channels may be involved in controlling the entry of extracellular calcium into the cells, which is important for cell-cycle progression [
<xref rid="B39-molecules-24-03659" ref-type="bibr">39</xref>
,
<xref rid="B44-molecules-24-03659" ref-type="bibr">44</xref>
]. Thus, T-type calcium channels were implicated in calcium-dependent biological processes associated with cellular growth, proliferation, and survival and may therefore be an effective anti-cancer target.</p>
<p>There are no reports that penfluridol directly inhibits cancer via the calcium channel. However, calcium channel blockade inhibits prolactin gene expression [
<xref rid="B45-molecules-24-03659" ref-type="bibr">45</xref>
], inhibition of prolactin may be important in the treatment of advanced prostate cancer [
<xref rid="B46-molecules-24-03659" ref-type="bibr">46</xref>
]. Therefore, via calcium channel inhibition, penfluridol may have a role in the treatment of advanced prostate cancer.</p>
<p>The mechanism of apoptosis induction related to penfluridol was studied in GBM. Results indicated that mTORC2/Akt axis induced apoptosis through blockade of T-type calcium channel [
<xref rid="B47-molecules-24-03659" ref-type="bibr">47</xref>
].</p>
</sec>
</sec>
<sec id="sec4dot2-molecules-24-03659">
<title>4.2. The Novel Molecular Mechanism of Action of Penfluridol on Cancer </title>
<p>Many mechanisms of actions are reported on the effects of penfluridol on the inhibition of cancer hallmarks (
<xref ref-type="fig" rid="molecules-24-03659-f003">Figure 3</xref>
).</p>
<sec id="sec4dot2dot1-molecules-24-03659">
<title>4.2.1. Inhibition of Integrin Signalling Pathway</title>
<p>When breast cancer metastasizes—especially to the brain—it is typically a death sentence for patients. Most anticancer agents cannot cross the blood-brain barrier (BBB), which poses a difficult challenge for effective treatment. Recently, penfluridol demonstrated antiproliferative activity against TNBC cell lines and against breast cancer metastasis to brain. These effects have been attributed, in part, to the molecular mechanism of penfluridol-induced suppression of integrin α6 and integrin ß4 in breast cancer cell lines and GBM [
<xref rid="B10-molecules-24-03659" ref-type="bibr">10</xref>
,
<xref rid="B48-molecules-24-03659" ref-type="bibr">48</xref>
].</p>
<p>To date, no relationship has been reported between D
<sub>2</sub>
receptors, T-type calcium channels, and integrin pathways, although dopamine interactions with D
<sub>2</sub>
and D
<sub>3</sub>
receptor may induce integrin ß1 in normal human T cells [
<xref rid="B49-molecules-24-03659" ref-type="bibr">49</xref>
]. Importantly, integrin expression plays a critical role in the anchorage of epithelial cells; without such adhesion, cells could not proliferate in response to growth factors. Integrin dysregulation may drive the formation of breast cancer, although integrins are not thought be
<italic>bona fide</italic>
oncogenes. Compelling evidence about the bridge between integrins expression and metastasis was found recently: research showed that when αvß3 integrin was activated, it could cause adherence of breast cancer to platelets, which would make disseminated cancer cells stay in the circulation before extravasation [
<xref rid="B50-molecules-24-03659" ref-type="bibr">50</xref>
]. In addition, such integrins have a more direct impact on tumour cells by inducing intracellular signals that encourage tumour progression [
<xref rid="B51-molecules-24-03659" ref-type="bibr">51</xref>
].</p>
<p>Other recent research showed that the suppressive effect of penfluridol on breast cancer cell lines, via inhibition of the α6β4 integrin, plays a crucial role in breast tumour progression. Penfluridol inhibited activation and expression of integrin downstream signalling mediated by focal adhesion kinase, paxillin, Rac, and Rho-associated protein kinase in vitro. Administration of penfluridol 10 mg/kg per day by oral gavage showed a strong suppressive effect against metastasis and growth of 4T1-luc cells in brains and fat pads. Mice showed no significant behavioural side effects, such as clockwise or counter-clockwise revolution, total distance moved, and horizontal and vertical activity measured by Versamax (Accuscan Instruments, Columbus, OH). In addition, mice showed no signs of toxicity, such as changes in bodyweight, plasma aspartate and alanine transaminase levels, and weights of kidney, brains, liver, and spleen, when treated with penfluridol, 10 mg/kg by oral gavage for 55 days. However, no conclusions about the neurological side effects of penfluridol can be drawn from this study [
<xref rid="B10-molecules-24-03659" ref-type="bibr">10</xref>
,
<xref rid="B52-molecules-24-03659" ref-type="bibr">52</xref>
]. Anyway, these results may suggest marked potential for penfluridol in the treatment of TNBC, which is currently considered untreatable [
<xref rid="B10-molecules-24-03659" ref-type="bibr">10</xref>
].</p>
<p>In addition, integrin suppression was found in penfluridol-treated cells via induction of reactive oxygen species and downregulation of Sp transcription factors [
<xref rid="B53-molecules-24-03659" ref-type="bibr">53</xref>
]. Tumourigenesis was attributed to these biological molecules [
<xref rid="B54-molecules-24-03659" ref-type="bibr">54</xref>
,
<xref rid="B55-molecules-24-03659" ref-type="bibr">55</xref>
]. Notably, Sp transcription factors were recognized as a target for anticancer agents [
<xref rid="B56-molecules-24-03659" ref-type="bibr">56</xref>
].</p>
<p>In GBM, penfluridol suppressed cancer cell migration and invasion by reducing the expression of integrin α6 and uPAR and suppressing the expression of epithelial-to-mesenchymal transition (EMT) factors, vimentin and Zeb1 [
<xref rid="B48-molecules-24-03659" ref-type="bibr">48</xref>
].</p>
</sec>
<sec id="sec4dot2dot2-molecules-24-03659">
<title>4.2.2. Inhibition of Akt-Mediated Phosphorylation of Glioma-Associated Oncogene 1 (GLI1)</title>
<p>Glioma-associated oncogene 1 (GLI1) is a member of the sonic hedgehog pathway, which is overexpressed in GBM cancer cells [
<xref rid="B57-molecules-24-03659" ref-type="bibr">57</xref>
]. In addition, the resistance of GBM tumours to current remedies is related to the extent of GLI1 overexpression [
<xref rid="B58-molecules-24-03659" ref-type="bibr">58</xref>
]. Downregulation of Akt signalling was documented as T-type calcium channels, which were inhibited by a small-interfering (si)RNA-mediated knockdown. This resulted in the promotion of apoptosis in GBM cells and initially indicated a transparent connection between Akt signalling pathway and T-type calcium channels [
<xref rid="B45-molecules-24-03659" ref-type="bibr">45</xref>
]. In another study, D
<sub>2</sub>
- receptors were implicated in regulation of Akt signalling [
<xref rid="B59-molecules-24-03659" ref-type="bibr">59</xref>
]. These results suggested that penfluridol’s targets T-type calcium channel and D
<sub>2</sub>
receptor might be implicated in the inhibition of Akt. However, it is not clear whether penfluridol directly inhibits Akt.</p>
<p>Penfluridol downregulated Akt phosphorylation at serine 473, octamer-binding transcription factor 4 (OCT4), Nanog, and Sox2, as well as the GLI1. Besides, GLI1 expression decreased in GBM cells treated with a PI3K/Akt inhibitor (LY294002) or Akt knocked down by Akt siRNA. Thus, penfluridol suppresses the proliferation and growth of GBM cancer cells is based on inhibiting Akt-mediated phosphorylation of GLI1 [
<xref rid="B11-molecules-24-03659" ref-type="bibr">11</xref>
]. Furthermore, as Akt was inhibited, caspase 3 and poly (ADP-ribose) polymerase increased in SJ-GBM2, GBM28, and U87MG cells treated with penfluridol, which may indicate that penfluridol enhances apoptosis of GBM cells through Akt suppression. Moreover, the use of GLI1 inhibitors, or knocking down GLI1 by using siRNA or GLI1 CRISPR/Cas9, was studied to determine the role of GLI1 in regulating cancer stem cells through downregulation of OCT4 and Nanog by GLI1 silencing. A low expression level of OCT4 in GLI1 knockout mouse embryonic fibroblasts (MEF) was evident compared to the level of OCT4 in wild-type mice. In vivo, penfluridol showed 65% inhibition based on the volume of GBM tumour, compared controls; the weight of tumours in penfluridol-treated mice was 68% less than that in controls [
<xref rid="B11-molecules-24-03659" ref-type="bibr">11</xref>
]. No side effects were noted regarding the behaviour of mice treated with penfluridol 10 mg/kg/day by oral gavage for 54 days [
<xref rid="B11-molecules-24-03659" ref-type="bibr">11</xref>
].</p>
</sec>
<sec id="sec4dot2dot3-molecules-24-03659">
<title>4.2.3. Induction of Autophagy </title>
<p>Autophagy is induced by starvation to capture and degrade intracellular proteins and organelles in lysosomes, recycling intracellular components to sustain metabolism and survival [
<xref rid="B60-molecules-24-03659" ref-type="bibr">60</xref>
]. Core autophagy genes (more than 30 genes) are not mutated in cancer [
<xref rid="B61-molecules-24-03659" ref-type="bibr">61</xref>
]. It has been suggested from studies in murine cancer models that autophagy inhibits cancer onset. In contrast, other evidence suggests that autophagy promotes the growth of various advanced cancers, including lung, pancreatic, breast and prostate cancer and melanoma [
<xref rid="B60-molecules-24-03659" ref-type="bibr">60</xref>
]. Dopamine receptors, known as penfluridol targets, are differently involved in autophagy, depending on receptor subtypes. For example, D
<sub>2</sub>
and D
<sub>3</sub>
receptors are positive regulators and D
<sub>1</sub>
and D
<sub>5</sub>
receptors are negative regulators [
<xref rid="B62-molecules-24-03659" ref-type="bibr">62</xref>
]. T-type calcium channels, another known target of penfluridol, are also involved in autophagy. The Cav3.1 channel appears to be involved in temozolomide action against GBM through the induction of autophagy [
<xref rid="B63-molecules-24-03659" ref-type="bibr">63</xref>
]. Accordingly, T-type calcium channel blockers also inhibited autophagy and promoted apoptosis in malignant melanoma cells [
<xref rid="B64-molecules-24-03659" ref-type="bibr">64</xref>
]. </p>
<p>A relationship between autophagy and apoptosis was also observed in pancreatic cells, including Panc-1 cells, AsPC-1 cells, and BxPC-3 cells, treated with penfluridol [
<xref rid="B12-molecules-24-03659" ref-type="bibr">12</xref>
]. This study suggested that autophagy was induced by penfluridol via the upregulation of LC3, a marker of autophagy progression. Moreover, the relationship between autophagy and apoptosis was indicated by decreased penfluridol-induced apoptosis due to blockade of autophagy with inhibitors such as chloroquine, bafilomycinA1 or 3-methyladenine (
<xref ref-type="fig" rid="molecules-24-03659-f003">Figure 3</xref>
). The role of autophagy and LC3 was also confirmed again by LC3 silencing: a reduced penfluridol effect was noted when LC3B was knocked down by LC3B siRNA before treatment with penfluridol. In addition, formation of pnfluridol-induced autolysosomes was observed through a decreased number of lysosomes, which were fused with autophagosomes during autophagy [
<xref rid="B12-molecules-24-03659" ref-type="bibr">12</xref>
]. In earlier research, penfluridol-treated pancreatic cells also showed an increase in proteins related to cell-cycle arrest such as p21 (cyclin-dependent kinase inhibitor 1A) and cyclin B1 [
<xref rid="B15-molecules-24-03659" ref-type="bibr">15</xref>
], all of which suggests that penfluridol may stimulate apoptosis (
<xref ref-type="fig" rid="molecules-24-03659-f003">Figure 3</xref>
).</p>
<p>Recently, endoplasmic reticulum (ER) stress was associated with autophagy [
<xref rid="B65-molecules-24-03659" ref-type="bibr">65</xref>
] and tumour suppression [
<xref rid="B66-molecules-24-03659" ref-type="bibr">66</xref>
]. To deal with ER stress, cancer cells use adaptive mechanisms to recover ER proteostasis. This process is called unfolded protein response (UPR), which is regulated by three main stress transducers; inositol requiring enzyme-1α (IRE1α); protein kinase R-like ER kinase (PERK); and activating transcription factor 6 (ATF6) [
<xref rid="B67-molecules-24-03659" ref-type="bibr">67</xref>
,
<xref rid="B68-molecules-24-03659" ref-type="bibr">68</xref>
]. These proteins were upstream down-regulatory factors in several aspects of cancer, such as cell survival, angiogenesis, transformation and resistance to cell death [
<xref rid="B66-molecules-24-03659" ref-type="bibr">66</xref>
,
<xref rid="B67-molecules-24-03659" ref-type="bibr">67</xref>
].</p>
<p>Currently, there is no documented relationship between D
<sub>2</sub>
receptors, T-type calcium channels and ER stress in tumourigenesis. However, induction of ER stress was evident in pancreatic cancer cells treated with penfluridol. That is, penfluridol-treated BxPC-3, AsPC-1, and Panc-1 cells experienced increases in ER stress markers in vitro (binding immunoglobulin protein (BIP), CCAAT/enhancer-binding protein [C/EBP] homologous protein [CHOP] and IRE1α). These results were consistent with data from murine models, in which pancreatic tumours were implanted subcutaneously [
<xref rid="B69-molecules-24-03659" ref-type="bibr">69</xref>
]. UPR activation was also documented after penfluridol, which led to nonapoptotic cell death via energy depletion from autophagosome accumulation [
<xref rid="B32-molecules-24-03659" ref-type="bibr">32</xref>
].</p>
<p>In acute myeloid leukemia (AML), penfluridol triggers autophagy. Inhibiting this autophagy increases apoptosis of AML cells, so autophagy induction by penfluridol in AML, via an increase in reactive oxygen species, is cytoprotective [
<xref rid="B70-molecules-24-03659" ref-type="bibr">70</xref>
].</p>
</sec>
<sec id="sec4dot2dot4-molecules-24-03659">
<title>4.2.4. Inhibition of Cholesterol Metabolism</title>
<p>Cholesterol has an important role in cell growth because it is involved in several biological processes and is a key component of cellular membranes. Thus, the maintenance of cholesterol homeostasis is vital to all types of cell, including cancer cells. In previous studies, the role of cholesterol in tumour progression was determined in certain cancers, such as breast and prostate cancer [
<xref rid="B71-molecules-24-03659" ref-type="bibr">71</xref>
,
<xref rid="B72-molecules-24-03659" ref-type="bibr">72</xref>
]. Cholesterol metabolism has become a compelling target for anticancer treatment. </p>
<p>To date, there is no documented relationship between D
<sub>2</sub>
-receptor, T-type calcium channels, and cholesterol pathways in tumourigenesis. In 2010, experimental cytotoxicity of six antipsychotic drugs associated with the dysregulation of cholesterol homeostasis was documented. The results showed that antipsychotic drugs selectively inhibit the growth and proliferation of cancer cells compared with normal cells: pimozide had the greater cytotoxic activity [
<xref rid="B73-molecules-24-03659" ref-type="bibr">73</xref>
]. Furthermore, pimozide and olanzapine upregulated important molecules involved in cholesterol homeostasis and also induced some pivotal regulatory genes (namely,
<italic>HMGCR</italic>
,
<italic>LDLR</italic>
, and
<italic>INSIG1</italic>
) involved in cholesterol metabolism [
<xref rid="B73-molecules-24-03659" ref-type="bibr">73</xref>
]. All these genes are established target genes for the sterol regulatory element binding protein (SREBP) transcription factor [
<xref rid="B74-molecules-24-03659" ref-type="bibr">74</xref>
], which plays a vital role in regulating cholesterol synthesis in the livers [
<xref rid="B75-molecules-24-03659" ref-type="bibr">75</xref>
]. </p>
<p>It has been suggested that pimozide and its derivatives could be used to regulate cholesterol synthesis in the liver. Indeed, penfluridol had a specific downregulatory effect on total cholesterol level in tumours in the B16/F10, LL/2 and 4T1 tumour models, although no statistical difference of serum cholesterol was documented between the penfluridol and control groups. Moreover, penfluridol gradually increased the level of free cholesterol in cells [
<xref rid="B13-molecules-24-03659" ref-type="bibr">13</xref>
]. Overall, these results indicate that penfluridol may specifically dysregulate cholesterol metabolism in cancer cells.</p>
</sec>
<sec id="sec4dot2dot5-molecules-24-03659">
<title>4.2.5. Enhancement of Protein Phosphatase 2A (PP2A) Activity </title>
<p>PP2A, which comprises a highly conserved group of serine/threonine phosphatases, has an important role in cell transmission pathways. Indeed,
<italic>Drosophila</italic>
models showed the influential magnitude of PP2A in regulating cell morphology and cell cycles [
<xref rid="B76-molecules-24-03659" ref-type="bibr">76</xref>
]. Moreover, PP2A is involved in regulating autophagy [
<xref rid="B77-molecules-24-03659" ref-type="bibr">77</xref>
] and can therefore be considered an appropriate target for anticancer treatment. Currently, there is no documented relationship between D
<sub>2</sub>
receptor, T-type calcium channels, and PP2A in tumourigenesis. However, D
<sub>2</sub>
-receptor may be associated with PP2A expression in cancer [
<xref rid="B78-molecules-24-03659" ref-type="bibr">78</xref>
].</p>
<p>Induction of PP2A activity might explain the suppressive effect of penfluridol in pancreatic cancer [
<xref rid="B15-molecules-24-03659" ref-type="bibr">15</xref>
]. Moreover, the phosphorylation of two proteins (p70S6K and AKT, which play a key role in cancer) was reduced in penfluridol-treated MIAPaCa-2 cells [
<xref rid="B15-molecules-24-03659" ref-type="bibr">15</xref>
]; p70S6K and AKT were identified as substrates of PP2A [
<xref rid="B79-molecules-24-03659" ref-type="bibr">79</xref>
,
<xref rid="B80-molecules-24-03659" ref-type="bibr">80</xref>
]. Altogether, therefore, PP2A could be considered a potential mechanism for penfluridol action in the treatment of cancer.</p>
</sec>
<sec id="sec4dot2dot6-molecules-24-03659">
<title>4.2.6. Induction of Immunity</title>
<p>Interestingly, dopamine receptor signalling has been linked to anticancer immunity, which has recently entered the spotlight. Inhibition of D
<sub>3</sub>
receptor signalling enhances anti-tumour immunity by dendritic cells through increasing antigen cross-presentation for CD8
<sup>+</sup>
T-cells [
<xref rid="B81-molecules-24-03659" ref-type="bibr">81</xref>
]. </p>
<p>MDSCs play a crucial role in the regulation of metastasis and suppression of anti-tumour immunity [
<xref rid="B82-molecules-24-03659" ref-type="bibr">82</xref>
]. These cells infiltrate aggressive GBM [
<xref rid="B83-molecules-24-03659" ref-type="bibr">83</xref>
] and highly express CD11b and Gr1, which could terefore be used as markers for MDSCs [
<xref rid="B84-molecules-24-03659" ref-type="bibr">84</xref>
].</p>
<p>In penfluridol-treated group, spleen weights were increased compared with controls, and this may suggest a correlation between the prevention of malignant tumours and immunity [
<xref rid="B27-molecules-24-03659" ref-type="bibr">27</xref>
]. In addition, decreased CD11b and Gr1 levels in penfluridol-treated MDSCs partly clarified the suppressive effect of penfluridol on GBM cells via the immune system [
<xref rid="B27-molecules-24-03659" ref-type="bibr">27</xref>
]. Furthermore, to elucidate the mechanism by which penfluridol induces anticancer immunity, experiments to measure changes in overproduced proteins in Tregs and macrophages were conducted. FoxP3 and CD4 proteins (markers in Tregs) and CD86 and interleukin-12 (markers in M1 macrophages) decreased in penfluridol-treated groups compared with controls [
<xref rid="B27-molecules-24-03659" ref-type="bibr">27</xref>
]. </p>
</sec>
<sec id="sec4dot2dot7-molecules-24-03659">
<title>4.2.7. Miscelleneous Mechanisms Involved in Overcoming Resistance</title>
<p>Non-homologous end joining (NHEJ) is the major pathway responsible for repair of ionising radiation (IR)-induced DNA double-strand breaks (DSB) and, accordingly, controls the cellular response to IR [
<xref rid="B85-molecules-24-03659" ref-type="bibr">85</xref>
,
<xref rid="B86-molecules-24-03659" ref-type="bibr">86</xref>
]. NHEJ inhibitors are believed to substantially enhance tumour radiosensitivity and improve the therapeutic efficiency of radiotherapy [
<xref rid="B85-molecules-24-03659" ref-type="bibr">85</xref>
,
<xref rid="B87-molecules-24-03659" ref-type="bibr">87</xref>
]. Penfluridol, an antipsychotic agent, was found in clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9-based screening for NHEJ inhibitors, to increase the amount of broken DNA, as evident from elevated DNA content in comet tails when cells were exposed to 8 Gy of X-rays [
<xref rid="B85-molecules-24-03659" ref-type="bibr">85</xref>
]. Penfluridol also sensitised C6 rat GBM cells to growth inhibition by bleomycin [
<xref rid="B88-molecules-24-03659" ref-type="bibr">88</xref>
].</p>
<p>Paclitaxel is a first choice for patients with triple negative breast cancer (TNBC), but inherited or acquired resistance to paclitaxel results in poor response of these patients [
<xref rid="B18-molecules-24-03659" ref-type="bibr">18</xref>
,
<xref rid="B89-molecules-24-03659" ref-type="bibr">89</xref>
]. The human epidermal growth factor receptor-2 (HER2) and β-catenin pathway is involved in the resistance of TNBC cells to paclitaxel [
<xref rid="B90-molecules-24-03659" ref-type="bibr">90</xref>
]. Interestingly, penfluridol blocks the HER2/β-catenin-signalling pathway in paclitaxel resistant MCF-7 and 4T1 breast cancer cells [
<xref rid="B19-molecules-24-03659" ref-type="bibr">19</xref>
]. Penfluridol also significantly potentiated the tumour growth-inhibitory activity of paclitaxel in an orthotropic breast cancer mouse model [
<xref rid="B18-molecules-24-03659" ref-type="bibr">18</xref>
].</p>
</sec>
</sec>
</sec>
<sec id="sec5-molecules-24-03659">
<title>5. Needs for Penfluridol Derivatives</title>
<p>The dose used as an anticancer agent is 50 mg/day, which is significantly higher than the dose administered once weekly as an antipsychotic agent [
<xref rid="B9-molecules-24-03659" ref-type="bibr">9</xref>
]. Therefore, neurological side effects such as epilepsy, fatigue, dyskinesias, parkinsonism, akathisia, dystonia and depression, which are observed in antipsychotic drug doses, are more likely to occur when the higher doses associated with anticancer therapy are used. In addition, since penfluridol passes efficently through the BBB, neurological side effects are expected to be greater with the higher doses associated with anticancer therapy. Therefore, in the development of new penfluridol derivatives as anticancer drugs, some of the antipsychotic effects of the compounds were reduced and some of the anticancer effects enhanced (
<xref ref-type="fig" rid="molecules-24-03659-f004">Figure 4</xref>
). Ashraf-Uz-Zaman et al. [
<xref rid="B9-molecules-24-03659" ref-type="bibr">9</xref>
] first suggested the possibility of deriving penfluridol derivatives with such characteristics.</p>
<p>Regarding the various mechanisms of anticancer activity proposed for penfluridol, no direct target is clear. </p>
<p>The various anticancer activities of penfluridol cannot be explained by the blockade of dopamine receptors or T-type calcium channels alone. In particular, since novel penfluridol derivatives increase anti-cancer activity and lower neuro-related activity, anti-cancer activity may be due to the blockade of targets other than antipsychotic targets such as dopamine receptors. Research into this possibility is currently underway. In fact, penfluridol was identified as an NHEJ inhibitor with potential applicability as a radiosensitiser [
<xref rid="B85-molecules-24-03659" ref-type="bibr">85</xref>
]. We believe that penfluridol has other targets distinct from dopamine receptors and T-type calcium channels. If a direct target can be identified, then studies of such derivatives of penfluridol may gain further momentum. </p>
</sec>
<sec id="sec6-molecules-24-03659">
<title>6. Perspectives</title>
<p>Recently, as immune-checkpoint inhibitors have shown successful results by regulating the tumour immune environment, it is now recognised that neuronal elements (e.g., activation of sympathetic nerve) are important for cancer development and progression [
<xref rid="B91-molecules-24-03659" ref-type="bibr">91</xref>
,
<xref rid="B92-molecules-24-03659" ref-type="bibr">92</xref>
,
<xref rid="B93-molecules-24-03659" ref-type="bibr">93</xref>
].</p>
<p>In addition, many receptors in nerves are also found in various cancers [
<xref rid="B94-molecules-24-03659" ref-type="bibr">94</xref>
]. So, attempts to treat cancers using neuroactive drugs have become a matter of interest. </p>
<p>As an antipsychotic, penfluridol is an ‘old’ drug that was approved and used to treat symptoms of schizophrenia via the blockade of dopamine receptors and T-type calcium channels [
<xref rid="B5-molecules-24-03659" ref-type="bibr">5</xref>
,
<xref rid="B95-molecules-24-03659" ref-type="bibr">95</xref>
]. More recently, penfluridol has shown strong anticancer activity in several cancer cell lines. Thus, repurposing penfluridol as a new anticancer drug may be a particularly viable option for anticancer treatment because of major time and cost savings during drug development.</p>
<p>From the treatment perspective, penfluridol has long-lasting efficacy and one dose is effective for up to one week. This long half-life may be advantageous regarding enhanced patients’ compliance and consumption of reduced drug amounts each week. However, anticancer doses of penfluridol might exceed the doses required for antipsychotic use, so combination therapy with other agents plus lower doses of penfluridol might be considered, or new derivatives with stronger anticancer and lower antipsychotic activities may be required. Prerequisites for synthesis of derivatives with these properties are the identification of direct anticancer targets for penfluridol and, if possible, targets other than neuronal GPCRs. Fortunately, recent findings that penfluridol is an NHEJ inhibitor suggest a promise in identifying new targets for the drug [
<xref rid="B85-molecules-24-03659" ref-type="bibr">85</xref>
]. </p>
<p>To date, the BBB has posed a key challenge to effective anticancer therapy for brain tumours [
<xref rid="B96-molecules-24-03659" ref-type="bibr">96</xref>
]. Penfluridol is a drug taken once a week that passes efficiently through the BBB, which is likely an advantage in the treatment of brain cancer. Penflurdiol attain high concentration in the brain, whereas other anticancer agents may have difficulty crossing the BBB. Penfluridol has anticancer activity in GBM cells (brain cancer cells) [
<xref rid="B11-molecules-24-03659" ref-type="bibr">11</xref>
,
<xref rid="B27-molecules-24-03659" ref-type="bibr">27</xref>
]. Penfluridol also suppresses metastasis of TNBC to the brain and growth of TNBC cells in the brain in vivo [
<xref rid="B10-molecules-24-03659" ref-type="bibr">10</xref>
]. Therefore, the development of novel penfluridol derivatives with the BBB- penetration properties of penfluridol, and with the potential for reduced dosing because of increased anticancer activity, may be helpful for the treatment of brain cancer and cancer metastasis to the brain.</p>
<p>Of course, if penfluridol derivatives were to be used to treat other, non-brain cancers, increased anti-cancer activity with suppression of BBB-penetration properties would be required.</p>
<p>In summary, the presented evidence suggests that penfluridol may have major potential as a treatment for several tumours. This is particularly important as some types of cancer such as GBM, pancreatic and TNBC are widely regarded as being untreatable and have poor survival rates. Recently, in the search for potential agents to manage patients with ‘untreatable cancer’, penfluridol has emerged as a potent anticancer agent in in vitro and in vivo models and with strong suppressive effects against the characteristic features of cancer. If the current limitations of penfluridol as anticancer therapy (e.g., neurological side effects, dose and unknown targets) are overcome, then penfluridol may develop important clinical utility as an anticancer agent. </p>
</sec>
</body>
<back>
<fn-group>
<fn>
<p>
<bold>Sample Availability:</bold>
Samples of the compounds are not available from the authors.</p>
</fn>
</fn-group>
<notes>
<title>Author Contributions</title>
<p>Writing-original draft preparation, N.M.T.; Writing and supervision, C.H.L.</p>
</notes>
<notes>
<title>Funding</title>
<p>This study was supported by grants from the Basic Science Research Program, through the NRF (NRF-2017R1A2A1A05000878 and NRF-2018R1A5A2023127).</p>
</notes>
<notes notes-type="COI-statement">
<title>Conflicts of Interest</title>
<p>Nothing to declare.</p>
</notes>
<notes>
<title>Ethical Approval</title>
<p>Not applicable.</p>
</notes>
<notes>
<title>Informed Consent</title>
<p>Not applicable.</p>
</notes>
<notes>
<title>Open Access</title>
<p>Not applicable.</p>
</notes>
<ref-list>
<title>References</title>
<ref id="B1-molecules-24-03659">
<label>1.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Bray</surname>
<given-names>F.</given-names>
</name>
<name>
<surname>Ferlay</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Soerjomataram</surname>
<given-names>I.</given-names>
</name>
<name>
<surname>Siegel</surname>
<given-names>R.L.</given-names>
</name>
<name>
<surname>Torre</surname>
<given-names>L.A.</given-names>
</name>
<name>
<surname>Jemal</surname>
<given-names>A.</given-names>
</name>
</person-group>
<article-title>Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries</article-title>
<source>CA Cancer J. Clin.</source>
<year>2018</year>
<volume>68</volume>
<fpage>394</fpage>
<lpage>424</lpage>
<pub-id pub-id-type="doi">10.3322/caac.21492</pub-id>
<pub-id pub-id-type="pmid">30207593</pub-id>
</element-citation>
</ref>
<ref id="B2-molecules-24-03659">
<label>2.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Gordon</surname>
<given-names>N.</given-names>
</name>
<name>
<surname>Stemmer</surname>
<given-names>S.M.</given-names>
</name>
<name>
<surname>Greenberg</surname>
<given-names>D.</given-names>
</name>
<name>
<surname>Goldstein</surname>
<given-names>D.A.</given-names>
</name>
</person-group>
<article-title>Trajectories of injectable cancer drug costs after launch in the United States</article-title>
<source>J. Clin. Oncol.</source>
<year>2018</year>
<volume>36</volume>
<fpage>319</fpage>
<lpage>325</lpage>
<pub-id pub-id-type="doi">10.1200/JCO.2016.72.2124</pub-id>
<pub-id pub-id-type="pmid">29016226</pub-id>
</element-citation>
</ref>
<ref id="B3-molecules-24-03659">
<label>3.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Howard</surname>
<given-names>D.H.</given-names>
</name>
<name>
<surname>Bach</surname>
<given-names>P.B.</given-names>
</name>
<name>
<surname>Berndt</surname>
<given-names>E.R.</given-names>
</name>
<name>
<surname>Conti</surname>
<given-names>R.M.</given-names>
</name>
</person-group>
<article-title>Pricing in the market for anticancer drugs</article-title>
<source>J. Econ. Perspect.</source>
<year>2015</year>
<volume>29</volume>
<fpage>139</fpage>
<lpage>162</lpage>
<pub-id pub-id-type="doi">10.1257/jep.29.1.139</pub-id>
<pub-id pub-id-type="pmid">28441702</pub-id>
</element-citation>
</ref>
<ref id="B4-molecules-24-03659">
<label>4.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Janssen</surname>
<given-names>P.A.</given-names>
</name>
<name>
<surname>Niemegeers</surname>
<given-names>C.J.</given-names>
</name>
<name>
<surname>Schellekens</surname>
<given-names>K.H.</given-names>
</name>
<name>
<surname>Lenaerts</surname>
<given-names>F.M.</given-names>
</name>
<name>
<surname>Verbruggen</surname>
<given-names>F.J.</given-names>
</name>
<name>
<surname>Van Nueten</surname>
<given-names>J.M.</given-names>
</name>
<name>
<surname>Schaper</surname>
<given-names>W.K.</given-names>
</name>
</person-group>
<article-title>The pharmacology of penfluridol (R 16341) a new potent and orally long-acting neuroleptic drug</article-title>
<source>Eur. J. Pharmacol.</source>
<year>1970</year>
<volume>11</volume>
<fpage>139</fpage>
<lpage>154</lpage>
<pub-id pub-id-type="doi">10.1016/0014-2999(70)90043-9</pub-id>
<pub-id pub-id-type="pmid">5447800</pub-id>
</element-citation>
</ref>
<ref id="B5-molecules-24-03659">
<label>5.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Soares</surname>
<given-names>B.G.</given-names>
</name>
<name>
<surname>Lima</surname>
<given-names>M.S.</given-names>
</name>
</person-group>
<article-title>Penfluridol for schizophrenia</article-title>
<source>Cochrane Database Syst. Rev.</source>
<year>2006</year>
<volume>2</volume>
<fpage>CD002923</fpage>
<pub-id pub-id-type="doi">10.1002/14651858.CD002923.pub2</pub-id>
<pub-id pub-id-type="pmid">16625563</pub-id>
</element-citation>
</ref>
<ref id="B6-molecules-24-03659">
<label>6.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Shintomi</surname>
<given-names>K.</given-names>
</name>
<name>
<surname>Yamamura</surname>
<given-names>M.</given-names>
</name>
</person-group>
<article-title>Effects of penfluridol and other drugs on apomorphine-induced stereotyped behavior in monkeys</article-title>
<source>Eur. J. Pharmacol.</source>
<year>1975</year>
<volume>31</volume>
<fpage>273</fpage>
<lpage>280</lpage>
<pub-id pub-id-type="doi">10.1016/0014-2999(75)90049-7</pub-id>
<pub-id pub-id-type="pmid">1171014</pub-id>
</element-citation>
</ref>
<ref id="B7-molecules-24-03659">
<label>7.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Kline</surname>
<given-names>C.L.B.</given-names>
</name>
<name>
<surname>Ralff</surname>
<given-names>M.D.</given-names>
</name>
<name>
<surname>Lulla</surname>
<given-names>A.R.</given-names>
</name>
<name>
<surname>Wagner</surname>
<given-names>J.M.</given-names>
</name>
<name>
<surname>Abbosh</surname>
<given-names>P.H.</given-names>
</name>
<name>
<surname>Dicker</surname>
<given-names>D.T.</given-names>
</name>
<name>
<surname>Allen</surname>
<given-names>J.E.</given-names>
</name>
<name>
<surname>El-Deiry</surname>
<given-names>W.S.</given-names>
</name>
</person-group>
<article-title>Role of Dopamine receptors in the anticancer activity of ONC201</article-title>
<source>Neoplasia</source>
<year>2018</year>
<volume>20</volume>
<fpage>80</fpage>
<lpage>91</lpage>
<pub-id pub-id-type="doi">10.1016/j.neo.2017.10.002</pub-id>
<pub-id pub-id-type="pmid">29216597</pub-id>
</element-citation>
</ref>
<ref id="B8-molecules-24-03659">
<label>8.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Santi</surname>
<given-names>C.M.</given-names>
</name>
<name>
<surname>Cayabyab</surname>
<given-names>F.S.</given-names>
</name>
<name>
<surname>Sutton</surname>
<given-names>K.G.</given-names>
</name>
<name>
<surname>McRory</surname>
<given-names>J.E.</given-names>
</name>
<name>
<surname>Mezeyova</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Hamming</surname>
<given-names>K.S.</given-names>
</name>
<name>
<surname>Parker</surname>
<given-names>D.</given-names>
</name>
<name>
<surname>Stea</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Snutch</surname>
<given-names>T.P.</given-names>
</name>
</person-group>
<article-title>Differential inhibition of T-type calcium channels by neuroleptics</article-title>
<source>J. Neurosci.</source>
<year>2002</year>
<volume>22</volume>
<fpage>396</fpage>
<lpage>403</lpage>
<pub-id pub-id-type="doi">10.1523/JNEUROSCI.22-02-00396.2002</pub-id>
<pub-id pub-id-type="pmid">11784784</pub-id>
</element-citation>
</ref>
<ref id="B9-molecules-24-03659">
<label>9.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Ashraf-Uz-Zaman</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Sajib</surname>
<given-names>M.S.</given-names>
</name>
<name>
<surname>Cucullo</surname>
<given-names>L.</given-names>
</name>
<name>
<surname>Mikelis</surname>
<given-names>C.M.</given-names>
</name>
<name>
<surname>German</surname>
<given-names>N.A.</given-names>
</name>
</person-group>
<article-title>Analogs of penfluridol as chemotherapeutic agents with reduced central nervous system activity</article-title>
<source>Bioorg. Med. Chem. Lett.</source>
<year>2018</year>
<volume>28</volume>
<fpage>3652</fpage>
<lpage>3657</lpage>
<pub-id pub-id-type="doi">10.1016/j.bmcl.2018.10.036</pub-id>
<pub-id pub-id-type="pmid">30389290</pub-id>
</element-citation>
</ref>
<ref id="B10-molecules-24-03659">
<label>10.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Ranjan</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Gupta</surname>
<given-names>P.</given-names>
</name>
<name>
<surname>Srivastava</surname>
<given-names>S.K.</given-names>
</name>
</person-group>
<article-title>Penfluridol: An antipsychotic agent suppresses metastatic tumor growth in triple-negative breast cancer by inhibiting Integrin signaling axis</article-title>
<source>Cancer Res.</source>
<year>2016</year>
<volume>76</volume>
<fpage>877</fpage>
<lpage>890</lpage>
<pub-id pub-id-type="doi">10.1158/0008-5472.CAN-15-1233</pub-id>
<pub-id pub-id-type="pmid">26627008</pub-id>
</element-citation>
</ref>
<ref id="B11-molecules-24-03659">
<label>11.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Ranjan</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Srivastava</surname>
<given-names>S.K.</given-names>
</name>
</person-group>
<article-title>Penfluridol suppresses glioblastoma tumor growth by Akt-mediated inhibition of GLI1</article-title>
<source>Oncotarget</source>
<year>2017</year>
<volume>8</volume>
<fpage>32960</fpage>
<pub-id pub-id-type="doi">10.18632/oncotarget.16515</pub-id>
<pub-id pub-id-type="pmid">28380428</pub-id>
</element-citation>
</ref>
<ref id="B12-molecules-24-03659">
<label>12.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Ranjan</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Srivastava</surname>
<given-names>S.K.</given-names>
</name>
</person-group>
<article-title>Penfluridol suppresses pancreatic tumor growth by autophagy-mediated apoptosis</article-title>
<source>Sci. Rep.</source>
<year>2016</year>
<volume>6</volume>
<fpage>26165</fpage>
<pub-id pub-id-type="doi">10.1038/srep26165</pub-id>
<pub-id pub-id-type="pmid">27189859</pub-id>
</element-citation>
</ref>
<ref id="B13-molecules-24-03659">
<label>13.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Wu</surname>
<given-names>L.</given-names>
</name>
<name>
<surname>Liu</surname>
<given-names>Y.Y.</given-names>
</name>
<name>
<surname>Li</surname>
<given-names>Z.X.</given-names>
</name>
<name>
<surname>Zhao</surname>
<given-names>Q.</given-names>
</name>
<name>
<surname>Wang</surname>
<given-names>X.</given-names>
</name>
<name>
<surname>Yu</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Wang</surname>
<given-names>Y.Y.</given-names>
</name>
<name>
<surname>Wang</surname>
<given-names>Y.Q.</given-names>
</name>
<name>
<surname>Luo</surname>
<given-names>F.</given-names>
</name>
</person-group>
<article-title>Anti-tumor effects of Penfluridol through dysregulation of Cholesterol homeostasis</article-title>
<source>Asian Pac. J. Cancer Prev.</source>
<year>2014</year>
<volume>15</volume>
<fpage>489</fpage>
<lpage>494</lpage>
<pub-id pub-id-type="doi">10.7314/APJCP.2014.15.1.489</pub-id>
<pub-id pub-id-type="pmid">24528079</pub-id>
</element-citation>
</ref>
<ref id="B14-molecules-24-03659">
<label>14.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Hanahan</surname>
<given-names>D.</given-names>
</name>
<name>
<surname>Weinberg</surname>
<given-names>R.A.</given-names>
</name>
</person-group>
<article-title>Hallmarks of cancer: The next generation</article-title>
<source>Cell</source>
<year>2011</year>
<volume>144</volume>
<fpage>646</fpage>
<lpage>674</lpage>
<pub-id pub-id-type="doi">10.1016/j.cell.2011.02.013</pub-id>
<pub-id pub-id-type="pmid">21376230</pub-id>
</element-citation>
</ref>
<ref id="B15-molecules-24-03659">
<label>15.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Chien</surname>
<given-names>W.</given-names>
</name>
<name>
<surname>Sun</surname>
<given-names>Q.-Y.</given-names>
</name>
<name>
<surname>Lee</surname>
<given-names>K.L.</given-names>
</name>
<name>
<surname>Ding</surname>
<given-names>L.-W.</given-names>
</name>
<name>
<surname>Wuensche</surname>
<given-names>P.</given-names>
</name>
<name>
<surname>Torres-Fernandez</surname>
<given-names>L.A.</given-names>
</name>
<name>
<surname>Tan</surname>
<given-names>S.Z.</given-names>
</name>
<name>
<surname>Tokatly</surname>
<given-names>I.</given-names>
</name>
<name>
<surname>Zaiden</surname>
<given-names>N.</given-names>
</name>
<name>
<surname>Poellinger</surname>
<given-names>L.</given-names>
</name>
</person-group>
<article-title>Activation of protein phosphatase 2A tumor suppressor as potential treatment of pancreatic cancer</article-title>
<source>Mol. Oncol.</source>
<year>2015</year>
<volume>9</volume>
<fpage>889</fpage>
<lpage>905</lpage>
<pub-id pub-id-type="doi">10.1016/j.molonc.2015.01.002</pub-id>
<pub-id pub-id-type="pmid">25637283</pub-id>
</element-citation>
</ref>
<ref id="B16-molecules-24-03659">
<label>16.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Schonthal</surname>
<given-names>A.H.</given-names>
</name>
</person-group>
<article-title>Role of serine/threonine protein phosphatase 2A in cancer</article-title>
<source>Cancer Lett.</source>
<year>2001</year>
<volume>170</volume>
<fpage>1</fpage>
<lpage>13</lpage>
<pub-id pub-id-type="doi">10.1016/S0304-3835(01)00561-4</pub-id>
<pub-id pub-id-type="pmid">11448528</pub-id>
</element-citation>
</ref>
<ref id="B17-molecules-24-03659">
<label>17.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Labi</surname>
<given-names>V.</given-names>
</name>
<name>
<surname>Erlacher</surname>
<given-names>M.</given-names>
</name>
</person-group>
<article-title>How cell death shapes cancer</article-title>
<source>Cell Death Dis.</source>
<year>2015</year>
<volume>6</volume>
<fpage>e1675</fpage>
<pub-id pub-id-type="doi">10.1038/cddis.2015.20</pub-id>
<pub-id pub-id-type="pmid">25741600</pub-id>
</element-citation>
</ref>
<ref id="B18-molecules-24-03659">
<label>18.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Gupta</surname>
<given-names>N.</given-names>
</name>
<name>
<surname>Gupta</surname>
<given-names>P.</given-names>
</name>
<name>
<surname>Srivastava</surname>
<given-names>S.K.</given-names>
</name>
</person-group>
<article-title>Penfluridol overcomes paclitaxel resistance in metastatic breast cancer</article-title>
<source>Sci. Rep.</source>
<year>2019</year>
<volume>9</volume>
<fpage>5066</fpage>
<pub-id pub-id-type="doi">10.1038/s41598-019-41632-0</pub-id>
<pub-id pub-id-type="pmid">30911062</pub-id>
</element-citation>
</ref>
<ref id="B19-molecules-24-03659">
<label>19.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Wittekind</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>Neid</surname>
<given-names>M.</given-names>
</name>
</person-group>
<article-title>Cancer invasion and metastasis</article-title>
<source>Oncology</source>
<year>2005</year>
<volume>69</volume>
<fpage>14</fpage>
<lpage>16</lpage>
<pub-id pub-id-type="doi">10.1159/000086626</pub-id>
<pub-id pub-id-type="pmid">16210871</pub-id>
</element-citation>
</ref>
<ref id="B20-molecules-24-03659">
<label>20.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Viallard</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>Larrivee</surname>
<given-names>B.</given-names>
</name>
</person-group>
<article-title>Tumor angiogenesis and vascular normalization: alternative therapeutic targets</article-title>
<source>Angiogenesis</source>
<year>2017</year>
<volume>20</volume>
<fpage>409</fpage>
<lpage>426</lpage>
<pub-id pub-id-type="doi">10.1007/s10456-017-9562-9</pub-id>
<pub-id pub-id-type="pmid">28660302</pub-id>
</element-citation>
</ref>
<ref id="B21-molecules-24-03659">
<label>21.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Dakir</surname>
<given-names>E.H.</given-names>
</name>
<name>
<surname>Pickard</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Srivastava</surname>
<given-names>K.</given-names>
</name>
<name>
<surname>McCrudden</surname>
<given-names>C.M.</given-names>
</name>
<name>
<surname>Gross</surname>
<given-names>S.R.</given-names>
</name>
<name>
<surname>Lloyd</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Zhang</surname>
<given-names>S.D.</given-names>
</name>
<name>
<surname>Margariti</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Morgan</surname>
<given-names>R.</given-names>
</name>
<name>
<surname>Rudland</surname>
<given-names>P.S.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>The anti-psychotic drug pimozide is a novel chemotherapeutic for breast cancer</article-title>
<source>Oncotarget</source>
<year>2018</year>
<volume>9</volume>
<fpage>34889</fpage>
<lpage>34910</lpage>
<pub-id pub-id-type="doi">10.18632/oncotarget.26175</pub-id>
<pub-id pub-id-type="pmid">30405882</pub-id>
</element-citation>
</ref>
<ref id="B22-molecules-24-03659">
<label>22.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Schluter</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Weller</surname>
<given-names>P.</given-names>
</name>
<name>
<surname>Kanaan</surname>
<given-names>O.</given-names>
</name>
<name>
<surname>Nel</surname>
<given-names>I.</given-names>
</name>
<name>
<surname>Heusgen</surname>
<given-names>L.</given-names>
</name>
<name>
<surname>Hoing</surname>
<given-names>B.</given-names>
</name>
<name>
<surname>Hasskamp</surname>
<given-names>P.</given-names>
</name>
<name>
<surname>Zander</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Mandapathil</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Dominas</surname>
<given-names>N.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>CD31 and VEGF are prognostic biomarkers in early-stage, but not in late-stage, laryngeal squamous cell carcinoma</article-title>
<source>BMC Cancer</source>
<year>2018</year>
<volume>18</volume>
<elocation-id>272</elocation-id>
<pub-id pub-id-type="doi">10.1186/s12885-018-4180-5</pub-id>
<pub-id pub-id-type="pmid">29523110</pub-id>
</element-citation>
</ref>
<ref id="B23-molecules-24-03659">
<label>23.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>DeLisser</surname>
<given-names>H.M.</given-names>
</name>
<name>
<surname>Christofidou-Solomidou</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Strieter</surname>
<given-names>R.M.</given-names>
</name>
<name>
<surname>Burdick</surname>
<given-names>M.D.</given-names>
</name>
<name>
<surname>Robinson</surname>
<given-names>C.S.</given-names>
</name>
<name>
<surname>Wexler</surname>
<given-names>R.S.</given-names>
</name>
<name>
<surname>Kerr</surname>
<given-names>J.S.</given-names>
</name>
<name>
<surname>Garlanda</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>Merwin</surname>
<given-names>J.R.</given-names>
</name>
<name>
<surname>Madri</surname>
<given-names>J.A.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Involvement of endothelial PECAM-1/CD31 in angiogenesis</article-title>
<source>Am. J. Pathol.</source>
<year>1997</year>
<volume>151</volume>
<fpage>671</fpage>
<lpage>677</lpage>
<pub-id pub-id-type="pmid">9284815</pub-id>
</element-citation>
</ref>
<ref id="B24-molecules-24-03659">
<label>24.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Gorgun</surname>
<given-names>G.T.</given-names>
</name>
<name>
<surname>Whitehill</surname>
<given-names>G.</given-names>
</name>
<name>
<surname>Anderson</surname>
<given-names>J.L.</given-names>
</name>
<name>
<surname>Hideshima</surname>
<given-names>T.</given-names>
</name>
<name>
<surname>Maguire</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>Laubach</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Raje</surname>
<given-names>N.</given-names>
</name>
<name>
<surname>Munshi</surname>
<given-names>N.C.</given-names>
</name>
<name>
<surname>Richardson</surname>
<given-names>P.G.</given-names>
</name>
<name>
<surname>Anderson</surname>
<given-names>K.C.</given-names>
</name>
</person-group>
<article-title>Tumor-promoting immune-suppressive myeloid-derived suppressor cells in the multiple myeloma microenvironment in humans</article-title>
<source>Blood</source>
<year>2013</year>
<volume>121</volume>
<fpage>2975</fpage>
<lpage>2987</lpage>
<pub-id pub-id-type="doi">10.1182/blood-2012-08-448548</pub-id>
<pub-id pub-id-type="pmid">23321256</pub-id>
</element-citation>
</ref>
<ref id="B25-molecules-24-03659">
<label>25.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Yang</surname>
<given-names>R.</given-names>
</name>
<name>
<surname>Cai</surname>
<given-names>Z.</given-names>
</name>
<name>
<surname>Zhang</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Yutzy</surname>
<given-names>W.H.</given-names>
</name>
<name>
<surname>Roby</surname>
<given-names>K.F.</given-names>
</name>
<name>
<surname>Roden</surname>
<given-names>R.B.</given-names>
</name>
</person-group>
<article-title>CD80 in immune suppression by mouse ovarian carcinoma-associated Gr-1+CD11b+ myeloid cells</article-title>
<source>Cancer Res.</source>
<year>2006</year>
<volume>66</volume>
<fpage>6807</fpage>
<lpage>6815</lpage>
<pub-id pub-id-type="doi">10.1158/0008-5472.CAN-05-3755</pub-id>
<pub-id pub-id-type="pmid">16818658</pub-id>
</element-citation>
</ref>
<ref id="B26-molecules-24-03659">
<label>26.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Mantovani</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Marchesi</surname>
<given-names>F.</given-names>
</name>
<name>
<surname>Malesci</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Laghi</surname>
<given-names>L.</given-names>
</name>
<name>
<surname>Allavena</surname>
<given-names>P.</given-names>
</name>
</person-group>
<article-title>Tumour-associated macrophages as treatment targets in oncology</article-title>
<source>Nat. Rev. Clin. Oncol.</source>
<year>2017</year>
<volume>14</volume>
<fpage>399</fpage>
<lpage>416</lpage>
<pub-id pub-id-type="doi">10.1038/nrclinonc.2016.217</pub-id>
<pub-id pub-id-type="pmid">28117416</pub-id>
</element-citation>
</ref>
<ref id="B27-molecules-24-03659">
<label>27.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Ranjan</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Wright</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Srivastava</surname>
<given-names>S.K.</given-names>
</name>
</person-group>
<article-title>Immune consequences of penfluridol treatment associated with inhibition of glioblastoma tumor growth</article-title>
<source>Oncotarget</source>
<year>2017</year>
<volume>8</volume>
<fpage>47632</fpage>
<lpage>47641</lpage>
<pub-id pub-id-type="doi">10.18632/oncotarget.17425</pub-id>
<pub-id pub-id-type="pmid">28512255</pub-id>
</element-citation>
</ref>
<ref id="B28-molecules-24-03659">
<label>28.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Lee</surname>
<given-names>C.H.</given-names>
</name>
</person-group>
<article-title>Epithelial-mesenchymal transition: Initiation by cues from chronic inflammatory tumor microenvironment and termination by anti-inflammatory compounds and specialized pro-resolving lipids</article-title>
<source>Biochem. Pharmacol.</source>
<year>2018</year>
<volume>158</volume>
<fpage>261</fpage>
<lpage>273</lpage>
<pub-id pub-id-type="doi">10.1016/j.bcp.2018.10.031</pub-id>
<pub-id pub-id-type="pmid">30389404</pub-id>
</element-citation>
</ref>
<ref id="B29-molecules-24-03659">
<label>29.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Alfonso-De Matte</surname>
<given-names>M.Y.</given-names>
</name>
<name>
<surname>Moses-Soto</surname>
<given-names>H.</given-names>
</name>
<name>
<surname>Kruk</surname>
<given-names>P.A.</given-names>
</name>
</person-group>
<article-title>Calcium-mediated telomerase activity in ovarian epithelial cells</article-title>
<source>Arch. Biochem. Biophys.</source>
<year>2002</year>
<volume>399</volume>
<fpage>239</fpage>
<lpage>244</lpage>
<pub-id pub-id-type="doi">10.1006/abbi.2002.2762</pub-id>
<pub-id pub-id-type="pmid">11888211</pub-id>
</element-citation>
</ref>
<ref id="B30-molecules-24-03659">
<label>30.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Gutschner</surname>
<given-names>T.</given-names>
</name>
<name>
<surname>Diederichs</surname>
<given-names>S.</given-names>
</name>
</person-group>
<article-title>The hallmarks of cancer</article-title>
<source>RNA Biol.</source>
<year>2012</year>
<volume>9</volume>
<fpage>703</fpage>
<lpage>719</lpage>
<pub-id pub-id-type="doi">10.4161/rna.20481</pub-id>
<pub-id pub-id-type="pmid">22664915</pub-id>
</element-citation>
</ref>
<ref id="B31-molecules-24-03659">
<label>31.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Yao</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Dai</surname>
<given-names>W.</given-names>
</name>
</person-group>
<article-title>Genomic instability and cancer</article-title>
<source>J. Carcinog. Mutagenes.</source>
<year>2014</year>
<volume>5</volume>
<fpage>1000165</fpage>
<pub-id pub-id-type="pmid">25541596</pub-id>
</element-citation>
</ref>
<ref id="B32-molecules-24-03659">
<label>32.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Hung</surname>
<given-names>W.Y.</given-names>
</name>
<name>
<surname>Chang</surname>
<given-names>J.H.</given-names>
</name>
<name>
<surname>Cheng</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Cheng</surname>
<given-names>G.Z.</given-names>
</name>
<name>
<surname>Huang</surname>
<given-names>H.C.</given-names>
</name>
<name>
<surname>Hsiao</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Chung</surname>
<given-names>C.L.</given-names>
</name>
<name>
<surname>Lee</surname>
<given-names>W.J.</given-names>
</name>
<name>
<surname>Chien</surname>
<given-names>M.H.</given-names>
</name>
</person-group>
<article-title>Autophagosome accumulation-mediated ATP energy deprivation induced by penfluridol triggers nonapoptotic cell death of lung cancer via activating unfolded protein response</article-title>
<source>Cell Death Dis.</source>
<year>2019</year>
<volume>10</volume>
<fpage>538</fpage>
<pub-id pub-id-type="doi">10.1038/s41419-019-1785-9</pub-id>
<pub-id pub-id-type="pmid">31308361</pub-id>
</element-citation>
</ref>
<ref id="B33-molecules-24-03659">
<label>33.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Weissenrieder</surname>
<given-names>J.S.</given-names>
</name>
<name>
<surname>Neighbors</surname>
<given-names>J.D.</given-names>
</name>
<name>
<surname>Mailman</surname>
<given-names>R.B.</given-names>
</name>
<name>
<surname>Hohl</surname>
<given-names>R.J.</given-names>
</name>
</person-group>
<article-title>Cancer and the Dopamine D2 receptor: A pharmacological perspective</article-title>
<source>J. Pharmacol. Exp. Ther.</source>
<year>2019</year>
<volume>370</volume>
<fpage>111</fpage>
<lpage>126</lpage>
<pub-id pub-id-type="doi">10.1124/jpet.119.256818</pub-id>
<pub-id pub-id-type="pmid">31000578</pub-id>
</element-citation>
</ref>
<ref id="B34-molecules-24-03659">
<label>34.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Brami-Cherrier</surname>
<given-names>K.</given-names>
</name>
<name>
<surname>Valjent</surname>
<given-names>E.</given-names>
</name>
<name>
<surname>Garcia</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Pages</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>Hipskind</surname>
<given-names>R.A.</given-names>
</name>
<name>
<surname>Caboche</surname>
<given-names>J.</given-names>
</name>
</person-group>
<article-title>Dopamine induces a PI3-kinase-independent activation of Akt in striatal neurons: A new route to cAMP response element-binding protein phosphorylation</article-title>
<source>J. Neurosci.</source>
<year>2002</year>
<volume>22</volume>
<fpage>8911</fpage>
<lpage>8921</lpage>
<pub-id pub-id-type="doi">10.1523/JNEUROSCI.22-20-08911.2002</pub-id>
<pub-id pub-id-type="pmid">12388598</pub-id>
</element-citation>
</ref>
<ref id="B35-molecules-24-03659">
<label>35.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Kang</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Dong</surname>
<given-names>S.M.</given-names>
</name>
<name>
<surname>Kim</surname>
<given-names>B.R.</given-names>
</name>
<name>
<surname>Park</surname>
<given-names>M.S.</given-names>
</name>
<name>
<surname>Trink</surname>
<given-names>B.</given-names>
</name>
<name>
<surname>Byun</surname>
<given-names>H.J.</given-names>
</name>
<name>
<surname>Rho</surname>
<given-names>S.B.</given-names>
</name>
</person-group>
<article-title>Thioridazine induces apoptosis by targeting the PI3K/Akt/mTOR pathway in cervical and endometrial cancer cells</article-title>
<source>Apoptosis</source>
<year>2012</year>
<volume>17</volume>
<fpage>989</fpage>
<lpage>997</lpage>
<pub-id pub-id-type="doi">10.1007/s10495-012-0717-2</pub-id>
<pub-id pub-id-type="pmid">22460505</pub-id>
</element-citation>
</ref>
<ref id="B36-molecules-24-03659">
<label>36.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Mao</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Yu</surname>
<given-names>T.</given-names>
</name>
<name>
<surname>Hu</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Hu</surname>
<given-names>L.</given-names>
</name>
</person-group>
<article-title>Dopamine D2 receptor blocker thioridazine induces cell death in human uterine cervical carcinoma cell line SiHa</article-title>
<source>J. Obstet. Gynaecol. Res.</source>
<year>2015</year>
<volume>41</volume>
<fpage>1240</fpage>
<lpage>1245</lpage>
<pub-id pub-id-type="doi">10.1111/jog.12691</pub-id>
<pub-id pub-id-type="pmid">25832589</pub-id>
</element-citation>
</ref>
<ref id="B37-molecules-24-03659">
<label>37.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Park</surname>
<given-names>S.H.</given-names>
</name>
<name>
<surname>Chung</surname>
<given-names>Y.M.</given-names>
</name>
<name>
<surname>Ma</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Yang</surname>
<given-names>Q.</given-names>
</name>
<name>
<surname>Berek</surname>
<given-names>J.S.</given-names>
</name>
<name>
<surname>Hu</surname>
<given-names>M.C.</given-names>
</name>
</person-group>
<article-title>Pharmacological activation of FOXO3 suppresses triple-negative breast cancer in vitro and in vivo</article-title>
<source>Oncotarget</source>
<year>2016</year>
<volume>7</volume>
<fpage>42110</fpage>
<lpage>42125</lpage>
<pub-id pub-id-type="doi">10.18632/oncotarget.9881</pub-id>
<pub-id pub-id-type="pmid">27283899</pub-id>
</element-citation>
</ref>
<ref id="B38-molecules-24-03659">
<label>38.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Zhou</surname>
<given-names>W.</given-names>
</name>
<name>
<surname>Chen</surname>
<given-names>M.K.</given-names>
</name>
<name>
<surname>Yu</surname>
<given-names>H.T.</given-names>
</name>
<name>
<surname>Zhong</surname>
<given-names>Z.H.</given-names>
</name>
<name>
<surname>Cai</surname>
<given-names>N.</given-names>
</name>
<name>
<surname>Chen</surname>
<given-names>G.Z.</given-names>
</name>
<name>
<surname>Zhang</surname>
<given-names>P.</given-names>
</name>
<name>
<surname>Chen</surname>
<given-names>J.J.</given-names>
</name>
</person-group>
<article-title>The antipsychotic drug pimozide inhibits cell growth in prostate cancer through suppression of STAT3 activation</article-title>
<source>Int. J. Oncol.</source>
<year>2016</year>
<volume>48</volume>
<fpage>322</fpage>
<lpage>328</lpage>
<pub-id pub-id-type="doi">10.3892/ijo.2015.3229</pub-id>
<pub-id pub-id-type="pmid">26549437</pub-id>
</element-citation>
</ref>
<ref id="B39-molecules-24-03659">
<label>39.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Das</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Pushparaj</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>Bahi</surname>
<given-names>N.</given-names>
</name>
<name>
<surname>Sorolla</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Herreros</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Pamplona</surname>
<given-names>R.</given-names>
</name>
<name>
<surname>Vilella</surname>
<given-names>R.</given-names>
</name>
<name>
<surname>Matias-Guiu</surname>
<given-names>X.</given-names>
</name>
<name>
<surname>Marti</surname>
<given-names>R.M.</given-names>
</name>
<name>
<surname>Canti</surname>
<given-names>C.</given-names>
</name>
</person-group>
<article-title>Functional expression of voltage-gated calcium channels in human melanoma</article-title>
<source>Pigment Cell Melanoma Res.</source>
<year>2012</year>
<volume>25</volume>
<fpage>200</fpage>
<lpage>212</lpage>
<pub-id pub-id-type="doi">10.1111/j.1755-148X.2012.00978.x</pub-id>
<pub-id pub-id-type="pmid">22260517</pub-id>
</element-citation>
</ref>
<ref id="B40-molecules-24-03659">
<label>40.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Antal</surname>
<given-names>L.</given-names>
</name>
<name>
<surname>Martin-Caraballo</surname>
<given-names>M.</given-names>
</name>
</person-group>
<article-title>T-type Calcium channels in cancer</article-title>
<source>Cancers (Basel)</source>
<year>2019</year>
<volume>11</volume>
<elocation-id>134</elocation-id>
<pub-id pub-id-type="doi">10.3390/cancers11020134</pub-id>
</element-citation>
</ref>
<ref id="B41-molecules-24-03659">
<label>41.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Dziegielewska</surname>
<given-names>B.</given-names>
</name>
<name>
<surname>Gray</surname>
<given-names>L.S.</given-names>
</name>
<name>
<surname>Dziegielewski</surname>
<given-names>J.</given-names>
</name>
</person-group>
<article-title>T-type calcium channels blockers as new tools in cancer therapies</article-title>
<source>Pflugers Arch.</source>
<year>2014</year>
<volume>466</volume>
<fpage>801</fpage>
<lpage>810</lpage>
<pub-id pub-id-type="doi">10.1007/s00424-014-1444-z</pub-id>
<pub-id pub-id-type="pmid">24449277</pub-id>
</element-citation>
</ref>
<ref id="B42-molecules-24-03659">
<label>42.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Takahashi</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Seagar</surname>
<given-names>M.J.</given-names>
</name>
<name>
<surname>Jones</surname>
<given-names>J.F.</given-names>
</name>
<name>
<surname>Reber</surname>
<given-names>B.F.</given-names>
</name>
<name>
<surname>Catterall</surname>
<given-names>W.A.</given-names>
</name>
</person-group>
<article-title>Subunit structure of dihydropyridine-sensitive calcium channels from skeletal muscle</article-title>
<source>Proc. Natl. Acad. Sci. USA</source>
<year>1987</year>
<volume>84</volume>
<fpage>5478</fpage>
<lpage>5482</lpage>
<pub-id pub-id-type="doi">10.1073/pnas.84.15.5478</pub-id>
<pub-id pub-id-type="pmid">2440051</pub-id>
</element-citation>
</ref>
<ref id="B43-molecules-24-03659">
<label>43.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Catterall</surname>
<given-names>W.A.</given-names>
</name>
</person-group>
<article-title>Structure and regulation of voltage-gated Ca
<sup>2+</sup>
channels</article-title>
<source>Annu. Rev. Cell Dev. Biol.</source>
<year>2000</year>
<volume>16</volume>
<fpage>521</fpage>
<lpage>555</lpage>
<pub-id pub-id-type="doi">10.1146/annurev.cellbio.16.1.521</pub-id>
<pub-id pub-id-type="pmid">11031246</pub-id>
</element-citation>
</ref>
<ref id="B44-molecules-24-03659">
<label>44.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Ertel</surname>
<given-names>S.I.</given-names>
</name>
<name>
<surname>Ertel</surname>
<given-names>E.A.</given-names>
</name>
<name>
<surname>Clozel</surname>
<given-names>J.P.</given-names>
</name>
</person-group>
<article-title>T-type Ca
<sup>2+</sup>
channels and pharmacological blockade: Potential pathophysiological relevance</article-title>
<source>Cardiovasc. Drugs Ther.</source>
<year>1997</year>
<volume>11</volume>
<fpage>723</fpage>
<lpage>739</lpage>
<pub-id pub-id-type="doi">10.1023/A:1007706022381</pub-id>
<pub-id pub-id-type="pmid">9512867</pub-id>
</element-citation>
</ref>
<ref id="B45-molecules-24-03659">
<label>45.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Enyeart</surname>
<given-names>J.J.</given-names>
</name>
<name>
<surname>Biagi</surname>
<given-names>B.A.</given-names>
</name>
<name>
<surname>Day</surname>
<given-names>R.N.</given-names>
</name>
<name>
<surname>Sheu</surname>
<given-names>S.S.</given-names>
</name>
<name>
<surname>Maurer</surname>
<given-names>R.A.</given-names>
</name>
</person-group>
<article-title>Blockade of low and high threshold Ca
<sup>2+</sup>
channels by diphenylbutylpiperidine antipsychotics linked to inhibition of prolactin gene expression</article-title>
<source>J. Biol. Chem.</source>
<year>1990</year>
<volume>265</volume>
<fpage>16373</fpage>
<lpage>16379</lpage>
<pub-id pub-id-type="pmid">1697857</pub-id>
</element-citation>
</ref>
<ref id="B46-molecules-24-03659">
<label>46.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Costello</surname>
<given-names>L.C.</given-names>
</name>
</person-group>
<article-title>The suppression of Prolactin is required for the treatment of advanced Prostate cancer</article-title>
<source>Oncogen (Westerville)</source>
<year>2019</year>
<volume>2</volume>
<fpage>13</fpage>
<pub-id pub-id-type="doi">10.35702/onc.10013</pub-id>
<pub-id pub-id-type="pmid">31328184</pub-id>
</element-citation>
</ref>
<ref id="B47-molecules-24-03659">
<label>47.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Valerie</surname>
<given-names>N.C.</given-names>
</name>
<name>
<surname>Dziegielewska</surname>
<given-names>B.</given-names>
</name>
<name>
<surname>Hosing</surname>
<given-names>A.S.</given-names>
</name>
<name>
<surname>Augustin</surname>
<given-names>E.</given-names>
</name>
<name>
<surname>Gray</surname>
<given-names>L.S.</given-names>
</name>
<name>
<surname>Brautigan</surname>
<given-names>D.L.</given-names>
</name>
<name>
<surname>Larner</surname>
<given-names>J.M.</given-names>
</name>
<name>
<surname>Dziegielewski</surname>
<given-names>J.</given-names>
</name>
</person-group>
<article-title>Inhibition of T-type calcium channels disrupts Akt signaling and promotes apoptosis in glioblastoma cells</article-title>
<source>Biochem. Pharmacol.</source>
<year>2013</year>
<volume>85</volume>
<fpage>888</fpage>
<lpage>897</lpage>
<pub-id pub-id-type="doi">10.1016/j.bcp.2012.12.017</pub-id>
<pub-id pub-id-type="pmid">23287412</pub-id>
</element-citation>
</ref>
<ref id="B48-molecules-24-03659">
<label>48.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Kim</surname>
<given-names>H.</given-names>
</name>
<name>
<surname>Chong</surname>
<given-names>K.</given-names>
</name>
<name>
<surname>Ryu</surname>
<given-names>B.-K.</given-names>
</name>
<name>
<surname>Park</surname>
<given-names>K.-J.</given-names>
</name>
<name>
<surname>Yu</surname>
<given-names>M.O.</given-names>
</name>
<name>
<surname>Lee</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Chung</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Choi</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Park</surname>
<given-names>M.-J.</given-names>
</name>
<name>
<surname>Chung</surname>
<given-names>Y.-G.</given-names>
</name>
</person-group>
<article-title>Repurposing Penfluridol in combination with Temozolomide for the treatment of Glioblastoma</article-title>
<source>Cancers</source>
<year>2019</year>
<volume>11</volume>
<elocation-id>1310</elocation-id>
<pub-id pub-id-type="doi">10.3390/cancers11091310</pub-id>
</element-citation>
</ref>
<ref id="B49-molecules-24-03659">
<label>49.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Levite</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Chowers</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Ganor</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Besser</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Hershkovits</surname>
<given-names>R.</given-names>
</name>
<name>
<surname>Cahalon</surname>
<given-names>L.</given-names>
</name>
</person-group>
<article-title>Dopamine interacts directly with its D3 and D2 receptors on normal human T cells, and activates β1 integrin function</article-title>
<source>Eur. J. Immunol.</source>
<year>2001</year>
<volume>31</volume>
<fpage>3504</fpage>
<lpage>3512</lpage>
<pub-id pub-id-type="doi">10.1002/1521-4141(200112)31:12<3504::AID-IMMU3504>3.0.CO;2-F</pub-id>
<pub-id pub-id-type="pmid">11745370</pub-id>
</element-citation>
</ref>
<ref id="B50-molecules-24-03659">
<label>50.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Lambert</surname>
<given-names>A.W.</given-names>
</name>
<name>
<surname>Ozturk</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Thiagalingam</surname>
<given-names>S.</given-names>
</name>
</person-group>
<article-title>Integrin signaling in mammary epithelial cells and breast cancer</article-title>
<source>ISRN Oncol.</source>
<year>2012</year>
<volume>2012</volume>
<fpage>493283</fpage>
<pub-id pub-id-type="doi">10.5402/2012/493283</pub-id>
<pub-id pub-id-type="pmid">22523705</pub-id>
</element-citation>
</ref>
<ref id="B51-molecules-24-03659">
<label>51.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Muller</surname>
<given-names>P.A.</given-names>
</name>
<name>
<surname>Caswell</surname>
<given-names>P.T.</given-names>
</name>
<name>
<surname>Doyle</surname>
<given-names>B.</given-names>
</name>
<name>
<surname>Iwanicki</surname>
<given-names>M.P.</given-names>
</name>
<name>
<surname>Tan</surname>
<given-names>E.H.</given-names>
</name>
<name>
<surname>Karim</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Lukashchuk</surname>
<given-names>N.</given-names>
</name>
<name>
<surname>Gillespie</surname>
<given-names>D.A.</given-names>
</name>
<name>
<surname>Ludwig</surname>
<given-names>R.L.</given-names>
</name>
<name>
<surname>Gosselin</surname>
<given-names>P.</given-names>
</name>
</person-group>
<article-title>Mutant p53 drives invasion by promoting integrin recycling</article-title>
<source>Cell</source>
<year>2009</year>
<volume>139</volume>
<fpage>1327</fpage>
<lpage>1341</lpage>
<pub-id pub-id-type="doi">10.1016/j.cell.2009.11.026</pub-id>
<pub-id pub-id-type="pmid">20064378</pub-id>
</element-citation>
</ref>
<ref id="B52-molecules-24-03659">
<label>52.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Gobira</surname>
<given-names>P.H.</given-names>
</name>
<name>
<surname>Ropke</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Aguiar</surname>
<given-names>D.C.</given-names>
</name>
<name>
<surname>Crippa</surname>
<given-names>J.A.</given-names>
</name>
<name>
<surname>Moreira</surname>
<given-names>F.A.</given-names>
</name>
</person-group>
<article-title>Animal models for predicting the efficacy and side effects of antipsychotic drugs</article-title>
<source>Braz. J. Psychiatry</source>
<year>2013</year>
<volume>35</volume>
<fpage>S132</fpage>
<lpage>S139</lpage>
<pub-id pub-id-type="doi">10.1590/1516-4446-2013-1164</pub-id>
<pub-id pub-id-type="pmid">24271225</pub-id>
</element-citation>
</ref>
<ref id="B53-molecules-24-03659">
<label>53.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Hedrick</surname>
<given-names>E.</given-names>
</name>
<name>
<surname>Li</surname>
<given-names>X.</given-names>
</name>
<name>
<surname>Safe</surname>
<given-names>S.</given-names>
</name>
</person-group>
<article-title>Penfluridol represses integrin expression in breast cancer through induction of reactive oxygen species and downregulation of Sp transcription factors</article-title>
<source>Mol. Cancer Ther.</source>
<year>2017</year>
<volume>16</volume>
<fpage>205</fpage>
<lpage>216</lpage>
<pub-id pub-id-type="doi">10.1158/1535-7163.MCT-16-0451</pub-id>
<pub-id pub-id-type="pmid">27811009</pub-id>
</element-citation>
</ref>
<ref id="B54-molecules-24-03659">
<label>54.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Safe</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Abdelrahim</surname>
<given-names>M.</given-names>
</name>
</person-group>
<article-title>Sp transcription factor family and its role in cancer</article-title>
<source>Eur. J. Cancer</source>
<year>2005</year>
<volume>41</volume>
<fpage>2438</fpage>
<lpage>2448</lpage>
<pub-id pub-id-type="doi">10.1016/j.ejca.2005.08.006</pub-id>
<pub-id pub-id-type="pmid">16209919</pub-id>
</element-citation>
</ref>
<ref id="B55-molecules-24-03659">
<label>55.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Liou</surname>
<given-names>G.-Y.</given-names>
</name>
<name>
<surname>Storz</surname>
<given-names>P.</given-names>
</name>
</person-group>
<article-title>Reactive oxygen species in cancer</article-title>
<source>Free Radic. Res.</source>
<year>2010</year>
<volume>44</volume>
<fpage>479</fpage>
<lpage>496</lpage>
<pub-id pub-id-type="doi">10.3109/10715761003667554</pub-id>
<pub-id pub-id-type="pmid">20370557</pub-id>
</element-citation>
</ref>
<ref id="B56-molecules-24-03659">
<label>56.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Darnell</surname>
<given-names>J.E.</given-names>
<suffix>Jr.</suffix>
</name>
</person-group>
<article-title>Transcription factors as targets for cancer therapy</article-title>
<source>Nat. Rev. Cancer</source>
<year>2002</year>
<volume>2</volume>
<fpage>740</fpage>
<pub-id pub-id-type="doi">10.1038/nrc906</pub-id>
<pub-id pub-id-type="pmid">12360277</pub-id>
</element-citation>
</ref>
<ref id="B57-molecules-24-03659">
<label>57.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Clement</surname>
<given-names>V.</given-names>
</name>
<name>
<surname>Sanchez</surname>
<given-names>P.</given-names>
</name>
<name>
<surname>De Tribolet</surname>
<given-names>N.</given-names>
</name>
<name>
<surname>Radovanovic</surname>
<given-names>I.</given-names>
</name>
<name>
<surname>Ruiz</surname>
<given-names>I.</given-names>
</name>
<name>
<surname>Altaba</surname>
<given-names>A.</given-names>
</name>
</person-group>
<article-title>HEDGEHOG-GLI1 signaling regulates human Glioma growth, cancer stem cell self-renewal, and tumorigenicity</article-title>
<source>Curr. Biol.</source>
<year>2007</year>
<volume>17</volume>
<fpage>165</fpage>
<lpage>172</lpage>
<pub-id pub-id-type="doi">10.1016/j.cub.2006.11.033</pub-id>
<pub-id pub-id-type="pmid">17196391</pub-id>
</element-citation>
</ref>
<ref id="B58-molecules-24-03659">
<label>58.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Ignatova</surname>
<given-names>T.N.</given-names>
</name>
<name>
<surname>Kukekov</surname>
<given-names>V.G.</given-names>
</name>
<name>
<surname>Laywell</surname>
<given-names>E.D.</given-names>
</name>
<name>
<surname>Suslov</surname>
<given-names>O.N.</given-names>
</name>
<name>
<surname>Vrionis</surname>
<given-names>F.D.</given-names>
</name>
<name>
<surname>Steindler</surname>
<given-names>D.A.</given-names>
</name>
</person-group>
<article-title>Human cortical glial tumors contain neural stem-like cells expressing astroglial and neuronal markers in vitro</article-title>
<source>Glia</source>
<year>2002</year>
<volume>39</volume>
<fpage>193</fpage>
<lpage>206</lpage>
<pub-id pub-id-type="doi">10.1002/glia.10094</pub-id>
<pub-id pub-id-type="pmid">12203386</pub-id>
</element-citation>
</ref>
<ref id="B59-molecules-24-03659">
<label>59.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Beaulieu</surname>
<given-names>J.-M.</given-names>
</name>
<name>
<surname>Tirotta</surname>
<given-names>E.</given-names>
</name>
<name>
<surname>Sotnikova</surname>
<given-names>T.D.</given-names>
</name>
<name>
<surname>Masri</surname>
<given-names>B.</given-names>
</name>
<name>
<surname>Salahpour</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Gainetdinov</surname>
<given-names>R.R.</given-names>
</name>
<name>
<surname>Borrelli</surname>
<given-names>E.</given-names>
</name>
<name>
<surname>Caron</surname>
<given-names>M.G.</given-names>
</name>
</person-group>
<article-title>Regulation of Akt signaling by D2 and D3 dopamine receptors in vivo</article-title>
<source>J. Neurosci.</source>
<year>2007</year>
<volume>27</volume>
<fpage>881</fpage>
<lpage>885</lpage>
<pub-id pub-id-type="doi">10.1523/JNEUROSCI.5074-06.2007</pub-id>
<pub-id pub-id-type="pmid">17251429</pub-id>
</element-citation>
</ref>
<ref id="B60-molecules-24-03659">
<label>60.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Amaravadi</surname>
<given-names>R.</given-names>
</name>
<name>
<surname>Kimmelman</surname>
<given-names>A.C.</given-names>
</name>
<name>
<surname>White</surname>
<given-names>E.</given-names>
</name>
</person-group>
<article-title>Recent insights into the function of autophagy in cancer</article-title>
<source>Genes Dev.</source>
<year>2016</year>
<volume>30</volume>
<fpage>1913</fpage>
<lpage>1930</lpage>
<pub-id pub-id-type="doi">10.1101/gad.287524.116</pub-id>
<pub-id pub-id-type="pmid">27664235</pub-id>
</element-citation>
</ref>
<ref id="B61-molecules-24-03659">
<label>61.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Ktistakis</surname>
<given-names>N.T.</given-names>
</name>
<name>
<surname>Tooze</surname>
<given-names>S.A.</given-names>
</name>
</person-group>
<article-title>Digesting the expanding mechanisms of autophagy</article-title>
<source>Trends Cell Biol.</source>
<year>2016</year>
<volume>26</volume>
<fpage>624</fpage>
<lpage>635</lpage>
<pub-id pub-id-type="doi">10.1016/j.tcb.2016.03.006</pub-id>
<pub-id pub-id-type="pmid">27050762</pub-id>
</element-citation>
</ref>
<ref id="B62-molecules-24-03659">
<label>62.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Wang</surname>
<given-names>D.</given-names>
</name>
<name>
<surname>Ji</surname>
<given-names>X.</given-names>
</name>
<name>
<surname>Liu</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Li</surname>
<given-names>Z.</given-names>
</name>
<name>
<surname>Zhang</surname>
<given-names>X.</given-names>
</name>
</person-group>
<article-title>Dopamine receptor subtypes differentially regulate autophagy</article-title>
<source>Int. J. Mol. Sci.</source>
<year>2018</year>
<volume>19</volume>
<elocation-id>1540</elocation-id>
<pub-id pub-id-type="doi">10.3390/ijms19051540</pub-id>
<pub-id pub-id-type="pmid">29786666</pub-id>
</element-citation>
</ref>
<ref id="B63-molecules-24-03659">
<label>63.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Visa</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Sallán</surname>
<given-names>M.C.</given-names>
</name>
<name>
<surname>Maiques</surname>
<given-names>O.</given-names>
</name>
<name>
<surname>Alza</surname>
<given-names>L.</given-names>
</name>
<name>
<surname>Talavera</surname>
<given-names>E.</given-names>
</name>
<name>
<surname>López-Ortega</surname>
<given-names>R.</given-names>
</name>
<name>
<surname>Santacana</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Herreros</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Cantí</surname>
<given-names>C.</given-names>
</name>
</person-group>
<article-title>T-type Cav3. 1 channels mediate progression and chemotherapeutic resistance in glioblastoma</article-title>
<source>Cancer Res.</source>
<year>2019</year>
<volume>79</volume>
<fpage>1857</fpage>
<lpage>1868</lpage>
<pub-id pub-id-type="doi">10.1158/0008-5472.CAN-18-1924</pub-id>
<pub-id pub-id-type="pmid">30755443</pub-id>
</element-citation>
</ref>
<ref id="B64-molecules-24-03659">
<label>64.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Das</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Pushparaj</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>Herreros</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Nager</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Vilella</surname>
<given-names>R.</given-names>
</name>
<name>
<surname>Portero</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Pamplona</surname>
<given-names>R.</given-names>
</name>
<name>
<surname>Matias-Guiu</surname>
<given-names>X.</given-names>
</name>
<name>
<surname>Martí</surname>
<given-names>R.M.</given-names>
</name>
<name>
<surname>Cantí</surname>
<given-names>C.</given-names>
</name>
</person-group>
<article-title>T-type calcium channel blockers inhibit autophagy and promote apoptosis of malignant melanoma cells</article-title>
<source>Pigment Cell Melanoma Res.</source>
<year>2013</year>
<volume>26</volume>
<fpage>874</fpage>
<lpage>885</lpage>
<pub-id pub-id-type="doi">10.1111/pcmr.12155</pub-id>
<pub-id pub-id-type="pmid">23931340</pub-id>
</element-citation>
</ref>
<ref id="B65-molecules-24-03659">
<label>65.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Rashid</surname>
<given-names>H.-O.</given-names>
</name>
<name>
<surname>Yadav</surname>
<given-names>R.K.</given-names>
</name>
<name>
<surname>Kim</surname>
<given-names>H.-R.</given-names>
</name>
<name>
<surname>Chae</surname>
<given-names>H.-J.</given-names>
</name>
</person-group>
<article-title>ER stress: Autophagy induction, inhibition and selection</article-title>
<source>Autophagy</source>
<year>2015</year>
<volume>11</volume>
<fpage>1956</fpage>
<lpage>1977</lpage>
<pub-id pub-id-type="doi">10.1080/15548627.2015.1091141</pub-id>
<pub-id pub-id-type="pmid">26389781</pub-id>
</element-citation>
</ref>
<ref id="B66-molecules-24-03659">
<label>66.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Cubillos-Ruiz</surname>
<given-names>J.R.</given-names>
</name>
<name>
<surname>Bettigole</surname>
<given-names>S.E.</given-names>
</name>
<name>
<surname>Glimcher</surname>
<given-names>L.H.</given-names>
</name>
</person-group>
<article-title>Tumorigenic and immunosuppressive effects of endoplasmic reticulum stress in cancer</article-title>
<source>Cell</source>
<year>2017</year>
<volume>168</volume>
<fpage>692</fpage>
<lpage>706</lpage>
<pub-id pub-id-type="doi">10.1016/j.cell.2016.12.004</pub-id>
<pub-id pub-id-type="pmid">28187289</pub-id>
</element-citation>
</ref>
<ref id="B67-molecules-24-03659">
<label>67.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Hetz</surname>
<given-names>C.</given-names>
</name>
</person-group>
<article-title>The unfolded protein response: controlling cell fate decisions under ER stress and beyond</article-title>
<source>Nat. Rev. Mol. Cell Biol.</source>
<year>2012</year>
<volume>13</volume>
<fpage>89</fpage>
<pub-id pub-id-type="doi">10.1038/nrm3270</pub-id>
<pub-id pub-id-type="pmid">22251901</pub-id>
</element-citation>
</ref>
<ref id="B68-molecules-24-03659">
<label>68.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Urra</surname>
<given-names>H.</given-names>
</name>
<name>
<surname>Dufey</surname>
<given-names>E.</given-names>
</name>
<name>
<surname>Avril</surname>
<given-names>T.</given-names>
</name>
<name>
<surname>Chevet</surname>
<given-names>E.</given-names>
</name>
<name>
<surname>Hetz</surname>
<given-names>C.</given-names>
</name>
</person-group>
<article-title>Endoplasmic reticulum stress and the hallmarks of cancer</article-title>
<source>Trends Cancer</source>
<year>2016</year>
<volume>2</volume>
<fpage>252</fpage>
<lpage>262</lpage>
<pub-id pub-id-type="doi">10.1016/j.trecan.2016.03.007</pub-id>
<pub-id pub-id-type="pmid">28741511</pub-id>
</element-citation>
</ref>
<ref id="B69-molecules-24-03659">
<label>69.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Ranjan</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>German</surname>
<given-names>N.</given-names>
</name>
<name>
<surname>Mikelis</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>Srivenugopal</surname>
<given-names>K.</given-names>
</name>
<name>
<surname>Srivastava</surname>
<given-names>S.K.</given-names>
</name>
</person-group>
<article-title>Penfluridol induces endoplasmic reticulum stress leading to autophagy in pancreatic cancer</article-title>
<source>Tumour Biol.</source>
<year>2017</year>
<volume>39</volume>
<fpage>1010428317705517</fpage>
<pub-id pub-id-type="doi">10.1177/1010428317705517</pub-id>
<pub-id pub-id-type="pmid">28618969</pub-id>
</element-citation>
</ref>
<ref id="B70-molecules-24-03659">
<label>70.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Wu</surname>
<given-names>S.-Y.</given-names>
</name>
<name>
<surname>Wen</surname>
<given-names>Y.-C.</given-names>
</name>
<name>
<surname>Ku</surname>
<given-names>C.-C.</given-names>
</name>
<name>
<surname>Yang</surname>
<given-names>Y.-C.</given-names>
</name>
<name>
<surname>Chow</surname>
<given-names>J.-M.</given-names>
</name>
<name>
<surname>Yang</surname>
<given-names>S.-F.</given-names>
</name>
<name>
<surname>Lee</surname>
<given-names>W.-J.</given-names>
</name>
<name>
<surname>Chien</surname>
<given-names>M.-H.</given-names>
</name>
</person-group>
<article-title>Penfluridol triggers cytoprotective autophagy and cellular apoptosis through ROS induction and activation of the PP2A-modulated MAPK pathway in acute myeloid leukemia with different FLT3 statuses</article-title>
<source>J. Biomed. Sci.</source>
<year>2019</year>
<volume>26</volume>
<fpage>1</fpage>
<lpage>13</lpage>
<pub-id pub-id-type="doi">10.1186/s12929-019-0557-2</pub-id>
<pub-id pub-id-type="pmid">30602371</pub-id>
</element-citation>
</ref>
<ref id="B71-molecules-24-03659">
<label>71.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Freeman</surname>
<given-names>M.R.</given-names>
</name>
<name>
<surname>Solomon</surname>
<given-names>K.R.</given-names>
</name>
</person-group>
<article-title>Cholesterol and prostate cancer</article-title>
<source>J. Cell. Biochem.</source>
<year>2004</year>
<volume>91</volume>
<fpage>54</fpage>
<lpage>69</lpage>
<pub-id pub-id-type="doi">10.1002/jcb.10724</pub-id>
<pub-id pub-id-type="pmid">14689582</pub-id>
</element-citation>
</ref>
<ref id="B72-molecules-24-03659">
<label>72.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Llaverias</surname>
<given-names>G.</given-names>
</name>
<name>
<surname>Danilo</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>Mercier</surname>
<given-names>I.</given-names>
</name>
<name>
<surname>Daumer</surname>
<given-names>K.</given-names>
</name>
<name>
<surname>Capozza</surname>
<given-names>F.</given-names>
</name>
<name>
<surname>Williams</surname>
<given-names>T.M.</given-names>
</name>
<name>
<surname>Sotgia</surname>
<given-names>F.</given-names>
</name>
<name>
<surname>Lisanti</surname>
<given-names>M.P.</given-names>
</name>
<name>
<surname>Frank</surname>
<given-names>P.G.</given-names>
</name>
</person-group>
<article-title>Role of cholesterol in the development and progression of breast cancer</article-title>
<source>Am. J. Pathol.</source>
<year>2011</year>
<volume>178</volume>
<fpage>402</fpage>
<lpage>412</lpage>
<pub-id pub-id-type="doi">10.1016/j.ajpath.2010.11.005</pub-id>
<pub-id pub-id-type="pmid">21224077</pub-id>
</element-citation>
</ref>
<ref id="B73-molecules-24-03659">
<label>73.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Wiklund</surname>
<given-names>E.D.</given-names>
</name>
<name>
<surname>Catts</surname>
<given-names>V.S.</given-names>
</name>
<name>
<surname>Catts</surname>
<given-names>S.V.</given-names>
</name>
<name>
<surname>Ng</surname>
<given-names>T.F.</given-names>
</name>
<name>
<surname>Whitaker</surname>
<given-names>N.J.</given-names>
</name>
<name>
<surname>Brown</surname>
<given-names>A.J.</given-names>
</name>
<name>
<surname>Lutze-Mann</surname>
<given-names>L.H.</given-names>
</name>
</person-group>
<article-title>Cytotoxic effects of antipsychotic drugs implicate cholesterol homeostasis as a novel chemotherapeutic target</article-title>
<source>Int. J. Cancer</source>
<year>2010</year>
<volume>126</volume>
<fpage>28</fpage>
<lpage>40</lpage>
<pub-id pub-id-type="doi">10.1002/ijc.24813</pub-id>
<pub-id pub-id-type="pmid">19662652</pub-id>
</element-citation>
</ref>
<ref id="B74-molecules-24-03659">
<label>74.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Goldstein</surname>
<given-names>J.L.</given-names>
</name>
<name>
<surname>DeBose-Boyd</surname>
<given-names>R.A.</given-names>
</name>
<name>
<surname>Brown</surname>
<given-names>M.S.</given-names>
</name>
</person-group>
<article-title>Protein sensors for membrane sterols</article-title>
<source>Cell</source>
<year>2006</year>
<volume>124</volume>
<fpage>35</fpage>
<lpage>46</lpage>
<pub-id pub-id-type="doi">10.1016/j.cell.2005.12.022</pub-id>
<pub-id pub-id-type="pmid">16413480</pub-id>
</element-citation>
</ref>
<ref id="B75-molecules-24-03659">
<label>75.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Horton</surname>
<given-names>J.D.</given-names>
</name>
<name>
<surname>Goldstein</surname>
<given-names>J.L.</given-names>
</name>
<name>
<surname>Brown</surname>
<given-names>M.S.</given-names>
</name>
</person-group>
<article-title>SREBPs: Activators of the complete program of cholesterol and fatty acid synthesis in the liver</article-title>
<source>J. Clin. Investig.</source>
<year>2002</year>
<volume>109</volume>
<fpage>1125</fpage>
<lpage>1131</lpage>
<pub-id pub-id-type="doi">10.1172/JCI0215593</pub-id>
<pub-id pub-id-type="pmid">11994399</pub-id>
</element-citation>
</ref>
<ref id="B76-molecules-24-03659">
<label>76.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Janssens</surname>
<given-names>V.</given-names>
</name>
<name>
<surname>Goris</surname>
<given-names>J.</given-names>
</name>
</person-group>
<article-title>Protein phosphatase 2A: A highly regulated family of serine/threonine phosphatases implicated in cell growth and signalling</article-title>
<source>Biochem. J.</source>
<year>2001</year>
<volume>353</volume>
<fpage>417</fpage>
<lpage>439</lpage>
<pub-id pub-id-type="doi">10.1042/bj3530417</pub-id>
<pub-id pub-id-type="pmid">11171037</pub-id>
</element-citation>
</ref>
<ref id="B77-molecules-24-03659">
<label>77.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Bánréti</surname>
<given-names>Á.</given-names>
</name>
<name>
<surname>Lukácsovich</surname>
<given-names>T.</given-names>
</name>
<name>
<surname>Csikós</surname>
<given-names>G.</given-names>
</name>
<name>
<surname>Erdélyi</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Sass</surname>
<given-names>M.</given-names>
</name>
</person-group>
<article-title>PP2A regulates autophagy in two alternative ways in Drosophila</article-title>
<source>Autophagy</source>
<year>2012</year>
<volume>8</volume>
<fpage>623</fpage>
<lpage>636</lpage>
<pub-id pub-id-type="doi">10.4161/auto.19081</pub-id>
<pub-id pub-id-type="pmid">22330894</pub-id>
</element-citation>
</ref>
<ref id="B78-molecules-24-03659">
<label>78.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Zhang</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Jiang</surname>
<given-names>X.</given-names>
</name>
<name>
<surname>Qin</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>Cuevas</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Jose</surname>
<given-names>P.A.</given-names>
</name>
<name>
<surname>Armando</surname>
<given-names>I.</given-names>
</name>
</person-group>
<article-title>Dopamine D2 receptors’ effects on renal inflammation are mediated by regulation of PP2A function</article-title>
<source>Am. J. Physiol.Renal Physiol.</source>
<year>2015</year>
<volume>310</volume>
<fpage>F128</fpage>
<lpage>F134</lpage>
<pub-id pub-id-type="doi">10.1152/ajprenal.00453.2014</pub-id>
<pub-id pub-id-type="pmid">26290374</pub-id>
</element-citation>
</ref>
<ref id="B79-molecules-24-03659">
<label>79.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Clerkin</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Naughton</surname>
<given-names>R.</given-names>
</name>
<name>
<surname>Quiney</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>Cotter</surname>
<given-names>T.</given-names>
</name>
</person-group>
<article-title>Mechanisms of ROS modulated cell survival during carcinogenesis</article-title>
<source>Cancer Lett</source>
<year>2008</year>
<volume>266</volume>
<fpage>30</fpage>
<lpage>36</lpage>
<pub-id pub-id-type="doi">10.1016/j.canlet.2008.02.029</pub-id>
<pub-id pub-id-type="pmid">18372105</pub-id>
</element-citation>
</ref>
<ref id="B80-molecules-24-03659">
<label>80.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Wainszelbaum</surname>
<given-names>M.J.</given-names>
</name>
<name>
<surname>Liu</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Kong</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>Srikanth</surname>
<given-names>P.</given-names>
</name>
<name>
<surname>Samovski</surname>
<given-names>D.</given-names>
</name>
<name>
<surname>Su</surname>
<given-names>X.</given-names>
</name>
<name>
<surname>Stahl</surname>
<given-names>P.D.</given-names>
</name>
</person-group>
<article-title>TBC1D3, a hominoid-specific gene, delays IRS-1 degradation and promotes insulin signaling by modulating p70 S6 kinase activity</article-title>
<source>PLoS ONE</source>
<year>2012</year>
<volume>7</volume>
<elocation-id>e31225</elocation-id>
<pub-id pub-id-type="doi">10.1371/annotation/6ef317b6-c9eb-44a4-8e4d-556d064ce987</pub-id>
<pub-id pub-id-type="pmid">22348058</pub-id>
</element-citation>
</ref>
<ref id="B81-molecules-24-03659">
<label>81.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Figueroa</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>Gálvez-Cancino</surname>
<given-names>F.</given-names>
</name>
<name>
<surname>Oyarce</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>Contreras</surname>
<given-names>F.</given-names>
</name>
<name>
<surname>Prado</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>Valeria</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>Cruz</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Lladser</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Pacheco</surname>
<given-names>R.</given-names>
</name>
</person-group>
<article-title>Inhibition of dopamine receptor D3 signaling in dendritic cells increases antigen cross-presentation to CD8+ T-cells favoring anti-tumor immunity</article-title>
<source>J. Neuroimmunol.</source>
<year>2017</year>
<volume>303</volume>
<fpage>99</fpage>
<lpage>107</lpage>
<pub-id pub-id-type="doi">10.1016/j.jneuroim.2016.12.014</pub-id>
<pub-id pub-id-type="pmid">28077213</pub-id>
</element-citation>
</ref>
<ref id="B82-molecules-24-03659">
<label>82.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Condamine</surname>
<given-names>T.</given-names>
</name>
<name>
<surname>Ramachandran</surname>
<given-names>I.</given-names>
</name>
<name>
<surname>Youn</surname>
<given-names>J.-I.</given-names>
</name>
<name>
<surname>Gabrilovich</surname>
<given-names>D.I.</given-names>
</name>
</person-group>
<article-title>Regulation of tumor metastasis by myeloid-derived suppressor cells</article-title>
<source>Annu. Rev. Med.</source>
<year>2015</year>
<volume>66</volume>
<fpage>97</fpage>
<lpage>110</lpage>
<pub-id pub-id-type="doi">10.1146/annurev-med-051013-052304</pub-id>
<pub-id pub-id-type="pmid">25341012</pub-id>
</element-citation>
</ref>
<ref id="B83-molecules-24-03659">
<label>83.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Kohanbash</surname>
<given-names>G.</given-names>
</name>
<name>
<surname>Okada</surname>
<given-names>H.</given-names>
</name>
</person-group>
<article-title>Myeloid-derived suppressor cells (MDSCs) in gliomas and glioma-development</article-title>
<source>Immunol. Investig.</source>
<year>2012</year>
<volume>41</volume>
<fpage>658</fpage>
<lpage>679</lpage>
<pub-id pub-id-type="doi">10.3109/08820139.2012.689591</pub-id>
<pub-id pub-id-type="pmid">23017140</pub-id>
</element-citation>
</ref>
<ref id="B84-molecules-24-03659">
<label>84.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Yang</surname>
<given-names>L.</given-names>
</name>
<name>
<surname>Edwards</surname>
<given-names>C.M.</given-names>
</name>
<name>
<surname>Mundy</surname>
<given-names>G.R.</given-names>
</name>
</person-group>
<article-title>Gr-1+ CD11b+ myeloid-derived suppressor cells: Formidable partners in tumor metastasis</article-title>
<source>J. Bone Miner. Res.</source>
<year>2010</year>
<volume>25</volume>
<fpage>1701</fpage>
<lpage>1706</lpage>
<pub-id pub-id-type="doi">10.1002/jbmr.154</pub-id>
<pub-id pub-id-type="pmid">20572008</pub-id>
</element-citation>
</ref>
<ref id="B85-molecules-24-03659">
<label>85.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Du</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Shang</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Chen</surname>
<given-names>F.</given-names>
</name>
<name>
<surname>Zhang</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Yin</surname>
<given-names>N.</given-names>
</name>
<name>
<surname>Xie</surname>
<given-names>T.</given-names>
</name>
<name>
<surname>Zhang</surname>
<given-names>H.</given-names>
</name>
<name>
<surname>Yu</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Liu</surname>
<given-names>F.</given-names>
</name>
</person-group>
<article-title>A CRISPR/Cas9–based screening for non-homologous end joining inhibitors reveals Ouabain and Penfluridol as Radiosensitizers</article-title>
<source>Mol. Cancer Ther.</source>
<year>2018</year>
<volume>17</volume>
<fpage>419</fpage>
<lpage>431</lpage>
<pub-id pub-id-type="doi">10.1158/1535-7163.MCT-17-0090</pub-id>
<pub-id pub-id-type="pmid">28864683</pub-id>
</element-citation>
</ref>
<ref id="B86-molecules-24-03659">
<label>86.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Mahaney</surname>
<given-names>B.L.</given-names>
</name>
<name>
<surname>Meek</surname>
<given-names>K.</given-names>
</name>
<name>
<surname>Lees-Miller</surname>
<given-names>S.P.</given-names>
</name>
</person-group>
<article-title>Repair of ionizing radiation-induced DNA double-strand breaks by non-homologous end-joining</article-title>
<source>Biochem J.</source>
<year>2009</year>
<volume>417</volume>
<fpage>639</fpage>
<lpage>650</lpage>
<pub-id pub-id-type="doi">10.1042/BJ20080413</pub-id>
<pub-id pub-id-type="pmid">19133841</pub-id>
</element-citation>
</ref>
<ref id="B87-molecules-24-03659">
<label>87.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Li</surname>
<given-names>Y.-H.</given-names>
</name>
<name>
<surname>Wang</surname>
<given-names>X.</given-names>
</name>
<name>
<surname>Pan</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Lee</surname>
<given-names>D.-H.</given-names>
</name>
<name>
<surname>Chowdhury</surname>
<given-names>D.</given-names>
</name>
<name>
<surname>Kimmelman</surname>
<given-names>A.C.</given-names>
</name>
</person-group>
<article-title>Inhibition of non-homologous end joining repair impairs pancreatic cancer growth and enhances radiation response</article-title>
<source>PloS ONE</source>
<year>2012</year>
<volume>7</volume>
<elocation-id>e39588</elocation-id>
<pub-id pub-id-type="doi">10.1371/journal.pone.0039588</pub-id>
<pub-id pub-id-type="pmid">22724027</pub-id>
</element-citation>
</ref>
<ref id="B88-molecules-24-03659">
<label>88.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Hait</surname>
<given-names>W.</given-names>
</name>
<name>
<surname>Gesmonde</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Lazo</surname>
<given-names>J.</given-names>
</name>
</person-group>
<article-title>Effect of anti-calmodulin drugs on the growth and sensitivity of C6 rat glioma cells to bleomycin</article-title>
<source>Anticancer Res.</source>
<year>1994</year>
<volume>14</volume>
<fpage>1711</fpage>
<lpage>1721</lpage>
<pub-id pub-id-type="pmid">7531409</pub-id>
</element-citation>
</ref>
<ref id="B89-molecules-24-03659">
<label>89.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Hudis</surname>
<given-names>C.A.</given-names>
</name>
<name>
<surname>Gianni</surname>
<given-names>L.</given-names>
</name>
</person-group>
<article-title>Triple-negative breast cancer: an unmet medical need</article-title>
<source>Oncologist</source>
<year>2011</year>
<volume>16</volume>
<fpage>1</fpage>
<lpage>11</lpage>
<pub-id pub-id-type="doi">10.1634/theoncologist.2011-S1-01</pub-id>
</element-citation>
</ref>
<ref id="B90-molecules-24-03659">
<label>90.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>O’Toole</surname>
<given-names>S.A.</given-names>
</name>
<name>
<surname>Beith</surname>
<given-names>J.M.</given-names>
</name>
<name>
<surname>Millar</surname>
<given-names>E.K.</given-names>
</name>
<name>
<surname>West</surname>
<given-names>R.</given-names>
</name>
<name>
<surname>McLean</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Cazet</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Swarbrick</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Oakes</surname>
<given-names>S.R.</given-names>
</name>
</person-group>
<article-title>Therapeutic targets in triple negative breast cancer</article-title>
<source>J. Clin. Pathol.</source>
<year>2013</year>
<volume>66</volume>
<fpage>530</fpage>
<lpage>542</lpage>
<pub-id pub-id-type="doi">10.1136/jclinpath-2012-201361</pub-id>
<pub-id pub-id-type="pmid">23436929</pub-id>
</element-citation>
</ref>
<ref id="B91-molecules-24-03659">
<label>91.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Magnon</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>Hall</surname>
<given-names>S.J.</given-names>
</name>
<name>
<surname>Lin</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Xue</surname>
<given-names>X.</given-names>
</name>
<name>
<surname>Gerber</surname>
<given-names>L.</given-names>
</name>
<name>
<surname>Freedland</surname>
<given-names>S.J.</given-names>
</name>
<name>
<surname>Frenette</surname>
<given-names>P.S.</given-names>
</name>
</person-group>
<article-title>Autonomic nerve development contributes to prostate cancer progression</article-title>
<source>Science</source>
<year>2013</year>
<volume>341</volume>
<fpage>1236361</fpage>
<pub-id pub-id-type="doi">10.1126/science.1236361</pub-id>
<pub-id pub-id-type="pmid">23846904</pub-id>
</element-citation>
</ref>
<ref id="B92-molecules-24-03659">
<label>92.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Sloan</surname>
<given-names>E.K.</given-names>
</name>
<name>
<surname>Priceman</surname>
<given-names>S.J.</given-names>
</name>
<name>
<surname>Cox</surname>
<given-names>B.F.</given-names>
</name>
<name>
<surname>Yu</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Pimentel</surname>
<given-names>M.A.</given-names>
</name>
<name>
<surname>Tangkanangnukul</surname>
<given-names>V.</given-names>
</name>
<name>
<surname>Arevalo</surname>
<given-names>J.M.</given-names>
</name>
<name>
<surname>Morizono</surname>
<given-names>K.</given-names>
</name>
<name>
<surname>Karanikolas</surname>
<given-names>B.D.</given-names>
</name>
<name>
<surname>Wu</surname>
<given-names>L.</given-names>
</name>
</person-group>
<article-title>The sympathetic nervous system induces a metastatic switch in primary breast cancer</article-title>
<source>Cancer Res.</source>
<year>2010</year>
<volume>70</volume>
<fpage>7042</fpage>
<lpage>7052</lpage>
<pub-id pub-id-type="doi">10.1158/0008-5472.CAN-10-0522</pub-id>
<pub-id pub-id-type="pmid">20823155</pub-id>
</element-citation>
</ref>
<ref id="B93-molecules-24-03659">
<label>93.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Reiche</surname>
<given-names>E.M.V.</given-names>
</name>
<name>
<surname>Nunes</surname>
<given-names>S.O.V.</given-names>
</name>
<name>
<surname>Morimoto</surname>
<given-names>H.K.</given-names>
</name>
</person-group>
<article-title>Stress, depression, the immune system, and cancer</article-title>
<source>Lancet Oncol.</source>
<year>2004</year>
<volume>5</volume>
<fpage>617</fpage>
<lpage>625</lpage>
<pub-id pub-id-type="doi">10.1016/S1470-2045(04)01597-9</pub-id>
<pub-id pub-id-type="pmid">15465465</pub-id>
</element-citation>
</ref>
<ref id="B94-molecules-24-03659">
<label>94.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Wang</surname>
<given-names>X.</given-names>
</name>
<name>
<surname>Wang</surname>
<given-names>Z.-B.</given-names>
</name>
<name>
<surname>Luo</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>Mao</surname>
<given-names>X.-Y.</given-names>
</name>
<name>
<surname>Li</surname>
<given-names>X.</given-names>
</name>
<name>
<surname>Yin</surname>
<given-names>J.-Y.</given-names>
</name>
<name>
<surname>Zhang</surname>
<given-names>W.</given-names>
</name>
<name>
<surname>Zhou</surname>
<given-names>H.-H.</given-names>
</name>
<name>
<surname>Liu</surname>
<given-names>Z.-Q.</given-names>
</name>
</person-group>
<article-title>The prospective value of dopamine receptors on Bio-behavior of tumor</article-title>
<source>J. Cancer</source>
<year>2019</year>
<volume>10</volume>
<fpage>1622</fpage>
<pub-id pub-id-type="doi">10.7150/jca.27780</pub-id>
<pub-id pub-id-type="pmid">31205518</pub-id>
</element-citation>
</ref>
<ref id="B95-molecules-24-03659">
<label>95.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Li</surname>
<given-names>Y.H.</given-names>
</name>
<name>
<surname>Yu</surname>
<given-names>C.Y.</given-names>
</name>
<name>
<surname>Li</surname>
<given-names>X.X.</given-names>
</name>
<name>
<surname>Zhang</surname>
<given-names>P.</given-names>
</name>
<name>
<surname>Tang</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Yang</surname>
<given-names>Q.</given-names>
</name>
<name>
<surname>Fu</surname>
<given-names>T.</given-names>
</name>
<name>
<surname>Zhang</surname>
<given-names>X.</given-names>
</name>
<name>
<surname>Cui</surname>
<given-names>X.</given-names>
</name>
<name>
<surname>Tu</surname>
<given-names>G.</given-names>
</name>
</person-group>
<article-title>Therapeutic target database update 2018: Enriched resource for facilitating bench-to-clinic research of targeted therapeutics</article-title>
<source>Nucleic Acids Res.</source>
<year>2017</year>
<volume>46</volume>
<fpage>D1121</fpage>
<lpage>D1127</lpage>
</element-citation>
</ref>
<ref id="B96-molecules-24-03659">
<label>96.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Bhowmik</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Khan</surname>
<given-names>R.</given-names>
</name>
<name>
<surname>Ghosh</surname>
<given-names>M.K.</given-names>
</name>
</person-group>
<article-title>Blood brain barrier: A challenge for effectual therapy of brain tumors</article-title>
<source>Biomed Res. Int.</source>
<year>2015</year>
<volume>2015</volume>
<fpage>320941</fpage>
<pub-id pub-id-type="doi">10.1155/2015/320941</pub-id>
<pub-id pub-id-type="pmid">25866775</pub-id>
</element-citation>
</ref>
</ref-list>
</back>
<floats-group>
<fig id="molecules-24-03659-f001" orientation="portrait" position="float">
<label>Figure 1</label>
<caption>
<p>The chemical structure of penfluridol and some antipsychotic drugs.</p>
</caption>
<graphic xlink:href="molecules-24-03659-g001"></graphic>
</fig>
<fig id="molecules-24-03659-f002" orientation="portrait" position="float">
<label>Figure 2</label>
<caption>
<p>The hallmark of cancer. Inhibition mark (ㅏ) indicates the part inhibited by penfluridol and question mark (?) indicates the part not yet studied. Modified from Hanahan & Weinberg’s report [
<xref rid="B14-molecules-24-03659" ref-type="bibr">14</xref>
].</p>
</caption>
<graphic xlink:href="molecules-24-03659-g002"></graphic>
</fig>
<fig id="molecules-24-03659-f003" orientation="portrait" position="float">
<label>Figure 3</label>
<caption>
<p>Inhibitory mechanisms of penfluridol on the hallmarks of cancer. Cancer hallmarks not yet studied with penfluridol are not shown in the figure.</p>
</caption>
<graphic xlink:href="molecules-24-03659-g003"></graphic>
</fig>
<fig id="molecules-24-03659-f004" orientation="portrait" position="float">
<label>Figure 4</label>
<caption>
<p>Two synthesized analogs (
<bold>A</bold>
,
<bold>B</bold>
) of penfluridol and penfluridol with the anticancer effect against MDA-MB-231 and Lewis Lung Carcinoma (LLC) cell lines and antipsychotic effects Ki of D2 receptor. Modified from Ashraf-Uz-Zaman’s report [
<xref rid="B9-molecules-24-03659" ref-type="bibr">9</xref>
].</p>
</caption>
<graphic xlink:href="molecules-24-03659-g004"></graphic>
</fig>
<table-wrap id="molecules-24-03659-t001" orientation="portrait" position="float">
<object-id pub-id-type="pii">molecules-24-03659-t001_Table 1</object-id>
<label>Table 1</label>
<caption>
<p>Types of cancer were inhibited by penfluridol.</p>
</caption>
<table frame="hsides" rules="groups">
<thead>
<tr>
<th align="center" valign="middle" style="border-top:solid thin;border-bottom:solid thin" rowspan="1" colspan="1">Types of Cancer</th>
<th align="center" valign="middle" style="border-top:solid thin;border-bottom:solid thin" rowspan="1" colspan="1">Tested Cell Lines</th>
<th align="center" valign="middle" style="border-top:solid thin;border-bottom:solid thin" rowspan="1" colspan="1">IC
<sub>50</sub>
(µmol/L)</th>
<th align="center" valign="middle" style="border-top:solid thin;border-bottom:solid thin" rowspan="1" colspan="1">References</th>
</tr>
</thead>
<tbody>
<tr>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">Breast cancer</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">MDA-MB-231, HCC 1806, 4 T1</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">(5.75–7.5)/24h</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">[
<xref rid="B10-molecules-24-03659" ref-type="bibr">10</xref>
]</td>
</tr>
<tr>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">Glioblastoma</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">GBM 43, GBM 10, GBM 44, GBM 28, GBM 14, T98G, U251 MG, U87MG, SJ-GBM2, CHLA-200</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">(4.5–10)/24h</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">[
<xref rid="B11-molecules-24-03659" ref-type="bibr">11</xref>
]</td>
</tr>
<tr>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">Pancreatic cancer</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">Panc-1, AsPC-1, BxPC-3</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">(6.0–6.5)/24h</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">[
<xref rid="B12-molecules-24-03659" ref-type="bibr">12</xref>
]</td>
</tr>
<tr>
<td rowspan="2" align="center" valign="middle" style="border-bottom:solid thin" colspan="1">Lung Cancer</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">LCC</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">4.3/24h</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">[
<xref rid="B9-molecules-24-03659" ref-type="bibr">9</xref>
]</td>
</tr>
<tr>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">LL/2</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">2.45/48h</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">[
<xref rid="B13-molecules-24-03659" ref-type="bibr">13</xref>
]</td>
</tr>
<tr>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">Colon Cancer</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">CT26</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">2.74/48h</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">[
<xref rid="B13-molecules-24-03659" ref-type="bibr">13</xref>
]</td>
</tr>
</tbody>
</table>
</table-wrap>
</floats-group>
</pmc>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/ChloroquineV1/Data/Pmc/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000A69  | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Pmc/Corpus/biblio.hfd -nk 000A69  | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    ChloroquineV1
   |flux=    Pmc
   |étape=   Corpus
   |type=    RBID
   |clé=     
   |texte=   
}}

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Wed Mar 25 22:43:59 2020. Site generation: Sun Jan 31 12:44:45 2021