Serveur d'exploration Chloroquine

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Autophagy in neutrophils

Identifieur interne : 000A53 ( Pmc/Corpus ); précédent : 000A52; suivant : 000A54

Autophagy in neutrophils

Auteurs : Sanjeeb Shrestha ; Jae Man Lee ; Chang-Won Hong

Source :

RBID : PMC:6940497

Abstract

Autophagy is a highly conserved intracellular degradation and energy-recycling mechanism that contributes to the maintenance of cellular homeostasis. Extensive researches over the past decades have defined the role of autophagy innate immune cells. In this review, we describe the current state of knowledge regarding the role of autophagy in neutrophil biology and a picture of molecular mechanism underlying autophagy in neutrophils. Neutrophils are professional phagocytes that comprise the first line of defense against pathogen. Autophagy machineries are highly conserved in neutrophils. Autophagy is not only involved in generalized function of neutrophils such as differentiation in bone marrow but also plays crucial role effector functions of neutrophils such as granule formation, degranulation, neutrophil extracellular traps release, cytokine production, bactericidal activity and controlling inflammation. This review outlines the current understanding of autophagy in neutrophils and provides insight towards identification of novel therapeutics targeting autophagy in neutrophils.


Url:
DOI: 10.4196/kjpp.2020.24.1.1
PubMed: 31908569
PubMed Central: 6940497

Links to Exploration step

PMC:6940497

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Autophagy in neutrophils</title>
<author>
<name sortKey="Shrestha, Sanjeeb" sort="Shrestha, Sanjeeb" uniqKey="Shrestha S" first="Sanjeeb" last="Shrestha">Sanjeeb Shrestha</name>
<affiliation>
<nlm:aff id="A1">Department of Physiology, School of Medicine, Kyungpook National University, Daegu 41944,
<country>Korea</country>
.</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Lee, Jae Man" sort="Lee, Jae Man" uniqKey="Lee J" first="Jae Man" last="Lee">Jae Man Lee</name>
<affiliation>
<nlm:aff id="A2">Department of Biochemistry and Cell Biology, School of Medicine, Kyungpook National University, Daegu 41944,
<country>Korea</country>
.</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Hong, Chang Won" sort="Hong, Chang Won" uniqKey="Hong C" first="Chang-Won" last="Hong">Chang-Won Hong</name>
<affiliation>
<nlm:aff id="A1">Department of Physiology, School of Medicine, Kyungpook National University, Daegu 41944,
<country>Korea</country>
.</nlm:aff>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PMC</idno>
<idno type="pmid">31908569</idno>
<idno type="pmc">6940497</idno>
<idno type="url">http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6940497</idno>
<idno type="RBID">PMC:6940497</idno>
<idno type="doi">10.4196/kjpp.2020.24.1.1</idno>
<date when="2019">2019</date>
<idno type="wicri:Area/Pmc/Corpus">000A53</idno>
<idno type="wicri:explorRef" wicri:stream="Pmc" wicri:step="Corpus" wicri:corpus="PMC">000A53</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a" type="main">Autophagy in neutrophils</title>
<author>
<name sortKey="Shrestha, Sanjeeb" sort="Shrestha, Sanjeeb" uniqKey="Shrestha S" first="Sanjeeb" last="Shrestha">Sanjeeb Shrestha</name>
<affiliation>
<nlm:aff id="A1">Department of Physiology, School of Medicine, Kyungpook National University, Daegu 41944,
<country>Korea</country>
.</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Lee, Jae Man" sort="Lee, Jae Man" uniqKey="Lee J" first="Jae Man" last="Lee">Jae Man Lee</name>
<affiliation>
<nlm:aff id="A2">Department of Biochemistry and Cell Biology, School of Medicine, Kyungpook National University, Daegu 41944,
<country>Korea</country>
.</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Hong, Chang Won" sort="Hong, Chang Won" uniqKey="Hong C" first="Chang-Won" last="Hong">Chang-Won Hong</name>
<affiliation>
<nlm:aff id="A1">Department of Physiology, School of Medicine, Kyungpook National University, Daegu 41944,
<country>Korea</country>
.</nlm:aff>
</affiliation>
</author>
</analytic>
<series>
<title level="j">The Korean Journal of Physiology & Pharmacology : Official Journal of the Korean Physiological Society and the Korean Society of Pharmacology</title>
<idno type="ISSN">1226-4512</idno>
<idno type="eISSN">2093-3827</idno>
<imprint>
<date when="2019">2019</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<p>Autophagy is a highly conserved intracellular degradation and energy-recycling mechanism that contributes to the maintenance of cellular homeostasis. Extensive researches over the past decades have defined the role of autophagy innate immune cells. In this review, we describe the current state of knowledge regarding the role of autophagy in neutrophil biology and a picture of molecular mechanism underlying autophagy in neutrophils. Neutrophils are professional phagocytes that comprise the first line of defense against pathogen. Autophagy machineries are highly conserved in neutrophils. Autophagy is not only involved in generalized function of neutrophils such as differentiation in bone marrow but also plays crucial role effector functions of neutrophils such as granule formation, degranulation, neutrophil extracellular traps release, cytokine production, bactericidal activity and controlling inflammation. This review outlines the current understanding of autophagy in neutrophils and provides insight towards identification of novel therapeutics targeting autophagy in neutrophils.</p>
</div>
</front>
<back>
<div1 type="bibliography">
<listBibl>
<biblStruct>
<analytic>
<author>
<name sortKey="Nathan, C" uniqKey="Nathan C">C Nathan</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Furze, Rc" uniqKey="Furze R">RC Furze</name>
</author>
<author>
<name sortKey="Rankin, Sm" uniqKey="Rankin S">SM Rankin</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Hampton, Mb" uniqKey="Hampton M">MB Hampton</name>
</author>
<author>
<name sortKey="Kettle, Aj" uniqKey="Kettle A">AJ Kettle</name>
</author>
<author>
<name sortKey="Winterbourn, Cc" uniqKey="Winterbourn C">CC Winterbourn</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Segal, Aw" uniqKey="Segal A">AW Segal</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Brinkmann, V" uniqKey="Brinkmann V">V Brinkmann</name>
</author>
<author>
<name sortKey="Reichard, U" uniqKey="Reichard U">U Reichard</name>
</author>
<author>
<name sortKey="Goosmann, C" uniqKey="Goosmann C">C Goosmann</name>
</author>
<author>
<name sortKey="Fauler, B" uniqKey="Fauler B">B Fauler</name>
</author>
<author>
<name sortKey="Uhlemann, Y" uniqKey="Uhlemann Y">Y Uhlemann</name>
</author>
<author>
<name sortKey="Weiss, Ds" uniqKey="Weiss D">DS Weiss</name>
</author>
<author>
<name sortKey="Weinrauch, Y" uniqKey="Weinrauch Y">Y Weinrauch</name>
</author>
<author>
<name sortKey="Zychlinsky, A" uniqKey="Zychlinsky A">A Zychlinsky</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Naegele, M" uniqKey="Naegele M">M Naegele</name>
</author>
<author>
<name sortKey="Tillack, K" uniqKey="Tillack K">K Tillack</name>
</author>
<author>
<name sortKey="Reinhardt, S" uniqKey="Reinhardt S">S Reinhardt</name>
</author>
<author>
<name sortKey="Schippling, S" uniqKey="Schippling S">S Schippling</name>
</author>
<author>
<name sortKey="Martin, R" uniqKey="Martin R">R Martin</name>
</author>
<author>
<name sortKey="Sospedra, M" uniqKey="Sospedra M">M Sospedra</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Borregaard, N" uniqKey="Borregaard N">N Borregaard</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ryter, Sw" uniqKey="Ryter S">SW Ryter</name>
</author>
<author>
<name sortKey="Cloonan, Sm" uniqKey="Cloonan S">SM Cloonan</name>
</author>
<author>
<name sortKey="Choi, Am" uniqKey="Choi A">AM Choi</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Nezis, Ip" uniqKey="Nezis I">IP Nezis</name>
</author>
<author>
<name sortKey="Vaccaro, Mi" uniqKey="Vaccaro M">MI Vaccaro</name>
</author>
<author>
<name sortKey="Devenish, Rj" uniqKey="Devenish R">RJ Devenish</name>
</author>
<author>
<name sortKey="Juhasz, G" uniqKey="Juhasz G">G Juhász</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Mitroulis, I" uniqKey="Mitroulis I">I Mitroulis</name>
</author>
<author>
<name sortKey="Kourtzelis, I" uniqKey="Kourtzelis I">I Kourtzelis</name>
</author>
<author>
<name sortKey="Kambas, K" uniqKey="Kambas K">K Kambas</name>
</author>
<author>
<name sortKey="Rafail, S" uniqKey="Rafail S">S Rafail</name>
</author>
<author>
<name sortKey="Chrysanthopoulou, A" uniqKey="Chrysanthopoulou A">A Chrysanthopoulou</name>
</author>
<author>
<name sortKey="Speletas, M" uniqKey="Speletas M">M Speletas</name>
</author>
<author>
<name sortKey="Ritis, K" uniqKey="Ritis K">K Ritis</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Yang, Z" uniqKey="Yang Z">Z Yang</name>
</author>
<author>
<name sortKey="Klionsky, Dj" uniqKey="Klionsky D">DJ Klionsky</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Das, G" uniqKey="Das G">G Das</name>
</author>
<author>
<name sortKey="Shravage, Bv" uniqKey="Shravage B">BV Shravage</name>
</author>
<author>
<name sortKey="Baehrecke, Eh" uniqKey="Baehrecke E">EH Baehrecke</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Cuervo, Am" uniqKey="Cuervo A">AM Cuervo</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Wang, Cw" uniqKey="Wang C">CW Wang</name>
</author>
<author>
<name sortKey="Klionsky, Dj" uniqKey="Klionsky D">DJ Klionsky</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Mizushima, N" uniqKey="Mizushima N">N Mizushima</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Itakura, A" uniqKey="Itakura A">A Itakura</name>
</author>
<author>
<name sortKey="Mccarty, Oj" uniqKey="Mccarty O">OJ McCarty</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Parzych, Kr" uniqKey="Parzych K">KR Parzych</name>
</author>
<author>
<name sortKey="Klionsky, Dj" uniqKey="Klionsky D">DJ Klionsky</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Backer, Jm" uniqKey="Backer J">JM Backer</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Mizushima, N" uniqKey="Mizushima N">N Mizushima</name>
</author>
<author>
<name sortKey="Noda, T" uniqKey="Noda T">T Noda</name>
</author>
<author>
<name sortKey="Yoshimori, T" uniqKey="Yoshimori T">T Yoshimori</name>
</author>
<author>
<name sortKey="Tanaka, Y" uniqKey="Tanaka Y">Y Tanaka</name>
</author>
<author>
<name sortKey="Ishii, T" uniqKey="Ishii T">T Ishii</name>
</author>
<author>
<name sortKey="George, Md" uniqKey="George M">MD George</name>
</author>
<author>
<name sortKey="Klionsky, Dj" uniqKey="Klionsky D">DJ Klionsky</name>
</author>
<author>
<name sortKey="Ohsumi, M" uniqKey="Ohsumi M">M Ohsumi</name>
</author>
<author>
<name sortKey="Ohsumi, Y" uniqKey="Ohsumi Y">Y Ohsumi</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Glick, D" uniqKey="Glick D">D Glick</name>
</author>
<author>
<name sortKey="Barth, S" uniqKey="Barth S">S Barth</name>
</author>
<author>
<name sortKey="Macleod, Kf" uniqKey="Macleod K">KF Macleod</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ichimura, Y" uniqKey="Ichimura Y">Y Ichimura</name>
</author>
<author>
<name sortKey="Kirisako, T" uniqKey="Kirisako T">T Kirisako</name>
</author>
<author>
<name sortKey="Takao, T" uniqKey="Takao T">T Takao</name>
</author>
<author>
<name sortKey="Satomi, Y" uniqKey="Satomi Y">Y Satomi</name>
</author>
<author>
<name sortKey="Shimonishi, Y" uniqKey="Shimonishi Y">Y Shimonishi</name>
</author>
<author>
<name sortKey="Ishihara, N" uniqKey="Ishihara N">N Ishihara</name>
</author>
<author>
<name sortKey="Mizushima, N" uniqKey="Mizushima N">N Mizushima</name>
</author>
<author>
<name sortKey="Tanida, I" uniqKey="Tanida I">I Tanida</name>
</author>
<author>
<name sortKey="Kominami, E" uniqKey="Kominami E">E Kominami</name>
</author>
<author>
<name sortKey="Ohsumi, M" uniqKey="Ohsumi M">M Ohsumi</name>
</author>
<author>
<name sortKey="Noda, T" uniqKey="Noda T">T Noda</name>
</author>
<author>
<name sortKey="Ohsumi, Y" uniqKey="Ohsumi Y">Y Ohsumi</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Codogno, P" uniqKey="Codogno P">P Codogno</name>
</author>
<author>
<name sortKey="Mehrpour, M" uniqKey="Mehrpour M">M Mehrpour</name>
</author>
<author>
<name sortKey="Proikas Cezanne, T" uniqKey="Proikas Cezanne T">T Proikas-Cezanne</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Chargui, A" uniqKey="Chargui A">A Chargui</name>
</author>
<author>
<name sortKey="Cesaro, A" uniqKey="Cesaro A">A Cesaro</name>
</author>
<author>
<name sortKey="Mimouna, S" uniqKey="Mimouna S">S Mimouna</name>
</author>
<author>
<name sortKey="Fareh, M" uniqKey="Fareh M">M Fareh</name>
</author>
<author>
<name sortKey="Brest, P" uniqKey="Brest P">P Brest</name>
</author>
<author>
<name sortKey="Naquet, P" uniqKey="Naquet P">P Naquet</name>
</author>
<author>
<name sortKey="Darfeuille Michaud, A" uniqKey="Darfeuille Michaud A">A Darfeuille-Michaud</name>
</author>
<author>
<name sortKey="Hebuterne, X" uniqKey="Hebuterne X">X Hébuterne</name>
</author>
<author>
<name sortKey="Mograbi, B" uniqKey="Mograbi B">B Mograbi</name>
</author>
<author>
<name sortKey="Vouret Craviari, V" uniqKey="Vouret Craviari V">V Vouret-Craviari</name>
</author>
<author>
<name sortKey="Hofman, P" uniqKey="Hofman P">P Hofman</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Goldmann, O" uniqKey="Goldmann O">O Goldmann</name>
</author>
<author>
<name sortKey="Medina, E" uniqKey="Medina E">E Medina</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Mihalache, Cc" uniqKey="Mihalache C">CC Mihalache</name>
</author>
<author>
<name sortKey="Yousefi, S" uniqKey="Yousefi S">S Yousefi</name>
</author>
<author>
<name sortKey="Conus, S" uniqKey="Conus S">S Conus</name>
</author>
<author>
<name sortKey="Villiger, Pm" uniqKey="Villiger P">PM Villiger</name>
</author>
<author>
<name sortKey="Schneider, Em" uniqKey="Schneider E">EM Schneider</name>
</author>
<author>
<name sortKey="Simon, Hu" uniqKey="Simon H">HU Simon</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Huang, J" uniqKey="Huang J">J Huang</name>
</author>
<author>
<name sortKey="Canadien, V" uniqKey="Canadien V">V Canadien</name>
</author>
<author>
<name sortKey="Lam, Gy" uniqKey="Lam G">GY Lam</name>
</author>
<author>
<name sortKey="Steinberg, Be" uniqKey="Steinberg B">BE Steinberg</name>
</author>
<author>
<name sortKey="Dinauer, Mc" uniqKey="Dinauer M">MC Dinauer</name>
</author>
<author>
<name sortKey="Magalhaes, Ma" uniqKey="Magalhaes M">MA Magalhaes</name>
</author>
<author>
<name sortKey="Glogauer, M" uniqKey="Glogauer M">M Glogauer</name>
</author>
<author>
<name sortKey="Grinstein, S" uniqKey="Grinstein S">S Grinstein</name>
</author>
<author>
<name sortKey="Brumell, Jh" uniqKey="Brumell J">JH Brumell</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Lv, Xx" uniqKey="Lv X">XX Lv</name>
</author>
<author>
<name sortKey="Liu, Ss" uniqKey="Liu S">SS Liu</name>
</author>
<author>
<name sortKey="Li, K" uniqKey="Li K">K Li</name>
</author>
<author>
<name sortKey="Cui, B" uniqKey="Cui B">B Cui</name>
</author>
<author>
<name sortKey="Liu, C" uniqKey="Liu C">C Liu</name>
</author>
<author>
<name sortKey="Hu, Zw" uniqKey="Hu Z">ZW Hu</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Sharma, A" uniqKey="Sharma A">A Sharma</name>
</author>
<author>
<name sortKey="Simonson, Tj" uniqKey="Simonson T">TJ Simonson</name>
</author>
<author>
<name sortKey="Jondle, Cn" uniqKey="Jondle C">CN Jondle</name>
</author>
<author>
<name sortKey="Mishra, Bb" uniqKey="Mishra B">BB Mishra</name>
</author>
<author>
<name sortKey="Sharma, J" uniqKey="Sharma J">J Sharma</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Zhao, M" uniqKey="Zhao M">M Zhao</name>
</author>
<author>
<name sortKey="Klionsky, Dj" uniqKey="Klionsky D">DJ Klionsky</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Xu, F" uniqKey="Xu F">F Xu</name>
</author>
<author>
<name sortKey="Zhang, C" uniqKey="Zhang C">C Zhang</name>
</author>
<author>
<name sortKey="Zou, Z" uniqKey="Zou Z">Z Zou</name>
</author>
<author>
<name sortKey="Fan, Eky" uniqKey="Fan E">EKY Fan</name>
</author>
<author>
<name sortKey="Chen, L" uniqKey="Chen L">L Chen</name>
</author>
<author>
<name sortKey="Li, Y" uniqKey="Li Y">Y Li</name>
</author>
<author>
<name sortKey="Billiar, Tr" uniqKey="Billiar T">TR Billiar</name>
</author>
<author>
<name sortKey="Wilson, Ma" uniqKey="Wilson M">MA Wilson</name>
</author>
<author>
<name sortKey="Shi, X" uniqKey="Shi X">X Shi</name>
</author>
<author>
<name sortKey="Fan, J" uniqKey="Fan J">J Fan</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Bhattacharya, A" uniqKey="Bhattacharya A">A Bhattacharya</name>
</author>
<author>
<name sortKey="Wei, Q" uniqKey="Wei Q">Q Wei</name>
</author>
<author>
<name sortKey="Shin, Jn" uniqKey="Shin J">JN Shin</name>
</author>
<author>
<name sortKey="Abdel Fattah, E" uniqKey="Abdel Fattah E">E Abdel Fattah</name>
</author>
<author>
<name sortKey="Bonilla, Dl" uniqKey="Bonilla D">DL Bonilla</name>
</author>
<author>
<name sortKey="Xiang, Q" uniqKey="Xiang Q">Q Xiang</name>
</author>
<author>
<name sortKey="Eissa, Nt" uniqKey="Eissa N">NT Eissa</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Park, Sy" uniqKey="Park S">SY Park</name>
</author>
<author>
<name sortKey="Shrestha, S" uniqKey="Shrestha S">S Shrestha</name>
</author>
<author>
<name sortKey="Youn, Yj" uniqKey="Youn Y">YJ Youn</name>
</author>
<author>
<name sortKey="Kim, Jk" uniqKey="Kim J">JK Kim</name>
</author>
<author>
<name sortKey="Kim, Sy" uniqKey="Kim S">SY Kim</name>
</author>
<author>
<name sortKey="Kim, Hj" uniqKey="Kim H">HJ Kim</name>
</author>
<author>
<name sortKey="Park, Sh" uniqKey="Park S">SH Park</name>
</author>
<author>
<name sortKey="Ahn, Wg" uniqKey="Ahn W">WG Ahn</name>
</author>
<author>
<name sortKey="Kim, S" uniqKey="Kim S">S Kim</name>
</author>
<author>
<name sortKey="Lee, Mg" uniqKey="Lee M">MG Lee</name>
</author>
<author>
<name sortKey="Jung, Ks" uniqKey="Jung K">KS Jung</name>
</author>
<author>
<name sortKey="Park, Yb" uniqKey="Park Y">YB Park</name>
</author>
<author>
<name sortKey="Mo, Ek" uniqKey="Mo E">EK Mo</name>
</author>
<author>
<name sortKey="Ko, Y" uniqKey="Ko Y">Y Ko</name>
</author>
<author>
<name sortKey="Lee, Sy" uniqKey="Lee S">SY Lee</name>
</author>
<author>
<name sortKey="Koh, Y" uniqKey="Koh Y">Y Koh</name>
</author>
<author>
<name sortKey="Park, Mj" uniqKey="Park M">MJ Park</name>
</author>
<author>
<name sortKey="Song, Dk" uniqKey="Song D">DK Song</name>
</author>
<author>
<name sortKey="Hong, Cw" uniqKey="Hong C">CW Hong</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Klionsky, Dj" uniqKey="Klionsky D">DJ Klionsky</name>
</author>
<author>
<name sortKey="Abdelmohsen, K" uniqKey="Abdelmohsen K">K Abdelmohsen</name>
</author>
<author>
<name sortKey="Abe, A" uniqKey="Abe A">A Abe</name>
</author>
<author>
<name sortKey="Abedin, Mj" uniqKey="Abedin M">MJ Abedin</name>
</author>
<author>
<name sortKey="Abeliovich, H" uniqKey="Abeliovich H">H Abeliovich</name>
</author>
<author>
<name sortKey="Acevedo Arozena, A" uniqKey="Acevedo Arozena A">A Acevedo Arozena</name>
</author>
<author>
<name sortKey="Adachi, H" uniqKey="Adachi H">H Adachi</name>
</author>
<author>
<name sortKey="Adams, Cm" uniqKey="Adams C">CM Adams</name>
</author>
<author>
<name sortKey="Adams, Pd" uniqKey="Adams P">PD Adams</name>
</author>
<author>
<name sortKey="Adeli, K" uniqKey="Adeli K">K Adeli</name>
</author>
<author>
<name sortKey="Adhihetty, Pj" uniqKey="Adhihetty P">PJ Adhihetty</name>
</author>
<author>
<name sortKey="Adler, Sg" uniqKey="Adler S">SG Adler</name>
</author>
<author>
<name sortKey="Agam, G" uniqKey="Agam G">G Agam</name>
</author>
<author>
<name sortKey="Agarwal, R" uniqKey="Agarwal R">R Agarwal</name>
</author>
<author>
<name sortKey="Aghi, Mk" uniqKey="Aghi M">MK Aghi</name>
</author>
<author>
<name sortKey="Agnello, M" uniqKey="Agnello M">M Agnello</name>
</author>
<author>
<name sortKey="Agostinis, P" uniqKey="Agostinis P">P Agostinis</name>
</author>
<author>
<name sortKey="Aguilar, Pv" uniqKey="Aguilar P">PV Aguilar</name>
</author>
<author>
<name sortKey="Aguirre Ghiso, J" uniqKey="Aguirre Ghiso J">J Aguirre-Ghiso</name>
</author>
<author>
<name sortKey="Airoldi, Em" uniqKey="Airoldi E">EM Airoldi</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Rozman, S" uniqKey="Rozman S">S Rožman</name>
</author>
<author>
<name sortKey="Yousefi, S" uniqKey="Yousefi S">S Yousefi</name>
</author>
<author>
<name sortKey="Oberson, K" uniqKey="Oberson K">K Oberson</name>
</author>
<author>
<name sortKey="Kaufmann, T" uniqKey="Kaufmann T">T Kaufmann</name>
</author>
<author>
<name sortKey="Benarafa, C" uniqKey="Benarafa C">C Benarafa</name>
</author>
<author>
<name sortKey="Simon, Hu" uniqKey="Simon H">HU Simon</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kimmey, Jm" uniqKey="Kimmey J">JM Kimmey</name>
</author>
<author>
<name sortKey="Huynh, Jp" uniqKey="Huynh J">JP Huynh</name>
</author>
<author>
<name sortKey="Weiss, La" uniqKey="Weiss L">LA Weiss</name>
</author>
<author>
<name sortKey="Park, S" uniqKey="Park S">S Park</name>
</author>
<author>
<name sortKey="Kambal, A" uniqKey="Kambal A">A Kambal</name>
</author>
<author>
<name sortKey="Debnath, J" uniqKey="Debnath J">J Debnath</name>
</author>
<author>
<name sortKey="Virgin, Hw" uniqKey="Virgin H">HW Virgin</name>
</author>
<author>
<name sortKey="Stallings, Cl" uniqKey="Stallings C">CL Stallings</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Theilgaard Monch, K" uniqKey="Theilgaard Monch K">K Theilgaard-Mönch</name>
</author>
<author>
<name sortKey="Jacobsen, Lc" uniqKey="Jacobsen L">LC Jacobsen</name>
</author>
<author>
<name sortKey="Borup, R" uniqKey="Borup R">R Borup</name>
</author>
<author>
<name sortKey="Rasmussen, T" uniqKey="Rasmussen T">T Rasmussen</name>
</author>
<author>
<name sortKey="Bjerregaard, Md" uniqKey="Bjerregaard M">MD Bjerregaard</name>
</author>
<author>
<name sortKey="Nielsen, Fc" uniqKey="Nielsen F">FC Nielsen</name>
</author>
<author>
<name sortKey="Cowland, Jb" uniqKey="Cowland J">JB Cowland</name>
</author>
<author>
<name sortKey="Borregaard, N" uniqKey="Borregaard N">N Borregaard</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Akashi, K" uniqKey="Akashi K">K Akashi</name>
</author>
<author>
<name sortKey="He, X" uniqKey="He X">X He</name>
</author>
<author>
<name sortKey="Chen, J" uniqKey="Chen J">J Chen</name>
</author>
<author>
<name sortKey="Iwasaki, H" uniqKey="Iwasaki H">H Iwasaki</name>
</author>
<author>
<name sortKey="Niu, C" uniqKey="Niu C">C Niu</name>
</author>
<author>
<name sortKey="Steenhard, B" uniqKey="Steenhard B">B Steenhard</name>
</author>
<author>
<name sortKey="Zhang, J" uniqKey="Zhang J">J Zhang</name>
</author>
<author>
<name sortKey="Haug, J" uniqKey="Haug J">J Haug</name>
</author>
<author>
<name sortKey="Li, L" uniqKey="Li L">L Li</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Huang, Y" uniqKey="Huang Y">Y Huang</name>
</author>
<author>
<name sortKey="Tan, P" uniqKey="Tan P">P Tan</name>
</author>
<author>
<name sortKey="Wang, X" uniqKey="Wang X">X Wang</name>
</author>
<author>
<name sortKey="Yi, Y" uniqKey="Yi Y">Y Yi</name>
</author>
<author>
<name sortKey="Hu, Y" uniqKey="Hu Y">Y Hu</name>
</author>
<author>
<name sortKey="Wang, D" uniqKey="Wang D">D Wang</name>
</author>
<author>
<name sortKey="Wang, F" uniqKey="Wang F">F Wang</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Koschade, Se" uniqKey="Koschade S">SE Koschade</name>
</author>
<author>
<name sortKey="Brandts, Ch" uniqKey="Brandts C">CH Brandts</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Orsini, M" uniqKey="Orsini M">M Orsini</name>
</author>
<author>
<name sortKey="Chateauvieux, S" uniqKey="Chateauvieux S">S Chateauvieux</name>
</author>
<author>
<name sortKey="Rhim, J" uniqKey="Rhim J">J Rhim</name>
</author>
<author>
<name sortKey="Gaigneaux, A" uniqKey="Gaigneaux A">A Gaigneaux</name>
</author>
<author>
<name sortKey="Cheillan, D" uniqKey="Cheillan D">D Cheillan</name>
</author>
<author>
<name sortKey="Christov, C" uniqKey="Christov C">C Christov</name>
</author>
<author>
<name sortKey="Dicato, M" uniqKey="Dicato M">M Dicato</name>
</author>
<author>
<name sortKey="Morceau, F" uniqKey="Morceau F">F Morceau</name>
</author>
<author>
<name sortKey="Diederich, M" uniqKey="Diederich M">M Diederich</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Da Silva, Fm" uniqKey="Da Silva F">FM da Silva</name>
</author>
<author>
<name sortKey="Massart Leen, Am" uniqKey="Massart Leen A">AM Massart-Leën</name>
</author>
<author>
<name sortKey="Burvenich, C" uniqKey="Burvenich C">C Burvenich</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Riffelmacher, T" uniqKey="Riffelmacher T">T Riffelmacher</name>
</author>
<author>
<name sortKey="Clarke, A" uniqKey="Clarke A">A Clarke</name>
</author>
<author>
<name sortKey="Richter, Fc" uniqKey="Richter F">FC Richter</name>
</author>
<author>
<name sortKey="Stranks, A" uniqKey="Stranks A">A Stranks</name>
</author>
<author>
<name sortKey="Pandey, S" uniqKey="Pandey S">S Pandey</name>
</author>
<author>
<name sortKey="Danielli, S" uniqKey="Danielli S">S Danielli</name>
</author>
<author>
<name sortKey="Hublitz, P" uniqKey="Hublitz P">P Hublitz</name>
</author>
<author>
<name sortKey="Yu, Z" uniqKey="Yu Z">Z Yu</name>
</author>
<author>
<name sortKey="Johnson, E" uniqKey="Johnson E">E Johnson</name>
</author>
<author>
<name sortKey="Schwerd, T" uniqKey="Schwerd T">T Schwerd</name>
</author>
<author>
<name sortKey="Mccullagh, J" uniqKey="Mccullagh J">J McCullagh</name>
</author>
<author>
<name sortKey="Uhlig, H" uniqKey="Uhlig H">H Uhlig</name>
</author>
<author>
<name sortKey="Jacobsen, Sew" uniqKey="Jacobsen S">SEW Jacobsen</name>
</author>
<author>
<name sortKey="Simon, Ak" uniqKey="Simon A">AK Simon</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kantari, C" uniqKey="Kantari C">C Kantari</name>
</author>
<author>
<name sortKey="Pederzoli Ribeil, M" uniqKey="Pederzoli Ribeil M">M Pederzoli-Ribeil</name>
</author>
<author>
<name sortKey="Witko Sarsat, V" uniqKey="Witko Sarsat V">V Witko-Sarsat</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Wong, Co" uniqKey="Wong C">CO Wong</name>
</author>
<author>
<name sortKey="Gregory, S" uniqKey="Gregory S">S Gregory</name>
</author>
<author>
<name sortKey="Hu, H" uniqKey="Hu H">H Hu</name>
</author>
<author>
<name sortKey="Chao, Y" uniqKey="Chao Y">Y Chao</name>
</author>
<author>
<name sortKey="Sepulveda, Ve" uniqKey="Sepulveda V">VE Sepúlveda</name>
</author>
<author>
<name sortKey="He, Y" uniqKey="He Y">Y He</name>
</author>
<author>
<name sortKey="Li Kroeger, D" uniqKey="Li Kroeger D">D Li-Kroeger</name>
</author>
<author>
<name sortKey="Goldman, We" uniqKey="Goldman W">WE Goldman</name>
</author>
<author>
<name sortKey="Bellen, Hj" uniqKey="Bellen H">HJ Bellen</name>
</author>
<author>
<name sortKey="Venkatachalam, K" uniqKey="Venkatachalam K">K Venkatachalam</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Lee, Wl" uniqKey="Lee W">WL Lee</name>
</author>
<author>
<name sortKey="Harrison, Re" uniqKey="Harrison R">RE Harrison</name>
</author>
<author>
<name sortKey="Grinstein, S" uniqKey="Grinstein S">S Grinstein</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Chargui, A" uniqKey="Chargui A">A Chargui</name>
</author>
<author>
<name sortKey="El May, Mv" uniqKey="El May M">MV El May</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Gong, L" uniqKey="Gong L">L Gong</name>
</author>
<author>
<name sortKey="Cullinane, M" uniqKey="Cullinane M">M Cullinane</name>
</author>
<author>
<name sortKey="Treerat, P" uniqKey="Treerat P">P Treerat</name>
</author>
<author>
<name sortKey="Ramm, G" uniqKey="Ramm G">G Ramm</name>
</author>
<author>
<name sortKey="Prescott, M" uniqKey="Prescott M">M Prescott</name>
</author>
<author>
<name sortKey="Adler, B" uniqKey="Adler B">B Adler</name>
</author>
<author>
<name sortKey="Boyce, Jd" uniqKey="Boyce J">JD Boyce</name>
</author>
<author>
<name sortKey="Devenish, Rj" uniqKey="Devenish R">RJ Devenish</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ramachandran, G" uniqKey="Ramachandran G">G Ramachandran</name>
</author>
<author>
<name sortKey="Gade, P" uniqKey="Gade P">P Gade</name>
</author>
<author>
<name sortKey="Tsai, P" uniqKey="Tsai P">P Tsai</name>
</author>
<author>
<name sortKey="Lu, W" uniqKey="Lu W">W Lu</name>
</author>
<author>
<name sortKey="Kalvakolanu, Dv" uniqKey="Kalvakolanu D">DV Kalvakolanu</name>
</author>
<author>
<name sortKey="Rosen, Gm" uniqKey="Rosen G">GM Rosen</name>
</author>
<author>
<name sortKey="Cross, As" uniqKey="Cross A">AS Cross</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Itoh, H" uniqKey="Itoh H">H Itoh</name>
</author>
<author>
<name sortKey="Matsuo, H" uniqKey="Matsuo H">H Matsuo</name>
</author>
<author>
<name sortKey="Kitamura, N" uniqKey="Kitamura N">N Kitamura</name>
</author>
<author>
<name sortKey="Yamamoto, S" uniqKey="Yamamoto S">S Yamamoto</name>
</author>
<author>
<name sortKey="Higuchi, T" uniqKey="Higuchi T">T Higuchi</name>
</author>
<author>
<name sortKey="Takematsu, H" uniqKey="Takematsu H">H Takematsu</name>
</author>
<author>
<name sortKey="Kamikubo, Y" uniqKey="Kamikubo Y">Y Kamikubo</name>
</author>
<author>
<name sortKey="Kondo, T" uniqKey="Kondo T">T Kondo</name>
</author>
<author>
<name sortKey="Yamashita, K" uniqKey="Yamashita K">K Yamashita</name>
</author>
<author>
<name sortKey="Sasada, M" uniqKey="Sasada M">M Sasada</name>
</author>
<author>
<name sortKey="Takaori Kondo, A" uniqKey="Takaori Kondo A">A Takaori-Kondo</name>
</author>
<author>
<name sortKey="Adachi, S" uniqKey="Adachi S">S Adachi</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ullah, I" uniqKey="Ullah I">I Ullah</name>
</author>
<author>
<name sortKey="Ritchie, Nd" uniqKey="Ritchie N">ND Ritchie</name>
</author>
<author>
<name sortKey="Evans, Tj" uniqKey="Evans T">TJ Evans</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Wang, C" uniqKey="Wang C">C Wang</name>
</author>
<author>
<name sortKey="Mendonsa, Gr" uniqKey="Mendonsa G">GR Mendonsa</name>
</author>
<author>
<name sortKey="Symington, Jw" uniqKey="Symington J">JW Symington</name>
</author>
<author>
<name sortKey="Zhang, Q" uniqKey="Zhang Q">Q Zhang</name>
</author>
<author>
<name sortKey="Cadwell, K" uniqKey="Cadwell K">K Cadwell</name>
</author>
<author>
<name sortKey="Virgin, Hw" uniqKey="Virgin H">HW Virgin</name>
</author>
<author>
<name sortKey="Mysorekar, Iu" uniqKey="Mysorekar I">IU Mysorekar</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Rinchai, D" uniqKey="Rinchai D">D Rinchai</name>
</author>
<author>
<name sortKey="Riyapa, D" uniqKey="Riyapa D">D Riyapa</name>
</author>
<author>
<name sortKey="Buddhisa, S" uniqKey="Buddhisa S">S Buddhisa</name>
</author>
<author>
<name sortKey="Utispan, K" uniqKey="Utispan K">K Utispan</name>
</author>
<author>
<name sortKey="Titball, Rw" uniqKey="Titball R">RW Titball</name>
</author>
<author>
<name sortKey="Stevens, Mp" uniqKey="Stevens M">MP Stevens</name>
</author>
<author>
<name sortKey="Stevens, Jm" uniqKey="Stevens J">JM Stevens</name>
</author>
<author>
<name sortKey="Ogawa, M" uniqKey="Ogawa M">M Ogawa</name>
</author>
<author>
<name sortKey="Tanida, I" uniqKey="Tanida I">I Tanida</name>
</author>
<author>
<name sortKey="Koike, M" uniqKey="Koike M">M Koike</name>
</author>
<author>
<name sortKey="Uchiyama, Y" uniqKey="Uchiyama Y">Y Uchiyama</name>
</author>
<author>
<name sortKey="Ato, M" uniqKey="Ato M">M Ato</name>
</author>
<author>
<name sortKey="Lertmemongkolchai, G" uniqKey="Lertmemongkolchai G">G Lertmemongkolchai</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Remijsen, Q" uniqKey="Remijsen Q">Q Remijsen</name>
</author>
<author>
<name sortKey="Kuijpers, Tw" uniqKey="Kuijpers T">TW Kuijpers</name>
</author>
<author>
<name sortKey="Wirawan, E" uniqKey="Wirawan E">E Wirawan</name>
</author>
<author>
<name sortKey="Lippens, S" uniqKey="Lippens S">S Lippens</name>
</author>
<author>
<name sortKey="Vandenabeele, P" uniqKey="Vandenabeele P">P Vandenabeele</name>
</author>
<author>
<name sortKey="Vanden Berghe, T" uniqKey="Vanden Berghe T">T Vanden Berghe</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Urban, Cf" uniqKey="Urban C">CF Urban</name>
</author>
<author>
<name sortKey="Ermert, D" uniqKey="Ermert D">D Ermert</name>
</author>
<author>
<name sortKey="Schmid, M" uniqKey="Schmid M">M Schmid</name>
</author>
<author>
<name sortKey="Abu Abed, U" uniqKey="Abu Abed U">U Abu-Abed</name>
</author>
<author>
<name sortKey="Goosmann, C" uniqKey="Goosmann C">C Goosmann</name>
</author>
<author>
<name sortKey="Nacken, W" uniqKey="Nacken W">W Nacken</name>
</author>
<author>
<name sortKey="Brinkmann, V" uniqKey="Brinkmann V">V Brinkmann</name>
</author>
<author>
<name sortKey="Jungblut, Pr" uniqKey="Jungblut P">PR Jungblut</name>
</author>
<author>
<name sortKey="Zychlinsky, A" uniqKey="Zychlinsky A">A Zychlinsky</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Boe, Dm" uniqKey="Boe D">DM Boe</name>
</author>
<author>
<name sortKey="Curtis, Bj" uniqKey="Curtis B">BJ Curtis</name>
</author>
<author>
<name sortKey="Chen, Mm" uniqKey="Chen M">MM Chen</name>
</author>
<author>
<name sortKey="Ippolito, Ja" uniqKey="Ippolito J">JA Ippolito</name>
</author>
<author>
<name sortKey="Kovacs, Ej" uniqKey="Kovacs E">EJ Kovacs</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kenny, Ef" uniqKey="Kenny E">EF Kenny</name>
</author>
<author>
<name sortKey="Herzig, A" uniqKey="Herzig A">A Herzig</name>
</author>
<author>
<name sortKey="Kruger, R" uniqKey="Kruger R">R Krüger</name>
</author>
<author>
<name sortKey="Muth, A" uniqKey="Muth A">A Muth</name>
</author>
<author>
<name sortKey="Mondal, S" uniqKey="Mondal S">S Mondal</name>
</author>
<author>
<name sortKey="Thompson, Pr" uniqKey="Thompson P">PR Thompson</name>
</author>
<author>
<name sortKey="Brinkmann, V" uniqKey="Brinkmann V">V Brinkmann</name>
</author>
<author>
<name sortKey="Bernuth, Hv" uniqKey="Bernuth H">HV Bernuth</name>
</author>
<author>
<name sortKey="Zychlinsky, A" uniqKey="Zychlinsky A">A Zychlinsky</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kaplan, Mj" uniqKey="Kaplan M">MJ Kaplan</name>
</author>
<author>
<name sortKey="Radic, M" uniqKey="Radic M">M Radic</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Peng, Hh" uniqKey="Peng H">HH Peng</name>
</author>
<author>
<name sortKey="Liu, Yj" uniqKey="Liu Y">YJ Liu</name>
</author>
<author>
<name sortKey="Ojcius, Dm" uniqKey="Ojcius D">DM Ojcius</name>
</author>
<author>
<name sortKey="Lee, Cm" uniqKey="Lee C">CM Lee</name>
</author>
<author>
<name sortKey="Chen, Rh" uniqKey="Chen R">RH Chen</name>
</author>
<author>
<name sortKey="Huang, Pr" uniqKey="Huang P">PR Huang</name>
</author>
<author>
<name sortKey="Martel, J" uniqKey="Martel J">J Martel</name>
</author>
<author>
<name sortKey="Young, Jd" uniqKey="Young J">JD Young</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Neumann, A" uniqKey="Neumann A">A Neumann</name>
</author>
<author>
<name sortKey="Papareddy, P" uniqKey="Papareddy P">P Papareddy</name>
</author>
<author>
<name sortKey="Westman, J" uniqKey="Westman J">J Westman</name>
</author>
<author>
<name sortKey="Hyldegaard, O" uniqKey="Hyldegaard O">O Hyldegaard</name>
</author>
<author>
<name sortKey="Sn Ll, J" uniqKey="Sn Ll J">J Snäll</name>
</author>
<author>
<name sortKey="Norrby Teglund, A" uniqKey="Norrby Teglund A">A Norrby-Teglund</name>
</author>
<author>
<name sortKey="Herwald, H" uniqKey="Herwald H">H Herwald</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Van Der Linden, M" uniqKey="Van Der Linden M">M van der Linden</name>
</author>
<author>
<name sortKey="Westerlaken, Gha" uniqKey="Westerlaken G">GHA Westerlaken</name>
</author>
<author>
<name sortKey="Van Der Vlist, M" uniqKey="Van Der Vlist M">M van der Vlist</name>
</author>
<author>
<name sortKey="Van Montfrans, J" uniqKey="Van Montfrans J">J van Montfrans</name>
</author>
<author>
<name sortKey="Meyaard, L" uniqKey="Meyaard L">L Meyaard</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Maugeri, N" uniqKey="Maugeri N">N Maugeri</name>
</author>
<author>
<name sortKey="Campana, L" uniqKey="Campana L">L Campana</name>
</author>
<author>
<name sortKey="Gavina, M" uniqKey="Gavina M">M Gavina</name>
</author>
<author>
<name sortKey="Covino, C" uniqKey="Covino C">C Covino</name>
</author>
<author>
<name sortKey="De Metrio, M" uniqKey="De Metrio M">M De Metrio</name>
</author>
<author>
<name sortKey="Panciroli, C" uniqKey="Panciroli C">C Panciroli</name>
</author>
<author>
<name sortKey="Maiuri, L" uniqKey="Maiuri L">L Maiuri</name>
</author>
<author>
<name sortKey="Maseri, A" uniqKey="Maseri A">A Maseri</name>
</author>
<author>
<name sortKey="D Angelo, A" uniqKey="D Angelo A">A D'Angelo</name>
</author>
<author>
<name sortKey="Bianchi, Me" uniqKey="Bianchi M">ME Bianchi</name>
</author>
<author>
<name sortKey="Rovere Querini, P" uniqKey="Rovere Querini P">P Rovere-Querini</name>
</author>
<author>
<name sortKey="Manfredi, Aa" uniqKey="Manfredi A">AA Manfredi</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Chatfield, Sm" uniqKey="Chatfield S">SM Chatfield</name>
</author>
<author>
<name sortKey="Grebe, K" uniqKey="Grebe K">K Grebe</name>
</author>
<author>
<name sortKey="Whitehead, Lw" uniqKey="Whitehead L">LW Whitehead</name>
</author>
<author>
<name sortKey="Rogers, Kl" uniqKey="Rogers K">KL Rogers</name>
</author>
<author>
<name sortKey="Nebl, T" uniqKey="Nebl T">T Nebl</name>
</author>
<author>
<name sortKey="Murphy, Jm" uniqKey="Murphy J">JM Murphy</name>
</author>
<author>
<name sortKey="Wicks, Ip" uniqKey="Wicks I">IP Wicks</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Remijsen, Q" uniqKey="Remijsen Q">Q Remijsen</name>
</author>
<author>
<name sortKey="Vanden Berghe, T" uniqKey="Vanden Berghe T">T Vanden Berghe</name>
</author>
<author>
<name sortKey="Wirawan, E" uniqKey="Wirawan E">E Wirawan</name>
</author>
<author>
<name sortKey="Asselbergh, B" uniqKey="Asselbergh B">B Asselbergh</name>
</author>
<author>
<name sortKey="Parthoens, E" uniqKey="Parthoens E">E Parthoens</name>
</author>
<author>
<name sortKey="De Rycke, R" uniqKey="De Rycke R">R De Rycke</name>
</author>
<author>
<name sortKey="Noppen, S" uniqKey="Noppen S">S Noppen</name>
</author>
<author>
<name sortKey="Delforge, M" uniqKey="Delforge M">M Delforge</name>
</author>
<author>
<name sortKey="Willems, J" uniqKey="Willems J">J Willems</name>
</author>
<author>
<name sortKey="Vandenabeele, P" uniqKey="Vandenabeele P">P Vandenabeele</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Douda, Dn" uniqKey="Douda D">DN Douda</name>
</author>
<author>
<name sortKey="Khan, Ma" uniqKey="Khan M">MA Khan</name>
</author>
<author>
<name sortKey="Grasemann, H" uniqKey="Grasemann H">H Grasemann</name>
</author>
<author>
<name sortKey="Palaniyar, N" uniqKey="Palaniyar N">N Palaniyar</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Pilsczek, Fh" uniqKey="Pilsczek F">FH Pilsczek</name>
</author>
<author>
<name sortKey="Salina, D" uniqKey="Salina D">D Salina</name>
</author>
<author>
<name sortKey="Poon, Kk" uniqKey="Poon K">KK Poon</name>
</author>
<author>
<name sortKey="Fahey, C" uniqKey="Fahey C">C Fahey</name>
</author>
<author>
<name sortKey="Yipp, Bg" uniqKey="Yipp B">BG Yipp</name>
</author>
<author>
<name sortKey="Sibley, Cd" uniqKey="Sibley C">CD Sibley</name>
</author>
<author>
<name sortKey="Robbins, Sm" uniqKey="Robbins S">SM Robbins</name>
</author>
<author>
<name sortKey="Green, Fh" uniqKey="Green F">FH Green</name>
</author>
<author>
<name sortKey="Surette, Mg" uniqKey="Surette M">MG Surette</name>
</author>
<author>
<name sortKey="Sugai, M" uniqKey="Sugai M">M Sugai</name>
</author>
<author>
<name sortKey="Bowden, Mg" uniqKey="Bowden M">MG Bowden</name>
</author>
<author>
<name sortKey="Hussain, M" uniqKey="Hussain M">M Hussain</name>
</author>
<author>
<name sortKey="Zhang, K" uniqKey="Zhang K">K Zhang</name>
</author>
<author>
<name sortKey="Kubes, P" uniqKey="Kubes P">P Kubes</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Chow, Oa" uniqKey="Chow O">OA Chow</name>
</author>
<author>
<name sortKey="Von Kockritz Blickwede, M" uniqKey="Von Kockritz Blickwede M">M von Köckritz-Blickwede</name>
</author>
<author>
<name sortKey="Bright, At" uniqKey="Bright A">AT Bright</name>
</author>
<author>
<name sortKey="Hensler, Me" uniqKey="Hensler M">ME Hensler</name>
</author>
<author>
<name sortKey="Zinkernagel, As" uniqKey="Zinkernagel A">AS Zinkernagel</name>
</author>
<author>
<name sortKey="Cogen, Al" uniqKey="Cogen A">AL Cogen</name>
</author>
<author>
<name sortKey="Gallo, Rl" uniqKey="Gallo R">RL Gallo</name>
</author>
<author>
<name sortKey="Monestier, M" uniqKey="Monestier M">M Monestier</name>
</author>
<author>
<name sortKey="Wang, Y" uniqKey="Wang Y">Y Wang</name>
</author>
<author>
<name sortKey="Glass, Ck" uniqKey="Glass C">CK Glass</name>
</author>
<author>
<name sortKey="Nizet, V" uniqKey="Nizet V">V Nizet</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Byrd, As" uniqKey="Byrd A">AS Byrd</name>
</author>
<author>
<name sortKey="O Brien, Xm" uniqKey="O Brien X">XM O'Brien</name>
</author>
<author>
<name sortKey="Johnson, Cm" uniqKey="Johnson C">CM Johnson</name>
</author>
<author>
<name sortKey="Lavigne, Lm" uniqKey="Lavigne L">LM Lavigne</name>
</author>
<author>
<name sortKey="Reichner, Js" uniqKey="Reichner J">JS Reichner</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Stranks, Aj" uniqKey="Stranks A">AJ Stranks</name>
</author>
<author>
<name sortKey="Hansen, Al" uniqKey="Hansen A">AL Hansen</name>
</author>
<author>
<name sortKey="Panse, I" uniqKey="Panse I">I Panse</name>
</author>
<author>
<name sortKey="Mortensen, M" uniqKey="Mortensen M">M Mortensen</name>
</author>
<author>
<name sortKey="Ferguson, Dj" uniqKey="Ferguson D">DJ Ferguson</name>
</author>
<author>
<name sortKey="Puleston, Dj" uniqKey="Puleston D">DJ Puleston</name>
</author>
<author>
<name sortKey="Shenderov, K" uniqKey="Shenderov K">K Shenderov</name>
</author>
<author>
<name sortKey="Watson, As" uniqKey="Watson A">AS Watson</name>
</author>
<author>
<name sortKey="Veldhoen, M" uniqKey="Veldhoen M">M Veldhoen</name>
</author>
<author>
<name sortKey="Phadwal, K" uniqKey="Phadwal K">K Phadwal</name>
</author>
<author>
<name sortKey="Cerundolo, V" uniqKey="Cerundolo V">V Cerundolo</name>
</author>
<author>
<name sortKey="Simon, Ak" uniqKey="Simon A">AK Simon</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ma, R" uniqKey="Ma R">R Ma</name>
</author>
<author>
<name sortKey="Li, T" uniqKey="Li T">T Li</name>
</author>
<author>
<name sortKey="Cao, M" uniqKey="Cao M">M Cao</name>
</author>
<author>
<name sortKey="Si, Y" uniqKey="Si Y">Y Si</name>
</author>
<author>
<name sortKey="Wu, X" uniqKey="Wu X">X Wu</name>
</author>
<author>
<name sortKey="Zhao, L" uniqKey="Zhao L">L Zhao</name>
</author>
<author>
<name sortKey="Yao, Z" uniqKey="Yao Z">Z Yao</name>
</author>
<author>
<name sortKey="Zhang, Y" uniqKey="Zhang Y">Y Zhang</name>
</author>
<author>
<name sortKey="Fang, S" uniqKey="Fang S">S Fang</name>
</author>
<author>
<name sortKey="Deng, R" uniqKey="Deng R">R Deng</name>
</author>
<author>
<name sortKey="Novakovic, Va" uniqKey="Novakovic V">VA Novakovic</name>
</author>
<author>
<name sortKey="Bi, Y" uniqKey="Bi Y">Y Bi</name>
</author>
<author>
<name sortKey="Kou, J" uniqKey="Kou J">J Kou</name>
</author>
<author>
<name sortKey="Yu, B" uniqKey="Yu B">B Yu</name>
</author>
<author>
<name sortKey="Yang, S" uniqKey="Yang S">S Yang</name>
</author>
<author>
<name sortKey="Wang, J" uniqKey="Wang J">J Wang</name>
</author>
<author>
<name sortKey="Zhou, J" uniqKey="Zhou J">J Zhou</name>
</author>
<author>
<name sortKey="Shi, J" uniqKey="Shi J">J Shi</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Germic, N" uniqKey="Germic N">N Germic</name>
</author>
<author>
<name sortKey="Stojkov, D" uniqKey="Stojkov D">D Stojkov</name>
</author>
<author>
<name sortKey="Oberson, K" uniqKey="Oberson K">K Oberson</name>
</author>
<author>
<name sortKey="Yousefi, S" uniqKey="Yousefi S">S Yousefi</name>
</author>
<author>
<name sortKey="Simon, Hu" uniqKey="Simon H">HU Simon</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="R Rvig, S" uniqKey="R Rvig S">S Rørvig</name>
</author>
<author>
<name sortKey=" Stergaard, O" uniqKey=" Stergaard O">O Østergaard</name>
</author>
<author>
<name sortKey="Heegaard, Nh" uniqKey="Heegaard N">NH Heegaard</name>
</author>
<author>
<name sortKey="Borregaard, N" uniqKey="Borregaard N">N Borregaard</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Masson, Pl" uniqKey="Masson P">PL Masson</name>
</author>
<author>
<name sortKey="Heremans, Jf" uniqKey="Heremans J">JF Heremans</name>
</author>
<author>
<name sortKey="Schonne, E" uniqKey="Schonne E">E Schonne</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Faurschou, M" uniqKey="Faurschou M">M Faurschou</name>
</author>
<author>
<name sortKey="Borregaard, N" uniqKey="Borregaard N">N Borregaard</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Patel, Jm" uniqKey="Patel J">JM Patel</name>
</author>
<author>
<name sortKey="Sapey, E" uniqKey="Sapey E">E Sapey</name>
</author>
<author>
<name sortKey="Parekh, D" uniqKey="Parekh D">D Parekh</name>
</author>
<author>
<name sortKey="Scott, A" uniqKey="Scott A">A Scott</name>
</author>
<author>
<name sortKey="Dosanjh, D" uniqKey="Dosanjh D">D Dosanjh</name>
</author>
<author>
<name sortKey="Gao, F" uniqKey="Gao F">F Gao</name>
</author>
<author>
<name sortKey="Thickett, Dr" uniqKey="Thickett D">DR Thickett</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Meng, W" uniqKey="Meng W">W Meng</name>
</author>
<author>
<name sortKey="Paunel Gorgulu, A" uniqKey="Paunel Gorgulu A">A Paunel-Görgülü</name>
</author>
<author>
<name sortKey="Flohe, S" uniqKey="Flohe S">S Flohé</name>
</author>
<author>
<name sortKey="Hoffmann, A" uniqKey="Hoffmann A">A Hoffmann</name>
</author>
<author>
<name sortKey="Witte, I" uniqKey="Witte I">I Witte</name>
</author>
<author>
<name sortKey="Mackenzie, C" uniqKey="Mackenzie C">C MacKenzie</name>
</author>
<author>
<name sortKey="Baldus, Se" uniqKey="Baldus S">SE Baldus</name>
</author>
<author>
<name sortKey="Windolf, J" uniqKey="Windolf J">J Windolf</name>
</author>
<author>
<name sortKey="Logters, Tt" uniqKey="Logters T">TT Lögters</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Konstantinidis, T" uniqKey="Konstantinidis T">T Konstantinidis</name>
</author>
<author>
<name sortKey="Kambas, K" uniqKey="Kambas K">K Kambas</name>
</author>
<author>
<name sortKey="Mitsios, A" uniqKey="Mitsios A">A Mitsios</name>
</author>
<author>
<name sortKey="Panopoulou, M" uniqKey="Panopoulou M">M Panopoulou</name>
</author>
<author>
<name sortKey="Tsironidou, V" uniqKey="Tsironidou V">V Tsironidou</name>
</author>
<author>
<name sortKey="Dellaporta, E" uniqKey="Dellaporta E">E Dellaporta</name>
</author>
<author>
<name sortKey="Kouklakis, G" uniqKey="Kouklakis G">G Kouklakis</name>
</author>
<author>
<name sortKey="Arampatzioglou, A" uniqKey="Arampatzioglou A">A Arampatzioglou</name>
</author>
<author>
<name sortKey="Angelidou, I" uniqKey="Angelidou I">I Angelidou</name>
</author>
<author>
<name sortKey="Mitroulis, I" uniqKey="Mitroulis I">I Mitroulis</name>
</author>
<author>
<name sortKey="Skendros, P" uniqKey="Skendros P">P Skendros</name>
</author>
<author>
<name sortKey="Ritis, K" uniqKey="Ritis K">K Ritis</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Sharma, A" uniqKey="Sharma A">A Sharma</name>
</author>
<author>
<name sortKey="Steichen, Al" uniqKey="Steichen A">AL Steichen</name>
</author>
<author>
<name sortKey="Jondle, Cn" uniqKey="Jondle C">CN Jondle</name>
</author>
<author>
<name sortKey="Mishra, Bb" uniqKey="Mishra B">BB Mishra</name>
</author>
<author>
<name sortKey="Sharma, J" uniqKey="Sharma J">J Sharma</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Li, Xf" uniqKey="Li X">XF Li</name>
</author>
<author>
<name sortKey="Chen, Dp" uniqKey="Chen D">DP Chen</name>
</author>
<author>
<name sortKey="Ouyang, Fz" uniqKey="Ouyang F">FZ Ouyang</name>
</author>
<author>
<name sortKey="Chen, Mm" uniqKey="Chen M">MM Chen</name>
</author>
<author>
<name sortKey="Wu, Y" uniqKey="Wu Y">Y Wu</name>
</author>
<author>
<name sortKey="Kuang, Dm" uniqKey="Kuang D">DM Kuang</name>
</author>
<author>
<name sortKey="Zheng, L" uniqKey="Zheng L">L Zheng</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Park, J" uniqKey="Park J">J Park</name>
</author>
<author>
<name sortKey="Wysocki, Rw" uniqKey="Wysocki R">RW Wysocki</name>
</author>
<author>
<name sortKey="Amoozgar, Z" uniqKey="Amoozgar Z">Z Amoozgar</name>
</author>
<author>
<name sortKey="Maiorino, L" uniqKey="Maiorino L">L Maiorino</name>
</author>
<author>
<name sortKey="Fein, Mr" uniqKey="Fein M">MR Fein</name>
</author>
<author>
<name sortKey="Jorns, J" uniqKey="Jorns J">J Jorns</name>
</author>
<author>
<name sortKey="Schott, Af" uniqKey="Schott A">AF Schott</name>
</author>
<author>
<name sortKey="Kinugasa Katayama, Y" uniqKey="Kinugasa Katayama Y">Y Kinugasa-Katayama</name>
</author>
<author>
<name sortKey="Lee, Y" uniqKey="Lee Y">Y Lee</name>
</author>
<author>
<name sortKey="Won, Nh" uniqKey="Won N">NH Won</name>
</author>
<author>
<name sortKey="Nakasone, Es" uniqKey="Nakasone E">ES Nakasone</name>
</author>
<author>
<name sortKey="Hearn, Sa" uniqKey="Hearn S">SA Hearn</name>
</author>
<author>
<name sortKey="Kuttner, V" uniqKey="Kuttner V">V Küttner</name>
</author>
<author>
<name sortKey="Qiu, J" uniqKey="Qiu J">J Qiu</name>
</author>
<author>
<name sortKey="Almeida, As" uniqKey="Almeida A">AS Almeida</name>
</author>
<author>
<name sortKey="Perurena, N" uniqKey="Perurena N">N Perurena</name>
</author>
<author>
<name sortKey="Kessenbrock, K" uniqKey="Kessenbrock K">K Kessenbrock</name>
</author>
<author>
<name sortKey="Goldberg, Ms" uniqKey="Goldberg M">MS Goldberg</name>
</author>
<author>
<name sortKey="Egeblad, M" uniqKey="Egeblad M">M Egeblad</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Tohme, S" uniqKey="Tohme S">S Tohme</name>
</author>
<author>
<name sortKey="Yazdani, Ho" uniqKey="Yazdani H">HO Yazdani</name>
</author>
<author>
<name sortKey="Al Khafaji, Ab" uniqKey="Al Khafaji A">AB Al-Khafaji</name>
</author>
<author>
<name sortKey="Chidi, Ap" uniqKey="Chidi A">AP Chidi</name>
</author>
<author>
<name sortKey="Loughran, P" uniqKey="Loughran P">P Loughran</name>
</author>
<author>
<name sortKey="Mowen, K" uniqKey="Mowen K">K Mowen</name>
</author>
<author>
<name sortKey="Wang, Y" uniqKey="Wang Y">Y Wang</name>
</author>
<author>
<name sortKey="Simmons, Rl" uniqKey="Simmons R">RL Simmons</name>
</author>
<author>
<name sortKey="Huang, H" uniqKey="Huang H">H Huang</name>
</author>
<author>
<name sortKey="Tsung, A" uniqKey="Tsung A">A Tsung</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Najmeh, S" uniqKey="Najmeh S">S Najmeh</name>
</author>
<author>
<name sortKey="Cools Lartigue, J" uniqKey="Cools Lartigue J">J Cools-Lartigue</name>
</author>
<author>
<name sortKey="Rayes, Rf" uniqKey="Rayes R">RF Rayes</name>
</author>
<author>
<name sortKey="Gowing, S" uniqKey="Gowing S">S Gowing</name>
</author>
<author>
<name sortKey="Vourtzoumis, P" uniqKey="Vourtzoumis P">P Vourtzoumis</name>
</author>
<author>
<name sortKey="Bourdeau, F" uniqKey="Bourdeau F">F Bourdeau</name>
</author>
<author>
<name sortKey="Giannias, B" uniqKey="Giannias B">B Giannias</name>
</author>
<author>
<name sortKey="Berube, J" uniqKey="Berube J">J Berube</name>
</author>
<author>
<name sortKey="Rousseau, S" uniqKey="Rousseau S">S Rousseau</name>
</author>
<author>
<name sortKey="Ferri, Le" uniqKey="Ferri L">LE Ferri</name>
</author>
<author>
<name sortKey="Spicer, Jd" uniqKey="Spicer J">JD Spicer</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Leach, J" uniqKey="Leach J">J Leach</name>
</author>
<author>
<name sortKey="Morton, Jp" uniqKey="Morton J">JP Morton</name>
</author>
<author>
<name sortKey="Sansom, Oj" uniqKey="Sansom O">OJ Sansom</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Borregaard, N" uniqKey="Borregaard N">N Borregaard</name>
</author>
<author>
<name sortKey="Cowland, Jb" uniqKey="Cowland J">JB Cowland</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Cowland, Jb" uniqKey="Cowland J">JB Cowland</name>
</author>
<author>
<name sortKey="Borregaard, N" uniqKey="Borregaard N">N Borregaard</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Lawrence, Sm" uniqKey="Lawrence S">SM Lawrence</name>
</author>
<author>
<name sortKey="Corriden, R" uniqKey="Corriden R">R Corriden</name>
</author>
<author>
<name sortKey="Nizet, V" uniqKey="Nizet V">V Nizet</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Gullberg, U" uniqKey="Gullberg U">U Gullberg</name>
</author>
<author>
<name sortKey="Andersson, E" uniqKey="Andersson E">E Andersson</name>
</author>
<author>
<name sortKey="Garwicz, D" uniqKey="Garwicz D">D Garwicz</name>
</author>
<author>
<name sortKey="Lindmark, A" uniqKey="Lindmark A">A Lindmark</name>
</author>
<author>
<name sortKey="Olsson, I" uniqKey="Olsson I">I Olsson</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Lacy, P" uniqKey="Lacy P">P Lacy</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Mantovani, A" uniqKey="Mantovani A">A Mantovani</name>
</author>
<author>
<name sortKey="Cassatella, Ma" uniqKey="Cassatella M">MA Cassatella</name>
</author>
<author>
<name sortKey="Costantini, C" uniqKey="Costantini C">C Costantini</name>
</author>
<author>
<name sortKey="Jaillon, S" uniqKey="Jaillon S">S Jaillon</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Tecchio, C" uniqKey="Tecchio C">C Tecchio</name>
</author>
<author>
<name sortKey="Cassatella, Ma" uniqKey="Cassatella M">MA Cassatella</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Tecchio, C" uniqKey="Tecchio C">C Tecchio</name>
</author>
<author>
<name sortKey="Micheletti, A" uniqKey="Micheletti A">A Micheletti</name>
</author>
<author>
<name sortKey="Cassatella, Ma" uniqKey="Cassatella M">MA Cassatella</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Naegelen, I" uniqKey="Naegelen I">I Naegelen</name>
</author>
<author>
<name sortKey="Beaume, N" uniqKey="Beaume N">N Beaume</name>
</author>
<author>
<name sortKey="Plancon, S" uniqKey="Plancon S">S Plançon</name>
</author>
<author>
<name sortKey="Schenten, V" uniqKey="Schenten V">V Schenten</name>
</author>
<author>
<name sortKey="Tschirhart, Ej" uniqKey="Tschirhart E">EJ Tschirhart</name>
</author>
<author>
<name sortKey="Brechard, S" uniqKey="Brechard S">S Bréchard</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Angelidou, I" uniqKey="Angelidou I">I Angelidou</name>
</author>
<author>
<name sortKey="Chrysanthopoulou, A" uniqKey="Chrysanthopoulou A">A Chrysanthopoulou</name>
</author>
<author>
<name sortKey="Mitsios, A" uniqKey="Mitsios A">A Mitsios</name>
</author>
<author>
<name sortKey="Arelaki, S" uniqKey="Arelaki S">S Arelaki</name>
</author>
<author>
<name sortKey="Arampatzioglou, A" uniqKey="Arampatzioglou A">A Arampatzioglou</name>
</author>
<author>
<name sortKey="Kambas, K" uniqKey="Kambas K">K Kambas</name>
</author>
<author>
<name sortKey="Ritis, D" uniqKey="Ritis D">D Ritis</name>
</author>
<author>
<name sortKey="Tsironidou, V" uniqKey="Tsironidou V">V Tsironidou</name>
</author>
<author>
<name sortKey="Moschos, I" uniqKey="Moschos I">I Moschos</name>
</author>
<author>
<name sortKey="Dalla, V" uniqKey="Dalla V">V Dalla</name>
</author>
<author>
<name sortKey="Stakos, D" uniqKey="Stakos D">D Stakos</name>
</author>
<author>
<name sortKey="Kouklakis, G" uniqKey="Kouklakis G">G Kouklakis</name>
</author>
<author>
<name sortKey="Mitroulis, I" uniqKey="Mitroulis I">I Mitroulis</name>
</author>
<author>
<name sortKey="Ritis, K" uniqKey="Ritis K">K Ritis</name>
</author>
<author>
<name sortKey="Skendros, P" uniqKey="Skendros P">P Skendros</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Apostolidou, E" uniqKey="Apostolidou E">E Apostolidou</name>
</author>
<author>
<name sortKey="Skendros, P" uniqKey="Skendros P">P Skendros</name>
</author>
<author>
<name sortKey="Kambas, K" uniqKey="Kambas K">K Kambas</name>
</author>
<author>
<name sortKey="Mitroulis, I" uniqKey="Mitroulis I">I Mitroulis</name>
</author>
<author>
<name sortKey="Konstantinidis, T" uniqKey="Konstantinidis T">T Konstantinidis</name>
</author>
<author>
<name sortKey="Chrysanthopoulou, A" uniqKey="Chrysanthopoulou A">A Chrysanthopoulou</name>
</author>
<author>
<name sortKey="Nakos, K" uniqKey="Nakos K">K Nakos</name>
</author>
<author>
<name sortKey="Tsironidou, V" uniqKey="Tsironidou V">V Tsironidou</name>
</author>
<author>
<name sortKey="Koffa, M" uniqKey="Koffa M">M Koffa</name>
</author>
<author>
<name sortKey="Boumpas, Dt" uniqKey="Boumpas D">DT Boumpas</name>
</author>
<author>
<name sortKey="Ritis, K" uniqKey="Ritis K">K Ritis</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Iula, L" uniqKey="Iula L">L Iula</name>
</author>
<author>
<name sortKey="Keitelman, Ia" uniqKey="Keitelman I">IA Keitelman</name>
</author>
<author>
<name sortKey="Sabbione, F" uniqKey="Sabbione F">F Sabbione</name>
</author>
<author>
<name sortKey="Fuentes, F" uniqKey="Fuentes F">F Fuentes</name>
</author>
<author>
<name sortKey="Guzman, M" uniqKey="Guzman M">M Guzman</name>
</author>
<author>
<name sortKey="Galletti, Jg" uniqKey="Galletti J">JG Galletti</name>
</author>
<author>
<name sortKey="Gerber, Pp" uniqKey="Gerber P">PP Gerber</name>
</author>
<author>
<name sortKey="Ostrowski, M" uniqKey="Ostrowski M">M Ostrowski</name>
</author>
<author>
<name sortKey="Geffner, Jr" uniqKey="Geffner J">JR Geffner</name>
</author>
<author>
<name sortKey="Jancic, Cc" uniqKey="Jancic C">CC Jancic</name>
</author>
<author>
<name sortKey="Trevani, As" uniqKey="Trevani A">AS Trevani</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Harris, J" uniqKey="Harris J">J Harris</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Harris, J" uniqKey="Harris J">J Harris</name>
</author>
<author>
<name sortKey="Hartman, M" uniqKey="Hartman M">M Hartman</name>
</author>
<author>
<name sortKey="Roche, C" uniqKey="Roche C">C Roche</name>
</author>
<author>
<name sortKey="Zeng, Sg" uniqKey="Zeng S">SG Zeng</name>
</author>
<author>
<name sortKey="O Shea, A" uniqKey="O Shea A">A O'Shea</name>
</author>
<author>
<name sortKey="Sharp, Fa" uniqKey="Sharp F">FA Sharp</name>
</author>
<author>
<name sortKey="Lambe, Em" uniqKey="Lambe E">EM Lambe</name>
</author>
<author>
<name sortKey="Creagh, Em" uniqKey="Creagh E">EM Creagh</name>
</author>
<author>
<name sortKey="Golenbock, Dt" uniqKey="Golenbock D">DT Golenbock</name>
</author>
<author>
<name sortKey="Tschopp, J" uniqKey="Tschopp J">J Tschopp</name>
</author>
<author>
<name sortKey="Kornfeld, H" uniqKey="Kornfeld H">H Kornfeld</name>
</author>
<author>
<name sortKey="Fitzgerald, Ka" uniqKey="Fitzgerald K">KA Fitzgerald</name>
</author>
<author>
<name sortKey="Lavelle, Ec" uniqKey="Lavelle E">EC Lavelle</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Netea Maier, Rt" uniqKey="Netea Maier R">RT Netea-Maier</name>
</author>
<author>
<name sortKey="Plantinga, Ts" uniqKey="Plantinga T">TS Plantinga</name>
</author>
<author>
<name sortKey="Van De Veerdonk, Fl" uniqKey="Van De Veerdonk F">FL van de Veerdonk</name>
</author>
<author>
<name sortKey="Smit, Jw" uniqKey="Smit J">JW Smit</name>
</author>
<author>
<name sortKey="Netea, Mg" uniqKey="Netea M">MG Netea</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Levine, B" uniqKey="Levine B">B Levine</name>
</author>
<author>
<name sortKey="Mizushima, N" uniqKey="Mizushima N">N Mizushima</name>
</author>
<author>
<name sortKey="Virgin, Hw" uniqKey="Virgin H">HW Virgin</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Zhang, F" uniqKey="Zhang F">F Zhang</name>
</author>
<author>
<name sortKey="Liu, Al" uniqKey="Liu A">AL Liu</name>
</author>
<author>
<name sortKey="Gao, S" uniqKey="Gao S">S Gao</name>
</author>
<author>
<name sortKey="Ma, S" uniqKey="Ma S">S Ma</name>
</author>
<author>
<name sortKey="Guo, Sb" uniqKey="Guo S">SB Guo</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Segal, Aw" uniqKey="Segal A">AW Segal</name>
</author>
<author>
<name sortKey="Loewi, G" uniqKey="Loewi G">G Loewi</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Davis, Wc" uniqKey="Davis W">WC Davis</name>
</author>
<author>
<name sortKey="Douglas, Sd" uniqKey="Douglas S">SD Douglas</name>
</author>
<author>
<name sortKey="Fudenberg, Hh" uniqKey="Fudenberg H">HH Fudenberg</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Jin, L" uniqKey="Jin L">L Jin</name>
</author>
<author>
<name sortKey="Batra, S" uniqKey="Batra S">S Batra</name>
</author>
<author>
<name sortKey="Jeyaseelan, S" uniqKey="Jeyaseelan S">S Jeyaseelan</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Haimovici, A" uniqKey="Haimovici A">A Haimovici</name>
</author>
<author>
<name sortKey="Brigger, D" uniqKey="Brigger D">D Brigger</name>
</author>
<author>
<name sortKey="Torbett, Be" uniqKey="Torbett B">BE Torbett</name>
</author>
<author>
<name sortKey="Fey, Mf" uniqKey="Fey M">MF Fey</name>
</author>
<author>
<name sortKey="Tschan, Mp" uniqKey="Tschan M">MP Tschan</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Schl Fli, Am" uniqKey="Schl Fli A">AM Schläfli</name>
</author>
<author>
<name sortKey="Shan Krauer, D" uniqKey="Shan Krauer D">D Shan-Krauer</name>
</author>
<author>
<name sortKey="Garattini, E" uniqKey="Garattini E">E Garattini</name>
</author>
<author>
<name sortKey="Tschan, Mp" uniqKey="Tschan M">MP Tschan</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Britschgi, A" uniqKey="Britschgi A">A Britschgi</name>
</author>
<author>
<name sortKey="Yousefi, S" uniqKey="Yousefi S">S Yousefi</name>
</author>
<author>
<name sortKey="Laedrach, J" uniqKey="Laedrach J">J Laedrach</name>
</author>
<author>
<name sortKey="Shan, D" uniqKey="Shan D">D Shan</name>
</author>
<author>
<name sortKey="Simon, H U" uniqKey="Simon H">H-U Simon</name>
</author>
<author>
<name sortKey="Tobler, A" uniqKey="Tobler A">A Tobler</name>
</author>
<author>
<name sortKey="Fey, Mf" uniqKey="Fey M">MF Fey</name>
</author>
<author>
<name sortKey="Tschan, Mp" uniqKey="Tschan M">MP Tschan</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Abdel Fattah, E" uniqKey="Abdel Fattah E">E Abdel Fattah</name>
</author>
<author>
<name sortKey="Bhattacharya, A" uniqKey="Bhattacharya A">A Bhattacharya</name>
</author>
<author>
<name sortKey="Herron, A" uniqKey="Herron A">A Herron</name>
</author>
<author>
<name sortKey="Safdar, Z" uniqKey="Safdar Z">Z Safdar</name>
</author>
<author>
<name sortKey="Eissa, Nt" uniqKey="Eissa N">NT Eissa</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Skendros, P" uniqKey="Skendros P">P Skendros</name>
</author>
<author>
<name sortKey="Chrysanthopoulou, A" uniqKey="Chrysanthopoulou A">A Chrysanthopoulou</name>
</author>
<author>
<name sortKey="Rousset, F" uniqKey="Rousset F">F Rousset</name>
</author>
<author>
<name sortKey="Kambas, K" uniqKey="Kambas K">K Kambas</name>
</author>
<author>
<name sortKey="Arampatzioglou, A" uniqKey="Arampatzioglou A">A Arampatzioglou</name>
</author>
<author>
<name sortKey="Mitsios, A" uniqKey="Mitsios A">A Mitsios</name>
</author>
<author>
<name sortKey="Bocly, V" uniqKey="Bocly V">V Bocly</name>
</author>
<author>
<name sortKey="Konstantinidis, T" uniqKey="Konstantinidis T">T Konstantinidis</name>
</author>
<author>
<name sortKey="Pellet, P" uniqKey="Pellet P">P Pellet</name>
</author>
<author>
<name sortKey="Angelidou, I" uniqKey="Angelidou I">I Angelidou</name>
</author>
<author>
<name sortKey="Apostolidou, E" uniqKey="Apostolidou E">E Apostolidou</name>
</author>
<author>
<name sortKey="Ritis, D" uniqKey="Ritis D">D Ritis</name>
</author>
<author>
<name sortKey="Tsironidou, V" uniqKey="Tsironidou V">V Tsironidou</name>
</author>
<author>
<name sortKey="Galtsidis, S" uniqKey="Galtsidis S">S Galtsidis</name>
</author>
<author>
<name sortKey="Papagoras, C" uniqKey="Papagoras C">C Papagoras</name>
</author>
<author>
<name sortKey="Stakos, D" uniqKey="Stakos D">D Stakos</name>
</author>
<author>
<name sortKey="Kouklakis, G" uniqKey="Kouklakis G">G Kouklakis</name>
</author>
<author>
<name sortKey="Dalla, V" uniqKey="Dalla V">V Dalla</name>
</author>
<author>
<name sortKey="Koffa, M" uniqKey="Koffa M">M Koffa</name>
</author>
<author>
<name sortKey="Mitroulis, I" uniqKey="Mitroulis I">I Mitroulis</name>
</author>
</analytic>
</biblStruct>
</listBibl>
</div1>
</back>
</TEI>
<pmc article-type="review-article">
<pmc-dir>properties open_access</pmc-dir>
<front>
<journal-meta>
<journal-id journal-id-type="nlm-ta">Korean J Physiol Pharmacol</journal-id>
<journal-id journal-id-type="iso-abbrev">Korean J. Physiol. Pharmacol</journal-id>
<journal-id journal-id-type="publisher-id">KJPP</journal-id>
<journal-title-group>
<journal-title>The Korean Journal of Physiology & Pharmacology : Official Journal of the Korean Physiological Society and the Korean Society of Pharmacology</journal-title>
</journal-title-group>
<issn pub-type="ppub">1226-4512</issn>
<issn pub-type="epub">2093-3827</issn>
<publisher>
<publisher-name>The Korean Physiological Society and The Korean Society of Pharmacology</publisher-name>
</publisher>
</journal-meta>
<article-meta>
<article-id pub-id-type="pmid">31908569</article-id>
<article-id pub-id-type="pmc">6940497</article-id>
<article-id pub-id-type="doi">10.4196/kjpp.2020.24.1.1</article-id>
<article-categories>
<subj-group subj-group-type="heading">
<subject>Review Article</subject>
</subj-group>
</article-categories>
<title-group>
<article-title>Autophagy in neutrophils</article-title>
</title-group>
<contrib-group>
<contrib contrib-type="author">
<name>
<surname>Shrestha</surname>
<given-names>Sanjeeb</given-names>
</name>
<xref ref-type="aff" rid="A1">1</xref>
</contrib>
<contrib contrib-type="author" corresp="yes">
<name>
<surname>Lee</surname>
<given-names>Jae Man</given-names>
</name>
<xref ref-type="aff" rid="A2">2</xref>
</contrib>
<contrib contrib-type="author" corresp="yes">
<name>
<surname>Hong</surname>
<given-names>Chang-Won</given-names>
</name>
<xref ref-type="aff" rid="A1">1</xref>
</contrib>
</contrib-group>
<aff id="A1">
<label>1</label>
Department of Physiology, School of Medicine, Kyungpook National University, Daegu 41944,
<country>Korea</country>
.</aff>
<aff id="A2">
<label>2</label>
Department of Biochemistry and Cell Biology, School of Medicine, Kyungpook National University, Daegu 41944,
<country>Korea</country>
.</aff>
<author-notes>
<corresp>Correspondence: Jae Man Lee.
<email>jaemanlee@knu.ac.kr</email>
</corresp>
<corresp>Correspondence: Chang-Won Hong.
<email>cwhong@knu.ac.kr</email>
</corresp>
</author-notes>
<pub-date pub-type="ppub">
<month>1</month>
<year>2020</year>
</pub-date>
<pub-date pub-type="epub">
<day>20</day>
<month>12</month>
<year>2019</year>
</pub-date>
<volume>24</volume>
<issue>1</issue>
<fpage>1</fpage>
<lpage>10</lpage>
<history>
<date date-type="received">
<day>28</day>
<month>10</month>
<year>2019</year>
</date>
<date date-type="rev-recd">
<day>25</day>
<month>11</month>
<year>2019</year>
</date>
<date date-type="accepted">
<day>27</day>
<month>11</month>
<year>2019</year>
</date>
</history>
<permissions>
<copyright-statement>Copyright © 2020 The Korean Physiological Society and The Korean Society of Pharmacology</copyright-statement>
<copyright-year>2020</copyright-year>
<copyright-holder>The Korean Physiological Society and The Korean Society of Pharmacology</copyright-holder>
<license license-type="open-access" xlink:href="http://creativecommons.org/licenses/by-nc/4.0">
<license-p>This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (
<ext-link ext-link-type="uri" xlink:href="http://creativecommons.org/licenses/by-nc/4.0">http://creativecommons.org/licenses/by-nc/4.0</ext-link>
) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.</license-p>
</license>
</permissions>
<abstract>
<p>Autophagy is a highly conserved intracellular degradation and energy-recycling mechanism that contributes to the maintenance of cellular homeostasis. Extensive researches over the past decades have defined the role of autophagy innate immune cells. In this review, we describe the current state of knowledge regarding the role of autophagy in neutrophil biology and a picture of molecular mechanism underlying autophagy in neutrophils. Neutrophils are professional phagocytes that comprise the first line of defense against pathogen. Autophagy machineries are highly conserved in neutrophils. Autophagy is not only involved in generalized function of neutrophils such as differentiation in bone marrow but also plays crucial role effector functions of neutrophils such as granule formation, degranulation, neutrophil extracellular traps release, cytokine production, bactericidal activity and controlling inflammation. This review outlines the current understanding of autophagy in neutrophils and provides insight towards identification of novel therapeutics targeting autophagy in neutrophils.</p>
</abstract>
<kwd-group>
<kwd>Autophagy</kwd>
<kwd>Bactericidal activity</kwd>
<kwd>Neutrophil</kwd>
<kwd>Neutrophil extracellular trap</kwd>
</kwd-group>
<funding-group>
<award-group>
<funding-source>
<institution-wrap>
<institution>National Research Foundation of Korea</institution>
<institution-id institution-id-type="CrossRef">https://doi.org/10.13039/501100003725</institution-id>
</institution-wrap>
</funding-source>
<award-id>2017R1C1B2009015</award-id>
<award-id>2017R1A4A1015652</award-id>
<award-id>2018R1D1A1B07050421</award-id>
</award-group>
</funding-group>
</article-meta>
</front>
<body>
<sec sec-type="intro">
<title>INTRODUCTION</title>
<p>Neutrophils are the most abundant circulating human leukocytes essential for protection against pathogens [
<xref rid="B1" ref-type="bibr">1</xref>
]. The bone marrow produces huge numbers of neutrophils, which are released into the circulation during steady-state and inflammatory conditions [
<xref rid="B2" ref-type="bibr">2</xref>
]. During infection, neutrophils are recruited to the site of infection and eliminate pathogens by means of various effector mechanisms, such as the degradation of ingested microbes by fusion of phagosomes with granule proteins, production of reactive oxygen species (ROS) [
<xref rid="B3" ref-type="bibr">3</xref>
<xref rid="B4" ref-type="bibr">4</xref>
<xref rid="B5" ref-type="bibr">5</xref>
<xref rid="B6" ref-type="bibr">6</xref>
<xref rid="B7" ref-type="bibr">7</xref>
], and release of extracellular chromatin fibers decorated with antimicrobial proteins, termed neutrophil extracellular traps (NETs) [
<xref rid="B5" ref-type="bibr">5</xref>
<xref rid="B6" ref-type="bibr">6</xref>
]. Since these neutrophil effector mechanisms are not only protective but can also be destructive to host tissue, neutrophil production, trafficking, and clearance are tightly regulated by several homeostatic mechanisms in respective organs [
<xref rid="B7" ref-type="bibr">7</xref>
].</p>
<p>Autophagy, an intracellular degradation and energy-recycling mechanism, is one of the key homeostatic process contributing to neutrophil differentiation and function [
<xref rid="B8" ref-type="bibr">8</xref>
<xref rid="B9" ref-type="bibr">9</xref>
]. Mitroulis et al. [
<xref rid="B10" ref-type="bibr">10</xref>
] were the first to discover the evidence of autophagy in neutrophils. Autophagy in neutrophils is activated by phagocytosis of pathogens or activation of pattern recognition receptors (PRRs) by pathogen-derived toxins and molecules [
<xref rid="B10" ref-type="bibr">10</xref>
]. Since the initial discovery of autophagy in neutrophils, many studies have outlined the biological roles of autophagy in neutrophil activities, such as differentiation and effector functions. This review outlines the current understanding of autophagy in neutrophils. We first focus on known autophagy machinery in neutrophils and discuss the role of autophagy in neutrophil differentiation. Finally, we discuss the involvement of autophagy in neutrophil effector functions.</p>
</sec>
<sec>
<title>OVERVIEW OF AUTOPHAGY PATHWAYS</title>
<p>Autophagy is an essential mechanism in cell biology. Autophagy is a complex and tightly regulated pathway which allows cells to eliminate damaged or harmful intracellular components to maintain nutrient and energy homeostasis [
<xref rid="B11" ref-type="bibr">11</xref>
]. Hence, autophagy is an important survival mechanism for cells by protecting them from potential harms [
<xref rid="B12" ref-type="bibr">12</xref>
].</p>
<p>Autophagy molecular mechanisms involve the interaction of several conserved autophagy-related (Atg) proteins. Evolutionarily conserved canonical autophagy can be initiated by various stimuli, and results in the formation of a phagophore, whose membrane is derived from the rough endoplasmic reticulum [
<xref rid="B13" ref-type="bibr">13</xref>
<xref rid="B14" ref-type="bibr">14</xref>
<xref rid="B15" ref-type="bibr">15</xref>
<xref rid="B16" ref-type="bibr">16</xref>
]. Phagophore formation is initiated by either Atg/ULK1 complex (ULK 1/2-Atg13/FIP200-Atg101) or class III PI3K complex (Atg14-Beclin1/Ambra1-hVPS34/hVPS15), while mammalian target of rapamycin (mTOR) negatively regulates autophagy induction [
<xref rid="B13" ref-type="bibr">13</xref>
<xref rid="B14" ref-type="bibr">14</xref>
<xref rid="B16" ref-type="bibr">16</xref>
<xref rid="B17" ref-type="bibr">17</xref>
<xref rid="B18" ref-type="bibr">18</xref>
<xref rid="B19" ref-type="bibr">19</xref>
]. The phagophore then elongates to form a double-membrane-enclosed autophagosome. During autophagosome formation, two key ubiquitin-like conjugation systems—the Atg12 conjugation system (Atg5-Atg12 in a multimeric complex with Atg16) and the LC3/Atg8 conjugation system (phosphatidylethanolamine [PE]-conjugated LC3-II, which forms after cleavage by Atg4)—are recruited by Atg7 to the autophagosomal membrane [
<xref rid="B17" ref-type="bibr">17</xref>
<xref rid="B20" ref-type="bibr">20</xref>
<xref rid="B21" ref-type="bibr">21</xref>
]. Conjugated LC3 is integrated into the growing phagophore by the Atg5-Atg12 conjugation system, facilitating growth and elongation of the autophagosome. The Atg5-Atg12 conjugation system dissociates after autophagosome closure and maturation. Alternatively, there is another pathway, a non-canonical autophagy that involves bypass of proteins either in elongation and closure or in initiation in canonical pathway [
<xref rid="B22" ref-type="bibr">22</xref>
]. One example of non-canonical autophagy involves LC3II-associated phagocytosis (LAP). During LAP, a hybrid autophagic-phagocytic process, toll like receptor (TLR)-bound bacteria are taken up into the phagosome. These phagocytosed TLRs triggers the recruitment of LC3II to phagosomal membrane, thereby initiating autophagy and facilitates phagosome maturation [
<xref rid="B22" ref-type="bibr">22</xref>
<xref rid="B23" ref-type="bibr">23</xref>
]. Then the mature autophagosome fuses with lysosomes. During this final degradative process, the autophagosome undergoes loss of its inner membrane and matures into an autolysosome. This process is initiated by the hVPS34-Beclin complex in association with hVPS38 and requires membrane fusion proteins such as LAMP2/Rab7/SNARES [
<xref rid="B18" ref-type="bibr">18</xref>
<xref rid="B20" ref-type="bibr">20</xref>
].</p>
<p>Activation of neutrophil autophagic machinery is initiated by various triggers or stimuli, including phagocytosis-dependent and phagocytosis-independent signals [
<xref rid="B10" ref-type="bibr">10</xref>
<xref rid="B16" ref-type="bibr">16</xref>
]. Such initiating signals induce PI3K activation, leading to enhanced NADPH oxidase (ROS) activity and decreased mTOR signaling [
<xref rid="B10" ref-type="bibr">10</xref>
<xref rid="B16" ref-type="bibr">16</xref>
<xref rid="B24" ref-type="bibr">24</xref>
<xref rid="B25" ref-type="bibr">25</xref>
<xref rid="B26" ref-type="bibr">26</xref>
]. GPCR activation can initiate autophagy in neutrophils via ROS-dependent manner by interaction with high mobility group box 1 (HMGB1) and Beclin-1 [
<xref rid="B27" ref-type="bibr">27</xref>
]. However, macrophage-inducible Ca
<sup>2+</sup>
-dependent lectin receptor (Mincle) activation initiates autophagy in neutrophils independent of ROS and mTOR manner through activation of Beclin-1 nucleation complex [
<xref rid="B28" ref-type="bibr">28</xref>
]. Neutrophil nutrient starvation can also initiate autophagy via the AMPK pathway [
<xref rid="B23" ref-type="bibr">23</xref>
<xref rid="B29" ref-type="bibr">29</xref>
]. Nucleation processes mediated by ULK (inhibition of mTOR) and/or Beclin-1 are followed by recruitment of other autophagy proteins to the phagosome, resulting in autophagosome formation [
<xref rid="B17" ref-type="bibr">17</xref>
<xref rid="B20" ref-type="bibr">20</xref>
<xref rid="B21" ref-type="bibr">21</xref>
]. Ubiquitin-like conjugation system components Atg5 and Atg7 are key regulators of phagophore elongation and autophagosome formation [
<xref rid="B17" ref-type="bibr">17</xref>
<xref rid="B20" ref-type="bibr">20</xref>
<xref rid="B21" ref-type="bibr">21</xref>
]. Atg7 induces LC3 lipidation, whereas the Atg12-Atg5-Atg16 complex integrates LC3-II into the phagophore and completes autophagosome formation. Knockdown of these genes inhibits autophagy in neutrophils [
<xref rid="B30" ref-type="bibr">30</xref>
<xref rid="B31" ref-type="bibr">31</xref>
]. We have also previously reported that defective Atg5-Atg12 complex formation compromises phagophore elongation, resulting in defective autophagy [
<xref rid="B32" ref-type="bibr">32</xref>
]. In addition, p62/SQSTM is incorporated into the completed autophagosome and undergoes degradation in the autolysosome [
<xref rid="B33" ref-type="bibr">33</xref>
]. Increased p62/SQSTM degradation is strong indirect evidence that autophagy is occurring [
<xref rid="B33" ref-type="bibr">33</xref>
], and decreased p62/SQSTM1 degradation is associated with defective autophagy or inhibition of autophagy machinery [
<xref rid="B32" ref-type="bibr">32</xref>
<xref rid="B34" ref-type="bibr">34</xref>
<xref rid="B35" ref-type="bibr">35</xref>
].</p>
<p>In summary, autophagy is initiated by various stimuli which either induce activation of Beclin-1 or inhibition of the mTOR pathway. These events then induce phagophore nucleation and elongation by the Atg5-Atg12 complex. Finally, autophagosome formation is completed by incorporation of lipidated LC3-II into the phagosome membrane, and p62/SQTM1 is degraded (
<xref ref-type="fig" rid="F1">Fig. 1</xref>
). Similarly, activation or regulation of neutrophil autophagy follows autophagy machinery as discussed above. Neutrophil can sequester materials by mTOR-ULK1 dependent canonical autophagy or ATG5/ATG7 dependent non-canonical pathway with LC3 associated structures (LAP). While all stimuli which initiate autophagy in neutrophils up-regulate LC3 expression and lipidation, differential expression of ATG genes (
<italic>ATG3</italic>
,
<italic>ATG4</italic>
,
<italic>ATG6</italic>
and
<italic>ATG7</italic>
) is observed depending on the stimuli [
<xref rid="B10" ref-type="bibr">10</xref>
]. Therefore, monitoring expression levels of Beclin-1 (Atg6), Atg5, Atg12, and p62/SQSTM1, along with LC3-II (LC3 expression and lipidation) can provide improved insights into the differential induction and regulation of autophagy machinery in neutrophils.</p>
</sec>
<sec>
<title>AUTOPHAGY IN NEUTROPHIL DIFFERENTIATION</title>
<p>Neutrophils are generated from hematopoietic precursors in the bone marrow. Hematopoietic stem cells differentiate into common myeloid progenitor cells, which further differentiate into neutrophil precursors. These successive stages of neutrophil differentiation are governed by transcriptional programs [
<xref rid="B36" ref-type="bibr">36</xref>
<xref rid="B37" ref-type="bibr">37</xref>
]. Although many reports discuss the role of autophagy in hematopoiesis and hematopoietic cell fate, its role in neutrophil differentiation has not been fully understood. Selective autophagy, macrophagy and mitophagy, differentially regulates the differentiation and maturation of myeloid lineage cells such as granulocytes, erythrocytes etc. [
<xref rid="B38" ref-type="bibr">38</xref>
<xref rid="B39" ref-type="bibr">39</xref>
<xref rid="B40" ref-type="bibr">40</xref>
]. However, impaired autophagy in myeloid cells leads to hematopoietic diseases such as acute lymphoid leukemia [
<xref rid="B39" ref-type="bibr">39</xref>
]. Once committed to the granulocyte lineage, these progenitor cells pass through a mitotic pool composed of myeloblasts and promyelocytes. They further differentiate into myelocytes, metamyelocytes, band cells, and, finally, into mature segmented neutrophils [
<xref rid="B41" ref-type="bibr">41</xref>
]. There is increased autophagic activity in myleoblasts, promyleocytes and myleocytes, and declined as it differentiates into metamyleocytes and band cells. Autophagy is lowest in cells that had undergone terminal differentiation [
<xref rid="B34" ref-type="bibr">34</xref>
<xref rid="B42" ref-type="bibr">42</xref>
]. Lipophagy, the autophagic ability to degrade fatty acid-enriched lipid droplets provides free fatty acids, the substrate, for oxidative phosphorylation to enhance ATP generation required for differentiation. Knockdown of either
<italic>ATG5</italic>
or
<italic>ATG7</italic>
results in defective neutrophil precursors differentiation into promyelocytes [
<xref rid="B42" ref-type="bibr">42</xref>
]. Such autophagy-defective neutrophil precursors exhibited an impaired lipophagy, mitochondrial respiration and ATP production, with a concomitant increase in glycolytic activity. As fatty acids represent an essential substrate for oxidative phosphorylation during the early stages of neutrophil differentiation, the resultant lack of ATP impairs differentiation during these stages [
<xref rid="B42" ref-type="bibr">42</xref>
]. However, tissue specific downregulation of
<italic>ATG5</italic>
expression in immature neutrophils resulted in elevated proliferation of neutrophil precursor in bone marrow and an accelerated process of neutrophil differentiation. These
<italic>ATG5</italic>
deficient neutrophils were without any abnormalities in morphology, granule protein content, apoptosis regulation and other effector functions. But, as a consequence of reduced autophagy (possibly mitophagy) the number of mitochondria were increased but did not affect the neutrophil morphology and function [
<xref rid="B34" ref-type="bibr">34</xref>
]. Moreover, over-expression of autophagy by overexpression of ATG5 or using pharmalogical approaches, delayed terminal neutrophil differentiation [
<xref rid="B34" ref-type="bibr">34</xref>
]. Overall, autophagy is upregulated in myeloblasts and progressively down-regulates as they continue to differentiate. These results highlight the important role of autophagy during early mitotic stage of neutrophil differentiation and possibly due to short life span, active autophagy is not important for post-mitotic stage of neutrophil differentiation. Altogether, autophagy appears to reciprocally regulate neutrophil differentiation in mitotic and post-mitotic pools.</p>
</sec>
<sec>
<title>AUTOPHAGY IN NEUTROPHIL BACTERICIDAL ACTIVITY</title>
<p>Neutrophils are professional phagocytes and are thus able to phagocytose and destroy infectious agents [
<xref rid="B43" ref-type="bibr">43</xref>
]. During phagocytosis, pathogens become sequestered in highly-organized endocytic compartments known as phagosomes, and are ultimately degraded via fusion of these compartments to lysosomes [
<xref rid="B44" ref-type="bibr">44</xref>
]. During phagocytosis by neutrophil, bacteria is engulfed into phagosomes. Fusion of granule contents and NADPH complex to phagosome contribute to its maturation and antimicrobial activity [
<xref rid="B45" ref-type="bibr">45</xref>
]. Recent studies indicate neutrophils exhibits phagocytosis-dependent or non-canonical selective autophagy during bactericidal activity [
<xref rid="B26" ref-type="bibr">26</xref>
<xref rid="B46" ref-type="bibr">46</xref>
<xref rid="B47" ref-type="bibr">47</xref>
]. During phagocytosis dependent LAP, PRR-bound bacteria in phagosome induces LC3 translocation, thereby initiating autophagy. LAP facilitates phagosome maturation and consequent bacteria degradation [
<xref rid="B23" ref-type="bibr">23</xref>
]. Phagocytosisindependent autophagy (or non-canonical selective autophagy, xenophagy) also exists, and is initiated by ubiquitinated p62/SQSTM1 bound to intracellular bacteria or bacteria which have escaped the phagocytic pathway. Such autophagy-mediated bacterial clearance is rapid and occurs independently of ROS generation [
<xref rid="B48" ref-type="bibr">48</xref>
]. Furthermore, augmentation of autophagy greatly enhanced neutrophil phagocytosis of bacteria and its bactericidal activity, facilitating effective elimination of both drug-sensitive and multi drug-resistant bacterial strains [
<xref rid="B23" ref-type="bibr">23</xref>
<xref rid="B49" ref-type="bibr">49</xref>
<xref rid="B50" ref-type="bibr">50</xref>
]. In contrast, impaired or inhibited autophagy enhanced survival and growth of bacteria within neutrophils [
<xref rid="B23" ref-type="bibr">23</xref>
<xref rid="B51" ref-type="bibr">51</xref>
<xref rid="B52" ref-type="bibr">52</xref>
]. These findings indicate the important contribution of non-canonical selective autophagy to the bactericidal activity of human neutrophils and possibly the defect with these processes rather than canonical pathway may hinder bacterial clearance.</p>
</sec>
<sec>
<title>AUTOPHAGY AND NETosis</title>
<p>Entrapment and killing of pathogens is also mediated by NETosis (a type of cell death culminating in NETs release), first discovered by Brinkmann et al. [
<xref rid="B5" ref-type="bibr">5</xref>
] as a novel extracellular microbicidal mechanism employed by neutrophils. NETs are composed of dense extracellular chromatin studded with antimicrobial proteins (e.g., histones, neutrophil-derived granule proteins, and other cytosolic proteins) [
<xref rid="B53" ref-type="bibr">53</xref>
<xref rid="B54" ref-type="bibr">54</xref>
]. During NETosis, chromatin becomes decondensed, followed by nuclear swelling, nuclear membrane disintegration, rupture of the cell membrane, and release of NETs into the extracellular space. Released NETs are eventually phagocytosed and eliminated from circulation by macrophages [
<xref rid="B55" ref-type="bibr">55</xref>
].</p>
<p>Various stimuli induce neutrophil NETs formation, including pathogen associated molecular patterns (e.g.,
<italic>Staphylococcus aureus</italic>
,
<italic>Candida albicans</italic>
,
<italic>Leishmania</italic>
spp., and other bacteria and fungi), exogenous compounds (e.g., phorbol myristate acetate, calcium ionophores, and potassium ionophores), danger associated molecular patterns (e.g., interleukin [IL]-33, immune complexes, auto-antibodies, histones, LL-37, and HMGB1), inflammatory cytokines (e.g., tumor necrosis factor-α and IL-8), platelets, and antibodies [
<xref rid="B56" ref-type="bibr">56</xref>
<xref rid="B57" ref-type="bibr">57</xref>
<xref rid="B58" ref-type="bibr">58</xref>
<xref rid="B59" ref-type="bibr">59</xref>
<xref rid="B60" ref-type="bibr">60</xref>
<xref rid="B61" ref-type="bibr">61</xref>
]. Different stimuli induce activation of differential signaling pathways which nonetheless converge on NETosis [
<xref rid="B56" ref-type="bibr">56</xref>
<xref rid="B60" ref-type="bibr">60</xref>
<xref rid="B62" ref-type="bibr">62</xref>
].</p>
<p>Remijsen et al. [
<xref rid="B63" ref-type="bibr">63</xref>
] reported that both autophagy and ROS are required for NETosis. They demonstrated that both autophagy and ROS generation are required for chromatin decondensation: defects in either pathway result in apoptotic cell death rather than NETosis [
<xref rid="B63" ref-type="bibr">63</xref>
]. Although this suggests that the ROS-autophagy axis is essential for NETosis, autophagy can be induced in both ROS-dependent and ROS-independent manners [
<xref rid="B63" ref-type="bibr">63</xref>
]. Calcium ionophore induces rapid, NADPH oxidase-independent NETosis [
<xref rid="B64" ref-type="bibr">64</xref>
], and NETosis induced by certain bacteria is known to be NADPH oxidase-independent [
<xref rid="B65" ref-type="bibr">65</xref>
<xref rid="B66" ref-type="bibr">66</xref>
<xref rid="B67" ref-type="bibr">67</xref>
]. Interestingly, Itakura and McCarty described regulation of autophagy and cytoskeletal remodeling by the mTOR pathway during NETs formation [
<xref rid="B16" ref-type="bibr">16</xref>
]. Inhibition of mTOR or autophagy activation by rapamycin enhanced NETs formation, whereas autophagy inhibition by wortmannin (a PI3K inhibitor) diminished NETs release [
<xref rid="B16" ref-type="bibr">16</xref>
]. Since autophagy is reciprocally regulated by the mTOR pathway, this study indicates that ROS-independent NETosis is mediated by mTOR-autophagy signaling. Moreover, evidence is accumulating that autophagy is an important regulator of NETs formation. Chargui et al. [
<xref rid="B23" ref-type="bibr">23</xref>
] observed that autophagy preceded NETs formation in neutrophils infected with invasive
<italic>Escherichia coli</italic>
, and that
<italic>Atg5</italic>
silencing completely blocked NETs formation. Pharmacological inhibition of autophagy (using wortmannin, 3-MA, bafilomycin, chloroquine, or atrazine) or inhibition of autophagy via siRNA-mediated
<italic>ATG7</italic>
silencing both inhibited NETs release [
<xref rid="B28" ref-type="bibr">28</xref>
<xref rid="B32" ref-type="bibr">32</xref>
<xref rid="B61" ref-type="bibr">61</xref>
<xref rid="B68" ref-type="bibr">68</xref>
<xref rid="B69" ref-type="bibr">69</xref>
]. Neutrophils isolated from aged mice possessing a defect in ATG5 (and thus in autophagic pathways) exhibited decreased NETs release [
<xref rid="B30" ref-type="bibr">30</xref>
]. Additionally, Mincle knockdown attenuated autophagy, concomitant with impaired NETs formation [
<xref rid="B28" ref-type="bibr">28</xref>
]. We have previously observed that impaired autophagy in neutrophils results in decreased NETosis during sepsis [
<xref rid="B32" ref-type="bibr">32</xref>
]. Furthermore, pharmacological induction of autophagy in neutrophils (using rapamycin or tamoxifen) rescued NETs formation [
<xref rid="B28" ref-type="bibr">28</xref>
<xref rid="B32" ref-type="bibr">32</xref>
]. However, Germic et al. [
<xref rid="B70" ref-type="bibr">70</xref>
] reported that neutrophils isolated from ATG5 -knockout mice still retained the capacity for NETs release. Furthermore, only PI3K inhibition attenuated NETs formation, while inhibition of downstream autophagy pathways (using bafilomycin or chloroquine) did not.</p>
<p>Further, autophagy and NETosis are closely related with various pathologies, both in experimental disease models and in the clinical conditions [
<xref rid="B31" ref-type="bibr">31</xref>
<xref rid="B71" ref-type="bibr">71</xref>
<xref rid="B72" ref-type="bibr">72</xref>
<xref rid="B73" ref-type="bibr">73</xref>
]. Autophagy positively regulates NETosis, and impaired autophagy thus correlates with reduced NETs formation [
<xref rid="B28" ref-type="bibr">28</xref>
<xref rid="B32" ref-type="bibr">32</xref>
<xref rid="B63" ref-type="bibr">63</xref>
]. Decreased NETosis and resultant prolonged neutrophil survival increases mortality among sepsis patients [
<xref rid="B74" ref-type="bibr">74</xref>
]. Furthermore, NETs depletion resulted in a delayed immune response and polymicrobial sepsis in mice [
<xref rid="B75" ref-type="bibr">75</xref>
]. We previously demonstrated that neutrophils isolated from patients experiencing fatal sepsis exhibit decreased NETs formation. Additionally, decreased NETs formation correlated with impaired autophagy, and autophagy augmentation protected mice from sepsis in a NETs-dependent manner [
<xref rid="B33" ref-type="bibr">33</xref>
]. Furthermore, clarithromycin, a macrolide antibiotic, induced autophagy-dependent formation of NETs decorated with the antimicrobial peptide LL-37. Clarithromycin-induced NETs formation inhibited growth and biofilm formation of
<italic>Acinetobacter baumannii</italic>
[
<xref rid="B76" ref-type="bibr">76</xref>
]. Tamoxifen, an autophagy inducer, restored impaired autophagy and NETs formation in Mincle-defective neutrophils and enhanced neutrophil phagocytosis of
<italic>Klebsiella pneumoniae</italic>
, limiting bacterial pneumonia [
<xref rid="B77" ref-type="bibr">77</xref>
]. One primary function of NETs is sequestration of inflammatory sites from circulation to prevent pathogen spreading. However, tumor-infiltrating neutrophils also exhibited increased autophagy and NETs formation. Such NETs may physically sequester cancer cells, interfering with the anti-tumoral activities of effector T cells [
<xref rid="B78" ref-type="bibr">78</xref>
<xref rid="B79" ref-type="bibr">79</xref>
]. Moreover, cancer cells exhibit increased metastatic rates in a NETs-enriched environment [
<xref rid="B80" ref-type="bibr">80</xref>
<xref rid="B81" ref-type="bibr">81</xref>
<xref rid="B82" ref-type="bibr">82</xref>
]. These studies showed autophagy is important but not essential for NETosis. However, as discussed above intervention of both canonical and non-canonical autophagy with molecular or pharmacological interventions impacts NETsosis. Dissecting among the ATG-dependent autophagy, ATG-independent autophagy and ATG-dependent non-autophagic pathway during NETosis may further clarify the importance of autophagy during NETosis.</p>
</sec>
<sec>
<title>AUTOPHAGY AND NEUTROPHIL GRANULE FORMATION/DEGRANULATION</title>
<p>Neutrophils possess various cytoplasmic granules: azurophil (primary) granules, specific (secondary) granules, gelatinase-containing tertiary granules, and secretory vesicles (phosphasomes) [
<xref rid="B83" ref-type="bibr">83</xref>
<xref rid="B84" ref-type="bibr">84</xref>
<xref rid="B85" ref-type="bibr">85</xref>
]. A recent study also described a fourth (ficolin-1-rich) neutrophil granule [
<xref rid="B71" ref-type="bibr">71</xref>
]. Granule heterogeneity is explained by a targeting-by-time hypothesis: granules are formed and stored in a time-dependent order which corresponds to neutrophil developmental stages. Thus, granule formation occurs throughout neutrophil development, beginning with azurophil granules (in myeloblasts-promyelocytes) and ending with secretory vesicles (in band cells) [
<xref rid="B71" ref-type="bibr">71</xref>
<xref rid="B83" ref-type="bibr">83</xref>
<xref rid="B84" ref-type="bibr">84</xref>
]. Different transcription factors regulate expression of different granule proteins [
<xref rid="B71" ref-type="bibr">71</xref>
]. Recent studies have demonstrated the involvement of autophagy in granule formation. Knockdown of
<italic>ATG7</italic>
correlated with decreased expression of the transcription factor C/EBPε (involved in myeloid differentiation and granule maturation), leading to defective neutrophil granule maturation and fewer neutrophil granules with diminished content [
<xref rid="B42" ref-type="bibr">42</xref>
]. Such neutrophils exhibited increased primary and secondary granule protein expression, but decreased tertiary granule protein expression. Since tertiary granules are formed during the band cell stage, while primary and secondary granules are continually produced and degraded throughout neutrophil differentiation [
<xref rid="B72" ref-type="bibr">72</xref>
<xref rid="B73" ref-type="bibr">73</xref>
<xref rid="B84" ref-type="bibr">84</xref>
<xref rid="B86" ref-type="bibr">86</xref>
], it is speculated that autophagy might be involved in regulation of the relevant transcription program governing granule protein formation prior to the band cell stage.</p>
<p>Autophagy is also involved in neutrophil degranulation. Activated neutrophils release their granule contents into the phagosome and/or extracellular space via exocytosis, in a process known as degranulation [
<xref rid="B87" ref-type="bibr">87</xref>
]. Degranulation occurs in an order opposite to that of granule formation, with secretory vesicle contents being released first and azurophil granule contents being released last [
<xref rid="B73" ref-type="bibr">73</xref>
<xref rid="B83" ref-type="bibr">83</xref>
<xref rid="B84" ref-type="bibr">84</xref>
]. Knockdown of
<italic>ATG5</italic>
and
<italic>ATG7</italic>
led to impaired ROS generation and impaired degranulation, reducing inflammatory function of neutrophils [
<xref rid="B31" ref-type="bibr">31</xref>
]. Autophagy deficiency diminished neutrophil degranulation (primary and secondary granules), with the exception of myeloperoxidase (MPO) [
<xref rid="B31" ref-type="bibr">31</xref>
]. Since the total intracellular quantity of neutrophil MPO remained consistent regardless of
<italic>Atg</italic>
knockdown [
<xref rid="B42" ref-type="bibr">42</xref>
<xref rid="B83" ref-type="bibr">83</xref>
], the above phenomenon is likely due to storage impairment of MPO in
<italic>Atg</italic>
-knockdown neutrophils. These studies suggest a role for both conventional secretion and selective autophagy in neutrophil granule production, storage, and content release. Further dissecting the molecular signatures of autophagic process may facilitates understanding the specific process associated with neutrophil granule formation and degranulation.</p>
<p>Autophagy is also involved in the production and release of certain neutrophil cytokines. Neutrophils produce pro- and anti-inflammatory cytokines either spontaneously or in response to stimulation [
<xref rid="B88" ref-type="bibr">88</xref>
<xref rid="B89" ref-type="bibr">89</xref>
<xref rid="B90" ref-type="bibr">90</xref>
<xref rid="B91" ref-type="bibr">91</xref>
]. The pro-inflammatory cytokine IL-1β is one of the most extensively studied neutrophil-derived cytokine [
<xref rid="B92" ref-type="bibr">92</xref>
<xref rid="B93" ref-type="bibr">93</xref>
<xref rid="B94" ref-type="bibr">94</xref>
]. Autophagy is involved in the release of IL-1β by human neutrophils in an
<italic>ATG</italic>
-dependent secretory pathway. Neutrophil release of IL-1β was inhibited by autophagy inhibitors or
<italic>ATG5</italic>
silencing [
<xref rid="B94" ref-type="bibr">94</xref>
]. This is particularly interesting given that autophagy degrades and blocks maturation and secretion of IL-1β in other immune cells such as macrophages [
<xref rid="B95" ref-type="bibr">95</xref>
<xref rid="B96" ref-type="bibr">96</xref>
].</p>
</sec>
<sec>
<title>AUTOPHAGY AND NEUTROPHIL-MEDIATED INFLAMMATION/PATHOLOGY</title>
<p>Autophagy is involved in modulation of inflammation through regulating pathogen clearance, antigen presentation, cytokine generation, and immune responses [
<xref rid="B97" ref-type="bibr">97</xref>
]. Abnormalities in autophagic machinery have been linked to several diseases, such as Crohn's disease, cystic fibrosis, and inflammation-associated metabolic disease [
<xref rid="B98" ref-type="bibr">98</xref>
]. As we have reviewed, autophagy has also been established as a regulator of neutrophil function [
<xref rid="B31" ref-type="bibr">31</xref>
]. Excessive or dysregulated neutrophil functions has been noted in various diseases such as sepsis, chronic obstructive pulmonary disease (COPD), chronic granulomatous disease, Crohn's disease, and familial Mediterranean fever (FMF) [
<xref rid="B99" ref-type="bibr">99</xref>
<xref rid="B100" ref-type="bibr">100</xref>
<xref rid="B101" ref-type="bibr">101</xref>
]. Recently, the role of autophagy in neutrophil-mediated inflammation and autoimmune disease has been established [
<xref rid="B31" ref-type="bibr">31</xref>
]. Inhibition of autophagy during neutrophil-mediated inflammation and autoimmune disease reduced disease severity and progression by suppressing degranulation and ROS production [
<xref rid="B23" ref-type="bibr">23</xref>
<xref rid="B35" ref-type="bibr">35</xref>
]. Similarly, suppression of autophagy through NLRP3 knockdown or inhibition of the NLRP3 inflammasome enhanced neutrophil recruitment and phagocytosis, thereby improving bacterial clearance and augmenting the survival of septic mice [
<xref rid="B102" ref-type="bibr">102</xref>
]. Furthermore, during the pathogenesis of COPD, autophagy induction increased neutrophil apoptosis and accelerated disease development via platelet-activating factor receptor (PAFR) [
<xref rid="B27" ref-type="bibr">27</xref>
]. Inhibition of PAFR-dependent autophagy reversed autophagic neutrophil death, and slowed disease development [
<xref rid="B27" ref-type="bibr">27</xref>
]. In contrast, autophagy defects in myeloid cells attenuated neutrophilic differentiation of acute promyelocytic leukemia cells and lowered the efficacy of all-trans retinoic acid therapy [
<xref rid="B103" ref-type="bibr">103</xref>
<xref rid="B104" ref-type="bibr">104</xref>
<xref rid="B105" ref-type="bibr">105</xref>
]. Inhibiting autophagy in myeloid cells also resulted in spontaneous lung inflammation and enhanced susceptibility to endotoxemia, an effect attributed to increased levels of IL-8 [
<xref rid="B106" ref-type="bibr">106</xref>
]. Similarly, adherent-invasive
<italic>E. coli</italic>
(AIEC)-infected neutrophils exhibited a defect in the degradation stage of autophagy (delayed or limited autolysosome maturation), enhancing inflammation via autophagic neutrophil death and increased IL-18 secretion [
<xref rid="B23" ref-type="bibr">23</xref>
]. Further, neutrophil
<italic>ATG5</italic>
knockdown induced dysregulated function, increasing the susceptibility to
<italic>M. tuberculosis</italic>
infection [
<xref rid="B35" ref-type="bibr">35</xref>
]. In contrast, autophagy activation through serum starvation or rapamycin treatment of neutrophils enhanced their bactericidal activity against AIEC [
<xref rid="B23" ref-type="bibr">23</xref>
]. Autophagy augmentation in neutrophils by intravenous immunoglobulin treatment also enhanced bactericidal activity against multi-drug resistant strains [
<xref rid="B49" ref-type="bibr">49</xref>
]. However, increased autophagy in neutrophils is associated with IL-β-mediated inflammatory responses during active ulcerative colitis and FMF [
<xref rid="B92" ref-type="bibr">92</xref>
<xref rid="B93" ref-type="bibr">93</xref>
<xref rid="B107" ref-type="bibr">107</xref>
]. This is attributed to the increased load of IL-1β in autophagydriven NETs. Increased IL-1β-induced REDD1 (regulated in development and DNA damage response 1) expression enhances autophagy in neutrophils, leading to increased formation of NETs loaded with IL-1β [
<xref rid="B92" ref-type="bibr">92</xref>
<xref rid="B93" ref-type="bibr">93</xref>
<xref rid="B107" ref-type="bibr">107</xref>
].</p>
<p>These studies suggest a dual role for autophagy in neutrophil function during inflammation (
<xref ref-type="fig" rid="F2">Fig. 2</xref>
). Augmentation of autophagy may be an effective target for enhancement of proper myeloid differentiation and antimicrobial defense. Conversely, autophagy inhibition may be useful in neutrophil-mediated inflammatory disease. Broadly, autophagy is important for neutrophil differentiation and function. However, one important question is whether these pathological outcomes are mediated by canonical or non-canonical autophagic processes. This implies that understanding the molecular mechanism of autophagy during cell physiology and pathological condition would further clarify role of specific autophagy during infection and inflammation.</p>
</sec>
<sec sec-type="conclusions">
<title>CONCLUSIONS</title>
<p>Autophagy is an important phenomenon involved in sequestering cytoplasmic materials and pathogens. Autophagy in neutrophil is associated with its differentiation (lipophagy) during early stage. Autophagy is associated with regulation of degranulation and cytokine production (secretory autophagy), bactericidal activity (xenophagy and LAP) and NETs release. Depending on the inflammatory environment, autophagy in neutrophil may behave as a double-edged sword. While it is beneficial in combating infection, it may favor excessive inflammation through exaggerated NETs formation and cytokine release. Thus, Autophagic homeostasis is important for proper neutrophil effector function and host health. Learning to distinguish between canonical and non-canonical autophagic process could add a significant contribution to understanding autophagy regulation of neutrophil's fate and function. This essential insight may also contribute towards appropriate development of novel pharmacological therapies targeting autophagy in neutrophil-mediated diseases.</p>
</sec>
</body>
<back>
<ack>
<title>ACKNOWLEDGEMENTS</title>
<p>This study was supported by 2017R1C1B2009015, 2017R1A4A1015652 and 2018R1D1A1B07050421 from National Research Foundation of Korea (NRF).</p>
</ack>
<fn-group>
<fn fn-type="con">
<p>
<bold>Author contributions:</bold>
S.S. and C.W.H. conceptualize and wrote the original draft. J.M.L and C.W.H. reviewed and edited the manuscript.</p>
</fn>
<fn fn-type="COI-statement">
<p>
<bold>CONFLICTS OF INTEREST:</bold>
The authors declare no conflicts of interest.</p>
</fn>
</fn-group>
<ref-list>
<ref id="B1">
<label>1</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Nathan</surname>
<given-names>C</given-names>
</name>
</person-group>
<article-title>Neutrophils and immunity: challenges and opportunities</article-title>
<source>Nat Rev Immunol</source>
<year>2006</year>
<volume>6</volume>
<fpage>173</fpage>
<lpage>182</lpage>
<pub-id pub-id-type="pmid">16498448</pub-id>
</element-citation>
</ref>
<ref id="B2">
<label>2</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Furze</surname>
<given-names>RC</given-names>
</name>
<name>
<surname>Rankin</surname>
<given-names>SM</given-names>
</name>
</person-group>
<article-title>Neutrophil mobilization and clearance in the bone marrow</article-title>
<source>Immunology</source>
<year>2008</year>
<volume>125</volume>
<fpage>281</fpage>
<lpage>288</lpage>
<pub-id pub-id-type="pmid">19128361</pub-id>
</element-citation>
</ref>
<ref id="B3">
<label>3</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Hampton</surname>
<given-names>MB</given-names>
</name>
<name>
<surname>Kettle</surname>
<given-names>AJ</given-names>
</name>
<name>
<surname>Winterbourn</surname>
<given-names>CC</given-names>
</name>
</person-group>
<article-title>Inside the neutrophil phagosome: oxidants, myeloperoxidase, and bacterial killing</article-title>
<source>Blood</source>
<year>1998</year>
<volume>92</volume>
<fpage>3007</fpage>
<lpage>3017</lpage>
<pub-id pub-id-type="pmid">9787133</pub-id>
</element-citation>
</ref>
<ref id="B4">
<label>4</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Segal</surname>
<given-names>AW</given-names>
</name>
</person-group>
<article-title>How neutrophils kill microbes</article-title>
<source>Annu Rev Immunol</source>
<year>2005</year>
<volume>23</volume>
<fpage>197</fpage>
<lpage>223</lpage>
<pub-id pub-id-type="pmid">15771570</pub-id>
</element-citation>
</ref>
<ref id="B5">
<label>5</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Brinkmann</surname>
<given-names>V</given-names>
</name>
<name>
<surname>Reichard</surname>
<given-names>U</given-names>
</name>
<name>
<surname>Goosmann</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Fauler</surname>
<given-names>B</given-names>
</name>
<name>
<surname>Uhlemann</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Weiss</surname>
<given-names>DS</given-names>
</name>
<name>
<surname>Weinrauch</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Zychlinsky</surname>
<given-names>A</given-names>
</name>
</person-group>
<article-title>Neutrophil extracellular traps kill bacteria</article-title>
<source>Science</source>
<year>2004</year>
<volume>303</volume>
<fpage>1532</fpage>
<lpage>1535</lpage>
<pub-id pub-id-type="pmid">15001782</pub-id>
</element-citation>
</ref>
<ref id="B6">
<label>6</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Naegele</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Tillack</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Reinhardt</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Schippling</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Martin</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Sospedra</surname>
<given-names>M</given-names>
</name>
</person-group>
<article-title>Neutrophils in multiple sclerosis are characterized by a primed phenotype</article-title>
<source>J Neuroimmunol</source>
<year>2012</year>
<volume>242</volume>
<fpage>60</fpage>
<lpage>71</lpage>
<pub-id pub-id-type="pmid">22169406</pub-id>
</element-citation>
</ref>
<ref id="B7">
<label>7</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Borregaard</surname>
<given-names>N</given-names>
</name>
</person-group>
<article-title>Neutrophils, from marrow to microbes</article-title>
<source>Immunity</source>
<year>2010</year>
<volume>33</volume>
<fpage>657</fpage>
<lpage>670</lpage>
<pub-id pub-id-type="pmid">21094463</pub-id>
</element-citation>
</ref>
<ref id="B8">
<label>8</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Ryter</surname>
<given-names>SW</given-names>
</name>
<name>
<surname>Cloonan</surname>
<given-names>SM</given-names>
</name>
<name>
<surname>Choi</surname>
<given-names>AM</given-names>
</name>
</person-group>
<article-title>Autophagy: a critical regulator of cellular metabolism and homeostasis</article-title>
<source>Mol Cells</source>
<year>2013</year>
<volume>36</volume>
<fpage>7</fpage>
<lpage>16</lpage>
<pub-id pub-id-type="pmid">23708729</pub-id>
</element-citation>
</ref>
<ref id="B9">
<label>9</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Nezis</surname>
<given-names>IP</given-names>
</name>
<name>
<surname>Vaccaro</surname>
<given-names>MI</given-names>
</name>
<name>
<surname>Devenish</surname>
<given-names>RJ</given-names>
</name>
<name>
<surname>Juhász</surname>
<given-names>G</given-names>
</name>
</person-group>
<article-title>Autophagy in development, cell differentiation, and homeodynamics: from molecular mechanisms to diseases and pathophysiology</article-title>
<source>Biomed Res Int</source>
<year>2014</year>
<volume>2014</volume>
<elocation-id>349623</elocation-id>
<pub-id pub-id-type="pmid">25247173</pub-id>
</element-citation>
</ref>
<ref id="B10">
<label>10</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Mitroulis</surname>
<given-names>I</given-names>
</name>
<name>
<surname>Kourtzelis</surname>
<given-names>I</given-names>
</name>
<name>
<surname>Kambas</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Rafail</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Chrysanthopoulou</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Speletas</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Ritis</surname>
<given-names>K</given-names>
</name>
</person-group>
<article-title>Regulation of the autophagic machinery in human neutrophils</article-title>
<source>Eur J Immunol</source>
<year>2010</year>
<volume>40</volume>
<fpage>1461</fpage>
<lpage>1472</lpage>
<pub-id pub-id-type="pmid">20162553</pub-id>
</element-citation>
</ref>
<ref id="B11">
<label>11</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Yang</surname>
<given-names>Z</given-names>
</name>
<name>
<surname>Klionsky</surname>
<given-names>DJ</given-names>
</name>
</person-group>
<article-title>An overview of the molecular mechanism of autophagy</article-title>
<source>Curr Top Microbiol Immunol</source>
<year>2009</year>
<volume>335</volume>
<fpage>1</fpage>
<lpage>32</lpage>
<pub-id pub-id-type="pmid">19802558</pub-id>
</element-citation>
</ref>
<ref id="B12">
<label>12</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Das</surname>
<given-names>G</given-names>
</name>
<name>
<surname>Shravage</surname>
<given-names>BV</given-names>
</name>
<name>
<surname>Baehrecke</surname>
<given-names>EH</given-names>
</name>
</person-group>
<article-title>Regulation and function of autophagy during cell survival and cell death</article-title>
<source>Cold Spring Harb Perspect Biol</source>
<year>2012</year>
<volume>4</volume>
<elocation-id>a008813</elocation-id>
<pub-id pub-id-type="pmid">22661635</pub-id>
</element-citation>
</ref>
<ref id="B13">
<label>13</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Cuervo</surname>
<given-names>AM</given-names>
</name>
</person-group>
<article-title>Autophagy: many paths to the same end</article-title>
<source>Mol Cell Biochem</source>
<year>2004</year>
<volume>263</volume>
<fpage>55</fpage>
<lpage>72</lpage>
</element-citation>
</ref>
<ref id="B14">
<label>14</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Wang</surname>
<given-names>CW</given-names>
</name>
<name>
<surname>Klionsky</surname>
<given-names>DJ</given-names>
</name>
</person-group>
<article-title>The molecular mechanism of autophagy</article-title>
<source>Mol Med</source>
<year>2003</year>
<volume>9</volume>
<fpage>65</fpage>
<lpage>76</lpage>
<pub-id pub-id-type="pmid">12865942</pub-id>
</element-citation>
</ref>
<ref id="B15">
<label>15</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Mizushima</surname>
<given-names>N</given-names>
</name>
</person-group>
<article-title>Autophagy: process and function</article-title>
<source>Genes Dev</source>
<year>2007</year>
<volume>21</volume>
<fpage>2861</fpage>
<lpage>2873</lpage>
<pub-id pub-id-type="pmid">18006683</pub-id>
</element-citation>
</ref>
<ref id="B16">
<label>16</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Itakura</surname>
<given-names>A</given-names>
</name>
<name>
<surname>McCarty</surname>
<given-names>OJ</given-names>
</name>
</person-group>
<article-title>Pivotal role for the mTOR pathway in the formation of neutrophil extracellular traps via regulation of autophagy</article-title>
<source>Am J Physiol Cell Physiol</source>
<year>2013</year>
<volume>305</volume>
<fpage>C348</fpage>
<lpage>C354</lpage>
<pub-id pub-id-type="pmid">23720022</pub-id>
</element-citation>
</ref>
<ref id="B17">
<label>17</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Parzych</surname>
<given-names>KR</given-names>
</name>
<name>
<surname>Klionsky</surname>
<given-names>DJ</given-names>
</name>
</person-group>
<article-title>An overview of autophagy: morphology, mechanism, and regulation</article-title>
<source>Antioxid Redox Signal</source>
<year>2014</year>
<volume>20</volume>
<fpage>460</fpage>
<lpage>473</lpage>
<pub-id pub-id-type="pmid">23725295</pub-id>
</element-citation>
</ref>
<ref id="B18">
<label>18</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Backer</surname>
<given-names>JM</given-names>
</name>
</person-group>
<article-title>The intricate regulation and complex functions of the Class III phosphoinositide 3-kinase Vps34</article-title>
<source>Biochem J</source>
<year>2016</year>
<volume>473</volume>
<fpage>2251</fpage>
<lpage>2271</lpage>
<pub-id pub-id-type="pmid">27470591</pub-id>
</element-citation>
</ref>
<ref id="B19">
<label>19</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Mizushima</surname>
<given-names>N</given-names>
</name>
<name>
<surname>Noda</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Yoshimori</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Tanaka</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Ishii</surname>
<given-names>T</given-names>
</name>
<name>
<surname>George</surname>
<given-names>MD</given-names>
</name>
<name>
<surname>Klionsky</surname>
<given-names>DJ</given-names>
</name>
<name>
<surname>Ohsumi</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Ohsumi</surname>
<given-names>Y</given-names>
</name>
</person-group>
<article-title>A protein conjugation system essential for autophagy</article-title>
<source>Nature</source>
<year>1998</year>
<volume>395</volume>
<fpage>395</fpage>
<lpage>398</lpage>
<pub-id pub-id-type="pmid">9759731</pub-id>
</element-citation>
</ref>
<ref id="B20">
<label>20</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Glick</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Barth</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Macleod</surname>
<given-names>KF</given-names>
</name>
</person-group>
<article-title>Autophagy: cellular and molecular mechanisms</article-title>
<source>J Pathol</source>
<year>2010</year>
<volume>221</volume>
<fpage>3</fpage>
<lpage>12</lpage>
<pub-id pub-id-type="pmid">20225336</pub-id>
</element-citation>
</ref>
<ref id="B21">
<label>21</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Ichimura</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Kirisako</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Takao</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Satomi</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Shimonishi</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Ishihara</surname>
<given-names>N</given-names>
</name>
<name>
<surname>Mizushima</surname>
<given-names>N</given-names>
</name>
<name>
<surname>Tanida</surname>
<given-names>I</given-names>
</name>
<name>
<surname>Kominami</surname>
<given-names>E</given-names>
</name>
<name>
<surname>Ohsumi</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Noda</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Ohsumi</surname>
<given-names>Y</given-names>
</name>
</person-group>
<article-title>A ubiquitin-like system mediates protein lipidation</article-title>
<source>Nature</source>
<year>2000</year>
<volume>408</volume>
<fpage>488</fpage>
<lpage>492</lpage>
<pub-id pub-id-type="pmid">11100732</pub-id>
</element-citation>
</ref>
<ref id="B22">
<label>22</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Codogno</surname>
<given-names>P</given-names>
</name>
<name>
<surname>Mehrpour</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Proikas-Cezanne</surname>
<given-names>T</given-names>
</name>
</person-group>
<article-title>Canonical and non-canonical autophagy: variations on a common theme of self-eating?</article-title>
<source>Nat Rev Mol Cell Biol</source>
<year>2011</year>
<volume>13</volume>
<fpage>7</fpage>
<lpage>12</lpage>
<pub-id pub-id-type="pmid">22166994</pub-id>
</element-citation>
</ref>
<ref id="B23">
<label>23</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Chargui</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Cesaro</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Mimouna</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Fareh</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Brest</surname>
<given-names>P</given-names>
</name>
<name>
<surname>Naquet</surname>
<given-names>P</given-names>
</name>
<name>
<surname>Darfeuille-Michaud</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Hébuterne</surname>
<given-names>X</given-names>
</name>
<name>
<surname>Mograbi</surname>
<given-names>B</given-names>
</name>
<name>
<surname>Vouret-Craviari</surname>
<given-names>V</given-names>
</name>
<name>
<surname>Hofman</surname>
<given-names>P</given-names>
</name>
</person-group>
<article-title>Subversion of autophagy in adherent invasive Escherichia coli-infected neutrophils induces inflammation and cell death</article-title>
<source>PLoS One</source>
<year>2012</year>
<volume>7</volume>
<elocation-id>e51727</elocation-id>
<pub-id pub-id-type="pmid">23272151</pub-id>
</element-citation>
</ref>
<ref id="B24">
<label>24</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Goldmann</surname>
<given-names>O</given-names>
</name>
<name>
<surname>Medina</surname>
<given-names>E</given-names>
</name>
</person-group>
<article-title>The expanding world of extracellular traps: not only neutrophils but much more</article-title>
<source>Front Immunol</source>
<year>2013</year>
<volume>3</volume>
<fpage>420</fpage>
<pub-id pub-id-type="pmid">23335924</pub-id>
</element-citation>
</ref>
<ref id="B25">
<label>25</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Mihalache</surname>
<given-names>CC</given-names>
</name>
<name>
<surname>Yousefi</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Conus</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Villiger</surname>
<given-names>PM</given-names>
</name>
<name>
<surname>Schneider</surname>
<given-names>EM</given-names>
</name>
<name>
<surname>Simon</surname>
<given-names>HU</given-names>
</name>
</person-group>
<article-title>Inflammation-associated autophagy-related programmed necrotic death of human neutrophils characterized by organelle fusion events</article-title>
<source>J Immunol</source>
<year>2011</year>
<volume>186</volume>
<fpage>6532</fpage>
<lpage>6542</lpage>
<pub-id pub-id-type="pmid">21515790</pub-id>
</element-citation>
</ref>
<ref id="B26">
<label>26</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Huang</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Canadien</surname>
<given-names>V</given-names>
</name>
<name>
<surname>Lam</surname>
<given-names>GY</given-names>
</name>
<name>
<surname>Steinberg</surname>
<given-names>BE</given-names>
</name>
<name>
<surname>Dinauer</surname>
<given-names>MC</given-names>
</name>
<name>
<surname>Magalhaes</surname>
<given-names>MA</given-names>
</name>
<name>
<surname>Glogauer</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Grinstein</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Brumell</surname>
<given-names>JH</given-names>
</name>
</person-group>
<article-title>Activation of antibacterial autophagy by NADPH oxidases</article-title>
<source>Proc Natl Acad Sci U S A</source>
<year>2009</year>
<volume>106</volume>
<fpage>6226</fpage>
<lpage>6231</lpage>
<pub-id pub-id-type="pmid">19339495</pub-id>
</element-citation>
</ref>
<ref id="B27">
<label>27</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Lv</surname>
<given-names>XX</given-names>
</name>
<name>
<surname>Liu</surname>
<given-names>SS</given-names>
</name>
<name>
<surname>Li</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Cui</surname>
<given-names>B</given-names>
</name>
<name>
<surname>Liu</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Hu</surname>
<given-names>ZW</given-names>
</name>
</person-group>
<article-title>Cigarette smoke promotes COPD by activating platelet-activating factor receptor and inducing neutrophil autophagic death in mice</article-title>
<source>Oncotarget</source>
<year>2017</year>
<volume>8</volume>
<fpage>74720</fpage>
<lpage>74735</lpage>
<pub-id pub-id-type="pmid">29088819</pub-id>
</element-citation>
</ref>
<ref id="B28">
<label>28</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Sharma</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Simonson</surname>
<given-names>TJ</given-names>
</name>
<name>
<surname>Jondle</surname>
<given-names>CN</given-names>
</name>
<name>
<surname>Mishra</surname>
<given-names>BB</given-names>
</name>
<name>
<surname>Sharma</surname>
<given-names>J</given-names>
</name>
</person-group>
<article-title>Mincle-mediated neutrophil extracellular trap formation by regulation of autophagy</article-title>
<source>J Infect Dis</source>
<year>2017</year>
<volume>215</volume>
<fpage>1040</fpage>
<lpage>1048</lpage>
<pub-id pub-id-type="pmid">28186242</pub-id>
</element-citation>
</ref>
<ref id="B29">
<label>29</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Zhao</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Klionsky</surname>
<given-names>DJ</given-names>
</name>
</person-group>
<article-title>AMPK-dependent phosphorylation of ULK1 induces autophagy</article-title>
<source>Cell Metab</source>
<year>2011</year>
<volume>13</volume>
<fpage>119</fpage>
<lpage>120</lpage>
<pub-id pub-id-type="pmid">21284977</pub-id>
</element-citation>
</ref>
<ref id="B30">
<label>30</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Xu</surname>
<given-names>F</given-names>
</name>
<name>
<surname>Zhang</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Zou</surname>
<given-names>Z</given-names>
</name>
<name>
<surname>Fan</surname>
<given-names>EKY</given-names>
</name>
<name>
<surname>Chen</surname>
<given-names>L</given-names>
</name>
<name>
<surname>Li</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Billiar</surname>
<given-names>TR</given-names>
</name>
<name>
<surname>Wilson</surname>
<given-names>MA</given-names>
</name>
<name>
<surname>Shi</surname>
<given-names>X</given-names>
</name>
<name>
<surname>Fan</surname>
<given-names>J</given-names>
</name>
</person-group>
<article-title>Aging-related Atg5 defect impairs neutrophil extracellular traps formation</article-title>
<source>Immunology</source>
<year>2017</year>
<volume>151</volume>
<fpage>417</fpage>
<lpage>432</lpage>
<pub-id pub-id-type="pmid">28375544</pub-id>
</element-citation>
</ref>
<ref id="B31">
<label>31</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Bhattacharya</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Wei</surname>
<given-names>Q</given-names>
</name>
<name>
<surname>Shin</surname>
<given-names>JN</given-names>
</name>
<name>
<surname>Abdel Fattah</surname>
<given-names>E</given-names>
</name>
<name>
<surname>Bonilla</surname>
<given-names>DL</given-names>
</name>
<name>
<surname>Xiang</surname>
<given-names>Q</given-names>
</name>
<name>
<surname>Eissa</surname>
<given-names>NT</given-names>
</name>
</person-group>
<article-title>Autophagy Is required for neutrophil-mediated inflammation</article-title>
<source>Cell Rep</source>
<year>2015</year>
<volume>12</volume>
<fpage>1731</fpage>
<lpage>1739</lpage>
<pub-id pub-id-type="pmid">26344765</pub-id>
</element-citation>
</ref>
<ref id="B32">
<label>32</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Park</surname>
<given-names>SY</given-names>
</name>
<name>
<surname>Shrestha</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Youn</surname>
<given-names>YJ</given-names>
</name>
<name>
<surname>Kim</surname>
<given-names>JK</given-names>
</name>
<name>
<surname>Kim</surname>
<given-names>SY</given-names>
</name>
<name>
<surname>Kim</surname>
<given-names>HJ</given-names>
</name>
<name>
<surname>Park</surname>
<given-names>SH</given-names>
</name>
<name>
<surname>Ahn</surname>
<given-names>WG</given-names>
</name>
<name>
<surname>Kim</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Lee</surname>
<given-names>MG</given-names>
</name>
<name>
<surname>Jung</surname>
<given-names>KS</given-names>
</name>
<name>
<surname>Park</surname>
<given-names>YB</given-names>
</name>
<name>
<surname>Mo</surname>
<given-names>EK</given-names>
</name>
<name>
<surname>Ko</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Lee</surname>
<given-names>SY</given-names>
</name>
<name>
<surname>Koh</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Park</surname>
<given-names>MJ</given-names>
</name>
<name>
<surname>Song</surname>
<given-names>DK</given-names>
</name>
<name>
<surname>Hong</surname>
<given-names>CW</given-names>
</name>
</person-group>
<article-title>Autophagy primes neutrophils for neutrophil extracellular trap formation during sepsis</article-title>
<source>Am J Respir Crit Care Med</source>
<year>2017</year>
<volume>196</volume>
<fpage>577</fpage>
<lpage>589</lpage>
<pub-id pub-id-type="pmid">28358992</pub-id>
</element-citation>
</ref>
<ref id="B33">
<label>33</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Klionsky</surname>
<given-names>DJ</given-names>
</name>
<name>
<surname>Abdelmohsen</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Abe</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Abedin</surname>
<given-names>MJ</given-names>
</name>
<name>
<surname>Abeliovich</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Acevedo Arozena</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Adachi</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Adams</surname>
<given-names>CM</given-names>
</name>
<name>
<surname>Adams</surname>
<given-names>PD</given-names>
</name>
<name>
<surname>Adeli</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Adhihetty</surname>
<given-names>PJ</given-names>
</name>
<name>
<surname>Adler</surname>
<given-names>SG</given-names>
</name>
<name>
<surname>Agam</surname>
<given-names>G</given-names>
</name>
<name>
<surname>Agarwal</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Aghi</surname>
<given-names>MK</given-names>
</name>
<name>
<surname>Agnello</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Agostinis</surname>
<given-names>P</given-names>
</name>
<name>
<surname>Aguilar</surname>
<given-names>PV</given-names>
</name>
<name>
<surname>Aguirre-Ghiso</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Airoldi</surname>
<given-names>EM</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition)</article-title>
<source>Autophagy</source>
<year>2016</year>
<volume>12</volume>
<fpage>1</fpage>
<lpage>222</lpage>
<pub-id pub-id-type="pmid">26799652</pub-id>
</element-citation>
</ref>
<ref id="B34">
<label>34</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Rožman</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Yousefi</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Oberson</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Kaufmann</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Benarafa</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Simon</surname>
<given-names>HU</given-names>
</name>
</person-group>
<article-title>The generation of neutrophils in the bone marrow is controlled by autophagy</article-title>
<source>Cell Death Differ</source>
<year>2015</year>
<volume>22</volume>
<fpage>445</fpage>
<lpage>456</lpage>
<pub-id pub-id-type="pmid">25323583</pub-id>
</element-citation>
</ref>
<ref id="B35">
<label>35</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Kimmey</surname>
<given-names>JM</given-names>
</name>
<name>
<surname>Huynh</surname>
<given-names>JP</given-names>
</name>
<name>
<surname>Weiss</surname>
<given-names>LA</given-names>
</name>
<name>
<surname>Park</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Kambal</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Debnath</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Virgin</surname>
<given-names>HW</given-names>
</name>
<name>
<surname>Stallings</surname>
<given-names>CL</given-names>
</name>
</person-group>
<article-title>Unique role for ATG5 in neutrophil-mediated immunopathology during M. tuberculosis infection</article-title>
<source>Nature</source>
<year>2015</year>
<volume>528</volume>
<fpage>565</fpage>
<lpage>569</lpage>
<pub-id pub-id-type="pmid">26649827</pub-id>
</element-citation>
</ref>
<ref id="B36">
<label>36</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Theilgaard-Mönch</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Jacobsen</surname>
<given-names>LC</given-names>
</name>
<name>
<surname>Borup</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Rasmussen</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Bjerregaard</surname>
<given-names>MD</given-names>
</name>
<name>
<surname>Nielsen</surname>
<given-names>FC</given-names>
</name>
<name>
<surname>Cowland</surname>
<given-names>JB</given-names>
</name>
<name>
<surname>Borregaard</surname>
<given-names>N</given-names>
</name>
</person-group>
<article-title>The transcriptional program of terminal granulocytic differentiation</article-title>
<source>Blood</source>
<year>2005</year>
<volume>105</volume>
<fpage>1785</fpage>
<lpage>1796</lpage>
<pub-id pub-id-type="pmid">15514007</pub-id>
</element-citation>
</ref>
<ref id="B37">
<label>37</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Akashi</surname>
<given-names>K</given-names>
</name>
<name>
<surname>He</surname>
<given-names>X</given-names>
</name>
<name>
<surname>Chen</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Iwasaki</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Niu</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Steenhard</surname>
<given-names>B</given-names>
</name>
<name>
<surname>Zhang</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Haug</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Li</surname>
<given-names>L</given-names>
</name>
</person-group>
<article-title>Transcriptional accessibility for genes of multiple tissues and hematopoietic lineages is hierarchically controlled during early hematopoiesis</article-title>
<source>Blood</source>
<year>2003</year>
<volume>101</volume>
<fpage>383</fpage>
<lpage>389</lpage>
<pub-id pub-id-type="pmid">12393558</pub-id>
</element-citation>
</ref>
<ref id="B38">
<label>38</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Huang</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Tan</surname>
<given-names>P</given-names>
</name>
<name>
<surname>Wang</surname>
<given-names>X</given-names>
</name>
<name>
<surname>Yi</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Hu</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Wang</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Wang</surname>
<given-names>F</given-names>
</name>
</person-group>
<article-title>Transcriptomic insights into temporal expression pattern of autophagy genes during monocytic and granulocytic differentiation</article-title>
<source>Autophagy</source>
<year>2018</year>
<volume>14</volume>
<fpage>558</fpage>
<lpage>559</lpage>
<pub-id pub-id-type="pmid">29313406</pub-id>
</element-citation>
</ref>
<ref id="B39">
<label>39</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Koschade</surname>
<given-names>SE</given-names>
</name>
<name>
<surname>Brandts</surname>
<given-names>CH</given-names>
</name>
</person-group>
<article-title>Selective autophagy in normal and malignant hematopoiesis</article-title>
<source>J Mol Biol</source>
<year>2019</year>
<pub-id pub-id-type="doi">10.1016/j.jmb.2019.06.025</pub-id>
<comment>[Epub ahead of print]</comment>
</element-citation>
</ref>
<ref id="B40">
<label>40</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Orsini</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Chateauvieux</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Rhim</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Gaigneaux</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Cheillan</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Christov</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Dicato</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Morceau</surname>
<given-names>F</given-names>
</name>
<name>
<surname>Diederich</surname>
<given-names>M</given-names>
</name>
</person-group>
<article-title>Sphingolipid-mediated inflammatory signaling leading to autophagy inhibition converts erythropoiesis to myelopoiesis in human hematopoietic stem/progenitor cells</article-title>
<source>Cell Death Differ</source>
<year>2019</year>
<volume>26</volume>
<fpage>1796</fpage>
<lpage>1812</lpage>
<pub-id pub-id-type="pmid">30546074</pub-id>
</element-citation>
</ref>
<ref id="B41">
<label>41</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>da Silva</surname>
<given-names>FM</given-names>
</name>
<name>
<surname>Massart-Leën</surname>
<given-names>AM</given-names>
</name>
<name>
<surname>Burvenich</surname>
<given-names>C</given-names>
</name>
</person-group>
<article-title>Development and maturation of neutrophils</article-title>
<source>Vet Q</source>
<year>1994</year>
<volume>16</volume>
<fpage>220</fpage>
<lpage>225</lpage>
<pub-id pub-id-type="pmid">7740747</pub-id>
</element-citation>
</ref>
<ref id="B42">
<label>42</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Riffelmacher</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Clarke</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Richter</surname>
<given-names>FC</given-names>
</name>
<name>
<surname>Stranks</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Pandey</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Danielli</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Hublitz</surname>
<given-names>P</given-names>
</name>
<name>
<surname>Yu</surname>
<given-names>Z</given-names>
</name>
<name>
<surname>Johnson</surname>
<given-names>E</given-names>
</name>
<name>
<surname>Schwerd</surname>
<given-names>T</given-names>
</name>
<name>
<surname>McCullagh</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Uhlig</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Jacobsen</surname>
<given-names>SEW</given-names>
</name>
<name>
<surname>Simon</surname>
<given-names>AK</given-names>
</name>
</person-group>
<article-title>Autophagy-dependent generation of free fatty acids is critical for normal neutrophil differentiation</article-title>
<source>Immunity</source>
<year>2017</year>
<volume>47</volume>
<fpage>466</fpage>
<lpage>480.e5</lpage>
<pub-id pub-id-type="pmid">28916263</pub-id>
</element-citation>
</ref>
<ref id="B43">
<label>43</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Kantari</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Pederzoli-Ribeil</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Witko-Sarsat</surname>
<given-names>V</given-names>
</name>
</person-group>
<article-title>The role of neutrophils and monocytes in innate immunity</article-title>
<source>Contrib Microbiol</source>
<year>2008</year>
<volume>15</volume>
<fpage>118</fpage>
<lpage>146</lpage>
<pub-id pub-id-type="pmid">18511859</pub-id>
</element-citation>
</ref>
<ref id="B44">
<label>44</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Wong</surname>
<given-names>CO</given-names>
</name>
<name>
<surname>Gregory</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Hu</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Chao</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Sepúlveda</surname>
<given-names>VE</given-names>
</name>
<name>
<surname>He</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Li-Kroeger</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Goldman</surname>
<given-names>WE</given-names>
</name>
<name>
<surname>Bellen</surname>
<given-names>HJ</given-names>
</name>
<name>
<surname>Venkatachalam</surname>
<given-names>K</given-names>
</name>
</person-group>
<article-title>Lysosomal degradation is required for sustained phagocytosis of bacteria by macrophages</article-title>
<source>Cell Host Microbe</source>
<year>2017</year>
<volume>21</volume>
<fpage>719</fpage>
<lpage>730.e6</lpage>
<pub-id pub-id-type="pmid">28579255</pub-id>
</element-citation>
</ref>
<ref id="B45">
<label>45</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Lee</surname>
<given-names>WL</given-names>
</name>
<name>
<surname>Harrison</surname>
<given-names>RE</given-names>
</name>
<name>
<surname>Grinstein</surname>
<given-names>S</given-names>
</name>
</person-group>
<article-title>Phagocytosis by neutrophils</article-title>
<source>Microbes Infect</source>
<year>2003</year>
<volume>5</volume>
<fpage>1299</fpage>
<lpage>1306</lpage>
<pub-id pub-id-type="pmid">14613773</pub-id>
</element-citation>
</ref>
<ref id="B46">
<label>46</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Chargui</surname>
<given-names>A</given-names>
</name>
<name>
<surname>El May</surname>
<given-names>MV</given-names>
</name>
</person-group>
<article-title>Autophagy mediates neutrophil responses to bacterial infection</article-title>
<source>APMIS</source>
<year>2014</year>
<volume>122</volume>
<fpage>1047</fpage>
<lpage>1058</lpage>
<pub-id pub-id-type="pmid">24735202</pub-id>
</element-citation>
</ref>
<ref id="B47">
<label>47</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Gong</surname>
<given-names>L</given-names>
</name>
<name>
<surname>Cullinane</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Treerat</surname>
<given-names>P</given-names>
</name>
<name>
<surname>Ramm</surname>
<given-names>G</given-names>
</name>
<name>
<surname>Prescott</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Adler</surname>
<given-names>B</given-names>
</name>
<name>
<surname>Boyce</surname>
<given-names>JD</given-names>
</name>
<name>
<surname>Devenish</surname>
<given-names>RJ</given-names>
</name>
</person-group>
<article-title>The Burkholderia pseudomallei type III secretion system and BopA are required for evasion of LC3-associated phagocytosis</article-title>
<source>PLoS One</source>
<year>2011</year>
<volume>6</volume>
<elocation-id>e17852</elocation-id>
<pub-id pub-id-type="pmid">21412437</pub-id>
</element-citation>
</ref>
<ref id="B48">
<label>48</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Ramachandran</surname>
<given-names>G</given-names>
</name>
<name>
<surname>Gade</surname>
<given-names>P</given-names>
</name>
<name>
<surname>Tsai</surname>
<given-names>P</given-names>
</name>
<name>
<surname>Lu</surname>
<given-names>W</given-names>
</name>
<name>
<surname>Kalvakolanu</surname>
<given-names>DV</given-names>
</name>
<name>
<surname>Rosen</surname>
<given-names>GM</given-names>
</name>
<name>
<surname>Cross</surname>
<given-names>AS</given-names>
</name>
</person-group>
<article-title>Potential role of autophagy in the bactericidal activity of human PMNs for Bacillus anthracis</article-title>
<source>Pathog Dis</source>
<year>2015</year>
<volume>73</volume>
<elocation-id>ftv080</elocation-id>
<pub-id pub-id-type="pmid">26424808</pub-id>
</element-citation>
</ref>
<ref id="B49">
<label>49</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Itoh</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Matsuo</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Kitamura</surname>
<given-names>N</given-names>
</name>
<name>
<surname>Yamamoto</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Higuchi</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Takematsu</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Kamikubo</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Kondo</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Yamashita</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Sasada</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Takaori-Kondo</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Adachi</surname>
<given-names>S</given-names>
</name>
</person-group>
<article-title>Enhancement of neutrophil autophagy by an IVIG preparation against multidrug-resistant bacteria as well as drug-sensitive strains</article-title>
<source>J Leukoc Biol</source>
<year>2015</year>
<volume>98</volume>
<fpage>107</fpage>
<lpage>117</lpage>
<pub-id pub-id-type="pmid">25908735</pub-id>
</element-citation>
</ref>
<ref id="B50">
<label>50</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Ullah</surname>
<given-names>I</given-names>
</name>
<name>
<surname>Ritchie</surname>
<given-names>ND</given-names>
</name>
<name>
<surname>Evans</surname>
<given-names>TJ</given-names>
</name>
</person-group>
<article-title>The interrelationship between phagocytosis, autophagy and formation of neutrophil extracellular traps following infection of human neutrophils by Streptococcus pneumoniae</article-title>
<source>Innate Immun</source>
<year>2017</year>
<volume>23</volume>
<fpage>413</fpage>
<lpage>423</lpage>
<pub-id pub-id-type="pmid">28399692</pub-id>
</element-citation>
</ref>
<ref id="B51">
<label>51</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Wang</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Mendonsa</surname>
<given-names>GR</given-names>
</name>
<name>
<surname>Symington</surname>
<given-names>JW</given-names>
</name>
<name>
<surname>Zhang</surname>
<given-names>Q</given-names>
</name>
<name>
<surname>Cadwell</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Virgin</surname>
<given-names>HW</given-names>
</name>
<name>
<surname>Mysorekar</surname>
<given-names>IU</given-names>
</name>
</person-group>
<article-title>Atg16L1 deficiency confers protection from uropathogenic Escherichia coli infection in vivo</article-title>
<source>Proc Natl Acad Sci U S A</source>
<year>2012</year>
<volume>109</volume>
<fpage>11008</fpage>
<lpage>11013</lpage>
<pub-id pub-id-type="pmid">22715292</pub-id>
</element-citation>
</ref>
<ref id="B52">
<label>52</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Rinchai</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Riyapa</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Buddhisa</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Utispan</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Titball</surname>
<given-names>RW</given-names>
</name>
<name>
<surname>Stevens</surname>
<given-names>MP</given-names>
</name>
<name>
<surname>Stevens</surname>
<given-names>JM</given-names>
</name>
<name>
<surname>Ogawa</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Tanida</surname>
<given-names>I</given-names>
</name>
<name>
<surname>Koike</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Uchiyama</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Ato</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Lertmemongkolchai</surname>
<given-names>G</given-names>
</name>
</person-group>
<article-title>Macroautophagy is essential for killing of intracellular Burkholderia pseudomallei in human neutrophils</article-title>
<source>Autophagy</source>
<year>2015</year>
<volume>11</volume>
<fpage>748</fpage>
<lpage>755</lpage>
<pub-id pub-id-type="pmid">25996656</pub-id>
</element-citation>
</ref>
<ref id="B53">
<label>53</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Remijsen</surname>
<given-names>Q</given-names>
</name>
<name>
<surname>Kuijpers</surname>
<given-names>TW</given-names>
</name>
<name>
<surname>Wirawan</surname>
<given-names>E</given-names>
</name>
<name>
<surname>Lippens</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Vandenabeele</surname>
<given-names>P</given-names>
</name>
<name>
<surname>Vanden Berghe</surname>
<given-names>T</given-names>
</name>
</person-group>
<article-title>Dying for a cause: NETosis, mechanisms behind an antimicrobial cell death modality</article-title>
<source>Cell Death Differ</source>
<year>2011</year>
<volume>18</volume>
<fpage>581</fpage>
<lpage>588</lpage>
<pub-id pub-id-type="pmid">21293492</pub-id>
</element-citation>
</ref>
<ref id="B54">
<label>54</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Urban</surname>
<given-names>CF</given-names>
</name>
<name>
<surname>Ermert</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Schmid</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Abu-Abed</surname>
<given-names>U</given-names>
</name>
<name>
<surname>Goosmann</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Nacken</surname>
<given-names>W</given-names>
</name>
<name>
<surname>Brinkmann</surname>
<given-names>V</given-names>
</name>
<name>
<surname>Jungblut</surname>
<given-names>PR</given-names>
</name>
<name>
<surname>Zychlinsky</surname>
<given-names>A</given-names>
</name>
</person-group>
<article-title>Neutrophil extracellular traps contain calprotectin, a cytosolic protein complex involved in host defense against Candida albicans</article-title>
<source>PLoS Pathog</source>
<year>2009</year>
<volume>5</volume>
<elocation-id>e1000639</elocation-id>
<pub-id pub-id-type="pmid">19876394</pub-id>
</element-citation>
</ref>
<ref id="B55">
<label>55</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Boe</surname>
<given-names>DM</given-names>
</name>
<name>
<surname>Curtis</surname>
<given-names>BJ</given-names>
</name>
<name>
<surname>Chen</surname>
<given-names>MM</given-names>
</name>
<name>
<surname>Ippolito</surname>
<given-names>JA</given-names>
</name>
<name>
<surname>Kovacs</surname>
<given-names>EJ</given-names>
</name>
</person-group>
<article-title>Extracellular traps and macrophages: new roles for the versatile phagocyte</article-title>
<source>J Leukoc Biol</source>
<year>2015</year>
<volume>97</volume>
<fpage>1023</fpage>
<lpage>1035</lpage>
<pub-id pub-id-type="pmid">25877927</pub-id>
</element-citation>
</ref>
<ref id="B56">
<label>56</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Kenny</surname>
<given-names>EF</given-names>
</name>
<name>
<surname>Herzig</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Krüger</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Muth</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Mondal</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Thompson</surname>
<given-names>PR</given-names>
</name>
<name>
<surname>Brinkmann</surname>
<given-names>V</given-names>
</name>
<name>
<surname>Bernuth</surname>
<given-names>HV</given-names>
</name>
<name>
<surname>Zychlinsky</surname>
<given-names>A</given-names>
</name>
</person-group>
<article-title>Diverse stimuli engage different neutrophil extracellular trap pathways</article-title>
<source>Elife</source>
<year>2017</year>
<volume>6</volume>
<elocation-id>e24437</elocation-id>
<pub-id pub-id-type="pmid">28574339</pub-id>
</element-citation>
</ref>
<ref id="B57">
<label>57</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Kaplan</surname>
<given-names>MJ</given-names>
</name>
<name>
<surname>Radic</surname>
<given-names>M</given-names>
</name>
</person-group>
<article-title>Neutrophil extracellular traps: double-edged swords of innate immunity</article-title>
<source>J Immunol</source>
<year>2012</year>
<volume>189</volume>
<fpage>2689</fpage>
<lpage>2695</lpage>
<pub-id pub-id-type="pmid">22956760</pub-id>
</element-citation>
</ref>
<ref id="B58">
<label>58</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Peng</surname>
<given-names>HH</given-names>
</name>
<name>
<surname>Liu</surname>
<given-names>YJ</given-names>
</name>
<name>
<surname>Ojcius</surname>
<given-names>DM</given-names>
</name>
<name>
<surname>Lee</surname>
<given-names>CM</given-names>
</name>
<name>
<surname>Chen</surname>
<given-names>RH</given-names>
</name>
<name>
<surname>Huang</surname>
<given-names>PR</given-names>
</name>
<name>
<surname>Martel</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Young</surname>
<given-names>JD</given-names>
</name>
</person-group>
<article-title>Mineral particles stimulate innate immunity through neutrophil extracellular traps containing HMGB1</article-title>
<source>Sci Rep</source>
<year>2017</year>
<volume>7</volume>
<fpage>16628</fpage>
<pub-id pub-id-type="pmid">29192209</pub-id>
</element-citation>
</ref>
<ref id="B59">
<label>59</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Neumann</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Papareddy</surname>
<given-names>P</given-names>
</name>
<name>
<surname>Westman</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Hyldegaard</surname>
<given-names>O</given-names>
</name>
<name>
<surname>Snäll</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Norrby-Teglund</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Herwald</surname>
<given-names>H</given-names>
</name>
</person-group>
<article-title>Immunoregulation of neutrophil extracellular trap formation by endothelial-derived p33 (gC1q receptor)</article-title>
<source>J Innate Immun</source>
<year>2018</year>
<volume>10</volume>
<fpage>30</fpage>
<lpage>43</lpage>
<pub-id pub-id-type="pmid">29035880</pub-id>
</element-citation>
</ref>
<ref id="B60">
<label>60</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>van der Linden</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Westerlaken</surname>
<given-names>GHA</given-names>
</name>
<name>
<surname>van der Vlist</surname>
<given-names>M</given-names>
</name>
<name>
<surname>van Montfrans</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Meyaard</surname>
<given-names>L</given-names>
</name>
</person-group>
<article-title>Differential signalling and kinetics of neutrophil extracellular trap release revealed by quantitative live imaging</article-title>
<source>Sci Rep</source>
<year>2017</year>
<volume>7</volume>
<fpage>6529</fpage>
<pub-id pub-id-type="pmid">28747804</pub-id>
</element-citation>
</ref>
<ref id="B61">
<label>61</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Maugeri</surname>
<given-names>N</given-names>
</name>
<name>
<surname>Campana</surname>
<given-names>L</given-names>
</name>
<name>
<surname>Gavina</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Covino</surname>
<given-names>C</given-names>
</name>
<name>
<surname>De Metrio</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Panciroli</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Maiuri</surname>
<given-names>L</given-names>
</name>
<name>
<surname>Maseri</surname>
<given-names>A</given-names>
</name>
<name>
<surname>D'Angelo</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Bianchi</surname>
<given-names>ME</given-names>
</name>
<name>
<surname>Rovere-Querini</surname>
<given-names>P</given-names>
</name>
<name>
<surname>Manfredi</surname>
<given-names>AA</given-names>
</name>
</person-group>
<article-title>Activated platelets present high mobility group box 1 to neutrophils, inducing autophagy and promoting the extrusion of neutrophil extracellular traps</article-title>
<source>J Thromb Haemost</source>
<year>2014</year>
<volume>12</volume>
<fpage>2074</fpage>
<lpage>2088</lpage>
<pub-id pub-id-type="pmid">25163512</pub-id>
</element-citation>
</ref>
<ref id="B62">
<label>62</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Chatfield</surname>
<given-names>SM</given-names>
</name>
<name>
<surname>Grebe</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Whitehead</surname>
<given-names>LW</given-names>
</name>
<name>
<surname>Rogers</surname>
<given-names>KL</given-names>
</name>
<name>
<surname>Nebl</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Murphy</surname>
<given-names>JM</given-names>
</name>
<name>
<surname>Wicks</surname>
<given-names>IP</given-names>
</name>
</person-group>
<article-title>Monosodium urate crystals generate nuclease-resistant neutrophil extracellular traps via a distinct molecular pathway</article-title>
<source>J Immunol</source>
<year>2018</year>
<volume>200</volume>
<fpage>1802</fpage>
<lpage>1816</lpage>
<pub-id pub-id-type="pmid">29367211</pub-id>
</element-citation>
</ref>
<ref id="B63">
<label>63</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Remijsen</surname>
<given-names>Q</given-names>
</name>
<name>
<surname>Vanden Berghe</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Wirawan</surname>
<given-names>E</given-names>
</name>
<name>
<surname>Asselbergh</surname>
<given-names>B</given-names>
</name>
<name>
<surname>Parthoens</surname>
<given-names>E</given-names>
</name>
<name>
<surname>De Rycke</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Noppen</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Delforge</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Willems</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Vandenabeele</surname>
<given-names>P</given-names>
</name>
</person-group>
<article-title>Neutrophil extracellular trap cell death requires both autophagy and superoxide generation</article-title>
<source>Cell Res</source>
<year>2011</year>
<volume>21</volume>
<fpage>290</fpage>
<lpage>304</lpage>
<pub-id pub-id-type="pmid">21060338</pub-id>
</element-citation>
</ref>
<ref id="B64">
<label>64</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Douda</surname>
<given-names>DN</given-names>
</name>
<name>
<surname>Khan</surname>
<given-names>MA</given-names>
</name>
<name>
<surname>Grasemann</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Palaniyar</surname>
<given-names>N</given-names>
</name>
</person-group>
<article-title>SK3 channel and mitochondrial ROS mediate NADPH oxidase-independent NETosis induced by calcium influx</article-title>
<source>Proc Natl Acad Sci U S A</source>
<year>2015</year>
<volume>112</volume>
<fpage>2817</fpage>
<lpage>2822</lpage>
<pub-id pub-id-type="pmid">25730848</pub-id>
</element-citation>
</ref>
<ref id="B65">
<label>65</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Pilsczek</surname>
<given-names>FH</given-names>
</name>
<name>
<surname>Salina</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Poon</surname>
<given-names>KK</given-names>
</name>
<name>
<surname>Fahey</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Yipp</surname>
<given-names>BG</given-names>
</name>
<name>
<surname>Sibley</surname>
<given-names>CD</given-names>
</name>
<name>
<surname>Robbins</surname>
<given-names>SM</given-names>
</name>
<name>
<surname>Green</surname>
<given-names>FH</given-names>
</name>
<name>
<surname>Surette</surname>
<given-names>MG</given-names>
</name>
<name>
<surname>Sugai</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Bowden</surname>
<given-names>MG</given-names>
</name>
<name>
<surname>Hussain</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Zhang</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Kubes</surname>
<given-names>P</given-names>
</name>
</person-group>
<article-title>A novel mechanism of rapid nuclear neutrophil extracellular trap formation in response to Staphylococcus aureus</article-title>
<source>J Immunol</source>
<year>2010</year>
<volume>185</volume>
<fpage>7413</fpage>
<lpage>7425</lpage>
<pub-id pub-id-type="pmid">21098229</pub-id>
</element-citation>
</ref>
<ref id="B66">
<label>66</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Chow</surname>
<given-names>OA</given-names>
</name>
<name>
<surname>von Köckritz-Blickwede</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Bright</surname>
<given-names>AT</given-names>
</name>
<name>
<surname>Hensler</surname>
<given-names>ME</given-names>
</name>
<name>
<surname>Zinkernagel</surname>
<given-names>AS</given-names>
</name>
<name>
<surname>Cogen</surname>
<given-names>AL</given-names>
</name>
<name>
<surname>Gallo</surname>
<given-names>RL</given-names>
</name>
<name>
<surname>Monestier</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Wang</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Glass</surname>
<given-names>CK</given-names>
</name>
<name>
<surname>Nizet</surname>
<given-names>V</given-names>
</name>
</person-group>
<article-title>Statins enhance formation of phagocyte extracellular traps</article-title>
<source>Cell Host Microbe</source>
<year>2010</year>
<volume>8</volume>
<fpage>445</fpage>
<lpage>454</lpage>
<pub-id pub-id-type="pmid">21075355</pub-id>
</element-citation>
</ref>
<ref id="B67">
<label>67</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Byrd</surname>
<given-names>AS</given-names>
</name>
<name>
<surname>O'Brien</surname>
<given-names>XM</given-names>
</name>
<name>
<surname>Johnson</surname>
<given-names>CM</given-names>
</name>
<name>
<surname>Lavigne</surname>
<given-names>LM</given-names>
</name>
<name>
<surname>Reichner</surname>
<given-names>JS</given-names>
</name>
</person-group>
<article-title>An extracellular matrix-based mechanism of rapid neutrophil extracellular trap formation in response to Candida albicans</article-title>
<source>J Immunol</source>
<year>2013</year>
<volume>190</volume>
<fpage>4136</fpage>
<lpage>4148</lpage>
<pub-id pub-id-type="pmid">23509360</pub-id>
</element-citation>
</ref>
<ref id="B68">
<label>68</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Stranks</surname>
<given-names>AJ</given-names>
</name>
<name>
<surname>Hansen</surname>
<given-names>AL</given-names>
</name>
<name>
<surname>Panse</surname>
<given-names>I</given-names>
</name>
<name>
<surname>Mortensen</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Ferguson</surname>
<given-names>DJ</given-names>
</name>
<name>
<surname>Puleston</surname>
<given-names>DJ</given-names>
</name>
<name>
<surname>Shenderov</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Watson</surname>
<given-names>AS</given-names>
</name>
<name>
<surname>Veldhoen</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Phadwal</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Cerundolo</surname>
<given-names>V</given-names>
</name>
<name>
<surname>Simon</surname>
<given-names>AK</given-names>
</name>
</person-group>
<article-title>Autophagy controls acquisition of aging features in macrophages</article-title>
<source>J Innate Immun</source>
<year>2015</year>
<volume>7</volume>
<fpage>375</fpage>
<lpage>391</lpage>
<pub-id pub-id-type="pmid">25764971</pub-id>
</element-citation>
</ref>
<ref id="B69">
<label>69</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Ma</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Li</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Cao</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Si</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Wu</surname>
<given-names>X</given-names>
</name>
<name>
<surname>Zhao</surname>
<given-names>L</given-names>
</name>
<name>
<surname>Yao</surname>
<given-names>Z</given-names>
</name>
<name>
<surname>Zhang</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Fang</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Deng</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Novakovic</surname>
<given-names>VA</given-names>
</name>
<name>
<surname>Bi</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Kou</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Yu</surname>
<given-names>B</given-names>
</name>
<name>
<surname>Yang</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Wang</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Zhou</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Shi</surname>
<given-names>J</given-names>
</name>
</person-group>
<article-title>Extracellular DNA traps released by acute promyelocytic leukemia cells through autophagy</article-title>
<source>Cell Death Dis</source>
<year>2016</year>
<volume>7</volume>
<elocation-id>e2283</elocation-id>
<pub-id pub-id-type="pmid">27362801</pub-id>
</element-citation>
</ref>
<ref id="B70">
<label>70</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Germic</surname>
<given-names>N</given-names>
</name>
<name>
<surname>Stojkov</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Oberson</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Yousefi</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Simon</surname>
<given-names>HU</given-names>
</name>
</person-group>
<article-title>Neither eosinophils nor neutrophils require ATG5-dependent autophagy for extracellular DNA trap formation</article-title>
<source>Immunology</source>
<year>2017</year>
<volume>152</volume>
<fpage>517</fpage>
<lpage>525</lpage>
<pub-id pub-id-type="pmid">28703297</pub-id>
</element-citation>
</ref>
<ref id="B71">
<label>71</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Rørvig</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Østergaard</surname>
<given-names>O</given-names>
</name>
<name>
<surname>Heegaard</surname>
<given-names>NH</given-names>
</name>
<name>
<surname>Borregaard</surname>
<given-names>N</given-names>
</name>
</person-group>
<article-title>Proteome profiling of human neutrophil granule subsets, secretory vesicles, and cell membrane: correlation with transcriptome profiling of neutrophil precursors</article-title>
<source>J Leukoc Biol</source>
<year>2013</year>
<volume>94</volume>
<fpage>711</fpage>
<lpage>721</lpage>
<pub-id pub-id-type="pmid">23650620</pub-id>
</element-citation>
</ref>
<ref id="B72">
<label>72</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Masson</surname>
<given-names>PL</given-names>
</name>
<name>
<surname>Heremans</surname>
<given-names>JF</given-names>
</name>
<name>
<surname>Schonne</surname>
<given-names>E</given-names>
</name>
</person-group>
<article-title>Lactoferrin, an iron-binding protein in neutrophilic leukocytes</article-title>
<source>J Exp Med</source>
<year>1969</year>
<volume>130</volume>
<fpage>643</fpage>
<lpage>658</lpage>
<pub-id pub-id-type="pmid">4979954</pub-id>
</element-citation>
</ref>
<ref id="B73">
<label>73</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Faurschou</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Borregaard</surname>
<given-names>N</given-names>
</name>
</person-group>
<article-title>Neutrophil granules and secretory vesicles ininflammation</article-title>
<source>Microbes Infect</source>
<year>2003</year>
<volume>5</volume>
<fpage>1317</fpage>
<lpage>1327</lpage>
<pub-id pub-id-type="pmid">14613775</pub-id>
</element-citation>
</ref>
<ref id="B74">
<label>74</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Patel</surname>
<given-names>JM</given-names>
</name>
<name>
<surname>Sapey</surname>
<given-names>E</given-names>
</name>
<name>
<surname>Parekh</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Scott</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Dosanjh</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Gao</surname>
<given-names>F</given-names>
</name>
<name>
<surname>Thickett</surname>
<given-names>DR</given-names>
</name>
</person-group>
<article-title>Sepsis Induces a Dysregulated neutrophil phenotype that is associated with increased mortality</article-title>
<source>Mediators Inflamm</source>
<year>2018</year>
<volume>2018</volume>
<elocation-id>4065362</elocation-id>
<pub-id pub-id-type="pmid">29849488</pub-id>
</element-citation>
</ref>
<ref id="B75">
<label>75</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Meng</surname>
<given-names>W</given-names>
</name>
<name>
<surname>Paunel-Görgülü</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Flohé</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Hoffmann</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Witte</surname>
<given-names>I</given-names>
</name>
<name>
<surname>MacKenzie</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Baldus</surname>
<given-names>SE</given-names>
</name>
<name>
<surname>Windolf</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Lögters</surname>
<given-names>TT</given-names>
</name>
</person-group>
<article-title>Depletion of neutrophil extracellular traps in vivo results in hypersusceptibility to polymicrobial sepsis in mice</article-title>
<source>Crit Care</source>
<year>2012</year>
<volume>16</volume>
<elocation-id>R137</elocation-id>
<pub-id pub-id-type="pmid">22835277</pub-id>
</element-citation>
</ref>
<ref id="B76">
<label>76</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Konstantinidis</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Kambas</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Mitsios</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Panopoulou</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Tsironidou</surname>
<given-names>V</given-names>
</name>
<name>
<surname>Dellaporta</surname>
<given-names>E</given-names>
</name>
<name>
<surname>Kouklakis</surname>
<given-names>G</given-names>
</name>
<name>
<surname>Arampatzioglou</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Angelidou</surname>
<given-names>I</given-names>
</name>
<name>
<surname>Mitroulis</surname>
<given-names>I</given-names>
</name>
<name>
<surname>Skendros</surname>
<given-names>P</given-names>
</name>
<name>
<surname>Ritis</surname>
<given-names>K</given-names>
</name>
</person-group>
<article-title>Immunomodulatory role of clarithromycin in acinetobacter baumannii infection via formation of neutrophil extracellular traps</article-title>
<source>Antimicrob Agents Chemother</source>
<year>2015</year>
<volume>60</volume>
<fpage>1040</fpage>
<lpage>1048</lpage>
<pub-id pub-id-type="pmid">26643338</pub-id>
</element-citation>
</ref>
<ref id="B77">
<label>77</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Sharma</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Steichen</surname>
<given-names>AL</given-names>
</name>
<name>
<surname>Jondle</surname>
<given-names>CN</given-names>
</name>
<name>
<surname>Mishra</surname>
<given-names>BB</given-names>
</name>
<name>
<surname>Sharma</surname>
<given-names>J</given-names>
</name>
</person-group>
<article-title>Protective role of Mincle in bacterial pneumonia by regulation of neutrophil mediated phagocytosis and extracellular trap formation</article-title>
<source>J Infect Dis</source>
<year>2014</year>
<volume>209</volume>
<fpage>1837</fpage>
<lpage>1846</lpage>
<pub-id pub-id-type="pmid">24353272</pub-id>
</element-citation>
</ref>
<ref id="B78">
<label>78</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Li</surname>
<given-names>XF</given-names>
</name>
<name>
<surname>Chen</surname>
<given-names>DP</given-names>
</name>
<name>
<surname>Ouyang</surname>
<given-names>FZ</given-names>
</name>
<name>
<surname>Chen</surname>
<given-names>MM</given-names>
</name>
<name>
<surname>Wu</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Kuang</surname>
<given-names>DM</given-names>
</name>
<name>
<surname>Zheng</surname>
<given-names>L</given-names>
</name>
</person-group>
<article-title>Increased autophagy sustains the survival and pro-tumourigenic effects of neutrophils in human hepatocellular carcinoma</article-title>
<source>J Hepatol</source>
<year>2015</year>
<volume>62</volume>
<fpage>131</fpage>
<lpage>139</lpage>
<pub-id pub-id-type="pmid">25152203</pub-id>
</element-citation>
</ref>
<ref id="B79">
<label>79</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Park</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Wysocki</surname>
<given-names>RW</given-names>
</name>
<name>
<surname>Amoozgar</surname>
<given-names>Z</given-names>
</name>
<name>
<surname>Maiorino</surname>
<given-names>L</given-names>
</name>
<name>
<surname>Fein</surname>
<given-names>MR</given-names>
</name>
<name>
<surname>Jorns</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Schott</surname>
<given-names>AF</given-names>
</name>
<name>
<surname>Kinugasa-Katayama</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Lee</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Won</surname>
<given-names>NH</given-names>
</name>
<name>
<surname>Nakasone</surname>
<given-names>ES</given-names>
</name>
<name>
<surname>Hearn</surname>
<given-names>SA</given-names>
</name>
<name>
<surname>Küttner</surname>
<given-names>V</given-names>
</name>
<name>
<surname>Qiu</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Almeida</surname>
<given-names>AS</given-names>
</name>
<name>
<surname>Perurena</surname>
<given-names>N</given-names>
</name>
<name>
<surname>Kessenbrock</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Goldberg</surname>
<given-names>MS</given-names>
</name>
<name>
<surname>Egeblad</surname>
<given-names>M</given-names>
</name>
</person-group>
<article-title>Cancer cells induce metastasis-supporting neutrophil extracellular DNA traps</article-title>
<source>Sci Transl Med</source>
<year>2016</year>
<volume>8</volume>
<elocation-id>361ra138</elocation-id>
</element-citation>
</ref>
<ref id="B80">
<label>80</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Tohme</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Yazdani</surname>
<given-names>HO</given-names>
</name>
<name>
<surname>Al-Khafaji</surname>
<given-names>AB</given-names>
</name>
<name>
<surname>Chidi</surname>
<given-names>AP</given-names>
</name>
<name>
<surname>Loughran</surname>
<given-names>P</given-names>
</name>
<name>
<surname>Mowen</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Wang</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Simmons</surname>
<given-names>RL</given-names>
</name>
<name>
<surname>Huang</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Tsung</surname>
<given-names>A</given-names>
</name>
</person-group>
<article-title>Neutrophil extracellular traps promote the development and progression of liver metastases after surgical stress</article-title>
<source>Cancer Res</source>
<year>2016</year>
<volume>76</volume>
<fpage>1367</fpage>
<lpage>1380</lpage>
<pub-id pub-id-type="pmid">26759232</pub-id>
</element-citation>
</ref>
<ref id="B81">
<label>81</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Najmeh</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Cools-Lartigue</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Rayes</surname>
<given-names>RF</given-names>
</name>
<name>
<surname>Gowing</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Vourtzoumis</surname>
<given-names>P</given-names>
</name>
<name>
<surname>Bourdeau</surname>
<given-names>F</given-names>
</name>
<name>
<surname>Giannias</surname>
<given-names>B</given-names>
</name>
<name>
<surname>Berube</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Rousseau</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Ferri</surname>
<given-names>LE</given-names>
</name>
<name>
<surname>Spicer</surname>
<given-names>JD</given-names>
</name>
</person-group>
<article-title>Neutrophil extracellular traps sequester circulating tumor cells via β1-integrin mediated interactions</article-title>
<source>Int J Cancer</source>
<year>2017</year>
<volume>140</volume>
<fpage>2321</fpage>
<lpage>2330</lpage>
<pub-id pub-id-type="pmid">28177522</pub-id>
</element-citation>
</ref>
<ref id="B82">
<label>82</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Leach</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Morton</surname>
<given-names>JP</given-names>
</name>
<name>
<surname>Sansom</surname>
<given-names>OJ</given-names>
</name>
</person-group>
<article-title>Neutrophils: Homing in on the myeloid mechanisms of metastasis</article-title>
<source>Mol Immunol</source>
<year>2019</year>
<volume>110</volume>
<fpage>69</fpage>
<lpage>76</lpage>
<pub-id pub-id-type="pmid">29269005</pub-id>
</element-citation>
</ref>
<ref id="B83">
<label>83</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Borregaard</surname>
<given-names>N</given-names>
</name>
<name>
<surname>Cowland</surname>
<given-names>JB</given-names>
</name>
</person-group>
<article-title>Granules of the human neutrophilic polymorphonuclear leukocyte</article-title>
<source>Blood</source>
<year>1997</year>
<volume>89</volume>
<fpage>3503</fpage>
<lpage>3521</lpage>
<pub-id pub-id-type="pmid">9160655</pub-id>
</element-citation>
</ref>
<ref id="B84">
<label>84</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Cowland</surname>
<given-names>JB</given-names>
</name>
<name>
<surname>Borregaard</surname>
<given-names>N</given-names>
</name>
</person-group>
<article-title>Granulopoiesis and granules of human neutrophils</article-title>
<source>Immunol Rev</source>
<year>2016</year>
<volume>273</volume>
<fpage>11</fpage>
<lpage>28</lpage>
<pub-id pub-id-type="pmid">27558325</pub-id>
</element-citation>
</ref>
<ref id="B85">
<label>85</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Lawrence</surname>
<given-names>SM</given-names>
</name>
<name>
<surname>Corriden</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Nizet</surname>
<given-names>V</given-names>
</name>
</person-group>
<article-title>The ontogeny of a neutrophil: mechanisms of granulopoiesis and homeostasis</article-title>
<source>Microbiol Mol Biol Rev</source>
<year>2018</year>
<volume>82</volume>
<fpage>e00057</fpage>
<lpage>e00017</lpage>
<pub-id pub-id-type="pmid">29436479</pub-id>
</element-citation>
</ref>
<ref id="B86">
<label>86</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Gullberg</surname>
<given-names>U</given-names>
</name>
<name>
<surname>Andersson</surname>
<given-names>E</given-names>
</name>
<name>
<surname>Garwicz</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Lindmark</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Olsson</surname>
<given-names>I</given-names>
</name>
</person-group>
<article-title>Biosynthesis, processing and sorting of neutrophil proteins: insight into neutrophil granule development</article-title>
<source>Eur J Haematol</source>
<year>1997</year>
<volume>58</volume>
<fpage>137</fpage>
<lpage>153</lpage>
<pub-id pub-id-type="pmid">9150707</pub-id>
</element-citation>
</ref>
<ref id="B87">
<label>87</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Lacy</surname>
<given-names>P</given-names>
</name>
</person-group>
<article-title>Mechanisms of degranulation in neutrophils</article-title>
<source>Allergy Asthma Clin Immunol</source>
<year>2006</year>
<volume>2</volume>
<fpage>98</fpage>
<lpage>108</lpage>
<pub-id pub-id-type="pmid">20525154</pub-id>
</element-citation>
</ref>
<ref id="B88">
<label>88</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Mantovani</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Cassatella</surname>
<given-names>MA</given-names>
</name>
<name>
<surname>Costantini</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Jaillon</surname>
<given-names>S</given-names>
</name>
</person-group>
<article-title>Neutrophils in the activation and regulation of innate and adaptive immunity</article-title>
<source>Nat Rev Immunol</source>
<year>2011</year>
<volume>11</volume>
<fpage>519</fpage>
<lpage>531</lpage>
<pub-id pub-id-type="pmid">21785456</pub-id>
</element-citation>
</ref>
<ref id="B89">
<label>89</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Tecchio</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Cassatella</surname>
<given-names>MA</given-names>
</name>
</person-group>
<article-title>Neutrophil-derived cytokines involved in physiological and pathological angiogenesis</article-title>
<source>Chem Immunol Allergy</source>
<year>2014</year>
<volume>99</volume>
<fpage>123</fpage>
<lpage>137</lpage>
<pub-id pub-id-type="pmid">24217606</pub-id>
</element-citation>
</ref>
<ref id="B90">
<label>90</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Tecchio</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Micheletti</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Cassatella</surname>
<given-names>MA</given-names>
</name>
</person-group>
<article-title>Neutrophil-derived cytokines: facts beyond expression</article-title>
<source>Front Immunol</source>
<year>2014</year>
<volume>5</volume>
<fpage>508</fpage>
<pub-id pub-id-type="pmid">25374568</pub-id>
</element-citation>
</ref>
<ref id="B91">
<label>91</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Naegelen</surname>
<given-names>I</given-names>
</name>
<name>
<surname>Beaume</surname>
<given-names>N</given-names>
</name>
<name>
<surname>Plançon</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Schenten</surname>
<given-names>V</given-names>
</name>
<name>
<surname>Tschirhart</surname>
<given-names>EJ</given-names>
</name>
<name>
<surname>Bréchard</surname>
<given-names>S</given-names>
</name>
</person-group>
<article-title>Regulation of neutrophil degranulation and cytokine secretion: a novel model approach based on linear fitting</article-title>
<source>J Immunol Res</source>
<year>2015</year>
<volume>2015</volume>
<elocation-id>817038</elocation-id>
<pub-id pub-id-type="pmid">26579547</pub-id>
</element-citation>
</ref>
<ref id="B92">
<label>92</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Angelidou</surname>
<given-names>I</given-names>
</name>
<name>
<surname>Chrysanthopoulou</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Mitsios</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Arelaki</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Arampatzioglou</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Kambas</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Ritis</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Tsironidou</surname>
<given-names>V</given-names>
</name>
<name>
<surname>Moschos</surname>
<given-names>I</given-names>
</name>
<name>
<surname>Dalla</surname>
<given-names>V</given-names>
</name>
<name>
<surname>Stakos</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Kouklakis</surname>
<given-names>G</given-names>
</name>
<name>
<surname>Mitroulis</surname>
<given-names>I</given-names>
</name>
<name>
<surname>Ritis</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Skendros</surname>
<given-names>P</given-names>
</name>
</person-group>
<article-title>REDD1/ autophagy pathway is associated with Neutrophil-Driven IL-1β inflammatory response in active ulcerative colitis</article-title>
<source>J Immunol</source>
<year>2018</year>
<volume>200</volume>
<fpage>3950</fpage>
<lpage>3961</lpage>
<pub-id pub-id-type="pmid">29712770</pub-id>
</element-citation>
</ref>
<ref id="B93">
<label>93</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Apostolidou</surname>
<given-names>E</given-names>
</name>
<name>
<surname>Skendros</surname>
<given-names>P</given-names>
</name>
<name>
<surname>Kambas</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Mitroulis</surname>
<given-names>I</given-names>
</name>
<name>
<surname>Konstantinidis</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Chrysanthopoulou</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Nakos</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Tsironidou</surname>
<given-names>V</given-names>
</name>
<name>
<surname>Koffa</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Boumpas</surname>
<given-names>DT</given-names>
</name>
<name>
<surname>Ritis</surname>
<given-names>K</given-names>
</name>
</person-group>
<article-title>Neutrophil extracellular traps regulate IL-1β-mediated inflammation in familial Mediterranean fever</article-title>
<source>Ann Rheum Dis</source>
<year>2016</year>
<volume>75</volume>
<fpage>269</fpage>
<lpage>277</lpage>
<pub-id pub-id-type="pmid">25261578</pub-id>
</element-citation>
</ref>
<ref id="B94">
<label>94</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Iula</surname>
<given-names>L</given-names>
</name>
<name>
<surname>Keitelman</surname>
<given-names>IA</given-names>
</name>
<name>
<surname>Sabbione</surname>
<given-names>F</given-names>
</name>
<name>
<surname>Fuentes</surname>
<given-names>F</given-names>
</name>
<name>
<surname>Guzman</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Galletti</surname>
<given-names>JG</given-names>
</name>
<name>
<surname>Gerber</surname>
<given-names>PP</given-names>
</name>
<name>
<surname>Ostrowski</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Geffner</surname>
<given-names>JR</given-names>
</name>
<name>
<surname>Jancic</surname>
<given-names>CC</given-names>
</name>
<name>
<surname>Trevani</surname>
<given-names>AS</given-names>
</name>
</person-group>
<article-title>Autophagy mediates interleukin-1β secretion in human neutrophils</article-title>
<source>Front Immunol</source>
<year>2018</year>
<volume>9</volume>
<fpage>269</fpage>
<pub-id pub-id-type="pmid">29515581</pub-id>
</element-citation>
</ref>
<ref id="B95">
<label>95</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Harris</surname>
<given-names>J</given-names>
</name>
</person-group>
<article-title>Autophagy and cytokines</article-title>
<source>Cytokine</source>
<year>2011</year>
<volume>56</volume>
<fpage>140</fpage>
<lpage>144</lpage>
<pub-id pub-id-type="pmid">21889357</pub-id>
</element-citation>
</ref>
<ref id="B96">
<label>96</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Harris</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Hartman</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Roche</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Zeng</surname>
<given-names>SG</given-names>
</name>
<name>
<surname>O'Shea</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Sharp</surname>
<given-names>FA</given-names>
</name>
<name>
<surname>Lambe</surname>
<given-names>EM</given-names>
</name>
<name>
<surname>Creagh</surname>
<given-names>EM</given-names>
</name>
<name>
<surname>Golenbock</surname>
<given-names>DT</given-names>
</name>
<name>
<surname>Tschopp</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Kornfeld</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Fitzgerald</surname>
<given-names>KA</given-names>
</name>
<name>
<surname>Lavelle</surname>
<given-names>EC</given-names>
</name>
</person-group>
<article-title>Autophagy controls IL-1beta secretion by targeting pro-IL-1beta for degradation</article-title>
<source>J Biol Chem</source>
<year>2011</year>
<volume>286</volume>
<fpage>9587</fpage>
<lpage>9597</lpage>
<pub-id pub-id-type="pmid">21228274</pub-id>
</element-citation>
</ref>
<ref id="B97">
<label>97</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Netea-Maier</surname>
<given-names>RT</given-names>
</name>
<name>
<surname>Plantinga</surname>
<given-names>TS</given-names>
</name>
<name>
<surname>van de Veerdonk</surname>
<given-names>FL</given-names>
</name>
<name>
<surname>Smit</surname>
<given-names>JW</given-names>
</name>
<name>
<surname>Netea</surname>
<given-names>MG</given-names>
</name>
</person-group>
<article-title>Modulation of inflammation by autophagy: consequences for human disease</article-title>
<source>Autophagy</source>
<year>2016</year>
<volume>12</volume>
<fpage>245</fpage>
<lpage>260</lpage>
<pub-id pub-id-type="pmid">26222012</pub-id>
</element-citation>
</ref>
<ref id="B98">
<label>98</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Levine</surname>
<given-names>B</given-names>
</name>
<name>
<surname>Mizushima</surname>
<given-names>N</given-names>
</name>
<name>
<surname>Virgin</surname>
<given-names>HW</given-names>
</name>
</person-group>
<article-title>Autophagy in immunity and inflammation</article-title>
<source>Nature</source>
<year>2011</year>
<volume>469</volume>
<fpage>323</fpage>
<lpage>335</lpage>
<pub-id pub-id-type="pmid">21248839</pub-id>
</element-citation>
</ref>
<ref id="B99">
<label>99</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Zhang</surname>
<given-names>F</given-names>
</name>
<name>
<surname>Liu</surname>
<given-names>AL</given-names>
</name>
<name>
<surname>Gao</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Ma</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Guo</surname>
<given-names>SB</given-names>
</name>
</person-group>
<article-title>Neutrophil dysfunction in sepsis</article-title>
<source>Chin Med J (Engl)</source>
<year>2016</year>
<volume>129</volume>
<fpage>2741</fpage>
<lpage>2744</lpage>
<pub-id pub-id-type="pmid">27824008</pub-id>
</element-citation>
</ref>
<ref id="B100">
<label>100</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Segal</surname>
<given-names>AW</given-names>
</name>
<name>
<surname>Loewi</surname>
<given-names>G</given-names>
</name>
</person-group>
<article-title>Neutrophil dysfunction in Crohn's disease</article-title>
<source>Lancet</source>
<year>1976</year>
<volume>2</volume>
<fpage>219</fpage>
<lpage>221</lpage>
<pub-id pub-id-type="pmid">59239</pub-id>
</element-citation>
</ref>
<ref id="B101">
<label>101</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Davis</surname>
<given-names>WC</given-names>
</name>
<name>
<surname>Douglas</surname>
<given-names>SD</given-names>
</name>
<name>
<surname>Fudenberg</surname>
<given-names>HH</given-names>
</name>
</person-group>
<article-title>A selective neutrophil dysfunction syndrome: impaired killing of staphylococci</article-title>
<source>Ann Intern Med</source>
<year>1968</year>
<volume>69</volume>
<fpage>1237</fpage>
<lpage>1243</lpage>
<pub-id pub-id-type="pmid">5725737</pub-id>
</element-citation>
</ref>
<ref id="B102">
<label>102</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Jin</surname>
<given-names>L</given-names>
</name>
<name>
<surname>Batra</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Jeyaseelan</surname>
<given-names>S</given-names>
</name>
</person-group>
<article-title>Deletion of Nlrp3 augments survival during polymicrobial sepsis by decreasing autophagy and enhancing phagocytosis</article-title>
<source>J Immunol</source>
<year>2017</year>
<volume>198</volume>
<fpage>1253</fpage>
<lpage>1262</lpage>
<pub-id pub-id-type="pmid">28031338</pub-id>
</element-citation>
</ref>
<ref id="B103">
<label>103</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Haimovici</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Brigger</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Torbett</surname>
<given-names>BE</given-names>
</name>
<name>
<surname>Fey</surname>
<given-names>MF</given-names>
</name>
<name>
<surname>Tschan</surname>
<given-names>MP</given-names>
</name>
</person-group>
<article-title>Induction of the autophagy-associated gene MAP1S via PU.1 supports APL differentiation</article-title>
<source>Leuk Res</source>
<year>2014</year>
<volume>38</volume>
<fpage>1041</fpage>
<lpage>1047</lpage>
<pub-id pub-id-type="pmid">25043887</pub-id>
</element-citation>
</ref>
<ref id="B104">
<label>104</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Schläfli</surname>
<given-names>AM</given-names>
</name>
<name>
<surname>Shan-Krauer</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Garattini</surname>
<given-names>E</given-names>
</name>
<name>
<surname>Tschan</surname>
<given-names>MP</given-names>
</name>
</person-group>
<article-title>Regulation and function of autophagy in retinoic acid mediated therapy of myeloid leukemia and breast cancer</article-title>
<source>Ital J Anat Embryol</source>
<year>2015</year>
<volume>120</volume>
<fpage>9</fpage>
<lpage>10</lpage>
</element-citation>
</ref>
<ref id="B105">
<label>105</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Britschgi</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Yousefi</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Laedrach</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Shan</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Simon</surname>
<given-names>H-U</given-names>
</name>
<name>
<surname>Tobler</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Fey</surname>
<given-names>MF</given-names>
</name>
<name>
<surname>Tschan</surname>
<given-names>MP</given-names>
</name>
</person-group>
<article-title>Blocking the autophagy gene 5 (ATG5) impairs ATRA-induced myeloid differentiation, and ATG5 is downregulated in AML</article-title>
<source>Blood</source>
<year>2008</year>
<volume>112</volume>
<fpage>309</fpage>
</element-citation>
</ref>
<ref id="B106">
<label>106</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Abdel Fattah</surname>
<given-names>E</given-names>
</name>
<name>
<surname>Bhattacharya</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Herron</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Safdar</surname>
<given-names>Z</given-names>
</name>
<name>
<surname>Eissa</surname>
<given-names>NT</given-names>
</name>
</person-group>
<article-title>Critical role for IL-18 in spontaneous lung inflammation caused by autophagy deficiency</article-title>
<source>J Immunol</source>
<year>2015</year>
<volume>194</volume>
<fpage>5407</fpage>
<lpage>5416</lpage>
<pub-id pub-id-type="pmid">25888640</pub-id>
</element-citation>
</ref>
<ref id="B107">
<label>107</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Skendros</surname>
<given-names>P</given-names>
</name>
<name>
<surname>Chrysanthopoulou</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Rousset</surname>
<given-names>F</given-names>
</name>
<name>
<surname>Kambas</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Arampatzioglou</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Mitsios</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Bocly</surname>
<given-names>V</given-names>
</name>
<name>
<surname>Konstantinidis</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Pellet</surname>
<given-names>P</given-names>
</name>
<name>
<surname>Angelidou</surname>
<given-names>I</given-names>
</name>
<name>
<surname>Apostolidou</surname>
<given-names>E</given-names>
</name>
<name>
<surname>Ritis</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Tsironidou</surname>
<given-names>V</given-names>
</name>
<name>
<surname>Galtsidis</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Papagoras</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Stakos</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Kouklakis</surname>
<given-names>G</given-names>
</name>
<name>
<surname>Dalla</surname>
<given-names>V</given-names>
</name>
<name>
<surname>Koffa</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Mitroulis</surname>
<given-names>I</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Regulated in development and DNA damage responses 1 (REDD1) links stress with IL-1β-mediated familial Mediterranean fever attack through autophagy-driven neutrophil extracellular traps</article-title>
<source>J Allergy Clin Immunol</source>
<year>2017</year>
<volume>140</volume>
<fpage>1378</fpage>
<lpage>1387.e13</lpage>
<pub-id pub-id-type="pmid">28342915</pub-id>
</element-citation>
</ref>
</ref-list>
</back>
<floats-group>
<fig id="F1" orientation="portrait" position="float">
<label>Fig. 1</label>
<caption>
<title>Regulation of autophagy in neutrophils.</title>
<p>Phagocytosis-independent autophagy in neutrophils is initiated by starvation or activation of receptor by different stimuli. This induces either Beclin-1 activation or mTOR inhibition via increased ROS, PI3K, and/or AMPK activity. Activation of Beclin-1 or mTOR inhibition induces phagophore nucleation and elongation by the Atg5-Atg12 complex. Finally, autophagosome maturation is completed via incorporation of lipidated LC3-II into the phagosome membrane, and the ubiquitin protein p62/SQTM1 is degraded. mTOR, mammalian target of rapamycin; ROS, reactive oxygen species; TLR, toll like receptor.</p>
</caption>
<graphic xlink:href="kjpp-24-1-g001"></graphic>
</fig>
<fig id="F2" orientation="portrait" position="float">
<label>Fig. 2</label>
<caption>
<title>Contribution of autophagy to neutrophil function.</title>
<p>Autophagy is involved in neutrophil differentiation and granule formation. It enhances neutrophil phagocytosis, neutrophil extracellular traps (NETs) formation, degranulation, and cytokine release. Autophagy in neutrophils also differentially modulates the outcomes of inflammation and infection in a context-dependent manner.</p>
</caption>
<graphic xlink:href="kjpp-24-1-g002"></graphic>
</fig>
</floats-group>
</pmc>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/ChloroquineV1/Data/Pmc/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000A53 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Pmc/Corpus/biblio.hfd -nk 000A53 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    ChloroquineV1
   |flux=    Pmc
   |étape=   Corpus
   |type=    RBID
   |clé=     PMC:6940497
   |texte=   Autophagy in neutrophils
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Pmc/Corpus/RBID.i   -Sk "pubmed:31908569" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Pmc/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a ChloroquineV1 

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Wed Mar 25 22:43:59 2020. Site generation: Sun Jan 31 12:44:45 2021