Serveur d'exploration Chloroquine

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Role of Autophagy in Renal Cancer

Identifieur interne : 000A43 ( Pmc/Corpus ); précédent : 000A42; suivant : 000A44

Role of Autophagy in Renal Cancer

Auteurs : Qi Cao ; Peng Bai

Source :

RBID : PMC:6584354

Abstract

Autophagy is a highly conserved catabolic process with critical functions in maintenance of cellular homeostasis under normal growth conditions and in preservation of cell viability under stress. The role of autophagy in cancer is dual-sided. Autophagy-deficient cells are often more tumorigenic than their wild type counterparts in association with DNA damage accumulation, oxidative stress. At the same time, autophagy is a major cell survival mechanism. In recent years, it has been well demonstrated that autophagy may have relation with renal cell carcinoma (RCC). This review focuses on the research progress in relation between autophagy and RCC and the pharmacologic manipulation of autophagy for RCC treatment.


Url:
DOI: 10.7150/jca.29285
PubMed: 31258756
PubMed Central: 6584354

Links to Exploration step

PMC:6584354

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Role of Autophagy in Renal Cancer</title>
<author>
<name sortKey="Cao, Qi" sort="Cao, Qi" uniqKey="Cao Q" first="Qi" last="Cao">Qi Cao</name>
<affiliation>
<nlm:aff id="A1">Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Bai, Peng" sort="Bai, Peng" uniqKey="Bai P" first="Peng" last="Bai">Peng Bai</name>
<affiliation>
<nlm:aff id="A2">Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China</nlm:aff>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PMC</idno>
<idno type="pmid">31258756</idno>
<idno type="pmc">6584354</idno>
<idno type="url">http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6584354</idno>
<idno type="RBID">PMC:6584354</idno>
<idno type="doi">10.7150/jca.29285</idno>
<date when="2019">2019</date>
<idno type="wicri:Area/Pmc/Corpus">000A43</idno>
<idno type="wicri:explorRef" wicri:stream="Pmc" wicri:step="Corpus" wicri:corpus="PMC">000A43</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a" type="main">Role of Autophagy in Renal Cancer</title>
<author>
<name sortKey="Cao, Qi" sort="Cao, Qi" uniqKey="Cao Q" first="Qi" last="Cao">Qi Cao</name>
<affiliation>
<nlm:aff id="A1">Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Bai, Peng" sort="Bai, Peng" uniqKey="Bai P" first="Peng" last="Bai">Peng Bai</name>
<affiliation>
<nlm:aff id="A2">Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China</nlm:aff>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Journal of Cancer</title>
<idno type="eISSN">1837-9664</idno>
<imprint>
<date when="2019">2019</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<p>Autophagy is a highly conserved catabolic process with critical functions in maintenance of cellular homeostasis under normal growth conditions and in preservation of cell viability under stress. The role of autophagy in cancer is dual-sided. Autophagy-deficient cells are often more tumorigenic than their wild type counterparts in association with DNA damage accumulation, oxidative stress. At the same time, autophagy is a major cell survival mechanism. In recent years, it has been well demonstrated that autophagy may have relation with renal cell carcinoma (RCC). This review focuses on the research progress in relation between autophagy and RCC and the pharmacologic manipulation of autophagy for RCC treatment.</p>
</div>
</front>
<back>
<div1 type="bibliography">
<listBibl>
<biblStruct>
<analytic>
<author>
<name sortKey="Mizushima, N" uniqKey="Mizushima N">N Mizushima</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Yang, Z" uniqKey="Yang Z">Z Yang</name>
</author>
<author>
<name sortKey="Klionsky, Dj" uniqKey="Klionsky D">DJ Klionsky</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Klionsky, Dj" uniqKey="Klionsky D">DJ Klionsky</name>
</author>
<author>
<name sortKey="Emr, Sd" uniqKey="Emr S">SD Emr</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Mizushima, N" uniqKey="Mizushima N">N Mizushima</name>
</author>
<author>
<name sortKey="Ohsumi, Y" uniqKey="Ohsumi Y">Y Ohsumi</name>
</author>
<author>
<name sortKey="Yoshimori, T" uniqKey="Yoshimori T">T Yoshimori</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Lum, Jj" uniqKey="Lum J">JJ Lum</name>
</author>
<author>
<name sortKey="Deberardinis, Rj" uniqKey="Deberardinis R">RJ DeBerardinis</name>
</author>
<author>
<name sortKey="Thompson, Cb" uniqKey="Thompson C">CB Thompson</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Dikic, I" uniqKey="Dikic I">I Dikic</name>
</author>
<author>
<name sortKey="Johansen, T" uniqKey="Johansen T">T Johansen</name>
</author>
<author>
<name sortKey="Kirkin, V" uniqKey="Kirkin V">V Kirkin</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Schaeffer, V" uniqKey="Schaeffer V">V Schaeffer</name>
</author>
<author>
<name sortKey="Lavenir, I" uniqKey="Lavenir I">I Lavenir</name>
</author>
<author>
<name sortKey="Ozcelik, S" uniqKey="Ozcelik S">S Ozcelik</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Liao, X" uniqKey="Liao X">X Liao</name>
</author>
<author>
<name sortKey="Sluimer, Jc" uniqKey="Sluimer J">JC Sluimer</name>
</author>
<author>
<name sortKey="Wang, Y" uniqKey="Wang Y">Y Wang</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kim, Jj" uniqKey="Kim J">JJ Kim</name>
</author>
<author>
<name sortKey="Lee, Hm" uniqKey="Lee H">HM Lee</name>
</author>
<author>
<name sortKey="Shin, Dm" uniqKey="Shin D">DM Shin</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Siegel, Rl" uniqKey="Siegel R">RL Siegel</name>
</author>
<author>
<name sortKey="Miller, Kd" uniqKey="Miller K">KD Miller</name>
</author>
<author>
<name sortKey="Jemal, A" uniqKey="Jemal A">A Jemal</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Moch, H" uniqKey="Moch H">H Moch</name>
</author>
<author>
<name sortKey="Cubilla, Al" uniqKey="Cubilla A">AL Cubilla</name>
</author>
<author>
<name sortKey="Humphrey, Pa" uniqKey="Humphrey P">PA Humphrey</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Singla, M" uniqKey="Singla M">M Singla</name>
</author>
<author>
<name sortKey="Bhattacharyya, S" uniqKey="Bhattacharyya S">S Bhattacharyya</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Haas, Nb" uniqKey="Haas N">NB Haas</name>
</author>
<author>
<name sortKey="Appleman, Lj" uniqKey="Appleman L">LJ Appleman</name>
</author>
<author>
<name sortKey="Stein, M" uniqKey="Stein M">M Stein</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Santoni, M" uniqKey="Santoni M">M Santoni</name>
</author>
<author>
<name sortKey="Piva, F" uniqKey="Piva F">F Piva</name>
</author>
<author>
<name sortKey="De Giorgi, U" uniqKey="De Giorgi U">U De Giorgi</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="De Duve, C" uniqKey="De Duve C">C De Duve</name>
</author>
<author>
<name sortKey="Wattiaux, R" uniqKey="Wattiaux R">R Wattiaux</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Mizushima, N" uniqKey="Mizushima N">N Mizushima</name>
</author>
<author>
<name sortKey="Levine, B" uniqKey="Levine B">B Levine</name>
</author>
<author>
<name sortKey="Cuervo, Am" uniqKey="Cuervo A">AM Cuervo</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Chen, N" uniqKey="Chen N">N Chen</name>
</author>
<author>
<name sortKey="Karantza Wadsworth, V" uniqKey="Karantza Wadsworth V">V Karantza-Wadsworth</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Simonsen, A" uniqKey="Simonsen A">A Simonsen</name>
</author>
<author>
<name sortKey="Tooze, Sa" uniqKey="Tooze S">SA Tooze</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Geng, J" uniqKey="Geng J">J Geng</name>
</author>
<author>
<name sortKey="Klionsky, Dj" uniqKey="Klionsky D">DJ Klionsky</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Hanada, T" uniqKey="Hanada T">T Hanada</name>
</author>
<author>
<name sortKey="Noda, Nn" uniqKey="Noda N">NN Noda</name>
</author>
<author>
<name sortKey="Satomi, Y" uniqKey="Satomi Y">Y Satomi</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kimmelman, Ac" uniqKey="Kimmelman A">AC Kimmelman</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ganley, Ig" uniqKey="Ganley I">IG Ganley</name>
</author>
<author>
<name sortKey="Lam, Dh" uniqKey="Lam D">DH Lam</name>
</author>
<author>
<name sortKey="Wang, J" uniqKey="Wang J">J Wang</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Hara, T" uniqKey="Hara T">T Hara</name>
</author>
<author>
<name sortKey="Takamura, A" uniqKey="Takamura A">A Takamura</name>
</author>
<author>
<name sortKey="Kishi, C" uniqKey="Kishi C">C Kishi</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Mercer, Ca" uniqKey="Mercer C">CA Mercer</name>
</author>
<author>
<name sortKey="Kaliappan, A" uniqKey="Kaliappan A">A Kaliappan</name>
</author>
<author>
<name sortKey="Dennis, Pb" uniqKey="Dennis P">PB Dennis</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Russell, Rc" uniqKey="Russell R">RC Russell</name>
</author>
<author>
<name sortKey="Tian, Y" uniqKey="Tian Y">Y Tian</name>
</author>
<author>
<name sortKey="Yuan, H" uniqKey="Yuan H">H Yuan</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Burman, C" uniqKey="Burman C">C Burman</name>
</author>
<author>
<name sortKey="Ktistakis, Nt" uniqKey="Ktistakis N">NT Ktistakis</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kabeya, Y" uniqKey="Kabeya Y">Y Kabeya</name>
</author>
<author>
<name sortKey="Mizushima, N" uniqKey="Mizushima N">N Mizushima</name>
</author>
<author>
<name sortKey="Ueno, T" uniqKey="Ueno T">T Ueno</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Tanida, I" uniqKey="Tanida I">I Tanida</name>
</author>
<author>
<name sortKey="Ueno, T" uniqKey="Ueno T">T Ueno</name>
</author>
<author>
<name sortKey="Kominami, E" uniqKey="Kominami E">E Kominami</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Otomo, C" uniqKey="Otomo C">C Otomo</name>
</author>
<author>
<name sortKey="Metlagel, Z" uniqKey="Metlagel Z">Z Metlagel</name>
</author>
<author>
<name sortKey="Takaesu, G" uniqKey="Takaesu G">G Takaesu</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Codogno, P" uniqKey="Codogno P">P Codogno</name>
</author>
<author>
<name sortKey="Mehrpour, M" uniqKey="Mehrpour M">M Mehrpour</name>
</author>
<author>
<name sortKey="Proikas Cezanne, T" uniqKey="Proikas Cezanne T">T Proikas-Cezanne</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Fass, E" uniqKey="Fass E">E Fass</name>
</author>
<author>
<name sortKey="Shvets, E" uniqKey="Shvets E">E Shvets</name>
</author>
<author>
<name sortKey="Degani, I" uniqKey="Degani I">I Degani</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Gutierrez, Mg" uniqKey="Gutierrez M">MG Gutierrez</name>
</author>
<author>
<name sortKey="Munafo, Db" uniqKey="Munafo D">DB Munafo</name>
</author>
<author>
<name sortKey="Beron, W" uniqKey="Beron W">W Beron</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Itakura, E" uniqKey="Itakura E">E Itakura</name>
</author>
<author>
<name sortKey="Kishi Itakura, C" uniqKey="Kishi Itakura C">C Kishi-Itakura</name>
</author>
<author>
<name sortKey="Mizushima, N" uniqKey="Mizushima N">N Mizushima</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Mizushima, N" uniqKey="Mizushima N">N Mizushima</name>
</author>
<author>
<name sortKey="Ohsumi, Y" uniqKey="Ohsumi Y">Y Ohsumi</name>
</author>
<author>
<name sortKey="Yoshimori, T" uniqKey="Yoshimori T">T Yoshimori</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Jung, Ch" uniqKey="Jung C">CH Jung</name>
</author>
<author>
<name sortKey="Ro, Sh" uniqKey="Ro S">SH Ro</name>
</author>
<author>
<name sortKey="Cao, J" uniqKey="Cao J">J Cao</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Gwinn, Dm" uniqKey="Gwinn D">DM Gwinn</name>
</author>
<author>
<name sortKey="Shackelford, Db" uniqKey="Shackelford D">DB Shackelford</name>
</author>
<author>
<name sortKey="Egan, Df" uniqKey="Egan D">DF Egan</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Aita, Vm" uniqKey="Aita V">VM Aita</name>
</author>
<author>
<name sortKey="Liang, Xh" uniqKey="Liang X">XH Liang</name>
</author>
<author>
<name sortKey="Murty, Vv" uniqKey="Murty V">VV Murty</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Liang, Xh" uniqKey="Liang X">XH Liang</name>
</author>
<author>
<name sortKey="Jackson, S" uniqKey="Jackson S">S Jackson</name>
</author>
<author>
<name sortKey="Seaman, M" uniqKey="Seaman M">M Seaman</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Marino, G" uniqKey="Marino G">G Marino</name>
</author>
<author>
<name sortKey="Salvador Montoliu, N" uniqKey="Salvador Montoliu N">N Salvador-Montoliu</name>
</author>
<author>
<name sortKey="Fueyo, A" uniqKey="Fueyo A">A Fueyo</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Takahashi, Y" uniqKey="Takahashi Y">Y Takahashi</name>
</author>
<author>
<name sortKey="Coppola, D" uniqKey="Coppola D">D Coppola</name>
</author>
<author>
<name sortKey="Matsushita, N" uniqKey="Matsushita N">N Matsushita</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Karantza Wadsworth, V" uniqKey="Karantza Wadsworth V">V Karantza-Wadsworth</name>
</author>
<author>
<name sortKey="Patel, S" uniqKey="Patel S">S Patel</name>
</author>
<author>
<name sortKey="Kravchuk, O" uniqKey="Kravchuk O">O Kravchuk</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Takamura, A" uniqKey="Takamura A">A Takamura</name>
</author>
<author>
<name sortKey="Komatsu, M" uniqKey="Komatsu M">M Komatsu</name>
</author>
<author>
<name sortKey="Hara, T" uniqKey="Hara T">T Hara</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Degenhardt, K" uniqKey="Degenhardt K">K Degenhardt</name>
</author>
<author>
<name sortKey="Mathew, R" uniqKey="Mathew R">R Mathew</name>
</author>
<author>
<name sortKey="Beaudoin, B" uniqKey="Beaudoin B">B Beaudoin</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Wang, K" uniqKey="Wang K">K Wang</name>
</author>
<author>
<name sortKey="Liu, R" uniqKey="Liu R">R Liu</name>
</author>
<author>
<name sortKey="Li, J" uniqKey="Li J">J Li</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Lopiccolo, J" uniqKey="Lopiccolo J">J LoPiccolo</name>
</author>
<author>
<name sortKey="Blumenthal, Gm" uniqKey="Blumenthal G">GM Blumenthal</name>
</author>
<author>
<name sortKey="Bernstein, Wb" uniqKey="Bernstein W">WB Bernstein</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Arico, S" uniqKey="Arico S">S Arico</name>
</author>
<author>
<name sortKey="Petiot, A" uniqKey="Petiot A">A Petiot</name>
</author>
<author>
<name sortKey="Bauvy, C" uniqKey="Bauvy C">C Bauvy</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Sourbier, C" uniqKey="Sourbier C">C Sourbier</name>
</author>
<author>
<name sortKey="Lindner, V" uniqKey="Lindner V">V Lindner</name>
</author>
<author>
<name sortKey="Lang, H" uniqKey="Lang H">H Lang</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Seo, Su" uniqKey="Seo S">SU Seo</name>
</author>
<author>
<name sortKey="Woo, Sm" uniqKey="Woo S">SM Woo</name>
</author>
<author>
<name sortKey="Lee, Hs" uniqKey="Lee H">HS Lee</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Levine, Aj" uniqKey="Levine A">AJ Levine</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Feng, Z" uniqKey="Feng Z">Z Feng</name>
</author>
<author>
<name sortKey="Hu, W" uniqKey="Hu W">W Hu</name>
</author>
<author>
<name sortKey="De Stanchina, E" uniqKey="De Stanchina E">E de Stanchina</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Crighton, D" uniqKey="Crighton D">D Crighton</name>
</author>
<author>
<name sortKey="Wilkinson, S" uniqKey="Wilkinson S">S Wilkinson</name>
</author>
<author>
<name sortKey="O Prey, J" uniqKey="O Prey J">J O'Prey</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Tasdemir, E" uniqKey="Tasdemir E">E Tasdemir</name>
</author>
<author>
<name sortKey="Maiuri, Mc" uniqKey="Maiuri M">MC Maiuri</name>
</author>
<author>
<name sortKey="Galluzzi, L" uniqKey="Galluzzi L">L Galluzzi</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Haitel, A" uniqKey="Haitel A">A Haitel</name>
</author>
<author>
<name sortKey="Wiener, Hg" uniqKey="Wiener H">HG Wiener</name>
</author>
<author>
<name sortKey="Baethge, U" uniqKey="Baethge U">U Baethge</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Zigeuner, R" uniqKey="Zigeuner R">R Zigeuner</name>
</author>
<author>
<name sortKey="Ratschek, M" uniqKey="Ratschek M">M Ratschek</name>
</author>
<author>
<name sortKey="Rehak, P" uniqKey="Rehak P">P Rehak</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kang, Jh" uniqKey="Kang J">JH Kang</name>
</author>
<author>
<name sortKey="Lee, Js" uniqKey="Lee J">JS Lee</name>
</author>
<author>
<name sortKey="Hong, D" uniqKey="Hong D">D Hong</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Warburton, He" uniqKey="Warburton H">HE Warburton</name>
</author>
<author>
<name sortKey="Brady, M" uniqKey="Brady M">M Brady</name>
</author>
<author>
<name sortKey="Vlatkovic, N" uniqKey="Vlatkovic N">N Vlatkovic</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Tanida, I" uniqKey="Tanida I">I Tanida</name>
</author>
<author>
<name sortKey="Ueno, T" uniqKey="Ueno T">T Ueno</name>
</author>
<author>
<name sortKey="Kominami, E" uniqKey="Kominami E">E Kominami</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Weidberg, H" uniqKey="Weidberg H">H Weidberg</name>
</author>
<author>
<name sortKey="Shvets, E" uniqKey="Shvets E">E Shvets</name>
</author>
<author>
<name sortKey="Shpilka, T" uniqKey="Shpilka T">T Shpilka</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Mikhaylova, O" uniqKey="Mikhaylova O">O Mikhaylova</name>
</author>
<author>
<name sortKey="Stratton, Y" uniqKey="Stratton Y">Y Stratton</name>
</author>
<author>
<name sortKey="Hall, D" uniqKey="Hall D">D Hall</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Deng, Q" uniqKey="Deng Q">Q Deng</name>
</author>
<author>
<name sortKey="Wang, Z" uniqKey="Wang Z">Z Wang</name>
</author>
<author>
<name sortKey="Wang, L" uniqKey="Wang L">L Wang</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Xie, R" uniqKey="Xie R">R Xie</name>
</author>
<author>
<name sortKey="Nguyen, S" uniqKey="Nguyen S">S Nguyen</name>
</author>
<author>
<name sortKey="Mckeehan, K" uniqKey="Mckeehan K">K McKeehan</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Vandin, F" uniqKey="Vandin F">F Vandin</name>
</author>
<author>
<name sortKey="Clay, P" uniqKey="Clay P">P Clay</name>
</author>
<author>
<name sortKey="Upfal, E" uniqKey="Upfal E">E Upfal</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Xie, R" uniqKey="Xie R">R Xie</name>
</author>
<author>
<name sortKey="Wang, F" uniqKey="Wang F">F Wang</name>
</author>
<author>
<name sortKey="Mckeehan, Wl" uniqKey="Mckeehan W">WL McKeehan</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Jiang, X" uniqKey="Jiang X">X Jiang</name>
</author>
<author>
<name sortKey="Zhong, W" uniqKey="Zhong W">W Zhong</name>
</author>
<author>
<name sortKey="Huang, H" uniqKey="Huang H">H Huang</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Xu, G" uniqKey="Xu G">G Xu</name>
</author>
<author>
<name sortKey="Jiang, Y" uniqKey="Jiang Y">Y Jiang</name>
</author>
<author>
<name sortKey="Xiao, Y" uniqKey="Xiao Y">Y Xiao</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Tong, Ki" uniqKey="Tong K">KI Tong</name>
</author>
<author>
<name sortKey="Padmanabhan, B" uniqKey="Padmanabhan B">B Padmanabhan</name>
</author>
<author>
<name sortKey="Kobayashi, A" uniqKey="Kobayashi A">A Kobayashi</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Lee, Df" uniqKey="Lee D">DF Lee</name>
</author>
<author>
<name sortKey="Kuo, Hp" uniqKey="Kuo H">HP Kuo</name>
</author>
<author>
<name sortKey="Liu, M" uniqKey="Liu M">M Liu</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Sporn, Mb" uniqKey="Sporn M">MB Sporn</name>
</author>
<author>
<name sortKey="Liby, Kt" uniqKey="Liby K">KT Liby</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kinch, L" uniqKey="Kinch L">L Kinch</name>
</author>
<author>
<name sortKey="Grishin, Nv" uniqKey="Grishin N">NV Grishin</name>
</author>
<author>
<name sortKey="Brugarolas, J" uniqKey="Brugarolas J">J Brugarolas</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Fabrizio, Fp" uniqKey="Fabrizio F">FP Fabrizio</name>
</author>
<author>
<name sortKey="Costantini, M" uniqKey="Costantini M">M Costantini</name>
</author>
<author>
<name sortKey="Copetti, M" uniqKey="Copetti M">M Copetti</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Lau, A" uniqKey="Lau A">A Lau</name>
</author>
<author>
<name sortKey="Wang, Xj" uniqKey="Wang X">XJ Wang</name>
</author>
<author>
<name sortKey="Zhao, F" uniqKey="Zhao F">F Zhao</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Villeneuve, Nf" uniqKey="Villeneuve N">NF Villeneuve</name>
</author>
<author>
<name sortKey="Lau, A" uniqKey="Lau A">A Lau</name>
</author>
<author>
<name sortKey="Zhang, Dd" uniqKey="Zhang D">DD Zhang</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Hall, Dp" uniqKey="Hall D">DP Hall</name>
</author>
<author>
<name sortKey="Cost, Ng" uniqKey="Cost N">NG Cost</name>
</author>
<author>
<name sortKey="Hegde, S" uniqKey="Hegde S">S Hegde</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Lian, Y" uniqKey="Lian Y">Y Lian</name>
</author>
<author>
<name sortKey="Cai, Z" uniqKey="Cai Z">Z Cai</name>
</author>
<author>
<name sortKey="Gong, H" uniqKey="Gong H">H Gong</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Su, Y" uniqKey="Su Y">Y Su</name>
</author>
<author>
<name sortKey="Lu, J" uniqKey="Lu J">J Lu</name>
</author>
<author>
<name sortKey="Chen, X" uniqKey="Chen X">X Chen</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Faivre, S" uniqKey="Faivre S">S Faivre</name>
</author>
<author>
<name sortKey="Demetri, G" uniqKey="Demetri G">G Demetri</name>
</author>
<author>
<name sortKey="Sargent, W" uniqKey="Sargent W">W Sargent</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Cao, P" uniqKey="Cao P">P Cao</name>
</author>
<author>
<name sortKey="Jiang, Xj" uniqKey="Jiang X">XJ Jiang</name>
</author>
<author>
<name sortKey="Xi, Zj" uniqKey="Xi Z">ZJ Xi</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Zheng, B" uniqKey="Zheng B">B Zheng</name>
</author>
<author>
<name sortKey="Mao, Jh" uniqKey="Mao J">JH Mao</name>
</author>
<author>
<name sortKey="Qian, L" uniqKey="Qian L">L Qian</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Lu, Q" uniqKey="Lu Q">Q Lu</name>
</author>
<author>
<name sortKey="Yan, S" uniqKey="Yan S">S Yan</name>
</author>
<author>
<name sortKey="Sun, H" uniqKey="Sun H">H Sun</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Zeng, J" uniqKey="Zeng J">J Zeng</name>
</author>
<author>
<name sortKey="Liu, W" uniqKey="Liu W">W Liu</name>
</author>
<author>
<name sortKey="Li, F" uniqKey="Li F">F Li</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Li, F" uniqKey="Li F">F Li</name>
</author>
<author>
<name sortKey="Ma, Z" uniqKey="Ma Z">Z Ma</name>
</author>
<author>
<name sortKey="Guan, Z" uniqKey="Guan Z">Z Guan</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Li, X" uniqKey="Li X">X Li</name>
</author>
<author>
<name sortKey="Li, P" uniqKey="Li P">P Li</name>
</author>
<author>
<name sortKey="Liu, C" uniqKey="Liu C">C Liu</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Jiang, S" uniqKey="Jiang S">S Jiang</name>
</author>
<author>
<name sortKey="Gao, Y" uniqKey="Gao Y">Y Gao</name>
</author>
<author>
<name sortKey="Hou, W" uniqKey="Hou W">W Hou</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Xie, T" uniqKey="Xie T">T Xie</name>
</author>
<author>
<name sortKey="Ren, Hy" uniqKey="Ren H">HY Ren</name>
</author>
<author>
<name sortKey="Lin, Hq" uniqKey="Lin H">HQ Lin</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Yang, H" uniqKey="Yang H">H Yang</name>
</author>
<author>
<name sortKey="Yin, P" uniqKey="Yin P">P Yin</name>
</author>
<author>
<name sortKey="Shi, Z" uniqKey="Shi Z">Z Shi</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Deng, F" uniqKey="Deng F">F Deng</name>
</author>
<author>
<name sortKey="Ma, Yx" uniqKey="Ma Y">YX Ma</name>
</author>
<author>
<name sortKey="Liang, L" uniqKey="Liang L">L Liang</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Hagiwara, N" uniqKey="Hagiwara N">N Hagiwara</name>
</author>
<author>
<name sortKey="Watanabe, M" uniqKey="Watanabe M">M Watanabe</name>
</author>
<author>
<name sortKey="Iizuka Ohashi, M" uniqKey="Iizuka Ohashi M">M Iizuka-Ohashi</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Grimaldi, A" uniqKey="Grimaldi A">A Grimaldi</name>
</author>
<author>
<name sortKey="Santini, D" uniqKey="Santini D">D Santini</name>
</author>
<author>
<name sortKey="Zappavigna, S" uniqKey="Zappavigna S">S Zappavigna</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Carew, Js" uniqKey="Carew J">JS Carew</name>
</author>
<author>
<name sortKey="Kelly, Kr" uniqKey="Kelly K">KR Kelly</name>
</author>
<author>
<name sortKey="Nawrocki, St" uniqKey="Nawrocki S">ST Nawrocki</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Rangwala, R" uniqKey="Rangwala R">R Rangwala</name>
</author>
<author>
<name sortKey="Chang, Yc" uniqKey="Chang Y">YC Chang</name>
</author>
<author>
<name sortKey="Hu, J" uniqKey="Hu J">J Hu</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Vogl, Dt" uniqKey="Vogl D">DT Vogl</name>
</author>
<author>
<name sortKey="Stadtmauer, Ea" uniqKey="Stadtmauer E">EA Stadtmauer</name>
</author>
<author>
<name sortKey="Tan, Ks" uniqKey="Tan K">KS Tan</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Rangwala, R" uniqKey="Rangwala R">R Rangwala</name>
</author>
<author>
<name sortKey="Leone, R" uniqKey="Leone R">R Leone</name>
</author>
<author>
<name sortKey="Chang, Yc" uniqKey="Chang Y">YC Chang</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Mahalingam, D" uniqKey="Mahalingam D">D Mahalingam</name>
</author>
<author>
<name sortKey="Mita, M" uniqKey="Mita M">M Mita</name>
</author>
<author>
<name sortKey="Sarantopoulos, J" uniqKey="Sarantopoulos J">J Sarantopoulos</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Rosenfeld, Mr" uniqKey="Rosenfeld M">MR Rosenfeld</name>
</author>
<author>
<name sortKey="Ye, X" uniqKey="Ye X">X Ye</name>
</author>
<author>
<name sortKey="Supko, Jg" uniqKey="Supko J">JG Supko</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Barnard, Ra" uniqKey="Barnard R">RA Barnard</name>
</author>
<author>
<name sortKey="Wittenburg, La" uniqKey="Wittenburg L">LA Wittenburg</name>
</author>
<author>
<name sortKey="Amaravadi, Rk" uniqKey="Amaravadi R">RK Amaravadi</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Lotze, Mt" uniqKey="Lotze M">MT Lotze</name>
</author>
<author>
<name sortKey="Maranchie, J" uniqKey="Maranchie J">J Maranchie</name>
</author>
<author>
<name sortKey="Appleman, L" uniqKey="Appleman L">L Appleman</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Carew, Js" uniqKey="Carew J">JS Carew</name>
</author>
<author>
<name sortKey="Espitia, Cm" uniqKey="Espitia C">CM Espitia</name>
</author>
<author>
<name sortKey="Zhao, W" uniqKey="Zhao W">W Zhao</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Zhang, Q" uniqKey="Zhang Q">Q Zhang</name>
</author>
<author>
<name sortKey="Si, S" uniqKey="Si S">S Si</name>
</author>
<author>
<name sortKey="Schoen, S" uniqKey="Schoen S">S Schoen</name>
</author>
</analytic>
</biblStruct>
</listBibl>
</div1>
</back>
</TEI>
<pmc article-type="review-article">
<pmc-dir>properties open_access</pmc-dir>
<front>
<journal-meta>
<journal-id journal-id-type="nlm-ta">J Cancer</journal-id>
<journal-id journal-id-type="iso-abbrev">J Cancer</journal-id>
<journal-id journal-id-type="publisher-id">jca</journal-id>
<journal-title-group>
<journal-title>Journal of Cancer</journal-title>
</journal-title-group>
<issn pub-type="epub">1837-9664</issn>
<publisher>
<publisher-name>Ivyspring International Publisher</publisher-name>
<publisher-loc>Sydney</publisher-loc>
</publisher>
</journal-meta>
<article-meta>
<article-id pub-id-type="pmid">31258756</article-id>
<article-id pub-id-type="pmc">6584354</article-id>
<article-id pub-id-type="doi">10.7150/jca.29285</article-id>
<article-id pub-id-type="publisher-id">jcav10p2501</article-id>
<article-categories>
<subj-group subj-group-type="heading">
<subject>Review</subject>
</subj-group>
</article-categories>
<title-group>
<article-title>Role of Autophagy in Renal Cancer</article-title>
</title-group>
<contrib-group>
<contrib contrib-type="author">
<name>
<surname>Cao</surname>
<given-names>Qi</given-names>
</name>
<xref ref-type="aff" rid="A1">1</xref>
<xref ref-type="author-notes" rid="FNA_star">*</xref>
<xref ref-type="corresp" rid="FNA_envelop"></xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Bai</surname>
<given-names>Peng</given-names>
</name>
<xref ref-type="aff" rid="A2">2</xref>
<xref ref-type="author-notes" rid="FNA_star">*</xref>
</contrib>
</contrib-group>
<aff id="A1">
<label>1</label>
Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China</aff>
<aff id="A2">
<label>2</label>
Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China</aff>
<author-notes>
<corresp id="FNA_envelop">✉ Corresponding author: Qi Cao, Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology (HUST), 1277 Jiefang Avenue, Wuhan, Hubei Province, China, 430022; E-mail:
<email>curkey@126.com</email>
.</corresp>
<fn fn-type="equal" id="FNA_star">
<p>
<sup>*</sup>
Contributed equally</p>
</fn>
<fn fn-type="COI-statement">
<p>Competing Interests: The authors have declared that no competing interest exists.</p>
</fn>
</author-notes>
<pub-date pub-type="collection">
<year>2019</year>
</pub-date>
<pub-date pub-type="epub">
<day>2</day>
<month>6</month>
<year>2019</year>
</pub-date>
<volume>10</volume>
<issue>11</issue>
<fpage>2501</fpage>
<lpage>2509</lpage>
<history>
<date date-type="received">
<day>16</day>
<month>8</month>
<year>2018</year>
</date>
<date date-type="accepted">
<day>26</day>
<month>4</month>
<year>2019</year>
</date>
</history>
<permissions>
<copyright-statement>© Ivyspring International Publisher</copyright-statement>
<copyright-year>2019</copyright-year>
<license license-type="open-access">
<license-p>This is an open access article distributed under the terms of the Creative Commons Attribution (CC BY-NC) license (
<ext-link ext-link-type="uri" xlink:href="https://creativecommons.org/licenses/by-nc/4.0/">https://creativecommons.org/licenses/by-nc/4.0/</ext-link>
). See
<ext-link ext-link-type="uri" xlink:href="http://ivyspring.com/terms">http://ivyspring.com/terms</ext-link>
for full terms and conditions.</license-p>
</license>
</permissions>
<abstract>
<p>Autophagy is a highly conserved catabolic process with critical functions in maintenance of cellular homeostasis under normal growth conditions and in preservation of cell viability under stress. The role of autophagy in cancer is dual-sided. Autophagy-deficient cells are often more tumorigenic than their wild type counterparts in association with DNA damage accumulation, oxidative stress. At the same time, autophagy is a major cell survival mechanism. In recent years, it has been well demonstrated that autophagy may have relation with renal cell carcinoma (RCC). This review focuses on the research progress in relation between autophagy and RCC and the pharmacologic manipulation of autophagy for RCC treatment.</p>
</abstract>
<kwd-group>
<kwd>autophagy</kwd>
<kwd>renal cell carcinoma</kwd>
<kwd>therapy</kwd>
</kwd-group>
</article-meta>
</front>
<body>
<sec sec-type="intro" id="Section1">
<title>1. Introduction</title>
<p>Autophagy is a highly conserved metabolic process in eukaryotic cells and plays an important role in maintaining the viability of cells in a stable or stressed state
<xref rid="B1" ref-type="bibr">1</xref>
,
<xref rid="B2" ref-type="bibr">2</xref>
. Substrate to be degraded in cells are packed with double membrane autophagosomes and transported to lysosomes for degradation and recycling
<xref rid="B3" ref-type="bibr">3</xref>
. Autophagy mainly occurs under the conditions of hypoxia, immune injury, stress and nutrient deficiency
<xref rid="B4" ref-type="bibr">4</xref>
, which is considered as a defense mechanism of cells against adverse environmental stimuli
<xref rid="B5" ref-type="bibr">5</xref>
. Studies have shown that autophagy is involved in the pathologic process of various diseases, such as tumor
<xref rid="B6" ref-type="bibr">6</xref>
, neurodegenerative disease
<xref rid="B7" ref-type="bibr">7</xref>
, cardiovascular disease
<xref rid="B8" ref-type="bibr">8</xref>
, infection and immune deficiency
<xref rid="B9" ref-type="bibr">9</xref>
. In recent years, many researches have studied the correlation between autophagy and renal cancer. However, the role of autophagy in the pathogenesis of renal cancer and the exact mechanism of its action are not clear.</p>
<p>Renal cell carcinoma (RCC) is the most common malignancy in renal neoplasia and clear cell renal cell carcinoma (ccRCC) is the most common subtype
<xref rid="B10" ref-type="bibr">10</xref>
,
<xref rid="B11" ref-type="bibr">11</xref>
. Progress has been achieved with regard to the pathogenesis and therapy of RCC; however, its incidence continues to rise. Many suffered patients will experience metastasis or local recurrence. It has been reported that autophagy is a potential cell survival mechanism in metastatic RCC cells and autophagy inhibition could create synergistic cytotoxicity when combined with mTOR inhibitors in ccRCC
<xref rid="B12" ref-type="bibr">12</xref>
,
<xref rid="B13" ref-type="bibr">13</xref>
. Autophagic gene polymorphisms are associated with progression-free survival (PFS) of ccRCC patients treated with pazopanib
<xref rid="B14" ref-type="bibr">14</xref>
. This led us to speculate that the regulation and function of autophagy is likely connected to maintenance of homeostasis of renal cancer cells, disease pathogenesis, and targeting therapy resistance. But the role of autophagy in renal cancer remains elusive. In this review, we have fully identified the studies in PubMed/MEDLINE and the Web of Science which were focusing on the effect and mechanism of autophagy on renal cancer, especially on the renal cell carcinoma. We have highlighted the autophagy related signaling pathways and autophagy related drugs in renal cancer in this review. Exploring the delicate mechanisms and regulation of autophagy in renal cancer may lead to optimization in therapeutic strategies.</p>
</sec>
<sec id="Section2">
<title>2. Autophagy and its regulatory mechanisms</title>
<p>Autophagy has been observed by researchers for more than 40 years and is considered to be a non-specific process of degradation of large intracellular materials
<xref rid="B15" ref-type="bibr">15</xref>
. Subsequent studies have found a close relationship between autophagy and cellular stress response. It is now widely believed that autophagy plays a key role in many aspects, including cell quality control, tissue homeostasis and energy supply
<xref rid="B16" ref-type="bibr">16</xref>
. In recent years, a variety of key molecules have been found to be involved in the formation of autophagosomes. This process is highly evolutionary conservative in yeast and humans. A series of autophagy related genes (ATGs) in yeast were found and their mammalian homologues were also found
<xref rid="B17" ref-type="bibr">17</xref>
.</p>
<p>At present, it is found that the following four functional units are involved in the regulation of autophagy process: a. The ATG1/unc-51-like kinase (ULK) complex contains ATG13 and FIP200
<xref rid="B18" ref-type="bibr">18</xref>
; b. Vps34, III phosphatidyl inositol 3 kinase (PI3K) and ATG6/Beclin1 compounds
<xref rid="B18" ref-type="bibr">18</xref>
; c. Two ubiquitin-like proteins, microtubule-associated proteins 1 light chain 3 (LC3) and ATG12. LC3 is embedded in the inner and outer membranes of autophagosomes
<xref rid="B19" ref-type="bibr">19</xref>
. ATG12 and ATG5 are conjugated and interact with ATG16L, and participate in the lipidation of LC3
<xref rid="B20" ref-type="bibr">20</xref>
; d. Transmembrane protein ATG9 and VMP1. The specific role of ATG9 in autophagy is unclear. The interaction between VMP1 and Beclin1 is necessary for autophagy. Overexpression of VMP1 can induce autophagy
<xref rid="B21" ref-type="bibr">21</xref>
.</p>
<p>The canonical autophagy processes involves following three steps. a. Initiation of the isolation membrane. Under starvation, ATG1/ULK1 is localized on the initial membrane and forms a complex with ATG13 and FIP200
<xref rid="B22" ref-type="bibr">22</xref>
-
<xref rid="B24" ref-type="bibr">24</xref>
. The ULK1 complex recruits the VPS34/Beclin1 complex and increases VPS34 activity, thereby promoting PI3P production
<xref rid="B25" ref-type="bibr">25</xref>
. PI3P aggregates on the endoplasmic reticulum membrane and promotes growth of autophagosome membranes
<xref rid="B26" ref-type="bibr">26</xref>
. b. Elongation and closure of the autophagosome membrane. The protein LC3 is cleaved by ATG4 protease to generate cytosolic LC3 (LC3-I)
<xref rid="B27" ref-type="bibr">27</xref>
,
<xref rid="B28" ref-type="bibr">28</xref>
. LC3-I can bind to phosphatidylethanolamine to form LC3-II (LC3-PE) on the membrane of the autophagosome
<xref rid="B28" ref-type="bibr">28</xref>
, which is regulated by the conjugation system ATG5-ATG12
<xref rid="B29" ref-type="bibr">29</xref>
and the modification of ATG5 by ATG12 is essential for the elongation of the isolation membrane
<xref rid="B30" ref-type="bibr">30</xref>
. The abnormal intracellular proteins, excess or damaged organelles are surrounded by the initial membrane that will form a autophagosome with double layer membranes. c. Autolysosome formation. The autophagosome containing cytoplasmic components moves to the lysosome
<xref rid="B31" ref-type="bibr">31</xref>
. The outer autophagosome membrane fuses with the lysosomal membrane to form an autolysosome, resulting in transporting its cargo into the lysosomal cavity. This fusion process is mediated by the small GTPase Rab7 and SNARE
<xref rid="B32" ref-type="bibr">32</xref>
,
<xref rid="B33" ref-type="bibr">33</xref>
. The newly formed autolysosomes eventually degrade the autophagosome-delivered contents and its inner membrane by lysosome's hydrolases
<xref rid="B34" ref-type="bibr">34</xref>
.</p>
<p>Under normal circumstances, the autophagy process in cells is at a low level, but it is necessary to maintain basic cellular activities, such as protein and organelle quality control. Certain stress states induce autophagy. Deficiency of nutrients is a typical activation factor of autophagy, which is mainly triggered by the mammalian target of rapamycin (mTOR), especially the signal pathway of mTOR complex 1 (mTORC1). When nutrients are sufficient, mTOR binds and phosphorylates the ULK1 complex, reducing its kinase activity, thereby inhibiting the autophagy initiation process
<xref rid="B35" ref-type="bibr">35</xref>
. Conversely, when nutrients are scarce, ULK1 is activated, promoting the initiation of autophagy. ULK1 can also be activated by AMP-activated protein kinase (AMPK) in the low-energy state (up-regulation of AMP/ATP) with the inhibition of mTORC1 and promotion of autophagy
<xref rid="B36" ref-type="bibr">36</xref>
. Initiation of autophagy is also activated by phosphatidylinositol 3-phosphate (PI3P), a product of the action of type III PI3K and Vps34. Downstream proteins of the Vps34 and ULK1 complexes, two pairs of conjugated complexes, ATG5-ATG12 and LC3-PE (LC3II), are involved in the autophagosomal membrane extension process. Other autophagy activation factors include anti-tumor therapy, reactive oxygen species (ROS), endoplasmic reticulum stress, and unfolded protein response (UPR)
<xref rid="B21" ref-type="bibr">21</xref>
. The detailed autophagy processes are depicted in
<bold>Fig.
<xref ref-type="fig" rid="F1">1</xref>
</bold>
.</p>
</sec>
<sec id="Section3">
<title>3. Autophagy in tumors</title>
<p>The researchers found that the loss of the autophagy regulator Beclin1 (BECN1) was found in breast, ovarian, and prostate cancer cells, suggesting that autophagy has an inhibitory effect on tumor formation
<xref rid="B37" ref-type="bibr">37</xref>
. Liang et al
<xref rid="B38" ref-type="bibr">38</xref>
found that after the BECN1 protein was re-expressed in breast cancer cell lines, autophagy recovered and tumorigenesis was inhibited. Loss of other autophagy-related regulators also tends to promote tumorigenesis: ATG4C
<sup>-/-</sup>
mice exhibit high sensitivity to fibrosarcoma induced by chemical carcinogens
<xref rid="B39" ref-type="bibr">39</xref>
; The UVRAG-binding protein BIF1 is a positive regulator of autophagy that interacts with BECN1 and its complete deletion results in spontaneous tumorigenesis in mice
<xref rid="B40" ref-type="bibr">40</xref>
; ATG5
<sup>-/-</sup>
immortalized neonatal mouse kidney cells (iBMK) and BECN1
<sup>+/-</sup>
immortalized mouse mammary epithelial cells (iMMECs), which are deficient in autophagy, are more likely to form tumors in nude mice than autophagy-complete cells
<xref rid="B41" ref-type="bibr">41</xref>
; Systemic mosaic deletion of ATG5 and liver-specific deletion of ATG7 can lead to hepatic benign adenoma in autophagy-defective hepatocytes
<xref rid="B42" ref-type="bibr">42</xref>
.</p>
<p>Studies on the genetic phenotype of autophagy in mice suggest that intact functional autophagy is essential for the maintenance of cell survival and cell homeostasis. Degenhardt et al
<xref rid="B43" ref-type="bibr">43</xref>
found that autophagic defects impair the viability of apoptosis-deficient mouse cells in the absence of growth factors and in metabolic stress state. This result has a great correlation with tumors because tumors often exhibit high metabolic demands when activated by oncogenes. The fact that the cells in the hypoxic region of the tumor show higher autophagy level also supports the above assertion
<xref rid="B42" ref-type="bibr">42</xref>
. Some researchers believe that autophagy plays an important role in the survival of tumor cells in the treatment of tumor radiotherapy and chemotherapy, and inhibition of autophagy improves the sensitivity of tumors to treatment
<xref rid="B44" ref-type="bibr">44</xref>
.</p>
<p>In a word, autophagy plays an important role in maintaining cell survival and homeostasis. Its role in tumorigenesis may be bidirectional: on the one hand, autophagy can reduce the pressure of oxidative stress, degrade mutated and damaged DNA and protein, and play a tumor suppressing role; on the other hand, autophagy can relieve various pressures, such as oxidative stress, damaged DNA and protein aggregation, and promote cell survival and play a cancer-promoting role. This bidirectional effect may be related to the following factors: a. tumor stage, such as the initial stage, advanced stage, metastatic stage, or gradual drug resistance stage; b. the tissue type of the tumor; c. genetic changes of the tumor. Understanding the role of autophagy in tumorigenesis undoubtedly benefits the establishment of a rational anti-tumor therapy program for autophagy. The detailed role of autophagy in cancer tumorigenesis and progression is depicted in
<bold>Fig.
<xref ref-type="fig" rid="F2">2</xref>
</bold>
.</p>
</sec>
<sec id="Section4">
<title>4. Autophagy associated signaling pathways in renal cancer</title>
<sec id="Section4.1">
<title>4.1 Autophagy-related PI3K/AKT/mTOR pathway</title>
<p>Many factors (Table
<xref rid="T1" ref-type="table">1</xref>
) are involved in the regulation of autophagy in renal cancer. The continuously activated PI3K/AKT/mTOR signaling axis is a typical survival mechanism for human tumor cells
<xref rid="B45" ref-type="bibr">45</xref>
. Many cases, such as tumor suppressor gene of phosphatase and tensin homolog (PTEN) and tuberous sclerosis complex (TSC) 1 and TSC2 deletions, type I PI3K mutations, AKT overexpression, sustained activation of tyrosine kinase growth factor receptors and so on, will lead to the abnormal activation of this signaling pathway and ultimately inhibit the autophagy process
<xref rid="B46" ref-type="bibr">46</xref>
. Activation of the PI3K/AKT/mTOR axis not only inhibits autophagy but also promotes protein translation and cell proliferation. Inhibiting the PI3K signaling axis will have an adverse effect on rapidly proliferating tumor cells, thereby inhibiting tumor growth. Sourbier et al
<xref rid="B47" ref-type="bibr">47</xref>
found that the increased phosphorylation of AKT at S473 and T308 increased the expression of AKT in 7 types of renal cancer cell lines (786-O, UOK-126, UOK-128, A498, ACHN, Caki-1, and Caki-2), whereas the expression of AKT was positively correlated with the expression of PI3K and inversely correlated with the expression of PTEN. To confirm whether the PI3K/AKT pathway is involved in renal tumor cell proliferation, the team treated the 786-O and Caki-1 cell lines with the specific PI3K inhibitor LY294002 and found that the number of cell deaths was significantly increased compared to the control group, and the difference was statistically significant (P<0.05). Seo et al
<xref rid="B48" ref-type="bibr">48</xref>
found that co-treatment with PP242 (inhibitor of mTORC1 and mTORC2) and curcumin induced the downregulation of the Rictor (an mTORC2 complex protein) and AKT protein levels, which led to lysosomal damage and induced autophagy in renal carcinoma cells. The authors believe that this results reveal that combined PP242 and curcumin treatment could induce autophagy-mediated cell death in renal cancer.</p>
</sec>
<sec id="Section4.2">
<title>4.2 Autophagy-associated p53 protein and renal cancer</title>
<p>The tumor suppressor p53 is an important checkpoint protein in mammalian cells
<xref rid="B49" ref-type="bibr">49</xref>
. It is activated under conditions of genetic stress such as DNA damage, hypoxia, and oncogene activation. In these cases, p53 can transactivate autophagy-inducing genes and inhibit mTOR through AMPK and TSC1/TSC2 dependent pathways to promote autophagy
<xref rid="B50" ref-type="bibr">50</xref>
. p53 can also act directly on the target of damage-regulated autophagy modulator (DRAM) to induce autophagy
<xref rid="B51" ref-type="bibr">51</xref>
. However, some studies have found that removal of p53 in the cytoplasm via gene or drug pathways can induce autophagy, indicating that extranuclear p53 is an effective inhibitor of autophagy
<xref rid="B52" ref-type="bibr">52</xref>
. However, it is still unclear in which environment p53 activates autophagy by which molecular pathway to inhibit tumor cell growth. In recent years, two large sample clinical studies have found the overexpression of p53 in renal cell carcinoma tissues (36%, n=97; 29.5%, n=297)
<xref rid="B53" ref-type="bibr">53</xref>
,
<xref rid="B54" ref-type="bibr">54</xref>
suggesting that p53 is involved in the development of renal cell carcinoma (RCC). But a study found that RCC cells can survive and grow by inactivating p53 through TGase-2 mediated autophagy, which supplies recycled amino acids and bases under condition of starvation
<xref rid="B55" ref-type="bibr">55</xref>
. It is surprising that p53 levels are suppressed in RCC, although only 2.7% of RCC samples have p53 alterations in cBioPortal database. Warburton et al
<xref rid="B56" ref-type="bibr">56</xref>
showed that after UV irradiation of three renal cell carcinoma cell lines (ACHN, Caki-2, A498) to mediate DNA damage, the transcriptional activity of p53 was 1.4-fold, 2-fold, and 8-fold compared to control groups, respectively. The increase in transcriptional activity is positively correlated with the dose of UV, which suggests that p53 plays a role in repairing DNA damage and maintaining cell growth. The above studies provide some inspirations for us to improve the efficacy of certain drugs on renal tumors by inhibiting p53, and this effect may play a role in inhibiting the autophagic process induced by p53.</p>
</sec>
<sec id="Section4.3">
<title>4.3 LC3B-dependent autophagy pathway</title>
<p>LC3B is a yeast autophagy-related protein ATG8 homolog in mammalian cells
<xref rid="B57" ref-type="bibr">57</xref>
. Its C-terminal glycine is bound to phosphatidylethanolamine (PE) to form lipidated LC3 (LC3-II). LC3-II is embedded in the autophagosome membrane and participates in the elongation of the autophagosome membrane
<xref rid="B58" ref-type="bibr">58</xref>
. Mikhaylova et al
<xref rid="B59" ref-type="bibr">59</xref>
found that LC3B-dependent autophagy is essential for the growth of renal cell carcinoma. They injected LC3B shRNA lentiviral particles into subcutaneous renal cancer cell 786-O tumors in nude mice and found that the tumor volume was significantly smaller at 9 days than in the control group (P=0.0007). Then 786-O cells stably expressing LC3B shRNA were injected into the renal capsule of the nude mice. After 4 weeks, the mass of the tumor was also significantly lower than that of the control group (P<0.05). Similar results were also found in the other kidney cancer cell line, A498, indicating that LC3B-mediated autophagy is essential for the growth of renal cell carcinoma in nude mice. The team used quantitative immunoblotting to measure the expression level of LC3B in human clear cell renal cell carcinoma (ccRCC) tissue and normal kidney tissue and found that its expression level was positively correlated with tumor stage (P<0.05). But another group found that both mRNA and protein levels of LC3 were significantly decreased in ccRCC compared with paired adjacent tissue
<xref rid="B60" ref-type="bibr">60</xref>
. They also found that a low level of LC3-II was associated with poor prognosis in ccRCC, indicating that autophagy might be suppressed and associated with progression in ccRCC.</p>
</sec>
<sec id="Section4.4">
<title>4.4 MAP1S activated autophagy pathway</title>
<p>MAP1S is a member of the cell microtubule-associated protein family 1, which interacts with LC3 and is a positive regulator of autophagy
<xref rid="B61" ref-type="bibr">61</xref>
. Loss of MAP1S leads to autophagy defects, which can cause mitochondrial dysfunction and affect cell growth. At the same time, MAP1S was found to be an important survival-related gene in cancer patients
<xref rid="B62" ref-type="bibr">62</xref>
. Hepatocellular carcinoma in MAP1S-deficient mice has a greater tendency to metastasize
<xref rid="B63" ref-type="bibr">63</xref>
. Low expression of MAP1S in human prostate cancer will reduce the average survival time of patients
<xref rid="B64" ref-type="bibr">64</xref>
. Based on this, we believe that MAP1S-mediated autophagy may be associated with tumor metastasis and patient prognosis. ccRCC is the most common type of human renal cell carcinoma. Xu et al
<xref rid="B65" ref-type="bibr">65</xref>
found that the expression level of MAP1S in the four ccRCC cell lines (786-O, RCC4, A498, Caki-1) was significantly lower than that of the human normal renal cell line (HK-2), whereas the expression level of MAP1S in the tumor specimens of 76 ccRCC patients was also significantly lower than that in the normal tissue adjacent to the cancer. The cumulative survival time of patients with high expression of MAP1S was significantly higher than that of patients with low expression (P<0.01) by plotting Kaplan-Meier curves of ccRCC patients. The above studies indicate that MAP1S-mediated autophagy was associated with the development and prognosis of ccRCC. High levels of MAP1S activate autophagy, reduce cellular genome instability, attenuate the invasiveness of ccRCC, and increase patients' survival time.</p>
</sec>
<sec id="Section4.5">
<title>4.5 Autophagy related KEAP1/NRF2 pathway</title>
<p>The transcription factor NF-E2-associated factor 2 (NRF2) activates the transcription of many antioxidant target genes, and Kelch-like epichlorohydrin-associated protein 1 (KEAP1) is its inhibitor. KEAP1 can "lock" NRF2 in the cytoplasm and promote its degradation
<xref rid="B66" ref-type="bibr">66</xref>
. This pathway plays an important role in both acute and chronic renal injury as well as in renal tumors
<xref rid="B67" ref-type="bibr">67</xref>
,
<xref rid="B68" ref-type="bibr">68</xref>
. Studies have shown that the succinylation of KEAP1 was increased with decreased NRF2 degradation, which activated HMOX1 and other stress response genes to promote tumor cell survival in the fumarate hydratase (FH) deficient type II papillary renal cell carcinoma
<xref rid="B69" ref-type="bibr">69</xref>
. Fabrizio et al
<xref rid="B70" ref-type="bibr">70</xref>
found that the expression level of KEAP1 gene was decreased after promoter methylation, which increased the expression of NRF2 and played an important role in ccRCC. P62, a substrate protein of autophagy, is a key agonist of NRF2
<xref rid="B71" ref-type="bibr">71</xref>
. In autophagy-defective cells, P62 degradation was decreased. When P62 competitively bound KEAP1, NRF2 was released and entered into the nucleus to activate transcription of downstream target genes and promote tumor cell survival
<xref rid="B72" ref-type="bibr">72</xref>
.</p>
</sec>
<sec id="Section4.6">
<title>4.6 TRPM3-dependent autophagy pathway</title>
<p>Transient receptor potential melastatin 3 (TRPM3) is specifically present in ccRCC cells and regulates calcium/calmodulin-dependent protein kinase kinase 2 (CAMKK2) and autophagy by modulating calcium flux
<xref rid="B73" ref-type="bibr">73</xref>
. This pathway is associated with known autophagy regulatory networks such as AMP-activated protein kinase (AMPK) and unc-51 like autophagy activating kinase 1 (ULK1). In addition, TRPM3 regulates autophagy through the action of zinc ion flux and miR-204 on autophagosome ligand LC3.</p>
</sec>
<sec id="Section4.7">
<title>4.7 HOTTIP-dependent autophagy pathway</title>
<p>HOXA transcript at the distal tip (HOTTIP) is a long non-coding RNA that is upregulated in several human cancers
<xref rid="B74" ref-type="bibr">74</xref>
. A group found that HOTTIP expression was elevated in the RCC tissues and cell lines, and it was closely associated with prognosis of patients. HOTTIP can induce autophagy and affect proliferation, migration and invasion of RCC cell via autophagy dependent manner. And they further found that HOTTIP regulate autophagy through the PI3K/Akt/Atg13 signaling pathway
<xref rid="B75" ref-type="bibr">75</xref>
.</p>
</sec>
</sec>
<sec id="Section5">
<title>5. Application of autophagy-related drugs in renal carcinoma</title>
<sec id="Section5.1">
<title>5.1 Autophagy-promoting drugs in renal cancer</title>
<p>Several pharmaceutical agents targeting autophagy in renal cancer have been described (Table
<xref rid="T2" ref-type="table">2</xref>
). Sunitinib can effectively prolong the tumor-specific survival and overall survival of patients with advanced renal cell carcinoma
<xref rid="B76" ref-type="bibr">76</xref>
. Sunitinib is an oral oxindol, multitargeted tyrosine kinase inhibitor, which selectively inhibits vascular endothelial growth factor receptor 1 (VEGFR1), VEGFR2, VEGFR3, platelet-derived growth factor receptor (PDGFRα), PDGFRβ, stem-cell growth factor receptor, fms-related tyrosine kinase 3 (FLT3), RET and CSF1 receptor (CSF1R). Sunitinib can inhibit AKT/mTOR signaling pathway and cause autophagy of renal cancer cells, and its induced autophagy is associated with apoptosis
<xref rid="B77" ref-type="bibr">77</xref>
.</p>
<p>The dual mTORC1/2 inhibitor AZD-2014 inhibits the survival and growth of renal cancer cells more significantly than rapamycin and everolimus. AZD-2014 disrupts the accumulation and activation of mTORC1/2 by down-regulating the expression of HIF-1α/2α and cyclinD1 in renal cancer cells, leading to autophagy-dependent apoptosis of RCC
<xref rid="B78" ref-type="bibr">78</xref>
.</p>
<p>Rasfonin is a alpha-pyrone metabolite that is isolated from fungi and has anti-cancer effects. Rasfonin-induced autophagy is associated with upregulation of AKT phosphorylation. Inhibition of AKT by small molecule inhibitors or genetic modifications can reduce rasfonin-dependent autophagic flux and PARP-1 cleavage. AKT promotes rasfonin-enhanced autophagy and caspase-dependent apoptosis by affecting the glycolytic pathway
<xref rid="B79" ref-type="bibr">79</xref>
.</p>
<p>Silybin is a flavonoid prophylactic anticancer drug that has anti-metastasis effects in the treatment of renal cancer. Silybin can increase the expression of LC3-II in RCC cells, induce intracellular autophagic flow, and increase the formation of intracellular autophagic vacuoles. It is also possible to induce autophagy by AMPK/mTOR pathway and to inhibit the migration and invasion of RCC cells by activating autophagy
<xref rid="B80" ref-type="bibr">80</xref>
. In the same time, autophagy has a positive role in silybin induced anti-metastatic effects. The activation of autophagy enhances the inhibition of migration and invasion of RCC cells induced by silybin, and its inhibitory effect is reduced when autophagy is inhibited
<xref rid="B81" ref-type="bibr">81</xref>
.</p>
<p>Sinomenine is extracted from Chinese medicinal plant Sinomenium acutum and can suppress several cancer cell growth
<xref rid="B82" ref-type="bibr">82</xref>
-
<xref rid="B85" ref-type="bibr">85</xref>
. Sinomenine significantly regulated the level of autophagy-related proteins such as p62 protein and Beclin1. Furthermore, sinomenine enhanced autophagy through PI3K/AKT/mTOR pathway in RCC
<xref rid="B86" ref-type="bibr">86</xref>
.</p>
</sec>
<sec id="Section5.2">
<title>5.2 Drugs that inhibit autophagy in renal cancer</title>
<p>Everolimus is a PI3K family protein kinase inhibitor for second-line treatment of RCC after sunitinib treatment failure. And it can inhibits mTOR, blocking a critical downstream effector of growth factor signaling. Although everolimus is safe and well tolerated, emerging drug resistance has been found
<xref rid="B87" ref-type="bibr">87</xref>
. Since inhibition of mTOR could induce autophagy, activation of autophagy may be a key mechanism for everolimus resistance. The
<italic>in vitro</italic>
studies demonstrated that everolimus and chloroquine synergistically inhibit the activity of RCC cells. The use of chloroquine and everolimus can effectively inhibit the autophagic flux and promote apoptosis, suggesting that combined use of targeted therapeutics can improve the therapeutic effect of renal cancer
<xref rid="B88" ref-type="bibr">88</xref>
. And an phase I/II trial of everolimus further validated that combining mTOR and autophagy inhibition could have >40% 6 month progression free survival (PFS) rate
<xref rid="B13" ref-type="bibr">13</xref>
.</p>
<p>CQ/HCQ disrupts the degradation of autophagic proteins and prevents the conversion of LC3B-I to LC3B-II and inhibits the formation of autophagosomes. A series of phase I and phase I/II trials examined the safety and initial efficacy in an HCQ-based anticancer therapy
<xref rid="B90" ref-type="bibr">90</xref>
-
<xref rid="B95" ref-type="bibr">95</xref>
. Paflomeromycin A1 prevents the maturation of autophagosomes by inhibiting the fusion of autophagosomes and lysosomes. These inhibitors against different stages of autophagy can enhance the anti-renal cancer activity of sorafenib, suggesting that sorafenib-activated autophagy is a cancer-promoting factor that causes chemotherapy resistance. The use of chloroquine or hydroxychloroquine in combination with autophagy inhibitors has been used for the treatment of RCC
<xref rid="B96" ref-type="bibr">96</xref>
.</p>
<p>ROC-325 is an orally available novel inhibitor of autophagic degradation. Based on the RCC cell model, a research group found that ROC-325 treatment could lead to accumulation of autophagosomes and inhibit autophagic flux. The
<italic>in vivo</italic>
study revealed that ROC-325 treatment could significantly and dose-dependently reduce the RCC xenografts growth and the inhibitory effect was better than HCQ
<xref rid="B97" ref-type="bibr">97</xref>
.</p>
<p>Paclitaxel is a mitotic inhibitor and inducer of apoptosis, and its killing effect on FLCN-defective renal cancer cells is dependent on enhancing cell autophagy. Inhibition of autophagy with 3-Methyladenine (3-MA) can increase paclitaxel-induced apoptosis of FLCN-defective renal cancer cells, suggesting that paclitaxel combined with autophagy inhibitors can improve the efficacy of chemotherapy for FLCN-defective renal tumors
<xref rid="B98" ref-type="bibr">98</xref>
.</p>
</sec>
</sec>
<sec id="Section6">
<title>6. Perspectives</title>
<p>The incidence of renal cancer is increasing year by year. Although surgical treatment is preferred, its long-term recurrence and metastasis rate is still high, and it is not sensitive to radiotherapy and chemotherapy. Therefore, postoperative adjuvant therapy with targeted drugs is necessary and can prevent the recurrence and metastasis of tumors, improve the postoperative survival rate and improve the quality of life. Autophagy is a hot issue in medical research in recent years. Its related studies have found a variety of new tumor pathogenesis mechanisms and promote the development of diagnosis and treatment of renal cancer. However, the theory of the intersection of renal cancer and autophagy needs more in-depth research and improvement.</p>
</sec>
</body>
<back>
<ack>
<sec sec-type="data-availability">
<title>Availability of data and materials</title>
<p>The datasets used and/or analyzed during the current study are available from the corresponding author on reasonable request.</p>
</sec>
<sec>
<title>Authors' contributions</title>
<p>QC designed the study. QC and PB carried out data acquisition and performed the research. All authors read and approved the final manuscript.</p>
</sec>
</ack>
<ref-list>
<ref id="B1">
<label>1</label>
<element-citation publication-type="journal">
<name>
<surname>Mizushima</surname>
<given-names>N</given-names>
</name>
<article-title>Autophagy: Process and function[J]</article-title>
<source>Genes Dev</source>
<year>2007</year>
<volume>21</volume>
<issue>22</issue>
<fpage>2861</fpage>
<lpage>2873</lpage>
<pub-id pub-id-type="pmid">18006683</pub-id>
</element-citation>
</ref>
<ref id="B2">
<label>2</label>
<element-citation publication-type="journal">
<name>
<surname>Yang</surname>
<given-names>Z</given-names>
</name>
<name>
<surname>Klionsky</surname>
<given-names>DJ</given-names>
</name>
<article-title>Eaten alive: A history of macroautophagy[J]</article-title>
<source>NAT CELL BIOL</source>
<year>2010</year>
<volume>12</volume>
<issue>9</issue>
<fpage>814</fpage>
<lpage>822</lpage>
<pub-id pub-id-type="pmid">20811353</pub-id>
</element-citation>
</ref>
<ref id="B3">
<label>3</label>
<element-citation publication-type="journal">
<name>
<surname>Klionsky</surname>
<given-names>DJ</given-names>
</name>
<name>
<surname>Emr</surname>
<given-names>SD</given-names>
</name>
<article-title>Autophagy as a regulated pathway of cellular degradation[J]</article-title>
<source>SCIENCE</source>
<year>2000</year>
<volume>290</volume>
<issue>5497</issue>
<fpage>1717</fpage>
<lpage>1721</lpage>
<pub-id pub-id-type="pmid">11099404</pub-id>
</element-citation>
</ref>
<ref id="B4">
<label>4</label>
<element-citation publication-type="journal">
<name>
<surname>Mizushima</surname>
<given-names>N</given-names>
</name>
<name>
<surname>Ohsumi</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Yoshimori</surname>
<given-names>T</given-names>
</name>
<article-title>Autophagosome formation in mammalian cells[J]</article-title>
<source>CELL STRUCT FUNCT</source>
<year>2002</year>
<volume>27</volume>
<issue>6</issue>
<fpage>421</fpage>
<lpage>429</lpage>
<pub-id pub-id-type="pmid">12576635</pub-id>
</element-citation>
</ref>
<ref id="B5">
<label>5</label>
<element-citation publication-type="journal">
<name>
<surname>Lum</surname>
<given-names>JJ</given-names>
</name>
<name>
<surname>DeBerardinis</surname>
<given-names>RJ</given-names>
</name>
<name>
<surname>Thompson</surname>
<given-names>CB</given-names>
</name>
<article-title>Autophagy in metazoans: Cell survival in the land of plenty[J]</article-title>
<source>Nat Rev Mol Cell Biol</source>
<year>2005</year>
<volume>6</volume>
<issue>6</issue>
<fpage>439</fpage>
<lpage>448</lpage>
<pub-id pub-id-type="pmid">15928708</pub-id>
</element-citation>
</ref>
<ref id="B6">
<label>6</label>
<element-citation publication-type="journal">
<name>
<surname>Dikic</surname>
<given-names>I</given-names>
</name>
<name>
<surname>Johansen</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Kirkin</surname>
<given-names>V</given-names>
</name>
<article-title>Selective autophagy in cancer development and therapy[J]</article-title>
<source>CANCER RES</source>
<year>2010</year>
<volume>70</volume>
<issue>9</issue>
<fpage>3431</fpage>
<lpage>3434</lpage>
<pub-id pub-id-type="pmid">20424122</pub-id>
</element-citation>
</ref>
<ref id="B7">
<label>7</label>
<element-citation publication-type="journal">
<name>
<surname>Schaeffer</surname>
<given-names>V</given-names>
</name>
<name>
<surname>Lavenir</surname>
<given-names>I</given-names>
</name>
<name>
<surname>Ozcelik</surname>
<given-names>S</given-names>
</name>
<etal></etal>
<article-title>Stimulation of autophagy reduces neurodegeneration in a mouse model of human tauopathy[J]</article-title>
<source>BRAIN</source>
<year>2012</year>
<volume>135</volume>
<issue>Pt 7</issue>
<fpage>2169</fpage>
<lpage>2177</lpage>
<pub-id pub-id-type="pmid">22689910</pub-id>
</element-citation>
</ref>
<ref id="B8">
<label>8</label>
<element-citation publication-type="journal">
<name>
<surname>Liao</surname>
<given-names>X</given-names>
</name>
<name>
<surname>Sluimer</surname>
<given-names>JC</given-names>
</name>
<name>
<surname>Wang</surname>
<given-names>Y</given-names>
</name>
<etal></etal>
<article-title>Macrophage autophagy plays a protective role in advanced atherosclerosis[J]</article-title>
<source>CELL METAB</source>
<year>2012</year>
<volume>15</volume>
<issue>4</issue>
<fpage>545</fpage>
<lpage>553</lpage>
<pub-id pub-id-type="pmid">22445600</pub-id>
</element-citation>
</ref>
<ref id="B9">
<label>9</label>
<element-citation publication-type="journal">
<name>
<surname>Kim</surname>
<given-names>JJ</given-names>
</name>
<name>
<surname>Lee</surname>
<given-names>HM</given-names>
</name>
<name>
<surname>Shin</surname>
<given-names>DM</given-names>
</name>
<etal></etal>
<article-title>Host cell autophagy activated by antibiotics is required for their effective antimycobacterial drug action[J]</article-title>
<source>CELL HOST MICROBE</source>
<year>2012</year>
<volume>11</volume>
<issue>5</issue>
<fpage>457</fpage>
<lpage>468</lpage>
<pub-id pub-id-type="pmid">22607799</pub-id>
</element-citation>
</ref>
<ref id="B10">
<label>10</label>
<element-citation publication-type="journal">
<name>
<surname>Siegel</surname>
<given-names>RL</given-names>
</name>
<name>
<surname>Miller</surname>
<given-names>KD</given-names>
</name>
<name>
<surname>Jemal</surname>
<given-names>A</given-names>
</name>
<article-title>Cancer statistics, 2018[J]</article-title>
<source>CA Cancer J Clin</source>
<year>2018</year>
<volume>68</volume>
<issue>1</issue>
<fpage>7</fpage>
<lpage>30</lpage>
<pub-id pub-id-type="pmid">29313949</pub-id>
</element-citation>
</ref>
<ref id="B11">
<label>11</label>
<element-citation publication-type="journal">
<name>
<surname>Moch</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Cubilla</surname>
<given-names>AL</given-names>
</name>
<name>
<surname>Humphrey</surname>
<given-names>PA</given-names>
</name>
<etal></etal>
<article-title>The 2016 WHO classification of tumours of the urinary system and male genital Organs-Part a: Renal, penile, and testicular tumours[J]</article-title>
<source>EUR UROL</source>
<year>2016</year>
<volume>70</volume>
<issue>1</issue>
<fpage>93</fpage>
<lpage>105</lpage>
<pub-id pub-id-type="pmid">26935559</pub-id>
</element-citation>
</ref>
<ref id="B12">
<label>12</label>
<element-citation publication-type="journal">
<name>
<surname>Singla</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Bhattacharyya</surname>
<given-names>S</given-names>
</name>
<article-title>Autophagy as a potential therapeutic target during epithelial to mesenchymal transition in renal cell carcinoma: An in vitro study[J]</article-title>
<source>BIOMED PHARMACOTHER</source>
<year>2017</year>
<volume>94</volume>
<fpage>332</fpage>
<lpage>340</lpage>
<pub-id pub-id-type="pmid">28772211</pub-id>
</element-citation>
</ref>
<ref id="B13">
<label>13</label>
<element-citation publication-type="book">
<name>
<surname>Haas</surname>
<given-names>NB</given-names>
</name>
<name>
<surname>Appleman</surname>
<given-names>LJ</given-names>
</name>
<name>
<surname>Stein</surname>
<given-names>M</given-names>
</name>
<etal></etal>
<source>Autophagy inhibition to augment mTOR inhibition: A phase I/II trial of everolimus and hydroxychloroquine in patients with previously treated renal cell carcinoma[J]</source>
<publisher-name>CLIN CANCER RES</publisher-name>
<year>2019</year>
</element-citation>
</ref>
<ref id="B14">
<label>14</label>
<element-citation publication-type="journal">
<name>
<surname>Santoni</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Piva</surname>
<given-names>F</given-names>
</name>
<name>
<surname>De Giorgi</surname>
<given-names>U</given-names>
</name>
<etal></etal>
<article-title>Autophagic gene polymorphisms in liquid biopsies and outcome of patients with metastatic clear cell renal cell carcinoma[J]</article-title>
<source>ANTICANCER RES</source>
<year>2018</year>
<volume>38</volume>
<issue>10</issue>
<fpage>5773</fpage>
<lpage>5782</lpage>
<pub-id pub-id-type="pmid">30275199</pub-id>
</element-citation>
</ref>
<ref id="B15">
<label>15</label>
<element-citation publication-type="journal">
<name>
<surname>De Duve</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Wattiaux</surname>
<given-names>R</given-names>
</name>
<article-title>Functions of lysosomes[J]</article-title>
<source>ANNU REV PHYSIOL</source>
<year>1966</year>
<volume>28</volume>
<fpage>435</fpage>
<lpage>492</lpage>
<pub-id pub-id-type="pmid">5322983</pub-id>
</element-citation>
</ref>
<ref id="B16">
<label>16</label>
<element-citation publication-type="journal">
<name>
<surname>Mizushima</surname>
<given-names>N</given-names>
</name>
<name>
<surname>Levine</surname>
<given-names>B</given-names>
</name>
<name>
<surname>Cuervo</surname>
<given-names>AM</given-names>
</name>
<etal></etal>
<article-title>Autophagy fights disease through cellular self-digestion[J]</article-title>
<source>NATURE</source>
<year>2008</year>
<volume>451</volume>
<issue>7182</issue>
<fpage>1069</fpage>
<lpage>1075</lpage>
<pub-id pub-id-type="pmid">18305538</pub-id>
</element-citation>
</ref>
<ref id="B17">
<label>17</label>
<element-citation publication-type="journal">
<name>
<surname>Chen</surname>
<given-names>N</given-names>
</name>
<name>
<surname>Karantza-Wadsworth</surname>
<given-names>V</given-names>
</name>
<article-title>Role and regulation of autophagy in cancer[J]</article-title>
<source>Biochim Biophys Acta</source>
<year>2009</year>
<volume>1793</volume>
<issue>9</issue>
<fpage>1516</fpage>
<lpage>1523</lpage>
<pub-id pub-id-type="pmid">19167434</pub-id>
</element-citation>
</ref>
<ref id="B18">
<label>18</label>
<element-citation publication-type="journal">
<name>
<surname>Simonsen</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Tooze</surname>
<given-names>SA</given-names>
</name>
<article-title>Coordination of membrane events during autophagy by multiple class III PI3-kinase complexes[J]</article-title>
<source>J CELL BIOL</source>
<year>2009</year>
<volume>186</volume>
<issue>6</issue>
<fpage>773</fpage>
<lpage>782</lpage>
<pub-id pub-id-type="pmid">19797076</pub-id>
</element-citation>
</ref>
<ref id="B19">
<label>19</label>
<element-citation publication-type="journal">
<name>
<surname>Geng</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Klionsky</surname>
<given-names>DJ</given-names>
</name>
<article-title>The Atg8 and Atg12 ubiquitin-like conjugation systems in macroautophagy. 'Protein modifications: Beyond the usual suspects' review series[J]</article-title>
<source>EMBO REP</source>
<year>2008</year>
<volume>9</volume>
<issue>9</issue>
<fpage>859</fpage>
<lpage>864</lpage>
<pub-id pub-id-type="pmid">18704115</pub-id>
</element-citation>
</ref>
<ref id="B20">
<label>20</label>
<element-citation publication-type="journal">
<name>
<surname>Hanada</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Noda</surname>
<given-names>NN</given-names>
</name>
<name>
<surname>Satomi</surname>
<given-names>Y</given-names>
</name>
<etal></etal>
<article-title>The Atg12-Atg5 conjugate has a novel E3-like activity for protein lipidation in autophagy[J]</article-title>
<source>J BIOL CHEM</source>
<year>2007</year>
<volume>282</volume>
<issue>52</issue>
<fpage>37298</fpage>
<lpage>37302</lpage>
<pub-id pub-id-type="pmid">17986448</pub-id>
</element-citation>
</ref>
<ref id="B21">
<label>21</label>
<element-citation publication-type="journal">
<name>
<surname>Kimmelman</surname>
<given-names>AC</given-names>
</name>
<article-title>The dynamic nature of autophagy in cancer[J]</article-title>
<source>Genes Dev</source>
<year>2011</year>
<volume>25</volume>
<issue>19</issue>
<fpage>1999</fpage>
<lpage>2010</lpage>
<pub-id pub-id-type="pmid">21979913</pub-id>
</element-citation>
</ref>
<ref id="B22">
<label>22</label>
<element-citation publication-type="journal">
<name>
<surname>Ganley</surname>
<given-names>IG</given-names>
</name>
<name>
<surname>Lam</surname>
<given-names>DH</given-names>
</name>
<name>
<surname>Wang</surname>
<given-names>J</given-names>
</name>
<etal></etal>
<article-title>ULK1.ATG13.FIP200 complex mediates mTOR signaling and is essential for autophagy[J]</article-title>
<source>J BIOL CHEM</source>
<year>2009</year>
<volume>284</volume>
<issue>18</issue>
<fpage>12297</fpage>
<lpage>12305</lpage>
<pub-id pub-id-type="pmid">19258318</pub-id>
</element-citation>
</ref>
<ref id="B23">
<label>23</label>
<element-citation publication-type="journal">
<name>
<surname>Hara</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Takamura</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Kishi</surname>
<given-names>C</given-names>
</name>
<etal></etal>
<article-title>FIP200, a ULK-interacting protein, is required for autophagosome formation in mammalian cells[J]</article-title>
<source>J CELL BIOL</source>
<year>2008</year>
<volume>181</volume>
<issue>3</issue>
<fpage>497</fpage>
<lpage>510</lpage>
<pub-id pub-id-type="pmid">18443221</pub-id>
</element-citation>
</ref>
<ref id="B24">
<label>24</label>
<element-citation publication-type="journal">
<name>
<surname>Mercer</surname>
<given-names>CA</given-names>
</name>
<name>
<surname>Kaliappan</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Dennis</surname>
<given-names>PB</given-names>
</name>
<article-title>A novel, human Atg13 binding protein, Atg101, interacts with ULK1 and is essential for macroautophagy[J]</article-title>
<source>AUTOPHAGY</source>
<year>2009</year>
<volume>5</volume>
<issue>5</issue>
<fpage>649</fpage>
<lpage>662</lpage>
<pub-id pub-id-type="pmid">19287211</pub-id>
</element-citation>
</ref>
<ref id="B25">
<label>25</label>
<element-citation publication-type="journal">
<name>
<surname>Russell</surname>
<given-names>RC</given-names>
</name>
<name>
<surname>Tian</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Yuan</surname>
<given-names>H</given-names>
</name>
<etal></etal>
<article-title>ULK1 induces autophagy by phosphorylating Beclin-1 and activating VPS34 lipid kinase[J]</article-title>
<source>NAT CELL BIOL</source>
<year>2013</year>
<volume>15</volume>
<issue>7</issue>
<fpage>741</fpage>
<lpage>750</lpage>
<pub-id pub-id-type="pmid">23685627</pub-id>
</element-citation>
</ref>
<ref id="B26">
<label>26</label>
<element-citation publication-type="journal">
<name>
<surname>Burman</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Ktistakis</surname>
<given-names>NT</given-names>
</name>
<article-title>Regulation of autophagy by phosphatidylinositol 3-phosphate[J]</article-title>
<source>FEBS LETT</source>
<year>2010</year>
<volume>584</volume>
<issue>7</issue>
<fpage>1302</fpage>
<lpage>1312</lpage>
<pub-id pub-id-type="pmid">20074568</pub-id>
</element-citation>
</ref>
<ref id="B27">
<label>27</label>
<element-citation publication-type="journal">
<name>
<surname>Kabeya</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Mizushima</surname>
<given-names>N</given-names>
</name>
<name>
<surname>Ueno</surname>
<given-names>T</given-names>
</name>
<etal></etal>
<article-title>LC3, a mammalian homologue of yeast Apg8p, is localized in autophagosome membranes after processing[J]</article-title>
<source>EMBO J</source>
<year>2000</year>
<volume>19</volume>
<issue>21</issue>
<fpage>5720</fpage>
<lpage>5728</lpage>
<pub-id pub-id-type="pmid">11060023</pub-id>
</element-citation>
</ref>
<ref id="B28">
<label>28</label>
<element-citation publication-type="journal">
<name>
<surname>Tanida</surname>
<given-names>I</given-names>
</name>
<name>
<surname>Ueno</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Kominami</surname>
<given-names>E</given-names>
</name>
<article-title>Human light chain 3/MAP1LC3B is cleaved at its carboxyl-terminal Met121 to expose Gly120 for lipidation and targeting to autophagosomal membranes[J]</article-title>
<source>J BIOL CHEM</source>
<year>2004</year>
<volume>279</volume>
<issue>46</issue>
<fpage>47704</fpage>
<lpage>47710</lpage>
<pub-id pub-id-type="pmid">15355958</pub-id>
</element-citation>
</ref>
<ref id="B29">
<label>29</label>
<element-citation publication-type="journal">
<name>
<surname>Otomo</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Metlagel</surname>
<given-names>Z</given-names>
</name>
<name>
<surname>Takaesu</surname>
<given-names>G</given-names>
</name>
<etal></etal>
<article-title>Structure of the human ATG12~ATG5 conjugate required for LC3 lipidation in autophagy[J]</article-title>
<source>NAT STRUCT MOL BIOL</source>
<year>2013</year>
<volume>20</volume>
<issue>1</issue>
<fpage>59</fpage>
<lpage>66</lpage>
<pub-id pub-id-type="pmid">23202584</pub-id>
</element-citation>
</ref>
<ref id="B30">
<label>30</label>
<element-citation publication-type="journal">
<name>
<surname>Codogno</surname>
<given-names>P</given-names>
</name>
<name>
<surname>Mehrpour</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Proikas-Cezanne</surname>
<given-names>T</given-names>
</name>
<article-title>Canonical and non-canonical autophagy: Variations on a common theme of self-eating?[J]</article-title>
<source>Nat Rev Mol Cell Biol</source>
<year>2011</year>
<volume>13</volume>
<issue>1</issue>
<fpage>7</fpage>
<lpage>12</lpage>
<pub-id pub-id-type="pmid">22166994</pub-id>
</element-citation>
</ref>
<ref id="B31">
<label>31</label>
<element-citation publication-type="journal">
<name>
<surname>Fass</surname>
<given-names>E</given-names>
</name>
<name>
<surname>Shvets</surname>
<given-names>E</given-names>
</name>
<name>
<surname>Degani</surname>
<given-names>I</given-names>
</name>
<etal></etal>
<article-title>Microtubules support production of starvation-induced autophagosomes but not their targeting and fusion with lysosomes[J]</article-title>
<source>J BIOL CHEM</source>
<year>2006</year>
<volume>281</volume>
<issue>47</issue>
<fpage>36303</fpage>
<lpage>36316</lpage>
<pub-id pub-id-type="pmid">16963441</pub-id>
</element-citation>
</ref>
<ref id="B32">
<label>32</label>
<element-citation publication-type="journal">
<name>
<surname>Gutierrez</surname>
<given-names>MG</given-names>
</name>
<name>
<surname>Munafo</surname>
<given-names>DB</given-names>
</name>
<name>
<surname>Beron</surname>
<given-names>W</given-names>
</name>
<etal></etal>
<article-title>Rab7 is required for the normal progression of the autophagic pathway in mammalian cells[J]</article-title>
<source>J CELL SCI</source>
<year>2004</year>
<volume>117</volume>
<issue>Pt 13</issue>
<fpage>2687</fpage>
<lpage>2697</lpage>
<pub-id pub-id-type="pmid">15138286</pub-id>
</element-citation>
</ref>
<ref id="B33">
<label>33</label>
<element-citation publication-type="journal">
<name>
<surname>Itakura</surname>
<given-names>E</given-names>
</name>
<name>
<surname>Kishi-Itakura</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Mizushima</surname>
<given-names>N</given-names>
</name>
<article-title>The hairpin-type tail-anchored SNARE syntaxin 17 targets to autophagosomes for fusion with endosomes/lysosomes[J]</article-title>
<source>CELL</source>
<year>2012</year>
<volume>151</volume>
<issue>6</issue>
<fpage>1256</fpage>
<lpage>1269</lpage>
<pub-id pub-id-type="pmid">23217709</pub-id>
</element-citation>
</ref>
<ref id="B34">
<label>34</label>
<element-citation publication-type="journal">
<name>
<surname>Mizushima</surname>
<given-names>N</given-names>
</name>
<name>
<surname>Ohsumi</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Yoshimori</surname>
<given-names>T</given-names>
</name>
<article-title>Autophagosome formation in mammalian cells[J]</article-title>
<source>CELL STRUCT FUNCT</source>
<year>2002</year>
<volume>27</volume>
<issue>6</issue>
<fpage>421</fpage>
<lpage>429</lpage>
<pub-id pub-id-type="pmid">12576635</pub-id>
</element-citation>
</ref>
<ref id="B35">
<label>35</label>
<element-citation publication-type="journal">
<name>
<surname>Jung</surname>
<given-names>CH</given-names>
</name>
<name>
<surname>Ro</surname>
<given-names>SH</given-names>
</name>
<name>
<surname>Cao</surname>
<given-names>J</given-names>
</name>
<etal></etal>
<article-title>MTOR regulation of autophagy[J]</article-title>
<source>FEBS LETT</source>
<year>2010</year>
<volume>584</volume>
<issue>7</issue>
<fpage>1287</fpage>
<lpage>1295</lpage>
<pub-id pub-id-type="pmid">20083114</pub-id>
</element-citation>
</ref>
<ref id="B36">
<label>36</label>
<element-citation publication-type="journal">
<name>
<surname>Gwinn</surname>
<given-names>DM</given-names>
</name>
<name>
<surname>Shackelford</surname>
<given-names>DB</given-names>
</name>
<name>
<surname>Egan</surname>
<given-names>DF</given-names>
</name>
<etal></etal>
<article-title>AMPK phosphorylation of raptor mediates a metabolic checkpoint[J]</article-title>
<source>MOL CELL</source>
<year>2008</year>
<volume>30</volume>
<issue>2</issue>
<fpage>214</fpage>
<lpage>226</lpage>
<pub-id pub-id-type="pmid">18439900</pub-id>
</element-citation>
</ref>
<ref id="B37">
<label>37</label>
<element-citation publication-type="journal">
<name>
<surname>Aita</surname>
<given-names>VM</given-names>
</name>
<name>
<surname>Liang</surname>
<given-names>XH</given-names>
</name>
<name>
<surname>Murty</surname>
<given-names>VV</given-names>
</name>
<etal></etal>
<article-title>Cloning and genomic organization of beclin 1, a candidate tumor suppressor gene on chromosome 17q21[J]</article-title>
<source>GENOMICS</source>
<year>1999</year>
<volume>59</volume>
<issue>1</issue>
<fpage>59</fpage>
<lpage>65</lpage>
<pub-id pub-id-type="pmid">10395800</pub-id>
</element-citation>
</ref>
<ref id="B38">
<label>38</label>
<element-citation publication-type="journal">
<name>
<surname>Liang</surname>
<given-names>XH</given-names>
</name>
<name>
<surname>Jackson</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Seaman</surname>
<given-names>M</given-names>
</name>
<etal></etal>
<article-title>Induction of autophagy and inhibition of tumorigenesis by beclin 1[J]</article-title>
<source>NATURE</source>
<year>1999</year>
<volume>402</volume>
<issue>6762</issue>
<fpage>672</fpage>
<lpage>676</lpage>
<pub-id pub-id-type="pmid">10604474</pub-id>
</element-citation>
</ref>
<ref id="B39">
<label>39</label>
<element-citation publication-type="journal">
<name>
<surname>Marino</surname>
<given-names>G</given-names>
</name>
<name>
<surname>Salvador-Montoliu</surname>
<given-names>N</given-names>
</name>
<name>
<surname>Fueyo</surname>
<given-names>A</given-names>
</name>
<etal></etal>
<article-title>Tissue-specific autophagy alterations and increased tumorigenesis in mice deficient in Atg4C/autophagin-3[J]</article-title>
<source>J BIOL CHEM</source>
<year>2007</year>
<volume>282</volume>
<issue>25</issue>
<fpage>18573</fpage>
<lpage>18583</lpage>
<pub-id pub-id-type="pmid">17442669</pub-id>
</element-citation>
</ref>
<ref id="B40">
<label>40</label>
<element-citation publication-type="journal">
<name>
<surname>Takahashi</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Coppola</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Matsushita</surname>
<given-names>N</given-names>
</name>
<etal></etal>
<article-title>Bif-1 interacts with Beclin 1 through UVRAG and regulates autophagy and tumorigenesis[J]</article-title>
<source>NAT CELL BIOL</source>
<year>2007</year>
<volume>9</volume>
<issue>10</issue>
<fpage>1142</fpage>
<lpage>1151</lpage>
<pub-id pub-id-type="pmid">17891140</pub-id>
</element-citation>
</ref>
<ref id="B41">
<label>41</label>
<element-citation publication-type="journal">
<name>
<surname>Karantza-Wadsworth</surname>
<given-names>V</given-names>
</name>
<name>
<surname>Patel</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Kravchuk</surname>
<given-names>O</given-names>
</name>
<etal></etal>
<article-title>Autophagy mitigates metabolic stress and genome damage in mammary tumorigenesis[J]</article-title>
<source>Genes Dev</source>
<year>2007</year>
<volume>21</volume>
<issue>13</issue>
<fpage>1621</fpage>
<lpage>1635</lpage>
<pub-id pub-id-type="pmid">17606641</pub-id>
</element-citation>
</ref>
<ref id="B42">
<label>42</label>
<element-citation publication-type="journal">
<name>
<surname>Takamura</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Komatsu</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Hara</surname>
<given-names>T</given-names>
</name>
<etal></etal>
<article-title>Autophagy-deficient mice develop multiple liver tumors[J]</article-title>
<source>Genes Dev</source>
<year>2011</year>
<volume>25</volume>
<issue>8</issue>
<fpage>795</fpage>
<lpage>800</lpage>
<pub-id pub-id-type="pmid">21498569</pub-id>
</element-citation>
</ref>
<ref id="B43">
<label>43</label>
<element-citation publication-type="journal">
<name>
<surname>Degenhardt</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Mathew</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Beaudoin</surname>
<given-names>B</given-names>
</name>
<etal></etal>
<article-title>Autophagy promotes tumor cell survival and restricts necrosis, inflammation, and tumorigenesis[J]</article-title>
<source>CANCER CELL</source>
<year>2006</year>
<volume>10</volume>
<issue>1</issue>
<fpage>51</fpage>
<lpage>64</lpage>
<pub-id pub-id-type="pmid">16843265</pub-id>
</element-citation>
</ref>
<ref id="B44">
<label>44</label>
<element-citation publication-type="journal">
<name>
<surname>Wang</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Liu</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Li</surname>
<given-names>J</given-names>
</name>
<etal></etal>
<article-title>Quercetin induces protective autophagy in gastric cancer cells: Involvement of Akt-mTOR- and hypoxia-induced factor 1alpha-mediated signaling[J]</article-title>
<source>AUTOPHAGY</source>
<year>2011</year>
<volume>7</volume>
<issue>9</issue>
<fpage>966</fpage>
<lpage>978</lpage>
<pub-id pub-id-type="pmid">21610320</pub-id>
</element-citation>
</ref>
<ref id="B45">
<label>45</label>
<element-citation publication-type="journal">
<name>
<surname>LoPiccolo</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Blumenthal</surname>
<given-names>GM</given-names>
</name>
<name>
<surname>Bernstein</surname>
<given-names>WB</given-names>
</name>
<etal></etal>
<article-title>Targeting the PI3K/Akt/mTOR pathway: Effective combinations and clinical considerations[J]</article-title>
<source>Drug Resist Updat</source>
<year>2008</year>
<volume>11</volume>
<issue>1-2</issue>
<fpage>32</fpage>
<lpage>50</lpage>
<pub-id pub-id-type="pmid">18166498</pub-id>
</element-citation>
</ref>
<ref id="B46">
<label>46</label>
<element-citation publication-type="journal">
<name>
<surname>Arico</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Petiot</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Bauvy</surname>
<given-names>C</given-names>
</name>
<etal></etal>
<article-title>The tumor suppressor PTEN positively regulates macroautophagy by inhibiting the phosphatidylinositol 3-kinase/protein kinase B pathway[J]</article-title>
<source>J BIOL CHEM</source>
<year>2001</year>
<volume>276</volume>
<issue>38</issue>
<fpage>35243</fpage>
<lpage>35246</lpage>
<pub-id pub-id-type="pmid">11477064</pub-id>
</element-citation>
</ref>
<ref id="B47">
<label>47</label>
<element-citation publication-type="journal">
<name>
<surname>Sourbier</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Lindner</surname>
<given-names>V</given-names>
</name>
<name>
<surname>Lang</surname>
<given-names>H</given-names>
</name>
<etal></etal>
<article-title>The phosphoinositide 3-kinase/Akt pathway: A new target in human renal cell carcinoma therapy[J]</article-title>
<source>CANCER RES</source>
<year>2006</year>
<volume>66</volume>
<issue>10</issue>
<fpage>5130</fpage>
<lpage>5142</lpage>
<pub-id pub-id-type="pmid">16707436</pub-id>
</element-citation>
</ref>
<ref id="B48">
<label>48</label>
<element-citation publication-type="journal">
<name>
<surname>Seo</surname>
<given-names>SU</given-names>
</name>
<name>
<surname>Woo</surname>
<given-names>SM</given-names>
</name>
<name>
<surname>Lee</surname>
<given-names>HS</given-names>
</name>
<etal></etal>
<article-title>MTORC1/2 inhibitor and curcumin induce apoptosis through lysosomal membrane permeabilization-mediated autophagy[J]</article-title>
<source>ONCOGENE</source>
<year>2018</year>
<volume>37</volume>
<issue>38</issue>
<fpage>5205</fpage>
<lpage>5220</lpage>
<pub-id pub-id-type="pmid">29849119</pub-id>
</element-citation>
</ref>
<ref id="B49">
<label>49</label>
<element-citation publication-type="journal">
<name>
<surname>Levine</surname>
<given-names>AJ</given-names>
</name>
<article-title>P53, the cellular gatekeeper for growth and division[J]</article-title>
<source>CELL</source>
<year>1997</year>
<volume>88</volume>
<issue>3</issue>
<fpage>323</fpage>
<lpage>331</lpage>
<pub-id pub-id-type="pmid">9039259</pub-id>
</element-citation>
</ref>
<ref id="B50">
<label>50</label>
<element-citation publication-type="journal">
<name>
<surname>Feng</surname>
<given-names>Z</given-names>
</name>
<name>
<surname>Hu</surname>
<given-names>W</given-names>
</name>
<name>
<surname>de Stanchina</surname>
<given-names>E</given-names>
</name>
<etal></etal>
<article-title>The regulation of AMPK beta1, TSC2, and PTEN expression by p53: Stress, cell and tissue specificity, and the role of these gene products in modulating the IGF-1-AKT-mTOR pathways[J]</article-title>
<source>CANCER RES</source>
<year>2007</year>
<volume>67</volume>
<issue>7</issue>
<fpage>3043</fpage>
<lpage>3053</lpage>
<pub-id pub-id-type="pmid">17409411</pub-id>
</element-citation>
</ref>
<ref id="B51">
<label>51</label>
<element-citation publication-type="journal">
<name>
<surname>Crighton</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Wilkinson</surname>
<given-names>S</given-names>
</name>
<name>
<surname>O'Prey</surname>
<given-names>J</given-names>
</name>
<etal></etal>
<article-title>DRAM, a p53-induced modulator of autophagy, is critical for apoptosis[J]</article-title>
<source>CELL</source>
<year>2006</year>
<volume>126</volume>
<issue>1</issue>
<fpage>121</fpage>
<lpage>134</lpage>
<pub-id pub-id-type="pmid">16839881</pub-id>
</element-citation>
</ref>
<ref id="B52">
<label>52</label>
<element-citation publication-type="journal">
<name>
<surname>Tasdemir</surname>
<given-names>E</given-names>
</name>
<name>
<surname>Maiuri</surname>
<given-names>MC</given-names>
</name>
<name>
<surname>Galluzzi</surname>
<given-names>L</given-names>
</name>
<etal></etal>
<article-title>Regulation of autophagy by cytoplasmic p53[J]</article-title>
<source>NAT CELL BIOL</source>
<year>2008</year>
<volume>10</volume>
<issue>6</issue>
<fpage>676</fpage>
<lpage>687</lpage>
<pub-id pub-id-type="pmid">18454141</pub-id>
</element-citation>
</ref>
<ref id="B53">
<label>53</label>
<element-citation publication-type="journal">
<name>
<surname>Haitel</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Wiener</surname>
<given-names>HG</given-names>
</name>
<name>
<surname>Baethge</surname>
<given-names>U</given-names>
</name>
<etal></etal>
<article-title>Mdm2 expression as a prognostic indicator in clear cell renal cell carcinoma: Comparison with p53 overexpression and clinicopathological parameters[J]</article-title>
<source>CLIN CANCER RES</source>
<year>2000</year>
<volume>6</volume>
<issue>5</issue>
<fpage>1840</fpage>
<lpage>1844</lpage>
<pub-id pub-id-type="pmid">10815906</pub-id>
</element-citation>
</ref>
<ref id="B54">
<label>54</label>
<element-citation publication-type="journal">
<name>
<surname>Zigeuner</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Ratschek</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Rehak</surname>
<given-names>P</given-names>
</name>
<etal></etal>
<article-title>Value of p53 as a prognostic marker in histologic subtypes of renal cell carcinoma: A systematic analysis of primary and metastatic tumor tissue[J]</article-title>
<source>UROLOGY</source>
<year>2004</year>
<volume>63</volume>
<issue>4</issue>
<fpage>651</fpage>
<lpage>655</lpage>
<pub-id pub-id-type="pmid">15072872</pub-id>
</element-citation>
</ref>
<ref id="B55">
<label>55</label>
<element-citation publication-type="journal">
<name>
<surname>Kang</surname>
<given-names>JH</given-names>
</name>
<name>
<surname>Lee</surname>
<given-names>JS</given-names>
</name>
<name>
<surname>Hong</surname>
<given-names>D</given-names>
</name>
<etal></etal>
<article-title>Renal cell carcinoma escapes death by p53 depletion through transglutaminase 2-chaperoned autophagy[J]</article-title>
<source>CELL DEATH DIS</source>
<year>2016</year>
<volume>7</volume>
<fpage>e2163</fpage>
<pub-id pub-id-type="pmid">27031960</pub-id>
</element-citation>
</ref>
<ref id="B56">
<label>56</label>
<element-citation publication-type="journal">
<name>
<surname>Warburton</surname>
<given-names>HE</given-names>
</name>
<name>
<surname>Brady</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Vlatkovic</surname>
<given-names>N</given-names>
</name>
<etal></etal>
<article-title>P53 regulation and function in renal cell carcinoma[J]</article-title>
<source>CANCER RES</source>
<year>2005</year>
<volume>65</volume>
<issue>15</issue>
<fpage>6498</fpage>
<lpage>6503</lpage>
<pub-id pub-id-type="pmid">16061625</pub-id>
</element-citation>
</ref>
<ref id="B57">
<label>57</label>
<element-citation publication-type="journal">
<name>
<surname>Tanida</surname>
<given-names>I</given-names>
</name>
<name>
<surname>Ueno</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Kominami</surname>
<given-names>E</given-names>
</name>
<article-title>LC3 conjugation system in mammalian autophagy[J]</article-title>
<source>Int J Biochem Cell Biol</source>
<year>2004</year>
<volume>36</volume>
<issue>12</issue>
<fpage>2503</fpage>
<lpage>2518</lpage>
<pub-id pub-id-type="pmid">15325588</pub-id>
</element-citation>
</ref>
<ref id="B58">
<label>58</label>
<element-citation publication-type="journal">
<name>
<surname>Weidberg</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Shvets</surname>
<given-names>E</given-names>
</name>
<name>
<surname>Shpilka</surname>
<given-names>T</given-names>
</name>
<etal></etal>
<article-title>LC3 and GATE-16/GABARAP subfamilies are both essential yet act differently in autophagosome biogenesis[J]</article-title>
<source>EMBO J</source>
<year>2010</year>
<volume>29</volume>
<issue>11</issue>
<fpage>1792</fpage>
<lpage>1802</lpage>
<pub-id pub-id-type="pmid">20418806</pub-id>
</element-citation>
</ref>
<ref id="B59">
<label>59</label>
<element-citation publication-type="journal">
<name>
<surname>Mikhaylova</surname>
<given-names>O</given-names>
</name>
<name>
<surname>Stratton</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Hall</surname>
<given-names>D</given-names>
</name>
<etal></etal>
<article-title>VHL-regulated MiR-204 suppresses tumor growth through inhibition of LC3B-mediated autophagy in renal clear cell carcinoma[J]</article-title>
<source>CANCER CELL</source>
<year>2012</year>
<volume>21</volume>
<issue>4</issue>
<fpage>532</fpage>
<lpage>546</lpage>
<pub-id pub-id-type="pmid">22516261</pub-id>
</element-citation>
</ref>
<ref id="B60">
<label>60</label>
<element-citation publication-type="journal">
<name>
<surname>Deng</surname>
<given-names>Q</given-names>
</name>
<name>
<surname>Wang</surname>
<given-names>Z</given-names>
</name>
<name>
<surname>Wang</surname>
<given-names>L</given-names>
</name>
<etal></etal>
<article-title>Lower mRNA and protein expression levels of LC3 and Beclin1, markers of autophagy, were correlated with progression of renal clear cell carcinoma[J]</article-title>
<source>JPN J CLIN ONCOL</source>
<year>2013</year>
<volume>43</volume>
<issue>12</issue>
<fpage>1261</fpage>
<lpage>1268</lpage>
<pub-id pub-id-type="pmid">24186908</pub-id>
</element-citation>
</ref>
<ref id="B61">
<label>61</label>
<element-citation publication-type="journal">
<name>
<surname>Xie</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Nguyen</surname>
<given-names>S</given-names>
</name>
<name>
<surname>McKeehan</surname>
<given-names>K</given-names>
</name>
<etal></etal>
<article-title>Microtubule-associated protein 1S (MAP1S) bridges autophagic components with microtubules and mitochondria to affect autophagosomal biogenesis and degradation[J]</article-title>
<source>J BIOL CHEM</source>
<year>2011</year>
<volume>286</volume>
<issue>12</issue>
<fpage>10367</fpage>
<lpage>10377</lpage>
<pub-id pub-id-type="pmid">21262964</pub-id>
</element-citation>
</ref>
<ref id="B62">
<label>62</label>
<element-citation publication-type="book">
<name>
<surname>Vandin</surname>
<given-names>F</given-names>
</name>
<name>
<surname>Clay</surname>
<given-names>P</given-names>
</name>
<name>
<surname>Upfal</surname>
<given-names>E</given-names>
</name>
<etal></etal>
<source>Discovery of mutated subnetworks associated with clinical data in cancer[J]</source>
<publisher-name>Pac Symp Biocomput</publisher-name>
<year>2012</year>
<fpage>55</fpage>
<lpage>66</lpage>
</element-citation>
</ref>
<ref id="B63">
<label>63</label>
<element-citation publication-type="journal">
<name>
<surname>Xie</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Wang</surname>
<given-names>F</given-names>
</name>
<name>
<surname>McKeehan</surname>
<given-names>WL</given-names>
</name>
<etal></etal>
<article-title>Autophagy enhanced by microtubule- and mitochondrion-associated MAP1S suppresses genome instability and hepatocarcinogenesis[J]</article-title>
<source>CANCER RES</source>
<year>2011</year>
<volume>71</volume>
<issue>24</issue>
<fpage>7537</fpage>
<lpage>7546</lpage>
<pub-id pub-id-type="pmid">22037873</pub-id>
</element-citation>
</ref>
<ref id="B64">
<label>64</label>
<element-citation publication-type="journal">
<name>
<surname>Jiang</surname>
<given-names>X</given-names>
</name>
<name>
<surname>Zhong</surname>
<given-names>W</given-names>
</name>
<name>
<surname>Huang</surname>
<given-names>H</given-names>
</name>
<etal></etal>
<article-title>Autophagy defects suggested by low levels of autophagy activator MAP1S and high levels of autophagy inhibitor LRPPRC predict poor prognosis of prostate cancer patients[J]</article-title>
<source>Mol Carcinog</source>
<year>2015</year>
<volume>54</volume>
<issue>10</issue>
<fpage>1194</fpage>
<lpage>1204</lpage>
<pub-id pub-id-type="pmid">25043940</pub-id>
</element-citation>
</ref>
<ref id="B65">
<label>65</label>
<element-citation publication-type="journal">
<name>
<surname>Xu</surname>
<given-names>G</given-names>
</name>
<name>
<surname>Jiang</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Xiao</surname>
<given-names>Y</given-names>
</name>
<etal></etal>
<article-title>Fast clearance of lipid droplets through MAP1S-activated autophagy suppresses clear cell renal cell carcinomas and promotes patient survival[J]</article-title>
<source>Oncotarget</source>
<year>2016</year>
<volume>7</volume>
<issue>5</issue>
<fpage>6255</fpage>
<lpage>6265</lpage>
<pub-id pub-id-type="pmid">26701856</pub-id>
</element-citation>
</ref>
<ref id="B66">
<label>66</label>
<element-citation publication-type="journal">
<name>
<surname>Tong</surname>
<given-names>KI</given-names>
</name>
<name>
<surname>Padmanabhan</surname>
<given-names>B</given-names>
</name>
<name>
<surname>Kobayashi</surname>
<given-names>A</given-names>
</name>
<etal></etal>
<article-title>Different electrostatic potentials define ETGE and DLG motifs as hinge and latch in oxidative stress response[J]</article-title>
<source>MOL CELL BIOL</source>
<year>2007</year>
<volume>27</volume>
<issue>21</issue>
<fpage>7511</fpage>
<lpage>7521</lpage>
<pub-id pub-id-type="pmid">17785452</pub-id>
</element-citation>
</ref>
<ref id="B67">
<label>67</label>
<element-citation publication-type="journal">
<name>
<surname>Lee</surname>
<given-names>DF</given-names>
</name>
<name>
<surname>Kuo</surname>
<given-names>HP</given-names>
</name>
<name>
<surname>Liu</surname>
<given-names>M</given-names>
</name>
<etal></etal>
<article-title>KEAP1 E3 ligase-mediated downregulation of NF-kappaB signaling by targeting IKKbeta[J]</article-title>
<source>MOL CELL</source>
<year>2009</year>
<volume>36</volume>
<issue>1</issue>
<fpage>131</fpage>
<lpage>140</lpage>
<pub-id pub-id-type="pmid">19818716</pub-id>
</element-citation>
</ref>
<ref id="B68">
<label>68</label>
<element-citation publication-type="journal">
<name>
<surname>Sporn</surname>
<given-names>MB</given-names>
</name>
<name>
<surname>Liby</surname>
<given-names>KT</given-names>
</name>
<article-title>NRF2 and cancer: The good, the bad and the importance of context[J]</article-title>
<source>NAT REV CANCER</source>
<year>2012</year>
<volume>12</volume>
<issue>8</issue>
<fpage>564</fpage>
<lpage>571</lpage>
<pub-id pub-id-type="pmid">22810811</pub-id>
</element-citation>
</ref>
<ref id="B69">
<label>69</label>
<element-citation publication-type="journal">
<name>
<surname>Kinch</surname>
<given-names>L</given-names>
</name>
<name>
<surname>Grishin</surname>
<given-names>NV</given-names>
</name>
<name>
<surname>Brugarolas</surname>
<given-names>J</given-names>
</name>
<article-title>Succination of Keap1 and activation of Nrf2-dependent antioxidant pathways in FH-deficient papillary renal cell carcinoma type 2[J]</article-title>
<source>CANCER CELL</source>
<year>2011</year>
<volume>20</volume>
<issue>4</issue>
<fpage>418</fpage>
<lpage>420</lpage>
<pub-id pub-id-type="pmid">22014567</pub-id>
</element-citation>
</ref>
<ref id="B70">
<label>70</label>
<element-citation publication-type="journal">
<name>
<surname>Fabrizio</surname>
<given-names>FP</given-names>
</name>
<name>
<surname>Costantini</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Copetti</surname>
<given-names>M</given-names>
</name>
<etal></etal>
<article-title>Keap1/Nrf2 pathway in kidney cancer: Frequent methylation of KEAP1 gene promoter in clear renal cell carcinoma[J]</article-title>
<source>Oncotarget</source>
<year>2017</year>
<volume>8</volume>
<issue>7</issue>
<fpage>11187</fpage>
<lpage>11198</lpage>
<pub-id pub-id-type="pmid">28061437</pub-id>
</element-citation>
</ref>
<ref id="B71">
<label>71</label>
<element-citation publication-type="journal">
<name>
<surname>Lau</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Wang</surname>
<given-names>XJ</given-names>
</name>
<name>
<surname>Zhao</surname>
<given-names>F</given-names>
</name>
<etal></etal>
<article-title>A noncanonical mechanism of Nrf2 activation by autophagy deficiency: Direct interaction between Keap1 and p62[J]</article-title>
<source>MOL CELL BIOL</source>
<year>2010</year>
<volume>30</volume>
<issue>13</issue>
<fpage>3275</fpage>
<lpage>3285</lpage>
<pub-id pub-id-type="pmid">20421418</pub-id>
</element-citation>
</ref>
<ref id="B72">
<label>72</label>
<element-citation publication-type="journal">
<name>
<surname>Villeneuve</surname>
<given-names>NF</given-names>
</name>
<name>
<surname>Lau</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Zhang</surname>
<given-names>DD</given-names>
</name>
<article-title>Regulation of the Nrf2-Keap1 antioxidant response by the ubiquitin proteasome system: An insight into cullin-ring ubiquitin ligases[J]</article-title>
<source>Antioxid Redox Signal</source>
<year>2010</year>
<volume>13</volume>
<issue>11</issue>
<fpage>1699</fpage>
<lpage>1712</lpage>
<pub-id pub-id-type="pmid">20486766</pub-id>
</element-citation>
</ref>
<ref id="B73">
<label>73</label>
<element-citation publication-type="journal">
<name>
<surname>Hall</surname>
<given-names>DP</given-names>
</name>
<name>
<surname>Cost</surname>
<given-names>NG</given-names>
</name>
<name>
<surname>Hegde</surname>
<given-names>S</given-names>
</name>
<etal></etal>
<article-title>TRPM3 and miR-204 establish a regulatory circuit that controls oncogenic autophagy in clear cell renal cell carcinoma[J]</article-title>
<source>CANCER CELL</source>
<year>2014</year>
<volume>26</volume>
<issue>5</issue>
<fpage>738</fpage>
<lpage>753</lpage>
<pub-id pub-id-type="pmid">25517751</pub-id>
</element-citation>
</ref>
<ref id="B74">
<label>74</label>
<element-citation publication-type="journal">
<name>
<surname>Lian</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Cai</surname>
<given-names>Z</given-names>
</name>
<name>
<surname>Gong</surname>
<given-names>H</given-names>
</name>
<etal></etal>
<article-title>HOTTIP: A critical oncogenic long non-coding RNA in human cancers[J]</article-title>
<source>MOL BIOSYST</source>
<year>2016</year>
<volume>12</volume>
<issue>11</issue>
<fpage>3247</fpage>
<lpage>3253</lpage>
<pub-id pub-id-type="pmid">27546609</pub-id>
</element-citation>
</ref>
<ref id="B75">
<label>75</label>
<element-citation publication-type="book">
<name>
<surname>Su</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Lu</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Chen</surname>
<given-names>X</given-names>
</name>
<etal></etal>
<source>Long non-coding RNA HOTTIP affects renal cell carcinoma progression by regulating autophagy via the PI3K/Akt/Atg13 signaling pathway[J]</source>
<publisher-name>J Cancer Res Clin Oncol</publisher-name>
<year>2018</year>
</element-citation>
</ref>
<ref id="B76">
<label>76</label>
<element-citation publication-type="journal">
<name>
<surname>Faivre</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Demetri</surname>
<given-names>G</given-names>
</name>
<name>
<surname>Sargent</surname>
<given-names>W</given-names>
</name>
<etal></etal>
<article-title>Molecular basis for sunitinib efficacy and future clinical development[J]</article-title>
<source>NAT REV DRUG DISCOV</source>
<year>2007</year>
<volume>6</volume>
<issue>9</issue>
<fpage>734</fpage>
<lpage>745</lpage>
<pub-id pub-id-type="pmid">17690708</pub-id>
</element-citation>
</ref>
<ref id="B77">
<label>77</label>
<element-citation publication-type="journal">
<name>
<surname>Cao</surname>
<given-names>P</given-names>
</name>
<name>
<surname>Jiang</surname>
<given-names>XJ</given-names>
</name>
<name>
<surname>Xi</surname>
<given-names>ZJ</given-names>
</name>
<article-title>[Sunitinib induces autophagy via suppressing Akt/mTOR pathway in renal cell carcinoma][J]</article-title>
<source>Beijing Da Xue Xue Bao Yi Xue Ban</source>
<year>2016</year>
<volume>48</volume>
<issue>1</issue>
<fpage>584</fpage>
<lpage>589</lpage>
</element-citation>
</ref>
<ref id="B78">
<label>78</label>
<element-citation publication-type="journal">
<name>
<surname>Zheng</surname>
<given-names>B</given-names>
</name>
<name>
<surname>Mao</surname>
<given-names>JH</given-names>
</name>
<name>
<surname>Qian</surname>
<given-names>L</given-names>
</name>
<etal></etal>
<article-title>Pre-clinical evaluation of AZD-2014, a novel mTORC1/2 dual inhibitor, against renal cell carcinoma[J]</article-title>
<source>CANCER LETT</source>
<year>2015</year>
<volume>357</volume>
<issue>2</issue>
<fpage>468</fpage>
<lpage>475</lpage>
<pub-id pub-id-type="pmid">25444920</pub-id>
</element-citation>
</ref>
<ref id="B79">
<label>79</label>
<element-citation publication-type="journal">
<name>
<surname>Lu</surname>
<given-names>Q</given-names>
</name>
<name>
<surname>Yan</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Sun</surname>
<given-names>H</given-names>
</name>
<etal></etal>
<article-title>Akt inhibition attenuates rasfonin-induced autophagy and apoptosis through the glycolytic pathway in renal cancer cells[J]</article-title>
<source>CELL DEATH DIS</source>
<year>2015</year>
<volume>6</volume>
<fpage>e2005</fpage>
<pub-id pub-id-type="pmid">26633711</pub-id>
</element-citation>
</ref>
<ref id="B80">
<label>80</label>
<element-citation publication-type="journal">
<name>
<surname>Zeng</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Liu</surname>
<given-names>W</given-names>
</name>
<name>
<surname>Li</surname>
<given-names>F</given-names>
</name>
<etal></etal>
<article-title>Mp92-15 suppression of chaperone-mediated autophagy: A novel mechanism of action of silibinin against bladder and renal cancer[J]</article-title>
<source>J UROLOGY</source>
<year>2016</year>
<volume>195</volume>
<issue>4</issue>
<fpage>e1167</fpage>
</element-citation>
</ref>
<ref id="B81">
<label>81</label>
<element-citation publication-type="journal">
<name>
<surname>Li</surname>
<given-names>F</given-names>
</name>
<name>
<surname>Ma</surname>
<given-names>Z</given-names>
</name>
<name>
<surname>Guan</surname>
<given-names>Z</given-names>
</name>
<etal></etal>
<article-title>Autophagy induction by silibinin positively contributes to its anti-metastatic capacity via AMPK/mTOR pathway in renal cell carcinoma[J]</article-title>
<source>INT J MOL SCI</source>
<year>2015</year>
<volume>16</volume>
<issue>4</issue>
<fpage>8415</fpage>
<lpage>8429</lpage>
<pub-id pub-id-type="pmid">25884331</pub-id>
</element-citation>
</ref>
<ref id="B82">
<label>82</label>
<element-citation publication-type="journal">
<name>
<surname>Li</surname>
<given-names>X</given-names>
</name>
<name>
<surname>Li</surname>
<given-names>P</given-names>
</name>
<name>
<surname>Liu</surname>
<given-names>C</given-names>
</name>
<etal></etal>
<article-title>Sinomenine hydrochloride inhibits breast cancer metastasis by attenuating inflammation-related epithelial-mesenchymal transition and cancer stemness[J]</article-title>
<source>Oncotarget</source>
<year>2017</year>
<volume>8</volume>
<issue>8</issue>
<fpage>13560</fpage>
<lpage>13574</lpage>
<pub-id pub-id-type="pmid">28088791</pub-id>
</element-citation>
</ref>
<ref id="B83">
<label>83</label>
<element-citation publication-type="journal">
<name>
<surname>Jiang</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Gao</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Hou</surname>
<given-names>W</given-names>
</name>
<etal></etal>
<article-title>Sinomenine inhibits A549 human lung cancer cell invasion by mediating the STAT3 signaling pathway[J]</article-title>
<source>ONCOL LETT</source>
<year>2016</year>
<volume>12</volume>
<issue>2</issue>
<fpage>1380</fpage>
<lpage>1386</lpage>
<pub-id pub-id-type="pmid">27446441</pub-id>
</element-citation>
</ref>
<ref id="B84">
<label>84</label>
<element-citation publication-type="journal">
<name>
<surname>Xie</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Ren</surname>
<given-names>HY</given-names>
</name>
<name>
<surname>Lin</surname>
<given-names>HQ</given-names>
</name>
<etal></etal>
<article-title>Sinomenine prevents metastasis of human osteosarcoma cells via S phase arrest and suppression of tumor-related neovascularization and osteolysis through the CXCR4-STAT3 pathway[J]</article-title>
<source>INT J ONCOL</source>
<year>2016</year>
<volume>48</volume>
<issue>5</issue>
<fpage>2098</fpage>
<lpage>2112</lpage>
<pub-id pub-id-type="pmid">26983669</pub-id>
</element-citation>
</ref>
<ref id="B85">
<label>85</label>
<element-citation publication-type="journal">
<name>
<surname>Yang</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Yin</surname>
<given-names>P</given-names>
</name>
<name>
<surname>Shi</surname>
<given-names>Z</given-names>
</name>
<etal></etal>
<article-title>Sinomenine, a COX-2 inhibitor, induces cell cycle arrest and inhibits growth of human colon carcinoma cells in vitro and in vivo[J]</article-title>
<source>ONCOL LETT</source>
<year>2016</year>
<volume>11</volume>
<issue>1</issue>
<fpage>411</fpage>
<lpage>418</lpage>
<pub-id pub-id-type="pmid">26870226</pub-id>
</element-citation>
</ref>
<ref id="B86">
<label>86</label>
<element-citation publication-type="journal">
<name>
<surname>Deng</surname>
<given-names>F</given-names>
</name>
<name>
<surname>Ma</surname>
<given-names>YX</given-names>
</name>
<name>
<surname>Liang</surname>
<given-names>L</given-names>
</name>
<etal></etal>
<article-title>The pro-apoptosis effect of sinomenine in renal carcinoma via inducing autophagy through inactivating PI3K/AKT/mTOR pathway[J]</article-title>
<source>BIOMED PHARMACOTHER</source>
<year>2018</year>
<volume>97</volume>
<fpage>1269</fpage>
<lpage>1274</lpage>
<pub-id pub-id-type="pmid">29145153</pub-id>
</element-citation>
</ref>
<ref id="B87">
<label>87</label>
<element-citation publication-type="journal">
<name>
<surname>Hagiwara</surname>
<given-names>N</given-names>
</name>
<name>
<surname>Watanabe</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Iizuka-Ohashi</surname>
<given-names>M</given-names>
</name>
<etal></etal>
<article-title>Mevalonate pathway blockage enhances the efficacy of mTOR inhibitors with the activation of retinoblastoma protein in renal cell carcinoma[J]</article-title>
<source>CANCER LETT</source>
<year>2018</year>
<volume>431</volume>
<fpage>182</fpage>
<lpage>189</lpage>
<pub-id pub-id-type="pmid">29778569</pub-id>
</element-citation>
</ref>
<ref id="B88">
<label>88</label>
<element-citation publication-type="journal">
<name>
<surname>Grimaldi</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Santini</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Zappavigna</surname>
<given-names>S</given-names>
</name>
<etal></etal>
<article-title>Antagonistic effects of chloroquine on autophagy occurrence potentiate the anticancer effects of everolimus on renal cancer cells[J]</article-title>
<source>CANCER BIOL THER</source>
<year>2015</year>
<volume>16</volume>
<issue>4</issue>
<fpage>567</fpage>
<lpage>579</lpage>
<pub-id pub-id-type="pmid">25866016</pub-id>
</element-citation>
</ref>
<ref id="B89">
<label>89</label>
<element-citation publication-type="journal">
<name>
<surname>Carew</surname>
<given-names>JS</given-names>
</name>
<name>
<surname>Kelly</surname>
<given-names>KR</given-names>
</name>
<name>
<surname>Nawrocki</surname>
<given-names>ST</given-names>
</name>
<article-title>Autophagy as a target for cancer therapy: New developments[J]</article-title>
<source>CANCER MANAG RES</source>
<year>2012</year>
<volume>4</volume>
<fpage>357</fpage>
<lpage>365</lpage>
<pub-id pub-id-type="pmid">23091399</pub-id>
</element-citation>
</ref>
<ref id="B90">
<label>90</label>
<element-citation publication-type="journal">
<name>
<surname>Rangwala</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Chang</surname>
<given-names>YC</given-names>
</name>
<name>
<surname>Hu</surname>
<given-names>J</given-names>
</name>
<etal></etal>
<article-title>Combined MTOR and autophagy inhibition: Phase I trial of hydroxychloroquine and temsirolimus in patients with advanced solid tumors and melanoma[J]</article-title>
<source>AUTOPHAGY</source>
<year>2014</year>
<volume>10</volume>
<issue>8</issue>
<fpage>1391</fpage>
<lpage>1402</lpage>
<pub-id pub-id-type="pmid">24991838</pub-id>
</element-citation>
</ref>
<ref id="B91">
<label>91</label>
<element-citation publication-type="journal">
<name>
<surname>Vogl</surname>
<given-names>DT</given-names>
</name>
<name>
<surname>Stadtmauer</surname>
<given-names>EA</given-names>
</name>
<name>
<surname>Tan</surname>
<given-names>KS</given-names>
</name>
<etal></etal>
<article-title>Combined autophagy and proteasome inhibition: A phase 1 trial of hydroxychloroquine and bortezomib in patients with relapsed/refractory myeloma[J]</article-title>
<source>AUTOPHAGY</source>
<year>2014</year>
<volume>10</volume>
<issue>8</issue>
<fpage>1380</fpage>
<lpage>1390</lpage>
<pub-id pub-id-type="pmid">24991834</pub-id>
</element-citation>
</ref>
<ref id="B92">
<label>92</label>
<element-citation publication-type="journal">
<name>
<surname>Rangwala</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Leone</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Chang</surname>
<given-names>YC</given-names>
</name>
<etal></etal>
<article-title>Phase I trial of hydroxychloroquine with dose-intense temozolomide in patients with advanced solid tumors and melanoma[J]</article-title>
<source>AUTOPHAGY</source>
<year>2014</year>
<volume>10</volume>
<issue>8</issue>
<fpage>1369</fpage>
<lpage>1379</lpage>
<pub-id pub-id-type="pmid">24991839</pub-id>
</element-citation>
</ref>
<ref id="B93">
<label>93</label>
<element-citation publication-type="journal">
<name>
<surname>Mahalingam</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Mita</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Sarantopoulos</surname>
<given-names>J</given-names>
</name>
<etal></etal>
<article-title>Combined autophagy and HDAC inhibition: A phase I safety, tolerability, pharmacokinetic, and pharmacodynamic analysis of hydroxychloroquine in combination with the HDAC inhibitor vorinostat in patients with advanced solid tumors[J]</article-title>
<source>AUTOPHAGY</source>
<year>2014</year>
<volume>10</volume>
<issue>8</issue>
<fpage>1403</fpage>
<lpage>1414</lpage>
<pub-id pub-id-type="pmid">24991835</pub-id>
</element-citation>
</ref>
<ref id="B94">
<label>94</label>
<element-citation publication-type="journal">
<name>
<surname>Rosenfeld</surname>
<given-names>MR</given-names>
</name>
<name>
<surname>Ye</surname>
<given-names>X</given-names>
</name>
<name>
<surname>Supko</surname>
<given-names>JG</given-names>
</name>
<etal></etal>
<article-title>A phase I/II trial of hydroxychloroquine in conjunction with radiation therapy and concurrent and adjuvant temozolomide in patients with newly diagnosed glioblastoma multiforme[J]</article-title>
<source>AUTOPHAGY</source>
<year>2014</year>
<volume>10</volume>
<issue>8</issue>
<fpage>1359</fpage>
<lpage>1368</lpage>
<pub-id pub-id-type="pmid">24991840</pub-id>
</element-citation>
</ref>
<ref id="B95">
<label>95</label>
<element-citation publication-type="journal">
<name>
<surname>Barnard</surname>
<given-names>RA</given-names>
</name>
<name>
<surname>Wittenburg</surname>
<given-names>LA</given-names>
</name>
<name>
<surname>Amaravadi</surname>
<given-names>RK</given-names>
</name>
<etal></etal>
<article-title>Phase I clinical trial and pharmacodynamic evaluation of combination hydroxychloroquine and doxorubicin treatment in pet dogs treated for spontaneously occurring lymphoma[J]</article-title>
<source>AUTOPHAGY</source>
<year>2014</year>
<volume>10</volume>
<issue>8</issue>
<fpage>1415</fpage>
<lpage>1425</lpage>
<pub-id pub-id-type="pmid">24991836</pub-id>
</element-citation>
</ref>
<ref id="B96">
<label>96</label>
<element-citation publication-type="journal">
<name>
<surname>Lotze</surname>
<given-names>MT</given-names>
</name>
<name>
<surname>Maranchie</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Appleman</surname>
<given-names>L</given-names>
</name>
<article-title>Inhibiting autophagy: A novel approach for the treatment of renal cell carcinoma[J]</article-title>
<source>CANCER J</source>
<year>2013</year>
<volume>19</volume>
<issue>4</issue>
<fpage>341</fpage>
<lpage>347</lpage>
<pub-id pub-id-type="pmid">23867516</pub-id>
</element-citation>
</ref>
<ref id="B97">
<label>97</label>
<element-citation publication-type="journal">
<name>
<surname>Carew</surname>
<given-names>JS</given-names>
</name>
<name>
<surname>Espitia</surname>
<given-names>CM</given-names>
</name>
<name>
<surname>Zhao</surname>
<given-names>W</given-names>
</name>
<etal></etal>
<article-title>Disruption of autophagic degradation with ROC-325 antagonizes renal cell carcinoma pathogenesis[J]</article-title>
<source>CLIN CANCER RES</source>
<year>2017</year>
<volume>23</volume>
<issue>11</issue>
<fpage>2869</fpage>
<lpage>2879</lpage>
<pub-id pub-id-type="pmid">27881580</pub-id>
</element-citation>
</ref>
<ref id="B98">
<label>98</label>
<element-citation publication-type="journal">
<name>
<surname>Zhang</surname>
<given-names>Q</given-names>
</name>
<name>
<surname>Si</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Schoen</surname>
<given-names>S</given-names>
</name>
<etal></etal>
<article-title>Suppression of autophagy enhances preferential toxicity of paclitaxel to folliculin-deficient renal cancer cells[J]</article-title>
<source>J Exp Clin Cancer Res</source>
<year>2013</year>
<volume>32</volume>
<fpage>99</fpage>
<pub-id pub-id-type="pmid">24305604</pub-id>
</element-citation>
</ref>
</ref-list>
</back>
<floats-group>
<fig id="F1" position="float">
<label>Figure 1</label>
<caption>
<p>The process of autophagy in eukaryotic cells.</p>
</caption>
<graphic xlink:href="jcav10p2501g001"></graphic>
</fig>
<fig id="F2" position="float">
<label>Figure 2</label>
<caption>
<p>Schematic representation of function of autophagy in cancer cells.</p>
</caption>
<graphic xlink:href="jcav10p2501g002"></graphic>
</fig>
<table-wrap id="T1" position="float">
<label>Table 1</label>
<caption>
<p>Signaling pathways of autophagy in renal cancer</p>
</caption>
<table frame="hsides" rules="groups">
<tbody>
<tr>
<td rowspan="1" colspan="1">PI3K/AKT/mTOR pathway</td>
</tr>
<tr>
<td rowspan="1" colspan="1">tumor suppressor p53</td>
</tr>
<tr>
<td rowspan="1" colspan="1">LC3B-dependent autophagy pathway</td>
</tr>
<tr>
<td rowspan="1" colspan="1">microtubule associated protein 1S (MAP1S)</td>
</tr>
<tr>
<td rowspan="1" colspan="1">transcription factor NF-E2-associated factor 2 (NRF2)/Kelch-like epichlorohydrin associated protein 1 (KEAP1)</td>
</tr>
<tr>
<td rowspan="1" colspan="1">Transient receptor potential melastatin 3 (TRPM3)</td>
</tr>
<tr>
<td rowspan="1" colspan="1">HOXA transcript at the distal tip (HOTTIP)</td>
</tr>
</tbody>
</table>
</table-wrap>
<table-wrap id="T2" position="float">
<label>Table 2</label>
<caption>
<p>Pharmaceutical agents targeting autophagy in renal cancer</p>
</caption>
<table frame="hsides" rules="groups">
<tbody>
<tr>
<td rowspan="1" colspan="1">
<italic>Drugs that promote autophagy</italic>
</td>
</tr>
<tr>
<td rowspan="1" colspan="1">Sunitinib</td>
</tr>
<tr>
<td rowspan="1" colspan="1">AZD-2014</td>
</tr>
<tr>
<td rowspan="1" colspan="1">Rasfonin</td>
</tr>
<tr>
<td rowspan="1" colspan="1">Silybin</td>
</tr>
<tr>
<td rowspan="1" colspan="1">Sinomenine</td>
</tr>
<tr>
<td rowspan="1" colspan="1">
<italic>Drugs that inhibit autophagy</italic>
</td>
</tr>
<tr>
<td rowspan="1" colspan="1">Chloroquine (CQ) and hydroxychloroquine (HCQ)</td>
</tr>
<tr>
<td rowspan="1" colspan="1">ROC-325</td>
</tr>
<tr>
<td rowspan="1" colspan="1">3-Methyladenine (3-MA)</td>
</tr>
</tbody>
</table>
</table-wrap>
</floats-group>
</pmc>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/ChloroquineV1/Data/Pmc/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000A43 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Pmc/Corpus/biblio.hfd -nk 000A43 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    ChloroquineV1
   |flux=    Pmc
   |étape=   Corpus
   |type=    RBID
   |clé=     PMC:6584354
   |texte=   Role of Autophagy in Renal Cancer
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Pmc/Corpus/RBID.i   -Sk "pubmed:31258756" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Pmc/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a ChloroquineV1 

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Wed Mar 25 22:43:59 2020. Site generation: Sun Jan 31 12:44:45 2021