Serveur d'exploration Chloroquine

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.
***** Acces problem to record *****\

Identifieur interne : 000A28 ( Pmc/Corpus ); précédent : 000A279; suivant : 000A290 ***** probable Xml problem with record *****

Links to Exploration step


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Alleviation of Multidrug Resistance by Flavonoid and Non-Flavonoid Compounds in Breast, Lung, Colorectal and Prostate Cancer</title>
<author>
<name sortKey="Costea, Teodora" sort="Costea, Teodora" uniqKey="Costea T" first="Teodora" last="Costea">Teodora Costea</name>
<affiliation>
<nlm:aff id="af1-ijms-21-00401">Department of Pharmacognosy, Phytochemistry and Phytotherapy, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania;
<email>teodora.costea@umfcd.ro</email>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Vlad, Oana Cezara" sort="Vlad, Oana Cezara" uniqKey="Vlad O" first="Oana Cezara" last="Vlad">Oana Cezara Vlad</name>
<affiliation>
<nlm:aff id="af2-ijms-21-00401">Department of Biophysics, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania;
<email>vlad.oana18@gmail.com</email>
(O.C.V.);
<email>constanta.ganea@gmail.com</email>
(C.G.)</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Miclea, Luminita Claudia" sort="Miclea, Luminita Claudia" uniqKey="Miclea L" first="Luminita-Claudia" last="Miclea">Luminita-Claudia Miclea</name>
<affiliation>
<nlm:aff id="af3-ijms-21-00401">Department of Biophysics and Cellular Biotechnology, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania;
<email>luminita.miclea@umfcd.ro</email>
</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="af4-ijms-21-00401">Research Excellence Center in Biophysics and Cellular Biotechnology, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Ganea, Constanta" sort="Ganea, Constanta" uniqKey="Ganea C" first="Constanta" last="Ganea">Constanta Ganea</name>
<affiliation>
<nlm:aff id="af2-ijms-21-00401">Department of Biophysics, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania;
<email>vlad.oana18@gmail.com</email>
(O.C.V.);
<email>constanta.ganea@gmail.com</email>
(C.G.)</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Szoll Si, Janos" sort="Szoll Si, Janos" uniqKey="Szoll Si J" first="János" last="Szöll Si">János Szöll Si</name>
<affiliation>
<nlm:aff id="af5-ijms-21-00401">Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary;
<email>szollo@med.unideb.hu</email>
</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="af6-ijms-21-00401">MTA-DE Cell Biology and Signaling Research Group, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Mocanu, Maria Magdalena" sort="Mocanu, Maria Magdalena" uniqKey="Mocanu M" first="Maria-Magdalena" last="Mocanu">Maria-Magdalena Mocanu</name>
<affiliation>
<nlm:aff id="af2-ijms-21-00401">Department of Biophysics, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania;
<email>vlad.oana18@gmail.com</email>
(O.C.V.);
<email>constanta.ganea@gmail.com</email>
(C.G.)</nlm:aff>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PMC</idno>
<idno type="pmid">31936346</idno>
<idno type="pmc">7013436</idno>
<idno type="url">http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7013436</idno>
<idno type="RBID">PMC:7013436</idno>
<idno type="doi">10.3390/ijms21020401</idno>
<date when="2020">2020</date>
<idno type="wicri:Area/Pmc/Corpus">000A28</idno>
<idno type="wicri:explorRef" wicri:stream="Pmc" wicri:step="Corpus" wicri:corpus="PMC">000A28</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a" type="main">Alleviation of Multidrug Resistance by Flavonoid and Non-Flavonoid Compounds in Breast, Lung, Colorectal and Prostate Cancer</title>
<author>
<name sortKey="Costea, Teodora" sort="Costea, Teodora" uniqKey="Costea T" first="Teodora" last="Costea">Teodora Costea</name>
<affiliation>
<nlm:aff id="af1-ijms-21-00401">Department of Pharmacognosy, Phytochemistry and Phytotherapy, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania;
<email>teodora.costea@umfcd.ro</email>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Vlad, Oana Cezara" sort="Vlad, Oana Cezara" uniqKey="Vlad O" first="Oana Cezara" last="Vlad">Oana Cezara Vlad</name>
<affiliation>
<nlm:aff id="af2-ijms-21-00401">Department of Biophysics, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania;
<email>vlad.oana18@gmail.com</email>
(O.C.V.);
<email>constanta.ganea@gmail.com</email>
(C.G.)</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Miclea, Luminita Claudia" sort="Miclea, Luminita Claudia" uniqKey="Miclea L" first="Luminita-Claudia" last="Miclea">Luminita-Claudia Miclea</name>
<affiliation>
<nlm:aff id="af3-ijms-21-00401">Department of Biophysics and Cellular Biotechnology, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania;
<email>luminita.miclea@umfcd.ro</email>
</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="af4-ijms-21-00401">Research Excellence Center in Biophysics and Cellular Biotechnology, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Ganea, Constanta" sort="Ganea, Constanta" uniqKey="Ganea C" first="Constanta" last="Ganea">Constanta Ganea</name>
<affiliation>
<nlm:aff id="af2-ijms-21-00401">Department of Biophysics, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania;
<email>vlad.oana18@gmail.com</email>
(O.C.V.);
<email>constanta.ganea@gmail.com</email>
(C.G.)</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Szoll Si, Janos" sort="Szoll Si, Janos" uniqKey="Szoll Si J" first="János" last="Szöll Si">János Szöll Si</name>
<affiliation>
<nlm:aff id="af5-ijms-21-00401">Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary;
<email>szollo@med.unideb.hu</email>
</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="af6-ijms-21-00401">MTA-DE Cell Biology and Signaling Research Group, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Mocanu, Maria Magdalena" sort="Mocanu, Maria Magdalena" uniqKey="Mocanu M" first="Maria-Magdalena" last="Mocanu">Maria-Magdalena Mocanu</name>
<affiliation>
<nlm:aff id="af2-ijms-21-00401">Department of Biophysics, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania;
<email>vlad.oana18@gmail.com</email>
(O.C.V.);
<email>constanta.ganea@gmail.com</email>
(C.G.)</nlm:aff>
</affiliation>
</author>
</analytic>
<series>
<title level="j">International Journal of Molecular Sciences</title>
<idno type="eISSN">1422-0067</idno>
<imprint>
<date when="2020">2020</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<p>The aim of the manuscript is to discuss the influence of plant polyphenols in overcoming multidrug resistance in four types of solid cancers (breast, colorectal, lung and prostate cancer). Effective treatment requires the use of multiple toxic chemotherapeutic drugs with different properties and targets. However, a major cause of cancer treatment failure and metastasis is the development of multidrug resistance. Potential mechanisms of multidrug resistance include increase of drug efflux, drug inactivation, detoxification mechanisms, modification of drug target, inhibition of cell death, involvement of cancer stem cells, dysregulation of miRNAs activity, epigenetic variations, imbalance of DNA damage/repair processes, tumor heterogeneity, tumor microenvironment, epithelial to mesenchymal transition and modulation of reactive oxygen species. Taking into consideration that synthetic multidrug resistance agents have failed to demonstrate significant survival benefits in patients with different types of cancer, recent research have focused on beneficial effects of natural compounds. Several phenolic compounds (flavones, phenolcarboxylic acids, ellagitannins, stilbens, lignans, curcumin, etc.) act as chemopreventive agents due to their antioxidant capacity, inhibition of proliferation, survival, angiogenesis, and metastasis, modulation of immune and inflammatory responses or inactivation of pro-carcinogens. Moreover, preclinical and clinical studies revealed that these compounds prevent multidrug resistance in cancer by modulating different pathways. Additional research is needed regarding the role of phenolic compounds in the prevention of multidrug resistance in different types of cancer.</p>
</div>
</front>
<back>
<div1 type="bibliography">
<listBibl>
<biblStruct>
<analytic>
<author>
<name sortKey="Tomasetti, C" uniqKey="Tomasetti C">C. Tomasetti</name>
</author>
<author>
<name sortKey="Li, L" uniqKey="Li L">L. Li</name>
</author>
<author>
<name sortKey="Vogelstein, B" uniqKey="Vogelstein B">B. Vogelstein</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Hanahan, D" uniqKey="Hanahan D">D. Hanahan</name>
</author>
<author>
<name sortKey="Weinberg, R A" uniqKey="Weinberg R">R.A. Weinberg</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ferlay, J" uniqKey="Ferlay J">J. Ferlay</name>
</author>
<author>
<name sortKey="Soerjomataram, I" uniqKey="Soerjomataram I">I. Soerjomataram</name>
</author>
<author>
<name sortKey="Dikshit, R" uniqKey="Dikshit R">R. Dikshit</name>
</author>
<author>
<name sortKey="Eser, S" uniqKey="Eser S">S. Eser</name>
</author>
<author>
<name sortKey="Mathers, C" uniqKey="Mathers C">C. Mathers</name>
</author>
<author>
<name sortKey="Rebelo, M" uniqKey="Rebelo M">M. Rebelo</name>
</author>
<author>
<name sortKey="Parkin, D M" uniqKey="Parkin D">D.M. Parkin</name>
</author>
<author>
<name sortKey="Forman, D" uniqKey="Forman D">D. Forman</name>
</author>
<author>
<name sortKey="Bray, F" uniqKey="Bray F">F. Bray</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Torre, L A" uniqKey="Torre L">L.A. Torre</name>
</author>
<author>
<name sortKey="Siegel, R L" uniqKey="Siegel R">R.L. Siegel</name>
</author>
<author>
<name sortKey="Ward, E M" uniqKey="Ward E">E.M. Ward</name>
</author>
<author>
<name sortKey="Jemal, A" uniqKey="Jemal A">A. Jemal</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Lundqvist, A" uniqKey="Lundqvist A">A. Lundqvist</name>
</author>
<author>
<name sortKey="Andersson, E" uniqKey="Andersson E">E. Andersson</name>
</author>
<author>
<name sortKey="Ahlberg, I" uniqKey="Ahlberg I">I. Ahlberg</name>
</author>
<author>
<name sortKey="Nilbert, M" uniqKey="Nilbert M">M. Nilbert</name>
</author>
<author>
<name sortKey="Gerdtham, U" uniqKey="Gerdtham U">U. Gerdtham</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Anderson, K N" uniqKey="Anderson K">K.N. Anderson</name>
</author>
<author>
<name sortKey="Schwab, R B" uniqKey="Schwab R">R.B. Schwab</name>
</author>
<author>
<name sortKey="Martinez, M E" uniqKey="Martinez M">M.E. Martinez</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Banin Hirata, B K" uniqKey="Banin Hirata B">B.K. Banin Hirata</name>
</author>
<author>
<name sortKey="Oda, J M M" uniqKey="Oda J">J.M.M. Oda</name>
</author>
<author>
<name sortKey="Losi Guembarovski, R" uniqKey="Losi Guembarovski R">R. Losi Guembarovski</name>
</author>
<author>
<name sortKey="Ariza, C B" uniqKey="Ariza C">C.B. Ariza</name>
</author>
<author>
<name sortKey="De Oliveira, C E" uniqKey="De Oliveira C">C.E. de Oliveira</name>
</author>
<author>
<name sortKey="Watanabe, M A E" uniqKey="Watanabe M">M.A.E. Watanabe</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kami Ska, M" uniqKey="Kami Ska M">M. Kamińska</name>
</author>
<author>
<name sortKey="Ciszewski, T" uniqKey="Ciszewski T">T. Ciszewski</name>
</author>
<author>
<name sortKey="Lopacka Szatan, K" uniqKey="Lopacka Szatan K">K. Łopacka-Szatan</name>
</author>
<author>
<name sortKey="Miotla, P" uniqKey="Miotla P">P. Miotła</name>
</author>
<author>
<name sortKey="Staroslawska, E" uniqKey="Staroslawska E">E. Starosławska</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Samavat, H" uniqKey="Samavat H">H. Samavat</name>
</author>
<author>
<name sortKey="Kurzer, M S" uniqKey="Kurzer M">M.S. Kurzer</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Surakasula, A" uniqKey="Surakasula A">A. Surakasula</name>
</author>
<author>
<name sortKey="Nagarjunapu, G C" uniqKey="Nagarjunapu G">G.C. Nagarjunapu</name>
</author>
<author>
<name sortKey="Raghavaiah, K V" uniqKey="Raghavaiah K">K.V. Raghavaiah</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Farouk, O" uniqKey="Farouk O">O. Farouk</name>
</author>
<author>
<name sortKey="Ebrahim, M A" uniqKey="Ebrahim M">M.A. Ebrahim</name>
</author>
<author>
<name sortKey="Senbel, A" uniqKey="Senbel A">A. Senbel</name>
</author>
<author>
<name sortKey="Emarah, Z" uniqKey="Emarah Z">Z. Emarah</name>
</author>
<author>
<name sortKey="Abozeed, W" uniqKey="Abozeed W">W. Abozeed</name>
</author>
<author>
<name sortKey="Seisa, M O" uniqKey="Seisa M">M.O. Seisa</name>
</author>
<author>
<name sortKey="Mackisack, S" uniqKey="Mackisack S">S. Mackisack</name>
</author>
<author>
<name sortKey="Jalil, S A" uniqKey="Jalil S">S.A. Jalil</name>
</author>
<author>
<name sortKey="Abdelhady, S" uniqKey="Abdelhady S">S. Abdelhady</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Martin, H L" uniqKey="Martin H">H.L. Martin</name>
</author>
<author>
<name sortKey="Smith, L" uniqKey="Smith L">L. Smith</name>
</author>
<author>
<name sortKey="Tomlinson, D C" uniqKey="Tomlinson D">D.C. Tomlinson</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Yersal, O" uniqKey="Yersal O">O. Yersal</name>
</author>
<author>
<name sortKey="Barutca, S" uniqKey="Barutca S">S. Barutca</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Lehmann, B D" uniqKey="Lehmann B">B.D. Lehmann</name>
</author>
<author>
<name sortKey="Pietenpol, J A" uniqKey="Pietenpol J">J.A. Pietenpol</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Welch, H G" uniqKey="Welch H">H.G. Welch</name>
</author>
<author>
<name sortKey="Prorok, P C" uniqKey="Prorok P">P.C. Prorok</name>
</author>
<author>
<name sortKey="O Alley, A J" uniqKey="O Alley A">A.J. O’Malley</name>
</author>
<author>
<name sortKey="Kramer, B S" uniqKey="Kramer B">B.S. Kramer</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ridge, C A" uniqKey="Ridge C">C.A. Ridge</name>
</author>
<author>
<name sortKey="Mcerlean, A M" uniqKey="Mcerlean A">A.M. McErlean</name>
</author>
<author>
<name sortKey="Ginsberg, M S" uniqKey="Ginsberg M">M.S. Ginsberg</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Didkowska, J" uniqKey="Didkowska J">J. Didkowska</name>
</author>
<author>
<name sortKey="Wojciechowska, U" uniqKey="Wojciechowska U">U. Wojciechowska</name>
</author>
<author>
<name sortKey="Ma Czuk, M" uniqKey="Ma Czuk M">M. Mańczuk</name>
</author>
<author>
<name sortKey="Lobaszewski, J" uniqKey="Lobaszewski J">J. Łobaszewski</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Chen, D" uniqKey="Chen D">D. Chen</name>
</author>
<author>
<name sortKey="Zhang, L Q" uniqKey="Zhang L">L.-Q. Zhang</name>
</author>
<author>
<name sortKey="Huang, J F" uniqKey="Huang J">J.-F. Huang</name>
</author>
<author>
<name sortKey="Liu, K" uniqKey="Liu K">K. Liu</name>
</author>
<author>
<name sortKey="Chuai, Z R" uniqKey="Chuai Z">Z.-R. Chuai</name>
</author>
<author>
<name sortKey="Yang, Z" uniqKey="Yang Z">Z. Yang</name>
</author>
<author>
<name sortKey="Wang, Y X" uniqKey="Wang Y">Y.-X. Wang</name>
</author>
<author>
<name sortKey="Shi, D C" uniqKey="Shi D">D.-C. Shi</name>
</author>
<author>
<name sortKey="Liu, Q" uniqKey="Liu Q">Q. Liu</name>
</author>
<author>
<name sortKey="Huang, Q" uniqKey="Huang Q">Q. Huang</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Gazdar, A F" uniqKey="Gazdar A">A.F. Gazdar</name>
</author>
<author>
<name sortKey="Zhou, C" uniqKey="Zhou C">C. Zhou</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Midha, A" uniqKey="Midha A">A. Midha</name>
</author>
<author>
<name sortKey="Dearden, S" uniqKey="Dearden S">S. Dearden</name>
</author>
<author>
<name sortKey="Mccormack, R" uniqKey="Mccormack R">R. McCormack</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey=" Ines, M" uniqKey=" Ines M">M. Øines</name>
</author>
<author>
<name sortKey="Helsingen, L M" uniqKey="Helsingen L">L.M. Helsingen</name>
</author>
<author>
<name sortKey="Bretthauer, M" uniqKey="Bretthauer M">M. Bretthauer</name>
</author>
<author>
<name sortKey="Emilsson, L" uniqKey="Emilsson L">L. Emilsson</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Sakai, E" uniqKey="Sakai E">E. Sakai</name>
</author>
<author>
<name sortKey="Nakajima, A" uniqKey="Nakajima A">A. Nakajima</name>
</author>
<author>
<name sortKey="Kaneda, A" uniqKey="Kaneda A">A. Kaneda</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Wong, S H" uniqKey="Wong S">S.H. Wong</name>
</author>
<author>
<name sortKey="Kwong, T N Y" uniqKey="Kwong T">T.N.Y. Kwong</name>
</author>
<author>
<name sortKey="Wu, C Y" uniqKey="Wu C">C.-Y. Wu</name>
</author>
<author>
<name sortKey="Yu, J" uniqKey="Yu J">J. Yu</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Schwingshackl, L" uniqKey="Schwingshackl L">L. Schwingshackl</name>
</author>
<author>
<name sortKey="Schwedhelm, C" uniqKey="Schwedhelm C">C. Schwedhelm</name>
</author>
<author>
<name sortKey="Hoffmann, G" uniqKey="Hoffmann G">G. Hoffmann</name>
</author>
<author>
<name sortKey="Knuppel, S" uniqKey="Knuppel S">S. Knüppel</name>
</author>
<author>
<name sortKey="Laure Preterre, A" uniqKey="Laure Preterre A">A. Laure Preterre</name>
</author>
<author>
<name sortKey="Iqbal, K" uniqKey="Iqbal K">K. Iqbal</name>
</author>
<author>
<name sortKey="Bechthold, A" uniqKey="Bechthold A">A. Bechthold</name>
</author>
<author>
<name sortKey="De Henauw, S" uniqKey="De Henauw S">S. De Henauw</name>
</author>
<author>
<name sortKey="Michels, N" uniqKey="Michels N">N. Michels</name>
</author>
<author>
<name sortKey="Devleesschauwer, B" uniqKey="Devleesschauwer B">B. Devleesschauwer</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Wong, T S H" uniqKey="Wong T">T.S.-H. Wong</name>
</author>
<author>
<name sortKey="Chay, W Y" uniqKey="Chay W">W.Y. Chay</name>
</author>
<author>
<name sortKey="Tan, M H" uniqKey="Tan M">M.-H. Tan</name>
</author>
<author>
<name sortKey="Chow, K Y" uniqKey="Chow K">K.Y. Chow</name>
</author>
<author>
<name sortKey="Lim, W Y" uniqKey="Lim W">W.-Y. Lim</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Murphy, N" uniqKey="Murphy N">N. Murphy</name>
</author>
<author>
<name sortKey="Ward, H A" uniqKey="Ward H">H.A. Ward</name>
</author>
<author>
<name sortKey="Jenab, M" uniqKey="Jenab M">M. Jenab</name>
</author>
<author>
<name sortKey="Rothwell, J A" uniqKey="Rothwell J">J.A. Rothwell</name>
</author>
<author>
<name sortKey="Boutron Ruault, M C" uniqKey="Boutron Ruault M">M.-C. Boutron-Ruault</name>
</author>
<author>
<name sortKey="Carbonnel, F" uniqKey="Carbonnel F">F. Carbonnel</name>
</author>
<author>
<name sortKey="Kvaskoff, M" uniqKey="Kvaskoff M">M. Kvaskoff</name>
</author>
<author>
<name sortKey="Kaaks, R" uniqKey="Kaaks R">R. Kaaks</name>
</author>
<author>
<name sortKey="Kuhn, T" uniqKey="Kuhn T">T. Kühn</name>
</author>
<author>
<name sortKey="Boeing, H" uniqKey="Boeing H">H. Boeing</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Witold, K" uniqKey="Witold K">K. Witold</name>
</author>
<author>
<name sortKey="Anna, K" uniqKey="Anna K">K. Anna</name>
</author>
<author>
<name sortKey="Maciej, T" uniqKey="Maciej T">T. Maciej</name>
</author>
<author>
<name sortKey="Jakub, J" uniqKey="Jakub J">J. Jakub</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Tsaur, I" uniqKey="Tsaur I">I. Tsaur</name>
</author>
<author>
<name sortKey="Heidegger, I" uniqKey="Heidegger I">I. Heidegger</name>
</author>
<author>
<name sortKey="Kretschmer, A" uniqKey="Kretschmer A">A. Kretschmer</name>
</author>
<author>
<name sortKey="Borgmann, H" uniqKey="Borgmann H">H. Borgmann</name>
</author>
<author>
<name sortKey="Gandaglia, G" uniqKey="Gandaglia G">G. Gandaglia</name>
</author>
<author>
<name sortKey="Briganti, A" uniqKey="Briganti A">A. Briganti</name>
</author>
<author>
<name sortKey="De Visschere, P" uniqKey="De Visschere P">P. de Visschere</name>
</author>
<author>
<name sortKey="Mathieu, R" uniqKey="Mathieu R">R. Mathieu</name>
</author>
<author>
<name sortKey="Valerio, M" uniqKey="Valerio M">M. Valerio</name>
</author>
<author>
<name sortKey="Van Den Bergh, R" uniqKey="Van Den Bergh R">R. van den Bergh</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Leitzmann, M F" uniqKey="Leitzmann M">M.F. Leitzmann</name>
</author>
<author>
<name sortKey="Rohrmann, S" uniqKey="Rohrmann S">S. Rohrmann</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Mcallister, M J" uniqKey="Mcallister M">M.J. McAllister</name>
</author>
<author>
<name sortKey="Underwood, M A" uniqKey="Underwood M">M.A. Underwood</name>
</author>
<author>
<name sortKey="Leung, H Y" uniqKey="Leung H">H.Y. Leung</name>
</author>
<author>
<name sortKey="Edwards, J" uniqKey="Edwards J">J. Edwards</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Nguyen, K S H" uniqKey="Nguyen K">K.-S.H. Nguyen</name>
</author>
<author>
<name sortKey="Neal, J W" uniqKey="Neal J">J.W. Neal</name>
</author>
<author>
<name sortKey="Wakelee, H" uniqKey="Wakelee H">H. Wakelee</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Eid, S Y" uniqKey="Eid S">S.Y. Eid</name>
</author>
<author>
<name sortKey="El Readi, M Z" uniqKey="El Readi M">M.Z. El-Readi</name>
</author>
<author>
<name sortKey="Fatani, S H" uniqKey="Fatani S">S.H. Fatani</name>
</author>
<author>
<name sortKey="Eldin, E E M N" uniqKey="Eldin E">E.E.M.N. Eldin</name>
</author>
<author>
<name sortKey="Wink, M" uniqKey="Wink M">M. Wink</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Wang, P" uniqKey="Wang P">P. Wang</name>
</author>
<author>
<name sortKey="Yang, H L" uniqKey="Yang H">H.L. Yang</name>
</author>
<author>
<name sortKey="Yang, Y J" uniqKey="Yang Y">Y.J. Yang</name>
</author>
<author>
<name sortKey="Wang, L" uniqKey="Wang L">L. Wang</name>
</author>
<author>
<name sortKey="Lee, S C" uniqKey="Lee S">S.C. Lee</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Nabekura, T" uniqKey="Nabekura T">T. Nabekura</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ye, Q" uniqKey="Ye Q">Q. Ye</name>
</author>
<author>
<name sortKey="Liu, K" uniqKey="Liu K">K. Liu</name>
</author>
<author>
<name sortKey="Shen, Q" uniqKey="Shen Q">Q. Shen</name>
</author>
<author>
<name sortKey="Li, Q" uniqKey="Li Q">Q. Li</name>
</author>
<author>
<name sortKey="Hao, J" uniqKey="Hao J">J. Hao</name>
</author>
<author>
<name sortKey="Han, F" uniqKey="Han F">F. Han</name>
</author>
<author>
<name sortKey="Jiang, R W" uniqKey="Jiang R">R.W. Jiang</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kotecha, R" uniqKey="Kotecha R">R. Kotecha</name>
</author>
<author>
<name sortKey="Takami, A" uniqKey="Takami A">A. Takami</name>
</author>
<author>
<name sortKey="Espinoza, J L" uniqKey="Espinoza J">J.L. Espinoza</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Tangney, C C" uniqKey="Tangney C">C.C. Tangney</name>
</author>
<author>
<name sortKey="Rasmussen, H E" uniqKey="Rasmussen H">H.E. Rasmussen</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Mrduljas, N" uniqKey="Mrduljas N">N. Mrduljaš</name>
</author>
<author>
<name sortKey="Kresi, G" uniqKey="Kresi G">G. Krešić</name>
</author>
<author>
<name sortKey="Bilusi, T" uniqKey="Bilusi T">T. Bilušić</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Estrela, J M" uniqKey="Estrela J">J.M. Estrela</name>
</author>
<author>
<name sortKey="Mena, S" uniqKey="Mena S">S. Mena</name>
</author>
<author>
<name sortKey="Obrador, E" uniqKey="Obrador E">E. Obrador</name>
</author>
<author>
<name sortKey="Benlloch, M" uniqKey="Benlloch M">M. Benlloch</name>
</author>
<author>
<name sortKey="Castellano, G" uniqKey="Castellano G">G. Castellano</name>
</author>
<author>
<name sortKey="Salvador, R" uniqKey="Salvador R">R. Salvador</name>
</author>
<author>
<name sortKey="Dellinger, R W" uniqKey="Dellinger R">R.W. Dellinger</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Manach, C" uniqKey="Manach C">C. Manach</name>
</author>
<author>
<name sortKey="Scalbert, A" uniqKey="Scalbert A">A. Scalbert</name>
</author>
<author>
<name sortKey="Morand, C" uniqKey="Morand C">C. Morand</name>
</author>
<author>
<name sortKey="Remesy, C" uniqKey="Remesy C">C. Remesy</name>
</author>
<author>
<name sortKey="Jimenez, L" uniqKey="Jimenez L">L. Jimenez</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Yang, L" uniqKey="Yang L">L. Yang</name>
</author>
<author>
<name sortKey="Wang, Q" uniqKey="Wang Q">Q. Wang</name>
</author>
<author>
<name sortKey="Li, D" uniqKey="Li D">D. Li</name>
</author>
<author>
<name sortKey="Zhou, Y" uniqKey="Zhou Y">Y. Zhou</name>
</author>
<author>
<name sortKey="Zheng, X" uniqKey="Zheng X">X. Zheng</name>
</author>
<author>
<name sortKey="Sun, H" uniqKey="Sun H">H. Sun</name>
</author>
<author>
<name sortKey="Yan, J" uniqKey="Yan J">J. Yan</name>
</author>
<author>
<name sortKey="Zhang, L" uniqKey="Zhang L">L. Zhang</name>
</author>
<author>
<name sortKey="Lin, Y" uniqKey="Lin Y">Y. Lin</name>
</author>
<author>
<name sortKey="Wang, X" uniqKey="Wang X">X. Wang</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kim, K" uniqKey="Kim K">K. Kim</name>
</author>
<author>
<name sortKey="Vance, T M" uniqKey="Vance T">T.M. Vance</name>
</author>
<author>
<name sortKey="Chun, O K" uniqKey="Chun O">O.K. Chun</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Wang, Z" uniqKey="Wang Z">Z. Wang</name>
</author>
<author>
<name sortKey="Li, X" uniqKey="Li X">X. Li</name>
</author>
<author>
<name sortKey="Wang, D" uniqKey="Wang D">D. Wang</name>
</author>
<author>
<name sortKey="Zou, Y" uniqKey="Zou Y">Y. Zou</name>
</author>
<author>
<name sortKey="Qu, X" uniqKey="Qu X">X. Qu</name>
</author>
<author>
<name sortKey="He, C" uniqKey="He C">C. He</name>
</author>
<author>
<name sortKey="Deng, Y" uniqKey="Deng Y">Y. Deng</name>
</author>
<author>
<name sortKey="Jin, Y" uniqKey="Jin Y">Y. Jin</name>
</author>
<author>
<name sortKey="Zhou, Y" uniqKey="Zhou Y">Y. Zhou</name>
</author>
<author>
<name sortKey="Zhou, Y" uniqKey="Zhou Y">Y. Zhou</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Roy, A" uniqKey="Roy A">A. Roy</name>
</author>
<author>
<name sortKey="Ernsting, M J" uniqKey="Ernsting M">M.J. Ernsting</name>
</author>
<author>
<name sortKey="Undzys, E" uniqKey="Undzys E">E. Undzys</name>
</author>
<author>
<name sortKey="Li, S D" uniqKey="Li S">S.D. Li</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Zang, X" uniqKey="Zang X">X. Zang</name>
</author>
<author>
<name sortKey="Wang, G" uniqKey="Wang G">G. Wang</name>
</author>
<author>
<name sortKey="Cai, Q" uniqKey="Cai Q">Q. Cai</name>
</author>
<author>
<name sortKey="Zheng, X" uniqKey="Zheng X">X. Zheng</name>
</author>
<author>
<name sortKey="Zhang, J" uniqKey="Zhang J">J. Zhang</name>
</author>
<author>
<name sortKey="Chen, Q" uniqKey="Chen Q">Q. Chen</name>
</author>
<author>
<name sortKey="Wu, B" uniqKey="Wu B">B. Wu</name>
</author>
<author>
<name sortKey="Zhu, X" uniqKey="Zhu X">X. Zhu</name>
</author>
<author>
<name sortKey="Hao, H" uniqKey="Hao H">H. Hao</name>
</author>
<author>
<name sortKey="Zhou, F" uniqKey="Zhou F">F. Zhou</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Molavi, O" uniqKey="Molavi O">O. Molavi</name>
</author>
<author>
<name sortKey="Narimani, F" uniqKey="Narimani F">F. Narimani</name>
</author>
<author>
<name sortKey="Asiaee, F" uniqKey="Asiaee F">F. Asiaee</name>
</author>
<author>
<name sortKey="Sharifi, S" uniqKey="Sharifi S">S. Sharifi</name>
</author>
<author>
<name sortKey="Tarhriz, V" uniqKey="Tarhriz V">V. Tarhriz</name>
</author>
<author>
<name sortKey="Shayanfar, A" uniqKey="Shayanfar A">A. Shayanfar</name>
</author>
<author>
<name sortKey="Hejazi, M" uniqKey="Hejazi M">M. Hejazi</name>
</author>
<author>
<name sortKey="Lai, R" uniqKey="Lai R">R. Lai</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Di, Y" uniqKey="Di Y">Y. Di</name>
</author>
<author>
<name sortKey="De Silva, F" uniqKey="De Silva F">F. De Silva</name>
</author>
<author>
<name sortKey="Krol, E S" uniqKey="Krol E">E.S. Krol</name>
</author>
<author>
<name sortKey="Alcorn, J" uniqKey="Alcorn J">J. Alcorn</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kong, D" uniqKey="Kong D">D. Kong</name>
</author>
<author>
<name sortKey="Zhang, D" uniqKey="Zhang D">D. Zhang</name>
</author>
<author>
<name sortKey="Chu, X" uniqKey="Chu X">X. Chu</name>
</author>
<author>
<name sortKey="Wang, J" uniqKey="Wang J">J. Wang</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Lorenzo, J M" uniqKey="Lorenzo J">J.M. Lorenzo</name>
</author>
<author>
<name sortKey="Munekata, P E" uniqKey="Munekata P">P.E. Munekata</name>
</author>
<author>
<name sortKey="Putnik, P" uniqKey="Putnik P">P. Putnik</name>
</author>
<author>
<name sortKey="Kova Evi, D B" uniqKey="Kova Evi D">D.B. Kovačević</name>
</author>
<author>
<name sortKey="Muchenje, V" uniqKey="Muchenje V">V. Muchenje</name>
</author>
<author>
<name sortKey="Barba, F J" uniqKey="Barba F">F.J. Barba</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Wei, Y" uniqKey="Wei Y">Y. Wei</name>
</author>
<author>
<name sortKey="Pu, X" uniqKey="Pu X">X. Pu</name>
</author>
<author>
<name sortKey="Zhao, L" uniqKey="Zhao L">L. Zhao</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Liu, C M" uniqKey="Liu C">C.-M. Liu</name>
</author>
<author>
<name sortKey="Kao, C L" uniqKey="Kao C">C.-L. Kao</name>
</author>
<author>
<name sortKey="Tseng, Y T" uniqKey="Tseng Y">Y.-T. Tseng</name>
</author>
<author>
<name sortKey="Lo, Y C" uniqKey="Lo Y">Y.-C. Lo</name>
</author>
<author>
<name sortKey="Chen, C Y" uniqKey="Chen C">C.-Y. Chen</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Harris, A L" uniqKey="Harris A">A.L. Harris</name>
</author>
<author>
<name sortKey="Hochhauser, D" uniqKey="Hochhauser D">D. Hochhauser</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Holohan, C" uniqKey="Holohan C">C. Holohan</name>
</author>
<author>
<name sortKey="Van Schaeybroeck, S" uniqKey="Van Schaeybroeck S">S. Van Schaeybroeck</name>
</author>
<author>
<name sortKey="Longley, D B" uniqKey="Longley D">D.B. Longley</name>
</author>
<author>
<name sortKey="Johnston, P G" uniqKey="Johnston P">P.G. Johnston</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Housman, G" uniqKey="Housman G">G. Housman</name>
</author>
<author>
<name sortKey="Byler, S" uniqKey="Byler S">S. Byler</name>
</author>
<author>
<name sortKey="Heerboth, S" uniqKey="Heerboth S">S. Heerboth</name>
</author>
<author>
<name sortKey="Lapinska, K" uniqKey="Lapinska K">K. Lapinska</name>
</author>
<author>
<name sortKey="Longacre, M" uniqKey="Longacre M">M. Longacre</name>
</author>
<author>
<name sortKey="Snyder, N" uniqKey="Snyder N">N. Snyder</name>
</author>
<author>
<name sortKey="Sarkar, S" uniqKey="Sarkar S">S. Sarkar</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Zheng, H C" uniqKey="Zheng H">H.-C. Zheng</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Borst, P" uniqKey="Borst P">P. Borst</name>
</author>
<author>
<name sortKey="Elferink, R O" uniqKey="Elferink R">R.O. Elferink</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Rees, D C" uniqKey="Rees D">D.C. Rees</name>
</author>
<author>
<name sortKey="Johnson, E" uniqKey="Johnson E">E. Johnson</name>
</author>
<author>
<name sortKey="Lewinson, O" uniqKey="Lewinson O">O. Lewinson</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Vasiliou, V" uniqKey="Vasiliou V">V. Vasiliou</name>
</author>
<author>
<name sortKey="Vasiliou, K" uniqKey="Vasiliou K">K. Vasiliou</name>
</author>
<author>
<name sortKey="Nebert, D W" uniqKey="Nebert D">D.W. Nebert</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Gottesman, M M" uniqKey="Gottesman M">M.M. Gottesman</name>
</author>
<author>
<name sortKey="Fojo, T" uniqKey="Fojo T">T. Fojo</name>
</author>
<author>
<name sortKey="Bates, S E" uniqKey="Bates S">S.E. Bates</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Dean, M" uniqKey="Dean M">M. Dean</name>
</author>
<author>
<name sortKey="Rzhetsky, A" uniqKey="Rzhetsky A">A. Rzhetsky</name>
</author>
<author>
<name sortKey="Allikmets, R" uniqKey="Allikmets R">R. Allikmets</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Linn, S C" uniqKey="Linn S">S.C. Linn</name>
</author>
<author>
<name sortKey="Giaccone, G" uniqKey="Giaccone G">G. Giaccone</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kong, X B" uniqKey="Kong X">X.B. Kong</name>
</author>
<author>
<name sortKey="Yang, Z K" uniqKey="Yang Z">Z.K. Yang</name>
</author>
<author>
<name sortKey="Liang, L J" uniqKey="Liang L">L.J. Liang</name>
</author>
<author>
<name sortKey="Huang, J F" uniqKey="Huang J">J.F. Huang</name>
</author>
<author>
<name sortKey="Lin, H L" uniqKey="Lin H">H.L. Lin</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Clarke, R" uniqKey="Clarke R">R. Clarke</name>
</author>
<author>
<name sortKey="Leonessa, F" uniqKey="Leonessa F">F. Leonessa</name>
</author>
<author>
<name sortKey="Trock, B" uniqKey="Trock B">B. Trock</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Triller, N" uniqKey="Triller N">N. Triller</name>
</author>
<author>
<name sortKey="Korosec, P" uniqKey="Korosec P">P. Korosec</name>
</author>
<author>
<name sortKey="Kern, I" uniqKey="Kern I">I. Kern</name>
</author>
<author>
<name sortKey="Kosnik, M" uniqKey="Kosnik M">M. Kosnik</name>
</author>
<author>
<name sortKey="Debeljak, A" uniqKey="Debeljak A">A. Debeljak</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Sanchez, C" uniqKey="Sanchez C">C. Sanchez</name>
</author>
<author>
<name sortKey="Mendoza, P" uniqKey="Mendoza P">P. Mendoza</name>
</author>
<author>
<name sortKey="Contreras, H R" uniqKey="Contreras H">H.R. Contreras</name>
</author>
<author>
<name sortKey="Vergara, J" uniqKey="Vergara J">J. Vergara</name>
</author>
<author>
<name sortKey="Mccubrey, J A" uniqKey="Mccubrey J">J.A. McCubrey</name>
</author>
<author>
<name sortKey="Huidobro, C" uniqKey="Huidobro C">C. Huidobro</name>
</author>
<author>
<name sortKey="Castellon, E A" uniqKey="Castellon E">E.A. Castellon</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Aldonza, M B D" uniqKey="Aldonza M">M.B.D. Aldonza</name>
</author>
<author>
<name sortKey="Hong, J Y" uniqKey="Hong J">J.-Y. Hong</name>
</author>
<author>
<name sortKey="Bae, S Y" uniqKey="Bae S">S.Y. Bae</name>
</author>
<author>
<name sortKey="Song, J" uniqKey="Song J">J. Song</name>
</author>
<author>
<name sortKey="Kim, W K" uniqKey="Kim W">W.K. Kim</name>
</author>
<author>
<name sortKey="Oh, J" uniqKey="Oh J">J. Oh</name>
</author>
<author>
<name sortKey="Shin, Y" uniqKey="Shin Y">Y. Shin</name>
</author>
<author>
<name sortKey="Lee, S H" uniqKey="Lee S">S.H. Lee</name>
</author>
<author>
<name sortKey="Lee, S K" uniqKey="Lee S">S.K. Lee</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Xu, J W" uniqKey="Xu J">J.W. Xu</name>
</author>
<author>
<name sortKey="Li, Q Q" uniqKey="Li Q">Q.Q. Li</name>
</author>
<author>
<name sortKey="Tao, L L" uniqKey="Tao L">L.L. Tao</name>
</author>
<author>
<name sortKey="Cheng, Y Y" uniqKey="Cheng Y">Y.Y. Cheng</name>
</author>
<author>
<name sortKey="Yu, J" uniqKey="Yu J">J. Yu</name>
</author>
<author>
<name sortKey="Chen, Q" uniqKey="Chen Q">Q. Chen</name>
</author>
<author>
<name sortKey="Liu, X P" uniqKey="Liu X">X.P. Liu</name>
</author>
<author>
<name sortKey="Xu, Z D" uniqKey="Xu Z">Z.D. Xu</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Sui, H" uniqKey="Sui H">H. Sui</name>
</author>
<author>
<name sortKey="Fan, Z Z" uniqKey="Fan Z">Z.Z. Fan</name>
</author>
<author>
<name sortKey="Li, Q" uniqKey="Li Q">Q. Li</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Zhao, B X" uniqKey="Zhao B">B.X. Zhao</name>
</author>
<author>
<name sortKey="Sun, Y B" uniqKey="Sun Y">Y.B. Sun</name>
</author>
<author>
<name sortKey="Wang, S Q" uniqKey="Wang S">S.Q. Wang</name>
</author>
<author>
<name sortKey="Duan, L" uniqKey="Duan L">L. Duan</name>
</author>
<author>
<name sortKey="Huo, Q L" uniqKey="Huo Q">Q.L. Huo</name>
</author>
<author>
<name sortKey="Ren, F" uniqKey="Ren F">F. Ren</name>
</author>
<author>
<name sortKey="Li, G F" uniqKey="Li G">G.F. Li</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Akiyama, K" uniqKey="Akiyama K">K. Akiyama</name>
</author>
<author>
<name sortKey="Ohga, N" uniqKey="Ohga N">N. Ohga</name>
</author>
<author>
<name sortKey="Hida, Y" uniqKey="Hida Y">Y. Hida</name>
</author>
<author>
<name sortKey="Kawamoto, T" uniqKey="Kawamoto T">T. Kawamoto</name>
</author>
<author>
<name sortKey="Sadamoto, Y" uniqKey="Sadamoto Y">Y. Sadamoto</name>
</author>
<author>
<name sortKey="Ishikawa, S" uniqKey="Ishikawa S">S. Ishikawa</name>
</author>
<author>
<name sortKey="Maishi, N" uniqKey="Maishi N">N. Maishi</name>
</author>
<author>
<name sortKey="Akino, T" uniqKey="Akino T">T. Akino</name>
</author>
<author>
<name sortKey="Kondoh, M" uniqKey="Kondoh M">M. Kondoh</name>
</author>
<author>
<name sortKey="Matsuda, A" uniqKey="Matsuda A">A. Matsuda</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Mirzaei, S A" uniqKey="Mirzaei S">S.A. Mirzaei</name>
</author>
<author>
<name sortKey="Dinmohammadi, F" uniqKey="Dinmohammadi F">F. Dinmohammadi</name>
</author>
<author>
<name sortKey="Alizadeh, A" uniqKey="Alizadeh A">A. Alizadeh</name>
</author>
<author>
<name sortKey="Elahian, F" uniqKey="Elahian F">F. Elahian</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kast, H R" uniqKey="Kast H">H.R. Kast</name>
</author>
<author>
<name sortKey="Goodwin, B" uniqKey="Goodwin B">B. Goodwin</name>
</author>
<author>
<name sortKey="Tarr, P T" uniqKey="Tarr P">P.T. Tarr</name>
</author>
<author>
<name sortKey="Jones, S A" uniqKey="Jones S">S.A. Jones</name>
</author>
<author>
<name sortKey="Anisfeld, A M" uniqKey="Anisfeld A">A.M. Anisfeld</name>
</author>
<author>
<name sortKey="Stoltz, C M" uniqKey="Stoltz C">C.M. Stoltz</name>
</author>
<author>
<name sortKey="Tontonoz, P" uniqKey="Tontonoz P">P. Tontonoz</name>
</author>
<author>
<name sortKey="Kliewer, S" uniqKey="Kliewer S">S. Kliewer</name>
</author>
<author>
<name sortKey="Willson, T M" uniqKey="Willson T">T.M. Willson</name>
</author>
<author>
<name sortKey="Edwards, P A" uniqKey="Edwards P">P.A. Edwards</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Wang, X" uniqKey="Wang X">X. Wang</name>
</author>
<author>
<name sortKey="Sykes, D B" uniqKey="Sykes D">D.B. Sykes</name>
</author>
<author>
<name sortKey="Miller, D S" uniqKey="Miller D">D.S. Miller</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Banerjee, M" uniqKey="Banerjee M">M. Banerjee</name>
</author>
<author>
<name sortKey="Robbins, D" uniqKey="Robbins D">D. Robbins</name>
</author>
<author>
<name sortKey="Chen, T" uniqKey="Chen T">T. Chen</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Alexa Stratulat, T" uniqKey="Alexa Stratulat T">T. Alexa-Stratulat</name>
</author>
<author>
<name sortKey="Pesi, M" uniqKey="Pesi M">M. Pešić</name>
</author>
<author>
<name sortKey="Gasparovi, A" uniqKey="Gasparovi A">A.Č. Gašparović</name>
</author>
<author>
<name sortKey="Trougakos, I P" uniqKey="Trougakos I">I.P. Trougakos</name>
</author>
<author>
<name sortKey="Riganti, C" uniqKey="Riganti C">C. Riganti</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Sulova, Z" uniqKey="Sulova Z">Z. Sulova</name>
</author>
<author>
<name sortKey="Macejova, D" uniqKey="Macejova D">D. Macejova</name>
</author>
<author>
<name sortKey="Seres, M" uniqKey="Seres M">M. Seres</name>
</author>
<author>
<name sortKey="Sedlak, J" uniqKey="Sedlak J">J. Sedlak</name>
</author>
<author>
<name sortKey="Brtko, J" uniqKey="Brtko J">J. Brtko</name>
</author>
<author>
<name sortKey="Breier, A" uniqKey="Breier A">A. Breier</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Abd Ellah, N H" uniqKey="Abd Ellah N">N.H. Abd Ellah</name>
</author>
<author>
<name sortKey="Taylor, L" uniqKey="Taylor L">L. Taylor</name>
</author>
<author>
<name sortKey="Ayres, N" uniqKey="Ayres N">N. Ayres</name>
</author>
<author>
<name sortKey="Elmahdy, M M" uniqKey="Elmahdy M">M.M. Elmahdy</name>
</author>
<author>
<name sortKey="Fetih, G N" uniqKey="Fetih G">G.N. Fetih</name>
</author>
<author>
<name sortKey="Jones, H N" uniqKey="Jones H">H.N. Jones</name>
</author>
<author>
<name sortKey="Ibrahim, E A" uniqKey="Ibrahim E">E.A. Ibrahim</name>
</author>
<author>
<name sortKey="Pauletti, G M" uniqKey="Pauletti G">G.M. Pauletti</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Bush, J A" uniqKey="Bush J">J.A. Bush</name>
</author>
<author>
<name sortKey="Li, G" uniqKey="Li G">G. Li</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Sullivan, G F" uniqKey="Sullivan G">G.F. Sullivan</name>
</author>
<author>
<name sortKey="Yang, J M" uniqKey="Yang J">J.M. Yang</name>
</author>
<author>
<name sortKey="Vassil, A" uniqKey="Vassil A">A. Vassil</name>
</author>
<author>
<name sortKey="Yang, J" uniqKey="Yang J">J. Yang</name>
</author>
<author>
<name sortKey="Bash Babula, J" uniqKey="Bash Babula J">J. Bash-Babula</name>
</author>
<author>
<name sortKey="Hait, W N" uniqKey="Hait W">W.N. Hait</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Stavrovskaya, A A" uniqKey="Stavrovskaya A">A.A. Stavrovskaya</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Wang, X K" uniqKey="Wang X">X.K. Wang</name>
</author>
<author>
<name sortKey="Fu, L W" uniqKey="Fu L">L.W. Fu</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ambudkar, S V" uniqKey="Ambudkar S">S.V. Ambudkar</name>
</author>
<author>
<name sortKey="Dey, S" uniqKey="Dey S">S. Dey</name>
</author>
<author>
<name sortKey="Hrycyna, C A" uniqKey="Hrycyna C">C.A. Hrycyna</name>
</author>
<author>
<name sortKey="Ramachandra, M" uniqKey="Ramachandra M">M. Ramachandra</name>
</author>
<author>
<name sortKey="Pastan, I" uniqKey="Pastan I">I. Pastan</name>
</author>
<author>
<name sortKey="Gottesman, M M" uniqKey="Gottesman M">M.M. Gottesman</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Borst, P" uniqKey="Borst P">P. Borst</name>
</author>
<author>
<name sortKey="Evers, R" uniqKey="Evers R">R. Evers</name>
</author>
<author>
<name sortKey="Kool, M" uniqKey="Kool M">M. Kool</name>
</author>
<author>
<name sortKey="Wijnholds, J" uniqKey="Wijnholds J">J. Wijnholds</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Sharom, F J" uniqKey="Sharom F">F.J. Sharom</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Callaghan, R" uniqKey="Callaghan R">R. Callaghan</name>
</author>
<author>
<name sortKey="Luk, F" uniqKey="Luk F">F. Luk</name>
</author>
<author>
<name sortKey="Bebawy, M" uniqKey="Bebawy M">M. Bebawy</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Tsuruo, T" uniqKey="Tsuruo T">T. Tsuruo</name>
</author>
<author>
<name sortKey="Iida, H" uniqKey="Iida H">H. Iida</name>
</author>
<author>
<name sortKey="Tsukagoshi, S" uniqKey="Tsukagoshi S">S. Tsukagoshi</name>
</author>
<author>
<name sortKey="Sakurai, Y" uniqKey="Sakurai Y">Y. Sakurai</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Tsuruo, T" uniqKey="Tsuruo T">T. Tsuruo</name>
</author>
<author>
<name sortKey="Iida, H" uniqKey="Iida H">H. Iida</name>
</author>
<author>
<name sortKey="Nojiri, M" uniqKey="Nojiri M">M. Nojiri</name>
</author>
<author>
<name sortKey="Tsukagoshi, S" uniqKey="Tsukagoshi S">S. Tsukagoshi</name>
</author>
<author>
<name sortKey="Sakurai, Y" uniqKey="Sakurai Y">Y. Sakurai</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Dalton, W S" uniqKey="Dalton W">W.S. Dalton</name>
</author>
<author>
<name sortKey="Grogan, T M" uniqKey="Grogan T">T.M. Grogan</name>
</author>
<author>
<name sortKey="Meltzer, P S" uniqKey="Meltzer P">P.S. Meltzer</name>
</author>
<author>
<name sortKey="Scheper, R J" uniqKey="Scheper R">R.J. Scheper</name>
</author>
<author>
<name sortKey="Durie, B G" uniqKey="Durie B">B.G. Durie</name>
</author>
<author>
<name sortKey="Taylor, C W" uniqKey="Taylor C">C.W. Taylor</name>
</author>
<author>
<name sortKey="Miller, T P" uniqKey="Miller T">T.P. Miller</name>
</author>
<author>
<name sortKey="Salmon, S E" uniqKey="Salmon S">S.E. Salmon</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="To, K K" uniqKey="To K">K.K. To</name>
</author>
<author>
<name sortKey="Tomlinson, B" uniqKey="Tomlinson B">B. Tomlinson</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Mansoori, B" uniqKey="Mansoori B">B. Mansoori</name>
</author>
<author>
<name sortKey="Mohammadi, A" uniqKey="Mohammadi A">A. Mohammadi</name>
</author>
<author>
<name sortKey="Davudian, S" uniqKey="Davudian S">S. Davudian</name>
</author>
<author>
<name sortKey="Shirjang, S" uniqKey="Shirjang S">S. Shirjang</name>
</author>
<author>
<name sortKey="Baradaran, B" uniqKey="Baradaran B">B. Baradaran</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kosuri, K V" uniqKey="Kosuri K">K.V. Kosuri</name>
</author>
<author>
<name sortKey="Wu, X" uniqKey="Wu X">X. Wu</name>
</author>
<author>
<name sortKey="Wang, L" uniqKey="Wang L">L. Wang</name>
</author>
<author>
<name sortKey="Villalona Calero, M A" uniqKey="Villalona Calero M">M.A. Villalona-Calero</name>
</author>
<author>
<name sortKey="Otterson, G A" uniqKey="Otterson G">G.A. Otterson</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Novotna, R" uniqKey="Novotna R">R. Novotna</name>
</author>
<author>
<name sortKey="Wsol, V" uniqKey="Wsol V">V. Wsol</name>
</author>
<author>
<name sortKey="Xiong, G" uniqKey="Xiong G">G. Xiong</name>
</author>
<author>
<name sortKey="Maser, E" uniqKey="Maser E">E. Maser</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Assaraf, Y G" uniqKey="Assaraf Y">Y.G. Assaraf</name>
</author>
<author>
<name sortKey="Brozovic, A" uniqKey="Brozovic A">A. Brozovic</name>
</author>
<author>
<name sortKey="Goncalves, A C" uniqKey="Goncalves A">A.C. Goncalves</name>
</author>
<author>
<name sortKey="Jurkovicova, D" uniqKey="Jurkovicova D">D. Jurkovicova</name>
</author>
<author>
<name sortKey="Line, A" uniqKey="Line A">A. Line</name>
</author>
<author>
<name sortKey="Machuqueiro, M" uniqKey="Machuqueiro M">M. Machuqueiro</name>
</author>
<author>
<name sortKey="Saponara, S" uniqKey="Saponara S">S. Saponara</name>
</author>
<author>
<name sortKey="Sarmento Ribeiro, A B" uniqKey="Sarmento Ribeiro A">A.B. Sarmento-Ribeiro</name>
</author>
<author>
<name sortKey="Xavier, C P R" uniqKey="Xavier C">C.P.R. Xavier</name>
</author>
<author>
<name sortKey="Vasconcelos, M H" uniqKey="Vasconcelos M">M.H. Vasconcelos</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Tew, K D" uniqKey="Tew K">K.D. Tew</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Tew, K D" uniqKey="Tew K">K.D. Tew</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Starlard Davenport, A" uniqKey="Starlard Davenport A">A. Starlard-Davenport</name>
</author>
<author>
<name sortKey="Lyn Cook, B" uniqKey="Lyn Cook B">B. Lyn-Cook</name>
</author>
<author>
<name sortKey="Beland, F A" uniqKey="Beland F">F.A. Beland</name>
</author>
<author>
<name sortKey="Pogribny, I P" uniqKey="Pogribny I">I.P. Pogribny</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Hakem, R" uniqKey="Hakem R">R. Hakem</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Cheung Ong, K" uniqKey="Cheung Ong K">K. Cheung-Ong</name>
</author>
<author>
<name sortKey="Giaever, G" uniqKey="Giaever G">G. Giaever</name>
</author>
<author>
<name sortKey="Nislow, C" uniqKey="Nislow C">C. Nislow</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Bouwman, P" uniqKey="Bouwman P">P. Bouwman</name>
</author>
<author>
<name sortKey="Jonkers, J" uniqKey="Jonkers J">J. Jonkers</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Li, G M" uniqKey="Li G">G.M. Li</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Scharer, O D" uniqKey="Scharer O">O.D. Scharer</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Krokan, H E" uniqKey="Krokan H">H.E. Krokan</name>
</author>
<author>
<name sortKey="Bjoras, M" uniqKey="Bjoras M">M. Bjoras</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Li, X" uniqKey="Li X">X. Li</name>
</author>
<author>
<name sortKey="Heyer, W D" uniqKey="Heyer W">W.D. Heyer</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Davis, A J" uniqKey="Davis A">A.J. Davis</name>
</author>
<author>
<name sortKey="Chen, D J" uniqKey="Chen D">D.J. Chen</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Slyskova, J" uniqKey="Slyskova J">J. Slyskova</name>
</author>
<author>
<name sortKey="Sabatella, M" uniqKey="Sabatella M">M. Sabatella</name>
</author>
<author>
<name sortKey="Ribeiro Silva, C" uniqKey="Ribeiro Silva C">C. Ribeiro-Silva</name>
</author>
<author>
<name sortKey="Stok, C" uniqKey="Stok C">C. Stok</name>
</author>
<author>
<name sortKey="Theil, A F" uniqKey="Theil A">A.F. Theil</name>
</author>
<author>
<name sortKey="Vermeulen, W" uniqKey="Vermeulen W">W. Vermeulen</name>
</author>
<author>
<name sortKey="Lans, H" uniqKey="Lans H">H. Lans</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Jover, R" uniqKey="Jover R">R. Jover</name>
</author>
<author>
<name sortKey="Zapater, P" uniqKey="Zapater P">P. Zapater</name>
</author>
<author>
<name sortKey="Castells, A" uniqKey="Castells A">A. Castells</name>
</author>
<author>
<name sortKey="Llor, X" uniqKey="Llor X">X. Llor</name>
</author>
<author>
<name sortKey="Andreu, M" uniqKey="Andreu M">M. Andreu</name>
</author>
<author>
<name sortKey="Cubiella, J" uniqKey="Cubiella J">J. Cubiella</name>
</author>
<author>
<name sortKey="Balaguer, F" uniqKey="Balaguer F">F. Balaguer</name>
</author>
<author>
<name sortKey="Sempere, L" uniqKey="Sempere L">L. Sempere</name>
</author>
<author>
<name sortKey="Xicola, R M" uniqKey="Xicola R">R.M. Xicola</name>
</author>
<author>
<name sortKey="Bujanda, L" uniqKey="Bujanda L">L. Bujanda</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Lynch, T J" uniqKey="Lynch T">T.J. Lynch</name>
</author>
<author>
<name sortKey="Bell, D W" uniqKey="Bell D">D.W. Bell</name>
</author>
<author>
<name sortKey="Sordella, R" uniqKey="Sordella R">R. Sordella</name>
</author>
<author>
<name sortKey="Gurubhagavatula, S" uniqKey="Gurubhagavatula S">S. Gurubhagavatula</name>
</author>
<author>
<name sortKey="Okimoto, R A" uniqKey="Okimoto R">R.A. Okimoto</name>
</author>
<author>
<name sortKey="Brannigan, B W" uniqKey="Brannigan B">B.W. Brannigan</name>
</author>
<author>
<name sortKey="Harris, P L" uniqKey="Harris P">P.L. Harris</name>
</author>
<author>
<name sortKey="Haserlat, S M" uniqKey="Haserlat S">S.M. Haserlat</name>
</author>
<author>
<name sortKey="Supko, J G" uniqKey="Supko J">J.G. Supko</name>
</author>
<author>
<name sortKey="Haluska, F G" uniqKey="Haluska F">F.G. Haluska</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kobayashi, S" uniqKey="Kobayashi S">S. Kobayashi</name>
</author>
<author>
<name sortKey="Boggon, T J" uniqKey="Boggon T">T.J. Boggon</name>
</author>
<author>
<name sortKey="Dayaram, T" uniqKey="Dayaram T">T. Dayaram</name>
</author>
<author>
<name sortKey="Janne, P A" uniqKey="Janne P">P.A. Janne</name>
</author>
<author>
<name sortKey="Kocher, O" uniqKey="Kocher O">O. Kocher</name>
</author>
<author>
<name sortKey="Meyerson, M" uniqKey="Meyerson M">M. Meyerson</name>
</author>
<author>
<name sortKey="Johnson, B E" uniqKey="Johnson B">B.E. Johnson</name>
</author>
<author>
<name sortKey="Eck, M J" uniqKey="Eck M">M.J. Eck</name>
</author>
<author>
<name sortKey="Tenen, D G" uniqKey="Tenen D">D.G. Tenen</name>
</author>
<author>
<name sortKey="Halmos, B" uniqKey="Halmos B">B. Halmos</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="O Are, T" uniqKey="O Are T">T. O’Hare</name>
</author>
<author>
<name sortKey="Eide, C A" uniqKey="Eide C">C.A. Eide</name>
</author>
<author>
<name sortKey="Deininger, M W" uniqKey="Deininger M">M.W. Deininger</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Hengartner, M O" uniqKey="Hengartner M">M.O. Hengartner</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Elmore, S" uniqKey="Elmore S">S. Elmore</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Singh, R" uniqKey="Singh R">R. Singh</name>
</author>
<author>
<name sortKey="Letai, A" uniqKey="Letai A">A. Letai</name>
</author>
<author>
<name sortKey="Sarosiek, K" uniqKey="Sarosiek K">K. Sarosiek</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Tian, Z" uniqKey="Tian Z">Z. Tian</name>
</author>
<author>
<name sortKey="Tang, J" uniqKey="Tang J">J. Tang</name>
</author>
<author>
<name sortKey="Yang, Q" uniqKey="Yang Q">Q. Yang</name>
</author>
<author>
<name sortKey="Li, X" uniqKey="Li X">X. Li</name>
</author>
<author>
<name sortKey="Zhu, J" uniqKey="Zhu J">J. Zhu</name>
</author>
<author>
<name sortKey="Wu, G" uniqKey="Wu G">G. Wu</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Baguley, B C" uniqKey="Baguley B">B.C. Baguley</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Longley, D" uniqKey="Longley D">D. Longley</name>
</author>
<author>
<name sortKey="Johnston, P" uniqKey="Johnston P">P. Johnston</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Bruyere, C" uniqKey="Bruyere C">C. Bruyere</name>
</author>
<author>
<name sortKey="Meijer, L" uniqKey="Meijer L">L. Meijer</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Mancinelli, R" uniqKey="Mancinelli R">R. Mancinelli</name>
</author>
<author>
<name sortKey="Carpino, G" uniqKey="Carpino G">G. Carpino</name>
</author>
<author>
<name sortKey="Petrungaro, S" uniqKey="Petrungaro S">S. Petrungaro</name>
</author>
<author>
<name sortKey="Mammola, C L" uniqKey="Mammola C">C.L. Mammola</name>
</author>
<author>
<name sortKey="Tomaipitinca, L" uniqKey="Tomaipitinca L">L. Tomaipitinca</name>
</author>
<author>
<name sortKey="Filippini, A" uniqKey="Filippini A">A. Filippini</name>
</author>
<author>
<name sortKey="Facchiano, A" uniqKey="Facchiano A">A. Facchiano</name>
</author>
<author>
<name sortKey="Ziparo, E" uniqKey="Ziparo E">E. Ziparo</name>
</author>
<author>
<name sortKey="Giampietri, C" uniqKey="Giampietri C">C. Giampietri</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Wangpaichitr, M" uniqKey="Wangpaichitr M">M. Wangpaichitr</name>
</author>
<author>
<name sortKey="Wu, C" uniqKey="Wu C">C. Wu</name>
</author>
<author>
<name sortKey="You, M" uniqKey="You M">M. You</name>
</author>
<author>
<name sortKey="Kuo, M T" uniqKey="Kuo M">M.T. Kuo</name>
</author>
<author>
<name sortKey="Feun, L" uniqKey="Feun L">L. Feun</name>
</author>
<author>
<name sortKey="Lampidis, T" uniqKey="Lampidis T">T. Lampidis</name>
</author>
<author>
<name sortKey="Savaraj, N" uniqKey="Savaraj N">N. Savaraj</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Sewify, E M" uniqKey="Sewify E">E.M. Sewify</name>
</author>
<author>
<name sortKey="Afifi, O A" uniqKey="Afifi O">O.A. Afifi</name>
</author>
<author>
<name sortKey="Mosad, E" uniqKey="Mosad E">E. Mosad</name>
</author>
<author>
<name sortKey="Zaki, A H" uniqKey="Zaki A">A.H. Zaki</name>
</author>
<author>
<name sortKey="El Gammal, S A" uniqKey="El Gammal S">S.A. El Gammal</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Gillet, J P" uniqKey="Gillet J">J.P. Gillet</name>
</author>
<author>
<name sortKey="Gottesman, M M" uniqKey="Gottesman M">M.M. Gottesman</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="O Rien, S M" uniqKey="O Rien S">S.M. O’Brien</name>
</author>
<author>
<name sortKey="Cunningham, C C" uniqKey="Cunningham C">C.C. Cunningham</name>
</author>
<author>
<name sortKey="Golenkov, A K" uniqKey="Golenkov A">A.K. Golenkov</name>
</author>
<author>
<name sortKey="Turkina, A G" uniqKey="Turkina A">A.G. Turkina</name>
</author>
<author>
<name sortKey="Novick, S C" uniqKey="Novick S">S.C. Novick</name>
</author>
<author>
<name sortKey="Rai, K R" uniqKey="Rai K">K.R. Rai</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="O Rien, S" uniqKey="O Rien S">S. O’Brien</name>
</author>
<author>
<name sortKey="Moore, J O" uniqKey="Moore J">J.O. Moore</name>
</author>
<author>
<name sortKey="Boyd, T E" uniqKey="Boyd T">T.E. Boyd</name>
</author>
<author>
<name sortKey="Larratt, L M" uniqKey="Larratt L">L.M. Larratt</name>
</author>
<author>
<name sortKey="Skotnicki, A" uniqKey="Skotnicki A">A. Skotnicki</name>
</author>
<author>
<name sortKey="Koziner, B" uniqKey="Koziner B">B. Koziner</name>
</author>
<author>
<name sortKey="Chanan Khan, A A" uniqKey="Chanan Khan A">A.A. Chanan-Khan</name>
</author>
<author>
<name sortKey="Seymour, J F" uniqKey="Seymour J">J.F. Seymour</name>
</author>
<author>
<name sortKey="Bociek, R G" uniqKey="Bociek R">R.G. Bociek</name>
</author>
<author>
<name sortKey="Pavletic, S" uniqKey="Pavletic S">S. Pavletic</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Soderquist, R S" uniqKey="Soderquist R">R.S. Soderquist</name>
</author>
<author>
<name sortKey="Eastman, A" uniqKey="Eastman A">A. Eastman</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Bedikian, A Y" uniqKey="Bedikian A">A.Y. Bedikian</name>
</author>
<author>
<name sortKey="Millward, M" uniqKey="Millward M">M. Millward</name>
</author>
<author>
<name sortKey="Pehamberger, H" uniqKey="Pehamberger H">H. Pehamberger</name>
</author>
<author>
<name sortKey="Conry, R" uniqKey="Conry R">R. Conry</name>
</author>
<author>
<name sortKey="Gore, M" uniqKey="Gore M">M. Gore</name>
</author>
<author>
<name sortKey="Trefzer, U" uniqKey="Trefzer U">U. Trefzer</name>
</author>
<author>
<name sortKey="Pavlick, A C" uniqKey="Pavlick A">A.C. Pavlick</name>
</author>
<author>
<name sortKey="Deconti, R" uniqKey="Deconti R">R. DeConti</name>
</author>
<author>
<name sortKey="Hersh, E M" uniqKey="Hersh E">E.M. Hersh</name>
</author>
<author>
<name sortKey="Hersey, P" uniqKey="Hersey P">P. Hersey</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ng, K P" uniqKey="Ng K">K.P. Ng</name>
</author>
<author>
<name sortKey="Hillmer, A M" uniqKey="Hillmer A">A.M. Hillmer</name>
</author>
<author>
<name sortKey="Chuah, C T" uniqKey="Chuah C">C.T. Chuah</name>
</author>
<author>
<name sortKey="Juan, W C" uniqKey="Juan W">W.C. Juan</name>
</author>
<author>
<name sortKey="Ko, T K" uniqKey="Ko T">T.K. Ko</name>
</author>
<author>
<name sortKey="Teo, A S" uniqKey="Teo A">A.S. Teo</name>
</author>
<author>
<name sortKey="Ariyaratne, P N" uniqKey="Ariyaratne P">P.N. Ariyaratne</name>
</author>
<author>
<name sortKey="Takahashi, N" uniqKey="Takahashi N">N. Takahashi</name>
</author>
<author>
<name sortKey="Sawada, K" uniqKey="Sawada K">K. Sawada</name>
</author>
<author>
<name sortKey="Fei, Y" uniqKey="Fei Y">Y. Fei</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Merino, D" uniqKey="Merino D">D. Merino</name>
</author>
<author>
<name sortKey="Lalaoui, N" uniqKey="Lalaoui N">N. Lalaoui</name>
</author>
<author>
<name sortKey="Morizot, A" uniqKey="Morizot A">A. Morizot</name>
</author>
<author>
<name sortKey="Solary, E" uniqKey="Solary E">E. Solary</name>
</author>
<author>
<name sortKey="Micheau, O" uniqKey="Micheau O">O. Micheau</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Wu, G S" uniqKey="Wu G">G.S. Wu</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Hetschko, H" uniqKey="Hetschko H">H. Hetschko</name>
</author>
<author>
<name sortKey="Voss, V" uniqKey="Voss V">V. Voss</name>
</author>
<author>
<name sortKey="Seifert, V" uniqKey="Seifert V">V. Seifert</name>
</author>
<author>
<name sortKey="Prehn, J H" uniqKey="Prehn J">J.H. Prehn</name>
</author>
<author>
<name sortKey="Kogel, D" uniqKey="Kogel D">D. Kogel</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Hunter, T B" uniqKey="Hunter T">T.B. Hunter</name>
</author>
<author>
<name sortKey="Manimala, N J" uniqKey="Manimala N">N.J. Manimala</name>
</author>
<author>
<name sortKey="Luddy, K A" uniqKey="Luddy K">K.A. Luddy</name>
</author>
<author>
<name sortKey="Catlin, T" uniqKey="Catlin T">T. Catlin</name>
</author>
<author>
<name sortKey="Antonia, S J" uniqKey="Antonia S">S.J. Antonia</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Zhang, Y Q" uniqKey="Zhang Y">Y.Q. Zhang</name>
</author>
<author>
<name sortKey="Tang, X Q" uniqKey="Tang X">X.Q. Tang</name>
</author>
<author>
<name sortKey="Sun, L" uniqKey="Sun L">L. Sun</name>
</author>
<author>
<name sortKey="Dong, L" uniqKey="Dong L">L. Dong</name>
</author>
<author>
<name sortKey="Qin, Y" uniqKey="Qin Y">Y. Qin</name>
</author>
<author>
<name sortKey="Liu, H Q" uniqKey="Liu H">H.Q. Liu</name>
</author>
<author>
<name sortKey="Xia, H" uniqKey="Xia H">H. Xia</name>
</author>
<author>
<name sortKey="Cao, J G" uniqKey="Cao J">J.G. Cao</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Moitra, K" uniqKey="Moitra K">K. Moitra</name>
</author>
<author>
<name sortKey="Lou, H" uniqKey="Lou H">H. Lou</name>
</author>
<author>
<name sortKey="Dean, M" uniqKey="Dean M">M. Dean</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Dean, M" uniqKey="Dean M">M. Dean</name>
</author>
<author>
<name sortKey="Fojo, T" uniqKey="Fojo T">T. Fojo</name>
</author>
<author>
<name sortKey="Bates, S" uniqKey="Bates S">S. Bates</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Prieto Vila, M" uniqKey="Prieto Vila M">M. Prieto-Vila</name>
</author>
<author>
<name sortKey="Takahashi, R U" uniqKey="Takahashi R">R.U. Takahashi</name>
</author>
<author>
<name sortKey="Usuba, W" uniqKey="Usuba W">W. Usuba</name>
</author>
<author>
<name sortKey="Kohama, I" uniqKey="Kohama I">I. Kohama</name>
</author>
<author>
<name sortKey="Ochiya, T" uniqKey="Ochiya T">T. Ochiya</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Phi, L T H" uniqKey="Phi L">L.T.H. Phi</name>
</author>
<author>
<name sortKey="Sari, I N" uniqKey="Sari I">I.N. Sari</name>
</author>
<author>
<name sortKey="Yang, Y G" uniqKey="Yang Y">Y.G. Yang</name>
</author>
<author>
<name sortKey="Lee, S H" uniqKey="Lee S">S.H. Lee</name>
</author>
<author>
<name sortKey="Jun, N" uniqKey="Jun N">N. Jun</name>
</author>
<author>
<name sortKey="Kim, K S" uniqKey="Kim K">K.S. Kim</name>
</author>
<author>
<name sortKey="Lee, Y K" uniqKey="Lee Y">Y.K. Lee</name>
</author>
<author>
<name sortKey="Kwon, H Y" uniqKey="Kwon H">H.Y. Kwon</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Hu, Y" uniqKey="Hu Y">Y. Hu</name>
</author>
<author>
<name sortKey="Yan, C" uniqKey="Yan C">C. Yan</name>
</author>
<author>
<name sortKey="Mu, L" uniqKey="Mu L">L. Mu</name>
</author>
<author>
<name sortKey="Huang, K" uniqKey="Huang K">K. Huang</name>
</author>
<author>
<name sortKey="Li, X" uniqKey="Li X">X. Li</name>
</author>
<author>
<name sortKey="Tao, D" uniqKey="Tao D">D. Tao</name>
</author>
<author>
<name sortKey="Wu, Y" uniqKey="Wu Y">Y. Wu</name>
</author>
<author>
<name sortKey="Qin, J" uniqKey="Qin J">J. Qin</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Korkaya, H" uniqKey="Korkaya H">H. Korkaya</name>
</author>
<author>
<name sortKey="Kim, G I" uniqKey="Kim G">G.I. Kim</name>
</author>
<author>
<name sortKey="Davis, A" uniqKey="Davis A">A. Davis</name>
</author>
<author>
<name sortKey="Malik, F" uniqKey="Malik F">F. Malik</name>
</author>
<author>
<name sortKey="Henry, N L" uniqKey="Henry N">N.L. Henry</name>
</author>
<author>
<name sortKey="Ithimakin, S" uniqKey="Ithimakin S">S. Ithimakin</name>
</author>
<author>
<name sortKey="Quraishi, A A" uniqKey="Quraishi A">A.A. Quraishi</name>
</author>
<author>
<name sortKey="Tawakkol, N" uniqKey="Tawakkol N">N. Tawakkol</name>
</author>
<author>
<name sortKey="D Ngelo, R" uniqKey="D Ngelo R">R. D’Angelo</name>
</author>
<author>
<name sortKey="Paulson, A K" uniqKey="Paulson A">A.K. Paulson</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Nowell, P C" uniqKey="Nowell P">P.C. Nowell</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Schmidt, F" uniqKey="Schmidt F">F. Schmidt</name>
</author>
<author>
<name sortKey="Efferth, T" uniqKey="Efferth T">T. Efferth</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Dagogo Jack, I" uniqKey="Dagogo Jack I">I. Dagogo-Jack</name>
</author>
<author>
<name sortKey="Shaw, A T" uniqKey="Shaw A">A.T. Shaw</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kwak, E L" uniqKey="Kwak E">E.L. Kwak</name>
</author>
<author>
<name sortKey="Ahronian, L G" uniqKey="Ahronian L">L.G. Ahronian</name>
</author>
<author>
<name sortKey="Siravegna, G" uniqKey="Siravegna G">G. Siravegna</name>
</author>
<author>
<name sortKey="Mussolin, B" uniqKey="Mussolin B">B. Mussolin</name>
</author>
<author>
<name sortKey="Borger, D R" uniqKey="Borger D">D.R. Borger</name>
</author>
<author>
<name sortKey="Godfrey, J T" uniqKey="Godfrey J">J.T. Godfrey</name>
</author>
<author>
<name sortKey="Jessop, N A" uniqKey="Jessop N">N.A. Jessop</name>
</author>
<author>
<name sortKey="Clark, J W" uniqKey="Clark J">J.W. Clark</name>
</author>
<author>
<name sortKey="Blaszkowsky, L S" uniqKey="Blaszkowsky L">L.S. Blaszkowsky</name>
</author>
<author>
<name sortKey="Ryan, D P" uniqKey="Ryan D">D.P. Ryan</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Pao, W" uniqKey="Pao W">W. Pao</name>
</author>
<author>
<name sortKey="Miller, V A" uniqKey="Miller V">V.A. Miller</name>
</author>
<author>
<name sortKey="Politi, K A" uniqKey="Politi K">K.A. Politi</name>
</author>
<author>
<name sortKey="Riely, G J" uniqKey="Riely G">G.J. Riely</name>
</author>
<author>
<name sortKey="Somwar, R" uniqKey="Somwar R">R. Somwar</name>
</author>
<author>
<name sortKey="Zakowski, M F" uniqKey="Zakowski M">M.F. Zakowski</name>
</author>
<author>
<name sortKey="Kris, M G" uniqKey="Kris M">M.G. Kris</name>
</author>
<author>
<name sortKey="Varmus, H" uniqKey="Varmus H">H. Varmus</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Sergina, N V" uniqKey="Sergina N">N.V. Sergina</name>
</author>
<author>
<name sortKey="Rausch, M" uniqKey="Rausch M">M. Rausch</name>
</author>
<author>
<name sortKey="Wang, D" uniqKey="Wang D">D. Wang</name>
</author>
<author>
<name sortKey="Blair, J" uniqKey="Blair J">J. Blair</name>
</author>
<author>
<name sortKey="Hann, B" uniqKey="Hann B">B. Hann</name>
</author>
<author>
<name sortKey="Shokat, K M" uniqKey="Shokat K">K.M. Shokat</name>
</author>
<author>
<name sortKey="Moasser, M M" uniqKey="Moasser M">M.M. Moasser</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Wheeler, D L" uniqKey="Wheeler D">D.L. Wheeler</name>
</author>
<author>
<name sortKey="Huang, S" uniqKey="Huang S">S. Huang</name>
</author>
<author>
<name sortKey="Kruser, T J" uniqKey="Kruser T">T.J. Kruser</name>
</author>
<author>
<name sortKey="Nechrebecki, M M" uniqKey="Nechrebecki M">M.M. Nechrebecki</name>
</author>
<author>
<name sortKey="Armstrong, E A" uniqKey="Armstrong E">E.A. Armstrong</name>
</author>
<author>
<name sortKey="Benavente, S" uniqKey="Benavente S">S. Benavente</name>
</author>
<author>
<name sortKey="Gondi, V" uniqKey="Gondi V">V. Gondi</name>
</author>
<author>
<name sortKey="Hsu, K T" uniqKey="Hsu K">K.T. Hsu</name>
</author>
<author>
<name sortKey="Harari, P M" uniqKey="Harari P">P.M. Harari</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Riggins, R B" uniqKey="Riggins R">R.B. Riggins</name>
</author>
<author>
<name sortKey="Schrecengost, R S" uniqKey="Schrecengost R">R.S. Schrecengost</name>
</author>
<author>
<name sortKey="Guerrero, M S" uniqKey="Guerrero M">M.S. Guerrero</name>
</author>
<author>
<name sortKey="Bouton, A H" uniqKey="Bouton A">A.H. Bouton</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Antonarakis, E S" uniqKey="Antonarakis E">E.S. Antonarakis</name>
</author>
<author>
<name sortKey="Lu, C" uniqKey="Lu C">C. Lu</name>
</author>
<author>
<name sortKey="Wang, H" uniqKey="Wang H">H. Wang</name>
</author>
<author>
<name sortKey="Luber, B" uniqKey="Luber B">B. Luber</name>
</author>
<author>
<name sortKey="Nakazawa, M" uniqKey="Nakazawa M">M. Nakazawa</name>
</author>
<author>
<name sortKey="Roeser, J C" uniqKey="Roeser J">J.C. Roeser</name>
</author>
<author>
<name sortKey="Chen, Y" uniqKey="Chen Y">Y. Chen</name>
</author>
<author>
<name sortKey="Mohammad, T A" uniqKey="Mohammad T">T.A. Mohammad</name>
</author>
<author>
<name sortKey="Chen, Y" uniqKey="Chen Y">Y. Chen</name>
</author>
<author>
<name sortKey="Fedor, H L" uniqKey="Fedor H">H.L. Fedor</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Scher, H I" uniqKey="Scher H">H.I. Scher</name>
</author>
<author>
<name sortKey="Fizazi, K" uniqKey="Fizazi K">K. Fizazi</name>
</author>
<author>
<name sortKey="Saad, F" uniqKey="Saad F">F. Saad</name>
</author>
<author>
<name sortKey="Taplin, M E" uniqKey="Taplin M">M.E. Taplin</name>
</author>
<author>
<name sortKey="Sternberg, C N" uniqKey="Sternberg C">C.N. Sternberg</name>
</author>
<author>
<name sortKey="Miller, K" uniqKey="Miller K">K. Miller</name>
</author>
<author>
<name sortKey="De Wit, R" uniqKey="De Wit R">R. de Wit</name>
</author>
<author>
<name sortKey="Mulders, P" uniqKey="Mulders P">P. Mulders</name>
</author>
<author>
<name sortKey="Chi, K N" uniqKey="Chi K">K.N. Chi</name>
</author>
<author>
<name sortKey="Shore, N D" uniqKey="Shore N">N.D. Shore</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Joseph, J D" uniqKey="Joseph J">J.D. Joseph</name>
</author>
<author>
<name sortKey="Lu, N" uniqKey="Lu N">N. Lu</name>
</author>
<author>
<name sortKey="Qian, J" uniqKey="Qian J">J. Qian</name>
</author>
<author>
<name sortKey="Sensintaffar, J" uniqKey="Sensintaffar J">J. Sensintaffar</name>
</author>
<author>
<name sortKey="Shao, G" uniqKey="Shao G">G. Shao</name>
</author>
<author>
<name sortKey="Brigham, D" uniqKey="Brigham D">D. Brigham</name>
</author>
<author>
<name sortKey="Moon, M" uniqKey="Moon M">M. Moon</name>
</author>
<author>
<name sortKey="Maneval, E C" uniqKey="Maneval E">E.C. Maneval</name>
</author>
<author>
<name sortKey="Chen, I" uniqKey="Chen I">I. Chen</name>
</author>
<author>
<name sortKey="Darimont, B" uniqKey="Darimont B">B. Darimont</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Davies, C" uniqKey="Davies C">C. Davies</name>
</author>
<author>
<name sortKey="Pan, H" uniqKey="Pan H">H. Pan</name>
</author>
<author>
<name sortKey="Godwin, J" uniqKey="Godwin J">J. Godwin</name>
</author>
<author>
<name sortKey="Gray, R" uniqKey="Gray R">R. Gray</name>
</author>
<author>
<name sortKey="Arriagada, R" uniqKey="Arriagada R">R. Arriagada</name>
</author>
<author>
<name sortKey="Raina, V" uniqKey="Raina V">V. Raina</name>
</author>
<author>
<name sortKey="Abraham, M" uniqKey="Abraham M">M. Abraham</name>
</author>
<author>
<name sortKey="Medeiros Alencar, V H" uniqKey="Medeiros Alencar V">V.H. Medeiros Alencar</name>
</author>
<author>
<name sortKey="Badran, A" uniqKey="Badran A">A. Badran</name>
</author>
<author>
<name sortKey="Bonfill, X" uniqKey="Bonfill X">X. Bonfill</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Osborne, C K" uniqKey="Osborne C">C.K. Osborne</name>
</author>
<author>
<name sortKey="Schiff, R" uniqKey="Schiff R">R. Schiff</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Van Veggel, B" uniqKey="Van Veggel B">B. Van Veggel</name>
</author>
<author>
<name sortKey="De Langen, A J" uniqKey="De Langen A">A.J. de Langen</name>
</author>
<author>
<name sortKey="Hashemi, S M S" uniqKey="Hashemi S">S.M.S. Hashemi</name>
</author>
<author>
<name sortKey="Monkhorst, K" uniqKey="Monkhorst K">K. Monkhorst</name>
</author>
<author>
<name sortKey="Heideman, D A M" uniqKey="Heideman D">D.A.M. Heideman</name>
</author>
<author>
<name sortKey="Thunnissen, E" uniqKey="Thunnissen E">E. Thunnissen</name>
</author>
<author>
<name sortKey="Smit, E F" uniqKey="Smit E">E.F. Smit</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Hata, A N" uniqKey="Hata A">A.N. Hata</name>
</author>
<author>
<name sortKey="Niederst, M J" uniqKey="Niederst M">M.J. Niederst</name>
</author>
<author>
<name sortKey="Archibald, H L" uniqKey="Archibald H">H.L. Archibald</name>
</author>
<author>
<name sortKey="Gomez Caraballo, M" uniqKey="Gomez Caraballo M">M. Gomez-Caraballo</name>
</author>
<author>
<name sortKey="Siddiqui, F M" uniqKey="Siddiqui F">F.M. Siddiqui</name>
</author>
<author>
<name sortKey="Mulvey, H E" uniqKey="Mulvey H">H.E. Mulvey</name>
</author>
<author>
<name sortKey="Maruvka, Y E" uniqKey="Maruvka Y">Y.E. Maruvka</name>
</author>
<author>
<name sortKey="Ji, F" uniqKey="Ji F">F. Ji</name>
</author>
<author>
<name sortKey="Bhang, H E" uniqKey="Bhang H">H.E. Bhang</name>
</author>
<author>
<name sortKey="Krishnamurthy Radhakrishna, V" uniqKey="Krishnamurthy Radhakrishna V">V. Krishnamurthy Radhakrishna</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Sledge, G W" uniqKey="Sledge G">G.W. Sledge</name>
</author>
<author>
<name sortKey="Neuberg, D" uniqKey="Neuberg D">D. Neuberg</name>
</author>
<author>
<name sortKey="Bernardo, P" uniqKey="Bernardo P">P. Bernardo</name>
</author>
<author>
<name sortKey="Ingle, J N" uniqKey="Ingle J">J.N. Ingle</name>
</author>
<author>
<name sortKey="Martino, S" uniqKey="Martino S">S. Martino</name>
</author>
<author>
<name sortKey="Rowinsky, E K" uniqKey="Rowinsky E">E.K. Rowinsky</name>
</author>
<author>
<name sortKey="Wood, W C" uniqKey="Wood W">W.C. Wood</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Del Re, M" uniqKey="Del Re M">M. Del Re</name>
</author>
<author>
<name sortKey="Bordi, P" uniqKey="Bordi P">P. Bordi</name>
</author>
<author>
<name sortKey="Rofi, E" uniqKey="Rofi E">E. Rofi</name>
</author>
<author>
<name sortKey="Restante, G" uniqKey="Restante G">G. Restante</name>
</author>
<author>
<name sortKey="Valleggi, S" uniqKey="Valleggi S">S. Valleggi</name>
</author>
<author>
<name sortKey="Minari, R" uniqKey="Minari R">R. Minari</name>
</author>
<author>
<name sortKey="Crucitta, S" uniqKey="Crucitta S">S. Crucitta</name>
</author>
<author>
<name sortKey="Arrigoni, E" uniqKey="Arrigoni E">E. Arrigoni</name>
</author>
<author>
<name sortKey="Chella, A" uniqKey="Chella A">A. Chella</name>
</author>
<author>
<name sortKey="Morganti, R" uniqKey="Morganti R">R. Morganti</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Balkwill, F R" uniqKey="Balkwill F">F.R. Balkwill</name>
</author>
<author>
<name sortKey="Capasso, M" uniqKey="Capasso M">M. Capasso</name>
</author>
<author>
<name sortKey="Hagemann, T" uniqKey="Hagemann T">T. Hagemann</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Milane, L" uniqKey="Milane L">L. Milane</name>
</author>
<author>
<name sortKey="Ganesh, S" uniqKey="Ganesh S">S. Ganesh</name>
</author>
<author>
<name sortKey="Shah, S" uniqKey="Shah S">S. Shah</name>
</author>
<author>
<name sortKey="Duan, Z F" uniqKey="Duan Z">Z.F. Duan</name>
</author>
<author>
<name sortKey="Amiji, M" uniqKey="Amiji M">M. Amiji</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Videira, M" uniqKey="Videira M">M. Videira</name>
</author>
<author>
<name sortKey="Reis, R L" uniqKey="Reis R">R.L. Reis</name>
</author>
<author>
<name sortKey="Brito, M A" uniqKey="Brito M">M.A. Brito</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Mcmillin, D W" uniqKey="Mcmillin D">D.W. McMillin</name>
</author>
<author>
<name sortKey="Negri, J M" uniqKey="Negri J">J.M. Negri</name>
</author>
<author>
<name sortKey="Mitsiades, C S" uniqKey="Mitsiades C">C.S. Mitsiades</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Sun, Y" uniqKey="Sun Y">Y. Sun</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Shee, K" uniqKey="Shee K">K. Shee</name>
</author>
<author>
<name sortKey="Yang, W" uniqKey="Yang W">W. Yang</name>
</author>
<author>
<name sortKey="Hinds, J W" uniqKey="Hinds J">J.W. Hinds</name>
</author>
<author>
<name sortKey="Hampsch, R A" uniqKey="Hampsch R">R.A. Hampsch</name>
</author>
<author>
<name sortKey="Varn, F S" uniqKey="Varn F">F.S. Varn</name>
</author>
<author>
<name sortKey="Traphagen, N A" uniqKey="Traphagen N">N.A. Traphagen</name>
</author>
<author>
<name sortKey="Patel, K" uniqKey="Patel K">K. Patel</name>
</author>
<author>
<name sortKey="Cheng, C" uniqKey="Cheng C">C. Cheng</name>
</author>
<author>
<name sortKey="Jenkins, N P" uniqKey="Jenkins N">N.P. Jenkins</name>
</author>
<author>
<name sortKey="Kettenbach, A N" uniqKey="Kettenbach A">A.N. Kettenbach</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Shen, X" uniqKey="Shen X">X. Shen</name>
</author>
<author>
<name sortKey="Zhi, Q" uniqKey="Zhi Q">Q. Zhi</name>
</author>
<author>
<name sortKey="Wang, Y" uniqKey="Wang Y">Y. Wang</name>
</author>
<author>
<name sortKey="Li, Z" uniqKey="Li Z">Z. Li</name>
</author>
<author>
<name sortKey="Zhou, J" uniqKey="Zhou J">J. Zhou</name>
</author>
<author>
<name sortKey="Huang, J" uniqKey="Huang J">J. Huang</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Faria, M" uniqKey="Faria M">M. Faria</name>
</author>
<author>
<name sortKey="Shepherd, P" uniqKey="Shepherd P">P. Shepherd</name>
</author>
<author>
<name sortKey="Pan, Y" uniqKey="Pan Y">Y. Pan</name>
</author>
<author>
<name sortKey="Chatterjee, S S" uniqKey="Chatterjee S">S.S. Chatterjee</name>
</author>
<author>
<name sortKey="Navone, N" uniqKey="Navone N">N. Navone</name>
</author>
<author>
<name sortKey="Gustafsson, J A" uniqKey="Gustafsson J">J.A. Gustafsson</name>
</author>
<author>
<name sortKey="Strom, A" uniqKey="Strom A">A. Strom</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Jahanban Esfahlan, R" uniqKey="Jahanban Esfahlan R">R. Jahanban-Esfahlan</name>
</author>
<author>
<name sortKey="De La Guardia, M" uniqKey="De La Guardia M">M. de la Guardia</name>
</author>
<author>
<name sortKey="Ahmadi, D" uniqKey="Ahmadi D">D. Ahmadi</name>
</author>
<author>
<name sortKey="Yousefi, B" uniqKey="Yousefi B">B. Yousefi</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Chen, J" uniqKey="Chen J">J. Chen</name>
</author>
<author>
<name sortKey="Ding, Z" uniqKey="Ding Z">Z. Ding</name>
</author>
<author>
<name sortKey="Peng, Y" uniqKey="Peng Y">Y. Peng</name>
</author>
<author>
<name sortKey="Pan, F" uniqKey="Pan F">F. Pan</name>
</author>
<author>
<name sortKey="Li, J" uniqKey="Li J">J. Li</name>
</author>
<author>
<name sortKey="Zou, L" uniqKey="Zou L">L. Zou</name>
</author>
<author>
<name sortKey="Zhang, Y" uniqKey="Zhang Y">Y. Zhang</name>
</author>
<author>
<name sortKey="Liang, H" uniqKey="Liang H">H. Liang</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Alexander, S" uniqKey="Alexander S">S. Alexander</name>
</author>
<author>
<name sortKey="Friedl, P" uniqKey="Friedl P">P. Friedl</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Tezcan, O" uniqKey="Tezcan O">O. Tezcan</name>
</author>
<author>
<name sortKey="Ojha, T" uniqKey="Ojha T">T. Ojha</name>
</author>
<author>
<name sortKey="Storm, G" uniqKey="Storm G">G. Storm</name>
</author>
<author>
<name sortKey="Kiessling, F" uniqKey="Kiessling F">F. Kiessling</name>
</author>
<author>
<name sortKey="Lammers, T" uniqKey="Lammers T">T. Lammers</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Liu, H" uniqKey="Liu H">H. Liu</name>
</author>
<author>
<name sortKey="Liu, Y" uniqKey="Liu Y">Y. Liu</name>
</author>
<author>
<name sortKey="Zhang, J T" uniqKey="Zhang J">J.-T. Zhang</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Al Fayi, M S" uniqKey="Al Fayi M">M.S. Al Fayi</name>
</author>
<author>
<name sortKey="Gou, X" uniqKey="Gou X">X. Gou</name>
</author>
<author>
<name sortKey="Forootan, S S" uniqKey="Forootan S">S.S. Forootan</name>
</author>
<author>
<name sortKey="Al Jameel, W" uniqKey="Al Jameel W">W. Al-Jameel</name>
</author>
<author>
<name sortKey="Bao, Z" uniqKey="Bao Z">Z. Bao</name>
</author>
<author>
<name sortKey="Rudland, P R" uniqKey="Rudland P">P.R. Rudland</name>
</author>
<author>
<name sortKey="Cornford, P A" uniqKey="Cornford P">P.A. Cornford</name>
</author>
<author>
<name sortKey="Hussain, S A" uniqKey="Hussain S">S.A. Hussain</name>
</author>
<author>
<name sortKey="Ke, Y" uniqKey="Ke Y">Y. Ke</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Wu, X" uniqKey="Wu X">X. Wu</name>
</author>
<author>
<name sortKey="Qin, L" uniqKey="Qin L">L. Qin</name>
</author>
<author>
<name sortKey="Fako, V" uniqKey="Fako V">V. Fako</name>
</author>
<author>
<name sortKey="Zhang, J T" uniqKey="Zhang J">J.T. Zhang</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Bauerschlag, D O" uniqKey="Bauerschlag D">D.O. Bauerschlag</name>
</author>
<author>
<name sortKey="Maass, N" uniqKey="Maass N">N. Maass</name>
</author>
<author>
<name sortKey="Leonhardt, P" uniqKey="Leonhardt P">P. Leonhardt</name>
</author>
<author>
<name sortKey="Verburg, F A" uniqKey="Verburg F">F.A. Verburg</name>
</author>
<author>
<name sortKey="Pecks, U" uniqKey="Pecks U">U. Pecks</name>
</author>
<author>
<name sortKey="Zeppernick, F" uniqKey="Zeppernick F">F. Zeppernick</name>
</author>
<author>
<name sortKey="Morgenroth, A" uniqKey="Morgenroth A">A. Morgenroth</name>
</author>
<author>
<name sortKey="Mottaghy, F M" uniqKey="Mottaghy F">F.M. Mottaghy</name>
</author>
<author>
<name sortKey="Tolba, R" uniqKey="Tolba R">R. Tolba</name>
</author>
<author>
<name sortKey="Meinhold Heerlein, I" uniqKey="Meinhold Heerlein I">I. Meinhold-Heerlein</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Plava, J" uniqKey="Plava J">J. Plava</name>
</author>
<author>
<name sortKey="Cihova, M" uniqKey="Cihova M">M. Cihova</name>
</author>
<author>
<name sortKey="Burikova, M" uniqKey="Burikova M">M. Burikova</name>
</author>
<author>
<name sortKey="Matuskova, M" uniqKey="Matuskova M">M. Matuskova</name>
</author>
<author>
<name sortKey="Kucerova, L" uniqKey="Kucerova L">L. Kucerova</name>
</author>
<author>
<name sortKey="Miklikova, S" uniqKey="Miklikova S">S. Miklikova</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Junttila, M R" uniqKey="Junttila M">M.R. Junttila</name>
</author>
<author>
<name sortKey="De Sauvage, F J" uniqKey="De Sauvage F">F.J. de Sauvage</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Butera, G" uniqKey="Butera G">G. Butera</name>
</author>
<author>
<name sortKey="Pacchiana, R" uniqKey="Pacchiana R">R. Pacchiana</name>
</author>
<author>
<name sortKey="Donadelli, M" uniqKey="Donadelli M">M. Donadelli</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Lamouille, S" uniqKey="Lamouille S">S. Lamouille</name>
</author>
<author>
<name sortKey="Xu, J" uniqKey="Xu J">J. Xu</name>
</author>
<author>
<name sortKey="Derynck, R" uniqKey="Derynck R">R. Derynck</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Xu, W" uniqKey="Xu W">W. Xu</name>
</author>
<author>
<name sortKey="Yang, Z" uniqKey="Yang Z">Z. Yang</name>
</author>
<author>
<name sortKey="Lu, N" uniqKey="Lu N">N. Lu</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Fuchs, B C" uniqKey="Fuchs B">B.C. Fuchs</name>
</author>
<author>
<name sortKey="Fujii, T" uniqKey="Fujii T">T. Fujii</name>
</author>
<author>
<name sortKey="Dorfman, J D" uniqKey="Dorfman J">J.D. Dorfman</name>
</author>
<author>
<name sortKey="Goodwin, J M" uniqKey="Goodwin J">J.M. Goodwin</name>
</author>
<author>
<name sortKey="Zhu, A X" uniqKey="Zhu A">A.X. Zhu</name>
</author>
<author>
<name sortKey="Lanuti, M" uniqKey="Lanuti M">M. Lanuti</name>
</author>
<author>
<name sortKey="Tanabe, K K" uniqKey="Tanabe K">K.K. Tanabe</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Terry, S" uniqKey="Terry S">S. Terry</name>
</author>
<author>
<name sortKey="Savagner, P" uniqKey="Savagner P">P. Savagner</name>
</author>
<author>
<name sortKey="Ortiz Cuaran, S" uniqKey="Ortiz Cuaran S">S. Ortiz-Cuaran</name>
</author>
<author>
<name sortKey="Mahjoubi, L" uniqKey="Mahjoubi L">L. Mahjoubi</name>
</author>
<author>
<name sortKey="Saintigny, P" uniqKey="Saintigny P">P. Saintigny</name>
</author>
<author>
<name sortKey="Thiery, J P" uniqKey="Thiery J">J.P. Thiery</name>
</author>
<author>
<name sortKey="Chouaib, S" uniqKey="Chouaib S">S. Chouaib</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Du, B" uniqKey="Du B">B. Du</name>
</author>
<author>
<name sortKey="Shim, J S" uniqKey="Shim J">J.S. Shim</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Christofides, A" uniqKey="Christofides A">A. Christofides</name>
</author>
<author>
<name sortKey="Karantanos, T" uniqKey="Karantanos T">T. Karantanos</name>
</author>
<author>
<name sortKey="Bardhan, K" uniqKey="Bardhan K">K. Bardhan</name>
</author>
<author>
<name sortKey="Boussiotis, V A" uniqKey="Boussiotis V">V.A. Boussiotis</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Chang, J W" uniqKey="Chang J">J.W. Chang</name>
</author>
<author>
<name sortKey="Gwak, S Y" uniqKey="Gwak S">S.Y. Gwak</name>
</author>
<author>
<name sortKey="Shim, G A" uniqKey="Shim G">G.A. Shim</name>
</author>
<author>
<name sortKey="Liu, L" uniqKey="Liu L">L. Liu</name>
</author>
<author>
<name sortKey="Lim, Y C" uniqKey="Lim Y">Y.C. Lim</name>
</author>
<author>
<name sortKey="Kim, J M" uniqKey="Kim J">J.M. Kim</name>
</author>
<author>
<name sortKey="Jung, M G" uniqKey="Jung M">M.G. Jung</name>
</author>
<author>
<name sortKey="Koo, B S" uniqKey="Koo B">B.S. Koo</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Yoo, C B" uniqKey="Yoo C">C.B. Yoo</name>
</author>
<author>
<name sortKey="Jones, P A" uniqKey="Jones P">P.A. Jones</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Feinberg, A P" uniqKey="Feinberg A">A.P. Feinberg</name>
</author>
<author>
<name sortKey="Koldobskiy, M A" uniqKey="Koldobskiy M">M.A. Koldobskiy</name>
</author>
<author>
<name sortKey="Gondor, A" uniqKey="Gondor A">A. Gondor</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Gaudet, F" uniqKey="Gaudet F">F. Gaudet</name>
</author>
<author>
<name sortKey="Hodgson, J G" uniqKey="Hodgson J">J.G. Hodgson</name>
</author>
<author>
<name sortKey="Eden, A" uniqKey="Eden A">A. Eden</name>
</author>
<author>
<name sortKey="Jackson Grusby, L" uniqKey="Jackson Grusby L">L. Jackson-Grusby</name>
</author>
<author>
<name sortKey="Dausman, J" uniqKey="Dausman J">J. Dausman</name>
</author>
<author>
<name sortKey="Gray, J W" uniqKey="Gray J">J.W. Gray</name>
</author>
<author>
<name sortKey="Leonhardt, H" uniqKey="Leonhardt H">H. Leonhardt</name>
</author>
<author>
<name sortKey="Jaenisch, R" uniqKey="Jaenisch R">R. Jaenisch</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Baylin, S B" uniqKey="Baylin S">S.B. Baylin</name>
</author>
<author>
<name sortKey="Jones, P A" uniqKey="Jones P">P.A. Jones</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="An, X" uniqKey="An X">X. An</name>
</author>
<author>
<name sortKey="Sarmiento, C" uniqKey="Sarmiento C">C. Sarmiento</name>
</author>
<author>
<name sortKey="Tan, T" uniqKey="Tan T">T. Tan</name>
</author>
<author>
<name sortKey="Zhu, H" uniqKey="Zhu H">H. Zhu</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Cui, Q" uniqKey="Cui Q">Q. Cui</name>
</author>
<author>
<name sortKey="Wang, J Q" uniqKey="Wang J">J.-Q. Wang</name>
</author>
<author>
<name sortKey="Assaraf, Y G" uniqKey="Assaraf Y">Y.G. Assaraf</name>
</author>
<author>
<name sortKey="Ren, L" uniqKey="Ren L">L. Ren</name>
</author>
<author>
<name sortKey="Gupta, P" uniqKey="Gupta P">P. Gupta</name>
</author>
<author>
<name sortKey="Wei, L" uniqKey="Wei L">L. Wei</name>
</author>
<author>
<name sortKey="Ashby, C R" uniqKey="Ashby C">C.R. Ashby</name>
</author>
<author>
<name sortKey="Yang, D H" uniqKey="Yang D">D.-H. Yang</name>
</author>
<author>
<name sortKey="Chen, Z S" uniqKey="Chen Z">Z.-S. Chen</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Cen, J" uniqKey="Cen J">J. Cen</name>
</author>
<author>
<name sortKey="Zhang, L" uniqKey="Zhang L">L. Zhang</name>
</author>
<author>
<name sortKey="Liu, F" uniqKey="Liu F">F. Liu</name>
</author>
<author>
<name sortKey="Zhang, F" uniqKey="Zhang F">F. Zhang</name>
</author>
<author>
<name sortKey="Ji, B S" uniqKey="Ji B">B.S. Ji</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Zeng, R" uniqKey="Zeng R">R. Zeng</name>
</author>
<author>
<name sortKey="Tang, Y" uniqKey="Tang Y">Y. Tang</name>
</author>
<author>
<name sortKey="Zhou, H" uniqKey="Zhou H">H. Zhou</name>
</author>
<author>
<name sortKey="Liu, Y" uniqKey="Liu Y">Y. Liu</name>
</author>
<author>
<name sortKey="Huang, J" uniqKey="Huang J">J. Huang</name>
</author>
<author>
<name sortKey="Li, L" uniqKey="Li L">L. Li</name>
</author>
<author>
<name sortKey="Liu, W" uniqKey="Liu W">W. Liu</name>
</author>
<author>
<name sortKey="Feng, Y" uniqKey="Feng Y">Y. Feng</name>
</author>
<author>
<name sortKey="Zhou, Y" uniqKey="Zhou Y">Y. Zhou</name>
</author>
<author>
<name sortKey="Chen, T" uniqKey="Chen T">T. Chen</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Erdogan, S" uniqKey="Erdogan S">S. Erdogan</name>
</author>
<author>
<name sortKey="Turkekul, K" uniqKey="Turkekul K">K. Turkekul</name>
</author>
<author>
<name sortKey="Serttas, R" uniqKey="Serttas R">R. Serttas</name>
</author>
<author>
<name sortKey="Erdogan, Z" uniqKey="Erdogan Z">Z. Erdogan</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Rao, P S" uniqKey="Rao P">P.S. Rao</name>
</author>
<author>
<name sortKey="Satelli, A" uniqKey="Satelli A">A. Satelli</name>
</author>
<author>
<name sortKey="Moridani, M" uniqKey="Moridani M">M. Moridani</name>
</author>
<author>
<name sortKey="Jenkins, M" uniqKey="Jenkins M">M. Jenkins</name>
</author>
<author>
<name sortKey="Rao, U S" uniqKey="Rao U">U.S. Rao</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Tang, X" uniqKey="Tang X">X. Tang</name>
</author>
<author>
<name sortKey="Wang, H" uniqKey="Wang H">H. Wang</name>
</author>
<author>
<name sortKey="Fan, L" uniqKey="Fan L">L. Fan</name>
</author>
<author>
<name sortKey="Wu, X" uniqKey="Wu X">X. Wu</name>
</author>
<author>
<name sortKey="Xin, A" uniqKey="Xin A">A. Xin</name>
</author>
<author>
<name sortKey="Ren, H" uniqKey="Ren H">H. Ren</name>
</author>
<author>
<name sortKey="Wang, X J" uniqKey="Wang X">X.J. Wang</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Sabzichi, M" uniqKey="Sabzichi M">M. Sabzichi</name>
</author>
<author>
<name sortKey="Hamishehkar, H" uniqKey="Hamishehkar H">H. Hamishehkar</name>
</author>
<author>
<name sortKey="Ramezani, F" uniqKey="Ramezani F">F. Ramezani</name>
</author>
<author>
<name sortKey="Sharifi, S" uniqKey="Sharifi S">S. Sharifi</name>
</author>
<author>
<name sortKey="Tabasinezhad, M" uniqKey="Tabasinezhad M">M. Tabasinezhad</name>
</author>
<author>
<name sortKey="Pirouzpanah, M" uniqKey="Pirouzpanah M">M. Pirouzpanah</name>
</author>
<author>
<name sortKey="Ghanbari, P" uniqKey="Ghanbari P">P. Ghanbari</name>
</author>
<author>
<name sortKey="Samadi, N" uniqKey="Samadi N">N. Samadi</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Li, S" uniqKey="Li S">S. Li</name>
</author>
<author>
<name sortKey="Zhao, Q" uniqKey="Zhao Q">Q. Zhao</name>
</author>
<author>
<name sortKey="Wang, B" uniqKey="Wang B">B. Wang</name>
</author>
<author>
<name sortKey="Yuan, S" uniqKey="Yuan S">S. Yuan</name>
</author>
<author>
<name sortKey="Wang, X" uniqKey="Wang X">X. Wang</name>
</author>
<author>
<name sortKey="Li, K" uniqKey="Li K">K. Li</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Chieli, E" uniqKey="Chieli E">E. Chieli</name>
</author>
<author>
<name sortKey="Romiti, N" uniqKey="Romiti N">N. Romiti</name>
</author>
<author>
<name sortKey="Rodeiro, I" uniqKey="Rodeiro I">I. Rodeiro</name>
</author>
<author>
<name sortKey="Garrido, G" uniqKey="Garrido G">G. Garrido</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Taur, J S" uniqKey="Taur J">J.S. Taur</name>
</author>
<author>
<name sortKey="Rodriguez Proteau, R" uniqKey="Rodriguez Proteau R">R. Rodriguez-Proteau</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Chung, S Y" uniqKey="Chung S">S.Y. Chung</name>
</author>
<author>
<name sortKey="Sung, M K" uniqKey="Sung M">M.K. Sung</name>
</author>
<author>
<name sortKey="Kim, N H" uniqKey="Kim N">N.H. Kim</name>
</author>
<author>
<name sortKey="Jang, J O" uniqKey="Jang J">J.O. Jang</name>
</author>
<author>
<name sortKey="Go, E J" uniqKey="Go E">E.J. Go</name>
</author>
<author>
<name sortKey="Lee, H J" uniqKey="Lee H">H.J. Lee</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Jeng, L B" uniqKey="Jeng L">L.B. Jeng</name>
</author>
<author>
<name sortKey="Kumar Velmurugan, B" uniqKey="Kumar Velmurugan B">B. Kumar Velmurugan</name>
</author>
<author>
<name sortKey="Chen, M C" uniqKey="Chen M">M.C. Chen</name>
</author>
<author>
<name sortKey="Hsu, H H" uniqKey="Hsu H">H.H. Hsu</name>
</author>
<author>
<name sortKey="Ho, T J" uniqKey="Ho T">T.J. Ho</name>
</author>
<author>
<name sortKey="Day, C H" uniqKey="Day C">C.H. Day</name>
</author>
<author>
<name sortKey="Lin, Y M" uniqKey="Lin Y">Y.M. Lin</name>
</author>
<author>
<name sortKey="Padma, V V" uniqKey="Padma V">V.V. Padma</name>
</author>
<author>
<name sortKey="Tu, C C" uniqKey="Tu C">C.C. Tu</name>
</author>
<author>
<name sortKey="Huang, C Y" uniqKey="Huang C">C.Y. Huang</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Febriansah, R" uniqKey="Febriansah R">R. Febriansah</name>
</author>
<author>
<name sortKey="Putri, D D" uniqKey="Putri D">D.D. Putri</name>
</author>
<author>
<name sortKey="Sarmoko" uniqKey="Sarmoko">Sarmoko</name>
</author>
<author>
<name sortKey="Nurulita, N A" uniqKey="Nurulita N">N.A. Nurulita</name>
</author>
<author>
<name sortKey="Meiyanto, E" uniqKey="Meiyanto E">E. Meiyanto</name>
</author>
<author>
<name sortKey="Nugroho, A E" uniqKey="Nugroho A">A.E. Nugroho</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="El Readi, M Z" uniqKey="El Readi M">M.Z. El-Readi</name>
</author>
<author>
<name sortKey="Hamdan, D" uniqKey="Hamdan D">D. Hamdan</name>
</author>
<author>
<name sortKey="Farrag, N" uniqKey="Farrag N">N. Farrag</name>
</author>
<author>
<name sortKey="El Shazly, A" uniqKey="El Shazly A">A. El-Shazly</name>
</author>
<author>
<name sortKey="Wink, M" uniqKey="Wink M">M. Wink</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kuo, C Y" uniqKey="Kuo C">C.Y. Kuo</name>
</author>
<author>
<name sortKey="Zupko, I" uniqKey="Zupko I">I. Zupko</name>
</author>
<author>
<name sortKey="Chang, F R" uniqKey="Chang F">F.R. Chang</name>
</author>
<author>
<name sortKey="Hunyadi, A" uniqKey="Hunyadi A">A. Hunyadi</name>
</author>
<author>
<name sortKey="Wu, C C" uniqKey="Wu C">C.C. Wu</name>
</author>
<author>
<name sortKey="Weng, T S" uniqKey="Weng T">T.S. Weng</name>
</author>
<author>
<name sortKey="Wang, H C" uniqKey="Wang H">H.C. Wang</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Knop, J" uniqKey="Knop J">J. Knop</name>
</author>
<author>
<name sortKey="Misaka, S" uniqKey="Misaka S">S. Misaka</name>
</author>
<author>
<name sortKey="Singer, K" uniqKey="Singer K">K. Singer</name>
</author>
<author>
<name sortKey="Hoier, E" uniqKey="Hoier E">E. Hoier</name>
</author>
<author>
<name sortKey="Muller, F" uniqKey="Muller F">F. Muller</name>
</author>
<author>
<name sortKey="Glaeser, H" uniqKey="Glaeser H">H. Glaeser</name>
</author>
<author>
<name sortKey="Konig, J" uniqKey="Konig J">J. Konig</name>
</author>
<author>
<name sortKey="Fromm, M F" uniqKey="Fromm M">M.F. Fromm</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Jodoin, J" uniqKey="Jodoin J">J. Jodoin</name>
</author>
<author>
<name sortKey="Demeule, M" uniqKey="Demeule M">M. Demeule</name>
</author>
<author>
<name sortKey="Beliveau, R" uniqKey="Beliveau R">R. Beliveau</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Esmaeili, M A" uniqKey="Esmaeili M">M.A. Esmaeili</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="La, X" uniqKey="La X">X. La</name>
</author>
<author>
<name sortKey="Zhang, L" uniqKey="Zhang L">L. Zhang</name>
</author>
<author>
<name sortKey="Li, Z" uniqKey="Li Z">Z. Li</name>
</author>
<author>
<name sortKey="Li, H" uniqKey="Li H">H. Li</name>
</author>
<author>
<name sortKey="Yang, Y" uniqKey="Yang Y">Y. Yang</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Wang, P" uniqKey="Wang P">P. Wang</name>
</author>
<author>
<name sortKey="Henning, S M" uniqKey="Henning S">S.M. Henning</name>
</author>
<author>
<name sortKey="Heber, D" uniqKey="Heber D">D. Heber</name>
</author>
<author>
<name sortKey="Vadgama, J V" uniqKey="Vadgama J">J.V. Vadgama</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kim, K C" uniqKey="Kim K">K.C. Kim</name>
</author>
<author>
<name sortKey="Lee, C" uniqKey="Lee C">C. Lee</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Xue, J P" uniqKey="Xue J">J.P. Xue</name>
</author>
<author>
<name sortKey="Wang, G" uniqKey="Wang G">G. Wang</name>
</author>
<author>
<name sortKey="Zhao, Z B" uniqKey="Zhao Z">Z.B. Zhao</name>
</author>
<author>
<name sortKey="Wang, Q" uniqKey="Wang Q">Q. Wang</name>
</author>
<author>
<name sortKey="Shi, Y" uniqKey="Shi Y">Y. Shi</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Li, Y" uniqKey="Li Y">Y. Li</name>
</author>
<author>
<name sortKey="Ahmed, F" uniqKey="Ahmed F">F. Ahmed</name>
</author>
<author>
<name sortKey="Ali, S" uniqKey="Ali S">S. Ali</name>
</author>
<author>
<name sortKey="Philip, P A" uniqKey="Philip P">P.A. Philip</name>
</author>
<author>
<name sortKey="Kucuk, O" uniqKey="Kucuk O">O. Kucuk</name>
</author>
<author>
<name sortKey="Sarkar, F H" uniqKey="Sarkar F">F.H. Sarkar</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Rigalli, J P" uniqKey="Rigalli J">J.P. Rigalli</name>
</author>
<author>
<name sortKey="Scholz, P N" uniqKey="Scholz P">P.N. Scholz</name>
</author>
<author>
<name sortKey="Tocchetti, G N" uniqKey="Tocchetti G">G.N. Tocchetti</name>
</author>
<author>
<name sortKey="Ruiz, M L" uniqKey="Ruiz M">M.L. Ruiz</name>
</author>
<author>
<name sortKey="Weiss, J" uniqKey="Weiss J">J. Weiss</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Alayev, A" uniqKey="Alayev A">A. Alayev</name>
</author>
<author>
<name sortKey="Berger, S M" uniqKey="Berger S">S.M. Berger</name>
</author>
<author>
<name sortKey="Kramer, M Y" uniqKey="Kramer M">M.Y. Kramer</name>
</author>
<author>
<name sortKey="Schwartz, N S" uniqKey="Schwartz N">N.S. Schwartz</name>
</author>
<author>
<name sortKey="Holz, M K" uniqKey="Holz M">M.K. Holz</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Huang, F" uniqKey="Huang F">F. Huang</name>
</author>
<author>
<name sortKey="Wu, X N" uniqKey="Wu X">X.-N. Wu</name>
</author>
<author>
<name sortKey="Chen, J" uniqKey="Chen J">J. Chen</name>
</author>
<author>
<name sortKey="Wang, W X" uniqKey="Wang W">W.-X. Wang</name>
</author>
<author>
<name sortKey="Lu, Z" uniqKey="Lu Z">Z. Lu</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Karthikeyan, S" uniqKey="Karthikeyan S">S. Karthikeyan</name>
</author>
<author>
<name sortKey="Hoti, S" uniqKey="Hoti S">S. Hoti</name>
</author>
<author>
<name sortKey="Prasad, N" uniqKey="Prasad N">N. Prasad</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Khaleel, S A" uniqKey="Khaleel S">S.A. Khaleel</name>
</author>
<author>
<name sortKey="Al Abd, A M" uniqKey="Al Abd A">A.M. Al-Abd</name>
</author>
<author>
<name sortKey="Ali, A A" uniqKey="Ali A">A.A. Ali</name>
</author>
<author>
<name sortKey="Abdel Naim, A B" uniqKey="Abdel Naim A">A.B. Abdel-Naim</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Zhu, Y" uniqKey="Zhu Y">Y. Zhu</name>
</author>
<author>
<name sortKey="He, W" uniqKey="He W">W. He</name>
</author>
<author>
<name sortKey="Gao, X" uniqKey="Gao X">X. Gao</name>
</author>
<author>
<name sortKey="Li, B" uniqKey="Li B">B. Li</name>
</author>
<author>
<name sortKey="Mei, C" uniqKey="Mei C">C. Mei</name>
</author>
<author>
<name sortKey="Xu, R" uniqKey="Xu R">R. Xu</name>
</author>
<author>
<name sortKey="Chen, H" uniqKey="Chen H">H. Chen</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Vinod, B S" uniqKey="Vinod B">B.S. Vinod</name>
</author>
<author>
<name sortKey="Nair, H H" uniqKey="Nair H">H.H. Nair</name>
</author>
<author>
<name sortKey="Vijayakurup, V" uniqKey="Vijayakurup V">V. Vijayakurup</name>
</author>
<author>
<name sortKey="Shabna, A" uniqKey="Shabna A">A. Shabna</name>
</author>
<author>
<name sortKey="Shah, S" uniqKey="Shah S">S. Shah</name>
</author>
<author>
<name sortKey="Krishna, A" uniqKey="Krishna A">A. Krishna</name>
</author>
<author>
<name sortKey="Pillai, K S" uniqKey="Pillai K">K.S. Pillai</name>
</author>
<author>
<name sortKey="Thankachan, S" uniqKey="Thankachan S">S. Thankachan</name>
</author>
<author>
<name sortKey="Anto, R J" uniqKey="Anto R">R.J. Anto</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="He, Z" uniqKey="He Z">Z. He</name>
</author>
<author>
<name sortKey="Subramaniam, D" uniqKey="Subramaniam D">D. Subramaniam</name>
</author>
<author>
<name sortKey="Ramalingam, S" uniqKey="Ramalingam S">S. Ramalingam</name>
</author>
<author>
<name sortKey="Dhar, A" uniqKey="Dhar A">A. Dhar</name>
</author>
<author>
<name sortKey="Postier, R G" uniqKey="Postier R">R.G. Postier</name>
</author>
<author>
<name sortKey="Umar, S" uniqKey="Umar S">S. Umar</name>
</author>
<author>
<name sortKey="Zhang, Y" uniqKey="Zhang Y">Y. Zhang</name>
</author>
<author>
<name sortKey="Anant, S" uniqKey="Anant S">S. Anant</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Li, Y" uniqKey="Li Y">Y. Li</name>
</author>
<author>
<name sortKey="Revalde, J" uniqKey="Revalde J">J. Revalde</name>
</author>
<author>
<name sortKey="Paxton, J W" uniqKey="Paxton J">J.W. Paxton</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kao, T Y" uniqKey="Kao T">T.-Y. Kao</name>
</author>
<author>
<name sortKey="Chung, Y C" uniqKey="Chung Y">Y.-C. Chung</name>
</author>
<author>
<name sortKey="Hou, Y C" uniqKey="Hou Y">Y.-C. Hou</name>
</author>
<author>
<name sortKey="Tsai, Y W" uniqKey="Tsai Y">Y.-W. Tsai</name>
</author>
<author>
<name sortKey="Chen, C H" uniqKey="Chen C">C.-H. Chen</name>
</author>
<author>
<name sortKey="Chang, H P" uniqKey="Chang H">H.-P. Chang</name>
</author>
<author>
<name sortKey="Chou, J L" uniqKey="Chou J">J.-L. Chou</name>
</author>
<author>
<name sortKey="Hsu, C P" uniqKey="Hsu C">C.-P. Hsu</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Berdowska, I" uniqKey="Berdowska I">I. Berdowska</name>
</author>
<author>
<name sortKey="Zieli Ski, B" uniqKey="Zieli Ski B">B. Zieliński</name>
</author>
<author>
<name sortKey="Saczko, J" uniqKey="Saczko J">J. Saczko</name>
</author>
<author>
<name sortKey="Sopel, M" uniqKey="Sopel M">M. Sopel</name>
</author>
<author>
<name sortKey="Gamian, A" uniqKey="Gamian A">A. Gamian</name>
</author>
<author>
<name sortKey="Fecka, I" uniqKey="Fecka I">I. Fecka</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Wang, R" uniqKey="Wang R">R. Wang</name>
</author>
<author>
<name sortKey="Ma, L" uniqKey="Ma L">L. Ma</name>
</author>
<author>
<name sortKey="Weng, D" uniqKey="Weng D">D. Weng</name>
</author>
<author>
<name sortKey="Yao, J" uniqKey="Yao J">J. Yao</name>
</author>
<author>
<name sortKey="Liu, X" uniqKey="Liu X">X. Liu</name>
</author>
<author>
<name sortKey="Jin, F" uniqKey="Jin F">F. Jin</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Nowakowska, A" uniqKey="Nowakowska A">A. Nowakowska</name>
</author>
<author>
<name sortKey="Tarasiuk, J" uniqKey="Tarasiuk J">J. Tarasiuk</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Phan, A N H" uniqKey="Phan A">A.N.H. Phan</name>
</author>
<author>
<name sortKey="Hua, T N M" uniqKey="Hua T">T.N.M. Hua</name>
</author>
<author>
<name sortKey="Kim, M K" uniqKey="Kim M">M.-K. Kim</name>
</author>
<author>
<name sortKey="Vo, V T A" uniqKey="Vo V">V.T.A. Vo</name>
</author>
<author>
<name sortKey="Choi, J W" uniqKey="Choi J">J.-W. Choi</name>
</author>
<author>
<name sortKey="Kim, H W" uniqKey="Kim H">H.-W. Kim</name>
</author>
<author>
<name sortKey="Rho, J K" uniqKey="Rho J">J.K. Rho</name>
</author>
<author>
<name sortKey="Kim, K W" uniqKey="Kim K">K.W. Kim</name>
</author>
<author>
<name sortKey="Jeong, Y" uniqKey="Jeong Y">Y. Jeong</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Lu, Y" uniqKey="Lu Y">Y. Lu</name>
</author>
<author>
<name sortKey="Shan, S" uniqKey="Shan S">S. Shan</name>
</author>
<author>
<name sortKey="Li, H" uniqKey="Li H">H. Li</name>
</author>
<author>
<name sortKey="Shi, J" uniqKey="Shi J">J. Shi</name>
</author>
<author>
<name sortKey="Zhang, X" uniqKey="Zhang X">X. Zhang</name>
</author>
<author>
<name sortKey="Li, Z" uniqKey="Li Z">Z. Li</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Omene, C O" uniqKey="Omene C">C.O. Omene</name>
</author>
<author>
<name sortKey="Wu, J" uniqKey="Wu J">J. Wu</name>
</author>
<author>
<name sortKey="Frenkel, K" uniqKey="Frenkel K">K. Frenkel</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Khoram, N M" uniqKey="Khoram N">N.M. Khoram</name>
</author>
<author>
<name sortKey="Bigdeli, B" uniqKey="Bigdeli B">B. Bigdeli</name>
</author>
<author>
<name sortKey="Nikoofar, A" uniqKey="Nikoofar A">A. Nikoofar</name>
</author>
<author>
<name sortKey="Goliaei, B" uniqKey="Goliaei B">B. Goliaei</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ozturk, G" uniqKey="Ozturk G">G. Ozturk</name>
</author>
<author>
<name sortKey="Ginis, Z" uniqKey="Ginis Z">Z. Ginis</name>
</author>
<author>
<name sortKey="Akyol, S" uniqKey="Akyol S">S. Akyol</name>
</author>
<author>
<name sortKey="Erden, G" uniqKey="Erden G">G. Erden</name>
</author>
<author>
<name sortKey="Gurel, A" uniqKey="Gurel A">A. Gurel</name>
</author>
<author>
<name sortKey="Akyol, O" uniqKey="Akyol O">O. Akyol</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Sonoki, H" uniqKey="Sonoki H">H. Sonoki</name>
</author>
<author>
<name sortKey="Tanimae, A" uniqKey="Tanimae A">A. Tanimae</name>
</author>
<author>
<name sortKey="Furuta, T" uniqKey="Furuta T">T. Furuta</name>
</author>
<author>
<name sortKey="Endo, S" uniqKey="Endo S">S. Endo</name>
</author>
<author>
<name sortKey="Matsunaga, T" uniqKey="Matsunaga T">T. Matsunaga</name>
</author>
<author>
<name sortKey="Ichihara, K" uniqKey="Ichihara K">K. Ichihara</name>
</author>
<author>
<name sortKey="Ikari, A" uniqKey="Ikari A">A. Ikari</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Huang, Y" uniqKey="Huang Y">Y. Huang</name>
</author>
<author>
<name sortKey="Zeng, F" uniqKey="Zeng F">F. Zeng</name>
</author>
<author>
<name sortKey="Xu, L" uniqKey="Xu L">L. Xu</name>
</author>
<author>
<name sortKey="Zhou, J" uniqKey="Zhou J">J. Zhou</name>
</author>
<author>
<name sortKey="Liu, X" uniqKey="Liu X">X. Liu</name>
</author>
<author>
<name sortKey="Le, H" uniqKey="Le H">H. Le</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Lu, W D" uniqKey="Lu W">W.-D. Lu</name>
</author>
<author>
<name sortKey="Qin, Y" uniqKey="Qin Y">Y. Qin</name>
</author>
<author>
<name sortKey="Yang, C" uniqKey="Yang C">C. Yang</name>
</author>
<author>
<name sortKey="Li, L" uniqKey="Li L">L. Li</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Lu, Y" uniqKey="Lu Y">Y. Lu</name>
</author>
<author>
<name sortKey="Wei, C" uniqKey="Wei C">C. Wei</name>
</author>
<author>
<name sortKey="Xi, Z" uniqKey="Xi Z">Z. Xi</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="De Porras, V R" uniqKey="De Porras V">V.R. De Porras</name>
</author>
<author>
<name sortKey="Bystrup, S" uniqKey="Bystrup S">S. Bystrup</name>
</author>
<author>
<name sortKey="Martinez Cardus, A" uniqKey="Martinez Cardus A">A. Martínez-Cardús</name>
</author>
<author>
<name sortKey="Pluvinet, R" uniqKey="Pluvinet R">R. Pluvinet</name>
</author>
<author>
<name sortKey="Sumoy, L" uniqKey="Sumoy L">L. Sumoy</name>
</author>
<author>
<name sortKey="Howells, L" uniqKey="Howells L">L. Howells</name>
</author>
<author>
<name sortKey="James, M I" uniqKey="James M">M.I. James</name>
</author>
<author>
<name sortKey="Iwuji, C" uniqKey="Iwuji C">C. Iwuji</name>
</author>
<author>
<name sortKey="Manzano, J L" uniqKey="Manzano J">J.L. Manzano</name>
</author>
<author>
<name sortKey="Layos, L" uniqKey="Layos L">L. Layos</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Vinod, B S" uniqKey="Vinod B">B.S. Vinod</name>
</author>
<author>
<name sortKey="Antony, J" uniqKey="Antony J">J. Antony</name>
</author>
<author>
<name sortKey="Nair, H H" uniqKey="Nair H">H.H. Nair</name>
</author>
<author>
<name sortKey="Puliyappadamba, V T" uniqKey="Puliyappadamba V">V.T. Puliyappadamba</name>
</author>
<author>
<name sortKey="Saikia, M" uniqKey="Saikia M">M. Saikia</name>
</author>
<author>
<name sortKey="Shyam Narayanan, S" uniqKey="Shyam Narayanan S">S. Shyam Narayanan</name>
</author>
<author>
<name sortKey="Bevin, A" uniqKey="Bevin A">A. Bevin</name>
</author>
<author>
<name sortKey="John Anto, R" uniqKey="John Anto R">R. John Anto</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Roy, S" uniqKey="Roy S">S. Roy</name>
</author>
<author>
<name sortKey="Yu, Y" uniqKey="Yu Y">Y. Yu</name>
</author>
<author>
<name sortKey="Padhye, S B" uniqKey="Padhye S">S.B. Padhye</name>
</author>
<author>
<name sortKey="Sarkar, F H" uniqKey="Sarkar F">F.H. Sarkar</name>
</author>
<author>
<name sortKey="Majumdar, A P" uniqKey="Majumdar A">A.P. Majumdar</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Shen, J" uniqKey="Shen J">J. Shen</name>
</author>
<author>
<name sortKey="Chen, Y J" uniqKey="Chen Y">Y.-J. Chen</name>
</author>
<author>
<name sortKey="Jia, Y W" uniqKey="Jia Y">Y.-W. Jia</name>
</author>
<author>
<name sortKey="Zhao, W Y" uniqKey="Zhao W">W.-Y. Zhao</name>
</author>
<author>
<name sortKey="Chen, G H" uniqKey="Chen G">G.-H. Chen</name>
</author>
<author>
<name sortKey="Liu, D F" uniqKey="Liu D">D.-F. Liu</name>
</author>
<author>
<name sortKey="Chen, Y Y" uniqKey="Chen Y">Y.-Y. Chen</name>
</author>
<author>
<name sortKey="Zhang, C" uniqKey="Zhang C">C. Zhang</name>
</author>
<author>
<name sortKey="Liu, X P" uniqKey="Liu X">X.P. Liu</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Gu, Y" uniqKey="Gu Y">Y. Gu</name>
</author>
<author>
<name sortKey="Li, J" uniqKey="Li J">J. Li</name>
</author>
<author>
<name sortKey="Li, Y" uniqKey="Li Y">Y. Li</name>
</author>
<author>
<name sortKey="Song, L" uniqKey="Song L">L. Song</name>
</author>
<author>
<name sortKey="Li, D" uniqKey="Li D">D. Li</name>
</author>
<author>
<name sortKey="Peng, L" uniqKey="Peng L">L. Peng</name>
</author>
<author>
<name sortKey="Wan, Y" uniqKey="Wan Y">Y. Wan</name>
</author>
<author>
<name sortKey="Hua, S" uniqKey="Hua S">S. Hua</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ye, M X" uniqKey="Ye M">M.X. Ye</name>
</author>
<author>
<name sortKey="Zhao, Y L" uniqKey="Zhao Y">Y.L. Zhao</name>
</author>
<author>
<name sortKey="Li, Y" uniqKey="Li Y">Y. Li</name>
</author>
<author>
<name sortKey="Miao, Q" uniqKey="Miao Q">Q. Miao</name>
</author>
<author>
<name sortKey="Li, Z K" uniqKey="Li Z">Z.-K. Li</name>
</author>
<author>
<name sortKey="Ren, X L" uniqKey="Ren X">X.L. Ren</name>
</author>
<author>
<name sortKey="Song, L Q" uniqKey="Song L">L.Q. Song</name>
</author>
<author>
<name sortKey="Yin, H" uniqKey="Yin H">H. Yin</name>
</author>
<author>
<name sortKey="Zhang, J" uniqKey="Zhang J">J. Zhang</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Jiang, M" uniqKey="Jiang M">M. Jiang</name>
</author>
<author>
<name sortKey="Huang, O" uniqKey="Huang O">O. Huang</name>
</author>
<author>
<name sortKey="Zhang, X" uniqKey="Zhang X">X. Zhang</name>
</author>
<author>
<name sortKey="Xie, Z" uniqKey="Xie Z">Z. Xie</name>
</author>
<author>
<name sortKey="Shen, A" uniqKey="Shen A">A. Shen</name>
</author>
<author>
<name sortKey="Liu, H" uniqKey="Liu H">H. Liu</name>
</author>
<author>
<name sortKey="Geng, M" uniqKey="Geng M">M. Geng</name>
</author>
<author>
<name sortKey="Shen, K" uniqKey="Shen K">K. Shen</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Thulasiraman, P" uniqKey="Thulasiraman P">P. Thulasiraman</name>
</author>
<author>
<name sortKey="Mcandrews, D J" uniqKey="Mcandrews D">D.J. McAndrews</name>
</author>
<author>
<name sortKey="Mohiudddin, I Q" uniqKey="Mohiudddin I">I.Q. Mohiudddin</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Wang, S" uniqKey="Wang S">S. Wang</name>
</author>
<author>
<name sortKey="Chen, R" uniqKey="Chen R">R. Chen</name>
</author>
<author>
<name sortKey="Zhong, Z" uniqKey="Zhong Z">Z. Zhong</name>
</author>
<author>
<name sortKey="Shi, Z" uniqKey="Shi Z">Z. Shi</name>
</author>
<author>
<name sortKey="Chen, M" uniqKey="Chen M">M. Chen</name>
</author>
<author>
<name sortKey="Wang, Y" uniqKey="Wang Y">Y. Wang</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ibrahim, A S" uniqKey="Ibrahim A">A.S. Ibrahim</name>
</author>
<author>
<name sortKey="Sobh, M A" uniqKey="Sobh M">M.A. Sobh</name>
</author>
<author>
<name sortKey="Eid, H M" uniqKey="Eid H">H.M. Eid</name>
</author>
<author>
<name sortKey="Salem, A" uniqKey="Salem A">A. Salem</name>
</author>
<author>
<name sortKey="Elbelasi, H H" uniqKey="Elbelasi H">H.H. Elbelasi</name>
</author>
<author>
<name sortKey="El Naggar, M H" uniqKey="El Naggar M">M.H. El-Naggar</name>
</author>
<author>
<name sortKey="Abdelbar, F M" uniqKey="Abdelbar F">F.M. AbdelBar</name>
</author>
<author>
<name sortKey="Sheashaa, H" uniqKey="Sheashaa H">H. Sheashaa</name>
</author>
<author>
<name sortKey="Sobh, M A" uniqKey="Sobh M">M.A. Sobh</name>
</author>
<author>
<name sortKey="Badria, F A" uniqKey="Badria F">F.A. Badria</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Boumendjel, A" uniqKey="Boumendjel A">A. Boumendjel</name>
</author>
<author>
<name sortKey="Di Pietro, A" uniqKey="Di Pietro A">A. Di Pietro</name>
</author>
<author>
<name sortKey="Dumontet, C" uniqKey="Dumontet C">C. Dumontet</name>
</author>
<author>
<name sortKey="Barron, D" uniqKey="Barron D">D. Barron</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Gan, R Y" uniqKey="Gan R">R.Y. Gan</name>
</author>
<author>
<name sortKey="Li, H B" uniqKey="Li H">H.B. Li</name>
</author>
<author>
<name sortKey="Sui, Z Q" uniqKey="Sui Z">Z.Q. Sui</name>
</author>
<author>
<name sortKey="Corke, H" uniqKey="Corke H">H. Corke</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Rauf, A" uniqKey="Rauf A">A. Rauf</name>
</author>
<author>
<name sortKey="Imran, M" uniqKey="Imran M">M. Imran</name>
</author>
<author>
<name sortKey="Butt, M S" uniqKey="Butt M">M.S. Butt</name>
</author>
<author>
<name sortKey="Nadeem, M" uniqKey="Nadeem M">M. Nadeem</name>
</author>
<author>
<name sortKey="Peters, D G" uniqKey="Peters D">D.G. Peters</name>
</author>
<author>
<name sortKey="Mubarak, M S" uniqKey="Mubarak M">M.S. Mubarak</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Hussain, S A" uniqKey="Hussain S">S.A. Hussain</name>
</author>
<author>
<name sortKey="Sulaiman, A A" uniqKey="Sulaiman A">A.A. Sulaiman</name>
</author>
<author>
<name sortKey="Balch, C" uniqKey="Balch C">C. Balch</name>
</author>
<author>
<name sortKey="Chauhan, H" uniqKey="Chauhan H">H. Chauhan</name>
</author>
<author>
<name sortKey="Alhadidi, Q M" uniqKey="Alhadidi Q">Q.M. Alhadidi</name>
</author>
<author>
<name sortKey="Tiwari, A K" uniqKey="Tiwari A">A.K. Tiwari</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Czerwonka, A" uniqKey="Czerwonka A">A. Czerwonka</name>
</author>
<author>
<name sortKey="Maciolek, U" uniqKey="Maciolek U">U. Maciolek</name>
</author>
<author>
<name sortKey="Kalafut, J" uniqKey="Kalafut J">J. Kalafut</name>
</author>
<author>
<name sortKey="Mendyk, E" uniqKey="Mendyk E">E. Mendyk</name>
</author>
<author>
<name sortKey="Kuzniar, A" uniqKey="Kuzniar A">A. Kuzniar</name>
</author>
<author>
<name sortKey="Rzeski, W" uniqKey="Rzeski W">W. Rzeski</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Scambia, G" uniqKey="Scambia G">G. Scambia</name>
</author>
<author>
<name sortKey="Ranelletti, F O" uniqKey="Ranelletti F">F.O. Ranelletti</name>
</author>
<author>
<name sortKey="Panici, P B" uniqKey="Panici P">P.B. Panici</name>
</author>
<author>
<name sortKey="De Vincenzo, R" uniqKey="De Vincenzo R">R. De Vincenzo</name>
</author>
<author>
<name sortKey="Bonanno, G" uniqKey="Bonanno G">G. Bonanno</name>
</author>
<author>
<name sortKey="Ferrandina, G" uniqKey="Ferrandina G">G. Ferrandina</name>
</author>
<author>
<name sortKey="Piantelli, M" uniqKey="Piantelli M">M. Piantelli</name>
</author>
<author>
<name sortKey="Bussa, S" uniqKey="Bussa S">S. Bussa</name>
</author>
<author>
<name sortKey="Rumi, C" uniqKey="Rumi C">C. Rumi</name>
</author>
<author>
<name sortKey="Cianfriglia, M" uniqKey="Cianfriglia M">M. Cianfriglia</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="He, W T" uniqKey="He W">W.T. He</name>
</author>
<author>
<name sortKey="Zhu, Y H" uniqKey="Zhu Y">Y.H. Zhu</name>
</author>
<author>
<name sortKey="Zhang, T" uniqKey="Zhang T">T. Zhang</name>
</author>
<author>
<name sortKey="Abulimiti, P" uniqKey="Abulimiti P">P. Abulimiti</name>
</author>
<author>
<name sortKey="Zeng, F Y" uniqKey="Zeng F">F.Y. Zeng</name>
</author>
<author>
<name sortKey="Zhang, L P" uniqKey="Zhang L">L.P. Zhang</name>
</author>
<author>
<name sortKey="Luo, L J" uniqKey="Luo L">L.J. Luo</name>
</author>
<author>
<name sortKey="Xie, X M" uniqKey="Xie X">X.M. Xie</name>
</author>
<author>
<name sortKey="Zhang, H L" uniqKey="Zhang H">H.L. Zhang</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Zhu, J" uniqKey="Zhu J">J. Zhu</name>
</author>
<author>
<name sortKey="Zhao, B" uniqKey="Zhao B">B. Zhao</name>
</author>
<author>
<name sortKey="Xiong, P" uniqKey="Xiong P">P. Xiong</name>
</author>
<author>
<name sortKey="Wang, C" uniqKey="Wang C">C. Wang</name>
</author>
<author>
<name sortKey="Zhang, J" uniqKey="Zhang J">J. Zhang</name>
</author>
<author>
<name sortKey="Tian, X" uniqKey="Tian X">X. Tian</name>
</author>
<author>
<name sortKey="Huang, Y" uniqKey="Huang Y">Y. Huang</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Su, P" uniqKey="Su P">P. Su</name>
</author>
<author>
<name sortKey="Yang, Y" uniqKey="Yang Y">Y. Yang</name>
</author>
<author>
<name sortKey="Wang, G" uniqKey="Wang G">G. Wang</name>
</author>
<author>
<name sortKey="Chen, X" uniqKey="Chen X">X. Chen</name>
</author>
<author>
<name sortKey="Ju, Y" uniqKey="Ju Y">Y. Ju</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Wen, C" uniqKey="Wen C">C. Wen</name>
</author>
<author>
<name sortKey="Fu, L" uniqKey="Fu L">L. Fu</name>
</author>
<author>
<name sortKey="Huang, J" uniqKey="Huang J">J. Huang</name>
</author>
<author>
<name sortKey="Dai, Y" uniqKey="Dai Y">Y. Dai</name>
</author>
<author>
<name sortKey="Wang, B" uniqKey="Wang B">B. Wang</name>
</author>
<author>
<name sortKey="Xu, G" uniqKey="Xu G">G. Xu</name>
</author>
<author>
<name sortKey="Wu, L" uniqKey="Wu L">L. Wu</name>
</author>
<author>
<name sortKey="Zhou, H" uniqKey="Zhou H">H. Zhou</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Hu, C" uniqKey="Hu C">C. Hu</name>
</author>
<author>
<name sortKey="Li, M" uniqKey="Li M">M. Li</name>
</author>
<author>
<name sortKey="Guo, T" uniqKey="Guo T">T. Guo</name>
</author>
<author>
<name sortKey="Wang, S" uniqKey="Wang S">S. Wang</name>
</author>
<author>
<name sortKey="Huang, W" uniqKey="Huang W">W. Huang</name>
</author>
<author>
<name sortKey="Yang, K" uniqKey="Yang K">K. Yang</name>
</author>
<author>
<name sortKey="Liao, Z" uniqKey="Liao Z">Z. Liao</name>
</author>
<author>
<name sortKey="Wang, J" uniqKey="Wang J">J. Wang</name>
</author>
<author>
<name sortKey="Zhang, F" uniqKey="Zhang F">F. Zhang</name>
</author>
<author>
<name sortKey="Wang, H" uniqKey="Wang H">H. Wang</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Zhao, W" uniqKey="Zhao W">W. Zhao</name>
</author>
<author>
<name sortKey="Zhou, X" uniqKey="Zhou X">X. Zhou</name>
</author>
<author>
<name sortKey="Qi, G" uniqKey="Qi G">G. Qi</name>
</author>
<author>
<name sortKey="Guo, Y" uniqKey="Guo Y">Y. Guo</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Lin, W" uniqKey="Lin W">W. Lin</name>
</author>
<author>
<name sortKey="Luo, J" uniqKey="Luo J">J. Luo</name>
</author>
<author>
<name sortKey="Sun, Y" uniqKey="Sun Y">Y. Sun</name>
</author>
<author>
<name sortKey="Lin, C" uniqKey="Lin C">C. Lin</name>
</author>
<author>
<name sortKey="Li, G" uniqKey="Li G">G. Li</name>
</author>
<author>
<name sortKey="Niu, Y" uniqKey="Niu Y">Y. Niu</name>
</author>
<author>
<name sortKey="Chang, C" uniqKey="Chang C">C. Chang</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Chen, Q Y" uniqKey="Chen Q">Q.Y. Chen</name>
</author>
<author>
<name sortKey="Lu, G H" uniqKey="Lu G">G.H. Lu</name>
</author>
<author>
<name sortKey="Wu, Y Q" uniqKey="Wu Y">Y.Q. Wu</name>
</author>
<author>
<name sortKey="Zheng, Y" uniqKey="Zheng Y">Y. Zheng</name>
</author>
<author>
<name sortKey="Xu, K" uniqKey="Xu K">K. Xu</name>
</author>
<author>
<name sortKey="Wu, L J" uniqKey="Wu L">L.J. Wu</name>
</author>
<author>
<name sortKey="Jiang, Z Y" uniqKey="Jiang Z">Z.Y. Jiang</name>
</author>
<author>
<name sortKey="Feng, R" uniqKey="Feng R">R. Feng</name>
</author>
<author>
<name sortKey="Zhou, J Y" uniqKey="Zhou J">J.Y. Zhou</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Fulda, S" uniqKey="Fulda S">S. Fulda</name>
</author>
<author>
<name sortKey="Debatin, K M" uniqKey="Debatin K">K.M. Debatin</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Lin, J N" uniqKey="Lin J">J.N. Lin</name>
</author>
<author>
<name sortKey="Lin, V C" uniqKey="Lin V">V.C. Lin</name>
</author>
<author>
<name sortKey="Rau, K M" uniqKey="Rau K">K.M. Rau</name>
</author>
<author>
<name sortKey="Shieh, P C" uniqKey="Shieh P">P.C. Shieh</name>
</author>
<author>
<name sortKey="Kuo, D H" uniqKey="Kuo D">D.H. Kuo</name>
</author>
<author>
<name sortKey="Shieh, J C" uniqKey="Shieh J">J.C. Shieh</name>
</author>
<author>
<name sortKey="Chen, W J" uniqKey="Chen W">W.J. Chen</name>
</author>
<author>
<name sortKey="Tsai, S C" uniqKey="Tsai S">S.C. Tsai</name>
</author>
<author>
<name sortKey="Way, T D" uniqKey="Way T">T.D. Way</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Lecumberri, E" uniqKey="Lecumberri E">E. Lecumberri</name>
</author>
<author>
<name sortKey="Dupertuis, Y M" uniqKey="Dupertuis Y">Y.M. Dupertuis</name>
</author>
<author>
<name sortKey="Miralbell, R" uniqKey="Miralbell R">R. Miralbell</name>
</author>
<author>
<name sortKey="Pichard, C" uniqKey="Pichard C">C. Pichard</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Shin, S C" uniqKey="Shin S">S.C. Shin</name>
</author>
<author>
<name sortKey="Choi, J S" uniqKey="Choi J">J.S. Choi</name>
</author>
<author>
<name sortKey="Li, X" uniqKey="Li X">X. Li</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Lv, L" uniqKey="Lv L">L. Lv</name>
</author>
<author>
<name sortKey="Liu, C" uniqKey="Liu C">C. Liu</name>
</author>
<author>
<name sortKey="Chen, C" uniqKey="Chen C">C. Chen</name>
</author>
<author>
<name sortKey="Yu, X" uniqKey="Yu X">X. Yu</name>
</author>
<author>
<name sortKey="Chen, G" uniqKey="Chen G">G. Chen</name>
</author>
<author>
<name sortKey="Shi, Y" uniqKey="Shi Y">Y. Shi</name>
</author>
<author>
<name sortKey="Qin, F" uniqKey="Qin F">F. Qin</name>
</author>
<author>
<name sortKey="Ou, J" uniqKey="Ou J">J. Ou</name>
</author>
<author>
<name sortKey="Qiu, K" uniqKey="Qiu K">K. Qiu</name>
</author>
<author>
<name sortKey="Li, G" uniqKey="Li G">G. Li</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Hong, Z" uniqKey="Hong Z">Z. Hong</name>
</author>
<author>
<name sortKey="Cao, X" uniqKey="Cao X">X. Cao</name>
</author>
<author>
<name sortKey="Li, N" uniqKey="Li N">N. Li</name>
</author>
<author>
<name sortKey="Zhang, Y" uniqKey="Zhang Y">Y. Zhang</name>
</author>
<author>
<name sortKey="Lan, L" uniqKey="Lan L">L. Lan</name>
</author>
<author>
<name sortKey="Zhou, Y" uniqKey="Zhou Y">Y. Zhou</name>
</author>
<author>
<name sortKey="Pan, X" uniqKey="Pan X">X. Pan</name>
</author>
<author>
<name sortKey="Shen, L" uniqKey="Shen L">L. Shen</name>
</author>
<author>
<name sortKey="Yin, Z" uniqKey="Yin Z">Z. Yin</name>
</author>
<author>
<name sortKey="Luo, L" uniqKey="Luo L">L. Luo</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Luo, T" uniqKey="Luo T">T. Luo</name>
</author>
<author>
<name sortKey="Wang, J" uniqKey="Wang J">J. Wang</name>
</author>
<author>
<name sortKey="Yin, Y" uniqKey="Yin Y">Y. Yin</name>
</author>
<author>
<name sortKey="Hua, H" uniqKey="Hua H">H. Hua</name>
</author>
<author>
<name sortKey="Jing, J" uniqKey="Jing J">J. Jing</name>
</author>
<author>
<name sortKey="Sun, X" uniqKey="Sun X">X. Sun</name>
</author>
<author>
<name sortKey="Li, M" uniqKey="Li M">M. Li</name>
</author>
<author>
<name sortKey="Zhang, Y" uniqKey="Zhang Y">Y. Zhang</name>
</author>
<author>
<name sortKey="Jiang, Y" uniqKey="Jiang Y">Y. Jiang</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="El Rahman, S S A" uniqKey="El Rahman S">S.S.A. El-Rahman</name>
</author>
<author>
<name sortKey="Shehab, G" uniqKey="Shehab G">G. Shehab</name>
</author>
<author>
<name sortKey="Nashaat, H" uniqKey="Nashaat H">H. Nashaat</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Liu, D" uniqKey="Liu D">D. Liu</name>
</author>
<author>
<name sortKey="Yan, L" uniqKey="Yan L">L. Yan</name>
</author>
<author>
<name sortKey="Wang, L" uniqKey="Wang L">L. Wang</name>
</author>
<author>
<name sortKey="Tai, W" uniqKey="Tai W">W. Tai</name>
</author>
<author>
<name sortKey="Wang, W" uniqKey="Wang W">W. Wang</name>
</author>
<author>
<name sortKey="Yang, C" uniqKey="Yang C">C. Yang</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Zhu, H" uniqKey="Zhu H">H. Zhu</name>
</author>
<author>
<name sortKey="Cheng, H" uniqKey="Cheng H">H. Cheng</name>
</author>
<author>
<name sortKey="Ren, Y" uniqKey="Ren Y">Y. Ren</name>
</author>
<author>
<name sortKey="Liu, Z G" uniqKey="Liu Z">Z.G. Liu</name>
</author>
<author>
<name sortKey="Zhang, Y F" uniqKey="Zhang Y">Y.F. Zhang</name>
</author>
<author>
<name sortKey="De Luo, B" uniqKey="De Luo B">B. De Luo</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Meng, J" uniqKey="Meng J">J. Meng</name>
</author>
<author>
<name sortKey="Guo, F" uniqKey="Guo F">F. Guo</name>
</author>
<author>
<name sortKey="Xu, H" uniqKey="Xu H">H. Xu</name>
</author>
<author>
<name sortKey="Liang, W" uniqKey="Liang W">W. Liang</name>
</author>
<author>
<name sortKey="Wang, C" uniqKey="Wang C">C. Wang</name>
</author>
<author>
<name sortKey="Yang, X D" uniqKey="Yang X">X.D. Yang</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Yang, S" uniqKey="Yang S">S. Yang</name>
</author>
<author>
<name sortKey="Li, W" uniqKey="Li W">W. Li</name>
</author>
<author>
<name sortKey="Sun, H" uniqKey="Sun H">H. Sun</name>
</author>
<author>
<name sortKey="Wu, B" uniqKey="Wu B">B. Wu</name>
</author>
<author>
<name sortKey="Ji, F" uniqKey="Ji F">F. Ji</name>
</author>
<author>
<name sortKey="Sun, T" uniqKey="Sun T">T. Sun</name>
</author>
<author>
<name sortKey="Chang, H" uniqKey="Chang H">H. Chang</name>
</author>
<author>
<name sortKey="Shen, P" uniqKey="Shen P">P. Shen</name>
</author>
<author>
<name sortKey="Wang, Y" uniqKey="Wang Y">Y. Wang</name>
</author>
<author>
<name sortKey="Zhou, D" uniqKey="Zhou D">D. Zhou</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Zhao, W" uniqKey="Zhao W">W. Zhao</name>
</author>
<author>
<name sortKey="Bao, P" uniqKey="Bao P">P. Bao</name>
</author>
<author>
<name sortKey="Qi, H" uniqKey="Qi H">H. Qi</name>
</author>
<author>
<name sortKey="You, H" uniqKey="You H">H. You</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Wu, J" uniqKey="Wu J">J. Wu</name>
</author>
<author>
<name sortKey="Omene, C" uniqKey="Omene C">C. Omene</name>
</author>
<author>
<name sortKey="Karkoszka, J" uniqKey="Karkoszka J">J. Karkoszka</name>
</author>
<author>
<name sortKey="Bosland, M" uniqKey="Bosland M">M. Bosland</name>
</author>
<author>
<name sortKey="Eckard, J" uniqKey="Eckard J">J. Eckard</name>
</author>
<author>
<name sortKey="Klein, C B" uniqKey="Klein C">C.B. Klein</name>
</author>
<author>
<name sortKey="Frenkel, K" uniqKey="Frenkel K">K. Frenkel</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Lou, S" uniqKey="Lou S">S. Lou</name>
</author>
<author>
<name sortKey="Zhao, Z" uniqKey="Zhao Z">Z. Zhao</name>
</author>
<author>
<name sortKey="Dezort, M" uniqKey="Dezort M">M. Dezort</name>
</author>
<author>
<name sortKey="Lohneis, T" uniqKey="Lohneis T">T. Lohneis</name>
</author>
<author>
<name sortKey="Zhang, C" uniqKey="Zhang C">C. Zhang</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kunnumakkara, A B" uniqKey="Kunnumakkara A">A.B. Kunnumakkara</name>
</author>
<author>
<name sortKey="Diagaradjane, P" uniqKey="Diagaradjane P">P. Diagaradjane</name>
</author>
<author>
<name sortKey="Anand, P" uniqKey="Anand P">P. Anand</name>
</author>
<author>
<name sortKey="Kuzhuvelil, H B" uniqKey="Kuzhuvelil H">H.B. Kuzhuvelil</name>
</author>
<author>
<name sortKey="Deorukhkar, A" uniqKey="Deorukhkar A">A. Deorukhkar</name>
</author>
<author>
<name sortKey="Gelovani, J" uniqKey="Gelovani J">J. Gelovani</name>
</author>
<author>
<name sortKey="Guha, S" uniqKey="Guha S">S. Guha</name>
</author>
<author>
<name sortKey="Krishnan, S" uniqKey="Krishnan S">S. Krishnan</name>
</author>
<author>
<name sortKey="Aggarwal, B B" uniqKey="Aggarwal B">B.B. Aggarwal</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Neerati, P" uniqKey="Neerati P">P. Neerati</name>
</author>
<author>
<name sortKey="Sudhakar, Y A" uniqKey="Sudhakar Y">Y.A. Sudhakar</name>
</author>
<author>
<name sortKey="Kanwar, J R" uniqKey="Kanwar J">J.R. Kanwar</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Howells, L M" uniqKey="Howells L">L.M. Howells</name>
</author>
<author>
<name sortKey="Sale, S" uniqKey="Sale S">S. Sale</name>
</author>
<author>
<name sortKey="Sriramareddy, S N" uniqKey="Sriramareddy S">S.N. Sriramareddy</name>
</author>
<author>
<name sortKey="Irving, G R" uniqKey="Irving G">G.R. Irving</name>
</author>
<author>
<name sortKey="Jones, D J" uniqKey="Jones D">D.J. Jones</name>
</author>
<author>
<name sortKey="Ottley, C J" uniqKey="Ottley C">C.J. Ottley</name>
</author>
<author>
<name sortKey="Pearson, D G" uniqKey="Pearson D">D.G. Pearson</name>
</author>
<author>
<name sortKey="Mann, C D" uniqKey="Mann C">C.D. Mann</name>
</author>
<author>
<name sortKey="Manson, M M" uniqKey="Manson M">M.M. Manson</name>
</author>
<author>
<name sortKey="Berry, D P" uniqKey="Berry D">D.P. Berry</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Yan, J" uniqKey="Yan J">J. Yan</name>
</author>
<author>
<name sortKey="Wang, Y" uniqKey="Wang Y">Y. Wang</name>
</author>
<author>
<name sortKey="Zhang, X" uniqKey="Zhang X">X. Zhang</name>
</author>
<author>
<name sortKey="Liu, S" uniqKey="Liu S">S. Liu</name>
</author>
<author>
<name sortKey="Tian, C" uniqKey="Tian C">C. Tian</name>
</author>
<author>
<name sortKey="Wang, H" uniqKey="Wang H">H. Wang</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Pramanik, D" uniqKey="Pramanik D">D. Pramanik</name>
</author>
<author>
<name sortKey="Campbell, N R" uniqKey="Campbell N">N.R. Campbell</name>
</author>
<author>
<name sortKey="Das, S" uniqKey="Das S">S. Das</name>
</author>
<author>
<name sortKey="Gupta, S" uniqKey="Gupta S">S. Gupta</name>
</author>
<author>
<name sortKey="Chenna, V" uniqKey="Chenna V">V. Chenna</name>
</author>
<author>
<name sortKey="Bisht, S" uniqKey="Bisht S">S. Bisht</name>
</author>
<author>
<name sortKey="Sysa Shah, P" uniqKey="Sysa Shah P">P. Sysa-Shah</name>
</author>
<author>
<name sortKey="Bedja, D" uniqKey="Bedja D">D. Bedja</name>
</author>
<author>
<name sortKey="Karikari, C" uniqKey="Karikari C">C. Karikari</name>
</author>
<author>
<name sortKey="Steenbergen, C" uniqKey="Steenbergen C">C. Steenbergen</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Li, M" uniqKey="Li M">M. Li</name>
</author>
<author>
<name sortKey="Zhang, Z" uniqKey="Zhang Z">Z. Zhang</name>
</author>
<author>
<name sortKey="Hill, D L" uniqKey="Hill D">D.L. Hill</name>
</author>
<author>
<name sortKey="Wang, H" uniqKey="Wang H">H. Wang</name>
</author>
<author>
<name sortKey="Zhang, R" uniqKey="Zhang R">R. Zhang</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Cheng, K W" uniqKey="Cheng K">K.-W. Cheng</name>
</author>
<author>
<name sortKey="Wong, C C" uniqKey="Wong C">C.C. Wong</name>
</author>
<author>
<name sortKey="Mattheolabakis, G" uniqKey="Mattheolabakis G">G. Mattheolabakis</name>
</author>
<author>
<name sortKey="Xie, G" uniqKey="Xie G">G. Xie</name>
</author>
<author>
<name sortKey="Huang, L" uniqKey="Huang L">L. Huang</name>
</author>
<author>
<name sortKey="Rigas, B" uniqKey="Rigas B">B. Rigas</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Cui, T" uniqKey="Cui T">T. Cui</name>
</author>
<author>
<name sortKey="Zhang, S" uniqKey="Zhang S">S. Zhang</name>
</author>
<author>
<name sortKey="Sun, H" uniqKey="Sun H">H. Sun</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Mahammedi, H" uniqKey="Mahammedi H">H. Mahammedi</name>
</author>
<author>
<name sortKey="Planchat, E" uniqKey="Planchat E">E. Planchat</name>
</author>
<author>
<name sortKey="Pouget, M" uniqKey="Pouget M">M. Pouget</name>
</author>
<author>
<name sortKey="Durando, X" uniqKey="Durando X">X. Durando</name>
</author>
<author>
<name sortKey="Cure, H" uniqKey="Cure H">H. Cure</name>
</author>
<author>
<name sortKey="Guy, L" uniqKey="Guy L">L. Guy</name>
</author>
<author>
<name sortKey="Van Praagh, I" uniqKey="Van Praagh I">I. Van-Praagh</name>
</author>
<author>
<name sortKey="Savareux, L" uniqKey="Savareux L">L. Savareux</name>
</author>
<author>
<name sortKey="Atger, M" uniqKey="Atger M">M. Atger</name>
</author>
<author>
<name sortKey="Bayet Robert, M" uniqKey="Bayet Robert M">M. Bayet-Robert</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Bayet Robert, M" uniqKey="Bayet Robert M">M. Bayet-Robert</name>
</author>
<author>
<name sortKey="Kwiatkowski, F" uniqKey="Kwiatkowski F">F. Kwiatkowski</name>
</author>
<author>
<name sortKey="Leheurteur, M" uniqKey="Leheurteur M">M. Leheurteur</name>
</author>
<author>
<name sortKey="Gachon, F" uniqKey="Gachon F">F. Gachon</name>
</author>
<author>
<name sortKey="Planchat, E" uniqKey="Planchat E">E. Planchat</name>
</author>
<author>
<name sortKey="Abrial, C" uniqKey="Abrial C">C. Abrial</name>
</author>
<author>
<name sortKey="Mouret Reynier, M A" uniqKey="Mouret Reynier M">M.A. Mouret-Reynier</name>
</author>
<author>
<name sortKey="Durando, X" uniqKey="Durando X">X. Durando</name>
</author>
<author>
<name sortKey="Barthomeuf, C" uniqKey="Barthomeuf C">C. Barthomeuf</name>
</author>
<author>
<name sortKey="Chollet, P" uniqKey="Chollet P">P. Chollet</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="D Rchivio, M" uniqKey="D Rchivio M">M. D’Archivio</name>
</author>
<author>
<name sortKey="Filesi, C" uniqKey="Filesi C">C. Filesi</name>
</author>
<author>
<name sortKey="Vari, R" uniqKey="Vari R">R. Vari</name>
</author>
<author>
<name sortKey="Scazzocchio, B" uniqKey="Scazzocchio B">B. Scazzocchio</name>
</author>
<author>
<name sortKey="Masella, R" uniqKey="Masella R">R. Masella</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Tresserra Rimbau, A" uniqKey="Tresserra Rimbau A">A. Tresserra-Rimbau</name>
</author>
<author>
<name sortKey="Lamuela Raventos, R M" uniqKey="Lamuela Raventos R">R.M. Lamuela-Raventos</name>
</author>
<author>
<name sortKey="Moreno, J J" uniqKey="Moreno J">J.J. Moreno</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Velderrain Rodriguez, G R" uniqKey="Velderrain Rodriguez G">G.R. Velderrain-Rodriguez</name>
</author>
<author>
<name sortKey="Palafox Carlos, H" uniqKey="Palafox Carlos H">H. Palafox-Carlos</name>
</author>
<author>
<name sortKey="Wall Medrano, A" uniqKey="Wall Medrano A">A. Wall-Medrano</name>
</author>
<author>
<name sortKey="Ayala Zavala, J F" uniqKey="Ayala Zavala J">J.F. Ayala-Zavala</name>
</author>
<author>
<name sortKey="Chen, C Y" uniqKey="Chen C">C.Y. Chen</name>
</author>
<author>
<name sortKey="Robles Sanchez, M" uniqKey="Robles Sanchez M">M. Robles-Sanchez</name>
</author>
<author>
<name sortKey="Astiazaran Garcia, H" uniqKey="Astiazaran Garcia H">H. Astiazaran-Garcia</name>
</author>
<author>
<name sortKey="Alvarez Parrilla, E" uniqKey="Alvarez Parrilla E">E. Alvarez-Parrilla</name>
</author>
<author>
<name sortKey="Gonzalez Aguilar, G A" uniqKey="Gonzalez Aguilar G">G.A. Gonzalez-Aguilar</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Azrad, M" uniqKey="Azrad M">M. Azrad</name>
</author>
<author>
<name sortKey="Vollmer, R T" uniqKey="Vollmer R">R.T. Vollmer</name>
</author>
<author>
<name sortKey="Madden, J" uniqKey="Madden J">J. Madden</name>
</author>
<author>
<name sortKey="Dewhirst, M" uniqKey="Dewhirst M">M. Dewhirst</name>
</author>
<author>
<name sortKey="Polascik, T J" uniqKey="Polascik T">T.J. Polascik</name>
</author>
<author>
<name sortKey="Snyder, D C" uniqKey="Snyder D">D.C. Snyder</name>
</author>
<author>
<name sortKey="Ruffin, M T" uniqKey="Ruffin M">M.T. Ruffin</name>
</author>
<author>
<name sortKey="Moul, J W" uniqKey="Moul J">J.W. Moul</name>
</author>
<author>
<name sortKey="Brenner, D E" uniqKey="Brenner D">D.E. Brenner</name>
</author>
<author>
<name sortKey="Demark Wahnefried, W" uniqKey="Demark Wahnefried W">W. Demark-Wahnefried</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Gonzalez Sarrias, A" uniqKey="Gonzalez Sarrias A">A. Gonzalez-Sarrias</name>
</author>
<author>
<name sortKey="Tome Carneiro, J" uniqKey="Tome Carneiro J">J. Tome-Carneiro</name>
</author>
<author>
<name sortKey="Bellesia, A" uniqKey="Bellesia A">A. Bellesia</name>
</author>
<author>
<name sortKey="Tomas Barberan, F A" uniqKey="Tomas Barberan F">F.A. Tomas-Barberan</name>
</author>
<author>
<name sortKey="Espin, J C" uniqKey="Espin J">J.C. Espin</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Alam, M N" uniqKey="Alam M">M.N. Alam</name>
</author>
<author>
<name sortKey="Almoyad, M" uniqKey="Almoyad M">M. Almoyad</name>
</author>
<author>
<name sortKey="Huq, F" uniqKey="Huq F">F. Huq</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Patel, K R" uniqKey="Patel K">K.R. Patel</name>
</author>
<author>
<name sortKey="Scott, E" uniqKey="Scott E">E. Scott</name>
</author>
<author>
<name sortKey="Brown, V A" uniqKey="Brown V">V.A. Brown</name>
</author>
<author>
<name sortKey="Gescher, A J" uniqKey="Gescher A">A.J. Gescher</name>
</author>
<author>
<name sortKey="Steward, W P" uniqKey="Steward W">W.P. Steward</name>
</author>
<author>
<name sortKey="Brown, K" uniqKey="Brown K">K. Brown</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Vinod, B S" uniqKey="Vinod B">B.S. Vinod</name>
</author>
<author>
<name sortKey="Maliekal, T T" uniqKey="Maliekal T">T.T. Maliekal</name>
</author>
<author>
<name sortKey="Anto, R J" uniqKey="Anto R">R.J. Anto</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Schirrmacher, V" uniqKey="Schirrmacher V">V. Schirrmacher</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Nurgali, K" uniqKey="Nurgali K">K. Nurgali</name>
</author>
<author>
<name sortKey="Jagoe, R T" uniqKey="Jagoe R">R.T. Jagoe</name>
</author>
<author>
<name sortKey="Abalo, R" uniqKey="Abalo R">R. Abalo</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="James, M I" uniqKey="James M">M.I. James</name>
</author>
<author>
<name sortKey="Iwuji, C" uniqKey="Iwuji C">C. Iwuji</name>
</author>
<author>
<name sortKey="Irving, G" uniqKey="Irving G">G. Irving</name>
</author>
<author>
<name sortKey="Karmokar, A" uniqKey="Karmokar A">A. Karmokar</name>
</author>
<author>
<name sortKey="Higgins, J A" uniqKey="Higgins J">J.A. Higgins</name>
</author>
<author>
<name sortKey="Griffin Teal, N" uniqKey="Griffin Teal N">N. Griffin-Teal</name>
</author>
<author>
<name sortKey="Thomas, A" uniqKey="Thomas A">A. Thomas</name>
</author>
<author>
<name sortKey="Greaves, P" uniqKey="Greaves P">P. Greaves</name>
</author>
<author>
<name sortKey="Cai, H" uniqKey="Cai H">H. Cai</name>
</author>
<author>
<name sortKey="Patel, S R" uniqKey="Patel S">S.R. Patel</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Gorelick, D A" uniqKey="Gorelick D">D.A. Gorelick</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Li, H" uniqKey="Li H">H. Li</name>
</author>
<author>
<name sortKey="Krstin, S" uniqKey="Krstin S">S. Krstin</name>
</author>
<author>
<name sortKey="Wink, M" uniqKey="Wink M">M. Wink</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Hu, F" uniqKey="Hu F">F. Hu</name>
</author>
<author>
<name sortKey="Wei, F" uniqKey="Wei F">F. Wei</name>
</author>
<author>
<name sortKey="Wang, Y" uniqKey="Wang Y">Y. Wang</name>
</author>
<author>
<name sortKey="Wu, B" uniqKey="Wu B">B. Wu</name>
</author>
<author>
<name sortKey="Fang, Y" uniqKey="Fang Y">Y. Fang</name>
</author>
<author>
<name sortKey="Xiong, B" uniqKey="Xiong B">B. Xiong</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Schonthal, A H" uniqKey="Schonthal A">A.H. Schonthal</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Pisters, K M" uniqKey="Pisters K">K.M. Pisters</name>
</author>
<author>
<name sortKey="Newman, R A" uniqKey="Newman R">R.A. Newman</name>
</author>
<author>
<name sortKey="Coldman, B" uniqKey="Coldman B">B. Coldman</name>
</author>
<author>
<name sortKey="Shin, D M" uniqKey="Shin D">D.M. Shin</name>
</author>
<author>
<name sortKey="Khuri, F R" uniqKey="Khuri F">F.R. Khuri</name>
</author>
<author>
<name sortKey="Hong, W K" uniqKey="Hong W">W.K. Hong</name>
</author>
<author>
<name sortKey="Glisson, B S" uniqKey="Glisson B">B.S. Glisson</name>
</author>
<author>
<name sortKey="Lee, J S" uniqKey="Lee J">J.S. Lee</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ullmann, U" uniqKey="Ullmann U">U. Ullmann</name>
</author>
<author>
<name sortKey="Haller, J" uniqKey="Haller J">J. Haller</name>
</author>
<author>
<name sortKey="Decourt, J D" uniqKey="Decourt J">J.D. Decourt</name>
</author>
<author>
<name sortKey="Girault, J" uniqKey="Girault J">J. Girault</name>
</author>
<author>
<name sortKey="Spitzer, V" uniqKey="Spitzer V">V. Spitzer</name>
</author>
<author>
<name sortKey="Weber, P" uniqKey="Weber P">P. Weber</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Popat, R" uniqKey="Popat R">R. Popat</name>
</author>
<author>
<name sortKey="Plesner, T" uniqKey="Plesner T">T. Plesner</name>
</author>
<author>
<name sortKey="Davies, F" uniqKey="Davies F">F. Davies</name>
</author>
<author>
<name sortKey="Cook, G" uniqKey="Cook G">G. Cook</name>
</author>
<author>
<name sortKey="Cook, M" uniqKey="Cook M">M. Cook</name>
</author>
<author>
<name sortKey="Elliott, P" uniqKey="Elliott P">P. Elliott</name>
</author>
<author>
<name sortKey="Jacobson, E" uniqKey="Jacobson E">E. Jacobson</name>
</author>
<author>
<name sortKey="Gumbleton, T" uniqKey="Gumbleton T">T. Gumbleton</name>
</author>
<author>
<name sortKey="Oakervee, H" uniqKey="Oakervee H">H. Oakervee</name>
</author>
<author>
<name sortKey="Cavenagh, J" uniqKey="Cavenagh J">J. Cavenagh</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Singh, C K" uniqKey="Singh C">C.K. Singh</name>
</author>
<author>
<name sortKey="Ndiaye, M A" uniqKey="Ndiaye M">M.A. Ndiaye</name>
</author>
<author>
<name sortKey="Ahmad, N" uniqKey="Ahmad N">N. Ahmad</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Navarro, V J" uniqKey="Navarro V">V.J. Navarro</name>
</author>
<author>
<name sortKey="Bonkovsky, H L" uniqKey="Bonkovsky H">H.L. Bonkovsky</name>
</author>
<author>
<name sortKey="Hwang, S I" uniqKey="Hwang S">S.I. Hwang</name>
</author>
<author>
<name sortKey="Vega, M" uniqKey="Vega M">M. Vega</name>
</author>
<author>
<name sortKey="Barnhart, H" uniqKey="Barnhart H">H. Barnhart</name>
</author>
<author>
<name sortKey="Serrano, J" uniqKey="Serrano J">J. Serrano</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Bonkovsky, H L" uniqKey="Bonkovsky H">H.L. Bonkovsky</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Mereles, D" uniqKey="Mereles D">D. Mereles</name>
</author>
<author>
<name sortKey="Hunstein, W" uniqKey="Hunstein W">W. Hunstein</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Granja, A" uniqKey="Granja A">A. Granja</name>
</author>
<author>
<name sortKey="Pinheiro, M" uniqKey="Pinheiro M">M. Pinheiro</name>
</author>
<author>
<name sortKey="Reis, S" uniqKey="Reis S">S. Reis</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Tomeh, M A" uniqKey="Tomeh M">M.A. Tomeh</name>
</author>
<author>
<name sortKey="Hadianamrei, R" uniqKey="Hadianamrei R">R. Hadianamrei</name>
</author>
<author>
<name sortKey="Zhao, X" uniqKey="Zhao X">X. Zhao</name>
</author>
</analytic>
</biblStruct>
</listBibl>
</div1>
</back>
</TEI>
<pmc article-type="review-article">
<pmc-dir>properties open_access</pmc-dir>
<front>
<journal-meta>
<journal-id journal-id-type="nlm-ta">Int J Mol Sci</journal-id>
<journal-id journal-id-type="iso-abbrev">Int J Mol Sci</journal-id>
<journal-id journal-id-type="publisher-id">ijms</journal-id>
<journal-title-group>
<journal-title>International Journal of Molecular Sciences</journal-title>
</journal-title-group>
<issn pub-type="epub">1422-0067</issn>
<publisher>
<publisher-name>MDPI</publisher-name>
</publisher>
</journal-meta>
<article-meta>
<article-id pub-id-type="pmid">31936346</article-id>
<article-id pub-id-type="pmc">7013436</article-id>
<article-id pub-id-type="doi">10.3390/ijms21020401</article-id>
<article-id pub-id-type="publisher-id">ijms-21-00401</article-id>
<article-categories>
<subj-group subj-group-type="heading">
<subject>Review</subject>
</subj-group>
</article-categories>
<title-group>
<article-title>Alleviation of Multidrug Resistance by Flavonoid and Non-Flavonoid Compounds in Breast, Lung, Colorectal and Prostate Cancer</article-title>
</title-group>
<contrib-group>
<contrib contrib-type="author">
<contrib-id contrib-id-type="orcid" authenticated="true">https://orcid.org/0000-0003-3824-4222</contrib-id>
<name>
<surname>Costea</surname>
<given-names>Teodora</given-names>
</name>
<xref ref-type="aff" rid="af1-ijms-21-00401">1</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Vlad</surname>
<given-names>Oana Cezara</given-names>
</name>
<xref ref-type="aff" rid="af2-ijms-21-00401">2</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Miclea</surname>
<given-names>Luminita-Claudia</given-names>
</name>
<xref ref-type="aff" rid="af3-ijms-21-00401">3</xref>
<xref ref-type="aff" rid="af4-ijms-21-00401">4</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Ganea</surname>
<given-names>Constanta</given-names>
</name>
<xref ref-type="aff" rid="af2-ijms-21-00401">2</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Szöllősi</surname>
<given-names>János</given-names>
</name>
<xref ref-type="aff" rid="af5-ijms-21-00401">5</xref>
<xref ref-type="aff" rid="af6-ijms-21-00401">6</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Mocanu</surname>
<given-names>Maria-Magdalena</given-names>
</name>
<xref ref-type="aff" rid="af2-ijms-21-00401">2</xref>
<xref rid="c1-ijms-21-00401" ref-type="corresp">*</xref>
</contrib>
</contrib-group>
<aff id="af1-ijms-21-00401">
<label>1</label>
Department of Pharmacognosy, Phytochemistry and Phytotherapy, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania;
<email>teodora.costea@umfcd.ro</email>
</aff>
<aff id="af2-ijms-21-00401">
<label>2</label>
Department of Biophysics, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania;
<email>vlad.oana18@gmail.com</email>
(O.C.V.);
<email>constanta.ganea@gmail.com</email>
(C.G.)</aff>
<aff id="af3-ijms-21-00401">
<label>3</label>
Department of Biophysics and Cellular Biotechnology, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania;
<email>luminita.miclea@umfcd.ro</email>
</aff>
<aff id="af4-ijms-21-00401">
<label>4</label>
Research Excellence Center in Biophysics and Cellular Biotechnology, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania</aff>
<aff id="af5-ijms-21-00401">
<label>5</label>
Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary;
<email>szollo@med.unideb.hu</email>
</aff>
<aff id="af6-ijms-21-00401">
<label>6</label>
MTA-DE Cell Biology and Signaling Research Group, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary</aff>
<author-notes>
<corresp id="c1-ijms-21-00401">
<label>*</label>
Correspondence:
<email>magda.mocanu@umfcd.ro</email>
; Tel.: +40-745-084-184</corresp>
</author-notes>
<pub-date pub-type="epub">
<day>08</day>
<month>1</month>
<year>2020</year>
</pub-date>
<pub-date pub-type="collection">
<month>1</month>
<year>2020</year>
</pub-date>
<volume>21</volume>
<issue>2</issue>
<elocation-id>401</elocation-id>
<history>
<date date-type="received">
<day>02</day>
<month>12</month>
<year>2019</year>
</date>
<date date-type="accepted">
<day>03</day>
<month>1</month>
<year>2020</year>
</date>
</history>
<permissions>
<copyright-statement>© 2020 by the authors.</copyright-statement>
<copyright-year>2020</copyright-year>
<license license-type="open-access">
<license-p>Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (
<ext-link ext-link-type="uri" xlink:href="http://creativecommons.org/licenses/by/4.0/">http://creativecommons.org/licenses/by/4.0/</ext-link>
).</license-p>
</license>
</permissions>
<abstract>
<p>The aim of the manuscript is to discuss the influence of plant polyphenols in overcoming multidrug resistance in four types of solid cancers (breast, colorectal, lung and prostate cancer). Effective treatment requires the use of multiple toxic chemotherapeutic drugs with different properties and targets. However, a major cause of cancer treatment failure and metastasis is the development of multidrug resistance. Potential mechanisms of multidrug resistance include increase of drug efflux, drug inactivation, detoxification mechanisms, modification of drug target, inhibition of cell death, involvement of cancer stem cells, dysregulation of miRNAs activity, epigenetic variations, imbalance of DNA damage/repair processes, tumor heterogeneity, tumor microenvironment, epithelial to mesenchymal transition and modulation of reactive oxygen species. Taking into consideration that synthetic multidrug resistance agents have failed to demonstrate significant survival benefits in patients with different types of cancer, recent research have focused on beneficial effects of natural compounds. Several phenolic compounds (flavones, phenolcarboxylic acids, ellagitannins, stilbens, lignans, curcumin, etc.) act as chemopreventive agents due to their antioxidant capacity, inhibition of proliferation, survival, angiogenesis, and metastasis, modulation of immune and inflammatory responses or inactivation of pro-carcinogens. Moreover, preclinical and clinical studies revealed that these compounds prevent multidrug resistance in cancer by modulating different pathways. Additional research is needed regarding the role of phenolic compounds in the prevention of multidrug resistance in different types of cancer.</p>
</abstract>
<kwd-group>
<kwd>chemoresistance</kwd>
<kwd>malignancy</kwd>
<kwd>phenolic compounds</kwd>
</kwd-group>
</article-meta>
</front>
<body>
<sec sec-type="intro" id="sec1-ijms-21-00401">
<title>1. Introduction</title>
<p>Cancer is one of the leading cause of death worldwide. It is usually caused by genome instability and mutations, which may be inherited, induced by environmental factors or represent a consequence of DNA replication errors [
<xref rid="B1-ijms-21-00401" ref-type="bibr">1</xref>
]. The signature characteristics of cancer are represented by: a high rate cellular multiplication escaping growth inhibitors, cell migration inducing subsequent metastasis, stimulation of local new blood vessel formation (angiogenesis), the capacity to resist cell senescence and death signals leading to inflammation, and an almost unlimited self-replicating capacity [
<xref rid="B2-ijms-21-00401" ref-type="bibr">2</xref>
]. </p>
<p>The number of cancer cases is expected to increase rapidly as populations grow, age and adopt negative lifestyle behaviors (smoking, lack of physical activity, Western diet) that increase cancer risk [
<xref rid="B3-ijms-21-00401" ref-type="bibr">3</xref>
,
<xref rid="B4-ijms-21-00401" ref-type="bibr">4</xref>
]. Lung, breast, colorectal and prostate cancer are considered to be the most prevalent types of cancer among population [
<xref rid="B3-ijms-21-00401" ref-type="bibr">3</xref>
]. </p>
<p>For women,
<italic>breast cancer</italic>
is the most common diagnosed malignancy, followed by cervix or uterine cancer [
<xref rid="B3-ijms-21-00401" ref-type="bibr">3</xref>
]. In Europe, it is estimated that breast cancer affects more than one in 10 women and accounts for more than 28% of female cancers [
<xref rid="B5-ijms-21-00401" ref-type="bibr">5</xref>
]. Risk factors for breast cancer include unmodifiable factors and lifestyle factors. Among unmodifiable factors, age (above 40 years), family history of cancer in first-degree relatives, hormonal profile (late menopause, early menarche), dense breast tissue, race and genetics (mutation in breast cancer susceptibility genes—
<italic>BCRA1</italic>
and
<italic>BCRA2</italic>
genes,
<italic>TP53</italic>
, genetic polymorphisms in genes encoding enzymes involved in estrogen metabolism pathways COMT, CYP1A1, CYP1B1, estrogen receptors ERα/ERβ, CYP17A1 and CYP19A1) are of great importance. Lifestyle factors include nulliparity, use of birth control pills, induced abortion or obesity [
<xref rid="B6-ijms-21-00401" ref-type="bibr">6</xref>
,
<xref rid="B7-ijms-21-00401" ref-type="bibr">7</xref>
,
<xref rid="B8-ijms-21-00401" ref-type="bibr">8</xref>
,
<xref rid="B9-ijms-21-00401" ref-type="bibr">9</xref>
,
<xref rid="B10-ijms-21-00401" ref-type="bibr">10</xref>
]. Although breast cancer usually appears in pre- and post-menopausal women, recently new cases have occurred even in young women, below 35 years. This represents a serious concern, due to higher incidence of advanced stages at diagnosis and poorer five-year survival rate [
<xref rid="B11-ijms-21-00401" ref-type="bibr">11</xref>
] compared to older women. Breast cancer represents a heterogeneous disease and it is clinically divided into three basic subtypes: (I) based on the level of expression of estrogen and progesterone receptors, (II) based on the human epidermal growth factor 2 (HER2) and (III) a third subtype, when neither estrogen, progesterone or HER2 is expressed (triple negative breast cancer [
<xref rid="B12-ijms-21-00401" ref-type="bibr">12</xref>
]. Breast tumors expressing hormone receptors (mainly estrogen) are classified as luminal breast type (luminal A and B). Luminal A subtype has a better prognosis compared to luminal-B type, which is more aggressive, has a higher recurrence and an increased expression of growth receptor signaling molecules, such as epidermal growth factor (EGF), fibroblast growth factor (FGF), nerve growth factor (NGF), hepatocyte growth factor receptor (HGFR/MET) and Wnt/β-catenin [
<xref rid="B13-ijms-21-00401" ref-type="bibr">13</xref>
]. Increased growth receptor signaling genes is also observed for triple breast negative cancer [
<xref rid="B14-ijms-21-00401" ref-type="bibr">14</xref>
]. Nowadays, mammography represents the golden standard for breast cancer screening [
<xref rid="B15-ijms-21-00401" ref-type="bibr">15</xref>
]. </p>
<p>
<italic>Lung cancer</italic>
is the most common cancer in men worldwide, and the fourth most frequent cancer in women [
<xref rid="B16-ijms-21-00401" ref-type="bibr">16</xref>
]. Lung cancer is often divided into four major types due to distinct clinic-pathological features: small cell lung cancer (SCLC) and non-small cell lung cancer (NSCLC), which is further divided into squamous cell carcinoma (SCC), adenocarcinoma and large cell carcinoma [
<xref rid="B17-ijms-21-00401" ref-type="bibr">17</xref>
]. Risk factors for lung cancer include smoking, environmental exposure to tobacco, radon, cooking oil vapors or hormonal factors (mainly in women). Moreover, genetic factors play a major role in lung cancer etiology [
<xref rid="B18-ijms-21-00401" ref-type="bibr">18</xref>
,
<xref rid="B19-ijms-21-00401" ref-type="bibr">19</xref>
,
<xref rid="B20-ijms-21-00401" ref-type="bibr">20</xref>
]. </p>
<p>
<italic>Colorectal cancer</italic>
is one of the most preventable and treatable cancers if detected early; however, it has a multifactorial etiology. The hallmark of colorectal cancer is the presence of serrated or adenomatous polyps (adenoma) that usually occur in proximal or distal colon [
<xref rid="B21-ijms-21-00401" ref-type="bibr">21</xref>
]. Besides adenomas, patients with colorectal cancer have multiple aberrant crypt foci, which are microscopic mucosal abnormalities involved in early carcinogenesis [
<xref rid="B22-ijms-21-00401" ref-type="bibr">22</xref>
]. Main risk factors include alterations of gut microbiota [
<xref rid="B23-ijms-21-00401" ref-type="bibr">23</xref>
], Western diet [
<xref rid="B24-ijms-21-00401" ref-type="bibr">24</xref>
], obesity, hormonal status or chronic inflammatory bowel diseases [
<xref rid="B25-ijms-21-00401" ref-type="bibr">25</xref>
]. Genetic factors such as mutations in
<italic>KRAS</italic>
,
<italic>BRAF</italic>
,
<italic>PI3K</italic>
genes and polymorphisms in nucleic acid-binding protein 1, laminin γ 1, cyclin D2, T-box 3 are also involved in colorectal cancer etiology [
<xref rid="B26-ijms-21-00401" ref-type="bibr">26</xref>
,
<xref rid="B27-ijms-21-00401" ref-type="bibr">27</xref>
].</p>
<p>
<italic>Prostate cancer</italic>
is the second most prevalent type of cancer among men, besides lung cancer. The majority of prostate cancers originate from luminal cells and do not have a neuroendocrine origin [
<xref rid="B28-ijms-21-00401" ref-type="bibr">28</xref>
]. Risk factors for prostate cancer include age, obesity, other diseases (diabetes), lifestyle behaviors (diet, lack of physical activity) and sexually transmitted diseases [
<xref rid="B29-ijms-21-00401" ref-type="bibr">29</xref>
]. Main characteristics of prostate cancer include activation of androgen receptor signaling, elevated lymphocyte infiltration and activation of inflammatory pathways [
<xref rid="B30-ijms-21-00401" ref-type="bibr">30</xref>
].</p>
<p>The above-mentioned cancer types have a common feature, which is represented by multidrug resistance (MDR) to chemotherapeutic treatments [
<xref rid="B13-ijms-21-00401" ref-type="bibr">13</xref>
,
<xref rid="B28-ijms-21-00401" ref-type="bibr">28</xref>
,
<xref rid="B31-ijms-21-00401" ref-type="bibr">31</xref>
]. Due to toxicity and lack of specificity of synthetic MDR agents, recent researches have focused on beneficial effects of natural compounds in overcoming MDR in cancer. According to recent research, polyphenols might overcome MDR through various mechanisms, which will be further discussed in our work [
<xref rid="B32-ijms-21-00401" ref-type="bibr">32</xref>
,
<xref rid="B33-ijms-21-00401" ref-type="bibr">33</xref>
,
<xref rid="B34-ijms-21-00401" ref-type="bibr">34</xref>
,
<xref rid="B35-ijms-21-00401" ref-type="bibr">35</xref>
].</p>
<p>Polyphenols are considered as important dietary components with biological activity due to a wide range of health benefits: antioxidant, anti-inflammatory, anti-carcinogenic, immunomodulatory, etc. [
<xref rid="B36-ijms-21-00401" ref-type="bibr">36</xref>
,
<xref rid="B37-ijms-21-00401" ref-type="bibr">37</xref>
]. Epidemiological studies have shown that intake of food rich in phenolic compounds have chemopreventive effects for cardiovascular, neurodegenerative diseases, cancer, obesity or diabetes [
<xref rid="B38-ijms-21-00401" ref-type="bibr">38</xref>
]. Cancer chemopreventive effects of polyphenols are the consequence of antioxidant capacity, inhibition of proliferation, survival, angiogenesis and metastasis, modulation of immune and inflammatory responses or inactivation of pro-carcinogens [
<xref rid="B39-ijms-21-00401" ref-type="bibr">39</xref>
]. </p>
<p>Polyphenols comprise a variety of compounds with a wide range of chemical structures, ranging from single molecules to high molecular weight polymers. Polyphenols have at least one aromatic ring and are classified as flavonoids and non-flavonoids in correlation with the number of aromatic ring [
<xref rid="B38-ijms-21-00401" ref-type="bibr">38</xref>
,
<xref rid="B40-ijms-21-00401" ref-type="bibr">40</xref>
]. Flavonoids share a C
<sub>6</sub>
-C
<sub>3</sub>
-C
<sub>6</sub>
structural backbone and are further classified into flavones, flavonols, flavanones and flavan-3-ols [
<xref rid="B38-ijms-21-00401" ref-type="bibr">38</xref>
]. Isoflavones, are also members of flavonoids family [
<xref rid="B38-ijms-21-00401" ref-type="bibr">38</xref>
]. Non-flavonoid compounds include phenolcarboxylic acids (hydroxy-benzoic/hydroxy-cinnamic acids), ellagitannins, lignans, stilbenes and other phenolic compounds (curcumin, gingerol) [
<xref rid="B40-ijms-21-00401" ref-type="bibr">40</xref>
]. A selective list of polyphenols, which are frequently studied for overcoming MDR in breast, lung, prostate and colorectal cancer, is presented in
<xref rid="ijms-21-00401-t001" ref-type="table">Table 1</xref>
.</p>
</sec>
<sec id="sec2-ijms-21-00401">
<title>2. Mechanism of Multidrug Resistance in Cancer</title>
<p>Earlier papers reported only few mechanisms responsible for MDR in cancer (
<xref ref-type="fig" rid="ijms-21-00401-f001">Figure 1</xref>
), such as (i) increased drug efflux through membrane pumps, (ii) detoxification mechanisms based on glutathione transferases activity, (iii) DNA damage repair that initially may be considered as an ally and further can turn into a resistant tool, and (iv) drug inactivation [
<xref rid="B52-ijms-21-00401" ref-type="bibr">52</xref>
]. However, recent papers described extended lists of mechanisms responsible for drug resistance in malignancy (
<xref ref-type="fig" rid="ijms-21-00401-f001">Figure 1</xref>
) such as modification of drug target, inhibition of cell death, involvement of cancer stem cells, tumor heterogeneity, tumor microenvironment, epithelial to mesenchymal transition, epigenetic variations, dysregulation of miRNAs and modulation of reactive oxygen species [
<xref rid="B53-ijms-21-00401" ref-type="bibr">53</xref>
,
<xref rid="B54-ijms-21-00401" ref-type="bibr">54</xref>
,
<xref rid="B55-ijms-21-00401" ref-type="bibr">55</xref>
]. </p>
<sec id="sec2dot1-ijms-21-00401">
<title>2.1. Increase of Drug Efflux</title>
<p>At the plasma membrane level, the large family of ATP-binding cassette (ABC) transporter proteins is responsible mainly for the drug efflux [
<xref rid="B56-ijms-21-00401" ref-type="bibr">56</xref>
]. ABC transporters consist of two transmembrane domains and two intracellular nucleotide-binding domains. It is the nucleotide binding domains that bind ATP and hydrolyze it to ADP providing the plasma membrane pump with energy required to export xenobiotic compounds [
<xref rid="B57-ijms-21-00401" ref-type="bibr">57</xref>
]. There are 49 known
<italic>ABC</italic>
genes organized in subfamilies, from A to G, respectively 12
<italic>ABCA</italic>
, 11
<italic>ABCB</italic>
, 13
<italic>ABCC</italic>
, 4
<italic>ABCD</italic>
, 1
<italic>ABCE</italic>
, 3
<italic>ABCF</italic>
and 5
<italic>ABCG</italic>
[
<xref rid="B58-ijms-21-00401" ref-type="bibr">58</xref>
]. The most studied ABC transporters are multidrug-resistance protein 1 (MDR1)/permeability-glycoprotein (P-pg)/ABCB1, MDR-associated protein 1 (MRP1) and breast cancer resistance protein (BCRP)/ABCG2 [
<xref rid="B56-ijms-21-00401" ref-type="bibr">56</xref>
,
<xref rid="B59-ijms-21-00401" ref-type="bibr">59</xref>
]. The majority of ABC transporters are localized in the liver, kidney, intestine, but they can have ubiquitous localization as well [
<xref rid="B56-ijms-21-00401" ref-type="bibr">56</xref>
,
<xref rid="B59-ijms-21-00401" ref-type="bibr">59</xref>
,
<xref rid="B60-ijms-21-00401" ref-type="bibr">60</xref>
]. </p>
<p>High levels of MDR1 are expressed in colorectal cancer [
<xref rid="B61-ijms-21-00401" ref-type="bibr">61</xref>
], hepatocarcinoma [
<xref rid="B62-ijms-21-00401" ref-type="bibr">62</xref>
], breast cancer [
<xref rid="B63-ijms-21-00401" ref-type="bibr">63</xref>
], lung cancer [
<xref rid="B64-ijms-21-00401" ref-type="bibr">64</xref>
] or prostate cancer [
<xref rid="B65-ijms-21-00401" ref-type="bibr">65</xref>
]. Overexpression of ABC transporters in cancer is mediated by (i) increased activity of proteins involved in the MAPK (HRas, ERK1/2, JNK), PI3K/AKT, mTOR, JNK, PKC signaling pathways, (ii) activation of EGF/FGF growth factors [
<xref rid="B54-ijms-21-00401" ref-type="bibr">54</xref>
,
<xref rid="B66-ijms-21-00401" ref-type="bibr">66</xref>
,
<xref rid="B67-ijms-21-00401" ref-type="bibr">67</xref>
,
<xref rid="B68-ijms-21-00401" ref-type="bibr">68</xref>
], (iii) nuclear localization of Y-box binding protein 1 (YB-1) in solid tumors [
<xref rid="B69-ijms-21-00401" ref-type="bibr">69</xref>
,
<xref rid="B70-ijms-21-00401" ref-type="bibr">70</xref>
], (iv) increased COX-2 activity [
<xref rid="B71-ijms-21-00401" ref-type="bibr">71</xref>
], (v) activation of VEGF2 (vascular endothelial growth factor receptor 2) by VEGF in tumor microenvironment [
<xref rid="B70-ijms-21-00401" ref-type="bibr">70</xref>
], (vi) activation of nuclear receptors PXR and CAR [
<xref rid="B72-ijms-21-00401" ref-type="bibr">72</xref>
,
<xref rid="B73-ijms-21-00401" ref-type="bibr">73</xref>
,
<xref rid="B74-ijms-21-00401" ref-type="bibr">74</xref>
] and (vii) hypoxia [
<xref rid="B75-ijms-21-00401" ref-type="bibr">75</xref>
]. According to recent studies inhibition of ERK1/2, NF-κB pathways and increased sensitivity to
<italic>all</italic>
-trans retinoic acid (a ligand of retinoic acid receptors RARs) render cancer cells more sensitive to chemotherapeutic agents, due to reduced P-gp mediated efflux activity [
<xref rid="B54-ijms-21-00401" ref-type="bibr">54</xref>
,
<xref rid="B76-ijms-21-00401" ref-type="bibr">76</xref>
,
<xref rid="B77-ijms-21-00401" ref-type="bibr">77</xref>
]. </p>
<p>Moreover, extensive studies have shown a strong correlation between ABC transporters activity and
<italic>TP53</italic>
tumor suppressor gene [
<xref rid="B78-ijms-21-00401" ref-type="bibr">78</xref>
,
<xref rid="B79-ijms-21-00401" ref-type="bibr">79</xref>
]. It is well known that
<italic>TP53</italic>
mutations occur in almost 50% of cancers and are involved in inhibition of apoptosis [
<xref rid="B80-ijms-21-00401" ref-type="bibr">80</xref>
]. According to Sullivan G. and his co-workers
<italic>TP53</italic>
mutations become increasingly frequent as prostate cancer advances in stage and this is strongly correlated with increased MRP1 expression [
<xref rid="B79-ijms-21-00401" ref-type="bibr">79</xref>
]. </p>
<p>Several chemotherapeutic agents (doxorubicin, daunorubicin, vincristine, vinblastine, actinomycin D, paclitaxel, docetaxel, etoposide) and molecular targeted anticancer compounds (i.e., tyrosine kinase inhibitors, such as imatinib, erlotinib, sunitinib) are substrates for MDR1 [
<xref rid="B81-ijms-21-00401" ref-type="bibr">81</xref>
,
<xref rid="B82-ijms-21-00401" ref-type="bibr">82</xref>
,
<xref rid="B83-ijms-21-00401" ref-type="bibr">83</xref>
,
<xref rid="B84-ijms-21-00401" ref-type="bibr">84</xref>
] and this fact has negative impact on drug efflux in malignant cells. In this context, many attempts have been reported to overcome MDR. </p>
<p>Two main strategies have been employed to prevent drug resistance mediated by ABC protein transporters, namely (i) co-administration of MDR1 inhibitors with chemotherapeutical drugs with the aim to increase intracellular accumulation of drug and (ii) substrate competition by co-administration of MDR1 substrate together with the anticancer drug [
<xref rid="B85-ijms-21-00401" ref-type="bibr">85</xref>
]. Some of the first modulators of MDR1 identified are calcium influx blockers (i.e., verapamil, nicardipine nifedipine), which increased the cytotoxicity of anticancer drugs in cancer cell lines [
<xref rid="B86-ijms-21-00401" ref-type="bibr">86</xref>
,
<xref rid="B87-ijms-21-00401" ref-type="bibr">87</xref>
,
<xref rid="B88-ijms-21-00401" ref-type="bibr">88</xref>
]. Regrettably, the results from preclinical studies were difficult to apply in clinical trials for several reasons (i) necessity of higher concentrations, which in turn induced systemic toxicity, (ii) low selectivity and specificity due to the expression of the target in different tissues or (iii) low efficiency due to functional redundancy of ABC protein transporter family [
<xref rid="B85-ijms-21-00401" ref-type="bibr">85</xref>
]. Recently, PPAR δ ligands (rosiglitazone and pioglitazone) were found to inhibit drug resistance in breast cancer cells by internalization of ABCG2 to cytoplasm [
<xref rid="B89-ijms-21-00401" ref-type="bibr">89</xref>
]. Further research studies are needed to understand the molecular mechanism and to identify the optimal doses of MDR1 inhibitors for the development of new inhibitors of ABC protein transporters. </p>
</sec>
<sec id="sec2dot2-ijms-21-00401">
<title>2.2. Detoxification Mechanisms and Inactivation of Anticancer Drugs</title>
<p>Downregulation or mutations in the proteins or enzymes involved in activation of chemotherapeutic agents can be responsible for drug resistance [
<xref rid="B90-ijms-21-00401" ref-type="bibr">90</xref>
]. For example, in tumor cells resistant to capecitabine, the gene responsible for the synthesis of thymidine phosphorylase, an enzyme responsible for generation of the nucleotides, can be inactivated by hypermethylation [
<xref rid="B91-ijms-21-00401" ref-type="bibr">91</xref>
]. Carbonyl reduction of doxorubicin induced by aldo-keto reductase is responsible for transformation of doxorubicin into doxorubicinol, which is an inactive form. Administration of both chemotherapeutic drugs and inhibitors of aldo-keto reductase is recommended to overcome inactivation of doxorubicin and to increase its therapeutic activity [
<xref rid="B92-ijms-21-00401" ref-type="bibr">92</xref>
]. </p>
<p>Other important pathways of drug inactivation involve the CYP450 system (mainly CYP2B6, CYP2C9, CYP2C19, CYP2D6), glutathione-S-transferase (GST) superfamily or uridine diphospho-glucuronosyltransferase (UGT) superfamily [
<xref rid="B54-ijms-21-00401" ref-type="bibr">54</xref>
]. For example, CYP2D6 polymorphism is involved in tamoxifen variability among patients with breast cancer, since CYP2D6 is involved in tamoxifen metabolization to 4-hydroxytamoxifen and endoxifen, both of which display higher anti-estrogenic activity [
<xref rid="B93-ijms-21-00401" ref-type="bibr">93</xref>
]. Some of the first reports, reconfirmed later on, indicated that resistance to platinum could occur through drug inactivation by thiol glutathione, which activates the detoxification system (GST) [
<xref rid="B94-ijms-21-00401" ref-type="bibr">94</xref>
,
<xref rid="B95-ijms-21-00401" ref-type="bibr">95</xref>
]. It was reported that resistance to other chemotherapeutic agents (doxorubicin, tamoxifen, epirubicin), commonly used to treat breast cancer, is mediated by the polymorphisms in UGT superfamily [
<xref rid="B96-ijms-21-00401" ref-type="bibr">96</xref>
].</p>
</sec>
<sec id="sec2dot3-ijms-21-00401">
<title>2.3. DNA Damage Repair</title>
<p>Several chemotherapeutic drugs interfere with DNA synthesis with the aim to induce senescence, apoptosis or cell cycle arrest in cancer cells [
<xref rid="B97-ijms-21-00401" ref-type="bibr">97</xref>
]. DNA-damaging compounds with anticancer properties can act through different mechanisms such as inducing DNA crosslinking (i.e., cisplatin, carboplatin, oxaliplatin), preventing DNA synthesis (i.e., antimetabolites that inhibit the activity of dihydropholate reductase) or inhibiting topoisomerase activity (i.e., doxorubicin, daunorubicin) [
<xref rid="B98-ijms-21-00401" ref-type="bibr">98</xref>
]. Nevertheless, these compounds do not have a specific tumor target and the selectivity of anticancer drugs is based on the rate of cell cycling. Tumor cells have a rapid cycling compared to normal cells and DNA damage response proteins (DDR) do not have enough time to repair DNA lesions [
<xref rid="B99-ijms-21-00401" ref-type="bibr">99</xref>
]. The major mechanisms of DNA repair pathways in response to chemotherapy are elegantly and thoroughly explained elsewhere [
<xref rid="B99-ijms-21-00401" ref-type="bibr">99</xref>
]. Briefly, these processes include (i) mismatch repair (MMR) mechanisms which remove mis-incorporated nucleotides during DNA replication [
<xref rid="B100-ijms-21-00401" ref-type="bibr">100</xref>
]; (ii) nucleotide excision repair (NER) which removes bulky DNA lesions, such as DNA adducts [
<xref rid="B101-ijms-21-00401" ref-type="bibr">101</xref>
]; (iii) base excision repair (BER) that corrects small base lesions which occur after DNA damage produced by oxidation, deamination or alkylation [
<xref rid="B102-ijms-21-00401" ref-type="bibr">102</xref>
]; (iv) homologous recombination (HR) which repairs DNA double-stranded breaks and inter-strand crosslinks [
<xref rid="B103-ijms-21-00401" ref-type="bibr">103</xref>
]; (v) non-homologous end-joining (NHEJ) with the aim to repair double-stranded breaks [
<xref rid="B104-ijms-21-00401" ref-type="bibr">104</xref>
]. </p>
<p>Recent reports demonstrate that MDR to platinum drugs in cancer cell lines, implicates multiple DDR pathways including HR, transcription-coupled NER and BER [
<xref rid="B105-ijms-21-00401" ref-type="bibr">105</xref>
]. MutL homolog 1 (MLH1) and MutL homolog 2 (MLH2)—proteins belonging to MMR system—have been evaluated by immunohistochemistry from patients with colorectal cancer and 10% of these patients presented MMR deficiency. Administration of 5-fluorouracil induced the improvement of survival only in patients without MMR deficiency, demonstrating the association between dysregulation in MMR processes and multidrug resistance [
<xref rid="B106-ijms-21-00401" ref-type="bibr">106</xref>
]. Due to constantly improving technology, the researchers might carry out genomic screening with the aim to identify potential DNA therapeutic targets responsible for MDR in malignancies. </p>
</sec>
<sec id="sec2dot4-ijms-21-00401">
<title>2.4. Modification of Drug Target</title>
<p>A drug’s efficacy strongly depends on its molecular target. Alteration of these targets by means of different mechanisms (i.e., mutations) may lead to drug resistance [
<xref rid="B54-ijms-21-00401" ref-type="bibr">54</xref>
]. One of the most studied mechanisms of drug resistance in respect with modification of the drug target is focused on epidermal growth factor receptor (EGFR) [
<xref rid="B107-ijms-21-00401" ref-type="bibr">107</xref>
]. In non-small-cell lung cancer (NSCLC) activation mutations of EGFR in the tyrosine kinase domain had been identified. Small molecule inhibitors such as gefitinib and erlotinib are known to neutralize these modifications [
<xref rid="B107-ijms-21-00401" ref-type="bibr">107</xref>
]. Nevertheless, after two years of gefitinib treatment the disease can relapse, due to occurrence of secondary mutation (T790M) in EGFR [
<xref rid="B108-ijms-21-00401" ref-type="bibr">108</xref>
]. Second generation of EGFR tyrosine inhibitors (i.e., ponatinib) had been created to act against EGFR(T790M), but increased toxicity caused withdrawal of the drug from the market [
<xref rid="B109-ijms-21-00401" ref-type="bibr">109</xref>
]. Due to ability of cancer cells to survive by occurrence of additional mutations, new generations of tyrosine kinase inhibitors (TKI) against EGFR or other molecular targets are needed to be developed to overcome MDR and side effects associated with anticancer therapy. </p>
</sec>
<sec id="sec2dot5-ijms-21-00401">
<title>2.5. Inhibition of Cell Death</title>
<p>Cancer cells escape cell death using several mechanisms such as dysregulation of apoptosis, inhibition of other non-apoptotic processes (i.e., autophagy, etc.) or stimulation of alternative survival pathways [
<xref rid="B53-ijms-21-00401" ref-type="bibr">53</xref>
]. The most studied mechanisms, which allow cancer cells to evade cell death and to acquire MDR, are the disturbance of apoptosis and inhibition of autophagy. The main proteins involved in apoptosis are the caspases, which can be activated by both intrinsic (in the mitochondria) and extrinsic (through tumor necrosis family factors that bind to cell death receptors) pathways [
<xref rid="B93-ijms-21-00401" ref-type="bibr">93</xref>
,
<xref rid="B110-ijms-21-00401" ref-type="bibr">110</xref>
,
<xref rid="B111-ijms-21-00401" ref-type="bibr">111</xref>
,
<xref rid="B112-ijms-21-00401" ref-type="bibr">112</xref>
]. </p>
<p>Mechanisms of drug resistance due to apoptosis deregulation include: (i) imbalance of Bcl-2 family members (downregulation of pro-apoptotic proteins Bax and upregulation of anti-apoptotic proteins BCL-X
<sub>L</sub>
, BCL-2), (ii) altered apoptotic regulators (downregulation of caspase−3, −8, −9 and upregulation of inhibitors of apoptosis proteins such as XIAP, FLIP, survivin), (iii) upregulation of ubiquitin binding proteins (sharpin), which regulates Bcl-2 and survivin [
<xref rid="B113-ijms-21-00401" ref-type="bibr">113</xref>
], (iv) decreased activity of p53 and PTEN [
<xref rid="B80-ijms-21-00401" ref-type="bibr">80</xref>
,
<xref rid="B90-ijms-21-00401" ref-type="bibr">90</xref>
,
<xref rid="B93-ijms-21-00401" ref-type="bibr">93</xref>
], (v) decreased activity of cytochrome C and Smac/DIABLO (which are responsible for caspases activation) [
<xref rid="B114-ijms-21-00401" ref-type="bibr">114</xref>
,
<xref rid="B115-ijms-21-00401" ref-type="bibr">115</xref>
], (vi) deregulated activity of cyclin-dependent kinases (CDK), protein tyrosine kinases (Her2,/neu, Her3, Her4) [
<xref rid="B116-ijms-21-00401" ref-type="bibr">116</xref>
] or different signaling pathways (GSK-3; STAT3, PI3K/AKT, mTOR) [
<xref rid="B115-ijms-21-00401" ref-type="bibr">115</xref>
,
<xref rid="B117-ijms-21-00401" ref-type="bibr">117</xref>
,
<xref rid="B118-ijms-21-00401" ref-type="bibr">118</xref>
] or (vii) amplification of gene expression of
<italic>CYCLINS</italic>
(
<italic>A1, D1</italic>
) [
<xref rid="B119-ijms-21-00401" ref-type="bibr">119</xref>
]. Checkpoint kinases (Chk1, Chk2), which are modulated by serine/threonine protein kinases (ATR), also play a major role in apoptosis since they promote activation of p21 and p53, which induce cell cycle arrest [
<xref rid="B120-ijms-21-00401" ref-type="bibr">120</xref>
].</p>
<p>Autophagy is involved in MDR through increased activity of AMP-protein kinase (AMPK), beclin-1 and activation of autophagy lysosomes systems (ALP) [
<xref rid="B75-ijms-21-00401" ref-type="bibr">75</xref>
,
<xref rid="B93-ijms-21-00401" ref-type="bibr">93</xref>
]. ALP in most tumors may enhance the MDR phenotype through a protein clearance mechanism [
<xref rid="B75-ijms-21-00401" ref-type="bibr">75</xref>
]. Elevated autophagy lysosomes systems are involved in EGFR inhibitors (gefitinib, erlotinib), mTOR inhibitors (temsirolimus) or targeted therapy (imatinib) chemoresistance [
<xref rid="B75-ijms-21-00401" ref-type="bibr">75</xref>
].</p>
<p>It is reasonable to assume that genes, mRNA and proteins involved in disturbed apoptotic and autophagy processes are considered optimal targets to overcome multidrug resistance in malignant tumors. Against anti-apoptotic BCL-2 proteins both antisense oligonucleotides (i.e., oblimersen sodium) that target BCL-2 mRNA and small molecules which can interact with BH3 domains have been developed [
<xref rid="B121-ijms-21-00401" ref-type="bibr">121</xref>
,
<xref rid="B122-ijms-21-00401" ref-type="bibr">122</xref>
]. The last category might be divided in small molecules with BH3 mimetic activity (i.e., ABT-737, navitoclax/ABT-263/oral version of ABT-737) and small molecules with BH3 putative mimetic action (i.e., gossypol, obatoclax/a pan-BCL-2 inhibitor, etc.) [
<xref rid="B123-ijms-21-00401" ref-type="bibr">123</xref>
]. </p>
<p>Nevertheless, several mechanisms of drug resistance developed by cancer cells hindered the successful application of anti-apoptotic drugs in patients. For instance, clinical studies on combinatorial administration of several chemotherapeutics (i.e., dacarbazine, fludarabine, cyclophosphamide) and oblimersen did not bring favorable results in patients [
<xref rid="B122-ijms-21-00401" ref-type="bibr">122</xref>
,
<xref rid="B124-ijms-21-00401" ref-type="bibr">124</xref>
]. Polymorphism of BCL-2-like protein 11 (BIM) with different splicing variants resulted in lack of BH3 domain and resistance to targeted therapy in NSCLC positive for EGFR [
<xref rid="B125-ijms-21-00401" ref-type="bibr">125</xref>
]. </p>
<p>Stimulation of pro-apoptotic death receptors (i.e., DR4, DR5) localized in plasma membrane demonstrated in vitro and in vivo anti-proliferative activity, but clinical results have been unsatisfactory [
<xref rid="B126-ijms-21-00401" ref-type="bibr">126</xref>
,
<xref rid="B127-ijms-21-00401" ref-type="bibr">127</xref>
]. Nevertheless, preclinical experiments with the aim to test synergism of combinatorial administration of death receptors agonists and other anti-cancer drugs are under evaluation [
<xref rid="B128-ijms-21-00401" ref-type="bibr">128</xref>
,
<xref rid="B129-ijms-21-00401" ref-type="bibr">129</xref>
]. Recently, inhibitors of CDK (roscovitine, terameprocol, flavopiridol) are under investigation in different MDR cancers [
<xref rid="B116-ijms-21-00401" ref-type="bibr">116</xref>
]. </p>
<p>Moreover, it was shown that PPAR δ agonists (rosiglitazone) sensitizes colorectal cancer cells to 5-FU by downregulation of Bcl-2 proteins and upregulation of Bax [
<xref rid="B130-ijms-21-00401" ref-type="bibr">130</xref>
]. Inhibition of ALP using chloroquine and hydroxychloroquine is also under investigation in both preclinical and clinical studies [
<xref rid="B75-ijms-21-00401" ref-type="bibr">75</xref>
]. </p>
<p>Further preclinical experiments and successful clinical trials are needed to better understand the molecular mechanisms of anti-apoptotic/autophagy processes and to circumvent the drug resistance in cancer cells.</p>
</sec>
<sec id="sec2dot6-ijms-21-00401">
<title>2.6. Cancer Stem Cells</title>
<p>There is increasing evidence that cancer stem cells (CSCs), a subpopulation of cells within the heterogenous tumor niche, are responsible for initiation of some primary tumors as well as metastasis and MDR [
<xref rid="B90-ijms-21-00401" ref-type="bibr">90</xref>
,
<xref rid="B93-ijms-21-00401" ref-type="bibr">93</xref>
]. CSCs are resistant to chemotherapy and radiotherapy given to their particular characteristics such as increased DNA damage repair, resistance to cell death mechanisms, evasion from immune response, adaptation to hypoxia and overexpression of MDR efflux pumps [
<xref rid="B93-ijms-21-00401" ref-type="bibr">93</xref>
,
<xref rid="B131-ijms-21-00401" ref-type="bibr">131</xref>
]. Several lines of action have been developed to overcome drug resistance in cancer stem cells. These include (i) new inhibitors against ABC transporters, (ii) antibodies conjugated with toxins or radioisotopes against ABC transporters, (iii) inhibitors of signaling pathways identified in cancer stem cells (i.e., Hedgehog signaling pathway) or (iv) activation of immune system against cancer stem cells [
<xref rid="B131-ijms-21-00401" ref-type="bibr">131</xref>
,
<xref rid="B132-ijms-21-00401" ref-type="bibr">132</xref>
]. In spite of the extensive efforts to address drug resistance in cancer stem cells there are still open questions needing to be answered. For instance, how is it possible that ABC transporters or Hedgehog signaling pathways can be targeted only in cancer stem cells and not in normal stem cells? In addition, recent papers underline the contribution of cancer niche as a crucial factor in drug resistance of CSCs [
<xref rid="B133-ijms-21-00401" ref-type="bibr">133</xref>
,
<xref rid="B134-ijms-21-00401" ref-type="bibr">134</xref>
]. Cancer associated fibroblasts stimulated 5-fluorouracil resistance in colon CSC by activating Wnt signaling [
<xref rid="B135-ijms-21-00401" ref-type="bibr">135</xref>
] or autocrine generation of inflammatory factors, such as interleukin-6 induced trastuzumab resistance in HER2 positive breast CSC [
<xref rid="B136-ijms-21-00401" ref-type="bibr">136</xref>
]. Besides addressing ABC transporters as therapeutic targets, CSC niche could represent a potential objective in further anticancer approaches with the aim to overcome MDR. </p>
</sec>
<sec id="sec2dot7-ijms-21-00401">
<title>2.7. Tumor Heterogeneity</title>
<p>Genetic instability allows survival of the best adaptable clonal populations of malignant cells, and this heterogeneity represents one of the reasons for the failure of anticancer therapy [
<xref rid="B137-ijms-21-00401" ref-type="bibr">137</xref>
,
<xref rid="B138-ijms-21-00401" ref-type="bibr">138</xref>
]. It is already recognized that tumor heterogeneity implies two distinct types of processes, (i) tumor inter-heterogeneity, with tumors affecting the same organ, but with different characteristics in each patient, and (ii) tumor intra-heterogeneity, with two branches, spatial and temporal heterogeneity [
<xref rid="B139-ijms-21-00401" ref-type="bibr">139</xref>
]. Spatial heterogeneity is present in the same patient and it is characterized by different genotypes and phenotypes of the malignant clones in the primary and metastatic sites, while temporal heterogeneity expresses the changes which are taking place in the same tumor over the time [
<xref rid="B139-ijms-21-00401" ref-type="bibr">139</xref>
]. In cancer cells overexpressing hepatocyte growth factor receptor (HGFR/MET), heterogeneity occurred as a molecular mechanism of drug resistance after chemotherapy [
<xref rid="B140-ijms-21-00401" ref-type="bibr">140</xref>
]. Thus, after two years of targeted therapy against MET, two additional changes have been identified,
<italic>KRAS</italic>
mutation and co-amplification of
<italic>HER2</italic>
and/or
<italic>EGFR</italic>
genes [
<xref rid="B140-ijms-21-00401" ref-type="bibr">140</xref>
]. Chronical administration of the chemotherapeutic drugs demonstrated that in one or two years the diseases relapsed due to the ability of cancer cells to generate new clones and to find alternative pathways to survive and proliferate [
<xref rid="B108-ijms-21-00401" ref-type="bibr">108</xref>
,
<xref rid="B141-ijms-21-00401" ref-type="bibr">141</xref>
]. </p>
<p>In vitro and in vivo experiments have been performed to identify the culprit molecules or alternative pathways that confer drug resistance [
<xref rid="B142-ijms-21-00401" ref-type="bibr">142</xref>
,
<xref rid="B143-ijms-21-00401" ref-type="bibr">143</xref>
]. Escape of human epidermal growth factor receptor type 2 (HER2) from the inhibition with tyrosine kinase inhibitor (TKI) through alternative HER3 activation has been demonstrated in mammary cancer cell lines [
<xref rid="B142-ijms-21-00401" ref-type="bibr">142</xref>
]. Not only in case of chemotherapy, but also in case of hormone therapy the existence of adaptive mechanisms and acquired resistance has been reported [
<xref rid="B144-ijms-21-00401" ref-type="bibr">144</xref>
,
<xref rid="B145-ijms-21-00401" ref-type="bibr">145</xref>
]. Increased survival and reduction of prostate serum antigen (PSA) levels are described after androgen deprivation by enzalutamide in prostate cancers [
<xref rid="B146-ijms-21-00401" ref-type="bibr">146</xref>
]. However, secondary mutations are identified in castration-resistant prostate cancers after administration of enzalutamide [
<xref rid="B147-ijms-21-00401" ref-type="bibr">147</xref>
]. Similar to hormone therapy against prostate cancer, first results about administration of tamoxifen in estrogen receptor (ER) positive breast cancer patients have been promising and there are recommendations to increase the administration from five to 10 years [
<xref rid="B148-ijms-21-00401" ref-type="bibr">148</xref>
]. Notably, chronical administration of hormone therapy can cause resistance and most frequently alternative signaling pathways activated in estrogen resistant breast cancer are plasma membrane tyrosine kinase receptors, such as EGFR, HER2, IGF-1R or downstream kinases, such as ERK1/2, PI3K/AKT [
<xref rid="B144-ijms-21-00401" ref-type="bibr">144</xref>
,
<xref rid="B149-ijms-21-00401" ref-type="bibr">149</xref>
].</p>
<p>Increased exposure of the malignant cells to different anticancer agents amplifies the heterogeneity of the tumor and several overcoming therapies against drug resistance are proposed [
<xref rid="B139-ijms-21-00401" ref-type="bibr">139</xref>
]. These include (i) combination therapy against single target (i.e., TKI afatinib against EGFR and monoclonal antibody cetuximab against EGFR) [
<xref rid="B150-ijms-21-00401" ref-type="bibr">150</xref>
] or against multiple targets (i.e., a third generation TKI of EGFR(T790M) and navitoclax an inhibitor of ABC transporters) [
<xref rid="B151-ijms-21-00401" ref-type="bibr">151</xref>
]; (ii) sequential therapy to reduce the toxicity induced by combination of chemotherapeutic agents [
<xref rid="B152-ijms-21-00401" ref-type="bibr">152</xref>
] or (iii) targeted therapy after identification of genetic markers (i.e., patients with EGFR(T790M) mutation which can benefit from osimertinib treatment compared to patients with activating mutations in EGFR who can benefit by gefinitib/erolotinib/afatinib administration) [
<xref rid="B153-ijms-21-00401" ref-type="bibr">153</xref>
]. New experimental studies and different therapeutic approaches are required to find the optimal way to interfere with development of tumor malignancy. </p>
</sec>
<sec id="sec2dot8-ijms-21-00401">
<title>2.8. Tumor Microenvironment (TME)</title>
<p>In spite of the fact that TME is formed from non-malignant structures (i.e., cancer associated fibroblast, immune cells, adipocytes, extracellular matrix molecules, blood and lymphatic vessels, and mesenchymal cells), in most cases they are considered as tumor-promoting factors [
<xref rid="B154-ijms-21-00401" ref-type="bibr">154</xref>
]. Main mechanisms involved in TME role in MDR are (i) abnormal tumor vasculature (promotion of angiogenesis and overexpression of VEGF), (ii) hypoxia, (iii) decreased pH (due to glycolysis), (iv) alterations in the expression of tumor suppressors and oncogenes [
<xref rid="B155-ijms-21-00401" ref-type="bibr">155</xref>
,
<xref rid="B156-ijms-21-00401" ref-type="bibr">156</xref>
,
<xref rid="B157-ijms-21-00401" ref-type="bibr">157</xref>
,
<xref rid="B158-ijms-21-00401" ref-type="bibr">158</xref>
] and (v) modulation of different signaling pathways (mTOR, ERK1/2) and growth-factors (FGF) [
<xref rid="B159-ijms-21-00401" ref-type="bibr">159</xref>
]. Among TME factors, hypoxia plays a major role in lung, colorectal, breast and prostate cancers MDR [
<xref rid="B155-ijms-21-00401" ref-type="bibr">155</xref>
,
<xref rid="B160-ijms-21-00401" ref-type="bibr">160</xref>
,
<xref rid="B161-ijms-21-00401" ref-type="bibr">161</xref>
,
<xref rid="B162-ijms-21-00401" ref-type="bibr">162</xref>
,
<xref rid="B163-ijms-21-00401" ref-type="bibr">163</xref>
]. Hypoxia induces HIF-1 (hypoxia-inducible factor 1) in tumor cells, upregulates the release of pro-angiogenic factors, increases the expression of growth-factor receptors (CXCR4) and MDR proteins (P-gp) [
<xref rid="B164-ijms-21-00401" ref-type="bibr">164</xref>
]. Moreover, the relatively low pH values—a direct consequence of hypoxia—are responsible for reduced cellular uptake of chemotherapeutic agents [
<xref rid="B165-ijms-21-00401" ref-type="bibr">165</xref>
].</p>
<p>Other important factors of TME which promote MDR are the overexpression of fatty acid synthase (FASN) and fatty acid-binding proteins (FBAP4, FBAP5, FBAP9) in breast/prostate tumor cells [
<xref rid="B166-ijms-21-00401" ref-type="bibr">166</xref>
,
<xref rid="B167-ijms-21-00401" ref-type="bibr">167</xref>
]. FSAN is required for de novo synthesis of fatty acids and is correlated with poor prognosis of cancer [
<xref rid="B166-ijms-21-00401" ref-type="bibr">166</xref>
]. Overexpression of FASN may induce drug resistance by (i) altering the membrane composition, thus decreasing the influx of chemotherapeutic agents; (ii) upregulation of HER2 or (iii) inhibition of apoptosis [
<xref rid="B168-ijms-21-00401" ref-type="bibr">168</xref>
,
<xref rid="B169-ijms-21-00401" ref-type="bibr">169</xref>
]. </p>
<p>According to recent research, the cellular components of the tumor stroma (fibroblasts, infiltrated immune cells or mesenchymal stromal cells) induce MDR through increased expression of cytokines (IL-6, IL-8, IL-18, IL-17), overexpression of HER2 and loss of PTEN (tumor suppressor gene) activity [
<xref rid="B54-ijms-21-00401" ref-type="bibr">54</xref>
,
<xref rid="B170-ijms-21-00401" ref-type="bibr">170</xref>
,
<xref rid="B171-ijms-21-00401" ref-type="bibr">171</xref>
,
<xref rid="B172-ijms-21-00401" ref-type="bibr">172</xref>
]. To date several small molecule inhibitors and antibodies against tumor stroma are in clinical trials (prinomastat, saridegib, bevacizumab, etc.) [
<xref rid="B171-ijms-21-00401" ref-type="bibr">171</xref>
].</p>
</sec>
<sec id="sec2dot9-ijms-21-00401">
<title>2.9. Epithelial to Mesenchymal Transition (EMT)</title>
<p>Tumor microenvironment plays a major role in cancer cells ability to develop further features such as cell transition from epithelial to mesenchymal phenotype. This transformation gives them the advantage to migrate to secondary sites [
<xref rid="B173-ijms-21-00401" ref-type="bibr">173</xref>
]. EMT is considered to be an important mechanism by which tumors become metastatic and multidrug-resistant [
<xref rid="B54-ijms-21-00401" ref-type="bibr">54</xref>
,
<xref rid="B174-ijms-21-00401" ref-type="bibr">174</xref>
]. Drug resistance developed after administration of EGFR-target therapy (i.e., erlotinib and cetuximab) has been reported to be connected with EMT features [
<xref rid="B175-ijms-21-00401" ref-type="bibr">175</xref>
].</p>
<p>The PI3K/AKT is one of the most important signaling pathways that mediates the process of EMT through (i) direct activation of transcription factors (twist 1, 2) which increases the expression of mesenchymal markers (N-cadherin), decreases the expression of epithelial markers (E-cadherin, claudin, occluding) and upregulates
<italic>AKT</italic>
gene, which is involved in drug resistance in breast cancer, (ii) increased activity of integrin-linked kinase (which downregulates E-cadherin) and (iii) activation of matrix-degrading proteases (MMP2, MMP9) [
<xref rid="B55-ijms-21-00401" ref-type="bibr">55</xref>
,
<xref rid="B174-ijms-21-00401" ref-type="bibr">174</xref>
]. Moreover, other factors are also involved in EMT activation such as growth factors (FGF, EGF, TGF-β), adhesion molecules (ICAM-1), signaling pathways (NF-κB, Wnt/β-catenin, Notch), overexpression of EMT transcription factors (slug, snail) and members of heat-shock proteins family (such as glucose regulated protein 78 (GRP78)) [
<xref rid="B53-ijms-21-00401" ref-type="bibr">53</xref>
,
<xref rid="B172-ijms-21-00401" ref-type="bibr">172</xref>
,
<xref rid="B174-ijms-21-00401" ref-type="bibr">174</xref>
,
<xref rid="B176-ijms-21-00401" ref-type="bibr">176</xref>
]. Notably, due to the correlation between drug resistance and acquisition of EMT phenotype (i.e., EMT modified cells appear similar to CSC as a result of their high levels of ABC transporters), targeting EMT might represent a new toll to circumvent drug resistance in cancer [
<xref rid="B177-ijms-21-00401" ref-type="bibr">177</xref>
]. </p>
</sec>
<sec id="sec2dot10-ijms-21-00401">
<title>2.10. Epigenetic Variations</title>
<p>The main types of epigenetic mechanisms involved in cancer drug resistance are DNA methylation and histone alterations [
<xref rid="B54-ijms-21-00401" ref-type="bibr">54</xref>
]. Aberrant DNA methylation is associated with genes encoding for proteins involved in cell differentiation, proliferation, apoptosis (MAPK, VEGF, Wnt/β-catenin, p15, p16, p53, APAF-1) or genes encoding drug transporters (MDR1) [
<xref rid="B90-ijms-21-00401" ref-type="bibr">90</xref>
,
<xref rid="B93-ijms-21-00401" ref-type="bibr">93</xref>
]. Moreover, epigenetic mechanisms can also affect the DNA repair system, since hypermethylation of hMLH1 gene is responsible for colorectal cancer [
<xref rid="B90-ijms-21-00401" ref-type="bibr">90</xref>
]. </p>
<p>Recently several studies revealed the important role of epigenetic regulator, polycomb repressive complex 2 catalytic component enhancer of zeste homolog 2 (EZH2), in neoplastic development and drug resistance in many types of cancer (gastric, lung, hepatic) [
<xref rid="B178-ijms-21-00401" ref-type="bibr">178</xref>
]. According to Chang and co-workers, overexpression of EZH2 upregulates EMT transition and decreases sensitivity to several chemotherapeutic agents (i.e., cisplatin) [
<xref rid="B179-ijms-21-00401" ref-type="bibr">179</xref>
]. Since epigenetic alterations might represent a viable anticancer and anti-drug resistance target, a large series of DNA methylation or histone deacetylases inhibitors have been generated. These comprise nucleoside analogs (i.e., 5-Azacytidine, zebularine) or non-nucleoside analogs (i.e., hydralazine) against DNA methylation or short fatty acids, hydroxy-cinnamic acids, cyclic tetrapeptides and benzamide against histone deacethylases [
<xref rid="B180-ijms-21-00401" ref-type="bibr">180</xref>
,
<xref rid="B181-ijms-21-00401" ref-type="bibr">181</xref>
]. Notably, a disadvantage of the drugs that act against epigenetic modification consists in lack of specificity. However, their systemic administration can activate oncogenes, which are involved in promotion of malignancy [
<xref rid="B182-ijms-21-00401" ref-type="bibr">182</xref>
]. Besides the epigenetic inhibitors used to overcome drug resistance, Baylin proposed a mechanism based on withdrawal of the chronical drug administration, which in turn will reduce the number of cancer cells with epigenetic modifications and will increase the heterogeneity of the tumor cells, making them sensitive to other anticancer therapies [
<xref rid="B183-ijms-21-00401" ref-type="bibr">183</xref>
]. All these studies and challenges make epigenetic alterations attractive candidates for further therapeutic applications. </p>
</sec>
<sec id="sec2dot11-ijms-21-00401">
<title>2.11. Dysregulation of microRNA (miRNAs)</title>
<p>miRNAs are a family of small single-stranded non-coding RNAs of 20–25 nucleotides. Usually, their main function is downregulation of gene expression at post-transcriptional level [
<xref rid="B184-ijms-21-00401" ref-type="bibr">184</xref>
]. The dysregulation of miRNAs in cancer cells can lead to drug resistance by abnormal modulation of genes expression responsible for MDR, such as (i) ABC transporter genes, (ii) genes related to apoptosis and autophagy, (iii) drug metabolism genes, (iv) DNA repair or (iv) redox system relating genes [
<xref rid="B93-ijms-21-00401" ref-type="bibr">93</xref>
,
<xref rid="B184-ijms-21-00401" ref-type="bibr">184</xref>
]. </p>
<p>Regarding miRNAs role in regulation of MDR transporters, it was shown that downregulation of miR-38 and miR-200c led to doxorubicin resistance in breast cancer cells, through upregulation of BCRP protein [
<xref rid="B93-ijms-21-00401" ref-type="bibr">93</xref>
]. Downregulation of miR-7 led to drug resistance in lung cancer, through upregulation of MRP1 [
<xref rid="B93-ijms-21-00401" ref-type="bibr">93</xref>
]. Upregulation of several miRNA (miR-16, miR-17) sensitize resistant lung cancer cells to paclitaxel treatment through inhibition of beclin 1 and Bcl-2, promoting apoptosis. Moreover, it was shown that downregulation of miR-17-5p sensitizes colorectal cancer cells to chemotherapeutic agents (5-FU), through increased activity of PTEN [
<xref rid="B93-ijms-21-00401" ref-type="bibr">93</xref>
]. </p>
<p>miRNAs are also involved in chemotherapeutic agents metabolism; for example miR-27b negatively regulates CYP1B1 expression, while miR-892a regulates CYP1A1 activity and sensitize cells to a wide spectrum of chemotherapeutic agents [
<xref rid="B184-ijms-21-00401" ref-type="bibr">184</xref>
]. Moreover, it was shown that miR-27a contributes to cisplatin resistance by modulation of GSH biosynthesis [
<xref rid="B184-ijms-21-00401" ref-type="bibr">184</xref>
]. Several miRNAs modulate chemosensitivity of cancer cells through interfering with DNA repair mechanisms. For example, over–expression of miR-21 downregulated the expression of mismatch repair (MMR) proteins, thus reducing the therapeutic effect of 5-FU in colorectal cancer cells [
<xref rid="B184-ijms-21-00401" ref-type="bibr">184</xref>
]. In conclusion, miRNAs can serve as therapeutic agents for overcoming MDR [
<xref rid="B90-ijms-21-00401" ref-type="bibr">90</xref>
].</p>
</sec>
<sec id="sec2dot12-ijms-21-00401">
<title>2.12. Modulation of Reactive Oxygen Species (ROS)</title>
<p>Modulating reactive oxygen species (ROS) represent a challenging approach to reverse MDR in cancer cells. It is well known that ROS level and the activity of antioxidant enzymes (glutathione peroxidase—GPX, glutathione-S-transferase, catalase, superoxide-dismutase—SOD, hem-oxygenase 1, NAD(P)H quinone oxidoreductase 1, glutamate/cysteine antiporter solute carrier family 7 member 11—xCT, etc.) in MDR cancer cells are overexpressed compared to non-MDR cells [
<xref rid="B185-ijms-21-00401" ref-type="bibr">185</xref>
,
<xref rid="B186-ijms-21-00401" ref-type="bibr">186</xref>
]. Overexpression of ROS facilitate MDR, through upregulation of different pathways (i.e., MAPK, JNK, Nf-kB, PI3K/AKT, Keap1-Nrf2-ARE) [
<xref rid="B55-ijms-21-00401" ref-type="bibr">55</xref>
,
<xref rid="B75-ijms-21-00401" ref-type="bibr">75</xref>
,
<xref rid="B185-ijms-21-00401" ref-type="bibr">185</xref>
]. According to recent research, cancer cells expressing Nrf2 are resistant to chemotherapeutic agents (doxorubicin, etoposide, cisplatin) by increasing GSH production and upregulation of MRP1 [
<xref rid="B75-ijms-21-00401" ref-type="bibr">75</xref>
]. According to Zeng et al., the transcriptional factor src/STAT3 also promotes MDR in cancer cells by promoting antioxidant feedback, through increased expression of GPX and SOD2 activity [
<xref rid="B187-ijms-21-00401" ref-type="bibr">187</xref>
].</p>
<p>Usually ROS are produced by the highly reactive mitochondrial electron transport chain of aerobic respiration, oxido-reductase enzymes (xanthinoxidase, cyclooxygenase, NADPH oxidases—NOXs, etc.) or metal catalyzed oxidation [
<xref rid="B185-ijms-21-00401" ref-type="bibr">185</xref>
]. Recent research has shown that mitochondrial functions are altered in cancer cells, due to imbalance between fusion/fission dynamics and increased mitophagy, which grants a rapid clearance of chemotherapeutic agents, increases ABC transporters activity (by providing ATP) and modifies mitochondrial membrane potential [
<xref rid="B75-ijms-21-00401" ref-type="bibr">75</xref>
].</p>
<p>Several agents (current in preclinical or clinical studies) are involved in modulation of ROS in MDR by (i) disrupting mitochondrial electron transport chain (elesclomol), (ii) inhibition of NOXs (ampelopsin), (iii) depletion of intracellular GSH (APR246), (iv) inhibition of xCT, required for GSH synthesis (erastin, vorinostat) or (v) inhibition of Nrf2 pathway (camptothecin) [
<xref rid="B185-ijms-21-00401" ref-type="bibr">185</xref>
].</p>
</sec>
</sec>
<sec id="sec3-ijms-21-00401">
<title>3. Role of Polyphenols in MDR</title>
<sec id="sec3dot1-ijms-21-00401">
<title>3.1. In Vitro Studies </title>
<sec id="sec3dot1dot1-ijms-21-00401">
<title>3.1.1. Flavonoid Compounds</title>
<sec>
<title>Flavones </title>
<p>Flavonoid compounds were intensively tested for their capacity to enhance the effect of anti-cancer drugs and to combat MDR in different types of cancers. An experiment conducted on CD44
<sup>+</sup>
prostate cancer stem cells provided relevant information that
<italic>apigenin</italic>
co-administrated with cisplatin stimulated the therapeutic effects of cisplatin by inducing a series of modulatory effects on the expression of essential proteins and enzymes [
<xref rid="B188-ijms-21-00401" ref-type="bibr">188</xref>
]. The mechanism of apoptosis induced by tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) was studied in conjunction with flavonoids as potentiating agents, due to the high occurrence of TRAIL resistance in various cancer types. In this regard, Yang et al. demonstrated that
<italic>wagonin</italic>
showed the capacity to enhance apoptosis mediated by TRAIL in vitro through downregulating the expression levels of anti-apoptotic proteins [
<xref rid="B41-ijms-21-00401" ref-type="bibr">41</xref>
]. </p>
<p>According to Rao et al.,
<italic>luteolin</italic>
overcomes MDR in breast cancer mitoxantrone resistant cells through increased apoptosis, DNA damage, activation of ATR/Chk2/p53 signaling pathways, inhibition of NF-κB signaling pathway and depletion of anti-apoptotic proteins [
<xref rid="B189-ijms-21-00401" ref-type="bibr">189</xref>
]. </p>
<p>Nucleoid factor erythroid-2 related factor 2 (Nrf2) is a transcription factor that regulates genes responsible for the synthesis of endogenous antioxidants (hemeoxygenase-1—HO-1), transporters (MRP1, MRP2) and detoxifying enzymes (glutathione-S-transferase) [
<xref rid="B190-ijms-21-00401" ref-type="bibr">190</xref>
]. Recent research have demonstrated that Nrf2 is overexpressed in MDR cancer [
<xref rid="B190-ijms-21-00401" ref-type="bibr">190</xref>
]. According to recent data, co-treatment of breast and lung cancer cells with
<italic>luteolin</italic>
and chemotherapeutic agents (oxaliplatin, doxorubicin, bleomycin) resulted in a higher percentage of cells death. The suggested mechanisms involve downregulation of
<italic>NRF2</italic>
gene expression (MDR and HO1) and increased sensitization of the cells to chemotherapeutic treatment [
<xref rid="B190-ijms-21-00401" ref-type="bibr">190</xref>
,
<xref rid="B191-ijms-21-00401" ref-type="bibr">191</xref>
].</p>
</sec>
<sec>
<title>Flavonols</title>
<p>
<italic>Quercetin</italic>
was found to suppress effects of P-gp in breast cancer cells and to increase the disappearance of breast cancer stem cells. In this case, doxorubicin-resistant MCF-7 cells were evaluated for how they respond to different drugs (doxorubicin, paclitaxel and vincristine) in conjunction with quercetin. It was found that the co-administration of these drugs with quercetin potentiated their chemotherapeutic effect [
<xref rid="B192-ijms-21-00401" ref-type="bibr">192</xref>
]. The potential of quercetin to reverse the MDR process through the inactivation of P-gp was also revealed on vincristine resistant human colorectal adenocarcinoma Caco-2 cells [
<xref rid="B193-ijms-21-00401" ref-type="bibr">193</xref>
]. Another study performed on Caco-2 cells showed that quercetin as well as naringenin and genistein manifested inhibitory effects on cell elimination of cimetidine through P-gp activity [
<xref rid="B194-ijms-21-00401" ref-type="bibr">194</xref>
]. Downregulation of P-gp by quercetin and other flavonoids such as naringenin, biochanin A, silymarin, genistein was successfully demonstrated in daunomycin resistant MCF-7 breast cancer cell lines. It was shown that these compounds not only stimulated the accumulation of the drug, but also substantially reduced its efflux [
<xref rid="B195-ijms-21-00401" ref-type="bibr">195</xref>
]. </p>
<p>It was also observed that
<italic>fisetin</italic>
—another dietary flavonoid compound—changed the MDR course of action leading to the chemosensitizing effects on colorectal cancer cells resistant to common chemotherapeutic drugs. Co-administration of fisetin with irinotecan and oxaliplatin induced apoptosis in cultured cells by increasing the activity of caspase-8 and caspase-3. Furthermore, this combined treatment triggered the efflux of cytochrome C and considerably reduced the phosphorylation mechanisms of IGF1R and AKT [
<xref rid="B196-ijms-21-00401" ref-type="bibr">196</xref>
].</p>
</sec>
<sec>
<title>Flavanones</title>
<p>
<italic>Hesperidin</italic>
(hesperitin rutinoside) was able to increase the sensitivity of breast resistant cancer cells to doxorubicin, through decreased expression of P-gp [
<xref rid="B197-ijms-21-00401" ref-type="bibr">197</xref>
]. Moreover, El-Readi M.Z. and his co-workers have shown that hesperidin had a significantly higher inhibitory effect of P-gp than nobiletin and stigmasterol but lower effect than limonin in overcoming MDR in colorectal cancer cells [
<xref rid="B198-ijms-21-00401" ref-type="bibr">198</xref>
].</p>
</sec>
<sec>
<title>Flavan-3-ols</title>
<p>Impeding DNA damage repair processes through dietary flavonoids was also shown to be a successful endeavor in combating chemoresistance in cancer. It was found that quercetin,
<italic>catechin</italic>
and fisetin intensified the sensitivity of breast cancer cells to cisplatin by inhibiting ATR-Chk1 pathway [
<xref rid="B199-ijms-21-00401" ref-type="bibr">199</xref>
]. Green tea polyphenols have also shown inhibitory properties towards efflux pumps (P-gp) [
<xref rid="B200-ijms-21-00401" ref-type="bibr">200</xref>
]. The inhibitory effect decreased as follows epigallocatechingallate > epigallocatechin > catechin > epicatechin [
<xref rid="B201-ijms-21-00401" ref-type="bibr">201</xref>
]. EGCG induces the reversal of MDR by regulating detoxification mechanisms and downregulation of Nrf2 pathway in breast cancer cells resistant to tamoxifen [
<xref rid="B202-ijms-21-00401" ref-type="bibr">202</xref>
]. Moreover, according to La X. and co-workers, EGCG enhances the sensitivity of colorectal cancer cells to 5-fluorouracil by inhibiting GRP78/NF-κB/miR-155-5p/MDR1 pathway [
<xref rid="B203-ijms-21-00401" ref-type="bibr">203</xref>
]. Green tea polyphenols (EGCG) associated with quercetin enhanced the therapeutic effect of docetaxel in metastatic and castration-resistant prostate cancer through downregulation of MRP expression, decreased percentage of CD44
<sup>+</sup>
/CD24
<sup></sup>
stem-like cells and induced inhibition of PI3K/AKT/STAT3 signaling pathway [
<xref rid="B204-ijms-21-00401" ref-type="bibr">204</xref>
]. Receptor tyrosine kinase signaling pathway has been reported to promote cell proliferation, inhibit apoptosis and to play a major role in MDR. EGCG was shown to reverse MDR in cisplatin resistant lung cancer through downregulation of several receptor tyrosine kinases [
<xref rid="B205-ijms-21-00401" ref-type="bibr">205</xref>
].</p>
</sec>
<sec>
<title>Isoflavones</title>
<p>
<italic>Genistein</italic>
—an isoflavone found mainly in soybeans—overcomes chemoresistance to doxorubicin in MDR breast cancer cells through increased accumulation of the chemotherapeutic agent, promotion of apoptosis and suppression of HER2 mRNA expression. However, it had no effect on MDR-1 expression [
<xref rid="B206-ijms-21-00401" ref-type="bibr">206</xref>
]. According to Li and co-workers (2005), genistein pre-treatment of prostate and lung cancer cells inhibits NF-κB activity and contributes to increased growth inhibition and apoptosis induced by cisplatin and docetaxel [
<xref rid="B207-ijms-21-00401" ref-type="bibr">207</xref>
]. Another isoflavone,
<italic>daidzein</italic>
, found in soybeans, inhibited BCRP and MRP1/2 drug transporters, therefore sensitizing breast cancer cells to chemotherapeutic agents (mitoxantrone, doxorubicin) [
<xref rid="B208-ijms-21-00401" ref-type="bibr">208</xref>
].</p>
</sec>
</sec>
<sec id="sec3dot1dot2-ijms-21-00401">
<title>3.1.2. Non-Flavonoid Compounds</title>
<sec>
<title>Stilbenes </title>
<p>
<italic>Resveratrol</italic>
is a polyphenol commonly found in red wine and grapes that possesses strong antioxidant and anti-aging properties [
<xref rid="B209-ijms-21-00401" ref-type="bibr">209</xref>
]. According to several studies co-administration of resveratrol and other therapeutic agents (paclitaxel, docetaxel, doxorubicin, rapamycin, gefitinib) reversed MDR in breast, lung and colorectal cancer through enhancement of chemotherapeutic agents bioavailability, increase drug retention time, stimulation of pro-apoptosis mechanisms, cell cycle arrest or downregulation of ABC transporters [
<xref rid="B209-ijms-21-00401" ref-type="bibr">209</xref>
,
<xref rid="B210-ijms-21-00401" ref-type="bibr">210</xref>
,
<xref rid="B211-ijms-21-00401" ref-type="bibr">211</xref>
,
<xref rid="B212-ijms-21-00401" ref-type="bibr">212</xref>
,
<xref rid="B213-ijms-21-00401" ref-type="bibr">213</xref>
,
<xref rid="B214-ijms-21-00401" ref-type="bibr">214</xref>
]. </p>
</sec>
<sec>
<title>Lignans </title>
<p>Co-encapsulation of
<italic>honokiol</italic>
(a lignan isolated from the bark, stem and leaves of
<italic>Magnolia</italic>
sp.) and paclitaxel in pH-sensitive polymeric micelles suppressed MDR in breast cancer through downregulation of P-gp expression and increase of plasma membrane fluidity [
<xref rid="B43-ijms-21-00401" ref-type="bibr">43</xref>
]. Moreover, honokiol radiosensitizes colorectal cancer cells due to higher levels of apoptosis (caspase-3 activation, increased Bax/Bcl-2 ratio) and reduced expression of cyclin A1 and D1 [
<xref rid="B215-ijms-21-00401" ref-type="bibr">215</xref>
]. </p>
<p>Other lignans, such as
<italic>schizandrin A,</italic>
isolated from
<italic>Schisandra chinensis</italic>
fruits enhanced chemosensitivity of colorectal carcinoma cells to 5-FU through upregulation of miR-195. In addition, upregulation of miR-195 inactivated NF-κB and PI3K/AKT signaling pathways [
<xref rid="B48-ijms-21-00401" ref-type="bibr">48</xref>
].
<italic>Silybin</italic>
is the major active constituent of silymarin (a mixture of flavonolignans) from milk thistle fruits. According to Molavi et al., silybin treatment of breast cancer cells resistant to doxorubicin/paclitaxel, sensitized cells to chemotherapeutic agents by suppressing the key oncogenic pathways STAT3, AKT and ERK [
<xref rid="B46-ijms-21-00401" ref-type="bibr">46</xref>
]. According to recent research, a combination of flaxseed lignan (
<italic>secoisolariciresinol</italic>
) and its metabolite (
<italic>enterolactone</italic>
) enhanced the cytotoxic effects of docetaxel, carboplatin and doxorubicin in metastatic breast cancer cell lines, likely by inhibition of fatty acid synthase [
<xref rid="B47-ijms-21-00401" ref-type="bibr">47</xref>
].</p>
</sec>
<sec>
<title>Ellagitannins</title>
<p>Ellagitannins and their metabolite,
<italic>ellagic</italic>
acid, overcome MDR in cancer, by inhibition of P-gp, MRP and BCRP proteins [
<xref rid="B216-ijms-21-00401" ref-type="bibr">216</xref>
]. Ellagic acid sensitizes human colorectal cancer cells to 5-FU treatment through increased Bax/Bcl-2 ratio, activation of caspase-3 and loss of mitochondrial potential [
<xref rid="B217-ijms-21-00401" ref-type="bibr">217</xref>
]. Ellagitannins and their metabolites play a key role for overcoming MDR in breast resistant cancer cell line [
<xref rid="B218-ijms-21-00401" ref-type="bibr">218</xref>
]. Berdowska et al. have studied the effect of several ellagitannins (agrimoniin, sanguiin-H6, tellimagrandin I, rugosins A, D and pedunculagin) on doxorubicin-resistant breast cancer cells. Among the tested compounds, only sanguiin-H6 showed cytotoxic effects towards resistant MCF-7 cancer cells, probably due to the release of sanguisorbic acid dilactone, which inhibited ABC transporters, thus diminishing the ability of cells to extrude other products of sanguiin-H6 hydrolysis (ellagic acid, depsides), with cytotoxic effects [
<xref rid="B218-ijms-21-00401" ref-type="bibr">218</xref>
]. </p>
</sec>
<sec>
<title>Hydroxy-Benzoic Acids</title>
<p>Among phenolcarboxylic acids,
<italic>gallic acid</italic>
induces apoptosis, enhances the anticancer effect of cisplatin in human lung cancer and reverse MDR [
<xref rid="B219-ijms-21-00401" ref-type="bibr">219</xref>
]. Mechanisms responsible for above-mentioned effects include induction of apoptosis by ROS generation, disruption of mitochondrial membrane potential, increase in the expression of Bax, APAF1, DIABLO and p53 and decrease in the expression of inhibitor of apoptosis protein 3 [
<xref rid="B219-ijms-21-00401" ref-type="bibr">219</xref>
]. In addition, association between gallic acid and ECGC attenuated MDR in doxorubicin-resistant breast cancer cells through a concentration-dependent inhibition of metalloproteinases (MMP-2 and MMP-9). It is well known that metalloproteinases are involved in the degradation of extracellular matrix by metastatic cancer cells [
<xref rid="B220-ijms-21-00401" ref-type="bibr">220</xref>
]. Another mechanism involved in gallic acid overcoming MDR is the inhibition of Src/STAT3-mediated signaling and the decrease in the expression of STAT3-regulated tumor-promoting genes, therefore inducing apoptosis and cell cycle arrest. It is well known that activation of STAT3 signaling pathway is associated with resistance to tyrosine kinase inhibitors, which are frequently used in lung cancer treatment [
<xref rid="B221-ijms-21-00401" ref-type="bibr">221</xref>
]. </p>
</sec>
<sec>
<title>Hydroxy-Cinnamic Acids</title>
<p>
<italic>Ferulic acid</italic>
and
<italic>caffeic acid</italic>
isolated from foxtail millet (a Chinese cereal food) reverse MDR in human colorectal cancer cells through decreased expression of MRP1, P-gp and BRCP [
<xref rid="B222-ijms-21-00401" ref-type="bibr">222</xref>
]. </p>
<p>
<italic>Caffeic acid phenetyl ester (CAPE)</italic>
is a strong inhibitor of human breast cancer stem cells by inhibition of cells’ renewal, progenitor formation and decrease in CD44
<sup>+</sup>
cells content. CD44
<sup>+</sup>
cells are responsible for tumor formation from a very few cells and are resistant to chemotherapy [
<xref rid="B223-ijms-21-00401" ref-type="bibr">223</xref>
]. According to Khoram et al., CAPE augments the radio sensibility of breast cancer cells [
<xref rid="B224-ijms-21-00401" ref-type="bibr">224</xref>
]. Moreover, CAPE shows beneficial effect in overcoming MDR in lung and prostate cancer through depleting intracellular stores of GSH (reduced glutathione), blocking NF-κB pathway, downregulation of apoptosis inhibitors (cIAP1, cIAP-2 and XIAP) and claudin-2 expression [
<xref rid="B225-ijms-21-00401" ref-type="bibr">225</xref>
,
<xref rid="B226-ijms-21-00401" ref-type="bibr">226</xref>
]. According to recent research, treatment of lung adenocarcinoma derived stem-like cells with
<italic>cinnamic acid</italic>
diminishes their proliferation and facilitates their differentiation into CD133 (a marker used for isolation of cancer stem cell population mainly from carcinomas) negative cells [
<xref rid="B227-ijms-21-00401" ref-type="bibr">227</xref>
]. </p>
</sec>
<sec>
<title>Other Compounds</title>
<p>
<italic>Curcumin</italic>
is the major active substance of the culinary spice turmeric (
<italic>Curcuma longa</italic>
) and has strong antioxidant, anti-inflammatory and anti-cancer effects [
<xref rid="B34-ijms-21-00401" ref-type="bibr">34</xref>
,
<xref rid="B50-ijms-21-00401" ref-type="bibr">50</xref>
,
<xref rid="B228-ijms-21-00401" ref-type="bibr">228</xref>
,
<xref rid="B229-ijms-21-00401" ref-type="bibr">229</xref>
]. Curcumin has been reported to attenuate oxaliplatin and 5-fluorouracil (5-FU) acquired resistance in colorectal and breast cancer cells through inhibition of NF-κB signaling cascade [
<xref rid="B230-ijms-21-00401" ref-type="bibr">230</xref>
,
<xref rid="B231-ijms-21-00401" ref-type="bibr">231</xref>
]. Moreover, association between curcumin and oxaliplatin downregulated the expression of NF-κB regulated gene products involved in inflammation (CXC-chemokines, which are highly overexpressed due to acquired resistance) and decreased the levels of p65 [
<xref rid="B230-ijms-21-00401" ref-type="bibr">230</xref>
]. Recent research has shown that a curcumin-derivative (difluorinated curcumin) inhibits 5-FU and oxaliplatin resistant colorectal cancer cells through downregulation of miR-21. miR-21 downregulates PTEN, a tumor suppressor gene. Decreased activity of PTEN is involved in resistance to conventional therapy and recurrence of cancer initial treatment [
<xref rid="B232-ijms-21-00401" ref-type="bibr">232</xref>
]. Moreover, PTEN downregulates Nrf2 activity and autophagy, which have been reported to play a protective role in cisplatin induced apoptotic cell death [
<xref rid="B233-ijms-21-00401" ref-type="bibr">233</xref>
]. According to Gu et al., nanomicelles loaded with doxorubicin and curcumin alleviate MDR in lung cancer, due to increased cellular uptake of chemotherapeutic agents [
<xref rid="B234-ijms-21-00401" ref-type="bibr">234</xref>
]. According to recent studies, curcumin reverses cisplatin resistance and promotes human lung adenocarcinoma apoptosis through increased apoptosis and down-regulation of HIF-1α [
<xref rid="B235-ijms-21-00401" ref-type="bibr">235</xref>
]. It has been shown that curcumin inhibits mammalian target of rapamycin (mTOR)—a serin/threonine kinase—and downregulates the key epigenetic regulator enhancer of zeste homolog 2 (EZH2) in tamoxifen resistant breast cancer cells [
<xref rid="B236-ijms-21-00401" ref-type="bibr">236</xref>
]. According to Thulasiraman, curcumin also restores sensitivity to retinoic acid in triple negative breast cancer cells by suppressing the expression level of fatty acid-binding protein 5 (FBAP5) and peroxisome proliferator-activated receptor β/δ (PPARβ/δ) [
<xref rid="B237-ijms-21-00401" ref-type="bibr">237</xref>
]. The combination of curcumin with other phenolic compounds (such as EGCG) showed synergistic effects in overcoming doxorubicin-resistant tumor breast cells through caspase-dependent apoptotic signaling pathways, downregulation of anti-apoptotic Bcl-2 and survivin, and enhancement of cellular incorporation of curcumin [
<xref rid="B238-ijms-21-00401" ref-type="bibr">238</xref>
].</p>
<p>
<italic>Gingerol</italic>
represents the main active substance from dry or fresh ginger roots, a popular spice widely used in many diseases (nausea, diarrhea and cancer) [
<xref rid="B51-ijms-21-00401" ref-type="bibr">51</xref>
]. According to Liu Chin-Ming and co-workers, 6-gingerol and 10-gingerol inhibited the proliferation of docetaxel resistant human prostate cancer cells through downregulation of MRP1 and GST [
<xref rid="B51-ijms-21-00401" ref-type="bibr">51</xref>
]. According to recent research, 6-gingerol shows high anticancer potency in cyclophosphamide, 5-FU and doxorubicin-resistant breast cancer MCF-7 cell line, due to its antioxidant activity and regulation of different cellular pathways (Wnt-β catenin or glycogen synthase kinase 3—GSK3) [
<xref rid="B239-ijms-21-00401" ref-type="bibr">239</xref>
].</p>
<p>In conclusion, recent in vitro studies (
<xref rid="ijms-21-00401-t002" ref-type="table">Table 2</xref>
) have shown that phenolic compounds overcome MDR in different types of cancer (breast, lung, prostate, colorectal) by inhibition of efflux pumps (P-gp, MRP1, BCRP), increased apoptosis and decreased proliferation of cancer stem cells, increased cellular uptake of chemotherapeutic agents, downregulation of miR-27a, miR-195, miR-21, inactivation of DNA damage repair, decreased expression of anti-apoptotic proteins and modulation of important signaling pathways involved in carcinogenesis (PI3/Akt, Wnt-β catenin, GSK-3, NF-κB, mTOR, Nrf2, ERK, JNK, etc.). </p>
<p>Considering the evidence provided by in vitro studies, continuous pharmacological research (pre-clinical and clinical studies) is needed in order to verify the potential beneficial effects of polyphenols in vivo and to discover new mechanisms of action for overcoming MDR.</p>
</sec>
</sec>
<sec id="sec3dot1dot3-ijms-21-00401">
<title>3.1.3. Synergic and Pleiotropic Activity of Polyphenols </title>
<p>Recent data support the hypothesis that combined drug therapy might be more efficient than monotherapy (“one drug-one target” therapy). The synergistic effects of combined administration of polyphenols appears mainly at a molecular level, since they influence different pathways involved in multidrug resistance. For example, association between curcumin and EGCG showed synergistic effect in overcoming doxorubicin resistance in tumor breast cancer cells [
<xref rid="B238-ijms-21-00401" ref-type="bibr">238</xref>
]. The synergistic effect occurs due to inhibition of P-gp expression by EGCG, thus increasing the incorporation of curcumin in breast cancer cells, leading to enhancement of apoptosis and regulation of apoptosis proteins [
<xref rid="B238-ijms-21-00401" ref-type="bibr">238</xref>
]. A similar effect was observed for the association between EGCG and gallic acid in multidrug resistant MCF7/DOX breast cancer cells [
<xref rid="B220-ijms-21-00401" ref-type="bibr">220</xref>
]. The inhibitory effect of EGCG upon P-gp increases gallic acid concentration in cancer cells leading to inhibition of matrix metaloproteinases (MMP-2, MMP-9). Regarding the combination of EGCG and quercetin in docetaxel resistant prostate cancer cells [
<xref rid="B204-ijms-21-00401" ref-type="bibr">204</xref>
], both compounds are strong inhibitors of P-gp [
<xref rid="B240-ijms-21-00401" ref-type="bibr">240</xref>
]. Consequently, both compounds have increased concentrations in prostate cancer cells and act by inhibition of PI3K/AKT, STAT3 signaling pathways and decreased cancer stem cells activity [
<xref rid="B204-ijms-21-00401" ref-type="bibr">204</xref>
]. Since the data regarding the interactions between polyphenols in MDR models are promising but limited, this might represent starting points for future studies. </p>
<p>The pleiotropic effect of the polyphenols has already been acknowledged in the scientific publications [
<xref rid="B241-ijms-21-00401" ref-type="bibr">241</xref>
,
<xref rid="B242-ijms-21-00401" ref-type="bibr">242</xref>
]. Based on the reported data, polyphenols overcome multidrug resistance by affecting different pathways in different types of cancer [
<xref rid="B243-ijms-21-00401" ref-type="bibr">243</xref>
]. For example: (i) quercetin increases apoptosis, inhibits angiogenesis (in colorectal cancer cells) [
<xref rid="B244-ijms-21-00401" ref-type="bibr">244</xref>
], inhibits P-gp activity (in breast cancer cells) [
<xref rid="B245-ijms-21-00401" ref-type="bibr">245</xref>
]; (ii) curcumin down-regulates P-gp and Hsp27, induces autophagy, reduces the markers of cancer stem cells (colon cancer cells) [
<xref rid="B246-ijms-21-00401" ref-type="bibr">246</xref>
,
<xref rid="B247-ijms-21-00401" ref-type="bibr">247</xref>
,
<xref rid="B248-ijms-21-00401" ref-type="bibr">248</xref>
], inhibits the activity of ABCB4 pump, inhibits epithelial-mesenchymal transition (breast cancer cells) [
<xref rid="B249-ijms-21-00401" ref-type="bibr">249</xref>
,
<xref rid="B250-ijms-21-00401" ref-type="bibr">250</xref>
], inhibits JNK pathway, suppresses invasion by inhibition of STAT3 activity (prostate cancer) [
<xref rid="B251-ijms-21-00401" ref-type="bibr">251</xref>
,
<xref rid="B252-ijms-21-00401" ref-type="bibr">252</xref>
] or induces apoptosis (lung cancer cells) [
<xref rid="B253-ijms-21-00401" ref-type="bibr">253</xref>
]; (iii) resveratrol down-regulates the expression of survivin (in prostate cancer cells) [
<xref rid="B254-ijms-21-00401" ref-type="bibr">254</xref>
] and inhibits MAPK kinase in prostate and lung cancer cells [
<xref rid="B255-ijms-21-00401" ref-type="bibr">255</xref>
]; (iv) EGCG inhibits drug efflux (in prostate cancer cells), increases drug concentration in cancer cells by inhibition of enzymes involved in drug metabolism (in colorectal cancer cells), increased ROS production (in colorectal cancer cells)—thus it is responsible for AMPK activation—and induces epigenetic restoration of estrogen receptors through histone modifications (in breast cancer cells) [
<xref rid="B256-ijms-21-00401" ref-type="bibr">256</xref>
]. Nevertheless, based on reported data, some polyphenols can target the same molecule in different cancer cell lines. For instance, resveratrol can downregulate P-gp in breast, lung and colorectal cancer cells [
<xref rid="B210-ijms-21-00401" ref-type="bibr">210</xref>
,
<xref rid="B211-ijms-21-00401" ref-type="bibr">211</xref>
,
<xref rid="B212-ijms-21-00401" ref-type="bibr">212</xref>
]. Taken together these data suggest that polyphenols are able to modulate different signaling pathways being cell-line-specific and to target certain molecules independent of cell type (
<xref rid="ijms-21-00401-t002" ref-type="table">Table 2</xref>
).</p>
</sec>
</sec>
<sec id="sec3dot2-ijms-21-00401">
<title>3.2. In Vivo and Clinical Studies </title>
<sec id="sec3dot2dot1-ijms-21-00401">
<title>3.2.1. Flavonoid Compounds</title>
<sec>
<title>Flavones and Flavonols </title>
<p>Shin et al. published a study centered on the co-administration of tamoxifen with
<italic>quercetin</italic>
in rats, showing great evidence of the inhibition of P-gp, MRP2 and BCPR, as well as relevant data, which support the antioxidant property of quercetin through the reduction of CYP3A4 activity [
<xref rid="B257-ijms-21-00401" ref-type="bibr">257</xref>
]. Experiments on animal models confirm the suppressing function of
<italic>quercetin</italic>
on ABC proteins involved in MDR. </p>
<p>Co-encapsulation of
<italic>quercetin</italic>
and doxorubicin in biotin receptor-targeting nanoparticles was more effectively taken up with less efflux due to downregulation of P-gp expression in nude mice bearing MCF-7 breast cancer cells resistant to adriamycin (doxorubicin) [
<xref rid="B258-ijms-21-00401" ref-type="bibr">258</xref>
]. According to et al., applying
<italic>wogonin</italic>
and TRAIL in a mouse model of lung cancer enhances TRAIL’s antitumor activity and overcomes MDR through augmentation of apoptosis and decreased the expression of anti-apoptotic proteins (survivin, XIAP, etc.) [
<xref rid="B41-ijms-21-00401" ref-type="bibr">41</xref>
]. </p>
<p>
<italic>Fisetin</italic>
showed promising effects in a mouse model of lung cancer and prevented MDR through increased apoptosis and downregulation of AKT and IGFR1 phosphorylation levels [
<xref rid="B196-ijms-21-00401" ref-type="bibr">196</xref>
].</p>
<p>
<italic>Luteolin</italic>
, another flavonoid, was analyzed for its potential beneficial role in reversing MDR in cancer. For this purpose, a group of researchers took into consideration the analysis of xenograft tumors of lung cancer, which were treated with luteolin, erlotinib and cisplatin for 15 days. They concluded that the group of mice treated with luteolin and cisplatin showed the most relevant reduction in the tumor mass. Moreover, luteolin was shown to sensitize tumor cells to erlotinib through downregulation of EGFR/PI3K/AKT/mTOR signaling pathway and increased apoptosis [
<xref rid="B259-ijms-21-00401" ref-type="bibr">259</xref>
].</p>
</sec>
<sec>
<title>Flavan-3-ols</title>
<p>Combining
<italic>EGCG</italic>
with paclitaxel induced significant cell apoptosis in a murine model of breast carcinoma. Moreover, EGCG overcame MDR to paclitaxel by inhibiting GRP78 expression and inhibition of JNK phosphorylation [
<xref rid="B260-ijms-21-00401" ref-type="bibr">260</xref>
]. In a rat model of breast carcinogenesis application of EGCG overcame MDR to paclitaxel through increased apoptosis, decrease of cancer stem cells, decreased VEGF expression and MMP-2 activity [
<xref rid="B261-ijms-21-00401" ref-type="bibr">261</xref>
].</p>
</sec>
<sec>
<title>Isoflavones </title>
<p>The potential of
<italic>genistein</italic>
to cause inhibition of MDR in lung cancer was intensively studied. One representative case is the assessment of the genistein-cisplatin treatment of non-small cell lung cancer (NSCLC) in xenografted mice models, in order to prove the sensitization of drug-resistant cancer cells via enhanced activity of caspase-3, 8, 10 and suppression of PI3K/AKT activity [
<xref rid="B262-ijms-21-00401" ref-type="bibr">262</xref>
]. The property of genistein to sensitize NSCLC cells was demonstrated for another chemotherapeutic agent, gefitinib. In this respect, it was acknowledged that the combinatory treatment using genistein and gefitinib increased apoptosis and downregulated EGFR and mTOR signaling pathways [
<xref rid="B263-ijms-21-00401" ref-type="bibr">263</xref>
].</p>
</sec>
</sec>
<sec id="sec3dot2dot2-ijms-21-00401">
<title>3.2.2. Non-Flavonoid Compounds</title>
<sec>
<title>Stilbenes</title>
<p>Co-encapsulation of resveratrol and paclitaxel in a PEGylated liposome showed effective inhibitory effects in drug-resistant breast tumors in mice through increased cellular uptake of paclitaxel and decreased activity of efflux pumps (MRP, P-gp) [
<xref rid="B264-ijms-21-00401" ref-type="bibr">264</xref>
]. According to Yang et al., resveratrol sensitized colorectal cancer cells to oxaliplatin, mainly by upregulation of miR-34c in correlation with increased levels of p53 and reduction of tumor growth in xenograft experiments [
<xref rid="B265-ijms-21-00401" ref-type="bibr">265</xref>
]. Resveratrol significantly inhibited MDR in nude mouse models inoculated with human non-small cell lung cancer cells by downregulation of survivin and activation of caspase-3 [
<xref rid="B266-ijms-21-00401" ref-type="bibr">266</xref>
].</p>
</sec>
<sec>
<title>Hydroxy-Cinammic Acids</title>
<p>
<italic>Caffeic acid phenethyl ester</italic>
(CAPE) reverses MDR in breast cancer mouse models due to downregulation of anti-apoptotic and cell proliferation genes, as well as NF-κB transcription factors. Moreover, it decreased
<italic>MDR1</italic>
-gene expression, so it might be used as an adjuvant to chemotherapeutic agents (paclitaxel) treatment [
<xref rid="B267-ijms-21-00401" ref-type="bibr">267</xref>
].</p>
</sec>
<sec>
<title>Lignans</title>
<p>
<italic>Podophyllotoxin</italic>
, a lignan, found in the roots of
<italic>Podophyllum peltatum</italic>
L. exhibited significant activity against P-gp mediated MDR tumor cell lines [
<xref rid="B44-ijms-21-00401" ref-type="bibr">44</xref>
]. However, due to its poor solubility, it cannot be used systemically. Nanoparticles composed of poldophyllotoxin and polyethylene glycol with acetylated carboxymethyl cellulose showed beneficial effects in breast and prostate resistant tumor models in mice through enhanced sensitization of tumor cells to chemotherapeutic agents and increased tumor penetration [
<xref rid="B44-ijms-21-00401" ref-type="bibr">44</xref>
]. Moreover, the delivery of nanoparticles was highly selective to the tumors with minimal uptake in other tissues [
<xref rid="B44-ijms-21-00401" ref-type="bibr">44</xref>
]. Another lignan,
<italic>deoxypodophyllotoxin</italic>
from the roots of
<italic>Anthriscus sylvestris</italic>
exhibited better efficacy to MDR in mouse models for breast cancer than paclitaxel [
<xref rid="B45-ijms-21-00401" ref-type="bibr">45</xref>
]. According to Lou S. and co-workers a multifunctional nanosystem composed of doxorubicin, paclitaxel and
<italic>silybin</italic>
controlled drug release, decreased P-gp activity and synergistically inhibited breast tumors growth [
<xref rid="B268-ijms-21-00401" ref-type="bibr">268</xref>
].</p>
</sec>
<sec>
<title>Other Compounds</title>
<p>In vivo studies have shown that
<italic>curcumin</italic>
sensitizes human colorectal cancer to capecitabine in an orthotopic mouse model, through inhibition of NF-κB, decreased expression of genes enconding for proteins involved in proliferation (COX-2), invasion (MMP-2, ICAM-1), metastasis (CXCR4), angiogenesis (VEGF) and anti-apoptotic gene products (Bcl-2, IAP-1 and survivin) [
<xref rid="B269-ijms-21-00401" ref-type="bibr">269</xref>
]. Other authors reported that curcumin regulates colorectal cancer by inhibiting P-gp in in situ cancerous colon perfusion in a rat model. Inhibition of P-gp enhanced the cytotoxic effects of irinotecan [
<xref rid="B270-ijms-21-00401" ref-type="bibr">270</xref>
]. According to Howells L. and co-workers curcumin also ameliorates oxaliplatin-induced chemoresistance in HCT-116 xenograft tumors by preventing oxaliplatin-induced upregulation of ALDH1 and decreased activity of excision nucleases, by which DNA lesions are repaired [
<xref rid="B271-ijms-21-00401" ref-type="bibr">271</xref>
]. Administration of nanoparticles with docetaxel/doxorubicin and curcumin to mice inoculated with prostate cancer cells, overcame MDR to chemotherapeutic agents through enhanced cellular uptake of chemotherapeutic agents and inhibition of MDR1 and MRP [
<xref rid="B272-ijms-21-00401" ref-type="bibr">272</xref>
,
<xref rid="B273-ijms-21-00401" ref-type="bibr">273</xref>
]. Moreover, it was shown that curcumin decreases doxorubicin cardiotoxicity [
<xref rid="B273-ijms-21-00401" ref-type="bibr">273</xref>
]. Besides, curcumin chemosensitizes prostate cancer cells to gemcitabine by downregulation of MDM2 oncogene through PI3K/mTOR/ETS2 pathway [
<xref rid="B274-ijms-21-00401" ref-type="bibr">274</xref>
]. Cheng et al. investigated the effect of co-administration of curcumin and phospho-sulindac in a mouse xenograft model of human lung cancer. The results were promising, with improved phospho-sulindac pharmacokinetics and higher levels of the chemotherapeutic agent and its metabolites in the xenografts. It was observed that curcumin enhances phospho-sulindac accumulation in cancer tissues through inhibition of P-gp and MRPs [
<xref rid="B275-ijms-21-00401" ref-type="bibr">275</xref>
]. Cui et al. demonstrated that administration of nanoparticles containing a pH-sensitive pro-drug transferrin-poly(ethylene glycol)-curcumin and doxorubicin exhibited higher cytotoxicity and sensitivity in breast cancer xenograft mouse model compared to the chemotherapeutic agent alone [
<xref rid="B276-ijms-21-00401" ref-type="bibr">276</xref>
]. </p>
<p>Few studies have investigated the effect of phenolic compounds for overcoming MDR in humans. According to Mahammedi et al., the combination of curcumin with docetaxel and prednisone showed a high-response rate, good tolerability and acceptability by patients with castration-resistant prostate cancer. It was shown that curcumin reverses docetaxel induced NF-κB activation [
<xref rid="B277-ijms-21-00401" ref-type="bibr">277</xref>
]. Association between curcumin and docetaxel showed beneficial effects in women with advanced and metastatic breast cancer. Curcumin/docetaxel combination demonstrated significant anti-tumor activity, decreased levels of VEGF and other angiogenic growth factors (TGF-α). Moreover, curcumin improved docetaxel bioavailability and reversed drug resistance through downregulation of P-gp expression [
<xref rid="B278-ijms-21-00401" ref-type="bibr">278</xref>
]. </p>
<p>Taken together, these results shown that phenolic compounds overcome MDR in different types of solid cancer (breast, lung, prostate, colorectal) both in vivo and in clinical studies (
<xref rid="ijms-21-00401-t003" ref-type="table">Table 3</xref>
). However, the data regarding clinical studies with polyphenols and multidrug resistance are very scarce. The mechanisms are generally the same, as previously reported for in vitro studies.</p>
</sec>
</sec>
<sec id="sec3dot2dot3-ijms-21-00401">
<title>3.2.3. Bioavailability and Toxicity of the Polyphenols</title>
<p>Although several studies have shown the beneficial effects of some plant polyphenols in overcoming multi-drug resistance in breast, colorectal, lung, prostate, most of the research was performed using only in vitro (cell lines) and in vivo (animal) models. However, data regarding clinical studies with polyphenols for overcoming chemoresistance are scarce. The extrapolation of the results from pre-clinical studies to humans is difficult and risky, keeping in mind that polyphenols bioavailability is complex and influenced by several factors: (i) chemical structure, (ii) liberation from the food/medicinal plant matrix, (iii) gastro-intestinal absorption, (iv) metabolism by gut microbiota, liver, enterocytes, (v) plasma transport, plasma concentration, (vi) distribution and elimination [
<xref rid="B40-ijms-21-00401" ref-type="bibr">40</xref>
,
<xref rid="B279-ijms-21-00401" ref-type="bibr">279</xref>
,
<xref rid="B280-ijms-21-00401" ref-type="bibr">280</xref>
,
<xref rid="B281-ijms-21-00401" ref-type="bibr">281</xref>
]. Polyphenols bioavailability is relatively low, due to low absorption, extensive biotransformation and rapid clearance from the body [
<xref rid="B281-ijms-21-00401" ref-type="bibr">281</xref>
]. Still, polyphenols metabolites (produced by gut microbiota or liver) reach higher plasma concentrations compared to their parent compounds are considered responsible for polyphenols therapeutic effects. Several polyphenols metabolites such as urolithins (ellagitannins metabolites), enterolactone and enterodiol (lignans metabolites), equol (isoflavones metabolite) have shown a chemopreventive role in breast, prostate or colorectal cancer [
<xref rid="B282-ijms-21-00401" ref-type="bibr">282</xref>
,
<xref rid="B283-ijms-21-00401" ref-type="bibr">283</xref>
]. Taken together, clinical studies are imperative in order to demonstrate the beneficial role of polyphenols in overcoming multidrug resistance in various types of cancer.</p>
<p>In spite of promising results from laboratory experiments, implementation of them into the clinical trials might represent a challenge due to higher concentrations used in those studies. Nevertheless, several clinical studies validated the efficiency of polyphenols against different types of solid tumors [
<xref rid="B284-ijms-21-00401" ref-type="bibr">284</xref>
,
<xref rid="B285-ijms-21-00401" ref-type="bibr">285</xref>
,
<xref rid="B286-ijms-21-00401" ref-type="bibr">286</xref>
]. Administration of regular cytostatic drugs is correlated with severe side effects, such as bone marrow modifications (leucopenia, thrombocytopenia, anemia), nausea, vomiting, alopecia, drug extravasation, hepatotoxicity or heart toxicity [
<xref rid="B287-ijms-21-00401" ref-type="bibr">287</xref>
,
<xref rid="B288-ijms-21-00401" ref-type="bibr">288</xref>
]. Conversely, the polyphenols toxicity is greatly reduced and the side effects could be constipation/diarrhea, dry mouth or flatulence [
<xref rid="B289-ijms-21-00401" ref-type="bibr">289</xref>
]. For example, association of curcumin (0.5, 1, 2 g) for seven days prior to FOLFOX (5-fluorouracil, oxaliplatin, folinic acid) chemotheraphy (two-weekly cycles to a maximum of 12 cycles) in patients with colorectal cancer and liver metastasis, led to several side effects. The most common side effects, which were related to curcumin use (not with FOLFOX) were constipation, dry mouth and flatulence. One patient reported severe diarrhea, attributed to curcumin. Diarrhea was treated when curcumin dosage was changed from 2 g to 1 g and the dosage change did not affect the anticancer effect of curcumin [
<xref rid="B289-ijms-21-00401" ref-type="bibr">289</xref>
].</p>
<p>As general considerations, if any of the cytotoxic effects are visible it is recommended to stop the treatment before the irreversible toxic effects occur. In addition, for better toleration of the treatment it is recommended to start the administration when the patient is in good physical condition [
<xref rid="B290-ijms-21-00401" ref-type="bibr">290</xref>
]. Several general recommendations might be taken in account to reduce toxicity of the polyphenols:</p>
<p>(i) Combinatorial treatment. Administration of more than one polyphenols or the use of polyphenols as adjuvants in chemotherapy might reduce the concentration of the polyphenols when administrated. For instance, in human colon cancer cells with P-gp overexpression the synergism between DOX and EGCG/curcumin was demonstrated. Thus, lower concentration of DOX and polyphenols are required when co-administrated compared to single drug administration [
<xref rid="B291-ijms-21-00401" ref-type="bibr">291</xref>
]. Similar synergism was seen in human colorectal cells treated with platinum-based compounds, such as oxaliplatin, cisplatin and EGCG [
<xref rid="B292-ijms-21-00401" ref-type="bibr">292</xref>
]. </p>
<p>(ii) Replacement of the natural compound with another one. In a clinical study performed in 49 patients with solid tumors (non-small cell lung cancer, head and neck cancer) the administration of capsules containing a green tea extract (GTE) (standardized in 26.9% total catechins – EGCG – 13.2%; epicatechin 2.2%; epicatechin gallate 3.3%; epigallocatechin 8.3% and 7% caffeine), at increasing dosages up to 8–10 g GTE once daily or 10–13 g distributed over three daily dosages for minimum four weeks to six months, several side effects occurred: nausea, abdominal bloating, headache, insomnia, tremor and palpitations. It was concluded that caffeine was responsible for the above-mentioned side effects. A possible solution to remedy these adverse effects would be the use of Polyphenon E (which is a decaffeinated GTE standardized in 65% EGCG), which was considered safe, when it was given to chronic lymphocytic leukemia patients (400–2000 mg orally twice a day) for one month [
<xref rid="B293-ijms-21-00401" ref-type="bibr">293</xref>
,
<xref rid="B294-ijms-21-00401" ref-type="bibr">294</xref>
]. However, Polyphenon E should be administered only with food and not after an overnight fast, due to higher EGCG plasma C
<sub>max</sub>
(seven-fold higher compared to EGCG administration with food) and high risk of hepatotoxicity [
<xref rid="B295-ijms-21-00401" ref-type="bibr">295</xref>
]. Another polyphenols, resveratrol has shown kidney toxicity in clinical trials. According to Popat and co-workers the administration of a SRT501, a micronized oral formulation with resveratrol (5 g/day for 20 days in a 21 days cycle, up to 12 cycles followed by bortezomib) in patients with relapsed or refractory multiple myeloma, led to severe side effects (renal failure, nausea, anemia etc.). Renal failure occurred within the first two cycles of SRT501 monotherapy. However, it seems that SRT501 induces kidney failure only in myeloma patients, since the same dose of SRT501 was safe in diabetic patients or stroke-like episodes syndrome [
<xref rid="B296-ijms-21-00401" ref-type="bibr">296</xref>
]. A solution to remedy renal failure in myeloma patients is the administration of a grape seed extract (rich in resveratrol but also other phenolic compounds. i.e. quercetin, proanthocyanidins), that have strong antioxidant effects and are able to protect the kidneys [
<xref rid="B297-ijms-21-00401" ref-type="bibr">297</xref>
].</p>
<p>(iii) Validation the purity of the natural compound. The administration of a green tea extract (rich in catechins, mainly epigalocatechin gallate 11.8–4509 mcg/g extract), in a dosage of 5.9 g over five days to 240 g over 120 days was responsible for hepatic toxicity, mainly acute hepatocellular injury. Still, patients fully recovered with drug cessation [
<xref rid="B298-ijms-21-00401" ref-type="bibr">298</xref>
,
<xref rid="B299-ijms-21-00401" ref-type="bibr">299</xref>
]. According to some authors the observed hepatic toxicity of green tea extracts might be the consequence of contamination with pesticides (endosulfan), which is extensively used in green tea plantations [
<xref rid="B300-ijms-21-00401" ref-type="bibr">300</xref>
].</p>
<p>(iv) Modes and route of administration. To increase specificity of polyphenols, they can be administrated as nanoparticles which have been coated with antibodies directed against molecular markers from the surface of the tumors [
<xref rid="B301-ijms-21-00401" ref-type="bibr">301</xref>
,
<xref rid="B302-ijms-21-00401" ref-type="bibr">302</xref>
]. In addition, local administration of the compound might be used whenever possible [
<xref rid="B301-ijms-21-00401" ref-type="bibr">301</xref>
].</p>
</sec>
</sec>
</sec>
<sec sec-type="conclusions" id="sec4-ijms-21-00401">
<title>4. Conclusions</title>
<p>MDR has become the most important obstacle to the success of cancer chemotherapies. It implies several mechanisms, such as increased activity of efflux pumps (MRP 1/2, P-gp, BCRP), inhibition of cell death, cancer stem cells, epigenetic mechanisms, increased DNA repair, modification of drug target, inactivation of anticancer drugs, tumor cell heterogeneity, tumor microenvironment and epithelial to mesenchymal transition. </p>
<p>The use of natural compounds could overcome MDR through various mechanisms. Several studies have been performed using flavonoid (apigenin, luteolin, quercetin, genistein, epigallocatechin gallate, etc.) and non-flavonoid compounds (lignans, gallic acid, resveratrol, curcumin, etc.). In vitro and in vivo studies have revealed that administration of polyphenols (both from dietary sources and medicinal plants) overcome MDR to chemotherapeutic agents (paclitaxel, 5-fluorouracil, docetaxel, doxorubicin, gefitinib, etc.) in different types of cancer (breast, lung, prostate and colorectal) by downregulation of efflux pumps and anti-apoptotic proteins (survivin, XIAP), downregulation of NF-κB signaling cascade, decreased stem cells progenitor formation, increased cellular uptake of chemotherapeutic agents, epigenetic mechanisms, upregulation of apoptotic factors (DIABLO, APAF1) or modulation of several signaling pathways (Sonic-Hedgehog, EZH2, HER2, ERK, JNK, PI3K/AKT, STAT3, Wnt/β-catenin, etc.) and enzymes (FAS, GSK3, MMP2/MMP9, GST, etc.). However, few clinical studies demonstrated these effects. Therefore, we hope that this review will lead to continuous research regarding the role of phenolic compounds in overcoming multidrug resistance in various types of cancer.</p>
</sec>
</body>
<back>
<notes>
<title>Author Contributions</title>
<p>T.C., M.-M.M., O.C.V., L.-C.M. writing the manuscript, preparing the figures and tables, critical revising of the manuscript; M.-M.M., T.C. conceiving the concept, drafting, editing and critical revising of the manuscript, supervising the manuscript preparation. J.S., C.G. drafting, editing and critical revising of the manuscript, supervising the manuscript preparation. All authors have read and agreed to the published version of the manuscript.</p>
</notes>
<notes>
<title>Funding</title>
<p>The work was supported by research grants from the National Research, Development and Innovation Office, Hungary (GINOP-2.3.2-15-2016-00050 and GINOP-2.3.3-15-2016-0003). </p>
</notes>
<notes notes-type="COI-statement">
<title>Conflicts of Interest</title>
<p>The authors declare no conflicts of interest. The funders had no role in the design of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, or in the decision to publish the results.</p>
</notes>
<glossary>
<title>Abbreviations</title>
<array orientation="portrait">
<tbody>
<tr>
<td align="left" valign="middle" rowspan="1" colspan="1"></td>
<td align="left" valign="middle" rowspan="1" colspan="1">upregulation</td>
</tr>
<tr>
<td align="left" valign="middle" rowspan="1" colspan="1"></td>
<td align="left" valign="middle" rowspan="1" colspan="1">downregulation</td>
</tr>
<tr>
<td align="left" valign="middle" rowspan="1" colspan="1">5-FU </td>
<td align="left" valign="middle" rowspan="1" colspan="1">5-fluorouracil</td>
</tr>
<tr>
<td align="left" valign="middle" rowspan="1" colspan="1">ABC</td>
<td align="left" valign="middle" rowspan="1" colspan="1">ATP-binding cassette transporter proteins</td>
</tr>
<tr>
<td align="left" valign="middle" rowspan="1" colspan="1">ABCB1, ABCG1</td>
<td align="left" valign="middle" rowspan="1" colspan="1">isoforms of ATP-binding cassette transporter proteins</td>
</tr>
<tr>
<td align="left" valign="middle" rowspan="1" colspan="1">ARE</td>
<td align="left" valign="middle" rowspan="1" colspan="1">antioxidant response element</td>
</tr>
<tr>
<td align="left" valign="middle" rowspan="1" colspan="1">ABT-263</td>
<td align="left" valign="middle" rowspan="1" colspan="1">small molecule that inhibits Bcl-2; 4-(4-{[2-(4-Chlorophenyl)-5,5-dimethyl-1-cyclohexen-1-yl]methyl}c-1-piperazinyl)-N-[(4-{[(2R)-4-(4-morpholinyl)-1-(phenylsulfanyl)-2-butanyl]amino}-3-[(trifluoromethyl)sulfonyl]phenyl)sulfonyl]benzamide</td>
</tr>
<tr>
<td align="left" valign="middle" rowspan="1" colspan="1">ABT-737</td>
<td align="left" valign="middle" rowspan="1" colspan="1">small molecule that inhibits Bcl-2; 4-{4-[(4′-Chloro-2-biphenylyl)methyl]-1-piperazinyl}-N-[(4-{[(2R)-4-(dimethylamino)-1-(phenylsulfanyl)-2-butanyl]amino}-3-nitrophenyl)sulfonyl]benzamide</td>
</tr>
<tr>
<td align="left" valign="middle" rowspan="1" colspan="1">AKT</td>
<td align="left" valign="middle" rowspan="1" colspan="1">protein kinase B</td>
</tr>
<tr>
<td align="left" valign="middle" rowspan="1" colspan="1">ALDH</td>
<td align="left" valign="middle" rowspan="1" colspan="1">aldehyde dehydrogenase</td>
</tr>
<tr>
<td align="left" valign="middle" rowspan="1" colspan="1">ALP</td>
<td align="left" valign="middle" rowspan="1" colspan="1">autophagy lysosomes systems</td>
</tr>
<tr>
<td align="left" valign="middle" rowspan="1" colspan="1">AMPK</td>
<td align="left" valign="middle" rowspan="1" colspan="1">AMP-activated protein kinase</td>
</tr>
<tr>
<td align="left" valign="middle" rowspan="1" colspan="1">APAF1</td>
<td align="left" valign="middle" rowspan="1" colspan="1">apoptotic protease activating factor 1</td>
</tr>
<tr>
<td align="left" valign="middle" rowspan="1" colspan="1">APR-246</td>
<td align="left" valign="middle" rowspan="1" colspan="1">drug that binds to p53 (restoring p53 function) and depletes glutathione; PRIMA-1, 2-hydroxymethyl-2-methoxymethyl-aza-bicyclo[2.2.2]octan-3-one</td>
</tr>
<tr>
<td align="left" valign="middle" rowspan="1" colspan="1">AR</td>
<td align="left" valign="middle" rowspan="1" colspan="1">androgen receptor</td>
</tr>
<tr>
<td align="left" valign="middle" rowspan="1" colspan="1">ATR</td>
<td align="left" valign="middle" rowspan="1" colspan="1">serine/threonine protein kinase</td>
</tr>
<tr>
<td align="left" valign="middle" rowspan="1" colspan="1">Axl, Tyro3</td>
<td align="left" valign="middle" rowspan="1" colspan="1">receptors for tyrosine kinase</td>
</tr>
<tr>
<td align="left" valign="middle" rowspan="1" colspan="1">BASE</td>
<td align="left" valign="middle" rowspan="1" colspan="1">base excision repair </td>
</tr>
<tr>
<td align="left" valign="middle" rowspan="1" colspan="1">Bax</td>
<td align="left" valign="middle" rowspan="1" colspan="1">Bcl-2-associated X protein/Bcl-2-like protein 4</td>
</tr>
<tr>
<td align="left" valign="middle" rowspan="1" colspan="1">Bcl-2</td>
<td align="left" valign="middle" rowspan="1" colspan="1">B cell lymphoma 2 protein</td>
</tr>
<tr>
<td align="left" valign="middle" rowspan="1" colspan="1">Bcl-XL</td>
<td align="left" valign="middle" rowspan="1" colspan="1">B cell lymphoma extra-large protein</td>
</tr>
<tr>
<td align="left" valign="middle" rowspan="1" colspan="1">BCRA1, 2</td>
<td align="left" valign="middle" rowspan="1" colspan="1">breast cancer susceptible genes</td>
</tr>
<tr>
<td align="left" valign="middle" rowspan="1" colspan="1">BCRP</td>
<td align="left" valign="middle" rowspan="1" colspan="1">breast cancer resistant protein</td>
</tr>
<tr>
<td align="left" valign="middle" rowspan="1" colspan="1">BER</td>
<td align="left" valign="middle" rowspan="1" colspan="1">base excision repair</td>
</tr>
<tr>
<td align="left" valign="middle" rowspan="1" colspan="1">BH</td>
<td align="left" valign="middle" rowspan="1" colspan="1">Bcl-2 homology domain</td>
</tr>
<tr>
<td align="left" valign="middle" rowspan="1" colspan="1">BIM</td>
<td align="left" valign="middle" rowspan="1" colspan="1">Bcl-2 like protein 11</td>
</tr>
<tr>
<td align="left" valign="middle" rowspan="1" colspan="1">BNDQ</td>
<td align="left" valign="middle" rowspan="1" colspan="1">quercetin and doxorubicin co-encapsulated biotin receptor-targeting nanoparticles</td>
</tr>
<tr>
<td align="left" valign="middle" rowspan="1" colspan="1">BPIS</td>
<td align="left" valign="middle" rowspan="1" colspan="1">bound polyphenols of inner shell from foxtail millet bran</td>
</tr>
<tr>
<td align="left" valign="middle" rowspan="1" colspan="1">BRAF</td>
<td align="left" valign="middle" rowspan="1" colspan="1">serine/threonine-protein kinase B-Raf</td>
</tr>
<tr>
<td align="left" valign="middle" rowspan="1" colspan="1">C</td>
<td align="left" valign="middle" rowspan="1" colspan="1">catechin</td>
</tr>
<tr>
<td align="left" valign="middle" rowspan="1" colspan="1">CAB</td>
<td align="left" valign="middle" rowspan="1" colspan="1">carboplatin</td>
</tr>
<tr>
<td align="left" valign="middle" rowspan="1" colspan="1">CAPE</td>
<td align="left" valign="middle" rowspan="1" colspan="1">caffeic acid phenethyl ester</td>
</tr>
<tr>
<td align="left" valign="middle" rowspan="1" colspan="1">CAR</td>
<td align="left" valign="middle" rowspan="1" colspan="1">constitutive androstane receptor</td>
</tr>
<tr>
<td align="left" valign="middle" rowspan="1" colspan="1">caspase-3, 8, 9</td>
<td align="left" valign="middle" rowspan="1" colspan="1">cysteine aspartic proteases-3, 8, 9</td>
</tr>
<tr>
<td align="left" valign="middle" rowspan="1" colspan="1">CBZ</td>
<td align="left" valign="middle" rowspan="1" colspan="1">cabazitaxel</td>
</tr>
<tr>
<td align="left" valign="middle" rowspan="1" colspan="1">CD44, 24, 133</td>
<td align="left" valign="middle" rowspan="1" colspan="1">cluster of differentiation 44, 24, 133</td>
</tr>
<tr>
<td align="left" valign="middle" rowspan="1" colspan="1">CDF</td>
<td align="left" valign="middle" rowspan="1" colspan="1">difluorinated curcumin</td>
</tr>
<tr>
<td align="left" valign="middle" rowspan="1" colspan="1">CDK 2,4,6</td>
<td align="left" valign="middle" rowspan="1" colspan="1">cyclin-dependent kinases 2,4,6</td>
</tr>
<tr>
<td align="left" valign="middle" rowspan="1" colspan="1">CDPP</td>
<td align="left" valign="middle" rowspan="1" colspan="1">cisplatin</td>
</tr>
<tr>
<td align="left" valign="middle" rowspan="1" colspan="1">CEA</td>
<td align="left" valign="middle" rowspan="1" colspan="1">carcioembryonic antigen</td>
</tr>
<tr>
<td align="left" valign="middle" rowspan="1" colspan="1">cFLIP</td>
<td align="left" valign="middle" rowspan="1" colspan="1">regulator of caspase-8 activation; cellular FLICE (FADD-like IL-1β-converting enzyme)-inhibitory protein </td>
</tr>
<tr>
<td align="left" valign="middle" rowspan="1" colspan="1">CgA</td>
<td align="left" valign="middle" rowspan="1" colspan="1">chromogranin</td>
</tr>
<tr>
<td align="left" valign="middle" rowspan="1" colspan="1">Chk1/2</td>
<td align="left" valign="middle" rowspan="1" colspan="1">Check point kinase 1/2</td>
</tr>
<tr>
<td align="left" valign="middle" rowspan="1" colspan="1">cIAP-1,2</td>
<td align="left" valign="middle" rowspan="1" colspan="1">cellular inhibitor of apoptosis protein 1,2</td>
</tr>
<tr>
<td align="left" valign="middle" rowspan="1" colspan="1">COMT</td>
<td align="left" valign="middle" rowspan="1" colspan="1">catechol-O-methyl transferase</td>
</tr>
<tr>
<td align="left" valign="middle" rowspan="1" colspan="1">COX-2</td>
<td align="left" valign="middle" rowspan="1" colspan="1">ciclo-oxygenase 2</td>
</tr>
<tr>
<td align="left" valign="middle" rowspan="1" colspan="1">CPT11</td>
<td align="left" valign="middle" rowspan="1" colspan="1">irinotecan</td>
</tr>
<tr>
<td align="left" valign="middle" rowspan="1" colspan="1">CREB-1</td>
<td align="left" valign="middle" rowspan="1" colspan="1">element binding protein-1</td>
</tr>
<tr>
<td align="left" valign="middle" rowspan="1" colspan="1">CRPC</td>
<td align="left" valign="middle" rowspan="1" colspan="1">castration-resistant prostate cancer</td>
</tr>
<tr>
<td align="left" valign="middle" rowspan="1" colspan="1">CSC</td>
<td align="left" valign="middle" rowspan="1" colspan="1">cancer stem cells</td>
</tr>
<tr>
<td align="left" valign="middle" rowspan="1" colspan="1">CXCR4</td>
<td align="left" valign="middle" rowspan="1" colspan="1">CXC chemokine receptor type 4</td>
</tr>
<tr>
<td align="left" valign="middle" rowspan="1" colspan="1">CYP1A1, CYP1B1, CYP19A1, CYP17A1</td>
<td align="left" valign="middle" rowspan="1" colspan="1">isoforms of cytochrome 450</td>
</tr>
<tr>
<td align="left" valign="middle" rowspan="1" colspan="1">CYP3A4</td>
<td align="left" valign="middle" rowspan="1" colspan="1">cytochrome P450 3A4</td>
</tr>
<tr>
<td align="left" valign="middle" rowspan="1" colspan="1">DDR</td>
<td align="left" valign="middle" rowspan="1" colspan="1">DNA damage response</td>
</tr>
<tr>
<td align="left" valign="middle" rowspan="1" colspan="1">DIABLO</td>
<td align="left" valign="middle" rowspan="1" colspan="1">direct IAP-binding protein with Low pI</td>
</tr>
<tr>
<td align="left" valign="middle" rowspan="1" colspan="1">DMBA</td>
<td align="left" valign="middle" rowspan="1" colspan="1">7,12-dimethylbenz[a] anthracene</td>
</tr>
<tr>
<td align="left" valign="middle" rowspan="1" colspan="1">DNA</td>
<td align="left" valign="middle" rowspan="1" colspan="1">deoxyribonucleic acid </td>
</tr>
<tr>
<td align="left" valign="middle" rowspan="1" colspan="1">DOC</td>
<td align="left" valign="middle" rowspan="1" colspan="1">docetaxel</td>
</tr>
<tr>
<td align="left" valign="middle" rowspan="1" colspan="1">DOX</td>
<td align="left" valign="middle" rowspan="1" colspan="1">doxorubicin (adriamycin)</td>
</tr>
<tr>
<td align="left" valign="middle" rowspan="1" colspan="1">DPPT</td>
<td align="left" valign="middle" rowspan="1" colspan="1">deoxypodophyllotoxin</td>
</tr>
<tr>
<td align="left" valign="middle" rowspan="1" colspan="1">DR4/5</td>
<td align="left" valign="middle" rowspan="1" colspan="1">pro-apoptotic death receptors</td>
</tr>
<tr>
<td align="left" valign="middle" rowspan="1" colspan="1">EC</td>
<td align="left" valign="middle" rowspan="1" colspan="1">epicatechin</td>
</tr>
<tr>
<td align="left" valign="middle" rowspan="1" colspan="1">EGC</td>
<td align="left" valign="middle" rowspan="1" colspan="1">epigallocatechin</td>
</tr>
<tr>
<td align="left" valign="middle" rowspan="1" colspan="1">EGCG</td>
<td align="left" valign="middle" rowspan="1" colspan="1">epigallocatechingallate</td>
</tr>
<tr>
<td align="left" valign="middle" rowspan="1" colspan="1">EGF</td>
<td align="left" valign="middle" rowspan="1" colspan="1">epidermal growth factor</td>
</tr>
<tr>
<td align="left" valign="middle" rowspan="1" colspan="1">EGFR</td>
<td align="left" valign="middle" rowspan="1" colspan="1">epithelial growth factor receptor</td>
</tr>
<tr>
<td align="left" valign="middle" rowspan="1" colspan="1">EGFR(T790M)</td>
<td align="left" valign="middle" rowspan="1" colspan="1">epithelial growth factor receptor with a mutation that replace threonine by methionine at position 790 </td>
</tr>
<tr>
<td align="left" valign="middle" rowspan="1" colspan="1">EGR-1</td>
<td align="left" valign="middle" rowspan="1" colspan="1">early growth response protein 1</td>
</tr>
<tr>
<td align="left" valign="middle" rowspan="1" colspan="1">EMT</td>
<td align="left" valign="middle" rowspan="1" colspan="1">epithelial-mesenchymal transition</td>
</tr>
<tr>
<td align="left" valign="middle" rowspan="1" colspan="1">ENL</td>
<td align="left" valign="middle" rowspan="1" colspan="1">enterolactone</td>
</tr>
<tr>
<td align="left" valign="middle" rowspan="1" colspan="1">ER</td>
<td align="left" valign="middle" rowspan="1" colspan="1">estrogen receptors</td>
</tr>
<tr>
<td align="left" valign="middle" rowspan="1" colspan="1">ERα/ERβ</td>
<td align="left" valign="middle" rowspan="1" colspan="1">estrogen receptor alpha/estrogen receptor beta</td>
</tr>
<tr>
<td align="left" valign="middle" rowspan="1" colspan="1">ERK 1,2</td>
<td align="left" valign="middle" rowspan="1" colspan="1">extracellular-signal regulated kinase </td>
</tr>
<tr>
<td align="left" valign="middle" rowspan="1" colspan="1">ETS2</td>
<td align="left" valign="middle" rowspan="1" colspan="1">proto-oncogene 2, transcription factor (v-ets, Avian Erythroblastosis Virus E26 Oncogene Homolog 2) </td>
</tr>
<tr>
<td align="left" valign="middle" rowspan="1" colspan="1">EZH2</td>
<td align="left" valign="middle" rowspan="1" colspan="1">enhancer of zeste homolog 2 (histone methyltransferase)</td>
</tr>
<tr>
<td align="left" valign="middle" rowspan="1" colspan="1">FASN</td>
<td align="left" valign="middle" rowspan="1" colspan="1">fatty acid synthase</td>
</tr>
<tr>
<td align="left" valign="middle" rowspan="1" colspan="1">FBAP5</td>
<td align="left" valign="middle" rowspan="1" colspan="1">fatty acid-binding protein 5</td>
</tr>
<tr>
<td align="left" valign="middle" rowspan="1" colspan="1">FGF</td>
<td align="left" valign="middle" rowspan="1" colspan="1">fibroblast growth factor</td>
</tr>
<tr>
<td align="left" valign="middle" rowspan="1" colspan="1">FOLFOX</td>
<td align="left" valign="middle" rowspan="1" colspan="1">5-fluorouracil, oxaliplatin, folinic acid</td>
</tr>
<tr>
<td align="left" valign="middle" rowspan="1" colspan="1">GF</td>
<td align="left" valign="middle" rowspan="1" colspan="1">gefitinib</td>
</tr>
<tr>
<td align="left" valign="middle" rowspan="1" colspan="1">GRP78</td>
<td align="left" valign="middle" rowspan="1" colspan="1">glucose regulated protein</td>
</tr>
<tr>
<td align="left" valign="middle" rowspan="1" colspan="1">GSH</td>
<td align="left" valign="middle" rowspan="1" colspan="1">reduced glutathione</td>
</tr>
<tr>
<td align="left" valign="middle" rowspan="1" colspan="1">GSK3</td>
<td align="left" valign="middle" rowspan="1" colspan="1">glycogen synthase kinase 3</td>
</tr>
<tr>
<td align="left" valign="middle" rowspan="1" colspan="1">GST</td>
<td align="left" valign="middle" rowspan="1" colspan="1">glutathione-S transferase</td>
</tr>
<tr>
<td align="left" valign="middle" rowspan="1" colspan="1">GPX</td>
<td align="left" valign="middle" rowspan="1" colspan="1">glutathione peroxidase</td>
</tr>
<tr>
<td align="left" valign="middle" rowspan="1" colspan="1">GTE</td>
<td align="left" valign="middle" rowspan="1" colspan="1">green tea extract</td>
</tr>
<tr>
<td align="left" valign="middle" rowspan="1" colspan="1">HER-2, 3</td>
<td align="left" valign="middle" rowspan="1" colspan="1">human epidermal growth factor 2, 3 </td>
</tr>
<tr>
<td align="left" valign="middle" rowspan="1" colspan="1">Her2/neu</td>
<td align="left" valign="middle" rowspan="1" colspan="1">receptor tyrosine-proteinkinase erbB-2</td>
</tr>
<tr>
<td align="left" valign="middle" rowspan="1" colspan="1">HGFR/MET</td>
<td align="left" valign="middle" rowspan="1" colspan="1">hepatocyte growth factor receptor</td>
</tr>
<tr>
<td align="left" valign="middle" rowspan="1" colspan="1">HIF-1α</td>
<td align="left" valign="middle" rowspan="1" colspan="1">hypoxia-inducible factor 1 alpha</td>
</tr>
<tr>
<td align="left" valign="middle" rowspan="1" colspan="1">hMLH1</td>
<td align="left" valign="middle" rowspan="1" colspan="1">mismatch repair gene of human mutL homolog 1</td>
</tr>
<tr>
<td align="left" valign="middle" rowspan="1" colspan="1">HNK</td>
<td align="left" valign="middle" rowspan="1" colspan="1">honokiol</td>
</tr>
<tr>
<td align="left" valign="middle" rowspan="1" colspan="1">HO-1</td>
<td align="left" valign="middle" rowspan="1" colspan="1">hemeoxygenase 1</td>
</tr>
<tr>
<td align="left" valign="middle" rowspan="1" colspan="1">HR</td>
<td align="left" valign="middle" rowspan="1" colspan="1">homologous recombination </td>
</tr>
<tr>
<td align="left" valign="middle" rowspan="1" colspan="1">HRas</td>
<td align="left" valign="middle" rowspan="1" colspan="1">transforming protein p21</td>
</tr>
<tr>
<td align="left" valign="middle" rowspan="1" colspan="1">IAP</td>
<td align="left" valign="middle" rowspan="1" colspan="1">inhibitors of apoptosis proteins</td>
</tr>
<tr>
<td align="left" valign="middle" rowspan="1" colspan="1">ICAM-1</td>
<td align="left" valign="middle" rowspan="1" colspan="1">intercellular adhesion molecule 1</td>
</tr>
<tr>
<td align="left" valign="middle" rowspan="1" colspan="1">IGF-1R</td>
<td align="left" valign="middle" rowspan="1" colspan="1">insulin growth factor receptor</td>
</tr>
<tr>
<td align="left" valign="middle" rowspan="1" colspan="1">IL-6, 8, 17, 18</td>
<td align="left" valign="middle" rowspan="1" colspan="1">interleukin-6, 8, 17, 18</td>
</tr>
<tr>
<td align="left" valign="middle" rowspan="1" colspan="1">i.p.</td>
<td align="left" valign="middle" rowspan="1" colspan="1">intraperitoneal administration</td>
</tr>
<tr>
<td align="left" valign="middle" rowspan="1" colspan="1">i.v</td>
<td align="left" valign="middle" rowspan="1" colspan="1">intravenous administration</td>
</tr>
<tr>
<td align="left" valign="middle" rowspan="1" colspan="1">JNK</td>
<td align="left" valign="middle" rowspan="1" colspan="1">c-Jun N-terminal kinase</td>
</tr>
<tr>
<td align="left" valign="middle" rowspan="1" colspan="1">Keap 1</td>
<td align="left" valign="middle" rowspan="1" colspan="1">kelch-like ECH-associated protein 1</td>
</tr>
<tr>
<td align="left" valign="middle" rowspan="1" colspan="1">KRAS</td>
<td align="left" valign="middle" rowspan="1" colspan="1">gene identified in Kirsten rat sarcoma</td>
</tr>
<tr>
<td align="left" valign="middle" rowspan="1" colspan="1">MAPK</td>
<td align="left" valign="middle" rowspan="1" colspan="1">mitogen activated protein kinase</td>
</tr>
<tr>
<td align="left" valign="middle" rowspan="1" colspan="1">MDM2</td>
<td align="left" valign="middle" rowspan="1" colspan="1">mouse double minute 2 homolog</td>
</tr>
<tr>
<td align="left" valign="middle" rowspan="1" colspan="1">MDR </td>
<td align="left" valign="middle" rowspan="1" colspan="1">multidrug resistance</td>
</tr>
<tr>
<td align="left" valign="middle" rowspan="1" colspan="1">Meriva</td>
<td align="left" valign="middle" rowspan="1" colspan="1">turmeric/phospholipid formulation </td>
</tr>
<tr>
<td align="left" valign="middle" rowspan="1" colspan="1">MET</td>
<td align="left" valign="middle" rowspan="1" colspan="1">tyrosine-proteinkinase</td>
</tr>
<tr>
<td align="left" valign="middle" rowspan="1" colspan="1">MLH1,2</td>
<td align="left" valign="middle" rowspan="1" colspan="1">human mutL homolog 1,2</td>
</tr>
<tr>
<td align="left" valign="middle" rowspan="1" colspan="1">MMP</td>
<td align="left" valign="middle" rowspan="1" colspan="1">mitochondrial membrane potential</td>
</tr>
<tr>
<td align="left" valign="middle" rowspan="1" colspan="1">MMP-2,9</td>
<td align="left" valign="middle" rowspan="1" colspan="1">metalloproteinases 2,9</td>
</tr>
<tr>
<td align="left" valign="middle" rowspan="1" colspan="1">MMR</td>
<td align="left" valign="middle" rowspan="1" colspan="1">mismatch repair</td>
</tr>
<tr>
<td align="left" valign="middle" rowspan="1" colspan="1">MRP1/2</td>
<td align="left" valign="middle" rowspan="1" colspan="1">multidrug resistance associated protein 1/2</td>
</tr>
<tr>
<td align="left" valign="middle" rowspan="1" colspan="1">mRNA</td>
<td align="left" valign="middle" rowspan="1" colspan="1">messenger RNA</td>
</tr>
<tr>
<td align="left" valign="middle" rowspan="1" colspan="1">miRNA</td>
<td align="left" valign="middle" rowspan="1" colspan="1">microRNA</td>
</tr>
<tr>
<td align="left" valign="middle" rowspan="1" colspan="1">miR-16, 17, 21, 200c, 17-5p, 892c</td>
<td align="left" valign="middle" rowspan="1" colspan="1">microRNA-16, 17, 21, 200c, 17-5p, 892c </td>
</tr>
<tr>
<td align="left" valign="middle" rowspan="1" colspan="1">MSH 1/2</td>
<td align="left" valign="middle" rowspan="1" colspan="1">DNA mismatch repair protein 1/2</td>
</tr>
<tr>
<td align="left" valign="middle" rowspan="1" colspan="1">mTOR</td>
<td align="left" valign="middle" rowspan="1" colspan="1">mammalian target of rapamycin</td>
</tr>
<tr>
<td align="left" valign="middle" rowspan="1" colspan="1">NAD(P)H</td>
<td align="left" valign="middle" rowspan="1" colspan="1">reduced nicotinamide adenine dinucleotide phosphate</td>
</tr>
<tr>
<td align="left" valign="middle" rowspan="1" colspan="1">NER</td>
<td align="left" valign="middle" rowspan="1" colspan="1">nucleotide excision repair</td>
</tr>
<tr>
<td align="left" valign="middle" rowspan="1" colspan="1">NF-κB</td>
<td align="left" valign="middle" rowspan="1" colspan="1">nuclear factor kappa-light-chain-enhancer of activated B cells</td>
</tr>
<tr>
<td align="left" valign="middle" rowspan="1" colspan="1">NGF</td>
<td align="left" valign="middle" rowspan="1" colspan="1">nerve growth factor</td>
</tr>
<tr>
<td align="left" valign="middle" rowspan="1" colspan="1">NHEJ</td>
<td align="left" valign="middle" rowspan="1" colspan="1">non-homologous end-joining</td>
</tr>
<tr>
<td align="left" valign="middle" rowspan="1" colspan="1">NOX</td>
<td align="left" valign="middle" rowspan="1" colspan="1">NADPH oxidases</td>
</tr>
<tr>
<td align="left" valign="middle" rowspan="1" colspan="1">NPs</td>
<td align="left" valign="middle" rowspan="1" colspan="1">nanoparticles</td>
</tr>
<tr>
<td align="left" valign="middle" rowspan="1" colspan="1">Nrf2</td>
<td align="left" valign="middle" rowspan="1" colspan="1">erythroid 2-related factor 2</td>
</tr>
<tr>
<td align="left" valign="middle" rowspan="1" colspan="1">NSCLC</td>
<td align="left" valign="middle" rowspan="1" colspan="1">non-small cell lung cancer</td>
</tr>
<tr>
<td align="left" valign="middle" rowspan="1" colspan="1">NSE</td>
<td align="left" valign="middle" rowspan="1" colspan="1">neurospecific enolase</td>
</tr>
<tr>
<td align="left" valign="middle" rowspan="1" colspan="1">OX</td>
<td align="left" valign="middle" rowspan="1" colspan="1">oxaliplatin</td>
</tr>
<tr>
<td align="left" valign="middle" rowspan="1" colspan="1">p53</td>
<td align="left" valign="middle" rowspan="1" colspan="1">tumor suppressor protein</td>
</tr>
<tr>
<td align="left" valign="middle" rowspan="1" colspan="1">P-gp (MDR1)</td>
<td align="left" valign="middle" rowspan="1" colspan="1">P-glycoprotein (multidrug resistance protein 1)</td>
</tr>
<tr>
<td align="left" valign="middle" rowspan="1" colspan="1">PI3K/AKT</td>
<td align="left" valign="middle" rowspan="1" colspan="1">phosphoinositide 3-kinase/protein kinase B</td>
</tr>
<tr>
<td align="left" valign="middle" rowspan="1" colspan="1">PKC </td>
<td align="left" valign="middle" rowspan="1" colspan="1">proteinkinase C</td>
</tr>
<tr>
<td align="left" valign="middle" rowspan="1" colspan="1">p.o.</td>
<td align="left" valign="middle" rowspan="1" colspan="1">oral administration</td>
</tr>
<tr>
<td align="left" valign="middle" rowspan="1" colspan="1">PPARβ/δ</td>
<td align="left" valign="middle" rowspan="1" colspan="1">peroxisome proliferator-activated receptor β/δ</td>
</tr>
<tr>
<td align="left" valign="middle" rowspan="1" colspan="1">PPT</td>
<td align="left" valign="middle" rowspan="1" colspan="1">podophyllotoxin</td>
</tr>
<tr>
<td align="left" valign="middle" rowspan="1" colspan="1">PS </td>
<td align="left" valign="middle" rowspan="1" colspan="1">phospho-sulindac </td>
</tr>
<tr>
<td align="left" valign="middle" rowspan="1" colspan="1">PSA</td>
<td align="left" valign="middle" rowspan="1" colspan="1">prostate serum antigen</td>
</tr>
<tr>
<td align="left" valign="middle" rowspan="1" colspan="1">PTEN</td>
<td align="left" valign="middle" rowspan="1" colspan="1">phosphatase and tensin homolog</td>
</tr>
<tr>
<td align="left" valign="middle" rowspan="1" colspan="1">PTX</td>
<td align="left" valign="middle" rowspan="1" colspan="1">paclitaxel</td>
</tr>
<tr>
<td align="left" valign="middle" rowspan="1" colspan="1">PXR</td>
<td align="left" valign="middle" rowspan="1" colspan="1">pregnane X receptor</td>
</tr>
<tr>
<td align="left" valign="middle" rowspan="1" colspan="1">RARs</td>
<td align="left" valign="middle" rowspan="1" colspan="1">retinoic acid receptors</td>
</tr>
<tr>
<td align="left" valign="middle" rowspan="1" colspan="1">RES</td>
<td align="left" valign="middle" rowspan="1" colspan="1">resveratrol</td>
</tr>
<tr>
<td align="left" valign="middle" rowspan="1" colspan="1">ROS</td>
<td align="left" valign="middle" rowspan="1" colspan="1">reactive oxygen species</td>
</tr>
<tr>
<td align="left" valign="middle" rowspan="1" colspan="1">SCC</td>
<td align="left" valign="middle" rowspan="1" colspan="1">squamous cell carcinoma</td>
</tr>
<tr>
<td align="left" valign="middle" rowspan="1" colspan="1">SChA</td>
<td align="left" valign="middle" rowspan="1" colspan="1">schizandrin A</td>
</tr>
<tr>
<td align="left" valign="middle" rowspan="1" colspan="1">SCLC</td>
<td align="left" valign="middle" rowspan="1" colspan="1">small cell lung cancer</td>
</tr>
<tr>
<td align="left" valign="middle" rowspan="1" colspan="1">SECO</td>
<td align="left" valign="middle" rowspan="1" colspan="1">secoisolariciresinol</td>
</tr>
<tr>
<td align="left" valign="middle" rowspan="1" colspan="1">Smac</td>
<td align="left" valign="middle" rowspan="1" colspan="1">second mitochondria-derived activator of caspase</td>
</tr>
<tr>
<td align="left" valign="middle" rowspan="1" colspan="1">SOD</td>
<td align="left" valign="middle" rowspan="1" colspan="1">superoxide-dismutase</td>
</tr>
<tr>
<td align="left" valign="middle" rowspan="1" colspan="1">Src</td>
<td align="left" valign="middle" rowspan="1" colspan="1">proto-oncogene tyrosine-protein kinase</td>
</tr>
<tr>
<td align="left" valign="middle" rowspan="1" colspan="1">SRT501</td>
<td align="left" valign="middle" rowspan="1" colspan="1">small molecule, a form of resveratrol designed to target sirtuin 1 protein </td>
</tr>
<tr>
<td align="left" valign="middle" rowspan="1" colspan="1">STAT3</td>
<td align="left" valign="middle" rowspan="1" colspan="1">signal transducer and activator of transcription 3</td>
</tr>
<tr>
<td align="left" valign="middle" rowspan="1" colspan="1">T-box 3</td>
<td align="left" valign="middle" rowspan="1" colspan="1">T-box transcription factor 3</td>
</tr>
<tr>
<td align="left" valign="middle" rowspan="1" colspan="1">Tf-PEG-CUR</td>
<td align="left" valign="middle" rowspan="1" colspan="1">transferrin-poly(ethylene glycol)-curcumin</td>
</tr>
<tr>
<td align="left" valign="middle" rowspan="1" colspan="1">TGF-β</td>
<td align="left" valign="middle" rowspan="1" colspan="1">transforming growth factor</td>
</tr>
<tr>
<td align="left" valign="middle" rowspan="1" colspan="1">TKI</td>
<td align="left" valign="middle" rowspan="1" colspan="1">tyrosine kinase inhibitors</td>
</tr>
<tr>
<td align="left" valign="middle" rowspan="1" colspan="1">TME</td>
<td align="left" valign="middle" rowspan="1" colspan="1">tumor microenvironment</td>
</tr>
<tr>
<td align="left" valign="middle" rowspan="1" colspan="1">TP53</td>
<td align="left" valign="middle" rowspan="1" colspan="1">gene coding tumor suppressor protein p53</td>
</tr>
<tr>
<td align="left" valign="middle" rowspan="1" colspan="1">TRAIL</td>
<td align="left" valign="middle" rowspan="1" colspan="1">TNF-related apoptosis-inducing ligand</td>
</tr>
<tr>
<td align="left" valign="middle" rowspan="1" colspan="1">UGT</td>
<td align="left" valign="middle" rowspan="1" colspan="1">uridine diphospho-glucuronosyltransferase</td>
</tr>
<tr>
<td align="left" valign="middle" rowspan="1" colspan="1">VCR</td>
<td align="left" valign="middle" rowspan="1" colspan="1">vincristine</td>
</tr>
<tr>
<td align="left" valign="middle" rowspan="1" colspan="1">VEGF</td>
<td align="left" valign="middle" rowspan="1" colspan="1">vascular endothelial growth factor</td>
</tr>
<tr>
<td align="left" valign="middle" rowspan="1" colspan="1">VEGFR2</td>
<td align="left" valign="middle" rowspan="1" colspan="1">vascular endothelial growth factor receptor 2 </td>
</tr>
<tr>
<td align="left" valign="middle" rowspan="1" colspan="1">Wnt/β-catenin</td>
<td align="left" valign="middle" rowspan="1" colspan="1">wingless-type MMTV integration site family member (MMTV, mouse mammary tumor virus)/beta-catenin signaling pathway</td>
</tr>
<tr>
<td align="left" valign="middle" rowspan="1" colspan="1">xCT</td>
<td align="left" valign="middle" rowspan="1" colspan="1">glutamate cysteine antiporter</td>
</tr>
<tr>
<td align="left" valign="middle" rowspan="1" colspan="1">XIAP</td>
<td align="left" valign="middle" rowspan="1" colspan="1">X-linked inhibitor of apoptosis protein</td>
</tr>
<tr>
<td align="left" valign="middle" rowspan="1" colspan="1">YB-1</td>
<td align="left" valign="middle" rowspan="1" colspan="1">Y-box binding protein-1</td>
</tr>
</tbody>
</array>
</glossary>
<ref-list>
<title>References</title>
<ref id="B1-ijms-21-00401">
<label>1.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Tomasetti</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>Li</surname>
<given-names>L.</given-names>
</name>
<name>
<surname>Vogelstein</surname>
<given-names>B.</given-names>
</name>
</person-group>
<article-title>Stem cell divisions, somatic mutations, cancer etiology, and cancer prevention</article-title>
<source>Science</source>
<year>2017</year>
<volume>355</volume>
<fpage>1330</fpage>
<lpage>1334</lpage>
<pub-id pub-id-type="doi">10.1126/science.aaf9011</pub-id>
<pub-id pub-id-type="pmid">28336671</pub-id>
</element-citation>
</ref>
<ref id="B2-ijms-21-00401">
<label>2.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Hanahan</surname>
<given-names>D.</given-names>
</name>
<name>
<surname>Weinberg</surname>
<given-names>R.A.</given-names>
</name>
</person-group>
<article-title>Hallmarks of cancer: The next generation</article-title>
<source>Cell</source>
<year>2011</year>
<volume>144</volume>
<fpage>646</fpage>
<lpage>674</lpage>
<pub-id pub-id-type="doi">10.1016/j.cell.2011.02.013</pub-id>
<pub-id pub-id-type="pmid">21376230</pub-id>
</element-citation>
</ref>
<ref id="B3-ijms-21-00401">
<label>3.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Ferlay</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Soerjomataram</surname>
<given-names>I.</given-names>
</name>
<name>
<surname>Dikshit</surname>
<given-names>R.</given-names>
</name>
<name>
<surname>Eser</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Mathers</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>Rebelo</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Parkin</surname>
<given-names>D.M.</given-names>
</name>
<name>
<surname>Forman</surname>
<given-names>D.</given-names>
</name>
<name>
<surname>Bray</surname>
<given-names>F.</given-names>
</name>
</person-group>
<article-title>Cancer incidence and mortality worldwide: Sources, methods and major patterns in GLOBOCAN 2012</article-title>
<source>Int. J. Cancer</source>
<year>2015</year>
<volume>136</volume>
<fpage>E359</fpage>
<lpage>E386</lpage>
<pub-id pub-id-type="doi">10.1002/ijc.29210</pub-id>
<pub-id pub-id-type="pmid">25220842</pub-id>
</element-citation>
</ref>
<ref id="B4-ijms-21-00401">
<label>4.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Torre</surname>
<given-names>L.A.</given-names>
</name>
<name>
<surname>Siegel</surname>
<given-names>R.L.</given-names>
</name>
<name>
<surname>Ward</surname>
<given-names>E.M.</given-names>
</name>
<name>
<surname>Jemal</surname>
<given-names>A.</given-names>
</name>
</person-group>
<article-title>Global cancer incidence and mortality rates and trends—An update</article-title>
<source>Cancer Epidemiol. Biomark. Prev.</source>
<year>2016</year>
<volume>25</volume>
<fpage>16</fpage>
<lpage>27</lpage>
<pub-id pub-id-type="doi">10.1158/1055-9965.EPI-15-0578</pub-id>
<pub-id pub-id-type="pmid">26667886</pub-id>
</element-citation>
</ref>
<ref id="B5-ijms-21-00401">
<label>5.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Lundqvist</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Andersson</surname>
<given-names>E.</given-names>
</name>
<name>
<surname>Ahlberg</surname>
<given-names>I.</given-names>
</name>
<name>
<surname>Nilbert</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Gerdtham</surname>
<given-names>U.</given-names>
</name>
</person-group>
<article-title>Socioeconomic inequalities in breast cancer incidence and mortality in Europe—A systematic review and meta-analysis</article-title>
<source>Eur. J. Public Health</source>
<year>2016</year>
<volume>26</volume>
<fpage>804</fpage>
<lpage>813</lpage>
<pub-id pub-id-type="doi">10.1093/eurpub/ckw070</pub-id>
<pub-id pub-id-type="pmid">27221607</pub-id>
</element-citation>
</ref>
<ref id="B6-ijms-21-00401">
<label>6.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Anderson</surname>
<given-names>K.N.</given-names>
</name>
<name>
<surname>Schwab</surname>
<given-names>R.B.</given-names>
</name>
<name>
<surname>Martinez</surname>
<given-names>M.E.</given-names>
</name>
</person-group>
<article-title>Reproductive risk factors and breast cancer subtypes: A review of the literature</article-title>
<source>Breast Cancer Res. Treat</source>
<year>2014</year>
<volume>144</volume>
<fpage>1</fpage>
<lpage>10</lpage>
<pub-id pub-id-type="doi">10.1007/s10549-014-2852-7</pub-id>
<pub-id pub-id-type="pmid">24477977</pub-id>
</element-citation>
</ref>
<ref id="B7-ijms-21-00401">
<label>7.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Banin Hirata</surname>
<given-names>B.K.</given-names>
</name>
<name>
<surname>Oda</surname>
<given-names>J.M.M.</given-names>
</name>
<name>
<surname>Losi Guembarovski</surname>
<given-names>R.</given-names>
</name>
<name>
<surname>Ariza</surname>
<given-names>C.B.</given-names>
</name>
<name>
<surname>de Oliveira</surname>
<given-names>C.E.</given-names>
</name>
<name>
<surname>Watanabe</surname>
<given-names>M.A.E.</given-names>
</name>
</person-group>
<article-title>Molecular markers for breast cancer: Prediction on tumor behavior</article-title>
<source>Dis. Markers</source>
<year>2014</year>
<pub-id pub-id-type="doi">10.1155/2014/513158</pub-id>
<pub-id pub-id-type="pmid">24591761</pub-id>
</element-citation>
</ref>
<ref id="B8-ijms-21-00401">
<label>8.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Kamińska</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Ciszewski</surname>
<given-names>T.</given-names>
</name>
<name>
<surname>Łopacka-Szatan</surname>
<given-names>K.</given-names>
</name>
<name>
<surname>Miotła</surname>
<given-names>P.</given-names>
</name>
<name>
<surname>Starosławska</surname>
<given-names>E.</given-names>
</name>
</person-group>
<article-title>Breast cancer risk factors</article-title>
<source>Prz. Menopauzalny</source>
<year>2015</year>
<volume>14</volume>
<fpage>196</fpage>
<lpage>202</lpage>
<pub-id pub-id-type="doi">10.5114/pm.2015.54346</pub-id>
<pub-id pub-id-type="pmid">26528110</pub-id>
</element-citation>
</ref>
<ref id="B9-ijms-21-00401">
<label>9.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Samavat</surname>
<given-names>H.</given-names>
</name>
<name>
<surname>Kurzer</surname>
<given-names>M.S.</given-names>
</name>
</person-group>
<article-title>Estrogen metabolism and breast cancer</article-title>
<source>Cancer Lett.</source>
<year>2015</year>
<volume>356</volume>
<fpage>231</fpage>
<lpage>243</lpage>
<pub-id pub-id-type="doi">10.1016/j.canlet.2014.04.018</pub-id>
<pub-id pub-id-type="pmid">24784887</pub-id>
</element-citation>
</ref>
<ref id="B10-ijms-21-00401">
<label>10.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Surakasula</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Nagarjunapu</surname>
<given-names>G.C.</given-names>
</name>
<name>
<surname>Raghavaiah</surname>
<given-names>K.V.</given-names>
</name>
</person-group>
<article-title>A comparative study of pre- and post-menopausal breast cancer: Risk factors, presentation, characteristics and management</article-title>
<source>J. Res. Pharm. Pr.</source>
<year>2014</year>
<volume>3</volume>
<fpage>12</fpage>
<lpage>18</lpage>
<pub-id pub-id-type="doi">10.4103/2279-042X.132704</pub-id>
</element-citation>
</ref>
<ref id="B11-ijms-21-00401">
<label>11.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Farouk</surname>
<given-names>O.</given-names>
</name>
<name>
<surname>Ebrahim</surname>
<given-names>M.A.</given-names>
</name>
<name>
<surname>Senbel</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Emarah</surname>
<given-names>Z.</given-names>
</name>
<name>
<surname>Abozeed</surname>
<given-names>W.</given-names>
</name>
<name>
<surname>Seisa</surname>
<given-names>M.O.</given-names>
</name>
<name>
<surname>Mackisack</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Jalil</surname>
<given-names>S.A.</given-names>
</name>
<name>
<surname>Abdelhady</surname>
<given-names>S.</given-names>
</name>
</person-group>
<article-title>Breast cancer characteristics in very young Egyptian women ≤ 35 years</article-title>
<source>Breast Cancer: Targets Ther.</source>
<year>2016</year>
<volume>8</volume>
<fpage>53</fpage>
<lpage>58</lpage>
<pub-id pub-id-type="doi">10.2147/BCTT.S99350</pub-id>
<pub-id pub-id-type="pmid">27103842</pub-id>
</element-citation>
</ref>
<ref id="B12-ijms-21-00401">
<label>12.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Martin</surname>
<given-names>H.L.</given-names>
</name>
<name>
<surname>Smith</surname>
<given-names>L.</given-names>
</name>
<name>
<surname>Tomlinson</surname>
<given-names>D.C.</given-names>
</name>
</person-group>
<article-title>Multidrug-resistant breast cancer: Current perspectives</article-title>
<source>Targets Ther.</source>
<year>2014</year>
<volume>6</volume>
<fpage>1</fpage>
<lpage>13</lpage>
</element-citation>
</ref>
<ref id="B13-ijms-21-00401">
<label>13.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Yersal</surname>
<given-names>O.</given-names>
</name>
<name>
<surname>Barutca</surname>
<given-names>S.</given-names>
</name>
</person-group>
<article-title>Biological subtypes of breast cancer: Prognostic and therapeutic implications</article-title>
<source>World J. Clin. Oncol.</source>
<year>2014</year>
<volume>5</volume>
<fpage>412</fpage>
<lpage>424</lpage>
<pub-id pub-id-type="doi">10.5306/wjco.v5.i3.412</pub-id>
<pub-id pub-id-type="pmid">25114856</pub-id>
</element-citation>
</ref>
<ref id="B14-ijms-21-00401">
<label>14.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Lehmann</surname>
<given-names>B.D.</given-names>
</name>
<name>
<surname>Pietenpol</surname>
<given-names>J.A.</given-names>
</name>
</person-group>
<article-title>Identification and use of biomarkers in treatment strategies for triple-negative breast cancer subtypes</article-title>
<source>J. Pathol.</source>
<year>2014</year>
<volume>232</volume>
<fpage>142</fpage>
<lpage>150</lpage>
<pub-id pub-id-type="doi">10.1002/path.4280</pub-id>
<pub-id pub-id-type="pmid">24114677</pub-id>
</element-citation>
</ref>
<ref id="B15-ijms-21-00401">
<label>15.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Welch</surname>
<given-names>H.G.</given-names>
</name>
<name>
<surname>Prorok</surname>
<given-names>P.C.</given-names>
</name>
<name>
<surname>O’Malley</surname>
<given-names>A.J.</given-names>
</name>
<name>
<surname>Kramer</surname>
<given-names>B.S.</given-names>
</name>
</person-group>
<article-title>Breast-cancer tumor size, overdiagnosis, and mammography screening effectiveness</article-title>
<source>N. Engl. J. Med.</source>
<year>2016</year>
<volume>375</volume>
<fpage>1438</fpage>
<lpage>1447</lpage>
<pub-id pub-id-type="doi">10.1056/NEJMoa1600249</pub-id>
<pub-id pub-id-type="pmid">27732805</pub-id>
</element-citation>
</ref>
<ref id="B16-ijms-21-00401">
<label>16.</label>
<element-citation publication-type="book">
<person-group person-group-type="author">
<name>
<surname>Ridge</surname>
<given-names>C.A.</given-names>
</name>
<name>
<surname>McErlean</surname>
<given-names>A.M.</given-names>
</name>
<name>
<surname>Ginsberg</surname>
<given-names>M.S.</given-names>
</name>
</person-group>
<source>Seminars in Interventional Radiology in Epidemiology of Lung Cancer</source>
<publisher-name>Thieme Medical Publishers</publisher-name>
<publisher-loc>New York, NY, USA</publisher-loc>
<year>2013</year>
<volume>30</volume>
<fpage>093</fpage>
<lpage>098</lpage>
</element-citation>
</ref>
<ref id="B17-ijms-21-00401">
<label>17.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Didkowska</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Wojciechowska</surname>
<given-names>U.</given-names>
</name>
<name>
<surname>Mańczuk</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Łobaszewski</surname>
<given-names>J.</given-names>
</name>
</person-group>
<article-title>Lung cancer epidemiology: Contemporary and future challenges worldwide</article-title>
<source>Ann. Transl. Med.</source>
<year>2016</year>
<volume>4</volume>
<fpage>150</fpage>
<pub-id pub-id-type="doi">10.21037/atm.2016.03.11</pub-id>
<pub-id pub-id-type="pmid">27195268</pub-id>
</element-citation>
</ref>
<ref id="B18-ijms-21-00401">
<label>18.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Chen</surname>
<given-names>D.</given-names>
</name>
<name>
<surname>Zhang</surname>
<given-names>L.-Q.</given-names>
</name>
<name>
<surname>Huang</surname>
<given-names>J.-F.</given-names>
</name>
<name>
<surname>Liu</surname>
<given-names>K.</given-names>
</name>
<name>
<surname>Chuai</surname>
<given-names>Z.-R.</given-names>
</name>
<name>
<surname>Yang</surname>
<given-names>Z.</given-names>
</name>
<name>
<surname>Wang</surname>
<given-names>Y.-X.</given-names>
</name>
<name>
<surname>Shi</surname>
<given-names>D.-C.</given-names>
</name>
<name>
<surname>Liu</surname>
<given-names>Q.</given-names>
</name>
<name>
<surname>Huang</surname>
<given-names>Q.</given-names>
</name>
</person-group>
<article-title>BRAF mutations in patients with non-small cell lung cancer: A systematic review and meta-analysis</article-title>
<source>PLoS ONE</source>
<year>2014</year>
<volume>9</volume>
<elocation-id>e101354</elocation-id>
<pub-id pub-id-type="doi">10.1371/journal.pone.0101354</pub-id>
<pub-id pub-id-type="pmid">24979348</pub-id>
</element-citation>
</ref>
<ref id="B19-ijms-21-00401">
<label>19.</label>
<element-citation publication-type="book">
<person-group person-group-type="author">
<name>
<surname>Gazdar</surname>
<given-names>A.F.</given-names>
</name>
<name>
<surname>Zhou</surname>
<given-names>C.</given-names>
</name>
</person-group>
<source>Lung Cancer in Never-Smokers: A Different Disease in IASLC Thoracic Oncology</source>
<person-group person-group-type="editor">
<name>
<surname>Pass</surname>
<given-names>H.I.</given-names>
</name>
<name>
<surname>Ball</surname>
<given-names>D.</given-names>
</name>
<name>
<surname>Scagliotti</surname>
<given-names>G.V.</given-names>
</name>
</person-group>
<publisher-name>Elsevier</publisher-name>
<publisher-loc>Cambridge, MA, USA</publisher-loc>
<year>2018</year>
<fpage>23</fpage>
<lpage>29</lpage>
</element-citation>
</ref>
<ref id="B20-ijms-21-00401">
<label>20.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Midha</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Dearden</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>McCormack</surname>
<given-names>R.</given-names>
</name>
</person-group>
<article-title>EGFR mutation incidence in non-small-cell lung cancer of adenocarcinoma histology: A systematic review and global map by ethnicity (mutMapII)</article-title>
<source>Am. J. Cancer Res.</source>
<year>2015</year>
<volume>5</volume>
<fpage>2892</fpage>
<lpage>2911</lpage>
<pub-id pub-id-type="pmid">26609494</pub-id>
</element-citation>
</ref>
<ref id="B21-ijms-21-00401">
<label>21.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Øines</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Helsingen</surname>
<given-names>L.M.</given-names>
</name>
<name>
<surname>Bretthauer</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Emilsson</surname>
<given-names>L.</given-names>
</name>
</person-group>
<article-title>Epidemiology and risk factors of colorectal polyps</article-title>
<source>Best Pr. Res. Clin. Gastroenterol.</source>
<year>2017</year>
<volume>31</volume>
<fpage>419</fpage>
<lpage>424</lpage>
<pub-id pub-id-type="doi">10.1016/j.bpg.2017.06.004</pub-id>
</element-citation>
</ref>
<ref id="B22-ijms-21-00401">
<label>22.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Sakai</surname>
<given-names>E.</given-names>
</name>
<name>
<surname>Nakajima</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Kaneda</surname>
<given-names>A.</given-names>
</name>
</person-group>
<article-title>Accumulation of aberrant DNA methylation during colorectal cancer development</article-title>
<source>World J. Gastroenterol.</source>
<year>2014</year>
<volume>20</volume>
<fpage>978</fpage>
<lpage>987</lpage>
<pub-id pub-id-type="doi">10.3748/wjg.v20.i4.978</pub-id>
<pub-id pub-id-type="pmid">24574770</pub-id>
</element-citation>
</ref>
<ref id="B23-ijms-21-00401">
<label>23.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Wong</surname>
<given-names>S.H.</given-names>
</name>
<name>
<surname>Kwong</surname>
<given-names>T.N.Y.</given-names>
</name>
<name>
<surname>Wu</surname>
<given-names>C.-Y.</given-names>
</name>
<name>
<surname>Yu</surname>
<given-names>J.</given-names>
</name>
</person-group>
<article-title>Clinical applications of gut microbiota in cancer biology</article-title>
<source>Semin. Cancer Biol.</source>
<year>2019</year>
<volume>55</volume>
<fpage>28</fpage>
<lpage>36</lpage>
<pub-id pub-id-type="doi">10.1016/j.semcancer.2018.05.003</pub-id>
<pub-id pub-id-type="pmid">29782923</pub-id>
</element-citation>
</ref>
<ref id="B24-ijms-21-00401">
<label>24.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Schwingshackl</surname>
<given-names>L.</given-names>
</name>
<name>
<surname>Schwedhelm</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>Hoffmann</surname>
<given-names>G.</given-names>
</name>
<name>
<surname>Knüppel</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Laure Preterre</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Iqbal</surname>
<given-names>K.</given-names>
</name>
<name>
<surname>Bechthold</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>De Henauw</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Michels</surname>
<given-names>N.</given-names>
</name>
<name>
<surname>Devleesschauwer</surname>
<given-names>B.</given-names>
</name>
</person-group>
<article-title>Food groups and risk of colorectal cancer</article-title>
<source>Int. J. Cancer</source>
<year>2018</year>
<volume>142</volume>
<fpage>1748</fpage>
<lpage>1758</lpage>
<pub-id pub-id-type="doi">10.1002/ijc.31198</pub-id>
<pub-id pub-id-type="pmid">29210053</pub-id>
</element-citation>
</ref>
<ref id="B25-ijms-21-00401">
<label>25.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Wong</surname>
<given-names>T.S.-H.</given-names>
</name>
<name>
<surname>Chay</surname>
<given-names>W.Y.</given-names>
</name>
<name>
<surname>Tan</surname>
<given-names>M.-H.</given-names>
</name>
<name>
<surname>Chow</surname>
<given-names>K.Y.</given-names>
</name>
<name>
<surname>Lim</surname>
<given-names>W.-Y.</given-names>
</name>
</person-group>
<article-title>Reproductive factors, obesity and risk of colorectal cancer in a cohort of Asian women</article-title>
<source>Cancer Epidemiol.</source>
<year>2019</year>
<volume>58</volume>
<fpage>33</fpage>
<lpage>43</lpage>
<pub-id pub-id-type="doi">10.1016/j.canep.2018.10.016</pub-id>
<pub-id pub-id-type="pmid">30448606</pub-id>
</element-citation>
</ref>
<ref id="B26-ijms-21-00401">
<label>26.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Murphy</surname>
<given-names>N.</given-names>
</name>
<name>
<surname>Ward</surname>
<given-names>H.A.</given-names>
</name>
<name>
<surname>Jenab</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Rothwell</surname>
<given-names>J.A.</given-names>
</name>
<name>
<surname>Boutron-Ruault</surname>
<given-names>M.-C.</given-names>
</name>
<name>
<surname>Carbonnel</surname>
<given-names>F.</given-names>
</name>
<name>
<surname>Kvaskoff</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Kaaks</surname>
<given-names>R.</given-names>
</name>
<name>
<surname>Kühn</surname>
<given-names>T.</given-names>
</name>
<name>
<surname>Boeing</surname>
<given-names>H.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Heterogeneity of Colorectal Cancer Risk Factors by Anatomical Subsite in 10 European Countries: A Multinational Cohort Study</article-title>
<source>Clin. Gastroenterol. Hepatol.</source>
<year>2019</year>
<volume>17</volume>
<fpage>1323</fpage>
<lpage>1331</lpage>
<pub-id pub-id-type="doi">10.1016/j.cgh.2018.07.030</pub-id>
<pub-id pub-id-type="pmid">30056182</pub-id>
</element-citation>
</ref>
<ref id="B27-ijms-21-00401">
<label>27.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Witold</surname>
<given-names>K.</given-names>
</name>
<name>
<surname>Anna</surname>
<given-names>K.</given-names>
</name>
<name>
<surname>Maciej</surname>
<given-names>T.</given-names>
</name>
<name>
<surname>Jakub</surname>
<given-names>J.</given-names>
</name>
</person-group>
<article-title>Adenomas–Genetic factors in colorectal cancer prevention</article-title>
<source>Rep. Pr. Oncol. Radiother.</source>
<year>2018</year>
<volume>23</volume>
<fpage>75</fpage>
<lpage>83</lpage>
<pub-id pub-id-type="doi">10.1016/j.rpor.2017.12.003</pub-id>
<pub-id pub-id-type="pmid">29463957</pub-id>
</element-citation>
</ref>
<ref id="B28-ijms-21-00401">
<label>28.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Tsaur</surname>
<given-names>I.</given-names>
</name>
<name>
<surname>Heidegger</surname>
<given-names>I.</given-names>
</name>
<name>
<surname>Kretschmer</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Borgmann</surname>
<given-names>H.</given-names>
</name>
<name>
<surname>Gandaglia</surname>
<given-names>G.</given-names>
</name>
<name>
<surname>Briganti</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>de Visschere</surname>
<given-names>P.</given-names>
</name>
<name>
<surname>Mathieu</surname>
<given-names>R.</given-names>
</name>
<name>
<surname>Valerio</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>van den Bergh</surname>
<given-names>R.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Aggressive variants of prostate cancer—Are we ready to apply specific treatment right now?</article-title>
<source>Cancer Treat. Rev.</source>
<year>2019</year>
<volume>75</volume>
<fpage>20</fpage>
<lpage>26</lpage>
<pub-id pub-id-type="doi">10.1016/j.ctrv.2019.03.001</pub-id>
<pub-id pub-id-type="pmid">30875581</pub-id>
</element-citation>
</ref>
<ref id="B29-ijms-21-00401">
<label>29.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Leitzmann</surname>
<given-names>M.F.</given-names>
</name>
<name>
<surname>Rohrmann</surname>
<given-names>S.</given-names>
</name>
</person-group>
<article-title>Risk factors for the onset of prostatic cancer: Age, location, and behavioral correlates</article-title>
<source>Clin. Epidemiol.</source>
<year>2012</year>
<volume>4</volume>
<fpage>1</fpage>
<lpage>11</lpage>
<pub-id pub-id-type="doi">10.2147/CLEP.S16747</pub-id>
</element-citation>
</ref>
<ref id="B30-ijms-21-00401">
<label>30.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>McAllister</surname>
<given-names>M.J.</given-names>
</name>
<name>
<surname>Underwood</surname>
<given-names>M.A.</given-names>
</name>
<name>
<surname>Leung</surname>
<given-names>H.Y.</given-names>
</name>
<name>
<surname>Edwards</surname>
<given-names>J.</given-names>
</name>
</person-group>
<article-title>A review on the interactions between the tumor microenvironment and androgen receptor signaling in prostate cancer</article-title>
<source>Transl. Res.</source>
<year>2019</year>
<volume>206</volume>
<fpage>91</fpage>
<lpage>106</lpage>
<pub-id pub-id-type="doi">10.1016/j.trsl.2018.11.004</pub-id>
<pub-id pub-id-type="pmid">30528321</pub-id>
</element-citation>
</ref>
<ref id="B31-ijms-21-00401">
<label>31.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Nguyen</surname>
<given-names>K.-S.H.</given-names>
</name>
<name>
<surname>Neal</surname>
<given-names>J.W.</given-names>
</name>
<name>
<surname>Wakelee</surname>
<given-names>H.</given-names>
</name>
</person-group>
<article-title>Review of the current targeted therapies for non-small-cell lung cancer</article-title>
<source>World J. Clin. Oncol.</source>
<year>2014</year>
<volume>5</volume>
<fpage>576</fpage>
<lpage>587</lpage>
<pub-id pub-id-type="doi">10.5306/wjco.v5.i4.576</pub-id>
<pub-id pub-id-type="pmid">25302162</pub-id>
</element-citation>
</ref>
<ref id="B32-ijms-21-00401">
<label>32.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Eid</surname>
<given-names>S.Y.</given-names>
</name>
<name>
<surname>El-Readi</surname>
<given-names>M.Z.</given-names>
</name>
<name>
<surname>Fatani</surname>
<given-names>S.H.</given-names>
</name>
<name>
<surname>Eldin</surname>
<given-names>E.E.M.N.</given-names>
</name>
<name>
<surname>Wink</surname>
<given-names>M.</given-names>
</name>
</person-group>
<article-title>Natural products modulate the multifactorial multidrug resistance of cancer</article-title>
<source>Pharm.</source>
<year>2015</year>
<volume>6</volume>
<fpage>146</fpage>
<lpage>176</lpage>
<pub-id pub-id-type="doi">10.4236/pp.2015.63017</pub-id>
</element-citation>
</ref>
<ref id="B33-ijms-21-00401">
<label>33.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Wang</surname>
<given-names>P.</given-names>
</name>
<name>
<surname>Yang</surname>
<given-names>H.L.</given-names>
</name>
<name>
<surname>Yang</surname>
<given-names>Y.J.</given-names>
</name>
<name>
<surname>Wang</surname>
<given-names>L.</given-names>
</name>
<name>
<surname>Lee</surname>
<given-names>S.C.</given-names>
</name>
</person-group>
<article-title>Overcome cancer cell drug resistance using natural products</article-title>
<source>Evid. Based Complement. Altern. Med.</source>
<year>2015</year>
<pub-id pub-id-type="doi">10.1155/2015/767136</pub-id>
<pub-id pub-id-type="pmid">26421052</pub-id>
</element-citation>
</ref>
<ref id="B34-ijms-21-00401">
<label>34.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Nabekura</surname>
<given-names>T.</given-names>
</name>
</person-group>
<article-title>Overcoming multidrug resistance in human cancer cells by natural compounds</article-title>
<source>Toxins</source>
<year>2010</year>
<volume>2</volume>
<fpage>1207</fpage>
<lpage>1224</lpage>
<pub-id pub-id-type="doi">10.3390/toxins2061207</pub-id>
<pub-id pub-id-type="pmid">22069634</pub-id>
</element-citation>
</ref>
<ref id="B35-ijms-21-00401">
<label>35.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Ye</surname>
<given-names>Q.</given-names>
</name>
<name>
<surname>Liu</surname>
<given-names>K.</given-names>
</name>
<name>
<surname>Shen</surname>
<given-names>Q.</given-names>
</name>
<name>
<surname>Li</surname>
<given-names>Q.</given-names>
</name>
<name>
<surname>Hao</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Han</surname>
<given-names>F.</given-names>
</name>
<name>
<surname>Jiang</surname>
<given-names>R.W.</given-names>
</name>
</person-group>
<article-title>Reversal of Multidrug Resistance in Cancer by Multi-Functional Flavonoids</article-title>
<source>Front. Oncol.</source>
<year>2019</year>
<volume>9</volume>
<fpage>487</fpage>
<pub-id pub-id-type="doi">10.3389/fonc.2019.00487</pub-id>
<pub-id pub-id-type="pmid">31245292</pub-id>
</element-citation>
</ref>
<ref id="B36-ijms-21-00401">
<label>36.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Kotecha</surname>
<given-names>R.</given-names>
</name>
<name>
<surname>Takami</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Espinoza</surname>
<given-names>J.L.</given-names>
</name>
</person-group>
<article-title>Dietary phytochemicals and cancer chemoprevention: A review of the clinical evidence</article-title>
<source>Oncotarget</source>
<year>2016</year>
<volume>7</volume>
<fpage>52517</fpage>
<lpage>52529</lpage>
<pub-id pub-id-type="doi">10.18632/oncotarget.9593</pub-id>
<pub-id pub-id-type="pmid">27232756</pub-id>
</element-citation>
</ref>
<ref id="B37-ijms-21-00401">
<label>37.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Tangney</surname>
<given-names>C.C.</given-names>
</name>
<name>
<surname>Rasmussen</surname>
<given-names>H.E.</given-names>
</name>
</person-group>
<article-title>Polyphenols, inflammation, and cardiovascular disease</article-title>
<source>Curr. Atheroscler. Rep.</source>
<year>2013</year>
<volume>15</volume>
<fpage>324</fpage>
<pub-id pub-id-type="doi">10.1007/s11883-013-0324-x</pub-id>
<pub-id pub-id-type="pmid">23512608</pub-id>
</element-citation>
</ref>
<ref id="B38-ijms-21-00401">
<label>38.</label>
<element-citation publication-type="book">
<person-group person-group-type="author">
<name>
<surname>Mrduljaš</surname>
<given-names>N.</given-names>
</name>
<name>
<surname>Krešić</surname>
<given-names>G.</given-names>
</name>
<name>
<surname>Bilušić</surname>
<given-names>T.</given-names>
</name>
</person-group>
<source>Polyphenols: Food Sources and Health Benefits in Functional Food-Improve Health through Adequate Food</source>
<person-group person-group-type="editor">
<name>
<surname>Hueda</surname>
<given-names>M.C.</given-names>
</name>
</person-group>
<publisher-name>IntechOpen</publisher-name>
<publisher-loc>London, UK</publisher-loc>
<year>2017</year>
<comment>Available online:
<ext-link ext-link-type="uri" xlink:href="https://www.intechopen.com/">https://www.intechopen.com/</ext-link>
</comment>
<date-in-citation content-type="access-date" iso-8601-date="2020-01-02">(accessed on 2 January 2020)</date-in-citation>
<pub-id pub-id-type="doi">10.5772/intechopen.68862</pub-id>
</element-citation>
</ref>
<ref id="B39-ijms-21-00401">
<label>39.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Estrela</surname>
<given-names>J.M.</given-names>
</name>
<name>
<surname>Mena</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Obrador</surname>
<given-names>E.</given-names>
</name>
<name>
<surname>Benlloch</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Castellano</surname>
<given-names>G.</given-names>
</name>
<name>
<surname>Salvador</surname>
<given-names>R.</given-names>
</name>
<name>
<surname>Dellinger</surname>
<given-names>R.W.</given-names>
</name>
</person-group>
<article-title>Polyphenolic Phytochemicals in Cancer Prevention and Therapy: Bioavailability versus Bioefficacy</article-title>
<source>J. Med. Chem.</source>
<year>2017</year>
<volume>60</volume>
<fpage>9413</fpage>
<lpage>9436</lpage>
<pub-id pub-id-type="doi">10.1021/acs.jmedchem.6b01026</pub-id>
<pub-id pub-id-type="pmid">28654265</pub-id>
</element-citation>
</ref>
<ref id="B40-ijms-21-00401">
<label>40.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Manach</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>Scalbert</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Morand</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>Remesy</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>Jimenez</surname>
<given-names>L.</given-names>
</name>
</person-group>
<article-title>Polyphenols: Food sources and bioavailability</article-title>
<source>Am. J. Clin. Nutr.</source>
<year>2004</year>
<volume>79</volume>
<fpage>727</fpage>
<lpage>747</lpage>
<pub-id pub-id-type="doi">10.1093/ajcn/79.5.727</pub-id>
<pub-id pub-id-type="pmid">15113710</pub-id>
</element-citation>
</ref>
<ref id="B41-ijms-21-00401">
<label>41.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Yang</surname>
<given-names>L.</given-names>
</name>
<name>
<surname>Wang</surname>
<given-names>Q.</given-names>
</name>
<name>
<surname>Li</surname>
<given-names>D.</given-names>
</name>
<name>
<surname>Zhou</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Zheng</surname>
<given-names>X.</given-names>
</name>
<name>
<surname>Sun</surname>
<given-names>H.</given-names>
</name>
<name>
<surname>Yan</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Zhang</surname>
<given-names>L.</given-names>
</name>
<name>
<surname>Lin</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Wang</surname>
<given-names>X.</given-names>
</name>
</person-group>
<article-title>Wogonin enhances antitumor activity of tumor necrosis factor-related apoptosis-inducing ligand in vivo through ROS-mediated downregulation of cFLIPL and IAP proteins</article-title>
<source>Apoptosis</source>
<year>2013</year>
<volume>18</volume>
<fpage>618</fpage>
<lpage>626</lpage>
<pub-id pub-id-type="doi">10.1007/s10495-013-0808-8</pub-id>
<pub-id pub-id-type="pmid">23371323</pub-id>
</element-citation>
</ref>
<ref id="B42-ijms-21-00401">
<label>42.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Kim</surname>
<given-names>K.</given-names>
</name>
<name>
<surname>Vance</surname>
<given-names>T.M.</given-names>
</name>
<name>
<surname>Chun</surname>
<given-names>O.K.</given-names>
</name>
</person-group>
<article-title>Estimated intake and major food sources of flavonoids among US adults: Changes between 1999–2002 and 2007–2010 in NHANES</article-title>
<source>Eur. J. Nutr.</source>
<year>2016</year>
<volume>55</volume>
<fpage>833</fpage>
<lpage>843</lpage>
<pub-id pub-id-type="doi">10.1007/s00394-015-0942-x</pub-id>
<pub-id pub-id-type="pmid">26026481</pub-id>
</element-citation>
</ref>
<ref id="B43-ijms-21-00401">
<label>43.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Wang</surname>
<given-names>Z.</given-names>
</name>
<name>
<surname>Li</surname>
<given-names>X.</given-names>
</name>
<name>
<surname>Wang</surname>
<given-names>D.</given-names>
</name>
<name>
<surname>Zou</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Qu</surname>
<given-names>X.</given-names>
</name>
<name>
<surname>He</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>Deng</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Jin</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Zhou</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Zhou</surname>
<given-names>Y.</given-names>
</name>
</person-group>
<article-title>Concurrently suppressing multidrug resistance and metastasis of breast cancer by co-delivery of paclitaxel and honokiol with pH-sensitive polymeric micelles</article-title>
<source>Acta Biomater.</source>
<year>2017</year>
<volume>62</volume>
<fpage>144</fpage>
<lpage>156</lpage>
<pub-id pub-id-type="doi">10.1016/j.actbio.2017.08.027</pub-id>
<pub-id pub-id-type="pmid">28842335</pub-id>
</element-citation>
</ref>
<ref id="B44-ijms-21-00401">
<label>44.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Roy</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Ernsting</surname>
<given-names>M.J.</given-names>
</name>
<name>
<surname>Undzys</surname>
<given-names>E.</given-names>
</name>
<name>
<surname>Li</surname>
<given-names>S.D.</given-names>
</name>
</person-group>
<article-title>A highly tumor-targeted nanoparticle of podophyllotoxin penetrated tumor core and regressed multidrug resistant tumors</article-title>
<source>Biomaterials</source>
<year>2015</year>
<volume>52</volume>
<fpage>335</fpage>
<lpage>346</lpage>
<pub-id pub-id-type="doi">10.1016/j.biomaterials.2015.02.041</pub-id>
<pub-id pub-id-type="pmid">25818440</pub-id>
</element-citation>
</ref>
<ref id="B45-ijms-21-00401">
<label>45.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Zang</surname>
<given-names>X.</given-names>
</name>
<name>
<surname>Wang</surname>
<given-names>G.</given-names>
</name>
<name>
<surname>Cai</surname>
<given-names>Q.</given-names>
</name>
<name>
<surname>Zheng</surname>
<given-names>X.</given-names>
</name>
<name>
<surname>Zhang</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Chen</surname>
<given-names>Q.</given-names>
</name>
<name>
<surname>Wu</surname>
<given-names>B.</given-names>
</name>
<name>
<surname>Zhu</surname>
<given-names>X.</given-names>
</name>
<name>
<surname>Hao</surname>
<given-names>H.</given-names>
</name>
<name>
<surname>Zhou</surname>
<given-names>F.</given-names>
</name>
</person-group>
<article-title>A Promising Microtubule Inhibitor Deoxypodophyllotoxin Exhibits Better Efficacy to Multidrug-Resistant Breast Cancer than Paclitaxel via Avoiding Efflux Transport</article-title>
<source>Drug Metab. Dispos.</source>
<year>2018</year>
<volume>46</volume>
<fpage>542</fpage>
<lpage>551</lpage>
<pub-id pub-id-type="doi">10.1124/dmd.117.079442</pub-id>
<pub-id pub-id-type="pmid">29523600</pub-id>
</element-citation>
</ref>
<ref id="B46-ijms-21-00401">
<label>46.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Molavi</surname>
<given-names>O.</given-names>
</name>
<name>
<surname>Narimani</surname>
<given-names>F.</given-names>
</name>
<name>
<surname>Asiaee</surname>
<given-names>F.</given-names>
</name>
<name>
<surname>Sharifi</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Tarhriz</surname>
<given-names>V.</given-names>
</name>
<name>
<surname>Shayanfar</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Hejazi</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Lai</surname>
<given-names>R.</given-names>
</name>
</person-group>
<article-title>Silibinin sensitizes chemo-resistant breast cancer cells to chemotherapy</article-title>
<source>Pharm. Biol.</source>
<year>2017</year>
<volume>55</volume>
<fpage>729</fpage>
<lpage>739</lpage>
<pub-id pub-id-type="doi">10.1080/13880209.2016.1270972</pub-id>
<pub-id pub-id-type="pmid">28027688</pub-id>
</element-citation>
</ref>
<ref id="B47-ijms-21-00401">
<label>47.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Di</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>De Silva</surname>
<given-names>F.</given-names>
</name>
<name>
<surname>Krol</surname>
<given-names>E.S.</given-names>
</name>
<name>
<surname>Alcorn</surname>
<given-names>J.</given-names>
</name>
</person-group>
<article-title>Flaxseed lignans enhance the cytotoxicity of chemotherapeutic agents against breast cancer cell lines MDA-MB-231 and SKBR3</article-title>
<source>Nutr. Cancer</source>
<year>2018</year>
<volume>70</volume>
<fpage>306</fpage>
<lpage>315</lpage>
<pub-id pub-id-type="doi">10.1080/01635581.2018.1421677</pub-id>
<pub-id pub-id-type="pmid">29303360</pub-id>
</element-citation>
</ref>
<ref id="B48-ijms-21-00401">
<label>48.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Kong</surname>
<given-names>D.</given-names>
</name>
<name>
<surname>Zhang</surname>
<given-names>D.</given-names>
</name>
<name>
<surname>Chu</surname>
<given-names>X.</given-names>
</name>
<name>
<surname>Wang</surname>
<given-names>J.</given-names>
</name>
</person-group>
<article-title>Schizandrin A enhances chemosensitivity of colon carcinoma cells to 5-fluorouracil through up-regulation of miR-195</article-title>
<source>Biomed. Pharm.</source>
<year>2018</year>
<volume>99</volume>
<fpage>176</fpage>
<lpage>183</lpage>
<pub-id pub-id-type="doi">10.1016/j.biopha.2018.01.035</pub-id>
<pub-id pub-id-type="pmid">29331856</pub-id>
</element-citation>
</ref>
<ref id="B49-ijms-21-00401">
<label>49.</label>
<element-citation publication-type="book">
<person-group person-group-type="author">
<name>
<surname>Lorenzo</surname>
<given-names>J.M.</given-names>
</name>
<name>
<surname>Munekata</surname>
<given-names>P.E.</given-names>
</name>
<name>
<surname>Putnik</surname>
<given-names>P.</given-names>
</name>
<name>
<surname>Kovačević</surname>
<given-names>D.B.</given-names>
</name>
<name>
<surname>Muchenje</surname>
<given-names>V.</given-names>
</name>
<name>
<surname>Barba</surname>
<given-names>F.J.</given-names>
</name>
</person-group>
<article-title>Sources, Chemistry, and Biological Potential of Ellagitannins and Ellagic Acid Derivatives</article-title>
<source>Studies in Natural Products Chemistry</source>
<person-group person-group-type="editor">
<name>
<surname>Ur-Rahman</surname>
<given-names>A.</given-names>
</name>
</person-group>
<publisher-name>Elsevier</publisher-name>
<publisher-loc>Cambridge, MA, USA</publisher-loc>
<year>2018</year>
<volume>Volume 60</volume>
<fpage>189</fpage>
<lpage>221</lpage>
</element-citation>
</ref>
<ref id="B50-ijms-21-00401">
<label>50.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Wei</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Pu</surname>
<given-names>X.</given-names>
</name>
<name>
<surname>Zhao</surname>
<given-names>L.</given-names>
</name>
</person-group>
<article-title>Preclinical studies for the combination of paclitaxel and curcumin in cancer therapy</article-title>
<source>Oncol. Rep.</source>
<year>2017</year>
<volume>37</volume>
<fpage>3159</fpage>
<lpage>3166</lpage>
<pub-id pub-id-type="doi">10.3892/or.2017.5593</pub-id>
<pub-id pub-id-type="pmid">28440434</pub-id>
</element-citation>
</ref>
<ref id="B51-ijms-21-00401">
<label>51.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Liu</surname>
<given-names>C.-M.</given-names>
</name>
<name>
<surname>Kao</surname>
<given-names>C.-L.</given-names>
</name>
<name>
<surname>Tseng</surname>
<given-names>Y.-T.</given-names>
</name>
<name>
<surname>Lo</surname>
<given-names>Y.-C.</given-names>
</name>
<name>
<surname>Chen</surname>
<given-names>C.-Y.</given-names>
</name>
</person-group>
<article-title>Ginger phytochemicals inhibit cell growth and modulate drug resistance factors in docetaxel resistant prostate cancer cell</article-title>
<source>Molcules</source>
<year>2017</year>
<volume>22</volume>
<elocation-id>1477</elocation-id>
<pub-id pub-id-type="doi">10.3390/molecules22091477</pub-id>
</element-citation>
</ref>
<ref id="B52-ijms-21-00401">
<label>52.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Harris</surname>
<given-names>A.L.</given-names>
</name>
<name>
<surname>Hochhauser</surname>
<given-names>D.</given-names>
</name>
</person-group>
<article-title>Mechanisms of multidrug resistance in cancer treatment</article-title>
<source>Acta Oncol.</source>
<year>1992</year>
<volume>31</volume>
<fpage>205</fpage>
<lpage>213</lpage>
<pub-id pub-id-type="doi">10.3109/02841869209088904</pub-id>
<pub-id pub-id-type="pmid">1352455</pub-id>
</element-citation>
</ref>
<ref id="B53-ijms-21-00401">
<label>53.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Holohan</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>Van Schaeybroeck</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Longley</surname>
<given-names>D.B.</given-names>
</name>
<name>
<surname>Johnston</surname>
<given-names>P.G.</given-names>
</name>
</person-group>
<article-title>Cancer drug resistance: An evolving paradigm</article-title>
<source>Nat. Rev. Cancer</source>
<year>2013</year>
<volume>13</volume>
<fpage>714</fpage>
<lpage>726</lpage>
<pub-id pub-id-type="doi">10.1038/nrc3599</pub-id>
<pub-id pub-id-type="pmid">24060863</pub-id>
</element-citation>
</ref>
<ref id="B54-ijms-21-00401">
<label>54.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Housman</surname>
<given-names>G.</given-names>
</name>
<name>
<surname>Byler</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Heerboth</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Lapinska</surname>
<given-names>K.</given-names>
</name>
<name>
<surname>Longacre</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Snyder</surname>
<given-names>N.</given-names>
</name>
<name>
<surname>Sarkar</surname>
<given-names>S.</given-names>
</name>
</person-group>
<article-title>Drug resistance in cancer: An overview</article-title>
<source>Cancers</source>
<year>2014</year>
<volume>6</volume>
<fpage>1769</fpage>
<lpage>1792</lpage>
<pub-id pub-id-type="doi">10.3390/cancers6031769</pub-id>
<pub-id pub-id-type="pmid">25198391</pub-id>
</element-citation>
</ref>
<ref id="B55-ijms-21-00401">
<label>55.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Zheng</surname>
<given-names>H.-C.</given-names>
</name>
</person-group>
<article-title>The molecular mechanisms of chemoresistance in cancers</article-title>
<source>Oncotarget</source>
<year>2017</year>
<volume>8</volume>
<fpage>59950</fpage>
<lpage>59964</lpage>
<pub-id pub-id-type="doi">10.18632/oncotarget.19048</pub-id>
<pub-id pub-id-type="pmid">28938696</pub-id>
</element-citation>
</ref>
<ref id="B56-ijms-21-00401">
<label>56.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Borst</surname>
<given-names>P.</given-names>
</name>
<name>
<surname>Elferink</surname>
<given-names>R.O.</given-names>
</name>
</person-group>
<article-title>Mammalian ABC transporters in health and disease</article-title>
<source>Annu. Rev. Biochem.</source>
<year>2002</year>
<volume>71</volume>
<fpage>537</fpage>
<lpage>592</lpage>
<pub-id pub-id-type="doi">10.1146/annurev.biochem.71.102301.093055</pub-id>
<pub-id pub-id-type="pmid">12045106</pub-id>
</element-citation>
</ref>
<ref id="B57-ijms-21-00401">
<label>57.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Rees</surname>
<given-names>D.C.</given-names>
</name>
<name>
<surname>Johnson</surname>
<given-names>E.</given-names>
</name>
<name>
<surname>Lewinson</surname>
<given-names>O.</given-names>
</name>
</person-group>
<article-title>ABC transporters: The power to change</article-title>
<source>Nat. Rev. Mol. Cell Biol.</source>
<year>2009</year>
<volume>10</volume>
<fpage>218</fpage>
<lpage>227</lpage>
<pub-id pub-id-type="doi">10.1038/nrm2646</pub-id>
<pub-id pub-id-type="pmid">19234479</pub-id>
</element-citation>
</ref>
<ref id="B58-ijms-21-00401">
<label>58.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Vasiliou</surname>
<given-names>V.</given-names>
</name>
<name>
<surname>Vasiliou</surname>
<given-names>K.</given-names>
</name>
<name>
<surname>Nebert</surname>
<given-names>D.W.</given-names>
</name>
</person-group>
<article-title>Human ATP-binding cassette (ABC) transporter family</article-title>
<source>Hum. Genom.</source>
<year>2009</year>
<volume>3</volume>
<fpage>281</fpage>
<lpage>290</lpage>
<pub-id pub-id-type="doi">10.1186/1479-7364-3-3-281</pub-id>
<pub-id pub-id-type="pmid">19403462</pub-id>
</element-citation>
</ref>
<ref id="B59-ijms-21-00401">
<label>59.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Gottesman</surname>
<given-names>M.M.</given-names>
</name>
<name>
<surname>Fojo</surname>
<given-names>T.</given-names>
</name>
<name>
<surname>Bates</surname>
<given-names>S.E.</given-names>
</name>
</person-group>
<article-title>Multidrug resistance in cancer: Role of ATP-dependent transporters</article-title>
<source>Nat. Rev. Cancer</source>
<year>2002</year>
<volume>2</volume>
<fpage>48</fpage>
<lpage>58</lpage>
<pub-id pub-id-type="doi">10.1038/nrc706</pub-id>
<pub-id pub-id-type="pmid">11902585</pub-id>
</element-citation>
</ref>
<ref id="B60-ijms-21-00401">
<label>60.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Dean</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Rzhetsky</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Allikmets</surname>
<given-names>R.</given-names>
</name>
</person-group>
<article-title>The human ATP-binding cassette (ABC) transporter superfamily</article-title>
<source>Genome Res.</source>
<year>2001</year>
<volume>11</volume>
<fpage>1156</fpage>
<lpage>1166</lpage>
<pub-id pub-id-type="doi">10.1101/gr.GR-1649R</pub-id>
<pub-id pub-id-type="pmid">11435397</pub-id>
</element-citation>
</ref>
<ref id="B61-ijms-21-00401">
<label>61.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Linn</surname>
<given-names>S.C.</given-names>
</name>
<name>
<surname>Giaccone</surname>
<given-names>G.</given-names>
</name>
</person-group>
<article-title>MDR1/P-glycoprotein expression in colorectal cancer</article-title>
<source>Eur. J. Cancer</source>
<year>1995</year>
<volume>31</volume>
<fpage>1291</fpage>
<lpage>1294</lpage>
<pub-id pub-id-type="doi">10.1016/0959-8049(95)00278-Q</pub-id>
</element-citation>
</ref>
<ref id="B62-ijms-21-00401">
<label>62.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Kong</surname>
<given-names>X.B.</given-names>
</name>
<name>
<surname>Yang</surname>
<given-names>Z.K.</given-names>
</name>
<name>
<surname>Liang</surname>
<given-names>L.J.</given-names>
</name>
<name>
<surname>Huang</surname>
<given-names>J.F.</given-names>
</name>
<name>
<surname>Lin</surname>
<given-names>H.L.</given-names>
</name>
</person-group>
<article-title>Overexpression of P-glycoprotein in hepatocellular carcinoma and its clinical implication</article-title>
<source>World J. Gastroenterol.</source>
<year>2000</year>
<volume>6</volume>
<fpage>134</fpage>
<lpage>135</lpage>
<pub-id pub-id-type="doi">10.3748/wjg.v6.i1.134</pub-id>
<pub-id pub-id-type="pmid">11819542</pub-id>
</element-citation>
</ref>
<ref id="B63-ijms-21-00401">
<label>63.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Clarke</surname>
<given-names>R.</given-names>
</name>
<name>
<surname>Leonessa</surname>
<given-names>F.</given-names>
</name>
<name>
<surname>Trock</surname>
<given-names>B.</given-names>
</name>
</person-group>
<article-title>Multidrug resistance/P-glycoprotein and breast cancer: Review and meta-analysis</article-title>
<source>Semin. Oncol.</source>
<year>2005</year>
<volume>32</volume>
<fpage>S9</fpage>
<lpage>S15</lpage>
<pub-id pub-id-type="doi">10.1053/j.seminoncol.2005.09.009</pub-id>
</element-citation>
</ref>
<ref id="B64-ijms-21-00401">
<label>64.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Triller</surname>
<given-names>N.</given-names>
</name>
<name>
<surname>Korosec</surname>
<given-names>P.</given-names>
</name>
<name>
<surname>Kern</surname>
<given-names>I.</given-names>
</name>
<name>
<surname>Kosnik</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Debeljak</surname>
<given-names>A.</given-names>
</name>
</person-group>
<article-title>Multidrug resistance in small cell lung cancer: Expression of P-glycoprotein, multidrug resistance protein 1 and lung resistance protein in chemo-naive patients and in relapsed disease</article-title>
<source>Lung Cancer</source>
<year>2006</year>
<volume>54</volume>
<fpage>235</fpage>
<lpage>240</lpage>
<pub-id pub-id-type="doi">10.1016/j.lungcan.2006.06.019</pub-id>
<pub-id pub-id-type="pmid">16934363</pub-id>
</element-citation>
</ref>
<ref id="B65-ijms-21-00401">
<label>65.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Sanchez</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>Mendoza</surname>
<given-names>P.</given-names>
</name>
<name>
<surname>Contreras</surname>
<given-names>H.R.</given-names>
</name>
<name>
<surname>Vergara</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>McCubrey</surname>
<given-names>J.A.</given-names>
</name>
<name>
<surname>Huidobro</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>Castellon</surname>
<given-names>E.A.</given-names>
</name>
</person-group>
<article-title>Expression of multidrug resistance proteins in prostate cancer is related with cell sensitivity to chemotherapeutic drugs</article-title>
<source>Prostate</source>
<year>2009</year>
<volume>69</volume>
<fpage>1448</fpage>
<lpage>1459</lpage>
<pub-id pub-id-type="doi">10.1002/pros.20991</pub-id>
<pub-id pub-id-type="pmid">19496068</pub-id>
</element-citation>
</ref>
<ref id="B66-ijms-21-00401">
<label>66.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Aldonza</surname>
<given-names>M.B.D.</given-names>
</name>
<name>
<surname>Hong</surname>
<given-names>J.-Y.</given-names>
</name>
<name>
<surname>Bae</surname>
<given-names>S.Y.</given-names>
</name>
<name>
<surname>Song</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Kim</surname>
<given-names>W.K.</given-names>
</name>
<name>
<surname>Oh</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Shin</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Lee</surname>
<given-names>S.H.</given-names>
</name>
<name>
<surname>Lee</surname>
<given-names>S.K.</given-names>
</name>
</person-group>
<article-title>Suppression of MAPK signaling and reversal of mTOR-dependent MDR1-associated multidrug resistance by 21α-methylmelianodiol in lung cancer cells</article-title>
<source>PLoS ONE</source>
<year>2015</year>
<volume>10</volume>
<elocation-id>e0127841</elocation-id>
<pub-id pub-id-type="doi">10.1371/journal.pone.0127841</pub-id>
<pub-id pub-id-type="pmid">26098947</pub-id>
</element-citation>
</ref>
<ref id="B67-ijms-21-00401">
<label>67.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Xu</surname>
<given-names>J.W.</given-names>
</name>
<name>
<surname>Li</surname>
<given-names>Q.Q.</given-names>
</name>
<name>
<surname>Tao</surname>
<given-names>L.L.</given-names>
</name>
<name>
<surname>Cheng</surname>
<given-names>Y.Y.</given-names>
</name>
<name>
<surname>Yu</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Chen</surname>
<given-names>Q.</given-names>
</name>
<name>
<surname>Liu</surname>
<given-names>X.P.</given-names>
</name>
<name>
<surname>Xu</surname>
<given-names>Z.D.</given-names>
</name>
</person-group>
<article-title>Involvement of EGFR in the promotion of malignant properties in multidrug resistant breast cancer cells</article-title>
<source>Int. J. Oncol.</source>
<year>2011</year>
<volume>39</volume>
<fpage>1501</fpage>
<lpage>1509</lpage>
<pub-id pub-id-type="doi">10.3892/ijo.2011.1143</pub-id>
<pub-id pub-id-type="pmid">21805028</pub-id>
</element-citation>
</ref>
<ref id="B68-ijms-21-00401">
<label>68.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Sui</surname>
<given-names>H.</given-names>
</name>
<name>
<surname>Fan</surname>
<given-names>Z.Z.</given-names>
</name>
<name>
<surname>Li</surname>
<given-names>Q.</given-names>
</name>
</person-group>
<article-title>Signal transduction pathways and transcriptional mechanisms of ABCB1/Pgp-mediated multiple drug resistance in human cancer cells</article-title>
<source>J. Int. Med. Res.</source>
<year>2012</year>
<volume>40</volume>
<fpage>426</fpage>
<lpage>435</lpage>
<pub-id pub-id-type="doi">10.1177/147323001204000204</pub-id>
<pub-id pub-id-type="pmid">22613403</pub-id>
</element-citation>
</ref>
<ref id="B69-ijms-21-00401">
<label>69.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Zhao</surname>
<given-names>B.X.</given-names>
</name>
<name>
<surname>Sun</surname>
<given-names>Y.B.</given-names>
</name>
<name>
<surname>Wang</surname>
<given-names>S.Q.</given-names>
</name>
<name>
<surname>Duan</surname>
<given-names>L.</given-names>
</name>
<name>
<surname>Huo</surname>
<given-names>Q.L.</given-names>
</name>
<name>
<surname>Ren</surname>
<given-names>F.</given-names>
</name>
<name>
<surname>Li</surname>
<given-names>G.F.</given-names>
</name>
</person-group>
<article-title>Grape seed procyanidin reversal of p-glycoprotein associated multi-drug resistance via down-regulation of NF-kappaB and MAPK/ERK mediated YB-1 activity in A2780/T cells</article-title>
<source>PLoS ONE</source>
<year>2013</year>
<volume>8</volume>
<elocation-id>e71071</elocation-id>
<pub-id pub-id-type="doi">10.1371/journal.pone.0071071</pub-id>
<pub-id pub-id-type="pmid">23967153</pub-id>
</element-citation>
</ref>
<ref id="B70-ijms-21-00401">
<label>70.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Akiyama</surname>
<given-names>K.</given-names>
</name>
<name>
<surname>Ohga</surname>
<given-names>N.</given-names>
</name>
<name>
<surname>Hida</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Kawamoto</surname>
<given-names>T.</given-names>
</name>
<name>
<surname>Sadamoto</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Ishikawa</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Maishi</surname>
<given-names>N.</given-names>
</name>
<name>
<surname>Akino</surname>
<given-names>T.</given-names>
</name>
<name>
<surname>Kondoh</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Matsuda</surname>
<given-names>A.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Tumor Endothelial Cells Acquire Drug Resistance by MDR1 Up-Regulation via VEGF Signaling in Tumor Microenvironment</article-title>
<source>Am. J. Pathol.</source>
<year>2012</year>
<volume>180</volume>
<fpage>1283</fpage>
<lpage>1293</lpage>
<pub-id pub-id-type="doi">10.1016/j.ajpath.2011.11.029</pub-id>
<pub-id pub-id-type="pmid">22245726</pub-id>
</element-citation>
</ref>
<ref id="B71-ijms-21-00401">
<label>71.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Mirzaei</surname>
<given-names>S.A.</given-names>
</name>
<name>
<surname>Dinmohammadi</surname>
<given-names>F.</given-names>
</name>
<name>
<surname>Alizadeh</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Elahian</surname>
<given-names>F.</given-names>
</name>
</person-group>
<article-title>Inflammatory pathway interactions and cancer multidrug resistance regulation</article-title>
<source>Life Sci.</source>
<year>2019</year>
<volume>235</volume>
<fpage>116825</fpage>
<pub-id pub-id-type="doi">10.1016/j.lfs.2019.116825</pub-id>
<pub-id pub-id-type="pmid">31494169</pub-id>
</element-citation>
</ref>
<ref id="B72-ijms-21-00401">
<label>72.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Kast</surname>
<given-names>H.R.</given-names>
</name>
<name>
<surname>Goodwin</surname>
<given-names>B.</given-names>
</name>
<name>
<surname>Tarr</surname>
<given-names>P.T.</given-names>
</name>
<name>
<surname>Jones</surname>
<given-names>S.A.</given-names>
</name>
<name>
<surname>Anisfeld</surname>
<given-names>A.M.</given-names>
</name>
<name>
<surname>Stoltz</surname>
<given-names>C.M.</given-names>
</name>
<name>
<surname>Tontonoz</surname>
<given-names>P.</given-names>
</name>
<name>
<surname>Kliewer</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Willson</surname>
<given-names>T.M.</given-names>
</name>
<name>
<surname>Edwards</surname>
<given-names>P.A.</given-names>
</name>
</person-group>
<article-title>Regulation of multidrug resistance-associated protein 2 (ABCC2) by the nuclear receptors pregnane X receptor, farnesoid X-activated receptor, and constitutive androstane receptor</article-title>
<source>J. Biol. Chem.</source>
<year>2002</year>
<volume>277</volume>
<fpage>2908</fpage>
<lpage>2915</lpage>
<pub-id pub-id-type="doi">10.1074/jbc.M109326200</pub-id>
<pub-id pub-id-type="pmid">11706036</pub-id>
</element-citation>
</ref>
<ref id="B73-ijms-21-00401">
<label>73.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Wang</surname>
<given-names>X.</given-names>
</name>
<name>
<surname>Sykes</surname>
<given-names>D.B.</given-names>
</name>
<name>
<surname>Miller</surname>
<given-names>D.S.</given-names>
</name>
</person-group>
<article-title>Constitutive androstane receptor-mediated up-regulation of ATP-driven xenobiotic efflux transporters at the blood-brain barrier</article-title>
<source>Mol. Pharm.</source>
<year>2010</year>
<volume>78</volume>
<fpage>376</fpage>
<lpage>383</lpage>
<pub-id pub-id-type="doi">10.1124/mol.110.063685</pub-id>
</element-citation>
</ref>
<ref id="B74-ijms-21-00401">
<label>74.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Banerjee</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Robbins</surname>
<given-names>D.</given-names>
</name>
<name>
<surname>Chen</surname>
<given-names>T.</given-names>
</name>
</person-group>
<article-title>Targeting xenobiotic receptors PXR and CAR in human diseases</article-title>
<source>Drug Discov. Today</source>
<year>2015</year>
<volume>20</volume>
<fpage>618</fpage>
<lpage>628</lpage>
<pub-id pub-id-type="doi">10.1016/j.drudis.2014.11.011</pub-id>
<pub-id pub-id-type="pmid">25463033</pub-id>
</element-citation>
</ref>
<ref id="B75-ijms-21-00401">
<label>75.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Alexa-Stratulat</surname>
<given-names>T.</given-names>
</name>
<name>
<surname>Pešić</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Gašparović</surname>
<given-names>A.Č.</given-names>
</name>
<name>
<surname>Trougakos</surname>
<given-names>I.P.</given-names>
</name>
<name>
<surname>Riganti</surname>
<given-names>C.</given-names>
</name>
</person-group>
<article-title>What sustains the multidrug resistance phenotype beyond ABC efflux transporters? Looking beyond the tip of the iceberg</article-title>
<source>Drug Resist. Updates</source>
<year>2019</year>
<volume>46</volume>
<fpage>100643</fpage>
<pub-id pub-id-type="doi">10.1016/j.drup.2019.100643</pub-id>
<pub-id pub-id-type="pmid">31493711</pub-id>
</element-citation>
</ref>
<ref id="B76-ijms-21-00401">
<label>76.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Sulova</surname>
<given-names>Z.</given-names>
</name>
<name>
<surname>Macejova</surname>
<given-names>D.</given-names>
</name>
<name>
<surname>Seres</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Sedlak</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Brtko</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Breier</surname>
<given-names>A.</given-names>
</name>
</person-group>
<article-title>Combined treatment of P-gp-positive L1210/VCR cells by verapamil and all-trans retinoic acid induces down-regulation of P-glycoprotein expression and transport activity</article-title>
<source>Toxicol. Vitr.</source>
<year>2008</year>
<volume>22</volume>
<fpage>96</fpage>
<lpage>105</lpage>
<pub-id pub-id-type="doi">10.1016/j.tiv.2007.08.011</pub-id>
<pub-id pub-id-type="pmid">17920233</pub-id>
</element-citation>
</ref>
<ref id="B77-ijms-21-00401">
<label>77.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Abd Ellah</surname>
<given-names>N.H.</given-names>
</name>
<name>
<surname>Taylor</surname>
<given-names>L.</given-names>
</name>
<name>
<surname>Ayres</surname>
<given-names>N.</given-names>
</name>
<name>
<surname>Elmahdy</surname>
<given-names>M.M.</given-names>
</name>
<name>
<surname>Fetih</surname>
<given-names>G.N.</given-names>
</name>
<name>
<surname>Jones</surname>
<given-names>H.N.</given-names>
</name>
<name>
<surname>Ibrahim</surname>
<given-names>E.A.</given-names>
</name>
<name>
<surname>Pauletti</surname>
<given-names>G.M.</given-names>
</name>
</person-group>
<article-title>NF-kappaB decoy polyplexes decrease P-glycoprotein-mediated multidrug resistance in colorectal cancer cells</article-title>
<source>Cancer Gene</source>
<year>2016</year>
<volume>23</volume>
<fpage>149</fpage>
<lpage>155</lpage>
<pub-id pub-id-type="doi">10.1038/cgt.2016.17</pub-id>
<pub-id pub-id-type="pmid">27125866</pub-id>
</element-citation>
</ref>
<ref id="B78-ijms-21-00401">
<label>78.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Bush</surname>
<given-names>J.A.</given-names>
</name>
<name>
<surname>Li</surname>
<given-names>G.</given-names>
</name>
</person-group>
<article-title>Cancer chemoresistance: The relationship between p53 and multidrug transporters</article-title>
<source>Int. J. Cancer</source>
<year>2002</year>
<volume>98</volume>
<fpage>323</fpage>
<lpage>330</lpage>
<pub-id pub-id-type="doi">10.1002/ijc.10226</pub-id>
<pub-id pub-id-type="pmid">11920581</pub-id>
</element-citation>
</ref>
<ref id="B79-ijms-21-00401">
<label>79.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Sullivan</surname>
<given-names>G.F.</given-names>
</name>
<name>
<surname>Yang</surname>
<given-names>J.M.</given-names>
</name>
<name>
<surname>Vassil</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Yang</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Bash-Babula</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Hait</surname>
<given-names>W.N.</given-names>
</name>
</person-group>
<article-title>Regulation of expression of the multidrug resistance protein MRP1 by p53 in human prostate cancer cells</article-title>
<source>J. Clin. Investig.</source>
<year>2000</year>
<volume>105</volume>
<fpage>1261</fpage>
<lpage>1267</lpage>
<pub-id pub-id-type="doi">10.1172/JCI9290</pub-id>
<pub-id pub-id-type="pmid">10792001</pub-id>
</element-citation>
</ref>
<ref id="B80-ijms-21-00401">
<label>80.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Stavrovskaya</surname>
<given-names>A.A.</given-names>
</name>
</person-group>
<article-title>Cellular mechanisms of multidrug resistance of tumor cells</article-title>
<source>Biochem. Mosc.</source>
<year>2000</year>
<volume>65</volume>
<fpage>95</fpage>
<lpage>106</lpage>
</element-citation>
</ref>
<ref id="B81-ijms-21-00401">
<label>81.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Wang</surname>
<given-names>X.K.</given-names>
</name>
<name>
<surname>Fu</surname>
<given-names>L.W.</given-names>
</name>
</person-group>
<article-title>Interaction of tyrosine kinase inhibitors with the MDR- related ABC transporter proteins</article-title>
<source>Curr. Drug Metab.</source>
<year>2010</year>
<volume>11</volume>
<fpage>618</fpage>
<lpage>628</lpage>
<pub-id pub-id-type="doi">10.2174/138920010792927316</pub-id>
<pub-id pub-id-type="pmid">20812904</pub-id>
</element-citation>
</ref>
<ref id="B82-ijms-21-00401">
<label>82.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Ambudkar</surname>
<given-names>S.V.</given-names>
</name>
<name>
<surname>Dey</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Hrycyna</surname>
<given-names>C.A.</given-names>
</name>
<name>
<surname>Ramachandra</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Pastan</surname>
<given-names>I.</given-names>
</name>
<name>
<surname>Gottesman</surname>
<given-names>M.M.</given-names>
</name>
</person-group>
<article-title>Biochemical, cellular, and pharmacological aspects of the multidrug transporter</article-title>
<source>Annu. Rev. Pharm. Toxicol.</source>
<year>1999</year>
<volume>39</volume>
<fpage>361</fpage>
<lpage>398</lpage>
<pub-id pub-id-type="doi">10.1146/annurev.pharmtox.39.1.361</pub-id>
</element-citation>
</ref>
<ref id="B83-ijms-21-00401">
<label>83.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Borst</surname>
<given-names>P.</given-names>
</name>
<name>
<surname>Evers</surname>
<given-names>R.</given-names>
</name>
<name>
<surname>Kool</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Wijnholds</surname>
<given-names>J.</given-names>
</name>
</person-group>
<article-title>A family of drug transporters: The multidrug resistance-associated proteins</article-title>
<source>J. Natl. Cancer Inst.</source>
<year>2000</year>
<volume>92</volume>
<fpage>1295</fpage>
<lpage>1302</lpage>
<pub-id pub-id-type="doi">10.1093/jnci/92.16.1295</pub-id>
<pub-id pub-id-type="pmid">10944550</pub-id>
</element-citation>
</ref>
<ref id="B84-ijms-21-00401">
<label>84.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Sharom</surname>
<given-names>F.J.</given-names>
</name>
</person-group>
<article-title>ABC multidrug transporters: Structure, function and role in chemoresistance</article-title>
<source>Pharmacogenomics</source>
<year>2008</year>
<volume>9</volume>
<fpage>105</fpage>
<lpage>127</lpage>
<pub-id pub-id-type="doi">10.2217/14622416.9.1.105</pub-id>
<pub-id pub-id-type="pmid">18154452</pub-id>
</element-citation>
</ref>
<ref id="B85-ijms-21-00401">
<label>85.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Callaghan</surname>
<given-names>R.</given-names>
</name>
<name>
<surname>Luk</surname>
<given-names>F.</given-names>
</name>
<name>
<surname>Bebawy</surname>
<given-names>M.</given-names>
</name>
</person-group>
<article-title>Inhibition of the multidrug resistance P-glycoprotein: Time for a change of strategy?</article-title>
<source>Drug Metab. Dispos.</source>
<year>2014</year>
<volume>42</volume>
<fpage>623</fpage>
<lpage>631</lpage>
<pub-id pub-id-type="doi">10.1124/dmd.113.056176</pub-id>
<pub-id pub-id-type="pmid">24492893</pub-id>
</element-citation>
</ref>
<ref id="B86-ijms-21-00401">
<label>86.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Tsuruo</surname>
<given-names>T.</given-names>
</name>
<name>
<surname>Iida</surname>
<given-names>H.</given-names>
</name>
<name>
<surname>Tsukagoshi</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Sakurai</surname>
<given-names>Y.</given-names>
</name>
</person-group>
<article-title>Increased accumulation of vincristine and adriamycin in drug-resistant P388 tumor cells following incubation with calcium antagonists and calmodulin inhibitors</article-title>
<source>Cancer Res.</source>
<year>1982</year>
<volume>42</volume>
<fpage>4730</fpage>
<lpage>4733</lpage>
<pub-id pub-id-type="pmid">7127307</pub-id>
</element-citation>
</ref>
<ref id="B87-ijms-21-00401">
<label>87.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Tsuruo</surname>
<given-names>T.</given-names>
</name>
<name>
<surname>Iida</surname>
<given-names>H.</given-names>
</name>
<name>
<surname>Nojiri</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Tsukagoshi</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Sakurai</surname>
<given-names>Y.</given-names>
</name>
</person-group>
<article-title>Circumvention of vincristine and Adriamycin resistance in vitro and in vivo by calcium influx blockers</article-title>
<source>Cancer Res.</source>
<year>1983</year>
<volume>43</volume>
<fpage>2905</fpage>
<lpage>2910</lpage>
<pub-id pub-id-type="pmid">6850602</pub-id>
</element-citation>
</ref>
<ref id="B88-ijms-21-00401">
<label>88.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Dalton</surname>
<given-names>W.S.</given-names>
</name>
<name>
<surname>Grogan</surname>
<given-names>T.M.</given-names>
</name>
<name>
<surname>Meltzer</surname>
<given-names>P.S.</given-names>
</name>
<name>
<surname>Scheper</surname>
<given-names>R.J.</given-names>
</name>
<name>
<surname>Durie</surname>
<given-names>B.G.</given-names>
</name>
<name>
<surname>Taylor</surname>
<given-names>C.W.</given-names>
</name>
<name>
<surname>Miller</surname>
<given-names>T.P.</given-names>
</name>
<name>
<surname>Salmon</surname>
<given-names>S.E.</given-names>
</name>
</person-group>
<article-title>Drug-resistance in multiple myeloma and non-Hodgkin’s lymphoma: Detection of P-glycoprotein and potential circumvention by addition of verapamil to chemotherapy</article-title>
<source>J. Clin. Oncol.</source>
<year>1989</year>
<volume>7</volume>
<fpage>415</fpage>
<lpage>424</lpage>
<pub-id pub-id-type="doi">10.1200/JCO.1989.7.4.415</pub-id>
<pub-id pub-id-type="pmid">2564428</pub-id>
</element-citation>
</ref>
<ref id="B89-ijms-21-00401">
<label>89.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>To</surname>
<given-names>K.K.</given-names>
</name>
<name>
<surname>Tomlinson</surname>
<given-names>B.</given-names>
</name>
</person-group>
<article-title>Targeting the ABCG2-overexpressing multidrug resistant (MDR) cancer cells by PPARgamma agonists</article-title>
<source>Br. J. Pharm.</source>
<year>2013</year>
<volume>170</volume>
<fpage>1137</fpage>
<lpage>1151</lpage>
<pub-id pub-id-type="doi">10.1111/bph.12367</pub-id>
<pub-id pub-id-type="pmid">24032744</pub-id>
</element-citation>
</ref>
<ref id="B90-ijms-21-00401">
<label>90.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Mansoori</surname>
<given-names>B.</given-names>
</name>
<name>
<surname>Mohammadi</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Davudian</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Shirjang</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Baradaran</surname>
<given-names>B.</given-names>
</name>
</person-group>
<article-title>The Different Mechanisms of Cancer Drug Resistance: A Brief Review</article-title>
<source>Adv. Pharm. Bull.</source>
<year>2017</year>
<volume>7</volume>
<fpage>339</fpage>
<lpage>348</lpage>
<pub-id pub-id-type="doi">10.15171/apb.2017.041</pub-id>
<pub-id pub-id-type="pmid">29071215</pub-id>
</element-citation>
</ref>
<ref id="B91-ijms-21-00401">
<label>91.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Kosuri</surname>
<given-names>K.V.</given-names>
</name>
<name>
<surname>Wu</surname>
<given-names>X.</given-names>
</name>
<name>
<surname>Wang</surname>
<given-names>L.</given-names>
</name>
<name>
<surname>Villalona-Calero</surname>
<given-names>M.A.</given-names>
</name>
<name>
<surname>Otterson</surname>
<given-names>G.A.</given-names>
</name>
</person-group>
<article-title>An epigenetic mechanism for capecitabine resistance in mesothelioma</article-title>
<source>Biochem. Biophys. Res. Commun.</source>
<year>2010</year>
<volume>391</volume>
<fpage>1465</fpage>
<lpage>1470</lpage>
<pub-id pub-id-type="doi">10.1016/j.bbrc.2009.12.095</pub-id>
<pub-id pub-id-type="pmid">20035722</pub-id>
</element-citation>
</ref>
<ref id="B92-ijms-21-00401">
<label>92.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Novotna</surname>
<given-names>R.</given-names>
</name>
<name>
<surname>Wsol</surname>
<given-names>V.</given-names>
</name>
<name>
<surname>Xiong</surname>
<given-names>G.</given-names>
</name>
<name>
<surname>Maser</surname>
<given-names>E.</given-names>
</name>
</person-group>
<article-title>Inactivation of the anticancer drugs doxorubicin and oracin by aldo-keto reductase (AKR) 1C3</article-title>
<source>Toxicol. Lett.</source>
<year>2008</year>
<volume>181</volume>
<fpage>1</fpage>
<lpage>6</lpage>
<pub-id pub-id-type="doi">10.1016/j.toxlet.2008.06.858</pub-id>
<pub-id pub-id-type="pmid">18616992</pub-id>
</element-citation>
</ref>
<ref id="B93-ijms-21-00401">
<label>93.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Assaraf</surname>
<given-names>Y.G.</given-names>
</name>
<name>
<surname>Brozovic</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Goncalves</surname>
<given-names>A.C.</given-names>
</name>
<name>
<surname>Jurkovicova</surname>
<given-names>D.</given-names>
</name>
<name>
<surname>Line</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Machuqueiro</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Saponara</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Sarmento-Ribeiro</surname>
<given-names>A.B.</given-names>
</name>
<name>
<surname>Xavier</surname>
<given-names>C.P.R.</given-names>
</name>
<name>
<surname>Vasconcelos</surname>
<given-names>M.H.</given-names>
</name>
</person-group>
<article-title>The multi-factorial nature of clinical multidrug resistance in cancer</article-title>
<source>Drug Resist. Updates</source>
<year>2019</year>
<volume>46</volume>
<fpage>100645</fpage>
<pub-id pub-id-type="doi">10.1016/j.drup.2019.100645</pub-id>
</element-citation>
</ref>
<ref id="B94-ijms-21-00401">
<label>94.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Tew</surname>
<given-names>K.D.</given-names>
</name>
</person-group>
<article-title>Glutathione-associated enzymes in anticancer drug resistance</article-title>
<source>Cancer Res.</source>
<year>1994</year>
<volume>54</volume>
<fpage>4313</fpage>
<lpage>4320</lpage>
<pub-id pub-id-type="doi">10.1158/0008-5472.CAN-15-3143</pub-id>
<pub-id pub-id-type="pmid">8044778</pub-id>
</element-citation>
</ref>
<ref id="B95-ijms-21-00401">
<label>95.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Tew</surname>
<given-names>K.D.</given-names>
</name>
</person-group>
<article-title>Glutathione-Associated enzymes in anticancer drug resistance</article-title>
<source>Cancer Res.</source>
<year>2016</year>
<volume>76</volume>
<fpage>7</fpage>
<lpage>9</lpage>
<pub-id pub-id-type="doi">10.1158/0008-5472.CAN-15-3143</pub-id>
<pub-id pub-id-type="pmid">26729789</pub-id>
</element-citation>
</ref>
<ref id="B96-ijms-21-00401">
<label>96.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Starlard-Davenport</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Lyn-Cook</surname>
<given-names>B.</given-names>
</name>
<name>
<surname>Beland</surname>
<given-names>F.A.</given-names>
</name>
<name>
<surname>Pogribny</surname>
<given-names>I.P.</given-names>
</name>
</person-group>
<article-title>The role of UDP-glucuronosyltransferases and drug transporters in breast cancer drug resistance</article-title>
<source>Exp. Oncol.</source>
<year>2010</year>
<volume>32</volume>
<fpage>172</fpage>
<lpage>180</lpage>
<pub-id pub-id-type="pmid">21403613</pub-id>
</element-citation>
</ref>
<ref id="B97-ijms-21-00401">
<label>97.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Hakem</surname>
<given-names>R.</given-names>
</name>
</person-group>
<article-title>DNA-damage repair; the good, the bad, and the ugly</article-title>
<source>EMBO J.</source>
<year>2008</year>
<volume>27</volume>
<fpage>589</fpage>
<lpage>605</lpage>
<pub-id pub-id-type="doi">10.1038/emboj.2008.15</pub-id>
<pub-id pub-id-type="pmid">18285820</pub-id>
</element-citation>
</ref>
<ref id="B98-ijms-21-00401">
<label>98.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Cheung-Ong</surname>
<given-names>K.</given-names>
</name>
<name>
<surname>Giaever</surname>
<given-names>G.</given-names>
</name>
<name>
<surname>Nislow</surname>
<given-names>C.</given-names>
</name>
</person-group>
<article-title>DNA-damaging agents in cancer chemotherapy: Serendipity and chemical biology</article-title>
<source>Chem. Biol.</source>
<year>2013</year>
<volume>20</volume>
<fpage>648</fpage>
<lpage>659</lpage>
<pub-id pub-id-type="doi">10.1016/j.chembiol.2013.04.007</pub-id>
<pub-id pub-id-type="pmid">23706631</pub-id>
</element-citation>
</ref>
<ref id="B99-ijms-21-00401">
<label>99.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Bouwman</surname>
<given-names>P.</given-names>
</name>
<name>
<surname>Jonkers</surname>
<given-names>J.</given-names>
</name>
</person-group>
<article-title>The effects of deregulated DNA damage signalling on cancer chemotherapy response and resistance</article-title>
<source>Nat. Rev. Cancer</source>
<year>2012</year>
<volume>12</volume>
<fpage>587</fpage>
<lpage>598</lpage>
<pub-id pub-id-type="doi">10.1038/nrc3342</pub-id>
<pub-id pub-id-type="pmid">22918414</pub-id>
</element-citation>
</ref>
<ref id="B100-ijms-21-00401">
<label>100.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Li</surname>
<given-names>G.M.</given-names>
</name>
</person-group>
<article-title>Mechanisms and functions of DNA mismatch repair</article-title>
<source>Cell Res.</source>
<year>2008</year>
<volume>18</volume>
<fpage>85</fpage>
<lpage>98</lpage>
<pub-id pub-id-type="doi">10.1038/cr.2007.115</pub-id>
<pub-id pub-id-type="pmid">18157157</pub-id>
</element-citation>
</ref>
<ref id="B101-ijms-21-00401">
<label>101.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Scharer</surname>
<given-names>O.D.</given-names>
</name>
</person-group>
<article-title>Nucleotide excision repair in eukaryotes</article-title>
<source>Cold Spring Harb. Perspect. Biol.</source>
<year>2013</year>
<volume>5</volume>
<fpage>a012609</fpage>
<pub-id pub-id-type="doi">10.1101/cshperspect.a012609</pub-id>
<pub-id pub-id-type="pmid">24086042</pub-id>
</element-citation>
</ref>
<ref id="B102-ijms-21-00401">
<label>102.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Krokan</surname>
<given-names>H.E.</given-names>
</name>
<name>
<surname>Bjoras</surname>
<given-names>M.</given-names>
</name>
</person-group>
<article-title>Base excision repair</article-title>
<source>Cold Spring Harb. Perspect. Biol.</source>
<year>2013</year>
<volume>5</volume>
<fpage>a012583</fpage>
<pub-id pub-id-type="doi">10.1101/cshperspect.a012583</pub-id>
<pub-id pub-id-type="pmid">23545420</pub-id>
</element-citation>
</ref>
<ref id="B103-ijms-21-00401">
<label>103.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Li</surname>
<given-names>X.</given-names>
</name>
<name>
<surname>Heyer</surname>
<given-names>W.D.</given-names>
</name>
</person-group>
<article-title>Homologous recombination in DNA repair and DNA damage tolerance</article-title>
<source>Cell Res.</source>
<year>2008</year>
<volume>18</volume>
<fpage>99</fpage>
<lpage>113</lpage>
<pub-id pub-id-type="doi">10.1038/cr.2008.1</pub-id>
<pub-id pub-id-type="pmid">18166982</pub-id>
</element-citation>
</ref>
<ref id="B104-ijms-21-00401">
<label>104.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Davis</surname>
<given-names>A.J.</given-names>
</name>
<name>
<surname>Chen</surname>
<given-names>D.J.</given-names>
</name>
</person-group>
<article-title>DNA double strand break repair via non-homologous end-joining</article-title>
<source>Transl. Cancer Res.</source>
<year>2013</year>
<volume>2</volume>
<fpage>130</fpage>
<lpage>143</lpage>
<pub-id pub-id-type="pmid">24000320</pub-id>
</element-citation>
</ref>
<ref id="B105-ijms-21-00401">
<label>105.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Slyskova</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Sabatella</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Ribeiro-Silva</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>Stok</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>Theil</surname>
<given-names>A.F.</given-names>
</name>
<name>
<surname>Vermeulen</surname>
<given-names>W.</given-names>
</name>
<name>
<surname>Lans</surname>
<given-names>H.</given-names>
</name>
</person-group>
<article-title>Base and nucleotide excision repair facilitate resolution of platinum drugs-induced transcription blockage</article-title>
<source>Nucleic Acids Res.</source>
<year>2018</year>
<volume>46</volume>
<fpage>9537</fpage>
<lpage>9549</lpage>
<pub-id pub-id-type="doi">10.1093/nar/gky764</pub-id>
<pub-id pub-id-type="pmid">30137419</pub-id>
</element-citation>
</ref>
<ref id="B106-ijms-21-00401">
<label>106.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Jover</surname>
<given-names>R.</given-names>
</name>
<name>
<surname>Zapater</surname>
<given-names>P.</given-names>
</name>
<name>
<surname>Castells</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Llor</surname>
<given-names>X.</given-names>
</name>
<name>
<surname>Andreu</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Cubiella</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Balaguer</surname>
<given-names>F.</given-names>
</name>
<name>
<surname>Sempere</surname>
<given-names>L.</given-names>
</name>
<name>
<surname>Xicola</surname>
<given-names>R.M.</given-names>
</name>
<name>
<surname>Bujanda</surname>
<given-names>L.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>The efficacy of adjuvant chemotherapy with 5-fluorouracil in colorectal cancer depends on the mismatch repair status</article-title>
<source>Eur. J. Cancer</source>
<year>2009</year>
<volume>45</volume>
<fpage>365</fpage>
<lpage>373</lpage>
<pub-id pub-id-type="doi">10.1016/j.ejca.2008.07.016</pub-id>
<pub-id pub-id-type="pmid">18722765</pub-id>
</element-citation>
</ref>
<ref id="B107-ijms-21-00401">
<label>107.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Lynch</surname>
<given-names>T.J.</given-names>
</name>
<name>
<surname>Bell</surname>
<given-names>D.W.</given-names>
</name>
<name>
<surname>Sordella</surname>
<given-names>R.</given-names>
</name>
<name>
<surname>Gurubhagavatula</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Okimoto</surname>
<given-names>R.A.</given-names>
</name>
<name>
<surname>Brannigan</surname>
<given-names>B.W.</given-names>
</name>
<name>
<surname>Harris</surname>
<given-names>P.L.</given-names>
</name>
<name>
<surname>Haserlat</surname>
<given-names>S.M.</given-names>
</name>
<name>
<surname>Supko</surname>
<given-names>J.G.</given-names>
</name>
<name>
<surname>Haluska</surname>
<given-names>F.G.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Activating mutations in the epidermal growth factor receptor underlying responsiveness of non-small-cell lung cancer to gefitinib</article-title>
<source>N. Engl. J. Med.</source>
<year>2004</year>
<volume>350</volume>
<fpage>2129</fpage>
<lpage>2139</lpage>
<pub-id pub-id-type="doi">10.1056/NEJMoa040938</pub-id>
<pub-id pub-id-type="pmid">15118073</pub-id>
</element-citation>
</ref>
<ref id="B108-ijms-21-00401">
<label>108.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Kobayashi</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Boggon</surname>
<given-names>T.J.</given-names>
</name>
<name>
<surname>Dayaram</surname>
<given-names>T.</given-names>
</name>
<name>
<surname>Janne</surname>
<given-names>P.A.</given-names>
</name>
<name>
<surname>Kocher</surname>
<given-names>O.</given-names>
</name>
<name>
<surname>Meyerson</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Johnson</surname>
<given-names>B.E.</given-names>
</name>
<name>
<surname>Eck</surname>
<given-names>M.J.</given-names>
</name>
<name>
<surname>Tenen</surname>
<given-names>D.G.</given-names>
</name>
<name>
<surname>Halmos</surname>
<given-names>B.</given-names>
</name>
</person-group>
<article-title>EGFR mutation and resistance of non-small-cell lung cancer to gefitinib</article-title>
<source>N. Engl. J. Med.</source>
<year>2005</year>
<volume>352</volume>
<fpage>786</fpage>
<lpage>792</lpage>
<pub-id pub-id-type="doi">10.1056/NEJMoa044238</pub-id>
<pub-id pub-id-type="pmid">15728811</pub-id>
</element-citation>
</ref>
<ref id="B109-ijms-21-00401">
<label>109.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>O’Hare</surname>
<given-names>T.</given-names>
</name>
<name>
<surname>Eide</surname>
<given-names>C.A.</given-names>
</name>
<name>
<surname>Deininger</surname>
<given-names>M.W.</given-names>
</name>
</person-group>
<article-title>Bcr-Abl kinase domain mutations, drug resistance, and the road to a cure for chronic myeloid leukemia</article-title>
<source>Blood</source>
<year>2007</year>
<volume>110</volume>
<fpage>2242</fpage>
<lpage>2249</lpage>
<pub-id pub-id-type="doi">10.1182/blood-2007-03-066936</pub-id>
<pub-id pub-id-type="pmid">17496200</pub-id>
</element-citation>
</ref>
<ref id="B110-ijms-21-00401">
<label>110.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Hengartner</surname>
<given-names>M.O.</given-names>
</name>
</person-group>
<article-title>The biochemistry of apoptosis</article-title>
<source>Nature</source>
<year>2000</year>
<volume>407</volume>
<fpage>770</fpage>
<lpage>776</lpage>
<pub-id pub-id-type="doi">10.1038/35037710</pub-id>
<pub-id pub-id-type="pmid">11048727</pub-id>
</element-citation>
</ref>
<ref id="B111-ijms-21-00401">
<label>111.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Elmore</surname>
<given-names>S.</given-names>
</name>
</person-group>
<article-title>Apoptosis: A review of programmed cell death</article-title>
<source>Toxicol. Pathol.</source>
<year>2007</year>
<volume>35</volume>
<fpage>495</fpage>
<lpage>516</lpage>
<pub-id pub-id-type="doi">10.1080/01926230701320337</pub-id>
<pub-id pub-id-type="pmid">17562483</pub-id>
</element-citation>
</ref>
<ref id="B112-ijms-21-00401">
<label>112.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Singh</surname>
<given-names>R.</given-names>
</name>
<name>
<surname>Letai</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Sarosiek</surname>
<given-names>K.</given-names>
</name>
</person-group>
<article-title>Regulation of apoptosis in health and disease: The balancing act of BCL-2 family proteins</article-title>
<source>Nat. Rev. Mol. Cell Biol.</source>
<year>2019</year>
<volume>20</volume>
<fpage>175</fpage>
<lpage>193</lpage>
<pub-id pub-id-type="doi">10.1038/s41580-018-0089-8</pub-id>
<pub-id pub-id-type="pmid">30655609</pub-id>
</element-citation>
</ref>
<ref id="B113-ijms-21-00401">
<label>113.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Tian</surname>
<given-names>Z.</given-names>
</name>
<name>
<surname>Tang</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Yang</surname>
<given-names>Q.</given-names>
</name>
<name>
<surname>Li</surname>
<given-names>X.</given-names>
</name>
<name>
<surname>Zhu</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Wu</surname>
<given-names>G.</given-names>
</name>
</person-group>
<article-title>Atypical ubiquitin-binding protein SHARPIN promotes breast cancer progression</article-title>
<source>Biomed. Pharm.</source>
<year>2019</year>
<volume>119</volume>
<fpage>109414</fpage>
<pub-id pub-id-type="doi">10.1016/j.biopha.2019.109414</pub-id>
</element-citation>
</ref>
<ref id="B114-ijms-21-00401">
<label>114.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Baguley</surname>
<given-names>B.C.</given-names>
</name>
</person-group>
<article-title>Multiple drug resistance mechanisms in cancer</article-title>
<source>Mol. Biotechnol.</source>
<year>2010</year>
<volume>46</volume>
<fpage>308</fpage>
<lpage>316</lpage>
<pub-id pub-id-type="doi">10.1007/s12033-010-9321-2</pub-id>
<pub-id pub-id-type="pmid">20717753</pub-id>
</element-citation>
</ref>
<ref id="B115-ijms-21-00401">
<label>115.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Longley</surname>
<given-names>D.</given-names>
</name>
<name>
<surname>Johnston</surname>
<given-names>P.</given-names>
</name>
</person-group>
<article-title>Molecular mechanisms of drug resistance</article-title>
<source>J. Pathol.</source>
<year>2005</year>
<volume>205</volume>
<fpage>275</fpage>
<lpage>292</lpage>
<pub-id pub-id-type="doi">10.1002/path.1706</pub-id>
<pub-id pub-id-type="pmid">15641020</pub-id>
</element-citation>
</ref>
<ref id="B116-ijms-21-00401">
<label>116.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Bruyere</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>Meijer</surname>
<given-names>L.</given-names>
</name>
</person-group>
<article-title>Targeting cyclin-dependent kinases in anti-neoplastic therapy</article-title>
<source>Curr. Opin. Cell Biol.</source>
<year>2013</year>
<volume>25</volume>
<fpage>772</fpage>
<lpage>779</lpage>
<pub-id pub-id-type="doi">10.1016/j.ceb.2013.08.004</pub-id>
<pub-id pub-id-type="pmid">24011867</pub-id>
</element-citation>
</ref>
<ref id="B117-ijms-21-00401">
<label>117.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Mancinelli</surname>
<given-names>R.</given-names>
</name>
<name>
<surname>Carpino</surname>
<given-names>G.</given-names>
</name>
<name>
<surname>Petrungaro</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Mammola</surname>
<given-names>C.L.</given-names>
</name>
<name>
<surname>Tomaipitinca</surname>
<given-names>L.</given-names>
</name>
<name>
<surname>Filippini</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Facchiano</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Ziparo</surname>
<given-names>E.</given-names>
</name>
<name>
<surname>Giampietri</surname>
<given-names>C.</given-names>
</name>
</person-group>
<article-title>Multifaceted Roles of GSK-3 in Cancer and Autophagy-Related Diseases</article-title>
<source>Oxid Med. Cell Longev.</source>
<year>2017</year>
<pub-id pub-id-type="doi">10.1155/2017/4629495</pub-id>
</element-citation>
</ref>
<ref id="B118-ijms-21-00401">
<label>118.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Wangpaichitr</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Wu</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>You</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Kuo</surname>
<given-names>M.T.</given-names>
</name>
<name>
<surname>Feun</surname>
<given-names>L.</given-names>
</name>
<name>
<surname>Lampidis</surname>
<given-names>T.</given-names>
</name>
<name>
<surname>Savaraj</surname>
<given-names>N.</given-names>
</name>
</person-group>
<article-title>Inhibition of mTOR restores cisplatin sensitivity through down-regulation of growth and anti-apoptotic proteins</article-title>
<source>Eur. J. Pharm.</source>
<year>2008</year>
<volume>591</volume>
<fpage>124</fpage>
<lpage>127</lpage>
<pub-id pub-id-type="doi">10.1016/j.ejphar.2008.06.028</pub-id>
</element-citation>
</ref>
<ref id="B119-ijms-21-00401">
<label>119.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Sewify</surname>
<given-names>E.M.</given-names>
</name>
<name>
<surname>Afifi</surname>
<given-names>O.A.</given-names>
</name>
<name>
<surname>Mosad</surname>
<given-names>E.</given-names>
</name>
<name>
<surname>Zaki</surname>
<given-names>A.H.</given-names>
</name>
<name>
<surname>El Gammal</surname>
<given-names>S.A.</given-names>
</name>
</person-group>
<article-title>Cyclin D1 amplification in multiple myeloma is associated with multidrug resistance expression</article-title>
<source>Clin. Lymphoma Myeloma Leuk.</source>
<year>2014</year>
<volume>14</volume>
<fpage>215</fpage>
<lpage>222</lpage>
<pub-id pub-id-type="doi">10.1016/j.clml.2013.07.008</pub-id>
<pub-id pub-id-type="pmid">24468132</pub-id>
</element-citation>
</ref>
<ref id="B120-ijms-21-00401">
<label>120.</label>
<element-citation publication-type="book">
<person-group person-group-type="author">
<name>
<surname>Gillet</surname>
<given-names>J.P.</given-names>
</name>
<name>
<surname>Gottesman</surname>
<given-names>M.M.</given-names>
</name>
</person-group>
<article-title>Mechanisms of Multidrug Resistance in Cancer</article-title>
<source>Multi-Drug Resistance in Cancer (Methods in Molecular Biology)</source>
<person-group person-group-type="editor">
<name>
<surname>Zhou</surname>
<given-names>J.</given-names>
</name>
</person-group>
<publisher-name>Springer</publisher-name>
<publisher-loc>New York, NY, USA</publisher-loc>
<year>2010</year>
<volume>Volume 596</volume>
<fpage>47</fpage>
<lpage>76</lpage>
</element-citation>
</ref>
<ref id="B121-ijms-21-00401">
<label>121.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>O’Brien</surname>
<given-names>S.M.</given-names>
</name>
<name>
<surname>Cunningham</surname>
<given-names>C.C.</given-names>
</name>
<name>
<surname>Golenkov</surname>
<given-names>A.K.</given-names>
</name>
<name>
<surname>Turkina</surname>
<given-names>A.G.</given-names>
</name>
<name>
<surname>Novick</surname>
<given-names>S.C.</given-names>
</name>
<name>
<surname>Rai</surname>
<given-names>K.R.</given-names>
</name>
</person-group>
<article-title>Phase I to II multicenter study of oblimersen sodium, a Bcl-2 antisense oligonucleotide, in patients with advanced chronic lymphocytic leukemia</article-title>
<source>J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol.</source>
<year>2005</year>
<volume>23</volume>
<fpage>7697</fpage>
<lpage>7702</lpage>
<pub-id pub-id-type="doi">10.1200/JCO.2005.02.4364</pub-id>
</element-citation>
</ref>
<ref id="B122-ijms-21-00401">
<label>122.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>O’Brien</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Moore</surname>
<given-names>J.O.</given-names>
</name>
<name>
<surname>Boyd</surname>
<given-names>T.E.</given-names>
</name>
<name>
<surname>Larratt</surname>
<given-names>L.M.</given-names>
</name>
<name>
<surname>Skotnicki</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Koziner</surname>
<given-names>B.</given-names>
</name>
<name>
<surname>Chanan-Khan</surname>
<given-names>A.A.</given-names>
</name>
<name>
<surname>Seymour</surname>
<given-names>J.F.</given-names>
</name>
<name>
<surname>Bociek</surname>
<given-names>R.G.</given-names>
</name>
<name>
<surname>Pavletic</surname>
<given-names>S.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Randomized phase III trial of fludarabine plus cyclophosphamide with or without oblimersen sodium (Bcl-2 antisense) in patients with relapsed or refractory chronic lymphocytic leukemia</article-title>
<source>J. Clin. Oncol.</source>
<year>2007</year>
<volume>25</volume>
<fpage>1114</fpage>
<lpage>1120</lpage>
<pub-id pub-id-type="doi">10.1200/JCO.2006.07.1191</pub-id>
<pub-id pub-id-type="pmid">17296974</pub-id>
</element-citation>
</ref>
<ref id="B123-ijms-21-00401">
<label>123.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Soderquist</surname>
<given-names>R.S.</given-names>
</name>
<name>
<surname>Eastman</surname>
<given-names>A.</given-names>
</name>
</person-group>
<article-title>BCL2 Inhibitors as Anticancer Drugs: A Plethora of Misleading BH3 Mimetics</article-title>
<source>Mol. Cancer</source>
<year>2016</year>
<volume>15</volume>
<fpage>2011</fpage>
<lpage>2017</lpage>
<pub-id pub-id-type="doi">10.1158/1535-7163.MCT-16-0031</pub-id>
</element-citation>
</ref>
<ref id="B124-ijms-21-00401">
<label>124.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Bedikian</surname>
<given-names>A.Y.</given-names>
</name>
<name>
<surname>Millward</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Pehamberger</surname>
<given-names>H.</given-names>
</name>
<name>
<surname>Conry</surname>
<given-names>R.</given-names>
</name>
<name>
<surname>Gore</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Trefzer</surname>
<given-names>U.</given-names>
</name>
<name>
<surname>Pavlick</surname>
<given-names>A.C.</given-names>
</name>
<name>
<surname>DeConti</surname>
<given-names>R.</given-names>
</name>
<name>
<surname>Hersh</surname>
<given-names>E.M.</given-names>
</name>
<name>
<surname>Hersey</surname>
<given-names>P.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Bcl-2 antisense (oblimersen sodium) plus dacarbazine in patients with advanced melanoma: The Oblimersen Melanoma Study Group</article-title>
<source>J. Clin. Oncol.</source>
<year>2006</year>
<volume>24</volume>
<fpage>4738</fpage>
<lpage>4745</lpage>
<pub-id pub-id-type="doi">10.1200/JCO.2006.06.0483</pub-id>
<pub-id pub-id-type="pmid">16966688</pub-id>
</element-citation>
</ref>
<ref id="B125-ijms-21-00401">
<label>125.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Ng</surname>
<given-names>K.P.</given-names>
</name>
<name>
<surname>Hillmer</surname>
<given-names>A.M.</given-names>
</name>
<name>
<surname>Chuah</surname>
<given-names>C.T.</given-names>
</name>
<name>
<surname>Juan</surname>
<given-names>W.C.</given-names>
</name>
<name>
<surname>Ko</surname>
<given-names>T.K.</given-names>
</name>
<name>
<surname>Teo</surname>
<given-names>A.S.</given-names>
</name>
<name>
<surname>Ariyaratne</surname>
<given-names>P.N.</given-names>
</name>
<name>
<surname>Takahashi</surname>
<given-names>N.</given-names>
</name>
<name>
<surname>Sawada</surname>
<given-names>K.</given-names>
</name>
<name>
<surname>Fei</surname>
<given-names>Y.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>A common BIM deletion polymorphism mediates intrinsic resistance and inferior responses to tyrosine kinase inhibitors in cancer</article-title>
<source>Nat. Med.</source>
<year>2012</year>
<volume>18</volume>
<fpage>521</fpage>
<lpage>528</lpage>
<pub-id pub-id-type="doi">10.1038/nm.2713</pub-id>
<pub-id pub-id-type="pmid">22426421</pub-id>
</element-citation>
</ref>
<ref id="B126-ijms-21-00401">
<label>126.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Merino</surname>
<given-names>D.</given-names>
</name>
<name>
<surname>Lalaoui</surname>
<given-names>N.</given-names>
</name>
<name>
<surname>Morizot</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Solary</surname>
<given-names>E.</given-names>
</name>
<name>
<surname>Micheau</surname>
<given-names>O.</given-names>
</name>
</person-group>
<article-title>TRAIL in cancer therapy: Present and future challenges</article-title>
<source>Expert Opin. Ther. Targets</source>
<year>2007</year>
<volume>11</volume>
<fpage>1299</fpage>
<lpage>1314</lpage>
<pub-id pub-id-type="doi">10.1517/14728222.11.10.1299</pub-id>
<pub-id pub-id-type="pmid">17907960</pub-id>
</element-citation>
</ref>
<ref id="B127-ijms-21-00401">
<label>127.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Wu</surname>
<given-names>G.S.</given-names>
</name>
</person-group>
<article-title>TRAIL as a target in anti-cancer therapy</article-title>
<source>Cancer Lett.</source>
<year>2009</year>
<volume>285</volume>
<fpage>1</fpage>
<lpage>5</lpage>
<pub-id pub-id-type="doi">10.1016/j.canlet.2009.02.029</pub-id>
<pub-id pub-id-type="pmid">19299078</pub-id>
</element-citation>
</ref>
<ref id="B128-ijms-21-00401">
<label>128.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Hetschko</surname>
<given-names>H.</given-names>
</name>
<name>
<surname>Voss</surname>
<given-names>V.</given-names>
</name>
<name>
<surname>Seifert</surname>
<given-names>V.</given-names>
</name>
<name>
<surname>Prehn</surname>
<given-names>J.H.</given-names>
</name>
<name>
<surname>Kogel</surname>
<given-names>D.</given-names>
</name>
</person-group>
<article-title>Upregulation of DR5 by proteasome inhibitors potently sensitizes glioma cells to TRAIL-induced apoptosis</article-title>
<source>FEBS J.</source>
<year>2008</year>
<volume>275</volume>
<fpage>1925</fpage>
<lpage>1936</lpage>
<pub-id pub-id-type="doi">10.1111/j.1742-4658.2008.06351.x</pub-id>
<pub-id pub-id-type="pmid">18341587</pub-id>
</element-citation>
</ref>
<ref id="B129-ijms-21-00401">
<label>129.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Hunter</surname>
<given-names>T.B.</given-names>
</name>
<name>
<surname>Manimala</surname>
<given-names>N.J.</given-names>
</name>
<name>
<surname>Luddy</surname>
<given-names>K.A.</given-names>
</name>
<name>
<surname>Catlin</surname>
<given-names>T.</given-names>
</name>
<name>
<surname>Antonia</surname>
<given-names>S.J.</given-names>
</name>
</person-group>
<article-title>Paclitaxel and TRAIL synergize to kill paclitaxel-resistant small cell lung cancer cells through a caspase-independent mechanism mediated through AIF</article-title>
<source>Anticancer Res.</source>
<year>2011</year>
<volume>31</volume>
<fpage>3193</fpage>
<lpage>3204</lpage>
<pub-id pub-id-type="pmid">21965726</pub-id>
</element-citation>
</ref>
<ref id="B130-ijms-21-00401">
<label>130.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Zhang</surname>
<given-names>Y.Q.</given-names>
</name>
<name>
<surname>Tang</surname>
<given-names>X.Q.</given-names>
</name>
<name>
<surname>Sun</surname>
<given-names>L.</given-names>
</name>
<name>
<surname>Dong</surname>
<given-names>L.</given-names>
</name>
<name>
<surname>Qin</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Liu</surname>
<given-names>H.Q.</given-names>
</name>
<name>
<surname>Xia</surname>
<given-names>H.</given-names>
</name>
<name>
<surname>Cao</surname>
<given-names>J.G.</given-names>
</name>
</person-group>
<article-title>Rosiglitazone enhances fluorouracil-induced apoptosis of HT-29 cells by activating peroxisome proliferator-activated receptor gamma</article-title>
<source>World J. Gastroenterol.</source>
<year>2007</year>
<volume>13</volume>
<fpage>1534</fpage>
<lpage>1540</lpage>
<pub-id pub-id-type="doi">10.3748/wjg.v13.i10.1534</pub-id>
<pub-id pub-id-type="pmid">17461445</pub-id>
</element-citation>
</ref>
<ref id="B131-ijms-21-00401">
<label>131.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Moitra</surname>
<given-names>K.</given-names>
</name>
<name>
<surname>Lou</surname>
<given-names>H.</given-names>
</name>
<name>
<surname>Dean</surname>
<given-names>M.</given-names>
</name>
</person-group>
<article-title>Multidrug efflux pumps and cancer stem cells: Insights into multidrug resistance and therapeutic development</article-title>
<source>Clin. Pharm.</source>
<year>2011</year>
<volume>89</volume>
<fpage>491</fpage>
<lpage>502</lpage>
<pub-id pub-id-type="doi">10.1038/clpt.2011.14</pub-id>
</element-citation>
</ref>
<ref id="B132-ijms-21-00401">
<label>132.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Dean</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Fojo</surname>
<given-names>T.</given-names>
</name>
<name>
<surname>Bates</surname>
<given-names>S.</given-names>
</name>
</person-group>
<article-title>Tumour stem cells and drug resistance</article-title>
<source>Nat. Rev. Cancer</source>
<year>2005</year>
<volume>5</volume>
<fpage>275</fpage>
<lpage>284</lpage>
<pub-id pub-id-type="doi">10.1038/nrc1590</pub-id>
<pub-id pub-id-type="pmid">15803154</pub-id>
</element-citation>
</ref>
<ref id="B133-ijms-21-00401">
<label>133.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Prieto-Vila</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Takahashi</surname>
<given-names>R.U.</given-names>
</name>
<name>
<surname>Usuba</surname>
<given-names>W.</given-names>
</name>
<name>
<surname>Kohama</surname>
<given-names>I.</given-names>
</name>
<name>
<surname>Ochiya</surname>
<given-names>T.</given-names>
</name>
</person-group>
<article-title>Drug Resistance Driven by Cancer Stem Cells and Their Niche</article-title>
<source>Int. J. Mol. Sci.</source>
<year>2017</year>
<volume>18</volume>
<elocation-id>2574</elocation-id>
<pub-id pub-id-type="doi">10.3390/ijms18122574</pub-id>
</element-citation>
</ref>
<ref id="B134-ijms-21-00401">
<label>134.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Phi</surname>
<given-names>L.T.H.</given-names>
</name>
<name>
<surname>Sari</surname>
<given-names>I.N.</given-names>
</name>
<name>
<surname>Yang</surname>
<given-names>Y.G.</given-names>
</name>
<name>
<surname>Lee</surname>
<given-names>S.H.</given-names>
</name>
<name>
<surname>Jun</surname>
<given-names>N.</given-names>
</name>
<name>
<surname>Kim</surname>
<given-names>K.S.</given-names>
</name>
<name>
<surname>Lee</surname>
<given-names>Y.K.</given-names>
</name>
<name>
<surname>Kwon</surname>
<given-names>H.Y.</given-names>
</name>
</person-group>
<article-title>Cancer Stem Cells (CSCs) in Drug Resistance and their Therapeutic Implications in Cancer Treatment</article-title>
<source>Stem Cells Int.</source>
<year>2018</year>
<fpage>5416923</fpage>
<pub-id pub-id-type="doi">10.1155/2018/5416923</pub-id>
<pub-id pub-id-type="pmid">29681949</pub-id>
</element-citation>
</ref>
<ref id="B135-ijms-21-00401">
<label>135.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Hu</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Yan</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>Mu</surname>
<given-names>L.</given-names>
</name>
<name>
<surname>Huang</surname>
<given-names>K.</given-names>
</name>
<name>
<surname>Li</surname>
<given-names>X.</given-names>
</name>
<name>
<surname>Tao</surname>
<given-names>D.</given-names>
</name>
<name>
<surname>Wu</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Qin</surname>
<given-names>J.</given-names>
</name>
</person-group>
<article-title>Fibroblast-Derived Exosomes Contribute to Chemoresistance through Priming Cancer Stem Cells in Colorectal Cancer</article-title>
<source>PLoS ONE</source>
<year>2015</year>
<volume>10</volume>
<elocation-id>e0125625</elocation-id>
<pub-id pub-id-type="doi">10.1371/journal.pone.0125625</pub-id>
<pub-id pub-id-type="pmid">25938772</pub-id>
</element-citation>
</ref>
<ref id="B136-ijms-21-00401">
<label>136.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Korkaya</surname>
<given-names>H.</given-names>
</name>
<name>
<surname>Kim</surname>
<given-names>G.I.</given-names>
</name>
<name>
<surname>Davis</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Malik</surname>
<given-names>F.</given-names>
</name>
<name>
<surname>Henry</surname>
<given-names>N.L.</given-names>
</name>
<name>
<surname>Ithimakin</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Quraishi</surname>
<given-names>A.A.</given-names>
</name>
<name>
<surname>Tawakkol</surname>
<given-names>N.</given-names>
</name>
<name>
<surname>D’Angelo</surname>
<given-names>R.</given-names>
</name>
<name>
<surname>Paulson</surname>
<given-names>A.K.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Activation of an IL6 inflammatory loop mediates trastuzumab resistance in HER2+ breast cancer by expanding the cancer stem cell population</article-title>
<source>Mol. Cell</source>
<year>2012</year>
<volume>47</volume>
<fpage>570</fpage>
<lpage>584</lpage>
<pub-id pub-id-type="doi">10.1016/j.molcel.2012.06.014</pub-id>
<pub-id pub-id-type="pmid">22819326</pub-id>
</element-citation>
</ref>
<ref id="B137-ijms-21-00401">
<label>137.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Nowell</surname>
<given-names>P.C.</given-names>
</name>
</person-group>
<article-title>The clonal evolution of tumor cell populations</article-title>
<source>Science</source>
<year>1976</year>
<volume>194</volume>
<fpage>23</fpage>
<lpage>28</lpage>
<pub-id pub-id-type="doi">10.1126/science.959840</pub-id>
<pub-id pub-id-type="pmid">959840</pub-id>
</element-citation>
</ref>
<ref id="B138-ijms-21-00401">
<label>138.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Schmidt</surname>
<given-names>F.</given-names>
</name>
<name>
<surname>Efferth</surname>
<given-names>T.</given-names>
</name>
</person-group>
<article-title>Tumor Heterogeneity, Single-Cell Sequencing, and Drug Resistance</article-title>
<source>Pharmaceuticals</source>
<year>2016</year>
<volume>9</volume>
<elocation-id>33</elocation-id>
<pub-id pub-id-type="doi">10.3390/ph9020033</pub-id>
</element-citation>
</ref>
<ref id="B139-ijms-21-00401">
<label>139.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Dagogo-Jack</surname>
<given-names>I.</given-names>
</name>
<name>
<surname>Shaw</surname>
<given-names>A.T.</given-names>
</name>
</person-group>
<article-title>Tumour heterogeneity and resistance to cancer therapies</article-title>
<source>Nat. Rev. Clin. Oncol.</source>
<year>2018</year>
<volume>15</volume>
<fpage>81</fpage>
<lpage>94</lpage>
<pub-id pub-id-type="doi">10.1038/nrclinonc.2017.166</pub-id>
<pub-id pub-id-type="pmid">29115304</pub-id>
</element-citation>
</ref>
<ref id="B140-ijms-21-00401">
<label>140.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Kwak</surname>
<given-names>E.L.</given-names>
</name>
<name>
<surname>Ahronian</surname>
<given-names>L.G.</given-names>
</name>
<name>
<surname>Siravegna</surname>
<given-names>G.</given-names>
</name>
<name>
<surname>Mussolin</surname>
<given-names>B.</given-names>
</name>
<name>
<surname>Borger</surname>
<given-names>D.R.</given-names>
</name>
<name>
<surname>Godfrey</surname>
<given-names>J.T.</given-names>
</name>
<name>
<surname>Jessop</surname>
<given-names>N.A.</given-names>
</name>
<name>
<surname>Clark</surname>
<given-names>J.W.</given-names>
</name>
<name>
<surname>Blaszkowsky</surname>
<given-names>L.S.</given-names>
</name>
<name>
<surname>Ryan</surname>
<given-names>D.P.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Molecular Heterogeneity and Receptor Coamplification Drive Resistance to Targeted Therapy in MET-Amplified Esophagogastric Cancer</article-title>
<source>Cancer Discov.</source>
<year>2015</year>
<volume>5</volume>
<fpage>1271</fpage>
<lpage>1281</lpage>
<pub-id pub-id-type="doi">10.1158/2159-8290.CD-15-0748</pub-id>
<pub-id pub-id-type="pmid">26432108</pub-id>
</element-citation>
</ref>
<ref id="B141-ijms-21-00401">
<label>141.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Pao</surname>
<given-names>W.</given-names>
</name>
<name>
<surname>Miller</surname>
<given-names>V.A.</given-names>
</name>
<name>
<surname>Politi</surname>
<given-names>K.A.</given-names>
</name>
<name>
<surname>Riely</surname>
<given-names>G.J.</given-names>
</name>
<name>
<surname>Somwar</surname>
<given-names>R.</given-names>
</name>
<name>
<surname>Zakowski</surname>
<given-names>M.F.</given-names>
</name>
<name>
<surname>Kris</surname>
<given-names>M.G.</given-names>
</name>
<name>
<surname>Varmus</surname>
<given-names>H.</given-names>
</name>
</person-group>
<article-title>Acquired resistance of lung adenocarcinomas to gefitinib or erlotinib is associated with a second mutation in the EGFR kinase domain</article-title>
<source>PLoS Med.</source>
<year>2005</year>
<volume>2</volume>
<elocation-id>e73</elocation-id>
<pub-id pub-id-type="doi">10.1371/journal.pmed.0020073</pub-id>
<pub-id pub-id-type="pmid">15737014</pub-id>
</element-citation>
</ref>
<ref id="B142-ijms-21-00401">
<label>142.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Sergina</surname>
<given-names>N.V.</given-names>
</name>
<name>
<surname>Rausch</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Wang</surname>
<given-names>D.</given-names>
</name>
<name>
<surname>Blair</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Hann</surname>
<given-names>B.</given-names>
</name>
<name>
<surname>Shokat</surname>
<given-names>K.M.</given-names>
</name>
<name>
<surname>Moasser</surname>
<given-names>M.M.</given-names>
</name>
</person-group>
<article-title>Escape from HER-family tyrosine kinase inhibitor therapy by the kinase-inactive HER3</article-title>
<source>Nature</source>
<year>2007</year>
<volume>445</volume>
<fpage>437</fpage>
<lpage>441</lpage>
<pub-id pub-id-type="doi">10.1038/nature05474</pub-id>
<pub-id pub-id-type="pmid">17206155</pub-id>
</element-citation>
</ref>
<ref id="B143-ijms-21-00401">
<label>143.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Wheeler</surname>
<given-names>D.L.</given-names>
</name>
<name>
<surname>Huang</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Kruser</surname>
<given-names>T.J.</given-names>
</name>
<name>
<surname>Nechrebecki</surname>
<given-names>M.M.</given-names>
</name>
<name>
<surname>Armstrong</surname>
<given-names>E.A.</given-names>
</name>
<name>
<surname>Benavente</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Gondi</surname>
<given-names>V.</given-names>
</name>
<name>
<surname>Hsu</surname>
<given-names>K.T.</given-names>
</name>
<name>
<surname>Harari</surname>
<given-names>P.M.</given-names>
</name>
</person-group>
<article-title>Mechanisms of acquired resistance to cetuximab: Role of HER (ErbB) family members</article-title>
<source>Oncogene</source>
<year>2008</year>
<volume>27</volume>
<fpage>3944</fpage>
<lpage>3956</lpage>
<pub-id pub-id-type="doi">10.1038/onc.2008.19</pub-id>
<pub-id pub-id-type="pmid">18297114</pub-id>
</element-citation>
</ref>
<ref id="B144-ijms-21-00401">
<label>144.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Riggins</surname>
<given-names>R.B.</given-names>
</name>
<name>
<surname>Schrecengost</surname>
<given-names>R.S.</given-names>
</name>
<name>
<surname>Guerrero</surname>
<given-names>M.S.</given-names>
</name>
<name>
<surname>Bouton</surname>
<given-names>A.H.</given-names>
</name>
</person-group>
<article-title>Pathways to tamoxifen resistance</article-title>
<source>Cancer Lett.</source>
<year>2007</year>
<volume>256</volume>
<fpage>1</fpage>
<lpage>24</lpage>
<pub-id pub-id-type="doi">10.1016/j.canlet.2007.03.016</pub-id>
<pub-id pub-id-type="pmid">17475399</pub-id>
</element-citation>
</ref>
<ref id="B145-ijms-21-00401">
<label>145.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Antonarakis</surname>
<given-names>E.S.</given-names>
</name>
<name>
<surname>Lu</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>Wang</surname>
<given-names>H.</given-names>
</name>
<name>
<surname>Luber</surname>
<given-names>B.</given-names>
</name>
<name>
<surname>Nakazawa</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Roeser</surname>
<given-names>J.C.</given-names>
</name>
<name>
<surname>Chen</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Mohammad</surname>
<given-names>T.A.</given-names>
</name>
<name>
<surname>Chen</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Fedor</surname>
<given-names>H.L.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>AR-V7 and resistance to enzalutamide and abiraterone in prostate cancer</article-title>
<source>N. Engl. J. Med.</source>
<year>2014</year>
<volume>371</volume>
<fpage>1028</fpage>
<lpage>1038</lpage>
<pub-id pub-id-type="doi">10.1056/NEJMoa1315815</pub-id>
<pub-id pub-id-type="pmid">25184630</pub-id>
</element-citation>
</ref>
<ref id="B146-ijms-21-00401">
<label>146.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Scher</surname>
<given-names>H.I.</given-names>
</name>
<name>
<surname>Fizazi</surname>
<given-names>K.</given-names>
</name>
<name>
<surname>Saad</surname>
<given-names>F.</given-names>
</name>
<name>
<surname>Taplin</surname>
<given-names>M.E.</given-names>
</name>
<name>
<surname>Sternberg</surname>
<given-names>C.N.</given-names>
</name>
<name>
<surname>Miller</surname>
<given-names>K.</given-names>
</name>
<name>
<surname>de Wit</surname>
<given-names>R.</given-names>
</name>
<name>
<surname>Mulders</surname>
<given-names>P.</given-names>
</name>
<name>
<surname>Chi</surname>
<given-names>K.N.</given-names>
</name>
<name>
<surname>Shore</surname>
<given-names>N.D.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Increased survival with enzalutamide in prostate cancer after chemotherapy</article-title>
<source>N. Engl. J. Med.</source>
<year>2012</year>
<volume>367</volume>
<fpage>1187</fpage>
<lpage>1197</lpage>
<pub-id pub-id-type="doi">10.1056/NEJMoa1207506</pub-id>
<pub-id pub-id-type="pmid">22894553</pub-id>
</element-citation>
</ref>
<ref id="B147-ijms-21-00401">
<label>147.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Joseph</surname>
<given-names>J.D.</given-names>
</name>
<name>
<surname>Lu</surname>
<given-names>N.</given-names>
</name>
<name>
<surname>Qian</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Sensintaffar</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Shao</surname>
<given-names>G.</given-names>
</name>
<name>
<surname>Brigham</surname>
<given-names>D.</given-names>
</name>
<name>
<surname>Moon</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Maneval</surname>
<given-names>E.C.</given-names>
</name>
<name>
<surname>Chen</surname>
<given-names>I.</given-names>
</name>
<name>
<surname>Darimont</surname>
<given-names>B.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>A clinically relevant androgen receptor mutation confers resistance to second-generation antiandrogens enzalutamide and ARN-509</article-title>
<source>Cancer Discov.</source>
<year>2013</year>
<volume>3</volume>
<fpage>1020</fpage>
<lpage>1029</lpage>
<pub-id pub-id-type="doi">10.1158/2159-8290.CD-13-0226</pub-id>
<pub-id pub-id-type="pmid">23779130</pub-id>
</element-citation>
</ref>
<ref id="B148-ijms-21-00401">
<label>148.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Davies</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>Pan</surname>
<given-names>H.</given-names>
</name>
<name>
<surname>Godwin</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Gray</surname>
<given-names>R.</given-names>
</name>
<name>
<surname>Arriagada</surname>
<given-names>R.</given-names>
</name>
<name>
<surname>Raina</surname>
<given-names>V.</given-names>
</name>
<name>
<surname>Abraham</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Medeiros Alencar</surname>
<given-names>V.H.</given-names>
</name>
<name>
<surname>Badran</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Bonfill</surname>
<given-names>X.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Long-term effects of continuing adjuvant tamoxifen to 10 years versus stopping at 5 years after diagnosis of oestrogen receptor-positive breast cancer: ATLAS, a randomised trial</article-title>
<source>Lancet Lond. Engl.</source>
<year>2013</year>
<volume>381</volume>
<fpage>805</fpage>
<lpage>816</lpage>
<pub-id pub-id-type="doi">10.1016/S0140-6736(12)61963-1</pub-id>
</element-citation>
</ref>
<ref id="B149-ijms-21-00401">
<label>149.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Osborne</surname>
<given-names>C.K.</given-names>
</name>
<name>
<surname>Schiff</surname>
<given-names>R.</given-names>
</name>
</person-group>
<article-title>Mechanisms of endocrine resistance in breast cancer</article-title>
<source>Annu. Rev. Med.</source>
<year>2011</year>
<volume>62</volume>
<fpage>233</fpage>
<lpage>247</lpage>
<pub-id pub-id-type="doi">10.1146/annurev-med-070909-182917</pub-id>
<pub-id pub-id-type="pmid">20887199</pub-id>
</element-citation>
</ref>
<ref id="B150-ijms-21-00401">
<label>150.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Van Veggel</surname>
<given-names>B.</given-names>
</name>
<name>
<surname>de Langen</surname>
<given-names>A.J.</given-names>
</name>
<name>
<surname>Hashemi</surname>
<given-names>S.M.S.</given-names>
</name>
<name>
<surname>Monkhorst</surname>
<given-names>K.</given-names>
</name>
<name>
<surname>Heideman</surname>
<given-names>D.A.M.</given-names>
</name>
<name>
<surname>Thunnissen</surname>
<given-names>E.</given-names>
</name>
<name>
<surname>Smit</surname>
<given-names>E.F.</given-names>
</name>
</person-group>
<article-title>Afatinib and Cetuximab in Four Patients with EGFR Exon 20 Insertion-Positive Advanced NSCLC</article-title>
<source>J. Thorac. Oncol.</source>
<year>2018</year>
<volume>13</volume>
<fpage>1222</fpage>
<lpage>1226</lpage>
<pub-id pub-id-type="doi">10.1016/j.jtho.2018.04.012</pub-id>
<pub-id pub-id-type="pmid">29702285</pub-id>
</element-citation>
</ref>
<ref id="B151-ijms-21-00401">
<label>151.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Hata</surname>
<given-names>A.N.</given-names>
</name>
<name>
<surname>Niederst</surname>
<given-names>M.J.</given-names>
</name>
<name>
<surname>Archibald</surname>
<given-names>H.L.</given-names>
</name>
<name>
<surname>Gomez-Caraballo</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Siddiqui</surname>
<given-names>F.M.</given-names>
</name>
<name>
<surname>Mulvey</surname>
<given-names>H.E.</given-names>
</name>
<name>
<surname>Maruvka</surname>
<given-names>Y.E.</given-names>
</name>
<name>
<surname>Ji</surname>
<given-names>F.</given-names>
</name>
<name>
<surname>Bhang</surname>
<given-names>H.E.</given-names>
</name>
<name>
<surname>Krishnamurthy Radhakrishna</surname>
<given-names>V.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Tumor cells can follow distinct evolutionary paths to become resistant to epidermal growth factor receptor inhibition</article-title>
<source>Nat. Med.</source>
<year>2016</year>
<volume>22</volume>
<fpage>262</fpage>
<lpage>269</lpage>
<pub-id pub-id-type="doi">10.1038/nm.4040</pub-id>
<pub-id pub-id-type="pmid">26828195</pub-id>
</element-citation>
</ref>
<ref id="B152-ijms-21-00401">
<label>152.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Sledge</surname>
<given-names>G.W.</given-names>
</name>
<name>
<surname>Neuberg</surname>
<given-names>D.</given-names>
</name>
<name>
<surname>Bernardo</surname>
<given-names>P.</given-names>
</name>
<name>
<surname>Ingle</surname>
<given-names>J.N.</given-names>
</name>
<name>
<surname>Martino</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Rowinsky</surname>
<given-names>E.K.</given-names>
</name>
<name>
<surname>Wood</surname>
<given-names>W.C.</given-names>
</name>
</person-group>
<article-title>Phase III trial of doxorubicin, paclitaxel, and the combination of doxorubicin and paclitaxel as front-line chemotherapy for metastatic breast cancer: An intergroup trial (E1193)</article-title>
<source>J. Clin. Oncol.</source>
<year>2003</year>
<volume>21</volume>
<fpage>588</fpage>
<lpage>592</lpage>
<pub-id pub-id-type="doi">10.1200/JCO.2003.08.013</pub-id>
<pub-id pub-id-type="pmid">12586793</pub-id>
</element-citation>
</ref>
<ref id="B153-ijms-21-00401">
<label>153.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Del Re</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Bordi</surname>
<given-names>P.</given-names>
</name>
<name>
<surname>Rofi</surname>
<given-names>E.</given-names>
</name>
<name>
<surname>Restante</surname>
<given-names>G.</given-names>
</name>
<name>
<surname>Valleggi</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Minari</surname>
<given-names>R.</given-names>
</name>
<name>
<surname>Crucitta</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Arrigoni</surname>
<given-names>E.</given-names>
</name>
<name>
<surname>Chella</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Morganti</surname>
<given-names>R.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>The amount of activating EGFR mutations in circulating cell-free DNA is a marker to monitor osimertinib response</article-title>
<source>Br. J. Cancer</source>
<year>2018</year>
<volume>119</volume>
<fpage>1252</fpage>
<lpage>1258</lpage>
<pub-id pub-id-type="doi">10.1038/s41416-018-0238-z</pub-id>
<pub-id pub-id-type="pmid">30397287</pub-id>
</element-citation>
</ref>
<ref id="B154-ijms-21-00401">
<label>154.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Balkwill</surname>
<given-names>F.R.</given-names>
</name>
<name>
<surname>Capasso</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Hagemann</surname>
<given-names>T.</given-names>
</name>
</person-group>
<article-title>The tumor microenvironment at a glance</article-title>
<source>J. Cell Sci.</source>
<year>2012</year>
<volume>125</volume>
<fpage>5591</fpage>
<lpage>5596</lpage>
<pub-id pub-id-type="doi">10.1242/jcs.116392</pub-id>
<pub-id pub-id-type="pmid">23420197</pub-id>
</element-citation>
</ref>
<ref id="B155-ijms-21-00401">
<label>155.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Milane</surname>
<given-names>L.</given-names>
</name>
<name>
<surname>Ganesh</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Shah</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Duan</surname>
<given-names>Z.F.</given-names>
</name>
<name>
<surname>Amiji</surname>
<given-names>M.</given-names>
</name>
</person-group>
<article-title>Multi-modal strategies for overcoming tumor drug resistance: Hypoxia, the Warburg effect, stem cells, and multifunctional nanotechnology</article-title>
<source>J. Control Release</source>
<year>2011</year>
<volume>155</volume>
<fpage>237</fpage>
<lpage>247</lpage>
<pub-id pub-id-type="doi">10.1016/j.jconrel.2011.03.032</pub-id>
<pub-id pub-id-type="pmid">21497176</pub-id>
</element-citation>
</ref>
<ref id="B156-ijms-21-00401">
<label>156.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Videira</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Reis</surname>
<given-names>R.L.</given-names>
</name>
<name>
<surname>Brito</surname>
<given-names>M.A.</given-names>
</name>
</person-group>
<article-title>Deconstructing breast cancer cell biology and the mechanisms of multidrug resistance</article-title>
<source>Biochim. Biophys. Acta</source>
<year>2014</year>
<volume>1846</volume>
<fpage>312</fpage>
<lpage>325</lpage>
<pub-id pub-id-type="doi">10.1016/j.bbcan.2014.07.011</pub-id>
<pub-id pub-id-type="pmid">25080053</pub-id>
</element-citation>
</ref>
<ref id="B157-ijms-21-00401">
<label>157.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>McMillin</surname>
<given-names>D.W.</given-names>
</name>
<name>
<surname>Negri</surname>
<given-names>J.M.</given-names>
</name>
<name>
<surname>Mitsiades</surname>
<given-names>C.S.</given-names>
</name>
</person-group>
<article-title>The role of tumour-stromal interactions in modifying drug response: Challenges and opportunities</article-title>
<source>Nat. Rev. Drug Discov.</source>
<year>2013</year>
<volume>12</volume>
<fpage>217</fpage>
<lpage>228</lpage>
<pub-id pub-id-type="doi">10.1038/nrd3870</pub-id>
<pub-id pub-id-type="pmid">23449307</pub-id>
</element-citation>
</ref>
<ref id="B158-ijms-21-00401">
<label>158.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Sun</surname>
<given-names>Y.</given-names>
</name>
</person-group>
<article-title>Tumor microenvironment and cancer therapy resistance</article-title>
<source>Cancer Lett.</source>
<year>2016</year>
<volume>380</volume>
<fpage>205</fpage>
<lpage>215</lpage>
<pub-id pub-id-type="doi">10.1016/j.canlet.2015.07.044</pub-id>
<pub-id pub-id-type="pmid">26272180</pub-id>
</element-citation>
</ref>
<ref id="B159-ijms-21-00401">
<label>159.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Shee</surname>
<given-names>K.</given-names>
</name>
<name>
<surname>Yang</surname>
<given-names>W.</given-names>
</name>
<name>
<surname>Hinds</surname>
<given-names>J.W.</given-names>
</name>
<name>
<surname>Hampsch</surname>
<given-names>R.A.</given-names>
</name>
<name>
<surname>Varn</surname>
<given-names>F.S.</given-names>
</name>
<name>
<surname>Traphagen</surname>
<given-names>N.A.</given-names>
</name>
<name>
<surname>Patel</surname>
<given-names>K.</given-names>
</name>
<name>
<surname>Cheng</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>Jenkins</surname>
<given-names>N.P.</given-names>
</name>
<name>
<surname>Kettenbach</surname>
<given-names>A.N.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Therapeutically targeting tumor microenvironment-mediated drug resistance in estrogen receptor-positive breast cancer</article-title>
<source>J. Exp. Med.</source>
<year>2018</year>
<volume>215</volume>
<fpage>895</fpage>
<lpage>910</lpage>
<pub-id pub-id-type="doi">10.1084/jem.20171818</pub-id>
<pub-id pub-id-type="pmid">29436393</pub-id>
</element-citation>
</ref>
<ref id="B160-ijms-21-00401">
<label>160.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Shen</surname>
<given-names>X.</given-names>
</name>
<name>
<surname>Zhi</surname>
<given-names>Q.</given-names>
</name>
<name>
<surname>Wang</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Li</surname>
<given-names>Z.</given-names>
</name>
<name>
<surname>Zhou</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Huang</surname>
<given-names>J.</given-names>
</name>
</person-group>
<article-title>Hypoxia Induces Multidrug Resistance via Enhancement of Epidermal Growth Factor-Like Domain 7 Expression in Non-Small Lung Cancer Cells</article-title>
<source>Chemotherapy</source>
<year>2017</year>
<volume>62</volume>
<fpage>172</fpage>
<lpage>180</lpage>
<pub-id pub-id-type="doi">10.1159/000456066</pub-id>
<pub-id pub-id-type="pmid">28351036</pub-id>
</element-citation>
</ref>
<ref id="B161-ijms-21-00401">
<label>161.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Faria</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Shepherd</surname>
<given-names>P.</given-names>
</name>
<name>
<surname>Pan</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Chatterjee</surname>
<given-names>S.S.</given-names>
</name>
<name>
<surname>Navone</surname>
<given-names>N.</given-names>
</name>
<name>
<surname>Gustafsson</surname>
<given-names>J.A.</given-names>
</name>
<name>
<surname>Strom</surname>
<given-names>A.</given-names>
</name>
</person-group>
<article-title>The estrogen receptor variants beta2 and beta5 induce stem cell characteristics and chemotherapy resistance in prostate cancer through activation of hypoxic signaling</article-title>
<source>Oncotarget</source>
<year>2018</year>
<volume>9</volume>
<fpage>36273</fpage>
<lpage>36288</lpage>
<pub-id pub-id-type="doi">10.18632/oncotarget.26345</pub-id>
<pub-id pub-id-type="pmid">30555629</pub-id>
</element-citation>
</ref>
<ref id="B162-ijms-21-00401">
<label>162.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Jahanban-Esfahlan</surname>
<given-names>R.</given-names>
</name>
<name>
<surname>de la Guardia</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Ahmadi</surname>
<given-names>D.</given-names>
</name>
<name>
<surname>Yousefi</surname>
<given-names>B.</given-names>
</name>
</person-group>
<article-title>Modulating tumor hypoxia by nanomedicine for effective cancer therapy</article-title>
<source>J. Cell Physiol.</source>
<year>2018</year>
<volume>233</volume>
<fpage>2019</fpage>
<lpage>2031</lpage>
<pub-id pub-id-type="doi">10.1002/jcp.25859</pub-id>
<pub-id pub-id-type="pmid">28198007</pub-id>
</element-citation>
</ref>
<ref id="B163-ijms-21-00401">
<label>163.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Chen</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Ding</surname>
<given-names>Z.</given-names>
</name>
<name>
<surname>Peng</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Pan</surname>
<given-names>F.</given-names>
</name>
<name>
<surname>Li</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Zou</surname>
<given-names>L.</given-names>
</name>
<name>
<surname>Zhang</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Liang</surname>
<given-names>H.</given-names>
</name>
</person-group>
<article-title>HIF-1α inhibition reverses multidrug resistance in colon cancer cells via downregulation of MDR1/P-glycoprotein</article-title>
<source>PLoS ONE</source>
<year>2014</year>
<volume>9</volume>
<elocation-id>e98882</elocation-id>
<pub-id pub-id-type="doi">10.1371/journal.pone.0098882</pub-id>
<pub-id pub-id-type="pmid">24901645</pub-id>
</element-citation>
</ref>
<ref id="B164-ijms-21-00401">
<label>164.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Alexander</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Friedl</surname>
<given-names>P.</given-names>
</name>
</person-group>
<article-title>Cancer invasion and resistance: Interconnected processes of disease progression and therapy failure</article-title>
<source>Trends Mol. Med.</source>
<year>2012</year>
<volume>18</volume>
<fpage>13</fpage>
<lpage>26</lpage>
<pub-id pub-id-type="doi">10.1016/j.molmed.2011.11.003</pub-id>
<pub-id pub-id-type="pmid">22177734</pub-id>
</element-citation>
</ref>
<ref id="B165-ijms-21-00401">
<label>165.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Tezcan</surname>
<given-names>O.</given-names>
</name>
<name>
<surname>Ojha</surname>
<given-names>T.</given-names>
</name>
<name>
<surname>Storm</surname>
<given-names>G.</given-names>
</name>
<name>
<surname>Kiessling</surname>
<given-names>F.</given-names>
</name>
<name>
<surname>Lammers</surname>
<given-names>T.</given-names>
</name>
</person-group>
<article-title>Targeting cellular and microenvironmental multidrug resistance</article-title>
<source>Expert Opin. Drug Deliv.</source>
<year>2016</year>
<volume>13</volume>
<fpage>1199</fpage>
<lpage>1202</lpage>
<pub-id pub-id-type="doi">10.1080/17425247.2016.1214570</pub-id>
<pub-id pub-id-type="pmid">27461854</pub-id>
</element-citation>
</ref>
<ref id="B166-ijms-21-00401">
<label>166.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Liu</surname>
<given-names>H.</given-names>
</name>
<name>
<surname>Liu</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Zhang</surname>
<given-names>J.-T.</given-names>
</name>
</person-group>
<article-title>A new mechanism of drug resistance in breast cancer cells: Fatty acid synthase overexpression-mediated palmitate overproduction</article-title>
<source>Mol. Cancer</source>
<year>2008</year>
<volume>7</volume>
<fpage>263</fpage>
<lpage>270</lpage>
<pub-id pub-id-type="doi">10.1158/1535-7163.MCT-07-0445</pub-id>
<pub-id pub-id-type="pmid">18281512</pub-id>
</element-citation>
</ref>
<ref id="B167-ijms-21-00401">
<label>167.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Al Fayi</surname>
<given-names>M.S.</given-names>
</name>
<name>
<surname>Gou</surname>
<given-names>X.</given-names>
</name>
<name>
<surname>Forootan</surname>
<given-names>S.S.</given-names>
</name>
<name>
<surname>Al-Jameel</surname>
<given-names>W.</given-names>
</name>
<name>
<surname>Bao</surname>
<given-names>Z.</given-names>
</name>
<name>
<surname>Rudland</surname>
<given-names>P.R.</given-names>
</name>
<name>
<surname>Cornford</surname>
<given-names>P.A.</given-names>
</name>
<name>
<surname>Hussain</surname>
<given-names>S.A.</given-names>
</name>
<name>
<surname>Ke</surname>
<given-names>Y.</given-names>
</name>
</person-group>
<article-title>The increased expression of fatty acid-binding protein 9 in prostate cancer and its prognostic significance</article-title>
<source>Oncotarget</source>
<year>2016</year>
<volume>7</volume>
<fpage>82783</fpage>
<lpage>82797</lpage>
<pub-id pub-id-type="pmid">27779102</pub-id>
</element-citation>
</ref>
<ref id="B168-ijms-21-00401">
<label>168.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Wu</surname>
<given-names>X.</given-names>
</name>
<name>
<surname>Qin</surname>
<given-names>L.</given-names>
</name>
<name>
<surname>Fako</surname>
<given-names>V.</given-names>
</name>
<name>
<surname>Zhang</surname>
<given-names>J.T.</given-names>
</name>
</person-group>
<article-title>Molecular mechanisms of fatty acid synthase (FASN)-mediated resistance to anti-cancer treatments</article-title>
<source>Adv. Biol. Regul.</source>
<year>2014</year>
<volume>54</volume>
<fpage>214</fpage>
<lpage>221</lpage>
<pub-id pub-id-type="doi">10.1016/j.jbior.2013.09.004</pub-id>
<pub-id pub-id-type="pmid">24080588</pub-id>
</element-citation>
</ref>
<ref id="B169-ijms-21-00401">
<label>169.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Bauerschlag</surname>
<given-names>D.O.</given-names>
</name>
<name>
<surname>Maass</surname>
<given-names>N.</given-names>
</name>
<name>
<surname>Leonhardt</surname>
<given-names>P.</given-names>
</name>
<name>
<surname>Verburg</surname>
<given-names>F.A.</given-names>
</name>
<name>
<surname>Pecks</surname>
<given-names>U.</given-names>
</name>
<name>
<surname>Zeppernick</surname>
<given-names>F.</given-names>
</name>
<name>
<surname>Morgenroth</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Mottaghy</surname>
<given-names>F.M.</given-names>
</name>
<name>
<surname>Tolba</surname>
<given-names>R.</given-names>
</name>
<name>
<surname>Meinhold-Heerlein</surname>
<given-names>I.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Fatty acid synthase overexpression: Target for therapy and reversal of chemoresistance in ovarian cancer</article-title>
<source>J. Transl. Med.</source>
<year>2015</year>
<volume>13</volume>
<fpage>146</fpage>
<pub-id pub-id-type="doi">10.1186/s12967-015-0511-3</pub-id>
<pub-id pub-id-type="pmid">25947066</pub-id>
</element-citation>
</ref>
<ref id="B170-ijms-21-00401">
<label>170.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Plava</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Cihova</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Burikova</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Matuskova</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Kucerova</surname>
<given-names>L.</given-names>
</name>
<name>
<surname>Miklikova</surname>
<given-names>S.</given-names>
</name>
</person-group>
<article-title>Recent advances in understanding tumor stroma-mediated chemoresistance in breast cancer</article-title>
<source>Mol Cancer</source>
<year>2019</year>
<volume>18</volume>
<fpage>67</fpage>
<pub-id pub-id-type="doi">10.1186/s12943-019-0960-z</pub-id>
<pub-id pub-id-type="pmid">30927930</pub-id>
</element-citation>
</ref>
<ref id="B171-ijms-21-00401">
<label>171.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Junttila</surname>
<given-names>M.R.</given-names>
</name>
<name>
<surname>de Sauvage</surname>
<given-names>F.J.</given-names>
</name>
</person-group>
<article-title>Influence of tumour micro-environment heterogeneity on therapeutic response</article-title>
<source>Nature</source>
<year>2013</year>
<volume>501</volume>
<fpage>346</fpage>
<lpage>354</lpage>
<pub-id pub-id-type="doi">10.1038/nature12626</pub-id>
<pub-id pub-id-type="pmid">24048067</pub-id>
</element-citation>
</ref>
<ref id="B172-ijms-21-00401">
<label>172.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Butera</surname>
<given-names>G.</given-names>
</name>
<name>
<surname>Pacchiana</surname>
<given-names>R.</given-names>
</name>
<name>
<surname>Donadelli</surname>
<given-names>M.</given-names>
</name>
</person-group>
<article-title>Autocrine mechanisms of cancer chemoresistance</article-title>
<source>Semin. Cell Dev. Biol.</source>
<year>2018</year>
<volume>78</volume>
<fpage>3</fpage>
<lpage>12</lpage>
<pub-id pub-id-type="doi">10.1016/j.semcdb.2017.07.019</pub-id>
<pub-id pub-id-type="pmid">28751251</pub-id>
</element-citation>
</ref>
<ref id="B173-ijms-21-00401">
<label>173.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Lamouille</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Xu</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Derynck</surname>
<given-names>R.</given-names>
</name>
</person-group>
<article-title>Molecular mechanisms of epithelial-mesenchymal transition</article-title>
<source>Nat. Rev. Mol. Cell Biol.</source>
<year>2014</year>
<volume>15</volume>
<fpage>178</fpage>
<lpage>196</lpage>
<pub-id pub-id-type="doi">10.1038/nrm3758</pub-id>
<pub-id pub-id-type="pmid">24556840</pub-id>
</element-citation>
</ref>
<ref id="B174-ijms-21-00401">
<label>174.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Xu</surname>
<given-names>W.</given-names>
</name>
<name>
<surname>Yang</surname>
<given-names>Z.</given-names>
</name>
<name>
<surname>Lu</surname>
<given-names>N.</given-names>
</name>
</person-group>
<article-title>A new role for the PI3K/Akt signaling pathway in the epithelial-mesenchymal transition</article-title>
<source>Cell Adh. Migr.</source>
<year>2015</year>
<volume>9</volume>
<fpage>317</fpage>
<lpage>324</lpage>
<pub-id pub-id-type="doi">10.1080/19336918.2015.1016686</pub-id>
<pub-id pub-id-type="pmid">26241004</pub-id>
</element-citation>
</ref>
<ref id="B175-ijms-21-00401">
<label>175.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Fuchs</surname>
<given-names>B.C.</given-names>
</name>
<name>
<surname>Fujii</surname>
<given-names>T.</given-names>
</name>
<name>
<surname>Dorfman</surname>
<given-names>J.D.</given-names>
</name>
<name>
<surname>Goodwin</surname>
<given-names>J.M.</given-names>
</name>
<name>
<surname>Zhu</surname>
<given-names>A.X.</given-names>
</name>
<name>
<surname>Lanuti</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Tanabe</surname>
<given-names>K.K.</given-names>
</name>
</person-group>
<article-title>Epithelial-to-mesenchymal transition and integrin-linked kinase mediate sensitivity to epidermal growth factor receptor inhibition in human hepatoma cells</article-title>
<source>Cancer Res.</source>
<year>2008</year>
<volume>68</volume>
<fpage>2391</fpage>
<lpage>2399</lpage>
<pub-id pub-id-type="doi">10.1158/0008-5472.CAN-07-2460</pub-id>
<pub-id pub-id-type="pmid">18381447</pub-id>
</element-citation>
</ref>
<ref id="B176-ijms-21-00401">
<label>176.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Terry</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Savagner</surname>
<given-names>P.</given-names>
</name>
<name>
<surname>Ortiz-Cuaran</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Mahjoubi</surname>
<given-names>L.</given-names>
</name>
<name>
<surname>Saintigny</surname>
<given-names>P.</given-names>
</name>
<name>
<surname>Thiery</surname>
<given-names>J.P.</given-names>
</name>
<name>
<surname>Chouaib</surname>
<given-names>S.</given-names>
</name>
</person-group>
<article-title>New insights into the role of EMT in tumor immune escape</article-title>
<source>Mol. Oncol.</source>
<year>2017</year>
<volume>11</volume>
<fpage>824</fpage>
<lpage>846</lpage>
<pub-id pub-id-type="doi">10.1002/1878-0261.12093</pub-id>
<pub-id pub-id-type="pmid">28614624</pub-id>
</element-citation>
</ref>
<ref id="B177-ijms-21-00401">
<label>177.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Du</surname>
<given-names>B.</given-names>
</name>
<name>
<surname>Shim</surname>
<given-names>J.S.</given-names>
</name>
</person-group>
<article-title>Targeting Epithelial-Mesenchymal Transition (EMT) to Overcome Drug Resistance in Cancer</article-title>
<source>Molcules</source>
<year>2016</year>
<volume>21</volume>
<elocation-id>965</elocation-id>
<pub-id pub-id-type="doi">10.3390/molecules21070965</pub-id>
<pub-id pub-id-type="pmid">27455225</pub-id>
</element-citation>
</ref>
<ref id="B178-ijms-21-00401">
<label>178.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Christofides</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Karantanos</surname>
<given-names>T.</given-names>
</name>
<name>
<surname>Bardhan</surname>
<given-names>K.</given-names>
</name>
<name>
<surname>Boussiotis</surname>
<given-names>V.A.</given-names>
</name>
</person-group>
<article-title>Epigenetic regulation of cancer biology and anti-tumor immunity by EZH2</article-title>
<source>Oncotarget</source>
<year>2016</year>
<volume>7</volume>
<fpage>85624</fpage>
<lpage>85640</lpage>
<pub-id pub-id-type="doi">10.18632/oncotarget.12928</pub-id>
<pub-id pub-id-type="pmid">27793053</pub-id>
</element-citation>
</ref>
<ref id="B179-ijms-21-00401">
<label>179.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Chang</surname>
<given-names>J.W.</given-names>
</name>
<name>
<surname>Gwak</surname>
<given-names>S.Y.</given-names>
</name>
<name>
<surname>Shim</surname>
<given-names>G.A.</given-names>
</name>
<name>
<surname>Liu</surname>
<given-names>L.</given-names>
</name>
<name>
<surname>Lim</surname>
<given-names>Y.C.</given-names>
</name>
<name>
<surname>Kim</surname>
<given-names>J.M.</given-names>
</name>
<name>
<surname>Jung</surname>
<given-names>M.G.</given-names>
</name>
<name>
<surname>Koo</surname>
<given-names>B.S.</given-names>
</name>
</person-group>
<article-title>EZH2 is associated with poor prognosis in head-and-neck squamous cell carcinoma via regulating the epithelial-to-mesenchymal transition and chemosensitivity</article-title>
<source>Oral Oncol.</source>
<year>2016</year>
<volume>52</volume>
<fpage>66</fpage>
<lpage>74</lpage>
<pub-id pub-id-type="doi">10.1016/j.oraloncology.2015.11.002</pub-id>
<pub-id pub-id-type="pmid">26604082</pub-id>
</element-citation>
</ref>
<ref id="B180-ijms-21-00401">
<label>180.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Yoo</surname>
<given-names>C.B.</given-names>
</name>
<name>
<surname>Jones</surname>
<given-names>P.A.</given-names>
</name>
</person-group>
<article-title>Epigenetic therapy of cancer: Past, present and future</article-title>
<source>Nat. Rev. Drug Discov.</source>
<year>2006</year>
<volume>5</volume>
<fpage>37</fpage>
<lpage>50</lpage>
<pub-id pub-id-type="doi">10.1038/nrd1930</pub-id>
<pub-id pub-id-type="pmid">16485345</pub-id>
</element-citation>
</ref>
<ref id="B181-ijms-21-00401">
<label>181.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Feinberg</surname>
<given-names>A.P.</given-names>
</name>
<name>
<surname>Koldobskiy</surname>
<given-names>M.A.</given-names>
</name>
<name>
<surname>Gondor</surname>
<given-names>A.</given-names>
</name>
</person-group>
<article-title>Epigenetic modulators, modifiers and mediators in cancer aetiology and progression</article-title>
<source>Nat. Rev. Genet.</source>
<year>2016</year>
<volume>17</volume>
<fpage>284</fpage>
<lpage>299</lpage>
<pub-id pub-id-type="doi">10.1038/nrg.2016.13</pub-id>
<pub-id pub-id-type="pmid">26972587</pub-id>
</element-citation>
</ref>
<ref id="B182-ijms-21-00401">
<label>182.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Gaudet</surname>
<given-names>F.</given-names>
</name>
<name>
<surname>Hodgson</surname>
<given-names>J.G.</given-names>
</name>
<name>
<surname>Eden</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Jackson-Grusby</surname>
<given-names>L.</given-names>
</name>
<name>
<surname>Dausman</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Gray</surname>
<given-names>J.W.</given-names>
</name>
<name>
<surname>Leonhardt</surname>
<given-names>H.</given-names>
</name>
<name>
<surname>Jaenisch</surname>
<given-names>R.</given-names>
</name>
</person-group>
<article-title>Induction of tumors in mice by genomic hypomethylation</article-title>
<source>Science</source>
<year>2003</year>
<volume>300</volume>
<fpage>489</fpage>
<lpage>492</lpage>
<pub-id pub-id-type="doi">10.1126/science.1083558</pub-id>
<pub-id pub-id-type="pmid">12702876</pub-id>
</element-citation>
</ref>
<ref id="B183-ijms-21-00401">
<label>183.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Baylin</surname>
<given-names>S.B.</given-names>
</name>
<name>
<surname>Jones</surname>
<given-names>P.A.</given-names>
</name>
</person-group>
<article-title>A decade of exploring the cancer epigenome—Biological and translational implications</article-title>
<source>Nat. Rev. Cancer</source>
<year>2011</year>
<volume>11</volume>
<fpage>726</fpage>
<pub-id pub-id-type="doi">10.1038/nrc3130</pub-id>
<pub-id pub-id-type="pmid">21941284</pub-id>
</element-citation>
</ref>
<ref id="B184-ijms-21-00401">
<label>184.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>An</surname>
<given-names>X.</given-names>
</name>
<name>
<surname>Sarmiento</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>Tan</surname>
<given-names>T.</given-names>
</name>
<name>
<surname>Zhu</surname>
<given-names>H.</given-names>
</name>
</person-group>
<article-title>Regulation of multidrug resistance by microRNAs in anti-cancer therapy</article-title>
<source>Acta Pharm. Sinb.</source>
<year>2017</year>
<volume>7</volume>
<fpage>38</fpage>
<lpage>51</lpage>
<pub-id pub-id-type="doi">10.1016/j.apsb.2016.09.002</pub-id>
</element-citation>
</ref>
<ref id="B185-ijms-21-00401">
<label>185.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Cui</surname>
<given-names>Q.</given-names>
</name>
<name>
<surname>Wang</surname>
<given-names>J.-Q.</given-names>
</name>
<name>
<surname>Assaraf</surname>
<given-names>Y.G.</given-names>
</name>
<name>
<surname>Ren</surname>
<given-names>L.</given-names>
</name>
<name>
<surname>Gupta</surname>
<given-names>P.</given-names>
</name>
<name>
<surname>Wei</surname>
<given-names>L.</given-names>
</name>
<name>
<surname>Ashby</surname>
<given-names>C.R.</given-names>
<suffix>Jr.</suffix>
</name>
<name>
<surname>Yang</surname>
<given-names>D.-H.</given-names>
</name>
<name>
<surname>Chen</surname>
<given-names>Z.-S.</given-names>
</name>
</person-group>
<article-title>Modulating ROS to overcome multidrug resistance in cancer</article-title>
<source>Drug Resist. Updates</source>
<year>2018</year>
<volume>41</volume>
<fpage>1</fpage>
<lpage>25</lpage>
<pub-id pub-id-type="doi">10.1016/j.drup.2018.11.001</pub-id>
</element-citation>
</ref>
<ref id="B186-ijms-21-00401">
<label>186.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Cen</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Zhang</surname>
<given-names>L.</given-names>
</name>
<name>
<surname>Liu</surname>
<given-names>F.</given-names>
</name>
<name>
<surname>Zhang</surname>
<given-names>F.</given-names>
</name>
<name>
<surname>Ji</surname>
<given-names>B.S.</given-names>
</name>
</person-group>
<article-title>Long-Term Alteration of Reactive Oxygen Species Led to Multidrug Resistance in MCF-7 Cells</article-title>
<source>Oxid Med. Cell Longev.</source>
<year>2016</year>
<volume>2016</volume>
<fpage>7053451</fpage>
<pub-id pub-id-type="doi">10.1155/2016/7053451</pub-id>
<pub-id pub-id-type="pmid">28058088</pub-id>
</element-citation>
</ref>
<ref id="B187-ijms-21-00401">
<label>187.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Zeng</surname>
<given-names>R.</given-names>
</name>
<name>
<surname>Tang</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Zhou</surname>
<given-names>H.</given-names>
</name>
<name>
<surname>Liu</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Huang</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Li</surname>
<given-names>L.</given-names>
</name>
<name>
<surname>Liu</surname>
<given-names>W.</given-names>
</name>
<name>
<surname>Feng</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Zhou</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Chen</surname>
<given-names>T.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>STAT3 mediates multidrug resistance of Burkitt lymphoma cells by promoting antioxidant feedback</article-title>
<source>Biochem. Biophys. Res. Commun.</source>
<year>2017</year>
<volume>488</volume>
<fpage>182</fpage>
<lpage>188</lpage>
<pub-id pub-id-type="doi">10.1016/j.bbrc.2017.05.031</pub-id>
<pub-id pub-id-type="pmid">28483518</pub-id>
</element-citation>
</ref>
<ref id="B188-ijms-21-00401">
<label>188.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Erdogan</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Turkekul</surname>
<given-names>K.</given-names>
</name>
<name>
<surname>Serttas</surname>
<given-names>R.</given-names>
</name>
<name>
<surname>Erdogan</surname>
<given-names>Z.</given-names>
</name>
</person-group>
<article-title>The natural flavonoid apigenin sensitizes human CD44(+) prostate cancer stem cells to cisplatin therapy</article-title>
<source>Biomed. Pharm.</source>
<year>2017</year>
<volume>88</volume>
<fpage>210</fpage>
<lpage>217</lpage>
<pub-id pub-id-type="doi">10.1016/j.biopha.2017.01.056</pub-id>
<pub-id pub-id-type="pmid">28107698</pub-id>
</element-citation>
</ref>
<ref id="B189-ijms-21-00401">
<label>189.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Rao</surname>
<given-names>P.S.</given-names>
</name>
<name>
<surname>Satelli</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Moridani</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Jenkins</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Rao</surname>
<given-names>U.S.</given-names>
</name>
</person-group>
<article-title>Luteolin induces apoptosis in multidrug resistant cancer cells without affecting the drug transporter function: Involvement of cell line-specific apoptotic mechanisms</article-title>
<source>Int. J. Cancer</source>
<year>2012</year>
<volume>130</volume>
<fpage>2703</fpage>
<lpage>2714</lpage>
<pub-id pub-id-type="doi">10.1002/ijc.26308</pub-id>
<pub-id pub-id-type="pmid">21792893</pub-id>
</element-citation>
</ref>
<ref id="B190-ijms-21-00401">
<label>190.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Tang</surname>
<given-names>X.</given-names>
</name>
<name>
<surname>Wang</surname>
<given-names>H.</given-names>
</name>
<name>
<surname>Fan</surname>
<given-names>L.</given-names>
</name>
<name>
<surname>Wu</surname>
<given-names>X.</given-names>
</name>
<name>
<surname>Xin</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Ren</surname>
<given-names>H.</given-names>
</name>
<name>
<surname>Wang</surname>
<given-names>X.J.</given-names>
</name>
</person-group>
<article-title>Luteolin inhibits Nrf2 leading to negative regulation of the Nrf2/ARE pathway and sensitization of human lung carcinoma A549 cells to therapeutic drugs</article-title>
<source>Free Radic. Biol. Med.</source>
<year>2011</year>
<volume>50</volume>
<fpage>1599</fpage>
<lpage>1609</lpage>
<pub-id pub-id-type="doi">10.1016/j.freeradbiomed.2011.03.008</pub-id>
<pub-id pub-id-type="pmid">21402146</pub-id>
</element-citation>
</ref>
<ref id="B191-ijms-21-00401">
<label>191.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Sabzichi</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Hamishehkar</surname>
<given-names>H.</given-names>
</name>
<name>
<surname>Ramezani</surname>
<given-names>F.</given-names>
</name>
<name>
<surname>Sharifi</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Tabasinezhad</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Pirouzpanah</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Ghanbari</surname>
<given-names>P.</given-names>
</name>
<name>
<surname>Samadi</surname>
<given-names>N.</given-names>
</name>
</person-group>
<article-title>Luteolin-loaded phytosomes sensitize human breast carcinoma MDA-MB 231 cells to doxorubicin by suppressing Nrf2 mediated signalling</article-title>
<source>Asian Pac. J. Cancer Prev.</source>
<year>2014</year>
<volume>15</volume>
<fpage>5311</fpage>
<lpage>5316</lpage>
<pub-id pub-id-type="doi">10.7314/APJCP.2014.15.13.5311</pub-id>
<pub-id pub-id-type="pmid">25040994</pub-id>
</element-citation>
</ref>
<ref id="B192-ijms-21-00401">
<label>192.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Li</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Zhao</surname>
<given-names>Q.</given-names>
</name>
<name>
<surname>Wang</surname>
<given-names>B.</given-names>
</name>
<name>
<surname>Yuan</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Wang</surname>
<given-names>X.</given-names>
</name>
<name>
<surname>Li</surname>
<given-names>K.</given-names>
</name>
</person-group>
<article-title>Quercetin reversed MDR in breast cancer cells through down-regulating P-gp expression and eliminating cancer stem cells mediated by YB-1 nuclear translocation</article-title>
<source>Phytother Res.</source>
<year>2018</year>
<volume>32</volume>
<fpage>1530</fpage>
<lpage>1536</lpage>
<pub-id pub-id-type="doi">10.1002/ptr.6081</pub-id>
<pub-id pub-id-type="pmid">29635751</pub-id>
</element-citation>
</ref>
<ref id="B193-ijms-21-00401">
<label>193.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Chieli</surname>
<given-names>E.</given-names>
</name>
<name>
<surname>Romiti</surname>
<given-names>N.</given-names>
</name>
<name>
<surname>Rodeiro</surname>
<given-names>I.</given-names>
</name>
<name>
<surname>Garrido</surname>
<given-names>G.</given-names>
</name>
</person-group>
<article-title>In vitro effects of Mangifera indica and polyphenols derived on ABCB1/P-glycoprotein activity</article-title>
<source>Food Chem. Toxicol.</source>
<year>2009</year>
<volume>47</volume>
<fpage>2703</fpage>
<lpage>2710</lpage>
<pub-id pub-id-type="doi">10.1016/j.fct.2009.07.017</pub-id>
<pub-id pub-id-type="pmid">19632288</pub-id>
</element-citation>
</ref>
<ref id="B194-ijms-21-00401">
<label>194.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Taur</surname>
<given-names>J.S.</given-names>
</name>
<name>
<surname>Rodriguez-Proteau</surname>
<given-names>R.</given-names>
</name>
</person-group>
<article-title>Effects of dietary flavonoids on the transport of cimetidine via P-glycoprotein and cationic transporters in Caco-2 and LLC-PK1 cell models</article-title>
<source>Xenobiotica</source>
<year>2008</year>
<volume>38</volume>
<fpage>1536</fpage>
<lpage>1550</lpage>
<pub-id pub-id-type="doi">10.1080/00498250802499467</pub-id>
<pub-id pub-id-type="pmid">18951251</pub-id>
</element-citation>
</ref>
<ref id="B195-ijms-21-00401">
<label>195.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Chung</surname>
<given-names>S.Y.</given-names>
</name>
<name>
<surname>Sung</surname>
<given-names>M.K.</given-names>
</name>
<name>
<surname>Kim</surname>
<given-names>N.H.</given-names>
</name>
<name>
<surname>Jang</surname>
<given-names>J.O.</given-names>
</name>
<name>
<surname>Go</surname>
<given-names>E.J.</given-names>
</name>
<name>
<surname>Lee</surname>
<given-names>H.J.</given-names>
</name>
</person-group>
<article-title>Inhibition of P-glycoprotein by natural products in human breast cancer cells</article-title>
<source>Arch. Pharm. Res.</source>
<year>2005</year>
<volume>28</volume>
<fpage>823</fpage>
<lpage>828</lpage>
<pub-id pub-id-type="doi">10.1007/BF02977349</pub-id>
<pub-id pub-id-type="pmid">16114498</pub-id>
</element-citation>
</ref>
<ref id="B196-ijms-21-00401">
<label>196.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Jeng</surname>
<given-names>L.B.</given-names>
</name>
<name>
<surname>Kumar Velmurugan</surname>
<given-names>B.</given-names>
</name>
<name>
<surname>Chen</surname>
<given-names>M.C.</given-names>
</name>
<name>
<surname>Hsu</surname>
<given-names>H.H.</given-names>
</name>
<name>
<surname>Ho</surname>
<given-names>T.J.</given-names>
</name>
<name>
<surname>Day</surname>
<given-names>C.H.</given-names>
</name>
<name>
<surname>Lin</surname>
<given-names>Y.M.</given-names>
</name>
<name>
<surname>Padma</surname>
<given-names>V.V.</given-names>
</name>
<name>
<surname>Tu</surname>
<given-names>C.C.</given-names>
</name>
<name>
<surname>Huang</surname>
<given-names>C.Y.</given-names>
</name>
</person-group>
<article-title>Fisetin mediated apoptotic cell death in parental and Oxaliplatin/irinotecan resistant colorectal cancer cells in vitro and in vivo</article-title>
<source>J. Cell Physiol.</source>
<year>2018</year>
<volume>233</volume>
<fpage>7134</fpage>
<lpage>7142</lpage>
<pub-id pub-id-type="doi">10.1002/jcp.26532</pub-id>
<pub-id pub-id-type="pmid">29574877</pub-id>
</element-citation>
</ref>
<ref id="B197-ijms-21-00401">
<label>197.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Febriansah</surname>
<given-names>R.</given-names>
</name>
<name>
<surname>Putri</surname>
<given-names>D.D.</given-names>
</name>
<name>
<surname>Sarmoko</surname>
</name>
<name>
<surname>Nurulita</surname>
<given-names>N.A.</given-names>
</name>
<name>
<surname>Meiyanto</surname>
<given-names>E.</given-names>
</name>
<name>
<surname>Nugroho</surname>
<given-names>A.E.</given-names>
</name>
</person-group>
<article-title>Hesperidin as a preventive resistance agent in MCF-7 breast cancer cells line resistance to doxorubicin</article-title>
<source>Asian Pac. J. Trop. Biomed.</source>
<year>2014</year>
<volume>4</volume>
<fpage>228</fpage>
<lpage>233</lpage>
<pub-id pub-id-type="doi">10.1016/S2221-1691(14)60236-7</pub-id>
<pub-id pub-id-type="pmid">25182442</pub-id>
</element-citation>
</ref>
<ref id="B198-ijms-21-00401">
<label>198.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>El-Readi</surname>
<given-names>M.Z.</given-names>
</name>
<name>
<surname>Hamdan</surname>
<given-names>D.</given-names>
</name>
<name>
<surname>Farrag</surname>
<given-names>N.</given-names>
</name>
<name>
<surname>El-Shazly</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Wink</surname>
<given-names>M.</given-names>
</name>
</person-group>
<article-title>Inhibition of P-glycoprotein activity by limonin and other secondary metabolites from Citrus species in human colon and leukaemia cell lines</article-title>
<source>Eur. J. Pharm.</source>
<year>2010</year>
<volume>626</volume>
<fpage>139</fpage>
<lpage>145</lpage>
<pub-id pub-id-type="doi">10.1016/j.ejphar.2009.09.040</pub-id>
</element-citation>
</ref>
<ref id="B199-ijms-21-00401">
<label>199.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Kuo</surname>
<given-names>C.Y.</given-names>
</name>
<name>
<surname>Zupko</surname>
<given-names>I.</given-names>
</name>
<name>
<surname>Chang</surname>
<given-names>F.R.</given-names>
</name>
<name>
<surname>Hunyadi</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Wu</surname>
<given-names>C.C.</given-names>
</name>
<name>
<surname>Weng</surname>
<given-names>T.S.</given-names>
</name>
<name>
<surname>Wang</surname>
<given-names>H.C.</given-names>
</name>
</person-group>
<article-title>Dietary flavonoid derivatives enhance chemotherapeutic effect by inhibiting the DNA damage response pathway</article-title>
<source>Toxicol. Appl. Pharm.</source>
<year>2016</year>
<volume>311</volume>
<fpage>99</fpage>
<lpage>105</lpage>
<pub-id pub-id-type="doi">10.1016/j.taap.2016.09.019</pub-id>
<pub-id pub-id-type="pmid">27664008</pub-id>
</element-citation>
</ref>
<ref id="B200-ijms-21-00401">
<label>200.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Knop</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Misaka</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Singer</surname>
<given-names>K.</given-names>
</name>
<name>
<surname>Hoier</surname>
<given-names>E.</given-names>
</name>
<name>
<surname>Muller</surname>
<given-names>F.</given-names>
</name>
<name>
<surname>Glaeser</surname>
<given-names>H.</given-names>
</name>
<name>
<surname>Konig</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Fromm</surname>
<given-names>M.F.</given-names>
</name>
</person-group>
<article-title>Inhibitory Effects of Green Tea and (-)-Epigallocatechin Gallate on Transport by OATP1B1, OATP1B3, OCT1, OCT2, MATE1, MATE2-K and P-Glycoprotein</article-title>
<source>PLoS ONE</source>
<year>2015</year>
<volume>10</volume>
<elocation-id>e0139370</elocation-id>
<pub-id pub-id-type="doi">10.1371/journal.pone.0139370</pub-id>
<pub-id pub-id-type="pmid">26426900</pub-id>
</element-citation>
</ref>
<ref id="B201-ijms-21-00401">
<label>201.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Jodoin</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Demeule</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Beliveau</surname>
<given-names>R.</given-names>
</name>
</person-group>
<article-title>Inhibition of the multidrug resistance P-glycoprotein activity by green tea polyphenols</article-title>
<source>Biochim. Biophys. Acta</source>
<year>2002</year>
<volume>1542</volume>
<fpage>149</fpage>
<lpage>159</lpage>
<pub-id pub-id-type="doi">10.1016/S0167-4889(01)00175-6</pub-id>
<pub-id pub-id-type="pmid">11853888</pub-id>
</element-citation>
</ref>
<ref id="B202-ijms-21-00401">
<label>202.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Esmaeili</surname>
<given-names>M.A.</given-names>
</name>
</person-group>
<article-title>Combination of siRNA-directed gene silencing with epigallocatechin-3-gallate (EGCG) reverses drug resistance in human breast cancer cells</article-title>
<source>J. Chem. Biol.</source>
<year>2016</year>
<volume>9</volume>
<fpage>41</fpage>
<lpage>52</lpage>
<pub-id pub-id-type="doi">10.1007/s12154-015-0144-2</pub-id>
<pub-id pub-id-type="pmid">26855680</pub-id>
</element-citation>
</ref>
<ref id="B203-ijms-21-00401">
<label>203.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>La</surname>
<given-names>X.</given-names>
</name>
<name>
<surname>Zhang</surname>
<given-names>L.</given-names>
</name>
<name>
<surname>Li</surname>
<given-names>Z.</given-names>
</name>
<name>
<surname>Li</surname>
<given-names>H.</given-names>
</name>
<name>
<surname>Yang</surname>
<given-names>Y.</given-names>
</name>
</person-group>
<article-title>(-)-Epigallocatechin Gallate (EGCG) Enhances the Sensitivity of Colorectal Cancer Cells to 5-FU by Inhibiting GRP78/NF-κB/miR-155–5p/MDR1 Pathway</article-title>
<source>J. Agric. Food Chem.</source>
<year>2019</year>
<volume>67</volume>
<fpage>2510</fpage>
<lpage>2518</lpage>
<pub-id pub-id-type="doi">10.1021/acs.jafc.8b06665</pub-id>
<pub-id pub-id-type="pmid">30741544</pub-id>
</element-citation>
</ref>
<ref id="B204-ijms-21-00401">
<label>204.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Wang</surname>
<given-names>P.</given-names>
</name>
<name>
<surname>Henning</surname>
<given-names>S.M.</given-names>
</name>
<name>
<surname>Heber</surname>
<given-names>D.</given-names>
</name>
<name>
<surname>Vadgama</surname>
<given-names>J.V.</given-names>
</name>
</person-group>
<article-title>Sensitization to docetaxel in prostate cancer cells by green tea and quercetin</article-title>
<source>J. Nutr. Biochem.</source>
<year>2015</year>
<volume>26</volume>
<fpage>408</fpage>
<lpage>415</lpage>
<pub-id pub-id-type="doi">10.1016/j.jnutbio.2014.11.017</pub-id>
<pub-id pub-id-type="pmid">25655047</pub-id>
</element-citation>
</ref>
<ref id="B205-ijms-21-00401">
<label>205.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Kim</surname>
<given-names>K.C.</given-names>
</name>
<name>
<surname>Lee</surname>
<given-names>C.</given-names>
</name>
</person-group>
<article-title>Reversal of Cisplatin resistance by epigallocatechin gallate is mediated by downregulation of axl and tyro 3 expression in human lung cancer cells</article-title>
<source>Korean J. Physiol. Pharm.</source>
<year>2014</year>
<volume>18</volume>
<fpage>61</fpage>
<lpage>66</lpage>
<pub-id pub-id-type="doi">10.4196/kjpp.2014.18.1.61</pub-id>
</element-citation>
</ref>
<ref id="B206-ijms-21-00401">
<label>206.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Xue</surname>
<given-names>J.P.</given-names>
</name>
<name>
<surname>Wang</surname>
<given-names>G.</given-names>
</name>
<name>
<surname>Zhao</surname>
<given-names>Z.B.</given-names>
</name>
<name>
<surname>Wang</surname>
<given-names>Q.</given-names>
</name>
<name>
<surname>Shi</surname>
<given-names>Y.</given-names>
</name>
</person-group>
<article-title>Synergistic cytotoxic effect of genistein and doxorubicin on drug-resistant human breast cancer MCF-7/Adr cells</article-title>
<source>Oncol. Rep.</source>
<year>2014</year>
<volume>32</volume>
<fpage>1647</fpage>
<lpage>1653</lpage>
<pub-id pub-id-type="doi">10.3892/or.2014.3365</pub-id>
<pub-id pub-id-type="pmid">25109508</pub-id>
</element-citation>
</ref>
<ref id="B207-ijms-21-00401">
<label>207.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Li</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Ahmed</surname>
<given-names>F.</given-names>
</name>
<name>
<surname>Ali</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Philip</surname>
<given-names>P.A.</given-names>
</name>
<name>
<surname>Kucuk</surname>
<given-names>O.</given-names>
</name>
<name>
<surname>Sarkar</surname>
<given-names>F.H.</given-names>
</name>
</person-group>
<article-title>Inactivation of nuclear factor κB by soy isoflavone genistein contributes to increased apoptosis induced by chemotherapeutic agents in human cancer cells</article-title>
<source>Cancer Res.</source>
<year>2005</year>
<volume>65</volume>
<fpage>6934</fpage>
<lpage>6942</lpage>
<pub-id pub-id-type="doi">10.1158/0008-5472.CAN-04-4604</pub-id>
<pub-id pub-id-type="pmid">16061678</pub-id>
</element-citation>
</ref>
<ref id="B208-ijms-21-00401">
<label>208.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Rigalli</surname>
<given-names>J.P.</given-names>
</name>
<name>
<surname>Scholz</surname>
<given-names>P.N.</given-names>
</name>
<name>
<surname>Tocchetti</surname>
<given-names>G.N.</given-names>
</name>
<name>
<surname>Ruiz</surname>
<given-names>M.L.</given-names>
</name>
<name>
<surname>Weiss</surname>
<given-names>J.</given-names>
</name>
</person-group>
<article-title>The phytoestrogens daidzein and equol inhibit the drug transporter BCRP/ABCG2 in breast cancer cells: Potential chemosensitizing effect</article-title>
<source>Eur. J. Nutr.</source>
<year>2019</year>
<volume>58</volume>
<fpage>139</fpage>
<lpage>150</lpage>
<pub-id pub-id-type="doi">10.1007/s00394-017-1578-9</pub-id>
<pub-id pub-id-type="pmid">29101532</pub-id>
</element-citation>
</ref>
<ref id="B209-ijms-21-00401">
<label>209.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Alayev</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Berger</surname>
<given-names>S.M.</given-names>
</name>
<name>
<surname>Kramer</surname>
<given-names>M.Y.</given-names>
</name>
<name>
<surname>Schwartz</surname>
<given-names>N.S.</given-names>
</name>
<name>
<surname>Holz</surname>
<given-names>M.K.</given-names>
</name>
</person-group>
<article-title>The combination of rapamycin and resveratrol blocks autophagy and induces apoptosis in breast cancer cells</article-title>
<source>J. Cell Biochem.</source>
<year>2015</year>
<volume>116</volume>
<fpage>450</fpage>
<lpage>457</lpage>
<pub-id pub-id-type="doi">10.1002/jcb.24997</pub-id>
<pub-id pub-id-type="pmid">25336146</pub-id>
</element-citation>
</ref>
<ref id="B210-ijms-21-00401">
<label>210.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Huang</surname>
<given-names>F.</given-names>
</name>
<name>
<surname>Wu</surname>
<given-names>X.-N.</given-names>
</name>
<name>
<surname>Chen</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Wang</surname>
<given-names>W.-X.</given-names>
</name>
<name>
<surname>Lu</surname>
<given-names>Z.</given-names>
</name>
</person-group>
<article-title>Resveratrol reverses multidrug resistance in human breast cancer doxorubicin-resistant cells</article-title>
<source>Expther. Med.</source>
<year>2014</year>
<volume>7</volume>
<fpage>1611</fpage>
<lpage>1616</lpage>
<pub-id pub-id-type="doi">10.3892/etm.2014.1662</pub-id>
</element-citation>
</ref>
<ref id="B211-ijms-21-00401">
<label>211.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Karthikeyan</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Hoti</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Prasad</surname>
<given-names>N.</given-names>
</name>
</person-group>
<article-title>Resveratrol modulates expression of ABC transporters in non-small lung cancer cells: Molecular docking and gene expression studies</article-title>
<source>J. Cancer Sci.</source>
<year>2014</year>
<volume>6</volume>
<fpage>497</fpage>
<lpage>504</lpage>
<pub-id pub-id-type="doi">10.4172/1948-5956.1000314</pub-id>
</element-citation>
</ref>
<ref id="B212-ijms-21-00401">
<label>212.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Khaleel</surname>
<given-names>S.A.</given-names>
</name>
<name>
<surname>Al-Abd</surname>
<given-names>A.M.</given-names>
</name>
<name>
<surname>Ali</surname>
<given-names>A.A.</given-names>
</name>
<name>
<surname>Abdel-Naim</surname>
<given-names>A.B.</given-names>
</name>
</person-group>
<article-title>Didox and resveratrol sensitize colorectal cancer cells to doxorubicin via activating apoptosis and ameliorating P-glycoprotein activity</article-title>
<source>Sci. Rep.</source>
<year>2016</year>
<volume>6</volume>
<fpage>36855</fpage>
<pub-id pub-id-type="doi">10.1038/srep36855</pub-id>
<pub-id pub-id-type="pmid">27841296</pub-id>
</element-citation>
</ref>
<ref id="B213-ijms-21-00401">
<label>213.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Zhu</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>He</surname>
<given-names>W.</given-names>
</name>
<name>
<surname>Gao</surname>
<given-names>X.</given-names>
</name>
<name>
<surname>Li</surname>
<given-names>B.</given-names>
</name>
<name>
<surname>Mei</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>Xu</surname>
<given-names>R.</given-names>
</name>
<name>
<surname>Chen</surname>
<given-names>H.</given-names>
</name>
</person-group>
<article-title>Resveratrol overcomes gefitinib resistance by increasing the intracellular gefitinib concentration and triggering apoptosis, autophagy and senescence in PC9/G NSCLC cells</article-title>
<source>Sci. Rep.</source>
<year>2015</year>
<volume>5</volume>
<fpage>17730</fpage>
<pub-id pub-id-type="doi">10.1038/srep17730</pub-id>
<pub-id pub-id-type="pmid">26635117</pub-id>
</element-citation>
</ref>
<ref id="B214-ijms-21-00401">
<label>214.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Vinod</surname>
<given-names>B.S.</given-names>
</name>
<name>
<surname>Nair</surname>
<given-names>H.H.</given-names>
</name>
<name>
<surname>Vijayakurup</surname>
<given-names>V.</given-names>
</name>
<name>
<surname>Shabna</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Shah</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Krishna</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Pillai</surname>
<given-names>K.S.</given-names>
</name>
<name>
<surname>Thankachan</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Anto</surname>
<given-names>R.J.</given-names>
</name>
</person-group>
<article-title>Resveratrol chemosensitizes HER-2-overexpressing breast cancer cells to docetaxel chemoresistance by inhibiting docetaxel-mediated activation of HER-2–Akt axis</article-title>
<source>Cell Death Discov.</source>
<year>2015</year>
<volume>1</volume>
<fpage>15061</fpage>
<pub-id pub-id-type="doi">10.1038/cddiscovery.2015.61</pub-id>
<pub-id pub-id-type="pmid">27551486</pub-id>
</element-citation>
</ref>
<ref id="B215-ijms-21-00401">
<label>215.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>He</surname>
<given-names>Z.</given-names>
</name>
<name>
<surname>Subramaniam</surname>
<given-names>D.</given-names>
</name>
<name>
<surname>Ramalingam</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Dhar</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Postier</surname>
<given-names>R.G.</given-names>
</name>
<name>
<surname>Umar</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Zhang</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Anant</surname>
<given-names>S.</given-names>
</name>
</person-group>
<article-title>Honokiol radiosensitizes colorectal cancer cells: Enhanced activity in cells with mismatch repair defects</article-title>
<source>Am. J. Physiol. Gastrointest Liver Physiol.</source>
<year>2011</year>
<volume>301</volume>
<fpage>G929</fpage>
<lpage>G937</lpage>
<pub-id pub-id-type="doi">10.1152/ajpgi.00159.2011</pub-id>
<pub-id pub-id-type="pmid">21836060</pub-id>
</element-citation>
</ref>
<ref id="B216-ijms-21-00401">
<label>216.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Li</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Revalde</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Paxton</surname>
<given-names>J.W.</given-names>
</name>
</person-group>
<article-title>The effects of dietary and herbal phytochemicals on drug transporters</article-title>
<source>Adv. Drug Deliv. Rev.</source>
<year>2017</year>
<volume>116</volume>
<fpage>45</fpage>
<lpage>62</lpage>
<pub-id pub-id-type="doi">10.1016/j.addr.2016.09.004</pub-id>
<pub-id pub-id-type="pmid">27637455</pub-id>
</element-citation>
</ref>
<ref id="B217-ijms-21-00401">
<label>217.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Kao</surname>
<given-names>T.-Y.</given-names>
</name>
<name>
<surname>Chung</surname>
<given-names>Y.-C.</given-names>
</name>
<name>
<surname>Hou</surname>
<given-names>Y.-C.</given-names>
</name>
<name>
<surname>Tsai</surname>
<given-names>Y.-W.</given-names>
</name>
<name>
<surname>Chen</surname>
<given-names>C.-H.</given-names>
</name>
<name>
<surname>Chang</surname>
<given-names>H.-P.</given-names>
</name>
<name>
<surname>Chou</surname>
<given-names>J.-L.</given-names>
</name>
<name>
<surname>Hsu</surname>
<given-names>C.-P.</given-names>
</name>
</person-group>
<article-title>Effects of ellagic acid on chemosensitivity to 5-fluorouracil in colorectal carcinoma cells</article-title>
<source>Anticancer Res.</source>
<year>2012</year>
<volume>32</volume>
<fpage>4413</fpage>
<lpage>4418</lpage>
<pub-id pub-id-type="pmid">23060566</pub-id>
</element-citation>
</ref>
<ref id="B218-ijms-21-00401">
<label>218.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Berdowska</surname>
<given-names>I.</given-names>
</name>
<name>
<surname>Zieliński</surname>
<given-names>B.</given-names>
</name>
<name>
<surname>Saczko</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Sopel</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Gamian</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Fecka</surname>
<given-names>I.</given-names>
</name>
</person-group>
<article-title>Modulatory impact of selected ellagitannins on the viability of human breast cancer cells</article-title>
<source>J. Funct. Foods</source>
<year>2018</year>
<volume>42</volume>
<fpage>122</fpage>
<lpage>128</lpage>
<pub-id pub-id-type="doi">10.1016/j.jff.2017.12.053</pub-id>
</element-citation>
</ref>
<ref id="B219-ijms-21-00401">
<label>219.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Wang</surname>
<given-names>R.</given-names>
</name>
<name>
<surname>Ma</surname>
<given-names>L.</given-names>
</name>
<name>
<surname>Weng</surname>
<given-names>D.</given-names>
</name>
<name>
<surname>Yao</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Liu</surname>
<given-names>X.</given-names>
</name>
<name>
<surname>Jin</surname>
<given-names>F.</given-names>
</name>
</person-group>
<article-title>Gallic acid induces apoptosis and enhances the anticancer effects of cisplatin in human small cell lung cancer H446 cell line via the ROS-dependent mitochondrial apoptotic pathway</article-title>
<source>Oncol. Rep.</source>
<year>2016</year>
<volume>35</volume>
<fpage>3075</fpage>
<lpage>3083</lpage>
<pub-id pub-id-type="doi">10.3892/or.2016.4690</pub-id>
<pub-id pub-id-type="pmid">26987028</pub-id>
</element-citation>
</ref>
<ref id="B220-ijms-21-00401">
<label>220.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Nowakowska</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Tarasiuk</surname>
<given-names>J.</given-names>
</name>
</person-group>
<article-title>Comparative effects of selected plant polyphenols, gallic acid and epigallocatechin gallate, on matrix metalloproteinases activity in multidrug resistant MCF7/DOX breast cancer cells</article-title>
<source>Acta Biochim. Pol.</source>
<year>2016</year>
<volume>63</volume>
<fpage>571</fpage>
<lpage>575</lpage>
<pub-id pub-id-type="doi">10.18388/abp.2016_1256</pub-id>
<pub-id pub-id-type="pmid">27231728</pub-id>
</element-citation>
</ref>
<ref id="B221-ijms-21-00401">
<label>221.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Phan</surname>
<given-names>A.N.H.</given-names>
</name>
<name>
<surname>Hua</surname>
<given-names>T.N.M.</given-names>
</name>
<name>
<surname>Kim</surname>
<given-names>M.-K.</given-names>
</name>
<name>
<surname>Vo</surname>
<given-names>V.T.A.</given-names>
</name>
<name>
<surname>Choi</surname>
<given-names>J.-W.</given-names>
</name>
<name>
<surname>Kim</surname>
<given-names>H.-W.</given-names>
</name>
<name>
<surname>Rho</surname>
<given-names>J.K.</given-names>
</name>
<name>
<surname>Kim</surname>
<given-names>K.W.</given-names>
</name>
<name>
<surname>Jeong</surname>
<given-names>Y.</given-names>
</name>
</person-group>
<article-title>Gallic acid inhibition of Src-Stat3 signaling overcomes acquired resistance to EGF receptor tyrosine kinase inhibitors in advanced non-small cell lung cancer</article-title>
<source>Oncotarget</source>
<year>2016</year>
<volume>7</volume>
<fpage>54702</fpage>
<lpage>54713</lpage>
<pub-id pub-id-type="doi">10.18632/oncotarget.10581</pub-id>
<pub-id pub-id-type="pmid">27419630</pub-id>
</element-citation>
</ref>
<ref id="B222-ijms-21-00401">
<label>222.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Lu</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Shan</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Li</surname>
<given-names>H.</given-names>
</name>
<name>
<surname>Shi</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Zhang</surname>
<given-names>X.</given-names>
</name>
<name>
<surname>Li</surname>
<given-names>Z.</given-names>
</name>
</person-group>
<article-title>Reversal effects of bound polyphenol from foxtail millet bran on multidrug resistance in human HCT-8/Fu colorectal cancer cell</article-title>
<source>J. Agric. Food Chem.</source>
<year>2018</year>
<volume>66</volume>
<fpage>5190</fpage>
<lpage>5199</lpage>
<pub-id pub-id-type="doi">10.1021/acs.jafc.8b01659</pub-id>
<pub-id pub-id-type="pmid">29730933</pub-id>
</element-citation>
</ref>
<ref id="B223-ijms-21-00401">
<label>223.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Omene</surname>
<given-names>C.O.</given-names>
</name>
<name>
<surname>Wu</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Frenkel</surname>
<given-names>K.</given-names>
</name>
</person-group>
<article-title>Caffeic Acid Phenethyl Ester (CAPE) derived from propolis, a honeybee product, inhibits growth of breast cancer stem cells</article-title>
<source>Investig. New Drugs</source>
<year>2012</year>
<volume>30</volume>
<fpage>1279</fpage>
<lpage>1288</lpage>
<pub-id pub-id-type="doi">10.1007/s10637-011-9667-8</pub-id>
<pub-id pub-id-type="pmid">21537887</pub-id>
</element-citation>
</ref>
<ref id="B224-ijms-21-00401">
<label>224.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Khoram</surname>
<given-names>N.M.</given-names>
</name>
<name>
<surname>Bigdeli</surname>
<given-names>B.</given-names>
</name>
<name>
<surname>Nikoofar</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Goliaei</surname>
<given-names>B.</given-names>
</name>
</person-group>
<article-title>Caffeic acid phenethyl ester increases radiosensitivity of estrogen receptor-positive and-negative breast cancer cells by prolonging radiation-induced DNA damage</article-title>
<source>J. Breast Cancer</source>
<year>2016</year>
<volume>19</volume>
<fpage>18</fpage>
<lpage>25</lpage>
<pub-id pub-id-type="doi">10.4048/jbc.2016.19.1.18</pub-id>
<pub-id pub-id-type="pmid">27066092</pub-id>
</element-citation>
</ref>
<ref id="B225-ijms-21-00401">
<label>225.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Ozturk</surname>
<given-names>G.</given-names>
</name>
<name>
<surname>Ginis</surname>
<given-names>Z.</given-names>
</name>
<name>
<surname>Akyol</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Erden</surname>
<given-names>G.</given-names>
</name>
<name>
<surname>Gurel</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Akyol</surname>
<given-names>O.</given-names>
</name>
</person-group>
<article-title>The anticancer mechanism of caffeic acid phenethyl ester (CAPE): Review of melanomas, lung and prostate cancers</article-title>
<source>Eur. Rev. Med. Pharm. Sci.</source>
<year>2012</year>
<volume>16</volume>
<fpage>2064</fpage>
<lpage>2068</lpage>
</element-citation>
</ref>
<ref id="B226-ijms-21-00401">
<label>226.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Sonoki</surname>
<given-names>H.</given-names>
</name>
<name>
<surname>Tanimae</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Furuta</surname>
<given-names>T.</given-names>
</name>
<name>
<surname>Endo</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Matsunaga</surname>
<given-names>T.</given-names>
</name>
<name>
<surname>Ichihara</surname>
<given-names>K.</given-names>
</name>
<name>
<surname>Ikari</surname>
<given-names>A.</given-names>
</name>
</person-group>
<article-title>Caffeic acid phenethyl ester down-regulates claudin-2 expression at the transcriptional and post-translational levels and enhances chemosensitivity to doxorubicin in lung adenocarcinoma A549 cells</article-title>
<source>J. Nutr. Biochem.</source>
<year>2018</year>
<volume>56</volume>
<fpage>205</fpage>
<lpage>214</lpage>
<pub-id pub-id-type="doi">10.1016/j.jnutbio.2018.02.016</pub-id>
<pub-id pub-id-type="pmid">29597147</pub-id>
</element-citation>
</ref>
<ref id="B227-ijms-21-00401">
<label>227.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Huang</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Zeng</surname>
<given-names>F.</given-names>
</name>
<name>
<surname>Xu</surname>
<given-names>L.</given-names>
</name>
<name>
<surname>Zhou</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Liu</surname>
<given-names>X.</given-names>
</name>
<name>
<surname>Le</surname>
<given-names>H.</given-names>
</name>
</person-group>
<article-title>Anticancer effects of cinnamic acid in lung adenocarcinoma cell line h1299-derived stem-like cells</article-title>
<source>Oncol. Res.</source>
<year>2012</year>
<volume>20</volume>
<fpage>499</fpage>
<lpage>507</lpage>
<pub-id pub-id-type="doi">10.3727/096504013X13685487925095</pub-id>
<pub-id pub-id-type="pmid">24063280</pub-id>
</element-citation>
</ref>
<ref id="B228-ijms-21-00401">
<label>228.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Lu</surname>
<given-names>W.-D.</given-names>
</name>
<name>
<surname>Qin</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Yang</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>Li</surname>
<given-names>L.</given-names>
</name>
</person-group>
<article-title>Effect of curcumin on human colon cancer multidrug resistance in vitro and in vivo</article-title>
<source>Clinics</source>
<year>2013</year>
<volume>68</volume>
<fpage>694</fpage>
<lpage>701</lpage>
<pub-id pub-id-type="doi">10.6061/clinics/2013(05)18</pub-id>
<pub-id pub-id-type="pmid">23778405</pub-id>
</element-citation>
</ref>
<ref id="B229-ijms-21-00401">
<label>229.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Lu</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Wei</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>Xi</surname>
<given-names>Z.</given-names>
</name>
</person-group>
<article-title>Curcumin suppresses proliferation and invasion in non-small cell lung cancer by modulation of MTA1-mediated Wnt/β-catenin pathway</article-title>
<source>In Vitro Cell. Dev. Biol. Anim.</source>
<year>2014</year>
<volume>50</volume>
<fpage>840</fpage>
<lpage>850</lpage>
<pub-id pub-id-type="doi">10.1007/s11626-014-9779-5</pub-id>
<pub-id pub-id-type="pmid">24938356</pub-id>
</element-citation>
</ref>
<ref id="B230-ijms-21-00401">
<label>230.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>De Porras</surname>
<given-names>V.R.</given-names>
</name>
<name>
<surname>Bystrup</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Martínez-Cardús</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Pluvinet</surname>
<given-names>R.</given-names>
</name>
<name>
<surname>Sumoy</surname>
<given-names>L.</given-names>
</name>
<name>
<surname>Howells</surname>
<given-names>L.</given-names>
</name>
<name>
<surname>James</surname>
<given-names>M.I.</given-names>
</name>
<name>
<surname>Iwuji</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>Manzano</surname>
<given-names>J.L.</given-names>
</name>
<name>
<surname>Layos</surname>
<given-names>L.</given-names>
</name>
</person-group>
<article-title>Curcumin mediates oxaliplatin-acquired resistance reversion in colorectal cancer cell lines through modulation of CXC-Chemokine/NF-κB signalling pathway</article-title>
<source>Sci. Rep.</source>
<year>2016</year>
<volume>6</volume>
<fpage>24675</fpage>
<pub-id pub-id-type="doi">10.1038/srep24675</pub-id>
<pub-id pub-id-type="pmid">27091625</pub-id>
</element-citation>
</ref>
<ref id="B231-ijms-21-00401">
<label>231.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Vinod</surname>
<given-names>B.S.</given-names>
</name>
<name>
<surname>Antony</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Nair</surname>
<given-names>H.H.</given-names>
</name>
<name>
<surname>Puliyappadamba</surname>
<given-names>V.T.</given-names>
</name>
<name>
<surname>Saikia</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Shyam Narayanan</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Bevin</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>John Anto</surname>
<given-names>R.</given-names>
</name>
</person-group>
<article-title>Mechanistic evaluation of the signaling events regulating curcumin-mediated chemosensitization of breast cancer cells to 5-fluorouracil</article-title>
<source>Cell Death Discov.</source>
<year>2013</year>
<volume>4</volume>
<fpage>e505</fpage>
<pub-id pub-id-type="doi">10.1038/cddis.2013.26</pub-id>
</element-citation>
</ref>
<ref id="B232-ijms-21-00401">
<label>232.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Roy</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Yu</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Padhye</surname>
<given-names>S.B.</given-names>
</name>
<name>
<surname>Sarkar</surname>
<given-names>F.H.</given-names>
</name>
<name>
<surname>Majumdar</surname>
<given-names>A.P.</given-names>
</name>
</person-group>
<article-title>Difluorinated-curcumin (CDF) restores PTEN expression in colon cancer cells by down-regulating miR-21</article-title>
<source>PLoS ONE</source>
<year>2013</year>
<volume>8</volume>
<elocation-id>e68543</elocation-id>
<pub-id pub-id-type="doi">10.1371/journal.pone.0068543</pub-id>
<pub-id pub-id-type="pmid">23894315</pub-id>
</element-citation>
</ref>
<ref id="B233-ijms-21-00401">
<label>233.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Shen</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Chen</surname>
<given-names>Y.-J.</given-names>
</name>
<name>
<surname>Jia</surname>
<given-names>Y.-W.</given-names>
</name>
<name>
<surname>Zhao</surname>
<given-names>W.-Y.</given-names>
</name>
<name>
<surname>Chen</surname>
<given-names>G.-H.</given-names>
</name>
<name>
<surname>Liu</surname>
<given-names>D.-F.</given-names>
</name>
<name>
<surname>Chen</surname>
<given-names>Y.-Y.</given-names>
</name>
<name>
<surname>Zhang</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>Liu</surname>
<given-names>X.P.</given-names>
</name>
</person-group>
<article-title>Reverse effect of curcumin on CDDP-induced drug-resistance via Keap1/p62-Nrf2 signaling in A549/CDDP cell</article-title>
<source>Asian Pac. J. Trop. Med.</source>
<year>2017</year>
<volume>10</volume>
<fpage>1190</fpage>
<lpage>1196</lpage>
<pub-id pub-id-type="doi">10.1016/j.apjtm.2017.10.028</pub-id>
<pub-id pub-id-type="pmid">29268977</pub-id>
</element-citation>
</ref>
<ref id="B234-ijms-21-00401">
<label>234.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Gu</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Li</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Li</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Song</surname>
<given-names>L.</given-names>
</name>
<name>
<surname>Li</surname>
<given-names>D.</given-names>
</name>
<name>
<surname>Peng</surname>
<given-names>L.</given-names>
</name>
<name>
<surname>Wan</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Hua</surname>
<given-names>S.</given-names>
</name>
</person-group>
<article-title>Nanomicelles loaded with doxorubicin and curcumin for alleviating multidrug resistance in lung cancer</article-title>
<source>Int. J. Nanomed.</source>
<year>2016</year>
<volume>11</volume>
<fpage>5757</fpage>
<lpage>5770</lpage>
<pub-id pub-id-type="doi">10.2147/IJN.S118568</pub-id>
</element-citation>
</ref>
<ref id="B235-ijms-21-00401">
<label>235.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Ye</surname>
<given-names>M.X.</given-names>
</name>
<name>
<surname>Zhao</surname>
<given-names>Y.L.</given-names>
</name>
<name>
<surname>Li</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Miao</surname>
<given-names>Q.</given-names>
</name>
<name>
<surname>Li</surname>
<given-names>Z.-K.</given-names>
</name>
<name>
<surname>Ren</surname>
<given-names>X.L.</given-names>
</name>
<name>
<surname>Song</surname>
<given-names>L.Q.</given-names>
</name>
<name>
<surname>Yin</surname>
<given-names>H.</given-names>
</name>
<name>
<surname>Zhang</surname>
<given-names>J.</given-names>
</name>
</person-group>
<article-title>Curcumin reverses cis-platin resistance and promotes human lung adenocarcinoma A549/DDP cell apoptosis through HIF-1α and caspase-3 mechanisms</article-title>
<source>Phytomedicine</source>
<year>2012</year>
<volume>19</volume>
<fpage>779</fpage>
<lpage>787</lpage>
<pub-id pub-id-type="doi">10.1016/j.phymed.2012.03.005</pub-id>
<pub-id pub-id-type="pmid">22483553</pub-id>
</element-citation>
</ref>
<ref id="B236-ijms-21-00401">
<label>236.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Jiang</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Huang</surname>
<given-names>O.</given-names>
</name>
<name>
<surname>Zhang</surname>
<given-names>X.</given-names>
</name>
<name>
<surname>Xie</surname>
<given-names>Z.</given-names>
</name>
<name>
<surname>Shen</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Liu</surname>
<given-names>H.</given-names>
</name>
<name>
<surname>Geng</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Shen</surname>
<given-names>K.</given-names>
</name>
</person-group>
<article-title>Curcumin induces cell death and restores tamoxifen sensitivity in the antiestrogen-resistant breast cancer cell lines MCF-7/LCC2 and MCF-7/LCC9</article-title>
<source>Molcules</source>
<year>2013</year>
<volume>18</volume>
<fpage>701</fpage>
<lpage>720</lpage>
<pub-id pub-id-type="doi">10.3390/molecules18010701</pub-id>
</element-citation>
</ref>
<ref id="B237-ijms-21-00401">
<label>237.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Thulasiraman</surname>
<given-names>P.</given-names>
</name>
<name>
<surname>McAndrews</surname>
<given-names>D.J.</given-names>
</name>
<name>
<surname>Mohiudddin</surname>
<given-names>I.Q.</given-names>
</name>
</person-group>
<article-title>Curcumin restores sensitivity to retinoic acid in triple negative breast cancer cells</article-title>
<source>BMC Cancer</source>
<year>2014</year>
<volume>14</volume>
<elocation-id>724</elocation-id>
<pub-id pub-id-type="doi">10.1186/1471-2407-14-724</pub-id>
<pub-id pub-id-type="pmid">25260874</pub-id>
</element-citation>
</ref>
<ref id="B238-ijms-21-00401">
<label>238.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Wang</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Chen</surname>
<given-names>R.</given-names>
</name>
<name>
<surname>Zhong</surname>
<given-names>Z.</given-names>
</name>
<name>
<surname>Shi</surname>
<given-names>Z.</given-names>
</name>
<name>
<surname>Chen</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Wang</surname>
<given-names>Y.</given-names>
</name>
</person-group>
<article-title>Epigallocatechin-3-gallate potentiates the effect of curcumin in inducing growth inhibition and apoptosis of resistant breast cancer cells</article-title>
<source>Am. J. Chin. Med.</source>
<year>2014</year>
<volume>42</volume>
<fpage>1279</fpage>
<lpage>1300</lpage>
<pub-id pub-id-type="doi">10.1142/S0192415X14500803</pub-id>
<pub-id pub-id-type="pmid">25242081</pub-id>
</element-citation>
</ref>
<ref id="B239-ijms-21-00401">
<label>239.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Ibrahim</surname>
<given-names>A.S.</given-names>
</name>
<name>
<surname>Sobh</surname>
<given-names>M.A.</given-names>
</name>
<name>
<surname>Eid</surname>
<given-names>H.M.</given-names>
</name>
<name>
<surname>Salem</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Elbelasi</surname>
<given-names>H.H.</given-names>
</name>
<name>
<surname>El-Naggar</surname>
<given-names>M.H.</given-names>
</name>
<name>
<surname>AbdelBar</surname>
<given-names>F.M.</given-names>
</name>
<name>
<surname>Sheashaa</surname>
<given-names>H.</given-names>
</name>
<name>
<surname>Sobh</surname>
<given-names>M.A.</given-names>
</name>
<name>
<surname>Badria</surname>
<given-names>F.A.</given-names>
</name>
</person-group>
<article-title>Gingerol-derivatives: Emerging new therapy against human drug-resistant MCF-7</article-title>
<source>Tumor Biol.</source>
<year>2014</year>
<volume>35</volume>
<fpage>9941</fpage>
<lpage>9948</lpage>
<pub-id pub-id-type="doi">10.1007/s13277-014-2248-7</pub-id>
<pub-id pub-id-type="pmid">25004806</pub-id>
</element-citation>
</ref>
<ref id="B240-ijms-21-00401">
<label>240.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Boumendjel</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Di Pietro</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Dumontet</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>Barron</surname>
<given-names>D.</given-names>
</name>
</person-group>
<article-title>Recent advances in the discovery of flavonoids and analogs with high-affinity binding to P-glycoprotein responsible for cancer cell multidrug resistance</article-title>
<source>Med. Res. Rev.</source>
<year>2002</year>
<volume>22</volume>
<fpage>512</fpage>
<lpage>529</lpage>
<pub-id pub-id-type="doi">10.1002/med.10015</pub-id>
<pub-id pub-id-type="pmid">12210557</pub-id>
</element-citation>
</ref>
<ref id="B241-ijms-21-00401">
<label>241.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Gan</surname>
<given-names>R.Y.</given-names>
</name>
<name>
<surname>Li</surname>
<given-names>H.B.</given-names>
</name>
<name>
<surname>Sui</surname>
<given-names>Z.Q.</given-names>
</name>
<name>
<surname>Corke</surname>
<given-names>H.</given-names>
</name>
</person-group>
<article-title>Absorption, metabolism, anti-cancer effect and molecular targets of epigallocatechin gallate (EGCG): An updated review</article-title>
<source>Crit. Rev. Food Sci. Nutr.</source>
<year>2018</year>
<volume>58</volume>
<fpage>924</fpage>
<lpage>941</lpage>
<pub-id pub-id-type="doi">10.1080/10408398.2016.1231168</pub-id>
<pub-id pub-id-type="pmid">27645804</pub-id>
</element-citation>
</ref>
<ref id="B242-ijms-21-00401">
<label>242.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Rauf</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Imran</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Butt</surname>
<given-names>M.S.</given-names>
</name>
<name>
<surname>Nadeem</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Peters</surname>
<given-names>D.G.</given-names>
</name>
<name>
<surname>Mubarak</surname>
<given-names>M.S.</given-names>
</name>
</person-group>
<article-title>Resveratrol as an anti-cancer agent: A review</article-title>
<source>Crit. Rev. Food Sci. Nutr.</source>
<year>2018</year>
<volume>58</volume>
<fpage>1428</fpage>
<lpage>1447</lpage>
<pub-id pub-id-type="doi">10.1080/10408398.2016.1263597</pub-id>
<pub-id pub-id-type="pmid">28001084</pub-id>
</element-citation>
</ref>
<ref id="B243-ijms-21-00401">
<label>243.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Hussain</surname>
<given-names>S.A.</given-names>
</name>
<name>
<surname>Sulaiman</surname>
<given-names>A.A.</given-names>
</name>
<name>
<surname>Balch</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>Chauhan</surname>
<given-names>H.</given-names>
</name>
<name>
<surname>Alhadidi</surname>
<given-names>Q.M.</given-names>
</name>
<name>
<surname>Tiwari</surname>
<given-names>A.K.</given-names>
</name>
</person-group>
<article-title>Natural Polyphenols in Cancer Chemoresistance</article-title>
<source>Nutr. Cancer</source>
<year>2016</year>
<volume>68</volume>
<fpage>879</fpage>
<lpage>891</lpage>
<pub-id pub-id-type="doi">10.1080/01635581.2016.1192201</pub-id>
<pub-id pub-id-type="pmid">27366999</pub-id>
</element-citation>
</ref>
<ref id="B244-ijms-21-00401">
<label>244.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Czerwonka</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Maciolek</surname>
<given-names>U.</given-names>
</name>
<name>
<surname>Kalafut</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Mendyk</surname>
<given-names>E.</given-names>
</name>
<name>
<surname>Kuzniar</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Rzeski</surname>
<given-names>W.</given-names>
</name>
</person-group>
<article-title>Anticancer effects of sodium and potassium quercetin-5′-sulfonates through inhibition of proliferation, induction of apoptosis, and cell cycle arrest in the HT-29 human adenocarcinoma cell line</article-title>
<source>Bioorg. Chem.</source>
<year>2019</year>
<volume>94</volume>
<fpage>103426</fpage>
<pub-id pub-id-type="doi">10.1016/j.bioorg.2019.103426</pub-id>
<pub-id pub-id-type="pmid">31784064</pub-id>
</element-citation>
</ref>
<ref id="B245-ijms-21-00401">
<label>245.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Scambia</surname>
<given-names>G.</given-names>
</name>
<name>
<surname>Ranelletti</surname>
<given-names>F.O.</given-names>
</name>
<name>
<surname>Panici</surname>
<given-names>P.B.</given-names>
</name>
<name>
<surname>De Vincenzo</surname>
<given-names>R.</given-names>
</name>
<name>
<surname>Bonanno</surname>
<given-names>G.</given-names>
</name>
<name>
<surname>Ferrandina</surname>
<given-names>G.</given-names>
</name>
<name>
<surname>Piantelli</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Bussa</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Rumi</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>Cianfriglia</surname>
<given-names>M.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Quercetin potentiates the effect of adriamycin in a multidrug-resistant MCF-7 human breast-cancer cell line: P-glycoprotein as a possible target</article-title>
<source>Cancer Chemother. Pharm.</source>
<year>1994</year>
<volume>34</volume>
<fpage>459</fpage>
<lpage>464</lpage>
<pub-id pub-id-type="doi">10.1007/BF00685655</pub-id>
</element-citation>
</ref>
<ref id="B246-ijms-21-00401">
<label>246.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>He</surname>
<given-names>W.T.</given-names>
</name>
<name>
<surname>Zhu</surname>
<given-names>Y.H.</given-names>
</name>
<name>
<surname>Zhang</surname>
<given-names>T.</given-names>
</name>
<name>
<surname>Abulimiti</surname>
<given-names>P.</given-names>
</name>
<name>
<surname>Zeng</surname>
<given-names>F.Y.</given-names>
</name>
<name>
<surname>Zhang</surname>
<given-names>L.P.</given-names>
</name>
<name>
<surname>Luo</surname>
<given-names>L.J.</given-names>
</name>
<name>
<surname>Xie</surname>
<given-names>X.M.</given-names>
</name>
<name>
<surname>Zhang</surname>
<given-names>H.L.</given-names>
</name>
</person-group>
<article-title>Curcumin Reverses 5-Fluorouracil Resistance by Promoting Human Colon Cancer HCT-8/5-FU Cell Apoptosis and Down-regulating Heat Shock Protein 27 and P-Glycoprotein</article-title>
<source>Chin. J. Integr. Med.</source>
<year>2019</year>
<volume>25</volume>
<fpage>416</fpage>
<lpage>424</lpage>
<pub-id pub-id-type="doi">10.1007/s11655-018-2997-z</pub-id>
<pub-id pub-id-type="pmid">30484020</pub-id>
</element-citation>
</ref>
<ref id="B247-ijms-21-00401">
<label>247.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Zhu</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Zhao</surname>
<given-names>B.</given-names>
</name>
<name>
<surname>Xiong</surname>
<given-names>P.</given-names>
</name>
<name>
<surname>Wang</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>Zhang</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Tian</surname>
<given-names>X.</given-names>
</name>
<name>
<surname>Huang</surname>
<given-names>Y.</given-names>
</name>
</person-group>
<article-title>Curcumin Induces Autophagy via Inhibition of Yes-Associated Protein (YAP) in Human Colon Cancer Cells</article-title>
<source>Med. Sci. Monit.</source>
<year>2018</year>
<volume>24</volume>
<fpage>7035</fpage>
<lpage>7042</lpage>
<pub-id pub-id-type="doi">10.12659/MSM.910650</pub-id>
<pub-id pub-id-type="pmid">30281585</pub-id>
</element-citation>
</ref>
<ref id="B248-ijms-21-00401">
<label>248.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Su</surname>
<given-names>P.</given-names>
</name>
<name>
<surname>Yang</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Wang</surname>
<given-names>G.</given-names>
</name>
<name>
<surname>Chen</surname>
<given-names>X.</given-names>
</name>
<name>
<surname>Ju</surname>
<given-names>Y.</given-names>
</name>
</person-group>
<article-title>Curcumin attenuates resistance to irinotecan via induction of apoptosis of cancer stem cells in chemoresistant colon cancer cells</article-title>
<source>Int. J. Oncol.</source>
<year>2018</year>
<volume>53</volume>
<fpage>1343</fpage>
<lpage>1353</lpage>
<pub-id pub-id-type="doi">10.3892/ijo.2018.4461</pub-id>
<pub-id pub-id-type="pmid">29956726</pub-id>
</element-citation>
</ref>
<ref id="B249-ijms-21-00401">
<label>249.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Wen</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>Fu</surname>
<given-names>L.</given-names>
</name>
<name>
<surname>Huang</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Dai</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Wang</surname>
<given-names>B.</given-names>
</name>
<name>
<surname>Xu</surname>
<given-names>G.</given-names>
</name>
<name>
<surname>Wu</surname>
<given-names>L.</given-names>
</name>
<name>
<surname>Zhou</surname>
<given-names>H.</given-names>
</name>
</person-group>
<article-title>Curcumin reverses doxorubicin resistance via inhibition the efflux function of ABCB4 in doxorubicinresistant breast cancer cells</article-title>
<source>Mol. Med. Rep.</source>
<year>2019</year>
<volume>19</volume>
<fpage>5162</fpage>
<lpage>5168</lpage>
<pub-id pub-id-type="pmid">31059026</pub-id>
</element-citation>
</ref>
<ref id="B250-ijms-21-00401">
<label>250.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Hu</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>Li</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Guo</surname>
<given-names>T.</given-names>
</name>
<name>
<surname>Wang</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Huang</surname>
<given-names>W.</given-names>
</name>
<name>
<surname>Yang</surname>
<given-names>K.</given-names>
</name>
<name>
<surname>Liao</surname>
<given-names>Z.</given-names>
</name>
<name>
<surname>Wang</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Zhang</surname>
<given-names>F.</given-names>
</name>
<name>
<surname>Wang</surname>
<given-names>H.</given-names>
</name>
</person-group>
<article-title>Anti-metastasis activity of curcumin against breast cancer via the inhibition of stem cell-like properties and EMT</article-title>
<source>Phytomedicine</source>
<year>2019</year>
<volume>58</volume>
<fpage>152740</fpage>
<pub-id pub-id-type="doi">10.1016/j.phymed.2018.11.001</pub-id>
<pub-id pub-id-type="pmid">31005718</pub-id>
</element-citation>
</ref>
<ref id="B251-ijms-21-00401">
<label>251.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Zhao</surname>
<given-names>W.</given-names>
</name>
<name>
<surname>Zhou</surname>
<given-names>X.</given-names>
</name>
<name>
<surname>Qi</surname>
<given-names>G.</given-names>
</name>
<name>
<surname>Guo</surname>
<given-names>Y.</given-names>
</name>
</person-group>
<article-title>Curcumin suppressed the prostate cancer by inhibiting JNK pathways via epigenetic regulation</article-title>
<source>J. Biochem. Mol. Toxicol.</source>
<year>2018</year>
<volume>32</volume>
<fpage>e22049</fpage>
<pub-id pub-id-type="doi">10.1002/jbt.22049</pub-id>
<pub-id pub-id-type="pmid">29485738</pub-id>
</element-citation>
</ref>
<ref id="B252-ijms-21-00401">
<label>252.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Lin</surname>
<given-names>W.</given-names>
</name>
<name>
<surname>Luo</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Sun</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Lin</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>Li</surname>
<given-names>G.</given-names>
</name>
<name>
<surname>Niu</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Chang</surname>
<given-names>C.</given-names>
</name>
</person-group>
<article-title>ASC-J9((R)) suppresses prostate cancer cell invasion via altering the sumoylation-phosphorylation of STAT3</article-title>
<source>Cancer Lett.</source>
<year>2018</year>
<volume>425</volume>
<fpage>21</fpage>
<lpage>30</lpage>
<pub-id pub-id-type="doi">10.1016/j.canlet.2018.02.007</pub-id>
<pub-id pub-id-type="pmid">29425687</pub-id>
</element-citation>
</ref>
<ref id="B253-ijms-21-00401">
<label>253.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Chen</surname>
<given-names>Q.Y.</given-names>
</name>
<name>
<surname>Lu</surname>
<given-names>G.H.</given-names>
</name>
<name>
<surname>Wu</surname>
<given-names>Y.Q.</given-names>
</name>
<name>
<surname>Zheng</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Xu</surname>
<given-names>K.</given-names>
</name>
<name>
<surname>Wu</surname>
<given-names>L.J.</given-names>
</name>
<name>
<surname>Jiang</surname>
<given-names>Z.Y.</given-names>
</name>
<name>
<surname>Feng</surname>
<given-names>R.</given-names>
</name>
<name>
<surname>Zhou</surname>
<given-names>J.Y.</given-names>
</name>
</person-group>
<article-title>Curcumin induces mitochondria pathway mediated cell apoptosis in A549 lung adenocarcinoma cells</article-title>
<source>Oncol. Rep.</source>
<year>2010</year>
<volume>23</volume>
<fpage>1285</fpage>
<lpage>1292</lpage>
<pub-id pub-id-type="doi">10.3892/or_00000762</pub-id>
<pub-id pub-id-type="pmid">20372842</pub-id>
</element-citation>
</ref>
<ref id="B254-ijms-21-00401">
<label>254.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Fulda</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Debatin</surname>
<given-names>K.M.</given-names>
</name>
</person-group>
<article-title>Sensitization for tumor necrosis factor-related apoptosis-inducing ligand-induced apoptosis by the chemopreventive agent resveratrol</article-title>
<source>Cancer Res.</source>
<year>2004</year>
<volume>64</volume>
<fpage>337</fpage>
<lpage>346</lpage>
<pub-id pub-id-type="doi">10.1158/0008-5472.CAN-03-1656</pub-id>
<pub-id pub-id-type="pmid">14729643</pub-id>
</element-citation>
</ref>
<ref id="B255-ijms-21-00401">
<label>255.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Lin</surname>
<given-names>J.N.</given-names>
</name>
<name>
<surname>Lin</surname>
<given-names>V.C.</given-names>
</name>
<name>
<surname>Rau</surname>
<given-names>K.M.</given-names>
</name>
<name>
<surname>Shieh</surname>
<given-names>P.C.</given-names>
</name>
<name>
<surname>Kuo</surname>
<given-names>D.H.</given-names>
</name>
<name>
<surname>Shieh</surname>
<given-names>J.C.</given-names>
</name>
<name>
<surname>Chen</surname>
<given-names>W.J.</given-names>
</name>
<name>
<surname>Tsai</surname>
<given-names>S.C.</given-names>
</name>
<name>
<surname>Way</surname>
<given-names>T.D.</given-names>
</name>
</person-group>
<article-title>Resveratrol modulates tumor cell proliferation and protein translation via SIRT1-dependent AMPK activation</article-title>
<source>J. Agric. Food Chem.</source>
<year>2010</year>
<volume>58</volume>
<fpage>1584</fpage>
<lpage>1592</lpage>
<pub-id pub-id-type="doi">10.1021/jf9035782</pub-id>
<pub-id pub-id-type="pmid">19928762</pub-id>
</element-citation>
</ref>
<ref id="B256-ijms-21-00401">
<label>256.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Lecumberri</surname>
<given-names>E.</given-names>
</name>
<name>
<surname>Dupertuis</surname>
<given-names>Y.M.</given-names>
</name>
<name>
<surname>Miralbell</surname>
<given-names>R.</given-names>
</name>
<name>
<surname>Pichard</surname>
<given-names>C.</given-names>
</name>
</person-group>
<article-title>Green tea polyphenol epigallocatechin-3-gallate (EGCG) as adjuvant in cancer therapy</article-title>
<source>Clin. Nutr.</source>
<year>2013</year>
<volume>32</volume>
<fpage>894</fpage>
<lpage>903</lpage>
<pub-id pub-id-type="doi">10.1016/j.clnu.2013.03.008</pub-id>
<pub-id pub-id-type="pmid">23582951</pub-id>
</element-citation>
</ref>
<ref id="B257-ijms-21-00401">
<label>257.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Shin</surname>
<given-names>S.C.</given-names>
</name>
<name>
<surname>Choi</surname>
<given-names>J.S.</given-names>
</name>
<name>
<surname>Li</surname>
<given-names>X.</given-names>
</name>
</person-group>
<article-title>Enhanced bioavailability of tamoxifen after oral administration of tamoxifen with quercetin in rats</article-title>
<source>Int. J. Pharm.</source>
<year>2006</year>
<volume>313</volume>
<fpage>144</fpage>
<lpage>149</lpage>
<pub-id pub-id-type="doi">10.1016/j.ijpharm.2006.01.028</pub-id>
<pub-id pub-id-type="pmid">16516418</pub-id>
</element-citation>
</ref>
<ref id="B258-ijms-21-00401">
<label>258.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Lv</surname>
<given-names>L.</given-names>
</name>
<name>
<surname>Liu</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>Chen</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>Yu</surname>
<given-names>X.</given-names>
</name>
<name>
<surname>Chen</surname>
<given-names>G.</given-names>
</name>
<name>
<surname>Shi</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Qin</surname>
<given-names>F.</given-names>
</name>
<name>
<surname>Ou</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Qiu</surname>
<given-names>K.</given-names>
</name>
<name>
<surname>Li</surname>
<given-names>G.</given-names>
</name>
</person-group>
<article-title>Quercetin and doxorubicin co-encapsulated biotin receptor-targeting nanoparticles for minimizing drug resistance in breast cancer</article-title>
<source>Oncotarget</source>
<year>2016</year>
<volume>7</volume>
<fpage>32184</fpage>
<lpage>32199</lpage>
<pub-id pub-id-type="doi">10.18632/oncotarget.8607</pub-id>
<pub-id pub-id-type="pmid">27058756</pub-id>
</element-citation>
</ref>
<ref id="B259-ijms-21-00401">
<label>259.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Hong</surname>
<given-names>Z.</given-names>
</name>
<name>
<surname>Cao</surname>
<given-names>X.</given-names>
</name>
<name>
<surname>Li</surname>
<given-names>N.</given-names>
</name>
<name>
<surname>Zhang</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Lan</surname>
<given-names>L.</given-names>
</name>
<name>
<surname>Zhou</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Pan</surname>
<given-names>X.</given-names>
</name>
<name>
<surname>Shen</surname>
<given-names>L.</given-names>
</name>
<name>
<surname>Yin</surname>
<given-names>Z.</given-names>
</name>
<name>
<surname>Luo</surname>
<given-names>L.</given-names>
</name>
</person-group>
<article-title>Luteolin is effective in the non-small cell lung cancer model with L 858 R/T 790 M EGF receptor mutation and erlotinib resistance</article-title>
<source>Br. J. Pharm.</source>
<year>2014</year>
<volume>171</volume>
<fpage>2842</fpage>
<lpage>2853</lpage>
<pub-id pub-id-type="doi">10.1111/bph.12610</pub-id>
<pub-id pub-id-type="pmid">24471765</pub-id>
</element-citation>
</ref>
<ref id="B260-ijms-21-00401">
<label>260.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Luo</surname>
<given-names>T.</given-names>
</name>
<name>
<surname>Wang</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Yin</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Hua</surname>
<given-names>H.</given-names>
</name>
<name>
<surname>Jing</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Sun</surname>
<given-names>X.</given-names>
</name>
<name>
<surname>Li</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Zhang</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Jiang</surname>
<given-names>Y.</given-names>
</name>
</person-group>
<article-title>(-)-Epigallocatechin gallate sensitizes breast cancer cells to paclitaxel in a murine model of breast carcinoma</article-title>
<source>Breast Cancer Res.</source>
<year>2010</year>
<volume>12</volume>
<fpage>R8</fpage>
<pub-id pub-id-type="doi">10.1186/bcr2473</pub-id>
<pub-id pub-id-type="pmid">20078855</pub-id>
</element-citation>
</ref>
<ref id="B261-ijms-21-00401">
<label>261.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>El-Rahman</surname>
<given-names>S.S.A.</given-names>
</name>
<name>
<surname>Shehab</surname>
<given-names>G.</given-names>
</name>
<name>
<surname>Nashaat</surname>
<given-names>H.</given-names>
</name>
</person-group>
<article-title>Epigallocatechin-3-Gallate: The prospective targeting of cancer stem cells and preventing metastasis of chemically-induced mammary cancer in rats</article-title>
<source>Am. J. Med. Sci.</source>
<year>2017</year>
<volume>354</volume>
<fpage>54</fpage>
<lpage>63</lpage>
<pub-id pub-id-type="doi">10.1016/j.amjms.2017.03.001</pub-id>
<pub-id pub-id-type="pmid">28755734</pub-id>
</element-citation>
</ref>
<ref id="B262-ijms-21-00401">
<label>262.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Liu</surname>
<given-names>D.</given-names>
</name>
<name>
<surname>Yan</surname>
<given-names>L.</given-names>
</name>
<name>
<surname>Wang</surname>
<given-names>L.</given-names>
</name>
<name>
<surname>Tai</surname>
<given-names>W.</given-names>
</name>
<name>
<surname>Wang</surname>
<given-names>W.</given-names>
</name>
<name>
<surname>Yang</surname>
<given-names>C.</given-names>
</name>
</person-group>
<article-title>Genistein enhances the effect of cisplatin on the inhibition of non-small cell lung cancer A549 cell growth in vitro and in vivo</article-title>
<source>Oncol. Lett.</source>
<year>2014</year>
<volume>8</volume>
<fpage>2806</fpage>
<lpage>2810</lpage>
<pub-id pub-id-type="doi">10.3892/ol.2014.2597</pub-id>
<pub-id pub-id-type="pmid">25364470</pub-id>
</element-citation>
</ref>
<ref id="B263-ijms-21-00401">
<label>263.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Zhu</surname>
<given-names>H.</given-names>
</name>
<name>
<surname>Cheng</surname>
<given-names>H.</given-names>
</name>
<name>
<surname>Ren</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Liu</surname>
<given-names>Z.G.</given-names>
</name>
<name>
<surname>Zhang</surname>
<given-names>Y.F.</given-names>
</name>
<name>
<surname>De Luo</surname>
<given-names>B.</given-names>
</name>
</person-group>
<article-title>Synergistic inhibitory effects by the combination of gefitinib and genistein on NSCLC with acquired drug-resistance in vitro and in vivo</article-title>
<source>Mol. Biol. Rep.</source>
<year>2012</year>
<volume>39</volume>
<fpage>4971</fpage>
<lpage>4979</lpage>
<pub-id pub-id-type="doi">10.1007/s11033-011-1293-1</pub-id>
<pub-id pub-id-type="pmid">22160570</pub-id>
</element-citation>
</ref>
<ref id="B264-ijms-21-00401">
<label>264.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Meng</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Guo</surname>
<given-names>F.</given-names>
</name>
<name>
<surname>Xu</surname>
<given-names>H.</given-names>
</name>
<name>
<surname>Liang</surname>
<given-names>W.</given-names>
</name>
<name>
<surname>Wang</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>Yang</surname>
<given-names>X.D.</given-names>
</name>
</person-group>
<article-title>Combination therapy using co-encapsulated resveratrol and paclitaxel in liposomes for drug resistance reversal in breast cancer cells in vivo</article-title>
<source>Sci. Rep.</source>
<year>2016</year>
<volume>6</volume>
<fpage>22390</fpage>
<pub-id pub-id-type="doi">10.1038/srep22390</pub-id>
<pub-id pub-id-type="pmid">26947928</pub-id>
</element-citation>
</ref>
<ref id="B265-ijms-21-00401">
<label>265.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Yang</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Li</surname>
<given-names>W.</given-names>
</name>
<name>
<surname>Sun</surname>
<given-names>H.</given-names>
</name>
<name>
<surname>Wu</surname>
<given-names>B.</given-names>
</name>
<name>
<surname>Ji</surname>
<given-names>F.</given-names>
</name>
<name>
<surname>Sun</surname>
<given-names>T.</given-names>
</name>
<name>
<surname>Chang</surname>
<given-names>H.</given-names>
</name>
<name>
<surname>Shen</surname>
<given-names>P.</given-names>
</name>
<name>
<surname>Wang</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Zhou</surname>
<given-names>D.</given-names>
</name>
</person-group>
<article-title>Resveratrol elicits anti-colorectal cancer effect by activating miR-34c-KITLG in vitro and in vivo</article-title>
<source>BMC Cancer</source>
<year>2015</year>
<volume>15</volume>
<elocation-id>969</elocation-id>
<pub-id pub-id-type="doi">10.1186/s12885-015-1958-6</pub-id>
<pub-id pub-id-type="pmid">26674205</pub-id>
</element-citation>
</ref>
<ref id="B266-ijms-21-00401">
<label>266.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Zhao</surname>
<given-names>W.</given-names>
</name>
<name>
<surname>Bao</surname>
<given-names>P.</given-names>
</name>
<name>
<surname>Qi</surname>
<given-names>H.</given-names>
</name>
<name>
<surname>You</surname>
<given-names>H.</given-names>
</name>
</person-group>
<article-title>Resveratrol down-regulates survivin and induces apoptosis in human multidrug-resistant SPC-A-1/CDDP cells</article-title>
<source>Oncol. Rep.</source>
<year>2010</year>
<volume>23</volume>
<fpage>279</fpage>
<lpage>286</lpage>
<pub-id pub-id-type="doi">10.3892/or_00000634</pub-id>
<pub-id pub-id-type="pmid">19956893</pub-id>
</element-citation>
</ref>
<ref id="B267-ijms-21-00401">
<label>267.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Wu</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Omene</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>Karkoszka</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Bosland</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Eckard</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Klein</surname>
<given-names>C.B.</given-names>
</name>
<name>
<surname>Frenkel</surname>
<given-names>K.</given-names>
</name>
</person-group>
<article-title>Caffeic acid phenethyl ester (CAPE), derived from a honeybee product propolis, exhibits a diversity of anti-tumor effects in pre-clinical models of human breast cancer</article-title>
<source>Cancer Lett.</source>
<year>2011</year>
<volume>308</volume>
<fpage>43</fpage>
<lpage>53</lpage>
<pub-id pub-id-type="doi">10.1016/j.canlet.2011.04.012</pub-id>
<pub-id pub-id-type="pmid">21570765</pub-id>
</element-citation>
</ref>
<ref id="B268-ijms-21-00401">
<label>268.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Lou</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Zhao</surname>
<given-names>Z.</given-names>
</name>
<name>
<surname>Dezort</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Lohneis</surname>
<given-names>T.</given-names>
</name>
<name>
<surname>Zhang</surname>
<given-names>C.</given-names>
</name>
</person-group>
<article-title>Multifunctional Nanosystem for Targeted and Controlled Delivery of Multiple Chemotherapeutic Agents for the Treatment of Drug-Resistant Breast Cancer</article-title>
<source>ACS Omega</source>
<year>2018</year>
<volume>3</volume>
<fpage>9210</fpage>
<lpage>9219</lpage>
<pub-id pub-id-type="doi">10.1021/acsomega.8b00949</pub-id>
<pub-id pub-id-type="pmid">30197996</pub-id>
</element-citation>
</ref>
<ref id="B269-ijms-21-00401">
<label>269.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Kunnumakkara</surname>
<given-names>A.B.</given-names>
</name>
<name>
<surname>Diagaradjane</surname>
<given-names>P.</given-names>
</name>
<name>
<surname>Anand</surname>
<given-names>P.</given-names>
</name>
<name>
<surname>Kuzhuvelil</surname>
<given-names>H.B.</given-names>
</name>
<name>
<surname>Deorukhkar</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Gelovani</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Guha</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Krishnan</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Aggarwal</surname>
<given-names>B.B.</given-names>
</name>
</person-group>
<article-title>Curcumin sensitizes human colorectal cancer to capecitabine by modulation of cyclin D1, COX-2, MMP-9, VEGF and CXCR4 expression in an orthotopic mouse model</article-title>
<source>Int. J. Cancer</source>
<year>2009</year>
<volume>125</volume>
<fpage>2187</fpage>
<lpage>2197</lpage>
<pub-id pub-id-type="doi">10.1002/ijc.24593</pub-id>
<pub-id pub-id-type="pmid">19623659</pub-id>
</element-citation>
</ref>
<ref id="B270-ijms-21-00401">
<label>270.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Neerati</surname>
<given-names>P.</given-names>
</name>
<name>
<surname>Sudhakar</surname>
<given-names>Y.A.</given-names>
</name>
<name>
<surname>Kanwar</surname>
<given-names>J.R.</given-names>
</name>
</person-group>
<article-title>Curcumin regulates colon cancer by inhibiting P-glycoprotein in in-situ cancerous colon perfusion rat model</article-title>
<source>J. Cancer Sci.</source>
<year>2013</year>
<volume>5</volume>
<fpage>313</fpage>
<lpage>319</lpage>
</element-citation>
</ref>
<ref id="B271-ijms-21-00401">
<label>271.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Howells</surname>
<given-names>L.M.</given-names>
</name>
<name>
<surname>Sale</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Sriramareddy</surname>
<given-names>S.N.</given-names>
</name>
<name>
<surname>Irving</surname>
<given-names>G.R.</given-names>
</name>
<name>
<surname>Jones</surname>
<given-names>D.J.</given-names>
</name>
<name>
<surname>Ottley</surname>
<given-names>C.J.</given-names>
</name>
<name>
<surname>Pearson</surname>
<given-names>D.G.</given-names>
</name>
<name>
<surname>Mann</surname>
<given-names>C.D.</given-names>
</name>
<name>
<surname>Manson</surname>
<given-names>M.M.</given-names>
</name>
<name>
<surname>Berry</surname>
<given-names>D.P.</given-names>
</name>
</person-group>
<article-title>Curcumin ameliorates oxaliplatin-induced chemoresistance in HCT116 colorectal cancer cells in vitro and in vivo</article-title>
<source>Int. J. Cancer</source>
<year>2011</year>
<volume>129</volume>
<fpage>476</fpage>
<lpage>486</lpage>
<pub-id pub-id-type="doi">10.1002/ijc.25670</pub-id>
<pub-id pub-id-type="pmid">20839263</pub-id>
</element-citation>
</ref>
<ref id="B272-ijms-21-00401">
<label>272.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Yan</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Wang</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Zhang</surname>
<given-names>X.</given-names>
</name>
<name>
<surname>Liu</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Tian</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>Wang</surname>
<given-names>H.</given-names>
</name>
</person-group>
<article-title>Targeted nanomedicine for prostate cancer therapy: Docetaxel and curcumin co-encapsulated lipid–polymer hybrid nanoparticles for the enhanced anti-tumor activity in vitro and in vivo</article-title>
<source>Drug Deliv.</source>
<year>2016</year>
<volume>23</volume>
<fpage>1757</fpage>
<lpage>1762</lpage>
<pub-id pub-id-type="doi">10.3109/10717544.2015.1069423</pub-id>
<pub-id pub-id-type="pmid">26203689</pub-id>
</element-citation>
</ref>
<ref id="B273-ijms-21-00401">
<label>273.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Pramanik</surname>
<given-names>D.</given-names>
</name>
<name>
<surname>Campbell</surname>
<given-names>N.R.</given-names>
</name>
<name>
<surname>Das</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Gupta</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Chenna</surname>
<given-names>V.</given-names>
</name>
<name>
<surname>Bisht</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Sysa-Shah</surname>
<given-names>P.</given-names>
</name>
<name>
<surname>Bedja</surname>
<given-names>D.</given-names>
</name>
<name>
<surname>Karikari</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>Steenbergen</surname>
<given-names>C.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>A composite polymer nanoparticle overcomes multidrug resistance and ameliorates doxorubicin-associated cardiomyopathy</article-title>
<source>Oncotarget</source>
<year>2012</year>
<volume>3</volume>
<fpage>640</fpage>
<lpage>650</lpage>
<pub-id pub-id-type="doi">10.18632/oncotarget.543</pub-id>
<pub-id pub-id-type="pmid">22791660</pub-id>
</element-citation>
</ref>
<ref id="B274-ijms-21-00401">
<label>274.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Li</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Zhang</surname>
<given-names>Z.</given-names>
</name>
<name>
<surname>Hill</surname>
<given-names>D.L.</given-names>
</name>
<name>
<surname>Wang</surname>
<given-names>H.</given-names>
</name>
<name>
<surname>Zhang</surname>
<given-names>R.</given-names>
</name>
</person-group>
<article-title>Curcumin, a dietary component, has anticancer, chemosensitization, and radiosensitization effects by down-regulating the MDM2 oncogene through the PI3K/mTOR/ETS2 pathway</article-title>
<source>Cancer Res.</source>
<year>2007</year>
<volume>67</volume>
<fpage>1988</fpage>
<lpage>1996</lpage>
<pub-id pub-id-type="doi">10.1158/0008-5472.CAN-06-3066</pub-id>
<pub-id pub-id-type="pmid">17332326</pub-id>
</element-citation>
</ref>
<ref id="B275-ijms-21-00401">
<label>275.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Cheng</surname>
<given-names>K.-W.</given-names>
</name>
<name>
<surname>Wong</surname>
<given-names>C.C.</given-names>
</name>
<name>
<surname>Mattheolabakis</surname>
<given-names>G.</given-names>
</name>
<name>
<surname>Xie</surname>
<given-names>G.</given-names>
</name>
<name>
<surname>Huang</surname>
<given-names>L.</given-names>
</name>
<name>
<surname>Rigas</surname>
<given-names>B.</given-names>
</name>
</person-group>
<article-title>Curcumin enhances the lung cancer chemopreventive efficacy of phospho-sulindac by improving its pharmacokinetics</article-title>
<source>Int. J. Oncol.</source>
<year>2013</year>
<volume>43</volume>
<fpage>895</fpage>
<lpage>902</lpage>
<pub-id pub-id-type="doi">10.3892/ijo.2013.1995</pub-id>
<pub-id pub-id-type="pmid">23807084</pub-id>
</element-citation>
</ref>
<ref id="B276-ijms-21-00401">
<label>276.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Cui</surname>
<given-names>T.</given-names>
</name>
<name>
<surname>Zhang</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Sun</surname>
<given-names>H.</given-names>
</name>
</person-group>
<article-title>Co-delivery of doxorubicin and pH-sensitive curcumin prodrug by transferrin-targeted nanoparticles for breast cancer treatment</article-title>
<source>Oncol. Rep.</source>
<year>2017</year>
<volume>37</volume>
<fpage>1253</fpage>
<lpage>1260</lpage>
<pub-id pub-id-type="doi">10.3892/or.2017.5345</pub-id>
<pub-id pub-id-type="pmid">28075466</pub-id>
</element-citation>
</ref>
<ref id="B277-ijms-21-00401">
<label>277.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Mahammedi</surname>
<given-names>H.</given-names>
</name>
<name>
<surname>Planchat</surname>
<given-names>E.</given-names>
</name>
<name>
<surname>Pouget</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Durando</surname>
<given-names>X.</given-names>
</name>
<name>
<surname>Cure</surname>
<given-names>H.</given-names>
</name>
<name>
<surname>Guy</surname>
<given-names>L.</given-names>
</name>
<name>
<surname>Van-Praagh</surname>
<given-names>I.</given-names>
</name>
<name>
<surname>Savareux</surname>
<given-names>L.</given-names>
</name>
<name>
<surname>Atger</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Bayet-Robert</surname>
<given-names>M.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>The New Combination Docetaxel, Prednisone and Curcumin in Patients with Castration-Resistant Prostate Cancer: A Pilot Phase II Study</article-title>
<source>Oncology</source>
<year>2016</year>
<volume>90</volume>
<fpage>69</fpage>
<lpage>78</lpage>
<pub-id pub-id-type="doi">10.1159/000441148</pub-id>
<pub-id pub-id-type="pmid">26771576</pub-id>
</element-citation>
</ref>
<ref id="B278-ijms-21-00401">
<label>278.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Bayet-Robert</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Kwiatkowski</surname>
<given-names>F.</given-names>
</name>
<name>
<surname>Leheurteur</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Gachon</surname>
<given-names>F.</given-names>
</name>
<name>
<surname>Planchat</surname>
<given-names>E.</given-names>
</name>
<name>
<surname>Abrial</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>Mouret-Reynier</surname>
<given-names>M.A.</given-names>
</name>
<name>
<surname>Durando</surname>
<given-names>X.</given-names>
</name>
<name>
<surname>Barthomeuf</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>Chollet</surname>
<given-names>P.</given-names>
</name>
</person-group>
<article-title>Phase I dose escalation trial of docetaxel plus curcumin in patients with advanced and metastatic breast cancer</article-title>
<source>Cancer Biol.</source>
<year>2010</year>
<volume>9</volume>
<fpage>8</fpage>
<lpage>14</lpage>
<pub-id pub-id-type="doi">10.4161/cbt.9.1.10392</pub-id>
</element-citation>
</ref>
<ref id="B279-ijms-21-00401">
<label>279.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>D’Archivio</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Filesi</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>Vari</surname>
<given-names>R.</given-names>
</name>
<name>
<surname>Scazzocchio</surname>
<given-names>B.</given-names>
</name>
<name>
<surname>Masella</surname>
<given-names>R.</given-names>
</name>
</person-group>
<article-title>Bioavailability of the polyphenols: Status and controversies</article-title>
<source>Int. J. Mol. Sci.</source>
<year>2010</year>
<volume>11</volume>
<fpage>1321</fpage>
<lpage>1342</lpage>
<pub-id pub-id-type="doi">10.3390/ijms11041321</pub-id>
<pub-id pub-id-type="pmid">20480022</pub-id>
</element-citation>
</ref>
<ref id="B280-ijms-21-00401">
<label>280.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Tresserra-Rimbau</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Lamuela-Raventos</surname>
<given-names>R.M.</given-names>
</name>
<name>
<surname>Moreno</surname>
<given-names>J.J.</given-names>
</name>
<collab>Polyphenols, food and pharma</collab>
</person-group>
<article-title>Current knowledge and directions for future research</article-title>
<source>Biochem. Pharm.</source>
<year>2018</year>
<volume>156</volume>
<fpage>186</fpage>
<lpage>195</lpage>
<pub-id pub-id-type="doi">10.1016/j.bcp.2018.07.050</pub-id>
<pub-id pub-id-type="pmid">30086286</pub-id>
</element-citation>
</ref>
<ref id="B281-ijms-21-00401">
<label>281.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Velderrain-Rodriguez</surname>
<given-names>G.R.</given-names>
</name>
<name>
<surname>Palafox-Carlos</surname>
<given-names>H.</given-names>
</name>
<name>
<surname>Wall-Medrano</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Ayala-Zavala</surname>
<given-names>J.F.</given-names>
</name>
<name>
<surname>Chen</surname>
<given-names>C.Y.</given-names>
</name>
<name>
<surname>Robles-Sanchez</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Astiazaran-Garcia</surname>
<given-names>H.</given-names>
</name>
<name>
<surname>Alvarez-Parrilla</surname>
<given-names>E.</given-names>
</name>
<name>
<surname>Gonzalez-Aguilar</surname>
<given-names>G.A.</given-names>
</name>
</person-group>
<article-title>Phenolic compounds: Their journey after intake</article-title>
<source>Food Funct.</source>
<year>2014</year>
<volume>5</volume>
<fpage>189</fpage>
<lpage>197</lpage>
<pub-id pub-id-type="doi">10.1039/C3FO60361J</pub-id>
<pub-id pub-id-type="pmid">24336740</pub-id>
</element-citation>
</ref>
<ref id="B282-ijms-21-00401">
<label>282.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Azrad</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Vollmer</surname>
<given-names>R.T.</given-names>
</name>
<name>
<surname>Madden</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Dewhirst</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Polascik</surname>
<given-names>T.J.</given-names>
</name>
<name>
<surname>Snyder</surname>
<given-names>D.C.</given-names>
</name>
<name>
<surname>Ruffin</surname>
<given-names>M.T.</given-names>
</name>
<name>
<surname>Moul</surname>
<given-names>J.W.</given-names>
</name>
<name>
<surname>Brenner</surname>
<given-names>D.E.</given-names>
</name>
<name>
<surname>Demark-Wahnefried</surname>
<given-names>W.</given-names>
</name>
</person-group>
<article-title>Flaxseed-derived enterolactone is inversely associated with tumor cell proliferation in men with localized prostate cancer</article-title>
<source>J. Med. Food</source>
<year>2013</year>
<volume>16</volume>
<fpage>357</fpage>
<lpage>360</lpage>
<pub-id pub-id-type="doi">10.1089/jmf.2012.0159</pub-id>
<pub-id pub-id-type="pmid">23566060</pub-id>
</element-citation>
</ref>
<ref id="B283-ijms-21-00401">
<label>283.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Gonzalez-Sarrias</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Tome-Carneiro</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Bellesia</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Tomas-Barberan</surname>
<given-names>F.A.</given-names>
</name>
<name>
<surname>Espin</surname>
<given-names>J.C.</given-names>
</name>
</person-group>
<article-title>The ellagic acid-derived gut microbiota metabolite, urolithin A, potentiates the anticancer effects of 5-fluorouracil chemotherapy on human colon cancer cells</article-title>
<source>Food Funct.</source>
<year>2015</year>
<volume>6</volume>
<fpage>1460</fpage>
<lpage>1469</lpage>
<pub-id pub-id-type="doi">10.1039/C5FO00120J</pub-id>
<pub-id pub-id-type="pmid">25857357</pub-id>
</element-citation>
</ref>
<ref id="B284-ijms-21-00401">
<label>284.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Alam</surname>
<given-names>M.N.</given-names>
</name>
<name>
<surname>Almoyad</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Huq</surname>
<given-names>F.</given-names>
</name>
</person-group>
<article-title>Polyphenols in Colorectal Cancer: Current State of Knowledge including Clinical Trials and Molecular Mechanism of Action</article-title>
<source>Biomed. Res. Int.</source>
<year>2018</year>
<pub-id pub-id-type="doi">10.1155/2018/4154185</pub-id>
</element-citation>
</ref>
<ref id="B285-ijms-21-00401">
<label>285.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Patel</surname>
<given-names>K.R.</given-names>
</name>
<name>
<surname>Scott</surname>
<given-names>E.</given-names>
</name>
<name>
<surname>Brown</surname>
<given-names>V.A.</given-names>
</name>
<name>
<surname>Gescher</surname>
<given-names>A.J.</given-names>
</name>
<name>
<surname>Steward</surname>
<given-names>W.P.</given-names>
</name>
<name>
<surname>Brown</surname>
<given-names>K.</given-names>
</name>
</person-group>
<article-title>Clinical trials of resveratrol</article-title>
<source>Ann. N. Y. Acad. Sci.</source>
<year>2011</year>
<volume>1215</volume>
<fpage>161</fpage>
<lpage>169</lpage>
<pub-id pub-id-type="doi">10.1111/j.1749-6632.2010.05853.x</pub-id>
<pub-id pub-id-type="pmid">21261655</pub-id>
</element-citation>
</ref>
<ref id="B286-ijms-21-00401">
<label>286.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Vinod</surname>
<given-names>B.S.</given-names>
</name>
<name>
<surname>Maliekal</surname>
<given-names>T.T.</given-names>
</name>
<name>
<surname>Anto</surname>
<given-names>R.J.</given-names>
</name>
</person-group>
<article-title>Phytochemicals as chemosensitizers: From molecular mechanism to clinical significance</article-title>
<source>Antioxid. Redox Signal.</source>
<year>2013</year>
<volume>18</volume>
<fpage>1307</fpage>
<lpage>1348</lpage>
<pub-id pub-id-type="doi">10.1089/ars.2012.4573</pub-id>
<pub-id pub-id-type="pmid">22871022</pub-id>
</element-citation>
</ref>
<ref id="B287-ijms-21-00401">
<label>287.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Schirrmacher</surname>
<given-names>V.</given-names>
</name>
</person-group>
<article-title>From chemotherapy to biological therapy: A review of novel concepts to reduce the side effects of systemic cancer treatment (Review)</article-title>
<source>Int. J. Oncol.</source>
<year>2019</year>
<volume>54</volume>
<fpage>407</fpage>
<lpage>419</lpage>
<pub-id pub-id-type="pmid">30570109</pub-id>
</element-citation>
</ref>
<ref id="B288-ijms-21-00401">
<label>288.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Nurgali</surname>
<given-names>K.</given-names>
</name>
<name>
<surname>Jagoe</surname>
<given-names>R.T.</given-names>
</name>
<name>
<surname>Abalo</surname>
<given-names>R.</given-names>
</name>
</person-group>
<article-title>Editorial: Adverse effects of cancer chemotherapy: Anything new to improve tolerance and reduce sequelae?</article-title>
<source>Front. Pharm.</source>
<year>2018</year>
<volume>9</volume>
<fpage>245</fpage>
<pub-id pub-id-type="doi">10.3389/fphar.2018.00245</pub-id>
</element-citation>
</ref>
<ref id="B289-ijms-21-00401">
<label>289.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>James</surname>
<given-names>M.I.</given-names>
</name>
<name>
<surname>Iwuji</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>Irving</surname>
<given-names>G.</given-names>
</name>
<name>
<surname>Karmokar</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Higgins</surname>
<given-names>J.A.</given-names>
</name>
<name>
<surname>Griffin-Teal</surname>
<given-names>N.</given-names>
</name>
<name>
<surname>Thomas</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Greaves</surname>
<given-names>P.</given-names>
</name>
<name>
<surname>Cai</surname>
<given-names>H.</given-names>
</name>
<name>
<surname>Patel</surname>
<given-names>S.R.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Curcumin inhibits cancer stem cell phenotypes in ex vivo models of colorectal liver metastases, and is clinically safe and tolerable in combination with FOLFOX chemotherapy</article-title>
<source>Cancer Lett.</source>
<year>2015</year>
<volume>364</volume>
<fpage>135</fpage>
<lpage>141</lpage>
<pub-id pub-id-type="doi">10.1016/j.canlet.2015.05.005</pub-id>
<pub-id pub-id-type="pmid">25979230</pub-id>
</element-citation>
</ref>
<ref id="B290-ijms-21-00401">
<label>290.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Gorelick</surname>
<given-names>D.A.</given-names>
</name>
</person-group>
<article-title>Pharmacokinetic strategies for treatment of drug overdose and addiction</article-title>
<source>Future Med. Chem.</source>
<year>2012</year>
<volume>4</volume>
<fpage>227</fpage>
<lpage>243</lpage>
<pub-id pub-id-type="doi">10.4155/fmc.11.190</pub-id>
<pub-id pub-id-type="pmid">22300100</pub-id>
</element-citation>
</ref>
<ref id="B291-ijms-21-00401">
<label>291.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Li</surname>
<given-names>H.</given-names>
</name>
<name>
<surname>Krstin</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Wink</surname>
<given-names>M.</given-names>
</name>
</person-group>
<article-title>Modulation of multidrug resistant in cancer cells by EGCG, tannic acid and curcumin</article-title>
<source>Phytomedicine</source>
<year>2018</year>
<volume>50</volume>
<fpage>213</fpage>
<lpage>222</lpage>
<pub-id pub-id-type="doi">10.1016/j.phymed.2018.09.169</pub-id>
<pub-id pub-id-type="pmid">30466981</pub-id>
</element-citation>
</ref>
<ref id="B292-ijms-21-00401">
<label>292.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Hu</surname>
<given-names>F.</given-names>
</name>
<name>
<surname>Wei</surname>
<given-names>F.</given-names>
</name>
<name>
<surname>Wang</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Wu</surname>
<given-names>B.</given-names>
</name>
<name>
<surname>Fang</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Xiong</surname>
<given-names>B.</given-names>
</name>
</person-group>
<article-title>EGCG synergizes the therapeutic effect of cisplatin and oxaliplatin through autophagic pathway in human colorectal cancer cells</article-title>
<source>J. Pharm. Sci.</source>
<year>2015</year>
<volume>128</volume>
<fpage>27</fpage>
<lpage>34</lpage>
<pub-id pub-id-type="doi">10.1016/j.jphs.2015.04.003</pub-id>
</element-citation>
</ref>
<ref id="B293-ijms-21-00401">
<label>293.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Schonthal</surname>
<given-names>A.H.</given-names>
</name>
</person-group>
<article-title>Adverse effects of concentrated green tea extracts</article-title>
<source>Mol. Nutr. Food Res.</source>
<year>2011</year>
<volume>55</volume>
<fpage>874</fpage>
<lpage>885</lpage>
<pub-id pub-id-type="doi">10.1002/mnfr.201000644</pub-id>
<pub-id pub-id-type="pmid">21538851</pub-id>
</element-citation>
</ref>
<ref id="B294-ijms-21-00401">
<label>294.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Pisters</surname>
<given-names>K.M.</given-names>
</name>
<name>
<surname>Newman</surname>
<given-names>R.A.</given-names>
</name>
<name>
<surname>Coldman</surname>
<given-names>B.</given-names>
</name>
<name>
<surname>Shin</surname>
<given-names>D.M.</given-names>
</name>
<name>
<surname>Khuri</surname>
<given-names>F.R.</given-names>
</name>
<name>
<surname>Hong</surname>
<given-names>W.K.</given-names>
</name>
<name>
<surname>Glisson</surname>
<given-names>B.S.</given-names>
</name>
<name>
<surname>Lee</surname>
<given-names>J.S.</given-names>
</name>
</person-group>
<article-title>Phase I trial of oral green tea extract in adult patients with solid tumors</article-title>
<source>J. Clin. Oncol.</source>
<year>2001</year>
<volume>19</volume>
<fpage>1830</fpage>
<lpage>1838</lpage>
<pub-id pub-id-type="doi">10.1200/JCO.2001.19.6.1830</pub-id>
<pub-id pub-id-type="pmid">11251015</pub-id>
</element-citation>
</ref>
<ref id="B295-ijms-21-00401">
<label>295.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Ullmann</surname>
<given-names>U.</given-names>
</name>
<name>
<surname>Haller</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Decourt</surname>
<given-names>J.D.</given-names>
</name>
<name>
<surname>Girault</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Spitzer</surname>
<given-names>V.</given-names>
</name>
<name>
<surname>Weber</surname>
<given-names>P.</given-names>
</name>
</person-group>
<article-title>Plasma-kinetic characteristics of purified and isolated green tea catechin epigallocatechin gallate (EGCG) after 10 days repeated dosing in healthy volunteers</article-title>
<source>Int. J. Vitam. Nutr. Res.</source>
<year>2004</year>
<volume>74</volume>
<fpage>269</fpage>
<lpage>278</lpage>
<pub-id pub-id-type="doi">10.1024/0300-9831.74.4.269</pub-id>
<pub-id pub-id-type="pmid">15580809</pub-id>
</element-citation>
</ref>
<ref id="B296-ijms-21-00401">
<label>296.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Popat</surname>
<given-names>R.</given-names>
</name>
<name>
<surname>Plesner</surname>
<given-names>T.</given-names>
</name>
<name>
<surname>Davies</surname>
<given-names>F.</given-names>
</name>
<name>
<surname>Cook</surname>
<given-names>G.</given-names>
</name>
<name>
<surname>Cook</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Elliott</surname>
<given-names>P.</given-names>
</name>
<name>
<surname>Jacobson</surname>
<given-names>E.</given-names>
</name>
<name>
<surname>Gumbleton</surname>
<given-names>T.</given-names>
</name>
<name>
<surname>Oakervee</surname>
<given-names>H.</given-names>
</name>
<name>
<surname>Cavenagh</surname>
<given-names>J.</given-names>
</name>
</person-group>
<article-title>A phase 2 study of SRT501 (resveratrol) with bortezomib for patients with relapsed and or refractory multiple myeloma</article-title>
<source>Br. J. Haematol.</source>
<year>2013</year>
<volume>160</volume>
<fpage>714</fpage>
<lpage>717</lpage>
<pub-id pub-id-type="doi">10.1111/bjh.12154</pub-id>
<pub-id pub-id-type="pmid">23205612</pub-id>
</element-citation>
</ref>
<ref id="B297-ijms-21-00401">
<label>297.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Singh</surname>
<given-names>C.K.</given-names>
</name>
<name>
<surname>Ndiaye</surname>
<given-names>M.A.</given-names>
</name>
<name>
<surname>Ahmad</surname>
<given-names>N.</given-names>
</name>
</person-group>
<article-title>Resveratrol and cancer: Challenges for clinical translation</article-title>
<source>Biochim. Et. Biophys. Acta</source>
<year>2015</year>
<volume>1852</volume>
<fpage>1178</fpage>
<lpage>1185</lpage>
<pub-id pub-id-type="doi">10.1016/j.bbadis.2014.11.004</pub-id>
</element-citation>
</ref>
<ref id="B298-ijms-21-00401">
<label>298.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Navarro</surname>
<given-names>V.J.</given-names>
</name>
<name>
<surname>Bonkovsky</surname>
<given-names>H.L.</given-names>
</name>
<name>
<surname>Hwang</surname>
<given-names>S.I.</given-names>
</name>
<name>
<surname>Vega</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Barnhart</surname>
<given-names>H.</given-names>
</name>
<name>
<surname>Serrano</surname>
<given-names>J.</given-names>
</name>
</person-group>
<article-title>Catechins in dietary supplements and hepatotoxicity</article-title>
<source>Dig. Dis. Sci.</source>
<year>2013</year>
<volume>58</volume>
<fpage>2682</fpage>
<lpage>2690</lpage>
<pub-id pub-id-type="doi">10.1007/s10620-013-2687-9</pub-id>
<pub-id pub-id-type="pmid">23625293</pub-id>
</element-citation>
</ref>
<ref id="B299-ijms-21-00401">
<label>299.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Bonkovsky</surname>
<given-names>H.L.</given-names>
</name>
</person-group>
<article-title>Hepatotoxicity associated with supplements containing Chinese green tea (Camellia sinensis)</article-title>
<source>Ann. Intern. Med.</source>
<year>2006</year>
<volume>144</volume>
<fpage>68</fpage>
<lpage>71</lpage>
<pub-id pub-id-type="doi">10.7326/0003-4819-144-1-200601030-00020</pub-id>
<pub-id pub-id-type="pmid">16389263</pub-id>
</element-citation>
</ref>
<ref id="B300-ijms-21-00401">
<label>300.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Mereles</surname>
<given-names>D.</given-names>
</name>
<name>
<surname>Hunstein</surname>
<given-names>W.</given-names>
</name>
</person-group>
<article-title>Epigallocatechin-3-gallate (EGCG) for clinical trials: More pitfalls than promises?</article-title>
<source>Int. J. Mol. Sci.</source>
<year>2011</year>
<volume>12</volume>
<fpage>5592</fpage>
<lpage>5603</lpage>
<pub-id pub-id-type="doi">10.3390/ijms12095592</pub-id>
<pub-id pub-id-type="pmid">22016611</pub-id>
</element-citation>
</ref>
<ref id="B301-ijms-21-00401">
<label>301.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Granja</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Pinheiro</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Reis</surname>
<given-names>S.</given-names>
</name>
</person-group>
<article-title>Epigallocatechin gallate nanodelivery systems for cancer therapy</article-title>
<source>Nutrients</source>
<year>2016</year>
<volume>8</volume>
<elocation-id>307</elocation-id>
<pub-id pub-id-type="doi">10.3390/nu8050307</pub-id>
</element-citation>
</ref>
<ref id="B302-ijms-21-00401">
<label>302.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Tomeh</surname>
<given-names>M.A.</given-names>
</name>
<name>
<surname>Hadianamrei</surname>
<given-names>R.</given-names>
</name>
<name>
<surname>Zhao</surname>
<given-names>X.</given-names>
</name>
</person-group>
<article-title>A Review of Curcumin and Its Derivatives as Anticancer Agents</article-title>
<source>Int. J. Mol. Sci.</source>
<year>2019</year>
<volume>20</volume>
<elocation-id>1033</elocation-id>
<pub-id pub-id-type="doi">10.3390/ijms20051033</pub-id>
</element-citation>
</ref>
</ref-list>
</back>
<floats-group>
<fig id="ijms-21-00401-f001" orientation="portrait" position="float">
<label>Figure 1</label>
<caption>
<p>Mechanisms of multidrug resistance in cancer.</p>
</caption>
<graphic xlink:href="ijms-21-00401-g001"></graphic>
</fig>
<table-wrap id="ijms-21-00401-t001" orientation="portrait" position="float">
<object-id pub-id-type="pii">ijms-21-00401-t001_Table 1</object-id>
<label>Table 1</label>
<caption>
<p>Main classes of phenolic compounds with representative members and sources, frequently investigated for overcoming MDR in cancer.</p>
</caption>
<table frame="hsides" rules="groups">
<thead>
<tr>
<th align="center" valign="middle" style="border-top:solid thin;border-bottom:solid thin" rowspan="1" colspan="1">Phenolic Compounds</th>
<th align="center" valign="middle" style="border-top:solid thin;border-bottom:solid thin" rowspan="1" colspan="1">Chemical Structure</th>
<th align="center" valign="middle" style="border-top:solid thin;border-bottom:solid thin" rowspan="1" colspan="1">Representative Compounds</th>
<th align="center" valign="middle" style="border-top:solid thin;border-bottom:solid thin" rowspan="1" colspan="1">Sources</th>
<th align="center" valign="middle" style="border-top:solid thin;border-bottom:solid thin" rowspan="1" colspan="1">Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td colspan="5" align="center" valign="middle" rowspan="1">
<bold>Flavonoid Compounds</bold>
</td>
</tr>
<tr>
<td align="center" valign="middle" rowspan="1" colspan="1">Flavones</td>
<td align="center" valign="middle" rowspan="1" colspan="1">
<inline-graphic xlink:href="ijms-21-00401-i001.jpg"></inline-graphic>
</td>
<td align="center" valign="middle" rowspan="1" colspan="1">apigenin
<break></break>
(R
<sub>1</sub>
–OH, R
<sub>2</sub>
–H, R
<sub>3</sub>
–H)
<break></break>
luteolin
<break></break>
(R
<sub>1</sub>
–OH, R
<sub>2</sub>
–OH, R
<sub>3</sub>
–H)
<break></break>
wogonin
<break></break>
(R
<sub>1</sub>
–H, R
<sub>2</sub>
–H, R
<sub>3</sub>
–OCH
<sub>3</sub>
)</td>
<td rowspan="2" align="center" valign="middle" colspan="1">oranges, lemons, apricots, apples, black currants, bananas, potatoes, spinach, onions, lettuce, parsley, celery, beans, tomatoes, roots of
<italic>Scutellaria baicalensis</italic>
Georgi</td>
<td rowspan="2" align="center" valign="middle" colspan="1">[
<xref rid="B37-ijms-21-00401" ref-type="bibr">37</xref>
,
<xref rid="B38-ijms-21-00401" ref-type="bibr">38</xref>
,
<xref rid="B40-ijms-21-00401" ref-type="bibr">40</xref>
,
<xref rid="B41-ijms-21-00401" ref-type="bibr">41</xref>
]</td>
</tr>
<tr>
<td align="center" valign="middle" rowspan="1" colspan="1">Flavonols</td>
<td align="center" valign="middle" rowspan="1" colspan="1">
<inline-graphic xlink:href="ijms-21-00401-i002.jpg"></inline-graphic>
</td>
<td align="center" valign="middle" rowspan="1" colspan="1">quercetin
<break></break>
(R
<sub>1</sub>
–OH, R
<sub>2</sub>
–OH, R
<sub>3</sub>
–H, R
<sub>4</sub>
–OH, R
<sub>5</sub>
–OH)
<break></break>
fisetin
<break></break>
(R
<sub>1</sub>
–OH, R
<sub>2</sub>
–H, R
<sub>3</sub>
–OH, R
<sub>4</sub>
–OH, R
<sub>5</sub>
–H)</td>
</tr>
<tr>
<td align="center" valign="middle" rowspan="1" colspan="1">Flavanones</td>
<td align="center" valign="middle" rowspan="1" colspan="1">
<inline-graphic xlink:href="ijms-21-00401-i003.jpg"></inline-graphic>
</td>
<td align="center" valign="middle" rowspan="1" colspan="1">naringenin
<break></break>
(R
<sub>1</sub>
–H, R
<sub>2</sub>
–OH)
<break></break>
hesperitin
<break></break>
(R
<sub>1</sub>
–OCH
<sub>3</sub>
, R
<sub>2</sub>
–OH)</td>
<td align="center" valign="middle" rowspan="1" colspan="1">oranges, grapefruits, lemons</td>
<td align="center" valign="middle" rowspan="1" colspan="1">[
<xref rid="B40-ijms-21-00401" ref-type="bibr">40</xref>
]</td>
</tr>
<tr>
<td align="center" valign="middle" rowspan="1" colspan="1">Flavan-3-ols</td>
<td align="center" valign="middle" rowspan="1" colspan="1">
<inline-graphic xlink:href="ijms-21-00401-i004.jpg"></inline-graphic>
</td>
<td align="center" valign="middle" rowspan="1" colspan="1">catechin (C), epicatechin (EC)
<break></break>
(R
<sub>1</sub>
–OH, R
<sub>2</sub>
–OH, R
<sub>3</sub>
–H, R
<sub>4</sub>
–H)
<break></break>
epigallocatechin (EGC)
<break></break>
(R
<sub>1</sub>
– OH, R
<sub>2</sub>
–OH, R
<sub>3</sub>
–OH, R
<sub>4</sub>
–H)
<break></break>
epigallocatechingallate (EGCG)
<break></break>
(R
<sub>1</sub>
–OH, R
<sub>2</sub>
–OH, R
<sub>3</sub>
–OH,
<break></break>
R
<sub>4</sub>
<inline-graphic xlink:href="ijms-21-00401-i005.jpg"></inline-graphic>
)</td>
<td align="center" valign="middle" rowspan="1" colspan="1">green/black tea, grapes, cherries, apricots, peaches</td>
<td align="center" valign="middle" rowspan="1" colspan="1">[
<xref rid="B38-ijms-21-00401" ref-type="bibr">38</xref>
,
<xref rid="B40-ijms-21-00401" ref-type="bibr">40</xref>
]</td>
</tr>
<tr>
<td align="center" valign="middle" rowspan="1" colspan="1">Isoflavones</td>
<td align="center" valign="middle" rowspan="1" colspan="1">
<inline-graphic xlink:href="ijms-21-00401-i006.jpg"></inline-graphic>
</td>
<td align="center" valign="middle" rowspan="1" colspan="1">genistein
<break></break>
(R
<sub>1</sub>
–OH, R
<sub>2</sub>
–OH, R
<sub>3</sub>
–OH)
<break></break>
daidzein
<break></break>
(R
<sub>1</sub>
–OH, R
<sub>2</sub>
–H, R
<sub>3</sub>
–OH)</td>
<td align="center" valign="middle" rowspan="1" colspan="1">soy flour, soy paste (natto, cheonggukang), soy bean (roasted)</td>
<td align="center" valign="middle" rowspan="1" colspan="1">[
<xref rid="B38-ijms-21-00401" ref-type="bibr">38</xref>
]</td>
</tr>
<tr>
<td colspan="5" align="center" valign="middle" rowspan="1">
<bold>Non-Flavonoid Compounds</bold>
</td>
</tr>
<tr>
<td align="center" valign="middle" rowspan="1" colspan="1">Hydroxy-benzoic acids</td>
<td align="center" valign="middle" rowspan="1" colspan="1">
<inline-graphic xlink:href="ijms-21-00401-i007.jpg"></inline-graphic>
</td>
<td align="center" valign="middle" rowspan="1" colspan="1">gallic acid
<break></break>
(R
<sub>1</sub>
–OH, R
<sub>2</sub>
–OH, R
<sub>3</sub>
–OH, R
<sub>4</sub>
–OH)</td>
<td align="center" valign="middle" rowspan="1" colspan="1">blackcurrants, strawberries, raspberries, kiwi, cherry, plums, spinach, broccoli</td>
<td align="center" valign="middle" rowspan="1" colspan="1">[
<xref rid="B40-ijms-21-00401" ref-type="bibr">40</xref>
,
<xref rid="B42-ijms-21-00401" ref-type="bibr">42</xref>
] </td>
</tr>
<tr>
<td align="center" valign="middle" rowspan="1" colspan="1">Hydroxy-cinnamic acids</td>
<td align="center" valign="middle" rowspan="1" colspan="1">
<inline-graphic xlink:href="ijms-21-00401-i008.jpg"></inline-graphic>
</td>
<td align="center" valign="middle" rowspan="1" colspan="1">caffeic acid
<break></break>
(R
<sub>1</sub>
–H, R
<sub>2</sub>
–OH, R
<sub>3</sub>
–OH)
<break></break>
ferulic acid
<break></break>
(R
<sub>1</sub>
–H, R
<sub>2</sub>
–OH, R
<sub>3</sub>
–OCH
<sub>3</sub>
)
<break></break>
cinnamic acid
<break></break>
(R
<sub>1</sub>
–H, R
<sub>2</sub>
–H, R
<sub>3</sub>
–H)</td>
<td align="center" valign="middle" rowspan="1" colspan="1">plums, apples, eggplants, potatoes, wheat, rice, oat, kiwi</td>
<td align="center" valign="middle" rowspan="1" colspan="1">[
<xref rid="B40-ijms-21-00401" ref-type="bibr">40</xref>
]</td>
</tr>
<tr>
<td align="center" valign="middle" rowspan="1" colspan="1"></td>
<td align="center" valign="middle" rowspan="1" colspan="1">
<inline-graphic xlink:href="ijms-21-00401-i009.jpg"></inline-graphic>
</td>
<td align="center" valign="middle" rowspan="1" colspan="1">caffeic acid phenethyl ester (CAPE)</td>
<td align="center" valign="middle" rowspan="1" colspan="1">artichoke, oregano, thyme, basil, coffee, mushrooms</td>
<td align="center" valign="middle" rowspan="1" colspan="1">[
<xref rid="B40-ijms-21-00401" ref-type="bibr">40</xref>
]</td>
</tr>
<tr>
<td rowspan="5" align="center" valign="middle" colspan="1">
<bold>Lignans</bold>
</td>
<td align="center" valign="middle" rowspan="1" colspan="1">
<inline-graphic xlink:href="ijms-21-00401-i010.jpg"></inline-graphic>
</td>
<td align="center" valign="middle" rowspan="1" colspan="1">honokiol</td>
<td align="center" valign="middle" rowspan="1" colspan="1">bark, root, seeds, leaves of
<italic>Magnolia</italic>
sp.</td>
<td align="center" valign="middle" rowspan="1" colspan="1">[
<xref rid="B43-ijms-21-00401" ref-type="bibr">43</xref>
]</td>
</tr>
<tr>
<td align="center" valign="middle" rowspan="1" colspan="1">
<inline-graphic xlink:href="ijms-21-00401-i011.jpg"></inline-graphic>
</td>
<td align="center" valign="middle" rowspan="1" colspan="1">podophyllotoxin
<break></break>
(R–OH)
<break></break>
deoxypodophyllotoxin
<break></break>
(R–H)</td>
<td align="center" valign="middle" rowspan="1" colspan="1">rhizome of American mayapple (
<italic>Podophyllum peltatum</italic>
L.)
<break></break>
roots of
<italic>Anthriscus sylvestris</italic>
L. (Hoffm.)</td>
<td align="center" valign="middle" rowspan="1" colspan="1">[
<xref rid="B44-ijms-21-00401" ref-type="bibr">44</xref>
,
<xref rid="B45-ijms-21-00401" ref-type="bibr">45</xref>
]</td>
</tr>
<tr>
<td align="center" valign="middle" rowspan="1" colspan="1">
<inline-graphic xlink:href="ijms-21-00401-i012.jpg"></inline-graphic>
</td>
<td align="center" valign="middle" rowspan="1" colspan="1">silybin (silibinin)</td>
<td align="center" valign="middle" rowspan="1" colspan="1">fruits of milk twistle (
<italic>Silybum marianum</italic>
L.) Gaerth</td>
<td align="center" valign="middle" rowspan="1" colspan="1">[
<xref rid="B46-ijms-21-00401" ref-type="bibr">46</xref>
]</td>
</tr>
<tr>
<td align="center" valign="middle" rowspan="1" colspan="1">
<inline-graphic xlink:href="ijms-21-00401-i013.jpg"></inline-graphic>
</td>
<td align="center" valign="middle" rowspan="1" colspan="1">secoisolariciresinol</td>
<td align="center" valign="middle" rowspan="1" colspan="1">flaxseeds</td>
<td align="center" valign="middle" rowspan="1" colspan="1">[
<xref rid="B47-ijms-21-00401" ref-type="bibr">47</xref>
]</td>
</tr>
<tr>
<td align="center" valign="middle" rowspan="1" colspan="1">
<inline-graphic xlink:href="ijms-21-00401-i014.jpg"></inline-graphic>
</td>
<td align="center" valign="middle" rowspan="1" colspan="1">schizandrin A</td>
<td align="center" valign="middle" rowspan="1" colspan="1">fruits of
<italic>Schisandra chinensis</italic>
</td>
<td align="center" valign="middle" rowspan="1" colspan="1">[
<xref rid="B48-ijms-21-00401" ref-type="bibr">48</xref>
]</td>
</tr>
<tr>
<td rowspan="2" align="center" valign="middle" colspan="1">
<bold>Ellagitannins</bold>
</td>
<td align="center" valign="middle" rowspan="1" colspan="1">
<inline-graphic xlink:href="ijms-21-00401-i015.jpg"></inline-graphic>
</td>
<td align="center" valign="middle" rowspan="1" colspan="1">ellagic acid</td>
<td align="center" valign="middle" rowspan="1" colspan="1">raspberries, strawberries,
<break></break>
pomegranate black currants, blackberries</td>
<td align="center" valign="middle" rowspan="1" colspan="1">[
<xref rid="B49-ijms-21-00401" ref-type="bibr">49</xref>
]</td>
</tr>
<tr>
<td align="center" valign="middle" rowspan="1" colspan="1">
<inline-graphic xlink:href="ijms-21-00401-i016.jpg"></inline-graphic>
</td>
<td align="center" valign="middle" rowspan="1" colspan="1">sanguiin-H6</td>
<td align="center" valign="middle" rowspan="1" colspan="1">raspberries</td>
<td align="center" valign="middle" rowspan="1" colspan="1">[
<xref rid="B49-ijms-21-00401" ref-type="bibr">49</xref>
]</td>
</tr>
<tr>
<td align="center" valign="middle" rowspan="1" colspan="1">
<bold>Stilbenes</bold>
</td>
<td align="center" valign="middle" rowspan="1" colspan="1">
<inline-graphic xlink:href="ijms-21-00401-i017.jpg"></inline-graphic>
</td>
<td align="center" valign="middle" rowspan="1" colspan="1">resveratrol</td>
<td align="center" valign="middle" rowspan="1" colspan="1">grapes, mulberries</td>
<td align="center" valign="middle" rowspan="1" colspan="1">[
<xref rid="B40-ijms-21-00401" ref-type="bibr">40</xref>
]</td>
</tr>
<tr>
<td rowspan="2" align="center" valign="middle" style="border-bottom:solid thin" colspan="1">
<bold>Other Compounds</bold>
</td>
<td align="center" valign="middle" rowspan="1" colspan="1">
<inline-graphic xlink:href="ijms-21-00401-i018.jpg"></inline-graphic>
</td>
<td align="center" valign="middle" rowspan="1" colspan="1">curcumin</td>
<td align="center" valign="middle" rowspan="1" colspan="1">
<italic>Curcuma</italic>
roots</td>
<td align="center" valign="middle" rowspan="1" colspan="1">[
<xref rid="B50-ijms-21-00401" ref-type="bibr">50</xref>
]</td>
</tr>
<tr>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">
<inline-graphic xlink:href="ijms-21-00401-i019.jpg"></inline-graphic>
</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">gingerol</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">fresh/dried
<break></break>
ginger
<break></break>
rhizomes</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">[
<xref rid="B51-ijms-21-00401" ref-type="bibr">51</xref>
]</td>
</tr>
</tbody>
</table>
</table-wrap>
<table-wrap id="ijms-21-00401-t002" orientation="portrait" position="float">
<object-id pub-id-type="pii">ijms-21-00401-t002_Table 2</object-id>
<label>Table 2</label>
<caption>
<p>Summary of in vitro experiments.</p>
</caption>
<table frame="hsides" rules="groups">
<thead>
<tr>
<th align="center" valign="middle" style="border-top:solid thin;border-bottom:solid thin" rowspan="1" colspan="1">Compound</th>
<th align="center" valign="middle" style="border-top:solid thin;border-bottom:solid thin" rowspan="1" colspan="1">Type of Cancer</th>
<th align="center" valign="middle" style="border-top:solid thin;border-bottom:solid thin" rowspan="1" colspan="1">Cell Line</th>
<th align="center" valign="middle" style="border-top:solid thin;border-bottom:solid thin" rowspan="1" colspan="1">Treatment/Duration</th>
<th align="center" valign="middle" style="border-top:solid thin;border-bottom:solid thin" rowspan="1" colspan="1">Mechanisms of Overcoming MDR</th>
<th align="center" valign="middle" style="border-top:solid thin;border-bottom:solid thin" rowspan="1" colspan="1">Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td colspan="6" align="center" valign="middle" style="border-bottom:solid thin" rowspan="1">
<bold>Flavonoid Compounds</bold>
</td>
</tr>
<tr>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">Apigenin</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">Prostate</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">CD44
<sup>+</sup>
PC3 cells</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">15 μM apigenin +
<break></break>
7.5 μM CDPP,
<break></break>
48 h</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">↓ Bcl-2,
<break></break>
↓ sharpin,
<break></break>
↓ survivin,
<break></break>
↑ caspase 8,
<break></break>
↑ APAF-1, ↑ p53 mRNA, ↓ NF-κB, ↑ p21, ↓ CDK-2,
<break></break>
↓ CDK-4,
<break></break>
↓ CDK-6</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">[
<xref rid="B188-ijms-21-00401" ref-type="bibr">188</xref>
]</td>
</tr>
<tr>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">Wogonin</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">Lung</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">A549 cell line</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">10 μM wagonin + TRAIL (5–20 ng/mL), 24 h</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">↑ apoptosis,
<break></break>
↓ cFLIP
<sub>L</sub>
, ↓ XIAP, ↓ cIAP-1, ↓ IAP-2</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">[
<xref rid="B41-ijms-21-00401" ref-type="bibr">41</xref>
]</td>
</tr>
<tr>
<td rowspan="3" align="center" valign="middle" style="border-bottom:solid thin" colspan="1">Luteolin</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">Breast</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">ABCG2 expressing MCF-7 cells mitoxantrone resistant</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">12.5–100 μM luteolin + 1 μM mitoxantrone, 4 h</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">↑ ROS, ↑ DNA damage, ↓ NF-κB
<break></break>
↓ cIAP-1,
<break></break>
↓ survivin,
<break></break>
↓ XIAP
<break></break>
↑ ATR-CHk2-p53</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">[
<xref rid="B189-ijms-21-00401" ref-type="bibr">189</xref>
]</td>
</tr>
<tr>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">Breast</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">MDA-MB 231 cells DOX resistant</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">5–20 μM luteolin +
<break></break>
0.08–20 mM DOX, 24 h</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">↓ Nrf2</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">[
<xref rid="B191-ijms-21-00401" ref-type="bibr">191</xref>
]</td>
</tr>
<tr>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">Lung</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">A549 cells</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">Pre-treatment
<break></break>
(24 h) with 5 μM luteolin before DOX
<break></break>
(0–3 μg/mL),
<break></break>
OX (0–100 μM), bleomycin
<break></break>
(0–100 μM), 48 h</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">↓ Nrf2</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">[
<xref rid="B190-ijms-21-00401" ref-type="bibr">190</xref>
]</td>
</tr>
<tr>
<td rowspan="3" align="center" valign="middle" style="border-bottom:solid thin" colspan="1">Quercetin</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">Breast</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">DOX resistant MCF-7 cells</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">2.5 μg/mL DOX, 0.5 μg/mL PTX,
<break></break>
0.5 μg/mL VCR + 0.5. μg/ml quercetin - 24 h</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">↓ P-gp, ↓ YB-1 nuclear protein translocation,
<break></break>
↓ BCSCs phenotype CD44
<sup>+</sup>
/CD24
<sup></sup>
/
<sup>low</sup>
,
<break></break>
↑ apoptosis, cell cycle arrest</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">[
<xref rid="B192-ijms-21-00401" ref-type="bibr">192</xref>
]</td>
</tr>
<tr>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">Colorectal</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">VCR resistant Caco-2 cells</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">0.5–200 μM quercetin, 24 h</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">↓ P-gp </td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">[
<xref rid="B193-ijms-21-00401" ref-type="bibr">193</xref>
]</td>
</tr>
<tr>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">Colorectal</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">Caco-2 cells</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">20 μM cimetidine +
<break></break>
100 μM quercetin,
<break></break>
4 h</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">↓ P-gp </td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">[
<xref rid="B194-ijms-21-00401" ref-type="bibr">194</xref>
]</td>
</tr>
<tr>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">Fisetin</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">Colorectal</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">OX-resistant LoVo cells
<break></break>
CPT11-resistant LoVo cells</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">0 μM, 40 μM,
<break></break>
80 μM fisetin,
<break></break>
24 h</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">↑ apoptosis,
<break></break>
↑ cytochrome C release, ↓ IGF-1R and AKT phosphorylation levels</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">[
<xref rid="B196-ijms-21-00401" ref-type="bibr">196</xref>
]</td>
</tr>
<tr>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">Naringenin</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">Breast</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">Daunomycin resistant MCF-7 cells</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">9 × 10
<sup>−8</sup>
M–
<break></break>
7.2 × 10
<sup>−5</sup>
M daunomycin +
<break></break>
50 μM naringenin, 72 h</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">↓ P-gp </td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">[
<xref rid="B195-ijms-21-00401" ref-type="bibr">195</xref>
]</td>
</tr>
<tr>
<td rowspan="2" align="center" valign="middle" style="border-bottom:solid thin" colspan="1">Hesperitin glycoside
<break></break>
(hesperidin)</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">Breast</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">MCF-7 DOX resistant cells</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">0.5–3.5 μM/L hesperidin +
<break></break>
35–233 nM/L DOX, 24 h</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">↓ P-gp </td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">[
<xref rid="B197-ijms-21-00401" ref-type="bibr">197</xref>
]</td>
</tr>
<tr>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">Colorectal</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">Coco-2 cells overexpressing
<break></break>
P-gp</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">32 μM hesperidin, 24 h</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">↓ P-gp</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">[
<xref rid="B198-ijms-21-00401" ref-type="bibr">198</xref>
]</td>
</tr>
<tr>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">Catechin</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">Breast</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">MDA-MDB-231 CDPP resistant cells</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">5, 10, 20, 40 μM C + 10 μM CDPP, 6 h</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">↓ ATR-Chk1 pathway</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">[
<xref rid="B199-ijms-21-00401" ref-type="bibr">199</xref>
]</td>
</tr>
<tr>
<td rowspan="4" align="center" valign="middle" style="border-bottom:solid thin" colspan="1">EGCG</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">Breast</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">Tamoxifen-resistant MCF-7</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">Nrf2-RNA transfection, 48 h + 50/100 μM EGCG, 24 h</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">↓ Nrf2 signaling pathway</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">[
<xref rid="B202-ijms-21-00401" ref-type="bibr">202</xref>
]</td>
</tr>
<tr>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">Colorectal</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">HCT-116
<break></break>
DLD1 cells</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">50 μM EGCG +
<break></break>
0–30 μM 5-FU,
<break></break>
24 h</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">↓ GRP78/
<break></break>
NF-κB/miR-155-5p/MDR1 pathway</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">[
<xref rid="B203-ijms-21-00401" ref-type="bibr">203</xref>
]</td>
</tr>
<tr>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">Prostate</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">PC3, LAPC4 cells</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">40 μM EGCG +
<break></break>
5 μM quercetin +
<break></break>
5 nM DOC,
<break></break>
24/48 h</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">↓ CD44
<sup>+</sup>
/CD24
<sup></sup>
cells, ↓ MRP1,
<break></break>
↓ PI3K/AKT/
<break></break>
STAT3</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">[
<xref rid="B204-ijms-21-00401" ref-type="bibr">204</xref>
]</td>
</tr>
<tr>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">Lung</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">A549/H460
<break></break>
CDPP resistant cells</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">80 μM EGCG + 0–30 μM CDPP, 24 h</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">↓ Axl, Tyro3</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">[
<xref rid="B205-ijms-21-00401" ref-type="bibr">205</xref>
]</td>
</tr>
<tr>
<td rowspan="2" align="center" valign="middle" style="border-bottom:solid thin" colspan="1">Genistein</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">Breast</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">MCF-7 DOX resistant cells</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">0–120 μmol/L genistein +
<break></break>
0.7–70 μM DOX, 48 h</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">↓ HER 2/neu,
<break></break>
↑ apoptosis</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">[
<xref rid="B206-ijms-21-00401" ref-type="bibr">206</xref>
]</td>
</tr>
<tr>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">Prostate
<break></break>
Lung</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">PC-3 cells
<break></break>
H460 cells</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">pre-treatment with
<break></break>
15–30 μmol/L genistein, 24 h
<break></break>
1–2 nM DOC/100 nM/L cisplatin,
<break></break>
48 h</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">↑ apoptosis,
<break></break>
↓ NF-κB</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">[
<xref rid="B207-ijms-21-00401" ref-type="bibr">207</xref>
]</td>
</tr>
<tr>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">Daidzein</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">Breast</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">MCF-7/
<break></break>
MDA-MB 231 cells</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">pre-treatment with 10 μM daidzein,
<break></break>
24 h before administration of 0–10 mM DOX/
<break></break>
mitoxantrone</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">↓ MRP1/2,↓BCRP</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">[
<xref rid="B208-ijms-21-00401" ref-type="bibr">208</xref>
]</td>
</tr>
<tr>
<td colspan="6" align="center" valign="middle" style="border-bottom:solid thin" rowspan="1">NON-FLAVONOID COMPOUNDS</td>
</tr>
<tr>
<td rowspan="6" align="center" valign="middle" style="border-bottom:solid thin" colspan="1">Resveratrol</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">Breast</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">MCF-7 cells</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">100 µM RES +
<break></break>
20 nM rapamycin, 24 h</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">↓ mTOR, ↓ AKT, ↑ autophagy</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">[
<xref rid="B209-ijms-21-00401" ref-type="bibr">209</xref>
] </td>
</tr>
<tr>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">Breast</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">DOX resistant MCF-7</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">4–16 µM RES + 4–64 µM DOX, 24 h</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">↓ P-gp</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">[
<xref rid="B210-ijms-21-00401" ref-type="bibr">210</xref>
]</td>
</tr>
<tr>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">Breast</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">SK-BR-3, MCF7, MDA-MB-231, T47D cells</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">15 µM RES +
<break></break>
1 nM DOC</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">↓ HER2-AKT axis</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">[
<xref rid="B214-ijms-21-00401" ref-type="bibr">214</xref>
]</td>
</tr>
<tr>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">Lung</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">NCI-H460 cells</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">0–20 µg/mL RES +
<break></break>
0–10 µg/mL PTX, 24 h</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">↓ P-gp, MRP2, BCRP</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">[
<xref rid="B211-ijms-21-00401" ref-type="bibr">211</xref>
]</td>
</tr>
<tr>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">Lung</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">GF resistant NSCLC- PC9</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">1–20 µM GF +
<break></break>
5–160 µM RES</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">↑ apoptosis,
<break></break>
↑ senescence</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">[
<xref rid="B213-ijms-21-00401" ref-type="bibr">213</xref>
]</td>
</tr>
<tr>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">Colorectal</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">HCT 116, HT-29 cells</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">0.3 µM DOX +
<break></break>
100 µM RES</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">↓ P-gp, ↑ Bax, cell cycle arrest</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">[
<xref rid="B212-ijms-21-00401" ref-type="bibr">212</xref>
]</td>
</tr>
<tr>
<td rowspan="2" align="center" valign="middle" style="border-bottom:solid thin" colspan="1">Honokiol</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">Breast</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">MCF-7/DOX, MDA-MB-231</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">200 µL polymeric micelles with
<break></break>
1 mg PTX +
<break></break>
0.5 mg/L HNK, 24/36 h</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">↓ P-gp, ↑ plasma fluidity</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">[
<xref rid="B43-ijms-21-00401" ref-type="bibr">43</xref>
]</td>
</tr>
<tr>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">Colorectal</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">HCT-116 cells</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">0–50 μM HNK +
<break></break>
0–5 Gy γ-radiation, 24/48 h</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">↑ apoptosis,
<break></break>
↓ cyclin A1, D1</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">[
<xref rid="B215-ijms-21-00401" ref-type="bibr">215</xref>
]</td>
</tr>
<tr>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">Secoisolarici
<break></break>
resinol</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">Breast</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">MDA-MB-231, SKBR3 cells</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">25–50 µM SECO, 25–50 µM ENL,
<break></break>
20 nM DOX,
<break></break>
1 nM DOC,
<break></break>
1000 nM CAB, 72 h</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">↓ FAS</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">[
<xref rid="B47-ijms-21-00401" ref-type="bibr">47</xref>
]</td>
</tr>
<tr>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">Schizandrin A</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">Colorectal</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">5-FU resistant HCT116, SW-480</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">0–8 µM 5-FU +
<break></break>
0–40 µM SchA,
<break></break>
48 h</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">↑ mir-195</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">[
<xref rid="B48-ijms-21-00401" ref-type="bibr">48</xref>
]</td>
</tr>
<tr>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">Silybin</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">Breast</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">MDA-MB 435 DOX resistant cell line
<break></break>
MCF-7 PTX resistant cell line</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">200–600 μM silybin +
<break></break>
0–35 μg/mL DOX/250 nM PTX, 24 h</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">↓ STAT3, ERK, AKT</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">[
<xref rid="B46-ijms-21-00401" ref-type="bibr">46</xref>
]</td>
</tr>
<tr>
<td rowspan="3" align="center" valign="middle" style="border-bottom:solid thin" colspan="1">Gallic acid </td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">Lung</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">SCLC H446 cells</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">2–12 µg/mL
<break></break>
gallic acid +
<break></break>
3.12–50 µg/mL CDPP</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">↑ apoptosis, MMP disruption
<break></break>
↑ Bax, ↑ APAF1, ↑ p53,
<break></break>
↑ DIABLO,
<break></break>
↓ XIAP</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">[
<xref rid="B219-ijms-21-00401" ref-type="bibr">219</xref>
]</td>
</tr>
<tr>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">Breast </td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">MCF-7/DOX cells
<break></break>
MCF-7/DOX
<sub>500</sub>
</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">30–120 µM
<break></break>
gallic acid +
<break></break>
5–20 µM EGCG, 24 h</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">↓ MMP-2/
<break></break>
MMP-9</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">[
<xref rid="B220-ijms-21-00401" ref-type="bibr">220</xref>
]</td>
</tr>
<tr>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">Lung</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">HCC827, H1650, H1975, H358, H1666 cells TKI resistant</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">20–100 µM gallic acid +
<break></break>
0.1–5 µM GF, 5 days</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">↓ Src-STAT3,
<break></break>
↑ apoptosis</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">[
<xref rid="B221-ijms-21-00401" ref-type="bibr">221</xref>
]</td>
</tr>
<tr>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">Cinnamic acid</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">Lung</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">Chemoresistant H1299-derived stem-like cells</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">1–32 mM
<break></break>
cinnamic acid;
<break></break>
4 mM
<break></break>
cinnamic acid +
<break></break>
4–32 µM PTX/
<break></break>
4–32 μg/mL CDPP, 24 h</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">↑ differentiation into CD33 negative cells;
<break></break>
↓chemoresistance to cisplatin and PTX</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">[
<xref rid="B227-ijms-21-00401" ref-type="bibr">227</xref>
]</td>
</tr>
<tr>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">Caffeic acid/
<break></break>
ferulic acid</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">Colorectal</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">HCT-8 cells</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">Pre-treatment - 0.5–1 mg/mL BPIS (12 h) before 1000–6000 µM 5-FU,
<break></break>
50–400 µM OX,
<break></break>
25–125 µM VCR</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">↓ P-gp, MRP1, BCRP</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">[
<xref rid="B222-ijms-21-00401" ref-type="bibr">222</xref>
]</td>
</tr>
<tr>
<td rowspan="3" align="center" valign="middle" style="border-bottom:solid thin" colspan="1">Caffeic acid phenethyl ester (CAPE)</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">Breast</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">MDA-MB-231 cells</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">10–40 µM CAPE, 4.5 days</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">↓ CD44 cells,
<break></break>
↓ progenitor formation</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">[
<xref rid="B223-ijms-21-00401" ref-type="bibr">223</xref>
] </td>
</tr>
<tr>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">Breast</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">MDA-MB-231, T47D cells</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">Pretreatment with
<break></break>
1 µM CAPE
<break></break>
(72 h) before irradiation
<break></break>
(2–8 Gy)</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">↑ DNA damage</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">[
<xref rid="B224-ijms-21-00401" ref-type="bibr">224</xref>
]</td>
</tr>
<tr>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">Lung</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">A549 cells</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">10, 50 µM CAPE
<break></break>
10 µM DOX, 24 h</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">↑ chemosensitivity to DOX,
<break></break>
↓ claudin -2</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">[
<xref rid="B226-ijms-21-00401" ref-type="bibr">226</xref>
]</td>
</tr>
<tr>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">Ellagic acid</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">Colorectal</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">SW480, Colo 320DM,
<break></break>
HT-29 cells</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">5–25 µM 5-FU +
<break></break>
2–25 µM
<break></break>
ellagic acid</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">↑ Bax/Bcl-2 ratio, ↑ caspase-3
<break></break>
↓ mitochondrial potential</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">[
<xref rid="B217-ijms-21-00401" ref-type="bibr">217</xref>
]</td>
</tr>
<tr>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">Sanguiin-H6</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">Breast</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">DOX resistant MCF-7</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">0–313 µM sanguiin-H6,
<break></break>
48 h</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">↓ ABC transporters</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">[
<xref rid="B218-ijms-21-00401" ref-type="bibr">218</xref>
]</td>
</tr>
<tr>
<td colspan="6" align="center" valign="middle" style="border-bottom:solid thin" rowspan="1">
<bold>Non-Flavonoid Compounds</bold>
</td>
</tr>
<tr>
<td rowspan="10" align="center" valign="middle" style="border-bottom:solid thin" colspan="1">Curcumin</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">Colorectal</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">OX-resistant HTOXAR3, LoVOXAR3 DLDOXAR3</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">5–10 μM curcumin +
<break></break>
10–30 μM OX, –
<break></break>
24 h</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">↓NF-κB signaling cascade,
<break></break>
↓ CXCL8, CXCL1, CXCL2</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">[
<xref rid="B230-ijms-21-00401" ref-type="bibr">230</xref>
]</td>
</tr>
<tr>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">Colorectal</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">VCR resistant HCT8/VCR</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">6.25–100 μM curcumin +
<break></break>
0.5 μg/l VCR,
<break></break>
48 h</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">↓ P-gp </td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">[
<xref rid="B228-ijms-21-00401" ref-type="bibr">228</xref>
]</td>
</tr>
<tr>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">Colorectal</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">5-FU and OX resistant HCT-116, SW-620</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">100 nM CDF</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">↓ miR-21</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">[
<xref rid="B232-ijms-21-00401" ref-type="bibr">232</xref>
]</td>
</tr>
<tr>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">Lung</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">A549-CDPP resistant</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">20 μg/mL CDDP +
<break></break>
10 μM curcumin, 24 h</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">↓ autophagy,
<break></break>
↓ Nrf2 activation</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">[
<xref rid="B233-ijms-21-00401" ref-type="bibr">233</xref>
]</td>
</tr>
<tr>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">Lung</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">A549/DOX cells,
<break></break>
P-gp overexpressing DOX resistant overexpressing</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">Nanomicelles with
<break></break>
1–30 μg/mL DOX +
<break></break>
curcumin
<break></break>
(1.6 times concentration of DOX), 72 h</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">↑ sensitivity to DOX, ↑ cellular uptake</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">[
<xref rid="B234-ijms-21-00401" ref-type="bibr">234</xref>
]</td>
</tr>
<tr>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">Lung</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">CDPP resistant A549 cells</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">5–20 μM curcumin +
<break></break>
1.5 μg/mL CDPP</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">↑ apoptosis,
<break></break>
↓ HIF-1α</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">[
<xref rid="B235-ijms-21-00401" ref-type="bibr">235</xref>
]</td>
</tr>
<tr>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">Breast</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">Tamoxifen resistant MCF-7/LCC2,
<break></break>
MCF-7/LCC9</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">30 μM curcumin, 24 h</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">↓ mTOR, ↓ EZH2</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">[
<xref rid="B236-ijms-21-00401" ref-type="bibr">236</xref>
]</td>
</tr>
<tr>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">Breast</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">MCF-7,
<break></break>
MDA-MB-231,
<break></break>
SK-BR-3 cells</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">10 μM curcumin
<break></break>
6 h before 5-FU
<break></break>
(10 μM)</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">↓ NF-κB signaling cascade</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">[
<xref rid="B231-ijms-21-00401" ref-type="bibr">231</xref>
] </td>
</tr>
<tr>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">Breast</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">DOX resistant MCF-7 cells</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">0–20 mM curcumin +
<break></break>
0–4 mΜ EGCG</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">↓ Bcl-2,
<break></break>
↓ survivin,
<break></break>
↑ caspase 7, 9</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">[
<xref rid="B238-ijms-21-00401" ref-type="bibr">238</xref>
]</td>
</tr>
<tr>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">Breast</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">MDA-MB-231, MDA-MB-468,
<break></break>
SK-BR-3, MCF-7 cells</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">30 μM curcumin and/or
<break></break>
1 μM trans retinoic acid,
<break></break>
48 h</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">↑ sensitivity to retinoic acid
<break></break>
↓ FBAP5, PPARβ/δ</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">[
<xref rid="B237-ijms-21-00401" ref-type="bibr">237</xref>
]</td>
</tr>
<tr>
<td rowspan="2" align="center" valign="middle" style="border-bottom:solid thin" colspan="1">Gingerol</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">Prostate</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">DOC resistant PC3</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">100 µM
<break></break>
6-gingerol +
<break></break>
100 µM
<break></break>
10-gingerol</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">↓ MRP1, ↓GST</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">[
<xref rid="B51-ijms-21-00401" ref-type="bibr">51</xref>
]</td>
</tr>
<tr>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">Breast</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">cyclophosphamide, 5-5-FU, DOX resistant MCF-7</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">50–250 µM
<break></break>
6-gingerol</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">↓ Wnt/β-catenin, ↓ GSK3 </td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">[
<xref rid="B239-ijms-21-00401" ref-type="bibr">239</xref>
]</td>
</tr>
</tbody>
</table>
<table-wrap-foot>
<fn>
<p>Legend: 5-FU—5-fluorouracil, CDF—difluorinated curcumin, ↓—downregulation, ↑—upregulation, m-TOR—mammalian target of rapamycin, EZH2—enhancer of zeste homolog 2, CDPP—cisplatin, Nrf2—erythroid 2-related factor 2, DOX—doxorubicin (adriamycin), EGCG—epigallocatechingallate, Bcl-2—Bcl-lymphoma 2, Bax—Bcl-2-like protein 4, MRP1/2—multidrugresistance associated protein 1/2, GST—gluthatione-S transferase, GSK3—glycogen synthase kinase 3, AKT—protein kinase B, RES—resveratrol, P-gp—P-glycoprotein (MDR1), PTX—paclitaxel, BCRP—breast cancer resistant protein, GF—gefitinib, HER-2—human epidermal growth factor 2, HNK—honokiol, MMP—mitochondrial membrane potential, APAF1—apoptotic protease activating factor 1, DIABLO—second mitochondria-derived activator of caspases, XIAP—inhibitor of apoptosis protein 3, MMP-2/MMP-9—metalloproteinase, TKI—tyrosine kinase inhibitors (gefitinib), SChA—schizandrin A, SECO—secoisolariciresinol, ENL—enterolactone, DOC—docetaxel, CAB—carboplatin, FAS—fatty acid synthase, CSC—cancer stem cells, OX—oxalipaltin, VCR—vincristine, FBAP5—fatty acid-binding protein 5, PPARβ/δ—peroxisome proliferator-activated receptor β/δ, HIF-1α—hypoxia-inducible factor 1 alpha, NSCLC—non-small cell lung cancer, EMT—epithelial to mesenchymal transition, CREB -1—element binding protein-1, STAT3—signal transducer and activator of transcription 3, ERK—extracellular-signal regulated kinase, EGFR—epidermal growth factor receptor, CDK—cyclin-dependent kinase, IAP—inhibitors of apoptosis proteins, cFLIPL—regulator of caspase-8 activation, ATR—protein kinase, p-53—cellular tumor antigen, Chk1/2—Check point kinase 1/2, ROS—reactive oxygen species, YB-1—Y-box binding protein, CPT11—irinotecan, PI3K/AKT—phosphoinositide 3-kinase/protein kinase B, JNK—c-Jun N-terminal kinase, GRP78—glucose regulated protein, Axl, Tyro3—receptors for tyrosine kinase, TRAIL—TNF-related apoptosis-inducing ligand, NA—not applicable, C—catechin, Nf-kb—nuclear factor kappa-light-chain-enhancer of activated B cells, IGF-1R—insulin growth factor, EGCG—epigallocatechingallate, Her2/neu—receptor tyrosine-proteinkinase erB-2, XIAP—inhibitor of apoptosis protein 3, Src- proto-oncogene tyrosine-protein kinase, BPIS—bound polyphenols of inner shell from foxtail millet bran, CAPE—caffeic acid phenethyl ester, ABC—ATP-binding cassette transporter proteins.</p>
</fn>
</table-wrap-foot>
</table-wrap>
<table-wrap id="ijms-21-00401-t003" orientation="portrait" position="float">
<object-id pub-id-type="pii">ijms-21-00401-t003_Table 3</object-id>
<label>Table 3</label>
<caption>
<p>Summary of in vivo and clinical experiments.</p>
</caption>
<table frame="hsides" rules="groups">
<thead>
<tr>
<th align="center" valign="middle" style="border-top:solid thin;border-bottom:solid thin" rowspan="1" colspan="1">Compound</th>
<th align="center" valign="middle" style="border-top:solid thin;border-bottom:solid thin" rowspan="1" colspan="1">Type of Cancer</th>
<th align="center" valign="middle" style="border-top:solid thin;border-bottom:solid thin" rowspan="1" colspan="1">Model System</th>
<th align="center" valign="middle" style="border-top:solid thin;border-bottom:solid thin" rowspan="1" colspan="1">Doses
<break></break>
and Duration of Administration</th>
<th align="center" valign="middle" style="border-top:solid thin;border-bottom:solid thin" rowspan="1" colspan="1">Mechanisms of Overcoming MDR</th>
<th align="center" valign="middle" style="border-top:solid thin;border-bottom:solid thin" rowspan="1" colspan="1">Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td colspan="6" align="center" valign="middle" style="border-bottom:solid thin" rowspan="1">
<bold>Flavonoid Compounds</bold>
</td>
</tr>
<tr>
<td rowspan="2" align="center" valign="middle" style="border-bottom:solid thin" colspan="1">Quercetin</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">Breast</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">Female Sprague–Dawley rats</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">1.5, 7.5, 10 mg/kg quercetin p.o. +
<break></break>
10 mg/kg tamoxifen p.o.</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">↓ P-gp, ↓ MRP2, ↓ BCPR, ↓ CYP3A4</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">[
<xref rid="B257-ijms-21-00401" ref-type="bibr">257</xref>
]</td>
</tr>
<tr>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">Breast</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">Xenograft BALB/c nude mouse model for MCF-7 DOX resistant cells</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">5 mg/kg BNDQ i.v.
<break></break>
20 days, every three days</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">↓ P-gp</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">[
<xref rid="B258-ijms-21-00401" ref-type="bibr">258</xref>
]</td>
</tr>
<tr>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">Wogonin</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">Lung</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">Xenograft mouse model for A549 cells</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">3 mg/kg TRAIL i.p. +
<break></break>
100 mg/kg wogonin i.p.
<break></break>
3 times/week, 28 days</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">↑ ROS, ↑ apoptosis,
<break></break>
↓ cFLIP
<sub>L</sub>
, ↓ XIAP,
<break></break>
↓ cIAP-1, ↓ IAP-2</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">[
<xref rid="B41-ijms-21-00401" ref-type="bibr">41</xref>
]</td>
</tr>
<tr>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">Fisetin</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">Colorectal</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">Xenograft nude mouse model for Lovo OX/irinotecan resistant cells</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">400 mg/kg/day fisetin and
<break></break>
800 mg/kg/day fisetin p.o., 4 weeks</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">↑ apoptosis,
<break></break>
↑ cytochrome C release,
<break></break>
↓ IGF1R/AKT,
<break></break>
↓ tumor volumes</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">[
<xref rid="B196-ijms-21-00401" ref-type="bibr">196</xref>
]</td>
</tr>
<tr>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">Luteolin</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">Lung</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">Xenograft BALB/c nude mouse model for NCI-H1975 erlotinib resistant cells</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">10/30 mg/kg/day luteolin i.p. +
<break></break>
100 mg/kg/day erlotinib i.p. +
<break></break>
2 mg/kg/day CDPP i.p.,
<break></break>
15 days</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">↓ tumor volumes,
<break></break>
↓ EGFR,
<break></break>
↓ PI3K/AKT mTOR
<break></break>
↑ apoptosis</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">[
<xref rid="B259-ijms-21-00401" ref-type="bibr">259</xref>
]</td>
</tr>
<tr>
<td rowspan="2" align="center" valign="middle" style="border-bottom:solid thin" colspan="1">Genistein</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">Lung</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">Xenograft mouse models for
<break></break>
A549 cells</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">5 mg/kg CDPP i.p., day one + 800 μg/kg genistein p.o.,
<break></break>
5 days,
<break></break>
5 mg/kg CDPP i.p.
<break></break>
day one + 500 μg/kg genistein p.o.,
<break></break>
4 days, every 7 days for 21 days</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">↓ tumor volumes,
<break></break>
↓ PI3/AKT</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">[
<xref rid="B262-ijms-21-00401" ref-type="bibr">262</xref>
]</td>
</tr>
<tr>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">Lung</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">Xenograft BALB/c mouse models
<break></break>
for H1975 cells</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">50 mg/kg GF p.o. + 100 mg/kg genistein p.o.,
<break></break>
5 weeks</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">↓ EGFR,
<break></break>
↓ mTOR,
<break></break>
↑ caspase -3</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">[
<xref rid="B263-ijms-21-00401" ref-type="bibr">263</xref>
]</td>
</tr>
<tr>
<td rowspan="2" align="center" valign="middle" style="border-bottom:solid thin" colspan="1">EGCG</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">Breast</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">Xenograft BALB/c mouse models for breast 4T1 cancer cells</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">EGCG 30 mg/kg/day i.v. +
<break></break>
PTX 10 mg/kg i.v.,
<break></break>
every two days, 24 days</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">↑ apoptosis,
<break></break>
↓ GRP78,
<break></break>
↓ JNK phosphorylation</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">[
<xref rid="B260-ijms-21-00401" ref-type="bibr">260</xref>
]</td>
</tr>
<tr>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">Breast</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">Female Sprague–Dawley rats treated with DMBA</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">5 mg/kg PTX i.p. +
<break></break>
10 mg/kg EGCG i.p.,
<break></break>
twice/week, 4 weeks</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">↓ CD44 cells,
<break></break>
↓ VEGF,
<break></break>
↓ MMP-2,
<break></break>
↑ caspase-3</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">[
<xref rid="B261-ijms-21-00401" ref-type="bibr">261</xref>
]</td>
</tr>
<tr>
<td colspan="6" align="center" valign="middle" style="border-bottom:solid thin" rowspan="1">
<bold>Non-Flavonoid Compounds</bold>
</td>
</tr>
<tr>
<td rowspan="3" align="center" valign="middle" style="border-bottom:solid thin" colspan="1">Resveratrol</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">Breast</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">Xenograft BALB/c mouse model
<break></break>
for MCF-7/Adr resistant cells</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">Liposomes with
<break></break>
8 mg/kg PTX +
<break></break>
20 mg/kg RES i.v.,
<break></break>
every two days, 14 days</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">↑ cellular uptake of PTX,
<break></break>
↓ P-gp</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">[
<xref rid="B264-ijms-21-00401" ref-type="bibr">264</xref>
]</td>
</tr>
<tr>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">Colorectal</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">Xenograft BALB/c nude mouse model
<break></break>
for HCT-116 cells</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">100 mg/kg RES +
<break></break>
10 mg/kg OX i.v. every day, 14 days</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">↑ miR-34c</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">[
<xref rid="B265-ijms-21-00401" ref-type="bibr">265</xref>
]</td>
</tr>
<tr>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">Lung</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">Xenograft BALB/c mouse model (females)
<break></break>
for SPC-A-1/CDDP cells</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">1 g/kg/day RES p.o.,
<break></break>
3 g/kg/day RES p.o., 28 days</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">↓ survivin,
<break></break>
↑ apoptosis (caspase 3)</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">[
<xref rid="B266-ijms-21-00401" ref-type="bibr">266</xref>
]</td>
</tr>
<tr>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">Caffeic acid phenethyl exter (CAPE)</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">Breast</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">Xenograft Ncr-
<italic>nu/nu</italic>
mouse models for
<break></break>
MCF-7, MDA-MB-213 cells</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">10, 50, 250 nmol/mouse CAPE p.o.,
<break></break>
every day, 60 days</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">↓ NF-κB,
<break></break>
↓ EGFR, IFGR,
<break></break>
↓ MDR1</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">[
<xref rid="B267-ijms-21-00401" ref-type="bibr">267</xref>
]</td>
</tr>
<tr>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">Podophyllotoxin (PPT)</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">Breast and
<break></break>
prostate</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">Xenograft BALB/c and NOD-SCID mouse models EMT6/AR1 (breast), PC3 (prostate) cells</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">12 mg/kg DOC i.v.,
<break></break>
every 4 days, 8 days;
<break></break>
5 mg/kg CBZ i.v.,
<break></break>
every 4 days, 8 days;
<break></break>
180 mg/kg PPT NPs i.v.
<break></break>
every 4 days, 8 days</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">↓ P-gp,
<break></break>
↑ cellular uptake of chemotherapeutic agents</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">[
<xref rid="B44-ijms-21-00401" ref-type="bibr">44</xref>
]</td>
</tr>
<tr>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">Deoxypodophyllotoxin
<break></break>
(DPPT)</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">Breast</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">Xenograft mouse model MCF-7 DOX resistant cells</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">1.25 mg/kg DPPT i.v. +
<break></break>
12.5 mg/kg PTX i.v.
<break></break>
every 3 days, 10 days</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">efflux transport</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">[
<xref rid="B45-ijms-21-00401" ref-type="bibr">45</xref>
]</td>
</tr>
<tr>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">Silybin</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">Breast</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">Xenograft mouse model (females)
<break></break>
for MDA-MB-231 cells</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">1.5 mg/kg nanosystems −
<break></break>
75 μg/mg DOX +
<break></break>
120 μg/mg PTX +
<break></break>
90 μg/mg silybin i.v.
<break></break>
every 4 days, 30 days</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">P-gp</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">[
<xref rid="B268-ijms-21-00401" ref-type="bibr">268</xref>
]</td>
</tr>
<tr>
<td rowspan="7" align="center" valign="middle" style="border-bottom:solid thin" colspan="1">Curcumin</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">Colorectal</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">HCT-116 cells in orthotopic mouse model</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">1 g/kg curcumin by gavage, daily + 60 mg/kg capecitabine by gavage, twice weekly, 4 weeks</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">↓ NF-κB, ↓MMP-2, ↓ CXCR4, ↓ COX-2,
<break></break>
↓ ICAM-1, ↓VEGF</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">[
<xref rid="B269-ijms-21-00401" ref-type="bibr">269</xref>
]</td>
</tr>
<tr>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">Colorectal</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">Swiss albino rats with N-Nitroso
<break></break>
N-methyl urea–induced carcinogenesis</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">Pre-treatment with curcumin 50 mg/kg p.o. for one week before administration of irinotecan
<break></break>
30 μg/mL i.v.</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">↓ P-gp,
<break></break>
↑ sensitivity of cancer cells to irinotecan</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">[
<xref rid="B270-ijms-21-00401" ref-type="bibr">270</xref>
]</td>
</tr>
<tr>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">Colorectal</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">Xenograft mouse model (6–8 weeks, females) for HCT-116 cells</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">1.13% Meriva (equivalent to 0.2% curcuminoids) p.o. + 7.5 mg/kg OX i.v. daily, 21 days</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">↓ cancer stem cells,
<break></break>
↓ DNA damage repair</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">[
<xref rid="B271-ijms-21-00401" ref-type="bibr">271</xref>
]</td>
</tr>
<tr>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">Prostate</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">Xenograft BALB/c mouse model for PC3 cells</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">NPs with 5 mg/kg DOC + 10 mg/kg curcumin i.v. daily,
<break></break>
21 days</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">↑ intracellular accumulation of DOC</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">[
<xref rid="B272-ijms-21-00401" ref-type="bibr">272</xref>
]</td>
</tr>
<tr>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">Prostate</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">Xenograft
<italic>nu/nu</italic>
mouse models (males, 5–6 weeks old) for PC-3A cells</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">NP with 6 mg/kg DOX + 24 mg/kg curcumin i.v. twice every three days, 4 weeks</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">↓ MDR, MRP</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">[
<xref rid="B273-ijms-21-00401" ref-type="bibr">273</xref>
]</td>
</tr>
<tr>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">Prostate</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">Xenograft mouse model for PC3 cells (nude mice)</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">5 mg/kg curcumin p.o.
<break></break>
daily, 4 weeks + 160 mg/kg gemcitabine i.p. every 7 days, 21 days + 3 Gy radiation
<break></break>
days 4, 6, 10 for 21 days</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">↓ MDM2</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">[
<xref rid="B274-ijms-21-00401" ref-type="bibr">274</xref>
]</td>
</tr>
<tr>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">Lung</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">Xenograft mouse model for A549 cells</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">200 mg/kg/day PS +
<break></break>
500 mg/kg/day curcumin p.o., 36 days</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">↑ pharmacokinetics
<break></break>
↑ accumulation in cancer tissue, ↓ P-gp,
<break></break>
↓ MRP1/2</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">[
<xref rid="B275-ijms-21-00401" ref-type="bibr">275</xref>
]</td>
</tr>
<tr>
<td rowspan="3" align="center" valign="middle" style="border-bottom:solid thin" colspan="1"></td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">Breast</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">Xenograft BALB/c mouse model (6–8 weeks) for MCF-7 cell lines</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">NPs with Tf-PEG-CUR/DOX—50 mg/kg CUR/DOX i.v. once/week, 7 weeks</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">↑ cellular uptake of DOX</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">[
<xref rid="B276-ijms-21-00401" ref-type="bibr">276</xref>
]</td>
</tr>
<tr>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">Prostate</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">CRPC patients, non-randomized open-label phase II trial (
<italic>n</italic>
= 30)</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">75 mg/m
<sup>2</sup>
DOC i.v.
<break></break>
day 1 every 21 days for 6 cycles + 8 mg dexamethasone p.o. 12 h, 3 h and 1 h before DOC administration + 5 mg prednisone p.o. twice/day starting on day 1 + 6000 mg curcumin p.o.
<break></break>
7 days in each cycle</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">↓ PSA
<break></break>
(50% of patients),
<break></break>
↓ NSE (30% of patients),
<break></break>
suggested mechanisms:
<break></break>
↓ NF-κB, ↓ AR,
<break></break>
↓ VEGFR, ↓ MDR1B</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">[
<xref rid="B277-ijms-21-00401" ref-type="bibr">277</xref>
]</td>
</tr>
<tr>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">Breast</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">Advanced-metastatic breast cancer patients, single institution open-label phase I trials
<break></break>
(
<italic>n</italic>
= 13)</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">100 mg/m
<sup>2</sup>
DOC i.v.
<break></break>
day 1 of each 3 weeks cycle for 6 cycles + 450 mg curcumin p.o. 7 days consecutive for each cycle + 50 mg methylprednisolone 2 days before and after chemotherapy</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">↓ CEA, ↓ VEGF
<break></break>
suggested mechanisms:
<break></break>
↓ P-gp</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">[
<xref rid="B278-ijms-21-00401" ref-type="bibr">278</xref>
]</td>
</tr>
</tbody>
</table>
<table-wrap-foot>
<fn>
<p>Legend—↓—downregulation, ↑—upregulation, COX-2—cicloxygenase 2, MMP-2—metalloproteinase, ICAM-1—intercellular adhesion molecule 1, CXCR4 chemokine receptor type 4, VEGF—vascular endothelial growth factor, DOC—docetaxel, P-gp—P-glycoprotein (MDR1), PS—phospho-sulindac, MRP1/2—multidrugresistance associated protein 1/2, Meriva—turmeric/phospholipid formulation, MDM2—mouse double minute 2 homolog, DOX—doxorubicin (adryamicin), Tf-PEG-CUR—transferrin-poly(ethylene glycol)-curcumin, PTX—paclitaxel, EGFR—epidermal growth factor receptor, EGR-1—early growth response protein 1, MDR—multidrug resistance, CBZ—cabazitaxel, CYP3A4—cytochrome P450 3A4, AKT—protein kinase B, XIAP—inhibitor of apoptosis protein 3, BCRP—breast cancer resistance protein, IGF-1R—insulin growth factor 1 receptor, IAP—inhibitors of apoptosis proteins, cFLIPL—regulator of caspase-8 activation, GRP78—glucose regulated protein, PI3K/AKT—phosphoinositide 3-kinase/protein kinase B, AR—androgen receptor, mTOR—mammalian target of rapamycin, NSCLC—non-small cell lung cancer, p.o.—oral administration, i.v.—intravenous administration, i.p.—intraperitoneal administration, BNDQ—quercetin and doxorubicin co-encapsulated biotin receptor-targeting nanoparticles, NPs—nanoparticles, CRPC—castration-resistant prostate cancer, CgA—chromogranin, NSE—neuron-specific enolase, DMBA—7,12-dimethylbenz[a]anthracene, OX—oxaliplatin, CDPP—cisplatin, GF—gefitinib, RES—resveratrol, PPTNPs—podophyllotoxin nanoparticles, CEA—carcioembryonic antigen, TRAIL—TNF-related apoptosis-inducing ligand, ROS—reactive oxygen species, JNK—c-Jun N-terminal kinase, RES—resveratrol, CAPE—caffeic acid phenethyl ester, Nf-kb- nuclear factor kappa-light-chain-enhancer of activated B cells, DPPT—deoxypodophyllotoxin, PSA—prostate serum antigen.</p>
</fn>
</table-wrap-foot>
</table-wrap>
</floats-group>
</pmc>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/ChloroquineV1/Data/Pmc/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000A28  | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Pmc/Corpus/biblio.hfd -nk 000A28  | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    ChloroquineV1
   |flux=    Pmc
   |étape=   Corpus
   |type=    RBID
   |clé=     
   |texte=   
}}

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Wed Mar 25 22:43:59 2020. Site generation: Sun Jan 31 12:44:45 2021