Serveur d'exploration Chloroquine

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.
***** Acces problem to record *****\

Identifieur interne : 000A270 ( Pmc/Corpus ); précédent : 000A269; suivant : 000A271 ***** probable Xml problem with record *****

Links to Exploration step


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Mechanisms of Metastatic Tumor Dormancy and Implications for Cancer Therapy</title>
<author>
<name sortKey="Neophytou, Christiana M" sort="Neophytou, Christiana M" uniqKey="Neophytou C" first="Christiana M." last="Neophytou">Christiana M. Neophytou</name>
<affiliation>
<nlm:aff id="af1-ijms-20-06158">European University Research Centre, 1516 Nicosia, Cyprus;
<email>C.Neophytou@research.euc.ac.cy</email>
</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="af2-ijms-20-06158">Department of Life Science, European University Cyprus, 1516 Nicosia, Cyprus;
<email>t.kyriakou@euc.ac.cy</email>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Kyriakou, Theodora Christina" sort="Kyriakou, Theodora Christina" uniqKey="Kyriakou T" first="Theodora-Christina" last="Kyriakou">Theodora-Christina Kyriakou</name>
<affiliation>
<nlm:aff id="af2-ijms-20-06158">Department of Life Science, European University Cyprus, 1516 Nicosia, Cyprus;
<email>t.kyriakou@euc.ac.cy</email>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Papageorgis, Panagiotis" sort="Papageorgis, Panagiotis" uniqKey="Papageorgis P" first="Panagiotis" last="Papageorgis">Panagiotis Papageorgis</name>
<affiliation>
<nlm:aff id="af1-ijms-20-06158">European University Research Centre, 1516 Nicosia, Cyprus;
<email>C.Neophytou@research.euc.ac.cy</email>
</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="af2-ijms-20-06158">Department of Life Science, European University Cyprus, 1516 Nicosia, Cyprus;
<email>t.kyriakou@euc.ac.cy</email>
</nlm:aff>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PMC</idno>
<idno type="pmid">31817646</idno>
<idno type="pmc">6940943</idno>
<idno type="url">http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6940943</idno>
<idno type="RBID">PMC:6940943</idno>
<idno type="doi">10.3390/ijms20246158</idno>
<date when="2019">2019</date>
<idno type="wicri:Area/Pmc/Corpus">000A27</idno>
<idno type="wicri:explorRef" wicri:stream="Pmc" wicri:step="Corpus" wicri:corpus="PMC">000A27</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a" type="main">Mechanisms of Metastatic Tumor Dormancy and Implications for Cancer Therapy</title>
<author>
<name sortKey="Neophytou, Christiana M" sort="Neophytou, Christiana M" uniqKey="Neophytou C" first="Christiana M." last="Neophytou">Christiana M. Neophytou</name>
<affiliation>
<nlm:aff id="af1-ijms-20-06158">European University Research Centre, 1516 Nicosia, Cyprus;
<email>C.Neophytou@research.euc.ac.cy</email>
</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="af2-ijms-20-06158">Department of Life Science, European University Cyprus, 1516 Nicosia, Cyprus;
<email>t.kyriakou@euc.ac.cy</email>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Kyriakou, Theodora Christina" sort="Kyriakou, Theodora Christina" uniqKey="Kyriakou T" first="Theodora-Christina" last="Kyriakou">Theodora-Christina Kyriakou</name>
<affiliation>
<nlm:aff id="af2-ijms-20-06158">Department of Life Science, European University Cyprus, 1516 Nicosia, Cyprus;
<email>t.kyriakou@euc.ac.cy</email>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Papageorgis, Panagiotis" sort="Papageorgis, Panagiotis" uniqKey="Papageorgis P" first="Panagiotis" last="Papageorgis">Panagiotis Papageorgis</name>
<affiliation>
<nlm:aff id="af1-ijms-20-06158">European University Research Centre, 1516 Nicosia, Cyprus;
<email>C.Neophytou@research.euc.ac.cy</email>
</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="af2-ijms-20-06158">Department of Life Science, European University Cyprus, 1516 Nicosia, Cyprus;
<email>t.kyriakou@euc.ac.cy</email>
</nlm:aff>
</affiliation>
</author>
</analytic>
<series>
<title level="j">International Journal of Molecular Sciences</title>
<idno type="eISSN">1422-0067</idno>
<imprint>
<date when="2019">2019</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<p>Metastasis, a multistep process during which tumor cells disseminate to secondary organs, represents the main cause of death for cancer patients. Metastatic dormancy is a late stage during cancer progression, following extravasation of cells at a secondary site, where the metastatic cells stop proliferating but survive in a quiescent state. When the microenvironmental conditions are favorable, they re-initiate proliferation and colonize, sometimes years after treatment of the primary tumor. This phenomenon represents a major clinical obstacle in cancer patient care. In this review, we describe the current knowledge regarding the genetic or epigenetic mechanisms that are activated by cancer cells that either sustain tumor dormancy or promote escape from this inactive state. In addition, we focus on the role of the microenvironment with emphasis on the effects of extracellular matrix proteins and in factors implicated in regulating dormancy during colonization to the lungs, brain, and bone. Finally, we describe the opportunities and efforts being made for the development of novel therapeutic strategies to combat metastatic cancer, by targeting the dormancy stage. </p>
</div>
</front>
<back>
<div1 type="bibliography">
<listBibl>
<biblStruct>
<analytic>
<author>
<name sortKey="Siegel, R L" uniqKey="Siegel R">R.L. Siegel</name>
</author>
<author>
<name sortKey="Miller, K D" uniqKey="Miller K">K.D. Miller</name>
</author>
<author>
<name sortKey="Jemal, A" uniqKey="Jemal A">A. Jemal</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Chaffer, C L" uniqKey="Chaffer C">C.L. Chaffer</name>
</author>
<author>
<name sortKey="Weinberg, R A" uniqKey="Weinberg R">R.A. Weinberg</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Pantel, K" uniqKey="Pantel K">K. Pantel</name>
</author>
<author>
<name sortKey="Brakenhoff, R H" uniqKey="Brakenhoff R">R.H. Brakenhoff</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Micalizzi, D S" uniqKey="Micalizzi D">D.S. Micalizzi</name>
</author>
<author>
<name sortKey="Maheswaran, S" uniqKey="Maheswaran S">S. Maheswaran</name>
</author>
<author>
<name sortKey="Haber, D A" uniqKey="Haber D">D.A. Haber</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Massague, J" uniqKey="Massague J">J. Massague</name>
</author>
<author>
<name sortKey="Obenauf, A C" uniqKey="Obenauf A">A.C. Obenauf</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Aguirre Ghiso, J A" uniqKey="Aguirre Ghiso J">J.A. Aguirre-Ghiso</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Goddard, E T" uniqKey="Goddard E">E.T. Goddard</name>
</author>
<author>
<name sortKey="Bozic, I" uniqKey="Bozic I">I. Bozic</name>
</author>
<author>
<name sortKey="Riddell, S R" uniqKey="Riddell S">S.R. Riddell</name>
</author>
<author>
<name sortKey="Ghajar, C M" uniqKey="Ghajar C">C.M. Ghajar</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Karrison, T G" uniqKey="Karrison T">T.G. Karrison</name>
</author>
<author>
<name sortKey="Ferguson, D J" uniqKey="Ferguson D">D.J. Ferguson</name>
</author>
<author>
<name sortKey="Meier, P" uniqKey="Meier P">P. Meier</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Freedland, S J" uniqKey="Freedland S">S.J. Freedland</name>
</author>
<author>
<name sortKey="Moul, J W" uniqKey="Moul J">J.W. Moul</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Mcnichols, D W" uniqKey="Mcnichols D">D.W. McNichols</name>
</author>
<author>
<name sortKey="Segura, J W" uniqKey="Segura J">J.W. Segura</name>
</author>
<author>
<name sortKey="Deweerd, J H" uniqKey="Deweerd J">J.H. DeWeerd</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Tsao, H" uniqKey="Tsao H">H. Tsao</name>
</author>
<author>
<name sortKey="Cosimi, A B" uniqKey="Cosimi A">A.B. Cosimi</name>
</author>
<author>
<name sortKey="Sober, A J" uniqKey="Sober A">A.J. Sober</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Klein, C A" uniqKey="Klein C">C.A. Klein</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Schmidt Kittler, O" uniqKey="Schmidt Kittler O">O. Schmidt-Kittler</name>
</author>
<author>
<name sortKey="Ragg, T" uniqKey="Ragg T">T. Ragg</name>
</author>
<author>
<name sortKey="Daskalakis, A" uniqKey="Daskalakis A">A. Daskalakis</name>
</author>
<author>
<name sortKey="Granzow, M" uniqKey="Granzow M">M. Granzow</name>
</author>
<author>
<name sortKey="Ahr, A" uniqKey="Ahr A">A. Ahr</name>
</author>
<author>
<name sortKey="Blankenstein, T J" uniqKey="Blankenstein T">T.J. Blankenstein</name>
</author>
<author>
<name sortKey="Kaufmann, M" uniqKey="Kaufmann M">M. Kaufmann</name>
</author>
<author>
<name sortKey="Diebold, J" uniqKey="Diebold J">J. Diebold</name>
</author>
<author>
<name sortKey="Arnholdt, H" uniqKey="Arnholdt H">H. Arnholdt</name>
</author>
<author>
<name sortKey="Muller, P" uniqKey="Muller P">P. Muller</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Harper, K L" uniqKey="Harper K">K.L. Harper</name>
</author>
<author>
<name sortKey="Sosa, M S" uniqKey="Sosa M">M.S. Sosa</name>
</author>
<author>
<name sortKey="Entenberg, D" uniqKey="Entenberg D">D. Entenberg</name>
</author>
<author>
<name sortKey="Hosseini, H" uniqKey="Hosseini H">H. Hosseini</name>
</author>
<author>
<name sortKey="Cheung, J F" uniqKey="Cheung J">J.F. Cheung</name>
</author>
<author>
<name sortKey="Nobre, R" uniqKey="Nobre R">R. Nobre</name>
</author>
<author>
<name sortKey="Avivar Valderas, A" uniqKey="Avivar Valderas A">A. Avivar-Valderas</name>
</author>
<author>
<name sortKey="Nagi, C" uniqKey="Nagi C">C. Nagi</name>
</author>
<author>
<name sortKey="Girnius, N" uniqKey="Girnius N">N. Girnius</name>
</author>
<author>
<name sortKey="Davis, R J" uniqKey="Davis R">R.J. Davis</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Rhim, A D" uniqKey="Rhim A">A.D. Rhim</name>
</author>
<author>
<name sortKey="Mirek, E T" uniqKey="Mirek E">E.T. Mirek</name>
</author>
<author>
<name sortKey="Aiello, N M" uniqKey="Aiello N">N.M. Aiello</name>
</author>
<author>
<name sortKey="Maitra, A" uniqKey="Maitra A">A. Maitra</name>
</author>
<author>
<name sortKey="Bailey, J M" uniqKey="Bailey J">J.M. Bailey</name>
</author>
<author>
<name sortKey="Mcallister, F" uniqKey="Mcallister F">F. McAllister</name>
</author>
<author>
<name sortKey="Reichert, M" uniqKey="Reichert M">M. Reichert</name>
</author>
<author>
<name sortKey="Beatty, G L" uniqKey="Beatty G">G.L. Beatty</name>
</author>
<author>
<name sortKey="Rustgi, A K" uniqKey="Rustgi A">A.K. Rustgi</name>
</author>
<author>
<name sortKey="Vonderheide, R H" uniqKey="Vonderheide R">R.H. Vonderheide</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Giancotti, F G" uniqKey="Giancotti F">F.G. Giancotti</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Onoyama, I" uniqKey="Onoyama I">I. Onoyama</name>
</author>
<author>
<name sortKey="Nakayama, K I" uniqKey="Nakayama K">K.I. Nakayama</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Shimizu, H" uniqKey="Shimizu H">H. Shimizu</name>
</author>
<author>
<name sortKey="Takeishi, S" uniqKey="Takeishi S">S. Takeishi</name>
</author>
<author>
<name sortKey="Nakatsumi, H" uniqKey="Nakatsumi H">H. Nakatsumi</name>
</author>
<author>
<name sortKey="Nakayama, K I" uniqKey="Nakayama K">K.I. Nakayama</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Johnson, R W" uniqKey="Johnson R">R.W. Johnson</name>
</author>
<author>
<name sortKey="Finger, E C" uniqKey="Finger E">E.C. Finger</name>
</author>
<author>
<name sortKey="Olcina, M M" uniqKey="Olcina M">M.M. Olcina</name>
</author>
<author>
<name sortKey="Vilalta, M" uniqKey="Vilalta M">M. Vilalta</name>
</author>
<author>
<name sortKey="Aguilera, T" uniqKey="Aguilera T">T. Aguilera</name>
</author>
<author>
<name sortKey="Miao, Y" uniqKey="Miao Y">Y. Miao</name>
</author>
<author>
<name sortKey="Merkel, A R" uniqKey="Merkel A">A.R. Merkel</name>
</author>
<author>
<name sortKey="Johnson, J R" uniqKey="Johnson J">J.R. Johnson</name>
</author>
<author>
<name sortKey="Sterling, J A" uniqKey="Sterling J">J.A. Sterling</name>
</author>
<author>
<name sortKey="Wu, J Y" uniqKey="Wu J">J.Y. Wu</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Vera Ramirez, L" uniqKey="Vera Ramirez L">L. Vera-Ramirez</name>
</author>
<author>
<name sortKey="Vodnala, S K" uniqKey="Vodnala S">S.K. Vodnala</name>
</author>
<author>
<name sortKey="Nini, R" uniqKey="Nini R">R. Nini</name>
</author>
<author>
<name sortKey="Hunter, K W" uniqKey="Hunter K">K.W. Hunter</name>
</author>
<author>
<name sortKey="Green, J E" uniqKey="Green J">J.E. Green</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Vander Griend, D J" uniqKey="Vander Griend D">D.J. Vander Griend</name>
</author>
<author>
<name sortKey="Kocherginsky, M" uniqKey="Kocherginsky M">M. Kocherginsky</name>
</author>
<author>
<name sortKey="Hickson, J A" uniqKey="Hickson J">J.A. Hickson</name>
</author>
<author>
<name sortKey="Stadler, W M" uniqKey="Stadler W">W.M. Stadler</name>
</author>
<author>
<name sortKey="Lin, A" uniqKey="Lin A">A. Lin</name>
</author>
<author>
<name sortKey="Rinker Schaeffer, C W" uniqKey="Rinker Schaeffer C">C.W. Rinker-Schaeffer</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Yamada, S D" uniqKey="Yamada S">S.D. Yamada</name>
</author>
<author>
<name sortKey="Hickson, J A" uniqKey="Hickson J">J.A. Hickson</name>
</author>
<author>
<name sortKey="Hrobowski, Y" uniqKey="Hrobowski Y">Y. Hrobowski</name>
</author>
<author>
<name sortKey="Vander Griend, D J" uniqKey="Vander Griend D">D.J. Vander Griend</name>
</author>
<author>
<name sortKey="Benson, D" uniqKey="Benson D">D. Benson</name>
</author>
<author>
<name sortKey="Montag, A" uniqKey="Montag A">A. Montag</name>
</author>
<author>
<name sortKey="Karrison, T" uniqKey="Karrison T">T. Karrison</name>
</author>
<author>
<name sortKey="Huo, D" uniqKey="Huo D">D. Huo</name>
</author>
<author>
<name sortKey="Rutgers, J" uniqKey="Rutgers J">J. Rutgers</name>
</author>
<author>
<name sortKey="Adams, S" uniqKey="Adams S">S. Adams</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Hickson, J A" uniqKey="Hickson J">J.A. Hickson</name>
</author>
<author>
<name sortKey="Huo, D" uniqKey="Huo D">D. Huo</name>
</author>
<author>
<name sortKey="Vander Griend, D J" uniqKey="Vander Griend D">D.J. Vander Griend</name>
</author>
<author>
<name sortKey="Lin, A" uniqKey="Lin A">A. Lin</name>
</author>
<author>
<name sortKey="Rinker Schaeffer, C W" uniqKey="Rinker Schaeffer C">C.W. Rinker-Schaeffer</name>
</author>
<author>
<name sortKey="Yamada, S D" uniqKey="Yamada S">S.D. Yamada</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Aguirre Ghiso, J A" uniqKey="Aguirre Ghiso J">J.A. Aguirre-Ghiso</name>
</author>
<author>
<name sortKey="Estrada, Y" uniqKey="Estrada Y">Y. Estrada</name>
</author>
<author>
<name sortKey="Liu, D" uniqKey="Liu D">D. Liu</name>
</author>
<author>
<name sortKey="Ossowski, L" uniqKey="Ossowski L">L. Ossowski</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="El Shennawy, L" uniqKey="El Shennawy L">L. El-Shennawy</name>
</author>
<author>
<name sortKey="Dubrovskyi, O" uniqKey="Dubrovskyi O">O. Dubrovskyi</name>
</author>
<author>
<name sortKey="Kastrati, I" uniqKey="Kastrati I">I. Kastrati</name>
</author>
<author>
<name sortKey="Danes, J M" uniqKey="Danes J">J.M. Danes</name>
</author>
<author>
<name sortKey="Zhang, Y" uniqKey="Zhang Y">Y. Zhang</name>
</author>
<author>
<name sortKey="Whiteley, H E" uniqKey="Whiteley H">H.E. Whiteley</name>
</author>
<author>
<name sortKey="Creighton, C J" uniqKey="Creighton C">C.J. Creighton</name>
</author>
<author>
<name sortKey="Frasor, J" uniqKey="Frasor J">J. Frasor</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Nobutani, K" uniqKey="Nobutani K">K. Nobutani</name>
</author>
<author>
<name sortKey="Shimono, Y" uniqKey="Shimono Y">Y. Shimono</name>
</author>
<author>
<name sortKey="Mizutani, K" uniqKey="Mizutani K">K. Mizutani</name>
</author>
<author>
<name sortKey="Ueda, Y" uniqKey="Ueda Y">Y. Ueda</name>
</author>
<author>
<name sortKey="Suzuki, T" uniqKey="Suzuki T">T. Suzuki</name>
</author>
<author>
<name sortKey="Kitayama, M" uniqKey="Kitayama M">M. Kitayama</name>
</author>
<author>
<name sortKey="Minami, A" uniqKey="Minami A">A. Minami</name>
</author>
<author>
<name sortKey="Momose, K" uniqKey="Momose K">K. Momose</name>
</author>
<author>
<name sortKey="Miyawaki, K" uniqKey="Miyawaki K">K. Miyawaki</name>
</author>
<author>
<name sortKey="Akashi, K" uniqKey="Akashi K">K. Akashi</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Jiang, J" uniqKey="Jiang J">J. Jiang</name>
</author>
<author>
<name sortKey="Zheng, M" uniqKey="Zheng M">M. Zheng</name>
</author>
<author>
<name sortKey="Zhang, M" uniqKey="Zhang M">M. Zhang</name>
</author>
<author>
<name sortKey="Yang, X" uniqKey="Yang X">X. Yang</name>
</author>
<author>
<name sortKey="Li, L" uniqKey="Li L">L. Li</name>
</author>
<author>
<name sortKey="Wang, S S" uniqKey="Wang S">S.S. Wang</name>
</author>
<author>
<name sortKey="Wu, J S" uniqKey="Wu J">J.S. Wu</name>
</author>
<author>
<name sortKey="Yu, X H" uniqKey="Yu X">X.H. Yu</name>
</author>
<author>
<name sortKey="Wu, J B" uniqKey="Wu J">J.B. Wu</name>
</author>
<author>
<name sortKey="Pang, X" uniqKey="Pang X">X. Pang</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Jiang, Y" uniqKey="Jiang Y">Y. Jiang</name>
</author>
<author>
<name sortKey="Berk, M" uniqKey="Berk M">M. Berk</name>
</author>
<author>
<name sortKey="Singh, L S" uniqKey="Singh L">L.S. Singh</name>
</author>
<author>
<name sortKey="Tan, H" uniqKey="Tan H">H. Tan</name>
</author>
<author>
<name sortKey="Yin, L" uniqKey="Yin L">L. Yin</name>
</author>
<author>
<name sortKey="Powell, C T" uniqKey="Powell C">C.T. Powell</name>
</author>
<author>
<name sortKey="Xu, Y" uniqKey="Xu Y">Y. Xu</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Lee, J H" uniqKey="Lee J">J.H. Lee</name>
</author>
<author>
<name sortKey="Miele, M E" uniqKey="Miele M">M.E. Miele</name>
</author>
<author>
<name sortKey="Hicks, D J" uniqKey="Hicks D">D.J. Hicks</name>
</author>
<author>
<name sortKey="Phillips, K K" uniqKey="Phillips K">K.K. Phillips</name>
</author>
<author>
<name sortKey="Trent, J M" uniqKey="Trent J">J.M. Trent</name>
</author>
<author>
<name sortKey="Weissman, B E" uniqKey="Weissman B">B.E. Weissman</name>
</author>
<author>
<name sortKey="Welch, D R" uniqKey="Welch D">D.R. Welch</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Lee, J H" uniqKey="Lee J">J.H. Lee</name>
</author>
<author>
<name sortKey="Welch, D R" uniqKey="Welch D">D.R. Welch</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Lee, J H" uniqKey="Lee J">J.H. Lee</name>
</author>
<author>
<name sortKey="Welch, D R" uniqKey="Welch D">D.R. Welch</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Nash, K T" uniqKey="Nash K">K.T. Nash</name>
</author>
<author>
<name sortKey="Phadke, P A" uniqKey="Phadke P">P.A. Phadke</name>
</author>
<author>
<name sortKey="Navenot, J M" uniqKey="Navenot J">J.M. Navenot</name>
</author>
<author>
<name sortKey="Hurst, D R" uniqKey="Hurst D">D.R. Hurst</name>
</author>
<author>
<name sortKey="Accavitti Loper, M A" uniqKey="Accavitti Loper M">M.A. Accavitti-Loper</name>
</author>
<author>
<name sortKey="Sztul, E" uniqKey="Sztul E">E. Sztul</name>
</author>
<author>
<name sortKey="Vaidya, K S" uniqKey="Vaidya K">K.S. Vaidya</name>
</author>
<author>
<name sortKey="Frost, A R" uniqKey="Frost A">A.R. Frost</name>
</author>
<author>
<name sortKey="Kappes, J C" uniqKey="Kappes J">J.C. Kappes</name>
</author>
<author>
<name sortKey="Peiper, S C" uniqKey="Peiper S">S.C. Peiper</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Khazali, A S" uniqKey="Khazali A">A.S. Khazali</name>
</author>
<author>
<name sortKey="Clark, A M" uniqKey="Clark A">A.M. Clark</name>
</author>
<author>
<name sortKey="Wells, A" uniqKey="Wells A">A. Wells</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Strong, N" uniqKey="Strong N">N. Strong</name>
</author>
<author>
<name sortKey="Millena, A C" uniqKey="Millena A">A.C. Millena</name>
</author>
<author>
<name sortKey="Walker, L" uniqKey="Walker L">L. Walker</name>
</author>
<author>
<name sortKey="Chaudhary, J" uniqKey="Chaudhary J">J. Chaudhary</name>
</author>
<author>
<name sortKey="Khan, S A" uniqKey="Khan S">S.A. Khan</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Gupta, G P" uniqKey="Gupta G">G.P. Gupta</name>
</author>
<author>
<name sortKey="Perk, J" uniqKey="Perk J">J. Perk</name>
</author>
<author>
<name sortKey="Acharyya, S" uniqKey="Acharyya S">S. Acharyya</name>
</author>
<author>
<name sortKey="De Candia, P" uniqKey="De Candia P">P. de Candia</name>
</author>
<author>
<name sortKey="Mittal, V" uniqKey="Mittal V">V. Mittal</name>
</author>
<author>
<name sortKey="Todorova Manova, K" uniqKey="Todorova Manova K">K. Todorova-Manova</name>
</author>
<author>
<name sortKey="Gerald, W L" uniqKey="Gerald W">W.L. Gerald</name>
</author>
<author>
<name sortKey="Brogi, E" uniqKey="Brogi E">E. Brogi</name>
</author>
<author>
<name sortKey="Benezra, R" uniqKey="Benezra R">R. Benezra</name>
</author>
<author>
<name sortKey="Massague, J" uniqKey="Massague J">J. Massague</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Swarbrick, A" uniqKey="Swarbrick A">A. Swarbrick</name>
</author>
<author>
<name sortKey="Roy, E" uniqKey="Roy E">E. Roy</name>
</author>
<author>
<name sortKey="Allen, T" uniqKey="Allen T">T. Allen</name>
</author>
<author>
<name sortKey="Bishop, J M" uniqKey="Bishop J">J.M. Bishop</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Gao, H" uniqKey="Gao H">H. Gao</name>
</author>
<author>
<name sortKey="Chakraborty, G" uniqKey="Chakraborty G">G. Chakraborty</name>
</author>
<author>
<name sortKey="Lee Lim, A P" uniqKey="Lee Lim A">A.P. Lee-Lim</name>
</author>
<author>
<name sortKey="Mo, Q" uniqKey="Mo Q">Q. Mo</name>
</author>
<author>
<name sortKey="Decker, M" uniqKey="Decker M">M. Decker</name>
</author>
<author>
<name sortKey="Vonica, A" uniqKey="Vonica A">A. Vonica</name>
</author>
<author>
<name sortKey="Shen, R" uniqKey="Shen R">R. Shen</name>
</author>
<author>
<name sortKey="Brogi, E" uniqKey="Brogi E">E. Brogi</name>
</author>
<author>
<name sortKey="Brivanlou, A H" uniqKey="Brivanlou A">A.H. Brivanlou</name>
</author>
<author>
<name sortKey="Giancotti, F G" uniqKey="Giancotti F">F.G. Giancotti</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ruppender, N" uniqKey="Ruppender N">N. Ruppender</name>
</author>
<author>
<name sortKey="Larson, S" uniqKey="Larson S">S. Larson</name>
</author>
<author>
<name sortKey="Lakely, B" uniqKey="Lakely B">B. Lakely</name>
</author>
<author>
<name sortKey="Kollath, L" uniqKey="Kollath L">L. Kollath</name>
</author>
<author>
<name sortKey="Brown, L" uniqKey="Brown L">L. Brown</name>
</author>
<author>
<name sortKey="Coleman, I" uniqKey="Coleman I">I. Coleman</name>
</author>
<author>
<name sortKey="Coleman, R" uniqKey="Coleman R">R. Coleman</name>
</author>
<author>
<name sortKey="Nguyen, H" uniqKey="Nguyen H">H. Nguyen</name>
</author>
<author>
<name sortKey="Nelson, P S" uniqKey="Nelson P">P.S. Nelson</name>
</author>
<author>
<name sortKey="Corey, E" uniqKey="Corey E">E. Corey</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Gawrzak, S" uniqKey="Gawrzak S">S. Gawrzak</name>
</author>
<author>
<name sortKey="Rinaldi, L" uniqKey="Rinaldi L">L. Rinaldi</name>
</author>
<author>
<name sortKey="Gregorio, S" uniqKey="Gregorio S">S. Gregorio</name>
</author>
<author>
<name sortKey="Arenas, E J" uniqKey="Arenas E">E.J. Arenas</name>
</author>
<author>
<name sortKey="Salvador, F" uniqKey="Salvador F">F. Salvador</name>
</author>
<author>
<name sortKey="Urosevic, J" uniqKey="Urosevic J">J. Urosevic</name>
</author>
<author>
<name sortKey="Figueras Puig, C" uniqKey="Figueras Puig C">C. Figueras-Puig</name>
</author>
<author>
<name sortKey="Rojo, F" uniqKey="Rojo F">F. Rojo</name>
</author>
<author>
<name sortKey="Del Barco Barrantes, I" uniqKey="Del Barco Barrantes I">I. Del Barco Barrantes</name>
</author>
<author>
<name sortKey="Cejalvo, J M" uniqKey="Cejalvo J">J.M. Cejalvo</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Adam, A P" uniqKey="Adam A">A.P. Adam</name>
</author>
<author>
<name sortKey="George, A" uniqKey="George A">A. George</name>
</author>
<author>
<name sortKey="Schewe, D" uniqKey="Schewe D">D. Schewe</name>
</author>
<author>
<name sortKey="Bragado, P" uniqKey="Bragado P">P. Bragado</name>
</author>
<author>
<name sortKey="Iglesias, B V" uniqKey="Iglesias B">B.V. Iglesias</name>
</author>
<author>
<name sortKey="Ranganathan, A C" uniqKey="Ranganathan A">A.C. Ranganathan</name>
</author>
<author>
<name sortKey="Kourtidis, A" uniqKey="Kourtidis A">A. Kourtidis</name>
</author>
<author>
<name sortKey="Conklin, D S" uniqKey="Conklin D">D.S. Conklin</name>
</author>
<author>
<name sortKey="Aguirre Ghiso, J A" uniqKey="Aguirre Ghiso J">J.A. Aguirre-Ghiso</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Sosa, M S" uniqKey="Sosa M">M.S. Sosa</name>
</author>
<author>
<name sortKey="Parikh, F" uniqKey="Parikh F">F. Parikh</name>
</author>
<author>
<name sortKey="Maia, A G" uniqKey="Maia A">A.G. Maia</name>
</author>
<author>
<name sortKey="Estrada, Y" uniqKey="Estrada Y">Y. Estrada</name>
</author>
<author>
<name sortKey="Bosch, A" uniqKey="Bosch A">A. Bosch</name>
</author>
<author>
<name sortKey="Bragado, P" uniqKey="Bragado P">P. Bragado</name>
</author>
<author>
<name sortKey="Ekpin, E" uniqKey="Ekpin E">E. Ekpin</name>
</author>
<author>
<name sortKey="George, A" uniqKey="George A">A. George</name>
</author>
<author>
<name sortKey="Zheng, Y" uniqKey="Zheng Y">Y. Zheng</name>
</author>
<author>
<name sortKey="Lam, H M" uniqKey="Lam H">H.M. Lam</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Aguirre Ghiso, J A" uniqKey="Aguirre Ghiso J">J.A. Aguirre Ghiso</name>
</author>
<author>
<name sortKey="Kovalski, K" uniqKey="Kovalski K">K. Kovalski</name>
</author>
<author>
<name sortKey="Ossowski, L" uniqKey="Ossowski L">L. Ossowski</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Aguirre Ghiso, J A" uniqKey="Aguirre Ghiso J">J.A. Aguirre-Ghiso</name>
</author>
<author>
<name sortKey="Liu, D" uniqKey="Liu D">D. Liu</name>
</author>
<author>
<name sortKey="Mignatti, A" uniqKey="Mignatti A">A. Mignatti</name>
</author>
<author>
<name sortKey="Kovalski, K" uniqKey="Kovalski K">K. Kovalski</name>
</author>
<author>
<name sortKey="Ossowski, L" uniqKey="Ossowski L">L. Ossowski</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Barkan, D" uniqKey="Barkan D">D. Barkan</name>
</author>
<author>
<name sortKey="Kleinman, H" uniqKey="Kleinman H">H. Kleinman</name>
</author>
<author>
<name sortKey="Simmons, J L" uniqKey="Simmons J">J.L. Simmons</name>
</author>
<author>
<name sortKey="Asmussen, H" uniqKey="Asmussen H">H. Asmussen</name>
</author>
<author>
<name sortKey="Kamaraju, A K" uniqKey="Kamaraju A">A.K. Kamaraju</name>
</author>
<author>
<name sortKey="Hoenorhoff, M J" uniqKey="Hoenorhoff M">M.J. Hoenorhoff</name>
</author>
<author>
<name sortKey="Liu, Z Y" uniqKey="Liu Z">Z.Y. Liu</name>
</author>
<author>
<name sortKey="Costes, S V" uniqKey="Costes S">S.V. Costes</name>
</author>
<author>
<name sortKey="Cho, E H" uniqKey="Cho E">E.H. Cho</name>
</author>
<author>
<name sortKey="Lockett, S" uniqKey="Lockett S">S. Lockett</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Barkan, D" uniqKey="Barkan D">D. Barkan</name>
</author>
<author>
<name sortKey="El Touny, L H" uniqKey="El Touny L">L.H. El Touny</name>
</author>
<author>
<name sortKey="Michalowski, A M" uniqKey="Michalowski A">A.M. Michalowski</name>
</author>
<author>
<name sortKey="Smith, J A" uniqKey="Smith J">J.A. Smith</name>
</author>
<author>
<name sortKey="Chu, I" uniqKey="Chu I">I. Chu</name>
</author>
<author>
<name sortKey="Davis, A S" uniqKey="Davis A">A.S. Davis</name>
</author>
<author>
<name sortKey="Webster, J D" uniqKey="Webster J">J.D. Webster</name>
</author>
<author>
<name sortKey="Hoover, S" uniqKey="Hoover S">S. Hoover</name>
</author>
<author>
<name sortKey="Simpson, R M" uniqKey="Simpson R">R.M. Simpson</name>
</author>
<author>
<name sortKey="Gauldie, J" uniqKey="Gauldie J">J. Gauldie</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Rachman Tzemah, C" uniqKey="Rachman Tzemah C">C. Rachman-Tzemah</name>
</author>
<author>
<name sortKey="Zaffryar Eilot, S" uniqKey="Zaffryar Eilot S">S. Zaffryar-Eilot</name>
</author>
<author>
<name sortKey="Grossman, M" uniqKey="Grossman M">M. Grossman</name>
</author>
<author>
<name sortKey="Ribero, D" uniqKey="Ribero D">D. Ribero</name>
</author>
<author>
<name sortKey="Timaner, M" uniqKey="Timaner M">M. Timaner</name>
</author>
<author>
<name sortKey="Maki, J M" uniqKey="Maki J">J.M. Maki</name>
</author>
<author>
<name sortKey="Myllyharju, J" uniqKey="Myllyharju J">J. Myllyharju</name>
</author>
<author>
<name sortKey="Bertolini, F" uniqKey="Bertolini F">F. Bertolini</name>
</author>
<author>
<name sortKey="Hershkovitz, D" uniqKey="Hershkovitz D">D. Hershkovitz</name>
</author>
<author>
<name sortKey="Sagi, I" uniqKey="Sagi I">I. Sagi</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Cox, T R" uniqKey="Cox T">T.R. Cox</name>
</author>
<author>
<name sortKey="Bird, D" uniqKey="Bird D">D. Bird</name>
</author>
<author>
<name sortKey="Baker, A M" uniqKey="Baker A">A.M. Baker</name>
</author>
<author>
<name sortKey="Barker, H E" uniqKey="Barker H">H.E. Barker</name>
</author>
<author>
<name sortKey="Ho, M W" uniqKey="Ho M">M.W. Ho</name>
</author>
<author>
<name sortKey="Lang, G" uniqKey="Lang G">G. Lang</name>
</author>
<author>
<name sortKey="Erler, J T" uniqKey="Erler J">J.T. Erler</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Barry Hamilton, V" uniqKey="Barry Hamilton V">V. Barry-Hamilton</name>
</author>
<author>
<name sortKey="Spangler, R" uniqKey="Spangler R">R. Spangler</name>
</author>
<author>
<name sortKey="Marshall, D" uniqKey="Marshall D">D. Marshall</name>
</author>
<author>
<name sortKey="Mccauley, S" uniqKey="Mccauley S">S. McCauley</name>
</author>
<author>
<name sortKey="Rodriguez, H M" uniqKey="Rodriguez H">H.M. Rodriguez</name>
</author>
<author>
<name sortKey="Oyasu, M" uniqKey="Oyasu M">M. Oyasu</name>
</author>
<author>
<name sortKey="Mikels, A" uniqKey="Mikels A">A. Mikels</name>
</author>
<author>
<name sortKey="Vaysberg, M" uniqKey="Vaysberg M">M. Vaysberg</name>
</author>
<author>
<name sortKey="Ghermazien, H" uniqKey="Ghermazien H">H. Ghermazien</name>
</author>
<author>
<name sortKey="Wai, C" uniqKey="Wai C">C. Wai</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Cano, A" uniqKey="Cano A">A. Cano</name>
</author>
<author>
<name sortKey="Santamaria, P G" uniqKey="Santamaria P">P.G. Santamaria</name>
</author>
<author>
<name sortKey="Moreno Bueno, G" uniqKey="Moreno Bueno G">G. Moreno-Bueno</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Moreno Bueno, G" uniqKey="Moreno Bueno G">G. Moreno-Bueno</name>
</author>
<author>
<name sortKey="Salvador, F" uniqKey="Salvador F">F. Salvador</name>
</author>
<author>
<name sortKey="Martin, A" uniqKey="Martin A">A. Martin</name>
</author>
<author>
<name sortKey="Floristan, A" uniqKey="Floristan A">A. Floristan</name>
</author>
<author>
<name sortKey="Cuevas, E P" uniqKey="Cuevas E">E.P. Cuevas</name>
</author>
<author>
<name sortKey="Santos, V" uniqKey="Santos V">V. Santos</name>
</author>
<author>
<name sortKey="Montes, A" uniqKey="Montes A">A. Montes</name>
</author>
<author>
<name sortKey="Morales, S" uniqKey="Morales S">S. Morales</name>
</author>
<author>
<name sortKey="Castilla, M A" uniqKey="Castilla M">M.A. Castilla</name>
</author>
<author>
<name sortKey="Rojo Sebastian, A" uniqKey="Rojo Sebastian A">A. Rojo-Sebastian</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Weidenfeld, K" uniqKey="Weidenfeld K">K. Weidenfeld</name>
</author>
<author>
<name sortKey="Schif Zuck, S" uniqKey="Schif Zuck S">S. Schif-Zuck</name>
</author>
<author>
<name sortKey="Abu Tayeh, H" uniqKey="Abu Tayeh H">H. Abu-Tayeh</name>
</author>
<author>
<name sortKey="Kang, K" uniqKey="Kang K">K. Kang</name>
</author>
<author>
<name sortKey="Kessler, O" uniqKey="Kessler O">O. Kessler</name>
</author>
<author>
<name sortKey="Weissmann, M" uniqKey="Weissmann M">M. Weissmann</name>
</author>
<author>
<name sortKey="Neufeld, G" uniqKey="Neufeld G">G. Neufeld</name>
</author>
<author>
<name sortKey="Barkan, D" uniqKey="Barkan D">D. Barkan</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="De Cock, J M" uniqKey="De Cock J">J.M. De Cock</name>
</author>
<author>
<name sortKey="Shibue, T" uniqKey="Shibue T">T. Shibue</name>
</author>
<author>
<name sortKey="Dongre, A" uniqKey="Dongre A">A. Dongre</name>
</author>
<author>
<name sortKey="Keckesova, Z" uniqKey="Keckesova Z">Z. Keckesova</name>
</author>
<author>
<name sortKey="Reinhardt, F" uniqKey="Reinhardt F">F. Reinhardt</name>
</author>
<author>
<name sortKey="Weinberg, R A" uniqKey="Weinberg R">R.A. Weinberg</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Liu, W" uniqKey="Liu W">W. Liu</name>
</author>
<author>
<name sortKey="Huang, Y J" uniqKey="Huang Y">Y.J. Huang</name>
</author>
<author>
<name sortKey="Liu, C" uniqKey="Liu C">C. Liu</name>
</author>
<author>
<name sortKey="Yang, Y Y" uniqKey="Yang Y">Y.Y. Yang</name>
</author>
<author>
<name sortKey="Liu, H" uniqKey="Liu H">H. Liu</name>
</author>
<author>
<name sortKey="Cui, J G" uniqKey="Cui J">J.G. Cui</name>
</author>
<author>
<name sortKey="Cheng, Y" uniqKey="Cheng Y">Y. Cheng</name>
</author>
<author>
<name sortKey="Gao, F" uniqKey="Gao F">F. Gao</name>
</author>
<author>
<name sortKey="Cai, J M" uniqKey="Cai J">J.M. Cai</name>
</author>
<author>
<name sortKey="Li, B L" uniqKey="Li B">B.L. Li</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Malanchi, I" uniqKey="Malanchi I">I. Malanchi</name>
</author>
<author>
<name sortKey="Santamaria Martinez, A" uniqKey="Santamaria Martinez A">A. Santamaria-Martinez</name>
</author>
<author>
<name sortKey="Susanto, E" uniqKey="Susanto E">E. Susanto</name>
</author>
<author>
<name sortKey="Peng, H" uniqKey="Peng H">H. Peng</name>
</author>
<author>
<name sortKey="Lehr, H A" uniqKey="Lehr H">H.A. Lehr</name>
</author>
<author>
<name sortKey="Delaloye, J F" uniqKey="Delaloye J">J.F. Delaloye</name>
</author>
<author>
<name sortKey="Huelsken, J" uniqKey="Huelsken J">J. Huelsken</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Bragado, P" uniqKey="Bragado P">P. Bragado</name>
</author>
<author>
<name sortKey="Estrada, Y" uniqKey="Estrada Y">Y. Estrada</name>
</author>
<author>
<name sortKey="Parikh, F" uniqKey="Parikh F">F. Parikh</name>
</author>
<author>
<name sortKey="Krause, S" uniqKey="Krause S">S. Krause</name>
</author>
<author>
<name sortKey="Capobianco, C" uniqKey="Capobianco C">C. Capobianco</name>
</author>
<author>
<name sortKey="Farina, H G" uniqKey="Farina H">H.G. Farina</name>
</author>
<author>
<name sortKey="Schewe, D M" uniqKey="Schewe D">D.M. Schewe</name>
</author>
<author>
<name sortKey="Aguirre Ghiso, J A" uniqKey="Aguirre Ghiso J">J.A. Aguirre-Ghiso</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Chen, Q" uniqKey="Chen Q">Q. Chen</name>
</author>
<author>
<name sortKey="Zhang, X H" uniqKey="Zhang X">X.H. Zhang</name>
</author>
<author>
<name sortKey="Massague, J" uniqKey="Massague J">J. Massague</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Lorger, M" uniqKey="Lorger M">M. Lorger</name>
</author>
<author>
<name sortKey="Felding Habermann, B" uniqKey="Felding Habermann B">B. Felding-Habermann</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Du, R" uniqKey="Du R">R. Du</name>
</author>
<author>
<name sortKey="Lu, K V" uniqKey="Lu K">K.V. Lu</name>
</author>
<author>
<name sortKey="Petritsch, C" uniqKey="Petritsch C">C. Petritsch</name>
</author>
<author>
<name sortKey="Liu, P" uniqKey="Liu P">P. Liu</name>
</author>
<author>
<name sortKey="Ganss, R" uniqKey="Ganss R">R. Ganss</name>
</author>
<author>
<name sortKey="Passegue, E" uniqKey="Passegue E">E. Passegue</name>
</author>
<author>
<name sortKey="Song, H" uniqKey="Song H">H. Song</name>
</author>
<author>
<name sortKey="Vandenberg, S" uniqKey="Vandenberg S">S. Vandenberg</name>
</author>
<author>
<name sortKey="Johnson, R S" uniqKey="Johnson R">R.S. Johnson</name>
</author>
<author>
<name sortKey="Werb, Z" uniqKey="Werb Z">Z. Werb</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Denkins, Y" uniqKey="Denkins Y">Y. Denkins</name>
</author>
<author>
<name sortKey="Reiland, J" uniqKey="Reiland J">J. Reiland</name>
</author>
<author>
<name sortKey="Roy, M" uniqKey="Roy M">M. Roy</name>
</author>
<author>
<name sortKey="Sinnappah Kang, N D" uniqKey="Sinnappah Kang N">N.D. Sinnappah-Kang</name>
</author>
<author>
<name sortKey="Galjour, J" uniqKey="Galjour J">J. Galjour</name>
</author>
<author>
<name sortKey="Murry, B P" uniqKey="Murry B">B.P. Murry</name>
</author>
<author>
<name sortKey="Blust, J" uniqKey="Blust J">J. Blust</name>
</author>
<author>
<name sortKey="Aucoin, R" uniqKey="Aucoin R">R. Aucoin</name>
</author>
<author>
<name sortKey="Marchetti, D" uniqKey="Marchetti D">D. Marchetti</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Izraely, S" uniqKey="Izraely S">S. Izraely</name>
</author>
<author>
<name sortKey="Sagi Assif, O" uniqKey="Sagi Assif O">O. Sagi-Assif</name>
</author>
<author>
<name sortKey="Klein, A" uniqKey="Klein A">A. Klein</name>
</author>
<author>
<name sortKey="Meshel, T" uniqKey="Meshel T">T. Meshel</name>
</author>
<author>
<name sortKey="Tsarfaty, G" uniqKey="Tsarfaty G">G. Tsarfaty</name>
</author>
<author>
<name sortKey="Pasmanik Chor, M" uniqKey="Pasmanik Chor M">M. Pasmanik-Chor</name>
</author>
<author>
<name sortKey="Nahmias, C" uniqKey="Nahmias C">C. Nahmias</name>
</author>
<author>
<name sortKey="Couraud, P O" uniqKey="Couraud P">P.O. Couraud</name>
</author>
<author>
<name sortKey="Ateh, E" uniqKey="Ateh E">E. Ateh</name>
</author>
<author>
<name sortKey="Bryant, J L" uniqKey="Bryant J">J.L. Bryant</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Yeh, A C" uniqKey="Yeh A">A.C. Yeh</name>
</author>
<author>
<name sortKey="Ramaswamy, S" uniqKey="Ramaswamy S">S. Ramaswamy</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="O Eilly, M S" uniqKey="O Eilly M">M.S. O’Reilly</name>
</author>
<author>
<name sortKey="Holmgren, L" uniqKey="Holmgren L">L. Holmgren</name>
</author>
<author>
<name sortKey="Shing, Y" uniqKey="Shing Y">Y. Shing</name>
</author>
<author>
<name sortKey="Chen, C" uniqKey="Chen C">C. Chen</name>
</author>
<author>
<name sortKey="Rosenthal, R A" uniqKey="Rosenthal R">R.A. Rosenthal</name>
</author>
<author>
<name sortKey="Moses, M" uniqKey="Moses M">M. Moses</name>
</author>
<author>
<name sortKey="Lane, W S" uniqKey="Lane W">W.S. Lane</name>
</author>
<author>
<name sortKey="Cao, Y" uniqKey="Cao Y">Y. Cao</name>
</author>
<author>
<name sortKey="Sage, E H" uniqKey="Sage E">E.H. Sage</name>
</author>
<author>
<name sortKey="Folkman, J" uniqKey="Folkman J">J. Folkman</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Cao, Y" uniqKey="Cao Y">Y. Cao</name>
</author>
<author>
<name sortKey="O Eilly, M S" uniqKey="O Eilly M">M.S. O’Reilly</name>
</author>
<author>
<name sortKey="Marshall, B" uniqKey="Marshall B">B. Marshall</name>
</author>
<author>
<name sortKey="Flynn, E" uniqKey="Flynn E">E. Flynn</name>
</author>
<author>
<name sortKey="Ji, R W" uniqKey="Ji R">R.W. Ji</name>
</author>
<author>
<name sortKey="Folkman, J" uniqKey="Folkman J">J. Folkman</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Almog, N" uniqKey="Almog N">N. Almog</name>
</author>
<author>
<name sortKey="Ma, L" uniqKey="Ma L">L. Ma</name>
</author>
<author>
<name sortKey="Raychowdhury, R" uniqKey="Raychowdhury R">R. Raychowdhury</name>
</author>
<author>
<name sortKey="Schwager, C" uniqKey="Schwager C">C. Schwager</name>
</author>
<author>
<name sortKey="Erber, R" uniqKey="Erber R">R. Erber</name>
</author>
<author>
<name sortKey="Short, S" uniqKey="Short S">S. Short</name>
</author>
<author>
<name sortKey="Hlatky, L" uniqKey="Hlatky L">L. Hlatky</name>
</author>
<author>
<name sortKey="Vajkoczy, P" uniqKey="Vajkoczy P">P. Vajkoczy</name>
</author>
<author>
<name sortKey="Huber, P E" uniqKey="Huber P">P.E. Huber</name>
</author>
<author>
<name sortKey="Folkman, J" uniqKey="Folkman J">J. Folkman</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kienast, Y" uniqKey="Kienast Y">Y. Kienast</name>
</author>
<author>
<name sortKey="Von Baumgarten, L" uniqKey="Von Baumgarten L">L. von Baumgarten</name>
</author>
<author>
<name sortKey="Fuhrmann, M" uniqKey="Fuhrmann M">M. Fuhrmann</name>
</author>
<author>
<name sortKey="Klinkert, W E" uniqKey="Klinkert W">W.E. Klinkert</name>
</author>
<author>
<name sortKey="Goldbrunner, R" uniqKey="Goldbrunner R">R. Goldbrunner</name>
</author>
<author>
<name sortKey="Herms, J" uniqKey="Herms J">J. Herms</name>
</author>
<author>
<name sortKey="Winkler, F" uniqKey="Winkler F">F. Winkler</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Naumov, G N" uniqKey="Naumov G">G.N. Naumov</name>
</author>
<author>
<name sortKey="Bender, E" uniqKey="Bender E">E. Bender</name>
</author>
<author>
<name sortKey="Zurakowski, D" uniqKey="Zurakowski D">D. Zurakowski</name>
</author>
<author>
<name sortKey="Kang, S Y" uniqKey="Kang S">S.Y. Kang</name>
</author>
<author>
<name sortKey="Sampson, D" uniqKey="Sampson D">D. Sampson</name>
</author>
<author>
<name sortKey="Flynn, E" uniqKey="Flynn E">E. Flynn</name>
</author>
<author>
<name sortKey="Watnick, R S" uniqKey="Watnick R">R.S. Watnick</name>
</author>
<author>
<name sortKey="Straume, O" uniqKey="Straume O">O. Straume</name>
</author>
<author>
<name sortKey="Akslen, L A" uniqKey="Akslen L">L.A. Akslen</name>
</author>
<author>
<name sortKey="Folkman, J" uniqKey="Folkman J">J. Folkman</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Bleau, A M" uniqKey="Bleau A">A.M. Bleau</name>
</author>
<author>
<name sortKey="Agliano, A" uniqKey="Agliano A">A. Agliano</name>
</author>
<author>
<name sortKey="Larzabal, L" uniqKey="Larzabal L">L. Larzabal</name>
</author>
<author>
<name sortKey="De Aberasturi, A L" uniqKey="De Aberasturi A">A.L. de Aberasturi</name>
</author>
<author>
<name sortKey="Calvo, A" uniqKey="Calvo A">A. Calvo</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Sanger, N" uniqKey="Sanger N">N. Sanger</name>
</author>
<author>
<name sortKey="Effenberger, K E" uniqKey="Effenberger K">K.E. Effenberger</name>
</author>
<author>
<name sortKey="Riethdorf, S" uniqKey="Riethdorf S">S. Riethdorf</name>
</author>
<author>
<name sortKey="Van Haasteren, V" uniqKey="Van Haasteren V">V. Van Haasteren</name>
</author>
<author>
<name sortKey="Gauwerky, J" uniqKey="Gauwerky J">J. Gauwerky</name>
</author>
<author>
<name sortKey="Wiegratz, I" uniqKey="Wiegratz I">I. Wiegratz</name>
</author>
<author>
<name sortKey="Strebhardt, K" uniqKey="Strebhardt K">K. Strebhardt</name>
</author>
<author>
<name sortKey="Kaufmann, M" uniqKey="Kaufmann M">M. Kaufmann</name>
</author>
<author>
<name sortKey="Pantel, K" uniqKey="Pantel K">K. Pantel</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Hoilund Carlsen, P F" uniqKey="Hoilund Carlsen P">P.F. Hoilund-Carlsen</name>
</author>
<author>
<name sortKey="Hess, S" uniqKey="Hess S">S. Hess</name>
</author>
<author>
<name sortKey="Werner, T J" uniqKey="Werner T">T.J. Werner</name>
</author>
<author>
<name sortKey="Alavi, A" uniqKey="Alavi A">A. Alavi</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Jung, Y" uniqKey="Jung Y">Y. Jung</name>
</author>
<author>
<name sortKey="Wang, J" uniqKey="Wang J">J. Wang</name>
</author>
<author>
<name sortKey="Song, J" uniqKey="Song J">J. Song</name>
</author>
<author>
<name sortKey="Shiozawa, Y" uniqKey="Shiozawa Y">Y. Shiozawa</name>
</author>
<author>
<name sortKey="Wang, J" uniqKey="Wang J">J. Wang</name>
</author>
<author>
<name sortKey="Havens, A" uniqKey="Havens A">A. Havens</name>
</author>
<author>
<name sortKey="Wang, Z" uniqKey="Wang Z">Z. Wang</name>
</author>
<author>
<name sortKey="Sun, Y X" uniqKey="Sun Y">Y.X. Sun</name>
</author>
<author>
<name sortKey="Emerson, S G" uniqKey="Emerson S">S.G. Emerson</name>
</author>
<author>
<name sortKey="Krebsbach, P H" uniqKey="Krebsbach P">P.H. Krebsbach</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Axelrod, H D" uniqKey="Axelrod H">H.D. Axelrod</name>
</author>
<author>
<name sortKey="Valkenburg, K C" uniqKey="Valkenburg K">K.C. Valkenburg</name>
</author>
<author>
<name sortKey="Amend, S R" uniqKey="Amend S">S.R. Amend</name>
</author>
<author>
<name sortKey="Hicks, J L" uniqKey="Hicks J">J.L. Hicks</name>
</author>
<author>
<name sortKey="Parsana, P" uniqKey="Parsana P">P. Parsana</name>
</author>
<author>
<name sortKey="Torga, G" uniqKey="Torga G">G. Torga</name>
</author>
<author>
<name sortKey="Demarzo, A M" uniqKey="Demarzo A">A.M. DeMarzo</name>
</author>
<author>
<name sortKey="Pienta, K J" uniqKey="Pienta K">K.J. Pienta</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Shiozawa, Y" uniqKey="Shiozawa Y">Y. Shiozawa</name>
</author>
<author>
<name sortKey="Pedersen, E A" uniqKey="Pedersen E">E.A. Pedersen</name>
</author>
<author>
<name sortKey="Patel, L R" uniqKey="Patel L">L.R. Patel</name>
</author>
<author>
<name sortKey="Ziegler, A M" uniqKey="Ziegler A">A.M. Ziegler</name>
</author>
<author>
<name sortKey="Havens, A M" uniqKey="Havens A">A.M. Havens</name>
</author>
<author>
<name sortKey="Jung, Y" uniqKey="Jung Y">Y. Jung</name>
</author>
<author>
<name sortKey="Wang, J" uniqKey="Wang J">J. Wang</name>
</author>
<author>
<name sortKey="Zalucha, S" uniqKey="Zalucha S">S. Zalucha</name>
</author>
<author>
<name sortKey="Loberg, R D" uniqKey="Loberg R">R.D. Loberg</name>
</author>
<author>
<name sortKey="Pienta, K J" uniqKey="Pienta K">K.J. Pienta</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Yumoto, K" uniqKey="Yumoto K">K. Yumoto</name>
</author>
<author>
<name sortKey="Eber, M R" uniqKey="Eber M">M.R. Eber</name>
</author>
<author>
<name sortKey="Wang, J" uniqKey="Wang J">J. Wang</name>
</author>
<author>
<name sortKey="Cackowski, F C" uniqKey="Cackowski F">F.C. Cackowski</name>
</author>
<author>
<name sortKey="Decker, A M" uniqKey="Decker A">A.M. Decker</name>
</author>
<author>
<name sortKey="Lee, E" uniqKey="Lee E">E. Lee</name>
</author>
<author>
<name sortKey="Nobre, A R" uniqKey="Nobre A">A.R. Nobre</name>
</author>
<author>
<name sortKey="Aguirre Ghiso, J A" uniqKey="Aguirre Ghiso J">J.A. Aguirre-Ghiso</name>
</author>
<author>
<name sortKey="Jung, Y" uniqKey="Jung Y">Y. Jung</name>
</author>
<author>
<name sortKey="Taichman, R S" uniqKey="Taichman R">R.S. Taichman</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Khoo, W H" uniqKey="Khoo W">W.H. Khoo</name>
</author>
<author>
<name sortKey="Ledergor, G" uniqKey="Ledergor G">G. Ledergor</name>
</author>
<author>
<name sortKey="Weiner, A" uniqKey="Weiner A">A. Weiner</name>
</author>
<author>
<name sortKey="Roden, D L" uniqKey="Roden D">D.L. Roden</name>
</author>
<author>
<name sortKey="Terry, R L" uniqKey="Terry R">R.L. Terry</name>
</author>
<author>
<name sortKey="Mcdonald, M M" uniqKey="Mcdonald M">M.M. McDonald</name>
</author>
<author>
<name sortKey="Chai, R C" uniqKey="Chai R">R.C. Chai</name>
</author>
<author>
<name sortKey="De Veirman, K" uniqKey="De Veirman K">K. De Veirman</name>
</author>
<author>
<name sortKey="Owen, K L" uniqKey="Owen K">K.L. Owen</name>
</author>
<author>
<name sortKey="Opperman, K S" uniqKey="Opperman K">K.S. Opperman</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ghajar, C M" uniqKey="Ghajar C">C.M. Ghajar</name>
</author>
<author>
<name sortKey="Peinado, H" uniqKey="Peinado H">H. Peinado</name>
</author>
<author>
<name sortKey="Mori, H" uniqKey="Mori H">H. Mori</name>
</author>
<author>
<name sortKey="Matei, I R" uniqKey="Matei I">I.R. Matei</name>
</author>
<author>
<name sortKey="Evason, K J" uniqKey="Evason K">K.J. Evason</name>
</author>
<author>
<name sortKey="Brazier, H" uniqKey="Brazier H">H. Brazier</name>
</author>
<author>
<name sortKey="Almeida, D" uniqKey="Almeida D">D. Almeida</name>
</author>
<author>
<name sortKey="Koller, A" uniqKey="Koller A">A. Koller</name>
</author>
<author>
<name sortKey="Hajjar, K A" uniqKey="Hajjar K">K.A. Hajjar</name>
</author>
<author>
<name sortKey="Stainier, D Y" uniqKey="Stainier D">D.Y. Stainier</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Taichman, R S" uniqKey="Taichman R">R.S. Taichman</name>
</author>
<author>
<name sortKey="Cooper, C" uniqKey="Cooper C">C. Cooper</name>
</author>
<author>
<name sortKey="Keller, E T" uniqKey="Keller E">E.T. Keller</name>
</author>
<author>
<name sortKey="Pienta, K J" uniqKey="Pienta K">K.J. Pienta</name>
</author>
<author>
<name sortKey="Taichman, N S" uniqKey="Taichman N">N.S. Taichman</name>
</author>
<author>
<name sortKey="Mccauley, L K" uniqKey="Mccauley L">L.K. McCauley</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Sugiyama, T" uniqKey="Sugiyama T">T. Sugiyama</name>
</author>
<author>
<name sortKey="Kohara, H" uniqKey="Kohara H">H. Kohara</name>
</author>
<author>
<name sortKey="Noda, M" uniqKey="Noda M">M. Noda</name>
</author>
<author>
<name sortKey="Nagasawa, T" uniqKey="Nagasawa T">T. Nagasawa</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Romero Moreno, R" uniqKey="Romero Moreno R">R. Romero-Moreno</name>
</author>
<author>
<name sortKey="Curtis, K J" uniqKey="Curtis K">K.J. Curtis</name>
</author>
<author>
<name sortKey="Coughlin, T R" uniqKey="Coughlin T">T.R. Coughlin</name>
</author>
<author>
<name sortKey="Cristina Miranda Vergara, M" uniqKey="Cristina Miranda Vergara M">M. Cristina Miranda-Vergara</name>
</author>
<author>
<name sortKey="Dutta, S" uniqKey="Dutta S">S. Dutta</name>
</author>
<author>
<name sortKey="Natarajan, A" uniqKey="Natarajan A">A. Natarajan</name>
</author>
<author>
<name sortKey="Facchine, B A" uniqKey="Facchine B">B.A. Facchine</name>
</author>
<author>
<name sortKey="Jackson, K M" uniqKey="Jackson K">K.M. Jackson</name>
</author>
<author>
<name sortKey="Nystrom, L" uniqKey="Nystrom L">L. Nystrom</name>
</author>
<author>
<name sortKey="Li, J" uniqKey="Li J">J. Li</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Price, T T" uniqKey="Price T">T.T. Price</name>
</author>
<author>
<name sortKey="Burness, M L" uniqKey="Burness M">M.L. Burness</name>
</author>
<author>
<name sortKey="Sivan, A" uniqKey="Sivan A">A. Sivan</name>
</author>
<author>
<name sortKey="Warner, M J" uniqKey="Warner M">M.J. Warner</name>
</author>
<author>
<name sortKey="Cheng, R" uniqKey="Cheng R">R. Cheng</name>
</author>
<author>
<name sortKey="Lee, C H" uniqKey="Lee C">C.H. Lee</name>
</author>
<author>
<name sortKey="Olivere, L" uniqKey="Olivere L">L. Olivere</name>
</author>
<author>
<name sortKey="Comatas, K" uniqKey="Comatas K">K. Comatas</name>
</author>
<author>
<name sortKey="Magnani, J" uniqKey="Magnani J">J. Magnani</name>
</author>
<author>
<name sortKey="Kim Lyerly, H" uniqKey="Kim Lyerly H">H. Kim Lyerly</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kobayashi, A" uniqKey="Kobayashi A">A. Kobayashi</name>
</author>
<author>
<name sortKey="Okuda, H" uniqKey="Okuda H">H. Okuda</name>
</author>
<author>
<name sortKey="Xing, F" uniqKey="Xing F">F. Xing</name>
</author>
<author>
<name sortKey="Pandey, P R" uniqKey="Pandey P">P.R. Pandey</name>
</author>
<author>
<name sortKey="Watabe, M" uniqKey="Watabe M">M. Watabe</name>
</author>
<author>
<name sortKey="Hirota, S" uniqKey="Hirota S">S. Hirota</name>
</author>
<author>
<name sortKey="Pai, S K" uniqKey="Pai S">S.K. Pai</name>
</author>
<author>
<name sortKey="Liu, W" uniqKey="Liu W">W. Liu</name>
</author>
<author>
<name sortKey="Fukuda, K" uniqKey="Fukuda K">K. Fukuda</name>
</author>
<author>
<name sortKey="Chambers, C" uniqKey="Chambers C">C. Chambers</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Walker, N D" uniqKey="Walker N">N.D. Walker</name>
</author>
<author>
<name sortKey="Elias, M" uniqKey="Elias M">M. Elias</name>
</author>
<author>
<name sortKey="Guiro, K" uniqKey="Guiro K">K. Guiro</name>
</author>
<author>
<name sortKey="Bhatia, R" uniqKey="Bhatia R">R. Bhatia</name>
</author>
<author>
<name sortKey="Greco, S J" uniqKey="Greco S">S.J. Greco</name>
</author>
<author>
<name sortKey="Bryan, M" uniqKey="Bryan M">M. Bryan</name>
</author>
<author>
<name sortKey="Gergues, M" uniqKey="Gergues M">M. Gergues</name>
</author>
<author>
<name sortKey="Sandiford, O A" uniqKey="Sandiford O">O.A. Sandiford</name>
</author>
<author>
<name sortKey="Ponzio, N M" uniqKey="Ponzio N">N.M. Ponzio</name>
</author>
<author>
<name sortKey="Leibovich, S J" uniqKey="Leibovich S">S.J. Leibovich</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Casson, J" uniqKey="Casson J">J. Casson</name>
</author>
<author>
<name sortKey="Davies, O G" uniqKey="Davies O">O.G. Davies</name>
</author>
<author>
<name sortKey="Smith, C A" uniqKey="Smith C">C.A. Smith</name>
</author>
<author>
<name sortKey="Dalby, M J" uniqKey="Dalby M">M.J. Dalby</name>
</author>
<author>
<name sortKey="Berry, C C" uniqKey="Berry C">C.C. Berry</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Yin, J J" uniqKey="Yin J">J.J. Yin</name>
</author>
<author>
<name sortKey="Selander, K" uniqKey="Selander K">K. Selander</name>
</author>
<author>
<name sortKey="Chirgwin, J M" uniqKey="Chirgwin J">J.M. Chirgwin</name>
</author>
<author>
<name sortKey="Dallas, M" uniqKey="Dallas M">M. Dallas</name>
</author>
<author>
<name sortKey="Grubbs, B G" uniqKey="Grubbs B">B.G. Grubbs</name>
</author>
<author>
<name sortKey="Wieser, R" uniqKey="Wieser R">R. Wieser</name>
</author>
<author>
<name sortKey="Massague, J" uniqKey="Massague J">J. Massague</name>
</author>
<author>
<name sortKey="Mundy, G R" uniqKey="Mundy G">G.R. Mundy</name>
</author>
<author>
<name sortKey="Guise, T A" uniqKey="Guise T">T.A. Guise</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kang, Y" uniqKey="Kang Y">Y. Kang</name>
</author>
<author>
<name sortKey="Siegel, P M" uniqKey="Siegel P">P.M. Siegel</name>
</author>
<author>
<name sortKey="Shu, W" uniqKey="Shu W">W. Shu</name>
</author>
<author>
<name sortKey="Drobnjak, M" uniqKey="Drobnjak M">M. Drobnjak</name>
</author>
<author>
<name sortKey="Kakonen, S M" uniqKey="Kakonen S">S.M. Kakonen</name>
</author>
<author>
<name sortKey="Cordon Cardo, C" uniqKey="Cordon Cardo C">C. Cordon-Cardo</name>
</author>
<author>
<name sortKey="Guise, T A" uniqKey="Guise T">T.A. Guise</name>
</author>
<author>
<name sortKey="Massague, J" uniqKey="Massague J">J. Massague</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Mundy, G R" uniqKey="Mundy G">G.R. Mundy</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Park, B K" uniqKey="Park B">B.K. Park</name>
</author>
<author>
<name sortKey="Zhang, H" uniqKey="Zhang H">H. Zhang</name>
</author>
<author>
<name sortKey="Zeng, Q" uniqKey="Zeng Q">Q. Zeng</name>
</author>
<author>
<name sortKey="Dai, J" uniqKey="Dai J">J. Dai</name>
</author>
<author>
<name sortKey="Keller, E T" uniqKey="Keller E">E.T. Keller</name>
</author>
<author>
<name sortKey="Giordano, T" uniqKey="Giordano T">T. Giordano</name>
</author>
<author>
<name sortKey="Gu, K" uniqKey="Gu K">K. Gu</name>
</author>
<author>
<name sortKey="Shah, V" uniqKey="Shah V">V. Shah</name>
</author>
<author>
<name sortKey="Pei, L" uniqKey="Pei L">L. Pei</name>
</author>
<author>
<name sortKey="Zarbo, R J" uniqKey="Zarbo R">R.J. Zarbo</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ren, D" uniqKey="Ren D">D. Ren</name>
</author>
<author>
<name sortKey="Dai, Y" uniqKey="Dai Y">Y. Dai</name>
</author>
<author>
<name sortKey="Yang, Q" uniqKey="Yang Q">Q. Yang</name>
</author>
<author>
<name sortKey="Zhang, X" uniqKey="Zhang X">X. Zhang</name>
</author>
<author>
<name sortKey="Guo, W" uniqKey="Guo W">W. Guo</name>
</author>
<author>
<name sortKey="Ye, L" uniqKey="Ye L">L. Ye</name>
</author>
<author>
<name sortKey="Huang, S" uniqKey="Huang S">S. Huang</name>
</author>
<author>
<name sortKey="Chen, X" uniqKey="Chen X">X. Chen</name>
</author>
<author>
<name sortKey="Lai, Y" uniqKey="Lai Y">Y. Lai</name>
</author>
<author>
<name sortKey="Du, H" uniqKey="Du H">H. Du</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Lawson, M A" uniqKey="Lawson M">M.A. Lawson</name>
</author>
<author>
<name sortKey="Mcdonald, M M" uniqKey="Mcdonald M">M.M. McDonald</name>
</author>
<author>
<name sortKey="Kovacic, N" uniqKey="Kovacic N">N. Kovacic</name>
</author>
<author>
<name sortKey="Hua Khoo, W" uniqKey="Hua Khoo W">W. Hua Khoo</name>
</author>
<author>
<name sortKey="Terry, R L" uniqKey="Terry R">R.L. Terry</name>
</author>
<author>
<name sortKey="Down, J" uniqKey="Down J">J. Down</name>
</author>
<author>
<name sortKey="Kaplan, W" uniqKey="Kaplan W">W. Kaplan</name>
</author>
<author>
<name sortKey="Paton Hough, J" uniqKey="Paton Hough J">J. Paton-Hough</name>
</author>
<author>
<name sortKey="Fellows, C" uniqKey="Fellows C">C. Fellows</name>
</author>
<author>
<name sortKey="Pettitt, J A" uniqKey="Pettitt J">J.A. Pettitt</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Yu Lee, L Y" uniqKey="Yu Lee L">L.Y. Yu-Lee</name>
</author>
<author>
<name sortKey="Yu, G" uniqKey="Yu G">G. Yu</name>
</author>
<author>
<name sortKey="Lee, Y C" uniqKey="Lee Y">Y.C. Lee</name>
</author>
<author>
<name sortKey="Lin, S C" uniqKey="Lin S">S.C. Lin</name>
</author>
<author>
<name sortKey="Pan, J" uniqKey="Pan J">J. Pan</name>
</author>
<author>
<name sortKey="Pan, T" uniqKey="Pan T">T. Pan</name>
</author>
<author>
<name sortKey="Yu, K J" uniqKey="Yu K">K.J. Yu</name>
</author>
<author>
<name sortKey="Liu, B" uniqKey="Liu B">B. Liu</name>
</author>
<author>
<name sortKey="Creighton, C J" uniqKey="Creighton C">C.J. Creighton</name>
</author>
<author>
<name sortKey="Rodriguez Canales, J" uniqKey="Rodriguez Canales J">J. Rodriguez-Canales</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Lu, X" uniqKey="Lu X">X. Lu</name>
</author>
<author>
<name sortKey="Mu, E" uniqKey="Mu E">E. Mu</name>
</author>
<author>
<name sortKey="Wei, Y" uniqKey="Wei Y">Y. Wei</name>
</author>
<author>
<name sortKey="Riethdorf, S" uniqKey="Riethdorf S">S. Riethdorf</name>
</author>
<author>
<name sortKey="Yang, Q" uniqKey="Yang Q">Q. Yang</name>
</author>
<author>
<name sortKey="Yuan, M" uniqKey="Yuan M">M. Yuan</name>
</author>
<author>
<name sortKey="Yan, J" uniqKey="Yan J">J. Yan</name>
</author>
<author>
<name sortKey="Hua, Y" uniqKey="Hua Y">Y. Hua</name>
</author>
<author>
<name sortKey="Tiede, B J" uniqKey="Tiede B">B.J. Tiede</name>
</author>
<author>
<name sortKey="Lu, X" uniqKey="Lu X">X. Lu</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Koebel, C M" uniqKey="Koebel C">C.M. Koebel</name>
</author>
<author>
<name sortKey="Vermi, W" uniqKey="Vermi W">W. Vermi</name>
</author>
<author>
<name sortKey="Swann, J B" uniqKey="Swann J">J.B. Swann</name>
</author>
<author>
<name sortKey="Zerafa, N" uniqKey="Zerafa N">N. Zerafa</name>
</author>
<author>
<name sortKey="Rodig, S J" uniqKey="Rodig S">S.J. Rodig</name>
</author>
<author>
<name sortKey="Old, L J" uniqKey="Old L">L.J. Old</name>
</author>
<author>
<name sortKey="Smyth, M J" uniqKey="Smyth M">M.J. Smyth</name>
</author>
<author>
<name sortKey="Schreiber, R D" uniqKey="Schreiber R">R.D. Schreiber</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Gil, M" uniqKey="Gil M">M. Gil</name>
</author>
<author>
<name sortKey="Seshadri, M" uniqKey="Seshadri M">M. Seshadri</name>
</author>
<author>
<name sortKey="Komorowski, M P" uniqKey="Komorowski M">M.P. Komorowski</name>
</author>
<author>
<name sortKey="Abrams, S I" uniqKey="Abrams S">S.I. Abrams</name>
</author>
<author>
<name sortKey="Kozbor, D" uniqKey="Kozbor D">D. Kozbor</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Lopes Bastos, B" uniqKey="Lopes Bastos B">B. Lopes-Bastos</name>
</author>
<author>
<name sortKey="Jin, L" uniqKey="Jin L">L. Jin</name>
</author>
<author>
<name sortKey="Ruge, F" uniqKey="Ruge F">F. Ruge</name>
</author>
<author>
<name sortKey="Owen, S" uniqKey="Owen S">S. Owen</name>
</author>
<author>
<name sortKey="Sanders, A" uniqKey="Sanders A">A. Sanders</name>
</author>
<author>
<name sortKey="Cogle, C" uniqKey="Cogle C">C. Cogle</name>
</author>
<author>
<name sortKey="Chester, J" uniqKey="Chester J">J. Chester</name>
</author>
<author>
<name sortKey="Jiang, W G" uniqKey="Jiang W">W.G. Jiang</name>
</author>
<author>
<name sortKey="Cai, J" uniqKey="Cai J">J. Cai</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="O Eilly, M S" uniqKey="O Eilly M">M.S. O’Reilly</name>
</author>
<author>
<name sortKey="Holmgren, L" uniqKey="Holmgren L">L. Holmgren</name>
</author>
<author>
<name sortKey="Chen, C" uniqKey="Chen C">C. Chen</name>
</author>
<author>
<name sortKey="Folkman, J" uniqKey="Folkman J">J. Folkman</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="El Touny, L H" uniqKey="El Touny L">L.H. El Touny</name>
</author>
<author>
<name sortKey="Vieira, A" uniqKey="Vieira A">A. Vieira</name>
</author>
<author>
<name sortKey="Mendoza, A" uniqKey="Mendoza A">A. Mendoza</name>
</author>
<author>
<name sortKey="Khanna, C" uniqKey="Khanna C">C. Khanna</name>
</author>
<author>
<name sortKey="Hoenerhoff, M J" uniqKey="Hoenerhoff M">M.J. Hoenerhoff</name>
</author>
<author>
<name sortKey="Green, J E" uniqKey="Green J">J.E. Green</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Bliss, S A" uniqKey="Bliss S">S.A. Bliss</name>
</author>
<author>
<name sortKey="Sinha, G" uniqKey="Sinha G">G. Sinha</name>
</author>
<author>
<name sortKey="Sandiford, O A" uniqKey="Sandiford O">O.A. Sandiford</name>
</author>
<author>
<name sortKey="Williams, L M" uniqKey="Williams L">L.M. Williams</name>
</author>
<author>
<name sortKey="Engelberth, D J" uniqKey="Engelberth D">D.J. Engelberth</name>
</author>
<author>
<name sortKey="Guiro, K" uniqKey="Guiro K">K. Guiro</name>
</author>
<author>
<name sortKey="Isenalumhe, L L" uniqKey="Isenalumhe L">L.L. Isenalumhe</name>
</author>
<author>
<name sortKey="Greco, S J" uniqKey="Greco S">S.J. Greco</name>
</author>
<author>
<name sortKey="Ayer, S" uniqKey="Ayer S">S. Ayer</name>
</author>
<author>
<name sortKey="Bryan, M" uniqKey="Bryan M">M. Bryan</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Marshall, J C" uniqKey="Marshall J">J.C. Marshall</name>
</author>
<author>
<name sortKey="Collins, J W" uniqKey="Collins J">J.W. Collins</name>
</author>
<author>
<name sortKey="Nakayama, J" uniqKey="Nakayama J">J. Nakayama</name>
</author>
<author>
<name sortKey="Horak, C E" uniqKey="Horak C">C.E. Horak</name>
</author>
<author>
<name sortKey="Liewehr, D J" uniqKey="Liewehr D">D.J. Liewehr</name>
</author>
<author>
<name sortKey="Steinberg, S M" uniqKey="Steinberg S">S.M. Steinberg</name>
</author>
<author>
<name sortKey="Albaugh, M" uniqKey="Albaugh M">M. Albaugh</name>
</author>
<author>
<name sortKey="Vidal Vanaclocha, F" uniqKey="Vidal Vanaclocha F">F. Vidal-Vanaclocha</name>
</author>
<author>
<name sortKey="Palmieri, D" uniqKey="Palmieri D">D. Palmieri</name>
</author>
<author>
<name sortKey="Barbier, M" uniqKey="Barbier M">M. Barbier</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Lu, D" uniqKey="Lu D">D. Lu</name>
</author>
<author>
<name sortKey="Chen, S" uniqKey="Chen S">S. Chen</name>
</author>
<author>
<name sortKey="Tan, X" uniqKey="Tan X">X. Tan</name>
</author>
<author>
<name sortKey="Li, N" uniqKey="Li N">N. Li</name>
</author>
<author>
<name sortKey="Liu, C" uniqKey="Liu C">C. Liu</name>
</author>
<author>
<name sortKey="Li, Z" uniqKey="Li Z">Z. Li</name>
</author>
<author>
<name sortKey="Liu, Z" uniqKey="Liu Z">Z. Liu</name>
</author>
<author>
<name sortKey="Stupack, D G" uniqKey="Stupack D">D.G. Stupack</name>
</author>
<author>
<name sortKey="Reisfeld, R A" uniqKey="Reisfeld R">R.A. Reisfeld</name>
</author>
<author>
<name sortKey="Xiang, R" uniqKey="Xiang R">R. Xiang</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Schreiber, R D" uniqKey="Schreiber R">R.D. Schreiber</name>
</author>
<author>
<name sortKey="Old, L J" uniqKey="Old L">L.J. Old</name>
</author>
<author>
<name sortKey="Smyth, M J" uniqKey="Smyth M">M.J. Smyth</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Eyles, J" uniqKey="Eyles J">J. Eyles</name>
</author>
<author>
<name sortKey="Puaux, A L" uniqKey="Puaux A">A.L. Puaux</name>
</author>
<author>
<name sortKey="Wang, X" uniqKey="Wang X">X. Wang</name>
</author>
<author>
<name sortKey="Toh, B" uniqKey="Toh B">B. Toh</name>
</author>
<author>
<name sortKey="Prakash, C" uniqKey="Prakash C">C. Prakash</name>
</author>
<author>
<name sortKey="Hong, M" uniqKey="Hong M">M. Hong</name>
</author>
<author>
<name sortKey="Tan, T G" uniqKey="Tan T">T.G. Tan</name>
</author>
<author>
<name sortKey="Zheng, L" uniqKey="Zheng L">L. Zheng</name>
</author>
<author>
<name sortKey="Ong, L C" uniqKey="Ong L">L.C. Ong</name>
</author>
<author>
<name sortKey="Jin, Y" uniqKey="Jin Y">Y. Jin</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Pantel, K" uniqKey="Pantel K">K. Pantel</name>
</author>
<author>
<name sortKey="Schlimok, G" uniqKey="Schlimok G">G. Schlimok</name>
</author>
<author>
<name sortKey="Kutter, D" uniqKey="Kutter D">D. Kutter</name>
</author>
<author>
<name sortKey="Schaller, G" uniqKey="Schaller G">G. Schaller</name>
</author>
<author>
<name sortKey="Genz, T" uniqKey="Genz T">T. Genz</name>
</author>
<author>
<name sortKey="Wiebecke, B" uniqKey="Wiebecke B">B. Wiebecke</name>
</author>
<author>
<name sortKey="Backmann, R" uniqKey="Backmann R">R. Backmann</name>
</author>
<author>
<name sortKey="Funke, I" uniqKey="Funke I">I. Funke</name>
</author>
<author>
<name sortKey="Riethmuller, G" uniqKey="Riethmuller G">G. Riethmuller</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Hirata, Y" uniqKey="Hirata Y">Y. Hirata</name>
</author>
<author>
<name sortKey="Furuhashi, K" uniqKey="Furuhashi K">K. Furuhashi</name>
</author>
<author>
<name sortKey="Ishii, H" uniqKey="Ishii H">H. Ishii</name>
</author>
<author>
<name sortKey="Li, H W" uniqKey="Li H">H.W. Li</name>
</author>
<author>
<name sortKey="Pinho, S" uniqKey="Pinho S">S. Pinho</name>
</author>
<author>
<name sortKey="Ding, L" uniqKey="Ding L">L. Ding</name>
</author>
<author>
<name sortKey="Robson, S C" uniqKey="Robson S">S.C. Robson</name>
</author>
<author>
<name sortKey="Frenette, P S" uniqKey="Frenette P">P.S. Frenette</name>
</author>
<author>
<name sortKey="Fujisaki, J" uniqKey="Fujisaki J">J. Fujisaki</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Bichsel, C A" uniqKey="Bichsel C">C.A. Bichsel</name>
</author>
<author>
<name sortKey="Wang, L" uniqKey="Wang L">L. Wang</name>
</author>
<author>
<name sortKey="Froment, L" uniqKey="Froment L">L. Froment</name>
</author>
<author>
<name sortKey="Berezowska, S" uniqKey="Berezowska S">S. Berezowska</name>
</author>
<author>
<name sortKey="Muller, S" uniqKey="Muller S">S. Muller</name>
</author>
<author>
<name sortKey="Dorn, P" uniqKey="Dorn P">P. Dorn</name>
</author>
<author>
<name sortKey="Marti, T M" uniqKey="Marti T">T.M. Marti</name>
</author>
<author>
<name sortKey="Peng, R W" uniqKey="Peng R">R.W. Peng</name>
</author>
<author>
<name sortKey="Geiser, T" uniqKey="Geiser T">T. Geiser</name>
</author>
<author>
<name sortKey="Schmid, R A" uniqKey="Schmid R">R.A. Schmid</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Zhao, X" uniqKey="Zhao X">X. Zhao</name>
</author>
<author>
<name sortKey="Bose, A" uniqKey="Bose A">A. Bose</name>
</author>
<author>
<name sortKey="Komita, H" uniqKey="Komita H">H. Komita</name>
</author>
<author>
<name sortKey="Taylor, J L" uniqKey="Taylor J">J.L. Taylor</name>
</author>
<author>
<name sortKey="Chi, N" uniqKey="Chi N">N. Chi</name>
</author>
<author>
<name sortKey="Lowe, D B" uniqKey="Lowe D">D.B. Lowe</name>
</author>
<author>
<name sortKey="Okada, H" uniqKey="Okada H">H. Okada</name>
</author>
<author>
<name sortKey="Cao, Y" uniqKey="Cao Y">Y. Cao</name>
</author>
<author>
<name sortKey="Mukhopadhyay, D" uniqKey="Mukhopadhyay D">D. Mukhopadhyay</name>
</author>
<author>
<name sortKey="Cohen, P A" uniqKey="Cohen P">P.A. Cohen</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Saudemont, A" uniqKey="Saudemont A">A. Saudemont</name>
</author>
<author>
<name sortKey="Jouy, N" uniqKey="Jouy N">N. Jouy</name>
</author>
<author>
<name sortKey="Hetuin, D" uniqKey="Hetuin D">D. Hetuin</name>
</author>
<author>
<name sortKey="Quesnel, B" uniqKey="Quesnel B">B. Quesnel</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Payne, K K" uniqKey="Payne K">K.K. Payne</name>
</author>
<author>
<name sortKey="Keim, R C" uniqKey="Keim R">R.C. Keim</name>
</author>
<author>
<name sortKey="Graham, L" uniqKey="Graham L">L. Graham</name>
</author>
<author>
<name sortKey="Idowu, M O" uniqKey="Idowu M">M.O. Idowu</name>
</author>
<author>
<name sortKey="Wan, W" uniqKey="Wan W">W. Wan</name>
</author>
<author>
<name sortKey="Wang, X Y" uniqKey="Wang X">X.Y. Wang</name>
</author>
<author>
<name sortKey="Toor, A A" uniqKey="Toor A">A.A. Toor</name>
</author>
<author>
<name sortKey="Bear, H D" uniqKey="Bear H">H.D. Bear</name>
</author>
<author>
<name sortKey="Manjili, M H" uniqKey="Manjili M">M.H. Manjili</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Iyengar, N M" uniqKey="Iyengar N">N.M. Iyengar</name>
</author>
<author>
<name sortKey="Hudis, C A" uniqKey="Hudis C">C.A. Hudis</name>
</author>
<author>
<name sortKey="Dannenberg, A J" uniqKey="Dannenberg A">A.J. Dannenberg</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Quail, D F" uniqKey="Quail D">D.F. Quail</name>
</author>
<author>
<name sortKey="Olson, O C" uniqKey="Olson O">O.C. Olson</name>
</author>
<author>
<name sortKey="Bhardwaj, P" uniqKey="Bhardwaj P">P. Bhardwaj</name>
</author>
<author>
<name sortKey="Walsh, L A" uniqKey="Walsh L">L.A. Walsh</name>
</author>
<author>
<name sortKey="Akkari, L" uniqKey="Akkari L">L. Akkari</name>
</author>
<author>
<name sortKey="Quick, M L" uniqKey="Quick M">M.L. Quick</name>
</author>
<author>
<name sortKey="Chen, I C" uniqKey="Chen I">I.C. Chen</name>
</author>
<author>
<name sortKey="Wendel, N" uniqKey="Wendel N">N. Wendel</name>
</author>
<author>
<name sortKey="Ben Chetrit, N" uniqKey="Ben Chetrit N">N. Ben-Chetrit</name>
</author>
<author>
<name sortKey="Walker, J" uniqKey="Walker J">J. Walker</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Krall, J A" uniqKey="Krall J">J.A. Krall</name>
</author>
<author>
<name sortKey="Reinhardt, F" uniqKey="Reinhardt F">F. Reinhardt</name>
</author>
<author>
<name sortKey="Mercury, O A" uniqKey="Mercury O">O.A. Mercury</name>
</author>
<author>
<name sortKey="Pattabiraman, D R" uniqKey="Pattabiraman D">D.R. Pattabiraman</name>
</author>
<author>
<name sortKey="Brooks, M W" uniqKey="Brooks M">M.W. Brooks</name>
</author>
<author>
<name sortKey="Dougan, M" uniqKey="Dougan M">M. Dougan</name>
</author>
<author>
<name sortKey="Lambert, A W" uniqKey="Lambert A">A.W. Lambert</name>
</author>
<author>
<name sortKey="Bierie, B" uniqKey="Bierie B">B. Bierie</name>
</author>
<author>
<name sortKey="Ploegh, H L" uniqKey="Ploegh H">H.L. Ploegh</name>
</author>
<author>
<name sortKey="Dougan, S K" uniqKey="Dougan S">S.K. Dougan</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Zhang, X" uniqKey="Zhang X">X. Zhang</name>
</author>
<author>
<name sortKey="Fryknas, M" uniqKey="Fryknas M">M. Fryknas</name>
</author>
<author>
<name sortKey="Hernlund, E" uniqKey="Hernlund E">E. Hernlund</name>
</author>
<author>
<name sortKey="Fayad, W" uniqKey="Fayad W">W. Fayad</name>
</author>
<author>
<name sortKey="De Milito, A" uniqKey="De Milito A">A. De Milito</name>
</author>
<author>
<name sortKey="Olofsson, M H" uniqKey="Olofsson M">M.H. Olofsson</name>
</author>
<author>
<name sortKey="Gogvadze, V" uniqKey="Gogvadze V">V. Gogvadze</name>
</author>
<author>
<name sortKey="Dang, L" uniqKey="Dang L">L. Dang</name>
</author>
<author>
<name sortKey="Pahlman, S" uniqKey="Pahlman S">S. Pahlman</name>
</author>
<author>
<name sortKey="Schughart, L A" uniqKey="Schughart L">L.A. Schughart</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Saudemont, A" uniqKey="Saudemont A">A. Saudemont</name>
</author>
<author>
<name sortKey="Hamrouni, A" uniqKey="Hamrouni A">A. Hamrouni</name>
</author>
<author>
<name sortKey="Marchetti, P" uniqKey="Marchetti P">P. Marchetti</name>
</author>
<author>
<name sortKey="Liu, J" uniqKey="Liu J">J. Liu</name>
</author>
<author>
<name sortKey="Jouy, N" uniqKey="Jouy N">N. Jouy</name>
</author>
<author>
<name sortKey="Hetuin, D" uniqKey="Hetuin D">D. Hetuin</name>
</author>
<author>
<name sortKey="Colucci, F" uniqKey="Colucci F">F. Colucci</name>
</author>
<author>
<name sortKey="Quesnel, B" uniqKey="Quesnel B">B. Quesnel</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Politaki, E" uniqKey="Politaki E">E. Politaki</name>
</author>
<author>
<name sortKey="Agelaki, S" uniqKey="Agelaki S">S. Agelaki</name>
</author>
<author>
<name sortKey="Apostolaki, S" uniqKey="Apostolaki S">S. Apostolaki</name>
</author>
<author>
<name sortKey="Hatzidaki, D" uniqKey="Hatzidaki D">D. Hatzidaki</name>
</author>
<author>
<name sortKey="Strati, A" uniqKey="Strati A">A. Strati</name>
</author>
<author>
<name sortKey="Koinis, F" uniqKey="Koinis F">F. Koinis</name>
</author>
<author>
<name sortKey="Perraki, M" uniqKey="Perraki M">M. Perraki</name>
</author>
<author>
<name sortKey="Saloustrou, G" uniqKey="Saloustrou G">G. Saloustrou</name>
</author>
<author>
<name sortKey="Stoupis, G" uniqKey="Stoupis G">G. Stoupis</name>
</author>
<author>
<name sortKey="Kallergi, G" uniqKey="Kallergi G">G. Kallergi</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Spiliotaki, M" uniqKey="Spiliotaki M">M. Spiliotaki</name>
</author>
<author>
<name sortKey="Mavroudis, D" uniqKey="Mavroudis D">D. Mavroudis</name>
</author>
<author>
<name sortKey="Kokotsaki, M" uniqKey="Kokotsaki M">M. Kokotsaki</name>
</author>
<author>
<name sortKey="Vetsika, E K" uniqKey="Vetsika E">E.K. Vetsika</name>
</author>
<author>
<name sortKey="Stoupis, I" uniqKey="Stoupis I">I. Stoupis</name>
</author>
<author>
<name sortKey="Matikas, A" uniqKey="Matikas A">A. Matikas</name>
</author>
<author>
<name sortKey="Kallergi, G" uniqKey="Kallergi G">G. Kallergi</name>
</author>
<author>
<name sortKey="Georgoulias, V" uniqKey="Georgoulias V">V. Georgoulias</name>
</author>
<author>
<name sortKey="Agelaki, S" uniqKey="Agelaki S">S. Agelaki</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Spiliotaki, M" uniqKey="Spiliotaki M">M. Spiliotaki</name>
</author>
<author>
<name sortKey="Mavroudis, D" uniqKey="Mavroudis D">D. Mavroudis</name>
</author>
<author>
<name sortKey="Kapranou, K" uniqKey="Kapranou K">K. Kapranou</name>
</author>
<author>
<name sortKey="Markomanolaki, H" uniqKey="Markomanolaki H">H. Markomanolaki</name>
</author>
<author>
<name sortKey="Kallergi, G" uniqKey="Kallergi G">G. Kallergi</name>
</author>
<author>
<name sortKey="Koinis, F" uniqKey="Koinis F">F. Koinis</name>
</author>
<author>
<name sortKey="Kalbakis, K" uniqKey="Kalbakis K">K. Kalbakis</name>
</author>
<author>
<name sortKey="Georgoulias, V" uniqKey="Georgoulias V">V. Georgoulias</name>
</author>
<author>
<name sortKey="Agelaki, S" uniqKey="Agelaki S">S. Agelaki</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Papadaki, C" uniqKey="Papadaki C">C. Papadaki</name>
</author>
<author>
<name sortKey="Stratigos, M" uniqKey="Stratigos M">M. Stratigos</name>
</author>
<author>
<name sortKey="Markakis, G" uniqKey="Markakis G">G. Markakis</name>
</author>
<author>
<name sortKey="Spiliotaki, M" uniqKey="Spiliotaki M">M. Spiliotaki</name>
</author>
<author>
<name sortKey="Mastrostamatis, G" uniqKey="Mastrostamatis G">G. Mastrostamatis</name>
</author>
<author>
<name sortKey="Nikolaou, C" uniqKey="Nikolaou C">C. Nikolaou</name>
</author>
<author>
<name sortKey="Mavroudis, D" uniqKey="Mavroudis D">D. Mavroudis</name>
</author>
<author>
<name sortKey="Agelaki, S" uniqKey="Agelaki S">S. Agelaki</name>
</author>
</analytic>
</biblStruct>
</listBibl>
</div1>
</back>
</TEI>
<pmc article-type="review-article">
<pmc-dir>properties open_access</pmc-dir>
<front>
<journal-meta>
<journal-id journal-id-type="nlm-ta">Int J Mol Sci</journal-id>
<journal-id journal-id-type="iso-abbrev">Int J Mol Sci</journal-id>
<journal-id journal-id-type="publisher-id">ijms</journal-id>
<journal-title-group>
<journal-title>International Journal of Molecular Sciences</journal-title>
</journal-title-group>
<issn pub-type="epub">1422-0067</issn>
<publisher>
<publisher-name>MDPI</publisher-name>
</publisher>
</journal-meta>
<article-meta>
<article-id pub-id-type="pmid">31817646</article-id>
<article-id pub-id-type="pmc">6940943</article-id>
<article-id pub-id-type="doi">10.3390/ijms20246158</article-id>
<article-id pub-id-type="publisher-id">ijms-20-06158</article-id>
<article-categories>
<subj-group subj-group-type="heading">
<subject>Review</subject>
</subj-group>
</article-categories>
<title-group>
<article-title>Mechanisms of Metastatic Tumor Dormancy and Implications for Cancer Therapy</article-title>
</title-group>
<contrib-group>
<contrib contrib-type="author">
<name>
<surname>Neophytou</surname>
<given-names>Christiana M.</given-names>
</name>
<xref ref-type="aff" rid="af1-ijms-20-06158">1</xref>
<xref ref-type="aff" rid="af2-ijms-20-06158">2</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Kyriakou</surname>
<given-names>Theodora-Christina</given-names>
</name>
<xref ref-type="aff" rid="af2-ijms-20-06158">2</xref>
</contrib>
<contrib contrib-type="author">
<contrib-id contrib-id-type="orcid" authenticated="true">https://orcid.org/0000-0002-7595-5616</contrib-id>
<name>
<surname>Papageorgis</surname>
<given-names>Panagiotis</given-names>
</name>
<xref ref-type="aff" rid="af1-ijms-20-06158">1</xref>
<xref ref-type="aff" rid="af2-ijms-20-06158">2</xref>
<xref rid="c1-ijms-20-06158" ref-type="corresp">*</xref>
</contrib>
</contrib-group>
<aff id="af1-ijms-20-06158">
<label>1</label>
European University Research Centre, 1516 Nicosia, Cyprus;
<email>C.Neophytou@research.euc.ac.cy</email>
</aff>
<aff id="af2-ijms-20-06158">
<label>2</label>
Department of Life Science, European University Cyprus, 1516 Nicosia, Cyprus;
<email>t.kyriakou@euc.ac.cy</email>
</aff>
<author-notes>
<corresp id="c1-ijms-20-06158">
<label>*</label>
Correspondence:
<email>P.Papageorgis@euc.ac.cy</email>
</corresp>
</author-notes>
<pub-date pub-type="epub">
<day>06</day>
<month>12</month>
<year>2019</year>
</pub-date>
<pub-date pub-type="collection">
<month>12</month>
<year>2019</year>
</pub-date>
<volume>20</volume>
<issue>24</issue>
<elocation-id>6158</elocation-id>
<history>
<date date-type="received">
<day>31</day>
<month>10</month>
<year>2019</year>
</date>
<date date-type="accepted">
<day>04</day>
<month>12</month>
<year>2019</year>
</date>
</history>
<permissions>
<copyright-statement>© 2019 by the authors.</copyright-statement>
<copyright-year>2019</copyright-year>
<license license-type="open-access">
<license-p>Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (
<ext-link ext-link-type="uri" xlink:href="http://creativecommons.org/licenses/by/4.0/">http://creativecommons.org/licenses/by/4.0/</ext-link>
).</license-p>
</license>
</permissions>
<abstract>
<p>Metastasis, a multistep process during which tumor cells disseminate to secondary organs, represents the main cause of death for cancer patients. Metastatic dormancy is a late stage during cancer progression, following extravasation of cells at a secondary site, where the metastatic cells stop proliferating but survive in a quiescent state. When the microenvironmental conditions are favorable, they re-initiate proliferation and colonize, sometimes years after treatment of the primary tumor. This phenomenon represents a major clinical obstacle in cancer patient care. In this review, we describe the current knowledge regarding the genetic or epigenetic mechanisms that are activated by cancer cells that either sustain tumor dormancy or promote escape from this inactive state. In addition, we focus on the role of the microenvironment with emphasis on the effects of extracellular matrix proteins and in factors implicated in regulating dormancy during colonization to the lungs, brain, and bone. Finally, we describe the opportunities and efforts being made for the development of novel therapeutic strategies to combat metastatic cancer, by targeting the dormancy stage. </p>
</abstract>
<kwd-group>
<kwd>dormancy</kwd>
<kwd>organ-specific metastasis</kwd>
<kwd>tumor microenvironment</kwd>
<kwd>extracellular matrix</kwd>
<kwd>stromal cells</kwd>
</kwd-group>
</article-meta>
</front>
<body>
<sec sec-type="intro" id="sec1-ijms-20-06158">
<title>1. Introduction</title>
<p>Cancer is the second leading cause of death worldwide [
<xref rid="B1-ijms-20-06158" ref-type="bibr">1</xref>
]. Despite the development of new therapeutic approaches and significant improvement in survival rates in the last twenty years, metastatic disease, primarily to the bone, lungs, and brain, remains incurable and is the main cause of death for most cancer patients [
<xref rid="B2-ijms-20-06158" ref-type="bibr">2</xref>
]. </p>
<p>Cancer progression leading to metastatic spread of cancer cells is a highly complex, yet poorly understood process and consists of a series of discrete events which initiate as primary tumor cells that lose epithelial characteristics and acquire mesenchymal-like features, a process also known as epithelial to mesenchymal transition (EMT), degrade the basement membrane and invade the interstitial matrix [
<xref rid="B3-ijms-20-06158" ref-type="bibr">3</xref>
]. Subsequently, cancer cells intravasate in the circulation through lymphatic or hematogenous routes and survive via secretion of growth factors, cytokines, and protective interactions with platelets [
<xref rid="B4-ijms-20-06158" ref-type="bibr">4</xref>
]. Upon arresting in the narrow capillaries of the target organ, cancer cells can disrupt the endothelial junctions, extravasate into the surrounding tissue and remain initially dormant until conditions facilitate metastatic colonization [
<xref rid="B5-ijms-20-06158" ref-type="bibr">5</xref>
]. While much progress has been made to highlight some of the specific processes which are critical for the initiation of the metastatic spread, the molecular mechanisms involved in the fatal late stages remain far from fully elucidated. </p>
<p>During the multistep metastatic cascade, only a fraction of cancer cells, termed disseminating tumor cells (DTCs), acquire the necessary genetic and epigenetic alterations to complete transition to the subsequent stage. Despite this significant attrition, a small percentage of cancer cells can eventually reach secondary organs during the evolution of the disease. However, upon extravasation, disseminated cells often remain quiescent in distal organs undergoing long periods of latency, also known as the dormancy period [
<xref rid="B6-ijms-20-06158" ref-type="bibr">6</xref>
]. The term dormancy refers to two conditions: (1) single cells or small clusters of DTCs that are in a quiescent state and (2) microscopic lesions or micrometastases that do not grow in size due to similar rates of proliferation and apoptosis of their constituent cancer cells [
<xref rid="B7-ijms-20-06158" ref-type="bibr">7</xref>
]. </p>
<p>Cancer cell outgrowth at secondary sites is a highly inefficient process and delays the development of macrometastases [
<xref rid="B3-ijms-20-06158" ref-type="bibr">3</xref>
]. During this time, cancer cells are not easily detectable. In addition, since they are in a non-proliferative state, they are inefficiently targeted by chemotherapeutic drugs. These cells may start proliferating and eventually lead to the development of metastatic disease even years following surgical removal of the primary tumor and treatment [
<xref rid="B8-ijms-20-06158" ref-type="bibr">8</xref>
,
<xref rid="B9-ijms-20-06158" ref-type="bibr">9</xref>
,
<xref rid="B10-ijms-20-06158" ref-type="bibr">10</xref>
,
<xref rid="B11-ijms-20-06158" ref-type="bibr">11</xref>
]. It is noteworthy that disease recurrence happens after almost a decade of being “cancer-free” in many patients while, for example, more than 67% of breast cancer deaths occur beyond the 5-year survival window [
<xref rid="B12-ijms-20-06158" ref-type="bibr">12</xref>
]. Clinical evidence demonstrates that DTCs detected in patients prior to the development of macrometastases may contain fewer genetic aberrations compared to primary or metastatic tumors, suggesting that dissemination of tumor cells is often an early event during cancer progression [
<xref rid="B13-ijms-20-06158" ref-type="bibr">13</xref>
]. This notion is supported by experimental evidence indicating that Her2-driven breast cancer cells may metastasize and remain dormant at a secondary site even prior to detectable growth of the primary tumor [
<xref rid="B14-ijms-20-06158" ref-type="bibr">14</xref>
]. In addition, studies using pancreatic cancer mouse models suggested that EMT and cancer cell dissemination to the liver may occur earlier than tumor formation in response to inflammation [
<xref rid="B15-ijms-20-06158" ref-type="bibr">15</xref>
]. These observations underlie the need to decipher the complex mechanisms that govern metastatic cancer cell dormancy and the escape from this latent state, whereas at the same time highlight the importance to exploit this window of opportunity for effective treatment of cancer metastasis. </p>
</sec>
<sec id="sec2-ijms-20-06158">
<title>2. Mechanisms Regulating Metastatic Dormancy</title>
<p>Disseminated tumor cells (DTCs) that have spread to a secondary site can enter a state of dormancy by exiting the proliferative cycle or by attaining a balanced state of proliferation and apoptosis. During this dormancy period, metastatic cells can accumulate genetic and/or epigenetic aberrations that allow them to optimally adapt to the host microenvironment (
<xref rid="ijms-20-06158-t001" ref-type="table">Table 1</xref>
). Once the conditions are favorable, cells emerge from dormancy and initiate colonization [
<xref rid="B16-ijms-20-06158" ref-type="bibr">16</xref>
]. </p>
<sec id="sec2dot1-ijms-20-06158">
<title>2.1. Mechanisms That Sustain Metastatic Dormancy</title>
<p>Slow cycling or arrested DTCs activate self-imposed dormancy programs that allow them to adapt to the new microenvironment at the metastatic site and remain unaffected by therapies targeting proliferating cells. F-box/WD repeat-containing protein 7 (FBXW7) is a protein encoded by the
<italic>FBXW7</italic>
gene that functions as a substrate recognition component of a Skp1-Cul1-F box-type (SCF-type) E3 ubiquitin ligase. FBXW7 restrains the cell cycle through the ubiquitylation and proteasomal degradation of cell cycle promoters, including cyclin E and c-Myc. It is highly expressed in various types of stem cells and promotes dormancy by inhibiting cell cycle entry in vivo [
<xref rid="B17-ijms-20-06158" ref-type="bibr">17</xref>
]. Recently, a role for FBXW7 in maintaining breast cancer dormancy has been uncovered. The ablation of FBXW7 in breast cancer cells using mouse xenograft and allograft models caused DTCs to exit their quiescent state and to start proliferating. Importantly, the ablation of FBXW7 and subsequent re-initiation of cell cycle progression, rendered cancer cells sensitive to paclitaxel, suggesting that a combined therapeutic approach involving genetic targeting of FBXW7 with chemotherapy could be a promising approach [
<xref rid="B18-ijms-20-06158" ref-type="bibr">18</xref>
]. Moreover, leukemia inhibitory factor receptor (LIFR), promotes dormancy of disseminated breast tumor cells in the bone. LIFR acts by activating signal transducer and activator of transcription 3 (STAT3) and suppressor of cytokine signaling (SOCS). Loss of the LIFR or STAT3 enables otherwise dormant breast cancer cells to downregulate genes associated with dormancy, quiescence and cancer stemness, reactivate proliferation, and colonize to the bone [
<xref rid="B19-ijms-20-06158" ref-type="bibr">19</xref>
].</p>
<p>Autophagy, a physiological mechanism often activated following metabolic stress under nutrient deprivation conditions, leads to the degradation of the cytosol, organelles, and misfolded proteins to establish proper energy balance as well as to recycle macromolecules and dysfunctional organelles. Recently, this process has also been implicated in the survival of dormant cancer cells since inhibition of autophagy in these cells may eliminate them to prevent recurrence of breast cancer [
<xref rid="B20-ijms-20-06158" ref-type="bibr">20</xref>
]. More specifically, autophagy-related 7 (ATG7) has been identified to be essential for activation of autophagy in vivo; knockdown of ATG7 was shown to decrease metastatic burden while autophagy blockade specifically targeted dormant breast cancer cells leading them towards apoptotic cell death [
<xref rid="B20-ijms-20-06158" ref-type="bibr">20</xref>
]. </p>
<p>Mitogen-activated protein kinase (MAPK) kinase 4/c-Jun NH2-terminal kinase (JNK)-activating kinase (MKK4/JNKK1/SEK1), referred to as MKK4, was initially characterized as a metastasis suppressor in prostate and ovarian cancers [
<xref rid="B21-ijms-20-06158" ref-type="bibr">21</xref>
,
<xref rid="B22-ijms-20-06158" ref-type="bibr">22</xref>
]. MKK4 has been shown to activate p38 through its kinase activity and suppress the metastasis of ovarian cancer cells in vivo [
<xref rid="B23-ijms-20-06158" ref-type="bibr">23</xref>
]. Metastatic cells undergoing dormancy have been found to exhibit elevated p38 activity [
<xref rid="B24-ijms-20-06158" ref-type="bibr">24</xref>
]. It is therefore likely that MKK4 may contribute to maintaining dormancy by regulating p38. </p>
<p>Activation of the canonical nuclear factor kappa-light-chain enhancer of activated B cells (NF-κB) pathway may also be implicated in the promotion of the dormant phenotype in breast cancer cells expressing estrogen receptors (ERs) [
<xref rid="B25-ijms-20-06158" ref-type="bibr">25</xref>
]. A constitutively active form of the inhibitor of NFκB (IκB) kinase β (CA-IKKβ), inhibited estradiol-dependent cell proliferation in vitro and tumor growth in vivo, while co-activation of both ER and IKKβ promoted migration and invasion in vitro and metastasis in vivo [
<xref rid="B25-ijms-20-06158" ref-type="bibr">25</xref>
]. Downregulation of the C-X-C motif chemokine receptor 4 (CXCR4) in breast cancer cells metastasized to the lung, has also been associated with sustaining the dormant phenotype [
<xref rid="B26-ijms-20-06158" ref-type="bibr">26</xref>
]. </p>
<p>Paired-related homeobox transcription factor (PRRX1) has been associated with the activation of EMT program and in maintaining the dormancy phenotype in head and neck squamous cell carcinoma (HNSCC) patients [
<xref rid="B27-ijms-20-06158" ref-type="bibr">27</xref>
]. PRRX1 was found to be upregulated in invasive primary tumors of HNSCC patients and to promote EMT by activating Transforming growth factor-β1 (TGF-β1) signaling; PRRX1 was found to sustain dormancy in HNSCC cells in vivo by downregulating the expression of miR-642-3p which is associated with tumorigenesis and cell growth. PRRX1 overexpression diminishes miR-642-3p levels which mediates dormancy via transforming growth factor-β2 (TGF-β2) and p38 [
<xref rid="B27-ijms-20-06158" ref-type="bibr">27</xref>
]. </p>
<p>Finally, the kisspeptin 1 (KISS1) metastasis suppressor protein has been found to strongly inhibit pulmonary and intraperitoneal metastasis in xenograft models of various cancer types, including melanoma, breast and ovarian cancer [
<xref rid="B28-ijms-20-06158" ref-type="bibr">28</xref>
,
<xref rid="B29-ijms-20-06158" ref-type="bibr">29</xref>
,
<xref rid="B30-ijms-20-06158" ref-type="bibr">30</xref>
,
<xref rid="B31-ijms-20-06158" ref-type="bibr">31</xref>
]. Kisspeptin, the protein product of the
<italic>KISS1</italic>
gene which binds to the G protein-coupled receptor, GPR54, has been proposed to mediate its anti-metastatic effects via this interaction. However, other findings suggest that the effects of KISS1, or its mimetics, could be mediated through a different yet unidentified receptor, and that KISS1 secretion is required for maintaining DTCs in a dormant state [
<xref rid="B32-ijms-20-06158" ref-type="bibr">32</xref>
].</p>
</sec>
<sec id="sec2dot2-ijms-20-06158">
<title>2.2. Mechanisms That Promote Escape from Dormancy</title>
<p>The escape from dormancy is often directed by intrinsic changes in expression patterns of the disseminated cancer cells but may also be dependent on certain characteristics and interactions with the host tissue. In the liver, hepatic stellate cells stimulate emergence of dormant disseminated breast cancer cells by secreting soluble factors, including interleukin-8 (IL-8) and monocyte chemoattractant protein-1 (MCP-1). These factors have been shown to promote the proliferation of breast cancer cells even under serum-starvation conditions possibly via extracellular-signal-regulated kinase (ERK) pathway activation [
<xref rid="B33-ijms-20-06158" ref-type="bibr">33</xref>
]. </p>
<p>In human breast cancer cells, specific markers have been identified that support the ability of DTCs to bypass senescence and reinitiate growth. (TGF-β) has been implicated in promoting metastasis and in regulating the dormant state of cancer cells. The expression of Inhibitor of differentiation (Id) family of proteins (ID) is controlled by TGF-β. These are transcription factors implicated in promoting proliferation and migration as well as inhibiting cell differentiation in many types of cancer [
<xref rid="B34-ijms-20-06158" ref-type="bibr">34</xref>
]. The expression of ID1 and ID3 in cell clusters of basal or triple-negative subtype breast tumors is required to reactivate and sustain proliferation of cancer cells in the lungs during metastatic colonization [
<xref rid="B35-ijms-20-06158" ref-type="bibr">35</xref>
,
<xref rid="B36-ijms-20-06158" ref-type="bibr">36</xref>
]. Coco, a secreted antagonist of TGF-β ligands, has also been shown to facilitate the escape of dormancy in disseminated cells in the lungs by blocking lung-derived paracrine bone morphogenetic protein (BMP) signaling. Coco induces metastatic relapse of breast cancer cells to the lung but not to the bone or brain in patients suggesting that metastasis initiating cells need to overcome organ-specific signals in order to escape dormancy [
<xref rid="B37-ijms-20-06158" ref-type="bibr">37</xref>
]. Furthermore, prostate cancer DTCs to the bone marrow manage to escape their dormant state and initiate proliferation by downregulating TGF-β2 expression and by activating its downstream target myosin light chain (MLC) via MLC kinase (MLCK) [
<xref rid="B38-ijms-20-06158" ref-type="bibr">38</xref>
]. </p>
</sec>
<sec id="sec2dot3-ijms-20-06158">
<title>2.3. Epigenetic Alterations That Regulate Metastatic Dormancy</title>
<p>Due to the fact that cancer cell dormancy is a reversible state, it has been suggested that epigenetic changes may also play critical roles in controlling the switch from quiescence to proliferation. Interestingly, epigenetic modifications have been found to not only reactivate cells but also to keep them in a suppressed steady state. </p>
<p>Epigenetic regulation of selected genes has been identified as a mechanism promoting the growth of micrometastatic lesions. In estrogen receptor-positive (ER
<sup>+</sup>
) breast cancer, mitogen- and stress-activated protein kinase-1 (MSK1) appears to play an important role in metastatic dormancy. Low levels of MSKI are associated with early metastasis; however, at the secondary site, MSK1 maintains cancer cells in a steady state by promoting luminal differentiation. Acting downstream of stress-activated kinase p38, MSK1 controls the expression of the GATA binding protein 3 (GATA3) and forkhead box A1 (FOXA1)transcription factors through epigenetic regulation of their chromatin status in respective promoter regions [
<xref rid="B39-ijms-20-06158" ref-type="bibr">39</xref>
]. Earlier work revealed the role of p38 in establishing dormancy via epigenetic mechanisms in epidermoid carcinoma, by regulating the expression of 46 genes including 16 transcription factors. Activation of p38 induced the expression of p53 and BHLHB3, whereas it inhibited c-Jun and FoxM1 expression; these transcriptional changes correlated with cell quiescence [
<xref rid="B40-ijms-20-06158" ref-type="bibr">40</xref>
]. </p>
<p>Furthermore, epigenetic upregulation of the orphan nuclear receptor N2RF1 is shown to promote dormancy of disseminated head and neck as well as prostate cancer cells, via induction of the pluripotency gene
<italic>NANOG</italic>
in the bone marrow [
<xref rid="B41-ijms-20-06158" ref-type="bibr">41</xref>
]. </p>
</sec>
</sec>
<sec id="sec3-ijms-20-06158">
<title>3. Microenvironment</title>
<p>Interactions of DTCs with the microenvironment at the secondary sites upon extravasation, determine whether or when metastatic cells will colonize. Signals received from the extracellular matrix (ECM) either keep cells in an inactive state or drive their progression into macrometastases (
<xref rid="ijms-20-06158-t001" ref-type="table">Table 1</xref>
). Some tissue microenvironments are more hospitable than others for cancer cells; these sites, such as the lungs, bones and brain, are organs where metastatic lesions are more frequently detected in patients. We describe below the currently known mechanisms activated in different sites that keep metastatic cells in a dormant state or promote their proliferation. </p>
<sec id="sec3dot1-ijms-20-06158">
<title>3.1. The Role of the Extracellular Matrix Components in Regulating Dormancy</title>
<p>Even though DTCs are able to disseminate and survive at secondary sites, they could remain inactive or dormant due to regulatory pathways activated by local microenvironments.ECM proteins play a key role in sustaining DTCs in a dormant state or allowing tumor growth. By deciphering the mechanisms that maintain these cells growth-suppressed or allow for their outgrowth, we may develop more effective therapeutic approaches to keep DTCs in a perpetual dormant state or activate apoptotic signals to eliminate them.</p>
<p>Early studies showed that ECM protein fibronectin (FN) can determine whether DTCs can remain in a dormant state by interacting with the urokinase plasminogen activator receptor (uPAR) in cancer cells. uPA/uPAR proteins physically associate with alpha5beta1 (α5β1) integrin and increase adhesion of cells to fibronectin. However, low levels of uPAR in human carcinoma HEp3 cells, were found to decrease adhesion and promoted the dormancy phenotype [
<xref rid="B42-ijms-20-06158" ref-type="bibr">42</xref>
]. Furthermore, it has been shown that high levels of uPAR activate the integrin alpha5beta1 which generates persistently high levels of active ERK. ERK is a mitogenic extracellular regulated kinase necessary for tumor growth in vivo. ERK is also activated by FN fibrils which suppress the p38MAPK pathway. In contrast, when uPAR levels are low and FN fibrils are absent, cells enter into a dormant state [
<xref rid="B43-ijms-20-06158" ref-type="bibr">43</xref>
]. The regulation of dormancy by FN based on the ERK/p38 ratio, which is controlled via the uPAR/integrin alpha5beta1 axis, was shown in vivo using cell lines of different cancer types, including breast, prostate, melanoma, and fibrosarcoma [
<xref rid="B24-ijms-20-06158" ref-type="bibr">24</xref>
]. When grown in 3-D culture conditions, cells with dormant behavior transitioned from quiescence to proliferation which was dependent on the phosphorylation of myosin light chain by MLC kinase (MLCK) by integrin β1. The activation of MLCK leads to cytoskeletal reorganization with f-actin stress fiber formation while its inhibition significantly reduces metastatic burden in vivo [
<xref rid="B44-ijms-20-06158" ref-type="bibr">44</xref>
]. </p>
<p>Deposition of type I collagen (Col-I) in the microenvironment of the secondary site has also been shown to facilitate the escape of cancer cells from dormancy through induction of fibrosis. Col-I induces activation of SRC and focal adhesion kinase (FAK) via β1-integrin. This leads to actin stress fiber formation and facilitates the growth of quiescent mouse mammary cells [
<xref rid="B45-ijms-20-06158" ref-type="bibr">45</xref>
]. Col-I crosslinking, catalyzed by the extracellular amine oxidase Lysyl oxidase (LOX), may enhance metastatic outgrowth. LOX’s primary function is to catalyze the covalent crosslinking of fibers in the extracellular matrix, creating a stable microenvironment and supporting metastatic growth. Increased LOX activity, accompanied by fibrillary collagen crosslinking, has been shown to contribute to metastatic seeding in vivo [
<xref rid="B46-ijms-20-06158" ref-type="bibr">46</xref>
]. Moreover, therapeutic targeting and downregulation of LOX led to a 50% decrease in pulmonary metastatic burden and increased survival of mice [
<xref rid="B46-ijms-20-06158" ref-type="bibr">46</xref>
,
<xref rid="B47-ijms-20-06158" ref-type="bibr">47</xref>
]. </p>
</sec>
<sec id="sec3dot2-ijms-20-06158">
<title>3.2. Lung Microenvironment Controls the Metastatic Cell Dormant State </title>
<p>Lungs are some of the most frequently affected target organs for metastatic disease. Common cancers that metastasize to the lungs include breast, colon, prostate, bladder cancer, neuroblastoma and sarcoma. Cancer cells migrating to the lungs are often driven out of quiescence and into metastatic outgrowth via interactions with the surrounding microenvironment. </p>
<p>Conditions in the lung microenvironment such as hypoxia and inflammation are shown to favor the development of macrometastases. Lysyl oxidase Like 2 (LOXL2), a member of the LOX family, can facilitate ECM remodeling and induce EMT [
<xref rid="B48-ijms-20-06158" ref-type="bibr">48</xref>
,
<xref rid="B49-ijms-20-06158" ref-type="bibr">49</xref>
]. In addition, LOXL2 expression in breast cancer cells has been associated with a more aggressive phenotype and enhanced metastatic potential [
<xref rid="B50-ijms-20-06158" ref-type="bibr">50</xref>
]. Expression of LOXL2 in MCF-7 breast cancer cells colonizing to the lung induced their transition from dormancy to metastatic outgrowth. The expression of LOXL2 can be driven by the hypoxic conditions in the tumor microenvironment [
<xref rid="B51-ijms-20-06158" ref-type="bibr">51</xref>
]. In addition, inflammation in the lung microenvironment may lead to Tank-binding kinase-1 (TBK1)-dependent promotion of proliferation of dormant breast cancer cells. TBK1, a downstream effector of the miR-200c-driven pathway, facilitates EMT and invasiveness of lung cancer cells by controlling synthase kinase-3β (GSK-3β) phosphorylation and zinc finger E-box-binding homeobox 1 (ZEB1) expression [
<xref rid="B52-ijms-20-06158" ref-type="bibr">52</xref>
,
<xref rid="B53-ijms-20-06158" ref-type="bibr">53</xref>
].</p>
<p>Periostin (POSTN) is a component of the extracellular matrix expressed by fibroblasts in normal tissues. It has been shown that POSTN expression is induced in the lung by infiltrating tumor cells and this allows them to initiate colonization. POSTN recruits Wingless (Wnt) ligands thereby increasing Wnt signaling in cancer cells migrating to the lungs. Primary lung fibroblasts upregulated POSTN in response to tumor-derived transforming growth factor-β3 (TGF-β3) and TGF-β2. POSTN interacted with Wnt1 and Wnt3A, which boosted Wnt signaling and facilitated cancer cell growth [
<xref rid="B54-ijms-20-06158" ref-type="bibr">54</xref>
]. In a head and neck squamous cell carcinoma (HNSCC) model, TGF-β2 activated MAPK p38α/β, therefore reducing the ERK/p38 signaling ratio. This induced DEC2 and transforming growth factor-β receptor-I (TGFβR-I)-dependent quiescence that involved downregulation of cyclin-dependent kinase 4 (CDK4) and activation of p27 [
<xref rid="B55-ijms-20-06158" ref-type="bibr">55</xref>
]. In the lungs, a metastasis-permissive microenvironment with low TGF-β2 levels awakened DTCs from dormancy followed by metastatic growth [
<xref rid="B55-ijms-20-06158" ref-type="bibr">55</xref>
]. </p>
<p>Vascular cell adhesion molecule 1 (VCAM-1) has been shown to interact with macrophages expressing α4 integrins to induce Akt (protein kinase B) expression and lung metastasis [
<xref rid="B56-ijms-20-06158" ref-type="bibr">56</xref>
]. Specifically, breast cancer cells that infiltrate leukocyte-rich microenvironments, such as the lungs, have a survival advantage when they overexpress VCAM-1. VCAM-1 anchors metastasis-associated macrophages via α4-integrins to cancer cells, triggering Akt activation, thereby protecting cancer cells from proapoptotic cytokines, including TNF-Related Apoptosis Inducing Ligand TRAIL [
<xref rid="B56-ijms-20-06158" ref-type="bibr">56</xref>
]. </p>
</sec>
<sec id="sec3dot3-ijms-20-06158">
<title>3.3. Brain Metastasis: Microenvironmental Factors Regulating Dormancy</title>
<p>Circulating cancer cells infiltrating the brain microvasculature initially encounter endothelial cells. In addition to acting as the initial barrier during cancer cell brain invasion, endothelial cells and their basement membrane may also support the growth of brain metastases. In addition, brain-resident cells such as microglia and astrocytes, provide a unique environment with paracrine growth factors that affect the development of metastatic brain tumors.</p>
<p>Breast cancer cells have been found to extravasate to the brain exclusively from capillaries. During brain infiltration, cancer cells are trapped in narrow vessels and the extravasation process often requires several days. “Arrested” cancer cells within the capillaries were shown to induce diverse astrocytic and microglial responses which caused local changes of the tumor microenvironment that promoted or restricted their progress into macrometastases [
<xref rid="B57-ijms-20-06158" ref-type="bibr">57</xref>
]. More specifically, breast cancer cells escaping dormancy in the brain were found to overexpress the metalloproteinase-9 (MMP-9) protein which is known to have pro-angiogenic and growth-promoting functions in brain tumors [
<xref rid="B58-ijms-20-06158" ref-type="bibr">58</xref>
]. In addition, MMP-9, secreted by activated astrocytes, was increased in the immediate vicinity of extravasating cancer cells. Astrocytes were also found to have elevated expression of Glial fibrillary acidic protein (GFAP) and nestin, two proteins which are thought to help to maintain the shape of cells and provide a supporting microenvironment. This evidence suggests that activated astrocytes surrounding the tumor cells may enable the development and growth of brain metastatic lesions [
<xref rid="B57-ijms-20-06158" ref-type="bibr">57</xref>
].</p>
<p>Brain metastasis also occurs frequently in melanoma patients and represents a significant cause of death from this disease [
<xref rid="B59-ijms-20-06158" ref-type="bibr">59</xref>
]. Brain micrometastases comprising dormant melanoma cells have been found to harbor specific transcriptional signatures. The differential expression of 35 genes as described by Izraely et al., including the levels of cysteine-rich protein 61 (CYR61) and of preferentially expressed antigen in melanoma (PRAME), are suggested to control the ability of disseminated melanoma cells to respond to microenvironment-derived signals in the brain [
<xref rid="B60-ijms-20-06158" ref-type="bibr">60</xref>
]. </p>
<p>Extrinsic dormancy also includes “angiogenic dormancy”, referring to the concept that cancer cells remain quiescent and undetectable for years before an “angiogenic switch” reactivates them and allows for further tumor growth. Pro- and anti-angiogenic factors produced by the tumor and its microenvironment determine whether the tumor will vascularize and continue to grow [
<xref rid="B61-ijms-20-06158" ref-type="bibr">61</xref>
]. The mechanisms of angiogenic dormancy in metastatic cancer have not been fully characterized. Angiomotin, a protein that mediates the antiangiogenic activity of the endogenous angiogenesis inhibitor angiostatin, is elevated in dormant tumor cells and maintains dormancy of metastatic cells [
<xref rid="B62-ijms-20-06158" ref-type="bibr">62</xref>
,
<xref rid="B63-ijms-20-06158" ref-type="bibr">63</xref>
,
<xref rid="B64-ijms-20-06158" ref-type="bibr">64</xref>
]. During brain metastasis formation, melanoma as well as lung carcinoma cells may find optimal survival conditions at their perivascular position. The awakening and growth of these dormant cells requires high levels of vascular endothelial growth factor A (VEGF-A), suggesting an important role for angiogenesis in the early stages of brain metastasis [
<xref rid="B65-ijms-20-06158" ref-type="bibr">65</xref>
]. This evidence is consistent with the proposed concept that the angiogenic switch is required for the transition of cancer cells from a dormant to an actively proliferating phenotype [
<xref rid="B66-ijms-20-06158" ref-type="bibr">66</xref>
,
<xref rid="B67-ijms-20-06158" ref-type="bibr">67</xref>
].</p>
</sec>
<sec id="sec3dot4-ijms-20-06158">
<title>3.4. Metastasis to the Bone: The Role of the Bone Marrow and the Bone Microenvironment in Dormancy</title>
<p>The bone marrow and bone microenvironment, acting as a translational area for DTCs as well as a secondary metastatic site, have been extensively studied for their ability to regulate dormancy.</p>
<sec id="sec3dot4dot1-ijms-20-06158">
<title>3.4.1. Bone Marrow and the Regulation of Dormancy</title>
<p>During metastasis to the bone, DTCs infiltrate the highly vascularized bone marrow (BM) where they may remain in a latency phase which can last for years prior to entering a more aggressive active phase. This lag period is regulated and modified by numerous factors in the microenvironment of the bone marrow stroma [
<xref rid="B68-ijms-20-06158" ref-type="bibr">68</xref>
,
<xref rid="B69-ijms-20-06158" ref-type="bibr">69</xref>
]. Several cell types within the BM microenvironment have been shown to promote dormancy. Osteoblasts within the BM secrete niche factors that promote the quiescence of hematopoietic stem cells (HSCs). DTCs displace resident HSCs in the BM and may also become quiescent by binding to these niche factors. For example, osteoblasts secrete growth arrest–specific 6 (GAS6) which can bind to the AXL receptor expressed by prostate cancer cells. In addition, prostate DTCs bind Annexin II, a protein expressed by both osteoblasts and endothelial cells that is involved in diverse cellular processes, including mediating HSC adhesion within the niche [
<xref rid="B70-ijms-20-06158" ref-type="bibr">70</xref>
]. This binding results in upregulation of the AXL family of receptors (Axl, Mer, and Tyro3) and of TGF-β receptors that promote dormancy [
<xref rid="B71-ijms-20-06158" ref-type="bibr">71</xref>
,
<xref rid="B72-ijms-20-06158" ref-type="bibr">72</xref>
]. AXL is also implicated in production of TGF-β2, which enhances GAS6 expression and promotes DTC dormancy [
<xref rid="B73-ijms-20-06158" ref-type="bibr">73</xref>
]. In a recent study,
<italic>AXL</italic>
was identified as a key gene highly expressed in dormant myeloma cells localized in specific niches of bones; when targeted by small molecule inhibitors, downregulation of AXL promoted cell proliferation and escape from dormancy [
<xref rid="B74-ijms-20-06158" ref-type="bibr">74</xref>
]. When breast cancer cells are localized in the microvasculature of the BM, they are facilitated by endothelial cells that produce thrombospondin-1 (TSP-1), a tumor suppressing ant-angiogenic factor that induces quiescence [
<xref rid="B75-ijms-20-06158" ref-type="bibr">75</xref>
]. Loss of TSP-1 expression at neovascular tips not only allows but accelerates micrometastatic outgrowth. TGF-β1 and POSTN have been identified as tumor-promoting factors derived from endothelial tip cells [
<xref rid="B75-ijms-20-06158" ref-type="bibr">75</xref>
].</p>
<p>Osteoblasts also secrete CXC-chemokine ligand 12 (CXCL12), also known as stromal cell-derived factor 1 (SDF-1). This binds to CXCR4 G-protein coupled receptor which is expressed both on HSCs and DTCs and promotes cellular adhesion in the bone marrow [
<xref rid="B76-ijms-20-06158" ref-type="bibr">76</xref>
,
<xref rid="B77-ijms-20-06158" ref-type="bibr">77</xref>
]. Recently, it has been suggested that during breast cancer colonization to the bone CXCL5 is released from bone marrow cells to activate its receptor CXCR2 expressed on the surface of cancer cells to enable their proliferation [
<xref rid="B78-ijms-20-06158" ref-type="bibr">78</xref>
]. Dormant breast cancer cells have also been found to occupy distinct vascular regions within the BM that are rich in E-selectin. Breast cancer cell interaction with E-selectin was shown to be critical for their mobility and entry into the BM [
<xref rid="B79-ijms-20-06158" ref-type="bibr">79</xref>
]. Bone morphogenetic protein 7 (BMP-7) secreted from BM stromal cells can inhibit proliferation of prostate cancer stem-like cells by activating p38 MAPK signaling and increases expression of N-myc downstream regulated gene 1 (
<italic>NDRG1</italic>
), a metastasis suppressor gene [
<xref rid="B80-ijms-20-06158" ref-type="bibr">80</xref>
]. </p>
<p>Macrophages within the ΒΜ stroma may also affect the development of dormancy in DTCs. Specifically, M2-like macrophages that are characterized by tumor promoting, immunosuppressive properties, can form gap junctional intercellular communication (GJIC) with cancer cells reducing their proliferation, causing cycling quiescence, and resistance to carboplatin. In contrast, exosomes derived from macrophages with tumor suppressive M1 phenotype, activate NF-κB to reverse dormancy in quiescent breast cancer cells [
<xref rid="B81-ijms-20-06158" ref-type="bibr">81</xref>
]. </p>
<p>Extracellular vesicles derived from mesenchymal stem cells (MSCs) residing in the bone marrow may also promote metastatic cell dormancy. Specifically, the MSCs may interact with breast cancer cells via extracellular vesicles that contain microRNAs, conveying a negative influence on their proliferation and increased adhesion [
<xref rid="B82-ijms-20-06158" ref-type="bibr">82</xref>
]. Cancer cells originating from the breast can form typical osteolytic metastases in the BM by secreting parathyroid hormone-related protein (PTHRP), tumor necrosis factor-α (TNFα), interleukin 6 (IL-6) and/or interleukin 11(IL-11). PTHRP, IL-6, IL-11, and TNFα stimulate osteoblasts to release receptor activator of nuclear factor-κB ligand (RANKL) which induces the formation of osteoclasts [
<xref rid="B83-ijms-20-06158" ref-type="bibr">83</xref>
,
<xref rid="B84-ijms-20-06158" ref-type="bibr">84</xref>
,
<xref rid="B85-ijms-20-06158" ref-type="bibr">85</xref>
,
<xref rid="B86-ijms-20-06158" ref-type="bibr">86</xref>
]. </p>
</sec>
<sec id="sec3dot4dot2-ijms-20-06158">
<title>3.4.2. The Role of the Bone Microenvironment in Dormancy</title>
<p>Osteoblastic niche within the bone microenvironment can promote prostate cancer dormancy via Wnt/β-catenin signaling. Co-culture of prostate cancer cells with osteoblasts or with conditioned media from osteoblasts inhibited their proliferation. Osteoblast-induced tumor cell dormancy was shown to be mediated via Wnt5a that is present in high levels in the microenvironment. This involved activation of non-canonical receptor tyrosine kinase like orphan receptor 2/ Siah E3 ubiquitin protein ligase 2 (ROR2/SIAH2) signaling that suppresses canonical Wnt/β-catenin signaling [
<xref rid="B87-ijms-20-06158" ref-type="bibr">87</xref>
]. </p>
<p>Within the endosteal niche, metastasized myeloma cells are kept in a dormant state by interacting with bone-lining cells or osteoblasts, and subsequently may become activated to form colonies by engaging with osteoclasts. The dormant population of cells was shown to undergo a limited number of cell divisions due to the downregulation of genes that control cell cycle progression [
<xref rid="B88-ijms-20-06158" ref-type="bibr">88</xref>
].</p>
<p>Differentiated osteoblasts located around the tumor cells in the bone induced dormancy in prostate cancer cells by secreting proteins including growth differentiation factor 10 (GDF10) and TGFβ2 [
<xref rid="B89-ijms-20-06158" ref-type="bibr">89</xref>
]. TGFβ2 and GDF10 can promote cell cycle arrest by binding to the TGF-βRIII receptor expressed by prostate cancer cells. This binding induces transforming growth factor-β receptor-III (TGFβRIII) to activate phospho-p38MAPK, which phosphorylates retinoblastoma (Rb) protein and blocks prostate cancer cell proliferation by upregulating p27. The importance of the TGFβRIII-p38MAPK-Rb signaling axis in maintaining dormancy was evaluated in patients with prostate cancer; lower TGFβRIII expression correlated with increased metastatic potential and decreased survival rates [
<xref rid="B89-ijms-20-06158" ref-type="bibr">89</xref>
]. </p>
<p>Breast cancer metastasis to the bone may be promoted by NF-κB-mediated aberrant expression of vascular cell adhesion molecule 1 (VCAM-1). VCAM-1 has been implicated in the formation of macrometastasis of breast cancer cells. The mechanism of action involves interaction with the cognate receptor integrin α4β1 and recruitment of monocytic osteoclast progenitors to elevate local osteoclast activity within micrometastases [
<xref rid="B90-ijms-20-06158" ref-type="bibr">90</xref>
]. </p>
</sec>
</sec>
</sec>
<sec id="sec4-ijms-20-06158">
<title>4. Therapeutic Approaches against Dormancy</title>
<p>Since the duration of metastatic dormancy offers a unique window for therapeutic intervention, understanding the mechanisms underlying dormancy, either promoting or escaping the quiescent state in DTCs, may allow us to develop therapies that will limit disease recurrence [
<xref rid="B7-ijms-20-06158" ref-type="bibr">7</xref>
]. One approach would be to block the communication of cancer cells with stromal cells of the microenvironment. For example, by disrupting CXCL12/ CXCR4 binding, DTCs are mobilized from the bone marrow, initiate cell cycle progression and become more susceptible to combined treatment with standard chemo- or nanotherapeutics (
<xref rid="ijms-20-06158-t002" ref-type="table">Table 2</xref>
). One study showed that oncolytic viruses expressing the CXCR4 antagonist inhibit breast cancer metastases in a mouse model [
<xref rid="B92-ijms-20-06158" ref-type="bibr">92</xref>
]. Another approach could involve maintaining DTCs in a perpetual dormant state. Administration of agents that promote dormancy, such as thrombospondin 1 (TSP1), a glycoprotein secreted from vascular endothelial cells, which has been shown to reduce the proliferation of invasive ductal carcinoma (IDC) cells [
<xref rid="B93-ijms-20-06158" ref-type="bibr">93</xref>
], may prevent the eventual metastatic outgrowth. Angiostatin, a naturally occurring angiogenesis inhibitor currently undergoing clinical trials as a potential anti-cancer agent, was initially found to induce and sustain dormancy of primary tumors in mice [
<xref rid="B94-ijms-20-06158" ref-type="bibr">94</xref>
]. Since SRC has been found to promote escape from dormancy, SRCinhibition by Saracatinib (AZD0530; AstraZeneca), an orally active, dual SRCfamily kinase–AB1 (SFKABL) inhibitor, was able to prevent the Col1-induced proliferation of dormant tumor cells and induced the upregulation and nuclear localization of the cell cycle inhibitor p27. The combination of Saracatinib with an ERK1/2 inhibitor was able to induce apoptotic cell death [
<xref rid="B95-ijms-20-06158" ref-type="bibr">95</xref>
]. </p>
<p>The specific targeting of dormant cancer cells that reside in the bone marrow represents another challenging approach as in this region the endogenous hematopoietic stem cells also reside. As previously mentioned, cancer cells can interact with mesenchymal stem cells (MSC) within the bone marrow, priming them into releasing exosomes with distinct miRNA content which facilitates their quiescence. One nontoxic therapeutic strategy tested in an immunodeficient mouse model of dormant breast cancer, indicated that systemic administration of MSC loaded with antagomiR-222/223 sensitized breast cancer cells to carboplatin-based therapy and increased host survival [
<xref rid="B96-ijms-20-06158" ref-type="bibr">96</xref>
]. </p>
<p>Targeting of the lysophosphatidic acid receptor 1 (
<italic>LPA1</italic>
) gene that has been implicated in promoting metastasis, via the specific inhibitor Debio-0719, was shown to induce dormancy at the secondary tumor site in a breast cancer model [
<xref rid="B97-ijms-20-06158" ref-type="bibr">97</xref>
]. Epigenetic modifiers have also been studied for their therapeutic potential by sustaining dormancy. Combination of 5-azadeoxycytidine (5-Aza-C), a DNA demethylating agent, and retinoic acid was found to upregulate the master receptor NR2F1 and subsequently induce the expression of pluripotency genes
<italic>SOX9, RARβ</italic>
, and
<italic>NANOG</italic>
that led to quiescence in head and neck squamous cell carcinoma (HNSCC) cells [
<xref rid="B41-ijms-20-06158" ref-type="bibr">41</xref>
].</p>
<p>Manipulation of the expression of specific genes in dormant cancer cells has been found to alter their responsiveness to treatment. Cancer stem cells (CSC), referring to the tumor-initiating population of cells within a tumor that share common features with stem or progenitor cells, may remain in a quiescent, dormant state and contribute to disease recurrence and chemoresistance. Manipulation of the levels of Fra-1, a member of the Fos transcription factor family, may assist in driving cells out of dormancy and rendering the tumor sensitive to treatment. Knockdown of Fra-1 led to increased chemoresistance in CSC tumors and a concurrent increase in tumor size; overexpression of Fra-1 resulted in decreased tumor incidence and in increased chemosensitivity [
<xref rid="B98-ijms-20-06158" ref-type="bibr">98</xref>
]. Therefore, Fra-1 may be useful in predicting patient response to treatment. In addition, p38-induced cancer cell quiescence in epidermoid carcinoma HEp3 cells can be inhibited by RNAi-mediated downregulation of BHLHB3 or p53 [
<xref rid="B40-ijms-20-06158" ref-type="bibr">40</xref>
]. </p>
<p>The role of the immune system in regulating dormancy of cancer cells in primary and metastatic sites has been highlighted by many studies and is often referred to as “immunologic dormancy” [
<xref rid="B99-ijms-20-06158" ref-type="bibr">99</xref>
]. Adaptive immunity is responsible for maintaining tumor cells in a state of functional dormancy. Specifically, IL-12, IFN-γ, CD4
<sup>+</sup>
, and CD8
<sup>+</sup>
T cells have been implicated in retaining cells in a dormant state; depletion of these components in mice treated with the carcinogen 3′-methylcholanthrene, led to progressively growing sarcomas [
<xref rid="B91-ijms-20-06158" ref-type="bibr">91</xref>
]. In a mouse model of melanoma, dormancy in the lung was associated with reduced proliferation of DTCs mediated partly by cytostatic CD8
<sup>+</sup>
T cells. Depletion of CD8
<sup>+</sup>
T cells significantly accelerated outgrowth of visceral metastases [
<xref rid="B100-ijms-20-06158" ref-type="bibr">100</xref>
]. These findings suggest that immunostimulatory therapies may be effective in preventing subsequent development of metastasis by prolonging DTC dormancy. </p>
<p>The recent discovery and FDA approval of immune checkpoint inhibitors has marked a new era of hope for cancer therapy. However, the development of immunotherapy against dormant disease is challenging, as quiescent DTCs have developed mechanisms to evade the immune system. Dormant DTCs downregulate MHC class I, which is essential for CD8
<sup>+</sup>
T cell recognition [
<xref rid="B101-ijms-20-06158" ref-type="bibr">101</xref>
]; in addition, their microenvironment may suppress the immune system by protecting cancer cells from oxidative stress or through the expression of checkpoint ligands such as PD-L1 and secretion of immunosuppressive cytokines such as IL-6 [
<xref rid="B102-ijms-20-06158" ref-type="bibr">102</xref>
,
<xref rid="B103-ijms-20-06158" ref-type="bibr">103</xref>
]. However, therapies that mobilize the immune system against dormant DTCs are being developed. Vaccines targeting tumor-associated blood vessel Ags (TBVA) activate T-cell dependent immunity capable of either inducing tumor regression or extending overall survival by sustaining dormancy [
<xref rid="B104-ijms-20-06158" ref-type="bibr">104</xref>
]. Vaccination of leukemia-bearing mice with cells transduced with CXC-chemokine ligand 10 (CXCL10) induced natural killer (NK) cells to express programmed death-ligand 1(PD-L1), thereby activating T cells that eliminated dormant cells [
<xref rid="B105-ijms-20-06158" ref-type="bibr">105</xref>
]. Combination of 5-Aza-C with tumor-sensitized T cells and CD25
<sup>+</sup>
NKT (Natural Killer T) cells was also effective in targeting metastatic dormant mammary cancer cells. 5-Aza-C induced the expression of highly immunogenic cancer testis antigens in the tumor and reduced the frequency of myeloid-derived suppressor cells (MDSCs). The presence of CD25
<sup>+</sup>
NKT cells rendered T cells resistant to remaining myeloid-derived suppressor cells [
<xref rid="B106-ijms-20-06158" ref-type="bibr">106</xref>
]. This combinatorial approach significantly prolonged survival of animals bearing metastatic tumor cells. Antibodies against VCAM-1 and integrin α4 were also shown to inhibit breast cancer metastasis to the bone [
<xref rid="B90-ijms-20-06158" ref-type="bibr">90</xref>
].</p>
<p>Modulation of the immune system through dietary changes may also reduce cancer risk and metastatic burden. Low weight has been correlated with decreased cancer incidence. A prevalent hypothesis is that cancer progression is promoted by obesity-associated inflammation [
<xref rid="B107-ijms-20-06158" ref-type="bibr">107</xref>
]. Obesity caused infiltration of neutrophils in murine lungs that led to increased breast cancer metastasis to this site. Granulocyte-macrophage colony-stimulating factor (GM-CSF) and interleukin 5 (IL5) were responsible for pro-metastatic effect of obesity. However, this effect was reversible as mice placed on a low-fat diet had reduced lung inflammation and metastasis [
<xref rid="B108-ijms-20-06158" ref-type="bibr">108</xref>
]. Finally, release of systemic inflammatory signals upon surgical removal of primary tumors has been suggested to stimulate metastatic colonization. Consistent with this evidence, perioperative administration of nonsteroidal anti-inflammatory drugs (NSAIDs) in mouse models, significantly inhibited the outgrowth of dormant metastatic breast cancer cells [
<xref rid="B109-ijms-20-06158" ref-type="bibr">109</xref>
]. </p>
<p>There are several ongoing clinical trials targeting the population of persistent DTCs in hopes of eradicating dormant cells. In one study, patients with localized breast cancer that have received anthracycline-containing chemotherapy undergo aspiration in the BM 8 to 10 months after the last chemotherapy cycle. If DTCs are detected, patients undergo treatment with Docetaxel to reduce the risk of persistent DTCs (NCT00248703, Phase II). Results so far have been encouraging, with DTC eradication in 79% of patients and enhanced metastasis-free survival. In breast cancer patients that have undergone standard of care treatment, the CLEVER pilot trial (NCT03032406, Phase II), currently recruiting, is investigating a combination treatment of hydroxychloroquine and everolimus to target persistent DTCs. Denosumab, a human antibody specific to receptor activator of nuclear factor kappa-B ligand (RANKL), is being investigated in several clinical trials for the prevention and treatment of bone metastases. In women with early stage breast cancer that have completed cytotoxic chemotherapy, investigators hypothesize that treatment with denosumab will decrease the number of DTCs, prevent cancer cell migration, and promote cancer cell death by changing the bone into a “hostile” environment (NCT01545648, phase II). In another active and recruiting study, 5-Aza-C, which has been found to induce dormancy in certain cancers, and alltrans retinoic acid (ATRA), are being tested in combination in prostate cancer patients with recurrent disease based on rising PSA only. The primary objective is to evaluate the progression-free rate at the end of a 12-week treatment (NCT03572387, Phase II). Finally, an ongoing trial is looking to evaluate the effects of trastuzumab therapy against HER2 expressing DTCs in the BM (NCT01779050, Phase II).</p>
</sec>
<sec id="sec5-ijms-20-06158">
<title>5. Future Perspectives</title>
<p>Currently, the presence of dormant disease is validated via detection of disseminating tumor cells using bone marrow aspiration. The ability to locate dormant cancer cells is of utmost importance to determine disease recurrence as well as to increase metastasis-free survival. The detection of circulating tumor cells in the blood is a non-invasive approach to evaluate disease burden. Different methodologies for the detection of CTCs have been shown to have prognostic relevance in patients with metastatic disease [
<xref rid="B112-ijms-20-06158" ref-type="bibr">112</xref>
]. Even though malignant cells located at secondary sites following extravasation will differ in their expression pattern compared to cancer cells in the circulation system, information derived by analyzing the genetic background of CTCs may predict disease outcome and may be valuable in determining optimal patient treatment. Expression of insulin-like growth factor-1 receptor (IGF1R) in CTCs of patients with breast cancer is associated with favorable outcomes in the early disease stage, suggesting that IGF1R expression is correlated with lower metastatic potential [
<xref rid="B113-ijms-20-06158" ref-type="bibr">113</xref>
]. Evaluation of proliferation and apoptosis markers in CTCs of women with breast cancer revealed that the former are elevated on relapse while the latter are increased during clinical dormancy. In addition, in patients who remain disease free, apoptotic CTCs are more frequently encountered during follow-up compared to those with subsequent late relapse. These results suggest that measuring the levels of proliferation and apoptosis markers in CTCs during clinical dormancy is important for determining the risk for detectable disease relapse [
<xref rid="B114-ijms-20-06158" ref-type="bibr">114</xref>
]. Circulating microRNAs, including microRNA (miR)-21, miR-23b, miR-190, miR-200b, and miR-200c, evaluated in the plasma by RT-qPCR, have differential expression among relapsed and non-relapsed breast cancer patients. Studies suggest that during clinical dormancy, miRNAs represent potential circulating biomarkers that may predict detectable disease recurrence [
<xref rid="B115-ijms-20-06158" ref-type="bibr">115</xref>
]. </p>
</sec>
<sec sec-type="conclusions" id="sec6-ijms-20-06158">
<title>6. Conclusions</title>
<p>Mechanisms controlling metastatic dormancy involve regulation of genes expressed by DTCs themselves, including genetic and/or epigenetic means of control, as well as mechanisms regulated by the tumor microenvironment. Several underlying pathways have been proposed to either sustain dormancy, making these DTCs more difficult to detect and eliminate, or facilitate the escape of cells from this dormant state at distal sites and formation of macrometastases. These mechanisms often appear to be organ-specific, suggesting that depending on the metastatic site, such as the lung, bone, or brain, dormancy is regulated by distinct components of the respective host tissue microenvironment (
<xref ref-type="fig" rid="ijms-20-06158-f001">Figure 1</xref>
). Most importantly, the prolonged duration of this stage as evident from clinical and experimental observations, strongly suggests that metastatic cell dormancy should be viewed as a valuable window of opportunity for therapeutic intervention. Therefore, thorough elucidation of the mechanisms that control cancer cell dormancy, either promoting or escaping the quiescent state in DTCs, may lead to the development of innovative therapies that will limit disease recurrence.</p>
<p>Targeted therapeutic approaches including small molecule inhibitors, siRNA-mediated gene silencing, epigenetic modulators, or immunotherapy have shown encouraging pre-clinical efficacy to either keep the cells in a perpetual dormant state or enable them to reenter proliferation so that they become sensitive to concomitant administration of chemotherapeutic or other cytotoxic drugs. Future research should concentrate on unraveling the distinct mechanisms governing the development and maintenance of organ-specific metastatic cell dormancy that will pave the way for the development and clinical testing of novel therapies that do not elicit or minimize off-target effects. </p>
</sec>
</body>
<back>
<notes>
<title>Author Contributions</title>
<p>C.M.N. wrote the paper and helped with illustrations. T.-C.K. wrote part of the paper, prepared illustrations. P.P. conceived the theme, wrote the paper, and prepared illustrations. All authors critically read and approved the manuscript. </p>
</notes>
<notes>
<title>Funding</title>
<p>This work was co-funded by the European Regional Development Fund and the Republic of Cyprus through the Research and Innovation Foundation (Project: POST-DOC/0916/0044).</p>
</notes>
<notes notes-type="COI-statement">
<title>Conflicts of Interest</title>
<p>The authors declare no conflict of interest. </p>
</notes>
<glossary>
<title>Abbreviations</title>
<array orientation="portrait">
<tbody>
<tr>
<td align="left" valign="middle" rowspan="1" colspan="1">5-Aza-C</td>
<td align="left" valign="middle" rowspan="1" colspan="1">5-azadeoxycytidine </td>
</tr>
<tr>
<td align="left" valign="middle" rowspan="1" colspan="1">ATG7</td>
<td align="left" valign="middle" rowspan="1" colspan="1">Autophagy-related 7 </td>
</tr>
<tr>
<td align="left" valign="middle" rowspan="1" colspan="1">BM</td>
<td align="left" valign="middle" rowspan="1" colspan="1">Bone marrow</td>
</tr>
<tr>
<td align="left" valign="middle" rowspan="1" colspan="1">BMP</td>
<td align="left" valign="middle" rowspan="1" colspan="1">Bone morphogenetic protein </td>
</tr>
<tr>
<td align="left" valign="middle" rowspan="1" colspan="1">CDK4</td>
<td align="left" valign="middle" rowspan="1" colspan="1">Cyclin-dependent kinase 4 </td>
</tr>
<tr>
<td align="left" valign="middle" rowspan="1" colspan="1">Col-I</td>
<td align="left" valign="middle" rowspan="1" colspan="1">Type I collagen </td>
</tr>
<tr>
<td align="left" valign="middle" rowspan="1" colspan="1">CSC</td>
<td align="left" valign="middle" rowspan="1" colspan="1">Cancer Stem Cells</td>
</tr>
<tr>
<td align="left" valign="middle" rowspan="1" colspan="1">CXCL12</td>
<td align="left" valign="middle" rowspan="1" colspan="1">CXC-chemokine ligand 12 </td>
</tr>
<tr>
<td align="left" valign="middle" rowspan="1" colspan="1">CXCR4</td>
<td align="left" valign="middle" rowspan="1" colspan="1">C-X-C motif chemokine receptor 4</td>
</tr>
<tr>
<td align="left" valign="middle" rowspan="1" colspan="1">CYR61</td>
<td align="left" valign="middle" rowspan="1" colspan="1">Cysteine-rich protein 61 </td>
</tr>
<tr>
<td align="left" valign="middle" rowspan="1" colspan="1">DTCs</td>
<td align="left" valign="middle" rowspan="1" colspan="1">Disseminating tumor cells </td>
</tr>
<tr>
<td align="left" valign="middle" rowspan="1" colspan="1">EMT</td>
<td align="left" valign="middle" rowspan="1" colspan="1">Epithelial to mesenchymal transition </td>
</tr>
<tr>
<td align="left" valign="middle" rowspan="1" colspan="1">ERs</td>
<td align="left" valign="middle" rowspan="1" colspan="1">Estrogen Receptors</td>
</tr>
<tr>
<td align="left" valign="middle" rowspan="1" colspan="1">FAK</td>
<td align="left" valign="middle" rowspan="1" colspan="1">Focal adhesion kinase</td>
</tr>
<tr>
<td align="left" valign="middle" rowspan="1" colspan="1">FBXW7 </td>
<td align="left" valign="middle" rowspan="1" colspan="1">F-box/WD repeat-containing protein 7 </td>
</tr>
<tr>
<td align="left" valign="middle" rowspan="1" colspan="1">FN</td>
<td align="left" valign="middle" rowspan="1" colspan="1">Fibronectin </td>
</tr>
<tr>
<td align="left" valign="middle" rowspan="1" colspan="1">GAS6</td>
<td align="left" valign="middle" rowspan="1" colspan="1">Growth arrest-specific 6 </td>
</tr>
<tr>
<td align="left" valign="middle" rowspan="1" colspan="1">GFAP</td>
<td align="left" valign="middle" rowspan="1" colspan="1">Glial fibrillary acidic protein </td>
</tr>
<tr>
<td align="left" valign="middle" rowspan="1" colspan="1">GJIC</td>
<td align="left" valign="middle" rowspan="1" colspan="1">Gap junctional intercellular communication </td>
</tr>
<tr>
<td align="left" valign="middle" rowspan="1" colspan="1">GM-CSF</td>
<td align="left" valign="middle" rowspan="1" colspan="1">Granulocyte-macrophage colony-stimulating factor </td>
</tr>
<tr>
<td align="left" valign="middle" rowspan="1" colspan="1">HNSCC</td>
<td align="left" valign="middle" rowspan="1" colspan="1">Head and neck squamous cell carcinoma </td>
</tr>
<tr>
<td align="left" valign="middle" rowspan="1" colspan="1">HSCs</td>
<td align="left" valign="middle" rowspan="1" colspan="1">Hematopoietic stem cells </td>
</tr>
<tr>
<td align="left" valign="middle" rowspan="1" colspan="1">ID</td>
<td align="left" valign="middle" rowspan="1" colspan="1">Inhibitor of differentiation (Id) family of proteins </td>
</tr>
<tr>
<td align="left" valign="middle" rowspan="1" colspan="1">IDC</td>
<td align="left" valign="middle" rowspan="1" colspan="1">Ductal carcinoma </td>
</tr>
<tr>
<td align="left" valign="middle" rowspan="1" colspan="1">IL-8</td>
<td align="left" valign="middle" rowspan="1" colspan="1">Interleukin-8 </td>
</tr>
<tr>
<td align="left" valign="middle" rowspan="1" colspan="1">KISS1</td>
<td align="left" valign="middle" rowspan="1" colspan="1">Kisspeptin 1</td>
</tr>
<tr>
<td align="left" valign="middle" rowspan="1" colspan="1">LIFR</td>
<td align="left" valign="middle" rowspan="1" colspan="1">Leukemia inhibitory factor receptor </td>
</tr>
<tr>
<td align="left" valign="middle" rowspan="1" colspan="1">LOX</td>
<td align="left" valign="middle" rowspan="1" colspan="1">Oxidase Lysyl oxidase </td>
</tr>
<tr>
<td align="left" valign="middle" rowspan="1" colspan="1">LPA1</td>
<td align="left" valign="middle" rowspan="1" colspan="1">Lysophosphatidic acid receptor 1 </td>
</tr>
<tr>
<td align="left" valign="middle" rowspan="1" colspan="1">MAPK</td>
<td align="left" valign="middle" rowspan="1" colspan="1">Mitogen-activated protein kinase </td>
</tr>
<tr>
<td align="left" valign="middle" rowspan="1" colspan="1">MCP-1</td>
<td align="left" valign="middle" rowspan="1" colspan="1">Monocyte chemoattractant protein-1 </td>
</tr>
<tr>
<td align="left" valign="middle" rowspan="1" colspan="1">MDSCs</td>
<td align="left" valign="middle" rowspan="1" colspan="1">Myeloid-derived suppressor cells </td>
</tr>
<tr>
<td align="left" valign="middle" rowspan="1" colspan="1">MLCK</td>
<td align="left" valign="middle" rowspan="1" colspan="1">Activating its downstream target myosin light chain by MLC kinase </td>
</tr>
<tr>
<td align="left" valign="middle" rowspan="1" colspan="1">MMP-9</td>
<td align="left" valign="middle" rowspan="1" colspan="1">Metalloproteinase-9 </td>
</tr>
<tr>
<td align="left" valign="middle" rowspan="1" colspan="1">MSCs</td>
<td align="left" valign="middle" rowspan="1" colspan="1">Mesenchymal stem cells </td>
</tr>
<tr>
<td align="left" valign="middle" rowspan="1" colspan="1">MSK1</td>
<td align="left" valign="middle" rowspan="1" colspan="1">Mitogen- and stress-activated protein kinase-1 </td>
</tr>
<tr>
<td align="left" valign="middle" rowspan="1" colspan="1">NDRG1</td>
<td align="left" valign="middle" rowspan="1" colspan="1">N-myc downstream regulated gene 1 </td>
</tr>
<tr>
<td align="left" valign="middle" rowspan="1" colspan="1">NK</td>
<td align="left" valign="middle" rowspan="1" colspan="1">Natural killer </td>
</tr>
<tr>
<td align="left" valign="middle" rowspan="1" colspan="1">POSTN</td>
<td align="left" valign="middle" rowspan="1" colspan="1">Periostin </td>
</tr>
<tr>
<td align="left" valign="middle" rowspan="1" colspan="1">PRAME</td>
<td align="left" valign="middle" rowspan="1" colspan="1">Preferentially expressed antigen in melanoma</td>
</tr>
<tr>
<td align="left" valign="middle" rowspan="1" colspan="1">PRRX1</td>
<td align="left" valign="middle" rowspan="1" colspan="1">Paired-related homeobox transcription factor </td>
</tr>
<tr>
<td align="left" valign="middle" rowspan="1" colspan="1">PTHRP</td>
<td align="left" valign="middle" rowspan="1" colspan="1">Parathyroid hormone-related protein </td>
</tr>
<tr>
<td align="left" valign="middle" rowspan="1" colspan="1">RANKL</td>
<td align="left" valign="middle" rowspan="1" colspan="1">Receptor activator of nuclear factor-κB ligand</td>
</tr>
<tr>
<td align="left" valign="middle" rowspan="1" colspan="1">Rb</td>
<td align="left" valign="middle" rowspan="1" colspan="1">Retinoblastoma</td>
</tr>
<tr>
<td align="left" valign="middle" rowspan="1" colspan="1">ROR2</td>
<td align="left" valign="middle" rowspan="1" colspan="1">Receptor Tyrosine Kinase Like Orphan Receptor 2 </td>
</tr>
<tr>
<td align="left" valign="middle" rowspan="1" colspan="1">SCF-type</td>
<td align="left" valign="middle" rowspan="1" colspan="1">Skp1-Cul1-F box-type </td>
</tr>
<tr>
<td align="left" valign="middle" rowspan="1" colspan="1">SIAH2</td>
<td align="left" valign="middle" rowspan="1" colspan="1">Siah E3 Ubiquitin Protein Ligase 2</td>
</tr>
<tr>
<td align="left" valign="middle" rowspan="1" colspan="1">SDF-1</td>
<td align="left" valign="middle" rowspan="1" colspan="1">Stromal cell-derived factor 1 </td>
</tr>
<tr>
<td align="left" valign="middle" rowspan="1" colspan="1">SOCS</td>
<td align="left" valign="middle" rowspan="1" colspan="1">Suppressor of cytokine signaling </td>
</tr>
<tr>
<td align="left" valign="middle" rowspan="1" colspan="1">TBK1</td>
<td align="left" valign="middle" rowspan="1" colspan="1">Tank-binding kinase-1 </td>
</tr>
<tr>
<td align="left" valign="middle" rowspan="1" colspan="1">TBVA</td>
<td align="left" valign="middle" rowspan="1" colspan="1">Tumor-associated blood vessel Ags </td>
</tr>
<tr>
<td align="left" valign="middle" rowspan="1" colspan="1">TRAIL</td>
<td align="left" valign="middle" rowspan="1" colspan="1">TNF-Related Apoptosis Inducing Ligand</td>
</tr>
<tr>
<td align="left" valign="middle" rowspan="1" colspan="1">TGF-β1</td>
<td align="left" valign="middle" rowspan="1" colspan="1">Transforming growth factor-β1</td>
</tr>
<tr>
<td align="left" valign="middle" rowspan="1" colspan="1">TGF-β2</td>
<td align="left" valign="middle" rowspan="1" colspan="1">Transforming growth factor-β2 </td>
</tr>
<tr>
<td align="left" valign="middle" rowspan="1" colspan="1">TGF-β3</td>
<td align="left" valign="middle" rowspan="1" colspan="1">Transforming growth factor-β3</td>
</tr>
<tr>
<td align="left" valign="middle" rowspan="1" colspan="1">TGF-βR</td>
<td align="left" valign="middle" rowspan="1" colspan="1">Transforming growth factor-β receptor</td>
</tr>
<tr>
<td align="left" valign="middle" rowspan="1" colspan="1">TNFα</td>
<td align="left" valign="middle" rowspan="1" colspan="1">Tumor necrosis factor-α</td>
</tr>
<tr>
<td align="left" valign="middle" rowspan="1" colspan="1">TSP-1</td>
<td align="left" valign="middle" rowspan="1" colspan="1">Thrombospondin-1 </td>
</tr>
<tr>
<td align="left" valign="middle" rowspan="1" colspan="1">TGF-β</td>
<td align="left" valign="middle" rowspan="1" colspan="1">Transforming growth factor-β</td>
</tr>
<tr>
<td align="left" valign="middle" rowspan="1" colspan="1">uPAR</td>
<td align="left" valign="middle" rowspan="1" colspan="1">Urokinase plasminogen activator receptor </td>
</tr>
<tr>
<td align="left" valign="middle" rowspan="1" colspan="1">VCAM-1</td>
<td align="left" valign="middle" rowspan="1" colspan="1">Vascular cell adhesion molecule 1 </td>
</tr>
<tr>
<td align="left" valign="middle" rowspan="1" colspan="1">VEGF-A</td>
<td align="left" valign="middle" rowspan="1" colspan="1">Vascular endothelial growth factor A </td>
</tr>
<tr>
<td align="left" valign="middle" rowspan="1" colspan="1">ZEB1</td>
<td align="left" valign="middle" rowspan="1" colspan="1">Zinc finger E-box-binding homeobox 1 </td>
</tr>
</tbody>
</array>
</glossary>
<ref-list>
<title>References</title>
<ref id="B1-ijms-20-06158">
<label>1.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Siegel</surname>
<given-names>R.L.</given-names>
</name>
<name>
<surname>Miller</surname>
<given-names>K.D.</given-names>
</name>
<name>
<surname>Jemal</surname>
<given-names>A.</given-names>
</name>
</person-group>
<article-title>Cancer statistics, 2019</article-title>
<source>CA Cancer J. Clin.</source>
<year>2019</year>
<volume>69</volume>
<fpage>7</fpage>
<lpage>34</lpage>
<pub-id pub-id-type="doi">10.3322/caac.21551</pub-id>
<pub-id pub-id-type="pmid">30620402</pub-id>
</element-citation>
</ref>
<ref id="B2-ijms-20-06158">
<label>2.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Chaffer</surname>
<given-names>C.L.</given-names>
</name>
<name>
<surname>Weinberg</surname>
<given-names>R.A.</given-names>
</name>
</person-group>
<article-title>A perspective on cancer cell metastasis</article-title>
<source>Science</source>
<year>2011</year>
<volume>331</volume>
<fpage>1559</fpage>
<lpage>1564</lpage>
<pub-id pub-id-type="doi">10.1126/science.1203543</pub-id>
<pub-id pub-id-type="pmid">21436443</pub-id>
</element-citation>
</ref>
<ref id="B3-ijms-20-06158">
<label>3.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Pantel</surname>
<given-names>K.</given-names>
</name>
<name>
<surname>Brakenhoff</surname>
<given-names>R.H.</given-names>
</name>
</person-group>
<article-title>Dissecting the metastatic cascade</article-title>
<source>Nat. Rev. Cancer</source>
<year>2004</year>
<volume>4</volume>
<fpage>448</fpage>
<lpage>456</lpage>
<pub-id pub-id-type="doi">10.1038/nrc1370</pub-id>
<pub-id pub-id-type="pmid">15170447</pub-id>
</element-citation>
</ref>
<ref id="B4-ijms-20-06158">
<label>4.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Micalizzi</surname>
<given-names>D.S.</given-names>
</name>
<name>
<surname>Maheswaran</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Haber</surname>
<given-names>D.A.</given-names>
</name>
</person-group>
<article-title>A conduit to metastasis: Circulating tumor cell biology</article-title>
<source>Genes Dev.</source>
<year>2017</year>
<volume>31</volume>
<fpage>1827</fpage>
<lpage>1840</lpage>
<pub-id pub-id-type="doi">10.1101/gad.305805.117</pub-id>
<pub-id pub-id-type="pmid">29051388</pub-id>
</element-citation>
</ref>
<ref id="B5-ijms-20-06158">
<label>5.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Massague</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Obenauf</surname>
<given-names>A.C.</given-names>
</name>
</person-group>
<article-title>Metastatic colonization by circulating tumour cells</article-title>
<source>Nature</source>
<year>2016</year>
<volume>529</volume>
<fpage>298</fpage>
<lpage>306</lpage>
<pub-id pub-id-type="doi">10.1038/nature17038</pub-id>
<pub-id pub-id-type="pmid">26791720</pub-id>
</element-citation>
</ref>
<ref id="B6-ijms-20-06158">
<label>6.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Aguirre-Ghiso</surname>
<given-names>J.A.</given-names>
</name>
</person-group>
<article-title>Models, mechanisms and clinical evidence for cancer dormancy</article-title>
<source>Nat. Rev. Cancer</source>
<year>2007</year>
<volume>7</volume>
<fpage>834</fpage>
<lpage>846</lpage>
<pub-id pub-id-type="doi">10.1038/nrc2256</pub-id>
<pub-id pub-id-type="pmid">17957189</pub-id>
</element-citation>
</ref>
<ref id="B7-ijms-20-06158">
<label>7.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Goddard</surname>
<given-names>E.T.</given-names>
</name>
<name>
<surname>Bozic</surname>
<given-names>I.</given-names>
</name>
<name>
<surname>Riddell</surname>
<given-names>S.R.</given-names>
</name>
<name>
<surname>Ghajar</surname>
<given-names>C.M.</given-names>
</name>
</person-group>
<article-title>Dormant tumour cells, their niches and the influence of immunity</article-title>
<source>Nat. Cell Biol.</source>
<year>2018</year>
<volume>20</volume>
<fpage>1240</fpage>
<lpage>1249</lpage>
<pub-id pub-id-type="doi">10.1038/s41556-018-0214-0</pub-id>
<pub-id pub-id-type="pmid">30361702</pub-id>
</element-citation>
</ref>
<ref id="B8-ijms-20-06158">
<label>8.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Karrison</surname>
<given-names>T.G.</given-names>
</name>
<name>
<surname>Ferguson</surname>
<given-names>D.J.</given-names>
</name>
<name>
<surname>Meier</surname>
<given-names>P.</given-names>
</name>
</person-group>
<article-title>Dormancy of mammary carcinoma after mastectomy</article-title>
<source>J. Natl. Cancer Inst.</source>
<year>1999</year>
<volume>91</volume>
<fpage>80</fpage>
<lpage>85</lpage>
<pub-id pub-id-type="doi">10.1093/jnci/91.1.80</pub-id>
<pub-id pub-id-type="pmid">9890174</pub-id>
</element-citation>
</ref>
<ref id="B9-ijms-20-06158">
<label>9.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Freedland</surname>
<given-names>S.J.</given-names>
</name>
<name>
<surname>Moul</surname>
<given-names>J.W.</given-names>
</name>
</person-group>
<article-title>Prostate specific antigen recurrence after definitive therapy</article-title>
<source>J. Urol.</source>
<year>2007</year>
<volume>177</volume>
<fpage>1985</fpage>
<lpage>1991</lpage>
<pub-id pub-id-type="doi">10.1016/j.juro.2007.01.137</pub-id>
<pub-id pub-id-type="pmid">17509277</pub-id>
</element-citation>
</ref>
<ref id="B10-ijms-20-06158">
<label>10.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>McNichols</surname>
<given-names>D.W.</given-names>
</name>
<name>
<surname>Segura</surname>
<given-names>J.W.</given-names>
</name>
<name>
<surname>DeWeerd</surname>
<given-names>J.H.</given-names>
</name>
</person-group>
<article-title>Renal cell carcinoma: Long-term survival and late recurrence</article-title>
<source>J. Urol.</source>
<year>1981</year>
<volume>126</volume>
<fpage>17</fpage>
<lpage>23</lpage>
<pub-id pub-id-type="doi">10.1016/S0022-5347(17)54359-1</pub-id>
<pub-id pub-id-type="pmid">7253072</pub-id>
</element-citation>
</ref>
<ref id="B11-ijms-20-06158">
<label>11.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Tsao</surname>
<given-names>H.</given-names>
</name>
<name>
<surname>Cosimi</surname>
<given-names>A.B.</given-names>
</name>
<name>
<surname>Sober</surname>
<given-names>A.J.</given-names>
</name>
</person-group>
<article-title>Ultra-late recurrence (15 years or longer) of cutaneous melanoma</article-title>
<source>Cancer</source>
<year>1997</year>
<volume>79</volume>
<fpage>2361</fpage>
<lpage>2370</lpage>
<pub-id pub-id-type="doi">10.1002/(SICI)1097-0142(19970615)79:12<2361::AID-CNCR10>3.0.CO;2-P</pub-id>
<pub-id pub-id-type="pmid">9191524</pub-id>
</element-citation>
</ref>
<ref id="B12-ijms-20-06158">
<label>12.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Klein</surname>
<given-names>C.A.</given-names>
</name>
</person-group>
<article-title>Framework models of tumor dormancy from patient-derived observations</article-title>
<source>Curr. Opin. Genet. Dev.</source>
<year>2011</year>
<volume>21</volume>
<fpage>42</fpage>
<lpage>49</lpage>
<pub-id pub-id-type="doi">10.1016/j.gde.2010.10.011</pub-id>
<pub-id pub-id-type="pmid">21145726</pub-id>
</element-citation>
</ref>
<ref id="B13-ijms-20-06158">
<label>13.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Schmidt-Kittler</surname>
<given-names>O.</given-names>
</name>
<name>
<surname>Ragg</surname>
<given-names>T.</given-names>
</name>
<name>
<surname>Daskalakis</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Granzow</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Ahr</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Blankenstein</surname>
<given-names>T.J.</given-names>
</name>
<name>
<surname>Kaufmann</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Diebold</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Arnholdt</surname>
<given-names>H.</given-names>
</name>
<name>
<surname>Muller</surname>
<given-names>P.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>From latent disseminated cells to overt metastasis: Genetic analysis of systemic breast cancer progression</article-title>
<source>Proc. Natl. Acad. Sci. USA</source>
<year>2003</year>
<volume>100</volume>
<fpage>7737</fpage>
<lpage>7742</lpage>
<pub-id pub-id-type="doi">10.1073/pnas.1331931100</pub-id>
<pub-id pub-id-type="pmid">12808139</pub-id>
</element-citation>
</ref>
<ref id="B14-ijms-20-06158">
<label>14.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Harper</surname>
<given-names>K.L.</given-names>
</name>
<name>
<surname>Sosa</surname>
<given-names>M.S.</given-names>
</name>
<name>
<surname>Entenberg</surname>
<given-names>D.</given-names>
</name>
<name>
<surname>Hosseini</surname>
<given-names>H.</given-names>
</name>
<name>
<surname>Cheung</surname>
<given-names>J.F.</given-names>
</name>
<name>
<surname>Nobre</surname>
<given-names>R.</given-names>
</name>
<name>
<surname>Avivar-Valderas</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Nagi</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>Girnius</surname>
<given-names>N.</given-names>
</name>
<name>
<surname>Davis</surname>
<given-names>R.J.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Mechanism of early dissemination and metastasis in Her2 (+) mammary cancer</article-title>
<source>Nature</source>
<year>2016</year>
<volume>540</volume>
<fpage>588</fpage>
<lpage>592</lpage>
<pub-id pub-id-type="doi">10.1038/nature20609</pub-id>
<pub-id pub-id-type="pmid">27974798</pub-id>
</element-citation>
</ref>
<ref id="B15-ijms-20-06158">
<label>15.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Rhim</surname>
<given-names>A.D.</given-names>
</name>
<name>
<surname>Mirek</surname>
<given-names>E.T.</given-names>
</name>
<name>
<surname>Aiello</surname>
<given-names>N.M.</given-names>
</name>
<name>
<surname>Maitra</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Bailey</surname>
<given-names>J.M.</given-names>
</name>
<name>
<surname>McAllister</surname>
<given-names>F.</given-names>
</name>
<name>
<surname>Reichert</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Beatty</surname>
<given-names>G.L.</given-names>
</name>
<name>
<surname>Rustgi</surname>
<given-names>A.K.</given-names>
</name>
<name>
<surname>Vonderheide</surname>
<given-names>R.H.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>EMT and dissemination precede pancreatic tumor formation</article-title>
<source>Cell</source>
<year>2012</year>
<volume>148</volume>
<fpage>349</fpage>
<lpage>361</lpage>
<pub-id pub-id-type="doi">10.1016/j.cell.2011.11.025</pub-id>
<pub-id pub-id-type="pmid">22265420</pub-id>
</element-citation>
</ref>
<ref id="B16-ijms-20-06158">
<label>16.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Giancotti</surname>
<given-names>F.G.</given-names>
</name>
</person-group>
<article-title>Mechanisms governing metastatic dormancy and reactivation</article-title>
<source>Cell</source>
<year>2013</year>
<volume>155</volume>
<fpage>750</fpage>
<lpage>764</lpage>
<pub-id pub-id-type="doi">10.1016/j.cell.2013.10.029</pub-id>
<pub-id pub-id-type="pmid">24209616</pub-id>
</element-citation>
</ref>
<ref id="B17-ijms-20-06158">
<label>17.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Onoyama</surname>
<given-names>I.</given-names>
</name>
<name>
<surname>Nakayama</surname>
<given-names>K.I.</given-names>
</name>
</person-group>
<article-title>Fbxw7 in cell cycle exit and stem cell maintenance: Insight from gene-targeted mice</article-title>
<source>Cell Cycle</source>
<year>2008</year>
<volume>7</volume>
<fpage>3307</fpage>
<lpage>3313</lpage>
<pub-id pub-id-type="doi">10.4161/cc.7.21.6931</pub-id>
<pub-id pub-id-type="pmid">18948752</pub-id>
</element-citation>
</ref>
<ref id="B18-ijms-20-06158">
<label>18.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Shimizu</surname>
<given-names>H.</given-names>
</name>
<name>
<surname>Takeishi</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Nakatsumi</surname>
<given-names>H.</given-names>
</name>
<name>
<surname>Nakayama</surname>
<given-names>K.I.</given-names>
</name>
</person-group>
<article-title>Prevention of cancer dormancy by Fbxw7 ablation eradicates disseminated tumor cells</article-title>
<source>JCI Insight</source>
<year>2019</year>
<volume>4</volume>
<fpage>125138</fpage>
<pub-id pub-id-type="doi">10.1172/jci.insight.125138</pub-id>
<pub-id pub-id-type="pmid">30830867</pub-id>
</element-citation>
</ref>
<ref id="B19-ijms-20-06158">
<label>19.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Johnson</surname>
<given-names>R.W.</given-names>
</name>
<name>
<surname>Finger</surname>
<given-names>E.C.</given-names>
</name>
<name>
<surname>Olcina</surname>
<given-names>M.M.</given-names>
</name>
<name>
<surname>Vilalta</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Aguilera</surname>
<given-names>T.</given-names>
</name>
<name>
<surname>Miao</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Merkel</surname>
<given-names>A.R.</given-names>
</name>
<name>
<surname>Johnson</surname>
<given-names>J.R.</given-names>
</name>
<name>
<surname>Sterling</surname>
<given-names>J.A.</given-names>
</name>
<name>
<surname>Wu</surname>
<given-names>J.Y.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Induction of LIFR confers a dormancy phenotype in breast cancer cells disseminated to the bone marrow</article-title>
<source>Nat. Cell Biol.</source>
<year>2016</year>
<volume>18</volume>
<fpage>1078</fpage>
<lpage>1089</lpage>
<pub-id pub-id-type="doi">10.1038/ncb3408</pub-id>
<pub-id pub-id-type="pmid">27642788</pub-id>
</element-citation>
</ref>
<ref id="B20-ijms-20-06158">
<label>20.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Vera-Ramirez</surname>
<given-names>L.</given-names>
</name>
<name>
<surname>Vodnala</surname>
<given-names>S.K.</given-names>
</name>
<name>
<surname>Nini</surname>
<given-names>R.</given-names>
</name>
<name>
<surname>Hunter</surname>
<given-names>K.W.</given-names>
</name>
<name>
<surname>Green</surname>
<given-names>J.E.</given-names>
</name>
</person-group>
<article-title>Autophagy promotes the survival of dormant breast cancer cells and metastatic tumour recurrence</article-title>
<source>Nat. Commun.</source>
<year>2018</year>
<volume>9</volume>
<fpage>1944</fpage>
<pub-id pub-id-type="doi">10.1038/s41467-018-04070-6</pub-id>
<pub-id pub-id-type="pmid">29789598</pub-id>
</element-citation>
</ref>
<ref id="B21-ijms-20-06158">
<label>21.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Vander Griend</surname>
<given-names>D.J.</given-names>
</name>
<name>
<surname>Kocherginsky</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Hickson</surname>
<given-names>J.A.</given-names>
</name>
<name>
<surname>Stadler</surname>
<given-names>W.M.</given-names>
</name>
<name>
<surname>Lin</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Rinker-Schaeffer</surname>
<given-names>C.W.</given-names>
</name>
</person-group>
<article-title>Suppression of metastatic colonization by the context-dependent activation of the c-Jun NH2-terminal kinase kinases JNKK1/MKK4 and MKK7</article-title>
<source>Cancer Res.</source>
<year>2005</year>
<volume>65</volume>
<fpage>10984</fpage>
<lpage>10991</lpage>
<pub-id pub-id-type="doi">10.1158/0008-5472.CAN-05-2382</pub-id>
<pub-id pub-id-type="pmid">16322247</pub-id>
</element-citation>
</ref>
<ref id="B22-ijms-20-06158">
<label>22.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Yamada</surname>
<given-names>S.D.</given-names>
</name>
<name>
<surname>Hickson</surname>
<given-names>J.A.</given-names>
</name>
<name>
<surname>Hrobowski</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Vander Griend</surname>
<given-names>D.J.</given-names>
</name>
<name>
<surname>Benson</surname>
<given-names>D.</given-names>
</name>
<name>
<surname>Montag</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Karrison</surname>
<given-names>T.</given-names>
</name>
<name>
<surname>Huo</surname>
<given-names>D.</given-names>
</name>
<name>
<surname>Rutgers</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Adams</surname>
<given-names>S.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Mitogen-activated protein kinase kinase 4 (MKK4) acts as a metastasis suppressor gene in human ovarian carcinoma</article-title>
<source>Cancer Res.</source>
<year>2002</year>
<volume>62</volume>
<fpage>6717</fpage>
<lpage>6723</lpage>
<pub-id pub-id-type="pmid">12438272</pub-id>
</element-citation>
</ref>
<ref id="B23-ijms-20-06158">
<label>23.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Hickson</surname>
<given-names>J.A.</given-names>
</name>
<name>
<surname>Huo</surname>
<given-names>D.</given-names>
</name>
<name>
<surname>Vander Griend</surname>
<given-names>D.J.</given-names>
</name>
<name>
<surname>Lin</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Rinker-Schaeffer</surname>
<given-names>C.W.</given-names>
</name>
<name>
<surname>Yamada</surname>
<given-names>S.D.</given-names>
</name>
</person-group>
<article-title>The p38 kinases MKK4 and MKK6 suppress metastatic colonization in human ovarian carcinoma</article-title>
<source>Cancer Res.</source>
<year>2006</year>
<volume>66</volume>
<fpage>2264</fpage>
<lpage>2270</lpage>
<pub-id pub-id-type="doi">10.1158/0008-5472.CAN-05-3676</pub-id>
<pub-id pub-id-type="pmid">16489030</pub-id>
</element-citation>
</ref>
<ref id="B24-ijms-20-06158">
<label>24.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Aguirre-Ghiso</surname>
<given-names>J.A.</given-names>
</name>
<name>
<surname>Estrada</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Liu</surname>
<given-names>D.</given-names>
</name>
<name>
<surname>Ossowski</surname>
<given-names>L.</given-names>
</name>
</person-group>
<article-title>ERK(MAPK) activity as a determinant of tumor growth and dormancy; regulation by p38(SAPK)</article-title>
<source>Cancer Res.</source>
<year>2003</year>
<volume>63</volume>
<fpage>1684</fpage>
<lpage>1695</lpage>
<pub-id pub-id-type="doi">10.1016/j.urolonc.2003.12.012</pub-id>
<pub-id pub-id-type="pmid">12670923</pub-id>
</element-citation>
</ref>
<ref id="B25-ijms-20-06158">
<label>25.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>El-Shennawy</surname>
<given-names>L.</given-names>
</name>
<name>
<surname>Dubrovskyi</surname>
<given-names>O.</given-names>
</name>
<name>
<surname>Kastrati</surname>
<given-names>I.</given-names>
</name>
<name>
<surname>Danes</surname>
<given-names>J.M.</given-names>
</name>
<name>
<surname>Zhang</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Whiteley</surname>
<given-names>H.E.</given-names>
</name>
<name>
<surname>Creighton</surname>
<given-names>C.J.</given-names>
</name>
<name>
<surname>Frasor</surname>
<given-names>J.</given-names>
</name>
</person-group>
<article-title>Coactivation of Estrogen Receptor and IKKbeta Induces a Dormant Metastatic Phenotype in ER-Positive Breast Cancer</article-title>
<source>Cancer Res.</source>
<year>2018</year>
<volume>78</volume>
<fpage>974</fpage>
<lpage>984</lpage>
<pub-id pub-id-type="doi">10.1158/0008-5472.CAN-17-1686</pub-id>
<pub-id pub-id-type="pmid">29229606</pub-id>
</element-citation>
</ref>
<ref id="B26-ijms-20-06158">
<label>26.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Nobutani</surname>
<given-names>K.</given-names>
</name>
<name>
<surname>Shimono</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Mizutani</surname>
<given-names>K.</given-names>
</name>
<name>
<surname>Ueda</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Suzuki</surname>
<given-names>T.</given-names>
</name>
<name>
<surname>Kitayama</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Minami</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Momose</surname>
<given-names>K.</given-names>
</name>
<name>
<surname>Miyawaki</surname>
<given-names>K.</given-names>
</name>
<name>
<surname>Akashi</surname>
<given-names>K.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Downregulation of CXCR4 in Metastasized Breast Cancer Cells and Implication in Their Dormancy</article-title>
<source>PLoS ONE</source>
<year>2015</year>
<volume>10</volume>
<elocation-id>e0130032</elocation-id>
<pub-id pub-id-type="doi">10.1371/journal.pone.0130032</pub-id>
<pub-id pub-id-type="pmid">26083776</pub-id>
</element-citation>
</ref>
<ref id="B27-ijms-20-06158">
<label>27.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Jiang</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Zheng</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Zhang</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Yang</surname>
<given-names>X.</given-names>
</name>
<name>
<surname>Li</surname>
<given-names>L.</given-names>
</name>
<name>
<surname>Wang</surname>
<given-names>S.S.</given-names>
</name>
<name>
<surname>Wu</surname>
<given-names>J.S.</given-names>
</name>
<name>
<surname>Yu</surname>
<given-names>X.H.</given-names>
</name>
<name>
<surname>Wu</surname>
<given-names>J.B.</given-names>
</name>
<name>
<surname>Pang</surname>
<given-names>X.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>PRRX1 Regulates Cellular Phenotype Plasticity and Dormancy of Head and Neck Squamous Cell Carcinoma Through miR-642b-3p</article-title>
<source>Neoplasia</source>
<year>2019</year>
<volume>21</volume>
<fpage>216</fpage>
<lpage>229</lpage>
<pub-id pub-id-type="doi">10.1016/j.neo.2018.12.001</pub-id>
<pub-id pub-id-type="pmid">30622052</pub-id>
</element-citation>
</ref>
<ref id="B28-ijms-20-06158">
<label>28.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Jiang</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Berk</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Singh</surname>
<given-names>L.S.</given-names>
</name>
<name>
<surname>Tan</surname>
<given-names>H.</given-names>
</name>
<name>
<surname>Yin</surname>
<given-names>L.</given-names>
</name>
<name>
<surname>Powell</surname>
<given-names>C.T.</given-names>
</name>
<name>
<surname>Xu</surname>
<given-names>Y.</given-names>
</name>
</person-group>
<article-title>KiSS1 suppresses metastasis in human ovarian cancer via inhibition of protein kinase C alpha</article-title>
<source>Clin. Exp. Metastasis</source>
<year>2005</year>
<volume>22</volume>
<fpage>369</fpage>
<lpage>376</lpage>
<pub-id pub-id-type="doi">10.1007/s10585-005-8186-4</pub-id>
<pub-id pub-id-type="pmid">16283480</pub-id>
</element-citation>
</ref>
<ref id="B29-ijms-20-06158">
<label>29.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Lee</surname>
<given-names>J.H.</given-names>
</name>
<name>
<surname>Miele</surname>
<given-names>M.E.</given-names>
</name>
<name>
<surname>Hicks</surname>
<given-names>D.J.</given-names>
</name>
<name>
<surname>Phillips</surname>
<given-names>K.K.</given-names>
</name>
<name>
<surname>Trent</surname>
<given-names>J.M.</given-names>
</name>
<name>
<surname>Weissman</surname>
<given-names>B.E.</given-names>
</name>
<name>
<surname>Welch</surname>
<given-names>D.R.</given-names>
</name>
</person-group>
<article-title>KiSS-1, a novel human malignant melanoma metastasis-suppressor gene</article-title>
<source>J. Natl. Cancer Inst.</source>
<year>1996</year>
<volume>88</volume>
<fpage>1731</fpage>
<lpage>1737</lpage>
<pub-id pub-id-type="doi">10.1093/jnci/88.23.1731</pub-id>
<pub-id pub-id-type="pmid">8944003</pub-id>
</element-citation>
</ref>
<ref id="B30-ijms-20-06158">
<label>30.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Lee</surname>
<given-names>J.H.</given-names>
</name>
<name>
<surname>Welch</surname>
<given-names>D.R.</given-names>
</name>
</person-group>
<article-title>Suppression of metastasis in human breast carcinoma MDA-MB-435 cells after transfection with the metastasis suppressor gene, KiSS-1</article-title>
<source>Cancer Res.</source>
<year>1997</year>
<volume>57</volume>
<fpage>2384</fpage>
<lpage>2387</lpage>
<pub-id pub-id-type="pmid">9192814</pub-id>
</element-citation>
</ref>
<ref id="B31-ijms-20-06158">
<label>31.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Lee</surname>
<given-names>J.H.</given-names>
</name>
<name>
<surname>Welch</surname>
<given-names>D.R.</given-names>
</name>
</person-group>
<article-title>Identification of highly expressed genes in metastasis-suppressed chromosome 6/human malignant melanoma hybrid cells using subtractive hybridization and differential display</article-title>
<source>Int. J. Cancer</source>
<year>1997</year>
<volume>71</volume>
<fpage>1035</fpage>
<lpage>1044</lpage>
<pub-id pub-id-type="doi">10.1002/(SICI)1097-0215(19970611)71:6<1035::AID-IJC20>3.0.CO;2-B</pub-id>
<pub-id pub-id-type="pmid">9185708</pub-id>
</element-citation>
</ref>
<ref id="B32-ijms-20-06158">
<label>32.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Nash</surname>
<given-names>K.T.</given-names>
</name>
<name>
<surname>Phadke</surname>
<given-names>P.A.</given-names>
</name>
<name>
<surname>Navenot</surname>
<given-names>J.M.</given-names>
</name>
<name>
<surname>Hurst</surname>
<given-names>D.R.</given-names>
</name>
<name>
<surname>Accavitti-Loper</surname>
<given-names>M.A.</given-names>
</name>
<name>
<surname>Sztul</surname>
<given-names>E.</given-names>
</name>
<name>
<surname>Vaidya</surname>
<given-names>K.S.</given-names>
</name>
<name>
<surname>Frost</surname>
<given-names>A.R.</given-names>
</name>
<name>
<surname>Kappes</surname>
<given-names>J.C.</given-names>
</name>
<name>
<surname>Peiper</surname>
<given-names>S.C.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Requirement of KISS1 secretion for multiple organ metastasis suppression and maintenance of tumor dormancy</article-title>
<source>J. Natl. Cancer Inst.</source>
<year>2007</year>
<volume>99</volume>
<fpage>309</fpage>
<lpage>321</lpage>
<pub-id pub-id-type="doi">10.1093/jnci/djk053</pub-id>
<pub-id pub-id-type="pmid">17312308</pub-id>
</element-citation>
</ref>
<ref id="B33-ijms-20-06158">
<label>33.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Khazali</surname>
<given-names>A.S.</given-names>
</name>
<name>
<surname>Clark</surname>
<given-names>A.M.</given-names>
</name>
<name>
<surname>Wells</surname>
<given-names>A.</given-names>
</name>
</person-group>
<article-title>Inflammatory cytokine IL-8/CXCL8 promotes tumour escape from hepatocyte-induced dormancy</article-title>
<source>Br. J. Cancer</source>
<year>2018</year>
<volume>118</volume>
<fpage>566</fpage>
<lpage>576</lpage>
<pub-id pub-id-type="doi">10.1038/bjc.2017.414</pub-id>
<pub-id pub-id-type="pmid">29169181</pub-id>
</element-citation>
</ref>
<ref id="B34-ijms-20-06158">
<label>34.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Strong</surname>
<given-names>N.</given-names>
</name>
<name>
<surname>Millena</surname>
<given-names>A.C.</given-names>
</name>
<name>
<surname>Walker</surname>
<given-names>L.</given-names>
</name>
<name>
<surname>Chaudhary</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Khan</surname>
<given-names>S.A.</given-names>
</name>
</person-group>
<article-title>Inhibitor of differentiation 1 (Id1) and Id3 proteins play different roles in TGFbeta effects on cell proliferation and migration in prostate cancer cells</article-title>
<source>Prostate</source>
<year>2013</year>
<volume>73</volume>
<fpage>624</fpage>
<lpage>633</lpage>
<pub-id pub-id-type="doi">10.1002/pros.22603</pub-id>
<pub-id pub-id-type="pmid">23060149</pub-id>
</element-citation>
</ref>
<ref id="B35-ijms-20-06158">
<label>35.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Gupta</surname>
<given-names>G.P.</given-names>
</name>
<name>
<surname>Perk</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Acharyya</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>de Candia</surname>
<given-names>P.</given-names>
</name>
<name>
<surname>Mittal</surname>
<given-names>V.</given-names>
</name>
<name>
<surname>Todorova-Manova</surname>
<given-names>K.</given-names>
</name>
<name>
<surname>Gerald</surname>
<given-names>W.L.</given-names>
</name>
<name>
<surname>Brogi</surname>
<given-names>E.</given-names>
</name>
<name>
<surname>Benezra</surname>
<given-names>R.</given-names>
</name>
<name>
<surname>Massague</surname>
<given-names>J.</given-names>
</name>
</person-group>
<article-title>ID genes mediate tumor reinitiation during breast cancer lung metastasis</article-title>
<source>Proc. Natl. Acad. Sci. USA</source>
<year>2007</year>
<volume>104</volume>
<fpage>19506</fpage>
<lpage>19511</lpage>
<pub-id pub-id-type="doi">10.1073/pnas.0709185104</pub-id>
<pub-id pub-id-type="pmid">18048329</pub-id>
</element-citation>
</ref>
<ref id="B36-ijms-20-06158">
<label>36.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Swarbrick</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Roy</surname>
<given-names>E.</given-names>
</name>
<name>
<surname>Allen</surname>
<given-names>T.</given-names>
</name>
<name>
<surname>Bishop</surname>
<given-names>J.M.</given-names>
</name>
</person-group>
<article-title>Id1 cooperates with oncogenic Ras to induce metastatic mammary carcinoma by subversion of the cellular senescence response</article-title>
<source>Proc. Natl. Acad. Sci. USA</source>
<year>2008</year>
<volume>105</volume>
<fpage>5402</fpage>
<lpage>5407</lpage>
<pub-id pub-id-type="doi">10.1073/pnas.0801505105</pub-id>
<pub-id pub-id-type="pmid">18378907</pub-id>
</element-citation>
</ref>
<ref id="B37-ijms-20-06158">
<label>37.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Gao</surname>
<given-names>H.</given-names>
</name>
<name>
<surname>Chakraborty</surname>
<given-names>G.</given-names>
</name>
<name>
<surname>Lee-Lim</surname>
<given-names>A.P.</given-names>
</name>
<name>
<surname>Mo</surname>
<given-names>Q.</given-names>
</name>
<name>
<surname>Decker</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Vonica</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Shen</surname>
<given-names>R.</given-names>
</name>
<name>
<surname>Brogi</surname>
<given-names>E.</given-names>
</name>
<name>
<surname>Brivanlou</surname>
<given-names>A.H.</given-names>
</name>
<name>
<surname>Giancotti</surname>
<given-names>F.G.</given-names>
</name>
</person-group>
<article-title>The BMP inhibitor Coco reactivates breast cancer cells at lung metastatic sites</article-title>
<source>Cell</source>
<year>2012</year>
<volume>150</volume>
<fpage>764</fpage>
<lpage>779</lpage>
<pub-id pub-id-type="doi">10.1016/j.cell.2012.06.035</pub-id>
<pub-id pub-id-type="pmid">22901808</pub-id>
</element-citation>
</ref>
<ref id="B38-ijms-20-06158">
<label>38.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Ruppender</surname>
<given-names>N.</given-names>
</name>
<name>
<surname>Larson</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Lakely</surname>
<given-names>B.</given-names>
</name>
<name>
<surname>Kollath</surname>
<given-names>L.</given-names>
</name>
<name>
<surname>Brown</surname>
<given-names>L.</given-names>
</name>
<name>
<surname>Coleman</surname>
<given-names>I.</given-names>
</name>
<name>
<surname>Coleman</surname>
<given-names>R.</given-names>
</name>
<name>
<surname>Nguyen</surname>
<given-names>H.</given-names>
</name>
<name>
<surname>Nelson</surname>
<given-names>P.S.</given-names>
</name>
<name>
<surname>Corey</surname>
<given-names>E.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Cellular Adhesion Promotes Prostate Cancer Cells Escape from Dormancy</article-title>
<source>PLoS ONE</source>
<year>2015</year>
<volume>10</volume>
<elocation-id>e0130565</elocation-id>
<pub-id pub-id-type="doi">10.1371/journal.pone.0130565</pub-id>
<pub-id pub-id-type="pmid">26090669</pub-id>
</element-citation>
</ref>
<ref id="B39-ijms-20-06158">
<label>39.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Gawrzak</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Rinaldi</surname>
<given-names>L.</given-names>
</name>
<name>
<surname>Gregorio</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Arenas</surname>
<given-names>E.J.</given-names>
</name>
<name>
<surname>Salvador</surname>
<given-names>F.</given-names>
</name>
<name>
<surname>Urosevic</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Figueras-Puig</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>Rojo</surname>
<given-names>F.</given-names>
</name>
<name>
<surname>Del Barco Barrantes</surname>
<given-names>I.</given-names>
</name>
<name>
<surname>Cejalvo</surname>
<given-names>J.M.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>MSK1 regulates luminal cell differentiation and metastatic dormancy in ER (+) breast cancer</article-title>
<source>Nat. Cell Biol.</source>
<year>2018</year>
<volume>20</volume>
<fpage>211</fpage>
<lpage>221</lpage>
<pub-id pub-id-type="doi">10.1038/s41556-017-0021-z</pub-id>
<pub-id pub-id-type="pmid">29358704</pub-id>
</element-citation>
</ref>
<ref id="B40-ijms-20-06158">
<label>40.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Adam</surname>
<given-names>A.P.</given-names>
</name>
<name>
<surname>George</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Schewe</surname>
<given-names>D.</given-names>
</name>
<name>
<surname>Bragado</surname>
<given-names>P.</given-names>
</name>
<name>
<surname>Iglesias</surname>
<given-names>B.V.</given-names>
</name>
<name>
<surname>Ranganathan</surname>
<given-names>A.C.</given-names>
</name>
<name>
<surname>Kourtidis</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Conklin</surname>
<given-names>D.S.</given-names>
</name>
<name>
<surname>Aguirre-Ghiso</surname>
<given-names>J.A.</given-names>
</name>
</person-group>
<article-title>Computational identification of a p38SAPK-regulated transcription factor network required for tumor cell quiescence</article-title>
<source>Cancer Res.</source>
<year>2009</year>
<volume>69</volume>
<fpage>5664</fpage>
<lpage>5672</lpage>
<pub-id pub-id-type="doi">10.1158/0008-5472.CAN-08-3820</pub-id>
<pub-id pub-id-type="pmid">19584293</pub-id>
</element-citation>
</ref>
<ref id="B41-ijms-20-06158">
<label>41.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Sosa</surname>
<given-names>M.S.</given-names>
</name>
<name>
<surname>Parikh</surname>
<given-names>F.</given-names>
</name>
<name>
<surname>Maia</surname>
<given-names>A.G.</given-names>
</name>
<name>
<surname>Estrada</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Bosch</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Bragado</surname>
<given-names>P.</given-names>
</name>
<name>
<surname>Ekpin</surname>
<given-names>E.</given-names>
</name>
<name>
<surname>George</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Zheng</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Lam</surname>
<given-names>H.M.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>NR2F1 controls tumour cell dormancy via SOX9- and RARbeta-driven quiescence programmes</article-title>
<source>Nat. Commun.</source>
<year>2015</year>
<volume>6</volume>
<fpage>6170</fpage>
<pub-id pub-id-type="doi">10.1038/ncomms7170</pub-id>
<pub-id pub-id-type="pmid">25636082</pub-id>
</element-citation>
</ref>
<ref id="B42-ijms-20-06158">
<label>42.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Aguirre Ghiso</surname>
<given-names>J.A.</given-names>
</name>
<name>
<surname>Kovalski</surname>
<given-names>K.</given-names>
</name>
<name>
<surname>Ossowski</surname>
<given-names>L.</given-names>
</name>
</person-group>
<article-title>Tumor dormancy induced by downregulation of urokinase receptor in human carcinoma involves integrin and MAPK signaling</article-title>
<source>J. Cell Biol.</source>
<year>1999</year>
<volume>147</volume>
<fpage>89</fpage>
<lpage>104</lpage>
<pub-id pub-id-type="doi">10.1083/jcb.147.1.89</pub-id>
<pub-id pub-id-type="pmid">10508858</pub-id>
</element-citation>
</ref>
<ref id="B43-ijms-20-06158">
<label>43.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Aguirre-Ghiso</surname>
<given-names>J.A.</given-names>
</name>
<name>
<surname>Liu</surname>
<given-names>D.</given-names>
</name>
<name>
<surname>Mignatti</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Kovalski</surname>
<given-names>K.</given-names>
</name>
<name>
<surname>Ossowski</surname>
<given-names>L.</given-names>
</name>
</person-group>
<article-title>Urokinase receptor and fibronectin regulate the ERK(MAPK) to p38(MAPK) activity ratios that determine carcinoma cell proliferation or dormancy in vivo</article-title>
<source>Mol. Biol. Cell</source>
<year>2001</year>
<volume>12</volume>
<fpage>863</fpage>
<lpage>879</lpage>
<pub-id pub-id-type="doi">10.1091/mbc.12.4.863</pub-id>
<pub-id pub-id-type="pmid">11294892</pub-id>
</element-citation>
</ref>
<ref id="B44-ijms-20-06158">
<label>44.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Barkan</surname>
<given-names>D.</given-names>
</name>
<name>
<surname>Kleinman</surname>
<given-names>H.</given-names>
</name>
<name>
<surname>Simmons</surname>
<given-names>J.L.</given-names>
</name>
<name>
<surname>Asmussen</surname>
<given-names>H.</given-names>
</name>
<name>
<surname>Kamaraju</surname>
<given-names>A.K.</given-names>
</name>
<name>
<surname>Hoenorhoff</surname>
<given-names>M.J.</given-names>
</name>
<name>
<surname>Liu</surname>
<given-names>Z.Y.</given-names>
</name>
<name>
<surname>Costes</surname>
<given-names>S.V.</given-names>
</name>
<name>
<surname>Cho</surname>
<given-names>E.H.</given-names>
</name>
<name>
<surname>Lockett</surname>
<given-names>S.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Inhibition of metastatic outgrowth from single dormant tumor cells by targeting the cytoskeleton</article-title>
<source>Cancer Res.</source>
<year>2008</year>
<volume>68</volume>
<fpage>6241</fpage>
<lpage>6250</lpage>
<pub-id pub-id-type="doi">10.1158/0008-5472.CAN-07-6849</pub-id>
<pub-id pub-id-type="pmid">18676848</pub-id>
</element-citation>
</ref>
<ref id="B45-ijms-20-06158">
<label>45.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Barkan</surname>
<given-names>D.</given-names>
</name>
<name>
<surname>El Touny</surname>
<given-names>L.H.</given-names>
</name>
<name>
<surname>Michalowski</surname>
<given-names>A.M.</given-names>
</name>
<name>
<surname>Smith</surname>
<given-names>J.A.</given-names>
</name>
<name>
<surname>Chu</surname>
<given-names>I.</given-names>
</name>
<name>
<surname>Davis</surname>
<given-names>A.S.</given-names>
</name>
<name>
<surname>Webster</surname>
<given-names>J.D.</given-names>
</name>
<name>
<surname>Hoover</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Simpson</surname>
<given-names>R.M.</given-names>
</name>
<name>
<surname>Gauldie</surname>
<given-names>J.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Metastatic growth from dormant cells induced by a col-I-enriched fibrotic environment</article-title>
<source>Cancer Res.</source>
<year>2010</year>
<volume>70</volume>
<fpage>5706</fpage>
<lpage>5716</lpage>
<pub-id pub-id-type="doi">10.1158/0008-5472.CAN-09-2356</pub-id>
<pub-id pub-id-type="pmid">20570886</pub-id>
</element-citation>
</ref>
<ref id="B46-ijms-20-06158">
<label>46.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Rachman-Tzemah</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>Zaffryar-Eilot</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Grossman</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Ribero</surname>
<given-names>D.</given-names>
</name>
<name>
<surname>Timaner</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Maki</surname>
<given-names>J.M.</given-names>
</name>
<name>
<surname>Myllyharju</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Bertolini</surname>
<given-names>F.</given-names>
</name>
<name>
<surname>Hershkovitz</surname>
<given-names>D.</given-names>
</name>
<name>
<surname>Sagi</surname>
<given-names>I.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Blocking Surgically Induced Lysyl Oxidase Activity Reduces the Risk of Lung Metastases</article-title>
<source>Cell Rep.</source>
<year>2017</year>
<volume>19</volume>
<fpage>774</fpage>
<lpage>784</lpage>
<pub-id pub-id-type="doi">10.1016/j.celrep.2017.04.005</pub-id>
<pub-id pub-id-type="pmid">28445728</pub-id>
</element-citation>
</ref>
<ref id="B47-ijms-20-06158">
<label>47.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Cox</surname>
<given-names>T.R.</given-names>
</name>
<name>
<surname>Bird</surname>
<given-names>D.</given-names>
</name>
<name>
<surname>Baker</surname>
<given-names>A.M.</given-names>
</name>
<name>
<surname>Barker</surname>
<given-names>H.E.</given-names>
</name>
<name>
<surname>Ho</surname>
<given-names>M.W.</given-names>
</name>
<name>
<surname>Lang</surname>
<given-names>G.</given-names>
</name>
<name>
<surname>Erler</surname>
<given-names>J.T.</given-names>
</name>
</person-group>
<article-title>LOX-mediated collagen crosslinking is responsible for fibrosis-enhanced metastasis</article-title>
<source>Cancer Res.</source>
<year>2013</year>
<volume>73</volume>
<fpage>1721</fpage>
<lpage>1732</lpage>
<pub-id pub-id-type="doi">10.1158/0008-5472.CAN-12-2233</pub-id>
<pub-id pub-id-type="pmid">23345161</pub-id>
</element-citation>
</ref>
<ref id="B48-ijms-20-06158">
<label>48.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Barry-Hamilton</surname>
<given-names>V.</given-names>
</name>
<name>
<surname>Spangler</surname>
<given-names>R.</given-names>
</name>
<name>
<surname>Marshall</surname>
<given-names>D.</given-names>
</name>
<name>
<surname>McCauley</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Rodriguez</surname>
<given-names>H.M.</given-names>
</name>
<name>
<surname>Oyasu</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Mikels</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Vaysberg</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Ghermazien</surname>
<given-names>H.</given-names>
</name>
<name>
<surname>Wai</surname>
<given-names>C.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Allosteric inhibition of lysyl oxidase-like-2 impedes the development of a pathologic microenvironment</article-title>
<source>Nat. Med.</source>
<year>2010</year>
<volume>16</volume>
<fpage>1009</fpage>
<lpage>1017</lpage>
<pub-id pub-id-type="doi">10.1038/nm.2208</pub-id>
<pub-id pub-id-type="pmid">20818376</pub-id>
</element-citation>
</ref>
<ref id="B49-ijms-20-06158">
<label>49.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Cano</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Santamaria</surname>
<given-names>P.G.</given-names>
</name>
<name>
<surname>Moreno-Bueno</surname>
<given-names>G.</given-names>
</name>
</person-group>
<article-title>LOXL2 in epithelial cell plasticity and tumor progression</article-title>
<source>Future Oncol.</source>
<year>2012</year>
<volume>8</volume>
<fpage>1095</fpage>
<lpage>1108</lpage>
<pub-id pub-id-type="doi">10.2217/fon.12.105</pub-id>
<pub-id pub-id-type="pmid">23030485</pub-id>
</element-citation>
</ref>
<ref id="B50-ijms-20-06158">
<label>50.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Moreno-Bueno</surname>
<given-names>G.</given-names>
</name>
<name>
<surname>Salvador</surname>
<given-names>F.</given-names>
</name>
<name>
<surname>Martin</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Floristan</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Cuevas</surname>
<given-names>E.P.</given-names>
</name>
<name>
<surname>Santos</surname>
<given-names>V.</given-names>
</name>
<name>
<surname>Montes</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Morales</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Castilla</surname>
<given-names>M.A.</given-names>
</name>
<name>
<surname>Rojo-Sebastian</surname>
<given-names>A.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Lysyl oxidase-like 2 (LOXL2), a new regulator of cell polarity required for metastatic dissemination of basal-like breast carcinomas</article-title>
<source>EMBO Mol. Med.</source>
<year>2011</year>
<volume>3</volume>
<fpage>528</fpage>
<lpage>544</lpage>
<pub-id pub-id-type="doi">10.1002/emmm.201100156</pub-id>
<pub-id pub-id-type="pmid">21732535</pub-id>
</element-citation>
</ref>
<ref id="B51-ijms-20-06158">
<label>51.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Weidenfeld</surname>
<given-names>K.</given-names>
</name>
<name>
<surname>Schif-Zuck</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Abu-Tayeh</surname>
<given-names>H.</given-names>
</name>
<name>
<surname>Kang</surname>
<given-names>K.</given-names>
</name>
<name>
<surname>Kessler</surname>
<given-names>O.</given-names>
</name>
<name>
<surname>Weissmann</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Neufeld</surname>
<given-names>G.</given-names>
</name>
<name>
<surname>Barkan</surname>
<given-names>D.</given-names>
</name>
</person-group>
<article-title>Dormant tumor cells expressing LOXL2 acquire a stem-like phenotype mediating their transition to proliferative growth</article-title>
<source>Oncotarget</source>
<year>2016</year>
<volume>7</volume>
<fpage>71362</fpage>
<lpage>71377</lpage>
<pub-id pub-id-type="doi">10.18632/oncotarget.12109</pub-id>
<pub-id pub-id-type="pmid">27655685</pub-id>
</element-citation>
</ref>
<ref id="B52-ijms-20-06158">
<label>52.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>De Cock</surname>
<given-names>J.M.</given-names>
</name>
<name>
<surname>Shibue</surname>
<given-names>T.</given-names>
</name>
<name>
<surname>Dongre</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Keckesova</surname>
<given-names>Z.</given-names>
</name>
<name>
<surname>Reinhardt</surname>
<given-names>F.</given-names>
</name>
<name>
<surname>Weinberg</surname>
<given-names>R.A.</given-names>
</name>
</person-group>
<article-title>Inflammation Triggers Zeb1-Dependent Escape from Tumor Latency</article-title>
<source>Cancer Res.</source>
<year>2016</year>
<volume>76</volume>
<fpage>6778</fpage>
<lpage>6784</lpage>
<pub-id pub-id-type="doi">10.1158/0008-5472.CAN-16-0608</pub-id>
<pub-id pub-id-type="pmid">27530323</pub-id>
</element-citation>
</ref>
<ref id="B53-ijms-20-06158">
<label>53.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Liu</surname>
<given-names>W.</given-names>
</name>
<name>
<surname>Huang</surname>
<given-names>Y.J.</given-names>
</name>
<name>
<surname>Liu</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>Yang</surname>
<given-names>Y.Y.</given-names>
</name>
<name>
<surname>Liu</surname>
<given-names>H.</given-names>
</name>
<name>
<surname>Cui</surname>
<given-names>J.G.</given-names>
</name>
<name>
<surname>Cheng</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Gao</surname>
<given-names>F.</given-names>
</name>
<name>
<surname>Cai</surname>
<given-names>J.M.</given-names>
</name>
<name>
<surname>Li</surname>
<given-names>B.L.</given-names>
</name>
</person-group>
<article-title>Inhibition of TBK1 attenuates radiation-induced epithelial-mesenchymal transition of A549 human lung cancer cells via activation of GSK-3beta and repression of ZEB1</article-title>
<source>Lab. Investig. J. Tech. Methods Pathol.</source>
<year>2014</year>
<volume>94</volume>
<fpage>362</fpage>
<lpage>370</lpage>
<pub-id pub-id-type="doi">10.1038/labinvest.2013.153</pub-id>
<pub-id pub-id-type="pmid">24468793</pub-id>
</element-citation>
</ref>
<ref id="B54-ijms-20-06158">
<label>54.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Malanchi</surname>
<given-names>I.</given-names>
</name>
<name>
<surname>Santamaria-Martinez</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Susanto</surname>
<given-names>E.</given-names>
</name>
<name>
<surname>Peng</surname>
<given-names>H.</given-names>
</name>
<name>
<surname>Lehr</surname>
<given-names>H.A.</given-names>
</name>
<name>
<surname>Delaloye</surname>
<given-names>J.F.</given-names>
</name>
<name>
<surname>Huelsken</surname>
<given-names>J.</given-names>
</name>
</person-group>
<article-title>Interactions between cancer stem cells and their niche govern metastatic colonization</article-title>
<source>Nature</source>
<year>2011</year>
<volume>481</volume>
<fpage>85</fpage>
<lpage>89</lpage>
<pub-id pub-id-type="doi">10.1038/nature10694</pub-id>
<pub-id pub-id-type="pmid">22158103</pub-id>
</element-citation>
</ref>
<ref id="B55-ijms-20-06158">
<label>55.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Bragado</surname>
<given-names>P.</given-names>
</name>
<name>
<surname>Estrada</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Parikh</surname>
<given-names>F.</given-names>
</name>
<name>
<surname>Krause</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Capobianco</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>Farina</surname>
<given-names>H.G.</given-names>
</name>
<name>
<surname>Schewe</surname>
<given-names>D.M.</given-names>
</name>
<name>
<surname>Aguirre-Ghiso</surname>
<given-names>J.A.</given-names>
</name>
</person-group>
<article-title>TGF-beta 2 dictates disseminated tumour cell fate in target organs through TGF-beta-RIII and p38 alpha/beta signalling</article-title>
<source>Nat. Cell Biol.</source>
<year>2013</year>
<volume>15</volume>
<fpage>1351</fpage>
<lpage>1361</lpage>
<pub-id pub-id-type="doi">10.1038/ncb2861</pub-id>
<pub-id pub-id-type="pmid">24161934</pub-id>
</element-citation>
</ref>
<ref id="B56-ijms-20-06158">
<label>56.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Chen</surname>
<given-names>Q.</given-names>
</name>
<name>
<surname>Zhang</surname>
<given-names>X.H.</given-names>
</name>
<name>
<surname>Massague</surname>
<given-names>J.</given-names>
</name>
</person-group>
<article-title>Macrophage binding to receptor VCAM-1 transmits survival signals in breast cancer cells that invade the lungs</article-title>
<source>Cancer Cell</source>
<year>2011</year>
<volume>20</volume>
<fpage>538</fpage>
<lpage>549</lpage>
<pub-id pub-id-type="doi">10.1016/j.ccr.2011.08.025</pub-id>
<pub-id pub-id-type="pmid">22014578</pub-id>
</element-citation>
</ref>
<ref id="B57-ijms-20-06158">
<label>57.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Lorger</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Felding-Habermann</surname>
<given-names>B.</given-names>
</name>
</person-group>
<article-title>Capturing changes in the brain microenvironment during initial steps of breast cancer brain metastasis</article-title>
<source>Am. J. Pathol.</source>
<year>2010</year>
<volume>176</volume>
<fpage>2958</fpage>
<lpage>2971</lpage>
<pub-id pub-id-type="doi">10.2353/ajpath.2010.090838</pub-id>
<pub-id pub-id-type="pmid">20382702</pub-id>
</element-citation>
</ref>
<ref id="B58-ijms-20-06158">
<label>58.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Du</surname>
<given-names>R.</given-names>
</name>
<name>
<surname>Lu</surname>
<given-names>K.V.</given-names>
</name>
<name>
<surname>Petritsch</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>Liu</surname>
<given-names>P.</given-names>
</name>
<name>
<surname>Ganss</surname>
<given-names>R.</given-names>
</name>
<name>
<surname>Passegue</surname>
<given-names>E.</given-names>
</name>
<name>
<surname>Song</surname>
<given-names>H.</given-names>
</name>
<name>
<surname>Vandenberg</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Johnson</surname>
<given-names>R.S.</given-names>
</name>
<name>
<surname>Werb</surname>
<given-names>Z.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>HIF1alpha induces the recruitment of bone marrow-derived vascular modulatory cells to regulate tumor angiogenesis and invasion</article-title>
<source>Cancer Cell</source>
<year>2008</year>
<volume>13</volume>
<fpage>206</fpage>
<lpage>220</lpage>
<pub-id pub-id-type="doi">10.1016/j.ccr.2008.01.034</pub-id>
<pub-id pub-id-type="pmid">18328425</pub-id>
</element-citation>
</ref>
<ref id="B59-ijms-20-06158">
<label>59.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Denkins</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Reiland</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Roy</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Sinnappah-Kang</surname>
<given-names>N.D.</given-names>
</name>
<name>
<surname>Galjour</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Murry</surname>
<given-names>B.P.</given-names>
</name>
<name>
<surname>Blust</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Aucoin</surname>
<given-names>R.</given-names>
</name>
<name>
<surname>Marchetti</surname>
<given-names>D.</given-names>
</name>
</person-group>
<article-title>Brain metastases in melanoma: Roles of neurotrophins</article-title>
<source>Neuro Oncol.</source>
<year>2004</year>
<volume>6</volume>
<fpage>154</fpage>
<lpage>165</lpage>
<pub-id pub-id-type="doi">10.1215/S115285170300067X</pub-id>
<pub-id pub-id-type="pmid">15134630</pub-id>
</element-citation>
</ref>
<ref id="B60-ijms-20-06158">
<label>60.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Izraely</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Sagi-Assif</surname>
<given-names>O.</given-names>
</name>
<name>
<surname>Klein</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Meshel</surname>
<given-names>T.</given-names>
</name>
<name>
<surname>Tsarfaty</surname>
<given-names>G.</given-names>
</name>
<name>
<surname>Pasmanik-Chor</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Nahmias</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>Couraud</surname>
<given-names>P.O.</given-names>
</name>
<name>
<surname>Ateh</surname>
<given-names>E.</given-names>
</name>
<name>
<surname>Bryant</surname>
<given-names>J.L.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>The metastatic microenvironment: Brain-residing melanoma metastasis and dormant micrometastasis</article-title>
<source>Int. J. Cancer</source>
<year>2012</year>
<volume>131</volume>
<fpage>1071</fpage>
<lpage>1082</lpage>
<pub-id pub-id-type="doi">10.1002/ijc.27324</pub-id>
<pub-id pub-id-type="pmid">22025079</pub-id>
</element-citation>
</ref>
<ref id="B61-ijms-20-06158">
<label>61.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Yeh</surname>
<given-names>A.C.</given-names>
</name>
<name>
<surname>Ramaswamy</surname>
<given-names>S.</given-names>
</name>
</person-group>
<article-title>Mechanisms of Cancer Cell Dormancy—Another Hallmark of Cancer?</article-title>
<source>Cancer Res.</source>
<year>2015</year>
<volume>75</volume>
<fpage>5014</fpage>
<lpage>5022</lpage>
<pub-id pub-id-type="doi">10.1158/0008-5472.CAN-15-1370</pub-id>
<pub-id pub-id-type="pmid">26354021</pub-id>
</element-citation>
</ref>
<ref id="B62-ijms-20-06158">
<label>62.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>O’Reilly</surname>
<given-names>M.S.</given-names>
</name>
<name>
<surname>Holmgren</surname>
<given-names>L.</given-names>
</name>
<name>
<surname>Shing</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Chen</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>Rosenthal</surname>
<given-names>R.A.</given-names>
</name>
<name>
<surname>Moses</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Lane</surname>
<given-names>W.S.</given-names>
</name>
<name>
<surname>Cao</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Sage</surname>
<given-names>E.H.</given-names>
</name>
<name>
<surname>Folkman</surname>
<given-names>J.</given-names>
</name>
</person-group>
<article-title>Angiostatin: A novel angiogenesis inhibitor that mediates the suppression of metastases by a Lewis lung carcinoma</article-title>
<source>Cell</source>
<year>1994</year>
<volume>79</volume>
<fpage>315</fpage>
<lpage>328</lpage>
<pub-id pub-id-type="doi">10.1016/0092-8674(94)90200-3</pub-id>
<pub-id pub-id-type="pmid">7525077</pub-id>
</element-citation>
</ref>
<ref id="B63-ijms-20-06158">
<label>63.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Cao</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>O’Reilly</surname>
<given-names>M.S.</given-names>
</name>
<name>
<surname>Marshall</surname>
<given-names>B.</given-names>
</name>
<name>
<surname>Flynn</surname>
<given-names>E.</given-names>
</name>
<name>
<surname>Ji</surname>
<given-names>R.W.</given-names>
</name>
<name>
<surname>Folkman</surname>
<given-names>J.</given-names>
</name>
</person-group>
<article-title>Expression of angiostatin cDNA in a murine fibrosarcoma suppresses primary tumor growth and produces long-term dormancy of metastases</article-title>
<source>J. Clin. Investig.</source>
<year>1998</year>
<volume>101</volume>
<fpage>1055</fpage>
<lpage>1063</lpage>
<pub-id pub-id-type="doi">10.1172/JCI1558</pub-id>
<pub-id pub-id-type="pmid">9486976</pub-id>
</element-citation>
</ref>
<ref id="B64-ijms-20-06158">
<label>64.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Almog</surname>
<given-names>N.</given-names>
</name>
<name>
<surname>Ma</surname>
<given-names>L.</given-names>
</name>
<name>
<surname>Raychowdhury</surname>
<given-names>R.</given-names>
</name>
<name>
<surname>Schwager</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>Erber</surname>
<given-names>R.</given-names>
</name>
<name>
<surname>Short</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Hlatky</surname>
<given-names>L.</given-names>
</name>
<name>
<surname>Vajkoczy</surname>
<given-names>P.</given-names>
</name>
<name>
<surname>Huber</surname>
<given-names>P.E.</given-names>
</name>
<name>
<surname>Folkman</surname>
<given-names>J.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Transcriptional switch of dormant tumors to fast-growing angiogenic phenotype</article-title>
<source>Cancer Res.</source>
<year>2009</year>
<volume>69</volume>
<fpage>836</fpage>
<lpage>844</lpage>
<pub-id pub-id-type="doi">10.1158/0008-5472.CAN-08-2590</pub-id>
<pub-id pub-id-type="pmid">19176381</pub-id>
</element-citation>
</ref>
<ref id="B65-ijms-20-06158">
<label>65.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Kienast</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>von Baumgarten</surname>
<given-names>L.</given-names>
</name>
<name>
<surname>Fuhrmann</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Klinkert</surname>
<given-names>W.E.</given-names>
</name>
<name>
<surname>Goldbrunner</surname>
<given-names>R.</given-names>
</name>
<name>
<surname>Herms</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Winkler</surname>
<given-names>F.</given-names>
</name>
</person-group>
<article-title>Real-time imaging reveals the single steps of brain metastasis formation</article-title>
<source>Nat. Med.</source>
<year>2010</year>
<volume>16</volume>
<fpage>116</fpage>
<lpage>122</lpage>
<pub-id pub-id-type="doi">10.1038/nm.2072</pub-id>
<pub-id pub-id-type="pmid">20023634</pub-id>
</element-citation>
</ref>
<ref id="B66-ijms-20-06158">
<label>66.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Naumov</surname>
<given-names>G.N.</given-names>
</name>
<name>
<surname>Bender</surname>
<given-names>E.</given-names>
</name>
<name>
<surname>Zurakowski</surname>
<given-names>D.</given-names>
</name>
<name>
<surname>Kang</surname>
<given-names>S.Y.</given-names>
</name>
<name>
<surname>Sampson</surname>
<given-names>D.</given-names>
</name>
<name>
<surname>Flynn</surname>
<given-names>E.</given-names>
</name>
<name>
<surname>Watnick</surname>
<given-names>R.S.</given-names>
</name>
<name>
<surname>Straume</surname>
<given-names>O.</given-names>
</name>
<name>
<surname>Akslen</surname>
<given-names>L.A.</given-names>
</name>
<name>
<surname>Folkman</surname>
<given-names>J.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>A model of human tumor dormancy: An angiogenic switch from the nonangiogenic phenotype</article-title>
<source>J. Natl. Cancer Inst.</source>
<year>2006</year>
<volume>98</volume>
<fpage>316</fpage>
<lpage>325</lpage>
<pub-id pub-id-type="doi">10.1093/jnci/djj068</pub-id>
<pub-id pub-id-type="pmid">16507828</pub-id>
</element-citation>
</ref>
<ref id="B67-ijms-20-06158">
<label>67.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Bleau</surname>
<given-names>A.M.</given-names>
</name>
<name>
<surname>Agliano</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Larzabal</surname>
<given-names>L.</given-names>
</name>
<name>
<surname>de Aberasturi</surname>
<given-names>A.L.</given-names>
</name>
<name>
<surname>Calvo</surname>
<given-names>A.</given-names>
</name>
</person-group>
<article-title>Metastatic dormancy: A complex network between cancer stem cells and their microenvironment</article-title>
<source>Histol. Histopathol.</source>
<year>2014</year>
<volume>29</volume>
<fpage>1499</fpage>
<lpage>1510</lpage>
<pub-id pub-id-type="doi">10.14670/HH-29.1499</pub-id>
<pub-id pub-id-type="pmid">24887025</pub-id>
</element-citation>
</ref>
<ref id="B68-ijms-20-06158">
<label>68.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Sanger</surname>
<given-names>N.</given-names>
</name>
<name>
<surname>Effenberger</surname>
<given-names>K.E.</given-names>
</name>
<name>
<surname>Riethdorf</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Van Haasteren</surname>
<given-names>V.</given-names>
</name>
<name>
<surname>Gauwerky</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Wiegratz</surname>
<given-names>I.</given-names>
</name>
<name>
<surname>Strebhardt</surname>
<given-names>K.</given-names>
</name>
<name>
<surname>Kaufmann</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Pantel</surname>
<given-names>K.</given-names>
</name>
</person-group>
<article-title>Disseminated tumor cells in the bone marrow of patients with ductal carcinoma in situ</article-title>
<source>Int. J. Cancer</source>
<year>2011</year>
<volume>129</volume>
<fpage>2522</fpage>
<lpage>2526</lpage>
<pub-id pub-id-type="doi">10.1002/ijc.25895</pub-id>
<pub-id pub-id-type="pmid">21207426</pub-id>
</element-citation>
</ref>
<ref id="B69-ijms-20-06158">
<label>69.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Hoilund-Carlsen</surname>
<given-names>P.F.</given-names>
</name>
<name>
<surname>Hess</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Werner</surname>
<given-names>T.J.</given-names>
</name>
<name>
<surname>Alavi</surname>
<given-names>A.</given-names>
</name>
</person-group>
<article-title>Cancer metastasizes to the bone marrow and not to the bone: Time for a paradigm shift!</article-title>
<source>Eur. J. Nucl. Med. Mol. Imaging</source>
<year>2018</year>
<volume>45</volume>
<fpage>893</fpage>
<lpage>897</lpage>
<pub-id pub-id-type="doi">10.1007/s00259-018-3959-6</pub-id>
<pub-id pub-id-type="pmid">29468310</pub-id>
</element-citation>
</ref>
<ref id="B70-ijms-20-06158">
<label>70.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Jung</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Wang</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Song</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Shiozawa</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Wang</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Havens</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Wang</surname>
<given-names>Z.</given-names>
</name>
<name>
<surname>Sun</surname>
<given-names>Y.X.</given-names>
</name>
<name>
<surname>Emerson</surname>
<given-names>S.G.</given-names>
</name>
<name>
<surname>Krebsbach</surname>
<given-names>P.H.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Annexin II expressed by osteoblasts and endothelial cells regulates stem cell adhesion, homing, and engraftment following transplantation</article-title>
<source>Blood</source>
<year>2007</year>
<volume>110</volume>
<fpage>82</fpage>
<lpage>90</lpage>
<pub-id pub-id-type="doi">10.1182/blood-2006-05-021352</pub-id>
<pub-id pub-id-type="pmid">17360942</pub-id>
</element-citation>
</ref>
<ref id="B71-ijms-20-06158">
<label>71.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Axelrod</surname>
<given-names>H.D.</given-names>
</name>
<name>
<surname>Valkenburg</surname>
<given-names>K.C.</given-names>
</name>
<name>
<surname>Amend</surname>
<given-names>S.R.</given-names>
</name>
<name>
<surname>Hicks</surname>
<given-names>J.L.</given-names>
</name>
<name>
<surname>Parsana</surname>
<given-names>P.</given-names>
</name>
<name>
<surname>Torga</surname>
<given-names>G.</given-names>
</name>
<name>
<surname>DeMarzo</surname>
<given-names>A.M.</given-names>
</name>
<name>
<surname>Pienta</surname>
<given-names>K.J.</given-names>
</name>
</person-group>
<article-title>AXL Is a Putative Tumor Suppressor and Dormancy Regulator in Prostate Cancer</article-title>
<source>Mol. Cancer Res.</source>
<year>2019</year>
<volume>17</volume>
<fpage>356</fpage>
<lpage>369</lpage>
<pub-id pub-id-type="doi">10.1158/1541-7786.MCR-18-0718</pub-id>
<pub-id pub-id-type="pmid">30291220</pub-id>
</element-citation>
</ref>
<ref id="B72-ijms-20-06158">
<label>72.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Shiozawa</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Pedersen</surname>
<given-names>E.A.</given-names>
</name>
<name>
<surname>Patel</surname>
<given-names>L.R.</given-names>
</name>
<name>
<surname>Ziegler</surname>
<given-names>A.M.</given-names>
</name>
<name>
<surname>Havens</surname>
<given-names>A.M.</given-names>
</name>
<name>
<surname>Jung</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Wang</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Zalucha</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Loberg</surname>
<given-names>R.D.</given-names>
</name>
<name>
<surname>Pienta</surname>
<given-names>K.J.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>GAS6/AXL axis regulates prostate cancer invasion, proliferation, and survival in the bone marrow niche</article-title>
<source>Neoplasia</source>
<year>2010</year>
<volume>12</volume>
<fpage>116</fpage>
<lpage>127</lpage>
<pub-id pub-id-type="doi">10.1593/neo.91384</pub-id>
<pub-id pub-id-type="pmid">20126470</pub-id>
</element-citation>
</ref>
<ref id="B73-ijms-20-06158">
<label>73.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Yumoto</surname>
<given-names>K.</given-names>
</name>
<name>
<surname>Eber</surname>
<given-names>M.R.</given-names>
</name>
<name>
<surname>Wang</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Cackowski</surname>
<given-names>F.C.</given-names>
</name>
<name>
<surname>Decker</surname>
<given-names>A.M.</given-names>
</name>
<name>
<surname>Lee</surname>
<given-names>E.</given-names>
</name>
<name>
<surname>Nobre</surname>
<given-names>A.R.</given-names>
</name>
<name>
<surname>Aguirre-Ghiso</surname>
<given-names>J.A.</given-names>
</name>
<name>
<surname>Jung</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Taichman</surname>
<given-names>R.S.</given-names>
</name>
</person-group>
<article-title>Axl is required for TGF-beta2-induced dormancy of prostate cancer cells in the bone marrow</article-title>
<source>Sci. Rep.</source>
<year>2016</year>
<volume>6</volume>
<fpage>36520</fpage>
<pub-id pub-id-type="doi">10.1038/srep36520</pub-id>
<pub-id pub-id-type="pmid">27819283</pub-id>
</element-citation>
</ref>
<ref id="B74-ijms-20-06158">
<label>74.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Khoo</surname>
<given-names>W.H.</given-names>
</name>
<name>
<surname>Ledergor</surname>
<given-names>G.</given-names>
</name>
<name>
<surname>Weiner</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Roden</surname>
<given-names>D.L.</given-names>
</name>
<name>
<surname>Terry</surname>
<given-names>R.L.</given-names>
</name>
<name>
<surname>McDonald</surname>
<given-names>M.M.</given-names>
</name>
<name>
<surname>Chai</surname>
<given-names>R.C.</given-names>
</name>
<name>
<surname>De Veirman</surname>
<given-names>K.</given-names>
</name>
<name>
<surname>Owen</surname>
<given-names>K.L.</given-names>
</name>
<name>
<surname>Opperman</surname>
<given-names>K.S.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>A niche-dependent myeloid transcriptome signature defines dormant myeloma cells</article-title>
<source>Blood</source>
<year>2019</year>
<volume>134</volume>
<fpage>30</fpage>
<lpage>43</lpage>
<pub-id pub-id-type="doi">10.1182/blood.2018880930</pub-id>
<pub-id pub-id-type="pmid">31023703</pub-id>
</element-citation>
</ref>
<ref id="B75-ijms-20-06158">
<label>75.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Ghajar</surname>
<given-names>C.M.</given-names>
</name>
<name>
<surname>Peinado</surname>
<given-names>H.</given-names>
</name>
<name>
<surname>Mori</surname>
<given-names>H.</given-names>
</name>
<name>
<surname>Matei</surname>
<given-names>I.R.</given-names>
</name>
<name>
<surname>Evason</surname>
<given-names>K.J.</given-names>
</name>
<name>
<surname>Brazier</surname>
<given-names>H.</given-names>
</name>
<name>
<surname>Almeida</surname>
<given-names>D.</given-names>
</name>
<name>
<surname>Koller</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Hajjar</surname>
<given-names>K.A.</given-names>
</name>
<name>
<surname>Stainier</surname>
<given-names>D.Y.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>The perivascular niche regulates breast tumour dormancy</article-title>
<source>Nat. Cell Biol.</source>
<year>2013</year>
<volume>15</volume>
<fpage>807</fpage>
<lpage>817</lpage>
<pub-id pub-id-type="doi">10.1038/ncb2767</pub-id>
<pub-id pub-id-type="pmid">23728425</pub-id>
</element-citation>
</ref>
<ref id="B76-ijms-20-06158">
<label>76.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Taichman</surname>
<given-names>R.S.</given-names>
</name>
<name>
<surname>Cooper</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>Keller</surname>
<given-names>E.T.</given-names>
</name>
<name>
<surname>Pienta</surname>
<given-names>K.J.</given-names>
</name>
<name>
<surname>Taichman</surname>
<given-names>N.S.</given-names>
</name>
<name>
<surname>McCauley</surname>
<given-names>L.K.</given-names>
</name>
</person-group>
<article-title>Use of the stromal cell-derived factor-1/CXCR4 pathway in prostate cancer metastasis to bone</article-title>
<source>Cancer Res.</source>
<year>2002</year>
<volume>62</volume>
<fpage>1832</fpage>
<lpage>1837</lpage>
<pub-id pub-id-type="pmid">11912162</pub-id>
</element-citation>
</ref>
<ref id="B77-ijms-20-06158">
<label>77.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Sugiyama</surname>
<given-names>T.</given-names>
</name>
<name>
<surname>Kohara</surname>
<given-names>H.</given-names>
</name>
<name>
<surname>Noda</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Nagasawa</surname>
<given-names>T.</given-names>
</name>
</person-group>
<article-title>Maintenance of the hematopoietic stem cell pool by CXCL12-CXCR4 chemokine signaling in bone marrow stromal cell niches</article-title>
<source>Immunity</source>
<year>2006</year>
<volume>25</volume>
<fpage>977</fpage>
<lpage>988</lpage>
<pub-id pub-id-type="doi">10.1016/j.immuni.2006.10.016</pub-id>
<pub-id pub-id-type="pmid">17174120</pub-id>
</element-citation>
</ref>
<ref id="B78-ijms-20-06158">
<label>78.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Romero-Moreno</surname>
<given-names>R.</given-names>
</name>
<name>
<surname>Curtis</surname>
<given-names>K.J.</given-names>
</name>
<name>
<surname>Coughlin</surname>
<given-names>T.R.</given-names>
</name>
<name>
<surname>Cristina Miranda-Vergara</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Dutta</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Natarajan</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Facchine</surname>
<given-names>B.A.</given-names>
</name>
<name>
<surname>Jackson</surname>
<given-names>K.M.</given-names>
</name>
<name>
<surname>Nystrom</surname>
<given-names>L.</given-names>
</name>
<name>
<surname>Li</surname>
<given-names>J.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>The CXCL5/CXCR2 axis is sufficient to promote breast cancer colonization during bone metastasis</article-title>
<source>Nat. Commun.</source>
<year>2019</year>
<volume>10</volume>
<fpage>4404</fpage>
<pub-id pub-id-type="doi">10.1038/s41467-019-12108-6</pub-id>
<pub-id pub-id-type="pmid">31562303</pub-id>
</element-citation>
</ref>
<ref id="B79-ijms-20-06158">
<label>79.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Price</surname>
<given-names>T.T.</given-names>
</name>
<name>
<surname>Burness</surname>
<given-names>M.L.</given-names>
</name>
<name>
<surname>Sivan</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Warner</surname>
<given-names>M.J.</given-names>
</name>
<name>
<surname>Cheng</surname>
<given-names>R.</given-names>
</name>
<name>
<surname>Lee</surname>
<given-names>C.H.</given-names>
</name>
<name>
<surname>Olivere</surname>
<given-names>L.</given-names>
</name>
<name>
<surname>Comatas</surname>
<given-names>K.</given-names>
</name>
<name>
<surname>Magnani</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Kim Lyerly</surname>
<given-names>H.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Dormant breast cancer micrometastases reside in specific bone marrow niches that regulate their transit to and from bone</article-title>
<source>Sci. Transl. Med.</source>
<year>2016</year>
<volume>8</volume>
<fpage>340ra73</fpage>
<pub-id pub-id-type="doi">10.1126/scitranslmed.aad4059</pub-id>
</element-citation>
</ref>
<ref id="B80-ijms-20-06158">
<label>80.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Kobayashi</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Okuda</surname>
<given-names>H.</given-names>
</name>
<name>
<surname>Xing</surname>
<given-names>F.</given-names>
</name>
<name>
<surname>Pandey</surname>
<given-names>P.R.</given-names>
</name>
<name>
<surname>Watabe</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Hirota</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Pai</surname>
<given-names>S.K.</given-names>
</name>
<name>
<surname>Liu</surname>
<given-names>W.</given-names>
</name>
<name>
<surname>Fukuda</surname>
<given-names>K.</given-names>
</name>
<name>
<surname>Chambers</surname>
<given-names>C.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Bone morphogenetic protein 7 in dormancy and metastasis of prostate cancer stem-like cells in bone</article-title>
<source>J. Exp. Med.</source>
<year>2011</year>
<volume>208</volume>
<fpage>2641</fpage>
<lpage>2655</lpage>
<pub-id pub-id-type="doi">10.1084/jem.20110840</pub-id>
<pub-id pub-id-type="pmid">22124112</pub-id>
</element-citation>
</ref>
<ref id="B81-ijms-20-06158">
<label>81.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Walker</surname>
<given-names>N.D.</given-names>
</name>
<name>
<surname>Elias</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Guiro</surname>
<given-names>K.</given-names>
</name>
<name>
<surname>Bhatia</surname>
<given-names>R.</given-names>
</name>
<name>
<surname>Greco</surname>
<given-names>S.J.</given-names>
</name>
<name>
<surname>Bryan</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Gergues</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Sandiford</surname>
<given-names>O.A.</given-names>
</name>
<name>
<surname>Ponzio</surname>
<given-names>N.M.</given-names>
</name>
<name>
<surname>Leibovich</surname>
<given-names>S.J.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Exosomes from differentially activated macrophages influence dormancy or resurgence of breast cancer cells within bone marrow stroma</article-title>
<source>Cell Death Dis.</source>
<year>2019</year>
<volume>10</volume>
<fpage>59</fpage>
<pub-id pub-id-type="doi">10.1038/s41419-019-1304-z</pub-id>
<pub-id pub-id-type="pmid">30683851</pub-id>
</element-citation>
</ref>
<ref id="B82-ijms-20-06158">
<label>82.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Casson</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Davies</surname>
<given-names>O.G.</given-names>
</name>
<name>
<surname>Smith</surname>
<given-names>C.A.</given-names>
</name>
<name>
<surname>Dalby</surname>
<given-names>M.J.</given-names>
</name>
<name>
<surname>Berry</surname>
<given-names>C.C.</given-names>
</name>
</person-group>
<article-title>Mesenchymal stem cell-derived extracellular vesicles may promote breast cancer cell dormancy</article-title>
<source>J. Tissue Eng.</source>
<year>2018</year>
<volume>9</volume>
<fpage>2041731418810093</fpage>
<pub-id pub-id-type="doi">10.1177/2041731418810093</pub-id>
<pub-id pub-id-type="pmid">30627418</pub-id>
</element-citation>
</ref>
<ref id="B83-ijms-20-06158">
<label>83.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Yin</surname>
<given-names>J.J.</given-names>
</name>
<name>
<surname>Selander</surname>
<given-names>K.</given-names>
</name>
<name>
<surname>Chirgwin</surname>
<given-names>J.M.</given-names>
</name>
<name>
<surname>Dallas</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Grubbs</surname>
<given-names>B.G.</given-names>
</name>
<name>
<surname>Wieser</surname>
<given-names>R.</given-names>
</name>
<name>
<surname>Massague</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Mundy</surname>
<given-names>G.R.</given-names>
</name>
<name>
<surname>Guise</surname>
<given-names>T.A.</given-names>
</name>
</person-group>
<article-title>TGF-beta signaling blockade inhibits PTHrP secretion by breast cancer cells and bone metastases development</article-title>
<source>J. Clin. Investig.</source>
<year>1999</year>
<volume>103</volume>
<fpage>197</fpage>
<lpage>206</lpage>
<pub-id pub-id-type="doi">10.1172/JCI3523</pub-id>
<pub-id pub-id-type="pmid">9916131</pub-id>
</element-citation>
</ref>
<ref id="B84-ijms-20-06158">
<label>84.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Kang</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Siegel</surname>
<given-names>P.M.</given-names>
</name>
<name>
<surname>Shu</surname>
<given-names>W.</given-names>
</name>
<name>
<surname>Drobnjak</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Kakonen</surname>
<given-names>S.M.</given-names>
</name>
<name>
<surname>Cordon-Cardo</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>Guise</surname>
<given-names>T.A.</given-names>
</name>
<name>
<surname>Massague</surname>
<given-names>J.</given-names>
</name>
</person-group>
<article-title>A multigenic program mediating breast cancer metastasis to bone</article-title>
<source>Cancer Cell</source>
<year>2003</year>
<volume>3</volume>
<fpage>537</fpage>
<lpage>549</lpage>
<pub-id pub-id-type="doi">10.1016/S1535-6108(03)00132-6</pub-id>
<pub-id pub-id-type="pmid">12842083</pub-id>
</element-citation>
</ref>
<ref id="B85-ijms-20-06158">
<label>85.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Mundy</surname>
<given-names>G.R.</given-names>
</name>
</person-group>
<article-title>Metastasis to bone: Causes, consequences and therapeutic opportunities</article-title>
<source>Nat. Rev. Cancer</source>
<year>2002</year>
<volume>2</volume>
<fpage>584</fpage>
<lpage>593</lpage>
<pub-id pub-id-type="doi">10.1038/nrc867</pub-id>
<pub-id pub-id-type="pmid">12154351</pub-id>
</element-citation>
</ref>
<ref id="B86-ijms-20-06158">
<label>86.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Park</surname>
<given-names>B.K.</given-names>
</name>
<name>
<surname>Zhang</surname>
<given-names>H.</given-names>
</name>
<name>
<surname>Zeng</surname>
<given-names>Q.</given-names>
</name>
<name>
<surname>Dai</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Keller</surname>
<given-names>E.T.</given-names>
</name>
<name>
<surname>Giordano</surname>
<given-names>T.</given-names>
</name>
<name>
<surname>Gu</surname>
<given-names>K.</given-names>
</name>
<name>
<surname>Shah</surname>
<given-names>V.</given-names>
</name>
<name>
<surname>Pei</surname>
<given-names>L.</given-names>
</name>
<name>
<surname>Zarbo</surname>
<given-names>R.J.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>NF-kappaB in breast cancer cells promotes osteolytic bone metastasis by inducing osteoclastogenesis via GM-CSF</article-title>
<source>Nat. Med.</source>
<year>2007</year>
<volume>13</volume>
<fpage>62</fpage>
<lpage>69</lpage>
<pub-id pub-id-type="doi">10.1038/nm1519</pub-id>
<pub-id pub-id-type="pmid">17159986</pub-id>
</element-citation>
</ref>
<ref id="B87-ijms-20-06158">
<label>87.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Ren</surname>
<given-names>D.</given-names>
</name>
<name>
<surname>Dai</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Yang</surname>
<given-names>Q.</given-names>
</name>
<name>
<surname>Zhang</surname>
<given-names>X.</given-names>
</name>
<name>
<surname>Guo</surname>
<given-names>W.</given-names>
</name>
<name>
<surname>Ye</surname>
<given-names>L.</given-names>
</name>
<name>
<surname>Huang</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Chen</surname>
<given-names>X.</given-names>
</name>
<name>
<surname>Lai</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Du</surname>
<given-names>H.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Wnt5a induces and maintains prostate cancer cells dormancy in bone</article-title>
<source>J. Exp. Med.</source>
<year>2019</year>
<volume>216</volume>
<fpage>428</fpage>
<lpage>449</lpage>
<pub-id pub-id-type="doi">10.1084/jem.20180661</pub-id>
<pub-id pub-id-type="pmid">30593464</pub-id>
</element-citation>
</ref>
<ref id="B88-ijms-20-06158">
<label>88.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Lawson</surname>
<given-names>M.A.</given-names>
</name>
<name>
<surname>McDonald</surname>
<given-names>M.M.</given-names>
</name>
<name>
<surname>Kovacic</surname>
<given-names>N.</given-names>
</name>
<name>
<surname>Hua Khoo</surname>
<given-names>W.</given-names>
</name>
<name>
<surname>Terry</surname>
<given-names>R.L.</given-names>
</name>
<name>
<surname>Down</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Kaplan</surname>
<given-names>W.</given-names>
</name>
<name>
<surname>Paton-Hough</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Fellows</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>Pettitt</surname>
<given-names>J.A.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Osteoclasts control reactivation of dormant myeloma cells by remodelling the endosteal niche</article-title>
<source>Nat. Commun.</source>
<year>2015</year>
<volume>6</volume>
<fpage>8983</fpage>
<pub-id pub-id-type="doi">10.1038/ncomms9983</pub-id>
<pub-id pub-id-type="pmid">26632274</pub-id>
</element-citation>
</ref>
<ref id="B89-ijms-20-06158">
<label>89.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Yu-Lee</surname>
<given-names>L.Y.</given-names>
</name>
<name>
<surname>Yu</surname>
<given-names>G.</given-names>
</name>
<name>
<surname>Lee</surname>
<given-names>Y.C.</given-names>
</name>
<name>
<surname>Lin</surname>
<given-names>S.C.</given-names>
</name>
<name>
<surname>Pan</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Pan</surname>
<given-names>T.</given-names>
</name>
<name>
<surname>Yu</surname>
<given-names>K.J.</given-names>
</name>
<name>
<surname>Liu</surname>
<given-names>B.</given-names>
</name>
<name>
<surname>Creighton</surname>
<given-names>C.J.</given-names>
</name>
<name>
<surname>Rodriguez-Canales</surname>
<given-names>J.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Osteoblast-Secreted Factors Mediate Dormancy of Metastatic Prostate Cancer in the Bone via Activation of the TGFbetaRIII-p38MAPK-pS249/T252RB Pathway</article-title>
<source>Cancer Res.</source>
<year>2018</year>
<volume>78</volume>
<fpage>2911</fpage>
<lpage>2924</lpage>
<pub-id pub-id-type="doi">10.1158/0008-5472.CAN-17-1051</pub-id>
<pub-id pub-id-type="pmid">29514796</pub-id>
</element-citation>
</ref>
<ref id="B90-ijms-20-06158">
<label>90.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Lu</surname>
<given-names>X.</given-names>
</name>
<name>
<surname>Mu</surname>
<given-names>E.</given-names>
</name>
<name>
<surname>Wei</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Riethdorf</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Yang</surname>
<given-names>Q.</given-names>
</name>
<name>
<surname>Yuan</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Yan</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Hua</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Tiede</surname>
<given-names>B.J.</given-names>
</name>
<name>
<surname>Lu</surname>
<given-names>X.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>VCAM-1 promotes osteolytic expansion of indolent bone micrometastasis of breast cancer by engaging alpha4beta1-positive osteoclast progenitors</article-title>
<source>Cancer Cell</source>
<year>2011</year>
<volume>20</volume>
<fpage>701</fpage>
<lpage>714</lpage>
<pub-id pub-id-type="doi">10.1016/j.ccr.2011.11.002</pub-id>
<pub-id pub-id-type="pmid">22137794</pub-id>
</element-citation>
</ref>
<ref id="B91-ijms-20-06158">
<label>91.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Koebel</surname>
<given-names>C.M.</given-names>
</name>
<name>
<surname>Vermi</surname>
<given-names>W.</given-names>
</name>
<name>
<surname>Swann</surname>
<given-names>J.B.</given-names>
</name>
<name>
<surname>Zerafa</surname>
<given-names>N.</given-names>
</name>
<name>
<surname>Rodig</surname>
<given-names>S.J.</given-names>
</name>
<name>
<surname>Old</surname>
<given-names>L.J.</given-names>
</name>
<name>
<surname>Smyth</surname>
<given-names>M.J.</given-names>
</name>
<name>
<surname>Schreiber</surname>
<given-names>R.D.</given-names>
</name>
</person-group>
<article-title>Adaptive immunity maintains occult cancer in an equilibrium state</article-title>
<source>Nature</source>
<year>2007</year>
<volume>450</volume>
<fpage>903</fpage>
<lpage>907</lpage>
<pub-id pub-id-type="doi">10.1038/nature06309</pub-id>
<pub-id pub-id-type="pmid">18026089</pub-id>
</element-citation>
</ref>
<ref id="B92-ijms-20-06158">
<label>92.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Gil</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Seshadri</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Komorowski</surname>
<given-names>M.P.</given-names>
</name>
<name>
<surname>Abrams</surname>
<given-names>S.I.</given-names>
</name>
<name>
<surname>Kozbor</surname>
<given-names>D.</given-names>
</name>
</person-group>
<article-title>Targeting CXCL12/CXCR4 signaling with oncolytic virotherapy disrupts tumor vasculature and inhibits breast cancer metastases</article-title>
<source>Proc. Natl. Acad. Sci. USA</source>
<year>2013</year>
<volume>110</volume>
<fpage>E1291</fpage>
<lpage>E1300</lpage>
<pub-id pub-id-type="doi">10.1073/pnas.1220580110</pub-id>
<pub-id pub-id-type="pmid">23509246</pub-id>
</element-citation>
</ref>
<ref id="B93-ijms-20-06158">
<label>93.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Lopes-Bastos</surname>
<given-names>B.</given-names>
</name>
<name>
<surname>Jin</surname>
<given-names>L.</given-names>
</name>
<name>
<surname>Ruge</surname>
<given-names>F.</given-names>
</name>
<name>
<surname>Owen</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Sanders</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Cogle</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>Chester</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Jiang</surname>
<given-names>W.G.</given-names>
</name>
<name>
<surname>Cai</surname>
<given-names>J.</given-names>
</name>
</person-group>
<article-title>Association of breast carcinoma growth with a non-canonical axis of IFNgamma/IDO1/TSP1</article-title>
<source>Oncotarget</source>
<year>2017</year>
<volume>8</volume>
<fpage>85024</fpage>
<lpage>85039</lpage>
<pub-id pub-id-type="doi">10.18632/oncotarget.18781</pub-id>
<pub-id pub-id-type="pmid">29156701</pub-id>
</element-citation>
</ref>
<ref id="B94-ijms-20-06158">
<label>94.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>O’Reilly</surname>
<given-names>M.S.</given-names>
</name>
<name>
<surname>Holmgren</surname>
<given-names>L.</given-names>
</name>
<name>
<surname>Chen</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>Folkman</surname>
<given-names>J.</given-names>
</name>
</person-group>
<article-title>Angiostatin induces and sustains dormancy of human primary tumors in mice</article-title>
<source>Nat. Med.</source>
<year>1996</year>
<volume>2</volume>
<fpage>689</fpage>
<lpage>692</lpage>
<pub-id pub-id-type="doi">10.1038/nm0696-689</pub-id>
<pub-id pub-id-type="pmid">8640562</pub-id>
</element-citation>
</ref>
<ref id="B95-ijms-20-06158">
<label>95.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>El Touny</surname>
<given-names>L.H.</given-names>
</name>
<name>
<surname>Vieira</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Mendoza</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Khanna</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>Hoenerhoff</surname>
<given-names>M.J.</given-names>
</name>
<name>
<surname>Green</surname>
<given-names>J.E.</given-names>
</name>
</person-group>
<article-title>Combined SFK/MEK inhibition prevents metastatic outgrowth of dormant tumor cells</article-title>
<source>J. Clin. Investig.</source>
<year>2014</year>
<volume>124</volume>
<fpage>156</fpage>
<lpage>168</lpage>
<pub-id pub-id-type="doi">10.1172/JCI70259</pub-id>
<pub-id pub-id-type="pmid">24316974</pub-id>
</element-citation>
</ref>
<ref id="B96-ijms-20-06158">
<label>96.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Bliss</surname>
<given-names>S.A.</given-names>
</name>
<name>
<surname>Sinha</surname>
<given-names>G.</given-names>
</name>
<name>
<surname>Sandiford</surname>
<given-names>O.A.</given-names>
</name>
<name>
<surname>Williams</surname>
<given-names>L.M.</given-names>
</name>
<name>
<surname>Engelberth</surname>
<given-names>D.J.</given-names>
</name>
<name>
<surname>Guiro</surname>
<given-names>K.</given-names>
</name>
<name>
<surname>Isenalumhe</surname>
<given-names>L.L.</given-names>
</name>
<name>
<surname>Greco</surname>
<given-names>S.J.</given-names>
</name>
<name>
<surname>Ayer</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Bryan</surname>
<given-names>M.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Mesenchymal Stem Cell-Derived Exosomes Stimulate Cycling Quiescence and Early Breast Cancer Dormancy in Bone Marrow</article-title>
<source>Cancer Res.</source>
<year>2016</year>
<volume>76</volume>
<fpage>5832</fpage>
<lpage>5844</lpage>
<pub-id pub-id-type="doi">10.1158/0008-5472.CAN-16-1092</pub-id>
<pub-id pub-id-type="pmid">27569215</pub-id>
</element-citation>
</ref>
<ref id="B97-ijms-20-06158">
<label>97.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Marshall</surname>
<given-names>J.C.</given-names>
</name>
<name>
<surname>Collins</surname>
<given-names>J.W.</given-names>
</name>
<name>
<surname>Nakayama</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Horak</surname>
<given-names>C.E.</given-names>
</name>
<name>
<surname>Liewehr</surname>
<given-names>D.J.</given-names>
</name>
<name>
<surname>Steinberg</surname>
<given-names>S.M.</given-names>
</name>
<name>
<surname>Albaugh</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Vidal-Vanaclocha</surname>
<given-names>F.</given-names>
</name>
<name>
<surname>Palmieri</surname>
<given-names>D.</given-names>
</name>
<name>
<surname>Barbier</surname>
<given-names>M.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Effect of inhibition of the lysophosphatidic acid receptor 1 on metastasis and metastatic dormancy in breast cancer</article-title>
<source>J. Natl. Cancer Inst.</source>
<year>2012</year>
<volume>104</volume>
<fpage>1306</fpage>
<lpage>1319</lpage>
<pub-id pub-id-type="doi">10.1093/jnci/djs319</pub-id>
<pub-id pub-id-type="pmid">22911670</pub-id>
</element-citation>
</ref>
<ref id="B98-ijms-20-06158">
<label>98.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Lu</surname>
<given-names>D.</given-names>
</name>
<name>
<surname>Chen</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Tan</surname>
<given-names>X.</given-names>
</name>
<name>
<surname>Li</surname>
<given-names>N.</given-names>
</name>
<name>
<surname>Liu</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>Li</surname>
<given-names>Z.</given-names>
</name>
<name>
<surname>Liu</surname>
<given-names>Z.</given-names>
</name>
<name>
<surname>Stupack</surname>
<given-names>D.G.</given-names>
</name>
<name>
<surname>Reisfeld</surname>
<given-names>R.A.</given-names>
</name>
<name>
<surname>Xiang</surname>
<given-names>R.</given-names>
</name>
</person-group>
<article-title>Fra-1 promotes breast cancer chemosensitivity by driving cancer stem cells from dormancy</article-title>
<source>Cancer Res.</source>
<year>2012</year>
<volume>72</volume>
<fpage>3451</fpage>
<lpage>3456</lpage>
<pub-id pub-id-type="doi">10.1158/0008-5472.CAN-11-2536</pub-id>
<pub-id pub-id-type="pmid">22586064</pub-id>
</element-citation>
</ref>
<ref id="B99-ijms-20-06158">
<label>99.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Schreiber</surname>
<given-names>R.D.</given-names>
</name>
<name>
<surname>Old</surname>
<given-names>L.J.</given-names>
</name>
<name>
<surname>Smyth</surname>
<given-names>M.J.</given-names>
</name>
</person-group>
<article-title>Cancer immunoediting: Integrating immunity’s roles in cancer suppression and promotion</article-title>
<source>Science</source>
<year>2011</year>
<volume>331</volume>
<fpage>1565</fpage>
<lpage>1570</lpage>
<pub-id pub-id-type="doi">10.1126/science.1203486</pub-id>
<pub-id pub-id-type="pmid">21436444</pub-id>
</element-citation>
</ref>
<ref id="B100-ijms-20-06158">
<label>100.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Eyles</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Puaux</surname>
<given-names>A.L.</given-names>
</name>
<name>
<surname>Wang</surname>
<given-names>X.</given-names>
</name>
<name>
<surname>Toh</surname>
<given-names>B.</given-names>
</name>
<name>
<surname>Prakash</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>Hong</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Tan</surname>
<given-names>T.G.</given-names>
</name>
<name>
<surname>Zheng</surname>
<given-names>L.</given-names>
</name>
<name>
<surname>Ong</surname>
<given-names>L.C.</given-names>
</name>
<name>
<surname>Jin</surname>
<given-names>Y.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Tumor cells disseminate early, but immunosurveillance limits metastatic outgrowth, in a mouse model of melanoma</article-title>
<source>J. Clin. Investig.</source>
<year>2010</year>
<volume>120</volume>
<fpage>2030</fpage>
<lpage>2039</lpage>
<pub-id pub-id-type="doi">10.1172/JCI42002</pub-id>
<pub-id pub-id-type="pmid">20501944</pub-id>
</element-citation>
</ref>
<ref id="B101-ijms-20-06158">
<label>101.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Pantel</surname>
<given-names>K.</given-names>
</name>
<name>
<surname>Schlimok</surname>
<given-names>G.</given-names>
</name>
<name>
<surname>Kutter</surname>
<given-names>D.</given-names>
</name>
<name>
<surname>Schaller</surname>
<given-names>G.</given-names>
</name>
<name>
<surname>Genz</surname>
<given-names>T.</given-names>
</name>
<name>
<surname>Wiebecke</surname>
<given-names>B.</given-names>
</name>
<name>
<surname>Backmann</surname>
<given-names>R.</given-names>
</name>
<name>
<surname>Funke</surname>
<given-names>I.</given-names>
</name>
<name>
<surname>Riethmuller</surname>
<given-names>G.</given-names>
</name>
</person-group>
<article-title>Frequent down-regulation of major histocompatibility class I antigen expression on individual micrometastatic carcinoma cells</article-title>
<source>Cancer Res.</source>
<year>1991</year>
<volume>51</volume>
<fpage>4712</fpage>
<lpage>4715</lpage>
<pub-id pub-id-type="pmid">1873815</pub-id>
</element-citation>
</ref>
<ref id="B102-ijms-20-06158">
<label>102.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Hirata</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Furuhashi</surname>
<given-names>K.</given-names>
</name>
<name>
<surname>Ishii</surname>
<given-names>H.</given-names>
</name>
<name>
<surname>Li</surname>
<given-names>H.W.</given-names>
</name>
<name>
<surname>Pinho</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Ding</surname>
<given-names>L.</given-names>
</name>
<name>
<surname>Robson</surname>
<given-names>S.C.</given-names>
</name>
<name>
<surname>Frenette</surname>
<given-names>P.S.</given-names>
</name>
<name>
<surname>Fujisaki</surname>
<given-names>J.</given-names>
</name>
</person-group>
<article-title>CD150(high) Bone Marrow Tregs Maintain Hematopoietic Stem Cell Quiescence and Immune Privilege via Adenosine</article-title>
<source>Cell Stem Cell</source>
<year>2018</year>
<volume>22</volume>
<fpage>445</fpage>
<lpage>453</lpage>
<pub-id pub-id-type="doi">10.1016/j.stem.2018.01.017</pub-id>
<pub-id pub-id-type="pmid">29456159</pub-id>
</element-citation>
</ref>
<ref id="B103-ijms-20-06158">
<label>103.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Bichsel</surname>
<given-names>C.A.</given-names>
</name>
<name>
<surname>Wang</surname>
<given-names>L.</given-names>
</name>
<name>
<surname>Froment</surname>
<given-names>L.</given-names>
</name>
<name>
<surname>Berezowska</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Muller</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Dorn</surname>
<given-names>P.</given-names>
</name>
<name>
<surname>Marti</surname>
<given-names>T.M.</given-names>
</name>
<name>
<surname>Peng</surname>
<given-names>R.W.</given-names>
</name>
<name>
<surname>Geiser</surname>
<given-names>T.</given-names>
</name>
<name>
<surname>Schmid</surname>
<given-names>R.A.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Increased PD-L1 expression and IL-6 secretion characterize human lung tumor-derived perivascular-like cells that promote vascular leakage in a perfusable microvasculature model</article-title>
<source>Sci. Rep.</source>
<year>2017</year>
<volume>7</volume>
<fpage>10636</fpage>
<pub-id pub-id-type="doi">10.1038/s41598-017-09928-1</pub-id>
<pub-id pub-id-type="pmid">28878242</pub-id>
</element-citation>
</ref>
<ref id="B104-ijms-20-06158">
<label>104.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Zhao</surname>
<given-names>X.</given-names>
</name>
<name>
<surname>Bose</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Komita</surname>
<given-names>H.</given-names>
</name>
<name>
<surname>Taylor</surname>
<given-names>J.L.</given-names>
</name>
<name>
<surname>Chi</surname>
<given-names>N.</given-names>
</name>
<name>
<surname>Lowe</surname>
<given-names>D.B.</given-names>
</name>
<name>
<surname>Okada</surname>
<given-names>H.</given-names>
</name>
<name>
<surname>Cao</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Mukhopadhyay</surname>
<given-names>D.</given-names>
</name>
<name>
<surname>Cohen</surname>
<given-names>P.A.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Vaccines targeting tumor blood vessel antigens promote CD8(+) T cell-dependent tumor eradication or dormancy in HLA-A2 transgenic mice</article-title>
<source>J. Immunol.</source>
<year>2012</year>
<volume>188</volume>
<fpage>1782</fpage>
<lpage>1788</lpage>
<pub-id pub-id-type="doi">10.4049/jimmunol.1101644</pub-id>
<pub-id pub-id-type="pmid">22246626</pub-id>
</element-citation>
</ref>
<ref id="B105-ijms-20-06158">
<label>105.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Saudemont</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Jouy</surname>
<given-names>N.</given-names>
</name>
<name>
<surname>Hetuin</surname>
<given-names>D.</given-names>
</name>
<name>
<surname>Quesnel</surname>
<given-names>B.</given-names>
</name>
</person-group>
<article-title>NK cells that are activated by CXCL10 can kill dormant tumor cells that resist CTL-mediated lysis and can express B7-H1 that stimulates T cells</article-title>
<source>Blood</source>
<year>2005</year>
<volume>105</volume>
<fpage>2428</fpage>
<lpage>2435</lpage>
<pub-id pub-id-type="doi">10.1182/blood-2004-09-3458</pub-id>
<pub-id pub-id-type="pmid">15536145</pub-id>
</element-citation>
</ref>
<ref id="B106-ijms-20-06158">
<label>106.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Payne</surname>
<given-names>K.K.</given-names>
</name>
<name>
<surname>Keim</surname>
<given-names>R.C.</given-names>
</name>
<name>
<surname>Graham</surname>
<given-names>L.</given-names>
</name>
<name>
<surname>Idowu</surname>
<given-names>M.O.</given-names>
</name>
<name>
<surname>Wan</surname>
<given-names>W.</given-names>
</name>
<name>
<surname>Wang</surname>
<given-names>X.Y.</given-names>
</name>
<name>
<surname>Toor</surname>
<given-names>A.A.</given-names>
</name>
<name>
<surname>Bear</surname>
<given-names>H.D.</given-names>
</name>
<name>
<surname>Manjili</surname>
<given-names>M.H.</given-names>
</name>
</person-group>
<article-title>Tumor-reactive immune cells protect against metastatic tumor and induce immunoediting of indolent but not quiescent tumor cells</article-title>
<source>J. Leukoc. Biol.</source>
<year>2016</year>
<volume>100</volume>
<fpage>625</fpage>
<lpage>635</lpage>
<pub-id pub-id-type="doi">10.1189/jlb.5A1215-580R</pub-id>
<pub-id pub-id-type="pmid">26928306</pub-id>
</element-citation>
</ref>
<ref id="B107-ijms-20-06158">
<label>107.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Iyengar</surname>
<given-names>N.M.</given-names>
</name>
<name>
<surname>Hudis</surname>
<given-names>C.A.</given-names>
</name>
<name>
<surname>Dannenberg</surname>
<given-names>A.J.</given-names>
</name>
</person-group>
<article-title>Obesity and inflammation: New insights into breast cancer development and progression</article-title>
<source>Am. Soc. Clin. Oncol. Educ. Book</source>
<year>2013</year>
<volume>33</volume>
<fpage>46</fpage>
<lpage>51</lpage>
<pub-id pub-id-type="doi">10.1200/EdBook_AM.2013.33.46</pub-id>
</element-citation>
</ref>
<ref id="B108-ijms-20-06158">
<label>108.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Quail</surname>
<given-names>D.F.</given-names>
</name>
<name>
<surname>Olson</surname>
<given-names>O.C.</given-names>
</name>
<name>
<surname>Bhardwaj</surname>
<given-names>P.</given-names>
</name>
<name>
<surname>Walsh</surname>
<given-names>L.A.</given-names>
</name>
<name>
<surname>Akkari</surname>
<given-names>L.</given-names>
</name>
<name>
<surname>Quick</surname>
<given-names>M.L.</given-names>
</name>
<name>
<surname>Chen</surname>
<given-names>I.C.</given-names>
</name>
<name>
<surname>Wendel</surname>
<given-names>N.</given-names>
</name>
<name>
<surname>Ben-Chetrit</surname>
<given-names>N.</given-names>
</name>
<name>
<surname>Walker</surname>
<given-names>J.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Obesity alters the lung myeloid cell landscape to enhance breast cancer metastasis through IL5 and GM-CSF</article-title>
<source>Nat. Cell Biol.</source>
<year>2017</year>
<volume>19</volume>
<fpage>974</fpage>
<lpage>987</lpage>
<pub-id pub-id-type="doi">10.1038/ncb3578</pub-id>
<pub-id pub-id-type="pmid">28737771</pub-id>
</element-citation>
</ref>
<ref id="B109-ijms-20-06158">
<label>109.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Krall</surname>
<given-names>J.A.</given-names>
</name>
<name>
<surname>Reinhardt</surname>
<given-names>F.</given-names>
</name>
<name>
<surname>Mercury</surname>
<given-names>O.A.</given-names>
</name>
<name>
<surname>Pattabiraman</surname>
<given-names>D.R.</given-names>
</name>
<name>
<surname>Brooks</surname>
<given-names>M.W.</given-names>
</name>
<name>
<surname>Dougan</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Lambert</surname>
<given-names>A.W.</given-names>
</name>
<name>
<surname>Bierie</surname>
<given-names>B.</given-names>
</name>
<name>
<surname>Ploegh</surname>
<given-names>H.L.</given-names>
</name>
<name>
<surname>Dougan</surname>
<given-names>S.K.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>The systemic response to surgery triggers the outgrowth of distant immune-controlled tumors in mouse models of dormancy</article-title>
<source>Sci. Transl. Med.</source>
<year>2018</year>
<volume>10</volume>
<fpage>eaaan3464</fpage>
<pub-id pub-id-type="doi">10.1126/scitranslmed.aan3464</pub-id>
</element-citation>
</ref>
<ref id="B110-ijms-20-06158">
<label>110.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Zhang</surname>
<given-names>X.</given-names>
</name>
<name>
<surname>Fryknas</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Hernlund</surname>
<given-names>E.</given-names>
</name>
<name>
<surname>Fayad</surname>
<given-names>W.</given-names>
</name>
<name>
<surname>De Milito</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Olofsson</surname>
<given-names>M.H.</given-names>
</name>
<name>
<surname>Gogvadze</surname>
<given-names>V.</given-names>
</name>
<name>
<surname>Dang</surname>
<given-names>L.</given-names>
</name>
<name>
<surname>Pahlman</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Schughart</surname>
<given-names>L.A.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Induction of mitochondrial dysfunction as a strategy for targeting tumour cells in metabolically compromised microenvironments</article-title>
<source>Nat. Commun.</source>
<year>2014</year>
<volume>5</volume>
<fpage>3295</fpage>
<pub-id pub-id-type="doi">10.1038/ncomms4295</pub-id>
<pub-id pub-id-type="pmid">24548894</pub-id>
</element-citation>
</ref>
<ref id="B111-ijms-20-06158">
<label>111.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Saudemont</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Hamrouni</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Marchetti</surname>
<given-names>P.</given-names>
</name>
<name>
<surname>Liu</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Jouy</surname>
<given-names>N.</given-names>
</name>
<name>
<surname>Hetuin</surname>
<given-names>D.</given-names>
</name>
<name>
<surname>Colucci</surname>
<given-names>F.</given-names>
</name>
<name>
<surname>Quesnel</surname>
<given-names>B.</given-names>
</name>
</person-group>
<article-title>Dormant tumor cells develop cross-resistance to apoptosis induced by CTLs or imatinib mesylate via methylation of suppressor of cytokine signaling 1</article-title>
<source>Cancer Res.</source>
<year>2007</year>
<volume>67</volume>
<fpage>4491</fpage>
<lpage>4498</lpage>
<pub-id pub-id-type="doi">10.1158/0008-5472.CAN-06-1627</pub-id>
<pub-id pub-id-type="pmid">17483365</pub-id>
</element-citation>
</ref>
<ref id="B112-ijms-20-06158">
<label>112.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Politaki</surname>
<given-names>E.</given-names>
</name>
<name>
<surname>Agelaki</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Apostolaki</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Hatzidaki</surname>
<given-names>D.</given-names>
</name>
<name>
<surname>Strati</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Koinis</surname>
<given-names>F.</given-names>
</name>
<name>
<surname>Perraki</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Saloustrou</surname>
<given-names>G.</given-names>
</name>
<name>
<surname>Stoupis</surname>
<given-names>G.</given-names>
</name>
<name>
<surname>Kallergi</surname>
<given-names>G.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>A Comparison of Three Methods for the Detection of Circulating Tumor Cells in Patients with Early and Metastatic Breast Cancer</article-title>
<source>Cell. Physiol. Biochem.</source>
<year>2017</year>
<volume>44</volume>
<fpage>594</fpage>
<lpage>606</lpage>
<pub-id pub-id-type="doi">10.1159/000485115</pub-id>
<pub-id pub-id-type="pmid">29161698</pub-id>
</element-citation>
</ref>
<ref id="B113-ijms-20-06158">
<label>113.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Spiliotaki</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Mavroudis</surname>
<given-names>D.</given-names>
</name>
<name>
<surname>Kokotsaki</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Vetsika</surname>
<given-names>E.K.</given-names>
</name>
<name>
<surname>Stoupis</surname>
<given-names>I.</given-names>
</name>
<name>
<surname>Matikas</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Kallergi</surname>
<given-names>G.</given-names>
</name>
<name>
<surname>Georgoulias</surname>
<given-names>V.</given-names>
</name>
<name>
<surname>Agelaki</surname>
<given-names>S.</given-names>
</name>
</person-group>
<article-title>Expression of insulin-like growth factor-1 receptor in circulating tumor cells of patients with breast cancer is associated with patient outcomes</article-title>
<source>Mol. Oncol.</source>
<year>2018</year>
<volume>12</volume>
<fpage>21</fpage>
<lpage>32</lpage>
<pub-id pub-id-type="doi">10.1002/1878-0261.12114</pub-id>
<pub-id pub-id-type="pmid">28766847</pub-id>
</element-citation>
</ref>
<ref id="B114-ijms-20-06158">
<label>114.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Spiliotaki</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Mavroudis</surname>
<given-names>D.</given-names>
</name>
<name>
<surname>Kapranou</surname>
<given-names>K.</given-names>
</name>
<name>
<surname>Markomanolaki</surname>
<given-names>H.</given-names>
</name>
<name>
<surname>Kallergi</surname>
<given-names>G.</given-names>
</name>
<name>
<surname>Koinis</surname>
<given-names>F.</given-names>
</name>
<name>
<surname>Kalbakis</surname>
<given-names>K.</given-names>
</name>
<name>
<surname>Georgoulias</surname>
<given-names>V.</given-names>
</name>
<name>
<surname>Agelaki</surname>
<given-names>S.</given-names>
</name>
</person-group>
<article-title>Evaluation of proliferation and apoptosis markers in circulating tumor cells of women with early breast cancer who are candidates for tumor dormancy</article-title>
<source>Breast Cancer Res. BCR</source>
<year>2014</year>
<volume>16</volume>
<fpage>485</fpage>
<pub-id pub-id-type="doi">10.1186/s13058-014-0485-8</pub-id>
<pub-id pub-id-type="pmid">25432416</pub-id>
</element-citation>
</ref>
<ref id="B115-ijms-20-06158">
<label>115.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Papadaki</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>Stratigos</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Markakis</surname>
<given-names>G.</given-names>
</name>
<name>
<surname>Spiliotaki</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Mastrostamatis</surname>
<given-names>G.</given-names>
</name>
<name>
<surname>Nikolaou</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>Mavroudis</surname>
<given-names>D.</given-names>
</name>
<name>
<surname>Agelaki</surname>
<given-names>S.</given-names>
</name>
</person-group>
<article-title>Circulating microRNAs in the early prediction of disease recurrence in primary breast cancer</article-title>
<source>Breast Cancer Res. BCR</source>
<year>2018</year>
<volume>20</volume>
<fpage>72</fpage>
<pub-id pub-id-type="doi">10.1186/s13058-018-1001-3</pub-id>
<pub-id pub-id-type="pmid">29996899</pub-id>
</element-citation>
</ref>
</ref-list>
</back>
<floats-group>
<fig id="ijms-20-06158-f001" orientation="portrait" position="float">
<label>Figure 1</label>
<caption>
<p>Key factors and related processes that regulate organ-specific metastatic cell dormancy and reactivation. Dissemination of cancer cells from the primary site by activation of EMT program and invasion through the ECM into the circulation is often an early event during tumor progression. A fraction of CTCs survive in systemic circulation and become trapped in narrow capillaries until extravasation occurs in distal sites. Once DTCs reach a target organ site they enter a quiescent, dormant state, via activation of specific transcriptional programs, for periods which may last for even years. Permissive interactions and signals exchanged between cancer and stromal cells within the unique conditions of the host tissue microenvironment may eventually favor the reactivation of cell proliferation and angiogenesis to promote metastatic outgrowth and expansion. Escaping from dormancy is defined by organ-specific secretion of growth factors, cytokines, and ECM components that orchestrate a dynamic interplay between DTCs, immune cells, fibroblasts, and endothelial cells which allow the development of clinically relevant macrometastatic lesions. EMT: epithelial to mesenchymal transition, ECM: extracellular matrix, CTCs: circulating tumor cells, DTCs: disseminated tumor cells.</p>
</caption>
<graphic xlink:href="ijms-20-06158-g001"></graphic>
</fig>
<table-wrap id="ijms-20-06158-t001" orientation="portrait" position="float">
<object-id pub-id-type="pii">ijms-20-06158-t001_Table 1</object-id>
<label>Table 1</label>
<caption>
<p>Factors (gene, protein, cytokine, growth factor) implicated in the mechanisms sustaining dormancy or escape from dormancy.</p>
</caption>
<table frame="hsides" rules="groups">
<thead>
<tr>
<th align="center" valign="middle" style="border-top:solid thin;border-bottom:solid thin" rowspan="1" colspan="1">Factor</th>
<th align="center" valign="middle" style="border-top:solid thin;border-bottom:solid thin" rowspan="1" colspan="1">Mechanism</th>
<th align="center" valign="middle" style="border-top:solid thin;border-bottom:solid thin" rowspan="1" colspan="1">Regulation</th>
<th align="center" valign="middle" style="border-top:solid thin;border-bottom:solid thin" rowspan="1" colspan="1">Cancer Type</th>
<th align="center" valign="middle" style="border-top:solid thin;border-bottom:solid thin" rowspan="1" colspan="1">Metastatic Site</th>
<th align="center" valign="middle" style="border-top:solid thin;border-bottom:solid thin" rowspan="1" colspan="1">Model</th>
<th align="center" valign="middle" style="border-top:solid thin;border-bottom:solid thin" rowspan="1" colspan="1">Ref</th>
</tr>
</thead>
<tbody>
<tr>
<td colspan="7" align="center" valign="middle" style="border-bottom:solid thin" rowspan="1">
<bold>Mechanisms that Sustain Dormancy</bold>
</td>
</tr>
<tr>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">Fbxw7</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">Cell cycle control</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">Increased levels</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">Breast</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">Lung</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">Mouse</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">[
<xref rid="B18-ijms-20-06158" ref-type="bibr">18</xref>
]</td>
</tr>
<tr>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">LIFR</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">Hypoxia</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">Increased levels</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">Breast</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">Bone marrow</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">Mouse/Human</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">[
<xref rid="B19-ijms-20-06158" ref-type="bibr">19</xref>
]</td>
</tr>
<tr>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">ATG7</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">Autophagy</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">Increased levels</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">Breast</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">Lung</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">Mouse/Human</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">[
<xref rid="B20-ijms-20-06158" ref-type="bibr">20</xref>
]</td>
</tr>
<tr>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">MKK4</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">Apoptosis, proliferation, differentiation</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">Increased levels</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">Ovarian</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">Intraperitoneal sites</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">Mouse</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">[
<xref rid="B23-ijms-20-06158" ref-type="bibr">23</xref>
]</td>
</tr>
<tr>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">IKKβ</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">Inflammation</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">Overactivation</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">Breast</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">Multiple sites</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">Mouse</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">[
<xref rid="B25-ijms-20-06158" ref-type="bibr">25</xref>
]</td>
</tr>
<tr>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">CXCR4</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">Cell cycle control, Inflammation, Cell survival</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">Decreased levels</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">Breast</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">Lung</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">Mouse</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">[
<xref rid="B26-ijms-20-06158" ref-type="bibr">26</xref>
]</td>
</tr>
<tr>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">PRRX1</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">EMT</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">Increased levels</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">HNSCC</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">Lymph nodes</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">Mouse/Human</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">[
<xref rid="B27-ijms-20-06158" ref-type="bibr">27</xref>
]</td>
</tr>
<tr>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">KISS 1</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">Hormone regulation</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">Increased levels</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">Melanoma
<break></break>
Breast
<break></break>
Ovarian</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">Lung Intraperitoneal sites</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">Mouse</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">[
<xref rid="B28-ijms-20-06158" ref-type="bibr">28</xref>
,
<xref rid="B29-ijms-20-06158" ref-type="bibr">29</xref>
,
<xref rid="B30-ijms-20-06158" ref-type="bibr">30</xref>
]</td>
</tr>
<tr>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">MSK1</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">Differentiation</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">Increased levels</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">Breast</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">Bone</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">Human</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">[
<xref rid="B39-ijms-20-06158" ref-type="bibr">39</xref>
]</td>
</tr>
<tr>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">N2RF1/NANOG</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">Development
<break></break>
Differentiation</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">Increased levels</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">HNSCC
<break></break>
Prostate</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">Bone marrow</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">Human</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">[
<xref rid="B41-ijms-20-06158" ref-type="bibr">41</xref>
]</td>
</tr>
<tr>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">TGF-β2</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">Development
<break></break>
Morphogenesis</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">Increased levels</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">HNSCC</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">Bone marrow</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">Mouse</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">[
<xref rid="B55-ijms-20-06158" ref-type="bibr">55</xref>
]</td>
</tr>
<tr>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">GAS6/AXL</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">Apoptosis
<break></break>
Differentiation</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">Increased levels</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">Prostate</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">Liver, Lymph node, Bone</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">Mouse/Human</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">[
<xref rid="B71-ijms-20-06158" ref-type="bibr">71</xref>
]</td>
</tr>
<tr>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">BMP-7</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">Morphogenesis
<break></break>
Differentiation</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">Increased levels</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">Prostate</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">Bone</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">Mouse/Human</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">[
<xref rid="B80-ijms-20-06158" ref-type="bibr">80</xref>
]</td>
</tr>
<tr>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">Wnt5a</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">Development</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">Increased levels</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">Prostate</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">Bone</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">Mouse/Rat/Human</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">[
<xref rid="B87-ijms-20-06158" ref-type="bibr">87</xref>
]</td>
</tr>
<tr>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">GDF10/TGF-β2/
<break></break>
TGF-βRIII</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">Cell cycle regulation</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">Increased levels</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">Prostate</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">Bone</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">Mouse/Human</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">[
<xref rid="B89-ijms-20-06158" ref-type="bibr">89</xref>
]</td>
</tr>
<tr>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">IFN-γ, IL-12</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">Immune response</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">Increased levels</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">Sarcoma</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">Multiple sites</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">Mouse</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">[
<xref rid="B91-ijms-20-06158" ref-type="bibr">91</xref>
]</td>
</tr>
<tr>
<td colspan="7" align="center" valign="middle" style="border-bottom:solid thin" rowspan="1">Mechanisms that Promote Escape from Dormancy</td>
</tr>
<tr>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">IL8/MCP-1</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">Inflammation</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">Increased levels</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">Breast</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">Liver</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">Ex vivo</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">[
<xref rid="B33-ijms-20-06158" ref-type="bibr">33</xref>
]</td>
</tr>
<tr>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">ID1/ID3</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">Proliferation
<break></break>
Differentiation</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">Increased levels</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">Breast</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">Lung</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">Mouse</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">[
<xref rid="B35-ijms-20-06158" ref-type="bibr">35</xref>
]</td>
</tr>
<tr>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">Coco</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">Morphogenesis</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">Increased levels</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">Breast </td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">Lung</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">Mouse</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">[
<xref rid="B37-ijms-20-06158" ref-type="bibr">37</xref>
]</td>
</tr>
<tr>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">MLCK</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">Proliferation,
<break></break>
Actin stress fiber formation</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">Constitutive activation </td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">Prostate
<break></break>
Breast</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">Bone marrow
<break></break>
Lung</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">Human
<break></break>
Mouse</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">[
<xref rid="B38-ijms-20-06158" ref-type="bibr">38</xref>
,
<xref rid="B44-ijms-20-06158" ref-type="bibr">44</xref>
]</td>
</tr>
<tr>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">Col-I</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">Induction of fibrosis</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">Increased levels</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">Breast</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">Lung</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">Mouse</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">[
<xref rid="B45-ijms-20-06158" ref-type="bibr">45</xref>
]</td>
</tr>
<tr>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">LOX</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">Development
<break></break>
Hypoxia</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">Increased levels</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">Breast</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">Lung</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">Human/Mouse</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">[
<xref rid="B46-ijms-20-06158" ref-type="bibr">46</xref>
]</td>
</tr>
<tr>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">LOXL2</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">EMT
<break></break>
Hypoxia</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">Increased levels</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">Breast </td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">Lung</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">Mouse</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">[
<xref rid="B51-ijms-20-06158" ref-type="bibr">51</xref>
]</td>
</tr>
<tr>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">Zeb1</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">EMT
<break></break>
Inflammation</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">Increased levels</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">Breast</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">Lung</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">Mouse</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">[
<xref rid="B52-ijms-20-06158" ref-type="bibr">52</xref>
]</td>
</tr>
<tr>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">POSTN</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">Bone regeneration
<break></break>
Cell adhesion</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">Increased levels</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">Breast/Cancer stem cells</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">Lung</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">Human/Mouse</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">[
<xref rid="B54-ijms-20-06158" ref-type="bibr">54</xref>
]</td>
</tr>
<tr>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">VCAM-1</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">Cell adhesion</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">Increased levels</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">Breast</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">Lung/Bone</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">Mouse/Human</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">[
<xref rid="B56-ijms-20-06158" ref-type="bibr">56</xref>
,
<xref rid="B90-ijms-20-06158" ref-type="bibr">90</xref>
]</td>
</tr>
<tr>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">MMP-9</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">Metabolic processes</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">Increased levels</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">Breast</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">Brain</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">Mouse</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">[
<xref rid="B57-ijms-20-06158" ref-type="bibr">57</xref>
]</td>
</tr>
<tr>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">PRAME</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">Apoptosis
<break></break>
Differentiation</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">Increased levels</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">Melanoma</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">Brain</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">Human/mouse</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">[
<xref rid="B60-ijms-20-06158" ref-type="bibr">60</xref>
]</td>
</tr>
<tr>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">VEGF-A</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">Angiogenesis</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">Increased levels</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">Melanoma
<break></break>
Lung</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">Brain</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">Mouse</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">[
<xref rid="B66-ijms-20-06158" ref-type="bibr">66</xref>
]</td>
</tr>
<tr>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">TSP-1</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">ECM constituent</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">Elevated levels</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">Breast</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">Bone Marrow</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">Mouse
<break></break>
Zebrafish
<break></break>
Human</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">[
<xref rid="B75-ijms-20-06158" ref-type="bibr">75</xref>
]</td>
</tr>
<tr>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">CXCL12/CXCR4</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">Embryonic development</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">Elevated levels</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">Prostate</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">Bone marrow</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">Human/Ex vivo</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">[
<xref rid="B76-ijms-20-06158" ref-type="bibr">76</xref>
]</td>
</tr>
<tr>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">CXCL5/CXCR2</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">Proliferation</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">Elevated levels</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">Breast</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">Bone</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">Mouse</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">[
<xref rid="B78-ijms-20-06158" ref-type="bibr">78</xref>
]</td>
</tr>
<tr>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">E-selectin</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">Cell adhesion</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">Elevated levels</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">Breast </td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">Bone marrow</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">Human/Mouse</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">[
<xref rid="B79-ijms-20-06158" ref-type="bibr">79</xref>
]</td>
</tr>
<tr>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">PTHRP</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">Metabolic processes</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">Elevated levels</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">Breast</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">Bone</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">Mouse</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">[
<xref rid="B83-ijms-20-06158" ref-type="bibr">83</xref>
]</td>
</tr>
</tbody>
</table>
</table-wrap>
<table-wrap id="ijms-20-06158-t002" orientation="portrait" position="float">
<object-id pub-id-type="pii">ijms-20-06158-t002_Table 2</object-id>
<label>Table 2</label>
<caption>
<p>Therapeutic approaches targeting dormancy.</p>
</caption>
<table frame="hsides" rules="groups">
<thead>
<tr>
<th align="center" valign="middle" style="border-top:solid thin;border-bottom:solid thin" rowspan="1" colspan="1">Approach</th>
<th align="center" valign="middle" style="border-top:solid thin;border-bottom:solid thin" rowspan="1" colspan="1">Mechanism</th>
<th align="center" valign="middle" style="border-top:solid thin;border-bottom:solid thin" rowspan="1" colspan="1">Therapeutic Method</th>
<th align="center" valign="middle" style="border-top:solid thin;border-bottom:solid thin" rowspan="1" colspan="1">Effect</th>
<th align="center" valign="middle" style="border-top:solid thin;border-bottom:solid thin" rowspan="1" colspan="1">Ref</th>
</tr>
</thead>
<tbody>
<tr>
<td colspan="5" align="center" valign="middle" style="border-bottom:solid thin" rowspan="1">
<bold>Prolonging Dormant State</bold>
</td>
</tr>
<tr>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">Enhancing tumor-associated microvessel induced dormancy</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">Regulation of the IFNγ/IDO1/TSP1 axis</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">Administration of TSP1</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">Reduction of proliferation of invasive cells</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">[
<xref rid="B93-ijms-20-06158" ref-type="bibr">93</xref>
]</td>
</tr>
<tr>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">Inhibiting angiogenesis</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">Activation of Angiostatin-regulated pathways</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">Upregulation of Angiostatin</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">Inhibition of tumor growth, reduction of metastases</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">[
<xref rid="B94-ijms-20-06158" ref-type="bibr">94</xref>
]</td>
</tr>
<tr>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">Regulation of expression of LPA1 that is inversely correlated with Nm23-H1 expression</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">Modulating LPA1 levels</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">Specific LPA1 inhibitor Debio-0719</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">Reduced expression of proliferative markers Ki67 and pErk, increase of p-p38 stress kinase</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">[
<xref rid="B97-ijms-20-06158" ref-type="bibr">97</xref>
]</td>
</tr>
<tr>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">Epigenetic regulation of expression of pluripotent genes</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">Upregulation of master receptor NR2F1</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">5-AZA demethylating agent</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">Increase in expression of SOX9, RARβ, and NANOG </td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">[
<xref rid="B41-ijms-20-06158" ref-type="bibr">41</xref>
]</td>
</tr>
<tr>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">Tumor blood vessel antigens</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">Activation of T-cell dependent immunity</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">Vaccines against TBVA</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">Tumor regression</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">[
<xref rid="B104-ijms-20-06158" ref-type="bibr">104</xref>
]</td>
</tr>
<tr>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">Combination of immune therapy with Adriamycin</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">Activation of T cells and NK cells against cancer cells</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">Tumor-sensitized T cells and CD25(+) NKT cells</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">Sensitization of dormant cells to immunoediting, prolonged animal survival</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">[
<xref rid="B106-ijms-20-06158" ref-type="bibr">106</xref>
]</td>
</tr>
<tr>
<td colspan="5" align="center" valign="middle" style="border-bottom:solid thin" rowspan="1">
<bold>Elimination of Dormant Cells</bold>
</td>
</tr>
<tr>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">Inhibition of cell cycle </td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">Prevention of COL1-induced proliferation and upregulation of p27</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">Saracatinib with ERK1/2 inhibitor</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">Apoptotic cell death</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">[
<xref rid="B95-ijms-20-06158" ref-type="bibr">95</xref>
]</td>
</tr>
<tr>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">Activation of T cells against cancer</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">Induction of NK cells to express PDL-1</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">Vaccination with cells transduced with CXCL10</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">Destruction of cancer cells by immune system</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">[
<xref rid="B105-ijms-20-06158" ref-type="bibr">105</xref>
]</td>
</tr>
<tr>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">Reduce inflammation at metastatic site</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">Reducing the pro-metastatic effect of GM-CSF and IL-5</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">Low-fat diet</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">Decreased metastatic burden</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">[
<xref rid="B108-ijms-20-06158" ref-type="bibr">108</xref>
]</td>
</tr>
<tr>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">Reduction of systemic inflammation</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">Inflammation</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">Perioperative treatment with NSAIDs</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">Decreased metastatic burden</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">[
<xref rid="B109-ijms-20-06158" ref-type="bibr">109</xref>
]</td>
</tr>
<tr>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">Induction of mitochondrial dysfunction</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">Reduced mitochondrial respiration, leading to bioenergetic catastrophe</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">Small molecule VLX600 </td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">Tumor cell death</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">[
<xref rid="B110-ijms-20-06158" ref-type="bibr">110</xref>
]</td>
</tr>
<tr>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">Reducing resistance induced by the JAK/STAT pathways</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">Inhibition of SOCS1 and IL-3</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">Specific inhibitors against SOCS1 and IL-3</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">Apoptosis</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">[
<xref rid="B111-ijms-20-06158" ref-type="bibr">111</xref>
]</td>
</tr>
<tr>
<td colspan="5" align="center" valign="middle" style="border-bottom:solid thin" rowspan="1">
<bold>Sensitization of Dormant Cells to Chemotherapy</bold>
</td>
</tr>
<tr>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">Blocking communication of cancer cells with microenvironment</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">Disrupting CXCL12/
<break></break>
CXCR4 binding</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">CXCR4 antagonists</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">DTCs are mobilized from the BM, activate cell cycle </td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">[
<xref rid="B92-ijms-20-06158" ref-type="bibr">92</xref>
]</td>
</tr>
<tr>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">Blocking interaction with microenvironment </td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">miRNA contents of exosomes</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">Administration of MSC loaded with antagomiR222/223</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">Breast cancer cells become sensitive to carboplatin</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">[
<xref rid="B96-ijms-20-06158" ref-type="bibr">96</xref>
]</td>
</tr>
<tr>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">Cancer stem cells</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">Modulating Fra-1 levels</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">Enhanced expression of Fra-1</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">Decreased tumor incidence, chemosensitivity</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">[
<xref rid="B98-ijms-20-06158" ref-type="bibr">98</xref>
]</td>
</tr>
</tbody>
</table>
</table-wrap>
</floats-group>
</pmc>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/ChloroquineV1/Data/Pmc/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000A270 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Pmc/Corpus/biblio.hfd -nk 000A270 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    ChloroquineV1
   |flux=    Pmc
   |étape=   Corpus
   |type=    RBID
   |clé=     
   |texte=   
}}

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Wed Mar 25 22:43:59 2020. Site generation: Sun Jan 31 12:44:45 2021