Serveur d'exploration Chloroquine

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Novel and Alternative Targets Against Breast Cancer Stemness to Combat Chemoresistance

Identifieur interne : 000983 ( Pmc/Corpus ); précédent : 000982; suivant : 000984

Novel and Alternative Targets Against Breast Cancer Stemness to Combat Chemoresistance

Auteurs : Sangita Sridharan ; Cory M. Howard ; Augustus M. C. Tilley ; Boopathi Subramaniyan ; Amit K. Tiwari ; Randall J. Ruch ; Dayanidhi Raman

Source :

RBID : PMC:6805781

Abstract

Breast cancer stem cells (BCSCs) play a vital role in tumor progression and metastasis. They are heterogeneous and inherently radio- and chemoresistant. They have the ability to self-renew and differentiate into non-BCSCs. These determinants of BCSCs including the plasticity between the mesenchymal and epithelial phenotypes often leads to minimal residual disease (MRD), tumor relapse, and therapy failure. By studying the resistance mechanisms in BCSCs, a combinatorial therapy can be formulated to co-target BCSCs and bulk tumor cells. This review addresses breast cancer stemness and molecular underpinnings of how the cancer stemness can lead to pharmacological resistance. This might occur through rewiring of signaling pathways and modulated expression of various targets that support survival and self-renewal, clonogenicity, and multi-lineage differentiation into heterogeneous bulk tumor cells following chemotherapy. We explore emerging novel and alternative molecular targets against BC stemness and chemoresistance involving survival, drug efflux, metabolism, proliferation, cell migration, invasion, and metastasis. Strategic targeting of such vulnerabilities in BCSCs may overcome the chemoresistance and increase the longevity of the metastatic breast cancer patients.


Url:
DOI: 10.3389/fonc.2019.01003
PubMed: 31681564
PubMed Central: 6805781

Links to Exploration step

PMC:6805781

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Novel and Alternative Targets Against Breast Cancer Stemness to Combat Chemoresistance</title>
<author>
<name sortKey="Sridharan, Sangita" sort="Sridharan, Sangita" uniqKey="Sridharan S" first="Sangita" last="Sridharan">Sangita Sridharan</name>
<affiliation>
<nlm:aff id="aff1">
<institution>Department of Cancer Biology, University of Toledo</institution>
,
<addr-line>Toledo, OH</addr-line>
,
<country>United States</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Howard, Cory M" sort="Howard, Cory M" uniqKey="Howard C" first="Cory M." last="Howard">Cory M. Howard</name>
<affiliation>
<nlm:aff id="aff1">
<institution>Department of Cancer Biology, University of Toledo</institution>
,
<addr-line>Toledo, OH</addr-line>
,
<country>United States</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Tilley, Augustus M C" sort="Tilley, Augustus M C" uniqKey="Tilley A" first="Augustus M. C." last="Tilley">Augustus M. C. Tilley</name>
<affiliation>
<nlm:aff id="aff1">
<institution>Department of Cancer Biology, University of Toledo</institution>
,
<addr-line>Toledo, OH</addr-line>
,
<country>United States</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Subramaniyan, Boopathi" sort="Subramaniyan, Boopathi" uniqKey="Subramaniyan B" first="Boopathi" last="Subramaniyan">Boopathi Subramaniyan</name>
<affiliation>
<nlm:aff id="aff1">
<institution>Department of Cancer Biology, University of Toledo</institution>
,
<addr-line>Toledo, OH</addr-line>
,
<country>United States</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Tiwari, Amit K" sort="Tiwari, Amit K" uniqKey="Tiwari A" first="Amit K." last="Tiwari">Amit K. Tiwari</name>
<affiliation>
<nlm:aff id="aff2">
<institution>Department of Pharmacology and Experimental Therapeutics, University of Toledo</institution>
,
<addr-line>Toledo, OH</addr-line>
,
<country>United States</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Ruch, Randall J" sort="Ruch, Randall J" uniqKey="Ruch R" first="Randall J." last="Ruch">Randall J. Ruch</name>
<affiliation>
<nlm:aff id="aff1">
<institution>Department of Cancer Biology, University of Toledo</institution>
,
<addr-line>Toledo, OH</addr-line>
,
<country>United States</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Raman, Dayanidhi" sort="Raman, Dayanidhi" uniqKey="Raman D" first="Dayanidhi" last="Raman">Dayanidhi Raman</name>
<affiliation>
<nlm:aff id="aff1">
<institution>Department of Cancer Biology, University of Toledo</institution>
,
<addr-line>Toledo, OH</addr-line>
,
<country>United States</country>
</nlm:aff>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PMC</idno>
<idno type="pmid">31681564</idno>
<idno type="pmc">6805781</idno>
<idno type="url">http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6805781</idno>
<idno type="RBID">PMC:6805781</idno>
<idno type="doi">10.3389/fonc.2019.01003</idno>
<date when="2019">2019</date>
<idno type="wicri:Area/Pmc/Corpus">000983</idno>
<idno type="wicri:explorRef" wicri:stream="Pmc" wicri:step="Corpus" wicri:corpus="PMC">000983</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a" type="main">Novel and Alternative Targets Against Breast Cancer Stemness to Combat Chemoresistance</title>
<author>
<name sortKey="Sridharan, Sangita" sort="Sridharan, Sangita" uniqKey="Sridharan S" first="Sangita" last="Sridharan">Sangita Sridharan</name>
<affiliation>
<nlm:aff id="aff1">
<institution>Department of Cancer Biology, University of Toledo</institution>
,
<addr-line>Toledo, OH</addr-line>
,
<country>United States</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Howard, Cory M" sort="Howard, Cory M" uniqKey="Howard C" first="Cory M." last="Howard">Cory M. Howard</name>
<affiliation>
<nlm:aff id="aff1">
<institution>Department of Cancer Biology, University of Toledo</institution>
,
<addr-line>Toledo, OH</addr-line>
,
<country>United States</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Tilley, Augustus M C" sort="Tilley, Augustus M C" uniqKey="Tilley A" first="Augustus M. C." last="Tilley">Augustus M. C. Tilley</name>
<affiliation>
<nlm:aff id="aff1">
<institution>Department of Cancer Biology, University of Toledo</institution>
,
<addr-line>Toledo, OH</addr-line>
,
<country>United States</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Subramaniyan, Boopathi" sort="Subramaniyan, Boopathi" uniqKey="Subramaniyan B" first="Boopathi" last="Subramaniyan">Boopathi Subramaniyan</name>
<affiliation>
<nlm:aff id="aff1">
<institution>Department of Cancer Biology, University of Toledo</institution>
,
<addr-line>Toledo, OH</addr-line>
,
<country>United States</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Tiwari, Amit K" sort="Tiwari, Amit K" uniqKey="Tiwari A" first="Amit K." last="Tiwari">Amit K. Tiwari</name>
<affiliation>
<nlm:aff id="aff2">
<institution>Department of Pharmacology and Experimental Therapeutics, University of Toledo</institution>
,
<addr-line>Toledo, OH</addr-line>
,
<country>United States</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Ruch, Randall J" sort="Ruch, Randall J" uniqKey="Ruch R" first="Randall J." last="Ruch">Randall J. Ruch</name>
<affiliation>
<nlm:aff id="aff1">
<institution>Department of Cancer Biology, University of Toledo</institution>
,
<addr-line>Toledo, OH</addr-line>
,
<country>United States</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Raman, Dayanidhi" sort="Raman, Dayanidhi" uniqKey="Raman D" first="Dayanidhi" last="Raman">Dayanidhi Raman</name>
<affiliation>
<nlm:aff id="aff1">
<institution>Department of Cancer Biology, University of Toledo</institution>
,
<addr-line>Toledo, OH</addr-line>
,
<country>United States</country>
</nlm:aff>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Frontiers in Oncology</title>
<idno type="eISSN">2234-943X</idno>
<imprint>
<date when="2019">2019</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<p>Breast cancer stem cells (BCSCs) play a vital role in tumor progression and metastasis. They are heterogeneous and inherently radio- and chemoresistant. They have the ability to self-renew and differentiate into non-BCSCs. These determinants of BCSCs including the plasticity between the mesenchymal and epithelial phenotypes often leads to minimal residual disease (MRD), tumor relapse, and therapy failure. By studying the resistance mechanisms in BCSCs, a combinatorial therapy can be formulated to co-target BCSCs and bulk tumor cells. This review addresses breast cancer stemness and molecular underpinnings of how the cancer stemness can lead to pharmacological resistance. This might occur through rewiring of signaling pathways and modulated expression of various targets that support survival and self-renewal, clonogenicity, and multi-lineage differentiation into heterogeneous bulk tumor cells following chemotherapy. We explore emerging novel and alternative molecular targets against BC stemness and chemoresistance involving survival, drug efflux, metabolism, proliferation, cell migration, invasion, and metastasis. Strategic targeting of such vulnerabilities in BCSCs may overcome the chemoresistance and increase the longevity of the metastatic breast cancer patients.</p>
</div>
</front>
<back>
<div1 type="bibliography">
<listBibl>
<biblStruct>
<analytic>
<author>
<name sortKey="Siegel, Rl" uniqKey="Siegel R">RL Siegel</name>
</author>
<author>
<name sortKey="Miller, Kd" uniqKey="Miller K">KD Miller</name>
</author>
<author>
<name sortKey="Jemal, A" uniqKey="Jemal A">A Jemal</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Lehmann, Bd" uniqKey="Lehmann B">BD Lehmann</name>
</author>
<author>
<name sortKey="Bauer, Ja" uniqKey="Bauer J">JA Bauer</name>
</author>
<author>
<name sortKey="Chen, X" uniqKey="Chen X">X Chen</name>
</author>
<author>
<name sortKey="Sanders, Me" uniqKey="Sanders M">ME Sanders</name>
</author>
<author>
<name sortKey="Chakravarthy, Ab" uniqKey="Chakravarthy A">AB Chakravarthy</name>
</author>
<author>
<name sortKey="Shyr, Y" uniqKey="Shyr Y">Y Shyr</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Lehmann, Bd" uniqKey="Lehmann B">BD Lehmann</name>
</author>
<author>
<name sortKey="Pietenpol, Ja" uniqKey="Pietenpol J">JA Pietenpol</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Masuda, H" uniqKey="Masuda H">H Masuda</name>
</author>
<author>
<name sortKey="Baggerly, Ka" uniqKey="Baggerly K">KA Baggerly</name>
</author>
<author>
<name sortKey="Wang, Y" uniqKey="Wang Y">Y Wang</name>
</author>
<author>
<name sortKey="Zhang, Y" uniqKey="Zhang Y">Y Zhang</name>
</author>
<author>
<name sortKey="Gonzalez Angulo, Am" uniqKey="Gonzalez Angulo A">AM Gonzalez-Angulo</name>
</author>
<author>
<name sortKey="Meric Bernstam, F" uniqKey="Meric Bernstam F">F Meric-Bernstam</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Shah, Sp" uniqKey="Shah S">SP Shah</name>
</author>
<author>
<name sortKey="Roth, A" uniqKey="Roth A">A Roth</name>
</author>
<author>
<name sortKey="Goya, R" uniqKey="Goya R">R Goya</name>
</author>
<author>
<name sortKey="Oloumi, A" uniqKey="Oloumi A">A Oloumi</name>
</author>
<author>
<name sortKey="Ha, G" uniqKey="Ha G">G Ha</name>
</author>
<author>
<name sortKey="Zhao, Y" uniqKey="Zhao Y">Y Zhao</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Valent, P" uniqKey="Valent P">P Valent</name>
</author>
<author>
<name sortKey="Bonnet, D" uniqKey="Bonnet D">D Bonnet</name>
</author>
<author>
<name sortKey="Wohrer, S" uniqKey="Wohrer S">S Wohrer</name>
</author>
<author>
<name sortKey="Andreeff, M" uniqKey="Andreeff M">M Andreeff</name>
</author>
<author>
<name sortKey="Copland, M" uniqKey="Copland M">M Copland</name>
</author>
<author>
<name sortKey="Chomienne, C" uniqKey="Chomienne C">C Chomienne</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Brooks, Md" uniqKey="Brooks M">MD Brooks</name>
</author>
<author>
<name sortKey="Burness, Ml" uniqKey="Burness M">ML Burness</name>
</author>
<author>
<name sortKey="Wicha, Ms" uniqKey="Wicha M">MS Wicha</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Yates, Lr" uniqKey="Yates L">LR Yates</name>
</author>
<author>
<name sortKey="Gerstung, M" uniqKey="Gerstung M">M Gerstung</name>
</author>
<author>
<name sortKey="Knappskog, S" uniqKey="Knappskog S">S Knappskog</name>
</author>
<author>
<name sortKey="Desmedt, C" uniqKey="Desmedt C">C Desmedt</name>
</author>
<author>
<name sortKey="Gundem, G" uniqKey="Gundem G">G Gundem</name>
</author>
<author>
<name sortKey="Van Loo, P" uniqKey="Van Loo P">P Van Loo</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Yang, F" uniqKey="Yang F">F Yang</name>
</author>
<author>
<name sortKey="Wang, Y" uniqKey="Wang Y">Y Wang</name>
</author>
<author>
<name sortKey="Li, Q" uniqKey="Li Q">Q Li</name>
</author>
<author>
<name sortKey="Cao, L" uniqKey="Cao L">L Cao</name>
</author>
<author>
<name sortKey="Sun, Z" uniqKey="Sun Z">Z Sun</name>
</author>
<author>
<name sortKey="Jin, J" uniqKey="Jin J">J Jin</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Yates, Lr" uniqKey="Yates L">LR Yates</name>
</author>
<author>
<name sortKey="Knappskog, S" uniqKey="Knappskog S">S Knappskog</name>
</author>
<author>
<name sortKey="Wedge, D" uniqKey="Wedge D">D Wedge</name>
</author>
<author>
<name sortKey="Farmery, Jhr" uniqKey="Farmery J">JHR Farmery</name>
</author>
<author>
<name sortKey="Gonzalez, S" uniqKey="Gonzalez S">S Gonzalez</name>
</author>
<author>
<name sortKey="Martincorena, I" uniqKey="Martincorena I">I Martincorena</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Echeverria, Gv" uniqKey="Echeverria G">GV Echeverria</name>
</author>
<author>
<name sortKey="Powell, E" uniqKey="Powell E">E Powell</name>
</author>
<author>
<name sortKey="Seth, S" uniqKey="Seth S">S Seth</name>
</author>
<author>
<name sortKey="Ge, Z" uniqKey="Ge Z">Z Ge</name>
</author>
<author>
<name sortKey="Carugo, A" uniqKey="Carugo A">A Carugo</name>
</author>
<author>
<name sortKey="Bristow, C" uniqKey="Bristow C">C Bristow</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Denkert, C" uniqKey="Denkert C">C Denkert</name>
</author>
<author>
<name sortKey="Liedtke, C" uniqKey="Liedtke C">C Liedtke</name>
</author>
<author>
<name sortKey="Tutt, A" uniqKey="Tutt A">A Tutt</name>
</author>
<author>
<name sortKey="Von Minckwitz, G" uniqKey="Von Minckwitz G">G von Minckwitz</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Geyer, Fc" uniqKey="Geyer F">FC Geyer</name>
</author>
<author>
<name sortKey="Pareja, F" uniqKey="Pareja F">F Pareja</name>
</author>
<author>
<name sortKey="Weigelt, B" uniqKey="Weigelt B">B Weigelt</name>
</author>
<author>
<name sortKey="Rakha, E" uniqKey="Rakha E">E Rakha</name>
</author>
<author>
<name sortKey="Ellis, Io" uniqKey="Ellis I">IO Ellis</name>
</author>
<author>
<name sortKey="Schnitt, Sj" uniqKey="Schnitt S">SJ Schnitt</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Al Hajj, M" uniqKey="Al Hajj M">M Al-Hajj</name>
</author>
<author>
<name sortKey="Becker, Mw" uniqKey="Becker M">MW Becker</name>
</author>
<author>
<name sortKey="Wicha, M" uniqKey="Wicha M">M Wicha</name>
</author>
<author>
<name sortKey="Weissman, I" uniqKey="Weissman I">I Weissman</name>
</author>
<author>
<name sortKey="Clarke, Mf" uniqKey="Clarke M">MF Clarke</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Pinto, Ca" uniqKey="Pinto C">CA Pinto</name>
</author>
<author>
<name sortKey="Widodo, E" uniqKey="Widodo E">E Widodo</name>
</author>
<author>
<name sortKey="Waltham, M" uniqKey="Waltham M">M Waltham</name>
</author>
<author>
<name sortKey="Thompson, Ew" uniqKey="Thompson E">EW Thompson</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Luo, M" uniqKey="Luo M">M Luo</name>
</author>
<author>
<name sortKey="Wicha, Ms" uniqKey="Wicha M">MS Wicha</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Banerjee, A" uniqKey="Banerjee A">A Banerjee</name>
</author>
<author>
<name sortKey="Birts, Cn" uniqKey="Birts C">CN Birts</name>
</author>
<author>
<name sortKey="Darley, M" uniqKey="Darley M">M Darley</name>
</author>
<author>
<name sortKey="Parker, R" uniqKey="Parker R">R Parker</name>
</author>
<author>
<name sortKey="Mirnezami, Ah" uniqKey="Mirnezami A">AH Mirnezami</name>
</author>
<author>
<name sortKey="West, J" uniqKey="West J">J West</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Luo, M" uniqKey="Luo M">M Luo</name>
</author>
<author>
<name sortKey="Wicha, Ms" uniqKey="Wicha M">MS Wicha</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Galdiero, Mr" uniqKey="Galdiero M">MR Galdiero</name>
</author>
<author>
<name sortKey="Marone, G" uniqKey="Marone G">G Marone</name>
</author>
<author>
<name sortKey="Mantovani, A" uniqKey="Mantovani A">A Mantovani</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Galdiero, Mr" uniqKey="Galdiero M">MR Galdiero</name>
</author>
<author>
<name sortKey="Varricchi, G" uniqKey="Varricchi G">G Varricchi</name>
</author>
<author>
<name sortKey="Loffredo, S" uniqKey="Loffredo S">S Loffredo</name>
</author>
<author>
<name sortKey="Mantovani, A" uniqKey="Mantovani A">A Mantovani</name>
</author>
<author>
<name sortKey="Marone, G" uniqKey="Marone G">G Marone</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Eiro, N" uniqKey="Eiro N">N Eiro</name>
</author>
<author>
<name sortKey="Gonzalez, Lo" uniqKey="Gonzalez L">LO Gonzalez</name>
</author>
<author>
<name sortKey="Fraile, M" uniqKey="Fraile M">M Fraile</name>
</author>
<author>
<name sortKey="Cid, S" uniqKey="Cid S">S Cid</name>
</author>
<author>
<name sortKey="Schneider, J" uniqKey="Schneider J">J Schneider</name>
</author>
<author>
<name sortKey="Vizoso, Fj" uniqKey="Vizoso F">FJ Vizoso</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Saygin, C" uniqKey="Saygin C">C Saygin</name>
</author>
<author>
<name sortKey="Matei, D" uniqKey="Matei D">D Matei</name>
</author>
<author>
<name sortKey="Majeti, R" uniqKey="Majeti R">R Majeti</name>
</author>
<author>
<name sortKey="Reizes, O" uniqKey="Reizes O">O Reizes</name>
</author>
<author>
<name sortKey="Lathia, Jd" uniqKey="Lathia J">JD Lathia</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Sharick, Jt" uniqKey="Sharick J">JT Sharick</name>
</author>
<author>
<name sortKey="Jeffery, Jj" uniqKey="Jeffery J">JJ Jeffery</name>
</author>
<author>
<name sortKey="Karim, Mr" uniqKey="Karim M">MR Karim</name>
</author>
<author>
<name sortKey="Walsh, Cm" uniqKey="Walsh C">CM Walsh</name>
</author>
<author>
<name sortKey="Esbona, K" uniqKey="Esbona K">K Esbona</name>
</author>
<author>
<name sortKey="Cook, Rs" uniqKey="Cook R">RS Cook</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Bocci, F" uniqKey="Bocci F">F Bocci</name>
</author>
<author>
<name sortKey="Gearhart Serna, L" uniqKey="Gearhart Serna L">L Gearhart-Serna</name>
</author>
<author>
<name sortKey="Boareto, M" uniqKey="Boareto M">M Boareto</name>
</author>
<author>
<name sortKey="Ribeiro, M" uniqKey="Ribeiro M">M Ribeiro</name>
</author>
<author>
<name sortKey="Ben Jacob, E" uniqKey="Ben Jacob E">E Ben-Jacob</name>
</author>
<author>
<name sortKey="Devi, Gr" uniqKey="Devi G">GR Devi</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Fiorillo, M" uniqKey="Fiorillo M">M Fiorillo</name>
</author>
<author>
<name sortKey="Sotgia, F" uniqKey="Sotgia F">F Sotgia</name>
</author>
<author>
<name sortKey="Lisanti, Mp" uniqKey="Lisanti M">MP Lisanti</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ye, S" uniqKey="Ye S">S Ye</name>
</author>
<author>
<name sortKey="Ding, Yf" uniqKey="Ding Y">YF Ding</name>
</author>
<author>
<name sortKey="Jia, Wh" uniqKey="Jia W">WH Jia</name>
</author>
<author>
<name sortKey="Liu, Xl" uniqKey="Liu X">XL Liu</name>
</author>
<author>
<name sortKey="Feng, Jy" uniqKey="Feng J">JY Feng</name>
</author>
<author>
<name sortKey="Zhu, Q" uniqKey="Zhu Q">Q Zhu</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Liu, S" uniqKey="Liu S">S Liu</name>
</author>
<author>
<name sortKey="Cong, Y" uniqKey="Cong Y">Y Cong</name>
</author>
<author>
<name sortKey="Wang, D" uniqKey="Wang D">D Wang</name>
</author>
<author>
<name sortKey="Sun, Y" uniqKey="Sun Y">Y Sun</name>
</author>
<author>
<name sortKey="Deng, L" uniqKey="Deng L">L Deng</name>
</author>
<author>
<name sortKey="Liu, Y" uniqKey="Liu Y">Y Liu</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Bierie, B" uniqKey="Bierie B">B Bierie</name>
</author>
<author>
<name sortKey="Pierce, Se" uniqKey="Pierce S">SE Pierce</name>
</author>
<author>
<name sortKey="Kroeger, C" uniqKey="Kroeger C">C Kroeger</name>
</author>
<author>
<name sortKey="Stover, Dg" uniqKey="Stover D">DG Stover</name>
</author>
<author>
<name sortKey="Pattabiraman, Dr" uniqKey="Pattabiraman D">DR Pattabiraman</name>
</author>
<author>
<name sortKey="Thiru, P" uniqKey="Thiru P">P Thiru</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Sehl, Me" uniqKey="Sehl M">ME Sehl</name>
</author>
<author>
<name sortKey="Wicha, Ms" uniqKey="Wicha M">MS Wicha</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Baslan, T" uniqKey="Baslan T">T Baslan</name>
</author>
<author>
<name sortKey="Hicks, J" uniqKey="Hicks J">J Hicks</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Gao, R" uniqKey="Gao R">R Gao</name>
</author>
<author>
<name sortKey="Kim, C" uniqKey="Kim C">C Kim</name>
</author>
<author>
<name sortKey="Sei, E" uniqKey="Sei E">E Sei</name>
</author>
<author>
<name sortKey="Foukakis, T" uniqKey="Foukakis T">T Foukakis</name>
</author>
<author>
<name sortKey="Crosetto, N" uniqKey="Crosetto N">N Crosetto</name>
</author>
<author>
<name sortKey="Chan, Lk" uniqKey="Chan L">LK Chan</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Yang, Z" uniqKey="Yang Z">Z Yang</name>
</author>
<author>
<name sortKey="Li, C" uniqKey="Li C">C Li</name>
</author>
<author>
<name sortKey="Fan, Z" uniqKey="Fan Z">Z Fan</name>
</author>
<author>
<name sortKey="Liu, H" uniqKey="Liu H">H Liu</name>
</author>
<author>
<name sortKey="Zhang, X" uniqKey="Zhang X">X Zhang</name>
</author>
<author>
<name sortKey="Cai, Z" uniqKey="Cai Z">Z Cai</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Azizi, E" uniqKey="Azizi E">E Azizi</name>
</author>
<author>
<name sortKey="Carr, Aj" uniqKey="Carr A">AJ Carr</name>
</author>
<author>
<name sortKey="Plitas, G" uniqKey="Plitas G">G Plitas</name>
</author>
<author>
<name sortKey="Cornish, Ae" uniqKey="Cornish A">AE Cornish</name>
</author>
<author>
<name sortKey="Konopacki, C" uniqKey="Konopacki C">C Konopacki</name>
</author>
<author>
<name sortKey="Prabhakaran, S" uniqKey="Prabhakaran S">S Prabhakaran</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Colacino, Ja" uniqKey="Colacino J">JA Colacino</name>
</author>
<author>
<name sortKey="Azizi, E" uniqKey="Azizi E">E Azizi</name>
</author>
<author>
<name sortKey="Brooks, Md" uniqKey="Brooks M">MD Brooks</name>
</author>
<author>
<name sortKey="Harouaka, R" uniqKey="Harouaka R">R Harouaka</name>
</author>
<author>
<name sortKey="Fouladdel, S" uniqKey="Fouladdel S">S Fouladdel</name>
</author>
<author>
<name sortKey="Mcdermott, Sp" uniqKey="Mcdermott S">SP McDermott</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Feng, W" uniqKey="Feng W">W Feng</name>
</author>
<author>
<name sortKey="Li, Y" uniqKey="Li Y">Y Li</name>
</author>
<author>
<name sortKey="Chu, J" uniqKey="Chu J">J Chu</name>
</author>
<author>
<name sortKey="Li, J" uniqKey="Li J">J Li</name>
</author>
<author>
<name sortKey="Zhang, Y" uniqKey="Zhang Y">Y Zhang</name>
</author>
<author>
<name sortKey="Ding, X" uniqKey="Ding X">X Ding</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Sun, C" uniqKey="Sun C">C Sun</name>
</author>
<author>
<name sortKey="Fu, Z" uniqKey="Fu Z">Z Fu</name>
</author>
<author>
<name sortKey="Wang, S" uniqKey="Wang S">S Wang</name>
</author>
<author>
<name sortKey="Li, J" uniqKey="Li J">J Li</name>
</author>
<author>
<name sortKey="Li, Y" uniqKey="Li Y">Y Li</name>
</author>
<author>
<name sortKey="Zhang, Y" uniqKey="Zhang Y">Y Zhang</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Sun, C" uniqKey="Sun C">C Sun</name>
</author>
<author>
<name sortKey="Yang, F" uniqKey="Yang F">F Yang</name>
</author>
<author>
<name sortKey="Zhang, Y" uniqKey="Zhang Y">Y Zhang</name>
</author>
<author>
<name sortKey="Chu, J" uniqKey="Chu J">J Chu</name>
</author>
<author>
<name sortKey="Wang, J" uniqKey="Wang J">J Wang</name>
</author>
<author>
<name sortKey="Wang, Y" uniqKey="Wang Y">Y Wang</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Cui, Y" uniqKey="Cui Y">Y Cui</name>
</author>
<author>
<name sortKey="Huang, Y" uniqKey="Huang Y">Y Huang</name>
</author>
<author>
<name sortKey="Wu, X" uniqKey="Wu X">X Wu</name>
</author>
<author>
<name sortKey="Zheng, M" uniqKey="Zheng M">M Zheng</name>
</author>
<author>
<name sortKey="Xia, Y" uniqKey="Xia Y">Y Xia</name>
</author>
<author>
<name sortKey="Fu, Z" uniqKey="Fu Z">Z Fu</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Al Hajj, M" uniqKey="Al Hajj M">M Al-Hajj</name>
</author>
<author>
<name sortKey="Wicha, Ms" uniqKey="Wicha M">MS Wicha</name>
</author>
<author>
<name sortKey="Benito Hernandez, A" uniqKey="Benito Hernandez A">A Benito-Hernandez</name>
</author>
<author>
<name sortKey="Morrison, Sj" uniqKey="Morrison S">SJ Morrison</name>
</author>
<author>
<name sortKey="Clarke, Mf" uniqKey="Clarke M">MF Clarke</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Sansone, P" uniqKey="Sansone P">P Sansone</name>
</author>
<author>
<name sortKey="Ceccarelli, C" uniqKey="Ceccarelli C">C Ceccarelli</name>
</author>
<author>
<name sortKey="Berishaj, M" uniqKey="Berishaj M">M Berishaj</name>
</author>
<author>
<name sortKey="Chang, Q" uniqKey="Chang Q">Q Chang</name>
</author>
<author>
<name sortKey="Rajasekhar, Vk" uniqKey="Rajasekhar V">VK Rajasekhar</name>
</author>
<author>
<name sortKey="Perna, F" uniqKey="Perna F">F Perna</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Sansone, P" uniqKey="Sansone P">P Sansone</name>
</author>
<author>
<name sortKey="Berishaj, M" uniqKey="Berishaj M">M Berishaj</name>
</author>
<author>
<name sortKey="Rajasekhar, Vk" uniqKey="Rajasekhar V">VK Rajasekhar</name>
</author>
<author>
<name sortKey="Ceccarelli, C" uniqKey="Ceccarelli C">C Ceccarelli</name>
</author>
<author>
<name sortKey="Chang, Q" uniqKey="Chang Q">Q Chang</name>
</author>
<author>
<name sortKey="Strillacci, A" uniqKey="Strillacci A">A Strillacci</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Gomez Miragaya, J" uniqKey="Gomez Miragaya J">J Gomez-Miragaya</name>
</author>
<author>
<name sortKey="Palafox, M" uniqKey="Palafox M">M Palafox</name>
</author>
<author>
<name sortKey="Pare, L" uniqKey="Pare L">L Pare</name>
</author>
<author>
<name sortKey="Yoldi, G" uniqKey="Yoldi G">G Yoldi</name>
</author>
<author>
<name sortKey="Ferrer, I" uniqKey="Ferrer I">I Ferrer</name>
</author>
<author>
<name sortKey="Vila, S" uniqKey="Vila S">S Vila</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Isman, Fk" uniqKey="Isman F">FK Isman</name>
</author>
<author>
<name sortKey="Kucukgergin, C" uniqKey="Kucukgergin C">C Kucukgergin</name>
</author>
<author>
<name sortKey="Dasdemir, S" uniqKey="Dasdemir S">S Dasdemir</name>
</author>
<author>
<name sortKey="Cakmakoglu, B" uniqKey="Cakmakoglu B">B Cakmakoglu</name>
</author>
<author>
<name sortKey="Sanli, O" uniqKey="Sanli O">O Sanli</name>
</author>
<author>
<name sortKey="Seckin, S" uniqKey="Seckin S">S Seckin</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Zhang, H" uniqKey="Zhang H">H Zhang</name>
</author>
<author>
<name sortKey="Brown, Rl" uniqKey="Brown R">RL Brown</name>
</author>
<author>
<name sortKey="Wei, Y" uniqKey="Wei Y">Y Wei</name>
</author>
<author>
<name sortKey="Zhao, P" uniqKey="Zhao P">P Zhao</name>
</author>
<author>
<name sortKey="Liu, S" uniqKey="Liu S">S Liu</name>
</author>
<author>
<name sortKey="Liu, X" uniqKey="Liu X">X Liu</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Chen, Y" uniqKey="Chen Y">Y Chen</name>
</author>
<author>
<name sortKey="Shi, L" uniqKey="Shi L">L Shi</name>
</author>
<author>
<name sortKey="Zhang, L" uniqKey="Zhang L">L Zhang</name>
</author>
<author>
<name sortKey="Li, R" uniqKey="Li R">R Li</name>
</author>
<author>
<name sortKey="Liang, J" uniqKey="Liang J">J Liang</name>
</author>
<author>
<name sortKey="Yu, W" uniqKey="Yu W">W Yu</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Weina, K" uniqKey="Weina K">K Weina</name>
</author>
<author>
<name sortKey="Utikal, J" uniqKey="Utikal J">J Utikal</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Liu, P" uniqKey="Liu P">P Liu</name>
</author>
<author>
<name sortKey="Tang, H" uniqKey="Tang H">H Tang</name>
</author>
<author>
<name sortKey="Song, C" uniqKey="Song C">C Song</name>
</author>
<author>
<name sortKey="Wang, J" uniqKey="Wang J">J Wang</name>
</author>
<author>
<name sortKey="Chen, B" uniqKey="Chen B">B Chen</name>
</author>
<author>
<name sortKey="Huang, X" uniqKey="Huang X">X Huang</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Piva, M" uniqKey="Piva M">M Piva</name>
</author>
<author>
<name sortKey="Domenici, G" uniqKey="Domenici G">G Domenici</name>
</author>
<author>
<name sortKey="Iriondo, O" uniqKey="Iriondo O">O Iriondo</name>
</author>
<author>
<name sortKey="Rabano, M" uniqKey="Rabano M">M Rabano</name>
</author>
<author>
<name sortKey="Simoes, Bm" uniqKey="Simoes B">BM Simoes</name>
</author>
<author>
<name sortKey="Comaills, V" uniqKey="Comaills V">V Comaills</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Domenici, G" uniqKey="Domenici G">G Domenici</name>
</author>
<author>
<name sortKey="Aurrekoetxea Rodriguez, I" uniqKey="Aurrekoetxea Rodriguez I">I Aurrekoetxea-Rodriguez</name>
</author>
<author>
<name sortKey="Simoes, Bm" uniqKey="Simoes B">BM Simoes</name>
</author>
<author>
<name sortKey="Rabano, M" uniqKey="Rabano M">M Rabano</name>
</author>
<author>
<name sortKey="Lee, Sy" uniqKey="Lee S">SY Lee</name>
</author>
<author>
<name sortKey="Millan, Js" uniqKey="Millan J">JS Millan</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Xue, Y" uniqKey="Xue Y">Y Xue</name>
</author>
<author>
<name sortKey="Lai, L" uniqKey="Lai L">L Lai</name>
</author>
<author>
<name sortKey="Lian, W" uniqKey="Lian W">W Lian</name>
</author>
<author>
<name sortKey="Tu, X" uniqKey="Tu X">X Tu</name>
</author>
<author>
<name sortKey="Zhou, J" uniqKey="Zhou J">J Zhou</name>
</author>
<author>
<name sortKey="Dong, P" uniqKey="Dong P">P Dong</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ezeh, Ui" uniqKey="Ezeh U">UI Ezeh</name>
</author>
<author>
<name sortKey="Turek, Pj" uniqKey="Turek P">PJ Turek</name>
</author>
<author>
<name sortKey="Reijo, Ra" uniqKey="Reijo R">RA Reijo</name>
</author>
<author>
<name sortKey="Clark, At" uniqKey="Clark A">AT Clark</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Wang, Ml" uniqKey="Wang M">ML Wang</name>
</author>
<author>
<name sortKey="Chiou, Sh" uniqKey="Chiou S">SH Chiou</name>
</author>
<author>
<name sortKey="Wu, Cw" uniqKey="Wu C">CW Wu</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ramos, Ek" uniqKey="Ramos E">EK Ramos</name>
</author>
<author>
<name sortKey="Hoffmann, Ad" uniqKey="Hoffmann A">AD Hoffmann</name>
</author>
<author>
<name sortKey="Gerson, Sl" uniqKey="Gerson S">SL Gerson</name>
</author>
<author>
<name sortKey="Liu, H" uniqKey="Liu H">H Liu</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Zhang, Jm" uniqKey="Zhang J">JM Zhang</name>
</author>
<author>
<name sortKey="Wei, K" uniqKey="Wei K">K Wei</name>
</author>
<author>
<name sortKey="Jiang, M" uniqKey="Jiang M">M Jiang</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Yang, F" uniqKey="Yang F">F Yang</name>
</author>
<author>
<name sortKey="Zhang, J" uniqKey="Zhang J">J Zhang</name>
</author>
<author>
<name sortKey="Yang, H" uniqKey="Yang H">H Yang</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ginestier, C" uniqKey="Ginestier C">C Ginestier</name>
</author>
<author>
<name sortKey="Hur, Mh" uniqKey="Hur M">MH Hur</name>
</author>
<author>
<name sortKey="Charafe Jauffret, E" uniqKey="Charafe Jauffret E">E Charafe-Jauffret</name>
</author>
<author>
<name sortKey="Monville, F" uniqKey="Monville F">F Monville</name>
</author>
<author>
<name sortKey="Dutcher, J" uniqKey="Dutcher J">J Dutcher</name>
</author>
<author>
<name sortKey="Brown, M" uniqKey="Brown M">M Brown</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Conley, Sj" uniqKey="Conley S">SJ Conley</name>
</author>
<author>
<name sortKey="Gheordunescu, E" uniqKey="Gheordunescu E">E Gheordunescu</name>
</author>
<author>
<name sortKey="Kakarala, P" uniqKey="Kakarala P">P Kakarala</name>
</author>
<author>
<name sortKey="Newman, B" uniqKey="Newman B">B Newman</name>
</author>
<author>
<name sortKey="Korkaya, H" uniqKey="Korkaya H">H Korkaya</name>
</author>
<author>
<name sortKey="Heath, An" uniqKey="Heath A">AN Heath</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Liu, S" uniqKey="Liu S">S Liu</name>
</author>
<author>
<name sortKey="Clouthier, Sg" uniqKey="Clouthier S">SG Clouthier</name>
</author>
<author>
<name sortKey="Wicha, Ms" uniqKey="Wicha M">MS Wicha</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Honeth, G" uniqKey="Honeth G">G Honeth</name>
</author>
<author>
<name sortKey="Bendahl, Po" uniqKey="Bendahl P">PO Bendahl</name>
</author>
<author>
<name sortKey="Ringner, M" uniqKey="Ringner M">M Ringner</name>
</author>
<author>
<name sortKey="Saal, Lh" uniqKey="Saal L">LH Saal</name>
</author>
<author>
<name sortKey="Gruvberger Saal, Sk" uniqKey="Gruvberger Saal S">SK Gruvberger-Saal</name>
</author>
<author>
<name sortKey="Lovgren, K" uniqKey="Lovgren K">K Lovgren</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Creighton, Cj" uniqKey="Creighton C">CJ Creighton</name>
</author>
<author>
<name sortKey="Li, X" uniqKey="Li X">X Li</name>
</author>
<author>
<name sortKey="Landis, M" uniqKey="Landis M">M Landis</name>
</author>
<author>
<name sortKey="Dixon, Jm" uniqKey="Dixon J">JM Dixon</name>
</author>
<author>
<name sortKey="Neumeister, Vm" uniqKey="Neumeister V">VM Neumeister</name>
</author>
<author>
<name sortKey="Sjolund, A" uniqKey="Sjolund A">A Sjolund</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Sun, H" uniqKey="Sun H">H Sun</name>
</author>
<author>
<name sortKey="Jia, J" uniqKey="Jia J">J Jia</name>
</author>
<author>
<name sortKey="Wang, X" uniqKey="Wang X">X Wang</name>
</author>
<author>
<name sortKey="Ma, B" uniqKey="Ma B">B Ma</name>
</author>
<author>
<name sortKey="Di, L" uniqKey="Di L">L Di</name>
</author>
<author>
<name sortKey="Song, G" uniqKey="Song G">G Song</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Morimoto, K" uniqKey="Morimoto K">K Morimoto</name>
</author>
<author>
<name sortKey="Kim, Sj" uniqKey="Kim S">SJ Kim</name>
</author>
<author>
<name sortKey="Tanei, T" uniqKey="Tanei T">T Tanei</name>
</author>
<author>
<name sortKey="Shimazu, K" uniqKey="Shimazu K">K Shimazu</name>
</author>
<author>
<name sortKey="Tanji, Y" uniqKey="Tanji Y">Y Tanji</name>
</author>
<author>
<name sortKey="Taguchi, T" uniqKey="Taguchi T">T Taguchi</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ithimakin, S" uniqKey="Ithimakin S">S Ithimakin</name>
</author>
<author>
<name sortKey="Day, Kc" uniqKey="Day K">KC Day</name>
</author>
<author>
<name sortKey="Malik, F" uniqKey="Malik F">F Malik</name>
</author>
<author>
<name sortKey="Zen, Q" uniqKey="Zen Q">Q Zen</name>
</author>
<author>
<name sortKey="Dawsey, Sj" uniqKey="Dawsey S">SJ Dawsey</name>
</author>
<author>
<name sortKey="Bersano Begey, Tf" uniqKey="Bersano Begey T">TF Bersano-Begey</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Sheridan, C" uniqKey="Sheridan C">C Sheridan</name>
</author>
<author>
<name sortKey="Kishimoto, H" uniqKey="Kishimoto H">H Kishimoto</name>
</author>
<author>
<name sortKey="Fuchs, Rk" uniqKey="Fuchs R">RK Fuchs</name>
</author>
<author>
<name sortKey="Mehrotra, S" uniqKey="Mehrotra S">S Mehrotra</name>
</author>
<author>
<name sortKey="Bhat Nakshatri, P" uniqKey="Bhat Nakshatri P">P Bhat-Nakshatri</name>
</author>
<author>
<name sortKey="Turner, Ch" uniqKey="Turner C">CH Turner</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Charafe Jauffret, E" uniqKey="Charafe Jauffret E">E Charafe-Jauffret</name>
</author>
<author>
<name sortKey="Ginestier, C" uniqKey="Ginestier C">C Ginestier</name>
</author>
<author>
<name sortKey="Iovino, F" uniqKey="Iovino F">F Iovino</name>
</author>
<author>
<name sortKey="Wicinski, J" uniqKey="Wicinski J">J Wicinski</name>
</author>
<author>
<name sortKey="Cervera, N" uniqKey="Cervera N">N Cervera</name>
</author>
<author>
<name sortKey="Finetti, P" uniqKey="Finetti P">P Finetti</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Croker, Ak" uniqKey="Croker A">AK Croker</name>
</author>
<author>
<name sortKey="Goodale, D" uniqKey="Goodale D">D Goodale</name>
</author>
<author>
<name sortKey="Chu, J" uniqKey="Chu J">J Chu</name>
</author>
<author>
<name sortKey="Postenka, C" uniqKey="Postenka C">C Postenka</name>
</author>
<author>
<name sortKey="Hedley, Bd" uniqKey="Hedley B">BD Hedley</name>
</author>
<author>
<name sortKey="Hess, Da" uniqKey="Hess D">DA Hess</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Mani, Sa" uniqKey="Mani S">SA Mani</name>
</author>
<author>
<name sortKey="Guo, W" uniqKey="Guo W">W Guo</name>
</author>
<author>
<name sortKey="Liao, Mj" uniqKey="Liao M">MJ Liao</name>
</author>
<author>
<name sortKey="Eaton, En" uniqKey="Eaton E">EN Eaton</name>
</author>
<author>
<name sortKey="Ayyanan, A" uniqKey="Ayyanan A">A Ayyanan</name>
</author>
<author>
<name sortKey="Zhou, Ay" uniqKey="Zhou A">AY Zhou</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Luo, M" uniqKey="Luo M">M Luo</name>
</author>
<author>
<name sortKey="Brooks, M" uniqKey="Brooks M">M Brooks</name>
</author>
<author>
<name sortKey="Wicha, Ms" uniqKey="Wicha M">MS Wicha</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Shibue, T" uniqKey="Shibue T">T Shibue</name>
</author>
<author>
<name sortKey="Weinberg, Ra" uniqKey="Weinberg R">RA Weinberg</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Zhu, Y" uniqKey="Zhu Y">Y Zhu</name>
</author>
<author>
<name sortKey="Luo, M" uniqKey="Luo M">M Luo</name>
</author>
<author>
<name sortKey="Brooks, M" uniqKey="Brooks M">M Brooks</name>
</author>
<author>
<name sortKey="Clouthier, Sg" uniqKey="Clouthier S">SG Clouthier</name>
</author>
<author>
<name sortKey="Wicha, Ms" uniqKey="Wicha M">MS Wicha</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ni, T" uniqKey="Ni T">T Ni</name>
</author>
<author>
<name sortKey="Li, Xy" uniqKey="Li X">XY Li</name>
</author>
<author>
<name sortKey="Lu, N" uniqKey="Lu N">N Lu</name>
</author>
<author>
<name sortKey="An, T" uniqKey="An T">T An</name>
</author>
<author>
<name sortKey="Liu, Zp" uniqKey="Liu Z">ZP Liu</name>
</author>
<author>
<name sortKey="Fu, R" uniqKey="Fu R">R Fu</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Dongre, A" uniqKey="Dongre A">A Dongre</name>
</author>
<author>
<name sortKey="Weinberg, Ra" uniqKey="Weinberg R">RA Weinberg</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Markiewicz, A" uniqKey="Markiewicz A">A Markiewicz</name>
</author>
<author>
<name sortKey="Topa, J" uniqKey="Topa J">J Topa</name>
</author>
<author>
<name sortKey="Nagel, A" uniqKey="Nagel A">A Nagel</name>
</author>
<author>
<name sortKey="Skokowski, J" uniqKey="Skokowski J">J Skokowski</name>
</author>
<author>
<name sortKey="Seroczynska, B" uniqKey="Seroczynska B">B Seroczynska</name>
</author>
<author>
<name sortKey="Stokowy, T" uniqKey="Stokowy T">T Stokowy</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Luo, M" uniqKey="Luo M">M Luo</name>
</author>
<author>
<name sortKey="Shang, L" uniqKey="Shang L">L Shang</name>
</author>
<author>
<name sortKey="Brooks, Md" uniqKey="Brooks M">MD Brooks</name>
</author>
<author>
<name sortKey="Jiagge, E" uniqKey="Jiagge E">E Jiagge</name>
</author>
<author>
<name sortKey="Zhu, Y" uniqKey="Zhu Y">Y Zhu</name>
</author>
<author>
<name sortKey="Buschhaus, Jm" uniqKey="Buschhaus J">JM Buschhaus</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Berghuis, D" uniqKey="Berghuis D">D Berghuis</name>
</author>
<author>
<name sortKey="Schilham, Mw" uniqKey="Schilham M">MW Schilham</name>
</author>
<author>
<name sortKey="Santos, Sj" uniqKey="Santos S">SJ Santos</name>
</author>
<author>
<name sortKey="Savola, S" uniqKey="Savola S">S Savola</name>
</author>
<author>
<name sortKey="Knowles, Hj" uniqKey="Knowles H">HJ Knowles</name>
</author>
<author>
<name sortKey="Dirksen, U" uniqKey="Dirksen U">U Dirksen</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Mcintosh, K" uniqKey="Mcintosh K">K McIntosh</name>
</author>
<author>
<name sortKey="Balch, C" uniqKey="Balch C">C Balch</name>
</author>
<author>
<name sortKey="Tiwari, Ak" uniqKey="Tiwari A">AK Tiwari</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Lang, Jy" uniqKey="Lang J">JY Lang</name>
</author>
<author>
<name sortKey="Hsu, Jl" uniqKey="Hsu J">JL Hsu</name>
</author>
<author>
<name sortKey="Meric Bernstam, F" uniqKey="Meric Bernstam F">F Meric-Bernstam</name>
</author>
<author>
<name sortKey="Chang, Cj" uniqKey="Chang C">CJ Chang</name>
</author>
<author>
<name sortKey="Wang, Q" uniqKey="Wang Q">Q Wang</name>
</author>
<author>
<name sortKey="Bao, Y" uniqKey="Bao Y">Y Bao</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="De Blasio, A" uniqKey="De Blasio A">A De Blasio</name>
</author>
<author>
<name sortKey="Pratelli, G" uniqKey="Pratelli G">G Pratelli</name>
</author>
<author>
<name sortKey="Drago Ferrante, R" uniqKey="Drago Ferrante R">R Drago-Ferrante</name>
</author>
<author>
<name sortKey="Saliba, C" uniqKey="Saliba C">C Saliba</name>
</author>
<author>
<name sortKey="Baldacchino, S" uniqKey="Baldacchino S">S Baldacchino</name>
</author>
<author>
<name sortKey="Grech, G" uniqKey="Grech G">G Grech</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Lee, Km" uniqKey="Lee K">KM Lee</name>
</author>
<author>
<name sortKey="Giltnane, Jm" uniqKey="Giltnane J">JM Giltnane</name>
</author>
<author>
<name sortKey="Balko, Jm" uniqKey="Balko J">JM Balko</name>
</author>
<author>
<name sortKey="Schwarz, Lj" uniqKey="Schwarz L">LJ Schwarz</name>
</author>
<author>
<name sortKey="Guerrero Zotano, Al" uniqKey="Guerrero Zotano A">AL Guerrero-Zotano</name>
</author>
<author>
<name sortKey="Hutchinson, Ke" uniqKey="Hutchinson K">KE Hutchinson</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Bhola, Ne" uniqKey="Bhola N">NE Bhola</name>
</author>
<author>
<name sortKey="Jansen, Vm" uniqKey="Jansen V">VM Jansen</name>
</author>
<author>
<name sortKey="Koch, Jp" uniqKey="Koch J">JP Koch</name>
</author>
<author>
<name sortKey="Li, H" uniqKey="Li H">H Li</name>
</author>
<author>
<name sortKey="Formisano, L" uniqKey="Formisano L">L Formisano</name>
</author>
<author>
<name sortKey="Williams, Ja" uniqKey="Williams J">JA Williams</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Liubomirski, Y" uniqKey="Liubomirski Y">Y Liubomirski</name>
</author>
<author>
<name sortKey="Lerrer, S" uniqKey="Lerrer S">S Lerrer</name>
</author>
<author>
<name sortKey="Meshel, T" uniqKey="Meshel T">T Meshel</name>
</author>
<author>
<name sortKey="Morein, D" uniqKey="Morein D">D Morein</name>
</author>
<author>
<name sortKey="Rubinstein Achiasaf, L" uniqKey="Rubinstein Achiasaf L">L Rubinstein-Achiasaf</name>
</author>
<author>
<name sortKey="Sprinzak, D" uniqKey="Sprinzak D">D Sprinzak</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Wang, X" uniqKey="Wang X">X Wang</name>
</author>
<author>
<name sortKey="Masri, S" uniqKey="Masri S">S Masri</name>
</author>
<author>
<name sortKey="Phung, S" uniqKey="Phung S">S Phung</name>
</author>
<author>
<name sortKey="Chen, S" uniqKey="Chen S">S Chen</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Vilquin, P" uniqKey="Vilquin P">P Vilquin</name>
</author>
<author>
<name sortKey="Villedieu, M" uniqKey="Villedieu M">M Villedieu</name>
</author>
<author>
<name sortKey="Grisard, E" uniqKey="Grisard E">E Grisard</name>
</author>
<author>
<name sortKey="Larbi, Sb" uniqKey="Larbi S">SB Larbi</name>
</author>
<author>
<name sortKey="Ghayad, Se" uniqKey="Ghayad S">SE Ghayad</name>
</author>
<author>
<name sortKey="Heudel, P E" uniqKey="Heudel P">P-E Heudel</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kazi, Aa" uniqKey="Kazi A">AA Kazi</name>
</author>
<author>
<name sortKey="Gilani, Ra" uniqKey="Gilani R">RA Gilani</name>
</author>
<author>
<name sortKey="Schech, Aj" uniqKey="Schech A">AJ Schech</name>
</author>
<author>
<name sortKey="Chumsri, S" uniqKey="Chumsri S">S Chumsri</name>
</author>
<author>
<name sortKey="Sabnis, G" uniqKey="Sabnis G">G Sabnis</name>
</author>
<author>
<name sortKey="Shah, P" uniqKey="Shah P">P Shah</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Saha, S" uniqKey="Saha S">S Saha</name>
</author>
<author>
<name sortKey="Mukherjee, S" uniqKey="Mukherjee S">S Mukherjee</name>
</author>
<author>
<name sortKey="Khan, P" uniqKey="Khan P">P Khan</name>
</author>
<author>
<name sortKey="Kajal, K" uniqKey="Kajal K">K Kajal</name>
</author>
<author>
<name sortKey="Mazumdar, M" uniqKey="Mazumdar M">M Mazumdar</name>
</author>
<author>
<name sortKey="Manna, A" uniqKey="Manna A">A Manna</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Milanovic, M" uniqKey="Milanovic M">M Milanovic</name>
</author>
<author>
<name sortKey="Fan, Dny" uniqKey="Fan D">DNY Fan</name>
</author>
<author>
<name sortKey="Belenki, D" uniqKey="Belenki D">D Belenki</name>
</author>
<author>
<name sortKey="D Britz, Jhm" uniqKey="D Britz J">JHM Däbritz</name>
</author>
<author>
<name sortKey="Zhao, Z" uniqKey="Zhao Z">Z Zhao</name>
</author>
<author>
<name sortKey="Yu, Y" uniqKey="Yu Y">Y Yu</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Yun, C O" uniqKey="Yun C">C-O Yun</name>
</author>
<author>
<name sortKey="Bhargava, P" uniqKey="Bhargava P">P Bhargava</name>
</author>
<author>
<name sortKey="Na, Y" uniqKey="Na Y">Y Na</name>
</author>
<author>
<name sortKey="Lee, J S" uniqKey="Lee J">J-S Lee</name>
</author>
<author>
<name sortKey="Ryu, J" uniqKey="Ryu J">J Ryu</name>
</author>
<author>
<name sortKey="Kaul, Sc" uniqKey="Kaul S">SC Kaul</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Iliopoulos, D" uniqKey="Iliopoulos D">D Iliopoulos</name>
</author>
<author>
<name sortKey="Lindahl Allen, M" uniqKey="Lindahl Allen M">M Lindahl-Allen</name>
</author>
<author>
<name sortKey="Polytarchou, C" uniqKey="Polytarchou C">C Polytarchou</name>
</author>
<author>
<name sortKey="Hirsch, Ha" uniqKey="Hirsch H">HA Hirsch</name>
</author>
<author>
<name sortKey="Tsichlis, Pn" uniqKey="Tsichlis P">PN Tsichlis</name>
</author>
<author>
<name sortKey="Struhl, K" uniqKey="Struhl K">K Struhl</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Lee, H J" uniqKey="Lee H">H-J Lee</name>
</author>
<author>
<name sortKey="Li, C F" uniqKey="Li C">C-F Li</name>
</author>
<author>
<name sortKey="Ruan, D" uniqKey="Ruan D">D Ruan</name>
</author>
<author>
<name sortKey="Powers, S" uniqKey="Powers S">S Powers</name>
</author>
<author>
<name sortKey="Thompson, Pa" uniqKey="Thompson P">PA Thompson</name>
</author>
<author>
<name sortKey="Frohman, Ma" uniqKey="Frohman M">MA Frohman</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Tam, Wl" uniqKey="Tam W">WL Tam</name>
</author>
<author>
<name sortKey="Lu, H" uniqKey="Lu H">H Lu</name>
</author>
<author>
<name sortKey="Buikhuisen, J" uniqKey="Buikhuisen J">J Buikhuisen</name>
</author>
<author>
<name sortKey="Soh, Bs" uniqKey="Soh B">BS Soh</name>
</author>
<author>
<name sortKey="Lim, E" uniqKey="Lim E">E Lim</name>
</author>
<author>
<name sortKey="Reinhardt, F" uniqKey="Reinhardt F">F Reinhardt</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Tanei, T" uniqKey="Tanei T">T Tanei</name>
</author>
<author>
<name sortKey="Morimoto, K" uniqKey="Morimoto K">K Morimoto</name>
</author>
<author>
<name sortKey="Shimazu, K" uniqKey="Shimazu K">K Shimazu</name>
</author>
<author>
<name sortKey="Kim, Sj" uniqKey="Kim S">SJ Kim</name>
</author>
<author>
<name sortKey="Tanji, Y" uniqKey="Tanji Y">Y Tanji</name>
</author>
<author>
<name sortKey="Taguchi, T" uniqKey="Taguchi T">T Taguchi</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Zhou, Y" uniqKey="Zhou Y">Y Zhou</name>
</author>
<author>
<name sortKey="Hu, Y" uniqKey="Hu Y">Y Hu</name>
</author>
<author>
<name sortKey="Yang, M" uniqKey="Yang M">M Yang</name>
</author>
<author>
<name sortKey="Jat, P" uniqKey="Jat P">P Jat</name>
</author>
<author>
<name sortKey="Li, K" uniqKey="Li K">K Li</name>
</author>
<author>
<name sortKey="Lombardo, Y" uniqKey="Lombardo Y">Y Lombardo</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Bartucci, M" uniqKey="Bartucci M">M Bartucci</name>
</author>
<author>
<name sortKey="Dattilo, R" uniqKey="Dattilo R">R Dattilo</name>
</author>
<author>
<name sortKey="Moriconi, C" uniqKey="Moriconi C">C Moriconi</name>
</author>
<author>
<name sortKey="Pagliuca, A" uniqKey="Pagliuca A">A Pagliuca</name>
</author>
<author>
<name sortKey="Mottolese, M" uniqKey="Mottolese M">M Mottolese</name>
</author>
<author>
<name sortKey="Federici, G" uniqKey="Federici G">G Federici</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Jia, D" uniqKey="Jia D">D Jia</name>
</author>
<author>
<name sortKey="Yang, W" uniqKey="Yang W">W Yang</name>
</author>
<author>
<name sortKey="Li, L" uniqKey="Li L">L Li</name>
</author>
<author>
<name sortKey="Liu, H" uniqKey="Liu H">H Liu</name>
</author>
<author>
<name sortKey="Tan, Y" uniqKey="Tan Y">Y Tan</name>
</author>
<author>
<name sortKey="Ooi, S" uniqKey="Ooi S">S Ooi</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Lee, Km" uniqKey="Lee K">KM Lee</name>
</author>
<author>
<name sortKey="Nam, K" uniqKey="Nam K">K Nam</name>
</author>
<author>
<name sortKey="Oh, S" uniqKey="Oh S">S Oh</name>
</author>
<author>
<name sortKey="Lim, J" uniqKey="Lim J">J Lim</name>
</author>
<author>
<name sortKey="Kim, Rk" uniqKey="Kim R">RK Kim</name>
</author>
<author>
<name sortKey="Shim, D" uniqKey="Shim D">D Shim</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Tsou, S H" uniqKey="Tsou S">S-H Tsou</name>
</author>
<author>
<name sortKey="Chen, T M" uniqKey="Chen T">T-M Chen</name>
</author>
<author>
<name sortKey="Hsiao, H T" uniqKey="Hsiao H">H-T Hsiao</name>
</author>
<author>
<name sortKey="Chen, Y H" uniqKey="Chen Y">Y-H Chen</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Xu, Lz" uniqKey="Xu L">LZ Xu</name>
</author>
<author>
<name sortKey="Li, Ss" uniqKey="Li S">SS Li</name>
</author>
<author>
<name sortKey="Zhou, W" uniqKey="Zhou W">W Zhou</name>
</author>
<author>
<name sortKey="Kang, Zj" uniqKey="Kang Z">ZJ Kang</name>
</author>
<author>
<name sortKey="Zhang, Qx" uniqKey="Zhang Q">QX Zhang</name>
</author>
<author>
<name sortKey="Kamran, M" uniqKey="Kamran M">M Kamran</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Zhang, Zm" uniqKey="Zhang Z">ZM Zhang</name>
</author>
<author>
<name sortKey="Wu, Jf" uniqKey="Wu J">JF Wu</name>
</author>
<author>
<name sortKey="Luo, Qc" uniqKey="Luo Q">QC Luo</name>
</author>
<author>
<name sortKey="Liu, Qf" uniqKey="Liu Q">QF Liu</name>
</author>
<author>
<name sortKey="Wu, Qw" uniqKey="Wu Q">QW Wu</name>
</author>
<author>
<name sortKey="Ye, Gd" uniqKey="Ye G">GD Ye</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Yang, N" uniqKey="Yang N">N Yang</name>
</author>
<author>
<name sortKey="Wang, C" uniqKey="Wang C">C Wang</name>
</author>
<author>
<name sortKey="Wang, Z" uniqKey="Wang Z">Z Wang</name>
</author>
<author>
<name sortKey="Zona, S" uniqKey="Zona S">S Zona</name>
</author>
<author>
<name sortKey="Lin, Sx" uniqKey="Lin S">SX Lin</name>
</author>
<author>
<name sortKey="Wang, X" uniqKey="Wang X">X Wang</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Santos, Jc" uniqKey="Santos J">JC Santos</name>
</author>
<author>
<name sortKey="Lima, Nds" uniqKey="Lima N">NDS Lima</name>
</author>
<author>
<name sortKey="Sarian, Lo" uniqKey="Sarian L">LO Sarian</name>
</author>
<author>
<name sortKey="Matheu, A" uniqKey="Matheu A">A Matheu</name>
</author>
<author>
<name sortKey="Ribeiro, Ml" uniqKey="Ribeiro M">ML Ribeiro</name>
</author>
<author>
<name sortKey="Derchain, Sfm" uniqKey="Derchain S">SFM Derchain</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Dai, M" uniqKey="Dai M">M Dai</name>
</author>
<author>
<name sortKey="Zhang, C" uniqKey="Zhang C">C Zhang</name>
</author>
<author>
<name sortKey="Ali, A" uniqKey="Ali A">A Ali</name>
</author>
<author>
<name sortKey="Hong, X" uniqKey="Hong X">X Hong</name>
</author>
<author>
<name sortKey="Tian, J" uniqKey="Tian J">J Tian</name>
</author>
<author>
<name sortKey="Lo, C" uniqKey="Lo C">C Lo</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Wang, X" uniqKey="Wang X">X Wang</name>
</author>
<author>
<name sortKey="Wang, Y" uniqKey="Wang Y">Y Wang</name>
</author>
<author>
<name sortKey="Gu, J" uniqKey="Gu J">J Gu</name>
</author>
<author>
<name sortKey="Zhou, D" uniqKey="Zhou D">D Zhou</name>
</author>
<author>
<name sortKey="He, Z" uniqKey="He Z">Z He</name>
</author>
<author>
<name sortKey="Wang, X" uniqKey="Wang X">X Wang</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Yang, Xl" uniqKey="Yang X">XL Yang</name>
</author>
<author>
<name sortKey="Lin, Fj" uniqKey="Lin F">FJ Lin</name>
</author>
<author>
<name sortKey="Guo, Yj" uniqKey="Guo Y">YJ Guo</name>
</author>
<author>
<name sortKey="Shao, Zm" uniqKey="Shao Z">ZM Shao</name>
</author>
<author>
<name sortKey="Ou, Zl" uniqKey="Ou Z">ZL Ou</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Sim Es, Bm" uniqKey="Sim Es B">BM Simões</name>
</author>
<author>
<name sortKey="O Brien, Cs" uniqKey="O Brien C">CS O'Brien</name>
</author>
<author>
<name sortKey="Eyre, R" uniqKey="Eyre R">R Eyre</name>
</author>
<author>
<name sortKey="Silva, A" uniqKey="Silva A">A Silva</name>
</author>
<author>
<name sortKey="Yu, L" uniqKey="Yu L">L Yu</name>
</author>
<author>
<name sortKey="Sarmiento Castro, A" uniqKey="Sarmiento Castro A">A Sarmiento-Castro</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Cordenonsi, M" uniqKey="Cordenonsi M">M Cordenonsi</name>
</author>
<author>
<name sortKey="Zanconato, F" uniqKey="Zanconato F">F Zanconato</name>
</author>
<author>
<name sortKey="Azzolin, L" uniqKey="Azzolin L">L Azzolin</name>
</author>
<author>
<name sortKey="Forcato, M" uniqKey="Forcato M">M Forcato</name>
</author>
<author>
<name sortKey="Rosato, A" uniqKey="Rosato A">A Rosato</name>
</author>
<author>
<name sortKey="Frasson, C" uniqKey="Frasson C">C Frasson</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Liu, Y" uniqKey="Liu Y">Y Liu</name>
</author>
<author>
<name sortKey="Choi, Ds" uniqKey="Choi D">DS Choi</name>
</author>
<author>
<name sortKey="Sheng, J" uniqKey="Sheng J">J Sheng</name>
</author>
<author>
<name sortKey="Ensor, Je" uniqKey="Ensor J">JE Ensor</name>
</author>
<author>
<name sortKey="Liang, Dh" uniqKey="Liang D">DH Liang</name>
</author>
<author>
<name sortKey="Rodriguez Aguayo, C" uniqKey="Rodriguez Aguayo C">C Rodriguez-Aguayo</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Su, S" uniqKey="Su S">S Su</name>
</author>
<author>
<name sortKey="Chen, J" uniqKey="Chen J">J Chen</name>
</author>
<author>
<name sortKey="Yao, H" uniqKey="Yao H">H Yao</name>
</author>
<author>
<name sortKey="Liu, J" uniqKey="Liu J">J Liu</name>
</author>
<author>
<name sortKey="Yu, S" uniqKey="Yu S">S Yu</name>
</author>
<author>
<name sortKey="Lao, L" uniqKey="Lao L">L Lao</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kim, G" uniqKey="Kim G">G Kim</name>
</author>
<author>
<name sortKey="Ouzounova, M" uniqKey="Ouzounova M">M Ouzounova</name>
</author>
<author>
<name sortKey="Quraishi, Aa" uniqKey="Quraishi A">AA Quraishi</name>
</author>
<author>
<name sortKey="Davis, A" uniqKey="Davis A">A Davis</name>
</author>
<author>
<name sortKey="Tawakkol, N" uniqKey="Tawakkol N">N Tawakkol</name>
</author>
<author>
<name sortKey="Clouthier, Sg" uniqKey="Clouthier S">SG Clouthier</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Yin, B" uniqKey="Yin B">B Yin</name>
</author>
<author>
<name sortKey="Ma, Zy" uniqKey="Ma Z">ZY Ma</name>
</author>
<author>
<name sortKey="Zhou, Zw" uniqKey="Zhou Z">ZW Zhou</name>
</author>
<author>
<name sortKey="Gao, Wc" uniqKey="Gao W">WC Gao</name>
</author>
<author>
<name sortKey="Du, Zg" uniqKey="Du Z">ZG Du</name>
</author>
<author>
<name sortKey="Zhao, Zh" uniqKey="Zhao Z">ZH Zhao</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Takahashi, R U" uniqKey="Takahashi R">R-U Takahashi</name>
</author>
<author>
<name sortKey="Miyazaki, H" uniqKey="Miyazaki H">H Miyazaki</name>
</author>
<author>
<name sortKey="Takeshita, F" uniqKey="Takeshita F">F Takeshita</name>
</author>
<author>
<name sortKey="Yamamoto, Y" uniqKey="Yamamoto Y">Y Yamamoto</name>
</author>
<author>
<name sortKey="Minoura, K" uniqKey="Minoura K">K Minoura</name>
</author>
<author>
<name sortKey="Ono, M" uniqKey="Ono M">M Ono</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Wee, Zn" uniqKey="Wee Z">ZN Wee</name>
</author>
<author>
<name sortKey="Yatim, Smjm" uniqKey="Yatim S">SMJM Yatim</name>
</author>
<author>
<name sortKey="Kohlbauer, Vk" uniqKey="Kohlbauer V">VK Kohlbauer</name>
</author>
<author>
<name sortKey="Feng, M" uniqKey="Feng M">M Feng</name>
</author>
<author>
<name sortKey="Goh, Jy" uniqKey="Goh J">JY Goh</name>
</author>
<author>
<name sortKey="Bao, Y" uniqKey="Bao Y">Y Bao</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Mukherjee, P" uniqKey="Mukherjee P">P Mukherjee</name>
</author>
<author>
<name sortKey="Gupta, A" uniqKey="Gupta A">A Gupta</name>
</author>
<author>
<name sortKey="Chattopadhyay, D" uniqKey="Chattopadhyay D">D Chattopadhyay</name>
</author>
<author>
<name sortKey="Chatterji, U" uniqKey="Chatterji U">U Chatterji</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Sorrentino, G" uniqKey="Sorrentino G">G Sorrentino</name>
</author>
<author>
<name sortKey="Ruggeri, N" uniqKey="Ruggeri N">N Ruggeri</name>
</author>
<author>
<name sortKey="Zannini, A" uniqKey="Zannini A">A Zannini</name>
</author>
<author>
<name sortKey="Ingallina, E" uniqKey="Ingallina E">E Ingallina</name>
</author>
<author>
<name sortKey="Bertolio, R" uniqKey="Bertolio R">R Bertolio</name>
</author>
<author>
<name sortKey="Marotta, C" uniqKey="Marotta C">C Marotta</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Boulding, T" uniqKey="Boulding T">T Boulding</name>
</author>
<author>
<name sortKey="Mccuaig, Rd" uniqKey="Mccuaig R">RD McCuaig</name>
</author>
<author>
<name sortKey="Tan, A" uniqKey="Tan A">A Tan</name>
</author>
<author>
<name sortKey="Hardy, K" uniqKey="Hardy K">K Hardy</name>
</author>
<author>
<name sortKey="Wu, F" uniqKey="Wu F">F Wu</name>
</author>
<author>
<name sortKey="Dunn, J" uniqKey="Dunn J">J Dunn</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Wang, T" uniqKey="Wang T">T. Wang</name>
</author>
<author>
<name sortKey="Fahrmann, J F" uniqKey="Fahrmann J">J.F. Fahrmann</name>
</author>
<author>
<name sortKey="Lee, H" uniqKey="Lee H">H. Lee</name>
</author>
<author>
<name sortKey="Li, Y J" uniqKey="Li Y">Y.J. Li</name>
</author>
<author>
<name sortKey="Tripathi, S C" uniqKey="Tripathi S">S.C. Tripathi</name>
</author>
<author>
<name sortKey="Yue, C" uniqKey="Yue C">C. Yue</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Jeong, Y J" uniqKey="Jeong Y">Y-J Jeong</name>
</author>
<author>
<name sortKey="Kang, Js" uniqKey="Kang J">JS Kang</name>
</author>
<author>
<name sortKey="Lee, Si" uniqKey="Lee S">SI Lee</name>
</author>
<author>
<name sortKey="So, Dm" uniqKey="So D">DM So</name>
</author>
<author>
<name sortKey="Yun, J" uniqKey="Yun J">J Yun</name>
</author>
<author>
<name sortKey="Baek, Jy" uniqKey="Baek J">JY Baek</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Korkaya, H" uniqKey="Korkaya H">H Korkaya</name>
</author>
<author>
<name sortKey="Kim, G I" uniqKey="Kim G">G-I Kim</name>
</author>
<author>
<name sortKey="Davis, A" uniqKey="Davis A">A Davis</name>
</author>
<author>
<name sortKey="Malik, F" uniqKey="Malik F">F Malik</name>
</author>
<author>
<name sortKey="Henry, Nl" uniqKey="Henry N">NL Henry</name>
</author>
<author>
<name sortKey="Ithimakin, S" uniqKey="Ithimakin S">S Ithimakin</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Burnett, Jp" uniqKey="Burnett J">JP Burnett</name>
</author>
<author>
<name sortKey="Korkaya, H" uniqKey="Korkaya H">H Korkaya</name>
</author>
<author>
<name sortKey="Ouzounova, Md" uniqKey="Ouzounova M">MD Ouzounova</name>
</author>
<author>
<name sortKey="Jiang, H" uniqKey="Jiang H">H Jiang</name>
</author>
<author>
<name sortKey="Conley, Sj" uniqKey="Conley S">SJ Conley</name>
</author>
<author>
<name sortKey="Newman, Bw" uniqKey="Newman B">BW Newman</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="De Cola, A" uniqKey="De Cola A">A De Cola</name>
</author>
<author>
<name sortKey="Volpe, S" uniqKey="Volpe S">S Volpe</name>
</author>
<author>
<name sortKey="Budani, Mc" uniqKey="Budani M">MC Budani</name>
</author>
<author>
<name sortKey="Ferracin, M" uniqKey="Ferracin M">M Ferracin</name>
</author>
<author>
<name sortKey="Lattanzio, R" uniqKey="Lattanzio R">R Lattanzio</name>
</author>
<author>
<name sortKey="Turdo, A" uniqKey="Turdo A">A Turdo</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Rodriguez, Ce" uniqKey="Rodriguez C">CE Rodriguez</name>
</author>
<author>
<name sortKey="Berardi, De" uniqKey="Berardi D">DE Berardi</name>
</author>
<author>
<name sortKey="Abrigo, M" uniqKey="Abrigo M">M Abrigo</name>
</author>
<author>
<name sortKey="Todaro, Lb" uniqKey="Todaro L">LB Todaro</name>
</author>
<author>
<name sortKey="Bal De Kier Joffe, Ed" uniqKey="Bal De Kier Joffe E">ED Bal de Kier Joffe</name>
</author>
<author>
<name sortKey="Fiszman, Gl" uniqKey="Fiszman G">GL Fiszman</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Notas, G" uniqKey="Notas G">G Notas</name>
</author>
<author>
<name sortKey="Pelekanou, V" uniqKey="Pelekanou V">V Pelekanou</name>
</author>
<author>
<name sortKey="Kampa, M" uniqKey="Kampa M">M Kampa</name>
</author>
<author>
<name sortKey="Alexakis, K" uniqKey="Alexakis K">K Alexakis</name>
</author>
<author>
<name sortKey="Sfakianakis, S" uniqKey="Sfakianakis S">S Sfakianakis</name>
</author>
<author>
<name sortKey="Laliotis, A" uniqKey="Laliotis A">A Laliotis</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Zhang, P" uniqKey="Zhang P">P Zhang</name>
</author>
<author>
<name sortKey="Wei, Y" uniqKey="Wei Y">Y Wei</name>
</author>
<author>
<name sortKey="Wang, L" uniqKey="Wang L">L Wang</name>
</author>
<author>
<name sortKey="Debeb, Bg" uniqKey="Debeb B">BG Debeb</name>
</author>
<author>
<name sortKey="Yuan, Y" uniqKey="Yuan Y">Y Yuan</name>
</author>
<author>
<name sortKey="Zhang, J" uniqKey="Zhang J">J Zhang</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Mateo, F" uniqKey="Mateo F">F Mateo</name>
</author>
<author>
<name sortKey="Arenas, Ej" uniqKey="Arenas E">EJ Arenas</name>
</author>
<author>
<name sortKey="Aguilar, H" uniqKey="Aguilar H">H Aguilar</name>
</author>
<author>
<name sortKey="Serra Musach, J" uniqKey="Serra Musach J">J Serra-Musach</name>
</author>
<author>
<name sortKey="De Garibay, Gr" uniqKey="De Garibay G">GR de Garibay</name>
</author>
<author>
<name sortKey="Boni, J" uniqKey="Boni J">J Boni</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Seguin, L" uniqKey="Seguin L">L Seguin</name>
</author>
<author>
<name sortKey="Kato, S" uniqKey="Kato S">S Kato</name>
</author>
<author>
<name sortKey="Franovic, A" uniqKey="Franovic A">A Franovic</name>
</author>
<author>
<name sortKey="Camargo, Mf" uniqKey="Camargo M">MF Camargo</name>
</author>
<author>
<name sortKey="Lesperance, J" uniqKey="Lesperance J">J Lesperance</name>
</author>
<author>
<name sortKey="Elliott, Kc" uniqKey="Elliott K">KC Elliott</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="He, L" uniqKey="He L">L He</name>
</author>
<author>
<name sortKey="Gu, J" uniqKey="Gu J">J Gu</name>
</author>
<author>
<name sortKey="Lim, Ly" uniqKey="Lim L">LY Lim</name>
</author>
<author>
<name sortKey="Yuan, Zx" uniqKey="Yuan Z">ZX Yuan</name>
</author>
<author>
<name sortKey="Mo, J" uniqKey="Mo J">J Mo</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Jung, Y" uniqKey="Jung Y">Y Jung</name>
</author>
<author>
<name sortKey="Kim, Jk" uniqKey="Kim J">JK Kim</name>
</author>
<author>
<name sortKey="Shiozawa, Y" uniqKey="Shiozawa Y">Y Shiozawa</name>
</author>
<author>
<name sortKey="Wang, J" uniqKey="Wang J">J Wang</name>
</author>
<author>
<name sortKey="Mishra, A" uniqKey="Mishra A">A Mishra</name>
</author>
<author>
<name sortKey="Joseph, J" uniqKey="Joseph J">J Joseph</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Plaks, V" uniqKey="Plaks V">V Plaks</name>
</author>
<author>
<name sortKey="Kong, N" uniqKey="Kong N">N Kong</name>
</author>
<author>
<name sortKey="Werb, Z" uniqKey="Werb Z">Z Werb</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Prager, Bc" uniqKey="Prager B">BC Prager</name>
</author>
<author>
<name sortKey="Xie, Q" uniqKey="Xie Q">Q Xie</name>
</author>
<author>
<name sortKey="Bao, S" uniqKey="Bao S">S Bao</name>
</author>
<author>
<name sortKey="Rich, Jn" uniqKey="Rich J">JN Rich</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Juvekar, A" uniqKey="Juvekar A">A Juvekar</name>
</author>
<author>
<name sortKey="Wulf, Gm" uniqKey="Wulf G">GM Wulf</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Todaro, M" uniqKey="Todaro M">M Todaro</name>
</author>
<author>
<name sortKey="Turdo, A" uniqKey="Turdo A">A Turdo</name>
</author>
<author>
<name sortKey="Bartucci, M" uniqKey="Bartucci M">M Bartucci</name>
</author>
<author>
<name sortKey="Iovino, F" uniqKey="Iovino F">F Iovino</name>
</author>
<author>
<name sortKey="Dattilo, R" uniqKey="Dattilo R">R Dattilo</name>
</author>
<author>
<name sortKey="Biffoni, M" uniqKey="Biffoni M">M Biffoni</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Jia, D" uniqKey="Jia D">D Jia</name>
</author>
<author>
<name sortKey="Li, L" uniqKey="Li L">L Li</name>
</author>
<author>
<name sortKey="Andrew, S" uniqKey="Andrew S">S Andrew</name>
</author>
<author>
<name sortKey="Allan, D" uniqKey="Allan D">D Allan</name>
</author>
<author>
<name sortKey="Li, X" uniqKey="Li X">X Li</name>
</author>
<author>
<name sortKey="Lee, J" uniqKey="Lee J">J Lee</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Tian, J" uniqKey="Tian J">J Tian</name>
</author>
<author>
<name sortKey="Hachim, My" uniqKey="Hachim M">MY Hachim</name>
</author>
<author>
<name sortKey="Hachim, Iy" uniqKey="Hachim I">IY Hachim</name>
</author>
<author>
<name sortKey="Dai, M" uniqKey="Dai M">M Dai</name>
</author>
<author>
<name sortKey="Lo, C" uniqKey="Lo C">C Lo</name>
</author>
<author>
<name sortKey="Raffa, Fa" uniqKey="Raffa F">FA Raffa</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Dean, M" uniqKey="Dean M">M Dean</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Natarajan, K" uniqKey="Natarajan K">K Natarajan</name>
</author>
<author>
<name sortKey="Xie, Y" uniqKey="Xie Y">Y Xie</name>
</author>
<author>
<name sortKey="Baer, Mr" uniqKey="Baer M">MR Baer</name>
</author>
<author>
<name sortKey="Ross, Dd" uniqKey="Ross D">DD Ross</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Balaji, Sa" uniqKey="Balaji S">SA Balaji</name>
</author>
<author>
<name sortKey="Udupa, N" uniqKey="Udupa N">N Udupa</name>
</author>
<author>
<name sortKey="Chamallamudi, Mr" uniqKey="Chamallamudi M">MR Chamallamudi</name>
</author>
<author>
<name sortKey="Gupta, V" uniqKey="Gupta V">V Gupta</name>
</author>
<author>
<name sortKey="Rangarajan, A" uniqKey="Rangarajan A">A Rangarajan</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Samanta, D" uniqKey="Samanta D">D Samanta</name>
</author>
<author>
<name sortKey="Gilkes, Dm" uniqKey="Gilkes D">DM Gilkes</name>
</author>
<author>
<name sortKey="Chaturvedi, P" uniqKey="Chaturvedi P">P Chaturvedi</name>
</author>
<author>
<name sortKey="Xiang, L" uniqKey="Xiang L">L Xiang</name>
</author>
<author>
<name sortKey="Semenza, Gl" uniqKey="Semenza G">GL Semenza</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Li, Sy" uniqKey="Li S">SY Li</name>
</author>
<author>
<name sortKey="Sun, R" uniqKey="Sun R">R Sun</name>
</author>
<author>
<name sortKey="Wang, Hx" uniqKey="Wang H">HX Wang</name>
</author>
<author>
<name sortKey="Shen, S" uniqKey="Shen S">S Shen</name>
</author>
<author>
<name sortKey="Liu, Y" uniqKey="Liu Y">Y Liu</name>
</author>
<author>
<name sortKey="Du, Xj" uniqKey="Du X">XJ Du</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Wu, Cp" uniqKey="Wu C">CP Wu</name>
</author>
<author>
<name sortKey="Calcagno, Am" uniqKey="Calcagno A">AM Calcagno</name>
</author>
<author>
<name sortKey="Ambudkar, Sv" uniqKey="Ambudkar S">SV Ambudkar</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Chen, K" uniqKey="Chen K">K Chen</name>
</author>
<author>
<name sortKey="Huang, Yh" uniqKey="Huang Y">YH Huang</name>
</author>
<author>
<name sortKey="Chen, Jl" uniqKey="Chen J">JL Chen</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Dohse, M" uniqKey="Dohse M">M Dohse</name>
</author>
<author>
<name sortKey="Scharenberg, C" uniqKey="Scharenberg C">C Scharenberg</name>
</author>
<author>
<name sortKey="Shukla, S" uniqKey="Shukla S">S Shukla</name>
</author>
<author>
<name sortKey="Robey, Rw" uniqKey="Robey R">RW Robey</name>
</author>
<author>
<name sortKey="Volkmann, T" uniqKey="Volkmann T">T Volkmann</name>
</author>
<author>
<name sortKey="Deeken, Jf" uniqKey="Deeken J">JF Deeken</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Shi, Z" uniqKey="Shi Z">Z Shi</name>
</author>
<author>
<name sortKey="Peng, Xx" uniqKey="Peng X">XX Peng</name>
</author>
<author>
<name sortKey="Kim, Iw" uniqKey="Kim I">IW Kim</name>
</author>
<author>
<name sortKey="Shukla, S" uniqKey="Shukla S">S Shukla</name>
</author>
<author>
<name sortKey="Si, Qs" uniqKey="Si Q">QS Si</name>
</author>
<author>
<name sortKey="Robey, Rw" uniqKey="Robey R">RW Robey</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Dai, Cl" uniqKey="Dai C">CL Dai</name>
</author>
<author>
<name sortKey="Tiwari, Ak" uniqKey="Tiwari A">AK Tiwari</name>
</author>
<author>
<name sortKey="Wu, Cp" uniqKey="Wu C">CP Wu</name>
</author>
<author>
<name sortKey="Su, Xd" uniqKey="Su X">XD Su</name>
</author>
<author>
<name sortKey="Wang, Sr" uniqKey="Wang S">SR Wang</name>
</author>
<author>
<name sortKey="Liu, Dg" uniqKey="Liu D">DG Liu</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Tiwari, Ak" uniqKey="Tiwari A">AK Tiwari</name>
</author>
<author>
<name sortKey="Sodani, K" uniqKey="Sodani K">K Sodani</name>
</author>
<author>
<name sortKey="Wang, Sr" uniqKey="Wang S">SR Wang</name>
</author>
<author>
<name sortKey="Kuang, Yh" uniqKey="Kuang Y">YH Kuang</name>
</author>
<author>
<name sortKey="Ashby, Cr" uniqKey="Ashby C">CR Ashby</name>
</author>
<author>
<name sortKey="Chen, X" uniqKey="Chen X">X Chen</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Sims, Jt" uniqKey="Sims J">JT Sims</name>
</author>
<author>
<name sortKey="Ganguly, Ss" uniqKey="Ganguly S">SS Ganguly</name>
</author>
<author>
<name sortKey="Bennett, H" uniqKey="Bennett H">H Bennett</name>
</author>
<author>
<name sortKey="Friend, Jw" uniqKey="Friend J">JW Friend</name>
</author>
<author>
<name sortKey="Tepe, J" uniqKey="Tepe J">J Tepe</name>
</author>
<author>
<name sortKey="Plattner, R" uniqKey="Plattner R">R Plattner</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Zhao, J" uniqKey="Zhao J">J Zhao</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Yun, J" uniqKey="Yun J">J Yun</name>
</author>
<author>
<name sortKey="Frankenberger, Ca" uniqKey="Frankenberger C">CA Frankenberger</name>
</author>
<author>
<name sortKey="Kuo, Wl" uniqKey="Kuo W">WL Kuo</name>
</author>
<author>
<name sortKey="Boelens, Mc" uniqKey="Boelens M">MC Boelens</name>
</author>
<author>
<name sortKey="Eves, Em" uniqKey="Eves E">EM Eves</name>
</author>
<author>
<name sortKey="Cheng, N" uniqKey="Cheng N">N Cheng</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ginestier, C" uniqKey="Ginestier C">C Ginestier</name>
</author>
<author>
<name sortKey="Liu, S" uniqKey="Liu S">S Liu</name>
</author>
<author>
<name sortKey="Diebel, Me" uniqKey="Diebel M">ME Diebel</name>
</author>
<author>
<name sortKey="Korkaya, H" uniqKey="Korkaya H">H Korkaya</name>
</author>
<author>
<name sortKey="Luo, M" uniqKey="Luo M">M Luo</name>
</author>
<author>
<name sortKey="Brown, M" uniqKey="Brown M">M Brown</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Singh, Jk" uniqKey="Singh J">JK Singh</name>
</author>
<author>
<name sortKey="Farnie, G" uniqKey="Farnie G">G Farnie</name>
</author>
<author>
<name sortKey="Bundred, Nj" uniqKey="Bundred N">NJ Bundred</name>
</author>
<author>
<name sortKey="Simoes, Bm" uniqKey="Simoes B">BM Simoes</name>
</author>
<author>
<name sortKey="Shergill, A" uniqKey="Shergill A">A Shergill</name>
</author>
<author>
<name sortKey="Landberg, G" uniqKey="Landberg G">G Landberg</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Schott, Af" uniqKey="Schott A">AF Schott</name>
</author>
<author>
<name sortKey="Goldstein, L" uniqKey="Goldstein L">L Goldstein</name>
</author>
<author>
<name sortKey="Cristofanilli, M" uniqKey="Cristofanilli M">M Cristofanilli</name>
</author>
<author>
<name sortKey="Ruffini, Pa" uniqKey="Ruffini P">PA Ruffini</name>
</author>
<author>
<name sortKey="Mccanna, S" uniqKey="Mccanna S">S McCanna</name>
</author>
<author>
<name sortKey="Reuben, Jm" uniqKey="Reuben J">JM Reuben</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Yi, T" uniqKey="Yi T">T Yi</name>
</author>
<author>
<name sortKey="Zhai, B" uniqKey="Zhai B">B Zhai</name>
</author>
<author>
<name sortKey="Yu, Y" uniqKey="Yu Y">Y Yu</name>
</author>
<author>
<name sortKey="Kiyotsugu, Y" uniqKey="Kiyotsugu Y">Y Kiyotsugu</name>
</author>
<author>
<name sortKey="Raschle, T" uniqKey="Raschle T">T Raschle</name>
</author>
<author>
<name sortKey="Etzkorn, M" uniqKey="Etzkorn M">M Etzkorn</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Mukherjee, S" uniqKey="Mukherjee S">S Mukherjee</name>
</author>
<author>
<name sortKey="Manna, A" uniqKey="Manna A">A Manna</name>
</author>
<author>
<name sortKey="Bhattacharjee, P" uniqKey="Bhattacharjee P">P Bhattacharjee</name>
</author>
<author>
<name sortKey="Mazumdar, M" uniqKey="Mazumdar M">M Mazumdar</name>
</author>
<author>
<name sortKey="Saha, S" uniqKey="Saha S">S Saha</name>
</author>
<author>
<name sortKey="Chakraborty, S" uniqKey="Chakraborty S">S Chakraborty</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Graham, Na" uniqKey="Graham N">NA Graham</name>
</author>
<author>
<name sortKey="Graeber, Tg" uniqKey="Graeber T">TG Graeber</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Zhang, K" uniqKey="Zhang K">K Zhang</name>
</author>
<author>
<name sortKey="Corsa, Ca" uniqKey="Corsa C">CA Corsa</name>
</author>
<author>
<name sortKey="Ponik, Sm" uniqKey="Ponik S">SM Ponik</name>
</author>
<author>
<name sortKey="Prior, Jl" uniqKey="Prior J">JL Prior</name>
</author>
<author>
<name sortKey="Piwnica Worms, D" uniqKey="Piwnica Worms D">D Piwnica-Worms</name>
</author>
<author>
<name sortKey="Eliceiri, Kw" uniqKey="Eliceiri K">KW Eliceiri</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Lapteva, N" uniqKey="Lapteva N">N Lapteva</name>
</author>
<author>
<name sortKey="Yang, Ag" uniqKey="Yang A">AG Yang</name>
</author>
<author>
<name sortKey="Sanders, De" uniqKey="Sanders D">DE Sanders</name>
</author>
<author>
<name sortKey="Strube, Rw" uniqKey="Strube R">RW Strube</name>
</author>
<author>
<name sortKey="Chen, Sy" uniqKey="Chen S">SY Chen</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Smith, Mc" uniqKey="Smith M">MC Smith</name>
</author>
<author>
<name sortKey="Luker, Ke" uniqKey="Luker K">KE Luker</name>
</author>
<author>
<name sortKey="Garbow, Jr" uniqKey="Garbow J">JR Garbow</name>
</author>
<author>
<name sortKey="Prior, Jl" uniqKey="Prior J">JL Prior</name>
</author>
<author>
<name sortKey="Jackson, E" uniqKey="Jackson E">E Jackson</name>
</author>
<author>
<name sortKey="Piwnica Worms, D" uniqKey="Piwnica Worms D">D Piwnica-Worms</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Pernas, S" uniqKey="Pernas S">S Pernas</name>
</author>
<author>
<name sortKey="Martin, M" uniqKey="Martin M">M Martin</name>
</author>
<author>
<name sortKey="Kaufman, Pa" uniqKey="Kaufman P">PA Kaufman</name>
</author>
<author>
<name sortKey="Gil Martin, M" uniqKey="Gil Martin M">M Gil-Martin</name>
</author>
<author>
<name sortKey="Gomez Pardo, P" uniqKey="Gomez Pardo P">P Gomez Pardo</name>
</author>
<author>
<name sortKey="Lopez Tarruella, S" uniqKey="Lopez Tarruella S">S Lopez-Tarruella</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Duda, Dg" uniqKey="Duda D">DG Duda</name>
</author>
<author>
<name sortKey="Kozin, Sv" uniqKey="Kozin S">SV Kozin</name>
</author>
<author>
<name sortKey="Kirkpatrick, Nd" uniqKey="Kirkpatrick N">ND Kirkpatrick</name>
</author>
<author>
<name sortKey="Xu, L" uniqKey="Xu L">L Xu</name>
</author>
<author>
<name sortKey="Fukumura, D" uniqKey="Fukumura D">D Fukumura</name>
</author>
<author>
<name sortKey="Jain, Rk" uniqKey="Jain R">RK Jain</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Vater, A" uniqKey="Vater A">A Vater</name>
</author>
<author>
<name sortKey="Klussmann, S" uniqKey="Klussmann S">S Klussmann</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Zboralski, D" uniqKey="Zboralski D">D Zboralski</name>
</author>
<author>
<name sortKey="Hoehlig, K" uniqKey="Hoehlig K">K Hoehlig</name>
</author>
<author>
<name sortKey="Eulberg, D" uniqKey="Eulberg D">D Eulberg</name>
</author>
<author>
<name sortKey="Fromming, A" uniqKey="Fromming A">A Fromming</name>
</author>
<author>
<name sortKey="Vater, A" uniqKey="Vater A">A Vater</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Greenfield, Jp" uniqKey="Greenfield J">JP Greenfield</name>
</author>
<author>
<name sortKey="Cobb, Ws" uniqKey="Cobb W">WS Cobb</name>
</author>
<author>
<name sortKey="Lyden, D" uniqKey="Lyden D">D Lyden</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Farnie, G" uniqKey="Farnie G">G Farnie</name>
</author>
<author>
<name sortKey="Johnson, Rl" uniqKey="Johnson R">RL Johnson</name>
</author>
<author>
<name sortKey="Williams, Ke" uniqKey="Williams K">KE Williams</name>
</author>
<author>
<name sortKey="Clarke, Rb" uniqKey="Clarke R">RB Clarke</name>
</author>
<author>
<name sortKey="Bundred, Nj" uniqKey="Bundred N">NJ Bundred</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Clark, Ea" uniqKey="Clark E">EA Clark</name>
</author>
<author>
<name sortKey="Golub, Tr" uniqKey="Golub T">TR Golub</name>
</author>
<author>
<name sortKey="Lander, Es" uniqKey="Lander E">ES Lander</name>
</author>
<author>
<name sortKey="Hynes, Ro" uniqKey="Hynes R">RO Hynes</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Hakem, A" uniqKey="Hakem A">A Hakem</name>
</author>
<author>
<name sortKey="Sanchez Sweatman, O" uniqKey="Sanchez Sweatman O">O Sanchez-Sweatman</name>
</author>
<author>
<name sortKey="You Ten, A" uniqKey="You Ten A">A You-Ten</name>
</author>
<author>
<name sortKey="Duncan, G" uniqKey="Duncan G">G Duncan</name>
</author>
<author>
<name sortKey="Wakeham, A" uniqKey="Wakeham A">A Wakeham</name>
</author>
<author>
<name sortKey="Khokha, R" uniqKey="Khokha R">R Khokha</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Rosenthal, Dt" uniqKey="Rosenthal D">DT Rosenthal</name>
</author>
<author>
<name sortKey="Zhang, J" uniqKey="Zhang J">J Zhang</name>
</author>
<author>
<name sortKey="Bao, L" uniqKey="Bao L">L Bao</name>
</author>
<author>
<name sortKey="Zhu, L" uniqKey="Zhu L">L Zhu</name>
</author>
<author>
<name sortKey="Wu, Z" uniqKey="Wu Z">Z Wu</name>
</author>
<author>
<name sortKey="Toy, K" uniqKey="Toy K">K Toy</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Thomas, P" uniqKey="Thomas P">P Thomas</name>
</author>
<author>
<name sortKey="Pranatharthi, A" uniqKey="Pranatharthi A">A Pranatharthi</name>
</author>
<author>
<name sortKey="Ross, C" uniqKey="Ross C">C Ross</name>
</author>
<author>
<name sortKey="Srivastava, S" uniqKey="Srivastava S">S Srivastava</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Simpson, Kj" uniqKey="Simpson K">KJ Simpson</name>
</author>
<author>
<name sortKey="Dugan, As" uniqKey="Dugan A">AS Dugan</name>
</author>
<author>
<name sortKey="Mercurio, Am" uniqKey="Mercurio A">AM Mercurio</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Arpaia, E" uniqKey="Arpaia E">E Arpaia</name>
</author>
<author>
<name sortKey="Blaser, H" uniqKey="Blaser H">H Blaser</name>
</author>
<author>
<name sortKey="Quintela Fandino, M" uniqKey="Quintela Fandino M">M Quintela-Fandino</name>
</author>
<author>
<name sortKey="Duncan, G" uniqKey="Duncan G">G Duncan</name>
</author>
<author>
<name sortKey="Leong, Hs" uniqKey="Leong H">HS Leong</name>
</author>
<author>
<name sortKey="Ablack, A" uniqKey="Ablack A">A Ablack</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Luo, M" uniqKey="Luo M">M Luo</name>
</author>
<author>
<name sortKey="Zhao, X" uniqKey="Zhao X">X Zhao</name>
</author>
<author>
<name sortKey="Chen, S" uniqKey="Chen S">S Chen</name>
</author>
<author>
<name sortKey="Liu, S" uniqKey="Liu S">S Liu</name>
</author>
<author>
<name sortKey="Wicha, Ms" uniqKey="Wicha M">MS Wicha</name>
</author>
<author>
<name sortKey="Guan, Jl" uniqKey="Guan J">JL Guan</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Luo, M" uniqKey="Luo M">M Luo</name>
</author>
<author>
<name sortKey="Fan, H" uniqKey="Fan H">H Fan</name>
</author>
<author>
<name sortKey="Nagy, T" uniqKey="Nagy T">T Nagy</name>
</author>
<author>
<name sortKey="Wei, H" uniqKey="Wei H">H Wei</name>
</author>
<author>
<name sortKey="Wang, C" uniqKey="Wang C">C Wang</name>
</author>
<author>
<name sortKey="Liu, S" uniqKey="Liu S">S Liu</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Thiagarajan, Ps" uniqKey="Thiagarajan P">PS Thiagarajan</name>
</author>
<author>
<name sortKey="Sinyuk, M" uniqKey="Sinyuk M">M Sinyuk</name>
</author>
<author>
<name sortKey="Turaga, Sm" uniqKey="Turaga S">SM Turaga</name>
</author>
<author>
<name sortKey="Mulkearns Hubert, Ee" uniqKey="Mulkearns Hubert E">EE Mulkearns-Hubert</name>
</author>
<author>
<name sortKey="Hale, Js" uniqKey="Hale J">JS Hale</name>
</author>
<author>
<name sortKey="Rao, V" uniqKey="Rao V">V Rao</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Nguyen, K" uniqKey="Nguyen K">K Nguyen</name>
</author>
<author>
<name sortKey="Yan, Y" uniqKey="Yan Y">Y Yan</name>
</author>
<author>
<name sortKey="Yuan, B" uniqKey="Yuan B">B Yuan</name>
</author>
<author>
<name sortKey="Dasgupta, A" uniqKey="Dasgupta A">A Dasgupta</name>
</author>
<author>
<name sortKey="Sun, J" uniqKey="Sun J">J Sun</name>
</author>
<author>
<name sortKey="Mu, H" uniqKey="Mu H">H Mu</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kolev, Vn" uniqKey="Kolev V">VN Kolev</name>
</author>
<author>
<name sortKey="Tam, Wf" uniqKey="Tam W">WF Tam</name>
</author>
<author>
<name sortKey="Wright, Qg" uniqKey="Wright Q">QG Wright</name>
</author>
<author>
<name sortKey="Mcdermott, Sp" uniqKey="Mcdermott S">SP McDermott</name>
</author>
<author>
<name sortKey="Vidal, Cm" uniqKey="Vidal C">CM Vidal</name>
</author>
<author>
<name sortKey="Shapiro, Im" uniqKey="Shapiro I">IM Shapiro</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Goel, S" uniqKey="Goel S">S Goel</name>
</author>
<author>
<name sortKey="Wang, Q" uniqKey="Wang Q">Q Wang</name>
</author>
<author>
<name sortKey="Watt, Ac" uniqKey="Watt A">AC Watt</name>
</author>
<author>
<name sortKey="Tolaney, Sm" uniqKey="Tolaney S">SM Tolaney</name>
</author>
<author>
<name sortKey="Dillon, Da" uniqKey="Dillon D">DA Dillon</name>
</author>
<author>
<name sortKey="Li, W" uniqKey="Li W">W Li</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Garrido Castro, Ac" uniqKey="Garrido Castro A">AC Garrido-Castro</name>
</author>
<author>
<name sortKey="Goel, S" uniqKey="Goel S">S Goel</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Goel, S" uniqKey="Goel S">S Goel</name>
</author>
<author>
<name sortKey="Decristo, Mj" uniqKey="Decristo M">MJ DeCristo</name>
</author>
<author>
<name sortKey="Watt, Ac" uniqKey="Watt A">AC Watt</name>
</author>
<author>
<name sortKey="Brinjones, H" uniqKey="Brinjones H">H BrinJones</name>
</author>
<author>
<name sortKey="Sceneay, J" uniqKey="Sceneay J">J Sceneay</name>
</author>
<author>
<name sortKey="Li, Bb" uniqKey="Li B">BB Li</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Dutertre, S" uniqKey="Dutertre S">S Dutertre</name>
</author>
<author>
<name sortKey="Descamps, S" uniqKey="Descamps S">S Descamps</name>
</author>
<author>
<name sortKey="Prigent, C" uniqKey="Prigent C">C Prigent</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Joukov, V" uniqKey="Joukov V">V Joukov</name>
</author>
<author>
<name sortKey="De Nicolo, A" uniqKey="De Nicolo A">A De Nicolo</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Li, M" uniqKey="Li M">M Li</name>
</author>
<author>
<name sortKey="Gao, K" uniqKey="Gao K">K Gao</name>
</author>
<author>
<name sortKey="Chu, L" uniqKey="Chu L">L Chu</name>
</author>
<author>
<name sortKey="Zheng, J" uniqKey="Zheng J">J Zheng</name>
</author>
<author>
<name sortKey="Yang, J" uniqKey="Yang J">J Yang</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Zheng, F" uniqKey="Zheng F">F Zheng</name>
</author>
<author>
<name sortKey="Yue, C" uniqKey="Yue C">C Yue</name>
</author>
<author>
<name sortKey="Li, G" uniqKey="Li G">G Li</name>
</author>
<author>
<name sortKey="He, B" uniqKey="He B">B He</name>
</author>
<author>
<name sortKey="Cheng, W" uniqKey="Cheng W">W Cheng</name>
</author>
<author>
<name sortKey="Wang, X" uniqKey="Wang X">X Wang</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Opyrchal, M" uniqKey="Opyrchal M">M Opyrchal</name>
</author>
<author>
<name sortKey="Gil, M" uniqKey="Gil M">M Gil</name>
</author>
<author>
<name sortKey="Salisbury, Jl" uniqKey="Salisbury J">JL Salisbury</name>
</author>
<author>
<name sortKey="Goetz, Mp" uniqKey="Goetz M">MP Goetz</name>
</author>
<author>
<name sortKey="Suman, V" uniqKey="Suman V">V Suman</name>
</author>
<author>
<name sortKey="Degnim, A" uniqKey="Degnim A">A Degnim</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Staudt, Lm" uniqKey="Staudt L">LM Staudt</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Vazquez Santillan, K" uniqKey="Vazquez Santillan K">K Vazquez-Santillan</name>
</author>
<author>
<name sortKey="Melendez Zajgla, J" uniqKey="Melendez Zajgla J">J Melendez-Zajgla</name>
</author>
<author>
<name sortKey="Jimenez Hernandez, Le" uniqKey="Jimenez Hernandez L">LE Jimenez-Hernandez</name>
</author>
<author>
<name sortKey="Gaytan Cervantes, J" uniqKey="Gaytan Cervantes J">J Gaytan-Cervantes</name>
</author>
<author>
<name sortKey="Munoz Galindo, L" uniqKey="Munoz Galindo L">L Munoz-Galindo</name>
</author>
<author>
<name sortKey="Pina Sanchez, P" uniqKey="Pina Sanchez P">P Pina-Sanchez</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ling, L" uniqKey="Ling L">L Ling</name>
</author>
<author>
<name sortKey="Cao, Z" uniqKey="Cao Z">Z Cao</name>
</author>
<author>
<name sortKey="Goeddel, Dv" uniqKey="Goeddel D">DV Goeddel</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Thu, Ym" uniqKey="Thu Y">YM Thu</name>
</author>
<author>
<name sortKey="Richmond, A" uniqKey="Richmond A">A Richmond</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Cao, Y" uniqKey="Cao Y">Y Cao</name>
</author>
<author>
<name sortKey="Bonizzi, G" uniqKey="Bonizzi G">G Bonizzi</name>
</author>
<author>
<name sortKey="Seagroves, Tn" uniqKey="Seagroves T">TN Seagroves</name>
</author>
<author>
<name sortKey="Greten, Fr" uniqKey="Greten F">FR Greten</name>
</author>
<author>
<name sortKey="Johnson, R" uniqKey="Johnson R">R Johnson</name>
</author>
<author>
<name sortKey="Schmidt, Ev" uniqKey="Schmidt E">EV Schmidt</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Yamamoto, M" uniqKey="Yamamoto M">M Yamamoto</name>
</author>
<author>
<name sortKey="Ito, T" uniqKey="Ito T">T Ito</name>
</author>
<author>
<name sortKey="Shimizu, T" uniqKey="Shimizu T">T Shimizu</name>
</author>
<author>
<name sortKey="Ishida, T" uniqKey="Ishida T">T Ishida</name>
</author>
<author>
<name sortKey="Semba, K" uniqKey="Semba K">K Semba</name>
</author>
<author>
<name sortKey="Watanabe, S" uniqKey="Watanabe S">S Watanabe</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Yang, C" uniqKey="Yang C">C Yang</name>
</author>
<author>
<name sortKey="Atkinson, Sp" uniqKey="Atkinson S">SP Atkinson</name>
</author>
<author>
<name sortKey="Vilella, F" uniqKey="Vilella F">F Vilella</name>
</author>
<author>
<name sortKey="Lloret, M" uniqKey="Lloret M">M Lloret</name>
</author>
<author>
<name sortKey="Armstrong, L" uniqKey="Armstrong L">L Armstrong</name>
</author>
<author>
<name sortKey="Mann, Da" uniqKey="Mann D">DA Mann</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Yamamoto, M" uniqKey="Yamamoto M">M Yamamoto</name>
</author>
<author>
<name sortKey="Taguchi, Y" uniqKey="Taguchi Y">Y Taguchi</name>
</author>
<author>
<name sortKey="Ito Kureha, T" uniqKey="Ito Kureha T">T Ito-Kureha</name>
</author>
<author>
<name sortKey="Semba, K" uniqKey="Semba K">K Semba</name>
</author>
<author>
<name sortKey="Yamaguchi, N" uniqKey="Yamaguchi N">N Yamaguchi</name>
</author>
<author>
<name sortKey="Inoue, J" uniqKey="Inoue J">J Inoue</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Zhang, W" uniqKey="Zhang W">W Zhang</name>
</author>
<author>
<name sortKey="Tan, W" uniqKey="Tan W">W Tan</name>
</author>
<author>
<name sortKey="Wu, X" uniqKey="Wu X">X Wu</name>
</author>
<author>
<name sortKey="Poustovoitov, M" uniqKey="Poustovoitov M">M Poustovoitov</name>
</author>
<author>
<name sortKey="Strasner, A" uniqKey="Strasner A">A Strasner</name>
</author>
<author>
<name sortKey="Li, W" uniqKey="Li W">W Li</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Burrell, Ra" uniqKey="Burrell R">RA Burrell</name>
</author>
<author>
<name sortKey="Mcgranahan, N" uniqKey="Mcgranahan N">N McGranahan</name>
</author>
<author>
<name sortKey="Bartek, J" uniqKey="Bartek J">J Bartek</name>
</author>
<author>
<name sortKey="Swanton, C" uniqKey="Swanton C">C Swanton</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Zare, M" uniqKey="Zare M">M Zare</name>
</author>
<author>
<name sortKey="Bastami, M" uniqKey="Bastami M">M Bastami</name>
</author>
<author>
<name sortKey="Solali, S" uniqKey="Solali S">S Solali</name>
</author>
<author>
<name sortKey="Alivand, Mr" uniqKey="Alivand M">MR Alivand</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Chaffer, Cl" uniqKey="Chaffer C">CL Chaffer</name>
</author>
<author>
<name sortKey="Marjanovic, Nd" uniqKey="Marjanovic N">ND Marjanovic</name>
</author>
<author>
<name sortKey="Lee, T" uniqKey="Lee T">T Lee</name>
</author>
<author>
<name sortKey="Bell, G" uniqKey="Bell G">G Bell</name>
</author>
<author>
<name sortKey="Kleer, Cg" uniqKey="Kleer C">CG Kleer</name>
</author>
<author>
<name sortKey="Reinhardt, F" uniqKey="Reinhardt F">F Reinhardt</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Witt, Ae" uniqKey="Witt A">AE Witt</name>
</author>
<author>
<name sortKey="Lee, Cw" uniqKey="Lee C">CW Lee</name>
</author>
<author>
<name sortKey="Lee, Ti" uniqKey="Lee T">TI Lee</name>
</author>
<author>
<name sortKey="Azzam, Dj" uniqKey="Azzam D">DJ Azzam</name>
</author>
<author>
<name sortKey="Wang, B" uniqKey="Wang B">B Wang</name>
</author>
<author>
<name sortKey="Caslini, C" uniqKey="Caslini C">C Caslini</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Rodriguez Bautista, R" uniqKey="Rodriguez Bautista R">R Rodriguez Bautista</name>
</author>
<author>
<name sortKey="Ortega Gomez, A" uniqKey="Ortega Gomez A">A Ortega Gomez</name>
</author>
<author>
<name sortKey="Hidalgo Miranda, A" uniqKey="Hidalgo Miranda A">A Hidalgo Miranda</name>
</author>
<author>
<name sortKey="Zentella Dehesa, A" uniqKey="Zentella Dehesa A">A Zentella Dehesa</name>
</author>
<author>
<name sortKey="Villarreal Garza, C" uniqKey="Villarreal Garza C">C Villarreal-Garza</name>
</author>
<author>
<name sortKey="Avila Moreno, F" uniqKey="Avila Moreno F">F Avila-Moreno</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="El Helou, R" uniqKey="El Helou R">R El Helou</name>
</author>
<author>
<name sortKey="Pinna, G" uniqKey="Pinna G">G Pinna</name>
</author>
<author>
<name sortKey="Cabaud, O" uniqKey="Cabaud O">O Cabaud</name>
</author>
<author>
<name sortKey="Wicinski, J" uniqKey="Wicinski J">J Wicinski</name>
</author>
<author>
<name sortKey="Bhajun, R" uniqKey="Bhajun R">R Bhajun</name>
</author>
<author>
<name sortKey="Guyon, L" uniqKey="Guyon L">L Guyon</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Celia Terrassa, T" uniqKey="Celia Terrassa T">T Celia-Terrassa</name>
</author>
<author>
<name sortKey="Liu, Dd" uniqKey="Liu D">DD Liu</name>
</author>
<author>
<name sortKey="Choudhury, A" uniqKey="Choudhury A">A Choudhury</name>
</author>
<author>
<name sortKey="Hang, X" uniqKey="Hang X">X Hang</name>
</author>
<author>
<name sortKey="Wei, Y" uniqKey="Wei Y">Y Wei</name>
</author>
<author>
<name sortKey="Zamalloa, J" uniqKey="Zamalloa J">J Zamalloa</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Deng, L" uniqKey="Deng L">L Deng</name>
</author>
<author>
<name sortKey="Shang, L" uniqKey="Shang L">L Shang</name>
</author>
<author>
<name sortKey="Bai, S" uniqKey="Bai S">S Bai</name>
</author>
<author>
<name sortKey="Chen, J" uniqKey="Chen J">J Chen</name>
</author>
<author>
<name sortKey="He, X" uniqKey="He X">X He</name>
</author>
<author>
<name sortKey="Martin Trevino, R" uniqKey="Martin Trevino R">R Martin-Trevino</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Peng, F" uniqKey="Peng F">F Peng</name>
</author>
<author>
<name sortKey="Li, Tt" uniqKey="Li T">TT Li</name>
</author>
<author>
<name sortKey="Wang, Kl" uniqKey="Wang K">KL Wang</name>
</author>
<author>
<name sortKey="Xiao, Gq" uniqKey="Xiao G">GQ Xiao</name>
</author>
<author>
<name sortKey="Wang, Jh" uniqKey="Wang J">JH Wang</name>
</author>
<author>
<name sortKey="Zhao, Hd" uniqKey="Zhao H">HD Zhao</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Peng, F" uniqKey="Peng F">F Peng</name>
</author>
<author>
<name sortKey="Wang, Jh" uniqKey="Wang J">JH Wang</name>
</author>
<author>
<name sortKey="Fan, Wj" uniqKey="Fan W">WJ Fan</name>
</author>
<author>
<name sortKey="Meng, Yt" uniqKey="Meng Y">YT Meng</name>
</author>
<author>
<name sortKey="Li, Mm" uniqKey="Li M">MM Li</name>
</author>
<author>
<name sortKey="Li, Tt" uniqKey="Li T">TT Li</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Deng, J" uniqKey="Deng J">J Deng</name>
</author>
<author>
<name sortKey="Yang, M" uniqKey="Yang M">M Yang</name>
</author>
<author>
<name sortKey="Jiang, R" uniqKey="Jiang R">R Jiang</name>
</author>
<author>
<name sortKey="An, N" uniqKey="An N">N An</name>
</author>
<author>
<name sortKey="Wang, X" uniqKey="Wang X">X Wang</name>
</author>
<author>
<name sortKey="Liu, B" uniqKey="Liu B">B Liu</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Zeng, L" uniqKey="Zeng L">L Zeng</name>
</author>
<author>
<name sortKey="Cen, Y" uniqKey="Cen Y">Y Cen</name>
</author>
<author>
<name sortKey="Chen, J" uniqKey="Chen J">J Chen</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Vidovic, D" uniqKey="Vidovic D">D Vidovic</name>
</author>
<author>
<name sortKey="Huynh, Tt" uniqKey="Huynh T">TT Huynh</name>
</author>
<author>
<name sortKey="Konda, P" uniqKey="Konda P">P Konda</name>
</author>
<author>
<name sortKey="Dean, C" uniqKey="Dean C">C Dean</name>
</author>
<author>
<name sortKey="Cruickshank, Bm" uniqKey="Cruickshank B">BM Cruickshank</name>
</author>
<author>
<name sortKey="Sultan, M" uniqKey="Sultan M">M Sultan</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Tu, Z" uniqKey="Tu Z">Z Tu</name>
</author>
<author>
<name sortKey="Schmollerl, J" uniqKey="Schmollerl J">J Schmollerl</name>
</author>
<author>
<name sortKey="Cuiffo, Bg" uniqKey="Cuiffo B">BG Cuiffo</name>
</author>
<author>
<name sortKey="Karnoub, Ae" uniqKey="Karnoub A">AE Karnoub</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Zhang, Z" uniqKey="Zhang Z">Z Zhang</name>
</author>
<author>
<name sortKey="Sun, L" uniqKey="Sun L">L Sun</name>
</author>
<author>
<name sortKey="Zhang, Y" uniqKey="Zhang Y">Y Zhang</name>
</author>
<author>
<name sortKey="Lu, G" uniqKey="Lu G">G Lu</name>
</author>
<author>
<name sortKey="Li, Y" uniqKey="Li Y">Y Li</name>
</author>
<author>
<name sortKey="Wei, Z" uniqKey="Wei Z">Z Wei</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="De Francesco, Em" uniqKey="De Francesco E">EM De Francesco</name>
</author>
<author>
<name sortKey="Sotgia, F" uniqKey="Sotgia F">F Sotgia</name>
</author>
<author>
<name sortKey="Lisanti, Mp" uniqKey="Lisanti M">MP Lisanti</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Sotgia, F" uniqKey="Sotgia F">F Sotgia</name>
</author>
<author>
<name sortKey="Fiorillo, M" uniqKey="Fiorillo M">M Fiorillo</name>
</author>
<author>
<name sortKey="Lisanti, Mp" uniqKey="Lisanti M">MP Lisanti</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Molina, Jr" uniqKey="Molina J">JR Molina</name>
</author>
<author>
<name sortKey="Sun, Y" uniqKey="Sun Y">Y Sun</name>
</author>
<author>
<name sortKey="Protopopova, M" uniqKey="Protopopova M">M Protopopova</name>
</author>
<author>
<name sortKey="Gera, S" uniqKey="Gera S">S Gera</name>
</author>
<author>
<name sortKey="Bandi, M" uniqKey="Bandi M">M Bandi</name>
</author>
<author>
<name sortKey="Bristow, C" uniqKey="Bristow C">C Bristow</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Wu, T" uniqKey="Wu T">T Wu</name>
</author>
<author>
<name sortKey="Harder, Bg" uniqKey="Harder B">BG Harder</name>
</author>
<author>
<name sortKey="Wong, Pk" uniqKey="Wong P">PK Wong</name>
</author>
<author>
<name sortKey="Lang, Je" uniqKey="Lang J">JE Lang</name>
</author>
<author>
<name sortKey="Zhang, Dd" uniqKey="Zhang D">DD Zhang</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ryoo, I G" uniqKey="Ryoo I">I-G Ryoo</name>
</author>
<author>
<name sortKey="Choi, B H" uniqKey="Choi B">B-H Choi</name>
</author>
<author>
<name sortKey="Ku, S K" uniqKey="Ku S">S-K Ku</name>
</author>
<author>
<name sortKey="Kwak, M K" uniqKey="Kwak M">M-K Kwak</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kim, D" uniqKey="Kim D">D Kim</name>
</author>
<author>
<name sortKey="Choi, B H" uniqKey="Choi B">B-H Choi</name>
</author>
<author>
<name sortKey="Ryoo, I G" uniqKey="Ryoo I">I-G Ryoo</name>
</author>
<author>
<name sortKey="Kwak, M K" uniqKey="Kwak M">M-K Kwak</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Xu, B" uniqKey="Xu B">B Xu</name>
</author>
<author>
<name sortKey="Wang, S" uniqKey="Wang S">S Wang</name>
</author>
<author>
<name sortKey="Li, R" uniqKey="Li R">R Li</name>
</author>
<author>
<name sortKey="Chen, K" uniqKey="Chen K">K Chen</name>
</author>
<author>
<name sortKey="He, L" uniqKey="He L">L He</name>
</author>
<author>
<name sortKey="Deng, M" uniqKey="Deng M">M Deng</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Zhao, W" uniqKey="Zhao W">W Zhao</name>
</author>
<author>
<name sortKey="Kruse, Jp" uniqKey="Kruse J">JP Kruse</name>
</author>
<author>
<name sortKey="Tang, Y" uniqKey="Tang Y">Y Tang</name>
</author>
<author>
<name sortKey="Jung, Sy" uniqKey="Jung S">SY Jung</name>
</author>
<author>
<name sortKey="Qin, J" uniqKey="Qin J">J Qin</name>
</author>
<author>
<name sortKey="Gu, W" uniqKey="Gu W">W Gu</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Chu, F" uniqKey="Chu F">F Chu</name>
</author>
<author>
<name sortKey="Chou, Pm" uniqKey="Chou P">PM Chou</name>
</author>
<author>
<name sortKey="Zheng, X" uniqKey="Zheng X">X Zheng</name>
</author>
<author>
<name sortKey="Mirkin, Bl" uniqKey="Mirkin B">BL Mirkin</name>
</author>
<author>
<name sortKey="Rebbaa, A" uniqKey="Rebbaa A">A Rebbaa</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Choi, Hk" uniqKey="Choi H">HK Choi</name>
</author>
<author>
<name sortKey="Cho, Kb" uniqKey="Cho K">KB Cho</name>
</author>
<author>
<name sortKey="Phuong, Nt" uniqKey="Phuong N">NT Phuong</name>
</author>
<author>
<name sortKey="Han, Cy" uniqKey="Han C">CY Han</name>
</author>
<author>
<name sortKey="Han, Hk" uniqKey="Han H">HK Han</name>
</author>
<author>
<name sortKey="Hien, Tt" uniqKey="Hien T">TT Hien</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Heo, J" uniqKey="Heo J">J Heo</name>
</author>
<author>
<name sortKey="Lim, J" uniqKey="Lim J">J Lim</name>
</author>
<author>
<name sortKey="Lee, S" uniqKey="Lee S">S Lee</name>
</author>
<author>
<name sortKey="Jeong, J" uniqKey="Jeong J">J Jeong</name>
</author>
<author>
<name sortKey="Kang, H" uniqKey="Kang H">H Kang</name>
</author>
<author>
<name sortKey="Kim, Y" uniqKey="Kim Y">Y Kim</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Han, Mk" uniqKey="Han M">MK Han</name>
</author>
<author>
<name sortKey="Song, Ek" uniqKey="Song E">EK Song</name>
</author>
<author>
<name sortKey="Guo, Y" uniqKey="Guo Y">Y Guo</name>
</author>
<author>
<name sortKey="Ou, X" uniqKey="Ou X">X Ou</name>
</author>
<author>
<name sortKey="Mantel, C" uniqKey="Mantel C">C Mantel</name>
</author>
<author>
<name sortKey="Broxmeyer, He" uniqKey="Broxmeyer H">HE Broxmeyer</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ma, W" uniqKey="Ma W">W Ma</name>
</author>
<author>
<name sortKey="Xiao, Gg" uniqKey="Xiao G">GG Xiao</name>
</author>
<author>
<name sortKey="Mao, J" uniqKey="Mao J">J Mao</name>
</author>
<author>
<name sortKey="Lu, Y" uniqKey="Lu Y">Y Lu</name>
</author>
<author>
<name sortKey="Song, B" uniqKey="Song B">B Song</name>
</author>
<author>
<name sortKey="Wang, L" uniqKey="Wang L">L Wang</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Shi, L" uniqKey="Shi L">L Shi</name>
</author>
<author>
<name sortKey="Tang, X" uniqKey="Tang X">X Tang</name>
</author>
<author>
<name sortKey="Qian, M" uniqKey="Qian M">M Qian</name>
</author>
<author>
<name sortKey="Liu, Z" uniqKey="Liu Z">Z Liu</name>
</author>
<author>
<name sortKey="Meng, F" uniqKey="Meng F">F Meng</name>
</author>
<author>
<name sortKey="Fu, L" uniqKey="Fu L">L Fu</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="O Callaghan, C" uniqKey="O Callaghan C">C O'Callaghan</name>
</author>
<author>
<name sortKey="Vassilopoulos, A" uniqKey="Vassilopoulos A">A Vassilopoulos</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Menssen, A" uniqKey="Menssen A">A Menssen</name>
</author>
<author>
<name sortKey="Hydbring, P" uniqKey="Hydbring P">P Hydbring</name>
</author>
<author>
<name sortKey="Kapelle, K" uniqKey="Kapelle K">K Kapelle</name>
</author>
<author>
<name sortKey="Vervoorts, J" uniqKey="Vervoorts J">J Vervoorts</name>
</author>
<author>
<name sortKey="Diebold, J" uniqKey="Diebold J">J Diebold</name>
</author>
<author>
<name sortKey="Luscher, B" uniqKey="Luscher B">B Luscher</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Merino, D" uniqKey="Merino D">D Merino</name>
</author>
<author>
<name sortKey="Whittle, Jr" uniqKey="Whittle J">JR Whittle</name>
</author>
<author>
<name sortKey="Vaillant, F" uniqKey="Vaillant F">F Vaillant</name>
</author>
<author>
<name sortKey="Serrano, A" uniqKey="Serrano A">A Serrano</name>
</author>
<author>
<name sortKey="Gong, Jn" uniqKey="Gong J">JN Gong</name>
</author>
<author>
<name sortKey="Giner, G" uniqKey="Giner G">G Giner</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Jang, Gb" uniqKey="Jang G">GB Jang</name>
</author>
<author>
<name sortKey="Kim, Jy" uniqKey="Kim J">JY Kim</name>
</author>
<author>
<name sortKey="Cho, Sd" uniqKey="Cho S">SD Cho</name>
</author>
<author>
<name sortKey="Park, Ks" uniqKey="Park K">KS Park</name>
</author>
<author>
<name sortKey="Jung, Jy" uniqKey="Jung J">JY Jung</name>
</author>
<author>
<name sortKey="Lee, Hy" uniqKey="Lee H">HY Lee</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ferrer, I" uniqKey="Ferrer I">I Ferrer</name>
</author>
<author>
<name sortKey="Verdugo Sivianes, Em" uniqKey="Verdugo Sivianes E">EM Verdugo-Sivianes</name>
</author>
<author>
<name sortKey="Castilla, Ma" uniqKey="Castilla M">MA Castilla</name>
</author>
<author>
<name sortKey="Melendez, R" uniqKey="Melendez R">R Melendez</name>
</author>
<author>
<name sortKey="Marin, Jj" uniqKey="Marin J">JJ Marin</name>
</author>
<author>
<name sortKey="Munoz Galvan, S" uniqKey="Munoz Galvan S">S Munoz-Galvan</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Sengupta, S" uniqKey="Sengupta S">S Sengupta</name>
</author>
<author>
<name sortKey="Nagalingam, A" uniqKey="Nagalingam A">A Nagalingam</name>
</author>
<author>
<name sortKey="Muniraj, N" uniqKey="Muniraj N">N Muniraj</name>
</author>
<author>
<name sortKey="Bonner, My" uniqKey="Bonner M">MY Bonner</name>
</author>
<author>
<name sortKey="Mistriotis, P" uniqKey="Mistriotis P">P Mistriotis</name>
</author>
<author>
<name sortKey="Afthinos, A" uniqKey="Afthinos A">A Afthinos</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Wang, D" uniqKey="Wang D">D Wang</name>
</author>
<author>
<name sortKey="Xu, J" uniqKey="Xu J">J Xu</name>
</author>
<author>
<name sortKey="Liu, B" uniqKey="Liu B">B Liu</name>
</author>
<author>
<name sortKey="He, X" uniqKey="He X">X He</name>
</author>
<author>
<name sortKey="Zhou, L" uniqKey="Zhou L">L Zhou</name>
</author>
<author>
<name sortKey="Hu, X" uniqKey="Hu X">X Hu</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Janghorban, M" uniqKey="Janghorban M">M Janghorban</name>
</author>
<author>
<name sortKey="Xin, L" uniqKey="Xin L">L Xin</name>
</author>
<author>
<name sortKey="Rosen, Jm" uniqKey="Rosen J">JM Rosen</name>
</author>
<author>
<name sortKey="Zhang, Xh" uniqKey="Zhang X">XH Zhang</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Tominaga, K" uniqKey="Tominaga K">K Tominaga</name>
</author>
<author>
<name sortKey="Shimamura, T" uniqKey="Shimamura T">T Shimamura</name>
</author>
<author>
<name sortKey="Kimura, N" uniqKey="Kimura N">N Kimura</name>
</author>
<author>
<name sortKey="Murayama, T" uniqKey="Murayama T">T Murayama</name>
</author>
<author>
<name sortKey="Matsubara, D" uniqKey="Matsubara D">D Matsubara</name>
</author>
<author>
<name sortKey="Kanauchi, H" uniqKey="Kanauchi H">H Kanauchi</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Gupta, Pb" uniqKey="Gupta P">PB Gupta</name>
</author>
<author>
<name sortKey="Onder, Tt" uniqKey="Onder T">TT Onder</name>
</author>
<author>
<name sortKey="Jiang, G" uniqKey="Jiang G">G Jiang</name>
</author>
<author>
<name sortKey="Tao, K" uniqKey="Tao K">K Tao</name>
</author>
<author>
<name sortKey="Kuperwasser, C" uniqKey="Kuperwasser C">C Kuperwasser</name>
</author>
<author>
<name sortKey="Weinberg, Ra" uniqKey="Weinberg R">RA Weinberg</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Mai, Tt" uniqKey="Mai T">TT Mai</name>
</author>
<author>
<name sortKey="Hamai, A" uniqKey="Hamai A">A Hamai</name>
</author>
<author>
<name sortKey="Hienzsch, A" uniqKey="Hienzsch A">A Hienzsch</name>
</author>
<author>
<name sortKey="Caneque, T" uniqKey="Caneque T">T Caneque</name>
</author>
<author>
<name sortKey="Muller, S" uniqKey="Muller S">S Muller</name>
</author>
<author>
<name sortKey="Wicinski, J" uniqKey="Wicinski J">J Wicinski</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Huang, X" uniqKey="Huang X">X Huang</name>
</author>
<author>
<name sortKey="Borgstrom, B" uniqKey="Borgstrom B">B Borgstrom</name>
</author>
<author>
<name sortKey="Kempengren, S" uniqKey="Kempengren S">S Kempengren</name>
</author>
<author>
<name sortKey="Persson, L" uniqKey="Persson L">L Persson</name>
</author>
<author>
<name sortKey="Hegardt, C" uniqKey="Hegardt C">C Hegardt</name>
</author>
<author>
<name sortKey="Strand, D" uniqKey="Strand D">D Strand</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Taylor, Wr" uniqKey="Taylor W">WR Taylor</name>
</author>
<author>
<name sortKey="Fedorka, Sr" uniqKey="Fedorka S">SR Fedorka</name>
</author>
<author>
<name sortKey="Gad, I" uniqKey="Gad I">I Gad</name>
</author>
<author>
<name sortKey="Shah, R" uniqKey="Shah R">R Shah</name>
</author>
<author>
<name sortKey="Alqahtani, Hd" uniqKey="Alqahtani H">HD Alqahtani</name>
</author>
<author>
<name sortKey="Koranne, R" uniqKey="Koranne R">R Koranne</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Cufi, S" uniqKey="Cufi S">S Cufi</name>
</author>
<author>
<name sortKey="Vazquez Martin, A" uniqKey="Vazquez Martin A">A Vazquez-Martin</name>
</author>
<author>
<name sortKey="Oliveras Ferraros, C" uniqKey="Oliveras Ferraros C">C Oliveras-Ferraros</name>
</author>
<author>
<name sortKey="Martin Castillo, B" uniqKey="Martin Castillo B">B Martin-Castillo</name>
</author>
<author>
<name sortKey="Vellon, L" uniqKey="Vellon L">L Vellon</name>
</author>
<author>
<name sortKey="Menendez, Ja" uniqKey="Menendez J">JA Menendez</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Choi, Ds" uniqKey="Choi D">DS Choi</name>
</author>
<author>
<name sortKey="Blanco, E" uniqKey="Blanco E">E Blanco</name>
</author>
<author>
<name sortKey="Kim, Ys" uniqKey="Kim Y">YS Kim</name>
</author>
<author>
<name sortKey="Rodriguez, Aa" uniqKey="Rodriguez A">AA Rodriguez</name>
</author>
<author>
<name sortKey="Zhao, H" uniqKey="Zhao H">H Zhao</name>
</author>
<author>
<name sortKey="Huang, Th" uniqKey="Huang T">TH Huang</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Galluzzi, L" uniqKey="Galluzzi L">L Galluzzi</name>
</author>
<author>
<name sortKey="Bravo San Pedro, Jm" uniqKey="Bravo San Pedro J">JM Bravo-San Pedro</name>
</author>
<author>
<name sortKey="Demaria, S" uniqKey="Demaria S">S Demaria</name>
</author>
<author>
<name sortKey="Formenti, Sc" uniqKey="Formenti S">SC Formenti</name>
</author>
<author>
<name sortKey="Kroemer, G" uniqKey="Kroemer G">G Kroemer</name>
</author>
</analytic>
</biblStruct>
</listBibl>
</div1>
</back>
</TEI>
<pmc article-type="review-article">
<pmc-dir>properties open_access</pmc-dir>
<front>
<journal-meta>
<journal-id journal-id-type="nlm-ta">Front Oncol</journal-id>
<journal-id journal-id-type="iso-abbrev">Front Oncol</journal-id>
<journal-id journal-id-type="publisher-id">Front. Oncol.</journal-id>
<journal-title-group>
<journal-title>Frontiers in Oncology</journal-title>
</journal-title-group>
<issn pub-type="epub">2234-943X</issn>
<publisher>
<publisher-name>Frontiers Media S.A.</publisher-name>
</publisher>
</journal-meta>
<article-meta>
<article-id pub-id-type="pmid">31681564</article-id>
<article-id pub-id-type="pmc">6805781</article-id>
<article-id pub-id-type="doi">10.3389/fonc.2019.01003</article-id>
<article-categories>
<subj-group subj-group-type="heading">
<subject>Oncology</subject>
<subj-group>
<subject>Review</subject>
</subj-group>
</subj-group>
</article-categories>
<title-group>
<article-title>Novel and Alternative Targets Against Breast Cancer Stemness to Combat Chemoresistance</article-title>
</title-group>
<contrib-group>
<contrib contrib-type="author">
<name>
<surname>Sridharan</surname>
<given-names>Sangita</given-names>
</name>
<xref ref-type="aff" rid="aff1">
<sup>1</sup>
</xref>
<xref ref-type="author-notes" rid="fn002">
<sup></sup>
</xref>
<uri xlink:type="simple" xlink:href="http://loop.frontiersin.org/people/716211/overview"></uri>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Howard</surname>
<given-names>Cory M.</given-names>
</name>
<xref ref-type="aff" rid="aff1">
<sup>1</sup>
</xref>
<xref ref-type="author-notes" rid="fn002">
<sup></sup>
</xref>
<uri xlink:type="simple" xlink:href="http://loop.frontiersin.org/people/515849/overview"></uri>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Tilley</surname>
<given-names>Augustus M. C.</given-names>
</name>
<xref ref-type="aff" rid="aff1">
<sup>1</sup>
</xref>
<xref ref-type="author-notes" rid="fn002">
<sup></sup>
</xref>
<uri xlink:type="simple" xlink:href="http://loop.frontiersin.org/people/815621/overview"></uri>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Subramaniyan</surname>
<given-names>Boopathi</given-names>
</name>
<xref ref-type="aff" rid="aff1">
<sup>1</sup>
</xref>
<xref ref-type="author-notes" rid="fn002">
<sup></sup>
</xref>
<uri xlink:type="simple" xlink:href="http://loop.frontiersin.org/people/674395/overview"></uri>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Tiwari</surname>
<given-names>Amit K.</given-names>
</name>
<xref ref-type="aff" rid="aff2">
<sup>2</sup>
</xref>
<uri xlink:type="simple" xlink:href="http://loop.frontiersin.org/people/61173/overview"></uri>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Ruch</surname>
<given-names>Randall J.</given-names>
</name>
<xref ref-type="aff" rid="aff1">
<sup>1</sup>
</xref>
<uri xlink:type="simple" xlink:href="http://loop.frontiersin.org/people/815481/overview"></uri>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Raman</surname>
<given-names>Dayanidhi</given-names>
</name>
<xref ref-type="aff" rid="aff1">
<sup>1</sup>
</xref>
<xref ref-type="corresp" rid="c001">
<sup>*</sup>
</xref>
<uri xlink:type="simple" xlink:href="http://loop.frontiersin.org/people/402880/overview"></uri>
</contrib>
</contrib-group>
<aff id="aff1">
<sup>1</sup>
<institution>Department of Cancer Biology, University of Toledo</institution>
,
<addr-line>Toledo, OH</addr-line>
,
<country>United States</country>
</aff>
<aff id="aff2">
<sup>2</sup>
<institution>Department of Pharmacology and Experimental Therapeutics, University of Toledo</institution>
,
<addr-line>Toledo, OH</addr-line>
,
<country>United States</country>
</aff>
<author-notes>
<fn fn-type="edited-by">
<p>Edited by: Seema Singh, Mitchell Cancer Institute, United States</p>
</fn>
<fn fn-type="edited-by">
<p>Reviewed by: Asfar S. Azmi, Wayne State University Karmanos Cancer Institute, United States; Khalid El Bairi, Mohamed Premier University, Morocco; Vidya Sethunath, Baylor College of Medicine, United States</p>
</fn>
<corresp id="c001">*Correspondence: Dayanidhi Raman
<email>dayanidhi.raman@utoledo.edu</email>
</corresp>
<fn fn-type="other" id="fn001">
<p>This article was submitted to Women's Cancer, a section of the journal Frontiers in Oncology</p>
</fn>
<fn fn-type="other" id="fn002">
<p>†Co-first authors</p>
</fn>
</author-notes>
<pub-date pub-type="epub">
<day>16</day>
<month>10</month>
<year>2019</year>
</pub-date>
<pub-date pub-type="collection">
<year>2019</year>
</pub-date>
<volume>9</volume>
<elocation-id>1003</elocation-id>
<history>
<date date-type="received">
<day>26</day>
<month>6</month>
<year>2019</year>
</date>
<date date-type="accepted">
<day>18</day>
<month>9</month>
<year>2019</year>
</date>
</history>
<permissions>
<copyright-statement>Copyright © 2019 Sridharan, Howard, Tilley, Subramaniyan, Tiwari, Ruch and Raman.</copyright-statement>
<copyright-year>2019</copyright-year>
<copyright-holder>Sridharan, Howard, Tilley, Subramaniyan, Tiwari, Ruch and Raman</copyright-holder>
<license xlink:href="http://creativecommons.org/licenses/by/4.0/">
<license-p>This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.</license-p>
</license>
</permissions>
<abstract>
<p>Breast cancer stem cells (BCSCs) play a vital role in tumor progression and metastasis. They are heterogeneous and inherently radio- and chemoresistant. They have the ability to self-renew and differentiate into non-BCSCs. These determinants of BCSCs including the plasticity between the mesenchymal and epithelial phenotypes often leads to minimal residual disease (MRD), tumor relapse, and therapy failure. By studying the resistance mechanisms in BCSCs, a combinatorial therapy can be formulated to co-target BCSCs and bulk tumor cells. This review addresses breast cancer stemness and molecular underpinnings of how the cancer stemness can lead to pharmacological resistance. This might occur through rewiring of signaling pathways and modulated expression of various targets that support survival and self-renewal, clonogenicity, and multi-lineage differentiation into heterogeneous bulk tumor cells following chemotherapy. We explore emerging novel and alternative molecular targets against BC stemness and chemoresistance involving survival, drug efflux, metabolism, proliferation, cell migration, invasion, and metastasis. Strategic targeting of such vulnerabilities in BCSCs may overcome the chemoresistance and increase the longevity of the metastatic breast cancer patients.</p>
</abstract>
<kwd-group>
<kwd>breast cancer stemness</kwd>
<kwd>chemoresistance</kwd>
<kwd>therapy failure</kwd>
<kwd>CSC-directed therapy</kwd>
<kwd>novel targets</kwd>
<kwd>plasticity</kwd>
<kwd>minimal residual disease</kwd>
</kwd-group>
<counts>
<fig-count count="2"></fig-count>
<table-count count="2"></table-count>
<equation-count count="0"></equation-count>
<ref-count count="234"></ref-count>
<page-count count="19"></page-count>
<word-count count="16773"></word-count>
</counts>
</article-meta>
</front>
<body>
<sec sec-type="intro" id="s1">
<title>Introduction</title>
<p>Breast cancer (BC) is the second leading cause of death in women among the cancer mortalities. With the new estimates in 2019, 3 out of 10 women (30%) will develop BC in her lifetime and 1 in 7 (15%) will succumb to BC (
<xref rid="B1" ref-type="bibr">1</xref>
). Mortality in BC patients is mainly due to metastasis to the lungs, bone and the brain. Breast cancer is a heterogeneous disease with differential expression of several molecular markers. Luminal BC expresses estrogen receptor (ER), progesterone receptor (PR), and human epidermal growth factor receptor 2 (HER2). The triple-negative breast cancer (TNBC) subtype lacks the expression of all of the above three markers. Based on the gene expression profile, TNBC is classified into basal-like1 (BL1) and basal-like2 (BL2), mesenchymal (M), mesenchymal stem-like (MSL), immunomodulatory (IM), and luminal androgen receptor (LAR) types (
<xref rid="B2" ref-type="bibr">2</xref>
,
<xref rid="B3" ref-type="bibr">3</xref>
). The pathological complete response (pCR) rate with BL1, BL2, LAR, and MSL tumors are 52, 0, 10, and 23%, respectively (
<xref rid="B4" ref-type="bibr">4</xref>
). Moreover, intra- and inter-tumor heterogeneity (clonal diversity), and plasticity observed in TNBC (
<xref rid="B5" ref-type="bibr">5</xref>
<xref rid="B11" ref-type="bibr">11</xref>
) leads to chemoresistance, tumor relapse, and poor patient outcome. Both luminal and TNBC are reported to contain a small subpopulation of cells amidst the bulk tumor cells called breast cancer stem cells (BCSCs) or tumor initiating cells. BCSCs are capable of self-renewal, tumor initiation and differentiation into bulk tumor cells. BCSCs are intrinsically chemoresistant and can repopulate the tumor following chemotherapy and ionizing radiation. This ultimately leads to therapy failure, distant metastasis, or metastasis of the metastases, tumor relapse and mortality. This is especially true in luminal HER2
<sup>+</sup>
and TNBC tumor types. TNBC is highly lethal (5-year mortality >75%), characterized by aggressive growth, therapy failure, and lack of successful targeted therapies (
<xref rid="B12" ref-type="bibr">12</xref>
,
<xref rid="B13" ref-type="bibr">13</xref>
). TNBC patients often exhibit initial sensitivity to neoadjuvant chemotherapy, but eventually become refractory to such therapy presumably due to BCSCs. BCSCs are thus clinically important and there is an unmet need to co-target BCSCs along with bulk tumor cells. The co-targeting approach may overcome chemoresistance, molecular and metabolic plasticity, and most importantly reduce mortality and improve longevity in metastatic BC patients (
<xref rid="B14" ref-type="bibr">14</xref>
<xref rid="B18" ref-type="bibr">18</xref>
). In order to design effective and rational therapies against BCSCs, it is imperative to find novel and actionable molecular targets to combine effectively with current available therapies. This review focuses on emerging molecular targets that could become potential BCSC-directed precision therapies to overcome clinical chemoresistance.</p>
</sec>
<sec id="s2">
<title>Heterogeneity in BC and Its Influence on Clinical Outcome</title>
<p>The heterogeneity in BC cells can arise by stochastic genetic or epigenetic (clonal evolution) changes. The paracrine interactions of the tumor cells with its microenvironment (TME) can also confer phenotypic and functional heterogeneity based on the spatiotemporal dynamics (location of the tumor and continual changes in the cellular and acellular TME) of the constantly evolving tumors in the same patient (
<xref rid="B19" ref-type="bibr">19</xref>
<xref rid="B22" ref-type="bibr">22</xref>
). Metabolic heterogeneity has been reported to exist in BC organoids by employing optical metabolic imaging (OMI) similar to
<italic>in vivo</italic>
situation (
<xref rid="B23" ref-type="bibr">23</xref>
). OMI has been suggested to predict any potentially unresponsive subpopulation of cells within the tumor.</p>
<p>Heterogeneity exists among BCSCs as well (
<xref rid="B24" ref-type="bibr">24</xref>
). By isolating BCSCs based on high flavin content, energetic BCSCs (e-BCSCs) were identified with a higher glycolytic activity and a larger mitochondrial mass (
<xref rid="B25" ref-type="bibr">25</xref>
). On the contrary, quiescent BCSCs (qBCSCs) have been reported based on the epigenetic activities (
<xref rid="B26" ref-type="bibr">26</xref>
). Mesenchymal and epithelial phenotypes of heterogeneous BCSCs have been described contributing to differential chemoresistance (
<xref rid="B27" ref-type="bibr">27</xref>
). Notch-Jagged signaling has been proposed to contribute to heterogeneity in BCSCs with more mesenchymal BCSCs at the invasive edge and the hybrid epithelial/mesenchymal (E/M) BCSCs in the center of the tumor (
<xref rid="B24" ref-type="bibr">24</xref>
). Interestingly, ITGB4
<sup>+</sup>
-enriched BCSCs have been reported to reside in an intermediate E/M phenotypic state (
<xref rid="B28" ref-type="bibr">28</xref>
). Mathematical modeling coupled with data on single-cell sequencing of BCSCs has been suggested to dissect the heterogeneity. This will also help our understanding of the replication and invasive dynamics of BC cells during cancer progression and importantly in response to therapy (
<xref rid="B29" ref-type="bibr">29</xref>
).</p>
<p>Single cell sequencing (sc-seq) technology (single-cell genomics and transcriptomics) has pioneered our understanding of intra-tumoral genetic heterogeneity, the cancer genome evolution and also phenotypic diversity (
<xref rid="B30" ref-type="bibr">30</xref>
<xref rid="B32" ref-type="bibr">32</xref>
). Understanding molecular and genetic variations at the single cell level and as an ensemble in the tumor will provide mechanisms of chemoresistance. Chemoresistance and relapse can also occur in patients undergoing combination chemotherapy. In such cases, tapping the circulating tumor cells (CTCs) by liquid biopsy would enable assessment of the tumor cells for any molecular or genetic changes following chemotherapy. Many of the CTCs are BCSCs and one can examine for ratios of BCSCs to tumor cells (CD44 vs. CD24 and ALDH staining) before, during and after therapy. The isolated CTCs/BCSCs can be subjected to sc-seq for genomic, epigenomic, and transcriptomic analysis. Using this approach, continuously activated T-cells were identified in the cellular TME. Additionally, it revealed a co-existence of M1 and M2 macrophage polarization genes in the same cell indicating that macrophages fall along a spectrum between the two states (
<xref rid="B33" ref-type="bibr">33</xref>
). Also, aldehyde dehydrogenase (ALDH
<sup>+</sup>
) positive BCSCs at the single cell level analysis, exhibited hybrid epithelial/mesenchymal phenotype with a gene expression associated with aggressive TNBC (
<xref rid="B34" ref-type="bibr">34</xref>
). Identification of biomarkers predictive of therapy response and emergence of resistance following therapy based on sc-seq would prove valuable (
<xref rid="B17" ref-type="bibr">17</xref>
).</p>
<sec>
<title>tRNA as Predictive Biomarkers in BCSCs</title>
<p>Transfer RNA (tRNA)-derived small non-coding RNAs (tDRs) are novel small non-coding RNAs (sncRNA) that have been demonstrated in some human diseases and biological processes. BCSCs isolated by the expression of CD44
<sup>+</sup>
/CD24
<sup>−/low</sup>
surface markers were tested for tDR expression profiles in TNBC and non-TNBC types by RNA sequencing (RNA-Seq). Among a total of 1,327 differentially expressed tDRs, 18 were upregulated and 54 were downregulated in the TNBC group. The expression level of tDR-000620 was consistently lower in BCSCs derived from TNBC cell lines and patient serum samples. Interestingly, tDR-000620 expression (
<italic>p</italic>
= 0.002) and the node status (
<italic>p</italic>
= 0.001) groups were statistically significant with recurrence-free survival (
<xref rid="B35" ref-type="bibr">35</xref>
).</p>
<p>tRNA-derived fragments (tRF) also serve as predictive biomarkers (
<xref rid="B36" ref-type="bibr">36</xref>
). tRF-30-JZOYJE22RR33 and tRF-27-ZDXPHO53KSN were correlated with trastuzumab resistance (
<xref rid="B37" ref-type="bibr">37</xref>
). The tDRs such as tDR-0009 [derived from transfer RNA (tRNA)
<sup>Gly−GCC−1−1</sup>
] and tDR-7336 (derived from tRNA
<sup>Gly−GCC−1−2</sup>
) were significantly upregulated when the SUM-1315 cell line was subjected to hypoxic conditions. The protein-protein interaction network from the STRING database identified that tDR-0009 may be involved in imparting chemoresistance to TNBC cells through the regulation of STAT3 activation. Specific tDRs act as regulatory factors in hypoxia-induced chemoresistance in TNBC, and they could serve as predictive biomarkers (
<xref rid="B38" ref-type="bibr">38</xref>
). In HER2-overexpressing breast cancer, there is an ongoing clinical trial evaluating molecular biomarkers to predict the efficacy of the Trastuzumab therapy and recurrence (NCT03521245).</p>
</sec>
</sec>
<sec id="s3">
<title>Breast Cancer Stem Cells</title>
<p>BCSCs through their self-renewal capacity can initiate tumorigenesis, contribute to primary tumor progression, local invasion, and distant metastases (
<xref rid="B39" ref-type="bibr">39</xref>
). Historically, CSCs have been described as a “side population” (SP) by flow cytometric analyses based on the exclusion of the Hoechst dye by the drug transporters in CSCs. This reflects their capability to exclude xenobiotics including anti-cancer drugs to outside of the cell. There is spatial and temporal variability in the expression of stemness markers by BCSCs such as CD44 (Hyaluronan receptor) (
<xref rid="B39" ref-type="bibr">39</xref>
), CD133 (
<xref rid="B40" ref-type="bibr">40</xref>
,
<xref rid="B41" ref-type="bibr">41</xref>
), CD49f
<sup>+</sup>
(Integrin-α
<sub>6</sub>
) (
<xref rid="B42" ref-type="bibr">42</xref>
), epithelial cell adhesion molecule (EpCAM), chemokine receptor CXCR4, transcription factors [SRY (sex determining region Y) box 2—SOX2, homeobox protein Nanog, and octamer-binding transcription factor 4 (OCT4)] and aldehyde dehydrogenase (ALDH) activity (
<xref rid="B39" ref-type="bibr">39</xref>
). A small fraction of BCSCs express both CD44 and ALDH markers and are considered highly metastatic (
<xref rid="B39" ref-type="bibr">39</xref>
,
<xref rid="B43" ref-type="bibr">43</xref>
). Interestingly, there are 2 isoforms of CD44 with opposite functions. The standard isoform of CD44 (CD44s) promotes BCSC stemness whereas the CD44 variant form (CD44v) opposes it (
<xref rid="B44" ref-type="bibr">44</xref>
). SOX2 works in conjunction with cyclin-dependent kinases 4/6 to transactivate the Cyclin D1 promoter, which facilitates proliferation and clonogenicity (
<xref rid="B45" ref-type="bibr">45</xref>
,
<xref rid="B46" ref-type="bibr">46</xref>
). In TNBC, SOX2 promotes proliferation, and metastasis (
<xref rid="B47" ref-type="bibr">47</xref>
). SOX2 also promotes tamoxifen resistance (
<xref rid="B48" ref-type="bibr">48</xref>
) and a SOX2-SOX9 signaling axis was reported to maintain BCSCs (
<xref rid="B49" ref-type="bibr">49</xref>
). Resistance to tamoxifen by ER
<sup>+</sup>
-BCSCs was attributed to SOX9-FXYD Domain Containing Ion Transport Regulator 3 (FXYD3)-
<italic>Src</italic>
axis (
<xref rid="B50" ref-type="bibr">50</xref>
). Basically, significantly upregulated expression of FXYD3 is crucial for mediating tamoxifen resistance in ER
<sup>+</sup>
-BCSCs. FXYD3 is critical for the nuclear localization of SOX9 which in turn directly promotes the expression of FXYD3 forming a positive feedback loop. The trimeric complex consisting of FXYD3, ER-α and c-
<italic>Src</italic>
which transduces non-genomic estrogen signaling which facilitates the activity of ER
<sup>+</sup>
-BCSCs. Nanog is also involved in the maintenance of pluripotency and self-renewal of BCSCs. An increased expression of Nanog serves as a prognostic indicator and was suggested to be co-expressed with the CD133 marker (
<xref rid="B22" ref-type="bibr">22</xref>
,
<xref rid="B51" ref-type="bibr">51</xref>
<xref rid="B53" ref-type="bibr">53</xref>
). OCT4 expression has been suggested to be a worse prognostic marker for surgical TNBC patients (
<xref rid="B54" ref-type="bibr">54</xref>
). Expression of SOX2, Nanog and OCT4 transcription factors correlated with poor differentiation, advanced BC stage and worst survival in BC patients with HER2 positivity (
<xref rid="B55" ref-type="bibr">55</xref>
). The expression of cell surface and subcellular markers of BCSCs is not a static property as they change in response to their microenvironment. Mesenchymal and epithelial phenotypes of BCSCs have been described with distinct gene expression profiles and contribute to heterogeneity and differential chemoresistance (
<xref rid="B27" ref-type="bibr">27</xref>
). The differential characteristics between these cells are described in
<xref rid="T1" ref-type="table">Table 1</xref>
. A hybrid version of BCSCs has been suggested to exist with both epithelial and mesenchymal stem cells markers in the center of the tumor (
<xref rid="B24" ref-type="bibr">24</xref>
,
<xref rid="B28" ref-type="bibr">28</xref>
). Generally, mesenchymal BCSCs are more resistant to chemotherapy than the epithelial type (
<xref rid="B69" ref-type="bibr">69</xref>
). Interconversion between them occurs at a slow rate which we call “stem cell buffering” (SCB) (
<xref rid="B27" ref-type="bibr">27</xref>
,
<xref rid="B70" ref-type="bibr">70</xref>
). The innate plasticity of BCSCs, thus contributes to tumor heterogeneity and chemoresistance. The BCSCs can dynamically oscillate between a bulk tumor cell type and stemness state based on temporal and spatial context in the microenvironment around the BCSC (
<xref rid="B22" ref-type="bibr">22</xref>
). For example, chemotherapy may first induce a BCSC phenotype conversion from bulk tumor cells. Following cessation of therapy, cells may revert to bulk tumor cells. Additionally, there is heterogeneity in BCSC pools in which the subsets of BCSCs have differing abilities ranging from quiescence, chemoresistance, interconversion between epithelial to mesenchymal types, proliferation, local invasion and metastasis. Thus, there is remarkable genetic and/or epigenetic heterogeneity and cellular plasticity in BCSCs and bulk tumor cells presenting clinical challenges. Thus, it is imperative to develop targeted therapies against the “mosaic nature” of BCSCs along with the co-targeting of bulk tumor cells.</p>
<table-wrap id="T1" position="float">
<label>Table 1</label>
<caption>
<p>Differential characteristics of Mesenchymal vs. Epithelial BCSCs.</p>
</caption>
<table frame="hsides" rules="groups">
<thead>
<tr>
<th valign="top" align="left" rowspan="1" colspan="1">
<bold>Attribute</bold>
</th>
<th valign="top" align="left" rowspan="1" colspan="1">
<bold>Mesenchymal BCSCs</bold>
</th>
<th valign="top" align="left" rowspan="1" colspan="1">
<bold>Epithelial BCSCs</bold>
</th>
</tr>
</thead>
<tbody>
<tr>
<td valign="top" align="left" rowspan="1" colspan="1">Primary identifying markers</td>
<td valign="top" align="left" rowspan="1" colspan="1">CD44
<sup>High</sup>
/CD24
<sup>Low</sup>
(
<xref rid="B39" ref-type="bibr">39</xref>
)</td>
<td valign="top" align="left" rowspan="1" colspan="1">ALDH activity and Western blotting for ALDH isozymes (
<xref rid="B56" ref-type="bibr">56</xref>
)</td>
</tr>
<tr>
<td valign="top" align="left" rowspan="1" colspan="1">Location in the tumor</td>
<td valign="top" align="left" rowspan="1" colspan="1">Tumor-invasive front in normoxic regions closer to the stroma (
<xref rid="B27" ref-type="bibr">27</xref>
)</td>
<td valign="top" align="left" rowspan="1" colspan="1">Centrally located in the tumor within the internal hypoxic zones (
<xref rid="B27" ref-type="bibr">27</xref>
,
<xref rid="B57" ref-type="bibr">57</xref>
).</td>
</tr>
<tr>
<td valign="top" align="left" rowspan="1" colspan="1">Secondary identifying markers</td>
<td valign="top" align="left" rowspan="1" colspan="1">EpCAM
<sup></sup>
, CD49f
<sup>+</sup>
, ESA
<sup>+</sup>
(
<xref rid="B58" ref-type="bibr">58</xref>
)</td>
<td valign="top" align="left" rowspan="1" colspan="1">EpCAM
<sup>+</sup>
, CD49f
<sup>+</sup>
(
<xref rid="B58" ref-type="bibr">58</xref>
)</td>
</tr>
<tr>
<td valign="top" align="left" rowspan="1" colspan="1">Breast cancer subtypes</td>
<td valign="top" align="left" rowspan="1" colspan="1">Preponderance in basal and claudin-low, HER2-breast cancer subtypes (
<xref rid="B59" ref-type="bibr">59</xref>
<xref rid="B61" ref-type="bibr">61</xref>
)</td>
<td valign="top" align="left" rowspan="1" colspan="1">High tendency to be found in HER2
<sup>+</sup>
, luminal breast cancers (
<xref rid="B62" ref-type="bibr">62</xref>
,
<xref rid="B63" ref-type="bibr">63</xref>
)</td>
</tr>
<tr>
<td valign="top" align="left" rowspan="1" colspan="1">Invasive and metastatic potential</td>
<td valign="top" align="left" rowspan="1" colspan="1">Enhanced tendency to invade and metastasize, demonstrated by increased expression of proinvasive genes [IL-1α, IL-6, IL-8, CXCR4, MMP-1, and urokinase plasminogen activator (UPA)] (
<xref rid="B64" ref-type="bibr">64</xref>
)</td>
<td valign="top" align="left" rowspan="1" colspan="1">ALDH
<sup>
<bold>+</bold>
</sup>
cells are more aggressive in behavior and may predict metastasis (
<xref rid="B65" ref-type="bibr">65</xref>
,
<xref rid="B66" ref-type="bibr">66</xref>
)</td>
</tr>
<tr>
<td valign="top" align="left" rowspan="1" colspan="1">Chemokine receptor expression</td>
<td valign="top" align="left" rowspan="1" colspan="1"></td>
<td valign="top" align="left" rowspan="1" colspan="1">Higher expression of chemokine receptors CXCR1 and CXCR2 (
<xref rid="B66" ref-type="bibr">66</xref>
)</td>
</tr>
<tr>
<td valign="top" align="left" rowspan="1" colspan="1">Proliferation rate</td>
<td valign="top" align="left" rowspan="1" colspan="1">Relatively quiescent as determined by the low expression of Ki 67 (
<xref rid="B56" ref-type="bibr">56</xref>
)</td>
<td valign="top" align="left" rowspan="1" colspan="1">Ki67 is preferentially expressed in ALDH
<sup>+</sup>
BCSCs making them relatively more proliferative (
<xref rid="B56" ref-type="bibr">56</xref>
)</td>
</tr>
<tr>
<td valign="top" align="left" rowspan="1" colspan="1">Epithelial and mesenchymal traits</td>
<td valign="top" align="left" rowspan="1" colspan="1">SAGE studies have shown higher levels of EMT-associated mRNA in CD44
<sup>
<bold>+</bold>
</sup>
/CD24
<sup>
<bold></bold>
</sup>
BCSCs (
<xref rid="B67" ref-type="bibr">67</xref>
)</td>
<td valign="top" align="left" rowspan="1" colspan="1">Associated with epithelial-like characteristics and gene expression (
<xref rid="B68" ref-type="bibr">68</xref>
)</td>
</tr>
</tbody>
</table>
<table-wrap-foot>
<p>
<italic>ALDH1, Aldehyde dehydrogenase 1; EpCAM, Epithelial cell adhesion molecule; CD49f
<sup>+</sup>
, α6-integrin; ESA, Epithelial specific antigen; HER2, Human epidermal growth factor receptor 2; MMP, Matrix metalloproteinase; SAGE, Serial analysis of gene expression; PARP1, Poly(ADP-Ribose) Polymerase 1; CXCR1, CXC-motif receptor 1; CXCR2, CXC-motif receptor 2</italic>
.</p>
</table-wrap-foot>
</table-wrap>
</sec>
<sec id="s4">
<title>The Link Between Epithelial-Mesenchymal Transition (EMT) and BCSCs</title>
<p>The mechanistic evidence suggests that EMT and the acquisition of BC stemness are correlated (
<xref rid="B69" ref-type="bibr">69</xref>
). Following the experimental activation of the EMT program (HMLER cells), induction of the autocrine signaling loops that were known to associate with cancer stemness were observed. Importantly, blocking the autocrine pathways was sufficient to abolish the CSC properties. This brings out the causal link between EMT and induction of BC stemness. The EMT program can also contribute to cancer stemness through its effects on intracellular signaling pathways. For instance, EMT-transcription factor (EMT-TF) Snail1 has been reported to diminish the expression of p53 in tumor cells through the formation of a ternary complex consisting of a Snail1, histone deacetylase 1 (HDAC1) and p53. This ternary association leads to deacetylation of p53 and its degradation (
<xref rid="B71" ref-type="bibr">71</xref>
). TGF-β signaling pathway has also been demonstrated to induce the expression of EMT-TFs such as Twist, Snail1, and Slug (
<xref rid="B72" ref-type="bibr">72</xref>
). In early breast cancer patients, a spectrum of EMT phenotypes in circulating tumor cells (CTCs) has been reported (
<xref rid="B73" ref-type="bibr">73</xref>
).</p>
</sec>
<sec id="s5">
<title>The BC Stemness State Imparts Therapy Resistance in the Clinics</title>
<p>BCSCs possess the intrinsic ability to survive cytotoxic therapy through a variety of mechanisms. They include upregulation of anti-apoptotic proteins, activation of alternate survival pathways, drug efflux or ATP-binding cassette (ABC) transporters, detoxification/reduction of reactive oxygen species (ROS) (
<xref rid="B18" ref-type="bibr">18</xref>
,
<xref rid="B74" ref-type="bibr">74</xref>
), and an enhanced capacity for DNA repair (
<xref rid="B75" ref-type="bibr">75</xref>
,
<xref rid="B76" ref-type="bibr">76</xref>
). Myeloid cell leukemia 1 (MCL1) is one of the key proteins involved in the survival of BCSCs (
<xref rid="B77" ref-type="bibr">77</xref>
,
<xref rid="B78" ref-type="bibr">78</xref>
). Both MYC and the anti-apoptotic protein MCL1 co-operate in BCSCs to promote chemoresistance through mitochondrial oxidative phosphorylation (
<xref rid="B79" ref-type="bibr">79</xref>
). Treatment of TNBC with “mammalian target of rapamycin complex 1/2” (mTORC1/2) inhibitors led to sustained drug-resistance in Notch1-dependent BCSCs (
<xref rid="B80" ref-type="bibr">80</xref>
). Interestingly, the Notch-mediated tumor-stroma-inflammatory network promoted tumor invasiveness and secretion of the chemokine CXCL8. CXCL8 promotes BC stemness through its action on the chemokine receptors CXCR1 and CXCR2 on BCSCs (
<xref rid="B81" ref-type="bibr">81</xref>
). The survival and resistance through upregulation and rewiring of alternate pathways in breast cancer is provided in
<xref rid="T2" ref-type="table">Table 2</xref>
.</p>
<table-wrap id="T2" position="float">
<label>Table 2</label>
<caption>
<p>Resistance mechanisms encountered in BCSCs during or after therapy.</p>
</caption>
<table frame="hsides" rules="groups">
<thead>
<tr>
<th valign="top" align="left" rowspan="1" colspan="1">
<bold>FDA-approved breast cancer drugs</bold>
</th>
<th valign="top" align="left" rowspan="1" colspan="1">
<bold>Drug target/mode of action</bold>
</th>
<th valign="top" align="left" rowspan="1" colspan="1">
<bold>BCSC resistance mechanism</bold>
</th>
<th valign="top" align="center" rowspan="1" colspan="1">
<bold>References</bold>
</th>
</tr>
</thead>
<tbody>
<tr>
<td valign="top" align="left" rowspan="1" colspan="1">Exemestane (Aromasin)</td>
<td valign="top" align="left" rowspan="1" colspan="1">Small molecule inhibitor of aromatase</td>
<td valign="top" align="left" rowspan="1" colspan="1">Exemestane induces AREG in an ER-dependent manner. AREG then activates the EGFR and downstream MAPK pathway, driving cell proliferation</td>
<td valign="top" align="center" rowspan="1" colspan="1">(
<xref rid="B82" ref-type="bibr">82</xref>
)</td>
</tr>
<tr>
<td valign="top" align="left" rowspan="1" colspan="1">Anastrozole</td>
<td valign="top" align="left" rowspan="1" colspan="1">Small molecule inhibitor of aromatase</td>
<td valign="top" align="left" rowspan="1" colspan="1">Causes resistance by constitutive activation of the PI3K/AKT/mTOR pathway</td>
<td valign="top" align="center" rowspan="1" colspan="1">(
<xref rid="B83" ref-type="bibr">83</xref>
)</td>
</tr>
<tr>
<td valign="top" align="left" rowspan="1" colspan="1">Letrozole (Femara)</td>
<td valign="top" align="left" rowspan="1" colspan="1">Non-steroidal aromatase inhibitor</td>
<td valign="top" align="left" rowspan="1" colspan="1">Treatment caused resistance by upregulation of HIF1-α target genes such as BCRP through activation of the PI3K/AKT/mTOR pathway</td>
<td valign="top" align="center" rowspan="1" colspan="1">(
<xref rid="B84" ref-type="bibr">84</xref>
)</td>
</tr>
<tr>
<td valign="top" align="left" rowspan="1" colspan="1">Cyclophosphamide (Clafen)</td>
<td valign="top" align="left" rowspan="1" colspan="1">Crosslinks DNA and targets NR1/2</td>
<td valign="top" align="left" rowspan="1" colspan="1">ALDH1A1 detoxifies the active form of Cyclophosphamide to an inactive metabolite. Treatment causes an NF-κB–IL-6–dependent inflammatory environment that induces stemness. Loss of PPARγ causes expansion of the CSC population resistant to cyclophosphamide. Mortalin (mtHsp70) upregulation leads to an increase in stem cell markers such as OCT4 and ALDH1 leading to drug resistance. Treatment-induced senescence greatly enhanced tumor stemness and relapse potential upon exit from the senescence state through the
<italic>Wnt</italic>
pathway</td>
<td valign="top" align="center" rowspan="1" colspan="1">(
<xref rid="B85" ref-type="bibr">85</xref>
<xref rid="B87" ref-type="bibr">87</xref>
)</td>
</tr>
<tr>
<td valign="top" align="left" rowspan="1" colspan="1">Doxorubicin hydrochloride, epirubicin</td>
<td valign="top" align="left" rowspan="1" colspan="1">Cytotoxic anthracycline which intercalates with DNA and inhibits DNA topoisomerase</td>
<td valign="top" align="left" rowspan="1" colspan="1">Doxorubicin-resistant cells had downregulated BRCA1/2, p53, Bcl2, and E-cadherin while upregulating glutathione-S-transferaseπ, PKCα, and ABC transporters. Treatment causes an NF-κB–IL6–dependent inflammatory environment that induces cancer stemness. Treatment caused an increase in the population of ALDH1
<sup>
<bold>+</bold>
</sup>
tumor cells. Mortalin (mtHsp70) upregulation leads to increase in stem cell markers such as OCT4 and ALDH1 leading to drug resistance. CSCs resist treatment and confer resistance to nearby cancer cells through upregulation and exosome mediated secretion of miR155. Pygo2 upregulation (Wnt/β-catenin pathway component) expanded the treatment-resistant stem cell population. CSCs repress expression of KRT19 leading to loss of nuclear import of the β-catenin/RAC1 complex causing downregulation of NUMB and upregulation of NOTCH, ultimately imparting drug resistance to the CSCs. Overexpression of the microRNA106b~25 cluster conveys resistance by repressing EP300 (a transcriptional activator of E-cadherin) leading to a more EMT phenotype and an increase in stemness. Loss of CRB3 led to TAZ overexpression which enhanced metastatic capability and drug resistance in CSCs. ECM1 overexpression caused an increase in β-catenin expression enhancing the stem cell phenotype and associated drug resistance. TLR3 activation induces the β-catenin pathway which promotes CSC drug resistance. A feedback loop between AURKA and FOXM1 are crucial for stem cell self-renewal and are upregulated in drug resistant cell lines. p62 delays MYC mRNA degradation by repressing let7a and let7b enhancing stemness in resistant cell lines. The miR200b-Suz12-cadherin pathway promotes CSC growth and drug resistance. RNF8 activates Twist via ubiquitination and causes its localization to the nucleus where it promotes EMT and the CSC phenotype leading to drug resistance. Treatment eliminates less aggressive CSCs leaving behind an aggressive PDGFR signaling-driven CSC population that has PKCα-dependent activation of FRA1 which drives EMT</td>
<td valign="top" align="center" rowspan="1" colspan="1">(
<xref rid="B87" ref-type="bibr">87</xref>
<xref rid="B100" ref-type="bibr">100</xref>
)</td>
</tr>
<tr>
<td valign="top" align="left" rowspan="1" colspan="1">5-Fluorouracil</td>
<td valign="top" align="left" rowspan="1" colspan="1">Targets uridine phosphorylase and SOD1</td>
<td valign="top" align="left" rowspan="1" colspan="1">Selectively induced expression of the ADAM12L isoform leading to increased expression of pAKT levels. Treatment causes an NF-κB–IL6–dependent inflammatory environment that induces cancer stemness. Treatment increased the number of CSCs and their self-renewing capability in cells with high expression of CDK4</td>
<td valign="top" align="center" rowspan="1" colspan="1">(
<xref rid="B85" ref-type="bibr">85</xref>
,
<xref rid="B101" ref-type="bibr">101</xref>
,
<xref rid="B102" ref-type="bibr">102</xref>
)</td>
</tr>
<tr>
<td valign="top" align="left" rowspan="1" colspan="1">Gemcitabine Hydrochloride</td>
<td valign="top" align="left" rowspan="1" colspan="1">Targets DNA by replacing cytidine causing arrest in DNA replication</td>
<td valign="top" align="left" rowspan="1" colspan="1">Resistance correlated with increased activity of the PI3K/AKT pathway</td>
<td valign="top" align="center" rowspan="1" colspan="1">(
<xref rid="B103" ref-type="bibr">103</xref>
)</td>
</tr>
<tr>
<td valign="top" align="left" rowspan="1" colspan="1">Fulvestrant (Faslodex)</td>
<td valign="top" align="left" rowspan="1" colspan="1">Estrogen receptor antagonist</td>
<td valign="top" align="left" rowspan="1" colspan="1">Led to increased stem cell activity through activation of the JAG1-NOTCH4 receptor pathway. Treatment caused upregulation of SOX2 and Wnt pathways. Therapy led to reduced ERα expression but also increased IL-6 expression which drove stemness and resistance in CD133 high cells</td>
<td valign="top" align="center" rowspan="1" colspan="1">(
<xref rid="B40" ref-type="bibr">40</xref>
,
<xref rid="B104" ref-type="bibr">104</xref>
)</td>
</tr>
<tr>
<td valign="top" align="left" rowspan="1" colspan="1">Docetaxel, Paclitaxel</td>
<td valign="top" align="left" rowspan="1" colspan="1">Taxane, antimitotic chemotherapeutic that primarily targets microtubules and their associated proteins</td>
<td valign="top" align="left" rowspan="1" colspan="1">Treatment creates an environment that allows for expansion of a CD49f
<sup>
<bold>+</bold>
</sup>
chemoresistant population with tumor initiating capability. Treatment caused an increase in the population of ALDH1
<sup>
<bold>+</bold>
</sup>
tumor cells. Resistance was found to be mediated by downregulation of miR27b leading to an increase in the level of ENPP1 which promotes expression of ABCG2. Treatment increased the number of CSCs and their self-renewing capability in cells with high expression of CDK4. LSD1-mediated resistance by upregulation of EMT related genes and pathways such as the PI3K/AKT pathway, leading to active induction of the CSC phenotype. Loss of SOCS3 leads to increased IL-6 mediated NF-κB signaling, increasing the BCSCs in p53/PTEN breast cancer cells. CSCs resist treatment and confer resistance to nearby cancer cells through upregulation and exosome mediated secretion of miR155. TAZ overexpression leads to enhanced metastatic capability and drug resistance in CSCs. TLR3 activation induces the β-catenin pathway which promotes CSC drug resistance. IRAK1 is phosphorylated upon treatment (paclitaxel) inducing inflammatory cytokine expression and enrichment of drug-resistant CSCs. A feedback loop between AURKA and FOXM1 are crucial for stem cell self-renewal and are upregulated in drug resistant cell lines. An axis of SOX2, ABCG2 and TWIST1 promotes pluripotency and resistance in CSCs. Treatment induced BDNF which promoted self-renewal and drug resistance of TrkB
<sup>
<bold>+</bold>
</sup>
CSCs through KLF4. Treatment activates glucocorticoid receptors leading to an increase in YAP which causes an increase in drug-resistant CSCs. A drug-resistant CD10
<sup>
<bold>+</bold>
</sup>
, GPR77
<sup>
<bold>+</bold>
</sup>
- CAF population secretes IL-6 and IL-8 promoting stemness and drug resistance in cancer stem cells. CSCs and their drug resistance depend on HN1L to sustain activation of the LEPR-STAT3 pathway. Treatment eliminates less aggressive CSCs leaving behind an aggressive PDGFR signaling-driven CSC population that has PKCα dependent activation of FRA1 which drives EMT. The JAK/STAT3 pathway is upregulated in drug-resistant CSCs through CPT1B expression and fatty acid β-oxidation activity</td>
<td valign="top" align="center" rowspan="1" colspan="1">(
<xref rid="B42" ref-type="bibr">42</xref>
,
<xref rid="B90" ref-type="bibr">90</xref>
,
<xref rid="B91" ref-type="bibr">91</xref>
,
<xref rid="B93" ref-type="bibr">93</xref>
,
<xref rid="B94" ref-type="bibr">94</xref>
,
<xref rid="B99" ref-type="bibr">99</xref>
<xref rid="B101" ref-type="bibr">101</xref>
,
<xref rid="B105" ref-type="bibr">105</xref>
<xref rid="B115" ref-type="bibr">115</xref>
)</td>
</tr>
<tr>
<td valign="top" align="left" rowspan="1" colspan="1">Paclitaxel + Dasatinib combination therapy</td>
<td valign="top" align="left" rowspan="1" colspan="1">Paclitaxel: See above
<break></break>
Dasatinib: Inhibitor of the BcrAbl and Src kinase family</td>
<td valign="top" align="left" rowspan="1" colspan="1">Paclitaxel treatment induced Dasatinib resistance by increased activation of several molecules involved in survival, malignancy, or stemness such as OCT3/4, Nanog, SOX2, c-
<italic>MYC</italic>
, c-
<italic>Src</italic>
, and Notch 1</td>
<td valign="top" align="center" rowspan="1" colspan="1">(
<xref rid="B116" ref-type="bibr">116</xref>
)</td>
</tr>
<tr>
<td valign="top" align="left" rowspan="1" colspan="1">Trastuzumab (Herceptin)</td>
<td valign="top" align="left" rowspan="1" colspan="1">A neutralizing antibody against the extracellular domain of the EGFR protein</td>
<td valign="top" align="left" rowspan="1" colspan="1">3D architecture results in enhanced BCSC population and modulates HER2 distribution, leading to increased Trastuzumab resistance. Treatment increased the frequency of EMT-like cancer CSCs in HER2
<sup>+</sup>
, PTEN
<sup></sup>
cells through an IL-6 inflammatory feedback loop. miR-2055p is overexpressed in cancer, directly represses HER2, and indirectly represses EGFR through p63 leading to resistance of targeted therapy</td>
<td valign="top" align="center" rowspan="1" colspan="1">(
<xref rid="B117" ref-type="bibr">117</xref>
<xref rid="B120" ref-type="bibr">120</xref>
)</td>
</tr>
<tr>
<td valign="top" align="left" rowspan="1" colspan="1">Tamoxifen Citrate</td>
<td valign="top" align="left" rowspan="1" colspan="1">Selective estrogen receptor modulator, acting as an inhibitor in mammary tissue</td>
<td valign="top" align="left" rowspan="1" colspan="1">Tamoxifen treatment was found to induce pluripotency related phenotype in ERα-positive breast cancer cells. This was associated with relapse of tumors expressing enhanced levels of ALDH1A1</td>
<td valign="top" align="center" rowspan="1" colspan="1">(
<xref rid="B121" ref-type="bibr">121</xref>
)</td>
</tr>
<tr>
<td valign="top" align="left" rowspan="1" colspan="1">Radiotherapy</td>
<td valign="top" align="left" rowspan="1" colspan="1">Induces DNA damage</td>
<td valign="top" align="left" rowspan="1" colspan="1">ATM phosphorylates and stabilizes ZEB1 which then interacts with USP7 to stabilize CHK1, promoting resistance to radiotherapy in CSCs</td>
<td valign="top" align="center" rowspan="1" colspan="1">(
<xref rid="B122" ref-type="bibr">122</xref>
)</td>
</tr>
<tr>
<td valign="top" align="left" rowspan="1" colspan="1">Sirolimus, Everolimus</td>
<td valign="top" align="left" rowspan="1" colspan="1">mTOR inhibitors</td>
<td valign="top" align="left" rowspan="1" colspan="1">The reprogramming of cells upregulates EVI1 and SOX9, causing an increased expression of key mTOR pathway components such as RAPTOR, ultimately increasing the stem-like signature</td>
<td valign="top" align="center" rowspan="1" colspan="1">(
<xref rid="B123" ref-type="bibr">123</xref>
)</td>
</tr>
<tr>
<td valign="top" align="left" rowspan="1" colspan="1">Methotrexate</td>
<td valign="top" align="left" rowspan="1" colspan="1">Inhibitor of tetrahydrofolate dehydrodgenase</td>
<td valign="top" align="left" rowspan="1" colspan="1">Mortalin (mtHsp70) upregulation leads to an increase in stem cell markers such as OCT4 and ALDH1 leading to drug resistance</td>
<td valign="top" align="center" rowspan="1" colspan="1">(
<xref rid="B87" ref-type="bibr">87</xref>
)</td>
</tr>
<tr>
<td valign="top" align="left" rowspan="1" colspan="1">Lapatinib</td>
<td valign="top" align="left" rowspan="1" colspan="1">Small molecule inhibitor of HER2 and EGFR</td>
<td valign="top" align="left" rowspan="1" colspan="1">miR-2055p is overexpressed in cancer, directly represses HER2, and indirectly represses EGFR through p63 leading to therapy resistance. Integrin α
<sub>v</sub>
β
<sub>3</sub>
drives the KRAS–RaIB–NF-κB pathway leading to enhanced stemness and resistance</td>
<td valign="top" align="center" rowspan="1" colspan="1">(
<xref rid="B119" ref-type="bibr">119</xref>
,
<xref rid="B124" ref-type="bibr">124</xref>
)</td>
</tr>
</tbody>
</table>
<table-wrap-foot>
<p>
<italic>CSCs, Cancer stem cells; EGFR, Epidermal growth factor receptor; AREG, Amphiregulin; ER, Estrogen receptor; MAPK, Mitogen activated protein kinase, PI3K, Phosphatidylinositol-3-kinase, AKT (PKB), protein kinase B; mTOR, Mechanistic target of rapamycin; HIF1, Hypoxia inducible factor1; BCRP (ABCG2), Breast cancer resistance protein (ATP binding cassette subfamily G member 2); ALDH1, Aldehyde dehydrogenase 1; NFκB, nuclear factor kappa light chain enhancer of activated B cells; IL-6, Interleukin-6; BRCA1/2, Breast cancer gene 1 and 2; Bcl2, Bcell lymphoma2; PKC, Protein kinase C; ABC, ATP Binding cassette transporters; ADAM12, Disintegrin and metalloproteinase domain containing protein 12; JAG1, Jagged 1; NOTCH4, Neurogenic locus notch homolog protein 4; SOX2, SRY (sex determining region Y) box 2; Oct3/4, Octamer binding transcription factor 3/4; HER2, human epidermal growth factor receptor 2; ZEB1, Zinc Finger E-Box Binding Homeobox 1; USP7, Ubiquitin Specific Peptidase 7; CHK1, Checkpoint kinase 1; EVI1, Ecotropic virus integration site 1; SOX9, SRY (sex determining region Y) box 9; RAPTOR- Regulatory associated protein of mTOR; Hsp70, Heat shock protein family A member 2; miR, microRNA; ENPP1, ecto nucleotide pyrophosphatase/phosphodiesterase family member 1; EMT, Epithelial to mesenchymal transition; PTEN, Phosphatase and tensin homolog; SOCS3, Suppressor of cytokine signaling 3; KRT19, Keratin19; RAC1, Ras-related C3 botulinum toxin substrate 1; NUMB, Protein numb homolog; TAZ, transcriptional coactivator with PDZ binding motif; CRB3, Crumbs protein homolog 3; ECM1, Extracellular Matrix Protein 1; TLR3, Toll-like receptor 3; IRAK1, interleukin1 receptor associated kinase 1; AURKA, Aurora kinase A; FOXM1, Forkhead box subclass M1; KRAS, Kras; RalB- RAS-like protooncogene B; TWIST1, Twist Family BHLH Transcription Factor 1; BDNF, Brain derived neurotrophic factor; TrkB, Neurotrophic Receptor Tyrosine Kinase 2; KLF4, Kruppel like factor 4; YAP, Yes-associated protein; IL-8, Interleukin-8; PDGFR, Platelet derived growth factor receptor; FRA1, Fos-like 1, AP1 Transcription Factor Subunit; HN1L, Hematological and neurological expressed 1like protein; LEPR, Leptin Receptor; STAT, Signal transducer and activator of transcription; JAK, Janus Kinase; CPT1B, Carnitine Palmitoyltransferase 1B</italic>
.</p>
</table-wrap-foot>
</table-wrap>
</sec>
<sec id="s6">
<title>Resistance Arising From BCSCs and the Tumor Microenvironment</title>
<p>Currently, there are no clearly defined, targeted inhibitors for BCSCs established for successful BCSC-directed therapy. One of the key considerations for such targeted therapy is that the selected targets should be enriched in BCSCs. If the target is not enriched, at least the relative susceptibility of BCSCs should be present. Alternatively, dual targeting of BCSCs and bulk tumor cells with synergistic inhibitors may prevent activation of alternative survival pathways and subsequent chemoresistance. Generally, one should avoid targeting molecular nodes that are common to both BCSCs and normal mammary stem cells (MaSCs) or other stem cells in the body. At the least, the developed inhibitors should be minimally toxic to MaSCs. Alternatively, one has to specifically deliver drugs that have efficacy against BCSCs by employing a targeted delivery approach such as nanotechnology (tumor-homing nanoparticles or nanospheres) (
<xref rid="B125" ref-type="bibr">125</xref>
). In addition to paracrine input from bulk tumor cells, BCSCs depend on the surrounding tumor microenvironment (TME) called the “BCSC niche.” The “BCSC niche” is currently a high value therapeutic target. BCSCs interact constantly with the cellular component of the niche including neutrophils, macrophages, endothelial, and endothelial progenitor cells, mesenchymal stem cells and carcinoma associated fibroblasts (CAFs) (
<xref rid="B126" ref-type="bibr">126</xref>
<xref rid="B128" ref-type="bibr">128</xref>
). The signaling cues from the acellular TME such as cytokines, chemokines, growth factors, and some hormones activate many signaling pathways in BCSCs and form attractive targets in BCSCs (
<xref ref-type="fig" rid="F1">Figures 1</xref>
,
<xref ref-type="fig" rid="F2">2</xref>
). For example, the chemokine CXCL8 or interleukin-8 (IL-8) and the hormone erythropoietin activated survival signaling pathways protect BCSCs following chemotherapy (
<xref rid="B129" ref-type="bibr">129</xref>
<xref rid="B131" ref-type="bibr">131</xref>
). Inflammatory components from TME also feed into BCSCs. Inhibition of cyclooxygenase-2 (COX-2) led to blockade of TGFβ-induced enrichment of two morphologically distinct BCSC populations; CD44
<sup>hi</sup>
/CD24
<sup>lo</sup>
and ALDH
<sup>+</sup>
(
<xref rid="B43" ref-type="bibr">43</xref>
,
<xref rid="B132" ref-type="bibr">132</xref>
). The role of hedgehog (Hh), Notch, and Wnt signaling pathways in CSCs has been reviewed previously (
<xref rid="B53" ref-type="bibr">53</xref>
). Additionally, efflux transporters are also implicated in clonogenicity, pluripotency, and survival of BCSCs against cytotoxic chemotherapy (
<xref rid="B133" ref-type="bibr">133</xref>
,
<xref rid="B134" ref-type="bibr">134</xref>
).</p>
<fig id="F1" position="float">
<label>Figure 1</label>
<caption>
<p>Cellular and acellular tumor microenvironment (TME) shape the response of breast cancer stem cells (BCSCs). The schematic diagram depicts different molecular players that execute the functionality of BCSCs and form potential actionable molecular targets in BCSCs. ALDH1, Aldehyde dehydrogenase 1; CD44, Cluster differentiation antigen 44; CD24, Cluster differentiation antigen 24; EGFR, Epidermal growth factor receptor; HER2, Human epidermal growth factor receptor 2; IGFR, Insulin-like growth factor receptor; CXCR1, CXC-motif receptor 1; CXCR2, CXC-motif receptor 2; CXCR4, CXC-motif receptor 4; ERK1/2, Extracellular signal regulated kinase1/2; PI3K, Phosphatidylinositol-3-kinase, FAK, Focal adhesion kinase; HIF-1α, Hypoxia inducible factor-1α; ABC, ATP Binding cassette transporters; BCRP (ABCG2), Breast cancer resistance protein (ATP binding cassette subfamily G member 2); ABCB1, ATP binding cassette subfamily B member 1; ABCC, ATP binding cassette subfamily C member 1; ABCC3, ATP binding cassette subfamily C member 3; IL-6, Interleukin-6; IL-8, Interleukin-8; SOX2, SRY (sex determining region Y) box 2; OCT4, Octamer binding transcription factor 4; ZEB1, Zinc Finger E-Box Binding Homeobox 1; miR, microRNA; AURKA, Aurora kinase A; NIK, NF-kB inducible kinase; AurKA, Aurora Kinase A; LSD1, Lysine-specific demethylase1; HDAC1, Histone deacetylase1; HDAC7, Histone deacetylase7; DNMT1, DNA methyltransferase1; TGF-β, Transforming growth factor-β; NRF2, NF-E2-related factor 2.</p>
</caption>
<graphic xlink:href="fonc-09-01003-g0001"></graphic>
</fig>
<fig id="F2" position="float">
<label>Figure 2</label>
<caption>
<p>Typical signaling pathways operating in breast cancer stem cells at different spatiotemporal contexts in the tumor microenvionment. Several signaling pathways that function in BCSCs impinge on transcription factors such as Snail1, β-catenin, Gli1, HIF-1α, phospho-SMADs, and Notch intracellular domain that traverses to the nucleus and increase or maintain the breast cancer stemness. CXCR4, CXC-motif receptor 4; RTKs, Receptor tyrosine kinases; MEK1/2, Mitogen activated protein kinase kinase 1/2; ERK1/2, Extracellular signal regulated kinase1/2; HIF-1α, Hypoxia inducible factor-1α; β-cat, β-catenin; ECM, Extracellular Matrix; FAK, Focal adhesion kinase; Gli- a transcription factor; SMAD, Homologous to Caenorhabditis elegans SMA (“small” worm phenotype) and Drosophila MAD (“Mothers Against Decapentaplegic”); Dish, Disheveled; Hedge, Hedgehog; APC-Adenomatous Polyposis Coli; c-SRC, cellular protooncogene similar to viral sarcoma; GSK-3β, Glycogen synthase kinase-3β; LPR, Lipoprotein receptor related protein; TGF-β, Transforming growth factor-β; NCID, Notch intracellular domain; LOX, Lysyl oxidase; PLOD2, Procollagen-lysine,2-oxoglutarate 5-dioxygenase.</p>
</caption>
<graphic xlink:href="fonc-09-01003-g0002"></graphic>
</fig>
</sec>
<sec id="s7">
<title>Emerging Targets for Breast Cancer Stem Cells</title>
<sec>
<title>Efflux Transporters</title>
<p>The intrinsic multidrug resistance (MDR) in BCSCs determines the efficacy of chemotherapy. One of the key characteristics that differentiate BCSCs from normal cells is an increased expression of ATP-binding cassette (ABC) efflux transporters. Upregulated expression of ABC transporters may contribute tremendously to chemoresistance. It is imperative to target these transporters in BCSCs without running into toxicity problems. Of the 49 ABC transporters (ABCT) known, ABCB1 [P-glycoprotein (Pgp) or multidrug resistance protein 1 (MDR1)], ABCC1 [(multidrug resistance-associated protein 1 (MRP1)], ABCC3, and ABCG2 [(breast cancer resistance protein (BCRP)] protect BCSCs from drugs by exporting them out of the cells. Among these, ABCG2 and ABCB1 serve as functional cell surface markers for BCSCs. Preclinical studies indicated that genetic deletion of ABCG2 significantly reduced the number of normal SP cells but nearly ablated them in mammary glands of Abcb1a/1b
<sup>−/−</sup>
; Abcg2
<sup>−/−</sup>
mice. Also, knockdown of ABCC3 led to a reduction in stemness. Additionally, there was a reduction in the number of BCSCs bearing CD44 on their cell surface. Importantly, the knockdown of ABCC3 demonstrated reduced formation of primary tumors (tumor initiating ability) and more susceptibility to doxorubicin in a xenograft mouse model (
<xref rid="B135" ref-type="bibr">135</xref>
). Hypoxic regions observed in a rapidly growing tumor can induce the expression of the transcription factor hypoxia inducible factor1-α (HIF1-α). HIF1-α can in turn induce the expression of ABCB1 which results in an expansion of the BCSCs via paracrine activation by interleukin-6 (IL-6) and CXCL8 (
<xref rid="B136" ref-type="bibr">136</xref>
). It is reported that ABC transporters may increase chemoresistance through expansion of BCSCs (
<xref rid="B75" ref-type="bibr">75</xref>
,
<xref rid="B120" ref-type="bibr">120</xref>
). So, targeting of MDR is highly important because even if the BCSC targets or signaling nodes are highly sensitive, the effective drugs may simply be exported out. So achieving effective intracellular therapeutic concentration in BCSCs is crucial in eliminating them.</p>
<p>Several approaches have been attempted to overcome MDR including (i) ABC gene silencing by anti-sense oligonucleotide (ASO)inhibitors (ii) Inhibition of the functionality of ABCT through competitive and allosteric modulators (iii) miRNA-mediated downregulation (iv) Targeted inhibition of receptor tyrosine kinases (v) Nanoparticle-mediated delivery of inhibitors (vi) Transcriptional and post-translational regulation of ABCTs and (vii) Signaling pathways affecting them (
<xref rid="B76" ref-type="bibr">76</xref>
,
<xref rid="B137" ref-type="bibr">137</xref>
). A few examples of the aforementioned approaches that were successful are provided here. Specifically, for instance, “third generation” ABCB1 modulators, such as elacridar (GF120918), laniquidar (R101933), zosuquidar (LY335979), and tariquidar (XR9576) with only nanomolar concentrations of the inhibitors required to inhibit ABCB1-mediated pumping of drugs out of tumor cells effectively. Elacridar was also found to inhibit ABCG2 transporter (
<xref rid="B138" ref-type="bibr">138</xref>
,
<xref rid="B139" ref-type="bibr">139</xref>
). Therefore, this compound may be useful in treating MDR tumors that express multiple ABC transporters, specifically targeting CSCs (
<xref rid="B139" ref-type="bibr">139</xref>
). Tyrosine-kinase inhibitors (TKIs) such as erlotinib, lapatinib, imatinib, and nilotinib at clinically achievable concentrations, modulate the ATPase activity of ABC transporters, inhibiting the active drug export (
<xref rid="B140" ref-type="bibr">140</xref>
). Specifically, suppression of ABCB1 and/or ABCG2 by TKIs has been demonstrated in several studies, though the detailed mechanism remains unclear (
<xref rid="B141" ref-type="bibr">141</xref>
<xref rid="B144" ref-type="bibr">144</xref>
). The caveat is that overcoming MDR mediated by ABC transporters may prove difficult as selective targeting of the BCSCs is vital to avoid any detrimental side effects on normal breast, hematopoietic stem cell populations and the central nervous system. One potential approach would be to define a “therapeutic window” that selectively eliminates BCSCs without affecting normal stem cells. Another challenge is the observed compensatory mechanisms between ABC transporters. For example, several ABCTs have overlapping substrates, i.e., redundant substrate recognition which can lead to cross-resistance to specific drugs/xenobiotics. Such compensatory changes by ABCTs are problematic and will accentuate the tumor growth and chemoresistance. Understanding how functional redundancy among ABCTs contribute to self-renewal of BCSCs is immensely important (
<xref rid="B145" ref-type="bibr">145</xref>
). Finally, drugs targeting ABCTs (e.g., Lapatinib) may be delivered to BCSCs through nanocarriers and using antibodies like Trastuzumab directed against HER2. Alternatively, a combinatorial therapy involving low dose inhibition of ABCTs and another key target such as DNA repair capacity, ALDH/CD44 activity, reactive oxygen species (ROS), anti-apoptotic signaling nodes, key proteins that modulate autophagy/senescence, epigenetic modulators, modulators of EMT, and metastasis or radiotherapy may prove beneficial.</p>
</sec>
<sec>
<title>G-Protein Coupled Receptors (GPCRs)</title>
<sec>
<title>CXCR1 and CXCR2</title>
<p>Chemokine receptors CXCR1 and CXCR2 are Gα
<sub>i</sub>
-coupled receptors that generally play a role in chemotaxis of neutrophils, macrophages, and endothelial cells in a physiological microenvironment. In the breast cancer setting, they play a vital role in survival of BCSCs before and after chemotherapy (
<xref rid="B129" ref-type="bibr">129</xref>
<xref rid="B131" ref-type="bibr">131</xref>
). CXCL8 can activate both CXCR1 and CXCR2. These receptors not only feed into their own cell survival pathways, but also transactivate epidermal growth factor receptor (EGFR) and human epidermal growth factor receptor 2 (HER2) in BCSCs (
<xref rid="B146" ref-type="bibr">146</xref>
). Selective targeting of BCSCs with CXCR1 inhibitors would also facilitate reduction in pro-tumor stromal cells that express CXCR1 (
<xref rid="B147" ref-type="bibr">147</xref>
,
<xref rid="B148" ref-type="bibr">148</xref>
). Antagonizing CXCR1 either by CXCR1-neutralizing antibody or by the small molecule inhibitor Repertaxin selectively depleted BCSCs than bulk tumor cells
<italic>in vitro</italic>
. This was followed by massive apoptosis of bulk tumor cells through FASL/FAS signaling through FAK/AKT/FOXO3A pathway. Furthermore, in a xenograft model, Repertaxin reduced the primary tumor burden and metastasis. It was proposed that CXCR1 blockade may selectively eliminate BCSCs (
<xref rid="B147" ref-type="bibr">147</xref>
). The chemotherapeutic drug Reparixin is an allosteric inhibitor of CXCR1 and CXCR2. A phase Ib trial (NCT02001974) has been conducted to evaluate the efficacy of reparixin in inhibiting CXCR1 and CXCR2 and any attendant toxicity (
<xref rid="B149" ref-type="bibr">149</xref>
). In this trial, co-administration of paclitaxel and reparixin appeared to be safe and tolerable in metastatic breast cancer. Additionally, the trial had demonstrated responses in the enrolled population. Based on the favorable outcome, this was taken for further study in a randomized Phase II trial and the results are awaited (NCT02370238).</p>
</sec>
<sec>
<title>CXCR4</title>
<p>The chemokine receptor CXCR4 is also a Gα
<sub>i</sub>
-coupled receptor. Physiologically, this chemokine receptor generally plays a role in embryogenesis. CXCR7, another Gα
<sub>i</sub>
-coupled receptor, shapes the CXCL12 (ligand) gradient for embryonic cells expressing CXCR4. As a result, these cells migrate and form different regions of the embryo. This system is recapitulated by the tumor cells. The chemokine receptor CXCR4 is expressed in BCSCs and is a key chemokine receptor involved in metastasis of breast cancer (
<xref rid="B150" ref-type="bibr">150</xref>
,
<xref rid="B151" ref-type="bibr">151</xref>
) and forms a target in restraining or removal of BCSCs. Activation of this receptor is thought to facilitate the metastasis of mesenchymal BCSCs. A system-wide analysis of phosphorylation events identified a novel signaling pathway emanating from CXCR4 that activates protein kinase A (PKA) probably through atypical A kinase anchoring protein (AKAP). Active PKA feeds into MAP kinase-activated protein kinase 2-like (MAPKAP2) pathway which eventually stimulates the extracellular signal-regulated kinase (ERK) pathway in BCSCs (
<xref rid="B150" ref-type="bibr">150</xref>
,
<xref rid="B152" ref-type="bibr">152</xref>
). Activation of ERK2 is critical as ERK2 is known to directly phosphorylate the TF Snail1 and induce its nuclear translocation (
<xref rid="B153" ref-type="bibr">153</xref>
). Nuclear-localized Snail1 is stable and functions as a TF which can generate and maintain BCSCs. Knockdown of CXCR4 abrogated tumor growth in mouse xenograft model (
<xref rid="B154" ref-type="bibr">154</xref>
). Moreover, in mouse mammary carcinoma model, CXCR4 was found to regulate both primary and metastatic breast cancer (
<xref rid="B155" ref-type="bibr">155</xref>
). Recently, the anti-neoplastic agent Balixafortide (a potent and selective CXCR4 antagonist) (Polyphor) in combination with Eribulin (non-taxane, anti-microtubule drug) has been successfully employed in stage IV breast cancer in a phase Ib/proof of concept clinical trial (NCT01837095). During the dose-escalation phase of the trial, the drug combination was tolerated well and no dose-limiting toxicities were observed. The objective response was observed in 30% (16 out of 54) and stable disease in an additional 46% (25 out of 54) of the stage IV patients. Based on this, balixafortide has been fast-track designated by food and drug administration (FDA) for its use in advanced, metastatic breast cancer (MBC) (
<xref rid="B156" ref-type="bibr">156</xref>
). The trial outcome suggests that balixafortide-eribulin combination chemotherapy has promising potential in heavily pretreated patients with MBC and warrants further investigation through randomized trials.</p>
<p>Enantiomeric RNA (L-RNA) aptamers mimicking ligands of receptors can be employed to inhibit activation of key signaling pathways. The RNA aptamer mimicking the ligand CXCL12, NOX-A12 (Olaptesed pegol), seems to control the activation of CXCR4 (
<xref rid="B157" ref-type="bibr">157</xref>
). NOX-A12 binds to two key sites in CXCL12 in order to disrupt its activity and target them for degradation. This has entered into clinical trial in patients (Noxxon Pharma-AG) (
<xref rid="B158" ref-type="bibr">158</xref>
). These will be less toxic compared to the use of small molecule inhibitors or even immunotherapy. Interestingly, combined employment of NOX-A12 and PD-1 blockade enhanced T cell and NK cell infiltration (
<xref rid="B159" ref-type="bibr">159</xref>
) and there are some ongoing clinical trials for the combination therapy involving NOX-A12 and PD-1 inhibitors in different types of cancer.</p>
</sec>
</sec>
<sec>
<title>Tyrosine Kinases</title>
<sec>
<title>Human Epidermal Growth Factor Receptor 2 (HER2)</title>
<p>HER2 may play a role in the expansion of BCSCs in luminal cell lines and HER2
<sup>+</sup>
breast tumors by upregulating drug transporters and the chemokine receptor CXCR4. HER2 amplification is linked to an early onset of metastasis through increases in the efficiency of mammosphere formation and expansion of the ALDH
<sup>+</sup>
cell population (
<xref rid="B146" ref-type="bibr">146</xref>
,
<xref rid="B148" ref-type="bibr">148</xref>
). The inhibition of HER2 decreases the invasive and tumorigenic potential of breast cancer cells (
<xref rid="B160" ref-type="bibr">160</xref>
), but HER2 modulation in BCSC could produce resistance to HER2 inhibitors such as Trastuzumab (
<xref rid="B120" ref-type="bibr">120</xref>
). In this situation, the employment of Pertuzumab which inhibits HER2 dimerization with other HER receptors may overcome the resistance. Pharmacological inhibition of HER2 using Lapatinib reversed the MDR mediated by ABCB1 and ABCG2 by directly inhibiting their transport function (
<xref rid="B142" ref-type="bibr">142</xref>
). This result suggests a possible link between ABC transporters and HER2 signaling. The mammosphere formation efficiency (MFE) was reduced regardless of HER2 status and more pronounced in BCSCs with HER2 expression by decreasing their proliferation but not self-renewal (
<xref rid="B161" ref-type="bibr">161</xref>
).</p>
<p>There are many ongoing clinical trials that target HER2 in combination with other approaches. HER2-sensitized dendritic cell (DC) vaccine will be employed to improve the response to breast cancer therapy and in particular preventing recurrence (NCT03630809). A phase II randomized study has started to evaluate the efficacy of anti-PD1 therapy (Pembrolizumab) with concurrent alphavirus-like replication particles containing self-amplifying replicon RNA for HER2 (VRP-HER2) vaccine in increasing the tumor infiltrating and peripheral blood immune response upon administration of the VRP-HER2 vaccine. This is for patients with advanced HER2-overexpressing breast cancer (NCT03632941). There are also numerous ongoing peptide- or domain-based anti-HER2 vaccine clinical trials (NCT02276300, NCT03793829, NCT01632332, and NCT01526473).</p>
</sec>
<sec>
<title>Focal Adhesion Kinase (FAK) and Rho GTPases</title>
<p>Bidirectional signaling operates between Rho GTPases and the focal adhesion kinase (FAK). Rho GTPases are reported to govern a variety of cellular processes including a prominent role in the regulation of cell migration. The typical Rho family members such as RhoA, Rac1, and Cdc42 function by cycling between an active GTP-bound and inactive GDP-bound conformations. They are regulated by guanine nucleotide exchange factors (GEFs), GTPase-accelerating proteins (GAPs), and GDP-dissociation inhibitors (GDIs). Among the Rho family members, Ras homolog gene family member C (RhoC) has been reported to impart tumor cell plasticity and is essential for metastasis (
<xref rid="B162" ref-type="bibr">162</xref>
<xref rid="B165" ref-type="bibr">165</xref>
). Functionally, RhoC co-ordinates cell motility and actomyosin contractility. RhoA and RhoC have been demonstrated to display a reciprocal relationship in TNBC cells. RhoA impedes tumor cell invasion while RhoC promotes it (
<xref rid="B166" ref-type="bibr">166</xref>
). With regard to breast cancer stemness, the expression of RhoC segregates with ALDH positivity and it impacts the frequency of CSCs found in a previous tissue microarray where 136 breast cancer tissues were analyzed (
<xref rid="B164" ref-type="bibr">164</xref>
). When RhoC was knocked down (RhoC-KD) in ALDH
<sup>+</sup>
cells, tumor initiation was severely impaired (i.e., no induction in the RhoC-KD group vs. 5/9 tumors formed in non-silencing control when 50 CSCs are injected in each group) (
<xref rid="B164" ref-type="bibr">164</xref>
). RhoC has been suggested to work through α5-integrin and activate
<italic>Src</italic>
-FAK signaling cascade in regulating metastasis (
<xref rid="B167" ref-type="bibr">167</xref>
).</p>
<p>FAK plays a critical role in BCSCs and forms and attractive target. Inhibition of FAK signaling seems to selectively target BCSCs (
<xref rid="B168" ref-type="bibr">168</xref>
). Mammary epithelial-specific ablation of FAK suppresses tumorigenesis by targeting BCSCs (
<xref rid="B169" ref-type="bibr">169</xref>
). Interestingly, FAK forms a ternary complex with the cytosolic connexin26 and the transcription factor Nanog. This ternary complex is involved in the self-renewal of BCSCs of TNBC origin (
<xref rid="B170" ref-type="bibr">170</xref>
) thus forming an attractive target in BCSCs. ST8SIA1 regulates ganglioside GD2 expression in BCSCs. Interestingly, ST8SIA1 is highly expressed in primary TNBC. Genetic ablation of ST8SIA1 inhibited mammosphere formation in BCSCs. Importantly, T8SIA1-KO TNBC cells were inhibited in its tumorigenic capacity in a mouse xenograft model. Mechanistically, this process involved activation of the FAK-AKT-mTOR signaling pathway in GD2
<sup>+</sup>
-BCSCs (
<xref rid="B171" ref-type="bibr">171</xref>
). In another study, inhibition of FAK activity by VS-4718 or VS-6063 preferentially targeted BCSCs in cell lines as well as
<italic>ex vivo</italic>
cultured human primary breast cancer specimens. In a mouse xenograft TNBC model, administration of VS-4718 or VS-6063 reduced the BCSCs in the tumor significantly. The tumor-initiating ability is also reduced in the limiting dilution assay
<italic>in vivo</italic>
(
<xref rid="B172" ref-type="bibr">172</xref>
). Anti-FAK inhibitor Defactinib along with anti-PD1 therapy is in a clinical trial against solid tumors (NCT02758587).</p>
</sec>
</sec>
<sec>
<title>Serine-Threonine Kinases</title>
<sec>
<title>Cyclin-Dependent Kinase 4/6</title>
<p>SOX2 can elevate the level of Cyclin D1 through up regulation of its transcripts through transactivation. Cyclin D1 would bind to cyclin-dependent kinase 4/6 (CDK4/6) and form the Cyclin D1-CDK4/6 complex that activates BCSC proliferation and clonogenicity. Inhibiting CDK4/6 with Palbociclib would prevent CDK4/6 activation and would thereby nullify SOX2-directed Cyclin D1. CDK4/6 inhibitors are also promising in chemoresistant cases of HER2
<sup>+</sup>
-breast cancer. Importantly, blocking the activity of CDK4/6 synergized with immune checkpoint blockade enhanced the cancer cell immunogenicity and subsequent clearance by cytotoxic T-cells (
<xref rid="B173" ref-type="bibr">173</xref>
<xref rid="B175" ref-type="bibr">175</xref>
). Blocking CDK4 activity reduced the stemness and efficiently eliminated chemoresistant cells (
<xref rid="B101" ref-type="bibr">101</xref>
). So CDK4/6 is an attractive target if Cyclin D1 expression is high in the tumor biopsy. A clinical trial is in place targeting CDK4/6 (SHR6390) and HER2 (Pyrotinib) in advanced breast cancer (NCT03993964). There is an ongoing clinical targeting CDK4/6 only (NCT03310879).</p>
</sec>
<sec>
<title>Aurora Kinase A</title>
<p>Aurora kinases are a family of mitotic serine/threonine protein kinases comprised of Aurora A (AURKA), Aurora B (AURKB) and Aurora C (AURKC) kinases. AURKA is involved in duplication of centrosomes and AURKB orchestrates mitotic events (
<xref rid="B176" ref-type="bibr">176</xref>
<xref rid="B178" ref-type="bibr">178</xref>
). The transcription factor Forkhead box subclass M1 (FOXM1) recruits nuclear AURKA to transactivate FOXM1 target genes in a kinase-independent manner in BCSCs (
<xref rid="B99" ref-type="bibr">99</xref>
). The positive feedback loop with co-operation between AURKA and FOXM1 sustains a high level of expression of both proteins. Both AURKA and FOXM1 promote maintenance and self-renewal of BCSCs (
<xref rid="B99" ref-type="bibr">99</xref>
). Additionally, the nuclear AURKA interacts with heterogeneous nuclear ribonucleoprotein K (hnRNPK) and activates the MYC promoter leading to expression of MYC. As a result, the stemness of BCSCs is enhanced (
<xref rid="B179" ref-type="bibr">179</xref>
). Aberrant AURKA activity can induce phosphorylation of SMAD5 (homolog 5 of the Drosophila protein, mothers against decapentaplegic (MAD) and the
<italic>Caenorhabditis elegans</italic>
protein Sma) that subsequently promotes the expression of CD44 leading to gain of chemoresistance (
<xref rid="B180" ref-type="bibr">180</xref>
).</p>
<p>There is an ongoing phase Ib trial examining Aurora A Inhibitor (Alisertib; MLN8237) in combination with a dual TORC1/2 inhibitor (MLN0128) in patients with advanced solid tumors with an expansion cohort in metastatic TNBC (NCT02719691).</p>
</sec>
<sec>
<title>NF-κB Inducing Kinase (NIK)</title>
<p>The “nuclear factor of kappa light polypeptide gene enhancer in activated B cells” (NF-κB) pathway has been implicated in transcriptional regulation of genes related to survival, proliferation, angiogenesis, metastasis, and immune responses (
<xref rid="B181" ref-type="bibr">181</xref>
). NF-κB inducing kinase (NIK) or Mitogen-activated protein kinase kinase kinase 14 (MAP3K14) is reported to enhance stem cell markers, and growth in BCSCs
<italic>in vitro</italic>
and
<italic>in vivo</italic>
(
<xref rid="B182" ref-type="bibr">182</xref>
). NIK can activate both canonical and non-canonical pathways by inducing phosphorylation and degradation of inhibitor of κB (IκB). The canonical pathway is mediated by the transcriptional activity of the p50:p65 dimer, whereas the non-canonical pathway is transcriptionally controlled by the p52:RelB dimer (
<xref rid="B183" ref-type="bibr">183</xref>
,
<xref rid="B184" ref-type="bibr">184</xref>
). Physiologically, NIK plays an important role in the maintenance of the embryonic pluripotent stem cell state and mammary gland development. This may suggest a potential role for NIK in maintenance of BCSCs (
<xref rid="B185" ref-type="bibr">185</xref>
<xref rid="B188" ref-type="bibr">188</xref>
). NIK-IKKα was shown to regulate ErbB2-induced mammary tumorigenesis in a preclinical model through the nuclear export of p27/kip1 which supports the proliferation and expansion of BCSCs (
<xref rid="B189" ref-type="bibr">189</xref>
). Recently, NIK was shown to regulate the expression of genes linked to stemness through activation of ERK1/2 and the NF-κB pathways along with the correlative expression between ALDH1 and NIK in breast cancer patients tissue samples and the knockdown of NIK impaired tumorigenic potential (
<xref rid="B182" ref-type="bibr">182</xref>
).</p>
</sec>
</sec>
<sec>
<title>Epigenetic Targets</title>
<p>Epigenetic modifications play a key role in self-renewal, heterogeneity (
<xref rid="B190" ref-type="bibr">190</xref>
) and plasticity of BCSCs (
<xref rid="B191" ref-type="bibr">191</xref>
). Adaptive chromatin remodeling (methylation/demethylation of gene promoters and different lysine residues in histones) may result in differential regulation of proteins leading to chemoresistance and plasticity. An upregulation of drug transporters would lead to chemoresistance and increased viability following therapy. Modulation of transcription factor (TF) networks have been observed in BCSCs. Poised chromatin at “Zinc Finger E-Box Binding Homeobox 1” (ZEB1) sites was reported to play a role in generating CSCs in response to ligands in the TME (
<xref rid="B192" ref-type="bibr">192</xref>
). Snail1 up regulates expansion and activity of BCSCs through repression of p53 (
<xref rid="B71" ref-type="bibr">71</xref>
). The pluripotency factor SOX2 has been implicated in up regulating the activity of the multidrug transporter ABCG2 and the TF Twist1 (
<xref rid="B112" ref-type="bibr">112</xref>
). The level of SOX2 also correlated with the tumor size and expression of epidermal growth factor receptor (EGFR) and cyclin-dependent kinase 5/6 (CDK5/6). Histone deacetylases (HDAC), HDAC1 and HDAC7, are selectively amplified in BCSCs and so these can be targeted (
<xref rid="B193" ref-type="bibr">193</xref>
) either individually or by combination therapy (DNMT and HDAC inhibitors). Histone lysine-specific demethylase 1 (LSD1 or KDM1) is involved in stemness and can serve as a potential target in BCSCs (
<xref rid="B114" ref-type="bibr">114</xref>
). The key clinical advantage is that the epigenetic states are reversible and this vulnerability should be clinically targeted.</p>
<p>The Anti-HDAC6 inhibitor (KA2507) is being examined clinically in patients with PD-L1 expressing solid tumors which have relapsed or are refractory to prior treatment (NCT03008018). A phase I trial is in place targeting LSD1 with the inhibitor (Seclidemstat) in patients with advanced solid tumors (NCT03895684).</p>
<sec>
<title>Quiescent BCSCs (qBCSCs)</title>
<p>Quiescent CSCs play important roles in tumor dormancy, relapse and resistance to therapy. SET domain-containing protein 4 (SETD4) was demonstrated to be important for the maintenance of qBCSCs. SETD4 trimethylates the side chain of 2nd lysine residue of histone H4. This creates the formation of H4K20me3 (heterochromatin) on the promoter regions leading to silencing of genes that regulate qBCSCs. SETD4-generated qBCSCs were resistant to therapy and promoted tumor relapse in a mouse model and correlated with malignancy and chemoresistance in patients. Importantly, qBCSC underwent asymmetric division into a small quiescent BCSC and a bigger and active daughter cell that proliferates and generates normal tumor cells. Single-cell sequence analysis indicated that SETD4
<sup>+</sup>
-qBCSCs cluster together among the heterogeneous BCSCs (
<xref rid="B26" ref-type="bibr">26</xref>
).</p>
</sec>
<sec>
<title>Non-coding RNAs</title>
<sec>
<title>MicroRNAs and long non-coding RNAs</title>
<p>Micro RNAs (miRs) and long non-coding RNAs (lncRNAs) play a key role in the sustenance and also the heterogeneity of BCSCs in TNBC (
<xref rid="B194" ref-type="bibr">194</xref>
). miR-600 acts as a bimodal switch and pushes BCSCs into differentiation and
<italic>vice versa</italic>
when miR level was regulated (
<xref rid="B195" ref-type="bibr">195</xref>
). miR-519d overcomes cisplatin-resistance in BCSCs by downregulating the expression of MCL1 making them less viable. miR-199a directly repressed nuclear receptor corepressor (NCOR) and this protected BCSCs from interferon-based induction of senescence and differentiation (
<xref rid="B196" ref-type="bibr">196</xref>
). miR-100 inhibits self-renewal of BCSCs and tumorigenesis (
<xref rid="B197" ref-type="bibr">197</xref>
). LncRNA H19 is responsible for glycolysis and maintenance of BCSCs (
<xref rid="B198" ref-type="bibr">198</xref>
,
<xref rid="B199" ref-type="bibr">199</xref>
). LncRNA HOTAIR is upregulated in BCSCs derived from MCF7 and MDA-MB-231 cells. HOTAIR transcriptionally downregulates miR-34a level which spares degradation of SOX2 mRNA and in turn increased SOX2 protein levels contributing BC stemness (
<xref rid="B200" ref-type="bibr">200</xref>
). Similar to HOTAIR, the lnc RNA “metastasis-associated lung adenocarcinoma transcript-1” (MALAT-1) plays a critical role in maintaining the BC stemness. First, the level of MALAT-1 was higher in BCSCs than the parental MCF7 cells. Silencing of MALAT-1 led to reduction in the number of BCSCs and the mammosphere formation efficiency. Furthermore, there was reduced proliferation, colony formation, migration and invasion of BCSCs
<italic>in vitro</italic>
(
<xref rid="B201" ref-type="bibr">201</xref>
). Targeting of lnc RNA NRAD1 produced cells with less BCSC characteristics (
<xref rid="B202" ref-type="bibr">202</xref>
). Interestingly, mesenchymal stem/stromal cells trigger a lncRNA LINC01133 pathway in neighboring TNBC cells which upregulates pluripotency factor “Kruppel-Like Factor 4” (KLF4). This pushes tumor cells into cancer stemness (
<xref rid="B203" ref-type="bibr">203</xref>
). Also, lnc RNA FEZF1-AS1 has been shown to promote BC stemness and tumorigenesis via targeting miR-30a/Nanog axis (
<xref rid="B204" ref-type="bibr">204</xref>
). Long non-coding RNA in the aldehyde dehydrogenase 1 A pathway (NRAD1) has been suggested to be a potential target in TNBC and BCSCs. Targeting of NRAD1 using the ASO approach resulted in reduced cell survival, tumor growth, and the number of cells with CSC characteristics (
<xref rid="B202" ref-type="bibr">202</xref>
).</p>
</sec>
</sec>
</sec>
<sec>
<title>“Metabostemness”</title>
<p>CSCs employ either glycolysis or mitochondrial oxidative phosphorylation (OXPHOS) depending on the temporality and the microenvironment or the niche in which they are placed. In the quiescent mode, BCSCs utilize glycolytic pathway for their energy needs. In the proliferative state, BCSCs employ OXPHOS mode of energy derivatization (
<xref rid="B18" ref-type="bibr">18</xref>
,
<xref rid="B74" ref-type="bibr">74</xref>
). So targeting the metabolic flexibility of BCSCs between OXPHOS and glycolysis may force them into a unilateral OXPHOS or glycolytic mode and may sensitize them to anti-CSC inhibitors. A two “metabolic hit” strategy has been proposed for the eradication of CSCs. Doxycycline has been shown to impair the mitochondrial respiration and a second hit targeting the glycolysis will be effective in elimination of CSCs (
<xref rid="B205" ref-type="bibr">205</xref>
).</p>
<sec>
<title>“Energetic” Breast Cancer Stem Cells (e-BCSCs)</title>
<p>Based on the energetic profile, a new subset of hyper-metabolic, proliferative BCSCs (called e-BCSCs) driven by mitochondrial energy has been identified. This reflects the presence of metabolic heterogeneity in BCSCs. These eBCSCs are more glycolytic with elevated oxidative metabolism and increased mitochondrial mass. These were ALDH
<sup>+</sup>
with enhanced anchorage-independent growth and NRF2-mediated anti-oxidant response signature. The e-BCSCs can be effectively targeted by OXPHOS and CDK4/6 inhibitors. Therefore, mitochondrial inhibitors to target this subset of highly active BCSCs should be developed (
<xref rid="B25" ref-type="bibr">25</xref>
,
<xref rid="B206" ref-type="bibr">206</xref>
).</p>
<p>A small molecule inhibitor against mitochondrial electron transport chain complex I (IACS-010759) has been demonstrated to inhibit cell growth in 13 of the 16 TNBC cell lines employed. An ongoing clinical trial (NCT03291938) is in place with IACS-010759 in advanced breast cancer patients (
<xref rid="B207" ref-type="bibr">207</xref>
). Another similar drug (ME-344) against mitochondrial complex I is in phase I clinical trial in breast cancer patients (NCT02806817).</p>
</sec>
</sec>
<sec>
<title>Redox Pathways</title>
<sec>
<title>NF-E2-Related Factor 2 (NRF2)</title>
<p>Newer data has identified NF-E2-related factor 2 (NRF2) transcription factor as a novel biomarker for BCSCs. One study has shown that NRF2 expression increases in drug resistant BCSCs (
<xref rid="B208" ref-type="bibr">208</xref>
). NRF2 is a master regulator of cell redox homeostasis. It performs its regulatory function by up regulating genes that have an antioxidant response element (ARE). The work of Wu et al. (
<xref rid="B208" ref-type="bibr">208</xref>
) revealed that NRF2 conferred resistance to multiple drugs in BCSCs by keeping ROS level reduced during the drug treatment. In a recent discovery, CD44
<sup>+</sup>
-BCSCs showed co-localization of NRF2 with CD44, and found that NRF2 expression was dictated by CD44-p62 signaling (
<xref rid="B209" ref-type="bibr">209</xref>
). Importantly, co-inhibition of NRF2 or downstream thioredoxin and glutathione antioxidant pathways and glycolysis has been shown tom induce terminal differentiation of both mesenchymal and epithelial BCSCs and induction of apoptosis (
<xref rid="B74" ref-type="bibr">74</xref>
). Furthermore, this inhibition suppressed tumor growth, tumor-initiating potential and importantly metastasis by eliminating both mesenchymal and epithelial BCSCs (
<xref rid="B74" ref-type="bibr">74</xref>
). Additionally, NRF2 has been implicated in other CSC types including ovarian (
<xref rid="B210" ref-type="bibr">210</xref>
) and acute myeloid leukemia (AML) (
<xref rid="B211" ref-type="bibr">211</xref>
).</p>
</sec>
</sec>
<sec>
<title>Miscellaneous</title>
<sec>
<title>Sirtuin1 (SIRT1)</title>
<p>Sirtuin1 (SIRT1) is a nicotinamide adenine dinucleotide (NAD)-dependent deacetylase involved in both cellular stress and longevity. The hallmark function of SIRT1 is to enhance cell survival through the deacetylation and inactivation of p53 (
<xref rid="B212" ref-type="bibr">212</xref>
). An increase in SIRT1 expression levels in drug resistant cancer cell lines induce deacetylation and activation of FOXO1 which upregulates drug transporters MDR1 (
<xref rid="B213" ref-type="bibr">213</xref>
) and MRP2 (
<xref rid="B214" ref-type="bibr">214</xref>
). SIRT1 is a key facilitator in stem cell biology as well. For instance, mouse embryonic stem cells which lack SIRT1 have a delayed capacity to differentiate through the ability of SIRT1 to repress the expression of Dnmt3l (
<xref rid="B215" ref-type="bibr">215</xref>
). In addition, SIRT1 inhibits p53-mediated suppression of Nanog, a pluripotency transcription factor involved in the maintenance of BCSCs (
<xref rid="B216" ref-type="bibr">216</xref>
). SIRT1 is upregulated in CD44
<sup>+</sup>
/CD24
<sup></sup>
mesenchymal BCSCs (
<xref rid="B217" ref-type="bibr">217</xref>
). In another report, SIRT1 is downregulated in ALDH1
<sup>+</sup>
epithelial BCSCs and is reported to stabilize the EMT inducer PRRX1 and indirectly inhibits the stemness factor KLF4 (
<xref rid="B218" ref-type="bibr">218</xref>
). Future studies will need to elucidate the role of SIRT1 in mesenchymal and epithelial BCSCs and clear out the controversies involved. Alternatively, relative abundance of other SIRT isoforms may contribute to differential outcome observed. A mechanistic understanding of the role of SIRT1 in each type of BCSCs will justify future therapeutic intervention as both small molecule activators and inhibitors are commercially available for SIRT1 (
<xref rid="B219" ref-type="bibr">219</xref>
). Lastly, it is also interesting to note that c-MYC has been reported to activate SIRT1 which in turn promotes c-MYC function (
<xref rid="B220" ref-type="bibr">220</xref>
).</p>
</sec>
<sec>
<title>Targeting Other Signaling and Survival Pathways in BCSCs</title>
<p>The MCL1 inhibitor S63845 has been reported to have success against BCSCs arising out of HER2+ and TNBC (
<xref rid="B221" ref-type="bibr">221</xref>
). Targeting the Wnt/β-catenin signaling pathway showed promising results in reducing the metastatic potential by altering BCSC activity in a preclinical mouse model (
<xref rid="B222" ref-type="bibr">222</xref>
). Moreover, loss of the tumor suppressor Liver-kinase B1 (LKB1) led to an increase in the number of BCSCs (
<xref rid="B223" ref-type="bibr">223</xref>
) and elevated expression of OCT4, Nanog, and SOX2. Interestingly, a plant bioactive molecule called “Honokiol” effectively upregulated LKB1 protein levels that abrogated the stem phenotype (
<xref rid="B224" ref-type="bibr">224</xref>
). In addition, co-targeting of Notch ligand production and IL-6 receptor in human breast cancer cell lines and PDX xenografts was beneficial in reducing the number of BCSCs (
<xref rid="B225" ref-type="bibr">225</xref>
). A caveat would be targeting the Notch pathway may be detrimental to the immune system (
<xref rid="B226" ref-type="bibr">226</xref>
). Finally, Insulin-like growth factor-2 (IGF-2) induced NF-κB activity and blockade of the IGF-2 signaling reduced tumorigenesis in a PDX model enriched with BCSCs (
<xref rid="B227" ref-type="bibr">227</xref>
).</p>
</sec>
<sec>
<title>Tinkering With Lysosomes</title>
<p>Drug screening identified salinomycin as a selective agent against BCSCs by sequestering iron in lysosomes that led to ferroptosis of CSCs (
<xref rid="B228" ref-type="bibr">228</xref>
,
<xref rid="B229" ref-type="bibr">229</xref>
). In particular, C20-O-acylated analogs of salinomycin performed better in terms of efficacy (
<xref rid="B230" ref-type="bibr">230</xref>
). Ferroptotic agents have been shown to selectively kill BCSCs (
<xref rid="B231" ref-type="bibr">231</xref>
). The anti-malarial drug chloroquine (CQ) was reported as a sensitizing agent to paclitaxel through inhibition of autophagy in TNBC cells. This reduced the number of CD44
<sup>hi</sup>
/CD24
<sup>−/low</sup>
-BCSCs in both preclinical and clinical settings (
<xref rid="B232" ref-type="bibr">232</xref>
). Mechanistically, CQ worked to inhibit the Janus kinase 2 (Jak2)-signal transducer and activator of transcription 3 (JAK2-STAT3) signaling pathway. (
<xref rid="B233" ref-type="bibr">233</xref>
). The downside of CQ is that it favors the accumulation of CD3
<sup>+</sup>
/CD4
<sup>+</sup>
/FOXP3
<sup>+</sup>
regulatory T cells (T
<sub>regs</sub>
) (
<xref rid="B234" ref-type="bibr">234</xref>
).</p>
</sec>
</sec>
</sec>
<sec id="s8">
<title>Concluding Remarks</title>
<p>In this review, we have explored the molecular origin of BC stemness and chemoresistance and have identified several emerging molecular targets that are vital for BCSCs. These targets could be employed to overcome chemoresistance mediated by BCSCs. By simultaneous targeting both BCSCs and bulk tumor cell populations, the problem arising out of interconversion between bulk tumor and stemness state could be contained. This will prevent tumor relapse and increase patient longevity. Additionally, metabolic vulnerabilities should be combined with novel pharmacological targets. Overall, combinatorial therapy involving emergent vulnerable nodes in receptor and redox signaling pathways, survival, self-renewal, drug efflux transporters, and metabolism would pave the way for effective modalities of therapy and attain favorable prognosis in the metastatic breast cancer.</p>
</sec>
<sec id="s9">
<title>Author Contributions</title>
<p>SS: contributed to introduction,
<xref rid="T1" ref-type="table">Table 1</xref>
, NIK section, and oversaw several sections. CH: contributed a section on SIRT1 and drew
<xref ref-type="fig" rid="F2">Figure 2</xref>
. AMCT: composed
<xref rid="T2" ref-type="table">Table 2</xref>
and a section on NRF2. BS: contributed a section on AurK. AKT: contributed a section on efflux transporters and edited the whole manuscript. RR: edited the manuscript and contributed intellectual concepts. DR: contributed to all sections, wrote all other sections not mentioned above, edited and intellectually co-ordinated the complete manuscript and drew
<xref ref-type="fig" rid="F1">Figure 1</xref>
.</p>
<sec>
<title>Conflict of Interest</title>
<p>The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.</p>
</sec>
</sec>
</body>
<back>
<ack>
<p>We would like to thank Dr. Max Wicha for his insightful comments on the manuscript.</p>
</ack>
<fn-group>
<fn fn-type="financial-disclosure">
<p>
<bold>Funding.</bold>
This manuscript has been supported in part by National Institute of Health (NIH)/National Cancer Institute (NCI) grant R21CA202176 (to DR), Ohio Cancer Research foundation (OCR) (to DR), University of Toledo startup grants (F110796 to DR and F110760 to AKT), a grant from Susan G. Komen Breast Cancer Foundation (CCR18548498 to AKT) and College of Graduate Studies (COGS) Fellowship, University of Toledo (to CH).</p>
</fn>
</fn-group>
<ref-list>
<title>References</title>
<ref id="B1">
<label>1.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Siegel</surname>
<given-names>RL</given-names>
</name>
<name>
<surname>Miller</surname>
<given-names>KD</given-names>
</name>
<name>
<surname>Jemal</surname>
<given-names>A</given-names>
</name>
</person-group>
<article-title>Cancer statistics, 2019</article-title>
.
<source>CA Cancer J Clin.</source>
(
<year>2019</year>
)
<volume>69</volume>
:
<fpage>7</fpage>
<lpage>34</lpage>
.
<pub-id pub-id-type="doi">10.3322/caac.21551</pub-id>
<pub-id pub-id-type="pmid">30620402</pub-id>
</mixed-citation>
</ref>
<ref id="B2">
<label>2.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Lehmann</surname>
<given-names>BD</given-names>
</name>
<name>
<surname>Bauer</surname>
<given-names>JA</given-names>
</name>
<name>
<surname>Chen</surname>
<given-names>X</given-names>
</name>
<name>
<surname>Sanders</surname>
<given-names>ME</given-names>
</name>
<name>
<surname>Chakravarthy</surname>
<given-names>AB</given-names>
</name>
<name>
<surname>Shyr</surname>
<given-names>Y</given-names>
</name>
<etal></etal>
</person-group>
.
<article-title>Identification of human triple-negative breast cancer subtypes and preclinical models for selection of targeted therapies</article-title>
.
<source>J Clin Invest.</source>
(
<year>2011</year>
)
<volume>121</volume>
:
<fpage>2750</fpage>
<lpage>67</lpage>
.
<pub-id pub-id-type="doi">10.1172/JCI45014</pub-id>
<pub-id pub-id-type="pmid">21633166</pub-id>
</mixed-citation>
</ref>
<ref id="B3">
<label>3.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Lehmann</surname>
<given-names>BD</given-names>
</name>
<name>
<surname>Pietenpol</surname>
<given-names>JA</given-names>
</name>
</person-group>
.
<article-title>Identification and use of biomarkers in treatment strategies for triple-negative breast cancer subtypes</article-title>
.
<source>J Pathol.</source>
(
<year>2014</year>
)
<volume>232</volume>
:
<fpage>142</fpage>
<lpage>50</lpage>
.
<pub-id pub-id-type="doi">10.1002/path.4280</pub-id>
<pub-id pub-id-type="pmid">24114677</pub-id>
</mixed-citation>
</ref>
<ref id="B4">
<label>4.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Masuda</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Baggerly</surname>
<given-names>KA</given-names>
</name>
<name>
<surname>Wang</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Zhang</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Gonzalez-Angulo</surname>
<given-names>AM</given-names>
</name>
<name>
<surname>Meric-Bernstam</surname>
<given-names>F</given-names>
</name>
<etal></etal>
</person-group>
.
<article-title>Differential response to neoadjuvant chemotherapy among 7 triple-negative breast cancer molecular subtypes</article-title>
.
<source>Clin Cancer Res.</source>
(
<year>2013</year>
)
<volume>19</volume>
:
<fpage>5533</fpage>
<lpage>40</lpage>
.
<pub-id pub-id-type="doi">10.1158/1078-0432.CCR-13-0799</pub-id>
<pub-id pub-id-type="pmid">23948975</pub-id>
</mixed-citation>
</ref>
<ref id="B5">
<label>5.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Shah</surname>
<given-names>SP</given-names>
</name>
<name>
<surname>Roth</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Goya</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Oloumi</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Ha</surname>
<given-names>G</given-names>
</name>
<name>
<surname>Zhao</surname>
<given-names>Y</given-names>
</name>
<etal></etal>
</person-group>
.
<article-title>The clonal and mutational evolution spectrum of primary triple-negative breast cancers</article-title>
.
<source>Nature.</source>
(
<year>2012</year>
)
<volume>486</volume>
:
<fpage>395</fpage>
<lpage>9</lpage>
.
<pub-id pub-id-type="doi">10.1038/nature10933</pub-id>
<pub-id pub-id-type="pmid">22495314</pub-id>
</mixed-citation>
</ref>
<ref id="B6">
<label>6.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Valent</surname>
<given-names>P</given-names>
</name>
<name>
<surname>Bonnet</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Wohrer</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Andreeff</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Copland</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Chomienne</surname>
<given-names>C</given-names>
</name>
<etal></etal>
</person-group>
.
<article-title>Heterogeneity of neoplastic stem cells: theoretical, functional, and clinical implications</article-title>
.
<source>Cancer Res.</source>
(
<year>2013</year>
)
<volume>73</volume>
:
<fpage>1037</fpage>
<lpage>45</lpage>
.
<pub-id pub-id-type="doi">10.1158/0008-5472.CAN-12-3678</pub-id>
<pub-id pub-id-type="pmid">23345162</pub-id>
</mixed-citation>
</ref>
<ref id="B7">
<label>7.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Brooks</surname>
<given-names>MD</given-names>
</name>
<name>
<surname>Burness</surname>
<given-names>ML</given-names>
</name>
<name>
<surname>Wicha</surname>
<given-names>MS</given-names>
</name>
</person-group>
.
<article-title>Therapeutic implications of cellular heterogeneity and plasticity in breast cancer</article-title>
.
<source>Cell Stem Cell.</source>
(
<year>2015</year>
)
<volume>17</volume>
:
<fpage>260</fpage>
<lpage>71</lpage>
.
<pub-id pub-id-type="doi">10.1016/j.stem.2015.08.014</pub-id>
<pub-id pub-id-type="pmid">26340526</pub-id>
</mixed-citation>
</ref>
<ref id="B8">
<label>8.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Yates</surname>
<given-names>LR</given-names>
</name>
<name>
<surname>Gerstung</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Knappskog</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Desmedt</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Gundem</surname>
<given-names>G</given-names>
</name>
<name>
<surname>Van Loo</surname>
<given-names>P</given-names>
</name>
<etal></etal>
</person-group>
.
<article-title>Subclonal diversification of primary breast cancer revealed by multiregion sequencing</article-title>
.
<source>Nat Med.</source>
(
<year>2015</year>
)
<volume>21</volume>
:
<fpage>751</fpage>
<lpage>9</lpage>
.
<pub-id pub-id-type="doi">10.1038/nm.3886</pub-id>
<pub-id pub-id-type="pmid">26099045</pub-id>
</mixed-citation>
</ref>
<ref id="B9">
<label>9.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Yang</surname>
<given-names>F</given-names>
</name>
<name>
<surname>Wang</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Li</surname>
<given-names>Q</given-names>
</name>
<name>
<surname>Cao</surname>
<given-names>L</given-names>
</name>
<name>
<surname>Sun</surname>
<given-names>Z</given-names>
</name>
<name>
<surname>Jin</surname>
<given-names>J</given-names>
</name>
<etal></etal>
</person-group>
.
<article-title>Intratumor heterogeneity predicts metastasis of triple-negative breast cancer</article-title>
.
<source>Carcinogenesis.</source>
(
<year>2017</year>
)
<volume>38</volume>
:
<fpage>900</fpage>
<lpage>9</lpage>
.
<pub-id pub-id-type="doi">10.1093/carcin/bgx071</pub-id>
<pub-id pub-id-type="pmid">28911002</pub-id>
</mixed-citation>
</ref>
<ref id="B10">
<label>10.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Yates</surname>
<given-names>LR</given-names>
</name>
<name>
<surname>Knappskog</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Wedge</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Farmery</surname>
<given-names>JHR</given-names>
</name>
<name>
<surname>Gonzalez</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Martincorena</surname>
<given-names>I</given-names>
</name>
<etal></etal>
</person-group>
.
<article-title>Genomic evolution of breast cancer metastasis and relapse</article-title>
.
<source>Cancer Cell.</source>
(
<year>2017</year>
)
<volume>32</volume>
:
<fpage>169</fpage>
<lpage>84 e167</lpage>
.
<pub-id pub-id-type="doi">10.1016/j.ccell.2017.07.005</pub-id>
<pub-id pub-id-type="pmid">28810143</pub-id>
</mixed-citation>
</ref>
<ref id="B11">
<label>11.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Echeverria</surname>
<given-names>GV</given-names>
</name>
<name>
<surname>Powell</surname>
<given-names>E</given-names>
</name>
<name>
<surname>Seth</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Ge</surname>
<given-names>Z</given-names>
</name>
<name>
<surname>Carugo</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Bristow</surname>
<given-names>C</given-names>
</name>
<etal></etal>
</person-group>
.
<article-title>High-resolution clonal mapping of multi-organ metastasis in triple negative breast cancer</article-title>
.
<source>Nat Commun</source>
. (
<year>2018</year>
)
<volume>9</volume>
:
<fpage>5079</fpage>
.
<pub-id pub-id-type="doi">10.1038/s41467-018-07406-4</pub-id>
<pub-id pub-id-type="pmid">30498242</pub-id>
</mixed-citation>
</ref>
<ref id="B12">
<label>12.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Denkert</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Liedtke</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Tutt</surname>
<given-names>A</given-names>
</name>
<name>
<surname>von Minckwitz</surname>
<given-names>G</given-names>
</name>
</person-group>
.
<article-title>Molecular alterations in triple-negative breast cancer-the road to new treatment strategies</article-title>
.
<source>Lancet.</source>
(
<year>2017</year>
)
<volume>389</volume>
:
<fpage>2430</fpage>
<lpage>42</lpage>
.
<pub-id pub-id-type="doi">10.1016/S0140-6736(16)32454-0</pub-id>
<pub-id pub-id-type="pmid">27939063</pub-id>
</mixed-citation>
</ref>
<ref id="B13">
<label>13.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Geyer</surname>
<given-names>FC</given-names>
</name>
<name>
<surname>Pareja</surname>
<given-names>F</given-names>
</name>
<name>
<surname>Weigelt</surname>
<given-names>B</given-names>
</name>
<name>
<surname>Rakha</surname>
<given-names>E</given-names>
</name>
<name>
<surname>Ellis</surname>
<given-names>IO</given-names>
</name>
<name>
<surname>Schnitt</surname>
<given-names>SJ</given-names>
</name>
<etal></etal>
</person-group>
.
<article-title>The spectrum of triple-negative breast disease: high- and low-grade lesions</article-title>
.
<source>Am J Pathol.</source>
(
<year>2017</year>
)
<volume>187</volume>
:
<fpage>2139</fpage>
<lpage>51</lpage>
.
<pub-id pub-id-type="doi">10.1016/j.ajpath.2017.03.016</pub-id>
<pub-id pub-id-type="pmid">28736315</pub-id>
</mixed-citation>
</ref>
<ref id="B14">
<label>14.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Al-Hajj</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Becker</surname>
<given-names>MW</given-names>
</name>
<name>
<surname>Wicha</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Weissman</surname>
<given-names>I</given-names>
</name>
<name>
<surname>Clarke</surname>
<given-names>MF</given-names>
</name>
</person-group>
.
<article-title>Therapeutic implications of cancer stem cells</article-title>
.
<source>Curr Opin Genet Dev.</source>
(
<year>2004</year>
)
<volume>14</volume>
:
<fpage>43</fpage>
<lpage>7</lpage>
.
<pub-id pub-id-type="doi">10.1016/j.gde.2003.11.007</pub-id>
<pub-id pub-id-type="pmid">15108804</pub-id>
</mixed-citation>
</ref>
<ref id="B15">
<label>15.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Pinto</surname>
<given-names>CA</given-names>
</name>
<name>
<surname>Widodo</surname>
<given-names>E</given-names>
</name>
<name>
<surname>Waltham</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Thompson</surname>
<given-names>EW</given-names>
</name>
</person-group>
.
<article-title>Breast cancer stem cells and epithelial mesenchymal plasticity - Implications for chemoresistance</article-title>
.
<source>Cancer Lett.</source>
(
<year>2013</year>
)
<volume>341</volume>
:
<fpage>56</fpage>
<lpage>62</lpage>
.
<pub-id pub-id-type="doi">10.1016/j.canlet.2013.06.003</pub-id>
<pub-id pub-id-type="pmid">23830804</pub-id>
</mixed-citation>
</ref>
<ref id="B16">
<label>16.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Luo</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Wicha</surname>
<given-names>MS</given-names>
</name>
</person-group>
.
<article-title>Metabolic plasticity of cancer stem cells</article-title>
.
<source>Oncotarget.</source>
(
<year>2015</year>
)
<volume>6</volume>
:
<fpage>35141</fpage>
<lpage>2</lpage>
.
<pub-id pub-id-type="doi">10.18632/oncotarget.6177</pub-id>
<pub-id pub-id-type="pmid">26498352</pub-id>
</mixed-citation>
</ref>
<ref id="B17">
<label>17.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Banerjee</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Birts</surname>
<given-names>CN</given-names>
</name>
<name>
<surname>Darley</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Parker</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Mirnezami</surname>
<given-names>AH</given-names>
</name>
<name>
<surname>West</surname>
<given-names>J</given-names>
</name>
<etal></etal>
</person-group>
.
<article-title>Stem cell-like breast cancer cells with acquired resistance to metformin are sensitive to inhibitors of NADH-dependent CtBP dimerization</article-title>
.
<source>Carcinogenesis.</source>
(
<year>2019</year>
)
<volume>40</volume>
:
<fpage>871</fpage>
<lpage>82</lpage>
.
<pub-id pub-id-type="doi">10.1093/carcin/bgy174</pub-id>
<pub-id pub-id-type="pmid">30668646</pub-id>
</mixed-citation>
</ref>
<ref id="B18">
<label>18.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Luo</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Wicha</surname>
<given-names>MS</given-names>
</name>
</person-group>
.
<article-title>Targeting cancer stem cell redox metabolism to enhance therapy responses</article-title>
.
<source>Semin Radiat Oncol.</source>
(
<year>2019</year>
)
<volume>29</volume>
:
<fpage>42</fpage>
<lpage>54</lpage>
.
<pub-id pub-id-type="doi">10.1016/j.semradonc.2018.10.003</pub-id>
<pub-id pub-id-type="pmid">30573183</pub-id>
</mixed-citation>
</ref>
<ref id="B19">
<label>19.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Galdiero</surname>
<given-names>MR</given-names>
</name>
<name>
<surname>Marone</surname>
<given-names>G</given-names>
</name>
<name>
<surname>Mantovani</surname>
<given-names>A</given-names>
</name>
</person-group>
.
<article-title>Cancer inflammation and cytokines</article-title>
.
<source>Cold Spring Harb Perspect Biol.</source>
(
<year>2018</year>
)
<volume>10</volume>
:
<fpage>883</fpage>
<lpage>99</lpage>
.
<pub-id pub-id-type="doi">10.1101/cshperspect.a028662</pub-id>
<pub-id pub-id-type="pmid">28778871</pub-id>
</mixed-citation>
</ref>
<ref id="B20">
<label>20.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Galdiero</surname>
<given-names>MR</given-names>
</name>
<name>
<surname>Varricchi</surname>
<given-names>G</given-names>
</name>
<name>
<surname>Loffredo</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Mantovani</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Marone</surname>
<given-names>G</given-names>
</name>
</person-group>
.
<article-title>Roles of neutrophils in cancer growth and progression</article-title>
.
<source>J Leukoc Biol.</source>
(
<year>2018</year>
)
<volume>103</volume>
:
<fpage>457</fpage>
<lpage>64</lpage>
.
<pub-id pub-id-type="doi">10.1002/JLB.3MR0717-292R</pub-id>
<pub-id pub-id-type="pmid">29345348</pub-id>
</mixed-citation>
</ref>
<ref id="B21">
<label>21.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Eiro</surname>
<given-names>N</given-names>
</name>
<name>
<surname>Gonzalez</surname>
<given-names>LO</given-names>
</name>
<name>
<surname>Fraile</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Cid</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Schneider</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Vizoso</surname>
<given-names>FJ</given-names>
</name>
</person-group>
.
<article-title>Breast cancer tumor stroma: cellular components, phenotypic heterogeneity, intercellular communication, prognostic implications and therapeutic opportunities</article-title>
.
<source>Cancers.</source>
(
<year>2019</year>
)
<volume>11</volume>
:
<fpage>E664</fpage>
.
<pub-id pub-id-type="doi">10.3390/cancers11050664</pub-id>
<pub-id pub-id-type="pmid">31086100</pub-id>
</mixed-citation>
</ref>
<ref id="B22">
<label>22.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Saygin</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Matei</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Majeti</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Reizes</surname>
<given-names>O</given-names>
</name>
<name>
<surname>Lathia</surname>
<given-names>JD</given-names>
</name>
</person-group>
.
<article-title>Targeting cancer stemness in the clinic: from hype to hope</article-title>
.
<source>Cell Stem Cell.</source>
(
<year>2019</year>
)
<volume>24</volume>
:
<fpage>25</fpage>
<lpage>40</lpage>
.
<pub-id pub-id-type="doi">10.1016/j.stem.2018.11.017</pub-id>
<pub-id pub-id-type="pmid">30595497</pub-id>
</mixed-citation>
</ref>
<ref id="B23">
<label>23.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Sharick</surname>
<given-names>JT</given-names>
</name>
<name>
<surname>Jeffery</surname>
<given-names>JJ</given-names>
</name>
<name>
<surname>Karim</surname>
<given-names>MR</given-names>
</name>
<name>
<surname>Walsh</surname>
<given-names>CM</given-names>
</name>
<name>
<surname>Esbona</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Cook</surname>
<given-names>RS</given-names>
</name>
<etal></etal>
</person-group>
.
<article-title>Cellular metabolic heterogeneity
<italic>in vivo</italic>
is recapitulated in tumor organoids</article-title>
.
<source>Neoplasia.</source>
(
<year>2019</year>
)
<volume>21</volume>
:
<fpage>615</fpage>
<lpage>26</lpage>
.
<pub-id pub-id-type="doi">10.1016/j.neo.2019.04.004</pub-id>
<pub-id pub-id-type="pmid">31078067</pub-id>
</mixed-citation>
</ref>
<ref id="B24">
<label>24.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Bocci</surname>
<given-names>F</given-names>
</name>
<name>
<surname>Gearhart-Serna</surname>
<given-names>L</given-names>
</name>
<name>
<surname>Boareto</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Ribeiro</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Ben-Jacob</surname>
<given-names>E</given-names>
</name>
<name>
<surname>Devi</surname>
<given-names>GR</given-names>
</name>
<etal></etal>
</person-group>
.
<article-title>Toward understanding cancer stem cell heterogeneity in the tumor microenvironment</article-title>
.
<source>Proc Natl Acad Sci USA.</source>
(
<year>2019</year>
)
<volume>116</volume>
:
<fpage>148</fpage>
<lpage>57</lpage>
.
<pub-id pub-id-type="doi">10.1073/pnas.1815345116</pub-id>
<pub-id pub-id-type="pmid">30587589</pub-id>
</mixed-citation>
</ref>
<ref id="B25">
<label>25.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Fiorillo</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Sotgia</surname>
<given-names>F</given-names>
</name>
<name>
<surname>Lisanti</surname>
<given-names>MP</given-names>
</name>
</person-group>
.
<article-title>“Energetic” Cancer Stem Cells (e-CSCs): a new hyper-metabolic and proliferative tumor cell phenotype, driven by mitochondrial energy</article-title>
.
<source>Front Oncol.</source>
(
<year>2018</year>
)
<volume>8</volume>
:
<fpage>677</fpage>
.
<pub-id pub-id-type="doi">10.3389/fonc.2018.00677</pub-id>
<pub-id pub-id-type="pmid">30805301</pub-id>
</mixed-citation>
</ref>
<ref id="B26">
<label>26.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Ye</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Ding</surname>
<given-names>YF</given-names>
</name>
<name>
<surname>Jia</surname>
<given-names>WH</given-names>
</name>
<name>
<surname>Liu</surname>
<given-names>XL</given-names>
</name>
<name>
<surname>Feng</surname>
<given-names>JY</given-names>
</name>
<name>
<surname>Zhu</surname>
<given-names>Q</given-names>
</name>
<etal></etal>
</person-group>
.
<article-title>SET domain-containing protein 4 epigenetically controls breast cancer stem cell quiescence</article-title>
.
<source>Cancer Res.</source>
(
<year>2019</year>
)
<volume>79</volume>
:
<fpage>4729</fpage>
<lpage>43</lpage>
.
<pub-id pub-id-type="doi">10.1158/0008-5472.CAN-19-1084</pub-id>
<pub-id pub-id-type="pmid">31308046</pub-id>
</mixed-citation>
</ref>
<ref id="B27">
<label>27.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Liu</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Cong</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Wang</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Sun</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Deng</surname>
<given-names>L</given-names>
</name>
<name>
<surname>Liu</surname>
<given-names>Y</given-names>
</name>
<etal></etal>
</person-group>
.
<article-title>Breast cancer stem cells transition between epithelial and mesenchymal states reflective of their normal counterparts</article-title>
.
<source>Stem Cell Rep.</source>
(
<year>2014</year>
)
<volume>2</volume>
:
<fpage>78</fpage>
<lpage>91</lpage>
.
<pub-id pub-id-type="doi">10.1016/j.stemcr.2013.11.009</pub-id>
<pub-id pub-id-type="pmid">24511467</pub-id>
</mixed-citation>
</ref>
<ref id="B28">
<label>28.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Bierie</surname>
<given-names>B</given-names>
</name>
<name>
<surname>Pierce</surname>
<given-names>SE</given-names>
</name>
<name>
<surname>Kroeger</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Stover</surname>
<given-names>DG</given-names>
</name>
<name>
<surname>Pattabiraman</surname>
<given-names>DR</given-names>
</name>
<name>
<surname>Thiru</surname>
<given-names>P</given-names>
</name>
<etal></etal>
</person-group>
.
<article-title>Integrin-beta4 identifies cancer stem cell-enriched populations of partially mesenchymal carcinoma cells</article-title>
.
<source>Proc Natl Acad Sci USA.</source>
(
<year>2017</year>
)
<volume>114</volume>
:
<fpage>E2337</fpage>
<lpage>46</lpage>
.
<pub-id pub-id-type="doi">10.1073/pnas.1618298114</pub-id>
<pub-id pub-id-type="pmid">28270621</pub-id>
</mixed-citation>
</ref>
<ref id="B29">
<label>29.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Sehl</surname>
<given-names>ME</given-names>
</name>
<name>
<surname>Wicha</surname>
<given-names>MS</given-names>
</name>
</person-group>
.
<article-title>Modeling of interactions between cancer stem cells and their microenvironment: predicting clinical response</article-title>
.
<source>Methods Mol Biol.</source>
(
<year>2018</year>
)
<volume>1711</volume>
:
<fpage>333</fpage>
<lpage>49</lpage>
.
<pub-id pub-id-type="doi">10.1007/978-1-4939-7493-1_16</pub-id>
<pub-id pub-id-type="pmid">29344897</pub-id>
</mixed-citation>
</ref>
<ref id="B30">
<label>30.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Baslan</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Hicks</surname>
<given-names>J</given-names>
</name>
</person-group>
.
<article-title>Unravelling biology and shifting paradigms in cancer with single-cell sequencing</article-title>
.
<source>Nat Rev Cancer.</source>
(
<year>2017</year>
)
<volume>17</volume>
:
<fpage>557</fpage>
<lpage>69</lpage>
.
<pub-id pub-id-type="doi">10.1038/nrc.2017.58</pub-id>
<pub-id pub-id-type="pmid">28835719</pub-id>
</mixed-citation>
</ref>
<ref id="B31">
<label>31.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Gao</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Kim</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Sei</surname>
<given-names>E</given-names>
</name>
<name>
<surname>Foukakis</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Crosetto</surname>
<given-names>N</given-names>
</name>
<name>
<surname>Chan</surname>
<given-names>LK</given-names>
</name>
<etal></etal>
</person-group>
.
<article-title>Nanogrid single-nucleus RNA sequencing reveals phenotypic diversity in breast cancer</article-title>
.
<source>Nat Commun.</source>
(
<year>2017</year>
)
<volume>8</volume>
:
<fpage>228</fpage>
.
<pub-id pub-id-type="doi">10.1038/s41467-017-00244-w</pub-id>
<pub-id pub-id-type="pmid">28794488</pub-id>
</mixed-citation>
</ref>
<ref id="B32">
<label>32.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Yang</surname>
<given-names>Z</given-names>
</name>
<name>
<surname>Li</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Fan</surname>
<given-names>Z</given-names>
</name>
<name>
<surname>Liu</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Zhang</surname>
<given-names>X</given-names>
</name>
<name>
<surname>Cai</surname>
<given-names>Z</given-names>
</name>
<etal></etal>
</person-group>
.
<article-title>Single-cell sequencing reveals variants in ARID1A, GPRC5A and MLL2 driving self-renewal of human bladder cancer stem cells</article-title>
.
<source>Eur Urol.</source>
(
<year>2017</year>
)
<volume>71</volume>
:
<fpage>8</fpage>
<lpage>12</lpage>
.
<pub-id pub-id-type="doi">10.1016/j.eururo.2016.06.025</pub-id>
<pub-id pub-id-type="pmid">27387124</pub-id>
</mixed-citation>
</ref>
<ref id="B33">
<label>33.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Azizi</surname>
<given-names>E</given-names>
</name>
<name>
<surname>Carr</surname>
<given-names>AJ</given-names>
</name>
<name>
<surname>Plitas</surname>
<given-names>G</given-names>
</name>
<name>
<surname>Cornish</surname>
<given-names>AE</given-names>
</name>
<name>
<surname>Konopacki</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Prabhakaran</surname>
<given-names>S</given-names>
</name>
<etal></etal>
</person-group>
.
<article-title>Single-cell map of diverse immune phenotypes in the breast tumor microenvironment</article-title>
.
<source>Cell.</source>
(
<year>2018</year>
)
<volume>174</volume>
:
<fpage>1293</fpage>
<lpage>308 e1236</lpage>
.
<pub-id pub-id-type="doi">10.1016/j.cell.2018.05.060</pub-id>
<pub-id pub-id-type="pmid">29961579</pub-id>
</mixed-citation>
</ref>
<ref id="B34">
<label>34.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Colacino</surname>
<given-names>JA</given-names>
</name>
<name>
<surname>Azizi</surname>
<given-names>E</given-names>
</name>
<name>
<surname>Brooks</surname>
<given-names>MD</given-names>
</name>
<name>
<surname>Harouaka</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Fouladdel</surname>
<given-names>S</given-names>
</name>
<name>
<surname>McDermott</surname>
<given-names>SP</given-names>
</name>
<etal></etal>
</person-group>
.
<article-title>Heterogeneity of human breast stem and progenitor cells as revealed by transcriptional profiling</article-title>
.
<source>Stem Cell Rep.</source>
(
<year>2018</year>
)
<volume>10</volume>
:
<fpage>1596</fpage>
<lpage>609</lpage>
.
<pub-id pub-id-type="doi">10.1016/j.stemcr.2018.03.001</pub-id>
<pub-id pub-id-type="pmid">29606612</pub-id>
</mixed-citation>
</ref>
<ref id="B35">
<label>35.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Feng</surname>
<given-names>W</given-names>
</name>
<name>
<surname>Li</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Chu</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Li</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Zhang</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Ding</surname>
<given-names>X</given-names>
</name>
<etal></etal>
</person-group>
.
<article-title>Identification of tRNA-derived small noncoding RNAs as potential biomarkers for prediction of recurrence in triple-negative breast cancer</article-title>
.
<source>Cancer Med.</source>
(
<year>2018</year>
)
<volume>7</volume>
:
<fpage>5130</fpage>
<lpage>44</lpage>
.
<pub-id pub-id-type="doi">10.1002/cam4.1761</pub-id>
<pub-id pub-id-type="pmid">30239174</pub-id>
</mixed-citation>
</ref>
<ref id="B36">
<label>36.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Sun</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Fu</surname>
<given-names>Z</given-names>
</name>
<name>
<surname>Wang</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Li</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Li</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Zhang</surname>
<given-names>Y</given-names>
</name>
<etal></etal>
</person-group>
.
<article-title>Roles of tRNA-derived fragments in human cancers</article-title>
.
<source>Cancer Lett.</source>
(
<year>2018</year>
)
<volume>414</volume>
:
<fpage>16</fpage>
<lpage>25</lpage>
.
<pub-id pub-id-type="doi">10.1016/j.canlet.2017.10.031</pub-id>
<pub-id pub-id-type="pmid">29107107</pub-id>
</mixed-citation>
</ref>
<ref id="B37">
<label>37.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Sun</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Yang</surname>
<given-names>F</given-names>
</name>
<name>
<surname>Zhang</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Chu</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Wang</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Wang</surname>
<given-names>Y</given-names>
</name>
<etal></etal>
</person-group>
.
<article-title>tRNA-derived fragments as novel predictive biomarkers for trastuzumab-resistant breast cancer</article-title>
.
<source>Cell Physiol Biochem.</source>
(
<year>2018</year>
)
<volume>49</volume>
:
<fpage>419</fpage>
<lpage>31</lpage>
.
<pub-id pub-id-type="doi">10.1159/000492977</pub-id>
<pub-id pub-id-type="pmid">30153663</pub-id>
</mixed-citation>
</ref>
<ref id="B38">
<label>38.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Cui</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Huang</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Wu</surname>
<given-names>X</given-names>
</name>
<name>
<surname>Zheng</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Xia</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Fu</surname>
<given-names>Z</given-names>
</name>
<etal></etal>
</person-group>
.
<article-title>Hypoxia-induced tRNA-derived fragments, novel regulatory factor for doxorubicin resistance in triple-negative breast cancer</article-title>
.
<source>J Cell Physiol.</source>
(
<year>2019</year>
)
<volume>234</volume>
:
<fpage>8740</fpage>
<lpage>51</lpage>
.
<pub-id pub-id-type="doi">10.1002/jcp.27533</pub-id>
<pub-id pub-id-type="pmid">30362543</pub-id>
</mixed-citation>
</ref>
<ref id="B39">
<label>39.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Al-Hajj</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Wicha</surname>
<given-names>MS</given-names>
</name>
<name>
<surname>Benito-Hernandez</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Morrison</surname>
<given-names>SJ</given-names>
</name>
<name>
<surname>Clarke</surname>
<given-names>MF</given-names>
</name>
</person-group>
.
<article-title>Prospective identification of tumorigenic breast cancer cells</article-title>
.
<source>Proc Natl Acad Sci USA.</source>
(
<year>2003</year>
)
<volume>100</volume>
:
<fpage>3983</fpage>
<lpage>8</lpage>
.
<pub-id pub-id-type="doi">10.1073/pnas.0530291100</pub-id>
<pub-id pub-id-type="pmid">12629218</pub-id>
</mixed-citation>
</ref>
<ref id="B40">
<label>40.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Sansone</surname>
<given-names>P</given-names>
</name>
<name>
<surname>Ceccarelli</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Berishaj</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Chang</surname>
<given-names>Q</given-names>
</name>
<name>
<surname>Rajasekhar</surname>
<given-names>VK</given-names>
</name>
<name>
<surname>Perna</surname>
<given-names>F</given-names>
</name>
<etal></etal>
</person-group>
.
<article-title>Self-renewal of CD133(hi) cells by IL6/Notch3 signalling regulates endocrine resistance in metastatic breast cancer</article-title>
.
<source>Nat Commun.</source>
(
<year>2016</year>
)
<volume>7</volume>
:
<fpage>10442</fpage>
.
<pub-id pub-id-type="doi">10.1038/ncomms10442</pub-id>
<pub-id pub-id-type="pmid">26858125</pub-id>
</mixed-citation>
</ref>
<ref id="B41">
<label>41.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Sansone</surname>
<given-names>P</given-names>
</name>
<name>
<surname>Berishaj</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Rajasekhar</surname>
<given-names>VK</given-names>
</name>
<name>
<surname>Ceccarelli</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Chang</surname>
<given-names>Q</given-names>
</name>
<name>
<surname>Strillacci</surname>
<given-names>A</given-names>
</name>
<etal></etal>
</person-group>
.
<article-title>Evolution of cancer stem-like cells in endocrine-resistant metastatic breast cancers is mediated by stromal microvesicles</article-title>
.
<source>Cancer Res.</source>
(
<year>2017</year>
)
<volume>77</volume>
:
<fpage>1927</fpage>
<lpage>41</lpage>
.
<pub-id pub-id-type="doi">10.1158/0008-5472.CAN-16-2129</pub-id>
<pub-id pub-id-type="pmid">28202520</pub-id>
</mixed-citation>
</ref>
<ref id="B42">
<label>42.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Gomez-Miragaya</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Palafox</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Pare</surname>
<given-names>L</given-names>
</name>
<name>
<surname>Yoldi</surname>
<given-names>G</given-names>
</name>
<name>
<surname>Ferrer</surname>
<given-names>I</given-names>
</name>
<name>
<surname>Vila</surname>
<given-names>S</given-names>
</name>
<etal></etal>
</person-group>
.
<article-title>Resistance to taxanes in triple-negative breast cancer associates with the dynamics of a CD49f+ tumor-initiating population</article-title>
.
<source>Stem Cell Rep.</source>
(
<year>2017</year>
)
<volume>8</volume>
:
<fpage>1392</fpage>
<lpage>407</lpage>
.
<pub-id pub-id-type="doi">10.1016/j.stemcr.2017.03.026</pub-id>
<pub-id pub-id-type="pmid">28457887</pub-id>
</mixed-citation>
</ref>
<ref id="B43">
<label>43.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Isman</surname>
<given-names>FK</given-names>
</name>
<name>
<surname>Kucukgergin</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Dasdemir</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Cakmakoglu</surname>
<given-names>B</given-names>
</name>
<name>
<surname>Sanli</surname>
<given-names>O</given-names>
</name>
<name>
<surname>Seckin</surname>
<given-names>S</given-names>
</name>
</person-group>
<article-title>Association between SDF1-3'A or CXCR4 gene polymorphisms with predisposition to and clinicopathological characteristics of prostate cancer with or without metastases</article-title>
.
<source>Mol Biol Rep.</source>
(
<year>2012</year>
)
<volume>39</volume>
:
<fpage>11073</fpage>
<lpage>9</lpage>
.
<pub-id pub-id-type="doi">10.1007/s11033-012-2010-4</pub-id>
<pub-id pub-id-type="pmid">23053994</pub-id>
</mixed-citation>
</ref>
<ref id="B44">
<label>44.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Zhang</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Brown</surname>
<given-names>RL</given-names>
</name>
<name>
<surname>Wei</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Zhao</surname>
<given-names>P</given-names>
</name>
<name>
<surname>Liu</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Liu</surname>
<given-names>X</given-names>
</name>
<etal></etal>
</person-group>
.
<article-title>CD44 splice isoform switching determines breast cancer stem cell state</article-title>
.
<source>Genes Dev.</source>
(
<year>2019</year>
)
<volume>33</volume>
:
<fpage>166</fpage>
<lpage>79</lpage>
.
<pub-id pub-id-type="doi">10.1101/gad.319889.118</pub-id>
<pub-id pub-id-type="pmid">30692202</pub-id>
</mixed-citation>
</ref>
<ref id="B45">
<label>45.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Chen</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Shi</surname>
<given-names>L</given-names>
</name>
<name>
<surname>Zhang</surname>
<given-names>L</given-names>
</name>
<name>
<surname>Li</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Liang</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Yu</surname>
<given-names>W</given-names>
</name>
<etal></etal>
</person-group>
.
<article-title>The molecular mechanism governing the oncogenic potential of SOX2 in breast cancer</article-title>
.
<source>J Biol Chem.</source>
(
<year>2008</year>
)
<volume>283</volume>
:
<fpage>17969</fpage>
<lpage>78</lpage>
.
<pub-id pub-id-type="doi">10.1074/jbc.M802917200</pub-id>
<pub-id pub-id-type="pmid">18456656</pub-id>
</mixed-citation>
</ref>
<ref id="B46">
<label>46.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Weina</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Utikal</surname>
<given-names>J</given-names>
</name>
</person-group>
.
<article-title>SOX2 and cancer: current research and its implications in the clinic</article-title>
.
<source>Clin Transl Med.</source>
(
<year>2014</year>
)
<volume>3</volume>
:
<fpage>19</fpage>
.
<pub-id pub-id-type="doi">10.1186/2001-1326-3-19</pub-id>
<pub-id pub-id-type="pmid">25114775</pub-id>
</mixed-citation>
</ref>
<ref id="B47">
<label>47.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Liu</surname>
<given-names>P</given-names>
</name>
<name>
<surname>Tang</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Song</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Wang</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Chen</surname>
<given-names>B</given-names>
</name>
<name>
<surname>Huang</surname>
<given-names>X</given-names>
</name>
<etal></etal>
</person-group>
.
<article-title>SOX2 promotes cell proliferation and metastasis in triple negative breast cancer</article-title>
.
<source>Front Pharmacol.</source>
(
<year>2018</year>
)
<volume>9</volume>
:
<fpage>942</fpage>
.
<pub-id pub-id-type="doi">10.3389/fphar.2018.00942</pub-id>
<pub-id pub-id-type="pmid">30186173</pub-id>
</mixed-citation>
</ref>
<ref id="B48">
<label>48.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Piva</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Domenici</surname>
<given-names>G</given-names>
</name>
<name>
<surname>Iriondo</surname>
<given-names>O</given-names>
</name>
<name>
<surname>Rabano</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Simoes</surname>
<given-names>BM</given-names>
</name>
<name>
<surname>Comaills</surname>
<given-names>V</given-names>
</name>
<etal></etal>
</person-group>
.
<article-title>Sox2 promotes tamoxifen resistance in breast cancer cells</article-title>
.
<source>EMBO Mol Med.</source>
(
<year>2014</year>
)
<volume>6</volume>
:
<fpage>66</fpage>
<lpage>79</lpage>
.
<pub-id pub-id-type="doi">10.1002/emmm.201303411</pub-id>
<pub-id pub-id-type="pmid">24178749</pub-id>
</mixed-citation>
</ref>
<ref id="B49">
<label>49.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Domenici</surname>
<given-names>G</given-names>
</name>
<name>
<surname>Aurrekoetxea-Rodriguez</surname>
<given-names>I</given-names>
</name>
<name>
<surname>Simoes</surname>
<given-names>BM</given-names>
</name>
<name>
<surname>Rabano</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Lee</surname>
<given-names>SY</given-names>
</name>
<name>
<surname>Millan</surname>
<given-names>JS</given-names>
</name>
<etal></etal>
</person-group>
.
<article-title>A Sox2-Sox9 signalling axis maintains human breast luminal progenitor and breast cancer stem cells</article-title>
.
<source>Oncogene.</source>
(
<year>2019</year>
)
<volume>38</volume>
:
<fpage>3151</fpage>
<lpage>69</lpage>
.
<pub-id pub-id-type="doi">10.1038/s41388-018-0656-7</pub-id>
<pub-id pub-id-type="pmid">30622340</pub-id>
</mixed-citation>
</ref>
<ref id="B50">
<label>50.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Xue</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Lai</surname>
<given-names>L</given-names>
</name>
<name>
<surname>Lian</surname>
<given-names>W</given-names>
</name>
<name>
<surname>Tu</surname>
<given-names>X</given-names>
</name>
<name>
<surname>Zhou</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Dong</surname>
<given-names>P</given-names>
</name>
<etal></etal>
</person-group>
.
<article-title>SOX9/FXYD3/Src axis is critical for ER(+) breast cancer stem cell function</article-title>
.
<source>Mol Cancer Res.</source>
(
<year>2019</year>
)
<volume>17</volume>
:
<fpage>238</fpage>
<lpage>49</lpage>
.
<pub-id pub-id-type="doi">10.1158/1541-7786.MCR-18-0610</pub-id>
<pub-id pub-id-type="pmid">30206184</pub-id>
</mixed-citation>
</ref>
<ref id="B51">
<label>51.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Ezeh</surname>
<given-names>UI</given-names>
</name>
<name>
<surname>Turek</surname>
<given-names>PJ</given-names>
</name>
<name>
<surname>Reijo</surname>
<given-names>RA</given-names>
</name>
<name>
<surname>Clark</surname>
<given-names>AT</given-names>
</name>
</person-group>
.
<article-title>Human embryonic stem cell genes OCT4, NANOG, STELLAR, and GDF3 are expressed in both seminoma and breast carcinoma</article-title>
.
<source>Cancer.</source>
(
<year>2005</year>
)
<volume>104</volume>
:
<fpage>2255</fpage>
<lpage>65</lpage>
.
<pub-id pub-id-type="doi">10.1002/cncr.21432</pub-id>
<pub-id pub-id-type="pmid">16228988</pub-id>
</mixed-citation>
</ref>
<ref id="B52">
<label>52.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Wang</surname>
<given-names>ML</given-names>
</name>
<name>
<surname>Chiou</surname>
<given-names>SH</given-names>
</name>
<name>
<surname>Wu</surname>
<given-names>CW</given-names>
</name>
</person-group>
.
<article-title>Targeting cancer stem cells: emerging role of Nanog transcription factor</article-title>
.
<source>Onco Targets Ther.</source>
(
<year>2013</year>
)
<volume>6</volume>
:
<fpage>1207</fpage>
<lpage>20</lpage>
.
<pub-id pub-id-type="doi">10.2147/OTT.S38114</pub-id>
<pub-id pub-id-type="pmid">24043946</pub-id>
</mixed-citation>
</ref>
<ref id="B53">
<label>53.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Ramos</surname>
<given-names>EK</given-names>
</name>
<name>
<surname>Hoffmann</surname>
<given-names>AD</given-names>
</name>
<name>
<surname>Gerson</surname>
<given-names>SL</given-names>
</name>
<name>
<surname>Liu</surname>
<given-names>H</given-names>
</name>
</person-group>
.
<article-title>New opportunities and challenges to defeat cancer stem cells</article-title>
.
<source>Trends Cancer.</source>
(
<year>2017</year>
)
<volume>3</volume>
:
<fpage>780</fpage>
<lpage>96</lpage>
.
<pub-id pub-id-type="doi">10.1016/j.trecan.2017.08.007</pub-id>
<pub-id pub-id-type="pmid">29120754</pub-id>
</mixed-citation>
</ref>
<ref id="B54">
<label>54.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Zhang</surname>
<given-names>JM</given-names>
</name>
<name>
<surname>Wei</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Jiang</surname>
<given-names>M</given-names>
</name>
</person-group>
<article-title>OCT4 but not SOX2 expression correlates with worse prognosis in surgical patients with triple-negative breast cancer</article-title>
.
<source>Breast Cancer.</source>
(
<year>2018</year>
)
<volume>25</volume>
:
<fpage>447</fpage>
<lpage>55</lpage>
.
<pub-id pub-id-type="doi">10.1007/s12282-018-0844-x</pub-id>
<pub-id pub-id-type="pmid">29536377</pub-id>
</mixed-citation>
</ref>
<ref id="B55">
<label>55.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Yang</surname>
<given-names>F</given-names>
</name>
<name>
<surname>Zhang</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Yang</surname>
<given-names>H</given-names>
</name>
</person-group>
.
<article-title>OCT4, SOX2, and NANOG positive expression correlates with poor differentiation, advanced disease stages, and worse overall survival in HER2(+) breast cancer patients</article-title>
.
<source>Onco Targets Ther.</source>
(
<year>2018</year>
)
<volume>11</volume>
:
<fpage>7873</fpage>
<lpage>81</lpage>
.
<pub-id pub-id-type="doi">10.2147/OTT.S173522</pub-id>
<pub-id pub-id-type="pmid">30464534</pub-id>
</mixed-citation>
</ref>
<ref id="B56">
<label>56.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Ginestier</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Hur</surname>
<given-names>MH</given-names>
</name>
<name>
<surname>Charafe-Jauffret</surname>
<given-names>E</given-names>
</name>
<name>
<surname>Monville</surname>
<given-names>F</given-names>
</name>
<name>
<surname>Dutcher</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Brown</surname>
<given-names>M</given-names>
</name>
<etal></etal>
</person-group>
.
<article-title>ALDH1 is a marker of normal and malignant human mammary stem cells and a predictor of poor clinical outcome</article-title>
.
<source>Cell Stem Cell.</source>
(
<year>2007</year>
)
<volume>1</volume>
:
<fpage>555</fpage>
<lpage>67</lpage>
.
<pub-id pub-id-type="doi">10.1016/j.stem.2007.08.014</pub-id>
<pub-id pub-id-type="pmid">18371393</pub-id>
</mixed-citation>
</ref>
<ref id="B57">
<label>57.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Conley</surname>
<given-names>SJ</given-names>
</name>
<name>
<surname>Gheordunescu</surname>
<given-names>E</given-names>
</name>
<name>
<surname>Kakarala</surname>
<given-names>P</given-names>
</name>
<name>
<surname>Newman</surname>
<given-names>B</given-names>
</name>
<name>
<surname>Korkaya</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Heath</surname>
<given-names>AN</given-names>
</name>
<etal></etal>
</person-group>
.
<article-title>Antiangiogenic agents increase breast cancer stem cells via the generation of tumor hypoxia</article-title>
.
<source>Proc Natl Acad Sci USA.</source>
(
<year>2012</year>
)
<volume>109</volume>
:
<fpage>2784</fpage>
<lpage>9</lpage>
.
<pub-id pub-id-type="doi">10.1073/pnas.1018866109</pub-id>
<pub-id pub-id-type="pmid">22308314</pub-id>
</mixed-citation>
</ref>
<ref id="B58">
<label>58.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Liu</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Clouthier</surname>
<given-names>SG</given-names>
</name>
<name>
<surname>Wicha</surname>
<given-names>MS</given-names>
</name>
</person-group>
.
<article-title>Role of microRNAs in the regulation of breast cancer stem cells</article-title>
.
<source>J Mammary Gland Biol Neoplasia.</source>
(
<year>2012</year>
)
<volume>17</volume>
:
<fpage>15</fpage>
<lpage>21</lpage>
.
<pub-id pub-id-type="doi">10.1007/s10911-012-9242-8</pub-id>
<pub-id pub-id-type="pmid">22331423</pub-id>
</mixed-citation>
</ref>
<ref id="B59">
<label>59.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Honeth</surname>
<given-names>G</given-names>
</name>
<name>
<surname>Bendahl</surname>
<given-names>PO</given-names>
</name>
<name>
<surname>Ringner</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Saal</surname>
<given-names>LH</given-names>
</name>
<name>
<surname>Gruvberger-Saal</surname>
<given-names>SK</given-names>
</name>
<name>
<surname>Lovgren</surname>
<given-names>K</given-names>
</name>
<etal></etal>
</person-group>
.
<article-title>The CD44+/CD24- phenotype is enriched in basal-like breast tumors</article-title>
.
<source>Breast Cancer Res.</source>
(
<year>2008</year>
)
<volume>10</volume>
:
<fpage>R53</fpage>
.
<pub-id pub-id-type="doi">10.1186/bcr2108</pub-id>
<pub-id pub-id-type="pmid">18559090</pub-id>
</mixed-citation>
</ref>
<ref id="B60">
<label>60.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Creighton</surname>
<given-names>CJ</given-names>
</name>
<name>
<surname>Li</surname>
<given-names>X</given-names>
</name>
<name>
<surname>Landis</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Dixon</surname>
<given-names>JM</given-names>
</name>
<name>
<surname>Neumeister</surname>
<given-names>VM</given-names>
</name>
<name>
<surname>Sjolund</surname>
<given-names>A</given-names>
</name>
<etal></etal>
</person-group>
.
<article-title>Residual breast cancers after conventional therapy display mesenchymal as well as tumor-initiating features</article-title>
.
<source>Proc Natl Acad Sci USA.</source>
(
<year>2009</year>
)
<volume>106</volume>
:
<fpage>13820</fpage>
<lpage>5</lpage>
.
<pub-id pub-id-type="doi">10.1073/pnas.0905718106</pub-id>
<pub-id pub-id-type="pmid">19666588</pub-id>
</mixed-citation>
</ref>
<ref id="B61">
<label>61.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Sun</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Jia</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Wang</surname>
<given-names>X</given-names>
</name>
<name>
<surname>Ma</surname>
<given-names>B</given-names>
</name>
<name>
<surname>Di</surname>
<given-names>L</given-names>
</name>
<name>
<surname>Song</surname>
<given-names>G</given-names>
</name>
<etal></etal>
</person-group>
.
<article-title>CD44+/CD24- breast cancer cells isolated from MCF-7 cultures exhibit enhanced angiogenic properties</article-title>
.
<source>Clin Transl Oncol.</source>
(
<year>2013</year>
)
<volume>15</volume>
:
<fpage>46</fpage>
<lpage>54</lpage>
.
<pub-id pub-id-type="doi">10.1007/s12094-012-0891-2</pub-id>
<pub-id pub-id-type="pmid">22855175</pub-id>
</mixed-citation>
</ref>
<ref id="B62">
<label>62.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Morimoto</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Kim</surname>
<given-names>SJ</given-names>
</name>
<name>
<surname>Tanei</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Shimazu</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Tanji</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Taguchi</surname>
<given-names>T</given-names>
</name>
<etal></etal>
</person-group>
.
<article-title>Stem cell marker aldehyde dehydrogenase 1-positive breast cancers are characterized by negative estrogen receptor, positive human epidermal growth factor receptor type 2, and high Ki67 expression</article-title>
.
<source>Cancer Sci.</source>
(
<year>2009</year>
)
<volume>100</volume>
:
<fpage>1062</fpage>
<lpage>8</lpage>
.
<pub-id pub-id-type="doi">10.1111/j.1349-7006.2009.01151.x</pub-id>
<pub-id pub-id-type="pmid">19385968</pub-id>
</mixed-citation>
</ref>
<ref id="B63">
<label>63.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Ithimakin</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Day</surname>
<given-names>KC</given-names>
</name>
<name>
<surname>Malik</surname>
<given-names>F</given-names>
</name>
<name>
<surname>Zen</surname>
<given-names>Q</given-names>
</name>
<name>
<surname>Dawsey</surname>
<given-names>SJ</given-names>
</name>
<name>
<surname>Bersano-Begey</surname>
<given-names>TF</given-names>
</name>
<etal></etal>
</person-group>
.
<article-title>HER2 drives luminal breast cancer stem cells in the absence of HER2 amplification: implications for efficacy of adjuvant trastuzumab</article-title>
.
<source>Cancer Res.</source>
(
<year>2013</year>
)
<volume>73</volume>
:
<fpage>1635</fpage>
<lpage>46</lpage>
.
<pub-id pub-id-type="doi">10.1158/0008-5472.CAN-12-3349</pub-id>
<pub-id pub-id-type="pmid">23442322</pub-id>
</mixed-citation>
</ref>
<ref id="B64">
<label>64.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Sheridan</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Kishimoto</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Fuchs</surname>
<given-names>RK</given-names>
</name>
<name>
<surname>Mehrotra</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Bhat-Nakshatri</surname>
<given-names>P</given-names>
</name>
<name>
<surname>Turner</surname>
<given-names>CH</given-names>
</name>
<etal></etal>
</person-group>
.
<article-title>CD44+/CD24- breast cancer cells exhibit enhanced invasive properties: an early step necessary for metastasis</article-title>
.
<source>Breast Cancer Res.</source>
(
<year>2006</year>
)
<volume>8</volume>
:
<fpage>R59</fpage>
.
<pub-id pub-id-type="doi">10.1186/bcr1610</pub-id>
<pub-id pub-id-type="pmid">17062128</pub-id>
</mixed-citation>
</ref>
<ref id="B65">
<label>65.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Charafe-Jauffret</surname>
<given-names>E</given-names>
</name>
<name>
<surname>Ginestier</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Iovino</surname>
<given-names>F</given-names>
</name>
<name>
<surname>Wicinski</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Cervera</surname>
<given-names>N</given-names>
</name>
<name>
<surname>Finetti</surname>
<given-names>P</given-names>
</name>
<etal></etal>
</person-group>
.
<article-title>Breast cancer cell lines contain functional cancer stem cells with metastatic capacity and a distinct molecular signature</article-title>
.
<source>Cancer Res.</source>
(
<year>2009</year>
)
<volume>69</volume>
:
<fpage>1302</fpage>
<lpage>13</lpage>
.
<pub-id pub-id-type="doi">10.1158/0008-5472.CAN-08-2741</pub-id>
<pub-id pub-id-type="pmid">19190339</pub-id>
</mixed-citation>
</ref>
<ref id="B66">
<label>66.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Croker</surname>
<given-names>AK</given-names>
</name>
<name>
<surname>Goodale</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Chu</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Postenka</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Hedley</surname>
<given-names>BD</given-names>
</name>
<name>
<surname>Hess</surname>
<given-names>DA</given-names>
</name>
<etal></etal>
</person-group>
.
<article-title>High aldehyde dehydrogenase and expression of cancer stem cell markers selects for breast cancer cells with enhanced malignant and metastatic ability</article-title>
.
<source>J Cell Mol Med.</source>
(
<year>2009</year>
)
<volume>13</volume>
:
<fpage>2236</fpage>
<lpage>52</lpage>
.
<pub-id pub-id-type="doi">10.1111/j.1582-4934.2008.00455.x</pub-id>
<pub-id pub-id-type="pmid">18681906</pub-id>
</mixed-citation>
</ref>
<ref id="B67">
<label>67.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Mani</surname>
<given-names>SA</given-names>
</name>
<name>
<surname>Guo</surname>
<given-names>W</given-names>
</name>
<name>
<surname>Liao</surname>
<given-names>MJ</given-names>
</name>
<name>
<surname>Eaton</surname>
<given-names>EN</given-names>
</name>
<name>
<surname>Ayyanan</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Zhou</surname>
<given-names>AY</given-names>
</name>
<etal></etal>
</person-group>
.
<article-title>The epithelial-mesenchymal transition generates cells with properties of stem cells</article-title>
.
<source>Cell.</source>
(
<year>2008</year>
)
<volume>133</volume>
:
<fpage>704</fpage>
<lpage>15</lpage>
.
<pub-id pub-id-type="doi">10.1016/j.cell.2008.03.027</pub-id>
<pub-id pub-id-type="pmid">18485877</pub-id>
</mixed-citation>
</ref>
<ref id="B68">
<label>68.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Luo</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Brooks</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Wicha</surname>
<given-names>MS</given-names>
</name>
</person-group>
.
<article-title>Epithelial-mesenchymal plasticity of breast cancer stem cells: implications for metastasis and therapeutic resistance</article-title>
.
<source>Curr Pharm Des.</source>
(
<year>2015</year>
)
<volume>21</volume>
:
<fpage>1301</fpage>
<lpage>10</lpage>
.
<pub-id pub-id-type="doi">10.2174/1381612821666141211120604</pub-id>
<pub-id pub-id-type="pmid">25506895</pub-id>
</mixed-citation>
</ref>
<ref id="B69">
<label>69.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Shibue</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Weinberg</surname>
<given-names>RA</given-names>
</name>
</person-group>
.
<article-title>EMT, CSCs, and drug resistance: the mechanistic link and clinical implications</article-title>
.
<source>Nat Rev Clin Oncol.</source>
(
<year>2017</year>
)
<volume>14</volume>
:
<fpage>611</fpage>
<lpage>29</lpage>
.
<pub-id pub-id-type="doi">10.1038/nrclinonc.2017.44</pub-id>
<pub-id pub-id-type="pmid">28397828</pub-id>
</mixed-citation>
</ref>
<ref id="B70">
<label>70.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Zhu</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Luo</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Brooks</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Clouthier</surname>
<given-names>SG</given-names>
</name>
<name>
<surname>Wicha</surname>
<given-names>MS</given-names>
</name>
</person-group>
.
<article-title>Biological and clinical significance of cancer stem cell plasticity</article-title>
.
<source>Clin Transl Med.</source>
(
<year>2014</year>
)
<volume>3</volume>
:
<fpage>32</fpage>
.
<pub-id pub-id-type="doi">10.1186/s40169-014-0032-3</pub-id>
<pub-id pub-id-type="pmid">26932376</pub-id>
</mixed-citation>
</ref>
<ref id="B71">
<label>71.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Ni</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Li</surname>
<given-names>XY</given-names>
</name>
<name>
<surname>Lu</surname>
<given-names>N</given-names>
</name>
<name>
<surname>An</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Liu</surname>
<given-names>ZP</given-names>
</name>
<name>
<surname>Fu</surname>
<given-names>R</given-names>
</name>
<etal></etal>
</person-group>
.
<article-title>Snail1-dependent p53 repression regulates expansion and activity of tumour-initiating cells in breast cancer</article-title>
.
<source>Nat Cell Biol.</source>
(
<year>2016</year>
)
<volume>18</volume>
:
<fpage>1221</fpage>
<lpage>32</lpage>
.
<pub-id pub-id-type="doi">10.1038/ncb3425</pub-id>
<pub-id pub-id-type="pmid">27749822</pub-id>
</mixed-citation>
</ref>
<ref id="B72">
<label>72.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Dongre</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Weinberg</surname>
<given-names>RA</given-names>
</name>
</person-group>
.
<article-title>New insights into the mechanisms of epithelial-mesenchymal transition and implications for cancer</article-title>
.
<source>Nat Rev Mol Cell Biol.</source>
(
<year>2019</year>
)
<volume>20</volume>
:
<fpage>69</fpage>
<lpage>84</lpage>
.
<pub-id pub-id-type="doi">10.1038/s41580-018-0080-4</pub-id>
<pub-id pub-id-type="pmid">30459476</pub-id>
</mixed-citation>
</ref>
<ref id="B73">
<label>73.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Markiewicz</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Topa</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Nagel</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Skokowski</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Seroczynska</surname>
<given-names>B</given-names>
</name>
<name>
<surname>Stokowy</surname>
<given-names>T</given-names>
</name>
<etal></etal>
</person-group>
.
<article-title>Spectrum of epithelial-mesenchymal transition phenotypes in circulating tumour cells from early breast cancer patients</article-title>
.
<source>Cancers.</source>
(
<year>2019</year>
)
<volume>11</volume>
:
<fpage>E59</fpage>
.
<pub-id pub-id-type="doi">10.3390/cancers11010059</pub-id>
<pub-id pub-id-type="pmid">30634453</pub-id>
</mixed-citation>
</ref>
<ref id="B74">
<label>74.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Luo</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Shang</surname>
<given-names>L</given-names>
</name>
<name>
<surname>Brooks</surname>
<given-names>MD</given-names>
</name>
<name>
<surname>Jiagge</surname>
<given-names>E</given-names>
</name>
<name>
<surname>Zhu</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Buschhaus</surname>
<given-names>JM</given-names>
</name>
<etal></etal>
</person-group>
.
<article-title>Targeting breast cancer stem cell state equilibrium through modulation of redox signaling</article-title>
.
<source>Cell Metab.</source>
(
<year>2018</year>
)
<volume>28</volume>
:
<fpage>69</fpage>
<lpage>86</lpage>
.e66.
<pub-id pub-id-type="doi">10.1016/j.cmet.2018.06.006</pub-id>
<pub-id pub-id-type="pmid">29972798</pub-id>
</mixed-citation>
</ref>
<ref id="B75">
<label>75.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Berghuis</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Schilham</surname>
<given-names>MW</given-names>
</name>
<name>
<surname>Santos</surname>
<given-names>SJ</given-names>
</name>
<name>
<surname>Savola</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Knowles</surname>
<given-names>HJ</given-names>
</name>
<name>
<surname>Dirksen</surname>
<given-names>U</given-names>
</name>
<etal></etal>
</person-group>
.
<article-title>The CXCR4-CXCL12 axis in Ewing sarcoma: promotion of tumor growth rather than metastatic disease</article-title>
.
<source>Clin Sarcoma Res.</source>
(
<year>2012</year>
)
<volume>2</volume>
:
<fpage>24</fpage>
.
<pub-id pub-id-type="doi">10.1186/2045-3329-2-24</pub-id>
<pub-id pub-id-type="pmid">23249693</pub-id>
</mixed-citation>
</ref>
<ref id="B76">
<label>76.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>McIntosh</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Balch</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Tiwari</surname>
<given-names>AK</given-names>
</name>
</person-group>
.
<article-title>Tackling multidrug resistance mediated by efflux transporters in tumor-initiating cells</article-title>
.
<source>Expert Opin Drug Metab Toxicol.</source>
(
<year>2016</year>
)
<volume>12</volume>
:
<fpage>633</fpage>
<lpage>44</lpage>
.
<pub-id pub-id-type="doi">10.1080/17425255.2016.1179280</pub-id>
<pub-id pub-id-type="pmid">27116192</pub-id>
</mixed-citation>
</ref>
<ref id="B77">
<label>77.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Lang</surname>
<given-names>JY</given-names>
</name>
<name>
<surname>Hsu</surname>
<given-names>JL</given-names>
</name>
<name>
<surname>Meric-Bernstam</surname>
<given-names>F</given-names>
</name>
<name>
<surname>Chang</surname>
<given-names>CJ</given-names>
</name>
<name>
<surname>Wang</surname>
<given-names>Q</given-names>
</name>
<name>
<surname>Bao</surname>
<given-names>Y</given-names>
</name>
<etal></etal>
</person-group>
.
<article-title>BikDD eliminates breast cancer initiating cells and synergizes with lapatinib for breast cancer treatment</article-title>
.
<source>Cancer Cell.</source>
(
<year>2011</year>
)
<volume>20</volume>
:
<fpage>341</fpage>
<lpage>56</lpage>
.
<pub-id pub-id-type="doi">10.1016/j.ccr.2011.07.017</pub-id>
<pub-id pub-id-type="pmid">21907925</pub-id>
</mixed-citation>
</ref>
<ref id="B78">
<label>78.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>De Blasio</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Pratelli</surname>
<given-names>G</given-names>
</name>
<name>
<surname>Drago-Ferrante</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Saliba</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Baldacchino</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Grech</surname>
<given-names>G</given-names>
</name>
<etal></etal>
</person-group>
.
<article-title>Loss of MCL1 function sensitizes the MDA-MB-231 breast cancer cells to rh-TRAIL by increasing DR4 levels</article-title>
.
<source>J Cell Physiol.</source>
(
<year>2019</year>
)
<volume>234</volume>
:
<fpage>18432</fpage>
<lpage>47</lpage>
.
<pub-id pub-id-type="doi">10.1002/jcp.28479</pub-id>
<pub-id pub-id-type="pmid">30912136</pub-id>
</mixed-citation>
</ref>
<ref id="B79">
<label>79.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Lee</surname>
<given-names>KM</given-names>
</name>
<name>
<surname>Giltnane</surname>
<given-names>JM</given-names>
</name>
<name>
<surname>Balko</surname>
<given-names>JM</given-names>
</name>
<name>
<surname>Schwarz</surname>
<given-names>LJ</given-names>
</name>
<name>
<surname>Guerrero-Zotano</surname>
<given-names>AL</given-names>
</name>
<name>
<surname>Hutchinson</surname>
<given-names>KE</given-names>
</name>
<etal></etal>
</person-group>
.
<article-title>MYC and MCL1 cooperatively promote chemotherapy-resistant breast cancer stem cells via regulation of mitochondrial oxidative phosphorylation</article-title>
.
<source>Cell Metab.</source>
(
<year>2017</year>
)
<volume>26</volume>
:
<fpage>633</fpage>
<lpage>47</lpage>
.e637.
<pub-id pub-id-type="doi">10.1016/j.cmet.2017.09.009</pub-id>
<pub-id pub-id-type="pmid">28978427</pub-id>
</mixed-citation>
</ref>
<ref id="B80">
<label>80.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Bhola</surname>
<given-names>NE</given-names>
</name>
<name>
<surname>Jansen</surname>
<given-names>VM</given-names>
</name>
<name>
<surname>Koch</surname>
<given-names>JP</given-names>
</name>
<name>
<surname>Li</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Formisano</surname>
<given-names>L</given-names>
</name>
<name>
<surname>Williams</surname>
<given-names>JA</given-names>
</name>
<etal></etal>
</person-group>
.
<article-title>Treatment of triple-negative breast cancer with TORC1/2 inhibitors sustains a drug-resistant and notch-dependent cancer stem cell population</article-title>
.
<source>Cancer Res.</source>
(
<year>2016</year>
)
<volume>76</volume>
:
<fpage>440</fpage>
<lpage>52</lpage>
.
<pub-id pub-id-type="doi">10.1158/0008-5472.CAN-15-1640-T</pub-id>
<pub-id pub-id-type="pmid">26676751</pub-id>
</mixed-citation>
</ref>
<ref id="B81">
<label>81.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Liubomirski</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Lerrer</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Meshel</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Morein</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Rubinstein-Achiasaf</surname>
<given-names>L</given-names>
</name>
<name>
<surname>Sprinzak</surname>
<given-names>D</given-names>
</name>
<etal></etal>
</person-group>
.
<article-title>Notch-mediated tumor-stroma-inflammation networks promote invasive properties and CXCL8 expression in triple-negative breast cancer</article-title>
.
<source>Front Immunol.</source>
(
<year>2019</year>
)
<volume>10</volume>
:
<fpage>804</fpage>
.
<pub-id pub-id-type="doi">10.3389/fimmu.2019.00804</pub-id>
<pub-id pub-id-type="pmid">31105691</pub-id>
</mixed-citation>
</ref>
<ref id="B82">
<label>82.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Wang</surname>
<given-names>X</given-names>
</name>
<name>
<surname>Masri</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Phung</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Chen</surname>
<given-names>S</given-names>
</name>
</person-group>
.
<article-title>The role of amphiregulin in exemestane-resistant breast cancer cells: evidence of an autocrine loop</article-title>
.
<source>Cancer Res.</source>
(
<year>2008</year>
)
<volume>68</volume>
:
<fpage>2259</fpage>
<lpage>65</lpage>
.
<pub-id pub-id-type="doi">10.1158/0008-5472.CAN-07-5544</pub-id>
<pub-id pub-id-type="pmid">18381432</pub-id>
</mixed-citation>
</ref>
<ref id="B83">
<label>83.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Vilquin</surname>
<given-names>P</given-names>
</name>
<name>
<surname>Villedieu</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Grisard</surname>
<given-names>E</given-names>
</name>
<name>
<surname>Larbi</surname>
<given-names>SB</given-names>
</name>
<name>
<surname>Ghayad</surname>
<given-names>SE</given-names>
</name>
<name>
<surname>Heudel</surname>
<given-names>P-E</given-names>
</name>
<etal></etal>
</person-group>
.
<article-title>Molecular characterization of anastrozole resistance in breast cancer: pivotal role of the Akt/mTOR pathway in the emergence of
<italic>de novo</italic>
or acquired resistance and importance of combining the allosteric Akt inhibitor MK-2206 with an aromatase inhibitor</article-title>
.
<source>Int. J. Cancer.</source>
(
<year>2013</year>
)
<volume>133</volume>
:
<fpage>1589</fpage>
<lpage>602</lpage>
.
<pub-id pub-id-type="doi">10.1002/ijc.28182</pub-id>
<pub-id pub-id-type="pmid">23553037</pub-id>
</mixed-citation>
</ref>
<ref id="B84">
<label>84.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Kazi</surname>
<given-names>AA</given-names>
</name>
<name>
<surname>Gilani</surname>
<given-names>RA</given-names>
</name>
<name>
<surname>Schech</surname>
<given-names>AJ</given-names>
</name>
<name>
<surname>Chumsri</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Sabnis</surname>
<given-names>G</given-names>
</name>
<name>
<surname>Shah</surname>
<given-names>P</given-names>
</name>
<etal></etal>
</person-group>
.
<article-title>Nonhypoxic regulation and role of hypoxia-inducible factor 1 in aromatase inhibitor resistant breast cancer</article-title>
.
<source>Breast Cancer Res.</source>
(
<year>2014</year>
)
<volume>16</volume>
:
<fpage>R15</fpage>
.
<pub-id pub-id-type="doi">10.1186/bcr3609</pub-id>
<pub-id pub-id-type="pmid">24472707</pub-id>
</mixed-citation>
</ref>
<ref id="B85">
<label>85.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Saha</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Mukherjee</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Khan</surname>
<given-names>P</given-names>
</name>
<name>
<surname>Kajal</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Mazumdar</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Manna</surname>
<given-names>A</given-names>
</name>
<etal></etal>
</person-group>
.
<article-title>Aspirin suppresses the acquisition of chemoresistance in breast cancer by disrupting an NFκB–IL6 signaling axis responsible for the generation of cancer stem cells</article-title>
.
<source>Cancer Res.</source>
(
<year>2016</year>
)
<volume>76</volume>
:
<fpage>2000</fpage>
<lpage>12</lpage>
.
<pub-id pub-id-type="doi">10.1158/0008-5472.CAN-15-1360</pub-id>
<pub-id pub-id-type="pmid">26842876</pub-id>
</mixed-citation>
</ref>
<ref id="B86">
<label>86.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Milanovic</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Fan</surname>
<given-names>DNY</given-names>
</name>
<name>
<surname>Belenki</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Däbritz</surname>
<given-names>JHM</given-names>
</name>
<name>
<surname>Zhao</surname>
<given-names>Z</given-names>
</name>
<name>
<surname>Yu</surname>
<given-names>Y</given-names>
</name>
<etal></etal>
</person-group>
.
<article-title>Senescence-associated reprogramming promotes cancer stemness</article-title>
.
<source>Nature.</source>
(
<year>2017</year>
)
<volume>553</volume>
:
<fpage>96</fpage>
.
<pub-id pub-id-type="doi">10.1038/nature25167</pub-id>
<pub-id pub-id-type="pmid">29258294</pub-id>
</mixed-citation>
</ref>
<ref id="B87">
<label>87.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Yun</surname>
<given-names>C-O</given-names>
</name>
<name>
<surname>Bhargava</surname>
<given-names>P</given-names>
</name>
<name>
<surname>Na</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Lee</surname>
<given-names>J-S</given-names>
</name>
<name>
<surname>Ryu</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Kaul</surname>
<given-names>SC</given-names>
</name>
<etal></etal>
</person-group>
.
<article-title>Relevance of mortalin to cancer cell stemness and cancer therapy</article-title>
.
<source>Sci Rep.</source>
(
<year>2017</year>
)
<volume>7</volume>
:
<fpage>42016</fpage>
.
<pub-id pub-id-type="doi">10.1038/srep42016</pub-id>
<pub-id pub-id-type="pmid">28165047</pub-id>
</mixed-citation>
</ref>
<ref id="B88">
<label>88.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Iliopoulos</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Lindahl-Allen</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Polytarchou</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Hirsch</surname>
<given-names>HA</given-names>
</name>
<name>
<surname>Tsichlis</surname>
<given-names>PN</given-names>
</name>
<name>
<surname>Struhl</surname>
<given-names>K</given-names>
</name>
</person-group>
.
<article-title>Loss of miR-200 inhibition of Suz12 leads to polycomb-mediated repression required for the formation and maintenance of cancer stem cells</article-title>
.
<source>Mol. Cell.</source>
(
<year>2010</year>
)
<volume>39</volume>
:
<fpage>761</fpage>
<lpage>72</lpage>
.
<pub-id pub-id-type="doi">10.1016/j.molcel.2010.08.013</pub-id>
<pub-id pub-id-type="pmid">20832727</pub-id>
</mixed-citation>
</ref>
<ref id="B89">
<label>89.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Lee</surname>
<given-names>H-J</given-names>
</name>
<name>
<surname>Li</surname>
<given-names>C-F</given-names>
</name>
<name>
<surname>Ruan</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Powers</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Thompson</surname>
<given-names>PA</given-names>
</name>
<name>
<surname>Frohman</surname>
<given-names>MA</given-names>
</name>
<etal></etal>
</person-group>
.
<article-title>The DNA damage transducer RNF8 facilitates cancer chemoresistance and progression through twist activation</article-title>
.
<source>Mol. Cell.</source>
(
<year>2016</year>
)
<volume>63</volume>
:
<fpage>1021</fpage>
<lpage>33</lpage>
.
<pub-id pub-id-type="doi">10.1016/j.molcel.2016.08.009</pub-id>
<pub-id pub-id-type="pmid">27618486</pub-id>
</mixed-citation>
</ref>
<ref id="B90">
<label>90.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Tam</surname>
<given-names>WL</given-names>
</name>
<name>
<surname>Lu</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Buikhuisen</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Soh</surname>
<given-names>BS</given-names>
</name>
<name>
<surname>Lim</surname>
<given-names>E</given-names>
</name>
<name>
<surname>Reinhardt</surname>
<given-names>F</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Protein Kinase C and#x3b1; is a central signaling node and therapeutic target for breast cancer stem cells</article-title>
.
<source>Cancer Cell.</source>
(
<year>2013</year>
)
<volume>24</volume>
:
<fpage>347</fpage>
<lpage>64</lpage>
.
<pub-id pub-id-type="doi">10.1016/j.ccr.2013.08.005</pub-id>
<pub-id pub-id-type="pmid">24029232</pub-id>
</mixed-citation>
</ref>
<ref id="B91">
<label>91.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Tanei</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Morimoto</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Shimazu</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Kim</surname>
<given-names>SJ</given-names>
</name>
<name>
<surname>Tanji</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Taguchi</surname>
<given-names>T</given-names>
</name>
<etal></etal>
</person-group>
.
<article-title>Association of breast cancer stem cells identified by aldehyde dehydrogenase 1 expression with resistance to sequential paclitaxel and epirubicin-based chemotherapy for breast cancers</article-title>
.
<source>Clin. Cancer Res.</source>
(
<year>2009</year>
)
<volume>15</volume>
:
<fpage>4234</fpage>
<lpage>41</lpage>
.
<pub-id pub-id-type="doi">10.1158/1078-0432.CCR-08-1479</pub-id>
<pub-id pub-id-type="pmid">19509181</pub-id>
</mixed-citation>
</ref>
<ref id="B92">
<label>92.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Zhou</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Hu</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Yang</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Jat</surname>
<given-names>P</given-names>
</name>
<name>
<surname>Li</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Lombardo</surname>
<given-names>Y</given-names>
</name>
<etal></etal>
</person-group>
.
<article-title>The miR-106b~25 cluster promotes bypass of doxorubicin-induced senescence and increase in motility and invasion by targeting the E-cadherin transcriptional activator EP300</article-title>
.
<source>Cell Death Differ.</source>
(
<year>2013</year>
)
<volume>21</volume>
:
<fpage>462</fpage>
.
<pub-id pub-id-type="doi">10.1038/cdd.2013.167</pub-id>
<pub-id pub-id-type="pmid">24270410</pub-id>
</mixed-citation>
</ref>
<ref id="B93">
<label>93.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Bartucci</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Dattilo</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Moriconi</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Pagliuca</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Mottolese</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Federici</surname>
<given-names>G</given-names>
</name>
<etal></etal>
</person-group>
.
<article-title>TAZ is required for metastatic activity and chemoresistance of breast cancer stem cells</article-title>
.
<source>Oncogene.</source>
(
<year>2014</year>
)
<volume>34</volume>
:
<fpage>681</fpage>
.
<pub-id pub-id-type="doi">10.1038/onc.2014.5</pub-id>
<pub-id pub-id-type="pmid">24531710</pub-id>
</mixed-citation>
</ref>
<ref id="B94">
<label>94.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Jia</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Yang</surname>
<given-names>W</given-names>
</name>
<name>
<surname>Li</surname>
<given-names>L</given-names>
</name>
<name>
<surname>Liu</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Tan</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Ooi</surname>
<given-names>S</given-names>
</name>
<etal></etal>
</person-group>
.
<article-title>β-Catenin and NF-κB co-activation triggered by TLR3 stimulation facilitates stem cell-like phenotypes in breast cancer</article-title>
.
<source>Cell Death Differ.</source>
(
<year>2014</year>
)
<volume>22</volume>
:
<fpage>298</fpage>
.
<pub-id pub-id-type="doi">10.1038/cdd.2014.145</pub-id>
<pub-id pub-id-type="pmid">25257174</pub-id>
</mixed-citation>
</ref>
<ref id="B95">
<label>95.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Lee</surname>
<given-names>KM</given-names>
</name>
<name>
<surname>Nam</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Oh</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Lim</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Kim</surname>
<given-names>RK</given-names>
</name>
<name>
<surname>Shim</surname>
<given-names>D</given-names>
</name>
<etal></etal>
</person-group>
.
<article-title>ECM1 regulates tumor metastasis and CSC-like property through stabilization of β-catenin</article-title>
.
<source>Oncogene.</source>
(
<year>2015</year>
)
<volume>34</volume>
:
<fpage>6055</fpage>
.
<pub-id pub-id-type="doi">10.1038/onc.2015.54</pub-id>
<pub-id pub-id-type="pmid">25746001</pub-id>
</mixed-citation>
</ref>
<ref id="B96">
<label>96.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Tsou</surname>
<given-names>S-H</given-names>
</name>
<name>
<surname>Chen</surname>
<given-names>T-M</given-names>
</name>
<name>
<surname>Hsiao</surname>
<given-names>H-T</given-names>
</name>
<name>
<surname>Chen</surname>
<given-names>Y-H</given-names>
</name>
</person-group>
.
<article-title>A critical dose of doxorubicin is required to alter the gene expression profiles in MCF-7 cells acquiring multidrug resistance</article-title>
.
<source>PLoS ONE.</source>
(
<year>2015</year>
)
<volume>10</volume>
:
<fpage>e0116747</fpage>
.
<pub-id pub-id-type="doi">10.1371/journal.pone.0116747</pub-id>
<pub-id pub-id-type="pmid">25635866</pub-id>
</mixed-citation>
</ref>
<ref id="B97">
<label>97.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Xu</surname>
<given-names>LZ</given-names>
</name>
<name>
<surname>Li</surname>
<given-names>SS</given-names>
</name>
<name>
<surname>Zhou</surname>
<given-names>W</given-names>
</name>
<name>
<surname>Kang</surname>
<given-names>ZJ</given-names>
</name>
<name>
<surname>Zhang</surname>
<given-names>QX</given-names>
</name>
<name>
<surname>Kamran</surname>
<given-names>M</given-names>
</name>
<etal></etal>
</person-group>
.
<article-title>p62/SQSTM1 enhances breast cancer stem-like properties by stabilizing MYC mRNA</article-title>
.
<source>Oncogene.</source>
(
<year>2016</year>
)
<volume>36</volume>
:
<fpage>304</fpage>
.
<pub-id pub-id-type="doi">10.1038/onc.2016.202</pub-id>
<pub-id pub-id-type="pmid">27345399</pub-id>
</mixed-citation>
</ref>
<ref id="B98">
<label>98.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Zhang</surname>
<given-names>ZM</given-names>
</name>
<name>
<surname>Wu</surname>
<given-names>JF</given-names>
</name>
<name>
<surname>Luo</surname>
<given-names>QC</given-names>
</name>
<name>
<surname>Liu</surname>
<given-names>QF</given-names>
</name>
<name>
<surname>Wu</surname>
<given-names>QW</given-names>
</name>
<name>
<surname>Ye</surname>
<given-names>GD</given-names>
</name>
<etal></etal>
</person-group>
.
<article-title>Pygo2 activates MDR1 expression and mediates chemoresistance in breast cancer via the Wnt/β-catenin pathway</article-title>
.
<source>Oncogene.</source>
(
<year>2016</year>
)
<volume>35</volume>
:
<fpage>4787</fpage>
.
<pub-id pub-id-type="doi">10.1038/onc.2016.10</pub-id>
<pub-id pub-id-type="pmid">26876203</pub-id>
</mixed-citation>
</ref>
<ref id="B99">
<label>99.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Yang</surname>
<given-names>N</given-names>
</name>
<name>
<surname>Wang</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Wang</surname>
<given-names>Z</given-names>
</name>
<name>
<surname>Zona</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Lin</surname>
<given-names>SX</given-names>
</name>
<name>
<surname>Wang</surname>
<given-names>X</given-names>
</name>
<etal></etal>
</person-group>
.
<article-title>FOXM1 recruits nuclear Aurora kinase A to participate in a positive feedback loop essential for the self-renewal of breast cancer stem cells</article-title>
.
<source>Oncogene.</source>
(
<year>2017</year>
)
<volume>36</volume>
:
<fpage>3428</fpage>
<lpage>40</lpage>
.
<pub-id pub-id-type="doi">10.1038/onc.2016.490</pub-id>
<pub-id pub-id-type="pmid">28114286</pub-id>
</mixed-citation>
</ref>
<ref id="B100">
<label>100.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Santos</surname>
<given-names>JC</given-names>
</name>
<name>
<surname>Lima</surname>
<given-names>NDS</given-names>
</name>
<name>
<surname>Sarian</surname>
<given-names>LO</given-names>
</name>
<name>
<surname>Matheu</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Ribeiro</surname>
<given-names>ML</given-names>
</name>
<name>
<surname>Derchain</surname>
<given-names>SFM</given-names>
</name>
</person-group>
.
<article-title>Exosome-mediated breast cancer chemoresistance via miR-155 transfer</article-title>
.
<source>Sci Rep.</source>
(
<year>2018</year>
)
<volume>8</volume>
:
<fpage>829</fpage>
.
<pub-id pub-id-type="doi">10.1038/s41598-018-19339-5</pub-id>
<pub-id pub-id-type="pmid">29339789</pub-id>
</mixed-citation>
</ref>
<ref id="B101">
<label>101.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Dai</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Zhang</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Ali</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Hong</surname>
<given-names>X</given-names>
</name>
<name>
<surname>Tian</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Lo</surname>
<given-names>C</given-names>
</name>
<etal></etal>
</person-group>
.
<article-title>CDK4 regulates cancer stemness and is a novel therapeutic target for triple-negative breast cancer</article-title>
.
<source>Sci Rep.</source>
(
<year>2016</year>
)
<volume>6</volume>
:
<fpage>35383</fpage>
.
<pub-id pub-id-type="doi">10.1038/srep35383</pub-id>
<pub-id pub-id-type="pmid">27759034</pub-id>
</mixed-citation>
</ref>
<ref id="B102">
<label>102.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Wang</surname>
<given-names>X</given-names>
</name>
<name>
<surname>Wang</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Gu</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Zhou</surname>
<given-names>D</given-names>
</name>
<name>
<surname>He</surname>
<given-names>Z</given-names>
</name>
<name>
<surname>Wang</surname>
<given-names>X</given-names>
</name>
<etal></etal>
</person-group>
.
<article-title>ADAM12-L confers acquired 5-fluorouracil resistance in breast cancer cells</article-title>
.
<source>Sci Rep.</source>
(
<year>2017</year>
)
<volume>7</volume>
:
<fpage>9687</fpage>
.
<pub-id pub-id-type="doi">10.1038/s41598-017-10468-x</pub-id>
<pub-id pub-id-type="pmid">28852196</pub-id>
</mixed-citation>
</ref>
<ref id="B103">
<label>103.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Yang</surname>
<given-names>XL</given-names>
</name>
<name>
<surname>Lin</surname>
<given-names>FJ</given-names>
</name>
<name>
<surname>Guo</surname>
<given-names>YJ</given-names>
</name>
<name>
<surname>Shao</surname>
<given-names>ZM</given-names>
</name>
<name>
<surname>Ou</surname>
<given-names>ZL</given-names>
</name>
</person-group>
.
<article-title>Gemcitabine resistance in breast cancer cells regulated by PI3K/AKT-mediated cellular proliferation exerts negative feedback via the MEK/MAPK and mTOR pathways</article-title>
.
<source>OncoTargets Ther.</source>
(
<year>2014</year>
)
<volume>7</volume>
:
<fpage>1033</fpage>
<lpage>42</lpage>
.
<pub-id pub-id-type="doi">10.2147/OTT.S63145</pub-id>
<pub-id pub-id-type="pmid">24966685</pub-id>
</mixed-citation>
</ref>
<ref id="B104">
<label>104.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Simões</surname>
<given-names>BM</given-names>
</name>
<name>
<surname>O'Brien</surname>
<given-names>CS</given-names>
</name>
<name>
<surname>Eyre</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Silva</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Yu</surname>
<given-names>L</given-names>
</name>
<name>
<surname>Sarmiento-Castro</surname>
<given-names>A</given-names>
</name>
<etal></etal>
</person-group>
.
<article-title>Anti-estrogen resistance in human breast tumors is driven by JAG1-NOTCH4-dependent cancer stem cell activity</article-title>
.
<source>Cell Rep.</source>
(
<year>2015</year>
)
<volume>12</volume>
:
<fpage>1968</fpage>
<lpage>77</lpage>
.
<pub-id pub-id-type="doi">10.1016/j.celrep.2015.08.050</pub-id>
<pub-id pub-id-type="pmid">26387946</pub-id>
</mixed-citation>
</ref>
<ref id="B105">
<label>105.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Cordenonsi</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Zanconato</surname>
<given-names>F</given-names>
</name>
<name>
<surname>Azzolin</surname>
<given-names>L</given-names>
</name>
<name>
<surname>Forcato</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Rosato</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Frasson</surname>
<given-names>C</given-names>
</name>
<etal></etal>
</person-group>
.
<article-title>The hippo transducer TAZ confers cancer stem cell-related traits on breast cancer cells</article-title>
.
<source>Cell.</source>
(
<year>2011</year>
)
<volume>147</volume>
:
<fpage>759</fpage>
<lpage>72</lpage>
.
<pub-id pub-id-type="doi">10.1016/j.cell.2011.09.048</pub-id>
<pub-id pub-id-type="pmid">22078877</pub-id>
</mixed-citation>
</ref>
<ref id="B106">
<label>106.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Liu</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Choi</surname>
<given-names>DS</given-names>
</name>
<name>
<surname>Sheng</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Ensor</surname>
<given-names>JE</given-names>
</name>
<name>
<surname>Liang</surname>
<given-names>DH</given-names>
</name>
<name>
<surname>Rodriguez-Aguayo</surname>
<given-names>C</given-names>
</name>
<etal></etal>
</person-group>
.
<article-title>HN1L promotes triple-negative breast cancer stem cells through LEPR-STAT3 pathway</article-title>
.
<source>Stem Cell Rep.</source>
(
<year>2018</year>
)
<volume>10</volume>
:
<fpage>212</fpage>
<lpage>27</lpage>
.
<pub-id pub-id-type="doi">10.1016/j.stemcr.2017.11.010</pub-id>
<pub-id pub-id-type="pmid">29249663</pub-id>
</mixed-citation>
</ref>
<ref id="B107">
<label>107.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Su</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Chen</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Yao</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Liu</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Yu</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Lao</surname>
<given-names>L</given-names>
</name>
<etal></etal>
</person-group>
.
<article-title>CD10
<sup>+</sup>
GPR77
<sup>+</sup>
cancer-associated fibroblasts promote cancer formation and chemoresistance by sustaining cancer stemness
<italic>Cell</italic>
</article-title>
. (
<year>2018</year>
)
<volume>172</volume>
:
<fpage>841</fpage>
<lpage>56</lpage>
.e16.
<pub-id pub-id-type="doi">10.1016/j.cell.2018.01.009</pub-id>
<pub-id pub-id-type="pmid">29395328</pub-id>
</mixed-citation>
</ref>
<ref id="B108">
<label>108.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Kim</surname>
<given-names>G</given-names>
</name>
<name>
<surname>Ouzounova</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Quraishi</surname>
<given-names>AA</given-names>
</name>
<name>
<surname>Davis</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Tawakkol</surname>
<given-names>N</given-names>
</name>
<name>
<surname>Clouthier</surname>
<given-names>SG</given-names>
</name>
<etal></etal>
</person-group>
.
<article-title>SOCS3-mediated regulation of inflammatory cytokines in PTEN and p53 inactivated triple negative breast cancer model</article-title>
.
<source>Oncogene.</source>
(
<year>2014</year>
)
<volume>34</volume>
:
<fpage>671</fpage>
<lpage>80</lpage>
.
<pub-id pub-id-type="doi">10.1038/onc.2014.4</pub-id>
<pub-id pub-id-type="pmid">24531711</pub-id>
</mixed-citation>
</ref>
<ref id="B109">
<label>109.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Yin</surname>
<given-names>B</given-names>
</name>
<name>
<surname>Ma</surname>
<given-names>ZY</given-names>
</name>
<name>
<surname>Zhou</surname>
<given-names>ZW</given-names>
</name>
<name>
<surname>Gao</surname>
<given-names>WC</given-names>
</name>
<name>
<surname>Du</surname>
<given-names>ZG</given-names>
</name>
<name>
<surname>Zhao</surname>
<given-names>ZH</given-names>
</name>
<etal></etal>
</person-group>
.
<article-title>The TrkB+ cancer stem cells contribute to post-chemotherapy recurrence of triple-negative breast cancers in an orthotopic mouse model</article-title>
.
<source>Oncogene.</source>
(
<year>2014</year>
)
<volume>34</volume>
:
<fpage>761</fpage>
<lpage>70</lpage>
.
<pub-id pub-id-type="doi">10.1038/onc.2014.8</pub-id>
<pub-id pub-id-type="pmid">24531713</pub-id>
</mixed-citation>
</ref>
<ref id="B110">
<label>110.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Takahashi</surname>
<given-names>R-U</given-names>
</name>
<name>
<surname>Miyazaki</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Takeshita</surname>
<given-names>F</given-names>
</name>
<name>
<surname>Yamamoto</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Minoura</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Ono</surname>
<given-names>M</given-names>
</name>
<etal></etal>
</person-group>
.
<article-title>Loss of microRNA-27b contributes to breast cancer stem cell generation by activating ENPP1</article-title>
.
<source>Nat Commun.</source>
(
<year>2015</year>
)
<volume>6</volume>
:
<fpage>7318</fpage>
.
<pub-id pub-id-type="doi">10.1038/ncomms8318</pub-id>
<pub-id pub-id-type="pmid">26065921</pub-id>
</mixed-citation>
</ref>
<ref id="B111">
<label>111.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Wee</surname>
<given-names>ZN</given-names>
</name>
<name>
<surname>Yatim</surname>
<given-names>SMJM</given-names>
</name>
<name>
<surname>Kohlbauer</surname>
<given-names>VK</given-names>
</name>
<name>
<surname>Feng</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Goh</surname>
<given-names>JY</given-names>
</name>
<name>
<surname>Bao</surname>
<given-names>Y</given-names>
</name>
<etal></etal>
</person-group>
<article-title>IRAK1 is a therapeutic target that drives breast cancer metastasis and resistance to paclitaxel</article-title>
.
<source>Nat Commun.</source>
(
<year>2015</year>
)
<volume>6</volume>
:
<fpage>8746</fpage>
<pub-id pub-id-type="doi">10.1038/ncomms9746</pub-id>
<pub-id pub-id-type="pmid">26503059</pub-id>
</mixed-citation>
</ref>
<ref id="B112">
<label>112.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Mukherjee</surname>
<given-names>P</given-names>
</name>
<name>
<surname>Gupta</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Chattopadhyay</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Chatterji</surname>
<given-names>U</given-names>
</name>
</person-group>
.
<article-title>Modulation of SOX2 expression delineates an end-point for paclitaxel-effectiveness in breast cancer stem cells</article-title>
.
<source>Sci Rep.</source>
(
<year>2017</year>
)
<volume>7</volume>
:
<fpage>9170</fpage>
.
<pub-id pub-id-type="doi">10.1038/s41598-017-08971-2</pub-id>
<pub-id pub-id-type="pmid">28835684</pub-id>
</mixed-citation>
</ref>
<ref id="B113">
<label>113.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Sorrentino</surname>
<given-names>G</given-names>
</name>
<name>
<surname>Ruggeri</surname>
<given-names>N</given-names>
</name>
<name>
<surname>Zannini</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Ingallina</surname>
<given-names>E</given-names>
</name>
<name>
<surname>Bertolio</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Marotta</surname>
<given-names>C</given-names>
</name>
<etal></etal>
</person-group>
.
<article-title>Glucocorticoid receptor signalling activates YAP in breast cancer</article-title>
.
<source>Nat Commun.</source>
(
<year>2017</year>
)
<volume>8</volume>
:
<fpage>14073</fpage>
.
<pub-id pub-id-type="doi">10.1038/ncomms14073</pub-id>
<pub-id pub-id-type="pmid">28102225</pub-id>
</mixed-citation>
</ref>
<ref id="B114">
<label>114.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Boulding</surname>
<given-names>T</given-names>
</name>
<name>
<surname>McCuaig</surname>
<given-names>RD</given-names>
</name>
<name>
<surname>Tan</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Hardy</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Wu</surname>
<given-names>F</given-names>
</name>
<name>
<surname>Dunn</surname>
<given-names>J</given-names>
</name>
<etal></etal>
</person-group>
.
<article-title>LSD1 activation promotes inducible EMT programs and modulates the tumour microenvironment in breast cancer</article-title>
.
<source>Sci Rep.</source>
(
<year>2018</year>
)
<volume>8</volume>
:
<fpage>73</fpage>
.
<pub-id pub-id-type="doi">10.1038/s41598-017-17913-x</pub-id>
<pub-id pub-id-type="pmid">29311580</pub-id>
</mixed-citation>
</ref>
<ref id="B115">
<label>115.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Wang</surname>
<given-names>T.</given-names>
</name>
<name>
<surname>Fahrmann</surname>
<given-names>J.F.</given-names>
</name>
<name>
<surname>Lee</surname>
<given-names>H.</given-names>
</name>
<name>
<surname>Li</surname>
<given-names>Y.J.</given-names>
</name>
<name>
<surname>Tripathi</surname>
<given-names>S.C.</given-names>
</name>
<name>
<surname>Yue</surname>
<given-names>C.</given-names>
</name>
<etal></etal>
</person-group>
(
<year>2018</year>
).
<article-title>JAK/STAT3-regulated fatty acid beta-oxidation is critical for breast cancer stem cell self-renewal and chemoresistance</article-title>
.
<source>Cell Metab.</source>
<volume>27</volume>
,
<fpage>136</fpage>
<lpage>50</lpage>
e135.
<pub-id pub-id-type="doi">10.1016/j.cmet.2017.11.001</pub-id>
<pub-id pub-id-type="pmid">29249690</pub-id>
</mixed-citation>
</ref>
<ref id="B116">
<label>116.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Jeong</surname>
<given-names>Y-J</given-names>
</name>
<name>
<surname>Kang</surname>
<given-names>JS</given-names>
</name>
<name>
<surname>Lee</surname>
<given-names>SI</given-names>
</name>
<name>
<surname>So</surname>
<given-names>DM</given-names>
</name>
<name>
<surname>Yun</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Baek</surname>
<given-names>JY</given-names>
</name>
<etal></etal>
</person-group>
.
<article-title>Breast cancer cells evade paclitaxel-induced cell death by developing resistance to dasatinib</article-title>
.
<source>Oncol Lett.</source>
(
<year>2016</year>
)
<volume>12</volume>
:
<fpage>2153</fpage>
<lpage>8</lpage>
.
<pub-id pub-id-type="doi">10.3892/ol.2016.4852</pub-id>
<pub-id pub-id-type="pmid">27602155</pub-id>
</mixed-citation>
</ref>
<ref id="B117">
<label>117.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Korkaya</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Kim</surname>
<given-names>G-I</given-names>
</name>
<name>
<surname>Davis</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Malik</surname>
<given-names>F</given-names>
</name>
<name>
<surname>Henry</surname>
<given-names>NL</given-names>
</name>
<name>
<surname>Ithimakin</surname>
<given-names>S</given-names>
</name>
<etal></etal>
</person-group>
.
<article-title>Activation of an IL6 Inflammatory loop mediates trastuzumab resistance in HER2+ breast cancer by expanding the cancer stem cell population</article-title>
.
<source>Mol Cell.</source>
(
<year>2012</year>
)
<volume>47</volume>
:
<fpage>570</fpage>
<lpage>84</lpage>
.
<pub-id pub-id-type="doi">10.1016/j.molcel.2012.06.014</pub-id>
<pub-id pub-id-type="pmid">22819326</pub-id>
</mixed-citation>
</ref>
<ref id="B118">
<label>118.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Burnett</surname>
<given-names>JP</given-names>
</name>
<name>
<surname>Korkaya</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Ouzounova</surname>
<given-names>MD</given-names>
</name>
<name>
<surname>Jiang</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Conley</surname>
<given-names>SJ</given-names>
</name>
<name>
<surname>Newman</surname>
<given-names>BW</given-names>
</name>
<etal></etal>
</person-group>
.
<article-title>Trastuzumab resistance induces EMT to transform HER2+ PTEN– to a triple negative breast cancer that requires unique treatment options</article-title>
.
<source>Sci Rep.</source>
(
<year>2015</year>
)
<volume>5</volume>
:
<fpage>15821</fpage>
.
<pub-id pub-id-type="doi">10.1038/srep15821</pub-id>
<pub-id pub-id-type="pmid">26522776</pub-id>
</mixed-citation>
</ref>
<ref id="B119">
<label>119.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>De Cola</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Volpe</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Budani</surname>
<given-names>MC</given-names>
</name>
<name>
<surname>Ferracin</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Lattanzio</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Turdo</surname>
<given-names>A</given-names>
</name>
<etal></etal>
</person-group>
.
<article-title>miR-205-5p-mediated downregulation of ErbB/HER receptors in breast cancer stem cells results in targeted therapy resistance</article-title>
.
<source>Cell Death Dis.</source>
(
<year>2015</year>
)
<volume>6</volume>
:
<fpage>e1823</fpage>
.
<pub-id pub-id-type="doi">10.1038/cddis.2015.192</pub-id>
<pub-id pub-id-type="pmid">26181203</pub-id>
</mixed-citation>
</ref>
<ref id="B120">
<label>120.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Rodriguez</surname>
<given-names>CE</given-names>
</name>
<name>
<surname>Berardi</surname>
<given-names>DE</given-names>
</name>
<name>
<surname>Abrigo</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Todaro</surname>
<given-names>LB</given-names>
</name>
<name>
<surname>Bal de Kier Joffe</surname>
<given-names>ED</given-names>
</name>
<name>
<surname>Fiszman</surname>
<given-names>GL</given-names>
</name>
</person-group>
.
<article-title>Breast cancer stem cells are involved in Trastuzumab resistance through the HER2 modulation in 3D culture</article-title>
.
<source>J Cell Biochem.</source>
(
<year>2018</year>
)
<volume>119</volume>
:
<fpage>1381</fpage>
<lpage>91</lpage>
.
<pub-id pub-id-type="doi">10.1002/jcb.26298</pub-id>
<pub-id pub-id-type="pmid">28722778</pub-id>
</mixed-citation>
</ref>
<ref id="B121">
<label>121.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Notas</surname>
<given-names>G</given-names>
</name>
<name>
<surname>Pelekanou</surname>
<given-names>V</given-names>
</name>
<name>
<surname>Kampa</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Alexakis</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Sfakianakis</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Laliotis</surname>
<given-names>A</given-names>
</name>
<etal></etal>
</person-group>
.
<article-title>Tamoxifen induces a pluripotency signature in breast cancer cells and human tumors</article-title>
.
<source>Mol Oncol.</source>
(
<year>2015</year>
)
<volume>9</volume>
:
<fpage>1744</fpage>
<lpage>59</lpage>
.
<pub-id pub-id-type="doi">10.1016/j.molonc.2015.05.008</pub-id>
<pub-id pub-id-type="pmid">26115764</pub-id>
</mixed-citation>
</ref>
<ref id="B122">
<label>122.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Zhang</surname>
<given-names>P</given-names>
</name>
<name>
<surname>Wei</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Wang</surname>
<given-names>L</given-names>
</name>
<name>
<surname>Debeb</surname>
<given-names>BG</given-names>
</name>
<name>
<surname>Yuan</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Zhang</surname>
<given-names>J</given-names>
</name>
<etal></etal>
</person-group>
.
<article-title>ATM-mediated stabilization of ZEB1 promotes DNA damage response and radioresistance through CHK1</article-title>
.
<source>Nat Cell Biol.</source>
(
<year>2014</year>
)
<volume>16</volume>
:
<fpage>864</fpage>
.
<pub-id pub-id-type="doi">10.1038/ncb3013</pub-id>
<pub-id pub-id-type="pmid">25086746</pub-id>
</mixed-citation>
</ref>
<ref id="B123">
<label>123.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Mateo</surname>
<given-names>F</given-names>
</name>
<name>
<surname>Arenas</surname>
<given-names>EJ</given-names>
</name>
<name>
<surname>Aguilar</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Serra-Musach</surname>
<given-names>J</given-names>
</name>
<name>
<surname>de Garibay</surname>
<given-names>GR</given-names>
</name>
<name>
<surname>Boni</surname>
<given-names>J</given-names>
</name>
<etal></etal>
</person-group>
.
<article-title>Stem cell-like transcriptional reprogramming mediates metastatic resistance to mTOR inhibition</article-title>
.
<source>Oncogene.</source>
(
<year>2016</year>
)
<volume>36</volume>
:
<fpage>2737</fpage>
<lpage>49</lpage>
.
<pub-id pub-id-type="doi">10.1038/onc.2016.427</pub-id>
<pub-id pub-id-type="pmid">27991928</pub-id>
</mixed-citation>
</ref>
<ref id="B124">
<label>124.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Seguin</surname>
<given-names>L</given-names>
</name>
<name>
<surname>Kato</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Franovic</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Camargo</surname>
<given-names>MF</given-names>
</name>
<name>
<surname>Lesperance</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Elliott</surname>
<given-names>KC</given-names>
</name>
<etal></etal>
</person-group>
.
<article-title>An integrin β3–KRAS–RalB complex drives tumour stemness and resistance to EGFR inhibition</article-title>
.
<source>Nat Cell Biol.</source>
(
<year>2014</year>
)
<volume>16</volume>
:
<fpage>457</fpage>
<lpage>68</lpage>
.
<pub-id pub-id-type="doi">10.1038/ncb2953</pub-id>
<pub-id pub-id-type="pmid">24747441</pub-id>
</mixed-citation>
</ref>
<ref id="B125">
<label>125.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>He</surname>
<given-names>L</given-names>
</name>
<name>
<surname>Gu</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Lim</surname>
<given-names>LY</given-names>
</name>
<name>
<surname>Yuan</surname>
<given-names>ZX</given-names>
</name>
<name>
<surname>Mo</surname>
<given-names>J</given-names>
</name>
</person-group>
.
<article-title>Nanomedicine-mediated therapies to target breast cancer stem cells</article-title>
.
<source>Front Pharmacol.</source>
(
<year>2016</year>
)
<volume>7</volume>
:
<fpage>313</fpage>
.
<pub-id pub-id-type="doi">10.3389/fphar.2016.00313</pub-id>
<pub-id pub-id-type="pmid">27679576</pub-id>
</mixed-citation>
</ref>
<ref id="B126">
<label>126.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Jung</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Kim</surname>
<given-names>JK</given-names>
</name>
<name>
<surname>Shiozawa</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Wang</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Mishra</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Joseph</surname>
<given-names>J</given-names>
</name>
<etal></etal>
</person-group>
.
<article-title>Recruitment of mesenchymal stem cells into prostate tumours promotes metastasis</article-title>
.
<source>Nat Commun.</source>
(
<year>2013</year>
)
<volume>4</volume>
:
<fpage>1795</fpage>
.
<pub-id pub-id-type="doi">10.1038/ncomms2766</pub-id>
<pub-id pub-id-type="pmid">23653207</pub-id>
</mixed-citation>
</ref>
<ref id="B127">
<label>127.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Plaks</surname>
<given-names>V</given-names>
</name>
<name>
<surname>Kong</surname>
<given-names>N</given-names>
</name>
<name>
<surname>Werb</surname>
<given-names>Z</given-names>
</name>
</person-group>
.
<article-title>The cancer stem cell niche: how essential is the niche in regulating stemness of tumor cells?</article-title>
<source>Cell Stem Cell.</source>
(
<year>2015</year>
)
<volume>16</volume>
:
<fpage>225</fpage>
<lpage>38</lpage>
.
<pub-id pub-id-type="doi">10.1016/j.stem.2015.02.015</pub-id>
<pub-id pub-id-type="pmid">25748930</pub-id>
</mixed-citation>
</ref>
<ref id="B128">
<label>128.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Prager</surname>
<given-names>BC</given-names>
</name>
<name>
<surname>Xie</surname>
<given-names>Q</given-names>
</name>
<name>
<surname>Bao</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Rich</surname>
<given-names>JN</given-names>
</name>
</person-group>
.
<article-title>Cancer stem cells: the architects of the tumor ecosystem</article-title>
.
<source>Cell Stem Cell.</source>
(
<year>2019</year>
)
<volume>24</volume>
:
<fpage>41</fpage>
<lpage>53</lpage>
.
<pub-id pub-id-type="doi">10.1016/j.stem.2018.12.009</pub-id>
<pub-id pub-id-type="pmid">30609398</pub-id>
</mixed-citation>
</ref>
<ref id="B129">
<label>129.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Juvekar</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Wulf</surname>
<given-names>GM</given-names>
</name>
</person-group>
.
<article-title>Closing escape routes: inhibition of IL-8 signaling enhances the anti-tumor efficacy of PI3K inhibitors</article-title>
.
<source>Breast Cancer Res.</source>
(
<year>2013</year>
)
<volume>15</volume>
:
<fpage>308</fpage>
.
<pub-id pub-id-type="doi">10.1186/bcr3400</pub-id>
<pub-id pub-id-type="pmid">23566381</pub-id>
</mixed-citation>
</ref>
<ref id="B130">
<label>130.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Todaro</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Turdo</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Bartucci</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Iovino</surname>
<given-names>F</given-names>
</name>
<name>
<surname>Dattilo</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Biffoni</surname>
<given-names>M</given-names>
</name>
<etal></etal>
</person-group>
.
<article-title>Erythropoietin activates cell survival pathways in breast cancer stem-like cells to protect them from chemotherapy</article-title>
.
<source>Cancer Res.</source>
(
<year>2013</year>
)
<volume>73</volume>
:
<fpage>6393</fpage>
<lpage>400</lpage>
.
<pub-id pub-id-type="doi">10.1158/0008-5472.CAN-13-0248</pub-id>
<pub-id pub-id-type="pmid">24008319</pub-id>
</mixed-citation>
</ref>
<ref id="B131">
<label>131.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Jia</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Li</surname>
<given-names>L</given-names>
</name>
<name>
<surname>Andrew</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Allan</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Li</surname>
<given-names>X</given-names>
</name>
<name>
<surname>Lee</surname>
<given-names>J</given-names>
</name>
<etal></etal>
</person-group>
.
<article-title>An autocrine inflammatory forward-feedback loop after chemotherapy withdrawal facilitates the repopulation of drug-resistant breast cancer cells</article-title>
.
<source>Cell Death Dis.</source>
(
<year>2017</year>
)
<volume>8</volume>
:
<fpage>e2932</fpage>
.
<pub-id pub-id-type="doi">10.1038/cddis.2017.319</pub-id>
<pub-id pub-id-type="pmid">28703802</pub-id>
</mixed-citation>
</ref>
<ref id="B132">
<label>132.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Tian</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Hachim</surname>
<given-names>MY</given-names>
</name>
<name>
<surname>Hachim</surname>
<given-names>IY</given-names>
</name>
<name>
<surname>Dai</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Lo</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Raffa</surname>
<given-names>FA</given-names>
</name>
<etal></etal>
</person-group>
.
<article-title>Cyclooxygenase-2 regulates TGFbeta-induced cancer stemness in triple-negative breast cancer</article-title>
.
<source>Sci Rep.</source>
(
<year>2017</year>
)
<volume>7</volume>
:
<fpage>40258</fpage>
.
<pub-id pub-id-type="doi">10.1038/srep40258</pub-id>
<pub-id pub-id-type="pmid">28054666</pub-id>
</mixed-citation>
</ref>
<ref id="B133">
<label>133.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Dean</surname>
<given-names>M</given-names>
</name>
</person-group>
.
<article-title>ABC transporters, drug resistance, and cancer stem cells</article-title>
.
<source>J Mammary Gland Biol Neoplasia.</source>
(
<year>2009</year>
)
<volume>14</volume>
:
<fpage>3</fpage>
<lpage>9</lpage>
.
<pub-id pub-id-type="doi">10.1007/s10911-009-9109-9</pub-id>
<pub-id pub-id-type="pmid">19224345</pub-id>
</mixed-citation>
</ref>
<ref id="B134">
<label>134.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Natarajan</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Xie</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Baer</surname>
<given-names>MR</given-names>
</name>
<name>
<surname>Ross</surname>
<given-names>DD</given-names>
</name>
</person-group>
.
<article-title>Role of breast cancer resistance protein (BCRP/ABCG2) in cancer drug resistance</article-title>
.
<source>Biochem Pharmacol.</source>
(
<year>2012</year>
)
<volume>83</volume>
:
<fpage>1084</fpage>
<lpage>103</lpage>
.
<pub-id pub-id-type="doi">10.1016/j.bcp.2012.01.002</pub-id>
<pub-id pub-id-type="pmid">22248732</pub-id>
</mixed-citation>
</ref>
<ref id="B135">
<label>135.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Balaji</surname>
<given-names>SA</given-names>
</name>
<name>
<surname>Udupa</surname>
<given-names>N</given-names>
</name>
<name>
<surname>Chamallamudi</surname>
<given-names>MR</given-names>
</name>
<name>
<surname>Gupta</surname>
<given-names>V</given-names>
</name>
<name>
<surname>Rangarajan</surname>
<given-names>A</given-names>
</name>
</person-group>
.
<article-title>Role of the drug transporter ABCC3 in breast cancer chemoresistance</article-title>
.
<source>PLoS ONE.</source>
(
<year>2016</year>
)
<volume>11</volume>
:
<fpage>e0155013</fpage>
.
<pub-id pub-id-type="doi">10.1371/journal.pone.0155013</pub-id>
<pub-id pub-id-type="pmid">27171227</pub-id>
</mixed-citation>
</ref>
<ref id="B136">
<label>136.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Samanta</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Gilkes</surname>
<given-names>DM</given-names>
</name>
<name>
<surname>Chaturvedi</surname>
<given-names>P</given-names>
</name>
<name>
<surname>Xiang</surname>
<given-names>L</given-names>
</name>
<name>
<surname>Semenza</surname>
<given-names>GL</given-names>
</name>
</person-group>
.
<article-title>Hypoxia-inducible factors are required for chemotherapy resistance of breast cancer stem cells</article-title>
.
<source>Proc Natl Acad Sci USA.</source>
(
<year>2014</year>
)
<volume>111</volume>
:
<fpage>E5429</fpage>
<lpage>38</lpage>
.
<pub-id pub-id-type="doi">10.1073/pnas.1421438111</pub-id>
<pub-id pub-id-type="pmid">25453096</pub-id>
</mixed-citation>
</ref>
<ref id="B137">
<label>137.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Li</surname>
<given-names>SY</given-names>
</name>
<name>
<surname>Sun</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Wang</surname>
<given-names>HX</given-names>
</name>
<name>
<surname>Shen</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Liu</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Du</surname>
<given-names>XJ</given-names>
</name>
<etal></etal>
</person-group>
.
<article-title>Combination therapy with epigenetic-targeted and chemotherapeutic drugs delivered by nanoparticles to enhance the chemotherapy response and overcome resistance by breast cancer stem cells</article-title>
.
<source>J Control Release.</source>
(
<year>2015</year>
)
<volume>205</volume>
:
<fpage>7</fpage>
<lpage>14</lpage>
.
<pub-id pub-id-type="doi">10.1016/j.jconrel.2014.11.011</pub-id>
<pub-id pub-id-type="pmid">25445694</pub-id>
</mixed-citation>
</ref>
<ref id="B138">
<label>138.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Wu</surname>
<given-names>CP</given-names>
</name>
<name>
<surname>Calcagno</surname>
<given-names>AM</given-names>
</name>
<name>
<surname>Ambudkar</surname>
<given-names>SV</given-names>
</name>
</person-group>
.
<article-title>Reversal of ABC drug transporter-mediated multidrug resistance in cancer cells: evaluation of current strategies</article-title>
.
<source>Curr Mol Pharmacol.</source>
(
<year>2008</year>
)
<volume>1</volume>
:
<fpage>93</fpage>
<lpage>105</lpage>
.
<pub-id pub-id-type="doi">10.2174/1874467210801020093</pub-id>
<pub-id pub-id-type="pmid">19079736</pub-id>
</mixed-citation>
</ref>
<ref id="B139">
<label>139.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Chen</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Huang</surname>
<given-names>YH</given-names>
</name>
<name>
<surname>Chen</surname>
<given-names>JL</given-names>
</name>
</person-group>
.
<article-title>Understanding and targeting cancer stem cells: therapeutic implications and challenges</article-title>
.
<source>Acta Pharmacol Sin.</source>
(
<year>2013</year>
)
<volume>34</volume>
:
<fpage>732</fpage>
<lpage>40</lpage>
.
<pub-id pub-id-type="doi">10.1038/aps.2013.27</pub-id>
<pub-id pub-id-type="pmid">23685952</pub-id>
</mixed-citation>
</ref>
<ref id="B140">
<label>140.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Dohse</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Scharenberg</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Shukla</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Robey</surname>
<given-names>RW</given-names>
</name>
<name>
<surname>Volkmann</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Deeken</surname>
<given-names>JF</given-names>
</name>
<etal></etal>
</person-group>
.
<article-title>Comparison of ATP-binding cassette transporter interactions with the tyrosine kinase inhibitors imatinib, nilotinib, and dasatinib</article-title>
.
<source>Drug Metab Dispos.</source>
(
<year>2010</year>
)
<volume>38</volume>
:
<fpage>1371</fpage>
<lpage>80</lpage>
.
<pub-id pub-id-type="doi">10.1124/dmd.109.031302</pub-id>
<pub-id pub-id-type="pmid">20423956</pub-id>
</mixed-citation>
</ref>
<ref id="B141">
<label>141.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Shi</surname>
<given-names>Z</given-names>
</name>
<name>
<surname>Peng</surname>
<given-names>XX</given-names>
</name>
<name>
<surname>Kim</surname>
<given-names>IW</given-names>
</name>
<name>
<surname>Shukla</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Si</surname>
<given-names>QS</given-names>
</name>
<name>
<surname>Robey</surname>
<given-names>RW</given-names>
</name>
<etal></etal>
</person-group>
.
<article-title>Erlotinib (Tarceva, OSI-774) antagonizes ATP-binding cassette subfamily B member 1 and ATP-binding cassette subfamily G member 2-mediated drug resistance</article-title>
.
<source>Cancer Res.</source>
(
<year>2007</year>
)
<volume>67</volume>
:
<fpage>11012</fpage>
<lpage>20</lpage>
.
<pub-id pub-id-type="doi">10.1158/0008-5472.CAN-07-2686</pub-id>
<pub-id pub-id-type="pmid">18006847</pub-id>
</mixed-citation>
</ref>
<ref id="B142">
<label>142.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Dai</surname>
<given-names>CL</given-names>
</name>
<name>
<surname>Tiwari</surname>
<given-names>AK</given-names>
</name>
<name>
<surname>Wu</surname>
<given-names>CP</given-names>
</name>
<name>
<surname>Su</surname>
<given-names>XD</given-names>
</name>
<name>
<surname>Wang</surname>
<given-names>SR</given-names>
</name>
<name>
<surname>Liu</surname>
<given-names>DG</given-names>
</name>
<etal></etal>
</person-group>
.
<article-title>Lapatinib (Tykerb, GW572016) reverses multidrug resistance in cancer cells by inhibiting the activity of ATP-binding cassette subfamily B member 1 and G member 2</article-title>
.
<source>Cancer Res.</source>
(
<year>2008</year>
)
<volume>68</volume>
:
<fpage>7905</fpage>
<lpage>14</lpage>
.
<pub-id pub-id-type="doi">10.1158/0008-5472.CAN-08-0499</pub-id>
<pub-id pub-id-type="pmid">18829547</pub-id>
</mixed-citation>
</ref>
<ref id="B143">
<label>143.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Tiwari</surname>
<given-names>AK</given-names>
</name>
<name>
<surname>Sodani</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Wang</surname>
<given-names>SR</given-names>
</name>
<name>
<surname>Kuang</surname>
<given-names>YH</given-names>
</name>
<name>
<surname>Ashby</surname>
<given-names>CR</given-names>
<suffix>Jr</suffix>
</name>
<name>
<surname>Chen</surname>
<given-names>X</given-names>
</name>
<etal></etal>
</person-group>
.
<article-title>Nilotinib (AMN107, Tasigna) reverses multidrug resistance by inhibiting the activity of the ABCB1/Pgp and ABCG2/BCRP/MXR transporters</article-title>
.
<source>Biochem Pharmacol.</source>
(
<year>2009</year>
)
<volume>78</volume>
:
<fpage>153</fpage>
<lpage>61</lpage>
.
<pub-id pub-id-type="doi">10.1016/j.bcp.2009.04.002</pub-id>
<pub-id pub-id-type="pmid">19427995</pub-id>
</mixed-citation>
</ref>
<ref id="B144">
<label>144.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Sims</surname>
<given-names>JT</given-names>
</name>
<name>
<surname>Ganguly</surname>
<given-names>SS</given-names>
</name>
<name>
<surname>Bennett</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Friend</surname>
<given-names>JW</given-names>
</name>
<name>
<surname>Tepe</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Plattner</surname>
<given-names>R</given-names>
</name>
</person-group>
.
<article-title>Imatinib reverses doxorubicin resistance by affecting activation of STAT3-dependent NF-kappaB and HSP27/p38/AKT pathways and by inhibiting ABCB1</article-title>
.
<source>PLoS ONE.</source>
(
<year>2013</year>
)
<volume>8</volume>
:
<fpage>e55509</fpage>
.
<pub-id pub-id-type="doi">10.1371/journal.pone.0055509</pub-id>
<pub-id pub-id-type="pmid">23383209</pub-id>
</mixed-citation>
</ref>
<ref id="B145">
<label>145.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Zhao</surname>
<given-names>J</given-names>
</name>
</person-group>
.
<article-title>Cancer stem cells and chemoresistance: the smartest survives the raid</article-title>
.
<source>Pharmacol Ther.</source>
(
<year>2016</year>
)
<volume>160</volume>
:
<fpage>145</fpage>
<lpage>58</lpage>
.
<pub-id pub-id-type="doi">10.1016/j.pharmthera.2016.02.008</pub-id>
<pub-id pub-id-type="pmid">26899500</pub-id>
</mixed-citation>
</ref>
<ref id="B146">
<label>146.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Yun</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Frankenberger</surname>
<given-names>CA</given-names>
</name>
<name>
<surname>Kuo</surname>
<given-names>WL</given-names>
</name>
<name>
<surname>Boelens</surname>
<given-names>MC</given-names>
</name>
<name>
<surname>Eves</surname>
<given-names>EM</given-names>
</name>
<name>
<surname>Cheng</surname>
<given-names>N</given-names>
</name>
<etal></etal>
</person-group>
.
<article-title>Signalling pathway for RKIP and Let-7 regulates and predicts metastatic breast cancer</article-title>
.
<source>EMBO J.</source>
(
<year>2011</year>
)
<volume>30</volume>
:
<fpage>4500</fpage>
<lpage>14</lpage>
.
<pub-id pub-id-type="doi">10.1038/emboj.2011.312</pub-id>
<pub-id pub-id-type="pmid">21873975</pub-id>
</mixed-citation>
</ref>
<ref id="B147">
<label>147.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Ginestier</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Liu</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Diebel</surname>
<given-names>ME</given-names>
</name>
<name>
<surname>Korkaya</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Luo</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Brown</surname>
<given-names>M</given-names>
</name>
<etal></etal>
</person-group>
.
<article-title>CXCR1 blockade selectively targets human breast cancer stem cells
<italic>in vitro</italic>
and in xenografts</article-title>
.
<source>J Clin Invest</source>
. (
<year>2010</year>
)
<volume>120</volume>
:
<fpage>485</fpage>
<lpage>97</lpage>
.
<pub-id pub-id-type="doi">10.1172/JCI39397</pub-id>
<pub-id pub-id-type="pmid">20051626</pub-id>
</mixed-citation>
</ref>
<ref id="B148">
<label>148.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Singh</surname>
<given-names>JK</given-names>
</name>
<name>
<surname>Farnie</surname>
<given-names>G</given-names>
</name>
<name>
<surname>Bundred</surname>
<given-names>NJ</given-names>
</name>
<name>
<surname>Simoes</surname>
<given-names>BM</given-names>
</name>
<name>
<surname>Shergill</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Landberg</surname>
<given-names>G</given-names>
</name>
<etal></etal>
</person-group>
.
<article-title>Targeting CXCR1/2 significantly reduces breast cancer stem cell activity and increases the efficacy of inhibiting HER2 via HER2-dependent and -independent mechanisms</article-title>
.
<source>Clin Cancer Res</source>
. (
<year>2013</year>
)
<volume>19</volume>
:
<fpage>643</fpage>
<lpage>56</lpage>
.
<pub-id pub-id-type="doi">10.1158/1078-0432.CCR-12-1063</pub-id>
<pub-id pub-id-type="pmid">23149820</pub-id>
</mixed-citation>
</ref>
<ref id="B149">
<label>149.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Schott</surname>
<given-names>AF</given-names>
</name>
<name>
<surname>Goldstein</surname>
<given-names>L</given-names>
</name>
<name>
<surname>Cristofanilli</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Ruffini</surname>
<given-names>PA</given-names>
</name>
<name>
<surname>McCanna</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Reuben</surname>
<given-names>JM</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Phase Ib pilot study to evaluate reparixin in combination with weekly paclitaxel in patients with HER-2 negative metastatic breast cancer (MBC)</article-title>
.
<source>Clin Cancer Res.</source>
(
<year>2017</year>
)
<volume>23</volume>
:
<fpage>5358</fpage>
<lpage>65</lpage>
.
<pub-id pub-id-type="doi">10.1158/1078-0432.CCR-16-2748</pub-id>
<pub-id pub-id-type="pmid">28539464</pub-id>
</mixed-citation>
</ref>
<ref id="B150">
<label>150.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Yi</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Zhai</surname>
<given-names>B</given-names>
</name>
<name>
<surname>Yu</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Kiyotsugu</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Raschle</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Etzkorn</surname>
<given-names>M</given-names>
</name>
<etal></etal>
</person-group>
.
<article-title>Quantitative phosphoproteomic analysis reveals system-wide signaling pathways downstream of SDF-1/CXCR4 in breast cancer stem cells</article-title>
.
<source>Proc Natl Acad Sci USA.</source>
(
<year>2014</year>
)
<volume>111</volume>
:
<fpage>E2182</fpage>
<lpage>90</lpage>
.
<pub-id pub-id-type="doi">10.1073/pnas.1404943111</pub-id>
<pub-id pub-id-type="pmid">24782546</pub-id>
</mixed-citation>
</ref>
<ref id="B151">
<label>151.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Mukherjee</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Manna</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Bhattacharjee</surname>
<given-names>P</given-names>
</name>
<name>
<surname>Mazumdar</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Saha</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Chakraborty</surname>
<given-names>S</given-names>
</name>
<etal></etal>
</person-group>
.
<article-title>Non-migratory tumorigenic intrinsic cancer stem cells ensure breast cancer metastasis by generation of CXCR4(+) migrating cancer stem cells</article-title>
.
<source>Oncogene.</source>
(
<year>2016</year>
)
<volume>35</volume>
:
<fpage>4937</fpage>
<lpage>48</lpage>
.
<pub-id pub-id-type="doi">10.1038/onc.2016.26</pub-id>
<pub-id pub-id-type="pmid">26923331</pub-id>
</mixed-citation>
</ref>
<ref id="B152">
<label>152.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Graham</surname>
<given-names>NA</given-names>
</name>
<name>
<surname>Graeber</surname>
<given-names>TG</given-names>
</name>
</person-group>
.
<article-title>Complexity of metastasis-associated SDF-1 ligand signaling in breast cancer stem cells</article-title>
.
<source>Proc Natl Acad Sci USA.</source>
(
<year>2014</year>
)
<volume>111</volume>
:
<fpage>7503</fpage>
<lpage>4</lpage>
.
<pub-id pub-id-type="doi">10.1073/pnas.1405991111</pub-id>
<pub-id pub-id-type="pmid">24828528</pub-id>
</mixed-citation>
</ref>
<ref id="B153">
<label>153.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Zhang</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Corsa</surname>
<given-names>CA</given-names>
</name>
<name>
<surname>Ponik</surname>
<given-names>SM</given-names>
</name>
<name>
<surname>Prior</surname>
<given-names>JL</given-names>
</name>
<name>
<surname>Piwnica-Worms</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Eliceiri</surname>
<given-names>KW</given-names>
</name>
<etal></etal>
</person-group>
.
<article-title>The collagen receptor discoidin domain receptor 2 stabilizes SNAIL1 to facilitate breast cancer metastasis</article-title>
.
<source>Nat Cell Biol.</source>
(
<year>2013</year>
)
<volume>15</volume>
:
<fpage>677</fpage>
<lpage>87</lpage>
.
<pub-id pub-id-type="doi">10.1038/ncb2743</pub-id>
<pub-id pub-id-type="pmid">23644467</pub-id>
</mixed-citation>
</ref>
<ref id="B154">
<label>154.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Lapteva</surname>
<given-names>N</given-names>
</name>
<name>
<surname>Yang</surname>
<given-names>AG</given-names>
</name>
<name>
<surname>Sanders</surname>
<given-names>DE</given-names>
</name>
<name>
<surname>Strube</surname>
<given-names>RW</given-names>
</name>
<name>
<surname>Chen</surname>
<given-names>SY</given-names>
</name>
</person-group>
.
<article-title>CXCR4 knockdown by small interfering RNA abrogates breast tumor growth
<italic>in vivo</italic>
</article-title>
.
<source>Cancer Gene Ther.</source>
(
<year>2005</year>
)
<volume>12</volume>
:
<fpage>84</fpage>
<lpage>9</lpage>
.
<pub-id pub-id-type="doi">10.1038/sj.cgt.7700770</pub-id>
<pub-id pub-id-type="pmid">15472715</pub-id>
</mixed-citation>
</ref>
<ref id="B155">
<label>155.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Smith</surname>
<given-names>MC</given-names>
</name>
<name>
<surname>Luker</surname>
<given-names>KE</given-names>
</name>
<name>
<surname>Garbow</surname>
<given-names>JR</given-names>
</name>
<name>
<surname>Prior</surname>
<given-names>JL</given-names>
</name>
<name>
<surname>Jackson</surname>
<given-names>E</given-names>
</name>
<name>
<surname>Piwnica-Worms</surname>
<given-names>D</given-names>
</name>
<etal></etal>
</person-group>
.
<article-title>CXCR4 regulates growth of both primary and metastatic breast cancer</article-title>
.
<source>Cancer Res</source>
. (
<year>2004</year>
)
<volume>64</volume>
:
<fpage>8604</fpage>
<lpage>12</lpage>
.
<pub-id pub-id-type="doi">10.1158/0008-5472.CAN-04-1844</pub-id>
<pub-id pub-id-type="pmid">15574767</pub-id>
</mixed-citation>
</ref>
<ref id="B156">
<label>156.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Pernas</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Martin</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Kaufman</surname>
<given-names>PA</given-names>
</name>
<name>
<surname>Gil-Martin</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Gomez Pardo</surname>
<given-names>P</given-names>
</name>
<name>
<surname>Lopez-Tarruella</surname>
<given-names>S</given-names>
</name>
<etal></etal>
</person-group>
.
<article-title>Balixafortide plus eribulin in HER2-negative metastatic breast cancer: a phase 1, single-arm, dose-escalation trial</article-title>
.
<source>Lancet Oncol.</source>
(
<year>2018</year>
)
<volume>19</volume>
:
<fpage>812</fpage>
<lpage>24</lpage>
.
<pub-id pub-id-type="doi">10.1016/S1470-2045(18)30147-5</pub-id>
<pub-id pub-id-type="pmid">29706375</pub-id>
</mixed-citation>
</ref>
<ref id="B157">
<label>157.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Duda</surname>
<given-names>DG</given-names>
</name>
<name>
<surname>Kozin</surname>
<given-names>SV</given-names>
</name>
<name>
<surname>Kirkpatrick</surname>
<given-names>ND</given-names>
</name>
<name>
<surname>Xu</surname>
<given-names>L</given-names>
</name>
<name>
<surname>Fukumura</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Jain</surname>
<given-names>RK</given-names>
</name>
</person-group>
.
<article-title>CXCL12 (SDF1alpha)-CXCR4/CXCR7 pathway inhibition: an emerging sensitizer for anticancer therapies?</article-title>
<source>Clin Cancer Res.</source>
(
<year>2011</year>
)
<volume>17</volume>
:
<fpage>2074</fpage>
<lpage>80</lpage>
.
<pub-id pub-id-type="doi">10.1158/1078-0432.CCR-10-2636</pub-id>
<pub-id pub-id-type="pmid">21349998</pub-id>
</mixed-citation>
</ref>
<ref id="B158">
<label>158.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Vater</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Klussmann</surname>
<given-names>S</given-names>
</name>
</person-group>
.
<article-title>Turning mirror-image oligonucleotides into drugs: the evolution of Spiegelmer® therapeutics</article-title>
.
<source>Drug Discov Today.</source>
(
<year>2015</year>
)
<volume>20</volume>
:
<fpage>147</fpage>
<lpage>55</lpage>
.
<pub-id pub-id-type="doi">10.1016/j.drudis.2014.09.004</pub-id>
<pub-id pub-id-type="pmid">25236655</pub-id>
</mixed-citation>
</ref>
<ref id="B159">
<label>159.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Zboralski</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Hoehlig</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Eulberg</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Fromming</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Vater</surname>
<given-names>A</given-names>
</name>
</person-group>
.
<article-title>Increasing tumor-infiltrating t cells through inhibition of CXCL12 with NOX-A12 synergizes with PD-1 blockade</article-title>
.
<source>Cancer Immunol Res.</source>
(
<year>2017</year>
)
<volume>5</volume>
:
<fpage>950</fpage>
<lpage>6</lpage>
.
<pub-id pub-id-type="doi">10.1158/2326-6066.CIR-16-0303</pub-id>
<pub-id pub-id-type="pmid">28963140</pub-id>
</mixed-citation>
</ref>
<ref id="B160">
<label>160.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Greenfield</surname>
<given-names>JP</given-names>
</name>
<name>
<surname>Cobb</surname>
<given-names>WS</given-names>
</name>
<name>
<surname>Lyden</surname>
<given-names>D</given-names>
</name>
</person-group>
.
<article-title>Resisting arrest: a switch from angiogenesis to vasculogenesis in recurrent malignant gliomas</article-title>
.
<source>J Clin Invest.</source>
(
<year>2010</year>
)
<volume>120</volume>
:
<fpage>663</fpage>
<lpage>7</lpage>
.
<pub-id pub-id-type="doi">10.1172/JCI42345</pub-id>
<pub-id pub-id-type="pmid">20179347</pub-id>
</mixed-citation>
</ref>
<ref id="B161">
<label>161.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Farnie</surname>
<given-names>G</given-names>
</name>
<name>
<surname>Johnson</surname>
<given-names>RL</given-names>
</name>
<name>
<surname>Williams</surname>
<given-names>KE</given-names>
</name>
<name>
<surname>Clarke</surname>
<given-names>RB</given-names>
</name>
<name>
<surname>Bundred</surname>
<given-names>NJ</given-names>
</name>
</person-group>
.
<article-title>Lapatinib inhibits stem/progenitor proliferation in preclinical
<italic>in vitro</italic>
models of ductal carcinoma
<italic>in situ</italic>
(DCIS)</article-title>
.
<source>Cell Cycle.</source>
(
<year>2014</year>
)
<volume>13</volume>
:
<fpage>418</fpage>
<lpage>25</lpage>
.
<pub-id pub-id-type="doi">10.4161/cc.27201</pub-id>
<pub-id pub-id-type="pmid">24247151</pub-id>
</mixed-citation>
</ref>
<ref id="B162">
<label>162.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Clark</surname>
<given-names>EA</given-names>
</name>
<name>
<surname>Golub</surname>
<given-names>TR</given-names>
</name>
<name>
<surname>Lander</surname>
<given-names>ES</given-names>
</name>
<name>
<surname>Hynes</surname>
<given-names>RO</given-names>
</name>
</person-group>
.
<article-title>Genomic analysis of metastasis reveals an essential role for RhoC</article-title>
.
<source>Nature.</source>
(
<year>2000</year>
)
<volume>406</volume>
:
<fpage>532</fpage>
<lpage>5</lpage>
.
<pub-id pub-id-type="doi">10.1038/35020106</pub-id>
<pub-id pub-id-type="pmid">10952316</pub-id>
</mixed-citation>
</ref>
<ref id="B163">
<label>163.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Hakem</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Sanchez-Sweatman</surname>
<given-names>O</given-names>
</name>
<name>
<surname>You-Ten</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Duncan</surname>
<given-names>G</given-names>
</name>
<name>
<surname>Wakeham</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Khokha</surname>
<given-names>R</given-names>
</name>
<etal></etal>
</person-group>
.
<article-title>RhoC is dispensable for embryogenesis and tumor initiation but essential for metastasis</article-title>
.
<source>Genes Dev.</source>
(
<year>2005</year>
)
<volume>19</volume>
:
<fpage>1974</fpage>
<lpage>9</lpage>
.
<pub-id pub-id-type="doi">10.1101/gad.1310805</pub-id>
<pub-id pub-id-type="pmid">16107613</pub-id>
</mixed-citation>
</ref>
<ref id="B164">
<label>164.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Rosenthal</surname>
<given-names>DT</given-names>
</name>
<name>
<surname>Zhang</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Bao</surname>
<given-names>L</given-names>
</name>
<name>
<surname>Zhu</surname>
<given-names>L</given-names>
</name>
<name>
<surname>Wu</surname>
<given-names>Z</given-names>
</name>
<name>
<surname>Toy</surname>
<given-names>K</given-names>
</name>
<etal></etal>
</person-group>
.
<article-title>RhoC impacts the metastatic potential and abundance of breast cancer stem cells</article-title>
.
<source>PLoS ONE.</source>
(
<year>2012</year>
)
<volume>7</volume>
:
<fpage>e40979</fpage>
.
<pub-id pub-id-type="doi">10.1371/journal.pone.0040979</pub-id>
<pub-id pub-id-type="pmid">22911725</pub-id>
</mixed-citation>
</ref>
<ref id="B165">
<label>165.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Thomas</surname>
<given-names>P</given-names>
</name>
<name>
<surname>Pranatharthi</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Ross</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Srivastava</surname>
<given-names>S</given-names>
</name>
</person-group>
.
<article-title>RhoC: a fascinating journey from a cytoskeletal organizer to a Cancer stem cell therapeutic target</article-title>
.
<source>J Exp Clin Cancer Res.</source>
(
<year>2019</year>
)
<volume>38</volume>
:
<fpage>328</fpage>
.
<pub-id pub-id-type="doi">10.1186/s13046-019-1327-4</pub-id>
<pub-id pub-id-type="pmid">31340863</pub-id>
</mixed-citation>
</ref>
<ref id="B166">
<label>166.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Simpson</surname>
<given-names>KJ</given-names>
</name>
<name>
<surname>Dugan</surname>
<given-names>AS</given-names>
</name>
<name>
<surname>Mercurio</surname>
<given-names>AM</given-names>
</name>
</person-group>
.
<article-title>Functional analysis of the contribution of RhoA and RhoC GTPases to invasive breast carcinoma</article-title>
.
<source>Cancer Res.</source>
(
<year>2004</year>
)
<volume>64</volume>
:
<fpage>8694</fpage>
<lpage>701</lpage>
.
<pub-id pub-id-type="doi">10.1158/0008-5472.CAN-04-2247</pub-id>
<pub-id pub-id-type="pmid">15574779</pub-id>
</mixed-citation>
</ref>
<ref id="B167">
<label>167.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Arpaia</surname>
<given-names>E</given-names>
</name>
<name>
<surname>Blaser</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Quintela-Fandino</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Duncan</surname>
<given-names>G</given-names>
</name>
<name>
<surname>Leong</surname>
<given-names>HS</given-names>
</name>
<name>
<surname>Ablack</surname>
<given-names>A</given-names>
</name>
<etal></etal>
</person-group>
.
<article-title>The interaction between caveolin-1 and Rho-GTPases promotes metastasis by controlling the expression of alpha5-integrin and the activation of Src, Ras and Erk</article-title>
.
<source>Oncogene.</source>
(
<year>2012</year>
)
<volume>31</volume>
:
<fpage>884</fpage>
<lpage>96</lpage>
.
<pub-id pub-id-type="doi">10.1038/onc.2011.288</pub-id>
<pub-id pub-id-type="pmid">21765460</pub-id>
</mixed-citation>
</ref>
<ref id="B168">
<label>168.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Luo</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Zhao</surname>
<given-names>X</given-names>
</name>
<name>
<surname>Chen</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Liu</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Wicha</surname>
<given-names>MS</given-names>
</name>
<name>
<surname>Guan</surname>
<given-names>JL</given-names>
</name>
</person-group>
.
<article-title>Distinct FAK activities determine progenitor and mammary stem cell characteristics</article-title>
.
<source>Cancer Res.</source>
(
<year>2013</year>
)
<volume>73</volume>
:
<fpage>5591</fpage>
<lpage>602</lpage>
.
<pub-id pub-id-type="doi">10.1158/0008-5472.CAN-13-1351</pub-id>
<pub-id pub-id-type="pmid">23832665</pub-id>
</mixed-citation>
</ref>
<ref id="B169">
<label>169.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Luo</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Fan</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Nagy</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Wei</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Wang</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Liu</surname>
<given-names>S</given-names>
</name>
<etal></etal>
</person-group>
.
<article-title>Mammary epithelial-specific ablation of the focal adhesion kinase suppresses mammary tumorigenesis by affecting mammary cancer stem/progenitor cells</article-title>
.
<source>Cancer Res.</source>
(
<year>2009</year>
)
<volume>69</volume>
:
<fpage>466</fpage>
<lpage>74</lpage>
.
<pub-id pub-id-type="doi">10.1158/0008-5472.CAN-08-3078</pub-id>
<pub-id pub-id-type="pmid">19147559</pub-id>
</mixed-citation>
</ref>
<ref id="B170">
<label>170.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Thiagarajan</surname>
<given-names>PS</given-names>
</name>
<name>
<surname>Sinyuk</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Turaga</surname>
<given-names>SM</given-names>
</name>
<name>
<surname>Mulkearns-Hubert</surname>
<given-names>EE</given-names>
</name>
<name>
<surname>Hale</surname>
<given-names>JS</given-names>
</name>
<name>
<surname>Rao</surname>
<given-names>V</given-names>
</name>
<etal></etal>
</person-group>
.
<article-title>Cx26 drives self-renewal in triple-negative breast cancer via interaction with NANOG and focal adhesion kinase</article-title>
.
<source>Nat Commun.</source>
(
<year>2018</year>
)
<volume>9</volume>
:
<fpage>578</fpage>
.
<pub-id pub-id-type="doi">10.1038/s41467-018-02938-1</pub-id>
<pub-id pub-id-type="pmid">29422613</pub-id>
</mixed-citation>
</ref>
<ref id="B171">
<label>171.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Nguyen</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Yan</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Yuan</surname>
<given-names>B</given-names>
</name>
<name>
<surname>Dasgupta</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Sun</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Mu</surname>
<given-names>H</given-names>
</name>
<etal></etal>
</person-group>
.
<article-title>ST8SIA1 regulates tumor growth and metastasis in TNBC by activating the FAK-AKT-mTOR signaling pathway</article-title>
.
<source>Mol Cancer Ther.</source>
(
<year>2018</year>
)
<volume>17</volume>
:
<fpage>2689</fpage>
<lpage>701</lpage>
.
<pub-id pub-id-type="doi">10.1158/1535-7163.MCT-18-0399</pub-id>
<pub-id pub-id-type="pmid">30237308</pub-id>
</mixed-citation>
</ref>
<ref id="B172">
<label>172.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Kolev</surname>
<given-names>VN</given-names>
</name>
<name>
<surname>Tam</surname>
<given-names>WF</given-names>
</name>
<name>
<surname>Wright</surname>
<given-names>QG</given-names>
</name>
<name>
<surname>McDermott</surname>
<given-names>SP</given-names>
</name>
<name>
<surname>Vidal</surname>
<given-names>CM</given-names>
</name>
<name>
<surname>Shapiro</surname>
<given-names>IM</given-names>
</name>
<etal></etal>
</person-group>
.
<article-title>Inhibition of FAK kinase activity preferentially targets cancer stem cells</article-title>
.
<source>Oncotarget.</source>
(
<year>2017</year>
)
<volume>8</volume>
:
<fpage>51733</fpage>
<lpage>47</lpage>
.
<pub-id pub-id-type="doi">10.18632/oncotarget.18517</pub-id>
<pub-id pub-id-type="pmid">28881682</pub-id>
</mixed-citation>
</ref>
<ref id="B173">
<label>173.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Goel</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Wang</surname>
<given-names>Q</given-names>
</name>
<name>
<surname>Watt</surname>
<given-names>AC</given-names>
</name>
<name>
<surname>Tolaney</surname>
<given-names>SM</given-names>
</name>
<name>
<surname>Dillon</surname>
<given-names>DA</given-names>
</name>
<name>
<surname>Li</surname>
<given-names>W</given-names>
</name>
<etal></etal>
</person-group>
.
<article-title>Overcoming therapeutic resistance in HER2-positive breast cancers with CDK4/6 inhibitors</article-title>
.
<source>Cancer Cell.</source>
(
<year>2016</year>
)
<volume>29</volume>
:
<fpage>255</fpage>
<lpage>69</lpage>
.
<pub-id pub-id-type="doi">10.1016/j.ccell.2016.02.006</pub-id>
<pub-id pub-id-type="pmid">26977878</pub-id>
</mixed-citation>
</ref>
<ref id="B174">
<label>174.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Garrido-Castro</surname>
<given-names>AC</given-names>
</name>
<name>
<surname>Goel</surname>
<given-names>S</given-names>
</name>
</person-group>
.
<article-title>CDK4/6 inhibition in breast cancer: mechanisms of response and treatment failure</article-title>
.
<source>Curr Breast Cancer Rep.</source>
(
<year>2017</year>
)
<volume>9</volume>
:
<fpage>26</fpage>
<lpage>33</lpage>
.
<pub-id pub-id-type="doi">10.1007/s12609-017-0232-0</pub-id>
<pub-id pub-id-type="pmid">28479958</pub-id>
</mixed-citation>
</ref>
<ref id="B175">
<label>175.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Goel</surname>
<given-names>S</given-names>
</name>
<name>
<surname>DeCristo</surname>
<given-names>MJ</given-names>
</name>
<name>
<surname>Watt</surname>
<given-names>AC</given-names>
</name>
<name>
<surname>BrinJones</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Sceneay</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Li</surname>
<given-names>BB</given-names>
</name>
<etal></etal>
</person-group>
.
<article-title>CDK4/6 inhibition triggers anti-tumour immunity</article-title>
.
<source>Nature.</source>
(
<year>2017</year>
)
<volume>548</volume>
:
<fpage>471</fpage>
<lpage>5</lpage>
.
<pub-id pub-id-type="doi">10.1038/nature23465</pub-id>
<pub-id pub-id-type="pmid">28813415</pub-id>
</mixed-citation>
</ref>
<ref id="B176">
<label>176.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Dutertre</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Descamps</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Prigent</surname>
<given-names>C</given-names>
</name>
</person-group>
.
<article-title>On the role of aurora-A in centrosome function</article-title>
.
<source>Oncogene.</source>
(
<year>2002</year>
)
<volume>21</volume>
:
<fpage>6175</fpage>
<lpage>83</lpage>
.
<pub-id pub-id-type="doi">10.1038/sj.onc.1205775</pub-id>
<pub-id pub-id-type="pmid">12214247</pub-id>
</mixed-citation>
</ref>
<ref id="B177">
<label>177.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Joukov</surname>
<given-names>V</given-names>
</name>
<name>
<surname>De Nicolo</surname>
<given-names>A</given-names>
</name>
</person-group>
.
<article-title>Aurora-PLK1 cascades as key signaling modules in the regulation of mitosis</article-title>
.
<source>Sci Signal.</source>
(
<year>2018</year>
)
<volume>11</volume>
:
<fpage>eaar4195</fpage>
.
<pub-id pub-id-type="doi">10.1126/scisignal.aar4195</pub-id>
<pub-id pub-id-type="pmid">30108183</pub-id>
</mixed-citation>
</ref>
<ref id="B178">
<label>178.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Li</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Gao</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Chu</surname>
<given-names>L</given-names>
</name>
<name>
<surname>Zheng</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Yang</surname>
<given-names>J</given-names>
</name>
</person-group>
.
<article-title>The role of Aurora-A in cancer stem cells</article-title>
.
<source>Int J Biochem Cell Biol.</source>
(
<year>2018</year>
)
<volume>98</volume>
:
<fpage>89</fpage>
<lpage>92</lpage>
.
<pub-id pub-id-type="doi">10.1016/j.biocel.2018.03.007</pub-id>
<pub-id pub-id-type="pmid">29544896</pub-id>
</mixed-citation>
</ref>
<ref id="B179">
<label>179.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Zheng</surname>
<given-names>F</given-names>
</name>
<name>
<surname>Yue</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Li</surname>
<given-names>G</given-names>
</name>
<name>
<surname>He</surname>
<given-names>B</given-names>
</name>
<name>
<surname>Cheng</surname>
<given-names>W</given-names>
</name>
<name>
<surname>Wang</surname>
<given-names>X</given-names>
</name>
<etal></etal>
</person-group>
.
<article-title>Nuclear AURKA acquires kinase-independent transactivating function to enhance breast cancer stem cell phenotype</article-title>
.
<source>Nat Commun.</source>
(
<year>2016</year>
)
<volume>7</volume>
:
<fpage>10180</fpage>
.
<pub-id pub-id-type="doi">10.1038/ncomms10180</pub-id>
<pub-id pub-id-type="pmid">26782714</pub-id>
</mixed-citation>
</ref>
<ref id="B180">
<label>180.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Opyrchal</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Gil</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Salisbury</surname>
<given-names>JL</given-names>
</name>
<name>
<surname>Goetz</surname>
<given-names>MP</given-names>
</name>
<name>
<surname>Suman</surname>
<given-names>V</given-names>
</name>
<name>
<surname>Degnim</surname>
<given-names>A</given-names>
</name>
<etal></etal>
</person-group>
.
<article-title>Molecular targeting of the Aurora-A/SMAD5 oncogenic axis restores chemosensitivity in human breast cancer cells</article-title>
.
<source>Oncotarget.</source>
(
<year>2017</year>
)
<volume>8</volume>
:
<fpage>91803</fpage>
<lpage>16</lpage>
.
<pub-id pub-id-type="doi">10.18632/oncotarget.20610</pub-id>
<pub-id pub-id-type="pmid">29207686</pub-id>
</mixed-citation>
</ref>
<ref id="B181">
<label>181.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Staudt</surname>
<given-names>LM</given-names>
</name>
</person-group>
.
<article-title>Oncogenic activation of NF-kappaB</article-title>
.
<source>Cold Spring Harb Perspect Biol.</source>
(
<year>2010</year>
)
<volume>2</volume>
:
<fpage>a000109</fpage>
.
<pub-id pub-id-type="doi">10.1101/cshperspect.a000109</pub-id>
<pub-id pub-id-type="pmid">20516126</pub-id>
</mixed-citation>
</ref>
<ref id="B182">
<label>182.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Vazquez-Santillan</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Melendez-Zajgla</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Jimenez-Hernandez</surname>
<given-names>LE</given-names>
</name>
<name>
<surname>Gaytan-Cervantes</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Munoz-Galindo</surname>
<given-names>L</given-names>
</name>
<name>
<surname>Pina-Sanchez</surname>
<given-names>P</given-names>
</name>
<etal></etal>
</person-group>
.
<article-title>NF-kappaBeta-inducing kinase regulates stem cell phenotype in breast cancer</article-title>
.
<source>Sci Rep.</source>
(
<year>2016</year>
)
<volume>6</volume>
:
<fpage>37340</fpage>
.
<pub-id pub-id-type="doi">10.1038/srep37340</pub-id>
<pub-id pub-id-type="pmid">27876836</pub-id>
</mixed-citation>
</ref>
<ref id="B183">
<label>183.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Ling</surname>
<given-names>L</given-names>
</name>
<name>
<surname>Cao</surname>
<given-names>Z</given-names>
</name>
<name>
<surname>Goeddel</surname>
<given-names>DV</given-names>
</name>
</person-group>
.
<article-title>NF-kappaB-inducing kinase activates IKK-alpha by phosphorylation of Ser-176</article-title>
.
<source>Proc Natl Acad Sci USA.</source>
(
<year>1998</year>
)
<volume>95</volume>
:
<fpage>3792</fpage>
<lpage>7</lpage>
.
<pub-id pub-id-type="doi">10.1073/pnas.95.7.3792</pub-id>
<pub-id pub-id-type="pmid">9520446</pub-id>
</mixed-citation>
</ref>
<ref id="B184">
<label>184.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Thu</surname>
<given-names>YM</given-names>
</name>
<name>
<surname>Richmond</surname>
<given-names>A</given-names>
</name>
</person-group>
.
<article-title>NF-kappaB inducing kinase: a key regulator in the immune system and in cancer</article-title>
.
<source>Cytokine Growth Factor Rev.</source>
(
<year>2010</year>
)
<volume>21</volume>
:
<fpage>213</fpage>
<lpage>26</lpage>
.
<pub-id pub-id-type="doi">10.1016/j.cytogfr.2010.06.002</pub-id>
<pub-id pub-id-type="pmid">20685151</pub-id>
</mixed-citation>
</ref>
<ref id="B185">
<label>185.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Cao</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Bonizzi</surname>
<given-names>G</given-names>
</name>
<name>
<surname>Seagroves</surname>
<given-names>TN</given-names>
</name>
<name>
<surname>Greten</surname>
<given-names>FR</given-names>
</name>
<name>
<surname>Johnson</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Schmidt</surname>
<given-names>EV</given-names>
</name>
<etal></etal>
</person-group>
.
<article-title>IKKalpha provides an essential link between RANK signaling and cyclin D1 expression during mammary gland development</article-title>
.
<source>Cell.</source>
(
<year>2001</year>
)
<volume>107</volume>
:
<fpage>763</fpage>
<lpage>75</lpage>
.
<pub-id pub-id-type="doi">10.1016/S0092-8674(01)00599-2</pub-id>
<pub-id pub-id-type="pmid">11747812</pub-id>
</mixed-citation>
</ref>
<ref id="B186">
<label>186.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Yamamoto</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Ito</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Shimizu</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Ishida</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Semba</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Watanabe</surname>
<given-names>S</given-names>
</name>
<etal></etal>
</person-group>
.
<article-title>Epigenetic alteration of the NF-kappaB-inducing kinase (NIK) gene is involved in enhanced NIK expression in basal-like breast cancer</article-title>
.
<source>Cancer Sci.</source>
(
<year>2010</year>
)
<volume>101</volume>
:
<fpage>2391</fpage>
<lpage>7</lpage>
.
<pub-id pub-id-type="doi">10.1111/j.1349-7006.2010.01685.x</pub-id>
<pub-id pub-id-type="pmid">20735436</pub-id>
</mixed-citation>
</ref>
<ref id="B187">
<label>187.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Yang</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Atkinson</surname>
<given-names>SP</given-names>
</name>
<name>
<surname>Vilella</surname>
<given-names>F</given-names>
</name>
<name>
<surname>Lloret</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Armstrong</surname>
<given-names>L</given-names>
</name>
<name>
<surname>Mann</surname>
<given-names>DA</given-names>
</name>
<etal></etal>
</person-group>
.
<article-title>Opposing putative roles for canonical and noncanonical NFkappaB signaling on the survival, proliferation, and differentiation potential of human embryonic stem cells</article-title>
.
<source>Stem Cells.</source>
(
<year>2010</year>
)
<volume>28</volume>
:
<fpage>1970</fpage>
<lpage>80</lpage>
.
<pub-id pub-id-type="doi">10.1002/stem.528</pub-id>
<pub-id pub-id-type="pmid">20882529</pub-id>
</mixed-citation>
</ref>
<ref id="B188">
<label>188.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Yamamoto</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Taguchi</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Ito-Kureha</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Semba</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Yamaguchi</surname>
<given-names>N</given-names>
</name>
<name>
<surname>Inoue</surname>
<given-names>J</given-names>
</name>
</person-group>
.
<article-title>NF-kappaB non-cell-autonomously regulates cancer stem cell populations in the basal-like breast cancer subtype</article-title>
.
<source>Nat Commun.</source>
(
<year>2013</year>
)
<volume>4</volume>
:
<fpage>2299</fpage>
.
<pub-id pub-id-type="doi">10.1038/ncomms3299</pub-id>
<pub-id pub-id-type="pmid">23934482</pub-id>
</mixed-citation>
</ref>
<ref id="B189">
<label>189.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Zhang</surname>
<given-names>W</given-names>
</name>
<name>
<surname>Tan</surname>
<given-names>W</given-names>
</name>
<name>
<surname>Wu</surname>
<given-names>X</given-names>
</name>
<name>
<surname>Poustovoitov</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Strasner</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Li</surname>
<given-names>W</given-names>
</name>
<etal></etal>
</person-group>
.
<article-title>A NIK-IKKalpha module expands ErbB2-induced tumor-initiating cells by stimulating nuclear export of p27/Kip1</article-title>
.
<source>Cancer Cell.</source>
(
<year>2013</year>
)
<volume>23</volume>
:
<fpage>647</fpage>
<lpage>59</lpage>
.
<pub-id pub-id-type="doi">10.1016/j.ccr.2013.03.012</pub-id>
<pub-id pub-id-type="pmid">23602409</pub-id>
</mixed-citation>
</ref>
<ref id="B190">
<label>190.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Burrell</surname>
<given-names>RA</given-names>
</name>
<name>
<surname>McGranahan</surname>
<given-names>N</given-names>
</name>
<name>
<surname>Bartek</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Swanton</surname>
<given-names>C</given-names>
</name>
</person-group>
.
<article-title>The causes and consequences of genetic heterogeneity in cancer evolution</article-title>
.
<source>Nature.</source>
(
<year>2013</year>
)
<volume>501</volume>
:
<fpage>338</fpage>
<lpage>45</lpage>
.
<pub-id pub-id-type="doi">10.1038/nature12625</pub-id>
<pub-id pub-id-type="pmid">24048066</pub-id>
</mixed-citation>
</ref>
<ref id="B191">
<label>191.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Zare</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Bastami</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Solali</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Alivand</surname>
<given-names>MR</given-names>
</name>
</person-group>
.
<article-title>Aberrant miRNA promoter methylation and EMT-involving miRNAs in breast cancer metastasis: diagnosis and therapeutic implications</article-title>
.
<source>J Cell Physiol.</source>
(
<year>2017</year>
)
<volume>233</volume>
:
<fpage>3729</fpage>
<lpage>44</lpage>
.
<pub-id pub-id-type="doi">10.1002/jcp.26116</pub-id>
<pub-id pub-id-type="pmid">28771724</pub-id>
</mixed-citation>
</ref>
<ref id="B192">
<label>192.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Chaffer</surname>
<given-names>CL</given-names>
</name>
<name>
<surname>Marjanovic</surname>
<given-names>ND</given-names>
</name>
<name>
<surname>Lee</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Bell</surname>
<given-names>G</given-names>
</name>
<name>
<surname>Kleer</surname>
<given-names>CG</given-names>
</name>
<name>
<surname>Reinhardt</surname>
<given-names>F</given-names>
</name>
<etal></etal>
</person-group>
.
<article-title>Poised chromatin at the ZEB1 promoter enables breast cancer cell plasticity and enhances tumorigenicity</article-title>
.
<source>Cell.</source>
(
<year>2013</year>
)
<volume>154</volume>
:
<fpage>61</fpage>
<lpage>74</lpage>
.
<pub-id pub-id-type="doi">10.1016/j.cell.2013.06.005</pub-id>
<pub-id pub-id-type="pmid">23827675</pub-id>
</mixed-citation>
</ref>
<ref id="B193">
<label>193.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Witt</surname>
<given-names>AE</given-names>
</name>
<name>
<surname>Lee</surname>
<given-names>CW</given-names>
</name>
<name>
<surname>Lee</surname>
<given-names>TI</given-names>
</name>
<name>
<surname>Azzam</surname>
<given-names>DJ</given-names>
</name>
<name>
<surname>Wang</surname>
<given-names>B</given-names>
</name>
<name>
<surname>Caslini</surname>
<given-names>C</given-names>
</name>
<etal></etal>
</person-group>
.
<article-title>Identification of a cancer stem cell-specific function for the histone deacetylases, HDAC1 and HDAC7, in breast and ovarian cancer</article-title>
.
<source>Oncogene.</source>
(
<year>2017</year>
)
<volume>36</volume>
:
<fpage>1707</fpage>
<lpage>20</lpage>
.
<pub-id pub-id-type="doi">10.1038/onc.2016.337</pub-id>
<pub-id pub-id-type="pmid">27694895</pub-id>
</mixed-citation>
</ref>
<ref id="B194">
<label>194.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Rodriguez Bautista</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Ortega Gomez</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Hidalgo Miranda</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Zentella Dehesa</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Villarreal-Garza</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Avila-Moreno</surname>
<given-names>F</given-names>
</name>
<etal></etal>
</person-group>
.
<article-title>Long non-coding RNAs: implications in targeted diagnoses, prognosis, and improved therapeutic strategies in human non- and triple-negative breast cancer</article-title>
.
<source>Clin Epigenet.</source>
(
<year>2018</year>
)
<volume>10</volume>
:
<fpage>88</fpage>
.
<pub-id pub-id-type="doi">10.1186/s13148-018-0537-5</pub-id>
<pub-id pub-id-type="pmid">29983835</pub-id>
</mixed-citation>
</ref>
<ref id="B195">
<label>195.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>El Helou</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Pinna</surname>
<given-names>G</given-names>
</name>
<name>
<surname>Cabaud</surname>
<given-names>O</given-names>
</name>
<name>
<surname>Wicinski</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Bhajun</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Guyon</surname>
<given-names>L</given-names>
</name>
<etal></etal>
</person-group>
.
<article-title>miR-600 acts as a bimodal switch that regulates breast cancer stem cell fate through WNT signaling</article-title>
.
<source>Cell Rep.</source>
(
<year>2017</year>
)
<volume>18</volume>
:
<fpage>2256</fpage>
<lpage>68</lpage>
.
<pub-id pub-id-type="doi">10.1016/j.celrep.2017.02.016</pub-id>
<pub-id pub-id-type="pmid">28249169</pub-id>
</mixed-citation>
</ref>
<ref id="B196">
<label>196.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Celia-Terrassa</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Liu</surname>
<given-names>DD</given-names>
</name>
<name>
<surname>Choudhury</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Hang</surname>
<given-names>X</given-names>
</name>
<name>
<surname>Wei</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Zamalloa</surname>
<given-names>J</given-names>
</name>
<etal></etal>
</person-group>
.
<article-title>Normal and cancerous mammary stem cells evade interferon-induced constraint through the miR-199a-LCOR axis</article-title>
.
<source>Nat Cell Biol.</source>
(
<year>2017</year>
)
<volume>19</volume>
:
<fpage>711</fpage>
<lpage>23</lpage>
.
<pub-id pub-id-type="doi">10.1038/ncb3533</pub-id>
<pub-id pub-id-type="pmid">28530657</pub-id>
</mixed-citation>
</ref>
<ref id="B197">
<label>197.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Deng</surname>
<given-names>L</given-names>
</name>
<name>
<surname>Shang</surname>
<given-names>L</given-names>
</name>
<name>
<surname>Bai</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Chen</surname>
<given-names>J</given-names>
</name>
<name>
<surname>He</surname>
<given-names>X</given-names>
</name>
<name>
<surname>Martin-Trevino</surname>
<given-names>R</given-names>
</name>
<etal></etal>
</person-group>
.
<article-title>MicroRNA100 inhibits self-renewal of breast cancer stem-like cells and breast tumor development</article-title>
.
<source>Cancer Res.</source>
(
<year>2014</year>
)
<volume>74</volume>
:
<fpage>6648</fpage>
<lpage>60</lpage>
.
<pub-id pub-id-type="doi">10.1158/0008-5472.CAN-13-3710</pub-id>
<pub-id pub-id-type="pmid">25217527</pub-id>
</mixed-citation>
</ref>
<ref id="B198">
<label>198.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Peng</surname>
<given-names>F</given-names>
</name>
<name>
<surname>Li</surname>
<given-names>TT</given-names>
</name>
<name>
<surname>Wang</surname>
<given-names>KL</given-names>
</name>
<name>
<surname>Xiao</surname>
<given-names>GQ</given-names>
</name>
<name>
<surname>Wang</surname>
<given-names>JH</given-names>
</name>
<name>
<surname>Zhao</surname>
<given-names>HD</given-names>
</name>
<etal></etal>
</person-group>
.
<article-title>H19/let-7/LIN28 reciprocal negative regulatory circuit promotes breast cancer stem cell maintenance</article-title>
.
<source>Cell Death Dis.</source>
(
<year>2017</year>
)
<volume>8</volume>
:
<fpage>e2569</fpage>
.
<pub-id pub-id-type="doi">10.1038/cddis.2016.438</pub-id>
<pub-id pub-id-type="pmid">28102845</pub-id>
</mixed-citation>
</ref>
<ref id="B199">
<label>199.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Peng</surname>
<given-names>F</given-names>
</name>
<name>
<surname>Wang</surname>
<given-names>JH</given-names>
</name>
<name>
<surname>Fan</surname>
<given-names>WJ</given-names>
</name>
<name>
<surname>Meng</surname>
<given-names>YT</given-names>
</name>
<name>
<surname>Li</surname>
<given-names>MM</given-names>
</name>
<name>
<surname>Li</surname>
<given-names>TT</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Glycolysis gatekeeper PDK1 reprograms breast cancer stem cells under hypoxia</article-title>
.
<source>Oncogene.</source>
(
<year>2017</year>
)
<volume>37</volume>
:
<fpage>1062</fpage>
<lpage>74</lpage>
.
<pub-id pub-id-type="doi">10.1038/onc.2017.407</pub-id>
<pub-id pub-id-type="pmid">29106390</pub-id>
</mixed-citation>
</ref>
<ref id="B200">
<label>200.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Deng</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Yang</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Jiang</surname>
<given-names>R</given-names>
</name>
<name>
<surname>An</surname>
<given-names>N</given-names>
</name>
<name>
<surname>Wang</surname>
<given-names>X</given-names>
</name>
<name>
<surname>Liu</surname>
<given-names>B</given-names>
</name>
</person-group>
.
<article-title>Long Non-coding RNA HOTAIR regulates the proliferation, self-renewal capacity, tumor formation and migration of the Cancer Stem-Like Cell (CSC) subpopulation enriched from breast cancer cells</article-title>
.
<source>PLoS ONE.</source>
(
<year>2017</year>
)
<volume>12</volume>
:
<fpage>e0170860</fpage>
.
<pub-id pub-id-type="doi">10.1371/journal.pone.0170860</pub-id>
<pub-id pub-id-type="pmid">28122024</pub-id>
</mixed-citation>
</ref>
<ref id="B201">
<label>201.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Zeng</surname>
<given-names>L</given-names>
</name>
<name>
<surname>Cen</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Chen</surname>
<given-names>J</given-names>
</name>
</person-group>
.
<article-title>Long non-coding RNA MALAT-1 contributes to maintenance of stem cell-like phenotypes in breast cancer cells</article-title>
.
<source>Oncol Lett.</source>
(
<year>2018</year>
)
<volume>15</volume>
:
<fpage>2117</fpage>
<lpage>22</lpage>
.
<pub-id pub-id-type="doi">10.3892/ol.2017.7557</pub-id>
<pub-id pub-id-type="pmid">29434914</pub-id>
</mixed-citation>
</ref>
<ref id="B202">
<label>202.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Vidovic</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Huynh</surname>
<given-names>TT</given-names>
</name>
<name>
<surname>Konda</surname>
<given-names>P</given-names>
</name>
<name>
<surname>Dean</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Cruickshank</surname>
<given-names>BM</given-names>
</name>
<name>
<surname>Sultan</surname>
<given-names>M</given-names>
</name>
<etal></etal>
</person-group>
.
<article-title>ALDH1A3-regulated long non-coding RNA NRAD1 is a potential novel target for triple-negative breast tumors and cancer stem cells</article-title>
.
<source>Cell Death Differ.</source>
(
<year>2019</year>
). [Epub ahead of print].
<pub-id pub-id-type="doi">10.1038/s41418-019-0362-1</pub-id>
<pub-id pub-id-type="pmid">31197235</pub-id>
</mixed-citation>
</ref>
<ref id="B203">
<label>203.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Tu</surname>
<given-names>Z</given-names>
</name>
<name>
<surname>Schmollerl</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Cuiffo</surname>
<given-names>BG</given-names>
</name>
<name>
<surname>Karnoub</surname>
<given-names>AE</given-names>
</name>
</person-group>
<article-title>Microenvironmental regulation of long non-coding RNA LINC01133 promotes cancer-stem-cell-like phenotypic traits in triple-negative breast cancers</article-title>
.
<source>Stem Cells.</source>
(
<year>2019</year>
).
<pub-id pub-id-type="doi">10.1002/stem.3055</pub-id>
. [Epub ahead of print].</mixed-citation>
</ref>
<ref id="B204">
<label>204.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Zhang</surname>
<given-names>Z</given-names>
</name>
<name>
<surname>Sun</surname>
<given-names>L</given-names>
</name>
<name>
<surname>Zhang</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Lu</surname>
<given-names>G</given-names>
</name>
<name>
<surname>Li</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Wei</surname>
<given-names>Z</given-names>
</name>
</person-group>
.
<article-title>Long non-coding RNA FEZF1-AS1 promotes breast cancer stemness and tumorigenesis via targeting miR-30a/Nanog axis</article-title>
.
<source>J Cell Physiol.</source>
(
<year>2018</year>
)
<volume>233</volume>
:
<fpage>8630</fpage>
<lpage>8</lpage>
.
<pub-id pub-id-type="doi">10.1002/jcp.26611</pub-id>
<pub-id pub-id-type="pmid">29797562</pub-id>
</mixed-citation>
</ref>
<ref id="B205">
<label>205.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>De Francesco</surname>
<given-names>EM</given-names>
</name>
<name>
<surname>Sotgia</surname>
<given-names>F</given-names>
</name>
<name>
<surname>Lisanti</surname>
<given-names>MP</given-names>
</name>
</person-group>
.
<article-title>Cancer stem cells (CSCs): metabolic strategies for their identification and eradication</article-title>
.
<source>Biochem J.</source>
(
<year>2018</year>
)
<volume>475</volume>
:
<fpage>1611</fpage>
<lpage>34</lpage>
.
<pub-id pub-id-type="doi">10.1042/BCJ20170164</pub-id>
<pub-id pub-id-type="pmid">29743249</pub-id>
</mixed-citation>
</ref>
<ref id="B206">
<label>206.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Sotgia</surname>
<given-names>F</given-names>
</name>
<name>
<surname>Fiorillo</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Lisanti</surname>
<given-names>MP</given-names>
</name>
</person-group>
.
<article-title>Hallmarks of the cancer cell of origin: comparisons with “energetic” cancer stem cells (e-CSCs)</article-title>
.
<source>Aging.</source>
(
<year>2019</year>
)
<volume>11</volume>
:
<fpage>1065</fpage>
<lpage>8</lpage>
.
<pub-id pub-id-type="doi">10.18632/aging.101822</pub-id>
<pub-id pub-id-type="pmid">30760648</pub-id>
</mixed-citation>
</ref>
<ref id="B207">
<label>207.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Molina</surname>
<given-names>JR</given-names>
</name>
<name>
<surname>Sun</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Protopopova</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Gera</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Bandi</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Bristow</surname>
<given-names>C</given-names>
</name>
<etal></etal>
</person-group>
.
<article-title>An inhibitor of oxidative phosphorylation exploits cancer vulnerability</article-title>
.
<source>Nat Med.</source>
(
<year>2018</year>
)
<volume>24</volume>
:
<fpage>1036</fpage>
<lpage>46</lpage>
.
<pub-id pub-id-type="doi">10.1038/s41591-018-0052-4</pub-id>
<pub-id pub-id-type="pmid">29892070</pub-id>
</mixed-citation>
</ref>
<ref id="B208">
<label>208.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Wu</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Harder</surname>
<given-names>BG</given-names>
</name>
<name>
<surname>Wong</surname>
<given-names>PK</given-names>
</name>
<name>
<surname>Lang</surname>
<given-names>JE</given-names>
</name>
<name>
<surname>Zhang</surname>
<given-names>DD</given-names>
</name>
</person-group>
.
<article-title>Oxidative stress, mammospheres and Nrf2 – new implication for breast cancer therapy?</article-title>
<source>Mol Carcinogenesis.</source>
(
<year>2015</year>
)
<volume>54</volume>
:
<fpage>1494</fpage>
<lpage>502</lpage>
.
<pub-id pub-id-type="doi">10.1002/mc.22202</pub-id>
<pub-id pub-id-type="pmid">25154499</pub-id>
</mixed-citation>
</ref>
<ref id="B209">
<label>209.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Ryoo</surname>
<given-names>I-G</given-names>
</name>
<name>
<surname>Choi</surname>
<given-names>B-H</given-names>
</name>
<name>
<surname>Ku</surname>
<given-names>S-K</given-names>
</name>
<name>
<surname>Kwak</surname>
<given-names>M-K</given-names>
</name>
</person-group>
.
<article-title>High CD44 expression mediates p62-associated NFE2L2/NRF2 activation in breast cancer stem cell-like cells: implications for cancer stem cell resistance</article-title>
.
<source>Redox Biol.</source>
(
<year>2018</year>
)
<volume>17</volume>
:
<fpage>246</fpage>
<lpage>58</lpage>
.
<pub-id pub-id-type="doi">10.1016/j.redox.2018.04.015</pub-id>
<pub-id pub-id-type="pmid">29729523</pub-id>
</mixed-citation>
</ref>
<ref id="B210">
<label>210.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Kim</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Choi</surname>
<given-names>B-H</given-names>
</name>
<name>
<surname>Ryoo</surname>
<given-names>I-G</given-names>
</name>
<name>
<surname>Kwak</surname>
<given-names>M-K</given-names>
</name>
</person-group>
.
<article-title>High NRF2 level mediates cancer stem cell-like properties of aldehyde dehydrogenase (ALDH)-high ovarian cancer cells: inhibitory role of all-trans retinoic acid in ALDH/NRF2 signaling</article-title>
.
<source>Cell Death Dis.</source>
(
<year>2018</year>
)
<volume>9</volume>
:
<fpage>896</fpage>
.
<pub-id pub-id-type="doi">10.1038/s41419-018-0903-4</pub-id>
<pub-id pub-id-type="pmid">30166520</pub-id>
</mixed-citation>
</ref>
<ref id="B211">
<label>211.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Xu</surname>
<given-names>B</given-names>
</name>
<name>
<surname>Wang</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Li</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Chen</surname>
<given-names>K</given-names>
</name>
<name>
<surname>He</surname>
<given-names>L</given-names>
</name>
<name>
<surname>Deng</surname>
<given-names>M</given-names>
</name>
<etal></etal>
</person-group>
.
<article-title>Disulfiram/copper selectively eradicates AML leukemia stem cells
<italic>in vitro</italic>
and
<italic>in vivo</italic>
by simultaneous induction of ROS-JNK and inhibition of NF-κB and Nrf2</article-title>
.
<source>Cell Death Dis.</source>
(
<year>2017</year>
)
<volume>8</volume>
:
<fpage>e2797</fpage>
.
<pub-id pub-id-type="doi">10.1038/cddis.2017.176</pub-id>
<pub-id pub-id-type="pmid">28518151</pub-id>
</mixed-citation>
</ref>
<ref id="B212">
<label>212.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Zhao</surname>
<given-names>W</given-names>
</name>
<name>
<surname>Kruse</surname>
<given-names>JP</given-names>
</name>
<name>
<surname>Tang</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Jung</surname>
<given-names>SY</given-names>
</name>
<name>
<surname>Qin</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Gu</surname>
<given-names>W</given-names>
</name>
</person-group>
.
<article-title>Negative regulation of the deacetylase SIRT1 by DBC1</article-title>
.
<source>Nature.</source>
(
<year>2008</year>
)
<volume>451</volume>
:
<fpage>587</fpage>
<lpage>90</lpage>
.
<pub-id pub-id-type="doi">10.1038/nature06515</pub-id>
<pub-id pub-id-type="pmid">18235502</pub-id>
</mixed-citation>
</ref>
<ref id="B213">
<label>213.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Chu</surname>
<given-names>F</given-names>
</name>
<name>
<surname>Chou</surname>
<given-names>PM</given-names>
</name>
<name>
<surname>Zheng</surname>
<given-names>X</given-names>
</name>
<name>
<surname>Mirkin</surname>
<given-names>BL</given-names>
</name>
<name>
<surname>Rebbaa</surname>
<given-names>A</given-names>
</name>
</person-group>
.
<article-title>Control of multidrug resistance gene mdr1 and cancer resistance to chemotherapy by the longevity gene sirt1</article-title>
.
<source>Cancer Res.</source>
(
<year>2005</year>
)
<volume>65</volume>
:
<fpage>10183</fpage>
<lpage>7</lpage>
.
<pub-id pub-id-type="doi">10.1158/0008-5472.CAN-05-2002</pub-id>
<pub-id pub-id-type="pmid">16288004</pub-id>
</mixed-citation>
</ref>
<ref id="B214">
<label>214.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Choi</surname>
<given-names>HK</given-names>
</name>
<name>
<surname>Cho</surname>
<given-names>KB</given-names>
</name>
<name>
<surname>Phuong</surname>
<given-names>NT</given-names>
</name>
<name>
<surname>Han</surname>
<given-names>CY</given-names>
</name>
<name>
<surname>Han</surname>
<given-names>HK</given-names>
</name>
<name>
<surname>Hien</surname>
<given-names>TT</given-names>
</name>
<etal></etal>
</person-group>
.
<article-title>SIRT1-mediated FoxO1 deacetylation is essential for multidrug resistance-associated protein 2 expression in tamoxifen-resistant breast cancer cells</article-title>
.
<source>Mol Pharm.</source>
(
<year>2013</year>
)
<volume>10</volume>
:
<fpage>2517</fpage>
<lpage>27</lpage>
.
<pub-id pub-id-type="doi">10.1021/mp400287p</pub-id>
<pub-id pub-id-type="pmid">23763570</pub-id>
</mixed-citation>
</ref>
<ref id="B215">
<label>215.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Heo</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Lim</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Lee</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Jeong</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Kang</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Kim</surname>
<given-names>Y</given-names>
</name>
<etal></etal>
</person-group>
.
<article-title>Sirt1 regulates DNA methylation and differentiation potential of embryonic stem cells by antagonizing Dnmt3l</article-title>
.
<source>Cell Rep.</source>
(
<year>2017</year>
)
<volume>18</volume>
:
<fpage>1930</fpage>
<lpage>45</lpage>
.
<pub-id pub-id-type="doi">10.1016/j.celrep.2017.01.074</pub-id>
<pub-id pub-id-type="pmid">28228259</pub-id>
</mixed-citation>
</ref>
<ref id="B216">
<label>216.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Han</surname>
<given-names>MK</given-names>
</name>
<name>
<surname>Song</surname>
<given-names>EK</given-names>
</name>
<name>
<surname>Guo</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Ou</surname>
<given-names>X</given-names>
</name>
<name>
<surname>Mantel</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Broxmeyer</surname>
<given-names>HE</given-names>
</name>
</person-group>
.
<article-title>SIRT1 regulates apoptosis and Nanog expression in mouse embryonic stem cells by controlling p53 subcellular localization</article-title>
.
<source>Cell Stem Cell.</source>
(
<year>2008</year>
)
<volume>2</volume>
:
<fpage>241</fpage>
<lpage>51</lpage>
.
<pub-id pub-id-type="doi">10.1016/j.stem.2008.01.002</pub-id>
<pub-id pub-id-type="pmid">18371449</pub-id>
</mixed-citation>
</ref>
<ref id="B217">
<label>217.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Ma</surname>
<given-names>W</given-names>
</name>
<name>
<surname>Xiao</surname>
<given-names>GG</given-names>
</name>
<name>
<surname>Mao</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Lu</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Song</surname>
<given-names>B</given-names>
</name>
<name>
<surname>Wang</surname>
<given-names>L</given-names>
</name>
<etal></etal>
</person-group>
.
<article-title>Dysregulation of the miR-34a-SIRT1 axis inhibits breast cancer stemness</article-title>
.
<source>Oncotarget.</source>
(
<year>2015</year>
)
<volume>6</volume>
:
<fpage>10432</fpage>
<lpage>44</lpage>
.
<pub-id pub-id-type="doi">10.18632/oncotarget.3394</pub-id>
<pub-id pub-id-type="pmid">25826085</pub-id>
</mixed-citation>
</ref>
<ref id="B218">
<label>218.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Shi</surname>
<given-names>L</given-names>
</name>
<name>
<surname>Tang</surname>
<given-names>X</given-names>
</name>
<name>
<surname>Qian</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Liu</surname>
<given-names>Z</given-names>
</name>
<name>
<surname>Meng</surname>
<given-names>F</given-names>
</name>
<name>
<surname>Fu</surname>
<given-names>L</given-names>
</name>
<etal></etal>
</person-group>
.
<article-title>A SIRT1-centered circuitry regulates breast cancer stemness and metastasis</article-title>
.
<source>Oncogene.</source>
(
<year>2018</year>
)
<volume>37</volume>
:
<fpage>6299</fpage>
<lpage>315</lpage>
.
<pub-id pub-id-type="doi">10.1038/s41388-018-0370-5</pub-id>
<pub-id pub-id-type="pmid">30038266</pub-id>
</mixed-citation>
</ref>
<ref id="B219">
<label>219.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>O'Callaghan</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Vassilopoulos</surname>
<given-names>A</given-names>
</name>
</person-group>
.
<article-title>Sirtuins at the crossroads of stemness, aging, and cancer</article-title>
.
<source>Aging Cell.</source>
(
<year>2017</year>
)
<volume>16</volume>
:
<fpage>1208</fpage>
<lpage>18</lpage>
.
<pub-id pub-id-type="doi">10.1111/acel.12685</pub-id>
<pub-id pub-id-type="pmid">28994177</pub-id>
</mixed-citation>
</ref>
<ref id="B220">
<label>220.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Menssen</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Hydbring</surname>
<given-names>P</given-names>
</name>
<name>
<surname>Kapelle</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Vervoorts</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Diebold</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Luscher</surname>
<given-names>B</given-names>
</name>
<etal></etal>
</person-group>
.
<article-title>The c-MYC oncoprotein, the NAMPT enzyme, the SIRT1-inhibitor DBC1, and the SIRT1 deacetylase form a positive feedback loop</article-title>
.
<source>Proc Natl Acad Sci USA.</source>
(
<year>2012</year>
)
<volume>109</volume>
:
<fpage>E187</fpage>
<lpage>96</lpage>
.
<pub-id pub-id-type="doi">10.1073/pnas.1105304109</pub-id>
<pub-id pub-id-type="pmid">22190494</pub-id>
</mixed-citation>
</ref>
<ref id="B221">
<label>221.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Merino</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Whittle</surname>
<given-names>JR</given-names>
</name>
<name>
<surname>Vaillant</surname>
<given-names>F</given-names>
</name>
<name>
<surname>Serrano</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Gong</surname>
<given-names>JN</given-names>
</name>
<name>
<surname>Giner</surname>
<given-names>G</given-names>
</name>
<etal></etal>
</person-group>
.
<article-title>Synergistic action of the MCL-1 inhibitor S63845 with current therapies in preclinical models of triple-negative and HER2-amplified breast cancer</article-title>
.
<source>Sci Transl Med.</source>
(
<year>2017</year>
)
<volume>9</volume>
:
<fpage>eaam7049</fpage>
.
<pub-id pub-id-type="doi">10.1126/scitranslmed.aam7049</pub-id>
<pub-id pub-id-type="pmid">28768804</pub-id>
</mixed-citation>
</ref>
<ref id="B222">
<label>222.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Jang</surname>
<given-names>GB</given-names>
</name>
<name>
<surname>Kim</surname>
<given-names>JY</given-names>
</name>
<name>
<surname>Cho</surname>
<given-names>SD</given-names>
</name>
<name>
<surname>Park</surname>
<given-names>KS</given-names>
</name>
<name>
<surname>Jung</surname>
<given-names>JY</given-names>
</name>
<name>
<surname>Lee</surname>
<given-names>HY</given-names>
</name>
<etal></etal>
</person-group>
.
<article-title>Blockade of Wnt/beta-catenin signaling suppresses breast cancer metastasis by inhibiting CSC-like phenotype</article-title>
.
<source>Sci Rep.</source>
(
<year>2015</year>
)
<volume>5</volume>
:
<fpage>12465</fpage>
.
<pub-id pub-id-type="doi">10.1038/srep12465</pub-id>
<pub-id pub-id-type="pmid">26202299</pub-id>
</mixed-citation>
</ref>
<ref id="B223">
<label>223.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Ferrer</surname>
<given-names>I</given-names>
</name>
<name>
<surname>Verdugo-Sivianes</surname>
<given-names>EM</given-names>
</name>
<name>
<surname>Castilla</surname>
<given-names>MA</given-names>
</name>
<name>
<surname>Melendez</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Marin</surname>
<given-names>JJ</given-names>
</name>
<name>
<surname>Munoz-Galvan</surname>
<given-names>S</given-names>
</name>
<etal></etal>
</person-group>
.
<article-title>Loss of the tumor suppressor spinophilin (PPP1R9B) increases the cancer stem cell population in breast tumors</article-title>
.
<source>Oncogene.</source>
(
<year>2016</year>
)
<volume>35</volume>
:
<fpage>2777</fpage>
<lpage>88</lpage>
.
<pub-id pub-id-type="doi">10.1038/onc.2015.341</pub-id>
<pub-id pub-id-type="pmid">26387546</pub-id>
</mixed-citation>
</ref>
<ref id="B224">
<label>224.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Sengupta</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Nagalingam</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Muniraj</surname>
<given-names>N</given-names>
</name>
<name>
<surname>Bonner</surname>
<given-names>MY</given-names>
</name>
<name>
<surname>Mistriotis</surname>
<given-names>P</given-names>
</name>
<name>
<surname>Afthinos</surname>
<given-names>A</given-names>
</name>
<etal></etal>
</person-group>
.
<article-title>Activation of tumor suppressor LKB1 by honokiol abrogates cancer stem-like phenotype in breast cancer via inhibition of oncogenic Stat3</article-title>
.
<source>Oncogene.</source>
(
<year>2017</year>
)
<volume>36</volume>
:
<fpage>5709</fpage>
<lpage>21</lpage>
.
<pub-id pub-id-type="doi">10.1038/onc.2017.164</pub-id>
<pub-id pub-id-type="pmid">28581518</pub-id>
</mixed-citation>
</ref>
<ref id="B225">
<label>225.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Wang</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Xu</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Liu</surname>
<given-names>B</given-names>
</name>
<name>
<surname>He</surname>
<given-names>X</given-names>
</name>
<name>
<surname>Zhou</surname>
<given-names>L</given-names>
</name>
<name>
<surname>Hu</surname>
<given-names>X</given-names>
</name>
<etal></etal>
</person-group>
.
<article-title>IL6 blockade potentiates the anti-tumor effects of gamma-secretase inhibitors in Notch3-expressing breast cancer</article-title>
.
<source>Cell Death Differ.</source>
(
<year>2018</year>
)
<volume>25</volume>
:
<fpage>330</fpage>
<lpage>9</lpage>
.
<pub-id pub-id-type="doi">10.1038/cdd.2017.162</pub-id>
<pub-id pub-id-type="pmid">29027990</pub-id>
</mixed-citation>
</ref>
<ref id="B226">
<label>226.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Janghorban</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Xin</surname>
<given-names>L</given-names>
</name>
<name>
<surname>Rosen</surname>
<given-names>JM</given-names>
</name>
<name>
<surname>Zhang</surname>
<given-names>XH</given-names>
</name>
</person-group>
<article-title>Notch signaling as a regulator of the tumor immune response: to target or not to target?</article-title>
<source>Front Immunol.</source>
(
<year>2018</year>
)
<volume>9</volume>
:
<fpage>1649</fpage>
<pub-id pub-id-type="doi">10.3389/fimmu.2018.01649</pub-id>
<pub-id pub-id-type="pmid">30061899</pub-id>
</mixed-citation>
</ref>
<ref id="B227">
<label>227.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Tominaga</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Shimamura</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Kimura</surname>
<given-names>N</given-names>
</name>
<name>
<surname>Murayama</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Matsubara</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Kanauchi</surname>
<given-names>H</given-names>
</name>
<etal></etal>
</person-group>
.
<article-title>Addiction to the IGF2-ID1-IGF2 circuit for maintenance of the breast cancer stem-like cells</article-title>
.
<source>Oncogene.</source>
(
<year>2017</year>
)
<volume>36</volume>
:
<fpage>1276</fpage>
<lpage>86</lpage>
.
<pub-id pub-id-type="doi">10.1038/onc.2016.293</pub-id>
<pub-id pub-id-type="pmid">27546618</pub-id>
</mixed-citation>
</ref>
<ref id="B228">
<label>228.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Gupta</surname>
<given-names>PB</given-names>
</name>
<name>
<surname>Onder</surname>
<given-names>TT</given-names>
</name>
<name>
<surname>Jiang</surname>
<given-names>G</given-names>
</name>
<name>
<surname>Tao</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Kuperwasser</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Weinberg</surname>
<given-names>RA</given-names>
</name>
<etal></etal>
</person-group>
.
<article-title>Identification of selective inhibitors of cancer stem cells by high-throughput screening</article-title>
.
<source>Cell.</source>
(
<year>2009</year>
)
<volume>138</volume>
:
<fpage>645</fpage>
<lpage>59</lpage>
.
<pub-id pub-id-type="doi">10.1016/j.cell.2009.06.034</pub-id>
<pub-id pub-id-type="pmid">19682730</pub-id>
</mixed-citation>
</ref>
<ref id="B229">
<label>229.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Mai</surname>
<given-names>TT</given-names>
</name>
<name>
<surname>Hamai</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Hienzsch</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Caneque</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Muller</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Wicinski</surname>
<given-names>J</given-names>
</name>
<etal></etal>
</person-group>
.
<article-title>Salinomycin kills cancer stem cells by sequestering iron in lysosomes</article-title>
.
<source>Nat Chem.</source>
(
<year>2017</year>
)
<volume>9</volume>
:
<fpage>1025</fpage>
<lpage>33</lpage>
.
<pub-id pub-id-type="doi">10.1038/nchem.2778</pub-id>
<pub-id pub-id-type="pmid">28937680</pub-id>
</mixed-citation>
</ref>
<ref id="B230">
<label>230.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Huang</surname>
<given-names>X</given-names>
</name>
<name>
<surname>Borgstrom</surname>
<given-names>B</given-names>
</name>
<name>
<surname>Kempengren</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Persson</surname>
<given-names>L</given-names>
</name>
<name>
<surname>Hegardt</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Strand</surname>
<given-names>D</given-names>
</name>
<etal></etal>
</person-group>
.
<article-title>Breast cancer stem cell selectivity of synthetic nanomolar-active salinomycin analogs</article-title>
.
<source>BMC Cancer.</source>
(
<year>2016</year>
)
<volume>16</volume>
:
<fpage>145</fpage>
.
<pub-id pub-id-type="doi">10.1186/s12885-016-2142-3</pub-id>
<pub-id pub-id-type="pmid">26906175</pub-id>
</mixed-citation>
</ref>
<ref id="B231">
<label>231.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Taylor</surname>
<given-names>WR</given-names>
</name>
<name>
<surname>Fedorka</surname>
<given-names>SR</given-names>
</name>
<name>
<surname>Gad</surname>
<given-names>I</given-names>
</name>
<name>
<surname>Shah</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Alqahtani</surname>
<given-names>HD</given-names>
</name>
<name>
<surname>Koranne</surname>
<given-names>R</given-names>
</name>
<etal></etal>
</person-group>
.
<article-title>Small-molecule ferroptotic agents with potential to selectively target cancer stem cells</article-title>
.
<source>Sci Rep.</source>
(
<year>2019</year>
)
<volume>9</volume>
:
<fpage>5926</fpage>
.
<pub-id pub-id-type="doi">10.1038/s41598-019-42251-5</pub-id>
<pub-id pub-id-type="pmid">30976078</pub-id>
</mixed-citation>
</ref>
<ref id="B232">
<label>232.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Cufi</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Vazquez-Martin</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Oliveras-Ferraros</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Martin-Castillo</surname>
<given-names>B</given-names>
</name>
<name>
<surname>Vellon</surname>
<given-names>L</given-names>
</name>
<name>
<surname>Menendez</surname>
<given-names>JA</given-names>
</name>
</person-group>
.
<article-title>Autophagy positively regulates the CD44(+) CD24(-/low) breast cancer stem-like phenotype</article-title>
.
<source>Cell Cycle.</source>
(
<year>2011</year>
)
<volume>10</volume>
:
<fpage>3871</fpage>
<lpage>85</lpage>
.
<pub-id pub-id-type="doi">10.4161/cc.10.22.17976</pub-id>
<pub-id pub-id-type="pmid">22127234</pub-id>
</mixed-citation>
</ref>
<ref id="B233">
<label>233.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Choi</surname>
<given-names>DS</given-names>
</name>
<name>
<surname>Blanco</surname>
<given-names>E</given-names>
</name>
<name>
<surname>Kim</surname>
<given-names>YS</given-names>
</name>
<name>
<surname>Rodriguez</surname>
<given-names>AA</given-names>
</name>
<name>
<surname>Zhao</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Huang</surname>
<given-names>TH</given-names>
</name>
<etal></etal>
</person-group>
.
<article-title>Chloroquine eliminates cancer stem cells through deregulation of Jak2 and DNMT1</article-title>
.
<source>Stem Cells.</source>
(
<year>2014</year>
)
<volume>32</volume>
:
<fpage>2309</fpage>
<lpage>23</lpage>
.
<pub-id pub-id-type="doi">10.1002/stem.1746</pub-id>
<pub-id pub-id-type="pmid">24809620</pub-id>
</mixed-citation>
</ref>
<ref id="B234">
<label>234.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Galluzzi</surname>
<given-names>L</given-names>
</name>
<name>
<surname>Bravo-San Pedro</surname>
<given-names>JM</given-names>
</name>
<name>
<surname>Demaria</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Formenti</surname>
<given-names>SC</given-names>
</name>
<name>
<surname>Kroemer</surname>
<given-names>G</given-names>
</name>
</person-group>
.
<article-title>Activating autophagy to potentiate immunogenic chemotherapy and radiation therapy</article-title>
.
<source>Nat Rev Clin Oncol.</source>
(
<year>2017</year>
)
<volume>14</volume>
:
<fpage>247</fpage>
<lpage>58</lpage>
.
<pub-id pub-id-type="doi">10.1038/nrclinonc.2016.183</pub-id>
<pub-id pub-id-type="pmid">27845767</pub-id>
</mixed-citation>
</ref>
</ref-list>
</back>
</pmc>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/ChloroquineV1/Data/Pmc/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000983 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Pmc/Corpus/biblio.hfd -nk 000983 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    ChloroquineV1
   |flux=    Pmc
   |étape=   Corpus
   |type=    RBID
   |clé=     PMC:6805781
   |texte=   Novel and Alternative Targets Against Breast Cancer Stemness to Combat Chemoresistance
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Pmc/Corpus/RBID.i   -Sk "pubmed:31681564" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Pmc/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a ChloroquineV1 

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Wed Mar 25 22:43:59 2020. Site generation: Sun Jan 31 12:44:45 2021