Serveur d'exploration Chloroquine

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.
***** Acces problem to record *****\

Identifieur interne : 000977 ( Pmc/Corpus ); précédent : 0009769; suivant : 0009780 ***** probable Xml problem with record *****

Links to Exploration step


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Biosynthesis and Bioactivity of Prodiginine Analogs in Marine Bacteria,
<italic>Pseudoalteromonas</italic>
: A Mini Review</title>
<author>
<name sortKey="Sakai Kawada, Francis E" sort="Sakai Kawada, Francis E" uniqKey="Sakai Kawada F" first="Francis E." last="Sakai-Kawada">Francis E. Sakai-Kawada</name>
<affiliation>
<nlm:aff id="aff1">
<institution>Department of Molecular Biosciences and Bioengineering, University of Hawai´i at Mānoa</institution>
,
<addr-line>Honolulu, HI</addr-line>
,
<country>United States</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Ip, Courtney G" sort="Ip, Courtney G" uniqKey="Ip C" first="Courtney G." last="Ip">Courtney G. Ip</name>
<affiliation>
<nlm:aff id="aff2">
<institution>Department of Biology, University of Hawai´i at Hilo</institution>
,
<addr-line>Hilo, HI</addr-line>
,
<country>United States</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Hagiwara, Kehau A" sort="Hagiwara, Kehau A" uniqKey="Hagiwara K" first="Kehau A." last="Hagiwara">Kehau A. Hagiwara</name>
<affiliation>
<nlm:aff id="aff3">
<institution>Institute of Marine and Environmental Technology, University of Maryland, Baltimore</institution>
,
<addr-line>Baltimore, MD</addr-line>
,
<country>United States</country>
</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="aff4">
<institution>Chemical Sciences Division, National Institute of Standards and Technology, Hollings Marine Laboratory</institution>
,
<addr-line>Charleston, SC</addr-line>
,
<country>United States</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Awaya, Jonathan D" sort="Awaya, Jonathan D" uniqKey="Awaya J" first="Jonathan D." last="Awaya">Jonathan D. Awaya</name>
<affiliation>
<nlm:aff id="aff1">
<institution>Department of Molecular Biosciences and Bioengineering, University of Hawai´i at Mānoa</institution>
,
<addr-line>Honolulu, HI</addr-line>
,
<country>United States</country>
</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="aff2">
<institution>Department of Biology, University of Hawai´i at Hilo</institution>
,
<addr-line>Hilo, HI</addr-line>
,
<country>United States</country>
</nlm:aff>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PMC</idno>
<idno type="pmid">31396200</idno>
<idno type="pmc">6667630</idno>
<idno type="url">http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6667630</idno>
<idno type="RBID">PMC:6667630</idno>
<idno type="doi">10.3389/fmicb.2019.01715</idno>
<date when="2019">2019</date>
<idno type="wicri:Area/Pmc/Corpus">000977</idno>
<idno type="wicri:explorRef" wicri:stream="Pmc" wicri:step="Corpus" wicri:corpus="PMC">000977</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a" type="main">Biosynthesis and Bioactivity of Prodiginine Analogs in Marine Bacteria,
<italic>Pseudoalteromonas</italic>
: A Mini Review</title>
<author>
<name sortKey="Sakai Kawada, Francis E" sort="Sakai Kawada, Francis E" uniqKey="Sakai Kawada F" first="Francis E." last="Sakai-Kawada">Francis E. Sakai-Kawada</name>
<affiliation>
<nlm:aff id="aff1">
<institution>Department of Molecular Biosciences and Bioengineering, University of Hawai´i at Mānoa</institution>
,
<addr-line>Honolulu, HI</addr-line>
,
<country>United States</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Ip, Courtney G" sort="Ip, Courtney G" uniqKey="Ip C" first="Courtney G." last="Ip">Courtney G. Ip</name>
<affiliation>
<nlm:aff id="aff2">
<institution>Department of Biology, University of Hawai´i at Hilo</institution>
,
<addr-line>Hilo, HI</addr-line>
,
<country>United States</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Hagiwara, Kehau A" sort="Hagiwara, Kehau A" uniqKey="Hagiwara K" first="Kehau A." last="Hagiwara">Kehau A. Hagiwara</name>
<affiliation>
<nlm:aff id="aff3">
<institution>Institute of Marine and Environmental Technology, University of Maryland, Baltimore</institution>
,
<addr-line>Baltimore, MD</addr-line>
,
<country>United States</country>
</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="aff4">
<institution>Chemical Sciences Division, National Institute of Standards and Technology, Hollings Marine Laboratory</institution>
,
<addr-line>Charleston, SC</addr-line>
,
<country>United States</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Awaya, Jonathan D" sort="Awaya, Jonathan D" uniqKey="Awaya J" first="Jonathan D." last="Awaya">Jonathan D. Awaya</name>
<affiliation>
<nlm:aff id="aff1">
<institution>Department of Molecular Biosciences and Bioengineering, University of Hawai´i at Mānoa</institution>
,
<addr-line>Honolulu, HI</addr-line>
,
<country>United States</country>
</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="aff2">
<institution>Department of Biology, University of Hawai´i at Hilo</institution>
,
<addr-line>Hilo, HI</addr-line>
,
<country>United States</country>
</nlm:aff>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Frontiers in Microbiology</title>
<idno type="eISSN">1664-302X</idno>
<imprint>
<date when="2019">2019</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<p>The Prodiginine family consists of primarily red-pigmented tripyrrole secondary metabolites that were first characterized in the Gram-negative bacterial species
<italic>Serratia marcescens</italic>
and demonstrates a wide array of biological activities and applications. Derivatives of prodiginine have since been characterized in the marine γ-proteobacterium,
<italic>Pseudoalteromonas</italic>
. Although biosynthetic gene clusters involved in prodiginine synthesis display homology among genera, there is an evident structural difference in the resulting metabolites. This review will summarize prodiginine biosynthesis, bioactivity, and gene regulation in
<italic>Pseudoalteromonas</italic>
in comparison to the previously characterized species of
<italic>Serratia</italic>
, discuss the ecological contributions of
<italic>Pseudoalteromonas</italic>
in the marine microbiome and their eukaryotic hosts, and consider the importance of modern functional genomics and classic DNA manipulation to understand the overall prodiginine biosynthesis pathway.</p>
</div>
</front>
<back>
<div1 type="bibliography">
<listBibl>
<biblStruct>
<analytic>
<author>
<name sortKey="Alihosseini, F" uniqKey="Alihosseini F">F. Alihosseini</name>
</author>
<author>
<name sortKey="Ju, K S" uniqKey="Ju K">K. S. Ju</name>
</author>
<author>
<name sortKey="Lango, J" uniqKey="Lango J">J. Lango</name>
</author>
<author>
<name sortKey="Hammock, B D" uniqKey="Hammock B">B. D. Hammock</name>
</author>
<author>
<name sortKey="Sun, G" uniqKey="Sun G">G. Sun</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Azambuja, P" uniqKey="Azambuja P">P. Azambuja</name>
</author>
<author>
<name sortKey="Feder, D" uniqKey="Feder D">D. Feder</name>
</author>
<author>
<name sortKey="Garcia, E S" uniqKey="Garcia E">E. S. Garcia</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ballestriero, F" uniqKey="Ballestriero F">F. Ballestriero</name>
</author>
<author>
<name sortKey="Thomas, T" uniqKey="Thomas T">T. Thomas</name>
</author>
<author>
<name sortKey="Burke, C" uniqKey="Burke C">C. Burke</name>
</author>
<author>
<name sortKey="Egan, S" uniqKey="Egan S">S. Egan</name>
</author>
<author>
<name sortKey="Kjelleberg, S" uniqKey="Kjelleberg S">S. Kjelleberg</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Bowman, J P" uniqKey="Bowman J">J. P. Bowman</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Burke, C" uniqKey="Burke C">C. Burke</name>
</author>
<author>
<name sortKey="Thomas, T" uniqKey="Thomas T">T. Thomas</name>
</author>
<author>
<name sortKey="Egan, S" uniqKey="Egan S">S. Egan</name>
</author>
<author>
<name sortKey="Kjelleberg, S" uniqKey="Kjelleberg S">S. Kjelleberg</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Campas, C" uniqKey="Campas C">C. Campàs</name>
</author>
<author>
<name sortKey="Dalmau, M" uniqKey="Dalmau M">M. Dalmau</name>
</author>
<author>
<name sortKey="Montaner, B" uniqKey="Montaner B">B. Montaner</name>
</author>
<author>
<name sortKey="Barragan, M" uniqKey="Barragan M">M. Barragán</name>
</author>
<author>
<name sortKey="Bellosillo, B" uniqKey="Bellosillo B">B. Bellosillo</name>
</author>
<author>
<name sortKey="Colomer, D" uniqKey="Colomer D">D. Colomer</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Castaing, M" uniqKey="Castaing M">M. Castaing</name>
</author>
<author>
<name sortKey="Loiseau, A" uniqKey="Loiseau A">A. Loiseau</name>
</author>
<author>
<name sortKey="Dani, M" uniqKey="Dani M">M. Dani</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Coulhurst, S J" uniqKey="Coulhurst S">S. J. Coulhurst</name>
</author>
<author>
<name sortKey="Williamson, N R" uniqKey="Williamson N">N. R. Williamson</name>
</author>
<author>
<name sortKey="Harris, A K P" uniqKey="Harris A">A. K. P. Harris</name>
</author>
<author>
<name sortKey="Spring, D R" uniqKey="Spring D">D. R. Spring</name>
</author>
<author>
<name sortKey="Salmond, G P C" uniqKey="Salmond G">G. P. C. Salmond</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Da Silva Melo, P" uniqKey="Da Silva Melo P">P. Da Silva Melo</name>
</author>
<author>
<name sortKey="Duran, N" uniqKey="Duran N">N. Durán</name>
</author>
<author>
<name sortKey="Haun, M" uniqKey="Haun M">M. Haun</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Danev I, T" uniqKey="Danev I T">T. Danevčič</name>
</author>
<author>
<name sortKey="Vezjak, M B" uniqKey="Vezjak M">M. B. Vezjak</name>
</author>
<author>
<name sortKey="Tabor, M" uniqKey="Tabor M">M. Tabor</name>
</author>
<author>
<name sortKey="Zorec, M" uniqKey="Zorec M">M. Zorec</name>
</author>
<author>
<name sortKey="Stopar, D" uniqKey="Stopar D">D. Stopar</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Danev I, T" uniqKey="Danev I T">T. Danevčič</name>
</author>
<author>
<name sortKey="Vezjak, M B" uniqKey="Vezjak M">M. B. Vezjak</name>
</author>
<author>
<name sortKey="Zorec, M" uniqKey="Zorec M">M. Zorec</name>
</author>
<author>
<name sortKey="Stopar, D" uniqKey="Stopar D">D. Stopar</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Dang, H T" uniqKey="Dang H">H. T. Dang</name>
</author>
<author>
<name sortKey="Komatsu, S" uniqKey="Komatsu S">S. Komatsu</name>
</author>
<author>
<name sortKey="Masuda, H" uniqKey="Masuda H">H. Masuda</name>
</author>
<author>
<name sortKey="Enomoto, K" uniqKey="Enomoto K">K. Enomoto</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Darshan, N" uniqKey="Darshan N">N. Darshan</name>
</author>
<author>
<name sortKey="Manonmani, H K" uniqKey="Manonmani H">H. K. Manonmani</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="De Rond, T" uniqKey="De Rond T">T. de Rond</name>
</author>
<author>
<name sortKey="Stow, P" uniqKey="Stow P">P. Stow</name>
</author>
<author>
<name sortKey="Eigl, I" uniqKey="Eigl I">I. Eigl</name>
</author>
<author>
<name sortKey="Johnson, R E" uniqKey="Johnson R">R. E. Johnson</name>
</author>
<author>
<name sortKey="Chan, L J G" uniqKey="Chan L">L. J. G. Chan</name>
</author>
<author>
<name sortKey="Goyal, G" uniqKey="Goyal G">G. Goyal</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Dobretsov, S V" uniqKey="Dobretsov S">S. V. Dobretsov</name>
</author>
<author>
<name sortKey="Qian, P Y" uniqKey="Qian P">P.-Y. Qian</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Drummond, D" uniqKey="Drummond D">D. Drummond</name>
</author>
<author>
<name sortKey="Smith, S" uniqKey="Smith S">S. Smith</name>
</author>
<author>
<name sortKey="Wood, N J" uniqKey="Wood N">N. J. Wood</name>
</author>
<author>
<name sortKey="Hodgson, D A" uniqKey="Hodgson D">D. A. Hodgson</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Duhaime, M B" uniqKey="Duhaime M">M. B. Duhaime</name>
</author>
<author>
<name sortKey="Solonenko, N" uniqKey="Solonenko N">N. Solonenko</name>
</author>
<author>
<name sortKey="Roux, S" uniqKey="Roux S">S. Roux</name>
</author>
<author>
<name sortKey="Verberkmoes, N C" uniqKey="Verberkmoes N">N. C. Verberkmoes</name>
</author>
<author>
<name sortKey="Wichels, A" uniqKey="Wichels A">A. Wichels</name>
</author>
<author>
<name sortKey="Sullivan, M B" uniqKey="Sullivan M">M. B. Sullivan</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Egan, S" uniqKey="Egan S">S. Egan</name>
</author>
<author>
<name sortKey="James, S" uniqKey="James S">S. James</name>
</author>
<author>
<name sortKey="Kjelleberg, S" uniqKey="Kjelleberg S">S. Kjelleberg</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Feher, D" uniqKey="Feher D">D. Fehér</name>
</author>
<author>
<name sortKey="Barlow, R S" uniqKey="Barlow R">R. S. Barlow</name>
</author>
<author>
<name sortKey="Lorenzo, P S" uniqKey="Lorenzo P">P. S. Lorenzo</name>
</author>
<author>
<name sortKey="Hemscheidt, T K" uniqKey="Hemscheidt T">T. K. Hemscheidt</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Feitelson, J" uniqKey="Feitelson J">J. Feitelson</name>
</author>
<author>
<name sortKey="Hopwood, D" uniqKey="Hopwood D">D. Hopwood</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Fineran, P C" uniqKey="Fineran P">P. C. Fineran</name>
</author>
<author>
<name sortKey="Everson, L" uniqKey="Everson L">L. Everson</name>
</author>
<author>
<name sortKey="Slater, H" uniqKey="Slater H">H. Slater</name>
</author>
<author>
<name sortKey="Salmond, G P C" uniqKey="Salmond G">G. P. C. Salmond</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Fineran, P C" uniqKey="Fineran P">P. C. Fineran</name>
</author>
<author>
<name sortKey="Slater, H" uniqKey="Slater H">H. Slater</name>
</author>
<author>
<name sortKey="Everson, L" uniqKey="Everson L">L. Everson</name>
</author>
<author>
<name sortKey="Hughes, K" uniqKey="Hughes K">K. Hughes</name>
</author>
<author>
<name sortKey="Salmond, G P C" uniqKey="Salmond G">G. P. C. Salmond</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Franks, A" uniqKey="Franks A">A. Franks</name>
</author>
<author>
<name sortKey="Egan, S" uniqKey="Egan S">S. Egan</name>
</author>
<author>
<name sortKey="Holmstrom, C" uniqKey="Holmstrom C">C. Holmström</name>
</author>
<author>
<name sortKey="James, S" uniqKey="James S">S. James</name>
</author>
<author>
<name sortKey="Lappin Scott, H" uniqKey="Lappin Scott H">H. Lappin-Scott</name>
</author>
<author>
<name sortKey="Kjelleberg, S" uniqKey="Kjelleberg S">S. Kjelleberg</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Gallardo, K" uniqKey="Gallardo K">K. Gallardo</name>
</author>
<author>
<name sortKey="Candia, J E" uniqKey="Candia J">J. E. Candia</name>
</author>
<author>
<name sortKey="Remonsellez, F" uniqKey="Remonsellez F">F. Remonsellez</name>
</author>
<author>
<name sortKey="Escudero, L V" uniqKey="Escudero L">L. V. Escudero</name>
</author>
<author>
<name sortKey="Demergasso, C S" uniqKey="Demergasso C">C. S. Demergasso</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Garneau Tsodikova, S" uniqKey="Garneau Tsodikova S">S. Garneau-Tsodikova</name>
</author>
<author>
<name sortKey="Dorrestein, P C" uniqKey="Dorrestein P">P. C. Dorrestein</name>
</author>
<author>
<name sortKey="Kelleher, N L" uniqKey="Kelleher N">N. L. Kelleher</name>
</author>
<author>
<name sortKey="Walsh, C T" uniqKey="Walsh C">C. T. Walsh</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Goldschmidt, M C" uniqKey="Goldschmidt M">M. C. Goldschmidt</name>
</author>
<author>
<name sortKey="Williams, R P" uniqKey="Williams R">R. P. Williams</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Gristwood, T" uniqKey="Gristwood T">T. Gristwood</name>
</author>
<author>
<name sortKey="Mcneil, M B" uniqKey="Mcneil M">M. B. McNeil</name>
</author>
<author>
<name sortKey="Clulow, J S" uniqKey="Clulow J">J. S. Clulow</name>
</author>
<author>
<name sortKey="Salmond, G P C" uniqKey="Salmond G">G. P. C. Salmond</name>
</author>
<author>
<name sortKey="Fineran, P C" uniqKey="Fineran P">P. C. Fineran</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Guryanov, I D" uniqKey="Guryanov I">I. D. Guryanov</name>
</author>
<author>
<name sortKey="Karamova, N S" uniqKey="Karamova N">N. S. Karamova</name>
</author>
<author>
<name sortKey="Yusupova, D V" uniqKey="Yusupova D">D. V. Yusupova</name>
</author>
<author>
<name sortKey="Gnezdilov, O I" uniqKey="Gnezdilov O">O. I. Gnezdilov</name>
</author>
<author>
<name sortKey="Koshkarova, L A" uniqKey="Koshkarova L">L. A. Koshkarova</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Harris, A K P" uniqKey="Harris A">A. K. P. Harris</name>
</author>
<author>
<name sortKey="Williamson, N R" uniqKey="Williamson N">N. R. Williamson</name>
</author>
<author>
<name sortKey="Slater, H" uniqKey="Slater H">H. Slater</name>
</author>
<author>
<name sortKey="Cox, A" uniqKey="Cox A">A. Cox</name>
</author>
<author>
<name sortKey="Abbasi, S" uniqKey="Abbasi S">S. Abbasi</name>
</author>
<author>
<name sortKey="Foulds, I" uniqKey="Foulds I">I. Foulds</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Hernando, E" uniqKey="Hernando E">E. Hernando</name>
</author>
<author>
<name sortKey="Soto Cerrato, V" uniqKey="Soto Cerrato V">V. Soto-Cerrato</name>
</author>
<author>
<name sortKey="Cortes Arroyo, S" uniqKey="Cortes Arroyo S">S. Cortés-Arroyo</name>
</author>
<author>
<name sortKey="Perez Tomas, R" uniqKey="Perez Tomas R">R. Pérez-Tomás</name>
</author>
<author>
<name sortKey="Quesada, R" uniqKey="Quesada R">R. Quesada</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Holmstrom, C" uniqKey="Holmstrom C">C. Holmström</name>
</author>
<author>
<name sortKey="Egan, S" uniqKey="Egan S">S. Egan</name>
</author>
<author>
<name sortKey="Franks, A" uniqKey="Franks A">A. Franks</name>
</author>
<author>
<name sortKey="Mccloy, S" uniqKey="Mccloy S">S. McCloy</name>
</author>
<author>
<name sortKey="Kjelleberg, S" uniqKey="Kjelleberg S">S. Kjelleberg</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Holmstrom, C" uniqKey="Holmstrom C">C. Holmström</name>
</author>
<author>
<name sortKey="James, S" uniqKey="James S">S. James</name>
</author>
<author>
<name sortKey="Neilan, B A" uniqKey="Neilan B">B. A. Neilan</name>
</author>
<author>
<name sortKey="White, D C" uniqKey="White D">D. C. White</name>
</author>
<author>
<name sortKey="Kjelleberg, S" uniqKey="Kjelleberg S">S. Kjelleberg</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Holmstrom, C" uniqKey="Holmstrom C">C. Holmström</name>
</author>
<author>
<name sortKey="Kjelleberg, S" uniqKey="Kjelleberg S">S. Kjelleberg</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Hu, D X" uniqKey="Hu D">D. X. Hu</name>
</author>
<author>
<name sortKey="Withall, D M" uniqKey="Withall D">D. M. Withall</name>
</author>
<author>
<name sortKey="Challis, G L" uniqKey="Challis G">G. L. Challis</name>
</author>
<author>
<name sortKey="Thomson, R J" uniqKey="Thomson R">R. J. Thomson</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Huang, Y" uniqKey="Huang Y">Y. Huang</name>
</author>
<author>
<name sortKey="Callahan, S" uniqKey="Callahan S">S. Callahan</name>
</author>
<author>
<name sortKey="Hadfield, M G" uniqKey="Hadfield M">M. G. Hadfield</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Isaka, M" uniqKey="Isaka M">M. Isaka</name>
</author>
<author>
<name sortKey="Jaturapat, A" uniqKey="Jaturapat A">A. Jaturapat</name>
</author>
<author>
<name sortKey="Kramyu, J" uniqKey="Kramyu J">J. Kramyu</name>
</author>
<author>
<name sortKey="Tanticharoen, M" uniqKey="Tanticharoen M">M. Tanticharoen</name>
</author>
<author>
<name sortKey="Thebtaranonth, Y" uniqKey="Thebtaranonth Y">Y. Thebtaranonth</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Johnson, R E" uniqKey="Johnson R">R. E. Johnson</name>
</author>
<author>
<name sortKey="De Rond, T" uniqKey="De Rond T">T. De Rond</name>
</author>
<author>
<name sortKey="Lindsay, V N G" uniqKey="Lindsay V">V. N. G. Lindsay</name>
</author>
<author>
<name sortKey="Keasling, J D" uniqKey="Keasling J">J. D. Keasling</name>
</author>
<author>
<name sortKey="Sarpong, R" uniqKey="Sarpong R">R. Sarpong</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Joyner, J" uniqKey="Joyner J">J. Joyner</name>
</author>
<author>
<name sortKey="Wanless, D" uniqKey="Wanless D">D. Wanless</name>
</author>
<author>
<name sortKey="Sinigalliano, C D" uniqKey="Sinigalliano C">C. D. Sinigalliano</name>
</author>
<author>
<name sortKey="Lipp, E K" uniqKey="Lipp E">E. K. Lipp</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kalesperis, G S" uniqKey="Kalesperis G">G. S. Kalesperis</name>
</author>
<author>
<name sortKey="Prahlad, K V" uniqKey="Prahlad K">K. V. Prahlad</name>
</author>
<author>
<name sortKey="Lynch, D L" uniqKey="Lynch D">D. L. Lynch</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kawauchi, K" uniqKey="Kawauchi K">K. Kawauchi</name>
</author>
<author>
<name sortKey="Shibutani, K" uniqKey="Shibutani K">K. Shibutani</name>
</author>
<author>
<name sortKey="Yagisawa, H" uniqKey="Yagisawa H">H. Yagisawa</name>
</author>
<author>
<name sortKey="Kamata, H" uniqKey="Kamata H">H. Kamata</name>
</author>
<author>
<name sortKey="Nakatsuji, S" uniqKey="Nakatsuji S">S. Nakatsuji</name>
</author>
<author>
<name sortKey="Anzai, H" uniqKey="Anzai H">H. Anzai</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kawauchi, K" uniqKey="Kawauchi K">K. Kawauchi</name>
</author>
<author>
<name sortKey="Tobiume, K" uniqKey="Tobiume K">K. Tobiume</name>
</author>
<author>
<name sortKey="Iwashita, K" uniqKey="Iwashita K">K. Iwashita</name>
</author>
<author>
<name sortKey="Inagaki, H" uniqKey="Inagaki H">H. Inagaki</name>
</author>
<author>
<name sortKey="Morikawa, T" uniqKey="Morikawa T">T. Morikawa</name>
</author>
<author>
<name sortKey="Shibukawa, Y" uniqKey="Shibukawa Y">Y. Shibukawa</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kawauchi, K" uniqKey="Kawauchi K">K. Kawauchi</name>
</author>
<author>
<name sortKey="Tobiume, K" uniqKey="Tobiume K">K. Tobiume</name>
</author>
<author>
<name sortKey="Kaneko, S" uniqKey="Kaneko S">S. Kaneko</name>
</author>
<author>
<name sortKey="Kaneshiro, K" uniqKey="Kaneshiro K">K. Kaneshiro</name>
</author>
<author>
<name sortKey="Okamoto, S" uniqKey="Okamoto S">S. Okamoto</name>
</author>
<author>
<name sortKey="Ueda, E" uniqKey="Ueda E">E. Ueda</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kim, H S" uniqKey="Kim H">H.-S. Kim</name>
</author>
<author>
<name sortKey="Hayashi, M" uniqKey="Hayashi M">M. Hayashi</name>
</author>
<author>
<name sortKey="Shibata, Y" uniqKey="Shibata Y">Y. Shibata</name>
</author>
<author>
<name sortKey="Wataya, Y" uniqKey="Wataya Y">Y. Wataya</name>
</author>
<author>
<name sortKey="Mitamura, T" uniqKey="Mitamura T">T. Mitamura</name>
</author>
<author>
<name sortKey="Horii, T" uniqKey="Horii T">T. Horii</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kimata, S" uniqKey="Kimata S">S. Kimata</name>
</author>
<author>
<name sortKey="Izawa, M" uniqKey="Izawa M">M. Izawa</name>
</author>
<author>
<name sortKey="Kawasaki, T" uniqKey="Kawasaki T">T. Kawasaki</name>
</author>
<author>
<name sortKey="Hayakawa, Y" uniqKey="Hayakawa Y">Y. Hayakawa</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kimyon, O" uniqKey="Kimyon O">Ö Kimyon</name>
</author>
<author>
<name sortKey="Das, T" uniqKey="Das T">T. Das</name>
</author>
<author>
<name sortKey="Ibugo, A I" uniqKey="Ibugo A">A. I Ibugo</name>
</author>
<author>
<name sortKey="Kutty, S K" uniqKey="Kutty S">S. K. Kutty</name>
</author>
<author>
<name sortKey="Ho, K K" uniqKey="Ho K">K. K. Ho</name>
</author>
<author>
<name sortKey="Tebben, J" uniqKey="Tebben J">J. Tebben</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Lapenda, J C" uniqKey="Lapenda J">J. C. Lapenda</name>
</author>
<author>
<name sortKey="Silva, P A" uniqKey="Silva P">P. A. Silva</name>
</author>
<author>
<name sortKey="Vicalvi, M C" uniqKey="Vicalvi M">M. C. Vicalvi</name>
</author>
<author>
<name sortKey="Sena, K X F R" uniqKey="Sena K">K. X. F. R. Sena</name>
</author>
<author>
<name sortKey="Nascimento, S C" uniqKey="Nascimento S">S. C. Nascimento</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Li, B" uniqKey="Li B">B. Li</name>
</author>
<author>
<name sortKey="Wang, P" uniqKey="Wang P">P. Wang</name>
</author>
<author>
<name sortKey="Zeng, Z" uniqKey="Zeng Z">Z. Zeng</name>
</author>
<author>
<name sortKey="Cai, X" uniqKey="Cai X">X. Cai</name>
</author>
<author>
<name sortKey="Wang, G" uniqKey="Wang G">G. Wang</name>
</author>
<author>
<name sortKey="Wang, X" uniqKey="Wang X">X. Wang</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Manderville, R A" uniqKey="Manderville R">R. A. Manderville</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Marchetti, P M" uniqKey="Marchetti P">P. M. Marchetti</name>
</author>
<author>
<name sortKey="Kelly, V" uniqKey="Kelly V">V. Kelly</name>
</author>
<author>
<name sortKey="Simpson, J P" uniqKey="Simpson J">J. P. Simpson</name>
</author>
<author>
<name sortKey="Ward, M" uniqKey="Ward M">M. Ward</name>
</author>
<author>
<name sortKey="Campopiano, D J" uniqKey="Campopiano D">D. J. Campopiano</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Morrison, D A" uniqKey="Morrison D">D. A. Morrison</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Offret, C" uniqKey="Offret C">C. Offret</name>
</author>
<author>
<name sortKey="Desriac, F" uniqKey="Desriac F">F. Desriac</name>
</author>
<author>
<name sortKey="Le Chevalier, P" uniqKey="Le Chevalier P">P. Le Chevalier</name>
</author>
<author>
<name sortKey="Mounier, J" uniqKey="Mounier J">J. Mounier</name>
</author>
<author>
<name sortKey="Jegou, C" uniqKey="Jegou C">C. Jégou</name>
</author>
<author>
<name sortKey="Fleury, Y" uniqKey="Fleury Y">Y. Fleury</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Okamoto, H" uniqKey="Okamoto H">H. Okamoto</name>
</author>
<author>
<name sortKey="Sato, Z" uniqKey="Sato Z">Z. Sato</name>
</author>
<author>
<name sortKey="Sato, M" uniqKey="Sato M">M. Sato</name>
</author>
<author>
<name sortKey="Koiso, Y" uniqKey="Koiso Y">Y. Koiso</name>
</author>
<author>
<name sortKey="Iwasaki, S" uniqKey="Iwasaki S">S. Iwasaki</name>
</author>
<author>
<name sortKey="Isaki, M" uniqKey="Isaki M">M. Isaki</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Pan, Y" uniqKey="Pan Y">Y. Pan</name>
</author>
<author>
<name sortKey="Wang, Y" uniqKey="Wang Y">Y. Wang</name>
</author>
<author>
<name sortKey="Yan, X" uniqKey="Yan X">X. Yan</name>
</author>
<author>
<name sortKey="Mazumder, A" uniqKey="Mazumder A">A. Mazumder</name>
</author>
<author>
<name sortKey="Liang, Y" uniqKey="Liang Y">Y. Liang</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Pinkerton, D M" uniqKey="Pinkerton D">D. M. Pinkerton</name>
</author>
<author>
<name sortKey="Banwell, M G" uniqKey="Banwell M">M. G. Banwell</name>
</author>
<author>
<name sortKey="Garson, M J" uniqKey="Garson M">M. J. Garson</name>
</author>
<author>
<name sortKey="Kumar, N" uniqKey="Kumar N">N. Kumar</name>
</author>
<author>
<name sortKey="De Moraes, M O" uniqKey="De Moraes M">M. O. De Moraes</name>
</author>
<author>
<name sortKey="Cavalcanti, B C" uniqKey="Cavalcanti B">B. C. Cavalcanti</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Pratheepa, V" uniqKey="Pratheepa V">V. Pratheepa</name>
</author>
<author>
<name sortKey="Vasconcelos, V" uniqKey="Vasconcelos V">V. Vasconcelos</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Rapoport, H" uniqKey="Rapoport H">H. Rapoport</name>
</author>
<author>
<name sortKey="Holden, K G" uniqKey="Holden K">K. G. Holden</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Rodilla, A M" uniqKey="Rodilla A">A. M. Rodilla</name>
</author>
<author>
<name sortKey="Korrodi Greg Rio, L" uniqKey="Korrodi Greg Rio L">L. Korrodi-Gregório</name>
</author>
<author>
<name sortKey="Hernando, E" uniqKey="Hernando E">E. Hernando</name>
</author>
<author>
<name sortKey="Manuel Manresa, P" uniqKey="Manuel Manresa P">P. Manuel-Manresa</name>
</author>
<author>
<name sortKey="Quesada, R" uniqKey="Quesada R">R. Quesada</name>
</author>
<author>
<name sortKey="Perez Tomas, R" uniqKey="Perez Tomas R">R. Pérez-Tomás</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Sakai Kawada, F E" uniqKey="Sakai Kawada F">F. E. Sakai-Kawada</name>
</author>
<author>
<name sortKey="Yakym, C J" uniqKey="Yakym C">C. J. Yakym</name>
</author>
<author>
<name sortKey="Helmkampf, M" uniqKey="Helmkampf M">M. Helmkampf</name>
</author>
<author>
<name sortKey="Hagiwara, K" uniqKey="Hagiwara K">K. Hagiwara</name>
</author>
<author>
<name sortKey="Ip, C G" uniqKey="Ip C">C. G. Ip</name>
</author>
<author>
<name sortKey="Antonio, B J" uniqKey="Antonio B">B. J. Antonio</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Sharma, M" uniqKey="Sharma M">M. Sharma</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Singh, P" uniqKey="Singh P">P. Singh</name>
</author>
<author>
<name sortKey="Shekhawat, N" uniqKey="Shekhawat N">N. Shekhawat</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Suryawanshi, R K" uniqKey="Suryawanshi R">R. K. Suryawanshi</name>
</author>
<author>
<name sortKey="Patil, C D" uniqKey="Patil C">C. D. Patil</name>
</author>
<author>
<name sortKey="Borase, H P" uniqKey="Borase H">H. P. Borase</name>
</author>
<author>
<name sortKey="Narkhede, C P" uniqKey="Narkhede C">C. P. Narkhede</name>
</author>
<author>
<name sortKey="Salunke, B K" uniqKey="Salunke B">B. K. Salunke</name>
</author>
<author>
<name sortKey="Patil, S V" uniqKey="Patil S">S. V. Patil</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Suryawanshi, R K" uniqKey="Suryawanshi R">R. K. Suryawanshi</name>
</author>
<author>
<name sortKey="Patil, C D" uniqKey="Patil C">C. D. Patil</name>
</author>
<author>
<name sortKey="Koli, S H" uniqKey="Koli S">S. H. Koli</name>
</author>
<author>
<name sortKey="Hallsworth, J E" uniqKey="Hallsworth J">J. E. Hallsworth</name>
</author>
<author>
<name sortKey="Patil, S V" uniqKey="Patil S">S. V. Patil</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Tsuji, R F" uniqKey="Tsuji R">R. F. Tsuji</name>
</author>
<author>
<name sortKey="Yamamoto, M" uniqKey="Yamamoto M">M. Yamamoto</name>
</author>
<author>
<name sortKey="Nakamura, A" uniqKey="Nakamura A">A. Nakamura</name>
</author>
<author>
<name sortKey="Kataoka, T" uniqKey="Kataoka T">T. Kataoka</name>
</author>
<author>
<name sortKey="Magae, J" uniqKey="Magae J">J. Magae</name>
</author>
<author>
<name sortKey="Nagai, K" uniqKey="Nagai K">K. Nagai</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Vynne, N G" uniqKey="Vynne N">N. G. Vynne</name>
</author>
<author>
<name sortKey="M Nsson, M" uniqKey="M Nsson M">M. Månsson</name>
</author>
<author>
<name sortKey="Nielsen, K F" uniqKey="Nielsen K">K. F. Nielsen</name>
</author>
<author>
<name sortKey="Gram, L" uniqKey="Gram L">L. Gram</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Wang, P" uniqKey="Wang P">P. Wang</name>
</author>
<author>
<name sortKey="Yu, Z" uniqKey="Yu Z">Z. Yu</name>
</author>
<author>
<name sortKey="Li, B" uniqKey="Li B">B. Li</name>
</author>
<author>
<name sortKey="Cai, X" uniqKey="Cai X">X. Cai</name>
</author>
<author>
<name sortKey="Zeng, Z" uniqKey="Zeng Z">Z. Zeng</name>
</author>
<author>
<name sortKey="Chen, X" uniqKey="Chen X">X. Chen</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Wasserman, H" uniqKey="Wasserman H">H. Wasserman</name>
</author>
<author>
<name sortKey="Sykes, R J" uniqKey="Sykes R">R. J. Sykes</name>
</author>
<author>
<name sortKey="Peverada, P" uniqKey="Peverada P">P. Peverada</name>
</author>
<author>
<name sortKey="Shaw, C K" uniqKey="Shaw C">C. K. Shaw</name>
</author>
<author>
<name sortKey="Cushley, R J" uniqKey="Cushley R">R. J. Cushley</name>
</author>
<author>
<name sortKey="Lipsky, S R" uniqKey="Lipsky S">S. R. Lipsky</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Webster, N S" uniqKey="Webster N">N. S. Webster</name>
</author>
<author>
<name sortKey="Taylor, M W" uniqKey="Taylor M">M. W. Taylor</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Williams, R P" uniqKey="Williams R">R. P. Williams</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Williamson, N R" uniqKey="Williamson N">N. R. Williamson</name>
</author>
<author>
<name sortKey="Simonsen, H T" uniqKey="Simonsen H">H. T. Simonsen</name>
</author>
<author>
<name sortKey="Ahmed, R A A" uniqKey="Ahmed R">R. A. A. Ahmed</name>
</author>
<author>
<name sortKey="Goldet, G" uniqKey="Goldet G">G. Goldet</name>
</author>
<author>
<name sortKey="Slater, H" uniqKey="Slater H">H. Slater</name>
</author>
<author>
<name sortKey="Woodley, L" uniqKey="Woodley L">L. Woodley</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Williamson, N R" uniqKey="Williamson N">N. R. Williamson</name>
</author>
<author>
<name sortKey="Simonsen, H T" uniqKey="Simonsen H">H. T. Simonsen</name>
</author>
<author>
<name sortKey="Harris, A K P" uniqKey="Harris A">A. K. P. Harris</name>
</author>
<author>
<name sortKey="Leeper, F J" uniqKey="Leeper F">F. J. Leeper</name>
</author>
<author>
<name sortKey="Salmond, G P C" uniqKey="Salmond G">G. P. C. Salmond</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Xie, B B" uniqKey="Xie B">B.-B. Xie</name>
</author>
<author>
<name sortKey="Shu, Y L" uniqKey="Shu Y">Y.-L. Shu</name>
</author>
<author>
<name sortKey="Qin, Q L" uniqKey="Qin Q">Q.-L. Qin</name>
</author>
<author>
<name sortKey="Rong, J C" uniqKey="Rong J">J.-C. Rong</name>
</author>
<author>
<name sortKey="Zhang, X Y" uniqKey="Zhang X">X.-Y. Zhang</name>
</author>
<author>
<name sortKey="Chen, X L" uniqKey="Chen X">X.-L. Chen</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Zhang, H" uniqKey="Zhang H">H. Zhang</name>
</author>
<author>
<name sortKey="Peng, Y" uniqKey="Peng Y">Y. Peng</name>
</author>
<author>
<name sortKey="Zhang, S" uniqKey="Zhang S">S. Zhang</name>
</author>
<author>
<name sortKey="Cai, G" uniqKey="Cai G">G. Cai</name>
</author>
<author>
<name sortKey="Li, Y" uniqKey="Li Y">Y. Li</name>
</author>
<author>
<name sortKey="Yang, X" uniqKey="Yang X">X. Yang</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Zhang, H" uniqKey="Zhang H">H. Zhang</name>
</author>
<author>
<name sortKey="Wang, H" uniqKey="Wang H">H. Wang</name>
</author>
<author>
<name sortKey="Zheng, W" uniqKey="Zheng W">W. Zheng</name>
</author>
<author>
<name sortKey="Yao, Z" uniqKey="Yao Z">Z. Yao</name>
</author>
<author>
<name sortKey="Peng, Y" uniqKey="Peng Y">Y. Peng</name>
</author>
<author>
<name sortKey="Zhang, S" uniqKey="Zhang S">S. Zhang</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Zheng, L" uniqKey="Zheng L">L. Zheng</name>
</author>
<author>
<name sortKey="Yan, X" uniqKey="Yan X">X. Yan</name>
</author>
<author>
<name sortKey="Han, X" uniqKey="Han X">X. Han</name>
</author>
<author>
<name sortKey="Chen, H" uniqKey="Chen H">H. Chen</name>
</author>
<author>
<name sortKey="Lin, W" uniqKey="Lin W">W. Lin</name>
</author>
<author>
<name sortKey="Lee, F S C" uniqKey="Lee F">F. S. C. Lee</name>
</author>
</analytic>
</biblStruct>
</listBibl>
</div1>
</back>
</TEI>
<pmc article-type="review-article">
<pmc-dir>properties open_access</pmc-dir>
<front>
<journal-meta>
<journal-id journal-id-type="nlm-ta">Front Microbiol</journal-id>
<journal-id journal-id-type="iso-abbrev">Front Microbiol</journal-id>
<journal-id journal-id-type="publisher-id">Front. Microbiol.</journal-id>
<journal-title-group>
<journal-title>Frontiers in Microbiology</journal-title>
</journal-title-group>
<issn pub-type="epub">1664-302X</issn>
<publisher>
<publisher-name>Frontiers Media S.A.</publisher-name>
</publisher>
</journal-meta>
<article-meta>
<article-id pub-id-type="pmid">31396200</article-id>
<article-id pub-id-type="pmc">6667630</article-id>
<article-id pub-id-type="doi">10.3389/fmicb.2019.01715</article-id>
<article-categories>
<subj-group subj-group-type="heading">
<subject>Microbiology</subject>
<subj-group>
<subject>Mini Review</subject>
</subj-group>
</subj-group>
</article-categories>
<title-group>
<article-title>Biosynthesis and Bioactivity of Prodiginine Analogs in Marine Bacteria,
<italic>Pseudoalteromonas</italic>
: A Mini Review</article-title>
</title-group>
<contrib-group>
<contrib contrib-type="author">
<name>
<surname>Sakai-Kawada</surname>
<given-names>Francis E.</given-names>
</name>
<xref ref-type="aff" rid="aff1">
<sup>1</sup>
</xref>
<xref ref-type="corresp" rid="c001">
<sup>*</sup>
</xref>
<uri xlink:type="simple" xlink:href="http://loop.frontiersin.org/people/640426/overview"></uri>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Ip</surname>
<given-names>Courtney G.</given-names>
</name>
<xref ref-type="aff" rid="aff2">
<sup>2</sup>
</xref>
<uri xlink:type="simple" xlink:href="http://loop.frontiersin.org/people/747112/overview"></uri>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Hagiwara</surname>
<given-names>Kehau A.</given-names>
</name>
<xref ref-type="aff" rid="aff3">
<sup>3</sup>
</xref>
<xref ref-type="aff" rid="aff4">
<sup>4</sup>
</xref>
<uri xlink:type="simple" xlink:href="http://loop.frontiersin.org/people/686683/overview"></uri>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Awaya</surname>
<given-names>Jonathan D.</given-names>
</name>
<xref ref-type="aff" rid="aff1">
<sup>1</sup>
</xref>
<xref ref-type="aff" rid="aff2">
<sup>2</sup>
</xref>
<uri xlink:type="simple" xlink:href="http://loop.frontiersin.org/people/743897/overview"></uri>
</contrib>
</contrib-group>
<aff id="aff1">
<sup>1</sup>
<institution>Department of Molecular Biosciences and Bioengineering, University of Hawai´i at Mānoa</institution>
,
<addr-line>Honolulu, HI</addr-line>
,
<country>United States</country>
</aff>
<aff id="aff2">
<sup>2</sup>
<institution>Department of Biology, University of Hawai´i at Hilo</institution>
,
<addr-line>Hilo, HI</addr-line>
,
<country>United States</country>
</aff>
<aff id="aff3">
<sup>3</sup>
<institution>Institute of Marine and Environmental Technology, University of Maryland, Baltimore</institution>
,
<addr-line>Baltimore, MD</addr-line>
,
<country>United States</country>
</aff>
<aff id="aff4">
<sup>4</sup>
<institution>Chemical Sciences Division, National Institute of Standards and Technology, Hollings Marine Laboratory</institution>
,
<addr-line>Charleston, SC</addr-line>
,
<country>United States</country>
</aff>
<author-notes>
<fn fn-type="edited-by">
<p>Edited by: Marcelino T. Suzuki, Sorbonne Universités, France</p>
</fn>
<fn fn-type="edited-by">
<p>Reviewed by: Christopher Morton Thomas, University of Birmingham, United Kingdom; Cecilia Susana Demergasso, Universidad Católica del Norte, Chile</p>
</fn>
<corresp id="c001">*Correspondence: Francis E. Sakai-Kawada,
<email>sakai3@hawaii.edu</email>
</corresp>
<fn fn-type="other" id="fn002">
<p>This article was submitted to Aquatic Microbiology, a section of the journal Frontiers in Microbiology</p>
</fn>
</author-notes>
<pub-date pub-type="epub">
<day>24</day>
<month>7</month>
<year>2019</year>
</pub-date>
<pub-date pub-type="collection">
<year>2019</year>
</pub-date>
<volume>10</volume>
<elocation-id>1715</elocation-id>
<history>
<date date-type="received">
<day>05</day>
<month>2</month>
<year>2019</year>
</date>
<date date-type="accepted">
<day>11</day>
<month>7</month>
<year>2019</year>
</date>
</history>
<permissions>
<copyright-statement>Copyright © 2019 Sakai-Kawada, Ip, Hagiwara and Awaya.</copyright-statement>
<copyright-year>2019</copyright-year>
<copyright-holder>Sakai-Kawada, Ip, Hagiwara and Awaya</copyright-holder>
<license xlink:href="http://creativecommons.org/licenses/by/4.0/">
<license-p>This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.</license-p>
</license>
</permissions>
<abstract>
<p>The Prodiginine family consists of primarily red-pigmented tripyrrole secondary metabolites that were first characterized in the Gram-negative bacterial species
<italic>Serratia marcescens</italic>
and demonstrates a wide array of biological activities and applications. Derivatives of prodiginine have since been characterized in the marine γ-proteobacterium,
<italic>Pseudoalteromonas</italic>
. Although biosynthetic gene clusters involved in prodiginine synthesis display homology among genera, there is an evident structural difference in the resulting metabolites. This review will summarize prodiginine biosynthesis, bioactivity, and gene regulation in
<italic>Pseudoalteromonas</italic>
in comparison to the previously characterized species of
<italic>Serratia</italic>
, discuss the ecological contributions of
<italic>Pseudoalteromonas</italic>
in the marine microbiome and their eukaryotic hosts, and consider the importance of modern functional genomics and classic DNA manipulation to understand the overall prodiginine biosynthesis pathway.</p>
</abstract>
<kwd-group>
<kwd>
<italic>Pseudoalteromonas</italic>
</kwd>
<kwd>prodiginines</kwd>
<kwd>prodigiosin</kwd>
<kwd>secondary metabolites</kwd>
<kwd>pigments</kwd>
<kwd>marine bacteria</kwd>
</kwd-group>
<counts>
<fig-count count="1"></fig-count>
<table-count count="1"></table-count>
<equation-count count="0"></equation-count>
<ref-count count="74"></ref-count>
<page-count count="9"></page-count>
<word-count count="0"></word-count>
</counts>
</article-meta>
</front>
<body>
<sec>
<title>Introduction</title>
<p>The Prodiginine family consists of primarily red-pigmented secondary metabolites that are characterized by their tripyrrole structure. These metabolites are of interest in natural product research due to their wide array of biomedical and industrial applications including algicidal (
<xref rid="B72" ref-type="bibr">Zhang et al., 2016</xref>
), antibacterial (
<xref rid="B52" ref-type="bibr">Okamoto et al., 1998</xref>
), anticancer (
<xref rid="B41" ref-type="bibr">Kawauchi et al., 2008</xref>
), antimalarial (
<xref rid="B43" ref-type="bibr">Kim et al., 1999</xref>
), antiprotozoal (
<xref rid="B2" ref-type="bibr">Azambuja et al., 2004</xref>
), colorants (
<xref rid="B1" ref-type="bibr">Alihosseini et al., 2008</xref>
), immunosuppressive agents (
<xref rid="B42" ref-type="bibr">Kawauchi et al., 2007</xref>
), and insecticides (
<xref rid="B61" ref-type="bibr">Suryawanshi et al., 2015</xref>
). Prodiginine was first extracted from terrestrial bacterium,
<italic>Serratia marcescens</italic>
. It consisted of a straight alkyl chain substituent and was named prodigiosin (
<xref rid="B56" ref-type="bibr">Rapoport and Holden, 1962</xref>
). Prodigiosin is ubiquitous throughout various genera within the terrestrial and marine environment, suggesting that the metabolite may be ecologically advantageous to prodiginine-producing bacteria. Due to the diversity among prodiginine-producing bacteria, it is difficult to determine the precise biological and ecological role of the pigment. Based on previous studies, it can be inferred that prodiginine may provide a mode of defense against competing microorganisms or a potential response to environmental stressors (
<xref rid="B24" ref-type="bibr">Gallardo et al., 2016</xref>
).</p>
<p>Since the discovery of prodiginine, analogs have been isolated from marine bacteria,
<italic>Pseudoalteromonas</italic>
, including cycloprodigiosin and 2-(
<italic>p</italic>
-hydroxybenzyl) prodigiosin (
<xref rid="B56" ref-type="bibr">Rapoport and Holden, 1962</xref>
;
<xref rid="B40" ref-type="bibr">Kawauchi et al., 1997</xref>
;
<xref rid="B19" ref-type="bibr">Fehér et al., 2008</xref>
).
<italic>Pseudoalteromonas</italic>
has also been reported to produce tambjamines, a yellow pigment that is structurally like prodiginine, sharing two of the three pyrrole rings (
<xref rid="B5" ref-type="bibr">Burke et al., 2007</xref>
). The presence of pigmented metabolites like prodiginine and tambjamines in species of
<italic>Pseudoalteromonas</italic>
is particularly interesting because the genus is commonly associated with macroorganisms, such as algae (
<xref rid="B15" ref-type="bibr">Dobretsov and Qian, 2002</xref>
), fish (
<xref rid="B55" ref-type="bibr">Pratheepa and Vasconcelos, 2013</xref>
), sponges (
<xref rid="B58" ref-type="bibr">Sakai-Kawada et al., 2016</xref>
), and tunicates (
<xref rid="B32" ref-type="bibr">Holmström et al., 1998</xref>
). This host-microbe interaction provides the microorganism with nutrients to flourish, while providing the host with valuable resources that may contribute to nutrient cycling or defense (
<xref rid="B67" ref-type="bibr">Webster and Taylor, 2012</xref>
).</p>
<p>Many mechanisms for signaling and regulation of prodigiosin were identified in
<italic>Serratia</italic>
, however, none have been identified within
<italic>Pseudoalteromonas</italic>
. It was suggested that prodiginine biosynthesis may prevent primary metabolism overload by utilizing substrates like proline, serine, pyruvate, and NAD(P) (
<xref rid="B66" ref-type="bibr">Wasserman et al., 1973</xref>
;
<xref rid="B16" ref-type="bibr">Drummond et al., 1995</xref>
). PigP was characterized within the quorum sensing regulon as a master regulator of
<italic>pig</italic>
biosynthesis, controlling prodigiosin production by modulating
<italic>pig</italic>
regulators (
<xref rid="B22" ref-type="bibr">Fineran et al., 2005b</xref>
) Further studies characterized a metalloregulatory repressor (PigS) that responds to stress-induced presence of heavy metals (
<xref rid="B27" ref-type="bibr">Gristwood et al., 2011</xref>
). Independently, a GntR-homolog (PigT) was also identified (
<xref rid="B21" ref-type="bibr">Fineran et al., 2005a</xref>
). Due to the various means for regulation, it is uncertain if
<italic>Pseudoalteromonas</italic>
also utilize similar regulatory controls or if it adapted a genus-specific mechanism. Recent studies propose a LuxI/R quorum sensing system associated with pigment production in other
<italic>Pseudoalteromonas</italic>
species (
<xref rid="B53" ref-type="bibr">Pan et al., 2016</xref>
;
<xref rid="B12" ref-type="bibr">Dang et al., 2017</xref>
).</p>
<p>Although extensive studies were done to determine the bioactivity and chemical structure of these prodiginine analogs, the means of biological synthesis in
<italic>Pseudoalteromonas</italic>
remains elusive. To date, more than 200
<italic>Pseudoalteromonas</italic>
genomes are sequenced and available on genome databases. Of those 200+ genomes, 9 genomes are associated with a prodiginine-producing species and only 3 belong to a tambjamine-producing species.</p>
<p>This review will focus on prodiginine classes that were characterized in
<italic>Pseudoalteromonas</italic>
, their bioactivity, and their biosynthesis. These ideas may provide further insight into the role prodiginines play in
<italic>Pseudoalteromonas</italic>
, their hosts, and the marine microbiome.</p>
<sec>
<title>Biosynthesis and Bioactivity of Prodiginine Pigments</title>
<p>
<italic>Pseudoalteromonas</italic>
bacterial strains synthesize prodiginine analogs including prodigiosin, cycloprodigiosin, and 2-(
<italic>p</italic>
-hydroxybenzyl) prodigiosin (
<xref ref-type="fig" rid="F1">Figure 1A</xref>
). These pigments possess a tripyrrole structure composed of two moieties: 2-methyl-3-
<italic>n</italic>
-amyl-pyrrole (MAP) and 4-methoxy-2,2′-bipyrrole-5-carbaldehyde (MBC). These analogs demonstrate antibacterial, anticancer, and immunosuppressive bioactivity and each analog exhibits its own specific bioactive properties. The specificity among these microbial pigments emphasizes their potential biomedical application.</p>
<fig id="F1" position="float">
<label>FIGURE 1</label>
<caption>
<p>
<bold>(A)</bold>
Prodiginine biosynthetic pathways: MAP biosynthesis (green), MBC biosynthesis (blue), prodigiosin, cPrG, and HBPG biosynthesis (red), enamine and tambjamine biosynthesis (yellow)
<bold>(B)</bold>
Mapping of homologous prodiginine biosynthetic gene clusters in
<italic>Serratia marcescens</italic>
(
<italic>Sm</italic>
39006),
<italic>Pseudoalteromonas</italic>
<italic>rubra</italic>
(
<italic>Pr</italic>
6842),
<italic>Pseudoalteromonas denitrificans</italic>
(
<italic>Pd</italic>
6059), and
<italic>Pseudoalteromonas tunicata</italic>
(
<italic>Pt</italic>
D2). The relationship between
<italic>pigE</italic>
and
<italic>tamH</italic>
is discussed in the Further insight via functional genomics and DNA manipulation
<bold>(C)</bold>
Mapping of homologous cyclizing oxygenases in
<italic>Streptomyces coelicolor</italic>
[
<italic>Sc</italic>
A3(2)],
<italic>Pseudoalteromonas rubra</italic>
(
<italic>Pr</italic>
6842) and
<italic>Pseudoalteromonas</italic>
<italic>tunicata</italic>
(
<italic>Pt</italic>
D2).</p>
</caption>
<graphic xlink:href="fmicb-10-01715-g001"></graphic>
</fig>
<sec>
<title>Prodigiosin (
<italic>pig</italic>
) Biosynthetic Pathway</title>
<p>Prodigiosin biosynthesis was first characterized in the γ-proteobacterium,
<italic>Serratia</italic>
<italic>marcescens</italic>
and later characterized in
<italic>Pseudoalteromonas rubra</italic>
(
<xref rid="B19" ref-type="bibr">Fehér et al., 2008</xref>
;
<xref rid="B64" ref-type="bibr">Vynne et al., 2011</xref>
). This model defines a unidirectional polycistronic
<italic>pig</italic>
gene cluster consisting of two enzymatic pathways (
<xref rid="B29" ref-type="bibr">Harris et al., 2004</xref>
;
<xref ref-type="fig" rid="F1">Figure 1A</xref>
).</p>
<p>The unique pathway involves MAP biosynthesis from 2-octenal (
<bold>1)</bold>
and is composed of genes
<italic>pigB</italic>
,
<italic>pigD</italic>
, and
<italic>pigE</italic>
. First, PigD, in the presence of coenzyme thiamine pyrophosphate (TPP), catalyzes the addition of pyruvate (
<bold>2</bold>
) to 2-octenal (
<bold>1</bold>
). The formation of 3-acetyloctanal (
<bold>3</bold>
) occurs with the release of CO
<sub>2</sub>
, followed by the transfer of an amino group to the aldehyde by PigE, and cyclization to form H
<sub>2</sub>
MAP (
<bold>4</bold>
). PigB catalyzes further oxidation to form MAP (
<bold>5</bold>
) (
<xref rid="B26" ref-type="bibr">Goldschmidt and Williams, 1968</xref>
;
<xref rid="B29" ref-type="bibr">Harris et al., 2004</xref>
;
<xref rid="B69" ref-type="bibr">Williamson et al., 2005</xref>
;
<xref rid="B25" ref-type="bibr">Garneau-Tsodikova et al., 2006</xref>
).</p>
<p>The common pathway in most prodiginine-producing microorganisms is MBC biosynthesis. This pathway is composed of seven genes (
<italic>pigA</italic>
,
<italic>pigF</italic>
-
<italic>J</italic>
,
<italic>pigL</italic>
, and
<italic>pigM</italic>
). 4′-phosphopantetheinyl transferase (PigL) activates peptidyl carrier protein (PCP) domain of PigG from apo to holo form through the addition of the 4′-phosphopantetheinyl group. PigI and ATP catalyze the transfer of the L-prolyl group of L-proline (
<bold>6)</bold>
to the thiol group of phosphopantetheine to form a L-prolyl-
<italic>S</italic>
-PCP intermediate (
<bold>7</bold>
). PigA oxidizes the intermediate to pyrrolyl-2-carboxyl-
<italic>S</italic>
-PCP (
<bold>8</bold>
). This proceeds with a polyketide-type chain extension, which starts with the transfer of the pyrrole-2-carboxyl group from PigG to the cysteine active site of PigJ, generating a pyrrole-2-carboxyl thioester (
<bold>9</bold>
). Separately, the ACP domains of PigH are phosphopantetheinylated, providing binding sites for the malonyl group of malonyl-CoA (
<bold>10</bold>
). The bound malonyl (
<bold>11)</bold>
then undergoes decarboxylation, resulting in a subsequent condensation with the pyrrole-2-carboxyl thioester attached to PigJ and forms pyrrolyl-β-ketothioester on PigH (
<bold>12</bold>
). PigH catalyzes another decarboxylation between serine and pyrrolyl-β-ketothioester to generate 4-hydroxy-2,2′-bipyrrole-5-methanol (HBM) (
<bold>13</bold>
) (
<xref rid="B29" ref-type="bibr">Harris et al., 2004</xref>
;
<xref rid="B25" ref-type="bibr">Garneau-Tsodikova et al., 2006</xref>
). The alcohol group of HBM is oxidized by PigM to make 4-hydroxy-2,2′-bipyrrole-5-carbaldehyde (HBC) (
<bold>14</bold>
). The final step of MBC (
<bold>15</bold>
) biosynthesis involves the methylation of the HBC hydroxyl group by methyltransferase (PigF) and oxidoreductase (PigN) (
<xref rid="B20" ref-type="bibr">Feitelson and Hopwood, 1983</xref>
;
<xref rid="B69" ref-type="bibr">Williamson et al., 2005</xref>
).</p>
<p>Once MAP (
<bold>5</bold>
) and MBC (
<bold>15</bold>
) are synthesized, PigC uses ATP to facilitate the terminal condensation of these two pyrroles to form prodigiosin (
<bold>16</bold>
). PigC has shown sequence similarity to an ATP-binding and phosphoryl transfer domains at the N- and C- terminus, respectively (
<xref rid="B50" ref-type="bibr">Morrison, 1966</xref>
;
<xref rid="B68" ref-type="bibr">Williams, 1973</xref>
).</p>
</sec>
<sec>
<title>Prodigiosin Bioactivity</title>
<p>Prodigiosin demonstrated a variety of biological activities, making it a candidate for pharmaceutical development. It exhibited activity against chloroquine-resistant strains of
<italic>Plasmodium falciparum</italic>
, which causes cerebral malaria (
<xref rid="B60" ref-type="bibr">Singh and Shekhawat, 2012</xref>
). Although previously considered to have selective activity against Gram-positive bacteria, prodigiosin has shown broad-spectrum antimicrobial activity against bacterial species including
<italic>Bacillus subtilis</italic>
,
<italic>Escherichia coli, Enterobacter aerogenes</italic>
,
<italic>Enterococcus avium</italic>
,
<italic>Pseudomonas aeruginosa</italic>
,
<italic>Staphylococcus aureus</italic>
,
<italic>Staphylococcus saprophyticus</italic>
,
<italic>Streptococcus pyogenes</italic>
and
<italic>Candida albicans</italic>
(
<xref rid="B46" ref-type="bibr">Lapenda et al., 2014</xref>
;
<xref rid="B13" ref-type="bibr">Darshan and Manonmani, 2015</xref>
;
<xref rid="B10" ref-type="bibr">Danevčič et al., 2016a</xref>
,
<xref rid="B11" ref-type="bibr">b</xref>
;
<xref rid="B62" ref-type="bibr">Suryawanshi et al., 2017</xref>
). Prodigiosin has a variety of mechanisms for antibacterial activity, including inducing autolysin production in
<italic>B. cereus</italic>
and inhibiting biofilm production in
<italic>P. aeruginosa</italic>
by stimulating the production of reactive oxygen species (ROS) (
<xref rid="B10" ref-type="bibr">Danevčič et al., 2016a</xref>
;
<xref rid="B45" ref-type="bibr">Kimyon et al., 2016</xref>
). Furthermore, prodigiosin demonstrated algicidal activity against
<italic>Phaeocystis globola</italic>
via influx of ROS, mitigating harmful algal blooms (
<xref rid="B73" ref-type="bibr">Zhang et al., 2017</xref>
).</p>
<p>Prodigiosin also presented toxigenic activity against chick embryos (
<xref rid="B39" ref-type="bibr">Kalesperis et al., 1975</xref>
) and exhibited cytotoxic activity via oxidative DNA cleavage, particularly against melanoma and liver cancer cells (
<xref rid="B48" ref-type="bibr">Manderville, 2001</xref>
). Additionally, prodigiosin induced apoptosis in human hematopoietic cancer cell lines including acute T-cell leukemia, promyelocytic leukemia, myeloma, Burkitt lymphoma cells, and B- and T-cells from B-cell chronic lymphocytic leukemia (
<xref rid="B6" ref-type="bibr">Campàs et al., 2003</xref>
). It also exhibited cytotoxicity against human gastric and colon cancer cells, and the V79 fibroblast cell line though a specific mechanism of action has yet to be determined (
<xref rid="B9" ref-type="bibr">Da Silva Melo et al., 2000</xref>
;
<xref rid="B6" ref-type="bibr">Campàs et al., 2003</xref>
). However, it does not exhibit genotoxicity, making it a candidate in pharmaceutical development (
<xref rid="B28" ref-type="bibr">Guryanov et al., 2013</xref>
). Trypanocidal activity was also characterized against protozoan
<italic>Trypanosoma cruzi</italic>
which causes Chagas disease (
<xref rid="B9" ref-type="bibr">Da Silva Melo et al., 2000</xref>
).</p>
<p>Furthermore, prodigiosin demonstrated selective immunosuppressive properties in the murine models (
<xref rid="B63" ref-type="bibr">Tsuji et al., 1990</xref>
). It was capable of suppressing T-cell proliferation without affecting interleukin-2, transferrin, and antibody expression or response. These selective properties make prodigiosin a prospective probe for the cytotoxic T-lymphocyte activation pathway.</p>
</sec>
<sec>
<title>Cycloprodigiosin Biosynthetic Pathway</title>
<p>Recently, prodiginine classes were characterized in the marine bacterium genus
<italic>Pseudoalteromonas</italic>
, specifically,
<italic>Pseudoalteromonas denitrificans</italic>
,
<italic>Pseudoalteromonas rubra</italic>
, and
<italic>Pseudoalteromonas tunicata</italic>
. Cycloprodigiosin (cPrG) (
<bold>22</bold>
) is a red-pigmented secondary metabolite that was isolated from the marine bacteria
<italic>P. denitrificans</italic>
and
<italic>P. rubra</italic>
(
<xref rid="B43" ref-type="bibr">Kim et al., 1999</xref>
;
<xref rid="B71" ref-type="bibr">Xie et al., 2012</xref>
). The key structural difference between cPrG and prodigiosin is the cyclization between the C-3 pentyl group and the C-4 carbon on pyrrole ring C of MAP (
<bold>5</bold>
).</p>
<p>Cyclic prodiginines and their respective oxygenase for cyclization were identified. In
<italic>Streptomyces</italic>
,
<italic>redG</italic>
and
<italic>mcpG</italic>
encode oxygenases that cyclize undecylprodiginine to form butyl-meta-cycloheptylprodiginine and metacycloprodigiosin, respectively (
<xref rid="B44" ref-type="bibr">Kimata et al., 2017</xref>
). Recent studies characterized a homologous gene (PRUB680), encoding an alkylglycerol monooxygenase-like protein away from the
<italic>pig</italic>
biosynthetic gene cluster (
<xref rid="B14" ref-type="bibr">de Rond et al., 2017</xref>
). This enzyme shows regiospecificity via C-H activation prompting the cyclization of prodigiosin and formation of cPrG (
<bold>22</bold>
).</p>
<p>It is still unclear what sort of advantages, if any, come with prodigiosin cyclization (
<xref rid="B14" ref-type="bibr">de Rond et al., 2017</xref>
). Whether this favorability is dependent on structural stability, heightened bioactivity, or a combination of both has yet to be determined.</p>
</sec>
<sec>
<title>Cycloprodigiosin Bioactivity</title>
<p>cPrG showed higher antimalarial activity against
<italic>Plasmodium berghei</italic>
cells than chloroquine and its derivatives (
<xref rid="B43" ref-type="bibr">Kim et al., 1999</xref>
). Other cPrG analogs such as metacycloprodigiosin hydrochloride also demonstrated antimalarial activity against a multidrug-resistant strain of
<italic>P. falciparum</italic>
(
<xref rid="B36" ref-type="bibr">Isaka et al., 2002</xref>
). cPrG exhibited antimicrobial activity against
<italic>S. aureus</italic>
,
<italic>E. coli</italic>
, and
<italic>C. albicans</italic>
(
<xref rid="B37" ref-type="bibr">Johnson et al., 2015</xref>
;
<xref rid="B51" ref-type="bibr">Offret et al., 2016</xref>
).</p>
<p>cPrG was also characterized as an immunosuppressant through its ability to induce apoptosis of activated murine splenic T-cells, acute human T-cell leukemia, promyelocytic leukemia, human and rat hepatocellular cancer, human breast cancer, and TNF-stimulated human cervix carcinoma (
<xref rid="B13" ref-type="bibr">Darshan and Manonmani, 2015</xref>
).</p>
</sec>
<sec>
<title>2-(
<italic>p</italic>
-Hydroxybenzyl) Prodigiosin Biosynthetic Pathway</title>
<p>2-(
<italic>p</italic>
-hydroxybenzyl) prodigiosin (HBPG) (
<bold>23</bold>
) was isolated from the marine bacterium
<italic>P. rubra</italic>
(
<xref rid="B19" ref-type="bibr">Fehér et al., 2008</xref>
;
<xref rid="B51" ref-type="bibr">Offret et al., 2016</xref>
). The structural difference between HBPG (
<bold>23</bold>
) and prodigiosin (
<bold>16</bold>
) is the
<italic>para</italic>
-addition of phenol to the C-10 carbon of pyrrole ring A of MBC (
<bold>15</bold>
), suggesting variations to the MBC pathway and homologs in the MAP pathway and terminal condensation step. Currently, there is no literature describing HBPG biosynthesis. Difficulties in characterization arise when biosynthetic genes are not clustered together, like that of the cPrG pathway. As shown by
<xref rid="B14" ref-type="bibr">de Rond et al. (2017)</xref>
elucidation of the complete biosynthetic pathway may rely on mining for homologous genes in other bacterial genera that function, similarly.</p>
</sec>
<sec>
<title>2-(
<italic>p</italic>
-Hydroxybenzyl) Prodigiosin Bioactivity</title>
<p>Due to HBPG’s exclusivity in only a few
<italic>P. rubra</italic>
strains, little information has been collected regarding its bioactivity. Like other prodiginines, HBPG demonstrated antimicrobial activity against
<italic>S. aureus</italic>
, methicillin-resistant
<italic>S. aureus</italic>
(MRSA),
<italic>E. coli</italic>
, and
<italic>C. albicans</italic>
(
<xref rid="B19" ref-type="bibr">Fehér et al., 2008</xref>
;
<xref rid="B34" ref-type="bibr">Hu et al., 2016</xref>
;
<xref rid="B51" ref-type="bibr">Offret et al., 2016</xref>
).</p>
<p>Cytotoxic activity of HBPG was also characterized against SKOV-3, a human ovarian adenocarcinoma cell line, via topoisomerase I inhibition. These results were indistinguishable from the prodigiosin control (
<xref rid="B19" ref-type="bibr">Fehér et al., 2008</xref>
). Additional bioassays will need to be conducted to uncover the significance of the
<italic>p</italic>
-hydroxylbenzyl group.</p>
</sec>
<sec>
<title>Tambjamine (
<italic>tam</italic>
) Biosynthetic Pathway</title>
<p>
<italic>Pseudoalteromonas tunicata</italic>
has yielded tambjamine, a yellow bipyrrolic bacterial pigment. Despite its divergence from the tripyrrolic structure, tambjamines were characterized to be structurally-related to prodiginines and share sequence homology to the
<italic>pig</italic>
biosynthetic pathway (
<xref rid="B5" ref-type="bibr">Burke et al., 2007</xref>
). Like the prodiginine family, tambjamine shares the MBC-moiety and contains the homologous genes responsible for its biosynthesis, however, it lacks the MAP-moiety, instead having an enamine group. Two types of tambjamines were characterized within
<italic>P. tunicata</italic>
– tambjamine and tambjamine YP1. The major difference between the two analogs is the substituent group attached to C-4: a methoxy group in tambjamine, where tambjamine YP1 has a methyl group (
<xref rid="B23" ref-type="bibr">Franks et al., 2006</xref>
).</p>
<p>Novel to the
<italic>tam</italic>
pathway is the enamine biosynthetic pathway. This pathway is composed of three characterized genes (
<italic>tamT, tamH, afaA</italic>
) and begins with dodecenoic acid (
<bold>17</bold>
). Until recently,
<italic>afaA</italic>
was thought to initiate the enamine biosynthesis (
<xref rid="B5" ref-type="bibr">Burke et al., 2007</xref>
). However, it was later determined that acyl CoA synthetase (TamA) is actually responsible for activating dodecenoic acid (
<bold>17</bold>
) (
<xref rid="B49" ref-type="bibr">Marchetti et al., 2018</xref>
). The activated fatty acid (
<bold>18</bold>
) undergoes oxidation by dehydrogenase (TamT), introducing a π-bond to C-3 carbon of the fatty acyl side chain (
<bold>19</bold>
). Reductase/aminotransferase (TamH) facilitates the reduction of the CoA-ester (
<bold>19</bold>
) and transamination to dodec-3-en-1-amine (
<bold>20</bold>
). TamQ facilitates the condensation of MBC (
<bold>15</bold>
) and enamine (
<bold>20</bold>
) to form tambjamine (
<bold>21</bold>
) (
<xref rid="B5" ref-type="bibr">Burke et al., 2007</xref>
).</p>
</sec>
<sec>
<title>Tambjamine Bioactivity</title>
<p>Tambjamines exhibit antifungal, antifouling, and antimicrobial activity against
<italic>S. aureus, E. coli, C. albicans</italic>
, and
<italic>Malassezia furfur</italic>
(
<xref rid="B31" ref-type="bibr">Holmström et al., 2002</xref>
;
<xref rid="B23" ref-type="bibr">Franks et al., 2006</xref>
;
<xref rid="B54" ref-type="bibr">Pinkerton et al., 2010</xref>
). In addition, the production of tambjamine had inhibitory bioactivity against the bacterivorous nematode
<italic>Caenorhabditis elegans</italic>
(
<xref rid="B3" ref-type="bibr">Ballestriero et al., 2010</xref>
).</p>
<p>Since the characterization of the
<italic>tam</italic>
pathway, tambjamines analogs were chemically synthesized to explore the antimicrobial and cytotoxic properties associated with the substitution of various alkyl and bromo groups (
<xref rid="B54" ref-type="bibr">Pinkerton et al., 2010</xref>
). Synthetic tambjamine analogs that contain aromatic enamine groups demonstrate efficient transmembrane anion transportation of chloride and bicarbonate (
<xref rid="B30" ref-type="bibr">Hernando et al., 2014</xref>
). These cytotoxic transport properties are a promising treatment of cancer cells. Unlike normal tissue cells, cancer cells contain a reversed pH gradient with alkaline intracellular and acidic extracellular conditions. These conditions provide tumor cells protection from acid-induced apoptosis, allowing them to proliferate (
<xref rid="B7" ref-type="bibr">Castaing et al., 2001</xref>
;
<xref rid="B59" ref-type="bibr">Sharma, 2015</xref>
). Introducing highly effective anion-selective ionophores, like tambjamine, can regulate cellular ion homeostasis by affecting the intracellular pH, triggering mitochondrial dysfunction and lysosomal deacidification, leading to necrosis in lung cancer cell lines and cancer stem cells (
<xref rid="B57" ref-type="bibr">Rodilla et al., 2001</xref>
).</p>
</sec>
</sec>
</sec>
<sec>
<title>Evolutionary and Ecological Significance</title>
<p>Recent literature suggests that the
<italic>pig</italic>
pathway can undergo horizontal gene transfer, which may explain the homology between prodigiosin gene clusters in
<italic>Serratia</italic>
and
<italic>Pseudoalteromonas</italic>
(
<xref rid="B8" ref-type="bibr">Coulhurst et al., 2006</xref>
;
<xref rid="B70" ref-type="bibr">Williamson et al., 2006</xref>
;
<xref ref-type="fig" rid="F1">Figure 1B</xref>
). Although
<italic>Serratia</italic>
is primarily terrestrial, the genus’s presence in marine and aquatic environments has been reported and may be substantial enough to interact with the exclusively marine
<italic>Pseudoalteromonas</italic>
(
<xref rid="B38" ref-type="bibr">Joyner et al., 2014</xref>
). The versatile bioactivity of prodiginines implies an integral role in outcompeting other microorganisms for valuable resources.</p>
<p>Furthermore, a majority of the
<italic>Pseudoalteromonas</italic>
species are associated with eukaryotic hosts (
<xref rid="B33" ref-type="bibr">Holmström and Kjelleberg, 1999</xref>
). From the three species described,
<italic>P. denitrificans</italic>
and
<italic>P. rubra</italic>
were isolated from seawater samples, while
<italic>P. tunicata</italic>
was characterized in marine algae and tunicates (
<xref rid="B4" ref-type="bibr">Bowman, 2007</xref>
). There is a close association between pigmented
<italic>Pseudoalteromonas</italic>
species and marine macroorganisms (
<xref rid="B74" ref-type="bibr">Zheng et al., 2006</xref>
;
<xref rid="B58" ref-type="bibr">Sakai-Kawada et al., 2016</xref>
). One study isolated
<italic>P. tunicata</italic>
from a healthy adult tunicate and
<italic>Ulva lactuca</italic>
, a common green alga; both hosts did not independently produce antifouling compounds.
<italic>P. tunicata</italic>
produced these bioactive compounds, preventing colonization of algal spores, marine invertebrate larvae, protozoa, bacteria, and fungi, supporting the hypothesis that
<italic>Pseudoalteromonas</italic>
species may act as a chemical defense mechanism for its associated host (
<xref rid="B31" ref-type="bibr">Holmström et al., 2002</xref>
;
<xref rid="B23" ref-type="bibr">Franks et al., 2006</xref>
). Although the
<italic>Pseudoalteromonas</italic>
genus is associated with a wide array of bioactivities that may provide protection for their respective hosts, difficulties still arise when determining the precise ecological role, they play.</p>
</sec>
<sec>
<title>Further Insight Via Functional Genomics and DNA Manipulation</title>
<p>With current breakthroughs in functional genomics, one can now identify homologous prodiginine biosynthetic gene clusters within
<italic>Pseudoalteromonas</italic>
to characterize the pathway. 9 of the 200+
<italic>Pseudoalteromonas</italic>
genomes submitted on NCBI are known to synthesize prodiginines. Of the 9 genomes, 8 belong to
<italic>P. rubra</italic>
and only 1 to
<italic>P. denitrificans</italic>
. Genome sequencing and prodiginine biosynthesis-directed annotation can provide more insight into homologous pathways (
<xref ref-type="fig" rid="F1">Figure 1B</xref>
and
<xref rid="T1" ref-type="table">Table 1</xref>
). Preliminary genome analysis in both
<italic>Pseudoalteromonas</italic>
species revealed a gene cluster homologous to the prodiginine biosynthetic gene cluster in
<italic>Serratia. P. rubra</italic>
<italic>s</italic>
gene cluster averaged 63% homology to
<italic>Serratia</italic>
, while
<italic>P. denitrificans</italic>
averaged 54% (
<xref rid="B71" ref-type="bibr">Xie et al., 2012</xref>
;
<xref rid="B47" ref-type="bibr">Li et al., 2016</xref>
). Although
<italic>P. tunicata</italic>
<italic>s</italic>
tambjamine biosynthetic gene cluster shares a similar MBC pathway with prodiginine biosynthesis in other
<italic>Pseudoalteromonas</italic>
species, it showed low identity averaging 46% homology (
<xref rid="B5" ref-type="bibr">Burke et al., 2007</xref>
). However, sequence homology extended beyond the MBC pathway. Putative aminotransferase (
<italic>tamH</italic>
) responsible for enamine biosynthesis in
<italic>P. tunicata</italic>
showed 40% identity to an aminotransferase (
<italic>pigE</italic>
) responsible for MAP biosynthesis in
<italic>Serratia</italic>
and the other two
<italic>Pseudoalteromonas</italic>
species (
<xref rid="B5" ref-type="bibr">Burke et al., 2007</xref>
).</p>
<table-wrap id="T1" position="float">
<label>Table 1</label>
<caption>
<p>Predicted function of genes involved in prodiginine and tambjamine biosynthesis and their homology among
<italic>Serratia marcescens</italic>
(
<italic>Sm</italic>
39006),
<italic>Pseudoalteromonas</italic>
<italic>rubra</italic>
(
<italic>Pr</italic>
6842),
<italic>Pseudoalteromonas denitrificans</italic>
(
<italic>Pd</italic>
6059), and
<italic>Pseudoalteromonas tunicata</italic>
(
<italic>Pt</italic>
D2).</p>
</caption>
<table frame="hsides" rules="groups" cellspacing="5" cellpadding="5">
<thead>
<tr>
<th valign="top" align="left" rowspan="1" colspan="1">Biosynthetic pathway</th>
<th valign="top" align="left" rowspan="1" colspan="1">Predicted protein function</th>
<th valign="top" align="center" rowspan="1" colspan="1">
<italic>pig</italic>
gene cluster (
<italic>Sm</italic>
39006)</th>
<th valign="top" align="center" rowspan="1" colspan="1">
<italic>tam</italic>
gene cluster (
<italic>Pt</italic>
D2)</th>
<th valign="top" align="center" rowspan="1" colspan="1">ORFs (
<italic>Pd</italic>
6059/
<italic>Pr</italic>
6842)</th>
</tr>
</thead>
<tbody>
<tr>
<td valign="top" align="left" rowspan="1" colspan="1">MAP</td>
<td valign="top" align="left" rowspan="1" colspan="1">Oxidoreductase</td>
<td valign="top" align="center" rowspan="1" colspan="1">
<italic>pigB</italic>
</td>
<td valign="top" align="center" rowspan="1" colspan="1">
<italic></italic>
</td>
<td valign="top" align="center" rowspan="1" colspan="1">ORF2</td>
</tr>
<tr>
<td valign="top" align="left" rowspan="1" colspan="1">MAP</td>
<td valign="top" align="left" rowspan="1" colspan="1">Thiamine diphosphate dependent-3-acetyloctanal synthase</td>
<td valign="top" align="center" rowspan="1" colspan="1">
<italic>pigD</italic>
</td>
<td valign="top" align="center" rowspan="1" colspan="1">
<italic></italic>
</td>
<td valign="top" align="center" rowspan="1" colspan="1">ORF4</td>
</tr>
<tr>
<td valign="top" align="left" rowspan="1" colspan="1">MAP/Enamine</td>
<td valign="top" align="left" rowspan="1" colspan="1">Aminotransferase</td>
<td valign="top" align="center" rowspan="1" colspan="1">
<italic>pigE</italic>
</td>
<td valign="top" align="center" rowspan="1" colspan="1">
<italic>tamH</italic>
<sup>a</sup>
</td>
<td valign="top" align="center" rowspan="1" colspan="1">ORF5</td>
</tr>
<tr>
<td valign="top" align="left" rowspan="1" colspan="1">MBC</td>
<td valign="top" align="left" rowspan="1" colspan="1">L-prolyl-PCP dehydrogenase</td>
<td valign="top" align="center" rowspan="1" colspan="1">
<italic>pigA</italic>
</td>
<td valign="top" align="center" rowspan="1" colspan="1">
<italic>tamG</italic>
</td>
<td valign="top" align="center" rowspan="1" colspan="1">ORF1</td>
</tr>
<tr>
<td valign="top" align="left" rowspan="1" colspan="1">MBC</td>
<td valign="top" align="left" rowspan="1" colspan="1">S-adenosyl-L-methionine-dependent methyltransferase</td>
<td valign="top" align="center" rowspan="1" colspan="1">
<italic>pigF</italic>
</td>
<td valign="top" align="center" rowspan="1" colspan="1">
<italic>tamP</italic>
</td>
<td valign="top" align="center" rowspan="1" colspan="1">ORF6</td>
</tr>
<tr>
<td valign="top" align="left" rowspan="1" colspan="1">MBC</td>
<td valign="top" align="left" rowspan="1" colspan="1">Peptidyl carrier protein</td>
<td valign="top" align="center" rowspan="1" colspan="1">
<italic>pigG</italic>
</td>
<td valign="top" align="center" rowspan="1" colspan="1">
<italic>tamB</italic>
</td>
<td valign="top" align="center" rowspan="1" colspan="1">ORF7</td>
</tr>
<tr>
<td valign="top" align="left" rowspan="1" colspan="1">MBC</td>
<td valign="top" align="left" rowspan="1" colspan="1">HBM synthase/aminotransferase</td>
<td valign="top" align="center" rowspan="1" colspan="1">
<italic>pigH</italic>
</td>
<td valign="top" align="center" rowspan="1" colspan="1">
<italic>tamD</italic>
</td>
<td valign="top" align="center" rowspan="1" colspan="1">ORF8</td>
</tr>
<tr>
<td valign="top" align="left" rowspan="1" colspan="1">MBC</td>
<td valign="top" align="left" rowspan="1" colspan="1">L-prolyl-AMP ligase</td>
<td valign="top" align="center" rowspan="1" colspan="1">
<italic>pigI</italic>
</td>
<td valign="top" align="center" rowspan="1" colspan="1">
<italic>tamE</italic>
</td>
<td valign="top" align="center" rowspan="1" colspan="1">ORF9</td>
</tr>
<tr>
<td valign="top" align="left" rowspan="1" colspan="1">MBC</td>
<td valign="top" align="left" rowspan="1" colspan="1">Pyrrolyl-β-ketoacyl-ACP synthase</td>
<td valign="top" align="center" rowspan="1" colspan="1">
<italic>pigJ</italic>
</td>
<td valign="top" align="center" rowspan="1" colspan="1">
<italic>tamF</italic>
</td>
<td valign="top" align="center" rowspan="1" colspan="1">ORF10</td>
</tr>
<tr>
<td valign="top" align="left" rowspan="1" colspan="1">MBC</td>
<td valign="top" align="left" rowspan="1" colspan="1">Hypothetical protein</td>
<td valign="top" align="center" rowspan="1" colspan="1">
<italic>pigK</italic>
</td>
<td valign="top" align="center" rowspan="1" colspan="1">
<italic>tamR</italic>
</td>
<td valign="top" align="center" rowspan="1" colspan="1">ORF11</td>
</tr>
<tr>
<td valign="top" align="left" rowspan="1" colspan="1">MBC</td>
<td valign="top" align="left" rowspan="1" colspan="1">Phosphopantetheinyl transferase</td>
<td valign="top" align="center" rowspan="1" colspan="1">
<italic>pigL</italic>
</td>
<td valign="top" align="center" rowspan="1" colspan="1">
<italic>tamS</italic>
</td>
<td valign="top" align="center" rowspan="1" colspan="1">ORF12</td>
</tr>
<tr>
<td valign="top" align="left" rowspan="1" colspan="1">MBC</td>
<td valign="top" align="left" rowspan="1" colspan="1">HBM oxidase/dehydrogenase</td>
<td valign="top" align="center" rowspan="1" colspan="1">
<italic>pigM</italic>
</td>
<td valign="top" align="center" rowspan="1" colspan="1">
<italic>tamJ</italic>
</td>
<td valign="top" align="center" rowspan="1" colspan="1">ORF13</td>
</tr>
<tr>
<td valign="top" align="left" rowspan="1" colspan="1">MBC</td>
<td valign="top" align="left" rowspan="1" colspan="1">Oxidoreductase</td>
<td valign="top" align="center" rowspan="1" colspan="1">
<italic>pigN</italic>
</td>
<td valign="top" align="center" rowspan="1" colspan="1">
<italic></italic>
</td>
<td valign="top" align="center" rowspan="1" colspan="1">
<italic></italic>
</td>
</tr>
<tr>
<td valign="top" align="left" rowspan="1" colspan="1">Terminal Condensation</td>
<td valign="top" align="left" rowspan="1" colspan="1">Terminal Condensing Enzyme</td>
<td valign="top" align="center" rowspan="1" colspan="1">
<italic>pigC</italic>
</td>
<td valign="top" align="center" rowspan="1" colspan="1">
<italic>tamQ</italic>
</td>
<td valign="top" align="center" rowspan="1" colspan="1">ORF3</td>
</tr>
<tr>
<td valign="top" align="left" rowspan="1" colspan="1">Cyclization</td>
<td valign="top" align="left" rowspan="1" colspan="1">Putative oxidase</td>
<td valign="top" align="center" rowspan="1" colspan="1">
<italic></italic>
</td>
<td valign="top" align="center" rowspan="1" colspan="1">
<italic>tamC</italic>
</td>
<td valign="top" align="center" rowspan="1" colspan="1">PRUB680
<sup>b</sup>
</td>
</tr>
<tr>
<td valign="top" align="left" rowspan="1" colspan="1">Enamine</td>
<td valign="top" align="left" rowspan="1" colspan="1">AMP binding protein</td>
<td valign="top" align="center" rowspan="1" colspan="1">
<italic></italic>
</td>
<td valign="top" align="center" rowspan="1" colspan="1">
<italic>tamA</italic>
</td>
<td valign="top" align="center" rowspan="1" colspan="1">
<italic></italic>
</td>
</tr>
<tr>
<td valign="top" align="left" rowspan="1" colspan="1">Enamine</td>
<td valign="top" align="left" rowspan="1" colspan="1">Putative dehydrogenase</td>
<td valign="top" align="center" rowspan="1" colspan="1">
<italic></italic>
</td>
<td valign="top" align="center" rowspan="1" colspan="1">
<italic>tamT</italic>
</td>
<td valign="top" align="center" rowspan="1" colspan="1">
<italic></italic>
</td>
</tr>
<tr>
<td valign="top" align="left" rowspan="1" colspan="1">Tambjamine</td>
<td valign="top" align="left" rowspan="1" colspan="1">Hypothetical protein</td>
<td valign="top" align="center" rowspan="1" colspan="1">
<italic></italic>
</td>
<td valign="top" align="center" rowspan="1" colspan="1">
<italic>tamK</italic>
</td>
<td valign="top" align="center" rowspan="1" colspan="1">
<italic></italic>
</td>
</tr>
<tr>
<td valign="top" align="left" rowspan="1" colspan="1">Tambjamine</td>
<td valign="top" align="left" rowspan="1" colspan="1">Putative permease</td>
<td valign="top" align="center" rowspan="1" colspan="1">
<italic></italic>
</td>
<td valign="top" align="center" rowspan="1" colspan="1">
<italic>tamL</italic>
</td>
<td valign="top" align="center" rowspan="1" colspan="1">
<italic></italic>
</td>
</tr>
<tr>
<td valign="top" align="left" rowspan="1" colspan="1">Tambjamine</td>
<td valign="top" align="left" rowspan="1" colspan="1">Putative permease</td>
<td valign="top" align="center" rowspan="1" colspan="1">
<italic></italic>
</td>
<td valign="top" align="center" rowspan="1" colspan="1">
<italic>tamM</italic>
</td>
<td valign="top" align="center" rowspan="1" colspan="1">
<italic></italic>
</td>
</tr>
<tr>
<td valign="top" align="left" rowspan="1" colspan="1">Tambjamine</td>
<td valign="top" align="left" rowspan="1" colspan="1">Putative ABC transporter</td>
<td valign="top" align="center" rowspan="1" colspan="1">
<italic></italic>
</td>
<td valign="top" align="center" rowspan="1" colspan="1">
<italic>tamN</italic>
</td>
<td valign="top" align="center" rowspan="1" colspan="1">
<italic></italic>
</td>
</tr>
<tr>
<td valign="top" align="left" rowspan="1" colspan="1">Tambjamine</td>
<td valign="top" align="left" rowspan="1" colspan="1">Hypothetical protein</td>
<td valign="top" align="center" rowspan="1" colspan="1">
<italic></italic>
</td>
<td valign="top" align="center" rowspan="1" colspan="1">
<italic>tamO</italic>
</td>
<td valign="top" align="center" rowspan="1" colspan="1">
<italic></italic>
</td>
</tr>
<tr>
<td valign="top" align="left" rowspan="1" colspan="1"></td>
</tr>
</tbody>
</table>
<table-wrap-foot>
<attrib>
<italic>
<sup>a</sup>
Although there is sequence similarity to pigE in MAP biosynthesis, tamH is associated with enamine biosynthesis.
<sup>b</sup>
PRUB680 is characterized only in P. rubra.</italic>
</attrib>
</table-wrap-foot>
</table-wrap>
<p>As previously discussed, there are limitations to relying solely on functional genomics. Genes outside of the primary gene cluster, as demonstrated with PRUB680 in
<italic>P. rubra</italic>
, play a key role in both regulating and biosynthesizing prodiginine analogs. However, PRUB680 showed low sequence homology to
<italic>redG</italic>
in
<italic>Streptomyces</italic>
at 46% (
<xref ref-type="fig" rid="F1">Figure 1C</xref>
). Although genome sequencing and rapid annotation via localized alignment tools are useful for characterizing numerous biosynthetic gene clusters, proper genetic manipulation of each individual ORF is necessary to confirm function. As previously discussed,
<xref rid="B49" ref-type="bibr">Marchetti et al. (2018)</xref>
. demonstrated that
<italic>tamA</italic>
was responsible for the initiation of enamine biosynthesis, further feeding into tambjamine biosynthesis. That is not to say that
<italic>afaA</italic>
does not still play a role in tambjamine biosynthesis.</p>
<p>Several molecular tools have been used to manipulate
<italic>Pseudoalteromonas</italic>
’ genome and explore their numerous biological pathways.
<xref rid="B18" ref-type="bibr">Egan et al. (2002)</xref>
and
<xref rid="B35" ref-type="bibr">Huang et al. (2012)</xref>
both proved that the
<italic>Pseudoalteromonas</italic>
genome can be manipulated via Tn10 random mutagenesis, however, this method requires screening hundreds to thousands of mutants before isolating one that disrupts the gene of interest.
<xref rid="B14" ref-type="bibr">de Rond et al. (2017)</xref>
and
<xref rid="B65" ref-type="bibr">Wang et al. (2015)</xref>
utilized a site-directed approach in manipulating
<italic>P. rubra</italic>
<italic>s</italic>
genome via suicide and expression shuttle vectors, respectively. Recently,
<italic>Pseudoalteromonas</italic>
phages and prophages belonging to the myoviridae, podoviridae, and siphoviridae families have been isolated and sequenced several instances
<xref rid="B17" ref-type="bibr">Duhaime et al., 2017</xref>
. characterized a Mu-type sipho-myo hybrid capable of incorporating itself into the host genome as well as several phages containing proteins that can control host stress response. Given the proper delivery system, these bacteriophages could prove to be powerful tools for DNA manipulation within
<italic>Pseudoalteromonas</italic>
.</p>
<p>In conclusion, a more holistic approach to understanding bioactivity and gene regulation will lay the foundation for answering overarching questions concerning pigmented
<italic>Pseudoalteromonas</italic>
species such as their ecological and overall roles within the marine microbiome.</p>
</sec>
<sec>
<title>Author Contributions</title>
<p>FS-K and JA contributed to the conception of the focus for the study. FS-K contributed to the compilation of all sections, figure and table design, and wrote the first draft of the manuscript. CI performed the compilation of biological activity, ecological and evolutionary significance sections. KH contributed to the biosynthetic pathways and biological activity sections. All authors contributed to revision, read and approved the submitted version of the manuscript.</p>
</sec>
<sec>
<title>Conflict of Interest Statement</title>
<p>The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.</p>
</sec>
</body>
<back>
<fn-group>
<fn fn-type="financial-disclosure">
<p>
<bold>Funding.</bold>
This research was supported by the United States National Science Foundation grant HRD 0833211.</p>
</fn>
</fn-group>
<ref-list>
<title>References</title>
<ref id="B1">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Alihosseini</surname>
<given-names>F.</given-names>
</name>
<name>
<surname>Ju</surname>
<given-names>K. S.</given-names>
</name>
<name>
<surname>Lango</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Hammock</surname>
<given-names>B. D.</given-names>
</name>
<name>
<surname>Sun</surname>
<given-names>G.</given-names>
</name>
</person-group>
(
<year>2008</year>
).
<article-title>Antibacterial colorants: characterization of prodiginines and their applications on textile materials.</article-title>
<source>
<italic>Biotechnol. Prog.</italic>
</source>
<volume>24</volume>
<fpage>742</fpage>
<lpage>747</lpage>
.
<pub-id pub-id-type="doi">10.1021/bp070481r</pub-id>
<pub-id pub-id-type="pmid">18484779</pub-id>
</mixed-citation>
</ref>
<ref id="B2">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Azambuja</surname>
<given-names>P.</given-names>
</name>
<name>
<surname>Feder</surname>
<given-names>D.</given-names>
</name>
<name>
<surname>Garcia</surname>
<given-names>E. S.</given-names>
</name>
</person-group>
(
<year>2004</year>
).
<article-title>Isolation of
<italic>Serratia marcescens</italic>
in the midgut of
<italic>Rhodnius prolixus</italic>
: impact on the establishment of the parasite
<italic>Trypanosoma cruzi</italic>
in the vector.</article-title>
<source>
<italic>Exp. Parasitol.</italic>
</source>
<volume>107</volume>
<fpage>89</fpage>
<lpage>96</lpage>
.
<pub-id pub-id-type="doi">10.1016/j.exppara.2004.04.007</pub-id>
<pub-id pub-id-type="pmid">15208042</pub-id>
</mixed-citation>
</ref>
<ref id="B3">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Ballestriero</surname>
<given-names>F.</given-names>
</name>
<name>
<surname>Thomas</surname>
<given-names>T.</given-names>
</name>
<name>
<surname>Burke</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>Egan</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Kjelleberg</surname>
<given-names>S.</given-names>
</name>
</person-group>
(
<year>2010</year>
).
<article-title>Identification of compounds with bioactivity against the nematode
<italic>Caenorhabditis elegans</italic>
by a screen based on the functional genomics of the marine bacterium
<italic>Pseudoalteromonas tunicata</italic>
D2.</article-title>
<source>
<italic>Appl. Environ. Microbiol.</italic>
</source>
<volume>76</volume>
<fpage>5710</fpage>
<lpage>5717</lpage>
.
<pub-id pub-id-type="doi">10.1128/AEM.00695-10</pub-id>
<pub-id pub-id-type="pmid">20601498</pub-id>
</mixed-citation>
</ref>
<ref id="B4">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Bowman</surname>
<given-names>J. P.</given-names>
</name>
</person-group>
(
<year>2007</year>
).
<article-title>Bioactive compound synthetic capacity and ecological significance of marine bacterial genus
<italic>Pseudoalteromonas</italic>
.</article-title>
<source>
<italic>Mar. Drugs</italic>
</source>
<volume>5</volume>
<fpage>220</fpage>
<lpage>241</lpage>
.
<pub-id pub-id-type="doi">10.3390/md20070017</pub-id>
<pub-id pub-id-type="pmid">18463726</pub-id>
</mixed-citation>
</ref>
<ref id="B5">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Burke</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>Thomas</surname>
<given-names>T.</given-names>
</name>
<name>
<surname>Egan</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Kjelleberg</surname>
<given-names>S.</given-names>
</name>
</person-group>
(
<year>2007</year>
).
<article-title>The use of functional genomics for the identification of a gene cluster encoding for the biosynthesis of an antifungal tambjamine in the marine bacterium
<italic>Pseudoalteromonas tunicata</italic>
: brief report.</article-title>
<source>
<italic>Environ. Microbiol.</italic>
</source>
<volume>9</volume>
<fpage>814</fpage>
<lpage>818</lpage>
.
<pub-id pub-id-type="doi">10.1111/j.1462-2920.2006.01177.x</pub-id>
<pub-id pub-id-type="pmid">17298379</pub-id>
</mixed-citation>
</ref>
<ref id="B6">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Campàs</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>Dalmau</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Montaner</surname>
<given-names>B.</given-names>
</name>
<name>
<surname>Barragán</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Bellosillo</surname>
<given-names>B.</given-names>
</name>
<name>
<surname>Colomer</surname>
<given-names>D.</given-names>
</name>
<etal></etal>
</person-group>
(
<year>2003</year>
).
<article-title>Prodigiosin induces apoptosis of B and T cells from B-cell chronic lymphocytic leukemia.</article-title>
<source>
<italic>Leukemia</italic>
</source>
<volume>17</volume>
<fpage>746</fpage>
<lpage>750</lpage>
.
<pub-id pub-id-type="doi">10.1038/sj.leu.2402860</pub-id>
<pub-id pub-id-type="pmid">12682632</pub-id>
</mixed-citation>
</ref>
<ref id="B7">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Castaing</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Loiseau</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Dani</surname>
<given-names>M.</given-names>
</name>
</person-group>
(
<year>2001</year>
).
<article-title>Designing multidrug-resistance modulators circumventing the reverse pH gradient in tumours.</article-title>
<source>
<italic>J. Pharm. Pharmacol.</italic>
</source>
<volume>53</volume>
<fpage>1021</fpage>
<lpage>1028</lpage>
.
<pub-id pub-id-type="doi">10.1211/0022357011776270</pub-id>
<pub-id pub-id-type="pmid">11480537</pub-id>
</mixed-citation>
</ref>
<ref id="B8">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Coulhurst</surname>
<given-names>S. J.</given-names>
</name>
<name>
<surname>Williamson</surname>
<given-names>N. R.</given-names>
</name>
<name>
<surname>Harris</surname>
<given-names>A. K. P.</given-names>
</name>
<name>
<surname>Spring</surname>
<given-names>D. R.</given-names>
</name>
<name>
<surname>Salmond</surname>
<given-names>G. P. C.</given-names>
</name>
</person-group>
(
<year>2006</year>
).
<article-title>Metabolic and regulatory engineering of
<italic>Serratia marcescens</italic>
: mimicking phage-mediated horizontal acquisition of antibiotic biosynthesis and quorum-sensing capacities.</article-title>
<source>
<italic>Microbiology</italic>
</source>
<volume>152</volume>
<fpage>1899</fpage>
<lpage>1911</lpage>
.
<pub-id pub-id-type="doi">10.1099/mic.0.28803-0</pub-id>
<pub-id pub-id-type="pmid">16804166</pub-id>
</mixed-citation>
</ref>
<ref id="B9">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Da Silva Melo</surname>
<given-names>P.</given-names>
</name>
<name>
<surname>Durán</surname>
<given-names>N.</given-names>
</name>
<name>
<surname>Haun</surname>
<given-names>M.</given-names>
</name>
</person-group>
(
<year>2000</year>
).
<article-title>Cytotoxicity of prodigiosin and benznidazole on V79 cells.</article-title>
<source>
<italic>Toxicol. Lett.</italic>
</source>
<volume>116</volume>
<fpage>237</fpage>
<lpage>242</lpage>
.
<pub-id pub-id-type="doi">10.1016/S0378-4274(00)00226-225</pub-id>
<pub-id pub-id-type="pmid">10996486</pub-id>
</mixed-citation>
</ref>
<ref id="B10">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Danevčič</surname>
<given-names>T.</given-names>
</name>
<name>
<surname>Vezjak</surname>
<given-names>M. B.</given-names>
</name>
<name>
<surname>Tabor</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Zorec</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Stopar</surname>
<given-names>D.</given-names>
</name>
</person-group>
(
<year>2016a</year>
).
<article-title>Prodigiosin induces autolysins in actively grown
<italic>Bacillus subtilis</italic>
cells.</article-title>
<source>
<italic>Front. Microbiol.</italic>
</source>
<volume>7</volume>
:
<issue>27</issue>
.
<pub-id pub-id-type="doi">10.3389/fmicb.2016.00027</pub-id>
<pub-id pub-id-type="pmid">26858704</pub-id>
</mixed-citation>
</ref>
<ref id="B11">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Danevčič</surname>
<given-names>T.</given-names>
</name>
<name>
<surname>Vezjak</surname>
<given-names>M. B.</given-names>
</name>
<name>
<surname>Zorec</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Stopar</surname>
<given-names>D.</given-names>
</name>
</person-group>
(
<year>2016b</year>
).
<article-title>Prodigiosin - A multifaceted
<italic>Escherichia coli</italic>
antimicrobial agent.</article-title>
<source>
<italic>PLoS One</italic>
</source>
<volume>11</volume>
:
<issue>e0162412</issue>
.
<pub-id pub-id-type="doi">10.1371/journal.pone.0162412</pub-id>
<pub-id pub-id-type="pmid">27612193</pub-id>
</mixed-citation>
</ref>
<ref id="B12">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Dang</surname>
<given-names>H. T.</given-names>
</name>
<name>
<surname>Komatsu</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Masuda</surname>
<given-names>H.</given-names>
</name>
<name>
<surname>Enomoto</surname>
<given-names>K.</given-names>
</name>
</person-group>
(
<year>2017</year>
).
<article-title>Characterization of luxi and luxr protein homologs of
<italic>n</italic>
-acylhomoserine lactone-dependent quorum sensing system in
<italic>Pseudoalteromonas</italic>
sp. 520P1.</article-title>
<source>
<italic>Mar. Biotechnol.</italic>
</source>
<volume>19</volume>
<fpage>1</fpage>
<lpage>10</lpage>
.
<pub-id pub-id-type="doi">10.1007/s10126-016-9726-4</pub-id>
<pub-id pub-id-type="pmid">28083715</pub-id>
</mixed-citation>
</ref>
<ref id="B13">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Darshan</surname>
<given-names>N.</given-names>
</name>
<name>
<surname>Manonmani</surname>
<given-names>H. K.</given-names>
</name>
</person-group>
(
<year>2015</year>
).
<article-title>Prodigiosin and its potential applications.</article-title>
<source>
<italic>J. Food Sci. Technol.</italic>
</source>
<volume>52</volume>
<fpage>5393</fpage>
<lpage>5407</lpage>
.
<pub-id pub-id-type="doi">10.1007/s13197-015-1740-4</pub-id>
<pub-id pub-id-type="pmid">26344956</pub-id>
</mixed-citation>
</ref>
<ref id="B14">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>de Rond</surname>
<given-names>T.</given-names>
</name>
<name>
<surname>Stow</surname>
<given-names>P.</given-names>
</name>
<name>
<surname>Eigl</surname>
<given-names>I.</given-names>
</name>
<name>
<surname>Johnson</surname>
<given-names>R. E.</given-names>
</name>
<name>
<surname>Chan</surname>
<given-names>L. J. G.</given-names>
</name>
<name>
<surname>Goyal</surname>
<given-names>G.</given-names>
</name>
<etal></etal>
</person-group>
(
<year>2017</year>
).
<article-title>Oxidative cyclization of prodigiosin by an alkylglycerol monooxygenase-like enzyme.</article-title>
<source>
<italic>Nat. Chem. Biol.</italic>
</source>
<volume>13</volume>
<fpage>1155</fpage>
<lpage>1159</lpage>
.
<pub-id pub-id-type="doi">10.1038/nchembio.2471</pub-id>
<pub-id pub-id-type="pmid">28892091</pub-id>
</mixed-citation>
</ref>
<ref id="B15">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Dobretsov</surname>
<given-names>S. V.</given-names>
</name>
<name>
<surname>Qian</surname>
<given-names>P.-Y.</given-names>
</name>
</person-group>
(
<year>2002</year>
).
<article-title>Effect of bacteria associated with the green alga ulva reticulata on marine micro- and macrofouling.</article-title>
<source>
<italic>Biofouling</italic>
</source>
<volume>18</volume>
<fpage>217</fpage>
<lpage>228</lpage>
.
<pub-id pub-id-type="doi">10.1080/08927010290013026</pub-id>
</mixed-citation>
</ref>
<ref id="B16">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Drummond</surname>
<given-names>D.</given-names>
</name>
<name>
<surname>Smith</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Wood</surname>
<given-names>N. J.</given-names>
</name>
<name>
<surname>Hodgson</surname>
<given-names>D. A.</given-names>
</name>
</person-group>
(
<year>1995</year>
).
<article-title>Interaction between primary and secondary metabolism in
<italic>Streptomyces coelicolor</italic>
A3(2): role of pyrroline-5-carboxylate dehydrogenase.</article-title>
<source>
<italic>Microbiology</italic>
</source>
<volume>141</volume>
<fpage>1739</fpage>
<lpage>1744</lpage>
.
<pub-id pub-id-type="doi">10.1099/13500872-141-7-1739</pub-id>
<pub-id pub-id-type="pmid">7551040</pub-id>
</mixed-citation>
</ref>
<ref id="B17">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Duhaime</surname>
<given-names>M. B.</given-names>
</name>
<name>
<surname>Solonenko</surname>
<given-names>N.</given-names>
</name>
<name>
<surname>Roux</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Verberkmoes</surname>
<given-names>N. C.</given-names>
</name>
<name>
<surname>Wichels</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Sullivan</surname>
<given-names>M. B.</given-names>
</name>
</person-group>
(
<year>2017</year>
).
<article-title>Comparative omics and trait analyses of marine
<italic>Pseudoalteromonas</italic>
phages advance the phage OTU concept.</article-title>
<source>
<italic>Front. Microbiol.</italic>
</source>
<volume>8</volume>
:
<issue>124</issue>
.
<pub-id pub-id-type="doi">10.3389/fmicb.2017.01241</pub-id>
<pub-id pub-id-type="pmid">28729861</pub-id>
</mixed-citation>
</ref>
<ref id="B18">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Egan</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>James</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Kjelleberg</surname>
<given-names>S.</given-names>
</name>
</person-group>
(
<year>2002</year>
).
<article-title>Identification and characterization of a putative transcriptional regulator controlling the expression of fouling inhibitors in
<italic>Pseudoalteromonas tunicata</italic>
.</article-title>
<source>
<italic>Appl. Environ. Microbiol.</italic>
</source>
<volume>68</volume>
<fpage>372</fpage>
<lpage>378</lpage>
.
<pub-id pub-id-type="doi">10.1128/AEM.68.1.372</pub-id>
<pub-id pub-id-type="pmid">11772647</pub-id>
</mixed-citation>
</ref>
<ref id="B19">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Fehér</surname>
<given-names>D.</given-names>
</name>
<name>
<surname>Barlow</surname>
<given-names>R. S.</given-names>
</name>
<name>
<surname>Lorenzo</surname>
<given-names>P. S.</given-names>
</name>
<name>
<surname>Hemscheidt</surname>
<given-names>T. K.</given-names>
</name>
</person-group>
(
<year>2008</year>
).
<article-title>A 2-Substituted Prodiginine, 2-(p-Hydroxybenzyl)prodigiosin, from
<italic>Pseudoalteromonas rubra</italic>
.</article-title>
<source>
<italic>J. Nat. Prod.</italic>
</source>
<volume>71</volume>
<fpage>1970</fpage>
<lpage>1972</lpage>
.
<pub-id pub-id-type="doi">10.1038/nrm2621</pub-id>
<pub-id pub-id-type="pmid">18922034</pub-id>
</mixed-citation>
</ref>
<ref id="B20">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Feitelson</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Hopwood</surname>
<given-names>D.</given-names>
</name>
</person-group>
(
<year>1983</year>
).
<article-title>Cloning of a streptomyces gene for an O-methyltransferase involved in antibiotic biosynthesis.</article-title>
<source>
<italic>Mol. Gen. Genet. MGG</italic>
</source>
<volume>190</volume>
<fpage>394</fpage>
<lpage>398</lpage>
.
<pub-id pub-id-type="doi">10.1007/BF00331065</pub-id>
<pub-id pub-id-type="pmid">6576223</pub-id>
</mixed-citation>
</ref>
<ref id="B21">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Fineran</surname>
<given-names>P. C.</given-names>
</name>
<name>
<surname>Everson</surname>
<given-names>L.</given-names>
</name>
<name>
<surname>Slater</surname>
<given-names>H.</given-names>
</name>
<name>
<surname>Salmond</surname>
<given-names>G. P. C.</given-names>
</name>
</person-group>
(
<year>2005a</year>
).
<article-title>A GntR family transcriptional regulator (PigT) controls gluconate-mediated repression and defines a new, independent pathway for regulation of the tripyrrole antibiotic, prodigiosin, in Serratia.</article-title>
<source>
<italic>Microbiology</italic>
</source>
<volume>151</volume>
<fpage>3833</fpage>
<lpage>3845</lpage>
.
<pub-id pub-id-type="doi">10.1099/mic.0.28251-0</pub-id>
<pub-id pub-id-type="pmid">16339930</pub-id>
</mixed-citation>
</ref>
<ref id="B22">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Fineran</surname>
<given-names>P. C.</given-names>
</name>
<name>
<surname>Slater</surname>
<given-names>H.</given-names>
</name>
<name>
<surname>Everson</surname>
<given-names>L.</given-names>
</name>
<name>
<surname>Hughes</surname>
<given-names>K.</given-names>
</name>
<name>
<surname>Salmond</surname>
<given-names>G. P. C.</given-names>
</name>
</person-group>
(
<year>2005b</year>
).
<article-title>Biosynthesis of tripyrrole and β-lactam secondary metabolites in
<italic>Serratia</italic>
: integration of quorum sensing with multiple new regulatory components in the control of prodigiosin and carbapenem antibiotic production.</article-title>
<source>
<italic>Mol. Microbiol.</italic>
</source>
<volume>56</volume>
<fpage>1495</fpage>
<lpage>1517</lpage>
.
<pub-id pub-id-type="doi">10.1111/j.1365-2958.2005.04660.x</pub-id>
<pub-id pub-id-type="pmid">15916601</pub-id>
</mixed-citation>
</ref>
<ref id="B23">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Franks</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Egan</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Holmström</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>James</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Lappin-Scott</surname>
<given-names>H.</given-names>
</name>
<name>
<surname>Kjelleberg</surname>
<given-names>S.</given-names>
</name>
</person-group>
(
<year>2006</year>
).
<article-title>Inhibition of fungal colonization by
<italic>Pseudoalteromonas tunicata</italic>
provides a competitive advantage during surface colonization.</article-title>
<source>
<italic>Appl. Environ. Microbiol.</italic>
</source>
<volume>72</volume>
<fpage>6079</fpage>
<lpage>6087</lpage>
.
<pub-id pub-id-type="doi">10.1128/AEM.00559-06</pub-id>
<pub-id pub-id-type="pmid">16957232</pub-id>
</mixed-citation>
</ref>
<ref id="B24">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Gallardo</surname>
<given-names>K.</given-names>
</name>
<name>
<surname>Candia</surname>
<given-names>J. E.</given-names>
</name>
<name>
<surname>Remonsellez</surname>
<given-names>F.</given-names>
</name>
<name>
<surname>Escudero</surname>
<given-names>L. V.</given-names>
</name>
<name>
<surname>Demergasso</surname>
<given-names>C. S.</given-names>
</name>
</person-group>
(
<year>2016</year>
).
<article-title>The ecological coherence of temperature and salinity tolerance interaction and pigmentation in a non-marine
<italic>Vibrio</italic>
isolated from salar de atacama.</article-title>
<source>
<italic>Front. Microbiol.</italic>
</source>
<volume>7</volume>
:
<issue>1943</issue>
.
<pub-id pub-id-type="doi">10.3389/fmicb.2016.01943</pub-id>
<pub-id pub-id-type="pmid">27990141</pub-id>
</mixed-citation>
</ref>
<ref id="B25">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Garneau-Tsodikova</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Dorrestein</surname>
<given-names>P. C.</given-names>
</name>
<name>
<surname>Kelleher</surname>
<given-names>N. L.</given-names>
</name>
<name>
<surname>Walsh</surname>
<given-names>C. T.</given-names>
</name>
</person-group>
(
<year>2006</year>
).
<article-title>Protein assembly line components in prodigiosin biosynthesis: characterization of PigA,G,H,I,J.</article-title>
<source>
<italic>J. Am. Chem. Soc.</italic>
</source>
<volume>128</volume>
<fpage>12600</fpage>
<lpage>12601</lpage>
.
<pub-id pub-id-type="doi">10.1021/ja063611l</pub-id>
<pub-id pub-id-type="pmid">17002325</pub-id>
</mixed-citation>
</ref>
<ref id="B26">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Goldschmidt</surname>
<given-names>M. C.</given-names>
</name>
<name>
<surname>Williams</surname>
<given-names>R. P.</given-names>
</name>
</person-group>
(
<year>1968</year>
).
<article-title>Thiamine-induced formation of the monopyrrole moiety of prodigiosin.</article-title>
<source>
<italic>J. Bacteriol.</italic>
</source>
<volume>96</volume>
<fpage>609</fpage>
<lpage>616</lpage>
.
<pub-id pub-id-type="pmid">4895047</pub-id>
</mixed-citation>
</ref>
<ref id="B27">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Gristwood</surname>
<given-names>T.</given-names>
</name>
<name>
<surname>McNeil</surname>
<given-names>M. B.</given-names>
</name>
<name>
<surname>Clulow</surname>
<given-names>J. S.</given-names>
</name>
<name>
<surname>Salmond</surname>
<given-names>G. P. C.</given-names>
</name>
<name>
<surname>Fineran</surname>
<given-names>P. C.</given-names>
</name>
</person-group>
(
<year>2011</year>
).
<article-title>PigS and PigP regulate prodigiosin biosynthesis in
<italic>Serratia</italic>
via differential control of divergent operons, which include predicted transporters of sulfur-containing molecules.</article-title>
<source>
<italic>J. Bacteriol.</italic>
</source>
<volume>193</volume>
<fpage>1076</fpage>
<lpage>1085</lpage>
.
<pub-id pub-id-type="doi">10.1128/JB.00352-10</pub-id>
<pub-id pub-id-type="pmid">21183667</pub-id>
</mixed-citation>
</ref>
<ref id="B28">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Guryanov</surname>
<given-names>I. D.</given-names>
</name>
<name>
<surname>Karamova</surname>
<given-names>N. S.</given-names>
</name>
<name>
<surname>Yusupova</surname>
<given-names>D. V.</given-names>
</name>
<name>
<surname>Gnezdilov</surname>
<given-names>O. I.</given-names>
</name>
<name>
<surname>Koshkarova</surname>
<given-names>L. A.</given-names>
</name>
</person-group>
(
<year>2013</year>
).
<article-title>Bacterial pigment prodigiosin and its genotoxic effect.</article-title>
<source>
<italic>Russ. J. Bioorganic Chem.</italic>
</source>
<volume>39</volume>
<fpage>106</fpage>
<lpage>111</lpage>
.
<pub-id pub-id-type="doi">10.1134/S1068162012060040</pub-id>
<pub-id pub-id-type="pmid">22579953</pub-id>
</mixed-citation>
</ref>
<ref id="B29">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Harris</surname>
<given-names>A. K. P.</given-names>
</name>
<name>
<surname>Williamson</surname>
<given-names>N. R.</given-names>
</name>
<name>
<surname>Slater</surname>
<given-names>H.</given-names>
</name>
<name>
<surname>Cox</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Abbasi</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Foulds</surname>
<given-names>I.</given-names>
</name>
<etal></etal>
</person-group>
(
<year>2004</year>
).
<article-title>The
<italic>Serratia</italic>
gene cluster encoding biosynthesis of the red antibiotic, prodigiosin, shows species- and strain-dependent genome context variation.</article-title>
<source>
<italic>Microbiology</italic>
</source>
<volume>150</volume>
<fpage>3547</fpage>
<lpage>3560</lpage>
.
<pub-id pub-id-type="doi">10.1099/mic.0.27222-0</pub-id>
<pub-id pub-id-type="pmid">15528645</pub-id>
</mixed-citation>
</ref>
<ref id="B30">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Hernando</surname>
<given-names>E.</given-names>
</name>
<name>
<surname>Soto-Cerrato</surname>
<given-names>V.</given-names>
</name>
<name>
<surname>Cortés-Arroyo</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Pérez-Tomás</surname>
<given-names>R.</given-names>
</name>
<name>
<surname>Quesada</surname>
<given-names>R.</given-names>
</name>
</person-group>
(
<year>2014</year>
).
<article-title>Transmembrane anion transport and cytotoxicity of synthetic tambjamine analogs.</article-title>
<source>
<italic>Org. Biomol. Chem.</italic>
</source>
<volume>12</volume>
<fpage>1771</fpage>
<lpage>1778</lpage>
.
<pub-id pub-id-type="doi">10.1039/C3OB42341G</pub-id>
<pub-id pub-id-type="pmid">24500335</pub-id>
</mixed-citation>
</ref>
<ref id="B31">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Holmström</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>Egan</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Franks</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>McCloy</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Kjelleberg</surname>
<given-names>S.</given-names>
</name>
</person-group>
(
<year>2002</year>
).
<article-title>Antifouling activities expressed by marine surface associated
<italic>Pseudoalteromonas</italic>
species.</article-title>
<source>
<italic>FEMS Microbiol. Ecol.</italic>
</source>
<volume>41</volume>
<fpage>47</fpage>
<lpage>58</lpage>
.
<pub-id pub-id-type="doi">10.1016/S0168-6496(02)00239-8</pub-id>
<pub-id pub-id-type="pmid">19709238</pub-id>
</mixed-citation>
</ref>
<ref id="B32">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Holmström</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>James</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Neilan</surname>
<given-names>B. A.</given-names>
</name>
<name>
<surname>White</surname>
<given-names>D. C.</given-names>
</name>
<name>
<surname>Kjelleberg</surname>
<given-names>S.</given-names>
</name>
</person-group>
(
<year>1998</year>
).
<article-title>Pseudoalteromonas tunicata sp. nov., a bacterium that produces antifouling agents.</article-title>
<source>
<italic>Int. J. Syst. Bacteriol.</italic>
</source>
<volume>48</volume>
<fpage>1205</fpage>
<lpage>1212</lpage>
.
<pub-id pub-id-type="doi">10.1099/00207713-48-4-1205</pub-id>
<pub-id pub-id-type="pmid">9828422</pub-id>
</mixed-citation>
</ref>
<ref id="B33">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Holmström</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>Kjelleberg</surname>
<given-names>S.</given-names>
</name>
</person-group>
(
<year>1999</year>
).
<article-title>Marine
<italic>Pseudoalteromonas</italic>
species are associated with higher organisms and produce biologically active extracellular agents.</article-title>
<source>
<italic>FEMS Microb. Ecol.</italic>
</source>
<volume>30</volume>
<fpage>285</fpage>
<lpage>293</lpage>
.
<pub-id pub-id-type="doi">10.1111/j.1574-6941.1999.tb00656.x</pub-id>
<pub-id pub-id-type="pmid">10568837</pub-id>
</mixed-citation>
</ref>
<ref id="B34">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Hu</surname>
<given-names>D. X.</given-names>
</name>
<name>
<surname>Withall</surname>
<given-names>D. M.</given-names>
</name>
<name>
<surname>Challis</surname>
<given-names>G. L.</given-names>
</name>
<name>
<surname>Thomson</surname>
<given-names>R. J.</given-names>
</name>
</person-group>
(
<year>2016</year>
).
<article-title>Structure, chemical synthesis, and biosynthesis of prodiginine natural products.</article-title>
<source>
<italic>Chem. Rev.</italic>
</source>
<volume>116</volume>
<fpage>7818</fpage>
<lpage>7853</lpage>
.
<pub-id pub-id-type="doi">10.1021/acs.chemrev.6b00024</pub-id>
<pub-id pub-id-type="pmid">27314508</pub-id>
</mixed-citation>
</ref>
<ref id="B35">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Huang</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Callahan</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Hadfield</surname>
<given-names>M. G.</given-names>
</name>
</person-group>
(
<year>2012</year>
).
<article-title>Recruitment in the sea: bacterial genes required for inducing larval settlement in a polychaete worm.</article-title>
<source>
<italic>Sci. Rep.</italic>
</source>
<volume>2</volume>
:
<issue>228</issue>
.
<pub-id pub-id-type="doi">10.1038/srep00228</pub-id>
<pub-id pub-id-type="pmid">22355742</pub-id>
</mixed-citation>
</ref>
<ref id="B36">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Isaka</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Jaturapat</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Kramyu</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Tanticharoen</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Thebtaranonth</surname>
<given-names>Y.</given-names>
</name>
</person-group>
(
<year>2002</year>
).
<article-title>Potent in vitro antimalarial activity of metacycloprodigiosin isolated from
<italic>Streptomyces spectabilis</italic>
BCC 4785.</article-title>
<source>
<italic>Antimicrob. Agents Chemother.</italic>
</source>
<volume>46</volume>
<fpage>1112</fpage>
<lpage>1113</lpage>
.
<pub-id pub-id-type="doi">10.1128/AAC.46.4.1112-1113.2002</pub-id>
<pub-id pub-id-type="pmid">11897600</pub-id>
</mixed-citation>
</ref>
<ref id="B37">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Johnson</surname>
<given-names>R. E.</given-names>
</name>
<name>
<surname>De Rond</surname>
<given-names>T.</given-names>
</name>
<name>
<surname>Lindsay</surname>
<given-names>V. N. G.</given-names>
</name>
<name>
<surname>Keasling</surname>
<given-names>J. D.</given-names>
</name>
<name>
<surname>Sarpong</surname>
<given-names>R.</given-names>
</name>
</person-group>
(
<year>2015</year>
).
<article-title>Synthesis of cycloprodigiosin identifies the natural isolate as a scalemic mixture.</article-title>
<source>
<italic>Org. Lett.</italic>
</source>
<volume>17</volume>
<fpage>3474</fpage>
<lpage>3477</lpage>
.
<pub-id pub-id-type="doi">10.1021/acs.orglett.5b01527</pub-id>
<pub-id pub-id-type="pmid">26114660</pub-id>
</mixed-citation>
</ref>
<ref id="B38">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Joyner</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Wanless</surname>
<given-names>D.</given-names>
</name>
<name>
<surname>Sinigalliano</surname>
<given-names>C. D.</given-names>
</name>
<name>
<surname>Lipp</surname>
<given-names>E. K.</given-names>
</name>
</person-group>
(
<year>2014</year>
).
<article-title>Use of quantitative real-time PCR for direct detection of
<italic>Serratia marcescens</italic>
in marine and other aquatic environments.</article-title>
<source>
<italic>Appl. Environ. Microbiol.</italic>
</source>
<volume>80</volume>
<fpage>1679</fpage>
<lpage>1683</lpage>
.
<pub-id pub-id-type="doi">10.1128/AEM.02755-13</pub-id>
<pub-id pub-id-type="pmid">24375136</pub-id>
</mixed-citation>
</ref>
<ref id="B39">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Kalesperis</surname>
<given-names>G. S.</given-names>
</name>
<name>
<surname>Prahlad</surname>
<given-names>K. V.</given-names>
</name>
<name>
<surname>Lynch</surname>
<given-names>D. L.</given-names>
</name>
</person-group>
(
<year>1975</year>
).
<article-title>Toxigenic studies with the antibiotic pigments from
<italic>Serratia marcescens</italic>
.</article-title>
<source>
<italic>Can. J. Microbiol.</italic>
</source>
<volume>21</volume>
<fpage>213</fpage>
<lpage>220</lpage>
.
<pub-id pub-id-type="doi">10.1139/m75-030</pub-id>
<pub-id pub-id-type="pmid">803402</pub-id>
</mixed-citation>
</ref>
<ref id="B40">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Kawauchi</surname>
<given-names>K.</given-names>
</name>
<name>
<surname>Shibutani</surname>
<given-names>K.</given-names>
</name>
<name>
<surname>Yagisawa</surname>
<given-names>H.</given-names>
</name>
<name>
<surname>Kamata</surname>
<given-names>H.</given-names>
</name>
<name>
<surname>Nakatsuji</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Anzai</surname>
<given-names>H.</given-names>
</name>
<etal></etal>
</person-group>
(
<year>1997</year>
).
<article-title>A possible immunosuppressant, cycloprodigiosin hydrochloride, obtained from
<italic>Pseudoalteromonas denitrificans</italic>
.</article-title>
<source>
<italic>Biochem. Biophys. Res. Commun.</italic>
</source>
<volume>237</volume>
<fpage>543</fpage>
<lpage>547</lpage>
.
<pub-id pub-id-type="doi">10.1006/bbrc.1997.7186</pub-id>
<pub-id pub-id-type="pmid">9299400</pub-id>
</mixed-citation>
</ref>
<ref id="B41">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Kawauchi</surname>
<given-names>K.</given-names>
</name>
<name>
<surname>Tobiume</surname>
<given-names>K.</given-names>
</name>
<name>
<surname>Iwashita</surname>
<given-names>K.</given-names>
</name>
<name>
<surname>Inagaki</surname>
<given-names>H.</given-names>
</name>
<name>
<surname>Morikawa</surname>
<given-names>T.</given-names>
</name>
<name>
<surname>Shibukawa</surname>
<given-names>Y.</given-names>
</name>
<etal></etal>
</person-group>
(
<year>2008</year>
).
<article-title>Cycloprodigiosin hydrochloride activates the Ras-PI3K-Akt pathway and suppresses protein synthesis inhibition-induced apoptosis in PC12 cells.</article-title>
<source>
<italic>Biosci. Biot. Echnol. Biochem. Biotechnol. Biochem.</italic>
</source>
<volume>72</volume>
<fpage>1564</fpage>
<lpage>1570</lpage>
.
<pub-id pub-id-type="doi">10.1271/bbb.80064</pub-id>
<pub-id pub-id-type="pmid">18540098</pub-id>
</mixed-citation>
</ref>
<ref id="B42">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Kawauchi</surname>
<given-names>K.</given-names>
</name>
<name>
<surname>Tobiume</surname>
<given-names>K.</given-names>
</name>
<name>
<surname>Kaneko</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Kaneshiro</surname>
<given-names>K.</given-names>
</name>
<name>
<surname>Okamoto</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Ueda</surname>
<given-names>E.</given-names>
</name>
<etal></etal>
</person-group>
(
<year>2007</year>
).
<article-title>Suppression of AP-1 activity by cycloprodigiosin hydrochloride.</article-title>
<source>
<italic>Biol. Pharm. Bull.</italic>
</source>
<volume>30</volume>
<fpage>1792</fpage>
<lpage>1795</lpage>
.
<pub-id pub-id-type="doi">10.1248/bpb.30.1792</pub-id>
<pub-id pub-id-type="pmid">17827742</pub-id>
</mixed-citation>
</ref>
<ref id="B43">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Kim</surname>
<given-names>H.-S.</given-names>
</name>
<name>
<surname>Hayashi</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Shibata</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Wataya</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Mitamura</surname>
<given-names>T.</given-names>
</name>
<name>
<surname>Horii</surname>
<given-names>T.</given-names>
</name>
<etal></etal>
</person-group>
(
<year>1999</year>
).
<article-title>Cycloprodigiosin hydrochloride obtained from
<italic>Pseudoalteromonas denitrificans</italic>
is a potent antimalarial agent.</article-title>
<source>
<italic>Biol. Pharm. Bull.</italic>
</source>
<volume>22</volume>
<fpage>532</fpage>
<lpage>534</lpage>
.
<pub-id pub-id-type="doi">10.1248/bpb.22.532</pub-id>
<pub-id pub-id-type="pmid">10375177</pub-id>
</mixed-citation>
</ref>
<ref id="B44">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Kimata</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Izawa</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Kawasaki</surname>
<given-names>T.</given-names>
</name>
<name>
<surname>Hayakawa</surname>
<given-names>Y.</given-names>
</name>
</person-group>
(
<year>2017</year>
).
<article-title>Identification of a prodigiosin cyclization gene in the roseophilin producer and production of a new cyclized prodigiosin in a heterologous host.</article-title>
<source>
<italic>J. Antibiot.</italic>
</source>
<volume>70</volume>
<fpage>196</fpage>
<lpage>199</lpage>
.
<pub-id pub-id-type="doi">10.1038/ja.2016.94</pub-id>
<pub-id pub-id-type="pmid">27460763</pub-id>
</mixed-citation>
</ref>
<ref id="B45">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Kimyon</surname>
<given-names>Ö</given-names>
</name>
<name>
<surname>Das</surname>
<given-names>T.</given-names>
</name>
<name>
<surname>Ibugo</surname>
<given-names>A. I</given-names>
</name>
<name>
<surname>Kutty</surname>
<given-names>S. K.</given-names>
</name>
<name>
<surname>Ho</surname>
<given-names>K. K.</given-names>
</name>
<name>
<surname>Tebben</surname>
<given-names>J.</given-names>
</name>
</person-group>
<etal></etal>
(
<year>2016</year>
).
<article-title>Serratia secondary metabolite prodigiosin inhibits
<italic>Pseudomonas aeruginosa</italic>
biofilm development by producing reactive oxygen species that damage biological molecules.</article-title>
<source>
<italic>Front. Microbiol.</italic>
</source>
<volume>7</volume>
:
<issue>972</issue>
.
<pub-id pub-id-type="doi">10.3389/fmicb.2016.00972</pub-id>
<pub-id pub-id-type="pmid">27446013</pub-id>
</mixed-citation>
</ref>
<ref id="B46">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Lapenda</surname>
<given-names>J. C.</given-names>
</name>
<name>
<surname>Silva</surname>
<given-names>P. A.</given-names>
</name>
<name>
<surname>Vicalvi</surname>
<given-names>M. C.</given-names>
</name>
<name>
<surname>Sena</surname>
<given-names>K. X. F. R.</given-names>
</name>
<name>
<surname>Nascimento</surname>
<given-names>S. C.</given-names>
</name>
</person-group>
(
<year>2014</year>
).
<article-title>Antimicrobial activity of prodigiosin isolated from
<italic>Serratia marcescens</italic>
UFPEDA 398.</article-title>
<source>
<italic>World J. Microbiol. Biotechnol.</italic>
</source>
<volume>31</volume>
<fpage>399</fpage>
<lpage>406</lpage>
.
<pub-id pub-id-type="doi">10.1007/s11274-014-1793-y</pub-id>
<pub-id pub-id-type="pmid">25549906</pub-id>
</mixed-citation>
</ref>
<ref id="B47">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Li</surname>
<given-names>B.</given-names>
</name>
<name>
<surname>Wang</surname>
<given-names>P.</given-names>
</name>
<name>
<surname>Zeng</surname>
<given-names>Z.</given-names>
</name>
<name>
<surname>Cai</surname>
<given-names>X.</given-names>
</name>
<name>
<surname>Wang</surname>
<given-names>G.</given-names>
</name>
<name>
<surname>Wang</surname>
<given-names>X.</given-names>
</name>
</person-group>
(
<year>2016</year>
).
<article-title>Complete genome sequence of
<italic>Pseudoalteromonas rubra</italic>
SCSIO 6842, harboring a putative conjugative plasmid pMBL6842.</article-title>
<source>
<italic>J. Biotechnol.</italic>
</source>
<volume>224</volume>
<fpage>66</fpage>
<lpage>67</lpage>
.
<pub-id pub-id-type="doi">10.1016/j.jbiotec.2016.03.010</pub-id>
<pub-id pub-id-type="pmid">26970053</pub-id>
</mixed-citation>
</ref>
<ref id="B48">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Manderville</surname>
<given-names>R. A.</given-names>
</name>
</person-group>
(
<year>2001</year>
).
<article-title>Synthesis, proton-affinity and anti-cancer properties of the prodigiosin-group natural products.</article-title>
<source>
<italic>Curr. Med. Chem.</italic>
</source>
<volume>1</volume>
<fpage>195</fpage>
<lpage>218</lpage>
.
<pub-id pub-id-type="doi">10.2174/1568011013354688</pub-id>
<pub-id pub-id-type="pmid">12678767</pub-id>
</mixed-citation>
</ref>
<ref id="B49">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Marchetti</surname>
<given-names>P. M.</given-names>
</name>
<name>
<surname>Kelly</surname>
<given-names>V.</given-names>
</name>
<name>
<surname>Simpson</surname>
<given-names>J. P.</given-names>
</name>
<name>
<surname>Ward</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Campopiano</surname>
<given-names>D. J.</given-names>
</name>
</person-group>
(
<year>2018</year>
).
<article-title>The carbon chain-selective adenylation enzyme TamA: the missing link between fatty acid and pyrrole natural product biosynthesis.</article-title>
<source>
<italic>Org. Biomol. Chem.</italic>
</source>
<volume>16</volume>
<fpage>2735</fpage>
<lpage>2740</lpage>
.
<pub-id pub-id-type="doi">10.1039/c8ob00441b</pub-id>
<pub-id pub-id-type="pmid">29594310</pub-id>
</mixed-citation>
</ref>
<ref id="B50">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Morrison</surname>
<given-names>D. A.</given-names>
</name>
</person-group>
(
<year>1966</year>
).
<article-title>Prodigiosin synthesis in mutants of
<italic>Serratia marcesens</italic>
.</article-title>
<source>
<italic>J. Bacteriol.</italic>
</source>
<volume>91</volume>
<fpage>1599</fpage>
<lpage>1604</lpage>
.
<pub-id pub-id-type="pmid">5326119</pub-id>
</mixed-citation>
</ref>
<ref id="B51">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Offret</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>Desriac</surname>
<given-names>F.</given-names>
</name>
<name>
<surname>Le Chevalier</surname>
<given-names>P.</given-names>
</name>
<name>
<surname>Mounier</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Jégou</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>Fleury</surname>
<given-names>Y.</given-names>
</name>
</person-group>
(
<year>2016</year>
).
<article-title>Spotlight on antimicrobial metabolites from the marine bacteria
<italic>Pseudoalteromonas</italic>
: chemodiversity and ecological significance.</article-title>
<source>
<italic>Mar. Drugs</italic>
</source>
<volume>14</volume>
:
<issue>E129</issue>
.
<pub-id pub-id-type="doi">10.3390/md14070129</pub-id>
<pub-id pub-id-type="pmid">27399731</pub-id>
</mixed-citation>
</ref>
<ref id="B52">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Okamoto</surname>
<given-names>H.</given-names>
</name>
<name>
<surname>Sato</surname>
<given-names>Z.</given-names>
</name>
<name>
<surname>Sato</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Koiso</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Iwasaki</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Isaki</surname>
<given-names>M.</given-names>
</name>
</person-group>
(
<year>1998</year>
).
<article-title>Identification of Antibiotic red pigments of
<italic>Serratia marcescens</italic>
F-1-1, a biocontrol agent of damping-off of cucumber, and antimicrobial activity against other plant pathogens.</article-title>
<source>
<italic>Japanese J. Phytopathol.</italic>
</source>
<volume>64</volume>
<fpage>294</fpage>
<lpage>298</lpage>
.
<pub-id pub-id-type="doi">10.3186/jjphytopath.64.294</pub-id>
</mixed-citation>
</ref>
<ref id="B53">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Pan</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Wang</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Yan</surname>
<given-names>X.</given-names>
</name>
<name>
<surname>Mazumder</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Liang</surname>
<given-names>Y.</given-names>
</name>
</person-group>
(
<year>2016</year>
).
<article-title>Draft genome sequence of
<italic>Pseudoalteromonas tetraodonis</italic>
Strain MQS005, a bacterium with potential quorum-sensing regulation.</article-title>
<source>
<italic>Genome Announc</italic>
</source>
<volume>4</volume>
<fpage>e724</fpage>
<lpage>e716</lpage>
.
<pub-id pub-id-type="doi">10.1128/genomeA.00724-16</pub-id>
<pub-id pub-id-type="pmid">27491986</pub-id>
</mixed-citation>
</ref>
<ref id="B54">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Pinkerton</surname>
<given-names>D. M.</given-names>
</name>
<name>
<surname>Banwell</surname>
<given-names>M. G.</given-names>
</name>
<name>
<surname>Garson</surname>
<given-names>M. J.</given-names>
</name>
<name>
<surname>Kumar</surname>
<given-names>N.</given-names>
</name>
<name>
<surname>De Moraes</surname>
<given-names>M. O.</given-names>
</name>
<name>
<surname>Cavalcanti</surname>
<given-names>B. C.</given-names>
</name>
<etal></etal>
</person-group>
(
<year>2010</year>
).
<article-title>Antimicrobial and cytotoxic activities of synthetically derived tambjamines C and E-J, BE-18591, and a related alkaloid from the marine bacterium
<italic>Pseudoalteromonas tunicata</italic>
.</article-title>
<source>
<italic>Chem. Biodivers.</italic>
</source>
<volume>7</volume>
<fpage>1311</fpage>
<lpage>1324</lpage>
.
<pub-id pub-id-type="doi">10.1002/cbdv.201000030</pub-id>
<pub-id pub-id-type="pmid">20491087</pub-id>
</mixed-citation>
</ref>
<ref id="B55">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Pratheepa</surname>
<given-names>V.</given-names>
</name>
<name>
<surname>Vasconcelos</surname>
<given-names>V.</given-names>
</name>
</person-group>
(
<year>2013</year>
).
<article-title>Microbial diversity associated with tetrodotoxin production in marine organisms.</article-title>
<source>
<italic>Environ. Toxicol. Pharmacol.</italic>
</source>
<volume>36</volume>
<fpage>1046</fpage>
<lpage>1054</lpage>
.
<pub-id pub-id-type="doi">10.1016/j.etap.2013.08.013</pub-id>
<pub-id pub-id-type="pmid">24121556</pub-id>
</mixed-citation>
</ref>
<ref id="B56">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Rapoport</surname>
<given-names>H.</given-names>
</name>
<name>
<surname>Holden</surname>
<given-names>K. G.</given-names>
</name>
</person-group>
(
<year>1962</year>
).
<article-title>The synthesis of prodigiosin.</article-title>
<source>
<italic>J. Am. Chem. Soc.</italic>
</source>
<volume>84</volume>
<fpage>635</fpage>
<lpage>642</lpage>
.
<pub-id pub-id-type="doi">10.1071/CH9732065</pub-id>
</mixed-citation>
</ref>
<ref id="B57">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Rodilla</surname>
<given-names>A. M.</given-names>
</name>
<name>
<surname>Korrodi-Gregório</surname>
<given-names>L.</given-names>
</name>
<name>
<surname>Hernando</surname>
<given-names>E.</given-names>
</name>
<name>
<surname>Manuel-Manresa</surname>
<given-names>P.</given-names>
</name>
<name>
<surname>Quesada</surname>
<given-names>R.</given-names>
</name>
<name>
<surname>Pérez-Tomás</surname>
<given-names>R.</given-names>
</name>
<etal></etal>
</person-group>
(
<year>2001</year>
).
<article-title>Synthesis, proton-affinity and anti-cancer properties of the prodigiosin-group natural products.</article-title>
<source>
<italic>Curr. Med. Chem.</italic>
</source>
<fpage>195</fpage>
<lpage>218</lpage>
.
<pub-id pub-id-type="doi">10.1016/j.bcp.2016.11.022</pub-id>
<pub-id pub-id-type="pmid">27890727</pub-id>
</mixed-citation>
</ref>
<ref id="B58">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Sakai-Kawada</surname>
<given-names>F. E.</given-names>
</name>
<name>
<surname>Yakym</surname>
<given-names>C. J.</given-names>
</name>
<name>
<surname>Helmkampf</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Hagiwara</surname>
<given-names>K.</given-names>
</name>
<name>
<surname>Ip</surname>
<given-names>C. G.</given-names>
</name>
<name>
<surname>Antonio</surname>
<given-names>B. J.</given-names>
</name>
<etal></etal>
</person-group>
(
<year>2016</year>
).
<article-title>Draft genome sequence of marine sponge symbiont
<italic>Pseudoalteromonas luteoviolacea</italic>
IPB1. Isolated from Hilo, Hawaii.</article-title>
<source>
<italic>Genome Announc.</italic>
</source>
<volume>4</volume>
<fpage>e1002</fpage>
<lpage>e1016</lpage>
.
<pub-id pub-id-type="doi">10.1128/genomeA.01002-16</pub-id>
<pub-id pub-id-type="pmid">27660784</pub-id>
</mixed-citation>
</ref>
<ref id="B59">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Sharma</surname>
<given-names>M.</given-names>
</name>
</person-group>
(
<year>2015</year>
).
<article-title>pH gradient reversal: an emerging hallmark of cancers.</article-title>
<source>
<italic>Recent Pat. Anticancer. Drug Discov.</italic>
</source>
<volume>10</volume>
<fpage>244</fpage>
<lpage>258</lpage>
.
<pub-id pub-id-type="doi">10.2174/1574892810666150708110608</pub-id>
<pub-id pub-id-type="pmid">26152150</pub-id>
</mixed-citation>
</ref>
<ref id="B60">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Singh</surname>
<given-names>P.</given-names>
</name>
<name>
<surname>Shekhawat</surname>
<given-names>N.</given-names>
</name>
</person-group>
(
<year>2012</year>
).
<article-title>Chemometric descriptors in the rationale of antimalarial activity of natural and synthetic prodiginines.</article-title>
<source>
<italic>J. Curr. Chem. Pharm. Sci.</italic>
</source>
<volume>2</volume>
<fpage>244</fpage>
<lpage>260</lpage>
.</mixed-citation>
</ref>
<ref id="B61">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Suryawanshi</surname>
<given-names>R. K.</given-names>
</name>
<name>
<surname>Patil</surname>
<given-names>C. D.</given-names>
</name>
<name>
<surname>Borase</surname>
<given-names>H. P.</given-names>
</name>
<name>
<surname>Narkhede</surname>
<given-names>C. P.</given-names>
</name>
<name>
<surname>Salunke</surname>
<given-names>B. K.</given-names>
</name>
<name>
<surname>Patil</surname>
<given-names>S. V.</given-names>
</name>
</person-group>
(
<year>2015</year>
).
<article-title>Mosquito larvicidal and pupaecidal potential of prodigiosin from
<italic>Serratia marcescens</italic>
and understanding its mechanism of action.</article-title>
<source>
<italic>Pestic. Biochem. Physiol.</italic>
</source>
<volume>123</volume>
<fpage>49</fpage>
<lpage>55</lpage>
.
<pub-id pub-id-type="doi">10.1016/j.pestbp.2015.01.018</pub-id>
<pub-id pub-id-type="pmid">26267052</pub-id>
</mixed-citation>
</ref>
<ref id="B62">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Suryawanshi</surname>
<given-names>R. K.</given-names>
</name>
<name>
<surname>Patil</surname>
<given-names>C. D.</given-names>
</name>
<name>
<surname>Koli</surname>
<given-names>S. H.</given-names>
</name>
<name>
<surname>Hallsworth</surname>
<given-names>J. E.</given-names>
</name>
<name>
<surname>Patil</surname>
<given-names>S. V.</given-names>
</name>
</person-group>
(
<year>2017</year>
).
<article-title>Antimicrobial activity of prodigiosin is attributable to plasma-membrane damage.</article-title>
<source>
<italic>Nat. Prod. Res.</italic>
</source>
<volume>31</volume>
<fpage>572</fpage>
<lpage>577</lpage>
.
<pub-id pub-id-type="doi">10.1080/14786419.2016.1195380</pub-id>
<pub-id pub-id-type="pmid">27353356</pub-id>
</mixed-citation>
</ref>
<ref id="B63">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Tsuji</surname>
<given-names>R. F.</given-names>
</name>
<name>
<surname>Yamamoto</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Nakamura</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Kataoka</surname>
<given-names>T.</given-names>
</name>
<name>
<surname>Magae</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Nagai</surname>
<given-names>K.</given-names>
</name>
<etal></etal>
</person-group>
(
<year>1990</year>
).
<article-title>Selective immunosuppresion of Prodigiosin 25-C and FK506 in the Murine Immune System.</article-title>
<source>
<italic>J. Antibiot.</italic>
</source>
<volume>43</volume>
<fpage>1293</fpage>
<lpage>1301</lpage>
.
<pub-id pub-id-type="doi">10.7164/antibiotics.43.1293</pub-id>
<pub-id pub-id-type="pmid">1701765</pub-id>
</mixed-citation>
</ref>
<ref id="B64">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Vynne</surname>
<given-names>N. G.</given-names>
</name>
<name>
<surname>Månsson</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Nielsen</surname>
<given-names>K. F.</given-names>
</name>
<name>
<surname>Gram</surname>
<given-names>L.</given-names>
</name>
</person-group>
(
<year>2011</year>
).
<article-title>Bioactivity, chemical profiling, and 16S rRNA-Based Phylogeny of
<italic>Pseudoalteromonas</italic>
strains collected on a global research cruise.</article-title>
<source>
<italic>Mar. Biotechnol.</italic>
</source>
<volume>13</volume>
<fpage>1062</fpage>
<lpage>1073</lpage>
.
<pub-id pub-id-type="doi">10.1007/s10126-011-9369-4</pub-id>
<pub-id pub-id-type="pmid">21305330</pub-id>
</mixed-citation>
</ref>
<ref id="B65">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Wang</surname>
<given-names>P.</given-names>
</name>
<name>
<surname>Yu</surname>
<given-names>Z.</given-names>
</name>
<name>
<surname>Li</surname>
<given-names>B.</given-names>
</name>
<name>
<surname>Cai</surname>
<given-names>X.</given-names>
</name>
<name>
<surname>Zeng</surname>
<given-names>Z.</given-names>
</name>
<name>
<surname>Chen</surname>
<given-names>X.</given-names>
</name>
<etal></etal>
</person-group>
(
<year>2015</year>
).
<article-title>Development of an efficient conjugation-based genetic manipulation system for
<italic>Pseudoalteromonas</italic>
.</article-title>
<source>
<italic>Microb. Cell Fact.</italic>
</source>
<volume>14</volume>
:
<issue>11</issue>
.
<pub-id pub-id-type="doi">10.1186/s12934-015-0194-8</pub-id>
<pub-id pub-id-type="pmid">25612661</pub-id>
</mixed-citation>
</ref>
<ref id="B66">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Wasserman</surname>
<given-names>H.</given-names>
</name>
<name>
<surname>Sykes</surname>
<given-names>R. J.</given-names>
</name>
<name>
<surname>Peverada</surname>
<given-names>P.</given-names>
</name>
<name>
<surname>Shaw</surname>
<given-names>C. K.</given-names>
</name>
<name>
<surname>Cushley</surname>
<given-names>R. J.</given-names>
</name>
<name>
<surname>Lipsky</surname>
<given-names>S. R.</given-names>
</name>
</person-group>
(
<year>1973</year>
).
<article-title>Biosynthesis of prodigiosin. incorporation patterns of 13C-Labeled alanine, proline, glycine, and serine elucidated by fourier transform nuclear magnetic resonance.</article-title>
<source>
<italic>J. Am. Chem. Soc.</italic>
</source>
<volume>95</volume>
<fpage>6874</fpage>
<lpage>6875</lpage>
.
<pub-id pub-id-type="doi">10.1021/ja00801a080</pub-id>
<pub-id pub-id-type="pmid">4583452</pub-id>
</mixed-citation>
</ref>
<ref id="B67">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Webster</surname>
<given-names>N. S.</given-names>
</name>
<name>
<surname>Taylor</surname>
<given-names>M. W.</given-names>
</name>
</person-group>
(
<year>2012</year>
).
<article-title>Marine sponges and their microbial symbionts: love and other relationships.</article-title>
<source>
<italic>Environ. Microbiol.</italic>
</source>
<volume>14</volume>
<fpage>335</fpage>
<lpage>346</lpage>
.
<pub-id pub-id-type="doi">10.1111/j.1462-2920.2011.02460.x</pub-id>
<pub-id pub-id-type="pmid">21443739</pub-id>
</mixed-citation>
</ref>
<ref id="B68">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Williams</surname>
<given-names>R. P.</given-names>
</name>
</person-group>
(
<year>1973</year>
).
<article-title>Biosynthesis of prodigiosin, a secondary metabolite of
<italic>Serratia marcescens</italic>
.</article-title>
<source>
<italic>Appl. Microbiol.</italic>
</source>
<volume>25</volume>
<fpage>396</fpage>
<lpage>402</lpage>
.
<pub-id pub-id-type="pmid">4572893</pub-id>
</mixed-citation>
</ref>
<ref id="B69">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Williamson</surname>
<given-names>N. R.</given-names>
</name>
<name>
<surname>Simonsen</surname>
<given-names>H. T.</given-names>
</name>
<name>
<surname>Ahmed</surname>
<given-names>R. A. A.</given-names>
</name>
<name>
<surname>Goldet</surname>
<given-names>G.</given-names>
</name>
<name>
<surname>Slater</surname>
<given-names>H.</given-names>
</name>
<name>
<surname>Woodley</surname>
<given-names>L.</given-names>
</name>
<etal></etal>
</person-group>
(
<year>2005</year>
).
<article-title>Biosynthesis of the red antibiotic, prodigiosin, in Serratia: identification of a novel 2-methyl-3-n-amyl-pyrroie (MAP) assembly pathway, definition of the terminal condensing enzyme, and implications for undecylprodigiosin biosynthesis in Streptomyces.</article-title>
<source>
<italic>Mol. Microbiol.</italic>
</source>
<volume>56</volume>
<fpage>971</fpage>
<lpage>989</lpage>
.
<pub-id pub-id-type="doi">10.1111/j.1365-2958.2005.04602.x</pub-id>
<pub-id pub-id-type="pmid">15853884</pub-id>
</mixed-citation>
</ref>
<ref id="B70">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Williamson</surname>
<given-names>N. R.</given-names>
</name>
<name>
<surname>Simonsen</surname>
<given-names>H. T.</given-names>
</name>
<name>
<surname>Harris</surname>
<given-names>A. K. P.</given-names>
</name>
<name>
<surname>Leeper</surname>
<given-names>F. J.</given-names>
</name>
<name>
<surname>Salmond</surname>
<given-names>G. P. C.</given-names>
</name>
</person-group>
(
<year>2006</year>
).
<article-title>Disruption of the copper efflux pump (CopA) of
<italic>Serratia marcescens</italic>
ATCC 274 pleiotropically affects copper sensitivity and production of the tripyrrole secondary metabolite, prodigiosin.</article-title>
<source>
<italic>J. Ind. Microbiol. Biotechnol.</italic>
</source>
<volume>33</volume>
<fpage>151</fpage>
<lpage>158</lpage>
.
<pub-id pub-id-type="doi">10.1007/s10295-005-0040-9</pub-id>
<pub-id pub-id-type="pmid">16187093</pub-id>
</mixed-citation>
</ref>
<ref id="B71">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Xie</surname>
<given-names>B.-B.</given-names>
</name>
<name>
<surname>Shu</surname>
<given-names>Y.-L.</given-names>
</name>
<name>
<surname>Qin</surname>
<given-names>Q.-L.</given-names>
</name>
<name>
<surname>Rong</surname>
<given-names>J.-C.</given-names>
</name>
<name>
<surname>Zhang</surname>
<given-names>X.-Y.</given-names>
</name>
<name>
<surname>Chen</surname>
<given-names>X.-L.</given-names>
</name>
<etal></etal>
</person-group>
(
<year>2012</year>
).
<article-title>Genome sequence of the cycloprodigiosin-producing bacterial strain
<italic>Pseudoalteromonas rubra</italic>
ATCC 29570 T.</article-title>
<source>
<italic>J. Bacteriol.</italic>
</source>
<volume>194</volume>
<fpage>1637</fpage>
<lpage>1638</lpage>
.
<pub-id pub-id-type="doi">10.1128/JB.06822-11</pub-id>
<pub-id pub-id-type="pmid">22374963</pub-id>
</mixed-citation>
</ref>
<ref id="B72">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Zhang</surname>
<given-names>H.</given-names>
</name>
<name>
<surname>Peng</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Zhang</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Cai</surname>
<given-names>G.</given-names>
</name>
<name>
<surname>Li</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Yang</surname>
<given-names>X.</given-names>
</name>
<etal></etal>
</person-group>
(
<year>2016</year>
).
<article-title>Algicidal effects of prodigiosin on the harmful algae
<italic>Phaeocystis</italic>
globosa.</article-title>
<source>
<italic>Front. Microbiol.</italic>
</source>
<volume>7</volume>
:
<issue>602</issue>
<pub-id pub-id-type="doi">10.3389/fmicb.2016.00602</pub-id>
</mixed-citation>
</ref>
<ref id="B73">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Zhang</surname>
<given-names>H.</given-names>
</name>
<name>
<surname>Wang</surname>
<given-names>H.</given-names>
</name>
<name>
<surname>Zheng</surname>
<given-names>W.</given-names>
</name>
<name>
<surname>Yao</surname>
<given-names>Z.</given-names>
</name>
<name>
<surname>Peng</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Zhang</surname>
<given-names>S.</given-names>
</name>
<etal></etal>
</person-group>
(
<year>2017</year>
).
<article-title>Toxic effects of prodigiosin secreted by
<italic>Hahella</italic>
sp. KA22 on harmful alga
<italic>Phaeocystis</italic>
globosa.</article-title>
<source>
<italic>Front. Microbiol.</italic>
</source>
<volume>8</volume>
<fpage>1</fpage>
<lpage>12</lpage>
.
<pub-id pub-id-type="doi">10.3389/fmicb.2017.00999</pub-id>
<pub-id pub-id-type="pmid">28197127</pub-id>
</mixed-citation>
</ref>
<ref id="B74">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Zheng</surname>
<given-names>L.</given-names>
</name>
<name>
<surname>Yan</surname>
<given-names>X.</given-names>
</name>
<name>
<surname>Han</surname>
<given-names>X.</given-names>
</name>
<name>
<surname>Chen</surname>
<given-names>H.</given-names>
</name>
<name>
<surname>Lin</surname>
<given-names>W.</given-names>
</name>
<name>
<surname>Lee</surname>
<given-names>F. S. C.</given-names>
</name>
<etal></etal>
</person-group>
(
<year>2006</year>
).
<article-title>Identification of norharman as the cytotoxic compound produced by the sponge (
<italic>Hymeniacidon perleve</italic>
)-associated marine bacterium
<italic>Pseudoalteromonas piscicida</italic>
and its apoptotic effect on cancer cells.</article-title>
<source>
<italic>Biotechnol. Appl. Biochem.</italic>
</source>
<volume>44</volume>
<fpage>135</fpage>
<lpage>142</lpage>
.
<pub-id pub-id-type="doi">10.1042/BA20050176</pub-id>
<pub-id pub-id-type="pmid">16579793</pub-id>
</mixed-citation>
</ref>
</ref-list>
</back>
</pmc>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/ChloroquineV1/Data/Pmc/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000977  | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Pmc/Corpus/biblio.hfd -nk 000977  | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    ChloroquineV1
   |flux=    Pmc
   |étape=   Corpus
   |type=    RBID
   |clé=     
   |texte=   
}}

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Wed Mar 25 22:43:59 2020. Site generation: Sun Jan 31 12:44:45 2021