Serveur d'exploration Chloroquine

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Environmental Exposures and Asthma Development: Autophagy, Mitophagy, and Cellular Senescence

Identifieur interne : 000973 ( Pmc/Corpus ); précédent : 000972; suivant : 000974

Environmental Exposures and Asthma Development: Autophagy, Mitophagy, and Cellular Senescence

Auteurs : Karan Sachdeva ; Danh C. Do ; Yan Zhang ; Xinyue Hu ; Jingsi Chen ; Peisong Gao

Source :

RBID : PMC:6896909

Abstract

Environmental pollutants and allergens induce oxidative stress and mitochondrial dysfunction, leading to key features of allergic asthma. Dysregulations in autophagy, mitophagy, and cellular senescence have been associated with environmental pollutant and allergen-induced oxidative stress, mitochondrial dysfunction, secretion of multiple inflammatory proteins, and subsequently development of asthma. Particularly, particulate matter 2.5 (PM2.5) has been reported to induce autophagy in the bronchial epithelial cells through activation of AMP-activated protein kinase (AMPK), drive mitophagy through activating PTEN-induced kinase 1(PINK1)/Parkin pathway, and induce cell cycle arrest and senescence. Intriguingly, allergens, including ovalbumin (OVA), Alternaria alternata, and cockroach allergen, have also been shown to induce autophagy through activation of different signaling pathways. Additionally, mitochondrial dysfunction can induce cell senescence due to excessive ROS production, which affects airway diseases. Although autophagy and senescence share similar properties, recent studies suggest that autophagy can either accelerate the development of senescence or prevent senescence. Thus, in this review, we evaluated the literature regarding the basic cellular processes, including autophagy, mitophagy, and cellular senescence, explored their molecular mechanisms in the regulation of the initiation and downstream signaling. Especially, we highlighted their involvement in environmental pollutant/allergen-induced major phenotypic changes of asthma such as airway inflammation and remodeling and reviewed novel and critical research areas for future studies. Ultimately, understanding the regulatory mechanisms of autophagy, mitophagy, and cellular senescence may allow for the development of new therapeutic targets for asthma.


Url:
DOI: 10.3389/fimmu.2019.02787
PubMed: 31849968
PubMed Central: 6896909

Links to Exploration step

PMC:6896909

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Environmental Exposures and Asthma Development: Autophagy, Mitophagy, and Cellular Senescence</title>
<author>
<name sortKey="Sachdeva, Karan" sort="Sachdeva, Karan" uniqKey="Sachdeva K" first="Karan" last="Sachdeva">Karan Sachdeva</name>
<affiliation>
<nlm:aff id="aff1">
<institution>Johns Hopkins Asthma & Allergy Center, Johns Hopkins University School of Medicine</institution>
,
<addr-line>Baltimore, MD</addr-line>
,
<country>United States</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Do, Danh C" sort="Do, Danh C" uniqKey="Do D" first="Danh C." last="Do">Danh C. Do</name>
<affiliation>
<nlm:aff id="aff1">
<institution>Johns Hopkins Asthma & Allergy Center, Johns Hopkins University School of Medicine</institution>
,
<addr-line>Baltimore, MD</addr-line>
,
<country>United States</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Zhang, Yan" sort="Zhang, Yan" uniqKey="Zhang Y" first="Yan" last="Zhang">Yan Zhang</name>
<affiliation>
<nlm:aff id="aff1">
<institution>Johns Hopkins Asthma & Allergy Center, Johns Hopkins University School of Medicine</institution>
,
<addr-line>Baltimore, MD</addr-line>
,
<country>United States</country>
</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="aff2">
<institution>Department of Respiratory Medicine, Xiangya Hospital, Central South University</institution>
,
<addr-line>Changsha</addr-line>
,
<country>China</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Hu, Xinyue" sort="Hu, Xinyue" uniqKey="Hu X" first="Xinyue" last="Hu">Xinyue Hu</name>
<affiliation>
<nlm:aff id="aff1">
<institution>Johns Hopkins Asthma & Allergy Center, Johns Hopkins University School of Medicine</institution>
,
<addr-line>Baltimore, MD</addr-line>
,
<country>United States</country>
</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="aff2">
<institution>Department of Respiratory Medicine, Xiangya Hospital, Central South University</institution>
,
<addr-line>Changsha</addr-line>
,
<country>China</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Chen, Jingsi" sort="Chen, Jingsi" uniqKey="Chen J" first="Jingsi" last="Chen">Jingsi Chen</name>
<affiliation>
<nlm:aff id="aff1">
<institution>Johns Hopkins Asthma & Allergy Center, Johns Hopkins University School of Medicine</institution>
,
<addr-line>Baltimore, MD</addr-line>
,
<country>United States</country>
</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="aff3">
<institution>Department of Dermatology, Children's Hospital, Chongqing Medical University</institution>
,
<addr-line>Chongqing</addr-line>
,
<country>China</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Gao, Peisong" sort="Gao, Peisong" uniqKey="Gao P" first="Peisong" last="Gao">Peisong Gao</name>
<affiliation>
<nlm:aff id="aff1">
<institution>Johns Hopkins Asthma & Allergy Center, Johns Hopkins University School of Medicine</institution>
,
<addr-line>Baltimore, MD</addr-line>
,
<country>United States</country>
</nlm:aff>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PMC</idno>
<idno type="pmid">31849968</idno>
<idno type="pmc">6896909</idno>
<idno type="url">http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6896909</idno>
<idno type="RBID">PMC:6896909</idno>
<idno type="doi">10.3389/fimmu.2019.02787</idno>
<date when="2019">2019</date>
<idno type="wicri:Area/Pmc/Corpus">000973</idno>
<idno type="wicri:explorRef" wicri:stream="Pmc" wicri:step="Corpus" wicri:corpus="PMC">000973</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a" type="main">Environmental Exposures and Asthma Development: Autophagy, Mitophagy, and Cellular Senescence</title>
<author>
<name sortKey="Sachdeva, Karan" sort="Sachdeva, Karan" uniqKey="Sachdeva K" first="Karan" last="Sachdeva">Karan Sachdeva</name>
<affiliation>
<nlm:aff id="aff1">
<institution>Johns Hopkins Asthma & Allergy Center, Johns Hopkins University School of Medicine</institution>
,
<addr-line>Baltimore, MD</addr-line>
,
<country>United States</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Do, Danh C" sort="Do, Danh C" uniqKey="Do D" first="Danh C." last="Do">Danh C. Do</name>
<affiliation>
<nlm:aff id="aff1">
<institution>Johns Hopkins Asthma & Allergy Center, Johns Hopkins University School of Medicine</institution>
,
<addr-line>Baltimore, MD</addr-line>
,
<country>United States</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Zhang, Yan" sort="Zhang, Yan" uniqKey="Zhang Y" first="Yan" last="Zhang">Yan Zhang</name>
<affiliation>
<nlm:aff id="aff1">
<institution>Johns Hopkins Asthma & Allergy Center, Johns Hopkins University School of Medicine</institution>
,
<addr-line>Baltimore, MD</addr-line>
,
<country>United States</country>
</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="aff2">
<institution>Department of Respiratory Medicine, Xiangya Hospital, Central South University</institution>
,
<addr-line>Changsha</addr-line>
,
<country>China</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Hu, Xinyue" sort="Hu, Xinyue" uniqKey="Hu X" first="Xinyue" last="Hu">Xinyue Hu</name>
<affiliation>
<nlm:aff id="aff1">
<institution>Johns Hopkins Asthma & Allergy Center, Johns Hopkins University School of Medicine</institution>
,
<addr-line>Baltimore, MD</addr-line>
,
<country>United States</country>
</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="aff2">
<institution>Department of Respiratory Medicine, Xiangya Hospital, Central South University</institution>
,
<addr-line>Changsha</addr-line>
,
<country>China</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Chen, Jingsi" sort="Chen, Jingsi" uniqKey="Chen J" first="Jingsi" last="Chen">Jingsi Chen</name>
<affiliation>
<nlm:aff id="aff1">
<institution>Johns Hopkins Asthma & Allergy Center, Johns Hopkins University School of Medicine</institution>
,
<addr-line>Baltimore, MD</addr-line>
,
<country>United States</country>
</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="aff3">
<institution>Department of Dermatology, Children's Hospital, Chongqing Medical University</institution>
,
<addr-line>Chongqing</addr-line>
,
<country>China</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Gao, Peisong" sort="Gao, Peisong" uniqKey="Gao P" first="Peisong" last="Gao">Peisong Gao</name>
<affiliation>
<nlm:aff id="aff1">
<institution>Johns Hopkins Asthma & Allergy Center, Johns Hopkins University School of Medicine</institution>
,
<addr-line>Baltimore, MD</addr-line>
,
<country>United States</country>
</nlm:aff>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Frontiers in Immunology</title>
<idno type="eISSN">1664-3224</idno>
<imprint>
<date when="2019">2019</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<p>Environmental pollutants and allergens induce oxidative stress and mitochondrial dysfunction, leading to key features of allergic asthma. Dysregulations in autophagy, mitophagy, and cellular senescence have been associated with environmental pollutant and allergen-induced oxidative stress, mitochondrial dysfunction, secretion of multiple inflammatory proteins, and subsequently development of asthma. Particularly, particulate matter 2.5 (PM
<sub>2.5</sub>
) has been reported to induce autophagy in the bronchial epithelial cells through activation of AMP-activated protein kinase (AMPK), drive mitophagy through activating PTEN-induced kinase 1(PINK1)/Parkin pathway, and induce cell cycle arrest and senescence. Intriguingly, allergens, including
<italic>ovalbumin</italic>
(OVA),
<italic>Alternaria alternata</italic>
, and
<italic>cockroach allergen</italic>
, have also been shown to induce autophagy through activation of different signaling pathways. Additionally, mitochondrial dysfunction can induce cell senescence due to excessive ROS production, which affects airway diseases. Although autophagy and senescence share similar properties, recent studies suggest that autophagy can either accelerate the development of senescence or prevent senescence. Thus, in this review, we evaluated the literature regarding the basic cellular processes, including autophagy, mitophagy, and cellular senescence, explored their molecular mechanisms in the regulation of the initiation and downstream signaling. Especially, we highlighted their involvement in environmental pollutant/allergen-induced major phenotypic changes of asthma such as airway inflammation and remodeling and reviewed novel and critical research areas for future studies. Ultimately, understanding the regulatory mechanisms of autophagy, mitophagy, and cellular senescence may allow for the development of new therapeutic targets for asthma.</p>
</div>
</front>
<back>
<div1 type="bibliography">
<listBibl>
<biblStruct>
<analytic>
<author>
<name sortKey="Akinbami, Lj" uniqKey="Akinbami L">LJ Akinbami</name>
</author>
<author>
<name sortKey="Moorman, Je" uniqKey="Moorman J">JE Moorman</name>
</author>
<author>
<name sortKey="Bailey, C" uniqKey="Bailey C">C Bailey</name>
</author>
<author>
<name sortKey="Zahran, Hs" uniqKey="Zahran H">HS Zahran</name>
</author>
<author>
<name sortKey="King, M" uniqKey="King M">M King</name>
</author>
<author>
<name sortKey="Johnson, Ca" uniqKey="Johnson C">CA Johnson</name>
</author>
</analytic>
</biblStruct>
<biblStruct></biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Masoli, M" uniqKey="Masoli M">M Masoli</name>
</author>
<author>
<name sortKey="Fabian, D" uniqKey="Fabian D">D Fabian</name>
</author>
<author>
<name sortKey="Holt, S" uniqKey="Holt S">S Holt</name>
</author>
<author>
<name sortKey="Beasley, R" uniqKey="Beasley R">R Beasley</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Eder, W" uniqKey="Eder W">W Eder</name>
</author>
<author>
<name sortKey="Ege, Mj" uniqKey="Ege M">MJ Ege</name>
</author>
<author>
<name sortKey="Von Mutius, E" uniqKey="Von Mutius E">E von Mutius</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Hansel, Nn" uniqKey="Hansel N">NN Hansel</name>
</author>
<author>
<name sortKey="Mccormack, Mc" uniqKey="Mccormack M">MC McCormack</name>
</author>
<author>
<name sortKey="Belli, Aj" uniqKey="Belli A">AJ Belli</name>
</author>
<author>
<name sortKey="Matsui, Ec" uniqKey="Matsui E">EC Matsui</name>
</author>
<author>
<name sortKey="Peng, Rd" uniqKey="Peng R">RD Peng</name>
</author>
<author>
<name sortKey="Aloe, C" uniqKey="Aloe C">C Aloe</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Hao, Y" uniqKey="Hao Y">Y Hao</name>
</author>
<author>
<name sortKey="Balluz, L" uniqKey="Balluz L">L Balluz</name>
</author>
<author>
<name sortKey="Strosnider, H" uniqKey="Strosnider H">H Strosnider</name>
</author>
<author>
<name sortKey="Wen, Xj" uniqKey="Wen X">XJ Wen</name>
</author>
<author>
<name sortKey="Li, C" uniqKey="Li C">C Li</name>
</author>
<author>
<name sortKey="Qualters, Jr" uniqKey="Qualters J">JR Qualters</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Mukherjee, A" uniqKey="Mukherjee A">A Mukherjee</name>
</author>
<author>
<name sortKey="Agrawal, M" uniqKey="Agrawal M">M Agrawal</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Mukherjee, A" uniqKey="Mukherjee A">A Mukherjee</name>
</author>
<author>
<name sortKey="Agrawal, M" uniqKey="Agrawal M">M Agrawal</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Wu, Jz" uniqKey="Wu J">JZ Wu</name>
</author>
<author>
<name sortKey="Ge, Dd" uniqKey="Ge D">DD Ge</name>
</author>
<author>
<name sortKey="Zhou, Lf" uniqKey="Zhou L">LF Zhou</name>
</author>
<author>
<name sortKey="Hou, Ly" uniqKey="Hou L">LY Hou</name>
</author>
<author>
<name sortKey="Zhou, Y" uniqKey="Zhou Y">Y Zhou</name>
</author>
<author>
<name sortKey="Li, Qy" uniqKey="Li Q">QY Li</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Murrison, Lb" uniqKey="Murrison L">LB Murrison</name>
</author>
<author>
<name sortKey="Brandt, Eb" uniqKey="Brandt E">EB Brandt</name>
</author>
<author>
<name sortKey="Myers, Jb" uniqKey="Myers J">JB Myers</name>
</author>
<author>
<name sortKey="Hershey, Gkk" uniqKey="Hershey G">GKK Hershey</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Wilson, D" uniqKey="Wilson D">D Wilson</name>
</author>
<author>
<name sortKey="Takahashi, K" uniqKey="Takahashi K">K Takahashi</name>
</author>
<author>
<name sortKey="Pan, G" uniqKey="Pan G">G Pan</name>
</author>
<author>
<name sortKey="Chan, Cc" uniqKey="Chan C">CC Chan</name>
</author>
<author>
<name sortKey="Zhang, S" uniqKey="Zhang S">S Zhang</name>
</author>
<author>
<name sortKey="Feng, Y" uniqKey="Feng Y">Y Feng</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Liu, F" uniqKey="Liu F">F Liu</name>
</author>
<author>
<name sortKey="Zhao, Y" uniqKey="Zhao Y">Y Zhao</name>
</author>
<author>
<name sortKey="Liu, Yq" uniqKey="Liu Y">YQ Liu</name>
</author>
<author>
<name sortKey="Liu, Y" uniqKey="Liu Y">Y Liu</name>
</author>
<author>
<name sortKey="Sun, J" uniqKey="Sun J">J Sun</name>
</author>
<author>
<name sortKey="Huang, Mm" uniqKey="Huang M">MM Huang</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Brandt, Eb" uniqKey="Brandt E">EB Brandt</name>
</author>
<author>
<name sortKey="Myers, Jm" uniqKey="Myers J">JM Myers</name>
</author>
<author>
<name sortKey="Ryan, Ph" uniqKey="Ryan P">PH Ryan</name>
</author>
<author>
<name sortKey="Hershey, Gk" uniqKey="Hershey G">GK Hershey</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Gowers, Am" uniqKey="Gowers A">AM Gowers</name>
</author>
<author>
<name sortKey="Cullinan, P" uniqKey="Cullinan P">P Cullinan</name>
</author>
<author>
<name sortKey="Ayres, Jg" uniqKey="Ayres J">JG Ayres</name>
</author>
<author>
<name sortKey="Anderson, Hr" uniqKey="Anderson H">HR Anderson</name>
</author>
<author>
<name sortKey="Strachan, Dp" uniqKey="Strachan D">DP Strachan</name>
</author>
<author>
<name sortKey="Holgate, St" uniqKey="Holgate S">ST Holgate</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Guarnieri, M" uniqKey="Guarnieri M">M Guarnieri</name>
</author>
<author>
<name sortKey="Balmes, Jr" uniqKey="Balmes J">JR Balmes</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Berhane, K" uniqKey="Berhane K">K Berhane</name>
</author>
<author>
<name sortKey="Chang, Cc" uniqKey="Chang C">CC Chang</name>
</author>
<author>
<name sortKey="Mcconnell, R" uniqKey="Mcconnell R">R McConnell</name>
</author>
<author>
<name sortKey="Gauderman, Wj" uniqKey="Gauderman W">WJ Gauderman</name>
</author>
<author>
<name sortKey="Avol, E" uniqKey="Avol E">E Avol</name>
</author>
<author>
<name sortKey="Rapapport, E" uniqKey="Rapapport E">E Rapapport</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Li, T" uniqKey="Li T">T Li</name>
</author>
<author>
<name sortKey="Hu, R" uniqKey="Hu R">R Hu</name>
</author>
<author>
<name sortKey="Chen, Z" uniqKey="Chen Z">Z Chen</name>
</author>
<author>
<name sortKey="Li, Q" uniqKey="Li Q">Q Li</name>
</author>
<author>
<name sortKey="Huang, S" uniqKey="Huang S">S Huang</name>
</author>
<author>
<name sortKey="Zhu, Z" uniqKey="Zhu Z">Z Zhu</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Chen, F" uniqKey="Chen F">F Chen</name>
</author>
<author>
<name sortKey="Lin, Z" uniqKey="Lin Z">Z Lin</name>
</author>
<author>
<name sortKey="Chen, R" uniqKey="Chen R">R Chen</name>
</author>
<author>
<name sortKey="Norback, D" uniqKey="Norback D">D Norback</name>
</author>
<author>
<name sortKey="Liu, C" uniqKey="Liu C">C Liu</name>
</author>
<author>
<name sortKey="Kan, H" uniqKey="Kan H">H Kan</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Jin, L" uniqKey="Jin L">L Jin</name>
</author>
<author>
<name sortKey="Xie, J" uniqKey="Xie J">J Xie</name>
</author>
<author>
<name sortKey="Wong, Ckc" uniqKey="Wong C">CKC Wong</name>
</author>
<author>
<name sortKey="Chan, Sky" uniqKey="Chan S">SKY Chan</name>
</author>
<author>
<name sortKey="Abbaszade, G" uniqKey="Abbaszade G">G Abbaszade</name>
</author>
<author>
<name sortKey="Schnelle Kreis, J" uniqKey="Schnelle Kreis J">J Schnelle-Kreis</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Jung, Kh" uniqKey="Jung K">KH Jung</name>
</author>
<author>
<name sortKey="Torrone, D" uniqKey="Torrone D">D Torrone</name>
</author>
<author>
<name sortKey="Lovinsky Desir, S" uniqKey="Lovinsky Desir S">S Lovinsky-Desir</name>
</author>
<author>
<name sortKey="Perzanowski, M" uniqKey="Perzanowski M">M Perzanowski</name>
</author>
<author>
<name sortKey="Bautista, J" uniqKey="Bautista J">J Bautista</name>
</author>
<author>
<name sortKey="Jezioro, Jr" uniqKey="Jezioro J">JR Jezioro</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Miller, Rl" uniqKey="Miller R">RL Miller</name>
</author>
<author>
<name sortKey="Peden, Db" uniqKey="Peden D">DB Peden</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kanchongkittiphon, W" uniqKey="Kanchongkittiphon W">W Kanchongkittiphon</name>
</author>
<author>
<name sortKey="Mendell, Mj" uniqKey="Mendell M">MJ Mendell</name>
</author>
<author>
<name sortKey="Gaffin, Jm" uniqKey="Gaffin J">JM Gaffin</name>
</author>
<author>
<name sortKey="Wang, G" uniqKey="Wang G">G Wang</name>
</author>
<author>
<name sortKey="Phipatanakul, W" uniqKey="Phipatanakul W">W Phipatanakul</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kanchongkittiphon, W" uniqKey="Kanchongkittiphon W">W Kanchongkittiphon</name>
</author>
<author>
<name sortKey="Gaffin, Jm" uniqKey="Gaffin J">JM Gaffin</name>
</author>
<author>
<name sortKey="Phipatanakul, W" uniqKey="Phipatanakul W">W Phipatanakul</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Finkelman, Fd" uniqKey="Finkelman F">FD Finkelman</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Jedrychowski, Wa" uniqKey="Jedrychowski W">WA Jedrychowski</name>
</author>
<author>
<name sortKey="Perera, Fp" uniqKey="Perera F">FP Perera</name>
</author>
<author>
<name sortKey="Maugeri, U" uniqKey="Maugeri U">U Maugeri</name>
</author>
<author>
<name sortKey="Mrozek Budzyn, D" uniqKey="Mrozek Budzyn D">D Mrozek-Budzyn</name>
</author>
<author>
<name sortKey="Mroz, E" uniqKey="Mroz E">E Mroz</name>
</author>
<author>
<name sortKey="Klimaszewska Rembiasz, M" uniqKey="Klimaszewska Rembiasz M">M Klimaszewska-Rembiasz</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Acciani, Th" uniqKey="Acciani T">TH Acciani</name>
</author>
<author>
<name sortKey="Brandt, Eb" uniqKey="Brandt E">EB Brandt</name>
</author>
<author>
<name sortKey="Khurana Hershey, Gk" uniqKey="Khurana Hershey G">GK Khurana Hershey</name>
</author>
<author>
<name sortKey="Le Cras, Td" uniqKey="Le Cras T">TD Le Cras</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Brandt, Eb" uniqKey="Brandt E">EB Brandt</name>
</author>
<author>
<name sortKey="Biagini Myers, Jm" uniqKey="Biagini Myers J">JM Biagini Myers</name>
</author>
<author>
<name sortKey="Acciani, Th" uniqKey="Acciani T">TH Acciani</name>
</author>
<author>
<name sortKey="Ryan, Ph" uniqKey="Ryan P">PH Ryan</name>
</author>
<author>
<name sortKey="Sivaprasad, U" uniqKey="Sivaprasad U">U Sivaprasad</name>
</author>
<author>
<name sortKey="Ruff, B" uniqKey="Ruff B">B Ruff</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Zhang, X" uniqKey="Zhang X">X Zhang</name>
</author>
<author>
<name sortKey="Chen, X" uniqKey="Chen X">X Chen</name>
</author>
<author>
<name sortKey="Weirauch, Mt" uniqKey="Weirauch M">MT Weirauch</name>
</author>
<author>
<name sortKey="Zhang, X" uniqKey="Zhang X">X Zhang</name>
</author>
<author>
<name sortKey="Burleson, Jd" uniqKey="Burleson J">JD Burleson</name>
</author>
<author>
<name sortKey="Brandt, Eb" uniqKey="Brandt E">EB Brandt</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Bolcas, Pe" uniqKey="Bolcas P">PE Bolcas</name>
</author>
<author>
<name sortKey="Brandt, Eb" uniqKey="Brandt E">EB Brandt</name>
</author>
<author>
<name sortKey="Zhang, Z" uniqKey="Zhang Z">Z Zhang</name>
</author>
<author>
<name sortKey="Biagini Myers, Jm" uniqKey="Biagini Myers J">JM Biagini Myers</name>
</author>
<author>
<name sortKey="Ruff, Bp" uniqKey="Ruff B">BP Ruff</name>
</author>
<author>
<name sortKey="Khurana Hershey, Gk" uniqKey="Khurana Hershey G">GK Khurana Hershey</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Wang, E" uniqKey="Wang E">E Wang</name>
</author>
<author>
<name sortKey="Liu, X" uniqKey="Liu X">X Liu</name>
</author>
<author>
<name sortKey="Tu, W" uniqKey="Tu W">W Tu</name>
</author>
<author>
<name sortKey="Do, Dc" uniqKey="Do D">DC Do</name>
</author>
<author>
<name sortKey="Yu, H" uniqKey="Yu H">H Yu</name>
</author>
<author>
<name sortKey="Yang, L" uniqKey="Yang L">L Yang</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Sun, L" uniqKey="Sun L">L Sun</name>
</author>
<author>
<name sortKey="Fu, J" uniqKey="Fu J">J Fu</name>
</author>
<author>
<name sortKey="Lin, Sh" uniqKey="Lin S">SH Lin</name>
</author>
<author>
<name sortKey="Sun, Jl" uniqKey="Sun J">JL Sun</name>
</author>
<author>
<name sortKey="Xia, L" uniqKey="Xia L">L Xia</name>
</author>
<author>
<name sortKey="Lin, Ch" uniqKey="Lin C">CH Lin</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Warren, Kj" uniqKey="Warren K">KJ Warren</name>
</author>
<author>
<name sortKey="Dickinson, Jd" uniqKey="Dickinson J">JD Dickinson</name>
</author>
<author>
<name sortKey="Nelson, Aj" uniqKey="Nelson A">AJ Nelson</name>
</author>
<author>
<name sortKey="Wyatt, Ta" uniqKey="Wyatt T">TA Wyatt</name>
</author>
<author>
<name sortKey="Romberger, Dj" uniqKey="Romberger D">DJ Romberger</name>
</author>
<author>
<name sortKey="Poole, Ja" uniqKey="Poole J">JA Poole</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Miraglia Del Giudice, M" uniqKey="Miraglia Del Giudice M">M Miraglia del Giudice</name>
</author>
<author>
<name sortKey="Allegorico, A" uniqKey="Allegorico A">A Allegorico</name>
</author>
<author>
<name sortKey="Parisi, G" uniqKey="Parisi G">G Parisi</name>
</author>
<author>
<name sortKey="Galdo, F" uniqKey="Galdo F">F Galdo</name>
</author>
<author>
<name sortKey="Alterio, E" uniqKey="Alterio E">E Alterio</name>
</author>
<author>
<name sortKey="Coronella, A" uniqKey="Coronella A">A Coronella</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Do, Dc" uniqKey="Do D">DC Do</name>
</author>
<author>
<name sortKey="Zhao, Y" uniqKey="Zhao Y">Y Zhao</name>
</author>
<author>
<name sortKey="Gao, P" uniqKey="Gao P">P Gao</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Poon, Ah" uniqKey="Poon A">AH Poon</name>
</author>
<author>
<name sortKey="Chouiali, F" uniqKey="Chouiali F">F Chouiali</name>
</author>
<author>
<name sortKey="Tse, Sm" uniqKey="Tse S">SM Tse</name>
</author>
<author>
<name sortKey="Litonjua, Aa" uniqKey="Litonjua A">AA Litonjua</name>
</author>
<author>
<name sortKey="Hussain, Sn" uniqKey="Hussain S">SN Hussain</name>
</author>
<author>
<name sortKey="Baglole, Cj" uniqKey="Baglole C">CJ Baglole</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Liu, Jn" uniqKey="Liu J">JN Liu</name>
</author>
<author>
<name sortKey="Suh, Dh" uniqKey="Suh D">DH Suh</name>
</author>
<author>
<name sortKey="Trinh, Hk" uniqKey="Trinh H">HK Trinh</name>
</author>
<author>
<name sortKey="Chwae, Yj" uniqKey="Chwae Y">YJ Chwae</name>
</author>
<author>
<name sortKey="Park, Hs" uniqKey="Park H">HS Park</name>
</author>
<author>
<name sortKey="Shin, Ys" uniqKey="Shin Y">YS Shin</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Rowlands, Dj" uniqKey="Rowlands D">DJ Rowlands</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Prakash, Ys" uniqKey="Prakash Y">YS Prakash</name>
</author>
<author>
<name sortKey="Pabelick, Cm" uniqKey="Pabelick C">CM Pabelick</name>
</author>
<author>
<name sortKey="Sieck, Gc" uniqKey="Sieck G">GC Sieck</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Wu, J" uniqKey="Wu J">J Wu</name>
</author>
<author>
<name sortKey="Dong, F" uniqKey="Dong F">F Dong</name>
</author>
<author>
<name sortKey="Wang, Ra" uniqKey="Wang R">RA Wang</name>
</author>
<author>
<name sortKey="Wang, J" uniqKey="Wang J">J Wang</name>
</author>
<author>
<name sortKey="Zhao, J" uniqKey="Zhao J">J Zhao</name>
</author>
<author>
<name sortKey="Yang, M" uniqKey="Yang M">M Yang</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Puddicombe, Sm" uniqKey="Puddicombe S">SM Puddicombe</name>
</author>
<author>
<name sortKey="Torres Lozano, C" uniqKey="Torres Lozano C">C Torres-Lozano</name>
</author>
<author>
<name sortKey="Richter, A" uniqKey="Richter A">A Richter</name>
</author>
<author>
<name sortKey="Bucchieri, F" uniqKey="Bucchieri F">F Bucchieri</name>
</author>
<author>
<name sortKey="Lordan, Jl" uniqKey="Lordan J">JL Lordan</name>
</author>
<author>
<name sortKey="Howarth, Ph" uniqKey="Howarth P">PH Howarth</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Deretic, V" uniqKey="Deretic V">V Deretic</name>
</author>
<author>
<name sortKey="Klionsky, Dj" uniqKey="Klionsky D">DJ Klionsky</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Lee, J" uniqKey="Lee J">J Lee</name>
</author>
<author>
<name sortKey="Kim, Hs" uniqKey="Kim H">HS Kim</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Mcalinden, Kd" uniqKey="Mcalinden K">KD McAlinden</name>
</author>
<author>
<name sortKey="Deshpande, Da" uniqKey="Deshpande D">DA Deshpande</name>
</author>
<author>
<name sortKey="Ghavami, S" uniqKey="Ghavami S">S Ghavami</name>
</author>
<author>
<name sortKey="Xenaki, D" uniqKey="Xenaki D">D Xenaki</name>
</author>
<author>
<name sortKey="Sohal, Ss" uniqKey="Sohal S">SS Sohal</name>
</author>
<author>
<name sortKey="Oliver, Bg" uniqKey="Oliver B">BG Oliver</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Liu, T" uniqKey="Liu T">T Liu</name>
</author>
<author>
<name sortKey="Wu, B" uniqKey="Wu B">B Wu</name>
</author>
<author>
<name sortKey="Wang, Y" uniqKey="Wang Y">Y Wang</name>
</author>
<author>
<name sortKey="He, H" uniqKey="He H">H He</name>
</author>
<author>
<name sortKey="Lin, Z" uniqKey="Lin Z">Z Lin</name>
</author>
<author>
<name sortKey="Tan, J" uniqKey="Tan J">J Tan</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Zhu, Xm" uniqKey="Zhu X">XM Zhu</name>
</author>
<author>
<name sortKey="Wang, Q" uniqKey="Wang Q">Q Wang</name>
</author>
<author>
<name sortKey="Xing, Ww" uniqKey="Xing W">WW Xing</name>
</author>
<author>
<name sortKey="Long, Mh" uniqKey="Long M">MH Long</name>
</author>
<author>
<name sortKey="Fu, Wl" uniqKey="Fu W">WL Fu</name>
</author>
<author>
<name sortKey="Xia, Wr" uniqKey="Xia W">WR Xia</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Li, R" uniqKey="Li R">R Li</name>
</author>
<author>
<name sortKey="Zhou, R" uniqKey="Zhou R">R Zhou</name>
</author>
<author>
<name sortKey="Zhang, J" uniqKey="Zhang J">J Zhang</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Zhao, Y" uniqKey="Zhao Y">Y Zhao</name>
</author>
<author>
<name sortKey="Luo, X" uniqKey="Luo X">X Luo</name>
</author>
<author>
<name sortKey="Qiu, L" uniqKey="Qiu L">L Qiu</name>
</author>
<author>
<name sortKey="Do, Dc" uniqKey="Do D">DC Do</name>
</author>
<author>
<name sortKey="Ke, X" uniqKey="Ke X">X Ke</name>
</author>
<author>
<name sortKey="Zaccone, E" uniqKey="Zaccone E">E Zaccone</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Murai, H" uniqKey="Murai H">H Murai</name>
</author>
<author>
<name sortKey="Okazaki, S" uniqKey="Okazaki S">S Okazaki</name>
</author>
<author>
<name sortKey="Hayashi, H" uniqKey="Hayashi H">H Hayashi</name>
</author>
<author>
<name sortKey="Kawakita, A" uniqKey="Kawakita A">A Kawakita</name>
</author>
<author>
<name sortKey="Hosoki, K" uniqKey="Hosoki K">K Hosoki</name>
</author>
<author>
<name sortKey="Yasutomi, M" uniqKey="Yasutomi M">M Yasutomi</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Liu, Hx" uniqKey="Liu H">HX Liu</name>
</author>
<author>
<name sortKey="Yan, Hy" uniqKey="Yan H">HY Yan</name>
</author>
<author>
<name sortKey="Qu, W" uniqKey="Qu W">W Qu</name>
</author>
<author>
<name sortKey="Wen, X" uniqKey="Wen X">X Wen</name>
</author>
<author>
<name sortKey="Hou, Lf" uniqKey="Hou L">LF Hou</name>
</author>
<author>
<name sortKey="Zhao, Wh" uniqKey="Zhao W">WH Zhao</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Zeki, Aa" uniqKey="Zeki A">AA Zeki</name>
</author>
<author>
<name sortKey="Yeganeh, B" uniqKey="Yeganeh B">B Yeganeh</name>
</author>
<author>
<name sortKey="Kenyon, Nj" uniqKey="Kenyon N">NJ Kenyon</name>
</author>
<author>
<name sortKey="Post, M" uniqKey="Post M">M Post</name>
</author>
<author>
<name sortKey="Ghavami, S" uniqKey="Ghavami S">S Ghavami</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Glick, D" uniqKey="Glick D">D Glick</name>
</author>
<author>
<name sortKey="Barth, S" uniqKey="Barth S">S Barth</name>
</author>
<author>
<name sortKey="Macleod, Kf" uniqKey="Macleod K">KF Macleod</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ghosh, R" uniqKey="Ghosh R">R Ghosh</name>
</author>
<author>
<name sortKey="Pattison, Js" uniqKey="Pattison J">JS Pattison</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Schulze, H" uniqKey="Schulze H">H Schulze</name>
</author>
<author>
<name sortKey="Kolter, T" uniqKey="Kolter T">T Kolter</name>
</author>
<author>
<name sortKey="Sandhoff, K" uniqKey="Sandhoff K">K Sandhoff</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ryter, Sw" uniqKey="Ryter S">SW Ryter</name>
</author>
<author>
<name sortKey="Choi, Am" uniqKey="Choi A">AM Choi</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Klionsky, Dj" uniqKey="Klionsky D">DJ Klionsky</name>
</author>
<author>
<name sortKey="Abdelmohsen, K" uniqKey="Abdelmohsen K">K Abdelmohsen</name>
</author>
<author>
<name sortKey="Abe, A" uniqKey="Abe A">A Abe</name>
</author>
<author>
<name sortKey="Abedin, Mj" uniqKey="Abedin M">MJ Abedin</name>
</author>
<author>
<name sortKey="Abeliovich, H" uniqKey="Abeliovich H">H Abeliovich</name>
</author>
<author>
<name sortKey="Acevedo Arozena, A" uniqKey="Acevedo Arozena A">A Acevedo Arozena</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Li, Ww" uniqKey="Li W">WW Li</name>
</author>
<author>
<name sortKey="Li, J" uniqKey="Li J">J Li</name>
</author>
<author>
<name sortKey="Bao, Jk" uniqKey="Bao J">JK Bao</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kaushik, S" uniqKey="Kaushik S">S Kaushik</name>
</author>
<author>
<name sortKey="Cuervo, Am" uniqKey="Cuervo A">AM Cuervo</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Cuervo, Am" uniqKey="Cuervo A">AM Cuervo</name>
</author>
<author>
<name sortKey="Wong, E" uniqKey="Wong E">E Wong</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Levine, B" uniqKey="Levine B">B Levine</name>
</author>
<author>
<name sortKey="Kroemer, G" uniqKey="Kroemer G">G Kroemer</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Jiang, P" uniqKey="Jiang P">P Jiang</name>
</author>
<author>
<name sortKey="Mizushima, N" uniqKey="Mizushima N">N Mizushima</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Van Beek, N" uniqKey="Van Beek N">N van Beek</name>
</author>
<author>
<name sortKey="Klionsky, Dj" uniqKey="Klionsky D">DJ Klionsky</name>
</author>
<author>
<name sortKey="Reggiori, F" uniqKey="Reggiori F">F Reggiori</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Qian, M" uniqKey="Qian M">M Qian</name>
</author>
<author>
<name sortKey="Fang, X" uniqKey="Fang X">X Fang</name>
</author>
<author>
<name sortKey="Wang, X" uniqKey="Wang X">X Wang</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="He, C" uniqKey="He C">C He</name>
</author>
<author>
<name sortKey="Klionsky, Dj" uniqKey="Klionsky D">DJ Klionsky</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Park, Hj" uniqKey="Park H">HJ Park</name>
</author>
<author>
<name sortKey="Lee, Sj" uniqKey="Lee S">SJ Lee</name>
</author>
<author>
<name sortKey="Kim, Sh" uniqKey="Kim S">SH Kim</name>
</author>
<author>
<name sortKey="Han, J" uniqKey="Han J">J Han</name>
</author>
<author>
<name sortKey="Bae, J" uniqKey="Bae J">J Bae</name>
</author>
<author>
<name sortKey="Kim, Sj" uniqKey="Kim S">SJ Kim</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Petiot, A" uniqKey="Petiot A">A Petiot</name>
</author>
<author>
<name sortKey="Ogier Denis, E" uniqKey="Ogier Denis E">E Ogier-Denis</name>
</author>
<author>
<name sortKey="Blommaart, Ef" uniqKey="Blommaart E">EF Blommaart</name>
</author>
<author>
<name sortKey="Meijer, Aj" uniqKey="Meijer A">AJ Meijer</name>
</author>
<author>
<name sortKey="Codogno, P" uniqKey="Codogno P">P Codogno</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Arico, S" uniqKey="Arico S">S Arico</name>
</author>
<author>
<name sortKey="Petiot, A" uniqKey="Petiot A">A Petiot</name>
</author>
<author>
<name sortKey="Bauvy, C" uniqKey="Bauvy C">C Bauvy</name>
</author>
<author>
<name sortKey="Dubbelhuis, Pf" uniqKey="Dubbelhuis P">PF Dubbelhuis</name>
</author>
<author>
<name sortKey="Meijer, Aj" uniqKey="Meijer A">AJ Meijer</name>
</author>
<author>
<name sortKey="Codogno, P" uniqKey="Codogno P">P Codogno</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Rovetta, Ai" uniqKey="Rovetta A">AI Rovetta</name>
</author>
<author>
<name sortKey="Pe A, D" uniqKey="Pe A D">D Peña</name>
</author>
<author>
<name sortKey="Hernandez Del Pino, Re" uniqKey="Hernandez Del Pino R">RE Hernández Del Pino</name>
</author>
<author>
<name sortKey="Recalde, Gm" uniqKey="Recalde G">GM Recalde</name>
</author>
<author>
<name sortKey="Pellegrini, J" uniqKey="Pellegrini J">J Pellegrini</name>
</author>
<author>
<name sortKey="Bigi, F" uniqKey="Bigi F">F Bigi</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Botbol, Y" uniqKey="Botbol Y">Y Botbol</name>
</author>
<author>
<name sortKey="Patel, B" uniqKey="Patel B">B Patel</name>
</author>
<author>
<name sortKey="Macian, F" uniqKey="Macian F">F Macian</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Terawaki, S" uniqKey="Terawaki S">S Terawaki</name>
</author>
<author>
<name sortKey="Camosseto, V" uniqKey="Camosseto V">V Camosseto</name>
</author>
<author>
<name sortKey="Prete, F" uniqKey="Prete F">F Prete</name>
</author>
<author>
<name sortKey="Wenger, T" uniqKey="Wenger T">T Wenger</name>
</author>
<author>
<name sortKey="Papadopoulos, A" uniqKey="Papadopoulos A">A Papadopoulos</name>
</author>
<author>
<name sortKey="Rondeau, C" uniqKey="Rondeau C">C Rondeau</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Xia, F" uniqKey="Xia F">F Xia</name>
</author>
<author>
<name sortKey="Deng, C" uniqKey="Deng C">C Deng</name>
</author>
<author>
<name sortKey="Jiang, Y" uniqKey="Jiang Y">Y Jiang</name>
</author>
<author>
<name sortKey="Qu, Y" uniqKey="Qu Y">Y Qu</name>
</author>
<author>
<name sortKey="Deng, J" uniqKey="Deng J">J Deng</name>
</author>
<author>
<name sortKey="Cai, Z" uniqKey="Cai Z">Z Cai</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Dickinson, Jd" uniqKey="Dickinson J">JD Dickinson</name>
</author>
<author>
<name sortKey="Alevy, Y" uniqKey="Alevy Y">Y Alevy</name>
</author>
<author>
<name sortKey="Malvin, Np" uniqKey="Malvin N">NP Malvin</name>
</author>
<author>
<name sortKey="Patel, Kk" uniqKey="Patel K">KK Patel</name>
</author>
<author>
<name sortKey="Gunsten, Sp" uniqKey="Gunsten S">SP Gunsten</name>
</author>
<author>
<name sortKey="Holtzman, Mj" uniqKey="Holtzman M">MJ Holtzman</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Van Grol, J" uniqKey="Van Grol J">J Van Grol</name>
</author>
<author>
<name sortKey="Subauste, C" uniqKey="Subauste C">C Subauste</name>
</author>
<author>
<name sortKey="Andrade, Rm" uniqKey="Andrade R">RM Andrade</name>
</author>
<author>
<name sortKey="Fujinaga, K" uniqKey="Fujinaga K">K Fujinaga</name>
</author>
<author>
<name sortKey="Nelson, J" uniqKey="Nelson J">J Nelson</name>
</author>
<author>
<name sortKey="Subauste, Cs" uniqKey="Subauste C">CS Subauste</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Harris, J" uniqKey="Harris J">J Harris</name>
</author>
<author>
<name sortKey="Hartman, M" uniqKey="Hartman M">M Hartman</name>
</author>
<author>
<name sortKey="Roche, C" uniqKey="Roche C">C Roche</name>
</author>
<author>
<name sortKey="Zeng, Sg" uniqKey="Zeng S">SG Zeng</name>
</author>
<author>
<name sortKey="O Shea, A" uniqKey="O Shea A">A O'Shea</name>
</author>
<author>
<name sortKey="Sharp, Fa" uniqKey="Sharp F">FA Sharp</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Saitoh, T" uniqKey="Saitoh T">T Saitoh</name>
</author>
<author>
<name sortKey="Fujita, N" uniqKey="Fujita N">N Fujita</name>
</author>
<author>
<name sortKey="Jang, Mh" uniqKey="Jang M">MH Jang</name>
</author>
<author>
<name sortKey="Uematsu, S" uniqKey="Uematsu S">S Uematsu</name>
</author>
<author>
<name sortKey="Yang, Bg" uniqKey="Yang B">BG Yang</name>
</author>
<author>
<name sortKey="Satoh, T" uniqKey="Satoh T">T Satoh</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Peral De Castro, C" uniqKey="Peral De Castro C">C Peral de Castro</name>
</author>
<author>
<name sortKey="Jones, Sa" uniqKey="Jones S">SA Jones</name>
</author>
<author>
<name sortKey="Ni Cheallaigh, C" uniqKey="Ni Cheallaigh C">C Ní Cheallaigh</name>
</author>
<author>
<name sortKey="Hearnden, Ca" uniqKey="Hearnden C">CA Hearnden</name>
</author>
<author>
<name sortKey="Williams, L" uniqKey="Williams L">L Williams</name>
</author>
<author>
<name sortKey="Winter, J" uniqKey="Winter J">J Winter</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Lee, Jp" uniqKey="Lee J">JP Lee</name>
</author>
<author>
<name sortKey="Foote, A" uniqKey="Foote A">A Foote</name>
</author>
<author>
<name sortKey="Fan, H" uniqKey="Fan H">H Fan</name>
</author>
<author>
<name sortKey="Peral De Castro, C" uniqKey="Peral De Castro C">C Peral de Castro</name>
</author>
<author>
<name sortKey="Lang, T" uniqKey="Lang T">T Lang</name>
</author>
<author>
<name sortKey="Jones, Sa" uniqKey="Jones S">SA Jones</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Yoon, S" uniqKey="Yoon S">S Yoon</name>
</author>
<author>
<name sortKey="Woo, Su" uniqKey="Woo S">SU Woo</name>
</author>
<author>
<name sortKey="Kang, Jh" uniqKey="Kang J">JH Kang</name>
</author>
<author>
<name sortKey="Kim, K" uniqKey="Kim K">K Kim</name>
</author>
<author>
<name sortKey="Kwon, Mh" uniqKey="Kwon M">MH Kwon</name>
</author>
<author>
<name sortKey="Park, S" uniqKey="Park S">S Park</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kiffin, R" uniqKey="Kiffin R">R Kiffin</name>
</author>
<author>
<name sortKey="Christian, C" uniqKey="Christian C">C Christian</name>
</author>
<author>
<name sortKey="Knecht, E" uniqKey="Knecht E">E Knecht</name>
</author>
<author>
<name sortKey="Cuervo, Am" uniqKey="Cuervo A">AM Cuervo</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Laplante, M" uniqKey="Laplante M">M Laplante</name>
</author>
<author>
<name sortKey="Sabatini, Dm" uniqKey="Sabatini D">DM Sabatini</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kim, J" uniqKey="Kim J">J Kim</name>
</author>
<author>
<name sortKey="Kundu, M" uniqKey="Kundu M">M Kundu</name>
</author>
<author>
<name sortKey="Viollet, B" uniqKey="Viollet B">B Viollet</name>
</author>
<author>
<name sortKey="Guan, Kl" uniqKey="Guan K">KL Guan</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Jang, Je" uniqKey="Jang J">JE Jang</name>
</author>
<author>
<name sortKey="Eom, Ji" uniqKey="Eom J">JI Eom</name>
</author>
<author>
<name sortKey="Jeung, Hk" uniqKey="Jeung H">HK Jeung</name>
</author>
<author>
<name sortKey="Cheong, Jw" uniqKey="Cheong J">JW Cheong</name>
</author>
<author>
<name sortKey="Lee, Jy" uniqKey="Lee J">JY Lee</name>
</author>
<author>
<name sortKey="Kim, Js" uniqKey="Kim J">JS Kim</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kim, J" uniqKey="Kim J">J Kim</name>
</author>
<author>
<name sortKey="Kim, Yc" uniqKey="Kim Y">YC Kim</name>
</author>
<author>
<name sortKey="Fang, C" uniqKey="Fang C">C Fang</name>
</author>
<author>
<name sortKey="Russell, Rc" uniqKey="Russell R">RC Russell</name>
</author>
<author>
<name sortKey="Kim, Jh" uniqKey="Kim J">JH Kim</name>
</author>
<author>
<name sortKey="Fan, W" uniqKey="Fan W">W Fan</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Green, Dr" uniqKey="Green D">DR Green</name>
</author>
<author>
<name sortKey="Levine, B" uniqKey="Levine B">B Levine</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Li, X" uniqKey="Li X">X Li</name>
</author>
<author>
<name sortKey="Wu, Xq" uniqKey="Wu X">XQ Wu</name>
</author>
<author>
<name sortKey="Deng, R" uniqKey="Deng R">R Deng</name>
</author>
<author>
<name sortKey="Li, Dd" uniqKey="Li D">DD Li</name>
</author>
<author>
<name sortKey="Tang, J" uniqKey="Tang J">J Tang</name>
</author>
<author>
<name sortKey="Chen, Wd" uniqKey="Chen W">WD Chen</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Sakamaki, Ji" uniqKey="Sakamaki J">JI Sakamaki</name>
</author>
<author>
<name sortKey="Long, Js" uniqKey="Long J">JS Long</name>
</author>
<author>
<name sortKey="New, M" uniqKey="New M">M New</name>
</author>
<author>
<name sortKey="Van Acker, T" uniqKey="Van Acker T">T Van Acker</name>
</author>
<author>
<name sortKey="Tooze, Sa" uniqKey="Tooze S">SA Tooze</name>
</author>
<author>
<name sortKey="Ryan, Km" uniqKey="Ryan K">KM Ryan</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Zhao, J" uniqKey="Zhao J">J Zhao</name>
</author>
<author>
<name sortKey="Brault, Jj" uniqKey="Brault J">JJ Brault</name>
</author>
<author>
<name sortKey="Schild, A" uniqKey="Schild A">A Schild</name>
</author>
<author>
<name sortKey="Cao, P" uniqKey="Cao P">P Cao</name>
</author>
<author>
<name sortKey="Sandri, M" uniqKey="Sandri M">M Sandri</name>
</author>
<author>
<name sortKey="Schiaffino, S" uniqKey="Schiaffino S">S Schiaffino</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Napolitano, G" uniqKey="Napolitano G">G Napolitano</name>
</author>
<author>
<name sortKey="Ballabio, A" uniqKey="Ballabio A">A Ballabio</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Medina, Dl" uniqKey="Medina D">DL Medina</name>
</author>
<author>
<name sortKey="Di Paola, S" uniqKey="Di Paola S">S Di Paola</name>
</author>
<author>
<name sortKey="Peluso, I" uniqKey="Peluso I">I Peluso</name>
</author>
<author>
<name sortKey="Armani, A" uniqKey="Armani A">A Armani</name>
</author>
<author>
<name sortKey="De Stefani, D" uniqKey="De Stefani D">D De Stefani</name>
</author>
<author>
<name sortKey="Venditti, R" uniqKey="Venditti R">R Venditti</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Bowman, Cj" uniqKey="Bowman C">CJ Bowman</name>
</author>
<author>
<name sortKey="Ayer, De" uniqKey="Ayer D">DE Ayer</name>
</author>
<author>
<name sortKey="Dynlacht, Bd" uniqKey="Dynlacht B">BD Dynlacht</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Baek, Sh" uniqKey="Baek S">SH Baek</name>
</author>
<author>
<name sortKey="Kim, Ki" uniqKey="Kim K">KI Kim</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Fullgrabe, J" uniqKey="Fullgrabe J">J Füllgrabe</name>
</author>
<author>
<name sortKey="Klionsky, Dj" uniqKey="Klionsky D">DJ Klionsky</name>
</author>
<author>
<name sortKey="Joseph, B" uniqKey="Joseph B">B Joseph</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Wei, Fz" uniqKey="Wei F">FZ Wei</name>
</author>
<author>
<name sortKey="Cao, Z" uniqKey="Cao Z">Z Cao</name>
</author>
<author>
<name sortKey="Wang, X" uniqKey="Wang X">X Wang</name>
</author>
<author>
<name sortKey="Wang, H" uniqKey="Wang H">H Wang</name>
</author>
<author>
<name sortKey="Cai, My" uniqKey="Cai M">MY Cai</name>
</author>
<author>
<name sortKey="Li, T" uniqKey="Li T">T Li</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Sierra Vargas, Mp" uniqKey="Sierra Vargas M">MP Sierra-Vargas</name>
</author>
<author>
<name sortKey="Guzman Grenfell, Am" uniqKey="Guzman Grenfell A">AM Guzman-Grenfell</name>
</author>
<author>
<name sortKey="Blanco Jimenez, S" uniqKey="Blanco Jimenez S">S Blanco-Jimenez</name>
</author>
<author>
<name sortKey="Sepulveda Sanchez, Jd" uniqKey="Sepulveda Sanchez J">JD Sepulveda-Sanchez</name>
</author>
<author>
<name sortKey="Bernabe Cabanillas, Rm" uniqKey="Bernabe Cabanillas R">RM Bernabe-Cabanillas</name>
</author>
<author>
<name sortKey="Cardenas Gonzalez, B" uniqKey="Cardenas Gonzalez B">B Cardenas-Gonzalez</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Prieto Parra, L" uniqKey="Prieto Parra L">L Prieto-Parra</name>
</author>
<author>
<name sortKey="Yohannessen, K" uniqKey="Yohannessen K">K Yohannessen</name>
</author>
<author>
<name sortKey="Brea, C" uniqKey="Brea C">C Brea</name>
</author>
<author>
<name sortKey="Vidal, D" uniqKey="Vidal D">D Vidal</name>
</author>
<author>
<name sortKey="Ubilla, Ca" uniqKey="Ubilla C">CA Ubilla</name>
</author>
<author>
<name sortKey="Ruiz Rudolph, P" uniqKey="Ruiz Rudolph P">P Ruiz-Rudolph</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Bleck, B" uniqKey="Bleck B">B Bleck</name>
</author>
<author>
<name sortKey="Tse, Db" uniqKey="Tse D">DB Tse</name>
</author>
<author>
<name sortKey="Curotto De Lafaille, Ma" uniqKey="Curotto De Lafaille M">MA Curotto de Lafaille</name>
</author>
<author>
<name sortKey="Zhang, F" uniqKey="Zhang F">F Zhang</name>
</author>
<author>
<name sortKey="Reibman, J" uniqKey="Reibman J">J Reibman</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Bleck, B" uniqKey="Bleck B">B Bleck</name>
</author>
<author>
<name sortKey="Tse, Db" uniqKey="Tse D">DB Tse</name>
</author>
<author>
<name sortKey="Gordon, T" uniqKey="Gordon T">T Gordon</name>
</author>
<author>
<name sortKey="Ahsan, Mr" uniqKey="Ahsan M">MR Ahsan</name>
</author>
<author>
<name sortKey="Reibman, J" uniqKey="Reibman J">J Reibman</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Nakamura, Y" uniqKey="Nakamura Y">Y Nakamura</name>
</author>
<author>
<name sortKey="Miyata, M" uniqKey="Miyata M">M Miyata</name>
</author>
<author>
<name sortKey="Ohba, T" uniqKey="Ohba T">T Ohba</name>
</author>
<author>
<name sortKey="Ando, T" uniqKey="Ando T">T Ando</name>
</author>
<author>
<name sortKey="Hatsushika, K" uniqKey="Hatsushika K">K Hatsushika</name>
</author>
<author>
<name sortKey="Suenaga, F" uniqKey="Suenaga F">F Suenaga</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Qu, J" uniqKey="Qu J">J Qu</name>
</author>
<author>
<name sortKey="Do, Dc" uniqKey="Do D">DC Do</name>
</author>
<author>
<name sortKey="Zhou, Y" uniqKey="Zhou Y">Y Zhou</name>
</author>
<author>
<name sortKey="Luczak, E" uniqKey="Luczak E">E Luczak</name>
</author>
<author>
<name sortKey="Mitzner, W" uniqKey="Mitzner W">W Mitzner</name>
</author>
<author>
<name sortKey="Anderson, Me" uniqKey="Anderson M">ME Anderson</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Qu, J" uniqKey="Qu J">J Qu</name>
</author>
<author>
<name sortKey="Li, Y" uniqKey="Li Y">Y Li</name>
</author>
<author>
<name sortKey="Zhong, W" uniqKey="Zhong W">W Zhong</name>
</author>
<author>
<name sortKey="Gao, P" uniqKey="Gao P">P Gao</name>
</author>
<author>
<name sortKey="Hu, C" uniqKey="Hu C">C Hu</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Sanders, Pn" uniqKey="Sanders P">PN Sanders</name>
</author>
<author>
<name sortKey="Koval, Om" uniqKey="Koval O">OM Koval</name>
</author>
<author>
<name sortKey="Jaffer, Oa" uniqKey="Jaffer O">OA Jaffer</name>
</author>
<author>
<name sortKey="Prasad, Am" uniqKey="Prasad A">AM Prasad</name>
</author>
<author>
<name sortKey="Businga, Tr" uniqKey="Businga T">TR Businga</name>
</author>
<author>
<name sortKey="Scott, Ja" uniqKey="Scott J">JA Scott</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Abdala Valencia, H" uniqKey="Abdala Valencia H">H Abdala-Valencia</name>
</author>
<author>
<name sortKey="Earwood, J" uniqKey="Earwood J">J Earwood</name>
</author>
<author>
<name sortKey="Bansal, S" uniqKey="Bansal S">S Bansal</name>
</author>
<author>
<name sortKey="Jansen, M" uniqKey="Jansen M">M Jansen</name>
</author>
<author>
<name sortKey="Babcock, G" uniqKey="Babcock G">G Babcock</name>
</author>
<author>
<name sortKey="Garvy, B" uniqKey="Garvy B">B Garvy</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ban, Gy" uniqKey="Ban G">GY Ban</name>
</author>
<author>
<name sortKey="Pham, Dl" uniqKey="Pham D">DL Pham</name>
</author>
<author>
<name sortKey="Trinh, Th" uniqKey="Trinh T">TH Trinh</name>
</author>
<author>
<name sortKey="Lee, Si" uniqKey="Lee S">SI Lee</name>
</author>
<author>
<name sortKey="Suh, Dh" uniqKey="Suh D">DH Suh</name>
</author>
<author>
<name sortKey="Yang, Em" uniqKey="Yang E">EM Yang</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Martin, Lj" uniqKey="Martin L">LJ Martin</name>
</author>
<author>
<name sortKey="Gupta, J" uniqKey="Gupta J">J Gupta</name>
</author>
<author>
<name sortKey="Jyothula, Ss" uniqKey="Jyothula S">SS Jyothula</name>
</author>
<author>
<name sortKey="Butsch Kovacic, M" uniqKey="Butsch Kovacic M">M Butsch Kovacic</name>
</author>
<author>
<name sortKey="Biagini Myers, Jm" uniqKey="Biagini Myers J">JM Biagini Myers</name>
</author>
<author>
<name sortKey="Patterson, Tl" uniqKey="Patterson T">TL Patterson</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Chen, Zh" uniqKey="Chen Z">ZH Chen</name>
</author>
<author>
<name sortKey="Wu, Yf" uniqKey="Wu Y">YF Wu</name>
</author>
<author>
<name sortKey="Wang, Pl" uniqKey="Wang P">PL Wang</name>
</author>
<author>
<name sortKey="Wu, Yp" uniqKey="Wu Y">YP Wu</name>
</author>
<author>
<name sortKey="Li, Zy" uniqKey="Li Z">ZY Li</name>
</author>
<author>
<name sortKey="Zhao, Y" uniqKey="Zhao Y">Y Zhao</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Li, Y" uniqKey="Li Y">Y Li</name>
</author>
<author>
<name sortKey="Qian, W" uniqKey="Qian W">W Qian</name>
</author>
<author>
<name sortKey="Wang, D" uniqKey="Wang D">D Wang</name>
</author>
<author>
<name sortKey="Meng, Y" uniqKey="Meng Y">Y Meng</name>
</author>
<author>
<name sortKey="Wang, X" uniqKey="Wang X">X Wang</name>
</author>
<author>
<name sortKey="Chen, Y" uniqKey="Chen Y">Y Chen</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Long, F" uniqKey="Long F">F Long</name>
</author>
<author>
<name sortKey="Jiang, H" uniqKey="Jiang H">H Jiang</name>
</author>
<author>
<name sortKey="Yi, H" uniqKey="Yi H">H Yi</name>
</author>
<author>
<name sortKey="Su, L" uniqKey="Su L">L Su</name>
</author>
<author>
<name sortKey="Sun, J" uniqKey="Sun J">J Sun</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Fu, Q" uniqKey="Fu Q">Q Fu</name>
</author>
<author>
<name sortKey="Lyu, D" uniqKey="Lyu D">D Lyu</name>
</author>
<author>
<name sortKey="Zhang, L" uniqKey="Zhang L">L Zhang</name>
</author>
<author>
<name sortKey="Qin, Z" uniqKey="Qin Z">Z Qin</name>
</author>
<author>
<name sortKey="Tang, Q" uniqKey="Tang Q">Q Tang</name>
</author>
<author>
<name sortKey="Yin, H" uniqKey="Yin H">H Yin</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Bush, Rk" uniqKey="Bush R">RK Bush</name>
</author>
<author>
<name sortKey="Prochnau, Jj" uniqKey="Prochnau J">JJ Prochnau</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Murai, H" uniqKey="Murai H">H Murai</name>
</author>
<author>
<name sortKey="Qi, H" uniqKey="Qi H">H Qi</name>
</author>
<author>
<name sortKey="Choudhury, B" uniqKey="Choudhury B">B Choudhury</name>
</author>
<author>
<name sortKey="Wild, J" uniqKey="Wild J">J Wild</name>
</author>
<author>
<name sortKey="Dharajiya, N" uniqKey="Dharajiya N">N Dharajiya</name>
</author>
<author>
<name sortKey="Vaidya, S" uniqKey="Vaidya S">S Vaidya</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Abdel Fattah, E" uniqKey="Abdel Fattah E">E Abdel Fattah</name>
</author>
<author>
<name sortKey="Bhattacharya, A" uniqKey="Bhattacharya A">A Bhattacharya</name>
</author>
<author>
<name sortKey="Herron, A" uniqKey="Herron A">A Herron</name>
</author>
<author>
<name sortKey="Safdar, Z" uniqKey="Safdar Z">Z Safdar</name>
</author>
<author>
<name sortKey="Eissa, Nt" uniqKey="Eissa N">NT Eissa</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Zhang, Ydd" uniqKey="Zhang Y">YDD Zhang</name>
</author>
<author>
<name sortKey="Zhang, X" uniqKey="Zhang X">X Zhang</name>
</author>
<author>
<name sortKey="Wang, J" uniqKey="Wang J">J Wang</name>
</author>
<author>
<name sortKey="Anderson, M" uniqKey="Anderson M">M Anderson</name>
</author>
<author>
<name sortKey="Gao, P" uniqKey="Gao P">P Gao</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Suzuki, Y" uniqKey="Suzuki Y">Y Suzuki</name>
</author>
<author>
<name sortKey="Maazi, H" uniqKey="Maazi H">H Maazi</name>
</author>
<author>
<name sortKey="Sankaranarayanan, I" uniqKey="Sankaranarayanan I">I Sankaranarayanan</name>
</author>
<author>
<name sortKey="Lam, J" uniqKey="Lam J">J Lam</name>
</author>
<author>
<name sortKey="Khoo, B" uniqKey="Khoo B">B Khoo</name>
</author>
<author>
<name sortKey="Soroosh, P" uniqKey="Soroosh P">P Soroosh</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Wang, Sb" uniqKey="Wang S">SB Wang</name>
</author>
<author>
<name sortKey="Wu, Yf" uniqKey="Wu Y">YF Wu</name>
</author>
<author>
<name sortKey="Chen, Zh" uniqKey="Chen Z">ZH Chen</name>
</author>
<author>
<name sortKey="Li, W" uniqKey="Li W">W Li</name>
</author>
<author>
<name sortKey="Shen, Hh" uniqKey="Shen H">HH Shen</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Inoue, D" uniqKey="Inoue D">D Inoue</name>
</author>
<author>
<name sortKey="Kubo, H" uniqKey="Kubo H">H Kubo</name>
</author>
<author>
<name sortKey="Taguchi, K" uniqKey="Taguchi K">K Taguchi</name>
</author>
<author>
<name sortKey="Suzuki, T" uniqKey="Suzuki T">T Suzuki</name>
</author>
<author>
<name sortKey="Komatsu, M" uniqKey="Komatsu M">M Komatsu</name>
</author>
<author>
<name sortKey="Motohashi, H" uniqKey="Motohashi H">H Motohashi</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Pu, Q" uniqKey="Pu Q">Q Pu</name>
</author>
<author>
<name sortKey="Gan, C" uniqKey="Gan C">C Gan</name>
</author>
<author>
<name sortKey="Li, R" uniqKey="Li R">R Li</name>
</author>
<author>
<name sortKey="Li, Y" uniqKey="Li Y">Y Li</name>
</author>
<author>
<name sortKey="Tan, S" uniqKey="Tan S">S Tan</name>
</author>
<author>
<name sortKey="Li, X" uniqKey="Li X">X Li</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Guo, L" uniqKey="Guo L">L Guo</name>
</author>
<author>
<name sortKey="Stripay, Jl" uniqKey="Stripay J">JL Stripay</name>
</author>
<author>
<name sortKey="Zhang, X" uniqKey="Zhang X">X Zhang</name>
</author>
<author>
<name sortKey="Collage, Rd" uniqKey="Collage R">RD Collage</name>
</author>
<author>
<name sortKey="Hulver, M" uniqKey="Hulver M">M Hulver</name>
</author>
<author>
<name sortKey="Carchman, Eh" uniqKey="Carchman E">EH Carchman</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Jessop, F" uniqKey="Jessop F">F Jessop</name>
</author>
<author>
<name sortKey="Hamilton, Rf" uniqKey="Hamilton R">RF Hamilton</name>
</author>
<author>
<name sortKey="Rhoderick, Jf" uniqKey="Rhoderick J">JF Rhoderick</name>
</author>
<author>
<name sortKey="Shaw, Pk" uniqKey="Shaw P">PK Shaw</name>
</author>
<author>
<name sortKey="Holian, A" uniqKey="Holian A">A Holian</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Cheng, Z" uniqKey="Cheng Z">Z Cheng</name>
</author>
<author>
<name sortKey="Wang, X" uniqKey="Wang X">X Wang</name>
</author>
<author>
<name sortKey="Dai, L" uniqKey="Dai L">L Dai</name>
</author>
<author>
<name sortKey="Jia, L" uniqKey="Jia L">L Jia</name>
</author>
<author>
<name sortKey="Jing, X" uniqKey="Jing X">X Jing</name>
</author>
<author>
<name sortKey="Liu, Y" uniqKey="Liu Y">Y Liu</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ghavami, S" uniqKey="Ghavami S">S Ghavami</name>
</author>
<author>
<name sortKey="Mutawe, Mm" uniqKey="Mutawe M">MM Mutawe</name>
</author>
<author>
<name sortKey="Schaafsma, D" uniqKey="Schaafsma D">D Schaafsma</name>
</author>
<author>
<name sortKey="Yeganeh, B" uniqKey="Yeganeh B">B Yeganeh</name>
</author>
<author>
<name sortKey="Unruh, H" uniqKey="Unruh H">H Unruh</name>
</author>
<author>
<name sortKey="Klonisch, T" uniqKey="Klonisch T">T Klonisch</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Pan, S" uniqKey="Pan S">S Pan</name>
</author>
<author>
<name sortKey="Sharma, P" uniqKey="Sharma P">P Sharma</name>
</author>
<author>
<name sortKey="Shah, Sd" uniqKey="Shah S">SD Shah</name>
</author>
<author>
<name sortKey="Deshpande, Da" uniqKey="Deshpande D">DA Deshpande</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Neill, T" uniqKey="Neill T">T Neill</name>
</author>
<author>
<name sortKey="Schaefer, L" uniqKey="Schaefer L">L Schaefer</name>
</author>
<author>
<name sortKey="Iozzo, Rv" uniqKey="Iozzo R">RV Iozzo</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Poon, Ah" uniqKey="Poon A">AH Poon</name>
</author>
<author>
<name sortKey="Choy, Df" uniqKey="Choy D">DF Choy</name>
</author>
<author>
<name sortKey="Chouiali, F" uniqKey="Chouiali F">F Chouiali</name>
</author>
<author>
<name sortKey="Ramakrishnan, Rk" uniqKey="Ramakrishnan R">RK Ramakrishnan</name>
</author>
<author>
<name sortKey="Mahboub, B" uniqKey="Mahboub B">B Mahboub</name>
</author>
<author>
<name sortKey="Audusseau, S" uniqKey="Audusseau S">S Audusseau</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Liu, T" uniqKey="Liu T">T Liu</name>
</author>
<author>
<name sortKey="Liu, Y" uniqKey="Liu Y">Y Liu</name>
</author>
<author>
<name sortKey="Miller, M" uniqKey="Miller M">M Miller</name>
</author>
<author>
<name sortKey="Cao, L" uniqKey="Cao L">L Cao</name>
</author>
<author>
<name sortKey="Zhao, J" uniqKey="Zhao J">J Zhao</name>
</author>
<author>
<name sortKey="Wu, J" uniqKey="Wu J">J Wu</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kota, A" uniqKey="Kota A">A Kota</name>
</author>
<author>
<name sortKey="Deshpande, Da" uniqKey="Deshpande D">DA Deshpande</name>
</author>
<author>
<name sortKey="Haghi, M" uniqKey="Haghi M">M Haghi</name>
</author>
<author>
<name sortKey="Oliver, B" uniqKey="Oliver B">B Oliver</name>
</author>
<author>
<name sortKey="Sharma, P" uniqKey="Sharma P">P Sharma</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ghavami, S" uniqKey="Ghavami S">S Ghavami</name>
</author>
<author>
<name sortKey="Yeganeh, B" uniqKey="Yeganeh B">B Yeganeh</name>
</author>
<author>
<name sortKey="Serebrin, A" uniqKey="Serebrin A">A Serebrin</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Aguilera Aguirre, L" uniqKey="Aguilera Aguirre L">L Aguilera-Aguirre</name>
</author>
<author>
<name sortKey="Bacsi, A" uniqKey="Bacsi A">A Bacsi</name>
</author>
<author>
<name sortKey="Saavedra Molina, A" uniqKey="Saavedra Molina A">A Saavedra-Molina</name>
</author>
<author>
<name sortKey="Kurosky, A" uniqKey="Kurosky A">A Kurosky</name>
</author>
<author>
<name sortKey="Sur, S" uniqKey="Sur S">S Sur</name>
</author>
<author>
<name sortKey="Boldogh, I" uniqKey="Boldogh I">I Boldogh</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Iyer, D" uniqKey="Iyer D">D Iyer</name>
</author>
<author>
<name sortKey="Mishra, N" uniqKey="Mishra N">N Mishra</name>
</author>
<author>
<name sortKey="Agrawal, A" uniqKey="Agrawal A">A Agrawal</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Pattnaik, B" uniqKey="Pattnaik B">B Pattnaik</name>
</author>
<author>
<name sortKey="Bodas, M" uniqKey="Bodas M">M Bodas</name>
</author>
<author>
<name sortKey="Bhatraju, Nk" uniqKey="Bhatraju N">NK Bhatraju</name>
</author>
<author>
<name sortKey="Ahmad, T" uniqKey="Ahmad T">T Ahmad</name>
</author>
<author>
<name sortKey="Pant, R" uniqKey="Pant R">R Pant</name>
</author>
<author>
<name sortKey="Guleria, R" uniqKey="Guleria R">R Guleria</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Reddy, Ph" uniqKey="Reddy P">PH Reddy</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Wang, A" uniqKey="Wang A">A Wang</name>
</author>
<author>
<name sortKey="Keita, V" uniqKey="Keita ">ÅV Keita</name>
</author>
<author>
<name sortKey="Phan, V" uniqKey="Phan V">V Phan</name>
</author>
<author>
<name sortKey="Mckay, Cm" uniqKey="Mckay C">CM McKay</name>
</author>
<author>
<name sortKey="Schoultz, I" uniqKey="Schoultz I">I Schoultz</name>
</author>
<author>
<name sortKey="Lee, J" uniqKey="Lee J">J Lee</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Li, R" uniqKey="Li R">R Li</name>
</author>
<author>
<name sortKey="Kou, X" uniqKey="Kou X">X Kou</name>
</author>
<author>
<name sortKey="Geng, H" uniqKey="Geng H">H Geng</name>
</author>
<author>
<name sortKey="Xie, J" uniqKey="Xie J">J Xie</name>
</author>
<author>
<name sortKey="Yang, Z" uniqKey="Yang Z">Z Yang</name>
</author>
<author>
<name sortKey="Zhang, Y" uniqKey="Zhang Y">Y Zhang</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Qiu, Yn" uniqKey="Qiu Y">YN Qiu</name>
</author>
<author>
<name sortKey="Wang, Gh" uniqKey="Wang G">GH Wang</name>
</author>
<author>
<name sortKey="Zhou, F" uniqKey="Zhou F">F Zhou</name>
</author>
<author>
<name sortKey="Hao, Jj" uniqKey="Hao J">JJ Hao</name>
</author>
<author>
<name sortKey="Tian, L" uniqKey="Tian L">L Tian</name>
</author>
<author>
<name sortKey="Guan, Lf" uniqKey="Guan L">LF Guan</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Stevens, Jf" uniqKey="Stevens J">JF Stevens</name>
</author>
<author>
<name sortKey="Maier, Cs" uniqKey="Maier C">CS Maier</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Wang, Ht" uniqKey="Wang H">HT Wang</name>
</author>
<author>
<name sortKey="Lin, Jh" uniqKey="Lin J">JH Lin</name>
</author>
<author>
<name sortKey="Yang, Ch" uniqKey="Yang C">CH Yang</name>
</author>
<author>
<name sortKey="Haung, Ch" uniqKey="Haung C">CH Haung</name>
</author>
<author>
<name sortKey="Weng, Cw" uniqKey="Weng C">CW Weng</name>
</author>
<author>
<name sortKey="Maan Yuh Lin, A" uniqKey="Maan Yuh Lin A">A Maan-Yuh Lin</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Sliter, Da" uniqKey="Sliter D">DA Sliter</name>
</author>
<author>
<name sortKey="Martinez, J" uniqKey="Martinez J">J Martinez</name>
</author>
<author>
<name sortKey="Hao, L" uniqKey="Hao L">L Hao</name>
</author>
<author>
<name sortKey="Chen, X" uniqKey="Chen X">X Chen</name>
</author>
<author>
<name sortKey="Sun, N" uniqKey="Sun N">N Sun</name>
</author>
<author>
<name sortKey="Fischer, Td" uniqKey="Fischer T">TD Fischer</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Youle, Rj" uniqKey="Youle R">RJ Youle</name>
</author>
<author>
<name sortKey="Narendra, Dp" uniqKey="Narendra D">DP Narendra</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Palikaras, K" uniqKey="Palikaras K">K Palikaras</name>
</author>
<author>
<name sortKey="Lionaki, E" uniqKey="Lionaki E">E Lionaki</name>
</author>
<author>
<name sortKey="Tavernarakis, N" uniqKey="Tavernarakis N">N Tavernarakis</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Jin, Sm" uniqKey="Jin S">SM Jin</name>
</author>
<author>
<name sortKey="Lazarou, M" uniqKey="Lazarou M">M Lazarou</name>
</author>
<author>
<name sortKey="Wang, C" uniqKey="Wang C">C Wang</name>
</author>
<author>
<name sortKey="Kane, La" uniqKey="Kane L">LA Kane</name>
</author>
<author>
<name sortKey="Narendra, Dp" uniqKey="Narendra D">DP Narendra</name>
</author>
<author>
<name sortKey="Youle, Rj" uniqKey="Youle R">RJ Youle</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Pickles, S" uniqKey="Pickles S">S Pickles</name>
</author>
<author>
<name sortKey="Vigie, P" uniqKey="Vigie P">P Vigié</name>
</author>
<author>
<name sortKey="Youle, Rj" uniqKey="Youle R">RJ Youle</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Lazarou, M" uniqKey="Lazarou M">M Lazarou</name>
</author>
<author>
<name sortKey="Sliter, Da" uniqKey="Sliter D">DA Sliter</name>
</author>
<author>
<name sortKey="Kane, La" uniqKey="Kane L">LA Kane</name>
</author>
<author>
<name sortKey="Sarraf, Sa" uniqKey="Sarraf S">SA Sarraf</name>
</author>
<author>
<name sortKey="Wang, C" uniqKey="Wang C">C Wang</name>
</author>
<author>
<name sortKey="Burman, Jl" uniqKey="Burman J">JL Burman</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Moore, As" uniqKey="Moore A">AS Moore</name>
</author>
<author>
<name sortKey="Holzbaur, El" uniqKey="Holzbaur E">EL Holzbaur</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Richter, B" uniqKey="Richter B">B Richter</name>
</author>
<author>
<name sortKey="Sliter, Da" uniqKey="Sliter D">DA Sliter</name>
</author>
<author>
<name sortKey="Herhaus, L" uniqKey="Herhaus L">L Herhaus</name>
</author>
<author>
<name sortKey="Stolz, A" uniqKey="Stolz A">A Stolz</name>
</author>
<author>
<name sortKey="Wang, C" uniqKey="Wang C">C Wang</name>
</author>
<author>
<name sortKey="Beli, P" uniqKey="Beli P">P Beli</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Shen, Z" uniqKey="Shen Z">Z Shen</name>
</author>
<author>
<name sortKey="Li, Y" uniqKey="Li Y">Y Li</name>
</author>
<author>
<name sortKey="Gasparski, An" uniqKey="Gasparski A">AN Gasparski</name>
</author>
<author>
<name sortKey="Abeliovich, H" uniqKey="Abeliovich H">H Abeliovich</name>
</author>
<author>
<name sortKey="Greenberg, Ml" uniqKey="Greenberg M">ML Greenberg</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Wei, Y" uniqKey="Wei Y">Y Wei</name>
</author>
<author>
<name sortKey="Chiang, Wc" uniqKey="Chiang W">WC Chiang</name>
</author>
<author>
<name sortKey="Sumpter, R" uniqKey="Sumpter R">R Sumpter</name>
</author>
<author>
<name sortKey="Mishra, P" uniqKey="Mishra P">P Mishra</name>
</author>
<author>
<name sortKey="Levine, B" uniqKey="Levine B">B Levine</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Tsubouchi, K" uniqKey="Tsubouchi K">K Tsubouchi</name>
</author>
<author>
<name sortKey="Araya, J" uniqKey="Araya J">J Araya</name>
</author>
<author>
<name sortKey="Kuwano, K" uniqKey="Kuwano K">K Kuwano</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Bueno, M" uniqKey="Bueno M">M Bueno</name>
</author>
<author>
<name sortKey="Lai, Yc" uniqKey="Lai Y">YC Lai</name>
</author>
<author>
<name sortKey="Romero, Y" uniqKey="Romero Y">Y Romero</name>
</author>
<author>
<name sortKey="Brands, J" uniqKey="Brands J">J Brands</name>
</author>
<author>
<name sortKey="St Croix, Cm" uniqKey="St Croix C">CM St Croix</name>
</author>
<author>
<name sortKey="Kamga, C" uniqKey="Kamga C">C Kamga</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kobayashi, K" uniqKey="Kobayashi K">K Kobayashi</name>
</author>
<author>
<name sortKey="Araya, J" uniqKey="Araya J">J Araya</name>
</author>
<author>
<name sortKey="Minagawa, S" uniqKey="Minagawa S">S Minagawa</name>
</author>
<author>
<name sortKey="Hara, H" uniqKey="Hara H">H Hara</name>
</author>
<author>
<name sortKey="Saito, N" uniqKey="Saito N">N Saito</name>
</author>
<author>
<name sortKey="Kadota, T" uniqKey="Kadota T">T Kadota</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Sosulski, Ml" uniqKey="Sosulski M">ML Sosulski</name>
</author>
<author>
<name sortKey="Gongora, R" uniqKey="Gongora R">R Gongora</name>
</author>
<author>
<name sortKey="Danchuk, S" uniqKey="Danchuk S">S Danchuk</name>
</author>
<author>
<name sortKey="Dong, C" uniqKey="Dong C">C Dong</name>
</author>
<author>
<name sortKey="Luo, F" uniqKey="Luo F">F Luo</name>
</author>
<author>
<name sortKey="Sanchez, Cg" uniqKey="Sanchez C">CG Sanchez</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Patel, As" uniqKey="Patel A">AS Patel</name>
</author>
<author>
<name sortKey="Song, Jw" uniqKey="Song J">JW Song</name>
</author>
<author>
<name sortKey="Chu, Sg" uniqKey="Chu S">SG Chu</name>
</author>
<author>
<name sortKey="Mizumura, K" uniqKey="Mizumura K">K Mizumura</name>
</author>
<author>
<name sortKey="Osorio, Jc" uniqKey="Osorio J">JC Osorio</name>
</author>
<author>
<name sortKey="Shi, Y" uniqKey="Shi Y">Y Shi</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Fan, P" uniqKey="Fan P">P Fan</name>
</author>
<author>
<name sortKey="Xie, Xh" uniqKey="Xie X">XH Xie</name>
</author>
<author>
<name sortKey="Chen, Ch" uniqKey="Chen C">CH Chen</name>
</author>
<author>
<name sortKey="Peng, X" uniqKey="Peng X">X Peng</name>
</author>
<author>
<name sortKey="Zhang, P" uniqKey="Zhang P">P Zhang</name>
</author>
<author>
<name sortKey="Yang, C" uniqKey="Yang C">C Yang</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Wiley, Cd" uniqKey="Wiley C">CD Wiley</name>
</author>
<author>
<name sortKey="Velarde, Mc" uniqKey="Velarde M">MC Velarde</name>
</author>
<author>
<name sortKey="Lecot, P" uniqKey="Lecot P">P Lecot</name>
</author>
<author>
<name sortKey="Liu, S" uniqKey="Liu S">S Liu</name>
</author>
<author>
<name sortKey="Sarnoski, Ea" uniqKey="Sarnoski E">EA Sarnoski</name>
</author>
<author>
<name sortKey="Freund, A" uniqKey="Freund A">A Freund</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Schuliga, M" uniqKey="Schuliga M">M Schuliga</name>
</author>
<author>
<name sortKey="Pechkovsky, Dv" uniqKey="Pechkovsky D">DV Pechkovsky</name>
</author>
<author>
<name sortKey="Read, J" uniqKey="Read J">J Read</name>
</author>
<author>
<name sortKey="Waters, Dw" uniqKey="Waters D">DW Waters</name>
</author>
<author>
<name sortKey="Blokland, Kec" uniqKey="Blokland K">KEC Blokland</name>
</author>
<author>
<name sortKey="Reid, At" uniqKey="Reid A">AT Reid</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Parikh, P" uniqKey="Parikh P">P Parikh</name>
</author>
<author>
<name sortKey="Wicher, S" uniqKey="Wicher S">S Wicher</name>
</author>
<author>
<name sortKey="Khandalavala, K" uniqKey="Khandalavala K">K Khandalavala</name>
</author>
<author>
<name sortKey="Pabelick, Cm" uniqKey="Pabelick C">CM Pabelick</name>
</author>
<author>
<name sortKey="Britt, Rd" uniqKey="Britt R">RD Britt</name>
</author>
<author>
<name sortKey="Prakash, Ys" uniqKey="Prakash Y">YS Prakash</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Hadj Salem, I" uniqKey="Hadj Salem I">I Hadj Salem</name>
</author>
<author>
<name sortKey="Dube, J" uniqKey="Dube J">J Dubé</name>
</author>
<author>
<name sortKey="Boulet, Lp" uniqKey="Boulet L">LP Boulet</name>
</author>
<author>
<name sortKey="Chakir, J" uniqKey="Chakir J">J Chakir</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Belsky, Dw" uniqKey="Belsky D">DW Belsky</name>
</author>
<author>
<name sortKey="Shalev, I" uniqKey="Shalev I">I Shalev</name>
</author>
<author>
<name sortKey="Sears, Mr" uniqKey="Sears M">MR Sears</name>
</author>
<author>
<name sortKey="Hancox, Rj" uniqKey="Hancox R">RJ Hancox</name>
</author>
<author>
<name sortKey="Lee Harrington, H" uniqKey="Lee Harrington H">H Lee Harrington</name>
</author>
<author>
<name sortKey="Houts, R" uniqKey="Houts R">R Houts</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Sidler, C" uniqKey="Sidler C">C Sidler</name>
</author>
<author>
<name sortKey="Kovalchuk, O" uniqKey="Kovalchuk O">O Kovalchuk</name>
</author>
<author>
<name sortKey="Kovalchuk, I" uniqKey="Kovalchuk I">I Kovalchuk</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Pereira, Bi" uniqKey="Pereira B">BI Pereira</name>
</author>
<author>
<name sortKey="Devine, Op" uniqKey="Devine O">OP Devine</name>
</author>
<author>
<name sortKey="Vukmanovic Stejic, M" uniqKey="Vukmanovic Stejic M">M Vukmanovic-Stejic</name>
</author>
<author>
<name sortKey="Chambers, Es" uniqKey="Chambers E">ES Chambers</name>
</author>
<author>
<name sortKey="Subramanian, P" uniqKey="Subramanian P">P Subramanian</name>
</author>
<author>
<name sortKey="Patel, N" uniqKey="Patel N">N Patel</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Campisi, J" uniqKey="Campisi J">J Campisi</name>
</author>
<author>
<name sortKey="D Adda Di Fagagna, F" uniqKey="D Adda Di Fagagna F">F d'Adda di Fagagna</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Krtolica, A" uniqKey="Krtolica A">A Krtolica</name>
</author>
<author>
<name sortKey="Parrinello, S" uniqKey="Parrinello S">S Parrinello</name>
</author>
<author>
<name sortKey="Lockett, S" uniqKey="Lockett S">S Lockett</name>
</author>
<author>
<name sortKey="Desprez, Py" uniqKey="Desprez P">PY Desprez</name>
</author>
<author>
<name sortKey="Campisi, J" uniqKey="Campisi J">J Campisi</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Birch, J" uniqKey="Birch J">J Birch</name>
</author>
<author>
<name sortKey="Barnes, Pj" uniqKey="Barnes P">PJ Barnes</name>
</author>
<author>
<name sortKey="Passos, Jf" uniqKey="Passos J">JF Passos</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Li, C" uniqKey="Li C">C Li</name>
</author>
<author>
<name sortKey="Chai, Y" uniqKey="Chai Y">Y Chai</name>
</author>
<author>
<name sortKey="Wang, L" uniqKey="Wang L">L Wang</name>
</author>
<author>
<name sortKey="Gao, B" uniqKey="Gao B">B Gao</name>
</author>
<author>
<name sortKey="Chen, H" uniqKey="Chen H">H Chen</name>
</author>
<author>
<name sortKey="Gao, P" uniqKey="Gao P">P Gao</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Childs, Bg" uniqKey="Childs B">BG Childs</name>
</author>
<author>
<name sortKey="Baker, Dj" uniqKey="Baker D">DJ Baker</name>
</author>
<author>
<name sortKey="Wijshake, T" uniqKey="Wijshake T">T Wijshake</name>
</author>
<author>
<name sortKey="Conover, Ca" uniqKey="Conover C">CA Conover</name>
</author>
<author>
<name sortKey="Campisi, J" uniqKey="Campisi J">J Campisi</name>
</author>
<author>
<name sortKey="Van Deursen, Jm" uniqKey="Van Deursen J">JM van Deursen</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Jeon, Oh" uniqKey="Jeon O">OH Jeon</name>
</author>
<author>
<name sortKey="Kim, C" uniqKey="Kim C">C Kim</name>
</author>
<author>
<name sortKey="Laberge, Rm" uniqKey="Laberge R">RM Laberge</name>
</author>
<author>
<name sortKey="Demaria, M" uniqKey="Demaria M">M Demaria</name>
</author>
<author>
<name sortKey="Rathod, S" uniqKey="Rathod S">S Rathod</name>
</author>
<author>
<name sortKey="Vasserot, Ap" uniqKey="Vasserot A">AP Vasserot</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Van Deursen, Jm" uniqKey="Van Deursen J">JM van Deursen</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Lee, S" uniqKey="Lee S">S Lee</name>
</author>
<author>
<name sortKey="Schmitt, Ca" uniqKey="Schmitt C">CA Schmitt</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Martinez Zamudio, Ri" uniqKey="Martinez Zamudio R">RI Martínez-Zamudio</name>
</author>
<author>
<name sortKey="Robinson, L" uniqKey="Robinson L">L Robinson</name>
</author>
<author>
<name sortKey="Roux, Pf" uniqKey="Roux P">PF Roux</name>
</author>
<author>
<name sortKey="Bischof, O" uniqKey="Bischof O">O Bischof</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Hardie, Dg" uniqKey="Hardie D">DG Hardie</name>
</author>
<author>
<name sortKey="Ross, Fa" uniqKey="Ross F">FA Ross</name>
</author>
<author>
<name sortKey="Hawley, Sa" uniqKey="Hawley S">SA Hawley</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ogrodnik, M" uniqKey="Ogrodnik M">M Ogrodnik</name>
</author>
<author>
<name sortKey="Zhu, Y" uniqKey="Zhu Y">Y Zhu</name>
</author>
<author>
<name sortKey="Langhi, Lgp" uniqKey="Langhi L">LGP Langhi</name>
</author>
<author>
<name sortKey="Tchkonia, T" uniqKey="Tchkonia T">T Tchkonia</name>
</author>
<author>
<name sortKey="Kruger, P" uniqKey="Kruger P">P Krüger</name>
</author>
<author>
<name sortKey="Fielder, E" uniqKey="Fielder E">E Fielder</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Burton, Dga" uniqKey="Burton D">DGA Burton</name>
</author>
<author>
<name sortKey="Stolzing, A" uniqKey="Stolzing A">A Stolzing</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Krizhanovsky, V" uniqKey="Krizhanovsky V">V Krizhanovsky</name>
</author>
<author>
<name sortKey="Yon, M" uniqKey="Yon M">M Yon</name>
</author>
<author>
<name sortKey="Dickins, Ra" uniqKey="Dickins R">RA Dickins</name>
</author>
<author>
<name sortKey="Hearn, S" uniqKey="Hearn S">S Hearn</name>
</author>
<author>
<name sortKey="Simon, J" uniqKey="Simon J">J Simon</name>
</author>
<author>
<name sortKey="Miething, C" uniqKey="Miething C">C Miething</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Sagiv, A" uniqKey="Sagiv A">A Sagiv</name>
</author>
<author>
<name sortKey="Burton, Dg" uniqKey="Burton D">DG Burton</name>
</author>
<author>
<name sortKey="Moshayev, Z" uniqKey="Moshayev Z">Z Moshayev</name>
</author>
<author>
<name sortKey="Vadai, E" uniqKey="Vadai E">E Vadai</name>
</author>
<author>
<name sortKey="Wensveen, F" uniqKey="Wensveen F">F Wensveen</name>
</author>
<author>
<name sortKey="Ben Dor, S" uniqKey="Ben Dor S">S Ben-Dor</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Iannello, A" uniqKey="Iannello A">A Iannello</name>
</author>
<author>
<name sortKey="Thompson, Tw" uniqKey="Thompson T">TW Thompson</name>
</author>
<author>
<name sortKey="Ardolino, M" uniqKey="Ardolino M">M Ardolino</name>
</author>
<author>
<name sortKey="Lowe, Sw" uniqKey="Lowe S">SW Lowe</name>
</author>
<author>
<name sortKey="Raulet, Dh" uniqKey="Raulet D">DH Raulet</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kang, Jy" uniqKey="Kang J">JY Kang</name>
</author>
<author>
<name sortKey="Lee, Sy" uniqKey="Lee S">SY Lee</name>
</author>
<author>
<name sortKey="Rhee, Ck" uniqKey="Rhee C">CK Rhee</name>
</author>
<author>
<name sortKey="Kim, Sj" uniqKey="Kim S">SJ Kim</name>
</author>
<author>
<name sortKey="Kwon, Ss" uniqKey="Kwon S">SS Kwon</name>
</author>
<author>
<name sortKey="Kim, Yk" uniqKey="Kim Y">YK Kim</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Amsellem, V" uniqKey="Amsellem V">V Amsellem</name>
</author>
<author>
<name sortKey="Gary Bobo, G" uniqKey="Gary Bobo G">G Gary-Bobo</name>
</author>
<author>
<name sortKey="Marcos, E" uniqKey="Marcos E">E Marcos</name>
</author>
<author>
<name sortKey="Maitre, B" uniqKey="Maitre B">B Maitre</name>
</author>
<author>
<name sortKey="Chaar, V" uniqKey="Chaar V">V Chaar</name>
</author>
<author>
<name sortKey="Validire, P" uniqKey="Validire P">P Validire</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Schafer, Mj" uniqKey="Schafer M">MJ Schafer</name>
</author>
<author>
<name sortKey="White, Ta" uniqKey="White T">TA White</name>
</author>
<author>
<name sortKey="Iijima, K" uniqKey="Iijima K">K Iijima</name>
</author>
<author>
<name sortKey="Haak, Aj" uniqKey="Haak A">AJ Haak</name>
</author>
<author>
<name sortKey="Ligresti, G" uniqKey="Ligresti G">G Ligresti</name>
</author>
<author>
<name sortKey="Atkinson, Ej" uniqKey="Atkinson E">EJ Atkinson</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Fedorov, Ia" uniqKey="Fedorov I">IA Fedorov</name>
</author>
<author>
<name sortKey="Wilson, Sj" uniqKey="Wilson S">SJ Wilson</name>
</author>
<author>
<name sortKey="Davies, De" uniqKey="Davies D">DE Davies</name>
</author>
<author>
<name sortKey="Holgate, St" uniqKey="Holgate S">ST Holgate</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Jedrychowski, Wa" uniqKey="Jedrychowski W">WA Jedrychowski</name>
</author>
<author>
<name sortKey="Perera, Fp" uniqKey="Perera F">FP Perera</name>
</author>
<author>
<name sortKey="Maugeri, U" uniqKey="Maugeri U">U Maugeri</name>
</author>
<author>
<name sortKey="Mroz, E" uniqKey="Mroz E">E Mroz</name>
</author>
<author>
<name sortKey="Klimaszewska Rembiasz, M" uniqKey="Klimaszewska Rembiasz M">M Klimaszewska-Rembiasz</name>
</author>
<author>
<name sortKey="Flak, E" uniqKey="Flak E">E Flak</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Martens, Ds" uniqKey="Martens D">DS Martens</name>
</author>
<author>
<name sortKey="Cox, B" uniqKey="Cox B">B Cox</name>
</author>
<author>
<name sortKey="Janssen, Bg" uniqKey="Janssen B">BG Janssen</name>
</author>
<author>
<name sortKey="Clemente, Dbp" uniqKey="Clemente D">DBP Clemente</name>
</author>
<author>
<name sortKey="Gasparrini, A" uniqKey="Gasparrini A">A Gasparrini</name>
</author>
<author>
<name sortKey="Vanpoucke, C" uniqKey="Vanpoucke C">C Vanpoucke</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Mahemuti, L" uniqKey="Mahemuti L">L Mahemuti</name>
</author>
<author>
<name sortKey="Chen, Q" uniqKey="Chen Q">Q Chen</name>
</author>
<author>
<name sortKey="Coughlan, Mc" uniqKey="Coughlan M">MC Coughlan</name>
</author>
<author>
<name sortKey="Qiao, C" uniqKey="Qiao C">C Qiao</name>
</author>
<author>
<name sortKey="Chepelev, Nl" uniqKey="Chepelev N">NL Chepelev</name>
</author>
<author>
<name sortKey="Florian, M" uniqKey="Florian M">M Florian</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Jiang, C" uniqKey="Jiang C">C Jiang</name>
</author>
<author>
<name sortKey="Liu, G" uniqKey="Liu G">G Liu</name>
</author>
<author>
<name sortKey="Luckhardt, T" uniqKey="Luckhardt T">T Luckhardt</name>
</author>
<author>
<name sortKey="Antony, V" uniqKey="Antony V">V Antony</name>
</author>
<author>
<name sortKey="Zhou, Y" uniqKey="Zhou Y">Y Zhou</name>
</author>
<author>
<name sortKey="Carter, Ab" uniqKey="Carter A">AB Carter</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Rana, T" uniqKey="Rana T">T Rana</name>
</author>
<author>
<name sortKey="Jiang, C" uniqKey="Jiang C">C Jiang</name>
</author>
<author>
<name sortKey="Liu, G" uniqKey="Liu G">G Liu</name>
</author>
<author>
<name sortKey="Miyata, T" uniqKey="Miyata T">T Miyata</name>
</author>
<author>
<name sortKey="Antony, V" uniqKey="Antony V">V Antony</name>
</author>
<author>
<name sortKey="Thannickal, Vj" uniqKey="Thannickal V">VJ Thannickal</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Rodier, F" uniqKey="Rodier F">F Rodier</name>
</author>
<author>
<name sortKey="Coppe, Jp" uniqKey="Coppe J">JP Coppé</name>
</author>
<author>
<name sortKey="Patil, Ck" uniqKey="Patil C">CK Patil</name>
</author>
<author>
<name sortKey="Hoeijmakers, Wa" uniqKey="Hoeijmakers W">WA Hoeijmakers</name>
</author>
<author>
<name sortKey="Mu Oz, Dp" uniqKey="Mu Oz D">DP Muñoz</name>
</author>
<author>
<name sortKey="Raza, Sr" uniqKey="Raza S">SR Raza</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Loubaki, L" uniqKey="Loubaki L">L Loubaki</name>
</author>
<author>
<name sortKey="Semlali, A" uniqKey="Semlali A">A Semlali</name>
</author>
<author>
<name sortKey="Boisvert, M" uniqKey="Boisvert M">M Boisvert</name>
</author>
<author>
<name sortKey="Jacques, E" uniqKey="Jacques E">E Jacques</name>
</author>
<author>
<name sortKey="Plante, S" uniqKey="Plante S">S Plante</name>
</author>
<author>
<name sortKey="Aoudjit, F" uniqKey="Aoudjit F">F Aoudjit</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Roca, R" uniqKey="Roca R">R Roca</name>
</author>
<author>
<name sortKey="Kypta, Rm" uniqKey="Kypta R">RM Kypta</name>
</author>
<author>
<name sortKey="Vivanco, Md" uniqKey="Vivanco M">Md Vivanco</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Hodge, G" uniqKey="Hodge G">G Hodge</name>
</author>
<author>
<name sortKey="Jersmann, H" uniqKey="Jersmann H">H Jersmann</name>
</author>
<author>
<name sortKey="Tran, Hb" uniqKey="Tran H">HB Tran</name>
</author>
<author>
<name sortKey="Holmes, M" uniqKey="Holmes M">M Holmes</name>
</author>
<author>
<name sortKey="Reynolds, Pn" uniqKey="Reynolds P">PN Reynolds</name>
</author>
<author>
<name sortKey="Hodge, S" uniqKey="Hodge S">S Hodge</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kleinjan, A" uniqKey="Kleinjan A">A KleinJan</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Huang, J" uniqKey="Huang J">J Huang</name>
</author>
<author>
<name sortKey="Li, Z" uniqKey="Li Z">Z Li</name>
</author>
<author>
<name sortKey="Yao, X" uniqKey="Yao X">X Yao</name>
</author>
<author>
<name sortKey="Li, Y" uniqKey="Li Y">Y Li</name>
</author>
<author>
<name sortKey="Reng, X" uniqKey="Reng X">X Reng</name>
</author>
<author>
<name sortKey="Li, J" uniqKey="Li J">J Li</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kuwano, K" uniqKey="Kuwano K">K Kuwano</name>
</author>
<author>
<name sortKey="Araya, J" uniqKey="Araya J">J Araya</name>
</author>
<author>
<name sortKey="Hara, H" uniqKey="Hara H">H Hara</name>
</author>
<author>
<name sortKey="Minagawa, S" uniqKey="Minagawa S">S Minagawa</name>
</author>
<author>
<name sortKey="Takasaka, N" uniqKey="Takasaka N">N Takasaka</name>
</author>
<author>
<name sortKey="Ito, S" uniqKey="Ito S">S Ito</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Rajendran, P" uniqKey="Rajendran P">P Rajendran</name>
</author>
<author>
<name sortKey="Alzahrani, Am" uniqKey="Alzahrani A">AM Alzahrani</name>
</author>
<author>
<name sortKey="Hanieh, Hn" uniqKey="Hanieh H">HN Hanieh</name>
</author>
<author>
<name sortKey="Kumar, Sa" uniqKey="Kumar S">SA Kumar</name>
</author>
<author>
<name sortKey="Ben Ammar, R" uniqKey="Ben Ammar R">R Ben Ammar</name>
</author>
<author>
<name sortKey="Rengarajan, T" uniqKey="Rengarajan T">T Rengarajan</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Narita, M" uniqKey="Narita M">M Narita</name>
</author>
<author>
<name sortKey="Young, Ar" uniqKey="Young A">AR Young</name>
</author>
<author>
<name sortKey="Arakawa, S" uniqKey="Arakawa S">S Arakawa</name>
</author>
<author>
<name sortKey="Samarajiwa, Sa" uniqKey="Samarajiwa S">SA Samarajiwa</name>
</author>
<author>
<name sortKey="Nakashima, T" uniqKey="Nakashima T">T Nakashima</name>
</author>
<author>
<name sortKey="Yoshida, S" uniqKey="Yoshida S">S Yoshida</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Suzuki, T" uniqKey="Suzuki T">T Suzuki</name>
</author>
<author>
<name sortKey="Nakagawa, M" uniqKey="Nakagawa M">M Nakagawa</name>
</author>
<author>
<name sortKey="Yoshikawa, A" uniqKey="Yoshikawa A">A Yoshikawa</name>
</author>
<author>
<name sortKey="Sasagawa, N" uniqKey="Sasagawa N">N Sasagawa</name>
</author>
<author>
<name sortKey="Yoshimori, T" uniqKey="Yoshimori T">T Yoshimori</name>
</author>
<author>
<name sortKey="Ohsumi, Y" uniqKey="Ohsumi Y">Y Ohsumi</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Werner, G" uniqKey="Werner G">G Werner</name>
</author>
<author>
<name sortKey="Hagenmaier, H" uniqKey="Hagenmaier H">H Hagenmaier</name>
</author>
<author>
<name sortKey="Drautz, H" uniqKey="Drautz H">H Drautz</name>
</author>
<author>
<name sortKey="Baumgartner, A" uniqKey="Baumgartner A">A Baumgartner</name>
</author>
<author>
<name sortKey="Z Hner, H" uniqKey="Z Hner H">H Zähner</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Hardie, Dg" uniqKey="Hardie D">DG Hardie</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kim, J" uniqKey="Kim J">J Kim</name>
</author>
<author>
<name sortKey="Yang, G" uniqKey="Yang G">G Yang</name>
</author>
<author>
<name sortKey="Kim, Y" uniqKey="Kim Y">Y Kim</name>
</author>
<author>
<name sortKey="Kim, J" uniqKey="Kim J">J Kim</name>
</author>
<author>
<name sortKey="Ha, J" uniqKey="Ha J">J Ha</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Mora, Al" uniqKey="Mora A">AL Mora</name>
</author>
<author>
<name sortKey="Rojas, M" uniqKey="Rojas M">M Rojas</name>
</author>
<author>
<name sortKey="Pardo, A" uniqKey="Pardo A">A Pardo</name>
</author>
<author>
<name sortKey="Selman, M" uniqKey="Selman M">M Selman</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Barnes, Pj" uniqKey="Barnes P">PJ Barnes</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Zhang, Y" uniqKey="Zhang Y">Y Zhang</name>
</author>
<author>
<name sortKey="Jing, Y" uniqKey="Jing Y">Y Jing</name>
</author>
<author>
<name sortKey="Qiao, J" uniqKey="Qiao J">J Qiao</name>
</author>
<author>
<name sortKey="Luan, B" uniqKey="Luan B">B Luan</name>
</author>
<author>
<name sortKey="Wang, X" uniqKey="Wang X">X Wang</name>
</author>
<author>
<name sortKey="Wang, L" uniqKey="Wang L">L Wang</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Herranz, N" uniqKey="Herranz N">N Herranz</name>
</author>
<author>
<name sortKey="Gallage, S" uniqKey="Gallage S">S Gallage</name>
</author>
<author>
<name sortKey="Mellone, M" uniqKey="Mellone M">M Mellone</name>
</author>
<author>
<name sortKey="Wuestefeld, T" uniqKey="Wuestefeld T">T Wuestefeld</name>
</author>
<author>
<name sortKey="Klotz, S" uniqKey="Klotz S">S Klotz</name>
</author>
<author>
<name sortKey="Hanley, Cj" uniqKey="Hanley C">CJ Hanley</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Chang, J" uniqKey="Chang J">J Chang</name>
</author>
<author>
<name sortKey="Wang, Y" uniqKey="Wang Y">Y Wang</name>
</author>
<author>
<name sortKey="Shao, L" uniqKey="Shao L">L Shao</name>
</author>
<author>
<name sortKey="Laberge, Rm" uniqKey="Laberge R">RM Laberge</name>
</author>
<author>
<name sortKey="Demaria, M" uniqKey="Demaria M">M Demaria</name>
</author>
<author>
<name sortKey="Campisi, J" uniqKey="Campisi J">J Campisi</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Baker, Dj" uniqKey="Baker D">DJ Baker</name>
</author>
<author>
<name sortKey="Wijshake, T" uniqKey="Wijshake T">T Wijshake</name>
</author>
<author>
<name sortKey="Tchkonia, T" uniqKey="Tchkonia T">T Tchkonia</name>
</author>
<author>
<name sortKey="Lebrasseur, Nk" uniqKey="Lebrasseur N">NK LeBrasseur</name>
</author>
<author>
<name sortKey="Childs, Bg" uniqKey="Childs B">BG Childs</name>
</author>
<author>
<name sortKey="Van De Sluis, B" uniqKey="Van De Sluis B">B van de Sluis</name>
</author>
</analytic>
</biblStruct>
</listBibl>
</div1>
</back>
</TEI>
<pmc article-type="review-article">
<pmc-dir>properties open_access</pmc-dir>
<front>
<journal-meta>
<journal-id journal-id-type="nlm-ta">Front Immunol</journal-id>
<journal-id journal-id-type="iso-abbrev">Front Immunol</journal-id>
<journal-id journal-id-type="publisher-id">Front. Immunol.</journal-id>
<journal-title-group>
<journal-title>Frontiers in Immunology</journal-title>
</journal-title-group>
<issn pub-type="epub">1664-3224</issn>
<publisher>
<publisher-name>Frontiers Media S.A.</publisher-name>
</publisher>
</journal-meta>
<article-meta>
<article-id pub-id-type="pmid">31849968</article-id>
<article-id pub-id-type="pmc">6896909</article-id>
<article-id pub-id-type="doi">10.3389/fimmu.2019.02787</article-id>
<article-categories>
<subj-group subj-group-type="heading">
<subject>Immunology</subject>
<subj-group>
<subject>Review</subject>
</subj-group>
</subj-group>
</article-categories>
<title-group>
<article-title>Environmental Exposures and Asthma Development: Autophagy, Mitophagy, and Cellular Senescence</article-title>
</title-group>
<contrib-group>
<contrib contrib-type="author">
<name>
<surname>Sachdeva</surname>
<given-names>Karan</given-names>
</name>
<xref ref-type="aff" rid="aff1">
<sup>1</sup>
</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Do</surname>
<given-names>Danh C.</given-names>
</name>
<xref ref-type="aff" rid="aff1">
<sup>1</sup>
</xref>
<uri xlink:type="simple" xlink:href="http://loop.frontiersin.org/people/808121/overview"></uri>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Zhang</surname>
<given-names>Yan</given-names>
</name>
<xref ref-type="aff" rid="aff1">
<sup>1</sup>
</xref>
<xref ref-type="aff" rid="aff2">
<sup>2</sup>
</xref>
<uri xlink:type="simple" xlink:href="http://loop.frontiersin.org/people/808241/overview"></uri>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Hu</surname>
<given-names>Xinyue</given-names>
</name>
<xref ref-type="aff" rid="aff1">
<sup>1</sup>
</xref>
<xref ref-type="aff" rid="aff2">
<sup>2</sup>
</xref>
<uri xlink:type="simple" xlink:href="http://loop.frontiersin.org/people/615474/overview"></uri>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Chen</surname>
<given-names>Jingsi</given-names>
</name>
<xref ref-type="aff" rid="aff1">
<sup>1</sup>
</xref>
<xref ref-type="aff" rid="aff3">
<sup>3</sup>
</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Gao</surname>
<given-names>Peisong</given-names>
</name>
<xref ref-type="aff" rid="aff1">
<sup>1</sup>
</xref>
<xref ref-type="corresp" rid="c001">
<sup>*</sup>
</xref>
<uri xlink:type="simple" xlink:href="http://loop.frontiersin.org/people/463119/overview"></uri>
</contrib>
</contrib-group>
<aff id="aff1">
<sup>1</sup>
<institution>Johns Hopkins Asthma & Allergy Center, Johns Hopkins University School of Medicine</institution>
,
<addr-line>Baltimore, MD</addr-line>
,
<country>United States</country>
</aff>
<aff id="aff2">
<sup>2</sup>
<institution>Department of Respiratory Medicine, Xiangya Hospital, Central South University</institution>
,
<addr-line>Changsha</addr-line>
,
<country>China</country>
</aff>
<aff id="aff3">
<sup>3</sup>
<institution>Department of Dermatology, Children's Hospital, Chongqing Medical University</institution>
,
<addr-line>Chongqing</addr-line>
,
<country>China</country>
</aff>
<author-notes>
<fn fn-type="edited-by">
<p>Edited by: Paola Italiani, Italian National Research Council (CNR), Italy</p>
</fn>
<fn fn-type="edited-by">
<p>Reviewed by: James Harris, Monash University, Australia; Sian M. Henson, Queen Mary University of London, United Kingdom</p>
</fn>
<corresp id="c001">*Correspondence: Peisong Gao
<email>pgao1@jhmi.edu</email>
</corresp>
<fn fn-type="other" id="fn001">
<p>This article was submitted to Inflammation, a section of the journal Frontiers in Immunology</p>
</fn>
</author-notes>
<pub-date pub-type="epub">
<day>29</day>
<month>11</month>
<year>2019</year>
</pub-date>
<pub-date pub-type="collection">
<year>2019</year>
</pub-date>
<volume>10</volume>
<elocation-id>2787</elocation-id>
<history>
<date date-type="received">
<day>07</day>
<month>8</month>
<year>2019</year>
</date>
<date date-type="accepted">
<day>13</day>
<month>11</month>
<year>2019</year>
</date>
</history>
<permissions>
<copyright-statement>Copyright © 2019 Sachdeva, Do, Zhang, Hu, Chen and Gao.</copyright-statement>
<copyright-year>2019</copyright-year>
<copyright-holder>Sachdeva, Do, Zhang, Hu, Chen and Gao</copyright-holder>
<license xlink:href="http://creativecommons.org/licenses/by/4.0/">
<license-p>This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.</license-p>
</license>
</permissions>
<abstract>
<p>Environmental pollutants and allergens induce oxidative stress and mitochondrial dysfunction, leading to key features of allergic asthma. Dysregulations in autophagy, mitophagy, and cellular senescence have been associated with environmental pollutant and allergen-induced oxidative stress, mitochondrial dysfunction, secretion of multiple inflammatory proteins, and subsequently development of asthma. Particularly, particulate matter 2.5 (PM
<sub>2.5</sub>
) has been reported to induce autophagy in the bronchial epithelial cells through activation of AMP-activated protein kinase (AMPK), drive mitophagy through activating PTEN-induced kinase 1(PINK1)/Parkin pathway, and induce cell cycle arrest and senescence. Intriguingly, allergens, including
<italic>ovalbumin</italic>
(OVA),
<italic>Alternaria alternata</italic>
, and
<italic>cockroach allergen</italic>
, have also been shown to induce autophagy through activation of different signaling pathways. Additionally, mitochondrial dysfunction can induce cell senescence due to excessive ROS production, which affects airway diseases. Although autophagy and senescence share similar properties, recent studies suggest that autophagy can either accelerate the development of senescence or prevent senescence. Thus, in this review, we evaluated the literature regarding the basic cellular processes, including autophagy, mitophagy, and cellular senescence, explored their molecular mechanisms in the regulation of the initiation and downstream signaling. Especially, we highlighted their involvement in environmental pollutant/allergen-induced major phenotypic changes of asthma such as airway inflammation and remodeling and reviewed novel and critical research areas for future studies. Ultimately, understanding the regulatory mechanisms of autophagy, mitophagy, and cellular senescence may allow for the development of new therapeutic targets for asthma.</p>
</abstract>
<kwd-group>
<kwd>oxidative stress</kwd>
<kwd>autophagy</kwd>
<kwd>mitophagy</kwd>
<kwd>senescence</kwd>
<kwd>asthma</kwd>
</kwd-group>
<funding-group>
<award-group>
<funding-source id="cn001">National Institutes of Health
<named-content content-type="fundref-id">10.13039/100000002</named-content>
</funding-source>
</award-group>
</funding-group>
<counts>
<fig-count count="4"></fig-count>
<table-count count="0"></table-count>
<equation-count count="0"></equation-count>
<ref-count count="200"></ref-count>
<page-count count="16"></page-count>
<word-count count="13125"></word-count>
</counts>
</article-meta>
</front>
<body>
<sec sec-type="intro" id="s1">
<title>Introduction</title>
<p>Asthma is a leading serious chronic illness of children and adults worldwide, and its prevalence has been increasing over the past few decades (
<xref rid="B1" ref-type="bibr">1</xref>
,
<xref rid="B2" ref-type="bibr">2</xref>
). Million people worldwide are affected, including 24 million in the United States (
<xref rid="B3" ref-type="bibr">3</xref>
). Asthma is chronic airway inflammation characterized by airway hyper-responsiveness, wheezing, cough, and dyspnea, and has become a major contributing factor to missed time from school and work, and is also a major cause of hospitalization and emergency department visits. It is well-recognized that the increase in asthma prevalence may be mainly attributed to industrialization- and urbanization-generated environmental pollutants (
<xref rid="B4" ref-type="bibr">4</xref>
<xref rid="B10" ref-type="bibr">10</xref>
). In China, a study of over 30,000 adults showed that the prevalence of persistent cough, sputum production, and wheezing was associated with major traffic roads, factories, and large smokestacks (
<xref rid="B11" ref-type="bibr">11</xref>
). This was supported by another cross-sectional study of 23,326 Chinese children, which showed that the prevalence of asthma was higher for those residing near areas with serious air pollution (
<xref rid="B12" ref-type="bibr">12</xref>
). Diesel exhaust particles (DEPs) are of particular concern and contributed to more than 90% of the particulate matters (PMs) derived from traffic sources in European and American cities (
<xref rid="B13" ref-type="bibr">13</xref>
). Particulate matter 2.5 (PM
<sub>2.5</sub>
), one of the major pollutants in urban areas, accounts for a large proportion of the atmospheric particulate matter and increased prevalence and symptom severity in children and adult patients with asthma (
<xref rid="B14" ref-type="bibr">14</xref>
<xref rid="B16" ref-type="bibr">16</xref>
) and other respiratory diseases (
<xref rid="B17" ref-type="bibr">17</xref>
,
<xref rid="B18" ref-type="bibr">18</xref>
). PM
<sub>2.5</sub>
as a mixture of various chemical constituents has been shown to promote oxidative stress and inflammation (
<xref rid="B19" ref-type="bibr">19</xref>
). Furthermore, concentrated transition metals in the environment have been shown to stimulate the production of reactive oxygen species (ROS) 19, leading to airway injury and inflammation (
<xref rid="B20" ref-type="bibr">20</xref>
).</p>
<p>In addition to environmental pollutants, it is well-known that environmental allergens are also major players in the development of allergic sensitization and asthma. Importantly, recent studies made novel findings that environmental pollutants co-exposure with allergens can lead to increased allergic sensitization and severe asthma (
<xref rid="B21" ref-type="bibr">21</xref>
<xref rid="B23" ref-type="bibr">23</xref>
). Particularly, prenatal exposure to DEPs is associated with an increased risk of allergic sensitization, early childhood wheeze, and asthma (
<xref rid="B24" ref-type="bibr">24</xref>
,
<xref rid="B25" ref-type="bibr">25</xref>
). Of interest, co-exposure to DEP and house dust mite (HDM) can promote allergic sensitization and induce major features of a more severe asthma (
<xref rid="B9" ref-type="bibr">9</xref>
,
<xref rid="B26" ref-type="bibr">26</xref>
<xref rid="B29" ref-type="bibr">29</xref>
). Furthermore, we have recently shown that benzo(a)pyrene (BaP) co-exposure with dermatophagoides group 1 (Der f 1) can activate aryl hydrocarbon receptor (AhR) signaling, which regulates ROS generation and TSLP and IL-33 expression (
<xref rid="B30" ref-type="bibr">30</xref>
). Similarly, a very recent study demonstrated that PM2.5 disturbs the balance of Th17/Treg cells by impairing differentiation of T
<sub>reg</sub>
cells and promoting differentiation of Th17 cells through the molecular pathways AhR–HIF-1α (hypoxia-inducible factor-1alpha) and AhR–Got1 (glutamate oxaloacetate transaminase 1) in a cockroach allergen-induced mouse model of asthma (
<xref rid="B31" ref-type="bibr">31</xref>
). Warren et al. reported that acute inhalant exposure to an agriculture acquired organic dust extract (ODE) impacts lung inflammatory responses in a murine model of experimental allergic asthma, suggesting that allergic asthma may prime the lung microenvironment response toward an exaggerated response following exposure to a dusty farm environment (
<xref rid="B32" ref-type="bibr">32</xref>
). Thus, future studies are warranted to identify the underlying mechanisms regarding the co-exposure-induced exacerbation of allergic asthma. In this review, we evaluated the literature regarding the basic cellular processes, including autophagy, mitophagy, and cellular senescence, and discussed their involvement in environmental pollutant/allergen-induced major features of asthma and biological regulation. Additionally, we identified areas of unmet research needed and their potentials as novel therapeutic avenues for the treatment of asthma and allergic diseases.</p>
</sec>
<sec id="s2">
<title>Autophagy</title>
<p>It has been postulated that dysregulation of basic cellular processes which maintain homeostasis and physiological balance may lead to the key clinical features of asthma. Autophagy, a homeostatic process with multiple effects on immunity, has been shown to play important roles in causing downstream changes initiated by environmental pollutants, allergens, and respiratory tract infections (
<xref rid="B33" ref-type="bibr">33</xref>
<xref rid="B40" ref-type="bibr">40</xref>
). Autophagy is a mechanism in which the eukaryotic cell encapsulates damaged proteins or organelles for lysosomal degradation and recycling (
<xref rid="B41" ref-type="bibr">41</xref>
). The autophagic pathway has recently been suggested to be involved in the several key features of asthma pathogenesis, including eosinophilic airway inflammation (
<xref rid="B42" ref-type="bibr">42</xref>
), airway hyper-responsiveness (
<xref rid="B36" ref-type="bibr">36</xref>
), and airway remodeling (
<xref rid="B43" ref-type="bibr">43</xref>
). It has been shown that PM
<sub>2.5</sub>
exposure can induce cell autophagy and airway inflammation through different immunological and molecular mechanisms (
<xref rid="B44" ref-type="bibr">44</xref>
<xref rid="B46" ref-type="bibr">46</xref>
). Furthermore, exposure to allergens has also been shown to activate autophagy, as demonstrated in studies with cockroach allergen (
<xref rid="B47" ref-type="bibr">47</xref>
),
<italic>Alternaria</italic>
extract (
<xref rid="B48" ref-type="bibr">48</xref>
), and caffeine (
<xref rid="B49" ref-type="bibr">49</xref>
).</p>
<p>Autophagy is a process that has been maintained over ages of evolution, and by which damaged and misfolded proteins along with aged or damaged organelles are transported to lysosomes for elimination and digestion (
<xref rid="B50" ref-type="bibr">50</xref>
). Currently, three major types of autophagy are recognized: macroautophagy, microautophagy, and chaperone-mediated autophagy (
<xref rid="B51" ref-type="bibr">51</xref>
). Of these, macroautophagy is the most extensively studied, which uses autophagosomes, double-membraned vesicles, to engulf cytoplasmic proteins and organelles for delivery to the lysosome for degradation. Autophagosomes fusing with lysosomes are termed autophagolysosomes (
<xref rid="B52" ref-type="bibr">52</xref>
). After fusion with lysosomes, the cargo delivered is degraded by lysosomal enzymes and then transported to the cytoplasm (
<xref rid="B53" ref-type="bibr">53</xref>
<xref rid="B55" ref-type="bibr">55</xref>
). The byproducts of lysosomal degradation (e.g., amino acids) are recycled and then used for protein synthesis that enables salvage of energy normally used in
<italic>de novo</italic>
synthesis. Microautophagy as a second type of autophagy does not require autophagosomes but involves the direct engulfment of the cargo that may include proteins and lipids by the invagination of the lysosomal membrane (
<xref rid="B56" ref-type="bibr">56</xref>
). Chaperone-mediated autophagy (CMA) as a third type of autophagy is unique to mammalian cells (
<xref rid="B57" ref-type="bibr">57</xref>
). CMA is a highly regulated cellular process that involves the degradation of a selective subset of cytosolic proteins in lysosomes. In contrast to macroautophagy that engulfs and delivers predominantly larger structures for bulk degradation of cargo, CMA delivers individual proteins for lysosomal degradation. CMA involves a co-chaperone complex led by heat shock cognate 70 (HSC70) that recognizes target proteins that have a KFERQ-like pentapeptide sequence (
<xref rid="B52" ref-type="bibr">52</xref>
). Chaperone-bound proteins are transported to lysosomes, in which they are recognized by the lysosome-associated membrane protein type 2a (LAMP2a) receptor, a major regulator of CMA. LAMP2a is a transmembrane protein component that oligomerizes and forms a translocon complex for internalization and degradation of chaperone-delivered cargo in the lysosome (
<xref rid="B58" ref-type="bibr">58</xref>
). In this review, we mainly focused on macroautophagy, the form of autophagy dealing with the destruction and recycling of damaged macromolecules and organelle structures, and highlighted the significance of macroautophagy in the maintenance of cellular energetic balance and homeostasis.</p>
</sec>
<sec id="s3">
<title>Regulation of Autophagy</title>
<p>Significant progress has been made in understanding the molecular mechanisms of autophagy and the regulation of autophagy in the past 10 years (
<xref rid="B59" ref-type="bibr">59</xref>
). These studies, together with discoveries of the autophagy-related (ATG) genes and their associations with specific diseases (
<xref rid="B60" ref-type="bibr">60</xref>
,
<xref rid="B61" ref-type="bibr">61</xref>
), provide a multidimensional perspective of mechanisms by which ATG gene-dependent autophagy pathways are critical in the pathogenesis of human diseases. The autophagy pathway is usually described as involving a set of 16–20 core conserved ATG genes. These core proteins are involved in regulating initiation of autophagy by the UNC51-like kinase (ULK) complex (e.g., ULK1, FIP200, ATG13), autophagosome nucleation (Beclin 1, VPS34, VPS15, and ATG14), autophagosome elongation and maturation (e.g., ATG5, ATG12, ATL16L1, ATG8/microtubule-associated protein 1 light chain 3 [LC3]), and induction of autophagosomes and fusion of autophagosomes with lysosomes (i.e., ATG9/mammalian Atg9 and vacuole membrane protein 1) (
<xref rid="B59" ref-type="bibr">59</xref>
,
<xref rid="B62" ref-type="bibr">62</xref>
). Amongst these ATG proteins, LC3 is a well-defined protein, which is cleaved from a pro-form by Atg4 and then conjugated with phosphatidyl-ethanolamine by the sequential action of Atg7 and Atg3 (
<xref rid="B63" ref-type="bibr">63</xref>
) to form LC3-II (
<xref ref-type="fig" rid="F1">Figure 1</xref>
). The conversion of LC3-I (unconjugated cytosolic form) to LC3-II (autophagosomal membrane-associated phosphatidylethanolamine-conjugated form) has been considered as a major feature of autophagosome formation. Additionally, SQSTM1/p62 has an ubiquitin binding domain and an LC3 interaction domain and thus can bring ubiquitinated cargos to the autophagosomes for autophagy.</p>
<fig id="F1" position="float">
<label>Figure 1</label>
<caption>
<p>Schematic overview of autophagy regulation. Environmental signals, such as environmental pollutants and allergens, induce cellular stress leading to the activation of the mTOR signaling complex 1 (mTORC1). Induction of autophagy begins with the formation of the phagophore, which is initiated by the ULK complex, consisting of ULK1 (or ULK2), autophagy-related protein 13 (ATG13), FAK family kinase interacting protein of 200 kDa (FIP200) and ATG101. PI3K complex, consisting of the vacuolar protein sorting 34 (VPS34) and the regulator subunits ATG14L, p150 and beclin 1, provides further nucleation signal. Autophagosome formation requires phagophore membrane elongation by a complex composed of ATG5, ATG12, ATG16L, and LC3-II, which are derived from the microtubule-associated protein 1 light chain 3 (LC3) by the activity of ATG4 generating LC3-I and the conjugation C-terminal glycine of LC3-I to phosphatidylethanolamine by ATG7, and ATG3. The formation of the autophagolysosome is a result of the fusion between the autophagosome and lysosomal compartments. Lysosomal hydrolyases degrade the autophagy cargo in all three processes.</p>
</caption>
<graphic xlink:href="fimmu-10-02787-g0001"></graphic>
</fig>
<p>Significant numbers of signaling molecules particularly cytokine have been shown to regulate autophagy (
<xref rid="B52" ref-type="bibr">52</xref>
,
<xref rid="B64" ref-type="bibr">64</xref>
). For example, IL-10 and IL-10 receptor signaling inhibits the starvation induced autophagy of murine macrophages via class I phosphatidylinositol 3-kinase (PI3K) pathway (
<xref rid="B64" ref-type="bibr">64</xref>
), suggesting that IL-10 plays a critical role in the autophagic process of macrophages. Distinct classes of PI3K have previously been shown to be involved in signaling pathways that control macro-autophagy in human colon cancer HT-29 cells (
<xref rid="B65" ref-type="bibr">65</xref>
,
<xref rid="B66" ref-type="bibr">66</xref>
). Moreover, the Th1 cytokine IFN-gamma induces autophagy in macrophages (
<xref rid="B67" ref-type="bibr">67</xref>
). In contrast, Th2 cytokines, IL-4 and IL-13, inhibit autophagy in macrophages under starvation or IFN-gamma stimulation, and inhibit autophagy-mediated killing of intracellular mycobacteria in murine and human macrophages (
<xref rid="B68" ref-type="bibr">68</xref>
). Intriguingly, recent studies suggest that IL4 can induce autophagy in activated CD4
<sup>+</sup>
Th2 cells (
<xref rid="B68" ref-type="bibr">68</xref>
), primary dendritic cells (DCs) (
<xref rid="B69" ref-type="bibr">69</xref>
), and primary B cells that exacerbates experimental asthma through different mechanisms (
<xref rid="B70" ref-type="bibr">70</xref>
). Similarly, IL-13 alone can activate autophagy in airway epithelial cells and drive the secretion of excess mucus (
<xref rid="B71" ref-type="bibr">71</xref>
). These findings suggest that Th2 cytokines may play a dual role in autophagy induction depending on different cell types. However, further studies are essential to investigate how differential modulation of autophagy by Th1 and Th2 cytokines in different cell types, which may represent a key feature of the host response to environmental stresses. Furthermore, neutralization of the receptors VEGFR, β-integrin or CXCR4, or IL-10 can also regulate autophagy by restoring autophagy in macrophage/monocytic cells exposed to HIV-1-infected cells (
<xref rid="B72" ref-type="bibr">72</xref>
). In contrast, autophagy can also regulate cytokine production (
<xref rid="B73" ref-type="bibr">73</xref>
). For example, Atg16L1 is an essential component of the autophagic machinery responsible for control of the endotoxin-induced IL-1β production (
<xref rid="B74" ref-type="bibr">74</xref>
). It has also been shown that autophagy influences IL-1β secretion by either targeting pro-IL-1β for lysomal degradation or regulating activation of the NLRP3 inflammasome (
<xref rid="B73" ref-type="bibr">73</xref>
). Similarly, autophagy plays a pivotal role in the induction and regulation of IL-23 secretion and innate immune responses through effects on IL-1 secretion (
<xref rid="B75" ref-type="bibr">75</xref>
). Furthermore, autophagy regulates inflammatory cytokine secretion [e.g., macrophage migration inhibitory factor (MIF)] by macrophages through controlling mitochondrial ROS (
<xref rid="B76" ref-type="bibr">76</xref>
). ROS can activate STAT3 transcriptional factor, leading to the secretion of IL-6 in starvation-induced autophagy of cancer cells (
<xref rid="B77" ref-type="bibr">77</xref>
). Interestingly,
<italic>Alternaria</italic>
extract as a major outdoor allergen can activate autophagy that subsequently induces IL-18 release from airway epithelial cells (
<xref rid="B48" ref-type="bibr">48</xref>
).</p>
<p>In addition to cytokines, several significant molecules have also been identified to regulate autophagy (
<xref rid="B52" ref-type="bibr">52</xref>
). Of these, mTOR (mammalian target of rapamycin) has been shown to regulate cell-signaling pathways after exposure to several major factors including amino acids, oxidative stress, energy levels, and growth factors (
<xref rid="B78" ref-type="bibr">78</xref>
,
<xref rid="B79" ref-type="bibr">79</xref>
). Particularly, mTORC1 (one of the functional forms of mTOR) regulates autophagy by directly interacting with the ULK complex ULK1-ATG13-FIP200 (
<xref rid="B80" ref-type="bibr">80</xref>
). mTORC1 can suppress autophagy by inhibiting ATG1/ULK complexes under normal physiological conditions (
<xref rid="B51" ref-type="bibr">51</xref>
). In addition, AMP-activated protein kinase (AMPK)/ULK1 pathway mediates autophagy by transmitting stress signals for autophagosome formation, independent of mTOR signaling (
<xref rid="B80" ref-type="bibr">80</xref>
,
<xref rid="B81" ref-type="bibr">81</xref>
). AMPK is capable of inhibiting non-autophagy VPS34 complexes but activating the proautophagy VPS34 by the phosphorylation of Beclin 1 (Beclin1/VPS34) to initiate phagophore formation (
<xref rid="B82" ref-type="bibr">82</xref>
). In addition to AMPK and mTORC1, calmodulin-dependent protein kinase II (CaMKII) also plays a role in engaging autophagy regulation (
<xref rid="B83" ref-type="bibr">83</xref>
). CaMKII, a serine/threonine-specific protein kinase regulated by the Ca
<sup>2+</sup>
/calmodulin complex, can directly phosphorylate Beclin 1 at Ser90 that enhances K63-linked ubiquitination of Beclin 1 and activation of autophagy (
<xref rid="B84" ref-type="bibr">84</xref>
). CaMKII can also stimulate K63-linked ubiquitination of inhibitor of differentiation 1/2 (Id-1/2). Of interest, the increased ubiquitinated Id-1/Id-2 can bind p62 and then be transported to autolysosomes for degradation, which can subsequently promote the differentiation of neuroblastoma cells and suppress the proportion of stem-like cells (
<xref rid="B84" ref-type="bibr">84</xref>
).</p>
<p>Recently, transcriptional regulation of autophagy genes has drawn a lot of attention in autophagic responses to specific stimuli (
<xref rid="B85" ref-type="bibr">85</xref>
). Several transcription factors and histone modifications have been identified to regulate autophagy gene expression. In addition to the well-known two transcription factors, p53 and Forkhead box O3 (FOXO3) (
<xref rid="B86" ref-type="bibr">86</xref>
), Transcription Factor EB (TFEB) is one of the most recently identified transcriptional regulators of autophagy (
<xref rid="B87" ref-type="bibr">87</xref>
). TFEB is highly phosphorylated by various kinases such as AKT, Extracellular Signal-Regulated Kinase 2 (ERK2), and mTORC1, and sequestered in the cytoplasm under nutrient rich conditions. In contrast, TFEB is dephosphorylated by calcineurin (CaN) and translocates to the nucleus where it activates autophagy and lysosome gene transcription upon nutrient deprivation (
<xref rid="B88" ref-type="bibr">88</xref>
). Forkhead box K (FOXK) engages in the transcriptional repression of autophagy gene expression by binding to promoter regions of early-stage autophagy genes (e.g., ULK complex) and recruits the SIN3A-Histone deacetylase (HDAC) repressor complex to these regions under nutrient rich conditions (
<xref rid="B89" ref-type="bibr">89</xref>
). However, most intriguingly, the post-translational modification status on histones is also linked to autophagy gene regulation, including histone H4K16 acetylation, H3K9 dimethylation, and H3K27 trimethylation (
<xref rid="B90" ref-type="bibr">90</xref>
). Of these, H4K16 acetylation suppresses autophagy gene expression through H4K16 acetyltransferase human Males absent On the First (hMOF) degradation and/or Sirtuin1 (SIRT1)-dependent histone deacetylation (
<xref rid="B91" ref-type="bibr">91</xref>
). H3K27 trimethylation catalyzed by Enhancer of Zeste Homolog 2 (EZH2) suppresses the expression of negative regulators of the mTORC1 signaling components and leads to mTORC1 activation and autophagy inhibition (
<xref rid="B92" ref-type="bibr">92</xref>
). Interestingly, many of the transcriptional factors that modulate expression of autophagy genes are regulated by common upstream kinases such as mTORC1 and AMPK. Furthermore, histone modification status is also a significant determinant of transcriptional regulators to autophagic stimuli.</p>
</sec>
<sec id="s4">
<title>Autophagy and Key Features of Asthma</title>
<p>Exposure to traffic and industrial pollution particulate matters, predominantly DEPs, have been shown to increase the risk of asthma (
<xref rid="B15" ref-type="bibr">15</xref>
,
<xref rid="B26" ref-type="bibr">26</xref>
). Environmental pollutants (e.g., PM
<sub>2.5</sub>
) can induce ROS generation and impair lung function in asthmatic patients (
<xref rid="B93" ref-type="bibr">93</xref>
<xref rid="B97" ref-type="bibr">97</xref>
). It was well-documented that ROS are key mediators that contribute to oxidative damage and chronic airway inflammation in allergy and asthma (
<xref rid="B98" ref-type="bibr">98</xref>
<xref rid="B101" ref-type="bibr">101</xref>
). However, the underlying mechanisms still remain unclear. Recent studies have suggested that autophagy may be a new frontier in human asthma (
<xref rid="B50" ref-type="bibr">50</xref>
) and may play a crucial role in chronic airway inflammation (
<xref rid="B42" ref-type="bibr">42</xref>
). Indeed, higher autophagy levels have been shown in sputum granulocytes, peripheral blood cells and peripheral eosinophils of patients with severe asthma (
<xref rid="B102" ref-type="bibr">102</xref>
). The increased autophagy has been associated with important immune mechanisms and extracellular matrix deposition and fibrosis in airway remodeling in asthma (
<xref rid="B43" ref-type="bibr">43</xref>
). Furthermore, genetic mutations in autophagy genes have been associated with asthma. For example, single nucleotide polymorphisms in
<italic>Atg5</italic>
are correlated with reduced lung function (
<xref rid="B103" ref-type="bibr">103</xref>
). Thus, these cumulative findings raise the possibility that environment/allergen exposure initiates the production of ROS in airway epithelial cells, which serve as “signaling molecules” modulating the process of autophagic cycle through activating signaling molecules and autophagy pathways, thereby leading to the major phenotypic changes of asthma as summarized in
<xref ref-type="fig" rid="F2">Figure 2</xref>
, including airway inflammation, airway remodeling, and airway hyper-responsiveness.</p>
<fig id="F2" position="float">
<label>Figure 2</label>
<caption>
<p>Autophagy and major features of asthma. Environment/allergen exposure initiates ROS generation in airway epithelial cells, which serve as “signaling molecules” modulating the process of autophagic cycle through activating signaling molecules and autophagy pathways, thereby leading to the major phenotypic changes of asthma, including airway inflammation, airway remodeling, and airway hyper-responsiveness.</p>
</caption>
<graphic xlink:href="fimmu-10-02787-g0002"></graphic>
</fig>
</sec>
<sec id="s5">
<title>Autophagy and Airway Inflammation</title>
<p>Autophagy plays important roles in airway inflammation (
<xref rid="B36" ref-type="bibr">36</xref>
,
<xref rid="B42" ref-type="bibr">42</xref>
). It has been suggested that autophagy plays a critical role in PM-induced inflammation in airway epithelium through the activation of NF-kB1 and activator protein-1 (AP-1) (
<xref rid="B104" ref-type="bibr">104</xref>
). Furthermore, PM
<sub>2.5</sub>
can induce inflammatory cytokine release (e.g., IL-6, IL-8, IL-1β1, and TNFα) and oxidative injury of lung cells (
<xref rid="B105" ref-type="bibr">105</xref>
). Additionally, Long et al. found that PM
<sub>2.5</sub>
can induce cell arrest in the G0/G1 phase and increase mitochondrial membrane potential, ROS generation, and airway epithelial cell apoptosis (
<xref rid="B106" ref-type="bibr">106</xref>
). PM
<sub>2.5</sub>
not only induced the production of pro-inflammatory cytokine IL-6, TNFα, and activation of AMPK, but also promoted the expression of ATG5, Beclin-1 and LC3II in the airway epithelial cells (
<xref rid="B107" ref-type="bibr">107</xref>
). Interestingly, knockdown of ATG5 limited PM
<sub>2.5</sub>
-induced autophagy, ROS generation, cell apoptosis, and production of IL-6 and TNFα. Mechanistically, this study suggests that the activation of AMPK may be critical in autophagy-mediated PM
<sub>2.5</sub>
-induced airway inflammation. In addition, allergens have also been shown to induce autophagy. OVA (ovalbumin) used in a murine asthma model can induce autophagy in airway tissues (
<xref rid="B36" ref-type="bibr">36</xref>
).
<italic>Alternaria alternata</italic>
as one of the major outdoor allergens that cause allergic airway diseases (
<xref rid="B108" ref-type="bibr">108</xref>
) has been shown to induce IL-18 secretion from airway epithelial cells, and thereby initiate Th2-type responses (
<xref rid="B109" ref-type="bibr">109</xref>
). IL-18 is a pro-inflammatory cytokine that belongs to the IL-1 family (
<xref rid="B110" ref-type="bibr">110</xref>
). Importantly,
<italic>Alternaria</italic>
extract stimulation can activate an autophagy-based unconventional secretion pathway and induce airway epithelial cells to release IL-18 via an autophagy dependent, but caspase 1 and 8 independent pathway (
<xref rid="B48" ref-type="bibr">48</xref>
). Studies from our research group showed that cockroach extract can induce autophagy in airway epithelial cells
<italic>in vitro</italic>
and in a mouse model of asthma (
<xref rid="B47" ref-type="bibr">47</xref>
). Further studies on the underlying mechanisms demonstrated that ROS and oxidized CaMKII (ox-CaMKII) in airway epithelial cells are critical in regulating cockroach allergen-induced autophagy (
<xref rid="B111" ref-type="bibr">111</xref>
).</p>
<p>Although environmental pollutants/allergens can induce autophagy, its role in airway inflammation remains unclear. It has been suggested that, at baseline, autophagy is critical for inhibiting spontaneous lung inflammation and is fundamental for airway mucus secretion by airway goblet cells. Autophagy deficient mice (Atg5
<sup>−/−</sup>
and Atg7
<sup>−/−</sup>
) develop spontaneous sterile lung inflammation (
<xref rid="B110" ref-type="bibr">110</xref>
). Similarly, deficiency of CD11c-specific autophagy results in severe IL-17A-mediated neutrophilic lung inflammation and unprovoked spontaneous airway hyperactivity (
<xref rid="B112" ref-type="bibr">112</xref>
). Furthermore, deficiency of ATG5 in airway epithelial cells results in an increased airway inflammation (
<xref rid="B113" ref-type="bibr">113</xref>
), and disruption or deletion of autophagy in airway epithelial cells resulted in airway hyperreactivity (
<xref rid="B114" ref-type="bibr">114</xref>
). Autophagy deficiency (ER-Cre:
<italic>Atg7</italic>
<sup>
<italic>fl</italic>
/
<italic>fl</italic>
</sup>
) in mice after exposure to
<italic>P. aeruginosa</italic>
impairs pathogen clearance, increases neutrophilic inflammation, and the production of IL-1β (
<xref rid="B115" ref-type="bibr">115</xref>
). Although autophagy appears to be a protective mechanism, autophagy may also exacerbate airway inflammation. For example, inhibition of autophagy by 3-MA and intranasal knockdown of Atg5 led to marked improvement in AHR, eosinophilia, IL-5 levels in bronchoalveolar lavage fluid, and histological inflammatory features (
<xref rid="B36" ref-type="bibr">36</xref>
). Similarly, autophagy deficiency in macrophages (siRNA targeting PIK3C3) during LPS-induced lung inflammation attenuates lung and bronchoalveolar immune cell infiltration and air space cytokine levels (
<xref rid="B116" ref-type="bibr">116</xref>
). Additionally, IL-4-induced autophagy in B cells exacerbated asthma through an mTOR-independent, PtdIns3K-dependent pathway (
<xref rid="B70" ref-type="bibr">70</xref>
). Thus, autophagy may play diverse roles, either protective or detrimental, in asthma. Although the reason is unknown, it has been suggested that autophagy may represent a protective role in maintaining homeostasis at baseline or during acute infection, but play a detrimental role due to impaired autophagy or a persistent autophagy responses leading to an accumulation of excessive autophagosome in a prolonged exposure of environmental pollutants/allergens or inflammation. Furthermore, autophagy involvement in different cell types may result in different characteristic phenotypic changes. For example, deletion of ATG5 and ATG14 or pharmacological inhibition (e.g., 3-MA, Baf-A1) in cultured airway epithelial cells treated with IL-13 results in less mucus secretion and less CCL26 secretion. In contrast, autophagy deficiency in macrophages (
<xref rid="B117" ref-type="bibr">117</xref>
) or DCs (
<xref rid="B112" ref-type="bibr">112</xref>
) results in the exacerbation of inflammation. Thus, the investigation of the real impact of autophagy, protective or detrimental, is extremely challenging.</p>
</sec>
<sec id="s6">
<title>Autophagy and Airway Remodeling</title>
<p>Recent studies have linked autophagy to the major features of airway remodeling in asthma, including airway smooth muscle (ASM) 44 (
<xref rid="B118" ref-type="bibr">118</xref>
<xref rid="B120" ref-type="bibr">120</xref>
), extracellular matrix (ECM) (
<xref rid="B121" ref-type="bibr">121</xref>
,
<xref rid="B122" ref-type="bibr">122</xref>
), fibrosis (
<xref rid="B117" ref-type="bibr">117</xref>
), and epithelial-mesenchymal transition (EMT) (
<xref rid="B123" ref-type="bibr">123</xref>
). Particularly, it has been suggested that TGFβ1 induced autophagy is essential for collagen and fibronectin production in human airway smooth muscle cells, and deletion of Atg5 and Atg7 leads to reduction in pro-fibrotic signaling and ECM protein release (
<xref rid="B50" ref-type="bibr">50</xref>
,
<xref rid="B124" ref-type="bibr">124</xref>
). In turn, autophagy has also been shown to participate in profibrotic changes induced by TGFβ1 (
<xref rid="B125" ref-type="bibr">125</xref>
). Furthermore, McAlinden et al. provided evidence of increased activation of the autophagy pathway in the airways of patients with asthma (
<xref rid="B43" ref-type="bibr">43</xref>
). Especially, they showed an association for TGFβ1 and accumulation of collagen and increased profibrotic signaling in an autophagy-dependent manner in ASM cells (
<xref rid="B43" ref-type="bibr">43</xref>
). Furthermore, inhibition of autophagy in murine model has been shown to attenuate airway inflammation and reduce the concentration of TGFβ1, and subsequently lead to a reduced airway remodeling. However, the critical mechanistic evidence is limited.</p>
</sec>
<sec id="s7">
<title>Mitophagy</title>
<p>Mitophagy is the selective degradation of mitochondria by autophagy. It often happens to damaged mitochondria following the exposure to environmental pollutants/allergens or stress and plays a critical role in promoting turnover of mitochondria and preventing accumulation of dysfunctional mitochondria (
<xref rid="B38" ref-type="bibr">38</xref>
). Mitochondrial dysfunction and elevated ROS production have been associated with allergic diseases, including atopy, atopic dermatitis, and asthma (
<xref rid="B126" ref-type="bibr">126</xref>
<xref rid="B129" ref-type="bibr">129</xref>
). Of interest, a disturbance in the homeostasis of mitochondria leads to ROS generation, which cause weakened barriers and subsequently airway inflammation, epithelial fragility, and impaired secretion capacity (
<xref rid="B130" ref-type="bibr">130</xref>
). Furthermore, PM
<sub>2.5</sub>
-exposed rat lung injury is associated with mitochondrial fusion-fission dysfunction, mitochondrial lipid peroxidation and cellular homeostasis imbalance, and ROS generation, leading to the disruption of mitochondrial dynamics (
<xref rid="B131" ref-type="bibr">131</xref>
). PM
<sub>2.5</sub>
can regulate the dynamics of mitochondria via facilitating mitochondrial fission, and the excess ROS induced by PM
<sub>2.5</sub>
can trigger mitophagy by activating PINK1/Parkin pathway (
<xref rid="B132" ref-type="bibr">132</xref>
). Acrolein, an ubiquitous environmental pollutant that is abundant in tobacco smoke, cooking fumes, and automobile fumes (
<xref rid="B133" ref-type="bibr">133</xref>
), has also been reported to induce mitochondrial DNA (mtDNA) damages, mitochondrial fission and mitophagy in human lung cells (
<xref rid="B134" ref-type="bibr">134</xref>
). Of interest, mitophagy was found to prevent mitochondria-induced inflammation (mito-inflammation) (
<xref rid="B135" ref-type="bibr">135</xref>
). Thus, mitophagy may be critical in environmental pollutant/allergen-induced mitochondrial dysfunction and dysregulation of mitochondrial bioenergetics. These may ultimately result in a dysregulated mitophagic cycle and significant phenotypic changes observed in asthma (
<xref ref-type="fig" rid="F3">Figure 3</xref>
).</p>
<fig id="F3" position="float">
<label>Figure 3</label>
<caption>
<p>Mitophagy and major features of asthma. Environmental pollutant/allergen induces excessive ROS generation, mitochondrial dysfunction, and mitophagy, subsequently leading to dysregulation of mitochondrial bioenergetics. These may ultimately result in significant phenotypic changes observed in asthma.</p>
</caption>
<graphic xlink:href="fimmu-10-02787-g0003"></graphic>
</fig>
</sec>
<sec id="s8">
<title>Molecular Mechanisms of Mitophagy</title>
<p>Mitophagy is an evolutionarily conserved homeostatic process by which the cells selectively degrade only dysfunctional or damaged mitochondria (
<xref rid="B136" ref-type="bibr">136</xref>
,
<xref rid="B137" ref-type="bibr">137</xref>
). Mitophagy is a normal physiological process during cell life and functions as surveiling mitochondrial population, eliminating superfluous and/or impaired organelles (
<xref rid="B137" ref-type="bibr">137</xref>
). Defective removal of damaged mitochondria leads to hyper-activation of inflammatory signaling pathways and subsequently to chronic systemic inflammation. However, important questions remain regarding the molecular mechanisms of mitophagy. It has been suggested that mitophagy is regulated by “PTEN-induced kinase 1 (PINK)-Parkin-mediated pathway” and “receptor-mediated pathway” (
<xref rid="B137" ref-type="bibr">137</xref>
). Under physiological conditions, the transport of PINK1 preprotein onto the inner mitochondrial membrane (IMM) is followed by sequential proteolytic cleavage by the mitochondrial processing peptidase and pre-protein-associated rhomboid-like protease (
<xref rid="B138" ref-type="bibr">138</xref>
). Under challenged condition, active PINK1 accumulates on the outer mitochondrial membrane (OMM) through its interaction with the translocations of the outer mitochondrial membrane complex (TOM complex), promoting Parkin recruitment through phosphoralation of both Parkin and ubiquitin (
<xref rid="B139" ref-type="bibr">139</xref>
). In turn, Parkin triggers the polyubiqutination of several OMM proteins, including voltage-dependent-anion-selective channer 1 (VDAC1), mitofusin 1 and 2 (MFN1/2), and mitochondrial import receptor subunit TOM20 homolog (TOMM20) 138. Several adaptor molecules [e.g., p62, optineurin (OPTN), and nuclear domain protein 52 (NDP52)] bindphosphorylated polyubiqutinated proteins and initiate autophagosomal formation through binding with LC3 (
<xref rid="B140" ref-type="bibr">140</xref>
). Recent studies suggest that both NDP5 and OPTN are phosphorylated by the Tank-binding kinase 1 (TBK-1) which enhances their binding affinity to ubiquitin (
<xref rid="B141" ref-type="bibr">141</xref>
). The OPTN-TBK1 complex forms a feed-forward mechanism that speeds up the mitochondrial clearance (
<xref rid="B142" ref-type="bibr">142</xref>
). In contrast, the receptor-mediated mitophagy is dependent on various OMM proteins such as Nip3-like protein X (NIX), BCL2 interacting protein 3 (BNIP3), and Fun14 domain-containing protein 1 (FUNDC 1) (
<xref rid="B137" ref-type="bibr">137</xref>
,
<xref rid="B140" ref-type="bibr">140</xref>
). These proteins localize to the OMM and interact directly with LC3 to regulate mitochondrial elimination. Cardiolipin and prohibitin 2 (PHB2) are externalized to OMM and interact with LC3 in response to mitochondrial damage to promote the engulfment of defective mitochondria (
<xref rid="B143" ref-type="bibr">143</xref>
,
<xref rid="B144" ref-type="bibr">144</xref>
).</p>
</sec>
<sec id="s9">
<title>Mitophagy and Asthma</title>
<p>Similar to autophagy, accumulating evidence suggests that both enhanced and impaired mitophagy has an important role in the pathogenesis of COPD and lung fibrosis (
<xref rid="B145" ref-type="bibr">145</xref>
<xref rid="B149" ref-type="bibr">149</xref>
). However, limited studies were found for asthma. Recent studies have shown that PM
<sub>2.5</sub>
can induce increased ROS and mitochondrial damage, which triggers the mitophagy through activating PINK/Parkin pathway (
<xref rid="B132" ref-type="bibr">132</xref>
). In the nucleus, excessive ROS could activate HIF-1 FOXO3, and NRF2, which promote the transcription of BNIP33/NIX, LC3/BNIP3, and p62, thereby facilitate mitophagy (
<xref rid="B150" ref-type="bibr">150</xref>
). Furthermore, the impairment of mitochondrial degradation by mitophagy can lead to the accumulation of fragmented mitochondria and activation of the mitochondrial apoptosis pathway (
<xref rid="B134" ref-type="bibr">134</xref>
). Thus, these studies suggest that environmental pollutants can induce ROS and mitochondrial damage, which triggers mitophagy to maintain stable mitochondrial function in cells by scavenging impaired mitochondria and reducing excessive ROS. Further studies on regulatory mechanisms regarding ROS and mitophagy may provide a new angle on therapies for allergy and asthma.</p>
</sec>
<sec id="s10">
<title>Cellular Senescence</title>
<p>Cellular senescence is characterized by irreversible cell cycle arrest and triggered by a number of factors such as aging, DNA damage, oxidative stress, mitochondrial dysfunction (
<xref rid="B151" ref-type="bibr">151</xref>
<xref rid="B153" ref-type="bibr">153</xref>
), telomere shortening (
<xref rid="B154" ref-type="bibr">154</xref>
,
<xref rid="B155" ref-type="bibr">155</xref>
), epigenetic modifications (
<xref rid="B156" ref-type="bibr">156</xref>
), and inflammation (
<xref rid="B157" ref-type="bibr">157</xref>
). Senescence arrest occurs mostly in the G1 phase of the cell cycle, distinguishing it from G0-arrested quiescent cells, and is mediated by cyclin-dependent kinase inhibitors (CDKis) (e.g., p21
<sup>CIP1</sup>
, p16
<sup>INK4a</sup>
) and is dependent on the TP53 and pRB tumor suppressor pathways (
<xref rid="B158" ref-type="bibr">158</xref>
). Also, telomeres and nucleoprotein complexes located at the ends of linear chromosomes (
<xref rid="B159" ref-type="bibr">159</xref>
) are critical to the cellular senescence (
<xref rid="B160" ref-type="bibr">160</xref>
). Furthermore, senescent cells accumulated in tissues secrete a large amount of pro-inflammatory mediators termed the senescence associated secretory phenotype (SASP), which drives chronic inflammation, leading to further senescence (
<xref rid="B157" ref-type="bibr">157</xref>
). The composition of the SASP is stimulus-dependent and includes pro- and anti-inflammatory cytokines, chemokines, matrix metalloproteinases, growth factors, and other factors, and has an important role in the immune-mediated clearance of senescent cells and tissue dysfunction (
<xref rid="B160" ref-type="bibr">160</xref>
). Senescent cells have been found at sites of chronic age-related diseases like osteoarthritis (
<xref rid="B161" ref-type="bibr">161</xref>
), atherosclerosis (
<xref rid="B162" ref-type="bibr">162</xref>
<xref rid="B164" ref-type="bibr">164</xref>
), and aging lung (
<xref rid="B153" ref-type="bibr">153</xref>
), highlighting the significant role of senescent cells in the pathogenesis of chronic diseases. Senescent cells exhibit increased protein turnover and massive proteotoxic stress due to augmented autophagy and SASP component synthesis (
<xref rid="B165" ref-type="bibr">165</xref>
). Senescence cells also show increased rates of mitochondrial metabolic activity, including the tricarboxylic acid cycle, oxidative phosphorylation, and glycolytic pathways. Senescent cells have increased AMP/ADP:ATP and NAD+/NADH ratios, activating AMPK, which reinforces a TP53-dependent cell-cycle arrest (
<xref rid="B166" ref-type="bibr">166</xref>
,
<xref rid="B167" ref-type="bibr">167</xref>
). In addition, senescent cells do not proliferate, but are resistant to autophagy and apoptosis, and are thus long living. Importantly, senescent cells can exacerbate mitochondrial dysfunction, inflammation, and other disease-promoting pathways through SASP (
<xref rid="B153" ref-type="bibr">153</xref>
).</p>
<p>Accumulation of senescent cells may slow or stop cell regeneration and tissue maintenance, thus leading to tissue aging (
<xref rid="B166" ref-type="bibr">166</xref>
). Indeed, clearing senescent cells from tissues of mouse models was shown sufficient to delay, prevent, or alleviate multiple age-related disorders (
<xref rid="B168" ref-type="bibr">168</xref>
). Although the underlying mechanisms regarding the elimination of senescent cells are poorly understood, the immune system has been recognized to be critical (
<xref rid="B169" ref-type="bibr">169</xref>
). Different immune cells have been suggested to be involved in the surveillance of senescent cells, including neutrophils, macrophages, natural killer cells, and CD4
<sup>+</sup>
T cells (
<xref rid="B170" ref-type="bibr">170</xref>
). These immune cell-derived senescent cells can be immunogenic by expressing stimulatory ligands (e.g., MICA/B) that bind to NKG2D and activating their killing by NK cells (
<xref rid="B171" ref-type="bibr">171</xref>
). Furthermore, senescent cells can recruit immune cells to eliminate senescent cells by secreting cytokine and chemokines (
<xref rid="B172" ref-type="bibr">172</xref>
). Interestingly, recent studies support a balance between activating and inhibitory signals that will determine whether NK and T-cells respond to senescent cells. These studies also suggest a novel mechanism whereby the increased expression of HLA-E on senescent fibroblasts reduced the clearance of senescent cells by NK and CD8
<sup>+</sup>
T cells expressing inhibitory receptor NKG2A (
<xref rid="B157" ref-type="bibr">157</xref>
). This represents a novel therapeutic approach to improve the immune clearance of senescent cells by blocking the interaction between HAL-E and NKG2A. In addition, the SASP-related cytokine IL-6 contributes to the increased expression of HAL-E in senescent cells, and that persistent inflammation may result in remaining of senescent cells in tissues, further contributing to the diseases.</p>
</sec>
<sec id="s11">
<title>Cellular Senescence and Asthma</title>
<p>Mitochondrial dysfunction has been demonstrated to be able to drive a cell into premature senescence, which affects airway diseases (
<xref rid="B151" ref-type="bibr">151</xref>
,
<xref rid="B152" ref-type="bibr">152</xref>
). Indeed, the potential role of cell senescence in the pathogenesis of asthma has drawn great attention (
<xref rid="B162" ref-type="bibr">162</xref>
). Studies have implicated that cell senescence in the lung may be an important risk factor for the development of asthma (
<xref rid="B39" ref-type="bibr">39</xref>
,
<xref rid="B173" ref-type="bibr">173</xref>
). Both COPD and idiopathic pulmonary fibrosis (IPF) are increased in prevalence with age and have been associated with senescence (
<xref rid="B174" ref-type="bibr">174</xref>
,
<xref rid="B175" ref-type="bibr">175</xref>
). Senescence-related changes are also found in the lungs of adults with asthma, and in the airways of asthmatic children (
<xref rid="B176" ref-type="bibr">176</xref>
). However, mechanistic links between environmental pollutants, allergens, senescence, and pathophysiology of asthma have not been established. Studies have demonstrated that exposure to PM
<sub>2.5</sub>
can induce senescence of human dermal fibroblasts (
<xref rid="B177" ref-type="bibr">177</xref>
). Increased exposure to PM
<sub>2.5</sub>
is correlated with shortened telomeres in placental tissues and umbilical cord blood (
<xref rid="B178" ref-type="bibr">178</xref>
). Similarly, Bisphenol A (BPA) can induce Th2 inflammatory cascade and trigger DSB-ATM-p53 signaling pathway leading to cell cycle arrest, senescence, autophagy, and stress response in human fetal lung fibroblasts (
<xref rid="B179" ref-type="bibr">179</xref>
). Telomeres are critical to the cellular senescence (
<xref rid="B160" ref-type="bibr">160</xref>
), and telomere shortening is a strong indication of cellular senescence. In a study of 730 mother-baby pairs, increased exposure to PM
<sub>2.5</sub>
has been shown to correlate with shortened telomeres in placental tissue and umbilical blood (
<xref rid="B178" ref-type="bibr">178</xref>
). Telomere shortening was also associated with airway hyper-responsiveness and is an inducer of accelerated replicative senescence of bronchial fibroblasts in patients with asthma (
<xref rid="B154" ref-type="bibr">154</xref>
). This was supported by findings in the chronic asthmatic patients who also displayed shorter telomere lengths and suggested that asthma chronicity may be associated with telomere length even at early ages (
<xref rid="B155" ref-type="bibr">155</xref>
). Furthermore, TSLP-induced cellular senescence with elevated p21 and p16 in human epithelial cells was essential for airway remodeling
<italic>in vitro</italic>
(
<xref rid="B39" ref-type="bibr">39</xref>
). This was further supported by the fact that inhibition of TSLP signaling attenuates epithelial senescence, airway hyper-reactivity, and airway remodeling in an OVA mouse model (
<xref rid="B39" ref-type="bibr">39</xref>
). Plasminogen activator inhibitor (PAI-1), a well-known cell senescence and fibrosis mediator, could activate p53 and mediate bleomycine- and doxorubicin-induced alveolar type II (ATII) cell senescence (
<xref rid="B180" ref-type="bibr">180</xref>
). Further studies suggest that PAI-1 mediates TGF-β1-induced ATII cell senescence, which may contribute to lung fibrogenesis in part by activating alveolar macrophages via secreting pro-fibrotic and pro-inflammatory mediators. Interestingly, this effect is highly dependent on the target cell, because it seems that PAI-1 has opposite effects on fibroblasts and ATII cells in patients with IPF (
<xref rid="B181" ref-type="bibr">181</xref>
). Together, these findings suggest a significant role of senescence in airway fibrosis and remodeling.</p>
<p>Many studies also support the rationale that senescence is associated with a higher pro-inflammatory cytokine profile (
<xref rid="B182" ref-type="bibr">182</xref>
). Of note, higher amounts of IL-6 have been found in patients with asthma and have been shown to trigger or to reinforce premature cellular senescence (
<xref rid="B183" ref-type="bibr">183</xref>
). This IL-6 driven immune-senescence may serve as part of a feed forward loop that drives asthma progression and reduces the efficacy of anti-inflammatory treatments. SASPs released from senescent cells contain inflammatory cytokines that may increase inflammation and impair cellular function in asthma. Furthermore, elevated p21 expression in asthmatic epithelium is not reduced with corticosteroid treatment (
<xref rid="B40" ref-type="bibr">40</xref>
), and in turn, loss of p16
<sup>INK4a</sup>
protein results in decreased cell sensitivity to dexamethasone treatment (
<xref rid="B184" ref-type="bibr">184</xref>
), raising the possibility that senescence may play an important role in glucocorticoid resistance in the patients with asthma. Indeed, lymphocyte senescence in COPD has been suggested to be associated with loss of glucocorticoid receptor (GCR) expression by pro-inflammatory/cytotoxic lymphocytes (
<xref rid="B185" ref-type="bibr">185</xref>
). Thus, investigation into the role of senescence in glucocorticoid resistance may provide novel approaches for the treatment of asthma. In addition, although current studies suggest a role of senescence in asthma, little is known about the pathway regarding the environmental pollutants/allergens, ROS, mitochondrial dysfunction, and senescence. Furthermore, it is poorly understood about the mechanistic links between cell senescence and asthma pathophysiology. Additionally, asthma is typically associated with an imbalance between Th1 and Th2 pathways, and over-driven Th2-mediated inflammation can result in airway inflammation and asthma (
<xref rid="B186" ref-type="bibr">186</xref>
). On the other hand, immune-senescence has been associated with lung aging, and that altered Th1/Th2 imbalance may contribute to the process of accelerated lung aging and immune-senescence (
<xref rid="B187" ref-type="bibr">187</xref>
). Indeed, with aging, mouse lungs showed typically increased Th1 cells with increased levels of IFN-gamma. However, the link between Th1/Th2 cells and senescence remains largely un-explored. Thus, further research is needed to establish the mechanistic links between increased cytokines with aging and senescent cell induction, and asthma pathophysiology.</p>
</sec>
<sec id="s12">
<title>Autophagy/Mitophagy and Cellular Senescence</title>
<p>Autophagy plays a role in homeostatic energy supply and elimination of aggregate-prone proteins, damaged organelles, and intracellular microbes. Autophagy also plays a critical role in the regulation of innate and adaptive immune responses in response to environmental stresses. In contrast, cellular senescence is caused by insufficient regulatory mechanisms of homeostasis. One of the most common causes for cellular senescence is that mitochondrial dysfunction results in cellular senescence due to excessive ROS production (
<xref rid="B153" ref-type="bibr">153</xref>
). Although autophagy and senescence are known to share similar properties, recent studies suggest a “double-edged” sword that autophagy can either accelerate the development of senescence or prevent senescence (
<xref rid="B188" ref-type="bibr">188</xref>
,
<xref rid="B189" ref-type="bibr">189</xref>
). Especially, autophagy can produce large amounts of recycled amino acids, which trigger the production of SASP (e.g., IL-6, IL-8) through the activation of mTOR, thereby leading to senescence (
<xref rid="B190" ref-type="bibr">190</xref>
). By contrast, inhibition of autophagy or insufficient autophagy may promote cell senescence (
<xref rid="B190" ref-type="bibr">190</xref>
). Recent studies suggest that autophagy could be either pro-senescent or anti-senescent, depending on the type of autophagy (general or selective), stimulatory signals, and can be cell-type specific (
<xref rid="B189" ref-type="bibr">189</xref>
). Although it seems that autophagy and senescence are highly related, a great deal of questions remain unanswered regarding the mutual relationship between autophagy and senescence at both molecular and cellular levels in diseases like asthma.</p>
</sec>
<sec id="s13">
<title>Therapeutic Interventions</title>
<p>Autophagy, mitophagy, and cellular senescence are potential targets that can be manipulated at various levels, and inhibition of these processes have been considered as potential therapeutic strategies. For example, Liu et al. found that 3-methyladenine (3-MA), an inhibitor of autophagy, suppresses the formation of autophagosomes through the inhibition of PI3K (
<xref rid="B36" ref-type="bibr">36</xref>
). Chloroquine (CQ), another inhibitor of autophagy, also has the ability to inhibit HDM-induced airway remodeling through modulating autophagy pathways (
<xref rid="B191" ref-type="bibr">191</xref>
). In addition, bafilomycine (Baf-A), a macrolide antibiotic derived from
<italic>Streptomyces griseus</italic>
, can block late-phase autophagy through significant cytosolic acidification (
<xref rid="B192" ref-type="bibr">192</xref>
). In addition, administration of drugs currently in use for asthma (e.g., dexamethasone, montelukast, anti-IL-5, and anti-IgE antibody) can also inhibit autophagy (
<xref rid="B36" ref-type="bibr">36</xref>
). However, these current drugs for autophagy are far from specific, and may play a dual role in modulation of autophagy. Thus, addressing the real impact of autophagy in activation or inhibition of inflammation in disease models is challenging.</p>
<p>It has also been suggested that targeting mitophagy may possess therapeutic potential. Rapamycin and metformin as general autophagy-inducing drugs have been shown to attenuate AMPK and mTOR activity, and preserve energy metabolism through regulating mitophagy and mitochondrial biogenesis stimulation (
<xref rid="B193" ref-type="bibr">193</xref>
,
<xref rid="B194" ref-type="bibr">194</xref>
). Of note, administration of metformin can induce mitophagy by promoting Parkin activity through p53 downregulation. In addition, several naturally occurring compounds, such as spermidine, resveratrol, urolithin A and antibiotics, have been demonstrated to maintain mitochondrial integrity by the induction of mitophagy and promotion of mitochondrial biogenesis (
<xref rid="B137" ref-type="bibr">137</xref>
). However, the therapeutic potential in human diseases still remains to be determined. Thus, identification of mitophagy modulators may result in therapeutic intervention strategies by targeting mitochondrial-associated pathologenesis of diseases.</p>
<p>Lastly, there is ongoing research to target senescence in cases of pulmonary fibrosis and asthma (
<xref rid="B195" ref-type="bibr">195</xref>
). Specifically, patients with age-related lung diseases (such as COPD and asthma) showed high levels of oxidative stress in the lung tissues, Thus, patients with COPD or asthma could benefit from the use of antioxidants (e.g., NAC, Nrf2 activators, NOX-4 inhibitors, MitoQ), which suppress inflammation and reduce the progression of senescence-associated pathways (
<xref rid="B196" ref-type="bibr">196</xref>
). Moreover, orchestrating SASP modulation could be a better strategy. Indeed, rapamycin, metformin, sirtuin activators, or PAI-1 inhibitor have been suggested to have beneficial effects due to their ability to act as a SASP suppressor (
<xref rid="B160" ref-type="bibr">160</xref>
,
<xref rid="B181" ref-type="bibr">181</xref>
). For example, mTOR activation has been shown to be essential for asthma onset (
<xref rid="B197" ref-type="bibr">197</xref>
), and inhibition of mTOR with rapamycin can suppress IL-1 translation and reduce mRNA stability of SASP factors (
<xref rid="B198" ref-type="bibr">198</xref>
). Similarly, metformin can also inhibit mTOR and could have the potential to inhibit SASP in asthma. Furthermore, specific induction of apoptosis in senescent cells using senolytics could also lead to beneficial effects (
<xref rid="B175" ref-type="bibr">175</xref>
). Additionally, inducing senescence cell clearance [e.g., ABT-263, also known as navitoclax (
<xref rid="B199" ref-type="bibr">199</xref>
)] by manipulating the immune system to recognize and clear these cells is also an important therapeutic approach. However, these current drugs are far from specific, and some of them may have off-target effects. For example, metformin and sirt1 are also complex I inhibitor, which can promote mitochondrial fission and ROS production and subsequently cell senescence. Furthermore, although SASP is critical for the immune-mediated clearance of senescent cells, it also contributes to tissue dysfunction. Similarly, accumulation of senescent cells with time may lead to age-related loss of structure and tissue function (
<xref rid="B160" ref-type="bibr">160</xref>
,
<xref rid="B200" ref-type="bibr">200</xref>
). By contrast, senescence can be beneficial in inhibiting the proliferation of transformed cells, and in some of key biological processes such as tissue repairing and wound healing (
<xref rid="B164" ref-type="bibr">164</xref>
). Because of these opposing effects, further studies are clearly needed to understand the exact role of senescence in diseases. Particularly, understanding of the molecular mechanisms regarding the processes involved in senescence will be helpful for the identification of modulators of cellular senescence, which could serve as therapeutic targets for senescence-associated diseases in the future.</p>
</sec>
<sec sec-type="conclusions" id="s14">
<title>Conclusions</title>
<p>Dysregulations in autophagy, mitophagy, and cellular senescence have been associated with environmental pollutant/allergen-induced oxidative stress, mitochondrial dysfunction, secretion of multiple inflammatory proteins known as SASP, and development of asthma. PM
<sub>2.5</sub>
was reported to induce autophagy through activating AMPK (
<xref rid="B107" ref-type="bibr">107</xref>
), and to drive the mitophagy through activating PINK/Parkin pathway (
<xref rid="B132" ref-type="bibr">132</xref>
). PM
<sub>2.5</sub>
was also shown to induce senescence of human dermal fibroblasts (
<xref rid="B177" ref-type="bibr">177</xref>
), while increased PM
<sub>2.5</sub>
exposure was correlated with shortened telomeres in placental tissue and umbilical blood (
<xref rid="B178" ref-type="bibr">178</xref>
). Intriguingly, allergens, including OVA (
<xref rid="B36" ref-type="bibr">36</xref>
),
<italic>A. alternata</italic>
(
<xref rid="B48" ref-type="bibr">48</xref>
), and cockroach allergen (
<xref rid="B47" ref-type="bibr">47</xref>
,
<xref rid="B111" ref-type="bibr">111</xref>
), have also been shown to induce autophagy through activating different signaling pathways. Thus, as hypothesized in
<xref ref-type="fig" rid="F4">Figure 4</xref>
, environmental triggers, e.g., environmental pollutants or allergens, can induce ROS generation, which serve as “signaling molecules” modulating the process of autophagy through activating downstream signaling molecules and autophagy, thereby leading to the major phenotypic changes of asthma, including airway inflammation, airway remodeling, and airway hyper-responsiveness. These elevated ROS levels can also induce mitochondrial damage, thereby leading to the mitochondria-induced inflammation (mito-inflammation) and major features of asthma. Furthermore, oxidative stress can also cause DNA damage, telomere shortening, and epigenomic disruption, all of which induce cell cycle arrest and cellular senescence. Senescent cells can secrete SASP, which contains multiple inflammatory cytokines, chemokines, mtrix metalloproteinases (MMPs), and growth factors. The SASP leads to airway inflammation and remodeling. In turn, the SASP can also induce senescence and senescent cells can secrete ROS, which further promote the process of senescence. In addition, Th1 or Th2 cytokines may induce autophagy/mitophagy/senescence, and in turn, this autophagy/mitophagy/ senescence may also regulate the balance of Th1 and Th2 responses in asthma. Although comprehensive studies have been focused on investigating the role of autophagy, mitophagy and cellular senescence in the pathogenesis of diseases (e.g., beneficial or detrimental), many questions still remain untouched and unanswered. Thus, future studies are clearly needed to better understand these cellular processes, particularly after exposure to environmental pollutants and allergens, and to identify the therapeutic targets to regulate the autophagy/mitophagy/senescence-associated asthma.</p>
<fig id="F4" position="float">
<label>Figure 4</label>
<caption>
<p>Contribution of autophagy, mitophagy, and senescence to asthma. Environmental triggers, such as environmental pollutants and allergens, can induce excessive ROS generation, which serve as “signaling molecules” modulating the process of autophagic cycle through activating signaling molecules and autophagy, thereby leading to the major phenotypic changes of asthma, including airway inflammation, airway remodeling, and airway hyper-responsiveness. These elevated ROS levels can also induce mitochondrial damage and mitophagy, thereby leading to the mitochondria-induced inflammation (mito-inflammation). Oxidative stress can cause DNA damage, telomere shortening, and epigenomic disruption, which convert normal cells into senescent cells, leading to secretion of SASP. SASP can regulate sensecent cells and induce airway inflammation and remodeling thought the secretion of cytokines, chemokines, MMPs, and growth factors. Additionally, Th1 or Th2 cytokines may induce autophagy/mitophagy/senescence, and in turn, these may also regulate the balance of Th1 and Th2 responses in asthma.</p>
</caption>
<graphic xlink:href="fimmu-10-02787-g0004"></graphic>
</fig>
</sec>
<sec id="s15">
<title>Author Contributions</title>
<p>KS, YZ, XH, and JC wrote the manuscript. DD and PG reviewed the manuscript.</p>
<sec>
<title>Conflict of Interest</title>
<p>The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.</p>
</sec>
</sec>
</body>
<back>
<fn-group>
<fn fn-type="financial-disclosure">
<p>
<bold>Funding.</bold>
This work was supported by grants from the US National Institutes of Health (NIH) (R56 AI143668, R21 AI109062, R21 AI137547, and R01AI141642).</p>
</fn>
</fn-group>
<ref-list>
<title>References</title>
<ref id="B1">
<label>1.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Akinbami</surname>
<given-names>LJ</given-names>
</name>
<name>
<surname>Moorman</surname>
<given-names>JE</given-names>
</name>
<name>
<surname>Bailey</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Zahran</surname>
<given-names>HS</given-names>
</name>
<name>
<surname>King</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Johnson</surname>
<given-names>CA</given-names>
</name>
<etal></etal>
</person-group>
.
<article-title>Trends in asthma prevalence, health care use, and mortality in the United States, 2001-2010</article-title>
.
<source>NCHS Data Brief</source>
. (
<year>2012</year>
):
<fpage>1</fpage>
<fpage>8</fpage>
.
<pub-id pub-id-type="pmid">22617340</pub-id>
</mixed-citation>
</ref>
<ref id="B2">
<label>2.</label>
<mixed-citation publication-type="webpage">
<person-group person-group-type="author">
<collab>World Health Organisation</collab>
</person-group>
<source>Asthma.</source>
(
<year>2017</year>
). Available online at:
<ext-link ext-link-type="uri" xlink:href="https://www.who.int/news-room/fact-sheets/detail/asthma">https://www.who.int/news-room/fact-sheets/detail/asthma</ext-link>
</mixed-citation>
</ref>
<ref id="B3">
<label>3.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Masoli</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Fabian</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Holt</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Beasley</surname>
<given-names>R</given-names>
</name>
</person-group>
.
<article-title>The global burden of asthma: executive summary of the GINA Dissemination Committee report</article-title>
.
<source>Allergy</source>
. (
<year>2004</year>
)
<volume>59</volume>
:
<fpage>469</fpage>
<lpage>78</lpage>
.
<pub-id pub-id-type="doi">10.1111/j.1398-9995.2004.00526.x</pub-id>
<pub-id pub-id-type="pmid">15080825</pub-id>
</mixed-citation>
</ref>
<ref id="B4">
<label>4.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Eder</surname>
<given-names>W</given-names>
</name>
<name>
<surname>Ege</surname>
<given-names>MJ</given-names>
</name>
<name>
<surname>von Mutius</surname>
<given-names>E</given-names>
</name>
</person-group>
.
<article-title>The asthma epidemic</article-title>
.
<source>N Engl J Med</source>
. (
<year>2006</year>
)
<volume>355</volume>
:
<fpage>2226</fpage>
<lpage>35</lpage>
.
<pub-id pub-id-type="doi">10.1056/NEJMra054308</pub-id>
<pub-id pub-id-type="pmid">17124020</pub-id>
</mixed-citation>
</ref>
<ref id="B5">
<label>5.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Hansel</surname>
<given-names>NN</given-names>
</name>
<name>
<surname>McCormack</surname>
<given-names>MC</given-names>
</name>
<name>
<surname>Belli</surname>
<given-names>AJ</given-names>
</name>
<name>
<surname>Matsui</surname>
<given-names>EC</given-names>
</name>
<name>
<surname>Peng</surname>
<given-names>RD</given-names>
</name>
<name>
<surname>Aloe</surname>
<given-names>C</given-names>
</name>
<etal></etal>
</person-group>
.
<article-title>In-home air pollution is linked to respiratory morbidity in former smokers with chronic obstructive pulmonary disease</article-title>
.
<source>Am J Respir Crit Care Med</source>
. (
<year>2013</year>
)
<volume>187</volume>
:
<fpage>1085</fpage>
<lpage>90</lpage>
.
<pub-id pub-id-type="doi">10.1164/rccm.201211-1987OC</pub-id>
<pub-id pub-id-type="pmid">23525930</pub-id>
</mixed-citation>
</ref>
<ref id="B6">
<label>6.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Hao</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Balluz</surname>
<given-names>L</given-names>
</name>
<name>
<surname>Strosnider</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Wen</surname>
<given-names>XJ</given-names>
</name>
<name>
<surname>Li</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Qualters</surname>
<given-names>JR</given-names>
</name>
</person-group>
.
<article-title>Ozone, fine particulate matter, and chronic lower respiratory disease mortality in the United States</article-title>
.
<source>Am J Respir Crit Care Med</source>
. (
<year>2015</year>
)
<volume>192</volume>
:
<fpage>337</fpage>
<lpage>41</lpage>
.
<pub-id pub-id-type="doi">10.1164/rccm.201410-1852OC</pub-id>
<pub-id pub-id-type="pmid">26017067</pub-id>
</mixed-citation>
</ref>
<ref id="B7">
<label>7.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Mukherjee</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Agrawal</surname>
<given-names>M</given-names>
</name>
</person-group>
.
<article-title>Use of GLM approach to assess the responses of tropical trees to urban air pollution in relation to leaf functional traits and tree characteristics</article-title>
.
<source>Ecotoxicol Environ Saf</source>
. (
<year>2018</year>
)
<volume>152</volume>
:
<fpage>42</fpage>
<lpage>54</lpage>
.
<pub-id pub-id-type="doi">10.1016/j.ecoenv.2018.01.038</pub-id>
<pub-id pub-id-type="pmid">29407781</pub-id>
</mixed-citation>
</ref>
<ref id="B8">
<label>8.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Mukherjee</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Agrawal</surname>
<given-names>M</given-names>
</name>
</person-group>
.
<article-title>Global perspective of fine particulate matter pollution and its health effects</article-title>
.
<source>Rev Environ Contam Toxicol</source>
. (
<year>2018</year>
)
<volume>244</volume>
:
<fpage>5</fpage>
<lpage>51</lpage>
.
<pub-id pub-id-type="doi">10.1007/398_2017_3</pub-id>
<pub-id pub-id-type="pmid">28361472</pub-id>
</mixed-citation>
</ref>
<ref id="B9">
<label>9.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Wu</surname>
<given-names>JZ</given-names>
</name>
<name>
<surname>Ge</surname>
<given-names>DD</given-names>
</name>
<name>
<surname>Zhou</surname>
<given-names>LF</given-names>
</name>
<name>
<surname>Hou</surname>
<given-names>LY</given-names>
</name>
<name>
<surname>Zhou</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Li</surname>
<given-names>QY</given-names>
</name>
</person-group>
.
<article-title>Effects of particulate matter on allergic respiratory diseases</article-title>
.
<source>Chronic Dis Transl Med</source>
. (
<year>2018</year>
)
<volume>4</volume>
:
<fpage>95</fpage>
<lpage>102</lpage>
.
<pub-id pub-id-type="doi">10.1016/j.cdtm.2018.04.001</pub-id>
<pub-id pub-id-type="pmid">29988900</pub-id>
</mixed-citation>
</ref>
<ref id="B10">
<label>10.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Murrison</surname>
<given-names>LB</given-names>
</name>
<name>
<surname>Brandt</surname>
<given-names>EB</given-names>
</name>
<name>
<surname>Myers</surname>
<given-names>JB</given-names>
</name>
<name>
<surname>Hershey</surname>
<given-names>GKK</given-names>
</name>
</person-group>
.
<article-title>Environmental exposures and mechanisms in allergy and asthma development</article-title>
.
<source>J Clin Invest</source>
. (
<year>2019</year>
)
<volume>129</volume>
:
<fpage>1504</fpage>
<lpage>15</lpage>
.
<pub-id pub-id-type="doi">10.1172/JCI124612</pub-id>
<pub-id pub-id-type="pmid">30741719</pub-id>
</mixed-citation>
</ref>
<ref id="B11">
<label>11.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Wilson</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Takahashi</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Pan</surname>
<given-names>G</given-names>
</name>
<name>
<surname>Chan</surname>
<given-names>CC</given-names>
</name>
<name>
<surname>Zhang</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Feng</surname>
<given-names>Y</given-names>
</name>
<etal></etal>
</person-group>
.
<article-title>Respiratory symptoms among residents of a heavy-industry province in China: prevalence and risk factors</article-title>
.
<source>Respir Med</source>
. (
<year>2008</year>
)
<volume>102</volume>
:
<fpage>1536</fpage>
<lpage>44</lpage>
.
<pub-id pub-id-type="doi">10.1016/j.rmed.2008.06.010</pub-id>
<pub-id pub-id-type="pmid">18684604</pub-id>
</mixed-citation>
</ref>
<ref id="B12">
<label>12.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Liu</surname>
<given-names>F</given-names>
</name>
<name>
<surname>Zhao</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Liu</surname>
<given-names>YQ</given-names>
</name>
<name>
<surname>Liu</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Sun</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Huang</surname>
<given-names>MM</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Asthma and asthma related symptoms in 23,326 Chinese children in relation to indoor and outdoor environmental factors: the Seven Northeastern Cities (SNEC) study</article-title>
.
<source>Sci Total Environ</source>
. (
<year>2014</year>
)
<volume>497–8</volume>
:
<fpage>10</fpage>
<lpage>7</lpage>
.
<pub-id pub-id-type="doi">10.1016/j.scitotenv.2014.07.096</pub-id>
</mixed-citation>
</ref>
<ref id="B13">
<label>13.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Brandt</surname>
<given-names>EB</given-names>
</name>
<name>
<surname>Myers</surname>
<given-names>JM</given-names>
</name>
<name>
<surname>Ryan</surname>
<given-names>PH</given-names>
</name>
<name>
<surname>Hershey</surname>
<given-names>GK</given-names>
</name>
</person-group>
.
<article-title>Air pollution and allergic diseases</article-title>
.
<source>Curr Opin Pediatr</source>
. (
<year>2015</year>
)
<volume>27</volume>
:
<fpage>724</fpage>
<lpage>35</lpage>
.
<pub-id pub-id-type="doi">10.1097/MOP.0000000000000286</pub-id>
<pub-id pub-id-type="pmid">26474340</pub-id>
</mixed-citation>
</ref>
<ref id="B14">
<label>14.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Gowers</surname>
<given-names>AM</given-names>
</name>
<name>
<surname>Cullinan</surname>
<given-names>P</given-names>
</name>
<name>
<surname>Ayres</surname>
<given-names>JG</given-names>
</name>
<name>
<surname>Anderson</surname>
<given-names>HR</given-names>
</name>
<name>
<surname>Strachan</surname>
<given-names>DP</given-names>
</name>
<name>
<surname>Holgate</surname>
<given-names>ST</given-names>
</name>
<etal></etal>
</person-group>
.
<article-title>Does outdoor air pollution induce new cases of asthma?</article-title>
Biological plausibility and evidence; a review.
<source>Respirology</source>
. (
<year>2012</year>
)
<volume>17</volume>
:
<fpage>887</fpage>
<lpage>98</lpage>
.
<pub-id pub-id-type="doi">10.1111/j.1440-1843.2012.02195.x</pub-id>
<pub-id pub-id-type="pmid">22672711</pub-id>
</mixed-citation>
</ref>
<ref id="B15">
<label>15.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Guarnieri</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Balmes</surname>
<given-names>JR</given-names>
</name>
</person-group>
.
<article-title>Outdoor air pollution and asthma</article-title>
.
<source>Lancet</source>
. (
<year>2014</year>
)
<volume>383</volume>
:
<fpage>1581</fpage>
<lpage>92</lpage>
.
<pub-id pub-id-type="doi">10.1016/S0140-6736(14)60617-6</pub-id>
<pub-id pub-id-type="pmid">24792855</pub-id>
</mixed-citation>
</ref>
<ref id="B16">
<label>16.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Berhane</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Chang</surname>
<given-names>CC</given-names>
</name>
<name>
<surname>McConnell</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Gauderman</surname>
<given-names>WJ</given-names>
</name>
<name>
<surname>Avol</surname>
<given-names>E</given-names>
</name>
<name>
<surname>Rapapport</surname>
<given-names>E</given-names>
</name>
<etal></etal>
</person-group>
.
<article-title>Association of changes in air quality with bronchitic symptoms in children in California, 1993–2012</article-title>
.
<source>JAMA</source>
. (
<year>2016</year>
)
<volume>315</volume>
:
<fpage>1491</fpage>
<lpage>501</lpage>
.
<pub-id pub-id-type="doi">10.1001/jama.2016.3444</pub-id>
<pub-id pub-id-type="pmid">27115265</pub-id>
</mixed-citation>
</ref>
<ref id="B17">
<label>17.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Li</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Hu</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Chen</surname>
<given-names>Z</given-names>
</name>
<name>
<surname>Li</surname>
<given-names>Q</given-names>
</name>
<name>
<surname>Huang</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Zhu</surname>
<given-names>Z</given-names>
</name>
<etal></etal>
</person-group>
.
<article-title>Fine particulate matter (PM
<sub>2.5</sub>
): the culprit for chronic lung diseases in China</article-title>
.
<source>Chronic Dis Transl Med</source>
. (
<year>2018</year>
)
<volume>4</volume>
:
<fpage>176</fpage>
<lpage>86</lpage>
.
<pub-id pub-id-type="doi">10.1016/j.cdtm.2018.07.002</pub-id>
<pub-id pub-id-type="pmid">30276364</pub-id>
</mixed-citation>
</ref>
<ref id="B18">
<label>18.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Chen</surname>
<given-names>F</given-names>
</name>
<name>
<surname>Lin</surname>
<given-names>Z</given-names>
</name>
<name>
<surname>Chen</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Norback</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Liu</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Kan</surname>
<given-names>H</given-names>
</name>
<etal></etal>
</person-group>
.
<article-title>The effects of PM
<sub>2.5</sub>
on asthmatic and allergic diseases or symptoms in preschool children of six Chinese cities, based on China, Children, Homes and Health (CCHH) project</article-title>
.
<source>Environ Pollut</source>
. (
<year>2018</year>
)
<volume>232</volume>
:
<fpage>329</fpage>
<lpage>37</lpage>
.
<pub-id pub-id-type="doi">10.1016/j.envpol.2017.08.072</pub-id>
<pub-id pub-id-type="pmid">28970023</pub-id>
</mixed-citation>
</ref>
<ref id="B19">
<label>19.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Jin</surname>
<given-names>L</given-names>
</name>
<name>
<surname>Xie</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Wong</surname>
<given-names>CKC</given-names>
</name>
<name>
<surname>Chan</surname>
<given-names>SKY</given-names>
</name>
<name>
<surname>Abbaszade</surname>
<given-names>G</given-names>
</name>
<name>
<surname>Schnelle-Kreis</surname>
<given-names>J</given-names>
</name>
<etal></etal>
</person-group>
.
<article-title>Contributions of city-specific fine particulate matter (PM
<sub>2.5</sub>
) to differential
<italic>in vitro</italic>
oxidative stress and toxicity implications between Beijing and Guangzhou of China</article-title>
.
<source>Environ Sci Technol</source>
. (
<year>2019</year>
)
<volume>53</volume>
:
<fpage>2881</fpage>
<lpage>91</lpage>
.
<pub-id pub-id-type="doi">10.1021/acs.est.9b00449</pub-id>
<pub-id pub-id-type="pmid">30730710</pub-id>
</mixed-citation>
</ref>
<ref id="B20">
<label>20.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Jung</surname>
<given-names>KH</given-names>
</name>
<name>
<surname>Torrone</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Lovinsky-Desir</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Perzanowski</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Bautista</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Jezioro</surname>
<given-names>JR</given-names>
</name>
<etal></etal>
</person-group>
.
<article-title>Short-term exposure to PM
<sub>2.5</sub>
and vanadium and changes in asthma gene DNA methylation and lung function decrements among urban children</article-title>
.
<source>Respir Res</source>
. (
<year>2017</year>
)
<volume>18</volume>
:
<fpage>63</fpage>
.
<pub-id pub-id-type="doi">10.1186/s12931-017-0550-9</pub-id>
<pub-id pub-id-type="pmid">28424066</pub-id>
</mixed-citation>
</ref>
<ref id="B21">
<label>21.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Miller</surname>
<given-names>RL</given-names>
</name>
<name>
<surname>Peden</surname>
<given-names>DB</given-names>
</name>
</person-group>
.
<article-title>Environmental effects on immune responses in patients with atopy and asthma</article-title>
.
<source>J Allergy Clin Immunol</source>
. (
<year>2014</year>
)
<volume>134</volume>
:
<fpage>1001</fpage>
<lpage>8</lpage>
.
<pub-id pub-id-type="doi">10.1016/j.jaci.2014.07.064</pub-id>
<pub-id pub-id-type="pmid">25439226</pub-id>
</mixed-citation>
</ref>
<ref id="B22">
<label>22.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Kanchongkittiphon</surname>
<given-names>W</given-names>
</name>
<name>
<surname>Mendell</surname>
<given-names>MJ</given-names>
</name>
<name>
<surname>Gaffin</surname>
<given-names>JM</given-names>
</name>
<name>
<surname>Wang</surname>
<given-names>G</given-names>
</name>
<name>
<surname>Phipatanakul</surname>
<given-names>W</given-names>
</name>
</person-group>
.
<article-title>Indoor environmental exposures and exacerbation of asthma: an update to the 2000 review by the institute of medicine</article-title>
.
<source>Environ Health Perspect</source>
. (
<year>2015</year>
)
<volume>123</volume>
:
<fpage>6</fpage>
<lpage>20</lpage>
.
<pub-id pub-id-type="doi">10.1289/ehp.1307922</pub-id>
<pub-id pub-id-type="pmid">25303775</pub-id>
</mixed-citation>
</ref>
<ref id="B23">
<label>23.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Kanchongkittiphon</surname>
<given-names>W</given-names>
</name>
<name>
<surname>Gaffin</surname>
<given-names>JM</given-names>
</name>
<name>
<surname>Phipatanakul</surname>
<given-names>W</given-names>
</name>
</person-group>
.
<article-title>The indoor environment and inner-city childhood asthma</article-title>
.
<source>Asian Pac J Allergy Immunol</source>
. (
<year>2014</year>
)
<volume>32</volume>
:
<fpage>103</fpage>
<lpage>10</lpage>
.
<pub-id pub-id-type="pmid">25003723</pub-id>
</mixed-citation>
</ref>
<ref id="B24">
<label>24.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Finkelman</surname>
<given-names>FD</given-names>
</name>
</person-group>
.
<article-title>Diesel exhaust particle exposure during pregnancy promotes development of asthma and atopy</article-title>
.
<source>J Allergy Clin Immunol.</source>
(
<year>2014</year>
)
<volume>134</volume>
:
<fpage>73</fpage>
<lpage>4</lpage>
.
<pub-id pub-id-type="doi">10.1016/j.jaci.2014.04.002</pub-id>
<pub-id pub-id-type="pmid">24835501</pub-id>
</mixed-citation>
</ref>
<ref id="B25">
<label>25.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Jedrychowski</surname>
<given-names>WA</given-names>
</name>
<name>
<surname>Perera</surname>
<given-names>FP</given-names>
</name>
<name>
<surname>Maugeri</surname>
<given-names>U</given-names>
</name>
<name>
<surname>Mrozek-Budzyn</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Mroz</surname>
<given-names>E</given-names>
</name>
<name>
<surname>Klimaszewska-Rembiasz</surname>
<given-names>M</given-names>
</name>
<etal></etal>
</person-group>
.
<article-title>Intrauterine exposure to polycyclic aromatic hydrocarbons, fine particulate matter and early wheeze. Prospective birth cohort study in 4-year olds</article-title>
.
<source>Pediatr Allergy Immunol</source>
. (
<year>2010</year>
)
<volume>21</volume>
(
<issue>4 Pt 2</issue>
):
<fpage>e723</fpage>
<lpage>32</lpage>
.
<pub-id pub-id-type="doi">10.1111/j.1399-3038.2010.01034.x</pub-id>
<pub-id pub-id-type="pmid">20444151</pub-id>
</mixed-citation>
</ref>
<ref id="B26">
<label>26.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Acciani</surname>
<given-names>TH</given-names>
</name>
<name>
<surname>Brandt</surname>
<given-names>EB</given-names>
</name>
<name>
<surname>Khurana Hershey</surname>
<given-names>GK</given-names>
</name>
<name>
<surname>Le Cras</surname>
<given-names>TD</given-names>
</name>
</person-group>
.
<article-title>Diesel exhaust particle exposure increases severity of allergic asthma in young mice</article-title>
.
<source>Clin Exp Allergy</source>
. (
<year>2013</year>
)
<volume>43</volume>
:
<fpage>1406</fpage>
<lpage>18</lpage>
.
<pub-id pub-id-type="doi">10.1111/cea.12200</pub-id>
<pub-id pub-id-type="pmid">24112543</pub-id>
</mixed-citation>
</ref>
<ref id="B27">
<label>27.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Brandt</surname>
<given-names>EB</given-names>
</name>
<name>
<surname>Biagini Myers</surname>
<given-names>JM</given-names>
</name>
<name>
<surname>Acciani</surname>
<given-names>TH</given-names>
</name>
<name>
<surname>Ryan</surname>
<given-names>PH</given-names>
</name>
<name>
<surname>Sivaprasad</surname>
<given-names>U</given-names>
</name>
<name>
<surname>Ruff</surname>
<given-names>B</given-names>
</name>
<etal></etal>
</person-group>
.
<article-title>Exposure to allergen and diesel exhaust particles potentiates secondary allergen-specific memory responses, promoting asthma susceptibility</article-title>
.
<source>J Allergy Clin Immunol</source>
. (
<year>2015</year>
)
<volume>136</volume>
:
<fpage>295</fpage>
<lpage>303</lpage>
.e7.
<pub-id pub-id-type="doi">10.1016/j.jaci.2014.11.043</pub-id>
<pub-id pub-id-type="pmid">25748065</pub-id>
</mixed-citation>
</ref>
<ref id="B28">
<label>28.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Zhang</surname>
<given-names>X</given-names>
</name>
<name>
<surname>Chen</surname>
<given-names>X</given-names>
</name>
<name>
<surname>Weirauch</surname>
<given-names>MT</given-names>
</name>
<name>
<surname>Zhang</surname>
<given-names>X</given-names>
</name>
<name>
<surname>Burleson</surname>
<given-names>JD</given-names>
</name>
<name>
<surname>Brandt</surname>
<given-names>EB</given-names>
</name>
<etal></etal>
</person-group>
.
<article-title>Diesel exhaust and house dust mite allergen lead to common changes in the airway methylome and hydroxymethylome</article-title>
.
<source>Environ Epigenet</source>
. (
<year>2018</year>
)
<volume>4</volume>
:
<fpage>dvy020</fpage>
.
<pub-id pub-id-type="doi">10.1093/eep/dvy020</pub-id>
<pub-id pub-id-type="pmid">30090644</pub-id>
</mixed-citation>
</ref>
<ref id="B29">
<label>29.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Bolcas</surname>
<given-names>PE</given-names>
</name>
<name>
<surname>Brandt</surname>
<given-names>EB</given-names>
</name>
<name>
<surname>Zhang</surname>
<given-names>Z</given-names>
</name>
<name>
<surname>Biagini Myers</surname>
<given-names>JM</given-names>
</name>
<name>
<surname>Ruff</surname>
<given-names>BP</given-names>
</name>
<name>
<surname>Khurana Hershey</surname>
<given-names>GK</given-names>
</name>
</person-group>
.
<article-title>Vitamin D supplementation attenuates asthma development following traffic-related particulate matter exposure</article-title>
.
<source>J Allergy Clin Immunol</source>
. (
<year>2019</year>
)
<volume>143</volume>
:
<fpage>386</fpage>
<lpage>94</lpage>
.e3.
<pub-id pub-id-type="doi">10.1016/j.jaci.2018.04.042</pub-id>
<pub-id pub-id-type="pmid">29936100</pub-id>
</mixed-citation>
</ref>
<ref id="B30">
<label>30.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Wang</surname>
<given-names>E</given-names>
</name>
<name>
<surname>Liu</surname>
<given-names>X</given-names>
</name>
<name>
<surname>Tu</surname>
<given-names>W</given-names>
</name>
<name>
<surname>Do</surname>
<given-names>DC</given-names>
</name>
<name>
<surname>Yu</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Yang</surname>
<given-names>L</given-names>
</name>
<etal></etal>
</person-group>
.
<article-title>Benzo(a)pyrene facilitates dermatophagoides group 1 (Der f 1)-induced epithelial cytokine release through aryl hydrocarbon receptor in asthma</article-title>
.
<source>Allergy</source>
. (
<year>2019</year>
)
<volume>74</volume>
:
<fpage>1675</fpage>
<lpage>90</lpage>
.
<pub-id pub-id-type="doi">10.1111/all.13784</pub-id>
<pub-id pub-id-type="pmid">30982974</pub-id>
</mixed-citation>
</ref>
<ref id="B31">
<label>31.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Sun</surname>
<given-names>L</given-names>
</name>
<name>
<surname>Fu</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Lin</surname>
<given-names>SH</given-names>
</name>
<name>
<surname>Sun</surname>
<given-names>JL</given-names>
</name>
<name>
<surname>Xia</surname>
<given-names>L</given-names>
</name>
<name>
<surname>Lin</surname>
<given-names>CH</given-names>
</name>
<etal></etal>
</person-group>
<article-title>PM
<sub>2.5</sub>
disturbs the balance of Th17/Treg cells by targeting Got1 and HIF-1alpha in an asthma model</article-title>
.
<source>J Allergy Clin Immunol</source>
. (
<year>2019</year>
)
<pub-id pub-id-type="doi">10.1016/j.jaci.2019.10.008</pub-id>
</mixed-citation>
</ref>
<ref id="B32">
<label>32.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Warren</surname>
<given-names>KJ</given-names>
</name>
<name>
<surname>Dickinson</surname>
<given-names>JD</given-names>
</name>
<name>
<surname>Nelson</surname>
<given-names>AJ</given-names>
</name>
<name>
<surname>Wyatt</surname>
<given-names>TA</given-names>
</name>
<name>
<surname>Romberger</surname>
<given-names>DJ</given-names>
</name>
<name>
<surname>Poole</surname>
<given-names>JA</given-names>
</name>
</person-group>
.
<article-title>Ovalbumin-sensitized mice have altered airway inflammation to agriculture organic dust</article-title>
.
<source>Respir Res</source>
. (
<year>2019</year>
)
<volume>20</volume>
:
<fpage>51</fpage>
.
<pub-id pub-id-type="doi">10.1186/s12931-019-1015-0</pub-id>
<pub-id pub-id-type="pmid">30845921</pub-id>
</mixed-citation>
</ref>
<ref id="B33">
<label>33.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Miraglia del Giudice</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Allegorico</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Parisi</surname>
<given-names>G</given-names>
</name>
<name>
<surname>Galdo</surname>
<given-names>F</given-names>
</name>
<name>
<surname>Alterio</surname>
<given-names>E</given-names>
</name>
<name>
<surname>Coronella</surname>
<given-names>A</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Risk factors for asthma</article-title>
.
<source>Ital J Pediatr</source>
. (
<year>2014</year>
)
<volume>40</volume>
(
<issue>Suppl 1</issue>
):
<fpage>A77</fpage>
<pub-id pub-id-type="doi">10.1186/1824-7288-40-S1-A77</pub-id>
</mixed-citation>
</ref>
<ref id="B34">
<label>34.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Do</surname>
<given-names>DC</given-names>
</name>
<name>
<surname>Zhao</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Gao</surname>
<given-names>P</given-names>
</name>
</person-group>
.
<article-title>Cockroach allergen exposure and risk of asthma</article-title>
.
<source>Allergy</source>
. (
<year>2016</year>
)
<volume>71</volume>
:
<fpage>463</fpage>
<lpage>74</lpage>
.
<pub-id pub-id-type="doi">10.1111/all.12827</pub-id>
<pub-id pub-id-type="pmid">26706467</pub-id>
</mixed-citation>
</ref>
<ref id="B35">
<label>35.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Poon</surname>
<given-names>AH</given-names>
</name>
<name>
<surname>Chouiali</surname>
<given-names>F</given-names>
</name>
<name>
<surname>Tse</surname>
<given-names>SM</given-names>
</name>
<name>
<surname>Litonjua</surname>
<given-names>AA</given-names>
</name>
<name>
<surname>Hussain</surname>
<given-names>SN</given-names>
</name>
<name>
<surname>Baglole</surname>
<given-names>CJ</given-names>
</name>
<etal></etal>
</person-group>
.
<article-title>Genetic and histologic evidence for autophagy in asthma pathogenesis</article-title>
.
<source>J Allergy Clin Immunol</source>
. (
<year>2012</year>
)
<volume>129</volume>
:
<fpage>569</fpage>
<lpage>71</lpage>
.
<pub-id pub-id-type="doi">10.1016/j.jaci.2011.09.035</pub-id>
<pub-id pub-id-type="pmid">22040902</pub-id>
</mixed-citation>
</ref>
<ref id="B36">
<label>36.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Liu</surname>
<given-names>JN</given-names>
</name>
<name>
<surname>Suh</surname>
<given-names>DH</given-names>
</name>
<name>
<surname>Trinh</surname>
<given-names>HK</given-names>
</name>
<name>
<surname>Chwae</surname>
<given-names>YJ</given-names>
</name>
<name>
<surname>Park</surname>
<given-names>HS</given-names>
</name>
<name>
<surname>Shin</surname>
<given-names>YS</given-names>
</name>
</person-group>
.
<article-title>The role of autophagy in allergic inflammation: a new target for severe asthma</article-title>
.
<source>Exp Mol Med</source>
. (
<year>2016</year>
)
<volume>48</volume>
:
<fpage>e243</fpage>
.
<pub-id pub-id-type="doi">10.1038/emm.2016.38</pub-id>
<pub-id pub-id-type="pmid">27364893</pub-id>
</mixed-citation>
</ref>
<ref id="B37">
<label>37.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Rowlands</surname>
<given-names>DJ</given-names>
</name>
</person-group>
<article-title>Mitochondria dysfunction: a novel therapeutic target in pathological lung remodeling or bystander?</article-title>
<source>Pharmacol Ther</source>
. (
<year>2016</year>
)
<volume>166</volume>
:
<fpage>96</fpage>
<lpage>105</lpage>
.
<pub-id pub-id-type="doi">10.1016/j.pharmthera.2016.06.019</pub-id>
<pub-id pub-id-type="pmid">27373853</pub-id>
</mixed-citation>
</ref>
<ref id="B38">
<label>38.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Prakash</surname>
<given-names>YS</given-names>
</name>
<name>
<surname>Pabelick</surname>
<given-names>CM</given-names>
</name>
<name>
<surname>Sieck</surname>
<given-names>GC</given-names>
</name>
</person-group>
.
<article-title>Mitochondrial dysfunction in airway disease</article-title>
.
<source>Chest</source>
. (
<year>2017</year>
)
<volume>152</volume>
:
<fpage>618</fpage>
<lpage>26</lpage>
.
<pub-id pub-id-type="doi">10.1016/j.chest.2017.03.020</pub-id>
<pub-id pub-id-type="pmid">28336486</pub-id>
</mixed-citation>
</ref>
<ref id="B39">
<label>39.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Wu</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Dong</surname>
<given-names>F</given-names>
</name>
<name>
<surname>Wang</surname>
<given-names>RA</given-names>
</name>
<name>
<surname>Wang</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Zhao</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Yang</surname>
<given-names>M</given-names>
</name>
<etal></etal>
</person-group>
.
<article-title>Central role of cellular senescence in TSLP-induced airway remodeling in asthma</article-title>
.
<source>PLoS ONE</source>
. (
<year>2013</year>
)
<volume>8</volume>
:
<fpage>e77795</fpage>
.
<pub-id pub-id-type="doi">10.1371/journal.pone.0077795</pub-id>
<pub-id pub-id-type="pmid">24167583</pub-id>
</mixed-citation>
</ref>
<ref id="B40">
<label>40.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Puddicombe</surname>
<given-names>SM</given-names>
</name>
<name>
<surname>Torres-Lozano</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Richter</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Bucchieri</surname>
<given-names>F</given-names>
</name>
<name>
<surname>Lordan</surname>
<given-names>JL</given-names>
</name>
<name>
<surname>Howarth</surname>
<given-names>PH</given-names>
</name>
<etal></etal>
</person-group>
.
<article-title>Increased expression of p21(waf) cyclin-dependent kinase inhibitor in asthmatic bronchial epithelium</article-title>
.
<source>Am J Respir Cell Mol Biol</source>
. (
<year>2003</year>
)
<volume>28</volume>
:
<fpage>61</fpage>
<lpage>8</lpage>
.
<pub-id pub-id-type="doi">10.1165/rcmb.4715</pub-id>
<pub-id pub-id-type="pmid">12495933</pub-id>
</mixed-citation>
</ref>
<ref id="B41">
<label>41.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Deretic</surname>
<given-names>V</given-names>
</name>
<name>
<surname>Klionsky</surname>
<given-names>DJ</given-names>
</name>
</person-group>
.
<article-title>Autophagy and inflammation: a special review issue</article-title>
.
<source>Autophagy</source>
. (
<year>2018</year>
)
<volume>14</volume>
:
<fpage>179</fpage>
<lpage>80</lpage>
.
<pub-id pub-id-type="doi">10.1080/15548627.2017.1412229</pub-id>
<pub-id pub-id-type="pmid">29304718</pub-id>
</mixed-citation>
</ref>
<ref id="B42">
<label>42.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Lee</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Kim</surname>
<given-names>HS</given-names>
</name>
</person-group>
.
<article-title>The role of autophagy in eosinophilic airway inflammation</article-title>
.
<source>Immune Netw</source>
. (
<year>2019</year>
)
<volume>19</volume>
:
<fpage>e5</fpage>
.
<pub-id pub-id-type="doi">10.4110/in.2019.19.e5</pub-id>
<pub-id pub-id-type="pmid">30838160</pub-id>
</mixed-citation>
</ref>
<ref id="B43">
<label>43.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>McAlinden</surname>
<given-names>KD</given-names>
</name>
<name>
<surname>Deshpande</surname>
<given-names>DA</given-names>
</name>
<name>
<surname>Ghavami</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Xenaki</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Sohal</surname>
<given-names>SS</given-names>
</name>
<name>
<surname>Oliver</surname>
<given-names>BG</given-names>
</name>
<etal></etal>
</person-group>
.
<article-title>Autophagy activation in asthma airways remodeling</article-title>
.
<source>Am J Respir Cell Mol Biol.</source>
(
<year>2018</year>
)
<volume>60</volume>
:
<fpage>541</fpage>
<lpage>53</lpage>
.
<pub-id pub-id-type="doi">10.1165/rcmb.2018-0169OC</pub-id>
<pub-id pub-id-type="pmid">30383396</pub-id>
</mixed-citation>
</ref>
<ref id="B44">
<label>44.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Liu</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Wu</surname>
<given-names>B</given-names>
</name>
<name>
<surname>Wang</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>He</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Lin</surname>
<given-names>Z</given-names>
</name>
<name>
<surname>Tan</surname>
<given-names>J</given-names>
</name>
<etal></etal>
</person-group>
.
<article-title>Particulate matter 2</article-title>
.5 induces autophagy via inhibition of the phosphatidylinositol 3-kinase/Akt/mammalian target of rapamycin kinase signaling pathway in human bronchial epithelial cells.
<source>Mol Med Rep</source>
. (
<year>2015</year>
)
<volume>12</volume>
:
<fpage>1914</fpage>
<lpage>22</lpage>
.
<pub-id pub-id-type="doi">10.3892/mmr.2015.3577</pub-id>
<pub-id pub-id-type="pmid">25845384</pub-id>
</mixed-citation>
</ref>
<ref id="B45">
<label>45.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Zhu</surname>
<given-names>XM</given-names>
</name>
<name>
<surname>Wang</surname>
<given-names>Q</given-names>
</name>
<name>
<surname>Xing</surname>
<given-names>WW</given-names>
</name>
<name>
<surname>Long</surname>
<given-names>MH</given-names>
</name>
<name>
<surname>Fu</surname>
<given-names>WL</given-names>
</name>
<name>
<surname>Xia</surname>
<given-names>WR</given-names>
</name>
<etal></etal>
</person-group>
.
<article-title>PM
<sub>2.5</sub>
induces autophagy-mediated cell death via NOS2 signaling in human bronchial epithelium cells</article-title>
.
<source>Int J Biol Sci</source>
. (
<year>2018</year>
)
<volume>14</volume>
:
<fpage>557</fpage>
<lpage>64</lpage>
.
<pub-id pub-id-type="doi">10.7150/ijbs.24546</pub-id>
<pub-id pub-id-type="pmid">29805307</pub-id>
</mixed-citation>
</ref>
<ref id="B46">
<label>46.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Li</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Zhou</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Zhang</surname>
<given-names>J</given-names>
</name>
</person-group>
.
<article-title>Function of PM
<sub>2.5</sub>
in the pathogenesis of lung cancer and chronic airway inflammatory diseases</article-title>
.
<source>Oncol Lett</source>
. (
<year>2018</year>
)
<volume>15</volume>
:
<fpage>7506</fpage>
<lpage>14</lpage>
.
<pub-id pub-id-type="doi">10.3892/ol.2018.8355</pub-id>
<pub-id pub-id-type="pmid">29725457</pub-id>
</mixed-citation>
</ref>
<ref id="B47">
<label>47.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Zhao</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Luo</surname>
<given-names>X</given-names>
</name>
<name>
<surname>Qiu</surname>
<given-names>L</given-names>
</name>
<name>
<surname>Do</surname>
<given-names>DC</given-names>
</name>
<name>
<surname>Ke</surname>
<given-names>X</given-names>
</name>
<name>
<surname>Zaccone</surname>
<given-names>E</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Aryl hydrocarbon receptor in airway epithelium exacerbates cockroach allergen-induced asthma through autophagy</article-title>
.
<source>J Allergy Clin Immunol</source>
. (
<year>2017</year>
)
<volume>139</volume>
:
<fpage>AB268</fpage>
<pub-id pub-id-type="doi">10.1016/j.jaci.2016.12.863</pub-id>
</mixed-citation>
</ref>
<ref id="B48">
<label>48.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Murai</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Okazaki</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Hayashi</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Kawakita</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Hosoki</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Yasutomi</surname>
<given-names>M</given-names>
</name>
<etal></etal>
</person-group>
.
<article-title>Alternaria extract activates autophagy that induces IL-18 release from airway epithelial cells</article-title>
.
<source>Biochem Biophys Res Commun</source>
. (
<year>2015</year>
)
<volume>464</volume>
:
<fpage>969</fpage>
<lpage>74</lpage>
.
<pub-id pub-id-type="doi">10.1016/j.bbrc.2015.05.076</pub-id>
<pub-id pub-id-type="pmid">26032499</pub-id>
</mixed-citation>
</ref>
<ref id="B49">
<label>49.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Liu</surname>
<given-names>HX</given-names>
</name>
<name>
<surname>Yan</surname>
<given-names>HY</given-names>
</name>
<name>
<surname>Qu</surname>
<given-names>W</given-names>
</name>
<name>
<surname>Wen</surname>
<given-names>X</given-names>
</name>
<name>
<surname>Hou</surname>
<given-names>LF</given-names>
</name>
<name>
<surname>Zhao</surname>
<given-names>WH</given-names>
</name>
<etal></etal>
</person-group>
.
<article-title>Inhibition of thymocyte autophagy-associated CD4(+)T thymopoiesis is involved in asthma susceptibility in mice exposed to caffeine prenatally</article-title>
.
<source>Arch Toxicol</source>
. (
<year>2019</year>
)
<volume>93</volume>
:
<fpage>1323</fpage>
<lpage>35</lpage>
.
<pub-id pub-id-type="doi">10.1007/s00204-019-02418-5</pub-id>
<pub-id pub-id-type="pmid">30805671</pub-id>
</mixed-citation>
</ref>
<ref id="B50">
<label>50.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Zeki</surname>
<given-names>AA</given-names>
</name>
<name>
<surname>Yeganeh</surname>
<given-names>B</given-names>
</name>
<name>
<surname>Kenyon</surname>
<given-names>NJ</given-names>
</name>
<name>
<surname>Post</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Ghavami</surname>
<given-names>S</given-names>
</name>
</person-group>
.
<article-title>Autophagy in airway diseases: a new frontier in human asthma?</article-title>
<source>Allergy</source>
. (
<year>2016</year>
)
<volume>71</volume>
:
<fpage>5</fpage>
<lpage>14</lpage>
.
<pub-id pub-id-type="doi">10.1111/all.12761</pub-id>
<pub-id pub-id-type="pmid">26335713</pub-id>
</mixed-citation>
</ref>
<ref id="B51">
<label>51.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Glick</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Barth</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Macleod</surname>
<given-names>KF</given-names>
</name>
</person-group>
.
<article-title>Autophagy: cellular and molecular mechanisms</article-title>
.
<source>J Pathol</source>
. (
<year>2010</year>
)
<volume>221</volume>
:
<fpage>3</fpage>
<lpage>12</lpage>
.
<pub-id pub-id-type="doi">10.1002/path.2697</pub-id>
<pub-id pub-id-type="pmid">20225336</pub-id>
</mixed-citation>
</ref>
<ref id="B52">
<label>52.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Ghosh</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Pattison</surname>
<given-names>JS</given-names>
</name>
</person-group>
.
<article-title>Macroautophagy and chaperone-mediated autophagy in heart failure: the known and the unknown</article-title>
.
<source>Oxid Med Cell Longev</source>
. (
<year>2018</year>
)
<volume>2018</volume>
:
<fpage>8602041</fpage>
.
<pub-id pub-id-type="doi">10.1155/2018/8602041</pub-id>
<pub-id pub-id-type="pmid">29576856</pub-id>
</mixed-citation>
</ref>
<ref id="B53">
<label>53.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Schulze</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Kolter</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Sandhoff</surname>
<given-names>K</given-names>
</name>
</person-group>
.
<article-title>Principles of lysosomal membrane degradation: cellular topology and biochemistry of lysosomal lipid degradation</article-title>
.
<source>Biochim Biophys Acta</source>
. (
<year>2009</year>
)
<volume>1793</volume>
:
<fpage>674</fpage>
<lpage>83</lpage>
.
<pub-id pub-id-type="doi">10.1016/j.bbamcr.2008.09.020</pub-id>
<pub-id pub-id-type="pmid">19014978</pub-id>
</mixed-citation>
</ref>
<ref id="B54">
<label>54.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Ryter</surname>
<given-names>SW</given-names>
</name>
<name>
<surname>Choi</surname>
<given-names>AM</given-names>
</name>
</person-group>
.
<article-title>Autophagy in lung disease pathogenesis and therapeutics</article-title>
.
<source>Redox Biol</source>
. (
<year>2015</year>
)
<volume>4</volume>
:
<fpage>215</fpage>
<lpage>25</lpage>
.
<pub-id pub-id-type="doi">10.1016/j.redox.2014.12.010</pub-id>
<pub-id pub-id-type="pmid">25617802</pub-id>
</mixed-citation>
</ref>
<ref id="B55">
<label>55.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Klionsky</surname>
<given-names>DJ</given-names>
</name>
<name>
<surname>Abdelmohsen</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Abe</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Abedin</surname>
<given-names>MJ</given-names>
</name>
<name>
<surname>Abeliovich</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Acevedo Arozena</surname>
<given-names>A</given-names>
</name>
<etal></etal>
</person-group>
.
<article-title>Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition)</article-title>
.
<source>Autophagy</source>
. (
<year>2016</year>
)
<volume>12</volume>
:
<fpage>1</fpage>
<lpage>222</lpage>
.
<pub-id pub-id-type="doi">10.1080/15548627.2015</pub-id>
<pub-id pub-id-type="pmid">26799652</pub-id>
</mixed-citation>
</ref>
<ref id="B56">
<label>56.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Li</surname>
<given-names>WW</given-names>
</name>
<name>
<surname>Li</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Bao</surname>
<given-names>JK</given-names>
</name>
</person-group>
.
<article-title>Microautophagy: lesser-known self-eating</article-title>
.
<source>Cell Mol Life Sci</source>
. (
<year>2012</year>
)
<volume>69</volume>
:
<fpage>1125</fpage>
<lpage>36</lpage>
.
<pub-id pub-id-type="doi">10.1007/s00018-011-0865-5</pub-id>
<pub-id pub-id-type="pmid">22080117</pub-id>
</mixed-citation>
</ref>
<ref id="B57">
<label>57.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Kaushik</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Cuervo</surname>
<given-names>AM</given-names>
</name>
</person-group>
.
<article-title>Chaperone-mediated autophagy: a unique way to enter the lysosome world</article-title>
.
<source>Trends Cell Biol</source>
. (
<year>2012</year>
)
<volume>22</volume>
:
<fpage>407</fpage>
<lpage>17</lpage>
.
<pub-id pub-id-type="doi">10.1016/j.tcb.2012.05.006</pub-id>
<pub-id pub-id-type="pmid">22748206</pub-id>
</mixed-citation>
</ref>
<ref id="B58">
<label>58.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Cuervo</surname>
<given-names>AM</given-names>
</name>
<name>
<surname>Wong</surname>
<given-names>E</given-names>
</name>
</person-group>
.
<article-title>Chaperone-mediated autophagy: roles in disease and aging</article-title>
.
<source>Cell Res</source>
. (
<year>2014</year>
)
<volume>24</volume>
:
<fpage>92</fpage>
<lpage>104</lpage>
.
<pub-id pub-id-type="doi">10.1038/cr.2013.153</pub-id>
<pub-id pub-id-type="pmid">24281265</pub-id>
</mixed-citation>
</ref>
<ref id="B59">
<label>59.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Levine</surname>
<given-names>B</given-names>
</name>
<name>
<surname>Kroemer</surname>
<given-names>G</given-names>
</name>
</person-group>
.
<article-title>Biological functions of autophagy genes: a disease perspective</article-title>
.
<source>Cell</source>
. (
<year>2019</year>
)
<volume>176</volume>
:
<fpage>11</fpage>
<lpage>42</lpage>
.
<pub-id pub-id-type="doi">10.1016/j.cell.2018.09.048</pub-id>
<pub-id pub-id-type="pmid">30633901</pub-id>
</mixed-citation>
</ref>
<ref id="B60">
<label>60.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Jiang</surname>
<given-names>P</given-names>
</name>
<name>
<surname>Mizushima</surname>
<given-names>N</given-names>
</name>
</person-group>
.
<article-title>Autophagy and human diseases</article-title>
.
<source>Cell Res</source>
. (
<year>2014</year>
)
<volume>24</volume>
:
<fpage>69</fpage>
<lpage>79</lpage>
.
<pub-id pub-id-type="doi">10.1038/cr.2013.161</pub-id>
<pub-id pub-id-type="pmid">24323045</pub-id>
</mixed-citation>
</ref>
<ref id="B61">
<label>61.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>van Beek</surname>
<given-names>N</given-names>
</name>
<name>
<surname>Klionsky</surname>
<given-names>DJ</given-names>
</name>
<name>
<surname>Reggiori</surname>
<given-names>F</given-names>
</name>
</person-group>
.
<article-title>Genetic aberrations in macroautophagy genes leading to diseases</article-title>
.
<source>Biochim Biophys Acta Mol Cell Res</source>
. (
<year>2018</year>
)
<volume>1865</volume>
:
<fpage>803</fpage>
<lpage>16</lpage>
.
<pub-id pub-id-type="doi">10.1016/j.bbamcr.2018.03.002</pub-id>
<pub-id pub-id-type="pmid">29524522</pub-id>
</mixed-citation>
</ref>
<ref id="B62">
<label>62.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Qian</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Fang</surname>
<given-names>X</given-names>
</name>
<name>
<surname>Wang</surname>
<given-names>X</given-names>
</name>
</person-group>
.
<article-title>Autophagy and inflammation</article-title>
.
<source>Clin Transl Med</source>
. (
<year>2017</year>
)
<volume>6</volume>
:
<fpage>24</fpage>
.
<pub-id pub-id-type="doi">10.1186/s40169-017-0154-5</pub-id>
<pub-id pub-id-type="pmid">28748360</pub-id>
</mixed-citation>
</ref>
<ref id="B63">
<label>63.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>He</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Klionsky</surname>
<given-names>DJ</given-names>
</name>
</person-group>
.
<article-title>Regulation mechanisms and signaling pathways of autophagy</article-title>
.
<source>Annu Rev Genet</source>
. (
<year>2009</year>
)
<volume>43</volume>
:
<fpage>67</fpage>
<lpage>93</lpage>
.
<pub-id pub-id-type="doi">10.1146/annurev-genet-102808-114910</pub-id>
<pub-id pub-id-type="pmid">19653858</pub-id>
</mixed-citation>
</ref>
<ref id="B64">
<label>64.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Park</surname>
<given-names>HJ</given-names>
</name>
<name>
<surname>Lee</surname>
<given-names>SJ</given-names>
</name>
<name>
<surname>Kim</surname>
<given-names>SH</given-names>
</name>
<name>
<surname>Han</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Bae</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Kim</surname>
<given-names>SJ</given-names>
</name>
<etal></etal>
</person-group>
.
<article-title>IL-10 inhibits the starvation induced autophagy in macrophages via class I phosphatidylinositol 3-kinase (PI3K) pathway</article-title>
.
<source>Mol Immunol</source>
. (
<year>2011</year>
)
<volume>48</volume>
:
<fpage>720</fpage>
<lpage>7</lpage>
.
<pub-id pub-id-type="doi">10.1016/j.molimm.2010.10.020</pub-id>
<pub-id pub-id-type="pmid">21095008</pub-id>
</mixed-citation>
</ref>
<ref id="B65">
<label>65.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Petiot</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Ogier-Denis</surname>
<given-names>E</given-names>
</name>
<name>
<surname>Blommaart</surname>
<given-names>EF</given-names>
</name>
<name>
<surname>Meijer</surname>
<given-names>AJ</given-names>
</name>
<name>
<surname>Codogno</surname>
<given-names>P</given-names>
</name>
</person-group>
.
<article-title>Distinct classes of phosphatidylinositol 3'-kinases are involved in signaling pathways that control macroautophagy in HT-29 cells</article-title>
.
<source>J Biol Chem</source>
. (
<year>2000</year>
)
<volume>275</volume>
:
<fpage>992</fpage>
<lpage>8</lpage>
.
<pub-id pub-id-type="doi">10.1074/jbc.275.2.992</pub-id>
<pub-id pub-id-type="pmid">10625637</pub-id>
</mixed-citation>
</ref>
<ref id="B66">
<label>66.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Arico</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Petiot</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Bauvy</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Dubbelhuis</surname>
<given-names>PF</given-names>
</name>
<name>
<surname>Meijer</surname>
<given-names>AJ</given-names>
</name>
<name>
<surname>Codogno</surname>
<given-names>P</given-names>
</name>
<etal></etal>
</person-group>
.
<article-title>The tumor suppressor PTEN positively regulates macroautophagy by inhibiting the phosphatidylinositol 3-kinase/protein kinase B pathway</article-title>
.
<source>J Biol Chem</source>
. (
<year>2001</year>
)
<volume>276</volume>
:
<fpage>35243</fpage>
<lpage>6</lpage>
.
<pub-id pub-id-type="doi">10.1074/jbc.C100319200</pub-id>
<pub-id pub-id-type="pmid">11477064</pub-id>
</mixed-citation>
</ref>
<ref id="B67">
<label>67.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Rovetta</surname>
<given-names>AI</given-names>
</name>
<name>
<surname>Peña</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Hernández Del Pino</surname>
<given-names>RE</given-names>
</name>
<name>
<surname>Recalde</surname>
<given-names>GM</given-names>
</name>
<name>
<surname>Pellegrini</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Bigi</surname>
<given-names>F</given-names>
</name>
<etal></etal>
</person-group>
.
<article-title>IFNG-mediated immune responses enhance autophagy against Mycobacterium tuberculosis antigens in patients with active tuberculosis</article-title>
.
<source>Autophagy</source>
. (
<year>2014</year>
)
<volume>10</volume>
:
<fpage>2109</fpage>
<lpage>21</lpage>
.
<pub-id pub-id-type="doi">10.4161/15548627.2014.981791</pub-id>
<pub-id pub-id-type="pmid">25426782</pub-id>
</mixed-citation>
</ref>
<ref id="B68">
<label>68.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Botbol</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Patel</surname>
<given-names>B</given-names>
</name>
<name>
<surname>Macian</surname>
<given-names>F</given-names>
</name>
</person-group>
.
<article-title>Common gamma-chain cytokine signaling is required for macroautophagy induction during CD4+ T-cell activation</article-title>
.
<source>Autophagy</source>
. (
<year>2015</year>
)
<volume>11</volume>
:
<fpage>1864</fpage>
<lpage>77</lpage>
.
<pub-id pub-id-type="doi">10.1080/15548627.2015.1089374</pub-id>
<pub-id pub-id-type="pmid">26391567</pub-id>
</mixed-citation>
</ref>
<ref id="B69">
<label>69.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Terawaki</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Camosseto</surname>
<given-names>V</given-names>
</name>
<name>
<surname>Prete</surname>
<given-names>F</given-names>
</name>
<name>
<surname>Wenger</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Papadopoulos</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Rondeau</surname>
<given-names>C</given-names>
</name>
<etal></etal>
</person-group>
.
<article-title>RUN and FYVE domain-containing protein 4 enhances autophagy and lysosome tethering in response to Interleukin-4</article-title>
.
<source>J Cell Biol</source>
. (
<year>2015</year>
)
<volume>210</volume>
:
<fpage>1133</fpage>
<lpage>52</lpage>
.
<pub-id pub-id-type="doi">10.1083/jcb.201501059</pub-id>
<pub-id pub-id-type="pmid">26416964</pub-id>
</mixed-citation>
</ref>
<ref id="B70">
<label>70.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Xia</surname>
<given-names>F</given-names>
</name>
<name>
<surname>Deng</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Jiang</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Qu</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Deng</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Cai</surname>
<given-names>Z</given-names>
</name>
<etal></etal>
</person-group>
.
<article-title>IL4 (interleukin 4) induces autophagy in B cells leading to exacerbated asthma</article-title>
.
<source>Autophagy</source>
. (
<year>2018</year>
)
<volume>14</volume>
:
<fpage>450</fpage>
<lpage>64</lpage>
.
<pub-id pub-id-type="doi">10.1080/15548627.2017.1421884</pub-id>
<pub-id pub-id-type="pmid">29297752</pub-id>
</mixed-citation>
</ref>
<ref id="B71">
<label>71.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Dickinson</surname>
<given-names>JD</given-names>
</name>
<name>
<surname>Alevy</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Malvin</surname>
<given-names>NP</given-names>
</name>
<name>
<surname>Patel</surname>
<given-names>KK</given-names>
</name>
<name>
<surname>Gunsten</surname>
<given-names>SP</given-names>
</name>
<name>
<surname>Holtzman</surname>
<given-names>MJ</given-names>
</name>
<etal></etal>
</person-group>
.
<article-title>IL13 activates autophagy to regulate secretion in airway epithelial cells</article-title>
.
<source>Autophagy</source>
. (
<year>2016</year>
)
<volume>12</volume>
:
<fpage>397</fpage>
<lpage>409</lpage>
.
<pub-id pub-id-type="doi">10.1080/15548627.2015.1056967</pub-id>
<pub-id pub-id-type="pmid">26062017</pub-id>
</mixed-citation>
</ref>
<ref id="B72">
<label>72.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Van Grol</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Subauste</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Andrade</surname>
<given-names>RM</given-names>
</name>
<name>
<surname>Fujinaga</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Nelson</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Subauste</surname>
<given-names>CS</given-names>
</name>
</person-group>
.
<article-title>HIV-1 inhibits autophagy in bystander macrophage/monocytic cells through Src-Akt and STAT3</article-title>
.
<source>PLoS ONE</source>
. (
<year>2010</year>
)
<volume>5</volume>
:
<fpage>e11733</fpage>
.
<pub-id pub-id-type="doi">10.1371/journal.pone.0011733</pub-id>
<pub-id pub-id-type="pmid">20661303</pub-id>
</mixed-citation>
</ref>
<ref id="B73">
<label>73.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Harris</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Hartman</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Roche</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Zeng</surname>
<given-names>SG</given-names>
</name>
<name>
<surname>O'Shea</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Sharp</surname>
<given-names>FA</given-names>
</name>
<etal></etal>
</person-group>
.
<article-title>Autophagy controls IL-1beta secretion by targeting pro-IL-1beta for degradation</article-title>
.
<source>J Biol Chem</source>
. (
<year>2011</year>
)
<volume>286</volume>
:
<fpage>9587</fpage>
<lpage>97</lpage>
.
<pub-id pub-id-type="doi">10.1074/jbc.M110.202911</pub-id>
<pub-id pub-id-type="pmid">21228274</pub-id>
</mixed-citation>
</ref>
<ref id="B74">
<label>74.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Saitoh</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Fujita</surname>
<given-names>N</given-names>
</name>
<name>
<surname>Jang</surname>
<given-names>MH</given-names>
</name>
<name>
<surname>Uematsu</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Yang</surname>
<given-names>BG</given-names>
</name>
<name>
<surname>Satoh</surname>
<given-names>T</given-names>
</name>
<etal></etal>
</person-group>
.
<article-title>Loss of the autophagy protein Atg16L1 enhances endotoxin-induced IL-1beta production</article-title>
.
<source>Nature</source>
. (
<year>2008</year>
)
<volume>456</volume>
:
<fpage>264</fpage>
<lpage>8</lpage>
.
<pub-id pub-id-type="doi">10.1038/nature07383</pub-id>
<pub-id pub-id-type="pmid">18849965</pub-id>
</mixed-citation>
</ref>
<ref id="B75">
<label>75.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Peral de Castro</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Jones</surname>
<given-names>SA</given-names>
</name>
<name>
<surname>Ní Cheallaigh</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Hearnden</surname>
<given-names>CA</given-names>
</name>
<name>
<surname>Williams</surname>
<given-names>L</given-names>
</name>
<name>
<surname>Winter</surname>
<given-names>J</given-names>
</name>
<etal></etal>
</person-group>
.
<article-title>Autophagy regulates IL-23 secretion and innate T cell responses through effects on IL-1 secretion</article-title>
.
<source>J Immunol</source>
. (
<year>2012</year>
)
<volume>189</volume>
:
<fpage>4144</fpage>
<lpage>53</lpage>
.
<pub-id pub-id-type="doi">10.4049/jimmunol.1201946</pub-id>
<pub-id pub-id-type="pmid">22972933</pub-id>
</mixed-citation>
</ref>
<ref id="B76">
<label>76.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Lee</surname>
<given-names>JP</given-names>
</name>
<name>
<surname>Foote</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Fan</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Peral de Castro</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Lang</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Jones</surname>
<given-names>SA</given-names>
</name>
<etal></etal>
</person-group>
.
<article-title>Loss of autophagy enhances MIF/macrophage migration inhibitory factor release by macrophages</article-title>
.
<source>Autophagy</source>
. (
<year>2016</year>
)
<volume>12</volume>
:
<fpage>907</fpage>
<lpage>16</lpage>
.
<pub-id pub-id-type="doi">10.1080/15548627.2016.1164358</pub-id>
<pub-id pub-id-type="pmid">27163877</pub-id>
</mixed-citation>
</ref>
<ref id="B77">
<label>77.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Yoon</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Woo</surname>
<given-names>SU</given-names>
</name>
<name>
<surname>Kang</surname>
<given-names>JH</given-names>
</name>
<name>
<surname>Kim</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Kwon</surname>
<given-names>MH</given-names>
</name>
<name>
<surname>Park</surname>
<given-names>S</given-names>
</name>
<etal></etal>
</person-group>
.
<article-title>STAT3 transcriptional factor activated by reactive oxygen species induces IL6 in starvation-induced autophagy of cancer cells</article-title>
.
<source>Autophagy</source>
. (
<year>2010</year>
)
<volume>6</volume>
:
<fpage>1125</fpage>
<lpage>38</lpage>
.
<pub-id pub-id-type="doi">10.4161/auto.6.8.13547</pub-id>
<pub-id pub-id-type="pmid">20930550</pub-id>
</mixed-citation>
</ref>
<ref id="B78">
<label>78.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Kiffin</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Christian</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Knecht</surname>
<given-names>E</given-names>
</name>
<name>
<surname>Cuervo</surname>
<given-names>AM</given-names>
</name>
</person-group>
.
<article-title>Activation of chaperone-mediated autophagy during oxidative stress</article-title>
.
<source>Mol Biol Cell</source>
. (
<year>2004</year>
)
<volume>15</volume>
:
<fpage>4829</fpage>
<lpage>40</lpage>
.
<pub-id pub-id-type="doi">10.1091/mbc.e04-06-0477</pub-id>
<pub-id pub-id-type="pmid">15331765</pub-id>
</mixed-citation>
</ref>
<ref id="B79">
<label>79.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Laplante</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Sabatini</surname>
<given-names>DM</given-names>
</name>
</person-group>
.
<article-title>mTOR signaling in growth control and disease</article-title>
.
<source>Cell</source>
. (
<year>2012</year>
)
<volume>149</volume>
:
<fpage>274</fpage>
<lpage>93</lpage>
.
<pub-id pub-id-type="doi">10.1016/j.cell.2012.03.017</pub-id>
<pub-id pub-id-type="pmid">22500797</pub-id>
</mixed-citation>
</ref>
<ref id="B80">
<label>80.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Kim</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Kundu</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Viollet</surname>
<given-names>B</given-names>
</name>
<name>
<surname>Guan</surname>
<given-names>KL</given-names>
</name>
</person-group>
.
<article-title>AMPK and mTOR regulate autophagy through direct phosphorylation of Ulk1</article-title>
.
<source>Nat Cell Biol</source>
. (
<year>2011</year>
)
<volume>13</volume>
:
<fpage>132</fpage>
<lpage>41</lpage>
.
<pub-id pub-id-type="doi">10.1038/ncb2152</pub-id>
<pub-id pub-id-type="pmid">21258367</pub-id>
</mixed-citation>
</ref>
<ref id="B81">
<label>81.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Jang</surname>
<given-names>JE</given-names>
</name>
<name>
<surname>Eom</surname>
<given-names>JI</given-names>
</name>
<name>
<surname>Jeung</surname>
<given-names>HK</given-names>
</name>
<name>
<surname>Cheong</surname>
<given-names>JW</given-names>
</name>
<name>
<surname>Lee</surname>
<given-names>JY</given-names>
</name>
<name>
<surname>Kim</surname>
<given-names>JS</given-names>
</name>
<etal></etal>
</person-group>
.
<article-title>AMPK-ULK1-mediated autophagy confers resistance to BET inhibitor JQ1 in acute myeloid leukemia stem cells</article-title>
.
<source>Clin Cancer Res</source>
. (
<year>2017</year>
)
<volume>23</volume>
:
<fpage>2781</fpage>
<lpage>94</lpage>
.
<pub-id pub-id-type="doi">10.1158/1078-0432.CCR-16-1903</pub-id>
<pub-id pub-id-type="pmid">27864418</pub-id>
</mixed-citation>
</ref>
<ref id="B82">
<label>82.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Kim</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Kim</surname>
<given-names>YC</given-names>
</name>
<name>
<surname>Fang</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Russell</surname>
<given-names>RC</given-names>
</name>
<name>
<surname>Kim</surname>
<given-names>JH</given-names>
</name>
<name>
<surname>Fan</surname>
<given-names>W</given-names>
</name>
<etal></etal>
</person-group>
.
<article-title>Differential regulation of distinct Vps34 complexes by AMPK in nutrient stress and autophagy</article-title>
.
<source>Cell</source>
. (
<year>2013</year>
)
<volume>152</volume>
:
<fpage>290</fpage>
<lpage>303</lpage>
.
<pub-id pub-id-type="doi">10.1016/j.cell.2012.12.016</pub-id>
<pub-id pub-id-type="pmid">23332761</pub-id>
</mixed-citation>
</ref>
<ref id="B83">
<label>83.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Green</surname>
<given-names>DR</given-names>
</name>
<name>
<surname>Levine</surname>
<given-names>B</given-names>
</name>
</person-group>
<article-title>To be or not to be?</article-title>
How selective autophagy and cell death govern cell fate.
<source>Cell</source>
. (
<year>2014</year>
)
<volume>157</volume>
:
<fpage>65</fpage>
<lpage>75</lpage>
.
<pub-id pub-id-type="doi">10.1016/j.cell.2014.02.049</pub-id>
<pub-id pub-id-type="pmid">24679527</pub-id>
</mixed-citation>
</ref>
<ref id="B84">
<label>84.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Li</surname>
<given-names>X</given-names>
</name>
<name>
<surname>Wu</surname>
<given-names>XQ</given-names>
</name>
<name>
<surname>Deng</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Li</surname>
<given-names>DD</given-names>
</name>
<name>
<surname>Tang</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Chen</surname>
<given-names>WD</given-names>
</name>
<etal></etal>
</person-group>
.
<article-title>CaMKII-mediated Beclin 1 phosphorylation regulates autophagy that promotes degradation of Id and neuroblastoma cell differentiation</article-title>
.
<source>Nat Commun</source>
. (
<year>2017</year>
)
<volume>8</volume>
:
<fpage>1159</fpage>
.
<pub-id pub-id-type="doi">10.1038/s41467-017-01272-2</pub-id>
<pub-id pub-id-type="pmid">29079782</pub-id>
</mixed-citation>
</ref>
<ref id="B85">
<label>85.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Sakamaki</surname>
<given-names>JI</given-names>
</name>
<name>
<surname>Long</surname>
<given-names>JS</given-names>
</name>
<name>
<surname>New</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Van Acker</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Tooze</surname>
<given-names>SA</given-names>
</name>
<name>
<surname>Ryan</surname>
<given-names>KM</given-names>
</name>
</person-group>
.
<article-title>Emerging roles of transcriptional programs in autophagy regulation</article-title>
.
<source>Transcription</source>
. (
<year>2018</year>
)
<volume>9</volume>
:
<fpage>131</fpage>
<lpage>6</lpage>
.
<pub-id pub-id-type="doi">10.1080/21541264.2017.1372045</pub-id>
<pub-id pub-id-type="pmid">28980873</pub-id>
</mixed-citation>
</ref>
<ref id="B86">
<label>86.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Zhao</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Brault</surname>
<given-names>JJ</given-names>
</name>
<name>
<surname>Schild</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Cao</surname>
<given-names>P</given-names>
</name>
<name>
<surname>Sandri</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Schiaffino</surname>
<given-names>S</given-names>
</name>
<etal></etal>
</person-group>
.
<article-title>FoxO3 coordinately activates protein degradation by the autophagic/lysosomal and proteasomal pathways in atrophying muscle cells</article-title>
.
<source>Cell Metab</source>
. (
<year>2007</year>
)
<volume>6</volume>
:
<fpage>472</fpage>
<lpage>83</lpage>
.
<pub-id pub-id-type="doi">10.1016/j.cmet.2007.11.004</pub-id>
<pub-id pub-id-type="pmid">18054316</pub-id>
</mixed-citation>
</ref>
<ref id="B87">
<label>87.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Napolitano</surname>
<given-names>G</given-names>
</name>
<name>
<surname>Ballabio</surname>
<given-names>A</given-names>
</name>
</person-group>
.
<article-title>TFEB at a glance</article-title>
.
<source>J Cell Sci</source>
. (
<year>2016</year>
)
<volume>129</volume>
:
<fpage>2475</fpage>
<lpage>81</lpage>
.
<pub-id pub-id-type="doi">10.1242/jcs.146365</pub-id>
<pub-id pub-id-type="pmid">27252382</pub-id>
</mixed-citation>
</ref>
<ref id="B88">
<label>88.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Medina</surname>
<given-names>DL</given-names>
</name>
<name>
<surname>Di Paola</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Peluso</surname>
<given-names>I</given-names>
</name>
<name>
<surname>Armani</surname>
<given-names>A</given-names>
</name>
<name>
<surname>De Stefani</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Venditti</surname>
<given-names>R</given-names>
</name>
<etal></etal>
</person-group>
.
<article-title>Lysosomal calcium signalling regulates autophagy through calcineurin and TFEB</article-title>
.
<source>Nat Cell Biol</source>
. (
<year>2015</year>
)
<volume>17</volume>
:
<fpage>288</fpage>
<lpage>99</lpage>
.
<pub-id pub-id-type="doi">10.1038/ncb3114</pub-id>
<pub-id pub-id-type="pmid">25720963</pub-id>
</mixed-citation>
</ref>
<ref id="B89">
<label>89.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Bowman</surname>
<given-names>CJ</given-names>
</name>
<name>
<surname>Ayer</surname>
<given-names>DE</given-names>
</name>
<name>
<surname>Dynlacht</surname>
<given-names>BD</given-names>
</name>
</person-group>
.
<article-title>Foxk proteins repress the initiation of starvation-induced atrophy and autophagy programs</article-title>
.
<source>Nat Cell Biol</source>
. (
<year>2014</year>
)
<volume>16</volume>
:
<fpage>1202</fpage>
<lpage>14</lpage>
.
<pub-id pub-id-type="doi">10.1038/ncb3062</pub-id>
<pub-id pub-id-type="pmid">25402684</pub-id>
</mixed-citation>
</ref>
<ref id="B90">
<label>90.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Baek</surname>
<given-names>SH</given-names>
</name>
<name>
<surname>Kim</surname>
<given-names>KI</given-names>
</name>
</person-group>
.
<article-title>Epigenetic control of autophagy: nuclear events gain more attention</article-title>
.
<source>Mol Cell</source>
. (
<year>2017</year>
)
<volume>65</volume>
:
<fpage>781</fpage>
<lpage>5</lpage>
.
<pub-id pub-id-type="doi">10.1016/j.molcel.2016.12.027</pub-id>
<pub-id pub-id-type="pmid">28257699</pub-id>
</mixed-citation>
</ref>
<ref id="B91">
<label>91.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Füllgrabe</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Klionsky</surname>
<given-names>DJ</given-names>
</name>
<name>
<surname>Joseph</surname>
<given-names>B</given-names>
</name>
</person-group>
.
<article-title>The return of the nucleus: transcriptional and epigenetic control of autophagy</article-title>
.
<source>Nat Rev Mol Cell Biol</source>
. (
<year>2014</year>
)
<volume>15</volume>
:
<fpage>65</fpage>
<lpage>74</lpage>
.
<pub-id pub-id-type="doi">10.1038/nrm3716</pub-id>
<pub-id pub-id-type="pmid">24326622</pub-id>
</mixed-citation>
</ref>
<ref id="B92">
<label>92.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Wei</surname>
<given-names>FZ</given-names>
</name>
<name>
<surname>Cao</surname>
<given-names>Z</given-names>
</name>
<name>
<surname>Wang</surname>
<given-names>X</given-names>
</name>
<name>
<surname>Wang</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Cai</surname>
<given-names>MY</given-names>
</name>
<name>
<surname>Li</surname>
<given-names>T</given-names>
</name>
<etal></etal>
</person-group>
.
<article-title>Epigenetic regulation of autophagy by the methyltransferase EZH2 through an MTOR-dependent pathway</article-title>
.
<source>Autophagy</source>
. (
<year>2015</year>
)
<volume>11</volume>
:
<fpage>2309</fpage>
<lpage>22</lpage>
.
<pub-id pub-id-type="doi">10.1080/15548627.2015.1117734</pub-id>
<pub-id pub-id-type="pmid">26735435</pub-id>
</mixed-citation>
</ref>
<ref id="B93">
<label>93.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Sierra-Vargas</surname>
<given-names>MP</given-names>
</name>
<name>
<surname>Guzman-Grenfell</surname>
<given-names>AM</given-names>
</name>
<name>
<surname>Blanco-Jimenez</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Sepulveda-Sanchez</surname>
<given-names>JD</given-names>
</name>
<name>
<surname>Bernabe-Cabanillas</surname>
<given-names>RM</given-names>
</name>
<name>
<surname>Cardenas-Gonzalez</surname>
<given-names>B</given-names>
</name>
<etal></etal>
</person-group>
.
<article-title>Airborne particulate matter PM
<sub>2.5</sub>
from Mexico City affects the generation of reactive oxygen species by blood neutrophils from asthmatics: an
<italic>in vitro</italic>
approach</article-title>
.
<source>J Occup Med Toxicol</source>
. (
<year>2009</year>
)
<volume>4</volume>
:
<fpage>17</fpage>
.
<pub-id pub-id-type="doi">10.1186/1745-6673-4-17</pub-id>
<pub-id pub-id-type="pmid">19563660</pub-id>
</mixed-citation>
</ref>
<ref id="B94">
<label>94.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Prieto-Parra</surname>
<given-names>L</given-names>
</name>
<name>
<surname>Yohannessen</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Brea</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Vidal</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Ubilla</surname>
<given-names>CA</given-names>
</name>
<name>
<surname>Ruiz-Rudolph</surname>
<given-names>P</given-names>
</name>
</person-group>
.
<article-title>Air pollution, PM
<sub>2.5</sub>
composition, source factors, and respiratory symptoms in asthmatic and nonasthmatic children in Santiago, Chile</article-title>
.
<source>Environ Int</source>
. (
<year>2017</year>
)
<volume>101</volume>
:
<fpage>190</fpage>
<lpage>200</lpage>
.
<pub-id pub-id-type="doi">10.1016/j.envint.2017.01.021</pub-id>
<pub-id pub-id-type="pmid">28202226</pub-id>
</mixed-citation>
</ref>
<ref id="B95">
<label>95.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Bleck</surname>
<given-names>B</given-names>
</name>
<name>
<surname>Tse</surname>
<given-names>DB</given-names>
</name>
<name>
<surname>Curotto de Lafaille</surname>
<given-names>MA</given-names>
</name>
<name>
<surname>Zhang</surname>
<given-names>F</given-names>
</name>
<name>
<surname>Reibman</surname>
<given-names>J</given-names>
</name>
</person-group>
.
<article-title>Diesel exhaust particle-exposed human bronchial epithelial cells induce dendritic cell maturation and polarization via thymic stromal lymphopoietin</article-title>
.
<source>J Clin Immunol</source>
. (
<year>2008</year>
)
<volume>28</volume>
:
<fpage>147</fpage>
<lpage>56</lpage>
.
<pub-id pub-id-type="doi">10.1007/s10875-007-9149-0</pub-id>
<pub-id pub-id-type="pmid">18049884</pub-id>
</mixed-citation>
</ref>
<ref id="B96">
<label>96.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Bleck</surname>
<given-names>B</given-names>
</name>
<name>
<surname>Tse</surname>
<given-names>DB</given-names>
</name>
<name>
<surname>Gordon</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Ahsan</surname>
<given-names>MR</given-names>
</name>
<name>
<surname>Reibman</surname>
<given-names>J</given-names>
</name>
</person-group>
.
<article-title>Diesel exhaust particle-treated human bronchial epithelial cells upregulate Jagged-1 and OX40 ligand in myeloid dendritic cells via thymic stromal lymphopoietin</article-title>
.
<source>J Immunol</source>
. (
<year>2010</year>
)
<volume>185</volume>
:
<fpage>6636</fpage>
<lpage>45</lpage>
.
<pub-id pub-id-type="doi">10.4049/jimmunol.1000719</pub-id>
<pub-id pub-id-type="pmid">20974985</pub-id>
</mixed-citation>
</ref>
<ref id="B97">
<label>97.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Nakamura</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Miyata</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Ohba</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Ando</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Hatsushika</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Suenaga</surname>
<given-names>F</given-names>
</name>
<etal></etal>
</person-group>
.
<article-title>Cigarette smoke extract induces thymic stromal lymphopoietin expression, leading to T(H)2-type immune responses and airway inflammation</article-title>
.
<source>J Allergy Clin Immunol</source>
. (
<year>2008</year>
)
<volume>122</volume>
:
<fpage>1208</fpage>
<lpage>14</lpage>
.
<pub-id pub-id-type="doi">10.1016/j.jaci.2008.09.022</pub-id>
<pub-id pub-id-type="pmid">18926564</pub-id>
</mixed-citation>
</ref>
<ref id="B98">
<label>98.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Qu</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Do</surname>
<given-names>DC</given-names>
</name>
<name>
<surname>Zhou</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Luczak</surname>
<given-names>E</given-names>
</name>
<name>
<surname>Mitzner</surname>
<given-names>W</given-names>
</name>
<name>
<surname>Anderson</surname>
<given-names>ME</given-names>
</name>
<etal></etal>
</person-group>
.
<article-title>Oxidized CaMKII promotes asthma through the activation of mast cells</article-title>
.
<source>JCI Insight</source>
. (
<year>2017</year>
)
<volume>2</volume>
:
<fpage>e90139</fpage>
.
<pub-id pub-id-type="doi">10.1172/jci.insight.90139</pub-id>
<pub-id pub-id-type="pmid">28097237</pub-id>
</mixed-citation>
</ref>
<ref id="B99">
<label>99.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Qu</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Li</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Zhong</surname>
<given-names>W</given-names>
</name>
<name>
<surname>Gao</surname>
<given-names>P</given-names>
</name>
<name>
<surname>Hu</surname>
<given-names>C</given-names>
</name>
</person-group>
.
<article-title>Recent developments in the role of reactive oxygen species in allergic asthma</article-title>
.
<source>J Thorac Dis</source>
. (
<year>2017</year>
)
<volume>9</volume>
:
<fpage>E32</fpage>
<lpage>43</lpage>
.
<pub-id pub-id-type="doi">10.21037/jtd.2017.01.05</pub-id>
<pub-id pub-id-type="pmid">28203435</pub-id>
</mixed-citation>
</ref>
<ref id="B100">
<label>100.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Sanders</surname>
<given-names>PN</given-names>
</name>
<name>
<surname>Koval</surname>
<given-names>OM</given-names>
</name>
<name>
<surname>Jaffer</surname>
<given-names>OA</given-names>
</name>
<name>
<surname>Prasad</surname>
<given-names>AM</given-names>
</name>
<name>
<surname>Businga</surname>
<given-names>TR</given-names>
</name>
<name>
<surname>Scott</surname>
<given-names>JA</given-names>
</name>
<etal></etal>
</person-group>
.
<article-title>CaMKII is essential for the proasthmatic effects of oxidation</article-title>
.
<source>Sci Transl Med</source>
. (
<year>2013</year>
)
<volume>5</volume>
:
<fpage>195ra97</fpage>
.
<pub-id pub-id-type="doi">10.1126/scitranslmed.3006135</pub-id>
<pub-id pub-id-type="pmid">23884469</pub-id>
</mixed-citation>
</ref>
<ref id="B101">
<label>101.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Abdala-Valencia</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Earwood</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Bansal</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Jansen</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Babcock</surname>
<given-names>G</given-names>
</name>
<name>
<surname>Garvy</surname>
<given-names>B</given-names>
</name>
<etal></etal>
</person-group>
.
<article-title>Nonhematopoietic NADPH oxidase regulation of lung eosinophilia and airway hyperresponsiveness in experimentally induced asthma</article-title>
.
<source>Am J Physiol Lung Cell Mol Physiol</source>
. (
<year>2007</year>
)
<volume>292</volume>
:
<fpage>L1111</fpage>
<lpage>25</lpage>
.
<pub-id pub-id-type="doi">10.1152/ajplung.00208.2006</pub-id>
<pub-id pub-id-type="pmid">17293377</pub-id>
</mixed-citation>
</ref>
<ref id="B102">
<label>102.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Ban</surname>
<given-names>GY</given-names>
</name>
<name>
<surname>Pham</surname>
<given-names>DL</given-names>
</name>
<name>
<surname>Trinh</surname>
<given-names>TH</given-names>
</name>
<name>
<surname>Lee</surname>
<given-names>SI</given-names>
</name>
<name>
<surname>Suh</surname>
<given-names>DH</given-names>
</name>
<name>
<surname>Yang</surname>
<given-names>EM</given-names>
</name>
<etal></etal>
</person-group>
.
<article-title>Autophagy mechanisms in sputum and peripheral blood cells of patients with severe asthma: a new therapeutic target</article-title>
.
<source>Clin Exp Allergy</source>
. (
<year>2016</year>
)
<volume>46</volume>
:
<fpage>48</fpage>
<lpage>59</lpage>
.
<pub-id pub-id-type="doi">10.1111/cea.12585</pub-id>
<pub-id pub-id-type="pmid">26112695</pub-id>
</mixed-citation>
</ref>
<ref id="B103">
<label>103.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Martin</surname>
<given-names>LJ</given-names>
</name>
<name>
<surname>Gupta</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Jyothula</surname>
<given-names>SS</given-names>
</name>
<name>
<surname>Butsch Kovacic</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Biagini Myers</surname>
<given-names>JM</given-names>
</name>
<name>
<surname>Patterson</surname>
<given-names>TL</given-names>
</name>
<etal></etal>
</person-group>
.
<article-title>Functional variant in the autophagy-related 5 gene promotor is associated with childhood asthma</article-title>
.
<source>PLoS ONE</source>
. (
<year>2012</year>
)
<volume>7</volume>
:
<fpage>e33454</fpage>
.
<pub-id pub-id-type="doi">10.1371/journal.pone.0033454</pub-id>
<pub-id pub-id-type="pmid">22536318</pub-id>
</mixed-citation>
</ref>
<ref id="B104">
<label>104.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Chen</surname>
<given-names>ZH</given-names>
</name>
<name>
<surname>Wu</surname>
<given-names>YF</given-names>
</name>
<name>
<surname>Wang</surname>
<given-names>PL</given-names>
</name>
<name>
<surname>Wu</surname>
<given-names>YP</given-names>
</name>
<name>
<surname>Li</surname>
<given-names>ZY</given-names>
</name>
<name>
<surname>Zhao</surname>
<given-names>Y</given-names>
</name>
<etal></etal>
</person-group>
.
<article-title>Autophagy is essential for ultrafine particle-induced inflammation and mucus hyperproduction in airway epithelium</article-title>
.
<source>Autophagy</source>
. (
<year>2016</year>
)
<volume>12</volume>
:
<fpage>297</fpage>
<lpage>311</lpage>
.
<pub-id pub-id-type="doi">10.1080/15548627.2015.1124224</pub-id>
<pub-id pub-id-type="pmid">26671423</pub-id>
</mixed-citation>
</ref>
<ref id="B105">
<label>105.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Li</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Qian</surname>
<given-names>W</given-names>
</name>
<name>
<surname>Wang</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Meng</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Wang</surname>
<given-names>X</given-names>
</name>
<name>
<surname>Chen</surname>
<given-names>Y</given-names>
</name>
<etal></etal>
</person-group>
.
<article-title>Resveratrol relieves particulate matter (mean diameter <2</article-title>
.5 mum)-induced oxidative injury of lung cells through attenuation of autophagy deregulation.
<source>J Appl Toxicol JAT</source>
. (
<year>2018</year>
)
<volume>38</volume>
:
<fpage>1251</fpage>
<lpage>61</lpage>
.
<pub-id pub-id-type="doi">10.1002/jat.3636</pub-id>
<pub-id pub-id-type="pmid">29781141</pub-id>
</mixed-citation>
</ref>
<ref id="B106">
<label>106.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Long</surname>
<given-names>F</given-names>
</name>
<name>
<surname>Jiang</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Yi</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Su</surname>
<given-names>L</given-names>
</name>
<name>
<surname>Sun</surname>
<given-names>J</given-names>
</name>
</person-group>
.
<article-title>Particulate matter 2</article-title>
.5 induced bronchial epithelial cell injury via activation of 5'-adenosine monophosphate-activated protein kinase-mediated autophagy.
<source>J Cell Biochem</source>
. (
<year>2019</year>
)
<volume>120</volume>
:
<fpage>3294</fpage>
<lpage>305</lpage>
.
<pub-id pub-id-type="doi">10.1002/jcb.27597</pub-id>
<pub-id pub-id-type="pmid">30203496</pub-id>
</mixed-citation>
</ref>
<ref id="B107">
<label>107.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Fu</surname>
<given-names>Q</given-names>
</name>
<name>
<surname>Lyu</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Zhang</surname>
<given-names>L</given-names>
</name>
<name>
<surname>Qin</surname>
<given-names>Z</given-names>
</name>
<name>
<surname>Tang</surname>
<given-names>Q</given-names>
</name>
<name>
<surname>Yin</surname>
<given-names>H</given-names>
</name>
<etal></etal>
</person-group>
.
<article-title>Airborne particulate matter (PM
<sub>2.5</sub>
) triggers autophagy in human corneal epithelial cell line</article-title>
.
<source>Environ Pollut</source>
. (
<year>2017</year>
)
<volume>227</volume>
:
<fpage>314</fpage>
<lpage>22</lpage>
.
<pub-id pub-id-type="doi">10.1016/j.envpol.2017.04.078</pub-id>
<pub-id pub-id-type="pmid">28477555</pub-id>
</mixed-citation>
</ref>
<ref id="B108">
<label>108.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Bush</surname>
<given-names>RK</given-names>
</name>
<name>
<surname>Prochnau</surname>
<given-names>JJ</given-names>
</name>
</person-group>
.
<article-title>Alternaria-induced asthma</article-title>
.
<source>J Allergy Clin Immunol</source>
. (
<year>2004</year>
)
<volume>113</volume>
:
<fpage>227</fpage>
<lpage>34</lpage>
.
<pub-id pub-id-type="doi">10.1016/j.jaci.2003.11.023</pub-id>
<pub-id pub-id-type="pmid">14767434</pub-id>
</mixed-citation>
</ref>
<ref id="B109">
<label>109.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Murai</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Qi</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Choudhury</surname>
<given-names>B</given-names>
</name>
<name>
<surname>Wild</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Dharajiya</surname>
<given-names>N</given-names>
</name>
<name>
<surname>Vaidya</surname>
<given-names>S</given-names>
</name>
<etal></etal>
</person-group>
.
<article-title>Alternaria-induced release of IL-18 from damaged airway epithelial cells: an NF-kappaB dependent mechanism of Th2 differentiation?</article-title>
<source>PLoS ONE</source>
. (
<year>2012</year>
)
<volume>7</volume>
:
<fpage>e30280</fpage>
.
<pub-id pub-id-type="doi">10.1371/journal.pone.0030280</pub-id>
<pub-id pub-id-type="pmid">22347372</pub-id>
</mixed-citation>
</ref>
<ref id="B110">
<label>110.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Abdel Fattah</surname>
<given-names>E</given-names>
</name>
<name>
<surname>Bhattacharya</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Herron</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Safdar</surname>
<given-names>Z</given-names>
</name>
<name>
<surname>Eissa</surname>
<given-names>NT</given-names>
</name>
</person-group>
.
<article-title>Critical role for IL-18 in spontaneous lung inflammation caused by autophagy deficiency</article-title>
.
<source>J Immunol</source>
. (
<year>2015</year>
)
<volume>194</volume>
:
<fpage>5407</fpage>
<lpage>16</lpage>
.
<pub-id pub-id-type="doi">10.4049/jimmunol.1402277</pub-id>
<pub-id pub-id-type="pmid">25888640</pub-id>
</mixed-citation>
</ref>
<ref id="B111">
<label>111.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Zhang</surname>
<given-names>YDD</given-names>
</name>
<name>
<surname>Zhang</surname>
<given-names>X</given-names>
</name>
<name>
<surname>Wang</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Anderson</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Gao</surname>
<given-names>P</given-names>
</name>
</person-group>
<article-title>Autophagy participates in cockroach allergen-induced lung inflammation through ROS and oxidized CaMKII</article-title>
.
<source>J Allergy Clin Immunol</source>
. (
<year>2019</year>
)
<volume>143</volume>
:
<fpage>AB218</fpage>
<pub-id pub-id-type="doi">10.1016/j.jaci.2018.12.665</pub-id>
</mixed-citation>
</ref>
<ref id="B112">
<label>112.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Suzuki</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Maazi</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Sankaranarayanan</surname>
<given-names>I</given-names>
</name>
<name>
<surname>Lam</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Khoo</surname>
<given-names>B</given-names>
</name>
<name>
<surname>Soroosh</surname>
<given-names>P</given-names>
</name>
<etal></etal>
</person-group>
.
<article-title>Lack of autophagy induces steroid-resistant airway inflammation</article-title>
.
<source>J Allergy Clin Immunol</source>
. (
<year>2016</year>
)
<volume>137</volume>
:
<fpage>1382</fpage>
<lpage>9</lpage>
.e9.
<pub-id pub-id-type="doi">10.1016/j.jaci.2015.09.033</pub-id>
<pub-id pub-id-type="pmid">26589586</pub-id>
</mixed-citation>
</ref>
<ref id="B113">
<label>113.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Wang</surname>
<given-names>SB</given-names>
</name>
<name>
<surname>Wu</surname>
<given-names>YF</given-names>
</name>
<name>
<surname>Chen</surname>
<given-names>ZH</given-names>
</name>
<name>
<surname>Li</surname>
<given-names>W</given-names>
</name>
<name>
<surname>Shen</surname>
<given-names>HH</given-names>
</name>
</person-group>
.
<article-title>[Airway epithelial ATG5 suppresses asthmatic inflammation in mice]</article-title>
.
<source>Zhonghua Jie He He Hu Xi Za Zhi</source>
. (
<year>2018</year>
)
<volume>41</volume>
:
<fpage>873</fpage>
<lpage>7</lpage>
.
<pub-id pub-id-type="doi">10.3760/cma.j.issn.1001-0939.2018.11.009</pub-id>
<pub-id pub-id-type="pmid">30423631</pub-id>
</mixed-citation>
</ref>
<ref id="B114">
<label>114.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Inoue</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Kubo</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Taguchi</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Suzuki</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Komatsu</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Motohashi</surname>
<given-names>H</given-names>
</name>
<etal></etal>
</person-group>
.
<article-title>Inducible disruption of autophagy in the lung causes airway hyper-responsiveness</article-title>
.
<source>Biochem Biophys Res Commun</source>
. (
<year>2011</year>
)
<volume>405</volume>
:
<fpage>13</fpage>
<lpage>8</lpage>
.
<pub-id pub-id-type="doi">10.1016/j.bbrc.2010.12.092</pub-id>
<pub-id pub-id-type="pmid">21185264</pub-id>
</mixed-citation>
</ref>
<ref id="B115">
<label>115.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Pu</surname>
<given-names>Q</given-names>
</name>
<name>
<surname>Gan</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Li</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Li</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Tan</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Li</surname>
<given-names>X</given-names>
</name>
<etal></etal>
</person-group>
.
<article-title>Atg7 deficiency intensifies inflammasome activation and pyroptosis in pseudomonas sepsis</article-title>
.
<source>J Immunol</source>
. (
<year>2017</year>
)
<volume>198</volume>
:
<fpage>3205</fpage>
<lpage>13</lpage>
.
<pub-id pub-id-type="doi">10.4049/jimmunol.1601196</pub-id>
<pub-id pub-id-type="pmid">28258192</pub-id>
</mixed-citation>
</ref>
<ref id="B116">
<label>116.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Guo</surname>
<given-names>L</given-names>
</name>
<name>
<surname>Stripay</surname>
<given-names>JL</given-names>
</name>
<name>
<surname>Zhang</surname>
<given-names>X</given-names>
</name>
<name>
<surname>Collage</surname>
<given-names>RD</given-names>
</name>
<name>
<surname>Hulver</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Carchman</surname>
<given-names>EH</given-names>
</name>
<etal></etal>
</person-group>
.
<article-title>CaMKIalpha regulates AMP kinase-dependent, TORC-1-independent autophagy during lipopolysaccharide-induced acute lung neutrophilic inflammation</article-title>
.
<source>J Immunol</source>
. (
<year>2013</year>
)
<volume>190</volume>
:
<fpage>3620</fpage>
<lpage>8</lpage>
.
<pub-id pub-id-type="doi">10.4049/jimmunol.1102975</pub-id>
<pub-id pub-id-type="pmid">23447692</pub-id>
</mixed-citation>
</ref>
<ref id="B117">
<label>117.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Jessop</surname>
<given-names>F</given-names>
</name>
<name>
<surname>Hamilton</surname>
<given-names>RF</given-names>
</name>
<name>
<surname>Rhoderick</surname>
<given-names>JF</given-names>
</name>
<name>
<surname>Shaw</surname>
<given-names>PK</given-names>
</name>
<name>
<surname>Holian</surname>
<given-names>A</given-names>
</name>
</person-group>
.
<article-title>Autophagy deficiency in macrophages enhances NLRP3 inflammasome activity and chronic lung disease following silica exposure</article-title>
.
<source>Toxicol Appl Pharmacol</source>
. (
<year>2016</year>
)
<volume>309</volume>
:
<fpage>101</fpage>
<lpage>10</lpage>
.
<pub-id pub-id-type="doi">10.1016/j.taap.2016.08.029</pub-id>
<pub-id pub-id-type="pmid">27594529</pub-id>
</mixed-citation>
</ref>
<ref id="B118">
<label>118.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Cheng</surname>
<given-names>Z</given-names>
</name>
<name>
<surname>Wang</surname>
<given-names>X</given-names>
</name>
<name>
<surname>Dai</surname>
<given-names>L</given-names>
</name>
<name>
<surname>Jia</surname>
<given-names>L</given-names>
</name>
<name>
<surname>Jing</surname>
<given-names>X</given-names>
</name>
<name>
<surname>Liu</surname>
<given-names>Y</given-names>
</name>
<etal></etal>
</person-group>
.
<article-title>Suppression of microRNA-384 enhances autophagy of airway smooth muscle cells in asthmatic mouse</article-title>
.
<source>Oncotarget</source>
. (
<year>2017</year>
)
<volume>8</volume>
:
<fpage>67933</fpage>
<lpage>41</lpage>
.
<pub-id pub-id-type="doi">10.18632/oncotarget.18913</pub-id>
<pub-id pub-id-type="pmid">28978085</pub-id>
</mixed-citation>
</ref>
<ref id="B119">
<label>119.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Ghavami</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Mutawe</surname>
<given-names>MM</given-names>
</name>
<name>
<surname>Schaafsma</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Yeganeh</surname>
<given-names>B</given-names>
</name>
<name>
<surname>Unruh</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Klonisch</surname>
<given-names>T</given-names>
</name>
<etal></etal>
</person-group>
.
<article-title>Geranylgeranyl transferase 1 modulates autophagy and apoptosis in human airway smooth muscle</article-title>
.
<source>Am J Physiol Lung Cell Mol Physiol</source>
. (
<year>2012</year>
)
<volume>302</volume>
:
<fpage>L420</fpage>
<lpage>8</lpage>
.
<pub-id pub-id-type="doi">10.1152/ajplung.00312.2011</pub-id>
<pub-id pub-id-type="pmid">22160308</pub-id>
</mixed-citation>
</ref>
<ref id="B120">
<label>120.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Pan</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Sharma</surname>
<given-names>P</given-names>
</name>
<name>
<surname>Shah</surname>
<given-names>SD</given-names>
</name>
<name>
<surname>Deshpande</surname>
<given-names>DA</given-names>
</name>
</person-group>
.
<article-title>Bitter taste receptor agonists alter mitochondrial function and induce autophagy in airway smooth muscle cells</article-title>
.
<source>Am J Physiol Lung Cell Mol Physiol</source>
. (
<year>2017</year>
)
<volume>313</volume>
:
<fpage>L154</fpage>
<lpage>65</lpage>
.
<pub-id pub-id-type="doi">10.1152/ajplung.00106.2017</pub-id>
<pub-id pub-id-type="pmid">28450286</pub-id>
</mixed-citation>
</ref>
<ref id="B121">
<label>121.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Neill</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Schaefer</surname>
<given-names>L</given-names>
</name>
<name>
<surname>Iozzo</surname>
<given-names>RV</given-names>
</name>
</person-group>
.
<article-title>Instructive roles of extracellular matrix on autophagy</article-title>
.
<source>Am J Pathol</source>
. (
<year>2014</year>
)
<volume>184</volume>
:
<fpage>2146</fpage>
<lpage>53</lpage>
.
<pub-id pub-id-type="doi">10.1016/j.ajpath.2014.05.010</pub-id>
<pub-id pub-id-type="pmid">24976620</pub-id>
</mixed-citation>
</ref>
<ref id="B122">
<label>122.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Poon</surname>
<given-names>AH</given-names>
</name>
<name>
<surname>Choy</surname>
<given-names>DF</given-names>
</name>
<name>
<surname>Chouiali</surname>
<given-names>F</given-names>
</name>
<name>
<surname>Ramakrishnan</surname>
<given-names>RK</given-names>
</name>
<name>
<surname>Mahboub</surname>
<given-names>B</given-names>
</name>
<name>
<surname>Audusseau</surname>
<given-names>S</given-names>
</name>
<etal></etal>
</person-group>
.
<article-title>Increased autophagy-related 5 gene expression is associated with collagen expression in the airways of refractory asthmatics</article-title>
.
<source>Front Immunol</source>
. (
<year>2017</year>
)
<volume>8</volume>
:
<fpage>355</fpage>
.
<pub-id pub-id-type="doi">10.3389/fimmu.2017.00355</pub-id>
<pub-id pub-id-type="pmid">28424691</pub-id>
</mixed-citation>
</ref>
<ref id="B123">
<label>123.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Liu</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Liu</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Miller</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Cao</surname>
<given-names>L</given-names>
</name>
<name>
<surname>Zhao</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Wu</surname>
<given-names>J</given-names>
</name>
<etal></etal>
</person-group>
.
<article-title>Autophagy plays a role in FSTL1-induced epithelial mesenchymal transition and airway remodeling in asthma</article-title>
.
<source>Am J Physiol Lung Cell Mol Physiol</source>
. (
<year>2017</year>
)
<volume>313</volume>
:
<fpage>L27</fpage>
<lpage>40</lpage>
.
<pub-id pub-id-type="doi">10.1152/ajplung.00510.2016</pub-id>
<pub-id pub-id-type="pmid">28473327</pub-id>
</mixed-citation>
</ref>
<ref id="B124">
<label>124.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Kota</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Deshpande</surname>
<given-names>DA</given-names>
</name>
<name>
<surname>Haghi</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Oliver</surname>
<given-names>B</given-names>
</name>
<name>
<surname>Sharma</surname>
<given-names>P</given-names>
</name>
</person-group>
.
<article-title>Autophagy and airway fibrosis: is there a link?</article-title>
<source>F1000Res</source>
. (
<year>2017</year>
)
<volume>6</volume>
:
<fpage>409</fpage>
.
<pub-id pub-id-type="doi">10.12688/f1000research.11236.1</pub-id>
<pub-id pub-id-type="pmid">28815017</pub-id>
</mixed-citation>
</ref>
<ref id="B125">
<label>125.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Ghavami</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Yeganeh</surname>
<given-names>B</given-names>
</name>
<name>
<surname>Serebrin</surname>
<given-names>A</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Autophagy regulates Tgf-beta1 induced fibrosis in human airway smooth muscle cells</article-title>
.
<source>Proc Am Thorac Soc.</source>
(
<year>2011</year>
)
<volume>183</volume>
:
<fpage>A2110</fpage>
<pub-id pub-id-type="doi">10.1164/ajrccm-conference.2011.183.1_MeetingAbstracts.A2110</pub-id>
</mixed-citation>
</ref>
<ref id="B126">
<label>126.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Aguilera-Aguirre</surname>
<given-names>L</given-names>
</name>
<name>
<surname>Bacsi</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Saavedra-Molina</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Kurosky</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Sur</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Boldogh</surname>
<given-names>I</given-names>
</name>
</person-group>
.
<article-title>Mitochondrial dysfunction increases allergic airway inflammation</article-title>
.
<source>J Immunol</source>
. (
<year>2009</year>
)
<volume>183</volume>
:
<fpage>5379</fpage>
<lpage>87</lpage>
.
<pub-id pub-id-type="doi">10.4049/jimmunol.0900228</pub-id>
<pub-id pub-id-type="pmid">19786549</pub-id>
</mixed-citation>
</ref>
<ref id="B127">
<label>127.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Iyer</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Mishra</surname>
<given-names>N</given-names>
</name>
<name>
<surname>Agrawal</surname>
<given-names>A</given-names>
</name>
</person-group>
.
<article-title>Mitochondrial function in allergic disease</article-title>
.
<source>Curr Allergy Asthma Rep</source>
. (
<year>2017</year>
)
<volume>17</volume>
:
<fpage>29</fpage>
.
<pub-id pub-id-type="doi">10.1007/s11882-017-0695-0</pub-id>
<pub-id pub-id-type="pmid">28429306</pub-id>
</mixed-citation>
</ref>
<ref id="B128">
<label>128.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Pattnaik</surname>
<given-names>B</given-names>
</name>
<name>
<surname>Bodas</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Bhatraju</surname>
<given-names>NK</given-names>
</name>
<name>
<surname>Ahmad</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Pant</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Guleria</surname>
<given-names>R</given-names>
</name>
<etal></etal>
</person-group>
.
<article-title>IL-4 promotes asymmetric dimethylarginine accumulation, oxo-nitrative stress, and hypoxic response-induced mitochondrial loss in airway epithelial cells</article-title>
.
<source>J Allergy Clin Immunol</source>
. (
<year>2016</year>
)
<volume>138</volume>
:
<fpage>130</fpage>
<lpage>41</lpage>
.e9.
<pub-id pub-id-type="doi">10.1016/j.jaci.2015.11.036</pub-id>
<pub-id pub-id-type="pmid">26915676</pub-id>
</mixed-citation>
</ref>
<ref id="B129">
<label>129.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Reddy</surname>
<given-names>PH</given-names>
</name>
</person-group>
.
<article-title>Mitochondrial dysfunction and oxidative stress in asthma: implications for mitochondria-targeted antioxidant therapeutics</article-title>
.
<source>Pharmaceuticals</source>
. (
<year>2011</year>
)
<volume>4</volume>
:
<fpage>429</fpage>
<lpage>56</lpage>
.
<pub-id pub-id-type="doi">10.3390/ph4030429</pub-id>
<pub-id pub-id-type="pmid">21461182</pub-id>
</mixed-citation>
</ref>
<ref id="B130">
<label>130.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Wang</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Keita</surname>
<given-names>ÅV</given-names>
</name>
<name>
<surname>Phan</surname>
<given-names>V</given-names>
</name>
<name>
<surname>McKay</surname>
<given-names>CM</given-names>
</name>
<name>
<surname>Schoultz</surname>
<given-names>I</given-names>
</name>
<name>
<surname>Lee</surname>
<given-names>J</given-names>
</name>
<etal></etal>
</person-group>
.
<article-title>Targeting mitochondria-derived reactive oxygen species to reduce epithelial barrier dysfunction and colitis</article-title>
.
<source>Am J Pathol</source>
. (
<year>2014</year>
)
<volume>184</volume>
:
<fpage>2516</fpage>
<lpage>27</lpage>
.
<pub-id pub-id-type="doi">10.1016/j.ajpath.2014.05.019</pub-id>
<pub-id pub-id-type="pmid">25034594</pub-id>
</mixed-citation>
</ref>
<ref id="B131">
<label>131.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Li</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Kou</surname>
<given-names>X</given-names>
</name>
<name>
<surname>Geng</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Xie</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Yang</surname>
<given-names>Z</given-names>
</name>
<name>
<surname>Zhang</surname>
<given-names>Y</given-names>
</name>
<etal></etal>
</person-group>
.
<article-title>Effect of ambient PM(2</article-title>
.5) on lung mitochondrial damage and fusion/fission gene expression in rats.
<source>Chem Res Toxicol</source>
. (
<year>2015</year>
)
<volume>28</volume>
:
<fpage>408</fpage>
<lpage>18</lpage>
.
<pub-id pub-id-type="doi">10.1021/tx5003723</pub-id>
<pub-id pub-id-type="pmid">25560372</pub-id>
</mixed-citation>
</ref>
<ref id="B132">
<label>132.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Qiu</surname>
<given-names>YN</given-names>
</name>
<name>
<surname>Wang</surname>
<given-names>GH</given-names>
</name>
<name>
<surname>Zhou</surname>
<given-names>F</given-names>
</name>
<name>
<surname>Hao</surname>
<given-names>JJ</given-names>
</name>
<name>
<surname>Tian</surname>
<given-names>L</given-names>
</name>
<name>
<surname>Guan</surname>
<given-names>LF</given-names>
</name>
<etal></etal>
</person-group>
.
<article-title>PM
<sub>2.5</sub>
induces liver fibrosis via triggering ROS-mediated mitophagy</article-title>
.
<source>Ecotoxicol Environ Saf</source>
. (
<year>2019</year>
)
<volume>167</volume>
:
<fpage>178</fpage>
<lpage>87</lpage>
.
<pub-id pub-id-type="doi">10.1016/j.ecoenv.2018.08.050</pub-id>
<pub-id pub-id-type="pmid">30336408</pub-id>
</mixed-citation>
</ref>
<ref id="B133">
<label>133.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Stevens</surname>
<given-names>JF</given-names>
</name>
<name>
<surname>Maier</surname>
<given-names>CS</given-names>
</name>
</person-group>
.
<article-title>Acrolein: sources, metabolism, and biomolecular interactions relevant to human health and disease</article-title>
.
<source>Mol Nutr Food Res</source>
. (
<year>2008</year>
)
<volume>52</volume>
:
<fpage>7</fpage>
<lpage>25</lpage>
.
<pub-id pub-id-type="doi">10.1002/mnfr.200700412</pub-id>
<pub-id pub-id-type="pmid">18203133</pub-id>
</mixed-citation>
</ref>
<ref id="B134">
<label>134.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Wang</surname>
<given-names>HT</given-names>
</name>
<name>
<surname>Lin</surname>
<given-names>JH</given-names>
</name>
<name>
<surname>Yang</surname>
<given-names>CH</given-names>
</name>
<name>
<surname>Haung</surname>
<given-names>CH</given-names>
</name>
<name>
<surname>Weng</surname>
<given-names>CW</given-names>
</name>
<name>
<surname>Maan-Yuh Lin</surname>
<given-names>A</given-names>
</name>
<etal></etal>
</person-group>
.
<article-title>Acrolein induces mtDNA damages, mitochondrial fission and mitophagy in human lung cells</article-title>
.
<source>Oncotarget</source>
. (
<year>2017</year>
)
<volume>8</volume>
:
<fpage>70406</fpage>
<lpage>21</lpage>
.
<pub-id pub-id-type="doi">10.18632/oncotarget.19710</pub-id>
<pub-id pub-id-type="pmid">29050289</pub-id>
</mixed-citation>
</ref>
<ref id="B135">
<label>135.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Sliter</surname>
<given-names>DA</given-names>
</name>
<name>
<surname>Martinez</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Hao</surname>
<given-names>L</given-names>
</name>
<name>
<surname>Chen</surname>
<given-names>X</given-names>
</name>
<name>
<surname>Sun</surname>
<given-names>N</given-names>
</name>
<name>
<surname>Fischer</surname>
<given-names>TD</given-names>
</name>
<etal></etal>
</person-group>
.
<article-title>Parkin and PINK1 mitigate STING-induced inflammation</article-title>
.
<source>Nature</source>
. (
<year>2018</year>
)
<volume>561</volume>
:
<fpage>258</fpage>
<lpage>62</lpage>
.
<pub-id pub-id-type="doi">10.1038/s41586-018-0448-9</pub-id>
<pub-id pub-id-type="pmid">30135585</pub-id>
</mixed-citation>
</ref>
<ref id="B136">
<label>136.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Youle</surname>
<given-names>RJ</given-names>
</name>
<name>
<surname>Narendra</surname>
<given-names>DP</given-names>
</name>
</person-group>
.
<article-title>Mechanisms of mitophagy</article-title>
.
<source>Nat Rev Mol Cell Biol</source>
. (
<year>2011</year>
)
<volume>12</volume>
:
<fpage>9</fpage>
<lpage>14</lpage>
.
<pub-id pub-id-type="doi">10.1038/nrm3028</pub-id>
<pub-id pub-id-type="pmid">21179058</pub-id>
</mixed-citation>
</ref>
<ref id="B137">
<label>137.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Palikaras</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Lionaki</surname>
<given-names>E</given-names>
</name>
<name>
<surname>Tavernarakis</surname>
<given-names>N</given-names>
</name>
</person-group>
.
<article-title>Mechanisms of mitophagy in cellular homeostasis, physiology and pathology</article-title>
.
<source>Nat Cell Biol</source>
. (
<year>2018</year>
)
<volume>20</volume>
:
<fpage>1013</fpage>
<lpage>22</lpage>
.
<pub-id pub-id-type="doi">10.1038/s41556-018-0176-2</pub-id>
<pub-id pub-id-type="pmid">30154567</pub-id>
</mixed-citation>
</ref>
<ref id="B138">
<label>138.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Jin</surname>
<given-names>SM</given-names>
</name>
<name>
<surname>Lazarou</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Wang</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Kane</surname>
<given-names>LA</given-names>
</name>
<name>
<surname>Narendra</surname>
<given-names>DP</given-names>
</name>
<name>
<surname>Youle</surname>
<given-names>RJ</given-names>
</name>
</person-group>
.
<article-title>Mitochondrial membrane potential regulates PINK1 import and proteolytic destabilization by PARL</article-title>
.
<source>J Cell Biol</source>
. (
<year>2010</year>
)
<volume>191</volume>
:
<fpage>933</fpage>
<lpage>42</lpage>
.
<pub-id pub-id-type="doi">10.1083/jcb.201008084</pub-id>
<pub-id pub-id-type="pmid">21115803</pub-id>
</mixed-citation>
</ref>
<ref id="B139">
<label>139.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Pickles</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Vigié</surname>
<given-names>P</given-names>
</name>
<name>
<surname>Youle</surname>
<given-names>RJ</given-names>
</name>
</person-group>
.
<article-title>Mitophagy and quality control mechanisms in mitochondrial maintenance</article-title>
.
<source>Curr Biol CB</source>
. (
<year>2018</year>
)
<volume>28</volume>
:
<fpage>R170</fpage>
<lpage>85</lpage>
.
<pub-id pub-id-type="doi">10.1016/j.cub.2018.01.004</pub-id>
<pub-id pub-id-type="pmid">29462587</pub-id>
</mixed-citation>
</ref>
<ref id="B140">
<label>140.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Lazarou</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Sliter</surname>
<given-names>DA</given-names>
</name>
<name>
<surname>Kane</surname>
<given-names>LA</given-names>
</name>
<name>
<surname>Sarraf</surname>
<given-names>SA</given-names>
</name>
<name>
<surname>Wang</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Burman</surname>
<given-names>JL</given-names>
</name>
<etal></etal>
</person-group>
.
<article-title>The ubiquitin kinase PINK1 recruits autophagy receptors to induce mitophagy</article-title>
.
<source>Nature</source>
. (
<year>2015</year>
)
<volume>524</volume>
:
<fpage>309</fpage>
<lpage>14</lpage>
.
<pub-id pub-id-type="doi">10.1038/nature14893</pub-id>
<pub-id pub-id-type="pmid">26266977</pub-id>
</mixed-citation>
</ref>
<ref id="B141">
<label>141.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Moore</surname>
<given-names>AS</given-names>
</name>
<name>
<surname>Holzbaur</surname>
<given-names>EL</given-names>
</name>
</person-group>
.
<article-title>Dynamic recruitment and activation of ALS-associated TBK1 with its target optineurin are required for efficient mitophagy</article-title>
.
<source>Proc Natl Acad Sci USA</source>
. (
<year>2016</year>
)
<volume>113</volume>
:
<fpage>E3349</fpage>
<lpage>58</lpage>
.
<pub-id pub-id-type="doi">10.1073/pnas.1523810113</pub-id>
<pub-id pub-id-type="pmid">27247382</pub-id>
</mixed-citation>
</ref>
<ref id="B142">
<label>142.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Richter</surname>
<given-names>B</given-names>
</name>
<name>
<surname>Sliter</surname>
<given-names>DA</given-names>
</name>
<name>
<surname>Herhaus</surname>
<given-names>L</given-names>
</name>
<name>
<surname>Stolz</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Wang</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Beli</surname>
<given-names>P</given-names>
</name>
<etal></etal>
</person-group>
.
<article-title>Phosphorylation of OPTN by TBK1 enhances its binding to Ub chains and promotes selective autophagy of damaged mitochondria</article-title>
.
<source>Proc Natl Acad Sci USA</source>
. (
<year>2016</year>
)
<volume>113</volume>
:
<fpage>4039</fpage>
<lpage>44</lpage>
.
<pub-id pub-id-type="doi">10.1073/pnas.1523926113</pub-id>
<pub-id pub-id-type="pmid">27035970</pub-id>
</mixed-citation>
</ref>
<ref id="B143">
<label>143.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Shen</surname>
<given-names>Z</given-names>
</name>
<name>
<surname>Li</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Gasparski</surname>
<given-names>AN</given-names>
</name>
<name>
<surname>Abeliovich</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Greenberg</surname>
<given-names>ML</given-names>
</name>
</person-group>
.
<article-title>Cardiolipin regulates mitophagy through the protein kinase C pathway</article-title>
.
<source>J Biol Chem</source>
. (
<year>2017</year>
)
<volume>292</volume>
:
<fpage>2916</fpage>
<lpage>23</lpage>
.
<pub-id pub-id-type="doi">10.1074/jbc.M116.753574</pub-id>
<pub-id pub-id-type="pmid">28062576</pub-id>
</mixed-citation>
</ref>
<ref id="B144">
<label>144.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Wei</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Chiang</surname>
<given-names>WC</given-names>
</name>
<name>
<surname>Sumpter</surname>
<given-names>R</given-names>
<suffix>Jr.</suffix>
</name>
<name>
<surname>Mishra</surname>
<given-names>P</given-names>
</name>
<name>
<surname>Levine</surname>
<given-names>B</given-names>
</name>
</person-group>
.
<article-title>Prohibitin 2 is an inner mitochondrial membrane mitophagy receptor</article-title>
.
<source>Cell</source>
. (
<year>2017</year>
)
<volume>168</volume>
:
<fpage>224</fpage>
<lpage>38</lpage>
.e10.
<pub-id pub-id-type="doi">10.1016/j.cell.2016.11.042</pub-id>
<pub-id pub-id-type="pmid">28017329</pub-id>
</mixed-citation>
</ref>
<ref id="B145">
<label>145.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Tsubouchi</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Araya</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Kuwano</surname>
<given-names>K</given-names>
</name>
</person-group>
.
<article-title>PINK1-PARK2-mediated mitophagy in COPD and IPF pathogeneses</article-title>
.
<source>Inflamm Regen</source>
. (
<year>2018</year>
)
<volume>38</volume>
:
<fpage>18</fpage>
.
<pub-id pub-id-type="doi">10.1186/s41232-018-0077-6</pub-id>
<pub-id pub-id-type="pmid">30386443</pub-id>
</mixed-citation>
</ref>
<ref id="B146">
<label>146.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Bueno</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Lai</surname>
<given-names>YC</given-names>
</name>
<name>
<surname>Romero</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Brands</surname>
<given-names>J</given-names>
</name>
<name>
<surname>St Croix</surname>
<given-names>CM</given-names>
</name>
<name>
<surname>Kamga</surname>
<given-names>C</given-names>
</name>
<etal></etal>
</person-group>
.
<article-title>PINK1 deficiency impairs mitochondrial homeostasis and promotes lung fibrosis</article-title>
.
<source>J Clin Invest</source>
. (
<year>2015</year>
)
<volume>125</volume>
:
<fpage>521</fpage>
<lpage>38</lpage>
.
<pub-id pub-id-type="doi">10.1172/JCI74942</pub-id>
<pub-id pub-id-type="pmid">25562319</pub-id>
</mixed-citation>
</ref>
<ref id="B147">
<label>147.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Kobayashi</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Araya</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Minagawa</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Hara</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Saito</surname>
<given-names>N</given-names>
</name>
<name>
<surname>Kadota</surname>
<given-names>T</given-names>
</name>
<etal></etal>
</person-group>
.
<article-title>Involvement of PARK2-mediated mitophagy in idiopathic pulmonary fibrosis pathogenesis</article-title>
.
<source>J Immunol</source>
. (
<year>2016</year>
)
<volume>197</volume>
:
<fpage>504</fpage>
<lpage>16</lpage>
.
<pub-id pub-id-type="doi">10.4049/jimmunol.1600265</pub-id>
<pub-id pub-id-type="pmid">27279371</pub-id>
</mixed-citation>
</ref>
<ref id="B148">
<label>148.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Sosulski</surname>
<given-names>ML</given-names>
</name>
<name>
<surname>Gongora</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Danchuk</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Dong</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Luo</surname>
<given-names>F</given-names>
</name>
<name>
<surname>Sanchez</surname>
<given-names>CG</given-names>
</name>
</person-group>
.
<article-title>Deregulation of selective autophagy during aging and pulmonary fibrosis: the role of TGFβ1</article-title>
.
<source>Aging Cell</source>
. (
<year>2015</year>
)
<volume>14</volume>
:
<fpage>774</fpage>
<lpage>83</lpage>
.
<pub-id pub-id-type="doi">10.1111/acel.12357</pub-id>
<pub-id pub-id-type="pmid">26059457</pub-id>
</mixed-citation>
</ref>
<ref id="B149">
<label>149.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Patel</surname>
<given-names>AS</given-names>
</name>
<name>
<surname>Song</surname>
<given-names>JW</given-names>
</name>
<name>
<surname>Chu</surname>
<given-names>SG</given-names>
</name>
<name>
<surname>Mizumura</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Osorio</surname>
<given-names>JC</given-names>
</name>
<name>
<surname>Shi</surname>
<given-names>Y</given-names>
</name>
<etal></etal>
</person-group>
.
<article-title>Epithelial cell mitochondrial dysfunction and PINK1 are induced by transforming growth factor-beta1 in pulmonary fibrosis</article-title>
.
<source>PLoS ONE</source>
. (
<year>2015</year>
)
<volume>10</volume>
:
<fpage>e0121246</fpage>
.
<pub-id pub-id-type="doi">10.1371/journal.pone.0121246</pub-id>
<pub-id pub-id-type="pmid">25785991</pub-id>
</mixed-citation>
</ref>
<ref id="B150">
<label>150.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Fan</surname>
<given-names>P</given-names>
</name>
<name>
<surname>Xie</surname>
<given-names>XH</given-names>
</name>
<name>
<surname>Chen</surname>
<given-names>CH</given-names>
</name>
<name>
<surname>Peng</surname>
<given-names>X</given-names>
</name>
<name>
<surname>Zhang</surname>
<given-names>P</given-names>
</name>
<name>
<surname>Yang</surname>
<given-names>C</given-names>
</name>
<etal></etal>
</person-group>
.
<article-title>Molecular regulation mechanisms and interactions between reactive oxygen species and mitophagy</article-title>
.
<source>DNA Cell Biol</source>
. (
<year>2019</year>
)
<volume>38</volume>
:
<fpage>10</fpage>
<lpage>22</lpage>
.
<pub-id pub-id-type="doi">10.1089/dna.2018.4348</pub-id>
<pub-id pub-id-type="pmid">30556744</pub-id>
</mixed-citation>
</ref>
<ref id="B151">
<label>151.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Wiley</surname>
<given-names>CD</given-names>
</name>
<name>
<surname>Velarde</surname>
<given-names>MC</given-names>
</name>
<name>
<surname>Lecot</surname>
<given-names>P</given-names>
</name>
<name>
<surname>Liu</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Sarnoski</surname>
<given-names>EA</given-names>
</name>
<name>
<surname>Freund</surname>
<given-names>A</given-names>
</name>
<etal></etal>
</person-group>
.
<article-title>Mitochondrial dysfunction induces senescence with a distinct secretory phenotype</article-title>
.
<source>Cell Metab</source>
. (
<year>2016</year>
)
<volume>23</volume>
:
<fpage>303</fpage>
<lpage>14</lpage>
.
<pub-id pub-id-type="doi">10.1016/j.cmet.2015.11.011</pub-id>
<pub-id pub-id-type="pmid">26686024</pub-id>
</mixed-citation>
</ref>
<ref id="B152">
<label>152.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Schuliga</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Pechkovsky</surname>
<given-names>DV</given-names>
</name>
<name>
<surname>Read</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Waters</surname>
<given-names>DW</given-names>
</name>
<name>
<surname>Blokland</surname>
<given-names>KEC</given-names>
</name>
<name>
<surname>Reid</surname>
<given-names>AT</given-names>
</name>
<etal></etal>
</person-group>
.
<article-title>Mitochondrial dysfunction contributes to the senescent phenotype of IPF lung fibroblasts</article-title>
.
<source>J Cell Mol Med</source>
. (
<year>2018</year>
)
<volume>22</volume>
:
<fpage>5847</fpage>
<lpage>61</lpage>
.
<pub-id pub-id-type="doi">10.1111/jcmm.13855</pub-id>
<pub-id pub-id-type="pmid">30255990</pub-id>
</mixed-citation>
</ref>
<ref id="B153">
<label>153.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Parikh</surname>
<given-names>P</given-names>
</name>
<name>
<surname>Wicher</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Khandalavala</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Pabelick</surname>
<given-names>CM</given-names>
</name>
<name>
<surname>Britt</surname>
<given-names>RD</given-names>
<suffix>Jr.</suffix>
</name>
<name>
<surname>Prakash</surname>
<given-names>YS</given-names>
</name>
</person-group>
.
<article-title>Cellular senescence in the lung across the age spectrum</article-title>
.
<source>Am J Physiol Lung Cell Mol Physiol</source>
. (
<year>2019</year>
)
<volume>316</volume>
:
<fpage>L826</fpage>
<lpage>42</lpage>
.
<pub-id pub-id-type="doi">10.1152/ajplung.00424.2018</pub-id>
<pub-id pub-id-type="pmid">30785345</pub-id>
</mixed-citation>
</ref>
<ref id="B154">
<label>154.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Hadj Salem</surname>
<given-names>I</given-names>
</name>
<name>
<surname>Dubé</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Boulet</surname>
<given-names>LP</given-names>
</name>
<name>
<surname>Chakir</surname>
<given-names>J</given-names>
</name>
</person-group>
.
<article-title>Telomere shortening correlates with accelerated replicative senescence of bronchial fibroblasts in asthma</article-title>
.
<source>Clin Exp Allergy</source>
. (
<year>2015</year>
)
<volume>45</volume>
:
<fpage>1713</fpage>
<lpage>5</lpage>
.
<pub-id pub-id-type="doi">10.1111/cea.12611</pub-id>
<pub-id pub-id-type="pmid">26252159</pub-id>
</mixed-citation>
</ref>
<ref id="B155">
<label>155.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Belsky</surname>
<given-names>DW</given-names>
</name>
<name>
<surname>Shalev</surname>
<given-names>I</given-names>
</name>
<name>
<surname>Sears</surname>
<given-names>MR</given-names>
</name>
<name>
<surname>Hancox</surname>
<given-names>RJ</given-names>
</name>
<name>
<surname>Lee Harrington</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Houts</surname>
<given-names>R</given-names>
</name>
<etal></etal>
</person-group>
.
<article-title>Is chronic asthma associated with shorter leukocyte telomere length at midlife?</article-title>
<source>Am J Respir Crit Care Med</source>
. (
<year>2014</year>
)
<volume>190</volume>
:
<fpage>384</fpage>
<lpage>91</lpage>
.
<pub-id pub-id-type="doi">10.1164/rccm.201402-0370OC</pub-id>
<pub-id pub-id-type="pmid">24956257</pub-id>
</mixed-citation>
</ref>
<ref id="B156">
<label>156.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Sidler</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Kovalchuk</surname>
<given-names>O</given-names>
</name>
<name>
<surname>Kovalchuk</surname>
<given-names>I</given-names>
</name>
</person-group>
.
<article-title>Epigenetic regulation of cellular senescence and aging</article-title>
.
<source>Front Genet</source>
. (
<year>2017</year>
)
<volume>8</volume>
:
<fpage>138</fpage>
.
<pub-id pub-id-type="doi">10.3389/fgene.2017.00138</pub-id>
<pub-id pub-id-type="pmid">29018479</pub-id>
</mixed-citation>
</ref>
<ref id="B157">
<label>157.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Pereira</surname>
<given-names>BI</given-names>
</name>
<name>
<surname>Devine</surname>
<given-names>OP</given-names>
</name>
<name>
<surname>Vukmanovic-Stejic</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Chambers</surname>
<given-names>ES</given-names>
</name>
<name>
<surname>Subramanian</surname>
<given-names>P</given-names>
</name>
<name>
<surname>Patel</surname>
<given-names>N</given-names>
</name>
<etal></etal>
</person-group>
.
<article-title>Senescent cells evade immune clearance via HLA-E-mediated NK and CD8(+) T cell inhibition</article-title>
.
<source>Nat Commun</source>
. (
<year>2019</year>
)
<volume>10</volume>
:
<fpage>2387</fpage>
.
<pub-id pub-id-type="doi">10.1038/s41467-019-10335-5</pub-id>
<pub-id pub-id-type="pmid">31160572</pub-id>
</mixed-citation>
</ref>
<ref id="B158">
<label>158.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Campisi</surname>
<given-names>J</given-names>
</name>
<name>
<surname>d'Adda di Fagagna</surname>
<given-names>F</given-names>
</name>
</person-group>
.
<article-title>Cellular senescence: when bad things happen to good cells</article-title>
.
<source>Nat Rev Mol Cell Biol</source>
. (
<year>2007</year>
)
<volume>8</volume>
:
<fpage>729</fpage>
<lpage>40</lpage>
.
<pub-id pub-id-type="doi">10.1038/nrm2233</pub-id>
<pub-id pub-id-type="pmid">17667954</pub-id>
</mixed-citation>
</ref>
<ref id="B159">
<label>159.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Krtolica</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Parrinello</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Lockett</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Desprez</surname>
<given-names>PY</given-names>
</name>
<name>
<surname>Campisi</surname>
<given-names>J</given-names>
</name>
</person-group>
.
<article-title>Senescent fibroblasts promote epithelial cell growth and tumorigenesis: a link between cancer and aging</article-title>
.
<source>Proc Natl Acad Sci USA</source>
. (
<year>2001</year>
)
<volume>98</volume>
:
<fpage>12072</fpage>
<lpage>7</lpage>
.
<pub-id pub-id-type="doi">10.1073/pnas.211053698</pub-id>
<pub-id pub-id-type="pmid">11593017</pub-id>
</mixed-citation>
</ref>
<ref id="B160">
<label>160.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Birch</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Barnes</surname>
<given-names>PJ</given-names>
</name>
<name>
<surname>Passos</surname>
<given-names>JF</given-names>
</name>
</person-group>
.
<article-title>Mitochondria, telomeres and cell senescence: implications for lung ageing and disease</article-title>
.
<source>Pharmacol Ther</source>
. (
<year>2018</year>
)
<volume>183</volume>
:
<fpage>34</fpage>
<lpage>49</lpage>
.
<pub-id pub-id-type="doi">10.1016/j.pharmthera.2017.10.005</pub-id>
<pub-id pub-id-type="pmid">28987319</pub-id>
</mixed-citation>
</ref>
<ref id="B161">
<label>161.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Li</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Chai</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Wang</surname>
<given-names>L</given-names>
</name>
<name>
<surname>Gao</surname>
<given-names>B</given-names>
</name>
<name>
<surname>Chen</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Gao</surname>
<given-names>P</given-names>
</name>
<etal></etal>
</person-group>
.
<article-title>Programmed cell senescence in skeleton during late puberty</article-title>
.
<source>Nat Commun</source>
. (
<year>2017</year>
)
<volume>8</volume>
:
<fpage>1312</fpage>
.
<pub-id pub-id-type="doi">10.1038/s41467-017-01509-0</pub-id>
<pub-id pub-id-type="pmid">29101351</pub-id>
</mixed-citation>
</ref>
<ref id="B162">
<label>162.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Childs</surname>
<given-names>BG</given-names>
</name>
<name>
<surname>Baker</surname>
<given-names>DJ</given-names>
</name>
<name>
<surname>Wijshake</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Conover</surname>
<given-names>CA</given-names>
</name>
<name>
<surname>Campisi</surname>
<given-names>J</given-names>
</name>
<name>
<surname>van Deursen</surname>
<given-names>JM</given-names>
</name>
</person-group>
.
<article-title>Senescent intimal foam cells are deleterious at all stages of atherosclerosis</article-title>
.
<source>Science</source>
. (
<year>2016</year>
)
<volume>354</volume>
:
<fpage>472</fpage>
<lpage>7</lpage>
.
<pub-id pub-id-type="doi">10.1126/science.aaf6659</pub-id>
<pub-id pub-id-type="pmid">27789842</pub-id>
</mixed-citation>
</ref>
<ref id="B163">
<label>163.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Jeon</surname>
<given-names>OH</given-names>
</name>
<name>
<surname>Kim</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Laberge</surname>
<given-names>RM</given-names>
</name>
<name>
<surname>Demaria</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Rathod</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Vasserot</surname>
<given-names>AP</given-names>
</name>
<etal></etal>
</person-group>
.
<article-title>Local clearance of senescent cells attenuates the development of post-traumatic osteoarthritis and creates a pro-regenerative environment</article-title>
.
<source>Nat Med</source>
. (
<year>2017</year>
)
<volume>23</volume>
:
<fpage>775</fpage>
.
<pub-id pub-id-type="doi">10.1038/nm.4324</pub-id>
<pub-id pub-id-type="pmid">28436958</pub-id>
</mixed-citation>
</ref>
<ref id="B164">
<label>164.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>van Deursen</surname>
<given-names>JM</given-names>
</name>
</person-group>
.
<article-title>The role of senescent cells in ageing</article-title>
.
<source>Nature</source>
. (
<year>2014</year>
)
<volume>509</volume>
:
<fpage>439</fpage>
<lpage>46</lpage>
.
<pub-id pub-id-type="doi">10.1038/nature13193</pub-id>
<pub-id pub-id-type="pmid">24848057</pub-id>
</mixed-citation>
</ref>
<ref id="B165">
<label>165.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Lee</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Schmitt</surname>
<given-names>CA</given-names>
</name>
</person-group>
.
<article-title>The dynamic nature of senescence in cancer</article-title>
.
<source>Nat Cell Biol</source>
. (
<year>2019</year>
)
<volume>21</volume>
:
<fpage>94</fpage>
<lpage>101</lpage>
.
<pub-id pub-id-type="doi">10.1038/s41556-018-0249-2</pub-id>
<pub-id pub-id-type="pmid">30602768</pub-id>
</mixed-citation>
</ref>
<ref id="B166">
<label>166.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Martínez-Zamudio</surname>
<given-names>RI</given-names>
</name>
<name>
<surname>Robinson</surname>
<given-names>L</given-names>
</name>
<name>
<surname>Roux</surname>
<given-names>PF</given-names>
</name>
<name>
<surname>Bischof</surname>
<given-names>O</given-names>
</name>
</person-group>
.
<article-title>SnapShot: cellular senescence pathways</article-title>
.
<source>Cell</source>
. (
<year>2017</year>
)
<volume>170</volume>
:
<fpage>816</fpage>
<lpage>e1</lpage>
.
<pub-id pub-id-type="doi">10.1016/j.cell.2017.07.049</pub-id>
<pub-id pub-id-type="pmid">28802049</pub-id>
</mixed-citation>
</ref>
<ref id="B167">
<label>167.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Hardie</surname>
<given-names>DG</given-names>
</name>
<name>
<surname>Ross</surname>
<given-names>FA</given-names>
</name>
<name>
<surname>Hawley</surname>
<given-names>SA</given-names>
</name>
</person-group>
.
<article-title>AMPK: a nutrient and energy sensor that maintains energy homeostasis</article-title>
.
<source>Nat Rev Mol Cell Biol</source>
. (
<year>2012</year>
)
<volume>13</volume>
:
<fpage>251</fpage>
<lpage>62</lpage>
.
<pub-id pub-id-type="doi">10.1038/nrm3311</pub-id>
<pub-id pub-id-type="pmid">22436748</pub-id>
</mixed-citation>
</ref>
<ref id="B168">
<label>168.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Ogrodnik</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Zhu</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Langhi</surname>
<given-names>LGP</given-names>
</name>
<name>
<surname>Tchkonia</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Krüger</surname>
<given-names>P</given-names>
</name>
<name>
<surname>Fielder</surname>
<given-names>E</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Obesity-induced cellular senescence drives anxiety and impairs neurogenesis</article-title>
.
<source>Cell Metab</source>
. (
<year>2019</year>
)
<volume>29</volume>
:
<fpage>1061</fpage>
<lpage>77</lpage>
.e8.
<pub-id pub-id-type="doi">10.1016/j.cmet.2018.12.008</pub-id>
<pub-id pub-id-type="pmid">30612898</pub-id>
</mixed-citation>
</ref>
<ref id="B169">
<label>169.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Burton</surname>
<given-names>DGA</given-names>
</name>
<name>
<surname>Stolzing</surname>
<given-names>A</given-names>
</name>
</person-group>
.
<article-title>Cellular senescence: immunosurveillance and future immunotherapy</article-title>
.
<source>Ageing Res Rev</source>
. (
<year>2018</year>
)
<volume>43</volume>
:
<fpage>17</fpage>
<lpage>25</lpage>
.
<pub-id pub-id-type="doi">10.1016/j.arr.2018.02.001</pub-id>
<pub-id pub-id-type="pmid">29427795</pub-id>
</mixed-citation>
</ref>
<ref id="B170">
<label>170.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Krizhanovsky</surname>
<given-names>V</given-names>
</name>
<name>
<surname>Yon</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Dickins</surname>
<given-names>RA</given-names>
</name>
<name>
<surname>Hearn</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Simon</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Miething</surname>
<given-names>C</given-names>
</name>
<etal></etal>
</person-group>
.
<article-title>Senescence of activated stellate cells limits liver fibrosis</article-title>
.
<source>Cell</source>
. (
<year>2008</year>
)
<volume>134</volume>
:
<fpage>657</fpage>
<lpage>67</lpage>
.
<pub-id pub-id-type="doi">10.1016/j.cell.2008.06.049</pub-id>
<pub-id pub-id-type="pmid">18724938</pub-id>
</mixed-citation>
</ref>
<ref id="B171">
<label>171.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Sagiv</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Burton</surname>
<given-names>DG</given-names>
</name>
<name>
<surname>Moshayev</surname>
<given-names>Z</given-names>
</name>
<name>
<surname>Vadai</surname>
<given-names>E</given-names>
</name>
<name>
<surname>Wensveen</surname>
<given-names>F</given-names>
</name>
<name>
<surname>Ben-Dor</surname>
<given-names>S</given-names>
</name>
<etal></etal>
</person-group>
.
<article-title>NKG2D ligands mediate immunosurveillance of senescent cells</article-title>
.
<source>Aging</source>
. (
<year>2016</year>
)
<volume>8</volume>
:
<fpage>328</fpage>
<lpage>44</lpage>
.
<pub-id pub-id-type="doi">10.18632/aging.100897</pub-id>
<pub-id pub-id-type="pmid">26878797</pub-id>
</mixed-citation>
</ref>
<ref id="B172">
<label>172.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Iannello</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Thompson</surname>
<given-names>TW</given-names>
</name>
<name>
<surname>Ardolino</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Lowe</surname>
<given-names>SW</given-names>
</name>
<name>
<surname>Raulet</surname>
<given-names>DH</given-names>
</name>
</person-group>
.
<article-title>p53-dependent chemokine production by senescent tumor cells supports NKG2D-dependent tumor elimination by natural killer cells</article-title>
.
<source>J Exp Med</source>
. (
<year>2013</year>
)
<volume>210</volume>
:
<fpage>2057</fpage>
<lpage>69</lpage>
.
<pub-id pub-id-type="doi">10.1084/jem.20130783</pub-id>
<pub-id pub-id-type="pmid">24043758</pub-id>
</mixed-citation>
</ref>
<ref id="B173">
<label>173.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Kang</surname>
<given-names>JY</given-names>
</name>
<name>
<surname>Lee</surname>
<given-names>SY</given-names>
</name>
<name>
<surname>Rhee</surname>
<given-names>CK</given-names>
</name>
<name>
<surname>Kim</surname>
<given-names>SJ</given-names>
</name>
<name>
<surname>Kwon</surname>
<given-names>SS</given-names>
</name>
<name>
<surname>Kim</surname>
<given-names>YK</given-names>
</name>
</person-group>
.
<article-title>Effect of aging on airway remodeling and muscarinic receptors in a murine acute asthma model</article-title>
.
<source>Clin Interv Aging</source>
. (
<year>2013</year>
)
<volume>8</volume>
:
<fpage>1393</fpage>
<lpage>403</lpage>
.
<pub-id pub-id-type="doi">10.2147/CIA.S50496</pub-id>
<pub-id pub-id-type="pmid">24204129</pub-id>
</mixed-citation>
</ref>
<ref id="B174">
<label>174.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Amsellem</surname>
<given-names>V</given-names>
</name>
<name>
<surname>Gary-Bobo</surname>
<given-names>G</given-names>
</name>
<name>
<surname>Marcos</surname>
<given-names>E</given-names>
</name>
<name>
<surname>Maitre</surname>
<given-names>B</given-names>
</name>
<name>
<surname>Chaar</surname>
<given-names>V</given-names>
</name>
<name>
<surname>Validire</surname>
<given-names>P</given-names>
</name>
<etal></etal>
</person-group>
.
<article-title>Telomere dysfunction causes sustained inflammation in chronic obstructive pulmonary disease</article-title>
.
<source>Am J Respir Crit Care Med</source>
. (
<year>2011</year>
)
<volume>184</volume>
:
<fpage>1358</fpage>
<lpage>66</lpage>
.
<pub-id pub-id-type="doi">10.1164/rccm.201105-0802OC</pub-id>
<pub-id pub-id-type="pmid">21885626</pub-id>
</mixed-citation>
</ref>
<ref id="B175">
<label>175.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Schafer</surname>
<given-names>MJ</given-names>
</name>
<name>
<surname>White</surname>
<given-names>TA</given-names>
</name>
<name>
<surname>Iijima</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Haak</surname>
<given-names>AJ</given-names>
</name>
<name>
<surname>Ligresti</surname>
<given-names>G</given-names>
</name>
<name>
<surname>Atkinson</surname>
<given-names>EJ</given-names>
</name>
<etal></etal>
</person-group>
.
<article-title>Cellular senescence mediates fibrotic pulmonary disease</article-title>
.
<source>Nat Commun</source>
. (
<year>2017</year>
)
<volume>8</volume>
:
<fpage>14532</fpage>
.
<pub-id pub-id-type="doi">10.1038/ncomms14532</pub-id>
<pub-id pub-id-type="pmid">28230051</pub-id>
</mixed-citation>
</ref>
<ref id="B176">
<label>176.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Fedorov</surname>
<given-names>IA</given-names>
</name>
<name>
<surname>Wilson</surname>
<given-names>SJ</given-names>
</name>
<name>
<surname>Davies</surname>
<given-names>DE</given-names>
</name>
<name>
<surname>Holgate</surname>
<given-names>ST</given-names>
</name>
</person-group>
.
<article-title>Epithelial stress and structural remodelling in childhood asthma</article-title>
.
<source>Thorax</source>
. (
<year>2005</year>
)
<volume>60</volume>
:
<fpage>389</fpage>
<lpage>94</lpage>
.
<pub-id pub-id-type="doi">10.1136/thx.2004.030262</pub-id>
<pub-id pub-id-type="pmid">15860714</pub-id>
</mixed-citation>
</ref>
<ref id="B177">
<label>177.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Jedrychowski</surname>
<given-names>WA</given-names>
</name>
<name>
<surname>Perera</surname>
<given-names>FP</given-names>
</name>
<name>
<surname>Maugeri</surname>
<given-names>U</given-names>
</name>
<name>
<surname>Mroz</surname>
<given-names>E</given-names>
</name>
<name>
<surname>Klimaszewska-Rembiasz</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Flak</surname>
<given-names>E</given-names>
</name>
<etal></etal>
</person-group>
.
<article-title>Effect of prenatal exposure to fine particulate matter on ventilatory lung function of preschool children of non-smoking mothers</article-title>
.
<source>Paediatr Perinat Epidemiol</source>
. (
<year>2010</year>
)
<volume>24</volume>
:
<fpage>492</fpage>
<lpage>501</lpage>
.
<pub-id pub-id-type="doi">10.1111/j.1365-3016.2010.01136.x</pub-id>
<pub-id pub-id-type="pmid">20670230</pub-id>
</mixed-citation>
</ref>
<ref id="B178">
<label>178.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Martens</surname>
<given-names>DS</given-names>
</name>
<name>
<surname>Cox</surname>
<given-names>B</given-names>
</name>
<name>
<surname>Janssen</surname>
<given-names>BG</given-names>
</name>
<name>
<surname>Clemente</surname>
<given-names>DBP</given-names>
</name>
<name>
<surname>Gasparrini</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Vanpoucke</surname>
<given-names>C</given-names>
</name>
<etal></etal>
</person-group>
.
<article-title>Prenatal air pollution and newborns' predisposition to accelerated biological aging</article-title>
.
<source>JAMA Pediatr</source>
. (
<year>2017</year>
)
<volume>171</volume>
:
<fpage>1160</fpage>
<lpage>7</lpage>
.
<pub-id pub-id-type="doi">10.1001/jamapediatrics.2017.3024</pub-id>
<pub-id pub-id-type="pmid">29049509</pub-id>
</mixed-citation>
</ref>
<ref id="B179">
<label>179.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Mahemuti</surname>
<given-names>L</given-names>
</name>
<name>
<surname>Chen</surname>
<given-names>Q</given-names>
</name>
<name>
<surname>Coughlan</surname>
<given-names>MC</given-names>
</name>
<name>
<surname>Qiao</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Chepelev</surname>
<given-names>NL</given-names>
</name>
<name>
<surname>Florian</surname>
<given-names>M</given-names>
</name>
<etal></etal>
</person-group>
.
<article-title>Bisphenol A induces DSB-ATM-p53 signaling leading to cell cycle arrest, senescence, autophagy, stress response, and estrogen release in human fetal lung fibroblasts</article-title>
.
<source>Arch Toxicol</source>
. (
<year>2018</year>
)
<volume>92</volume>
:
<fpage>1453</fpage>
<lpage>69</lpage>
.
<pub-id pub-id-type="doi">10.1007/s00204-017-2150-3</pub-id>
<pub-id pub-id-type="pmid">29275510</pub-id>
</mixed-citation>
</ref>
<ref id="B180">
<label>180.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Jiang</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Liu</surname>
<given-names>G</given-names>
</name>
<name>
<surname>Luckhardt</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Antony</surname>
<given-names>V</given-names>
</name>
<name>
<surname>Zhou</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Carter</surname>
<given-names>AB</given-names>
</name>
<etal></etal>
</person-group>
.
<article-title>Serpine 1 induces alveolar type II cell senescence through activating p53-p21-Rb pathway in fibrotic lung disease</article-title>
.
<source>Aging Cell</source>
. (
<year>2017</year>
)
<volume>16</volume>
:
<fpage>1114</fpage>
<lpage>24</lpage>
.
<pub-id pub-id-type="doi">10.1111/acel.12643</pub-id>
<pub-id pub-id-type="pmid">28722352</pub-id>
</mixed-citation>
</ref>
<ref id="B181">
<label>181.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Rana</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Jiang</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Liu</surname>
<given-names>G</given-names>
</name>
<name>
<surname>Miyata</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Antony</surname>
<given-names>V</given-names>
</name>
<name>
<surname>Thannickal</surname>
<given-names>VJ</given-names>
</name>
<etal></etal>
</person-group>
.
<article-title>PAI-1 regulation of TGF-beta1-induced ATII Cell senescence, SASP secretion, and SASP-mediated Activation of Alveolar Macrophages</article-title>
.
<source>Am J Respir Cell Mol Biol.</source>
(
<year>2019</year>
). [Epub ahead of print].
<pub-id pub-id-type="doi">10.1165/rcmb.2019-0071OC</pub-id>
<pub-id pub-id-type="pmid">31513752</pub-id>
</mixed-citation>
</ref>
<ref id="B182">
<label>182.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Rodier</surname>
<given-names>F</given-names>
</name>
<name>
<surname>Coppé</surname>
<given-names>JP</given-names>
</name>
<name>
<surname>Patil</surname>
<given-names>CK</given-names>
</name>
<name>
<surname>Hoeijmakers</surname>
<given-names>WA</given-names>
</name>
<name>
<surname>Muñoz</surname>
<given-names>DP</given-names>
</name>
<name>
<surname>Raza</surname>
<given-names>SR</given-names>
</name>
<etal></etal>
</person-group>
.
<article-title>Persistent DNA damage signalling triggers senescence-associated inflammatory cytokine secretion</article-title>
.
<source>Nat Cell Biol</source>
. (
<year>2009</year>
)
<volume>11</volume>
:
<fpage>973</fpage>
<lpage>9</lpage>
.
<pub-id pub-id-type="doi">10.1038/ncb1909</pub-id>
<pub-id pub-id-type="pmid">19597488</pub-id>
</mixed-citation>
</ref>
<ref id="B183">
<label>183.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Loubaki</surname>
<given-names>L</given-names>
</name>
<name>
<surname>Semlali</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Boisvert</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Jacques</surname>
<given-names>E</given-names>
</name>
<name>
<surname>Plante</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Aoudjit</surname>
<given-names>F</given-names>
</name>
<etal></etal>
</person-group>
.
<article-title>Crosstalk between T cells and bronchial fibroblasts obtained from asthmatic subjects involves CD40L/alpha 5 beta 1 interaction</article-title>
.
<source>Mol Immunol</source>
. (
<year>2010</year>
)
<volume>47</volume>
:
<fpage>2112</fpage>
<lpage>8</lpage>
.
<pub-id pub-id-type="doi">10.1016/j.molimm.2010.03.011</pub-id>
<pub-id pub-id-type="pmid">20471683</pub-id>
</mixed-citation>
</ref>
<ref id="B184">
<label>184.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Roca</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Kypta</surname>
<given-names>RM</given-names>
</name>
<name>
<surname>Vivanco</surname>
<given-names>Md</given-names>
</name>
</person-group>
.
<article-title>Loss of p16INK4a results in increased glucocorticoid receptor activity during fibrosarcoma development</article-title>
.
<source>Proc Natl Acad Sci USA</source>
. (
<year>2003</year>
)
<volume>100</volume>
:
<fpage>3113</fpage>
<lpage>8</lpage>
.
<pub-id pub-id-type="doi">10.1073/pnas.0634912100</pub-id>
<pub-id pub-id-type="pmid">12624188</pub-id>
</mixed-citation>
</ref>
<ref id="B185">
<label>185.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Hodge</surname>
<given-names>G</given-names>
</name>
<name>
<surname>Jersmann</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Tran</surname>
<given-names>HB</given-names>
</name>
<name>
<surname>Holmes</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Reynolds</surname>
<given-names>PN</given-names>
</name>
<name>
<surname>Hodge</surname>
<given-names>S</given-names>
</name>
</person-group>
.
<article-title>Lymphocyte senescence in COPD is associated with loss of glucocorticoid receptor expression by pro-inflammatory/cytotoxic lymphocytes</article-title>
.
<source>Respir Res</source>
. (
<year>2015</year>
)
<volume>16</volume>
:
<fpage>2</fpage>
.
<pub-id pub-id-type="doi">10.1186/s12931-015-0287-2</pub-id>
<pub-id pub-id-type="pmid">25573300</pub-id>
</mixed-citation>
</ref>
<ref id="B186">
<label>186.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>KleinJan</surname>
<given-names>A</given-names>
</name>
</person-group>
.
<article-title>Airway inflammation in asthma: key players beyond the Th2 pathway</article-title>
.
<source>Curr Opin Pulm Med</source>
. (
<year>2016</year>
)
<volume>22</volume>
:
<fpage>46</fpage>
<lpage>52</lpage>
.
<pub-id pub-id-type="doi">10.1097/MCP.0000000000000224</pub-id>
<pub-id pub-id-type="pmid">26574718</pub-id>
</mixed-citation>
</ref>
<ref id="B187">
<label>187.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Huang</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Li</surname>
<given-names>Z</given-names>
</name>
<name>
<surname>Yao</surname>
<given-names>X</given-names>
</name>
<name>
<surname>Li</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Reng</surname>
<given-names>X</given-names>
</name>
<name>
<surname>Li</surname>
<given-names>J</given-names>
</name>
<etal></etal>
</person-group>
.
<article-title>Altered Th1/Th2 commitment contributes to lung senescence in CXCR3-deficient mice</article-title>
.
<source>Exp Gerontol</source>
. (
<year>2013</year>
)
<volume>48</volume>
:
<fpage>717</fpage>
<lpage>26</lpage>
.
<pub-id pub-id-type="doi">10.1016/j.exger.2013.04.001</pub-id>
<pub-id pub-id-type="pmid">23583952</pub-id>
</mixed-citation>
</ref>
<ref id="B188">
<label>188.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Kuwano</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Araya</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Hara</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Minagawa</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Takasaka</surname>
<given-names>N</given-names>
</name>
<name>
<surname>Ito</surname>
<given-names>S</given-names>
</name>
<etal></etal>
</person-group>
.
<article-title>Cellular senescence and autophagy in the pathogenesis of chronic obstructive pulmonary disease (COPD) and idiopathic pulmonary fibrosis (IPF)</article-title>
.
<source>Respir Investig</source>
. (
<year>2016</year>
)
<volume>54</volume>
:
<fpage>397</fpage>
<lpage>406</lpage>
.
<pub-id pub-id-type="doi">10.1016/j.resinv.2016.03.010</pub-id>
<pub-id pub-id-type="pmid">27886850</pub-id>
</mixed-citation>
</ref>
<ref id="B189">
<label>189.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Rajendran</surname>
<given-names>P</given-names>
</name>
<name>
<surname>Alzahrani</surname>
<given-names>AM</given-names>
</name>
<name>
<surname>Hanieh</surname>
<given-names>HN</given-names>
</name>
<name>
<surname>Kumar</surname>
<given-names>SA</given-names>
</name>
<name>
<surname>Ben Ammar</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Rengarajan</surname>
<given-names>T</given-names>
</name>
<etal></etal>
</person-group>
.
<article-title>Autophagy and senescence: a new insight in selected human diseases</article-title>
.
<source>J Cell Physiol</source>
. (
<year>2019</year>
)
<volume>234</volume>
:
<fpage>21485</fpage>
<lpage>92</lpage>
.
<pub-id pub-id-type="doi">10.1002/jcp.28895</pub-id>
<pub-id pub-id-type="pmid">31144309</pub-id>
</mixed-citation>
</ref>
<ref id="B190">
<label>190.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Narita</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Young</surname>
<given-names>AR</given-names>
</name>
<name>
<surname>Arakawa</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Samarajiwa</surname>
<given-names>SA</given-names>
</name>
<name>
<surname>Nakashima</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Yoshida</surname>
<given-names>S</given-names>
</name>
<etal></etal>
</person-group>
.
<article-title>Spatial coupling of mTOR and autophagy augments secretory phenotypes</article-title>
.
<source>Science</source>
. (
<year>2011</year>
)
<volume>332</volume>
:
<fpage>966</fpage>
<lpage>70</lpage>
.
<pub-id pub-id-type="doi">10.1126/science.1205407</pub-id>
<pub-id pub-id-type="pmid">21512002</pub-id>
</mixed-citation>
</ref>
<ref id="B191">
<label>191.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Suzuki</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Nakagawa</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Yoshikawa</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Sasagawa</surname>
<given-names>N</given-names>
</name>
<name>
<surname>Yoshimori</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Ohsumi</surname>
<given-names>Y</given-names>
</name>
<etal></etal>
</person-group>
.
<article-title>The first molecular evidence that autophagy relates rimmed vacuole formation in chloroquine myopathy</article-title>
.
<source>J Biochem</source>
. (
<year>2002</year>
)
<volume>131</volume>
:
<fpage>647</fpage>
<lpage>51</lpage>
.
<pub-id pub-id-type="doi">10.1093/oxfordjournals.jbchem.a003147</pub-id>
<pub-id pub-id-type="pmid">11983070</pub-id>
</mixed-citation>
</ref>
<ref id="B192">
<label>192.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Werner</surname>
<given-names>G</given-names>
</name>
<name>
<surname>Hagenmaier</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Drautz</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Baumgartner</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Zähner</surname>
<given-names>H</given-names>
</name>
</person-group>
.
<article-title>Metabolic products of microorganisms. 224. Bafilomycins, a new group of macrolide antibiotics. Production, isolation, chemical structure and biological activity</article-title>
.
<source>J Antibiot</source>
. (
<year>1984</year>
)
<volume>37</volume>
:
<fpage>110</fpage>
<lpage>7</lpage>
.
<pub-id pub-id-type="doi">10.7164/antibiotics.37.110</pub-id>
<pub-id pub-id-type="pmid">6423597</pub-id>
</mixed-citation>
</ref>
<ref id="B193">
<label>193.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Hardie</surname>
<given-names>DG</given-names>
</name>
</person-group>
.
<article-title>AMPK: a target for drugs and natural products with effects on both diabetes and cancer</article-title>
.
<source>Diabetes</source>
. (
<year>2013</year>
)
<volume>62</volume>
:
<fpage>2164</fpage>
<lpage>72</lpage>
.
<pub-id pub-id-type="doi">10.2337/db13-0368</pub-id>
<pub-id pub-id-type="pmid">23801715</pub-id>
</mixed-citation>
</ref>
<ref id="B194">
<label>194.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Kim</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Yang</surname>
<given-names>G</given-names>
</name>
<name>
<surname>Kim</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Kim</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Ha</surname>
<given-names>J</given-names>
</name>
</person-group>
.
<article-title>AMPK activators: mechanisms of action and physiological activities</article-title>
.
<source>Exp Mol Med</source>
. (
<year>2016</year>
)
<volume>48</volume>
:
<fpage>e224</fpage>
.
<pub-id pub-id-type="doi">10.1038/emm.2016.16</pub-id>
<pub-id pub-id-type="pmid">27034026</pub-id>
</mixed-citation>
</ref>
<ref id="B195">
<label>195.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Mora</surname>
<given-names>AL</given-names>
</name>
<name>
<surname>Rojas</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Pardo</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Selman</surname>
<given-names>M</given-names>
</name>
</person-group>
<article-title>Emerging therapies for idiopathic pulmonary fibrosis, a progressive age-related disease</article-title>
.
<source>Nat Rev Drug Discov</source>
. (
<year>2017</year>
)
<volume>16</volume>
:
<fpage>755</fpage>
<lpage>72</lpage>
.
<pub-id pub-id-type="doi">10.1038/nrd.2017.170</pub-id>
<pub-id pub-id-type="pmid">28983101</pub-id>
</mixed-citation>
</ref>
<ref id="B196">
<label>196.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Barnes</surname>
<given-names>PJ</given-names>
</name>
</person-group>
.
<article-title>Senescence in COPD and its comorbidities</article-title>
.
<source>Annu Rev Physiol</source>
. (
<year>2017</year>
)
<volume>79</volume>
:
<fpage>517</fpage>
<lpage>39</lpage>
.
<pub-id pub-id-type="doi">10.1146/annurev-physiol-022516-034314</pub-id>
<pub-id pub-id-type="pmid">27959617</pub-id>
</mixed-citation>
</ref>
<ref id="B197">
<label>197.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Zhang</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Jing</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Qiao</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Luan</surname>
<given-names>B</given-names>
</name>
<name>
<surname>Wang</surname>
<given-names>X</given-names>
</name>
<name>
<surname>Wang</surname>
<given-names>L</given-names>
</name>
<etal></etal>
</person-group>
.
<article-title>Activation of the mTOR signaling pathway is required for asthma onset</article-title>
.
<source>Sci Rep</source>
. (
<year>2017</year>
)
<volume>7</volume>
:
<fpage>4532</fpage>
.
<pub-id pub-id-type="doi">10.1038/s41598-017-04826-y</pub-id>
<pub-id pub-id-type="pmid">28674387</pub-id>
</mixed-citation>
</ref>
<ref id="B198">
<label>198.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Herranz</surname>
<given-names>N</given-names>
</name>
<name>
<surname>Gallage</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Mellone</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Wuestefeld</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Klotz</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Hanley</surname>
<given-names>CJ</given-names>
</name>
<etal></etal>
</person-group>
<article-title>mTOR regulates MAPKAPK2 translation to control the senescence-associated secretory phenotype</article-title>
.
<source>Nat Cell Biol</source>
. (
<year>2015</year>
)
<volume>17</volume>
:
<fpage>1205</fpage>
<lpage>17</lpage>
.
<pub-id pub-id-type="doi">10.1038/ncb3225</pub-id>
<pub-id pub-id-type="pmid">26280535</pub-id>
</mixed-citation>
</ref>
<ref id="B199">
<label>199.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Chang</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Wang</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Shao</surname>
<given-names>L</given-names>
</name>
<name>
<surname>Laberge</surname>
<given-names>RM</given-names>
</name>
<name>
<surname>Demaria</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Campisi</surname>
<given-names>J</given-names>
</name>
<etal></etal>
</person-group>
.
<article-title>Clearance of senescent cells by ABT263 rejuvenates aged hematopoietic stem cells in mice</article-title>
.
<source>Nat Med</source>
. (
<year>2016</year>
)
<volume>22</volume>
:
<fpage>78</fpage>
<lpage>83</lpage>
.
<pub-id pub-id-type="doi">10.1038/nm.4010</pub-id>
<pub-id pub-id-type="pmid">26657143</pub-id>
</mixed-citation>
</ref>
<ref id="B200">
<label>200.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Baker</surname>
<given-names>DJ</given-names>
</name>
<name>
<surname>Wijshake</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Tchkonia</surname>
<given-names>T</given-names>
</name>
<name>
<surname>LeBrasseur</surname>
<given-names>NK</given-names>
</name>
<name>
<surname>Childs</surname>
<given-names>BG</given-names>
</name>
<name>
<surname>van de Sluis</surname>
<given-names>B</given-names>
</name>
<etal></etal>
</person-group>
.
<article-title>Clearance of p16Ink4a-positive senescent cells delays ageing-associated disorders</article-title>
.
<source>Nature</source>
. (
<year>2011</year>
)
<volume>479</volume>
:
<fpage>232</fpage>
<lpage>6</lpage>
.
<pub-id pub-id-type="doi">10.1038/nature10600</pub-id>
<pub-id pub-id-type="pmid">22048312</pub-id>
</mixed-citation>
</ref>
</ref-list>
<glossary>
<def-list>
<title>Abbreviations</title>
<def-item>
<term>CRE</term>
<def>
<p>Cockroach extract</p>
</def>
</def-item>
<def-item>
<term>HDM</term>
<def>
<p>House dust mite</p>
</def>
</def-item>
<def-item>
<term>PM
<sub>2.</sub>
5</term>
<def>
<p>Particulate matter 2.5</p>
</def>
</def-item>
<def-item>
<term>SASP</term>
<def>
<p>Senescence-associated secretory phenotype</p>
</def>
</def-item>
<def-item>
<term>ROS</term>
<def>
<p>Reactive oxygen species</p>
</def>
</def-item>
<def-item>
<term>NAC</term>
<def>
<p>N-Acetyl Cysteine</p>
</def>
</def-item>
<def-item>
<term>AMPK</term>
<def>
<p>AMP-activated protein kinase</p>
</def>
</def-item>
<def-item>
<term>PINK1</term>
<def>
<p>PTEN-induced kinase</p>
</def>
</def-item>
<def-item>
<term>PI3K</term>
<def>
<p>Phosphatidylinositol-4,5-bisphosphate 3-kinases</p>
</def>
</def-item>
<def-item>
<term>mTOR</term>
<def>
<p>Mechanistic target of rapamycin</p>
</def>
</def-item>
<def-item>
<term>ATG</term>
<def>
<p>Autophagy-related gene</p>
</def>
</def-item>
<def-item>
<term>CaMKII</term>
<def>
<p>Calmodulin-dependent protein kinase II</p>
</def>
</def-item>
<def-item>
<term>CQ</term>
<def>
<p>Chloroquine</p>
</def>
</def-item>
<def-item>
<term>BAL</term>
<def>
<p>Bronchoalveolar lavage</p>
</def>
</def-item>
<def-item>
<term>AHR</term>
<def>
<p>Airway hyperresponsiveness</p>
</def>
</def-item>
<def-item>
<term>COPD</term>
<def>
<p>Chronic obstructive pulmonary disease</p>
</def>
</def-item>
<def-item>
<term>IPF</term>
<def>
<p>Idiopathic pulmonary fibrosis</p>
</def>
</def-item>
<def-item>
<term>3-MA</term>
<def>
<p>3-Methyladenine.</p>
</def>
</def-item>
</def-list>
</glossary>
</back>
</pmc>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/ChloroquineV1/Data/Pmc/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000973 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Pmc/Corpus/biblio.hfd -nk 000973 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    ChloroquineV1
   |flux=    Pmc
   |étape=   Corpus
   |type=    RBID
   |clé=     PMC:6896909
   |texte=   Environmental Exposures and Asthma Development: Autophagy, Mitophagy, and Cellular Senescence
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Pmc/Corpus/RBID.i   -Sk "pubmed:31849968" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Pmc/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a ChloroquineV1 

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Wed Mar 25 22:43:59 2020. Site generation: Sun Jan 31 12:44:45 2021