Serveur d'exploration Chloroquine

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Theranostic Nanomedicine for Malignant Gliomas

Identifieur interne : 000950 ( Pmc/Corpus ); précédent : 000949; suivant : 000951

Theranostic Nanomedicine for Malignant Gliomas

Auteurs : Michele D'Angelo ; Vanessa Castelli ; Elisabetta Benedetti ; Andrea Antonosante ; Mariano Catanesi ; Reyes Dominguez-Benot ; Giuseppina Pitari ; Rodolfo Ippoliti ; Annamaria Cimini

Source :

RBID : PMC:6868071

Abstract

Brain tumors mainly originate from glial cells and are classified as gliomas. Malignant gliomas represent an incurable disease; indeed, after surgery and chemotherapy, recurrence appears within a few months, and mortality has remained high in the last decades. This is mainly due to the heterogeneity of malignant gliomas, indicating that a single therapy is not effective for all patients. In this regard, the advent of theranostic nanomedicine, a combination of imaging and therapeutic agents, represents a strategic tool for the management of malignant brain tumors, allowing for the detection of therapies that are specific to the single patient and avoiding overdosing the non-responders. Here, recent theranostic nanomedicine approaches for glioma therapy are described.


Url:
DOI: 10.3389/fbioe.2019.00325
PubMed: 31799246
PubMed Central: 6868071

Links to Exploration step

PMC:6868071

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Theranostic Nanomedicine for Malignant Gliomas</title>
<author>
<name sortKey="D Angelo, Michele" sort="D Angelo, Michele" uniqKey="D Angelo M" first="Michele" last="D'Angelo">Michele D'Angelo</name>
<affiliation>
<nlm:aff id="aff1">
<institution>Department of Life, Health and Environmental Sciences, University of L'Aquila</institution>
,
<addr-line>L'Aquila</addr-line>
,
<country>Italy</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Castelli, Vanessa" sort="Castelli, Vanessa" uniqKey="Castelli V" first="Vanessa" last="Castelli">Vanessa Castelli</name>
<affiliation>
<nlm:aff id="aff1">
<institution>Department of Life, Health and Environmental Sciences, University of L'Aquila</institution>
,
<addr-line>L'Aquila</addr-line>
,
<country>Italy</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Benedetti, Elisabetta" sort="Benedetti, Elisabetta" uniqKey="Benedetti E" first="Elisabetta" last="Benedetti">Elisabetta Benedetti</name>
<affiliation>
<nlm:aff id="aff1">
<institution>Department of Life, Health and Environmental Sciences, University of L'Aquila</institution>
,
<addr-line>L'Aquila</addr-line>
,
<country>Italy</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Antonosante, Andrea" sort="Antonosante, Andrea" uniqKey="Antonosante A" first="Andrea" last="Antonosante">Andrea Antonosante</name>
<affiliation>
<nlm:aff id="aff1">
<institution>Department of Life, Health and Environmental Sciences, University of L'Aquila</institution>
,
<addr-line>L'Aquila</addr-line>
,
<country>Italy</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Catanesi, Mariano" sort="Catanesi, Mariano" uniqKey="Catanesi M" first="Mariano" last="Catanesi">Mariano Catanesi</name>
<affiliation>
<nlm:aff id="aff1">
<institution>Department of Life, Health and Environmental Sciences, University of L'Aquila</institution>
,
<addr-line>L'Aquila</addr-line>
,
<country>Italy</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Dominguez Benot, Reyes" sort="Dominguez Benot, Reyes" uniqKey="Dominguez Benot R" first="Reyes" last="Dominguez-Benot">Reyes Dominguez-Benot</name>
<affiliation>
<nlm:aff id="aff1">
<institution>Department of Life, Health and Environmental Sciences, University of L'Aquila</institution>
,
<addr-line>L'Aquila</addr-line>
,
<country>Italy</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Pitari, Giuseppina" sort="Pitari, Giuseppina" uniqKey="Pitari G" first="Giuseppina" last="Pitari">Giuseppina Pitari</name>
<affiliation>
<nlm:aff id="aff1">
<institution>Department of Life, Health and Environmental Sciences, University of L'Aquila</institution>
,
<addr-line>L'Aquila</addr-line>
,
<country>Italy</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Ippoliti, Rodolfo" sort="Ippoliti, Rodolfo" uniqKey="Ippoliti R" first="Rodolfo" last="Ippoliti">Rodolfo Ippoliti</name>
<affiliation>
<nlm:aff id="aff1">
<institution>Department of Life, Health and Environmental Sciences, University of L'Aquila</institution>
,
<addr-line>L'Aquila</addr-line>
,
<country>Italy</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Cimini, Annamaria" sort="Cimini, Annamaria" uniqKey="Cimini A" first="Annamaria" last="Cimini">Annamaria Cimini</name>
<affiliation>
<nlm:aff id="aff1">
<institution>Department of Life, Health and Environmental Sciences, University of L'Aquila</institution>
,
<addr-line>L'Aquila</addr-line>
,
<country>Italy</country>
</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="aff2">
<institution>Department of Biology, Sbarro Institute for Cancer Research and Molecular Medicine, Temple University</institution>
,
<addr-line>Philadelphia, PA</addr-line>
,
<country>United States</country>
</nlm:aff>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PMC</idno>
<idno type="pmid">31799246</idno>
<idno type="pmc">6868071</idno>
<idno type="url">http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6868071</idno>
<idno type="RBID">PMC:6868071</idno>
<idno type="doi">10.3389/fbioe.2019.00325</idno>
<date when="2019">2019</date>
<idno type="wicri:Area/Pmc/Corpus">000950</idno>
<idno type="wicri:explorRef" wicri:stream="Pmc" wicri:step="Corpus" wicri:corpus="PMC">000950</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a" type="main">Theranostic Nanomedicine for Malignant Gliomas</title>
<author>
<name sortKey="D Angelo, Michele" sort="D Angelo, Michele" uniqKey="D Angelo M" first="Michele" last="D'Angelo">Michele D'Angelo</name>
<affiliation>
<nlm:aff id="aff1">
<institution>Department of Life, Health and Environmental Sciences, University of L'Aquila</institution>
,
<addr-line>L'Aquila</addr-line>
,
<country>Italy</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Castelli, Vanessa" sort="Castelli, Vanessa" uniqKey="Castelli V" first="Vanessa" last="Castelli">Vanessa Castelli</name>
<affiliation>
<nlm:aff id="aff1">
<institution>Department of Life, Health and Environmental Sciences, University of L'Aquila</institution>
,
<addr-line>L'Aquila</addr-line>
,
<country>Italy</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Benedetti, Elisabetta" sort="Benedetti, Elisabetta" uniqKey="Benedetti E" first="Elisabetta" last="Benedetti">Elisabetta Benedetti</name>
<affiliation>
<nlm:aff id="aff1">
<institution>Department of Life, Health and Environmental Sciences, University of L'Aquila</institution>
,
<addr-line>L'Aquila</addr-line>
,
<country>Italy</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Antonosante, Andrea" sort="Antonosante, Andrea" uniqKey="Antonosante A" first="Andrea" last="Antonosante">Andrea Antonosante</name>
<affiliation>
<nlm:aff id="aff1">
<institution>Department of Life, Health and Environmental Sciences, University of L'Aquila</institution>
,
<addr-line>L'Aquila</addr-line>
,
<country>Italy</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Catanesi, Mariano" sort="Catanesi, Mariano" uniqKey="Catanesi M" first="Mariano" last="Catanesi">Mariano Catanesi</name>
<affiliation>
<nlm:aff id="aff1">
<institution>Department of Life, Health and Environmental Sciences, University of L'Aquila</institution>
,
<addr-line>L'Aquila</addr-line>
,
<country>Italy</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Dominguez Benot, Reyes" sort="Dominguez Benot, Reyes" uniqKey="Dominguez Benot R" first="Reyes" last="Dominguez-Benot">Reyes Dominguez-Benot</name>
<affiliation>
<nlm:aff id="aff1">
<institution>Department of Life, Health and Environmental Sciences, University of L'Aquila</institution>
,
<addr-line>L'Aquila</addr-line>
,
<country>Italy</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Pitari, Giuseppina" sort="Pitari, Giuseppina" uniqKey="Pitari G" first="Giuseppina" last="Pitari">Giuseppina Pitari</name>
<affiliation>
<nlm:aff id="aff1">
<institution>Department of Life, Health and Environmental Sciences, University of L'Aquila</institution>
,
<addr-line>L'Aquila</addr-line>
,
<country>Italy</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Ippoliti, Rodolfo" sort="Ippoliti, Rodolfo" uniqKey="Ippoliti R" first="Rodolfo" last="Ippoliti">Rodolfo Ippoliti</name>
<affiliation>
<nlm:aff id="aff1">
<institution>Department of Life, Health and Environmental Sciences, University of L'Aquila</institution>
,
<addr-line>L'Aquila</addr-line>
,
<country>Italy</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Cimini, Annamaria" sort="Cimini, Annamaria" uniqKey="Cimini A" first="Annamaria" last="Cimini">Annamaria Cimini</name>
<affiliation>
<nlm:aff id="aff1">
<institution>Department of Life, Health and Environmental Sciences, University of L'Aquila</institution>
,
<addr-line>L'Aquila</addr-line>
,
<country>Italy</country>
</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="aff2">
<institution>Department of Biology, Sbarro Institute for Cancer Research and Molecular Medicine, Temple University</institution>
,
<addr-line>Philadelphia, PA</addr-line>
,
<country>United States</country>
</nlm:aff>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Frontiers in Bioengineering and Biotechnology</title>
<idno type="eISSN">2296-4185</idno>
<imprint>
<date when="2019">2019</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<p>Brain tumors mainly originate from glial cells and are classified as gliomas. Malignant gliomas represent an incurable disease; indeed, after surgery and chemotherapy, recurrence appears within a few months, and mortality has remained high in the last decades. This is mainly due to the heterogeneity of malignant gliomas, indicating that a single therapy is not effective for all patients. In this regard, the advent of theranostic nanomedicine, a combination of imaging and therapeutic agents, represents a strategic tool for the management of malignant brain tumors, allowing for the detection of therapies that are specific to the single patient and avoiding overdosing the non-responders. Here, recent theranostic nanomedicine approaches for glioma therapy are described.</p>
</div>
</front>
<back>
<div1 type="bibliography">
<listBibl>
<biblStruct>
<analytic>
<author>
<name sortKey="Agrawal, P" uniqKey="Agrawal P">P. Agrawal</name>
</author>
<author>
<name sortKey="Singh, R P" uniqKey="Singh R">R. P. Singh</name>
</author>
<author>
<name sortKey="Sonali Kumari, L" uniqKey="Sonali Kumari L">L. Sonali Kumari</name>
</author>
<author>
<name sortKey="Sharma, G" uniqKey="Sharma G">G. Sharma</name>
</author>
<author>
<name sortKey="Koch, B" uniqKey="Koch B">B. Koch</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Agrawal, P" uniqKey="Agrawal P">P. Agrawal</name>
</author>
<author>
<name sortKey="Sonali Singh, R P" uniqKey="Sonali Singh R">R. P. Sonali Singh</name>
</author>
<author>
<name sortKey="Sharma, G" uniqKey="Sharma G">G. Sharma</name>
</author>
<author>
<name sortKey="Mehata, A K" uniqKey="Mehata A">A. K. Mehata</name>
</author>
<author>
<name sortKey="Singh, S" uniqKey="Singh S">S. Singh</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ahmed, N" uniqKey="Ahmed N">N. Ahmed</name>
</author>
<author>
<name sortKey="Brawley, V" uniqKey="Brawley V">V. Brawley</name>
</author>
<author>
<name sortKey="Hegde, M" uniqKey="Hegde M">M. Hegde</name>
</author>
<author>
<name sortKey="Bielamowicz, K" uniqKey="Bielamowicz K">K. Bielamowicz</name>
</author>
<author>
<name sortKey="Kalra, M" uniqKey="Kalra M">M. Kalra</name>
</author>
<author>
<name sortKey="Landi, D" uniqKey="Landi D">D. Landi</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ahmed, N" uniqKey="Ahmed N">N. Ahmed</name>
</author>
<author>
<name sortKey="Fessi, H" uniqKey="Fessi H">H. Fessi</name>
</author>
<author>
<name sortKey="Elaissari, A" uniqKey="Elaissari A">A. Elaissari</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ai, H" uniqKey="Ai H">H. Ai</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Al Jamal, W T" uniqKey="Al Jamal W">W. T. Al-Jamal</name>
</author>
<author>
<name sortKey="Kostarelos, K" uniqKey="Kostarelos K">K. Kostarelos</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Alphandery, E" uniqKey="Alphandery E">E. Alphandéry</name>
</author>
<author>
<name sortKey="Grand Dewyse, P" uniqKey="Grand Dewyse P">P. Grand-Dewyse</name>
</author>
<author>
<name sortKey="Lefevre, R" uniqKey="Lefevre R">R. Lefèvre</name>
</author>
<author>
<name sortKey="Mandawala, C" uniqKey="Mandawala C">C. Mandawala</name>
</author>
<author>
<name sortKey="Durand Dubief, M" uniqKey="Durand Dubief M">M. Durand-Dubief</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Andronescu, E" uniqKey="Andronescu E">E. Andronescu</name>
</author>
<author>
<name sortKey="Grumezescu, A M" uniqKey="Grumezescu A">A. M. Grumezescu</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ang, C Y" uniqKey="Ang C">C. Y. Ang</name>
</author>
<author>
<name sortKey="Tan, S Y" uniqKey="Tan S">S. Y. Tan</name>
</author>
<author>
<name sortKey="Lu, Y" uniqKey="Lu Y">Y. Lu</name>
</author>
<author>
<name sortKey="Bai, L" uniqKey="Bai L">L. Bai</name>
</author>
<author>
<name sortKey="Li, M" uniqKey="Li M">M. Li</name>
</author>
<author>
<name sortKey="Li, P" uniqKey="Li P">P. Li</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Antonosante, A" uniqKey="Antonosante A">A. Antonosante</name>
</author>
<author>
<name sortKey="D Angelo, M" uniqKey="D Angelo M">M. d'Angelo</name>
</author>
<author>
<name sortKey="Castelli, V" uniqKey="Castelli V">V. Castelli</name>
</author>
<author>
<name sortKey="Catanesi, M" uniqKey="Catanesi M">M. Catanesi</name>
</author>
<author>
<name sortKey="Iannotta, D" uniqKey="Iannotta D">D. Iannotta</name>
</author>
<author>
<name sortKey="Giordano, A" uniqKey="Giordano A">A. Giordano</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Aparicio Blanco, J" uniqKey="Aparicio Blanco J">J. Aparicio-Blanco</name>
</author>
<author>
<name sortKey="Torres Suarez, A I" uniqKey="Torres Suarez A">A.-I. Torres-Suárez</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Arranja, A G" uniqKey="Arranja A">A. G. Arranja</name>
</author>
<author>
<name sortKey="Pathak, V" uniqKey="Pathak V">V. Pathak</name>
</author>
<author>
<name sortKey="Lammers, T" uniqKey="Lammers T">T. Lammers</name>
</author>
<author>
<name sortKey="Shi, Y" uniqKey="Shi Y">Y. Shi</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Bahadur, S" uniqKey="Bahadur S">S. Bahadur</name>
</author>
<author>
<name sortKey="Sahu, A K" uniqKey="Sahu A">A. K. Sahu</name>
</author>
<author>
<name sortKey="Baghel, P" uniqKey="Baghel P">P. Baghel</name>
</author>
<author>
<name sortKey="Saha, S" uniqKey="Saha S">S. Saha</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Behin, A" uniqKey="Behin A">A. Behin</name>
</author>
<author>
<name sortKey="Hoang Xuan, K" uniqKey="Hoang Xuan K">K. Hoang-Xuan</name>
</author>
<author>
<name sortKey="Carpentier, A F" uniqKey="Carpentier A">A. F. Carpentier</name>
</author>
<author>
<name sortKey="Delattre, J Y" uniqKey="Delattre J">J.-Y. Delattre</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Belhadj, Z" uniqKey="Belhadj Z">Z. Belhadj</name>
</author>
<author>
<name sortKey="Zhan, C" uniqKey="Zhan C">C. Zhan</name>
</author>
<author>
<name sortKey="Ying, M" uniqKey="Ying M">M. Ying</name>
</author>
<author>
<name sortKey="Wei, X" uniqKey="Wei X">X. Wei</name>
</author>
<author>
<name sortKey="Xie, C" uniqKey="Xie C">C. Xie</name>
</author>
<author>
<name sortKey="Yan, Z" uniqKey="Yan Z">Z. Yan</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Benoy, I H" uniqKey="Benoy I">I. H. Benoy</name>
</author>
<author>
<name sortKey="Salgado, R" uniqKey="Salgado R">R. Salgado</name>
</author>
<author>
<name sortKey="Van Dam, P" uniqKey="Van Dam P">P. Van Dam</name>
</author>
<author>
<name sortKey="Geboers, K" uniqKey="Geboers K">K. Geboers</name>
</author>
<author>
<name sortKey="Van Marck, E" uniqKey="Van Marck E">E. Van Marck</name>
</author>
<author>
<name sortKey="Scharpe, S" uniqKey="Scharpe S">S. Scharpé</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Bhojani, M S" uniqKey="Bhojani M">M. S. Bhojani</name>
</author>
<author>
<name sortKey="Van Dort, M" uniqKey="Van Dort M">M. Van Dort</name>
</author>
<author>
<name sortKey="Rehemtulla, A" uniqKey="Rehemtulla A">A. Rehemtulla</name>
</author>
<author>
<name sortKey="Ross, B D" uniqKey="Ross B">B. D. Ross</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Boas, U" uniqKey="Boas U">U. Boas</name>
</author>
<author>
<name sortKey="Heegaard, P M H" uniqKey="Heegaard P">P. M. H. Heegaard</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Bregoli, L" uniqKey="Bregoli L">L. Bregoli</name>
</author>
<author>
<name sortKey="Movia, D" uniqKey="Movia D">D. Movia</name>
</author>
<author>
<name sortKey="Gavigan Imedio, J D" uniqKey="Gavigan Imedio J">J. D. Gavigan-Imedio</name>
</author>
<author>
<name sortKey="Lysaght, J" uniqKey="Lysaght J">J. Lysaght</name>
</author>
<author>
<name sortKey="Reynolds, J" uniqKey="Reynolds J">J. Reynolds</name>
</author>
<author>
<name sortKey="Prina Mello, A" uniqKey="Prina Mello A">A. Prina-Mello</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Cai, W" uniqKey="Cai W">W. Cai</name>
</author>
<author>
<name sortKey="Rao, J" uniqKey="Rao J">J. Rao</name>
</author>
<author>
<name sortKey="Gambhir, S S" uniqKey="Gambhir S">S. S. Gambhir</name>
</author>
<author>
<name sortKey="Chen, X" uniqKey="Chen X">X. Chen</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Cantley, L C" uniqKey="Cantley L">L. C. Cantley</name>
</author>
<author>
<name sortKey="Neel, B G" uniqKey="Neel B">B. G. Neel</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Caracciolo, V" uniqKey="Caracciolo V">V. Caracciolo</name>
</author>
<author>
<name sortKey="Laurenti, G" uniqKey="Laurenti G">G. Laurenti</name>
</author>
<author>
<name sortKey="Romano, G" uniqKey="Romano G">G. Romano</name>
</author>
<author>
<name sortKey="Carnevale, V" uniqKey="Carnevale V">V. Carnevale</name>
</author>
<author>
<name sortKey="Cimini, A M" uniqKey="Cimini A">A. M. Cimini</name>
</author>
<author>
<name sortKey="Crozier Fitzgerald, C" uniqKey="Crozier Fitzgerald C">C. Crozier-Fitzgerald</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Cen, H" uniqKey="Cen H">H. Cen</name>
</author>
<author>
<name sortKey="Mao, F" uniqKey="Mao F">F. Mao</name>
</author>
<author>
<name sortKey="Aronchik, I" uniqKey="Aronchik I">I. Aronchik</name>
</author>
<author>
<name sortKey="Fuentes, R J" uniqKey="Fuentes R">R. J. Fuentes</name>
</author>
<author>
<name sortKey="Firestone, G L" uniqKey="Firestone G">G. L. Firestone</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Chai, Z" uniqKey="Chai Z">Z. Chai</name>
</author>
<author>
<name sortKey="Hu, X" uniqKey="Hu X">X. Hu</name>
</author>
<author>
<name sortKey="Wei, X" uniqKey="Wei X">X. Wei</name>
</author>
<author>
<name sortKey="Zhan, C" uniqKey="Zhan C">C. Zhan</name>
</author>
<author>
<name sortKey="Lu, L" uniqKey="Lu L">L. Lu</name>
</author>
<author>
<name sortKey="Jiang, K" uniqKey="Jiang K">K. Jiang</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Chakrabarti, M" uniqKey="Chakrabarti M">M. Chakrabarti</name>
</author>
<author>
<name sortKey="Kiseleva, R" uniqKey="Kiseleva R">R. Kiseleva</name>
</author>
<author>
<name sortKey="Vertegel, A" uniqKey="Vertegel A">A. Vertegel</name>
</author>
<author>
<name sortKey="Ray, S K" uniqKey="Ray S">S. K. Ray</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Chakravarti, A" uniqKey="Chakravarti A">A. Chakravarti</name>
</author>
<author>
<name sortKey="Loeffler, J S" uniqKey="Loeffler J">J. S. Loeffler</name>
</author>
<author>
<name sortKey="Dyson, N J" uniqKey="Dyson N">N. J. Dyson</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Chang, Y" uniqKey="Chang Y">Y. Chang</name>
</author>
<author>
<name sortKey="Meng, X" uniqKey="Meng X">X. Meng</name>
</author>
<author>
<name sortKey="Zhao, Y" uniqKey="Zhao Y">Y. Zhao</name>
</author>
<author>
<name sortKey="Li, K" uniqKey="Li K">K. Li</name>
</author>
<author>
<name sortKey="Zhao, B" uniqKey="Zhao B">B. Zhao</name>
</author>
<author>
<name sortKey="Zhu, M" uniqKey="Zhu M">M. Zhu</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Chen, N T" uniqKey="Chen N">N.-T. Chen</name>
</author>
<author>
<name sortKey="Cheng, S H" uniqKey="Cheng S">S.-H. Cheng</name>
</author>
<author>
<name sortKey="Souris, J S" uniqKey="Souris J">J. S. Souris</name>
</author>
<author>
<name sortKey="Chen, C T" uniqKey="Chen C">C.-T. Chen</name>
</author>
<author>
<name sortKey="Mou, C Y" uniqKey="Mou C">C.-Y. Mou</name>
</author>
<author>
<name sortKey="Lo, L W" uniqKey="Lo L">L.-W. Lo</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Chen, Z" uniqKey="Chen Z">Z. Chen</name>
</author>
<author>
<name sortKey="Lai, X" uniqKey="Lai X">X. Lai</name>
</author>
<author>
<name sortKey="Song, S" uniqKey="Song S">S. Song</name>
</author>
<author>
<name sortKey="Zhu, X" uniqKey="Zhu X">X. Zhu</name>
</author>
<author>
<name sortKey="Zhu, J" uniqKey="Zhu J">J. Zhu</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Cheng, S H" uniqKey="Cheng S">S.-H. Cheng</name>
</author>
<author>
<name sortKey="Lee, C H" uniqKey="Lee C">C.-H. Lee</name>
</author>
<author>
<name sortKey="Chen, M C" uniqKey="Chen M">M.-C. Chen</name>
</author>
<author>
<name sortKey="Souris, J S" uniqKey="Souris J">J. S. Souris</name>
</author>
<author>
<name sortKey="Tseng, F G" uniqKey="Tseng F">F.-G. Tseng</name>
</author>
<author>
<name sortKey="Yang, C S" uniqKey="Yang C">C.-S. Yang</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Cheng, Y" uniqKey="Cheng Y">Y. Cheng</name>
</author>
<author>
<name sortKey="Morshed, R A" uniqKey="Morshed R">R. A. Morshed</name>
</author>
<author>
<name sortKey="Auffinger, B" uniqKey="Auffinger B">B. Auffinger</name>
</author>
<author>
<name sortKey="Tobias, A L" uniqKey="Tobias A">A. L. Tobias</name>
</author>
<author>
<name sortKey="Lesniak, M S" uniqKey="Lesniak M">M. S. Lesniak</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Chertok, B" uniqKey="Chertok B">B. Chertok</name>
</author>
<author>
<name sortKey="Moffat, B A" uniqKey="Moffat B">B. A. Moffat</name>
</author>
<author>
<name sortKey="David, A E" uniqKey="David A">A. E. David</name>
</author>
<author>
<name sortKey="Yu, F" uniqKey="Yu F">F. Yu</name>
</author>
<author>
<name sortKey="Bergemann, C" uniqKey="Bergemann C">C. Bergemann</name>
</author>
<author>
<name sortKey="Ross, B D" uniqKey="Ross B">B. D. Ross</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Choi, K Y" uniqKey="Choi K">K. Y. Choi</name>
</author>
<author>
<name sortKey="Liu, G" uniqKey="Liu G">G. Liu</name>
</author>
<author>
<name sortKey="Lee, S" uniqKey="Lee S">S. Lee</name>
</author>
<author>
<name sortKey="Chen, X" uniqKey="Chen X">X. Chen</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Cimini, A" uniqKey="Cimini A">A. Cimini</name>
</author>
<author>
<name sortKey="D Angelo, M" uniqKey="D Angelo M">M. d'Angelo</name>
</author>
<author>
<name sortKey="Benedetti, E" uniqKey="Benedetti E">E. Benedetti</name>
</author>
<author>
<name sortKey="D Angelo, B" uniqKey="D Angelo B">B. D'Angelo</name>
</author>
<author>
<name sortKey="Laurenti, G" uniqKey="Laurenti G">G. Laurenti</name>
</author>
<author>
<name sortKey="Antonosante, A" uniqKey="Antonosante A">A. Antonosante</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Cole, A J" uniqKey="Cole A">A. J. Cole</name>
</author>
<author>
<name sortKey="Yang, V C" uniqKey="Yang V">V. C. Yang</name>
</author>
<author>
<name sortKey="David, A E" uniqKey="David A">A. E. David</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Danhier, F" uniqKey="Danhier F">F. Danhier</name>
</author>
<author>
<name sortKey="Messaoudi, K" uniqKey="Messaoudi K">K. Messaoudi</name>
</author>
<author>
<name sortKey="Lemaire, L" uniqKey="Lemaire L">L. Lemaire</name>
</author>
<author>
<name sortKey="Benoit, J P" uniqKey="Benoit J">J.-P. Benoit</name>
</author>
<author>
<name sortKey="Lagarce, F" uniqKey="Lagarce F">F. Lagarce</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Derfus, A M" uniqKey="Derfus A">A. M. Derfus</name>
</author>
<author>
<name sortKey="Chan, W C W" uniqKey="Chan W">W. C. W. Chan</name>
</author>
<author>
<name sortKey="Bhatia, S N" uniqKey="Bhatia S">S. N. Bhatia</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Di Martino, A" uniqKey="Di Martino A">A. Di Martino</name>
</author>
<author>
<name sortKey="Guselnikova, O A" uniqKey="Guselnikova O">O. A. Guselnikova</name>
</author>
<author>
<name sortKey="Trusova, M E" uniqKey="Trusova M">M. E. Trusova</name>
</author>
<author>
<name sortKey="Postnikov, P S" uniqKey="Postnikov P">P. S. Postnikov</name>
</author>
<author>
<name sortKey="Sedlarik, V" uniqKey="Sedlarik V">V. Sedlarik</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Dixit, S" uniqKey="Dixit S">S. Dixit</name>
</author>
<author>
<name sortKey="Miller, K" uniqKey="Miller K">K. Miller</name>
</author>
<author>
<name sortKey="Zhu, Y" uniqKey="Zhu Y">Y. Zhu</name>
</author>
<author>
<name sortKey="Mckinnon, E" uniqKey="Mckinnon E">E. McKinnon</name>
</author>
<author>
<name sortKey="Novak, T" uniqKey="Novak T">T. Novak</name>
</author>
<author>
<name sortKey="Kenney, M E" uniqKey="Kenney M">M. E. Kenney</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Dixit, S" uniqKey="Dixit S">S. Dixit</name>
</author>
<author>
<name sortKey="Novak, T" uniqKey="Novak T">T. Novak</name>
</author>
<author>
<name sortKey="Miller, K" uniqKey="Miller K">K. Miller</name>
</author>
<author>
<name sortKey="Zhu, Y" uniqKey="Zhu Y">Y. Zhu</name>
</author>
<author>
<name sortKey="Kenney, M E" uniqKey="Kenney M">M. E. Kenney</name>
</author>
<author>
<name sortKey="Broome, A M" uniqKey="Broome A">A.-M. Broome</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Dong, X" uniqKey="Dong X">X. Dong</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Duncan, R" uniqKey="Duncan R">R. Duncan</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Fan, Z" uniqKey="Fan Z">Z. Fan</name>
</author>
<author>
<name sortKey="Fu, P P" uniqKey="Fu P">P. P. Fu</name>
</author>
<author>
<name sortKey="Yu, H" uniqKey="Yu H">H. Yu</name>
</author>
<author>
<name sortKey="Ray, P C" uniqKey="Ray P">P. C. Ray</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Fattahi, H" uniqKey="Fattahi H">H. Fattahi</name>
</author>
<author>
<name sortKey="Laurent, S" uniqKey="Laurent S">S. Laurent</name>
</author>
<author>
<name sortKey="Liu, F" uniqKey="Liu F">F. Liu</name>
</author>
<author>
<name sortKey="Arsalani, N" uniqKey="Arsalani N">N. Arsalani</name>
</author>
<author>
<name sortKey="Vander Elst, L" uniqKey="Vander Elst L">L. Vander Elst</name>
</author>
<author>
<name sortKey="Muller, R N" uniqKey="Muller R">R. N. Muller</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Feng, Y" uniqKey="Feng Y">Y. Feng</name>
</author>
<author>
<name sortKey="Panwar, N" uniqKey="Panwar N">N. Panwar</name>
</author>
<author>
<name sortKey="Tng, D J H" uniqKey="Tng D">D. J. H. Tng</name>
</author>
<author>
<name sortKey="Tjin, S C" uniqKey="Tjin S">S. C. Tjin</name>
</author>
<author>
<name sortKey="Wang, K" uniqKey="Wang K">K. Wang</name>
</author>
<author>
<name sortKey="Yong, K T" uniqKey="Yong K">K.-T. Yong</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Fidoamore, A" uniqKey="Fidoamore A">A. Fidoamore</name>
</author>
<author>
<name sortKey="Cristiano, L" uniqKey="Cristiano L">L. Cristiano</name>
</author>
<author>
<name sortKey="Antonosante, A" uniqKey="Antonosante A">A. Antonosante</name>
</author>
<author>
<name sortKey="D Angelo, M" uniqKey="D Angelo M">M. d'Angelo</name>
</author>
<author>
<name sortKey="Di Giacomo, E" uniqKey="Di Giacomo E">E. Di Giacomo</name>
</author>
<author>
<name sortKey="Astarita, C" uniqKey="Astarita C">C. Astarita</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Frezza, C" uniqKey="Frezza C">C. Frezza</name>
</author>
<author>
<name sortKey="Gottlieb, E" uniqKey="Gottlieb E">E. Gottlieb</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Frimpong, R A" uniqKey="Frimpong R">R. A. Frimpong</name>
</author>
<author>
<name sortKey="Hilt, J Z" uniqKey="Hilt J">J. Z. Hilt</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Gary Bobo, M" uniqKey="Gary Bobo M">M. Gary-Bobo</name>
</author>
<author>
<name sortKey="Hocine, O" uniqKey="Hocine O">O. Hocine</name>
</author>
<author>
<name sortKey="Brevet, D" uniqKey="Brevet D">D. Brevet</name>
</author>
<author>
<name sortKey="Maynadier, M" uniqKey="Maynadier M">M. Maynadier</name>
</author>
<author>
<name sortKey="Raehm, L" uniqKey="Raehm L">L. Raehm</name>
</author>
<author>
<name sortKey="Richeter, S" uniqKey="Richeter S">S. Richeter</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Gatenby, R A" uniqKey="Gatenby R">R. A. Gatenby</name>
</author>
<author>
<name sortKey="Gillies, R J" uniqKey="Gillies R">R. J. Gillies</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Gaya, A" uniqKey="Gaya A">A. Gaya</name>
</author>
<author>
<name sortKey="Rees, J" uniqKey="Rees J">J. Rees</name>
</author>
<author>
<name sortKey="Greenstein, A" uniqKey="Greenstein A">A. Greenstein</name>
</author>
<author>
<name sortKey="Stebbing, J" uniqKey="Stebbing J">J. Stebbing</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Golombek, S K" uniqKey="Golombek S">S. K. Golombek</name>
</author>
<author>
<name sortKey="May, J N" uniqKey="May J">J.-N. May</name>
</author>
<author>
<name sortKey="Theek, B" uniqKey="Theek B">B. Theek</name>
</author>
<author>
<name sortKey="Appold, L" uniqKey="Appold L">L. Appold</name>
</author>
<author>
<name sortKey="Drude, N" uniqKey="Drude N">N. Drude</name>
</author>
<author>
<name sortKey="Kiessling, F" uniqKey="Kiessling F">F. Kiessling</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Graverini, G" uniqKey="Graverini G">G. Graverini</name>
</author>
<author>
<name sortKey="Piazzini, V" uniqKey="Piazzini V">V. Piazzini</name>
</author>
<author>
<name sortKey="Landucci, E" uniqKey="Landucci E">E. Landucci</name>
</author>
<author>
<name sortKey="Pantano, D" uniqKey="Pantano D">D. Pantano</name>
</author>
<author>
<name sortKey="Nardiello, P" uniqKey="Nardiello P">P. Nardiello</name>
</author>
<author>
<name sortKey="Casamenti, F" uniqKey="Casamenti F">F. Casamenti</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Gursel, D B" uniqKey="Gursel D">D. B. Gürsel</name>
</author>
<author>
<name sortKey="Shin, B J" uniqKey="Shin B">B. J. Shin</name>
</author>
<author>
<name sortKey="Burkhardt, J K" uniqKey="Burkhardt J">J.-K. Burkhardt</name>
</author>
<author>
<name sortKey="Kesavabhotla, K" uniqKey="Kesavabhotla K">K. Kesavabhotla</name>
</author>
<author>
<name sortKey="Schlaff, C D" uniqKey="Schlaff C">C. D. Schlaff</name>
</author>
<author>
<name sortKey="Boockvar, J A" uniqKey="Boockvar J">J. A. Boockvar</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Hainfeld, J F" uniqKey="Hainfeld J">J. F. Hainfeld</name>
</author>
<author>
<name sortKey="Smilowitz, H M" uniqKey="Smilowitz H">H. M. Smilowitz</name>
</author>
<author>
<name sortKey="O Connor, M J" uniqKey="O Connor M">M. J. O'Connor</name>
</author>
<author>
<name sortKey="Dilmanian, F A" uniqKey="Dilmanian F">F. A. Dilmanian</name>
</author>
<author>
<name sortKey="Slatkin, D N" uniqKey="Slatkin D">D. N. Slatkin</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Hare, J I" uniqKey="Hare J">J. I. Hare</name>
</author>
<author>
<name sortKey="Lammers, T" uniqKey="Lammers T">T. Lammers</name>
</author>
<author>
<name sortKey="Ashford, M B" uniqKey="Ashford M">M. B. Ashford</name>
</author>
<author>
<name sortKey="Puri, S" uniqKey="Puri S">S. Puri</name>
</author>
<author>
<name sortKey="Storm, G" uniqKey="Storm G">G. Storm</name>
</author>
<author>
<name sortKey="Barry, S T" uniqKey="Barry S">S. T. Barry</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Harrington, K J" uniqKey="Harrington K">K. J. Harrington</name>
</author>
<author>
<name sortKey="Mohammadtaghi, S" uniqKey="Mohammadtaghi S">S. Mohammadtaghi</name>
</author>
<author>
<name sortKey="Uster, P S" uniqKey="Uster P">P. S. Uster</name>
</author>
<author>
<name sortKey="Glass, D" uniqKey="Glass D">D. Glass</name>
</author>
<author>
<name sortKey="Peters, A M" uniqKey="Peters A">A. M. Peters</name>
</author>
<author>
<name sortKey="Vile, R G" uniqKey="Vile R">R. G. Vile</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Helms, H C" uniqKey="Helms H">H. C. Helms</name>
</author>
<author>
<name sortKey="Abbott, N J" uniqKey="Abbott N">N. J. Abbott</name>
</author>
<author>
<name sortKey="Burek, M" uniqKey="Burek M">M. Burek</name>
</author>
<author>
<name sortKey="Cecchelli, R" uniqKey="Cecchelli R">R. Cecchelli</name>
</author>
<author>
<name sortKey="Couraud, P O" uniqKey="Couraud P">P.-O. Couraud</name>
</author>
<author>
<name sortKey="Deli, M A" uniqKey="Deli M">M. A. Deli</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Heo, D N" uniqKey="Heo D">D. N. Heo</name>
</author>
<author>
<name sortKey="Yang, D H" uniqKey="Yang D">D. H. Yang</name>
</author>
<author>
<name sortKey="Moon, H J" uniqKey="Moon H">H.-J. Moon</name>
</author>
<author>
<name sortKey="Lee, J B" uniqKey="Lee J">J. B. Lee</name>
</author>
<author>
<name sortKey="Bae, M S" uniqKey="Bae M">M. S. Bae</name>
</author>
<author>
<name sortKey="Lee, S C" uniqKey="Lee S">S. C. Lee</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Hsu, S P C" uniqKey="Hsu S">S. P. C. Hsu</name>
</author>
<author>
<name sortKey="Kuo, J S" uniqKey="Kuo J">J. S. Kuo</name>
</author>
<author>
<name sortKey="Chiang, H C" uniqKey="Chiang H">H.-C. Chiang</name>
</author>
<author>
<name sortKey="Wang, H E" uniqKey="Wang H">H.-E. Wang</name>
</author>
<author>
<name sortKey="Wang, Y S" uniqKey="Wang Y">Y.-S. Wang</name>
</author>
<author>
<name sortKey="Huang, C C" uniqKey="Huang C">C.-C. Huang</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Huang, X" uniqKey="Huang X">X. Huang</name>
</author>
<author>
<name sortKey="Zhang, F" uniqKey="Zhang F">F. Zhang</name>
</author>
<author>
<name sortKey="Wang, H" uniqKey="Wang H">H. Wang</name>
</author>
<author>
<name sortKey="Niu, G" uniqKey="Niu G">G. Niu</name>
</author>
<author>
<name sortKey="Choi, K Y" uniqKey="Choi K">K. Y. Choi</name>
</author>
<author>
<name sortKey="Swierczewska, M" uniqKey="Swierczewska M">M. Swierczewska</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Jhaveri, A" uniqKey="Jhaveri A">A. Jhaveri</name>
</author>
<author>
<name sortKey="Deshpande, P" uniqKey="Deshpande P">P. Deshpande</name>
</author>
<author>
<name sortKey="Pattni, B" uniqKey="Pattni B">B. Pattni</name>
</author>
<author>
<name sortKey="Torchilin, V" uniqKey="Torchilin V">V. Torchilin</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Jiang, X" uniqKey="Jiang X">X. Jiang</name>
</author>
<author>
<name sortKey="Sha, X" uniqKey="Sha X">X. Sha</name>
</author>
<author>
<name sortKey="Xin, H" uniqKey="Xin H">H. Xin</name>
</author>
<author>
<name sortKey="Xu, X" uniqKey="Xu X">X. Xu</name>
</author>
<author>
<name sortKey="Gu, J" uniqKey="Gu J">J. Gu</name>
</author>
<author>
<name sortKey="Xia, W" uniqKey="Xia W">W. Xia</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Joh, D Y" uniqKey="Joh D">D. Y. Joh</name>
</author>
<author>
<name sortKey="Sun, L" uniqKey="Sun L">L. Sun</name>
</author>
<author>
<name sortKey="Stangl, M" uniqKey="Stangl M">M. Stangl</name>
</author>
<author>
<name sortKey="Al Zaki, A" uniqKey="Al Zaki A">A. Al Zaki</name>
</author>
<author>
<name sortKey="Murty, S" uniqKey="Murty S">S. Murty</name>
</author>
<author>
<name sortKey="Santoiemma, P P" uniqKey="Santoiemma P">P. P. Santoiemma</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Jokerst, J V" uniqKey="Jokerst J">J. V. Jokerst</name>
</author>
<author>
<name sortKey="Gambhir, S S" uniqKey="Gambhir S">S. S. Gambhir</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kelkar, S S" uniqKey="Kelkar S">S. S. Kelkar</name>
</author>
<author>
<name sortKey="Reineke, T M" uniqKey="Reineke T">T. M. Reineke</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kenny, G D" uniqKey="Kenny G">G. D. Kenny</name>
</author>
<author>
<name sortKey="Kamaly, N" uniqKey="Kamaly N">N. Kamaly</name>
</author>
<author>
<name sortKey="Kalber, T L" uniqKey="Kalber T">T. L. Kalber</name>
</author>
<author>
<name sortKey="Brody, L P" uniqKey="Brody L">L. P. Brody</name>
</author>
<author>
<name sortKey="Sahuri, M" uniqKey="Sahuri M">M. Sahuri</name>
</author>
<author>
<name sortKey="Shamsaei, E" uniqKey="Shamsaei E">E. Shamsaei</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Keunen, O" uniqKey="Keunen O">O. Keunen</name>
</author>
<author>
<name sortKey="Johansson, M" uniqKey="Johansson M">M. Johansson</name>
</author>
<author>
<name sortKey="Oudin, A" uniqKey="Oudin A">A. Oudin</name>
</author>
<author>
<name sortKey="Sanzey, M" uniqKey="Sanzey M">M. Sanzey</name>
</author>
<author>
<name sortKey="Rahim, S A A" uniqKey="Rahim S">S. A. A. Rahim</name>
</author>
<author>
<name sortKey="Fack, F" uniqKey="Fack F">F. Fack</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kievit, F M" uniqKey="Kievit F">F. M. Kievit</name>
</author>
<author>
<name sortKey="Zhang, M" uniqKey="Zhang M">M. Zhang</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kirchner, C" uniqKey="Kirchner C">C. Kirchner</name>
</author>
<author>
<name sortKey="Liedl, T" uniqKey="Liedl T">T. Liedl</name>
</author>
<author>
<name sortKey="Kudera, S" uniqKey="Kudera S">S. Kudera</name>
</author>
<author>
<name sortKey="Pellegrino, T" uniqKey="Pellegrino T">T. Pellegrino</name>
</author>
<author>
<name sortKey="Mu Oz Javier, A" uniqKey="Mu Oz Javier A">A. Muñoz Javier</name>
</author>
<author>
<name sortKey="Gaub, H E" uniqKey="Gaub H">H. E. Gaub</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kondo, T" uniqKey="Kondo T">T. Kondo</name>
</author>
<author>
<name sortKey="Setoguchi, T" uniqKey="Setoguchi T">T. Setoguchi</name>
</author>
<author>
<name sortKey="Taga, T" uniqKey="Taga T">T. Taga</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Koo, Y E L" uniqKey="Koo Y">Y.-E. L. Koo</name>
</author>
<author>
<name sortKey="Reddy, G R" uniqKey="Reddy G">G. R. Reddy</name>
</author>
<author>
<name sortKey="Bhojani, M" uniqKey="Bhojani M">M. Bhojani</name>
</author>
<author>
<name sortKey="Schneider, R" uniqKey="Schneider R">R. Schneider</name>
</author>
<author>
<name sortKey="Philbert, M A" uniqKey="Philbert M">M. A. Philbert</name>
</author>
<author>
<name sortKey="Rehemtulla, A" uniqKey="Rehemtulla A">A. Rehemtulla</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kroemer, G" uniqKey="Kroemer G">G. Kroemer</name>
</author>
<author>
<name sortKey="Pouyssegur, J" uniqKey="Pouyssegur J">J. Pouyssegur</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kroonen, J" uniqKey="Kroonen J">J. Kroonen</name>
</author>
<author>
<name sortKey="Nguyen Khac, M T" uniqKey="Nguyen Khac M">M. T. Nguyen-Khac</name>
</author>
<author>
<name sortKey="Deprez, M" uniqKey="Deprez M">M. Deprez</name>
</author>
<author>
<name sortKey="Rogister, B" uniqKey="Rogister B">B. Rogister</name>
</author>
<author>
<name sortKey="Robe, P" uniqKey="Robe P">P. Robe</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kumar, A" uniqKey="Kumar A">A. Kumar</name>
</author>
<author>
<name sortKey="Lee, J Y" uniqKey="Lee J">J.-Y. Lee</name>
</author>
<author>
<name sortKey="Kim, H S" uniqKey="Kim H">H.-S. Kim</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kumar, A" uniqKey="Kumar A">A. Kumar</name>
</author>
<author>
<name sortKey="Zhang, X" uniqKey="Zhang X">X. Zhang</name>
</author>
<author>
<name sortKey="Liang, X J" uniqKey="Liang X">X.-J. Liang</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kuo, Y C" uniqKey="Kuo Y">Y.-C. Kuo</name>
</author>
<author>
<name sortKey="Cheng, S J" uniqKey="Cheng S">S.-J. Cheng</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Lakka, S S" uniqKey="Lakka S">S. S. Lakka</name>
</author>
<author>
<name sortKey="Rao, J S" uniqKey="Rao J">J. S. Rao</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Lammers, T" uniqKey="Lammers T">T. Lammers</name>
</author>
<author>
<name sortKey="Kiessling, F" uniqKey="Kiessling F">F. Kiessling</name>
</author>
<author>
<name sortKey="Hennink, W E" uniqKey="Hennink W">W. E. Hennink</name>
</author>
<author>
<name sortKey="Storm, G" uniqKey="Storm G">G. Storm</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Lammers, T" uniqKey="Lammers T">T. Lammers</name>
</author>
<author>
<name sortKey="Koczera, P" uniqKey="Koczera P">P. Koczera</name>
</author>
<author>
<name sortKey="Fokong, S" uniqKey="Fokong S">S. Fokong</name>
</author>
<author>
<name sortKey="Gremse, F" uniqKey="Gremse F">F. Gremse</name>
</author>
<author>
<name sortKey="Ehling, J" uniqKey="Ehling J">J. Ehling</name>
</author>
<author>
<name sortKey="Vogt, M" uniqKey="Vogt M">M. Vogt</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Lee, J E" uniqKey="Lee J">J. E. Lee</name>
</author>
<author>
<name sortKey="Lee, N" uniqKey="Lee N">N. Lee</name>
</author>
<author>
<name sortKey="Kim, T" uniqKey="Kim T">T. Kim</name>
</author>
<author>
<name sortKey="Kim, J" uniqKey="Kim J">J. Kim</name>
</author>
<author>
<name sortKey="Hyeon, T" uniqKey="Hyeon T">T. Hyeon</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Lindner, L H" uniqKey="Lindner L">L. H. Lindner</name>
</author>
<author>
<name sortKey="Hossann, M" uniqKey="Hossann M">M. Hossann</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Liong, M" uniqKey="Liong M">M. Liong</name>
</author>
<author>
<name sortKey="Lu, J" uniqKey="Lu J">J. Lu</name>
</author>
<author>
<name sortKey="Kovochich, M" uniqKey="Kovochich M">M. Kovochich</name>
</author>
<author>
<name sortKey="Xia, T" uniqKey="Xia T">T. Xia</name>
</author>
<author>
<name sortKey="Ruehm, S G" uniqKey="Ruehm S">S. G. Ruehm</name>
</author>
<author>
<name sortKey="Nel, A E" uniqKey="Nel A">A. E. Nel</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Liu, G" uniqKey="Liu G">G. Liu</name>
</author>
<author>
<name sortKey="Wang, Z" uniqKey="Wang Z">Z. Wang</name>
</author>
<author>
<name sortKey="Lu, J" uniqKey="Lu J">J. Lu</name>
</author>
<author>
<name sortKey="Xia, C" uniqKey="Xia C">C. Xia</name>
</author>
<author>
<name sortKey="Gao, F" uniqKey="Gao F">F. Gao</name>
</author>
<author>
<name sortKey="Gong, Q" uniqKey="Gong Q">Q. Gong</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Liu, X" uniqKey="Liu X">X. Liu</name>
</author>
<author>
<name sortKey="Madhankumar, A B" uniqKey="Madhankumar A">A. B. Madhankumar</name>
</author>
<author>
<name sortKey="Miller, P A" uniqKey="Miller P">P. A. Miller</name>
</author>
<author>
<name sortKey="Duck, K A" uniqKey="Duck K">K. A. Duck</name>
</author>
<author>
<name sortKey="Hafenstein, S" uniqKey="Hafenstein S">S. Hafenstein</name>
</author>
<author>
<name sortKey="Rizk, E" uniqKey="Rizk E">E. Rizk</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Lo, S T" uniqKey="Lo S">S.-T. Lo</name>
</author>
<author>
<name sortKey="Kumar, A" uniqKey="Kumar A">A. Kumar</name>
</author>
<author>
<name sortKey="Hsieh, J T" uniqKey="Hsieh J">J.-T. Hsieh</name>
</author>
<author>
<name sortKey="Sun, X" uniqKey="Sun X">X. Sun</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Lu, J" uniqKey="Lu J">J. Lu</name>
</author>
<author>
<name sortKey="Ma, S" uniqKey="Ma S">S. Ma</name>
</author>
<author>
<name sortKey="Sun, J" uniqKey="Sun J">J. Sun</name>
</author>
<author>
<name sortKey="Xia, C" uniqKey="Xia C">C. Xia</name>
</author>
<author>
<name sortKey="Liu, C" uniqKey="Liu C">C. Liu</name>
</author>
<author>
<name sortKey="Wang, Z" uniqKey="Wang Z">Z. Wang</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Mamaeva, V" uniqKey="Mamaeva V">V. Mamaeva</name>
</author>
<author>
<name sortKey="Sahlgren, C" uniqKey="Sahlgren C">C. Sahlgren</name>
</author>
<author>
<name sortKey="Linden, M" uniqKey="Linden M">M. Lindén</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Mattei, T A" uniqKey="Mattei T">T. A. Mattei</name>
</author>
<author>
<name sortKey="Rehman, A A" uniqKey="Rehman A">A. A. Rehman</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Melancon, M P" uniqKey="Melancon M">M. P. Melancon</name>
</author>
<author>
<name sortKey="Lu, W" uniqKey="Lu W">W. Lu</name>
</author>
<author>
<name sortKey="Zhong, M" uniqKey="Zhong M">M. Zhong</name>
</author>
<author>
<name sortKey="Zhou, M" uniqKey="Zhou M">M. Zhou</name>
</author>
<author>
<name sortKey="Liang, G" uniqKey="Liang G">G. Liang</name>
</author>
<author>
<name sortKey="Elliott, A M" uniqKey="Elliott A">A. M. Elliott</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Mendes, M" uniqKey="Mendes M">M. Mendes</name>
</author>
<author>
<name sortKey="Sousa, J J" uniqKey="Sousa J">J. J. Sousa</name>
</author>
<author>
<name sortKey="Pais, A" uniqKey="Pais A">A. Pais</name>
</author>
<author>
<name sortKey="Vitorino, C" uniqKey="Vitorino C">C. Vitorino</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Merkel, O M" uniqKey="Merkel O">O. M. Merkel</name>
</author>
<author>
<name sortKey="Mintzer, M A" uniqKey="Mintzer M">M. A. Mintzer</name>
</author>
<author>
<name sortKey="Librizzi, D" uniqKey="Librizzi D">D. Librizzi</name>
</author>
<author>
<name sortKey="Samsonova, O" uniqKey="Samsonova O">O. Samsonova</name>
</author>
<author>
<name sortKey="Dicke, T" uniqKey="Dicke T">T. Dicke</name>
</author>
<author>
<name sortKey="Sproat, B" uniqKey="Sproat B">B. Sproat</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Mintzer, M A" uniqKey="Mintzer M">M. A. Mintzer</name>
</author>
<author>
<name sortKey="Grinstaff, M W" uniqKey="Grinstaff M">M. W. Grinstaff</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Miranda, A" uniqKey="Miranda A">A. Miranda</name>
</author>
<author>
<name sortKey="Blanco Prieto, M J" uniqKey="Blanco Prieto M">M. J. Blanco-Prieto</name>
</author>
<author>
<name sortKey="Sousa, J" uniqKey="Sousa J">J. Sousa</name>
</author>
<author>
<name sortKey="Pais, A" uniqKey="Pais A">A. Pais</name>
</author>
<author>
<name sortKey="Vitorino, C" uniqKey="Vitorino C">C. Vitorino</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Muthu, M S" uniqKey="Muthu M">M. S. Muthu</name>
</author>
<author>
<name sortKey="Leong, D T" uniqKey="Leong D">D. T. Leong</name>
</author>
<author>
<name sortKey="Mei, L" uniqKey="Mei L">L. Mei</name>
</author>
<author>
<name sortKey="Feng, S S" uniqKey="Feng S">S.-S. Feng</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Muthu, M S" uniqKey="Muthu M">M. S. Muthu</name>
</author>
<author>
<name sortKey="Mei, L" uniqKey="Mei L">L. Mei</name>
</author>
<author>
<name sortKey="Feng, S S" uniqKey="Feng S">S.-S. Feng</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Na, K" uniqKey="Na K">K. Na</name>
</author>
<author>
<name sortKey="Lee, S A" uniqKey="Lee S">S. A. Lee</name>
</author>
<author>
<name sortKey="Jung, S H" uniqKey="Jung S">S. H. Jung</name>
</author>
<author>
<name sortKey="Shin, B C" uniqKey="Shin B">B. C. Shin</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Nam, J" uniqKey="Nam J">J. Nam</name>
</author>
<author>
<name sortKey="Won, N" uniqKey="Won N">N. Won</name>
</author>
<author>
<name sortKey="Bang, J" uniqKey="Bang J">J. Bang</name>
</author>
<author>
<name sortKey="Jin, H" uniqKey="Jin H">H. Jin</name>
</author>
<author>
<name sortKey="Park, J" uniqKey="Park J">J. Park</name>
</author>
<author>
<name sortKey="Jung, S" uniqKey="Jung S">S. Jung</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Nam, L" uniqKey="Nam L">L. Nam</name>
</author>
<author>
<name sortKey="Coll, C" uniqKey="Coll C">C. Coll</name>
</author>
<author>
<name sortKey="Erthal, L" uniqKey="Erthal L">L. Erthal</name>
</author>
<author>
<name sortKey="De La Torre, C" uniqKey="De La Torre C">C. de la Torre</name>
</author>
<author>
<name sortKey="Serrano, D" uniqKey="Serrano D">D. Serrano</name>
</author>
<author>
<name sortKey="Martinez Ma Ez, R" uniqKey="Martinez Ma Ez R">R. Martínez-Máñez</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Nance, E" uniqKey="Nance E">E. Nance</name>
</author>
<author>
<name sortKey="Zhang, C" uniqKey="Zhang C">C. Zhang</name>
</author>
<author>
<name sortKey="Shih, T Y" uniqKey="Shih T">T.-Y. Shih</name>
</author>
<author>
<name sortKey="Xu, Q" uniqKey="Xu Q">Q. Xu</name>
</author>
<author>
<name sortKey="Schuster, B S" uniqKey="Schuster B">B. S. Schuster</name>
</author>
<author>
<name sortKey="Hanes, J" uniqKey="Hanes J">J. Hanes</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Newton, H B" uniqKey="Newton H">H. B. Newton</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Nicholas, M K" uniqKey="Nicholas M">M. K. Nicholas</name>
</author>
<author>
<name sortKey="Lukas, R V" uniqKey="Lukas R">R. V. Lukas</name>
</author>
<author>
<name sortKey="Jafri, N F" uniqKey="Jafri N">N. F. Jafri</name>
</author>
<author>
<name sortKey="Faoro, L" uniqKey="Faoro L">L. Faoro</name>
</author>
<author>
<name sortKey="Salgia, R" uniqKey="Salgia R">R. Salgia</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Onoshima, D" uniqKey="Onoshima D">D. Onoshima</name>
</author>
<author>
<name sortKey="Yukawa, H" uniqKey="Yukawa H">H. Yukawa</name>
</author>
<author>
<name sortKey="Baba, Y" uniqKey="Baba Y">Y. Baba</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Orunoglu, M" uniqKey="Orunoglu M">M. Orunoglu</name>
</author>
<author>
<name sortKey="Kaffashi, A" uniqKey="Kaffashi A">A. Kaffashi</name>
</author>
<author>
<name sortKey="Pehlivan, S B" uniqKey="Pehlivan S">S. B. Pehlivan</name>
</author>
<author>
<name sortKey="Sahin, S" uniqKey="Sahin S">S. Sahin</name>
</author>
<author>
<name sortKey="Soylemezoglu, F" uniqKey="Soylemezoglu F">F. Söylemezoglu</name>
</author>
<author>
<name sortKey="Oguz, K K" uniqKey="Oguz K">K. K. Oguz</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Pacioni, S" uniqKey="Pacioni S">S. Pacioni</name>
</author>
<author>
<name sortKey="D Alessandris, Q G" uniqKey="D Alessandris Q">Q. G. D'Alessandris</name>
</author>
<author>
<name sortKey="Giannetti, S" uniqKey="Giannetti S">S. Giannetti</name>
</author>
<author>
<name sortKey="Morgante, L" uniqKey="Morgante L">L. Morgante</name>
</author>
<author>
<name sortKey="Cocce, V" uniqKey="Cocce V">V. Coccè</name>
</author>
<author>
<name sortKey="Bonomi, A" uniqKey="Bonomi A">A. Bonomi</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Pan, B" uniqKey="Pan B">B. Pan</name>
</author>
<author>
<name sortKey="Cui, D" uniqKey="Cui D">D. Cui</name>
</author>
<author>
<name sortKey="Sheng, Y" uniqKey="Sheng Y">Y. Sheng</name>
</author>
<author>
<name sortKey="Ozkan, C" uniqKey="Ozkan C">C. Ozkan</name>
</author>
<author>
<name sortKey="Gao, F" uniqKey="Gao F">F. Gao</name>
</author>
<author>
<name sortKey="He, R" uniqKey="He R">R. He</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Pankhurst, Q A" uniqKey="Pankhurst Q">Q. A. Pankhurst</name>
</author>
<author>
<name sortKey="Connolly, J" uniqKey="Connolly J">J. Connolly</name>
</author>
<author>
<name sortKey="Jones, S K" uniqKey="Jones S">S. K. Jones</name>
</author>
<author>
<name sortKey="Dobson, J" uniqKey="Dobson J">J. Dobson</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Park, J H" uniqKey="Park J">J.-H. Park</name>
</author>
<author>
<name sortKey="Ryu, C H" uniqKey="Ryu C">C. H. Ryu</name>
</author>
<author>
<name sortKey="Kim, M J" uniqKey="Kim M">M. J. Kim</name>
</author>
<author>
<name sortKey="Jeun, S S" uniqKey="Jeun S">S.-S. Jeun</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Peer, D" uniqKey="Peer D">D. Peer</name>
</author>
<author>
<name sortKey="Karp, J M" uniqKey="Karp J">J. M. Karp</name>
</author>
<author>
<name sortKey="Hong, S" uniqKey="Hong S">S. Hong</name>
</author>
<author>
<name sortKey="Farokhzad, O C" uniqKey="Farokhzad O">O. C. Farokhzad</name>
</author>
<author>
<name sortKey="Margalit, R" uniqKey="Margalit R">R. Margalit</name>
</author>
<author>
<name sortKey="Langer, R" uniqKey="Langer R">R. Langer</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Petersen, A L" uniqKey="Petersen A">A. L. Petersen</name>
</author>
<author>
<name sortKey="Binderup, T" uniqKey="Binderup T">T. Binderup</name>
</author>
<author>
<name sortKey="J Lck, R I" uniqKey="J Lck R">R. I. Jølck</name>
</author>
<author>
<name sortKey="Rasmussen, P" uniqKey="Rasmussen P">P. Rasmussen</name>
</author>
<author>
<name sortKey="Henriksen, J R" uniqKey="Henriksen J">J. R. Henriksen</name>
</author>
<author>
<name sortKey="Pfeifer, A K" uniqKey="Pfeifer A">A. K. Pfeifer</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Pilkington, G J" uniqKey="Pilkington G">G. J. Pilkington</name>
</author>
<author>
<name sortKey="Maherally, Z" uniqKey="Maherally Z">Z. Maherally</name>
</author>
<author>
<name sortKey="Jassam, S" uniqKey="Jassam S">S. Jassam</name>
</author>
<author>
<name sortKey="Barbu, E" uniqKey="Barbu E">E. Barbu</name>
</author>
<author>
<name sortKey="Fillmore, H" uniqKey="Fillmore H">H. Fillmore</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Piquer, J" uniqKey="Piquer J">J. Piquer</name>
</author>
<author>
<name sortKey="Llacer, J L" uniqKey="Llacer J">J. L. Llácer</name>
</author>
<author>
<name sortKey="Rovira, V" uniqKey="Rovira V">V. Rovira</name>
</author>
<author>
<name sortKey="Riesgo, P" uniqKey="Riesgo P">P. Riesgo</name>
</author>
<author>
<name sortKey="Rodriguez, R" uniqKey="Rodriguez R">R. Rodriguez</name>
</author>
<author>
<name sortKey="Cremades, A" uniqKey="Cremades A">A. Cremades</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Puputti, M" uniqKey="Puputti M">M. Puputti</name>
</author>
<author>
<name sortKey="Tynninen, O" uniqKey="Tynninen O">O. Tynninen</name>
</author>
<author>
<name sortKey="Sihto, H" uniqKey="Sihto H">H. Sihto</name>
</author>
<author>
<name sortKey="Blom, T" uniqKey="Blom T">T. Blom</name>
</author>
<author>
<name sortKey="M Enp, H" uniqKey="M Enp H">H. Mäenp,ää</name>
</author>
<author>
<name sortKey="Isola, J" uniqKey="Isola J">J. Isola</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Pysz, M A" uniqKey="Pysz M">M. A. Pysz</name>
</author>
<author>
<name sortKey="Gambhir, S S" uniqKey="Gambhir S">S. S. Gambhir</name>
</author>
<author>
<name sortKey="Willmann, J K" uniqKey="Willmann J">J. K. Willmann</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Qu, J" uniqKey="Qu J">J. Qu</name>
</author>
<author>
<name sortKey="Zhang, L" uniqKey="Zhang L">L. Zhang</name>
</author>
<author>
<name sortKey="Chen, Z" uniqKey="Chen Z">Z. Chen</name>
</author>
<author>
<name sortKey="Mao, G" uniqKey="Mao G">G. Mao</name>
</author>
<author>
<name sortKey="Gao, Z" uniqKey="Gao Z">Z. Gao</name>
</author>
<author>
<name sortKey="Lai, X" uniqKey="Lai X">X. Lai</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ren, J" uniqKey="Ren J">J. Ren</name>
</author>
<author>
<name sortKey="Shen, S" uniqKey="Shen S">S. Shen</name>
</author>
<author>
<name sortKey="Wang, D" uniqKey="Wang D">D. Wang</name>
</author>
<author>
<name sortKey="Xi, Z" uniqKey="Xi Z">Z. Xi</name>
</author>
<author>
<name sortKey="Guo, L" uniqKey="Guo L">L. Guo</name>
</author>
<author>
<name sortKey="Pang, Z" uniqKey="Pang Z">Z. Pang</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Rivera Gil, P" uniqKey="Rivera Gil P">P. Rivera Gil</name>
</author>
<author>
<name sortKey="Huhn, D" uniqKey="Huhn D">D. Hühn</name>
</author>
<author>
<name sortKey="Del Mercato, L L" uniqKey="Del Mercato L">L. L. del Mercato</name>
</author>
<author>
<name sortKey="Sasse, D" uniqKey="Sasse D">D. Sasse</name>
</author>
<author>
<name sortKey="Parak, W J" uniqKey="Parak W">W. J. Parak</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Robinson, J T" uniqKey="Robinson J">J. T. Robinson</name>
</author>
<author>
<name sortKey="Welsher, K" uniqKey="Welsher K">K. Welsher</name>
</author>
<author>
<name sortKey="Tabakman, S M" uniqKey="Tabakman S">S. M. Tabakman</name>
</author>
<author>
<name sortKey="Sherlock, S P" uniqKey="Sherlock S">S. P. Sherlock</name>
</author>
<author>
<name sortKey="Wang, H" uniqKey="Wang H">H. Wang</name>
</author>
<author>
<name sortKey="Luong, R" uniqKey="Luong R">R. Luong</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Rock, K" uniqKey="Rock K">K. Rock</name>
</author>
<author>
<name sortKey="Mcardle, O" uniqKey="Mcardle O">O. McArdle</name>
</author>
<author>
<name sortKey="Forde, P" uniqKey="Forde P">P. Forde</name>
</author>
<author>
<name sortKey="Dunne, M" uniqKey="Dunne M">M. Dunne</name>
</author>
<author>
<name sortKey="Fitzpatrick, D" uniqKey="Fitzpatrick D">D. Fitzpatrick</name>
</author>
<author>
<name sortKey="O Neill, B" uniqKey="O Neill B">B. O'Neill</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ruan, S" uniqKey="Ruan S">S. Ruan</name>
</author>
<author>
<name sortKey="He, Q" uniqKey="He Q">Q. He</name>
</author>
<author>
<name sortKey="Gao, H" uniqKey="Gao H">H. Gao</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Sailor, M J" uniqKey="Sailor M">M. J. Sailor</name>
</author>
<author>
<name sortKey="Park, J H" uniqKey="Park J">J.-H. Park</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Saraiva, C" uniqKey="Saraiva C">C. Saraiva</name>
</author>
<author>
<name sortKey="Praca, C" uniqKey="Praca C">C. Praça</name>
</author>
<author>
<name sortKey="Ferreira, R" uniqKey="Ferreira R">R. Ferreira</name>
</author>
<author>
<name sortKey="Santos, T" uniqKey="Santos T">T. Santos</name>
</author>
<author>
<name sortKey="Ferreira, L" uniqKey="Ferreira L">L. Ferreira</name>
</author>
<author>
<name sortKey="Bernardino, L" uniqKey="Bernardino L">L. Bernardino</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Schlessinger, J" uniqKey="Schlessinger J">J. Schlessinger</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Schmieder, A H" uniqKey="Schmieder A">A. H. Schmieder</name>
</author>
<author>
<name sortKey="Caruthers, S D" uniqKey="Caruthers S">S. D. Caruthers</name>
</author>
<author>
<name sortKey="Zhang, H" uniqKey="Zhang H">H. Zhang</name>
</author>
<author>
<name sortKey="Williams, T A" uniqKey="Williams T">T. A. Williams</name>
</author>
<author>
<name sortKey="Robertson, J D" uniqKey="Robertson J">J. D. Robertson</name>
</author>
<author>
<name sortKey="Wickline, S A" uniqKey="Wickline S">S. A. Wickline</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Shapira, A" uniqKey="Shapira A">A. Shapira</name>
</author>
<author>
<name sortKey="Livney, Y D" uniqKey="Livney Y">Y. D. Livney</name>
</author>
<author>
<name sortKey="Broxterman, H J" uniqKey="Broxterman H">H. J. Broxterman</name>
</author>
<author>
<name sortKey="Assaraf, Y G" uniqKey="Assaraf Y">Y. G. Assaraf</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Shi, J" uniqKey="Shi J">J. Shi</name>
</author>
<author>
<name sortKey="Kantoff, P W" uniqKey="Kantoff P">P. W. Kantoff</name>
</author>
<author>
<name sortKey="Wooster, R" uniqKey="Wooster R">R. Wooster</name>
</author>
<author>
<name sortKey="Farokhzad, O C" uniqKey="Farokhzad O">O. C. Farokhzad</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Silantyev, F" uniqKey="Silantyev F">F. Silantyev</name>
</author>
<author>
<name sortKey="Falzone, L" uniqKey="Falzone L">L. Falzone</name>
</author>
<author>
<name sortKey="Libra, M" uniqKey="Libra M">M. Libra</name>
</author>
<author>
<name sortKey="Gurina, O I" uniqKey="Gurina O">O. I. Gurina</name>
</author>
<author>
<name sortKey="Kardashova, K S" uniqKey="Kardashova K">K. S. Kardashova</name>
</author>
<author>
<name sortKey="Nikolouzakis, T K" uniqKey="Nikolouzakis T">T. K. Nikolouzakis</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Singh, R P" uniqKey="Singh R">R. P. Singh</name>
</author>
<author>
<name sortKey="Sharma, G" uniqKey="Sharma G">G. Sharma</name>
</author>
<author>
<name sortKey="Sonali Singh, S" uniqKey="Sonali Singh S">S. Sonali Singh</name>
</author>
<author>
<name sortKey="Kumar, M" uniqKey="Kumar M">M. Kumar</name>
</author>
<author>
<name sortKey="Pandey, B L" uniqKey="Pandey B">B. L. Pandey</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Slettenaar, V I F" uniqKey="Slettenaar V">V. I. F. Slettenaar</name>
</author>
<author>
<name sortKey="Wilson, J L" uniqKey="Wilson J">J. L. Wilson</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Sonali Agrawal, P" uniqKey="Sonali Agrawal P">P. Sonali Agrawal</name>
</author>
<author>
<name sortKey="Singh, R P" uniqKey="Singh R">R. P. Singh</name>
</author>
<author>
<name sortKey="Rajesh, C V" uniqKey="Rajesh C">C. V. Rajesh</name>
</author>
<author>
<name sortKey="Singh, S" uniqKey="Singh S">S. Singh</name>
</author>
<author>
<name sortKey="Vijayakumar, M R" uniqKey="Vijayakumar M">M. R. Vijayakumar</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Sonali Singh, R P" uniqKey="Sonali Singh R">R. P. Sonali Singh</name>
</author>
<author>
<name sortKey="Sharma, G" uniqKey="Sharma G">G. Sharma</name>
</author>
<author>
<name sortKey="Kumari, L" uniqKey="Kumari L">L. Kumari</name>
</author>
<author>
<name sortKey="Koch, B" uniqKey="Koch B">B. Koch</name>
</author>
<author>
<name sortKey="Singh, S" uniqKey="Singh S">S. Singh</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Sonali Singh, R P" uniqKey="Sonali Singh R">R. P. Sonali Singh</name>
</author>
<author>
<name sortKey="Singh, N" uniqKey="Singh N">N. Singh</name>
</author>
<author>
<name sortKey="Sharma, G" uniqKey="Sharma G">G. Sharma</name>
</author>
<author>
<name sortKey="Vijayakumar, M R" uniqKey="Vijayakumar M">M. R. Vijayakumar</name>
</author>
<author>
<name sortKey="Koch, B" uniqKey="Koch B">B. Koch</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Sonali Viswanadh, M K" uniqKey="Sonali Viswanadh M">M. K. Sonali Viswanadh</name>
</author>
<author>
<name sortKey="Singh, R P" uniqKey="Singh R">R. P. Singh</name>
</author>
<author>
<name sortKey="Agrawal, P" uniqKey="Agrawal P">P. Agrawal</name>
</author>
<author>
<name sortKey="Mehata, A K" uniqKey="Mehata A">A. K. Mehata</name>
</author>
<author>
<name sortKey="Pawde, D M" uniqKey="Pawde D">D. M. Pawde</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Stambolic, V" uniqKey="Stambolic V">V. Stambolic</name>
</author>
<author>
<name sortKey="Suzuki, A" uniqKey="Suzuki A">A. Suzuki</name>
</author>
<author>
<name sortKey="De La Pompa, J L" uniqKey="De La Pompa J">J. L. de la Pompa</name>
</author>
<author>
<name sortKey="Brothers, G M" uniqKey="Brothers G">G. M. Brothers</name>
</author>
<author>
<name sortKey="Mirtsos, C" uniqKey="Mirtsos C">C. Mirtsos</name>
</author>
<author>
<name sortKey="Sasaki, T" uniqKey="Sasaki T">T. Sasaki</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Su, H" uniqKey="Su H">H. Su</name>
</author>
<author>
<name sortKey="Liu, Y" uniqKey="Liu Y">Y. Liu</name>
</author>
<author>
<name sortKey="Wang, D" uniqKey="Wang D">D. Wang</name>
</author>
<author>
<name sortKey="Wu, C" uniqKey="Wu C">C. Wu</name>
</author>
<author>
<name sortKey="Xia, C" uniqKey="Xia C">C. Xia</name>
</author>
<author>
<name sortKey="Gong, Q" uniqKey="Gong Q">Q. Gong</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Sun, D" uniqKey="Sun D">D. Sun</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Sun, L" uniqKey="Sun L">L. Sun</name>
</author>
<author>
<name sortKey="Joh, D Y" uniqKey="Joh D">D. Y. Joh</name>
</author>
<author>
<name sortKey="Al Zaki, A" uniqKey="Al Zaki A">A. Al-Zaki</name>
</author>
<author>
<name sortKey="Stangl, M" uniqKey="Stangl M">M. Stangl</name>
</author>
<author>
<name sortKey="Murty, S" uniqKey="Murty S">S. Murty</name>
</author>
<author>
<name sortKey="Davis, J J" uniqKey="Davis J">J. J. Davis</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Tabatabaei, S N" uniqKey="Tabatabaei S">S. N. Tabatabaei</name>
</author>
<author>
<name sortKey="Girouard, H" uniqKey="Girouard H">H. Girouard</name>
</author>
<author>
<name sortKey="Carret, A S" uniqKey="Carret A">A.-S. Carret</name>
</author>
<author>
<name sortKey="Martel, S" uniqKey="Martel S">S. Martel</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Tanaka, N" uniqKey="Tanaka N">N. Tanaka</name>
</author>
<author>
<name sortKey="Kanatani, S" uniqKey="Kanatani S">S. Kanatani</name>
</author>
<author>
<name sortKey="Tomer, R" uniqKey="Tomer R">R. Tomer</name>
</author>
<author>
<name sortKey="Sahlgren, C" uniqKey="Sahlgren C">C. Sahlgren</name>
</author>
<author>
<name sortKey="Kronqvist, P" uniqKey="Kronqvist P">P. Kronqvist</name>
</author>
<author>
<name sortKey="Kaczynska, D" uniqKey="Kaczynska D">D. Kaczynska</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Tandel, G S" uniqKey="Tandel G">G. S. Tandel</name>
</author>
<author>
<name sortKey="Biswas, M" uniqKey="Biswas M">M. Biswas</name>
</author>
<author>
<name sortKey="Kakde, O G" uniqKey="Kakde O">O. G. Kakde</name>
</author>
<author>
<name sortKey="Tiwari, A" uniqKey="Tiwari A">A. Tiwari</name>
</author>
<author>
<name sortKey="Suri, H S" uniqKey="Suri H">H. S. Suri</name>
</author>
<author>
<name sortKey="Turk, M" uniqKey="Turk M">M. Turk</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Tennant, D A" uniqKey="Tennant D">D. A. Tennant</name>
</author>
<author>
<name sortKey="Frezza, C" uniqKey="Frezza C">C. Frezza</name>
</author>
<author>
<name sortKey="Mackenzie, E D" uniqKey="Mackenzie E">E. D. MacKenzie</name>
</author>
<author>
<name sortKey="Nguyen, Q D" uniqKey="Nguyen Q">Q. D. Nguyen</name>
</author>
<author>
<name sortKey="Zheng, L" uniqKey="Zheng L">L. Zheng</name>
</author>
<author>
<name sortKey="Selak, M A" uniqKey="Selak M">M. A. Selak</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Thakkar, J P" uniqKey="Thakkar J">J. P. Thakkar</name>
</author>
<author>
<name sortKey="Dolecek, T A" uniqKey="Dolecek T">T. A. Dolecek</name>
</author>
<author>
<name sortKey="Horbinski, C" uniqKey="Horbinski C">C. Horbinski</name>
</author>
<author>
<name sortKey="Ostrom, Q T" uniqKey="Ostrom Q">Q. T. Ostrom</name>
</author>
<author>
<name sortKey="Lightner, D D" uniqKey="Lightner D">D. D. Lightner</name>
</author>
<author>
<name sortKey="Barnholtz Sloan, J S" uniqKey="Barnholtz Sloan J">J. S. Barnholtz-Sloan</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Tian, B" uniqKey="Tian B">B. Tian</name>
</author>
<author>
<name sortKey="Al Jamal, W T" uniqKey="Al Jamal W">W. T. Al-Jamal</name>
</author>
<author>
<name sortKey="Al Jamal, K T" uniqKey="Al Jamal K">K. T. Al-Jamal</name>
</author>
<author>
<name sortKey="Kostarelos, K" uniqKey="Kostarelos K">K. Kostarelos</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Tong, R" uniqKey="Tong R">R. Tong</name>
</author>
<author>
<name sortKey="Cheng, J" uniqKey="Cheng J">J. Cheng</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Tzeng, S Y" uniqKey="Tzeng S">S. Y. Tzeng</name>
</author>
<author>
<name sortKey="Green, J J" uniqKey="Green J">J. J. Green</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Uchida, N" uniqKey="Uchida N">N. Uchida</name>
</author>
<author>
<name sortKey="Buck, D W" uniqKey="Buck D">D. W. Buck</name>
</author>
<author>
<name sortKey="He, D" uniqKey="He D">D. He</name>
</author>
<author>
<name sortKey="Reitsma, M J" uniqKey="Reitsma M">M. J. Reitsma</name>
</author>
<author>
<name sortKey="Masek, M" uniqKey="Masek M">M. Masek</name>
</author>
<author>
<name sortKey="Phan, T V" uniqKey="Phan T">T. V. Phan</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Vilos, C" uniqKey="Vilos C">C. Vilos</name>
</author>
<author>
<name sortKey="Velasquez, L A" uniqKey="Velasquez L">L. A. Velasquez</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Volkov, Y" uniqKey="Volkov Y">Y. Volkov</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Wang, D" uniqKey="Wang D">D. Wang</name>
</author>
<author>
<name sortKey="Lin, B" uniqKey="Lin B">B. Lin</name>
</author>
<author>
<name sortKey="Ai, H" uniqKey="Ai H">H. Ai</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Wang, H" uniqKey="Wang H">H. Wang</name>
</author>
<author>
<name sortKey="Liu, X" uniqKey="Liu X">X. Liu</name>
</author>
<author>
<name sortKey="Wang, Y" uniqKey="Wang Y">Y. Wang</name>
</author>
<author>
<name sortKey="Chen, Y" uniqKey="Chen Y">Y. Chen</name>
</author>
<author>
<name sortKey="Jin, Q" uniqKey="Jin Q">Q. Jin</name>
</author>
<author>
<name sortKey="Ji, J" uniqKey="Ji J">J. Ji</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Wang, X" uniqKey="Wang X">X. Wang</name>
</author>
<author>
<name sortKey="Wang, C" uniqKey="Wang C">C. Wang</name>
</author>
<author>
<name sortKey="Cheng, L" uniqKey="Cheng L">L. Cheng</name>
</author>
<author>
<name sortKey="Lee, S T" uniqKey="Lee S">S.-T. Lee</name>
</author>
<author>
<name sortKey="Liu, Z" uniqKey="Liu Z">Z. Liu</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Wang, Y" uniqKey="Wang Y">Y. Wang</name>
</author>
<author>
<name sortKey="Shim, M S" uniqKey="Shim M">M. S. Shim</name>
</author>
<author>
<name sortKey="Levinson, N S" uniqKey="Levinson N">N. S. Levinson</name>
</author>
<author>
<name sortKey="Sung, H W" uniqKey="Sung H">H.-W. Sung</name>
</author>
<author>
<name sortKey="Xia, Y" uniqKey="Xia Y">Y. Xia</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Wei, X" uniqKey="Wei X">X. Wei</name>
</author>
<author>
<name sortKey="Chen, X" uniqKey="Chen X">X. Chen</name>
</author>
<author>
<name sortKey="Ying, M" uniqKey="Ying M">M. Ying</name>
</author>
<author>
<name sortKey="Lu, W" uniqKey="Lu W">W. Lu</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Wesseling, P" uniqKey="Wesseling P">P. Wesseling</name>
</author>
<author>
<name sortKey="Capper, D" uniqKey="Capper D">D. Capper</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Wicki, A" uniqKey="Wicki A">A. Wicki</name>
</author>
<author>
<name sortKey="Witzigmann, D" uniqKey="Witzigmann D">D. Witzigmann</name>
</author>
<author>
<name sortKey="Balasubramanian, V" uniqKey="Balasubramanian V">V. Balasubramanian</name>
</author>
<author>
<name sortKey="Huwyler, J" uniqKey="Huwyler J">J. Huwyler</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Wilhelm, I" uniqKey="Wilhelm I">I. Wilhelm</name>
</author>
<author>
<name sortKey="Krizbai, I A" uniqKey="Krizbai I">I. A. Krizbai</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Wong, A J" uniqKey="Wong A">A. J. Wong</name>
</author>
<author>
<name sortKey="Ruppert, J M" uniqKey="Ruppert J">J. M. Ruppert</name>
</author>
<author>
<name sortKey="Bigner, S H" uniqKey="Bigner S">S. H. Bigner</name>
</author>
<author>
<name sortKey="Grzeschik, C H" uniqKey="Grzeschik C">C. H. Grzeschik</name>
</author>
<author>
<name sortKey="Humphrey, P A" uniqKey="Humphrey P">P. A. Humphrey</name>
</author>
<author>
<name sortKey="Bigner, D S" uniqKey="Bigner D">D. S. Bigner</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Wu, M" uniqKey="Wu M">M. Wu</name>
</author>
<author>
<name sortKey="Fan, Y" uniqKey="Fan Y">Y. Fan</name>
</author>
<author>
<name sortKey="Lv, S" uniqKey="Lv S">S. Lv</name>
</author>
<author>
<name sortKey="Xiao, B" uniqKey="Xiao B">B. Xiao</name>
</author>
<author>
<name sortKey="Ye, M" uniqKey="Ye M">M. Ye</name>
</author>
<author>
<name sortKey="Zhu, X" uniqKey="Zhu X">X. Zhu</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Xiao, Q" uniqKey="Xiao Q">Q. Xiao</name>
</author>
<author>
<name sortKey="Yang, S" uniqKey="Yang S">S. Yang</name>
</author>
<author>
<name sortKey="Ding, G" uniqKey="Ding G">G. Ding</name>
</author>
<author>
<name sortKey="Luo, M" uniqKey="Luo M">M. Luo</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Xie, J" uniqKey="Xie J">J. Xie</name>
</author>
<author>
<name sortKey="Lee, S" uniqKey="Lee S">S. Lee</name>
</author>
<author>
<name sortKey="Chen, X" uniqKey="Chen X">X. Chen</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Xie, J" uniqKey="Xie J">J. Xie</name>
</author>
<author>
<name sortKey="Liu, G" uniqKey="Liu G">G. Liu</name>
</author>
<author>
<name sortKey="Eden, H S" uniqKey="Eden H">H. S. Eden</name>
</author>
<author>
<name sortKey="Ai, H" uniqKey="Ai H">H. Ai</name>
</author>
<author>
<name sortKey="Chen, X" uniqKey="Chen X">X. Chen</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Xie, W" uniqKey="Xie W">W. Xie</name>
</author>
<author>
<name sortKey="Guo, Z" uniqKey="Guo Z">Z. Guo</name>
</author>
<author>
<name sortKey="Gao, F" uniqKey="Gao F">F. Gao</name>
</author>
<author>
<name sortKey="Gao, Q" uniqKey="Gao Q">Q. Gao</name>
</author>
<author>
<name sortKey="Wang, D" uniqKey="Wang D">D. Wang</name>
</author>
<author>
<name sortKey="Liaw, B" uniqKey="Liaw B">B. Liaw</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Yamanaka, R" uniqKey="Yamanaka R">R. Yamanaka</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Zeng, W" uniqKey="Zeng W">W. Zeng</name>
</author>
<author>
<name sortKey="Wang, X" uniqKey="Wang X">X. Wang</name>
</author>
<author>
<name sortKey="Xu, P" uniqKey="Xu P">P. Xu</name>
</author>
<author>
<name sortKey="Liu, G" uniqKey="Liu G">G. Liu</name>
</author>
<author>
<name sortKey="Eden, H S" uniqKey="Eden H">H. S. Eden</name>
</author>
<author>
<name sortKey="Chen, X" uniqKey="Chen X">X. Chen</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Zhang, B" uniqKey="Zhang B">B. Zhang</name>
</author>
<author>
<name sortKey="Yang, C" uniqKey="Yang C">C. Yang</name>
</author>
<author>
<name sortKey="Gao, Y" uniqKey="Gao Y">Y. Gao</name>
</author>
<author>
<name sortKey="Wang, Y" uniqKey="Wang Y">Y. Wang</name>
</author>
<author>
<name sortKey="Bu, C" uniqKey="Bu C">C. Bu</name>
</author>
<author>
<name sortKey="Hu, S" uniqKey="Hu S">S. Hu</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Zhao, M" uniqKey="Zhao M">M. Zhao</name>
</author>
<author>
<name sortKey="Zhao, M" uniqKey="Zhao M">M. Zhao</name>
</author>
<author>
<name sortKey="Fu, C" uniqKey="Fu C">C. Fu</name>
</author>
<author>
<name sortKey="Yu, Y" uniqKey="Yu Y">Y. Yu</name>
</author>
<author>
<name sortKey="Fu, A" uniqKey="Fu A">A. Fu</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Zong, T" uniqKey="Zong T">T. Zong</name>
</author>
<author>
<name sortKey="Mei, L" uniqKey="Mei L">L. Mei</name>
</author>
<author>
<name sortKey="Gao, H" uniqKey="Gao H">H. Gao</name>
</author>
<author>
<name sortKey="Cai, W" uniqKey="Cai W">W. Cai</name>
</author>
<author>
<name sortKey="Zhu, P" uniqKey="Zhu P">P. Zhu</name>
</author>
<author>
<name sortKey="Shi, K" uniqKey="Shi K">K. Shi</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Zottel, A" uniqKey="Zottel A">A. Zottel</name>
</author>
<author>
<name sortKey="Videti Paska, A" uniqKey="Videti Paska A">A. Videtič Paska</name>
</author>
<author>
<name sortKey="Jov Evska, I" uniqKey="Jov Evska I">I. Jovčevska</name>
</author>
</analytic>
</biblStruct>
</listBibl>
</div1>
</back>
</TEI>
<pmc article-type="review-article">
<pmc-dir>properties open_access</pmc-dir>
<front>
<journal-meta>
<journal-id journal-id-type="nlm-ta">Front Bioeng Biotechnol</journal-id>
<journal-id journal-id-type="iso-abbrev">Front Bioeng Biotechnol</journal-id>
<journal-id journal-id-type="publisher-id">Front. Bioeng. Biotechnol.</journal-id>
<journal-title-group>
<journal-title>Frontiers in Bioengineering and Biotechnology</journal-title>
</journal-title-group>
<issn pub-type="epub">2296-4185</issn>
<publisher>
<publisher-name>Frontiers Media S.A.</publisher-name>
</publisher>
</journal-meta>
<article-meta>
<article-id pub-id-type="pmid">31799246</article-id>
<article-id pub-id-type="pmc">6868071</article-id>
<article-id pub-id-type="doi">10.3389/fbioe.2019.00325</article-id>
<article-categories>
<subj-group subj-group-type="heading">
<subject>Bioengineering and Biotechnology</subject>
<subj-group>
<subject>Review</subject>
</subj-group>
</subj-group>
</article-categories>
<title-group>
<article-title>Theranostic Nanomedicine for Malignant Gliomas</article-title>
</title-group>
<contrib-group>
<contrib contrib-type="author">
<name>
<surname>d'Angelo</surname>
<given-names>Michele</given-names>
</name>
<xref ref-type="aff" rid="aff1">
<sup>1</sup>
</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Castelli</surname>
<given-names>Vanessa</given-names>
</name>
<xref ref-type="aff" rid="aff1">
<sup>1</sup>
</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Benedetti</surname>
<given-names>Elisabetta</given-names>
</name>
<xref ref-type="aff" rid="aff1">
<sup>1</sup>
</xref>
<uri xlink:type="simple" xlink:href="http://loop.frontiersin.org/people/690653/overview"></uri>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Antonosante</surname>
<given-names>Andrea</given-names>
</name>
<xref ref-type="aff" rid="aff1">
<sup>1</sup>
</xref>
<uri xlink:type="simple" xlink:href="http://loop.frontiersin.org/people/784227/overview"></uri>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Catanesi</surname>
<given-names>Mariano</given-names>
</name>
<xref ref-type="aff" rid="aff1">
<sup>1</sup>
</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Dominguez-Benot</surname>
<given-names>Reyes</given-names>
</name>
<xref ref-type="aff" rid="aff1">
<sup>1</sup>
</xref>
<uri xlink:type="simple" xlink:href="http://loop.frontiersin.org/people/809503/overview"></uri>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Pitari</surname>
<given-names>Giuseppina</given-names>
</name>
<xref ref-type="aff" rid="aff1">
<sup>1</sup>
</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Ippoliti</surname>
<given-names>Rodolfo</given-names>
</name>
<xref ref-type="aff" rid="aff1">
<sup>1</sup>
</xref>
<uri xlink:type="simple" xlink:href="http://loop.frontiersin.org/people/663572/overview"></uri>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Cimini</surname>
<given-names>Annamaria</given-names>
</name>
<xref ref-type="aff" rid="aff1">
<sup>1</sup>
</xref>
<xref ref-type="aff" rid="aff2">
<sup>2</sup>
</xref>
<xref ref-type="corresp" rid="c001">
<sup>*</sup>
</xref>
<uri xlink:type="simple" xlink:href="http://loop.frontiersin.org/people/70204/overview"></uri>
</contrib>
</contrib-group>
<aff id="aff1">
<sup>1</sup>
<institution>Department of Life, Health and Environmental Sciences, University of L'Aquila</institution>
,
<addr-line>L'Aquila</addr-line>
,
<country>Italy</country>
</aff>
<aff id="aff2">
<sup>2</sup>
<institution>Department of Biology, Sbarro Institute for Cancer Research and Molecular Medicine, Temple University</institution>
,
<addr-line>Philadelphia, PA</addr-line>
,
<country>United States</country>
</aff>
<author-notes>
<fn fn-type="edited-by">
<p>Edited by: Gianni Ciofani, Italian Institute of Technology (IIT), Italy</p>
</fn>
<fn fn-type="edited-by">
<p>Reviewed by: Varpu Seija Marjomäki, University of Jyväskylä, Finland; Sílvia Pujals, Institute for Bioengineering of Catalonia (IBEC), Spain</p>
</fn>
<corresp id="c001">*Correspondence: Annamaria Cimini
<email>annamaria.cimini@univaq.it</email>
</corresp>
<fn fn-type="other" id="fn001">
<p>This article was submitted to Nanobiotechnology, a section of the journal Frontiers in Bioengineering and Biotechnology</p>
</fn>
</author-notes>
<pub-date pub-type="epub">
<day>14</day>
<month>11</month>
<year>2019</year>
</pub-date>
<pub-date pub-type="collection">
<year>2019</year>
</pub-date>
<volume>7</volume>
<elocation-id>325</elocation-id>
<history>
<date date-type="received">
<day>29</day>
<month>7</month>
<year>2019</year>
</date>
<date date-type="accepted">
<day>28</day>
<month>10</month>
<year>2019</year>
</date>
</history>
<permissions>
<copyright-statement>Copyright © 2019 d'Angelo, Castelli, Benedetti, Antonosante, Catanesi, Dominguez-Benot, Pitari, Ippoliti and Cimini.</copyright-statement>
<copyright-year>2019</copyright-year>
<copyright-holder>d'Angelo, Castelli, Benedetti, Antonosante, Catanesi, Dominguez-Benot, Pitari, Ippoliti and Cimini</copyright-holder>
<license xlink:href="http://creativecommons.org/licenses/by/4.0/">
<license-p>This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.</license-p>
</license>
</permissions>
<abstract>
<p>Brain tumors mainly originate from glial cells and are classified as gliomas. Malignant gliomas represent an incurable disease; indeed, after surgery and chemotherapy, recurrence appears within a few months, and mortality has remained high in the last decades. This is mainly due to the heterogeneity of malignant gliomas, indicating that a single therapy is not effective for all patients. In this regard, the advent of theranostic nanomedicine, a combination of imaging and therapeutic agents, represents a strategic tool for the management of malignant brain tumors, allowing for the detection of therapies that are specific to the single patient and avoiding overdosing the non-responders. Here, recent theranostic nanomedicine approaches for glioma therapy are described.</p>
</abstract>
<kwd-group>
<kwd>theranostic nanoplatform</kwd>
<kwd>brain tumors</kwd>
<kwd>targeted therapy</kwd>
<kwd>drug delivery</kwd>
<kwd>diagnosis</kwd>
</kwd-group>
<counts>
<fig-count count="2"></fig-count>
<table-count count="3"></table-count>
<equation-count count="0"></equation-count>
<ref-count count="168"></ref-count>
<page-count count="14"></page-count>
<word-count count="11923"></word-count>
</counts>
</article-meta>
</front>
<body>
<sec id="s1">
<title>Theranostic technology</title>
<p>Theranostics is the combination of the two terms “Therapeutics” and “Diagnostics,” referring to technologies that include both diagnostic and therapeutic applications (
<xref ref-type="fig" rid="F1">Figure 1</xref>
). The interest in personalized medicine, and thus, theranostic approaches used for individualized diagnosis and treatment are gaining increasing attention (Sun,
<xref rid="B136" ref-type="bibr">2010</xref>
; Kelkar and Reineke,
<xref rid="B66" ref-type="bibr">2011</xref>
; Kievit and Zhang,
<xref rid="B69" ref-type="bibr">2011</xref>
; Ahmed et al.,
<xref rid="B4" ref-type="bibr">2012</xref>
; Wang Y. et al.,
<xref rid="B152" ref-type="bibr">2014</xref>
). This technology allows us to save time and decrease costs but, notably, also allows us to contain side effects of a single strategy (Lammers et al.,
<xref rid="B79" ref-type="bibr">2010</xref>
), obtaining better patient outcomes (Duncan,
<xref rid="B42" ref-type="bibr">2003</xref>
; Peer et al.,
<xref rid="B109" ref-type="bibr">2007</xref>
).</p>
<fig id="F1" position="float">
<label>Figure 1</label>
<caption>
<p>Theranostic medicine provides new tools to improve diagnostic specificity and therapeutic effectiveness. Therefore, a nanoparticle-containing tracer can be useful to overcome the limitations of conventional diagnostic and therapeutic techniques. CT, computed tomography; MRI, magnetic resonance imaging; USI, ultrasound imaging; OI, optical imaging; PET, positron emission tomography; SPECT, single-photon emission computed tomography.</p>
</caption>
<graphic xlink:href="fbioe-07-00325-g0001"></graphic>
</fig>
<p>Nanoplatforms (NPS) are nanoparticles combined with drug and molecular imaging probes, including metal nanoparticles, polymer-drug conjugates, polymer micelles, liposomes, and dendrimers. NPS show several advantages over conventional formulations, allowing for the conjugation or entrapment of drugs (Peer et al.,
<xref rid="B109" ref-type="bibr">2007</xref>
). Nanoparticles (NPs) are complex drug delivery systems, which can be structurally divided into the internal layer (core), and external layer (shell). Nanodimensions ensure that nanoparticles are able to increase drug solubility, mitigate cytotoxicity, and improve drug pharmacokinetic profiles. The creation of nanoplatforms, combining drugs with molecular probes, increases the drug half-life in the circulatory system, and specifically, delivers anticancer drugs to target tissues, controlling the drug release through detectors responsive to different stimuli such as pH, temperature, light, ultrasound, and enzymatic activities, thus improving the delivering of the required drug concentration to the area of interest (Tong and Cheng,
<xref rid="B144" ref-type="bibr">2007</xref>
). By means of improving the circulating half-life, nanomedicines can accumulate in tumors through the Enhanced Permeability and Retention (EPR) effect (Golombek et al.,
<xref rid="B52" ref-type="bibr">2018</xref>
). In the last years, it has been reported that EPR varies among mouse models and patients, between tumor types of the same origin, and also among tumors and metastases of the same patient (Harrington et al.,
<xref rid="B57" ref-type="bibr">2001</xref>
; Tanaka et al.,
<xref rid="B139" ref-type="bibr">2017</xref>
), thus explaining the heterogeneous outcomes of nanomedicine clinical trials. To overcome this issue, efforts should be focused on the use of methods that can be employed to individualize and improve nanomedicine treatments.</p>
<p>Despite the advantages offered by the EPR effect, the passive targeting approach offers a limited benefit in the treatment of gliomas and other CNS disorders. In these situations, the BBB remains impenetrable for different nanostructures that tend to accumulate in off-target tissues that also have vasculature gaps, such as the liver, or lymph nodes (Nam et al.,
<xref rid="B99" ref-type="bibr">2018</xref>
).</p>
<p>Since theranostic approaches require the use of molecular imaging tools, a combination of drug delivery systems with imaging techniques, such as computed tomography (CT), magnetic resonance imaging (MRI), optical and ultrasound (US) imaging, positron emission tomography (PET), and single photon emission computed tomography (SPECT), are currently under study. All these imaging techniques, using sensible and specific probes, can, in fact, assess drug efficacy during the drug development procedures (Cai et al.,
<xref rid="B20" ref-type="bibr">2006</xref>
; Pysz et al.,
<xref rid="B114" ref-type="bibr">2010</xref>
; Ai,
<xref rid="B5" ref-type="bibr">2011</xref>
; Ang et al.,
<xref rid="B9" ref-type="bibr">2014</xref>
), optimizing the right choice of imaging tools and agents (Jokerst and Gambhir,
<xref rid="B65" ref-type="bibr">2011</xref>
) and defining the best combination for specific therapeutic applications.</p>
</sec>
<sec id="s2">
<title>Multifunctionalized Nanoplatforms</title>
<p>Multifunctionalized NPS are promising therapeutic approaches in cancer therapy (
<xref rid="T1" ref-type="table">Table 1</xref>
). Indeed, they offer numerous advantages over conventional agents, including specific targets, the higher ability to solubilize hydrophobic or labile drugs, lower systemic toxicity (resulting in better pharmacokinetics and higher potential to image), and better treatment and prediction of a therapeutic response. NPS utilize nanostructures, such as nanoparticles, made from soluble or colloidal aqueous solutions and with sizes ranging between 10 and 100 nm (Bhojani et al.,
<xref rid="B17" ref-type="bibr">2010</xref>
). The small size allows them to pass via blood capillaries and reach the specific tumor cells (Bhojani et al.,
<xref rid="B17" ref-type="bibr">2010</xref>
). They have the advantages of modifying the nature and the number of linkers on and within the surface of a nanoparticle and its dimensions, thus leading to the control of the loading/releasing of the entrapped or covalently linked drugs. The NPS can also ameliorate the efficacy of current drugs or tracers, triggering a selective delivery. Among NPS, those based on nanovesicles are also biocompatible, thus increasing the maximum tolerated dose of the drug with low toxicity. This leads to an increased concentration of the agent inside the tumor and a simultaneous decrease in side effects (Liong et al.,
<xref rid="B83" ref-type="bibr">2008</xref>
; Bhojani et al.,
<xref rid="B17" ref-type="bibr">2010</xref>
). The entrapment of the drug with nanoplatforms reduces the limit for the use of poorly soluble or poorly absorbed agents by encapsulating them in the matrix of the NPS during the design and synthetic processes. Furthermore, the encapsulation prevents premature degradation of drugs or inactivation during plasma transport. Being a multidelivery system represents one of the most advantageous characteristics of NPS. They can carry imaging tracers, targeting ligands, therapeutic agents, and “cloaking” agents that avoid interference with the immune system (reviewed in Bhojani et al.,
<xref rid="B17" ref-type="bibr">2010</xref>
; Mendes et al.,
<xref rid="B91" ref-type="bibr">2018</xref>
).</p>
<table-wrap id="T1" position="float">
<label>Table 1</label>
<caption>
<p>Nanoplatforms examples and their characteristics.</p>
</caption>
<table frame="hsides" rules="groups">
<thead>
<tr>
<th rowspan="1" colspan="1"></th>
<th valign="top" align="left" rowspan="1" colspan="1">
<bold>Nanoplatforms</bold>
</th>
<th valign="top" align="left" rowspan="1" colspan="1">
<bold>Biosafety</bold>
</th>
<th valign="top" align="left" rowspan="1" colspan="1">
<bold>Size</bold>
</th>
<th valign="top" align="left" rowspan="1" colspan="1">
<bold>Loading capacity</bold>
</th>
<th valign="top" align="left" rowspan="1" colspan="1">
<bold>References</bold>
</th>
</tr>
</thead>
<tbody>
<tr>
<td valign="top" align="left" rowspan="1" colspan="1">Magnetic Nanoparticle</td>
<td valign="top" align="left" rowspan="1" colspan="1">DOX IONPS</td>
<td valign="top" align="left" rowspan="1" colspan="1">Low toxicity</td>
<td valign="top" align="left" rowspan="1" colspan="1">10–50 nm</td>
<td valign="top" align="left" rowspan="1" colspan="1">High</td>
<td valign="top" align="left" rowspan="1" colspan="1">Choi et al.,
<xref rid="B33" ref-type="bibr">2012</xref>
</td>
</tr>
<tr>
<td valign="top" align="left" rowspan="1" colspan="1">Polymer-conjugates</td>
<td valign="top" align="left" rowspan="1" colspan="1">DOX-GEM GADOLINIUM HPMA</td>
<td valign="top" align="left" rowspan="1" colspan="1">Low toxicity</td>
<td valign="top" align="left" rowspan="1" colspan="1">20–70 nm</td>
<td valign="top" align="left" rowspan="1" colspan="1">Good</td>
<td valign="top" align="left" rowspan="1" colspan="1">Vilos and Velasquez,
<xref rid="B147" ref-type="bibr">2012</xref>
</td>
</tr>
<tr>
<td valign="top" align="left" rowspan="1" colspan="1">Nanovesicles</td>
<td valign="top" align="left" rowspan="1" colspan="1">β(CD) SPIO Polymeric micelles</td>
<td valign="top" align="left" rowspan="1" colspan="1">Really low toxicity</td>
<td valign="top" align="left" rowspan="1" colspan="1">10–70 nm</td>
<td valign="top" align="left" rowspan="1" colspan="1">High</td>
<td valign="top" align="left" rowspan="1" colspan="1">Liong et al.,
<xref rid="B83" ref-type="bibr">2008</xref>
; Bhojani et al.,
<xref rid="B17" ref-type="bibr">2010</xref>
</td>
</tr>
<tr>
<td valign="top" align="left" rowspan="1" colspan="1">Dendrimers</td>
<td valign="top" align="left" rowspan="1" colspan="1">asODN MNP PAMAM</td>
<td valign="top" align="left" rowspan="1" colspan="1">Potential toxicity</td>
<td valign="top" align="left" rowspan="1" colspan="1">10–40 nm</td>
<td valign="top" align="left" rowspan="1" colspan="1">High</td>
<td valign="top" align="left" rowspan="1" colspan="1">Pan et al.,
<xref rid="B106" ref-type="bibr">2007</xref>
</td>
</tr>
</tbody>
</table>
<table-wrap-foot>
<p>
<italic>Different nanoplatforms and the respective biosafety, size, and loading capacity</italic>
.</p>
<p>
<italic>DOX-conjugated, doxorubicin; PAMAM, poly(amidoamine); IONPs, iron oxide nanoparticles; DOX-GEM, gemcitabine (GEM), and doxorubicin (DOX); HPMA, N-2- hydroxypropylmethacrylamide; asODN, antisense oligodeoxynucleotides; MNPs, Magnetic Nanoparticles; SPIO, superparamagnetic iron oxide</italic>
.</p>
</table-wrap-foot>
</table-wrap>
<p>Cancer researchers have shown high interest in theranostic approaches, particularly to detect and develop a solid nanosystem strategy for cancer treatment and diagnosis that can be translated into clinical practice (Cole et al.,
<xref rid="B35" ref-type="bibr">2011</xref>
).</p>
<p>Typical examples of the design of biocompatible nanoplatforms used as theranostic agents are based on magnetic nanoparticles, polymers, vesicles nanoparticles, and dendrimers.</p>
<p>Magnetic nanoparticles have been prepared using, for example, IONPs (iron oxide nanoparticles) coated with a human serum albumin. This formulation is referred as a biocompatible material for a chemotherapeutic agent, photosensitizers, and NPS (reviewed in Choi et al.,
<xref rid="B33" ref-type="bibr">2012</xref>
). Polymeric conjugates for drug delivery, biodistribution, and drug efficiency were extensively investigated (Vilos and Velasquez,
<xref rid="B147" ref-type="bibr">2012</xref>
). Lammers et al. (
<xref rid="B79" ref-type="bibr">2010</xref>
) synthesized a simultaneous delivery of doxorubicin and gemcitabine, and they were labeled with a gadolinium HPMA (N-2-hydroxypropylmethacrylamide) copolymer to investigate the biodistribution of nanotheranostics using an MRI (Lammers et al.,
<xref rid="B79" ref-type="bibr">2010</xref>
). This investigation reported that tumor-targeted polymeric drug vectors could be utilized to deliver two different chemotherapeutic drugs to tumors concurrently (Lammers et al.,
<xref rid="B79" ref-type="bibr">2010</xref>
).</p>
<p>Polymeric micelles, nano core/shell structures constituted by amphiphilic copolymers, were thoroughly tested as theranostic carriers and imaging probes as well. The amphiphilic block copolymers captured the superparamagnetic iron oxide (SPIO) or Mn-SPIO nanoparticles and are employed for the MRI (Lu et al.,
<xref rid="B87" ref-type="bibr">2009</xref>
; Liu et al.,
<xref rid="B84" ref-type="bibr">2011</xref>
; Xie et al.,
<xref rid="B161" ref-type="bibr">2011</xref>
; Su et al.,
<xref rid="B135" ref-type="bibr">2013</xref>
). β-cyclodextrin (β-CD) has been successfully used to encapsulate SPIO nanoparticles and small molecule anticancer drugs (Su et al.,
<xref rid="B135" ref-type="bibr">2013</xref>
). Several multifunctional polymeric micelles for tumor drug delivery and distribution have been designed, with particular attention to the creation of a well-controlled nanostructure. The use of polymeric micelles is advantageous because they can entrap an elevated number of hydrophobic drugs and contrast agents, maintaining their hydrophilic feature as a carriers, compared to liposomes or soluble polymers. Polymeric micelles are recognized as multifunctional delivery systems that are able to maximize therapeutic efficacy (Vilos and Velasquez,
<xref rid="B147" ref-type="bibr">2012</xref>
).</p>
<p>Liposomes are already approved by the FDA since they are able to incorporate drugs, such as chemotherapeutics (Al-Jamal and Kostarelos,
<xref rid="B6" ref-type="bibr">2011</xref>
). Approved formulations are liposomal doxorubicin and pegylated liposomal doxorubicin, which show low toxicity, cardiac safety, and less alopecia, myelosuppression, nausea, and vomiting when compared to conventional anthracyclines. The difficulty in releasing the encapsulated drug in the target area is caused by a limit in the liposome system. To overcome this issue, new liposome systems have been designed that are able to induce a pH and temperature response or the activation of certain enzymes on liposome cavities, thus improving the drug release in the targeted area (Lindner and Hossann,
<xref rid="B82" ref-type="bibr">2010</xref>
; Wang D. et al.,
<xref rid="B149" ref-type="bibr">2014</xref>
). Recently, multifunctional theranostic nanoplatforms, using contrast agents encapsulated with liposomes, have been developed for the simultaneous diagnosis of early stage of disease and drug delivery, utilizing liposomes that encapsulate contrast agents, resulting in the creation of multifunctional NPS (Kenny et al.,
<xref rid="B67" ref-type="bibr">2011</xref>
; Na et al.,
<xref rid="B97" ref-type="bibr">2011</xref>
; Petersen et al.,
<xref rid="B110" ref-type="bibr">2012</xref>
). A theranostic nanosystem that provides the incorporation of magnetic nanoparticles inside the liposomes has been developed (Fattahi et al.,
<xref rid="B44" ref-type="bibr">2011</xref>
). Thus, multifunctional theranostic liposomes are widely used in treatment and for the detection of diseases, and they represent a valid carrier to further improve the diagnostic and therapeutic efficacy.</p>
<p>Furthermore, dendrimers are gaining increasing importance in the theranostic field as they can, due to their size, encapsulate several drugs or imaging tracers with high efficiency. For instance, dendrimers can bind non-covalently or covalently to chemotherapeutic drugs, imaging agents, and other biologically active targeting moieties, such as peptides, monoclonal antibodies, and folates (Boas and Heegaard,
<xref rid="B18" ref-type="bibr">2004</xref>
; Mintzer and Grinstaff,
<xref rid="B93" ref-type="bibr">2011</xref>
; Lo et al.,
<xref rid="B86" ref-type="bibr">2013</xref>
). The characteristic structure of dendrimers can stabilize the hydrophobic nanoparticles through the ligand exchange reaction method. Recently, multifunctional doxorubicin (DOX)-conjugated poly(amidoamine) (PAMAM) dendrimers have been developed with a specific platform for targeted chemotherapy that uses pH to release the drug to tumor cells. This multifunctional dendrimer presented excellent biocompatibility, biodistribution, and satisfactory cancer imaging results (Chang et al.,
<xref rid="B27" ref-type="bibr">2011</xref>
). Dendrimers represent promising structures for functionalization and also for conjugation with drugs (chemotherapeutics and imaging tracers) and DNA/RNA (Pan et al.,
<xref rid="B106" ref-type="bibr">2007</xref>
; Merkel et al.,
<xref rid="B92" ref-type="bibr">2010</xref>
; Zottel et al.,
<xref rid="B168" ref-type="bibr">2019</xref>
).</p>
</sec>
<sec id="s3">
<title>Gliomas</title>
<p>Glioma is a common type of tumor arising from glia-supporting neurons. About 33% of all brain tumors are gliomas and show different malignancy and differentiation grades. Symptoms depend on the area of the brain affected and by the degree of malignancy; they include headaches, nausea, or vomiting, speech difficulties, vertigo, and motor alteration. In its advanced stages, seizures may be a common manifestation. Gliomas are classified on the basis of the glial type but also on the genetic signature that predicts the outcome and the response to treatment. Gliomas are classified, according to the World Health Organization, as astrocytoma, anaplastic astrocytoma and glioblastoma, oligodendrogliomas, ependymomas, and mixed gliomas (Wesseling and Capper,
<xref rid="B154" ref-type="bibr">2018</xref>
). Glioblastoma (GB) multiforme is the most malignant and common (more than 60%) type of primary astrocytomas (Rock et al.,
<xref rid="B119" ref-type="bibr">2012</xref>
). Despite the modern therapies to treat GB, it is still a deadly disease with an extremely poor prognosis. Patients usually have a median survival of ~14–15 months from the diagnosis (Thakkar et al.,
<xref rid="B142" ref-type="bibr">2014</xref>
). The standard treatment for GB is the resection of the tumor by neurosurgery, followed by radiation, and chemotherapy administration. However, these therapies are often ineffective, having a high rate of recurrence and drug resistance over time, accompanied by severe neurological deterioration of the affected patient (Silantyev et al.,
<xref rid="B127" ref-type="bibr">2019</xref>
).</p>
<p>The surgical approach is often not efficient due to the frequent persistence of tumoral foci; this leads to the recurrence of the disease (Alphandéry et al.,
<xref rid="B7" ref-type="bibr">2015</xref>
) thanks to the high proliferative rate and invasive behavior of GB cells. In this regard, several studies have reported the crucial role of bulk removal in increasing life expectancy and patient outcome (Silantyev et al.,
<xref rid="B127" ref-type="bibr">2019</xref>
). However, even bulk removal is not completely efficient since it is, generally, followed by relapses. For these reasons, GB is considered a not treatable disease. Temozolomide (TMZ) is currently the gold standard treatment for GB. Its metabolites form a complex with alkyl guanine alkyl transferase (O6 MGMT- DNA repair protein), leading to DNA damage; however, some patients show resistance to TMZ. Thus, many studies have reported the efficacy of the combination of TMZ with different compounds, such as curcumin, resveratrol, O6-benzylguanine, valproic acid, anti-epilectic drugs, interferon 1-β, mesenchymal stem cells, and anti-malarial drugs [extensively reviewed in Bahadur et al. (
<xref rid="B13" ref-type="bibr">2019</xref>
)], with reduced resistance and increased treatment efficacy. In particular, it has been reported that the combined administration of bone marrow-derived mesenchymal cells (MSCs), interferon β (IF-β), and TMZ significantly decreased tumor progression
<italic>in vitro</italic>
and increased the survival of patients following synergistic effects
<italic>in vivo</italic>
(Park et al.,
<xref rid="B108" ref-type="bibr">2015</xref>
). More recently, the simultaneous administration of the inducer of autophagy, sirolimus, the inhibitor of autophagy, Chloroquine, and TMZ on glioblastoma cells was investigated in order to obtain lysosome disruption and apoptotic death (Hsu et al.,
<xref rid="B60" ref-type="bibr">2018</xref>
). In the same way, several new molecules were proposed to enhance TMZ activity in glioblastoma both
<italic>in vitro</italic>
and
<italic>in vivo</italic>
(extensively reviewed in Bahadur et al.,
<xref rid="B13" ref-type="bibr">2019</xref>
).</p>
<p>The diagnostic tools to detect brain tumors are represented by imaging tests, mainly MRI, including different specialized MRI scan components, including functional MRI, perfusion MRI, and magnetic resonance spectroscopy. These tools help us to understand tumor size and to plan treatment. Other imaging exams may include PET, a computerized tomography (CT) scan, and a cerebral angiogram. Molecular testing of the tumor could also be recommended for the identification of specific proteins, genes, and other factors (i.e., tumor markers) distinctive to the tumor. Indeed, some biomarkers may help in determining a patient's prognosis, increasing the chance of recovery. For the final and definite diagnosis, a biopsy of the tumor's tissue is usually necessary in order for it to be analyzed by a pathologist (Piquer et al.,
<xref rid="B112" ref-type="bibr">2014</xref>
; Tandel et al.,
<xref rid="B140" ref-type="bibr">2019</xref>
).</p>
<p>The first occurrence in tumor transformation is not completely clarified. However, it seems that the genetic signature is different in grade II gliomas, astrocytoma, and oligodendroglioma. All tumors initially show the same invasive phenotype, making it difficult to develop a unique therapy. Progression-associated genetic modifications target cell cycle-controlling pathways and growth promoting, causing focal hypoxia, necrosis, and angiogenesis. Retinoblastoma protein (Rb) mutation was identified in 20% of malignant gliomas (Behin et al.,
<xref rid="B14" ref-type="bibr">2003</xref>
), although gliomas may also contain mutations in other molecules involved in Rb signaling, including cyclin-dependent kinase (CDK) and the cell cycle regulator cyclin-dependent kinase inhibitor 2A, multiple tumor suppressor 1 (p16
<sup>INK4A</sup>
). Most of the anaplastic astrocytoma show homozygous mutation, deletion, and promoter hypermethylation in the INK4A/ARF locus that encodes two tumor suppressors [p16
<sup>INK4a</sup>
and an alternate reading frame tumor suppressor, p14
<sup>ARF</sup>
(Yamanaka,
<xref rid="B163" ref-type="bibr">2008</xref>
)]. Moreover, it has been shown that PDGF (platelet-derived growth factor) and platelet-derived growth factor receptor (PDGFR) signaling are involved at the beginning of the progression from astrocytoma to GB. In fact, elevated levels of PDGFRα have been reported in all types of gliomas, particularly in GB. Also, gliomas induce the overexpression of other mitogens, including IGF-1 (Insulin like Growth factor) and EGF (Epidermal growth factor) as well (Wong et al.,
<xref rid="B157" ref-type="bibr">1992</xref>
; Chakravarti et al.,
<xref rid="B26" ref-type="bibr">2002</xref>
; Nicholas et al.,
<xref rid="B102" ref-type="bibr">2006</xref>
; Puputti et al.,
<xref rid="B113" ref-type="bibr">2006</xref>
; Newton,
<xref rid="B101" ref-type="bibr">2010</xref>
). Their receptors are present as constitutively active mutant forms in gliomas (Wong et al.,
<xref rid="B157" ref-type="bibr">1992</xref>
), leading to the activation of numerous pathways, including PI3K/AKT PBK, phospholipase protein C, and RAS/mitogen-activated protein kinase. In turn, these pathways control invasion, cell proliferation, apoptosis, and differentiation processes (Schlessinger,
<xref rid="B123" ref-type="bibr">2000</xref>
). A common alteration (20–40%) identified in glioblastoma that affects the PI3K-Akt pathway is the genetic loss or mutation of the tumor suppressor gene PTEN (Phosphatase and Tensin homolog deleted on chromosome ten). Indeed, PTEN is a key negative regulator of the PI3K/Akt pathway (Stambolic et al.,
<xref rid="B134" ref-type="bibr">1998</xref>
; Cantley and Neel,
<xref rid="B21" ref-type="bibr">1999</xref>
). In addition, gliomas display the upregulation of angiogenic factors, such as the FGF (fibroblast growth factor), TGF (transforming growth factor), Interleukin 8 (IL-8), and Vascular-Endothelial Growth Factor (VEGF) (Benoy et al.,
<xref rid="B16" ref-type="bibr">2004</xref>
; Slettenaar and Wilson,
<xref rid="B129" ref-type="bibr">2006</xref>
; Xiao et al.,
<xref rid="B159" ref-type="bibr">2018</xref>
). The combination of the genetic alteration of these factors triggers a malignant glioma with an aggressive phenotype and that is resistant to intensive therapies. In this tumorigenic process, glioma stem cells exert a leading role (Uchida et al.,
<xref rid="B146" ref-type="bibr">2000</xref>
; Gaya et al.,
<xref rid="B51" ref-type="bibr">2002</xref>
; Kondo et al.,
<xref rid="B71" ref-type="bibr">2004</xref>
; Gürsel et al.,
<xref rid="B54" ref-type="bibr">2011</xref>
). Since glioma stem cells are able to self-propagate, in order to avoid recurrence, it is fundamental to target specifically them (Kroonen et al.,
<xref rid="B74" ref-type="bibr">2008</xref>
). The new possibility to isolate GBM stem cells allows for new therapeutic approaches, among which are gene replacement, knockdown, or silencing (Kroonen et al.,
<xref rid="B74" ref-type="bibr">2008</xref>
). Since each GB patient shows a peculiar molecular profile, the response at radio- and chemotherapies is different. On this basis, different GB cell lines may show a different response to Cdk inhibitors (Caracciolo et al.,
<xref rid="B22" ref-type="bibr">2012</xref>
; Cimini et al.,
<xref rid="B34" ref-type="bibr">2017</xref>
).</p>
<p>GB, and other solid tumors as well, encounter metabolic reprogramming; thus, the tumor is able to survive in hypoxic conditions and sustain angiogenesis and hyperproliferation (Kroemer and Pouyssegur,
<xref rid="B73" ref-type="bibr">2008</xref>
; Tennant et al.,
<xref rid="B141" ref-type="bibr">2009</xref>
; Fidoamore et al.,
<xref rid="B46" ref-type="bibr">2016</xref>
; Antonosante et al.,
<xref rid="B10" ref-type="bibr">2018</xref>
).</p>
<p>In particular, tumor cells activate the glycolytic pathway, also in the presence of oxygen (Warburg effect) (Frezza and Gottlieb,
<xref rid="B47" ref-type="bibr">2009</xref>
). Indeed, tumor cells exploit the glycolytic signaling intermediates for anabolic reactions (Gatenby and Gillies,
<xref rid="B50" ref-type="bibr">2004</xref>
). Only the cells subjected to these alterations are able to survive in the tumor environment, suggesting the presence of a selection of those with the altered metabolic phenotype (Tennant et al.,
<xref rid="B141" ref-type="bibr">2009</xref>
). The progress in the genetic biology of gliomas, and the recent insertion of manipulable experimental models, allows for the development of effective targeted therapy.</p>
</sec>
<sec id="s4">
<title>Targeted Theranostic Nanoplatforms for Brain Cancer Therapy and Imaging</title>
<p>The human brain is an extremely complicated organ, which simultaneously regulates and supervises several functions. Successful therapy in brain cancers is restricted because the administered therapeutic entity cannot reach the targeted area after systemic administration (Cheng et al.,
<xref rid="B31" ref-type="bibr">2014</xref>
), and this is the main obstacle for the transport of the therapeutic agents represented by the blood–brain barrier (BBB). The BBB consists of a physical barrier, composed by vascular endothelial cells, and is held together by tight junctions, transporters, receptors, enzymes, and the ATP-dependent, 170-kDa efflux pump P-glycoprotein (Sonali et al.,
<xref rid="B130" ref-type="bibr">2016a</xref>
,
<xref rid="B131" ref-type="bibr">b</xref>
,
<xref rid="B132" ref-type="bibr">c</xref>
). The BBB retains the passage of agents with a molecular weight >500 Da but also of the majority of small sized molecules (Wei et al.,
<xref rid="B153" ref-type="bibr">2014</xref>
; Agrawal et al.,
<xref rid="B1" ref-type="bibr">2017a</xref>
,
<xref rid="B2" ref-type="bibr">b</xref>
). ATP-binding P-gp at the same time exerts the efflux function for xenobiotics, and their strong expression inhibits the passage of substrates through the BBB. The majority of the chemotherapeutics are hydrophobic and larger in molecular size; thus, they cannot cross the BBB spontaneously. Also, chemotherapeutics are substrates of multidrug-resistant drug efflux pumps, which are active on both tumor vascular cells and the BBB (Zong et al.,
<xref rid="B167" ref-type="bibr">2014</xref>
).</p>
<p>Brain cancers are difficult to detect and treat during the primary stages. The diagnosis and the detection of the volume of the brain cancers are complex because an accumulation of extracellular fluid (Koo et al.,
<xref rid="B72" ref-type="bibr">2006</xref>
) surrounding the tumor region is generally present. Since the 1970s, the primary modality to treat brain cancer includes surgical resection and/or chemotherapy or radiotherapy (Koo et al.,
<xref rid="B72" ref-type="bibr">2006</xref>
).</p>
<p>Conventional diagnostic and therapeutic agents showed improper bio-distribution and modest pharmacokinetics, leading to insufficient dissemination into tumors (Muthu et al.,
<xref rid="B95" ref-type="bibr">2014a</xref>
,
<xref rid="B96" ref-type="bibr">b</xref>
). In addition, they are non-specific and can accumulate in healthy organs, resulting in high toxicity. To overcome these issues, the nanotheranostic approach could be very useful. Different effective nanotheranostics brain cancer therapies have been recognized, but they need further investigation (Lakka and Rao,
<xref rid="B78" ref-type="bibr">2008</xref>
; Xie et al.,
<xref rid="B160" ref-type="bibr">2010</xref>
; Keunen et al.,
<xref rid="B68" ref-type="bibr">2011</xref>
; Fan et al.,
<xref rid="B43" ref-type="bibr">2014</xref>
; Nance et al.,
<xref rid="B100" ref-type="bibr">2014</xref>
; Arranja et al.,
<xref rid="B12" ref-type="bibr">2017</xref>
). For instance, nanoparticle-enhanced imaging of the CNS at the subcellular level localizes more precisely the intracranial neoplasms area (
<xref ref-type="fig" rid="F2">Figure 2</xref>
) (Bhojani et al.,
<xref rid="B17" ref-type="bibr">2010</xref>
). Also, nanoparticle-enhanced neuroimaging is very useful to understand physiological processes, including apoptosis, ischemia, inflammation, cell differentiation, and mitosis, representing the main tool for further research studies in neurodegenerative diseases and stroke (reviewed in Mattei and Rehman,
<xref rid="B89" ref-type="bibr">2015</xref>
). To study physiological processes, many microscopic and macroscopic imaging modalities have been established. Microscopic methods require the invasive harvesting of tissues and imaging by cell-based assays (i.e., for apoptosis TUNEL, Annexin V, and Caspase Substrate Based Assays) (Cen et al.,
<xref rid="B23" ref-type="bibr">2008</xref>
). Macroscopic imaging modalities, by contrast, visualize apoptosis in living subjects in non-invasive modality. To date, to study these physiological processes, various
<italic>in vivo</italic>
molecular imaging technologies have been used, including Radiolabeled Small Molecular Probes, optical imaging probes, MRI agents, and multiple-modality methods. Microscopic and macroscopic imaging strategies improved the understanding of various physiological processes, or pathologies in preclinical and clinical studies (Zeng et al.,
<xref rid="B164" ref-type="bibr">2015</xref>
).</p>
<fig id="F2" position="float">
<label>Figure 2</label>
<caption>
<p>Summary scheme of nanoparticles potentially useful in theranostic nanomedicine for glioma. In this scheme, three sets (therapeutics, diagnostics, and nanocarriers to overcome the BBB) related to the potential application of nanoparticles are reported.</p>
</caption>
<graphic xlink:href="fbioe-07-00325-g0002"></graphic>
</fig>
<p>Unfortunately, the BBB still represents a limitation for nanotheranostic delivery (Wilhelm and Krizbai,
<xref rid="B156" ref-type="bibr">2014</xref>
). To facilitate
<italic>in vitro</italic>
studies of drug delivery to the brain, promising
<italic>in vitro</italic>
BBB models have been developed based on primary or immortalized cells or on the culture of brain endothelial cells (Wilhelm and Krizbai,
<xref rid="B156" ref-type="bibr">2014</xref>
; Helms et al.,
<xref rid="B58" ref-type="bibr">2016</xref>
). Valid models can be obtained using primary porcine brain endothelial cells and rodent co-culture models, which are characterized by low paracellular permeability and functional efflux transporters, mimicking the
<italic>in vivo</italic>
physiological complexity of the
<italic>in vivo</italic>
BBB. These include triple co-culture (brain endothelial cells with pericytes and astrocytes), dynamic, and microfluidic models, but these models are not suitable for rapid analyses. Great efforts have been made to deliver diagnostic agents and drugs into the brain. Thanks to recent advances in BBB research, new approaches have been exploited. Strategies able to pass through the BBB and reach the brain include viral vectors (characterized by high gene transfection efficiency), exosomes, brain permeability enhancers, and nanoparticles (Dong,
<xref rid="B41" ref-type="bibr">2018</xref>
).</p>
<p>For example, Pilkington et al., in one of these
<italic>in vitro</italic>
BBB models, tested the properties of chitosyme nanoparticulate structures on BBB integrity, analyzing the tight junction proteins (ZO-1, occludin) and effects on the extra cellular matrix (Pilkington et al.,
<xref rid="B111" ref-type="bibr">2014</xref>
). In additional studies, paclitaxel (PTX) were constructed with a cyclic Arg-Gly-Asp (RGD) peptide as a targeting ligand to pass through the BBB by a targeting method. The nanocarriers were tested on a 3D glioma spheroid of glioma cells grown on agarose and showed targeted accumulation into tumor spheroids and excellent infiltration compared with conventional nanocarriers, suggesting a potential use in therapeutic approaches (Jiang et al.,
<xref rid="B63" ref-type="bibr">2013</xref>
). The theranostic nanosystems are combined with the targeting agent that identifies definite targets of brain cancer cells and binds to and internalizes via a specific mechanism. Several nanomaterials, including Gold Nanoparticles (AuNPs) and Quantum Dots (QDs) have intrinsic diagnostic/therapeutic properties (Muthu et al.,
<xref rid="B95" ref-type="bibr">2014a</xref>
; Sonali et al.,
<xref rid="B133" ref-type="bibr">2018</xref>
).</p>
</sec>
<sec id="s5">
<title>Gold Nanoparticles</title>
<p>Gold Nanoparticles designed from gold cores represent a new system for theranostic systems (
<xref rid="T2" ref-type="table">Table 2</xref>
). They are biocompatible and are usually prepared as spheres, wire, rods, cubes, and cages. AuNPs, like other inorganic nanoparticles, trigger oxidative stress and subsequent cytotoxic effects. The spheroidal AuNPs ultraviolet (UV) absorption is at 520 nm, while the gold nanorods absorption is in the Infrared radiation (690–900 nm). These intrinsic optical characteristic allow AuNPs to be utilized as multifarious theranostic drugs for clinical applications (Xie et al.,
<xref rid="B160" ref-type="bibr">2010</xref>
; Kumar et al.,
<xref rid="B76" ref-type="bibr">2013</xref>
). AuNPs showed a diagnostic property, tunable core size, low toxicity, surface plasmon absorption and ease of fabrication, and light-scattering properties (Fan et al.,
<xref rid="B43" ref-type="bibr">2014</xref>
). AuNPs have been widely studied; for example, Melancon et al. formulated multi-utility gold-based nanoshells with optical and magnetic activities, which were additionally conjugated with targeting moiety and studied as an approach for head and neck cancer (Melancon et al.,
<xref rid="B90" ref-type="bibr">2011</xref>
). It has been shown that AuNPs improve the treatment of gliomas; for instance, the use of AuNPs-combined radiotherapy promoted long-term survival with respect to radiation therapy alone (Hainfeld et al.,
<xref rid="B55" ref-type="bibr">2013</xref>
; Joh et al.,
<xref rid="B64" ref-type="bibr">2013</xref>
). In another study, a theranostic system for cancer treatment, which was able to reduce the cytotoxic effect on normal cells, has been developed based on the use of gold nanoparticles surface-functionalized with a paclitaxel drug and biotin receptor. Two categories, AuNPs-4 and AuNPs-5, were investigated for their peculiar interaction with cancer cells. These nanoparticles were tested against the immortalized NIH3T3 cells, and it was suggested that the AuNPs-5 was more efficient (Heo et al.,
<xref rid="B59" ref-type="bibr">2012</xref>
). In addition, AuNPs represent an encouraging candidate for tumor margin detection, improving the surgery resection of brain cancers (Tzeng and Green,
<xref rid="B145" ref-type="bibr">2013</xref>
). An
<italic>in-vitro</italic>
study on brain tumor cell lines showed a strong amelioration in uptake studies of targeted particles with respect to non-targeted formulations (Dixit et al.,
<xref rid="B40" ref-type="bibr">2015b</xref>
). Recently, matrix metalloproteinase-2-sensitive gold-gelatin nanoparticles were developed; RGD and octarginine were used as targeting ligands to pass through the BBB, allowing a pH-triggered release to the glioma-specific area. Indeed, it has been reported that gold nanotheranostic targeted specific tumor areas since it is able to co-localize within neovessels (Ruan et al.,
<xref rid="B120" ref-type="bibr">2015</xref>
). Gold theranostic micelles coated with polyethylene glycol-polycaprolactone (PEG-PCL) exhibited radiosensitizing efficacy for GBM therapy and can be used as a novel contrasting agent for both MRI and CT studies (Sun et al.,
<xref rid="B137" ref-type="bibr">2016</xref>
).</p>
<table-wrap id="T2" position="float">
<label>Table 2</label>
<caption>
<p>Nanoparticles examples with some characteristics.</p>
</caption>
<table frame="hsides" rules="groups">
<thead>
<tr>
<th valign="top" align="left" rowspan="1" colspan="1">
<bold>Nanoparticles</bold>
</th>
<th valign="top" align="left" rowspan="1" colspan="1">
<bold>Biosafety</bold>
</th>
<th valign="top" align="left" rowspan="1" colspan="1">
<bold>Size</bold>
</th>
<th valign="top" align="left" rowspan="1" colspan="1">
<bold>References</bold>
</th>
</tr>
</thead>
<tbody>
<tr>
<td valign="top" align="left" rowspan="1" colspan="1">Gold nanoparticles</td>
<td valign="top" align="left" rowspan="1" colspan="1">Low cytotoxicity</td>
<td valign="top" align="left" rowspan="1" colspan="1">2–60 nm</td>
<td valign="top" align="left" rowspan="1" colspan="1">Fan et al.,
<xref rid="B43" ref-type="bibr">2014</xref>
</td>
</tr>
<tr>
<td valign="top" align="left" rowspan="1" colspan="1">Magnetic nanoparticles</td>
<td valign="top" align="left" rowspan="1" colspan="1">Potential cytotoxicity</td>
<td valign="top" align="left" rowspan="1" colspan="1">7–20 nm</td>
<td valign="top" align="left" rowspan="1" colspan="1">Alphandéry et al.,
<xref rid="B7" ref-type="bibr">2015</xref>
</td>
</tr>
<tr>
<td valign="top" align="left" rowspan="1" colspan="1">Quantum dots</td>
<td valign="top" align="left" rowspan="1" colspan="1">Potential cytotoxicity</td>
<td valign="top" align="left" rowspan="1" colspan="1">2–50 nm</td>
<td valign="top" align="left" rowspan="1" colspan="1">Onoshima et al.,
<xref rid="B103" ref-type="bibr">2015</xref>
</td>
</tr>
<tr>
<td valign="top" align="left" rowspan="1" colspan="1">Carbon nanotubes</td>
<td valign="top" align="left" rowspan="1" colspan="1">Potential cytotoxicity</td>
<td valign="top" align="left" rowspan="1" colspan="1">0.4–40 nm</td>
<td valign="top" align="left" rowspan="1" colspan="1">Wang et al.,
<xref rid="B151" ref-type="bibr">2012</xref>
</td>
</tr>
<tr>
<td valign="top" align="left" rowspan="1" colspan="1">Mesoporous silica nanoparticles</td>
<td valign="top" align="left" rowspan="1" colspan="1">Low cytotoxicity</td>
<td valign="top" align="left" rowspan="1" colspan="1">20–25 nm</td>
<td valign="top" align="left" rowspan="1" colspan="1">Wang et al.,
<xref rid="B150" ref-type="bibr">2015</xref>
</td>
</tr>
</tbody>
</table>
<table-wrap-foot>
<p>
<italic>Different nanoparticles and the respective biosafety and size</italic>
.</p>
</table-wrap-foot>
</table-wrap>
</sec>
<sec id="s6">
<title>Magnetic Nanoparticles</title>
<p>Recently, Magnetic Nanoparticles (MNPs) have been introduced as potential nanocarriers in targeted drug delivery at the tumor area, having the further benefit of MRI traceability (
<xref rid="T2" ref-type="table">Table 2</xref>
). The magnetic response (iron oxide core) ameliorates the magnetic targeted delivery (Pankhurst et al.,
<xref rid="B107" ref-type="bibr">2003</xref>
; Frimpong and Hilt,
<xref rid="B48" ref-type="bibr">2010</xref>
). Interestingly, it has been shown that intravenous administration of these particles is able to reach the cancer site in an animal model. Recently, Chertok et al. reported that magnetic nanoparticles are a useful tool for magnetically enhanced accumulation in brain tumors and for non-invasive MRI screening. This accumulation can be sharply improved with magnetic targeting, as confirmed by MRI (Chertok et al.,
<xref rid="B32" ref-type="bibr">2008</xref>
). A recent
<italic>in-vivo</italic>
study suggested the potential clinical application of these nanotheranostics since MNPs overpass the BBB in a reversible way, and the substance can reach the targeted site (Lammers et al.,
<xref rid="B80" ref-type="bibr">2015</xref>
; Tabatabaei et al.,
<xref rid="B138" ref-type="bibr">2015</xref>
). Since 2013, NanoTherm® therapy has been established as a new procedure for the focal treatment of solid tumors (Rivera Gil et al.,
<xref rid="B117" ref-type="bibr">2010</xref>
). In this procedure, magnetic nanoparticles are introduced in the tumor or in the resection cavity wall. These particles are then heated by an alternating magnetic field, determining cancer cells death. Nanoparticles are particles of iron oxide, suspended in water, with a diameter of about 15 nm. After the
<italic>in vivo</italic>
engraftment, they agglomerate and remain the tissue to be treated. An alternating magnetic field then induces the particles to generate heat. Depending on the temperatures reached in the tumor site or in individual remaining cancer cells in the resection cavity wall, and the length of treatment, cancer cells are destroyed or made more sensitive to concomitant radiotherapy or chemotherapy
<xref ref-type="fn" rid="fn0001">
<sup>1</sup>
</xref>
(Alphandéry et al.,
<xref rid="B7" ref-type="bibr">2015</xref>
).</p>
</sec>
<sec id="s7">
<title>Quantum Dots</title>
<p>Quantum Dots (QDs) are nanoscale (<10 nm) inorganic semiconductor nanocrystals, which represent a potential candidate for theranostic purposes (
<xref rid="T2" ref-type="table">Table 2</xref>
). They emit light which wavelength can be tuned on the basis of their shape, composition, and size. Cadmium selenide/Zinc sulfide-based QDs are the most used nanomaterials for diagnostic purposes. They have a CdSe core that is overcoated with layers of ZnS (Zhang et al.,
<xref rid="B165" ref-type="bibr">2017</xref>
). Furthermore, to gain affinity and target the cancer site, the surface of the QDs can be covalently or non-covalently conjugated with targeting probes, such as various antibodies, peptides, nucleic acids, folate aptamers, and other small molecules. One of the most suitable methods for conjugating targeting molecules on the surface of QDs is represented by the technique of avidin-biotin cross-linking (Tian et al.,
<xref rid="B143" ref-type="bibr">2011</xref>
; Onoshima et al.,
<xref rid="B103" ref-type="bibr">2015</xref>
). QDs can be conjugated with cancer cell-specific ligands, including HER2 (Ahmed et al.,
<xref rid="B3" ref-type="bibr">2017</xref>
), highly expressed in glioblastoma, CD44, proteins, antibodies, folic acid, and so on. Interestingly, QDs can be combined into paramagnetic liposomal designs containing RGD peptides and utilized as a diagnostic tool in tumor angiogenesis using MRI (Volkov,
<xref rid="B148" ref-type="bibr">2015</xref>
). QDs in theranostic showed a clinical potential limit, due to their potential toxicity in humans (Derfus et al.,
<xref rid="B37" ref-type="bibr">2004</xref>
; Kirchner et al.,
<xref rid="B70" ref-type="bibr">2005</xref>
). To overcome this problem, further investigation is necessary to design biocompatible, excretable, surface-modified QDs (Onoshima et al.,
<xref rid="B103" ref-type="bibr">2015</xref>
).</p>
</sec>
<sec id="s8">
<title>Carbon Nanotubes</title>
<p>Carbon Nanotubes (CNTs) are composed of different layers of graphene sheets, which form a cylindrical shape (
<xref rid="T2" ref-type="table">Table 2</xref>
). CNTs can be considered as allotropes of carbon with poor biocompatibility and slow biodegradation (Singh et al.,
<xref rid="B128" ref-type="bibr">2016</xref>
). CNTs are useful for theranostic applications since they can ameliorate the effect of chemotherapeutic agents and are translatable to clinical applications (Shapira et al.,
<xref rid="B125" ref-type="bibr">2011</xref>
; Singh et al.,
<xref rid="B128" ref-type="bibr">2016</xref>
). Once CNTs reach the targeted cells, they can interact with DNA and proteins, altering cellular signaling, or the mechanism of other therapeutic approaches (Ren et al.,
<xref rid="B116" ref-type="bibr">2012</xref>
; Chakrabarti et al.,
<xref rid="B25" ref-type="bibr">2015</xref>
). The intrinsic NIR light-absorption characteristic of CNTs has been exploited to eliminate tumor cells
<italic>in vitro</italic>
, whereas their NIR photoluminescence property has been utilized in cell imaging. In an interesting study, it has been reported that
<italic>i.v</italic>
. administration of single-walled carbon nanotubes (SWCNTs) as photo luminescent probes is a valid tool for
<italic>in vivo</italic>
tumor imaging, suggesting that SWCNTs could be used for theranostic applications. Moreover, CNTs are able to improve the chemotherapy effect in brain tumors (Robinson et al.,
<xref rid="B118" ref-type="bibr">2010</xref>
). In fact, recently, gold-coated surface-modified CNTs were established as optical nanotheranostic probes, which exhibited high potential as imaging tracers but had poor clinical potential due to slower biodegradation (and subsequent toxicity), as shown in
<italic>in vivo</italic>
nanotheranostic studies (Wang et al.,
<xref rid="B151" ref-type="bibr">2012</xref>
). However, CNTs may trigger adverse effects, such as lipid peroxidation, that induce inflammation and cell damage (Shapira et al.,
<xref rid="B125" ref-type="bibr">2011</xref>
; Singh et al.,
<xref rid="B128" ref-type="bibr">2016</xref>
).</p>
</sec>
<sec id="s9">
<title>Mesoporous Silica Nanoparticles</title>
<p>Mesoporous Silica Nanoparticles (MSNPs) are also emerging drug delivery systems. MSNPs are thoroughly investigated and used in diagnostics because of their tunable shape and size and since their wide surface area facilitates a high drug loading (
<xref rid="T2" ref-type="table">Table 2</xref>
). Numerous drugs, including paclitaxel, camptothecin, methotrexate, colchicine, and cysteine, have been encapsulated in MSNPs. These encapsulated anticancer drugs are able to precisely cause the death of tumor cells (Gary-Bobo et al.,
<xref rid="B49" ref-type="bibr">2012</xref>
; Mamaeva et al.,
<xref rid="B88" ref-type="bibr">2013</xref>
). Thanks to the hexagonal structure, MSNPs can incorporate numerous functional components of an ideal theranostic approach in a single object, with different regions for the contrasting agent, therapeutic moiety, and biomolecular ligand. In addition, MSNPs are identified as safe materials by the FDA and are approved for evaluation in clinical studies. Scientists have utilized silica to integrate both IONPs and QDs, in order to create a hybrid with both optical and magnetic properties. MSNPs are biocompatible and biodegradable materials for nanotheranostic applications. MSNPs that dissolved silica can be absorbed by the biological system, metabolize, and be excreted through urine in the form of silicic acid or oligomeric silica species (Chen et al.,
<xref rid="B28" ref-type="bibr">2013</xref>
; Wang et al.,
<xref rid="B150" ref-type="bibr">2015</xref>
). Biomolecular targeting agents, proteins and peptides, are conjugated to the surface of MSNPs to ameliorate cancer treatment efficacy. Indeed, the surface of MSNPs was conjugated with a Tf peptide to enhance the detection of brain glioma cells (Cheng et al.,
<xref rid="B30" ref-type="bibr">2010</xref>
; Feng et al.,
<xref rid="B45" ref-type="bibr">2016</xref>
). Due to their efficient drug-loading capability, rugged nature, elevated biodegradation in the body, and diverse functionalization, MSNPs are widely used as tracers in MRIs or contrast agents in ultrasounds for accurate targeting, and they show positive results for brain cancer detection (Feng et al.,
<xref rid="B45" ref-type="bibr">2016</xref>
). In an interesting study, mesenchymal stem cells were engineered with MSNPs to treat and diagnose orthotopic glioblastomas. In particular, the intracerebral injection of engineered stem cells significantly improved the survival of rats with U87MG xenografts. This effect was concomitant with a reduction in tumor growth and proliferation and microvascular density. In GSC1 xenografts, intra-tumoral injections of Ad-hMSCs depleted the tumor cell population and induced migration of resident microglial cells (Pacioni et al.,
<xref rid="B105" ref-type="bibr">2017</xref>
). Nanotheranostics therapy was administered systemically to the mice and allowed
<italic>in vivo</italic>
imaging via MRI, NIR fluorescence, and PET; moreover, it exhibited high specificity for the glioma site (Huang et al.,
<xref rid="B61" ref-type="bibr">2013</xref>
).</p>
</sec>
<sec id="s10">
<title>Nanoparticles for GB Treatment</title>
<p>Numerous nanostructured delivery systems have been established for brain tumor delivery, and, on the basis of their composition and nature, they can be divided into organic NPS and inorganic NPS (Kumar et al.,
<xref rid="B75" ref-type="bibr">2016</xref>
; Di Martino et al.,
<xref rid="B38" ref-type="bibr">2017</xref>
). Organic NPS (i.e., liposomes, polymeric nanoparticles, lipid nanoparticles, and micelles), compared with the “free” drugs, were able to efficiently cross the BBB, with favored distribution in the brain, in both
<italic>in vitro</italic>
and
<italic>in vivo</italic>
studies (Danhier et al.,
<xref rid="B36" ref-type="bibr">2015</xref>
; Chen et al.,
<xref rid="B29" ref-type="bibr">2016</xref>
; Kuo and Cheng,
<xref rid="B77" ref-type="bibr">2016</xref>
; Liu et al.,
<xref rid="B85" ref-type="bibr">2016</xref>
; Qu et al.,
<xref rid="B115" ref-type="bibr">2016</xref>
; Wu et al.,
<xref rid="B158" ref-type="bibr">2016</xref>
; Belhadj et al.,
<xref rid="B15" ref-type="bibr">2017</xref>
; Chai et al.,
<xref rid="B24" ref-type="bibr">2017</xref>
; Graverini et al.,
<xref rid="B53" ref-type="bibr">2018</xref>
; Jhaveri et al.,
<xref rid="B62" ref-type="bibr">2018</xref>
) (
<xref rid="T3" ref-type="table">Table 3</xref>
). The main advantages of inorganic NPS (mesoporous silica nanoparticles, gold nanoparticles, iron oxide nanoparticles, and quantum dots) are their resistance to enzymatic degradation, robustness, and interesting intrinsic characteristics (Nam et al.,
<xref rid="B98" ref-type="bibr">2013</xref>
). For the treatment of GB, different kind of NPS (lipidic, magnetic, liposomal, fluorescent, and polymeric) have already been designed in order to cross the BBB, and these take into account active, passive, and stimuli-targeting perspectives (Cheng et al.,
<xref rid="B31" ref-type="bibr">2014</xref>
; Saraiva et al.,
<xref rid="B122" ref-type="bibr">2016</xref>
; Miranda et al.,
<xref rid="B94" ref-type="bibr">2017</xref>
; Aparicio-Blanco and Torres-Suárez,
<xref rid="B11" ref-type="bibr">2018</xref>
). Theranostic nanoparticles represent a new technological concept that provides a combination of inorganic and organic nanoparticles to acquire synergistic characteristics in a single nanoparticle, exploiting the drug delivery by organic NPS and imaging by inorganic NPS. Theranostic nanoparticles can be used to limit toxicity due to a high and invasive dosage, improving patient outcomes. Recently, a combined chemo-photothermal targeted treatment of gliomas within one nanoparticle was developed. A targeting peptide was synthesized and characterized. In particular, as a therapeutic component, Doxorubicin was chosen, and, as a drug and diagnostic delivery system, a modified mesoporous silica-coated graphene nanosheet (GSPI) was chosen. The doxorubicin-loaded GSPI-based system showed heat-stimulating, pH-responsive, and sustained release properties. The
<italic>in vitro</italic>
results were encouraging; glioma cells showed a higher rate of death and strong GSPI accumulation (Lee et al.,
<xref rid="B81" ref-type="bibr">2011</xref>
). Targeting AuNPs with two or more receptor-binding peptides for glioblastoma treatment have been established (Dixit et al.,
<xref rid="B39" ref-type="bibr">2015a</xref>
). AuNPs conjugated with peptides (EGF and transferrin) and loaded with the photosensitizer phthalocyanine 4 (Pc 4) displayed synergistic effects in human glioma cells, concomitant with a high accumulation in the brain tumor area compared to AuNPs alone (Dixit et al.,
<xref rid="B39" ref-type="bibr">2015a</xref>
). Many
<italic>in vitro</italic>
studies reported positive effects; however,
<italic>in vivo</italic>
investigations based on theranostic NPS concepts are necessary to translate into clinical practice (Schmieder et al.,
<xref rid="B124" ref-type="bibr">2008</xref>
; Jokerst and Gambhir,
<xref rid="B65" ref-type="bibr">2011</xref>
; Sailor and Park,
<xref rid="B121" ref-type="bibr">2012</xref>
).
<italic>In vitro</italic>
and
<italic>in vitro</italic>
studies for GB treatment have been reported, and include gold nanoparticles, curcumin-loaded RDP-liposomes, curcumin-loaded PLGA-DSPE-PEG nanoparticles, chitosan-based nanoparticles, iron oxide nanoparticles coated with a chitosan-PEG-polyethyleneimine copolymer, hyaluronic acid conjugated liposomes, and others (Dixit et al.,
<xref rid="B39" ref-type="bibr">2015a</xref>
,
<xref rid="B40" ref-type="bibr">b</xref>
; Orunoglu et al.,
<xref rid="B104" ref-type="bibr">2017</xref>
; Zhao et al.,
<xref rid="B166" ref-type="bibr">2018</xref>
). Finally, magnetic nanoparticles and Nanotherm theranostic technology have been successfully applied in glioblastoma patients in 27 different European countries with double median survival in 59 patients (reviewed in Xie et al.,
<xref rid="B162" ref-type="bibr">2018</xref>
).</p>
<table-wrap id="T3" position="float">
<label>Table 3</label>
<caption>
<p>Examples of clinical trials performed using nanoparticles drugs for gliomas.</p>
</caption>
<table frame="hsides" rules="groups">
<thead>
<tr>
<th valign="top" align="left" rowspan="1" colspan="1">
<bold>Drugs</bold>
</th>
<th valign="top" align="left" rowspan="1" colspan="1">
<bold>Diseases</bold>
</th>
<th valign="top" align="left" rowspan="1" colspan="1">
<bold>Phase</bold>
</th>
<th valign="top" align="left" rowspan="1" colspan="1">
<bold>Clinical Trial</bold>
</th>
</tr>
</thead>
<tbody>
<tr>
<td valign="top" align="left" rowspan="1" colspan="1">ABI-009 (nab-rapamycin)</td>
<td valign="top" align="left" rowspan="1" colspan="1">Recurrent high-grade glioma; Newly diagnosed glioblastoma</td>
<td valign="top" align="left" rowspan="1" colspan="1">II</td>
<td valign="top" align="left" rowspan="1" colspan="1">NCT03463265</td>
</tr>
<tr>
<td valign="top" align="left" rowspan="1" colspan="1">NL CPT-11 (Nanoliposomal CPT-11)</td>
<td valign="top" align="left" rowspan="1" colspan="1">Recurrent high-grade glioma</td>
<td valign="top" align="left" rowspan="1" colspan="1">I completed</td>
<td valign="top" align="left" rowspan="1" colspan="1">NCT00734682</td>
</tr>
<tr>
<td valign="top" align="left" rowspan="1" colspan="1">Ferumoxytol</td>
<td valign="top" align="left" rowspan="1" colspan="1">Recurrent high-grade glioma</td>
<td valign="top" align="left" rowspan="1" colspan="1">I</td>
<td valign="top" align="left" rowspan="1" colspan="1">NCT00769093</td>
</tr>
<tr>
<td valign="top" align="left" rowspan="1" colspan="1">9-ING-41</td>
<td valign="top" align="left" rowspan="1" colspan="1">Glioblastoma</td>
<td valign="top" align="left" rowspan="1" colspan="1">II</td>
<td valign="top" align="left" rowspan="1" colspan="1">NCT03678883</td>
</tr>
<tr>
<td valign="top" align="left" rowspan="1" colspan="1">Pegylated Liposomal Doxorubicine + Temozolomide</td>
<td valign="top" align="left" rowspan="1" colspan="1">Glioblastoma And diffuse intristic pontine glioma</td>
<td valign="top" align="left" rowspan="1" colspan="1">II completed</td>
<td valign="top" align="left" rowspan="1" colspan="1">
<italic>NCT00944801</italic>
</td>
</tr>
<tr>
<td valign="top" align="left" rowspan="1" colspan="1">SGT-53</td>
<td valign="top" align="left" rowspan="1" colspan="1">Recurrent glioblastoma</td>
<td valign="top" align="left" rowspan="1" colspan="1">II</td>
<td valign="top" align="left" rowspan="1" colspan="1">NCT02340156</td>
</tr>
<tr>
<td valign="top" align="left" rowspan="1" colspan="1">Myocet</td>
<td valign="top" align="left" rowspan="1" colspan="1">Refractory or relapsed malignant glioma in children/adolescent</td>
<td valign="top" align="left" rowspan="1" colspan="1">I</td>
<td valign="top" align="left" rowspan="1" colspan="1">NCT02861222</td>
</tr>
</tbody>
</table>
<table-wrap-foot>
<p>
<italic>Drugs, disease, and clinical trials with relative phase</italic>
.</p>
</table-wrap-foot>
</table-wrap>
<p>All these studies reported high efficiency against glioblastoma also in
<italic>in vivo</italic>
investigations, thus indicating a promising application in diagnosis and concomitantly in therapeutic approaches, which results from significant accumulation in the brain tumor regions. NPS are poorly investigated in clinical trials (Andronescu and Grumezescu,
<xref rid="B8" ref-type="bibr">2017</xref>
). The main limitation for using nanotechnology to diagnose and treat cancer is due to its inability to effectively contain and regulate the activity of NPS inside the body, comprising toxicity, biodistribution, and pharmacokinetics (Wicki et al.,
<xref rid="B155" ref-type="bibr">2015</xref>
; Bregoli et al.,
<xref rid="B19" ref-type="bibr">2016</xref>
; Hare et al.,
<xref rid="B56" ref-type="bibr">2017</xref>
).</p>
</sec>
<sec id="s11">
<title>Conclusion and Perspectives</title>
<p>In the last years, the field of “theranostic medicine” has gained increasing interest in order to improve diagnostic and therapeutic interventions by nanotechnology resources that exploit a combined approach (
<xref ref-type="fig" rid="F1">Figure 1</xref>
). A nanoparticle should contain a therapeutic agent combined with a tracer to help monitor the effect of the therapy as well. Theranostic is considered a potential candidate for targeted therapy and personalized medicine because you can follow the specific behavior of each tumor concomitant with a substantial increase in the efficacy of the anticancer drugs. This monitoring during the treatment course is a non-invasive method that, through the use of theranostic strategies, allows for the implementation of the individualization of therapeutic regimens based on each patient's response.</p>
<p>Overall, on light of the published investigations, nanotechnology research may be a potential and valid treatment of CNS pathologies, especially brain cancers (
<xref ref-type="fig" rid="F2">Figure 2</xref>
), helping to address the main issues encountered: unclear tumoral margins, neurotoxicity of adjuvant therapies, fibrosis and immunological responses to intracranial devices, vascular anastomosis, multidrug resistance, BBB blockage, and tumor cell-specificity response to pharmacological treatments. Nanotheranostics, indeed, have shown to be a valid option for malignant brain cancers. Thus, in this review, we reported that nanotheranostics may represent a solid approach to be adopted in brain cancer management. The field of theranostics is pretty new, but considerable efforts have been made in order to develop theranostic nanoparticles for cancer therapy and targeted imaging. Advantages of theranostic nanoparticles include high biosafety, prolonged half-life into the circulatory system, concomitant loading of therapeutic and contrast agents, small size, high surface functionalization, and the ability to perform concomitantly diagnosis/monitoring and therapeutic approaches in real-time. Theranostic NPS allow a specific release of cargo in the affected site, targeting overexpressed proteins and receptors on brain cancer cells. These functions can facilitate the progress of innovative drugs in both preclinical and clinical phases.</p>
<p>Recently, multifunctional applications and combined approaches with personalized medicine applications have increased the hope in a successful clinical translation. Currently, as mentioned above, the only theranostic tool approved for use in the clinical treatment of GBM in Europe is NanoTherm® (Shi et al.,
<xref rid="B126" ref-type="bibr">2017</xref>
).</p>
<p>Overall, the goal is that multifunctional nanomedicine is an efficient, targeted
<italic>in vivo</italic>
drug delivery without systemic toxicity, and the therapeutic efficacy and the dosage can be precisely measured with low or absent invasivity.</p>
<p>However, in order to translate the experimental studies to clinical trials, further investigations are necessary, particularly to understand the low drug-loading capacity and to optimize the drug concentrations that reach the targeted area, and many factors need to be optimized simultaneously for the best clinical outcome.</p>
<p>
<italic>In vitro</italic>
and
<italic>in vivo</italic>
studies optimized to correctly evaluate toxicity, biodistribution, and pharmacokinetics of NPS are strongly requested to test the safety and efficacy of these nanomaterials in clinical studies. Moreover, the complexity of some nanoparticle designs and the high production costs contribute to the lower clinical uptake of NPS (Hare et al.,
<xref rid="B56" ref-type="bibr">2017</xref>
). The major efforts in the field of NPS should be directed toward bridging the gap between preclinical studies and the clinical phase.</p>
<p>The goal would be a better outcome for the patients thanks to the constant monitoring prior and during treatment, which allows for personalized cancer planning with predictable side effects. These multifunctional modern applications may increase a patient's life expectancy and life quality. It is highly probably that, in the near future, the field of nanotheranostics will emerge and become part of the conventional therapy and diagnostic approaches for brain cancer and other type of cancers.</p>
</sec>
<sec id="s12">
<title>Author Contributions</title>
<p>All authors listed have made a substantial, direct and intellectual contribution to the work, and approved it for publication.</p>
<sec>
<title>Conflict of Interest</title>
<p>The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.</p>
</sec>
</sec>
</body>
<back>
<fn-group>
<fn id="fn0001">
<p>
<sup>1</sup>
NanoTherm® therapy. Available online at:
<ext-link ext-link-type="uri" xlink:href="https://www.magforce.com/en/home/our_therapy/">https://www.magforce.com/en/home/our_therapy/</ext-link>
</p>
</fn>
</fn-group>
<fn-group>
<fn fn-type="financial-disclosure">
<p>
<bold>Funding.</bold>
This project has received funding from the European Union's Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No 713714 to RD-B.</p>
</fn>
</fn-group>
<ref-list>
<title>References</title>
<ref id="B1">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Agrawal</surname>
<given-names>P.</given-names>
</name>
<name>
<surname>Singh</surname>
<given-names>R. P.</given-names>
</name>
<name>
<surname>Sonali Kumari</surname>
<given-names>L.</given-names>
</name>
<name>
<surname>Sharma</surname>
<given-names>G.</given-names>
</name>
<name>
<surname>Koch</surname>
<given-names>B.</given-names>
</name>
<etal></etal>
</person-group>
. (
<year>2017a</year>
).
<article-title>TPGS-chitosan cross-linked targeted nanoparticles for effective brain cancer therapy</article-title>
.
<source>Mater. Sci. Eng. C Mater. Biol. Appl.</source>
<volume>74</volume>
,
<fpage>167</fpage>
<lpage>176</lpage>
.
<pub-id pub-id-type="doi">10.1016/j.msec.2017.02.008</pub-id>
<pub-id pub-id-type="pmid">28254282</pub-id>
</mixed-citation>
</ref>
<ref id="B2">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Agrawal</surname>
<given-names>P.</given-names>
</name>
<name>
<surname>Sonali Singh</surname>
<given-names>R. P.</given-names>
</name>
<name>
<surname>Sharma</surname>
<given-names>G.</given-names>
</name>
<name>
<surname>Mehata</surname>
<given-names>A. K.</given-names>
</name>
<name>
<surname>Singh</surname>
<given-names>S.</given-names>
</name>
<etal></etal>
</person-group>
. (
<year>2017b</year>
).
<article-title>Bioadhesive micelles of d-α-tocopherol polyethylene glycol succinate 1000: synergism of chitosan and transferrin in targeted drug delivery</article-title>
.
<source>Colloids Surf. B Biointerfaces</source>
<volume>152</volume>
,
<fpage>277</fpage>
<lpage>288</lpage>
.
<pub-id pub-id-type="doi">10.1016/j.colsurfb.2017.01.021</pub-id>
<pub-id pub-id-type="pmid">28122295</pub-id>
</mixed-citation>
</ref>
<ref id="B3">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Ahmed</surname>
<given-names>N.</given-names>
</name>
<name>
<surname>Brawley</surname>
<given-names>V.</given-names>
</name>
<name>
<surname>Hegde</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Bielamowicz</surname>
<given-names>K.</given-names>
</name>
<name>
<surname>Kalra</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Landi</surname>
<given-names>D.</given-names>
</name>
<etal></etal>
</person-group>
. (
<year>2017</year>
).
<article-title>HER2-specific chimeric antigen receptor-modified virus-specific t cells for progressive glioblastoma: a phase 1 dose-escalation trial</article-title>
.
<source>JAMA Oncol.</source>
<volume>3</volume>
,
<fpage>1094</fpage>
<lpage>1101</lpage>
.
<pub-id pub-id-type="doi">10.1001/jamaoncol.2017.0184</pub-id>
<pub-id pub-id-type="pmid">28426845</pub-id>
</mixed-citation>
</ref>
<ref id="B4">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Ahmed</surname>
<given-names>N.</given-names>
</name>
<name>
<surname>Fessi</surname>
<given-names>H.</given-names>
</name>
<name>
<surname>Elaissari</surname>
<given-names>A.</given-names>
</name>
</person-group>
(
<year>2012</year>
).
<article-title>Theranostic applications of nanoparticles in cancer</article-title>
.
<source>Drug Discov. Today</source>
<volume>17</volume>
,
<fpage>928</fpage>
<lpage>934</lpage>
.
<pub-id pub-id-type="doi">10.1016/j.drudis.2012.03.010</pub-id>
<pub-id pub-id-type="pmid">22484464</pub-id>
</mixed-citation>
</ref>
<ref id="B5">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Ai</surname>
<given-names>H.</given-names>
</name>
</person-group>
(
<year>2011</year>
).
<article-title>Layer-by-layer capsules for magnetic resonance imaging and drug delivery</article-title>
.
<source>Adv. Drug Deliv. Rev.</source>
<volume>63</volume>
,
<fpage>772</fpage>
<lpage>788</lpage>
.
<pub-id pub-id-type="doi">10.1016/j.addr.2011.03.013</pub-id>
<pub-id pub-id-type="pmid">21554908</pub-id>
</mixed-citation>
</ref>
<ref id="B6">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Al-Jamal</surname>
<given-names>W. T.</given-names>
</name>
<name>
<surname>Kostarelos</surname>
<given-names>K.</given-names>
</name>
</person-group>
(
<year>2011</year>
).
<article-title>Liposomes: from a clinically established drug delivery system to a nanoparticle platform for theranostic nanomedicine</article-title>
.
<source>Acc. Chem. Res.</source>
<volume>44</volume>
,
<fpage>1094</fpage>
<lpage>1104</lpage>
.
<pub-id pub-id-type="doi">10.1021/ar200105p</pub-id>
<pub-id pub-id-type="pmid">21812415</pub-id>
</mixed-citation>
</ref>
<ref id="B7">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Alphandéry</surname>
<given-names>E.</given-names>
</name>
<name>
<surname>Grand-Dewyse</surname>
<given-names>P.</given-names>
</name>
<name>
<surname>Lefèvre</surname>
<given-names>R.</given-names>
</name>
<name>
<surname>Mandawala</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>Durand-Dubief</surname>
<given-names>M.</given-names>
</name>
</person-group>
(
<year>2015</year>
).
<article-title>Cancer therapy using nanoformulated substances: scientific, regulatory and financial aspects</article-title>
.
<source>Expert Rev. Anticancer Ther.</source>
<volume>15</volume>
,
<fpage>1233</fpage>
<lpage>1255</lpage>
.
<pub-id pub-id-type="doi">10.1586/14737140.2015.1086647</pub-id>
<pub-id pub-id-type="pmid">26402250</pub-id>
</mixed-citation>
</ref>
<ref id="B8">
<mixed-citation publication-type="book">
<person-group person-group-type="author">
<name>
<surname>Andronescu</surname>
<given-names>E.</given-names>
</name>
<name>
<surname>Grumezescu</surname>
<given-names>A. M.</given-names>
</name>
</person-group>
(
<year>2017</year>
).
<source>Nanostructures for Drug Delivery</source>
.
<publisher-loc>Bucharest</publisher-loc>
:
<publisher-name>Micro and Nano Technologies</publisher-name>
.</mixed-citation>
</ref>
<ref id="B9">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Ang</surname>
<given-names>C. Y.</given-names>
</name>
<name>
<surname>Tan</surname>
<given-names>S. Y.</given-names>
</name>
<name>
<surname>Lu</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Bai</surname>
<given-names>L.</given-names>
</name>
<name>
<surname>Li</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Li</surname>
<given-names>P.</given-names>
</name>
<etal></etal>
</person-group>
. (
<year>2014</year>
).
<article-title>“Turn-on” fluorescence probe integrated polymer nanoparticles for sensing biological thiol molecules</article-title>
.
<source>Sci. Rep.</source>
<volume>4</volume>
:
<fpage>7057</fpage>
.
<pub-id pub-id-type="doi">10.1038/srep07057</pub-id>
<pub-id pub-id-type="pmid">25394758</pub-id>
</mixed-citation>
</ref>
<ref id="B10">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Antonosante</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>d'Angelo</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Castelli</surname>
<given-names>V.</given-names>
</name>
<name>
<surname>Catanesi</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Iannotta</surname>
<given-names>D.</given-names>
</name>
<name>
<surname>Giordano</surname>
<given-names>A.</given-names>
</name>
<etal></etal>
</person-group>
. (
<year>2018</year>
).
<article-title>The involvement of PPARs in the peculiar energetic metabolism of tumor cells</article-title>
.
<source>Int. J. Mol. Sci.</source>
<volume>19</volume>
:
<fpage>1907</fpage>
.
<pub-id pub-id-type="doi">10.3390/ijms19071907</pub-id>
<pub-id pub-id-type="pmid">29966227</pub-id>
</mixed-citation>
</ref>
<ref id="B11">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Aparicio-Blanco</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Torres-Suárez</surname>
<given-names>A.-I.</given-names>
</name>
</person-group>
(
<year>2018</year>
).
<article-title>Towards tailored management of malignant brain tumors with nanotheranostics</article-title>
.
<source>Acta Biomater.</source>
<volume>73</volume>
,
<fpage>52</fpage>
<lpage>63</lpage>
.
<pub-id pub-id-type="doi">10.1016/j.actbio.2018.04.029</pub-id>
<pub-id pub-id-type="pmid">29678675</pub-id>
</mixed-citation>
</ref>
<ref id="B12">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Arranja</surname>
<given-names>A. G.</given-names>
</name>
<name>
<surname>Pathak</surname>
<given-names>V.</given-names>
</name>
<name>
<surname>Lammers</surname>
<given-names>T.</given-names>
</name>
<name>
<surname>Shi</surname>
<given-names>Y.</given-names>
</name>
</person-group>
(
<year>2017</year>
).
<article-title>Tumor-targeted nanomedicines for cancer theranostics</article-title>
.
<source>Pharmacol. Res.</source>
<volume>115</volume>
,
<fpage>87</fpage>
<lpage>95</lpage>
.
<pub-id pub-id-type="doi">10.1016/j.phrs.2016.11.014</pub-id>
<pub-id pub-id-type="pmid">27865762</pub-id>
</mixed-citation>
</ref>
<ref id="B13">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Bahadur</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Sahu</surname>
<given-names>A. K.</given-names>
</name>
<name>
<surname>Baghel</surname>
<given-names>P.</given-names>
</name>
<name>
<surname>Saha</surname>
<given-names>S.</given-names>
</name>
</person-group>
(
<year>2019</year>
).
<article-title>Current promising treatment strategy for glioblastoma multiform: a review</article-title>
.
<source>Oncol. Rev.</source>
<volume>13</volume>
:
<fpage>417</fpage>
.
<pub-id pub-id-type="doi">10.4081/oncol.2019.417</pub-id>
<pub-id pub-id-type="pmid">31410248</pub-id>
</mixed-citation>
</ref>
<ref id="B14">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Behin</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Hoang-Xuan</surname>
<given-names>K.</given-names>
</name>
<name>
<surname>Carpentier</surname>
<given-names>A. F.</given-names>
</name>
<name>
<surname>Delattre</surname>
<given-names>J.-Y.</given-names>
</name>
</person-group>
(
<year>2003</year>
).
<article-title>Primary brain tumours in adults</article-title>
.
<source>Lancet</source>
<volume>361</volume>
,
<fpage>323</fpage>
<lpage>331</lpage>
.
<pub-id pub-id-type="doi">10.1016/S0140-6736(03)12328-8</pub-id>
<pub-id pub-id-type="pmid">12559880</pub-id>
</mixed-citation>
</ref>
<ref id="B15">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Belhadj</surname>
<given-names>Z.</given-names>
</name>
<name>
<surname>Zhan</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>Ying</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Wei</surname>
<given-names>X.</given-names>
</name>
<name>
<surname>Xie</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>Yan</surname>
<given-names>Z.</given-names>
</name>
<etal></etal>
</person-group>
. (
<year>2017</year>
).
<article-title>Multifunctional targeted liposomal drug delivery for efficient glioblastoma treatment</article-title>
.
<source>Oncotarget</source>
<volume>8</volume>
,
<fpage>66889</fpage>
<lpage>66900</lpage>
.
<pub-id pub-id-type="doi">10.18632/oncotarget.17976</pub-id>
<pub-id pub-id-type="pmid">28978003</pub-id>
</mixed-citation>
</ref>
<ref id="B16">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Benoy</surname>
<given-names>I. H.</given-names>
</name>
<name>
<surname>Salgado</surname>
<given-names>R.</given-names>
</name>
<name>
<surname>Van Dam</surname>
<given-names>P.</given-names>
</name>
<name>
<surname>Geboers</surname>
<given-names>K.</given-names>
</name>
<name>
<surname>Van Marck</surname>
<given-names>E.</given-names>
</name>
<name>
<surname>Scharpé</surname>
<given-names>S.</given-names>
</name>
<etal></etal>
</person-group>
. (
<year>2004</year>
).
<article-title>Increased serum interleukin-8 in patients with early and metastatic breast cancer correlates with early dissemination and survival</article-title>
.
<source>Clin. Cancer Res.</source>
<volume>10</volume>
,
<fpage>7157</fpage>
<lpage>7162</lpage>
.
<pub-id pub-id-type="doi">10.1158/1078-0432.CCR-04-0812</pub-id>
<pub-id pub-id-type="pmid">15534087</pub-id>
</mixed-citation>
</ref>
<ref id="B17">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Bhojani</surname>
<given-names>M. S.</given-names>
</name>
<name>
<surname>Van Dort</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Rehemtulla</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Ross</surname>
<given-names>B. D.</given-names>
</name>
</person-group>
(
<year>2010</year>
).
<article-title>Targeted imaging and therapy of brain cancer using theranostic nanoparticles</article-title>
.
<source>Mol. Pharm.</source>
<volume>7</volume>
,
<fpage>1921</fpage>
<lpage>1929</lpage>
.
<pub-id pub-id-type="doi">10.1021/mp100298r</pub-id>
<pub-id pub-id-type="pmid">20964352</pub-id>
</mixed-citation>
</ref>
<ref id="B18">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Boas</surname>
<given-names>U.</given-names>
</name>
<name>
<surname>Heegaard</surname>
<given-names>P. M. H.</given-names>
</name>
</person-group>
(
<year>2004</year>
).
<article-title>Dendrimers in drug research</article-title>
.
<source>Chem. Soc. Rev.</source>
<volume>33</volume>
,
<fpage>43</fpage>
<lpage>63</lpage>
.
<pub-id pub-id-type="doi">10.1039/b309043b</pub-id>
<pub-id pub-id-type="pmid">14737508</pub-id>
</mixed-citation>
</ref>
<ref id="B19">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Bregoli</surname>
<given-names>L.</given-names>
</name>
<name>
<surname>Movia</surname>
<given-names>D.</given-names>
</name>
<name>
<surname>Gavigan-Imedio</surname>
<given-names>J. D.</given-names>
</name>
<name>
<surname>Lysaght</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Reynolds</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Prina-Mello</surname>
<given-names>A.</given-names>
</name>
</person-group>
(
<year>2016</year>
).
<article-title>Nanomedicine applied to translational oncology: a future perspective on cancer treatment</article-title>
.
<source>Nanomedicine.</source>
<volume>12</volume>
,
<fpage>81</fpage>
<lpage>103</lpage>
.
<pub-id pub-id-type="doi">10.1016/j.nano.2015.08.006</pub-id>
<pub-id pub-id-type="pmid">26370707</pub-id>
</mixed-citation>
</ref>
<ref id="B20">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Cai</surname>
<given-names>W.</given-names>
</name>
<name>
<surname>Rao</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Gambhir</surname>
<given-names>S. S.</given-names>
</name>
<name>
<surname>Chen</surname>
<given-names>X.</given-names>
</name>
</person-group>
(
<year>2006</year>
).
<article-title>How molecular imaging is speeding up antiangiogenic drug development</article-title>
.
<source>Mol. Cancer Ther.</source>
<volume>5</volume>
,
<fpage>2624</fpage>
<lpage>2633</lpage>
.
<pub-id pub-id-type="doi">10.1158/1535-7163.MCT-06-0395</pub-id>
<pub-id pub-id-type="pmid">17121909</pub-id>
</mixed-citation>
</ref>
<ref id="B21">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Cantley</surname>
<given-names>L. C.</given-names>
</name>
<name>
<surname>Neel</surname>
<given-names>B. G.</given-names>
</name>
</person-group>
(
<year>1999</year>
).
<article-title>New insights into tumor suppression: PTEN suppresses tumor formation by restraining the phosphoinositide 3-kinase/AKT pathway</article-title>
.
<source>Proc. Natl. Acad. Sci. U.S.A.</source>
<volume>96</volume>
,
<fpage>4240</fpage>
<lpage>4245</lpage>
.
<pub-id pub-id-type="doi">10.1073/pnas.96.8.4240</pub-id>
<pub-id pub-id-type="pmid">10200246</pub-id>
</mixed-citation>
</ref>
<ref id="B22">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Caracciolo</surname>
<given-names>V.</given-names>
</name>
<name>
<surname>Laurenti</surname>
<given-names>G.</given-names>
</name>
<name>
<surname>Romano</surname>
<given-names>G.</given-names>
</name>
<name>
<surname>Carnevale</surname>
<given-names>V.</given-names>
</name>
<name>
<surname>Cimini</surname>
<given-names>A. M.</given-names>
</name>
<name>
<surname>Crozier-Fitzgerald</surname>
<given-names>C.</given-names>
</name>
<etal></etal>
</person-group>
. (
<year>2012</year>
).
<article-title>Flavopiridol induces phosphorylation of AKT in a human glioblastoma cell line, in contrast to siRNA-mediated silencing of Cdk9: implications for drug design and development</article-title>
.
<source>Cell Cycle</source>
<volume>11</volume>
,
<fpage>1202</fpage>
<lpage>1216</lpage>
.
<pub-id pub-id-type="doi">10.4161/cc.11.6.19663</pub-id>
<pub-id pub-id-type="pmid">22391209</pub-id>
</mixed-citation>
</ref>
<ref id="B23">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Cen</surname>
<given-names>H.</given-names>
</name>
<name>
<surname>Mao</surname>
<given-names>F.</given-names>
</name>
<name>
<surname>Aronchik</surname>
<given-names>I.</given-names>
</name>
<name>
<surname>Fuentes</surname>
<given-names>R. J.</given-names>
</name>
<name>
<surname>Firestone</surname>
<given-names>G. L.</given-names>
</name>
</person-group>
(
<year>2008</year>
).
<article-title>DEVD-NucView488: a novel class of enzyme substrates for real-time detection of caspase-3 activity in live cells</article-title>
.
<source>FASEB J.</source>
<volume>22</volume>
,
<fpage>2243</fpage>
<lpage>2252</lpage>
.
<pub-id pub-id-type="doi">10.1096/fj.07-099234</pub-id>
<pub-id pub-id-type="pmid">18263700</pub-id>
</mixed-citation>
</ref>
<ref id="B24">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Chai</surname>
<given-names>Z.</given-names>
</name>
<name>
<surname>Hu</surname>
<given-names>X.</given-names>
</name>
<name>
<surname>Wei</surname>
<given-names>X.</given-names>
</name>
<name>
<surname>Zhan</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>Lu</surname>
<given-names>L.</given-names>
</name>
<name>
<surname>Jiang</surname>
<given-names>K.</given-names>
</name>
<etal></etal>
</person-group>
. (
<year>2017</year>
).
<article-title>A facile approach to functionalizing cell membrane-coated nanoparticles with neurotoxin-derived peptide for brain-targeted drug delivery</article-title>
.
<source>J. Control. Release</source>
<volume>264</volume>
,
<fpage>102</fpage>
<lpage>111</lpage>
.
<pub-id pub-id-type="doi">10.1016/j.jconrel.2017.08.027</pub-id>
<pub-id pub-id-type="pmid">28842313</pub-id>
</mixed-citation>
</ref>
<ref id="B25">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Chakrabarti</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Kiseleva</surname>
<given-names>R.</given-names>
</name>
<name>
<surname>Vertegel</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Ray</surname>
<given-names>S. K.</given-names>
</name>
</person-group>
(
<year>2015</year>
).
<article-title>Carbon nanomaterials for drug delivery and cancer therapy</article-title>
.
<source>J. Nanosci. Nanotechnol.</source>
<volume>15</volume>
,
<fpage>5501</fpage>
<lpage>5511</lpage>
.
<pub-id pub-id-type="doi">10.1166/jnn.2015.10614</pub-id>
<pub-id pub-id-type="pmid">26369109</pub-id>
</mixed-citation>
</ref>
<ref id="B26">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Chakravarti</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Loeffler</surname>
<given-names>J. S.</given-names>
</name>
<name>
<surname>Dyson</surname>
<given-names>N. J.</given-names>
</name>
</person-group>
(
<year>2002</year>
).
<article-title>Insulin-like growth factor receptor I mediates resistance to anti-epidermal growth factor receptor therapy in primary human glioblastoma cells through continued activation of phosphoinositide 3-kinase signaling</article-title>
.
<source>Cancer Res.</source>
<volume>62</volume>
,
<fpage>200</fpage>
<lpage>207</lpage>
.
<pub-id pub-id-type="pmid">11782378</pub-id>
</mixed-citation>
</ref>
<ref id="B27">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Chang</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Meng</surname>
<given-names>X.</given-names>
</name>
<name>
<surname>Zhao</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Li</surname>
<given-names>K.</given-names>
</name>
<name>
<surname>Zhao</surname>
<given-names>B.</given-names>
</name>
<name>
<surname>Zhu</surname>
<given-names>M.</given-names>
</name>
<etal></etal>
</person-group>
. (
<year>2011</year>
).
<article-title>Novel water-soluble and pH-responsive anticancer drug nanocarriers: doxorubicin-PAMAM dendrimer conjugates attached to superparamagnetic iron oxide nanoparticles (IONPs)</article-title>
.
<source>J. Colloid Interface Sci.</source>
<volume>363</volume>
,
<fpage>403</fpage>
<lpage>409</lpage>
.
<pub-id pub-id-type="doi">10.1016/j.jcis.2011.06.086</pub-id>
<pub-id pub-id-type="pmid">21821262</pub-id>
</mixed-citation>
</ref>
<ref id="B28">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Chen</surname>
<given-names>N.-T.</given-names>
</name>
<name>
<surname>Cheng</surname>
<given-names>S.-H.</given-names>
</name>
<name>
<surname>Souris</surname>
<given-names>J. S.</given-names>
</name>
<name>
<surname>Chen</surname>
<given-names>C.-T.</given-names>
</name>
<name>
<surname>Mou</surname>
<given-names>C.-Y.</given-names>
</name>
<name>
<surname>Lo</surname>
<given-names>L.-W.</given-names>
</name>
</person-group>
(
<year>2013</year>
).
<article-title>Theranostic applications of mesoporous silica nanoparticles and their organic/inorganic hybrids</article-title>
.
<source>J. Mater. Chem. B</source>
<volume>1</volume>
:
<fpage>3128</fpage>
<pub-id pub-id-type="doi">10.1039/c3tb20249f</pub-id>
</mixed-citation>
</ref>
<ref id="B29">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Chen</surname>
<given-names>Z.</given-names>
</name>
<name>
<surname>Lai</surname>
<given-names>X.</given-names>
</name>
<name>
<surname>Song</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Zhu</surname>
<given-names>X.</given-names>
</name>
<name>
<surname>Zhu</surname>
<given-names>J.</given-names>
</name>
</person-group>
(
<year>2016</year>
).
<article-title>Nanostructured lipid carriers based temozolomide and gene co-encapsulated nanomedicine for gliomatosis cerebri combination therapy</article-title>
.
<source>Drug Deliv.</source>
<volume>23</volume>
,
<fpage>1369</fpage>
<lpage>1373</lpage>
.
<pub-id pub-id-type="doi">10.3109/10717544.2015.1038857</pub-id>
<pub-id pub-id-type="pmid">26017099</pub-id>
</mixed-citation>
</ref>
<ref id="B30">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Cheng</surname>
<given-names>S.-H.</given-names>
</name>
<name>
<surname>Lee</surname>
<given-names>C.-H.</given-names>
</name>
<name>
<surname>Chen</surname>
<given-names>M.-C.</given-names>
</name>
<name>
<surname>Souris</surname>
<given-names>J. S.</given-names>
</name>
<name>
<surname>Tseng</surname>
<given-names>F.-G.</given-names>
</name>
<name>
<surname>Yang</surname>
<given-names>C.-S.</given-names>
</name>
<etal></etal>
</person-group>
(
<year>2010</year>
).
<article-title>Tri-functionalization of mesoporous silica nanoparticles for comprehensive cancer theranostics—the trio of imaging, targeting and therapy</article-title>
.
<source>J. Mater. Chem.</source>
<volume>20</volume>
:
<fpage>6149</fpage>
<pub-id pub-id-type="doi">10.1039/c0jm00645a</pub-id>
</mixed-citation>
</ref>
<ref id="B31">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Cheng</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Morshed</surname>
<given-names>R. A.</given-names>
</name>
<name>
<surname>Auffinger</surname>
<given-names>B.</given-names>
</name>
<name>
<surname>Tobias</surname>
<given-names>A. L.</given-names>
</name>
<name>
<surname>Lesniak</surname>
<given-names>M. S.</given-names>
</name>
</person-group>
(
<year>2014</year>
).
<article-title>Multifunctional nanoparticles for brain tumor imaging and therapy</article-title>
.
<source>Adv. Drug Deliv. Rev.</source>
<volume>66</volume>
,
<fpage>42</fpage>
<lpage>57</lpage>
.
<pub-id pub-id-type="doi">10.1016/j.addr.2013.09.006</pub-id>
<pub-id pub-id-type="pmid">24060923</pub-id>
</mixed-citation>
</ref>
<ref id="B32">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Chertok</surname>
<given-names>B.</given-names>
</name>
<name>
<surname>Moffat</surname>
<given-names>B. A.</given-names>
</name>
<name>
<surname>David</surname>
<given-names>A. E.</given-names>
</name>
<name>
<surname>Yu</surname>
<given-names>F.</given-names>
</name>
<name>
<surname>Bergemann</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>Ross</surname>
<given-names>B. D.</given-names>
</name>
<etal></etal>
</person-group>
. (
<year>2008</year>
).
<article-title>Iron oxide nanoparticles as a drug delivery vehicle for MRI monitored magnetic targeting of brain tumors</article-title>
.
<source>Biomaterials</source>
<volume>29</volume>
,
<fpage>487</fpage>
<lpage>496</lpage>
.
<pub-id pub-id-type="doi">10.1016/j.biomaterials.2007.08.050</pub-id>
<pub-id pub-id-type="pmid">17964647</pub-id>
</mixed-citation>
</ref>
<ref id="B33">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Choi</surname>
<given-names>K. Y.</given-names>
</name>
<name>
<surname>Liu</surname>
<given-names>G.</given-names>
</name>
<name>
<surname>Lee</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Chen</surname>
<given-names>X.</given-names>
</name>
</person-group>
(
<year>2012</year>
).
<article-title>Theranostic nanoplatforms for simultaneous cancer imaging and therapy: current approaches and future perspectives</article-title>
.
<source>Nanoscale</source>
<volume>4</volume>
,
<fpage>330</fpage>
<lpage>342</lpage>
.
<pub-id pub-id-type="doi">10.1039/C1NR11277E</pub-id>
<pub-id pub-id-type="pmid">22134683</pub-id>
</mixed-citation>
</ref>
<ref id="B34">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Cimini</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>d'Angelo</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Benedetti</surname>
<given-names>E.</given-names>
</name>
<name>
<surname>D'Angelo</surname>
<given-names>B.</given-names>
</name>
<name>
<surname>Laurenti</surname>
<given-names>G.</given-names>
</name>
<name>
<surname>Antonosante</surname>
<given-names>A.</given-names>
</name>
<etal></etal>
</person-group>
. (
<year>2017</year>
).
<article-title>Flavopiridol: an old drug with new perspectives? Implication for development of new drugs</article-title>
.
<source>J. Cell. Physiol.</source>
<volume>232</volume>
,
<fpage>312</fpage>
<lpage>322</lpage>
.
<pub-id pub-id-type="doi">10.1002/jcp.25421</pub-id>
<pub-id pub-id-type="pmid">27171480</pub-id>
</mixed-citation>
</ref>
<ref id="B35">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Cole</surname>
<given-names>A. J.</given-names>
</name>
<name>
<surname>Yang</surname>
<given-names>V. C.</given-names>
</name>
<name>
<surname>David</surname>
<given-names>A. E.</given-names>
</name>
</person-group>
(
<year>2011</year>
).
<article-title>Cancer theranostics: the rise of targeted magnetic nanoparticles</article-title>
.
<source>Trends Biotechnol.</source>
<volume>29</volume>
,
<fpage>323</fpage>
<lpage>332</lpage>
.
<pub-id pub-id-type="doi">10.1016/j.tibtech.2011.03.001</pub-id>
<pub-id pub-id-type="pmid">21489647</pub-id>
</mixed-citation>
</ref>
<ref id="B36">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Danhier</surname>
<given-names>F.</given-names>
</name>
<name>
<surname>Messaoudi</surname>
<given-names>K.</given-names>
</name>
<name>
<surname>Lemaire</surname>
<given-names>L.</given-names>
</name>
<name>
<surname>Benoit</surname>
<given-names>J.-P.</given-names>
</name>
<name>
<surname>Lagarce</surname>
<given-names>F.</given-names>
</name>
</person-group>
(
<year>2015</year>
).
<article-title>Combined anti-Galectin-1 and anti-EGFR siRNA-loaded chitosan-lipid nanocapsules decrease temozolomide resistance in glioblastoma:
<italic>in vivo</italic>
evaluation</article-title>
.
<source>Int. J. Pharm.</source>
<volume>481</volume>
,
<fpage>154</fpage>
<lpage>161</lpage>
.
<pub-id pub-id-type="doi">10.1016/j.ijpharm.2015.01.051</pub-id>
<pub-id pub-id-type="pmid">25644286</pub-id>
</mixed-citation>
</ref>
<ref id="B37">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Derfus</surname>
<given-names>A. M.</given-names>
</name>
<name>
<surname>Chan</surname>
<given-names>W. C. W.</given-names>
</name>
<name>
<surname>Bhatia</surname>
<given-names>S. N.</given-names>
</name>
</person-group>
(
<year>2004</year>
).
<article-title>Probing the cytotoxicity of semiconductor quantum dots</article-title>
.
<source>Nano Lett.</source>
<volume>4</volume>
,
<fpage>11</fpage>
<lpage>18</lpage>
.
<pub-id pub-id-type="doi">10.1021/nl0347334</pub-id>
<pub-id pub-id-type="pmid">28890669</pub-id>
</mixed-citation>
</ref>
<ref id="B38">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Di Martino</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Guselnikova</surname>
<given-names>O. A.</given-names>
</name>
<name>
<surname>Trusova</surname>
<given-names>M. E.</given-names>
</name>
<name>
<surname>Postnikov</surname>
<given-names>P. S.</given-names>
</name>
<name>
<surname>Sedlarik</surname>
<given-names>V.</given-names>
</name>
</person-group>
(
<year>2017</year>
).
<article-title>Organic-inorganic hybrid nanoparticles controlled delivery system for anticancer drugs</article-title>
.
<source>Int. J. Pharm.</source>
<volume>526</volume>
,
<fpage>380</fpage>
<lpage>390</lpage>
.
<pub-id pub-id-type="doi">10.1016/j.ijpharm.2017.04.061</pub-id>
<pub-id pub-id-type="pmid">28465052</pub-id>
</mixed-citation>
</ref>
<ref id="B39">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Dixit</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Miller</surname>
<given-names>K.</given-names>
</name>
<name>
<surname>Zhu</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>McKinnon</surname>
<given-names>E.</given-names>
</name>
<name>
<surname>Novak</surname>
<given-names>T.</given-names>
</name>
<name>
<surname>Kenney</surname>
<given-names>M. E.</given-names>
</name>
<etal></etal>
</person-group>
. (
<year>2015a</year>
).
<article-title>Dual receptor-targeted theranostic nanoparticles for localized delivery and activation of photodynamic therapy drug in glioblastomas</article-title>
.
<source>Mol. Pharm.</source>
<volume>12</volume>
,
<fpage>3250</fpage>
<lpage>3260</lpage>
.
<pub-id pub-id-type="doi">10.1021/acs.molpharmaceut.5b00216</pub-id>
<pub-id pub-id-type="pmid">26198693</pub-id>
</mixed-citation>
</ref>
<ref id="B40">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Dixit</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Novak</surname>
<given-names>T.</given-names>
</name>
<name>
<surname>Miller</surname>
<given-names>K.</given-names>
</name>
<name>
<surname>Zhu</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Kenney</surname>
<given-names>M. E.</given-names>
</name>
<name>
<surname>Broome</surname>
<given-names>A.-M.</given-names>
</name>
</person-group>
(
<year>2015b</year>
).
<article-title>Transferrin receptor-targeted theranostic gold nanoparticles for photosensitizer delivery in brain tumors</article-title>
.
<source>Nanoscale</source>
<volume>7</volume>
,
<fpage>1782</fpage>
<lpage>1790</lpage>
.
<pub-id pub-id-type="doi">10.1039/C4NR04853A</pub-id>
<pub-id pub-id-type="pmid">25519743</pub-id>
</mixed-citation>
</ref>
<ref id="B41">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Dong</surname>
<given-names>X.</given-names>
</name>
</person-group>
(
<year>2018</year>
).
<article-title>Current strategies for brain drug delivery</article-title>
.
<source>Theranostics</source>
<volume>8</volume>
,
<fpage>1481</fpage>
<lpage>1493</lpage>
.
<pub-id pub-id-type="doi">10.7150/thno.21254</pub-id>
<pub-id pub-id-type="pmid">29556336</pub-id>
</mixed-citation>
</ref>
<ref id="B42">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Duncan</surname>
<given-names>R.</given-names>
</name>
</person-group>
(
<year>2003</year>
).
<article-title>The dawning era of polymer therapeutics</article-title>
.
<source>Nat. Rev. Drug Discov.</source>
<volume>2</volume>
,
<fpage>347</fpage>
<lpage>360</lpage>
.
<pub-id pub-id-type="doi">10.1038/nrd1088</pub-id>
<pub-id pub-id-type="pmid">12750738</pub-id>
</mixed-citation>
</ref>
<ref id="B43">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Fan</surname>
<given-names>Z.</given-names>
</name>
<name>
<surname>Fu</surname>
<given-names>P. P.</given-names>
</name>
<name>
<surname>Yu</surname>
<given-names>H.</given-names>
</name>
<name>
<surname>Ray</surname>
<given-names>P. C.</given-names>
</name>
</person-group>
(
<year>2014</year>
).
<article-title>Theranostic nanomedicine for cancer detection and treatment</article-title>
.
<source>J. Food Drug Anal.</source>
<volume>22</volume>
,
<fpage>3</fpage>
<lpage>17</lpage>
.
<pub-id pub-id-type="doi">10.1016/j.jfda.2014.01.001</pub-id>
<pub-id pub-id-type="pmid">24673900</pub-id>
</mixed-citation>
</ref>
<ref id="B44">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Fattahi</surname>
<given-names>H.</given-names>
</name>
<name>
<surname>Laurent</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Liu</surname>
<given-names>F.</given-names>
</name>
<name>
<surname>Arsalani</surname>
<given-names>N.</given-names>
</name>
<name>
<surname>Vander Elst</surname>
<given-names>L.</given-names>
</name>
<name>
<surname>Muller</surname>
<given-names>R. N.</given-names>
</name>
</person-group>
(
<year>2011</year>
).
<article-title>Magnetoliposomes as multimodal contrast agents for molecular imaging and cancer nanotheragnostics</article-title>
.
<source>Nanomedicine.</source>
<volume>6</volume>
,
<fpage>529</fpage>
<lpage>544</lpage>
.
<pub-id pub-id-type="doi">10.2217/nnm.11.14</pub-id>
<pub-id pub-id-type="pmid">21542690</pub-id>
</mixed-citation>
</ref>
<ref id="B45">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Feng</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Panwar</surname>
<given-names>N.</given-names>
</name>
<name>
<surname>Tng</surname>
<given-names>D. J. H.</given-names>
</name>
<name>
<surname>Tjin</surname>
<given-names>S. C.</given-names>
</name>
<name>
<surname>Wang</surname>
<given-names>K.</given-names>
</name>
<name>
<surname>Yong</surname>
<given-names>K.-T.</given-names>
</name>
</person-group>
(
<year>2016</year>
).
<article-title>The application of mesoporous silica nanoparticle family in cancer theranostics</article-title>
.
<source>Coord. Chem. Rev.</source>
<volume>319</volume>
,
<fpage>86</fpage>
<lpage>109</lpage>
.
<pub-id pub-id-type="doi">10.1016/j.ccr.2016.04.019</pub-id>
</mixed-citation>
</ref>
<ref id="B46">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Fidoamore</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Cristiano</surname>
<given-names>L.</given-names>
</name>
<name>
<surname>Antonosante</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>d'Angelo</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Di Giacomo</surname>
<given-names>E.</given-names>
</name>
<name>
<surname>Astarita</surname>
<given-names>C.</given-names>
</name>
<etal></etal>
</person-group>
. (
<year>2016</year>
).
<article-title>Glioblastoma stem cells microenvironment: the paracrine roles of the niche in drug and radioresistance</article-title>
.
<source>Stem Cells Int.</source>
<volume>2016</volume>
:
<fpage>6809105</fpage>
.
<pub-id pub-id-type="doi">10.1155/2016/6809105</pub-id>
<pub-id pub-id-type="pmid">26880981</pub-id>
</mixed-citation>
</ref>
<ref id="B47">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Frezza</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>Gottlieb</surname>
<given-names>E.</given-names>
</name>
</person-group>
(
<year>2009</year>
).
<article-title>Mitochondria in cancer: not just innocent bystanders</article-title>
.
<source>Semin. Cancer Biol.</source>
<volume>19</volume>
,
<fpage>4</fpage>
<lpage>11</lpage>
.
<pub-id pub-id-type="doi">10.1016/j.semcancer.2008.11.008</pub-id>
<pub-id pub-id-type="pmid">19101633</pub-id>
</mixed-citation>
</ref>
<ref id="B48">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Frimpong</surname>
<given-names>R. A.</given-names>
</name>
<name>
<surname>Hilt</surname>
<given-names>J. Z.</given-names>
</name>
</person-group>
(
<year>2010</year>
).
<article-title>Magnetic nanoparticles in biomedicine: synthesis, functionalization and applications</article-title>
.
<source>Nanomedicine</source>
<volume>5</volume>
,
<fpage>1401</fpage>
<lpage>1414</lpage>
.
<pub-id pub-id-type="doi">10.2217/nnm.10.114</pub-id>
<pub-id pub-id-type="pmid">21128722</pub-id>
</mixed-citation>
</ref>
<ref id="B49">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Gary-Bobo</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Hocine</surname>
<given-names>O.</given-names>
</name>
<name>
<surname>Brevet</surname>
<given-names>D.</given-names>
</name>
<name>
<surname>Maynadier</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Raehm</surname>
<given-names>L.</given-names>
</name>
<name>
<surname>Richeter</surname>
<given-names>S.</given-names>
</name>
<etal></etal>
</person-group>
. (
<year>2012</year>
).
<article-title>Cancer therapy improvement with mesoporous silica nanoparticles combining targeting, drug delivery and PDT</article-title>
.
<source>Int. J. Pharm.</source>
<volume>423</volume>
,
<fpage>509</fpage>
<lpage>515</lpage>
.
<pub-id pub-id-type="doi">10.1016/j.ijpharm.2011.11.045</pub-id>
<pub-id pub-id-type="pmid">22178618</pub-id>
</mixed-citation>
</ref>
<ref id="B50">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Gatenby</surname>
<given-names>R. A.</given-names>
</name>
<name>
<surname>Gillies</surname>
<given-names>R. J.</given-names>
</name>
</person-group>
(
<year>2004</year>
).
<article-title>Why do cancers have high aerobic glycolysis?</article-title>
<source>Nat. Rev. Cancer</source>
<volume>4</volume>
,
<fpage>891</fpage>
<lpage>899</lpage>
.
<pub-id pub-id-type="doi">10.1038/nrc1478</pub-id>
<pub-id pub-id-type="pmid">15516961</pub-id>
</mixed-citation>
</ref>
<ref id="B51">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Gaya</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Rees</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Greenstein</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Stebbing</surname>
<given-names>J.</given-names>
</name>
</person-group>
(
<year>2002</year>
).
<article-title>The use of temozolomide in recurrent malignant gliomas</article-title>
.
<source>Cancer Treat. Rev.</source>
<volume>28</volume>
,
<fpage>115</fpage>
<lpage>120</lpage>
.
<pub-id pub-id-type="doi">10.1053/ctrv.2002.0261</pub-id>
<pub-id pub-id-type="pmid">12297119</pub-id>
</mixed-citation>
</ref>
<ref id="B52">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Golombek</surname>
<given-names>S. K.</given-names>
</name>
<name>
<surname>May</surname>
<given-names>J.-N.</given-names>
</name>
<name>
<surname>Theek</surname>
<given-names>B.</given-names>
</name>
<name>
<surname>Appold</surname>
<given-names>L.</given-names>
</name>
<name>
<surname>Drude</surname>
<given-names>N.</given-names>
</name>
<name>
<surname>Kiessling</surname>
<given-names>F.</given-names>
</name>
<etal></etal>
</person-group>
. (
<year>2018</year>
).
<article-title>Tumor targeting via EPR: strategies to enhance patient responses</article-title>
.
<source>Adv. Drug Deliv. Rev.</source>
<volume>130</volume>
,
<fpage>17</fpage>
<lpage>38</lpage>
.
<pub-id pub-id-type="doi">10.1016/j.addr.2018.07.007</pub-id>
<pub-id pub-id-type="pmid">30009886</pub-id>
</mixed-citation>
</ref>
<ref id="B53">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Graverini</surname>
<given-names>G.</given-names>
</name>
<name>
<surname>Piazzini</surname>
<given-names>V.</given-names>
</name>
<name>
<surname>Landucci</surname>
<given-names>E.</given-names>
</name>
<name>
<surname>Pantano</surname>
<given-names>D.</given-names>
</name>
<name>
<surname>Nardiello</surname>
<given-names>P.</given-names>
</name>
<name>
<surname>Casamenti</surname>
<given-names>F.</given-names>
</name>
<etal></etal>
</person-group>
. (
<year>2018</year>
).
<article-title>Solid lipid nanoparticles for delivery of andrographolide across the blood-brain barrier:
<italic>in vitro</italic>
and
<italic>in vivo</italic>
evaluation</article-title>
.
<source>Colloids Surf. B Biointerfaces</source>
<volume>161</volume>
,
<fpage>302</fpage>
<lpage>313</lpage>
.
<pub-id pub-id-type="doi">10.1016/j.colsurfb.2017.10.062</pub-id>
<pub-id pub-id-type="pmid">29096375</pub-id>
</mixed-citation>
</ref>
<ref id="B54">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Gürsel</surname>
<given-names>D. B.</given-names>
</name>
<name>
<surname>Shin</surname>
<given-names>B. J.</given-names>
</name>
<name>
<surname>Burkhardt</surname>
<given-names>J.-K.</given-names>
</name>
<name>
<surname>Kesavabhotla</surname>
<given-names>K.</given-names>
</name>
<name>
<surname>Schlaff</surname>
<given-names>C. D.</given-names>
</name>
<name>
<surname>Boockvar</surname>
<given-names>J. A.</given-names>
</name>
</person-group>
(
<year>2011</year>
).
<article-title>Glioblastoma stem-like cells-biology and therapeutic implications</article-title>
.
<source>Cancers.</source>
<volume>3</volume>
,
<fpage>2655</fpage>
<lpage>2666</lpage>
.
<pub-id pub-id-type="doi">10.3390/cancers3022655</pub-id>
<pub-id pub-id-type="pmid">21796273</pub-id>
</mixed-citation>
</ref>
<ref id="B55">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Hainfeld</surname>
<given-names>J. F.</given-names>
</name>
<name>
<surname>Smilowitz</surname>
<given-names>H. M.</given-names>
</name>
<name>
<surname>O'Connor</surname>
<given-names>M. J.</given-names>
</name>
<name>
<surname>Dilmanian</surname>
<given-names>F. A.</given-names>
</name>
<name>
<surname>Slatkin</surname>
<given-names>D. N.</given-names>
</name>
</person-group>
(
<year>2013</year>
).
<article-title>Gold nanoparticle imaging and radiotherapy of brain tumors in mice</article-title>
.
<source>Nanomedicine.</source>
<volume>8</volume>
,
<fpage>1601</fpage>
<lpage>1609</lpage>
.
<pub-id pub-id-type="doi">10.2217/nnm.12.165</pub-id>
<pub-id pub-id-type="pmid">23265347</pub-id>
</mixed-citation>
</ref>
<ref id="B56">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Hare</surname>
<given-names>J. I.</given-names>
</name>
<name>
<surname>Lammers</surname>
<given-names>T.</given-names>
</name>
<name>
<surname>Ashford</surname>
<given-names>M. B.</given-names>
</name>
<name>
<surname>Puri</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Storm</surname>
<given-names>G.</given-names>
</name>
<name>
<surname>Barry</surname>
<given-names>S. T.</given-names>
</name>
</person-group>
(
<year>2017</year>
).
<article-title>Challenges and strategies in anti-cancer nanomedicine development: an industry perspective</article-title>
.
<source>Adv. Drug Deliv. Rev.</source>
<volume>108</volume>
,
<fpage>25</fpage>
<lpage>38</lpage>
.
<pub-id pub-id-type="doi">10.1016/j.addr.2016.04.025</pub-id>
<pub-id pub-id-type="pmid">27137110</pub-id>
</mixed-citation>
</ref>
<ref id="B57">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Harrington</surname>
<given-names>K. J.</given-names>
</name>
<name>
<surname>Mohammadtaghi</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Uster</surname>
<given-names>P. S.</given-names>
</name>
<name>
<surname>Glass</surname>
<given-names>D.</given-names>
</name>
<name>
<surname>Peters</surname>
<given-names>A. M.</given-names>
</name>
<name>
<surname>Vile</surname>
<given-names>R. G.</given-names>
</name>
<etal></etal>
</person-group>
. (
<year>2001</year>
).
<article-title>Effective targeting of solid tumors in patients with locally advanced cancers by radiolabeled pegylated liposomes</article-title>
.
<source>Clin. Cancer Res.</source>
<volume>7</volume>
,
<fpage>243</fpage>
<lpage>254</lpage>
.
<pub-id pub-id-type="pmid">11234875</pub-id>
</mixed-citation>
</ref>
<ref id="B58">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Helms</surname>
<given-names>H. C.</given-names>
</name>
<name>
<surname>Abbott</surname>
<given-names>N. J.</given-names>
</name>
<name>
<surname>Burek</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Cecchelli</surname>
<given-names>R.</given-names>
</name>
<name>
<surname>Couraud</surname>
<given-names>P.-O.</given-names>
</name>
<name>
<surname>Deli</surname>
<given-names>M. A.</given-names>
</name>
<etal></etal>
</person-group>
. (
<year>2016</year>
).
<article-title>
<italic>In vitro</italic>
models of the blood–brain barrier: an overview of commonly used brain endothelial cell culture models and guidelines for their use</article-title>
.
<source>J Cerebral Blood Flow Metab.</source>
<volume>36</volume>
,
<fpage>862</fpage>
<lpage>890</lpage>
.
<pub-id pub-id-type="doi">10.1177/0271678X16630991</pub-id>
<pub-id pub-id-type="pmid">26868179</pub-id>
</mixed-citation>
</ref>
<ref id="B59">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Heo</surname>
<given-names>D. N.</given-names>
</name>
<name>
<surname>Yang</surname>
<given-names>D. H.</given-names>
</name>
<name>
<surname>Moon</surname>
<given-names>H.-J.</given-names>
</name>
<name>
<surname>Lee</surname>
<given-names>J. B.</given-names>
</name>
<name>
<surname>Bae</surname>
<given-names>M. S.</given-names>
</name>
<name>
<surname>Lee</surname>
<given-names>S. C.</given-names>
</name>
<etal></etal>
</person-group>
. (
<year>2012</year>
).
<article-title>Gold nanoparticles surface-functionalized with paclitaxel drug and biotin receptor as theranostic agents for cancer therapy</article-title>
.
<source>Biomaterials</source>
<volume>33</volume>
,
<fpage>856</fpage>
<lpage>866</lpage>
.
<pub-id pub-id-type="doi">10.1016/j.biomaterials.2011.09.064</pub-id>
<pub-id pub-id-type="pmid">22036101</pub-id>
</mixed-citation>
</ref>
<ref id="B60">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Hsu</surname>
<given-names>S. P. C.</given-names>
</name>
<name>
<surname>Kuo</surname>
<given-names>J. S.</given-names>
</name>
<name>
<surname>Chiang</surname>
<given-names>H.-C.</given-names>
</name>
<name>
<surname>Wang</surname>
<given-names>H.-E.</given-names>
</name>
<name>
<surname>Wang</surname>
<given-names>Y.-S.</given-names>
</name>
<name>
<surname>Huang</surname>
<given-names>C.-C.</given-names>
</name>
<etal></etal>
</person-group>
. (
<year>2018</year>
).
<article-title>Temozolomide, sirolimus and chloroquine is a new therapeutic combination that synergizes to disrupt lysosomal function and cholesterol homeostasis in GBM cells</article-title>
.
<source>Oncotarget</source>
<volume>9</volume>
,
<fpage>6883</fpage>
<lpage>6896</lpage>
.
<pub-id pub-id-type="doi">10.18632/oncotarget.23855</pub-id>
<pub-id pub-id-type="pmid">29467937</pub-id>
</mixed-citation>
</ref>
<ref id="B61">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Huang</surname>
<given-names>X.</given-names>
</name>
<name>
<surname>Zhang</surname>
<given-names>F.</given-names>
</name>
<name>
<surname>Wang</surname>
<given-names>H.</given-names>
</name>
<name>
<surname>Niu</surname>
<given-names>G.</given-names>
</name>
<name>
<surname>Choi</surname>
<given-names>K. Y.</given-names>
</name>
<name>
<surname>Swierczewska</surname>
<given-names>M.</given-names>
</name>
<etal></etal>
</person-group>
. (
<year>2013</year>
).
<article-title>Mesenchymal stem cell-based cell engineering with multifunctional mesoporous silica nanoparticles for tumor delivery</article-title>
.
<source>Biomaterials</source>
<volume>34</volume>
,
<fpage>1772</fpage>
<lpage>1780</lpage>
.
<pub-id pub-id-type="doi">10.1016/j.biomaterials.2012.11.032</pub-id>
<pub-id pub-id-type="pmid">23228423</pub-id>
</mixed-citation>
</ref>
<ref id="B62">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Jhaveri</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Deshpande</surname>
<given-names>P.</given-names>
</name>
<name>
<surname>Pattni</surname>
<given-names>B.</given-names>
</name>
<name>
<surname>Torchilin</surname>
<given-names>V.</given-names>
</name>
</person-group>
(
<year>2018</year>
).
<article-title>Transferrin-targeted, resveratrol-loaded liposomes for the treatment of glioblastoma</article-title>
.
<source>J. Control. Release</source>
<volume>277</volume>
,
<fpage>89</fpage>
<lpage>101</lpage>
.
<pub-id pub-id-type="doi">10.1016/j.jconrel.2018.03.006</pub-id>
<pub-id pub-id-type="pmid">29522834</pub-id>
</mixed-citation>
</ref>
<ref id="B63">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Jiang</surname>
<given-names>X.</given-names>
</name>
<name>
<surname>Sha</surname>
<given-names>X.</given-names>
</name>
<name>
<surname>Xin</surname>
<given-names>H.</given-names>
</name>
<name>
<surname>Xu</surname>
<given-names>X.</given-names>
</name>
<name>
<surname>Gu</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Xia</surname>
<given-names>W.</given-names>
</name>
<etal></etal>
</person-group>
. (
<year>2013</year>
).
<article-title>Integrin-facilitated transcytosis for enhanced penetration of advanced gliomas by poly(trimethylene carbonate)-based nanoparticles encapsulating paclitaxel</article-title>
.
<source>Biomaterials</source>
<volume>34</volume>
,
<fpage>2969</fpage>
<lpage>2979</lpage>
.
<pub-id pub-id-type="doi">10.1016/j.biomaterials.2012.12.049</pub-id>
<pub-id pub-id-type="pmid">23380351</pub-id>
</mixed-citation>
</ref>
<ref id="B64">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Joh</surname>
<given-names>D. Y.</given-names>
</name>
<name>
<surname>Sun</surname>
<given-names>L.</given-names>
</name>
<name>
<surname>Stangl</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Al Zaki</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Murty</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Santoiemma</surname>
<given-names>P. P.</given-names>
</name>
<etal></etal>
</person-group>
. (
<year>2013</year>
).
<article-title>Selective targeting of brain tumors with gold nanoparticle-induced radiosensitization</article-title>
.
<source>PLoS ONE</source>
<volume>8</volume>
:
<fpage>e62425</fpage>
.
<pub-id pub-id-type="doi">10.1371/journal.pone.0062425</pub-id>
<pub-id pub-id-type="pmid">23638079</pub-id>
</mixed-citation>
</ref>
<ref id="B65">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Jokerst</surname>
<given-names>J. V.</given-names>
</name>
<name>
<surname>Gambhir</surname>
<given-names>S. S.</given-names>
</name>
</person-group>
(
<year>2011</year>
).
<article-title>Molecular imaging with theranostic nanoparticles</article-title>
.
<source>Acc. Chem. Res.</source>
<volume>44</volume>
,
<fpage>1050</fpage>
<lpage>1060</lpage>
.
<pub-id pub-id-type="doi">10.1021/ar200106e</pub-id>
<pub-id pub-id-type="pmid">21919457</pub-id>
</mixed-citation>
</ref>
<ref id="B66">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Kelkar</surname>
<given-names>S. S.</given-names>
</name>
<name>
<surname>Reineke</surname>
<given-names>T. M.</given-names>
</name>
</person-group>
(
<year>2011</year>
).
<article-title>Theranostics: combining imaging and therapy</article-title>
.
<source>Bioconjug. Chem.</source>
<volume>22</volume>
,
<fpage>1879</fpage>
<lpage>1903</lpage>
.
<pub-id pub-id-type="doi">10.1021/bc200151q</pub-id>
<pub-id pub-id-type="pmid">21830812</pub-id>
</mixed-citation>
</ref>
<ref id="B67">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Kenny</surname>
<given-names>G. D.</given-names>
</name>
<name>
<surname>Kamaly</surname>
<given-names>N.</given-names>
</name>
<name>
<surname>Kalber</surname>
<given-names>T. L.</given-names>
</name>
<name>
<surname>Brody</surname>
<given-names>L. P.</given-names>
</name>
<name>
<surname>Sahuri</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Shamsaei</surname>
<given-names>E.</given-names>
</name>
<etal></etal>
</person-group>
. (
<year>2011</year>
).
<article-title>Novel multifunctional nanoparticle mediates siRNA tumour delivery, visualisation and therapeutic tumour reduction
<italic>in vivo</italic>
</article-title>
.
<source>J. Control. Release</source>
<volume>149</volume>
,
<fpage>111</fpage>
<lpage>116</lpage>
.
<pub-id pub-id-type="doi">10.1016/j.jconrel.2010.09.020</pub-id>
<pub-id pub-id-type="pmid">20888381</pub-id>
</mixed-citation>
</ref>
<ref id="B68">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Keunen</surname>
<given-names>O.</given-names>
</name>
<name>
<surname>Johansson</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Oudin</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Sanzey</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Rahim</surname>
<given-names>S. A. A.</given-names>
</name>
<name>
<surname>Fack</surname>
<given-names>F.</given-names>
</name>
<etal></etal>
</person-group>
. (
<year>2011</year>
).
<article-title>Anti-VEGF treatment reduces blood supply and increases tumor cell invasion in glioblastoma</article-title>
.
<source>Proc. Natl. Acad. Sci. U.S.A.</source>
<volume>108</volume>
,
<fpage>3749</fpage>
<lpage>3754</lpage>
.
<pub-id pub-id-type="doi">10.1073/pnas.1014480108</pub-id>
<pub-id pub-id-type="pmid">21321221</pub-id>
</mixed-citation>
</ref>
<ref id="B69">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Kievit</surname>
<given-names>F. M.</given-names>
</name>
<name>
<surname>Zhang</surname>
<given-names>M.</given-names>
</name>
</person-group>
(
<year>2011</year>
).
<article-title>Cancer nanotheranostics: improving imaging and therapy by targeted delivery across biological barriers</article-title>
.
<source>Adv. Mater. Weinheim</source>
<volume>23</volume>
,
<fpage>H217</fpage>
<lpage>247</lpage>
.
<pub-id pub-id-type="doi">10.1002/adma.201102313</pub-id>
<pub-id pub-id-type="pmid">21842473</pub-id>
</mixed-citation>
</ref>
<ref id="B70">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Kirchner</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>Liedl</surname>
<given-names>T.</given-names>
</name>
<name>
<surname>Kudera</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Pellegrino</surname>
<given-names>T.</given-names>
</name>
<name>
<surname>Muñoz Javier</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Gaub</surname>
<given-names>H. E.</given-names>
</name>
<etal></etal>
</person-group>
. (
<year>2005</year>
).
<article-title>Cytotoxicity of colloidal CdSe and CdSe/ZnS nanoparticles</article-title>
.
<source>Nano Lett.</source>
<volume>5</volume>
,
<fpage>331</fpage>
<lpage>338</lpage>
.
<pub-id pub-id-type="doi">10.1021/nl047996m</pub-id>
<pub-id pub-id-type="pmid">15794621</pub-id>
</mixed-citation>
</ref>
<ref id="B71">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Kondo</surname>
<given-names>T.</given-names>
</name>
<name>
<surname>Setoguchi</surname>
<given-names>T.</given-names>
</name>
<name>
<surname>Taga</surname>
<given-names>T.</given-names>
</name>
</person-group>
(
<year>2004</year>
).
<article-title>Persistence of a small subpopulation of cancer stem-like cells in the C6 glioma cell line</article-title>
.
<source>Proc. Natl. Acad. Sci. U.S.A.</source>
<volume>101</volume>
,
<fpage>781</fpage>
<lpage>786</lpage>
.
<pub-id pub-id-type="doi">10.1073/pnas.0307618100</pub-id>
<pub-id pub-id-type="pmid">14711994</pub-id>
</mixed-citation>
</ref>
<ref id="B72">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Koo</surname>
<given-names>Y.-E. L.</given-names>
</name>
<name>
<surname>Reddy</surname>
<given-names>G. R.</given-names>
</name>
<name>
<surname>Bhojani</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Schneider</surname>
<given-names>R.</given-names>
</name>
<name>
<surname>Philbert</surname>
<given-names>M. A.</given-names>
</name>
<name>
<surname>Rehemtulla</surname>
<given-names>A.</given-names>
</name>
<etal></etal>
</person-group>
. (
<year>2006</year>
).
<article-title>Brain cancer diagnosis and therapy with nanoplatforms</article-title>
.
<source>Adv. Drug Deliv. Rev.</source>
<volume>58</volume>
,
<fpage>1556</fpage>
<lpage>1577</lpage>
.
<pub-id pub-id-type="doi">10.1016/j.addr.2006.09.012</pub-id>
<pub-id pub-id-type="pmid">17107738</pub-id>
</mixed-citation>
</ref>
<ref id="B73">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Kroemer</surname>
<given-names>G.</given-names>
</name>
<name>
<surname>Pouyssegur</surname>
<given-names>J.</given-names>
</name>
</person-group>
(
<year>2008</year>
).
<article-title>Tumor cell metabolism: cancer's achilles' heel</article-title>
.
<source>Cancer Cell</source>
<volume>13</volume>
,
<fpage>472</fpage>
<lpage>482</lpage>
.
<pub-id pub-id-type="doi">10.1016/j.ccr.2008.05.005</pub-id>
<pub-id pub-id-type="pmid">18538731</pub-id>
</mixed-citation>
</ref>
<ref id="B74">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Kroonen</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Nguyen-Khac</surname>
<given-names>M. T.</given-names>
</name>
<name>
<surname>Deprez</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Rogister</surname>
<given-names>B.</given-names>
</name>
<name>
<surname>Robe</surname>
<given-names>P.</given-names>
</name>
</person-group>
(
<year>2008</year>
).
<article-title>[Glioblastoma, an example of translational research?]</article-title>
.
<source>Rev. Med. Liege</source>
<volume>63</volume>
,
<fpage>251</fpage>
<lpage>256</lpage>
.
<pub-id pub-id-type="pmid">18669189</pub-id>
</mixed-citation>
</ref>
<ref id="B75">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Kumar</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Lee</surname>
<given-names>J.-Y.</given-names>
</name>
<name>
<surname>Kim</surname>
<given-names>H.-S.</given-names>
</name>
</person-group>
(
<year>2016</year>
).
<article-title>Selective fluorescence sensing of 3,5-dinitrosalicylic acid based on pyrenesulfonamide-functionalized inorganic/organic hybrid nanoparticles</article-title>
.
<source>J. Industr. Eng. Chem.</source>
<volume>44</volume>
,
<fpage>82</fpage>
<lpage>89</lpage>
.
<pub-id pub-id-type="doi">10.1016/j.jiec.2016.08.010</pub-id>
</mixed-citation>
</ref>
<ref id="B76">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Kumar</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Zhang</surname>
<given-names>X.</given-names>
</name>
<name>
<surname>Liang</surname>
<given-names>X.-J.</given-names>
</name>
</person-group>
(
<year>2013</year>
).
<article-title>Gold nanoparticles: emerging paradigm for targeted drug delivery system</article-title>
.
<source>Biotechnol. Adv.</source>
<volume>31</volume>
,
<fpage>593</fpage>
<lpage>606</lpage>
.
<pub-id pub-id-type="doi">10.1016/j.biotechadv.2012.10.002</pub-id>
<pub-id pub-id-type="pmid">23111203</pub-id>
</mixed-citation>
</ref>
<ref id="B77">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Kuo</surname>
<given-names>Y.-C.</given-names>
</name>
<name>
<surname>Cheng</surname>
<given-names>S.-J.</given-names>
</name>
</person-group>
(
<year>2016</year>
).
<article-title>Brain targeted delivery of carmustine using solid lipid nanoparticles modified with tamoxifen and lactoferrin for antitumor proliferation</article-title>
.
<source>Int. J. Pharm.</source>
<volume>499</volume>
,
<fpage>10</fpage>
<lpage>19</lpage>
.
<pub-id pub-id-type="doi">10.1016/j.ijpharm.2015.12.054</pub-id>
<pub-id pub-id-type="pmid">26721730</pub-id>
</mixed-citation>
</ref>
<ref id="B78">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Lakka</surname>
<given-names>S. S.</given-names>
</name>
<name>
<surname>Rao</surname>
<given-names>J. S.</given-names>
</name>
</person-group>
(
<year>2008</year>
).
<article-title>Antiangiogenic therapy in brain tumors</article-title>
.
<source>Expert Rev. Neurother.</source>
<volume>8</volume>
,
<fpage>1457</fpage>
<lpage>1473</lpage>
.
<pub-id pub-id-type="doi">10.1586/14737175.8.10.1457</pub-id>
<pub-id pub-id-type="pmid">18928341</pub-id>
</mixed-citation>
</ref>
<ref id="B79">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Lammers</surname>
<given-names>T.</given-names>
</name>
<name>
<surname>Kiessling</surname>
<given-names>F.</given-names>
</name>
<name>
<surname>Hennink</surname>
<given-names>W. E.</given-names>
</name>
<name>
<surname>Storm</surname>
<given-names>G.</given-names>
</name>
</person-group>
(
<year>2010</year>
).
<article-title>Nanotheranostics and image-guided drug delivery: current concepts and future directions</article-title>
.
<source>Mol. Pharm.</source>
<volume>7</volume>
,
<fpage>1899</fpage>
<lpage>1912</lpage>
.
<pub-id pub-id-type="doi">10.1021/mp100228v</pub-id>
<pub-id pub-id-type="pmid">20822168</pub-id>
</mixed-citation>
</ref>
<ref id="B80">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Lammers</surname>
<given-names>T.</given-names>
</name>
<name>
<surname>Koczera</surname>
<given-names>P.</given-names>
</name>
<name>
<surname>Fokong</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Gremse</surname>
<given-names>F.</given-names>
</name>
<name>
<surname>Ehling</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Vogt</surname>
<given-names>M.</given-names>
</name>
<etal></etal>
</person-group>
. (
<year>2015</year>
).
<article-title>Theranostic USPIO-loaded microbubbles for mediating and monitoring blood-brain barrier permeation</article-title>
.
<source>Adv. Funct. Mater.</source>
<volume>25</volume>
,
<fpage>36</fpage>
<lpage>43</lpage>
.
<pub-id pub-id-type="doi">10.1002/adfm.201401199</pub-id>
<pub-id pub-id-type="pmid">25729344</pub-id>
</mixed-citation>
</ref>
<ref id="B81">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Lee</surname>
<given-names>J. E.</given-names>
</name>
<name>
<surname>Lee</surname>
<given-names>N.</given-names>
</name>
<name>
<surname>Kim</surname>
<given-names>T.</given-names>
</name>
<name>
<surname>Kim</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Hyeon</surname>
<given-names>T.</given-names>
</name>
</person-group>
(
<year>2011</year>
).
<article-title>Multifunctional mesoporous silica nanocomposite nanoparticles for theranostic applications</article-title>
.
<source>Acc. Chem. Res.</source>
<volume>44</volume>
,
<fpage>893</fpage>
<lpage>902</lpage>
.
<pub-id pub-id-type="doi">10.1021/ar2000259</pub-id>
<pub-id pub-id-type="pmid">21848274</pub-id>
</mixed-citation>
</ref>
<ref id="B82">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Lindner</surname>
<given-names>L. H.</given-names>
</name>
<name>
<surname>Hossann</surname>
<given-names>M.</given-names>
</name>
</person-group>
(
<year>2010</year>
).
<article-title>Factors affecting drug release from liposomes</article-title>
.
<source>Curr. Opin. Drug Discov. Devel.</source>
<volume>13</volume>
,
<fpage>111</fpage>
<lpage>123</lpage>
.
<pub-id pub-id-type="pmid">20047152</pub-id>
</mixed-citation>
</ref>
<ref id="B83">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Liong</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Lu</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Kovochich</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Xia</surname>
<given-names>T.</given-names>
</name>
<name>
<surname>Ruehm</surname>
<given-names>S. G.</given-names>
</name>
<name>
<surname>Nel</surname>
<given-names>A. E.</given-names>
</name>
<etal></etal>
</person-group>
. (
<year>2008</year>
).
<article-title>Multifunctional inorganic nanoparticles for imaging, targeting, and drug delivery</article-title>
.
<source>ACS Nano</source>
<volume>2</volume>
,
<fpage>889</fpage>
<lpage>896</lpage>
.
<pub-id pub-id-type="doi">10.1021/nn800072t</pub-id>
<pub-id pub-id-type="pmid">19206485</pub-id>
</mixed-citation>
</ref>
<ref id="B84">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Liu</surname>
<given-names>G.</given-names>
</name>
<name>
<surname>Wang</surname>
<given-names>Z.</given-names>
</name>
<name>
<surname>Lu</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Xia</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>Gao</surname>
<given-names>F.</given-names>
</name>
<name>
<surname>Gong</surname>
<given-names>Q.</given-names>
</name>
<etal></etal>
</person-group>
. (
<year>2011</year>
).
<article-title>Low molecular weight alkyl-polycation wrapped magnetite nanoparticle clusters as MRI probes for stem cell labeling and
<italic>in vivo</italic>
imaging</article-title>
.
<source>Biomaterials</source>
<volume>32</volume>
,
<fpage>528</fpage>
<lpage>537</lpage>
.
<pub-id pub-id-type="doi">10.1016/j.biomaterials.2010.08.099</pub-id>
<pub-id pub-id-type="pmid">20869767</pub-id>
</mixed-citation>
</ref>
<ref id="B85">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Liu</surname>
<given-names>X.</given-names>
</name>
<name>
<surname>Madhankumar</surname>
<given-names>A. B.</given-names>
</name>
<name>
<surname>Miller</surname>
<given-names>P. A.</given-names>
</name>
<name>
<surname>Duck</surname>
<given-names>K. A.</given-names>
</name>
<name>
<surname>Hafenstein</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Rizk</surname>
<given-names>E.</given-names>
</name>
<etal></etal>
</person-group>
. (
<year>2016</year>
).
<article-title>MRI contrast agent for targeting glioma: interleukin-13 labeled liposome encapsulating gadolinium-DTPA</article-title>
.
<source>Neuro-oncology</source>
<volume>18</volume>
,
<fpage>691</fpage>
<lpage>699</lpage>
.
<pub-id pub-id-type="doi">10.1093/neuonc/nov263</pub-id>
<pub-id pub-id-type="pmid">26519740</pub-id>
</mixed-citation>
</ref>
<ref id="B86">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Lo</surname>
<given-names>S.-T.</given-names>
</name>
<name>
<surname>Kumar</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Hsieh</surname>
<given-names>J.-T.</given-names>
</name>
<name>
<surname>Sun</surname>
<given-names>X.</given-names>
</name>
</person-group>
(
<year>2013</year>
).
<article-title>Dendrimer nanoscaffolds for potential theranostics of prostate cancer with a focus on radiochemistry</article-title>
.
<source>Mol. Pharm.</source>
<volume>10</volume>
,
<fpage>793</fpage>
<lpage>812</lpage>
.
<pub-id pub-id-type="doi">10.1021/mp3005325</pub-id>
<pub-id pub-id-type="pmid">23294202</pub-id>
</mixed-citation>
</ref>
<ref id="B87">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Lu</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Ma</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Sun</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Xia</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>Liu</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>Wang</surname>
<given-names>Z.</given-names>
</name>
<etal></etal>
</person-group>
. (
<year>2009</year>
).
<article-title>Manganese ferrite nanoparticle micellar nanocomposites as MRI contrast agent for liver imaging</article-title>
.
<source>Biomaterials</source>
<volume>30</volume>
,
<fpage>2919</fpage>
<lpage>2928</lpage>
.
<pub-id pub-id-type="doi">10.1016/j.biomaterials.2009.02.001</pub-id>
<pub-id pub-id-type="pmid">19230966</pub-id>
</mixed-citation>
</ref>
<ref id="B88">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Mamaeva</surname>
<given-names>V.</given-names>
</name>
<name>
<surname>Sahlgren</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>Lindén</surname>
<given-names>M.</given-names>
</name>
</person-group>
(
<year>2013</year>
).
<article-title>Mesoporous silica nanoparticles in medicine–recent advances</article-title>
.
<source>Adv. Drug Deliv. Rev.</source>
<volume>65</volume>
,
<fpage>689</fpage>
<lpage>702</lpage>
.
<pub-id pub-id-type="doi">10.1016/j.addr.2012.07.018</pub-id>
<pub-id pub-id-type="pmid">22921598</pub-id>
</mixed-citation>
</ref>
<ref id="B89">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Mattei</surname>
<given-names>T. A.</given-names>
</name>
<name>
<surname>Rehman</surname>
<given-names>A. A.</given-names>
</name>
</person-group>
(
<year>2015</year>
).
<article-title>“Extremely minimally invasive”: recent advances in nanotechnology research and future applications in neurosurgery</article-title>
.
<source>Neurosurg. Rev.</source>
<volume>38</volume>
,
<fpage>27</fpage>
<lpage>37</lpage>
; discussion 37.
<pub-id pub-id-type="doi">10.1007/s10143-014-0566-2</pub-id>
<pub-id pub-id-type="pmid">25173621</pub-id>
</mixed-citation>
</ref>
<ref id="B90">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Melancon</surname>
<given-names>M. P.</given-names>
</name>
<name>
<surname>Lu</surname>
<given-names>W.</given-names>
</name>
<name>
<surname>Zhong</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Zhou</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Liang</surname>
<given-names>G.</given-names>
</name>
<name>
<surname>Elliott</surname>
<given-names>A. M.</given-names>
</name>
<etal></etal>
</person-group>
. (
<year>2011</year>
).
<article-title>Targeted multifunctional gold-based nanoshells for magnetic resonance-guided laser ablation of head and neck cancer</article-title>
.
<source>Biomaterials</source>
<volume>32</volume>
,
<fpage>7600</fpage>
<lpage>7608</lpage>
.
<pub-id pub-id-type="doi">10.1016/j.biomaterials.2011.06.039</pub-id>
<pub-id pub-id-type="pmid">21745689</pub-id>
</mixed-citation>
</ref>
<ref id="B91">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Mendes</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Sousa</surname>
<given-names>J. J.</given-names>
</name>
<name>
<surname>Pais</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Vitorino</surname>
<given-names>C.</given-names>
</name>
</person-group>
(
<year>2018</year>
).
<article-title>Targeted theranostic nanoparticles for brain tumor treatment</article-title>
.
<source>Pharmaceutics</source>
<volume>10</volume>
:
<fpage>E181</fpage>
.
<pub-id pub-id-type="doi">10.3390/pharmaceutics10040181</pub-id>
<pub-id pub-id-type="pmid">30304861</pub-id>
</mixed-citation>
</ref>
<ref id="B92">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Merkel</surname>
<given-names>O. M.</given-names>
</name>
<name>
<surname>Mintzer</surname>
<given-names>M. A.</given-names>
</name>
<name>
<surname>Librizzi</surname>
<given-names>D.</given-names>
</name>
<name>
<surname>Samsonova</surname>
<given-names>O.</given-names>
</name>
<name>
<surname>Dicke</surname>
<given-names>T.</given-names>
</name>
<name>
<surname>Sproat</surname>
<given-names>B.</given-names>
</name>
<etal></etal>
</person-group>
(
<year>2010</year>
).
<article-title>Triazine dendrimers as non-viral vectors for
<italic>in vitro</italic>
and
<italic>in vivo</italic>
RNAi: the effects of peripheral groups and core structure on biological activity</article-title>
.
<source>Mol. Pharm.</source>
<volume>7</volume>
,
<fpage>969</fpage>
<lpage>983</lpage>
.
<pub-id pub-id-type="doi">10.1021/mp100101s</pub-id>
<pub-id pub-id-type="pmid">20524664</pub-id>
</mixed-citation>
</ref>
<ref id="B93">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Mintzer</surname>
<given-names>M. A.</given-names>
</name>
<name>
<surname>Grinstaff</surname>
<given-names>M. W.</given-names>
</name>
</person-group>
(
<year>2011</year>
).
<article-title>Biomedical applications of dendrimers: a tutorial</article-title>
.
<source>Chem. Soc. Rev.</source>
<volume>40</volume>
,
<fpage>173</fpage>
<lpage>190</lpage>
.
<pub-id pub-id-type="doi">10.1039/B901839P</pub-id>
<pub-id pub-id-type="pmid">20877875</pub-id>
</mixed-citation>
</ref>
<ref id="B94">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Miranda</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Blanco-Prieto</surname>
<given-names>M. J.</given-names>
</name>
<name>
<surname>Sousa</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Pais</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Vitorino</surname>
<given-names>C.</given-names>
</name>
</person-group>
(
<year>2017</year>
).
<article-title>Breaching barriers in glioblastoma. Part II: Targeted drug delivery and lipid nanoparticles</article-title>
.
<source>Int. J. Pharm.</source>
<volume>531</volume>
,
<fpage>389</fpage>
<lpage>410</lpage>
.
<pub-id pub-id-type="doi">10.1016/j.ijpharm.2017.07.049</pub-id>
<pub-id pub-id-type="pmid">28801108</pub-id>
</mixed-citation>
</ref>
<ref id="B95">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Muthu</surname>
<given-names>M. S.</given-names>
</name>
<name>
<surname>Leong</surname>
<given-names>D. T.</given-names>
</name>
<name>
<surname>Mei</surname>
<given-names>L.</given-names>
</name>
<name>
<surname>Feng</surname>
<given-names>S.-S.</given-names>
</name>
</person-group>
(
<year>2014a</year>
).
<article-title>Nanotheranostics - application and further development of nanomedicine strategies for advanced theranostics</article-title>
.
<source>Theranostics</source>
<volume>4</volume>
,
<fpage>660</fpage>
<lpage>677</lpage>
.
<pub-id pub-id-type="doi">10.7150/thno.8698</pub-id>
<pub-id pub-id-type="pmid">24723986</pub-id>
</mixed-citation>
</ref>
<ref id="B96">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Muthu</surname>
<given-names>M. S.</given-names>
</name>
<name>
<surname>Mei</surname>
<given-names>L.</given-names>
</name>
<name>
<surname>Feng</surname>
<given-names>S.-S.</given-names>
</name>
</person-group>
(
<year>2014b</year>
).
<article-title>Nanotheranostics: advanced nanomedicine for the integration of diagnosis and therapy</article-title>
.
<source>Nanomedicine</source>
<volume>9</volume>
,
<fpage>1277</fpage>
<lpage>1280</lpage>
.
<pub-id pub-id-type="doi">10.2217/nnm.14.83</pub-id>
<pub-id pub-id-type="pmid">25204816</pub-id>
</mixed-citation>
</ref>
<ref id="B97">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Na</surname>
<given-names>K.</given-names>
</name>
<name>
<surname>Lee</surname>
<given-names>S. A.</given-names>
</name>
<name>
<surname>Jung</surname>
<given-names>S. H.</given-names>
</name>
<name>
<surname>Shin</surname>
<given-names>B. C.</given-names>
</name>
</person-group>
(
<year>2011</year>
).
<article-title>Gadolinium-based cancer therapeutic liposomes for chemotherapeutics and diagnostics</article-title>
.
<source>Colloids Surfaces B Biointerfaces</source>
<volume>84</volume>
,
<fpage>82</fpage>
<lpage>87</lpage>
.
<pub-id pub-id-type="doi">10.1016/j.colsurfb.2010.12.019</pub-id>
<pub-id pub-id-type="pmid">21251801</pub-id>
</mixed-citation>
</ref>
<ref id="B98">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Nam</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Won</surname>
<given-names>N.</given-names>
</name>
<name>
<surname>Bang</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Jin</surname>
<given-names>H.</given-names>
</name>
<name>
<surname>Park</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Jung</surname>
<given-names>S.</given-names>
</name>
<etal></etal>
</person-group>
. (
<year>2013</year>
).
<article-title>Surface engineering of inorganic nanoparticles for imaging and therapy</article-title>
.
<source>Adv. Drug Deliv. Rev.</source>
<volume>65</volume>
,
<fpage>622</fpage>
<lpage>648</lpage>
.
<pub-id pub-id-type="doi">10.1016/j.addr.2012.08.015</pub-id>
<pub-id pub-id-type="pmid">22975010</pub-id>
</mixed-citation>
</ref>
<ref id="B99">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Nam</surname>
<given-names>L.</given-names>
</name>
<name>
<surname>Coll</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>Erthal</surname>
<given-names>L.</given-names>
</name>
<name>
<surname>de la Torre</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>Serrano</surname>
<given-names>D.</given-names>
</name>
<name>
<surname>Martínez-Máñez</surname>
<given-names>R.</given-names>
</name>
<etal></etal>
</person-group>
. (
<year>2018</year>
).
<article-title>Drug delivery nanosystems for the localized treatment of glioblastoma multiforme</article-title>
.
<source>Materials.</source>
<volume>11</volume>
:
<fpage>779</fpage>
.
<pub-id pub-id-type="doi">10.3390/ma11050779</pub-id>
<pub-id pub-id-type="pmid">29751640</pub-id>
</mixed-citation>
</ref>
<ref id="B100">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Nance</surname>
<given-names>E.</given-names>
</name>
<name>
<surname>Zhang</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>Shih</surname>
<given-names>T.-Y.</given-names>
</name>
<name>
<surname>Xu</surname>
<given-names>Q.</given-names>
</name>
<name>
<surname>Schuster</surname>
<given-names>B. S.</given-names>
</name>
<name>
<surname>Hanes</surname>
<given-names>J.</given-names>
</name>
</person-group>
(
<year>2014</year>
).
<article-title>Brain-penetrating nanoparticles improve paclitaxel efficacy in malignant glioma following local administration</article-title>
.
<source>ACS Nano</source>
<volume>8</volume>
,
<fpage>10655</fpage>
<lpage>10664</lpage>
.
<pub-id pub-id-type="doi">10.1021/nn504210g.</pub-id>
<pub-id pub-id-type="pmid">25259648</pub-id>
</mixed-citation>
</ref>
<ref id="B101">
<mixed-citation publication-type="book">
<person-group person-group-type="author">
<name>
<surname>Newton</surname>
<given-names>H. B.</given-names>
</name>
</person-group>
(
<year>2010</year>
).
<article-title>Overview of the molecular genetics and molecular chemotherapy of GBM</article-title>
, in
<source>Glioblastoma</source>
, ed
<person-group person-group-type="editor">
<name>
<surname>Ray</surname>
<given-names>S. K.</given-names>
</name>
</person-group>
(
<publisher-loc>New York, NY</publisher-loc>
:
<publisher-name>Springer New York</publisher-name>
),
<fpage>1</fpage>
<lpage>42</lpage>
.
<pub-id pub-id-type="doi">10.1007/978-1-4419-0410-2_1</pub-id>
</mixed-citation>
</ref>
<ref id="B102">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Nicholas</surname>
<given-names>M. K.</given-names>
</name>
<name>
<surname>Lukas</surname>
<given-names>R. V.</given-names>
</name>
<name>
<surname>Jafri</surname>
<given-names>N. F.</given-names>
</name>
<name>
<surname>Faoro</surname>
<given-names>L.</given-names>
</name>
<name>
<surname>Salgia</surname>
<given-names>R.</given-names>
</name>
</person-group>
(
<year>2006</year>
).
<article-title>Epidermal growth factor receptor - mediated signal transduction in the development and therapy of gliomas</article-title>
.
<source>Clin. Cancer Res.</source>
<volume>12</volume>
,
<fpage>7261</fpage>
<lpage>7270</lpage>
.
<pub-id pub-id-type="doi">10.1158/1078-0432.CCR-06-0874</pub-id>
<pub-id pub-id-type="pmid">17189397</pub-id>
</mixed-citation>
</ref>
<ref id="B103">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Onoshima</surname>
<given-names>D.</given-names>
</name>
<name>
<surname>Yukawa</surname>
<given-names>H.</given-names>
</name>
<name>
<surname>Baba</surname>
<given-names>Y.</given-names>
</name>
</person-group>
(
<year>2015</year>
).
<article-title>Multifunctional quantum dots-based cancer diagnostics and stem cell therapeutics for regenerative medicine</article-title>
.
<source>Adv. Drug Deliv. Rev.</source>
<volume>95</volume>
,
<fpage>2</fpage>
<lpage>14</lpage>
.
<pub-id pub-id-type="doi">10.1016/j.addr.2015.08.004</pub-id>
<pub-id pub-id-type="pmid">26344675</pub-id>
</mixed-citation>
</ref>
<ref id="B104">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Orunoglu</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Kaffashi</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Pehlivan</surname>
<given-names>S. B.</given-names>
</name>
<name>
<surname>Sahin</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Söylemezoglu</surname>
<given-names>F.</given-names>
</name>
<name>
<surname>Oguz</surname>
<given-names>K. K.</given-names>
</name>
<etal></etal>
</person-group>
. (
<year>2017</year>
).
<article-title>Effects of curcumin-loaded PLGA nanoparticles on the RG2 rat glioma model</article-title>
.
<source>Mater. Sci. Eng. C</source>
<volume>78</volume>
,
<fpage>32</fpage>
<lpage>38</lpage>
.
<pub-id pub-id-type="doi">10.1016/j.msec.2017.03.292</pub-id>
<pub-id pub-id-type="pmid">28575990</pub-id>
</mixed-citation>
</ref>
<ref id="B105">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Pacioni</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>D'Alessandris</surname>
<given-names>Q. G.</given-names>
</name>
<name>
<surname>Giannetti</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Morgante</surname>
<given-names>L.</given-names>
</name>
<name>
<surname>Coccè</surname>
<given-names>V.</given-names>
</name>
<name>
<surname>Bonomi</surname>
<given-names>A.</given-names>
</name>
<etal></etal>
</person-group>
. (
<year>2017</year>
).
<article-title>Human mesenchymal stromal cells inhibit tumor growth in orthotopic glioblastoma xenografts</article-title>
.
<source>Stem Cell Res. Ther.</source>
<volume>8</volume>
:
<fpage>53</fpage>
.
<pub-id pub-id-type="doi">10.1186/s13287-017-0516-3</pub-id>
<pub-id pub-id-type="pmid">28279193</pub-id>
</mixed-citation>
</ref>
<ref id="B106">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Pan</surname>
<given-names>B.</given-names>
</name>
<name>
<surname>Cui</surname>
<given-names>D.</given-names>
</name>
<name>
<surname>Sheng</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Ozkan</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>Gao</surname>
<given-names>F.</given-names>
</name>
<name>
<surname>He</surname>
<given-names>R.</given-names>
</name>
<etal></etal>
</person-group>
. (
<year>2007</year>
).
<article-title>Dendrimer-modified magnetic nanoparticles enhance efficiency of gene delivery system</article-title>
.
<source>Cancer Res.</source>
<volume>67</volume>
,
<fpage>8156</fpage>
<lpage>8163</lpage>
.
<pub-id pub-id-type="doi">10.1158/0008-5472.CAN-06-4762</pub-id>
<pub-id pub-id-type="pmid">17804728</pub-id>
</mixed-citation>
</ref>
<ref id="B107">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Pankhurst</surname>
<given-names>Q. A.</given-names>
</name>
<name>
<surname>Connolly</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Jones</surname>
<given-names>S. K.</given-names>
</name>
<name>
<surname>Dobson</surname>
<given-names>J.</given-names>
</name>
</person-group>
(
<year>2003</year>
).
<article-title>Applications of magnetic nanoparticles in biomedicine</article-title>
.
<source>J. Phys. D Appl. Phys.</source>
<volume>36</volume>
,
<fpage>R167</fpage>
<lpage>R181</lpage>
.
<pub-id pub-id-type="doi">10.1088/0022-3727/36/13/201</pub-id>
</mixed-citation>
</ref>
<ref id="B108">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Park</surname>
<given-names>J.-H.</given-names>
</name>
<name>
<surname>Ryu</surname>
<given-names>C. H.</given-names>
</name>
<name>
<surname>Kim</surname>
<given-names>M. J.</given-names>
</name>
<name>
<surname>Jeun</surname>
<given-names>S.-S.</given-names>
</name>
</person-group>
(
<year>2015</year>
).
<article-title>Combination therapy for gliomas using temozolomide and interferon-beta secreting human bone marrow derived mesenchymal stem cells</article-title>
.
<source>J. Korean Neurosurg. Soc.</source>
<volume>57</volume>
,
<fpage>323</fpage>
<lpage>328</lpage>
.
<pub-id pub-id-type="doi">10.3340/jkns.2015.57.5.323</pub-id>
<pub-id pub-id-type="pmid">26113958</pub-id>
</mixed-citation>
</ref>
<ref id="B109">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Peer</surname>
<given-names>D.</given-names>
</name>
<name>
<surname>Karp</surname>
<given-names>J. M.</given-names>
</name>
<name>
<surname>Hong</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Farokhzad</surname>
<given-names>O. C.</given-names>
</name>
<name>
<surname>Margalit</surname>
<given-names>R.</given-names>
</name>
<name>
<surname>Langer</surname>
<given-names>R.</given-names>
</name>
</person-group>
(
<year>2007</year>
).
<article-title>Nanocarriers as an emerging platform for cancer therapy</article-title>
.
<source>Nat. Nanotechnol.</source>
<volume>2</volume>
,
<fpage>751</fpage>
<lpage>760</lpage>
.
<pub-id pub-id-type="doi">10.1038/nnano.2007.387</pub-id>
<pub-id pub-id-type="pmid">18654426</pub-id>
</mixed-citation>
</ref>
<ref id="B110">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Petersen</surname>
<given-names>A. L.</given-names>
</name>
<name>
<surname>Binderup</surname>
<given-names>T.</given-names>
</name>
<name>
<surname>Jølck</surname>
<given-names>R. I.</given-names>
</name>
<name>
<surname>Rasmussen</surname>
<given-names>P.</given-names>
</name>
<name>
<surname>Henriksen</surname>
<given-names>J. R.</given-names>
</name>
<name>
<surname>Pfeifer</surname>
<given-names>A. K.</given-names>
</name>
<etal></etal>
</person-group>
. (
<year>2012</year>
).
<article-title>Positron emission tomography evaluation of somatostatin receptor targeted 64Cu-TATE-liposomes in a human neuroendocrine carcinoma mouse model</article-title>
.
<source>J. Control. Release</source>
<volume>160</volume>
,
<fpage>254</fpage>
<lpage>263</lpage>
.
<pub-id pub-id-type="doi">10.1016/j.jconrel.2011.12.038</pub-id>
<pub-id pub-id-type="pmid">22245688</pub-id>
</mixed-citation>
</ref>
<ref id="B111">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Pilkington</surname>
<given-names>G. J.</given-names>
</name>
<name>
<surname>Maherally</surname>
<given-names>Z.</given-names>
</name>
<name>
<surname>Jassam</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Barbu</surname>
<given-names>E.</given-names>
</name>
<name>
<surname>Fillmore</surname>
<given-names>H.</given-names>
</name>
</person-group>
(
<year>2014</year>
).
<article-title>An all human 3D
<italic>in vitro</italic>
model of the blood brain barrier in nanoparticle delivery and cancer metastasis studies</article-title>
.
<source>Neuro-Oncology</source>
<volume>16</volume>
:
<fpage>iii33</fpage>
<pub-id pub-id-type="doi">10.1093/neuonc/nou208.39</pub-id>
</mixed-citation>
</ref>
<ref id="B112">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Piquer</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Llácer</surname>
<given-names>J. L.</given-names>
</name>
<name>
<surname>Rovira</surname>
<given-names>V.</given-names>
</name>
<name>
<surname>Riesgo</surname>
<given-names>P.</given-names>
</name>
<name>
<surname>Rodriguez</surname>
<given-names>R.</given-names>
</name>
<name>
<surname>Cremades</surname>
<given-names>A.</given-names>
</name>
</person-group>
(
<year>2014</year>
).
<article-title>Fluorescence-guided surgery and biopsy in gliomas with an exoscope system</article-title>
.
<source>Biomed Res. Int.</source>
<volume>2014</volume>
:
<fpage>207974</fpage>
.
<pub-id pub-id-type="doi">10.1155/2014/207974</pub-id>
<pub-id pub-id-type="pmid">24971317</pub-id>
</mixed-citation>
</ref>
<ref id="B113">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Puputti</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Tynninen</surname>
<given-names>O.</given-names>
</name>
<name>
<surname>Sihto</surname>
<given-names>H.</given-names>
</name>
<name>
<surname>Blom</surname>
<given-names>T.</given-names>
</name>
<name>
<surname>Mäenp,ää</surname>
<given-names>H.</given-names>
</name>
<name>
<surname>Isola</surname>
<given-names>J.</given-names>
</name>
<etal></etal>
</person-group>
. (
<year>2006</year>
).
<article-title>Amplification of KIT, PDGFRA, VEGFR2, and EGFR in gliomas</article-title>
.
<source>Mol. Cancer Res.</source>
<volume>4</volume>
,
<fpage>927</fpage>
<lpage>934</lpage>
.
<pub-id pub-id-type="doi">10.1158/1541-7786.MCR-06-0085</pub-id>
<pub-id pub-id-type="pmid">17189383</pub-id>
</mixed-citation>
</ref>
<ref id="B114">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Pysz</surname>
<given-names>M. A.</given-names>
</name>
<name>
<surname>Gambhir</surname>
<given-names>S. S.</given-names>
</name>
<name>
<surname>Willmann</surname>
<given-names>J. K.</given-names>
</name>
</person-group>
(
<year>2010</year>
).
<article-title>Molecular imaging: current status and emerging strategies</article-title>
.
<source>Clin. Radiol.</source>
<volume>65</volume>
,
<fpage>500</fpage>
<lpage>516</lpage>
.
<pub-id pub-id-type="doi">10.1016/j.crad.2010.03.011</pub-id>
<pub-id pub-id-type="pmid">20541650</pub-id>
</mixed-citation>
</ref>
<ref id="B115">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Qu</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Zhang</surname>
<given-names>L.</given-names>
</name>
<name>
<surname>Chen</surname>
<given-names>Z.</given-names>
</name>
<name>
<surname>Mao</surname>
<given-names>G.</given-names>
</name>
<name>
<surname>Gao</surname>
<given-names>Z.</given-names>
</name>
<name>
<surname>Lai</surname>
<given-names>X.</given-names>
</name>
<etal></etal>
</person-group>
. (
<year>2016</year>
).
<article-title>Nanostructured lipid carriers, solid lipid nanoparticles, and polymeric nanoparticles: which kind of drug delivery system is better for glioblastoma chemotherapy?</article-title>
<source>Drug Deliv.</source>
<volume>23</volume>
,
<fpage>3408</fpage>
<lpage>3416</lpage>
.
<pub-id pub-id-type="doi">10.1080/10717544.2016.1189465</pub-id>
<pub-id pub-id-type="pmid">27181462</pub-id>
</mixed-citation>
</ref>
<ref id="B116">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Ren</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Shen</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Wang</surname>
<given-names>D.</given-names>
</name>
<name>
<surname>Xi</surname>
<given-names>Z.</given-names>
</name>
<name>
<surname>Guo</surname>
<given-names>L.</given-names>
</name>
<name>
<surname>Pang</surname>
<given-names>Z.</given-names>
</name>
<etal></etal>
</person-group>
. (
<year>2012</year>
).
<article-title>The targeted delivery of anticancer drugs to brain glioma by PEGylated oxidized multi-walled carbon nanotubes modified with angiopep-2</article-title>
.
<source>Biomaterials</source>
<volume>33</volume>
,
<fpage>3324</fpage>
<lpage>3333</lpage>
.
<pub-id pub-id-type="doi">10.1016/j.biomaterials.2012.01.025</pub-id>
<pub-id pub-id-type="pmid">22281423</pub-id>
</mixed-citation>
</ref>
<ref id="B117">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Rivera Gil</surname>
<given-names>P.</given-names>
</name>
<name>
<surname>Hühn</surname>
<given-names>D.</given-names>
</name>
<name>
<surname>del Mercato</surname>
<given-names>L. L.</given-names>
</name>
<name>
<surname>Sasse</surname>
<given-names>D.</given-names>
</name>
<name>
<surname>Parak</surname>
<given-names>W. J.</given-names>
</name>
</person-group>
(
<year>2010</year>
).
<article-title>Nanopharmacy: inorganic nanoscale devices as vectors and active compounds</article-title>
.
<source>Pharmacol. Res.</source>
<volume>62</volume>
,
<fpage>115</fpage>
<lpage>125</lpage>
.
<pub-id pub-id-type="doi">10.1016/j.phrs.2010.01.009</pub-id>
<pub-id pub-id-type="pmid">20097288</pub-id>
</mixed-citation>
</ref>
<ref id="B118">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Robinson</surname>
<given-names>J. T.</given-names>
</name>
<name>
<surname>Welsher</surname>
<given-names>K.</given-names>
</name>
<name>
<surname>Tabakman</surname>
<given-names>S. M.</given-names>
</name>
<name>
<surname>Sherlock</surname>
<given-names>S. P.</given-names>
</name>
<name>
<surname>Wang</surname>
<given-names>H.</given-names>
</name>
<name>
<surname>Luong</surname>
<given-names>R.</given-names>
</name>
<etal></etal>
</person-group>
. (
<year>2010</year>
).
<article-title>High performance
<italic>in vivo</italic>
near-IR (>1 μm) imaging and photothermal cancer therapy with carbon nanotubes</article-title>
.
<source>Nano Res.</source>
<volume>3</volume>
,
<fpage>779</fpage>
<lpage>793</lpage>
.
<pub-id pub-id-type="doi">10.1007/s12274-010-0045-1</pub-id>
<pub-id pub-id-type="pmid">21804931</pub-id>
</mixed-citation>
</ref>
<ref id="B119">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Rock</surname>
<given-names>K.</given-names>
</name>
<name>
<surname>McArdle</surname>
<given-names>O.</given-names>
</name>
<name>
<surname>Forde</surname>
<given-names>P.</given-names>
</name>
<name>
<surname>Dunne</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Fitzpatrick</surname>
<given-names>D.</given-names>
</name>
<name>
<surname>O'Neill</surname>
<given-names>B.</given-names>
</name>
<etal></etal>
</person-group>
. (
<year>2012</year>
).
<article-title>A clinical review of treatment outcomes in glioblastoma multiforme–the validation in a non-trial population of the results of a randomised Phase III clinical trial: has a more radical approach improved survival?</article-title>
<source>Br. J. Radiol.</source>
<volume>85</volume>
,
<fpage>e729</fpage>
<lpage>733</lpage>
.
<pub-id pub-id-type="doi">10.1259/bjr/83796755</pub-id>
<pub-id pub-id-type="pmid">22215883</pub-id>
</mixed-citation>
</ref>
<ref id="B120">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Ruan</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>He</surname>
<given-names>Q.</given-names>
</name>
<name>
<surname>Gao</surname>
<given-names>H.</given-names>
</name>
</person-group>
(
<year>2015</year>
).
<article-title>Matrix metalloproteinase triggered size-shrinkable gelatin-gold fabricated nanoparticles for tumor microenvironment sensitive penetration and diagnosis of glioma</article-title>
.
<source>Nanoscale</source>
<volume>7</volume>
,
<fpage>9487</fpage>
<lpage>9496</lpage>
.
<pub-id pub-id-type="doi">10.1039/c5nr01408e</pub-id>
<pub-id pub-id-type="pmid">25909483</pub-id>
</mixed-citation>
</ref>
<ref id="B121">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Sailor</surname>
<given-names>M. J.</given-names>
</name>
<name>
<surname>Park</surname>
<given-names>J.-H.</given-names>
</name>
</person-group>
(
<year>2012</year>
).
<article-title>Hybrid nanoparticles for detection and treatment of cancer</article-title>
.
<source>Adv. Mater.</source>
<volume>24</volume>
,
<fpage>3779</fpage>
<lpage>3802</lpage>
.
<pub-id pub-id-type="doi">10.1002/adma.201200653</pub-id>
<pub-id pub-id-type="pmid">22610698</pub-id>
</mixed-citation>
</ref>
<ref id="B122">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Saraiva</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>Praça</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>Ferreira</surname>
<given-names>R.</given-names>
</name>
<name>
<surname>Santos</surname>
<given-names>T.</given-names>
</name>
<name>
<surname>Ferreira</surname>
<given-names>L.</given-names>
</name>
<name>
<surname>Bernardino</surname>
<given-names>L.</given-names>
</name>
</person-group>
(
<year>2016</year>
).
<article-title>Nanoparticle-mediated brain drug delivery: overcoming blood-brain barrier to treat neurodegenerative diseases</article-title>
.
<source>J. Control. Release</source>
<volume>235</volume>
,
<fpage>34</fpage>
<lpage>47</lpage>
.
<pub-id pub-id-type="doi">10.1016/j.jconrel.2016.05.044</pub-id>
<pub-id pub-id-type="pmid">27208862</pub-id>
</mixed-citation>
</ref>
<ref id="B123">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Schlessinger</surname>
<given-names>J.</given-names>
</name>
</person-group>
(
<year>2000</year>
).
<article-title>Cell signaling by receptor tyrosine kinases</article-title>
.
<source>Cell</source>
<volume>103</volume>
,
<fpage>211</fpage>
<lpage>225</lpage>
.
<pub-id pub-id-type="doi">10.1016/S0092-8674(00)00114-8</pub-id>
<pub-id pub-id-type="pmid">11057895</pub-id>
</mixed-citation>
</ref>
<ref id="B124">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Schmieder</surname>
<given-names>A. H.</given-names>
</name>
<name>
<surname>Caruthers</surname>
<given-names>S. D.</given-names>
</name>
<name>
<surname>Zhang</surname>
<given-names>H.</given-names>
</name>
<name>
<surname>Williams</surname>
<given-names>T. A.</given-names>
</name>
<name>
<surname>Robertson</surname>
<given-names>J. D.</given-names>
</name>
<name>
<surname>Wickline</surname>
<given-names>S. A.</given-names>
</name>
<etal></etal>
</person-group>
. (
<year>2008</year>
).
<article-title>Three-dimensional MR mapping of angiogenesis with alpha5beta1(alpha nu beta3)-targeted theranostic nanoparticles in the MDA-MB-435 xenograft mouse model</article-title>
.
<source>FASEB J.</source>
<volume>22</volume>
,
<fpage>4179</fpage>
<lpage>4189</lpage>
.
<pub-id pub-id-type="doi">10.1096/fj.08-112060</pub-id>
<pub-id pub-id-type="pmid">18697838</pub-id>
</mixed-citation>
</ref>
<ref id="B125">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Shapira</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Livney</surname>
<given-names>Y. D.</given-names>
</name>
<name>
<surname>Broxterman</surname>
<given-names>H. J.</given-names>
</name>
<name>
<surname>Assaraf</surname>
<given-names>Y. G.</given-names>
</name>
</person-group>
(
<year>2011</year>
).
<article-title>Nanomedicine for targeted cancer therapy: towards the overcoming of drug resistance</article-title>
.
<source>Drug Resist. Updat.</source>
<volume>14</volume>
,
<fpage>150</fpage>
<lpage>163</lpage>
.
<pub-id pub-id-type="doi">10.1016/j.drup.2011.01.003</pub-id>
<pub-id pub-id-type="pmid">21330184</pub-id>
</mixed-citation>
</ref>
<ref id="B126">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Shi</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Kantoff</surname>
<given-names>P. W.</given-names>
</name>
<name>
<surname>Wooster</surname>
<given-names>R.</given-names>
</name>
<name>
<surname>Farokhzad</surname>
<given-names>O. C.</given-names>
</name>
</person-group>
(
<year>2017</year>
).
<article-title>Cancer nanomedicine: progress, challenges and opportunities</article-title>
.
<source>Nat. Rev. Cancer</source>
<volume>17</volume>
,
<fpage>20</fpage>
<lpage>37</lpage>
.
<pub-id pub-id-type="doi">10.1038/nrc.2016.108</pub-id>
<pub-id pub-id-type="pmid">27834398</pub-id>
</mixed-citation>
</ref>
<ref id="B127">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Silantyev</surname>
<given-names>F.</given-names>
</name>
<name>
<surname>Falzone</surname>
<given-names>L.</given-names>
</name>
<name>
<surname>Libra</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Gurina</surname>
<given-names>O. I.</given-names>
</name>
<name>
<surname>Kardashova</surname>
<given-names>K. S.</given-names>
</name>
<name>
<surname>Nikolouzakis</surname>
<given-names>T. K.</given-names>
</name>
<etal></etal>
</person-group>
. (
<year>2019</year>
).
<article-title>Current and future trends on diagnosis and prognosis of glioblastoma: from molecular biology to proteomics</article-title>
.
<source>Cells</source>
<volume>8</volume>
:
<fpage>863</fpage>
.
<pub-id pub-id-type="doi">10.3390/cells8080863</pub-id>
<pub-id pub-id-type="pmid">31405017</pub-id>
</mixed-citation>
</ref>
<ref id="B128">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Singh</surname>
<given-names>R. P.</given-names>
</name>
<name>
<surname>Sharma</surname>
<given-names>G.</given-names>
</name>
<name>
<surname>Sonali Singh</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Kumar</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Pandey</surname>
<given-names>B. L.</given-names>
</name>
<etal></etal>
</person-group>
. (
<year>2016</year>
).
<article-title>Vitamin E TPGS conjugated carbon nanotubes improved efficacy of docetaxel with safety for lung cancer treatment</article-title>
.
<source>Colloids Surf. B Biointerfaces</source>
<volume>141</volume>
,
<fpage>429</fpage>
<lpage>442</lpage>
.
<pub-id pub-id-type="doi">10.1016/j.colsurfb.2016.02.011</pub-id>
<pub-id pub-id-type="pmid">26895505</pub-id>
</mixed-citation>
</ref>
<ref id="B129">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Slettenaar</surname>
<given-names>V. I. F.</given-names>
</name>
<name>
<surname>Wilson</surname>
<given-names>J. L.</given-names>
</name>
</person-group>
(
<year>2006</year>
).
<article-title>The chemokine network: a target in cancer biology?</article-title>
<source>Adv. Drug Deliv. Rev.</source>
<volume>58</volume>
,
<fpage>962</fpage>
<lpage>974</lpage>
.
<pub-id pub-id-type="doi">10.1016/j.addr.2006.03.012</pub-id>
<pub-id pub-id-type="pmid">16996642</pub-id>
</mixed-citation>
</ref>
<ref id="B130">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Sonali Agrawal</surname>
<given-names>P.</given-names>
</name>
<name>
<surname>Singh</surname>
<given-names>R. P.</given-names>
</name>
<name>
<surname>Rajesh</surname>
<given-names>C. V.</given-names>
</name>
<name>
<surname>Singh</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Vijayakumar</surname>
<given-names>M. R.</given-names>
</name>
<etal></etal>
</person-group>
(
<year>2016a</year>
).
<article-title>Transferrin receptor-targeted vitamin E TPGS micelles for brain cancer therapy: preparation, characterization and brain distribution in rats</article-title>
.
<source>Drug Deliv.</source>
<volume>23</volume>
,
<fpage>1788</fpage>
<lpage>1798</lpage>
.
<pub-id pub-id-type="doi">10.3109/10717544.2015.1094681</pub-id>
<pub-id pub-id-type="pmid">26431064</pub-id>
</mixed-citation>
</ref>
<ref id="B131">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Sonali Singh</surname>
<given-names>R. P.</given-names>
</name>
<name>
<surname>Sharma</surname>
<given-names>G.</given-names>
</name>
<name>
<surname>Kumari</surname>
<given-names>L.</given-names>
</name>
<name>
<surname>Koch</surname>
<given-names>B.</given-names>
</name>
<name>
<surname>Singh</surname>
<given-names>S.</given-names>
</name>
<etal></etal>
</person-group>
(
<year>2016b</year>
).
<article-title>RGD-TPGS decorated theranostic liposomes for brain targeted delivery</article-title>
.
<source>Colloids Surf. B Biointerfaces</source>
<volume>147</volume>
,
<fpage>129</fpage>
<lpage>141</lpage>
.
<pub-id pub-id-type="doi">10.1016/j.colsurfb.2016.07.058</pub-id>
<pub-id pub-id-type="pmid">27497076</pub-id>
</mixed-citation>
</ref>
<ref id="B132">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Sonali Singh</surname>
<given-names>R. P.</given-names>
</name>
<name>
<surname>Singh</surname>
<given-names>N.</given-names>
</name>
<name>
<surname>Sharma</surname>
<given-names>G.</given-names>
</name>
<name>
<surname>Vijayakumar</surname>
<given-names>M. R.</given-names>
</name>
<name>
<surname>Koch</surname>
<given-names>B.</given-names>
</name>
<etal></etal>
</person-group>
(
<year>2016c</year>
).
<article-title>Transferrin liposomes of docetaxel for brain-targeted cancer applications: formulation and brain theranostics</article-title>
.
<source>Drug Deliv.</source>
<volume>23</volume>
,
<fpage>1261</fpage>
<lpage>1271</lpage>
.
<pub-id pub-id-type="doi">10.3109/10717544.2016.1162878</pub-id>
<pub-id pub-id-type="pmid">26961144</pub-id>
</mixed-citation>
</ref>
<ref id="B133">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Sonali Viswanadh</surname>
<given-names>M. K.</given-names>
</name>
<name>
<surname>Singh</surname>
<given-names>R. P.</given-names>
</name>
<name>
<surname>Agrawal</surname>
<given-names>P.</given-names>
</name>
<name>
<surname>Mehata</surname>
<given-names>A. K.</given-names>
</name>
<name>
<surname>Pawde</surname>
<given-names>D. M.</given-names>
</name>
<etal></etal>
</person-group>
. (
<year>2018</year>
).
<article-title>Nanotheranostics: emerging strategies for early diagnosis and therapy of brain cancer</article-title>
.
<source>Nanotheranostics</source>
<volume>2</volume>
,
<fpage>70</fpage>
<lpage>86</lpage>
.
<pub-id pub-id-type="doi">10.7150/ntno.21638</pub-id>
<pub-id pub-id-type="pmid">29291164</pub-id>
</mixed-citation>
</ref>
<ref id="B134">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Stambolic</surname>
<given-names>V.</given-names>
</name>
<name>
<surname>Suzuki</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>de la Pompa</surname>
<given-names>J. L.</given-names>
</name>
<name>
<surname>Brothers</surname>
<given-names>G. M.</given-names>
</name>
<name>
<surname>Mirtsos</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>Sasaki</surname>
<given-names>T.</given-names>
</name>
<etal></etal>
</person-group>
. (
<year>1998</year>
).
<article-title>Negative regulation of PKB/Akt-dependent cell survival by the tumor suppressor PTEN</article-title>
.
<source>Cell</source>
<volume>95</volume>
,
<fpage>29</fpage>
<lpage>39</lpage>
.
<pub-id pub-id-type="doi">10.1016/S0092-8674(00)81780-8</pub-id>
<pub-id pub-id-type="pmid">9778245</pub-id>
</mixed-citation>
</ref>
<ref id="B135">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Su</surname>
<given-names>H.</given-names>
</name>
<name>
<surname>Liu</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Wang</surname>
<given-names>D.</given-names>
</name>
<name>
<surname>Wu</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>Xia</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>Gong</surname>
<given-names>Q.</given-names>
</name>
<etal></etal>
</person-group>
. (
<year>2013</year>
).
<article-title>Amphiphilic starlike dextran wrapped superparamagnetic iron oxide nanoparticle clsuters as effective magnetic resonance imaging probes</article-title>
.
<source>Biomaterials</source>
<volume>34</volume>
,
<fpage>1193</fpage>
<lpage>1203</lpage>
.
<pub-id pub-id-type="doi">10.1016/j.biomaterials.2012.10.056</pub-id>
<pub-id pub-id-type="pmid">23168385</pub-id>
</mixed-citation>
</ref>
<ref id="B136">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Sun</surname>
<given-names>D.</given-names>
</name>
</person-group>
(
<year>2010</year>
).
<article-title>Nanotheranostics: integration of imaging and targeted drug delivery</article-title>
.
<source>Mol. Pharm.</source>
<volume>7</volume>
:
<fpage>1879</fpage>
.
<pub-id pub-id-type="doi">10.1021/mp1003652</pub-id>
<pub-id pub-id-type="pmid">21128687</pub-id>
</mixed-citation>
</ref>
<ref id="B137">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Sun</surname>
<given-names>L.</given-names>
</name>
<name>
<surname>Joh</surname>
<given-names>D. Y.</given-names>
</name>
<name>
<surname>Al-Zaki</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Stangl</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Murty</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Davis</surname>
<given-names>J. J.</given-names>
</name>
<etal></etal>
</person-group>
. (
<year>2016</year>
).
<article-title>Theranostic application of mixed gold and superparamagnetic iron oxide nanoparticle micelles in glioblastoma multiforme</article-title>
.
<source>J. Biomed. Nanotechnol.</source>
<volume>12</volume>
,
<fpage>347</fpage>
<lpage>356</lpage>
.
<pub-id pub-id-type="doi">10.1166/jbn.2016.2173</pub-id>
<pub-id pub-id-type="pmid">27305768</pub-id>
</mixed-citation>
</ref>
<ref id="B138">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Tabatabaei</surname>
<given-names>S. N.</given-names>
</name>
<name>
<surname>Girouard</surname>
<given-names>H.</given-names>
</name>
<name>
<surname>Carret</surname>
<given-names>A.-S.</given-names>
</name>
<name>
<surname>Martel</surname>
<given-names>S.</given-names>
</name>
</person-group>
(
<year>2015</year>
).
<article-title>Remote control of the permeability of the blood-brain barrier by magnetic heating of nanoparticles: a proof of concept for brain drug delivery</article-title>
.
<source>J. Control. Release</source>
<volume>206</volume>
,
<fpage>49</fpage>
<lpage>57</lpage>
.
<pub-id pub-id-type="doi">10.1016/j.jconrel.2015.02.027</pub-id>
<pub-id pub-id-type="pmid">25724273</pub-id>
</mixed-citation>
</ref>
<ref id="B139">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Tanaka</surname>
<given-names>N.</given-names>
</name>
<name>
<surname>Kanatani</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Tomer</surname>
<given-names>R.</given-names>
</name>
<name>
<surname>Sahlgren</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>Kronqvist</surname>
<given-names>P.</given-names>
</name>
<name>
<surname>Kaczynska</surname>
<given-names>D.</given-names>
</name>
<etal></etal>
</person-group>
. (
<year>2017</year>
).
<article-title>Whole-tissue biopsy phenotyping of three-dimensional tumours reveals patterns of cancer heterogeneity</article-title>
.
<source>Nat. Biomed. Eng.</source>
<volume>1</volume>
,
<fpage>796</fpage>
<lpage>806</lpage>
.
<pub-id pub-id-type="doi">10.1038/s41551-017-0139-0</pub-id>
<pub-id pub-id-type="pmid">31015588</pub-id>
</mixed-citation>
</ref>
<ref id="B140">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Tandel</surname>
<given-names>G. S.</given-names>
</name>
<name>
<surname>Biswas</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Kakde</surname>
<given-names>O. G.</given-names>
</name>
<name>
<surname>Tiwari</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Suri</surname>
<given-names>H. S.</given-names>
</name>
<name>
<surname>Turk</surname>
<given-names>M.</given-names>
</name>
<etal></etal>
</person-group>
(
<year>2019</year>
).
<article-title>A review on a deep learning perspective in brain cancer classification</article-title>
.
<source>Cancers.</source>
<volume>11</volume>
:
<fpage>E111</fpage>
<pub-id pub-id-type="doi">10.3390/cancers11010111</pub-id>
<pub-id pub-id-type="pmid">30669406</pub-id>
</mixed-citation>
</ref>
<ref id="B141">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Tennant</surname>
<given-names>D. A.</given-names>
</name>
<name>
<surname>Frezza</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>MacKenzie</surname>
<given-names>E. D.</given-names>
</name>
<name>
<surname>Nguyen</surname>
<given-names>Q. D.</given-names>
</name>
<name>
<surname>Zheng</surname>
<given-names>L.</given-names>
</name>
<name>
<surname>Selak</surname>
<given-names>M. A.</given-names>
</name>
<etal></etal>
</person-group>
. (
<year>2009</year>
).
<article-title>Reactivating HIF prolyl hydroxylases under hypoxia results in metabolic catastrophe and cell death</article-title>
.
<source>Oncogene</source>
<volume>28</volume>
,
<fpage>4009</fpage>
<lpage>4021</lpage>
.
<pub-id pub-id-type="doi">10.1038/onc.2009.250</pub-id>
<pub-id pub-id-type="pmid">19718054</pub-id>
</mixed-citation>
</ref>
<ref id="B142">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Thakkar</surname>
<given-names>J. P.</given-names>
</name>
<name>
<surname>Dolecek</surname>
<given-names>T. A.</given-names>
</name>
<name>
<surname>Horbinski</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>Ostrom</surname>
<given-names>Q. T.</given-names>
</name>
<name>
<surname>Lightner</surname>
<given-names>D. D.</given-names>
</name>
<name>
<surname>Barnholtz-Sloan</surname>
<given-names>J. S.</given-names>
</name>
<etal></etal>
</person-group>
. (
<year>2014</year>
).
<article-title>Epidemiologic and molecular prognostic review of glioblastoma</article-title>
.
<source>Cancer Epidemiol. Biomarkers Prev.</source>
<volume>23</volume>
,
<fpage>1985</fpage>
<lpage>1996</lpage>
.
<pub-id pub-id-type="doi">10.1158/1055-9965.EPI-14-0275</pub-id>
<pub-id pub-id-type="pmid">25053711</pub-id>
</mixed-citation>
</ref>
<ref id="B143">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Tian</surname>
<given-names>B.</given-names>
</name>
<name>
<surname>Al-Jamal</surname>
<given-names>W. T.</given-names>
</name>
<name>
<surname>Al-Jamal</surname>
<given-names>K. T.</given-names>
</name>
<name>
<surname>Kostarelos</surname>
<given-names>K.</given-names>
</name>
</person-group>
(
<year>2011</year>
).
<article-title>Doxorubicin-loaded lipid-quantum dot hybrids: surface topography and release properties</article-title>
.
<source>Int. J. Pharm.</source>
<volume>416</volume>
,
<fpage>443</fpage>
<lpage>447</lpage>
.
<pub-id pub-id-type="doi">10.1016/j.ijpharm.2011.01.057</pub-id>
<pub-id pub-id-type="pmid">21315141</pub-id>
</mixed-citation>
</ref>
<ref id="B144">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Tong</surname>
<given-names>R.</given-names>
</name>
<name>
<surname>Cheng</surname>
<given-names>J.</given-names>
</name>
</person-group>
(
<year>2007</year>
).
<article-title>Anticancer polymeric nanomedicines</article-title>
.
<source>Poly. Rev.</source>
<volume>47</volume>
,
<fpage>345</fpage>
<lpage>381</lpage>
.
<pub-id pub-id-type="doi">10.1080/15583720701455079</pub-id>
</mixed-citation>
</ref>
<ref id="B145">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Tzeng</surname>
<given-names>S. Y.</given-names>
</name>
<name>
<surname>Green</surname>
<given-names>J. J.</given-names>
</name>
</person-group>
(
<year>2013</year>
).
<article-title>Therapeutic nanomedicine for brain cancer</article-title>
.
<source>Ther. Deliv.</source>
<volume>4</volume>
,
<fpage>687</fpage>
<lpage>704</lpage>
.
<pub-id pub-id-type="doi">10.4155/tde.13.38</pub-id>
<pub-id pub-id-type="pmid">23738667</pub-id>
</mixed-citation>
</ref>
<ref id="B146">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Uchida</surname>
<given-names>N.</given-names>
</name>
<name>
<surname>Buck</surname>
<given-names>D. W.</given-names>
</name>
<name>
<surname>He</surname>
<given-names>D.</given-names>
</name>
<name>
<surname>Reitsma</surname>
<given-names>M. J.</given-names>
</name>
<name>
<surname>Masek</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Phan</surname>
<given-names>T. V.</given-names>
</name>
<etal></etal>
</person-group>
. (
<year>2000</year>
).
<article-title>Direct isolation of human central nervous system stem cells</article-title>
.
<source>Proc. Natl. Acad. Sci. U.S.A.</source>
<volume>97</volume>
,
<fpage>14720</fpage>
<lpage>14725</lpage>
.
<pub-id pub-id-type="doi">10.1073/pnas.97.26.14720</pub-id>
<pub-id pub-id-type="pmid">11121071</pub-id>
</mixed-citation>
</ref>
<ref id="B147">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Vilos</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>Velasquez</surname>
<given-names>L. A.</given-names>
</name>
</person-group>
(
<year>2012</year>
).
<article-title>Therapeutic strategies based on polymeric microparticles</article-title>
.
<source>J. Biomed. Biotechnol.</source>
<volume>2012</volume>
:
<fpage>672760</fpage>
.
<pub-id pub-id-type="doi">10.1155/2012/672760</pub-id>
<pub-id pub-id-type="pmid">22665988</pub-id>
</mixed-citation>
</ref>
<ref id="B148">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Volkov</surname>
<given-names>Y.</given-names>
</name>
</person-group>
(
<year>2015</year>
).
<article-title>Quantum dots in nanomedicine: recent trends, advances and unresolved issues</article-title>
.
<source>Biochem. Biophys. Res. Commun.</source>
<volume>468</volume>
,
<fpage>419</fpage>
<lpage>427</lpage>
.
<pub-id pub-id-type="doi">10.1016/j.bbrc.2015.07.039</pub-id>
<pub-id pub-id-type="pmid">26168726</pub-id>
</mixed-citation>
</ref>
<ref id="B149">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Wang</surname>
<given-names>D.</given-names>
</name>
<name>
<surname>Lin</surname>
<given-names>B.</given-names>
</name>
<name>
<surname>Ai</surname>
<given-names>H.</given-names>
</name>
</person-group>
(
<year>2014</year>
).
<article-title>Theranostic nanoparticles for cancer and cardiovascular applications</article-title>
.
<source>Pharm. Res.</source>
<volume>31</volume>
,
<fpage>1390</fpage>
<lpage>1406</lpage>
.
<pub-id pub-id-type="doi">10.1007/s11095-013-1277-z</pub-id>
<pub-id pub-id-type="pmid">24595494</pub-id>
</mixed-citation>
</ref>
<ref id="B150">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Wang</surname>
<given-names>H.</given-names>
</name>
<name>
<surname>Liu</surname>
<given-names>X.</given-names>
</name>
<name>
<surname>Wang</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Chen</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Jin</surname>
<given-names>Q.</given-names>
</name>
<name>
<surname>Ji</surname>
<given-names>J.</given-names>
</name>
</person-group>
(
<year>2015</year>
).
<article-title>Doxorubicin conjugated phospholipid prodrugs as smart nanomedicine platforms for cancer therapy</article-title>
.
<source>J. Mater. Chem. B</source>
<volume>3</volume>
,
<fpage>3297</fpage>
<lpage>3305</lpage>
.
<pub-id pub-id-type="doi">10.1039/C4TB01984A</pub-id>
</mixed-citation>
</ref>
<ref id="B151">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Wang</surname>
<given-names>X.</given-names>
</name>
<name>
<surname>Wang</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>Cheng</surname>
<given-names>L.</given-names>
</name>
<name>
<surname>Lee</surname>
<given-names>S.-T.</given-names>
</name>
<name>
<surname>Liu</surname>
<given-names>Z.</given-names>
</name>
</person-group>
(
<year>2012</year>
).
<article-title>Noble metal coated single-walled carbon nanotubes for applications in surface enhanced Raman scattering imaging and photothermal therapy</article-title>
.
<source>J. Am. Chem. Soc.</source>
<volume>134</volume>
,
<fpage>7414</fpage>
<lpage>7422</lpage>
.
<pub-id pub-id-type="doi">10.1021/ja300140c</pub-id>
<pub-id pub-id-type="pmid">22486413</pub-id>
</mixed-citation>
</ref>
<ref id="B152">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Wang</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Shim</surname>
<given-names>M. S.</given-names>
</name>
<name>
<surname>Levinson</surname>
<given-names>N. S.</given-names>
</name>
<name>
<surname>Sung</surname>
<given-names>H.-W.</given-names>
</name>
<name>
<surname>Xia</surname>
<given-names>Y.</given-names>
</name>
</person-group>
(
<year>2014</year>
).
<article-title>Stimuli-responsive materials for controlled release of theranostic agents</article-title>
.
<source>Adv. Funct. Mater.</source>
<volume>24</volume>
,
<fpage>4206</fpage>
<lpage>4220</lpage>
.
<pub-id pub-id-type="doi">10.1002/adfm.201400279</pub-id>
<pub-id pub-id-type="pmid">25477774</pub-id>
</mixed-citation>
</ref>
<ref id="B153">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Wei</surname>
<given-names>X.</given-names>
</name>
<name>
<surname>Chen</surname>
<given-names>X.</given-names>
</name>
<name>
<surname>Ying</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Lu</surname>
<given-names>W.</given-names>
</name>
</person-group>
(
<year>2014</year>
).
<article-title>Brain tumor-targeted drug delivery strategies</article-title>
.
<source>Acta Pharm. Sin. B</source>
<volume>4</volume>
,
<fpage>193</fpage>
<lpage>201</lpage>
.
<pub-id pub-id-type="doi">10.1016/j.apsb.2014.03.001</pub-id>
<pub-id pub-id-type="pmid">26579383</pub-id>
</mixed-citation>
</ref>
<ref id="B154">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Wesseling</surname>
<given-names>P.</given-names>
</name>
<name>
<surname>Capper</surname>
<given-names>D.</given-names>
</name>
</person-group>
(
<year>2018</year>
).
<article-title>WHO 2016 classification of gliomas</article-title>
.
<source>Neuropathol. Appl. Neurobiol.</source>
<volume>44</volume>
,
<fpage>139</fpage>
<lpage>150</lpage>
.
<pub-id pub-id-type="doi">10.1111/nan.12432</pub-id>
<pub-id pub-id-type="pmid">28815663</pub-id>
</mixed-citation>
</ref>
<ref id="B155">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Wicki</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Witzigmann</surname>
<given-names>D.</given-names>
</name>
<name>
<surname>Balasubramanian</surname>
<given-names>V.</given-names>
</name>
<name>
<surname>Huwyler</surname>
<given-names>J.</given-names>
</name>
</person-group>
(
<year>2015</year>
).
<article-title>Nanomedicine in cancer therapy: challenges, opportunities, and clinical applications</article-title>
.
<source>J. Controlled Release</source>
<volume>200</volume>
,
<fpage>138</fpage>
<lpage>157</lpage>
.
<pub-id pub-id-type="doi">10.1016/j.jconrel.2014.12.030</pub-id>
</mixed-citation>
</ref>
<ref id="B156">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Wilhelm</surname>
<given-names>I.</given-names>
</name>
<name>
<surname>Krizbai</surname>
<given-names>I. A.</given-names>
</name>
</person-group>
(
<year>2014</year>
).
<article-title>
<italic>In vitro</italic>
models of the blood-brain barrier for the study of drug delivery to the brain</article-title>
.
<source>Mol. Pharm.</source>
<volume>11</volume>
,
<fpage>1949</fpage>
<lpage>1963</lpage>
.
<pub-id pub-id-type="doi">10.1021/mp500046f</pub-id>
<pub-id pub-id-type="pmid">24641309</pub-id>
</mixed-citation>
</ref>
<ref id="B157">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Wong</surname>
<given-names>A. J.</given-names>
</name>
<name>
<surname>Ruppert</surname>
<given-names>J. M.</given-names>
</name>
<name>
<surname>Bigner</surname>
<given-names>S. H.</given-names>
</name>
<name>
<surname>Grzeschik</surname>
<given-names>C. H.</given-names>
</name>
<name>
<surname>Humphrey</surname>
<given-names>P. A.</given-names>
</name>
<name>
<surname>Bigner</surname>
<given-names>D. S.</given-names>
</name>
<etal></etal>
</person-group>
. (
<year>1992</year>
).
<article-title>Structural alterations of the epidermal growth factor receptor gene in human gliomas</article-title>
.
<source>Proc. Natl. Acad. Sci. U.S.A.</source>
<volume>89</volume>
,
<fpage>2965</fpage>
<lpage>2969</lpage>
.
<pub-id pub-id-type="doi">10.1073/pnas.89.7.2965</pub-id>
<pub-id pub-id-type="pmid">1557402</pub-id>
</mixed-citation>
</ref>
<ref id="B158">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Wu</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Fan</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Lv</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Xiao</surname>
<given-names>B.</given-names>
</name>
<name>
<surname>Ye</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Zhu</surname>
<given-names>X.</given-names>
</name>
</person-group>
(
<year>2016</year>
).
<article-title>Vincristine and temozolomide combined chemotherapy for the treatment of glioma: a comparison of solid lipid nanoparticles and nanostructured lipid carriers for dual drugs delivery</article-title>
.
<source>Drug Deliv.</source>
<volume>23</volume>
,
<fpage>2720</fpage>
<lpage>2725</lpage>
.
<pub-id pub-id-type="doi">10.3109/10717544.2015.1058434</pub-id>
<pub-id pub-id-type="pmid">26203691</pub-id>
</mixed-citation>
</ref>
<ref id="B159">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Xiao</surname>
<given-names>Q.</given-names>
</name>
<name>
<surname>Yang</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Ding</surname>
<given-names>G.</given-names>
</name>
<name>
<surname>Luo</surname>
<given-names>M.</given-names>
</name>
</person-group>
(
<year>2018</year>
).
<article-title>Anti-vascular endothelial growth factor in glioblastoma: a systematic review and meta-analysis</article-title>
.
<source>Neurol. Sci.</source>
<volume>39</volume>
,
<fpage>2021</fpage>
<lpage>2031</lpage>
.
<pub-id pub-id-type="doi">10.1007/s10072-018-3568-y</pub-id>
<pub-id pub-id-type="pmid">30327956</pub-id>
</mixed-citation>
</ref>
<ref id="B160">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Xie</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Lee</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Chen</surname>
<given-names>X.</given-names>
</name>
</person-group>
(
<year>2010</year>
).
<article-title>Nanoparticle-based theranostic agents</article-title>
.
<source>Adv. Drug Deliv. Rev.</source>
<volume>62</volume>
,
<fpage>1064</fpage>
<lpage>1079</lpage>
.
<pub-id pub-id-type="doi">10.1016/j.addr.2010.07.009</pub-id>
<pub-id pub-id-type="pmid">20691229</pub-id>
</mixed-citation>
</ref>
<ref id="B161">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Xie</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Liu</surname>
<given-names>G.</given-names>
</name>
<name>
<surname>Eden</surname>
<given-names>H. S.</given-names>
</name>
<name>
<surname>Ai</surname>
<given-names>H.</given-names>
</name>
<name>
<surname>Chen</surname>
<given-names>X.</given-names>
</name>
</person-group>
(
<year>2011</year>
).
<article-title>Surface-engineered magnetic nanoparticle platforms for cancer imaging and therapy</article-title>
.
<source>Acc. Chem. Res.</source>
<volume>44</volume>
,
<fpage>883</fpage>
<lpage>892</lpage>
.
<pub-id pub-id-type="doi">10.1021/ar200044b</pub-id>
<pub-id pub-id-type="pmid">21548618</pub-id>
</mixed-citation>
</ref>
<ref id="B162">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Xie</surname>
<given-names>W.</given-names>
</name>
<name>
<surname>Guo</surname>
<given-names>Z.</given-names>
</name>
<name>
<surname>Gao</surname>
<given-names>F.</given-names>
</name>
<name>
<surname>Gao</surname>
<given-names>Q.</given-names>
</name>
<name>
<surname>Wang</surname>
<given-names>D.</given-names>
</name>
<name>
<surname>Liaw</surname>
<given-names>B.</given-names>
</name>
<etal></etal>
</person-group>
. (
<year>2018</year>
).
<article-title>Shape-, size- and structure-controlled synthesis and biocompatibility of iron oxide nanoparticles for magnetic theranostics</article-title>
.
<source>Theranostics</source>
<volume>8</volume>
,
<fpage>3284</fpage>
<lpage>3307</lpage>
.
<pub-id pub-id-type="doi">10.7150/thno.25220</pub-id>
<pub-id pub-id-type="pmid">29930730</pub-id>
</mixed-citation>
</ref>
<ref id="B163">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Yamanaka</surname>
<given-names>R.</given-names>
</name>
</person-group>
(
<year>2008</year>
).
<article-title>Cell- and peptide-based immunotherapeutic approaches for glioma</article-title>
.
<source>Trends Mol. Med.</source>
<volume>14</volume>
,
<fpage>228</fpage>
<lpage>235</lpage>
.
<pub-id pub-id-type="doi">10.1016/j.molmed.2008.03.003</pub-id>
<pub-id pub-id-type="pmid">18403264</pub-id>
</mixed-citation>
</ref>
<ref id="B164">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Zeng</surname>
<given-names>W.</given-names>
</name>
<name>
<surname>Wang</surname>
<given-names>X.</given-names>
</name>
<name>
<surname>Xu</surname>
<given-names>P.</given-names>
</name>
<name>
<surname>Liu</surname>
<given-names>G.</given-names>
</name>
<name>
<surname>Eden</surname>
<given-names>H. S.</given-names>
</name>
<name>
<surname>Chen</surname>
<given-names>X.</given-names>
</name>
</person-group>
(
<year>2015</year>
).
<article-title>Molecular imaging of apoptosis: from micro to macro</article-title>
.
<source>Theranostics</source>
<volume>5</volume>
,
<fpage>559</fpage>
<lpage>582</lpage>
.
<pub-id pub-id-type="doi">10.7150/thno.11548</pub-id>
<pub-id pub-id-type="pmid">25825597</pub-id>
</mixed-citation>
</ref>
<ref id="B165">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Zhang</surname>
<given-names>B.</given-names>
</name>
<name>
<surname>Yang</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>Gao</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Wang</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Bu</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>Hu</surname>
<given-names>S.</given-names>
</name>
<etal></etal>
</person-group>
. (
<year>2017</year>
).
<article-title>Engineering quantum dots with different emission wavelengths and specific fluorescence lifetimes for spectrally and temporally multiplexed imaging of cells</article-title>
.
<source>Nanotheranostics</source>
<volume>1</volume>
,
<fpage>131</fpage>
<lpage>140</lpage>
.
<pub-id pub-id-type="doi">10.7150/ntno.18989</pub-id>
<pub-id pub-id-type="pmid">29071182</pub-id>
</mixed-citation>
</ref>
<ref id="B166">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Zhao</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Zhao</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Fu</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>Yu</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Fu</surname>
<given-names>A.</given-names>
</name>
</person-group>
(
<year>2018</year>
).
<article-title>Targeted therapy of intracranial glioma model mice with curcumin nanoliposomes</article-title>
.
<source>Int. J. Nanomedicine</source>
<volume>13</volume>
,
<fpage>1601</fpage>
<lpage>1610</lpage>
.
<pub-id pub-id-type="doi">10.2147/IJN.S157019</pub-id>
<pub-id pub-id-type="pmid">29588587</pub-id>
</mixed-citation>
</ref>
<ref id="B167">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Zong</surname>
<given-names>T.</given-names>
</name>
<name>
<surname>Mei</surname>
<given-names>L.</given-names>
</name>
<name>
<surname>Gao</surname>
<given-names>H.</given-names>
</name>
<name>
<surname>Cai</surname>
<given-names>W.</given-names>
</name>
<name>
<surname>Zhu</surname>
<given-names>P.</given-names>
</name>
<name>
<surname>Shi</surname>
<given-names>K.</given-names>
</name>
<etal></etal>
</person-group>
. (
<year>2014</year>
).
<article-title>Synergistic dual-ligand doxorubicin liposomes improve targeting and therapeutic efficacy of brain glioma in animals</article-title>
.
<source>Mol. Pharm.</source>
<volume>11</volume>
,
<fpage>2346</fpage>
<lpage>2357</lpage>
.
<pub-id pub-id-type="doi">10.1021/mp500057n</pub-id>
<pub-id pub-id-type="pmid">24893333</pub-id>
</mixed-citation>
</ref>
<ref id="B168">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Zottel</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Videtič Paska</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Jovčevska</surname>
<given-names>I.</given-names>
</name>
</person-group>
(
<year>2019</year>
).
<article-title>Nanotechnology meets oncology: nanomaterials in brain cancer research, diagnosis and therapy</article-title>
.
<source>Materials.</source>
<volume>12</volume>
:
<fpage>1588</fpage>
.
<pub-id pub-id-type="doi">10.3390/ma12101588</pub-id>
<pub-id pub-id-type="pmid">31096609</pub-id>
</mixed-citation>
</ref>
</ref-list>
</back>
</pmc>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/ChloroquineV1/Data/Pmc/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000950 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Pmc/Corpus/biblio.hfd -nk 000950 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    ChloroquineV1
   |flux=    Pmc
   |étape=   Corpus
   |type=    RBID
   |clé=     PMC:6868071
   |texte=   Theranostic Nanomedicine for Malignant Gliomas
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Pmc/Corpus/RBID.i   -Sk "pubmed:31799246" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Pmc/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a ChloroquineV1 

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Wed Mar 25 22:43:59 2020. Site generation: Sun Jan 31 12:44:45 2021