Serveur d'exploration Chloroquine

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.
***** Acces problem to record *****\

Identifieur interne : 0009250 ( Pmc/Corpus ); précédent : 0009249; suivant : 0009251 ***** probable Xml problem with record *****

Links to Exploration step


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Cellular Stress Responses in Radiotherapy</title>
<author>
<name sortKey="Kim, Wanyeon" sort="Kim, Wanyeon" uniqKey="Kim W" first="Wanyeon" last="Kim">Wanyeon Kim</name>
<affiliation>
<nlm:aff id="af1-cells-08-01105">Department of Biology Education, Korea National University of Education, Cheongju-si, Chungbuk 28173, Korea;
<email>wykim82@knue.ac.kr</email>
</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="af2-cells-08-01105">Department of Science Education, Korea National University of Education, Cheongju-si, Chungbuk 28173, Korea;
<email>dbseo130@gmail.com</email>
(D.S.);
<email>ekdls5371@gmail.com</email>
(D.K.)</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Lee, Sungmin" sort="Lee, Sungmin" uniqKey="Lee S" first="Sungmin" last="Lee">Sungmin Lee</name>
<affiliation>
<nlm:aff id="af3-cells-08-01105">Department of Integrated Biological Science, Pusan National University, Busan 46241, Korea;
<email>smlee1048@gmail.com</email>
(S.L.);
<email>minnnny@gmail.com</email>
(K.K.);
<email>eungikim89@gmail.com</email>
(E.K.);
<email>jhkang4293@gmail.com</email>
(J.K.)</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Seo, Danbi" sort="Seo, Danbi" uniqKey="Seo D" first="Danbi" last="Seo">Danbi Seo</name>
<affiliation>
<nlm:aff id="af2-cells-08-01105">Department of Science Education, Korea National University of Education, Cheongju-si, Chungbuk 28173, Korea;
<email>dbseo130@gmail.com</email>
(D.S.);
<email>ekdls5371@gmail.com</email>
(D.K.)</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Kim, Dain" sort="Kim, Dain" uniqKey="Kim D" first="Dain" last="Kim">Dain Kim</name>
<affiliation>
<nlm:aff id="af2-cells-08-01105">Department of Science Education, Korea National University of Education, Cheongju-si, Chungbuk 28173, Korea;
<email>dbseo130@gmail.com</email>
(D.S.);
<email>ekdls5371@gmail.com</email>
(D.K.)</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Kim, Kyeongmin" sort="Kim, Kyeongmin" uniqKey="Kim K" first="Kyeongmin" last="Kim">Kyeongmin Kim</name>
<affiliation>
<nlm:aff id="af3-cells-08-01105">Department of Integrated Biological Science, Pusan National University, Busan 46241, Korea;
<email>smlee1048@gmail.com</email>
(S.L.);
<email>minnnny@gmail.com</email>
(K.K.);
<email>eungikim89@gmail.com</email>
(E.K.);
<email>jhkang4293@gmail.com</email>
(J.K.)</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Kim, Eungi" sort="Kim, Eungi" uniqKey="Kim E" first="Eungi" last="Kim">Eungi Kim</name>
<affiliation>
<nlm:aff id="af3-cells-08-01105">Department of Integrated Biological Science, Pusan National University, Busan 46241, Korea;
<email>smlee1048@gmail.com</email>
(S.L.);
<email>minnnny@gmail.com</email>
(K.K.);
<email>eungikim89@gmail.com</email>
(E.K.);
<email>jhkang4293@gmail.com</email>
(J.K.)</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Kang, Jihoon" sort="Kang, Jihoon" uniqKey="Kang J" first="Jihoon" last="Kang">Jihoon Kang</name>
<affiliation>
<nlm:aff id="af3-cells-08-01105">Department of Integrated Biological Science, Pusan National University, Busan 46241, Korea;
<email>smlee1048@gmail.com</email>
(S.L.);
<email>minnnny@gmail.com</email>
(K.K.);
<email>eungikim89@gmail.com</email>
(E.K.);
<email>jhkang4293@gmail.com</email>
(J.K.)</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Seong, Ki Moon" sort="Seong, Ki Moon" uniqKey="Seong K" first="Ki Moon" last="Seong">Ki Moon Seong</name>
<affiliation>
<nlm:aff id="af4-cells-08-01105">Laboratory of Low Dose Risk Assessment, National Radiation Emergency Medical Center, Korea Institute of Radiological & Medical Sciences, Seoul 01812, Korea;
<email>skmhanul@kirams.re.kr</email>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Youn, Hyesook" sort="Youn, Hyesook" uniqKey="Youn H" first="Hyesook" last="Youn">Hyesook Youn</name>
<affiliation>
<nlm:aff id="af5-cells-08-01105">Department of Integrative Bioscience and Biotechnology, Sejong University, Seoul 05006, Korea</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Youn, Buhyun" sort="Youn, Buhyun" uniqKey="Youn B" first="Buhyun" last="Youn">Buhyun Youn</name>
<affiliation>
<nlm:aff id="af3-cells-08-01105">Department of Integrated Biological Science, Pusan National University, Busan 46241, Korea;
<email>smlee1048@gmail.com</email>
(S.L.);
<email>minnnny@gmail.com</email>
(K.K.);
<email>eungikim89@gmail.com</email>
(E.K.);
<email>jhkang4293@gmail.com</email>
(J.K.)</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="af6-cells-08-01105">Department of Biological Sciences, Pusan National University, Busan 46241, Korea</nlm:aff>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PMC</idno>
<idno type="pmid">31540530</idno>
<idno type="pmc">6769573</idno>
<idno type="url">http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6769573</idno>
<idno type="RBID">PMC:6769573</idno>
<idno type="doi">10.3390/cells8091105</idno>
<date when="2019">2019</date>
<idno type="wicri:Area/Pmc/Corpus">000925</idno>
<idno type="wicri:explorRef" wicri:stream="Pmc" wicri:step="Corpus" wicri:corpus="PMC">000925</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a" type="main">Cellular Stress Responses in Radiotherapy</title>
<author>
<name sortKey="Kim, Wanyeon" sort="Kim, Wanyeon" uniqKey="Kim W" first="Wanyeon" last="Kim">Wanyeon Kim</name>
<affiliation>
<nlm:aff id="af1-cells-08-01105">Department of Biology Education, Korea National University of Education, Cheongju-si, Chungbuk 28173, Korea;
<email>wykim82@knue.ac.kr</email>
</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="af2-cells-08-01105">Department of Science Education, Korea National University of Education, Cheongju-si, Chungbuk 28173, Korea;
<email>dbseo130@gmail.com</email>
(D.S.);
<email>ekdls5371@gmail.com</email>
(D.K.)</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Lee, Sungmin" sort="Lee, Sungmin" uniqKey="Lee S" first="Sungmin" last="Lee">Sungmin Lee</name>
<affiliation>
<nlm:aff id="af3-cells-08-01105">Department of Integrated Biological Science, Pusan National University, Busan 46241, Korea;
<email>smlee1048@gmail.com</email>
(S.L.);
<email>minnnny@gmail.com</email>
(K.K.);
<email>eungikim89@gmail.com</email>
(E.K.);
<email>jhkang4293@gmail.com</email>
(J.K.)</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Seo, Danbi" sort="Seo, Danbi" uniqKey="Seo D" first="Danbi" last="Seo">Danbi Seo</name>
<affiliation>
<nlm:aff id="af2-cells-08-01105">Department of Science Education, Korea National University of Education, Cheongju-si, Chungbuk 28173, Korea;
<email>dbseo130@gmail.com</email>
(D.S.);
<email>ekdls5371@gmail.com</email>
(D.K.)</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Kim, Dain" sort="Kim, Dain" uniqKey="Kim D" first="Dain" last="Kim">Dain Kim</name>
<affiliation>
<nlm:aff id="af2-cells-08-01105">Department of Science Education, Korea National University of Education, Cheongju-si, Chungbuk 28173, Korea;
<email>dbseo130@gmail.com</email>
(D.S.);
<email>ekdls5371@gmail.com</email>
(D.K.)</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Kim, Kyeongmin" sort="Kim, Kyeongmin" uniqKey="Kim K" first="Kyeongmin" last="Kim">Kyeongmin Kim</name>
<affiliation>
<nlm:aff id="af3-cells-08-01105">Department of Integrated Biological Science, Pusan National University, Busan 46241, Korea;
<email>smlee1048@gmail.com</email>
(S.L.);
<email>minnnny@gmail.com</email>
(K.K.);
<email>eungikim89@gmail.com</email>
(E.K.);
<email>jhkang4293@gmail.com</email>
(J.K.)</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Kim, Eungi" sort="Kim, Eungi" uniqKey="Kim E" first="Eungi" last="Kim">Eungi Kim</name>
<affiliation>
<nlm:aff id="af3-cells-08-01105">Department of Integrated Biological Science, Pusan National University, Busan 46241, Korea;
<email>smlee1048@gmail.com</email>
(S.L.);
<email>minnnny@gmail.com</email>
(K.K.);
<email>eungikim89@gmail.com</email>
(E.K.);
<email>jhkang4293@gmail.com</email>
(J.K.)</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Kang, Jihoon" sort="Kang, Jihoon" uniqKey="Kang J" first="Jihoon" last="Kang">Jihoon Kang</name>
<affiliation>
<nlm:aff id="af3-cells-08-01105">Department of Integrated Biological Science, Pusan National University, Busan 46241, Korea;
<email>smlee1048@gmail.com</email>
(S.L.);
<email>minnnny@gmail.com</email>
(K.K.);
<email>eungikim89@gmail.com</email>
(E.K.);
<email>jhkang4293@gmail.com</email>
(J.K.)</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Seong, Ki Moon" sort="Seong, Ki Moon" uniqKey="Seong K" first="Ki Moon" last="Seong">Ki Moon Seong</name>
<affiliation>
<nlm:aff id="af4-cells-08-01105">Laboratory of Low Dose Risk Assessment, National Radiation Emergency Medical Center, Korea Institute of Radiological & Medical Sciences, Seoul 01812, Korea;
<email>skmhanul@kirams.re.kr</email>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Youn, Hyesook" sort="Youn, Hyesook" uniqKey="Youn H" first="Hyesook" last="Youn">Hyesook Youn</name>
<affiliation>
<nlm:aff id="af5-cells-08-01105">Department of Integrative Bioscience and Biotechnology, Sejong University, Seoul 05006, Korea</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Youn, Buhyun" sort="Youn, Buhyun" uniqKey="Youn B" first="Buhyun" last="Youn">Buhyun Youn</name>
<affiliation>
<nlm:aff id="af3-cells-08-01105">Department of Integrated Biological Science, Pusan National University, Busan 46241, Korea;
<email>smlee1048@gmail.com</email>
(S.L.);
<email>minnnny@gmail.com</email>
(K.K.);
<email>eungikim89@gmail.com</email>
(E.K.);
<email>jhkang4293@gmail.com</email>
(J.K.)</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="af6-cells-08-01105">Department of Biological Sciences, Pusan National University, Busan 46241, Korea</nlm:aff>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Cells</title>
<idno type="eISSN">2073-4409</idno>
<imprint>
<date when="2019">2019</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<p>Radiotherapy is one of the major cancer treatment strategies. Exposure to penetrating radiation causes cellular stress, directly or indirectly, due to the generation of reactive oxygen species, DNA damage, and subcellular organelle damage and autophagy. These radiation-induced damage responses cooperatively contribute to cancer cell death, but paradoxically, radiotherapy also causes the activation of damage-repair and survival signaling to alleviate radiation-induced cytotoxic effects in a small percentage of cancer cells, and these activations are responsible for tumor radio-resistance. The present study describes the molecular mechanisms responsible for radiation-induced cellular stress response and radioresistance, and the therapeutic approaches used to overcome radioresistance.</p>
</div>
</front>
<back>
<div1 type="bibliography">
<listBibl>
<biblStruct>
<analytic>
<author>
<name sortKey="Allen, C" uniqKey="Allen C">C. Allen</name>
</author>
<author>
<name sortKey="Her, S" uniqKey="Her S">S. Her</name>
</author>
<author>
<name sortKey="Jaffray, D A" uniqKey="Jaffray D">D.A. Jaffray</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="De Ruysscher, D" uniqKey="De Ruysscher D">D. De Ruysscher</name>
</author>
<author>
<name sortKey="Niedermann, G" uniqKey="Niedermann G">G. Niedermann</name>
</author>
<author>
<name sortKey="Burnet, N G" uniqKey="Burnet N">N.G. Burnet</name>
</author>
<author>
<name sortKey="Siva, S" uniqKey="Siva S">S. Siva</name>
</author>
<author>
<name sortKey="Lee, A W M" uniqKey="Lee A">A.W.M. Lee</name>
</author>
<author>
<name sortKey="Hegi Johnson, F" uniqKey="Hegi Johnson F">F. Hegi-Johnson</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Son, B" uniqKey="Son B">B. Son</name>
</author>
<author>
<name sortKey="Kwon, T" uniqKey="Kwon T">T. Kwon</name>
</author>
<author>
<name sortKey="Lee, S" uniqKey="Lee S">S. Lee</name>
</author>
<author>
<name sortKey="Han, I" uniqKey="Han I">I. Han</name>
</author>
<author>
<name sortKey="Kim, W" uniqKey="Kim W">W. Kim</name>
</author>
<author>
<name sortKey="Youn, H" uniqKey="Youn H">H. Youn</name>
</author>
<author>
<name sortKey="Youn, B" uniqKey="Youn B">B. Youn</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Wang, J S" uniqKey="Wang J">J.S. Wang</name>
</author>
<author>
<name sortKey="Wang, H J" uniqKey="Wang H">H.J. Wang</name>
</author>
<author>
<name sortKey="Qian, H L" uniqKey="Qian H">H.L. Qian</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Lomax, M" uniqKey="Lomax M">M. Lomax</name>
</author>
<author>
<name sortKey="Folkes, L" uniqKey="Folkes L">L. Folkes</name>
</author>
<author>
<name sortKey="O Eill, P" uniqKey="O Eill P">P. O’Neill</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Srinivas, U S" uniqKey="Srinivas U">U.S. Srinivas</name>
</author>
<author>
<name sortKey="Tan, B W Q" uniqKey="Tan B">B.W.Q. Tan</name>
</author>
<author>
<name sortKey="Vellayappan, B A" uniqKey="Vellayappan B">B.A. Vellayappan</name>
</author>
<author>
<name sortKey="Jeyasekharan, A D" uniqKey="Jeyasekharan A">A.D. Jeyasekharan</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Chatterjee, J" uniqKey="Chatterjee J">J. Chatterjee</name>
</author>
<author>
<name sortKey="Nairy, R K" uniqKey="Nairy R">R.K. Nairy</name>
</author>
<author>
<name sortKey="Langhnoja, J" uniqKey="Langhnoja J">J. Langhnoja</name>
</author>
<author>
<name sortKey="Tripathi, A" uniqKey="Tripathi A">A. Tripathi</name>
</author>
<author>
<name sortKey="Patil, R K" uniqKey="Patil R">R.K. Patil</name>
</author>
<author>
<name sortKey="Pillai, P P" uniqKey="Pillai P">P.P. Pillai</name>
</author>
<author>
<name sortKey="Mustak, M S" uniqKey="Mustak M">M.S. Mustak</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Diehn, M" uniqKey="Diehn M">M. Diehn</name>
</author>
<author>
<name sortKey="Cho, R W" uniqKey="Cho R">R.W. Cho</name>
</author>
<author>
<name sortKey="Lobo, N A" uniqKey="Lobo N">N.A. Lobo</name>
</author>
<author>
<name sortKey="Kalisky, T" uniqKey="Kalisky T">T. Kalisky</name>
</author>
<author>
<name sortKey="Dorie, M J" uniqKey="Dorie M">M.J. Dorie</name>
</author>
<author>
<name sortKey="Kulp, A N" uniqKey="Kulp A">A.N. Kulp</name>
</author>
<author>
<name sortKey="Qian, D" uniqKey="Qian D">D. Qian</name>
</author>
<author>
<name sortKey="Lam, J S" uniqKey="Lam J">J.S. Lam</name>
</author>
<author>
<name sortKey="Ailles, L E" uniqKey="Ailles L">L.E. Ailles</name>
</author>
<author>
<name sortKey="Wong, M" uniqKey="Wong M">M. Wong</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Nagelkerke, A" uniqKey="Nagelkerke A">A. Nagelkerke</name>
</author>
<author>
<name sortKey="Bussink, J" uniqKey="Bussink J">J. Bussink</name>
</author>
<author>
<name sortKey="Van Der Kogel, A J" uniqKey="Van Der Kogel A">A.J. van der Kogel</name>
</author>
<author>
<name sortKey="Sweep, F C" uniqKey="Sweep F">F.C. Sweep</name>
</author>
<author>
<name sortKey="Span, P N" uniqKey="Span P">P.N. Span</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Taylor, M A" uniqKey="Taylor M">M.A. Taylor</name>
</author>
<author>
<name sortKey="Das, B C" uniqKey="Das B">B.C. Das</name>
</author>
<author>
<name sortKey="Ray, S K" uniqKey="Ray S">S.K. Ray</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kwon, T" uniqKey="Kwon T">T. Kwon</name>
</author>
<author>
<name sortKey="Youn, H" uniqKey="Youn H">H. Youn</name>
</author>
<author>
<name sortKey="Son, B" uniqKey="Son B">B. Son</name>
</author>
<author>
<name sortKey="Kim, D" uniqKey="Kim D">D. Kim</name>
</author>
<author>
<name sortKey="Seong, K M" uniqKey="Seong K">K.M. Seong</name>
</author>
<author>
<name sortKey="Park, S" uniqKey="Park S">S. Park</name>
</author>
<author>
<name sortKey="Kim, W" uniqKey="Kim W">W. Kim</name>
</author>
<author>
<name sortKey="Youn, B" uniqKey="Youn B">B. Youn</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kang, J" uniqKey="Kang J">J. Kang</name>
</author>
<author>
<name sortKey="Kim, W" uniqKey="Kim W">W. Kim</name>
</author>
<author>
<name sortKey="Kwon, T" uniqKey="Kwon T">T. Kwon</name>
</author>
<author>
<name sortKey="Youn, H" uniqKey="Youn H">H. Youn</name>
</author>
<author>
<name sortKey="Kim, J S" uniqKey="Kim J">J.S. Kim</name>
</author>
<author>
<name sortKey="Youn, B" uniqKey="Youn B">B. Youn</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kim, W" uniqKey="Kim W">W. Kim</name>
</author>
<author>
<name sortKey="Youn, H" uniqKey="Youn H">H. Youn</name>
</author>
<author>
<name sortKey="Lee, S" uniqKey="Lee S">S. Lee</name>
</author>
<author>
<name sortKey="Kim, E" uniqKey="Kim E">E. Kim</name>
</author>
<author>
<name sortKey="Kim, D" uniqKey="Kim D">D. Kim</name>
</author>
<author>
<name sortKey="Sub Lee, J" uniqKey="Sub Lee J">J. Sub Lee</name>
</author>
<author>
<name sortKey="Lee, J M" uniqKey="Lee J">J.M. Lee</name>
</author>
<author>
<name sortKey="Youn, B" uniqKey="Youn B">B. Youn</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Son, B" uniqKey="Son B">B. Son</name>
</author>
<author>
<name sortKey="Jun, S Y" uniqKey="Jun S">S.Y. Jun</name>
</author>
<author>
<name sortKey="Seo, H" uniqKey="Seo H">H. Seo</name>
</author>
<author>
<name sortKey="Youn, H" uniqKey="Youn H">H. Youn</name>
</author>
<author>
<name sortKey="Yang, H J" uniqKey="Yang H">H.J. Yang</name>
</author>
<author>
<name sortKey="Kim, W" uniqKey="Kim W">W. Kim</name>
</author>
<author>
<name sortKey="Kim, H K" uniqKey="Kim H">H.K. Kim</name>
</author>
<author>
<name sortKey="Kang, C" uniqKey="Kang C">C. Kang</name>
</author>
<author>
<name sortKey="Youn, B" uniqKey="Youn B">B. Youn</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Liou, G Y" uniqKey="Liou G">G.Y. Liou</name>
</author>
<author>
<name sortKey="Storz, P" uniqKey="Storz P">P. Storz</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Morgan, M J" uniqKey="Morgan M">M.J. Morgan</name>
</author>
<author>
<name sortKey="Liu, Z G" uniqKey="Liu Z">Z.G. Liu</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Zou, Z" uniqKey="Zou Z">Z. Zou</name>
</author>
<author>
<name sortKey="Chang, H" uniqKey="Chang H">H. Chang</name>
</author>
<author>
<name sortKey="Li, H" uniqKey="Li H">H. Li</name>
</author>
<author>
<name sortKey="Wang, S" uniqKey="Wang S">S. Wang</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Tulard, A" uniqKey="Tulard A">A. Tulard</name>
</author>
<author>
<name sortKey="Hoffschir, F" uniqKey="Hoffschir F">F. Hoffschir</name>
</author>
<author>
<name sortKey="De Boisferon, F H" uniqKey="De Boisferon F">F.H. de Boisferon</name>
</author>
<author>
<name sortKey="Luccioni, C" uniqKey="Luccioni C">C. Luccioni</name>
</author>
<author>
<name sortKey="Bravard, A" uniqKey="Bravard A">A. Bravard</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kim, W" uniqKey="Kim W">W. Kim</name>
</author>
<author>
<name sortKey="Youn, H" uniqKey="Youn H">H. Youn</name>
</author>
<author>
<name sortKey="Kang, C" uniqKey="Kang C">C. Kang</name>
</author>
<author>
<name sortKey="Youn, B" uniqKey="Youn B">B. Youn</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Leach, J K" uniqKey="Leach J">J.K. Leach</name>
</author>
<author>
<name sortKey="Van Tuyle, G" uniqKey="Van Tuyle G">G. van Tuyle</name>
</author>
<author>
<name sortKey="Lin, P S" uniqKey="Lin P">P.S. Lin</name>
</author>
<author>
<name sortKey="Schmidt Ullrich, R" uniqKey="Schmidt Ullrich R">R. Schmidt-Ullrich</name>
</author>
<author>
<name sortKey="Mikkelsen, R B" uniqKey="Mikkelsen R">R.B. Mikkelsen</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kam, W W" uniqKey="Kam W">W.W. Kam</name>
</author>
<author>
<name sortKey="Banati, R B" uniqKey="Banati R">R.B. Banati</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Bhuyan, K C" uniqKey="Bhuyan K">K.C. Bhuyan</name>
</author>
<author>
<name sortKey="Bhuyan, D K" uniqKey="Bhuyan D">D.K. Bhuyan</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Glorieux, C" uniqKey="Glorieux C">C. Glorieux</name>
</author>
<author>
<name sortKey="Calderon, P B" uniqKey="Calderon P">P.B. Calderon</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Hussain, S P" uniqKey="Hussain S">S.P. Hussain</name>
</author>
<author>
<name sortKey="Amstad, P" uniqKey="Amstad P">P. Amstad</name>
</author>
<author>
<name sortKey="He, P" uniqKey="He P">P. He</name>
</author>
<author>
<name sortKey="Robles, A" uniqKey="Robles A">A. Robles</name>
</author>
<author>
<name sortKey="Lupold, S" uniqKey="Lupold S">S. Lupold</name>
</author>
<author>
<name sortKey="Kaneko, I" uniqKey="Kaneko I">I. Kaneko</name>
</author>
<author>
<name sortKey="Ichimiya, M" uniqKey="Ichimiya M">M. Ichimiya</name>
</author>
<author>
<name sortKey="Sengupta, S" uniqKey="Sengupta S">S. Sengupta</name>
</author>
<author>
<name sortKey="Mechanic, L" uniqKey="Mechanic L">L. Mechanic</name>
</author>
<author>
<name sortKey="Okamura, S" uniqKey="Okamura S">S. Okamura</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Budanov, A V" uniqKey="Budanov A">A.V. Budanov</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Hu, W" uniqKey="Hu W">W. Hu</name>
</author>
<author>
<name sortKey="Zhang, C" uniqKey="Zhang C">C. Zhang</name>
</author>
<author>
<name sortKey="Wu, R" uniqKey="Wu R">R. Wu</name>
</author>
<author>
<name sortKey="Sun, Y" uniqKey="Sun Y">Y. Sun</name>
</author>
<author>
<name sortKey="Levine, A" uniqKey="Levine A">A. Levine</name>
</author>
<author>
<name sortKey="Feng, Z" uniqKey="Feng Z">Z. Feng</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Liu, B" uniqKey="Liu B">B. Liu</name>
</author>
<author>
<name sortKey="Bhatt, D" uniqKey="Bhatt D">D. Bhatt</name>
</author>
<author>
<name sortKey="Oltvai, Z N" uniqKey="Oltvai Z">Z.N. Oltvai</name>
</author>
<author>
<name sortKey="Greenberger, J S" uniqKey="Greenberger J">J.S. Greenberger</name>
</author>
<author>
<name sortKey="Bahar, I" uniqKey="Bahar I">I. Bahar</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Shi, Y" uniqKey="Shi Y">Y. Shi</name>
</author>
<author>
<name sortKey="Nikulenkov, F" uniqKey="Nikulenkov F">F. Nikulenkov</name>
</author>
<author>
<name sortKey="Zawacka Pankau, J" uniqKey="Zawacka Pankau J">J. Zawacka-Pankau</name>
</author>
<author>
<name sortKey="Li, H" uniqKey="Li H">H. Li</name>
</author>
<author>
<name sortKey="Gabdoulline, R" uniqKey="Gabdoulline R">R. Gabdoulline</name>
</author>
<author>
<name sortKey="Xu, J" uniqKey="Xu J">J. Xu</name>
</author>
<author>
<name sortKey="Eriksson, S" uniqKey="Eriksson S">S. Eriksson</name>
</author>
<author>
<name sortKey="Hedstrom, E" uniqKey="Hedstrom E">E. Hedstrom</name>
</author>
<author>
<name sortKey="Issaeva, N" uniqKey="Issaeva N">N. Issaeva</name>
</author>
<author>
<name sortKey="Kel, A" uniqKey="Kel A">A. Kel</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Italiano, D" uniqKey="Italiano D">D. Italiano</name>
</author>
<author>
<name sortKey="Lena, A M" uniqKey="Lena A">A.M. Lena</name>
</author>
<author>
<name sortKey="Melino, G" uniqKey="Melino G">G. Melino</name>
</author>
<author>
<name sortKey="Candi, E" uniqKey="Candi E">E. Candi</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Bernerd, F" uniqKey="Bernerd F">F. Bernerd</name>
</author>
<author>
<name sortKey="Sarasin, A" uniqKey="Sarasin A">A. Sarasin</name>
</author>
<author>
<name sortKey="Magnaldo, T" uniqKey="Magnaldo T">T. Magnaldo</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Faraonio, R" uniqKey="Faraonio R">R. Faraonio</name>
</author>
<author>
<name sortKey="Vergara, P" uniqKey="Vergara P">P. Vergara</name>
</author>
<author>
<name sortKey="Di Marzo, D" uniqKey="Di Marzo D">D. di Marzo</name>
</author>
<author>
<name sortKey="Pierantoni, M G" uniqKey="Pierantoni M">M.G. Pierantoni</name>
</author>
<author>
<name sortKey="Napolitano, M" uniqKey="Napolitano M">M. Napolitano</name>
</author>
<author>
<name sortKey="Russo, T" uniqKey="Russo T">T. Russo</name>
</author>
<author>
<name sortKey="Cimino, F" uniqKey="Cimino F">F. Cimino</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Rey, S" uniqKey="Rey S">S. Rey</name>
</author>
<author>
<name sortKey="Schito, L" uniqKey="Schito L">L. Schito</name>
</author>
<author>
<name sortKey="Koritzinsky, M" uniqKey="Koritzinsky M">M. Koritzinsky</name>
</author>
<author>
<name sortKey="Wouters, B G" uniqKey="Wouters B">B.G. Wouters</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Jiang, P S" uniqKey="Jiang P">P.S. Jiang</name>
</author>
<author>
<name sortKey="Tsai, H Y" uniqKey="Tsai H">H.Y. Tsai</name>
</author>
<author>
<name sortKey="Drake, P" uniqKey="Drake P">P. Drake</name>
</author>
<author>
<name sortKey="Wang, F N" uniqKey="Wang F">F.N. Wang</name>
</author>
<author>
<name sortKey="Chiang, C S" uniqKey="Chiang C">C.S. Chiang</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Movafagh, S" uniqKey="Movafagh S">S. Movafagh</name>
</author>
<author>
<name sortKey="Crook, S" uniqKey="Crook S">S. Crook</name>
</author>
<author>
<name sortKey="Vo, K" uniqKey="Vo K">K. Vo</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Viallard, C" uniqKey="Viallard C">C. Viallard</name>
</author>
<author>
<name sortKey="Larrivee, B" uniqKey="Larrivee B">B. Larrivee</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Cairns, R A" uniqKey="Cairns R">R.A. Cairns</name>
</author>
<author>
<name sortKey="Papandreou, I" uniqKey="Papandreou I">I. Papandreou</name>
</author>
<author>
<name sortKey="Sutphin, P D" uniqKey="Sutphin P">P.D. Sutphin</name>
</author>
<author>
<name sortKey="Denko, N C" uniqKey="Denko N">N.C. Denko</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Harada, H" uniqKey="Harada H">H. Harada</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ward, J F" uniqKey="Ward J">J.F. Ward</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Almeida, K H" uniqKey="Almeida K">K.H. Almeida</name>
</author>
<author>
<name sortKey="Sobol, R W" uniqKey="Sobol R">R.W. Sobol</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Akbari, M" uniqKey="Akbari M">M. Akbari</name>
</author>
<author>
<name sortKey="Pena Diaz, J" uniqKey="Pena Diaz J">J. Pena-Diaz</name>
</author>
<author>
<name sortKey="Andersen, S" uniqKey="Andersen S">S. Andersen</name>
</author>
<author>
<name sortKey="Liabakk, N B" uniqKey="Liabakk N">N.B. Liabakk</name>
</author>
<author>
<name sortKey="Otterlei, M" uniqKey="Otterlei M">M. Otterlei</name>
</author>
<author>
<name sortKey="Krokan, H E" uniqKey="Krokan H">H.E. Krokan</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Svilar, D" uniqKey="Svilar D">D. Svilar</name>
</author>
<author>
<name sortKey="Goellner, E M" uniqKey="Goellner E">E.M. Goellner</name>
</author>
<author>
<name sortKey="Almeida, K H" uniqKey="Almeida K">K.H. Almeida</name>
</author>
<author>
<name sortKey="Sobol, R W" uniqKey="Sobol R">R.W. Sobol</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Lan, L" uniqKey="Lan L">L. Lan</name>
</author>
<author>
<name sortKey="Nakajima, S" uniqKey="Nakajima S">S. Nakajima</name>
</author>
<author>
<name sortKey="Oohata, Y" uniqKey="Oohata Y">Y. Oohata</name>
</author>
<author>
<name sortKey="Takao, M" uniqKey="Takao M">M. Takao</name>
</author>
<author>
<name sortKey="Okano, S" uniqKey="Okano S">S. Okano</name>
</author>
<author>
<name sortKey="Masutani, M" uniqKey="Masutani M">M. Masutani</name>
</author>
<author>
<name sortKey="Wilson, S H" uniqKey="Wilson S">S.H. Wilson</name>
</author>
<author>
<name sortKey="Yasui, A" uniqKey="Yasui A">A. Yasui</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Mortusewicz, O" uniqKey="Mortusewicz O">O. Mortusewicz</name>
</author>
<author>
<name sortKey="Rothbauer, U" uniqKey="Rothbauer U">U. Rothbauer</name>
</author>
<author>
<name sortKey="Cardoso, M C" uniqKey="Cardoso M">M.C. Cardoso</name>
</author>
<author>
<name sortKey="Leonhardt, H" uniqKey="Leonhardt H">H. Leonhardt</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Mckinnon, P J" uniqKey="Mckinnon P">P.J. McKinnon</name>
</author>
<author>
<name sortKey="Caldecott, K W" uniqKey="Caldecott K">K.W. Caldecott</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Mavragani, I V" uniqKey="Mavragani I">I.V. Mavragani</name>
</author>
<author>
<name sortKey="Nikitaki, Z" uniqKey="Nikitaki Z">Z. Nikitaki</name>
</author>
<author>
<name sortKey="Souli, M P" uniqKey="Souli M">M.P. Souli</name>
</author>
<author>
<name sortKey="Aziz, A" uniqKey="Aziz A">A. Aziz</name>
</author>
<author>
<name sortKey="Nowsheen, S" uniqKey="Nowsheen S">S. Nowsheen</name>
</author>
<author>
<name sortKey="Aziz, K" uniqKey="Aziz K">K. Aziz</name>
</author>
<author>
<name sortKey="Rogakou, E" uniqKey="Rogakou E">E. Rogakou</name>
</author>
<author>
<name sortKey="Georgakilas, A G" uniqKey="Georgakilas A">A.G. Georgakilas</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Georgakilas, A G" uniqKey="Georgakilas A">A.G. Georgakilas</name>
</author>
<author>
<name sortKey="O Eill, P" uniqKey="O Eill P">P. O’Neill</name>
</author>
<author>
<name sortKey="Stewart, R D" uniqKey="Stewart R">R.D. Stewart</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Shikazono, N" uniqKey="Shikazono N">N. Shikazono</name>
</author>
<author>
<name sortKey="Noguchi, M" uniqKey="Noguchi M">M. Noguchi</name>
</author>
<author>
<name sortKey="Fujii, K" uniqKey="Fujii K">K. Fujii</name>
</author>
<author>
<name sortKey="Urushibara, A" uniqKey="Urushibara A">A. Urushibara</name>
</author>
<author>
<name sortKey="Yokoya, A" uniqKey="Yokoya A">A. Yokoya</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Blackford, A N" uniqKey="Blackford A">A.N. Blackford</name>
</author>
<author>
<name sortKey="Jackson, S P" uniqKey="Jackson S">S.P. Jackson</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Mailand, N" uniqKey="Mailand N">N. Mailand</name>
</author>
<author>
<name sortKey="Bekker Jensen, S" uniqKey="Bekker Jensen S">S. Bekker-Jensen</name>
</author>
<author>
<name sortKey="Faustrup, H" uniqKey="Faustrup H">H. Faustrup</name>
</author>
<author>
<name sortKey="Melander, F" uniqKey="Melander F">F. Melander</name>
</author>
<author>
<name sortKey="Bartek, J" uniqKey="Bartek J">J. Bartek</name>
</author>
<author>
<name sortKey="Lukas, C" uniqKey="Lukas C">C. Lukas</name>
</author>
<author>
<name sortKey="Lukas, J" uniqKey="Lukas J">J. Lukas</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Thompson, L H" uniqKey="Thompson L">L.H. Thompson</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Doil, C" uniqKey="Doil C">C. Doil</name>
</author>
<author>
<name sortKey="Mailand, N" uniqKey="Mailand N">N. Mailand</name>
</author>
<author>
<name sortKey="Bekker Jensen, S" uniqKey="Bekker Jensen S">S. Bekker-Jensen</name>
</author>
<author>
<name sortKey="Menard, P" uniqKey="Menard P">P. Menard</name>
</author>
<author>
<name sortKey="Larsen, D H" uniqKey="Larsen D">D.H. Larsen</name>
</author>
<author>
<name sortKey="Pepperkok, R" uniqKey="Pepperkok R">R. Pepperkok</name>
</author>
<author>
<name sortKey="Ellenberg, J" uniqKey="Ellenberg J">J. Ellenberg</name>
</author>
<author>
<name sortKey="Panier, S" uniqKey="Panier S">S. Panier</name>
</author>
<author>
<name sortKey="Durocher, D" uniqKey="Durocher D">D. Durocher</name>
</author>
<author>
<name sortKey="Bartek, J" uniqKey="Bartek J">J. Bartek</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Weinberg, W C" uniqKey="Weinberg W">W.C. Weinberg</name>
</author>
<author>
<name sortKey="Denning, M F" uniqKey="Denning M">M.F. Denning</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Bhattacharya, S" uniqKey="Bhattacharya S">S. Bhattacharya</name>
</author>
<author>
<name sortKey="Asaithamby, A" uniqKey="Asaithamby A">A. Asaithamby</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Bernhard, E J" uniqKey="Bernhard E">E.J. Bernhard</name>
</author>
<author>
<name sortKey="Maity, A" uniqKey="Maity A">A. Maity</name>
</author>
<author>
<name sortKey="Muschel, R J" uniqKey="Muschel R">R.J. Muschel</name>
</author>
<author>
<name sortKey="Mckenna, W G" uniqKey="Mckenna W">W.G. McKenna</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Dogu, Y" uniqKey="Dogu Y">Y. Dogu</name>
</author>
<author>
<name sortKey="Diaz, J" uniqKey="Diaz J">J. Diaz</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kuribayashi, K" uniqKey="Kuribayashi K">K. Kuribayashi</name>
</author>
<author>
<name sortKey="Finnberg, N" uniqKey="Finnberg N">N. Finnberg</name>
</author>
<author>
<name sortKey="Jeffers, J R" uniqKey="Jeffers J">J.R. Jeffers</name>
</author>
<author>
<name sortKey="Zambetti, G P" uniqKey="Zambetti G">G.P. Zambetti</name>
</author>
<author>
<name sortKey="El Deiry, W S" uniqKey="El Deiry W">W.S. El-Deiry</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Oda, E" uniqKey="Oda E">E. Oda</name>
</author>
<author>
<name sortKey="Ohki, R" uniqKey="Ohki R">R. Ohki</name>
</author>
<author>
<name sortKey="Murasawa, H" uniqKey="Murasawa H">H. Murasawa</name>
</author>
<author>
<name sortKey="Nemoto, J" uniqKey="Nemoto J">J. Nemoto</name>
</author>
<author>
<name sortKey="Shibue, T" uniqKey="Shibue T">T. Shibue</name>
</author>
<author>
<name sortKey="Yamashita, T" uniqKey="Yamashita T">T. Yamashita</name>
</author>
<author>
<name sortKey="Tokino, T" uniqKey="Tokino T">T. Tokino</name>
</author>
<author>
<name sortKey="Taniguchi, T" uniqKey="Taniguchi T">T. Taniguchi</name>
</author>
<author>
<name sortKey="Tanaka, N" uniqKey="Tanaka N">N. Tanaka</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Lou, Z" uniqKey="Lou Z">Z. Lou</name>
</author>
<author>
<name sortKey="Minter Dykhouse, K" uniqKey="Minter Dykhouse K">K. Minter-Dykhouse</name>
</author>
<author>
<name sortKey="Franco, S" uniqKey="Franco S">S. Franco</name>
</author>
<author>
<name sortKey="Gostissa, M" uniqKey="Gostissa M">M. Gostissa</name>
</author>
<author>
<name sortKey="Rivera, M A" uniqKey="Rivera M">M.A. Rivera</name>
</author>
<author>
<name sortKey="Celeste, A" uniqKey="Celeste A">A. Celeste</name>
</author>
<author>
<name sortKey="Manis, J P" uniqKey="Manis J">J.P. Manis</name>
</author>
<author>
<name sortKey="Van Deursen, J" uniqKey="Van Deursen J">J. van Deursen</name>
</author>
<author>
<name sortKey="Nussenzweig, A" uniqKey="Nussenzweig A">A. Nussenzweig</name>
</author>
<author>
<name sortKey="Paull, T T" uniqKey="Paull T">T.T. Paull</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Minter Dykhouse, K" uniqKey="Minter Dykhouse K">K. Minter-Dykhouse</name>
</author>
<author>
<name sortKey="Ward, I" uniqKey="Ward I">I. Ward</name>
</author>
<author>
<name sortKey="Huen, M S" uniqKey="Huen M">M.S. Huen</name>
</author>
<author>
<name sortKey="Chen, J" uniqKey="Chen J">J. Chen</name>
</author>
<author>
<name sortKey="Lou, Z" uniqKey="Lou Z">Z. Lou</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Boulianne, B" uniqKey="Boulianne B">B. Boulianne</name>
</author>
<author>
<name sortKey="Feldhahn, N" uniqKey="Feldhahn N">N. Feldhahn</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Corre, I" uniqKey="Corre I">I. Corre</name>
</author>
<author>
<name sortKey="Niaudet, C" uniqKey="Niaudet C">C. Niaudet</name>
</author>
<author>
<name sortKey="Paris, F" uniqKey="Paris F">F. Paris</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Wong Ekkabut, J" uniqKey="Wong Ekkabut J">J. Wong-Ekkabut</name>
</author>
<author>
<name sortKey="Xu, Z" uniqKey="Xu Z">Z. Xu</name>
</author>
<author>
<name sortKey="Triampo, W" uniqKey="Triampo W">W. Triampo</name>
</author>
<author>
<name sortKey="Tang, I M" uniqKey="Tang I">I.M. Tang</name>
</author>
<author>
<name sortKey="Tieleman, D P" uniqKey="Tieleman D">D.P. Tieleman</name>
</author>
<author>
<name sortKey="Monticelli, L" uniqKey="Monticelli L">L. Monticelli</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Poli, G" uniqKey="Poli G">G. Poli</name>
</author>
<author>
<name sortKey="Schaur, R J" uniqKey="Schaur R">R.J. Schaur</name>
</author>
<author>
<name sortKey="Siems, W G" uniqKey="Siems W">W.G. Siems</name>
</author>
<author>
<name sortKey="Leonarduzzi, G" uniqKey="Leonarduzzi G">G. Leonarduzzi</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Lin, M H" uniqKey="Lin M">M.H. Lin</name>
</author>
<author>
<name sortKey="Yen, J H" uniqKey="Yen J">J.H. Yen</name>
</author>
<author>
<name sortKey="Weng, C Y" uniqKey="Weng C">C.Y. Weng</name>
</author>
<author>
<name sortKey="Wang, L" uniqKey="Wang L">L. Wang</name>
</author>
<author>
<name sortKey="Ha, C L" uniqKey="Ha C">C.L. Ha</name>
</author>
<author>
<name sortKey="Wu, M J" uniqKey="Wu M">M.J. Wu</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kolesnick, R" uniqKey="Kolesnick R">R. Kolesnick</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Liao, W C" uniqKey="Liao W">W.C. Liao</name>
</author>
<author>
<name sortKey="Haimovitz Friedman, A" uniqKey="Haimovitz Friedman A">A. Haimovitz-Friedman</name>
</author>
<author>
<name sortKey="Persaud, R S" uniqKey="Persaud R">R.S. Persaud</name>
</author>
<author>
<name sortKey="Mcloughlin, M" uniqKey="Mcloughlin M">M. McLoughlin</name>
</author>
<author>
<name sortKey="Ehleiter, D" uniqKey="Ehleiter D">D. Ehleiter</name>
</author>
<author>
<name sortKey="Zhang, N" uniqKey="Zhang N">N. Zhang</name>
</author>
<author>
<name sortKey="Gatei, M" uniqKey="Gatei M">M. Gatei</name>
</author>
<author>
<name sortKey="Lavin, M" uniqKey="Lavin M">M. Lavin</name>
</author>
<author>
<name sortKey="Kolesnick, R" uniqKey="Kolesnick R">R. Kolesnick</name>
</author>
<author>
<name sortKey="Fuks, Z" uniqKey="Fuks Z">Z. Fuks</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kim, W" uniqKey="Kim W">W. Kim</name>
</author>
<author>
<name sortKey="Son, B" uniqKey="Son B">B. Son</name>
</author>
<author>
<name sortKey="Lee, S" uniqKey="Lee S">S. Lee</name>
</author>
<author>
<name sortKey="Do, H" uniqKey="Do H">H. Do</name>
</author>
<author>
<name sortKey="Youn, B" uniqKey="Youn B">B. Youn</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Wang, D" uniqKey="Wang D">D. Wang</name>
</author>
<author>
<name sortKey="Dubois, R N" uniqKey="Dubois R">R.N. Dubois</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Multhoff, G" uniqKey="Multhoff G">G. Multhoff</name>
</author>
<author>
<name sortKey="Radons, J" uniqKey="Radons J">J. Radons</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Meng, Z" uniqKey="Meng Z">Z. Meng</name>
</author>
<author>
<name sortKey="Gan, Y H" uniqKey="Gan Y">Y.H. Gan</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Lin, F" uniqKey="Lin F">F. Lin</name>
</author>
<author>
<name sortKey="Luo, J" uniqKey="Luo J">J. Luo</name>
</author>
<author>
<name sortKey="Gao, W" uniqKey="Gao W">W. Gao</name>
</author>
<author>
<name sortKey="Wu, J" uniqKey="Wu J">J. Wu</name>
</author>
<author>
<name sortKey="Shao, Z" uniqKey="Shao Z">Z. Shao</name>
</author>
<author>
<name sortKey="Wang, Z" uniqKey="Wang Z">Z. Wang</name>
</author>
<author>
<name sortKey="Meng, J" uniqKey="Meng J">J. Meng</name>
</author>
<author>
<name sortKey="Ou, Z" uniqKey="Ou Z">Z. Ou</name>
</author>
<author>
<name sortKey="Yang, G" uniqKey="Yang G">G. Yang</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Yang, M Y" uniqKey="Yang M">M.Y. Yang</name>
</author>
<author>
<name sortKey="Lee, H T" uniqKey="Lee H">H.T. Lee</name>
</author>
<author>
<name sortKey="Chen, C M" uniqKey="Chen C">C.M. Chen</name>
</author>
<author>
<name sortKey="Shen, C C" uniqKey="Shen C">C.C. Shen</name>
</author>
<author>
<name sortKey="Ma, H I" uniqKey="Ma H">H.I. Ma</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Li, G" uniqKey="Li G">G. Li</name>
</author>
<author>
<name sortKey="Wang, Z" uniqKey="Wang Z">Z. Wang</name>
</author>
<author>
<name sortKey="Chong, T" uniqKey="Chong T">T. Chong</name>
</author>
<author>
<name sortKey="Yang, J" uniqKey="Yang J">J. Yang</name>
</author>
<author>
<name sortKey="Li, H" uniqKey="Li H">H. Li</name>
</author>
<author>
<name sortKey="Chen, H" uniqKey="Chen H">H. Chen</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Yamamori, T" uniqKey="Yamamori T">T. Yamamori</name>
</author>
<author>
<name sortKey="Yasui, H" uniqKey="Yasui H">H. Yasui</name>
</author>
<author>
<name sortKey="Yamazumi, M" uniqKey="Yamazumi M">M. Yamazumi</name>
</author>
<author>
<name sortKey="Wada, Y" uniqKey="Wada Y">Y. Wada</name>
</author>
<author>
<name sortKey="Nakamura, Y" uniqKey="Nakamura Y">Y. Nakamura</name>
</author>
<author>
<name sortKey="Nakamura, H" uniqKey="Nakamura H">H. Nakamura</name>
</author>
<author>
<name sortKey="Inanami, O" uniqKey="Inanami O">O. Inanami</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Zhou, X" uniqKey="Zhou X">X. Zhou</name>
</author>
<author>
<name sortKey="Li, N" uniqKey="Li N">N. Li</name>
</author>
<author>
<name sortKey="Wang, Y" uniqKey="Wang Y">Y. Wang</name>
</author>
<author>
<name sortKey="Wang, Y" uniqKey="Wang Y">Y. Wang</name>
</author>
<author>
<name sortKey="Zhang, X" uniqKey="Zhang X">X. Zhang</name>
</author>
<author>
<name sortKey="Zhang, H" uniqKey="Zhang H">H. Zhang</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Cain, K" uniqKey="Cain K">K. Cain</name>
</author>
<author>
<name sortKey="Bratton, S B" uniqKey="Bratton S">S.B. Bratton</name>
</author>
<author>
<name sortKey="Langlais, C" uniqKey="Langlais C">C. Langlais</name>
</author>
<author>
<name sortKey="Walker, G" uniqKey="Walker G">G. Walker</name>
</author>
<author>
<name sortKey="Brown, D G" uniqKey="Brown D">D.G. Brown</name>
</author>
<author>
<name sortKey="Sun, X M" uniqKey="Sun X">X.M. Sun</name>
</author>
<author>
<name sortKey="Cohen, G M" uniqKey="Cohen G">G.M. Cohen</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Gatenby, R A" uniqKey="Gatenby R">R.A. Gatenby</name>
</author>
<author>
<name sortKey="Gillies, R J" uniqKey="Gillies R">R.J. Gillies</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Simonnet, H" uniqKey="Simonnet H">H. Simonnet</name>
</author>
<author>
<name sortKey="Alazard, N" uniqKey="Alazard N">N. Alazard</name>
</author>
<author>
<name sortKey="Pfeiffer, K" uniqKey="Pfeiffer K">K. Pfeiffer</name>
</author>
<author>
<name sortKey="Gallou, C" uniqKey="Gallou C">C. Gallou</name>
</author>
<author>
<name sortKey="Beroud, C" uniqKey="Beroud C">C. Beroud</name>
</author>
<author>
<name sortKey="Demont, J" uniqKey="Demont J">J. Demont</name>
</author>
<author>
<name sortKey="Bouvier, R" uniqKey="Bouvier R">R. Bouvier</name>
</author>
<author>
<name sortKey="Schagger, H" uniqKey="Schagger H">H. Schagger</name>
</author>
<author>
<name sortKey="Godinot, C" uniqKey="Godinot C">C. Godinot</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ganapathy Kanniappan, S" uniqKey="Ganapathy Kanniappan S">S. Ganapathy-Kanniappan</name>
</author>
<author>
<name sortKey="Geschwind, J F" uniqKey="Geschwind J">J.F. Geschwind</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kim, J W" uniqKey="Kim J">J.W. Kim</name>
</author>
<author>
<name sortKey="Tchernyshyov, I" uniqKey="Tchernyshyov I">I. Tchernyshyov</name>
</author>
<author>
<name sortKey="Semenza, G L" uniqKey="Semenza G">G.L. Semenza</name>
</author>
<author>
<name sortKey="Dang, C V" uniqKey="Dang C">C.V. Dang</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Meijer, T W" uniqKey="Meijer T">T.W. Meijer</name>
</author>
<author>
<name sortKey="Kaanders, J H" uniqKey="Kaanders J">J.H. Kaanders</name>
</author>
<author>
<name sortKey="Span, P N" uniqKey="Span P">P.N. Span</name>
</author>
<author>
<name sortKey="Bussink, J" uniqKey="Bussink J">J. Bussink</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Wanka, C" uniqKey="Wanka C">C. Wanka</name>
</author>
<author>
<name sortKey="Steinbach, J P" uniqKey="Steinbach J">J.P. Steinbach</name>
</author>
<author>
<name sortKey="Rieger, J" uniqKey="Rieger J">J. Rieger</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Pena Rico, M A" uniqKey="Pena Rico M">M.A. Pena-Rico</name>
</author>
<author>
<name sortKey="Calvo Vidal, M N" uniqKey="Calvo Vidal M">M.N. Calvo-Vidal</name>
</author>
<author>
<name sortKey="Villalonga Planells, R" uniqKey="Villalonga Planells R">R. Villalonga-Planells</name>
</author>
<author>
<name sortKey="Martinez Soler, F" uniqKey="Martinez Soler F">F. Martinez-Soler</name>
</author>
<author>
<name sortKey="Gimenez Bonafe, P" uniqKey="Gimenez Bonafe P">P. Gimenez-Bonafe</name>
</author>
<author>
<name sortKey="Navarro Sabate, A" uniqKey="Navarro Sabate A">A. Navarro-Sabate</name>
</author>
<author>
<name sortKey="Tortosa, A" uniqKey="Tortosa A">A. Tortosa</name>
</author>
<author>
<name sortKey="Bartrons, R" uniqKey="Bartrons R">R. Bartrons</name>
</author>
<author>
<name sortKey="Manzano, A" uniqKey="Manzano A">A. Manzano</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Zhang, H" uniqKey="Zhang H">H. Zhang</name>
</author>
<author>
<name sortKey="Bosch Marce, M" uniqKey="Bosch Marce M">M. Bosch-Marce</name>
</author>
<author>
<name sortKey="Shimoda, L A" uniqKey="Shimoda L">L.A. Shimoda</name>
</author>
<author>
<name sortKey="Tan, Y S" uniqKey="Tan Y">Y.S. Tan</name>
</author>
<author>
<name sortKey="Baek, J H" uniqKey="Baek J">J.H. Baek</name>
</author>
<author>
<name sortKey="Wesley, J B" uniqKey="Wesley J">J.B. Wesley</name>
</author>
<author>
<name sortKey="Gonzalez, F J" uniqKey="Gonzalez F">F.J. Gonzalez</name>
</author>
<author>
<name sortKey="Semenza, G L" uniqKey="Semenza G">G.L. Semenza</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Yoshida, H" uniqKey="Yoshida H">H. Yoshida</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Brush, M H" uniqKey="Brush M">M.H. Brush</name>
</author>
<author>
<name sortKey="Weiser, D C" uniqKey="Weiser D">D.C. Weiser</name>
</author>
<author>
<name sortKey="Shenolikar, S" uniqKey="Shenolikar S">S. Shenolikar</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Oyadomari, S" uniqKey="Oyadomari S">S. Oyadomari</name>
</author>
<author>
<name sortKey="Mori, M" uniqKey="Mori M">M. Mori</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Maytin, E V" uniqKey="Maytin E">E.V. Maytin</name>
</author>
<author>
<name sortKey="Ubeda, M" uniqKey="Ubeda M">M. Ubeda</name>
</author>
<author>
<name sortKey="Lin, J C" uniqKey="Lin J">J.C. Lin</name>
</author>
<author>
<name sortKey="Habener, J F" uniqKey="Habener J">J.F. Habener</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Yoshida, H" uniqKey="Yoshida H">H. Yoshida</name>
</author>
<author>
<name sortKey="Okada, T" uniqKey="Okada T">T. Okada</name>
</author>
<author>
<name sortKey="Haze, K" uniqKey="Haze K">K. Haze</name>
</author>
<author>
<name sortKey="Yanagi, H" uniqKey="Yanagi H">H. Yanagi</name>
</author>
<author>
<name sortKey="Yura, T" uniqKey="Yura T">T. Yura</name>
</author>
<author>
<name sortKey="Negishi, M" uniqKey="Negishi M">M. Negishi</name>
</author>
<author>
<name sortKey="Mori, K" uniqKey="Mori K">K. Mori</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Yoshida, H" uniqKey="Yoshida H">H. Yoshida</name>
</author>
<author>
<name sortKey="Matsui, T" uniqKey="Matsui T">T. Matsui</name>
</author>
<author>
<name sortKey="Yamamoto, A" uniqKey="Yamamoto A">A. Yamamoto</name>
</author>
<author>
<name sortKey="Okada, T" uniqKey="Okada T">T. Okada</name>
</author>
<author>
<name sortKey="Mori, K" uniqKey="Mori K">K. Mori</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ogata, M" uniqKey="Ogata M">M. Ogata</name>
</author>
<author>
<name sortKey="Hino, S" uniqKey="Hino S">S. Hino</name>
</author>
<author>
<name sortKey="Saito, A" uniqKey="Saito A">A. Saito</name>
</author>
<author>
<name sortKey="Morikawa, K" uniqKey="Morikawa K">K. Morikawa</name>
</author>
<author>
<name sortKey="Kondo, S" uniqKey="Kondo S">S. Kondo</name>
</author>
<author>
<name sortKey="Kanemoto, S" uniqKey="Kanemoto S">S. Kanemoto</name>
</author>
<author>
<name sortKey="Murakami, T" uniqKey="Murakami T">T. Murakami</name>
</author>
<author>
<name sortKey="Taniguchi, M" uniqKey="Taniguchi M">M. Taniguchi</name>
</author>
<author>
<name sortKey="Tanii, I" uniqKey="Tanii I">I. Tanii</name>
</author>
<author>
<name sortKey="Yoshinaga, K" uniqKey="Yoshinaga K">K. Yoshinaga</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Mccullough, K D" uniqKey="Mccullough K">K.D. McCullough</name>
</author>
<author>
<name sortKey="Martindale, J L" uniqKey="Martindale J">J.L. Martindale</name>
</author>
<author>
<name sortKey="Klotz, L O" uniqKey="Klotz L">L.O. Klotz</name>
</author>
<author>
<name sortKey="Aw, T Y" uniqKey="Aw T">T.Y. Aw</name>
</author>
<author>
<name sortKey="Holbrook, N J" uniqKey="Holbrook N">N.J. Holbrook</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Dadey, D Y" uniqKey="Dadey D">D.Y. Dadey</name>
</author>
<author>
<name sortKey="Kapoor, V" uniqKey="Kapoor V">V. Kapoor</name>
</author>
<author>
<name sortKey="Khudanyan, A" uniqKey="Khudanyan A">A. Khudanyan</name>
</author>
<author>
<name sortKey="Urano, F" uniqKey="Urano F">F. Urano</name>
</author>
<author>
<name sortKey="Kim, A H" uniqKey="Kim A">A.H. Kim</name>
</author>
<author>
<name sortKey="Thotala, D" uniqKey="Thotala D">D. Thotala</name>
</author>
<author>
<name sortKey="Hallahan, D E" uniqKey="Hallahan D">D.E. Hallahan</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kang, J" uniqKey="Kang J">J. Kang</name>
</author>
<author>
<name sortKey="Kim, E" uniqKey="Kim E">E. Kim</name>
</author>
<author>
<name sortKey="Kim, W" uniqKey="Kim W">W. Kim</name>
</author>
<author>
<name sortKey="Seong, K M" uniqKey="Seong K">K.M. Seong</name>
</author>
<author>
<name sortKey="Youn, H" uniqKey="Youn H">H. Youn</name>
</author>
<author>
<name sortKey="Kim, J W" uniqKey="Kim J">J.W. Kim</name>
</author>
<author>
<name sortKey="Kim, J" uniqKey="Kim J">J. Kim</name>
</author>
<author>
<name sortKey="Youn, B" uniqKey="Youn B">B. Youn</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kim, E J" uniqKey="Kim E">E.J. Kim</name>
</author>
<author>
<name sortKey="Lee, Y J" uniqKey="Lee Y">Y.J. Lee</name>
</author>
<author>
<name sortKey="Kang, S" uniqKey="Kang S">S. Kang</name>
</author>
<author>
<name sortKey="Lim, Y B" uniqKey="Lim Y">Y.B. Lim</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Zhang, B" uniqKey="Zhang B">B. Zhang</name>
</author>
<author>
<name sortKey="Wang, Y" uniqKey="Wang Y">Y. Wang</name>
</author>
<author>
<name sortKey="Pang, X" uniqKey="Pang X">X. Pang</name>
</author>
<author>
<name sortKey="Su, Y" uniqKey="Su Y">Y. Su</name>
</author>
<author>
<name sortKey="Ai, G" uniqKey="Ai G">G. Ai</name>
</author>
<author>
<name sortKey="Wang, T" uniqKey="Wang T">T. Wang</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Wang, Y" uniqKey="Wang Y">Y. Wang</name>
</author>
<author>
<name sortKey="Alam, G N" uniqKey="Alam G">G.N. Alam</name>
</author>
<author>
<name sortKey="Ning, Y" uniqKey="Ning Y">Y. Ning</name>
</author>
<author>
<name sortKey="Visioli, F" uniqKey="Visioli F">F. Visioli</name>
</author>
<author>
<name sortKey="Dong, Z" uniqKey="Dong Z">Z. Dong</name>
</author>
<author>
<name sortKey="Nor, J E" uniqKey="Nor J">J.E. Nor</name>
</author>
<author>
<name sortKey="Polverini, P J" uniqKey="Polverini P">P.J. Polverini</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ghosh, R" uniqKey="Ghosh R">R. Ghosh</name>
</author>
<author>
<name sortKey="Lipson, K L" uniqKey="Lipson K">K.L. Lipson</name>
</author>
<author>
<name sortKey="Sargent, K E" uniqKey="Sargent K">K.E. Sargent</name>
</author>
<author>
<name sortKey="Mercurio, A M" uniqKey="Mercurio A">A.M. Mercurio</name>
</author>
<author>
<name sortKey="Hunt, J S" uniqKey="Hunt J">J.S. Hunt</name>
</author>
<author>
<name sortKey="Ron, D" uniqKey="Ron D">D. Ron</name>
</author>
<author>
<name sortKey="Urano, F" uniqKey="Urano F">F. Urano</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Honscheid, P" uniqKey="Honscheid P">P. Honscheid</name>
</author>
<author>
<name sortKey="Datta, K" uniqKey="Datta K">K. Datta</name>
</author>
<author>
<name sortKey="Muders, M H" uniqKey="Muders M">M.H. Muders</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Yang, Y" uniqKey="Yang Y">Y. Yang</name>
</author>
<author>
<name sortKey="Yang, Y" uniqKey="Yang Y">Y. Yang</name>
</author>
<author>
<name sortKey="Yang, X" uniqKey="Yang X">X. Yang</name>
</author>
<author>
<name sortKey="Zhu, H" uniqKey="Zhu H">H. Zhu</name>
</author>
<author>
<name sortKey="Guo, Q" uniqKey="Guo Q">Q. Guo</name>
</author>
<author>
<name sortKey="Chen, X" uniqKey="Chen X">X. Chen</name>
</author>
<author>
<name sortKey="Zhang, H" uniqKey="Zhang H">H. Zhang</name>
</author>
<author>
<name sortKey="Cheng, H" uniqKey="Cheng H">H. Cheng</name>
</author>
<author>
<name sortKey="Sun, X" uniqKey="Sun X">X. Sun</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ko, A" uniqKey="Ko A">A. Ko</name>
</author>
<author>
<name sortKey="Kanehisa, A" uniqKey="Kanehisa A">A. Kanehisa</name>
</author>
<author>
<name sortKey="Martins, I" uniqKey="Martins I">I. Martins</name>
</author>
<author>
<name sortKey="Senovilla, L" uniqKey="Senovilla L">L. Senovilla</name>
</author>
<author>
<name sortKey="Chargari, C" uniqKey="Chargari C">C. Chargari</name>
</author>
<author>
<name sortKey="Dugue, D" uniqKey="Dugue D">D. Dugue</name>
</author>
<author>
<name sortKey="Marino, G" uniqKey="Marino G">G. Marino</name>
</author>
<author>
<name sortKey="Kepp, O" uniqKey="Kepp O">O. Kepp</name>
</author>
<author>
<name sortKey="Michaud, M" uniqKey="Michaud M">M. Michaud</name>
</author>
<author>
<name sortKey="Perfettini, J L" uniqKey="Perfettini J">J.L. Perfettini</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Noman, M Z" uniqKey="Noman M">M.Z. Noman</name>
</author>
<author>
<name sortKey="Janji, B" uniqKey="Janji B">B. Janji</name>
</author>
<author>
<name sortKey="Berchem, G" uniqKey="Berchem G">G. Berchem</name>
</author>
<author>
<name sortKey="Mami Chouaib, F" uniqKey="Mami Chouaib F">F. Mami-Chouaib</name>
</author>
<author>
<name sortKey="Chouaib, S" uniqKey="Chouaib S">S. Chouaib</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Bellot, G" uniqKey="Bellot G">G. Bellot</name>
</author>
<author>
<name sortKey="Garcia Medina, R" uniqKey="Garcia Medina R">R. Garcia-Medina</name>
</author>
<author>
<name sortKey="Gounon, P" uniqKey="Gounon P">P. Gounon</name>
</author>
<author>
<name sortKey="Chiche, J" uniqKey="Chiche J">J. Chiche</name>
</author>
<author>
<name sortKey="Roux, D" uniqKey="Roux D">D. Roux</name>
</author>
<author>
<name sortKey="Pouyssegur, J" uniqKey="Pouyssegur J">J. Pouyssegur</name>
</author>
<author>
<name sortKey="Mazure, N M" uniqKey="Mazure N">N.M. Mazure</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Maier, P" uniqKey="Maier P">P. Maier</name>
</author>
<author>
<name sortKey="Hartmann, L" uniqKey="Hartmann L">L. Hartmann</name>
</author>
<author>
<name sortKey="Wenz, F" uniqKey="Wenz F">F. Wenz</name>
</author>
<author>
<name sortKey="Herskind, C" uniqKey="Herskind C">C. Herskind</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Li, H" uniqKey="Li H">H. Li</name>
</author>
<author>
<name sortKey="Jin, X" uniqKey="Jin X">X. Jin</name>
</author>
<author>
<name sortKey="Chen, B" uniqKey="Chen B">B. Chen</name>
</author>
<author>
<name sortKey="Li, P" uniqKey="Li P">P. Li</name>
</author>
<author>
<name sortKey="Li, Q" uniqKey="Li Q">Q. Li</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Palumbo, S" uniqKey="Palumbo S">S. Palumbo</name>
</author>
<author>
<name sortKey="Pirtoli, L" uniqKey="Pirtoli L">L. Pirtoli</name>
</author>
<author>
<name sortKey="Tini, P" uniqKey="Tini P">P. Tini</name>
</author>
<author>
<name sortKey="Cevenini, G" uniqKey="Cevenini G">G. Cevenini</name>
</author>
<author>
<name sortKey="Calderaro, F" uniqKey="Calderaro F">F. Calderaro</name>
</author>
<author>
<name sortKey="Toscano, M" uniqKey="Toscano M">M. Toscano</name>
</author>
<author>
<name sortKey="Miracco, C" uniqKey="Miracco C">C. Miracco</name>
</author>
<author>
<name sortKey="Comincini, S" uniqKey="Comincini S">S. Comincini</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Levine, B" uniqKey="Levine B">B. Levine</name>
</author>
<author>
<name sortKey="Yuan, J" uniqKey="Yuan J">J. Yuan</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Zhuang, W" uniqKey="Zhuang W">W. Zhuang</name>
</author>
<author>
<name sortKey="Li, B" uniqKey="Li B">B. Li</name>
</author>
<author>
<name sortKey="Long, L" uniqKey="Long L">L. Long</name>
</author>
<author>
<name sortKey="Chen, L" uniqKey="Chen L">L. Chen</name>
</author>
<author>
<name sortKey="Huang, Q" uniqKey="Huang Q">Q. Huang</name>
</author>
<author>
<name sortKey="Liang, Z" uniqKey="Liang Z">Z. Liang</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Cui, L" uniqKey="Cui L">L. Cui</name>
</author>
<author>
<name sortKey="Song, Z" uniqKey="Song Z">Z. Song</name>
</author>
<author>
<name sortKey="Liang, B" uniqKey="Liang B">B. Liang</name>
</author>
<author>
<name sortKey="Jia, L" uniqKey="Jia L">L. Jia</name>
</author>
<author>
<name sortKey="Ma, S" uniqKey="Ma S">S. Ma</name>
</author>
<author>
<name sortKey="Liu, X" uniqKey="Liu X">X. Liu</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kim, K W" uniqKey="Kim K">K.W. Kim</name>
</author>
<author>
<name sortKey="Mutter, R W" uniqKey="Mutter R">R.W. Mutter</name>
</author>
<author>
<name sortKey="Cao, C" uniqKey="Cao C">C. Cao</name>
</author>
<author>
<name sortKey="Albert, J M" uniqKey="Albert J">J.M. Albert</name>
</author>
<author>
<name sortKey="Freeman, M" uniqKey="Freeman M">M. Freeman</name>
</author>
<author>
<name sortKey="Hallahan, D E" uniqKey="Hallahan D">D.E. Hallahan</name>
</author>
<author>
<name sortKey="Lu, B" uniqKey="Lu B">B. Lu</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Jing, Q" uniqKey="Jing Q">Q. Jing</name>
</author>
<author>
<name sortKey="Li, G" uniqKey="Li G">G. Li</name>
</author>
<author>
<name sortKey="Chen, X" uniqKey="Chen X">X. Chen</name>
</author>
<author>
<name sortKey="Liu, C" uniqKey="Liu C">C. Liu</name>
</author>
<author>
<name sortKey="Lu, S" uniqKey="Lu S">S. Lu</name>
</author>
<author>
<name sortKey="Zheng, H" uniqKey="Zheng H">H. Zheng</name>
</author>
<author>
<name sortKey="Ma, H" uniqKey="Ma H">H. Ma</name>
</author>
<author>
<name sortKey="Qin, Y" uniqKey="Qin Y">Y. Qin</name>
</author>
<author>
<name sortKey="Zhang, D" uniqKey="Zhang D">D. Zhang</name>
</author>
<author>
<name sortKey="Zhang, S" uniqKey="Zhang S">S. Zhang</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Hu, J L" uniqKey="Hu J">J.L. Hu</name>
</author>
<author>
<name sortKey="He, G Y" uniqKey="He G">G.Y. He</name>
</author>
<author>
<name sortKey="Lan, X L" uniqKey="Lan X">X.L. Lan</name>
</author>
<author>
<name sortKey="Zeng, Z C" uniqKey="Zeng Z">Z.C. Zeng</name>
</author>
<author>
<name sortKey="Guan, J" uniqKey="Guan J">J. Guan</name>
</author>
<author>
<name sortKey="Ding, Y" uniqKey="Ding Y">Y. Ding</name>
</author>
<author>
<name sortKey="Qian, X L" uniqKey="Qian X">X.L. Qian</name>
</author>
<author>
<name sortKey="Liao, W T" uniqKey="Liao W">W.T. Liao</name>
</author>
<author>
<name sortKey="Ding, Y Q" uniqKey="Ding Y">Y.Q. Ding</name>
</author>
<author>
<name sortKey="Liang, L" uniqKey="Liang L">L. Liang</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Pelicano, H" uniqKey="Pelicano H">H. Pelicano</name>
</author>
<author>
<name sortKey="Carney, D" uniqKey="Carney D">D. Carney</name>
</author>
<author>
<name sortKey="Huang, P" uniqKey="Huang P">P. Huang</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Goodman, J" uniqKey="Goodman J">J. Goodman</name>
</author>
<author>
<name sortKey="Hochstein, P" uniqKey="Hochstein P">P. Hochstein</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Alexander, M S" uniqKey="Alexander M">M.S. Alexander</name>
</author>
<author>
<name sortKey="Wilkes, J G" uniqKey="Wilkes J">J.G. Wilkes</name>
</author>
<author>
<name sortKey="Schroeder, S R" uniqKey="Schroeder S">S.R. Schroeder</name>
</author>
<author>
<name sortKey="Buettner, G R" uniqKey="Buettner G">G.R. Buettner</name>
</author>
<author>
<name sortKey="Wagner, B A" uniqKey="Wagner B">B.A. Wagner</name>
</author>
<author>
<name sortKey="Du, J" uniqKey="Du J">J. Du</name>
</author>
<author>
<name sortKey="Gibson Corley, K" uniqKey="Gibson Corley K">K. Gibson-Corley</name>
</author>
<author>
<name sortKey="O Eary, B R" uniqKey="O Eary B">B.R. O’Leary</name>
</author>
<author>
<name sortKey="Spitz, D R" uniqKey="Spitz D">D.R. Spitz</name>
</author>
<author>
<name sortKey="Buatti, J M" uniqKey="Buatti J">J.M. Buatti</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Du, J" uniqKey="Du J">J. Du</name>
</author>
<author>
<name sortKey="Cieslak, J A" uniqKey="Cieslak J">J.A. Cieslak</name>
</author>
<author>
<name sortKey="Welsh, J L" uniqKey="Welsh J">J.L. Welsh</name>
</author>
<author>
<name sortKey="Sibenaller, Z A" uniqKey="Sibenaller Z">Z.A. Sibenaller</name>
</author>
<author>
<name sortKey="Allen, B G" uniqKey="Allen B">B.G. Allen</name>
</author>
<author>
<name sortKey="Wagner, B A" uniqKey="Wagner B">B.A. Wagner</name>
</author>
<author>
<name sortKey="Kalen, A L" uniqKey="Kalen A">A.L. Kalen</name>
</author>
<author>
<name sortKey="Doskey, C M" uniqKey="Doskey C">C.M. Doskey</name>
</author>
<author>
<name sortKey="Strother, R K" uniqKey="Strother R">R.K. Strother</name>
</author>
<author>
<name sortKey="Button, A M" uniqKey="Button A">A.M. Button</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Mehta, M P" uniqKey="Mehta M">M.P. Mehta</name>
</author>
<author>
<name sortKey="Shapiro, W R" uniqKey="Shapiro W">W.R. Shapiro</name>
</author>
<author>
<name sortKey="Phan, S C" uniqKey="Phan S">S.C. Phan</name>
</author>
<author>
<name sortKey="Gervais, R" uniqKey="Gervais R">R. Gervais</name>
</author>
<author>
<name sortKey="Carrie, C" uniqKey="Carrie C">C. Carrie</name>
</author>
<author>
<name sortKey="Chabot, P" uniqKey="Chabot P">P. Chabot</name>
</author>
<author>
<name sortKey="Patchell, R A" uniqKey="Patchell R">R.A. Patchell</name>
</author>
<author>
<name sortKey="Glantz, M J" uniqKey="Glantz M">M.J. Glantz</name>
</author>
<author>
<name sortKey="Recht, L" uniqKey="Recht L">L. Recht</name>
</author>
<author>
<name sortKey="Langer, C" uniqKey="Langer C">C. Langer</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Xia, S" uniqKey="Xia S">S. Xia</name>
</author>
<author>
<name sortKey="Zhao, Y" uniqKey="Zhao Y">Y. Zhao</name>
</author>
<author>
<name sortKey="Yu, S" uniqKey="Yu S">S. Yu</name>
</author>
<author>
<name sortKey="Zhang, M" uniqKey="Zhang M">M. Zhang</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Chatterjee, M" uniqKey="Chatterjee M">M. Chatterjee</name>
</author>
<author>
<name sortKey="Das, S" uniqKey="Das S">S. Das</name>
</author>
<author>
<name sortKey="Roy, K" uniqKey="Roy K">K. Roy</name>
</author>
<author>
<name sortKey="Chatterjee, M" uniqKey="Chatterjee M">M. Chatterjee</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Dadey, D Y A" uniqKey="Dadey D">D.Y.A. Dadey</name>
</author>
<author>
<name sortKey="Kapoor, V" uniqKey="Kapoor V">V. Kapoor</name>
</author>
<author>
<name sortKey="Khudanyan, A" uniqKey="Khudanyan A">A. Khudanyan</name>
</author>
<author>
<name sortKey="Thotala, D" uniqKey="Thotala D">D. Thotala</name>
</author>
<author>
<name sortKey="Hallahan, D E" uniqKey="Hallahan D">D.E. Hallahan</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Rosenfeld, M R" uniqKey="Rosenfeld M">M.R. Rosenfeld</name>
</author>
<author>
<name sortKey="Ye, X" uniqKey="Ye X">X. Ye</name>
</author>
<author>
<name sortKey="Supko, J G" uniqKey="Supko J">J.G. Supko</name>
</author>
<author>
<name sortKey="Desideri, S" uniqKey="Desideri S">S. Desideri</name>
</author>
<author>
<name sortKey="Grossman, S A" uniqKey="Grossman S">S.A. Grossman</name>
</author>
<author>
<name sortKey="Brem, S" uniqKey="Brem S">S. Brem</name>
</author>
<author>
<name sortKey="Mikkelson, T" uniqKey="Mikkelson T">T. Mikkelson</name>
</author>
<author>
<name sortKey="Wang, D" uniqKey="Wang D">D. Wang</name>
</author>
<author>
<name sortKey="Chang, Y C" uniqKey="Chang Y">Y.C. Chang</name>
</author>
<author>
<name sortKey="Hu, J" uniqKey="Hu J">J. Hu</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Rojas Puentes, L L" uniqKey="Rojas Puentes L">L.L. Rojas-Puentes</name>
</author>
<author>
<name sortKey="Gonzalez Pinedo, M" uniqKey="Gonzalez Pinedo M">M. Gonzalez-Pinedo</name>
</author>
<author>
<name sortKey="Crismatt, A" uniqKey="Crismatt A">A. Crismatt</name>
</author>
<author>
<name sortKey="Ortega Gomez, A" uniqKey="Ortega Gomez A">A. Ortega-Gomez</name>
</author>
<author>
<name sortKey="Gamboa Vignolle, C" uniqKey="Gamboa Vignolle C">C. Gamboa-Vignolle</name>
</author>
<author>
<name sortKey="Nunez Gomez, R" uniqKey="Nunez Gomez R">R. Nunez-Gomez</name>
</author>
<author>
<name sortKey="Dorantes Gallareta, Y" uniqKey="Dorantes Gallareta Y">Y. Dorantes-Gallareta</name>
</author>
<author>
<name sortKey="Arce Salinas, C" uniqKey="Arce Salinas C">C. Arce-Salinas</name>
</author>
<author>
<name sortKey="Arrieta, O" uniqKey="Arrieta O">O. Arrieta</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Hennessey, D" uniqKey="Hennessey D">D. Hennessey</name>
</author>
<author>
<name sortKey="Martin, L M" uniqKey="Martin L">L.M. Martin</name>
</author>
<author>
<name sortKey="Atzberger, A" uniqKey="Atzberger A">A. Atzberger</name>
</author>
<author>
<name sortKey="Lynch, T H" uniqKey="Lynch T">T.H. Lynch</name>
</author>
<author>
<name sortKey="Hollywood, D" uniqKey="Hollywood D">D. Hollywood</name>
</author>
<author>
<name sortKey="Marignol, L" uniqKey="Marignol L">L. Marignol</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Zhang, T" uniqKey="Zhang T">T. Zhang</name>
</author>
<author>
<name sortKey="Suo, C" uniqKey="Suo C">C. Suo</name>
</author>
<author>
<name sortKey="Zheng, C" uniqKey="Zheng C">C. Zheng</name>
</author>
<author>
<name sortKey="Zhang, H" uniqKey="Zhang H">H. Zhang</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Manoochehri Khoshinani, H" uniqKey="Manoochehri Khoshinani H">H. Manoochehri Khoshinani</name>
</author>
<author>
<name sortKey="Afshar, S" uniqKey="Afshar S">S. Afshar</name>
</author>
<author>
<name sortKey="Najafi, R" uniqKey="Najafi R">R. Najafi</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Dewhirst, M W" uniqKey="Dewhirst M">M.W. Dewhirst</name>
</author>
<author>
<name sortKey="Vujaskovic, Z" uniqKey="Vujaskovic Z">Z. Vujaskovic</name>
</author>
<author>
<name sortKey="Jones, E" uniqKey="Jones E">E. Jones</name>
</author>
<author>
<name sortKey="Thrall, D" uniqKey="Thrall D">D. Thrall</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Elming, P B" uniqKey="Elming P">P.B. Elming</name>
</author>
<author>
<name sortKey="Sorensen, B S" uniqKey="Sorensen B">B.S. Sorensen</name>
</author>
<author>
<name sortKey="Oei, A L" uniqKey="Oei A">A.L. Oei</name>
</author>
<author>
<name sortKey="Franken, N A P" uniqKey="Franken N">N.A.P. Franken</name>
</author>
<author>
<name sortKey="Crezee, J" uniqKey="Crezee J">J. Crezee</name>
</author>
<author>
<name sortKey="Overgaard, J" uniqKey="Overgaard J">J. Overgaard</name>
</author>
<author>
<name sortKey="Horsman, M R" uniqKey="Horsman M">M.R. Horsman</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Peeken, J C" uniqKey="Peeken J">J.C. Peeken</name>
</author>
<author>
<name sortKey="Vaupel, P" uniqKey="Vaupel P">P. Vaupel</name>
</author>
<author>
<name sortKey="Combs, S E" uniqKey="Combs S">S.E. Combs</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Lee, S" uniqKey="Lee S">S. Lee</name>
</author>
<author>
<name sortKey="Son, B" uniqKey="Son B">B. Son</name>
</author>
<author>
<name sortKey="Park, G" uniqKey="Park G">G. Park</name>
</author>
<author>
<name sortKey="Kim, H" uniqKey="Kim H">H. Kim</name>
</author>
<author>
<name sortKey="Kang, H" uniqKey="Kang H">H. Kang</name>
</author>
<author>
<name sortKey="Jeon, J" uniqKey="Jeon J">J. Jeon</name>
</author>
<author>
<name sortKey="Youn, H" uniqKey="Youn H">H. Youn</name>
</author>
<author>
<name sortKey="Youn, B" uniqKey="Youn B">B. Youn</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Lauber, K" uniqKey="Lauber K">K. Lauber</name>
</author>
<author>
<name sortKey="Brix, N" uniqKey="Brix N">N. Brix</name>
</author>
<author>
<name sortKey="Ernst, A" uniqKey="Ernst A">A. Ernst</name>
</author>
<author>
<name sortKey="Hennel, R" uniqKey="Hennel R">R. Hennel</name>
</author>
<author>
<name sortKey="Krombach, J" uniqKey="Krombach J">J. Krombach</name>
</author>
<author>
<name sortKey="Anders, H" uniqKey="Anders H">H. Anders</name>
</author>
<author>
<name sortKey="Belka, C" uniqKey="Belka C">C. Belka</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Mahmood, J" uniqKey="Mahmood J">J. Mahmood</name>
</author>
<author>
<name sortKey="Shukla, H D" uniqKey="Shukla H">H.D. Shukla</name>
</author>
<author>
<name sortKey="Soman, S" uniqKey="Soman S">S. Soman</name>
</author>
<author>
<name sortKey="Samanta, S" uniqKey="Samanta S">S. Samanta</name>
</author>
<author>
<name sortKey="Singh, P" uniqKey="Singh P">P. Singh</name>
</author>
<author>
<name sortKey="Kamlapurkar, S" uniqKey="Kamlapurkar S">S. Kamlapurkar</name>
</author>
<author>
<name sortKey="Saeed, A" uniqKey="Saeed A">A. Saeed</name>
</author>
<author>
<name sortKey="Amin, N P" uniqKey="Amin N">N.P. Amin</name>
</author>
<author>
<name sortKey="Vujaskovic, Z" uniqKey="Vujaskovic Z">Z. Vujaskovic</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Laszlo, A" uniqKey="Laszlo A">A. Laszlo</name>
</author>
<author>
<name sortKey="Fleischer, I" uniqKey="Fleischer I">I. Fleischer</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Van Den Tempel, N" uniqKey="Van Den Tempel N">N. Van den Tempel</name>
</author>
<author>
<name sortKey="Laffeber, C" uniqKey="Laffeber C">C. Laffeber</name>
</author>
<author>
<name sortKey="Odijk, H" uniqKey="Odijk H">H. Odijk</name>
</author>
<author>
<name sortKey="Van Cappellen, W A" uniqKey="Van Cappellen W">W.A. van Cappellen</name>
</author>
<author>
<name sortKey="Van Rhoon, G C" uniqKey="Van Rhoon G">G.C. van Rhoon</name>
</author>
<author>
<name sortKey="Franckena, M" uniqKey="Franckena M">M. Franckena</name>
</author>
<author>
<name sortKey="Kanaar, R" uniqKey="Kanaar R">R. Kanaar</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Van Oorschot, B" uniqKey="Van Oorschot B">B. Van Oorschot</name>
</author>
<author>
<name sortKey="Granata, G" uniqKey="Granata G">G. Granata</name>
</author>
<author>
<name sortKey="Di Franco, S" uniqKey="Di Franco S">S. di Franco</name>
</author>
<author>
<name sortKey="Ten Cate, R" uniqKey="Ten Cate R">R. Ten Cate</name>
</author>
<author>
<name sortKey="Rodermond, H M" uniqKey="Rodermond H">H.M. Rodermond</name>
</author>
<author>
<name sortKey="Todaro, M" uniqKey="Todaro M">M. Todaro</name>
</author>
<author>
<name sortKey="Medema, J P" uniqKey="Medema J">J.P. Medema</name>
</author>
<author>
<name sortKey="Franken, N A" uniqKey="Franken N">N.A. Franken</name>
</author>
</analytic>
</biblStruct>
</listBibl>
</div1>
</back>
</TEI>
<pmc article-type="review-article">
<pmc-dir>properties open_access</pmc-dir>
<front>
<journal-meta>
<journal-id journal-id-type="nlm-ta">Cells</journal-id>
<journal-id journal-id-type="iso-abbrev">Cells</journal-id>
<journal-id journal-id-type="publisher-id">cells</journal-id>
<journal-title-group>
<journal-title>Cells</journal-title>
</journal-title-group>
<issn pub-type="epub">2073-4409</issn>
<publisher>
<publisher-name>MDPI</publisher-name>
</publisher>
</journal-meta>
<article-meta>
<article-id pub-id-type="pmid">31540530</article-id>
<article-id pub-id-type="pmc">6769573</article-id>
<article-id pub-id-type="doi">10.3390/cells8091105</article-id>
<article-id pub-id-type="publisher-id">cells-08-01105</article-id>
<article-categories>
<subj-group subj-group-type="heading">
<subject>Review</subject>
</subj-group>
</article-categories>
<title-group>
<article-title>Cellular Stress Responses in Radiotherapy</article-title>
</title-group>
<contrib-group>
<contrib contrib-type="author">
<name>
<surname>Kim</surname>
<given-names>Wanyeon</given-names>
</name>
<xref ref-type="aff" rid="af1-cells-08-01105">1</xref>
<xref ref-type="aff" rid="af2-cells-08-01105">2</xref>
<xref ref-type="author-notes" rid="fn1-cells-08-01105"></xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Lee</surname>
<given-names>Sungmin</given-names>
</name>
<xref ref-type="aff" rid="af3-cells-08-01105">3</xref>
<xref ref-type="author-notes" rid="fn1-cells-08-01105"></xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Seo</surname>
<given-names>Danbi</given-names>
</name>
<xref ref-type="aff" rid="af2-cells-08-01105">2</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Kim</surname>
<given-names>Dain</given-names>
</name>
<xref ref-type="aff" rid="af2-cells-08-01105">2</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Kim</surname>
<given-names>Kyeongmin</given-names>
</name>
<xref ref-type="aff" rid="af3-cells-08-01105">3</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Kim</surname>
<given-names>EunGi</given-names>
</name>
<xref ref-type="aff" rid="af3-cells-08-01105">3</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Kang</surname>
<given-names>JiHoon</given-names>
</name>
<xref ref-type="aff" rid="af3-cells-08-01105">3</xref>
</contrib>
<contrib contrib-type="author">
<contrib-id contrib-id-type="orcid" authenticated="true">https://orcid.org/0000-0003-3530-5587</contrib-id>
<name>
<surname>Seong</surname>
<given-names>Ki Moon</given-names>
</name>
<xref ref-type="aff" rid="af4-cells-08-01105">4</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Youn</surname>
<given-names>HyeSook</given-names>
</name>
<xref ref-type="aff" rid="af5-cells-08-01105">5</xref>
<xref rid="c1-cells-08-01105" ref-type="corresp">*</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Youn</surname>
<given-names>BuHyun</given-names>
</name>
<xref ref-type="aff" rid="af3-cells-08-01105">3</xref>
<xref ref-type="aff" rid="af6-cells-08-01105">6</xref>
<xref rid="c1-cells-08-01105" ref-type="corresp">*</xref>
</contrib>
</contrib-group>
<aff id="af1-cells-08-01105">
<label>1</label>
Department of Biology Education, Korea National University of Education, Cheongju-si, Chungbuk 28173, Korea;
<email>wykim82@knue.ac.kr</email>
</aff>
<aff id="af2-cells-08-01105">
<label>2</label>
Department of Science Education, Korea National University of Education, Cheongju-si, Chungbuk 28173, Korea;
<email>dbseo130@gmail.com</email>
(D.S.);
<email>ekdls5371@gmail.com</email>
(D.K.)</aff>
<aff id="af3-cells-08-01105">
<label>3</label>
Department of Integrated Biological Science, Pusan National University, Busan 46241, Korea;
<email>smlee1048@gmail.com</email>
(S.L.);
<email>minnnny@gmail.com</email>
(K.K.);
<email>eungikim89@gmail.com</email>
(E.K.);
<email>jhkang4293@gmail.com</email>
(J.K.)</aff>
<aff id="af4-cells-08-01105">
<label>4</label>
Laboratory of Low Dose Risk Assessment, National Radiation Emergency Medical Center, Korea Institute of Radiological & Medical Sciences, Seoul 01812, Korea;
<email>skmhanul@kirams.re.kr</email>
</aff>
<aff id="af5-cells-08-01105">
<label>5</label>
Department of Integrative Bioscience and Biotechnology, Sejong University, Seoul 05006, Korea</aff>
<aff id="af6-cells-08-01105">
<label>6</label>
Department of Biological Sciences, Pusan National University, Busan 46241, Korea</aff>
<author-notes>
<corresp id="c1-cells-08-01105">
<label>*</label>
Correspondence:
<email>hsyoun@sejong.ac.kr</email>
(H.Y.);
<email>bhyoun72@pusan.ac.kr</email>
(B.Y.); Tel.: +82-2-6935-2438 (H.Y.); +82-51-510-2264 (B.Y.); Fax: +82-2-3408-4334 (H.Y.); +82-51-581-2962 (B.Y.)</corresp>
<fn id="fn1-cells-08-01105">
<label></label>
<p>These authors contributed equally to this work.</p>
</fn>
</author-notes>
<pub-date pub-type="epub">
<day>18</day>
<month>9</month>
<year>2019</year>
</pub-date>
<pub-date pub-type="collection">
<month>9</month>
<year>2019</year>
</pub-date>
<volume>8</volume>
<issue>9</issue>
<elocation-id>1105</elocation-id>
<history>
<date date-type="received">
<day>22</day>
<month>8</month>
<year>2019</year>
</date>
<date date-type="accepted">
<day>18</day>
<month>9</month>
<year>2019</year>
</date>
</history>
<permissions>
<copyright-statement>© 2019 by the authors.</copyright-statement>
<copyright-year>2019</copyright-year>
<license license-type="open-access">
<license-p>Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (
<ext-link ext-link-type="uri" xlink:href="http://creativecommons.org/licenses/by/4.0/">http://creativecommons.org/licenses/by/4.0/</ext-link>
).</license-p>
</license>
</permissions>
<abstract>
<p>Radiotherapy is one of the major cancer treatment strategies. Exposure to penetrating radiation causes cellular stress, directly or indirectly, due to the generation of reactive oxygen species, DNA damage, and subcellular organelle damage and autophagy. These radiation-induced damage responses cooperatively contribute to cancer cell death, but paradoxically, radiotherapy also causes the activation of damage-repair and survival signaling to alleviate radiation-induced cytotoxic effects in a small percentage of cancer cells, and these activations are responsible for tumor radio-resistance. The present study describes the molecular mechanisms responsible for radiation-induced cellular stress response and radioresistance, and the therapeutic approaches used to overcome radioresistance.</p>
</abstract>
<kwd-group>
<kwd>radiation response</kwd>
<kwd>radioresistance</kwd>
<kwd>reactive oxygen species</kwd>
<kwd>DNA damage response</kwd>
<kwd>lipid peroxidation</kwd>
<kwd>mitochondrial damage</kwd>
<kwd>ER stress</kwd>
<kwd>autophagy</kwd>
</kwd-group>
</article-meta>
</front>
<body>
<sec sec-type="intro" id="sec1-cells-08-01105">
<title>1. Introduction</title>
<p>Radiotherapy is a powerful tool in the fight against cancer. Nowadays, approximately 50% of all cancer patients are administered radiotherapy plus surgery, and/or chemotherapy [
<xref rid="B1-cells-08-01105" ref-type="bibr">1</xref>
]. Many efforts have been expended in improving the efficacies of radiotherapy, and as a result, therapeutic outcomes have improved, and the incidences of side effects associated with damage to nearby normal tissues have been reduced. Nevertheless, radiotherapeutic efficacy is limited by the development of radioresistance and by damage to normal tissues [
<xref rid="B2-cells-08-01105" ref-type="bibr">2</xref>
,
<xref rid="B3-cells-08-01105" ref-type="bibr">3</xref>
,
<xref rid="B4-cells-08-01105" ref-type="bibr">4</xref>
]. Radiotherapy potently induces massive cell death by triggering the activation of death signaling in cancer cells via the generation of reactive oxygen species (ROS), DNA damage, and stress response in subcellular organelles, such as endoplasmic reticulum (ER) and mitochondria [
<xref rid="B4-cells-08-01105" ref-type="bibr">4</xref>
,
<xref rid="B5-cells-08-01105" ref-type="bibr">5</xref>
,
<xref rid="B6-cells-08-01105" ref-type="bibr">6</xref>
,
<xref rid="B7-cells-08-01105" ref-type="bibr">7</xref>
]. However, a small portion of cancer cells may survive by activating compensatory survival signaling involving, for example, damage-repair signaling (e.g., ROS scavenging), DNA repair, unfolded protein response (UPR), and the induction of autophagy [
<xref rid="B8-cells-08-01105" ref-type="bibr">8</xref>
,
<xref rid="B9-cells-08-01105" ref-type="bibr">9</xref>
,
<xref rid="B10-cells-08-01105" ref-type="bibr">10</xref>
]. Cancer cells that survive radiotherapy exhibit radioresistance and are able to promote tumor regrowth and tumor recurrence, characterized by aggressive disease development [
<xref rid="B11-cells-08-01105" ref-type="bibr">11</xref>
,
<xref rid="B12-cells-08-01105" ref-type="bibr">12</xref>
,
<xref rid="B13-cells-08-01105" ref-type="bibr">13</xref>
]. Since radioresistance is a major cause of therapy failure, understanding signaling response in tumor cells that are exposed to radiation is essential for improving radiotherapeutic efficacies. In addition, further studies are required to increase the radiosensitivities of tumor cells [
<xref rid="B14-cells-08-01105" ref-type="bibr">14</xref>
]. The present study aims to provide a review of intracellular stress response during radiotherapy, as well as the contributions it makes to radiation-induced cell death and/or the possible occurrence of radioresistance. We also provide a brief review of recent clinical approaches used to promote tumor radiosensitization.</p>
</sec>
<sec id="sec2-cells-08-01105">
<title>2. Radiation-Induced ROS Response</title>
<p>ROS have been shown to play important roles during cell proliferation, cell motility, the cell cycle, and apoptosis [
<xref rid="B15-cells-08-01105" ref-type="bibr">15</xref>
,
<xref rid="B16-cells-08-01105" ref-type="bibr">16</xref>
]. During radiotherapy, ROS, including the superoxide anion (O
<sub>2</sub>
<sup></sup>
), hydroxyl radicals (OH
<sup></sup>
) and hydrogen peroxide (H
<sub>2</sub>
O
<sub>2</sub>
), are generated by the radiolysis of water in extracellular environments, and these highly reactive entities are toxic to tumor cells and nearby normal tissues [
<xref rid="B17-cells-08-01105" ref-type="bibr">17</xref>
]. In addition, radiation can induce endogenous ROS production in mitochondria [
<xref rid="B18-cells-08-01105" ref-type="bibr">18</xref>
], and alter mitochondrial membrane permeability, which in turn, further stimulates ROS production [
<xref rid="B19-cells-08-01105" ref-type="bibr">19</xref>
,
<xref rid="B20-cells-08-01105" ref-type="bibr">20</xref>
]. Excessive levels of ROS can also disrupt components of the electron transport chain in mitochondria, induce intracellular redox system imbalances [
<xref rid="B21-cells-08-01105" ref-type="bibr">21</xref>
], and cause oxidative stress by reacting with biological molecules such as lipids, proteins, and DNA to cause lipid peroxidation, protein misfolding, and DNA strand breaks. On the other hand, endogenous antioxidant systems protect against radiation-induced oxidative stress by scavenging free radicals. For example, O
<sub>2</sub>
<sup>-</sup>
can be converted to H
<sub>2</sub>
O
<sub>2</sub>
by superoxide dismutases (SODs), and catalase and peroxidases can convert H
<sub>2</sub>
O
<sub>2</sub>
to water and O
<sub>2</sub>
[
<xref rid="B22-cells-08-01105" ref-type="bibr">22</xref>
,
<xref rid="B23-cells-08-01105" ref-type="bibr">23</xref>
].</p>
<p>During the response to radiation-induced oxidative stress, p53 may play a pivotal role in the regulation of redox status (
<xref ref-type="fig" rid="cells-08-01105-f001">Figure 1</xref>
). When intracellular ROS levels are relatively low, activated p53 can promote the transcriptions of antioxidant enzymes, such as manganese SOD, glutathione peroxidase 1, members of the sestrin gene family, and glutaminase 2 [
<xref rid="B24-cells-08-01105" ref-type="bibr">24</xref>
,
<xref rid="B25-cells-08-01105" ref-type="bibr">25</xref>
,
<xref rid="B26-cells-08-01105" ref-type="bibr">26</xref>
], and these genes participate in the detoxification of various ROS and upregulate reducing molecules, such as nicotinamide adenine dinucleotide phosphate (NADPH) and glutathione. However, when intracellular ROS levels are extensively increased by radiation, p53 can be activated by JNK signaling, which is responsible for the upregulations of pro-oxidant genes, like p53-upregulated modulator of apoptosis (PUMA), p67phox, and p53-inducible genes [
<xref rid="B27-cells-08-01105" ref-type="bibr">27</xref>
,
<xref rid="B28-cells-08-01105" ref-type="bibr">28</xref>
,
<xref rid="B29-cells-08-01105" ref-type="bibr">29</xref>
,
<xref rid="B30-cells-08-01105" ref-type="bibr">30</xref>
]. PUMA can promote ROS production by altering mitochondrial permeability, which is associated with p53-dependent apoptosis. p67phox (encoded by the neutrophil cytosol factor 2 gene) is a subunit of NADPH oxidase complex and may play a critical role in the escalation of cytosolic O
<sub>2</sub>
<sup></sup>
levels. Moreover, it has been reported that p53 might be involved in the suppression of antioxidants associated with nuclear factor-E2-related factor (Nrf2) [
<xref rid="B31-cells-08-01105" ref-type="bibr">31</xref>
], which is capable of inducing the transcriptions of antioxidant genes by binding to antioxidant response element (ARE) in their promoters regions. p53 can directly block these ARE sites, and thus, suppress Nrf2-mediated transcription. These interactions indicate that high levels of ROS accumulation stabilize p53 protein and render cells liable to apoptosis induction. Thus, the dual functions of p53 probably contribute to cell fate decision-making in response to low or high levels of intracellular ROS. In oncology, radiation exposure can be a potent option that enhances intracellular ROS levels and induces tumor cell death in a p53-dependent manner.</p>
<p>Tumor cells can adapt to radiation-induced oxidative stress mediated in various ways, for example, by increasing antioxidant levels, altering metabolism, and generating hypoxia response. In particular, intratumoral hypoxia, which is caused by an inadequate vascular system and tumor growth, is responsible for the suppression of apoptosis during radiotherapy as low oxygen availability limits ROS generation [
<xref rid="B32-cells-08-01105" ref-type="bibr">32</xref>
]. Paradoxically, radiation can disrupt in vivo vascular systems around tumors, induce hypoxia response, and activate hypoxia-inducible factor 1 (HIF1) in cancer cells, and thus, reduce the generation of intratumoral ROS [
<xref rid="B33-cells-08-01105" ref-type="bibr">33</xref>
]. Several molecular studies have explained the roles played by ROS during HIF1 activation [
<xref rid="B34-cells-08-01105" ref-type="bibr">34</xref>
]. Understanding the role of HIF1 in ROS response is important because tumoral HIF1 activation is not observed in normal cells. It has been widely reported that HIF1 increases the expression of vascular endothelial growth factor (VEGF), which, in the normal state, promotes angiogenesis. However, VEGF stimulation in tumors leads to abnormal tumor angiogenesis that prevents the homogeneous distribution of blood and acts to suppress ROS generation [
<xref rid="B35-cells-08-01105" ref-type="bibr">35</xref>
]. HIF1 can also allow cancer cells to rely on oxygen consumption by activating glycolytic metabolism, and inhibiting mitochondrial oxidative phosphorylation against low oxygen availability, by upregulating pyruvate dehydrogenase kinase 1 (PDK1), which suppresses respiratory ROS generation [
<xref rid="B36-cells-08-01105" ref-type="bibr">36</xref>
]. HIF1 can also induce the expression of anti-oxidants, and thus, alleviate ROS-induced oxidative damage in cancer cells [
<xref rid="B37-cells-08-01105" ref-type="bibr">37</xref>
]. As described above, hypoxia and radiation can both stabilize and activate HIF1, and intratumoral HIF1 plays a leading role in the suppression of ROS. Furthermore, HIF1 activation has cytoprotective effects on cancer cells during radiotherapy and contributes to tumor radioresistance and the growth of surviving cells, the microenvironmental control of hypoxia by reoxygenation, and the targeting of HIF1 offer potent strategies for successful radiotherapy.</p>
</sec>
<sec id="sec3-cells-08-01105">
<title>3. Radiation-Induced DNA Damage Response</title>
<p>Radiation can damage DNA directly by ionization, and indirectly by ROS generation, and thus, induce single-strand breaks (SSBs), base oxidation, apurinic, or apyrimidinic (AP) sites, and most importantly, double-strand breaks (DSBs). Typically, the beneficial outcomes of radiotherapy may be achieved by DNA double-strand breaks caused by high energy damage to DNA backbones. ROS also promote the oxidations of DNA bases, which can be recognized by base excision repair (BER) systems. Oxidized bases are rapidly produced by irradiation and overload BER pathways, and thus, increase the likelihood of DSB generation. In this manner, mitochondrial and nuclear DNA may be damaged sufficiently to result in tumor cell death. Although non-DSB damage, including SSBs, base lesions, and AP sites are more frequently generated by irradiation, these damage regions can be repaired with high accuracy and fidelity by various repair systems [
<xref rid="B38-cells-08-01105" ref-type="bibr">38</xref>
]. For the repair of base lesions, DNA glycosylases can bind to and cleave a damaged base, leading to an abasic site. The abasic site can be recognized and excised by AP endonucleases and the gap is further repaired by the interaction with DNA polymerases, DNA ligases, and X-ray repair cross-complementing protein 1 (XRCC1) [
<xref rid="B39-cells-08-01105" ref-type="bibr">39</xref>
,
<xref rid="B40-cells-08-01105" ref-type="bibr">40</xref>
,
<xref rid="B41-cells-08-01105" ref-type="bibr">41</xref>
]. In addition, poly(ADP-ribose) polymerase 1 (PARP1) may recognize SSBs and lead to poly(ADP) ribosylation for the recruitment of other SSB-repair proteins, including AP endonuclease 1 (APE1), flap endonuclease 1, proliferating cell nuclear antigen (PCNA), DNA polymerases, and XRCC1 [
<xref rid="B42-cells-08-01105" ref-type="bibr">42</xref>
,
<xref rid="B43-cells-08-01105" ref-type="bibr">43</xref>
,
<xref rid="B44-cells-08-01105" ref-type="bibr">44</xref>
].</p>
<p>However, radiation can lead to complex DNA damage, with multiple non-DSB lesions, termed clustered DNA damage [
<xref rid="B45-cells-08-01105" ref-type="bibr">45</xref>
,
<xref rid="B46-cells-08-01105" ref-type="bibr">46</xref>
,
<xref rid="B47-cells-08-01105" ref-type="bibr">47</xref>
]. In particular, the clustered DNA damage, in which more than two SSBs are formed nearly on both DNA strands, may be recognized as a type of DSBs. Since the clustered DNA damage may require prolonged activation of repair systems, it is associated with incomplete repair of damaged sites, and an increase in mutation rates, responsible for radiation-induced genomic instability. Thus, the clustered DNA damage and DSBs induced by radiation may cooperatively contribute to cell death. When DSBs are generated by exposure to radiation, several sensor proteins, such as ataxia-telangiectasia mutated (ATM), ataxia-telangiectasia and Rad3-related (ATR), and DNA-dependent protein kinase (DNA-PK) are initially activated to recruit downstream proteins in the DNA damage response pathway (
<xref ref-type="fig" rid="cells-08-01105-f002">Figure 2</xref>
) [
<xref rid="B48-cells-08-01105" ref-type="bibr">48</xref>
]. Radiation-induced phosphorylations of H2AX (γH2AX, a substrate of ATM), ATR and DNA-PK and the resultant recruitment of mediator of DNA damage checkpoint protein 1 (MDC1) in DNA-damaged foci, and MDC1 might facilitate the recruitment of DNA damage response proteins such as ring finger protein 8 (RNF8), RNF168, tumor suppressor p53-binding protein 1 (53BP1), breast cancer type 1 susceptibility protein 1 (BRCA1) and BRCA2 [
<xref rid="B49-cells-08-01105" ref-type="bibr">49</xref>
,
<xref rid="B50-cells-08-01105" ref-type="bibr">50</xref>
,
<xref rid="B51-cells-08-01105" ref-type="bibr">51</xref>
]. Furthermore, these responses might result in the phosphorylation of checkpoint kinase 1 (Chk1) and Chk2, which may also be directly activated by ATM/ATR to stabilize and activate p53 during irradiation. Activated p53 participates in p21-associated cell cycle arrest [
<xref rid="B52-cells-08-01105" ref-type="bibr">52</xref>
], and after cell cycle arrest, break sites are repaired by either the non-homologous end joining (NHEJ) pathway involving Ku70/Ku80 dimer, XRCC4, and XRCC4-like factor, or by the homologous recombination (HR) pathway, involving MRE11/RAD50/NBS1 complex. Based on the molecular characteristics of NHEJ, the DSB repair may have potential shortcomings, accompanied by incomplete repair and high mutation rates, contributing to radiation-induced cell death. Typically, normal cells can trigger cell cycle arrest in response to irradiation via the activation of cell cycle checkpoints, at least in part, including p53-dependent p21 activation and subsequent inhibition of cyclin-dependent kinase 4 (Cdk4)/cyclin D and Cdk2/cyclin E complexes. It may also allow normal cells to have a great opportunity to retain the sufficient time for DNA damage repair [
<xref rid="B53-cells-08-01105" ref-type="bibr">53</xref>
,
<xref rid="B54-cells-08-01105" ref-type="bibr">54</xref>
]. In tumor cells possessing genetic defects in sensor or repair proteins, incomplete DNA repair would trigger cell death signaling associated with the p53-dependent expressions of proapoptotic proteins such as PUMA, phorbol-12-myristate-13-acetate-induced protein 1 (also known as NOXA) and Bcl2-associated X protein (Bax) [
<xref rid="B55-cells-08-01105" ref-type="bibr">55</xref>
,
<xref rid="B56-cells-08-01105" ref-type="bibr">56</xref>
,
<xref rid="B57-cells-08-01105" ref-type="bibr">57</xref>
]. Supportive studies have reported that the knockdown of MDC1 results in impaired ATM signaling and defective DNA repair, and consequently enhances radiation sensitivity [
<xref rid="B58-cells-08-01105" ref-type="bibr">58</xref>
,
<xref rid="B59-cells-08-01105" ref-type="bibr">59</xref>
]. However, regarding tumor cells, the Oncomine and the Cancer Genome Atlas Program (TCGA) databases show that the expressions of DNA repair genes (e.g.,
<italic>BRCA1</italic>
,
<italic>BRCA2</italic>
,
<italic>ATM</italic>
,
<italic>PRKDC</italic>
(gene name for DNA-PK), and
<italic>MDC1</italic>
) are upregulated in most tumor types, and that, 10–20% of tumor cells show mutations in these genes, which makes them resistant to DNA damage and radiotherapy-induced apoptosis. In addition, enhanced transcription in tumor cells leads to severe genomic instability, which represents a molecular basis for therapeutic resistance and further tumor development [
<xref rid="B60-cells-08-01105" ref-type="bibr">60</xref>
]. Interestingly, the expressions of some DNA repair proteins (e.g., RNF8, RNF168, and 53BP1) were reported to be similar in tumor and normal cells. Further studies on DNA damage response are needed to identify the molecular mechanisms in tumor cells, that are responsible for maintaining the balance between DNA damage response and genomic instability.</p>
</sec>
<sec id="sec4-cells-08-01105">
<title>4. Radiation-Induced Subcellular Organelle Response</title>
<sec id="sec4dot1-cells-08-01105">
<title>4.1. Membrane-Associated Signaling in Response to Irradiation</title>
<p>The plasma membrane lipid bilayer is exposed to radiation and radiation-induced ROS, and thus, results in lipid peroxidation, including the peroxidation of polyunsaturated fatty acids (PUFAs) (
<xref ref-type="fig" rid="cells-08-01105-f003">Figure 3</xref>
). Lipid oxidative damage is associated with plasma membrane permeability and membrane protein and molecular transport disruptions [
<xref rid="B61-cells-08-01105" ref-type="bibr">61</xref>
,
<xref rid="B62-cells-08-01105" ref-type="bibr">62</xref>
]. After radiation exposure, PUFAs can be converted to various lipid peroxide derivatives, such as isoprostanes, malondialdehyde, and lipid hydroperoxides. 4-Hydroxy-2-nonenal (HNE), produced by lipid peroxidation, reacts easily with amino or thiol groups and modifies and cross-links proteins, including oxidoreductases, transferases, and kinases [
<xref rid="B63-cells-08-01105" ref-type="bibr">63</xref>
]. High HNE levels can also trigger unfolded protein response (UPR) through pathways involving protein kinase R (PKR)-like endoplasmic reticulum kinase (PERK). This activates the transcription factor 6 (ATF6) and inositol requirement 1 (IRE1), accompanied by JNK and p38 signaling, which suggests that HNE might act as an upstream modulator between radiation-induced ROS response and ER stress [
<xref rid="B64-cells-08-01105" ref-type="bibr">64</xref>
]. Moreover, ROS can trigger the activation of sphingomyelinase, which catalyzes sphingomyelin hydrolysis in plasma membranes, and thus, induces ceramide production [
<xref rid="B65-cells-08-01105" ref-type="bibr">65</xref>
]. Ceramide can be produced by ceramide synthase, which is activated by radiation-induced DSBs [
<xref rid="B66-cells-08-01105" ref-type="bibr">66</xref>
], and is associated with both the extrinsic and intrinsic apoptotic pathways via the activation of Fas signaling, Bak/Bax signaling, protein kinase C (PKC) signaling, p38/JNK signaling, or Ca
<sup>2+</sup>
signaling, or via the inhibition of Akt signaling.</p>
<p>Irradiation can also cause the activation of cyclooxygenases (COXs) and lipoxygenases (LOXs), which contribute to the production of bioactive lipid metabolites from arachidonic acids in plasma membranes [
<xref rid="B67-cells-08-01105" ref-type="bibr">67</xref>
,
<xref rid="B68-cells-08-01105" ref-type="bibr">68</xref>
,
<xref rid="B69-cells-08-01105" ref-type="bibr">69</xref>
]. These lipid metabolites, including prostaglandins, thromboxanes, lipoxins, leukotrienes, and hydroxyeicosatetraenoic acids, which are mainly involved in inflammatory response. Although, they are also associated with cell proliferation, angiogenesis, and cancer development via the activations of EGFR signaling and PI3K/ATK signaling. In addition to the production of lipid metabolites, COX-2 can be overexpressed by irradiation and has anti-apoptotic and cell proliferation promoting effects, which are associated with Akt, p38, STAT3, and NF-κB signaling, and thus, contributes to radioresistance in cancer cells [
<xref rid="B70-cells-08-01105" ref-type="bibr">70</xref>
,
<xref rid="B71-cells-08-01105" ref-type="bibr">71</xref>
,
<xref rid="B72-cells-08-01105" ref-type="bibr">72</xref>
,
<xref rid="B73-cells-08-01105" ref-type="bibr">73</xref>
]. Since the activations of COXs and LOXs and their lipid metabolites are mainly associated with radioresistance and cancer development, the pharmacological inhibitions of COXs and LOXs, combined with radiotherapy, offer a promising option for enhancing therapeutic efficacy.</p>
</sec>
<sec id="sec4dot2-cells-08-01105">
<title>4.2. Mitochondrial Damage Induced by Radiation</title>
<p>As mentioned above, radiation-induced mitochondrial damage is accompanied by ROS generation during radiotherapy [
<xref rid="B74-cells-08-01105" ref-type="bibr">74</xref>
]. In mitochondria, ROS are produced by the tricarboxylic acid (TCA) cycle and the electron transport chain during aerobic respiration. Since repair systems are not well-developed in mitochondria, excessive ROS generation by irradiation and endogenous ROS contribute to extensive and long-term mitochondrial DNA (mtDNA) damage [
<xref rid="B75-cells-08-01105" ref-type="bibr">75</xref>
]. The damage might be linked to mitochondrial genomic instability and permanent mitochondrial malfunction, leading to stimulation of the intrinsic apoptotic pathway, which involves cytochrome
<italic>c</italic>
release. In addition, the delayed activation of p53 results in the expressions of pro-apoptotic proteins, including PUMA, NOXA, and Bax [
<xref rid="B55-cells-08-01105" ref-type="bibr">55</xref>
,
<xref rid="B56-cells-08-01105" ref-type="bibr">56</xref>
,
<xref rid="B57-cells-08-01105" ref-type="bibr">57</xref>
], which are also involved in mitochondrial membrane permeabilization and subsequent cytochrome
<italic>c</italic>
release. Released cytochrome
<italic>c</italic>
in cytosol triggers the intrinsic apoptotic signaling via the formation of apoptosome complex, consisting of cytochrome
<italic>c</italic>
, apoptotic protease activating factor 1, and caspase 9, which subsequently stimulates caspase 3/7 cascade activation (
<xref ref-type="fig" rid="cells-08-01105-f004">Figure 4</xref>
) [
<xref rid="B76-cells-08-01105" ref-type="bibr">76</xref>
].</p>
<p>Mitochondrial statuses differ in tumor cells and normal cells and manifests as different mitochondrial stress responses to irradiation. Despite the importance of mitochondrial oxidative phosphorylation in energy metabolism, mitochondrial dysfunction has been implicated in cancer cells associated with the Warburg effect. Tumor cells adapting to hypoxic conditions favor aerobic glycolysis, while radiation-induced HIF1 stabilization might be further accompanied by mitochondrial defects that contribute to a glycolytic phenotype via the upregulations of glycolytic enzymes and the suppression of TCA cycle entry [
<xref rid="B36-cells-08-01105" ref-type="bibr">36</xref>
,
<xref rid="B77-cells-08-01105" ref-type="bibr">77</xref>
,
<xref rid="B78-cells-08-01105" ref-type="bibr">78</xref>
,
<xref rid="B79-cells-08-01105" ref-type="bibr">79</xref>
,
<xref rid="B80-cells-08-01105" ref-type="bibr">80</xref>
]. Glycolytic reprogramming increases the glucose uptake and accelerates the productions of pentose phosphate pathway intermediates, such as glucose-6-phosphate, fructose-6-phosphate, and glyceraldehyde-3-phosphate [
<xref rid="B81-cells-08-01105" ref-type="bibr">81</xref>
,
<xref rid="B82-cells-08-01105" ref-type="bibr">82</xref>
,
<xref rid="B83-cells-08-01105" ref-type="bibr">83</xref>
]. Furthermore, increased biogenesis of nucleotides and amino acids, from the pentose phosphate pathway, could provide building blocks for cancer cell proliferation. In addition, several antioxidants, such as NADPH and glutathione could be produced and the antioxidant capacity enhanced as a result, which would contribute to cancer cell radioresistance. HIF1 is responsible for inducing autophagy for mitochondrial degradation and providing building blocks for cell survival [
<xref rid="B84-cells-08-01105" ref-type="bibr">84</xref>
]. Thus, tumor cells create a more protective intracellular environment by glycolytic reprogramming, and the presence of mitochondrial defects, accompanied by the adaptation to hypoxic conditions, provide radioresistant properties, as well as survival and growth benefits.</p>
</sec>
<sec id="sec4dot3-cells-08-01105">
<title>4.3. Endoplasmic Reticulum Stress in Response to Radiation</title>
<p>In ER, subcellular organelles, that are responsible for the synthesis and folding of membrane proteins and for calcium ion storage, can sensitively respond to external and internal stimuli, like irradiation and ROS. The functions of ER are disrupted under cellular stress and trigger specific signals using PERK, ATF6, and IRE1 [
<xref rid="B85-cells-08-01105" ref-type="bibr">85</xref>
]. These proteins are responsible for UPR, as well as alleviating misfolded protein accumulations and regulate global translation under ER stress, but excessive activation of UPR signaling is linked with the inductions of autophagy or apoptosis (
<xref ref-type="fig" rid="cells-08-01105-f005">Figure 5</xref>
). The activation of PERK results in the inhibition of global translation through the phosphorylation of eukaryotic translation initiation factor α subunit (eIF2α), and the phosphorylated eIF2α is able to contribute to the stimulation of apoptosis by inducing the expressions of growth arrest and DNA damage 34 (GADD34), GADD153, and CCAAT/enhancer binding protein homologous protein (CHOP) [
<xref rid="B86-cells-08-01105" ref-type="bibr">86</xref>
,
<xref rid="B87-cells-08-01105" ref-type="bibr">87</xref>
,
<xref rid="B88-cells-08-01105" ref-type="bibr">88</xref>
]. ATF6 binds to the promoters of UPR-related genes, including
<italic>Grp78</italic>
,
<italic>Grp94</italic>
,
<italic>CHOP</italic>
,
<italic>X-box binding protein 1</italic>
(
<italic>XBP1</italic>
), and several chaperones [
<xref rid="B89-cells-08-01105" ref-type="bibr">89</xref>
,
<xref rid="B90-cells-08-01105" ref-type="bibr">90</xref>
]. IRE1 aids XBP1 activation by contributing to the upregulations of UPR genes. In addition, IRE1 may be involved in JNK signaling to facilitate autophagosome formation under ER stress [
<xref rid="B91-cells-08-01105" ref-type="bibr">91</xref>
]. Furthermore, it has been reported that the over-expressions of CHOP and GADD153 are correlated with increased ER stress sensitivity, as well as ROS levels and reduced GSH levels [
<xref rid="B92-cells-08-01105" ref-type="bibr">92</xref>
].</p>
<p>The induction of ER stress response might contribute to adaptive survival signaling in cancer cells during radiotherapy. It was observed that the global expressions of ER stress-responsive genes, such as
<italic>PERK</italic>
,
<italic>ATF4</italic>
,
<italic>ATF6</italic>
,
<italic>GADD34</italic>
, and
<italic>IRE1</italic>
were increased by the irradiation of glioblastoma cells [
<xref rid="B93-cells-08-01105" ref-type="bibr">93</xref>
]. In particular, ATF6 activated by irradiation was associated with the upregulation of Notch1, which is not directly involved in UPR, but plays a pivotal role in cell proliferation and protection from apoptosis, and thus, contributes to the radioresistance of glioblastoma cells [
<xref rid="B93-cells-08-01105" ref-type="bibr">93</xref>
,
<xref rid="B94-cells-08-01105" ref-type="bibr">94</xref>
]. Other studies have reported that cells exposed to radiation exhibit the activation of PERK-induced eIF2α and ATF4 signaling, as well as enhancing UPR gene expressions (e.g.,
<italic>BiP</italic>
,
<italic>Grp94</italic>
, and
<italic>XBP1</italic>
) [
<xref rid="B95-cells-08-01105" ref-type="bibr">95</xref>
,
<xref rid="B96-cells-08-01105" ref-type="bibr">96</xref>
]. In addition, UPR-independent signaling pathways mediated by PERK, IRE1, and ATF6 might be responsible for enhanced tumor growth and angiogenesis through the transcriptional regulations of VEGF, fibroblast growth factor 2, connective tissue growth factor, and interleukin 6 [
<xref rid="B97-cells-08-01105" ref-type="bibr">97</xref>
,
<xref rid="B98-cells-08-01105" ref-type="bibr">98</xref>
]. These results indicate that the upregulations of ER stress-associated genes, in cancer cells, are intimately involved in radioresistance and cell survival, and suggest targeting these genes might enhance tumor radiosensitivity.</p>
</sec>
</sec>
<sec id="sec5-cells-08-01105">
<title>5. Radiation-Induced Autophagy</title>
<p>Autophagy is a process of metabolic recycling, and involves the self-digestion of subcellular organelles and molecules associated with lysosomes [
<xref rid="B99-cells-08-01105" ref-type="bibr">99</xref>
]. The metabolites recycled by lysosomal degradation serve as energy sources and building blocks, and contribute to cell survival under conditions of nutrient depletion. The autophagy pathway is initiated by ULK complex, which consists of UNC51-like kinase 1 (ULK1), autophagy-related protein 13 (ATG13), ATG101, and focal adhesion kinase family-interacting protein of 200 kDa (FIP200) signaling. Autophagy is capable of enabling cancer cells to survive, and maintains cell integrity by eliminating free radicals and damaged organelles [
<xref rid="B100-cells-08-01105" ref-type="bibr">100</xref>
]. It has been reported that the inhibition of autophagy-involving genes (e.g.,
<italic>BECN1</italic>
and
<italic>ATGs</italic>
) results in the induction of apoptosis and is responsible for tumor radiosensitization [
<xref rid="B101-cells-08-01105" ref-type="bibr">101</xref>
]. HIF1 overexpression in response to irradiation may also be associated with autophagy induction, through the dissociation of Beclin-1/Bcl2 complex and the subsequent activation of Beclin-1 [
<xref rid="B102-cells-08-01105" ref-type="bibr">102</xref>
,
<xref rid="B103-cells-08-01105" ref-type="bibr">103</xref>
]. Thus, autophagy may provide an opportunity for cancer cells to survive in response to radiotherapy [
<xref rid="B104-cells-08-01105" ref-type="bibr">104</xref>
,
<xref rid="B105-cells-08-01105" ref-type="bibr">105</xref>
]. Nevertheless, recent evidence suggests that irradiation-induced cell death might be involved in autophagy (called autophagic cell death), which is morphologically distinguished from apoptosis [
<xref rid="B106-cells-08-01105" ref-type="bibr">106</xref>
,
<xref rid="B107-cells-08-01105" ref-type="bibr">107</xref>
]. The activation of autophagy has been reported to result in the radiosensitization and cell death of glioblastoma cells [
<xref rid="B108-cells-08-01105" ref-type="bibr">108</xref>
]. It has also been demonstrated that, p53 and damage-regulated autophagy modulator (DRAM, an effector protein of p53), are involved in radiation-induced autophagic breast cancer cell death [
<xref rid="B109-cells-08-01105" ref-type="bibr">109</xref>
]. In another study, it was suggested that autophagy might be an alternative mechanism of radiation-induced cell death in cancer cells with apoptotic pathway defects [
<xref rid="B110-cells-08-01105" ref-type="bibr">110</xref>
].</p>
<p>Cytoprotective autophagy in cancer cells limits radiotherapeutic efficacy. One of the major roles of autophagy is the removal and recycling of radiation-damaged intracellular organelles and molecules, which implies that autophagy provides cancer an opportunity to survive radiation-induced damage. In one study, autophagy mediated by Wnt3a-mediated signaling was found to provide radioresistance in squamous cell carcinoma of the head and neck [
<xref rid="B111-cells-08-01105" ref-type="bibr">111</xref>
], and in another, the radiosensitivity of colorectal cancer cells was enhanced by inhibiting ATG12-mediated autophagy using miR-214 [
<xref rid="B112-cells-08-01105" ref-type="bibr">112</xref>
]. These observations indicate that autophagy initiates cytoprotective signaling and reduces cancer cell radiosensitivity. During radiotherapy, it would appear that higher therapeutic efficacy would be achieved by activating autophagic cell death rather than cytoprotective autophagy.</p>
</sec>
<sec id="sec6-cells-08-01105">
<title>6. Clinical Approaches to Radiosensitization Based on the Regulation of Cell Stress Responses</title>
<p>Many efforts have been made to identify pharmacological targets and to develop potent radiosensitizers that enhance tumor radiosensitivity. In this context, increased ROS production and inhibition of the antioxidant system provide potent options. Traditional cancer chemotherapeutic agents, such as cisplatin, bleomycin, and anthracyclines cause excessive ROS production and DNA damage, and lead to cancer cell death [
<xref rid="B113-cells-08-01105" ref-type="bibr">113</xref>
]. Daunorubicin, an anthracycline derivative, is used to treat acute myeloid leukemia, acute lymphocytic leukemia, and chronic myelogenous leukemia, and generates free-radicals, by interacting with cytochrome P450 reductase, which leads to ceramide-mediated apoptosis [
<xref rid="B114-cells-08-01105" ref-type="bibr">114</xref>
]. It has been proposed that high pharmacologic doses of ascorbic acid act as a H
<sub>2</sub>
O
<sub>2</sub>
-producing pro-oxidant that enhances cancer cell death, and treatment with ascorbic acid. This is carried out by the intravenous infusion as pharmacologic ascorbate in clinical trials on pancreatic cancer, which was found to result in radiosensitization of pancreatic cancer via H
<sub>2</sub>
O
<sub>2</sub>
-mediated oxidative stress with acceptable tolerability [
<xref rid="B115-cells-08-01105" ref-type="bibr">115</xref>
,
<xref rid="B116-cells-08-01105" ref-type="bibr">116</xref>
]. In addition, combinational treatment with motexafin gadolinium (an inhibitor of thioredoxin reductase and ribonucleotide reductase that leads to exhaustion of ROS scavenging capacity) and prompt whole brain radiotherapy produced a positive outcome by suppressing the metastatic conversion of non-small cell lung cancer to brain in a phase III trial [
<xref rid="B117-cells-08-01105" ref-type="bibr">117</xref>
].</p>
<p>The generation of bioactive lipid metabolites from peroxidized plasma membrane lipids is mainly caused by the activation of COX and LOX pathways in response to irradiation. Some of these lipid metabolites create a microenvironment favoring angiogenesis and cancer development. COX-2 is primarily responsible for cancer-associated inflammatory response, cancer cell malignancy, and radioresistance. For example, treatment with celecoxib, a selective COX-2 inhibitor, has been reported to augment radiosensitization through the activation of PTEN and the inhibition of AKT signaling [
<xref rid="B70-cells-08-01105" ref-type="bibr">70</xref>
,
<xref rid="B118-cells-08-01105" ref-type="bibr">118</xref>
], and treatment with zileuton (a 5-LOX inhibitor) had anti-angiogenic effects attributed to the suppression of vasculature formation through the downregulations of VEGF and MMP2 [
<xref rid="B119-cells-08-01105" ref-type="bibr">119</xref>
]. During normal ER stress response, PERK acts as a crucial cell survival factor through UPR signaling and eIF2α activation, while under conditions of excessive and chronic ER stress, such as those induced by irradiation, PERK is involved in the transcriptional upregulations of GADD34 and CHOP [
<xref rid="B97-cells-08-01105" ref-type="bibr">97</xref>
]. In glioblastoma cells, treatment with an eIF2α phosphatase inhibitor (e.g., Sal003) plus irradiation, blocked eIF2α dephosphorylation and prolonged eIF2α activity, and thus, promoted PERK activation and apoptosis [
<xref rid="B120-cells-08-01105" ref-type="bibr">120</xref>
]. Because of the cytoprotective effects of autophagy, its suppression might be expected to provide positive therapeutic outcomes by generating persistent oxidative stress and prolonging energy depletion during radiotherapy. Unfortunately, the prevention of autophagy by chloroquine or hydroxychloroquine administration resulted in no significant improvement in radiotherapeutic efficacy during clinical trials [
<xref rid="B121-cells-08-01105" ref-type="bibr">121</xref>
,
<xref rid="B122-cells-08-01105" ref-type="bibr">122</xref>
].</p>
<p>In tumor cells, the expressions of HIF1 and VEGF, induced by various cellular signals associated with hypoxia, ER stress, or autophagy, facilitate angiogenesis, which is closely correlated with tumor metastasis and radioresistance [
<xref rid="B123-cells-08-01105" ref-type="bibr">123</xref>
,
<xref rid="B124-cells-08-01105" ref-type="bibr">124</xref>
]. Along with HIF1 expression, hypoxia is a hallmark of solid tumors, and tumor cells in hypoxic regions may exhibit intrinsic radioresistance and contribute to disease aggressiveness and malignant development [
<xref rid="B125-cells-08-01105" ref-type="bibr">125</xref>
]. Many pre-clinical and clinical efforts have been made to overcome the effects of tumor hypoxia, and these include, the development of small molecules that target hypoxia-inducible signaling, the availability of oxygen in radiotherapy-targeted regions, and technologic improvements. Hyperthermia administered at from 39 to 45 °C is capable of enhancing oxygenation at tumor sites by increasing blood perfusion [
<xref rid="B126-cells-08-01105" ref-type="bibr">126</xref>
,
<xref rid="B127-cells-08-01105" ref-type="bibr">127</xref>
]. In addition to reoxygenation, hyperthermia can induce heat shock response, and involves the aggregation of denatured proteins and the activations of chaperon proteins like heat shock proteins (HSPs), the latter of which are associated with ER stress [
<xref rid="B128-cells-08-01105" ref-type="bibr">128</xref>
,
<xref rid="B129-cells-08-01105" ref-type="bibr">129</xref>
]. Damage induced by mild heat shock response can be recovered by the prompt activation of HSPs, such as HSP90, while hyperthermia combined with radiotherapy is likely to synergistically induce excessive stress and trigger apoptotic cell death [
<xref rid="B130-cells-08-01105" ref-type="bibr">130</xref>
,
<xref rid="B131-cells-08-01105" ref-type="bibr">131</xref>
]. Furthermore, hyperthermia might potentiate genomic instability and facilitate apoptotic signaling by enhancing radiation-induced DNA damage response. The formation of γH2AX/MDC1/53BP1 complexes, which are responsible for the repair of radiation-induced DSBs, is interrupted by heating prior to, or after, radiation, and enhances radiosensitivity [
<xref rid="B132-cells-08-01105" ref-type="bibr">132</xref>
]. In addition, the downregulation of BRCA, and the alterations in the localization of RAD51 might be induced by a combination of radiotherapy and hyperthermia, and thereby result in the inhibition of HR-dependent DNA repair and radiosensitization [
<xref rid="B133-cells-08-01105" ref-type="bibr">133</xref>
]. In a supportive study, that explored the hypothesis that NHEJ repair might be induced as a compensatory mechanism when HR repair is impeded by hyperthermia, treatment with a specific DNA-PK inhibitor for NHEJ inhibition enhanced the therapeutic efficacy of combinatorial radiotherapy and hyperthermia in tumor mouse models [
<xref rid="B134-cells-08-01105" ref-type="bibr">134</xref>
]. Based on its promising anti-cancer activity and radiosensitization effects, hyperthermia has been applied in clinical radiation oncology. Nevertheless, further investigations are required to validate the efficacy of combinatorial hyperthermia and radio-chemotherapy.</p>
</sec>
<sec sec-type="conclusions" id="sec7-cells-08-01105">
<title>7. Conclusions</title>
<p>This review provides an overview of cellular stress response induced by irradiation, and includes considerations of the roles of ROS signaling, DNA damage response, membrane lipid peroxidation, mitochondrial damage, ER stress, and autophagy. Although, most cancer cells undergo cell death during radiotherapy, a small proportion of cells survive by activating DNA repair and survival signals, and as a result, acquire radioresistance (
<xref rid="cells-08-01105-t001" ref-type="table">Table 1</xref>
). In particular, cancer cells adapted to intratumoral hypoxia might be directed by HIF1 response, which includes metabolic reprogramming and survival signaling, and thus, acquire the ability to resist radiation-induced cytotoxic stress. Through the recovery of unfolded proteins and recycling of malfunctioned subcellular organelles, the activation of UPR and cytoprotective autophagy alleviate radiation-induced damage response, and thus, contribute to radioresistance. Although, tumor radioresistance remains a challenge, pre-clinical and clinical attempts in radiation oncology, such as combinatorial chemotherapeutic treatments with, or without, hyperthermia have improved the efficacy of radiotherapy. Further studies on the pharmacological applications of molecular radiosensitizers, in combination with, or without, hyperthermia, are required in different tumor microenvironments.</p>
</sec>
</body>
<back>
<notes>
<title>Author Contributions</title>
<p>Conceptualization, W.K., S.L., H.Y. and B.Y.; Writing—original draft preparation, W.K., S.L., D.S., D.K., K.K., E.K., J.K., K.M.S., H.Y., and B.Y.; Writing—review and editing, W.K., S.L., D.S., D.K., K.K., E.K., J.K., K.S., H.Y., and B.Y.; Supervision, H.Y. and B.Y.; Project administration, B.Y.</p>
</notes>
<notes>
<title>Funding</title>
<p>This research received no external funding.</p>
</notes>
<notes notes-type="COI-statement">
<title>Conflicts of Interest</title>
<p>The authors declare no conflict of interest.</p>
</notes>
<ref-list>
<title>References</title>
<ref id="B1-cells-08-01105">
<label>1.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Allen</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>Her</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Jaffray</surname>
<given-names>D.A.</given-names>
</name>
</person-group>
<article-title>Radiotherapy for Cancer: Present and Future</article-title>
<source>Adv. Drug Deliv. Rev.</source>
<year>2017</year>
<volume>109</volume>
<fpage>1</fpage>
<lpage>2</lpage>
<pub-id pub-id-type="doi">10.1016/j.addr.2017.01.004</pub-id>
<pub-id pub-id-type="pmid">28189183</pub-id>
</element-citation>
</ref>
<ref id="B2-cells-08-01105">
<label>2.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>De Ruysscher</surname>
<given-names>D.</given-names>
</name>
<name>
<surname>Niedermann</surname>
<given-names>G.</given-names>
</name>
<name>
<surname>Burnet</surname>
<given-names>N.G.</given-names>
</name>
<name>
<surname>Siva</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Lee</surname>
<given-names>A.W.M.</given-names>
</name>
<name>
<surname>Hegi-Johnson</surname>
<given-names>F.</given-names>
</name>
</person-group>
<article-title>Radiotherapy toxicity</article-title>
<source>Nat. Rev. Dis. Primers</source>
<year>2019</year>
<volume>5</volume>
<fpage>13</fpage>
<pub-id pub-id-type="doi">10.1038/s41572-019-0064-5</pub-id>
<pub-id pub-id-type="pmid">30792503</pub-id>
</element-citation>
</ref>
<ref id="B3-cells-08-01105">
<label>3.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Son</surname>
<given-names>B.</given-names>
</name>
<name>
<surname>Kwon</surname>
<given-names>T.</given-names>
</name>
<name>
<surname>Lee</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Han</surname>
<given-names>I.</given-names>
</name>
<name>
<surname>Kim</surname>
<given-names>W.</given-names>
</name>
<name>
<surname>Youn</surname>
<given-names>H.</given-names>
</name>
<name>
<surname>Youn</surname>
<given-names>B.</given-names>
</name>
</person-group>
<article-title>CYP2E1 regulates the development of radiation-induced pulmonary fibrosis via ER stress- and ROS-dependent mechanisms</article-title>
<source>Am. J. Physiol. Lung Cell. Mol. Physiol.</source>
<year>2017</year>
<volume>313</volume>
<fpage>L916</fpage>
<lpage>L929</lpage>
<pub-id pub-id-type="doi">10.1152/ajplung.00144.2017</pub-id>
<pub-id pub-id-type="pmid">28798253</pub-id>
</element-citation>
</ref>
<ref id="B4-cells-08-01105">
<label>4.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Wang</surname>
<given-names>J.S.</given-names>
</name>
<name>
<surname>Wang</surname>
<given-names>H.J.</given-names>
</name>
<name>
<surname>Qian</surname>
<given-names>H.L.</given-names>
</name>
</person-group>
<article-title>Biological effects of radiation on cancer cells</article-title>
<source>Mil. Med. Res.</source>
<year>2018</year>
<volume>5</volume>
<pub-id pub-id-type="doi">10.1186/s40779-018-0167-4</pub-id>
<pub-id pub-id-type="pmid">29958545</pub-id>
</element-citation>
</ref>
<ref id="B5-cells-08-01105">
<label>5.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Lomax</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Folkes</surname>
<given-names>L.</given-names>
</name>
<name>
<surname>O’Neill</surname>
<given-names>P.</given-names>
</name>
</person-group>
<article-title>Biological Consequences of Radiation-induced DNA Damage: Relevance to Radiotherapy</article-title>
<source>Clin. Oncol.</source>
<year>2013</year>
<volume>25</volume>
<fpage>578</fpage>
<lpage>585</lpage>
<pub-id pub-id-type="doi">10.1016/j.clon.2013.06.007</pub-id>
<pub-id pub-id-type="pmid">23849504</pub-id>
</element-citation>
</ref>
<ref id="B6-cells-08-01105">
<label>6.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Srinivas</surname>
<given-names>U.S.</given-names>
</name>
<name>
<surname>Tan</surname>
<given-names>B.W.Q.</given-names>
</name>
<name>
<surname>Vellayappan</surname>
<given-names>B.A.</given-names>
</name>
<name>
<surname>Jeyasekharan</surname>
<given-names>A.D.</given-names>
</name>
</person-group>
<article-title>ROS and the DNA damage response in cancer</article-title>
<source>Redox. Biol.</source>
<year>2018</year>
<pub-id pub-id-type="doi">10.1016/j.redox.2018.101084</pub-id>
<pub-id pub-id-type="pmid">30612957</pub-id>
</element-citation>
</ref>
<ref id="B7-cells-08-01105">
<label>7.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Chatterjee</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Nairy</surname>
<given-names>R.K.</given-names>
</name>
<name>
<surname>Langhnoja</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Tripathi</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Patil</surname>
<given-names>R.K.</given-names>
</name>
<name>
<surname>Pillai</surname>
<given-names>P.P.</given-names>
</name>
<name>
<surname>Mustak</surname>
<given-names>M.S.</given-names>
</name>
</person-group>
<article-title>ER stress and genomic instability induced by gamma radiation in mice primary cultured glial cells</article-title>
<source>Metab. Brain Dis.</source>
<year>2018</year>
<volume>33</volume>
<fpage>855</fpage>
<lpage>868</lpage>
<pub-id pub-id-type="doi">10.1007/s11011-018-0183-9</pub-id>
<pub-id pub-id-type="pmid">29429012</pub-id>
</element-citation>
</ref>
<ref id="B8-cells-08-01105">
<label>8.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Diehn</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Cho</surname>
<given-names>R.W.</given-names>
</name>
<name>
<surname>Lobo</surname>
<given-names>N.A.</given-names>
</name>
<name>
<surname>Kalisky</surname>
<given-names>T.</given-names>
</name>
<name>
<surname>Dorie</surname>
<given-names>M.J.</given-names>
</name>
<name>
<surname>Kulp</surname>
<given-names>A.N.</given-names>
</name>
<name>
<surname>Qian</surname>
<given-names>D.</given-names>
</name>
<name>
<surname>Lam</surname>
<given-names>J.S.</given-names>
</name>
<name>
<surname>Ailles</surname>
<given-names>L.E.</given-names>
</name>
<name>
<surname>Wong</surname>
<given-names>M.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Association of reactive oxygen species levels and radioresistance in cancer stem cells</article-title>
<source>Nature</source>
<year>2009</year>
<volume>458</volume>
<fpage>780</fpage>
<lpage>783</lpage>
<pub-id pub-id-type="doi">10.1038/nature07733</pub-id>
<pub-id pub-id-type="pmid">19194462</pub-id>
</element-citation>
</ref>
<ref id="B9-cells-08-01105">
<label>9.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Nagelkerke</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Bussink</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>van der Kogel</surname>
<given-names>A.J.</given-names>
</name>
<name>
<surname>Sweep</surname>
<given-names>F.C.</given-names>
</name>
<name>
<surname>Span</surname>
<given-names>P.N.</given-names>
</name>
</person-group>
<article-title>The PERK/ATF4/LAMP3-arm of the unfolded protein response affects radioresistance by interfering with the DNA damage response</article-title>
<source>Radiother. Oncol.</source>
<year>2013</year>
<volume>108</volume>
<fpage>415</fpage>
<lpage>421</lpage>
<pub-id pub-id-type="doi">10.1016/j.radonc.2013.06.037</pub-id>
<pub-id pub-id-type="pmid">23891100</pub-id>
</element-citation>
</ref>
<ref id="B10-cells-08-01105">
<label>10.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Taylor</surname>
<given-names>M.A.</given-names>
</name>
<name>
<surname>Das</surname>
<given-names>B.C.</given-names>
</name>
<name>
<surname>Ray</surname>
<given-names>S.K.</given-names>
</name>
</person-group>
<article-title>Targeting autophagy for combating chemoresistance and radioresistance in glioblastoma</article-title>
<source>Apoptosis</source>
<year>2018</year>
<volume>23</volume>
<fpage>563</fpage>
<lpage>575</lpage>
<pub-id pub-id-type="doi">10.1007/s10495-018-1480-9</pub-id>
<pub-id pub-id-type="pmid">30171377</pub-id>
</element-citation>
</ref>
<ref id="B11-cells-08-01105">
<label>11.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Kwon</surname>
<given-names>T.</given-names>
</name>
<name>
<surname>Youn</surname>
<given-names>H.</given-names>
</name>
<name>
<surname>Son</surname>
<given-names>B.</given-names>
</name>
<name>
<surname>Kim</surname>
<given-names>D.</given-names>
</name>
<name>
<surname>Seong</surname>
<given-names>K.M.</given-names>
</name>
<name>
<surname>Park</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Kim</surname>
<given-names>W.</given-names>
</name>
<name>
<surname>Youn</surname>
<given-names>B.</given-names>
</name>
</person-group>
<article-title>DANGER is involved in high glucose-induced radioresistance through inhibiting DAPK-mediated anoikis in non-small cell lung cancer</article-title>
<source>Oncotarget</source>
<year>2016</year>
<volume>7</volume>
<fpage>7193</fpage>
<lpage>7206</lpage>
<pub-id pub-id-type="doi">10.18632/oncotarget.6887</pub-id>
<pub-id pub-id-type="pmid">26769850</pub-id>
</element-citation>
</ref>
<ref id="B12-cells-08-01105">
<label>12.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Kang</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Kim</surname>
<given-names>W.</given-names>
</name>
<name>
<surname>Kwon</surname>
<given-names>T.</given-names>
</name>
<name>
<surname>Youn</surname>
<given-names>H.</given-names>
</name>
<name>
<surname>Kim</surname>
<given-names>J.S.</given-names>
</name>
<name>
<surname>Youn</surname>
<given-names>B.</given-names>
</name>
</person-group>
<article-title>Plasminogen activator inhibitor-1 enhances radioresistance and aggressiveness of non-small cell lung cancer cells</article-title>
<source>Oncotarget</source>
<year>2016</year>
<volume>7</volume>
<fpage>23961</fpage>
<lpage>23974</lpage>
<pub-id pub-id-type="doi">10.18632/oncotarget.8208</pub-id>
<pub-id pub-id-type="pmid">27004408</pub-id>
</element-citation>
</ref>
<ref id="B13-cells-08-01105">
<label>13.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Kim</surname>
<given-names>W.</given-names>
</name>
<name>
<surname>Youn</surname>
<given-names>H.</given-names>
</name>
<name>
<surname>Lee</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Kim</surname>
<given-names>E.</given-names>
</name>
<name>
<surname>Kim</surname>
<given-names>D.</given-names>
</name>
<name>
<surname>Sub Lee</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Lee</surname>
<given-names>J.M.</given-names>
</name>
<name>
<surname>Youn</surname>
<given-names>B.</given-names>
</name>
</person-group>
<article-title>RNF138-mediated ubiquitination of rpS3 is required for resistance of glioblastoma cells to radiation-induced apoptosis</article-title>
<source>Exp. Mol. Med.</source>
<year>2018</year>
<volume>50</volume>
<pub-id pub-id-type="doi">10.1038/emm.2017.247</pub-id>
<pub-id pub-id-type="pmid">29371697</pub-id>
</element-citation>
</ref>
<ref id="B14-cells-08-01105">
<label>14.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Son</surname>
<given-names>B.</given-names>
</name>
<name>
<surname>Jun</surname>
<given-names>S.Y.</given-names>
</name>
<name>
<surname>Seo</surname>
<given-names>H.</given-names>
</name>
<name>
<surname>Youn</surname>
<given-names>H.</given-names>
</name>
<name>
<surname>Yang</surname>
<given-names>H.J.</given-names>
</name>
<name>
<surname>Kim</surname>
<given-names>W.</given-names>
</name>
<name>
<surname>Kim</surname>
<given-names>H.K.</given-names>
</name>
<name>
<surname>Kang</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>Youn</surname>
<given-names>B.</given-names>
</name>
</person-group>
<article-title>Inhibitory effect of traditional oriental medicine-derived monoamine oxidase B inhibitor on radioresistance of non-small cell lung cancer</article-title>
<source>Sci. Rep.</source>
<year>2016</year>
<volume>6</volume>
<pub-id pub-id-type="doi">10.1038/srep21986</pub-id>
<pub-id pub-id-type="pmid">26906215</pub-id>
</element-citation>
</ref>
<ref id="B15-cells-08-01105">
<label>15.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Liou</surname>
<given-names>G.Y.</given-names>
</name>
<name>
<surname>Storz</surname>
<given-names>P.</given-names>
</name>
</person-group>
<article-title>Reactive oxygen species in cancer</article-title>
<source>Free Radic. Res.</source>
<year>2010</year>
<volume>44</volume>
<fpage>479</fpage>
<lpage>496</lpage>
<pub-id pub-id-type="doi">10.3109/10715761003667554</pub-id>
<pub-id pub-id-type="pmid">20370557</pub-id>
</element-citation>
</ref>
<ref id="B16-cells-08-01105">
<label>16.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Morgan</surname>
<given-names>M.J.</given-names>
</name>
<name>
<surname>Liu</surname>
<given-names>Z.G.</given-names>
</name>
</person-group>
<article-title>Crosstalk of reactive oxygen species and NF-kappaB signaling</article-title>
<source>Cell Res.</source>
<year>2011</year>
<volume>21</volume>
<fpage>103</fpage>
<lpage>115</lpage>
<pub-id pub-id-type="doi">10.1038/cr.2010.178</pub-id>
<pub-id pub-id-type="pmid">21187859</pub-id>
</element-citation>
</ref>
<ref id="B17-cells-08-01105">
<label>17.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Zou</surname>
<given-names>Z.</given-names>
</name>
<name>
<surname>Chang</surname>
<given-names>H.</given-names>
</name>
<name>
<surname>Li</surname>
<given-names>H.</given-names>
</name>
<name>
<surname>Wang</surname>
<given-names>S.</given-names>
</name>
</person-group>
<article-title>Induction of reactive oxygen species: An emerging approach for cancer therapy</article-title>
<source>Apoptosis</source>
<year>2017</year>
<volume>22</volume>
<fpage>1321</fpage>
<lpage>1335</lpage>
<pub-id pub-id-type="doi">10.1007/s10495-017-1424-9</pub-id>
<pub-id pub-id-type="pmid">28936716</pub-id>
</element-citation>
</ref>
<ref id="B18-cells-08-01105">
<label>18.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Tulard</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Hoffschir</surname>
<given-names>F.</given-names>
</name>
<name>
<surname>de Boisferon</surname>
<given-names>F.H.</given-names>
</name>
<name>
<surname>Luccioni</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>Bravard</surname>
<given-names>A.</given-names>
</name>
</person-group>
<article-title>Persistent oxidative stress after ionizing radiation is involved in inherited radiosensitivity</article-title>
<source>Free Radic. Biol. Med.</source>
<year>2003</year>
<volume>35</volume>
<fpage>68</fpage>
<lpage>77</lpage>
<pub-id pub-id-type="doi">10.1016/S0891-5849(03)00243-0</pub-id>
<pub-id pub-id-type="pmid">12826257</pub-id>
</element-citation>
</ref>
<ref id="B19-cells-08-01105">
<label>19.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Kim</surname>
<given-names>W.</given-names>
</name>
<name>
<surname>Youn</surname>
<given-names>H.</given-names>
</name>
<name>
<surname>Kang</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>Youn</surname>
<given-names>B.</given-names>
</name>
</person-group>
<article-title>Inflammation-induced radioresistance is mediated by ROS-dependent inactivation of protein phosphatase 1 in non-small cell lung cancer cells</article-title>
<source>Apoptosis</source>
<year>2015</year>
<volume>20</volume>
<fpage>1242</fpage>
<lpage>1252</lpage>
<pub-id pub-id-type="doi">10.1007/s10495-015-1141-1</pub-id>
<pub-id pub-id-type="pmid">26033480</pub-id>
</element-citation>
</ref>
<ref id="B20-cells-08-01105">
<label>20.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Leach</surname>
<given-names>J.K.</given-names>
</name>
<name>
<surname>van Tuyle</surname>
<given-names>G.</given-names>
</name>
<name>
<surname>Lin</surname>
<given-names>P.S.</given-names>
</name>
<name>
<surname>Schmidt-Ullrich</surname>
<given-names>R.</given-names>
</name>
<name>
<surname>Mikkelsen</surname>
<given-names>R.B.</given-names>
</name>
</person-group>
<article-title>Ionizing radiation-induced, mitochondria-dependent generation of reactive oxygen/nitrogen</article-title>
<source>Cancer Res.</source>
<year>2001</year>
<volume>61</volume>
<fpage>3894</fpage>
<lpage>3901</lpage>
<pub-id pub-id-type="pmid">11358802</pub-id>
</element-citation>
</ref>
<ref id="B21-cells-08-01105">
<label>21.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Kam</surname>
<given-names>W.W.</given-names>
</name>
<name>
<surname>Banati</surname>
<given-names>R.B.</given-names>
</name>
</person-group>
<article-title>Effects of ionizing radiation on mitochondria</article-title>
<source>Free Radic. Biol. Med.</source>
<year>2013</year>
<volume>65</volume>
<fpage>607</fpage>
<lpage>619</lpage>
<pub-id pub-id-type="doi">10.1016/j.freeradbiomed.2013.07.024</pub-id>
<pub-id pub-id-type="pmid">23892359</pub-id>
</element-citation>
</ref>
<ref id="B22-cells-08-01105">
<label>22.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Bhuyan</surname>
<given-names>K.C.</given-names>
</name>
<name>
<surname>Bhuyan</surname>
<given-names>D.K.</given-names>
</name>
</person-group>
<article-title>Superoxide dismutase of the eye: Relative functions of superoxide dismutase and catalase in protecting the ocular lens from oxidative damage</article-title>
<source>Biochim. Biophys. Acta</source>
<year>1978</year>
<volume>542</volume>
<fpage>28</fpage>
<lpage>38</lpage>
<pub-id pub-id-type="doi">10.1016/0304-4165(78)90229-5</pub-id>
<pub-id pub-id-type="pmid">208649</pub-id>
</element-citation>
</ref>
<ref id="B23-cells-08-01105">
<label>23.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Glorieux</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>Calderon</surname>
<given-names>P.B.</given-names>
</name>
</person-group>
<article-title>Catalase, a remarkable enzyme: Targeting the oldest antioxidant enzyme to find a new cancer treatment approach</article-title>
<source>Biol. Chem.</source>
<year>2017</year>
<volume>398</volume>
<fpage>1095</fpage>
<lpage>1108</lpage>
<pub-id pub-id-type="doi">10.1515/hsz-2017-0131</pub-id>
<pub-id pub-id-type="pmid">28384098</pub-id>
</element-citation>
</ref>
<ref id="B24-cells-08-01105">
<label>24.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Hussain</surname>
<given-names>S.P.</given-names>
</name>
<name>
<surname>Amstad</surname>
<given-names>P.</given-names>
</name>
<name>
<surname>He</surname>
<given-names>P.</given-names>
</name>
<name>
<surname>Robles</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Lupold</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Kaneko</surname>
<given-names>I.</given-names>
</name>
<name>
<surname>Ichimiya</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Sengupta</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Mechanic</surname>
<given-names>L.</given-names>
</name>
<name>
<surname>Okamura</surname>
<given-names>S.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>p53-induced up-regulation of MnSOD and GPx but not catalase increases oxidative stress and apoptosis</article-title>
<source>Cancer Res.</source>
<year>2004</year>
<volume>64</volume>
<fpage>2350</fpage>
<lpage>2356</lpage>
<pub-id pub-id-type="doi">10.1158/0008-5472.CAN-2287-2</pub-id>
<pub-id pub-id-type="pmid">15059885</pub-id>
</element-citation>
</ref>
<ref id="B25-cells-08-01105">
<label>25.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Budanov</surname>
<given-names>A.V.</given-names>
</name>
</person-group>
<article-title>Stress-responsive sestrins link p53 with redox regulation and mammalian target of rapamycin signaling</article-title>
<source>Antioxid. Redox Signal.</source>
<year>2011</year>
<volume>15</volume>
<fpage>1679</fpage>
<lpage>1690</lpage>
<pub-id pub-id-type="doi">10.1089/ars.2010.3530</pub-id>
<pub-id pub-id-type="pmid">20712410</pub-id>
</element-citation>
</ref>
<ref id="B26-cells-08-01105">
<label>26.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Hu</surname>
<given-names>W.</given-names>
</name>
<name>
<surname>Zhang</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>Wu</surname>
<given-names>R.</given-names>
</name>
<name>
<surname>Sun</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Levine</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Feng</surname>
<given-names>Z.</given-names>
</name>
</person-group>
<article-title>Glutaminase 2, a novel p53 target gene regulating energy metabolism and antioxidant function</article-title>
<source>Proc. Natl. Acad. Sci. USA</source>
<year>2010</year>
<volume>107</volume>
<fpage>7455</fpage>
<lpage>7460</lpage>
<pub-id pub-id-type="doi">10.1073/pnas.1001006107</pub-id>
<pub-id pub-id-type="pmid">20378837</pub-id>
</element-citation>
</ref>
<ref id="B27-cells-08-01105">
<label>27.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Liu</surname>
<given-names>B.</given-names>
</name>
<name>
<surname>Bhatt</surname>
<given-names>D.</given-names>
</name>
<name>
<surname>Oltvai</surname>
<given-names>Z.N.</given-names>
</name>
<name>
<surname>Greenberger</surname>
<given-names>J.S.</given-names>
</name>
<name>
<surname>Bahar</surname>
<given-names>I.</given-names>
</name>
</person-group>
<article-title>Significance of p53 dynamics in regulating apoptosis in response to ionizing radiation, and polypharmacological strategies</article-title>
<source>Sci. Rep.</source>
<year>2014</year>
<volume>4</volume>
<pub-id pub-id-type="doi">10.1038/srep06245</pub-id>
</element-citation>
</ref>
<ref id="B28-cells-08-01105">
<label>28.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Shi</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Nikulenkov</surname>
<given-names>F.</given-names>
</name>
<name>
<surname>Zawacka-Pankau</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Li</surname>
<given-names>H.</given-names>
</name>
<name>
<surname>Gabdoulline</surname>
<given-names>R.</given-names>
</name>
<name>
<surname>Xu</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Eriksson</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Hedstrom</surname>
<given-names>E.</given-names>
</name>
<name>
<surname>Issaeva</surname>
<given-names>N.</given-names>
</name>
<name>
<surname>Kel</surname>
<given-names>A.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>ROS-dependent activation of JNK converts p53 into an efficient inhibitor of oncogenes leading to robust apoptosis</article-title>
<source>Cell Death Differ.</source>
<year>2014</year>
<volume>21</volume>
<fpage>612</fpage>
<lpage>623</lpage>
<pub-id pub-id-type="doi">10.1038/cdd.2013.186</pub-id>
<pub-id pub-id-type="pmid">24413150</pub-id>
</element-citation>
</ref>
<ref id="B29-cells-08-01105">
<label>29.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Italiano</surname>
<given-names>D.</given-names>
</name>
<name>
<surname>Lena</surname>
<given-names>A.M.</given-names>
</name>
<name>
<surname>Melino</surname>
<given-names>G.</given-names>
</name>
<name>
<surname>Candi</surname>
<given-names>E.</given-names>
</name>
</person-group>
<article-title>Identification of NCF2/p67phox as a novel p53 target gene</article-title>
<source>Cell Cycle</source>
<year>2012</year>
<volume>11</volume>
<fpage>4589</fpage>
<lpage>4596</lpage>
<pub-id pub-id-type="doi">10.4161/cc.22853</pub-id>
<pub-id pub-id-type="pmid">23187810</pub-id>
</element-citation>
</ref>
<ref id="B30-cells-08-01105">
<label>30.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Bernerd</surname>
<given-names>F.</given-names>
</name>
<name>
<surname>Sarasin</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Magnaldo</surname>
<given-names>T.</given-names>
</name>
</person-group>
<article-title>Galectin-7 overexpression is associated with the apoptotic process in UVB-induced sunburn keratinocytes</article-title>
<source>Proc. Natl. Acad. Sci. USA</source>
<year>1999</year>
<volume>96</volume>
<fpage>11329</fpage>
<lpage>11334</lpage>
<pub-id pub-id-type="doi">10.1073/pnas.96.20.11329</pub-id>
<pub-id pub-id-type="pmid">10500176</pub-id>
</element-citation>
</ref>
<ref id="B31-cells-08-01105">
<label>31.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Faraonio</surname>
<given-names>R.</given-names>
</name>
<name>
<surname>Vergara</surname>
<given-names>P.</given-names>
</name>
<name>
<surname>di Marzo</surname>
<given-names>D.</given-names>
</name>
<name>
<surname>Pierantoni</surname>
<given-names>M.G.</given-names>
</name>
<name>
<surname>Napolitano</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Russo</surname>
<given-names>T.</given-names>
</name>
<name>
<surname>Cimino</surname>
<given-names>F.</given-names>
</name>
</person-group>
<article-title>p53 suppresses the Nrf2-dependent transcription of antioxidant response genes</article-title>
<source>J. Biol. Chem.</source>
<year>2006</year>
<volume>281</volume>
<fpage>39776</fpage>
<lpage>39784</lpage>
<pub-id pub-id-type="doi">10.1074/jbc.M605707200</pub-id>
<pub-id pub-id-type="pmid">17077087</pub-id>
</element-citation>
</ref>
<ref id="B32-cells-08-01105">
<label>32.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Rey</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Schito</surname>
<given-names>L.</given-names>
</name>
<name>
<surname>Koritzinsky</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Wouters</surname>
<given-names>B.G.</given-names>
</name>
</person-group>
<article-title>Molecular targeting of hypoxia in radiotherapy</article-title>
<source>Adv. Drug Deliv. Rev.</source>
<year>2017</year>
<volume>109</volume>
<fpage>45</fpage>
<lpage>62</lpage>
<pub-id pub-id-type="doi">10.1016/j.addr.2016.10.002</pub-id>
<pub-id pub-id-type="pmid">27771366</pub-id>
</element-citation>
</ref>
<ref id="B33-cells-08-01105">
<label>33.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Jiang</surname>
<given-names>P.S.</given-names>
</name>
<name>
<surname>Tsai</surname>
<given-names>H.Y.</given-names>
</name>
<name>
<surname>Drake</surname>
<given-names>P.</given-names>
</name>
<name>
<surname>Wang</surname>
<given-names>F.N.</given-names>
</name>
<name>
<surname>Chiang</surname>
<given-names>C.S.</given-names>
</name>
</person-group>
<article-title>Gadolinium-doped iron oxide nanoparticles induced magnetic field hyperthermia combined with radiotherapy increases tumour response by vascular disruption and improved oxygenation</article-title>
<source>Int. J. Hyperth.</source>
<year>2017</year>
<volume>33</volume>
<fpage>770</fpage>
<lpage>778</lpage>
<pub-id pub-id-type="doi">10.1080/02656736.2017.1308019</pub-id>
<pub-id pub-id-type="pmid">28540811</pub-id>
</element-citation>
</ref>
<ref id="B34-cells-08-01105">
<label>34.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Movafagh</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Crook</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Vo</surname>
<given-names>K.</given-names>
</name>
</person-group>
<article-title>Regulation of hypoxia-inducible factor-1a by reactive oxygen species: New developments in an old debate</article-title>
<source>J. Cell. Biochem.</source>
<year>2015</year>
<volume>116</volume>
<fpage>696</fpage>
<lpage>703</lpage>
<pub-id pub-id-type="doi">10.1002/jcb.25074</pub-id>
<pub-id pub-id-type="pmid">25546605</pub-id>
</element-citation>
</ref>
<ref id="B35-cells-08-01105">
<label>35.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Viallard</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>Larrivee</surname>
<given-names>B.</given-names>
</name>
</person-group>
<article-title>Tumor angiogenesis and vascular normalization: Alternative therapeutic targets</article-title>
<source>Angiogenesis</source>
<year>2017</year>
<volume>20</volume>
<fpage>409</fpage>
<lpage>426</lpage>
<pub-id pub-id-type="doi">10.1007/s10456-017-9562-9</pub-id>
<pub-id pub-id-type="pmid">28660302</pub-id>
</element-citation>
</ref>
<ref id="B36-cells-08-01105">
<label>36.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Cairns</surname>
<given-names>R.A.</given-names>
</name>
<name>
<surname>Papandreou</surname>
<given-names>I.</given-names>
</name>
<name>
<surname>Sutphin</surname>
<given-names>P.D.</given-names>
</name>
<name>
<surname>Denko</surname>
<given-names>N.C.</given-names>
</name>
</person-group>
<article-title>Metabolic targeting of hypoxia and HIF1 in solid tumors can enhance cytotoxic chemotherapy</article-title>
<source>Proc. Natl. Acad. Sci. USA</source>
<year>2007</year>
<volume>104</volume>
<fpage>9445</fpage>
<lpage>9450</lpage>
<pub-id pub-id-type="doi">10.1073/pnas.0611662104</pub-id>
<pub-id pub-id-type="pmid">17517659</pub-id>
</element-citation>
</ref>
<ref id="B37-cells-08-01105">
<label>37.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Harada</surname>
<given-names>H.</given-names>
</name>
</person-group>
<article-title>Hypoxia-inducible factor 1-mediated characteristic features of cancer cells for tumor radioresistance</article-title>
<source>J. Radiat. Res.</source>
<year>2016</year>
<volume>57</volume>
<fpage>i99</fpage>
<lpage>i105</lpage>
<pub-id pub-id-type="doi">10.1093/jrr/rrw012</pub-id>
<pub-id pub-id-type="pmid">26983985</pub-id>
</element-citation>
</ref>
<ref id="B38-cells-08-01105">
<label>38.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Ward</surname>
<given-names>J.F.</given-names>
</name>
</person-group>
<article-title>DNA damage produced by ionizing radiation in mammalian cells: Identities, mechanisms of formation, and reparability</article-title>
<source>Prog. Nucleic Acid Res. Mol. Biol.</source>
<year>1988</year>
<volume>35</volume>
<fpage>95</fpage>
<lpage>125</lpage>
<pub-id pub-id-type="pmid">3065826</pub-id>
</element-citation>
</ref>
<ref id="B39-cells-08-01105">
<label>39.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Almeida</surname>
<given-names>K.H.</given-names>
</name>
<name>
<surname>Sobol</surname>
<given-names>R.W.</given-names>
</name>
</person-group>
<article-title>A unified view of base excision repair: Lesion-dependent protein complexes regulated by post-translational modification</article-title>
<source>DNA Repair</source>
<year>2007</year>
<volume>6</volume>
<fpage>695</fpage>
<lpage>711</lpage>
<pub-id pub-id-type="doi">10.1016/j.dnarep.2007.01.009</pub-id>
<pub-id pub-id-type="pmid">17337257</pub-id>
</element-citation>
</ref>
<ref id="B40-cells-08-01105">
<label>40.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Akbari</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Pena-Diaz</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Andersen</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Liabakk</surname>
<given-names>N.B.</given-names>
</name>
<name>
<surname>Otterlei</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Krokan</surname>
<given-names>H.E.</given-names>
</name>
</person-group>
<article-title>Extracts of proliferating and non-proliferating human cells display different base excision pathways and repair fidelity</article-title>
<source>DNA Repair</source>
<year>2009</year>
<volume>8</volume>
<fpage>834</fpage>
<lpage>843</lpage>
<pub-id pub-id-type="doi">10.1016/j.dnarep.2009.04.002</pub-id>
<pub-id pub-id-type="pmid">19442590</pub-id>
</element-citation>
</ref>
<ref id="B41-cells-08-01105">
<label>41.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Svilar</surname>
<given-names>D.</given-names>
</name>
<name>
<surname>Goellner</surname>
<given-names>E.M.</given-names>
</name>
<name>
<surname>Almeida</surname>
<given-names>K.H.</given-names>
</name>
<name>
<surname>Sobol</surname>
<given-names>R.W.</given-names>
</name>
</person-group>
<article-title>Base excision repair and lesion-dependent subpathways for repair of oxidative DNA damage</article-title>
<source>Antioxid. Redox Signal.</source>
<year>2011</year>
<volume>14</volume>
<fpage>2491</fpage>
<lpage>2507</lpage>
<pub-id pub-id-type="doi">10.1089/ars.2010.3466</pub-id>
<pub-id pub-id-type="pmid">20649466</pub-id>
</element-citation>
</ref>
<ref id="B42-cells-08-01105">
<label>42.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Lan</surname>
<given-names>L.</given-names>
</name>
<name>
<surname>Nakajima</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Oohata</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Takao</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Okano</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Masutani</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Wilson</surname>
<given-names>S.H.</given-names>
</name>
<name>
<surname>Yasui</surname>
<given-names>A.</given-names>
</name>
</person-group>
<article-title>In situ analysis of repair processes for oxidative DNA damage in mammalian cells</article-title>
<source>Proc. Natl. Acad. Sci. USA</source>
<year>2004</year>
<volume>101</volume>
<fpage>13738</fpage>
<lpage>13743</lpage>
<pub-id pub-id-type="doi">10.1073/pnas.0406048101</pub-id>
<pub-id pub-id-type="pmid">15365186</pub-id>
</element-citation>
</ref>
<ref id="B43-cells-08-01105">
<label>43.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Mortusewicz</surname>
<given-names>O.</given-names>
</name>
<name>
<surname>Rothbauer</surname>
<given-names>U.</given-names>
</name>
<name>
<surname>Cardoso</surname>
<given-names>M.C.</given-names>
</name>
<name>
<surname>Leonhardt</surname>
<given-names>H.</given-names>
</name>
</person-group>
<article-title>Differential recruitment of DNA Ligase I and III to DNA repair sites</article-title>
<source>Nucleic Acids Res.</source>
<year>2006</year>
<volume>34</volume>
<fpage>3523</fpage>
<lpage>3532</lpage>
<pub-id pub-id-type="doi">10.1093/nar/gkl492</pub-id>
<pub-id pub-id-type="pmid">16855289</pub-id>
</element-citation>
</ref>
<ref id="B44-cells-08-01105">
<label>44.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>McKinnon</surname>
<given-names>P.J.</given-names>
</name>
<name>
<surname>Caldecott</surname>
<given-names>K.W.</given-names>
</name>
</person-group>
<article-title>DNA strand break repair and human genetic disease</article-title>
<source>Annu. Rev. Genom. Hum. Genet.</source>
<year>2007</year>
<volume>8</volume>
<fpage>37</fpage>
<lpage>55</lpage>
<pub-id pub-id-type="doi">10.1146/annurev.genom.7.080505.115648</pub-id>
<pub-id pub-id-type="pmid">17887919</pub-id>
</element-citation>
</ref>
<ref id="B45-cells-08-01105">
<label>45.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Mavragani</surname>
<given-names>I.V.</given-names>
</name>
<name>
<surname>Nikitaki</surname>
<given-names>Z.</given-names>
</name>
<name>
<surname>Souli</surname>
<given-names>M.P.</given-names>
</name>
<name>
<surname>Aziz</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Nowsheen</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Aziz</surname>
<given-names>K.</given-names>
</name>
<name>
<surname>Rogakou</surname>
<given-names>E.</given-names>
</name>
<name>
<surname>Georgakilas</surname>
<given-names>A.G.</given-names>
</name>
</person-group>
<article-title>Complex DNA Damage: A Route to Radiation-Induced Genomic Instability and Carcinogenesis</article-title>
<source>Cancers</source>
<year>2017</year>
<volume>9</volume>
<pub-id pub-id-type="doi">10.3390/cancers9070091</pub-id>
</element-citation>
</ref>
<ref id="B46-cells-08-01105">
<label>46.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Georgakilas</surname>
<given-names>A.G.</given-names>
</name>
<name>
<surname>O’Neill</surname>
<given-names>P.</given-names>
</name>
<name>
<surname>Stewart</surname>
<given-names>R.D.</given-names>
</name>
</person-group>
<article-title>Induction and repair of clustered DNA lesions: What do we know so far?</article-title>
<source>Radiat. Res.</source>
<year>2013</year>
<volume>180</volume>
<fpage>100</fpage>
<lpage>109</lpage>
<pub-id pub-id-type="doi">10.1667/RR3041.1</pub-id>
<pub-id pub-id-type="pmid">23682596</pub-id>
</element-citation>
</ref>
<ref id="B47-cells-08-01105">
<label>47.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Shikazono</surname>
<given-names>N.</given-names>
</name>
<name>
<surname>Noguchi</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Fujii</surname>
<given-names>K.</given-names>
</name>
<name>
<surname>Urushibara</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Yokoya</surname>
<given-names>A.</given-names>
</name>
</person-group>
<article-title>The yield, processing, and biological consequences of clustered DNA damage induced by ionizing radiation</article-title>
<source>J. Radiat. Res.</source>
<year>2009</year>
<volume>50</volume>
<fpage>27</fpage>
<lpage>36</lpage>
<pub-id pub-id-type="doi">10.1269/jrr.08086</pub-id>
<pub-id pub-id-type="pmid">19218779</pub-id>
</element-citation>
</ref>
<ref id="B48-cells-08-01105">
<label>48.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Blackford</surname>
<given-names>A.N.</given-names>
</name>
<name>
<surname>Jackson</surname>
<given-names>S.P.</given-names>
</name>
</person-group>
<article-title>ATM, ATR, and DNA-PK: The Trinity at the Heart of the DNA Damage Response</article-title>
<source>Mol. Cell</source>
<year>2017</year>
<volume>66</volume>
<fpage>801</fpage>
<lpage>817</lpage>
<pub-id pub-id-type="doi">10.1016/j.molcel.2017.05.015</pub-id>
<pub-id pub-id-type="pmid">28622525</pub-id>
</element-citation>
</ref>
<ref id="B49-cells-08-01105">
<label>49.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Mailand</surname>
<given-names>N.</given-names>
</name>
<name>
<surname>Bekker-Jensen</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Faustrup</surname>
<given-names>H.</given-names>
</name>
<name>
<surname>Melander</surname>
<given-names>F.</given-names>
</name>
<name>
<surname>Bartek</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Lukas</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>Lukas</surname>
<given-names>J.</given-names>
</name>
</person-group>
<article-title>RNF8 ubiquitylates histones at DNA double-strand breaks and promotes assembly of repair proteins</article-title>
<source>Cell</source>
<year>2007</year>
<volume>131</volume>
<fpage>887</fpage>
<lpage>900</lpage>
<pub-id pub-id-type="doi">10.1016/j.cell.2007.09.040</pub-id>
<pub-id pub-id-type="pmid">18001824</pub-id>
</element-citation>
</ref>
<ref id="B50-cells-08-01105">
<label>50.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Thompson</surname>
<given-names>L.H.</given-names>
</name>
</person-group>
<article-title>Recognition, signaling, and repair of DNA double-strand breaks produced by ionizing radiation in mammalian cells: The molecular choreography</article-title>
<source>Mutat. Res.</source>
<year>2012</year>
<volume>751</volume>
<fpage>158</fpage>
<lpage>246</lpage>
<pub-id pub-id-type="doi">10.1016/j.mrrev.2012.06.002</pub-id>
<pub-id pub-id-type="pmid">22743550</pub-id>
</element-citation>
</ref>
<ref id="B51-cells-08-01105">
<label>51.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Doil</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>Mailand</surname>
<given-names>N.</given-names>
</name>
<name>
<surname>Bekker-Jensen</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Menard</surname>
<given-names>P.</given-names>
</name>
<name>
<surname>Larsen</surname>
<given-names>D.H.</given-names>
</name>
<name>
<surname>Pepperkok</surname>
<given-names>R.</given-names>
</name>
<name>
<surname>Ellenberg</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Panier</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Durocher</surname>
<given-names>D.</given-names>
</name>
<name>
<surname>Bartek</surname>
<given-names>J.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>RNF168 binds and amplifies ubiquitin conjugates on damaged chromosomes to allow accumulation of repair proteins</article-title>
<source>Cell</source>
<year>2009</year>
<volume>136</volume>
<fpage>435</fpage>
<lpage>446</lpage>
<pub-id pub-id-type="doi">10.1016/j.cell.2008.12.041</pub-id>
<pub-id pub-id-type="pmid">19203579</pub-id>
</element-citation>
</ref>
<ref id="B52-cells-08-01105">
<label>52.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Weinberg</surname>
<given-names>W.C.</given-names>
</name>
<name>
<surname>Denning</surname>
<given-names>M.F.</given-names>
</name>
</person-group>
<article-title>P21Waf1 control of epithelial cell cycle and cell fate</article-title>
<source>Crit. Rev. Oral Biol. Med.</source>
<year>2002</year>
<volume>13</volume>
<fpage>453</fpage>
<lpage>464</lpage>
<pub-id pub-id-type="doi">10.1177/154411130201300603</pub-id>
<pub-id pub-id-type="pmid">12499239</pub-id>
</element-citation>
</ref>
<ref id="B53-cells-08-01105">
<label>53.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Bhattacharya</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Asaithamby</surname>
<given-names>A.</given-names>
</name>
</person-group>
<article-title>Repurposing DNA repair factors to eradicate tumor cells upon radiotherapy</article-title>
<source>Transl. Cancer Res.</source>
<year>2017</year>
<volume>6</volume>
<fpage>S822</fpage>
<lpage>S839</lpage>
<pub-id pub-id-type="doi">10.21037/tcr.2017.05.22</pub-id>
<pub-id pub-id-type="pmid">30613483</pub-id>
</element-citation>
</ref>
<ref id="B54-cells-08-01105">
<label>54.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Bernhard</surname>
<given-names>E.J.</given-names>
</name>
<name>
<surname>Maity</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Muschel</surname>
<given-names>R.J.</given-names>
</name>
<name>
<surname>McKenna</surname>
<given-names>W.G.</given-names>
</name>
</person-group>
<article-title>Effects of ionizing radiation on cell cycle progression. A review</article-title>
<source>Radiat. Environ. Biophys.</source>
<year>1995</year>
<volume>34</volume>
<fpage>79</fpage>
<lpage>83</lpage>
<pub-id pub-id-type="doi">10.1007/BF01275210</pub-id>
<pub-id pub-id-type="pmid">7652155</pub-id>
</element-citation>
</ref>
<ref id="B55-cells-08-01105">
<label>55.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Dogu</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Diaz</surname>
<given-names>J.</given-names>
</name>
</person-group>
<article-title>Mathematical model of a network of interaction between p53 and Bcl-2 during genotoxic-induced apoptosis</article-title>
<source>Biophys. Chem.</source>
<year>2009</year>
<volume>143</volume>
<fpage>44</fpage>
<lpage>54</lpage>
<pub-id pub-id-type="doi">10.1016/j.bpc.2009.03.012</pub-id>
<pub-id pub-id-type="pmid">19395147</pub-id>
</element-citation>
</ref>
<ref id="B56-cells-08-01105">
<label>56.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Kuribayashi</surname>
<given-names>K.</given-names>
</name>
<name>
<surname>Finnberg</surname>
<given-names>N.</given-names>
</name>
<name>
<surname>Jeffers</surname>
<given-names>J.R.</given-names>
</name>
<name>
<surname>Zambetti</surname>
<given-names>G.P.</given-names>
</name>
<name>
<surname>El-Deiry</surname>
<given-names>W.S.</given-names>
</name>
</person-group>
<article-title>The relative contribution of pro-apoptotic p53-target genes in the triggering of apoptosis following DNA damage in vitro and in vivo</article-title>
<source>Cell Cycle</source>
<year>2011</year>
<volume>10</volume>
<fpage>2380</fpage>
<lpage>2389</lpage>
<pub-id pub-id-type="doi">10.4161/cc.10.14.16588</pub-id>
<pub-id pub-id-type="pmid">21709442</pub-id>
</element-citation>
</ref>
<ref id="B57-cells-08-01105">
<label>57.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Oda</surname>
<given-names>E.</given-names>
</name>
<name>
<surname>Ohki</surname>
<given-names>R.</given-names>
</name>
<name>
<surname>Murasawa</surname>
<given-names>H.</given-names>
</name>
<name>
<surname>Nemoto</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Shibue</surname>
<given-names>T.</given-names>
</name>
<name>
<surname>Yamashita</surname>
<given-names>T.</given-names>
</name>
<name>
<surname>Tokino</surname>
<given-names>T.</given-names>
</name>
<name>
<surname>Taniguchi</surname>
<given-names>T.</given-names>
</name>
<name>
<surname>Tanaka</surname>
<given-names>N.</given-names>
</name>
</person-group>
<article-title>Noxa, a BH3-only member of the Bcl-2 family and candidate mediator of p53-induced apoptosis</article-title>
<source>Science</source>
<year>2000</year>
<volume>288</volume>
<fpage>1053</fpage>
<lpage>1058</lpage>
<pub-id pub-id-type="doi">10.1126/science.288.5468.1053</pub-id>
<pub-id pub-id-type="pmid">10807576</pub-id>
</element-citation>
</ref>
<ref id="B58-cells-08-01105">
<label>58.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Lou</surname>
<given-names>Z.</given-names>
</name>
<name>
<surname>Minter-Dykhouse</surname>
<given-names>K.</given-names>
</name>
<name>
<surname>Franco</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Gostissa</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Rivera</surname>
<given-names>M.A.</given-names>
</name>
<name>
<surname>Celeste</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Manis</surname>
<given-names>J.P.</given-names>
</name>
<name>
<surname>van Deursen</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Nussenzweig</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Paull</surname>
<given-names>T.T.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>MDC1 maintains genomic stability by participating in the amplification of ATM-dependent DNA damage signals</article-title>
<source>Mol. Cell</source>
<year>2006</year>
<volume>21</volume>
<fpage>187</fpage>
<lpage>200</lpage>
<pub-id pub-id-type="doi">10.1016/j.molcel.2005.11.025</pub-id>
<pub-id pub-id-type="pmid">16427009</pub-id>
</element-citation>
</ref>
<ref id="B59-cells-08-01105">
<label>59.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Minter-Dykhouse</surname>
<given-names>K.</given-names>
</name>
<name>
<surname>Ward</surname>
<given-names>I.</given-names>
</name>
<name>
<surname>Huen</surname>
<given-names>M.S.</given-names>
</name>
<name>
<surname>Chen</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Lou</surname>
<given-names>Z.</given-names>
</name>
</person-group>
<article-title>Distinct versus overlapping functions of MDC1 and 53BP1 in DNA damage response and tumorigenesis</article-title>
<source>J. Cell Biol.</source>
<year>2008</year>
<volume>181</volume>
<fpage>727</fpage>
<lpage>735</lpage>
<pub-id pub-id-type="doi">10.1083/jcb.200801083</pub-id>
<pub-id pub-id-type="pmid">18504301</pub-id>
</element-citation>
</ref>
<ref id="B60-cells-08-01105">
<label>60.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Boulianne</surname>
<given-names>B.</given-names>
</name>
<name>
<surname>Feldhahn</surname>
<given-names>N.</given-names>
</name>
</person-group>
<article-title>Transcribing malignancy: Transcription-associated genomic instability in cancer</article-title>
<source>Oncogene</source>
<year>2018</year>
<volume>37</volume>
<fpage>971</fpage>
<lpage>981</lpage>
<pub-id pub-id-type="doi">10.1038/onc.2017.402</pub-id>
<pub-id pub-id-type="pmid">29106394</pub-id>
</element-citation>
</ref>
<ref id="B61-cells-08-01105">
<label>61.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Corre</surname>
<given-names>I.</given-names>
</name>
<name>
<surname>Niaudet</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>Paris</surname>
<given-names>F.</given-names>
</name>
</person-group>
<article-title>Plasma membrane signaling induced by ionizing radiation</article-title>
<source>Mutat. Res.</source>
<year>2010</year>
<volume>704</volume>
<fpage>61</fpage>
<lpage>67</lpage>
<pub-id pub-id-type="doi">10.1016/j.mrrev.2010.01.014</pub-id>
<pub-id pub-id-type="pmid">20117234</pub-id>
</element-citation>
</ref>
<ref id="B62-cells-08-01105">
<label>62.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Wong-Ekkabut</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Xu</surname>
<given-names>Z.</given-names>
</name>
<name>
<surname>Triampo</surname>
<given-names>W.</given-names>
</name>
<name>
<surname>Tang</surname>
<given-names>I.M.</given-names>
</name>
<name>
<surname>Tieleman</surname>
<given-names>D.P.</given-names>
</name>
<name>
<surname>Monticelli</surname>
<given-names>L.</given-names>
</name>
</person-group>
<article-title>Effect of lipid peroxidation on the properties of lipid bilayers: A molecular dynamics study</article-title>
<source>Biophys. J.</source>
<year>2007</year>
<volume>93</volume>
<fpage>4225</fpage>
<lpage>4236</lpage>
<pub-id pub-id-type="doi">10.1529/biophysj.107.112565</pub-id>
<pub-id pub-id-type="pmid">17766354</pub-id>
</element-citation>
</ref>
<ref id="B63-cells-08-01105">
<label>63.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Poli</surname>
<given-names>G.</given-names>
</name>
<name>
<surname>Schaur</surname>
<given-names>R.J.</given-names>
</name>
<name>
<surname>Siems</surname>
<given-names>W.G.</given-names>
</name>
<name>
<surname>Leonarduzzi</surname>
<given-names>G.</given-names>
</name>
</person-group>
<article-title>4-hydroxynonenal: A membrane lipid oxidation product of medicinal interest</article-title>
<source>Med. Res. Rev.</source>
<year>2008</year>
<volume>28</volume>
<fpage>569</fpage>
<lpage>631</lpage>
<pub-id pub-id-type="doi">10.1002/med.20117</pub-id>
<pub-id pub-id-type="pmid">18058921</pub-id>
</element-citation>
</ref>
<ref id="B64-cells-08-01105">
<label>64.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Lin</surname>
<given-names>M.H.</given-names>
</name>
<name>
<surname>Yen</surname>
<given-names>J.H.</given-names>
</name>
<name>
<surname>Weng</surname>
<given-names>C.Y.</given-names>
</name>
<name>
<surname>Wang</surname>
<given-names>L.</given-names>
</name>
<name>
<surname>Ha</surname>
<given-names>C.L.</given-names>
</name>
<name>
<surname>Wu</surname>
<given-names>M.J.</given-names>
</name>
</person-group>
<article-title>Lipid peroxidation end product 4-hydroxy-trans-2-nonenal triggers unfolded protein response and heme oxygenase-1 expression in PC12 cells: Roles of ROS and MAPK pathways</article-title>
<source>Toxicology</source>
<year>2014</year>
<volume>315</volume>
<fpage>24</fpage>
<lpage>37</lpage>
<pub-id pub-id-type="doi">10.1016/j.tox.2013.11.007</pub-id>
<pub-id pub-id-type="pmid">24291486</pub-id>
</element-citation>
</ref>
<ref id="B65-cells-08-01105">
<label>65.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Kolesnick</surname>
<given-names>R.</given-names>
</name>
</person-group>
<article-title>The therapeutic potential of modulating the ceramide/sphingomyelin pathway</article-title>
<source>J. Clin. Invest.</source>
<year>2002</year>
<volume>110</volume>
<fpage>3</fpage>
<lpage>8</lpage>
<pub-id pub-id-type="doi">10.1172/JCI0216127</pub-id>
<pub-id pub-id-type="pmid">12093880</pub-id>
</element-citation>
</ref>
<ref id="B66-cells-08-01105">
<label>66.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Liao</surname>
<given-names>W.C.</given-names>
</name>
<name>
<surname>Haimovitz-Friedman</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Persaud</surname>
<given-names>R.S.</given-names>
</name>
<name>
<surname>McLoughlin</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Ehleiter</surname>
<given-names>D.</given-names>
</name>
<name>
<surname>Zhang</surname>
<given-names>N.</given-names>
</name>
<name>
<surname>Gatei</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Lavin</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Kolesnick</surname>
<given-names>R.</given-names>
</name>
<name>
<surname>Fuks</surname>
<given-names>Z.</given-names>
</name>
</person-group>
<article-title>Ataxia telangiectasia-mutated gene product inhibits DNA damage-induced apoptosis via ceramide synthase</article-title>
<source>J. Biol. Chem.</source>
<year>1999</year>
<volume>274</volume>
<fpage>17908</fpage>
<lpage>17917</lpage>
<pub-id pub-id-type="doi">10.1074/jbc.274.25.17908</pub-id>
<pub-id pub-id-type="pmid">10364237</pub-id>
</element-citation>
</ref>
<ref id="B67-cells-08-01105">
<label>67.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Kim</surname>
<given-names>W.</given-names>
</name>
<name>
<surname>Son</surname>
<given-names>B.</given-names>
</name>
<name>
<surname>Lee</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Do</surname>
<given-names>H.</given-names>
</name>
<name>
<surname>Youn</surname>
<given-names>B.</given-names>
</name>
</person-group>
<article-title>Targeting the enzymes involved in arachidonic acid metabolism to improve radiotherapy</article-title>
<source>Cancer Metastasis Rev.</source>
<year>2018</year>
<volume>37</volume>
<fpage>213</fpage>
<lpage>225</lpage>
<pub-id pub-id-type="doi">10.1007/s10555-018-9742-0</pub-id>
<pub-id pub-id-type="pmid">29971572</pub-id>
</element-citation>
</ref>
<ref id="B68-cells-08-01105">
<label>68.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Wang</surname>
<given-names>D.</given-names>
</name>
<name>
<surname>Dubois</surname>
<given-names>R.N.</given-names>
</name>
</person-group>
<article-title>Eicosanoids and cancer</article-title>
<source>Nat. Rev. Cancer</source>
<year>2010</year>
<volume>10</volume>
<fpage>181</fpage>
<lpage>193</lpage>
<pub-id pub-id-type="doi">10.1038/nrc2809</pub-id>
<pub-id pub-id-type="pmid">20168319</pub-id>
</element-citation>
</ref>
<ref id="B69-cells-08-01105">
<label>69.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Multhoff</surname>
<given-names>G.</given-names>
</name>
<name>
<surname>Radons</surname>
<given-names>J.</given-names>
</name>
</person-group>
<article-title>Radiation, inflammation, and immune responses in cancer</article-title>
<source>Front. Oncol.</source>
<year>2012</year>
<volume>2</volume>
<pub-id pub-id-type="doi">10.3389/fonc.2012.00058</pub-id>
</element-citation>
</ref>
<ref id="B70-cells-08-01105">
<label>70.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Meng</surname>
<given-names>Z.</given-names>
</name>
<name>
<surname>Gan</surname>
<given-names>Y.H.</given-names>
</name>
</person-group>
<article-title>Activating PTEN by COX-2 inhibitors antagonizes radiation-induced AKT activation contributing to radiosensitization</article-title>
<source>Biochem. Biophys. Res. Commun.</source>
<year>2015</year>
<volume>460</volume>
<fpage>198</fpage>
<lpage>204</lpage>
<pub-id pub-id-type="doi">10.1016/j.bbrc.2015.03.008</pub-id>
<pub-id pub-id-type="pmid">25770423</pub-id>
</element-citation>
</ref>
<ref id="B71-cells-08-01105">
<label>71.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Lin</surname>
<given-names>F.</given-names>
</name>
<name>
<surname>Luo</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Gao</surname>
<given-names>W.</given-names>
</name>
<name>
<surname>Wu</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Shao</surname>
<given-names>Z.</given-names>
</name>
<name>
<surname>Wang</surname>
<given-names>Z.</given-names>
</name>
<name>
<surname>Meng</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Ou</surname>
<given-names>Z.</given-names>
</name>
<name>
<surname>Yang</surname>
<given-names>G.</given-names>
</name>
</person-group>
<article-title>COX-2 promotes breast cancer cell radioresistance via p38/MAPK-mediated cellular anti-apoptosis and invasiveness</article-title>
<source>Tumour Biol.</source>
<year>2013</year>
<volume>34</volume>
<fpage>2817</fpage>
<lpage>2826</lpage>
<pub-id pub-id-type="doi">10.1007/s13277-013-0840-x</pub-id>
<pub-id pub-id-type="pmid">23771849</pub-id>
</element-citation>
</ref>
<ref id="B72-cells-08-01105">
<label>72.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Yang</surname>
<given-names>M.Y.</given-names>
</name>
<name>
<surname>Lee</surname>
<given-names>H.T.</given-names>
</name>
<name>
<surname>Chen</surname>
<given-names>C.M.</given-names>
</name>
<name>
<surname>Shen</surname>
<given-names>C.C.</given-names>
</name>
<name>
<surname>Ma</surname>
<given-names>H.I.</given-names>
</name>
</person-group>
<article-title>Celecoxib suppresses the phosphorylation of STAT3 protein and can enhance the radiosensitivity of medulloblastoma-derived cancer stem-like cells</article-title>
<source>Int. J. Mol. Sci.</source>
<year>2014</year>
<volume>15</volume>
<fpage>11013</fpage>
<lpage>11029</lpage>
<pub-id pub-id-type="doi">10.3390/ijms150611013</pub-id>
<pub-id pub-id-type="pmid">24945311</pub-id>
</element-citation>
</ref>
<ref id="B73-cells-08-01105">
<label>73.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Li</surname>
<given-names>G.</given-names>
</name>
<name>
<surname>Wang</surname>
<given-names>Z.</given-names>
</name>
<name>
<surname>Chong</surname>
<given-names>T.</given-names>
</name>
<name>
<surname>Yang</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Li</surname>
<given-names>H.</given-names>
</name>
<name>
<surname>Chen</surname>
<given-names>H.</given-names>
</name>
</person-group>
<article-title>Curcumin enhances the radiosensitivity of renal cancer cells by suppressing NF-kappaB signaling pathway</article-title>
<source>Biomed. Pharmacother.</source>
<year>2017</year>
<volume>94</volume>
<fpage>974</fpage>
<lpage>981</lpage>
<pub-id pub-id-type="doi">10.1016/j.biopha.2017.07.148</pub-id>
<pub-id pub-id-type="pmid">28810535</pub-id>
</element-citation>
</ref>
<ref id="B74-cells-08-01105">
<label>74.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Yamamori</surname>
<given-names>T.</given-names>
</name>
<name>
<surname>Yasui</surname>
<given-names>H.</given-names>
</name>
<name>
<surname>Yamazumi</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Wada</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Nakamura</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Nakamura</surname>
<given-names>H.</given-names>
</name>
<name>
<surname>Inanami</surname>
<given-names>O.</given-names>
</name>
</person-group>
<article-title>Ionizing radiation induces mitochondrial reactive oxygen species production accompanied by upregulation of mitochondrial electron transport chain function and mitochondrial content under control of the cell cycle checkpoint</article-title>
<source>Free Radic. Biol. Med.</source>
<year>2012</year>
<volume>53</volume>
<fpage>260</fpage>
<lpage>270</lpage>
<pub-id pub-id-type="doi">10.1016/j.freeradbiomed.2012.04.033</pub-id>
<pub-id pub-id-type="pmid">22580337</pub-id>
</element-citation>
</ref>
<ref id="B75-cells-08-01105">
<label>75.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Zhou</surname>
<given-names>X.</given-names>
</name>
<name>
<surname>Li</surname>
<given-names>N.</given-names>
</name>
<name>
<surname>Wang</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Wang</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Zhang</surname>
<given-names>X.</given-names>
</name>
<name>
<surname>Zhang</surname>
<given-names>H.</given-names>
</name>
</person-group>
<article-title>Effects of X-irradiation on mitochondrial DNA damage and its supercoiling formation change</article-title>
<source>Mitochondrion</source>
<year>2011</year>
<volume>11</volume>
<fpage>886</fpage>
<lpage>892</lpage>
<pub-id pub-id-type="doi">10.1016/j.mito.2011.07.005</pub-id>
<pub-id pub-id-type="pmid">21835270</pub-id>
</element-citation>
</ref>
<ref id="B76-cells-08-01105">
<label>76.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Cain</surname>
<given-names>K.</given-names>
</name>
<name>
<surname>Bratton</surname>
<given-names>S.B.</given-names>
</name>
<name>
<surname>Langlais</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>Walker</surname>
<given-names>G.</given-names>
</name>
<name>
<surname>Brown</surname>
<given-names>D.G.</given-names>
</name>
<name>
<surname>Sun</surname>
<given-names>X.M.</given-names>
</name>
<name>
<surname>Cohen</surname>
<given-names>G.M.</given-names>
</name>
</person-group>
<article-title>Apaf-1 oligomerizes into biologically active approximately 700-kDa and inactive approximately 1.4-MDa apoptosome complexes</article-title>
<source>J. Biol. Chem.</source>
<year>2000</year>
<volume>275</volume>
<fpage>6067</fpage>
<lpage>6070</lpage>
<pub-id pub-id-type="doi">10.1074/jbc.275.9.6067</pub-id>
<pub-id pub-id-type="pmid">10692394</pub-id>
</element-citation>
</ref>
<ref id="B77-cells-08-01105">
<label>77.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Gatenby</surname>
<given-names>R.A.</given-names>
</name>
<name>
<surname>Gillies</surname>
<given-names>R.J.</given-names>
</name>
</person-group>
<article-title>Why do cancers have high aerobic glycolysis?</article-title>
<source>Nat. Rev. Cancer</source>
<year>2004</year>
<volume>4</volume>
<fpage>891</fpage>
<lpage>899</lpage>
<pub-id pub-id-type="doi">10.1038/nrc1478</pub-id>
<pub-id pub-id-type="pmid">15516961</pub-id>
</element-citation>
</ref>
<ref id="B78-cells-08-01105">
<label>78.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Simonnet</surname>
<given-names>H.</given-names>
</name>
<name>
<surname>Alazard</surname>
<given-names>N.</given-names>
</name>
<name>
<surname>Pfeiffer</surname>
<given-names>K.</given-names>
</name>
<name>
<surname>Gallou</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>Beroud</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>Demont</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Bouvier</surname>
<given-names>R.</given-names>
</name>
<name>
<surname>Schagger</surname>
<given-names>H.</given-names>
</name>
<name>
<surname>Godinot</surname>
<given-names>C.</given-names>
</name>
</person-group>
<article-title>Low mitochondrial respiratory chain content correlates with tumor aggressiveness in renal cell carcinoma</article-title>
<source>Carcinogenesis</source>
<year>2002</year>
<volume>23</volume>
<fpage>759</fpage>
<lpage>768</lpage>
<pub-id pub-id-type="doi">10.1093/carcin/23.5.759</pub-id>
<pub-id pub-id-type="pmid">12016148</pub-id>
</element-citation>
</ref>
<ref id="B79-cells-08-01105">
<label>79.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Ganapathy-Kanniappan</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Geschwind</surname>
<given-names>J.F.</given-names>
</name>
</person-group>
<article-title>Tumor glycolysis as a target for cancer therapy: Progress and prospects</article-title>
<source>Mol. Cancer</source>
<year>2013</year>
<volume>12</volume>
<fpage>152</fpage>
<lpage>162</lpage>
<pub-id pub-id-type="doi">10.1186/1476-4598-12-152</pub-id>
<pub-id pub-id-type="pmid">24298908</pub-id>
</element-citation>
</ref>
<ref id="B80-cells-08-01105">
<label>80.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Kim</surname>
<given-names>J.W.</given-names>
</name>
<name>
<surname>Tchernyshyov</surname>
<given-names>I.</given-names>
</name>
<name>
<surname>Semenza</surname>
<given-names>G.L.</given-names>
</name>
<name>
<surname>Dang</surname>
<given-names>C.V.</given-names>
</name>
</person-group>
<article-title>HIF-1-mediated expression of pyruvate dehydrogenase kinase: A metabolic switch required for cellular adaptation to hypoxia</article-title>
<source>Cell Metab.</source>
<year>2006</year>
<volume>3</volume>
<fpage>177</fpage>
<lpage>185</lpage>
<pub-id pub-id-type="doi">10.1016/j.cmet.2006.02.002</pub-id>
<pub-id pub-id-type="pmid">16517405</pub-id>
</element-citation>
</ref>
<ref id="B81-cells-08-01105">
<label>81.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Meijer</surname>
<given-names>T.W.</given-names>
</name>
<name>
<surname>Kaanders</surname>
<given-names>J.H.</given-names>
</name>
<name>
<surname>Span</surname>
<given-names>P.N.</given-names>
</name>
<name>
<surname>Bussink</surname>
<given-names>J.</given-names>
</name>
</person-group>
<article-title>Targeting hypoxia, HIF-1, and tumor glucose metabolism to improve radiotherapy efficacy</article-title>
<source>Clin. Cancer Res.</source>
<year>2012</year>
<volume>18</volume>
<fpage>5585</fpage>
<lpage>5594</lpage>
<pub-id pub-id-type="doi">10.1158/1078-0432.CCR-12-0858</pub-id>
<pub-id pub-id-type="pmid">23071360</pub-id>
</element-citation>
</ref>
<ref id="B82-cells-08-01105">
<label>82.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Wanka</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>Steinbach</surname>
<given-names>J.P.</given-names>
</name>
<name>
<surname>Rieger</surname>
<given-names>J.</given-names>
</name>
</person-group>
<article-title>Tp53-induced glycolysis and apoptosis regulator (TIGAR) protects glioma cells from starvation-induced cell death by up-regulating respiration and improving cellular redox homeostasis</article-title>
<source>J. Biol. Chem.</source>
<year>2012</year>
<volume>287</volume>
<fpage>33436</fpage>
<lpage>33446</lpage>
<pub-id pub-id-type="doi">10.1074/jbc.M112.384578</pub-id>
<pub-id pub-id-type="pmid">22887998</pub-id>
</element-citation>
</ref>
<ref id="B83-cells-08-01105">
<label>83.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Pena-Rico</surname>
<given-names>M.A.</given-names>
</name>
<name>
<surname>Calvo-Vidal</surname>
<given-names>M.N.</given-names>
</name>
<name>
<surname>Villalonga-Planells</surname>
<given-names>R.</given-names>
</name>
<name>
<surname>Martinez-Soler</surname>
<given-names>F.</given-names>
</name>
<name>
<surname>Gimenez-Bonafe</surname>
<given-names>P.</given-names>
</name>
<name>
<surname>Navarro-Sabate</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Tortosa</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Bartrons</surname>
<given-names>R.</given-names>
</name>
<name>
<surname>Manzano</surname>
<given-names>A.</given-names>
</name>
</person-group>
<article-title>TP53 induced glycolysis and apoptosis regulator (TIGAR) knockdown results in radiosensitization of glioma cells</article-title>
<source>Radiother. Oncol.</source>
<year>2011</year>
<volume>101</volume>
<fpage>132</fpage>
<lpage>139</lpage>
<pub-id pub-id-type="doi">10.1016/j.radonc.2011.07.002</pub-id>
<pub-id pub-id-type="pmid">21864926</pub-id>
</element-citation>
</ref>
<ref id="B84-cells-08-01105">
<label>84.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Zhang</surname>
<given-names>H.</given-names>
</name>
<name>
<surname>Bosch-Marce</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Shimoda</surname>
<given-names>L.A.</given-names>
</name>
<name>
<surname>Tan</surname>
<given-names>Y.S.</given-names>
</name>
<name>
<surname>Baek</surname>
<given-names>J.H.</given-names>
</name>
<name>
<surname>Wesley</surname>
<given-names>J.B.</given-names>
</name>
<name>
<surname>Gonzalez</surname>
<given-names>F.J.</given-names>
</name>
<name>
<surname>Semenza</surname>
<given-names>G.L.</given-names>
</name>
</person-group>
<article-title>Mitochondrial autophagy is an HIF-1-dependent adaptive metabolic response to hypoxia</article-title>
<source>J. Biol. Chem.</source>
<year>2008</year>
<volume>283</volume>
<fpage>10892</fpage>
<lpage>10903</lpage>
<pub-id pub-id-type="doi">10.1074/jbc.M800102200</pub-id>
<pub-id pub-id-type="pmid">18281291</pub-id>
</element-citation>
</ref>
<ref id="B85-cells-08-01105">
<label>85.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Yoshida</surname>
<given-names>H.</given-names>
</name>
</person-group>
<article-title>ER stress and diseases</article-title>
<source>Febs J.</source>
<year>2007</year>
<volume>274</volume>
<fpage>630</fpage>
<lpage>658</lpage>
<pub-id pub-id-type="doi">10.1111/j.1742-4658.2007.05639.x</pub-id>
<pub-id pub-id-type="pmid">17288551</pub-id>
</element-citation>
</ref>
<ref id="B86-cells-08-01105">
<label>86.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Brush</surname>
<given-names>M.H.</given-names>
</name>
<name>
<surname>Weiser</surname>
<given-names>D.C.</given-names>
</name>
<name>
<surname>Shenolikar</surname>
<given-names>S.</given-names>
</name>
</person-group>
<article-title>Growth arrest and DNA damage-inducible protein GADD34 targets protein phosphatase 1 alpha to the endoplasmic reticulum and promotes dephosphorylation of the alpha subunit of eukaryotic translation initiation factor 2</article-title>
<source>Mol. Cell. Biol.</source>
<year>2003</year>
<volume>23</volume>
<fpage>1292</fpage>
<lpage>1303</lpage>
<pub-id pub-id-type="doi">10.1128/MCB.23.4.1292-1303.2003</pub-id>
<pub-id pub-id-type="pmid">12556489</pub-id>
</element-citation>
</ref>
<ref id="B87-cells-08-01105">
<label>87.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Oyadomari</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Mori</surname>
<given-names>M.</given-names>
</name>
</person-group>
<article-title>Roles of CHOP/GADD153 in endoplasmic reticulum stress</article-title>
<source>Cell Death Differ.</source>
<year>2004</year>
<volume>11</volume>
<fpage>381</fpage>
<lpage>389</lpage>
<pub-id pub-id-type="doi">10.1038/sj.cdd.4401373</pub-id>
<pub-id pub-id-type="pmid">14685163</pub-id>
</element-citation>
</ref>
<ref id="B88-cells-08-01105">
<label>88.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Maytin</surname>
<given-names>E.V.</given-names>
</name>
<name>
<surname>Ubeda</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Lin</surname>
<given-names>J.C.</given-names>
</name>
<name>
<surname>Habener</surname>
<given-names>J.F.</given-names>
</name>
</person-group>
<article-title>Stress-inducible transcription factor CHOP/gadd153 induces apoptosis in mammalian cells via p38 kinase-dependent and -independent mechanisms</article-title>
<source>Exp. Cell Res.</source>
<year>2001</year>
<volume>267</volume>
<fpage>193</fpage>
<lpage>204</lpage>
<pub-id pub-id-type="doi">10.1006/excr.2001.5248</pub-id>
<pub-id pub-id-type="pmid">11426938</pub-id>
</element-citation>
</ref>
<ref id="B89-cells-08-01105">
<label>89.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Yoshida</surname>
<given-names>H.</given-names>
</name>
<name>
<surname>Okada</surname>
<given-names>T.</given-names>
</name>
<name>
<surname>Haze</surname>
<given-names>K.</given-names>
</name>
<name>
<surname>Yanagi</surname>
<given-names>H.</given-names>
</name>
<name>
<surname>Yura</surname>
<given-names>T.</given-names>
</name>
<name>
<surname>Negishi</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Mori</surname>
<given-names>K.</given-names>
</name>
</person-group>
<article-title>ATF6 activated by proteolysis binds in the presence of NF-Y (CBF) directly to the cis-acting element responsible for the mammalian unfolded protein response</article-title>
<source>Mol. Cell. Biol.</source>
<year>2000</year>
<volume>20</volume>
<fpage>6755</fpage>
<lpage>6767</lpage>
<pub-id pub-id-type="doi">10.1128/MCB.20.18.6755-6767.2000</pub-id>
<pub-id pub-id-type="pmid">10958673</pub-id>
</element-citation>
</ref>
<ref id="B90-cells-08-01105">
<label>90.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Yoshida</surname>
<given-names>H.</given-names>
</name>
<name>
<surname>Matsui</surname>
<given-names>T.</given-names>
</name>
<name>
<surname>Yamamoto</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Okada</surname>
<given-names>T.</given-names>
</name>
<name>
<surname>Mori</surname>
<given-names>K.</given-names>
</name>
</person-group>
<article-title>XBP1 mRNA is induced by ATF6 and spliced by IRE1 in response to ER stress to produce a highly active transcription factor</article-title>
<source>Cell</source>
<year>2001</year>
<volume>107</volume>
<fpage>881</fpage>
<lpage>891</lpage>
<pub-id pub-id-type="doi">10.1016/S0092-8674(01)00611-0</pub-id>
<pub-id pub-id-type="pmid">11779464</pub-id>
</element-citation>
</ref>
<ref id="B91-cells-08-01105">
<label>91.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Ogata</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Hino</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Saito</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Morikawa</surname>
<given-names>K.</given-names>
</name>
<name>
<surname>Kondo</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Kanemoto</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Murakami</surname>
<given-names>T.</given-names>
</name>
<name>
<surname>Taniguchi</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Tanii</surname>
<given-names>I.</given-names>
</name>
<name>
<surname>Yoshinaga</surname>
<given-names>K.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Autophagy is activated for cell survival after endoplasmic reticulum stress</article-title>
<source>Mol. Cell. Biol.</source>
<year>2006</year>
<volume>26</volume>
<fpage>9220</fpage>
<lpage>9231</lpage>
<pub-id pub-id-type="doi">10.1128/MCB.01453-06</pub-id>
<pub-id pub-id-type="pmid">17030611</pub-id>
</element-citation>
</ref>
<ref id="B92-cells-08-01105">
<label>92.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>McCullough</surname>
<given-names>K.D.</given-names>
</name>
<name>
<surname>Martindale</surname>
<given-names>J.L.</given-names>
</name>
<name>
<surname>Klotz</surname>
<given-names>L.O.</given-names>
</name>
<name>
<surname>Aw</surname>
<given-names>T.Y.</given-names>
</name>
<name>
<surname>Holbrook</surname>
<given-names>N.J.</given-names>
</name>
</person-group>
<article-title>Gadd153 sensitizes cells to endoplasmic reticulum stress by down-regulating Bcl2 and perturbing the cellular redox state</article-title>
<source>Mol. Cell. Biol.</source>
<year>2001</year>
<volume>21</volume>
<fpage>1249</fpage>
<lpage>1259</lpage>
<pub-id pub-id-type="doi">10.1128/MCB.21.4.1249-1259.2001</pub-id>
<pub-id pub-id-type="pmid">11158311</pub-id>
</element-citation>
</ref>
<ref id="B93-cells-08-01105">
<label>93.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Dadey</surname>
<given-names>D.Y.</given-names>
</name>
<name>
<surname>Kapoor</surname>
<given-names>V.</given-names>
</name>
<name>
<surname>Khudanyan</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Urano</surname>
<given-names>F.</given-names>
</name>
<name>
<surname>Kim</surname>
<given-names>A.H.</given-names>
</name>
<name>
<surname>Thotala</surname>
<given-names>D.</given-names>
</name>
<name>
<surname>Hallahan</surname>
<given-names>D.E.</given-names>
</name>
</person-group>
<article-title>The ATF6 pathway of the ER stress response contributes to enhanced viability in glioblastoma</article-title>
<source>Oncotarget</source>
<year>2016</year>
<volume>7</volume>
<fpage>2080</fpage>
<lpage>2092</lpage>
<pub-id pub-id-type="doi">10.18632/oncotarget.6712</pub-id>
<pub-id pub-id-type="pmid">26716508</pub-id>
</element-citation>
</ref>
<ref id="B94-cells-08-01105">
<label>94.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Kang</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Kim</surname>
<given-names>E.</given-names>
</name>
<name>
<surname>Kim</surname>
<given-names>W.</given-names>
</name>
<name>
<surname>Seong</surname>
<given-names>K.M.</given-names>
</name>
<name>
<surname>Youn</surname>
<given-names>H.</given-names>
</name>
<name>
<surname>Kim</surname>
<given-names>J.W.</given-names>
</name>
<name>
<surname>Kim</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Youn</surname>
<given-names>B.</given-names>
</name>
</person-group>
<article-title>Rhamnetin and cirsiliol induce radiosensitization and inhibition of epithelial-mesenchymal transition (EMT) by miR-34a-mediated suppression of Notch-1 expression in non-small cell lung cancer cell lines</article-title>
<source>J. Biol. Chem.</source>
<year>2013</year>
<volume>288</volume>
<fpage>27343</fpage>
<lpage>27357</lpage>
<pub-id pub-id-type="doi">10.1074/jbc.M113.490482</pub-id>
<pub-id pub-id-type="pmid">23902763</pub-id>
</element-citation>
</ref>
<ref id="B95-cells-08-01105">
<label>95.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Kim</surname>
<given-names>E.J.</given-names>
</name>
<name>
<surname>Lee</surname>
<given-names>Y.J.</given-names>
</name>
<name>
<surname>Kang</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Lim</surname>
<given-names>Y.B.</given-names>
</name>
</person-group>
<article-title>Ionizing radiation activates PERK/eIF2alpha/ATF4 signaling via ER stress-independent pathway in human vascular endothelial cells</article-title>
<source>Int. J. Radiat. Biol.</source>
<year>2014</year>
<volume>90</volume>
<fpage>306</fpage>
<lpage>312</lpage>
<pub-id pub-id-type="doi">10.3109/09553002.2014.886793</pub-id>
<pub-id pub-id-type="pmid">24456547</pub-id>
</element-citation>
</ref>
<ref id="B96-cells-08-01105">
<label>96.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Zhang</surname>
<given-names>B.</given-names>
</name>
<name>
<surname>Wang</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Pang</surname>
<given-names>X.</given-names>
</name>
<name>
<surname>Su</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Ai</surname>
<given-names>G.</given-names>
</name>
<name>
<surname>Wang</surname>
<given-names>T.</given-names>
</name>
</person-group>
<article-title>ER stress induced by ionising radiation in IEC-6 cells</article-title>
<source>Int. J. Radiat. Biol.</source>
<year>2010</year>
<volume>86</volume>
<fpage>429</fpage>
<lpage>435</lpage>
<pub-id pub-id-type="doi">10.3109/09553001003668014</pub-id>
<pub-id pub-id-type="pmid">20470193</pub-id>
</element-citation>
</ref>
<ref id="B97-cells-08-01105">
<label>97.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Wang</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Alam</surname>
<given-names>G.N.</given-names>
</name>
<name>
<surname>Ning</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Visioli</surname>
<given-names>F.</given-names>
</name>
<name>
<surname>Dong</surname>
<given-names>Z.</given-names>
</name>
<name>
<surname>Nor</surname>
<given-names>J.E.</given-names>
</name>
<name>
<surname>Polverini</surname>
<given-names>P.J.</given-names>
</name>
</person-group>
<article-title>The unfolded protein response induces the angiogenic switch in human tumor cells through the PERK/ATF4 pathway</article-title>
<source>Cancer Res.</source>
<year>2012</year>
<volume>72</volume>
<fpage>5396</fpage>
<lpage>5406</lpage>
<pub-id pub-id-type="doi">10.1158/0008-5472.CAN-12-0474</pub-id>
<pub-id pub-id-type="pmid">22915762</pub-id>
</element-citation>
</ref>
<ref id="B98-cells-08-01105">
<label>98.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Ghosh</surname>
<given-names>R.</given-names>
</name>
<name>
<surname>Lipson</surname>
<given-names>K.L.</given-names>
</name>
<name>
<surname>Sargent</surname>
<given-names>K.E.</given-names>
</name>
<name>
<surname>Mercurio</surname>
<given-names>A.M.</given-names>
</name>
<name>
<surname>Hunt</surname>
<given-names>J.S.</given-names>
</name>
<name>
<surname>Ron</surname>
<given-names>D.</given-names>
</name>
<name>
<surname>Urano</surname>
<given-names>F.</given-names>
</name>
</person-group>
<article-title>Transcriptional regulation of VEGF-A by the unfolded protein response pathway</article-title>
<source>PLoS ONE</source>
<year>2010</year>
<volume>5</volume>
<pub-id pub-id-type="doi">10.1371/journal.pone.0009575</pub-id>
</element-citation>
</ref>
<ref id="B99-cells-08-01105">
<label>99.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Honscheid</surname>
<given-names>P.</given-names>
</name>
<name>
<surname>Datta</surname>
<given-names>K.</given-names>
</name>
<name>
<surname>Muders</surname>
<given-names>M.H.</given-names>
</name>
</person-group>
<article-title>Autophagy: Detection, regulation and its role in cancer and therapy response</article-title>
<source>Int. J. Radiat. Biol.</source>
<year>2014</year>
<volume>90</volume>
<fpage>628</fpage>
<lpage>635</lpage>
<pub-id pub-id-type="doi">10.3109/09553002.2014.907932</pub-id>
<pub-id pub-id-type="pmid">24678799</pub-id>
</element-citation>
</ref>
<ref id="B100-cells-08-01105">
<label>100.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Yang</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Yang</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Yang</surname>
<given-names>X.</given-names>
</name>
<name>
<surname>Zhu</surname>
<given-names>H.</given-names>
</name>
<name>
<surname>Guo</surname>
<given-names>Q.</given-names>
</name>
<name>
<surname>Chen</surname>
<given-names>X.</given-names>
</name>
<name>
<surname>Zhang</surname>
<given-names>H.</given-names>
</name>
<name>
<surname>Cheng</surname>
<given-names>H.</given-names>
</name>
<name>
<surname>Sun</surname>
<given-names>X.</given-names>
</name>
</person-group>
<article-title>Autophagy and its function in radiosensitivity</article-title>
<source>Tumour Biol.</source>
<year>2015</year>
<volume>36</volume>
<fpage>4079</fpage>
<lpage>4087</lpage>
<pub-id pub-id-type="doi">10.1007/s13277-015-3496-x</pub-id>
<pub-id pub-id-type="pmid">25946972</pub-id>
</element-citation>
</ref>
<ref id="B101-cells-08-01105">
<label>101.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Ko</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Kanehisa</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Martins</surname>
<given-names>I.</given-names>
</name>
<name>
<surname>Senovilla</surname>
<given-names>L.</given-names>
</name>
<name>
<surname>Chargari</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>Dugue</surname>
<given-names>D.</given-names>
</name>
<name>
<surname>Marino</surname>
<given-names>G.</given-names>
</name>
<name>
<surname>Kepp</surname>
<given-names>O.</given-names>
</name>
<name>
<surname>Michaud</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Perfettini</surname>
<given-names>J.L.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Autophagy inhibition radiosensitizes in vitro, yet reduces radioresponses in vivo due to deficient immunogenic signalling</article-title>
<source>Cell Death Differ.</source>
<year>2014</year>
<volume>21</volume>
<fpage>92</fpage>
<lpage>99</lpage>
<pub-id pub-id-type="doi">10.1038/cdd.2013.124</pub-id>
<pub-id pub-id-type="pmid">24037090</pub-id>
</element-citation>
</ref>
<ref id="B102-cells-08-01105">
<label>102.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Noman</surname>
<given-names>M.Z.</given-names>
</name>
<name>
<surname>Janji</surname>
<given-names>B.</given-names>
</name>
<name>
<surname>Berchem</surname>
<given-names>G.</given-names>
</name>
<name>
<surname>Mami-Chouaib</surname>
<given-names>F.</given-names>
</name>
<name>
<surname>Chouaib</surname>
<given-names>S.</given-names>
</name>
</person-group>
<article-title>Hypoxia-induced autophagy: A new player in cancer immunotherapy?</article-title>
<source>Autophagy</source>
<year>2012</year>
<volume>8</volume>
<fpage>704</fpage>
<lpage>706</lpage>
<pub-id pub-id-type="doi">10.4161/auto.19572</pub-id>
<pub-id pub-id-type="pmid">22441015</pub-id>
</element-citation>
</ref>
<ref id="B103-cells-08-01105">
<label>103.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Bellot</surname>
<given-names>G.</given-names>
</name>
<name>
<surname>Garcia-Medina</surname>
<given-names>R.</given-names>
</name>
<name>
<surname>Gounon</surname>
<given-names>P.</given-names>
</name>
<name>
<surname>Chiche</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Roux</surname>
<given-names>D.</given-names>
</name>
<name>
<surname>Pouyssegur</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Mazure</surname>
<given-names>N.M.</given-names>
</name>
</person-group>
<article-title>Hypoxia-induced autophagy is mediated through hypoxia-inducible factor induction of BNIP3 and BNIP3L via their BH3 domains</article-title>
<source>Mol. Cell. Biol.</source>
<year>2009</year>
<volume>29</volume>
<fpage>2570</fpage>
<lpage>2581</lpage>
<pub-id pub-id-type="doi">10.1128/MCB.00166-09</pub-id>
<pub-id pub-id-type="pmid">19273585</pub-id>
</element-citation>
</ref>
<ref id="B104-cells-08-01105">
<label>104.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Maier</surname>
<given-names>P.</given-names>
</name>
<name>
<surname>Hartmann</surname>
<given-names>L.</given-names>
</name>
<name>
<surname>Wenz</surname>
<given-names>F.</given-names>
</name>
<name>
<surname>Herskind</surname>
<given-names>C.</given-names>
</name>
</person-group>
<article-title>Cellular Pathways in Response to Ionizing Radiation and Their Targetability for Tumor Radiosensitization</article-title>
<source>Int. J. Mol. Sci.</source>
<year>2016</year>
<volume>17</volume>
<pub-id pub-id-type="doi">10.3390/ijms17010102</pub-id>
</element-citation>
</ref>
<ref id="B105-cells-08-01105">
<label>105.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Li</surname>
<given-names>H.</given-names>
</name>
<name>
<surname>Jin</surname>
<given-names>X.</given-names>
</name>
<name>
<surname>Chen</surname>
<given-names>B.</given-names>
</name>
<name>
<surname>Li</surname>
<given-names>P.</given-names>
</name>
<name>
<surname>Li</surname>
<given-names>Q.</given-names>
</name>
</person-group>
<article-title>Autophagy-regulating microRNAs: Potential targets for improving radiotherapy</article-title>
<source>J. Cancer Res. Clin. Oncol.</source>
<year>2018</year>
<volume>144</volume>
<fpage>1623</fpage>
<lpage>1634</lpage>
<pub-id pub-id-type="doi">10.1007/s00432-018-2675-8</pub-id>
<pub-id pub-id-type="pmid">29971533</pub-id>
</element-citation>
</ref>
<ref id="B106-cells-08-01105">
<label>106.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Palumbo</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Pirtoli</surname>
<given-names>L.</given-names>
</name>
<name>
<surname>Tini</surname>
<given-names>P.</given-names>
</name>
<name>
<surname>Cevenini</surname>
<given-names>G.</given-names>
</name>
<name>
<surname>Calderaro</surname>
<given-names>F.</given-names>
</name>
<name>
<surname>Toscano</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Miracco</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>Comincini</surname>
<given-names>S.</given-names>
</name>
</person-group>
<article-title>Different involvement of autophagy in human malignant glioma cell lines undergoing irradiation and temozolomide combined treatments</article-title>
<source>J. Cell. Biochem.</source>
<year>2012</year>
<volume>113</volume>
<fpage>2308</fpage>
<lpage>2318</lpage>
<pub-id pub-id-type="doi">10.1002/jcb.24102</pub-id>
<pub-id pub-id-type="pmid">22345070</pub-id>
</element-citation>
</ref>
<ref id="B107-cells-08-01105">
<label>107.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Levine</surname>
<given-names>B.</given-names>
</name>
<name>
<surname>Yuan</surname>
<given-names>J.</given-names>
</name>
</person-group>
<article-title>Autophagy in cell death: An innocent convict?</article-title>
<source>J. Clin. Invest.</source>
<year>2005</year>
<volume>115</volume>
<fpage>2679</fpage>
<lpage>2688</lpage>
<pub-id pub-id-type="doi">10.1172/JCI26390</pub-id>
<pub-id pub-id-type="pmid">16200202</pub-id>
</element-citation>
</ref>
<ref id="B108-cells-08-01105">
<label>108.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Zhuang</surname>
<given-names>W.</given-names>
</name>
<name>
<surname>Li</surname>
<given-names>B.</given-names>
</name>
<name>
<surname>Long</surname>
<given-names>L.</given-names>
</name>
<name>
<surname>Chen</surname>
<given-names>L.</given-names>
</name>
<name>
<surname>Huang</surname>
<given-names>Q.</given-names>
</name>
<name>
<surname>Liang</surname>
<given-names>Z.</given-names>
</name>
</person-group>
<article-title>Induction of autophagy promotes differentiation of glioma-initiating cells and their radiosensitivity</article-title>
<source>Int. J. Cancer</source>
<year>2011</year>
<volume>129</volume>
<fpage>2720</fpage>
<lpage>2731</lpage>
<pub-id pub-id-type="doi">10.1002/ijc.25975</pub-id>
<pub-id pub-id-type="pmid">21384342</pub-id>
</element-citation>
</ref>
<ref id="B109-cells-08-01105">
<label>109.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Cui</surname>
<given-names>L.</given-names>
</name>
<name>
<surname>Song</surname>
<given-names>Z.</given-names>
</name>
<name>
<surname>Liang</surname>
<given-names>B.</given-names>
</name>
<name>
<surname>Jia</surname>
<given-names>L.</given-names>
</name>
<name>
<surname>Ma</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Liu</surname>
<given-names>X.</given-names>
</name>
</person-group>
<article-title>Radiation induces autophagic cell death via the p53/DRAM signaling pathway in breast cancer cells</article-title>
<source>Oncol. Rep.</source>
<year>2016</year>
<volume>35</volume>
<fpage>3639</fpage>
<lpage>3647</lpage>
<pub-id pub-id-type="doi">10.3892/or.2016.4752</pub-id>
<pub-id pub-id-type="pmid">27109777</pub-id>
</element-citation>
</ref>
<ref id="B110-cells-08-01105">
<label>110.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Kim</surname>
<given-names>K.W.</given-names>
</name>
<name>
<surname>Mutter</surname>
<given-names>R.W.</given-names>
</name>
<name>
<surname>Cao</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>Albert</surname>
<given-names>J.M.</given-names>
</name>
<name>
<surname>Freeman</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Hallahan</surname>
<given-names>D.E.</given-names>
</name>
<name>
<surname>Lu</surname>
<given-names>B.</given-names>
</name>
</person-group>
<article-title>Autophagy for cancer therapy through inhibition of pro-apoptotic proteins and mammalian target of rapamycin signaling</article-title>
<source>J. Biol. Chem.</source>
<year>2006</year>
<volume>281</volume>
<fpage>36883</fpage>
<lpage>36890</lpage>
<pub-id pub-id-type="doi">10.1074/jbc.M607094200</pub-id>
<pub-id pub-id-type="pmid">17005556</pub-id>
</element-citation>
</ref>
<ref id="B111-cells-08-01105">
<label>111.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Jing</surname>
<given-names>Q.</given-names>
</name>
<name>
<surname>Li</surname>
<given-names>G.</given-names>
</name>
<name>
<surname>Chen</surname>
<given-names>X.</given-names>
</name>
<name>
<surname>Liu</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>Lu</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Zheng</surname>
<given-names>H.</given-names>
</name>
<name>
<surname>Ma</surname>
<given-names>H.</given-names>
</name>
<name>
<surname>Qin</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Zhang</surname>
<given-names>D.</given-names>
</name>
<name>
<surname>Zhang</surname>
<given-names>S.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Wnt3a promotes radioresistance via autophagy in squamous cell carcinoma of the head and neck</article-title>
<source>J. Cell. Mol. Med.</source>
<year>2019</year>
<volume>23</volume>
<fpage>4711</fpage>
<lpage>4722</lpage>
<pub-id pub-id-type="doi">10.1111/jcmm.14394</pub-id>
<pub-id pub-id-type="pmid">31111621</pub-id>
</element-citation>
</ref>
<ref id="B112-cells-08-01105">
<label>112.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Hu</surname>
<given-names>J.L.</given-names>
</name>
<name>
<surname>He</surname>
<given-names>G.Y.</given-names>
</name>
<name>
<surname>Lan</surname>
<given-names>X.L.</given-names>
</name>
<name>
<surname>Zeng</surname>
<given-names>Z.C.</given-names>
</name>
<name>
<surname>Guan</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Ding</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Qian</surname>
<given-names>X.L.</given-names>
</name>
<name>
<surname>Liao</surname>
<given-names>W.T.</given-names>
</name>
<name>
<surname>Ding</surname>
<given-names>Y.Q.</given-names>
</name>
<name>
<surname>Liang</surname>
<given-names>L.</given-names>
</name>
</person-group>
<article-title>Inhibition of ATG12-mediated autophagy by miR-214 enhances radiosensitivity in colorectal cancer</article-title>
<source>Oncogenesis</source>
<year>2018</year>
<volume>7</volume>
<pub-id pub-id-type="doi">10.1038/s41389-018-0028-8</pub-id>
<pub-id pub-id-type="pmid">29459645</pub-id>
</element-citation>
</ref>
<ref id="B113-cells-08-01105">
<label>113.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Pelicano</surname>
<given-names>H.</given-names>
</name>
<name>
<surname>Carney</surname>
<given-names>D.</given-names>
</name>
<name>
<surname>Huang</surname>
<given-names>P.</given-names>
</name>
</person-group>
<article-title>ROS stress in cancer cells and therapeutic implications</article-title>
<source>Drug Resist. Updat.</source>
<year>2004</year>
<volume>7</volume>
<fpage>97</fpage>
<lpage>110</lpage>
<pub-id pub-id-type="doi">10.1016/j.drup.2004.01.004</pub-id>
<pub-id pub-id-type="pmid">15158766</pub-id>
</element-citation>
</ref>
<ref id="B114-cells-08-01105">
<label>114.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Goodman</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Hochstein</surname>
<given-names>P.</given-names>
</name>
</person-group>
<article-title>Generation of free radicals and lipid peroxidation by redox cycling of adriamycin and daunomycin</article-title>
<source>Biochem. Biophys. Res. Commun.</source>
<year>1977</year>
<volume>77</volume>
<fpage>797</fpage>
<lpage>803</lpage>
<pub-id pub-id-type="doi">10.1016/S0006-291X(77)80048-X</pub-id>
<pub-id pub-id-type="pmid">20093</pub-id>
</element-citation>
</ref>
<ref id="B115-cells-08-01105">
<label>115.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Alexander</surname>
<given-names>M.S.</given-names>
</name>
<name>
<surname>Wilkes</surname>
<given-names>J.G.</given-names>
</name>
<name>
<surname>Schroeder</surname>
<given-names>S.R.</given-names>
</name>
<name>
<surname>Buettner</surname>
<given-names>G.R.</given-names>
</name>
<name>
<surname>Wagner</surname>
<given-names>B.A.</given-names>
</name>
<name>
<surname>Du</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Gibson-Corley</surname>
<given-names>K.</given-names>
</name>
<name>
<surname>O’Leary</surname>
<given-names>B.R.</given-names>
</name>
<name>
<surname>Spitz</surname>
<given-names>D.R.</given-names>
</name>
<name>
<surname>Buatti</surname>
<given-names>J.M.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Pharmacologic Ascorbate Reduces Radiation-Induced Normal Tissue Toxicity and Enhances Tumor Radiosensitization in Pancreatic Cancer</article-title>
<source>Cancer Res.</source>
<year>2018</year>
<volume>78</volume>
<fpage>6838</fpage>
<lpage>6851</lpage>
<pub-id pub-id-type="doi">10.1158/0008-5472.CAN-18-1680</pub-id>
<pub-id pub-id-type="pmid">30254147</pub-id>
</element-citation>
</ref>
<ref id="B116-cells-08-01105">
<label>116.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Du</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Cieslak</surname>
<given-names>J.A.</given-names>
</name>
<name>
<surname>Welsh</surname>
<given-names>J.L.</given-names>
</name>
<name>
<surname>Sibenaller</surname>
<given-names>Z.A.</given-names>
</name>
<name>
<surname>Allen</surname>
<given-names>B.G.</given-names>
</name>
<name>
<surname>Wagner</surname>
<given-names>B.A.</given-names>
</name>
<name>
<surname>Kalen</surname>
<given-names>A.L.</given-names>
</name>
<name>
<surname>Doskey</surname>
<given-names>C.M.</given-names>
</name>
<name>
<surname>Strother</surname>
<given-names>R.K.</given-names>
</name>
<name>
<surname>Button</surname>
<given-names>A.M.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Pharmacological Ascorbate Radiosensitizes Pancreatic Cancer</article-title>
<source>Cancer Res.</source>
<year>2015</year>
<volume>75</volume>
<fpage>3314</fpage>
<lpage>3326</lpage>
<pub-id pub-id-type="doi">10.1158/0008-5472.CAN-14-1707</pub-id>
<pub-id pub-id-type="pmid">26081808</pub-id>
</element-citation>
</ref>
<ref id="B117-cells-08-01105">
<label>117.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Mehta</surname>
<given-names>M.P.</given-names>
</name>
<name>
<surname>Shapiro</surname>
<given-names>W.R.</given-names>
</name>
<name>
<surname>Phan</surname>
<given-names>S.C.</given-names>
</name>
<name>
<surname>Gervais</surname>
<given-names>R.</given-names>
</name>
<name>
<surname>Carrie</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>Chabot</surname>
<given-names>P.</given-names>
</name>
<name>
<surname>Patchell</surname>
<given-names>R.A.</given-names>
</name>
<name>
<surname>Glantz</surname>
<given-names>M.J.</given-names>
</name>
<name>
<surname>Recht</surname>
<given-names>L.</given-names>
</name>
<name>
<surname>Langer</surname>
<given-names>C.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Motexafin gadolinium combined with prompt whole brain radiotherapy prolongs time to neurologic progression in non-small-cell lung cancer patients with brain metastases: Results of a phase III trial</article-title>
<source>Int. J. Radiat. Oncol. Biol. Phys.</source>
<year>2009</year>
<volume>73</volume>
<fpage>1069</fpage>
<lpage>1076</lpage>
<pub-id pub-id-type="doi">10.1016/j.ijrobp.2008.05.068</pub-id>
<pub-id pub-id-type="pmid">18977094</pub-id>
</element-citation>
</ref>
<ref id="B118-cells-08-01105">
<label>118.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Xia</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Zhao</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Yu</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Zhang</surname>
<given-names>M.</given-names>
</name>
</person-group>
<article-title>Activated PI3K/Akt/COX-2 pathway induces resistance to radiation in human cervical cancer HeLa cells</article-title>
<source>Cancer Biother. Radiopharm.</source>
<year>2010</year>
<volume>25</volume>
<fpage>317</fpage>
<lpage>323</lpage>
<pub-id pub-id-type="doi">10.1089/cbr.2009.0707</pub-id>
<pub-id pub-id-type="pmid">20578837</pub-id>
</element-citation>
</ref>
<ref id="B119-cells-08-01105">
<label>119.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Chatterjee</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Das</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Roy</surname>
<given-names>K.</given-names>
</name>
<name>
<surname>Chatterjee</surname>
<given-names>M.</given-names>
</name>
</person-group>
<article-title>Overexpression of 5-lipoxygenase and its relation with cell proliferation and angiogenesis in 7,12-dimethylbenz(alpha)anthracene-induced rat mammary carcinogenesis</article-title>
<source>Mol. Carcinog.</source>
<year>2013</year>
<volume>52</volume>
<fpage>359</fpage>
<lpage>369</lpage>
<pub-id pub-id-type="doi">10.1002/mc.21858</pub-id>
<pub-id pub-id-type="pmid">22213124</pub-id>
</element-citation>
</ref>
<ref id="B120-cells-08-01105">
<label>120.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Dadey</surname>
<given-names>D.Y.A.</given-names>
</name>
<name>
<surname>Kapoor</surname>
<given-names>V.</given-names>
</name>
<name>
<surname>Khudanyan</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Thotala</surname>
<given-names>D.</given-names>
</name>
<name>
<surname>Hallahan</surname>
<given-names>D.E.</given-names>
</name>
</person-group>
<article-title>PERK Regulates Glioblastoma Sensitivity to ER Stress Although Promoting Radiation Resistance</article-title>
<source>Mol. Cancer Res.</source>
<year>2018</year>
<volume>16</volume>
<fpage>1447</fpage>
<lpage>1453</lpage>
<pub-id pub-id-type="doi">10.1158/1541-7786.MCR-18-0224</pub-id>
<pub-id pub-id-type="pmid">29991528</pub-id>
</element-citation>
</ref>
<ref id="B121-cells-08-01105">
<label>121.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Rosenfeld</surname>
<given-names>M.R.</given-names>
</name>
<name>
<surname>Ye</surname>
<given-names>X.</given-names>
</name>
<name>
<surname>Supko</surname>
<given-names>J.G.</given-names>
</name>
<name>
<surname>Desideri</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Grossman</surname>
<given-names>S.A.</given-names>
</name>
<name>
<surname>Brem</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Mikkelson</surname>
<given-names>T.</given-names>
</name>
<name>
<surname>Wang</surname>
<given-names>D.</given-names>
</name>
<name>
<surname>Chang</surname>
<given-names>Y.C.</given-names>
</name>
<name>
<surname>Hu</surname>
<given-names>J.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>A phase I/II trial of hydroxychloroquine in conjunction with radiation therapy and concurrent and adjuvant temozolomide in patients with newly diagnosed glioblastoma multiforme</article-title>
<source>Autophagy</source>
<year>2014</year>
<volume>10</volume>
<fpage>1359</fpage>
<lpage>1368</lpage>
<pub-id pub-id-type="doi">10.4161/auto.28984</pub-id>
<pub-id pub-id-type="pmid">24991840</pub-id>
</element-citation>
</ref>
<ref id="B122-cells-08-01105">
<label>122.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Rojas-Puentes</surname>
<given-names>L.L.</given-names>
</name>
<name>
<surname>Gonzalez-Pinedo</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Crismatt</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Ortega-Gomez</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Gamboa-Vignolle</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>Nunez-Gomez</surname>
<given-names>R.</given-names>
</name>
<name>
<surname>Dorantes-Gallareta</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Arce-Salinas</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>Arrieta</surname>
<given-names>O.</given-names>
</name>
</person-group>
<article-title>Phase II randomized, double-blind, placebo-controlled study of whole-brain irradiation with concomitant chloroquine for brain metastases</article-title>
<source>Radiat. Oncol.</source>
<year>2013</year>
<volume>8</volume>
<elocation-id>209</elocation-id>
<pub-id pub-id-type="doi">10.1186/1748-717X-8-209</pub-id>
<pub-id pub-id-type="pmid">24010771</pub-id>
</element-citation>
</ref>
<ref id="B123-cells-08-01105">
<label>123.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Hennessey</surname>
<given-names>D.</given-names>
</name>
<name>
<surname>Martin</surname>
<given-names>L.M.</given-names>
</name>
<name>
<surname>Atzberger</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Lynch</surname>
<given-names>T.H.</given-names>
</name>
<name>
<surname>Hollywood</surname>
<given-names>D.</given-names>
</name>
<name>
<surname>Marignol</surname>
<given-names>L.</given-names>
</name>
</person-group>
<article-title>Exposure to hypoxia following irradiation increases radioresistance in prostate cancer cells</article-title>
<source>Urol. Oncol.</source>
<year>2013</year>
<volume>31</volume>
<fpage>1106</fpage>
<lpage>1116</lpage>
<pub-id pub-id-type="doi">10.1016/j.urolonc.2011.10.008</pub-id>
<pub-id pub-id-type="pmid">22130126</pub-id>
</element-citation>
</ref>
<ref id="B124-cells-08-01105">
<label>124.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Zhang</surname>
<given-names>T.</given-names>
</name>
<name>
<surname>Suo</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>Zheng</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>Zhang</surname>
<given-names>H.</given-names>
</name>
</person-group>
<article-title>Hypoxia and Metabolism in Metastasis</article-title>
<source>Adv. Exp. Med. Biol.</source>
<year>2019</year>
<volume>1136</volume>
<fpage>87</fpage>
<lpage>95</lpage>
<pub-id pub-id-type="pmid">31201718</pub-id>
</element-citation>
</ref>
<ref id="B125-cells-08-01105">
<label>125.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Manoochehri Khoshinani</surname>
<given-names>H.</given-names>
</name>
<name>
<surname>Afshar</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Najafi</surname>
<given-names>R.</given-names>
</name>
</person-group>
<article-title>Hypoxia: A Double-Edged Sword in Cancer Therapy</article-title>
<source>Cancer Invest.</source>
<year>2016</year>
<volume>34</volume>
<fpage>536</fpage>
<lpage>545</lpage>
<pub-id pub-id-type="doi">10.1080/07357907.2016.1245317</pub-id>
<pub-id pub-id-type="pmid">27824512</pub-id>
</element-citation>
</ref>
<ref id="B126-cells-08-01105">
<label>126.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Dewhirst</surname>
<given-names>M.W.</given-names>
</name>
<name>
<surname>Vujaskovic</surname>
<given-names>Z.</given-names>
</name>
<name>
<surname>Jones</surname>
<given-names>E.</given-names>
</name>
<name>
<surname>Thrall</surname>
<given-names>D.</given-names>
</name>
</person-group>
<article-title>Re-setting the biologic rationale for thermal therapy</article-title>
<source>Int. J. Hyperthermia</source>
<year>2005</year>
<volume>21</volume>
<fpage>779</fpage>
<lpage>790</lpage>
<pub-id pub-id-type="doi">10.1080/02656730500271668</pub-id>
<pub-id pub-id-type="pmid">16338861</pub-id>
</element-citation>
</ref>
<ref id="B127-cells-08-01105">
<label>127.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Elming</surname>
<given-names>P.B.</given-names>
</name>
<name>
<surname>Sorensen</surname>
<given-names>B.S.</given-names>
</name>
<name>
<surname>Oei</surname>
<given-names>A.L.</given-names>
</name>
<name>
<surname>Franken</surname>
<given-names>N.A.P.</given-names>
</name>
<name>
<surname>Crezee</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Overgaard</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Horsman</surname>
<given-names>M.R.</given-names>
</name>
</person-group>
<article-title>Hyperthermia: The Optimal Treatment to Overcome Radiation Resistant Hypoxia</article-title>
<source>Cancers</source>
<year>2019</year>
<volume>11</volume>
<pub-id pub-id-type="doi">10.3390/cancers11010060</pub-id>
</element-citation>
</ref>
<ref id="B128-cells-08-01105">
<label>128.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Peeken</surname>
<given-names>J.C.</given-names>
</name>
<name>
<surname>Vaupel</surname>
<given-names>P.</given-names>
</name>
<name>
<surname>Combs</surname>
<given-names>S.E.</given-names>
</name>
</person-group>
<article-title>Integrating Hyperthermia into Modern Radiation Oncology: What Evidence Is Necessary?</article-title>
<source>Front. Oncol.</source>
<year>2017</year>
<volume>7</volume>
<pub-id pub-id-type="doi">10.3389/fonc.2017.00132</pub-id>
</element-citation>
</ref>
<ref id="B129-cells-08-01105">
<label>129.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Lee</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Son</surname>
<given-names>B.</given-names>
</name>
<name>
<surname>Park</surname>
<given-names>G.</given-names>
</name>
<name>
<surname>Kim</surname>
<given-names>H.</given-names>
</name>
<name>
<surname>Kang</surname>
<given-names>H.</given-names>
</name>
<name>
<surname>Jeon</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Youn</surname>
<given-names>H.</given-names>
</name>
<name>
<surname>Youn</surname>
<given-names>B.</given-names>
</name>
</person-group>
<article-title>Immunogenic Effect of Hyperthermia on Enhancing Radiotherapeutic Efficacy</article-title>
<source>Int. J. Mol. Sci.</source>
<year>2018</year>
<volume>19</volume>
<pub-id pub-id-type="doi">10.3390/ijms19092795</pub-id>
</element-citation>
</ref>
<ref id="B130-cells-08-01105">
<label>130.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Lauber</surname>
<given-names>K.</given-names>
</name>
<name>
<surname>Brix</surname>
<given-names>N.</given-names>
</name>
<name>
<surname>Ernst</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Hennel</surname>
<given-names>R.</given-names>
</name>
<name>
<surname>Krombach</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Anders</surname>
<given-names>H.</given-names>
</name>
<name>
<surname>Belka</surname>
<given-names>C.</given-names>
</name>
</person-group>
<article-title>Targeting the heat shock response in combination with radiotherapy: Sensitizing cancer cells to irradiation-induced cell death and heating up their immunogenicity</article-title>
<source>Cancer Lett.</source>
<year>2015</year>
<volume>368</volume>
<fpage>209</fpage>
<lpage>229</lpage>
<pub-id pub-id-type="doi">10.1016/j.canlet.2015.02.047</pub-id>
<pub-id pub-id-type="pmid">25754814</pub-id>
</element-citation>
</ref>
<ref id="B131-cells-08-01105">
<label>131.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Mahmood</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Shukla</surname>
<given-names>H.D.</given-names>
</name>
<name>
<surname>Soman</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Samanta</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Singh</surname>
<given-names>P.</given-names>
</name>
<name>
<surname>Kamlapurkar</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Saeed</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Amin</surname>
<given-names>N.P.</given-names>
</name>
<name>
<surname>Vujaskovic</surname>
<given-names>Z.</given-names>
</name>
</person-group>
<article-title>Immunotherapy, Radiotherapy, and Hyperthermia: A Combined Therapeutic Approach in Pancreatic Cancer Treatment</article-title>
<source>Cancers</source>
<year>2018</year>
<volume>10</volume>
<pub-id pub-id-type="doi">10.3390/cancers10120469</pub-id>
<pub-id pub-id-type="pmid">30486519</pub-id>
</element-citation>
</ref>
<ref id="B132-cells-08-01105">
<label>132.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Laszlo</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Fleischer</surname>
<given-names>I.</given-names>
</name>
</person-group>
<article-title>Heat-induced perturbations of DNA damage signaling pathways are modulated by molecular chaperones</article-title>
<source>Cancer Res.</source>
<year>2009</year>
<volume>69</volume>
<fpage>2042</fpage>
<lpage>2049</lpage>
<pub-id pub-id-type="doi">10.1158/0008-5472.CAN-08-1639</pub-id>
<pub-id pub-id-type="pmid">19244134</pub-id>
</element-citation>
</ref>
<ref id="B133-cells-08-01105">
<label>133.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Van den Tempel</surname>
<given-names>N.</given-names>
</name>
<name>
<surname>Laffeber</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>Odijk</surname>
<given-names>H.</given-names>
</name>
<name>
<surname>van Cappellen</surname>
<given-names>W.A.</given-names>
</name>
<name>
<surname>van Rhoon</surname>
<given-names>G.C.</given-names>
</name>
<name>
<surname>Franckena</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Kanaar</surname>
<given-names>R.</given-names>
</name>
</person-group>
<article-title>The effect of thermal dose on hyperthermia-mediated inhibition of DNA repair through homologous recombination</article-title>
<source>Oncotarget</source>
<year>2017</year>
<volume>8</volume>
<fpage>44593</fpage>
<lpage>44604</lpage>
<pub-id pub-id-type="pmid">28574821</pub-id>
</element-citation>
</ref>
<ref id="B134-cells-08-01105">
<label>134.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Van Oorschot</surname>
<given-names>B.</given-names>
</name>
<name>
<surname>Granata</surname>
<given-names>G.</given-names>
</name>
<name>
<surname>di Franco</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Ten Cate</surname>
<given-names>R.</given-names>
</name>
<name>
<surname>Rodermond</surname>
<given-names>H.M.</given-names>
</name>
<name>
<surname>Todaro</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Medema</surname>
<given-names>J.P.</given-names>
</name>
<name>
<surname>Franken</surname>
<given-names>N.A.</given-names>
</name>
</person-group>
<article-title>Targeting DNA double strand break repair with hyperthermia and DNA-PKcs inhibition to enhance the effect of radiation treatment</article-title>
<source>Oncotarget</source>
<year>2016</year>
<volume>7</volume>
<fpage>65504</fpage>
<lpage>65513</lpage>
<pub-id pub-id-type="doi">10.18632/oncotarget.11798</pub-id>
<pub-id pub-id-type="pmid">27602767</pub-id>
</element-citation>
</ref>
</ref-list>
</back>
<floats-group>
<fig id="cells-08-01105-f001" orientation="portrait" position="float">
<label>Figure 1</label>
<caption>
<p>Radiation-induced reactive oxygen species (ROS) response associated with p53 signaling. Irradiation increases intracellular ROS levels facilitated by radiation-mediated mitochondrial damage. In the presence of elevated ROS levels, p53 may importantly ameliorate radiation-induced oxidative stress.</p>
</caption>
<graphic xlink:href="cells-08-01105-g001"></graphic>
</fig>
<fig id="cells-08-01105-f002" orientation="portrait" position="float">
<label>Figure 2</label>
<caption>
<p>Radiation-induced double-strand breaks (DSB) response. When DSBs are induced by irradiation, DNA damage-sensing and repair proteins such as ATM, ATR, DNA-PK, H2AX, MDC1, Chk1, and Chk2 are activated. Subsequently, p53 is activated and induces cell cycle arrest for the homologous recombination (HR) or non-homologous end joining (NHEJ) pathways or induces apoptosis by upregulating proapoptotic genes.</p>
</caption>
<graphic xlink:href="cells-08-01105-g002"></graphic>
</fig>
<fig id="cells-08-01105-f003" orientation="portrait" position="float">
<label>Figure 3</label>
<caption>
<p>Radiation-induced lipid peroxidation and ceramide signaling. Exposure of the plasma membrane to penetrating radiation leads to the production of homologous recombination (HNE), arachidonic acid-derived lipid metabolites, and ceramide. HNE is associated with the stimulation of unfolded protein response (UPR), and arachidonic acid metabolites promote cell proliferation, inflammation, and protect cells from apoptosis, and thus, contribute to tumor radioresistance. On the other hand, ceramide triggers apoptosis by activating Fas and Bak/Bax signaling and inhibiting PI3K/Akt signaling.</p>
</caption>
<graphic xlink:href="cells-08-01105-g003"></graphic>
</fig>
<fig id="cells-08-01105-f004" orientation="portrait" position="float">
<label>Figure 4</label>
<caption>
<p>Radiation-induced mitochondrial response. Radiation induces mitochondrial damage largely via ROS generation. Excessive ROS levels and radiation-induced p53-dependent upregulations of PUMA and Bak/Bax result in mitochondrial membrane permeabilization and subsequent release of cytochrome
<italic>c</italic>
into cytosol, and thus, promote intrinsic apoptotic signaling.</p>
</caption>
<graphic xlink:href="cells-08-01105-g004"></graphic>
</fig>
<fig id="cells-08-01105-f005" orientation="portrait" position="float">
<label>Figure 5</label>
<caption>
<p>Radiation-induced ER stress response. Radiation can induce ER stress directly or indirectly by generating ROS. Under radiation-induced ER stress, specific signaling by PERK, ATF6, and IRE1 may be activated, and augment the upregulations of UPR-related genes to improve chaperone activity and induce autophagy to recover and recycle misfolded proteins.</p>
</caption>
<graphic xlink:href="cells-08-01105-g005"></graphic>
</fig>
<table-wrap id="cells-08-01105-t001" orientation="portrait" position="float">
<object-id pub-id-type="pii">cells-08-01105-t001_Table 1</object-id>
<label>Table 1</label>
<caption>
<p>Cellular stress response associated with tumor radioresistance during radiotherapy.</p>
</caption>
<table frame="hsides" rules="groups">
<thead>
<tr>
<th colspan="2" align="center" valign="middle" style="border-top:solid thin;border-bottom:solid thin" rowspan="1">Stress-Responsive Signaling for Radioresistance</th>
<th align="center" valign="middle" style="border-top:solid thin;border-bottom:solid thin" rowspan="1" colspan="1">Associated Molecules</th>
<th align="center" valign="middle" style="border-top:solid thin;border-bottom:solid thin" rowspan="1" colspan="1">Refs</th>
</tr>
</thead>
<tbody>
<tr>
<td rowspan="2" align="center" valign="middle" style="border-bottom:solid thin" colspan="1">
<bold>ROS stress response</bold>
</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">Upregulation of antioxidants</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">p53, SODs, glutathione peroxidase 1, sestrin</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">[
<xref rid="B24-cells-08-01105" ref-type="bibr">24</xref>
,
<xref rid="B25-cells-08-01105" ref-type="bibr">25</xref>
,
<xref rid="B26-cells-08-01105" ref-type="bibr">26</xref>
]</td>
</tr>
<tr>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">Adaptation to hypoxia and inhibition of ROS production</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">HIF1, VEGF, PDK1</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">[
<xref rid="B33-cells-08-01105" ref-type="bibr">33</xref>
,
<xref rid="B34-cells-08-01105" ref-type="bibr">34</xref>
,
<xref rid="B35-cells-08-01105" ref-type="bibr">35</xref>
,
<xref rid="B36-cells-08-01105" ref-type="bibr">36</xref>
]</td>
</tr>
<tr>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">
<bold>DNA damage response</bold>
</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">Upregulation of DNA damage-sensing and repair proteins</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">ATM, γH2AX, DNA-PK, ATR, MDC1, BRCA1, BRCA2</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">[
<xref rid="B58-cells-08-01105" ref-type="bibr">58</xref>
,
<xref rid="B59-cells-08-01105" ref-type="bibr">59</xref>
,
<xref rid="B60-cells-08-01105" ref-type="bibr">60</xref>
]</td>
</tr>
<tr>
<td rowspan="3" align="center" valign="middle" colspan="1">
<bold>Subcellular organelle response</bold>
</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">Production of bioactive lipid metabolites</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">HNE (non-protein), COXs, LOXs</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">[
<xref rid="B63-cells-08-01105" ref-type="bibr">63</xref>
,
<xref rid="B70-cells-08-01105" ref-type="bibr">70</xref>
,
<xref rid="B71-cells-08-01105" ref-type="bibr">71</xref>
,
<xref rid="B72-cells-08-01105" ref-type="bibr">72</xref>
,
<xref rid="B73-cells-08-01105" ref-type="bibr">73</xref>
]</td>
</tr>
<tr>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">Glycolytic reprogramming and mitochondrial malfunction</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">HIF1, PDK1</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">[
<xref rid="B81-cells-08-01105" ref-type="bibr">81</xref>
,
<xref rid="B82-cells-08-01105" ref-type="bibr">82</xref>
,
<xref rid="B83-cells-08-01105" ref-type="bibr">83</xref>
,
<xref rid="B84-cells-08-01105" ref-type="bibr">84</xref>
]</td>
</tr>
<tr>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">Activation of UPR signaling</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">PERK, ATF4, ATF6, IRE1</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">[
<xref rid="B93-cells-08-01105" ref-type="bibr">93</xref>
,
<xref rid="B94-cells-08-01105" ref-type="bibr">94</xref>
,
<xref rid="B95-cells-08-01105" ref-type="bibr">95</xref>
,
<xref rid="B96-cells-08-01105" ref-type="bibr">96</xref>
,
<xref rid="B97-cells-08-01105" ref-type="bibr">97</xref>
,
<xref rid="B98-cells-08-01105" ref-type="bibr">98</xref>
]</td>
</tr>
<tr>
<td align="center" valign="middle" style="border-top:solid thin;border-bottom:solid thin" rowspan="1" colspan="1">
<bold>Autophagy</bold>
</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">Activation of cytoprotective autophagy</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">ATGs, ULK1, Beclin-1</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">[
<xref rid="B100-cells-08-01105" ref-type="bibr">100</xref>
,
<xref rid="B101-cells-08-01105" ref-type="bibr">101</xref>
,
<xref rid="B102-cells-08-01105" ref-type="bibr">102</xref>
,
<xref rid="B103-cells-08-01105" ref-type="bibr">103</xref>
,
<xref rid="B104-cells-08-01105" ref-type="bibr">104</xref>
,
<xref rid="B105-cells-08-01105" ref-type="bibr">105</xref>
]</td>
</tr>
</tbody>
</table>
</table-wrap>
</floats-group>
</pmc>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/ChloroquineV1/Data/Pmc/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 0009250 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Pmc/Corpus/biblio.hfd -nk 0009250 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    ChloroquineV1
   |flux=    Pmc
   |étape=   Corpus
   |type=    RBID
   |clé=     
   |texte=   
}}

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Wed Mar 25 22:43:59 2020. Site generation: Sun Jan 31 12:44:45 2021