Serveur d'exploration Chloroquine

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Targeting Non-Oncogene Addiction: Focus on Thyroid Cancer

Identifieur interne : 000913 ( Pmc/Corpus ); précédent : 000912; suivant : 000914

Targeting Non-Oncogene Addiction: Focus on Thyroid Cancer

Auteurs : Maria Chiara Anania ; Tiziana Di Marco ; Mara Mazzoni ; Angela Greco

Source :

RBID : PMC:7017043

Abstract

Thyroid carcinoma (TC) is the most common malignancy of endocrine organs with an increasing incidence in industrialized countries. The majority of TC are characterized by a good prognosis, even though cases with aggressive forms not cured by standard therapies are also present. Moreover, target therapies have led to low rates of partial response and prompted the emergence of resistance, indicating that new therapies are needed. In this review, we summarize current literature about the non-oncogene addiction (NOA) concept, which indicates that cancer cells, at variance with normal cells, rely on the activity of genes, usually not mutated or aberrantly expressed, essential for coping with the transformed phenotype. We highlight the potential of non-oncogenes as a point of intervention for cancer therapy in general, and present evidence for new putative non-oncogenes that are essential for TC survival and that may constitute attractive new therapeutic targets.


Url:
DOI: 10.3390/cancers12010129
PubMed: 31947935
PubMed Central: 7017043

Links to Exploration step

PMC:7017043

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Targeting Non-Oncogene Addiction: Focus on Thyroid Cancer</title>
<author>
<name sortKey="Anania, Maria Chiara" sort="Anania, Maria Chiara" uniqKey="Anania M" first="Maria Chiara" last="Anania">Maria Chiara Anania</name>
</author>
<author>
<name sortKey="Di Marco, Tiziana" sort="Di Marco, Tiziana" uniqKey="Di Marco T" first="Tiziana" last="Di Marco">Tiziana Di Marco</name>
</author>
<author>
<name sortKey="Mazzoni, Mara" sort="Mazzoni, Mara" uniqKey="Mazzoni M" first="Mara" last="Mazzoni">Mara Mazzoni</name>
</author>
<author>
<name sortKey="Greco, Angela" sort="Greco, Angela" uniqKey="Greco A" first="Angela" last="Greco">Angela Greco</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PMC</idno>
<idno type="pmid">31947935</idno>
<idno type="pmc">7017043</idno>
<idno type="url">http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7017043</idno>
<idno type="RBID">PMC:7017043</idno>
<idno type="doi">10.3390/cancers12010129</idno>
<date when="2020">2020</date>
<idno type="wicri:Area/Pmc/Corpus">000913</idno>
<idno type="wicri:explorRef" wicri:stream="Pmc" wicri:step="Corpus" wicri:corpus="PMC">000913</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a" type="main">Targeting Non-Oncogene Addiction: Focus on Thyroid Cancer</title>
<author>
<name sortKey="Anania, Maria Chiara" sort="Anania, Maria Chiara" uniqKey="Anania M" first="Maria Chiara" last="Anania">Maria Chiara Anania</name>
</author>
<author>
<name sortKey="Di Marco, Tiziana" sort="Di Marco, Tiziana" uniqKey="Di Marco T" first="Tiziana" last="Di Marco">Tiziana Di Marco</name>
</author>
<author>
<name sortKey="Mazzoni, Mara" sort="Mazzoni, Mara" uniqKey="Mazzoni M" first="Mara" last="Mazzoni">Mara Mazzoni</name>
</author>
<author>
<name sortKey="Greco, Angela" sort="Greco, Angela" uniqKey="Greco A" first="Angela" last="Greco">Angela Greco</name>
</author>
</analytic>
<series>
<title level="j">Cancers</title>
<idno type="eISSN">2072-6694</idno>
<imprint>
<date when="2020">2020</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<p>Thyroid carcinoma (TC) is the most common malignancy of endocrine organs with an increasing incidence in industrialized countries. The majority of TC are characterized by a good prognosis, even though cases with aggressive forms not cured by standard therapies are also present. Moreover, target therapies have led to low rates of partial response and prompted the emergence of resistance, indicating that new therapies are needed. In this review, we summarize current literature about the non-oncogene addiction (NOA) concept, which indicates that cancer cells, at variance with normal cells, rely on the activity of genes, usually not mutated or aberrantly expressed, essential for coping with the transformed phenotype. We highlight the potential of non-oncogenes as a point of intervention for cancer therapy in general, and present evidence for new putative non-oncogenes that are essential for TC survival and that may constitute attractive new therapeutic targets.</p>
</div>
</front>
<back>
<div1 type="bibliography">
<listBibl>
<biblStruct>
<analytic>
<author>
<name sortKey="Hanahan, D" uniqKey="Hanahan D">D. Hanahan</name>
</author>
<author>
<name sortKey="Weinberg, R A" uniqKey="Weinberg R">R.A. Weinberg</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Weinstein, I B" uniqKey="Weinstein I">I.B. Weinstein</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Weinstein, I B" uniqKey="Weinstein I">I.B. Weinstein</name>
</author>
<author>
<name sortKey="Joe, A" uniqKey="Joe A">A. Joe</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Slamon, D J" uniqKey="Slamon D">D.J. Slamon</name>
</author>
<author>
<name sortKey="Leyland Jones, B" uniqKey="Leyland Jones B">B. Leyland-Jones</name>
</author>
<author>
<name sortKey="Shak, S" uniqKey="Shak S">S. Shak</name>
</author>
<author>
<name sortKey="Fuchs, H" uniqKey="Fuchs H">H. Fuchs</name>
</author>
<author>
<name sortKey="Paton, V" uniqKey="Paton V">V. Paton</name>
</author>
<author>
<name sortKey="Bajamonde, A" uniqKey="Bajamonde A">A. Bajamonde</name>
</author>
<author>
<name sortKey="Fleming, T" uniqKey="Fleming T">T. Fleming</name>
</author>
<author>
<name sortKey="Eiermann, W" uniqKey="Eiermann W">W. Eiermann</name>
</author>
<author>
<name sortKey="Wolter, J" uniqKey="Wolter J">J. Wolter</name>
</author>
<author>
<name sortKey="Pegram, M" uniqKey="Pegram M">M. Pegram</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Flaherty, K T" uniqKey="Flaherty K">K.T. Flaherty</name>
</author>
<author>
<name sortKey="Puzanov, I" uniqKey="Puzanov I">I. Puzanov</name>
</author>
<author>
<name sortKey="Kim, K B" uniqKey="Kim K">K.B. Kim</name>
</author>
<author>
<name sortKey="Ribas, A" uniqKey="Ribas A">A. Ribas</name>
</author>
<author>
<name sortKey="Mcarthur, G A" uniqKey="Mcarthur G">G.A. McArthur</name>
</author>
<author>
<name sortKey="Sosman, J A" uniqKey="Sosman J">J.A. Sosman</name>
</author>
<author>
<name sortKey="O Wyer, P J" uniqKey="O Wyer P">P.J. O’Dwyer</name>
</author>
<author>
<name sortKey="Lee, R J" uniqKey="Lee R">R.J. Lee</name>
</author>
<author>
<name sortKey="Grippo, J F" uniqKey="Grippo J">J.F. Grippo</name>
</author>
<author>
<name sortKey="Nolop, K" uniqKey="Nolop K">K. Nolop</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Yoda, S" uniqKey="Yoda S">S. Yoda</name>
</author>
<author>
<name sortKey="Dagogo Jack, I" uniqKey="Dagogo Jack I">I. Dagogo-Jack</name>
</author>
<author>
<name sortKey="Hata, A N" uniqKey="Hata A">A.N. Hata</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Von Mehren, M" uniqKey="Von Mehren M">M. Von Mehren</name>
</author>
<author>
<name sortKey="Joensuu, H" uniqKey="Joensuu H">H. Joensuu</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Hughes, T P" uniqKey="Hughes T">T.P. Hughes</name>
</author>
<author>
<name sortKey="Kaeda, J" uniqKey="Kaeda J">J. Kaeda</name>
</author>
<author>
<name sortKey="Branford, S" uniqKey="Branford S">S. Branford</name>
</author>
<author>
<name sortKey="Rudzki, Z" uniqKey="Rudzki Z">Z. Rudzki</name>
</author>
<author>
<name sortKey="Hochhaus, A" uniqKey="Hochhaus A">A. Hochhaus</name>
</author>
<author>
<name sortKey="Hensley, M L" uniqKey="Hensley M">M.L. Hensley</name>
</author>
<author>
<name sortKey="Gathmann, I" uniqKey="Gathmann I">I. Gathmann</name>
</author>
<author>
<name sortKey="Bolton, A E" uniqKey="Bolton A">A.E. Bolton</name>
</author>
<author>
<name sortKey="Van Hoomissen, I C" uniqKey="Van Hoomissen I">I.C. van Hoomissen</name>
</author>
<author>
<name sortKey="Goldman, J M" uniqKey="Goldman J">J.M. Goldman</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Valerio, L" uniqKey="Valerio L">L. Valerio</name>
</author>
<author>
<name sortKey="Pieruzzi, L" uniqKey="Pieruzzi L">L. Pieruzzi</name>
</author>
<author>
<name sortKey="Giani, C" uniqKey="Giani C">C. Giani</name>
</author>
<author>
<name sortKey="Agate, L" uniqKey="Agate L">L. Agate</name>
</author>
<author>
<name sortKey="Bottici, V" uniqKey="Bottici V">V. Bottici</name>
</author>
<author>
<name sortKey="Lorusso, L" uniqKey="Lorusso L">L. Lorusso</name>
</author>
<author>
<name sortKey="Cappagli, V" uniqKey="Cappagli V">V. Cappagli</name>
</author>
<author>
<name sortKey="Puleo, L" uniqKey="Puleo L">L. Puleo</name>
</author>
<author>
<name sortKey="Matrone, A" uniqKey="Matrone A">A. Matrone</name>
</author>
<author>
<name sortKey="Viola, D" uniqKey="Viola D">D. Viola</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Bronte, G" uniqKey="Bronte G">G. Bronte</name>
</author>
<author>
<name sortKey="Ulivi, P" uniqKey="Ulivi P">P. Ulivi</name>
</author>
<author>
<name sortKey="Verlicchi, A" uniqKey="Verlicchi A">A. Verlicchi</name>
</author>
<author>
<name sortKey="Cravero, P" uniqKey="Cravero P">P. Cravero</name>
</author>
<author>
<name sortKey="Delmonte, A" uniqKey="Delmonte A">A. Delmonte</name>
</author>
<author>
<name sortKey="Crino, L" uniqKey="Crino L">L. Crino</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Cocco, E" uniqKey="Cocco E">E. Cocco</name>
</author>
<author>
<name sortKey="Scaltriti, M" uniqKey="Scaltriti M">M. Scaltriti</name>
</author>
<author>
<name sortKey="Drilon, A" uniqKey="Drilon A">A. Drilon</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Solimini, N L" uniqKey="Solimini N">N.L. Solimini</name>
</author>
<author>
<name sortKey="Luo, J" uniqKey="Luo J">J. Luo</name>
</author>
<author>
<name sortKey="Elledge, S J" uniqKey="Elledge S">S.J. Elledge</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Luo, J" uniqKey="Luo J">J. Luo</name>
</author>
<author>
<name sortKey="Solimini, N L" uniqKey="Solimini N">N.L. Solimini</name>
</author>
<author>
<name sortKey="Elledge, S J" uniqKey="Elledge S">S.J. Elledge</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Chen, Z" uniqKey="Chen Z">Z. Chen</name>
</author>
<author>
<name sortKey="Xiao, Z" uniqKey="Xiao Z">Z. Xiao</name>
</author>
<author>
<name sortKey="Gu, W Z" uniqKey="Gu W">W.Z. Gu</name>
</author>
<author>
<name sortKey="Xue, J" uniqKey="Xue J">J. Xue</name>
</author>
<author>
<name sortKey="Bui, M H" uniqKey="Bui M">M.H. Bui</name>
</author>
<author>
<name sortKey="Kovar, P" uniqKey="Kovar P">P. Kovar</name>
</author>
<author>
<name sortKey="Li, G" uniqKey="Li G">G. Li</name>
</author>
<author>
<name sortKey="Wang, G" uniqKey="Wang G">G. Wang</name>
</author>
<author>
<name sortKey="Tao, Z F" uniqKey="Tao Z">Z.F. Tao</name>
</author>
<author>
<name sortKey="Tong, Y" uniqKey="Tong Y">Y. Tong</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kennedy, R D" uniqKey="Kennedy R">R.D. Kennedy</name>
</author>
<author>
<name sortKey="Chen, C C" uniqKey="Chen C">C.C. Chen</name>
</author>
<author>
<name sortKey="Stuckert, P" uniqKey="Stuckert P">P. Stuckert</name>
</author>
<author>
<name sortKey="Archila, E M" uniqKey="Archila E">E.M. Archila</name>
</author>
<author>
<name sortKey="Michelle, A" uniqKey="Michelle A">A. Michelle</name>
</author>
<author>
<name sortKey="Moreau, L A" uniqKey="Moreau L">L.A. Moreau</name>
</author>
<author>
<name sortKey="Shimamura, A" uniqKey="Shimamura A">A. Shimamura</name>
</author>
<author>
<name sortKey="D Ndrea, A D" uniqKey="D Ndrea A">A.D. D’Andrea</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Guang, M H Z" uniqKey="Guang M">M.H.Z. Guang</name>
</author>
<author>
<name sortKey="Kavanagh, E L" uniqKey="Kavanagh E">E.L. Kavanagh</name>
</author>
<author>
<name sortKey="Dunne, L P" uniqKey="Dunne L">L.P. Dunne</name>
</author>
<author>
<name sortKey="Dowling, P" uniqKey="Dowling P">P. Dowling</name>
</author>
<author>
<name sortKey="Zhang, L" uniqKey="Zhang L">L. Zhang</name>
</author>
<author>
<name sortKey="Lindsay, S" uniqKey="Lindsay S">S. Lindsay</name>
</author>
<author>
<name sortKey="Bazou, D" uniqKey="Bazou D">D. Bazou</name>
</author>
<author>
<name sortKey="Goh, C Y" uniqKey="Goh C">C.Y. Goh</name>
</author>
<author>
<name sortKey="Hanley, C" uniqKey="Hanley C">C. Hanley</name>
</author>
<author>
<name sortKey="Bianchi, G" uniqKey="Bianchi G">G. Bianchi</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Li, T" uniqKey="Li T">T. Li</name>
</author>
<author>
<name sortKey="Zhang, C" uniqKey="Zhang C">C. Zhang</name>
</author>
<author>
<name sortKey="Hassan, S" uniqKey="Hassan S">S. Hassan</name>
</author>
<author>
<name sortKey="Liu, X" uniqKey="Liu X">X. Liu</name>
</author>
<author>
<name sortKey="Song, F" uniqKey="Song F">F. Song</name>
</author>
<author>
<name sortKey="Chen, K" uniqKey="Chen K">K. Chen</name>
</author>
<author>
<name sortKey="Zhang, W" uniqKey="Zhang W">W. Zhang</name>
</author>
<author>
<name sortKey="Yang, J" uniqKey="Yang J">J. Yang</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Putcha, P" uniqKey="Putcha P">P. Putcha</name>
</author>
<author>
<name sortKey="Yu, J" uniqKey="Yu J">J. Yu</name>
</author>
<author>
<name sortKey="Rodriguez Barrueco, R" uniqKey="Rodriguez Barrueco R">R. Rodriguez-Barrueco</name>
</author>
<author>
<name sortKey="Saucedo Cuevas, L" uniqKey="Saucedo Cuevas L">L. Saucedo-Cuevas</name>
</author>
<author>
<name sortKey="Villagrasa, P" uniqKey="Villagrasa P">P. Villagrasa</name>
</author>
<author>
<name sortKey="Murga Penas, E" uniqKey="Murga Penas E">E. Murga-Penas</name>
</author>
<author>
<name sortKey="Quayle, S N" uniqKey="Quayle S">S.N. Quayle</name>
</author>
<author>
<name sortKey="Yang, M" uniqKey="Yang M">M. Yang</name>
</author>
<author>
<name sortKey="Castro, V" uniqKey="Castro V">V. Castro</name>
</author>
<author>
<name sortKey="Llobet Navas, D" uniqKey="Llobet Navas D">D. Llobet-Navas</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kroemer, G" uniqKey="Kroemer G">G. Kroemer</name>
</author>
<author>
<name sortKey="Pouyssegur, J" uniqKey="Pouyssegur J">J. Pouyssegur</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Nagel, R" uniqKey="Nagel R">R. Nagel</name>
</author>
<author>
<name sortKey="Semenova, E A" uniqKey="Semenova E">E.A. Semenova</name>
</author>
<author>
<name sortKey="Berns, A" uniqKey="Berns A">A. Berns</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Feng, Y" uniqKey="Feng Y">Y. Feng</name>
</author>
<author>
<name sortKey="Xiong, Y" uniqKey="Xiong Y">Y. Xiong</name>
</author>
<author>
<name sortKey="Qiao, T" uniqKey="Qiao T">T. Qiao</name>
</author>
<author>
<name sortKey="Li, X" uniqKey="Li X">X. Li</name>
</author>
<author>
<name sortKey="Jia, L" uniqKey="Jia L">L. Jia</name>
</author>
<author>
<name sortKey="Han, Y" uniqKey="Han Y">Y. Han</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Zi, F" uniqKey="Zi F">F. Zi</name>
</author>
<author>
<name sortKey="Zi, H" uniqKey="Zi H">H. Zi</name>
</author>
<author>
<name sortKey="Li, Y" uniqKey="Li Y">Y. Li</name>
</author>
<author>
<name sortKey="He, J" uniqKey="He J">J. He</name>
</author>
<author>
<name sortKey="Shi, Q" uniqKey="Shi Q">Q. Shi</name>
</author>
<author>
<name sortKey="Cai, Z" uniqKey="Cai Z">Z. Cai</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Pavlova, N N" uniqKey="Pavlova N">N.N. Pavlova</name>
</author>
<author>
<name sortKey="Thompson, C B" uniqKey="Thompson C">C.B. Thompson</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Commisso, C" uniqKey="Commisso C">C. Commisso</name>
</author>
<author>
<name sortKey="Davidson, S M" uniqKey="Davidson S">S.M. Davidson</name>
</author>
<author>
<name sortKey="Soydaner Azeloglu, R G" uniqKey="Soydaner Azeloglu R">R.G. Soydaner-Azeloglu</name>
</author>
<author>
<name sortKey="Parker, S J" uniqKey="Parker S">S.J. Parker</name>
</author>
<author>
<name sortKey="Kamphorst, J J" uniqKey="Kamphorst J">J.J. Kamphorst</name>
</author>
<author>
<name sortKey="Hackett, S" uniqKey="Hackett S">S. Hackett</name>
</author>
<author>
<name sortKey="Grabocka, E" uniqKey="Grabocka E">E. Grabocka</name>
</author>
<author>
<name sortKey="Nofal, M" uniqKey="Nofal M">M. Nofal</name>
</author>
<author>
<name sortKey="Drebin, J A" uniqKey="Drebin J">J.A. Drebin</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Li, M" uniqKey="Li M">M. Li</name>
</author>
<author>
<name sortKey="Chiang, Y L" uniqKey="Chiang Y">Y.L. Chiang</name>
</author>
<author>
<name sortKey="Lyssiotis, C A" uniqKey="Lyssiotis C">C.A. Lyssiotis</name>
</author>
<author>
<name sortKey="Teater, M R" uniqKey="Teater M">M.R. Teater</name>
</author>
<author>
<name sortKey="Hong, J Y" uniqKey="Hong J">J.Y. Hong</name>
</author>
<author>
<name sortKey="Shen, H" uniqKey="Shen H">H. Shen</name>
</author>
<author>
<name sortKey="Wang, L" uniqKey="Wang L">L. Wang</name>
</author>
<author>
<name sortKey="Hu, J" uniqKey="Hu J">J. Hu</name>
</author>
<author>
<name sortKey="Jing, H" uniqKey="Jing H">H. Jing</name>
</author>
<author>
<name sortKey="Chen, Z" uniqKey="Chen Z">Z. Chen</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kushchayeva, Y" uniqKey="Kushchayeva Y">Y. Kushchayeva</name>
</author>
<author>
<name sortKey="Jensen, K" uniqKey="Jensen K">K. Jensen</name>
</author>
<author>
<name sortKey="Burman, K D" uniqKey="Burman K">K.D. Burman</name>
</author>
<author>
<name sortKey="Vasko, V" uniqKey="Vasko V">V. Vasko</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Saxton, R A" uniqKey="Saxton R">R.A. Saxton</name>
</author>
<author>
<name sortKey="Sabatini, D M" uniqKey="Sabatini D">D.M. Sabatini</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Hua, H" uniqKey="Hua H">H. Hua</name>
</author>
<author>
<name sortKey="Kong, Q" uniqKey="Kong Q">Q. Kong</name>
</author>
<author>
<name sortKey="Zhang, H" uniqKey="Zhang H">H. Zhang</name>
</author>
<author>
<name sortKey="Wang, J" uniqKey="Wang J">J. Wang</name>
</author>
<author>
<name sortKey="Luo, T" uniqKey="Luo T">T. Luo</name>
</author>
<author>
<name sortKey="Jiang, Y" uniqKey="Jiang Y">Y. Jiang</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Weinberg, F" uniqKey="Weinberg F">F. Weinberg</name>
</author>
<author>
<name sortKey="Ramnath, N" uniqKey="Ramnath N">N. Ramnath</name>
</author>
<author>
<name sortKey="Nagrath, D" uniqKey="Nagrath D">D. Nagrath</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Courtois Cox, S" uniqKey="Courtois Cox S">S. Courtois-Cox</name>
</author>
<author>
<name sortKey="Jones, S L" uniqKey="Jones S">S.L. Jones</name>
</author>
<author>
<name sortKey="Cichowski, K" uniqKey="Cichowski K">K. Cichowski</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Zheng, M" uniqKey="Zheng M">M. Zheng</name>
</author>
<author>
<name sortKey="Jiang, J" uniqKey="Jiang J">J. Jiang</name>
</author>
<author>
<name sortKey="Tang, Y L" uniqKey="Tang Y">Y.L. Tang</name>
</author>
<author>
<name sortKey="Liang, X H" uniqKey="Liang X">X.H. Liang</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Shaffer, A L" uniqKey="Shaffer A">A.L. Shaffer</name>
</author>
<author>
<name sortKey="Emre, N C" uniqKey="Emre N">N.C. Emre</name>
</author>
<author>
<name sortKey="Lamy, L" uniqKey="Lamy L">L. Lamy</name>
</author>
<author>
<name sortKey="Ngo, V N" uniqKey="Ngo V">V.N. Ngo</name>
</author>
<author>
<name sortKey="Wright, G" uniqKey="Wright G">G. Wright</name>
</author>
<author>
<name sortKey="Xiao, W" uniqKey="Xiao W">W. Xiao</name>
</author>
<author>
<name sortKey="Powell, J" uniqKey="Powell J">J. Powell</name>
</author>
<author>
<name sortKey="Dave, S" uniqKey="Dave S">S. Dave</name>
</author>
<author>
<name sortKey="Yu, X" uniqKey="Yu X">X. Yu</name>
</author>
<author>
<name sortKey="Zhao, H" uniqKey="Zhao H">H. Zhao</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Silva, J M" uniqKey="Silva J">J.M. Silva</name>
</author>
<author>
<name sortKey="Marran, K" uniqKey="Marran K">K. Marran</name>
</author>
<author>
<name sortKey="Parker, J S" uniqKey="Parker J">J.S. Parker</name>
</author>
<author>
<name sortKey="Silva, J" uniqKey="Silva J">J. Silva</name>
</author>
<author>
<name sortKey="Golding, M" uniqKey="Golding M">M. Golding</name>
</author>
<author>
<name sortKey="Schlabach, M R" uniqKey="Schlabach M">M.R. Schlabach</name>
</author>
<author>
<name sortKey="Elledge, S J" uniqKey="Elledge S">S.J. Elledge</name>
</author>
<author>
<name sortKey="Hannon, G J" uniqKey="Hannon G">G.J. Hannon</name>
</author>
<author>
<name sortKey="Chang, K" uniqKey="Chang K">K. Chang</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Schlabach, M R" uniqKey="Schlabach M">M.R. Schlabach</name>
</author>
<author>
<name sortKey="Luo, J" uniqKey="Luo J">J. Luo</name>
</author>
<author>
<name sortKey="Solimini, N L" uniqKey="Solimini N">N.L. Solimini</name>
</author>
<author>
<name sortKey="Hu, G" uniqKey="Hu G">G. Hu</name>
</author>
<author>
<name sortKey="Xu, Q" uniqKey="Xu Q">Q. Xu</name>
</author>
<author>
<name sortKey="Li, M Z" uniqKey="Li M">M.Z. Li</name>
</author>
<author>
<name sortKey="Zhao, Z" uniqKey="Zhao Z">Z. Zhao</name>
</author>
<author>
<name sortKey="Smogorzewska, A" uniqKey="Smogorzewska A">A. Smogorzewska</name>
</author>
<author>
<name sortKey="Sowa, M E" uniqKey="Sowa M">M.E. Sowa</name>
</author>
<author>
<name sortKey="Ang, X L" uniqKey="Ang X">X.L. Ang</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Cole, K A" uniqKey="Cole K">K.A. Cole</name>
</author>
<author>
<name sortKey="Huggins, J" uniqKey="Huggins J">J. Huggins</name>
</author>
<author>
<name sortKey="Laquaglia, M" uniqKey="Laquaglia M">M. Laquaglia</name>
</author>
<author>
<name sortKey="Hulderman, C E" uniqKey="Hulderman C">C.E. Hulderman</name>
</author>
<author>
<name sortKey="Russell, M R" uniqKey="Russell M">M.R. Russell</name>
</author>
<author>
<name sortKey="Bosse, K" uniqKey="Bosse K">K. Bosse</name>
</author>
<author>
<name sortKey="Diskin, S J" uniqKey="Diskin S">S.J. Diskin</name>
</author>
<author>
<name sortKey="Attiyeh, E F" uniqKey="Attiyeh E">E.F. Attiyeh</name>
</author>
<author>
<name sortKey="Sennett, R" uniqKey="Sennett R">R. Sennett</name>
</author>
<author>
<name sortKey="Norris, G" uniqKey="Norris G">G. Norris</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Luo, J" uniqKey="Luo J">J. Luo</name>
</author>
<author>
<name sortKey="Emanuele, M J" uniqKey="Emanuele M">M.J. Emanuele</name>
</author>
<author>
<name sortKey="Li, D" uniqKey="Li D">D. Li</name>
</author>
<author>
<name sortKey="Creighton, C J" uniqKey="Creighton C">C.J. Creighton</name>
</author>
<author>
<name sortKey="Schlabach, M R" uniqKey="Schlabach M">M.R. Schlabach</name>
</author>
<author>
<name sortKey="Westbrook, T F" uniqKey="Westbrook T">T.F. Westbrook</name>
</author>
<author>
<name sortKey="Wong, K K" uniqKey="Wong K">K.K. Wong</name>
</author>
<author>
<name sortKey="Elledge, S J" uniqKey="Elledge S">S.J. Elledge</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Barbie, D A" uniqKey="Barbie D">D.A. Barbie</name>
</author>
<author>
<name sortKey="Tamayo, P" uniqKey="Tamayo P">P. Tamayo</name>
</author>
<author>
<name sortKey="Boehm, J S" uniqKey="Boehm J">J.S. Boehm</name>
</author>
<author>
<name sortKey="Kim, S Y" uniqKey="Kim S">S.Y. Kim</name>
</author>
<author>
<name sortKey="Moody, S E" uniqKey="Moody S">S.E. Moody</name>
</author>
<author>
<name sortKey="Dunn, I F" uniqKey="Dunn I">I.F. Dunn</name>
</author>
<author>
<name sortKey="Schinzel, A C" uniqKey="Schinzel A">A.C. Schinzel</name>
</author>
<author>
<name sortKey="Sandy, P" uniqKey="Sandy P">P. Sandy</name>
</author>
<author>
<name sortKey="Meylan, E" uniqKey="Meylan E">E. Meylan</name>
</author>
<author>
<name sortKey="Scholl, C" uniqKey="Scholl C">C. Scholl</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Scholl, C" uniqKey="Scholl C">C. Scholl</name>
</author>
<author>
<name sortKey="Frohling, S" uniqKey="Frohling S">S. Frohling</name>
</author>
<author>
<name sortKey="Dunn, I F" uniqKey="Dunn I">I.F. Dunn</name>
</author>
<author>
<name sortKey="Schinzel, A C" uniqKey="Schinzel A">A.C. Schinzel</name>
</author>
<author>
<name sortKey="Barbie, D A" uniqKey="Barbie D">D.A. Barbie</name>
</author>
<author>
<name sortKey="Kim, S Y" uniqKey="Kim S">S.Y. Kim</name>
</author>
<author>
<name sortKey="Silver, S J" uniqKey="Silver S">S.J. Silver</name>
</author>
<author>
<name sortKey="Tamayo, P" uniqKey="Tamayo P">P. Tamayo</name>
</author>
<author>
<name sortKey="Wadlow, R C" uniqKey="Wadlow R">R.C. Wadlow</name>
</author>
<author>
<name sortKey="Ramaswamy, S" uniqKey="Ramaswamy S">S. Ramaswamy</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Colombi, M" uniqKey="Colombi M">M. Colombi</name>
</author>
<author>
<name sortKey="Molle, K D" uniqKey="Molle K">K.D. Molle</name>
</author>
<author>
<name sortKey="Benjamin, D" uniqKey="Benjamin D">D. Benjamin</name>
</author>
<author>
<name sortKey="Rattenbacher Kiser, K" uniqKey="Rattenbacher Kiser K">K. Rattenbacher-Kiser</name>
</author>
<author>
<name sortKey="Schaefer, C" uniqKey="Schaefer C">C. Schaefer</name>
</author>
<author>
<name sortKey="Betz, C" uniqKey="Betz C">C. Betz</name>
</author>
<author>
<name sortKey="Thiemeyer, A" uniqKey="Thiemeyer A">A. Thiemeyer</name>
</author>
<author>
<name sortKey="Regenass, U" uniqKey="Regenass U">U. Regenass</name>
</author>
<author>
<name sortKey="Hall, M N" uniqKey="Hall M">M.N. Hall</name>
</author>
<author>
<name sortKey="Moroni, C" uniqKey="Moroni C">C. Moroni</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Petrocca, F" uniqKey="Petrocca F">F. Petrocca</name>
</author>
<author>
<name sortKey="Altschuler, G" uniqKey="Altschuler G">G. Altschuler</name>
</author>
<author>
<name sortKey="Tan, S M" uniqKey="Tan S">S.M. Tan</name>
</author>
<author>
<name sortKey="Mendillo, M L" uniqKey="Mendillo M">M.L. Mendillo</name>
</author>
<author>
<name sortKey="Yan, H" uniqKey="Yan H">H. Yan</name>
</author>
<author>
<name sortKey="Jerry, D J" uniqKey="Jerry D">D.J. Jerry</name>
</author>
<author>
<name sortKey="Kung, A L" uniqKey="Kung A">A.L. Kung</name>
</author>
<author>
<name sortKey="Hide, W" uniqKey="Hide W">W. Hide</name>
</author>
<author>
<name sortKey="Ince, T A" uniqKey="Ince T">T.A. Ince</name>
</author>
<author>
<name sortKey="Lieberman, J" uniqKey="Lieberman J">J. Lieberman</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Sethi, G" uniqKey="Sethi G">G. Sethi</name>
</author>
<author>
<name sortKey="Pathak, H B" uniqKey="Pathak H">H.B. Pathak</name>
</author>
<author>
<name sortKey="Zhang, H" uniqKey="Zhang H">H. Zhang</name>
</author>
<author>
<name sortKey="Zhou, Y" uniqKey="Zhou Y">Y. Zhou</name>
</author>
<author>
<name sortKey="Einarson, M B" uniqKey="Einarson M">M.B. Einarson</name>
</author>
<author>
<name sortKey="Vathipadiekal, V" uniqKey="Vathipadiekal V">V. Vathipadiekal</name>
</author>
<author>
<name sortKey="Gunewardena, S" uniqKey="Gunewardena S">S. Gunewardena</name>
</author>
<author>
<name sortKey="Birrer, M J" uniqKey="Birrer M">M.J. Birrer</name>
</author>
<author>
<name sortKey="Godwin, A K" uniqKey="Godwin A">A.K. Godwin</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Cowley, G S" uniqKey="Cowley G">G.S. Cowley</name>
</author>
<author>
<name sortKey="Weir, B A" uniqKey="Weir B">B.A. Weir</name>
</author>
<author>
<name sortKey="Vazquez, F" uniqKey="Vazquez F">F. Vazquez</name>
</author>
<author>
<name sortKey="Tamayo, P" uniqKey="Tamayo P">P. Tamayo</name>
</author>
<author>
<name sortKey="Scott, J A" uniqKey="Scott J">J.A. Scott</name>
</author>
<author>
<name sortKey="Rusin, S" uniqKey="Rusin S">S. Rusin</name>
</author>
<author>
<name sortKey="East Seletsky, A" uniqKey="East Seletsky A">A. East-Seletsky</name>
</author>
<author>
<name sortKey="Ali, L D" uniqKey="Ali L">L.D. Ali</name>
</author>
<author>
<name sortKey="Gerath, W F J" uniqKey="Gerath W">W.F.J. Gerath</name>
</author>
<author>
<name sortKey="Pantel, S E" uniqKey="Pantel S">S.E. Pantel</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Mcdonald, E R" uniqKey="Mcdonald E">E.R. McDonald</name>
</author>
<author>
<name sortKey="De Weck, A" uniqKey="De Weck A">A. de Weck</name>
</author>
<author>
<name sortKey="Schlabach, M R" uniqKey="Schlabach M">M.R. Schlabach</name>
</author>
<author>
<name sortKey="Billy, E" uniqKey="Billy E">E. Billy</name>
</author>
<author>
<name sortKey="Mavrakis, K J" uniqKey="Mavrakis K">K.J. Mavrakis</name>
</author>
<author>
<name sortKey="Hoffman, G R" uniqKey="Hoffman G">G.R. Hoffman</name>
</author>
<author>
<name sortKey="Belur, D" uniqKey="Belur D">D. Belur</name>
</author>
<author>
<name sortKey="Castelletti, D" uniqKey="Castelletti D">D. Castelletti</name>
</author>
<author>
<name sortKey="Frias, E" uniqKey="Frias E">E. Frias</name>
</author>
<author>
<name sortKey="Gampa, K" uniqKey="Gampa K">K. Gampa</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Tsherniak, A" uniqKey="Tsherniak A">A. Tsherniak</name>
</author>
<author>
<name sortKey="Vazquez, F" uniqKey="Vazquez F">F. Vazquez</name>
</author>
<author>
<name sortKey="Montgomery, P G" uniqKey="Montgomery P">P.G. Montgomery</name>
</author>
<author>
<name sortKey="Weir, B A" uniqKey="Weir B">B.A. Weir</name>
</author>
<author>
<name sortKey="Kryukov, G" uniqKey="Kryukov G">G. Kryukov</name>
</author>
<author>
<name sortKey="Cowley, G S" uniqKey="Cowley G">G.S. Cowley</name>
</author>
<author>
<name sortKey="Gill, S" uniqKey="Gill S">S. Gill</name>
</author>
<author>
<name sortKey="Harrington, W F" uniqKey="Harrington W">W.F. Harrington</name>
</author>
<author>
<name sortKey="Pantel, S" uniqKey="Pantel S">S. Pantel</name>
</author>
<author>
<name sortKey="Krill Burger, J M" uniqKey="Krill Burger J">J.M. Krill-Burger</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Hjaltelin, J X" uniqKey="Hjaltelin J">J.X. Hjaltelin</name>
</author>
<author>
<name sortKey="Izarzugaza, J M G" uniqKey="Izarzugaza J">J.M.G. Izarzugaza</name>
</author>
<author>
<name sortKey="Jensen, L J" uniqKey="Jensen L">L.J. Jensen</name>
</author>
<author>
<name sortKey="Russo, F" uniqKey="Russo F">F. Russo</name>
</author>
<author>
<name sortKey="Westergaard, D" uniqKey="Westergaard D">D. Westergaard</name>
</author>
<author>
<name sortKey="Brunak, S" uniqKey="Brunak S">S. Brunak</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="D Lesio, C" uniqKey="D Lesio C">C. D’Alesio</name>
</author>
<author>
<name sortKey="Punzi, S" uniqKey="Punzi S">S. Punzi</name>
</author>
<author>
<name sortKey="Cicalese, A" uniqKey="Cicalese A">A. Cicalese</name>
</author>
<author>
<name sortKey="Fornasari, L" uniqKey="Fornasari L">L. Fornasari</name>
</author>
<author>
<name sortKey="Furia, L" uniqKey="Furia L">L. Furia</name>
</author>
<author>
<name sortKey="Riva, L" uniqKey="Riva L">L. Riva</name>
</author>
<author>
<name sortKey="Carugo, A" uniqKey="Carugo A">A. Carugo</name>
</author>
<author>
<name sortKey="Curigliano, G" uniqKey="Curigliano G">G. Curigliano</name>
</author>
<author>
<name sortKey="Criscitiello, C" uniqKey="Criscitiello C">C. Criscitiello</name>
</author>
<author>
<name sortKey="Pruneri, G" uniqKey="Pruneri G">G. Pruneri</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Bossi, D" uniqKey="Bossi D">D. Bossi</name>
</author>
<author>
<name sortKey="Cicalese, A" uniqKey="Cicalese A">A. Cicalese</name>
</author>
<author>
<name sortKey="Dellino, G I" uniqKey="Dellino G">G.I. Dellino</name>
</author>
<author>
<name sortKey="Luzi, L" uniqKey="Luzi L">L. Luzi</name>
</author>
<author>
<name sortKey="Riva, L" uniqKey="Riva L">L. Riva</name>
</author>
<author>
<name sortKey="D Lesio, C" uniqKey="D Lesio C">C. D’Alesio</name>
</author>
<author>
<name sortKey="Diaferia, G R" uniqKey="Diaferia G">G.R. Diaferia</name>
</author>
<author>
<name sortKey="Carugo, A" uniqKey="Carugo A">A. Carugo</name>
</author>
<author>
<name sortKey="Cavallaro, E" uniqKey="Cavallaro E">E. Cavallaro</name>
</author>
<author>
<name sortKey="Piccioni, R" uniqKey="Piccioni R">R. Piccioni</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Carugo, A" uniqKey="Carugo A">A. Carugo</name>
</author>
<author>
<name sortKey="Genovese, G" uniqKey="Genovese G">G. Genovese</name>
</author>
<author>
<name sortKey="Seth, S" uniqKey="Seth S">S. Seth</name>
</author>
<author>
<name sortKey="Nezi, L" uniqKey="Nezi L">L. Nezi</name>
</author>
<author>
<name sortKey="Rose, J L" uniqKey="Rose J">J.L. Rose</name>
</author>
<author>
<name sortKey="Bossi, D" uniqKey="Bossi D">D. Bossi</name>
</author>
<author>
<name sortKey="Cicalese, A" uniqKey="Cicalese A">A. Cicalese</name>
</author>
<author>
<name sortKey="Shah, P K" uniqKey="Shah P">P.K. Shah</name>
</author>
<author>
<name sortKey="Viale, A" uniqKey="Viale A">A. Viale</name>
</author>
<author>
<name sortKey="Pettazzoni, P F" uniqKey="Pettazzoni P">P.F. Pettazzoni</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Rudalska, R" uniqKey="Rudalska R">R. Rudalska</name>
</author>
<author>
<name sortKey="Dauch, D" uniqKey="Dauch D">D. Dauch</name>
</author>
<author>
<name sortKey="Longerich, T" uniqKey="Longerich T">T. Longerich</name>
</author>
<author>
<name sortKey="Mcjunkin, K" uniqKey="Mcjunkin K">K. McJunkin</name>
</author>
<author>
<name sortKey="Wuestefeld, T" uniqKey="Wuestefeld T">T. Wuestefeld</name>
</author>
<author>
<name sortKey="Kang, T W" uniqKey="Kang T">T.W. Kang</name>
</author>
<author>
<name sortKey="Hohmeyer, A" uniqKey="Hohmeyer A">A. Hohmeyer</name>
</author>
<author>
<name sortKey="Pesic, M" uniqKey="Pesic M">M. Pesic</name>
</author>
<author>
<name sortKey="Leibold, J" uniqKey="Leibold J">J. Leibold</name>
</author>
<author>
<name sortKey="Von Thun, A" uniqKey="Von Thun A">A. von Thun</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Steinhart, Z" uniqKey="Steinhart Z">Z. Steinhart</name>
</author>
<author>
<name sortKey="Pavlovic, Z" uniqKey="Pavlovic Z">Z. Pavlovic</name>
</author>
<author>
<name sortKey="Chandrashekhar, M" uniqKey="Chandrashekhar M">M. Chandrashekhar</name>
</author>
<author>
<name sortKey="Hart, T" uniqKey="Hart T">T. Hart</name>
</author>
<author>
<name sortKey="Wang, X" uniqKey="Wang X">X. Wang</name>
</author>
<author>
<name sortKey="Zhang, X" uniqKey="Zhang X">X. Zhang</name>
</author>
<author>
<name sortKey="Robitaille, M" uniqKey="Robitaille M">M. Robitaille</name>
</author>
<author>
<name sortKey="Brown, K R" uniqKey="Brown K">K.R. Brown</name>
</author>
<author>
<name sortKey="Jaksani, S" uniqKey="Jaksani S">S. Jaksani</name>
</author>
<author>
<name sortKey="Overmeer, R" uniqKey="Overmeer R">R. Overmeer</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Fraietta, I" uniqKey="Fraietta I">I. Fraietta</name>
</author>
<author>
<name sortKey="Gasparri, F" uniqKey="Gasparri F">F. Gasparri</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Tirr, E" uniqKey="Tirr E">E. Tirrò</name>
</author>
<author>
<name sortKey="Martorana, F" uniqKey="Martorana F">F. Martorana</name>
</author>
<author>
<name sortKey="Romano, C" uniqKey="Romano C">C. Romano</name>
</author>
<author>
<name sortKey="Vitale, S R" uniqKey="Vitale S">S.R. Vitale</name>
</author>
<author>
<name sortKey="Motta, G" uniqKey="Motta G">G. Motta</name>
</author>
<author>
<name sortKey="Di Gregorio, S" uniqKey="Di Gregorio S">S. Di Gregorio</name>
</author>
<author>
<name sortKey="Massimino, M" uniqKey="Massimino M">M. Massimino</name>
</author>
<author>
<name sortKey="Pennisi, M S" uniqKey="Pennisi M">M.S. Pennisi</name>
</author>
<author>
<name sortKey="Stella, S" uniqKey="Stella S">S. Stella</name>
</author>
<author>
<name sortKey="Puma, A" uniqKey="Puma A">A. Puma</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Romei, C" uniqKey="Romei C">C. Romei</name>
</author>
<author>
<name sortKey="Ciampi, R" uniqKey="Ciampi R">R. Ciampi</name>
</author>
<author>
<name sortKey="Elisei, R" uniqKey="Elisei R">R. Elisei</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Greco, A" uniqKey="Greco A">A. Greco</name>
</author>
<author>
<name sortKey="Miranda, C" uniqKey="Miranda C">C. Miranda</name>
</author>
<author>
<name sortKey="Pierotti, M A" uniqKey="Pierotti M">M.A. Pierotti</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Landa, I" uniqKey="Landa I">I. Landa</name>
</author>
<author>
<name sortKey="Ibrahimpasic, T" uniqKey="Ibrahimpasic T">T. Ibrahimpasic</name>
</author>
<author>
<name sortKey="Boucai, L" uniqKey="Boucai L">L. Boucai</name>
</author>
<author>
<name sortKey="Sinha, R" uniqKey="Sinha R">R. Sinha</name>
</author>
<author>
<name sortKey="Knauf, J A" uniqKey="Knauf J">J.A. Knauf</name>
</author>
<author>
<name sortKey="Shah, R H" uniqKey="Shah R">R.H. Shah</name>
</author>
<author>
<name sortKey="Dogan, S" uniqKey="Dogan S">S. Dogan</name>
</author>
<author>
<name sortKey="Ricarte Filho, J C" uniqKey="Ricarte Filho J">J.C. Ricarte-Filho</name>
</author>
<author>
<name sortKey="Krishnamoorthy, G P" uniqKey="Krishnamoorthy G">G.P. Krishnamoorthy</name>
</author>
<author>
<name sortKey="Xu, B" uniqKey="Xu B">B. Xu</name>
</author>
</analytic>
</biblStruct>
<biblStruct></biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Krishnamoorthy, G P" uniqKey="Krishnamoorthy G">G.P. Krishnamoorthy</name>
</author>
<author>
<name sortKey="Davidson, N R" uniqKey="Davidson N">N.R. Davidson</name>
</author>
<author>
<name sortKey="Leach, S D" uniqKey="Leach S">S.D. Leach</name>
</author>
<author>
<name sortKey="Zhao, Z" uniqKey="Zhao Z">Z. Zhao</name>
</author>
<author>
<name sortKey="Lowe, S W" uniqKey="Lowe S">S.W. Lowe</name>
</author>
<author>
<name sortKey="Lee, G" uniqKey="Lee G">G. Lee</name>
</author>
<author>
<name sortKey="Landa, I" uniqKey="Landa I">I. Landa</name>
</author>
<author>
<name sortKey="Nagarajah, J" uniqKey="Nagarajah J">J. Nagarajah</name>
</author>
<author>
<name sortKey="Saqcena, M" uniqKey="Saqcena M">M. Saqcena</name>
</author>
<author>
<name sortKey="Singh, K" uniqKey="Singh K">K. Singh</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Pishkari, S" uniqKey="Pishkari S">S. Pishkari</name>
</author>
<author>
<name sortKey="Paryan, M" uniqKey="Paryan M">M. Paryan</name>
</author>
<author>
<name sortKey="Hashemi, M" uniqKey="Hashemi M">M. Hashemi</name>
</author>
<author>
<name sortKey="Baldini, E" uniqKey="Baldini E">E. Baldini</name>
</author>
<author>
<name sortKey="Mohammadi Yeganeh, S" uniqKey="Mohammadi Yeganeh S">S. Mohammadi-Yeganeh</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ramirez Moya, J" uniqKey="Ramirez Moya J">J. Ramirez-Moya</name>
</author>
<author>
<name sortKey="Santisteban, P" uniqKey="Santisteban P">P. Santisteban</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Sedaghati, M" uniqKey="Sedaghati M">M. Sedaghati</name>
</author>
<author>
<name sortKey="Kebebew, E" uniqKey="Kebebew E">E. Kebebew</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Mahmoudian Sani, M R" uniqKey="Mahmoudian Sani M">M.R. Mahmoudian-Sani</name>
</author>
<author>
<name sortKey="Jalali, A" uniqKey="Jalali A">A. Jalali</name>
</author>
<author>
<name sortKey="Jamshidi, M" uniqKey="Jamshidi M">M. Jamshidi</name>
</author>
<author>
<name sortKey="Moridi, H" uniqKey="Moridi H">H. Moridi</name>
</author>
<author>
<name sortKey="Alghasi, A" uniqKey="Alghasi A">A. Alghasi</name>
</author>
<author>
<name sortKey="Shojaeian, A" uniqKey="Shojaeian A">A. Shojaeian</name>
</author>
<author>
<name sortKey="Mobini, G R" uniqKey="Mobini G">G.R. Mobini</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Degl Nnocenti, D" uniqKey="Degl Nnocenti D">D. Degl’Innocenti</name>
</author>
<author>
<name sortKey="Romeo, P" uniqKey="Romeo P">P. Romeo</name>
</author>
<author>
<name sortKey="Tarantino, E" uniqKey="Tarantino E">E. Tarantino</name>
</author>
<author>
<name sortKey="Sensi, M" uniqKey="Sensi M">M. Sensi</name>
</author>
<author>
<name sortKey="Cassinelli, G" uniqKey="Cassinelli G">G. Cassinelli</name>
</author>
<author>
<name sortKey="Catalano, V" uniqKey="Catalano V">V. Catalano</name>
</author>
<author>
<name sortKey="Lanzi, C" uniqKey="Lanzi C">C. Lanzi</name>
</author>
<author>
<name sortKey="Perrone, F" uniqKey="Perrone F">F. Perrone</name>
</author>
<author>
<name sortKey="Pilotti, S" uniqKey="Pilotti S">S. Pilotti</name>
</author>
<author>
<name sortKey="Seregni, E" uniqKey="Seregni E">E. Seregni</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Huang, Y" uniqKey="Huang Y">Y. Huang</name>
</author>
<author>
<name sortKey="Prasad, M" uniqKey="Prasad M">M. Prasad</name>
</author>
<author>
<name sortKey="Lemon, W J" uniqKey="Lemon W">W.J. Lemon</name>
</author>
<author>
<name sortKey="Hampel, H" uniqKey="Hampel H">H. Hampel</name>
</author>
<author>
<name sortKey="Wright, F A" uniqKey="Wright F">F.A. Wright</name>
</author>
<author>
<name sortKey="Kornacker, K" uniqKey="Kornacker K">K. Kornacker</name>
</author>
<author>
<name sortKey="Livolsi, V" uniqKey="Livolsi V">V. LiVolsi</name>
</author>
<author>
<name sortKey="Frankel, W" uniqKey="Frankel W">W. Frankel</name>
</author>
<author>
<name sortKey="Kloos, R T" uniqKey="Kloos R">R.T. Kloos</name>
</author>
<author>
<name sortKey="Eng, C" uniqKey="Eng C">C. Eng</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Anania, M C" uniqKey="Anania M">M.C. Anania</name>
</author>
<author>
<name sortKey="Miranda, C" uniqKey="Miranda C">C. Miranda</name>
</author>
<author>
<name sortKey="Vizioli, M G" uniqKey="Vizioli M">M.G. Vizioli</name>
</author>
<author>
<name sortKey="Mazzoni, M" uniqKey="Mazzoni M">M. Mazzoni</name>
</author>
<author>
<name sortKey="Cleris, L" uniqKey="Cleris L">L. Cleris</name>
</author>
<author>
<name sortKey="Pagliardini, S" uniqKey="Pagliardini S">S. Pagliardini</name>
</author>
<author>
<name sortKey="Manenti, G" uniqKey="Manenti G">G. Manenti</name>
</author>
<author>
<name sortKey="Borrello, M G" uniqKey="Borrello M">M.G. Borrello</name>
</author>
<author>
<name sortKey="Pierotti, M A" uniqKey="Pierotti M">M.A. Pierotti</name>
</author>
<author>
<name sortKey="Greco, A" uniqKey="Greco A">A. Greco</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Salerno, P" uniqKey="Salerno P">P. Salerno</name>
</author>
<author>
<name sortKey="Garcia Rostan, G" uniqKey="Garcia Rostan G">G. Garcia-Rostan</name>
</author>
<author>
<name sortKey="Piccinin, S" uniqKey="Piccinin S">S. Piccinin</name>
</author>
<author>
<name sortKey="Bencivenga, T C" uniqKey="Bencivenga T">T.C. Bencivenga</name>
</author>
<author>
<name sortKey="Di, M G" uniqKey="Di M">M.G. Di</name>
</author>
<author>
<name sortKey="Doglioni, C" uniqKey="Doglioni C">C. Doglioni</name>
</author>
<author>
<name sortKey="Basolo, F" uniqKey="Basolo F">F. Basolo</name>
</author>
<author>
<name sortKey="Maestro, R" uniqKey="Maestro R">R. Maestro</name>
</author>
<author>
<name sortKey="Fusco, A" uniqKey="Fusco A">A. Fusco</name>
</author>
<author>
<name sortKey="Santoro, M" uniqKey="Santoro M">M. Santoro</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Xing, M" uniqKey="Xing M">M. Xing</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Zhang, K" uniqKey="Zhang K">K. Zhang</name>
</author>
<author>
<name sortKey="Li, C" uniqKey="Li C">C. Li</name>
</author>
<author>
<name sortKey="Liu, J" uniqKey="Liu J">J. Liu</name>
</author>
<author>
<name sortKey="Tang, X" uniqKey="Tang X">X. Tang</name>
</author>
<author>
<name sortKey="Li, Z" uniqKey="Li Z">Z. Li</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Anania, M C" uniqKey="Anania M">M.C. Anania</name>
</author>
<author>
<name sortKey="Sensi, M" uniqKey="Sensi M">M. Sensi</name>
</author>
<author>
<name sortKey="Radaelli, E" uniqKey="Radaelli E">E. Radaelli</name>
</author>
<author>
<name sortKey="Miranda, C" uniqKey="Miranda C">C. Miranda</name>
</author>
<author>
<name sortKey="Vizioli, M G" uniqKey="Vizioli M">M.G. Vizioli</name>
</author>
<author>
<name sortKey="Pagliardini, S" uniqKey="Pagliardini S">S. Pagliardini</name>
</author>
<author>
<name sortKey="Favini, E" uniqKey="Favini E">E. Favini</name>
</author>
<author>
<name sortKey="Cleris, L" uniqKey="Cleris L">L. Cleris</name>
</author>
<author>
<name sortKey="Supino, R" uniqKey="Supino R">R. Supino</name>
</author>
<author>
<name sortKey="Formelli, F" uniqKey="Formelli F">F. Formelli</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Vizioli, M G" uniqKey="Vizioli M">M.G. Vizioli</name>
</author>
<author>
<name sortKey="Sensi, M" uniqKey="Sensi M">M. Sensi</name>
</author>
<author>
<name sortKey="Miranda, C" uniqKey="Miranda C">C. Miranda</name>
</author>
<author>
<name sortKey="Cleris, L" uniqKey="Cleris L">L. Cleris</name>
</author>
<author>
<name sortKey="Formelli, F" uniqKey="Formelli F">F. Formelli</name>
</author>
<author>
<name sortKey="Anania, M C" uniqKey="Anania M">M.C. Anania</name>
</author>
<author>
<name sortKey="Pierotti, M A" uniqKey="Pierotti M">M.A. Pierotti</name>
</author>
<author>
<name sortKey="Greco, A" uniqKey="Greco A">A. Greco</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Alvarez Nu Ez, F" uniqKey="Alvarez Nu Ez F">F. Alvarez-Nuñez</name>
</author>
<author>
<name sortKey="Bussaglia, E" uniqKey="Bussaglia E">E. Bussaglia</name>
</author>
<author>
<name sortKey="Mauricio, D" uniqKey="Mauricio D">D. Mauricio</name>
</author>
<author>
<name sortKey="Ybarra, J" uniqKey="Ybarra J">J. Ybarra</name>
</author>
<author>
<name sortKey="Vilar, M" uniqKey="Vilar M">M. Vilar</name>
</author>
<author>
<name sortKey="Lerma, E" uniqKey="Lerma E">E. Lerma</name>
</author>
<author>
<name sortKey="Leiva, A D" uniqKey="Leiva A">A.D. Leiva</name>
</author>
<author>
<name sortKey="Matias Guiu, X" uniqKey="Matias Guiu X">X. Matias-Guiu</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ferrario, C" uniqKey="Ferrario C">C. Ferrario</name>
</author>
<author>
<name sortKey="Lavagni, P" uniqKey="Lavagni P">P. Lavagni</name>
</author>
<author>
<name sortKey="Gariboldi, M" uniqKey="Gariboldi M">M. Gariboldi</name>
</author>
<author>
<name sortKey="Miranda, C" uniqKey="Miranda C">C. Miranda</name>
</author>
<author>
<name sortKey="Losa, M" uniqKey="Losa M">M. Losa</name>
</author>
<author>
<name sortKey="Cleris, L" uniqKey="Cleris L">L. Cleris</name>
</author>
<author>
<name sortKey="Formelli, F" uniqKey="Formelli F">F. Formelli</name>
</author>
<author>
<name sortKey="Pilotti, S" uniqKey="Pilotti S">S. Pilotti</name>
</author>
<author>
<name sortKey="Pierotti, M A" uniqKey="Pierotti M">M.A. Pierotti</name>
</author>
<author>
<name sortKey="Greco, A" uniqKey="Greco A">A. Greco</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Li, Z" uniqKey="Li Z">Z. Li</name>
</author>
<author>
<name sortKey="Zhang, Y" uniqKey="Zhang Y">Y. Zhang</name>
</author>
<author>
<name sortKey="Wang, R" uniqKey="Wang R">R. Wang</name>
</author>
<author>
<name sortKey="Zou, K" uniqKey="Zou K">K. Zou</name>
</author>
<author>
<name sortKey="Zou, L" uniqKey="Zou L">L. Zou</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Eustatia Rutten, C F" uniqKey="Eustatia Rutten C">C.F. Eustatia-Rutten</name>
</author>
<author>
<name sortKey="Corssmit, E P" uniqKey="Corssmit E">E.P. Corssmit</name>
</author>
<author>
<name sortKey="Biermasz, N R" uniqKey="Biermasz N">N.R. Biermasz</name>
</author>
<author>
<name sortKey="Pereira, A M" uniqKey="Pereira A">A.M. Pereira</name>
</author>
<author>
<name sortKey="Romijn, J A" uniqKey="Romijn J">J.A. Romijn</name>
</author>
<author>
<name sortKey="Smit, J W" uniqKey="Smit J">J.W. Smit</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Dohan, O" uniqKey="Dohan O">O. Dohan</name>
</author>
<author>
<name sortKey="De La Vieja, A" uniqKey="De La Vieja A">A. De la Vieja</name>
</author>
<author>
<name sortKey="Paroder, V" uniqKey="Paroder V">V. Paroder</name>
</author>
<author>
<name sortKey="Riedel, C" uniqKey="Riedel C">C. Riedel</name>
</author>
<author>
<name sortKey="Artani, M" uniqKey="Artani M">M. Artani</name>
</author>
<author>
<name sortKey="Reed, M" uniqKey="Reed M">M. Reed</name>
</author>
<author>
<name sortKey="Ginter, C S" uniqKey="Ginter C">C.S. Ginter</name>
</author>
<author>
<name sortKey="Carrasco, N" uniqKey="Carrasco N">N. Carrasco</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Naoum, G E" uniqKey="Naoum G">G.E. Naoum</name>
</author>
<author>
<name sortKey="Morkos, M" uniqKey="Morkos M">M. Morkos</name>
</author>
<author>
<name sortKey="Kim, B" uniqKey="Kim B">B. Kim</name>
</author>
<author>
<name sortKey="Arafat, W" uniqKey="Arafat W">W. Arafat</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Anania, M C" uniqKey="Anania M">M.C. Anania</name>
</author>
<author>
<name sortKey="Gasparri, F" uniqKey="Gasparri F">F. Gasparri</name>
</author>
<author>
<name sortKey="Cetti, E" uniqKey="Cetti E">E. Cetti</name>
</author>
<author>
<name sortKey="Fraietta, I" uniqKey="Fraietta I">I. Fraietta</name>
</author>
<author>
<name sortKey="Todoerti, K" uniqKey="Todoerti K">K. Todoerti</name>
</author>
<author>
<name sortKey="Miranda, C" uniqKey="Miranda C">C. Miranda</name>
</author>
<author>
<name sortKey="Mazzoni, M" uniqKey="Mazzoni M">M. Mazzoni</name>
</author>
<author>
<name sortKey="Re, C" uniqKey="Re C">C. Re</name>
</author>
<author>
<name sortKey="Colombo, R" uniqKey="Colombo R">R. Colombo</name>
</author>
<author>
<name sortKey="Ukmar, G" uniqKey="Ukmar G">G. Ukmar</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Cantisani, M C" uniqKey="Cantisani M">M.C. Cantisani</name>
</author>
<author>
<name sortKey="Parascandolo, A" uniqKey="Parascandolo A">A. Parascandolo</name>
</author>
<author>
<name sortKey="Perala, M" uniqKey="Perala M">M. Perala</name>
</author>
<author>
<name sortKey="Allocca, C" uniqKey="Allocca C">C. Allocca</name>
</author>
<author>
<name sortKey="Fey, V" uniqKey="Fey V">V. Fey</name>
</author>
<author>
<name sortKey="Sahlberg, N" uniqKey="Sahlberg N">N. Sahlberg</name>
</author>
<author>
<name sortKey="Merolla, F" uniqKey="Merolla F">F. Merolla</name>
</author>
<author>
<name sortKey="Basolo, F" uniqKey="Basolo F">F. Basolo</name>
</author>
<author>
<name sortKey="Laukkanen, M O" uniqKey="Laukkanen M">M.O. Laukkanen</name>
</author>
<author>
<name sortKey="Kallioniemi, O P" uniqKey="Kallioniemi O">O.P. Kallioniemi</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Musgrove, E A" uniqKey="Musgrove E">E.A. Musgrove</name>
</author>
<author>
<name sortKey="Caldon, C E" uniqKey="Caldon C">C.E. Caldon</name>
</author>
<author>
<name sortKey="Barraclough, J" uniqKey="Barraclough J">J. Barraclough</name>
</author>
<author>
<name sortKey="Stone, A" uniqKey="Stone A">A. Stone</name>
</author>
<author>
<name sortKey="Sutherland, R L" uniqKey="Sutherland R">R.L. Sutherland</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Sanchez Martinez, C" uniqKey="Sanchez Martinez C">C. Sánchez-Martínez</name>
</author>
<author>
<name sortKey="Lallena, M J" uniqKey="Lallena M">M.J. Lallena</name>
</author>
<author>
<name sortKey="Sanfeliciano, S G" uniqKey="Sanfeliciano S">S.G. Sanfeliciano</name>
</author>
<author>
<name sortKey="De Dios, A" uniqKey="De Dios A">A. de Dios</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Seybt, T P" uniqKey="Seybt T">T.P. Seybt</name>
</author>
<author>
<name sortKey="Ramalingam, P" uniqKey="Ramalingam P">P. Ramalingam</name>
</author>
<author>
<name sortKey="Huang, J" uniqKey="Huang J">J. Huang</name>
</author>
<author>
<name sortKey="Looney, S W" uniqKey="Looney S">S.W. Looney</name>
</author>
<author>
<name sortKey="Reid, M D" uniqKey="Reid M">M.D. Reid</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Lee, J J" uniqKey="Lee J">J.J. Lee</name>
</author>
<author>
<name sortKey="Au, A Y" uniqKey="Au A">A.Y. Au</name>
</author>
<author>
<name sortKey="Foukakis, T" uniqKey="Foukakis T">T. Foukakis</name>
</author>
<author>
<name sortKey="Barbaro, M" uniqKey="Barbaro M">M. Barbaro</name>
</author>
<author>
<name sortKey="Kiss, N" uniqKey="Kiss N">N. Kiss</name>
</author>
<author>
<name sortKey="Clifton Bligh, R" uniqKey="Clifton Bligh R">R. Clifton-Bligh</name>
</author>
<author>
<name sortKey="Staaf, J" uniqKey="Staaf J">J. Staaf</name>
</author>
<author>
<name sortKey="Borg, A" uniqKey="Borg A">A. Borg</name>
</author>
<author>
<name sortKey="Delbridge, L" uniqKey="Delbridge L">L. Delbridge</name>
</author>
<author>
<name sortKey="Robinson, B G" uniqKey="Robinson B">B.G. Robinson</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Khoo, M L" uniqKey="Khoo M">M.L. Khoo</name>
</author>
<author>
<name sortKey="Ezzat, S" uniqKey="Ezzat S">S. Ezzat</name>
</author>
<author>
<name sortKey="Freeman, J L" uniqKey="Freeman J">J.L. Freeman</name>
</author>
<author>
<name sortKey="Asa, S L" uniqKey="Asa S">S.L. Asa</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Hryhorowicz, S" uniqKey="Hryhorowicz S">S. Hryhorowicz</name>
</author>
<author>
<name sortKey="Ziemnicka, K" uniqKey="Ziemnicka K">K. Ziemnicka</name>
</author>
<author>
<name sortKey="Kaczmarek Rys, M" uniqKey="Kaczmarek Rys M">M. Kaczmarek-Rys</name>
</author>
<author>
<name sortKey="Hoppe Golebiewska, J" uniqKey="Hoppe Golebiewska J">J. Hoppe-Golebiewska</name>
</author>
<author>
<name sortKey="Plawski, A" uniqKey="Plawski A">A. Plawski</name>
</author>
<author>
<name sortKey="Skrzypczak Zielinska, M" uniqKey="Skrzypczak Zielinska M">M. Skrzypczak-Zielinska</name>
</author>
<author>
<name sortKey="Szkudlarek, M" uniqKey="Szkudlarek M">M. Szkudlarek</name>
</author>
<author>
<name sortKey="Golab, M" uniqKey="Golab M">M. Golab</name>
</author>
<author>
<name sortKey="Budny, B" uniqKey="Budny B">B. Budny</name>
</author>
<author>
<name sortKey="Ruchala, M" uniqKey="Ruchala M">M. Ruchala</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Jeon, S" uniqKey="Jeon S">S. Jeon</name>
</author>
<author>
<name sortKey="Kim, Y" uniqKey="Kim Y">Y. Kim</name>
</author>
<author>
<name sortKey="Jeong, Y M" uniqKey="Jeong Y">Y.M. Jeong</name>
</author>
<author>
<name sortKey="Bae, J S" uniqKey="Bae J">J.S. Bae</name>
</author>
<author>
<name sortKey="Jung, C K" uniqKey="Jung C">C.K. Jung</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Liang, W" uniqKey="Liang W">W. Liang</name>
</author>
<author>
<name sortKey="Sun, F" uniqKey="Sun F">F. Sun</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Yin, Y" uniqKey="Yin Y">Y. Yin</name>
</author>
<author>
<name sortKey="Hong, S" uniqKey="Hong S">S. Hong</name>
</author>
<author>
<name sortKey="Yu, S" uniqKey="Yu S">S. Yu</name>
</author>
<author>
<name sortKey="Huang, Y" uniqKey="Huang Y">Y. Huang</name>
</author>
<author>
<name sortKey="Chen, S" uniqKey="Chen S">S. Chen</name>
</author>
<author>
<name sortKey="Liu, Y" uniqKey="Liu Y">Y. Liu</name>
</author>
<author>
<name sortKey="Zhang, Q" uniqKey="Zhang Q">Q. Zhang</name>
</author>
<author>
<name sortKey="Li, Y" uniqKey="Li Y">Y. Li</name>
</author>
<author>
<name sortKey="Xiao, H" uniqKey="Xiao H">H. Xiao</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Guo, F" uniqKey="Guo F">F. Guo</name>
</author>
<author>
<name sortKey="Fu, Q" uniqKey="Fu Q">Q. Fu</name>
</author>
<author>
<name sortKey="Wang, Y" uniqKey="Wang Y">Y. Wang</name>
</author>
<author>
<name sortKey="Sui, G" uniqKey="Sui G">G. Sui</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Sun, J" uniqKey="Sun J">J. Sun</name>
</author>
<author>
<name sortKey="Shi, R" uniqKey="Shi R">R. Shi</name>
</author>
<author>
<name sortKey="Zhao, S" uniqKey="Zhao S">S. Zhao</name>
</author>
<author>
<name sortKey="Li, X" uniqKey="Li X">X. Li</name>
</author>
<author>
<name sortKey="Lu, S" uniqKey="Lu S">S. Lu</name>
</author>
<author>
<name sortKey="Bu, H" uniqKey="Bu H">H. Bu</name>
</author>
<author>
<name sortKey="Ma, X" uniqKey="Ma X">X. Ma</name>
</author>
<author>
<name sortKey="Su, C" uniqKey="Su C">C. Su</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Wong, K" uniqKey="Wong K">K. Wong</name>
</author>
<author>
<name sortKey="Di, C F" uniqKey="Di C">C.F. Di</name>
</author>
<author>
<name sortKey="Ranieri, M" uniqKey="Ranieri M">M. Ranieri</name>
</author>
<author>
<name sortKey="De, M D" uniqKey="De M">M.D. De</name>
</author>
<author>
<name sortKey="Di, C A" uniqKey="Di C">C.A. Di</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Lopes Ventura, S" uniqKey="Lopes Ventura S">S. Lopes-Ventura</name>
</author>
<author>
<name sortKey="Pojo, M" uniqKey="Pojo M">M. Pojo</name>
</author>
<author>
<name sortKey="Matias, A T" uniqKey="Matias A">A.T. Matias</name>
</author>
<author>
<name sortKey="Moura, M M" uniqKey="Moura M">M.M. Moura</name>
</author>
<author>
<name sortKey="Marques, I J" uniqKey="Marques I">I.J. Marques</name>
</author>
<author>
<name sortKey="Leite, V" uniqKey="Leite V">V. Leite</name>
</author>
<author>
<name sortKey="Cavaco, B M" uniqKey="Cavaco B">B.M. Cavaco</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Antonello, Z A" uniqKey="Antonello Z">Z.A. Antonello</name>
</author>
<author>
<name sortKey="Hsu, N" uniqKey="Hsu N">N. Hsu</name>
</author>
<author>
<name sortKey="Bhasin, M" uniqKey="Bhasin M">M. Bhasin</name>
</author>
<author>
<name sortKey="Roti, G" uniqKey="Roti G">G. Roti</name>
</author>
<author>
<name sortKey="Joshi, M" uniqKey="Joshi M">M. Joshi</name>
</author>
<author>
<name sortKey="Van, H P" uniqKey="Van H">H.P. Van</name>
</author>
<author>
<name sortKey="Ye, E" uniqKey="Ye E">E. Ye</name>
</author>
<author>
<name sortKey="Lo, A S" uniqKey="Lo A">A.S. Lo</name>
</author>
<author>
<name sortKey="Karumanchi, S A" uniqKey="Karumanchi S">S.A. Karumanchi</name>
</author>
<author>
<name sortKey="Bryke, C R" uniqKey="Bryke C">C.R. Bryke</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kishimoto, T" uniqKey="Kishimoto T">T. Kishimoto</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Peng, A" uniqKey="Peng A">A. Peng</name>
</author>
<author>
<name sortKey="Yamamoto, T M" uniqKey="Yamamoto T">T.M. Yamamoto</name>
</author>
<author>
<name sortKey="Goldberg, M L" uniqKey="Goldberg M">M.L. Goldberg</name>
</author>
<author>
<name sortKey="Maller, J L" uniqKey="Maller J">J.L. Maller</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Wong, P Y" uniqKey="Wong P">P.Y. Wong</name>
</author>
<author>
<name sortKey="Ma, H T" uniqKey="Ma H">H.T. Ma</name>
</author>
<author>
<name sortKey="Lee, H J" uniqKey="Lee H">H.J. Lee</name>
</author>
<author>
<name sortKey="Poon, R Y" uniqKey="Poon R">R.Y. Poon</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Marzec, K" uniqKey="Marzec K">K. Marzec</name>
</author>
<author>
<name sortKey="Burgess, A" uniqKey="Burgess A">A. Burgess</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Wang, L" uniqKey="Wang L">L. Wang</name>
</author>
<author>
<name sortKey="Luong, V Q" uniqKey="Luong V">V.Q. Luong</name>
</author>
<author>
<name sortKey="Giannini, P J" uniqKey="Giannini P">P.J. Giannini</name>
</author>
<author>
<name sortKey="Peng, A" uniqKey="Peng A">A. Peng</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Vera, J" uniqKey="Vera J">J. Vera</name>
</author>
<author>
<name sortKey="Lartigue, L" uniqKey="Lartigue L">L. Lartigue</name>
</author>
<author>
<name sortKey="Vigneron, S" uniqKey="Vigneron S">S. Vigneron</name>
</author>
<author>
<name sortKey="Gadea, G" uniqKey="Gadea G">G. Gadea</name>
</author>
<author>
<name sortKey="Gire, V" uniqKey="Gire V">V. Gire</name>
</author>
<author>
<name sortKey="Del Rio, M" uniqKey="Del Rio M">M. Del Rio</name>
</author>
<author>
<name sortKey="Soubeyran, I" uniqKey="Soubeyran I">I. Soubeyran</name>
</author>
<author>
<name sortKey="Chibon, F" uniqKey="Chibon F">F. Chibon</name>
</author>
<author>
<name sortKey="Lorca, T" uniqKey="Lorca T">T. Lorca</name>
</author>
<author>
<name sortKey="Castro, A" uniqKey="Castro A">A. Castro</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Cao, L" uniqKey="Cao L">L. Cao</name>
</author>
<author>
<name sortKey="Li, W J" uniqKey="Li W">W.J. Li</name>
</author>
<author>
<name sortKey="Yang, J H" uniqKey="Yang J">J.H. Yang</name>
</author>
<author>
<name sortKey="Wang, Y" uniqKey="Wang Y">Y. Wang</name>
</author>
<author>
<name sortKey="Hua, Z J" uniqKey="Hua Z">Z.J. Hua</name>
</author>
<author>
<name sortKey="Liu, D" uniqKey="Liu D">D. Liu</name>
</author>
<author>
<name sortKey="Chen, Y Q" uniqKey="Chen Y">Y.Q. Chen</name>
</author>
<author>
<name sortKey="Zhang, H M" uniqKey="Zhang H">H.M. Zhang</name>
</author>
<author>
<name sortKey="Zhang, R" uniqKey="Zhang R">R. Zhang</name>
</author>
<author>
<name sortKey="Zhao, J S" uniqKey="Zhao J">J.S. Zhao</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Alvarez Fernandez, M" uniqKey="Alvarez Fernandez M">M. Alvarez-Fernandez</name>
</author>
<author>
<name sortKey="Sanz Flores, M" uniqKey="Sanz Flores M">M. Sanz-Flores</name>
</author>
<author>
<name sortKey="Sanz Castillo, B" uniqKey="Sanz Castillo B">B. Sanz-Castillo</name>
</author>
<author>
<name sortKey="Salazar Roa, M" uniqKey="Salazar Roa M">M. Salazar-Roa</name>
</author>
<author>
<name sortKey="Partida, D" uniqKey="Partida D">D. Partida</name>
</author>
<author>
<name sortKey="Zapatero Solana, E" uniqKey="Zapatero Solana E">E. Zapatero-Solana</name>
</author>
<author>
<name sortKey="Ali, H R" uniqKey="Ali H">H.R. Ali</name>
</author>
<author>
<name sortKey="Manchado, E" uniqKey="Manchado E">E. Manchado</name>
</author>
<author>
<name sortKey="Lowe, S" uniqKey="Lowe S">S. Lowe</name>
</author>
<author>
<name sortKey="Vanarsdale, T" uniqKey="Vanarsdale T">T. VanArsdale</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Rogers, S" uniqKey="Rogers S">S. Rogers</name>
</author>
<author>
<name sortKey="Mccloy, R A" uniqKey="Mccloy R">R.A. McCloy</name>
</author>
<author>
<name sortKey="Parker, B L" uniqKey="Parker B">B.L. Parker</name>
</author>
<author>
<name sortKey="Gallego Ortega, D" uniqKey="Gallego Ortega D">D. Gallego-Ortega</name>
</author>
<author>
<name sortKey="Law, A M K" uniqKey="Law A">A.M.K. Law</name>
</author>
<author>
<name sortKey="Chin, V T" uniqKey="Chin V">V.T. Chin</name>
</author>
<author>
<name sortKey="Conway, J R W" uniqKey="Conway J">J.R.W. Conway</name>
</author>
<author>
<name sortKey="Fey, D" uniqKey="Fey D">D. Fey</name>
</author>
<author>
<name sortKey="Millar, E K A" uniqKey="Millar E">E.K.A. Millar</name>
</author>
<author>
<name sortKey="O Oole, S" uniqKey="O Oole S">S. O’Toole</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Cetti, E" uniqKey="Cetti E">E. Cetti</name>
</author>
<author>
<name sortKey="Di Marco, T" uniqKey="Di Marco T">T. Di Marco</name>
</author>
<author>
<name sortKey="Mauro, G" uniqKey="Mauro G">G. Mauro</name>
</author>
<author>
<name sortKey="Mazzoni, M" uniqKey="Mazzoni M">M. Mazzoni</name>
</author>
<author>
<name sortKey="Lecis, D" uniqKey="Lecis D">D. Lecis</name>
</author>
<author>
<name sortKey="Minna, E" uniqKey="Minna E">E. Minna</name>
</author>
<author>
<name sortKey="Gioiosa, L" uniqKey="Gioiosa L">L. Gioiosa</name>
</author>
<author>
<name sortKey="Brich, S" uniqKey="Brich S">S. Brich</name>
</author>
<author>
<name sortKey="Pagliardini, S" uniqKey="Pagliardini S">S. Pagliardini</name>
</author>
<author>
<name sortKey="Borrello, M G" uniqKey="Borrello M">M.G. Borrello</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Weaver, B A" uniqKey="Weaver B">B.A. Weaver</name>
</author>
<author>
<name sortKey="Cleveland, D W" uniqKey="Cleveland D">D.W. Cleveland</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Russo, M A" uniqKey="Russo M">M.A. Russo</name>
</author>
<author>
<name sortKey="Kang, K S" uniqKey="Kang K">K.S. Kang</name>
</author>
<author>
<name sortKey="Di Cristofano, A" uniqKey="Di Cristofano A">A. Di Cristofano</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Baldini, E" uniqKey="Baldini E">E. Baldini</name>
</author>
<author>
<name sortKey="Tuccilli, C" uniqKey="Tuccilli C">C. Tuccilli</name>
</author>
<author>
<name sortKey="Prinzi, N" uniqKey="Prinzi N">N. Prinzi</name>
</author>
<author>
<name sortKey="Sorrenti, S" uniqKey="Sorrenti S">S. Sorrenti</name>
</author>
<author>
<name sortKey="Antonelli, A" uniqKey="Antonelli A">A. Antonelli</name>
</author>
<author>
<name sortKey="Gnessi, L" uniqKey="Gnessi L">L. Gnessi</name>
</author>
<author>
<name sortKey="Morrone, S" uniqKey="Morrone S">S. Morrone</name>
</author>
<author>
<name sortKey="Moretti, C" uniqKey="Moretti C">C. Moretti</name>
</author>
<author>
<name sortKey="Bononi, M" uniqKey="Bononi M">M. Bononi</name>
</author>
<author>
<name sortKey="Arlot Bonnemains, Y" uniqKey="Arlot Bonnemains Y">Y. Arlot-Bonnemains</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Uppada, S B" uniqKey="Uppada S">S.B. Uppada</name>
</author>
<author>
<name sortKey="Gowrikumar, S" uniqKey="Gowrikumar S">S. Gowrikumar</name>
</author>
<author>
<name sortKey="Ahmad, R" uniqKey="Ahmad R">R. Ahmad</name>
</author>
<author>
<name sortKey="Kumar, B" uniqKey="Kumar B">B. Kumar</name>
</author>
<author>
<name sortKey="Szeglin, B" uniqKey="Szeglin B">B. Szeglin</name>
</author>
<author>
<name sortKey="Chen, X" uniqKey="Chen X">X. Chen</name>
</author>
<author>
<name sortKey="Smith, J J" uniqKey="Smith J">J.J. Smith</name>
</author>
<author>
<name sortKey="Batra, S K" uniqKey="Batra S">S.K. Batra</name>
</author>
<author>
<name sortKey="Singh, A B" uniqKey="Singh A">A.B. Singh</name>
</author>
<author>
<name sortKey="Dhawan, P" uniqKey="Dhawan P">P. Dhawan</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Nagel, R" uniqKey="Nagel R">R. Nagel</name>
</author>
<author>
<name sortKey="Stigter Van Walsum, M" uniqKey="Stigter Van Walsum M">M. Stigter-van Walsum</name>
</author>
<author>
<name sortKey="Buijze, M" uniqKey="Buijze M">M. Buijze</name>
</author>
<author>
<name sortKey="Van Den Berg, J" uniqKey="Van Den Berg J">J. van den Berg</name>
</author>
<author>
<name sortKey="Van Der Meulen, I H" uniqKey="Van Der Meulen I">I.H. van der Meulen</name>
</author>
<author>
<name sortKey="Hodzic, J" uniqKey="Hodzic J">J. Hodzic</name>
</author>
<author>
<name sortKey="Piersma, S R" uniqKey="Piersma S">S.R. Piersma</name>
</author>
<author>
<name sortKey="Pham, T V" uniqKey="Pham T">T.V. Pham</name>
</author>
<author>
<name sortKey="Jimenez, C R" uniqKey="Jimenez C">C.R. Jiménez</name>
</author>
<author>
<name sortKey="Van Beusechem, V W" uniqKey="Van Beusechem V">V.W. van Beusechem</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Yoon, Y N" uniqKey="Yoon Y">Y.N. Yoon</name>
</author>
<author>
<name sortKey="Choe, M H" uniqKey="Choe M">M.H. Choe</name>
</author>
<author>
<name sortKey="Jung, K Y" uniqKey="Jung K">K.Y. Jung</name>
</author>
<author>
<name sortKey="Hwang, S G" uniqKey="Hwang S">S.G. Hwang</name>
</author>
<author>
<name sortKey="Oh, J S" uniqKey="Oh J">J.S. Oh</name>
</author>
<author>
<name sortKey="Kim, J S" uniqKey="Kim J">J.S. Kim</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Alvarez Fernandez, M" uniqKey="Alvarez Fernandez M">M. Alvarez-Fernandez</name>
</author>
<author>
<name sortKey="Sanchez Martinez, R" uniqKey="Sanchez Martinez R">R. Sanchez-Martinez</name>
</author>
<author>
<name sortKey="Sanz Castillo, B" uniqKey="Sanz Castillo B">B. Sanz-Castillo</name>
</author>
<author>
<name sortKey="Gan, P P" uniqKey="Gan P">P.P. Gan</name>
</author>
<author>
<name sortKey="Sanz Flores, M" uniqKey="Sanz Flores M">M. Sanz-Flores</name>
</author>
<author>
<name sortKey="Trakala, M" uniqKey="Trakala M">M. Trakala</name>
</author>
<author>
<name sortKey="Ruiz Torres, M" uniqKey="Ruiz Torres M">M. Ruiz-Torres</name>
</author>
<author>
<name sortKey="Lorca, T" uniqKey="Lorca T">T. Lorca</name>
</author>
<author>
<name sortKey="Castro, A" uniqKey="Castro A">A. Castro</name>
</author>
<author>
<name sortKey="Malumbres, M" uniqKey="Malumbres M">M. Malumbres</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ocasio, C A" uniqKey="Ocasio C">C.A. Ocasio</name>
</author>
<author>
<name sortKey="Rajasekaran, M B" uniqKey="Rajasekaran M">M.B. Rajasekaran</name>
</author>
<author>
<name sortKey="Walker, S" uniqKey="Walker S">S. Walker</name>
</author>
<author>
<name sortKey="Le, G D" uniqKey="Le G">G.D. Le</name>
</author>
<author>
<name sortKey="Spencer, J" uniqKey="Spencer J">J. Spencer</name>
</author>
<author>
<name sortKey="Pearl, F M" uniqKey="Pearl F">F.M. Pearl</name>
</author>
<author>
<name sortKey="Ward, S E" uniqKey="Ward S">S.E. Ward</name>
</author>
<author>
<name sortKey="Savic, V" uniqKey="Savic V">V. Savic</name>
</author>
<author>
<name sortKey="Pearl, L H" uniqKey="Pearl L">L.H. Pearl</name>
</author>
<author>
<name sortKey="Hochegger, H" uniqKey="Hochegger H">H. Hochegger</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ammarah, U" uniqKey="Ammarah U">U. Ammarah</name>
</author>
<author>
<name sortKey="Kumar, A" uniqKey="Kumar A">A. Kumar</name>
</author>
<author>
<name sortKey="Pal, R" uniqKey="Pal R">R. Pal</name>
</author>
<author>
<name sortKey="Bal, N C" uniqKey="Bal N">N.C. Bal</name>
</author>
<author>
<name sortKey="Misra, G" uniqKey="Misra G">G. Misra</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Beck, R" uniqKey="Beck R">R. Beck</name>
</author>
<author>
<name sortKey="Rawet, M" uniqKey="Rawet M">M. Rawet</name>
</author>
<author>
<name sortKey="Wieland, F T" uniqKey="Wieland F">F.T. Wieland</name>
</author>
<author>
<name sortKey="Cassel, D" uniqKey="Cassel D">D. Cassel</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Razi, M" uniqKey="Razi M">M. Razi</name>
</author>
<author>
<name sortKey="Chan, E Y" uniqKey="Chan E">E.Y. Chan</name>
</author>
<author>
<name sortKey="Tooze, S A" uniqKey="Tooze S">S.A. Tooze</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Panda, D" uniqKey="Panda D">D. Panda</name>
</author>
<author>
<name sortKey="Das, A" uniqKey="Das A">A. Das</name>
</author>
<author>
<name sortKey="Dinh, P X" uniqKey="Dinh P">P.X. Dinh</name>
</author>
<author>
<name sortKey="Subramaniam, S" uniqKey="Subramaniam S">S. Subramaniam</name>
</author>
<author>
<name sortKey="Nayak, D" uniqKey="Nayak D">D. Nayak</name>
</author>
<author>
<name sortKey="Barrows, N J" uniqKey="Barrows N">N.J. Barrows</name>
</author>
<author>
<name sortKey="Pearson, J L" uniqKey="Pearson J">J.L. Pearson</name>
</author>
<author>
<name sortKey="Thompson, J" uniqKey="Thompson J">J. Thompson</name>
</author>
<author>
<name sortKey="Kelly, D L" uniqKey="Kelly D">D.L. Kelly</name>
</author>
<author>
<name sortKey="Ladunga, I" uniqKey="Ladunga I">I. Ladunga</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Beller, M" uniqKey="Beller M">M. Beller</name>
</author>
<author>
<name sortKey="Sztalryd, C" uniqKey="Sztalryd C">C. Sztalryd</name>
</author>
<author>
<name sortKey="Southall, N" uniqKey="Southall N">N. Southall</name>
</author>
<author>
<name sortKey="Bell, M" uniqKey="Bell M">M. Bell</name>
</author>
<author>
<name sortKey="Jackle, H" uniqKey="Jackle H">H. Jackle</name>
</author>
<author>
<name sortKey="Auld, D S" uniqKey="Auld D">D.S. Auld</name>
</author>
<author>
<name sortKey="Oliver, B" uniqKey="Oliver B">B. Oliver</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Shtutman, M" uniqKey="Shtutman M">M. Shtutman</name>
</author>
<author>
<name sortKey="Baig, M" uniqKey="Baig M">M. Baig</name>
</author>
<author>
<name sortKey="Levina, E" uniqKey="Levina E">E. Levina</name>
</author>
<author>
<name sortKey="Hurteau, G" uniqKey="Hurteau G">G. Hurteau</name>
</author>
<author>
<name sortKey="Lim, C U" uniqKey="Lim C">C.U. Lim</name>
</author>
<author>
<name sortKey="Broude, E" uniqKey="Broude E">E. Broude</name>
</author>
<author>
<name sortKey="Nikiforov, M" uniqKey="Nikiforov M">M. Nikiforov</name>
</author>
<author>
<name sortKey="Harkins, T T" uniqKey="Harkins T">T.T. Harkins</name>
</author>
<author>
<name sortKey="Carmack, C S" uniqKey="Carmack C">C.S. Carmack</name>
</author>
<author>
<name sortKey="Ding, Y" uniqKey="Ding Y">Y. Ding</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Shtutman, M" uniqKey="Shtutman M">M. Shtutman</name>
</author>
<author>
<name sortKey="Roninson, I B" uniqKey="Roninson I">I.B. Roninson</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Anania, M C" uniqKey="Anania M">M.C. Anania</name>
</author>
<author>
<name sortKey="Cetti, E" uniqKey="Cetti E">E. Cetti</name>
</author>
<author>
<name sortKey="Lecis, D" uniqKey="Lecis D">D. Lecis</name>
</author>
<author>
<name sortKey="Todoerti, K" uniqKey="Todoerti K">K. Todoerti</name>
</author>
<author>
<name sortKey="Gulino, A" uniqKey="Gulino A">A. Gulino</name>
</author>
<author>
<name sortKey="Mauro, G" uniqKey="Mauro G">G. Mauro</name>
</author>
<author>
<name sortKey="Di Marco, T" uniqKey="Di Marco T">T. Di Marco</name>
</author>
<author>
<name sortKey="Cleris, L" uniqKey="Cleris L">L. Cleris</name>
</author>
<author>
<name sortKey="Pagliardini, S" uniqKey="Pagliardini S">S. Pagliardini</name>
</author>
<author>
<name sortKey="Manenti, G" uniqKey="Manenti G">G. Manenti</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Sudo, H" uniqKey="Sudo H">H. Sudo</name>
</author>
<author>
<name sortKey="Tsuji, A B" uniqKey="Tsuji A">A.B. Tsuji</name>
</author>
<author>
<name sortKey="Sugyo, A" uniqKey="Sugyo A">A. Sugyo</name>
</author>
<author>
<name sortKey="Kohda, M" uniqKey="Kohda M">M. Kohda</name>
</author>
<author>
<name sortKey="Sogawa, C" uniqKey="Sogawa C">C. Sogawa</name>
</author>
<author>
<name sortKey="Yoshida, C" uniqKey="Yoshida C">C. Yoshida</name>
</author>
<author>
<name sortKey="Harada, Y N" uniqKey="Harada Y">Y.N. Harada</name>
</author>
<author>
<name sortKey="Hino, O" uniqKey="Hino O">O. Hino</name>
</author>
<author>
<name sortKey="Saga, T" uniqKey="Saga T">T. Saga</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Oliver, D" uniqKey="Oliver D">D. Oliver</name>
</author>
<author>
<name sortKey="Ji, H" uniqKey="Ji H">H. Ji</name>
</author>
<author>
<name sortKey="Liu, P" uniqKey="Liu P">P. Liu</name>
</author>
<author>
<name sortKey="Gasparian, A" uniqKey="Gasparian A">A. Gasparian</name>
</author>
<author>
<name sortKey="Gardiner, E" uniqKey="Gardiner E">E. Gardiner</name>
</author>
<author>
<name sortKey="Lee, S" uniqKey="Lee S">S. Lee</name>
</author>
<author>
<name sortKey="Zenteno, A" uniqKey="Zenteno A">A. Zenteno</name>
</author>
<author>
<name sortKey="Perinskaya, L O" uniqKey="Perinskaya L">L.O. Perinskaya</name>
</author>
<author>
<name sortKey="Chen, M" uniqKey="Chen M">M. Chen</name>
</author>
<author>
<name sortKey="Buckhaults, P" uniqKey="Buckhaults P">P. Buckhaults</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kim, H S" uniqKey="Kim H">H.S. Kim</name>
</author>
<author>
<name sortKey="Mendiratta, S" uniqKey="Mendiratta S">S. Mendiratta</name>
</author>
<author>
<name sortKey="Kim, J" uniqKey="Kim J">J. Kim</name>
</author>
<author>
<name sortKey="Pecot, C V" uniqKey="Pecot C">C.V. Pecot</name>
</author>
<author>
<name sortKey="Larsen, J E" uniqKey="Larsen J">J.E. Larsen</name>
</author>
<author>
<name sortKey="Zubovych, I" uniqKey="Zubovych I">I. Zubovych</name>
</author>
<author>
<name sortKey="Seo, B Y" uniqKey="Seo B">B.Y. Seo</name>
</author>
<author>
<name sortKey="Kim, J" uniqKey="Kim J">J. Kim</name>
</author>
<author>
<name sortKey="Eskiocak, B" uniqKey="Eskiocak B">B. Eskiocak</name>
</author>
<author>
<name sortKey="Chung, H" uniqKey="Chung H">H. Chung</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Pu, X" uniqKey="Pu X">X. Pu</name>
</author>
<author>
<name sortKey="Wang, J" uniqKey="Wang J">J. Wang</name>
</author>
<author>
<name sortKey="Li, W" uniqKey="Li W">W. Li</name>
</author>
<author>
<name sortKey="Fan, W" uniqKey="Fan W">W. Fan</name>
</author>
<author>
<name sortKey="Wang, L" uniqKey="Wang L">L. Wang</name>
</author>
<author>
<name sortKey="Mao, Y" uniqKey="Mao Y">Y. Mao</name>
</author>
<author>
<name sortKey="Yang, S" uniqKey="Yang S">S. Yang</name>
</author>
<author>
<name sortKey="Liu, S" uniqKey="Liu S">S. Liu</name>
</author>
<author>
<name sortKey="Xu, J" uniqKey="Xu J">J. Xu</name>
</author>
<author>
<name sortKey="Lv, Z" uniqKey="Lv Z">Z. Lv</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Li, Z S" uniqKey="Li Z">Z.S. Li</name>
</author>
<author>
<name sortKey="Liu, C H" uniqKey="Liu C">C.H. Liu</name>
</author>
<author>
<name sortKey="Liu, Z" uniqKey="Liu Z">Z. Liu</name>
</author>
<author>
<name sortKey="Zhu, C L" uniqKey="Zhu C">C.L. Zhu</name>
</author>
<author>
<name sortKey="Huang, Q" uniqKey="Huang Q">Q. Huang</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="An, C" uniqKey="An C">C. An</name>
</author>
<author>
<name sortKey="Li, H" uniqKey="Li H">H. Li</name>
</author>
<author>
<name sortKey="Zhang, X" uniqKey="Zhang X">X. Zhang</name>
</author>
<author>
<name sortKey="Wang, J" uniqKey="Wang J">J. Wang</name>
</author>
<author>
<name sortKey="Qiang, Y" uniqKey="Qiang Y">Y. Qiang</name>
</author>
<author>
<name sortKey="Ye, X" uniqKey="Ye X">X. Ye</name>
</author>
<author>
<name sortKey="Li, Q" uniqKey="Li Q">Q. Li</name>
</author>
<author>
<name sortKey="Guan, Q" uniqKey="Guan Q">Q. Guan</name>
</author>
<author>
<name sortKey="Zhou, Y" uniqKey="Zhou Y">Y. Zhou</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ohashi, Y" uniqKey="Ohashi Y">Y. Ohashi</name>
</author>
<author>
<name sortKey="Okamura, M" uniqKey="Okamura M">M. Okamura</name>
</author>
<author>
<name sortKey="Hirosawa, A" uniqKey="Hirosawa A">A. Hirosawa</name>
</author>
<author>
<name sortKey="Tamaki, N" uniqKey="Tamaki N">N. Tamaki</name>
</author>
<author>
<name sortKey="Akatsuka, A" uniqKey="Akatsuka A">A. Akatsuka</name>
</author>
<author>
<name sortKey="Wu, K M" uniqKey="Wu K">K.M. Wu</name>
</author>
<author>
<name sortKey="Choi, H W" uniqKey="Choi H">H.W. Choi</name>
</author>
<author>
<name sortKey="Yoshimatsu, K" uniqKey="Yoshimatsu K">K. Yoshimatsu</name>
</author>
<author>
<name sortKey="Shiina, I" uniqKey="Shiina I">I. Shiina</name>
</author>
<author>
<name sortKey="Yamori, T" uniqKey="Yamori T">T. Yamori</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ohashi, Y" uniqKey="Ohashi Y">Y. Ohashi</name>
</author>
<author>
<name sortKey="Okamura, M" uniqKey="Okamura M">M. Okamura</name>
</author>
<author>
<name sortKey="Katayama, R" uniqKey="Katayama R">R. Katayama</name>
</author>
<author>
<name sortKey="Fang, S" uniqKey="Fang S">S. Fang</name>
</author>
<author>
<name sortKey="Tsutsui, S" uniqKey="Tsutsui S">S. Tsutsui</name>
</author>
<author>
<name sortKey="Akatsuka, A" uniqKey="Akatsuka A">A. Akatsuka</name>
</author>
<author>
<name sortKey="Shan, M" uniqKey="Shan M">M. Shan</name>
</author>
<author>
<name sortKey="Choi, H W" uniqKey="Choi H">H.W. Choi</name>
</author>
<author>
<name sortKey="Fujita, N" uniqKey="Fujita N">N. Fujita</name>
</author>
<author>
<name sortKey="Yoshimatsu, K" uniqKey="Yoshimatsu K">K. Yoshimatsu</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ameziane El Hassani, R" uniqKey="Ameziane El Hassani R">R. Ameziane-El Hassani</name>
</author>
<author>
<name sortKey="Buffet, C" uniqKey="Buffet C">C. Buffet</name>
</author>
<author>
<name sortKey="Leboulleux, S" uniqKey="Leboulleux S">S. Leboulleux</name>
</author>
<author>
<name sortKey="Dupuy, C" uniqKey="Dupuy C">C. Dupuy</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Szanto, I" uniqKey="Szanto I">I. Szanto</name>
</author>
<author>
<name sortKey="Pusztaszeri, M" uniqKey="Pusztaszeri M">M. Pusztaszeri</name>
</author>
<author>
<name sortKey="Mavromati, M" uniqKey="Mavromati M">M. Mavromati</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Weyemi, U" uniqKey="Weyemi U">U. Weyemi</name>
</author>
<author>
<name sortKey="Redon, C E" uniqKey="Redon C">C.E. Redon</name>
</author>
<author>
<name sortKey="Parekh, P R" uniqKey="Parekh P">P.R. Parekh</name>
</author>
<author>
<name sortKey="Dupuy, C" uniqKey="Dupuy C">C. Dupuy</name>
</author>
<author>
<name sortKey="Bonner, W M" uniqKey="Bonner W">W.M. Bonner</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Liu, C L" uniqKey="Liu C">C.L. Liu</name>
</author>
<author>
<name sortKey="Hsu, Y C" uniqKey="Hsu Y">Y.C. Hsu</name>
</author>
<author>
<name sortKey="Lee, J J" uniqKey="Lee J">J.J. Lee</name>
</author>
<author>
<name sortKey="Chen, M J" uniqKey="Chen M">M.J. Chen</name>
</author>
<author>
<name sortKey="Lin, C H" uniqKey="Lin C">C.H. Lin</name>
</author>
<author>
<name sortKey="Huang, S Y" uniqKey="Huang S">S.Y. Huang</name>
</author>
<author>
<name sortKey="Cheng, S P" uniqKey="Cheng S">S.P. Cheng</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Spartalis, E" uniqKey="Spartalis E">E. Spartalis</name>
</author>
<author>
<name sortKey="Athanasiadis, D I" uniqKey="Athanasiadis D">D.I. Athanasiadis</name>
</author>
<author>
<name sortKey="Chrysikos, D" uniqKey="Chrysikos D">D. Chrysikos</name>
</author>
<author>
<name sortKey="Spartalis, M" uniqKey="Spartalis M">M. Spartalis</name>
</author>
<author>
<name sortKey="Boutzios, G" uniqKey="Boutzios G">G. Boutzios</name>
</author>
<author>
<name sortKey="Schizas, D" uniqKey="Schizas D">D. Schizas</name>
</author>
<author>
<name sortKey="Garmpis, N" uniqKey="Garmpis N">N. Garmpis</name>
</author>
<author>
<name sortKey="Damaskos, C" uniqKey="Damaskos C">C. Damaskos</name>
</author>
<author>
<name sortKey="Paschou, S A" uniqKey="Paschou S">S.A. Paschou</name>
</author>
<author>
<name sortKey="Ioannidis, A" uniqKey="Ioannidis A">A. Ioannidis</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Sherman, S I" uniqKey="Sherman S">S.I. Sherman</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Zhang, L" uniqKey="Zhang L">L. Zhang</name>
</author>
<author>
<name sortKey="Boufraqech, M" uniqKey="Boufraqech M">M. Boufraqech</name>
</author>
<author>
<name sortKey="Lake, R" uniqKey="Lake R">R. Lake</name>
</author>
<author>
<name sortKey="Kebebew, E" uniqKey="Kebebew E">E. Kebebew</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Woan, K V" uniqKey="Woan K">K.V. Woan</name>
</author>
<author>
<name sortKey="Sahakian, E" uniqKey="Sahakian E">E. Sahakian</name>
</author>
<author>
<name sortKey="Sotomayor, E M" uniqKey="Sotomayor E">E.M. Sotomayor</name>
</author>
<author>
<name sortKey="Seto, E" uniqKey="Seto E">E. Seto</name>
</author>
<author>
<name sortKey="Villagra, A" uniqKey="Villagra A">A. Villagra</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Altmann, A" uniqKey="Altmann A">A. Altmann</name>
</author>
<author>
<name sortKey="Markert, A" uniqKey="Markert A">A. Markert</name>
</author>
<author>
<name sortKey="Askoxylakis, V" uniqKey="Askoxylakis V">V. Askoxylakis</name>
</author>
<author>
<name sortKey="Schoning, T" uniqKey="Schoning T">T. Schoning</name>
</author>
<author>
<name sortKey="Jesenofsky, R" uniqKey="Jesenofsky R">R. Jesenofsky</name>
</author>
<author>
<name sortKey="Eisenhut, M" uniqKey="Eisenhut M">M. Eisenhut</name>
</author>
<author>
<name sortKey="Haberkorn, U" uniqKey="Haberkorn U">U. Haberkorn</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Qiang, W" uniqKey="Qiang W">W. Qiang</name>
</author>
<author>
<name sortKey="Sui, F" uniqKey="Sui F">F. Sui</name>
</author>
<author>
<name sortKey="Ma, J" uniqKey="Ma J">J. Ma</name>
</author>
<author>
<name sortKey="Li, X" uniqKey="Li X">X. Li</name>
</author>
<author>
<name sortKey="Ren, X" uniqKey="Ren X">X. Ren</name>
</author>
<author>
<name sortKey="Shao, Y" uniqKey="Shao Y">Y. Shao</name>
</author>
<author>
<name sortKey="Liu, J" uniqKey="Liu J">J. Liu</name>
</author>
<author>
<name sortKey="Guan, H" uniqKey="Guan H">H. Guan</name>
</author>
<author>
<name sortKey="Shi, B" uniqKey="Shi B">B. Shi</name>
</author>
<author>
<name sortKey="Hou, P" uniqKey="Hou P">P. Hou</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Mehta, A" uniqKey="Mehta A">A. Mehta</name>
</author>
<author>
<name sortKey="Zhang, L" uniqKey="Zhang L">L. Zhang</name>
</author>
<author>
<name sortKey="Boufraqech, M" uniqKey="Boufraqech M">M. Boufraqech</name>
</author>
<author>
<name sortKey="Zhang, Y" uniqKey="Zhang Y">Y. Zhang</name>
</author>
<author>
<name sortKey="Patel, D" uniqKey="Patel D">D. Patel</name>
</author>
<author>
<name sortKey="Shen, M" uniqKey="Shen M">M. Shen</name>
</author>
<author>
<name sortKey="Kebebew, E" uniqKey="Kebebew E">E. Kebebew</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Shim, J S" uniqKey="Shim J">J.S. Shim</name>
</author>
<author>
<name sortKey="Rao, R" uniqKey="Rao R">R. Rao</name>
</author>
<author>
<name sortKey="Beebe, K" uniqKey="Beebe K">K. Beebe</name>
</author>
<author>
<name sortKey="Neckers, L" uniqKey="Neckers L">L. Neckers</name>
</author>
<author>
<name sortKey="Han, I" uniqKey="Han I">I. Han</name>
</author>
<author>
<name sortKey="Nahta, R" uniqKey="Nahta R">R. Nahta</name>
</author>
<author>
<name sortKey="Liu, J O" uniqKey="Liu J">J.O. Liu</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Driessen, C" uniqKey="Driessen C">C. Driessen</name>
</author>
<author>
<name sortKey="Muller, R" uniqKey="Muller R">R. Muller</name>
</author>
<author>
<name sortKey="Novak, U" uniqKey="Novak U">U. Novak</name>
</author>
<author>
<name sortKey="Cantoni, N" uniqKey="Cantoni N">N. Cantoni</name>
</author>
<author>
<name sortKey="Betticher, D" uniqKey="Betticher D">D. Betticher</name>
</author>
<author>
<name sortKey="Mach, N" uniqKey="Mach N">N. Mach</name>
</author>
<author>
<name sortKey="Rufer, A" uniqKey="Rufer A">A. Rufer</name>
</author>
<author>
<name sortKey="Mey, U" uniqKey="Mey U">U. Mey</name>
</author>
<author>
<name sortKey="Samaras, P" uniqKey="Samaras P">P. Samaras</name>
</author>
<author>
<name sortKey="Ribi, K" uniqKey="Ribi K">K. Ribi</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Vandewynckel, Y P" uniqKey="Vandewynckel Y">Y.P. Vandewynckel</name>
</author>
<author>
<name sortKey="Coucke, C" uniqKey="Coucke C">C. Coucke</name>
</author>
<author>
<name sortKey="Laukens, D" uniqKey="Laukens D">D. Laukens</name>
</author>
<author>
<name sortKey="Devisscher, L" uniqKey="Devisscher L">L. Devisscher</name>
</author>
<author>
<name sortKey="Paridaens, A" uniqKey="Paridaens A">A. Paridaens</name>
</author>
<author>
<name sortKey="Bogaerts, E" uniqKey="Bogaerts E">E. Bogaerts</name>
</author>
<author>
<name sortKey="Vandierendonck, A" uniqKey="Vandierendonck A">A. Vandierendonck</name>
</author>
<author>
<name sortKey="Raevens, S" uniqKey="Raevens S">S. Raevens</name>
</author>
<author>
<name sortKey="Verhelst, X" uniqKey="Verhelst X">X. Verhelst</name>
</author>
<author>
<name sortKey="Van, S C" uniqKey="Van S">S.C. Van</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Abt, D" uniqKey="Abt D">D. Abt</name>
</author>
<author>
<name sortKey="Besse, A" uniqKey="Besse A">A. Besse</name>
</author>
<author>
<name sortKey="Sedlarikova, L" uniqKey="Sedlarikova L">L. Sedlarikova</name>
</author>
<author>
<name sortKey="Kraus, M" uniqKey="Kraus M">M. Kraus</name>
</author>
<author>
<name sortKey="Bader, J" uniqKey="Bader J">J. Bader</name>
</author>
<author>
<name sortKey="Silzle, T" uniqKey="Silzle T">T. Silzle</name>
</author>
<author>
<name sortKey="Vodinska, M" uniqKey="Vodinska M">M. Vodinska</name>
</author>
<author>
<name sortKey="Slaby, O" uniqKey="Slaby O">O. Slaby</name>
</author>
<author>
<name sortKey="Schmid, H P" uniqKey="Schmid H">H.P. Schmid</name>
</author>
<author>
<name sortKey="Engeler, D S" uniqKey="Engeler D">D.S. Engeler</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Jensen, K" uniqKey="Jensen K">K. Jensen</name>
</author>
<author>
<name sortKey="Bikas, A" uniqKey="Bikas A">A. Bikas</name>
</author>
<author>
<name sortKey="Patel, A" uniqKey="Patel A">A. Patel</name>
</author>
<author>
<name sortKey="Kushchayeva, Y" uniqKey="Kushchayeva Y">Y. Kushchayeva</name>
</author>
<author>
<name sortKey="Costello, J" uniqKey="Costello J">J. Costello</name>
</author>
<author>
<name sortKey="Mcdaniel, D" uniqKey="Mcdaniel D">D. McDaniel</name>
</author>
<author>
<name sortKey="Burman, K" uniqKey="Burman K">K. Burman</name>
</author>
<author>
<name sortKey="Vasko, V" uniqKey="Vasko V">V. Vasko</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Braga Basaria, M" uniqKey="Braga Basaria M">M. Braga-Basaria</name>
</author>
<author>
<name sortKey="Hardy, E" uniqKey="Hardy E">E. Hardy</name>
</author>
<author>
<name sortKey="Gottfried, R" uniqKey="Gottfried R">R. Gottfried</name>
</author>
<author>
<name sortKey="Burman, K D" uniqKey="Burman K">K.D. Burman</name>
</author>
<author>
<name sortKey="Saji, M" uniqKey="Saji M">M. Saji</name>
</author>
<author>
<name sortKey="Ringel, M D" uniqKey="Ringel M">M.D. Ringel</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Lin, S F" uniqKey="Lin S">S.F. Lin</name>
</author>
<author>
<name sortKey="Lin, J D" uniqKey="Lin J">J.D. Lin</name>
</author>
<author>
<name sortKey="Hsueh, C" uniqKey="Hsueh C">C. Hsueh</name>
</author>
<author>
<name sortKey="Chou, T C" uniqKey="Chou T">T.C. Chou</name>
</author>
<author>
<name sortKey="Yeh, C N" uniqKey="Yeh C">C.N. Yeh</name>
</author>
<author>
<name sortKey="Chen, M H" uniqKey="Chen M">M.H. Chen</name>
</author>
<author>
<name sortKey="Wong, R J" uniqKey="Wong R">R.J. Wong</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Wen, S S" uniqKey="Wen S">S.S. Wen</name>
</author>
<author>
<name sortKey="Zhang, T T" uniqKey="Zhang T">T.T. Zhang</name>
</author>
<author>
<name sortKey="Xue, D X" uniqKey="Xue D">D.X. Xue</name>
</author>
<author>
<name sortKey="Wu, W L" uniqKey="Wu W">W.L. Wu</name>
</author>
<author>
<name sortKey="Wang, Y L" uniqKey="Wang Y">Y.L. Wang</name>
</author>
<author>
<name sortKey="Wang, Y" uniqKey="Wang Y">Y. Wang</name>
</author>
<author>
<name sortKey="Ji, Q H" uniqKey="Ji Q">Q.H. Ji</name>
</author>
<author>
<name sortKey="Zhu, Y X" uniqKey="Zhu Y">Y.X. Zhu</name>
</author>
<author>
<name sortKey="Qu, N" uniqKey="Qu N">N. Qu</name>
</author>
<author>
<name sortKey="Shi, R L" uniqKey="Shi R">R.L. Shi</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Coelho, R G" uniqKey="Coelho R">R.G. Coelho</name>
</author>
<author>
<name sortKey="Fortunato, R S" uniqKey="Fortunato R">R.S. Fortunato</name>
</author>
<author>
<name sortKey="Carvalho, D P" uniqKey="Carvalho D">D.P. Carvalho</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Champa, D" uniqKey="Champa D">D. Champa</name>
</author>
<author>
<name sortKey="Russo, M A" uniqKey="Russo M">M.A. Russo</name>
</author>
<author>
<name sortKey="Liao, X H" uniqKey="Liao X">X.H. Liao</name>
</author>
<author>
<name sortKey="Refetoff, S" uniqKey="Refetoff S">S. Refetoff</name>
</author>
<author>
<name sortKey="Ghossein, R A" uniqKey="Ghossein R">R.A. Ghossein</name>
</author>
<author>
<name sortKey="Di Cristofano, A" uniqKey="Di Cristofano A">A. Di Cristofano</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Mazzoni, M" uniqKey="Mazzoni M">M. Mazzoni</name>
</author>
<author>
<name sortKey="Mauro, G" uniqKey="Mauro G">G. Mauro</name>
</author>
<author>
<name sortKey="Erreni, M" uniqKey="Erreni M">M. Erreni</name>
</author>
<author>
<name sortKey="Romeo, P" uniqKey="Romeo P">P. Romeo</name>
</author>
<author>
<name sortKey="Minna, E" uniqKey="Minna E">E. Minna</name>
</author>
<author>
<name sortKey="Vizioli, M G" uniqKey="Vizioli M">M.G. Vizioli</name>
</author>
<author>
<name sortKey="Belgiovine, C" uniqKey="Belgiovine C">C. Belgiovine</name>
</author>
<author>
<name sortKey="Rizzetti, M G" uniqKey="Rizzetti M">M.G. Rizzetti</name>
</author>
<author>
<name sortKey="Pagliardini, S" uniqKey="Pagliardini S">S. Pagliardini</name>
</author>
<author>
<name sortKey="Avigni, R" uniqKey="Avigni R">R. Avigni</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Park, A" uniqKey="Park A">A. Park</name>
</author>
<author>
<name sortKey="Lee, Y" uniqKey="Lee Y">Y. Lee</name>
</author>
<author>
<name sortKey="Kim, M S" uniqKey="Kim M">M.S. Kim</name>
</author>
<author>
<name sortKey="Kang, Y J" uniqKey="Kang Y">Y.J. Kang</name>
</author>
<author>
<name sortKey="Park, Y J" uniqKey="Park Y">Y.J. Park</name>
</author>
<author>
<name sortKey="Jung, H" uniqKey="Jung H">H. Jung</name>
</author>
<author>
<name sortKey="Kim, T D" uniqKey="Kim T">T.D. Kim</name>
</author>
<author>
<name sortKey="Lee, H G" uniqKey="Lee H">H.G. Lee</name>
</author>
<author>
<name sortKey="Choi, I" uniqKey="Choi I">I. Choi</name>
</author>
<author>
<name sortKey="Yoon, S R" uniqKey="Yoon S">S.R. Yoon</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Mrozek, E" uniqKey="Mrozek E">E. Mrozek</name>
</author>
<author>
<name sortKey="Kloos, R T" uniqKey="Kloos R">R.T. Kloos</name>
</author>
<author>
<name sortKey="Ringel, M D" uniqKey="Ringel M">M.D. Ringel</name>
</author>
<author>
<name sortKey="Kresty, L" uniqKey="Kresty L">L. Kresty</name>
</author>
<author>
<name sortKey="Snider, P" uniqKey="Snider P">P. Snider</name>
</author>
<author>
<name sortKey="Arbogast, D" uniqKey="Arbogast D">D. Arbogast</name>
</author>
<author>
<name sortKey="Kies, M" uniqKey="Kies M">M. Kies</name>
</author>
<author>
<name sortKey="Munden, R" uniqKey="Munden R">R. Munden</name>
</author>
<author>
<name sortKey="Busaidy, N" uniqKey="Busaidy N">N. Busaidy</name>
</author>
<author>
<name sortKey="Klein, M J" uniqKey="Klein M">M.J. Klein</name>
</author>
</analytic>
</biblStruct>
</listBibl>
</div1>
</back>
</TEI>
<pmc article-type="review-article">
<pmc-dir>properties open_access</pmc-dir>
<front>
<journal-meta>
<journal-id journal-id-type="nlm-ta">Cancers (Basel)</journal-id>
<journal-id journal-id-type="iso-abbrev">Cancers (Basel)</journal-id>
<journal-id journal-id-type="publisher-id">cancers</journal-id>
<journal-title-group>
<journal-title>Cancers</journal-title>
</journal-title-group>
<issn pub-type="epub">2072-6694</issn>
<publisher>
<publisher-name>MDPI</publisher-name>
</publisher>
</journal-meta>
<article-meta>
<article-id pub-id-type="pmid">31947935</article-id>
<article-id pub-id-type="pmc">7017043</article-id>
<article-id pub-id-type="doi">10.3390/cancers12010129</article-id>
<article-id pub-id-type="publisher-id">cancers-12-00129</article-id>
<article-categories>
<subj-group subj-group-type="heading">
<subject>Review</subject>
</subj-group>
</article-categories>
<title-group>
<article-title>Targeting Non-Oncogene Addiction: Focus on Thyroid Cancer</article-title>
</title-group>
<contrib-group>
<contrib contrib-type="author">
<contrib-id contrib-id-type="orcid" authenticated="true">https://orcid.org/0000-0003-4012-1870</contrib-id>
<name>
<surname>Anania</surname>
<given-names>Maria Chiara</given-names>
</name>
</contrib>
<contrib contrib-type="author">
<contrib-id contrib-id-type="orcid" authenticated="true">https://orcid.org/0000-0001-9854-2657</contrib-id>
<name>
<surname>Di Marco</surname>
<given-names>Tiziana</given-names>
</name>
</contrib>
<contrib contrib-type="author">
<contrib-id contrib-id-type="orcid" authenticated="true">https://orcid.org/0000-0001-6710-1410</contrib-id>
<name>
<surname>Mazzoni</surname>
<given-names>Mara</given-names>
</name>
</contrib>
<contrib contrib-type="author">
<contrib-id contrib-id-type="orcid" authenticated="true">https://orcid.org/0000-0003-2994-0349</contrib-id>
<name>
<surname>Greco</surname>
<given-names>Angela</given-names>
</name>
<xref rid="c1-cancers-12-00129" ref-type="corresp">*</xref>
</contrib>
</contrib-group>
<aff id="af1-cancers-12-00129">Molecular Mechanisms Unit, Department of Research, Fondazione IRCCS Istituto Nazionale dei Tumori, 20133 Milan, Italy;
<email>mariachiara.anania@istitutotumori.mi.it</email>
(M.C.A.);
<email>tiziana.dimarco@istitutotumori.mi.it</email>
(T.D.M.);
<email>mara.mazzoni@istitutotumori.mi.it</email>
(M.M.)</aff>
<author-notes>
<corresp id="c1-cancers-12-00129">
<label>*</label>
Correspondence:
<email>angela.greco@istitutotumori.mi.it</email>
; Tel.: +39-0223903222</corresp>
</author-notes>
<pub-date pub-type="epub">
<day>04</day>
<month>1</month>
<year>2020</year>
</pub-date>
<pub-date pub-type="collection">
<month>1</month>
<year>2020</year>
</pub-date>
<volume>12</volume>
<issue>1</issue>
<elocation-id>129</elocation-id>
<history>
<date date-type="received">
<day>26</day>
<month>11</month>
<year>2019</year>
</date>
<date date-type="accepted">
<day>24</day>
<month>12</month>
<year>2019</year>
</date>
</history>
<permissions>
<copyright-statement>© 2020 by the authors.</copyright-statement>
<copyright-year>2020</copyright-year>
<license license-type="open-access">
<license-p>Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (
<ext-link ext-link-type="uri" xlink:href="http://creativecommons.org/licenses/by/4.0/">http://creativecommons.org/licenses/by/4.0/</ext-link>
).</license-p>
</license>
</permissions>
<abstract>
<p>Thyroid carcinoma (TC) is the most common malignancy of endocrine organs with an increasing incidence in industrialized countries. The majority of TC are characterized by a good prognosis, even though cases with aggressive forms not cured by standard therapies are also present. Moreover, target therapies have led to low rates of partial response and prompted the emergence of resistance, indicating that new therapies are needed. In this review, we summarize current literature about the non-oncogene addiction (NOA) concept, which indicates that cancer cells, at variance with normal cells, rely on the activity of genes, usually not mutated or aberrantly expressed, essential for coping with the transformed phenotype. We highlight the potential of non-oncogenes as a point of intervention for cancer therapy in general, and present evidence for new putative non-oncogenes that are essential for TC survival and that may constitute attractive new therapeutic targets.</p>
</abstract>
<kwd-group>
<kwd>non-oncogene addiction</kwd>
<kwd>thyroid cancer</kwd>
<kwd>functional screening</kwd>
<kwd>non-oncogenes</kwd>
<kwd>tumor vulnerabilities</kwd>
<kwd>therapeutic targets</kwd>
</kwd-group>
</article-meta>
</front>
<body>
<sec sec-type="intro" id="sec1-cancers-12-00129">
<title>1. Introduction</title>
<sec>
<title>Non-Oncogene Addiction (NOA) and Tools for Its Identification in Cancer Cells</title>
<p>It is well established that cancer cells are characterized by several hallmarks that include uncontrolled proliferation and insensitivity to anti-growth signals, evasion of apoptosis, unlimited replicative potential, with acquired capabilities in tissue invasion and metastasis, and sustained angiogenesis [
<xref rid="B1-cancers-12-00129" ref-type="bibr">1</xref>
]. These properties are generally acquired through alterations in oncogenes (gain of function mutation, amplification, overexpression) and tumor suppressor genes (loss-of-function mutation, deletion, epigenetic silencing). Tumor phenotype generally relies on the activity of specific driver alterations of oncogenes and related pathways [
<xref rid="B2-cancers-12-00129" ref-type="bibr">2</xref>
], which to date have been considered the optimal targets for therapy [
<xref rid="B3-cancers-12-00129" ref-type="bibr">3</xref>
]. Indeed, a variety of molecular-targeted agents have been developed such as drugs targeting HER2 (Erb-b2 receptor tyrosine kinase 2) in breast cancer [
<xref rid="B4-cancers-12-00129" ref-type="bibr">4</xref>
], BRAF (v-Raf murine sarcoma viral oncogene homolog B1) in melanoma [
<xref rid="B5-cancers-12-00129" ref-type="bibr">5</xref>
], EGFR (epidermal growth factor receptor) and ALK (anaplastic lymphoma receptor tyrosine kinase) in non-small cell lung cancer [
<xref rid="B6-cancers-12-00129" ref-type="bibr">6</xref>
], KIT (KIT proto-oncogene, receptor tyrosine kinase) in gastrointestinal tumors [
<xref rid="B7-cancers-12-00129" ref-type="bibr">7</xref>
], BCR-ABL (breakpoint cluster region-abelson tyrosine-protein kinase 1) in chronic myeloid leukemia [
<xref rid="B8-cancers-12-00129" ref-type="bibr">8</xref>
], RET (rearranged during transfection) in thyroid and lung cancer [
<xref rid="B9-cancers-12-00129" ref-type="bibr">9</xref>
,
<xref rid="B10-cancers-12-00129" ref-type="bibr">10</xref>
], and TRK (tropomyosin receptor kinase) in a variety of different cancer types [
<xref rid="B11-cancers-12-00129" ref-type="bibr">11</xref>
]. Although successful at the clinic, target therapies present some limitations, such as modest and insufficient response, or the occurrence of resistance. This underlines the need of new strategies of intervention. </p>
<p>At variance with normal cells, tumor cells are subjected to persistent activation of oncogenic pathways that are responsible for increased levels of cellular stress [
<xref rid="B12-cancers-12-00129" ref-type="bibr">12</xref>
]. To cope with this “stress phenotype”, they are addicted to the activity of a plethora of essential genes, not mutated or aberrantly expressed or responsible for tumor initiation, but necessary to support the transformed phenotype. This phenomenon has been defined “non-oncogene addiction” (NOA) [
<xref rid="B13-cancers-12-00129" ref-type="bibr">13</xref>
]. Being a feature of tumor cells, targeting NOA can represent a point of intervention for cancer therapy, with the concomitant advantage of being ineffective for normal cells. Luo and colleagues attributed NOA genes to several additional hallmarks of cancer that are involved in DNA damage and replication stress, mitotic stress, proteotoxic stress, metabolic stress, and oxidative stress [
<xref rid="B13-cancers-12-00129" ref-type="bibr">13</xref>
] (
<xref ref-type="fig" rid="cancers-12-00129-f001">Figure 1</xref>
), which are clearly interconnected with each other. </p>
<p>Hereafter, we will provide some relevant examples of non-oncogenes in cancer cells. Some faithfully reflect the definition, being not mutated or aberrantly expressed in tumors in comparison to the normal counterpart; other dependencies have been expressly considered true NOAs, despite being frequently up-regulated, because, as a compensatory mechanism, they are essential in sustaining the malignant phenotype driven by oncogenes.</p>
<p>At variance with normal cells, upon activation of oncogenes and the high degree of replication, cancer cells have to cope with the increase of genomic instability and aneuploidy, as well as spontaneous DNA damage, which are closely connected with DNA damage stress response (DDR) pathways. Indeed, targeting members of DDR such as ATM (ataxia telangiectasia mutated) and CHK1 (checkpoint kinase 1), amplifies DNA damage and induces lethality on tumor cells [
<xref rid="B14-cancers-12-00129" ref-type="bibr">14</xref>
,
<xref rid="B15-cancers-12-00129" ref-type="bibr">15</xref>
]. Forced replication of tumor cells is consequently linked to mitotic stress, characterized by a huge amount of errors on chromosome segregation. The use of inhibitors of mitotic regulators, such as taxol or inhibitors of PLK1 (polo like kinase 1) and the Aurora-A/B mitotic kinases, has been demonstrated to promote mitotic stress overload on tumor cells [
<xref rid="B13-cancers-12-00129" ref-type="bibr">13</xref>
].</p>
<p>Replication and mitotic stress consequently imply the alteration of protein homeostasis and clearance, leading to the generation of a large burden of misfolded proteins, resulting in endoplasmic reticulum (ER) stress, engulfment of autophagic machinery, and, finally, cell death. Thus, cancer cells are highly dependent on a tightly regulated machinery of protein homeostasis involving the ubiquitin proteasome system, macroautophagy, and unfolded protein response [
<xref rid="B16-cancers-12-00129" ref-type="bibr">16</xref>
]. One of the first examples of NOA is
<italic>HSF1</italic>
(the heat-shock factor 1) gene, not mutated in cancers, which encodes the transcription factor deputy to orchestrate the heat-shock response upon proteotoxic stress, through the involvement of HSP90 (heat shock protein 90) [
<xref rid="B12-cancers-12-00129" ref-type="bibr">12</xref>
]. Several HSP90 inhibitors have entered clinical studies. HDAC6 (histone deacetylase 6) is a cytosolic class-IIb histone deacetylase, involved in several process such as protein degradation both via aggresomes and regulation of HSP90 chaperone activity [
<xref rid="B17-cancers-12-00129" ref-type="bibr">17</xref>
]. Being essential in coping with accumulation of protein aggregates and damaged mitochondria, HDAC6 has emerged as a clear non-oncogene for inflammatory breast cancer [
<xref rid="B18-cancers-12-00129" ref-type="bibr">18</xref>
]. Its inhibitor ricolinostat (ACY1215) has been demonstrated to selectively kill different types of cancer cells and has entered clinical trials [
<xref rid="B17-cancers-12-00129" ref-type="bibr">17</xref>
].</p>
<p>Metabolic reprogramming represents an advantage for cancer cells [
<xref rid="B19-cancers-12-00129" ref-type="bibr">19</xref>
], with glucose and glutamine metabolism having a central node in sustaining the cancer phenotype. Cancer metabolism and its reprogramming can definitely be considered a reservoir of NOAs to be targeted. Indeed, the inhibition of glycolysis through the administration of non-metabolizable glucose analogues (2-deoxyglucose or 3-bromopyruvate) [
<xref rid="B20-cancers-12-00129" ref-type="bibr">20</xref>
] or inhibition of lactate dehydrogenase (LDH) [
<xref rid="B21-cancers-12-00129" ref-type="bibr">21</xref>
] represent a therapeutic intervention for tumors, which is not harmful to normal cells. The use of metformin, a well-known antihyperglycemic agent that inhibits the PI3K (phosphatidylinositol-3-kinase)/AKT (serine/threonine kinase 1)/mTOR (mammalian target of rapamycin) pathway, has been considered a strategy to mimic glucose deprivation in many tumors [
<xref rid="B22-cancers-12-00129" ref-type="bibr">22</xref>
]. Recent studies have focused on the alteration of amino acid metabolism, as it is known that cancer cells rely on the availability of non-essential amino acids such as glutamine [
<xref rid="B23-cancers-12-00129" ref-type="bibr">23</xref>
]. Some tumors, especially those with
<italic>RAS</italic>
(rat sarcoma viral oncogene homolog) mutation, are dependent on macropinocytosis for amino acid supply [
<xref rid="B24-cancers-12-00129" ref-type="bibr">24</xref>
], thus representing the best candidates to be treated with vesicle formation inhibitors. Recently, Li et al. found that mitochondrial SIRT3 (sirtuin 3) is required for diffuse large B cell lymphomas (DLBCLs), but not normal germinal center B cells, to regulate glutamine flux to the tricarboxylic acid (TCA) cycle and acetyl-coenzyme A (CoA) pools [
<xref rid="B25-cancers-12-00129" ref-type="bibr">25</xref>
]; this led to the development of the sirtuin inhibitor YC8-02, which is able to preferentially kill DLBCL cells. Tumor cells are also highly dependent on the activity of 3-hydroxy-3-methyl-glutaryl-coenzyme A (HMG-CoA) reductase for the production of cholesterol and mevalonate pathway end-products. Accordingly, HMG-CoA reductase inhibitors (lovastatin, simvastatin, pravastatin, and atorvastatin) are being reconsidered for cancer prevention, treatment, and chemosensitization [
<xref rid="B26-cancers-12-00129" ref-type="bibr">26</xref>
]. mTOR signaling can be considered as the hub of cell metabolism, as it regulates nucleotide synthesis, lipid synthesis, and glucose metabolism [
<xref rid="B27-cancers-12-00129" ref-type="bibr">27</xref>
]. The use of mTOR inhibitors such as everolimus has been approved to treat some human cancers [
<xref rid="B28-cancers-12-00129" ref-type="bibr">28</xref>
]. </p>
<p>Cancer cells are generally overloaded with reactive oxygen species (ROS) in comparison to normal cells [
<xref rid="B29-cancers-12-00129" ref-type="bibr">29</xref>
]. The source of ROS is essentially forced mitochondrial oxidative phosphorylation, the activity of oncogenes known to induce cell senescence [
<xref rid="B30-cancers-12-00129" ref-type="bibr">30</xref>
] and hypoxic conditions outside cells [
<xref rid="B29-cancers-12-00129" ref-type="bibr">29</xref>
]. High ROS levels are responsible for the accumulation of DNA damage, leading to genomic instability, impairment of mitochondrial functionality, and membrane lipid peroxidation [
<xref rid="B29-cancers-12-00129" ref-type="bibr">29</xref>
]. Recent studies have identified the normally non-essential gene
<italic>NUDT1</italic>
(nudix hydrolase 1) deputy to tune intracellular oxidative damage by removing oxidized nucleotides, whereas
<italic>NRF2</italic>
(nuclear factor erythroid 2-related factor 2) was found responsible for the transcription of antioxidant enzymes such as
<italic>SODs</italic>
(superoxide dismutases) and
<italic>GST</italic>
(glutathione S-transferase) [
<xref rid="B20-cancers-12-00129" ref-type="bibr">20</xref>
]. Cancer therapeutic approaches can include strategies inhibiting or enhancing ROS production. Inhibition of ROS production can be achieved by handling metabolism, such as pushing glycolysis, down-regulating mitochondrial function, and glutathione synthesis through use of antioxidant compounds [
<xref rid="B20-cancers-12-00129" ref-type="bibr">20</xref>
]. On the other hand, when ROS production is enhanced, for example using dichloroacetate, which inhibits pyruvate dehydrogenase kinase (PDK) and pushes mitochondrial oxidative phosphorylation, cells undergo stress overload and succumb to cell death [
<xref rid="B13-cancers-12-00129" ref-type="bibr">13</xref>
].</p>
<p>Until now, we have considered intrinsic tumor categories in which non-oncogenes fall; however several extrinsic tumor vulnerabilities, such as interaction of tumor cells with stroma, angiogenesis, and immune response, should also be considered and provide other important therapeutic targets. Recently, it has been demonstrated that NOA plays an important role in the progression of cancer-associated inflammation [
<xref rid="B31-cancers-12-00129" ref-type="bibr">31</xref>
]; key genes, such as those belonging to the NF-kB (nuclear factor kappa B) family and VEGF (vascular endothelial growth factor) /VEGFR (vascular endothelial growth factor receptor) axis; immunomodulatory factors, such as chemokines/cytokines (
<italic>CCL2</italic>
(C-C motif chemokine ligand 2),
<italic>IL6</italic>
(interleukin 6),
<italic>IL10</italic>
(interleukin 10); and prostaglandins constitute adaptive essential genes for tumor cells in creating an inflammatory and immunosuppressive milieu. This supports the idea of reconsidering drugs, most of which are already on the market, such as COX-2 (cyclooxygenase-2) inhibitors (NSAID (nonsteroidal anti-inflammatory drug), celecoxib), NF-kB inhibitors, and VEGF inhibitors (bevacizumab), which may be effective in treating tumors [
<xref rid="B31-cancers-12-00129" ref-type="bibr">31</xref>
].</p>
<p>The traditional approach for cancer target discovery is based on the identification of genetic lesions (mainly oncogenes and tumor suppressors) through the analysis of copy-number variation, transcriptional profiles, epigenetic modifications, and DNA sequence alterations; thus, they are not consequently able to detect NOA genes. The advent of loss-of-function RNA-interference-based genetic screenings, performed both in vitro and in vivo, has overcome this limitation, as they have the potential to unveil a genetic landscape for cancer vulnerabilities, useful in the discovery of new therapeutic targets [
<xref rid="B13-cancers-12-00129" ref-type="bibr">13</xref>
]. A schematic representation is reported in
<xref ref-type="fig" rid="cancers-12-00129-f002">Figure 2</xref>
.</p>
<p>One of the most cited examples is the discovery of the transcription factor
<italic>IRF4</italic>
(interferon regulatory factor 4), which is not genetically altered in multiple myeloma cells, but which is essential for growth and survival through an aberrant regulatory network leading to the up-regulation of the oncogene
<italic>MYC</italic>
[
<xref rid="B32-cancers-12-00129" ref-type="bibr">32</xref>
]. Other in vitro functional screenings allowed for the identification of: genes required for proliferation of mammary tumor cell lines [
<xref rid="B33-cancers-12-00129" ref-type="bibr">33</xref>
,
<xref rid="B34-cancers-12-00129" ref-type="bibr">34</xref>
]; the lethal effect of CHK1 inhibition in neuroblastoma cell lines [
<xref rid="B35-cancers-12-00129" ref-type="bibr">35</xref>
]; synthetic lethal interactions with the KRAS (kirsten rat sarcoma viral oncogene homolog) oncogene in
<italic>KRAS</italic>
-mutated cancers [
<xref rid="B36-cancers-12-00129" ref-type="bibr">36</xref>
,
<xref rid="B37-cancers-12-00129" ref-type="bibr">37</xref>
,
<xref rid="B38-cancers-12-00129" ref-type="bibr">38</xref>
]; increased mitochondrial dependence upon mTOR addiction of cancer cells [
<xref rid="B39-cancers-12-00129" ref-type="bibr">39</xref>
]; proteasome addiction in basal-like triple negative breast cancers [
<xref rid="B40-cancers-12-00129" ref-type="bibr">40</xref>
]; and
<italic>HSPA5</italic>
(heat shock protein family A member 5),
<italic>NDC80</italic>
(NDC80 kinetochore complex component),
<italic>NUF2</italic>
(NUF2 component of NDC80 kinetochore complex), and
<italic>PTN</italic>
(pleiotrophin) as vulnerability for ovarian cancer [
<xref rid="B41-cancers-12-00129" ref-type="bibr">41</xref>
]. More recently, large scale studies, aimed to identify common cancer dependencies, have been undertaken [
<xref rid="B42-cancers-12-00129" ref-type="bibr">42</xref>
,
<xref rid="B43-cancers-12-00129" ref-type="bibr">43</xref>
,
<xref rid="B44-cancers-12-00129" ref-type="bibr">44</xref>
,
<xref rid="B45-cancers-12-00129" ref-type="bibr">45</xref>
].</p>
<p>Several in vivo genetic screenings using manipulated cell lines or patient-derived tumors have been performed, which have provided novel insights into mechanisms of tumor growth and maintenance. D’Alesio et al. used a short hairpin RNA (shRNA) lentiviral-based library targeting chromatin modifiers in breast cancer and identified epigenetic vulnerabilities that are not essential for non-transformed mammary epithelial cells [
<xref rid="B46-cancers-12-00129" ref-type="bibr">46</xref>
]. Bossi et al. reported the first in vivo genetic screen of patient-derived metastatic melanoma tumors, unraveling a huge amount and inter-patient heterogeneity of normal genes that are essential for tumor growth [
<xref rid="B47-cancers-12-00129" ref-type="bibr">47</xref>
]. Carugo et al. performed in vivo functional screening of patient-derived pancreatic ductal adenocarcinoma (PDAC) xenografts and attributed a role in protecting PDAC cells from lethal DNA damage accumulation to the WDR5 (WD repeat domain 5)-Myc axis [
<xref rid="B48-cancers-12-00129" ref-type="bibr">48</xref>
]. Rudalska at al. performed a pooled shRNA screening directly in mouse hepatocellular carcinomas, identifying genes whose inhibition increased the therapeutic efficacy of sorafenib [
<xref rid="B49-cancers-12-00129" ref-type="bibr">49</xref>
]. Pooled CRISPR/Cas9 screens have also been used to identify genotype-specific cancer vulnerabilities as potential drug targets. For example, genome-scale pooled CRISPR screening technology was applied to identify vulnerabilities in
<italic>RNF43</italic>
(ring finger protein-43)-mutant pancreatic adenocarcinomas, finding
<italic>FZD5</italic>
(frizzled class receptor 5) as a common vulnerability that can be exploited therapeutically [
<xref rid="B50-cancers-12-00129" ref-type="bibr">50</xref>
]. </p>
<p>Despite the significant advantages that RNAi technology has given, several limitations should be considered: the appearance of unpredicted and uncontrolled siRNA off-target effects, lack of protein knockdown after mRNA silencing, low stability of siRNA oligonucleotides, and cell toxicity of transfection conditions [
<xref rid="B51-cancers-12-00129" ref-type="bibr">51</xref>
]. The use of cancer cell lines in RNAi screenings represent a pillar, as they are easy to grow in standard culture conditions and have clonal origin giving rise to genetically homogeneous populations. However, over-passaged cell lines tend to accumulate additional mutations and to display a different phenotype, altering the biological readout. Normal cells, or primary cells derived from normal tissues, used as a control, grow in vitro for only a limited number of passages and must be immortalized; they therefore do not faithfully mimic the biological properties of an in vivo system. Another pitfall relies on the fact that the readout is usually short-term, allowing the detection of only strong phenotypes dealing with survival and proliferation. Therefore, many classes of genes, and consequently long-term effects, are neglected. Lastly, the use of individual cells in culture limits the study of genes that have a crucial role in sensing and perturbing the cellular microenvironment. All the limitations reported above can be overcome by the use of three-dimensional cultures, tissues, organoids, and even whole organisms.</p>
<p>In conclusion, targeting NOA genes represents a new treatment option, which can be pursued through (i) stress sensitization, which aims to switch off intracellular stress support pathways, or (ii) stress overload, which aims to induce the opposite effect. As two sides of the same coin, the consequence is the promotion of cell growth arrest and, finally, cell death.</p>
</sec>
</sec>
<sec id="sec2-cancers-12-00129">
<title>2. Thyroid Cancer </title>
<sec id="sec2dot1-cancers-12-00129">
<title>2.1. Molecular Alterations and Therapeutic Implications</title>
<p>TC accounts for 2.5% of all cancers and 90% of endocrine malignancies, with an incidence that has increased by 4.5% per year in the last decade. The majority of TCs originate from follicular cells and are grouped in the following different histotypes: papillary thyroid carcinoma (PTC) and follicular thyroid carcinoma (FTC), both defined as well-differentiated thyroid carcinoma (WDTC); poorly-differentiated thyroid carcinoma (PDTC); and anaplastic thyroid carcinoma (ATC). A small fraction of TC (~2%–5%), which originate from parafollicular C cells, are instead classified as medullary thyroid carcinomas (MTC) [
<xref rid="B52-cancers-12-00129" ref-type="bibr">52</xref>
]. Several genetic and epigenetic alterations (i.e., rearrangements, somatic mutations, aberrant gene expression and methylation, micro RNA (miRNA) and long non-coding RNA (lncRNAs) deregulation) have been involved in the promotion of thyroid carcinogenesis. The main genetic lesions in TC consist of genetic rearrangements and point mutations. PTC are characterized by chromosomal rearrangements of
<italic>RET</italic>
[
<xref rid="B53-cancers-12-00129" ref-type="bibr">53</xref>
] or
<italic>NTRK</italic>
(neurotrophic tyrosine kinase receptor) proto-oncogenes [
<xref rid="B54-cancers-12-00129" ref-type="bibr">54</xref>
], whose activation is responsible for downstream signaling pathway that promotes cell growth, proliferation, and survival. A small fraction of PTC show gene rearrangements in
<italic>ALK</italic>
and
<italic>BRAF</italic>
genes, whereas rearrangements in
<italic>PPARγ</italic>
(peroxisome proliferator-activated receptor) gene are common in FTC [
<xref rid="B52-cancers-12-00129" ref-type="bibr">52</xref>
]. The most frequent activating mutations in TC are the
<italic>V600E</italic>
mutation of
<italic>BRAF</italic>
gene and, less frequent, of the
<italic>RAS</italic>
(rat sarcoma) oncogene family (
<italic>N-RAS, K-RAS, H-RAS</italic>
), which are effectors of altered MAPK (mitogen activated protein kinase) and PI3K cascades. Even though in WDTC gene rearrangements and point mutations are almost mutually exclusive, PDTC and ATC display the co-presence of different lesions, including mutations in
<italic>TP53</italic>
(Tumor Protein P53
<italic>)</italic>
,
<italic>CTNNB1</italic>
(catenin beta 1),
<italic>IDH1</italic>
(isocitrate dehydrogenase (NADP)+) 1)
<italic>,</italic>
and
<italic>TERT</italic>
(telomerase reverse transcriptase) genes [
<xref rid="B52-cancers-12-00129" ref-type="bibr">52</xref>
,
<xref rid="B55-cancers-12-00129" ref-type="bibr">55</xref>
]. Two studies by the TCGA (The Cancer Genome Atlas) consortium have revolutionized the understanding of the genomic landscape of PTC, PDTC, and ATC [
<xref rid="B55-cancers-12-00129" ref-type="bibr">55</xref>
,
<xref rid="B56-cancers-12-00129" ref-type="bibr">56</xref>
]. A cohort of 496 PTC samples has been exhaustively analyzed by different approaches including next-generation DNA and RNA sequencing, copy-number analysis, DNA methylation, and proteomic assays. Besides the well-known driving oncogenic lesions in PTC, the study allowed the identification of novel driver mutations (i.e.,
<italic>EIF1AX</italic>
(eukaryotic translation initiation factor 1A X-linked),
<italic>PPM1D</italic>
(protein phosphatase, Mg2+/Mn2+ dependent 1D)
<italic>,</italic>
and
<italic>CHEK2</italic>
(checkpoint kinase 2)) and gene fusions, and a better reclassification of tumors in molecular subtypes, useful to manage the disease from a clinical point of view. A similar approach was performed in PDTC and ATC [
<xref rid="B55-cancers-12-00129" ref-type="bibr">55</xref>
]. Notably, functional studies demonstrated that
<italic>EIF1AX</italic>
mutations cooperate with
<italic>RAS</italic>
in inducing thyroid tumorigenesis and sensitize tumor cells to mTOR inhibition [
<xref rid="B57-cancers-12-00129" ref-type="bibr">57</xref>
].</p>
<p>The TCGA study also contributed to the identification of different miRNA expression patterns, associated with differentiation and tumor progression, also useful to better define TC prognosis. miRNAs represent potential therapeutic targets [
<xref rid="B58-cancers-12-00129" ref-type="bibr">58</xref>
], and functional studies support this issue, suggesting that fine-tuning of miRNA expression in thyroid cancer can modulate the activity of fundamental pathways. Several examples of the major miRNAs targeting proteins of the MAPK, PI3K, and TGFβ (transforming growth factor beta) pathways have been recently reviewed in [
<xref rid="B59-cancers-12-00129" ref-type="bibr">59</xref>
].</p>
<p>lncRNAs are small RNA molecules that play an important role in different cell functions [
<xref rid="B60-cancers-12-00129" ref-type="bibr">60</xref>
], and deregulation has been associated with TC initiation and/or progression [
<xref rid="B60-cancers-12-00129" ref-type="bibr">60</xref>
,
<xref rid="B61-cancers-12-00129" ref-type="bibr">61</xref>
] through their involvement in cellular functions such as promotion of proliferation, migration, invasion, metastasis, and pharmacological or radioiodine treatment resistance. Thus, some lncRNAs have been proposed as therapeutic targets [
<xref rid="B60-cancers-12-00129" ref-type="bibr">60</xref>
]. Moreover, lncRNA detection in blood and cancer tissues may be helpful in diagnosis and prognosis, especially in PTC. </p>
<p>Gene expression profile studies allowed the identification of other molecular mechanisms concerned with thyroid carcinogenesis, as well as genetic markers useful for diagnostic and prognostic purposes; the effect of their modulation in in vitro models allowed speculation that they may represent putative therapeutic targets. Genes overexpressed in thyroid tumors include, among others,
<italic>DUSP6</italic>
(dual specificity phosphatase 6) [
<xref rid="B62-cancers-12-00129" ref-type="bibr">62</xref>
],
<italic>CITED1</italic>
(cbp/P300 interacting transactivator with Glu/Asp rich carboxy-terminal domain 1) [
<xref rid="B63-cancers-12-00129" ref-type="bibr">63</xref>
],
<italic>S100A11</italic>
(S100 calcium binding protein A11) [
<xref rid="B64-cancers-12-00129" ref-type="bibr">64</xref>
], and
<italic>TWIST1</italic>
(twist family BHLH transcription factor 1) [
<xref rid="B65-cancers-12-00129" ref-type="bibr">65</xref>
]; their protumorigenic role has been assessed in preclinical models, showing that their inhibition reduces the thyroid tumor cell phenotype. Downregulation of gene expression in TC is often related to epigenetic mechanisms, such as aberrant DNA methylation [
<xref rid="B66-cancers-12-00129" ref-type="bibr">66</xref>
], which accounts for the downregulation of tumor suppressor genes such as
<italic>RASSF1A</italic>
(ras association domain family member 1),
<italic>SLC5A8</italic>
(solute carrier family 5 member 8),
<italic>RARβ2</italic>
(retinoic acid receptor beta 2), and
<italic>RAP1GAP</italic>
(rap1 GTPase-activating protein 1)
<italic>,</italic>
as well as thyroid-specific genes, such as
<italic>TSHR</italic>
(thyroid stimulating hormone receptor) and
<italic>TPO</italic>
(thyroid peroxidase), and
<italic>SLC5A5</italic>
(solute carrier family 5 member 5) also known as
<italic>NIS</italic>
[
<xref rid="B67-cancers-12-00129" ref-type="bibr">67</xref>
]. Several downregulated genes have been functionally classified as oncosuppressors, as their restoration attenuates the thyroid tumor cell phenotype. This is the case for
<italic>TIMP3</italic>
(tissue inhibitor of metalloproteinases 3) [
<xref rid="B68-cancers-12-00129" ref-type="bibr">68</xref>
], as well as
<italic>IGFBP7</italic>
(insulin like growth factor binding protein 7) [
<xref rid="B69-cancers-12-00129" ref-type="bibr">69</xref>
],
<italic>PTEN</italic>
(phosphatase and tensin homolog) [
<xref rid="B70-cancers-12-00129" ref-type="bibr">70</xref>
], and
<italic>MT1G</italic>
(metallothionein 1G) [
<xref rid="B71-cancers-12-00129" ref-type="bibr">71</xref>
]. </p>
</sec>
<sec id="sec2dot2-cancers-12-00129" sec-type="subjects">
<title>2.2. Management of Thyroid Cancer Patients </title>
<p>The majority of patients with WDTC are effectively treated, with a 10-year survival rate over 90%. Standard therapy approaches include the surgical removal of the thyroid gland, thyroid-stimulating hormone (TSH) suppression, and radioactive iodine 131 (RAI) treatment for residual thyroid tissue ablation [
<xref rid="B72-cancers-12-00129" ref-type="bibr">72</xref>
]. Nevertheless, local recurrence occurs in up to 20% of patients and distant metastasis in approximately 10% by 10 years [
<xref rid="B73-cancers-12-00129" ref-type="bibr">73</xref>
], and metastatic PTC and FTC often become refractory to radioactive iodine therapy [
<xref rid="B74-cancers-12-00129" ref-type="bibr">74</xref>
]. ATC are generally resistant to classical therapies and responsible for more than half of all TC-related mortalities [
<xref rid="B72-cancers-12-00129" ref-type="bibr">72</xref>
]; thyroidectomy is not always feasible due to the local extension of the disease and invasion of contiguous anatomic structures. To date, RAI refractory TC and ATC represent the most important clinical problem, for which new therapeutic options are needed. To face this need, molecular findings in thyroid cancer have been translated into clinics. The thyroid-driving genetic alterations described above involve genes acting through the MAPK and PI3K/AKT pathways; on this premise, various components of this signaling cascade have been explored as therapeutic targets. The block of these intracellular signaling cascades through the use of tyrosine kinase inhibitors (TKIs) has been explored; several compounds have been developed and approved for treatment of patients with advanced TC who are inoperable, show evidence of progression disease, and exhibit RAI resistance. A complete description of molecules available in clinical practice has been exhaustively reviewed in [
<xref rid="B9-cancers-12-00129" ref-type="bibr">9</xref>
,
<xref rid="B52-cancers-12-00129" ref-type="bibr">52</xref>
] and are reported in
<xref ref-type="fig" rid="cancers-12-00129-f003">Figure 3</xref>
. However, even if multiple kinase inhibitors have had some clinical benefit, their association with improvements in overall survival is still questionable. Other therapeutic approaches consist of the use of demethylating and re-differentiating agents, inhibition of proteosome and histone deacetylases, and immunotherapy, which, to date, represents the most promising treatment option for advanced thyroid diseases [
<xref rid="B52-cancers-12-00129" ref-type="bibr">52</xref>
,
<xref rid="B75-cancers-12-00129" ref-type="bibr">75</xref>
].</p>
<p>In conclusion, even though much progress has been made in the treatment of thyroid cancer thanks to the development of a variety of molecular-targeted agents, new effective therapeutic options are still needed.</p>
</sec>
</sec>
<sec id="sec3-cancers-12-00129">
<title>3. Discovery of Vulnerabilities in Thyroid Cancer: Our Experience</title>
<sec id="sec3dot1-cancers-12-00129">
<title>3.1. Functional Screening</title>
<p>As anticipated in the first paragraph, the identification of tumor cell vulnerabilities is achieved by loss of function RNA interference-based genetic screenings. The NOA concept is completely novel in the context of thyroid cancer; nevertheless, it may represent a powerful tool for identification of novel therapeutic approaches for the most aggressive and advanced cases that are not cured by standard therapy. </p>
<p>To identify genes selectively promoting lethality of thyroid tumor cell lines, we, at first, exploited a screening of synthetic siRNA library targeting 9031 human genes using the BCPAP tumor cell line (carrying the
<italic>BRAFV600E</italic>
mutation) and immortalized normal human thyrocytes (N-Thy-ori3-1) as a control [
<xref rid="B76-cancers-12-00129" ref-type="bibr">76</xref>
]. The effect of each siRNA on cell viability was analyzed by a medium-high throughput colony formation assay (following the same in vitro approach reported in
<xref ref-type="fig" rid="cancers-12-00129-f002">Figure 2</xref>
a). Comparison of data from the two cell models identified vulnerabilities common to BCPAP and N-Thy-ori3-1 (270 genes, considered lethal hits, encoding proteins involved in survival, proliferation, and proteosome machinery), as well as specific for BCPAP cells (386 genes, considered differential hits). Further confirmatory studies generated a panel of 15 putative differential hits involved in cell cycle control, vesicular transport, glucose and fatty acid metabolism, and intracellular signaling transduction. Notably, the list included BRAF, in keeping with the known dependency of BCPAP cells on BRAFV600E oncogene activity. The mutational status and expression of hit genes in PTC and normal thyroid was assessed in the thyroid TCGA dataset. Except for the expected high frequency of oncogenic
<italic>BRAF</italic>
mutations, no mutations affecting the other genes were detected, suggesting the absence of functional alterations in PTC. A group of hit genes (
<italic>CCND1</italic>
(cyclin D1),
<italic>RGS3</italic>
(regulator of G protein signaling 3),
<italic>OXTR</italic>
(oxytocin receptor),
<italic>RASD1</italic>
(ras related dexamethasone induced 1),
<italic>DNM3</italic>
(dynamin 3)) showed overexpression in PTC with respect to normal thyroid; a second group (
<italic>COPE</italic>
(coatomer protein complex subunit epsilon),
<italic>COPZ1</italic>
(coatomer protein complex subunit zeta 1),
<italic>PLA2G15</italic>
(phospholipase A2 group XV),
<italic>SRPK1</italic>
(serine/arginine-rich protein-specific kinase 1),
<italic>REM2</italic>
(RRAD and GEM like GTPase 2),
<italic>EPHB4</italic>
(ephrin type-B receptor 4),
<italic>BRAF</italic>
) displayed equal or slightly different expression; a third group (
<italic>MAP4K5</italic>
(mitogen-activated protein kinase kinase kinase kinase 5),
<italic>NUDT9</italic>
(nudix hydrolase 9),
<italic>MASTL</italic>
(microtubule associated serine/threonine kinase-like)) resulted in down-regulated expression. Validation as vulnerability for thyroid cancer has been performed for three hits (see
<xref ref-type="sec" rid="sec3dot2-cancers-12-00129">Section 3.2</xref>
), whereas for the majority of genes it remains to be investigated.</p>
<p>A similar approach was pursued by Cantisani et al. who, using a siRNA library targeting the human kinome and related proteins, identified genes belonging to the EPH (ephirin) receptor tyrosine kinase, SRC (SRC proto-oncogene, non-receptor tyrosine kinase), and MAPK (mitogen activated protein kinase) families as necessary for the viability of thyroid tumor cells, but not for normal cells, and proposed them as potential novel therapeutic targets for thyroid tumors [
<xref rid="B77-cancers-12-00129" ref-type="bibr">77</xref>
]. Further validation remains to be performed.</p>
<p>In summary, functional screening allowed the identification of several vulnerabilities for thyroid cancer. Even though not all fall strictly in the NOA definition (i.e., are not mutated, but some show variations in expression in tumor with respect to normal thyroid), they nonetheless represent an Achilles’ heel that could be targeted.</p>
</sec>
<sec id="sec3dot2-cancers-12-00129">
<title>3.2. Validation of NOA Targets </title>
<p>Cyclin D1, encoded by the
<italic>CCND1</italic>
gene, promotes the G1/S phase transition through the activation of Cdk4 and Cdk6 kinases (CDK4/6) [
<xref rid="B78-cancers-12-00129" ref-type="bibr">78</xref>
].
<italic>CCND1</italic>
deregulation in tumors is frequent as consequence of gene mutations, amplifications, or protein overexpression. Cyclin D1 overexpression is mainly due to oncogenic signaling through the RTK and MEK (mitogen-activated protein kinase)-ERK (extracellular signal–regulated kinase) pathways, as well as translocation and amplification of the
<italic>CCND1</italic>
gene; moreover, it may also result from deregulation of mRNA stabilization, nuclear export and ubiquitin-mediated proteolysis, or presence of the D1b splicing variant [
<xref rid="B78-cancers-12-00129" ref-type="bibr">78</xref>
]. Cyclin D1 has been proposed as a cancer therapeutic target; however, its direct targeting is difficult, as it lacks enzymatic activity. Approaches based on the inhibition of CDK4/6 have been developed; after promising results in preclinical studies and clinical testing, three CDK inhibitors, palbociclib, ribociclib and abemaciclib, have recently received FDA (Food and Drug Administration) approval for hormone receptor positive metastatic breast cancer [
<xref rid="B79-cancers-12-00129" ref-type="bibr">79</xref>
]. In TC, cyclin D1 overexpression at the mRNA and protein levels has been documented, and proposed to contribute to tumor progression [
<xref rid="B80-cancers-12-00129" ref-type="bibr">80</xref>
,
<xref rid="B81-cancers-12-00129" ref-type="bibr">81</xref>
,
<xref rid="B82-cancers-12-00129" ref-type="bibr">82</xref>
]. Moreover,
<italic>CCND1</italic>
gene polymorphic variants in patients with WDTC have been identified [
<xref rid="B83-cancers-12-00129" ref-type="bibr">83</xref>
], and the splice variant cyclin D1b has been proposed as a novel diagnostic and predictive biomarker for TC [
<xref rid="B84-cancers-12-00129" ref-type="bibr">84</xref>
]. Recently,
<italic>CCND1</italic>
has been identified as a key gene by integrated bioinformatics analysis [
<xref rid="B85-cancers-12-00129" ref-type="bibr">85</xref>
]. Nevertheless, the role of
<italic>CCND1</italic>
in thyroid tumorigenesis has been poorly investigated, except for recent papers showing
<italic>CCND1</italic>
as a direct target of deregulated miRNAs and long non-coding RNAs [
<xref rid="B86-cancers-12-00129" ref-type="bibr">86</xref>
,
<xref rid="B87-cancers-12-00129" ref-type="bibr">87</xref>
,
<xref rid="B88-cancers-12-00129" ref-type="bibr">88</xref>
]. We identified cyclin D1 as vulnerability for TC cells, as its siRNA-mediated inhibition causes consistent growth reduction of different thyroid tumor cell lines, but not normal ones. Moreover, the treatment of thyroid cancer cells with the CDK4/6 inhibitor palbociclib (PD-0332991) induces a consistent antiproliferative effect [
<xref rid="B76-cancers-12-00129" ref-type="bibr">76</xref>
]. In keeping with our results, other groups have confirmed the efficacy of palbociclib in in vitro and in vivo preclinical models of TC, also in combination with a PI3K/mTOR inhibitor to bypass mechanisms of therapy resistance [
<xref rid="B89-cancers-12-00129" ref-type="bibr">89</xref>
,
<xref rid="B90-cancers-12-00129" ref-type="bibr">90</xref>
,
<xref rid="B91-cancers-12-00129" ref-type="bibr">91</xref>
]. On the whole, we are confident that the evidence that cyclin D1 represents TC cell vulnerability may prompt preclinical and clinical studies employing CDK4/6 inhibitors for treatment of TC.</p>
<p>MASTL (microtubule associated serine/threonine kinase-like) is involved in mitosis regulation; it inhibits the PP2A/B55δ protein phosphatase complex responsible for dephosphorylation of CDK1 substrates. MASTL activity is necessary for chromosomal segregation and to prevent prometaphase arrest and mitotic failure [
<xref rid="B92-cancers-12-00129" ref-type="bibr">92</xref>
]. Furthermore, it suppresses the DDR and promotes checkpoint recovery and cell cycle progression [
<xref rid="B93-cancers-12-00129" ref-type="bibr">93</xref>
,
<xref rid="B94-cancers-12-00129" ref-type="bibr">94</xref>
]. The role of MASTL in regulating mitosis and involvement in cancer has been extensively reviewed in [
<xref rid="B95-cancers-12-00129" ref-type="bibr">95</xref>
]. MASTL is overexpressed in prostate, head and neck, colon, and breast cancer [
<xref rid="B95-cancers-12-00129" ref-type="bibr">95</xref>
,
<xref rid="B96-cancers-12-00129" ref-type="bibr">96</xref>
,
<xref rid="B97-cancers-12-00129" ref-type="bibr">97</xref>
,
<xref rid="B98-cancers-12-00129" ref-type="bibr">98</xref>
]. In breast cancer, MASTL overexpression is associated with patient poor prognosis [
<xref rid="B99-cancers-12-00129" ref-type="bibr">99</xref>
], more advanced clinical stage, [
<xref rid="B96-cancers-12-00129" ref-type="bibr">96</xref>
] and reduced survival [
<xref rid="B100-cancers-12-00129" ref-type="bibr">100</xref>
]. A recent study revealed that MASTL promotes proliferation and mitotic entry of human liver cancer cells upon induction of proinflammatory cytokines (i.e., IL-6, TNF (tumor necrosis factor)-alpha) [
<xref rid="B98-cancers-12-00129" ref-type="bibr">98</xref>
]. At variance with other tumor types, TC shows neither overexpression nor mutations of
<italic>MASTL</italic>
[
<xref rid="B76-cancers-12-00129" ref-type="bibr">76</xref>
,
<xref rid="B101-cancers-12-00129" ref-type="bibr">101</xref>
]. Our functional studies identified
<italic>MASTL</italic>
as a vulnerability gene for TC, being essential for cell growth. Moreover, its depletion (i) increases the percentage of cells presenting nuclear anomalies and aberrant mitotic figures, which are indicative of mitotic catastrophe; (ii) enhances DNA damage, observed as the presence of increased γH2AX (H2A histone family member X) foci number; (iii) sensitizes thyroid tumor cells to cisplatin; and (iv) induces apoptotic cell death. As a consequence of the high number of mutations that alter mitosis fidelity and cause chromosome mis-segregation, tumor cells undergo elevated mitotic stress, thus becoming dependent on stress support pathways [
<xref rid="B102-cancers-12-00129" ref-type="bibr">102</xref>
]. On this basis, our results strongly support the notion that MASTL could be considered as non-oncogene in the context of thyroid tumors, exerting a central role in attenuating mitotic, replication, and DNA damage stress. As for other tumor types, both sensitization and overload of mitotic stress have been exploited as therapeutic for TC; targeting mitotic machinery elements, such as PLK1 and Aurora kinases through small-molecule inhibitors, significantly reduced growth and induced cell death in ATC-derived cell lines [
<xref rid="B103-cancers-12-00129" ref-type="bibr">103</xref>
,
<xref rid="B104-cancers-12-00129" ref-type="bibr">104</xref>
]. MASTL has been proposed as a novel therapeutic target in different tumor contexts; more interestingly, its inhibition sensitizes squamous cancer cells to cisplatin [
<xref rid="B96-cancers-12-00129" ref-type="bibr">96</xref>
], colon cancer cells to 5-fluorouracil [
<xref rid="B105-cancers-12-00129" ref-type="bibr">105</xref>
], and lung and breast cancer cells to radiation therapy [
<xref rid="B106-cancers-12-00129" ref-type="bibr">106</xref>
,
<xref rid="B107-cancers-12-00129" ref-type="bibr">107</xref>
]. To date, many efforts are being made to find new therapies based on MASTL targeting. The evidence that MASTL deletion is not deleterious in conditional knockout adult mice [
<xref rid="B108-cancers-12-00129" ref-type="bibr">108</xref>
] strengthens the potentiality of this approach. Ocasio et al. designed the “first generation inhibitor” that is capable of inhibiting MASTL kinase activity [
<xref rid="B109-cancers-12-00129" ref-type="bibr">109</xref>
], and Ammarah et al., after screening a library of natural and synthetic compounds, identified the ZINC53845290 compound as the most promising MASTL inhibitor [
<xref rid="B110-cancers-12-00129" ref-type="bibr">110</xref>
]. </p>
<p>COPZ1 (coatomer protein complex zeta 1) is a member of the COPI (coatomer protein complex I), exerting a role in vesicular trafficking from the Golgi apparatus to the ER, as well as endosome maturation, autophagy [
<xref rid="B111-cancers-12-00129" ref-type="bibr">111</xref>
,
<xref rid="B112-cancers-12-00129" ref-type="bibr">112</xref>
], viral infection [
<xref rid="B113-cancers-12-00129" ref-type="bibr">113</xref>
], and lipid homeostasis [
<xref rid="B114-cancers-12-00129" ref-type="bibr">114</xref>
]. Few investigations have dealt with the role of COPZ1 in cancer. Shtutman at al. attributed to COPZ1 an essential role in different tumor types (i.e., prostate, breast, and ovarian carcinoma), indeed demonstrating that depletion induces Golgi apparatus collapse, autophagy inhibition, and apoptotic cell death in proliferating and dormant cells [
<xref rid="B115-cancers-12-00129" ref-type="bibr">115</xref>
]. Interestingly, the same authors found that COPZ1 vulnerability of tumor cells relies on the downregulation of the isoform COPZ2, whose gene hosts the well-known oncosuppressor miRNA152 [
<xref rid="B115-cancers-12-00129" ref-type="bibr">115</xref>
,
<xref rid="B116-cancers-12-00129" ref-type="bibr">116</xref>
]. We found that COPZ1 represents vulnerability for TC, as it is required for the viability of different TC cell lines but not of normal thyrocytes [
<xref rid="B117-cancers-12-00129" ref-type="bibr">117</xref>
]. Moreover, the absence of mutation and aberrant expression in PTC [
<xref rid="B76-cancers-12-00129" ref-type="bibr">76</xref>
] renders COPZ1 a good example of NOA for thyroid cancer cells. COPZ1 depletion causes abortive autophagy, ER stress, unfolded protein response (UPR), and apoptosis, suggesting a central role in coping with cellular proteotoxic stress. In addition, local treatment with siRNA oligos targeting COPZ1 reduces tumor growth of TC xenograft models [
<xref rid="B117-cancers-12-00129" ref-type="bibr">117</xref>
]. Notably, there is currently a strong interest in developing selective small-molecules targeting the coatomer complex, which may be useful to treat not only TC, but also different types of cancers. Interestingly, members of the complex have been recently proposed as therapeutic targets in cancer such as COPA (coatomer protein complex subunit alpha) for mesothelioma, and COPB2 (coatomer protein complex subunit beta 2) for colorectal cancer, lung adenocarcinoma, cholangiocellular carcinoma, and gastric cancer [
<xref rid="B118-cancers-12-00129" ref-type="bibr">118</xref>
,
<xref rid="B119-cancers-12-00129" ref-type="bibr">119</xref>
,
<xref rid="B120-cancers-12-00129" ref-type="bibr">120</xref>
,
<xref rid="B121-cancers-12-00129" ref-type="bibr">121</xref>
,
<xref rid="B122-cancers-12-00129" ref-type="bibr">122</xref>
,
<xref rid="B123-cancers-12-00129" ref-type="bibr">123</xref>
]. Other strategies to impair the ER–Golgi network are being currently pursued as anti-cancer therapy. For example, the M-COPA (2-methylcoprophilinamide) compound, inhibiting Arf1 (ADP ribosylation factor 1) involved in COPI and clathrin-coated transport vesicles, has been shown to disrupt the Golgi apparatus and RTK translocation to the membrane, to have antitumor effects against MET-addicted gastric cancers, and to overcome TKI resistance in EGFR-mutated non-small-cell lung carcinoma [
<xref rid="B124-cancers-12-00129" ref-type="bibr">124</xref>
,
<xref rid="B125-cancers-12-00129" ref-type="bibr">125</xref>
].</p>
</sec>
</sec>
<sec id="sec4-cancers-12-00129">
<title>4. Other Putative NOAs</title>
<p>In the context of thyroid tumors, several functional studies on pathway interactions and their signaling have opened up new routes for therapeutic targets. Many have allowed the identification of NOAs, belonging to hallmarks of cancer reported in
<xref ref-type="sec" rid="sec1-cancers-12-00129">Section 1</xref>
, which have been preclinically investigated and may be considered as effective in treating TC (
<xref ref-type="fig" rid="cancers-12-00129-f003">Figure 3</xref>
). Hereafter, some examples of less-explored TC vulnerabilities are reported.</p>
<p>Physiologically, thyrocytes produce substantial amounts of ROS for synthesis of T3 and T4 hormones, and thus the thyroid gland displays an “oxidative nature” that, when overloaded, can initiate genomic instability and malignant transformation [
<xref rid="B126-cancers-12-00129" ref-type="bibr">126</xref>
]. Ionizing radiation, but also the activity of the RAS and BRAF oncogenes, up-regulates the expression of DUOX1 (dual oxidase 1) and NOX4 (nicotinamide adenine dinucleotide phosphate NADPH oxidase 4), two oxidases responsible for generation of ROS [
<xref rid="B126-cancers-12-00129" ref-type="bibr">126</xref>
,
<xref rid="B127-cancers-12-00129" ref-type="bibr">127</xref>
], which can be considered as examples of non-oncogenes to be targeted. Inhibitors for DUOX1 and NOX4 have been identified [
<xref rid="B128-cancers-12-00129" ref-type="bibr">128</xref>
], but not yet tested in thyroid tumors. On the other hand, applying oxidative stress overload can specifically kill thyroid cells. For example, the inhibition of the pentose phosphate pathway through inhibitors of G6PD (glucose-6-phosphate dehydrogenase) and transketolase (6-aminonicotinamide and oxythiamine, respectively increase production of ROS, and induce ER stress and TC cell death [
<xref rid="B129-cancers-12-00129" ref-type="bibr">129</xref>
].</p>
<p>To date, the use of epigenetic drugs, specifically HDAC (histone deacetylase) inhibitors such as vorinostat and valproic acid, has been widely studied in thyroid cancers. This approach, essentially causing the arrest of tumor growth, differentiation, apoptosis, and sensitization to radiation, showed the most efficacy in combination with chemotherapy [
<xref rid="B130-cancers-12-00129" ref-type="bibr">130</xref>
,
<xref rid="B131-cancers-12-00129" ref-type="bibr">131</xref>
] and with HSP and proteosome inhibitors [
<xref rid="B132-cancers-12-00129" ref-type="bibr">132</xref>
]. Although none of the HDAC inhibitors have produced significant responses in clinic studies to date, further research in the field of HDAC inhibitors and their functions, other than DNA deacetylation, such as buffering proteotoxic stress, should be performed. Interestingly, it has been demonstrated that inhibiting HDAC is a strategy to reactivate MHC (major histocompatibility complex) gene expression in tumor cells, enhancing tumor immune surveillance [
<xref rid="B133-cancers-12-00129" ref-type="bibr">133</xref>
]. All the above considerations corroborate the idea that HDACs deserve to be classified as NOAs in TC.</p>
<p>Similar to other tumor types, TCs display sensitivity to proteasome inhibition. Compounds such as bortezomib, MG132, and carfilzomib have shown efficacy in killing cells in preclinical thyroid cancer models [
<xref rid="B134-cancers-12-00129" ref-type="bibr">134</xref>
,
<xref rid="B135-cancers-12-00129" ref-type="bibr">135</xref>
,
<xref rid="B136-cancers-12-00129" ref-type="bibr">136</xref>
]. </p>
<p>The HIV (human immunodeficiency virus) protease inhibitor nelfinavir (NFV) is an example of drug repositioning, as recently it has been introduced as a therapeutic option for the treatment of pancreatic cancer, non-small-cell lung cancer, liposarcoma, and glioblastoma multiforme [
<xref rid="B26-cancers-12-00129" ref-type="bibr">26</xref>
]. It has been demonstrated that NFV acts as an inhibitor of HSP90 and causes unfolded protein response and ER stress [
<xref rid="B137-cancers-12-00129" ref-type="bibr">137</xref>
]. Moreover, it synergizes with proteosome inhibitors to suppress cancer cells [
<xref rid="B138-cancers-12-00129" ref-type="bibr">138</xref>
,
<xref rid="B139-cancers-12-00129" ref-type="bibr">139</xref>
,
<xref rid="B140-cancers-12-00129" ref-type="bibr">140</xref>
]. Interestingly, a recent study demonstrated that as NFV inhibits thyroid cancer cell proliferation and migration, it also induces DNA damage and sensitizes cells to anoikis, suggesting that it could be a new promising therapeutic agent for TC [
<xref rid="B26-cancers-12-00129" ref-type="bibr">26</xref>
,
<xref rid="B141-cancers-12-00129" ref-type="bibr">141</xref>
]. Several other HSP90 inhibitors, such as 17-allylamino-17-demethoxygeldanamycin (17-AAG) and ganetespib have been tested in preclinical models with the aim to cope with intracellular proteotoxic stress. Their cytotoxicity has also been demonstrated in thyroid tumor cells [
<xref rid="B142-cancers-12-00129" ref-type="bibr">142</xref>
,
<xref rid="B143-cancers-12-00129" ref-type="bibr">143</xref>
], although its clinic effectiveness has not yet been assessed.</p>
<p>TC undergoes metabolic adaptations that could be used as therapeutic targets. The majority of metabolism-related molecules, such as GLUT1 (glucose transporter 1), HK1 (hexokinase 1), LDH-A (lactate dehydrogenase A), GLS1 (glutaminase), and MCT1 (monocarboxylate transporter 1) are upregulated in different subtypes of thyroid carcinoma [
<xref rid="B144-cancers-12-00129" ref-type="bibr">144</xref>
]. Inhibitors of glutamine uptake (phenylacetate), glucose metabolism (2-deoxyglucose, 3-bromopyruvate, dichloroacetate), and activators of adenosine monophosphate-activated protein kinase (AMPK; metformin and 5-aminoimidazole-4-carboxamide-ribonucleoside) have all been proposed to regulate metabolic alterations in TC [
<xref rid="B145-cancers-12-00129" ref-type="bibr">145</xref>
].</p>
<p>Champa and co-authors found that poorly differentiated and ATC cell lines, generally known to be intrinsically resistant to cell death, showed reduced tumor growth both in vitro and in vivo when treated with obatoclax, a pan-inhibitor of the anti-apoptotic proteins of the BCL2 (BCL2 apoptosis regulator) family. Interestingly, they demonstrated that obatoclax induced necrosis in cancer cells, but not in non-transformed thyroid cells, through the destabilization of lysosomes. The same effect was observed using other lysosome-targeting compounds, such as mefloquine and LLOMe (L-leucyl-L-leucine methyl ester), suggesting that impairment of lysosomal machinery can be considered an Achilles’ heel of advanced TC cells [
<xref rid="B146-cancers-12-00129" ref-type="bibr">146</xref>
]. Other compounds such the anti-malaria drug chloroquine, which blocks autophagy by inhibiting lysosomal proteases and autophagosome–lysosomal fusion, has been considered as an example of repositioning therapy for TC [
<xref rid="B26-cancers-12-00129" ref-type="bibr">26</xref>
].</p>
<p>Cycloxygenase-2 (COX-2), an important enzyme involved in the synthesis of prostaglandins and inflammation, has been proposed as a NOA for different tumor types, as it is responsible for progression of tumors, resistance to cell death, metastasis, and for onset of immunosuppressive milieu [
<xref rid="B13-cancers-12-00129" ref-type="bibr">13</xref>
,
<xref rid="B31-cancers-12-00129" ref-type="bibr">31</xref>
]. In the context of TC, the COX-2/PGE2 (prostaglandine E2) pathway has been demonstrated to exert a role in proliferation and invasion of thyroid tumor cells and to be associated with tumor recurrence in WDTC [
<xref rid="B147-cancers-12-00129" ref-type="bibr">147</xref>
]. Moreover, Park et al. found that TC cells, through the secretion of PGE2, are able to evade immune surveillance by mitigating the cytolytic activity of natural killer cells in the tumor microenvironment [
<xref rid="B148-cancers-12-00129" ref-type="bibr">148</xref>
]. However, administration of celecoxib, a COX-2 inhibitor, in thyroid cancer patients did not give encouraging results due to the lack of efficacy and high toxicity [
<xref rid="B131-cancers-12-00129" ref-type="bibr">131</xref>
,
<xref rid="B149-cancers-12-00129" ref-type="bibr">149</xref>
], suggesting that other compounds should be tested for their therapeutic benefits.</p>
</sec>
<sec sec-type="conclusions" id="sec5-cancers-12-00129">
<title>5. Conclusions</title>
<p>Despite the huge efforts in dissecting the molecular alterations in TC, which have nevertheless allowed the introduction of several therapeutic options into clinical practice, the management of patients with aggressive and iodine-refractory thyroid tumors is still challenging. Thus, there is a need to identify new strategies for treatment. Several lines of evidence have shown that non-oncogene addictions can be considered as new therapeutic options. As for other tumors, in the context of thyroid tumors it is very difficult to exactly define into which category some genes and pathways should fall—oncogenes or non-oncogenes? The reasons can be varied. Studies performed in some tumor types cannot be translated to the thyroid, as cell specificity is a determining factor for establishing whether a gene acts as oncogene or non-oncogene. Many functional studies neglect the study of the normal counterpart, and therefore do not highlight differential lethality in normal and tumor cells. As reported above, one of the biggest pitfalls is the limited availability of normal cell models, and the thyroid is no exception. Moreover, the majority of vulnerabilities discovered deal with proliferation and survival, and the pillar functions involved in the tumor microenvironment are lacking. Despite the efforts being made in the discovery of new targets, NOAs included, there is still an evident difficulty to enter novel drugs into clinical trials to assess clinical validation and, consequently, patient benefit.</p>
<p>We are aware that this review is not fully exhaustive, as many NOAs in the context of thyroid tumors, especially those belonging to DNA damage, replication, and mitotic stress, have not been expanded upon. Considering the different functional categories in which NOAs fall and large amount of information available in literature, many concepts have been consequently omitted.</p>
<p>In conclusion, there is robust evidence that NOAs represent novel molecules that should be tested at the preclinical and clinical levels. Their targeting, alone or in association with standard therapy, could offer new and advantageous therapeutic approaches for treatment of thyroid cancers.</p>
</sec>
</body>
<back>
<ack>
<title>Acknowledgments</title>
<p>We thank Patrick Moore for editing the manuscript; figures were created with BioRender.com.</p>
</ack>
<notes>
<title>Author Contributions</title>
<p>M.C.A., T.D.M., M.M., and A.G. contributed to writing the manuscript. All authors approved the final version of the manuscript. All authors have read and agreed to the published version of the manuscript.</p>
</notes>
<notes>
<title>Funding</title>
<p>This work was supported by Associazione Italiana per la Ricerca sul Cancro (Investigator Grant IG 18395, 2017 to A. Greco).</p>
</notes>
<notes notes-type="COI-statement">
<title>Conflicts of Interest</title>
<p>The authors declare no conflict of interest. </p>
</notes>
<ref-list>
<title>References</title>
<ref id="B1-cancers-12-00129">
<label>1.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Hanahan</surname>
<given-names>D.</given-names>
</name>
<name>
<surname>Weinberg</surname>
<given-names>R.A.</given-names>
</name>
</person-group>
<article-title>The hallmarks of cancer</article-title>
<source>Cell</source>
<year>2000</year>
<volume>100</volume>
<fpage>57</fpage>
<lpage>70</lpage>
<pub-id pub-id-type="doi">10.1016/S0092-8674(00)81683-9</pub-id>
<pub-id pub-id-type="pmid">10647931</pub-id>
</element-citation>
</ref>
<ref id="B2-cancers-12-00129">
<label>2.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Weinstein</surname>
<given-names>I.B.</given-names>
</name>
</person-group>
<article-title>Cancer. Addiction to oncogenes—The Achilles heal of cancer</article-title>
<source>Science</source>
<year>2002</year>
<volume>297</volume>
<fpage>63</fpage>
<lpage>64</lpage>
<pub-id pub-id-type="doi">10.1126/science.1073096</pub-id>
<pub-id pub-id-type="pmid">12098689</pub-id>
</element-citation>
</ref>
<ref id="B3-cancers-12-00129">
<label>3.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Weinstein</surname>
<given-names>I.B.</given-names>
</name>
<name>
<surname>Joe</surname>
<given-names>A.</given-names>
</name>
</person-group>
<article-title>Oncogene addiction</article-title>
<source>Cancer Res.</source>
<year>2008</year>
<volume>68</volume>
<fpage>3077</fpage>
<lpage>3080</lpage>
<pub-id pub-id-type="doi">10.1158/0008-5472.CAN-07-3293</pub-id>
<pub-id pub-id-type="pmid">18451130</pub-id>
</element-citation>
</ref>
<ref id="B4-cancers-12-00129">
<label>4.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Slamon</surname>
<given-names>D.J.</given-names>
</name>
<name>
<surname>Leyland-Jones</surname>
<given-names>B.</given-names>
</name>
<name>
<surname>Shak</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Fuchs</surname>
<given-names>H.</given-names>
</name>
<name>
<surname>Paton</surname>
<given-names>V.</given-names>
</name>
<name>
<surname>Bajamonde</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Fleming</surname>
<given-names>T.</given-names>
</name>
<name>
<surname>Eiermann</surname>
<given-names>W.</given-names>
</name>
<name>
<surname>Wolter</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Pegram</surname>
<given-names>M.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Use of chemotherapy plus a monoclonal antibody against HER2 for metastatic breast cancer that overexpresses HER2</article-title>
<source>N. Engl. J. Med.</source>
<year>2001</year>
<volume>344</volume>
<fpage>783</fpage>
<lpage>792</lpage>
<pub-id pub-id-type="doi">10.1056/NEJM200103153441101</pub-id>
<pub-id pub-id-type="pmid">11248153</pub-id>
</element-citation>
</ref>
<ref id="B5-cancers-12-00129">
<label>5.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Flaherty</surname>
<given-names>K.T.</given-names>
</name>
<name>
<surname>Puzanov</surname>
<given-names>I.</given-names>
</name>
<name>
<surname>Kim</surname>
<given-names>K.B.</given-names>
</name>
<name>
<surname>Ribas</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>McArthur</surname>
<given-names>G.A.</given-names>
</name>
<name>
<surname>Sosman</surname>
<given-names>J.A.</given-names>
</name>
<name>
<surname>O’Dwyer</surname>
<given-names>P.J.</given-names>
</name>
<name>
<surname>Lee</surname>
<given-names>R.J.</given-names>
</name>
<name>
<surname>Grippo</surname>
<given-names>J.F.</given-names>
</name>
<name>
<surname>Nolop</surname>
<given-names>K.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Inhibition of mutated, activated BRAF in metastatic melanoma</article-title>
<source>N. Engl. J. Med.</source>
<year>2010</year>
<volume>363</volume>
<fpage>809</fpage>
<lpage>819</lpage>
<pub-id pub-id-type="doi">10.1056/NEJMoa1002011</pub-id>
<pub-id pub-id-type="pmid">20818844</pub-id>
</element-citation>
</ref>
<ref id="B6-cancers-12-00129">
<label>6.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Yoda</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Dagogo-Jack</surname>
<given-names>I.</given-names>
</name>
<name>
<surname>Hata</surname>
<given-names>A.N.</given-names>
</name>
</person-group>
<article-title>Targeting oncogenic drivers in lung cancer: Recent progress, current challenges and future opportunities</article-title>
<source>Pharmacol. Ther.</source>
<year>2019</year>
<volume>193</volume>
<fpage>20</fpage>
<lpage>30</lpage>
<pub-id pub-id-type="doi">10.1016/j.pharmthera.2018.08.007</pub-id>
<pub-id pub-id-type="pmid">30121320</pub-id>
</element-citation>
</ref>
<ref id="B7-cancers-12-00129">
<label>7.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Von Mehren</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Joensuu</surname>
<given-names>H.</given-names>
</name>
</person-group>
<article-title>Gastrointestinal Stromal Tumors</article-title>
<source>J. Clin Oncol.</source>
<year>2018</year>
<volume>36</volume>
<fpage>136</fpage>
<lpage>143</lpage>
<pub-id pub-id-type="doi">10.1200/JCO.2017.74.9705</pub-id>
<pub-id pub-id-type="pmid">29220298</pub-id>
</element-citation>
</ref>
<ref id="B8-cancers-12-00129">
<label>8.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Hughes</surname>
<given-names>T.P.</given-names>
</name>
<name>
<surname>Kaeda</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Branford</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Rudzki</surname>
<given-names>Z.</given-names>
</name>
<name>
<surname>Hochhaus</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Hensley</surname>
<given-names>M.L.</given-names>
</name>
<name>
<surname>Gathmann</surname>
<given-names>I.</given-names>
</name>
<name>
<surname>Bolton</surname>
<given-names>A.E.</given-names>
</name>
<name>
<surname>van Hoomissen</surname>
<given-names>I.C.</given-names>
</name>
<name>
<surname>Goldman</surname>
<given-names>J.M.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Frequency of major molecular responses to imatinib or interferon alfa plus cytarabine in newly diagnosed chronic myeloid leukemia</article-title>
<source>N. Engl. J. Med.</source>
<year>2003</year>
<volume>349</volume>
<fpage>1423</fpage>
<lpage>1432</lpage>
<pub-id pub-id-type="doi">10.1056/NEJMoa030513</pub-id>
<pub-id pub-id-type="pmid">14534335</pub-id>
</element-citation>
</ref>
<ref id="B9-cancers-12-00129">
<label>9.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Valerio</surname>
<given-names>L.</given-names>
</name>
<name>
<surname>Pieruzzi</surname>
<given-names>L.</given-names>
</name>
<name>
<surname>Giani</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>Agate</surname>
<given-names>L.</given-names>
</name>
<name>
<surname>Bottici</surname>
<given-names>V.</given-names>
</name>
<name>
<surname>Lorusso</surname>
<given-names>L.</given-names>
</name>
<name>
<surname>Cappagli</surname>
<given-names>V.</given-names>
</name>
<name>
<surname>Puleo</surname>
<given-names>L.</given-names>
</name>
<name>
<surname>Matrone</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Viola</surname>
<given-names>D.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Targeted Therapy in Thyroid Cancer: State of the Art</article-title>
<source>Clin Oncol.</source>
<year>2017</year>
<volume>29</volume>
<fpage>316</fpage>
<lpage>324</lpage>
<pub-id pub-id-type="doi">10.1016/j.clon.2017.02.009</pub-id>
</element-citation>
</ref>
<ref id="B10-cancers-12-00129">
<label>10.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Bronte</surname>
<given-names>G.</given-names>
</name>
<name>
<surname>Ulivi</surname>
<given-names>P.</given-names>
</name>
<name>
<surname>Verlicchi</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Cravero</surname>
<given-names>P.</given-names>
</name>
<name>
<surname>Delmonte</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Crino</surname>
<given-names>L.</given-names>
</name>
</person-group>
<article-title>Targeting RET-rearranged non-small-cell lung cancer: Future prospects</article-title>
<source>Lung Cancer</source>
<year>2019</year>
<volume>10</volume>
<fpage>27</fpage>
<lpage>36</lpage>
<pub-id pub-id-type="doi">10.2147/LCTT.S192830</pub-id>
<pub-id pub-id-type="pmid">30962732</pub-id>
</element-citation>
</ref>
<ref id="B11-cancers-12-00129">
<label>11.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Cocco</surname>
<given-names>E.</given-names>
</name>
<name>
<surname>Scaltriti</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Drilon</surname>
<given-names>A.</given-names>
</name>
</person-group>
<article-title>NTRK fusion-positive cancers and TRK inhibitor therapy</article-title>
<source>Nat. Rev. Clin. Oncol.</source>
<year>2018</year>
<volume>15</volume>
<fpage>731</fpage>
<lpage>747</lpage>
<pub-id pub-id-type="doi">10.1038/s41571-018-0113-0</pub-id>
<pub-id pub-id-type="pmid">30333516</pub-id>
</element-citation>
</ref>
<ref id="B12-cancers-12-00129">
<label>12.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Solimini</surname>
<given-names>N.L.</given-names>
</name>
<name>
<surname>Luo</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Elledge</surname>
<given-names>S.J.</given-names>
</name>
</person-group>
<article-title>Non-oncogene addiction and the stress phenotype of cancer cells</article-title>
<source>Cell</source>
<year>2007</year>
<volume>130</volume>
<fpage>986</fpage>
<lpage>988</lpage>
<pub-id pub-id-type="doi">10.1016/j.cell.2007.09.007</pub-id>
<pub-id pub-id-type="pmid">17889643</pub-id>
</element-citation>
</ref>
<ref id="B13-cancers-12-00129">
<label>13.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Luo</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Solimini</surname>
<given-names>N.L.</given-names>
</name>
<name>
<surname>Elledge</surname>
<given-names>S.J.</given-names>
</name>
</person-group>
<article-title>Principles of cancer therapy: Oncogene and non-oncogene addiction</article-title>
<source>Cell</source>
<year>2009</year>
<volume>136</volume>
<fpage>823</fpage>
<lpage>837</lpage>
<pub-id pub-id-type="doi">10.1016/j.cell.2009.02.024</pub-id>
<pub-id pub-id-type="pmid">19269363</pub-id>
</element-citation>
</ref>
<ref id="B14-cancers-12-00129">
<label>14.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Chen</surname>
<given-names>Z.</given-names>
</name>
<name>
<surname>Xiao</surname>
<given-names>Z.</given-names>
</name>
<name>
<surname>Gu</surname>
<given-names>W.Z.</given-names>
</name>
<name>
<surname>Xue</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Bui</surname>
<given-names>M.H.</given-names>
</name>
<name>
<surname>Kovar</surname>
<given-names>P.</given-names>
</name>
<name>
<surname>Li</surname>
<given-names>G.</given-names>
</name>
<name>
<surname>Wang</surname>
<given-names>G.</given-names>
</name>
<name>
<surname>Tao</surname>
<given-names>Z.F.</given-names>
</name>
<name>
<surname>Tong</surname>
<given-names>Y.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Selective Chk1 inhibitors differentially sensitize p53-deficient cancer cells to cancer therapeutics</article-title>
<source>Int. J. Cancer</source>
<year>2006</year>
<volume>119</volume>
<fpage>2784</fpage>
<lpage>2794</lpage>
<pub-id pub-id-type="doi">10.1002/ijc.22198</pub-id>
<pub-id pub-id-type="pmid">17019715</pub-id>
</element-citation>
</ref>
<ref id="B15-cancers-12-00129">
<label>15.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Kennedy</surname>
<given-names>R.D.</given-names>
</name>
<name>
<surname>Chen</surname>
<given-names>C.C.</given-names>
</name>
<name>
<surname>Stuckert</surname>
<given-names>P.</given-names>
</name>
<name>
<surname>Archila</surname>
<given-names>E.M.</given-names>
</name>
<name>
<surname>Michelle</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Moreau</surname>
<given-names>L.A.</given-names>
</name>
<name>
<surname>Shimamura</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>D’Andrea</surname>
<given-names>A.D.</given-names>
</name>
</person-group>
<article-title>Fanconi anemia pathway-deficient tumor cells are hypersensitive to inhibition of ataxia telangiectasia mutated</article-title>
<source>J. Clin. Investig.</source>
<year>2007</year>
<volume>117</volume>
<fpage>1440</fpage>
<lpage>1449</lpage>
<pub-id pub-id-type="doi">10.1172/JCI31245</pub-id>
<pub-id pub-id-type="pmid">17431503</pub-id>
</element-citation>
</ref>
<ref id="B16-cancers-12-00129">
<label>16.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Guang</surname>
<given-names>M.H.Z.</given-names>
</name>
<name>
<surname>Kavanagh</surname>
<given-names>E.L.</given-names>
</name>
<name>
<surname>Dunne</surname>
<given-names>L.P.</given-names>
</name>
<name>
<surname>Dowling</surname>
<given-names>P.</given-names>
</name>
<name>
<surname>Zhang</surname>
<given-names>L.</given-names>
</name>
<name>
<surname>Lindsay</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Bazou</surname>
<given-names>D.</given-names>
</name>
<name>
<surname>Goh</surname>
<given-names>C.Y.</given-names>
</name>
<name>
<surname>Hanley</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>Bianchi</surname>
<given-names>G.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Targeting Proteotoxic Stress in Cancer: A Review of the Role that Protein Quality Control Pathways Play in Oncogenesis</article-title>
<source>Cancers</source>
<year>2019</year>
<volume>11</volume>
<elocation-id>66</elocation-id>
<pub-id pub-id-type="doi">10.3390/cancers11010066</pub-id>
</element-citation>
</ref>
<ref id="B17-cancers-12-00129">
<label>17.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Li</surname>
<given-names>T.</given-names>
</name>
<name>
<surname>Zhang</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>Hassan</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Liu</surname>
<given-names>X.</given-names>
</name>
<name>
<surname>Song</surname>
<given-names>F.</given-names>
</name>
<name>
<surname>Chen</surname>
<given-names>K.</given-names>
</name>
<name>
<surname>Zhang</surname>
<given-names>W.</given-names>
</name>
<name>
<surname>Yang</surname>
<given-names>J.</given-names>
</name>
</person-group>
<article-title>Histone deacetylase 6 in cancer</article-title>
<source>J. Hematol. Oncol.</source>
<year>2018</year>
<volume>11</volume>
<fpage>111</fpage>
<pub-id pub-id-type="doi">10.1186/s13045-018-0654-9</pub-id>
<pub-id pub-id-type="pmid">30176876</pub-id>
</element-citation>
</ref>
<ref id="B18-cancers-12-00129">
<label>18.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Putcha</surname>
<given-names>P.</given-names>
</name>
<name>
<surname>Yu</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Rodriguez-Barrueco</surname>
<given-names>R.</given-names>
</name>
<name>
<surname>Saucedo-Cuevas</surname>
<given-names>L.</given-names>
</name>
<name>
<surname>Villagrasa</surname>
<given-names>P.</given-names>
</name>
<name>
<surname>Murga-Penas</surname>
<given-names>E.</given-names>
</name>
<name>
<surname>Quayle</surname>
<given-names>S.N.</given-names>
</name>
<name>
<surname>Yang</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Castro</surname>
<given-names>V.</given-names>
</name>
<name>
<surname>Llobet-Navas</surname>
<given-names>D.</given-names>
</name>
</person-group>
<article-title>HDAC6 activity is a non-oncogene addiction hub for inflammatory breast cancers</article-title>
<source>Breast Cancer Res.</source>
<year>2015</year>
<volume>17</volume>
<fpage>149</fpage>
<pub-id pub-id-type="doi">10.1186/s13058-015-0658-0</pub-id>
<pub-id pub-id-type="pmid">26643555</pub-id>
</element-citation>
</ref>
<ref id="B19-cancers-12-00129">
<label>19.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Kroemer</surname>
<given-names>G.</given-names>
</name>
<name>
<surname>Pouyssegur</surname>
<given-names>J.</given-names>
</name>
</person-group>
<article-title>Tumor cell metabolism: Cancer’s Achilles’ heel</article-title>
<source>Cancer Cell</source>
<year>2008</year>
<volume>13</volume>
<fpage>472</fpage>
<lpage>482</lpage>
<pub-id pub-id-type="doi">10.1016/j.ccr.2008.05.005</pub-id>
<pub-id pub-id-type="pmid">18538731</pub-id>
</element-citation>
</ref>
<ref id="B20-cancers-12-00129">
<label>20.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Nagel</surname>
<given-names>R.</given-names>
</name>
<name>
<surname>Semenova</surname>
<given-names>E.A.</given-names>
</name>
<name>
<surname>Berns</surname>
<given-names>A.</given-names>
</name>
</person-group>
<article-title>Drugging the addict: Non-oncogene addiction as a target for cancer therapy</article-title>
<source>EMBO Rep.</source>
<year>2016</year>
<volume>17</volume>
<fpage>1516</fpage>
<lpage>1531</lpage>
<pub-id pub-id-type="doi">10.15252/embr.201643030</pub-id>
<pub-id pub-id-type="pmid">27702988</pub-id>
</element-citation>
</ref>
<ref id="B21-cancers-12-00129">
<label>21.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Feng</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Xiong</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Qiao</surname>
<given-names>T.</given-names>
</name>
<name>
<surname>Li</surname>
<given-names>X.</given-names>
</name>
<name>
<surname>Jia</surname>
<given-names>L.</given-names>
</name>
<name>
<surname>Han</surname>
<given-names>Y.</given-names>
</name>
</person-group>
<article-title>Lactate dehydrogenase A: A key player in carcinogenesis and potential target in cancer therapy</article-title>
<source>Cancer Med.</source>
<year>2018</year>
<volume>7</volume>
<fpage>6124</fpage>
<lpage>6136</lpage>
<pub-id pub-id-type="doi">10.1002/cam4.1820</pub-id>
<pub-id pub-id-type="pmid">30403008</pub-id>
</element-citation>
</ref>
<ref id="B22-cancers-12-00129">
<label>22.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Zi</surname>
<given-names>F.</given-names>
</name>
<name>
<surname>Zi</surname>
<given-names>H.</given-names>
</name>
<name>
<surname>Li</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>He</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Shi</surname>
<given-names>Q.</given-names>
</name>
<name>
<surname>Cai</surname>
<given-names>Z.</given-names>
</name>
</person-group>
<article-title>Metformin and cancer: An existing drug for cancer prevention and therapy</article-title>
<source>Oncol. Lett.</source>
<year>2018</year>
<volume>15</volume>
<fpage>683</fpage>
<lpage>690</lpage>
<pub-id pub-id-type="doi">10.3892/ol.2017.7412</pub-id>
<pub-id pub-id-type="pmid">29422962</pub-id>
</element-citation>
</ref>
<ref id="B23-cancers-12-00129">
<label>23.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Pavlova</surname>
<given-names>N.N.</given-names>
</name>
<name>
<surname>Thompson</surname>
<given-names>C.B.</given-names>
</name>
</person-group>
<article-title>The Emerging Hallmarks of Cancer Metabolism</article-title>
<source>Cell Metab.</source>
<year>2016</year>
<volume>23</volume>
<fpage>27</fpage>
<lpage>47</lpage>
<pub-id pub-id-type="doi">10.1016/j.cmet.2015.12.006</pub-id>
<pub-id pub-id-type="pmid">26771115</pub-id>
</element-citation>
</ref>
<ref id="B24-cancers-12-00129">
<label>24.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Commisso</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>Davidson</surname>
<given-names>S.M.</given-names>
</name>
<name>
<surname>Soydaner-Azeloglu</surname>
<given-names>R.G.</given-names>
</name>
<name>
<surname>Parker</surname>
<given-names>S.J.</given-names>
</name>
<name>
<surname>Kamphorst</surname>
<given-names>J.J.</given-names>
</name>
<name>
<surname>Hackett</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Grabocka</surname>
<given-names>E.</given-names>
</name>
<name>
<surname>Nofal</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Drebin</surname>
<given-names>J.A.</given-names>
</name>
</person-group>
<article-title>Macropinocytosis of protein is an amino acid supply route in Ras-transformed cells</article-title>
<source>Nature</source>
<year>2013</year>
<volume>497</volume>
<fpage>633</fpage>
<lpage>637</lpage>
<pub-id pub-id-type="doi">10.1038/nature12138</pub-id>
<pub-id pub-id-type="pmid">23665962</pub-id>
</element-citation>
</ref>
<ref id="B25-cancers-12-00129">
<label>25.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Li</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Chiang</surname>
<given-names>Y.L.</given-names>
</name>
<name>
<surname>Lyssiotis</surname>
<given-names>C.A.</given-names>
</name>
<name>
<surname>Teater</surname>
<given-names>M.R.</given-names>
</name>
<name>
<surname>Hong</surname>
<given-names>J.Y.</given-names>
</name>
<name>
<surname>Shen</surname>
<given-names>H.</given-names>
</name>
<name>
<surname>Wang</surname>
<given-names>L.</given-names>
</name>
<name>
<surname>Hu</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Jing</surname>
<given-names>H.</given-names>
</name>
<name>
<surname>Chen</surname>
<given-names>Z.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Non-oncogene Addiction to SIRT3 Plays a Critical Role in Lymphomagenesis</article-title>
<source>Cancer Cell</source>
<year>2019</year>
<volume>35</volume>
<fpage>916</fpage>
<lpage>931</lpage>
<pub-id pub-id-type="doi">10.1016/j.ccell.2019.05.002</pub-id>
<pub-id pub-id-type="pmid">31185214</pub-id>
</element-citation>
</ref>
<ref id="B26-cancers-12-00129">
<label>26.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Kushchayeva</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Jensen</surname>
<given-names>K.</given-names>
</name>
<name>
<surname>Burman</surname>
<given-names>K.D.</given-names>
</name>
<name>
<surname>Vasko</surname>
<given-names>V.</given-names>
</name>
</person-group>
<article-title>Repositioning therapy for thyroid cancer: New insights on established medications</article-title>
<source>Endocr. Relat. Cancer</source>
<year>2014</year>
<volume>21</volume>
<fpage>R183</fpage>
<lpage>R194</lpage>
<pub-id pub-id-type="doi">10.1530/ERC-13-0473</pub-id>
<pub-id pub-id-type="pmid">24446492</pub-id>
</element-citation>
</ref>
<ref id="B27-cancers-12-00129">
<label>27.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Saxton</surname>
<given-names>R.A.</given-names>
</name>
<name>
<surname>Sabatini</surname>
<given-names>D.M.</given-names>
</name>
</person-group>
<article-title>mTOR Signaling in Growth, Metabolism, and Disease</article-title>
<source>Cell</source>
<year>2017</year>
<volume>168</volume>
<fpage>960</fpage>
<lpage>976</lpage>
<pub-id pub-id-type="doi">10.1016/j.cell.2017.02.004</pub-id>
<pub-id pub-id-type="pmid">28283069</pub-id>
</element-citation>
</ref>
<ref id="B28-cancers-12-00129">
<label>28.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Hua</surname>
<given-names>H.</given-names>
</name>
<name>
<surname>Kong</surname>
<given-names>Q.</given-names>
</name>
<name>
<surname>Zhang</surname>
<given-names>H.</given-names>
</name>
<name>
<surname>Wang</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Luo</surname>
<given-names>T.</given-names>
</name>
<name>
<surname>Jiang</surname>
<given-names>Y.</given-names>
</name>
</person-group>
<article-title>Targeting mTOR for cancer therapy</article-title>
<source>J. Hematol. Oncol.</source>
<year>2019</year>
<volume>12</volume>
<fpage>71</fpage>
<pub-id pub-id-type="doi">10.1186/s13045-019-0754-1</pub-id>
<pub-id pub-id-type="pmid">31277692</pub-id>
</element-citation>
</ref>
<ref id="B29-cancers-12-00129">
<label>29.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Weinberg</surname>
<given-names>F.</given-names>
</name>
<name>
<surname>Ramnath</surname>
<given-names>N.</given-names>
</name>
<name>
<surname>Nagrath</surname>
<given-names>D.</given-names>
</name>
</person-group>
<article-title>Reactive Oxygen Species in the Tumor Microenvironment: An Overview</article-title>
<source>Cancers</source>
<year>2019</year>
<volume>11</volume>
<elocation-id>1191</elocation-id>
<pub-id pub-id-type="doi">10.3390/cancers11081191</pub-id>
</element-citation>
</ref>
<ref id="B30-cancers-12-00129">
<label>30.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Courtois-Cox</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Jones</surname>
<given-names>S.L.</given-names>
</name>
<name>
<surname>Cichowski</surname>
<given-names>K.</given-names>
</name>
</person-group>
<article-title>Many roads lead to oncogene-induced senescence</article-title>
<source>Oncogene</source>
<year>2008</year>
<volume>27</volume>
<fpage>2801</fpage>
<lpage>2809</lpage>
<pub-id pub-id-type="doi">10.1038/sj.onc.1210950</pub-id>
<pub-id pub-id-type="pmid">18193093</pub-id>
</element-citation>
</ref>
<ref id="B31-cancers-12-00129">
<label>31.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Zheng</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Jiang</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Tang</surname>
<given-names>Y.L.</given-names>
</name>
<name>
<surname>Liang</surname>
<given-names>X.H.</given-names>
</name>
</person-group>
<article-title>Oncogene and non-oncogene addiction in inflammation-associated cancers</article-title>
<source>Future Oncol.</source>
<year>2013</year>
<volume>9</volume>
<fpage>561</fpage>
<lpage>573</lpage>
<pub-id pub-id-type="doi">10.2217/fon.12.202</pub-id>
<pub-id pub-id-type="pmid">23560378</pub-id>
</element-citation>
</ref>
<ref id="B32-cancers-12-00129">
<label>32.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Shaffer</surname>
<given-names>A.L.</given-names>
</name>
<name>
<surname>Emre</surname>
<given-names>N.C.</given-names>
</name>
<name>
<surname>Lamy</surname>
<given-names>L.</given-names>
</name>
<name>
<surname>Ngo</surname>
<given-names>V.N.</given-names>
</name>
<name>
<surname>Wright</surname>
<given-names>G.</given-names>
</name>
<name>
<surname>Xiao</surname>
<given-names>W.</given-names>
</name>
<name>
<surname>Powell</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Dave</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Yu</surname>
<given-names>X.</given-names>
</name>
<name>
<surname>Zhao</surname>
<given-names>H.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>IRF4 addiction in multiple myeloma</article-title>
<source>Nature</source>
<year>2008</year>
<volume>454</volume>
<fpage>226</fpage>
<lpage>231</lpage>
<pub-id pub-id-type="doi">10.1038/nature07064</pub-id>
<pub-id pub-id-type="pmid">18568025</pub-id>
</element-citation>
</ref>
<ref id="B33-cancers-12-00129">
<label>33.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Silva</surname>
<given-names>J.M.</given-names>
</name>
<name>
<surname>Marran</surname>
<given-names>K.</given-names>
</name>
<name>
<surname>Parker</surname>
<given-names>J.S.</given-names>
</name>
<name>
<surname>Silva</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Golding</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Schlabach</surname>
<given-names>M.R.</given-names>
</name>
<name>
<surname>Elledge</surname>
<given-names>S.J.</given-names>
</name>
<name>
<surname>Hannon</surname>
<given-names>G.J.</given-names>
</name>
<name>
<surname>Chang</surname>
<given-names>K.</given-names>
</name>
</person-group>
<article-title>Profiling essential genes in human mammary cells by multiplex RNAi screening</article-title>
<source>Science</source>
<year>2008</year>
<volume>319</volume>
<fpage>617</fpage>
<lpage>620</lpage>
<pub-id pub-id-type="doi">10.1126/science.1149185</pub-id>
<pub-id pub-id-type="pmid">18239125</pub-id>
</element-citation>
</ref>
<ref id="B34-cancers-12-00129">
<label>34.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Schlabach</surname>
<given-names>M.R.</given-names>
</name>
<name>
<surname>Luo</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Solimini</surname>
<given-names>N.L.</given-names>
</name>
<name>
<surname>Hu</surname>
<given-names>G.</given-names>
</name>
<name>
<surname>Xu</surname>
<given-names>Q.</given-names>
</name>
<name>
<surname>Li</surname>
<given-names>M.Z.</given-names>
</name>
<name>
<surname>Zhao</surname>
<given-names>Z.</given-names>
</name>
<name>
<surname>Smogorzewska</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Sowa</surname>
<given-names>M.E.</given-names>
</name>
<name>
<surname>Ang</surname>
<given-names>X.L.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Cancer proliferation gene discovery through functional genomics</article-title>
<source>Science</source>
<year>2008</year>
<volume>319</volume>
<fpage>620</fpage>
<lpage>624</lpage>
<pub-id pub-id-type="doi">10.1126/science.1149200</pub-id>
<pub-id pub-id-type="pmid">18239126</pub-id>
</element-citation>
</ref>
<ref id="B35-cancers-12-00129">
<label>35.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Cole</surname>
<given-names>K.A.</given-names>
</name>
<name>
<surname>Huggins</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Laquaglia</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Hulderman</surname>
<given-names>C.E.</given-names>
</name>
<name>
<surname>Russell</surname>
<given-names>M.R.</given-names>
</name>
<name>
<surname>Bosse</surname>
<given-names>K.</given-names>
</name>
<name>
<surname>Diskin</surname>
<given-names>S.J.</given-names>
</name>
<name>
<surname>Attiyeh</surname>
<given-names>E.F.</given-names>
</name>
<name>
<surname>Sennett</surname>
<given-names>R.</given-names>
</name>
<name>
<surname>Norris</surname>
<given-names>G.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>RNAi screen of the protein kinome identifies checkpoint kinase 1 (CHK1) as a therapeutic target in neuroblastoma</article-title>
<source>Proc. Natl. Acad. Sci. USA</source>
<year>2011</year>
<volume>108</volume>
<fpage>3336</fpage>
<lpage>3341</lpage>
<pub-id pub-id-type="doi">10.1073/pnas.1012351108</pub-id>
<pub-id pub-id-type="pmid">21289283</pub-id>
</element-citation>
</ref>
<ref id="B36-cancers-12-00129">
<label>36.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Luo</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Emanuele</surname>
<given-names>M.J.</given-names>
</name>
<name>
<surname>Li</surname>
<given-names>D.</given-names>
</name>
<name>
<surname>Creighton</surname>
<given-names>C.J.</given-names>
</name>
<name>
<surname>Schlabach</surname>
<given-names>M.R.</given-names>
</name>
<name>
<surname>Westbrook</surname>
<given-names>T.F.</given-names>
</name>
<name>
<surname>Wong</surname>
<given-names>K.K.</given-names>
</name>
<name>
<surname>Elledge</surname>
<given-names>S.J.</given-names>
</name>
</person-group>
<article-title>A genome-wide RNAi screen identifies multiple synthetic lethal interactions with the Ras oncogene</article-title>
<source>Cell</source>
<year>2009</year>
<volume>137</volume>
<fpage>835</fpage>
<lpage>848</lpage>
<pub-id pub-id-type="doi">10.1016/j.cell.2009.05.006</pub-id>
<pub-id pub-id-type="pmid">19490893</pub-id>
</element-citation>
</ref>
<ref id="B37-cancers-12-00129">
<label>37.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Barbie</surname>
<given-names>D.A.</given-names>
</name>
<name>
<surname>Tamayo</surname>
<given-names>P.</given-names>
</name>
<name>
<surname>Boehm</surname>
<given-names>J.S.</given-names>
</name>
<name>
<surname>Kim</surname>
<given-names>S.Y.</given-names>
</name>
<name>
<surname>Moody</surname>
<given-names>S.E.</given-names>
</name>
<name>
<surname>Dunn</surname>
<given-names>I.F.</given-names>
</name>
<name>
<surname>Schinzel</surname>
<given-names>A.C.</given-names>
</name>
<name>
<surname>Sandy</surname>
<given-names>P.</given-names>
</name>
<name>
<surname>Meylan</surname>
<given-names>E.</given-names>
</name>
<name>
<surname>Scholl</surname>
<given-names>C.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Systematic RNA interference reveals that oncogenic KRAS-driven cancers require TBK1</article-title>
<source>Nature</source>
<year>2009</year>
<volume>462</volume>
<fpage>108</fpage>
<lpage>112</lpage>
<pub-id pub-id-type="doi">10.1038/nature08460</pub-id>
<pub-id pub-id-type="pmid">19847166</pub-id>
</element-citation>
</ref>
<ref id="B38-cancers-12-00129">
<label>38.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Scholl</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>Frohling</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Dunn</surname>
<given-names>I.F.</given-names>
</name>
<name>
<surname>Schinzel</surname>
<given-names>A.C.</given-names>
</name>
<name>
<surname>Barbie</surname>
<given-names>D.A.</given-names>
</name>
<name>
<surname>Kim</surname>
<given-names>S.Y.</given-names>
</name>
<name>
<surname>Silver</surname>
<given-names>S.J.</given-names>
</name>
<name>
<surname>Tamayo</surname>
<given-names>P.</given-names>
</name>
<name>
<surname>Wadlow</surname>
<given-names>R.C.</given-names>
</name>
<name>
<surname>Ramaswamy</surname>
<given-names>S.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Synthetic lethal interaction between oncogenic KRAS dependency and STK33 suppression in human cancer cells</article-title>
<source>Cell</source>
<year>2009</year>
<volume>137</volume>
<fpage>821</fpage>
<lpage>834</lpage>
<pub-id pub-id-type="doi">10.1016/j.cell.2009.03.017</pub-id>
<pub-id pub-id-type="pmid">19490892</pub-id>
</element-citation>
</ref>
<ref id="B39-cancers-12-00129">
<label>39.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Colombi</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Molle</surname>
<given-names>K.D.</given-names>
</name>
<name>
<surname>Benjamin</surname>
<given-names>D.</given-names>
</name>
<name>
<surname>Rattenbacher-Kiser</surname>
<given-names>K.</given-names>
</name>
<name>
<surname>Schaefer</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>Betz</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>Thiemeyer</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Regenass</surname>
<given-names>U.</given-names>
</name>
<name>
<surname>Hall</surname>
<given-names>M.N.</given-names>
</name>
<name>
<surname>Moroni</surname>
<given-names>C.</given-names>
</name>
</person-group>
<article-title>Genome-wide shRNA screen reveals increased mitochondrial dependence upon mTORC2 addiction</article-title>
<source>Oncogene</source>
<year>2011</year>
<volume>30</volume>
<fpage>1551</fpage>
<lpage>1565</lpage>
<pub-id pub-id-type="doi">10.1038/onc.2010.539</pub-id>
<pub-id pub-id-type="pmid">21170086</pub-id>
</element-citation>
</ref>
<ref id="B40-cancers-12-00129">
<label>40.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Petrocca</surname>
<given-names>F.</given-names>
</name>
<name>
<surname>Altschuler</surname>
<given-names>G.</given-names>
</name>
<name>
<surname>Tan</surname>
<given-names>S.M.</given-names>
</name>
<name>
<surname>Mendillo</surname>
<given-names>M.L.</given-names>
</name>
<name>
<surname>Yan</surname>
<given-names>H.</given-names>
</name>
<name>
<surname>Jerry</surname>
<given-names>D.J.</given-names>
</name>
<name>
<surname>Kung</surname>
<given-names>A.L.</given-names>
</name>
<name>
<surname>Hide</surname>
<given-names>W.</given-names>
</name>
<name>
<surname>Ince</surname>
<given-names>T.A.</given-names>
</name>
<name>
<surname>Lieberman</surname>
<given-names>J.</given-names>
</name>
</person-group>
<article-title>A genome-wide siRNA screen identifies proteasome addiction as a vulnerability of basal-like triple-negative breast cancer cells</article-title>
<source>Cancer Cell</source>
<year>2013</year>
<volume>24</volume>
<fpage>182</fpage>
<lpage>196</lpage>
<pub-id pub-id-type="doi">10.1016/j.ccr.2013.07.008</pub-id>
<pub-id pub-id-type="pmid">23948298</pub-id>
</element-citation>
</ref>
<ref id="B41-cancers-12-00129">
<label>41.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Sethi</surname>
<given-names>G.</given-names>
</name>
<name>
<surname>Pathak</surname>
<given-names>H.B.</given-names>
</name>
<name>
<surname>Zhang</surname>
<given-names>H.</given-names>
</name>
<name>
<surname>Zhou</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Einarson</surname>
<given-names>M.B.</given-names>
</name>
<name>
<surname>Vathipadiekal</surname>
<given-names>V.</given-names>
</name>
<name>
<surname>Gunewardena</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Birrer</surname>
<given-names>M.J.</given-names>
</name>
<name>
<surname>Godwin</surname>
<given-names>A.K.</given-names>
</name>
</person-group>
<article-title>An RNA interference lethality screen of the human druggable genome to identify molecular vulnerabilities in epithelial ovarian cancer</article-title>
<source>PLoS ONE</source>
<year>2012</year>
<volume>7</volume>
<elocation-id>e47086</elocation-id>
<pub-id pub-id-type="doi">10.1371/journal.pone.0047086</pub-id>
<pub-id pub-id-type="pmid">23056589</pub-id>
</element-citation>
</ref>
<ref id="B42-cancers-12-00129">
<label>42.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Cowley</surname>
<given-names>G.S.</given-names>
</name>
<name>
<surname>Weir</surname>
<given-names>B.A.</given-names>
</name>
<name>
<surname>Vazquez</surname>
<given-names>F.</given-names>
</name>
<name>
<surname>Tamayo</surname>
<given-names>P.</given-names>
</name>
<name>
<surname>Scott</surname>
<given-names>J.A.</given-names>
</name>
<name>
<surname>Rusin</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>East-Seletsky</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Ali</surname>
<given-names>L.D.</given-names>
</name>
<name>
<surname>Gerath</surname>
<given-names>W.F.J.</given-names>
</name>
<name>
<surname>Pantel</surname>
<given-names>S.E.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Parallel genome-scale loss of function screens in 216 cancer cell lines for the identification of context-specific genetic dependencies</article-title>
<source>Sci. Data</source>
<year>2014</year>
<volume>1</volume>
<fpage>140045</fpage>
<pub-id pub-id-type="pmid">25977796</pub-id>
</element-citation>
</ref>
<ref id="B43-cancers-12-00129">
<label>43.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>McDonald</surname>
<given-names>E.R.</given-names>
<suffix>III</suffix>
</name>
<name>
<surname>de Weck</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Schlabach</surname>
<given-names>M.R.</given-names>
</name>
<name>
<surname>Billy</surname>
<given-names>E.</given-names>
</name>
<name>
<surname>Mavrakis</surname>
<given-names>K.J.</given-names>
</name>
<name>
<surname>Hoffman</surname>
<given-names>G.R.</given-names>
</name>
<name>
<surname>Belur</surname>
<given-names>D.</given-names>
</name>
<name>
<surname>Castelletti</surname>
<given-names>D.</given-names>
</name>
<name>
<surname>Frias</surname>
<given-names>E.</given-names>
</name>
<name>
<surname>Gampa</surname>
<given-names>K.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Project DRIVE: A Compendium of Cancer Dependencies and Synthetic Lethal Relationships Uncovered by Large-Scale, Deep RNAi Screening</article-title>
<source>Cell</source>
<year>2017</year>
<volume>170</volume>
<fpage>577</fpage>
<lpage>592</lpage>
<pub-id pub-id-type="doi">10.1016/j.cell.2017.07.005</pub-id>
<pub-id pub-id-type="pmid">28753431</pub-id>
</element-citation>
</ref>
<ref id="B44-cancers-12-00129">
<label>44.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Tsherniak</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Vazquez</surname>
<given-names>F.</given-names>
</name>
<name>
<surname>Montgomery</surname>
<given-names>P.G.</given-names>
</name>
<name>
<surname>Weir</surname>
<given-names>B.A.</given-names>
</name>
<name>
<surname>Kryukov</surname>
<given-names>G.</given-names>
</name>
<name>
<surname>Cowley</surname>
<given-names>G.S.</given-names>
</name>
<name>
<surname>Gill</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Harrington</surname>
<given-names>W.F.</given-names>
</name>
<name>
<surname>Pantel</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Krill-Burger</surname>
<given-names>J.M.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Defining a Cancer Dependency Map</article-title>
<source>Cell</source>
<year>2017</year>
<volume>170</volume>
<fpage>564</fpage>
<lpage>576</lpage>
<pub-id pub-id-type="doi">10.1016/j.cell.2017.06.010</pub-id>
<pub-id pub-id-type="pmid">28753430</pub-id>
</element-citation>
</ref>
<ref id="B45-cancers-12-00129">
<label>45.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Hjaltelin</surname>
<given-names>J.X.</given-names>
</name>
<name>
<surname>Izarzugaza</surname>
<given-names>J.M.G.</given-names>
</name>
<name>
<surname>Jensen</surname>
<given-names>L.J.</given-names>
</name>
<name>
<surname>Russo</surname>
<given-names>F.</given-names>
</name>
<name>
<surname>Westergaard</surname>
<given-names>D.</given-names>
</name>
<name>
<surname>Brunak</surname>
<given-names>S.</given-names>
</name>
</person-group>
<article-title>Identification of hyper-rewired genomic stress non-oncogene addiction genes across 15 cancer types</article-title>
<source>NPJ Syst. Biol. Appl.</source>
<year>2019</year>
<volume>5</volume>
<fpage>27</fpage>
<pub-id pub-id-type="doi">10.1038/s41540-019-0104-5</pub-id>
<pub-id pub-id-type="pmid">31396397</pub-id>
</element-citation>
</ref>
<ref id="B46-cancers-12-00129">
<label>46.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>D’Alesio</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>Punzi</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Cicalese</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Fornasari</surname>
<given-names>L.</given-names>
</name>
<name>
<surname>Furia</surname>
<given-names>L.</given-names>
</name>
<name>
<surname>Riva</surname>
<given-names>L.</given-names>
</name>
<name>
<surname>Carugo</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Curigliano</surname>
<given-names>G.</given-names>
</name>
<name>
<surname>Criscitiello</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>Pruneri</surname>
<given-names>G.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>RNAi screens identify CHD4 as an essential gene in breast cancer growth</article-title>
<source>Oncotarget</source>
<year>2016</year>
<volume>7</volume>
<fpage>80901</fpage>
<lpage>80915</lpage>
<pub-id pub-id-type="doi">10.18632/oncotarget.12646</pub-id>
<pub-id pub-id-type="pmid">27779108</pub-id>
</element-citation>
</ref>
<ref id="B47-cancers-12-00129">
<label>47.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Bossi</surname>
<given-names>D.</given-names>
</name>
<name>
<surname>Cicalese</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Dellino</surname>
<given-names>G.I.</given-names>
</name>
<name>
<surname>Luzi</surname>
<given-names>L.</given-names>
</name>
<name>
<surname>Riva</surname>
<given-names>L.</given-names>
</name>
<name>
<surname>D’Alesio</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>Diaferia</surname>
<given-names>G.R.</given-names>
</name>
<name>
<surname>Carugo</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Cavallaro</surname>
<given-names>E.</given-names>
</name>
<name>
<surname>Piccioni</surname>
<given-names>R.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>In Vivo Genetic Screens of Patient-Derived Tumors Revealed Unexpected Frailty of the Transformed Phenotype</article-title>
<source>Cancer Discov.</source>
<year>2016</year>
<volume>6</volume>
<fpage>650</fpage>
<lpage>663</lpage>
<pub-id pub-id-type="doi">10.1158/2159-8290.CD-15-1200</pub-id>
<pub-id pub-id-type="pmid">27179036</pub-id>
</element-citation>
</ref>
<ref id="B48-cancers-12-00129">
<label>48.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Carugo</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Genovese</surname>
<given-names>G.</given-names>
</name>
<name>
<surname>Seth</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Nezi</surname>
<given-names>L.</given-names>
</name>
<name>
<surname>Rose</surname>
<given-names>J.L.</given-names>
</name>
<name>
<surname>Bossi</surname>
<given-names>D.</given-names>
</name>
<name>
<surname>Cicalese</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Shah</surname>
<given-names>P.K.</given-names>
</name>
<name>
<surname>Viale</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Pettazzoni</surname>
<given-names>P.F.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>In Vivo Functional Platform Targeting Patient-Derived Xenografts Identifies WDR5-Myc Association as a Critical Determinant of Pancreatic Cancer</article-title>
<source>Cell Rep.</source>
<year>2016</year>
<volume>16</volume>
<fpage>133</fpage>
<lpage>147</lpage>
<pub-id pub-id-type="doi">10.1016/j.celrep.2016.05.063</pub-id>
<pub-id pub-id-type="pmid">27320920</pub-id>
</element-citation>
</ref>
<ref id="B49-cancers-12-00129">
<label>49.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Rudalska</surname>
<given-names>R.</given-names>
</name>
<name>
<surname>Dauch</surname>
<given-names>D.</given-names>
</name>
<name>
<surname>Longerich</surname>
<given-names>T.</given-names>
</name>
<name>
<surname>McJunkin</surname>
<given-names>K.</given-names>
</name>
<name>
<surname>Wuestefeld</surname>
<given-names>T.</given-names>
</name>
<name>
<surname>Kang</surname>
<given-names>T.W.</given-names>
</name>
<name>
<surname>Hohmeyer</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Pesic</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Leibold</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>von Thun</surname>
<given-names>A.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>In vivo RNAi screening identifies a mechanism of sorafenib resistance in liver cancer</article-title>
<source>Nat. Med.</source>
<year>2014</year>
<volume>20</volume>
<fpage>1138</fpage>
<lpage>1146</lpage>
<pub-id pub-id-type="doi">10.1038/nm.3679</pub-id>
<pub-id pub-id-type="pmid">25216638</pub-id>
</element-citation>
</ref>
<ref id="B50-cancers-12-00129">
<label>50.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Steinhart</surname>
<given-names>Z.</given-names>
</name>
<name>
<surname>Pavlovic</surname>
<given-names>Z.</given-names>
</name>
<name>
<surname>Chandrashekhar</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Hart</surname>
<given-names>T.</given-names>
</name>
<name>
<surname>Wang</surname>
<given-names>X.</given-names>
</name>
<name>
<surname>Zhang</surname>
<given-names>X.</given-names>
</name>
<name>
<surname>Robitaille</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Brown</surname>
<given-names>K.R.</given-names>
</name>
<name>
<surname>Jaksani</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Overmeer</surname>
<given-names>R.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Genome-wide CRISPR screens reveal a Wnt-FZD5 signaling circuit as a druggable vulnerability of RNF43-mutant pancreatic tumors</article-title>
<source>Nat. Med.</source>
<year>2017</year>
<volume>23</volume>
<fpage>60</fpage>
<lpage>68</lpage>
<pub-id pub-id-type="doi">10.1038/nm.4219</pub-id>
<pub-id pub-id-type="pmid">27869803</pub-id>
</element-citation>
</ref>
<ref id="B51-cancers-12-00129">
<label>51.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Fraietta</surname>
<given-names>I.</given-names>
</name>
<name>
<surname>Gasparri</surname>
<given-names>F.</given-names>
</name>
</person-group>
<article-title>The development of high-content screening (HCS) technology and its importance to drug discovery</article-title>
<source>Expert Opin. Drug Discov.</source>
<year>2016</year>
<volume>11</volume>
<fpage>501</fpage>
<lpage>514</lpage>
<pub-id pub-id-type="doi">10.1517/17460441.2016.1165203</pub-id>
<pub-id pub-id-type="pmid">26971542</pub-id>
</element-citation>
</ref>
<ref id="B52-cancers-12-00129">
<label>52.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Tirrò</surname>
<given-names>E.</given-names>
</name>
<name>
<surname>Martorana</surname>
<given-names>F.</given-names>
</name>
<name>
<surname>Romano</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>Vitale</surname>
<given-names>S.R.</given-names>
</name>
<name>
<surname>Motta</surname>
<given-names>G.</given-names>
</name>
<name>
<surname>Di Gregorio</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Massimino</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Pennisi</surname>
<given-names>M.S.</given-names>
</name>
<name>
<surname>Stella</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Puma</surname>
<given-names>A.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Molecular Alterations in Thyroid Cancer: From Bench to Clinical Practice</article-title>
<source>Genes</source>
<year>2019</year>
<volume>10</volume>
<elocation-id>709</elocation-id>
<pub-id pub-id-type="doi">10.3390/genes10090709</pub-id>
<pub-id pub-id-type="pmid">31540307</pub-id>
</element-citation>
</ref>
<ref id="B53-cancers-12-00129">
<label>53.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Romei</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>Ciampi</surname>
<given-names>R.</given-names>
</name>
<name>
<surname>Elisei</surname>
<given-names>R.</given-names>
</name>
</person-group>
<article-title>A comprehensive overview of the role of the RET proto-oncogene in thyroid carcinoma</article-title>
<source>Nat. Rev. Endocrinol.</source>
<year>2016</year>
<volume>12</volume>
<fpage>192</fpage>
<lpage>202</lpage>
<pub-id pub-id-type="doi">10.1038/nrendo.2016.11</pub-id>
<pub-id pub-id-type="pmid">26868437</pub-id>
</element-citation>
</ref>
<ref id="B54-cancers-12-00129">
<label>54.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Greco</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Miranda</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>Pierotti</surname>
<given-names>M.A.</given-names>
</name>
</person-group>
<article-title>Rearrangements of NTRK1 gene in papillary thyroid carcinoma</article-title>
<source>Mol. Cell. Endocrinol.</source>
<year>2010</year>
<volume>321</volume>
<fpage>44</fpage>
<lpage>49</lpage>
<pub-id pub-id-type="doi">10.1016/j.mce.2009.10.009</pub-id>
<pub-id pub-id-type="pmid">19883730</pub-id>
</element-citation>
</ref>
<ref id="B55-cancers-12-00129">
<label>55.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Landa</surname>
<given-names>I.</given-names>
</name>
<name>
<surname>Ibrahimpasic</surname>
<given-names>T.</given-names>
</name>
<name>
<surname>Boucai</surname>
<given-names>L.</given-names>
</name>
<name>
<surname>Sinha</surname>
<given-names>R.</given-names>
</name>
<name>
<surname>Knauf</surname>
<given-names>J.A.</given-names>
</name>
<name>
<surname>Shah</surname>
<given-names>R.H.</given-names>
</name>
<name>
<surname>Dogan</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Ricarte-Filho</surname>
<given-names>J.C.</given-names>
</name>
<name>
<surname>Krishnamoorthy</surname>
<given-names>G.P.</given-names>
</name>
<name>
<surname>Xu</surname>
<given-names>B.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Genomic and transcriptomic hallmarks of poorly differentiated and anaplastic thyroid cancers</article-title>
<source>J. Clin. Investig.</source>
<year>2016</year>
<volume>126</volume>
<fpage>1052</fpage>
<lpage>1066</lpage>
<pub-id pub-id-type="doi">10.1172/JCI85271</pub-id>
<pub-id pub-id-type="pmid">26878173</pub-id>
</element-citation>
</ref>
<ref id="B56-cancers-12-00129">
<label>56.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<collab>The Cancer Gene Atlas Research Network</collab>
</person-group>
<article-title>Integrated genomic characterization of papillary thyroid carcinoma</article-title>
<source>Cell</source>
<year>2014</year>
<volume>159</volume>
<fpage>676</fpage>
<lpage>690</lpage>
<pub-id pub-id-type="doi">10.1016/j.cell.2014.09.050</pub-id>
<pub-id pub-id-type="pmid">25417114</pub-id>
</element-citation>
</ref>
<ref id="B57-cancers-12-00129">
<label>57.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Krishnamoorthy</surname>
<given-names>G.P.</given-names>
</name>
<name>
<surname>Davidson</surname>
<given-names>N.R.</given-names>
</name>
<name>
<surname>Leach</surname>
<given-names>S.D.</given-names>
</name>
<name>
<surname>Zhao</surname>
<given-names>Z.</given-names>
</name>
<name>
<surname>Lowe</surname>
<given-names>S.W.</given-names>
</name>
<name>
<surname>Lee</surname>
<given-names>G.</given-names>
</name>
<name>
<surname>Landa</surname>
<given-names>I.</given-names>
</name>
<name>
<surname>Nagarajah</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Saqcena</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Singh</surname>
<given-names>K.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>EIF1AX and RAS Mutations Cooperate to Drive Thyroid Tumorigenesis through ATF4 and c-MYC</article-title>
<source>Cancer Discov.</source>
<year>2019</year>
<volume>9</volume>
<fpage>264</fpage>
<lpage>281</lpage>
<pub-id pub-id-type="doi">10.1158/2159-8290.CD-18-0606</pub-id>
<pub-id pub-id-type="pmid">30305285</pub-id>
</element-citation>
</ref>
<ref id="B58-cancers-12-00129">
<label>58.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Pishkari</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Paryan</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Hashemi</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Baldini</surname>
<given-names>E.</given-names>
</name>
<name>
<surname>Mohammadi-Yeganeh</surname>
<given-names>S.</given-names>
</name>
</person-group>
<article-title>The role of microRNAs in different types of thyroid carcinoma: A comprehensive analysis to find new miRNA supplementary therapies</article-title>
<source>J. Endocrinol. Investig.</source>
<year>2018</year>
<volume>41</volume>
<fpage>269</fpage>
<lpage>283</lpage>
<pub-id pub-id-type="doi">10.1007/s40618-017-0735-6</pub-id>
<pub-id pub-id-type="pmid">28762013</pub-id>
</element-citation>
</ref>
<ref id="B59-cancers-12-00129">
<label>59.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Ramirez-Moya</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Santisteban</surname>
<given-names>P.</given-names>
</name>
</person-group>
<article-title>miRNA-Directed Regulation of the Main Signaling Pathways in Thyroid Cancer</article-title>
<source>Front. Endocrinol.</source>
<year>2019</year>
<volume>10</volume>
<fpage>430</fpage>
<pub-id pub-id-type="doi">10.3389/fendo.2019.00430</pub-id>
</element-citation>
</ref>
<ref id="B60-cancers-12-00129">
<label>60.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Sedaghati</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Kebebew</surname>
<given-names>E.</given-names>
</name>
</person-group>
<article-title>Long noncoding RNAs in thyroid cancer</article-title>
<source>Curr. Opin. Endocrinol. Diabetes Obes.</source>
<year>2019</year>
<volume>26</volume>
<fpage>275</fpage>
<lpage>281</lpage>
<pub-id pub-id-type="doi">10.1097/MED.0000000000000497</pub-id>
<pub-id pub-id-type="pmid">31385810</pub-id>
</element-citation>
</ref>
<ref id="B61-cancers-12-00129">
<label>61.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Mahmoudian-Sani</surname>
<given-names>M.R.</given-names>
</name>
<name>
<surname>Jalali</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Jamshidi</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Moridi</surname>
<given-names>H.</given-names>
</name>
<name>
<surname>Alghasi</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Shojaeian</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Mobini</surname>
<given-names>G.R.</given-names>
</name>
</person-group>
<article-title>Long Non-Coding RNAs in Thyroid Cancer: Implications for Pathogenesis, Diagnosis, and Therapy</article-title>
<source>Oncol. Res. Treat.</source>
<year>2019</year>
<volume>42</volume>
<fpage>136</fpage>
<lpage>142</lpage>
<pub-id pub-id-type="doi">10.1159/000495151</pub-id>
<pub-id pub-id-type="pmid">30799425</pub-id>
</element-citation>
</ref>
<ref id="B62-cancers-12-00129">
<label>62.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Degl’Innocenti</surname>
<given-names>D.</given-names>
</name>
<name>
<surname>Romeo</surname>
<given-names>P.</given-names>
</name>
<name>
<surname>Tarantino</surname>
<given-names>E.</given-names>
</name>
<name>
<surname>Sensi</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Cassinelli</surname>
<given-names>G.</given-names>
</name>
<name>
<surname>Catalano</surname>
<given-names>V.</given-names>
</name>
<name>
<surname>Lanzi</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>Perrone</surname>
<given-names>F.</given-names>
</name>
<name>
<surname>Pilotti</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Seregni</surname>
<given-names>E.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>DUSP6/MKP3 is overexpressed in papillary and poorly differentiated thyroid carcinoma and contributes to neoplastic properties of thyroid cancer cells</article-title>
<source>Endocr. Relat. Cancer</source>
<year>2013</year>
<volume>20</volume>
<fpage>23</fpage>
<lpage>37</lpage>
<pub-id pub-id-type="doi">10.1530/ERC-12-0078</pub-id>
<pub-id pub-id-type="pmid">23132790</pub-id>
</element-citation>
</ref>
<ref id="B63-cancers-12-00129">
<label>63.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Huang</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Prasad</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Lemon</surname>
<given-names>W.J.</given-names>
</name>
<name>
<surname>Hampel</surname>
<given-names>H.</given-names>
</name>
<name>
<surname>Wright</surname>
<given-names>F.A.</given-names>
</name>
<name>
<surname>Kornacker</surname>
<given-names>K.</given-names>
</name>
<name>
<surname>LiVolsi</surname>
<given-names>V.</given-names>
</name>
<name>
<surname>Frankel</surname>
<given-names>W.</given-names>
</name>
<name>
<surname>Kloos</surname>
<given-names>R.T.</given-names>
</name>
<name>
<surname>Eng</surname>
<given-names>C.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Gene expression in papillary thyroid carcinoma reveals highly consistent profiles</article-title>
<source>Proc. Natl. Acad. Sci. USA</source>
<year>2001</year>
<volume>98</volume>
<fpage>15044</fpage>
<lpage>15049</lpage>
<pub-id pub-id-type="doi">10.1073/pnas.251547398</pub-id>
<pub-id pub-id-type="pmid">11752453</pub-id>
</element-citation>
</ref>
<ref id="B64-cancers-12-00129">
<label>64.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Anania</surname>
<given-names>M.C.</given-names>
</name>
<name>
<surname>Miranda</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>Vizioli</surname>
<given-names>M.G.</given-names>
</name>
<name>
<surname>Mazzoni</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Cleris</surname>
<given-names>L.</given-names>
</name>
<name>
<surname>Pagliardini</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Manenti</surname>
<given-names>G.</given-names>
</name>
<name>
<surname>Borrello</surname>
<given-names>M.G.</given-names>
</name>
<name>
<surname>Pierotti</surname>
<given-names>M.A.</given-names>
</name>
<name>
<surname>Greco</surname>
<given-names>A.</given-names>
</name>
</person-group>
<article-title>S100A11 Overexpression Contributes to the Malignant Phenotype of Papillary Thyroid Carcinoma</article-title>
<source>J. Clin. Endocrinol. Metab.</source>
<year>2013</year>
<volume>98</volume>
<fpage>E1591</fpage>
<lpage>E1600</lpage>
<pub-id pub-id-type="doi">10.1210/jc.2013-1652</pub-id>
<pub-id pub-id-type="pmid">23928665</pub-id>
</element-citation>
</ref>
<ref id="B65-cancers-12-00129">
<label>65.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Salerno</surname>
<given-names>P.</given-names>
</name>
<name>
<surname>Garcia-Rostan</surname>
<given-names>G.</given-names>
</name>
<name>
<surname>Piccinin</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Bencivenga</surname>
<given-names>T.C.</given-names>
</name>
<name>
<surname>Di</surname>
<given-names>M.G.</given-names>
</name>
<name>
<surname>Doglioni</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>Basolo</surname>
<given-names>F.</given-names>
</name>
<name>
<surname>Maestro</surname>
<given-names>R.</given-names>
</name>
<name>
<surname>Fusco</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Santoro</surname>
<given-names>M.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>TWIST1 plays a pleiotropic role in determining the anaplastic thyroid cancer phenotype</article-title>
<source>J. Clin. Endocrinol. Metab.</source>
<year>2011</year>
<volume>96</volume>
<fpage>E772</fpage>
<lpage>E781</lpage>
<pub-id pub-id-type="doi">10.1210/jc.2010-1182</pub-id>
<pub-id pub-id-type="pmid">21389145</pub-id>
</element-citation>
</ref>
<ref id="B66-cancers-12-00129">
<label>66.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Xing</surname>
<given-names>M.</given-names>
</name>
</person-group>
<article-title>Gene methylation in thyroid tumorigenesis</article-title>
<source>Endocrinology</source>
<year>2007</year>
<volume>148</volume>
<fpage>948</fpage>
<lpage>953</lpage>
<pub-id pub-id-type="doi">10.1210/en.2006-0927</pub-id>
<pub-id pub-id-type="pmid">16946009</pub-id>
</element-citation>
</ref>
<ref id="B67-cancers-12-00129">
<label>67.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Zhang</surname>
<given-names>K.</given-names>
</name>
<name>
<surname>Li</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>Liu</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Tang</surname>
<given-names>X.</given-names>
</name>
<name>
<surname>Li</surname>
<given-names>Z.</given-names>
</name>
</person-group>
<article-title>DNA methylation alterations as therapeutic prospects in thyroid cancer</article-title>
<source>J. Endocrinol. Investig.</source>
<year>2019</year>
<volume>42</volume>
<fpage>363</fpage>
<lpage>370</lpage>
<pub-id pub-id-type="doi">10.1007/s40618-018-0922-0</pub-id>
<pub-id pub-id-type="pmid">29992502</pub-id>
</element-citation>
</ref>
<ref id="B68-cancers-12-00129">
<label>68.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Anania</surname>
<given-names>M.C.</given-names>
</name>
<name>
<surname>Sensi</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Radaelli</surname>
<given-names>E.</given-names>
</name>
<name>
<surname>Miranda</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>Vizioli</surname>
<given-names>M.G.</given-names>
</name>
<name>
<surname>Pagliardini</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Favini</surname>
<given-names>E.</given-names>
</name>
<name>
<surname>Cleris</surname>
<given-names>L.</given-names>
</name>
<name>
<surname>Supino</surname>
<given-names>R.</given-names>
</name>
<name>
<surname>Formelli</surname>
<given-names>F.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>TIMP3 regulates migration, invasion and in vivo tumorigenicity of thyroid tumor cells</article-title>
<source>Oncogene</source>
<year>2011</year>
<volume>30</volume>
<fpage>3011</fpage>
<lpage>3023</lpage>
<pub-id pub-id-type="doi">10.1038/onc.2011.18</pub-id>
<pub-id pub-id-type="pmid">21339735</pub-id>
</element-citation>
</ref>
<ref id="B69-cancers-12-00129">
<label>69.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Vizioli</surname>
<given-names>M.G.</given-names>
</name>
<name>
<surname>Sensi</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Miranda</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>Cleris</surname>
<given-names>L.</given-names>
</name>
<name>
<surname>Formelli</surname>
<given-names>F.</given-names>
</name>
<name>
<surname>Anania</surname>
<given-names>M.C.</given-names>
</name>
<name>
<surname>Pierotti</surname>
<given-names>M.A.</given-names>
</name>
<name>
<surname>Greco</surname>
<given-names>A.</given-names>
</name>
</person-group>
<article-title>IGFBP7: An oncosuppressor gene in thyroid carcinogenesis</article-title>
<source>Oncogene</source>
<year>2010</year>
<volume>29</volume>
<fpage>3835</fpage>
<lpage>3844</lpage>
<pub-id pub-id-type="doi">10.1038/onc.2010.136</pub-id>
<pub-id pub-id-type="pmid">20440262</pub-id>
</element-citation>
</ref>
<ref id="B70-cancers-12-00129">
<label>70.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Alvarez-Nuñez</surname>
<given-names>F.</given-names>
</name>
<name>
<surname>Bussaglia</surname>
<given-names>E.</given-names>
</name>
<name>
<surname>Mauricio</surname>
<given-names>D.</given-names>
</name>
<name>
<surname>Ybarra</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Vilar</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Lerma</surname>
<given-names>E.</given-names>
</name>
<name>
<surname>Leiva</surname>
<given-names>A.D.</given-names>
</name>
<name>
<surname>Matias-Guiu</surname>
<given-names>X.</given-names>
</name>
</person-group>
<article-title>PTEN promoter methylation in sporadic thyroid carcinomas</article-title>
<source>Thyroid</source>
<year>2006</year>
<volume>16</volume>
<fpage>17</fpage>
<lpage>23</lpage>
<pub-id pub-id-type="doi">10.1089/thy.2006.16.17</pub-id>
<pub-id pub-id-type="pmid">16487009</pub-id>
</element-citation>
</ref>
<ref id="B71-cancers-12-00129">
<label>71.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Ferrario</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>Lavagni</surname>
<given-names>P.</given-names>
</name>
<name>
<surname>Gariboldi</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Miranda</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>Losa</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Cleris</surname>
<given-names>L.</given-names>
</name>
<name>
<surname>Formelli</surname>
<given-names>F.</given-names>
</name>
<name>
<surname>Pilotti</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Pierotti</surname>
<given-names>M.A.</given-names>
</name>
<name>
<surname>Greco</surname>
<given-names>A.</given-names>
</name>
</person-group>
<article-title>Metallothionein 1G acts as an oncosupressor in papillary thyroid carcinoma</article-title>
<source>Lab. Investig.</source>
<year>2008</year>
<volume>88</volume>
<fpage>474</fpage>
<lpage>481</lpage>
<pub-id pub-id-type="doi">10.1038/labinvest.2008.17</pub-id>
<pub-id pub-id-type="pmid">18332874</pub-id>
</element-citation>
</ref>
<ref id="B72-cancers-12-00129">
<label>72.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Li</surname>
<given-names>Z.</given-names>
</name>
<name>
<surname>Zhang</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Wang</surname>
<given-names>R.</given-names>
</name>
<name>
<surname>Zou</surname>
<given-names>K.</given-names>
</name>
<name>
<surname>Zou</surname>
<given-names>L.</given-names>
</name>
</person-group>
<article-title>Genetic alterations in anaplastic thyroid carcinoma and targeted therapies</article-title>
<source>Exp. Ther. Med.</source>
<year>2019</year>
<volume>18</volume>
<fpage>2369</fpage>
<lpage>2377</lpage>
<pub-id pub-id-type="doi">10.3892/etm.2019.7869</pub-id>
<pub-id pub-id-type="pmid">31555347</pub-id>
</element-citation>
</ref>
<ref id="B73-cancers-12-00129">
<label>73.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Eustatia-Rutten</surname>
<given-names>C.F.</given-names>
</name>
<name>
<surname>Corssmit</surname>
<given-names>E.P.</given-names>
</name>
<name>
<surname>Biermasz</surname>
<given-names>N.R.</given-names>
</name>
<name>
<surname>Pereira</surname>
<given-names>A.M.</given-names>
</name>
<name>
<surname>Romijn</surname>
<given-names>J.A.</given-names>
</name>
<name>
<surname>Smit</surname>
<given-names>J.W.</given-names>
</name>
</person-group>
<article-title>Survival and death causes in differentiated thyroid carcinoma</article-title>
<source>J. Clin. Endocrinol. Metab.</source>
<year>2006</year>
<volume>91</volume>
<fpage>313</fpage>
<lpage>319</lpage>
<pub-id pub-id-type="doi">10.1210/jc.2005-1322</pub-id>
<pub-id pub-id-type="pmid">16263822</pub-id>
</element-citation>
</ref>
<ref id="B74-cancers-12-00129">
<label>74.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Dohan</surname>
<given-names>O.</given-names>
</name>
<name>
<surname>De la Vieja</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Paroder</surname>
<given-names>V.</given-names>
</name>
<name>
<surname>Riedel</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>Artani</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Reed</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Ginter</surname>
<given-names>C.S.</given-names>
</name>
<name>
<surname>Carrasco</surname>
<given-names>N.</given-names>
</name>
</person-group>
<article-title>The sodium/iodide Symporter (NIS): Characterization, regulation, and medical significance</article-title>
<source>Endocr. Rev.</source>
<year>2003</year>
<volume>24</volume>
<fpage>48</fpage>
<lpage>77</lpage>
<pub-id pub-id-type="doi">10.1210/er.2001-0029</pub-id>
<pub-id pub-id-type="pmid">12588808</pub-id>
</element-citation>
</ref>
<ref id="B75-cancers-12-00129">
<label>75.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Naoum</surname>
<given-names>G.E.</given-names>
</name>
<name>
<surname>Morkos</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Kim</surname>
<given-names>B.</given-names>
</name>
<name>
<surname>Arafat</surname>
<given-names>W.</given-names>
</name>
</person-group>
<article-title>Novel targeted therapies and immunotherapy for advanced thyroid cancers</article-title>
<source>Mol. Cancer</source>
<year>2018</year>
<volume>17</volume>
<fpage>51</fpage>
<pub-id pub-id-type="doi">10.1186/s12943-018-0786-0</pub-id>
<pub-id pub-id-type="pmid">29455653</pub-id>
</element-citation>
</ref>
<ref id="B76-cancers-12-00129">
<label>76.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Anania</surname>
<given-names>M.C.</given-names>
</name>
<name>
<surname>Gasparri</surname>
<given-names>F.</given-names>
</name>
<name>
<surname>Cetti</surname>
<given-names>E.</given-names>
</name>
<name>
<surname>Fraietta</surname>
<given-names>I.</given-names>
</name>
<name>
<surname>Todoerti</surname>
<given-names>K.</given-names>
</name>
<name>
<surname>Miranda</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>Mazzoni</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Re</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>Colombo</surname>
<given-names>R.</given-names>
</name>
<name>
<surname>Ukmar</surname>
<given-names>G.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Identification of thyroid tumor cell vulnerabilities through a siRNA-based functional screening</article-title>
<source>Oncotarget</source>
<year>2015</year>
<volume>6</volume>
<fpage>34629</fpage>
<lpage>34648</lpage>
<pub-id pub-id-type="doi">10.18632/oncotarget.5282</pub-id>
<pub-id pub-id-type="pmid">26431489</pub-id>
</element-citation>
</ref>
<ref id="B77-cancers-12-00129">
<label>77.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Cantisani</surname>
<given-names>M.C.</given-names>
</name>
<name>
<surname>Parascandolo</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Perala</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Allocca</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>Fey</surname>
<given-names>V.</given-names>
</name>
<name>
<surname>Sahlberg</surname>
<given-names>N.</given-names>
</name>
<name>
<surname>Merolla</surname>
<given-names>F.</given-names>
</name>
<name>
<surname>Basolo</surname>
<given-names>F.</given-names>
</name>
<name>
<surname>Laukkanen</surname>
<given-names>M.O.</given-names>
</name>
<name>
<surname>Kallioniemi</surname>
<given-names>O.P.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>A loss-of-function genetic screening identifies novel mediators of thyroid cancer cell viability</article-title>
<source>Oncotarget</source>
<year>2016</year>
<volume>7</volume>
<fpage>28510</fpage>
<pub-id pub-id-type="doi">10.18632/oncotarget.8577</pub-id>
<pub-id pub-id-type="pmid">27058903</pub-id>
</element-citation>
</ref>
<ref id="B78-cancers-12-00129">
<label>78.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Musgrove</surname>
<given-names>E.A.</given-names>
</name>
<name>
<surname>Caldon</surname>
<given-names>C.E.</given-names>
</name>
<name>
<surname>Barraclough</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Stone</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Sutherland</surname>
<given-names>R.L.</given-names>
</name>
</person-group>
<article-title>Cyclin D as a therapeutic target in cancer</article-title>
<source>Nat. Rev. Cancer</source>
<year>2011</year>
<volume>11</volume>
<fpage>558</fpage>
<lpage>572</lpage>
<pub-id pub-id-type="doi">10.1038/nrc3090</pub-id>
<pub-id pub-id-type="pmid">21734724</pub-id>
</element-citation>
</ref>
<ref id="B79-cancers-12-00129">
<label>79.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Sánchez-Martínez</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>Lallena</surname>
<given-names>M.J.</given-names>
</name>
<name>
<surname>Sanfeliciano</surname>
<given-names>S.G.</given-names>
</name>
<name>
<surname>de Dios</surname>
<given-names>A.</given-names>
</name>
</person-group>
<article-title>Cyclin dependent kinase (CDK) inhibitors as anticancer drugs: Recent advances (2015–2019)</article-title>
<source>Bioorg. Med. Chem. Lett.</source>
<year>2019</year>
<volume>29</volume>
<fpage>126637</fpage>
<pub-id pub-id-type="doi">10.1016/j.bmcl.2019.126637</pub-id>
<pub-id pub-id-type="pmid">31477350</pub-id>
</element-citation>
</ref>
<ref id="B80-cancers-12-00129">
<label>80.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Seybt</surname>
<given-names>T.P.</given-names>
</name>
<name>
<surname>Ramalingam</surname>
<given-names>P.</given-names>
</name>
<name>
<surname>Huang</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Looney</surname>
<given-names>S.W.</given-names>
</name>
<name>
<surname>Reid</surname>
<given-names>M.D.</given-names>
</name>
</person-group>
<article-title>Cyclin D1 expression in benign and differentiated malignant tumors of the thyroid gland: Diagnostic and biologic implications</article-title>
<source>Appl. Immunohistochem. Mol. Morphol.</source>
<year>2012</year>
<volume>20</volume>
<fpage>124</fpage>
<lpage>130</lpage>
<pub-id pub-id-type="doi">10.1097/PAI.0b013e31822d4783</pub-id>
<pub-id pub-id-type="pmid">22553812</pub-id>
</element-citation>
</ref>
<ref id="B81-cancers-12-00129">
<label>81.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Lee</surname>
<given-names>J.J.</given-names>
</name>
<name>
<surname>Au</surname>
<given-names>A.Y.</given-names>
</name>
<name>
<surname>Foukakis</surname>
<given-names>T.</given-names>
</name>
<name>
<surname>Barbaro</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Kiss</surname>
<given-names>N.</given-names>
</name>
<name>
<surname>Clifton-Bligh</surname>
<given-names>R.</given-names>
</name>
<name>
<surname>Staaf</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Borg</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Delbridge</surname>
<given-names>L.</given-names>
</name>
<name>
<surname>Robinson</surname>
<given-names>B.G.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Array-CGH identifies cyclin D1 and UBCH10 amplicons in anaplastic thyroid carcinoma</article-title>
<source>Endocr. Relat. Cancer</source>
<year>2008</year>
<volume>15</volume>
<fpage>801</fpage>
<lpage>815</lpage>
<pub-id pub-id-type="doi">10.1677/ERC-08-0018</pub-id>
<pub-id pub-id-type="pmid">18753363</pub-id>
</element-citation>
</ref>
<ref id="B82-cancers-12-00129">
<label>82.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Khoo</surname>
<given-names>M.L.</given-names>
</name>
<name>
<surname>Ezzat</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Freeman</surname>
<given-names>J.L.</given-names>
</name>
<name>
<surname>Asa</surname>
<given-names>S.L.</given-names>
</name>
</person-group>
<article-title>Cyclin D1 protein expression predicts metastatic behavior in thyroid papillary microcarcinomas but is not associated with gene amplification</article-title>
<source>J. Clin. Endocrinol. Metab.</source>
<year>2002</year>
<volume>87</volume>
<fpage>1810</fpage>
<lpage>1813</lpage>
<pub-id pub-id-type="doi">10.1210/jcem.87.4.8352</pub-id>
<pub-id pub-id-type="pmid">11932322</pub-id>
</element-citation>
</ref>
<ref id="B83-cancers-12-00129">
<label>83.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Hryhorowicz</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Ziemnicka</surname>
<given-names>K.</given-names>
</name>
<name>
<surname>Kaczmarek-Rys</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Hoppe-Golebiewska</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Plawski</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Skrzypczak-Zielinska</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Szkudlarek</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Golab</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Budny</surname>
<given-names>B.</given-names>
</name>
<name>
<surname>Ruchala</surname>
<given-names>M.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>CCND1 gene polymorphic variants in patients with differentiated thyroid carcinoma</article-title>
<source>Oncol. Lett.</source>
<year>2015</year>
<volume>9</volume>
<fpage>442</fpage>
<lpage>448</lpage>
<pub-id pub-id-type="doi">10.3892/ol.2014.2617</pub-id>
<pub-id pub-id-type="pmid">25436006</pub-id>
</element-citation>
</ref>
<ref id="B84-cancers-12-00129">
<label>84.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Jeon</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Kim</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Jeong</surname>
<given-names>Y.M.</given-names>
</name>
<name>
<surname>Bae</surname>
<given-names>J.S.</given-names>
</name>
<name>
<surname>Jung</surname>
<given-names>C.K.</given-names>
</name>
</person-group>
<article-title>CCND1 Splice Variant as A Novel Diagnostic and Predictive Biomarker for Thyroid Cancer</article-title>
<source>Cancers</source>
<year>2018</year>
<volume>10</volume>
<elocation-id>437</elocation-id>
<pub-id pub-id-type="doi">10.3390/cancers10110437</pub-id>
<pub-id pub-id-type="pmid">30428594</pub-id>
</element-citation>
</ref>
<ref id="B85-cancers-12-00129">
<label>85.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Liang</surname>
<given-names>W.</given-names>
</name>
<name>
<surname>Sun</surname>
<given-names>F.</given-names>
</name>
</person-group>
<article-title>Identification of key genes of papillary thyroid cancer using integrated bioinformatics analysis</article-title>
<source>J. Endocrinol. Investig.</source>
<year>2018</year>
<volume>41</volume>
<fpage>1237</fpage>
<lpage>1245</lpage>
<pub-id pub-id-type="doi">10.1007/s40618-018-0859-3</pub-id>
<pub-id pub-id-type="pmid">29520684</pub-id>
</element-citation>
</ref>
<ref id="B86-cancers-12-00129">
<label>86.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Yin</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Hong</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Yu</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Huang</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Chen</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Liu</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Zhang</surname>
<given-names>Q.</given-names>
</name>
<name>
<surname>Li</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Xiao</surname>
<given-names>H.</given-names>
</name>
</person-group>
<article-title>MiR-195 Inhibits Tumor Growth and Metastasis in Papillary Thyroid Carcinoma Cell Lines by Targeting CCND1 and FGF2</article-title>
<source>Int. J. Endocrinol.</source>
<year>2017</year>
<volume>2017</volume>
<fpage>6180425</fpage>
<pub-id pub-id-type="doi">10.1155/2017/6180425</pub-id>
<pub-id pub-id-type="pmid">28740507</pub-id>
</element-citation>
</ref>
<ref id="B87-cancers-12-00129">
<label>87.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Guo</surname>
<given-names>F.</given-names>
</name>
<name>
<surname>Fu</surname>
<given-names>Q.</given-names>
</name>
<name>
<surname>Wang</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Sui</surname>
<given-names>G.</given-names>
</name>
</person-group>
<article-title>Long non-coding RNA NR2F1-AS1 promoted proliferation and migration yet suppressed apoptosis of thyroid cancer cells through regulating miRNA-338-3p/CCND1 axis</article-title>
<source>J. Cell Mol. Med.</source>
<year>2019</year>
<volume>23</volume>
<fpage>5907</fpage>
<lpage>5919</lpage>
<pub-id pub-id-type="doi">10.1111/jcmm.14386</pub-id>
<pub-id pub-id-type="pmid">31304680</pub-id>
</element-citation>
</ref>
<ref id="B88-cancers-12-00129">
<label>88.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Sun</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Shi</surname>
<given-names>R.</given-names>
</name>
<name>
<surname>Zhao</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Li</surname>
<given-names>X.</given-names>
</name>
<name>
<surname>Lu</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Bu</surname>
<given-names>H.</given-names>
</name>
<name>
<surname>Ma</surname>
<given-names>X.</given-names>
</name>
<name>
<surname>Su</surname>
<given-names>C.</given-names>
</name>
</person-group>
<article-title>E2F8, a direct target of miR-144, promotes papillary thyroid cancer progression via regulating cell cycle</article-title>
<source>J. Exp. Clin. Cancer Res.</source>
<year>2017</year>
<volume>36</volume>
<fpage>40</fpage>
<pub-id pub-id-type="doi">10.1186/s13046-017-0504-6</pub-id>
<pub-id pub-id-type="pmid">28270228</pub-id>
</element-citation>
</ref>
<ref id="B89-cancers-12-00129">
<label>89.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Wong</surname>
<given-names>K.</given-names>
</name>
<name>
<surname>Di</surname>
<given-names>C.F.</given-names>
</name>
<name>
<surname>Ranieri</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>De</surname>
<given-names>M.D.</given-names>
</name>
<name>
<surname>Di</surname>
<given-names>C.A.</given-names>
</name>
</person-group>
<article-title>PI3K/mTOR inhibition potentiates and extends palbociclib activity in anaplastic thyroid cancer</article-title>
<source>Endocr. Relat. Cancer</source>
<year>2019</year>
<volume>26</volume>
<fpage>425</fpage>
<lpage>436</lpage>
<pub-id pub-id-type="doi">10.1530/ERC-19-0011</pub-id>
<pub-id pub-id-type="pmid">30699064</pub-id>
</element-citation>
</ref>
<ref id="B90-cancers-12-00129">
<label>90.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Lopes-Ventura</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Pojo</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Matias</surname>
<given-names>A.T.</given-names>
</name>
<name>
<surname>Moura</surname>
<given-names>M.M.</given-names>
</name>
<name>
<surname>Marques</surname>
<given-names>I.J.</given-names>
</name>
<name>
<surname>Leite</surname>
<given-names>V.</given-names>
</name>
<name>
<surname>Cavaco</surname>
<given-names>B.M.</given-names>
</name>
</person-group>
<article-title>The efficacy of HRAS and CDK4/6 inhibitors in anaplastic thyroid cancer cell lines</article-title>
<source>J. Endocrinol. Investig.</source>
<year>2019</year>
<volume>42</volume>
<fpage>527</fpage>
<lpage>540</lpage>
<pub-id pub-id-type="doi">10.1007/s40618-018-0947-4</pub-id>
<pub-id pub-id-type="pmid">30191474</pub-id>
</element-citation>
</ref>
<ref id="B91-cancers-12-00129">
<label>91.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Antonello</surname>
<given-names>Z.A.</given-names>
</name>
<name>
<surname>Hsu</surname>
<given-names>N.</given-names>
</name>
<name>
<surname>Bhasin</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Roti</surname>
<given-names>G.</given-names>
</name>
<name>
<surname>Joshi</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Van</surname>
<given-names>H.P.</given-names>
</name>
<name>
<surname>Ye</surname>
<given-names>E.</given-names>
</name>
<name>
<surname>Lo</surname>
<given-names>A.S.</given-names>
</name>
<name>
<surname>Karumanchi</surname>
<given-names>S.A.</given-names>
</name>
<name>
<surname>Bryke</surname>
<given-names>C.R.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Vemurafenib-resistance via de novo RBM genes mutations and chromosome 5 aberrations is overcome by combined therapy with palbociclib in thyroid carcinoma with BRAF(V600E)</article-title>
<source>Oncotarget</source>
<year>2017</year>
<volume>8</volume>
<fpage>84743</fpage>
<lpage>84760</lpage>
<pub-id pub-id-type="doi">10.18632/oncotarget.21262</pub-id>
<pub-id pub-id-type="pmid">29156680</pub-id>
</element-citation>
</ref>
<ref id="B92-cancers-12-00129">
<label>92.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Kishimoto</surname>
<given-names>T.</given-names>
</name>
</person-group>
<article-title>Entry into mitosis: A solution to the decades-long enigma of MPF</article-title>
<source>Chromosoma</source>
<year>2015</year>
<volume>124</volume>
<fpage>417</fpage>
<lpage>428</lpage>
<pub-id pub-id-type="doi">10.1007/s00412-015-0508-y</pub-id>
<pub-id pub-id-type="pmid">25712366</pub-id>
</element-citation>
</ref>
<ref id="B93-cancers-12-00129">
<label>93.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Peng</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Yamamoto</surname>
<given-names>T.M.</given-names>
</name>
<name>
<surname>Goldberg</surname>
<given-names>M.L.</given-names>
</name>
<name>
<surname>Maller</surname>
<given-names>J.L.</given-names>
</name>
</person-group>
<article-title>A novel role for greatwall kinase in recovery from DNA damage</article-title>
<source>Cell Cycle</source>
<year>2010</year>
<volume>9</volume>
<fpage>4364</fpage>
<lpage>4369</lpage>
<pub-id pub-id-type="doi">10.4161/cc.9.21.13632</pub-id>
<pub-id pub-id-type="pmid">20980823</pub-id>
</element-citation>
</ref>
<ref id="B94-cancers-12-00129">
<label>94.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Wong</surname>
<given-names>P.Y.</given-names>
</name>
<name>
<surname>Ma</surname>
<given-names>H.T.</given-names>
</name>
<name>
<surname>Lee</surname>
<given-names>H.J.</given-names>
</name>
<name>
<surname>Poon</surname>
<given-names>R.Y.</given-names>
</name>
</person-group>
<article-title>MASTL (Greatwall) regulates DNA damage responses by coordinating mitotic entry after checkpoint recovery and APC/C activation</article-title>
<source>Sci. Rep.</source>
<year>2016</year>
<volume>6</volume>
<fpage>22230</fpage>
<pub-id pub-id-type="doi">10.1038/srep22230</pub-id>
<pub-id pub-id-type="pmid">26923777</pub-id>
</element-citation>
</ref>
<ref id="B95-cancers-12-00129">
<label>95.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Marzec</surname>
<given-names>K.</given-names>
</name>
<name>
<surname>Burgess</surname>
<given-names>A.</given-names>
</name>
</person-group>
<article-title>The Oncogenic Functions of MASTL Kinase</article-title>
<source>Front. Cell Dev. Biol.</source>
<year>2018</year>
<volume>6</volume>
<fpage>162</fpage>
<pub-id pub-id-type="doi">10.3389/fcell.2018.00162</pub-id>
<pub-id pub-id-type="pmid">30555827</pub-id>
</element-citation>
</ref>
<ref id="B96-cancers-12-00129">
<label>96.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Wang</surname>
<given-names>L.</given-names>
</name>
<name>
<surname>Luong</surname>
<given-names>V.Q.</given-names>
</name>
<name>
<surname>Giannini</surname>
<given-names>P.J.</given-names>
</name>
<name>
<surname>Peng</surname>
<given-names>A.</given-names>
</name>
</person-group>
<article-title>Mastl kinase, a promising therapeutic target, promotes cancer recurrence</article-title>
<source>Oncotarget</source>
<year>2014</year>
<volume>5</volume>
<fpage>11479</fpage>
<lpage>11489</lpage>
<pub-id pub-id-type="doi">10.18632/oncotarget.2565</pub-id>
<pub-id pub-id-type="pmid">25373736</pub-id>
</element-citation>
</ref>
<ref id="B97-cancers-12-00129">
<label>97.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Vera</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Lartigue</surname>
<given-names>L.</given-names>
</name>
<name>
<surname>Vigneron</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Gadea</surname>
<given-names>G.</given-names>
</name>
<name>
<surname>Gire</surname>
<given-names>V.</given-names>
</name>
<name>
<surname>Del Rio</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Soubeyran</surname>
<given-names>I.</given-names>
</name>
<name>
<surname>Chibon</surname>
<given-names>F.</given-names>
</name>
<name>
<surname>Lorca</surname>
<given-names>T.</given-names>
</name>
<name>
<surname>Castro</surname>
<given-names>A.</given-names>
</name>
</person-group>
<article-title>Greatwall promotes cell transformation by hyperactivating AKT in human malignancies</article-title>
<source>eLife</source>
<year>2015</year>
<volume>4</volume>
<fpage>e10115</fpage>
<pub-id pub-id-type="doi">10.7554/eLife.10115</pub-id>
<pub-id pub-id-type="pmid">26613407</pub-id>
</element-citation>
</ref>
<ref id="B98-cancers-12-00129">
<label>98.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Cao</surname>
<given-names>L.</given-names>
</name>
<name>
<surname>Li</surname>
<given-names>W.J.</given-names>
</name>
<name>
<surname>Yang</surname>
<given-names>J.H.</given-names>
</name>
<name>
<surname>Wang</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Hua</surname>
<given-names>Z.J.</given-names>
</name>
<name>
<surname>Liu</surname>
<given-names>D.</given-names>
</name>
<name>
<surname>Chen</surname>
<given-names>Y.Q.</given-names>
</name>
<name>
<surname>Zhang</surname>
<given-names>H.M.</given-names>
</name>
<name>
<surname>Zhang</surname>
<given-names>R.</given-names>
</name>
<name>
<surname>Zhao</surname>
<given-names>J.S.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Inflammatory cytokine-induced expression of MASTL is involved in hepatocarcinogenesis by regulating cell cycle progression</article-title>
<source>Oncol. Lett.</source>
<year>2019</year>
<volume>17</volume>
<fpage>3163</fpage>
<lpage>3172</lpage>
<pub-id pub-id-type="doi">10.3892/ol.2019.9983</pub-id>
<pub-id pub-id-type="pmid">30867746</pub-id>
</element-citation>
</ref>
<ref id="B99-cancers-12-00129">
<label>99.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Alvarez-Fernandez</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Sanz-Flores</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Sanz-Castillo</surname>
<given-names>B.</given-names>
</name>
<name>
<surname>Salazar-Roa</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Partida</surname>
<given-names>D.</given-names>
</name>
<name>
<surname>Zapatero-Solana</surname>
<given-names>E.</given-names>
</name>
<name>
<surname>Ali</surname>
<given-names>H.R.</given-names>
</name>
<name>
<surname>Manchado</surname>
<given-names>E.</given-names>
</name>
<name>
<surname>Lowe</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>VanArsdale</surname>
<given-names>T.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Therapeutic relevance of the PP2A-B55 inhibitory kinase MASTL/Greatwall in breast cancer</article-title>
<source>Cell Death Differ.</source>
<year>2018</year>
<volume>25</volume>
<fpage>828</fpage>
<lpage>840</lpage>
<pub-id pub-id-type="doi">10.1038/s41418-017-0024-0</pub-id>
<pub-id pub-id-type="pmid">29229993</pub-id>
</element-citation>
</ref>
<ref id="B100-cancers-12-00129">
<label>100.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Rogers</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>McCloy</surname>
<given-names>R.A.</given-names>
</name>
<name>
<surname>Parker</surname>
<given-names>B.L.</given-names>
</name>
<name>
<surname>Gallego-Ortega</surname>
<given-names>D.</given-names>
</name>
<name>
<surname>Law</surname>
<given-names>A.M.K.</given-names>
</name>
<name>
<surname>Chin</surname>
<given-names>V.T.</given-names>
</name>
<name>
<surname>Conway</surname>
<given-names>J.R.W.</given-names>
</name>
<name>
<surname>Fey</surname>
<given-names>D.</given-names>
</name>
<name>
<surname>Millar</surname>
<given-names>E.K.A.</given-names>
</name>
<name>
<surname>O’Toole</surname>
<given-names>S.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>MASTL overexpression promotes chromosome instability and metastasis in breast cancer</article-title>
<source>Oncogene</source>
<year>2018</year>
<volume>37</volume>
<fpage>4518</fpage>
<lpage>4533</lpage>
<pub-id pub-id-type="doi">10.1038/s41388-018-0295-z</pub-id>
<pub-id pub-id-type="pmid">29743597</pub-id>
</element-citation>
</ref>
<ref id="B101-cancers-12-00129">
<label>101.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Cetti</surname>
<given-names>E.</given-names>
</name>
<name>
<surname>Di Marco</surname>
<given-names>T.</given-names>
</name>
<name>
<surname>Mauro</surname>
<given-names>G.</given-names>
</name>
<name>
<surname>Mazzoni</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Lecis</surname>
<given-names>D.</given-names>
</name>
<name>
<surname>Minna</surname>
<given-names>E.</given-names>
</name>
<name>
<surname>Gioiosa</surname>
<given-names>L.</given-names>
</name>
<name>
<surname>Brich</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Pagliardini</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Borrello</surname>
<given-names>M.G.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Mitosis perturbation by MASTL depletion impairs the viability of thyroid tumor cells</article-title>
<source>Cancer Lett.</source>
<year>2019</year>
<volume>442</volume>
<fpage>362</fpage>
<lpage>372</lpage>
<pub-id pub-id-type="doi">10.1016/j.canlet.2018.11.010</pub-id>
<pub-id pub-id-type="pmid">30445205</pub-id>
</element-citation>
</ref>
<ref id="B102-cancers-12-00129">
<label>102.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Weaver</surname>
<given-names>B.A.</given-names>
</name>
<name>
<surname>Cleveland</surname>
<given-names>D.W.</given-names>
</name>
</person-group>
<article-title>Decoding the links between mitosis, cancer, and chemotherapy: The mitotic checkpoint, adaptation, and cell death</article-title>
<source>Cancer Cell</source>
<year>2005</year>
<volume>8</volume>
<fpage>7</fpage>
<lpage>12</lpage>
<pub-id pub-id-type="doi">10.1016/j.ccr.2005.06.011</pub-id>
<pub-id pub-id-type="pmid">16023594</pub-id>
</element-citation>
</ref>
<ref id="B103-cancers-12-00129">
<label>103.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Russo</surname>
<given-names>M.A.</given-names>
</name>
<name>
<surname>Kang</surname>
<given-names>K.S.</given-names>
</name>
<name>
<surname>Di Cristofano</surname>
<given-names>A.</given-names>
</name>
</person-group>
<article-title>The PLK1 inhibitor GSK461364A is effective in poorly differentiated and anaplastic thyroid carcinoma cells, independent of the nature of their driver mutations</article-title>
<source>Thyroid</source>
<year>2013</year>
<volume>23</volume>
<fpage>1284</fpage>
<lpage>1293</lpage>
<pub-id pub-id-type="doi">10.1089/thy.2013.0037</pub-id>
<pub-id pub-id-type="pmid">23509868</pub-id>
</element-citation>
</ref>
<ref id="B104-cancers-12-00129">
<label>104.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Baldini</surname>
<given-names>E.</given-names>
</name>
<name>
<surname>Tuccilli</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>Prinzi</surname>
<given-names>N.</given-names>
</name>
<name>
<surname>Sorrenti</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Antonelli</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Gnessi</surname>
<given-names>L.</given-names>
</name>
<name>
<surname>Morrone</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Moretti</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>Bononi</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Arlot-Bonnemains</surname>
<given-names>Y.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Effects of selective inhibitors of Aurora kinases on anaplastic thyroid carcinoma cell lines</article-title>
<source>Endocr. Relat. Cancer</source>
<year>2014</year>
<volume>21</volume>
<fpage>797</fpage>
<lpage>811</lpage>
<pub-id pub-id-type="doi">10.1530/ERC-14-0299</pub-id>
<pub-id pub-id-type="pmid">25074669</pub-id>
</element-citation>
</ref>
<ref id="B105-cancers-12-00129">
<label>105.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Uppada</surname>
<given-names>S.B.</given-names>
</name>
<name>
<surname>Gowrikumar</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Ahmad</surname>
<given-names>R.</given-names>
</name>
<name>
<surname>Kumar</surname>
<given-names>B.</given-names>
</name>
<name>
<surname>Szeglin</surname>
<given-names>B.</given-names>
</name>
<name>
<surname>Chen</surname>
<given-names>X.</given-names>
</name>
<name>
<surname>Smith</surname>
<given-names>J.J.</given-names>
</name>
<name>
<surname>Batra</surname>
<given-names>S.K.</given-names>
</name>
<name>
<surname>Singh</surname>
<given-names>A.B.</given-names>
</name>
<name>
<surname>Dhawan</surname>
<given-names>P.</given-names>
</name>
</person-group>
<article-title>MASTL induces Colon Cancer progression and Chemoresistance by promoting Wnt/beta-catenin signaling</article-title>
<source>Mol. Cancer</source>
<year>2018</year>
<volume>17</volume>
<fpage>111</fpage>
<pub-id pub-id-type="doi">10.1186/s12943-018-0848-3</pub-id>
<pub-id pub-id-type="pmid">30068336</pub-id>
</element-citation>
</ref>
<ref id="B106-cancers-12-00129">
<label>106.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Nagel</surname>
<given-names>R.</given-names>
</name>
<name>
<surname>Stigter-van Walsum</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Buijze</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>van den Berg</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>van der Meulen</surname>
<given-names>I.H.</given-names>
</name>
<name>
<surname>Hodzic</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Piersma</surname>
<given-names>S.R.</given-names>
</name>
<name>
<surname>Pham</surname>
<given-names>T.V.</given-names>
</name>
<name>
<surname>Jiménez</surname>
<given-names>C.R.</given-names>
</name>
<name>
<surname>van Beusechem</surname>
<given-names>V.W.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Genome-wide siRNA screen identifies the radiosensitizing effect of downregulation of MASTL and FOXM1 in NSCLC</article-title>
<source>Mol. Cancer Ther.</source>
<year>2015</year>
<volume>14</volume>
<fpage>1434</fpage>
<lpage>1444</lpage>
<pub-id pub-id-type="doi">10.1158/1535-7163.MCT-14-0846</pub-id>
<pub-id pub-id-type="pmid">25808837</pub-id>
</element-citation>
</ref>
<ref id="B107-cancers-12-00129">
<label>107.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Yoon</surname>
<given-names>Y.N.</given-names>
</name>
<name>
<surname>Choe</surname>
<given-names>M.H.</given-names>
</name>
<name>
<surname>Jung</surname>
<given-names>K.Y.</given-names>
</name>
<name>
<surname>Hwang</surname>
<given-names>S.G.</given-names>
</name>
<name>
<surname>Oh</surname>
<given-names>J.S.</given-names>
</name>
<name>
<surname>Kim</surname>
<given-names>J.S.</given-names>
</name>
</person-group>
<article-title>MASTL inhibition promotes mitotic catastrophe through PP2A activation to inhibit cancer growth and radioresistance in breast cancer cells</article-title>
<source>BMC Cancer</source>
<year>2018</year>
<volume>18</volume>
<elocation-id>716</elocation-id>
<pub-id pub-id-type="doi">10.1186/s12885-018-4600-6</pub-id>
<pub-id pub-id-type="pmid">29976159</pub-id>
</element-citation>
</ref>
<ref id="B108-cancers-12-00129">
<label>108.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Alvarez-Fernandez</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Sanchez-Martinez</surname>
<given-names>R.</given-names>
</name>
<name>
<surname>Sanz-Castillo</surname>
<given-names>B.</given-names>
</name>
<name>
<surname>Gan</surname>
<given-names>P.P.</given-names>
</name>
<name>
<surname>Sanz-Flores</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Trakala</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Ruiz-Torres</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Lorca</surname>
<given-names>T.</given-names>
</name>
<name>
<surname>Castro</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Malumbres</surname>
<given-names>M.</given-names>
</name>
</person-group>
<article-title>Greatwall is essential to prevent mitotic collapse after nuclear envelope breakdown in mammals</article-title>
<source>Proc. Natl. Acad. Sci. USA</source>
<year>2013</year>
<volume>110</volume>
<fpage>17374</fpage>
<lpage>17379</lpage>
<pub-id pub-id-type="doi">10.1073/pnas.1310745110</pub-id>
<pub-id pub-id-type="pmid">24101512</pub-id>
</element-citation>
</ref>
<ref id="B109-cancers-12-00129">
<label>109.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Ocasio</surname>
<given-names>C.A.</given-names>
</name>
<name>
<surname>Rajasekaran</surname>
<given-names>M.B.</given-names>
</name>
<name>
<surname>Walker</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Le</surname>
<given-names>G.D.</given-names>
</name>
<name>
<surname>Spencer</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Pearl</surname>
<given-names>F.M.</given-names>
</name>
<name>
<surname>Ward</surname>
<given-names>S.E.</given-names>
</name>
<name>
<surname>Savic</surname>
<given-names>V.</given-names>
</name>
<name>
<surname>Pearl</surname>
<given-names>L.H.</given-names>
</name>
<name>
<surname>Hochegger</surname>
<given-names>H.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>A first generation inhibitor of human Greatwall kinase, enabled by structural and functional characterisation of a minimal kinase domain construct</article-title>
<source>Oncotarget</source>
<year>2016</year>
<volume>7</volume>
<fpage>71182</fpage>
<lpage>71197</lpage>
<pub-id pub-id-type="doi">10.18632/oncotarget.11511</pub-id>
<pub-id pub-id-type="pmid">27563826</pub-id>
</element-citation>
</ref>
<ref id="B110-cancers-12-00129">
<label>110.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Ammarah</surname>
<given-names>U.</given-names>
</name>
<name>
<surname>Kumar</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Pal</surname>
<given-names>R.</given-names>
</name>
<name>
<surname>Bal</surname>
<given-names>N.C.</given-names>
</name>
<name>
<surname>Misra</surname>
<given-names>G.</given-names>
</name>
</person-group>
<article-title>Identification of new inhibitors against human Great wall kinase using in silico approaches</article-title>
<source>Sci. Rep.</source>
<year>2018</year>
<volume>8</volume>
<fpage>4894</fpage>
<pub-id pub-id-type="doi">10.1038/s41598-018-23246-0</pub-id>
<pub-id pub-id-type="pmid">29559668</pub-id>
</element-citation>
</ref>
<ref id="B111-cancers-12-00129">
<label>111.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Beck</surname>
<given-names>R.</given-names>
</name>
<name>
<surname>Rawet</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Wieland</surname>
<given-names>F.T.</given-names>
</name>
<name>
<surname>Cassel</surname>
<given-names>D.</given-names>
</name>
</person-group>
<article-title>The COPI system: Molecular mechanisms and function</article-title>
<source>FEBS Lett.</source>
<year>2009</year>
<volume>583</volume>
<fpage>2701</fpage>
<lpage>2709</lpage>
<pub-id pub-id-type="doi">10.1016/j.febslet.2009.07.032</pub-id>
<pub-id pub-id-type="pmid">19631211</pub-id>
</element-citation>
</ref>
<ref id="B112-cancers-12-00129">
<label>112.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Razi</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Chan</surname>
<given-names>E.Y.</given-names>
</name>
<name>
<surname>Tooze</surname>
<given-names>S.A.</given-names>
</name>
</person-group>
<article-title>Early endosomes and endosomal coatomer are required for autophagy</article-title>
<source>J. Cell Biol.</source>
<year>2009</year>
<volume>185</volume>
<fpage>305</fpage>
<lpage>321</lpage>
<pub-id pub-id-type="doi">10.1083/jcb.200810098</pub-id>
<pub-id pub-id-type="pmid">19364919</pub-id>
</element-citation>
</ref>
<ref id="B113-cancers-12-00129">
<label>113.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Panda</surname>
<given-names>D.</given-names>
</name>
<name>
<surname>Das</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Dinh</surname>
<given-names>P.X.</given-names>
</name>
<name>
<surname>Subramaniam</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Nayak</surname>
<given-names>D.</given-names>
</name>
<name>
<surname>Barrows</surname>
<given-names>N.J.</given-names>
</name>
<name>
<surname>Pearson</surname>
<given-names>J.L.</given-names>
</name>
<name>
<surname>Thompson</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Kelly</surname>
<given-names>D.L.</given-names>
</name>
<name>
<surname>Ladunga</surname>
<given-names>I.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>RNAi screening reveals requirement for host cell secretory pathway in infection by diverse families of negative-strand RNA viruses</article-title>
<source>Proc. Natl. Acad. Sci. USA</source>
<year>2011</year>
<volume>108</volume>
<fpage>19036</fpage>
<lpage>19041</lpage>
<pub-id pub-id-type="doi">10.1073/pnas.1113643108</pub-id>
<pub-id pub-id-type="pmid">22065774</pub-id>
</element-citation>
</ref>
<ref id="B114-cancers-12-00129">
<label>114.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Beller</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Sztalryd</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>Southall</surname>
<given-names>N.</given-names>
</name>
<name>
<surname>Bell</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Jackle</surname>
<given-names>H.</given-names>
</name>
<name>
<surname>Auld</surname>
<given-names>D.S.</given-names>
</name>
<name>
<surname>Oliver</surname>
<given-names>B.</given-names>
</name>
</person-group>
<article-title>COPI complex is a regulator of lipid homeostasis</article-title>
<source>PLoS Biol.</source>
<year>2008</year>
<volume>6</volume>
<elocation-id>e292</elocation-id>
<pub-id pub-id-type="doi">10.1371/journal.pbio.0060292</pub-id>
<pub-id pub-id-type="pmid">19067489</pub-id>
</element-citation>
</ref>
<ref id="B115-cancers-12-00129">
<label>115.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Shtutman</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Baig</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Levina</surname>
<given-names>E.</given-names>
</name>
<name>
<surname>Hurteau</surname>
<given-names>G.</given-names>
</name>
<name>
<surname>Lim</surname>
<given-names>C.U.</given-names>
</name>
<name>
<surname>Broude</surname>
<given-names>E.</given-names>
</name>
<name>
<surname>Nikiforov</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Harkins</surname>
<given-names>T.T.</given-names>
</name>
<name>
<surname>Carmack</surname>
<given-names>C.S.</given-names>
</name>
<name>
<surname>Ding</surname>
<given-names>Y.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Tumor-specific silencing of COPZ2 gene encoding coatomer protein complex subunit zeta 2 renders tumor cells dependent on its paralogous gene COPZ1</article-title>
<source>Proc. Natl. Acad. Sci. USA</source>
<year>2011</year>
<volume>108</volume>
<fpage>12449</fpage>
<lpage>12454</lpage>
<pub-id pub-id-type="doi">10.1073/pnas.1103842108</pub-id>
<pub-id pub-id-type="pmid">21746916</pub-id>
</element-citation>
</ref>
<ref id="B116-cancers-12-00129">
<label>116.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Shtutman</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Roninson</surname>
<given-names>I.B.</given-names>
</name>
</person-group>
<article-title>A subunit of coatomer protein complex offers a novel tumor-specific target through a surprising mechanism</article-title>
<source>Autophagy</source>
<year>2011</year>
<volume>7</volume>
<fpage>1551</fpage>
<lpage>1552</lpage>
<pub-id pub-id-type="doi">10.4161/auto.7.12.17659</pub-id>
<pub-id pub-id-type="pmid">22024755</pub-id>
</element-citation>
</ref>
<ref id="B117-cancers-12-00129">
<label>117.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Anania</surname>
<given-names>M.C.</given-names>
</name>
<name>
<surname>Cetti</surname>
<given-names>E.</given-names>
</name>
<name>
<surname>Lecis</surname>
<given-names>D.</given-names>
</name>
<name>
<surname>Todoerti</surname>
<given-names>K.</given-names>
</name>
<name>
<surname>Gulino</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Mauro</surname>
<given-names>G.</given-names>
</name>
<name>
<surname>Di Marco</surname>
<given-names>T.</given-names>
</name>
<name>
<surname>Cleris</surname>
<given-names>L.</given-names>
</name>
<name>
<surname>Pagliardini</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Manenti</surname>
<given-names>G.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Targeting COPZ1 non-oncogene addiction counteracts the viability of thyroid tumor cells</article-title>
<source>Cancer Lett.</source>
<year>2017</year>
<volume>410</volume>
<fpage>201</fpage>
<lpage>211</lpage>
<pub-id pub-id-type="doi">10.1016/j.canlet.2017.09.024</pub-id>
<pub-id pub-id-type="pmid">28951131</pub-id>
</element-citation>
</ref>
<ref id="B118-cancers-12-00129">
<label>118.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Sudo</surname>
<given-names>H.</given-names>
</name>
<name>
<surname>Tsuji</surname>
<given-names>A.B.</given-names>
</name>
<name>
<surname>Sugyo</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Kohda</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Sogawa</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>Yoshida</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>Harada</surname>
<given-names>Y.N.</given-names>
</name>
<name>
<surname>Hino</surname>
<given-names>O.</given-names>
</name>
<name>
<surname>Saga</surname>
<given-names>T.</given-names>
</name>
</person-group>
<article-title>Knockdown of COPA, identified by loss-of-function screen, induces apoptosis and suppresses tumor growth in mesothelioma mouse model</article-title>
<source>Genomics</source>
<year>2010</year>
<volume>95</volume>
<fpage>210</fpage>
<lpage>216</lpage>
<pub-id pub-id-type="doi">10.1016/j.ygeno.2010.02.002</pub-id>
<pub-id pub-id-type="pmid">20153416</pub-id>
</element-citation>
</ref>
<ref id="B119-cancers-12-00129">
<label>119.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Oliver</surname>
<given-names>D.</given-names>
</name>
<name>
<surname>Ji</surname>
<given-names>H.</given-names>
</name>
<name>
<surname>Liu</surname>
<given-names>P.</given-names>
</name>
<name>
<surname>Gasparian</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Gardiner</surname>
<given-names>E.</given-names>
</name>
<name>
<surname>Lee</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Zenteno</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Perinskaya</surname>
<given-names>L.O.</given-names>
</name>
<name>
<surname>Chen</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Buckhaults</surname>
<given-names>P.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Identification of novel cancer therapeutic targets using a designed and pooled shRNA library screen</article-title>
<source>Sci. Rep.</source>
<year>2017</year>
<volume>7</volume>
<fpage>43023</fpage>
<pub-id pub-id-type="doi">10.1038/srep43023</pub-id>
<pub-id pub-id-type="pmid">28223711</pub-id>
</element-citation>
</ref>
<ref id="B120-cancers-12-00129">
<label>120.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Kim</surname>
<given-names>H.S.</given-names>
</name>
<name>
<surname>Mendiratta</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Kim</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Pecot</surname>
<given-names>C.V.</given-names>
</name>
<name>
<surname>Larsen</surname>
<given-names>J.E.</given-names>
</name>
<name>
<surname>Zubovych</surname>
<given-names>I.</given-names>
</name>
<name>
<surname>Seo</surname>
<given-names>B.Y.</given-names>
</name>
<name>
<surname>Kim</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Eskiocak</surname>
<given-names>B.</given-names>
</name>
<name>
<surname>Chung</surname>
<given-names>H.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Systematic identification of molecular subtype-selective vulnerabilities in non-small-cell lung cancer</article-title>
<source>Cell</source>
<year>2013</year>
<volume>155</volume>
<fpage>552</fpage>
<lpage>566</lpage>
<pub-id pub-id-type="doi">10.1016/j.cell.2013.09.041</pub-id>
<pub-id pub-id-type="pmid">24243015</pub-id>
</element-citation>
</ref>
<ref id="B121-cancers-12-00129">
<label>121.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Pu</surname>
<given-names>X.</given-names>
</name>
<name>
<surname>Wang</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Li</surname>
<given-names>W.</given-names>
</name>
<name>
<surname>Fan</surname>
<given-names>W.</given-names>
</name>
<name>
<surname>Wang</surname>
<given-names>L.</given-names>
</name>
<name>
<surname>Mao</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Yang</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Liu</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Xu</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Lv</surname>
<given-names>Z.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>COPB2 promotes cell proliferation and tumorigenesis through up-regulating YAP1 expression in lung adenocarcinoma cells</article-title>
<source>Biomed. Pharm.</source>
<year>2018</year>
<volume>103</volume>
<fpage>373</fpage>
<lpage>380</lpage>
<pub-id pub-id-type="doi">10.1016/j.biopha.2018.04.006</pub-id>
<pub-id pub-id-type="pmid">29674272</pub-id>
</element-citation>
</ref>
<ref id="B122-cancers-12-00129">
<label>122.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Li</surname>
<given-names>Z.S.</given-names>
</name>
<name>
<surname>Liu</surname>
<given-names>C.H.</given-names>
</name>
<name>
<surname>Liu</surname>
<given-names>Z.</given-names>
</name>
<name>
<surname>Zhu</surname>
<given-names>C.L.</given-names>
</name>
<name>
<surname>Huang</surname>
<given-names>Q.</given-names>
</name>
</person-group>
<article-title>Downregulation of COPB2 by RNAi inhibits growth of human cholangiocellular carcinoma cells</article-title>
<source>Eur. Rev. Med. Pharmacol. Sci.</source>
<year>2018</year>
<volume>22</volume>
<fpage>985</fpage>
<lpage>992</lpage>
<pub-id pub-id-type="pmid">29509246</pub-id>
</element-citation>
</ref>
<ref id="B123-cancers-12-00129">
<label>123.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>An</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>Li</surname>
<given-names>H.</given-names>
</name>
<name>
<surname>Zhang</surname>
<given-names>X.</given-names>
</name>
<name>
<surname>Wang</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Qiang</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Ye</surname>
<given-names>X.</given-names>
</name>
<name>
<surname>Li</surname>
<given-names>Q.</given-names>
</name>
<name>
<surname>Guan</surname>
<given-names>Q.</given-names>
</name>
<name>
<surname>Zhou</surname>
<given-names>Y.</given-names>
</name>
</person-group>
<article-title>Silencing of COPB2 inhibits the proliferation of gastric cancer cells and induces apoptosis via suppression of the RTK signaling pathway</article-title>
<source>Int. J. Oncol.</source>
<year>2019</year>
<volume>54</volume>
<fpage>1195</fpage>
<lpage>1208</lpage>
<pub-id pub-id-type="doi">10.3892/ijo.2019.4717</pub-id>
<pub-id pub-id-type="pmid">30968146</pub-id>
</element-citation>
</ref>
<ref id="B124-cancers-12-00129">
<label>124.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Ohashi</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Okamura</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Hirosawa</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Tamaki</surname>
<given-names>N.</given-names>
</name>
<name>
<surname>Akatsuka</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Wu</surname>
<given-names>K.M.</given-names>
</name>
<name>
<surname>Choi</surname>
<given-names>H.W.</given-names>
</name>
<name>
<surname>Yoshimatsu</surname>
<given-names>K.</given-names>
</name>
<name>
<surname>Shiina</surname>
<given-names>I.</given-names>
</name>
<name>
<surname>Yamori</surname>
<given-names>T.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>M-COPA, a Golgi Disruptor, Inhibits Cell Surface Expression of MET Protein and Exhibits Antitumor Activity against MET-Addicted Gastric Cancers</article-title>
<source>Cancer Res.</source>
<year>2016</year>
<volume>76</volume>
<fpage>3895</fpage>
<lpage>3903</lpage>
<pub-id pub-id-type="doi">10.1158/0008-5472.CAN-15-2220</pub-id>
<pub-id pub-id-type="pmid">27197184</pub-id>
</element-citation>
</ref>
<ref id="B125-cancers-12-00129">
<label>125.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Ohashi</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Okamura</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Katayama</surname>
<given-names>R.</given-names>
</name>
<name>
<surname>Fang</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Tsutsui</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Akatsuka</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Shan</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Choi</surname>
<given-names>H.W.</given-names>
</name>
<name>
<surname>Fujita</surname>
<given-names>N.</given-names>
</name>
<name>
<surname>Yoshimatsu</surname>
<given-names>K.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Targeting the Golgi apparatus to overcome acquired resistance of non-small cell lung cancer cells to EGFR tyrosine kinase inhibitors</article-title>
<source>Oncotarget</source>
<year>2018</year>
<volume>9</volume>
<fpage>1641</fpage>
<lpage>1655</lpage>
<pub-id pub-id-type="doi">10.18632/oncotarget.22895</pub-id>
<pub-id pub-id-type="pmid">29416720</pub-id>
</element-citation>
</ref>
<ref id="B126-cancers-12-00129">
<label>126.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Ameziane-El Hassani</surname>
<given-names>R.</given-names>
</name>
<name>
<surname>Buffet</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>Leboulleux</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Dupuy</surname>
<given-names>C.</given-names>
</name>
</person-group>
<article-title>Oxidative stress in thyroid carcinomas: Biological and clinical significance</article-title>
<source>Endocr. Relat. Cancer</source>
<year>2019</year>
<volume>26</volume>
<fpage>R131</fpage>
<lpage>R143</lpage>
<pub-id pub-id-type="doi">10.1530/ERC-18-0476</pub-id>
<pub-id pub-id-type="pmid">30615595</pub-id>
</element-citation>
</ref>
<ref id="B127-cancers-12-00129">
<label>127.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Szanto</surname>
<given-names>I.</given-names>
</name>
<name>
<surname>Pusztaszeri</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Mavromati</surname>
<given-names>M.</given-names>
</name>
</person-group>
<article-title>H2O2 Metabolism in Normal Thyroid Cells and in Thyroid Tumorigenesis: Focus on NADPH Oxidases</article-title>
<source>Antioxidants</source>
<year>2019</year>
<volume>8</volume>
<elocation-id>126</elocation-id>
<pub-id pub-id-type="doi">10.3390/antiox8050126</pub-id>
</element-citation>
</ref>
<ref id="B128-cancers-12-00129">
<label>128.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Weyemi</surname>
<given-names>U.</given-names>
</name>
<name>
<surname>Redon</surname>
<given-names>C.E.</given-names>
</name>
<name>
<surname>Parekh</surname>
<given-names>P.R.</given-names>
</name>
<name>
<surname>Dupuy</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>Bonner</surname>
<given-names>W.M.</given-names>
</name>
</person-group>
<article-title>NADPH Oxidases NOXs and DUOXs as putative targets for cancer therapy</article-title>
<source>Anticancer Agents Med. Chem.</source>
<year>2013</year>
<volume>13</volume>
<fpage>502</fpage>
<lpage>514</lpage>
<pub-id pub-id-type="pmid">22931418</pub-id>
</element-citation>
</ref>
<ref id="B129-cancers-12-00129">
<label>129.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Liu</surname>
<given-names>C.L.</given-names>
</name>
<name>
<surname>Hsu</surname>
<given-names>Y.C.</given-names>
</name>
<name>
<surname>Lee</surname>
<given-names>J.J.</given-names>
</name>
<name>
<surname>Chen</surname>
<given-names>M.J.</given-names>
</name>
<name>
<surname>Lin</surname>
<given-names>C.H.</given-names>
</name>
<name>
<surname>Huang</surname>
<given-names>S.Y.</given-names>
</name>
<name>
<surname>Cheng</surname>
<given-names>S.P.</given-names>
</name>
</person-group>
<article-title>Targeting the pentose phosphate pathway increases reactive oxygen species and induces apoptosis in thyroid cancer cells</article-title>
<source>Mol. Cell. Endocrinol.</source>
<year>2019</year>
<volume>499</volume>
<fpage>110595</fpage>
<pub-id pub-id-type="doi">10.1016/j.mce.2019.110595</pub-id>
<pub-id pub-id-type="pmid">31563469</pub-id>
</element-citation>
</ref>
<ref id="B130-cancers-12-00129">
<label>130.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Spartalis</surname>
<given-names>E.</given-names>
</name>
<name>
<surname>Athanasiadis</surname>
<given-names>D.I.</given-names>
</name>
<name>
<surname>Chrysikos</surname>
<given-names>D.</given-names>
</name>
<name>
<surname>Spartalis</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Boutzios</surname>
<given-names>G.</given-names>
</name>
<name>
<surname>Schizas</surname>
<given-names>D.</given-names>
</name>
<name>
<surname>Garmpis</surname>
<given-names>N.</given-names>
</name>
<name>
<surname>Damaskos</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>Paschou</surname>
<given-names>S.A.</given-names>
</name>
<name>
<surname>Ioannidis</surname>
<given-names>A.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Histone Deacetylase Inhibitors and Anaplastic Thyroid Carcinoma</article-title>
<source>Anticancer Res.</source>
<year>2019</year>
<volume>39</volume>
<fpage>1119</fpage>
<lpage>1127</lpage>
<pub-id pub-id-type="doi">10.21873/anticanres.13220</pub-id>
<pub-id pub-id-type="pmid">30842140</pub-id>
</element-citation>
</ref>
<ref id="B131-cancers-12-00129">
<label>131.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Sherman</surname>
<given-names>S.I.</given-names>
</name>
</person-group>
<article-title>Targeted therapies for thyroid tumors</article-title>
<source>Mod. Pathol.</source>
<year>2011</year>
<volume>24</volume>
<issue>Suppl. 2</issue>
<fpage>S44</fpage>
<lpage>S52</lpage>
<pub-id pub-id-type="doi">10.1038/modpathol.2010.165</pub-id>
<pub-id pub-id-type="pmid">21455200</pub-id>
</element-citation>
</ref>
<ref id="B132-cancers-12-00129">
<label>132.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Zhang</surname>
<given-names>L.</given-names>
</name>
<name>
<surname>Boufraqech</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Lake</surname>
<given-names>R.</given-names>
</name>
<name>
<surname>Kebebew</surname>
<given-names>E.</given-names>
</name>
</person-group>
<article-title>Carfilzomib potentiates CUDC-101-induced apoptosis in anaplastic thyroid cancer</article-title>
<source>Oncotarget</source>
<year>2016</year>
<volume>7</volume>
<fpage>16517</fpage>
<lpage>16528</lpage>
<pub-id pub-id-type="doi">10.18632/oncotarget.7760</pub-id>
<pub-id pub-id-type="pmid">26934320</pub-id>
</element-citation>
</ref>
<ref id="B133-cancers-12-00129">
<label>133.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Woan</surname>
<given-names>K.V.</given-names>
</name>
<name>
<surname>Sahakian</surname>
<given-names>E.</given-names>
</name>
<name>
<surname>Sotomayor</surname>
<given-names>E.M.</given-names>
</name>
<name>
<surname>Seto</surname>
<given-names>E.</given-names>
</name>
<name>
<surname>Villagra</surname>
<given-names>A.</given-names>
</name>
</person-group>
<article-title>Modulation of antigen-presenting cells by HDAC inhibitors: Implications in autoimmunity and cancer</article-title>
<source>Immunol. Cell Biol.</source>
<year>2012</year>
<volume>90</volume>
<fpage>55</fpage>
<lpage>65</lpage>
<pub-id pub-id-type="doi">10.1038/icb.2011.96</pub-id>
<pub-id pub-id-type="pmid">22105512</pub-id>
</element-citation>
</ref>
<ref id="B134-cancers-12-00129">
<label>134.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Altmann</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Markert</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Askoxylakis</surname>
<given-names>V.</given-names>
</name>
<name>
<surname>Schoning</surname>
<given-names>T.</given-names>
</name>
<name>
<surname>Jesenofsky</surname>
<given-names>R.</given-names>
</name>
<name>
<surname>Eisenhut</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Haberkorn</surname>
<given-names>U.</given-names>
</name>
</person-group>
<article-title>Antitumor effects of proteasome inhibition in anaplastic thyroid carcinoma</article-title>
<source>J. Nucl. Med.</source>
<year>2012</year>
<volume>53</volume>
<fpage>1764</fpage>
<lpage>1771</lpage>
<pub-id pub-id-type="doi">10.2967/jnumed.111.101295</pub-id>
<pub-id pub-id-type="pmid">23055533</pub-id>
</element-citation>
</ref>
<ref id="B135-cancers-12-00129">
<label>135.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Qiang</surname>
<given-names>W.</given-names>
</name>
<name>
<surname>Sui</surname>
<given-names>F.</given-names>
</name>
<name>
<surname>Ma</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Li</surname>
<given-names>X.</given-names>
</name>
<name>
<surname>Ren</surname>
<given-names>X.</given-names>
</name>
<name>
<surname>Shao</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Liu</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Guan</surname>
<given-names>H.</given-names>
</name>
<name>
<surname>Shi</surname>
<given-names>B.</given-names>
</name>
<name>
<surname>Hou</surname>
<given-names>P.</given-names>
</name>
</person-group>
<article-title>Proteasome inhibitor MG132 induces thyroid cancer cell apoptosis by modulating the activity of transcription factor FOXO3a</article-title>
<source>Endocrine</source>
<year>2017</year>
<volume>56</volume>
<fpage>98</fpage>
<lpage>108</lpage>
<pub-id pub-id-type="doi">10.1007/s12020-017-1256-y</pub-id>
<pub-id pub-id-type="pmid">28220348</pub-id>
</element-citation>
</ref>
<ref id="B136-cancers-12-00129">
<label>136.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Mehta</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Zhang</surname>
<given-names>L.</given-names>
</name>
<name>
<surname>Boufraqech</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Zhang</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Patel</surname>
<given-names>D.</given-names>
</name>
<name>
<surname>Shen</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Kebebew</surname>
<given-names>E.</given-names>
</name>
</person-group>
<article-title>Carfilzomib is an effective anticancer agent in anaplastic thyroid cancer</article-title>
<source>Endocr. Relat. Cancer</source>
<year>2015</year>
<volume>22</volume>
<fpage>319</fpage>
<lpage>329</lpage>
<pub-id pub-id-type="doi">10.1530/ERC-14-0510</pub-id>
<pub-id pub-id-type="pmid">25972243</pub-id>
</element-citation>
</ref>
<ref id="B137-cancers-12-00129">
<label>137.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Shim</surname>
<given-names>J.S.</given-names>
</name>
<name>
<surname>Rao</surname>
<given-names>R.</given-names>
</name>
<name>
<surname>Beebe</surname>
<given-names>K.</given-names>
</name>
<name>
<surname>Neckers</surname>
<given-names>L.</given-names>
</name>
<name>
<surname>Han</surname>
<given-names>I.</given-names>
</name>
<name>
<surname>Nahta</surname>
<given-names>R.</given-names>
</name>
<name>
<surname>Liu</surname>
<given-names>J.O.</given-names>
</name>
</person-group>
<article-title>Selective inhibition of HER2-positive breast cancer cells by the HIV protease inhibitor nelfinavir</article-title>
<source>J. Natl. Cancer Inst.</source>
<year>2012</year>
<volume>104</volume>
<fpage>1576</fpage>
<lpage>1590</lpage>
<pub-id pub-id-type="doi">10.1093/jnci/djs396</pub-id>
<pub-id pub-id-type="pmid">23042933</pub-id>
</element-citation>
</ref>
<ref id="B138-cancers-12-00129">
<label>138.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Driessen</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>Muller</surname>
<given-names>R.</given-names>
</name>
<name>
<surname>Novak</surname>
<given-names>U.</given-names>
</name>
<name>
<surname>Cantoni</surname>
<given-names>N.</given-names>
</name>
<name>
<surname>Betticher</surname>
<given-names>D.</given-names>
</name>
<name>
<surname>Mach</surname>
<given-names>N.</given-names>
</name>
<name>
<surname>Rufer</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Mey</surname>
<given-names>U.</given-names>
</name>
<name>
<surname>Samaras</surname>
<given-names>P.</given-names>
</name>
<name>
<surname>Ribi</surname>
<given-names>K.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Promising activity of nelfinavir-bortezomib-dexamethasone in proteasome inhibitor-refractory multiple myeloma</article-title>
<source>Blood</source>
<year>2018</year>
<volume>132</volume>
<fpage>2097</fpage>
<lpage>2100</lpage>
<pub-id pub-id-type="doi">10.1182/blood-2018-05-851170</pub-id>
<pub-id pub-id-type="pmid">30237154</pub-id>
</element-citation>
</ref>
<ref id="B139-cancers-12-00129">
<label>139.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Vandewynckel</surname>
<given-names>Y.P.</given-names>
</name>
<name>
<surname>Coucke</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>Laukens</surname>
<given-names>D.</given-names>
</name>
<name>
<surname>Devisscher</surname>
<given-names>L.</given-names>
</name>
<name>
<surname>Paridaens</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Bogaerts</surname>
<given-names>E.</given-names>
</name>
<name>
<surname>Vandierendonck</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Raevens</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Verhelst</surname>
<given-names>X.</given-names>
</name>
<name>
<surname>Van</surname>
<given-names>S.C.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Next-generation proteasome inhibitor oprozomib synergizes with modulators of the unfolded protein response to suppress hepatocellular carcinoma</article-title>
<source>Oncotarget</source>
<year>2016</year>
<volume>7</volume>
<fpage>34988</fpage>
<lpage>35000</lpage>
<pub-id pub-id-type="doi">10.18632/oncotarget.9222</pub-id>
<pub-id pub-id-type="pmid">27167000</pub-id>
</element-citation>
</ref>
<ref id="B140-cancers-12-00129">
<label>140.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Abt</surname>
<given-names>D.</given-names>
</name>
<name>
<surname>Besse</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Sedlarikova</surname>
<given-names>L.</given-names>
</name>
<name>
<surname>Kraus</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Bader</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Silzle</surname>
<given-names>T.</given-names>
</name>
<name>
<surname>Vodinska</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Slaby</surname>
<given-names>O.</given-names>
</name>
<name>
<surname>Schmid</surname>
<given-names>H.P.</given-names>
</name>
<name>
<surname>Engeler</surname>
<given-names>D.S.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Improving the efficacy of proteasome inhibitors in the treatment of renal cell carcinoma by combination with the human immunodeficiency virus (HIV)-protease inhibitors lopinavir or nelfinavir</article-title>
<source>BJU Int.</source>
<year>2018</year>
<volume>121</volume>
<fpage>600</fpage>
<lpage>609</lpage>
<pub-id pub-id-type="doi">10.1111/bju.14083</pub-id>
<pub-id pub-id-type="pmid">29161753</pub-id>
</element-citation>
</ref>
<ref id="B141-cancers-12-00129">
<label>141.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Jensen</surname>
<given-names>K.</given-names>
</name>
<name>
<surname>Bikas</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Patel</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Kushchayeva</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Costello</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>McDaniel</surname>
<given-names>D.</given-names>
</name>
<name>
<surname>Burman</surname>
<given-names>K.</given-names>
</name>
<name>
<surname>Vasko</surname>
<given-names>V.</given-names>
</name>
</person-group>
<article-title>Nelfinavir inhibits proliferation and induces DNA damage in thyroid cancer cells</article-title>
<source>Endocr. Relat. Cancer</source>
<year>2017</year>
<volume>24</volume>
<fpage>147</fpage>
<lpage>156</lpage>
<pub-id pub-id-type="doi">10.1530/ERC-16-0568</pub-id>
<pub-id pub-id-type="pmid">28137980</pub-id>
</element-citation>
</ref>
<ref id="B142-cancers-12-00129">
<label>142.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Braga-Basaria</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Hardy</surname>
<given-names>E.</given-names>
</name>
<name>
<surname>Gottfried</surname>
<given-names>R.</given-names>
</name>
<name>
<surname>Burman</surname>
<given-names>K.D.</given-names>
</name>
<name>
<surname>Saji</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Ringel</surname>
<given-names>M.D.</given-names>
</name>
</person-group>
<article-title>17-Allylamino-17-demethoxygeldanamycin activity against thyroid cancer cell lines correlates with heat shock protein 90 levels</article-title>
<source>J. Clin. Endocrinol. Metab.</source>
<year>2004</year>
<volume>89</volume>
<fpage>2982</fpage>
<lpage>2988</lpage>
<pub-id pub-id-type="doi">10.1210/jc.2003-031767</pub-id>
<pub-id pub-id-type="pmid">15181088</pub-id>
</element-citation>
</ref>
<ref id="B143-cancers-12-00129">
<label>143.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Lin</surname>
<given-names>S.F.</given-names>
</name>
<name>
<surname>Lin</surname>
<given-names>J.D.</given-names>
</name>
<name>
<surname>Hsueh</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>Chou</surname>
<given-names>T.C.</given-names>
</name>
<name>
<surname>Yeh</surname>
<given-names>C.N.</given-names>
</name>
<name>
<surname>Chen</surname>
<given-names>M.H.</given-names>
</name>
<name>
<surname>Wong</surname>
<given-names>R.J.</given-names>
</name>
</person-group>
<article-title>Efficacy of an HSP90 inhibitor, ganetespib, in preclinical thyroid cancer models</article-title>
<source>Oncotarget</source>
<year>2017</year>
<volume>8</volume>
<fpage>41294</fpage>
<lpage>41304</lpage>
<pub-id pub-id-type="doi">10.18632/oncotarget.17180</pub-id>
<pub-id pub-id-type="pmid">28476040</pub-id>
</element-citation>
</ref>
<ref id="B144-cancers-12-00129">
<label>144.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Wen</surname>
<given-names>S.S.</given-names>
</name>
<name>
<surname>Zhang</surname>
<given-names>T.T.</given-names>
</name>
<name>
<surname>Xue</surname>
<given-names>D.X.</given-names>
</name>
<name>
<surname>Wu</surname>
<given-names>W.L.</given-names>
</name>
<name>
<surname>Wang</surname>
<given-names>Y.L.</given-names>
</name>
<name>
<surname>Wang</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Ji</surname>
<given-names>Q.H.</given-names>
</name>
<name>
<surname>Zhu</surname>
<given-names>Y.X.</given-names>
</name>
<name>
<surname>Qu</surname>
<given-names>N.</given-names>
</name>
<name>
<surname>Shi</surname>
<given-names>R.L.</given-names>
</name>
</person-group>
<article-title>Metabolic reprogramming and its clinical application in thyroid cancer</article-title>
<source>Oncol. Lett.</source>
<year>2019</year>
<volume>18</volume>
<fpage>1579</fpage>
<lpage>1584</lpage>
<pub-id pub-id-type="doi">10.3892/ol.2019.10485</pub-id>
<pub-id pub-id-type="pmid">31423225</pub-id>
</element-citation>
</ref>
<ref id="B145-cancers-12-00129">
<label>145.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Coelho</surname>
<given-names>R.G.</given-names>
</name>
<name>
<surname>Fortunato</surname>
<given-names>R.S.</given-names>
</name>
<name>
<surname>Carvalho</surname>
<given-names>D.P.</given-names>
</name>
</person-group>
<article-title>Metabolic Reprogramming in Thyroid Carcinoma</article-title>
<source>Front. Oncol.</source>
<year>2018</year>
<volume>8</volume>
<fpage>82</fpage>
<pub-id pub-id-type="doi">10.3389/fonc.2018.00082</pub-id>
<pub-id pub-id-type="pmid">29629339</pub-id>
</element-citation>
</ref>
<ref id="B146-cancers-12-00129">
<label>146.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Champa</surname>
<given-names>D.</given-names>
</name>
<name>
<surname>Russo</surname>
<given-names>M.A.</given-names>
</name>
<name>
<surname>Liao</surname>
<given-names>X.H.</given-names>
</name>
<name>
<surname>Refetoff</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Ghossein</surname>
<given-names>R.A.</given-names>
</name>
<name>
<surname>Di Cristofano</surname>
<given-names>A.</given-names>
</name>
</person-group>
<article-title>Obatoclax overcomes resistance to cell death in aggressive thyroid carcinomas by countering Bcl2a1 and Mcl1 overexpression</article-title>
<source>Endocr. Relat. Cancer</source>
<year>2014</year>
<volume>21</volume>
<fpage>755</fpage>
<lpage>767</lpage>
<pub-id pub-id-type="doi">10.1530/ERC-14-0268</pub-id>
<pub-id pub-id-type="pmid">25012986</pub-id>
</element-citation>
</ref>
<ref id="B147-cancers-12-00129">
<label>147.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Mazzoni</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Mauro</surname>
<given-names>G.</given-names>
</name>
<name>
<surname>Erreni</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Romeo</surname>
<given-names>P.</given-names>
</name>
<name>
<surname>Minna</surname>
<given-names>E.</given-names>
</name>
<name>
<surname>Vizioli</surname>
<given-names>M.G.</given-names>
</name>
<name>
<surname>Belgiovine</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>Rizzetti</surname>
<given-names>M.G.</given-names>
</name>
<name>
<surname>Pagliardini</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Avigni</surname>
<given-names>R.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Senescent thyrocytes and thyroid tumor cells induce M2-like macrophage polarization of human monocytes via a PGE2-dependent mechanism</article-title>
<source>J. Exp. Clin. Cancer Res.</source>
<year>2019</year>
<volume>38</volume>
<fpage>208</fpage>
<pub-id pub-id-type="doi">10.1186/s13046-019-1198-8</pub-id>
<pub-id pub-id-type="pmid">31113465</pub-id>
</element-citation>
</ref>
<ref id="B148-cancers-12-00129">
<label>148.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Park</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Lee</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Kim</surname>
<given-names>M.S.</given-names>
</name>
<name>
<surname>Kang</surname>
<given-names>Y.J.</given-names>
</name>
<name>
<surname>Park</surname>
<given-names>Y.J.</given-names>
</name>
<name>
<surname>Jung</surname>
<given-names>H.</given-names>
</name>
<name>
<surname>Kim</surname>
<given-names>T.D.</given-names>
</name>
<name>
<surname>Lee</surname>
<given-names>H.G.</given-names>
</name>
<name>
<surname>Choi</surname>
<given-names>I.</given-names>
</name>
<name>
<surname>Yoon</surname>
<given-names>S.R.</given-names>
</name>
</person-group>
<article-title>Prostaglandin E2 Secreted by Thyroid Cancer Cells Contributes to Immune Escape Through the Suppression of Natural Killer (NK) Cell Cytotoxicity and NK Cell Differentiation</article-title>
<source>Front. Immunol.</source>
<year>2018</year>
<volume>9</volume>
<fpage>1859</fpage>
<pub-id pub-id-type="doi">10.3389/fimmu.2018.01859</pub-id>
<pub-id pub-id-type="pmid">30140269</pub-id>
</element-citation>
</ref>
<ref id="B149-cancers-12-00129">
<label>149.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Mrozek</surname>
<given-names>E.</given-names>
</name>
<name>
<surname>Kloos</surname>
<given-names>R.T.</given-names>
</name>
<name>
<surname>Ringel</surname>
<given-names>M.D.</given-names>
</name>
<name>
<surname>Kresty</surname>
<given-names>L.</given-names>
</name>
<name>
<surname>Snider</surname>
<given-names>P.</given-names>
</name>
<name>
<surname>Arbogast</surname>
<given-names>D.</given-names>
</name>
<name>
<surname>Kies</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Munden</surname>
<given-names>R.</given-names>
</name>
<name>
<surname>Busaidy</surname>
<given-names>N.</given-names>
</name>
<name>
<surname>Klein</surname>
<given-names>M.J.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Phase II study of celecoxib in metastatic differentiated thyroid carcinoma</article-title>
<source>J. Clin. Endocrinol. Metab.</source>
<year>2006</year>
<volume>91</volume>
<fpage>2201</fpage>
<lpage>2204</lpage>
<pub-id pub-id-type="doi">10.1210/jc.2005-2498</pub-id>
<pub-id pub-id-type="pmid">16522694</pub-id>
</element-citation>
</ref>
</ref-list>
</back>
<floats-group>
<fig id="cancers-12-00129-f001" orientation="portrait" position="float">
<label>Figure 1</label>
<caption>
<p>Schematic representations of non-oncogene addictions (NOAs). Examples of stress support pathways to which tumor cells, but not normal cells, are addicted. Interfering with these pathways, which represent NOAs, can be selectively lethal for tumor cells. Figure created with BioRender.</p>
</caption>
<graphic xlink:href="cancers-12-00129-g001"></graphic>
</fig>
<fig id="cancers-12-00129-f002" orientation="portrait" position="float">
<label>Figure 2</label>
<caption>
<p>Examples of RNA interference (RNAi) screening approaches. In vitro screening: libraries are directly screened in tumor and normal cells, used as a control
<bold>(a)</bold>
; in vivo screening: libraries are directly injected in mice (
<bold>b</bold>
), transfected in cells before transplantation (
<bold>c</bold>
), or transfected in PDX (patient-derived xenograft)-derived cells (
<bold>d</bold>
). For all the approaches, cells or tissues were analyzed for phenotypic alterations. Figure created with BioRender.</p>
</caption>
<graphic xlink:href="cancers-12-00129-g002"></graphic>
</fig>
<fig id="cancers-12-00129-f003" orientation="portrait" position="float">
<label>Figure 3</label>
<caption>
<p>Scheme of therapeutic targets in thyroid tumor cells. Tyrosine kinase receptors, along with their downstream pathways, and pharmacological inhibitors entered in clinical practice are shown in gray; drugs, tested at pre-clinical and clinical level, targeting NOAs, are shown in red; the dotted lines represent putative NOAs whose inhibitor is not yet available. AICAR: 5-aminoimidazole-4-carboxamide-ribonucleoside; AKT: serine/threonine kinase 1; ALK: anaplastic lymphoma receptor tyrosine kinase; AMPK: adenosine monophosphate-activated protein kinase; ASCT: alanineserinecysteine-type amino acid transporter; CDK4/6: cyclin-dependent kinase 4/6; COPZ1: coatomer protein complex zeta 1; COX-2: cyclooxygenase-2; DUOX1: dual oxidase 1; Eph: ephrin; ERK: extracellular signal–regulated kinases; GLUT1: glucose transporter 1; G6PD: glucose-6-phosphate dehydrogenase; HDAC: histone deacetylase; HER2/3: erb-b2 receptor tyrosine kinase 2/3; HK1: hexokinase 1; HSP90: heat-shock protein 90; IGFR: insulin-like growth factor 1 receptor; LDHA: lactate dehydrogenase A; MASTL: microtubule associated serine/threonine kinase-like; MEK: mitogen-activated protein kinase; mTOR: mammalian target of rapamycin; NOX4: nicotinamide adenine dinucleotide phosphate NADPH oxidase 4; NSAID: nonsteroidal anti-inflammatory drug; PGE2: prostaglandine E2; PI3K: phosphatidylinositol-3-kinase; RAS: rat sarcoma viral oncogene homolog; RAF: rapidly accelerated fibrosarcoma; RET: rearranged during transfection; ROS: reactive oxygen species; TKT: transketolase; TRK: tropomyosin receptor kinase; VEGF: vascular endothelial growth factor; VEGFR: vascular endothelial growth factor receptor. Figure created with BioRender.</p>
</caption>
<graphic xlink:href="cancers-12-00129-g003"></graphic>
</fig>
</floats-group>
</pmc>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/ChloroquineV1/Data/Pmc/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000913 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Pmc/Corpus/biblio.hfd -nk 000913 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    ChloroquineV1
   |flux=    Pmc
   |étape=   Corpus
   |type=    RBID
   |clé=     PMC:7017043
   |texte=   Targeting Non-Oncogene Addiction: Focus on Thyroid Cancer
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Pmc/Corpus/RBID.i   -Sk "pubmed:31947935" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Pmc/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a ChloroquineV1 

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Wed Mar 25 22:43:59 2020. Site generation: Sun Jan 31 12:44:45 2021