Serveur d'exploration Chloroquine

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Thirty Years of Cancer Nanomedicine: Success, Frustration, and Hope

Identifieur interne : 000907 ( Pmc/Corpus ); précédent : 000906; suivant : 000908

Thirty Years of Cancer Nanomedicine: Success, Frustration, and Hope

Auteurs : Lucia Salvioni ; Maria Antonietta Rizzuto ; Jessica Armida Bertolini ; Laura Pandolfi ; Miriam Colombo ; Davide Prosperi

Source :

RBID : PMC:6966668

Abstract

Starting with the enhanced permeability and retention (EPR) effect discovery, nanomedicine has gained a crucial role in cancer treatment. The advances in the field have led to the approval of nanodrugs with improved safety profile and still inspire the ongoing investigations. However, several restrictions, such as high manufacturing costs, technical challenges, and effectiveness below expectations, raised skeptical opinions within the scientific community about the clinical relevance of nanomedicine. In this review, we aim to give an overall vision of the current hurdles encountered by nanotherapeutics along with their design, development, and translation, and we offer a prospective view on possible strategies to overcome such limitations.


Url:
DOI: 10.3390/cancers11121855
PubMed: 31769416
PubMed Central: 6966668

Links to Exploration step

PMC:6966668

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Thirty Years of Cancer Nanomedicine: Success, Frustration, and Hope</title>
<author>
<name sortKey="Salvioni, Lucia" sort="Salvioni, Lucia" uniqKey="Salvioni L" first="Lucia" last="Salvioni">Lucia Salvioni</name>
<affiliation>
<nlm:aff id="af1-cancers-11-01855">Department of Biotecnology and Bioscience, University of Milano-Bicocca, piazza della Scienza 2, 20126 Milano, Italy;
<email>lucia.salvioni@unimib.it</email>
(L.S.);
<email>maria.rizzuto@unimib.it</email>
(M.A.R.);
<email>jessica.bertolini@unimib.it</email>
(J.A.B.);
<email>miriam.colombo@unimib.it</email>
(M.C.)</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Rizzuto, Maria Antonietta" sort="Rizzuto, Maria Antonietta" uniqKey="Rizzuto M" first="Maria Antonietta" last="Rizzuto">Maria Antonietta Rizzuto</name>
<affiliation>
<nlm:aff id="af1-cancers-11-01855">Department of Biotecnology and Bioscience, University of Milano-Bicocca, piazza della Scienza 2, 20126 Milano, Italy;
<email>lucia.salvioni@unimib.it</email>
(L.S.);
<email>maria.rizzuto@unimib.it</email>
(M.A.R.);
<email>jessica.bertolini@unimib.it</email>
(J.A.B.);
<email>miriam.colombo@unimib.it</email>
(M.C.)</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Bertolini, Jessica Armida" sort="Bertolini, Jessica Armida" uniqKey="Bertolini J" first="Jessica Armida" last="Bertolini">Jessica Armida Bertolini</name>
<affiliation>
<nlm:aff id="af1-cancers-11-01855">Department of Biotecnology and Bioscience, University of Milano-Bicocca, piazza della Scienza 2, 20126 Milano, Italy;
<email>lucia.salvioni@unimib.it</email>
(L.S.);
<email>maria.rizzuto@unimib.it</email>
(M.A.R.);
<email>jessica.bertolini@unimib.it</email>
(J.A.B.);
<email>miriam.colombo@unimib.it</email>
(M.C.)</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Pandolfi, Laura" sort="Pandolfi, Laura" uniqKey="Pandolfi L" first="Laura" last="Pandolfi">Laura Pandolfi</name>
<affiliation>
<nlm:aff id="af2-cancers-11-01855">Unit of Respiratory Diseases, IRCCS Policlinico San Matteo Foundation, 27100 Pavia, Italy;
<email>l.pandolfi@smatteo.pv.it</email>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Colombo, Miriam" sort="Colombo, Miriam" uniqKey="Colombo M" first="Miriam" last="Colombo">Miriam Colombo</name>
<affiliation>
<nlm:aff id="af1-cancers-11-01855">Department of Biotecnology and Bioscience, University of Milano-Bicocca, piazza della Scienza 2, 20126 Milano, Italy;
<email>lucia.salvioni@unimib.it</email>
(L.S.);
<email>maria.rizzuto@unimib.it</email>
(M.A.R.);
<email>jessica.bertolini@unimib.it</email>
(J.A.B.);
<email>miriam.colombo@unimib.it</email>
(M.C.)</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Prosperi, Davide" sort="Prosperi, Davide" uniqKey="Prosperi D" first="Davide" last="Prosperi">Davide Prosperi</name>
<affiliation>
<nlm:aff id="af1-cancers-11-01855">Department of Biotecnology and Bioscience, University of Milano-Bicocca, piazza della Scienza 2, 20126 Milano, Italy;
<email>lucia.salvioni@unimib.it</email>
(L.S.);
<email>maria.rizzuto@unimib.it</email>
(M.A.R.);
<email>jessica.bertolini@unimib.it</email>
(J.A.B.);
<email>miriam.colombo@unimib.it</email>
(M.C.)</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="af3-cancers-11-01855">Nanomedicine Laboratory, ICS Maugeri, via S. Maugeri 10, 27100 Pavia, Italy</nlm:aff>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PMC</idno>
<idno type="pmid">31769416</idno>
<idno type="pmc">6966668</idno>
<idno type="url">http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6966668</idno>
<idno type="RBID">PMC:6966668</idno>
<idno type="doi">10.3390/cancers11121855</idno>
<date when="2019">2019</date>
<idno type="wicri:Area/Pmc/Corpus">000907</idno>
<idno type="wicri:explorRef" wicri:stream="Pmc" wicri:step="Corpus" wicri:corpus="PMC">000907</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a" type="main">Thirty Years of Cancer Nanomedicine: Success, Frustration, and Hope</title>
<author>
<name sortKey="Salvioni, Lucia" sort="Salvioni, Lucia" uniqKey="Salvioni L" first="Lucia" last="Salvioni">Lucia Salvioni</name>
<affiliation>
<nlm:aff id="af1-cancers-11-01855">Department of Biotecnology and Bioscience, University of Milano-Bicocca, piazza della Scienza 2, 20126 Milano, Italy;
<email>lucia.salvioni@unimib.it</email>
(L.S.);
<email>maria.rizzuto@unimib.it</email>
(M.A.R.);
<email>jessica.bertolini@unimib.it</email>
(J.A.B.);
<email>miriam.colombo@unimib.it</email>
(M.C.)</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Rizzuto, Maria Antonietta" sort="Rizzuto, Maria Antonietta" uniqKey="Rizzuto M" first="Maria Antonietta" last="Rizzuto">Maria Antonietta Rizzuto</name>
<affiliation>
<nlm:aff id="af1-cancers-11-01855">Department of Biotecnology and Bioscience, University of Milano-Bicocca, piazza della Scienza 2, 20126 Milano, Italy;
<email>lucia.salvioni@unimib.it</email>
(L.S.);
<email>maria.rizzuto@unimib.it</email>
(M.A.R.);
<email>jessica.bertolini@unimib.it</email>
(J.A.B.);
<email>miriam.colombo@unimib.it</email>
(M.C.)</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Bertolini, Jessica Armida" sort="Bertolini, Jessica Armida" uniqKey="Bertolini J" first="Jessica Armida" last="Bertolini">Jessica Armida Bertolini</name>
<affiliation>
<nlm:aff id="af1-cancers-11-01855">Department of Biotecnology and Bioscience, University of Milano-Bicocca, piazza della Scienza 2, 20126 Milano, Italy;
<email>lucia.salvioni@unimib.it</email>
(L.S.);
<email>maria.rizzuto@unimib.it</email>
(M.A.R.);
<email>jessica.bertolini@unimib.it</email>
(J.A.B.);
<email>miriam.colombo@unimib.it</email>
(M.C.)</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Pandolfi, Laura" sort="Pandolfi, Laura" uniqKey="Pandolfi L" first="Laura" last="Pandolfi">Laura Pandolfi</name>
<affiliation>
<nlm:aff id="af2-cancers-11-01855">Unit of Respiratory Diseases, IRCCS Policlinico San Matteo Foundation, 27100 Pavia, Italy;
<email>l.pandolfi@smatteo.pv.it</email>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Colombo, Miriam" sort="Colombo, Miriam" uniqKey="Colombo M" first="Miriam" last="Colombo">Miriam Colombo</name>
<affiliation>
<nlm:aff id="af1-cancers-11-01855">Department of Biotecnology and Bioscience, University of Milano-Bicocca, piazza della Scienza 2, 20126 Milano, Italy;
<email>lucia.salvioni@unimib.it</email>
(L.S.);
<email>maria.rizzuto@unimib.it</email>
(M.A.R.);
<email>jessica.bertolini@unimib.it</email>
(J.A.B.);
<email>miriam.colombo@unimib.it</email>
(M.C.)</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Prosperi, Davide" sort="Prosperi, Davide" uniqKey="Prosperi D" first="Davide" last="Prosperi">Davide Prosperi</name>
<affiliation>
<nlm:aff id="af1-cancers-11-01855">Department of Biotecnology and Bioscience, University of Milano-Bicocca, piazza della Scienza 2, 20126 Milano, Italy;
<email>lucia.salvioni@unimib.it</email>
(L.S.);
<email>maria.rizzuto@unimib.it</email>
(M.A.R.);
<email>jessica.bertolini@unimib.it</email>
(J.A.B.);
<email>miriam.colombo@unimib.it</email>
(M.C.)</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="af3-cancers-11-01855">Nanomedicine Laboratory, ICS Maugeri, via S. Maugeri 10, 27100 Pavia, Italy</nlm:aff>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Cancers</title>
<idno type="eISSN">2072-6694</idno>
<imprint>
<date when="2019">2019</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<p>Starting with the enhanced permeability and retention (EPR) effect discovery, nanomedicine has gained a crucial role in cancer treatment. The advances in the field have led to the approval of nanodrugs with improved safety profile and still inspire the ongoing investigations. However, several restrictions, such as high manufacturing costs, technical challenges, and effectiveness below expectations, raised skeptical opinions within the scientific community about the clinical relevance of nanomedicine. In this review, we aim to give an overall vision of the current hurdles encountered by nanotherapeutics along with their design, development, and translation, and we offer a prospective view on possible strategies to overcome such limitations.</p>
</div>
</front>
<back>
<div1 type="bibliography">
<listBibl>
<biblStruct>
<analytic>
<author>
<name sortKey="Feynman, R P" uniqKey="Feynman R">R.P. Feynman</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Tibbals, H F" uniqKey="Tibbals H">H.F. Tibbals</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Etheridge, M L" uniqKey="Etheridge M">M.L. Etheridge</name>
</author>
<author>
<name sortKey="Campbell, S A" uniqKey="Campbell S">S.A. Campbell</name>
</author>
<author>
<name sortKey="Erdman, A G" uniqKey="Erdman A">A.G. Erdman</name>
</author>
<author>
<name sortKey="Haynes, C L" uniqKey="Haynes C">C.L. Haynes</name>
</author>
<author>
<name sortKey="Wolf, S M" uniqKey="Wolf S">S.M. Wolf</name>
</author>
<author>
<name sortKey="Mccullough, J" uniqKey="Mccullough J">J. McCullough</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Matsumura, Y" uniqKey="Matsumura Y">Y. Matsumura</name>
</author>
<author>
<name sortKey="Maeda, H" uniqKey="Maeda H">H. Maeda</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Yuan, F" uniqKey="Yuan F">F. Yuan</name>
</author>
<author>
<name sortKey="Dellian, M" uniqKey="Dellian M">M. Dellian</name>
</author>
<author>
<name sortKey="Fukumura, D" uniqKey="Fukumura D">D. Fukumura</name>
</author>
<author>
<name sortKey="Leunig, M" uniqKey="Leunig M">M. Leunig</name>
</author>
<author>
<name sortKey="Berk, D A" uniqKey="Berk D">D.A. Berk</name>
</author>
<author>
<name sortKey="Torchilin, V P" uniqKey="Torchilin V">V.P. Torchilin</name>
</author>
<author>
<name sortKey="Jain, R K" uniqKey="Jain R">R.K. Jain</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Nakamura, Y" uniqKey="Nakamura Y">Y. Nakamura</name>
</author>
<author>
<name sortKey="Mochida, A" uniqKey="Mochida A">A. Mochida</name>
</author>
<author>
<name sortKey="Choyke, P L" uniqKey="Choyke P">P.L. Choyke</name>
</author>
<author>
<name sortKey="Kobayashi, H" uniqKey="Kobayashi H">H. Kobayashi</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Wang, A Z" uniqKey="Wang A">A.Z. Wang</name>
</author>
<author>
<name sortKey="Langer, R" uniqKey="Langer R">R. Langer</name>
</author>
<author>
<name sortKey="Farokhzad, O C" uniqKey="Farokhzad O">O.C. Farokhzad</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="He, H" uniqKey="He H">H. He</name>
</author>
<author>
<name sortKey="Liu, L" uniqKey="Liu L">L. Liu</name>
</author>
<author>
<name sortKey="Morin, E E" uniqKey="Morin E">E.E. Morin</name>
</author>
<author>
<name sortKey="Liu, M" uniqKey="Liu M">M. Liu</name>
</author>
<author>
<name sortKey="Schwendeman, A" uniqKey="Schwendeman A">A. Schwendeman</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Hare, J I" uniqKey="Hare J">J.I. Hare</name>
</author>
<author>
<name sortKey="Lammers, T" uniqKey="Lammers T">T. Lammers</name>
</author>
<author>
<name sortKey="Ashford, M B" uniqKey="Ashford M">M.B. Ashford</name>
</author>
<author>
<name sortKey="Puri, S" uniqKey="Puri S">S. Puri</name>
</author>
<author>
<name sortKey="Storm, G" uniqKey="Storm G">G. Storm</name>
</author>
<author>
<name sortKey="Barry, S T" uniqKey="Barry S">S.T. Barry</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Youn, Y S" uniqKey="Youn Y">Y.S. Youn</name>
</author>
<author>
<name sortKey="Bae, Y H" uniqKey="Bae Y">Y.H. Bae</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Wilhelm, S" uniqKey="Wilhelm S">S. Wilhelm</name>
</author>
<author>
<name sortKey="Anthony, J" uniqKey="Anthony J">J. Anthony</name>
</author>
<author>
<name sortKey="Tavares, A J" uniqKey="Tavares A">A.J. Tavares</name>
</author>
<author>
<name sortKey="Dai, Q" uniqKey="Dai Q">Q. Dai</name>
</author>
<author>
<name sortKey="Ohta, S" uniqKey="Ohta S">S. Ohta</name>
</author>
<author>
<name sortKey="Audet, J" uniqKey="Audet J">J. Audet</name>
</author>
<author>
<name sortKey="Dvorak, H F" uniqKey="Dvorak H">H.F. Dvorak</name>
</author>
<author>
<name sortKey="Chan, W C W" uniqKey="Chan W">W.C.W. Chan</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Danhier, F" uniqKey="Danhier F">F. Danhier</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Shi, J" uniqKey="Shi J">J. Shi</name>
</author>
<author>
<name sortKey="Kantoff, P W" uniqKey="Kantoff P">P.W. Kantoff</name>
</author>
<author>
<name sortKey="Wooster, R" uniqKey="Wooster R">R. Wooster</name>
</author>
<author>
<name sortKey="Farokhzad, O C" uniqKey="Farokhzad O">O.C. Farokhzad</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Shi, Y" uniqKey="Shi Y">Y. Shi</name>
</author>
<author>
<name sortKey="Lammers, T" uniqKey="Lammers T">T. Lammers</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Tenzer, S" uniqKey="Tenzer S">S. Tenzer</name>
</author>
<author>
<name sortKey="Docter, D" uniqKey="Docter D">D. Docter</name>
</author>
<author>
<name sortKey="Kuharev, J" uniqKey="Kuharev J">J. Kuharev</name>
</author>
<author>
<name sortKey="Musyanovych, A" uniqKey="Musyanovych A">A. Musyanovych</name>
</author>
<author>
<name sortKey="Fetz, V" uniqKey="Fetz V">V. Fetz</name>
</author>
<author>
<name sortKey="Hecht, R" uniqKey="Hecht R">R. Hecht</name>
</author>
<author>
<name sortKey="Schlenk, F" uniqKey="Schlenk F">F. Schlenk</name>
</author>
<author>
<name sortKey="Fischer, D" uniqKey="Fischer D">D. Fischer</name>
</author>
<author>
<name sortKey="Kiouptsi, K" uniqKey="Kiouptsi K">K. Kiouptsi</name>
</author>
<author>
<name sortKey="Reinhardt, C" uniqKey="Reinhardt C">C. Reinhardt</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Docter, D" uniqKey="Docter D">D. Docter</name>
</author>
<author>
<name sortKey="Westmeier, D" uniqKey="Westmeier D">D. Westmeier</name>
</author>
<author>
<name sortKey="Markiewicz, M" uniqKey="Markiewicz M">M. Markiewicz</name>
</author>
<author>
<name sortKey="Stolte, S" uniqKey="Stolte S">S. Stolte</name>
</author>
<author>
<name sortKey="Knauer, S K" uniqKey="Knauer S">S.K. Knauer</name>
</author>
<author>
<name sortKey="Stauber, R H" uniqKey="Stauber R">R.H. Stauber</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Caracciolo, G" uniqKey="Caracciolo G">G. Caracciolo</name>
</author>
<author>
<name sortKey="Farokhzad, O C" uniqKey="Farokhzad O">O.C. Farokhzad</name>
</author>
<author>
<name sortKey="Mahmoudi, M" uniqKey="Mahmoudi M">M. Mahmoudi</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ritz, S" uniqKey="Ritz S">S. Ritz</name>
</author>
<author>
<name sortKey="Schottler, S" uniqKey="Schottler S">S. Schöttler</name>
</author>
<author>
<name sortKey="Kotman, N" uniqKey="Kotman N">N. Kotman</name>
</author>
<author>
<name sortKey="Baier, G" uniqKey="Baier G">G. Baier</name>
</author>
<author>
<name sortKey="Musyanovych, A" uniqKey="Musyanovych A">A. Musyanovych</name>
</author>
<author>
<name sortKey="Kuharev, J" uniqKey="Kuharev J">J. Kuharev</name>
</author>
<author>
<name sortKey="Landfester, K" uniqKey="Landfester K">K. Landfester</name>
</author>
<author>
<name sortKey="Schild, H" uniqKey="Schild H">H. Schild</name>
</author>
<author>
<name sortKey="Jahn, O" uniqKey="Jahn O">O. Jahn</name>
</author>
<author>
<name sortKey="Tenzer, S" uniqKey="Tenzer S">S. Tenzer</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ding, L" uniqKey="Ding L">L. Ding</name>
</author>
<author>
<name sortKey="Yao, C" uniqKey="Yao C">C. Yao</name>
</author>
<author>
<name sortKey="Yin, X" uniqKey="Yin X">X. Yin</name>
</author>
<author>
<name sortKey="Li, C" uniqKey="Li C">C. Li</name>
</author>
<author>
<name sortKey="Huang, Y" uniqKey="Huang Y">Y. Huang</name>
</author>
<author>
<name sortKey="Wu, M" uniqKey="Wu M">M. Wu</name>
</author>
<author>
<name sortKey="Wang, B" uniqKey="Wang B">B. Wang</name>
</author>
<author>
<name sortKey="Guo, X" uniqKey="Guo X">X. Guo</name>
</author>
<author>
<name sortKey="Wang, Y" uniqKey="Wang Y">Y. Wang</name>
</author>
<author>
<name sortKey="Wu, M" uniqKey="Wu M">M. Wu</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Nguyen, V H" uniqKey="Nguyen V">V.H. Nguyen</name>
</author>
<author>
<name sortKey="Lee, B" uniqKey="Lee B">B. Lee</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Oh, J Y" uniqKey="Oh J">J.Y. Oh</name>
</author>
<author>
<name sortKey="Kim, H S" uniqKey="Kim H">H.S. Kim</name>
</author>
<author>
<name sortKey="Palanikumar, L" uniqKey="Palanikumar L">L. Palanikumar</name>
</author>
<author>
<name sortKey="Go, E M" uniqKey="Go E">E.M. Go</name>
</author>
<author>
<name sortKey="Jana, B" uniqKey="Jana B">B. Jana</name>
</author>
<author>
<name sortKey="Park, S A" uniqKey="Park S">S.A. Park</name>
</author>
<author>
<name sortKey="Kim, H Y" uniqKey="Kim H">H.Y. Kim</name>
</author>
<author>
<name sortKey="Kim, K" uniqKey="Kim K">K. Kim</name>
</author>
<author>
<name sortKey="Seo, J K" uniqKey="Seo J">J.K. Seo</name>
</author>
<author>
<name sortKey="Kwak, S K" uniqKey="Kwak S">S.K. Kwak</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Choi, H S" uniqKey="Choi H">H.S. Choi</name>
</author>
<author>
<name sortKey="Liu, W" uniqKey="Liu W">W. Liu</name>
</author>
<author>
<name sortKey="Misra, P" uniqKey="Misra P">P. Misra</name>
</author>
<author>
<name sortKey="Tanaka, E" uniqKey="Tanaka E">E. Tanaka</name>
</author>
<author>
<name sortKey="Zimmer, J P" uniqKey="Zimmer J">J.P. Zimmer</name>
</author>
<author>
<name sortKey="Itty Ipe, B" uniqKey="Itty Ipe B">B. Itty Ipe</name>
</author>
<author>
<name sortKey="Bawendi, M G" uniqKey="Bawendi M">M.G. Bawendi</name>
</author>
<author>
<name sortKey="Frangioni, J V" uniqKey="Frangioni J">J.V. Frangioni</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Rizzuto, M" uniqKey="Rizzuto M">M. Rizzuto</name>
</author>
<author>
<name sortKey="Salvioni, L" uniqKey="Salvioni L">L. Salvioni</name>
</author>
<author>
<name sortKey="Rotem, R" uniqKey="Rotem R">R. Rotem</name>
</author>
<author>
<name sortKey="Colombo, M" uniqKey="Colombo M">M. Colombo</name>
</author>
<author>
<name sortKey="Zanoni, I" uniqKey="Zanoni I">I. Zanoni</name>
</author>
<author>
<name sortKey="Granucci, F" uniqKey="Granucci F">F. Granucci</name>
</author>
<author>
<name sortKey="Prosperi, D" uniqKey="Prosperi D">D. Prosperi</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Campbell, F" uniqKey="Campbell F">F. Campbell</name>
</author>
<author>
<name sortKey="Bos, F L" uniqKey="Bos F">F.L. Bos</name>
</author>
<author>
<name sortKey="Sieber, S" uniqKey="Sieber S">S. Sieber</name>
</author>
<author>
<name sortKey="Arias Alpizar, G" uniqKey="Arias Alpizar G">G. Arias-Alpizar</name>
</author>
<author>
<name sortKey="Koch, B E" uniqKey="Koch B">B.E. Koch</name>
</author>
<author>
<name sortKey="Huwyler, J" uniqKey="Huwyler J">J. Huwyler</name>
</author>
<author>
<name sortKey="Kros, A" uniqKey="Kros A">A. Kros</name>
</author>
<author>
<name sortKey="Bussmann, J" uniqKey="Bussmann J">J. Bussmann</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Wei, Y" uniqKey="Wei Y">Y. Wei</name>
</author>
<author>
<name sortKey="Quan, L" uniqKey="Quan L">L. Quan</name>
</author>
<author>
<name sortKey="Zhou, C" uniqKey="Zhou C">C. Zhou</name>
</author>
<author>
<name sortKey="Zhan, Q" uniqKey="Zhan Q">Q. Zhan</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Perez Campa A, C" uniqKey="Perez Campa A C">C. Pérez-Campaña</name>
</author>
<author>
<name sortKey="G Mez Vallejo, V" uniqKey="G Mez Vallejo V">V. Gómez-Vallejo</name>
</author>
<author>
<name sortKey="Puigivila, M" uniqKey="Puigivila M">M. Puigivila</name>
</author>
<author>
<name sortKey="Martin, A" uniqKey="Martin A">A. Martín</name>
</author>
<author>
<name sortKey="Calvo Fernandez, T" uniqKey="Calvo Fernandez T">T. Calvo-Fernández</name>
</author>
<author>
<name sortKey="Moya, S E" uniqKey="Moya S">S.E. Moya</name>
</author>
<author>
<name sortKey="Ziolo, R F" uniqKey="Ziolo R">R.F. Ziolo</name>
</author>
<author>
<name sortKey="Reese, T" uniqKey="Reese T">T. Reese</name>
</author>
<author>
<name sortKey="Llop, J" uniqKey="Llop J">J. Llop</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Li, S D" uniqKey="Li S">S.D. Li</name>
</author>
<author>
<name sortKey="Huang, L" uniqKey="Huang L">L. Huang</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Duan, X" uniqKey="Duan X">X. Duan</name>
</author>
<author>
<name sortKey="Li, Y" uniqKey="Li Y">Y. Li</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Black, K C" uniqKey="Black K">K.C. Black</name>
</author>
<author>
<name sortKey="Wang, Y" uniqKey="Wang Y">Y. Wang</name>
</author>
<author>
<name sortKey="Luehmann, H P" uniqKey="Luehmann H">H.P. Luehmann</name>
</author>
<author>
<name sortKey="Cai, X" uniqKey="Cai X">X. Cai</name>
</author>
<author>
<name sortKey="Xing, W" uniqKey="Xing W">W. Xing</name>
</author>
<author>
<name sortKey="Pang, B" uniqKey="Pang B">B. Pang</name>
</author>
<author>
<name sortKey="Zhao, Y" uniqKey="Zhao Y">Y. Zhao</name>
</author>
<author>
<name sortKey="Cutler, C S" uniqKey="Cutler C">C.S. Cutler</name>
</author>
<author>
<name sortKey="Wang, L V" uniqKey="Wang L">L.V. Wang</name>
</author>
<author>
<name sortKey="Liu, Y" uniqKey="Liu Y">Y. Liu</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Zhang, L" uniqKey="Zhang L">L. Zhang</name>
</author>
<author>
<name sortKey="Cao, Z" uniqKey="Cao Z">Z. Cao</name>
</author>
<author>
<name sortKey="Li, Y" uniqKey="Li Y">Y. Li</name>
</author>
<author>
<name sortKey="Ella Menye, J R" uniqKey="Ella Menye J">J.R. Ella-Menye</name>
</author>
<author>
<name sortKey="Bai, T" uniqKey="Bai T">T. Bai</name>
</author>
<author>
<name sortKey="Jiang, S" uniqKey="Jiang S">S. Jiang</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Wolfram, J" uniqKey="Wolfram J">J. Wolfram</name>
</author>
<author>
<name sortKey="Ferrari, M" uniqKey="Ferrari M">M. Ferrari</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Moghimi, S M" uniqKey="Moghimi S">S.M. Moghimi</name>
</author>
<author>
<name sortKey="Andersena, A J" uniqKey="Andersena A">A.J. Andersena</name>
</author>
<author>
<name sortKey="Hashemia, S H" uniqKey="Hashemia S">S.H. Hashemia</name>
</author>
<author>
<name sortKey="Lettiero, B" uniqKey="Lettiero B">B. Lettiero</name>
</author>
<author>
<name sortKey="Ahmadvanda, D" uniqKey="Ahmadvanda D">D. Ahmadvanda</name>
</author>
<author>
<name sortKey="Hunterb, A C" uniqKey="Hunterb A">A.C. Hunterb</name>
</author>
<author>
<name sortKey="Andresenc, T L" uniqKey="Andresenc T">T.L. Andresenc</name>
</author>
<author>
<name sortKey="Hamadd, I" uniqKey="Hamadd I">I. Hamadd</name>
</author>
<author>
<name sortKey="Szebenie, J" uniqKey="Szebenie J">J. Szebenie</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Marina, N M" uniqKey="Marina N">N.M. Marina</name>
</author>
<author>
<name sortKey="Cochrane, D" uniqKey="Cochrane D">D. Cochrane</name>
</author>
<author>
<name sortKey="Harney, E" uniqKey="Harney E">E. Harney</name>
</author>
<author>
<name sortKey="Zomorodi, K" uniqKey="Zomorodi K">K. Zomorodi</name>
</author>
<author>
<name sortKey="Blaney, S" uniqKey="Blaney S">S. Blaney</name>
</author>
<author>
<name sortKey="Winick, N" uniqKey="Winick N">N. Winick</name>
</author>
<author>
<name sortKey="Bernstein, M" uniqKey="Bernstein M">M. Bernstein</name>
</author>
<author>
<name sortKey="Link, M P" uniqKey="Link M">M.P. Link</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Rodriguez, P L" uniqKey="Rodriguez P">P.L. Rodriguez</name>
</author>
<author>
<name sortKey="Harada, T" uniqKey="Harada T">T. Harada</name>
</author>
<author>
<name sortKey="Christian, D A" uniqKey="Christian D">D.A. Christian</name>
</author>
<author>
<name sortKey="Pantano, D A" uniqKey="Pantano D">D.A. Pantano</name>
</author>
<author>
<name sortKey="Tsai, R K" uniqKey="Tsai R">R.K. Tsai</name>
</author>
<author>
<name sortKey="Discher, D E" uniqKey="Discher D">D.E. Discher</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Parodi, A" uniqKey="Parodi A">A. Parodi</name>
</author>
<author>
<name sortKey="Molinaro, R" uniqKey="Molinaro R">R. Molinaro</name>
</author>
<author>
<name sortKey="Sushnitha, M" uniqKey="Sushnitha M">M. Sushnitha</name>
</author>
<author>
<name sortKey="Evangelopoulos, M" uniqKey="Evangelopoulos M">M. Evangelopoulos</name>
</author>
<author>
<name sortKey="Martinez, J O" uniqKey="Martinez J">J.O. Martinez</name>
</author>
<author>
<name sortKey="Arrighetti, N" uniqKey="Arrighetti N">N. Arrighetti</name>
</author>
<author>
<name sortKey="Corbo, C" uniqKey="Corbo C">C. Corbo</name>
</author>
<author>
<name sortKey="Tasciotti, E" uniqKey="Tasciotti E">E. Tasciotti</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Junttila, M R" uniqKey="Junttila M">M.R. Junttila</name>
</author>
<author>
<name sortKey="De Sauvage, F J" uniqKey="De Sauvage F">F.J. de Sauvage</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Quail, D F" uniqKey="Quail D">D.F. Quail</name>
</author>
<author>
<name sortKey="Joyce, J A" uniqKey="Joyce J">J.A. Joyce</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Maeda, H" uniqKey="Maeda H">H. Maeda</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Natfji, A A" uniqKey="Natfji A">A.A. Natfji</name>
</author>
<author>
<name sortKey="Ravishankar, D" uniqKey="Ravishankar D">D. Ravishankar</name>
</author>
<author>
<name sortKey="Osborn, H M I" uniqKey="Osborn H">H.M.I. Osborn</name>
</author>
<author>
<name sortKey="Greco, F" uniqKey="Greco F">F. Greco</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Moghimi, S M" uniqKey="Moghimi S">S.M. Moghimi</name>
</author>
<author>
<name sortKey="Simberg, D" uniqKey="Simberg D">D. Simberg</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Matsumoto, Y" uniqKey="Matsumoto Y">Y. Matsumoto</name>
</author>
<author>
<name sortKey="Nichols, J W" uniqKey="Nichols J">J.W. Nichols</name>
</author>
<author>
<name sortKey="Toh, K" uniqKey="Toh K">K. Toh</name>
</author>
<author>
<name sortKey="Nomoto, T" uniqKey="Nomoto T">T. Nomoto</name>
</author>
<author>
<name sortKey="Cabral, H" uniqKey="Cabral H">H. Cabral</name>
</author>
<author>
<name sortKey="Miura, Y" uniqKey="Miura Y">Y. Miura</name>
</author>
<author>
<name sortKey="Christie, R J" uniqKey="Christie R">R.J. Christie</name>
</author>
<author>
<name sortKey="Yamada, N" uniqKey="Yamada N">N. Yamada</name>
</author>
<author>
<name sortKey="Ogura, T" uniqKey="Ogura T">T. Ogura</name>
</author>
<author>
<name sortKey="Kano, M R" uniqKey="Kano M">M.R. Kano</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Nicolas Boluda, A" uniqKey="Nicolas Boluda A">A. Nicolas-Boluda</name>
</author>
<author>
<name sortKey="Silva, A K A" uniqKey="Silva A">A.K.A. Silva</name>
</author>
<author>
<name sortKey="Fournel, S" uniqKey="Fournel S">S. Fournel</name>
</author>
<author>
<name sortKey="Gazeau, F" uniqKey="Gazeau F">F. Gazeau</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="El Sawy, H S" uniqKey="El Sawy H">H.S. El-Sawy</name>
</author>
<author>
<name sortKey="Al Abd, A M" uniqKey="Al Abd A">A.M. Al-Abd</name>
</author>
<author>
<name sortKey="Ahmed, T A" uniqKey="Ahmed T">T.A. Ahmed</name>
</author>
<author>
<name sortKey="El Say, K M" uniqKey="El Say K">K.M. El-Say</name>
</author>
<author>
<name sortKey="Torchilin, V P" uniqKey="Torchilin V">V.P. Torchilin</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Sun, Q" uniqKey="Sun Q">Q. Sun</name>
</author>
<author>
<name sortKey="Ojha, T" uniqKey="Ojha T">T. Ojha</name>
</author>
<author>
<name sortKey="Kiessling, F" uniqKey="Kiessling F">F. Kiessling</name>
</author>
<author>
<name sortKey="Lammers, T" uniqKey="Lammers T">T. Lammers</name>
</author>
<author>
<name sortKey="Yang Shi, Y" uniqKey="Yang Shi Y">Y. Yang Shi</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Zhang, Y R" uniqKey="Zhang Y">Y.R. Zhang</name>
</author>
<author>
<name sortKey="Lin, R" uniqKey="Lin R">R. Lin</name>
</author>
<author>
<name sortKey="Li, H J" uniqKey="Li H">H.J. Li</name>
</author>
<author>
<name sortKey="He, W L" uniqKey="He W">W.L. He</name>
</author>
<author>
<name sortKey="Du, J Z" uniqKey="Du J">J.Z. Du</name>
</author>
<author>
<name sortKey="Wang, J" uniqKey="Wang J">J. Wang</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Han, D" uniqKey="Han D">D. Han</name>
</author>
<author>
<name sortKey="Qi, H" uniqKey="Qi H">H. Qi</name>
</author>
<author>
<name sortKey="Huang, K" uniqKey="Huang K">K. Huang</name>
</author>
<author>
<name sortKey="Li, X" uniqKey="Li X">X. Li</name>
</author>
<author>
<name sortKey="Zhan, Q" uniqKey="Zhan Q">Q. Zhan</name>
</author>
<author>
<name sortKey="Zhao, J" uniqKey="Zhao J">J. Zhao</name>
</author>
<author>
<name sortKey="Xin Hou, X" uniqKey="Xin Hou X">X. Xin Hou</name>
</author>
<author>
<name sortKey="Xianjin Yang, X" uniqKey="Xianjin Yang X">X. Xianjin Yang</name>
</author>
<author>
<name sortKey="Kang, C" uniqKey="Kang C">C. Kang</name>
</author>
<author>
<name sortKey="Yuan, X" uniqKey="Yuan X">X. Yuan</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Stylianopoulos, T" uniqKey="Stylianopoulos T">T. Stylianopoulos</name>
</author>
<author>
<name sortKey="Poh, M" uniqKey="Poh M">M. Poh</name>
</author>
<author>
<name sortKey="Insin, N" uniqKey="Insin N">N. Insin</name>
</author>
<author>
<name sortKey="Bawendi, M G" uniqKey="Bawendi M">M.G. Bawendi</name>
</author>
<author>
<name sortKey="Fukumura, D" uniqKey="Fukumura D">D. Fukumura</name>
</author>
<author>
<name sortKey="Munn, L L" uniqKey="Munn L">L.L. Munn</name>
</author>
<author>
<name sortKey="Jain, R K" uniqKey="Jain R">R.K. Jain</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Wang, Y" uniqKey="Wang Y">Y. Wang</name>
</author>
<author>
<name sortKey="Xie, Y" uniqKey="Xie Y">Y. Xie</name>
</author>
<author>
<name sortKey="Li, J" uniqKey="Li J">J. Li</name>
</author>
<author>
<name sortKey="Peng, Z" uniqKey="Peng Z">Z. Peng</name>
</author>
<author>
<name sortKey="Sheinin, Y" uniqKey="Sheinin Y">Y. Sheinin</name>
</author>
<author>
<name sortKey="Zhou, J" uniqKey="Zhou J">J. Zhou</name>
</author>
<author>
<name sortKey="David Oupick, D" uniqKey="David Oupick D">D. David Oupický</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ding, Y" uniqKey="Ding Y">Y. Ding</name>
</author>
<author>
<name sortKey="Jinjian Liu, J" uniqKey="Jinjian Liu J">J. Jinjian Liu</name>
</author>
<author>
<name sortKey="Zhang, Y" uniqKey="Zhang Y">Y. Zhang</name>
</author>
<author>
<name sortKey="Li, X" uniqKey="Li X">X. Li</name>
</author>
<author>
<name sortKey="Ou, H" uniqKey="Ou H">H. Ou</name>
</author>
<author>
<name sortKey="Cheng, T" uniqKey="Cheng T">T. Cheng</name>
</author>
<author>
<name sortKey="Ma, L" uniqKey="Ma L">L. Ma</name>
</author>
<author>
<name sortKey="An, Y" uniqKey="An Y">Y. An</name>
</author>
<author>
<name sortKey="Liu, J" uniqKey="Liu J">J. Liu</name>
</author>
<author>
<name sortKey="Huang, F" uniqKey="Huang F">F. Huang</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Zhang, C" uniqKey="Zhang C">C. Zhang</name>
</author>
<author>
<name sortKey="Nance, E A" uniqKey="Nance E">E.A. Nance</name>
</author>
<author>
<name sortKey="Mastorakos, P" uniqKey="Mastorakos P">P. Mastorakos</name>
</author>
<author>
<name sortKey="Chisholm, J" uniqKey="Chisholm J">J. Chisholm</name>
</author>
<author>
<name sortKey="Berry, S" uniqKey="Berry S">S. Berry</name>
</author>
<author>
<name sortKey="Eberharth, C" uniqKey="Eberharth C">C. Eberharth</name>
</author>
<author>
<name sortKey="Tyler, B" uniqKey="Tyler B">B. Tyler</name>
</author>
<author>
<name sortKey="Brem, H" uniqKey="Brem H">H. Brem</name>
</author>
<author>
<name sortKey="Suk, J S" uniqKey="Suk J">J.S. Suk</name>
</author>
<author>
<name sortKey="Hanes, J" uniqKey="Hanes J">J. Hanes</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Huang, X" uniqKey="Huang X">X. Huang</name>
</author>
<author>
<name sortKey="Chisholm, J" uniqKey="Chisholm J">J. Chisholm</name>
</author>
<author>
<name sortKey="Zhuang, J" uniqKey="Zhuang J">J. Zhuang</name>
</author>
<author>
<name sortKey="Xiao, Y" uniqKey="Xiao Y">Y. Xiao</name>
</author>
<author>
<name sortKey="Duncan, G" uniqKey="Duncan G">G. Duncan</name>
</author>
<author>
<name sortKey="Chen, X" uniqKey="Chen X">X. Chen</name>
</author>
<author>
<name sortKey="Suk, J S" uniqKey="Suk J">J.S. Suk</name>
</author>
<author>
<name sortKey="Hanes, J" uniqKey="Hanes J">J. Hanes</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Bellini, M" uniqKey="Bellini M">M. Bellini</name>
</author>
<author>
<name sortKey="Mazzucchelli, S" uniqKey="Mazzucchelli S">S. Mazzucchelli</name>
</author>
<author>
<name sortKey="Galbiati, E" uniqKey="Galbiati E">E. Galbiati</name>
</author>
<author>
<name sortKey="Sommaruga, S" uniqKey="Sommaruga S">S. Sommaruga</name>
</author>
<author>
<name sortKey="Fiandra, L" uniqKey="Fiandra L">L. Fiandra</name>
</author>
<author>
<name sortKey="Truffi, M" uniqKey="Truffi M">M. Truffi</name>
</author>
<author>
<name sortKey="Rizzuto, M A" uniqKey="Rizzuto M">M.A. Rizzuto</name>
</author>
<author>
<name sortKey="Colombo, M" uniqKey="Colombo M">M. Colombo</name>
</author>
<author>
<name sortKey="Tortora, P" uniqKey="Tortora P">P. Tortora</name>
</author>
<author>
<name sortKey="Corsi, F" uniqKey="Corsi F">F. Corsi</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Wahilich, J" uniqKey="Wahilich J">J. Wahilich</name>
</author>
<author>
<name sortKey="Desai, A" uniqKey="Desai A">A. Desai</name>
</author>
<author>
<name sortKey="Greco, F" uniqKey="Greco F">F. Greco</name>
</author>
<author>
<name sortKey="Hill, K" uniqKey="Hill K">K. Hill</name>
</author>
<author>
<name sortKey="Jones, A T" uniqKey="Jones A">A.T. Jones</name>
</author>
<author>
<name sortKey="Mrsny, R J" uniqKey="Mrsny R">R.J. Mrsny</name>
</author>
<author>
<name sortKey="Pasut, G" uniqKey="Pasut G">G. Pasut</name>
</author>
<author>
<name sortKey="Perrie, Y" uniqKey="Perrie Y">Y. Perrie</name>
</author>
<author>
<name sortKey="Seib, F P" uniqKey="Seib F">F.P. Seib</name>
</author>
<author>
<name sortKey="Seymour, L W" uniqKey="Seymour L">L.W. Seymour</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Rosenblum, D" uniqKey="Rosenblum D">D. Rosenblum</name>
</author>
<author>
<name sortKey="Joshi, N" uniqKey="Joshi N">N. Joshi</name>
</author>
<author>
<name sortKey="Tao, W" uniqKey="Tao W">W. Tao</name>
</author>
<author>
<name sortKey="Karp, J M" uniqKey="Karp J">J.M. Karp</name>
</author>
<author>
<name sortKey="Peer, D" uniqKey="Peer D">D. Peer</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Du, X" uniqKey="Du X">X. Du</name>
</author>
<author>
<name sortKey="Li, Y" uniqKey="Li Y">Y. Li</name>
</author>
<author>
<name sortKey="Xia, Y L" uniqKey="Xia Y">Y.L. Xia</name>
</author>
<author>
<name sortKey="Ai, S M" uniqKey="Ai S">S.M. Ai</name>
</author>
<author>
<name sortKey="Liang, J" uniqKey="Liang J">J. Liang</name>
</author>
<author>
<name sortKey="Sang, P" uniqKey="Sang P">P. Sang</name>
</author>
<author>
<name sortKey="Ji, X L" uniqKey="Ji X">X.L. Ji</name>
</author>
<author>
<name sortKey="Liu, S Q" uniqKey="Liu S">S.Q. Liu</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Selby, L I" uniqKey="Selby L">L.I. Selby</name>
</author>
<author>
<name sortKey="Cortez Jugo, C M" uniqKey="Cortez Jugo C">C.M. Cortez-Jugo</name>
</author>
<author>
<name sortKey="Such, G K" uniqKey="Such G">G.K. Such</name>
</author>
<author>
<name sortKey="Johnston, A P R" uniqKey="Johnston A">A.P.R. Johnston</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Smith, S A" uniqKey="Smith S">S.A. Smith</name>
</author>
<author>
<name sortKey="Selby, L I" uniqKey="Selby L">L.I. Selby</name>
</author>
<author>
<name sortKey="Johnston, A P R" uniqKey="Johnston A">A.P.R. Johnston</name>
</author>
<author>
<name sortKey="Such, G K" uniqKey="Such G">G.K. Such</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Vermeulen, L M P" uniqKey="Vermeulen L">L.M.P. Vermeulen</name>
</author>
<author>
<name sortKey="Brans, T" uniqKey="Brans T">T. Brans</name>
</author>
<author>
<name sortKey="Samal, S K" uniqKey="Samal S">S.K. Samal</name>
</author>
<author>
<name sortKey="Dubruel, P" uniqKey="Dubruel P">P. Dubruel</name>
</author>
<author>
<name sortKey="Demeester, J" uniqKey="Demeester J">J. Demeester</name>
</author>
<author>
<name sortKey="De Smedt, S C" uniqKey="De Smedt S">S.C. De Smedt</name>
</author>
<author>
<name sortKey="Remaut, K" uniqKey="Remaut K">K. Remaut</name>
</author>
<author>
<name sortKey="Braeckmans, K" uniqKey="Braeckmans K">K. Braeckmans</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Mout, R" uniqKey="Mout R">R. Mout</name>
</author>
<author>
<name sortKey="Ray, M" uniqKey="Ray M">M. Ray</name>
</author>
<author>
<name sortKey="Yesilbag Tonga, G" uniqKey="Yesilbag Tonga G">G. Yesilbag Tonga</name>
</author>
<author>
<name sortKey="Lee, Y W" uniqKey="Lee Y">Y.W. Lee</name>
</author>
<author>
<name sortKey="Tay, T" uniqKey="Tay T">T. Tay</name>
</author>
<author>
<name sortKey="Sasaki, K" uniqKey="Sasaki K">K. Sasaki</name>
</author>
<author>
<name sortKey="Rotello, V M" uniqKey="Rotello V">V.M. Rotello</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Chen, G" uniqKey="Chen G">G. Chen</name>
</author>
<author>
<name sortKey="Abdeen, A A" uniqKey="Abdeen A">A.A. Abdeen</name>
</author>
<author>
<name sortKey="Wang, Y" uniqKey="Wang Y">Y. Wang</name>
</author>
<author>
<name sortKey="Shahi, P K" uniqKey="Shahi P">P.K. Shahi</name>
</author>
<author>
<name sortKey="Robertson, S" uniqKey="Robertson S">S. Robertson</name>
</author>
<author>
<name sortKey="Xie, R" uniqKey="Xie R">R. Xie</name>
</author>
<author>
<name sortKey="Suzuki, M" uniqKey="Suzuki M">M. Suzuki</name>
</author>
<author>
<name sortKey="Pattnaik, B R" uniqKey="Pattnaik B">B.R. Pattnaik</name>
</author>
<author>
<name sortKey="Saha, K" uniqKey="Saha K">K. Saha</name>
</author>
<author>
<name sortKey="Gong, S" uniqKey="Gong S">S. Gong</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Colombo, M" uniqKey="Colombo M">M. Colombo</name>
</author>
<author>
<name sortKey="Fiandra, L" uniqKey="Fiandra L">L. Fiandra</name>
</author>
<author>
<name sortKey="Alessio, G" uniqKey="Alessio G">G. Alessio</name>
</author>
<author>
<name sortKey="Mazzucchelli, S" uniqKey="Mazzucchelli S">S. Mazzucchelli</name>
</author>
<author>
<name sortKey="Nebuloni, M" uniqKey="Nebuloni M">M. Nebuloni</name>
</author>
<author>
<name sortKey="De Palma, C" uniqKey="De Palma C">C. De Palma</name>
</author>
<author>
<name sortKey="Kantner, K" uniqKey="Kantner K">K. Kantner</name>
</author>
<author>
<name sortKey="Pelaz, B" uniqKey="Pelaz B">B. Pelaz</name>
</author>
<author>
<name sortKey="Rotem, R" uniqKey="Rotem R">R. Rotem</name>
</author>
<author>
<name sortKey="Corsi, F" uniqKey="Corsi F">F. Corsi</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Prosperi, D" uniqKey="Prosperi D">D. Prosperi</name>
</author>
<author>
<name sortKey="Colombo, M" uniqKey="Colombo M">M. Colombo</name>
</author>
<author>
<name sortKey="Zanoni, I" uniqKey="Zanoni I">I. Zanoni</name>
</author>
<author>
<name sortKey="Granucci, F" uniqKey="Granucci F">F. Granucci</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Mitragotri, S" uniqKey="Mitragotri S">S. Mitragotri</name>
</author>
<author>
<name sortKey="Burke, P A" uniqKey="Burke P">P.A. Burke</name>
</author>
<author>
<name sortKey="Langer, R" uniqKey="Langer R">R. Langer</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Chen, Z G" uniqKey="Chen Z">Z.G. Chen</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Wu, J" uniqKey="Wu J">J. Wu</name>
</author>
<author>
<name sortKey="Yuan, J" uniqKey="Yuan J">J. Yuan</name>
</author>
<author>
<name sortKey="Ye, B" uniqKey="Ye B">B. Ye</name>
</author>
<author>
<name sortKey="Wu, Y" uniqKey="Wu Y">Y. Wu</name>
</author>
<author>
<name sortKey="Xu, Z" uniqKey="Xu Z">Z. Xu</name>
</author>
<author>
<name sortKey="Chen, J" uniqKey="Chen J">J. Chen</name>
</author>
<author>
<name sortKey="Chen, J" uniqKey="Chen J">J. Chen</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Soloman, R" uniqKey="Soloman R">R. Soloman</name>
</author>
<author>
<name sortKey="Gabizon, A" uniqKey="Gabizon A">A. Gabizon</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Stinchcombe, T E" uniqKey="Stinchcombe T">T.E. Stinchcombe</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Autio, K A" uniqKey="Autio K">K.A. Autio</name>
</author>
<author>
<name sortKey="Dreicer, R" uniqKey="Dreicer R">R. Dreicer</name>
</author>
<author>
<name sortKey="Anderson, J" uniqKey="Anderson J">J. Anderson</name>
</author>
<author>
<name sortKey="Garcia, J A" uniqKey="Garcia J">J.A. Garcia</name>
</author>
<author>
<name sortKey="Alva, A" uniqKey="Alva A">A. Alva</name>
</author>
<author>
<name sortKey="Hart, L L" uniqKey="Hart L">L.L. Hart</name>
</author>
<author>
<name sortKey="Milowsky, M I" uniqKey="Milowsky M">M.I. Milowsky</name>
</author>
<author>
<name sortKey="Posadas, E M" uniqKey="Posadas E">E.M. Posadas</name>
</author>
<author>
<name sortKey="Ryan, C J" uniqKey="Ryan C">C.J. Ryan</name>
</author>
<author>
<name sortKey="Graf, R P" uniqKey="Graf R">R.P. Graf</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Lyon, P C" uniqKey="Lyon P">P.C. Lyon</name>
</author>
<author>
<name sortKey="Griffiths, L F" uniqKey="Griffiths L">L.F. Griffiths</name>
</author>
<author>
<name sortKey="Lee, J" uniqKey="Lee J">J. Lee</name>
</author>
<author>
<name sortKey="Chung, D" uniqKey="Chung D">D. Chung</name>
</author>
<author>
<name sortKey="Carlisle, R" uniqKey="Carlisle R">R. Carlisle</name>
</author>
<author>
<name sortKey="Wu, F" uniqKey="Wu F">F. Wu</name>
</author>
<author>
<name sortKey="Middleton, M R" uniqKey="Middleton M">M.R. Middleton</name>
</author>
<author>
<name sortKey="Gleeson, F V" uniqKey="Gleeson F">F.V. Gleeson</name>
</author>
<author>
<name sortKey="Coussios, C C" uniqKey="Coussios C">C.C. Coussios</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Lammers, T" uniqKey="Lammers T">T. Lammers</name>
</author>
<author>
<name sortKey="Kiessling, F" uniqKey="Kiessling F">F. Kiessling</name>
</author>
<author>
<name sortKey="Hennink, W E" uniqKey="Hennink W">W.E. Hennink</name>
</author>
<author>
<name sortKey="Storm, G" uniqKey="Storm G">G. Storm</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Van Der Meel, R" uniqKey="Van Der Meel R">R. Van Der Meel</name>
</author>
<author>
<name sortKey="Lammers, T" uniqKey="Lammers T">T. Lammers</name>
</author>
<author>
<name sortKey="Hennink, W E" uniqKey="Hennink W">W.E. Hennink</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Hua, S" uniqKey="Hua S">S. Hua</name>
</author>
<author>
<name sortKey="De Matos, M B C" uniqKey="De Matos M">M.B.C. de Matos</name>
</author>
<author>
<name sortKey="Metselaar, J M" uniqKey="Metselaar J">J.M. Metselaar</name>
</author>
<author>
<name sortKey="Storm, G" uniqKey="Storm G">G. Storm</name>
</author>
</analytic>
</biblStruct>
<biblStruct></biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Chen, Y" uniqKey="Chen Y">Y. Chen</name>
</author>
<author>
<name sortKey="Liu, X" uniqKey="Liu X">X. Liu</name>
</author>
<author>
<name sortKey="Yuan, H" uniqKey="Yuan H">H. Yuan</name>
</author>
<author>
<name sortKey="Yang, Z" uniqKey="Yang Z">Z. Yang</name>
</author>
<author>
<name sortKey="Von Roemeling, C A" uniqKey="Von Roemeling C">C.A. von Roemeling</name>
</author>
<author>
<name sortKey="Qie, Y" uniqKey="Qie Y">Y. Qie</name>
</author>
<author>
<name sortKey="Zhao, H" uniqKey="Zhao H">H. Zhao</name>
</author>
<author>
<name sortKey="Wang, Y" uniqKey="Wang Y">Y. Wang</name>
</author>
<author>
<name sortKey="Jiang, W" uniqKey="Jiang W">W. Jiang</name>
</author>
<author>
<name sortKey="Kim, B Y S" uniqKey="Kim B">B.Y.S. Kim</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Fadeel, B" uniqKey="Fadeel B">B. Fadeel</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Reichel, D" uniqKey="Reichel D">D. Reichel</name>
</author>
<author>
<name sortKey="Tripathi, M" uniqKey="Tripathi M">M. Tripathi</name>
</author>
<author>
<name sortKey="Perez, J M" uniqKey="Perez J">J.M. Perez</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Miller, M A" uniqKey="Miller M">M.A. Miller</name>
</author>
<author>
<name sortKey="Zheng, Y R" uniqKey="Zheng Y">Y.R. Zheng</name>
</author>
<author>
<name sortKey="Gadde, S" uniqKey="Gadde S">S. Gadde</name>
</author>
<author>
<name sortKey="Pfirschke, C" uniqKey="Pfirschke C">C. Pfirschke</name>
</author>
<author>
<name sortKey="Zope, H" uniqKey="Zope H">H. Zope</name>
</author>
<author>
<name sortKey="Engblom, C" uniqKey="Engblom C">C. Engblom</name>
</author>
<author>
<name sortKey="Kohler, R H" uniqKey="Kohler R">R.H. Kohler</name>
</author>
<author>
<name sortKey="Iwamoto, Y" uniqKey="Iwamoto Y">Y. Iwamoto</name>
</author>
<author>
<name sortKey="Yang, K S" uniqKey="Yang K">K.S. Yang</name>
</author>
<author>
<name sortKey="Askevold, B" uniqKey="Askevold B">B. Askevold</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Qie, Y" uniqKey="Qie Y">Y. Qie</name>
</author>
<author>
<name sortKey="Yuan, H" uniqKey="Yuan H">H. Yuan</name>
</author>
<author>
<name sortKey="Von Roemeling, C A" uniqKey="Von Roemeling C">C.A. von Roemeling</name>
</author>
<author>
<name sortKey="Chen, Y" uniqKey="Chen Y">Y. Chen</name>
</author>
<author>
<name sortKey="Liu, X" uniqKey="Liu X">X. Liu</name>
</author>
<author>
<name sortKey="Shih, K D" uniqKey="Shih K">K.D. Shih</name>
</author>
<author>
<name sortKey="Knight, J A" uniqKey="Knight J">J.A. Knight</name>
</author>
<author>
<name sortKey="Tun, H W" uniqKey="Tun H">H.W. Tun</name>
</author>
<author>
<name sortKey="Wharen, R E" uniqKey="Wharen R">R.E. Wharen</name>
</author>
<author>
<name sortKey="Jiang, W" uniqKey="Jiang W">W. Jiang</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Zhang, F" uniqKey="Zhang F">F. Zhang</name>
</author>
<author>
<name sortKey="Parayath, N N" uniqKey="Parayath N">N.N. Parayath</name>
</author>
<author>
<name sortKey="Ene, C I" uniqKey="Ene C">C.I. Ene</name>
</author>
<author>
<name sortKey="Stephan, S B" uniqKey="Stephan S">S.B. Stephan</name>
</author>
<author>
<name sortKey="Koehne, A L" uniqKey="Koehne A">A.L. Koehne</name>
</author>
<author>
<name sortKey="Coon, M E" uniqKey="Coon M">M.E. Coon</name>
</author>
<author>
<name sortKey="Holland, E C" uniqKey="Holland E">E.C. Holland</name>
</author>
<author>
<name sortKey="Stephan, M T" uniqKey="Stephan M">M.T. Stephan</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Chen, L" uniqKey="Chen L">L. Chen</name>
</author>
<author>
<name sortKey="Ma, X" uniqKey="Ma X">X. Ma</name>
</author>
<author>
<name sortKey="Dang, M" uniqKey="Dang M">M. Dang</name>
</author>
<author>
<name sortKey="Dong, H" uniqKey="Dong H">H. Dong</name>
</author>
<author>
<name sortKey="Hu, H" uniqKey="Hu H">H. Hu</name>
</author>
<author>
<name sortKey="Su, X" uniqKey="Su X">X. Su</name>
</author>
<author>
<name sortKey="Liu, W" uniqKey="Liu W">W. Liu</name>
</author>
<author>
<name sortKey="Wang, Q" uniqKey="Wang Q">Q. Wang</name>
</author>
<author>
<name sortKey="Mou, Y" uniqKey="Mou Y">Y. Mou</name>
</author>
<author>
<name sortKey="Teng, Z" uniqKey="Teng Z">Z. Teng</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kwon, I K" uniqKey="Kwon I">I.K. Kwon</name>
</author>
<author>
<name sortKey="Lee, S C" uniqKey="Lee S">S.C. Lee</name>
</author>
<author>
<name sortKey="Han, B" uniqKey="Han B">B. Han</name>
</author>
<author>
<name sortKey="Park, K" uniqKey="Park K">K. Park</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Fortuni, B" uniqKey="Fortuni B">B. Fortuni</name>
</author>
<author>
<name sortKey="Inose, T" uniqKey="Inose T">T. Inose</name>
</author>
<author>
<name sortKey="Ricci, M" uniqKey="Ricci M">M. Ricci</name>
</author>
<author>
<name sortKey="Fujita, Y" uniqKey="Fujita Y">Y. Fujita</name>
</author>
<author>
<name sortKey="Van Zundert, I" uniqKey="Van Zundert I">I. Van Zundert</name>
</author>
<author>
<name sortKey="Masuhara, A" uniqKey="Masuhara A">A. Masuhara</name>
</author>
<author>
<name sortKey="Fron, E" uniqKey="Fron E">E. Fron</name>
</author>
<author>
<name sortKey="Mizuno, H" uniqKey="Mizuno H">H. Mizuno</name>
</author>
<author>
<name sortKey="Latterini, L" uniqKey="Latterini L">L. Latterini</name>
</author>
<author>
<name sortKey="Rocha, S" uniqKey="Rocha S">S. Rocha</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Huang, J L" uniqKey="Huang J">J.L. Huang</name>
</author>
<author>
<name sortKey="Chen, H Z" uniqKey="Chen H">H.Z. Chen</name>
</author>
<author>
<name sortKey="Gao, X L" uniqKey="Gao X">X.L. Gao</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Maugeri, M" uniqKey="Maugeri M">M. Maugeri</name>
</author>
<author>
<name sortKey="Nawaz, M" uniqKey="Nawaz M">M. Nawaz</name>
</author>
<author>
<name sortKey="Papadimitriou, A" uniqKey="Papadimitriou A">A. Papadimitriou</name>
</author>
<author>
<name sortKey="Angerfors, A" uniqKey="Angerfors A">A. Angerfors</name>
</author>
<author>
<name sortKey="Camponeschi, A" uniqKey="Camponeschi A">A. Camponeschi</name>
</author>
<author>
<name sortKey="Na, M" uniqKey="Na M">M. Na</name>
</author>
<author>
<name sortKey="Holtt, M" uniqKey="Holtt M">M. Hölttä</name>
</author>
<author>
<name sortKey="Skantze, P" uniqKey="Skantze P">P. Skantze</name>
</author>
<author>
<name sortKey="Johansson, S" uniqKey="Johansson S">S. Johansson</name>
</author>
<author>
<name sortKey="Sundqvist, M" uniqKey="Sundqvist M">M. Sundqvist</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Pandolfi, L" uniqKey="Pandolfi L">L. Pandolfi</name>
</author>
<author>
<name sortKey="Bellini, M" uniqKey="Bellini M">M. Bellini</name>
</author>
<author>
<name sortKey="Vanna, R" uniqKey="Vanna R">R. Vanna</name>
</author>
<author>
<name sortKey="Morasso, C" uniqKey="Morasso C">C. Morasso</name>
</author>
<author>
<name sortKey="Zago, A" uniqKey="Zago A">A. Zago</name>
</author>
<author>
<name sortKey="Carcano, S" uniqKey="Carcano S">S. Carcano</name>
</author>
<author>
<name sortKey="Avvakumova, S" uniqKey="Avvakumova S">S. Avvakumova</name>
</author>
<author>
<name sortKey="Bertolini, J A" uniqKey="Bertolini J">J.A. Bertolini</name>
</author>
<author>
<name sortKey="Rizzuto, M A" uniqKey="Rizzuto M">M.A. Rizzuto</name>
</author>
<author>
<name sortKey="Colombo, M" uniqKey="Colombo M">M. Colombo</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Verderio, P" uniqKey="Verderio P">P. Verderio</name>
</author>
<author>
<name sortKey="Pandolfi, L" uniqKey="Pandolfi L">L. Pandolfi</name>
</author>
<author>
<name sortKey="Mazzucchelli, S" uniqKey="Mazzucchelli S">S. Mazzucchelli</name>
</author>
<author>
<name sortKey="Marinozzi, M R" uniqKey="Marinozzi M">M.R. Marinozzi</name>
</author>
<author>
<name sortKey="Vanna, R" uniqKey="Vanna R">R. Vanna</name>
</author>
<author>
<name sortKey="Gramatica, F" uniqKey="Gramatica F">F. Gramatica</name>
</author>
<author>
<name sortKey="Corsi, F" uniqKey="Corsi F">F. Corsi</name>
</author>
<author>
<name sortKey="Colombo, M" uniqKey="Colombo M">M. Colombo</name>
</author>
<author>
<name sortKey="Morasso, C" uniqKey="Morasso C">C. Morasso</name>
</author>
<author>
<name sortKey="Prosperi, D" uniqKey="Prosperi D">D. Prosperi</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Chu, P Y" uniqKey="Chu P">P.Y. Chu</name>
</author>
<author>
<name sortKey="Tsai, S C" uniqKey="Tsai S">S.C. Tsai</name>
</author>
<author>
<name sortKey="Ko, H Y" uniqKey="Ko H">H.Y. Ko</name>
</author>
<author>
<name sortKey="Wu, C C" uniqKey="Wu C">C.C. Wu</name>
</author>
<author>
<name sortKey="Lin, Y H" uniqKey="Lin Y">Y.H. Lin</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Musazzi, U M" uniqKey="Musazzi U">U.M. Musazzi</name>
</author>
<author>
<name sortKey="Santini, B" uniqKey="Santini B">B. Santini</name>
</author>
<author>
<name sortKey="Selmin, F" uniqKey="Selmin F">F. Selmin</name>
</author>
<author>
<name sortKey="Marini, V" uniqKey="Marini V">V. Marini</name>
</author>
<author>
<name sortKey="Corsi, F" uniqKey="Corsi F">F. Corsi</name>
</author>
<author>
<name sortKey="Allevi, R" uniqKey="Allevi R">R. Allevi</name>
</author>
<author>
<name sortKey="Ferretti, A M" uniqKey="Ferretti A">A.M. Ferretti</name>
</author>
<author>
<name sortKey="Prosperi, D" uniqKey="Prosperi D">D. Prosperi</name>
</author>
<author>
<name sortKey="Cilurzo, F" uniqKey="Cilurzo F">F. Cilurzo</name>
</author>
<author>
<name sortKey="Colombo, M" uniqKey="Colombo M">M. Colombo</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Salvioni, L" uniqKey="Salvioni L">L. Salvioni</name>
</author>
<author>
<name sortKey="Fiandra, L" uniqKey="Fiandra L">L. Fiandra</name>
</author>
<author>
<name sortKey="Del Curto, M D" uniqKey="Del Curto M">M.D. Del Curto</name>
</author>
<author>
<name sortKey="Mazzucchelli, S" uniqKey="Mazzucchelli S">S. Mazzucchelli</name>
</author>
<author>
<name sortKey="Allevi, R" uniqKey="Allevi R">R. Allevi</name>
</author>
<author>
<name sortKey="Truffi, M" uniqKey="Truffi M">M. Truffi</name>
</author>
<author>
<name sortKey="Sorrentino, L" uniqKey="Sorrentino L">L. Sorrentino</name>
</author>
<author>
<name sortKey="Santini, B" uniqKey="Santini B">B. Santini</name>
</author>
<author>
<name sortKey="Cerea, M" uniqKey="Cerea M">M. Cerea</name>
</author>
<author>
<name sortKey="Palugan, L" uniqKey="Palugan L">L. Palugan</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Codullo, V" uniqKey="Codullo V">V. Codullo</name>
</author>
<author>
<name sortKey="Cova, E" uniqKey="Cova E">E. Cova</name>
</author>
<author>
<name sortKey="Pandolfi, L" uniqKey="Pandolfi L">L. Pandolfi</name>
</author>
<author>
<name sortKey="Breda, S" uniqKey="Breda S">S. Breda</name>
</author>
<author>
<name sortKey="Morosini, M" uniqKey="Morosini M">M. Morosini</name>
</author>
<author>
<name sortKey="Frangipane, V" uniqKey="Frangipane V">V. Frangipane</name>
</author>
<author>
<name sortKey="Malatesta, M" uniqKey="Malatesta M">M. Malatesta</name>
</author>
<author>
<name sortKey="Calderan, L" uniqKey="Calderan L">L. Calderan</name>
</author>
<author>
<name sortKey="Cagnone, M" uniqKey="Cagnone M">M. Cagnone</name>
</author>
<author>
<name sortKey="Pacini, C" uniqKey="Pacini C">C. Pacini</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ferreira, L P" uniqKey="Ferreira L">L.P. Ferreira</name>
</author>
<author>
<name sortKey="Gaspar, V M" uniqKey="Gaspar V">V.M. Gaspar</name>
</author>
<author>
<name sortKey="Mano, J F" uniqKey="Mano J">J.F. Mano</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Weeber, F" uniqKey="Weeber F">F. Weeber</name>
</author>
<author>
<name sortKey="Ooft, S N" uniqKey="Ooft S">S.N. Ooft</name>
</author>
<author>
<name sortKey="Dijkstra, K K" uniqKey="Dijkstra K">K.K. Dijkstra</name>
</author>
<author>
<name sortKey="Voest, E E" uniqKey="Voest E">E.E. Voest</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Day, C" uniqKey="Day C">C. Day</name>
</author>
<author>
<name sortKey="Merlino, G" uniqKey="Merlino G">G. Merlino</name>
</author>
<author>
<name sortKey="Van Dyke, T" uniqKey="Van Dyke T">T. Van Dyke</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Vu, B T" uniqKey="Vu B">B.T. Vu</name>
</author>
<author>
<name sortKey="Shahin, S A" uniqKey="Shahin S">S.A. Shahin</name>
</author>
<author>
<name sortKey="Croissant, J" uniqKey="Croissant J">J. Croissant</name>
</author>
<author>
<name sortKey="Fatieiev, Y" uniqKey="Fatieiev Y">Y. Fatieiev</name>
</author>
<author>
<name sortKey="Matsumoto, K" uniqKey="Matsumoto K">K. Matsumoto</name>
</author>
<author>
<name sortKey="Le Hoang Doan, T" uniqKey="Le Hoang Doan T">T. Le-Hoang Doan</name>
</author>
<author>
<name sortKey="Yik, T" uniqKey="Yik T">T. Yik</name>
</author>
<author>
<name sortKey="Simargi, S" uniqKey="Simargi S">S. Simargi</name>
</author>
<author>
<name sortKey="Conteras, A" uniqKey="Conteras A">A. Conteras</name>
</author>
<author>
<name sortKey="Ratliff, L" uniqKey="Ratliff L">L. Ratliff</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Faria, M" uniqKey="Faria M">M. Faria</name>
</author>
<author>
<name sortKey="Bjornmalm, M" uniqKey="Bjornmalm M">M. Björnmalm</name>
</author>
<author>
<name sortKey="Thurecht, K J" uniqKey="Thurecht K">K.J. Thurecht</name>
</author>
<author>
<name sortKey="Kent, S J" uniqKey="Kent S">S.J. Kent</name>
</author>
<author>
<name sortKey="Parton, R G" uniqKey="Parton R">R.G. Parton</name>
</author>
<author>
<name sortKey="Kavallaris, M" uniqKey="Kavallaris M">M. Kavallaris</name>
</author>
<author>
<name sortKey="Johnston, A P R" uniqKey="Johnston A">A.P.R. Johnston</name>
</author>
<author>
<name sortKey="Gooding, J J" uniqKey="Gooding J">J.J. Gooding</name>
</author>
<author>
<name sortKey="Corrie, S R" uniqKey="Corrie S">S.R. Corrie</name>
</author>
<author>
<name sortKey="Boyd, B J" uniqKey="Boyd B">B.J. Boyd</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Leong, H S" uniqKey="Leong H">H.S. Leong</name>
</author>
<author>
<name sortKey="Butler, K S" uniqKey="Butler K">K.S. Butler</name>
</author>
<author>
<name sortKey="Brinker, C J" uniqKey="Brinker C">C.J. Brinker</name>
</author>
<author>
<name sortKey="Azzawi, M" uniqKey="Azzawi M">M. Azzawi</name>
</author>
<author>
<name sortKey="Conlan, S" uniqKey="Conlan S">S. Conlan</name>
</author>
<author>
<name sortKey="Dufes, C" uniqKey="Dufes C">C. Dufés</name>
</author>
<author>
<name sortKey="Owen, A" uniqKey="Owen A">A. Owen</name>
</author>
<author>
<name sortKey="Rannard, S" uniqKey="Rannard S">S. Rannard</name>
</author>
<author>
<name sortKey="Scott, C" uniqKey="Scott C">C. Scott</name>
</author>
<author>
<name sortKey="Chen, C" uniqKey="Chen C">C. Chen</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Zhang, B" uniqKey="Zhang B">B. Zhang</name>
</author>
<author>
<name sortKey="Hu, Y" uniqKey="Hu Y">Y. Hu</name>
</author>
<author>
<name sortKey="Pang, Z" uniqKey="Pang Z">Z. Pang</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Chauhan, V P" uniqKey="Chauhan V">V.P. Chauhan</name>
</author>
<author>
<name sortKey="Jain, R K" uniqKey="Jain R">R.K. Jain</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Khawar, I A" uniqKey="Khawar I">I.A. Khawar</name>
</author>
<author>
<name sortKey="Kim, J H" uniqKey="Kim J">J.H. Kim</name>
</author>
<author>
<name sortKey="Kuh, H J" uniqKey="Kuh H">H.J. Kuh</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Chauhan, V P" uniqKey="Chauhan V">V.P. Chauhan</name>
</author>
<author>
<name sortKey="Stylianopoulos, T" uniqKey="Stylianopoulos T">T. Stylianopoulos</name>
</author>
<author>
<name sortKey="Martin, J D" uniqKey="Martin J">J.D. Martin</name>
</author>
<author>
<name sortKey="Popovi, Z" uniqKey="Popovi Z">Z. Popović</name>
</author>
<author>
<name sortKey="Chen, O" uniqKey="Chen O">O. Chen</name>
</author>
<author>
<name sortKey="Kamoun, W S" uniqKey="Kamoun W">W.S. Kamoun</name>
</author>
<author>
<name sortKey="Bawendi, M G" uniqKey="Bawendi M">M.G. Bawendi</name>
</author>
<author>
<name sortKey="Fukumura, D" uniqKey="Fukumura D">D. Fukumura</name>
</author>
<author>
<name sortKey="Jain, R K" uniqKey="Jain R">R.K. Jain</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Zhang, B" uniqKey="Zhang B">B. Zhang</name>
</author>
<author>
<name sortKey="Shi, W" uniqKey="Shi W">W. Shi</name>
</author>
<author>
<name sortKey="Jiang, T" uniqKey="Jiang T">T. Jiang</name>
</author>
<author>
<name sortKey="Wang, L" uniqKey="Wang L">L. Wang</name>
</author>
<author>
<name sortKey="Mei, H" uniqKey="Mei H">H. Mei</name>
</author>
<author>
<name sortKey="Lu, H" uniqKey="Lu H">H. Lu</name>
</author>
<author>
<name sortKey="Hu, Y" uniqKey="Hu Y">Y. Hu</name>
</author>
<author>
<name sortKey="Pang, Z" uniqKey="Pang Z">Z. Pang</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Stylianopoulos, T" uniqKey="Stylianopoulos T">T. Stylianopoulos</name>
</author>
<author>
<name sortKey="Martin, J D" uniqKey="Martin J">J.D. Martin</name>
</author>
<author>
<name sortKey="Chauhan, V P" uniqKey="Chauhan V">V.P. Chauhan</name>
</author>
<author>
<name sortKey="Jain, S R" uniqKey="Jain S">S.R. Jain</name>
</author>
<author>
<name sortKey="Diop Frimpong, B" uniqKey="Diop Frimpong B">B. Diop-Frimpong</name>
</author>
<author>
<name sortKey="Bardeesy, N" uniqKey="Bardeesy N">N. Bardeesy</name>
</author>
<author>
<name sortKey="Smith, B L" uniqKey="Smith B">B.L. Smith</name>
</author>
<author>
<name sortKey="Ferrone, C R" uniqKey="Ferrone C">C.R. Ferrone</name>
</author>
<author>
<name sortKey="Hornicek, F J" uniqKey="Hornicek F">F.J. Hornicek</name>
</author>
<author>
<name sortKey="Boucher, Y" uniqKey="Boucher Y">Y. Boucher</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Lu, D" uniqKey="Lu D">D. Lu</name>
</author>
<author>
<name sortKey="Wientjes, M G" uniqKey="Wientjes M">M.G. Wientjes</name>
</author>
<author>
<name sortKey="Lu, Z" uniqKey="Lu Z">Z. Lu</name>
</author>
<author>
<name sortKey="Au, J L" uniqKey="Au J">J.L. Au</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Yu, Q" uniqKey="Yu Q">Q. Yu</name>
</author>
<author>
<name sortKey="Qiu, Y" uniqKey="Qiu Y">Y. Qiu</name>
</author>
<author>
<name sortKey="Chen, X" uniqKey="Chen X">X. Chen</name>
</author>
<author>
<name sortKey="Wang, X" uniqKey="Wang X">X. Wang</name>
</author>
<author>
<name sortKey="Mei, L" uniqKey="Mei L">L. Mei</name>
</author>
<author>
<name sortKey="Wu, H" uniqKey="Wu H">H. Wu</name>
</author>
<author>
<name sortKey="Liu, K" uniqKey="Liu K">K. Liu</name>
</author>
<author>
<name sortKey="Liu, Y" uniqKey="Liu Y">Y. Liu</name>
</author>
<author>
<name sortKey="Li, M" uniqKey="Li M">M. Li</name>
</author>
<author>
<name sortKey="Zhang, Z" uniqKey="Zhang Z">Z. Zhang</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Wang, J" uniqKey="Wang J">J. Wang</name>
</author>
<author>
<name sortKey="Lu, Z" uniqKey="Lu Z">Z. Lu</name>
</author>
<author>
<name sortKey="Wang, J" uniqKey="Wang J">J. Wang</name>
</author>
<author>
<name sortKey="Cui, M" uniqKey="Cui M">M. Cui</name>
</author>
<author>
<name sortKey="Yeung, B Z" uniqKey="Yeung B">B.Z. Yeung</name>
</author>
<author>
<name sortKey="Cole, D J" uniqKey="Cole D">D.J. Cole</name>
</author>
<author>
<name sortKey="Wientjes, M G" uniqKey="Wientjes M">M.G. Wientjes</name>
</author>
<author>
<name sortKey="Au, J L" uniqKey="Au J">J.L. Au</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Zinger, A" uniqKey="Zinger A">A. Zinger</name>
</author>
<author>
<name sortKey="Koren, L" uniqKey="Koren L">L. Koren</name>
</author>
<author>
<name sortKey="Adir, O" uniqKey="Adir O">O. Adir</name>
</author>
<author>
<name sortKey="Poley, M" uniqKey="Poley M">M. Poley</name>
</author>
<author>
<name sortKey="Alyan, M" uniqKey="Alyan M">M. Alyan</name>
</author>
<author>
<name sortKey="Yaari, Z" uniqKey="Yaari Z">Z. Yaari</name>
</author>
<author>
<name sortKey="Noor, N" uniqKey="Noor N">N. Noor</name>
</author>
<author>
<name sortKey="Krinsky, N" uniqKey="Krinsky N">N. Krinsky</name>
</author>
<author>
<name sortKey="Simon, A" uniqKey="Simon A">A. Simon</name>
</author>
<author>
<name sortKey="Gibori, H" uniqKey="Gibori H">H. Gibori</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Mardhian, D F" uniqKey="Mardhian D">D.F. Mardhian</name>
</author>
<author>
<name sortKey="Storm, G" uniqKey="Storm G">G. Storm</name>
</author>
<author>
<name sortKey="Bansal, R" uniqKey="Bansal R">R. Bansal</name>
</author>
<author>
<name sortKey="Prakash, J" uniqKey="Prakash J">J. Prakash</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Wong, K M" uniqKey="Wong K">K.M. Wong</name>
</author>
<author>
<name sortKey="Horton, K J" uniqKey="Horton K">K.J. Horton</name>
</author>
<author>
<name sortKey="Coveler, A L" uniqKey="Coveler A">A.L. Coveler</name>
</author>
<author>
<name sortKey="Hingorani, S R" uniqKey="Hingorani S">S.R. Hingorani</name>
</author>
<author>
<name sortKey="Harris, W P" uniqKey="Harris W">W.P. Harris</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Zhang, B" uniqKey="Zhang B">B. Zhang</name>
</author>
<author>
<name sortKey="Jin, K" uniqKey="Jin K">K. Jin</name>
</author>
<author>
<name sortKey="Jiang, T" uniqKey="Jiang T">T. Jiang</name>
</author>
<author>
<name sortKey="Wang, L" uniqKey="Wang L">L. Wang</name>
</author>
<author>
<name sortKey="Shen, S" uniqKey="Shen S">S. Shen</name>
</author>
<author>
<name sortKey="Luo, Z" uniqKey="Luo Z">Z. Luo</name>
</author>
<author>
<name sortKey="Tuo, Y" uniqKey="Tuo Y">Y. Tuo</name>
</author>
<author>
<name sortKey="Liu, X" uniqKey="Liu X">X. Liu</name>
</author>
<author>
<name sortKey="Hu, Y" uniqKey="Hu Y">Y. Hu</name>
</author>
<author>
<name sortKey="Pang, Z" uniqKey="Pang Z">Z. Pang</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Diagaradjane, P" uniqKey="Diagaradjane P">P. Diagaradjane</name>
</author>
<author>
<name sortKey="Deorukhkar, A" uniqKey="Deorukhkar A">A. Deorukhkar</name>
</author>
<author>
<name sortKey="Gelovani, J G" uniqKey="Gelovani J">J.G. Gelovani</name>
</author>
<author>
<name sortKey="Maru, D M" uniqKey="Maru D">D.M. Maru</name>
</author>
<author>
<name sortKey="Krishnan, S" uniqKey="Krishnan S">S. Krishnan</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Liu, T" uniqKey="Liu T">T. Liu</name>
</author>
<author>
<name sortKey="Choi, H" uniqKey="Choi H">H. Choi</name>
</author>
<author>
<name sortKey="Zhou, R" uniqKey="Zhou R">R. Zhou</name>
</author>
<author>
<name sortKey="Chen, I W" uniqKey="Chen I">I.W. Chen</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Wolfram, J" uniqKey="Wolfram J">J. Wolfram</name>
</author>
<author>
<name sortKey="Nizzero, S" uniqKey="Nizzero S">S. Nizzero</name>
</author>
<author>
<name sortKey="Liu, H" uniqKey="Liu H">H. Liu</name>
</author>
<author>
<name sortKey="Li, F" uniqKey="Li F">F. Li</name>
</author>
<author>
<name sortKey="Zhang, G" uniqKey="Zhang G">G. Zhang</name>
</author>
<author>
<name sortKey="Li, Z" uniqKey="Li Z">Z. Li</name>
</author>
<author>
<name sortKey="Shen, H" uniqKey="Shen H">H. Shen</name>
</author>
<author>
<name sortKey="Blanco, E" uniqKey="Blanco E">E. Blanco</name>
</author>
<author>
<name sortKey="Ferrari, M" uniqKey="Ferrari M">M. Ferrari</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Wu, W" uniqKey="Wu W">W. Wu</name>
</author>
<author>
<name sortKey="Luo, L" uniqKey="Luo L">L. Luo</name>
</author>
<author>
<name sortKey="Wang, Y" uniqKey="Wang Y">Y. Wang</name>
</author>
<author>
<name sortKey="Wu, Q" uniqKey="Wu Q">Q. Wu</name>
</author>
<author>
<name sortKey="Dai, H B" uniqKey="Dai H">H.B. Dai</name>
</author>
<author>
<name sortKey="Li, J S" uniqKey="Li J">J.S. Li</name>
</author>
<author>
<name sortKey="Durkan, C" uniqKey="Durkan C">C. Durkan</name>
</author>
<author>
<name sortKey="Wang, N" uniqKey="Wang N">N. Wang</name>
</author>
<author>
<name sortKey="Wang, G X" uniqKey="Wang G">G.X. Wang</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kulkarni, P" uniqKey="Kulkarni P">P. Kulkarni</name>
</author>
<author>
<name sortKey="Haldar, M K" uniqKey="Haldar M">M.K. Haldar</name>
</author>
<author>
<name sortKey="You, S" uniqKey="You S">S. You</name>
</author>
<author>
<name sortKey="Choi, Y" uniqKey="Choi Y">Y. Choi</name>
</author>
<author>
<name sortKey="Mallik, S" uniqKey="Mallik S">S. Mallik</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ahmad, Z" uniqKey="Ahmad Z">Z. Ahmad</name>
</author>
<author>
<name sortKey="Lv, S" uniqKey="Lv S">S. Lv</name>
</author>
<author>
<name sortKey="Tang, Z" uniqKey="Tang Z">Z. Tang</name>
</author>
<author>
<name sortKey="Shah, A" uniqKey="Shah A">A. Shah</name>
</author>
<author>
<name sortKey="Chen, X" uniqKey="Chen X">X. Chen</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Cathcart, J" uniqKey="Cathcart J">J. Cathcart</name>
</author>
<author>
<name sortKey="Pulkoski Gross, A" uniqKey="Pulkoski Gross A">A. Pulkoski-Gross</name>
</author>
<author>
<name sortKey="Cao, J" uniqKey="Cao J">J. Cao</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Mura, S" uniqKey="Mura S">S. Mura</name>
</author>
<author>
<name sortKey="Nicolas, J" uniqKey="Nicolas J">J. Nicolas</name>
</author>
<author>
<name sortKey="Couvreur, P" uniqKey="Couvreur P">P. Couvreur</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Wu, M" uniqKey="Wu M">M. Wu</name>
</author>
<author>
<name sortKey="Huang, S" uniqKey="Huang S">S. Huang</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Jiang, J" uniqKey="Jiang J">J. Jiang</name>
</author>
<author>
<name sortKey="Tong, X" uniqKey="Tong X">X. Tong</name>
</author>
<author>
<name sortKey="Morris, D" uniqKey="Morris D">D. Morris</name>
</author>
<author>
<name sortKey="Zhao, Y" uniqKey="Zhao Y">Y. Zhao</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Rapoport, N Y" uniqKey="Rapoport N">N.Y. Rapoport</name>
</author>
<author>
<name sortKey="Kennedy, A M" uniqKey="Kennedy A">A.M. Kennedy</name>
</author>
<author>
<name sortKey="Shea, J E" uniqKey="Shea J">J.E. Shea</name>
</author>
<author>
<name sortKey="Scaife, C L" uniqKey="Scaife C">C.L. Scaife</name>
</author>
<author>
<name sortKey="Nam, K H" uniqKey="Nam K">K.H. Nam</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kim, J" uniqKey="Kim J">J. Kim</name>
</author>
<author>
<name sortKey="Jo, C" uniqKey="Jo C">C. Jo</name>
</author>
<author>
<name sortKey="Lim, W G" uniqKey="Lim W">W.G. Lim</name>
</author>
<author>
<name sortKey="Jung, S" uniqKey="Jung S">S. Jung</name>
</author>
<author>
<name sortKey="Lee, Y M" uniqKey="Lee Y">Y.M. Lee</name>
</author>
<author>
<name sortKey="Lim, J" uniqKey="Lim J">J. Lim</name>
</author>
<author>
<name sortKey="Lee, H" uniqKey="Lee H">H. Lee</name>
</author>
<author>
<name sortKey="Lee, J" uniqKey="Lee J">J. Lee</name>
</author>
<author>
<name sortKey="Kim, W J" uniqKey="Kim W">W.J. Kim</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Li, H J" uniqKey="Li H">H.J. Li</name>
</author>
<author>
<name sortKey="Du, J Z" uniqKey="Du J">J.Z. Du</name>
</author>
<author>
<name sortKey="Liu, J" uniqKey="Liu J">J. Liu</name>
</author>
<author>
<name sortKey="Du, X J" uniqKey="Du X">X.J. Du</name>
</author>
<author>
<name sortKey="Shen, S" uniqKey="Shen S">S. Shen</name>
</author>
<author>
<name sortKey="Zhu, Y H" uniqKey="Zhu Y">Y.H. Zhu</name>
</author>
<author>
<name sortKey="Wang, X" uniqKey="Wang X">X. Wang</name>
</author>
<author>
<name sortKey="Ye, X" uniqKey="Ye X">X. Ye</name>
</author>
<author>
<name sortKey="Nie, S" uniqKey="Nie S">S. Nie</name>
</author>
<author>
<name sortKey="Wang, J" uniqKey="Wang J">J. Wang</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Zhu, L" uniqKey="Zhu L">L. Zhu</name>
</author>
<author>
<name sortKey="Wang, T" uniqKey="Wang T">T. Wang</name>
</author>
<author>
<name sortKey="Perche, F" uniqKey="Perche F">F. Perche</name>
</author>
<author>
<name sortKey="Taigind, A" uniqKey="Taigind A">A. Taigind</name>
</author>
<author>
<name sortKey="Torchilin, V P" uniqKey="Torchilin V">V.P. Torchilin</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Xu, X" uniqKey="Xu X">X. Xu</name>
</author>
<author>
<name sortKey="Saw, P E" uniqKey="Saw P">P.E. Saw</name>
</author>
<author>
<name sortKey="Tao, W" uniqKey="Tao W">W. Tao</name>
</author>
<author>
<name sortKey="Li, Y" uniqKey="Li Y">Y. Li</name>
</author>
<author>
<name sortKey="Ji, X" uniqKey="Ji X">X. Ji</name>
</author>
<author>
<name sortKey="Yu, M" uniqKey="Yu M">M. Yu</name>
</author>
<author>
<name sortKey="Mahmoudi, M" uniqKey="Mahmoudi M">M. Mahmoudi</name>
</author>
<author>
<name sortKey="Rasmussen, J" uniqKey="Rasmussen J">J. Rasmussen</name>
</author>
<author>
<name sortKey="Ayyash, D" uniqKey="Ayyash D">D. Ayyash</name>
</author>
<author>
<name sortKey="Zhou, Y" uniqKey="Zhou Y">Y. Zhou</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Li, L" uniqKey="Li L">L. Li</name>
</author>
<author>
<name sortKey="Sun, W" uniqKey="Sun W">W. Sun</name>
</author>
<author>
<name sortKey="Zhong, J" uniqKey="Zhong J">J. Zhong</name>
</author>
<author>
<name sortKey="Yang, Q" uniqKey="Yang Q">Q. Yang</name>
</author>
<author>
<name sortKey="Zhu, X" uniqKey="Zhu X">X. Zhu</name>
</author>
<author>
<name sortKey="Zhou, Z" uniqKey="Zhou Z">Z. Zhou</name>
</author>
<author>
<name sortKey="Zhang, Z" uniqKey="Zhang Z">Z. Zhang</name>
</author>
<author>
<name sortKey="Huang, Y" uniqKey="Huang Y">Y. Huang</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Li, B" uniqKey="Li B">B. Li</name>
</author>
<author>
<name sortKey="Wang, F" uniqKey="Wang F">F. Wang</name>
</author>
<author>
<name sortKey="Gui, L" uniqKey="Gui L">L. Gui</name>
</author>
<author>
<name sortKey="He, Q" uniqKey="He Q">Q. He</name>
</author>
<author>
<name sortKey="Yao, Y" uniqKey="Yao Y">Y. Yao</name>
</author>
<author>
<name sortKey="Chen, H" uniqKey="Chen H">H. Chen</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Mazzucchelli, S" uniqKey="Mazzucchelli S">S. Mazzucchelli</name>
</author>
<author>
<name sortKey="Bellini, M" uniqKey="Bellini M">M. Bellini</name>
</author>
<author>
<name sortKey="Fiandra, L" uniqKey="Fiandra L">L. Fiandra</name>
</author>
<author>
<name sortKey="Truffi, M" uniqKey="Truffi M">M. Truffi</name>
</author>
<author>
<name sortKey="Rizzuto, M A" uniqKey="Rizzuto M">M.A. Rizzuto</name>
</author>
<author>
<name sortKey="Sorrentino, L" uniqKey="Sorrentino L">L. Sorrentino</name>
</author>
<author>
<name sortKey="Longhi, E" uniqKey="Longhi E">E. Longhi</name>
</author>
<author>
<name sortKey="Nebuloni, M" uniqKey="Nebuloni M">M. Nebuloni</name>
</author>
<author>
<name sortKey="Prosperi, D" uniqKey="Prosperi D">D. Prosperi</name>
</author>
<author>
<name sortKey="Corsi, F" uniqKey="Corsi F">F. Corsi</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Martinez, J O" uniqKey="Martinez J">J.O. Martinez</name>
</author>
<author>
<name sortKey="Molinaro, R" uniqKey="Molinaro R">R. Molinaro</name>
</author>
<author>
<name sortKey="Hartman, K A" uniqKey="Hartman K">K.A. Hartman</name>
</author>
<author>
<name sortKey="Boada, C" uniqKey="Boada C">C. Boada</name>
</author>
<author>
<name sortKey="Sukhovershin, R" uniqKey="Sukhovershin R">R. Sukhovershin</name>
</author>
<author>
<name sortKey="De Rosa, E" uniqKey="De Rosa E">E. De Rosa</name>
</author>
<author>
<name sortKey="Kirui, D" uniqKey="Kirui D">D. Kirui</name>
</author>
<author>
<name sortKey="Zhang, S" uniqKey="Zhang S">S. Zhang</name>
</author>
<author>
<name sortKey="Evangelopoulos, M" uniqKey="Evangelopoulos M">M. Evangelopoulos</name>
</author>
<author>
<name sortKey="Carter, A M" uniqKey="Carter A">A.M. Carter</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Abdelaziz, H M" uniqKey="Abdelaziz H">H.M. Abdelaziz</name>
</author>
<author>
<name sortKey="Gaber, M" uniqKey="Gaber M">M. Gaber</name>
</author>
<author>
<name sortKey="Abd Elwakil, M M" uniqKey="Abd Elwakil M">M.M. Abd-Elwakil</name>
</author>
<author>
<name sortKey="Mabrouk, M T" uniqKey="Mabrouk M">M.T. Mabrouk</name>
</author>
<author>
<name sortKey="Elgohary, M M" uniqKey="Elgohary M">M.M. Elgohary</name>
</author>
<author>
<name sortKey="Kamel, N M" uniqKey="Kamel N">N.M. Kamel</name>
</author>
<author>
<name sortKey="Kabary, D M" uniqKey="Kabary D">D.M. Kabary</name>
</author>
<author>
<name sortKey="Freag, M S" uniqKey="Freag M">M.S. Freag</name>
</author>
<author>
<name sortKey="Samaha, M W" uniqKey="Samaha M">M.W. Samaha</name>
</author>
<author>
<name sortKey="Mortada, S M" uniqKey="Mortada S">S.M. Mortada</name>
</author>
</analytic>
</biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Sekerdag, E" uniqKey="Sekerdag E">E. Sekerdag</name>
</author>
<author>
<name sortKey="Lule, S" uniqKey="Lule S">S. Lüle</name>
</author>
<author>
<name sortKey="Bozda Pehlivan, S" uniqKey="Bozda Pehlivan S">S. Bozdağ Pehlivan</name>
</author>
<author>
<name sortKey="Ozturk, N" uniqKey="Ozturk N">N. Öztürk</name>
</author>
<author>
<name sortKey="Kara, A" uniqKey="Kara A">A. Kara</name>
</author>
<author>
<name sortKey="Kaffashi, A" uniqKey="Kaffashi A">A. Kaffashi</name>
</author>
<author>
<name sortKey="Vural, I" uniqKey="Vural I">I. Vural</name>
</author>
<author>
<name sortKey="I Kay, I" uniqKey="I Kay I">I. Işıkay</name>
</author>
<author>
<name sortKey="Yavuz, B" uniqKey="Yavuz B">B. Yavuz</name>
</author>
<author>
<name sortKey="Oguz, K K" uniqKey="Oguz K">K.K. Oguz</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Chu, L" uniqKey="Chu L">L. Chu</name>
</author>
<author>
<name sortKey="Wang, A" uniqKey="Wang A">A. Wang</name>
</author>
<author>
<name sortKey="Ni, L" uniqKey="Ni L">L. Ni</name>
</author>
<author>
<name sortKey="Yan, X" uniqKey="Yan X">X. Yan</name>
</author>
<author>
<name sortKey="Song, Y" uniqKey="Song Y">Y. Song</name>
</author>
<author>
<name sortKey="Zhao, M" uniqKey="Zhao M">M. Zhao</name>
</author>
<author>
<name sortKey="Sun, K" uniqKey="Sun K">K. Sun</name>
</author>
<author>
<name sortKey="Mu, H" uniqKey="Mu H">H. Mu</name>
</author>
<author>
<name sortKey="Liu, S" uniqKey="Liu S">S. Liu</name>
</author>
<author>
<name sortKey="Wu, Z" uniqKey="Wu Z">Z. Wu</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Parayath, N N" uniqKey="Parayath N">N.N. Parayath</name>
</author>
<author>
<name sortKey="Parikh, A" uniqKey="Parikh A">A. Parikh</name>
</author>
<author>
<name sortKey="Amiji, M M" uniqKey="Amiji M">M.M. Amiji</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Jang, Y" uniqKey="Jang Y">Y. Jang</name>
</author>
<author>
<name sortKey="Chung, H J" uniqKey="Chung H">H.J. Chung</name>
</author>
<author>
<name sortKey="Hong, J W" uniqKey="Hong J">J.W. Hong</name>
</author>
<author>
<name sortKey="Yun, C W" uniqKey="Yun C">C.W. Yun</name>
</author>
<author>
<name sortKey="Chung, H" uniqKey="Chung H">H. Chung</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Song, W" uniqKey="Song W">W. Song</name>
</author>
<author>
<name sortKey="Musetti, S N" uniqKey="Musetti S">S.N. Musetti</name>
</author>
<author>
<name sortKey="Huang, L" uniqKey="Huang L">L. Huang</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Musetti, S" uniqKey="Musetti S">S. Musetti</name>
</author>
<author>
<name sortKey="Huang, L" uniqKey="Huang L">L. Huang</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Huai, Y" uniqKey="Huai Y">Y. Huai</name>
</author>
<author>
<name sortKey="Hossen, M N" uniqKey="Hossen M">M.N. Hossen</name>
</author>
<author>
<name sortKey="Wilhelm, S" uniqKey="Wilhelm S">S. Wilhelm</name>
</author>
<author>
<name sortKey="Bhattacharya, R" uniqKey="Bhattacharya R">R. Bhattacharya</name>
</author>
<author>
<name sortKey="Mukherjee, P" uniqKey="Mukherjee P">P. Mukherjee</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Zhang, M" uniqKey="Zhang M">M. Zhang</name>
</author>
<author>
<name sortKey="He, Y" uniqKey="He Y">Y. He</name>
</author>
<author>
<name sortKey="Sun, X" uniqKey="Sun X">X. Sun</name>
</author>
<author>
<name sortKey="Li, Q" uniqKey="Li Q">Q. Li</name>
</author>
<author>
<name sortKey="Wang, W" uniqKey="Wang W">W. Wang</name>
</author>
<author>
<name sortKey="Zhao, A" uniqKey="Zhao A">A. Zhao</name>
</author>
<author>
<name sortKey="Di, W" uniqKey="Di W">W. Di</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Song, M" uniqKey="Song M">M. Song</name>
</author>
<author>
<name sortKey="Liu, T" uniqKey="Liu T">T. Liu</name>
</author>
<author>
<name sortKey="Shi, C" uniqKey="Shi C">C. Shi</name>
</author>
<author>
<name sortKey="Zhang, X" uniqKey="Zhang X">X. Zhang</name>
</author>
<author>
<name sortKey="Chen, X" uniqKey="Chen X">X. Chen</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Zhu, S" uniqKey="Zhu S">S. Zhu</name>
</author>
<author>
<name sortKey="Niu, M" uniqKey="Niu M">M. Niu</name>
</author>
<author>
<name sortKey="O Ary, H" uniqKey="O Ary H">H. O’Mary</name>
</author>
<author>
<name sortKey="Cui, Z" uniqKey="Cui Z">Z. Cui</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kong, M" uniqKey="Kong M">M. Kong</name>
</author>
<author>
<name sortKey="Tang, J" uniqKey="Tang J">J. Tang</name>
</author>
<author>
<name sortKey="Qiao, Q" uniqKey="Qiao Q">Q. Qiao</name>
</author>
<author>
<name sortKey="Wu, T" uniqKey="Wu T">T. Wu</name>
</author>
<author>
<name sortKey="Qi, Y" uniqKey="Qi Y">Y. Qi</name>
</author>
<author>
<name sortKey="Tan, S" uniqKey="Tan S">S. Tan</name>
</author>
<author>
<name sortKey="Gao, X" uniqKey="Gao X">X. Gao</name>
</author>
<author>
<name sortKey="Zhang, Z" uniqKey="Zhang Z">Z. Zhang</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kourtis, I C" uniqKey="Kourtis I">I.C. Kourtis</name>
</author>
<author>
<name sortKey="Hirosue, S" uniqKey="Hirosue S">S. Hirosue</name>
</author>
<author>
<name sortKey="De Titta, A" uniqKey="De Titta A">A. de Titta</name>
</author>
<author>
<name sortKey="Kontos, S" uniqKey="Kontos S">S. Kontos</name>
</author>
<author>
<name sortKey="Stegmann, T" uniqKey="Stegmann T">T. Stegmann</name>
</author>
<author>
<name sortKey="Hubbell, J A" uniqKey="Hubbell J">J.A. Hubbell</name>
</author>
<author>
<name sortKey="Swartz, M A" uniqKey="Swartz M">M.A. Swartz</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Sasso, M S" uniqKey="Sasso M">M.S. Sasso</name>
</author>
<author>
<name sortKey="Lollo, G" uniqKey="Lollo G">G. Lollo</name>
</author>
<author>
<name sortKey="Pitorre, M" uniqKey="Pitorre M">M. Pitorre</name>
</author>
<author>
<name sortKey="Solito, S" uniqKey="Solito S">S. Solito</name>
</author>
<author>
<name sortKey="Pinton, L" uniqKey="Pinton L">L. Pinton</name>
</author>
<author>
<name sortKey="Valpione, S" uniqKey="Valpione S">S. Valpione</name>
</author>
<author>
<name sortKey="Bastiat, G" uniqKey="Bastiat G">G. Bastiat</name>
</author>
<author>
<name sortKey="Mandruzzato, S" uniqKey="Mandruzzato S">S. Mandruzzato</name>
</author>
<author>
<name sortKey="Bronte, V" uniqKey="Bronte V">V. Bronte</name>
</author>
<author>
<name sortKey="Marigo, I" uniqKey="Marigo I">I. Marigo</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ou, W" uniqKey="Ou W">W. Ou</name>
</author>
<author>
<name sortKey="Jiang, L" uniqKey="Jiang L">L. Jiang</name>
</author>
<author>
<name sortKey="Thapa, R K" uniqKey="Thapa R">R.K. Thapa</name>
</author>
<author>
<name sortKey="Soe, Z C" uniqKey="Soe Z">Z.C. Soe</name>
</author>
<author>
<name sortKey="Poudel, K" uniqKey="Poudel K">K. Poudel</name>
</author>
<author>
<name sortKey="Chang, J H" uniqKey="Chang J">J.H. Chang</name>
</author>
<author>
<name sortKey="Ku, S K" uniqKey="Ku S">S.K. Ku</name>
</author>
<author>
<name sortKey="Choi, H G" uniqKey="Choi H">H.G. Choi</name>
</author>
<author>
<name sortKey="Yong, C S" uniqKey="Yong C">C.S. Yong</name>
</author>
<author>
<name sortKey="Kim, J O" uniqKey="Kim J">J.O. Kim</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ou, W" uniqKey="Ou W">W. Ou</name>
</author>
<author>
<name sortKey="Thapa, R K" uniqKey="Thapa R">R.K. Thapa</name>
</author>
<author>
<name sortKey="Jiang, L" uniqKey="Jiang L">L. Jiang</name>
</author>
<author>
<name sortKey="Soe, Z C" uniqKey="Soe Z">Z.C. Soe</name>
</author>
<author>
<name sortKey="Gautam, M" uniqKey="Gautam M">M. Gautam</name>
</author>
<author>
<name sortKey="Chang, J H" uniqKey="Chang J">J.H. Chang</name>
</author>
<author>
<name sortKey="Jeong, J H" uniqKey="Jeong J">J.H. Jeong</name>
</author>
<author>
<name sortKey="Ku, S K" uniqKey="Ku S">S.K. Ku</name>
</author>
<author>
<name sortKey="Choi, H G" uniqKey="Choi H">H.G. Choi</name>
</author>
<author>
<name sortKey="Yong, C S" uniqKey="Yong C">C.S. Yong</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Dominguez Villar, M" uniqKey="Dominguez Villar M">M. Dominguez-Villar</name>
</author>
<author>
<name sortKey="Hafler, D A" uniqKey="Hafler D">D.A. Hafler</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Chen, X" uniqKey="Chen X">X. Chen</name>
</author>
<author>
<name sortKey="Song, E" uniqKey="Song E">E. Song</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Truffi, M" uniqKey="Truffi M">M. Truffi</name>
</author>
<author>
<name sortKey="Mazzucchelli, S" uniqKey="Mazzucchelli S">S. Mazzucchelli</name>
</author>
<author>
<name sortKey="Bonizzi, A" uniqKey="Bonizzi A">A. Bonizzi</name>
</author>
<author>
<name sortKey="Sorrentino, L" uniqKey="Sorrentino L">L. Sorrentino</name>
</author>
<author>
<name sortKey="Allevi, R" uniqKey="Allevi R">R. Allevi</name>
</author>
<author>
<name sortKey="Vanna, R" uniqKey="Vanna R">R. Vanna</name>
</author>
<author>
<name sortKey="Morasso, C" uniqKey="Morasso C">C. Morasso</name>
</author>
<author>
<name sortKey="Corsi, F" uniqKey="Corsi F">F. Corsi</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Liu, J" uniqKey="Liu J">J. Liu</name>
</author>
<author>
<name sortKey="Chen, G" uniqKey="Chen G">G. Chen</name>
</author>
<author>
<name sortKey="Feng, L" uniqKey="Feng L">L. Feng</name>
</author>
<author>
<name sortKey="Liu, Z" uniqKey="Liu Z">Z. Liu</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Wang, D" uniqKey="Wang D">D. Wang</name>
</author>
<author>
<name sortKey="Wang, T" uniqKey="Wang T">T. Wang</name>
</author>
<author>
<name sortKey="Yu, H" uniqKey="Yu H">H. Yu</name>
</author>
<author>
<name sortKey="Feng, B" uniqKey="Feng B">B. Feng</name>
</author>
<author>
<name sortKey="Zhou, L" uniqKey="Zhou L">L. Zhou</name>
</author>
<author>
<name sortKey="Zhou, F" uniqKey="Zhou F">F. Zhou</name>
</author>
<author>
<name sortKey="Hou, B" uniqKey="Hou B">B. Hou</name>
</author>
<author>
<name sortKey="Zhang, H" uniqKey="Zhang H">H. Zhang</name>
</author>
<author>
<name sortKey="Luo, M" uniqKey="Luo M">M. Luo</name>
</author>
<author>
<name sortKey="Li, Y" uniqKey="Li Y">Y. Li</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Tadokoro, Y" uniqKey="Tadokoro Y">Y. Tadokoro</name>
</author>
<author>
<name sortKey="Hoshii, T" uniqKey="Hoshii T">T. Hoshii</name>
</author>
<author>
<name sortKey="Yamazaki, S" uniqKey="Yamazaki S">S. Yamazaki</name>
</author>
<author>
<name sortKey="Eto, K" uniqKey="Eto K">K. Eto</name>
</author>
<author>
<name sortKey="Ema, H" uniqKey="Ema H">H. Ema</name>
</author>
<author>
<name sortKey="Kobayashi, M" uniqKey="Kobayashi M">M. Kobayashi</name>
</author>
<author>
<name sortKey="Ueno, M" uniqKey="Ueno M">M. Ueno</name>
</author>
<author>
<name sortKey="Ohta, K" uniqKey="Ohta K">K. Ohta</name>
</author>
<author>
<name sortKey="Arai, Y" uniqKey="Arai Y">Y. Arai</name>
</author>
<author>
<name sortKey="Hara, E" uniqKey="Hara E">E. Hara</name>
</author>
</analytic>
</biblStruct>
</listBibl>
</div1>
</back>
</TEI>
<pmc article-type="review-article">
<pmc-dir>properties open_access</pmc-dir>
<front>
<journal-meta>
<journal-id journal-id-type="nlm-ta">Cancers (Basel)</journal-id>
<journal-id journal-id-type="iso-abbrev">Cancers (Basel)</journal-id>
<journal-id journal-id-type="publisher-id">cancers</journal-id>
<journal-title-group>
<journal-title>Cancers</journal-title>
</journal-title-group>
<issn pub-type="epub">2072-6694</issn>
<publisher>
<publisher-name>MDPI</publisher-name>
</publisher>
</journal-meta>
<article-meta>
<article-id pub-id-type="pmid">31769416</article-id>
<article-id pub-id-type="pmc">6966668</article-id>
<article-id pub-id-type="doi">10.3390/cancers11121855</article-id>
<article-id pub-id-type="publisher-id">cancers-11-01855</article-id>
<article-categories>
<subj-group subj-group-type="heading">
<subject>Review</subject>
</subj-group>
</article-categories>
<title-group>
<article-title>Thirty Years of Cancer Nanomedicine: Success, Frustration, and Hope</article-title>
</title-group>
<contrib-group>
<contrib contrib-type="author">
<name>
<surname>Salvioni</surname>
<given-names>Lucia</given-names>
</name>
<xref ref-type="aff" rid="af1-cancers-11-01855">1</xref>
<xref ref-type="author-notes" rid="fn1-cancers-11-01855"></xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Rizzuto</surname>
<given-names>Maria Antonietta</given-names>
</name>
<xref ref-type="aff" rid="af1-cancers-11-01855">1</xref>
<xref ref-type="author-notes" rid="fn1-cancers-11-01855"></xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Bertolini</surname>
<given-names>Jessica Armida</given-names>
</name>
<xref ref-type="aff" rid="af1-cancers-11-01855">1</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Pandolfi</surname>
<given-names>Laura</given-names>
</name>
<xref ref-type="aff" rid="af2-cancers-11-01855">2</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Colombo</surname>
<given-names>Miriam</given-names>
</name>
<xref ref-type="aff" rid="af1-cancers-11-01855">1</xref>
</contrib>
<contrib contrib-type="author">
<contrib-id contrib-id-type="orcid" authenticated="true">https://orcid.org/0000-0003-4577-9575</contrib-id>
<name>
<surname>Prosperi</surname>
<given-names>Davide</given-names>
</name>
<xref ref-type="aff" rid="af1-cancers-11-01855">1</xref>
<xref ref-type="aff" rid="af3-cancers-11-01855">3</xref>
<xref rid="c1-cancers-11-01855" ref-type="corresp">*</xref>
</contrib>
</contrib-group>
<aff id="af1-cancers-11-01855">
<label>1</label>
Department of Biotecnology and Bioscience, University of Milano-Bicocca, piazza della Scienza 2, 20126 Milano, Italy;
<email>lucia.salvioni@unimib.it</email>
(L.S.);
<email>maria.rizzuto@unimib.it</email>
(M.A.R.);
<email>jessica.bertolini@unimib.it</email>
(J.A.B.);
<email>miriam.colombo@unimib.it</email>
(M.C.)</aff>
<aff id="af2-cancers-11-01855">
<label>2</label>
Unit of Respiratory Diseases, IRCCS Policlinico San Matteo Foundation, 27100 Pavia, Italy;
<email>l.pandolfi@smatteo.pv.it</email>
</aff>
<aff id="af3-cancers-11-01855">
<label>3</label>
Nanomedicine Laboratory, ICS Maugeri, via S. Maugeri 10, 27100 Pavia, Italy</aff>
<author-notes>
<corresp id="c1-cancers-11-01855">
<label>*</label>
Correspondence:
<email>davide.prosperi@unimib.it</email>
</corresp>
<fn id="fn1-cancers-11-01855">
<label></label>
<p>These authors contributed equally to this paper.</p>
</fn>
</author-notes>
<pub-date pub-type="epub">
<day>25</day>
<month>11</month>
<year>2019</year>
</pub-date>
<pub-date pub-type="collection">
<month>12</month>
<year>2019</year>
</pub-date>
<volume>11</volume>
<issue>12</issue>
<elocation-id>1855</elocation-id>
<history>
<date date-type="received">
<day>31</day>
<month>10</month>
<year>2019</year>
</date>
<date date-type="accepted">
<day>22</day>
<month>11</month>
<year>2019</year>
</date>
</history>
<permissions>
<copyright-statement>© 2019 by the authors.</copyright-statement>
<copyright-year>2019</copyright-year>
<license license-type="open-access">
<license-p>Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (
<ext-link ext-link-type="uri" xlink:href="http://creativecommons.org/licenses/by/4.0/">http://creativecommons.org/licenses/by/4.0/</ext-link>
).</license-p>
</license>
</permissions>
<abstract>
<p>Starting with the enhanced permeability and retention (EPR) effect discovery, nanomedicine has gained a crucial role in cancer treatment. The advances in the field have led to the approval of nanodrugs with improved safety profile and still inspire the ongoing investigations. However, several restrictions, such as high manufacturing costs, technical challenges, and effectiveness below expectations, raised skeptical opinions within the scientific community about the clinical relevance of nanomedicine. In this review, we aim to give an overall vision of the current hurdles encountered by nanotherapeutics along with their design, development, and translation, and we offer a prospective view on possible strategies to overcome such limitations.</p>
</abstract>
<kwd-group>
<kwd>cancer nanomedicine</kwd>
<kwd>EPR effect</kwd>
<kwd>tumor microenvironment</kwd>
<kwd>nanoparticles</kwd>
<kwd>nano–bio interactions</kwd>
<kwd>clinical translation</kwd>
</kwd-group>
</article-meta>
</front>
<body>
<sec sec-type="intro" id="sec1-cancers-11-01855">
<title>1. Introduction</title>
<p>Nanomedicine is an emerging key technology of the 21st century. Although the fundamental concept of a new era of nanotechnology dates back to 1959 with the renowned visionary speech of Richard Feynman at Caltech [
<xref rid="B1-cancers-11-01855" ref-type="bibr">1</xref>
], the optimistic expectation that nanoparticles and other nanoscale tools could be successfully exploited to improve the diagnosis and pharmacological treatment of several human diseases was only first established in the 1990s [
<xref rid="B2-cancers-11-01855" ref-type="bibr">2</xref>
]. During the last three decades, we have witnessed impressive advances in the field, and our scientific understanding of the mechanisms regulating matter organization and interaction with biological systems at the nanoscale has progressed significantly. Nanomedicine, taking advantage of the use of engineered particles having size typically ranging from 1 to 100 nm, aims to exploit nanotechnology for several biomedical applications, mainly disease treatment, diagnosis, and molecular imaging, as well as regenerative medicine and tissue engineering. From the beginning, nanomedicine has been frequently associated with the use of nanoparticles in oncology [
<xref rid="B3-cancers-11-01855" ref-type="bibr">3</xref>
].</p>
<p>In 1986, Maeda and coworkers observed a substantial accumulation of macromolecules in the tumor tissue attributable to a hyperpermeable neovasculature and compromised lymphatic drainage [
<xref rid="B4-cancers-11-01855" ref-type="bibr">4</xref>
]. In principle, the fenestrated endothelial wall in proximity to tumor tissues represents a sort of privileged gate giving selective access to particles in the sub-micrometer scale. Since then, the so-called enhanced permeability and retention (EPR) effect has been validated for particles up to 400–600 nm [
<xref rid="B5-cancers-11-01855" ref-type="bibr">5</xref>
], becoming the pillar of the research in cancer nanomedicine [
<xref rid="B6-cancers-11-01855" ref-type="bibr">6</xref>
]. The general purpose was to improve the performance of chemotherapeutics, both in terms of efficacy and safety. These efforts resulted in the approval of several innovative nanodrugs and still inspire ongoing investigations [
<xref rid="B7-cancers-11-01855" ref-type="bibr">7</xref>
]. However, after 30 years of exciting discoveries, together with the progress in clinical exploitation, several challenges and limitations are now emerging. Notably, nanomedicine-based treatments often resulted in the lack of, or the limited gain in, overall patient survival [
<xref rid="B8-cancers-11-01855" ref-type="bibr">8</xref>
]. For instance, the first approved PEGylated liposomal doxorubicin formulations (Doxil
<sup>®</sup>
, Baxter Healthcare CorporationDeerfield, IL, USA and Caelyx
<sup>®</sup>
, Janssen Pharmaceutica NV, Turnhoutseweg, Beerse, Belgium) showed improvements in safety but not in efficacy compared to the standard therapies [
<xref rid="B9-cancers-11-01855" ref-type="bibr">9</xref>
]. Moreover, although all the attempts to develop advanced nanosized drug delivery systems (DDSs) alternative to the conventional approved liposomal formulations, their clinical translation has been frequently hampered by several technical and cost challenges. Therefore, a serious skepticism towards the use of pharmacological nanocarriers (NCs) is growing in the scientific community [
<xref rid="B10-cancers-11-01855" ref-type="bibr">10</xref>
,
<xref rid="B11-cancers-11-01855" ref-type="bibr">11</xref>
,
<xref rid="B12-cancers-11-01855" ref-type="bibr">12</xref>
].</p>
<p>However, such uncertainty seems to be somewhat overestimated. Indeed, the mentioned limitations highlight the poor understanding of tumor biology as a consequence of the incomplete predictability of the available preclinical models and the large heterogenicity in the patient population. Particularly, the relevance of the EPR effect, which was acknowledged as the “royal gate” in the DDS field, should be now reconsidered in the light of the inter- and intra-patient variability [
<xref rid="B13-cancers-11-01855" ref-type="bibr">13</xref>
]. Additionally, deeper comprehension of the nano–bio interactions may point out new perspectives as well as indicate the most promising approaches to be pursued. Indeed, besides ameliorating the delivery of small chemotherapeutic agents to the tumor cells, new strategies are currently under investigation, including the possibility of exploiting nanoparticles for biologics administration and targeting or activating cellular populations different from the cancer cells (e.g., improving the immunotherapy efficacy) [
<xref rid="B13-cancers-11-01855" ref-type="bibr">13</xref>
,
<xref rid="B14-cancers-11-01855" ref-type="bibr">14</xref>
].</p>
<p>This review aims to disclose the current hurdles encountered in the clinical translation of nanotherapeutics that have been validated at the laboratory level, focusing on the products’ development as well as their biological fate after in vivo administration. We also discuss the nanomedicine impact in the oncology field and propose innovative strategies for maximizing their performance.</p>
</sec>
<sec id="sec2-cancers-11-01855">
<title>2. State of the Art in Nanomedicine Research</title>
<p>The main purpose of this section is to give a general picture of the biological processes in which the NCs are involved, once administered in vivo, as well as their clinical implications. However, it is worth mentioning that the NCs’ fate and therapeutic outcome is strongly affected by their particular chemical composition and other specific structural features, including surface properties (e.g., charge and hydrophilic to hydrophobic ratio), general physical characteristics (e.g., size, shape, and stiffness) and functionalization (
<xref ref-type="fig" rid="cancers-11-01855-f001">Figure 1</xref>
).</p>
<sec id="sec2dot1-cancers-11-01855">
<title>2.1. Protein Corona</title>
<p>One of the main issues relating to the clinical translation of NCs is represented by the lack of comprehensive knowledge about the interaction between NCs and biological fluids. In particular, the high protein concentration of the physiological environment greatly affects the NCs’ biological behavior. Indeed, in response to the characteristics of the administered nanoparticles, endogenous proteins promptly adsorb on the surface, creating the so-called protein corona (PC). As established by several groups, this layer is highly dynamic, and its composition is strongly influenced by the biological milieu [
<xref rid="B15-cancers-11-01855" ref-type="bibr">15</xref>
,
<xref rid="B16-cancers-11-01855" ref-type="bibr">16</xref>
]. The protein adsorption impacts particle size, stability, surface properties, and defines the NCs’ biological identity and, therefore, their fate [
<xref rid="B13-cancers-11-01855" ref-type="bibr">13</xref>
]. For instance, binding with opsonins (e.g., IgGs and complement proteins), as well as some conformational changes in the attached proteins, trigger NCs uptake by the mononuclear phagocyte system (MPS) [
<xref rid="B17-cancers-11-01855" ref-type="bibr">17</xref>
]. Although in early studies, the PC relevance was confined to some undesirable effects, including NCs clearance and activation of the immune system, it is now believed that in several circumstances, PC also dictates the cellular uptake and intracellular localization of NCs [
<xref rid="B17-cancers-11-01855" ref-type="bibr">17</xref>
,
<xref rid="B18-cancers-11-01855" ref-type="bibr">18</xref>
,
<xref rid="B19-cancers-11-01855" ref-type="bibr">19</xref>
]. While most studies involving nanoparticles as DDSs were originally intended to discourage the protein adsorption by surface coating with hydrophilic polymers (e.g., polyethylene glycol, PEG; zwitterions; carbohydrates; etc.), more recently, some innovative strategies have attempted to benefit from these spontaneous interactions. Such strategies may be accomplished by promoting the adsorption in vivo or by decorating in vitro the NCs surface with specific proteins, which decrease the MPS uptake and/or preferentially lead to a targeted delivery [
<xref rid="B20-cancers-11-01855" ref-type="bibr">20</xref>
]. A recent example of the latter approach was the regulation of the PC formation by precoating the NCs with a HER2 affibody–glutathione–S–transferase fusion protein. This study demonstrated that the formation of a protein shield reduces the adsorption of serum proteins maintaining the selective targeting ability of the targeting molecule [
<xref rid="B21-cancers-11-01855" ref-type="bibr">21</xref>
].</p>
<p>Considering the multitude of processes in which the PC is directly involved, it is of paramount importance to better understand the driving forces that lead to the PC formation and how it can be manipulated to predict the NCs’ fate after their administration in vivo. Nowadays, despite many efforts, a validated model to mimic the in vivo PC generation, as well as an affordable characterization method, are still missing.</p>
</sec>
<sec id="sec2dot2-cancers-11-01855">
<title>2.2. Pharmacokinetics and Biodistribution</title>
<p>Several parameters affect the pharmacokinetics and biodistribution of NCs, including the administration route and NCs’ features, such as size, shape, surface, and mechanical properties. After systemic administration, the major clearance organs are lungs, liver, spleen, kidneys; the relationships between the biodistribution in such organs and the NCs properties are reported in
<xref rid="cancers-11-01855-t001" ref-type="table">Table 1</xref>
. In general, for particles above the renal threshold (size > 5.5 nm) [
<xref rid="B22-cancers-11-01855" ref-type="bibr">22</xref>
], the elimination is performed by tissue-resident macrophages, monocytes, and dendritic cells belonging to the MPS, although the role of endothelial cells has been recently reconsidered [
<xref rid="B23-cancers-11-01855" ref-type="bibr">23</xref>
,
<xref rid="B24-cancers-11-01855" ref-type="bibr">24</xref>
].</p>
<p>As already mentioned, several strategies have been developed to escape the MPS recognition, and the most established exploits antifouling polymer grafting (e.g., PEG) onto NCs surface. Thus, some clinical products (i.e., Doxil
<sup>®</sup>
and Onivyde
<sup>®</sup>
, Les Laboratoires Servier Industrie, Route de Saran, Gidy, France) take advantage of PEGylation to facilitate the immunoevasion. However, the steric barrier created by this polymer does not specifically prevent the interaction with the MPS. Additionally, in some patients, phenomena such as complement activation, infusion reactions, and the production of PEG antibodies have been observed [
<xref rid="B31-cancers-11-01855" ref-type="bibr">31</xref>
,
<xref rid="B32-cancers-11-01855" ref-type="bibr">32</xref>
,
<xref rid="B33-cancers-11-01855" ref-type="bibr">33</xref>
]. Alternative and more effective strategies are currently under investigation, including the functionalization with CD47 self-peptide and the use of engineered extracellular vesicles or cell membrane-coated particles [
<xref rid="B34-cancers-11-01855" ref-type="bibr">34</xref>
,
<xref rid="B35-cancers-11-01855" ref-type="bibr">35</xref>
]. All these approaches are intended to prolong the circulation time of NCs, although the extended half-life is not always associated with an improvement in the tumor accumulation. In this context, the drug release kinetics (
<xref ref-type="sec" rid="sec2dot5-cancers-11-01855">Section 2.5</xref>
), along with target accessibility (
<xref ref-type="sec" rid="sec2dot3-cancers-11-01855">Section 2.3</xref>
), have been demonstrated to significantly contribute to the treatment response.</p>
</sec>
<sec id="sec2dot3-cancers-11-01855">
<title>2.3. Tumor-Specific Accumulation</title>
<p>A tumor mass consists of proliferating cancer cells and stromal cells (i.e., fibroblasts, immune, and perivascular cells), supplied with a dense extracellular matrix (ECM) and a tortuous and chaotic blood vessels’ network. The architecture and properties of this organ-like entity are illustrated in
<xref ref-type="fig" rid="cancers-11-01855-f002">Figure 2</xref>
. In addition to cancer onset and progression, the so-called tumor microenvironment (TME) is closely involved in tumor resistance to treatments [
<xref rid="B36-cancers-11-01855" ref-type="bibr">36</xref>
,
<xref rid="B37-cancers-11-01855" ref-type="bibr">37</xref>
]. The understanding of tumor biology is of utmost importance in nanomedicine also because TME was clearly demonstrated to minimize the NCs’ efficacy by opposing several barriers. First of all, the nanocomplex extravasation is required and generally associated with the EPR effect that characterizes the tumor region [
<xref rid="B38-cancers-11-01855" ref-type="bibr">38</xref>
]. Actually, the discontinuous and fenestrated blood vessels, together with the poor lymphatic drainage, led to optimistic over-expectations in nanomedicine. However, differently from the experimental confirmations achieved from preclinical models, increasing evidence suggests that the great variability in the extent of the EPR effect can be found both among patients and tumor types [
<xref rid="B39-cancers-11-01855" ref-type="bibr">39</xref>
]. Moreover, recent studies revealed that, besides the leaky blood vessels, endothelial transcytosis, as well as vascular bursts, enhance tumor permeability [
<xref rid="B40-cancers-11-01855" ref-type="bibr">40</xref>
,
<xref rid="B41-cancers-11-01855" ref-type="bibr">41</xref>
].</p>
<p>Once extravasated, NCs are expected to homogeneously distribute within the tumor area, but tissue penetration is strongly hampered by several obstructing factors, including the elevated interstitial fluid pressure (IFP) caused by inefficient lymphatic drainage and blood vessel compression, and solid stress associated with high cellular density and excessive production of ECM [
<xref rid="B6-cancers-11-01855" ref-type="bibr">6</xref>
]. These factors restrict the NC action to the cells located in the perivascular space, hiding the more resistant cells placed in the hypoxia regions.</p>
<p>Therefore, the tumor accumulation can be considered as the major hurdle to the clinical translation and application of nanosized DDSs. For this reason, the TME modulation and the patient stratification have been recently proposed as strategies to improve the nanodrugs’ performance, as discussed below. In addition, an exhaustive understanding of the factors that guide the tissue penetration is extremely urgent. Size, shape, and surface chemistry have been identified as the major characteristics responsible for NCs diffusion inside the tumor mass [
<xref rid="B44-cancers-11-01855" ref-type="bibr">44</xref>
,
<xref rid="B45-cancers-11-01855" ref-type="bibr">45</xref>
]. Beside some universally accepted correlation, such as the inverse proportion between NC size and penetration ability, there are still controversial opinions about the impact of surface charge [
<xref rid="B46-cancers-11-01855" ref-type="bibr">46</xref>
,
<xref rid="B47-cancers-11-01855" ref-type="bibr">47</xref>
]. The functionalization of the NC surface with tissue and cell-penetrating peptides, such as the iRGD peptide, is a promising strategy to increase vascular and tissue permeability. Specifically, iRGD interacts with α
<sub>ν</sub>
integrins on the endothelium, stimulating a proteolytic cleavage, and the subsequent binding of the released C-end-R peptide with neuropilin-1, ensuring both the tumor homing and tissue penetration [
<xref rid="B48-cancers-11-01855" ref-type="bibr">48</xref>
]. Recent concerns about possible non-specific interactions of iRGD that might reduce the target accumulation of NCs could be overcome by triggering the penetrating peptide exposure in the TME following specific stimuli [
<xref rid="B49-cancers-11-01855" ref-type="bibr">49</xref>
]. Another common approach to minimize the interaction between NCs and the ECM is surface PEGylation, as has been demonstrated in different tumor models, such as orthotopic brain and lung cancers [
<xref rid="B50-cancers-11-01855" ref-type="bibr">50</xref>
,
<xref rid="B51-cancers-11-01855" ref-type="bibr">51</xref>
]. However, a dense PEG layer may discourage interaction with target cells. Hence, the NC properties should be carefully optimized to balance their diffusion and target recognition capabilities.</p>
</sec>
<sec id="sec2dot4-cancers-11-01855">
<title>2.4. Cellular Internalization</title>
<p>An effective cellular uptake has an impact on the therapeutic response, as many drugs are directed towards intracellular targets. Notably, an enhanced internalization is crucial for improving the activity of both biologics and small molecules, as it allows poor cellular permeability to be overcome, and the multidrug efflux transporters to be bypassed, respectively [
<xref rid="B52-cancers-11-01855" ref-type="bibr">52</xref>
,
<xref rid="B53-cancers-11-01855" ref-type="bibr">53</xref>
]. The most common approach to increase the NCs uptake is “active” (i.e., molecular) targeting. This strategy aims at improving the selectivity of NCs toward the target cells by decorating their surface with affinity ligands that recognize receptors specifically overexpressed on tumor vasculature or tumor cells [
<xref rid="B54-cancers-11-01855" ref-type="bibr">54</xref>
]. However, the molecular forces that drive ligand–receptor binding only extend over 0.3–0.5 nm [
<xref rid="B55-cancers-11-01855" ref-type="bibr">55</xref>
]. Thus, to promote tumor retention and increase cellular uptake, an efficient NC extravasation is needed [
<xref rid="B12-cancers-11-01855" ref-type="bibr">12</xref>
]. It should be noted that the NC functionalization is expected to alter their physical–chemical properties, affecting the MPS uptake as well as the intratumoral penetration [
<xref rid="B31-cancers-11-01855" ref-type="bibr">31</xref>
]. Moreover, the targeting receptor should be carefully selected, taking into account its preferential tumor expression compared to normal tissues and immune cells, as well as its capability to internalize the NCs upon interaction. A big concern for active targeting success is posed by cancer cell heterogeneity: indeed, it is well known that the cancer cells’ epigenetic diversity leads to different expression levels of the targeting receptor [
<xref rid="B10-cancers-11-01855" ref-type="bibr">10</xref>
]. On the other hand, cellular internalization is performed by receptor-mediated endocytosis, which usually leads to NC degradation. In this context, for all the therapeutics that are susceptible to lysosomal digestion (e.g., biologics), an efficient endosomal escape is essential to preserve drug efficacy [
<xref rid="B56-cancers-11-01855" ref-type="bibr">56</xref>
]. Different strategies have been proposed to promote this event, such as membrane fusion, osmotic rupture, particle swelling, and membrane destabilization [
<xref rid="B57-cancers-11-01855" ref-type="bibr">57</xref>
]. Despite these efforts, the proportion of NCs that actually perform the endosomal escape remains extremely low, and thus, more efficient or alternative approaches are demanded [
<xref rid="B58-cancers-11-01855" ref-type="bibr">58</xref>
]. For instance, Rotello and coworkers proposed an endosomal-free cytosolic delivery based on the direct fusion between the nanoassemblies and the plasma membrane [
<xref rid="B59-cancers-11-01855" ref-type="bibr">59</xref>
], whereas Gong and colleagues have recently developed a polymeric coating, termed nanocapsule, with an improved endosomal escape compared with commercial agents [
<xref rid="B60-cancers-11-01855" ref-type="bibr">60</xref>
]. All these concerns underline that, although targeted nanomedicine was proposed as a magic bullet for cancer treatment, its clinical relevance still needs to be validated. Indeed, despite the superiority of the active over the merely passive targeting demonstrated in preclinical models, at present, none of these nanodrugs have been approved [
<xref rid="B8-cancers-11-01855" ref-type="bibr">8</xref>
]. Therefore, increased awareness of the molecular mechanisms governing active targeting is imperative, considering that common belief on nanoparticle-biosystem interactions do not always allow for reliable predictions. For instance, as demonstrated by Colombo et al., maximizing the number of targeting moieties on the NC is indeed expected to improve the molecular targeting in vitro but does not necessarily result in superior therapeutic performance in vivo [
<xref rid="B61-cancers-11-01855" ref-type="bibr">61</xref>
].</p>
</sec>
<sec id="sec2dot5-cancers-11-01855">
<title>2.5. Drug Delivery and Release</title>
<p>In a drug delivery framework, the nanoformulation is intended to enhance the drug protection and permeability, to extend the therapeutic agent half-life, to improve the drug solubility and/or increase its therapeutic index [
<xref rid="B62-cancers-11-01855" ref-type="bibr">62</xref>
]. As already stressed above, different types of drugs, including both small molecules and biologics, can benefit from nanoscale DDSs in enhancing their therapeutic efficacy. Indeed, NCs may broaden the spectra of the administered drugs when they are small molecules, whereas they may overcome the drawbacks associated with large, hydrophilic, and delicate biological molecules improving their availability or helping them to cross the biological barriers [
<xref rid="B63-cancers-11-01855" ref-type="bibr">63</xref>
,
<xref rid="B64-cancers-11-01855" ref-type="bibr">64</xref>
]. However, it is worth mentioning that the release performance of these DDSs should be carefully investigated, and the NCs’ design possibly optimized. Especially for long-circulating NCs, minimizing the premature drug release is fundamental to improve its therapeutic outcome [
<xref rid="B65-cancers-11-01855" ref-type="bibr">65</xref>
]. Additionally, new nanoparticle-based classes of DDSs have been recently developed to precisely control the drug release in response to specific conditions, such as the stimuli-responsive NCs that will be discussed further below (
<xref ref-type="sec" rid="sec5dot1dot2-cancers-11-01855">Section 5.1.2</xref>
) [
<xref rid="B13-cancers-11-01855" ref-type="bibr">13</xref>
,
<xref rid="B43-cancers-11-01855" ref-type="bibr">43</xref>
].</p>
</sec>
</sec>
<sec id="sec3-cancers-11-01855">
<title>3. Controversies Around Clinical Translation of Cancer Nanomedicines</title>
<p>The first nanomedicine that received clinical approval was the PEGylated liposomal formulation of doxorubicin in 1995 (Doxil
<sup>®</sup>
/Caelyx
<sup>®</sup>
). Since then, 15 nanodrugs have been developed and tested for cancer treatment and have entered the market (
<xref rid="cancers-11-01855-t002" ref-type="table">Table 2</xref>
). Doxil
<sup>®</sup>
/Caelyx
<sup>®</sup>
, together with the albumin-based formulation of paclitaxel (commercialized by Celgene corporation under the Abraxane
<sup>®</sup>
, Summit, NJ, USA trademark), currently represents the top-selling nanomedicines in 2018, accounting for $252 M and $950 M, respectively [
<xref rid="B8-cancers-11-01855" ref-type="bibr">8</xref>
]. The liposomal doxorubicin formulations demonstrated a different drug distribution compared to standard treatments, limiting the cardiotoxicity induced by anthracyclines [
<xref rid="B66-cancers-11-01855" ref-type="bibr">66</xref>
]. The new therapeutic index achieved broadened the spectrum of treatable candidates and improved patient compliance. In turn, Abraxane
<sup>®</sup>
strongly enhanced paclitaxel tolerance, allowing drug administration without the use of toxic solubilizing surfactants (e.g., castor oil—cremophor EL
<sup>®</sup>
). Notably, clinical studies have demonstrated a significant increase in the maximum tolerated dose as well as shorter infusion time of Abraxane
<sup>®</sup>
compared to a cremophor EL
<sup>®</sup>
-based formulation [
<xref rid="B67-cancers-11-01855" ref-type="bibr">67</xref>
].</p>
<p>However, despite the important advantage of these nanomedicines in terms of safety, the treatment efficacy did not increase as expected. So far, most approved nanodrugs exhibited only a moderate impact on overall survival as compared to relevant standard therapies [
<xref rid="B8-cancers-11-01855" ref-type="bibr">8</xref>
]. Among the nano-based products under clinical investigation, some of them aim to ameliorate the cancer treatment performance by means of active targeting (e.g., BIND-014) and stimuli-responsive drug release (e.g., ThermoDox) [
<xref rid="B68-cancers-11-01855" ref-type="bibr">68</xref>
,
<xref rid="B69-cancers-11-01855" ref-type="bibr">69</xref>
]. Nevertheless, the low efficacy still represents the main hurdle to the nanodrugs’ clinical translation. In particular, among the 94% successful phase I trials, only 14% concluded phase III with positive outcomes [
<xref rid="B8-cancers-11-01855" ref-type="bibr">8</xref>
]. This disappointing efficacy is likely due to multiple factors, such as an incomplete knowledge about the nano–bio interactions (
<xref ref-type="sec" rid="sec2-cancers-11-01855">Section 2</xref>
) and poor reliability of the existing preclinical models. Lack of reliable disease models is particularly disappointing, as mouse tumor models fail to recapitulate the complexity of human tumors mainly because of their large size, the limited cancer cell heterogenicity, the exaggerated EPR effect, and general immunodeficiency [
<xref rid="B70-cancers-11-01855" ref-type="bibr">70</xref>
].</p>
<p>Additional drivers behind the modest clinical translation of nanomedicines are technical and cost challenges in product manufacturing and scale-up. Several clinical trials were terminated or delayed due to unaffordable financial burdens. Indeed, the development of next-generation products other than the conventional liposomal formulations requires huge investments and poses serious issues about the process reproducibility [
<xref rid="B8-cancers-11-01855" ref-type="bibr">8</xref>
,
<xref rid="B9-cancers-11-01855" ref-type="bibr">9</xref>
]. Overall, the large pharma companies, the only entities that can afford such a prohibitive expense, are discouraged from supporting the clinical investigation because of the low perceived success chances. Therefore, it is of utmost relevance to consider that product clinical outcomes and funding availability are closely related since pharmaceutical companies and the healthcare system are more prone to invest if the improvement in treatment efficacy is significant [
<xref rid="B8-cancers-11-01855" ref-type="bibr">8</xref>
].</p>
</sec>
<sec id="sec4-cancers-11-01855">
<title>4. Is It Still Reasonable to Invest in Cancer Nanomedicine?</title>
<p>As already mentioned, nanotechnology has attracted great interest in cancer treatment due to the unique physiochemical properties of nanostructures that can be exploited for diagnostic and therapeutic purposes. Searching “Nanoparticles” on Scopus.com, a publication peak is notable in 2018 with 57,434 documents (
<xref ref-type="fig" rid="cancers-11-01855-f003">Figure 3</xref>
A) and 22.7% (16,395 documents) of them related to cancer treatment and diagnosis. However, focusing on the subject area (
<xref ref-type="fig" rid="cancers-11-01855-f003">Figure 3</xref>
B), most of these works were reported in materials and chemistry-related journals, whereas only 17.3% were published in journals referring to the medical research area (including pharmacology, toxicology, and pharmaceutics; medicine; immunology and microbiology).</p>
<p>Such publication distribution corroborates the assumption that cancer nanomedicine is more focused on a “formulation-driven” rather than a “disease-driven” approach. Many researchers have pointed out that this one, together with overgeneralizing drug-targeting/delivery concepts and overselling preclinical studies, are the main causes of the suboptimal clinical translation of cancer nanomedicine [
<xref rid="B71-cancers-11-01855" ref-type="bibr">71</xref>
]. In fact, even if the cancer nanomedicine research comprises different types of materials used for synthesizing NCs, only lipidic, one protein-based, a few polymeric and inorganic nanovehicles have been approved for marketing (
<xref rid="cancers-11-01855-t002" ref-type="table">Table 2</xref>
) [
<xref rid="B72-cancers-11-01855" ref-type="bibr">72</xref>
]. These considerations highlight the current limitation of nanomedicine in cancer treatment, leading the scientific community to ask if it is still reasonable to continue to invest in this field. As it can be inferred by
<xref ref-type="sec" rid="sec2-cancers-11-01855">Section 2</xref>
of this review, ready after administration NCs have to face many hurdles that can reduce therapeutic/targeting/accumulation efficiency. However, it is worth mentioning that both successes and failures have contributed to change the focus of studies to better understand the interaction between NCs and numerous cancer biological mechanisms, triggering new discoveries and future ambitions [
<xref rid="B9-cancers-11-01855" ref-type="bibr">9</xref>
,
<xref rid="B13-cancers-11-01855" ref-type="bibr">13</xref>
,
<xref rid="B73-cancers-11-01855" ref-type="bibr">73</xref>
]. To make some examples, the emerging concerns regarding the real efficacy of the EPR effect in humans forced scientists to go in-depth in defining human TME characteristics to develop NCs with different size, shape, and surface properties to increase their penetration into the tumor mass [
<xref rid="B13-cancers-11-01855" ref-type="bibr">13</xref>
]. Otherwise, the modulation of TME components (e.g., vasculature, ECM) is another interesting point of view to improve the delivery of nanomedicine to solid tumors [
<xref rid="B12-cancers-11-01855" ref-type="bibr">12</xref>
,
<xref rid="B74-cancers-11-01855" ref-type="bibr">74</xref>
].</p>
<p>Another crucial step in cancer nanomedicine is the relationship between the treatment efficacy and the immune system response. This vast branch of nanomedicine offered the opportunity to understand that (1) the available animal models are largely unsuitable, because usually scientists make use of immunodeficient mice, and (2) NCs can be sequestered or opsonized by immune cells [
<xref rid="B75-cancers-11-01855" ref-type="bibr">75</xref>
,
<xref rid="B76-cancers-11-01855" ref-type="bibr">76</xref>
]. In particular, tumor-associated macrophages (TAMs) are one of the primary biological barriers in cancer tissue invariably encountered by NCs, so that scientists tried to exploit this “disadvantage” using TAMs as a reservoir of nanovehicles, to increase the site-specific drug release [
<xref rid="B13-cancers-11-01855" ref-type="bibr">13</xref>
,
<xref rid="B77-cancers-11-01855" ref-type="bibr">77</xref>
]. Another interesting progress is the design of NCs that can avoid phagocytosis through the modification of their surfaces (e.g., with CD47) [
<xref rid="B78-cancers-11-01855" ref-type="bibr">78</xref>
] or that can modulate the polarization and activity of macrophages [
<xref rid="B79-cancers-11-01855" ref-type="bibr">79</xref>
,
<xref rid="B80-cancers-11-01855" ref-type="bibr">80</xref>
]. In addition, studies about the numerous molecular targets found to develop specific active targeted NCs brought huge knowledge. Even if the real efficacy of active targeting in cancer affected patients is still in debate, this kind of approach allowed improvement in the awareness about the molecular characteristics of different cancer types [
<xref rid="B10-cancers-11-01855" ref-type="bibr">10</xref>
,
<xref rid="B72-cancers-11-01855" ref-type="bibr">72</xref>
,
<xref rid="B81-cancers-11-01855" ref-type="bibr">81</xref>
]. Moreover, the evidence that NCs could be entrapped inside endosomes and/or lysosomes led the scientists to study this mechanism developing NCs able to reach the cell cytosol by clever strategies, including direct fusion with the plasma membrane [
<xref rid="B59-cancers-11-01855" ref-type="bibr">59</xref>
] or by performing enhanced endosomal escape [
<xref rid="B82-cancers-11-01855" ref-type="bibr">82</xref>
,
<xref rid="B83-cancers-11-01855" ref-type="bibr">83</xref>
,
<xref rid="B84-cancers-11-01855" ref-type="bibr">84</xref>
]. The use of engineered NCs can bring other opportunities, such as the encapsulation of poorly soluble drugs [
<xref rid="B85-cancers-11-01855" ref-type="bibr">85</xref>
,
<xref rid="B86-cancers-11-01855" ref-type="bibr">86</xref>
,
<xref rid="B87-cancers-11-01855" ref-type="bibr">87</xref>
], as well as the delivery of biologics improving their bioavailability, permeability, and stability in the biological environment [
<xref rid="B53-cancers-11-01855" ref-type="bibr">53</xref>
,
<xref rid="B72-cancers-11-01855" ref-type="bibr">72</xref>
]. Thanks to NCs, it is possible to use drugs already accepted by clinical trials, opening the chance to administer them by different routes (i.e., topic [
<xref rid="B88-cancers-11-01855" ref-type="bibr">88</xref>
], oral [
<xref rid="B89-cancers-11-01855" ref-type="bibr">89</xref>
], and inhalation [
<xref rid="B90-cancers-11-01855" ref-type="bibr">90</xref>
] rather than intravenous). This is a relevant point in locally administered therapies because this approach could re-establish the importance of active targeting by decreasing the number of physical and biological barriers that NCs need to overcome.</p>
<p>All these observations justify the ongoing enthusiasm which believes in nanomedicine that will lead to further investment in this field regardless of the unsatisfactory success rate hitherto achieved. However, it is urgent to reduce the gap between the huge number of published papers and the poor clinical outcome of these technologies. First, a sincere effort in the establishment of more clinically relevant models is required. In this context, 3D cultures (e.g., organoids and spheroids) have been proposed as an alternative to 2D cultures for in vitro purposes [
<xref rid="B91-cancers-11-01855" ref-type="bibr">91</xref>
,
<xref rid="B92-cancers-11-01855" ref-type="bibr">92</xref>
], whereas innovative in vivo models, such as patient-derived xenografts and genetically engineered mice, aim to recapitulate the complexity of human tumors [
<xref rid="B93-cancers-11-01855" ref-type="bibr">93</xref>
]. Interestingly, the chicken chorioallantoic membrane (CAM) is emerging as a less time-consuming and a cost-effective alternative to the conventional mouse models [
<xref rid="B94-cancers-11-01855" ref-type="bibr">94</xref>
]. Moreover, it is equally necessary to improve the research data collection to make them as informative as possible. In this regard, Caruso et al. suggested standardization of bio–nano experimental investigations [
<xref rid="B95-cancers-11-01855" ref-type="bibr">95</xref>
], although, among the scientific community, the debate about aspects that need to be improved is still open [
<xref rid="B96-cancers-11-01855" ref-type="bibr">96</xref>
]. Finally, other key points have been suggested by the European Technology Platform for Nanomedicine (ETPN) Agenda to ameliorate the clinical translation: (1) to change from a “formulation-driven” to a “disease-driven” approach considering the influence of tumor pathophysiology in the clinical outcome and/or focusing on unmet medical needs; (2) to facilitate and increase the dialogue between all the scientific disciplines that play a role in cancer nanomedicine; (3) to consider the balance between benefit for patients and cost constraints for the healthcare system; and (4) to sustain competitiveness of the healthcare economy at the global market [
<xref rid="B73-cancers-11-01855" ref-type="bibr">73</xref>
].</p>
</sec>
<sec id="sec5-cancers-11-01855">
<title>5. Outlook on Future Strategies</title>
<p>Many factors still limit nanomedicine clinical translation and application. However, the presence of several currently active research areas demonstrates that there is still a lot of interest in filling this gap. Accordingly, this section aims to discuss the most promising strategies.</p>
<sec id="sec5dot1-cancers-11-01855">
<title>5.1. Strategies to Enhance Tumor Accumulation</title>
<p>Among the above-mentioned issues that hampered the clinical translations of nanomedicines, including overcoming biological barriers, increasing bioavailability, and circulation time of nanodrugs, improving active targeting, etc., enhancing tumor accumulation remains a primary objective. The following approaches are envisioned to allow researchers to step forward.</p>
<sec id="sec5dot1dot1-cancers-11-01855">
<title>5.1.1. Priming of the TME</title>
<p>Since several barriers in the TME prevent the nanomedicines delivery, many attempts, extensively reviewed elsewhere [
<xref rid="B97-cancers-11-01855" ref-type="bibr">97</xref>
,
<xref rid="B98-cancers-11-01855" ref-type="bibr">98</xref>
,
<xref rid="B99-cancers-11-01855" ref-type="bibr">99</xref>
], have been made to improve the EPR effect by lowering the solid stress as well as the IFP. Among them, the normalization of the abnormal tumor vasculature aims to restore a more physiological condition, reducing the vessel leakiness, strengthening the structure of the basement membrane, and improving the coverage of pericytes. Although anti-angiogenic therapy may appear to prevent the tumor accumulation, it has been demonstrated that the vasculature is still permeable to relatively small NCs (20–40 nm), and the significant reduction in the IFP causes increased tumor retention [
<xref rid="B100-cancers-11-01855" ref-type="bibr">100</xref>
,
<xref rid="B101-cancers-11-01855" ref-type="bibr">101</xref>
]. The normalization process is usually achieved by inhibiting pro-angiogenic effectors, such as the VEGF (e.g., through bevacizumab) or PDGF (e.g., using imatinib) [
<xref rid="B100-cancers-11-01855" ref-type="bibr">100</xref>
,
<xref rid="B101-cancers-11-01855" ref-type="bibr">101</xref>
]. Another reported approach is the reduction of solid stress by inducing the tumor cells’ apoptosis. Indeed, the rapid cancer cell proliferation causes a compression of lymphatic and blood vessels promoting hypoxia, inflammation, immunosuppression, and metastasis, also representing an obstacle for drug penetration [
<xref rid="B102-cancers-11-01855" ref-type="bibr">102</xref>
]. In this context, it has been observed that paclitaxel tumor priming reduces cell density and IFP, improving the penetration of several NCs, as observed for doxorubicin-loaded liposomes and lipid siRNA complexes [
<xref rid="B103-cancers-11-01855" ref-type="bibr">103</xref>
,
<xref rid="B104-cancers-11-01855" ref-type="bibr">104</xref>
,
<xref rid="B105-cancers-11-01855" ref-type="bibr">105</xref>
]. Furthermore, ECM degradation has been proposed to alleviate solid stress and enhance NCs intratumoral accumulation. Notably, the use of collagenases, relaxin, and hyaluronidases have been explored for this purpose, and their association with chemotherapeutics is already under clinical trials [
<xref rid="B106-cancers-11-01855" ref-type="bibr">106</xref>
,
<xref rid="B107-cancers-11-01855" ref-type="bibr">107</xref>
,
<xref rid="B108-cancers-11-01855" ref-type="bibr">108</xref>
]. Although efficient in promoting the tumor accumulation, the clinical application of such strategies is hampered by safety concerns, high costs, and the intrinsic instability of biologic drugs. To tackle these limitations, delivery improvement of these agents and/or the use of alternative cost-effective and well-tolerated small molecules (e.g., the already available Celecoxib) are under investigation [
<xref rid="B109-cancers-11-01855" ref-type="bibr">109</xref>
]. Additionally, another relevant drawback of TME alteration is the possible promotion of tumor progression and invasiveness [
<xref rid="B31-cancers-11-01855" ref-type="bibr">31</xref>
].</p>
<p>In addition to all the above, NCs biodistribution can be ameliorated by interfering with the MPS activity. Notably, tumor homing can be improved by saturating the main clearance organs with decoy NCs or by inhibiting the MPS uptake. Indeed, considering the negligible fraction of NCs that reach the tumor after administration, even small changes in clearance organs accumulation could significantly affect the therapeutic outcome [
<xref rid="B31-cancers-11-01855" ref-type="bibr">31</xref>
,
<xref rid="B110-cancers-11-01855" ref-type="bibr">110</xref>
,
<xref rid="B111-cancers-11-01855" ref-type="bibr">111</xref>
,
<xref rid="B112-cancers-11-01855" ref-type="bibr">112</xref>
].</p>
</sec>
<sec id="sec5dot1dot2-cancers-11-01855">
<title>5.1.2. Nanocarriers Engineering</title>
<p>In addition to tumor priming, NC engineering may represent a valid strategy for improving nanomedicine performance. Among the reported approaches, stimuli-responsive NCs play a prominent role. These nanoformulations exploit specific endogenous or exogenous stimuli that trigger drug release, specifically within the tumor tissue. In the first case, NCs responsive to acidic pH, hypoxic environment [
<xref rid="B113-cancers-11-01855" ref-type="bibr">113</xref>
,
<xref rid="B114-cancers-11-01855" ref-type="bibr">114</xref>
,
<xref rid="B115-cancers-11-01855" ref-type="bibr">115</xref>
], overexpression of tissue remodeling enzymes (e.g., MMP2-9) [
<xref rid="B116-cancers-11-01855" ref-type="bibr">116</xref>
] or the high intracellular concentration of glutathione demonstrated an increase in the cargo therapeutic efficacy and safety [
<xref rid="B117-cancers-11-01855" ref-type="bibr">117</xref>
]. On the other hand, magnetic, thermo-, electric-, light- and ultrasound-sensitive materials may be employed for nanodrugs development to promote the intratumoral drug delivery [
<xref rid="B118-cancers-11-01855" ref-type="bibr">118</xref>
,
<xref rid="B119-cancers-11-01855" ref-type="bibr">119</xref>
,
<xref rid="B120-cancers-11-01855" ref-type="bibr">120</xref>
]. In this context, several products, such as thermosensitive liposomes (Thermodox), enzyme activated polymeric NCs (Opaxio), as well as magnetic nanoparticles (MTC-Dox), are currently under clinical investigation or approved [
<xref rid="B43-cancers-11-01855" ref-type="bibr">43</xref>
]. Moreover, the combination of different stimuli has recently been proposed to further improve the efficacy of nanoscale DDSs for cancer treatment [
<xref rid="B43-cancers-11-01855" ref-type="bibr">43</xref>
]. In general, the concept of multifunctional vectors is slowly establishing together with a wider comprehension of nano–bio interactions. In particular, novel systems capable of modifying their proprieties in a spatiotemporal way (multistage DDSs) have been developed. For instance, relatively big NCs (<200 nm) can respond to specific stimuli releasing small particles (5–15 nm) able to deeply penetrate into the tumor tissue [
<xref rid="B121-cancers-11-01855" ref-type="bibr">121</xref>
,
<xref rid="B122-cancers-11-01855" ref-type="bibr">122</xref>
]. Alternatively, in multi-layered NCs, the external shell (e.g., PEGylated responsive materials) is expected to change in proximity to a tumor, exposing the hidden penetrating peptides or targeting agents [
<xref rid="B123-cancers-11-01855" ref-type="bibr">123</xref>
,
<xref rid="B124-cancers-11-01855" ref-type="bibr">124</xref>
,
<xref rid="B125-cancers-11-01855" ref-type="bibr">125</xref>
]. Despite the interesting results, it remains questionable whether increasing the complexity of NCs could excessively hinder their clinical translation. In light of the above consideration, another option may be using nature-inspired NCs composed of biological materials, such as proteins (e.g., albumin, lipoproteins, ferritin) or cellular-derived membranes (e.g., cancer cells, platelets, erythrocytes, and leukocytes) [
<xref rid="B126-cancers-11-01855" ref-type="bibr">126</xref>
]. These materials are generally well-tolerated, less recognized by MPS, and are eventually able to increase tumor targeting. For instance, ferritin-based NCs showed an intrinsic tumor homing as well as an improved performance compared to the liposomal formulation, when loaded with doxorubicin [
<xref rid="B127-cancers-11-01855" ref-type="bibr">127</xref>
]. Another pioneering approach exploited the use of engineered leukocytes membrane to enhance the NCs’ accumulation in the proximity of inflamed tumor tissues [
<xref rid="B128-cancers-11-01855" ref-type="bibr">128</xref>
].</p>
</sec>
<sec id="sec5dot1dot3-cancers-11-01855">
<title>5.1.3. Optimizing the Administration Route</title>
<p>Currently, most of the nanomedicines are intravenously injected, but to increase the NCs potential and adopt a more “disease-driven” approach, alternative administration routes might be considered. For instance, the local administration of drug-loaded NCs could perform better than the systemic one because it could reduce the off-target toxicity as well as increase the tumor accumulation bypassing the physiological barriers [
<xref rid="B54-cancers-11-01855" ref-type="bibr">54</xref>
]. This strategy is particularly recommended for non-metastatic tumors or when surgery is contraindicated [
<xref rid="B54-cancers-11-01855" ref-type="bibr">54</xref>
]. As recently reviewed, for lung cancer therapy, the pulmonary route has been explored to improve drug delivery [
<xref rid="B129-cancers-11-01855" ref-type="bibr">129</xref>
]. The local administration proved to be effective even in glioma models where drug-loaded NCs could show a safer toxicity profile compared to the free molecule [
<xref rid="B50-cancers-11-01855" ref-type="bibr">50</xref>
]. Furthermore, some clinically approved products take advantage of local administration: Hensify
<sup>®</sup>
(Nanobiotix, Rue de Wattignies, Paris, France) enhances the performance of radiotherapy in advanced soft tissue sarcoma, whereas intracranially injected iron oxide nanoparticles (Nanotherm
<sup>®</sup>
) efficiently induced hyperthermia in glioblastoma treatment [
<xref rid="B130-cancers-11-01855" ref-type="bibr">130</xref>
,
<xref rid="B131-cancers-11-01855" ref-type="bibr">131</xref>
]. In addition, non-conventional systemic administration routes may be investigated to specifically accumulate drugs to cellular or tissue targets. Particularly, non-invasive intranasal administration may be exploited for the nose-to-brain delivery, circumventing the first passage in the liver and the blood–brain barrier, thus increasing the fraction of drug at the target site [
<xref rid="B132-cancers-11-01855" ref-type="bibr">132</xref>
,
<xref rid="B133-cancers-11-01855" ref-type="bibr">133</xref>
]. On the other hand, intraperitoneally injection proved to be effective in targeting circulating macrophages, which, once repolarized, exhibited inherent tumor tropism [
<xref rid="B134-cancers-11-01855" ref-type="bibr">134</xref>
]. Finally, as demonstrated by the recent approval of DHP107 (Liporaxel
<sup>®</sup>
, DAE HWA Pharm, Seoul, Korea) the oral route has been investigated for increasing patient compliance and reduce the therapy costs [
<xref rid="B135-cancers-11-01855" ref-type="bibr">135</xref>
].</p>
</sec>
</sec>
<sec id="sec5dot2-cancers-11-01855">
<title>5.2. Nanoimmunology and New Targets</title>
<p>Although classical nanotherapies are directed towards cancer cells, innovative approaches rely on targeting alternative cellular components. Considering the increasing role of cancer immunotherapy, not surprisingly, most of these new targets belong to the immune system. As extensively reviewed, many approaches have been investigated to ameliorate the impact of cancer immunotherapy through the use of nanomedicine [
<xref rid="B14-cancers-11-01855" ref-type="bibr">14</xref>
,
<xref rid="B136-cancers-11-01855" ref-type="bibr">136</xref>
,
<xref rid="B137-cancers-11-01855" ref-type="bibr">137</xref>
]. Here we focus on those that directly modulate the activity of particular cellular mediators, such as tumor-associated macrophages (TAMs), myeloid-derived suppressor cells (MDSCs) and regulatory T cells (Treg) [
<xref rid="B138-cancers-11-01855" ref-type="bibr">138</xref>
]. TAMs are usually characterized by a high M2/M1 ratio, leading to an immunosuppressive environment that promotes tumor progression [
<xref rid="B139-cancers-11-01855" ref-type="bibr">139</xref>
]. The three main strategies, which target TAMs are (1) repolarization of M2 in M1; (2) abolishment of macrophage recruitment via cytokines inhibition; (3) eradication of M2 cells [
<xref rid="B138-cancers-11-01855" ref-type="bibr">138</xref>
,
<xref rid="B140-cancers-11-01855" ref-type="bibr">140</xref>
]. Notably, the selectivity towards M2 can be achieved by targeting the overexpressed mannose receptor [
<xref rid="B141-cancers-11-01855" ref-type="bibr">141</xref>
]. Moreover, the targeting of CD44, along with the intraperitoneal injection, leads to the macrophage-specific delivery exploitable for the repolarization strategy [
<xref rid="B134-cancers-11-01855" ref-type="bibr">134</xref>
].</p>
<p>Other currently investigated targets are the MDSCs, immature cells that contribute to tumor progression by releasing immunosuppressive cytokines [
<xref rid="B138-cancers-11-01855" ref-type="bibr">138</xref>
]. Nanomedicine aims to promote their differentiation into mature cells [
<xref rid="B142-cancers-11-01855" ref-type="bibr">142</xref>
,
<xref rid="B143-cancers-11-01855" ref-type="bibr">143</xref>
], as well as interfere with MDSCs accumulation/activity, by improving the drug delivery [
<xref rid="B144-cancers-11-01855" ref-type="bibr">144</xref>
].</p>
<p>Similarly, Tregs mediate the immunosuppression by inhibiting the activation and expansion of effector T cells, and their downregulation could be ameliorated by the use of NCs. In particular, Tregs can be actively targeted by using their specific markers, such as glucocorticoid-induced Tumor Necrosis Factor Receptor-related protein (GITR), or neuropilin-1 receptor by binding of tLyp1 peptide [
<xref rid="B145-cancers-11-01855" ref-type="bibr">145</xref>
,
<xref rid="B146-cancers-11-01855" ref-type="bibr">146</xref>
]. However, this therapeutic strategy needs to be further validated because Tregs instability could be associated with the onset of autoimmune disorders [
<xref rid="B147-cancers-11-01855" ref-type="bibr">147</xref>
].</p>
<p>In addition to immune cells, cancer-associated fibroblasts (CAFs) have been recently identified as candidates for antitumoral therapies because they are responsible for both immunosuppression and TME reorganization [
<xref rid="B148-cancers-11-01855" ref-type="bibr">148</xref>
,
<xref rid="B149-cancers-11-01855" ref-type="bibr">149</xref>
]. Alternatively, the TME can be directly modulated by NCs. Indeed, the reduction of tumor hypoxia, the restoration of physiological pH, and the inhibition of immunosuppressive soluble mediators impair the tumor progression improving the outcome of current therapies [
<xref rid="B150-cancers-11-01855" ref-type="bibr">150</xref>
].</p>
</sec>
<sec id="sec5dot3-cancers-11-01855">
<title>5.3. Companion Diagnostic</title>
<p>A promising strategy to improve nanomedicine efficacy is the companion diagnostic, which refers to a stratification of patients based on tumor characteristics. Different strategies are currently under investigation based on the use of biomarker profiles and imaging data. The first aims to identify circulating proteins associated with the TME and positively correlated to the EPR effect. For instance, the ratio of MMP9 to the tissue inhibitor of metalloproteinase 1, the collagen content in the capillary walls, and some angiogenesis markers have been shown to predict the EPR entity [
<xref rid="B13-cancers-11-01855" ref-type="bibr">13</xref>
]. On the other hand, radio-labeled and ferumoxytol-loaded NCs have been adopted to monitor their biodistribution by non-invasive techniques (e.g., Single Photon Emission Computed Tomography or Photon Emission Tomography and magnetic resonance imaging, respectively) [
<xref rid="B13-cancers-11-01855" ref-type="bibr">13</xref>
]. The final goal is selecting patients that present the highest probability to positively respond to a specific therapeutic treatment [
<xref rid="B31-cancers-11-01855" ref-type="bibr">31</xref>
]. However, to reach a real utility in clinics, these approaches need to be further validated by accurate correlative studies, defining a clear set of parameters and criteria able to predict the therapeutic outcome [
<xref rid="B9-cancers-11-01855" ref-type="bibr">9</xref>
].</p>
</sec>
</sec>
<sec sec-type="conclusions" id="sec6-cancers-11-01855">
<title>6. Conclusions</title>
<p>The unique attributes of nanoparticles allow clinicians of the 21st century to design innovative therapeutic strategies for use as monotherapies or to be combined with existing chemotherapeutic treatments or conventional radiotherapy. The recent advances achieved by researchers in the development of tumor-targeting NCs together with a faster data collection deriving from the study of their communication with the biological milieu has generated optimistic expectations for the rapid translation of this basic research into the clinical practice with immediate benefits for oncology patients. However, only a few nanodrugs have actually reached the marketplace and are now approved by the FDA or EMA for specific cancer treatments. This transitory failure has raised some criticisms on the real effectiveness of nanomedicine so that the huge amount of resources dedicated to the research in this field in the last decade has been questioned. This review highlights the main challenges that the scientific community, assisted by the health system and industry, should face in a virtuous joint effort aimed to bring the new discoveries to an established practice that would allow the regulatory bodies to accelerate the process toward the bedside (
<xref ref-type="sec" rid="sec4-cancers-11-01855">Section 4</xref>
). A well-standardized toolkit for the physicochemical, pharmacological, and immunological characterization of all newly developed nanodrugs should be defined before they can be approved for use in humans. The distribution of nanoparticle size, uniformity, surface coating, colloidal stability, and reproducibility from batch to batch also needs to be accurately regulated. Recently, attempts to overcome such barriers to the progression of nanooncology have suggested the definition of a “minimum information standard” for experimental protocols associated with the investigation of the nano–bio interface, leading to the so-called MIRIBEL (minimum information reporting in bio–nano-interaction) paradigm [
<xref rid="B95-cancers-11-01855" ref-type="bibr">95</xref>
]. The collection of three standard categories should be satisfied to fulfill the minimal requirement for good practice in nanomedicine, including appropriate material characterization, biological characterization, and details of experimental protocols. Furthermore, standardized assays for the assessment of short-term and long-term toxicity of nanoparticles will also need to be defined in 2D/3D cell cultures and animal models before approval for clinical trials. Eventually, the cross-fertilization of nanotechnology with recent progress in advanced immunotherapies, together with a renowned knowledge of the impact of environmental factors (e.g., microbiota) on cancer, is expected to trigger a new spur in nanomedicine discovery [
<xref rid="B151-cancers-11-01855" ref-type="bibr">151</xref>
,
<xref rid="B152-cancers-11-01855" ref-type="bibr">152</xref>
]. This entails that nanomedicine researches in the future will be invited to move from a limited “formulation-driven” approach to a preferential “disease-driven” setting, leading to a new era of nanooncology.</p>
</sec>
</body>
<back>
<notes>
<title>Author Contributions</title>
<p>The manuscript was written with the contribution of all the authors. L.S. and M.A.R. organized the collected materials. D.P. critically supervised the work.</p>
</notes>
<notes>
<title>Funding</title>
<p>This work has been supported by the project “Development of a biotechnological nanoparticle platform for the delivery of antitumor therapies using Patient Derived-Organoid library of breast cancer” funded by the MIUR Progetti di Ricerca di Rilevante Interesse Nazionale (PRIN) Bando 2017—grant 2017E3A2NR. This research received also funding from AIRC under IG 2018-ID. 21565 project—P.I. Prosperi Davide, and Direzione Generale Ricerca, Innovazione, Università, Export e Internazionalizzazione of the Regione Lombardia.</p>
</notes>
<notes notes-type="COI-statement">
<title>Conflicts of Interest</title>
<p>The authors declare no conflict of interest.</p>
</notes>
<ref-list>
<title>References</title>
<ref id="B1-cancers-11-01855">
<label>1.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Feynman</surname>
<given-names>R.P.</given-names>
</name>
</person-group>
<article-title>There’s Plenty of Room at the Bottom</article-title>
<source>Eng. Sci.</source>
<year>1960</year>
<volume>23</volume>
<fpage>22</fpage>
<lpage>36</lpage>
<comment>Available online:
<ext-link ext-link-type="uri" xlink:href="http://www.richardfeynman.com/">http://www.richardfeynman.com/</ext-link>
</comment>
<date-in-citation content-type="access-date" iso-8601-date="2019-11-22">(accessed on 22 November 2019)</date-in-citation>
</element-citation>
</ref>
<ref id="B2-cancers-11-01855">
<label>2.</label>
<element-citation publication-type="book">
<person-group person-group-type="author">
<name>
<surname>Tibbals</surname>
<given-names>H.F.</given-names>
</name>
</person-group>
<source>Medical Nanotechnology and Nanomedicine</source>
<edition>1st ed.</edition>
<publisher-name>CRC Press</publisher-name>
<publisher-loc>Boca Raton, FL, USA</publisher-loc>
<year>2011</year>
</element-citation>
</ref>
<ref id="B3-cancers-11-01855">
<label>3.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Etheridge</surname>
<given-names>M.L.</given-names>
</name>
<name>
<surname>Campbell</surname>
<given-names>S.A.</given-names>
</name>
<name>
<surname>Erdman</surname>
<given-names>A.G.</given-names>
</name>
<name>
<surname>Haynes</surname>
<given-names>C.L.</given-names>
</name>
<name>
<surname>Wolf</surname>
<given-names>S.M.</given-names>
</name>
<name>
<surname>McCullough</surname>
<given-names>J.</given-names>
</name>
</person-group>
<article-title>The big picture on nanomedicine: The state of investigational and approved nanoedicine products</article-title>
<source>Nanomed. Nanotechnol. Biol. Med.</source>
<year>2013</year>
<volume>9</volume>
<fpage>1</fpage>
<lpage>14</lpage>
<pub-id pub-id-type="doi">10.1016/j.nano.2012.05.013</pub-id>
<pub-id pub-id-type="pmid">22684017</pub-id>
</element-citation>
</ref>
<ref id="B4-cancers-11-01855">
<label>4.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Matsumura</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Maeda</surname>
<given-names>H.</given-names>
</name>
</person-group>
<article-title>A new concept for macromolecular therapeutics in cancer chemotherapy: Mechanism of tumoritropic accumulation of proteins and the antitumor agent smancs</article-title>
<source>Cancer Res.</source>
<year>1986</year>
<volume>12</volume>
<fpage>6387</fpage>
<lpage>6392</lpage>
</element-citation>
</ref>
<ref id="B5-cancers-11-01855">
<label>5.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Yuan</surname>
<given-names>F.</given-names>
</name>
<name>
<surname>Dellian</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Fukumura</surname>
<given-names>D.</given-names>
</name>
<name>
<surname>Leunig</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Berk</surname>
<given-names>D.A.</given-names>
</name>
<name>
<surname>Torchilin</surname>
<given-names>V.P.</given-names>
</name>
<name>
<surname>Jain</surname>
<given-names>R.K.</given-names>
</name>
</person-group>
<article-title>Vascular permeability in a human tumor xenograft: Molecular size dependence and cutoff size</article-title>
<source>Cancer Res.</source>
<year>1995</year>
<volume>55</volume>
<fpage>3752</fpage>
<lpage>3756</lpage>
<pub-id pub-id-type="pmid">7641188</pub-id>
</element-citation>
</ref>
<ref id="B6-cancers-11-01855">
<label>6.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Nakamura</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Mochida</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Choyke</surname>
<given-names>P.L.</given-names>
</name>
<name>
<surname>Kobayashi</surname>
<given-names>H.</given-names>
</name>
</person-group>
<article-title>Nanodrug Delivery: Is the Enhanced Permeability and Retention Effect Sufficient for Curing Cancer?</article-title>
<source>Bioconjugate Chem.</source>
<year>2016</year>
<volume>27</volume>
<fpage>2225</fpage>
<lpage>2238</lpage>
<pub-id pub-id-type="doi">10.1021/acs.bioconjchem.6b00437</pub-id>
<pub-id pub-id-type="pmid">27547843</pub-id>
</element-citation>
</ref>
<ref id="B7-cancers-11-01855">
<label>7.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Wang</surname>
<given-names>A.Z.</given-names>
</name>
<name>
<surname>Langer</surname>
<given-names>R.</given-names>
</name>
<name>
<surname>Farokhzad</surname>
<given-names>O.C.</given-names>
</name>
</person-group>
<article-title>Nanoparticle Delivery of Cancer Drugs</article-title>
<source>Annu. Rev. Med.</source>
<year>2012</year>
<volume>63</volume>
<fpage>185</fpage>
<lpage>198</lpage>
<pub-id pub-id-type="doi">10.1146/annurev-med-040210-162544</pub-id>
<pub-id pub-id-type="pmid">21888516</pub-id>
</element-citation>
</ref>
<ref id="B8-cancers-11-01855">
<label>8.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>He</surname>
<given-names>H.</given-names>
</name>
<name>
<surname>Liu</surname>
<given-names>L.</given-names>
</name>
<name>
<surname>Morin</surname>
<given-names>E.E.</given-names>
</name>
<name>
<surname>Liu</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Schwendeman</surname>
<given-names>A.</given-names>
</name>
</person-group>
<article-title>Survey of Clinical Translation of Cancer Nanomedicines-Lessons Learned from Successes and Failures</article-title>
<source>Acc. Chem. Res.</source>
<year>2019</year>
<volume>52</volume>
<fpage>2445</fpage>
<lpage>2461</lpage>
<pub-id pub-id-type="doi">10.1021/acs.accounts.9b00228</pub-id>
<pub-id pub-id-type="pmid">31424909</pub-id>
</element-citation>
</ref>
<ref id="B9-cancers-11-01855">
<label>9.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Hare</surname>
<given-names>J.I.</given-names>
</name>
<name>
<surname>Lammers</surname>
<given-names>T.</given-names>
</name>
<name>
<surname>Ashford</surname>
<given-names>M.B.</given-names>
</name>
<name>
<surname>Puri</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Storm</surname>
<given-names>G.</given-names>
</name>
<name>
<surname>Barry</surname>
<given-names>S.T.</given-names>
</name>
</person-group>
<article-title>Challenges and strategies in anti-cancer nanomedicine development: An industry perspective</article-title>
<source>Adv. Drug Deliv. Rev.</source>
<year>2017</year>
<volume>108</volume>
<fpage>25</fpage>
<lpage>38</lpage>
<pub-id pub-id-type="doi">10.1016/j.addr.2016.04.025</pub-id>
<pub-id pub-id-type="pmid">27137110</pub-id>
</element-citation>
</ref>
<ref id="B10-cancers-11-01855">
<label>10.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Youn</surname>
<given-names>Y.S.</given-names>
</name>
<name>
<surname>Bae</surname>
<given-names>Y.H.</given-names>
</name>
</person-group>
<article-title>Perspectives on the past, present, and future of cancer nanomedicine</article-title>
<source>Adv. Drug Deliv. Rev.</source>
<year>2018</year>
<volume>130</volume>
<fpage>3</fpage>
<lpage>11</lpage>
<pub-id pub-id-type="doi">10.1016/j.addr.2018.05.008</pub-id>
<pub-id pub-id-type="pmid">29778902</pub-id>
</element-citation>
</ref>
<ref id="B11-cancers-11-01855">
<label>11.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Wilhelm</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Anthony</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Tavares</surname>
<given-names>A.J.</given-names>
</name>
<name>
<surname>Dai</surname>
<given-names>Q.</given-names>
</name>
<name>
<surname>Ohta</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Audet</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Dvorak</surname>
<given-names>H.F.</given-names>
</name>
<name>
<surname>Chan</surname>
<given-names>W.C.W.</given-names>
</name>
</person-group>
<article-title>Analysis of nanoparticle delivery to tumours</article-title>
<source>Nat. Rev. Mater.</source>
<year>2016</year>
<volume>1</volume>
<fpage>16014</fpage>
<pub-id pub-id-type="doi">10.1038/natrevmats.2016.14</pub-id>
</element-citation>
</ref>
<ref id="B12-cancers-11-01855">
<label>12.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Danhier</surname>
<given-names>F.</given-names>
</name>
</person-group>
<article-title>To exploit the tumor microenvironment: Since the EPR effect fails in the clinic, what is the future of nanomedicine?</article-title>
<source>J. Control. Release</source>
<year>2016</year>
<volume>244</volume>
<fpage>108</fpage>
<lpage>121</lpage>
<pub-id pub-id-type="doi">10.1016/j.jconrel.2016.11.015</pub-id>
<pub-id pub-id-type="pmid">27871992</pub-id>
</element-citation>
</ref>
<ref id="B13-cancers-11-01855">
<label>13.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Shi</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Kantoff</surname>
<given-names>P.W.</given-names>
</name>
<name>
<surname>Wooster</surname>
<given-names>R.</given-names>
</name>
<name>
<surname>Farokhzad</surname>
<given-names>O.C.</given-names>
</name>
</person-group>
<article-title>Cancer nanomedicine: Progress, challenges and opportunities</article-title>
<source>Nat. Rev. Cancer</source>
<year>2017</year>
<volume>17</volume>
<fpage>20</fpage>
<lpage>37</lpage>
<pub-id pub-id-type="doi">10.1038/nrc.2016.108</pub-id>
<pub-id pub-id-type="pmid">27834398</pub-id>
</element-citation>
</ref>
<ref id="B14-cancers-11-01855">
<label>14.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Shi</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Lammers</surname>
<given-names>T.</given-names>
</name>
</person-group>
<article-title>Combining Nanomedicine and Immunotherapy</article-title>
<source>Acc. Chem. Res.</source>
<year>2019</year>
<volume>52</volume>
<fpage>1543</fpage>
<lpage>1554</lpage>
<pub-id pub-id-type="doi">10.1021/acs.accounts.9b00148</pub-id>
<pub-id pub-id-type="pmid">31120725</pub-id>
</element-citation>
</ref>
<ref id="B15-cancers-11-01855">
<label>15.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Tenzer</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Docter</surname>
<given-names>D.</given-names>
</name>
<name>
<surname>Kuharev</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Musyanovych</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Fetz</surname>
<given-names>V.</given-names>
</name>
<name>
<surname>Hecht</surname>
<given-names>R.</given-names>
</name>
<name>
<surname>Schlenk</surname>
<given-names>F.</given-names>
</name>
<name>
<surname>Fischer</surname>
<given-names>D.</given-names>
</name>
<name>
<surname>Kiouptsi</surname>
<given-names>K.</given-names>
</name>
<name>
<surname>Reinhardt</surname>
<given-names>C.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Rapid formation of plasma protein corona critically affects nanoparticle pathophysiology</article-title>
<source>Nat. Nanotechnol.</source>
<year>2013</year>
<volume>8</volume>
<fpage>772</fpage>
<lpage>781</lpage>
<pub-id pub-id-type="doi">10.1038/nnano.2013.181</pub-id>
<pub-id pub-id-type="pmid">24056901</pub-id>
</element-citation>
</ref>
<ref id="B16-cancers-11-01855">
<label>16.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Docter</surname>
<given-names>D.</given-names>
</name>
<name>
<surname>Westmeier</surname>
<given-names>D.</given-names>
</name>
<name>
<surname>Markiewicz</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Stolte</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Knauer</surname>
<given-names>S.K.</given-names>
</name>
<name>
<surname>Stauber</surname>
<given-names>R.H.</given-names>
</name>
</person-group>
<article-title>The nanoparticle biomolecule corona: Lessons learned-challenge accepted?</article-title>
<source>Chem. Soc. Rev.</source>
<year>2015</year>
<volume>44</volume>
<fpage>6094</fpage>
<lpage>6121</lpage>
<pub-id pub-id-type="doi">10.1039/C5CS00217F</pub-id>
<pub-id pub-id-type="pmid">26065524</pub-id>
</element-citation>
</ref>
<ref id="B17-cancers-11-01855">
<label>17.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Caracciolo</surname>
<given-names>G.</given-names>
</name>
<name>
<surname>Farokhzad</surname>
<given-names>O.C.</given-names>
</name>
<name>
<surname>Mahmoudi</surname>
<given-names>M.</given-names>
</name>
</person-group>
<article-title>Biological Identity of Nanoparticles In Vivo: Clinical Implications of the Protein Corona</article-title>
<source>Trends Biotechnol.</source>
<year>2017</year>
<volume>35</volume>
<fpage>257</fpage>
<lpage>264</lpage>
<pub-id pub-id-type="doi">10.1016/j.tibtech.2016.08.011</pub-id>
<pub-id pub-id-type="pmid">27663778</pub-id>
</element-citation>
</ref>
<ref id="B18-cancers-11-01855">
<label>18.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Ritz</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Schöttler</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Kotman</surname>
<given-names>N.</given-names>
</name>
<name>
<surname>Baier</surname>
<given-names>G.</given-names>
</name>
<name>
<surname>Musyanovych</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Kuharev</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Landfester</surname>
<given-names>K.</given-names>
</name>
<name>
<surname>Schild</surname>
<given-names>H.</given-names>
</name>
<name>
<surname>Jahn</surname>
<given-names>O.</given-names>
</name>
<name>
<surname>Tenzer</surname>
<given-names>S.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Protein Corona of Nanoparticles: Distinct Proteins Regulate the Cellular Uptake</article-title>
<source>Biomacromolecules</source>
<year>2015</year>
<volume>16</volume>
<fpage>1311</fpage>
<lpage>1321</lpage>
<pub-id pub-id-type="doi">10.1021/acs.biomac.5b00108</pub-id>
<pub-id pub-id-type="pmid">25794196</pub-id>
</element-citation>
</ref>
<ref id="B19-cancers-11-01855">
<label>19.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Ding</surname>
<given-names>L.</given-names>
</name>
<name>
<surname>Yao</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>Yin</surname>
<given-names>X.</given-names>
</name>
<name>
<surname>Li</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>Huang</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Wu</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Wang</surname>
<given-names>B.</given-names>
</name>
<name>
<surname>Guo</surname>
<given-names>X.</given-names>
</name>
<name>
<surname>Wang</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Wu</surname>
<given-names>M.</given-names>
</name>
</person-group>
<article-title>Size, Shape, and Protein Corona Determine Cellular Uptake and Removal Mechanisms of Gold Nanoparticles</article-title>
<source>Small</source>
<year>2018</year>
<volume>14</volume>
<fpage>1801451</fpage>
<pub-id pub-id-type="doi">10.1002/smll.201801451</pub-id>
</element-citation>
</ref>
<ref id="B20-cancers-11-01855">
<label>20.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Nguyen</surname>
<given-names>V.H.</given-names>
</name>
<name>
<surname>Lee</surname>
<given-names>B.</given-names>
</name>
</person-group>
<article-title>Protein corona: A new approach for nanomedicine design</article-title>
<source>Int. J. Nanomed.</source>
<year>2017</year>
<volume>12</volume>
<fpage>3137</fpage>
<lpage>3151</lpage>
<pub-id pub-id-type="doi">10.2147/IJN.S129300</pub-id>
</element-citation>
</ref>
<ref id="B21-cancers-11-01855">
<label>21.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Oh</surname>
<given-names>J.Y.</given-names>
</name>
<name>
<surname>Kim</surname>
<given-names>H.S.</given-names>
</name>
<name>
<surname>Palanikumar</surname>
<given-names>L.</given-names>
</name>
<name>
<surname>Go</surname>
<given-names>E.M.</given-names>
</name>
<name>
<surname>Jana</surname>
<given-names>B.</given-names>
</name>
<name>
<surname>Park</surname>
<given-names>S.A.</given-names>
</name>
<name>
<surname>Kim</surname>
<given-names>H.Y.</given-names>
</name>
<name>
<surname>Kim</surname>
<given-names>K.</given-names>
</name>
<name>
<surname>Seo</surname>
<given-names>J.K.</given-names>
</name>
<name>
<surname>Kwak</surname>
<given-names>S.K.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Cloaking nanoparticles with protein corona shield for targeted drug delivery</article-title>
<source>Nat. Commun.</source>
<year>2018</year>
<volume>9</volume>
<fpage>4548</fpage>
<pub-id pub-id-type="doi">10.1038/s41467-018-06979-4</pub-id>
<pub-id pub-id-type="pmid">30382085</pub-id>
</element-citation>
</ref>
<ref id="B22-cancers-11-01855">
<label>22.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Choi</surname>
<given-names>H.S.</given-names>
</name>
<name>
<surname>Liu</surname>
<given-names>W.</given-names>
</name>
<name>
<surname>Misra</surname>
<given-names>P.</given-names>
</name>
<name>
<surname>Tanaka</surname>
<given-names>E.</given-names>
</name>
<name>
<surname>Zimmer</surname>
<given-names>J.P.</given-names>
</name>
<name>
<surname>Itty Ipe</surname>
<given-names>B.</given-names>
</name>
<name>
<surname>Bawendi</surname>
<given-names>M.G.</given-names>
</name>
<name>
<surname>Frangioni</surname>
<given-names>J.V.</given-names>
</name>
</person-group>
<article-title>Renal clearance of nanoparticles</article-title>
<source>Nat. Biotechnol.</source>
<year>2007</year>
<volume>25</volume>
<fpage>1165</fpage>
<lpage>1170</lpage>
<pub-id pub-id-type="doi">10.1038/nbt1340</pub-id>
<pub-id pub-id-type="pmid">17891134</pub-id>
</element-citation>
</ref>
<ref id="B23-cancers-11-01855">
<label>23.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Rizzuto</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Salvioni</surname>
<given-names>L.</given-names>
</name>
<name>
<surname>Rotem</surname>
<given-names>R.</given-names>
</name>
<name>
<surname>Colombo</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Zanoni</surname>
<given-names>I.</given-names>
</name>
<name>
<surname>Granucci</surname>
<given-names>F.</given-names>
</name>
<name>
<surname>Prosperi</surname>
<given-names>D.</given-names>
</name>
</person-group>
<article-title>Are nanotechnological approaches the future of treating inflammatory diseases?</article-title>
<source>Nanomedicine</source>
<year>2019</year>
<volume>14</volume>
<fpage>2379</fpage>
<lpage>2390</lpage>
<pub-id pub-id-type="doi">10.2217/nnm-2019-0159</pub-id>
<pub-id pub-id-type="pmid">31414616</pub-id>
</element-citation>
</ref>
<ref id="B24-cancers-11-01855">
<label>24.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Campbell</surname>
<given-names>F.</given-names>
</name>
<name>
<surname>Bos</surname>
<given-names>F.L.</given-names>
</name>
<name>
<surname>Sieber</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Arias-Alpizar</surname>
<given-names>G.</given-names>
</name>
<name>
<surname>Koch</surname>
<given-names>B.E.</given-names>
</name>
<name>
<surname>Huwyler</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Kros</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Bussmann</surname>
<given-names>J.</given-names>
</name>
</person-group>
<article-title>Directing Nanoparticle Biodistribution through Evasion and Exploitation of Stab2-Dependent Nanoparticle Uptake</article-title>
<source>ACS Nano</source>
<year>2018</year>
<volume>12</volume>
<fpage>2138</fpage>
<lpage>2150</lpage>
<pub-id pub-id-type="doi">10.1021/acsnano.7b06995</pub-id>
<pub-id pub-id-type="pmid">29320626</pub-id>
</element-citation>
</ref>
<ref id="B25-cancers-11-01855">
<label>25.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Wei</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Quan</surname>
<given-names>L.</given-names>
</name>
<name>
<surname>Zhou</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>Zhan</surname>
<given-names>Q.</given-names>
</name>
</person-group>
<article-title>Factors relating to the biodistribution & clearance of nanoparticles & their effects on in vivo application</article-title>
<source>Nanomedicine</source>
<year>2018</year>
<volume>13</volume>
<fpage>1495</fpage>
<lpage>1512</lpage>
<pub-id pub-id-type="doi">10.2217/nnm-2018-0040</pub-id>
<pub-id pub-id-type="pmid">29972677</pub-id>
</element-citation>
</ref>
<ref id="B26-cancers-11-01855">
<label>26.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Pérez-Campaña</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>Gómez-Vallejo</surname>
<given-names>V.</given-names>
</name>
<name>
<surname>Puigivila</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Martín</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Calvo-Fernández</surname>
<given-names>T.</given-names>
</name>
<name>
<surname>Moya</surname>
<given-names>S.E.</given-names>
</name>
<name>
<surname>Ziolo</surname>
<given-names>R.F.</given-names>
</name>
<name>
<surname>Reese</surname>
<given-names>T.</given-names>
</name>
<name>
<surname>Llop</surname>
<given-names>J.</given-names>
</name>
</person-group>
<article-title>Biodistribution of different sized nanoparticles assessed by positron emission tomography: A general strategy for direct activation of metal oxide particles</article-title>
<source>ACS Nano</source>
<year>2013</year>
<volume>7</volume>
<fpage>3498</fpage>
<lpage>3505</lpage>
<pub-id pub-id-type="doi">10.1021/nn400450p</pub-id>
<pub-id pub-id-type="pmid">23473535</pub-id>
</element-citation>
</ref>
<ref id="B27-cancers-11-01855">
<label>27.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Li</surname>
<given-names>S.D.</given-names>
</name>
<name>
<surname>Huang</surname>
<given-names>L.</given-names>
</name>
</person-group>
<article-title>Pharmacokinetics and Biodistribution of Nanoparticles</article-title>
<source>Mol. Pharm.</source>
<year>2008</year>
<volume>5</volume>
<fpage>496</fpage>
<lpage>504</lpage>
<pub-id pub-id-type="doi">10.1021/mp800049w</pub-id>
<pub-id pub-id-type="pmid">18611037</pub-id>
</element-citation>
</ref>
<ref id="B28-cancers-11-01855">
<label>28.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Duan</surname>
<given-names>X.</given-names>
</name>
<name>
<surname>Li</surname>
<given-names>Y.</given-names>
</name>
</person-group>
<article-title>Physicochemical characteristics of nanoparticles affect circulation, biodistribution, cellular internalization, and trafficking</article-title>
<source>Small</source>
<year>2013</year>
<volume>9</volume>
<fpage>1521</fpage>
<lpage>1532</lpage>
<pub-id pub-id-type="doi">10.1002/smll.201201390</pub-id>
<pub-id pub-id-type="pmid">23019091</pub-id>
</element-citation>
</ref>
<ref id="B29-cancers-11-01855">
<label>29.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Black</surname>
<given-names>K.C.</given-names>
</name>
<name>
<surname>Wang</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Luehmann</surname>
<given-names>H.P.</given-names>
</name>
<name>
<surname>Cai</surname>
<given-names>X.</given-names>
</name>
<name>
<surname>Xing</surname>
<given-names>W.</given-names>
</name>
<name>
<surname>Pang</surname>
<given-names>B.</given-names>
</name>
<name>
<surname>Zhao</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Cutler</surname>
<given-names>C.S.</given-names>
</name>
<name>
<surname>Wang</surname>
<given-names>L.V.</given-names>
</name>
<name>
<surname>Liu</surname>
<given-names>Y.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Radioactive 198Au-doped nanostructures with different shapes for in vivo analyses of their biodistribution, tumor uptake, and intratumoral distribution</article-title>
<source>ACS Nano</source>
<year>2014</year>
<volume>8</volume>
<fpage>4385</fpage>
<lpage>4394</lpage>
<pub-id pub-id-type="doi">10.1021/nn406258m</pub-id>
<pub-id pub-id-type="pmid">24766522</pub-id>
</element-citation>
</ref>
<ref id="B30-cancers-11-01855">
<label>30.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Zhang</surname>
<given-names>L.</given-names>
</name>
<name>
<surname>Cao</surname>
<given-names>Z.</given-names>
</name>
<name>
<surname>Li</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Ella-Menye</surname>
<given-names>J.R.</given-names>
</name>
<name>
<surname>Bai</surname>
<given-names>T.</given-names>
</name>
<name>
<surname>Jiang</surname>
<given-names>S.</given-names>
</name>
</person-group>
<article-title>Softer Zwitterionic Nanogels for Longer Circulation and Lower Splenic accumulation</article-title>
<source>ACS Nano</source>
<year>2012</year>
<volume>6</volume>
<fpage>6681</fpage>
<lpage>6686</lpage>
<pub-id pub-id-type="doi">10.1021/nn301159a</pub-id>
<pub-id pub-id-type="pmid">22830983</pub-id>
</element-citation>
</ref>
<ref id="B31-cancers-11-01855">
<label>31.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Wolfram</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Ferrari</surname>
<given-names>M.</given-names>
</name>
</person-group>
<article-title>Clinical cancer nanomedicine</article-title>
<source>Nano Today</source>
<year>2019</year>
<volume>25</volume>
<fpage>85</fpage>
<lpage>98</lpage>
<pub-id pub-id-type="doi">10.1016/j.nantod.2019.02.005</pub-id>
<pub-id pub-id-type="pmid">31360214</pub-id>
</element-citation>
</ref>
<ref id="B32-cancers-11-01855">
<label>32.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Moghimi</surname>
<given-names>S.M.</given-names>
</name>
<name>
<surname>Andersena</surname>
<given-names>A.J.</given-names>
</name>
<name>
<surname>Hashemia</surname>
<given-names>S.H.</given-names>
</name>
<name>
<surname>Lettiero</surname>
<given-names>B.</given-names>
</name>
<name>
<surname>Ahmadvanda</surname>
<given-names>D.</given-names>
</name>
<name>
<surname>Hunterb</surname>
<given-names>A.C.</given-names>
</name>
<name>
<surname>Andresenc</surname>
<given-names>T.L.</given-names>
</name>
<name>
<surname>Hamadd</surname>
<given-names>I.</given-names>
</name>
<name>
<surname>Szebenie</surname>
<given-names>J.</given-names>
</name>
</person-group>
<article-title>Complement activation cascade triggered by PEG–PL engineered nanomedicines and carbon nanotubes: The challenges ahead</article-title>
<source>J. Controll. Release</source>
<year>2010</year>
<volume>146</volume>
<fpage>175</fpage>
<lpage>181</lpage>
<pub-id pub-id-type="doi">10.1016/j.jconrel.2010.04.003</pub-id>
<pub-id pub-id-type="pmid">20388529</pub-id>
</element-citation>
</ref>
<ref id="B33-cancers-11-01855">
<label>33.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Marina</surname>
<given-names>N.M.</given-names>
</name>
<name>
<surname>Cochrane</surname>
<given-names>D.</given-names>
</name>
<name>
<surname>Harney</surname>
<given-names>E.</given-names>
</name>
<name>
<surname>Zomorodi</surname>
<given-names>K.</given-names>
</name>
<name>
<surname>Blaney</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Winick</surname>
<given-names>N.</given-names>
</name>
<name>
<surname>Bernstein</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Link</surname>
<given-names>M.P.</given-names>
</name>
</person-group>
<article-title>Dose escalation and pharmacokinetics of pegylated liposomal doxorubicin (Doxil) in children with solid tumors: A pediatric oncology group study</article-title>
<source>Clin. Cancer Res.</source>
<year>2002</year>
<volume>8</volume>
<fpage>413</fpage>
<lpage>418</lpage>
<pub-id pub-id-type="pmid">11839657</pub-id>
</element-citation>
</ref>
<ref id="B34-cancers-11-01855">
<label>34.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Rodriguez</surname>
<given-names>P.L.</given-names>
</name>
<name>
<surname>Harada</surname>
<given-names>T.</given-names>
</name>
<name>
<surname>Christian</surname>
<given-names>D.A.</given-names>
</name>
<name>
<surname>Pantano</surname>
<given-names>D.A.</given-names>
</name>
<name>
<surname>Tsai</surname>
<given-names>R.K.</given-names>
</name>
<name>
<surname>Discher</surname>
<given-names>D.E.</given-names>
</name>
</person-group>
<article-title>Minimal “Self” peptides that inhibit phagocytic clearance and enhance delivery of nanoparticles</article-title>
<source>Science</source>
<year>2013</year>
<volume>339</volume>
<fpage>971</fpage>
<lpage>975</lpage>
<pub-id pub-id-type="doi">10.1126/science.1229568</pub-id>
<pub-id pub-id-type="pmid">23430657</pub-id>
</element-citation>
</ref>
<ref id="B35-cancers-11-01855">
<label>35.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Parodi</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Molinaro</surname>
<given-names>R.</given-names>
</name>
<name>
<surname>Sushnitha</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Evangelopoulos</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Martinez</surname>
<given-names>J.O.</given-names>
</name>
<name>
<surname>Arrighetti</surname>
<given-names>N.</given-names>
</name>
<name>
<surname>Corbo</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>Tasciotti</surname>
<given-names>E.</given-names>
</name>
</person-group>
<article-title>Bio-inspired engineering of cell- and virus-like nanoparticles for drug delivery</article-title>
<source>Biomaterials</source>
<year>2017</year>
<volume>147</volume>
<fpage>155</fpage>
<lpage>168</lpage>
<pub-id pub-id-type="doi">10.1016/j.biomaterials.2017.09.020</pub-id>
<pub-id pub-id-type="pmid">28946131</pub-id>
</element-citation>
</ref>
<ref id="B36-cancers-11-01855">
<label>36.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Junttila</surname>
<given-names>M.R.</given-names>
</name>
<name>
<surname>de Sauvage</surname>
<given-names>F.J.</given-names>
</name>
</person-group>
<article-title>Influence of tumour micro-environment heterogeneity on therapeutic response</article-title>
<source>Nature</source>
<year>2013</year>
<volume>501</volume>
<fpage>346</fpage>
<lpage>354</lpage>
<pub-id pub-id-type="doi">10.1038/nature12626</pub-id>
<pub-id pub-id-type="pmid">24048067</pub-id>
</element-citation>
</ref>
<ref id="B37-cancers-11-01855">
<label>37.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Quail</surname>
<given-names>D.F.</given-names>
</name>
<name>
<surname>Joyce</surname>
<given-names>J.A.</given-names>
</name>
</person-group>
<article-title>Microenvironmental regulation of tumor progression and metastasis</article-title>
<source>Nat. Med.</source>
<year>2013</year>
<volume>19</volume>
<fpage>1423</fpage>
<lpage>1437</lpage>
<pub-id pub-id-type="doi">10.1038/nm.3394</pub-id>
<pub-id pub-id-type="pmid">24202395</pub-id>
</element-citation>
</ref>
<ref id="B38-cancers-11-01855">
<label>38.</label>
<element-citation publication-type="book">
<person-group person-group-type="author">
<name>
<surname>Maeda</surname>
<given-names>H.</given-names>
</name>
</person-group>
<article-title>Enhanced Permeability and Retention (EPR) Efect: Basis for Drug Targeting to Tumor</article-title>
<source>Biomedical Aspects of Drug Targeting</source>
<person-group person-group-type="editor">
<name>
<surname>Muzykantov</surname>
<given-names>V.</given-names>
</name>
<name>
<surname>Torchilin</surname>
<given-names>V.</given-names>
</name>
</person-group>
<publisher-name>Springer</publisher-name>
<publisher-loc>Boston, MA, USA</publisher-loc>
<year>2002</year>
<fpage>211</fpage>
<lpage>228</lpage>
</element-citation>
</ref>
<ref id="B39-cancers-11-01855">
<label>39.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Natfji</surname>
<given-names>A.A.</given-names>
</name>
<name>
<surname>Ravishankar</surname>
<given-names>D.</given-names>
</name>
<name>
<surname>Osborn</surname>
<given-names>H.M.I.</given-names>
</name>
<name>
<surname>Greco</surname>
<given-names>F.</given-names>
</name>
</person-group>
<article-title>Parameters Affecting the Enhanced Permeability and Retention Effect: The Need for Patient Selection</article-title>
<source>J. Pharm. Sci.</source>
<year>2017</year>
<volume>106</volume>
<fpage>3179</fpage>
<lpage>3187</lpage>
<pub-id pub-id-type="doi">10.1016/j.xphs.2017.06.019</pub-id>
<pub-id pub-id-type="pmid">28669714</pub-id>
</element-citation>
</ref>
<ref id="B40-cancers-11-01855">
<label>40.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Moghimi</surname>
<given-names>S.M.</given-names>
</name>
<name>
<surname>Simberg</surname>
<given-names>D.</given-names>
</name>
</person-group>
<article-title>Nanoparticle transport pathways into tumors</article-title>
<source>J. Nanopart. Res.</source>
<year>2018</year>
<volume>20</volume>
<fpage>169</fpage>
<pub-id pub-id-type="doi">10.1007/s11051-018-4273-8</pub-id>
<pub-id pub-id-type="pmid">29950922</pub-id>
</element-citation>
</ref>
<ref id="B41-cancers-11-01855">
<label>41.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Matsumoto</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Nichols</surname>
<given-names>J.W.</given-names>
</name>
<name>
<surname>Toh</surname>
<given-names>K.</given-names>
</name>
<name>
<surname>Nomoto</surname>
<given-names>T.</given-names>
</name>
<name>
<surname>Cabral</surname>
<given-names>H.</given-names>
</name>
<name>
<surname>Miura</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Christie</surname>
<given-names>R.J.</given-names>
</name>
<name>
<surname>Yamada</surname>
<given-names>N.</given-names>
</name>
<name>
<surname>Ogura</surname>
<given-names>T.</given-names>
</name>
<name>
<surname>Kano</surname>
<given-names>M.R.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Vascular bursts enhance permeability of tumour blood vessels and improve nanoparticle delivery</article-title>
<source>Nat. Nanotechnol.</source>
<year>2016</year>
<volume>11</volume>
<fpage>533</fpage>
<lpage>538</lpage>
<pub-id pub-id-type="doi">10.1038/nnano.2015.342</pub-id>
<pub-id pub-id-type="pmid">26878143</pub-id>
</element-citation>
</ref>
<ref id="B42-cancers-11-01855">
<label>42.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Nicolas-Boluda</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Silva</surname>
<given-names>A.K.A.</given-names>
</name>
<name>
<surname>Fournel</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Gazeau</surname>
<given-names>F.</given-names>
</name>
</person-group>
<article-title>Physical oncology: New targets for nanomedicine</article-title>
<source>Biomaterials</source>
<year>2018</year>
<volume>150</volume>
<fpage>87</fpage>
<lpage>99</lpage>
<pub-id pub-id-type="doi">10.1016/j.biomaterials.2017.10.014</pub-id>
<pub-id pub-id-type="pmid">29035739</pub-id>
</element-citation>
</ref>
<ref id="B43-cancers-11-01855">
<label>43.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>El-Sawy</surname>
<given-names>H.S.</given-names>
</name>
<name>
<surname>Al-Abd</surname>
<given-names>A.M.</given-names>
</name>
<name>
<surname>Ahmed</surname>
<given-names>T.A.</given-names>
</name>
<name>
<surname>El-Say</surname>
<given-names>K.M.</given-names>
</name>
<name>
<surname>Torchilin</surname>
<given-names>V.P.</given-names>
</name>
</person-group>
<article-title>Stimuli-Responsive Nano-Architecture Drug-Delivery Systems to Solid Tumor Micromilieu: Past, Present, and Future Perspectives</article-title>
<source>ACS Nano</source>
<year>2018</year>
<volume>12</volume>
<fpage>10636</fpage>
<lpage>10664</lpage>
<pub-id pub-id-type="doi">10.1021/acsnano.8b06104</pub-id>
<pub-id pub-id-type="pmid">30335963</pub-id>
</element-citation>
</ref>
<ref id="B44-cancers-11-01855">
<label>44.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Sun</surname>
<given-names>Q.</given-names>
</name>
<name>
<surname>Ojha</surname>
<given-names>T.</given-names>
</name>
<name>
<surname>Kiessling</surname>
<given-names>F.</given-names>
</name>
<name>
<surname>Lammers</surname>
<given-names>T.</given-names>
</name>
<name>
<surname>Yang Shi</surname>
<given-names>Y.</given-names>
</name>
</person-group>
<article-title>Enhancing Tumor Penetration of Nanomedicines</article-title>
<source>Biomacromolecules</source>
<year>2017</year>
<volume>185</volume>
<fpage>1449</fpage>
<lpage>1459</lpage>
<pub-id pub-id-type="doi">10.1021/acs.biomac.7b00068</pub-id>
<pub-id pub-id-type="pmid">28328191</pub-id>
</element-citation>
</ref>
<ref id="B45-cancers-11-01855">
<label>45.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Zhang</surname>
<given-names>Y.R.</given-names>
</name>
<name>
<surname>Lin</surname>
<given-names>R.</given-names>
</name>
<name>
<surname>Li</surname>
<given-names>H.J.</given-names>
</name>
<name>
<surname>He</surname>
<given-names>W.L.</given-names>
</name>
<name>
<surname>Du</surname>
<given-names>J.Z.</given-names>
</name>
<name>
<surname>Wang</surname>
<given-names>J.</given-names>
</name>
</person-group>
<article-title>Strategies to improve tumor penetration of nanomedicines through nanoparticle design</article-title>
<source>Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol.</source>
<year>2019</year>
<volume>11</volume>
<fpage>e1519</fpage>
<pub-id pub-id-type="doi">10.1002/wnan.1519</pub-id>
<pub-id pub-id-type="pmid">29659166</pub-id>
</element-citation>
</ref>
<ref id="B46-cancers-11-01855">
<label>46.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Han</surname>
<given-names>D.</given-names>
</name>
<name>
<surname>Qi</surname>
<given-names>H.</given-names>
</name>
<name>
<surname>Huang</surname>
<given-names>K.</given-names>
</name>
<name>
<surname>Li</surname>
<given-names>X.</given-names>
</name>
<name>
<surname>Zhan</surname>
<given-names>Q.</given-names>
</name>
<name>
<surname>Zhao</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Xin Hou</surname>
<given-names>X.</given-names>
</name>
<name>
<surname>Xianjin Yang</surname>
<given-names>X.</given-names>
</name>
<name>
<surname>Kang</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>Yuan</surname>
<given-names>X.</given-names>
</name>
</person-group>
<article-title>The effects of surface charge on the intra-tumor penetration of drug delivery vehicles with tumor progression</article-title>
<source>J. Mater. Chem. B</source>
<year>2018</year>
<volume>6</volume>
<fpage>3331</fpage>
<lpage>3339</lpage>
<pub-id pub-id-type="doi">10.1039/C8TB00038G</pub-id>
</element-citation>
</ref>
<ref id="B47-cancers-11-01855">
<label>47.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Stylianopoulos</surname>
<given-names>T.</given-names>
</name>
<name>
<surname>Poh</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Insin</surname>
<given-names>N.</given-names>
</name>
<name>
<surname>Bawendi</surname>
<given-names>M.G.</given-names>
</name>
<name>
<surname>Fukumura</surname>
<given-names>D.</given-names>
</name>
<name>
<surname>Munn</surname>
<given-names>L.L.</given-names>
</name>
<name>
<surname>Jain</surname>
<given-names>R.K.</given-names>
</name>
</person-group>
<article-title>Diffusion of Particles in the Extracellular Matrix: The Effect of Repulsive Electrostatic Interactions</article-title>
<source>Biophys. J.</source>
<year>2010</year>
<volume>99</volume>
<fpage>1342</fpage>
<lpage>1349</lpage>
<pub-id pub-id-type="doi">10.1016/j.bpj.2010.06.016</pub-id>
<pub-id pub-id-type="pmid">20816045</pub-id>
</element-citation>
</ref>
<ref id="B48-cancers-11-01855">
<label>48.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Wang</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Xie</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Li</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Peng</surname>
<given-names>Z.</given-names>
</name>
<name>
<surname>Sheinin</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Zhou</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>David Oupický</surname>
<given-names>D.</given-names>
</name>
</person-group>
<article-title>Tumor-Penetrating Nanoparticles for Enhanced Anticancer Activity of Combined Photodynamic and Hypoxia-Activated Therapy</article-title>
<source>ACS Nano</source>
<year>2017</year>
<volume>11</volume>
<fpage>2227</fpage>
<lpage>2238</lpage>
<pub-id pub-id-type="doi">10.1021/acsnano.6b08731</pub-id>
<pub-id pub-id-type="pmid">28165223</pub-id>
</element-citation>
</ref>
<ref id="B49-cancers-11-01855">
<label>49.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Ding</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Jinjian Liu</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Zhang</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Li</surname>
<given-names>X.</given-names>
</name>
<name>
<surname>Ou</surname>
<given-names>H.</given-names>
</name>
<name>
<surname>Cheng</surname>
<given-names>T.</given-names>
</name>
<name>
<surname>Ma</surname>
<given-names>L.</given-names>
</name>
<name>
<surname>An</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Liu</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Huang</surname>
<given-names>F.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>A novel strategy based on a ligand-switchable nanoparticle delivery system for deep tumor penetration</article-title>
<source>Nanoscale Horiz.</source>
<year>2019</year>
<volume>4</volume>
<fpage>658</fpage>
<lpage>666</lpage>
<pub-id pub-id-type="doi">10.1039/C8NH00415C</pub-id>
</element-citation>
</ref>
<ref id="B50-cancers-11-01855">
<label>50.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Zhang</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>Nance</surname>
<given-names>E.A.</given-names>
</name>
<name>
<surname>Mastorakos</surname>
<given-names>P.</given-names>
</name>
<name>
<surname>Chisholm</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Berry</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Eberharth</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>Tyler</surname>
<given-names>B.</given-names>
</name>
<name>
<surname>Brem</surname>
<given-names>H.</given-names>
</name>
<name>
<surname>Suk</surname>
<given-names>J.S.</given-names>
</name>
<name>
<surname>Hanes</surname>
<given-names>J.</given-names>
</name>
</person-group>
<article-title>Convection enhanced delivery of cisplatin-loaded brain penetrating nanoparticles cures malignant glioma in rats</article-title>
<source>J. Control. Release</source>
<year>2017</year>
<volume>263</volume>
<fpage>112</fpage>
<lpage>119</lpage>
<pub-id pub-id-type="doi">10.1016/j.jconrel.2017.03.007</pub-id>
<pub-id pub-id-type="pmid">28279797</pub-id>
</element-citation>
</ref>
<ref id="B51-cancers-11-01855">
<label>51.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Huang</surname>
<given-names>X.</given-names>
</name>
<name>
<surname>Chisholm</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Zhuang</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Xiao</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Duncan</surname>
<given-names>G.</given-names>
</name>
<name>
<surname>Chen</surname>
<given-names>X.</given-names>
</name>
<name>
<surname>Suk</surname>
<given-names>J.S.</given-names>
</name>
<name>
<surname>Hanes</surname>
<given-names>J.</given-names>
</name>
</person-group>
<article-title>Protein nanocages that penetrate airway mucus and tumor tissue</article-title>
<source>Proc. Natl. Acad. Sci. USA</source>
<year>2017</year>
<volume>114</volume>
<fpage>E6595</fpage>
<lpage>E6602</lpage>
<pub-id pub-id-type="doi">10.1073/pnas.1705407114</pub-id>
<pub-id pub-id-type="pmid">28739953</pub-id>
</element-citation>
</ref>
<ref id="B52-cancers-11-01855">
<label>52.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Bellini</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Mazzucchelli</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Galbiati</surname>
<given-names>E.</given-names>
</name>
<name>
<surname>Sommaruga</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Fiandra</surname>
<given-names>L.</given-names>
</name>
<name>
<surname>Truffi</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Rizzuto</surname>
<given-names>M.A.</given-names>
</name>
<name>
<surname>Colombo</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Tortora</surname>
<given-names>P.</given-names>
</name>
<name>
<surname>Corsi</surname>
<given-names>F.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Protein nanocages for self-triggered nuclear delivery of DNA-targeted chemotherapeutics in Cancer Cells</article-title>
<source>J. Control. Release</source>
<year>2014</year>
<volume>196</volume>
<fpage>184</fpage>
<lpage>196</lpage>
<pub-id pub-id-type="doi">10.1016/j.jconrel.2014.10.002</pub-id>
<pub-id pub-id-type="pmid">25312541</pub-id>
</element-citation>
</ref>
<ref id="B53-cancers-11-01855">
<label>53.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Wahilich</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Desai</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Greco</surname>
<given-names>F.</given-names>
</name>
<name>
<surname>Hill</surname>
<given-names>K.</given-names>
</name>
<name>
<surname>Jones</surname>
<given-names>A.T.</given-names>
</name>
<name>
<surname>Mrsny</surname>
<given-names>R.J.</given-names>
</name>
<name>
<surname>Pasut</surname>
<given-names>G.</given-names>
</name>
<name>
<surname>Perrie</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Seib</surname>
<given-names>F.P.</given-names>
</name>
<name>
<surname>Seymour</surname>
<given-names>L.W.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Nanomedicines for the Delivery of Biologics</article-title>
<source>Pharmaceutics</source>
<year>2019</year>
<volume>11</volume>
<elocation-id>210</elocation-id>
<pub-id pub-id-type="doi">10.3390/pharmaceutics11050210</pub-id>
</element-citation>
</ref>
<ref id="B54-cancers-11-01855">
<label>54.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Rosenblum</surname>
<given-names>D.</given-names>
</name>
<name>
<surname>Joshi</surname>
<given-names>N.</given-names>
</name>
<name>
<surname>Tao</surname>
<given-names>W.</given-names>
</name>
<name>
<surname>Karp</surname>
<given-names>J.M.</given-names>
</name>
<name>
<surname>Peer</surname>
<given-names>D.</given-names>
</name>
</person-group>
<article-title>Progress and challenges towards targeted delivery of cancer therapeutics</article-title>
<source>Nat. Commun.</source>
<year>2018</year>
<volume>9</volume>
<fpage>1410</fpage>
<pub-id pub-id-type="doi">10.1038/s41467-018-03705-y</pub-id>
<pub-id pub-id-type="pmid">29650952</pub-id>
</element-citation>
</ref>
<ref id="B55-cancers-11-01855">
<label>55.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Du</surname>
<given-names>X.</given-names>
</name>
<name>
<surname>Li</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Xia</surname>
<given-names>Y.L.</given-names>
</name>
<name>
<surname>Ai</surname>
<given-names>S.M.</given-names>
</name>
<name>
<surname>Liang</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Sang</surname>
<given-names>P.</given-names>
</name>
<name>
<surname>Ji</surname>
<given-names>X.L.</given-names>
</name>
<name>
<surname>Liu</surname>
<given-names>S.Q.</given-names>
</name>
</person-group>
<article-title>Insights into Protein-Ligand Interactions: Mechanisms, Models, and Methods</article-title>
<source>Int. J. Mol. Sci.</source>
<year>2016</year>
<volume>17</volume>
<elocation-id>144</elocation-id>
<pub-id pub-id-type="doi">10.3390/ijms17020144</pub-id>
</element-citation>
</ref>
<ref id="B56-cancers-11-01855">
<label>56.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Selby</surname>
<given-names>L.I.</given-names>
</name>
<name>
<surname>Cortez-Jugo</surname>
<given-names>C.M.</given-names>
</name>
<name>
<surname>Such</surname>
<given-names>G.K.</given-names>
</name>
<name>
<surname>Johnston</surname>
<given-names>A.P.R.</given-names>
</name>
</person-group>
<article-title>Nanoescapology: Progress toward understanding the endosomal escape of polymericnanoparticles</article-title>
<source>Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol.</source>
<year>2017</year>
<volume>9</volume>
<fpage>1452</fpage>
<pub-id pub-id-type="doi">10.1002/wnan.1452</pub-id>
</element-citation>
</ref>
<ref id="B57-cancers-11-01855">
<label>57.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Smith</surname>
<given-names>S.A.</given-names>
</name>
<name>
<surname>Selby</surname>
<given-names>L.I.</given-names>
</name>
<name>
<surname>Johnston</surname>
<given-names>A.P.R.</given-names>
</name>
<name>
<surname>Such</surname>
<given-names>G.K.</given-names>
</name>
</person-group>
<article-title>The Endosomal Escape of Nanoparticles: Toward More Efficient Cellular Delivery</article-title>
<source>Bioconjugate Chem.</source>
<year>2019</year>
<volume>30</volume>
<fpage>263</fpage>
<lpage>272</lpage>
<pub-id pub-id-type="doi">10.1021/acs.bioconjchem.8b00732</pub-id>
<pub-id pub-id-type="pmid">30452233</pub-id>
</element-citation>
</ref>
<ref id="B58-cancers-11-01855">
<label>58.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Vermeulen</surname>
<given-names>L.M.P.</given-names>
</name>
<name>
<surname>Brans</surname>
<given-names>T.</given-names>
</name>
<name>
<surname>Samal</surname>
<given-names>S.K.</given-names>
</name>
<name>
<surname>Dubruel</surname>
<given-names>P.</given-names>
</name>
<name>
<surname>Demeester</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>De Smedt</surname>
<given-names>S.C.</given-names>
</name>
<name>
<surname>Remaut</surname>
<given-names>K.</given-names>
</name>
<name>
<surname>Braeckmans</surname>
<given-names>K.</given-names>
</name>
</person-group>
<article-title>Endosomal Size and Membrane Leakiness Influence Proton Sponge-Based Rupture of Endosomal Vesicles</article-title>
<source>ACS Nano</source>
<year>2018</year>
<volume>12</volume>
<fpage>2332</fpage>
<lpage>2345</lpage>
<pub-id pub-id-type="doi">10.1021/acsnano.7b07583</pub-id>
<pub-id pub-id-type="pmid">29505236</pub-id>
</element-citation>
</ref>
<ref id="B59-cancers-11-01855">
<label>59.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Mout</surname>
<given-names>R.</given-names>
</name>
<name>
<surname>Ray</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Yesilbag Tonga</surname>
<given-names>G.</given-names>
</name>
<name>
<surname>Lee</surname>
<given-names>Y.W.</given-names>
</name>
<name>
<surname>Tay</surname>
<given-names>T.</given-names>
</name>
<name>
<surname>Sasaki</surname>
<given-names>K.</given-names>
</name>
<name>
<surname>Rotello</surname>
<given-names>V.M.</given-names>
</name>
</person-group>
<article-title>Direct Cytosolic Delivery of CRISPR/Cas9-Ribonucleoprotein for Efficient Gene Editing</article-title>
<source>ACS Nano</source>
<year>2017</year>
<volume>11</volume>
<fpage>2452</fpage>
<lpage>2458</lpage>
<pub-id pub-id-type="doi">10.1021/acsnano.6b07600</pub-id>
<pub-id pub-id-type="pmid">28129503</pub-id>
</element-citation>
</ref>
<ref id="B60-cancers-11-01855">
<label>60.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Chen</surname>
<given-names>G.</given-names>
</name>
<name>
<surname>Abdeen</surname>
<given-names>A.A.</given-names>
</name>
<name>
<surname>Wang</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Shahi</surname>
<given-names>P.K.</given-names>
</name>
<name>
<surname>Robertson</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Xie</surname>
<given-names>R.</given-names>
</name>
<name>
<surname>Suzuki</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Pattnaik</surname>
<given-names>B.R.</given-names>
</name>
<name>
<surname>Saha</surname>
<given-names>K.</given-names>
</name>
<name>
<surname>Gong</surname>
<given-names>S.</given-names>
</name>
</person-group>
<article-title>A biodegradable nanocapsule delivers a Cas9 ribonucleoprotein complex for in vivo genome editing</article-title>
<source>Nat. Nanotechnol.</source>
<year>2019</year>
<volume>14</volume>
<fpage>974</fpage>
<lpage>980</lpage>
<pub-id pub-id-type="doi">10.1038/s41565-019-0539-2</pub-id>
<pub-id pub-id-type="pmid">31501532</pub-id>
</element-citation>
</ref>
<ref id="B61-cancers-11-01855">
<label>61.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Colombo</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Fiandra</surname>
<given-names>L.</given-names>
</name>
<name>
<surname>Alessio</surname>
<given-names>G.</given-names>
</name>
<name>
<surname>Mazzucchelli</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Nebuloni</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>De Palma</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>Kantner</surname>
<given-names>K.</given-names>
</name>
<name>
<surname>Pelaz</surname>
<given-names>B.</given-names>
</name>
<name>
<surname>Rotem</surname>
<given-names>R.</given-names>
</name>
<name>
<surname>Corsi</surname>
<given-names>F.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Tumour homing and therapeutic effect of colloidal nanoparticles depend on the number of attached antibodies</article-title>
<source>Nat. Commun.</source>
<year>2016</year>
<volume>7</volume>
<fpage>13818</fpage>
<pub-id pub-id-type="doi">10.1038/ncomms13818</pub-id>
<pub-id pub-id-type="pmid">27991503</pub-id>
</element-citation>
</ref>
<ref id="B62-cancers-11-01855">
<label>62.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Prosperi</surname>
<given-names>D.</given-names>
</name>
<name>
<surname>Colombo</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Zanoni</surname>
<given-names>I.</given-names>
</name>
<name>
<surname>Granucci</surname>
<given-names>F.</given-names>
</name>
</person-group>
<article-title>Drug nanocarriers to treat autoimmunity and chronic inflammatory diseases</article-title>
<source>Semin. Immunol.</source>
<year>2017</year>
<volume>34</volume>
<fpage>61</fpage>
<lpage>67</lpage>
<pub-id pub-id-type="doi">10.1016/j.smim.2017.08.010</pub-id>
<pub-id pub-id-type="pmid">28855088</pub-id>
</element-citation>
</ref>
<ref id="B63-cancers-11-01855">
<label>63.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Mitragotri</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Burke</surname>
<given-names>P.A.</given-names>
</name>
<name>
<surname>Langer</surname>
<given-names>R.</given-names>
</name>
</person-group>
<article-title>Overcoming the challenges in administering biopharmaceuticals: Formulation and delivery strategies</article-title>
<source>Nat. Rev. Drug Discov.</source>
<year>2014</year>
<volume>13</volume>
<fpage>655</fpage>
<lpage>672</lpage>
<pub-id pub-id-type="doi">10.1038/nrd4363</pub-id>
<pub-id pub-id-type="pmid">25103255</pub-id>
</element-citation>
</ref>
<ref id="B64-cancers-11-01855">
<label>64.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Chen</surname>
<given-names>Z.G.</given-names>
</name>
</person-group>
<article-title>Small-molecule delivery by nanoparticles for anticancer therapy</article-title>
<source>Trends Mol. Med.</source>
<year>2010</year>
<volume>16</volume>
<fpage>594</fpage>
<lpage>602</lpage>
<pub-id pub-id-type="doi">10.1016/j.molmed.2010.08.001</pub-id>
<pub-id pub-id-type="pmid">20846905</pub-id>
</element-citation>
</ref>
<ref id="B65-cancers-11-01855">
<label>65.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Wu</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Yuan</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Ye</surname>
<given-names>B.</given-names>
</name>
<name>
<surname>Wu</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Xu</surname>
<given-names>Z.</given-names>
</name>
<name>
<surname>Chen</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Chen</surname>
<given-names>J.</given-names>
</name>
</person-group>
<article-title>Dual-Responsive Core Crosslinking Glycopolymer-Drug Conjugates Nanoparticles for Precise Hepatocarcinoma Therapy</article-title>
<source>Front. Pharmacol.</source>
<year>2018</year>
<volume>9</volume>
<fpage>663</fpage>
<pub-id pub-id-type="doi">10.3389/fphar.2018.00663</pub-id>
<pub-id pub-id-type="pmid">30065648</pub-id>
</element-citation>
</ref>
<ref id="B66-cancers-11-01855">
<label>66.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Soloman</surname>
<given-names>R.</given-names>
</name>
<name>
<surname>Gabizon</surname>
<given-names>A.</given-names>
</name>
</person-group>
<article-title>Clinical pharmacology of liposomal anthracyclines: Focus on pegylated liposomal Doxorubicin</article-title>
<source>Clin. Lymphoma Myeloma</source>
<year>2008</year>
<volume>8</volume>
<fpage>21</fpage>
<lpage>32</lpage>
<pub-id pub-id-type="doi">10.3816/CLM.2008.n.001</pub-id>
<pub-id pub-id-type="pmid">18501085</pub-id>
</element-citation>
</ref>
<ref id="B67-cancers-11-01855">
<label>67.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Stinchcombe</surname>
<given-names>T.E.</given-names>
</name>
</person-group>
<article-title>Nanoparticle albumin-bound paclitaxel: A novel Cremphor-EL
<sup>®</sup>
-free formulation of paclitaxel</article-title>
<source>Nanomedicine</source>
<year>2007</year>
<volume>2</volume>
<pub-id pub-id-type="doi">10.2217/17435889.2.4.415</pub-id>
<pub-id pub-id-type="pmid">17716129</pub-id>
</element-citation>
</ref>
<ref id="B68-cancers-11-01855">
<label>68.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Autio</surname>
<given-names>K.A.</given-names>
</name>
<name>
<surname>Dreicer</surname>
<given-names>R.</given-names>
</name>
<name>
<surname>Anderson</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Garcia</surname>
<given-names>J.A.</given-names>
</name>
<name>
<surname>Alva</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Hart</surname>
<given-names>L.L.</given-names>
</name>
<name>
<surname>Milowsky</surname>
<given-names>M.I.</given-names>
</name>
<name>
<surname>Posadas</surname>
<given-names>E.M.</given-names>
</name>
<name>
<surname>Ryan</surname>
<given-names>C.J.</given-names>
</name>
<name>
<surname>Graf</surname>
<given-names>R.P.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Safety and Efficacy of BIND-014, a Docetaxel Nanoparticle Targeting Prostate-Specific Membrane Antigen for Patients With Metastatic Castration-Resistant Prostate Cancer: A Phase 2 Clinical Trial</article-title>
<source>JAMA Oncol.</source>
<year>2018</year>
<volume>4</volume>
<fpage>1344</fpage>
<lpage>1351</lpage>
<pub-id pub-id-type="doi">10.1001/jamaoncol.2018.2168</pub-id>
<pub-id pub-id-type="pmid">29978216</pub-id>
</element-citation>
</ref>
<ref id="B69-cancers-11-01855">
<label>69.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Lyon</surname>
<given-names>P.C.</given-names>
</name>
<name>
<surname>Griffiths</surname>
<given-names>L.F.</given-names>
</name>
<name>
<surname>Lee</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Chung</surname>
<given-names>D.</given-names>
</name>
<name>
<surname>Carlisle</surname>
<given-names>R.</given-names>
</name>
<name>
<surname>Wu</surname>
<given-names>F.</given-names>
</name>
<name>
<surname>Middleton</surname>
<given-names>M.R.</given-names>
</name>
<name>
<surname>Gleeson</surname>
<given-names>F.V.</given-names>
</name>
<name>
<surname>Coussios</surname>
<given-names>C.C.</given-names>
</name>
</person-group>
<article-title>Clinical trial protocol for TARDOX: A phase I study to investigate the feasibility of targeted release of lyso-thermosensitive liposomal doxorubicin (ThermoDox
<sup>®</sup>
) using focused ultrasound in patients with liver tumours</article-title>
<source>J. Ther. Ultrasound</source>
<year>2017</year>
<volume>5</volume>
<fpage>28</fpage>
<pub-id pub-id-type="doi">10.1186/s40349-017-0104-0</pub-id>
<pub-id pub-id-type="pmid">29118984</pub-id>
</element-citation>
</ref>
<ref id="B70-cancers-11-01855">
<label>70.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Lammers</surname>
<given-names>T.</given-names>
</name>
<name>
<surname>Kiessling</surname>
<given-names>F.</given-names>
</name>
<name>
<surname>Hennink</surname>
<given-names>W.E.</given-names>
</name>
<name>
<surname>Storm</surname>
<given-names>G.</given-names>
</name>
</person-group>
<article-title>Drug targeting to tumors: Principles, pitfalls and (pre-) clinical progress</article-title>
<source>J. Control. Release</source>
<year>2012</year>
<volume>161</volume>
<fpage>175</fpage>
<lpage>187</lpage>
<pub-id pub-id-type="doi">10.1016/j.jconrel.2011.09.063</pub-id>
<pub-id pub-id-type="pmid">21945285</pub-id>
</element-citation>
</ref>
<ref id="B71-cancers-11-01855">
<label>71.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Van Der Meel</surname>
<given-names>R.</given-names>
</name>
<name>
<surname>Lammers</surname>
<given-names>T.</given-names>
</name>
<name>
<surname>Hennink</surname>
<given-names>W.E.</given-names>
</name>
</person-group>
<article-title>Cancer nanomedicines: Oversold or underappreciated?</article-title>
<source>Expert Opin. Drug Deliv.</source>
<year>2017</year>
<volume>14</volume>
<fpage>1</fpage>
<lpage>5</lpage>
<pub-id pub-id-type="doi">10.1080/17425247.2017.1262346</pub-id>
<pub-id pub-id-type="pmid">27852113</pub-id>
</element-citation>
</ref>
<ref id="B72-cancers-11-01855">
<label>72.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Hua</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>de Matos</surname>
<given-names>M.B.C.</given-names>
</name>
<name>
<surname>Metselaar</surname>
<given-names>J.M.</given-names>
</name>
<name>
<surname>Storm</surname>
<given-names>G.</given-names>
</name>
</person-group>
<article-title>Current Trends and Challenges in the Clinical Translation of Nanoparticulate Nanomedicines: Pathways for Translational Development and Commercialization</article-title>
<source>Front. Pharmacol.</source>
<year>2018</year>
<volume>9</volume>
<fpage>790</fpage>
<pub-id pub-id-type="doi">10.3389/fphar.2018.00790</pub-id>
<pub-id pub-id-type="pmid">30065653</pub-id>
</element-citation>
</ref>
<ref id="B73-cancers-11-01855">
<label>73.</label>
<element-citation publication-type="web">
<article-title>Strategic Research and Innovation Agenda for Nanomedicine 2016–2030</article-title>
<comment>Available online:
<ext-link ext-link-type="uri" xlink:href="https://etp-nanomedicine.eu/about-nanomedicine/strategic-research-and-innovation-agenda/">https://etp-nanomedicine.eu/about-nanomedicine/strategic-research-and-innovation-agenda/</ext-link>
</comment>
<date-in-citation content-type="access-date" iso-8601-date="2019-10-31">(accessed on 31 October 2019)</date-in-citation>
</element-citation>
</ref>
<ref id="B74-cancers-11-01855">
<label>74.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Chen</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Liu</surname>
<given-names>X.</given-names>
</name>
<name>
<surname>Yuan</surname>
<given-names>H.</given-names>
</name>
<name>
<surname>Yang</surname>
<given-names>Z.</given-names>
</name>
<name>
<surname>von Roemeling</surname>
<given-names>C.A.</given-names>
</name>
<name>
<surname>Qie</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Zhao</surname>
<given-names>H.</given-names>
</name>
<name>
<surname>Wang</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Jiang</surname>
<given-names>W.</given-names>
</name>
<name>
<surname>Kim</surname>
<given-names>B.Y.S.</given-names>
</name>
</person-group>
<article-title>Therapeutic Remodeling of the Tumor Microenvironment Enhances Nanoparticle Delivery</article-title>
<source>Adv. Sci.</source>
<year>2019</year>
<volume>6</volume>
<fpage>1802070</fpage>
<pub-id pub-id-type="doi">10.1002/advs.201802070</pub-id>
<pub-id pub-id-type="pmid">30886813</pub-id>
</element-citation>
</ref>
<ref id="B75-cancers-11-01855">
<label>75.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Fadeel</surname>
<given-names>B.</given-names>
</name>
</person-group>
<article-title>Hide and Seek: Nanomaterial Interactions with the Immune System</article-title>
<source>Front. Immunol.</source>
<year>2019</year>
<volume>10</volume>
<fpage>133</fpage>
<pub-id pub-id-type="doi">10.3389/fimmu.2019.00133</pub-id>
<pub-id pub-id-type="pmid">30774634</pub-id>
</element-citation>
</ref>
<ref id="B76-cancers-11-01855">
<label>76.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Reichel</surname>
<given-names>D.</given-names>
</name>
<name>
<surname>Tripathi</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Perez</surname>
<given-names>J.M.</given-names>
</name>
</person-group>
<article-title>Biological Effects of Nanoparticles on Macrophage Polarization in the Tumor Microenvironment</article-title>
<source>Nanotheranostics</source>
<year>2019</year>
<volume>3</volume>
<fpage>66</fpage>
<lpage>88</lpage>
<pub-id pub-id-type="doi">10.7150/ntno.30052</pub-id>
<pub-id pub-id-type="pmid">30662824</pub-id>
</element-citation>
</ref>
<ref id="B77-cancers-11-01855">
<label>77.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Miller</surname>
<given-names>M.A.</given-names>
</name>
<name>
<surname>Zheng</surname>
<given-names>Y.R.</given-names>
</name>
<name>
<surname>Gadde</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Pfirschke</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>Zope</surname>
<given-names>H.</given-names>
</name>
<name>
<surname>Engblom</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>Kohler</surname>
<given-names>R.H.</given-names>
</name>
<name>
<surname>Iwamoto</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Yang</surname>
<given-names>K.S.</given-names>
</name>
<name>
<surname>Askevold</surname>
<given-names>B.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Tumour-associated macrophages act as a slow-release reservoir of nano-therapeutic Pt(IV) pro-drug</article-title>
<source>Nat. Commun.</source>
<year>2015</year>
<volume>6</volume>
<fpage>8692</fpage>
<pub-id pub-id-type="doi">10.1038/ncomms9692</pub-id>
<pub-id pub-id-type="pmid">26503691</pub-id>
</element-citation>
</ref>
<ref id="B78-cancers-11-01855">
<label>78.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Qie</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Yuan</surname>
<given-names>H.</given-names>
</name>
<name>
<surname>von Roemeling</surname>
<given-names>C.A.</given-names>
</name>
<name>
<surname>Chen</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Liu</surname>
<given-names>X.</given-names>
</name>
<name>
<surname>Shih</surname>
<given-names>K.D.</given-names>
</name>
<name>
<surname>Knight</surname>
<given-names>J.A.</given-names>
</name>
<name>
<surname>Tun</surname>
<given-names>H.W.</given-names>
</name>
<name>
<surname>Wharen</surname>
<given-names>R.E.</given-names>
</name>
<name>
<surname>Jiang</surname>
<given-names>W.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Surface modification of nanoparticles enables selective evasion of phagocytic clearance bydistinct macrophage phenotypes</article-title>
<source>Sci. Rep.</source>
<year>2016</year>
<volume>6</volume>
<fpage>26269</fpage>
<pub-id pub-id-type="doi">10.1038/srep26269</pub-id>
<pub-id pub-id-type="pmid">27197045</pub-id>
</element-citation>
</ref>
<ref id="B79-cancers-11-01855">
<label>79.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Zhang</surname>
<given-names>F.</given-names>
</name>
<name>
<surname>Parayath</surname>
<given-names>N.N.</given-names>
</name>
<name>
<surname>Ene</surname>
<given-names>C.I.</given-names>
</name>
<name>
<surname>Stephan</surname>
<given-names>S.B.</given-names>
</name>
<name>
<surname>Koehne</surname>
<given-names>A.L.</given-names>
</name>
<name>
<surname>Coon</surname>
<given-names>M.E.</given-names>
</name>
<name>
<surname>Holland</surname>
<given-names>E.C.</given-names>
</name>
<name>
<surname>Stephan</surname>
<given-names>M.T.</given-names>
</name>
</person-group>
<article-title>Genetic programming of macrophages to perform anti-tumor functions using targeted mRNA nanocarriers</article-title>
<source>Nat. Commun.</source>
<year>2019</year>
<volume>10</volume>
<fpage>3974</fpage>
<pub-id pub-id-type="doi">10.1038/s41467-019-11911-5</pub-id>
<pub-id pub-id-type="pmid">31481662</pub-id>
</element-citation>
</ref>
<ref id="B80-cancers-11-01855">
<label>80.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Chen</surname>
<given-names>L.</given-names>
</name>
<name>
<surname>Ma</surname>
<given-names>X.</given-names>
</name>
<name>
<surname>Dang</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Dong</surname>
<given-names>H.</given-names>
</name>
<name>
<surname>Hu</surname>
<given-names>H.</given-names>
</name>
<name>
<surname>Su</surname>
<given-names>X.</given-names>
</name>
<name>
<surname>Liu</surname>
<given-names>W.</given-names>
</name>
<name>
<surname>Wang</surname>
<given-names>Q.</given-names>
</name>
<name>
<surname>Mou</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Teng</surname>
<given-names>Z.</given-names>
</name>
</person-group>
<article-title>Simultaneous T Cell Activation and Macrophage Polarization to Promote Potent Tumor Suppression by Iron Oxide-Embedded Large-Pore Mesoporous Organosilica Core-Shell Nanospheres</article-title>
<source>Adv. Healthc. Mater.</source>
<year>2019</year>
<volume>8</volume>
<fpage>1900039</fpage>
<pub-id pub-id-type="doi">10.1002/adhm.201900039</pub-id>
</element-citation>
</ref>
<ref id="B81-cancers-11-01855">
<label>81.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Kwon</surname>
<given-names>I.K.</given-names>
</name>
<name>
<surname>Lee</surname>
<given-names>S.C.</given-names>
</name>
<name>
<surname>Han</surname>
<given-names>B.</given-names>
</name>
<name>
<surname>Park</surname>
<given-names>K.</given-names>
</name>
</person-group>
<article-title>Analysis on the current status of targeted drug delivery to tumors</article-title>
<source>J. Control. Release</source>
<year>2012</year>
<volume>164</volume>
<fpage>108</fpage>
<lpage>114</lpage>
<pub-id pub-id-type="doi">10.1016/j.jconrel.2012.07.010</pub-id>
<pub-id pub-id-type="pmid">22800574</pub-id>
</element-citation>
</ref>
<ref id="B82-cancers-11-01855">
<label>82.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Fortuni</surname>
<given-names>B.</given-names>
</name>
<name>
<surname>Inose</surname>
<given-names>T.</given-names>
</name>
<name>
<surname>Ricci</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Fujita</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Van Zundert</surname>
<given-names>I.</given-names>
</name>
<name>
<surname>Masuhara</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Fron</surname>
<given-names>E.</given-names>
</name>
<name>
<surname>Mizuno</surname>
<given-names>H.</given-names>
</name>
<name>
<surname>Latterini</surname>
<given-names>L.</given-names>
</name>
<name>
<surname>Rocha</surname>
<given-names>S.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Polymeric Engineering of Nanoparticles for Highly Efficient Multifunctional Drug Delivery Systems</article-title>
<source>Sci. Rep.</source>
<year>2019</year>
<volume>9</volume>
<fpage>2666</fpage>
<pub-id pub-id-type="doi">10.1038/s41598-019-39107-3</pub-id>
<pub-id pub-id-type="pmid">30804375</pub-id>
</element-citation>
</ref>
<ref id="B83-cancers-11-01855">
<label>83.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Huang</surname>
<given-names>J.L.</given-names>
</name>
<name>
<surname>Chen</surname>
<given-names>H.Z.</given-names>
</name>
<name>
<surname>Gao</surname>
<given-names>X.L.</given-names>
</name>
</person-group>
<article-title>Lipid-coated calcium phosphate nanoparticle and beyond: A versatile platform for drug delivery</article-title>
<source>J. Drug Target</source>
<year>2018</year>
<volume>26</volume>
<fpage>398</fpage>
<lpage>406</lpage>
<pub-id pub-id-type="doi">10.1080/1061186X.2017.1419360</pub-id>
<pub-id pub-id-type="pmid">29258343</pub-id>
</element-citation>
</ref>
<ref id="B84-cancers-11-01855">
<label>84.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Maugeri</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Nawaz</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Papadimitriou</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Angerfors</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Camponeschi</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Na</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Hölttä</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Skantze</surname>
<given-names>P.</given-names>
</name>
<name>
<surname>Johansson</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Sundqvist</surname>
<given-names>M.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Linkage between endosomal escape of LNP-mRNA and loading into EVs for transport to other cells</article-title>
<source>Nat. Commun.</source>
<year>2019</year>
<volume>10</volume>
<fpage>4333</fpage>
<pub-id pub-id-type="doi">10.1038/s41467-019-12275-6</pub-id>
<pub-id pub-id-type="pmid">31551417</pub-id>
</element-citation>
</ref>
<ref id="B85-cancers-11-01855">
<label>85.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Pandolfi</surname>
<given-names>L.</given-names>
</name>
<name>
<surname>Bellini</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Vanna</surname>
<given-names>R.</given-names>
</name>
<name>
<surname>Morasso</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>Zago</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Carcano</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Avvakumova</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Bertolini</surname>
<given-names>J.A.</given-names>
</name>
<name>
<surname>Rizzuto</surname>
<given-names>M.A.</given-names>
</name>
<name>
<surname>Colombo</surname>
<given-names>M.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>H-Ferritin Enriches the Curcumin Uptake and Improves the Therapeutic Efficacy in Triple Negative Breast Cancer Cells</article-title>
<source>Biomacromolecules</source>
<year>2017</year>
<volume>18</volume>
<fpage>3318</fpage>
<lpage>3330</lpage>
<pub-id pub-id-type="doi">10.1021/acs.biomac.7b00974</pub-id>
<pub-id pub-id-type="pmid">28886247</pub-id>
</element-citation>
</ref>
<ref id="B86-cancers-11-01855">
<label>86.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Verderio</surname>
<given-names>P.</given-names>
</name>
<name>
<surname>Pandolfi</surname>
<given-names>L.</given-names>
</name>
<name>
<surname>Mazzucchelli</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Marinozzi</surname>
<given-names>M.R.</given-names>
</name>
<name>
<surname>Vanna</surname>
<given-names>R.</given-names>
</name>
<name>
<surname>Gramatica</surname>
<given-names>F.</given-names>
</name>
<name>
<surname>Corsi</surname>
<given-names>F.</given-names>
</name>
<name>
<surname>Colombo</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Morasso</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>Prosperi</surname>
<given-names>D.</given-names>
</name>
</person-group>
<article-title>Antiproliferative effect of ASC-J9 delivered by PLGA nanoparticles against estrogen-dependentbreast cancer cells</article-title>
<source>Mol. Pharm.</source>
<year>2014</year>
<volume>11</volume>
<fpage>2864</fpage>
<lpage>2875</lpage>
<pub-id pub-id-type="doi">10.1021/mp500222k</pub-id>
<pub-id pub-id-type="pmid">24945469</pub-id>
</element-citation>
</ref>
<ref id="B87-cancers-11-01855">
<label>87.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Chu</surname>
<given-names>P.Y.</given-names>
</name>
<name>
<surname>Tsai</surname>
<given-names>S.C.</given-names>
</name>
<name>
<surname>Ko</surname>
<given-names>H.Y.</given-names>
</name>
<name>
<surname>Wu</surname>
<given-names>C.C.</given-names>
</name>
<name>
<surname>Lin</surname>
<given-names>Y.H.</given-names>
</name>
</person-group>
<article-title>Co-Delivery of Natural Compounds with a Dual-Targeted Nanoparticle Delivery System for Improving Synergistic Therapy in an Orthotopic Tumor Model</article-title>
<source>ACS Appl. Mater. Interfaces</source>
<year>2019</year>
<volume>11</volume>
<fpage>23880</fpage>
<lpage>23892</lpage>
<pub-id pub-id-type="doi">10.1021/acsami.9b06155</pub-id>
<pub-id pub-id-type="pmid">31192580</pub-id>
</element-citation>
</ref>
<ref id="B88-cancers-11-01855">
<label>88.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Musazzi</surname>
<given-names>U.M.</given-names>
</name>
<name>
<surname>Santini</surname>
<given-names>B.</given-names>
</name>
<name>
<surname>Selmin</surname>
<given-names>F.</given-names>
</name>
<name>
<surname>Marini</surname>
<given-names>V.</given-names>
</name>
<name>
<surname>Corsi</surname>
<given-names>F.</given-names>
</name>
<name>
<surname>Allevi</surname>
<given-names>R.</given-names>
</name>
<name>
<surname>Ferretti</surname>
<given-names>A.M.</given-names>
</name>
<name>
<surname>Prosperi</surname>
<given-names>D.</given-names>
</name>
<name>
<surname>Cilurzo</surname>
<given-names>F.</given-names>
</name>
<name>
<surname>Colombo</surname>
<given-names>M.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Impact of semi-solid formulations on skin penetration of iron oxide nanoparticles</article-title>
<source>J. Nanobiotechnol.</source>
<year>2017</year>
<volume>15</volume>
<fpage>14</fpage>
<pub-id pub-id-type="doi">10.1186/s12951-017-0249-6</pub-id>
</element-citation>
</ref>
<ref id="B89-cancers-11-01855">
<label>89.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Salvioni</surname>
<given-names>L.</given-names>
</name>
<name>
<surname>Fiandra</surname>
<given-names>L.</given-names>
</name>
<name>
<surname>Del Curto</surname>
<given-names>M.D.</given-names>
</name>
<name>
<surname>Mazzucchelli</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Allevi</surname>
<given-names>R.</given-names>
</name>
<name>
<surname>Truffi</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Sorrentino</surname>
<given-names>L.</given-names>
</name>
<name>
<surname>Santini</surname>
<given-names>B.</given-names>
</name>
<name>
<surname>Cerea</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Palugan</surname>
<given-names>L.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Oral delivery of insulin via polyethylene imine-based nanoparticles for colonic release allows glycemic control in diabetic rats</article-title>
<source>Pharmacol. Res.</source>
<year>2016</year>
<volume>110</volume>
<fpage>122</fpage>
<lpage>130</lpage>
<pub-id pub-id-type="doi">10.1016/j.phrs.2016.05.016</pub-id>
<pub-id pub-id-type="pmid">27181095</pub-id>
</element-citation>
</ref>
<ref id="B90-cancers-11-01855">
<label>90.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Codullo</surname>
<given-names>V.</given-names>
</name>
<name>
<surname>Cova</surname>
<given-names>E.</given-names>
</name>
<name>
<surname>Pandolfi</surname>
<given-names>L.</given-names>
</name>
<name>
<surname>Breda</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Morosini</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Frangipane</surname>
<given-names>V.</given-names>
</name>
<name>
<surname>Malatesta</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Calderan</surname>
<given-names>L.</given-names>
</name>
<name>
<surname>Cagnone</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Pacini</surname>
<given-names>C.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Imatinib-loaded gold nanoparticles inhibit proliferation of fibroblasts and macrophages from systemic sclerosis patients and ameliorate experimental bleomycin-induced lung fibrosis</article-title>
<source>J. Control. Release</source>
<year>2019</year>
<volume>310</volume>
<fpage>198</fpage>
<lpage>208</lpage>
<pub-id pub-id-type="doi">10.1016/j.jconrel.2019.08.015</pub-id>
<pub-id pub-id-type="pmid">31430501</pub-id>
</element-citation>
</ref>
<ref id="B91-cancers-11-01855">
<label>91.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Ferreira</surname>
<given-names>L.P.</given-names>
</name>
<name>
<surname>Gaspar</surname>
<given-names>V.M.</given-names>
</name>
<name>
<surname>Mano</surname>
<given-names>J.F.</given-names>
</name>
</person-group>
<article-title>Design of spherically structured 3D in vitro tumor models -Advances and prospects</article-title>
<source>Acta Biomater.</source>
<year>2018</year>
<volume>75</volume>
<fpage>11</fpage>
<lpage>34</lpage>
<pub-id pub-id-type="doi">10.1016/j.actbio.2018.05.034</pub-id>
<pub-id pub-id-type="pmid">29803007</pub-id>
</element-citation>
</ref>
<ref id="B92-cancers-11-01855">
<label>92.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Weeber</surname>
<given-names>F.</given-names>
</name>
<name>
<surname>Ooft</surname>
<given-names>S.N.</given-names>
</name>
<name>
<surname>Dijkstra</surname>
<given-names>K.K.</given-names>
</name>
<name>
<surname>Voest</surname>
<given-names>E.E.</given-names>
</name>
</person-group>
<article-title>Tumor Organoids as a Pre-clinical Cancer Model for Drug Discovery</article-title>
<source>Cell Chem. Biol.</source>
<year>2017</year>
<volume>24</volume>
<fpage>1092</fpage>
<lpage>1100</lpage>
<pub-id pub-id-type="doi">10.1016/j.chembiol.2017.06.012</pub-id>
<pub-id pub-id-type="pmid">28757181</pub-id>
</element-citation>
</ref>
<ref id="B93-cancers-11-01855">
<label>93.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Day</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>Merlino</surname>
<given-names>G.</given-names>
</name>
<name>
<surname>Van Dyke</surname>
<given-names>T.</given-names>
</name>
</person-group>
<article-title>Preclinical Mouse Cancer Models: A Maze of Opportunities and Challenges</article-title>
<source>Cell</source>
<year>2015</year>
<volume>163</volume>
<fpage>39</fpage>
<lpage>53</lpage>
<pub-id pub-id-type="doi">10.1016/j.cell.2015.08.068</pub-id>
<pub-id pub-id-type="pmid">26406370</pub-id>
</element-citation>
</ref>
<ref id="B94-cancers-11-01855">
<label>94.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Vu</surname>
<given-names>B.T.</given-names>
</name>
<name>
<surname>Shahin</surname>
<given-names>S.A.</given-names>
</name>
<name>
<surname>Croissant</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Fatieiev</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Matsumoto</surname>
<given-names>K.</given-names>
</name>
<name>
<surname>Le-Hoang Doan</surname>
<given-names>T.</given-names>
</name>
<name>
<surname>Yik</surname>
<given-names>T.</given-names>
</name>
<name>
<surname>Simargi</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Conteras</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Ratliff</surname>
<given-names>L.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Chick chorioallantoic membrane assay as an in vivo model to study the effect of nanoparticle-based anticancer drugs in ovarian cancer</article-title>
<source>Sci. Rep.</source>
<year>2018</year>
<volume>8</volume>
<fpage>8524</fpage>
<pub-id pub-id-type="doi">10.1038/s41598-018-25573-8</pub-id>
<pub-id pub-id-type="pmid">29867159</pub-id>
</element-citation>
</ref>
<ref id="B95-cancers-11-01855">
<label>95.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Faria</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Björnmalm</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Thurecht</surname>
<given-names>K.J.</given-names>
</name>
<name>
<surname>Kent</surname>
<given-names>S.J.</given-names>
</name>
<name>
<surname>Parton</surname>
<given-names>R.G.</given-names>
</name>
<name>
<surname>Kavallaris</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Johnston</surname>
<given-names>A.P.R.</given-names>
</name>
<name>
<surname>Gooding</surname>
<given-names>J.J.</given-names>
</name>
<name>
<surname>Corrie</surname>
<given-names>S.R.</given-names>
</name>
<name>
<surname>Boyd</surname>
<given-names>B.J.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Minimum information reporting in bio-nano experimental literature</article-title>
<source>Nat. Nanotechnol.</source>
<year>2018</year>
<volume>13</volume>
<fpage>777</fpage>
<lpage>785</lpage>
<pub-id pub-id-type="doi">10.1038/s41565-018-0246-4</pub-id>
<pub-id pub-id-type="pmid">30190620</pub-id>
</element-citation>
</ref>
<ref id="B96-cancers-11-01855">
<label>96.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Leong</surname>
<given-names>H.S.</given-names>
</name>
<name>
<surname>Butler</surname>
<given-names>K.S.</given-names>
</name>
<name>
<surname>Brinker</surname>
<given-names>C.J.</given-names>
</name>
<name>
<surname>Azzawi</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Conlan</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Dufés</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>Owen</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Rannard</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Scott</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>Chen</surname>
<given-names>C.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>On the issue of transparency and reproducibility in nanomedicine</article-title>
<source>Nat. Nanotechnol.</source>
<year>2019</year>
<volume>14</volume>
<fpage>629</fpage>
<lpage>635</lpage>
<pub-id pub-id-type="doi">10.1038/s41565-019-0496-9</pub-id>
<pub-id pub-id-type="pmid">31270452</pub-id>
</element-citation>
</ref>
<ref id="B97-cancers-11-01855">
<label>97.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Zhang</surname>
<given-names>B.</given-names>
</name>
<name>
<surname>Hu</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Pang</surname>
<given-names>Z.</given-names>
</name>
</person-group>
<article-title>Modulating the Tumor Microenvironment to Enhance Tumor Nanomedicine Delivery</article-title>
<source>Front. Pharmacol.</source>
<year>2017</year>
<volume>8</volume>
<fpage>952</fpage>
<pub-id pub-id-type="doi">10.3389/fphar.2017.00952</pub-id>
<pub-id pub-id-type="pmid">29311946</pub-id>
</element-citation>
</ref>
<ref id="B98-cancers-11-01855">
<label>98.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Chauhan</surname>
<given-names>V.P.</given-names>
</name>
<name>
<surname>Jain</surname>
<given-names>R.K.</given-names>
</name>
</person-group>
<article-title>Strategies for advancing cancer nanomedicine</article-title>
<source>Nat. Mater.</source>
<year>2013</year>
<volume>12</volume>
<fpage>958</fpage>
<lpage>962</lpage>
<pub-id pub-id-type="doi">10.1038/nmat3792</pub-id>
<pub-id pub-id-type="pmid">24150413</pub-id>
</element-citation>
</ref>
<ref id="B99-cancers-11-01855">
<label>99.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Khawar</surname>
<given-names>I.A.</given-names>
</name>
<name>
<surname>Kim</surname>
<given-names>J.H.</given-names>
</name>
<name>
<surname>Kuh</surname>
<given-names>H.J.</given-names>
</name>
</person-group>
<article-title>Improving drug delivery to solid tumors: Priming the tumor microenvironment</article-title>
<source>J. Control. Release</source>
<year>2015</year>
<volume>201</volume>
<fpage>78</fpage>
<lpage>89</lpage>
<pub-id pub-id-type="doi">10.1016/j.jconrel.2014.12.018</pub-id>
<pub-id pub-id-type="pmid">25526702</pub-id>
</element-citation>
</ref>
<ref id="B100-cancers-11-01855">
<label>100.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Chauhan</surname>
<given-names>V.P.</given-names>
</name>
<name>
<surname>Stylianopoulos</surname>
<given-names>T.</given-names>
</name>
<name>
<surname>Martin</surname>
<given-names>J.D.</given-names>
</name>
<name>
<surname>Popović</surname>
<given-names>Z.</given-names>
</name>
<name>
<surname>Chen</surname>
<given-names>O.</given-names>
</name>
<name>
<surname>Kamoun</surname>
<given-names>W.S.</given-names>
</name>
<name>
<surname>Bawendi</surname>
<given-names>M.G.</given-names>
</name>
<name>
<surname>Fukumura</surname>
<given-names>D.</given-names>
</name>
<name>
<surname>Jain</surname>
<given-names>R.K.</given-names>
</name>
</person-group>
<article-title>Normalization of tumour blood vessels improves the delivery of nanomedicines in a size-dependent manner</article-title>
<source>Nat. Nanotechnol.</source>
<year>2012</year>
<volume>7</volume>
<fpage>383</fpage>
<lpage>388</lpage>
<pub-id pub-id-type="doi">10.1038/nnano.2012.45</pub-id>
<pub-id pub-id-type="pmid">22484912</pub-id>
</element-citation>
</ref>
<ref id="B101-cancers-11-01855">
<label>101.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Zhang</surname>
<given-names>B.</given-names>
</name>
<name>
<surname>Shi</surname>
<given-names>W.</given-names>
</name>
<name>
<surname>Jiang</surname>
<given-names>T.</given-names>
</name>
<name>
<surname>Wang</surname>
<given-names>L.</given-names>
</name>
<name>
<surname>Mei</surname>
<given-names>H.</given-names>
</name>
<name>
<surname>Lu</surname>
<given-names>H.</given-names>
</name>
<name>
<surname>Hu</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Pang</surname>
<given-names>Z.</given-names>
</name>
</person-group>
<article-title>Optimization of the tumor microenvironment and nanomedicine properties simultaneously to improve tumor therapy</article-title>
<source>Oncotarget</source>
<year>2016</year>
<volume>7</volume>
<fpage>62607</fpage>
<lpage>62618</lpage>
<pub-id pub-id-type="doi">10.18632/oncotarget.11546</pub-id>
<pub-id pub-id-type="pmid">27566585</pub-id>
</element-citation>
</ref>
<ref id="B102-cancers-11-01855">
<label>102.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Stylianopoulos</surname>
<given-names>T.</given-names>
</name>
<name>
<surname>Martin</surname>
<given-names>J.D.</given-names>
</name>
<name>
<surname>Chauhan</surname>
<given-names>V.P.</given-names>
</name>
<name>
<surname>Jain</surname>
<given-names>S.R.</given-names>
</name>
<name>
<surname>Diop-Frimpong</surname>
<given-names>B.</given-names>
</name>
<name>
<surname>Bardeesy</surname>
<given-names>N.</given-names>
</name>
<name>
<surname>Smith</surname>
<given-names>B.L.</given-names>
</name>
<name>
<surname>Ferrone</surname>
<given-names>C.R.</given-names>
</name>
<name>
<surname>Hornicek</surname>
<given-names>F.J.</given-names>
</name>
<name>
<surname>Boucher</surname>
<given-names>Y.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Causes, consequences, and remedies for growth-induced solid stress in murine and human tumors</article-title>
<source>Proc. Natl. Acad. Sci. USA</source>
<year>2012</year>
<volume>109</volume>
<fpage>15101</fpage>
<lpage>15108</lpage>
<pub-id pub-id-type="doi">10.1073/pnas.1213353109</pub-id>
<pub-id pub-id-type="pmid">22932871</pub-id>
</element-citation>
</ref>
<ref id="B103-cancers-11-01855">
<label>103.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Lu</surname>
<given-names>D.</given-names>
</name>
<name>
<surname>Wientjes</surname>
<given-names>M.G.</given-names>
</name>
<name>
<surname>Lu</surname>
<given-names>Z.</given-names>
</name>
<name>
<surname>Au</surname>
<given-names>J.L.</given-names>
</name>
</person-group>
<article-title>Tumor priming enhances delivery and efficacy of nanomedicines</article-title>
<source>J. Pharmacol. Exp. Ther.</source>
<year>2007</year>
<volume>322</volume>
<fpage>80</fpage>
<lpage>88</lpage>
<pub-id pub-id-type="doi">10.1124/jpet.107.121632</pub-id>
<pub-id pub-id-type="pmid">17420296</pub-id>
</element-citation>
</ref>
<ref id="B104-cancers-11-01855">
<label>104.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Yu</surname>
<given-names>Q.</given-names>
</name>
<name>
<surname>Qiu</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Chen</surname>
<given-names>X.</given-names>
</name>
<name>
<surname>Wang</surname>
<given-names>X.</given-names>
</name>
<name>
<surname>Mei</surname>
<given-names>L.</given-names>
</name>
<name>
<surname>Wu</surname>
<given-names>H.</given-names>
</name>
<name>
<surname>Liu</surname>
<given-names>K.</given-names>
</name>
<name>
<surname>Liu</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Li</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Zhang</surname>
<given-names>Z.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Chemotherapy priming of the Pancreatic Tumor Microenvironment Promotes Delivery and Anti-Metastasis Efficacy of Intravenous Low-Molecular-Weight Heparin-Coated Lipid-siRNA Complex</article-title>
<source>Theranostics</source>
<year>2019</year>
<volume>9</volume>
<fpage>355</fpage>
<lpage>368</lpage>
<pub-id pub-id-type="doi">10.7150/thno.29137</pub-id>
<pub-id pub-id-type="pmid">30809279</pub-id>
</element-citation>
</ref>
<ref id="B105-cancers-11-01855">
<label>105.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Wang</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Lu</surname>
<given-names>Z.</given-names>
</name>
<name>
<surname>Wang</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Cui</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Yeung</surname>
<given-names>B.Z.</given-names>
</name>
<name>
<surname>Cole</surname>
<given-names>D.J.</given-names>
</name>
<name>
<surname>Wientjes</surname>
<given-names>M.G.</given-names>
</name>
<name>
<surname>Au</surname>
<given-names>J.L.</given-names>
</name>
</person-group>
<article-title>Paclitaxel tumor priming promotes delivery and transfection of intravenous lipid-siRNA in pancreatic tumors</article-title>
<source>J. Control. Release</source>
<year>2015</year>
<volume>216</volume>
<fpage>103</fpage>
<lpage>110</lpage>
<pub-id pub-id-type="doi">10.1016/j.jconrel.2015.08.012</pub-id>
<pub-id pub-id-type="pmid">26272765</pub-id>
</element-citation>
</ref>
<ref id="B106-cancers-11-01855">
<label>106.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Zinger</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Koren</surname>
<given-names>L.</given-names>
</name>
<name>
<surname>Adir</surname>
<given-names>O.</given-names>
</name>
<name>
<surname>Poley</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Alyan</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Yaari</surname>
<given-names>Z.</given-names>
</name>
<name>
<surname>Noor</surname>
<given-names>N.</given-names>
</name>
<name>
<surname>Krinsky</surname>
<given-names>N.</given-names>
</name>
<name>
<surname>Simon</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Gibori</surname>
<given-names>H.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Collagenase Nanoparticles Enhance the Penetration of Drugs into Pancreatic Tumors</article-title>
<source>ACS Nano</source>
<year>2019</year>
<volume>13</volume>
<fpage>11008</fpage>
<lpage>11021</lpage>
<pub-id pub-id-type="doi">10.1021/acsnano.9b02395</pub-id>
<pub-id pub-id-type="pmid">31503443</pub-id>
</element-citation>
</ref>
<ref id="B107-cancers-11-01855">
<label>107.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Mardhian</surname>
<given-names>D.F.</given-names>
</name>
<name>
<surname>Storm</surname>
<given-names>G.</given-names>
</name>
<name>
<surname>Bansal</surname>
<given-names>R.</given-names>
</name>
<name>
<surname>Prakash</surname>
<given-names>J.</given-names>
</name>
</person-group>
<article-title>Nano-targeted relaxin impairs fibrosis and tumor growth in pancreatic cancer and improves the efficacy of gemcitabine in vivo</article-title>
<source>J. Control. Release</source>
<year>2018</year>
<volume>290</volume>
<fpage>1</fpage>
<lpage>10</lpage>
<pub-id pub-id-type="doi">10.1016/j.jconrel.2018.09.031</pub-id>
<pub-id pub-id-type="pmid">30287265</pub-id>
</element-citation>
</ref>
<ref id="B108-cancers-11-01855">
<label>108.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Wong</surname>
<given-names>K.M.</given-names>
</name>
<name>
<surname>Horton</surname>
<given-names>K.J.</given-names>
</name>
<name>
<surname>Coveler</surname>
<given-names>A.L.</given-names>
</name>
<name>
<surname>Hingorani</surname>
<given-names>S.R.</given-names>
</name>
<name>
<surname>Harris</surname>
<given-names>W.P.</given-names>
</name>
</person-group>
<article-title>Targeting the Tumor Stroma: The Biology and Clinical Development of Pegylated Recombinant Human Hyaluronidase (PEGPH20)</article-title>
<source>Curr. Oncol. Rep.</source>
<year>2017</year>
<volume>19</volume>
<fpage>47</fpage>
<pub-id pub-id-type="doi">10.1007/s11912-017-0608-3</pub-id>
<pub-id pub-id-type="pmid">28589527</pub-id>
</element-citation>
</ref>
<ref id="B109-cancers-11-01855">
<label>109.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Zhang</surname>
<given-names>B.</given-names>
</name>
<name>
<surname>Jin</surname>
<given-names>K.</given-names>
</name>
<name>
<surname>Jiang</surname>
<given-names>T.</given-names>
</name>
<name>
<surname>Wang</surname>
<given-names>L.</given-names>
</name>
<name>
<surname>Shen</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Luo</surname>
<given-names>Z.</given-names>
</name>
<name>
<surname>Tuo</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Liu</surname>
<given-names>X.</given-names>
</name>
<name>
<surname>Hu</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Pang</surname>
<given-names>Z.</given-names>
</name>
</person-group>
<article-title>Celecoxib normalizes the tumor microenvironment and enhances small nanotherapeutics delivery to A549 tumors in nude mice</article-title>
<source>Sci. Rep.</source>
<year>2017</year>
<volume>7</volume>
<fpage>10071</fpage>
<pub-id pub-id-type="doi">10.1038/s41598-017-09520-7</pub-id>
<pub-id pub-id-type="pmid">28855534</pub-id>
</element-citation>
</ref>
<ref id="B110-cancers-11-01855">
<label>110.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Diagaradjane</surname>
<given-names>P.</given-names>
</name>
<name>
<surname>Deorukhkar</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Gelovani</surname>
<given-names>J.G.</given-names>
</name>
<name>
<surname>Maru</surname>
<given-names>D.M.</given-names>
</name>
<name>
<surname>Krishnan</surname>
<given-names>S.</given-names>
</name>
</person-group>
<article-title>Gadolinium chloride augments tumor-specific imaging of targeted quantum dots in vivo</article-title>
<source>ACS Nano</source>
<year>2010</year>
<volume>4</volume>
<fpage>4131</fpage>
<lpage>4141</lpage>
<pub-id pub-id-type="doi">10.1021/nn901919w</pub-id>
<pub-id pub-id-type="pmid">20586481</pub-id>
</element-citation>
</ref>
<ref id="B111-cancers-11-01855">
<label>111.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Liu</surname>
<given-names>T.</given-names>
</name>
<name>
<surname>Choi</surname>
<given-names>H.</given-names>
</name>
<name>
<surname>Zhou</surname>
<given-names>R.</given-names>
</name>
<name>
<surname>Chen</surname>
<given-names>I.W.</given-names>
</name>
</person-group>
<article-title>RES blockade: A strategy for boosting efficiency of nanoparticle drug</article-title>
<source>Nano Today</source>
<year>2015</year>
<volume>10</volume>
<fpage>11</fpage>
<lpage>21</lpage>
<pub-id pub-id-type="doi">10.1016/j.nantod.2014.12.003</pub-id>
</element-citation>
</ref>
<ref id="B112-cancers-11-01855">
<label>112.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Wolfram</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Nizzero</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Liu</surname>
<given-names>H.</given-names>
</name>
<name>
<surname>Li</surname>
<given-names>F.</given-names>
</name>
<name>
<surname>Zhang</surname>
<given-names>G.</given-names>
</name>
<name>
<surname>Li</surname>
<given-names>Z.</given-names>
</name>
<name>
<surname>Shen</surname>
<given-names>H.</given-names>
</name>
<name>
<surname>Blanco</surname>
<given-names>E.</given-names>
</name>
<name>
<surname>Ferrari</surname>
<given-names>M.</given-names>
</name>
</person-group>
<article-title>A chloroquine-induced macrophage-preconditioning strategy for improved nanodelivery</article-title>
<source>Sci. Rep.</source>
<year>2017</year>
<volume>7</volume>
<fpage>13738</fpage>
<pub-id pub-id-type="doi">10.1038/s41598-017-14221-2</pub-id>
<pub-id pub-id-type="pmid">29062065</pub-id>
</element-citation>
</ref>
<ref id="B113-cancers-11-01855">
<label>113.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Wu</surname>
<given-names>W.</given-names>
</name>
<name>
<surname>Luo</surname>
<given-names>L.</given-names>
</name>
<name>
<surname>Wang</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Wu</surname>
<given-names>Q.</given-names>
</name>
<name>
<surname>Dai</surname>
<given-names>H.B.</given-names>
</name>
<name>
<surname>Li</surname>
<given-names>J.S.</given-names>
</name>
<name>
<surname>Durkan</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>Wang</surname>
<given-names>N.</given-names>
</name>
<name>
<surname>Wang</surname>
<given-names>G.X.</given-names>
</name>
</person-group>
<article-title>Endogenous pH-responsive nanoparticles with programmable size changes for targeted tumor therapy and imaging applications</article-title>
<source>Theranostics</source>
<year>2018</year>
<volume>8</volume>
<fpage>3038</fpage>
<lpage>3058</lpage>
<pub-id pub-id-type="doi">10.7150/thno.23459</pub-id>
<pub-id pub-id-type="pmid">29896301</pub-id>
</element-citation>
</ref>
<ref id="B114-cancers-11-01855">
<label>114.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Kulkarni</surname>
<given-names>P.</given-names>
</name>
<name>
<surname>Haldar</surname>
<given-names>M.K.</given-names>
</name>
<name>
<surname>You</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Choi</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Mallik</surname>
<given-names>S.</given-names>
</name>
</person-group>
<article-title>Hypoxia-Responsive Polymersomes for Drug Delivery to Hypoxic Pancreatic Cancer Cells</article-title>
<source>Biomacromolecules</source>
<year>2016</year>
<volume>17</volume>
<fpage>2507</fpage>
<lpage>2513</lpage>
<pub-id pub-id-type="doi">10.1021/acs.biomac.6b00350</pub-id>
<pub-id pub-id-type="pmid">27303825</pub-id>
</element-citation>
</ref>
<ref id="B115-cancers-11-01855">
<label>115.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Ahmad</surname>
<given-names>Z.</given-names>
</name>
<name>
<surname>Lv</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Tang</surname>
<given-names>Z.</given-names>
</name>
<name>
<surname>Shah</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Chen</surname>
<given-names>X.</given-names>
</name>
</person-group>
<article-title>Methoxy Poly (Ethylene Glycol)-Block-Poly (Glutamic Acid)-Graft-6-(2-Nitroimidazole) Hexyl Amine Nanoparticles for Potential Hypoxia-Responsive Delivery of Doxorubicin</article-title>
<source>J. Biomater. Sci. Polym. Ed.</source>
<year>2016</year>
<volume>27</volume>
<fpage>40</fpage>
<lpage>54</lpage>
<pub-id pub-id-type="doi">10.1080/09205063.2015.1107707</pub-id>
<pub-id pub-id-type="pmid">26489768</pub-id>
</element-citation>
</ref>
<ref id="B116-cancers-11-01855">
<label>116.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Cathcart</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Pulkoski-Gross</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Cao</surname>
<given-names>J.</given-names>
</name>
</person-group>
<article-title>Targeting Matrix Metalloproteinases in Cancer: Bringing New Life to Old Ideas</article-title>
<source>Genes. Dis.</source>
<year>2015</year>
<volume>2</volume>
<fpage>26</fpage>
<lpage>34</lpage>
<pub-id pub-id-type="doi">10.1016/j.gendis.2014.12.002</pub-id>
<pub-id pub-id-type="pmid">26097889</pub-id>
</element-citation>
</ref>
<ref id="B117-cancers-11-01855">
<label>117.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Mura</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Nicolas</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Couvreur</surname>
<given-names>P.</given-names>
</name>
</person-group>
<article-title>Stimuli-Responsive Nanocarriers for Drug Delivery</article-title>
<source>Nat. Mater.</source>
<year>2013</year>
<volume>12</volume>
<fpage>991</fpage>
<lpage>1003</lpage>
<pub-id pub-id-type="doi">10.1038/nmat3776</pub-id>
<pub-id pub-id-type="pmid">24150417</pub-id>
</element-citation>
</ref>
<ref id="B118-cancers-11-01855">
<label>118.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Wu</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Huang</surname>
<given-names>S.</given-names>
</name>
</person-group>
<article-title>Magnetic Nanoparticles in Cancer Diagnosis, Drug Delivery and Treatment</article-title>
<source>Mol. Clin. Oncol.</source>
<year>2017</year>
<volume>7</volume>
<fpage>738</fpage>
<lpage>746</lpage>
<pub-id pub-id-type="doi">10.3892/mco.2017.1399</pub-id>
<pub-id pub-id-type="pmid">29075487</pub-id>
</element-citation>
</ref>
<ref id="B119-cancers-11-01855">
<label>119.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Jiang</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Tong</surname>
<given-names>X.</given-names>
</name>
<name>
<surname>Morris</surname>
<given-names>D.</given-names>
</name>
<name>
<surname>Zhao</surname>
<given-names>Y.</given-names>
</name>
</person-group>
<article-title>Toward Photocontrolled Release Using Light-Dissociable Block Copolymer Micelles</article-title>
<source>Macromolecules</source>
<year>2006</year>
<volume>39</volume>
<fpage>4633</fpage>
<lpage>4640</lpage>
<pub-id pub-id-type="doi">10.1021/ma060142z</pub-id>
</element-citation>
</ref>
<ref id="B120-cancers-11-01855">
<label>120.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Rapoport</surname>
<given-names>N.Y.</given-names>
</name>
<name>
<surname>Kennedy</surname>
<given-names>A.M.</given-names>
</name>
<name>
<surname>Shea</surname>
<given-names>J.E.</given-names>
</name>
<name>
<surname>Scaife</surname>
<given-names>C.L.</given-names>
</name>
<name>
<surname>Nam</surname>
<given-names>K.H.</given-names>
</name>
</person-group>
<article-title>Controlled and targeted tumor chemotherapy by ultrasound-activated nanoemulsions/microbubbles</article-title>
<source>J. Control. Release</source>
<year>2009</year>
<volume>138</volume>
<fpage>268</fpage>
<lpage>276</lpage>
<pub-id pub-id-type="doi">10.1016/j.jconrel.2009.05.026</pub-id>
<pub-id pub-id-type="pmid">19477208</pub-id>
</element-citation>
</ref>
<ref id="B121-cancers-11-01855">
<label>121.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Kim</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Jo</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>Lim</surname>
<given-names>W.G.</given-names>
</name>
<name>
<surname>Jung</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Lee</surname>
<given-names>Y.M.</given-names>
</name>
<name>
<surname>Lim</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Lee</surname>
<given-names>H.</given-names>
</name>
<name>
<surname>Lee</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Kim</surname>
<given-names>W.J.</given-names>
</name>
</person-group>
<article-title>Programmed Nanoparticle-Loaded Nanoparticles for Deep-Penetrating 3D Cancer Therapy</article-title>
<source>Adv. Mater.</source>
<year>2018</year>
<volume>30</volume>
<fpage>1707557</fpage>
<pub-id pub-id-type="doi">10.1002/adma.201707557</pub-id>
</element-citation>
</ref>
<ref id="B122-cancers-11-01855">
<label>122.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Li</surname>
<given-names>H.J.</given-names>
</name>
<name>
<surname>Du</surname>
<given-names>J.Z.</given-names>
</name>
<name>
<surname>Liu</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Du</surname>
<given-names>X.J.</given-names>
</name>
<name>
<surname>Shen</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Zhu</surname>
<given-names>Y.H.</given-names>
</name>
<name>
<surname>Wang</surname>
<given-names>X.</given-names>
</name>
<name>
<surname>Ye</surname>
<given-names>X.</given-names>
</name>
<name>
<surname>Nie</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Wang</surname>
<given-names>J.</given-names>
</name>
</person-group>
<article-title>Smart Superstructures with Ultrahigh pH-Sensitivity for Targeting Acidic Tumor Microenvironment: Instantaneous Size Switching and Improved Tumor Penetration</article-title>
<source>ACS Nano</source>
<year>2016</year>
<volume>10</volume>
<fpage>6753</fpage>
<lpage>6761</lpage>
<pub-id pub-id-type="doi">10.1021/acsnano.6b02326</pub-id>
<pub-id pub-id-type="pmid">27244096</pub-id>
</element-citation>
</ref>
<ref id="B123-cancers-11-01855">
<label>123.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Zhu</surname>
<given-names>L.</given-names>
</name>
<name>
<surname>Wang</surname>
<given-names>T.</given-names>
</name>
<name>
<surname>Perche</surname>
<given-names>F.</given-names>
</name>
<name>
<surname>Taigind</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Torchilin</surname>
<given-names>V.P.</given-names>
</name>
</person-group>
<article-title>Enhanced anticancer activity of nanopreparation containing an MMP2-sensitive PEG-drug conjugate and cell-penetrating moiety</article-title>
<source>Proc. Natl. Acad. Sci. USA</source>
<year>2013</year>
<volume>110</volume>
<fpage>17047</fpage>
<lpage>17052</lpage>
<pub-id pub-id-type="doi">10.1073/pnas.1304987110</pub-id>
<pub-id pub-id-type="pmid">24062440</pub-id>
</element-citation>
</ref>
<ref id="B124-cancers-11-01855">
<label>124.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Xu</surname>
<given-names>X.</given-names>
</name>
<name>
<surname>Saw</surname>
<given-names>P.E.</given-names>
</name>
<name>
<surname>Tao</surname>
<given-names>W.</given-names>
</name>
<name>
<surname>Li</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Ji</surname>
<given-names>X.</given-names>
</name>
<name>
<surname>Yu</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Mahmoudi</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Rasmussen</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Ayyash</surname>
<given-names>D.</given-names>
</name>
<name>
<surname>Zhou</surname>
<given-names>Y.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Tumor Microenvironment-Responsive Multistaged Nanoplatform for Systemic RNAi and Cancer Therapy</article-title>
<source>Nano Lett.</source>
<year>2017</year>
<volume>17</volume>
<fpage>4427</fpage>
<lpage>4435</lpage>
<pub-id pub-id-type="doi">10.1021/acs.nanolett.7b01571</pub-id>
<pub-id pub-id-type="pmid">28636389</pub-id>
</element-citation>
</ref>
<ref id="B125-cancers-11-01855">
<label>125.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Li</surname>
<given-names>L.</given-names>
</name>
<name>
<surname>Sun</surname>
<given-names>W.</given-names>
</name>
<name>
<surname>Zhong</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Yang</surname>
<given-names>Q.</given-names>
</name>
<name>
<surname>Zhu</surname>
<given-names>X.</given-names>
</name>
<name>
<surname>Zhou</surname>
<given-names>Z.</given-names>
</name>
<name>
<surname>Zhang</surname>
<given-names>Z.</given-names>
</name>
<name>
<surname>Huang</surname>
<given-names>Y.</given-names>
</name>
</person-group>
<article-title>Multistage Nanovehicle Delivery System Based on Stepwise Size Reduction and Charge Reversal for Programmed Nuclear Targeting of Systemically Administered Anticancer Drugs</article-title>
<source>Adv. Funct. Mater.</source>
<year>2015</year>
<volume>25</volume>
<fpage>4101</fpage>
<lpage>4113</lpage>
<pub-id pub-id-type="doi">10.1002/adfm.201501248</pub-id>
</element-citation>
</ref>
<ref id="B126-cancers-11-01855">
<label>126.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Li</surname>
<given-names>B.</given-names>
</name>
<name>
<surname>Wang</surname>
<given-names>F.</given-names>
</name>
<name>
<surname>Gui</surname>
<given-names>L.</given-names>
</name>
<name>
<surname>He</surname>
<given-names>Q.</given-names>
</name>
<name>
<surname>Yao</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Chen</surname>
<given-names>H.</given-names>
</name>
</person-group>
<article-title>The potential of biomimetic nanoparticles for tumor-targeted drug delivery</article-title>
<source>Nanomedicine</source>
<year>2018</year>
<volume>13</volume>
<fpage>2099</fpage>
<lpage>2118</lpage>
<pub-id pub-id-type="doi">10.2217/nnm-2018-0017</pub-id>
<pub-id pub-id-type="pmid">30226404</pub-id>
</element-citation>
</ref>
<ref id="B127-cancers-11-01855">
<label>127.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Mazzucchelli</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Bellini</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Fiandra</surname>
<given-names>L.</given-names>
</name>
<name>
<surname>Truffi</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Rizzuto</surname>
<given-names>M.A.</given-names>
</name>
<name>
<surname>Sorrentino</surname>
<given-names>L.</given-names>
</name>
<name>
<surname>Longhi</surname>
<given-names>E.</given-names>
</name>
<name>
<surname>Nebuloni</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Prosperi</surname>
<given-names>D.</given-names>
</name>
<name>
<surname>Corsi</surname>
<given-names>F.</given-names>
</name>
</person-group>
<article-title>Nanometronomic treatment of 4T1 breast cancer with nanocaged doxorubicin prevents drug resistance and circumvents cardiotoxicity</article-title>
<source>Oncotarget</source>
<year>2017</year>
<volume>8</volume>
<fpage>8383</fpage>
<lpage>8396</lpage>
<pub-id pub-id-type="doi">10.18632/oncotarget.14204</pub-id>
<pub-id pub-id-type="pmid">28039473</pub-id>
</element-citation>
</ref>
<ref id="B128-cancers-11-01855">
<label>128.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Martinez</surname>
<given-names>J.O.</given-names>
</name>
<name>
<surname>Molinaro</surname>
<given-names>R.</given-names>
</name>
<name>
<surname>Hartman</surname>
<given-names>K.A.</given-names>
</name>
<name>
<surname>Boada</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>Sukhovershin</surname>
<given-names>R.</given-names>
</name>
<name>
<surname>De Rosa</surname>
<given-names>E.</given-names>
</name>
<name>
<surname>Kirui</surname>
<given-names>D.</given-names>
</name>
<name>
<surname>Zhang</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Evangelopoulos</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Carter</surname>
<given-names>A.M.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Biomimetic nanoparticles with enhanced affinity towards activated endothelium as versatile tools for theranostic drug delivery</article-title>
<source>Theranostics</source>
<year>2018</year>
<volume>8</volume>
<fpage>1131</fpage>
<lpage>1145</lpage>
<pub-id pub-id-type="doi">10.7150/thno.22078</pub-id>
<pub-id pub-id-type="pmid">29464004</pub-id>
</element-citation>
</ref>
<ref id="B129-cancers-11-01855">
<label>129.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Abdelaziz</surname>
<given-names>H.M.</given-names>
</name>
<name>
<surname>Gaber</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Abd-Elwakil</surname>
<given-names>M.M.</given-names>
</name>
<name>
<surname>Mabrouk</surname>
<given-names>M.T.</given-names>
</name>
<name>
<surname>Elgohary</surname>
<given-names>M.M.</given-names>
</name>
<name>
<surname>Kamel</surname>
<given-names>N.M.</given-names>
</name>
<name>
<surname>Kabary</surname>
<given-names>D.M.</given-names>
</name>
<name>
<surname>Freag</surname>
<given-names>M.S.</given-names>
</name>
<name>
<surname>Samaha</surname>
<given-names>M.W.</given-names>
</name>
<name>
<surname>Mortada</surname>
<given-names>S.M.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Inhalable particulate drug delivery systems for lung cancer therapy: Nanoparticles, microparticles, nanocomposites and nanoaggregates</article-title>
<source>J. Control. Release</source>
<year>2018</year>
<volume>269</volume>
<fpage>374</fpage>
<lpage>392</lpage>
<pub-id pub-id-type="doi">10.1016/j.jconrel.2017.11.036</pub-id>
<pub-id pub-id-type="pmid">29180168</pub-id>
</element-citation>
</ref>
<ref id="B130-cancers-11-01855">
<label>130.</label>
<element-citation publication-type="web">
<article-title>Nanobiotix Announces First Ever Radioenhancer to Receive European Market Approval</article-title>
<comment>Available online:
<ext-link ext-link-type="uri" xlink:href="https://www.globenewswire.com/news-release/2019/04/04/1797273/0/en/Nanobiotix-Announces-First-Ever-Radioenhancer-to-Receive-European-Market-Approval.html">https://www.globenewswire.com/news-release/2019/04/04/1797273/0/en/Nanobiotix-Announces-First-Ever-Radioenhancer-to-Receive-European-Market-Approval.html</ext-link>
</comment>
<date-in-citation content-type="access-date" iso-8601-date="2019-11-19">(accessed on 19 November 2019)</date-in-citation>
</element-citation>
</ref>
<ref id="B131-cancers-11-01855">
<label>131.</label>
<element-citation publication-type="web">
<article-title>The Nanotherm
<sup>®</sup>
Therapy</article-title>
<comment>Available online:
<ext-link ext-link-type="uri" xlink:href="https://www.magforce.com/en/home/our_therapy/">https://www.magforce.com/en/home/our_therapy/</ext-link>
</comment>
<date-in-citation content-type="access-date" iso-8601-date="2019-11-19">(accessed on 19 November 2019)</date-in-citation>
</element-citation>
</ref>
<ref id="B132-cancers-11-01855">
<label>132.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Sekerdag</surname>
<given-names>E.</given-names>
</name>
<name>
<surname>Lüle</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Bozdağ Pehlivan</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Öztürk</surname>
<given-names>N.</given-names>
</name>
<name>
<surname>Kara</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Kaffashi</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Vural</surname>
<given-names>I.</given-names>
</name>
<name>
<surname>Işıkay</surname>
<given-names>I.</given-names>
</name>
<name>
<surname>Yavuz</surname>
<given-names>B.</given-names>
</name>
<name>
<surname>Oguz</surname>
<given-names>K.K.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>A potential non-invasive glioblastoma treatment: Nose-to-brain delivery of farnesylthiosalicylic acid incorporated hybrid nanoparticles</article-title>
<source>J. Control. Release</source>
<year>2017</year>
<volume>261</volume>
<fpage>187</fpage>
<lpage>198</lpage>
<pub-id pub-id-type="doi">10.1016/j.jconrel.2017.06.032</pub-id>
<pub-id pub-id-type="pmid">28684169</pub-id>
</element-citation>
</ref>
<ref id="B133-cancers-11-01855">
<label>133.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Chu</surname>
<given-names>L.</given-names>
</name>
<name>
<surname>Wang</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Ni</surname>
<given-names>L.</given-names>
</name>
<name>
<surname>Yan</surname>
<given-names>X.</given-names>
</name>
<name>
<surname>Song</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Zhao</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Sun</surname>
<given-names>K.</given-names>
</name>
<name>
<surname>Mu</surname>
<given-names>H.</given-names>
</name>
<name>
<surname>Liu</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Wu</surname>
<given-names>Z.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Nose-to-brain delivery of temozolomide-loaded PLGA nanoparticles functionalized with anti-EPHA3 for glioblastoma targeting</article-title>
<source>Drug Deliv.</source>
<year>2018</year>
<volume>25</volume>
<fpage>1634</fpage>
<lpage>1641</lpage>
<pub-id pub-id-type="doi">10.1080/10717544.2018.1494226</pub-id>
<pub-id pub-id-type="pmid">30176744</pub-id>
</element-citation>
</ref>
<ref id="B134-cancers-11-01855">
<label>134.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Parayath</surname>
<given-names>N.N.</given-names>
</name>
<name>
<surname>Parikh</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Amiji</surname>
<given-names>M.M.</given-names>
</name>
</person-group>
<article-title>Repolarization of Tumor-Associated Macrophages in a Genetically Engineered Nonsmall Cell Lung Cancer Model by Intraperitoneal Administration of Hyaluronic Acid-Based Nanoparticles Encapsulating MicroRNA-125b</article-title>
<source>Nano Lett.</source>
<year>2018</year>
<volume>18</volume>
<fpage>3571</fpage>
<lpage>3579</lpage>
<pub-id pub-id-type="doi">10.1021/acs.nanolett.8b00689</pub-id>
<pub-id pub-id-type="pmid">29722542</pub-id>
</element-citation>
</ref>
<ref id="B135-cancers-11-01855">
<label>135.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Jang</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Chung</surname>
<given-names>H.J.</given-names>
</name>
<name>
<surname>Hong</surname>
<given-names>J.W.</given-names>
</name>
<name>
<surname>Yun</surname>
<given-names>C.W.</given-names>
</name>
<name>
<surname>Chung</surname>
<given-names>H.</given-names>
</name>
</person-group>
<article-title>Absorption mechanism of DHP107, an oral paclitaxel formulation that forms a hydrated lipidic sponge phase</article-title>
<source>Acta Pharmacol. Sin.</source>
<year>2017</year>
<volume>38</volume>
<fpage>133</fpage>
<lpage>145</lpage>
<pub-id pub-id-type="doi">10.1038/aps.2016.105</pub-id>
<pub-id pub-id-type="pmid">27867185</pub-id>
</element-citation>
</ref>
<ref id="B136-cancers-11-01855">
<label>136.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Song</surname>
<given-names>W.</given-names>
</name>
<name>
<surname>Musetti</surname>
<given-names>S.N.</given-names>
</name>
<name>
<surname>Huang</surname>
<given-names>L.</given-names>
</name>
</person-group>
<article-title>Nanomaterials for cancer immunotherapy</article-title>
<source>Biomaterials</source>
<year>2017</year>
<volume>148</volume>
<fpage>16</fpage>
<lpage>30</lpage>
<pub-id pub-id-type="doi">10.1016/j.biomaterials.2017.09.017</pub-id>
<pub-id pub-id-type="pmid">28961532</pub-id>
</element-citation>
</ref>
<ref id="B137-cancers-11-01855">
<label>137.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Musetti</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Huang</surname>
<given-names>L.</given-names>
</name>
</person-group>
<article-title>Nanoparticle-Mediated Remodeling of the Tumor Microenvironment to Enhance Immunotherapy</article-title>
<source>ACS Nano</source>
<year>2018</year>
<volume>12</volume>
<fpage>11740</fpage>
<lpage>11755</lpage>
<pub-id pub-id-type="doi">10.1021/acsnano.8b05893</pub-id>
<pub-id pub-id-type="pmid">30508378</pub-id>
</element-citation>
</ref>
<ref id="B138-cancers-11-01855">
<label>138.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Huai</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Hossen</surname>
<given-names>M.N.</given-names>
</name>
<name>
<surname>Wilhelm</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Bhattacharya</surname>
<given-names>R.</given-names>
</name>
<name>
<surname>Mukherjee</surname>
<given-names>P.</given-names>
</name>
</person-group>
<article-title>Nanoparticle Interactions with the Tumor Microenvironment</article-title>
<source>Bioconjugate Chem.</source>
<year>2019</year>
<volume>30</volume>
<fpage>2247</fpage>
<lpage>2263</lpage>
<pub-id pub-id-type="doi">10.1021/acs.bioconjchem.9b00448</pub-id>
<pub-id pub-id-type="pmid">31408324</pub-id>
</element-citation>
</ref>
<ref id="B139-cancers-11-01855">
<label>139.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Zhang</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>He</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Sun</surname>
<given-names>X.</given-names>
</name>
<name>
<surname>Li</surname>
<given-names>Q.</given-names>
</name>
<name>
<surname>Wang</surname>
<given-names>W.</given-names>
</name>
<name>
<surname>Zhao</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Di</surname>
<given-names>W.</given-names>
</name>
</person-group>
<article-title>A high M1/M2 ratio of tumor-associated macrophages is associated with extended survival in ovarian cancer patients</article-title>
<source>J. Ovarian Res.</source>
<year>2014</year>
<volume>7</volume>
<fpage>19</fpage>
<pub-id pub-id-type="doi">10.1186/1757-2215-7-19</pub-id>
<pub-id pub-id-type="pmid">24507759</pub-id>
</element-citation>
</ref>
<ref id="B140-cancers-11-01855">
<label>140.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Song</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Liu</surname>
<given-names>T.</given-names>
</name>
<name>
<surname>Shi</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>Zhang</surname>
<given-names>X.</given-names>
</name>
<name>
<surname>Chen</surname>
<given-names>X.</given-names>
</name>
</person-group>
<article-title>Bioconjugated Manganese Dioxide Nanoparticles Enhance Chemotherapy Response by Priming Tumor-Associated Macrophages toward M1-like Phenotype and Attenuating Tumor Hypoxia</article-title>
<source>ACS Nano</source>
<year>2016</year>
<volume>10</volume>
<fpage>633</fpage>
<lpage>647</lpage>
<pub-id pub-id-type="doi">10.1021/acsnano.5b06779</pub-id>
<pub-id pub-id-type="pmid">26650065</pub-id>
</element-citation>
</ref>
<ref id="B141-cancers-11-01855">
<label>141.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Zhu</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Niu</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>O’Mary</surname>
<given-names>H.</given-names>
</name>
<name>
<surname>Cui</surname>
<given-names>Z.</given-names>
</name>
</person-group>
<article-title>Targeting of tumor-associated macrophages made possible by PEG-sheddable, mannose-modified nanoparticles</article-title>
<source>Mol. Pharm.</source>
<year>2013</year>
<volume>10</volume>
<fpage>3525</fpage>
<lpage>3530</lpage>
<pub-id pub-id-type="doi">10.1021/mp400216r</pub-id>
<pub-id pub-id-type="pmid">23901887</pub-id>
</element-citation>
</ref>
<ref id="B142-cancers-11-01855">
<label>142.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Kong</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Tang</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Qiao</surname>
<given-names>Q.</given-names>
</name>
<name>
<surname>Wu</surname>
<given-names>T.</given-names>
</name>
<name>
<surname>Qi</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Tan</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Gao</surname>
<given-names>X.</given-names>
</name>
<name>
<surname>Zhang</surname>
<given-names>Z.</given-names>
</name>
</person-group>
<article-title>Biodegradable Hollow Mesoporous Silica Nanoparticles for Regulating Tumor Microenvironment and Enhancing Antitumor Efficiency</article-title>
<source>Theranostics</source>
<year>2017</year>
<volume>7</volume>
<fpage>3276</fpage>
<lpage>3292</lpage>
<pub-id pub-id-type="doi">10.7150/thno.19987</pub-id>
<pub-id pub-id-type="pmid">28900509</pub-id>
</element-citation>
</ref>
<ref id="B143-cancers-11-01855">
<label>143.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Kourtis</surname>
<given-names>I.C.</given-names>
</name>
<name>
<surname>Hirosue</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>de Titta</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Kontos</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Stegmann</surname>
<given-names>T.</given-names>
</name>
<name>
<surname>Hubbell</surname>
<given-names>J.A.</given-names>
</name>
<name>
<surname>Swartz</surname>
<given-names>M.A.</given-names>
</name>
</person-group>
<article-title>Peripherally administered nanoparticles target monocytic myeloid cells, secondary lymphoid organs and tumors in mice</article-title>
<source>PLoS ONE</source>
<year>2013</year>
<volume>8</volume>
<elocation-id>e61646</elocation-id>
<pub-id pub-id-type="doi">10.1371/journal.pone.0061646</pub-id>
<pub-id pub-id-type="pmid">23626707</pub-id>
</element-citation>
</ref>
<ref id="B144-cancers-11-01855">
<label>144.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Sasso</surname>
<given-names>M.S.</given-names>
</name>
<name>
<surname>Lollo</surname>
<given-names>G.</given-names>
</name>
<name>
<surname>Pitorre</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Solito</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Pinton</surname>
<given-names>L.</given-names>
</name>
<name>
<surname>Valpione</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Bastiat</surname>
<given-names>G.</given-names>
</name>
<name>
<surname>Mandruzzato</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Bronte</surname>
<given-names>V.</given-names>
</name>
<name>
<surname>Marigo</surname>
<given-names>I.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Low dose gemcitabine-loaded lipid nanocapsules target monocytic myeloid-derived suppressor cells and potentiate cancer immunotherapy</article-title>
<source>Biomaterials</source>
<year>2016</year>
<volume>96</volume>
<fpage>47</fpage>
<lpage>62</lpage>
<pub-id pub-id-type="doi">10.1016/j.biomaterials.2016.04.010</pub-id>
<pub-id pub-id-type="pmid">27135716</pub-id>
</element-citation>
</ref>
<ref id="B145-cancers-11-01855">
<label>145.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Ou</surname>
<given-names>W.</given-names>
</name>
<name>
<surname>Jiang</surname>
<given-names>L.</given-names>
</name>
<name>
<surname>Thapa</surname>
<given-names>R.K.</given-names>
</name>
<name>
<surname>Soe</surname>
<given-names>Z.C.</given-names>
</name>
<name>
<surname>Poudel</surname>
<given-names>K.</given-names>
</name>
<name>
<surname>Chang</surname>
<given-names>J.H.</given-names>
</name>
<name>
<surname>Ku</surname>
<given-names>S.K.</given-names>
</name>
<name>
<surname>Choi</surname>
<given-names>H.G.</given-names>
</name>
<name>
<surname>Yong</surname>
<given-names>C.S.</given-names>
</name>
<name>
<surname>Kim</surname>
<given-names>J.O.</given-names>
</name>
</person-group>
<article-title>Combination of NIR therapy and regulatory T cell modulation using layer-by-layer hybrid nanoparticles for effective cancer photoimmunotherapy</article-title>
<source>Theranostics</source>
<year>2018</year>
<volume>8</volume>
<fpage>4574</fpage>
<lpage>4590</lpage>
<pub-id pub-id-type="doi">10.7150/thno.26758</pub-id>
<pub-id pub-id-type="pmid">30279723</pub-id>
</element-citation>
</ref>
<ref id="B146-cancers-11-01855">
<label>146.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Ou</surname>
<given-names>W.</given-names>
</name>
<name>
<surname>Thapa</surname>
<given-names>R.K.</given-names>
</name>
<name>
<surname>Jiang</surname>
<given-names>L.</given-names>
</name>
<name>
<surname>Soe</surname>
<given-names>Z.C.</given-names>
</name>
<name>
<surname>Gautam</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Chang</surname>
<given-names>J.H.</given-names>
</name>
<name>
<surname>Jeong</surname>
<given-names>J.H.</given-names>
</name>
<name>
<surname>Ku</surname>
<given-names>S.K.</given-names>
</name>
<name>
<surname>Choi</surname>
<given-names>H.G.</given-names>
</name>
<name>
<surname>Yong</surname>
<given-names>C.S.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Regulatory T cell-targeted hybrid nanoparticles combined with immuno-checkpoint blockage for cancer immunotherapy</article-title>
<source>J. Control. Release</source>
<year>2018</year>
<volume>281</volume>
<fpage>84</fpage>
<lpage>96</lpage>
<pub-id pub-id-type="doi">10.1016/j.jconrel.2018.05.018</pub-id>
<pub-id pub-id-type="pmid">29777794</pub-id>
</element-citation>
</ref>
<ref id="B147-cancers-11-01855">
<label>147.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Dominguez-Villar</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Hafler</surname>
<given-names>D.A.</given-names>
</name>
</person-group>
<article-title>Regulatory T cells in autoimmune disease</article-title>
<source>Nat. Immunol.</source>
<year>2018</year>
<volume>19</volume>
<fpage>665</fpage>
<lpage>673</lpage>
<pub-id pub-id-type="doi">10.1038/s41590-018-0120-4</pub-id>
<pub-id pub-id-type="pmid">29925983</pub-id>
</element-citation>
</ref>
<ref id="B148-cancers-11-01855">
<label>148.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Chen</surname>
<given-names>X.</given-names>
</name>
<name>
<surname>Song</surname>
<given-names>E.</given-names>
</name>
</person-group>
<article-title>Turning foes to friends: Targeting cancer-associated fibroblasts</article-title>
<source>Nat. Rev. Drug Discov.</source>
<year>2019</year>
<volume>18</volume>
<fpage>99</fpage>
<lpage>115</lpage>
<pub-id pub-id-type="doi">10.1038/s41573-018-0004-1</pub-id>
<pub-id pub-id-type="pmid">30470818</pub-id>
</element-citation>
</ref>
<ref id="B149-cancers-11-01855">
<label>149.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Truffi</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Mazzucchelli</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Bonizzi</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Sorrentino</surname>
<given-names>L.</given-names>
</name>
<name>
<surname>Allevi</surname>
<given-names>R.</given-names>
</name>
<name>
<surname>Vanna</surname>
<given-names>R.</given-names>
</name>
<name>
<surname>Morasso</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>Corsi</surname>
<given-names>F.</given-names>
</name>
</person-group>
<article-title>Nano-Strategies to Target Breast Cancer-Associated Fibroblasts: Rearranging the Tumor Microenvironment to Achieve Antitumor Efficacy</article-title>
<source>Int. J. Mol. Sci.</source>
<year>2019</year>
<volume>20</volume>
<elocation-id>1263</elocation-id>
<pub-id pub-id-type="doi">10.3390/ijms20061263</pub-id>
<pub-id pub-id-type="pmid">30871158</pub-id>
</element-citation>
</ref>
<ref id="B150-cancers-11-01855">
<label>150.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Liu</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Chen</surname>
<given-names>G.</given-names>
</name>
<name>
<surname>Feng</surname>
<given-names>L.</given-names>
</name>
<name>
<surname>Liu</surname>
<given-names>Z.</given-names>
</name>
</person-group>
<article-title>Nanomedicine for tumor microenvironment modulation and cancer treatment enhancement</article-title>
<source>Nano Today</source>
<year>2018</year>
<volume>21</volume>
<fpage>55</fpage>
<lpage>73</lpage>
<pub-id pub-id-type="doi">10.1016/j.nantod.2018.06.008</pub-id>
</element-citation>
</ref>
<ref id="B151-cancers-11-01855">
<label>151.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Wang</surname>
<given-names>D.</given-names>
</name>
<name>
<surname>Wang</surname>
<given-names>T.</given-names>
</name>
<name>
<surname>Yu</surname>
<given-names>H.</given-names>
</name>
<name>
<surname>Feng</surname>
<given-names>B.</given-names>
</name>
<name>
<surname>Zhou</surname>
<given-names>L.</given-names>
</name>
<name>
<surname>Zhou</surname>
<given-names>F.</given-names>
</name>
<name>
<surname>Hou</surname>
<given-names>B.</given-names>
</name>
<name>
<surname>Zhang</surname>
<given-names>H.</given-names>
</name>
<name>
<surname>Luo</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Li</surname>
<given-names>Y.</given-names>
</name>
</person-group>
<article-title>Engineering nanoparticles to locally activate T cells in the tumor microenvironment</article-title>
<source>Sci. Immunol.</source>
<year>2019</year>
<volume>4</volume>
<fpage>eaau6584</fpage>
<pub-id pub-id-type="doi">10.1126/sciimmunol.aau6584</pub-id>
<pub-id pub-id-type="pmid">31300478</pub-id>
</element-citation>
</ref>
<ref id="B152-cancers-11-01855">
<label>152.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Tadokoro</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Hoshii</surname>
<given-names>T.</given-names>
</name>
<name>
<surname>Yamazaki</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Eto</surname>
<given-names>K.</given-names>
</name>
<name>
<surname>Ema</surname>
<given-names>H.</given-names>
</name>
<name>
<surname>Kobayashi</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Ueno</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Ohta</surname>
<given-names>K.</given-names>
</name>
<name>
<surname>Arai</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Hara</surname>
<given-names>E.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Spred1 Safeguards Hematopoietic Homeostasis against Diet-Induced Systemic Stress</article-title>
<source>Cell Stem Cell</source>
<year>2018</year>
<volume>22</volume>
<fpage>713</fpage>
<lpage>725</lpage>
<pub-id pub-id-type="doi">10.1016/j.stem.2018.04.002</pub-id>
<pub-id pub-id-type="pmid">29706577</pub-id>
</element-citation>
</ref>
</ref-list>
</back>
<floats-group>
<fig id="cancers-11-01855-f001" orientation="portrait" position="float">
<label>Figure 1</label>
<caption>
<p>Tunable physical and chemical properties of nanocarriers (NCs).</p>
</caption>
<graphic xlink:href="cancers-11-01855-g001"></graphic>
</fig>
<fig id="cancers-11-01855-f002" orientation="portrait" position="float">
<label>Figure 2</label>
<caption>
<p>Tumor microenvironment. Tumor tissue is characterized by a high cellular density that hampers oxygen and nutrient perfusion. Accordingly, cancer cells are genetically and epigenetically heterogeneous, and those located far from the blood vessels: (1) favor an anaerobic metabolism that leads to the environment acidification; (2) are more resistant to pharmacological treatments because of their low division rate and genetic instability [
<xref rid="B42-cancers-11-01855" ref-type="bibr">42</xref>
]. Fibroblasts and pericytes are responsible for tissue remodeling, while the immunosuppressive milieu hinders immune cell activity. NCs extravasation and penetration are mainly limited by solid stress and high interstitial fluid pressure, which in certain areas may reach values close to the aortic pressure [
<xref rid="B43-cancers-11-01855" ref-type="bibr">43</xref>
].</p>
</caption>
<graphic xlink:href="cancers-11-01855-g002"></graphic>
</fig>
<fig id="cancers-11-01855-f003" orientation="portrait" position="float">
<label>Figure 3</label>
<caption>
<p>(
<bold>A</bold>
) Publication peak of “nanoparticles” related papers; (
<bold>B</bold>
) Subject areas of “nanoparticles + cancer” papers. Elaborated data are derived from the Scopus research tool.</p>
</caption>
<graphic xlink:href="cancers-11-01855-g003"></graphic>
</fig>
<table-wrap id="cancers-11-01855-t001" orientation="portrait" position="float">
<object-id pub-id-type="pii">cancers-11-01855-t001_Table 1</object-id>
<label>Table 1</label>
<caption>
<p>Properties-dependent clearance of nanocarriers (NCs).</p>
</caption>
<table frame="hsides" rules="groups">
<thead>
<tr>
<th align="center" valign="middle" style="border-top:solid thin;border-bottom:solid thin" rowspan="1" colspan="1"></th>
<th align="center" valign="middle" style="border-top:solid thin;border-bottom:solid thin" rowspan="1" colspan="1">Biodistribution Profiles in Clearance Organs</th>
</tr>
</thead>
<tbody>
<tr>
<td align="center" valign="middle" rowspan="1" colspan="1">SIZE</td>
<td align="left" valign="middle" rowspan="1" colspan="1">Renal excretion is particularly relevant for NCs below the threshold value (ca. 5.5 nm) [
<xref rid="B25-cancers-11-01855" ref-type="bibr">25</xref>
].
<break></break>
MPS clearance is operated by liver>spleen>lung phagocytes. However, the spleen and lung fraction increase with the particle size: NCs > 150 nm are more prone to splenic filtration, while lung accumulation is particularly promoted when the NCs size is close to the micromillimeter range, or they aggregate [
<xref rid="B26-cancers-11-01855" ref-type="bibr">26</xref>
,
<xref rid="B27-cancers-11-01855" ref-type="bibr">27</xref>
].</td>
</tr>
<tr>
<td align="center" valign="middle" rowspan="1" colspan="1">SURFACE CHARGE</td>
<td align="left" valign="middle" rowspan="1" colspan="1">It is generally accepted that positively charged NCs are more rapidly sequestered by MPS than negative and neutral NCs due to the highly-dense coating of serum proteins formed on the administration [
<xref rid="B27-cancers-11-01855" ref-type="bibr">27</xref>
]. However, the surface hydrophobicity, as well as the charge density, strongly influences the elimination rate [
<xref rid="B28-cancers-11-01855" ref-type="bibr">28</xref>
].</td>
</tr>
<tr>
<td align="center" valign="middle" rowspan="1" colspan="1">SHAPE</td>
<td align="left" valign="middle" rowspan="1" colspan="1">NCs’ shape determines the movement in blood circulation and the organ-specific biodistribution [
<xref rid="B25-cancers-11-01855" ref-type="bibr">25</xref>
]. Spherical NCs presented the longest circulation time, while rod-, disc-, cage- particles exhibited an increased splenic and hepatic accumulation compared with spherical counterparts [
<xref rid="B29-cancers-11-01855" ref-type="bibr">29</xref>
].</td>
</tr>
<tr>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">STIFFNESS</td>
<td align="left" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">Due to the intrinsic deformability, soft NCs have prolonged circulation lifetimes and reduced splenic accumulation when compared with rigid NCs [
<xref rid="B30-cancers-11-01855" ref-type="bibr">30</xref>
].</td>
</tr>
</tbody>
</table>
</table-wrap>
<table-wrap id="cancers-11-01855-t002" orientation="portrait" position="float">
<object-id pub-id-type="pii">cancers-11-01855-t002_Table 2</object-id>
<label>Table 2</label>
<caption>
<p>Clinically approved cancer nanomedicines [
<xref rid="B8-cancers-11-01855" ref-type="bibr">8</xref>
,
<xref rid="B31-cancers-11-01855" ref-type="bibr">31</xref>
].</p>
</caption>
<table frame="hsides" rules="groups">
<thead>
<tr>
<th align="center" valign="middle" style="border-top:solid thin;border-bottom:solid thin" rowspan="1" colspan="1">Product Name</th>
<th align="center" valign="middle" style="border-top:solid thin;border-bottom:solid thin" rowspan="1" colspan="1">Composition</th>
<th align="center" valign="middle" style="border-top:solid thin;border-bottom:solid thin" rowspan="1" colspan="1">Indications</th>
<th align="center" valign="middle" style="border-top:solid thin;border-bottom:solid thin" rowspan="1" colspan="1">First Approval</th>
</tr>
</thead>
<tbody>
<tr>
<td align="center" valign="middle" rowspan="1" colspan="1">Doxil/Caelyx</td>
<td align="center" valign="middle" rowspan="1" colspan="1">PEGylated liposomal doxorubicin</td>
<td align="center" valign="middle" rowspan="1" colspan="1">Myeloma, Kaposi’s sarcoma, breast, and ovarian cancer</td>
<td align="center" valign="middle" rowspan="1" colspan="1">Approved in the US (1995)</td>
</tr>
<tr>
<td align="center" valign="middle" rowspan="1" colspan="1">DaunoXome</td>
<td align="center" valign="middle" rowspan="1" colspan="1">liposomal daunorubicin</td>
<td align="center" valign="middle" rowspan="1" colspan="1">Kaposi’s sarcoma</td>
<td align="center" valign="middle" rowspan="1" colspan="1">Approved in the US (1996)</td>
</tr>
<tr>
<td align="center" valign="middle" rowspan="1" colspan="1">Myocet</td>
<td align="center" valign="middle" rowspan="1" colspan="1">liposomal doxorubicin</td>
<td align="center" valign="middle" rowspan="1" colspan="1">Breast cancer</td>
<td align="center" valign="middle" rowspan="1" colspan="1">Approved in Europe/Canada (2000)</td>
</tr>
<tr>
<td align="center" valign="middle" rowspan="1" colspan="1">Abraxane</td>
<td align="center" valign="middle" rowspan="1" colspan="1">albumin-bound paclitaxel</td>
<td align="center" valign="middle" rowspan="1" colspan="1">Breast, non-small-cell lung, and pancreatic cancer</td>
<td align="center" valign="middle" rowspan="1" colspan="1">Approved in the US (2005)</td>
</tr>
<tr>
<td align="center" valign="middle" rowspan="1" colspan="1">Lipusu</td>
<td align="center" valign="middle" rowspan="1" colspan="1">liposomal paclitaxel</td>
<td align="center" valign="middle" rowspan="1" colspan="1">Breast and non-small-cell lung cancer</td>
<td align="center" valign="middle" rowspan="1" colspan="1">Approved in China (2006)</td>
</tr>
<tr>
<td align="center" valign="middle" rowspan="1" colspan="1">Oncaspar</td>
<td align="center" valign="middle" rowspan="1" colspan="1">L-asparaginase conjugate</td>
<td align="center" valign="middle" rowspan="1" colspan="1">Acute lymphoblastic leukemia</td>
<td align="center" valign="middle" rowspan="1" colspan="1">Approved in the US (2006)</td>
</tr>
<tr>
<td align="center" valign="middle" rowspan="1" colspan="1">DepoCyt</td>
<td align="center" valign="middle" rowspan="1" colspan="1">liposomal cytarabine</td>
<td align="center" valign="middle" rowspan="1" colspan="1">Lymphoma, Leukemia</td>
<td align="center" valign="middle" rowspan="1" colspan="1">Approved in the US (1999)</td>
</tr>
<tr>
<td align="center" valign="middle" rowspan="1" colspan="1">Genexol-PM</td>
<td align="center" valign="middle" rowspan="1" colspan="1">paclitaxel micellar</td>
<td align="center" valign="middle" rowspan="1" colspan="1">Breast, non-small-cell lung, ovarian, and gastric cancer</td>
<td align="center" valign="middle" rowspan="1" colspan="1">Approved in Korea (2007)</td>
</tr>
<tr>
<td align="center" valign="middle" rowspan="1" colspan="1">Mepact</td>
<td align="center" valign="middle" rowspan="1" colspan="1">liposomal mifamurtide</td>
<td align="center" valign="middle" rowspan="1" colspan="1">Osteogenic sarcoma</td>
<td align="center" valign="middle" rowspan="1" colspan="1">Approved in Europe (2009)</td>
</tr>
<tr>
<td align="center" valign="middle" rowspan="1" colspan="1">NanoTherm</td>
<td align="center" valign="middle" rowspan="1" colspan="1">Iron oxide nanoparticles</td>
<td align="center" valign="middle" rowspan="1" colspan="1">Brain tumors</td>
<td align="center" valign="middle" rowspan="1" colspan="1">Approved in Europe (2011)</td>
</tr>
<tr>
<td align="center" valign="middle" rowspan="1" colspan="1">Marqibo</td>
<td align="center" valign="middle" rowspan="1" colspan="1">Liposomal vincristine sulfate</td>
<td align="center" valign="middle" rowspan="1" colspan="1">Acute lymphoblastic leukemia</td>
<td align="center" valign="middle" rowspan="1" colspan="1">Approved in the US (2012)</td>
</tr>
<tr>
<td align="center" valign="middle" rowspan="1" colspan="1">ONIVYDE</td>
<td align="center" valign="middle" rowspan="1" colspan="1">liposomal irinotecan</td>
<td align="center" valign="middle" rowspan="1" colspan="1">Advanced pancreatic cancer</td>
<td align="center" valign="middle" rowspan="1" colspan="1">Approved in the US (2015)</td>
</tr>
<tr>
<td align="center" valign="middle" rowspan="1" colspan="1">DHP107</td>
<td align="center" valign="middle" rowspan="1" colspan="1">paclitaxel lipid nanoparticles (oral administration)</td>
<td align="center" valign="middle" rowspan="1" colspan="1">Gastric cancer</td>
<td align="center" valign="middle" rowspan="1" colspan="1">Approved in Korea (2016)</td>
</tr>
<tr>
<td align="center" valign="middle" rowspan="1" colspan="1">Vyxeos</td>
<td align="center" valign="middle" rowspan="1" colspan="1">liposomal daunorubicin and cytarabine</td>
<td align="center" valign="middle" rowspan="1" colspan="1">High-risk acute myeloid leukemia</td>
<td align="center" valign="middle" rowspan="1" colspan="1">Approved in the US (2017)</td>
</tr>
<tr>
<td align="center" valign="middle" rowspan="1" colspan="1">Apealea</td>
<td align="center" valign="middle" rowspan="1" colspan="1">paclitaxel micellar</td>
<td align="center" valign="middle" rowspan="1" colspan="1">Ovarian, peritoneal, and fallopian tube cancer</td>
<td align="center" valign="middle" rowspan="1" colspan="1">Approved in Europe (2018)</td>
</tr>
<tr>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">Hensify</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">hafnium oxide nanoparticles</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">Locally-advanced soft tissue sarcoma</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">Approved in Europe (2019)</td>
</tr>
</tbody>
</table>
</table-wrap>
</floats-group>
</pmc>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/ChloroquineV1/Data/Pmc/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000907 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Pmc/Corpus/biblio.hfd -nk 000907 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    ChloroquineV1
   |flux=    Pmc
   |étape=   Corpus
   |type=    RBID
   |clé=     PMC:6966668
   |texte=   Thirty Years of Cancer Nanomedicine: Success, Frustration, and Hope
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Pmc/Corpus/RBID.i   -Sk "pubmed:31769416" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Pmc/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a ChloroquineV1 

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Wed Mar 25 22:43:59 2020. Site generation: Sun Jan 31 12:44:45 2021