Serveur d'exploration Chloroquine

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Impact of ROS Generated by Chemical, Physical, and Plasma Techniques on Cancer Attenuation

Identifieur interne : 000892 ( Pmc/Corpus ); précédent : 000891; suivant : 000893

Impact of ROS Generated by Chemical, Physical, and Plasma Techniques on Cancer Attenuation

Auteurs : Sarmistha Mitra ; Linh Nhat Nguyen ; Mahmuda Akter ; Gyungsoon Park ; Eun Ha Choi ; Nagendra Kumar Kaushik

Source :

RBID : PMC:6678366

Abstract

For the last few decades, while significant improvements have been achieved in cancer therapy, this family of diseases is still considered one of the deadliest threats to human health. Thus, there is an urgent need to find novel strategies in order to tackle this vital medical issue. One of the most pivotal causes of cancer initiation is the presence of reactive oxygen species (ROS) inside the body. Interestingly, on the other hand, high doses of ROS possess the capability to damage malignant cells. Moreover, several important intracellular mechanisms occur during the production of ROS. For these reasons, inducing ROS inside the biological system by utilizing external physical or chemical methods is a promising approach to inhibit the growth of cancer cells. Beside conventional technologies, cold atmospheric plasmas are now receiving much attention as an emerging therapeutic tool for cancer treatment due to their unique biophysical behavior, including the ability to generate considerable amounts of ROS. This review summarizes the important mechanisms of ROS generated by chemical, physical, and plasma approaches. We also emphasize the biological effects and cancer inhibition capabilities of ROS.


Url:
DOI: 10.3390/cancers11071030
PubMed: 31336648
PubMed Central: 6678366

Links to Exploration step

PMC:6678366

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Impact of ROS Generated by Chemical, Physical, and Plasma Techniques on Cancer Attenuation</title>
<author>
<name sortKey="Mitra, Sarmistha" sort="Mitra, Sarmistha" uniqKey="Mitra S" first="Sarmistha" last="Mitra">Sarmistha Mitra</name>
<affiliation>
<nlm:aff id="af1-cancers-11-01030">Applied Plasma Medicine Center, Plasma Bioscience Research Center, Seoul 01897, Korea</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="af2-cancers-11-01030">Department of Plasma Bio-display, Kwangwoon University, Seoul 01897, Korea</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Nguyen, Linh Nhat" sort="Nguyen, Linh Nhat" uniqKey="Nguyen L" first="Linh Nhat" last="Nguyen">Linh Nhat Nguyen</name>
<affiliation>
<nlm:aff id="af1-cancers-11-01030">Applied Plasma Medicine Center, Plasma Bioscience Research Center, Seoul 01897, Korea</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="af3-cancers-11-01030">Department of Electrical and Biological Physics, Kwangwoon University, Seoul 01897, Korea</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Akter, Mahmuda" sort="Akter, Mahmuda" uniqKey="Akter M" first="Mahmuda" last="Akter">Mahmuda Akter</name>
<affiliation>
<nlm:aff id="af1-cancers-11-01030">Applied Plasma Medicine Center, Plasma Bioscience Research Center, Seoul 01897, Korea</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="af2-cancers-11-01030">Department of Plasma Bio-display, Kwangwoon University, Seoul 01897, Korea</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Park, Gyungsoon" sort="Park, Gyungsoon" uniqKey="Park G" first="Gyungsoon" last="Park">Gyungsoon Park</name>
<affiliation>
<nlm:aff id="af1-cancers-11-01030">Applied Plasma Medicine Center, Plasma Bioscience Research Center, Seoul 01897, Korea</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="af2-cancers-11-01030">Department of Plasma Bio-display, Kwangwoon University, Seoul 01897, Korea</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="af3-cancers-11-01030">Department of Electrical and Biological Physics, Kwangwoon University, Seoul 01897, Korea</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Choi, Eun Ha" sort="Choi, Eun Ha" uniqKey="Choi E" first="Eun Ha" last="Choi">Eun Ha Choi</name>
<affiliation>
<nlm:aff id="af1-cancers-11-01030">Applied Plasma Medicine Center, Plasma Bioscience Research Center, Seoul 01897, Korea</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="af2-cancers-11-01030">Department of Plasma Bio-display, Kwangwoon University, Seoul 01897, Korea</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="af3-cancers-11-01030">Department of Electrical and Biological Physics, Kwangwoon University, Seoul 01897, Korea</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Kaushik, Nagendra Kumar" sort="Kaushik, Nagendra Kumar" uniqKey="Kaushik N" first="Nagendra Kumar" last="Kaushik">Nagendra Kumar Kaushik</name>
<affiliation>
<nlm:aff id="af1-cancers-11-01030">Applied Plasma Medicine Center, Plasma Bioscience Research Center, Seoul 01897, Korea</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="af2-cancers-11-01030">Department of Plasma Bio-display, Kwangwoon University, Seoul 01897, Korea</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="af3-cancers-11-01030">Department of Electrical and Biological Physics, Kwangwoon University, Seoul 01897, Korea</nlm:aff>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PMC</idno>
<idno type="pmid">31336648</idno>
<idno type="pmc">6678366</idno>
<idno type="url">http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6678366</idno>
<idno type="RBID">PMC:6678366</idno>
<idno type="doi">10.3390/cancers11071030</idno>
<date when="2019">2019</date>
<idno type="wicri:Area/Pmc/Corpus">000892</idno>
<idno type="wicri:explorRef" wicri:stream="Pmc" wicri:step="Corpus" wicri:corpus="PMC">000892</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a" type="main">Impact of ROS Generated by Chemical, Physical, and Plasma Techniques on Cancer Attenuation</title>
<author>
<name sortKey="Mitra, Sarmistha" sort="Mitra, Sarmistha" uniqKey="Mitra S" first="Sarmistha" last="Mitra">Sarmistha Mitra</name>
<affiliation>
<nlm:aff id="af1-cancers-11-01030">Applied Plasma Medicine Center, Plasma Bioscience Research Center, Seoul 01897, Korea</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="af2-cancers-11-01030">Department of Plasma Bio-display, Kwangwoon University, Seoul 01897, Korea</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Nguyen, Linh Nhat" sort="Nguyen, Linh Nhat" uniqKey="Nguyen L" first="Linh Nhat" last="Nguyen">Linh Nhat Nguyen</name>
<affiliation>
<nlm:aff id="af1-cancers-11-01030">Applied Plasma Medicine Center, Plasma Bioscience Research Center, Seoul 01897, Korea</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="af3-cancers-11-01030">Department of Electrical and Biological Physics, Kwangwoon University, Seoul 01897, Korea</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Akter, Mahmuda" sort="Akter, Mahmuda" uniqKey="Akter M" first="Mahmuda" last="Akter">Mahmuda Akter</name>
<affiliation>
<nlm:aff id="af1-cancers-11-01030">Applied Plasma Medicine Center, Plasma Bioscience Research Center, Seoul 01897, Korea</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="af2-cancers-11-01030">Department of Plasma Bio-display, Kwangwoon University, Seoul 01897, Korea</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Park, Gyungsoon" sort="Park, Gyungsoon" uniqKey="Park G" first="Gyungsoon" last="Park">Gyungsoon Park</name>
<affiliation>
<nlm:aff id="af1-cancers-11-01030">Applied Plasma Medicine Center, Plasma Bioscience Research Center, Seoul 01897, Korea</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="af2-cancers-11-01030">Department of Plasma Bio-display, Kwangwoon University, Seoul 01897, Korea</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="af3-cancers-11-01030">Department of Electrical and Biological Physics, Kwangwoon University, Seoul 01897, Korea</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Choi, Eun Ha" sort="Choi, Eun Ha" uniqKey="Choi E" first="Eun Ha" last="Choi">Eun Ha Choi</name>
<affiliation>
<nlm:aff id="af1-cancers-11-01030">Applied Plasma Medicine Center, Plasma Bioscience Research Center, Seoul 01897, Korea</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="af2-cancers-11-01030">Department of Plasma Bio-display, Kwangwoon University, Seoul 01897, Korea</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="af3-cancers-11-01030">Department of Electrical and Biological Physics, Kwangwoon University, Seoul 01897, Korea</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Kaushik, Nagendra Kumar" sort="Kaushik, Nagendra Kumar" uniqKey="Kaushik N" first="Nagendra Kumar" last="Kaushik">Nagendra Kumar Kaushik</name>
<affiliation>
<nlm:aff id="af1-cancers-11-01030">Applied Plasma Medicine Center, Plasma Bioscience Research Center, Seoul 01897, Korea</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="af2-cancers-11-01030">Department of Plasma Bio-display, Kwangwoon University, Seoul 01897, Korea</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="af3-cancers-11-01030">Department of Electrical and Biological Physics, Kwangwoon University, Seoul 01897, Korea</nlm:aff>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Cancers</title>
<idno type="eISSN">2072-6694</idno>
<imprint>
<date when="2019">2019</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<p>For the last few decades, while significant improvements have been achieved in cancer therapy, this family of diseases is still considered one of the deadliest threats to human health. Thus, there is an urgent need to find novel strategies in order to tackle this vital medical issue. One of the most pivotal causes of cancer initiation is the presence of reactive oxygen species (ROS) inside the body. Interestingly, on the other hand, high doses of ROS possess the capability to damage malignant cells. Moreover, several important intracellular mechanisms occur during the production of ROS. For these reasons, inducing ROS inside the biological system by utilizing external physical or chemical methods is a promising approach to inhibit the growth of cancer cells. Beside conventional technologies, cold atmospheric plasmas are now receiving much attention as an emerging therapeutic tool for cancer treatment due to their unique biophysical behavior, including the ability to generate considerable amounts of ROS. This review summarizes the important mechanisms of ROS generated by chemical, physical, and plasma approaches. We also emphasize the biological effects and cancer inhibition capabilities of ROS.</p>
</div>
</front>
<back>
<div1 type="bibliography">
<listBibl>
<biblStruct>
<analytic>
<author>
<name sortKey="Sauer, H" uniqKey="Sauer H">H. Sauer</name>
</author>
<author>
<name sortKey="Wartenberg, M" uniqKey="Wartenberg M">M. Wartenberg</name>
</author>
<author>
<name sortKey="Hescheler, J" uniqKey="Hescheler J">J. Hescheler</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Halliwell, B" uniqKey="Halliwell B">B. Halliwell</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Waris, G" uniqKey="Waris G">G. Waris</name>
</author>
<author>
<name sortKey="Ahsan, H" uniqKey="Ahsan H">H. Ahsan</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Tong, L" uniqKey="Tong L">L. Tong</name>
</author>
<author>
<name sortKey="Chuang, C C" uniqKey="Chuang C">C.-C. Chuang</name>
</author>
<author>
<name sortKey="Wu, S" uniqKey="Wu S">S. Wu</name>
</author>
<author>
<name sortKey="Zuo, L" uniqKey="Zuo L">L. Zuo</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Silva, F" uniqKey="Silva F">F. Silva</name>
</author>
<author>
<name sortKey="Marques, A" uniqKey="Marques A">A. Marques</name>
</author>
<author>
<name sortKey="Chaveiro, A" uniqKey="Chaveiro A">A. Chaveiro</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Pan, J S" uniqKey="Pan J">J.-S. Pan</name>
</author>
<author>
<name sortKey="Hong, M Z" uniqKey="Hong M">M.-Z. Hong</name>
</author>
<author>
<name sortKey="Ren, J L" uniqKey="Ren J">J.-L. Ren</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Schumacker, T" uniqKey="Schumacker T">T. Schumacker</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Azad, M B" uniqKey="Azad M">M.B. Azad</name>
</author>
<author>
<name sortKey="Chen, Y" uniqKey="Chen Y">Y. Chen</name>
</author>
<author>
<name sortKey="Gibson, S B" uniqKey="Gibson S">S.B. Gibson</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Raj, L" uniqKey="Raj L">L. Raj</name>
</author>
<author>
<name sortKey="Ide, T" uniqKey="Ide T">T. Ide</name>
</author>
<author>
<name sortKey="Gurkar, A U" uniqKey="Gurkar A">A.U. Gurkar</name>
</author>
<author>
<name sortKey="Foley, M" uniqKey="Foley M">M. Foley</name>
</author>
<author>
<name sortKey="Schenone, M" uniqKey="Schenone M">M. Schenone</name>
</author>
<author>
<name sortKey="Li, X" uniqKey="Li X">X. Li</name>
</author>
<author>
<name sortKey="Tolliday, N J" uniqKey="Tolliday N">N.J. Tolliday</name>
</author>
<author>
<name sortKey="Golub, T R" uniqKey="Golub T">T.R. Golub</name>
</author>
<author>
<name sortKey="Carr, S A" uniqKey="Carr S">S.A. Carr</name>
</author>
<author>
<name sortKey="Shamji, A F" uniqKey="Shamji A">A.F. Shamji</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Circu, M L" uniqKey="Circu M">M.L. Circu</name>
</author>
<author>
<name sortKey="Aw, T Y" uniqKey="Aw T">T.Y. Aw</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Akhtar, M J" uniqKey="Akhtar M">M.J. Akhtar</name>
</author>
<author>
<name sortKey="Ahamed, M" uniqKey="Ahamed M">M. Ahamed</name>
</author>
<author>
<name sortKey="Kumar, S" uniqKey="Kumar S">S. Kumar</name>
</author>
<author>
<name sortKey="Khan, M M" uniqKey="Khan M">M.M. Khan</name>
</author>
<author>
<name sortKey="Ahmad, J" uniqKey="Ahmad J">J. Ahmad</name>
</author>
<author>
<name sortKey="Alrokayan, S A" uniqKey="Alrokayan S">S.A. Alrokayan</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Dawson, M A" uniqKey="Dawson M">M.A. Dawson</name>
</author>
<author>
<name sortKey="Kouzarides, T" uniqKey="Kouzarides T">T. Kouzarides</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Hanahan, D" uniqKey="Hanahan D">D. Hanahan</name>
</author>
<author>
<name sortKey="Weinberg, R A" uniqKey="Weinberg R">R.A. Weinberg</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Trachootham, D" uniqKey="Trachootham D">D. Trachootham</name>
</author>
<author>
<name sortKey="Alexandre, J" uniqKey="Alexandre J">J. Alexandre</name>
</author>
<author>
<name sortKey="Huang, P" uniqKey="Huang P">P. Huang</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Leach, J K" uniqKey="Leach J">J.K. Leach</name>
</author>
<author>
<name sortKey="Van Tuyle, G" uniqKey="Van Tuyle G">G. Van Tuyle</name>
</author>
<author>
<name sortKey="Lin, P S" uniqKey="Lin P">P.-S. Lin</name>
</author>
<author>
<name sortKey="Schmidt Ullrich, R" uniqKey="Schmidt Ullrich R">R. Schmidt-Ullrich</name>
</author>
<author>
<name sortKey="Mikkelsen, R B" uniqKey="Mikkelsen R">R.B. Mikkelsen</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Prise, K M" uniqKey="Prise K">K.M. Prise</name>
</author>
<author>
<name sortKey="O Ullivan, J M" uniqKey="O Ullivan J">J.M. O’sullivan</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Mitra, S" uniqKey="Mitra S">S. Mitra</name>
</author>
<author>
<name sortKey="Dash, R" uniqKey="Dash R">R. Dash</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Lu, X" uniqKey="Lu X">X. Lu</name>
</author>
<author>
<name sortKey="Laroussi, M" uniqKey="Laroussi M">M. Laroussi</name>
</author>
<author>
<name sortKey="Puech, V" uniqKey="Puech V">V. Puech</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kuchenbecker, M" uniqKey="Kuchenbecker M">M. Kuchenbecker</name>
</author>
<author>
<name sortKey="Bibinov, N" uniqKey="Bibinov N">N. Bibinov</name>
</author>
<author>
<name sortKey="Kaemlimg, A" uniqKey="Kaemlimg A">A. Kaemlimg</name>
</author>
<author>
<name sortKey="Wandke, D" uniqKey="Wandke D">D. Wandke</name>
</author>
<author>
<name sortKey="Awakowicz, P" uniqKey="Awakowicz P">P. Awakowicz</name>
</author>
<author>
<name sortKey="Viol, W" uniqKey="Viol W">W. Viöl</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Weltmann, K" uniqKey="Weltmann K">K. Weltmann</name>
</author>
<author>
<name sortKey="Von Woedtke, T" uniqKey="Von Woedtke T">T. Von Woedtke</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ratovitski, E A" uniqKey="Ratovitski E">E.A. Ratovitski</name>
</author>
<author>
<name sortKey="Cheng, X" uniqKey="Cheng X">X. Cheng</name>
</author>
<author>
<name sortKey="Yan, D" uniqKey="Yan D">D. Yan</name>
</author>
<author>
<name sortKey="Sherman, J H" uniqKey="Sherman J">J.H. Sherman</name>
</author>
<author>
<name sortKey="Canady, J" uniqKey="Canady J">J. Canady</name>
</author>
<author>
<name sortKey="Trink, B" uniqKey="Trink B">B. Trink</name>
</author>
<author>
<name sortKey="Keidar, M" uniqKey="Keidar M">M. Keidar</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Vandamme, M" uniqKey="Vandamme M">M. Vandamme</name>
</author>
<author>
<name sortKey="Robert, E" uniqKey="Robert E">E. Robert</name>
</author>
<author>
<name sortKey="Lerondel, S" uniqKey="Lerondel S">S. Lerondel</name>
</author>
<author>
<name sortKey="Sarron, V" uniqKey="Sarron V">V. Sarron</name>
</author>
<author>
<name sortKey="Ries, D" uniqKey="Ries D">D. Ries</name>
</author>
<author>
<name sortKey="Dozias, S" uniqKey="Dozias S">S. Dozias</name>
</author>
<author>
<name sortKey="Sobilo, J" uniqKey="Sobilo J">J. Sobilo</name>
</author>
<author>
<name sortKey="Gosset, D" uniqKey="Gosset D">D. Gosset</name>
</author>
<author>
<name sortKey="Kieda, C" uniqKey="Kieda C">C. Kieda</name>
</author>
<author>
<name sortKey="Legrain, B" uniqKey="Legrain B">B. Legrain</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Pai, K" uniqKey="Pai K">K. Pai</name>
</author>
<author>
<name sortKey="Timmons, C" uniqKey="Timmons C">C. Timmons</name>
</author>
<author>
<name sortKey="Roehm, K D" uniqKey="Roehm K">K.D. Roehm</name>
</author>
<author>
<name sortKey="Ngo, A" uniqKey="Ngo A">A. Ngo</name>
</author>
<author>
<name sortKey="Narayanan, S S" uniqKey="Narayanan S">S.S. Narayanan</name>
</author>
<author>
<name sortKey="Ramachandran, A" uniqKey="Ramachandran A">A. Ramachandran</name>
</author>
<author>
<name sortKey="Jacob, J D" uniqKey="Jacob J">J.D. Jacob</name>
</author>
<author>
<name sortKey="Ma, L M" uniqKey="Ma L">L.M. Ma</name>
</author>
<author>
<name sortKey="Madihally, S V" uniqKey="Madihally S">S.V. Madihally</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kalghatgi, S" uniqKey="Kalghatgi S">S. Kalghatgi</name>
</author>
<author>
<name sortKey="Kelly, C M" uniqKey="Kelly C">C.M. Kelly</name>
</author>
<author>
<name sortKey="Cerchar, E" uniqKey="Cerchar E">E. Cerchar</name>
</author>
<author>
<name sortKey="Torabi, B" uniqKey="Torabi B">B. Torabi</name>
</author>
<author>
<name sortKey="Alekseev, O" uniqKey="Alekseev O">O. Alekseev</name>
</author>
<author>
<name sortKey="Fridman, A" uniqKey="Fridman A">A. Fridman</name>
</author>
<author>
<name sortKey="Friedman, G" uniqKey="Friedman G">G. Friedman</name>
</author>
<author>
<name sortKey="Azizkhan Clifford, J" uniqKey="Azizkhan Clifford J">J. Azizkhan-Clifford</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kim, C H" uniqKey="Kim C">C.-H. Kim</name>
</author>
<author>
<name sortKey="Bahn, J H" uniqKey="Bahn J">J.H. Bahn</name>
</author>
<author>
<name sortKey="Lee, S H" uniqKey="Lee S">S.-H. Lee</name>
</author>
<author>
<name sortKey="Kim, G Y" uniqKey="Kim G">G.-Y. Kim</name>
</author>
<author>
<name sortKey="Jun, S I" uniqKey="Jun S">S.-I. Jun</name>
</author>
<author>
<name sortKey="Lee, K" uniqKey="Lee K">K. Lee</name>
</author>
<author>
<name sortKey="Baek, S J" uniqKey="Baek S">S.J. Baek</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Szatrowski, T P" uniqKey="Szatrowski T">T.P. Szatrowski</name>
</author>
<author>
<name sortKey="Nathan, C F" uniqKey="Nathan C">C.F. Nathan</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Zhou, Y" uniqKey="Zhou Y">Y. Zhou</name>
</author>
<author>
<name sortKey="Hileman, E O" uniqKey="Hileman E">E.O. Hileman</name>
</author>
<author>
<name sortKey="Plunkett, W" uniqKey="Plunkett W">W. Plunkett</name>
</author>
<author>
<name sortKey="Keating, M J" uniqKey="Keating M">M.J. Keating</name>
</author>
<author>
<name sortKey="Huang, P" uniqKey="Huang P">P. Huang</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Heinlin, J" uniqKey="Heinlin J">J. Heinlin</name>
</author>
<author>
<name sortKey="Isbary, G" uniqKey="Isbary G">G. Isbary</name>
</author>
<author>
<name sortKey="Stolz, W" uniqKey="Stolz W">W. Stolz</name>
</author>
<author>
<name sortKey="Morfill, G" uniqKey="Morfill G">G. Morfill</name>
</author>
<author>
<name sortKey="Landthaler, M" uniqKey="Landthaler M">M. Landthaler</name>
</author>
<author>
<name sortKey="Shimizu, T" uniqKey="Shimizu T">T. Shimizu</name>
</author>
<author>
<name sortKey="Steffes, B" uniqKey="Steffes B">B. Steffes</name>
</author>
<author>
<name sortKey="Nosenko, T" uniqKey="Nosenko T">T. Nosenko</name>
</author>
<author>
<name sortKey="Zimmermann, J" uniqKey="Zimmermann J">J. Zimmermann</name>
</author>
<author>
<name sortKey="Karrer, S" uniqKey="Karrer S">S. Karrer</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Fridman, G" uniqKey="Fridman G">G. Fridman</name>
</author>
<author>
<name sortKey="Friedman, G" uniqKey="Friedman G">G. Friedman</name>
</author>
<author>
<name sortKey="Gutsol, A" uniqKey="Gutsol A">A. Gutsol</name>
</author>
<author>
<name sortKey="Shekhter, A B" uniqKey="Shekhter A">A.B. Shekhter</name>
</author>
<author>
<name sortKey="Vasilets, V N" uniqKey="Vasilets V">V.N. Vasilets</name>
</author>
<author>
<name sortKey="Fridman, A" uniqKey="Fridman A">A. Fridman</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kong, M G" uniqKey="Kong M">M.G. Kong</name>
</author>
<author>
<name sortKey="Kroesen, G" uniqKey="Kroesen G">G. Kroesen</name>
</author>
<author>
<name sortKey="Morfill, G" uniqKey="Morfill G">G. Morfill</name>
</author>
<author>
<name sortKey="Nosenko, T" uniqKey="Nosenko T">T. Nosenko</name>
</author>
<author>
<name sortKey="Shimizu, T" uniqKey="Shimizu T">T. Shimizu</name>
</author>
<author>
<name sortKey="Van Dijk, J" uniqKey="Van Dijk J">J. Van Dijk</name>
</author>
<author>
<name sortKey="Zimmermann, J" uniqKey="Zimmermann J">J. Zimmermann</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Koban, I" uniqKey="Koban I">I. Koban</name>
</author>
<author>
<name sortKey="Holtfreter, B" uniqKey="Holtfreter B">B. Holtfreter</name>
</author>
<author>
<name sortKey="Hubner, N O" uniqKey="Hubner N">N.O. Hübner</name>
</author>
<author>
<name sortKey="Matthes, R" uniqKey="Matthes R">R. Matthes</name>
</author>
<author>
<name sortKey="Sietmann, R" uniqKey="Sietmann R">R. Sietmann</name>
</author>
<author>
<name sortKey="Kindel, E" uniqKey="Kindel E">E. Kindel</name>
</author>
<author>
<name sortKey="Weltmann, K D" uniqKey="Weltmann K">K.D. Weltmann</name>
</author>
<author>
<name sortKey="Welk, A" uniqKey="Welk A">A. Welk</name>
</author>
<author>
<name sortKey="Kramer, A" uniqKey="Kramer A">A. Kramer</name>
</author>
<author>
<name sortKey="Kocher, T" uniqKey="Kocher T">T. Kocher</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Laroussi, M" uniqKey="Laroussi M">M. Laroussi</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Schmidt, A" uniqKey="Schmidt A">A. Schmidt</name>
</author>
<author>
<name sortKey="Wende, K" uniqKey="Wende K">K. Wende</name>
</author>
<author>
<name sortKey="Bekeschus, S" uniqKey="Bekeschus S">S. Bekeschus</name>
</author>
<author>
<name sortKey="Bundscherer, L" uniqKey="Bundscherer L">L. Bundscherer</name>
</author>
<author>
<name sortKey="Barton, A" uniqKey="Barton A">A. Barton</name>
</author>
<author>
<name sortKey="Ottmuller, K" uniqKey="Ottmuller K">K. Ottmüller</name>
</author>
<author>
<name sortKey="Weltmann, K D" uniqKey="Weltmann K">K.-D. Weltmann</name>
</author>
<author>
<name sortKey="Masur, K" uniqKey="Masur K">K. Masur</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Wang, M" uniqKey="Wang M">M. Wang</name>
</author>
<author>
<name sortKey="Holmes, B" uniqKey="Holmes B">B. Holmes</name>
</author>
<author>
<name sortKey="Cheng, X" uniqKey="Cheng X">X. Cheng</name>
</author>
<author>
<name sortKey="Zhu, W" uniqKey="Zhu W">W. Zhu</name>
</author>
<author>
<name sortKey="Keidar, M" uniqKey="Keidar M">M. Keidar</name>
</author>
<author>
<name sortKey="Zhang, L G" uniqKey="Zhang L">L.G. Zhang</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Iseki, S" uniqKey="Iseki S">S. Iseki</name>
</author>
<author>
<name sortKey="Nakamura, K" uniqKey="Nakamura K">K. Nakamura</name>
</author>
<author>
<name sortKey="Hayashi, M" uniqKey="Hayashi M">M. Hayashi</name>
</author>
<author>
<name sortKey="Tanaka, H" uniqKey="Tanaka H">H. Tanaka</name>
</author>
<author>
<name sortKey="Kondo, H" uniqKey="Kondo H">H. Kondo</name>
</author>
<author>
<name sortKey="Kajiyama, H" uniqKey="Kajiyama H">H. Kajiyama</name>
</author>
<author>
<name sortKey="Kano, H" uniqKey="Kano H">H. Kano</name>
</author>
<author>
<name sortKey="Kikkawa, F" uniqKey="Kikkawa F">F. Kikkawa</name>
</author>
<author>
<name sortKey="Hori, M" uniqKey="Hori M">M. Hori</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Hirst, A" uniqKey="Hirst A">A. Hirst</name>
</author>
<author>
<name sortKey="Simms, M" uniqKey="Simms M">M. Simms</name>
</author>
<author>
<name sortKey="Mann, V" uniqKey="Mann V">V. Mann</name>
</author>
<author>
<name sortKey="Maitland, N" uniqKey="Maitland N">N. Maitland</name>
</author>
<author>
<name sortKey="O Onnell, D" uniqKey="O Onnell D">D. O’connell</name>
</author>
<author>
<name sortKey="Frame, F" uniqKey="Frame F">F. Frame</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Panngom, K" uniqKey="Panngom K">K. Panngom</name>
</author>
<author>
<name sortKey="Baik, K" uniqKey="Baik K">K. Baik</name>
</author>
<author>
<name sortKey="Nam, M" uniqKey="Nam M">M. Nam</name>
</author>
<author>
<name sortKey="Han, J" uniqKey="Han J">J. Han</name>
</author>
<author>
<name sortKey="Rhim, H" uniqKey="Rhim H">H. Rhim</name>
</author>
<author>
<name sortKey="Choi, E" uniqKey="Choi E">E. Choi</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Tanaka, H" uniqKey="Tanaka H">H. Tanaka</name>
</author>
<author>
<name sortKey="Mizuno, M" uniqKey="Mizuno M">M. Mizuno</name>
</author>
<author>
<name sortKey="Ishikawa, K" uniqKey="Ishikawa K">K. Ishikawa</name>
</author>
<author>
<name sortKey="Nakamura, K" uniqKey="Nakamura K">K. Nakamura</name>
</author>
<author>
<name sortKey="Kajiyama, H" uniqKey="Kajiyama H">H. Kajiyama</name>
</author>
<author>
<name sortKey="Kano, H" uniqKey="Kano H">H. Kano</name>
</author>
<author>
<name sortKey="Kikkawa, F" uniqKey="Kikkawa F">F. Kikkawa</name>
</author>
<author>
<name sortKey="Hori, M" uniqKey="Hori M">M. Hori</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Fridman, G" uniqKey="Fridman G">G. Fridman</name>
</author>
<author>
<name sortKey="Shereshevsky, A" uniqKey="Shereshevsky A">A. Shereshevsky</name>
</author>
<author>
<name sortKey="Jost, M M" uniqKey="Jost M">M.M. Jost</name>
</author>
<author>
<name sortKey="Brooks, A D" uniqKey="Brooks A">A.D. Brooks</name>
</author>
<author>
<name sortKey="Fridman, A" uniqKey="Fridman A">A. Fridman</name>
</author>
<author>
<name sortKey="Gutsol, A" uniqKey="Gutsol A">A. Gutsol</name>
</author>
<author>
<name sortKey="Vasilets, V" uniqKey="Vasilets V">V. Vasilets</name>
</author>
<author>
<name sortKey="Friedman, G" uniqKey="Friedman G">G. Friedman</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kim, G" uniqKey="Kim G">G. Kim</name>
</author>
<author>
<name sortKey="Kim, G" uniqKey="Kim G">G. Kim</name>
</author>
<author>
<name sortKey="Park, S" uniqKey="Park S">S. Park</name>
</author>
<author>
<name sortKey="Jeon, S" uniqKey="Jeon S">S. Jeon</name>
</author>
<author>
<name sortKey="Seo, H" uniqKey="Seo H">H. Seo</name>
</author>
<author>
<name sortKey="Iza, F" uniqKey="Iza F">F. Iza</name>
</author>
<author>
<name sortKey="Lee, J K" uniqKey="Lee J">J.K. Lee</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kehrer, J P" uniqKey="Kehrer J">J.P. Kehrer</name>
</author>
<author>
<name sortKey="Klotz, L O" uniqKey="Klotz L">L.O. Klotz</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Agnez Lima, L F" uniqKey="Agnez Lima L">L.F. Agnez-Lima</name>
</author>
<author>
<name sortKey="Melo, J T" uniqKey="Melo J">J.T. Melo</name>
</author>
<author>
<name sortKey="Silva, A E" uniqKey="Silva A">A.E. Silva</name>
</author>
<author>
<name sortKey="Oliveira, A H S" uniqKey="Oliveira A">A.H.S. Oliveira</name>
</author>
<author>
<name sortKey="Timoteo, A R S" uniqKey="Timoteo A">A.R.S. Timoteo</name>
</author>
<author>
<name sortKey="Lima Bessa, K M" uniqKey="Lima Bessa K">K.M. Lima-Bessa</name>
</author>
<author>
<name sortKey="Martinez, G R" uniqKey="Martinez G">G.R. Martinez</name>
</author>
<author>
<name sortKey="Medeiros, M H" uniqKey="Medeiros M">M.H. Medeiros</name>
</author>
<author>
<name sortKey="Di Mascio, P" uniqKey="Di Mascio P">P. Di Mascio</name>
</author>
<author>
<name sortKey="Galhardo, R S" uniqKey="Galhardo R">R.S. Galhardo</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Nosaka, Y" uniqKey="Nosaka Y">Y. Nosaka</name>
</author>
<author>
<name sortKey="Nosaka, A Y" uniqKey="Nosaka A">A.Y. Nosaka</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Hayyan, M" uniqKey="Hayyan M">M. Hayyan</name>
</author>
<author>
<name sortKey="Hashim, M A" uniqKey="Hashim M">M.A. Hashim</name>
</author>
<author>
<name sortKey="Alnashef, I M" uniqKey="Alnashef I">I.M. AlNashef</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Koppenol, W H" uniqKey="Koppenol W">W.H. Koppenol</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Gligorovski, S" uniqKey="Gligorovski S">S. Gligorovski</name>
</author>
<author>
<name sortKey="Strekowski, R" uniqKey="Strekowski R">R. Strekowski</name>
</author>
<author>
<name sortKey="Barbati, S" uniqKey="Barbati S">S. Barbati</name>
</author>
<author>
<name sortKey="Vione, D" uniqKey="Vione D">D. Vione</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Luis, A" uniqKey="Luis A">A. Luis</name>
</author>
<author>
<name sortKey="Sandalio, L M" uniqKey="Sandalio L">L.M. Sandalio</name>
</author>
<author>
<name sortKey="Palma, J" uniqKey="Palma J">J. Palma</name>
</author>
<author>
<name sortKey="Bueno, P" uniqKey="Bueno P">P. Bueno</name>
</author>
<author>
<name sortKey="Corpas, F J" uniqKey="Corpas F">F.J. Corpas</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Finkel, T" uniqKey="Finkel T">T. Finkel</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Quan, L J" uniqKey="Quan L">L.J. Quan</name>
</author>
<author>
<name sortKey="Zhang, B" uniqKey="Zhang B">B. Zhang</name>
</author>
<author>
<name sortKey="Shi, W W" uniqKey="Shi W">W.W. Shi</name>
</author>
<author>
<name sortKey="Li, H Y" uniqKey="Li H">H.Y. Li</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Schieber, M" uniqKey="Schieber M">M. Schieber</name>
</author>
<author>
<name sortKey="Chandel, N S" uniqKey="Chandel N">N.S. Chandel</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Apel, K" uniqKey="Apel K">K. Apel</name>
</author>
<author>
<name sortKey="Hirt, H" uniqKey="Hirt H">H. Hirt</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Crichton, R" uniqKey="Crichton R">R. Crichton</name>
</author>
<author>
<name sortKey="Crichton, R R" uniqKey="Crichton R">R.R. Crichton</name>
</author>
<author>
<name sortKey="Boelaert, J R" uniqKey="Boelaert J">J.R. Boelaert</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Cadenas, E" uniqKey="Cadenas E">E. Cadenas</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Halliwell, B" uniqKey="Halliwell B">B. Halliwell</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Klotz, L O" uniqKey="Klotz L">L.-O. Klotz</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Feig, D I" uniqKey="Feig D">D.I. Feig</name>
</author>
<author>
<name sortKey="Reid, T M" uniqKey="Reid T">T.M. Reid</name>
</author>
<author>
<name sortKey="Loeb, L A" uniqKey="Loeb L">L.A. Loeb</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Klaunig, J E" uniqKey="Klaunig J">J.E. Klaunig</name>
</author>
<author>
<name sortKey="Xu, Y" uniqKey="Xu Y">Y. Xu</name>
</author>
<author>
<name sortKey="Isenberg, J S" uniqKey="Isenberg J">J.S. Isenberg</name>
</author>
<author>
<name sortKey="Bachowski, S" uniqKey="Bachowski S">S. Bachowski</name>
</author>
<author>
<name sortKey="Kolaja, K L" uniqKey="Kolaja K">K.L. Kolaja</name>
</author>
<author>
<name sortKey="Jiang, J" uniqKey="Jiang J">J. Jiang</name>
</author>
<author>
<name sortKey="Stevenson, D E" uniqKey="Stevenson D">D.E. Stevenson</name>
</author>
<author>
<name sortKey="Walborg, E F" uniqKey="Walborg E">E.F. Walborg</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kim, Y W" uniqKey="Kim Y">Y.-W. Kim</name>
</author>
<author>
<name sortKey="West, X Z" uniqKey="West X">X.Z. West</name>
</author>
<author>
<name sortKey="Byzova, T V" uniqKey="Byzova T">T.V. Byzova</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Shelton, P" uniqKey="Shelton P">P. Shelton</name>
</author>
<author>
<name sortKey="Jaiswal, A K" uniqKey="Jaiswal A">A.K. Jaiswal</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="St Pierre, J" uniqKey="St Pierre J">J. St-Pierre</name>
</author>
<author>
<name sortKey="Buckingham, J A" uniqKey="Buckingham J">J.A. Buckingham</name>
</author>
<author>
<name sortKey="Roebuck, S J" uniqKey="Roebuck S">S.J. Roebuck</name>
</author>
<author>
<name sortKey="Brand, M D" uniqKey="Brand M">M.D. Brand</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ray, D" uniqKey="Ray D">D. Ray</name>
</author>
<author>
<name sortKey="Huang, B W" uniqKey="Huang B">B.-W. Huang</name>
</author>
<author>
<name sortKey="Tsuji, Y" uniqKey="Tsuji Y">Y. Tsuji</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Sena, L A" uniqKey="Sena L">L.A. Sena</name>
</author>
<author>
<name sortKey="Chandel, N S" uniqKey="Chandel N">N.S. Chandel</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ott, M" uniqKey="Ott M">M. Ott</name>
</author>
<author>
<name sortKey="Gogvadze, V" uniqKey="Gogvadze V">V. Gogvadze</name>
</author>
<author>
<name sortKey="Orrenius, S" uniqKey="Orrenius S">S. Orrenius</name>
</author>
<author>
<name sortKey="Zhivotovsky, B" uniqKey="Zhivotovsky B">B. Zhivotovsky</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Naudi, A" uniqKey="Naudi A">A. Naudi</name>
</author>
<author>
<name sortKey="Jove, M" uniqKey="Jove M">M. Jove</name>
</author>
<author>
<name sortKey="Ayala, V" uniqKey="Ayala V">V. Ayala</name>
</author>
<author>
<name sortKey="Cassanye, A" uniqKey="Cassanye A">A. Cassanye</name>
</author>
<author>
<name sortKey="Serrano, J" uniqKey="Serrano J">J. Serrano</name>
</author>
<author>
<name sortKey="Gonzalo, H" uniqKey="Gonzalo H">H. Gonzalo</name>
</author>
<author>
<name sortKey="Boada, J" uniqKey="Boada J">J. Boada</name>
</author>
<author>
<name sortKey="Prat, J" uniqKey="Prat J">J. Prat</name>
</author>
<author>
<name sortKey="Portero Otin, M" uniqKey="Portero Otin M">M. Portero-Otin</name>
</author>
<author>
<name sortKey="Pamplona, R" uniqKey="Pamplona R">R. Pamplona</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Chance, B" uniqKey="Chance B">B. Chance</name>
</author>
<author>
<name sortKey="Sies, H" uniqKey="Sies H">H. Sies</name>
</author>
<author>
<name sortKey="Boveris, A" uniqKey="Boveris A">A. Boveris</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Okado Matsumoto, A" uniqKey="Okado Matsumoto A">A. Okado-Matsumoto</name>
</author>
<author>
<name sortKey="Fridovich, I" uniqKey="Fridovich I">I. Fridovich</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Sturtz, L A" uniqKey="Sturtz L">L.A. Sturtz</name>
</author>
<author>
<name sortKey="Diekert, K" uniqKey="Diekert K">K. Diekert</name>
</author>
<author>
<name sortKey="Jensen, L T" uniqKey="Jensen L">L.T. Jensen</name>
</author>
<author>
<name sortKey="Lill, R" uniqKey="Lill R">R. Lill</name>
</author>
<author>
<name sortKey="Culotta, V C" uniqKey="Culotta V">V.C. Culotta</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Weisiger, R A" uniqKey="Weisiger R">R.A. Weisiger</name>
</author>
<author>
<name sortKey="Fridovich, I" uniqKey="Fridovich I">I. Fridovich</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Murphy, M P" uniqKey="Murphy M">M.P. Murphy</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Brand, M D" uniqKey="Brand M">M.D. Brand</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Zangar, R C" uniqKey="Zangar R">R.C. Zangar</name>
</author>
<author>
<name sortKey="Davydov, D R" uniqKey="Davydov D">D.R. Davydov</name>
</author>
<author>
<name sortKey="Verma, S" uniqKey="Verma S">S. Verma</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Cao, S S" uniqKey="Cao S">S.S. Cao</name>
</author>
<author>
<name sortKey="Kaufman, R J" uniqKey="Kaufman R">R.J. Kaufman</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Creighton, T E" uniqKey="Creighton T">T.E. Creighton</name>
</author>
<author>
<name sortKey="Hillson, D A" uniqKey="Hillson D">D.A. Hillson</name>
</author>
<author>
<name sortKey="Freedman, R B" uniqKey="Freedman R">R.B. Freedman</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Tu, B P" uniqKey="Tu B">B.P. Tu</name>
</author>
<author>
<name sortKey="Weissman, J S" uniqKey="Weissman J">J.S. Weissman</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kemp, M" uniqKey="Kemp M">M. Kemp</name>
</author>
<author>
<name sortKey="Go, Y M" uniqKey="Go Y">Y.-M. Go</name>
</author>
<author>
<name sortKey="Jones, D P" uniqKey="Jones D">D.P. Jones</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Hwang, C" uniqKey="Hwang C">C. Hwang</name>
</author>
<author>
<name sortKey="Sinskey, A J" uniqKey="Sinskey A">A.J. Sinskey</name>
</author>
<author>
<name sortKey="Lodish, H F" uniqKey="Lodish H">H.F. Lodish</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Montezano, A C" uniqKey="Montezano A">A.C. Montezano</name>
</author>
<author>
<name sortKey="Touyz, R M" uniqKey="Touyz R">R.M. Touyz</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Barnham, K J" uniqKey="Barnham K">K.J. Barnham</name>
</author>
<author>
<name sortKey="Masters, C L" uniqKey="Masters C">C.L. Masters</name>
</author>
<author>
<name sortKey="Bush, A I" uniqKey="Bush A">A.I. Bush</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Forman, H J" uniqKey="Forman H">H.J. Forman</name>
</author>
<author>
<name sortKey="Torres, M" uniqKey="Torres M">M. Torres</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Schrader, M" uniqKey="Schrader M">M. Schrader</name>
</author>
<author>
<name sortKey="Fahimi, H D" uniqKey="Fahimi H">H.D. Fahimi</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Abdal Dayem, A" uniqKey="Abdal Dayem A">A. Abdal Dayem</name>
</author>
<author>
<name sortKey="Hossain, M K" uniqKey="Hossain M">M.K. Hossain</name>
</author>
<author>
<name sortKey="Lee, S B" uniqKey="Lee S">S.B. Lee</name>
</author>
<author>
<name sortKey="Kim, K" uniqKey="Kim K">K. Kim</name>
</author>
<author>
<name sortKey="Saha, S K" uniqKey="Saha S">S.K. Saha</name>
</author>
<author>
<name sortKey="Yang, G M" uniqKey="Yang G">G.-M. Yang</name>
</author>
<author>
<name sortKey="Choi, H Y" uniqKey="Choi H">H.Y. Choi</name>
</author>
<author>
<name sortKey="Cho, S G" uniqKey="Cho S">S.-G. Cho</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Hrycay, E G" uniqKey="Hrycay E">E.G. Hrycay</name>
</author>
<author>
<name sortKey="Bandiera, S M" uniqKey="Bandiera S">S.M. Bandiera</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Halliwell, B" uniqKey="Halliwell B">B. Halliwell</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Hardwick, J P" uniqKey="Hardwick J">J.P. Hardwick</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Hrycay, E G" uniqKey="Hrycay E">E.G. Hrycay</name>
</author>
<author>
<name sortKey="Bandiera, S M" uniqKey="Bandiera S">S.M. Bandiera</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Lewis, D" uniqKey="Lewis D">D. Lewis</name>
</author>
<author>
<name sortKey="Lake, B" uniqKey="Lake B">B. Lake</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kappus, H" uniqKey="Kappus H">H. Kappus</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Bagchi, D" uniqKey="Bagchi D">D. Bagchi</name>
</author>
<author>
<name sortKey="Bagchi, M" uniqKey="Bagchi M">M. Bagchi</name>
</author>
<author>
<name sortKey="Hassoun, E" uniqKey="Hassoun E">E. Hassoun</name>
</author>
<author>
<name sortKey="Stohs, S" uniqKey="Stohs S">S. Stohs</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Wilhelm, J" uniqKey="Wilhelm J">J. Wilhelm</name>
</author>
<author>
<name sortKey="Sojkova, J" uniqKey="Sojkova J">J. Sojkova</name>
</author>
<author>
<name sortKey="Herget, J" uniqKey="Herget J">J. Herget</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Datta, R" uniqKey="Datta R">R. Datta</name>
</author>
<author>
<name sortKey="Yoshinaga, K" uniqKey="Yoshinaga K">K. Yoshinaga</name>
</author>
<author>
<name sortKey="Kaneki, M" uniqKey="Kaneki M">M. Kaneki</name>
</author>
<author>
<name sortKey="Pandey, P" uniqKey="Pandey P">P. Pandey</name>
</author>
<author>
<name sortKey="Kufe, D" uniqKey="Kufe D">D. Kufe</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ice, J M" uniqKey="Ice J">J.M. Ice</name>
</author>
<author>
<name sortKey="Diwan, B A" uniqKey="Diwan B">B.A. Diwan</name>
</author>
<author>
<name sortKey="Hu, H" uniqKey="Hu H">H. Hu</name>
</author>
<author>
<name sortKey="Ward, J M" uniqKey="Ward J">J.M. Ward</name>
</author>
<author>
<name sortKey="Nims, R W" uniqKey="Nims R">R.W. Nims</name>
</author>
<author>
<name sortKey="Lubet, R A" uniqKey="Lubet R">R.A. Lubet</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Klaunig, J E" uniqKey="Klaunig J">J.E. Klaunig</name>
</author>
<author>
<name sortKey="Kamendulis, L M" uniqKey="Kamendulis L">L.M. Kamendulis</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Siesky, A M" uniqKey="Siesky A">A.M. Siesky</name>
</author>
<author>
<name sortKey="Kamendulis, L M" uniqKey="Kamendulis L">L.M. Kamendulis</name>
</author>
<author>
<name sortKey="Klaunig, J E" uniqKey="Klaunig J">J.E. Klaunig</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kitazawa, M" uniqKey="Kitazawa M">M. Kitazawa</name>
</author>
<author>
<name sortKey="Anantharam, V" uniqKey="Anantharam V">V. Anantharam</name>
</author>
<author>
<name sortKey="Kanthasamy, A G" uniqKey="Kanthasamy A">A.G. Kanthasamy</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kopf, P G" uniqKey="Kopf P">P.G. Kopf</name>
</author>
<author>
<name sortKey="Walker, M" uniqKey="Walker M">M. Walker</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Betoulle, S" uniqKey="Betoulle S">S. Betoulle</name>
</author>
<author>
<name sortKey="Duchiron, C" uniqKey="Duchiron C">C. Duchiron</name>
</author>
<author>
<name sortKey="Deschaux, P" uniqKey="Deschaux P">P. Deschaux</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kinoshita, A" uniqKey="Kinoshita A">A. Kinoshita</name>
</author>
<author>
<name sortKey="Wanibuchi, H" uniqKey="Wanibuchi H">H. Wanibuchi</name>
</author>
<author>
<name sortKey="Imaoka, S" uniqKey="Imaoka S">S. Imaoka</name>
</author>
<author>
<name sortKey="Ogawa, M" uniqKey="Ogawa M">M. Ogawa</name>
</author>
<author>
<name sortKey="Masuda, C" uniqKey="Masuda C">C. Masuda</name>
</author>
<author>
<name sortKey="Morimura, K" uniqKey="Morimura K">K. Morimura</name>
</author>
<author>
<name sortKey="Funae, Y" uniqKey="Funae Y">Y. Funae</name>
</author>
<author>
<name sortKey="Fukushima, S" uniqKey="Fukushima S">S. Fukushima</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Klaunig, J E" uniqKey="Klaunig J">J.E. Klaunig</name>
</author>
<author>
<name sortKey="Xu, Y" uniqKey="Xu Y">Y. Xu</name>
</author>
<author>
<name sortKey="Bachowski, S" uniqKey="Bachowski S">S. Bachowski</name>
</author>
<author>
<name sortKey="Jiang, J" uniqKey="Jiang J">J. Jiang</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Formanowicz, D" uniqKey="Formanowicz D">D. Formanowicz</name>
</author>
<author>
<name sortKey="Radom, M" uniqKey="Radom M">M. Radom</name>
</author>
<author>
<name sortKey="Rybarczyk, A" uniqKey="Rybarczyk A">A. Rybarczyk</name>
</author>
<author>
<name sortKey="Formanowicz, P" uniqKey="Formanowicz P">P. Formanowicz</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Pignatello, J J" uniqKey="Pignatello J">J.J. Pignatello</name>
</author>
<author>
<name sortKey="Oliveros, E" uniqKey="Oliveros E">E. Oliveros</name>
</author>
<author>
<name sortKey="Mackay, A" uniqKey="Mackay A">A. MacKay</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Sutton, H C" uniqKey="Sutton H">H.C. Sutton</name>
</author>
<author>
<name sortKey="Winterbourn, C C" uniqKey="Winterbourn C">C.C. Winterbourn</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kehrer, J P" uniqKey="Kehrer J">J.P. Kehrer</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kanti Das, T" uniqKey="Kanti Das T">T. Kanti Das</name>
</author>
<author>
<name sortKey="Wati, M R" uniqKey="Wati M">M.R. Wati</name>
</author>
<author>
<name sortKey="Fatima Shad, K" uniqKey="Fatima Shad K">K. Fatima-Shad</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Riley, P A" uniqKey="Riley P">P.A. Riley</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Adhami, V M" uniqKey="Adhami V">V.M. Adhami</name>
</author>
<author>
<name sortKey="Afaq, F" uniqKey="Afaq F">F. Afaq</name>
</author>
<author>
<name sortKey="Ahmad, N" uniqKey="Ahmad N">N. Ahmad</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Heck, D E" uniqKey="Heck D">D.E. Heck</name>
</author>
<author>
<name sortKey="Vetrano, A M" uniqKey="Vetrano A">A.M. Vetrano</name>
</author>
<author>
<name sortKey="Mariano, T M" uniqKey="Mariano T">T.M. Mariano</name>
</author>
<author>
<name sortKey="Laskin, J D" uniqKey="Laskin J">J.D. Laskin</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Baskar, R" uniqKey="Baskar R">R. Baskar</name>
</author>
<author>
<name sortKey="Dai, J" uniqKey="Dai J">J. Dai</name>
</author>
<author>
<name sortKey="Wenlong, N" uniqKey="Wenlong N">N. Wenlong</name>
</author>
<author>
<name sortKey="Yeo, R" uniqKey="Yeo R">R. Yeo</name>
</author>
<author>
<name sortKey="Yeoh, K W" uniqKey="Yeoh K">K.-W. Yeoh</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Azzam, E I" uniqKey="Azzam E">E.I. Azzam</name>
</author>
<author>
<name sortKey="Jay Gerin, J P" uniqKey="Jay Gerin J">J.-P. Jay-Gerin</name>
</author>
<author>
<name sortKey="Pain, D" uniqKey="Pain D">D. Pain</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Tateishi, Y" uniqKey="Tateishi Y">Y. Tateishi</name>
</author>
<author>
<name sortKey="Sasabe, E" uniqKey="Sasabe E">E. Sasabe</name>
</author>
<author>
<name sortKey="Ueta, E" uniqKey="Ueta E">E. Ueta</name>
</author>
<author>
<name sortKey="Yamamoto, T" uniqKey="Yamamoto T">T. Yamamoto</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Chen, Q" uniqKey="Chen Q">Q. Chen</name>
</author>
<author>
<name sortKey="Chai, Y" uniqKey="Chai Y">Y. Chai</name>
</author>
<author>
<name sortKey="Mazumder, S" uniqKey="Mazumder S">S. Mazumder</name>
</author>
<author>
<name sortKey="Jiang, C" uniqKey="Jiang C">C. Jiang</name>
</author>
<author>
<name sortKey="Macklis, R" uniqKey="Macklis R">R. Macklis</name>
</author>
<author>
<name sortKey="Chisolm, G" uniqKey="Chisolm G">G. Chisolm</name>
</author>
<author>
<name sortKey="Almasan, A" uniqKey="Almasan A">A. Almasan</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Yamamori, T" uniqKey="Yamamori T">T. Yamamori</name>
</author>
<author>
<name sortKey="Yasui, H" uniqKey="Yasui H">H. Yasui</name>
</author>
<author>
<name sortKey="Yamazumi, M" uniqKey="Yamazumi M">M. Yamazumi</name>
</author>
<author>
<name sortKey="Wada, Y" uniqKey="Wada Y">Y. Wada</name>
</author>
<author>
<name sortKey="Nakamura, Y" uniqKey="Nakamura Y">Y. Nakamura</name>
</author>
<author>
<name sortKey="Nakamura, H" uniqKey="Nakamura H">H. Nakamura</name>
</author>
<author>
<name sortKey="Inanami, O" uniqKey="Inanami O">O. Inanami</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Farivar, S" uniqKey="Farivar S">S. Farivar</name>
</author>
<author>
<name sortKey="Malekshahabi, T" uniqKey="Malekshahabi T">T. Malekshahabi</name>
</author>
<author>
<name sortKey="Shiari, R" uniqKey="Shiari R">R. Shiari</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Karu, T" uniqKey="Karu T">T. Karu</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Eells, J T" uniqKey="Eells J">J.T. Eells</name>
</author>
<author>
<name sortKey="Wong Riley, M T" uniqKey="Wong Riley M">M.T. Wong-Riley</name>
</author>
<author>
<name sortKey="Verhoeve, J" uniqKey="Verhoeve J">J. VerHoeve</name>
</author>
<author>
<name sortKey="Henry, M" uniqKey="Henry M">M. Henry</name>
</author>
<author>
<name sortKey="Buchman, E V" uniqKey="Buchman E">E.V. Buchman</name>
</author>
<author>
<name sortKey="Kane, M P" uniqKey="Kane M">M.P. Kane</name>
</author>
<author>
<name sortKey="Gould, L J" uniqKey="Gould L">L.J. Gould</name>
</author>
<author>
<name sortKey="Das, R" uniqKey="Das R">R. Das</name>
</author>
<author>
<name sortKey="Jett, M" uniqKey="Jett M">M. Jett</name>
</author>
<author>
<name sortKey="Hodgson, B D" uniqKey="Hodgson B">B.D. Hodgson</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Karu, T" uniqKey="Karu T">T. Karu</name>
</author>
<author>
<name sortKey="Afanas Va, N" uniqKey="Afanas Va N">N. Afanas’eva</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Conlan, M J" uniqKey="Conlan M">M.J. Conlan</name>
</author>
<author>
<name sortKey="Rapley, J W" uniqKey="Rapley J">J.W. Rapley</name>
</author>
<author>
<name sortKey="Cobb, C M" uniqKey="Cobb C">C.M. Cobb</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Mester, E" uniqKey="Mester E">E. Mester</name>
</author>
<author>
<name sortKey="Mester, A F" uniqKey="Mester A">A.F. Mester</name>
</author>
<author>
<name sortKey="Mester, A" uniqKey="Mester A">A. Mester</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ortiz, M C S" uniqKey="Ortiz M">M.C.S. Ortiz</name>
</author>
<author>
<name sortKey="Carrinho, P M" uniqKey="Carrinho P">P.M. Carrinho</name>
</author>
<author>
<name sortKey="Santos, A" uniqKey="Santos A">A. Santos</name>
</author>
<author>
<name sortKey="Goncalves, R C" uniqKey="Goncalves R">R.C. Gonçalves</name>
</author>
<author>
<name sortKey="Parizotto, N A" uniqKey="Parizotto N">N.A. Parizotto</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Stadler, I" uniqKey="Stadler I">I. Stadler</name>
</author>
<author>
<name sortKey="Evans, R" uniqKey="Evans R">R. Evans</name>
</author>
<author>
<name sortKey="Kolb, B" uniqKey="Kolb B">B. Kolb</name>
</author>
<author>
<name sortKey="Naim, J O" uniqKey="Naim J">J.O. Naim</name>
</author>
<author>
<name sortKey="Narayan, V" uniqKey="Narayan V">V. Narayan</name>
</author>
<author>
<name sortKey="Buehner, N" uniqKey="Buehner N">N. Buehner</name>
</author>
<author>
<name sortKey="Lanzafame, R J" uniqKey="Lanzafame R">R.J. Lanzafame</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Silveira, P" uniqKey="Silveira P">P. Silveira</name>
</author>
<author>
<name sortKey="Silva, L" uniqKey="Silva L">L. Silva</name>
</author>
<author>
<name sortKey="Tuon, T" uniqKey="Tuon T">T. Tuon</name>
</author>
<author>
<name sortKey="Freitas, T" uniqKey="Freitas T">T. Freitas</name>
</author>
<author>
<name sortKey="Streck, E" uniqKey="Streck E">E. Streck</name>
</author>
<author>
<name sortKey="Pinho, R" uniqKey="Pinho R">R. Pinho</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ja Kim, S" uniqKey="Ja Kim S">S. Ja Kim</name>
</author>
<author>
<name sortKey="Min Joh, H" uniqKey="Min Joh H">H. Min Joh</name>
</author>
<author>
<name sortKey="Chung, T" uniqKey="Chung T">T. Chung</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Sousa, J S" uniqKey="Sousa J">J.S. Sousa</name>
</author>
<author>
<name sortKey="Tresp, H" uniqKey="Tresp H">H. Tresp</name>
</author>
<author>
<name sortKey="Dunnbier, M" uniqKey="Dunnbier M">M. Dünnbier</name>
</author>
<author>
<name sortKey="Iseni, S" uniqKey="Iseni S">S. Iséni</name>
</author>
<author>
<name sortKey="Hammer, M U" uniqKey="Hammer M">M.U. Hammer</name>
</author>
<author>
<name sortKey="Winter, J" uniqKey="Winter J">J. Winter</name>
</author>
<author>
<name sortKey="Martin, V" uniqKey="Martin V">V. Martin</name>
</author>
<author>
<name sortKey="Puech, V" uniqKey="Puech V">V. Puech</name>
</author>
<author>
<name sortKey="Weltmann, K D" uniqKey="Weltmann K">K.-D. Weltmann</name>
</author>
<author>
<name sortKey="Reuter, S" uniqKey="Reuter S">S. Reuter</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kl Mpfl, T G" uniqKey="Kl Mpfl T">T.G. Klämpfl</name>
</author>
<author>
<name sortKey="Isbary, G" uniqKey="Isbary G">G. Isbary</name>
</author>
<author>
<name sortKey="Shimizu, T" uniqKey="Shimizu T">T. Shimizu</name>
</author>
<author>
<name sortKey="Li, Y F" uniqKey="Li Y">Y.-F. Li</name>
</author>
<author>
<name sortKey="Zimmermann, J L" uniqKey="Zimmermann J">J.L. Zimmermann</name>
</author>
<author>
<name sortKey="Stolz, W" uniqKey="Stolz W">W. Stolz</name>
</author>
<author>
<name sortKey="Schlegel, J" uniqKey="Schlegel J">J. Schlegel</name>
</author>
<author>
<name sortKey="Morfill, G E" uniqKey="Morfill G">G.E. Morfill</name>
</author>
<author>
<name sortKey="Schmidt, H U" uniqKey="Schmidt H">H.-U. Schmidt</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Leclaire, C" uniqKey="Leclaire C">C. Leclaire</name>
</author>
<author>
<name sortKey="Lecoq, E" uniqKey="Lecoq E">E. Lecoq</name>
</author>
<author>
<name sortKey="Orial, G" uniqKey="Orial G">G. Orial</name>
</author>
<author>
<name sortKey="Clement, F" uniqKey="Clement F">F. Clement</name>
</author>
<author>
<name sortKey="Bousta, F" uniqKey="Bousta F">F. Bousta</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Keidar, M" uniqKey="Keidar M">M. Keidar</name>
</author>
<author>
<name sortKey="Walk, R" uniqKey="Walk R">R. Walk</name>
</author>
<author>
<name sortKey="Shashurin, A" uniqKey="Shashurin A">A. Shashurin</name>
</author>
<author>
<name sortKey="Srinivasan, P" uniqKey="Srinivasan P">P. Srinivasan</name>
</author>
<author>
<name sortKey="Sandler, A" uniqKey="Sandler A">A. Sandler</name>
</author>
<author>
<name sortKey="Dasgupta, S" uniqKey="Dasgupta S">S. Dasgupta</name>
</author>
<author>
<name sortKey="Ravi, R" uniqKey="Ravi R">R. Ravi</name>
</author>
<author>
<name sortKey="Guerrero Preston, R" uniqKey="Guerrero Preston R">R. Guerrero-Preston</name>
</author>
<author>
<name sortKey="Trink, B" uniqKey="Trink B">B. Trink</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ahn, H J" uniqKey="Ahn H">H.J. Ahn</name>
</author>
<author>
<name sortKey="Kim, K I" uniqKey="Kim K">K.I. Kim</name>
</author>
<author>
<name sortKey="Hoan, N N" uniqKey="Hoan N">N.N. Hoan</name>
</author>
<author>
<name sortKey="Kim, C H" uniqKey="Kim C">C.H. Kim</name>
</author>
<author>
<name sortKey="Moon, E" uniqKey="Moon E">E. Moon</name>
</author>
<author>
<name sortKey="Choi, K S" uniqKey="Choi K">K.S. Choi</name>
</author>
<author>
<name sortKey="Yang, S S" uniqKey="Yang S">S.S. Yang</name>
</author>
<author>
<name sortKey="Lee, J S" uniqKey="Lee J">J.-S. Lee</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kumar, N" uniqKey="Kumar N">N. Kumar</name>
</author>
<author>
<name sortKey="Attri, P" uniqKey="Attri P">P. Attri</name>
</author>
<author>
<name sortKey="Yadav, D K" uniqKey="Yadav D">D.K. Yadav</name>
</author>
<author>
<name sortKey="Choi, J" uniqKey="Choi J">J. Choi</name>
</author>
<author>
<name sortKey="Choi, E H" uniqKey="Choi E">E.H. Choi</name>
</author>
<author>
<name sortKey="Uhm, H S" uniqKey="Uhm H">H.S. Uhm</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Yan, D" uniqKey="Yan D">D. Yan</name>
</author>
<author>
<name sortKey="Sherman, J H" uniqKey="Sherman J">J.H. Sherman</name>
</author>
<author>
<name sortKey="Keidar, M" uniqKey="Keidar M">M. Keidar</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ahn, H J" uniqKey="Ahn H">H.J. Ahn</name>
</author>
<author>
<name sortKey="Kim, K I" uniqKey="Kim K">K.I. Kim</name>
</author>
<author>
<name sortKey="Kim, G" uniqKey="Kim G">G. Kim</name>
</author>
<author>
<name sortKey="Moon, E" uniqKey="Moon E">E. Moon</name>
</author>
<author>
<name sortKey="Yang, S S" uniqKey="Yang S">S.S. Yang</name>
</author>
<author>
<name sortKey="Lee, J S" uniqKey="Lee J">J.-S. Lee</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Gorrini, C" uniqKey="Gorrini C">C. Gorrini</name>
</author>
<author>
<name sortKey="Harris, I S" uniqKey="Harris I">I.S. Harris</name>
</author>
<author>
<name sortKey="Mak, T W" uniqKey="Mak T">T.W. Mak</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Wen, J" uniqKey="Wen J">J. Wen</name>
</author>
<author>
<name sortKey="You, K R" uniqKey="You K">K.-R. You</name>
</author>
<author>
<name sortKey="Lee, S Y" uniqKey="Lee S">S.-Y. Lee</name>
</author>
<author>
<name sortKey="Song, C H" uniqKey="Song C">C.-H. Song</name>
</author>
<author>
<name sortKey="Kim, D G" uniqKey="Kim D">D.-G. Kim</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Lim, J H" uniqKey="Lim J">J.-H. Lim</name>
</author>
<author>
<name sortKey="Lee, Y M" uniqKey="Lee Y">Y.-M. Lee</name>
</author>
<author>
<name sortKey="Park, S R" uniqKey="Park S">S.R. Park</name>
</author>
<author>
<name sortKey="Da Hye, K" uniqKey="Da Hye K">K. DA HYE</name>
</author>
<author>
<name sortKey="Lim, B O" uniqKey="Lim B">B.O. Lim</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Pervaiz, S" uniqKey="Pervaiz S">S. Pervaiz</name>
</author>
<author>
<name sortKey="Clement, M V" uniqKey="Clement M">M.-V. Clement</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Mckeague, A" uniqKey="Mckeague A">A. McKeague</name>
</author>
<author>
<name sortKey="Wilson, D" uniqKey="Wilson D">D. Wilson</name>
</author>
<author>
<name sortKey="Nelson, J" uniqKey="Nelson J">J. Nelson</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Simizu, S" uniqKey="Simizu S">S. Simizu</name>
</author>
<author>
<name sortKey="Takada, M" uniqKey="Takada M">M. Takada</name>
</author>
<author>
<name sortKey="Umezawa, K" uniqKey="Umezawa K">K. Umezawa</name>
</author>
<author>
<name sortKey="Imoto, M" uniqKey="Imoto M">M. Imoto</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Yokoyama, C" uniqKey="Yokoyama C">C. Yokoyama</name>
</author>
<author>
<name sortKey="Sueyoshi, Y" uniqKey="Sueyoshi Y">Y. Sueyoshi</name>
</author>
<author>
<name sortKey="Ema, M" uniqKey="Ema M">M. Ema</name>
</author>
<author>
<name sortKey="Mori, Y" uniqKey="Mori Y">Y. Mori</name>
</author>
<author>
<name sortKey="Takaishi, K" uniqKey="Takaishi K">K. Takaishi</name>
</author>
<author>
<name sortKey="Hisatomi, H" uniqKey="Hisatomi H">H. Hisatomi</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Yamada, T" uniqKey="Yamada T">T. Yamada</name>
</author>
<author>
<name sortKey="Egashira, N" uniqKey="Egashira N">N. Egashira</name>
</author>
<author>
<name sortKey="Imuta, M" uniqKey="Imuta M">M. Imuta</name>
</author>
<author>
<name sortKey="Yano, T" uniqKey="Yano T">T. Yano</name>
</author>
<author>
<name sortKey="Yamauchi, Y" uniqKey="Yamauchi Y">Y. Yamauchi</name>
</author>
<author>
<name sortKey="Watanabe, H" uniqKey="Watanabe H">H. Watanabe</name>
</author>
<author>
<name sortKey="Oishi, R" uniqKey="Oishi R">R. Oishi</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Mercuro, G" uniqKey="Mercuro G">G. Mercuro</name>
</author>
<author>
<name sortKey="Cadeddu, C" uniqKey="Cadeddu C">C. Cadeddu</name>
</author>
<author>
<name sortKey="Piras, A" uniqKey="Piras A">A. Piras</name>
</author>
<author>
<name sortKey="Dessi, M" uniqKey="Dessi M">M. Dessi</name>
</author>
<author>
<name sortKey="Madeddu, C" uniqKey="Madeddu C">C. Madeddu</name>
</author>
<author>
<name sortKey="Deidda, M" uniqKey="Deidda M">M. Deidda</name>
</author>
<author>
<name sortKey="Serpe, R" uniqKey="Serpe R">R. Serpe</name>
</author>
<author>
<name sortKey="Massa, E" uniqKey="Massa E">E. Massa</name>
</author>
<author>
<name sortKey="Mantovani, G" uniqKey="Mantovani G">G. Mantovani</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Lo, Y L" uniqKey="Lo Y">Y.-L. Lo</name>
</author>
<author>
<name sortKey="Wang, W" uniqKey="Wang W">W. Wang</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Gilliam, L A" uniqKey="Gilliam L">L.A. Gilliam</name>
</author>
<author>
<name sortKey="Moylan, J S" uniqKey="Moylan J">J.S. Moylan</name>
</author>
<author>
<name sortKey="Patterson, E W" uniqKey="Patterson E">E.W. Patterson</name>
</author>
<author>
<name sortKey="Smith, J D" uniqKey="Smith J">J.D. Smith</name>
</author>
<author>
<name sortKey="Wilson, A S" uniqKey="Wilson A">A.S. Wilson</name>
</author>
<author>
<name sortKey="Rabbani, Z" uniqKey="Rabbani Z">Z. Rabbani</name>
</author>
<author>
<name sortKey="Reid, M B" uniqKey="Reid M">M.B. Reid</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Minotti, G" uniqKey="Minotti G">G. Minotti</name>
</author>
<author>
<name sortKey="Menna, P" uniqKey="Menna P">P. Menna</name>
</author>
<author>
<name sortKey="Salvatorelli, E" uniqKey="Salvatorelli E">E. Salvatorelli</name>
</author>
<author>
<name sortKey="Cairo, G" uniqKey="Cairo G">G. Cairo</name>
</author>
<author>
<name sortKey="Gianni, L" uniqKey="Gianni L">L. Gianni</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Mizutani, H" uniqKey="Mizutani H">H. Mizutani</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Li, L" uniqKey="Li L">L. Li</name>
</author>
<author>
<name sortKey="Yue, G" uniqKey="Yue G">G. Yue</name>
</author>
<author>
<name sortKey="Pu, J" uniqKey="Pu J">J. Pu</name>
</author>
<author>
<name sortKey="Sun, H" uniqKey="Sun H">H. Sun</name>
</author>
<author>
<name sortKey="Fung, K" uniqKey="Fung K">K. Fung</name>
</author>
<author>
<name sortKey="Leung, P" uniqKey="Leung P">P. Leung</name>
</author>
<author>
<name sortKey="Han, Q" uniqKey="Han Q">Q. Han</name>
</author>
<author>
<name sortKey="Lau, C" uniqKey="Lau C">C. Lau</name>
</author>
<author>
<name sortKey="Leung, P" uniqKey="Leung P">P. Leung</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Noori, S" uniqKey="Noori S">S. Noori</name>
</author>
<author>
<name sortKey="Hassan, Z M" uniqKey="Hassan Z">Z.M. Hassan</name>
</author>
<author>
<name sortKey="Farsam, V" uniqKey="Farsam V">V. Farsam</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Dando, I" uniqKey="Dando I">I. Dando</name>
</author>
<author>
<name sortKey="Fiorini, C" uniqKey="Fiorini C">C. Fiorini</name>
</author>
<author>
<name sortKey="Dalla Pozza, E" uniqKey="Dalla Pozza E">E. Dalla Pozza</name>
</author>
<author>
<name sortKey="Padroni, C" uniqKey="Padroni C">C. Padroni</name>
</author>
<author>
<name sortKey="Costanzo, C" uniqKey="Costanzo C">C. Costanzo</name>
</author>
<author>
<name sortKey="Palmieri, M" uniqKey="Palmieri M">M. Palmieri</name>
</author>
<author>
<name sortKey="Donadelli, M" uniqKey="Donadelli M">M. Donadelli</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Chen, S H" uniqKey="Chen S">S.-H. Chen</name>
</author>
<author>
<name sortKey="Li, D L" uniqKey="Li D">D.-L. Li</name>
</author>
<author>
<name sortKey="Yang, F" uniqKey="Yang F">F. Yang</name>
</author>
<author>
<name sortKey="Wu, Z" uniqKey="Wu Z">Z. Wu</name>
</author>
<author>
<name sortKey="Zhao, Y Y" uniqKey="Zhao Y">Y.-Y. Zhao</name>
</author>
<author>
<name sortKey="Jiang, Y" uniqKey="Jiang Y">Y. Jiang</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Zhao, W" uniqKey="Zhao W">W. Zhao</name>
</author>
<author>
<name sortKey="Li, D" uniqKey="Li D">D. Li</name>
</author>
<author>
<name sortKey="Liu, Z" uniqKey="Liu Z">Z. Liu</name>
</author>
<author>
<name sortKey="Zheng, X" uniqKey="Zheng X">X. Zheng</name>
</author>
<author>
<name sortKey="Wang, J" uniqKey="Wang J">J. Wang</name>
</author>
<author>
<name sortKey="Wang, E" uniqKey="Wang E">E. Wang</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Wang, B" uniqKey="Wang B">B. Wang</name>
</author>
<author>
<name sortKey="Wang, X B" uniqKey="Wang X">X.-B. Wang</name>
</author>
<author>
<name sortKey="Chen, L Y" uniqKey="Chen L">L.-Y. Chen</name>
</author>
<author>
<name sortKey="Huang, L" uniqKey="Huang L">L. Huang</name>
</author>
<author>
<name sortKey="Dong, R Z" uniqKey="Dong R">R.-Z. Dong</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Du, J H" uniqKey="Du J">J.-H. Du</name>
</author>
<author>
<name sortKey="Zhang, H D" uniqKey="Zhang H">H.-D. Zhang</name>
</author>
<author>
<name sortKey="Ma, Z J" uniqKey="Ma Z">Z.-J. Ma</name>
</author>
<author>
<name sortKey="Ji, K M" uniqKey="Ji K">K.-M. Ji</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Khan, M" uniqKey="Khan M">M. Khan</name>
</author>
<author>
<name sortKey="Ding, C" uniqKey="Ding C">C. Ding</name>
</author>
<author>
<name sortKey="Rasul, A" uniqKey="Rasul A">A. Rasul</name>
</author>
<author>
<name sortKey="Yi, F" uniqKey="Yi F">F. Yi</name>
</author>
<author>
<name sortKey="Li, T" uniqKey="Li T">T. Li</name>
</author>
<author>
<name sortKey="Gao, H" uniqKey="Gao H">H. Gao</name>
</author>
<author>
<name sortKey="Gao, R" uniqKey="Gao R">R. Gao</name>
</author>
<author>
<name sortKey="Zhong, L" uniqKey="Zhong L">L. Zhong</name>
</author>
<author>
<name sortKey="Zhang, K" uniqKey="Zhang K">K. Zhang</name>
</author>
<author>
<name sortKey="Fang, X" uniqKey="Fang X">X. Fang</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kong, R" uniqKey="Kong R">R. Kong</name>
</author>
<author>
<name sortKey="Jia, G" uniqKey="Jia G">G. Jia</name>
</author>
<author>
<name sortKey="Cheng, Z X" uniqKey="Cheng Z">Z.-X. Cheng</name>
</author>
<author>
<name sortKey="Wang, Y W" uniqKey="Wang Y">Y.-W. Wang</name>
</author>
<author>
<name sortKey="Mu, M" uniqKey="Mu M">M. Mu</name>
</author>
<author>
<name sortKey="Wang, S J" uniqKey="Wang S">S.-J. Wang</name>
</author>
<author>
<name sortKey="Pan, S H" uniqKey="Pan S">S.-H. Pan</name>
</author>
<author>
<name sortKey="Gao, Y" uniqKey="Gao Y">Y. Gao</name>
</author>
<author>
<name sortKey="Jiang, H C" uniqKey="Jiang H">H.-C. Jiang</name>
</author>
<author>
<name sortKey="Dong, D L" uniqKey="Dong D">D.-L. Dong</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Han, J A" uniqKey="Han J">J.A. Han</name>
</author>
<author>
<name sortKey="Park, S C" uniqKey="Park S">S.C. Park</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kim, S Y" uniqKey="Kim S">S.-Y. Kim</name>
</author>
<author>
<name sortKey="Kim, S J" uniqKey="Kim S">S.-J. Kim</name>
</author>
<author>
<name sortKey="Kim, B J" uniqKey="Kim B">B.-J. Kim</name>
</author>
<author>
<name sortKey="Rah, S Y" uniqKey="Rah S">S.-Y. Rah</name>
</author>
<author>
<name sortKey="Chung, S M" uniqKey="Chung S">S.M. Chung</name>
</author>
<author>
<name sortKey="Im, M J" uniqKey="Im M">M.-J. Im</name>
</author>
<author>
<name sortKey="Kim, U H" uniqKey="Kim U">U.-H. Kim</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Yuan, L" uniqKey="Yuan L">L. Yuan</name>
</author>
<author>
<name sortKey="Mishra, R" uniqKey="Mishra R">R. Mishra</name>
</author>
<author>
<name sortKey="Patel, H" uniqKey="Patel H">H. Patel</name>
</author>
<author>
<name sortKey="Abdulsalam, S" uniqKey="Abdulsalam S">S. Abdulsalam</name>
</author>
<author>
<name sortKey="Greis, K D" uniqKey="Greis K">K.D. Greis</name>
</author>
<author>
<name sortKey="Kadekaro, A L" uniqKey="Kadekaro A">A.L. Kadekaro</name>
</author>
<author>
<name sortKey="Merino, E J" uniqKey="Merino E">E.J. Merino</name>
</author>
<author>
<name sortKey="Garrett, J T" uniqKey="Garrett J">J.T. Garrett</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Brodska, B" uniqKey="Brodska B">B. Brodská</name>
</author>
<author>
<name sortKey="Holoubek, A" uniqKey="Holoubek A">A. Holoubek</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Wu, Y W" uniqKey="Wu Y">Y.-W. Wu</name>
</author>
<author>
<name sortKey="Lin, C F" uniqKey="Lin C">C.-F. Lin</name>
</author>
<author>
<name sortKey="Lin, Y S" uniqKey="Lin Y">Y.-S. Lin</name>
</author>
<author>
<name sortKey="Su, W C" uniqKey="Su W">W.-C. Su</name>
</author>
<author>
<name sortKey="Chiu, W H" uniqKey="Chiu W">W.-H. Chiu</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Samadi, N" uniqKey="Samadi N">N. Samadi</name>
</author>
<author>
<name sortKey="Ghanbari, P" uniqKey="Ghanbari P">P. Ghanbari</name>
</author>
<author>
<name sortKey="Mohseni, M" uniqKey="Mohseni M">M. Mohseni</name>
</author>
<author>
<name sortKey="Tabasinezhad, M" uniqKey="Tabasinezhad M">M. Tabasinezhad</name>
</author>
<author>
<name sortKey="Sharifi, S" uniqKey="Sharifi S">S. Sharifi</name>
</author>
<author>
<name sortKey="Nazemieh, H" uniqKey="Nazemieh H">H. Nazemieh</name>
</author>
<author>
<name sortKey="Rashidi, M R" uniqKey="Rashidi M">M.R. Rashidi</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ha, S W" uniqKey="Ha S">S.W. Ha</name>
</author>
<author>
<name sortKey="Kim, Y J" uniqKey="Kim Y">Y.J. Kim</name>
</author>
<author>
<name sortKey="Kim, W" uniqKey="Kim W">W. Kim</name>
</author>
<author>
<name sortKey="Lee, C S" uniqKey="Lee C">C.S. Lee</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Alexandre, J" uniqKey="Alexandre J">J. Alexandre</name>
</author>
<author>
<name sortKey="Batteux, F" uniqKey="Batteux F">F. Batteux</name>
</author>
<author>
<name sortKey="Nicco, C" uniqKey="Nicco C">C. Nicco</name>
</author>
<author>
<name sortKey="Chereau, C" uniqKey="Chereau C">C. Chereau</name>
</author>
<author>
<name sortKey="Laurent, A" uniqKey="Laurent A">A. Laurent</name>
</author>
<author>
<name sortKey="Guillevin, L" uniqKey="Guillevin L">L. Guillevin</name>
</author>
<author>
<name sortKey="Weill, B" uniqKey="Weill B">B. Weill</name>
</author>
<author>
<name sortKey="Goldwasser, F" uniqKey="Goldwasser F">F. Goldwasser</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Pan, Z" uniqKey="Pan Z">Z. Pan</name>
</author>
<author>
<name sortKey="Avila, A" uniqKey="Avila A">A. Avila</name>
</author>
<author>
<name sortKey="Gollahon, L" uniqKey="Gollahon L">L. Gollahon</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kim, H S" uniqKey="Kim H">H.S. Kim</name>
</author>
<author>
<name sortKey="Oh, J M" uniqKey="Oh J">J.M. Oh</name>
</author>
<author>
<name sortKey="Jin, D H" uniqKey="Jin D">D.H. Jin</name>
</author>
<author>
<name sortKey="Yang, K H" uniqKey="Yang K">K.-H. Yang</name>
</author>
<author>
<name sortKey="Moon, E Y" uniqKey="Moon E">E.-Y. Moon</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Meshkini, A" uniqKey="Meshkini A">A. Meshkini</name>
</author>
<author>
<name sortKey="Yazdanparast, R" uniqKey="Yazdanparast R">R. Yazdanparast</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Liu, L" uniqKey="Liu L">L. Liu</name>
</author>
<author>
<name sortKey="Mu, L M" uniqKey="Mu L">L.-M. Mu</name>
</author>
<author>
<name sortKey="Yan, Y" uniqKey="Yan Y">Y. Yan</name>
</author>
<author>
<name sortKey="Wu, J S" uniqKey="Wu J">J.-S. Wu</name>
</author>
<author>
<name sortKey="Hu, Y J" uniqKey="Hu Y">Y.-J. Hu</name>
</author>
<author>
<name sortKey="Bu, Y Z" uniqKey="Bu Y">Y.-Z. Bu</name>
</author>
<author>
<name sortKey="Zhang, J Y" uniqKey="Zhang J">J.-Y. Zhang</name>
</author>
<author>
<name sortKey="Liu, R" uniqKey="Liu R">R. Liu</name>
</author>
<author>
<name sortKey="Li, X Q" uniqKey="Li X">X.-Q. Li</name>
</author>
<author>
<name sortKey="Lu, W L" uniqKey="Lu W">W.-L. Lu</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Miki, H" uniqKey="Miki H">H. Miki</name>
</author>
<author>
<name sortKey="Uehara, N" uniqKey="Uehara N">N. Uehara</name>
</author>
<author>
<name sortKey="Kimura, A" uniqKey="Kimura A">A. Kimura</name>
</author>
<author>
<name sortKey="Sasaki, T" uniqKey="Sasaki T">T. Sasaki</name>
</author>
<author>
<name sortKey="Yuri, T" uniqKey="Yuri T">T. Yuri</name>
</author>
<author>
<name sortKey="Yoshizawa, K" uniqKey="Yoshizawa K">K. Yoshizawa</name>
</author>
<author>
<name sortKey="Tsubura, A" uniqKey="Tsubura A">A. Tsubura</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Huang, Z" uniqKey="Huang Z">Z. Huang</name>
</author>
<author>
<name sortKey="Xu, Y" uniqKey="Xu Y">Y. Xu</name>
</author>
<author>
<name sortKey="Peng, W" uniqKey="Peng W">W. Peng</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Davies, K J A" uniqKey="Davies K">K.J.A. Davies</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Mates, J M" uniqKey="Mates J">J.M. Matés</name>
</author>
<author>
<name sortKey="Sanchez Jimenez, F M" uniqKey="Sanchez Jimenez F">F.M. Sánchez-Jiménez</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kong, Q" uniqKey="Kong Q">Q. Kong</name>
</author>
<author>
<name sortKey="Beel, J A" uniqKey="Beel J">J.A. Beel</name>
</author>
<author>
<name sortKey="Lillehei, K O" uniqKey="Lillehei K">K.O. Lillehei</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Amri, F" uniqKey="Amri F">F. Amri</name>
</author>
<author>
<name sortKey="Ghouili, I" uniqKey="Ghouili I">I. Ghouili</name>
</author>
<author>
<name sortKey="Amri, M" uniqKey="Amri M">M. Amri</name>
</author>
<author>
<name sortKey="Carrier, A" uniqKey="Carrier A">A. Carrier</name>
</author>
<author>
<name sortKey="Masmoudi Kouki, O" uniqKey="Masmoudi Kouki O">O. Masmoudi-Kouki</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Weinberg, S E" uniqKey="Weinberg S">S.E. Weinberg</name>
</author>
<author>
<name sortKey="Chandel, N S" uniqKey="Chandel N">N.S. Chandel</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Cairns, R A" uniqKey="Cairns R">R.A. Cairns</name>
</author>
<author>
<name sortKey="Harris, I S" uniqKey="Harris I">I.S. Harris</name>
</author>
<author>
<name sortKey="Mak, T W" uniqKey="Mak T">T.W. Mak</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Cook, J A" uniqKey="Cook J">J.A. Cook</name>
</author>
<author>
<name sortKey="Gius, D" uniqKey="Gius D">D. Gius</name>
</author>
<author>
<name sortKey="Wink, D A" uniqKey="Wink D">D.A. Wink</name>
</author>
<author>
<name sortKey="Krishna, M C" uniqKey="Krishna M">M.C. Krishna</name>
</author>
<author>
<name sortKey="Russo, A" uniqKey="Russo A">A. Russo</name>
</author>
<author>
<name sortKey="Mitchell, J B" uniqKey="Mitchell J">J.B. Mitchell</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Poljsak, B" uniqKey="Poljsak B">B. Poljsak</name>
</author>
<author>
<name sortKey="Suput, D" uniqKey="Suput D">D. Šuput</name>
</author>
<author>
<name sortKey="Milisav, I" uniqKey="Milisav I">I. Milisav</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Schafer, F Q" uniqKey="Schafer F">F.Q. Schafer</name>
</author>
<author>
<name sortKey="Buettner, G R" uniqKey="Buettner G">G.R. Buettner</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Holmgren, A" uniqKey="Holmgren A">A. Holmgren</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Landriscina, M" uniqKey="Landriscina M">M. Landriscina</name>
</author>
<author>
<name sortKey="Maddalena, F" uniqKey="Maddalena F">F. Maddalena</name>
</author>
<author>
<name sortKey="Laudiero, G" uniqKey="Laudiero G">G. Laudiero</name>
</author>
<author>
<name sortKey="Esposito, F" uniqKey="Esposito F">F. Esposito</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Pelicano, H" uniqKey="Pelicano H">H. Pelicano</name>
</author>
<author>
<name sortKey="Carney, D" uniqKey="Carney D">D. Carney</name>
</author>
<author>
<name sortKey="Huang, P" uniqKey="Huang P">P. Huang</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Sastre, J" uniqKey="Sastre J">J. Sastre</name>
</author>
<author>
<name sortKey="Pallard, F V" uniqKey="Pallard F">F.V. Pallardó</name>
</author>
<author>
<name sortKey="Vi A, J" uniqKey="Vi A J">J. Viña</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Carmody, R J" uniqKey="Carmody R">R.J. Carmody</name>
</author>
<author>
<name sortKey="Cotter, T G" uniqKey="Cotter T">T.G. Cotter</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Hensley, K" uniqKey="Hensley K">K. Hensley</name>
</author>
<author>
<name sortKey="Robinson, K A" uniqKey="Robinson K">K.A. Robinson</name>
</author>
<author>
<name sortKey="Gabbita, S P" uniqKey="Gabbita S">S.P. Gabbita</name>
</author>
<author>
<name sortKey="Salsman, S" uniqKey="Salsman S">S. Salsman</name>
</author>
<author>
<name sortKey="Floyd, R A" uniqKey="Floyd R">R.A. Floyd</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Levine, R L" uniqKey="Levine R">R.L. Levine</name>
</author>
<author>
<name sortKey="Stadtman, E R" uniqKey="Stadtman E">E.R. Stadtman</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Mallis, R J" uniqKey="Mallis R">R.J. Mallis</name>
</author>
<author>
<name sortKey="Thomas, J A" uniqKey="Thomas J">J.A. Thomas</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Zhang, J" uniqKey="Zhang J">J. Zhang</name>
</author>
<author>
<name sortKey="Wang, X" uniqKey="Wang X">X. Wang</name>
</author>
<author>
<name sortKey="Vikash, V" uniqKey="Vikash V">V. Vikash</name>
</author>
<author>
<name sortKey="Ye, Q" uniqKey="Ye Q">Q. Ye</name>
</author>
<author>
<name sortKey="Wu, D" uniqKey="Wu D">D. Wu</name>
</author>
<author>
<name sortKey="Liu, Y" uniqKey="Liu Y">Y. Liu</name>
</author>
<author>
<name sortKey="Dong, W" uniqKey="Dong W">W. Dong</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ozben, T" uniqKey="Ozben T">T. Ozben</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Saitoh, M" uniqKey="Saitoh M">M. Saitoh</name>
</author>
<author>
<name sortKey="Nishitoh, H" uniqKey="Nishitoh H">H. Nishitoh</name>
</author>
<author>
<name sortKey="Fujii, M" uniqKey="Fujii M">M. Fujii</name>
</author>
<author>
<name sortKey="Takeda, K" uniqKey="Takeda K">K. Takeda</name>
</author>
<author>
<name sortKey="Tobiume, K" uniqKey="Tobiume K">K. Tobiume</name>
</author>
<author>
<name sortKey="Sawada, Y" uniqKey="Sawada Y">Y. Sawada</name>
</author>
<author>
<name sortKey="Kawabata, M" uniqKey="Kawabata M">M. Kawabata</name>
</author>
<author>
<name sortKey="Miyazono, K" uniqKey="Miyazono K">K. Miyazono</name>
</author>
<author>
<name sortKey="Ichijo, H" uniqKey="Ichijo H">H. Ichijo</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Takeda, K" uniqKey="Takeda K">K. Takeda</name>
</author>
<author>
<name sortKey="Matsuzawa, A" uniqKey="Matsuzawa A">A. Matsuzawa</name>
</author>
<author>
<name sortKey="Nishitoh, H" uniqKey="Nishitoh H">H. Nishitoh</name>
</author>
<author>
<name sortKey="Ichijo, H" uniqKey="Ichijo H">H. Ichijo</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Brunet, A" uniqKey="Brunet A">A. Brunet</name>
</author>
<author>
<name sortKey="Bonni, A" uniqKey="Bonni A">A. Bonni</name>
</author>
<author>
<name sortKey="Zigmond, M J" uniqKey="Zigmond M">M.J. Zigmond</name>
</author>
<author>
<name sortKey="Lin, M Z" uniqKey="Lin M">M.Z. Lin</name>
</author>
<author>
<name sortKey="Juo, P" uniqKey="Juo P">P. Juo</name>
</author>
<author>
<name sortKey="Hu, L S" uniqKey="Hu L">L.S. Hu</name>
</author>
<author>
<name sortKey="Anderson, M J" uniqKey="Anderson M">M.J. Anderson</name>
</author>
<author>
<name sortKey="Arden, K C" uniqKey="Arden K">K.C. Arden</name>
</author>
<author>
<name sortKey="Blenis, J" uniqKey="Blenis J">J. Blenis</name>
</author>
<author>
<name sortKey="Greenberg, M E" uniqKey="Greenberg M">M.E. Greenberg</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="You, H" uniqKey="You H">H. You</name>
</author>
<author>
<name sortKey="Yamamoto, K" uniqKey="Yamamoto K">K. Yamamoto</name>
</author>
<author>
<name sortKey="Mak, T W" uniqKey="Mak T">T.W. Mak</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Morgan, M J" uniqKey="Morgan M">M.J. Morgan</name>
</author>
<author>
<name sortKey="Kim, Y S" uniqKey="Kim Y">Y.-S. Kim</name>
</author>
<author>
<name sortKey="Liu, Z G" uniqKey="Liu Z">Z.-G. Liu</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Schulze Osthoff, K" uniqKey="Schulze Osthoff K">K. Schulze-Osthoff</name>
</author>
<author>
<name sortKey="Beyaert, R" uniqKey="Beyaert R">R. Beyaert</name>
</author>
<author>
<name sortKey="Vandevoorde, V" uniqKey="Vandevoorde V">V. Vandevoorde</name>
</author>
<author>
<name sortKey="Haegeman, G" uniqKey="Haegeman G">G. Haegeman</name>
</author>
<author>
<name sortKey="Fiers, W" uniqKey="Fiers W">W. Fiers</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Xu, Y C" uniqKey="Xu Y">Y.C. Xu</name>
</author>
<author>
<name sortKey="Wu, R F" uniqKey="Wu R">R.F. Wu</name>
</author>
<author>
<name sortKey="Gu, Y" uniqKey="Gu Y">Y. Gu</name>
</author>
<author>
<name sortKey="Yang, Y S" uniqKey="Yang Y">Y.-S. Yang</name>
</author>
<author>
<name sortKey="Yang, M C" uniqKey="Yang M">M.-C. Yang</name>
</author>
<author>
<name sortKey="Nwariaku, F E" uniqKey="Nwariaku F">F.E. Nwariaku</name>
</author>
<author>
<name sortKey="Terada, L S" uniqKey="Terada L">L.S. Terada</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Wong, G" uniqKey="Wong G">G. Wong</name>
</author>
<author>
<name sortKey="Goeddel, D V" uniqKey="Goeddel D">D.V. Goeddel</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Halliwell, B" uniqKey="Halliwell B">B. Halliwell</name>
</author>
<author>
<name sortKey="Gutteridge, J" uniqKey="Gutteridge J">J. Gutteridge</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Zdolsek, J M" uniqKey="Zdolsek J">J.M. Zdolsek</name>
</author>
<author>
<name sortKey="Svensson, I" uniqKey="Svensson I">I. Svensson</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kroemer, G" uniqKey="Kroemer G">G. Kroemer</name>
</author>
<author>
<name sortKey="Reed, J C" uniqKey="Reed J">J.C. Reed</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Brown, G C" uniqKey="Brown G">G.C. Brown</name>
</author>
<author>
<name sortKey="Borutaite, V" uniqKey="Borutaite V">V. Borutaite</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Sade, H" uniqKey="Sade H">H. Sade</name>
</author>
<author>
<name sortKey="Krishna, S" uniqKey="Krishna S">S. Krishna</name>
</author>
<author>
<name sortKey="Sarin, A" uniqKey="Sarin A">A. Sarin</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kroemer, G" uniqKey="Kroemer G">G. Kroemer</name>
</author>
<author>
<name sortKey="Dallaporta, B" uniqKey="Dallaporta B">B. Dallaporta</name>
</author>
<author>
<name sortKey="Resche Rigon, M" uniqKey="Resche Rigon M">M. Resche-Rigon</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Honeychurch, J" uniqKey="Honeychurch J">J. Honeychurch</name>
</author>
<author>
<name sortKey="Alduaij, W" uniqKey="Alduaij W">W. Alduaij</name>
</author>
<author>
<name sortKey="Azizyan, M" uniqKey="Azizyan M">M. Azizyan</name>
</author>
<author>
<name sortKey="Cheadle, E J" uniqKey="Cheadle E">E.J. Cheadle</name>
</author>
<author>
<name sortKey="Pelicano, H" uniqKey="Pelicano H">H. Pelicano</name>
</author>
<author>
<name sortKey="Ivanov, A" uniqKey="Ivanov A">A. Ivanov</name>
</author>
<author>
<name sortKey="Huang, P" uniqKey="Huang P">P. Huang</name>
</author>
<author>
<name sortKey="Cragg, M S" uniqKey="Cragg M">M.S. Cragg</name>
</author>
<author>
<name sortKey="Illidge, T M" uniqKey="Illidge T">T.M. Illidge</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Yang, Y" uniqKey="Yang Y">Y. Yang</name>
</author>
<author>
<name sortKey="Zhang, Y" uniqKey="Zhang Y">Y. Zhang</name>
</author>
<author>
<name sortKey="Wang, L" uniqKey="Wang L">L. Wang</name>
</author>
<author>
<name sortKey="Lee, S" uniqKey="Lee S">S. Lee</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Diaz Laviada, I" uniqKey="Diaz Laviada I">I. Díaz-Laviada</name>
</author>
<author>
<name sortKey="Rodriguez Henche, N" uniqKey="Rodriguez Henche N">N. Rodríguez-Henche</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Medan, D" uniqKey="Medan D">D. Medan</name>
</author>
<author>
<name sortKey="Wang, L" uniqKey="Wang L">L. Wang</name>
</author>
<author>
<name sortKey="Toledo, D" uniqKey="Toledo D">D. Toledo</name>
</author>
<author>
<name sortKey="Lu, B" uniqKey="Lu B">B. Lu</name>
</author>
<author>
<name sortKey="Stehlik, C" uniqKey="Stehlik C">C. Stehlik</name>
</author>
<author>
<name sortKey="Jiang, B H" uniqKey="Jiang B">B.H. Jiang</name>
</author>
<author>
<name sortKey="Shi, X" uniqKey="Shi X">X. Shi</name>
</author>
<author>
<name sortKey="Rojanasakul, Y" uniqKey="Rojanasakul Y">Y. Rojanasakul</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Uchikura, K" uniqKey="Uchikura K">K. Uchikura</name>
</author>
<author>
<name sortKey="Wada, T" uniqKey="Wada T">T. Wada</name>
</author>
<author>
<name sortKey="Hoshino, S" uniqKey="Hoshino S">S. Hoshino</name>
</author>
<author>
<name sortKey="Nagakawa, Y" uniqKey="Nagakawa Y">Y. Nagakawa</name>
</author>
<author>
<name sortKey="Aiko, T" uniqKey="Aiko T">T. Aiko</name>
</author>
<author>
<name sortKey="Bulkley, G B" uniqKey="Bulkley G">G.B. Bulkley</name>
</author>
<author>
<name sortKey="Klein, A S" uniqKey="Klein A">A.S. Klein</name>
</author>
<author>
<name sortKey="Sun, Z" uniqKey="Sun Z">Z. Sun</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Hunter, D J" uniqKey="Hunter D">D.J. Hunter</name>
</author>
<author>
<name sortKey="Kraft, P" uniqKey="Kraft P">P. Kraft</name>
</author>
<author>
<name sortKey="Jacobs, K B" uniqKey="Jacobs K">K.B. Jacobs</name>
</author>
<author>
<name sortKey="Cox, D G" uniqKey="Cox D">D.G. Cox</name>
</author>
<author>
<name sortKey="Yeager, M" uniqKey="Yeager M">M. Yeager</name>
</author>
<author>
<name sortKey="Hankinson, S E" uniqKey="Hankinson S">S.E. Hankinson</name>
</author>
<author>
<name sortKey="Wacholder, S" uniqKey="Wacholder S">S. Wacholder</name>
</author>
<author>
<name sortKey="Wang, Z" uniqKey="Wang Z">Z. Wang</name>
</author>
<author>
<name sortKey="Welch, R" uniqKey="Welch R">R. Welch</name>
</author>
<author>
<name sortKey="Hutchinson, A" uniqKey="Hutchinson A">A. Hutchinson</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ryoo, H D" uniqKey="Ryoo H">H.D. Ryoo</name>
</author>
<author>
<name sortKey="Gorenc, T" uniqKey="Gorenc T">T. Gorenc</name>
</author>
<author>
<name sortKey="Steller, H" uniqKey="Steller H">H. Steller</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Lee, K" uniqKey="Lee K">K. Lee</name>
</author>
<author>
<name sortKey="Esselman, W J" uniqKey="Esselman W">W.J. Esselman</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Dunlop, E" uniqKey="Dunlop E">E. Dunlop</name>
</author>
<author>
<name sortKey="Tee, A" uniqKey="Tee A">A. Tee</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Scherz Shouval, R" uniqKey="Scherz Shouval R">R. Scherz-Shouval</name>
</author>
<author>
<name sortKey="Elazar, Z" uniqKey="Elazar Z">Z. Elazar</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Poillet Perez, L" uniqKey="Poillet Perez L">L. Poillet-Perez</name>
</author>
<author>
<name sortKey="Despouy, G" uniqKey="Despouy G">G. Despouy</name>
</author>
<author>
<name sortKey="Delage Mourroux, R" uniqKey="Delage Mourroux R">R. Delage-Mourroux</name>
</author>
<author>
<name sortKey="Boyer Guittaut, M" uniqKey="Boyer Guittaut M">M. Boyer-Guittaut</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Son, Y O" uniqKey="Son Y">Y.-O. Son</name>
</author>
<author>
<name sortKey="Wang, X" uniqKey="Wang X">X. Wang</name>
</author>
<author>
<name sortKey="Hitron, J A" uniqKey="Hitron J">J.A. Hitron</name>
</author>
<author>
<name sortKey="Zhang, Z" uniqKey="Zhang Z">Z. Zhang</name>
</author>
<author>
<name sortKey="Cheng, S" uniqKey="Cheng S">S. Cheng</name>
</author>
<author>
<name sortKey="Budhraja, A" uniqKey="Budhraja A">A. Budhraja</name>
</author>
<author>
<name sortKey="Ding, S" uniqKey="Ding S">S. Ding</name>
</author>
<author>
<name sortKey="Lee, J C" uniqKey="Lee J">J.-C. Lee</name>
</author>
<author>
<name sortKey="Shi, X" uniqKey="Shi X">X. Shi</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Boyer Guittaut, M" uniqKey="Boyer Guittaut M">M. Boyer-Guittaut</name>
</author>
<author>
<name sortKey="Poillet, L" uniqKey="Poillet L">L. Poillet</name>
</author>
<author>
<name sortKey="Liang, Q" uniqKey="Liang Q">Q. Liang</name>
</author>
<author>
<name sortKey="Bole Richard, E" uniqKey="Bole Richard E">E. Bôle-Richard</name>
</author>
<author>
<name sortKey="Ouyang, X" uniqKey="Ouyang X">X. Ouyang</name>
</author>
<author>
<name sortKey="Benavides, G A" uniqKey="Benavides G">G.A. Benavides</name>
</author>
<author>
<name sortKey="Chakrama, F Z" uniqKey="Chakrama F">F.-Z. Chakrama</name>
</author>
<author>
<name sortKey="Fraichard, A" uniqKey="Fraichard A">A. Fraichard</name>
</author>
<author>
<name sortKey="Darley Usmar, V M" uniqKey="Darley Usmar V">V.M. Darley-Usmar</name>
</author>
<author>
<name sortKey="Despouy, G" uniqKey="Despouy G">G. Despouy</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Cai, J" uniqKey="Cai J">J. Cai</name>
</author>
<author>
<name sortKey="Niu, X" uniqKey="Niu X">X. Niu</name>
</author>
<author>
<name sortKey="Chen, Y" uniqKey="Chen Y">Y. Chen</name>
</author>
<author>
<name sortKey="Hu, Q" uniqKey="Hu Q">Q. Hu</name>
</author>
<author>
<name sortKey="Shi, G" uniqKey="Shi G">G. Shi</name>
</author>
<author>
<name sortKey="Wu, H" uniqKey="Wu H">H. Wu</name>
</author>
<author>
<name sortKey="Wang, J" uniqKey="Wang J">J. Wang</name>
</author>
<author>
<name sortKey="Yi, J" uniqKey="Yi J">J. Yi</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ghavami, S" uniqKey="Ghavami S">S. Ghavami</name>
</author>
<author>
<name sortKey="Asoodeh, A" uniqKey="Asoodeh A">A. Asoodeh</name>
</author>
<author>
<name sortKey="Klonisch, T" uniqKey="Klonisch T">T. Klonisch</name>
</author>
<author>
<name sortKey="Halayko, A J" uniqKey="Halayko A">A.J. Halayko</name>
</author>
<author>
<name sortKey="Kadkhoda, K" uniqKey="Kadkhoda K">K. Kadkhoda</name>
</author>
<author>
<name sortKey="Kroczak, T J" uniqKey="Kroczak T">T.J. Kroczak</name>
</author>
<author>
<name sortKey="Gibson, S B" uniqKey="Gibson S">S.B. Gibson</name>
</author>
<author>
<name sortKey="Booy, E P" uniqKey="Booy E">E.P. Booy</name>
</author>
<author>
<name sortKey="Naderi Manesh, H" uniqKey="Naderi Manesh H">H. Naderi-Manesh</name>
</author>
<author>
<name sortKey="Los, M" uniqKey="Los M">M. Los</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kong, Q" uniqKey="Kong Q">Q. Kong</name>
</author>
<author>
<name sortKey="Kleinschmidt Demasters, B K" uniqKey="Kleinschmidt Demasters B">B.K. Kleinschmidt-DeMasters</name>
</author>
<author>
<name sortKey="Lillehei, K O" uniqKey="Lillehei K">K.O. Lillehei</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Feinendegen, L" uniqKey="Feinendegen L">L. Feinendegen</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Tan, S" uniqKey="Tan S">S. Tan</name>
</author>
<author>
<name sortKey="Sagara, Y" uniqKey="Sagara Y">Y. Sagara</name>
</author>
<author>
<name sortKey="Liu, Y" uniqKey="Liu Y">Y. Liu</name>
</author>
<author>
<name sortKey="Maher, P" uniqKey="Maher P">P. Maher</name>
</author>
<author>
<name sortKey="Schubert, D" uniqKey="Schubert D">D. Schubert</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Pelicano, H" uniqKey="Pelicano H">H. Pelicano</name>
</author>
<author>
<name sortKey="Feng, L" uniqKey="Feng L">L. Feng</name>
</author>
<author>
<name sortKey="Zhou, Y" uniqKey="Zhou Y">Y. Zhou</name>
</author>
<author>
<name sortKey="Carew, J S" uniqKey="Carew J">J.S. Carew</name>
</author>
<author>
<name sortKey="Hileman, E O" uniqKey="Hileman E">E.O. Hileman</name>
</author>
<author>
<name sortKey="Plunkett, W" uniqKey="Plunkett W">W. Plunkett</name>
</author>
<author>
<name sortKey="Keating, M J" uniqKey="Keating M">M.J. Keating</name>
</author>
<author>
<name sortKey="Huang, P" uniqKey="Huang P">P. Huang</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kim, J W" uniqKey="Kim J">J.-W. Kim</name>
</author>
<author>
<name sortKey="Tchernyshyov, I" uniqKey="Tchernyshyov I">I. Tchernyshyov</name>
</author>
<author>
<name sortKey="Semenza, G L" uniqKey="Semenza G">G.L. Semenza</name>
</author>
<author>
<name sortKey="Dang, C V" uniqKey="Dang C">C.V. Dang</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Zamzami, N" uniqKey="Zamzami N">N. Zamzami</name>
</author>
<author>
<name sortKey="Marchetti, P" uniqKey="Marchetti P">P. Marchetti</name>
</author>
<author>
<name sortKey="Castedo, M" uniqKey="Castedo M">M. Castedo</name>
</author>
<author>
<name sortKey="Decaudin, D" uniqKey="Decaudin D">D. Decaudin</name>
</author>
<author>
<name sortKey="Macho, A" uniqKey="Macho A">A. Macho</name>
</author>
<author>
<name sortKey="Hirsch, T" uniqKey="Hirsch T">T. Hirsch</name>
</author>
<author>
<name sortKey="Susin, S A" uniqKey="Susin S">S.A. Susin</name>
</author>
<author>
<name sortKey="Petit, P X" uniqKey="Petit P">P.X. Petit</name>
</author>
<author>
<name sortKey="Mignotte, B" uniqKey="Mignotte B">B. Mignotte</name>
</author>
<author>
<name sortKey="Kroemer, G" uniqKey="Kroemer G">G. Kroemer</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Boya, P" uniqKey="Boya P">P. Boya</name>
</author>
<author>
<name sortKey="Gonzalez Polo, R A" uniqKey="Gonzalez Polo R">R.-A. Gonzalez-Polo</name>
</author>
<author>
<name sortKey="Poncet, D" uniqKey="Poncet D">D. Poncet</name>
</author>
<author>
<name sortKey="Andreau, K" uniqKey="Andreau K">K. Andreau</name>
</author>
<author>
<name sortKey="Vieira, H L" uniqKey="Vieira H">H.L. Vieira</name>
</author>
<author>
<name sortKey="Roumier, T" uniqKey="Roumier T">T. Roumier</name>
</author>
<author>
<name sortKey="Perfettini, J L" uniqKey="Perfettini J">J.-L. Perfettini</name>
</author>
<author>
<name sortKey="Kroemer, G" uniqKey="Kroemer G">G. Kroemer</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Chomyn, A" uniqKey="Chomyn A">A. Chomyn</name>
</author>
<author>
<name sortKey="Attardi, G" uniqKey="Attardi G">G. Attardi</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Hall, M D" uniqKey="Hall M">M.D. Hall</name>
</author>
<author>
<name sortKey="Handley, M D" uniqKey="Handley M">M.D. Handley</name>
</author>
<author>
<name sortKey="Gottesman, M M" uniqKey="Gottesman M">M.M. Gottesman</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Pluchino, K M" uniqKey="Pluchino K">K.M. Pluchino</name>
</author>
<author>
<name sortKey="Hall, M D" uniqKey="Hall M">M.D. Hall</name>
</author>
<author>
<name sortKey="Goldsborough, A S" uniqKey="Goldsborough A">A.S. Goldsborough</name>
</author>
<author>
<name sortKey="Callaghan, R" uniqKey="Callaghan R">R. Callaghan</name>
</author>
<author>
<name sortKey="Gottesman, M M" uniqKey="Gottesman M">M.M. Gottesman</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Wartenberg, M" uniqKey="Wartenberg M">M. Wartenberg</name>
</author>
<author>
<name sortKey="Richter, M" uniqKey="Richter M">M. Richter</name>
</author>
<author>
<name sortKey="Datchev, A" uniqKey="Datchev A">A. Datchev</name>
</author>
<author>
<name sortKey="Gunther, S" uniqKey="Gunther S">S. Günther</name>
</author>
<author>
<name sortKey="Milosevic, N" uniqKey="Milosevic N">N. Milosevic</name>
</author>
<author>
<name sortKey="Bekhite, M M" uniqKey="Bekhite M">M.M. Bekhite</name>
</author>
<author>
<name sortKey="Figulla, H R" uniqKey="Figulla H">H.R. Figulla</name>
</author>
<author>
<name sortKey="Aran, J M" uniqKey="Aran J">J.M. Aran</name>
</author>
<author>
<name sortKey="Petriz, J" uniqKey="Petriz J">J. Pétriz</name>
</author>
<author>
<name sortKey="Sauer, H" uniqKey="Sauer H">H. Sauer</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Pandey, V" uniqKey="Pandey V">V. Pandey</name>
</author>
<author>
<name sortKey="Chaube, B" uniqKey="Chaube B">B. Chaube</name>
</author>
<author>
<name sortKey="Bhat, M K" uniqKey="Bhat M">M.K. Bhat</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Bakadlag, R" uniqKey="Bakadlag R">R. Bakadlag</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Teppo, H R" uniqKey="Teppo H">H.-R. Teppo</name>
</author>
<author>
<name sortKey="Soini, Y" uniqKey="Soini Y">Y. Soini</name>
</author>
<author>
<name sortKey="Karihtala, P" uniqKey="Karihtala P">P. Karihtala</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Wan, G Y" uniqKey="Wan G">G.-Y. Wan</name>
</author>
<author>
<name sortKey="Liu, Y" uniqKey="Liu Y">Y. Liu</name>
</author>
<author>
<name sortKey="Chen, B W" uniqKey="Chen B">B.-W. Chen</name>
</author>
<author>
<name sortKey="Liu, Y Y" uniqKey="Liu Y">Y.-Y. Liu</name>
</author>
<author>
<name sortKey="Wang, Y S" uniqKey="Wang Y">Y.-S. Wang</name>
</author>
<author>
<name sortKey="Zhang, N" uniqKey="Zhang N">N. Zhang</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Liu, L" uniqKey="Liu L">L. Liu</name>
</author>
<author>
<name sortKey="He, H" uniqKey="He H">H. He</name>
</author>
<author>
<name sortKey="Liang, R" uniqKey="Liang R">R. Liang</name>
</author>
<author>
<name sortKey="Yi, H" uniqKey="Yi H">H. Yi</name>
</author>
<author>
<name sortKey="Meng, X" uniqKey="Meng X">X. Meng</name>
</author>
<author>
<name sortKey="Chen, Z" uniqKey="Chen Z">Z. Chen</name>
</author>
<author>
<name sortKey="Pan, H" uniqKey="Pan H">H. Pan</name>
</author>
<author>
<name sortKey="Ma, Y" uniqKey="Ma Y">Y. Ma</name>
</author>
<author>
<name sortKey="Cai, L" uniqKey="Cai L">L. Cai</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Brenneisen, P" uniqKey="Brenneisen P">P. Brenneisen</name>
</author>
<author>
<name sortKey="Reichert, A S" uniqKey="Reichert A">A.S. Reichert</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Lee, H" uniqKey="Lee H">H. Lee</name>
</author>
<author>
<name sortKey="Shon, C" uniqKey="Shon C">C. Shon</name>
</author>
<author>
<name sortKey="Kim, Y" uniqKey="Kim Y">Y. Kim</name>
</author>
<author>
<name sortKey="Kim, S" uniqKey="Kim S">S. Kim</name>
</author>
<author>
<name sortKey="Kim, G" uniqKey="Kim G">G. Kim</name>
</author>
<author>
<name sortKey="Kong, M G" uniqKey="Kong M">M.G. Kong</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kim, G" uniqKey="Kim G">G. Kim</name>
</author>
<author>
<name sortKey="Kim, W" uniqKey="Kim W">W. Kim</name>
</author>
<author>
<name sortKey="Kim, K" uniqKey="Kim K">K. Kim</name>
</author>
<author>
<name sortKey="Lee, J" uniqKey="Lee J">J. Lee</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Watson, J" uniqKey="Watson J">J. Watson</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Yan, D" uniqKey="Yan D">D. Yan</name>
</author>
<author>
<name sortKey="Talbot, A" uniqKey="Talbot A">A. Talbot</name>
</author>
<author>
<name sortKey="Nourmohammadi, N" uniqKey="Nourmohammadi N">N. Nourmohammadi</name>
</author>
<author>
<name sortKey="Sherman, J H" uniqKey="Sherman J">J.H. Sherman</name>
</author>
<author>
<name sortKey="Cheng, X" uniqKey="Cheng X">X. Cheng</name>
</author>
<author>
<name sortKey="Keidar, M" uniqKey="Keidar M">M. Keidar</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Georgescu, N" uniqKey="Georgescu N">N. Georgescu</name>
</author>
<author>
<name sortKey="Lupu, A R" uniqKey="Lupu A">A.R. Lupu</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kim, J Y" uniqKey="Kim J">J.Y. Kim</name>
</author>
<author>
<name sortKey="Ballato, J" uniqKey="Ballato J">J. Ballato</name>
</author>
<author>
<name sortKey="Foy, P" uniqKey="Foy P">P. Foy</name>
</author>
<author>
<name sortKey="Hawkins, T" uniqKey="Hawkins T">T. Hawkins</name>
</author>
<author>
<name sortKey="Wei, Y" uniqKey="Wei Y">Y. Wei</name>
</author>
<author>
<name sortKey="Li, J" uniqKey="Li J">J. Li</name>
</author>
<author>
<name sortKey="Kim, S O" uniqKey="Kim S">S.-O. Kim</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ishaq, M" uniqKey="Ishaq M">M. Ishaq</name>
</author>
<author>
<name sortKey="Evans, M D" uniqKey="Evans M">M.D. Evans</name>
</author>
<author>
<name sortKey="Ostrikov, K K" uniqKey="Ostrikov K">K.K. Ostrikov</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kaushik, N K" uniqKey="Kaushik N">N.K. Kaushik</name>
</author>
<author>
<name sortKey="Kaushik, N" uniqKey="Kaushik N">N. Kaushik</name>
</author>
<author>
<name sortKey="Park, D" uniqKey="Park D">D. Park</name>
</author>
<author>
<name sortKey="Choi, E H" uniqKey="Choi E">E.H. Choi</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Volotskova, O" uniqKey="Volotskova O">O. Volotskova</name>
</author>
<author>
<name sortKey="Hawley, T S" uniqKey="Hawley T">T.S. Hawley</name>
</author>
<author>
<name sortKey="Stepp, M A" uniqKey="Stepp M">M.A. Stepp</name>
</author>
<author>
<name sortKey="Keidar, M" uniqKey="Keidar M">M. Keidar</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kumar, A P" uniqKey="Kumar A">A.P. Kumar</name>
</author>
<author>
<name sortKey="Loo, S Y" uniqKey="Loo S">S.Y. Loo</name>
</author>
<author>
<name sortKey="Shin, S W" uniqKey="Shin S">S.W. Shin</name>
</author>
<author>
<name sortKey="Tan, T Z" uniqKey="Tan T">T.Z. Tan</name>
</author>
<author>
<name sortKey="Eng, C B" uniqKey="Eng C">C.B. Eng</name>
</author>
<author>
<name sortKey="Singh, R" uniqKey="Singh R">R. Singh</name>
</author>
<author>
<name sortKey="Putti, T C" uniqKey="Putti T">T.C. Putti</name>
</author>
<author>
<name sortKey="Ong, C W" uniqKey="Ong C">C.W. Ong</name>
</author>
<author>
<name sortKey="Salto Tellez, M" uniqKey="Salto Tellez M">M. Salto-Tellez</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Vaseva, A V" uniqKey="Vaseva A">A.V. Vaseva</name>
</author>
<author>
<name sortKey="Marchenko, N D" uniqKey="Marchenko N">N.D. Marchenko</name>
</author>
<author>
<name sortKey="Ji, K" uniqKey="Ji K">K. Ji</name>
</author>
<author>
<name sortKey="Tsirka, S E" uniqKey="Tsirka S">S.E. Tsirka</name>
</author>
<author>
<name sortKey="Holzmann, S" uniqKey="Holzmann S">S. Holzmann</name>
</author>
<author>
<name sortKey="Moll, U M" uniqKey="Moll U">U.M. Moll</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Joerger, A C" uniqKey="Joerger A">A.C. Joerger</name>
</author>
<author>
<name sortKey="Fersht, A R" uniqKey="Fersht A">A.R. Fersht</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Yan, N" uniqKey="Yan N">N. Yan</name>
</author>
<author>
<name sortKey="Shi, Y" uniqKey="Shi Y">Y. Shi</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Yuan, S" uniqKey="Yuan S">S. Yuan</name>
</author>
<author>
<name sortKey="Yu, X" uniqKey="Yu X">X. Yu</name>
</author>
<author>
<name sortKey="Asara, J M" uniqKey="Asara J">J.M. Asara</name>
</author>
<author>
<name sortKey="Heuser, J E" uniqKey="Heuser J">J.E. Heuser</name>
</author>
<author>
<name sortKey="Ludtke, S J" uniqKey="Ludtke S">S.J. Ludtke</name>
</author>
<author>
<name sortKey="Akey, C W" uniqKey="Akey C">C.W. Akey</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Slee, E A" uniqKey="Slee E">E.A. Slee</name>
</author>
<author>
<name sortKey="Harte, M T" uniqKey="Harte M">M.T. Harte</name>
</author>
<author>
<name sortKey="Kluck, R M" uniqKey="Kluck R">R.M. Kluck</name>
</author>
<author>
<name sortKey="Wolf, B B" uniqKey="Wolf B">B.B. Wolf</name>
</author>
<author>
<name sortKey="Casiano, C A" uniqKey="Casiano C">C.A. Casiano</name>
</author>
<author>
<name sortKey="Newmeyer, D D" uniqKey="Newmeyer D">D.D. Newmeyer</name>
</author>
<author>
<name sortKey="Wang, H G" uniqKey="Wang H">H.-G. Wang</name>
</author>
<author>
<name sortKey="Reed, J C" uniqKey="Reed J">J.C. Reed</name>
</author>
<author>
<name sortKey="Nicholson, D W" uniqKey="Nicholson D">D.W. Nicholson</name>
</author>
<author>
<name sortKey="Alnemri, E S" uniqKey="Alnemri E">E.S. Alnemri</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Zou, H" uniqKey="Zou H">H. Zou</name>
</author>
<author>
<name sortKey="Li, Y" uniqKey="Li Y">Y. Li</name>
</author>
<author>
<name sortKey="Liu, X" uniqKey="Liu X">X. Liu</name>
</author>
<author>
<name sortKey="Wang, X" uniqKey="Wang X">X. Wang</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ishaq, M" uniqKey="Ishaq M">M. Ishaq</name>
</author>
<author>
<name sortKey="Bazaka, K" uniqKey="Bazaka K">K. Bazaka</name>
</author>
<author>
<name sortKey="Ostrikov, K" uniqKey="Ostrikov K">K. Ostrikov</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Denicola, A" uniqKey="Denicola A">A. Denicola</name>
</author>
<author>
<name sortKey="Souza, J M" uniqKey="Souza J">J.M. Souza</name>
</author>
<author>
<name sortKey="Radi, R" uniqKey="Radi R">R. Radi</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Shi, Y" uniqKey="Shi Y">Y. Shi</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kaushik, N" uniqKey="Kaushik N">N. Kaushik</name>
</author>
<author>
<name sortKey="Uddin, N" uniqKey="Uddin N">N. Uddin</name>
</author>
<author>
<name sortKey="Sim, G B" uniqKey="Sim G">G.B. Sim</name>
</author>
<author>
<name sortKey="Hong, Y J" uniqKey="Hong Y">Y.J. Hong</name>
</author>
<author>
<name sortKey="Baik, K Y" uniqKey="Baik K">K.Y. Baik</name>
</author>
<author>
<name sortKey="Kim, C H" uniqKey="Kim C">C.H. Kim</name>
</author>
<author>
<name sortKey="Lee, S J" uniqKey="Lee S">S.J. Lee</name>
</author>
<author>
<name sortKey="Kaushik, N K" uniqKey="Kaushik N">N.K. Kaushik</name>
</author>
<author>
<name sortKey="Choi, E H" uniqKey="Choi E">E.H. Choi</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Han, X" uniqKey="Han X">X. Han</name>
</author>
<author>
<name sortKey="Klas, M" uniqKey="Klas M">M. Klas</name>
</author>
<author>
<name sortKey="Liu, Y" uniqKey="Liu Y">Y. Liu</name>
</author>
<author>
<name sortKey="Sharon Stack, M" uniqKey="Sharon Stack M">M. Sharon Stack</name>
</author>
<author>
<name sortKey="Ptasinska, S" uniqKey="Ptasinska S">S. Ptasinska</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Azzariti, A" uniqKey="Azzariti A">A. Azzariti</name>
</author>
<author>
<name sortKey="Lacobazzi, R M" uniqKey="Lacobazzi R">R.M. Lacobazzi</name>
</author>
<author>
<name sortKey="Di Fonte, R" uniqKey="Di Fonte R">R. Di Fonte</name>
</author>
<author>
<name sortKey="Porcelli, L" uniqKey="Porcelli L">L. Porcelli</name>
</author>
<author>
<name sortKey="Gristina, R" uniqKey="Gristina R">R. Gristina</name>
</author>
<author>
<name sortKey="Favia, P" uniqKey="Favia P">P. Favia</name>
</author>
<author>
<name sortKey="Fracassi, F" uniqKey="Fracassi F">F. Fracassi</name>
</author>
<author>
<name sortKey="Trizio, I" uniqKey="Trizio I">I. Trizio</name>
</author>
<author>
<name sortKey="Silvestris, N" uniqKey="Silvestris N">N. Silvestris</name>
</author>
<author>
<name sortKey="Guida, G" uniqKey="Guida G">G. Guida</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Smolkova, B" uniqKey="Smolkova B">B. Smolkova</name>
</author>
<author>
<name sortKey="Lunova, M" uniqKey="Lunova M">M. Lunova</name>
</author>
<author>
<name sortKey="Lynnyk, A" uniqKey="Lynnyk A">A. Lynnyk</name>
</author>
<author>
<name sortKey="Uzhytchak, M" uniqKey="Uzhytchak M">M. Uzhytchak</name>
</author>
<author>
<name sortKey="Churpita, O" uniqKey="Churpita O">O. Churpita</name>
</author>
<author>
<name sortKey="Jirsa, M" uniqKey="Jirsa M">M. Jirsa</name>
</author>
<author>
<name sortKey="Kubinova, S" uniqKey="Kubinova S">S. Kubinova</name>
</author>
<author>
<name sortKey="Lunov, O" uniqKey="Lunov O">O. Lunov</name>
</author>
<author>
<name sortKey="Dejneka, A" uniqKey="Dejneka A">A. Dejneka</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Santos, G M P" uniqKey="Santos G">G.M.P. Santos</name>
</author>
<author>
<name sortKey="Oliveira, S C" uniqKey="Oliveira S">S.C. Oliveira</name>
</author>
<author>
<name sortKey="Monteiro, J C" uniqKey="Monteiro J">J.C. Monteiro</name>
</author>
<author>
<name sortKey="Fagnani, S R" uniqKey="Fagnani S">S.R. Fagnani</name>
</author>
<author>
<name sortKey="Sampaio, F P" uniqKey="Sampaio F">F.P. Sampaio</name>
</author>
<author>
<name sortKey="Correia, N A" uniqKey="Correia N">N.A. Correia</name>
</author>
<author>
<name sortKey="Crugeira, P J" uniqKey="Crugeira P">P.J. Crugeira</name>
</author>
<author>
<name sortKey="Pinheiro, A L B" uniqKey="Pinheiro A">A.L.B. Pinheiro</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Filomeni, G" uniqKey="Filomeni G">G. Filomeni</name>
</author>
<author>
<name sortKey="De Zio, D" uniqKey="De Zio D">D. De Zio</name>
</author>
<author>
<name sortKey="Cecconi, F" uniqKey="Cecconi F">F. Cecconi</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Liu, Y" uniqKey="Liu Y">Y. Liu</name>
</author>
<author>
<name sortKey="Tan, S" uniqKey="Tan S">S. Tan</name>
</author>
<author>
<name sortKey="Zhang, H" uniqKey="Zhang H">H. Zhang</name>
</author>
<author>
<name sortKey="Kong, X" uniqKey="Kong X">X. Kong</name>
</author>
<author>
<name sortKey="Ding, L" uniqKey="Ding L">L. Ding</name>
</author>
<author>
<name sortKey="Shen, J" uniqKey="Shen J">J. Shen</name>
</author>
<author>
<name sortKey="Lan, Y" uniqKey="Lan Y">Y. Lan</name>
</author>
<author>
<name sortKey="Cheng, C" uniqKey="Cheng C">C. Cheng</name>
</author>
<author>
<name sortKey="Zhu, T" uniqKey="Zhu T">T. Zhu</name>
</author>
<author>
<name sortKey="Xia, W" uniqKey="Xia W">W. Xia</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kong, A N T" uniqKey="Kong A">A.-N.T. Kong</name>
</author>
<author>
<name sortKey="Yu, R" uniqKey="Yu R">R. Yu</name>
</author>
<author>
<name sortKey="Chen, C" uniqKey="Chen C">C. Chen</name>
</author>
<author>
<name sortKey="Mandlekar, S" uniqKey="Mandlekar S">S. Mandlekar</name>
</author>
<author>
<name sortKey="Primiano, T" uniqKey="Primiano T">T. Primiano</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Henry, Y" uniqKey="Henry Y">Y. Henry</name>
</author>
<author>
<name sortKey="Ducrocq, C" uniqKey="Ducrocq C">C. Ducrocq</name>
</author>
<author>
<name sortKey="Drapier, J C" uniqKey="Drapier J">J.-C. Drapier</name>
</author>
<author>
<name sortKey="Servent, D" uniqKey="Servent D">D. Servent</name>
</author>
<author>
<name sortKey="Pellat, C" uniqKey="Pellat C">C. Pellat</name>
</author>
<author>
<name sortKey="Guissani, A" uniqKey="Guissani A">A. Guissani</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Liedtke, K R" uniqKey="Liedtke K">K.R. Liedtke</name>
</author>
<author>
<name sortKey="Bekeschus, S" uniqKey="Bekeschus S">S. Bekeschus</name>
</author>
<author>
<name sortKey="Kaeding, A" uniqKey="Kaeding A">A. Kaeding</name>
</author>
<author>
<name sortKey="Hackbarth, C" uniqKey="Hackbarth C">C. Hackbarth</name>
</author>
<author>
<name sortKey="Kuehn, J P" uniqKey="Kuehn J">J.-P. Kuehn</name>
</author>
<author>
<name sortKey="Heidecke, C D" uniqKey="Heidecke C">C.-D. Heidecke</name>
</author>
<author>
<name sortKey="Von Bernstorff, W" uniqKey="Von Bernstorff W">W. von Bernstorff</name>
</author>
<author>
<name sortKey="Von Woedtke, T" uniqKey="Von Woedtke T">T. von Woedtke</name>
</author>
<author>
<name sortKey="Partecke, L I" uniqKey="Partecke L">L.I. Partecke</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Li, W" uniqKey="Li W">W. Li</name>
</author>
<author>
<name sortKey="Yu, K N" uniqKey="Yu K">K.N. Yu</name>
</author>
<author>
<name sortKey="Ma, J" uniqKey="Ma J">J. Ma</name>
</author>
<author>
<name sortKey="Shen, J" uniqKey="Shen J">J. Shen</name>
</author>
<author>
<name sortKey="Cheng, C" uniqKey="Cheng C">C. Cheng</name>
</author>
<author>
<name sortKey="Zhou, F" uniqKey="Zhou F">F. Zhou</name>
</author>
<author>
<name sortKey="Cai, Z" uniqKey="Cai Z">Z. Cai</name>
</author>
<author>
<name sortKey="Han, W" uniqKey="Han W">W. Han</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kang, S U" uniqKey="Kang S">S.U. Kang</name>
</author>
<author>
<name sortKey="Cho, J H" uniqKey="Cho J">J.H. Cho</name>
</author>
<author>
<name sortKey="Chang, J W" uniqKey="Chang J">J.W. Chang</name>
</author>
<author>
<name sortKey="Shin, Y S" uniqKey="Shin Y">Y.S. Shin</name>
</author>
<author>
<name sortKey="Kim, K I" uniqKey="Kim K">K.I. Kim</name>
</author>
<author>
<name sortKey="Park, J K" uniqKey="Park J">J.K. Park</name>
</author>
<author>
<name sortKey="Yang, S S" uniqKey="Yang S">S.S. Yang</name>
</author>
<author>
<name sortKey="Lee, J S" uniqKey="Lee J">J.S. Lee</name>
</author>
<author>
<name sortKey="Moon, E" uniqKey="Moon E">E. Moon</name>
</author>
<author>
<name sortKey="Lee, K" uniqKey="Lee K">K. Lee</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Chen, Z" uniqKey="Chen Z">Z. Chen</name>
</author>
<author>
<name sortKey="Lin, L" uniqKey="Lin L">L. Lin</name>
</author>
<author>
<name sortKey="Cheng, X" uniqKey="Cheng X">X. Cheng</name>
</author>
<author>
<name sortKey="Gjika, E" uniqKey="Gjika E">E. Gjika</name>
</author>
<author>
<name sortKey="Keidar, M" uniqKey="Keidar M">M. Keidar</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Nguyen, N H" uniqKey="Nguyen N">N.H. Nguyen</name>
</author>
<author>
<name sortKey="Park, H J" uniqKey="Park H">H.J. Park</name>
</author>
<author>
<name sortKey="Yang, S S" uniqKey="Yang S">S.S. Yang</name>
</author>
<author>
<name sortKey="Choi, K S" uniqKey="Choi K">K.S. Choi</name>
</author>
<author>
<name sortKey="Lee, J S" uniqKey="Lee J">J.-S. Lee</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Karki, S B" uniqKey="Karki S">S.B. Karki</name>
</author>
<author>
<name sortKey="Gupta, T T" uniqKey="Gupta T">T.T. Gupta</name>
</author>
<author>
<name sortKey="Yildirim Ayan, E" uniqKey="Yildirim Ayan E">E. Yildirim-Ayan</name>
</author>
<author>
<name sortKey="Eisenmann, K M" uniqKey="Eisenmann K">K.M. Eisenmann</name>
</author>
<author>
<name sortKey="Ayan, H" uniqKey="Ayan H">H. Ayan</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kumar, N" uniqKey="Kumar N">N. Kumar</name>
</author>
<author>
<name sortKey="Attri, P" uniqKey="Attri P">P. Attri</name>
</author>
<author>
<name sortKey="Choi, E H" uniqKey="Choi E">E.H. Choi</name>
</author>
<author>
<name sortKey="Uhm, H S" uniqKey="Uhm H">H.S. Uhm</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Choi, J S" uniqKey="Choi J">J.-S. Choi</name>
</author>
<author>
<name sortKey="Kim, J" uniqKey="Kim J">J. Kim</name>
</author>
<author>
<name sortKey="Hong, Y J" uniqKey="Hong Y">Y.-J. Hong</name>
</author>
<author>
<name sortKey="Bae, W Y" uniqKey="Bae W">W.-Y. Bae</name>
</author>
<author>
<name sortKey="Choi, E H" uniqKey="Choi E">E.H. Choi</name>
</author>
<author>
<name sortKey="Jeong, J W" uniqKey="Jeong J">J.-W. Jeong</name>
</author>
<author>
<name sortKey="Park, H K" uniqKey="Park H">H.-K. Park</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kaushik, N K" uniqKey="Kaushik N">N.K. Kaushik</name>
</author>
<author>
<name sortKey="Kim, Y H" uniqKey="Kim Y">Y.H. Kim</name>
</author>
<author>
<name sortKey="Han, Y G" uniqKey="Han Y">Y.G. Han</name>
</author>
<author>
<name sortKey="Choi, E H" uniqKey="Choi E">E.H. Choi</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Conway, G E" uniqKey="Conway G">G.E. Conway</name>
</author>
<author>
<name sortKey="Casey, A" uniqKey="Casey A">A. Casey</name>
</author>
<author>
<name sortKey="Milosavljevic, V" uniqKey="Milosavljevic V">V. Milosavljevic</name>
</author>
<author>
<name sortKey="Liu, Y" uniqKey="Liu Y">Y. Liu</name>
</author>
<author>
<name sortKey="Howe, O" uniqKey="Howe O">O. Howe</name>
</author>
<author>
<name sortKey="Cullen, P J" uniqKey="Cullen P">P.J. Cullen</name>
</author>
<author>
<name sortKey="Curtin, J F" uniqKey="Curtin J">J.F. Curtin</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Schmidt, A" uniqKey="Schmidt A">A. Schmidt</name>
</author>
<author>
<name sortKey="Rodder, K" uniqKey="Rodder K">K. Rödder</name>
</author>
<author>
<name sortKey="Hasse, S" uniqKey="Hasse S">S. Hasse</name>
</author>
<author>
<name sortKey="Masur, K" uniqKey="Masur K">K. Masur</name>
</author>
<author>
<name sortKey="Toups, L" uniqKey="Toups L">L. Toups</name>
</author>
<author>
<name sortKey="Lillig, C H" uniqKey="Lillig C">C.H. Lillig</name>
</author>
<author>
<name sortKey="Von Woedtke, T" uniqKey="Von Woedtke T">T. von Woedtke</name>
</author>
<author>
<name sortKey="Wende, K" uniqKey="Wende K">K. Wende</name>
</author>
<author>
<name sortKey="Bekeschus, S" uniqKey="Bekeschus S">S. Bekeschus</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kaushik, N" uniqKey="Kaushik N">N. Kaushik</name>
</author>
<author>
<name sortKey="Kumar, N" uniqKey="Kumar N">N. Kumar</name>
</author>
<author>
<name sortKey="Kim, C H" uniqKey="Kim C">C.H. Kim</name>
</author>
<author>
<name sortKey="Kaushik, N K" uniqKey="Kaushik N">N.K. Kaushik</name>
</author>
<author>
<name sortKey="Choi, E H" uniqKey="Choi E">E.H. Choi</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Coates, A" uniqKey="Coates A">A. Coates</name>
</author>
<author>
<name sortKey="Abraham, S" uniqKey="Abraham S">S. Abraham</name>
</author>
<author>
<name sortKey="Kaye, S B" uniqKey="Kaye S">S.B. Kaye</name>
</author>
<author>
<name sortKey="Sowerbutts, T" uniqKey="Sowerbutts T">T. Sowerbutts</name>
</author>
<author>
<name sortKey="Frewin, C" uniqKey="Frewin C">C. Frewin</name>
</author>
<author>
<name sortKey="Fox, R" uniqKey="Fox R">R. Fox</name>
</author>
<author>
<name sortKey="Tattersall, M" uniqKey="Tattersall M">M. Tattersall</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Pedersen, B" uniqKey="Pedersen B">B. Pedersen</name>
</author>
<author>
<name sortKey="Koktved, D P" uniqKey="Koktved D">D.P. Koktved</name>
</author>
<author>
<name sortKey="Nielsen, L L" uniqKey="Nielsen L">L.L. Nielsen</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Peng, X" uniqKey="Peng X">X. Peng</name>
</author>
<author>
<name sortKey="Gandhi, V" uniqKey="Gandhi V">V. Gandhi</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Rajivgandhi, G" uniqKey="Rajivgandhi G">G. Rajivgandhi</name>
</author>
<author>
<name sortKey="Maruthupandy, M" uniqKey="Maruthupandy M">M. Maruthupandy</name>
</author>
<author>
<name sortKey="Quero, F" uniqKey="Quero F">F. Quero</name>
</author>
<author>
<name sortKey="Li, W J" uniqKey="Li W">W.J. Li</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Navaneethakrishnan, S" uniqKey="Navaneethakrishnan S">S. NavaneethaKrishnan</name>
</author>
<author>
<name sortKey="Rosales, J L" uniqKey="Rosales J">J.L. Rosales</name>
</author>
<author>
<name sortKey="Lee, K Y" uniqKey="Lee K">K.-Y. Lee</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Zhou, Z" uniqKey="Zhou Z">Z. Zhou</name>
</author>
<author>
<name sortKey="Song, J" uniqKey="Song J">J. Song</name>
</author>
<author>
<name sortKey="Nie, L" uniqKey="Nie L">L. Nie</name>
</author>
<author>
<name sortKey="Chen, X" uniqKey="Chen X">X. Chen</name>
</author>
</analytic>
</biblStruct>
</listBibl>
</div1>
</back>
</TEI>
<pmc article-type="review-article">
<pmc-dir>properties open_access</pmc-dir>
<front>
<journal-meta>
<journal-id journal-id-type="nlm-ta">Cancers (Basel)</journal-id>
<journal-id journal-id-type="iso-abbrev">Cancers (Basel)</journal-id>
<journal-id journal-id-type="publisher-id">cancers</journal-id>
<journal-title-group>
<journal-title>Cancers</journal-title>
</journal-title-group>
<issn pub-type="epub">2072-6694</issn>
<publisher>
<publisher-name>MDPI</publisher-name>
</publisher>
</journal-meta>
<article-meta>
<article-id pub-id-type="pmid">31336648</article-id>
<article-id pub-id-type="pmc">6678366</article-id>
<article-id pub-id-type="doi">10.3390/cancers11071030</article-id>
<article-id pub-id-type="publisher-id">cancers-11-01030</article-id>
<article-categories>
<subj-group subj-group-type="heading">
<subject>Review</subject>
</subj-group>
</article-categories>
<title-group>
<article-title>Impact of ROS Generated by Chemical, Physical, and Plasma Techniques on Cancer Attenuation</article-title>
</title-group>
<contrib-group>
<contrib contrib-type="author">
<name>
<surname>Mitra</surname>
<given-names>Sarmistha</given-names>
</name>
<xref ref-type="aff" rid="af1-cancers-11-01030">1</xref>
<xref ref-type="aff" rid="af2-cancers-11-01030">2</xref>
<xref ref-type="author-notes" rid="fn1-cancers-11-01030"></xref>
</contrib>
<contrib contrib-type="author">
<contrib-id contrib-id-type="orcid" authenticated="true">https://orcid.org/0000-0003-1967-3857</contrib-id>
<name>
<surname>Nguyen</surname>
<given-names>Linh Nhat</given-names>
</name>
<xref ref-type="aff" rid="af1-cancers-11-01030">1</xref>
<xref ref-type="aff" rid="af3-cancers-11-01030">3</xref>
<xref ref-type="author-notes" rid="fn1-cancers-11-01030"></xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Akter</surname>
<given-names>Mahmuda</given-names>
</name>
<xref ref-type="aff" rid="af1-cancers-11-01030">1</xref>
<xref ref-type="aff" rid="af2-cancers-11-01030">2</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Park</surname>
<given-names>Gyungsoon</given-names>
</name>
<xref ref-type="aff" rid="af1-cancers-11-01030">1</xref>
<xref ref-type="aff" rid="af2-cancers-11-01030">2</xref>
<xref ref-type="aff" rid="af3-cancers-11-01030">3</xref>
</contrib>
<contrib contrib-type="author">
<contrib-id contrib-id-type="orcid" authenticated="true">https://orcid.org/0000-0001-5385-1878</contrib-id>
<name>
<surname>Choi</surname>
<given-names>Eun Ha</given-names>
</name>
<xref ref-type="aff" rid="af1-cancers-11-01030">1</xref>
<xref ref-type="aff" rid="af2-cancers-11-01030">2</xref>
<xref ref-type="aff" rid="af3-cancers-11-01030">3</xref>
<xref rid="c1-cancers-11-01030" ref-type="corresp">*</xref>
</contrib>
<contrib contrib-type="author">
<contrib-id contrib-id-type="orcid" authenticated="true">https://orcid.org/0000-0002-4965-5046</contrib-id>
<name>
<surname>Kaushik</surname>
<given-names>Nagendra Kumar</given-names>
</name>
<xref ref-type="aff" rid="af1-cancers-11-01030">1</xref>
<xref ref-type="aff" rid="af2-cancers-11-01030">2</xref>
<xref ref-type="aff" rid="af3-cancers-11-01030">3</xref>
<xref rid="c1-cancers-11-01030" ref-type="corresp">*</xref>
</contrib>
</contrib-group>
<aff id="af1-cancers-11-01030">
<label>1</label>
Applied Plasma Medicine Center, Plasma Bioscience Research Center, Seoul 01897, Korea</aff>
<aff id="af2-cancers-11-01030">
<label>2</label>
Department of Plasma Bio-display, Kwangwoon University, Seoul 01897, Korea</aff>
<aff id="af3-cancers-11-01030">
<label>3</label>
Department of Electrical and Biological Physics, Kwangwoon University, Seoul 01897, Korea</aff>
<author-notes>
<corresp id="c1-cancers-11-01030">
<label>*</label>
Correspondence:
<email>kaushik.nagendra@kw.ac.kr</email>
(N.K.K.);
<email>ehchoi@kw.ac.kr</email>
(E.H.C.); Tel.: +82-2-940-8618 (N.K.K.)</corresp>
<fn id="fn1-cancers-11-01030">
<label></label>
<p>These authors have contributed equally.</p>
</fn>
</author-notes>
<pub-date pub-type="epub">
<day>22</day>
<month>7</month>
<year>2019</year>
</pub-date>
<pub-date pub-type="collection">
<month>7</month>
<year>2019</year>
</pub-date>
<volume>11</volume>
<issue>7</issue>
<elocation-id>1030</elocation-id>
<history>
<date date-type="received">
<day>14</day>
<month>6</month>
<year>2019</year>
</date>
<date date-type="accepted">
<day>17</day>
<month>7</month>
<year>2019</year>
</date>
</history>
<permissions>
<copyright-statement>© 2019 by the authors.</copyright-statement>
<copyright-year>2019</copyright-year>
<license license-type="open-access">
<license-p>Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (
<ext-link ext-link-type="uri" xlink:href="http://creativecommons.org/licenses/by/4.0/">http://creativecommons.org/licenses/by/4.0/</ext-link>
).</license-p>
</license>
</permissions>
<abstract>
<p>For the last few decades, while significant improvements have been achieved in cancer therapy, this family of diseases is still considered one of the deadliest threats to human health. Thus, there is an urgent need to find novel strategies in order to tackle this vital medical issue. One of the most pivotal causes of cancer initiation is the presence of reactive oxygen species (ROS) inside the body. Interestingly, on the other hand, high doses of ROS possess the capability to damage malignant cells. Moreover, several important intracellular mechanisms occur during the production of ROS. For these reasons, inducing ROS inside the biological system by utilizing external physical or chemical methods is a promising approach to inhibit the growth of cancer cells. Beside conventional technologies, cold atmospheric plasmas are now receiving much attention as an emerging therapeutic tool for cancer treatment due to their unique biophysical behavior, including the ability to generate considerable amounts of ROS. This review summarizes the important mechanisms of ROS generated by chemical, physical, and plasma approaches. We also emphasize the biological effects and cancer inhibition capabilities of ROS.</p>
</abstract>
<kwd-group>
<kwd>reactive oxygen species</kwd>
<kwd>reactive nitrogen species</kwd>
<kwd>free radicals</kwd>
<kwd>cancers</kwd>
</kwd-group>
</article-meta>
</front>
<body>
<sec sec-type="intro" id="sec1-cancers-11-01030">
<title>1. Introduction</title>
<p>Reactive oxygen species (ROS) are free radicals that are known to function as very important intracellular messengers [
<xref rid="B1-cancers-11-01030" ref-type="bibr">1</xref>
] and can also modulate a wide range of mechanisms within the biological system, including various disease pathogenesis [
<xref rid="B2-cancers-11-01030" ref-type="bibr">2</xref>
]. They are very well known for playing both beneficial and harmful roles in the human body [
<xref rid="B3-cancers-11-01030" ref-type="bibr">3</xref>
,
<xref rid="B4-cancers-11-01030" ref-type="bibr">4</xref>
]. Given this “double-edged sword” characteristic of ROS [
<xref rid="B5-cancers-11-01030" ref-type="bibr">5</xref>
], especially with regard to the molecular mechanisms of cancer [
<xref rid="B6-cancers-11-01030" ref-type="bibr">6</xref>
,
<xref rid="B7-cancers-11-01030" ref-type="bibr">7</xref>
], it is very important to analyze and control the level of ROS required to instigate positive effects. From recent studies, it is established that ROS have the ability to play a crucial role in destroying cancer cells by means of enhanced oxidative stress through a variety of mechanisms [
<xref rid="B8-cancers-11-01030" ref-type="bibr">8</xref>
,
<xref rid="B9-cancers-11-01030" ref-type="bibr">9</xref>
,
<xref rid="B10-cancers-11-01030" ref-type="bibr">10</xref>
,
<xref rid="B11-cancers-11-01030" ref-type="bibr">11</xref>
]. As cancer pathology is related to a large number of receptors and molecular characteristics [
<xref rid="B12-cancers-11-01030" ref-type="bibr">12</xref>
,
<xref rid="B13-cancers-11-01030" ref-type="bibr">13</xref>
], changes in ROS levels can modify several pathways related to cancer. In addition, ROS can function as a treatment strategy for cancer if their level can be controlled within a beneficial range. Thus far, ROS have been targeted by a number of anticancer drugs, which act through various mechanisms to fight this disease [
<xref rid="B14-cancers-11-01030" ref-type="bibr">14</xref>
]. Radiation is one of the most commonly applied cancer treatments that has the ability to produce ROS [
<xref rid="B15-cancers-11-01030" ref-type="bibr">15</xref>
,
<xref rid="B16-cancers-11-01030" ref-type="bibr">16</xref>
]. Nonetheless, we are not able to win the battle against cancer due to the present challenges of cancer therapy, such as drug resistance and the increasing side effects of conventional therapies. Moreover, the death rate caused by cancer is increasing [
<xref rid="B17-cancers-11-01030" ref-type="bibr">17</xref>
]. Hence, in order to overcome this challenge, it is essential to introduce a noble therapy that can control the amounts of reactive species in the body. Eventually, changing the ROS amount can have anticancer effects both directly and indirectly with minimal side effects. In the quest for a new warrior in the present state of cancer treatments, it is found that treatments targeting ROS by any new tool can promise a new and more successful era of cancer therapy [
<xref rid="B14-cancers-11-01030" ref-type="bibr">14</xref>
]. However, the most beneficial and preferable strategy would require the considerations of maintaining the optimum production and control of ROS to produce the effect not only on killing cancer cells, but also on inhibiting cell proliferation and the metastasis of cancer.</p>
<p>Plasma, the fourth state of matter, is generated by ionizing gas with high electrical energy. Plasma is categorized into thermal plasma and non-thermal plasma (or cold plasma) based on the nature of the electrons, ions, and neutral species. Particularly, non-thermal or cold plasma does not take place in the same local thermodynamic equilibrium state as thermal plasma, which results in the inequitable temperature between plasma species. The plasma electron temperature might reach up to tens of thousands Kelvin, far exceeding the temperature of the neutral gas, which remains around room temperature. Moreover, non-thermal plasmas devices such as plasma jet or dielectric barrier discharge (DBD)plasma normally operate in room condition, and are thus very suitable for life science research studies and applications [
<xref rid="B18-cancers-11-01030" ref-type="bibr">18</xref>
,
<xref rid="B19-cancers-11-01030" ref-type="bibr">19</xref>
]. The last two decades have witnessed a vast upswing of non-thermal plasma technology, from theoretical and experimental research, to real-life applications in various fields. A novel interdisciplinary field called “plasma medicine” has been created, concerning the generation of plasma at atmospheric pressure with room temperatures for treating living cells, DNA, and life science targets [
<xref rid="B20-cancers-11-01030" ref-type="bibr">20</xref>
]. Non-thermal plasma produces various reactive species that can be used to enhance the oxidative stress of cancer cells and eventually kill cancer cells [
<xref rid="B21-cancers-11-01030" ref-type="bibr">21</xref>
,
<xref rid="B22-cancers-11-01030" ref-type="bibr">22</xref>
,
<xref rid="B23-cancers-11-01030" ref-type="bibr">23</xref>
]. Diverse ROS can be generated in plasma, and some may increase the oxidative stress of cells [
<xref rid="B24-cancers-11-01030" ref-type="bibr">24</xref>
]. As a result, it can modify any pathway that is directly or indirectly controlled by or related to ROS. It is currently established that the killing effect of plasma stems from the enhanced oxidative stress in cancer cells caused by plasma [
<xref rid="B22-cancers-11-01030" ref-type="bibr">22</xref>
,
<xref rid="B25-cancers-11-01030" ref-type="bibr">25</xref>
]. Recent works have shown that cancer cells produce more ROS [
<xref rid="B26-cancers-11-01030" ref-type="bibr">26</xref>
,
<xref rid="B27-cancers-11-01030" ref-type="bibr">27</xref>
], and therefore are prone to be affected by a rise in oxidative stress compared to normal cells, making them more suitable for being targeted by ROS [
<xref rid="B14-cancers-11-01030" ref-type="bibr">14</xref>
] in conjunction with plasma technology. The killing effect of plasma is more prominent in cancer cells compared to normal cells, which makes the outcome of such a plasma treatment for cancer more fruitful.</p>
<p>Despite being a new method, plasma has already been used in different fields of medicine and surgery [
<xref rid="B28-cancers-11-01030" ref-type="bibr">28</xref>
,
<xref rid="B29-cancers-11-01030" ref-type="bibr">29</xref>
,
<xref rid="B30-cancers-11-01030" ref-type="bibr">30</xref>
]. It has been also applied successfully in the fields of dentistry [
<xref rid="B31-cancers-11-01030" ref-type="bibr">31</xref>
], sterilization [
<xref rid="B32-cancers-11-01030" ref-type="bibr">32</xref>
], and skin treatment [
<xref rid="B33-cancers-11-01030" ref-type="bibr">33</xref>
]. Evidence from recent works suggests that most of the activity of plasma comes from the production of reactive species. As a result, it is considered as a new tool in the field of oncology, and researchers have started to explore the effects of plasma on carcinoma cases. Plasma has been applied in cancers of various organs such as breast [
<xref rid="B34-cancers-11-01030" ref-type="bibr">34</xref>
], ovarian [
<xref rid="B35-cancers-11-01030" ref-type="bibr">35</xref>
], prostate [
<xref rid="B36-cancers-11-01030" ref-type="bibr">36</xref>
], lung [
<xref rid="B37-cancers-11-01030" ref-type="bibr">37</xref>
], brain [
<xref rid="B38-cancers-11-01030" ref-type="bibr">38</xref>
], and skin [
<xref rid="B39-cancers-11-01030" ref-type="bibr">39</xref>
], with results showing the excellent effects on these types of cancer. Although it has not been applied clinically to cancer patients, in vitro and in vivo experiments testify that plasma technology has great potential to be used as a therapeutic treatment for cancer in the future [
<xref rid="B40-cancers-11-01030" ref-type="bibr">40</xref>
]. It remains not well known how plasma generates ROS and/or if there are any other clear mechanisms related to the killing of cancer cells. Moreover, there are various types of plasma devices, and plasma can be produced using a large variety of gases or combinations of gases. All of these aspects are very influential on the physical characteristics of plasma. Hence, it is not certain that all in vivo and in vitro experiments done thus far can be applied under identical conditions or can be compared directly.</p>
<p>The present review attempts to combine the intracellular production of ROS and the generation of ROS by different physical and chemical means. Furthermore, we aim to discern the underlying mechanisms of ROS with reference to cancer inhibition and the potential of plasma to be developed as a future cancer treatment technology.</p>
</sec>
<sec id="sec2-cancers-11-01030">
<title>2. Types of Reactive Oxygen Species</title>
<p>The ground state of diatomic oxygen is called triplet oxygen (
<sup>3</sup>
O
<sub>2</sub>
), containing two unpaired electrons with parallel spins in the outer valence shell. Due to selection rules, the oxidation reaction of triplet oxygen can occur with organic molecules that donate an electron pair with parallel spins. Thus, the reactivity of triplet oxygen is relatively low since electron pairs of organic molecules typically have anti-parallel spins. Nevertheless,
<sup>3</sup>
O
<sub>2</sub>
can be converted into several highly reactive molecules, specifically ROS, via either electron-transfer or energy-transfer processes. The term ROS is used to describe several radical and non-radical molecules that derive from diatomic oxygen. The four most important ROS in a biological system are the superoxide anion, singlet oxygen, hydrogen peroxide, and hydroxyl radicals.</p>
<sec id="sec2dot1-cancers-11-01030">
<title>2.1. Singlet Oxygen</title>
<p>Singlet oxygen (
<sup>1</sup>
O
<sub>2</sub>
) is the lowest electronically excited state of diatomic oxygen.
<sup>1</sup>
O
<sub>2</sub>
is a highly reactive molecule that can inflict severe damage on cells. It is also involved in the signaling of apoptosis and acclimation processes.
<sup>1</sup>
O
<sub>2</sub>
is the only ROS generated by energy transfer, whereas the other types are products of electron-transfer reactions. In general,
<sup>1</sup>
O
<sub>2</sub>
is indirectly formed via a photosensitization process during which a photosensitizer is excited by irradiation, followed by energy transfer to excite the ground-state triplet oxygen into the singlet oxygen state [
<xref rid="B41-cancers-11-01030" ref-type="bibr">41</xref>
]. Singlet oxygen is highly unstable and constantly decays back to the ground state, emitting radiation in the near-IR region. These reactive properties make singlet oxygen an important factor in photodynamic therapies. In addition,
<sup>1</sup>
O
<sub>2</sub>
plays a role in a variety of chemical reactions to produce other oxidants and other highly reactive and cytotoxic molecules, which can directly inactivate antigens and kill pathogens [
<xref rid="B42-cancers-11-01030" ref-type="bibr">42</xref>
].</p>
</sec>
<sec id="sec2dot2-cancers-11-01030">
<title>2.2. Superoxide Anion
<sup></sup>
O
<sub>2</sub>
<sup></sup>
</title>
<p>Superoxide anions (
<sup></sup>
O
<sub>2</sub>
<sup></sup>
) are a product of the one-electron reduction of diatomic oxygen and are the most common type of ROS [
<xref rid="B43-cancers-11-01030" ref-type="bibr">43</xref>
]. Under physiological conditions,
<sup></sup>
O
<sub>2</sub>
<sup></sup>
can be generated by the NADPH oxidase enzyme or by the mitochondrial electron transport chain [
<xref rid="B44-cancers-11-01030" ref-type="bibr">44</xref>
]. The reactivity of the
<sup></sup>
O
<sub>2</sub>
<sup></sup>
molecule is widely considered to be relatively low.
<sup></sup>
O
<sub>2</sub>
<sup></sup>
can be dismutated into two less reactive species, oxygen and hydroperoxide, in the presence of an enzyme called superoxide dismutase (SOD). On the other hand,
<sup></sup>
O
<sub>2</sub>
<sup></sup>
participates in the Haber–Weiss reaction, generating hydroxyl radicals, which are the most reactive and most dangerous type of ROS [
<xref rid="B45-cancers-11-01030" ref-type="bibr">45</xref>
]. This reaction is a cause of oxidative stress in cells. Thus,
<sup></sup>
O
<sub>2</sub>
<sup></sup>
is still capable of indirectly inflicting biological damage.</p>
</sec>
<sec id="sec2dot3-cancers-11-01030">
<title>2.3. Hydroxyl Radicals</title>
<p>Hydroxyl radicals (
<sup></sup>
OH) are an extremely reactive oxidizing species and are the most dangerous ROS, with a strong tendency to react with other molecules due to the presence of an unpaired electron [
<xref rid="B46-cancers-11-01030" ref-type="bibr">46</xref>
]. In general,
<sup></sup>
OH forms as a result of the dismutation of
<sup></sup>
O
<sub>2</sub>
<sup></sup>
in the presence of an excess of superoxide anions with metal ions as a catalyst (Haber–Weiss reaction). Owing to its strong instability,
<sup></sup>
OH is capable of interacting with all types of biological molecules [
<xref rid="B47-cancers-11-01030" ref-type="bibr">47</xref>
]. Several forms of severe damage to cellular components, such as lipid peroxidation, damage to proteins, and membrane destruction can be caused by
<sup></sup>
OH. Nevertheless, cells have no enzymatic mechanism to eradicate
<sup></sup>
OH; thus, an excessive concentration of
<sup></sup>
OH can result in cell death. </p>
</sec>
<sec id="sec2dot4-cancers-11-01030">
<title>2.4. Hydrogen Peroxide</title>
<p>Hydrogen peroxide (H
<sub>2</sub>
O
<sub>2</sub>
) is a type of ROS with a relatively long lifetime. H
<sub>2</sub>
O
<sub>2</sub>
molecules can take part in reactions with other molecules at sites distant from where they are produced as they are permeable to biomembranes, which is most likely via the aquaporins of cell membranes. Although not a radical, H
<sub>2</sub>
O
<sub>2</sub>
is capable of reacting with transition-metal ions to form
<sup></sup>
OH [
<xref rid="B41-cancers-11-01030" ref-type="bibr">41</xref>
]. H
<sub>2</sub>
O
<sub>2</sub>
has high potential to cross membranes, and thus can be used as a second messenger for signaling cascades using ROS [
<xref rid="B48-cancers-11-01030" ref-type="bibr">48</xref>
,
<xref rid="B49-cancers-11-01030" ref-type="bibr">49</xref>
].</p>
</sec>
</sec>
<sec id="sec3-cancers-11-01030">
<title>3. Generation of ROS</title>
<p>Reactive oxygen species are generally produced as by-products of different types of aerobic metabolism [
<xref rid="B50-cancers-11-01030" ref-type="bibr">50</xref>
]. It is well known that ground-state triplet molecular oxygen is a bio-radical containing two valence electrons with parallel spins occupying separate orbitals [
<xref rid="B51-cancers-11-01030" ref-type="bibr">51</xref>
]. Generally, triplet oxygen interacts with an agent to provide a pair of electrons with parallel spins, which may enter two different electron orbitals and eventually oxidize a non-radical atom or molecule [
<xref rid="B52-cancers-11-01030" ref-type="bibr">52</xref>
]. Nevertheless, these pairs of electrons in most cases have opposite spins. Therefore, this may create restrictions in reaction cases with triplet molecular oxygen with most organic molecules [
<xref rid="B53-cancers-11-01030" ref-type="bibr">53</xref>
,
<xref rid="B54-cancers-11-01030" ref-type="bibr">54</xref>
]. As a result of an energy transfer or by means of electron transfer reactions, ground-state oxygen may be changed to a much more reactive type of ROS, leading to the production of the singlet oxygen or superoxide, hydrogen peroxide, and hydroxyl radicals [
<xref rid="B55-cancers-11-01030" ref-type="bibr">55</xref>
]. ROS can be produced in a living system by a variety of processes, such as biological metabolism, enzymatic processes, and as by-products of biological reactions. Moreover, various types of chemical reactions can be responsible for the production of ROS. The prominent pathways of ROS production are illustrated in
<xref ref-type="fig" rid="cancers-11-01030-f001">Figure 1</xref>
.</p>
<sec id="sec3dot1-cancers-11-01030">
<title>3.1. Intracellular Production of ROS</title>
<p>A vast number of different biological processes generate ROS, and the sources and production of ROS have been studied by numerous researchers.
<xref ref-type="fig" rid="cancers-11-01030-f002">Figure 2</xref>
demonstrates the primary intercellular and extracellular ROS generation mechanism. ROS can be produced by the induction of various cytochrome P
<sub>450</sub>
isoenzymes during the detoxification of chemical carcinogens. Again, lipid peroxidation and other intracellular processes involved in NFkB, transcription factors kappa B and AP-1—partly by means of protein kinase C activation [
<xref rid="B56-cancers-11-01030" ref-type="bibr">56</xref>
,
<xref rid="B57-cancers-11-01030" ref-type="bibr">57</xref>
] and PPARγ leading to chronic inflammation [
<xref rid="B58-cancers-11-01030" ref-type="bibr">58</xref>
]—can cause the intracellular generation of ROS. During the primary response to oxidative stress, transcription factor NF-E2-related factor 2 (Nrf2) regulates a large number of antioxidants and cellular protective genes [
<xref rid="B59-cancers-11-01030" ref-type="bibr">59</xref>
]. Moreover, numerous factors can be related to the production of ROS. Most ROS produced intracellularly originate in the mitochondrial respiratory chain and subsequently create by-products that are toxic in nature. Mitochondria, being the most important character in this play, represents the main intrinsic source of ROS generation using mitochondrial ETS (electron transport system) [
<xref rid="B60-cancers-11-01030" ref-type="bibr">60</xref>
]. ROS generated via the ETS of mitochondria are known to be involved in the pathways of cellular signaling, which are related to survival and cell death [
<xref rid="B61-cancers-11-01030" ref-type="bibr">61</xref>
]. During these processes, the secretion of mitochondrial ROS to the cytosol is strictly modulated by a large group of proteins [
<xref rid="B62-cancers-11-01030" ref-type="bibr">62</xref>
]. This ROS release is implicated in redox homeostasis control and in a large variety of cellular signaling pathways. Oxidative ATP production is one of the main functions of mitochondria [
<xref rid="B63-cancers-11-01030" ref-type="bibr">63</xref>
], during which water is produced by the reduction of oxygen (O
<sub>2</sub>
). Consequently, the mitochondrial respiratory chain is one of the most important and major sources of intracellular ROS generation [
<xref rid="B64-cancers-11-01030" ref-type="bibr">64</xref>
]. At the time of respiration, electrons released from the mitochondrial electron transport chain incompletely reduce O
<sub>2</sub>
to form superoxide [
<xref rid="B65-cancers-11-01030" ref-type="bibr">65</xref>
]. By the action of manganese superoxide dismutase (Mn-SOD), superoxide is transformed into H
<sub>2</sub>
O
<sub>2</sub>
in the mitochondrial matrix or by Cu and Zn-SOD in the intermembrane space (IMS) of mitochondria [
<xref rid="B66-cancers-11-01030" ref-type="bibr">66</xref>
,
<xref rid="B67-cancers-11-01030" ref-type="bibr">67</xref>
,
<xref rid="B68-cancers-11-01030" ref-type="bibr">68</xref>
]. The 1–2% of O
<sub>2</sub>
consumed during respiration is estimated to be completely reduced to O
<sub>2</sub>
in order to generate superoxide in isolated mitochondria treated with respiratory chain inhibitors [
<xref rid="B65-cancers-11-01030" ref-type="bibr">65</xref>
]. However, 0.12–0.15% of O
<sub>2</sub>
can generate H
<sub>2</sub>
O
<sub>2</sub>
when palmitoyl-coenzyme A or glutamate/malate serve as the substrate [
<xref rid="B69-cancers-11-01030" ref-type="bibr">69</xref>
]. Recently, it was reported that mitochondrial superoxide is generally formed at seven major sites of mitochondria, and that all sites eventually release it into the matrix [
<xref rid="B70-cancers-11-01030" ref-type="bibr">70</xref>
]. The two major sites of the generation of superoxide are complexes I and III, which are parts of the mitochondrial respiratory chain. It was also reported that the increased accumulation of calcium (Ca
<sup>2+</sup>
) in the cytoplasm is responsible for activating the mitochondrial electron transport chain and for the production of ROS. Another major endogenous source of ROS is the mammalian cytochrome P450 (CYP)-dependent microsomal electron transport system [
<xref rid="B71-cancers-11-01030" ref-type="bibr">71</xref>
].</p>
<p>The endoplasmic reticulum (ER) plays a key role in ROS production that is related to ER stress. Previous works suggest that any change in redox homeostasis in the ER can be responsible for ER stress, which as a result can enhance the production of ROS in mitochondria and in the ER [
<xref rid="B72-cancers-11-01030" ref-type="bibr">72</xref>
]. In the ER lumen, secretory proteins and the correct folding of most membranes demand the formation of disulfide bonds between cysteine residues, which is a reversible process, in order to stabilize tertiary as well as quaternary structures [
<xref rid="B73-cancers-11-01030" ref-type="bibr">73</xref>
]. Several ER oxidoreductases, protein disulfide isomerases (PDI), ERp72, and ERp57 are involved in oxidative protein folding in eukaryotic cells. Additionally, this protein folding process is thermodynamically as well as kinetically controlled by the redox state of the microenvironment, and maintained by redox buffers of the lumen of ER, including thiol–disulfide pairs and reduced or oxidized pyridine nucleotides [
<xref rid="B74-cancers-11-01030" ref-type="bibr">74</xref>
]. Glutathione (GSH) is one of the most significant and abundant thiols in eukaryotic cells, and it can be converted into glutathione disulfide by oxidation (GSSG) [
<xref rid="B10-cancers-11-01030" ref-type="bibr">10</xref>
]. This explains why redox homeostasis in the cell is maintained by the balance between GSH and GSSG [
<xref rid="B75-cancers-11-01030" ref-type="bibr">75</xref>
]. In the cytosol, a ratio of GSH/GSSG ranging from 30:1 to 100:1 creates a reducing environment, while in the lumen of the ER, the GSH/GSSG ratio is as high as 1:1–3:1, representing an oxidized environment [
<xref rid="B76-cancers-11-01030" ref-type="bibr">76</xref>
]. This oxidized environment in the ER lumen is essential for oxidative protein folding. Additional sources include cardiac and vascular cells [
<xref rid="B77-cancers-11-01030" ref-type="bibr">77</xref>
]; brain cells [
<xref rid="B78-cancers-11-01030" ref-type="bibr">78</xref>
]; phagocytic cells such as leukocytes, macrophages, monocytes, neutrophils, and eosinophils; and various oxidases such as nicotinamide adenine dinucleotide phosphate hydrogen (NADPH) oxidases, aldehyde oxidase, glucose oxidase, and xanthine oxidase. Neutrophils, eosinophils, and macrophages are supplementary endogenous sources and are very significant contributors to the production of ROS. Activated macrophages can cause a “respiratory burst”, showing a rapid but transient enhancement in oxygen uptake that is responsible for higher production levels of superoxide anions, hydrogen peroxide radicals, and a variety of other ROS [
<xref rid="B79-cancers-11-01030" ref-type="bibr">79</xref>
].</p>
<p>Peroxisomes are another important cellular source of production of ROS. Oxygen is consumed by these cellular organelles, which in turn generate hydrogen peroxide and superoxide. ROS generation also includes a battery of peroxisomal oxidases together with acyl-CoA oxidase and xanthine oxidase, creating hydrogen peroxide and superoxide. The amount of oxidases and H
<sub>2</sub>
O
<sub>2</sub>
produced differ among cells and tissues [
<xref rid="B80-cancers-11-01030" ref-type="bibr">80</xref>
].</p>
</sec>
<sec id="sec3dot2-cancers-11-01030">
<title>3.2. Roles of Different Enzyme and Protein Expression Levels during the Intracellular Production of ROS</title>
<p>Cytochrome oxidase is a large membrane-associated multiprotein assembly containing transition metal ions (iron and copper) at its active sites and allowing the transfer of single electrons to facilitate redox reactions [
<xref rid="B82-cancers-11-01030" ref-type="bibr">82</xref>
]. The terminal cytochrome oxidase complex catalyzes several single-electron reduction steps, by which four electrons are added sequentially to each O
<sub>2</sub>
molecule at normal oxygen levels. Cytochrome oxidase keeps the partially reduced oxygen intermediates formed during the reduction process safely bound until they can be fully reduced to water, without releasing superoxide radicals or other reactive oxygen radicals from the mitochondrial membrane [
<xref rid="B83-cancers-11-01030" ref-type="bibr">83</xref>
].</p>
<p>Cytochrome P450 enzymes function as part of the NADPH/O
<sub>2</sub>
-dependent microsomal electron transport system, and are one of the major cellular sources of ROS [
<xref rid="B71-cancers-11-01030" ref-type="bibr">71</xref>
,
<xref rid="B83-cancers-11-01030" ref-type="bibr">83</xref>
,
<xref rid="B84-cancers-11-01030" ref-type="bibr">84</xref>
,
<xref rid="B85-cancers-11-01030" ref-type="bibr">85</xref>
,
<xref rid="B86-cancers-11-01030" ref-type="bibr">86</xref>
]. The ability of CYP enzymes to incorporate an oxygen atom from O
<sub>2</sub>
into numerous organic substrates (monooxygenase activity), to utilize H
<sub>2</sub>
O
<sub>2</sub>
and cumene hydroperoxides well as other hydroperoxides as oxygen atom donors to oxygenate substrates (peroxygenase activity), and to use H
<sub>2</sub>
O
<sub>2</sub>
and other peroxides during the one-electron oxidation of substrates (peroxidase activity) demonstrates the catalytic versatility of CYP enzymes [
<xref rid="B85-cancers-11-01030" ref-type="bibr">85</xref>
]. During catalysis by microsomal CYP enzymes, two electrons are acquired from NADPH and migrate from the flavin adenine dinucleotide domain of the flavoproteins reductase to the CYP heme group. A water molecule normally occupies the sixth coordination site of heme iron, but is replaced by molecular oxygen when the catalytic reaction begins [
<xref rid="B85-cancers-11-01030" ref-type="bibr">85</xref>
]. The CYP monooxygenase cycle commences with the iron of the heme group in the oxidized ferric state (FeIII) (A) and continues until ROS such as O
<sub>2</sub>
, H
<sub>2</sub>
O
<sub>2</sub>
, and
<sup></sup>
OH are eventually liberated as opposed to a monooxygenerated substrate in a process known as uncoupling [
<xref rid="B85-cancers-11-01030" ref-type="bibr">85</xref>
,
<xref rid="B87-cancers-11-01030" ref-type="bibr">87</xref>
].</p>
</sec>
<sec id="sec3dot3-cancers-11-01030">
<title>3.3. Generation of ROS by Chemicals</title>
<p>The generation of oxidative stress and damage has been found to occur following exposure to xenobiotics with various chemical structures and modes of action. Chlorinated compounds [
<xref rid="B88-cancers-11-01030" ref-type="bibr">88</xref>
], barbiturates [
<xref rid="B89-cancers-11-01030" ref-type="bibr">89</xref>
], phorbol esters [
<xref rid="B90-cancers-11-01030" ref-type="bibr">90</xref>
], and certain peroxisome proliferating compounds [
<xref rid="B80-cancers-11-01030" ref-type="bibr">80</xref>
] are among the classes of compounds involved in induced oxidative stress and damage via both in vitro and in vivo methods [
<xref rid="B91-cancers-11-01030" ref-type="bibr">91</xref>
]. 2-Butoxyethanol is a chemical that can generate ROS by an indirect mechanism [
<xref rid="B92-cancers-11-01030" ref-type="bibr">92</xref>
]. The production of ROS can be induced by the chemical 8-hydroxyguanosine in the liver, which is produced by the activation of Kupffer cells secondary to 2-butoxyethanol-induced hemolysis as well as subsequent hepatic iron deposition [
<xref rid="B93-cancers-11-01030" ref-type="bibr">93</xref>
]. A number of other compounds, such as dieldrin [
<xref rid="B94-cancers-11-01030" ref-type="bibr">94</xref>
], 2,3,7,8-Tetrachlorodibenzo-
<italic>p</italic>
-dioxin [
<xref rid="B95-cancers-11-01030" ref-type="bibr">95</xref>
], lindane [
<xref rid="B96-cancers-11-01030" ref-type="bibr">96</xref>
], and phenobarbital [
<xref rid="B97-cancers-11-01030" ref-type="bibr">97</xref>
] have been proved to function as a source of reactive species in the human body [
<xref rid="B98-cancers-11-01030" ref-type="bibr">98</xref>
].</p>
<p>The superoxide-driven Fenton reaction plays a major role in converting poorly reactive radicals into highly reactive ones [
<xref rid="B99-cancers-11-01030" ref-type="bibr">99</xref>
,
<xref rid="B100-cancers-11-01030" ref-type="bibr">100</xref>
]. The Fenton reaction is defined as the reaction of ferrous iron (Fe
<sup>2+</sup>
) and hydrogen peroxide (H
<sub>2</sub>
O
<sub>2</sub>
). In this reaction, ferric iron (Fe
<sup>3+</sup>
) and
<sup></sup>
OH are produced. Then, A
<sup></sup>
OH reacts with H
<sub>2</sub>
O
<sub>2</sub>
, and superoxide (O
<sub>2</sub>
<sup></sup>
) is produced [
<xref rid="B101-cancers-11-01030" ref-type="bibr">101</xref>
]. Then, the superoxide reacts again with H
<sub>2</sub>
O
<sub>2</sub>
, forming an
<sup></sup>
OH and a hydroxyl anion (
<sup></sup>
OH); this part of the reaction is known as the ‘Haber–Weiss Reaction’ [
<xref rid="B102-cancers-11-01030" ref-type="bibr">102</xref>
]. Superoxide (O
<sub>2</sub>
<sup></sup>
) is reduced to Fe
<sup>3+</sup>
rather than H
<sub>2</sub>
O
<sub>2</sub>
. Several metals such as Fe, Cu, Zn, and Al have oxygen-transferring properties, giving them the catalytic power to generate highly reactive
<sup></sup>
OH by the Fenton reaction [
<xref rid="B101-cancers-11-01030" ref-type="bibr">101</xref>
].
<sup></sup>
OH is mainly involved in three types of reactions: hydrogen abstraction, the addition reaction, and the oxidation reaction [
<xref rid="B103-cancers-11-01030" ref-type="bibr">103</xref>
].</p>
<p>Fe
<sup>2+</sup>
+ H
<sub>2</sub>
O
<sub>2</sub>
= Fe
<sup>3+</sup>
+
<sup></sup>
OH +
<sup></sup>
OH [Fenton reaction] </p>
<p>
<sup></sup>
OH + H
<sub>2</sub>
O
<sub>2</sub>
=
<sup></sup>
O
<sub>2</sub>
<sup></sup>
+ H
<sup>+</sup>
+ H
<sub>2</sub>
O</p>
<p>O
<sub>2</sub>
<sup></sup>
+ H
<sub>2</sub>
O
<sub>2</sub>
=
<sup></sup>
OH +
<sup></sup>
OH + O
<sub>2</sub>
[Haber–Weiss reaction]</p>
</sec>
<sec id="sec3dot4-cancers-11-01030">
<title>3.4. Generation of ROS by Radiation</title>
<p>A very well-known and widely evaluated source of ROS is radiation energy [
<xref rid="B104-cancers-11-01030" ref-type="bibr">104</xref>
]. The radiation of various types and ranges causes the generation of different type of oxygen species. UV-B light in the range of 1–100 mJ/cm
<sup>2</sup>
causes a distinct rise in the generation of ROS in human and mouse keratinocytes cells [
<xref rid="B105-cancers-11-01030" ref-type="bibr">105</xref>
]. The production of ROS depends on the dose of the UV-B light. Depleting the keratinocytes of glutathione using an inhibitor of glutathione synthesis increases the level of intracellular ROS [
<xref rid="B106-cancers-11-01030" ref-type="bibr">106</xref>
]. Moreover, glutathione-depleted cells were considerably more responsive to the oxidant-generating nature of UV-B light [
<xref rid="B106-cancers-11-01030" ref-type="bibr">106</xref>
].</p>
<p>The ionizing radiation (IR) is electromagnetic radiation, which has the ability to remove electrons from atoms. The most commonly used types of radiation for the treatment of cancer are X-rays, gamma rays, and charged particles [
<xref rid="B107-cancers-11-01030" ref-type="bibr">107</xref>
]. IR is initially responsible for the ionization and excitation of water, eventually causing the formation radiolysis products from water, such as hydrated electrons, ionized water, hydroperoxyl radicals (HO
<sub>2</sub>
<sup></sup>
),
<sup></sup>
OH, hydrogen radicals (H
<sup></sup>
), and H
<sub>2</sub>
O
<sub>2</sub>
in a very short span of time (10
<sup>−8</sup>
s) when irradiated in a biological system [
<xref rid="B104-cancers-11-01030" ref-type="bibr">104</xref>
]. This eventually creates a side effect of low linear energy transfer (LET) IRs such as γ-rays and X-rays [
<xref rid="B108-cancers-11-01030" ref-type="bibr">108</xref>
]. It is also evident that when irradiated onto cells, IR not only causes the generation of ROS from water radiolysis; it also has been found that IR is responsible for enhancing the intracellular level of ROS, including O
<sub>2</sub>
<sup></sup>
several hours after exposure [
<xref rid="B15-cancers-11-01030" ref-type="bibr">15</xref>
,
<xref rid="B109-cancers-11-01030" ref-type="bibr">109</xref>
,
<xref rid="B110-cancers-11-01030" ref-type="bibr">110</xref>
]. It was found and established by Yamamori et al. that the IR-induced G2/M arrest led to a sustained increase in cells with enhanced mitochondrial quantities and higher levels of cellular oxidative stress, thereby causing an increase in the oxidative stress in all the cells after their exposure to radiation [
<xref rid="B111-cancers-11-01030" ref-type="bibr">111</xref>
]. </p>
<p>A laser is a source of light or radiation energy. The low-level laser (LLL) is a specific type of laser that has the ability to affect biologic systems without causing an increase in the temperature [
<xref rid="B112-cancers-11-01030" ref-type="bibr">112</xref>
]. According to Karu, exposure to laser irradiation results in an increase in mitochondrial electrochemical activity and a concomitant enhancement in ATP synthesis [
<xref rid="B113-cancers-11-01030" ref-type="bibr">113</xref>
]. It has also been reported that cytochrome c oxidase is the main photoreceptor of laser light [
<xref rid="B114-cancers-11-01030" ref-type="bibr">114</xref>
,
<xref rid="B115-cancers-11-01030" ref-type="bibr">115</xref>
]. Additionally, the low-level laser has a cascade effect on cell signaling, which plays a role in cellular proliferation and cytoprotection [
<xref rid="B116-cancers-11-01030" ref-type="bibr">116</xref>
]. In some studies, it was also reported that laser therapy influences oxidative stress parameters, for instance changing the level of antioxidant enzyme activity and generating ROS [
<xref rid="B117-cancers-11-01030" ref-type="bibr">117</xref>
,
<xref rid="B118-cancers-11-01030" ref-type="bibr">118</xref>
,
<xref rid="B119-cancers-11-01030" ref-type="bibr">119</xref>
]. The absorption of laser light boosts the transfer of electrons in the respiratory chain, causing a sudden increase in the initial level of ROS production, specifically enhancing the generation of superoxide anions. However, the role of laser irradiation on the cellular mechanism and its effect on oxidative parameters are still not clearly known [
<xref rid="B120-cancers-11-01030" ref-type="bibr">120</xref>
].</p>
</sec>
<sec id="sec3dot5-cancers-11-01030">
<title>3.5. ROS Production by Plasma</title>
<p>Atmospheric pressure plasmas are very well known for creating very high concentrations of various types of reactive species. It was reported that DBD plasma and jet plasma can generate large amounts of ROS [
<xref rid="B22-cancers-11-01030" ref-type="bibr">22</xref>
,
<xref rid="B121-cancers-11-01030" ref-type="bibr">121</xref>
,
<xref rid="B122-cancers-11-01030" ref-type="bibr">122</xref>
]. Indirect plasmas are generated between two electrodes of certain devices and are transported to the application area via a gas flow. ROS are usually generated at the boundary of the jet with the adjacent air by a number of different mechanisms [
<xref rid="B121-cancers-11-01030" ref-type="bibr">121</xref>
]. According to several authors, ROS produced by plasma can cause morphological changes, the depolarization of membranes, lipid peroxidation, and damage to DNA in cells [
<xref rid="B123-cancers-11-01030" ref-type="bibr">123</xref>
,
<xref rid="B124-cancers-11-01030" ref-type="bibr">124</xref>
]. The anti-neoplastic activity of CAP is primarily based on the delivery of reactive oxygen and nitrogen species (RONS) [
<xref rid="B24-cancers-11-01030" ref-type="bibr">24</xref>
]. For plasma medicine, the determination of the amount of reactive species produced in plasma-treated liquids is of enormous value. Currently, numerous lines of research are focused on applying plasma as a cancer treatment using the ROS production property [
<xref rid="B125-cancers-11-01030" ref-type="bibr">125</xref>
,
<xref rid="B126-cancers-11-01030" ref-type="bibr">126</xref>
,
<xref rid="B127-cancers-11-01030" ref-type="bibr">127</xref>
,
<xref rid="B128-cancers-11-01030" ref-type="bibr">128</xref>
]. Treatment with plasma causes the depolarization of the mitochondrial membrane potential and results in the formation of ROS in human cells [
<xref rid="B129-cancers-11-01030" ref-type="bibr">129</xref>
]. It has been reported that the therapeutic effects of air plasma result from the production of RONS such as H
<sub>2</sub>
O
<sub>2</sub>
, O
<sub>x</sub>
, OH
<sup></sup>
,
<sup></sup>
O
<sub>2</sub>
<sup></sup>
, and NO
<sub>x</sub>
due to the depolarization of the mitochondrial membrane potential and mitochondrial ROS accumulation [
<xref rid="B126-cancers-11-01030" ref-type="bibr">126</xref>
].</p>
</sec>
<sec id="sec3dot6-cancers-11-01030">
<title>3.6. ROS Production by Anticancer Drugs during Cancer Therapy</title>
<p>A number of studies demonstrate that anticancer drugs can cause oxidative stress in cancer patients treated with chemotherapy [
<xref rid="B130-cancers-11-01030" ref-type="bibr">130</xref>
]. However, there is a very significant association between enhanced oxidative stress and the effects of natural anticancer agents such as sesquiterpene lactone parthenolide [
<xref rid="B131-cancers-11-01030" ref-type="bibr">131</xref>
]. A noble phenolic compound derived from hispidin has been reported to act against colon cancer by generating ROS and causing apoptosis by both intrinsic and extrinsic pathways [
<xref rid="B132-cancers-11-01030" ref-type="bibr">132</xref>
]. In cancer cells, ROS signaling is a key factor playing important roles in a number of stages, such as survival, transcription, protein translation, and tumor formation and development. The ROS hydrogen peroxide results in the apoptosis of cancer cells [
<xref rid="B133-cancers-11-01030" ref-type="bibr">133</xref>
], and a number of anticancer drugs can produce this agent to show an anticancer effect [
<xref rid="B134-cancers-11-01030" ref-type="bibr">134</xref>
,
<xref rid="B135-cancers-11-01030" ref-type="bibr">135</xref>
]. Data from a recent study by Yokoyama et al. suggest that nimustine, actinomycin D, doxorubicin, mitomycin C, mitoxantrone, carmofur, gemcitabine, mercaptopurine, camptothecin, paclitaxel, vinblastine, and vinorelbine can cause significant oxidative stress [
<xref rid="B136-cancers-11-01030" ref-type="bibr">136</xref>
]. Vinorelbine, an anticancer agent, depletes intracellular GSH and increases intracellular ROS production [
<xref rid="B137-cancers-11-01030" ref-type="bibr">137</xref>
]. Enhanced levels of oxidants in the blood circulation have been found in patients with cancer after an administration of epirubicin [
<xref rid="B138-cancers-11-01030" ref-type="bibr">138</xref>
]. Several anticancer drugs initiate DNA damage and result in subsequent apoptosis induction. Epirubicin [
<xref rid="B139-cancers-11-01030" ref-type="bibr">139</xref>
] and doxorubicin [
<xref rid="B140-cancers-11-01030" ref-type="bibr">140</xref>
] can generate ROS, causing damage to the DNA and eventually resulting in antitumor activity [
<xref rid="B141-cancers-11-01030" ref-type="bibr">141</xref>
]. TAS-103 also shows anticancer action by oxidative DNA damage [
<xref rid="B142-cancers-11-01030" ref-type="bibr">142</xref>
]. Eriocalyxin B [
<xref rid="B143-cancers-11-01030" ref-type="bibr">143</xref>
], artemisinin [
<xref rid="B144-cancers-11-01030" ref-type="bibr">144</xref>
], genipin [
<xref rid="B145-cancers-11-01030" ref-type="bibr">145</xref>
], gemcitabine [
<xref rid="B146-cancers-11-01030" ref-type="bibr">146</xref>
], spiclomazine [
<xref rid="B147-cancers-11-01030" ref-type="bibr">147</xref>
], belinostat [
<xref rid="B148-cancers-11-01030" ref-type="bibr">148</xref>
], artesunate [
<xref rid="B149-cancers-11-01030" ref-type="bibr">149</xref>
], isoalantolactone [
<xref rid="B150-cancers-11-01030" ref-type="bibr">150</xref>
], and dihydro artemisinin [
<xref rid="B151-cancers-11-01030" ref-type="bibr">151</xref>
] have been found to cause an enhancement of ROS by various mechanisms, eventually inhibiting cancer proliferation via ROS-mediated mechanisms. The most well-known anticancer drugs for producing ROS and their mechanisms are summarized in
<xref rid="cancers-11-01030-t001" ref-type="table">Table 1</xref>
.</p>
</sec>
</sec>
<sec id="sec4-cancers-11-01030">
<title>4. ROS Roles in Cellular Mechanisms for the Inhibition of Cancers</title>
<p>Currently, cancer is one of the most lethal diseases worldwide, and it is now a great challenge to establish highly potent treatments for cancer by discovering new targets. The conventional approaches for treating cancer are not very effective in many cases due to multidrug resistance and the side effects of chemotherapy. As a result, many studies have been designed to find potential targets for cancer therapies. Numerous factors are highly significant and closely related to cancer initiation and development strategies.</p>
<p>Reactive oxygen species can also be a very important factor in cancer cases given the function of ROS as secondary messengers and considering the very close relationship with a number of cellular mechanisms, including those related to the survival of cells. Free radicals, mainly ROS, have been reported as very common mediators of apoptosis. Again, it has already been reported that certain chemotherapeutic agents and radiation therapies cause oxidative stress by enhancing ROS in patients when used as a cancer therapy. When the amounts of ROS rise to the toxic threshold level, the antioxidant system of the cell is eventually altered, possibly leading to cell death. In this scenario, the death of cancer cells can be increased by using exogenous ROS-generating agents, because they cause enhanced ROS stress. Oxidative stress can induce many biological responses, which may include a transient arrest of growth and adaptation, the initiation of signal transduction pathways, gene transcription, and damaged DNA repair [
<xref rid="B166-cancers-11-01030" ref-type="bibr">166</xref>
,
<xref rid="B167-cancers-11-01030" ref-type="bibr">167</xref>
]. These events determine whether a cell will undergo necrosis, senescence, apoptosis, or will survive and proliferate [
<xref rid="B167-cancers-11-01030" ref-type="bibr">167</xref>
]. The extent of these responses can depend on the cellular genetic background, the different classes of specific ROS involved, and significantly on the intensity and duration of the oxidative stress created [
<xref rid="B168-cancers-11-01030" ref-type="bibr">168</xref>
,
<xref rid="B169-cancers-11-01030" ref-type="bibr">169</xref>
].</p>
<p>Increased ROS in cells using a therapeutic approach can have anticancer effects by a number of different mechanisms. The four most important mechanisms—adaptation, apoptosis, autophagy, and enhanced drug sensitivity—are represented in
<xref ref-type="fig" rid="cancers-11-01030-f003">Figure 3</xref>
. This chapter focuses on the principle and impact of these above-mentioned mechanisms.</p>
<sec id="sec4dot1-cancers-11-01030">
<title>4.1. Adaptation</title>
<p>Reactive oxygen species homeostasis is necessary for cell survival, because high levels of ROS have toxic effects on cells, which initiates a signal transduction mechanism involving cell proliferation inhibition or cell death [
<xref rid="B170-cancers-11-01030" ref-type="bibr">170</xref>
]. It is important to note that the amounts of ROS in cancer cells are higher than those in normal cells [
<xref rid="B171-cancers-11-01030" ref-type="bibr">171</xref>
]. When low levels of ROS stress are induced in cells, the cells become able to regulate various types of adaptation mechanisms and make adjustments given the increased level of oxidative stress [
<xref rid="B61-cancers-11-01030" ref-type="bibr">61</xref>
]. In order to equilibrate the increased ROS effect, ROS can cause redox buffering systems [
<xref rid="B172-cancers-11-01030" ref-type="bibr">172</xref>
] and various antioxidant enzymes [
<xref rid="B61-cancers-11-01030" ref-type="bibr">61</xref>
,
<xref rid="B173-cancers-11-01030" ref-type="bibr">173</xref>
] to be generated by cells. The glutathione system (GSSG/2GSH) [
<xref rid="B174-cancers-11-01030" ref-type="bibr">174</xref>
] and the thioredoxin system [
<xref rid="B175-cancers-11-01030" ref-type="bibr">175</xref>
] are the most abundant redox couples involved in maintaining the cellular redox balance to detoxify the effect of certain types of ROS. The mobilization of redox-buffering systems can be considered as the first instance of cellular adaptation to ROS stress [
<xref rid="B176-cancers-11-01030" ref-type="bibr">176</xref>
]. The upregulation of antioxidant enzyme expression levels of, for instance, SOD, catalase, and peroxidase represents a very significant adaptation mechanism, providing more sustainable protection against increased ROS stress. However, such adaptation processes are inadequate for killing cancer cells. Nonetheless, under sustained ROS stress conditions, adaptation mechanisms and the weakening of the ROS-buffering capacity are both highly likely. Anticancer chemotherapeutic agents can produce exogenous ROS, eventually leading to ROS stress such that it activates cell death [
<xref rid="B177-cancers-11-01030" ref-type="bibr">177</xref>
].</p>
<p>Adaptation developed by ROS can play a very important role in cancer treatments by several different types of pathways, but a single and specific mechanism that can be more promising and can act more selectively compared to others has yet to be found. Generally, this process works with other apoptotic mechanisms to kill cancer cells, and the combination can eventually enhance the rate of apoptosis. Future works should focus on finding appropriate amounts or concentrations of ROS to initiate the adaptation process in order to design new therapeutic approaches.</p>
</sec>
<sec id="sec4dot2-cancers-11-01030">
<title>4.2. Apoptosis</title>
<p>Chemotherapy, radiotherapy, and other therapeutics involved in cancer treatments in most cases can produce ROS, and these approaches mostly target mechanisms that kill cells. Several mechanisms to explain apoptosis initiated by ROS have been considered. Indeed, the excessive production of ROS in cells is known to induce apoptosis [
<xref rid="B177-cancers-11-01030" ref-type="bibr">177</xref>
,
<xref rid="B178-cancers-11-01030" ref-type="bibr">178</xref>
,
<xref rid="B179-cancers-11-01030" ref-type="bibr">179</xref>
]. The excessive generation of ROS may cause damage to cellular components, including the DNA, proteins, and lipid membranes [
<xref rid="B180-cancers-11-01030" ref-type="bibr">180</xref>
]. Protein damage can be caused by direct oxidative alteration of the side chains of amino acids and by ROS-mediated peptide cleavage [
<xref rid="B181-cancers-11-01030" ref-type="bibr">181</xref>
]. The oxidation of proteins can demolish the redox equilibrium, which is essential for ensuring the appropriate roles of numerous metal-containing enzymes, including cytochrome c, cytochrome c oxidase, glutathione peroxidase, and catalases. The inhibition of catalases and peroxidases by oxidation sequentially decreases the ability of cells to eliminate H
<sub>2</sub>
O
<sub>2</sub>
and further escalates oxidative stress.</p>
<p>The nitrosylation of protein is another mechanism by which ROS cause cellular injury and apoptosis. Peroxynitrite, the product of a reaction between superoxide and nitric oxide, is a major ROS that causes the nitrosylation of proteins. It also influences the roles of signaling molecules such as NF-kB, AP-1, and p53 [
<xref rid="B182-cancers-11-01030" ref-type="bibr">182</xref>
].</p>
<p>Several apoptosis-related signaling pathways, such as the MAPK (mitogen-activated protein kinase) pathway and the ERK (extracellular signal-regulated kinase) pathway, are reportedly involved in ROS-induced apoptotic cell death [
<xref rid="B183-cancers-11-01030" ref-type="bibr">183</xref>
]. Apoptosis caused by death receptors and mitochondria depends on ROS levels in the cells, resulting in oxidative stress [
<xref rid="B184-cancers-11-01030" ref-type="bibr">184</xref>
]. The Fas ligand (FasL) activates fast ROS generation, which is mostly derived from NADPH oxidase, an earlier event of Fas stimulation and the starting point of apoptosis. p38, another member of the MAPK family, is also involved in apoptotic signaling as a result of the increased generation of ROS. p38 and JNK (c-Jun N-terminal kinase) are both activated by Ask-1 (apoptosis signal-regulating kinase-1), whose action is controlled by its interaction with thioredoxin, another redox-regulated protein [
<xref rid="B185-cancers-11-01030" ref-type="bibr">185</xref>
,
<xref rid="B186-cancers-11-01030" ref-type="bibr">186</xref>
]. In addition, Ask-1-induced signaling cascades and certain other signaling proteins such as FOXO3a, p66Shc, and p53 are involved in apoptosis initiation in response to ROS [
<xref rid="B187-cancers-11-01030" ref-type="bibr">187</xref>
,
<xref rid="B188-cancers-11-01030" ref-type="bibr">188</xref>
].</p>
<p>Reactive oxygen species play important roles in initiating apoptosis processes by affecting various signaling cascades and by directly oxidizing cellular proteins, lipids, or nucleic acids and causing general damage and dysfunction. ROS can also affect various crucial necrotic pathways that can also lead to a certain amount of necrotic cell death [
<xref rid="B189-cancers-11-01030" ref-type="bibr">189</xref>
], which is a faster and less energy-dependent event compared to apoptosis. Again, death receptors, for instance, TNF (tumor necrosis factor) receptor-I, enhance ROS generation via the mitochondria, leading to the activation of caspases and causing cell death [
<xref rid="B190-cancers-11-01030" ref-type="bibr">190</xref>
]. However, TRAF4 (TNF receptor-associated factor 4), which is a factor of the TNFα signaling pathway, binds to the NADPH oxidase complex in order to trigger JNK signaling [
<xref rid="B191-cancers-11-01030" ref-type="bibr">191</xref>
], which suggests that death receptors use several pathways to induce ROS within cells. Notably, TNF-induced oxidative stress also activates anti-apoptotic signaling by increasing the expression levels of MnSOD and catalase by NF-Κb [
<xref rid="B192-cancers-11-01030" ref-type="bibr">192</xref>
].</p>
<p>Lipid membranes are vulnerable to ROS attack. Once lipid peroxidation is initiated, it produces organic radicals, which consecutively initiate the proliferation of peroxidation reactions and cause substantial damage [
<xref rid="B193-cancers-11-01030" ref-type="bibr">193</xref>
]. Lipid peroxidation can reduce the fluidity of biological membranes and enhance the permeability of these membranes [
<xref rid="B194-cancers-11-01030" ref-type="bibr">194</xref>
]. Since much of the
<sup></sup>
O
<sub>2</sub>
<sup></sup>
is generated in the mitochondria, damage to the mitochondrial membrane is likely to be the cause of the release of cytochrome c, stimulating the cascade of apoptosis. Mitochondrial membrane potential reduction, the destruction of the mitochondrial respiratory chain, and ATP depletion are general consequences of enhanced oxidative stress [
<xref rid="B195-cancers-11-01030" ref-type="bibr">195</xref>
,
<xref rid="B196-cancers-11-01030" ref-type="bibr">196</xref>
]. Cytochrome c leakage from the permeability transition (PT) pore complex, apoptosome production, and the triggering of caspases are the most important measures of mitochondrial-induced apoptosis.</p>
<p>A recent study showed that peripheral T cells cultured in the absence of survival factors may gather ROS, upregulate the expression levels of the Bcl-2-interacting mediator of death (BIM) and inducible nitric oxide synthase (iNOS), and undergo apoptosis, which is inhibited by antioxidants [
<xref rid="B197-cancers-11-01030" ref-type="bibr">197</xref>
]. However, the enormous cellular oxidation caused by elevated levels of ROS may bring about the death of narcotic cells rather than apoptosis [
<xref rid="B196-cancers-11-01030" ref-type="bibr">196</xref>
]. It is possible for ROS to prompt either of these death responses, and apoptosis and necrosis may occur together in the same tissue [
<xref rid="B198-cancers-11-01030" ref-type="bibr">198</xref>
]. The power of ROS to impose severe cellular damage together with cell death provide a chance to destroy cancer cells by excessive ROS stress imparted to malignant cells by means of pharmacological agents.</p>
<p>It is also very important that a significant pathway shared in general by chemotherapy and radiotherapy is ROS-induced apoptosis [
<xref rid="B199-cancers-11-01030" ref-type="bibr">199</xref>
]. Most of the recently developed anticancer drugs, such as Levistolide A [
<xref rid="B200-cancers-11-01030" ref-type="bibr">200</xref>
], TAS-103 [
<xref rid="B142-cancers-11-01030" ref-type="bibr">142</xref>
], and doxorubicin [
<xref rid="B142-cancers-11-01030" ref-type="bibr">142</xref>
] have been reported to provoke apoptotic cell death in tumor cells by the generation of ROS [
<xref rid="B201-cancers-11-01030" ref-type="bibr">201</xref>
]. Studies have shown that ROS can cause apoptosis by enhancing the activity of caspases and eventually the overexpression of death receptor 5 (DR5). The protein kinase C (PKC) zeta-reliant phosphorylation of p47-phox confers NADPH oxidase activation. The FasL-activated ROS response is crucial for the interaction between epidermal growth factor receptor (EGFR) and Fas as a sign of its phosphorylation. Moreover, tyrosine leads to the initiation of apoptosis by recruiting the Fas-linked death domain and caspase-8 [
<xref rid="B202-cancers-11-01030" ref-type="bibr">202</xref>
,
<xref rid="B203-cancers-11-01030" ref-type="bibr">203</xref>
]. In addition, FasL-promoted ROS production aids with ubiquitination followed by the inhibition of the function of the caspase-8/FADD-like IL-1beta-converting enzyme (FLICE) inhibitory protein (FLIP) to assist with the activation of Fas [
<xref rid="B204-cancers-11-01030" ref-type="bibr">204</xref>
]. ROS affect the structural integrity of the PT pore by signaling cascades and through the oxidative modification of the PT pore structure. The JNK signaling pathway is initiated by ROS, activating apoptosis signal-regulating kinase 1 (ASK1) by releasing mitogen-activated protein kinase kinase 1 (MEKK1) from its attachment with glutathione S-transferase (GST) [
<xref rid="B205-cancers-11-01030" ref-type="bibr">205</xref>
] or by blocking the action of Protein tyrosine phosphatase (PTP) to allow for the functioning of Srctoinitiate downstream signaling [
<xref rid="B206-cancers-11-01030" ref-type="bibr">206</xref>
].</p>
<p>In summary, increased ROS can encourage apoptosis in cancer cells by a variety of mechanisms, and this aspect can be therapeutically implicated via a ROS-boosting anticancer therapy. Many well-established anticancer agents are already known to show action in this way. Hence, more research should be designed to find which types of cancer are more susceptible to ROS-boosting treatment strategies, as different cancers may show different characteristics and act differently when treated with ROS-generating agents. Again, maintaining the balance of ROS in cells is also a very important factor when developing this type of therapeutic strategy, as ROS can also play a positive role in metastasis. Currently, researchers are considering both ROS-enhancing and ROS-depleting treatment strategies on the basis of the type of cancer. Therefore, future works should focus on discovering the roles of ROS-boosting cell-killing strategies for specific cancers that show better results than other methods and finding strategies that maintain the balance of ROS during the treatment. This is important because ROS can also show toxic effects if there is a major misbalance in the approach, and in the long run can worsen the situation. Thus far, ROS-based cancer treatments have shown remarkable progress, which makes the situation more challenging to those seeking solutions with regard to the main obstacles of this strategy.</p>
</sec>
<sec id="sec4dot3-cancers-11-01030">
<title>4.3. Autophagy</title>
<p>Autophagy can simply be defined as the process of the degradation of proteins and organelles, which may recycle in order to form new cells. It plays a key role in cellular reactions as a response to increased ROS levels. It is a multi-step operation that controls cellular homeostasis by degrading and recycling long-lived proteins and intracellular aggregates together with damaged organelles. This process requires nearly 40 proteins and can demonstrate the formation of a double-membrane structured phagophore that engulfs part of the cytoplasm and organelles in order to create an autophagosome. The initiation of autophagy is synchronized by two kinases, unc-51-like kinase 1 (ULK1) and vacuolar protein sorting-34 (VPS34). The adenosine monophosphate (AMP)-dependent protein kinase is a key factor in controlling ULK1 and mTORC1, which is based on the energy condition of the cell [
<xref rid="B207-cancers-11-01030" ref-type="bibr">207</xref>
].</p>
<p>Recently, it was revealed that ROS can result in autophagy by various distinct methods involving Atg4, catalase, and the mitochondrial electron transport chain (mETC). This may cause both cell survival and cell death, but the action could selective toward cancer cells [
<xref rid="B8-cancers-11-01030" ref-type="bibr">8</xref>
]. Accordingly, it is obvious from a number of research outcomes that in the case of survival-prone autophagy, ROS can function as an efficient signaling molecule [
<xref rid="B208-cancers-11-01030" ref-type="bibr">208</xref>
]. It was reported by Poillet-Perez et al. that certain levels of ROS production regulate the induction of autophagy in cancer cells [
<xref rid="B209-cancers-11-01030" ref-type="bibr">209</xref>
]. By causing the oxidation of enzyme ATG4 to ATG8 protein by H
<sub>2</sub>
O
<sub>2</sub>
, ROS can play a very significant role as a prerequisite for the induction of autophagy. This oxidation converts active ATG4 to an inactive form, resulting in the enhanced production of LC3-associated autophagosomes [
<xref rid="B209-cancers-11-01030" ref-type="bibr">209</xref>
]. Indirectly, the adenosine monophosphate-activated protein kinase (AMPK) pathway is another significant factor related to the maintenance of autophagy by ROS [
<xref rid="B210-cancers-11-01030" ref-type="bibr">210</xref>
]. AMPK activation can increase autophagy by restraining the mammalian target of rapamycin complex 1 (mTORC1). Oxidative stress can alter the AMPK pathway and initiate it by phosphorylating the AMPK kinase (AMPKK) and subsequently can increase the production of H
<sub>2</sub>
O
<sub>2</sub>
, which induces apoptosis indirectly [
<xref rid="B209-cancers-11-01030" ref-type="bibr">209</xref>
]. ROS can also play a key role in autophagy by affecting the activity of various transcription factors such as NFκB, which is responsible for the expression of autophagy-associated genes in tumors [
<xref rid="B211-cancers-11-01030" ref-type="bibr">211</xref>
]. Selenite causes cytotoxicity mediated by autophagy in human glioma tumors, and the excessive generation of the SOD enzyme conspicuously hinders autophagy stemming from selenite. siRNA helps in case of the knockout of autophagy-related gene 6 (ATG6) or ATG7, and reduces selenite-promoted autophagy. The application of ROS-derived autophagy in treating cancers has recently started [
<xref rid="B212-cancers-11-01030" ref-type="bibr">212</xref>
,
<xref rid="B213-cancers-11-01030" ref-type="bibr">213</xref>
]. In light of these results, it can be said that the enhanced generation of ROS and related treatment strategies can induce autophagy in cancer cells. At present, the challenge is to find the most effective and clear mechanisms of action played by ROS in autophagy, and doing so necessitates more work to establish safe and sound therapeutic applications.</p>
</sec>
<sec id="sec4dot4-cancers-11-01030">
<title>4.4. Increased Action and Sensitivity of Anticancer Agents by ROS</title>
<p>From a number of research works, it has been found that anticancer agents produce ROS, which may eventually enhance the oxidative stress to a level that pushes it beyond the maximum tolerance level, ultimately causing death to cells [
<xref rid="B214-cancers-11-01030" ref-type="bibr">214</xref>
]. Apart from being involved in direct damage to cellular molecules, ROS appears to play a unique role in controlling the apoptosis process, which is initiated by a range of anticancer therapeutic agents and other stimuli. A very common mechanism of various ROS-producing anticancer agents is a sudden increase of the ROS level within the cells, or a transient ROS burst [
<xref rid="B179-cancers-11-01030" ref-type="bibr">179</xref>
,
<xref rid="B215-cancers-11-01030" ref-type="bibr">215</xref>
,
<xref rid="B216-cancers-11-01030" ref-type="bibr">216</xref>
]. This increased ROS generation in cancer cells makes the cells highly dependent on antioxidant enzymes to withstand ROS stress. The sustained oxidative stress due to the presence of constant oncogenic signals and active metabolism likely requires the full utilization of the cellular antioxidant capacity. In such cases, cancer cells with increased endogenous ROS stress levels should be more sensitive to anticancer agents that either cause further ROS generation or impair the cellular ability to eliminate ROS. Indeed, it has been observed that human leukemia cells with high ROS contents are more sensitive than normal lymphocytes (low cellular ROS) to 2-methoxyestradiol (2-ME), which is a novel anticancer agent that causes ROS accumulation by inhibiting SOD [
<xref rid="B217-cancers-11-01030" ref-type="bibr">217</xref>
]. In an earlier section, it was discussed how ROS level increases are also associated with the initiation of the redox-sensitive JNK/SAPK (c-Jun N-terminal kinase /stress-activated protein kinases) signaling mechanism, which is generally engaged during the transcriptional activation of genes and during post-translational alterations of proteins required for apoptosis. In 2006, Kim et al. reported that the Bcl-2 Homology 3 (BH3)-only protein Noxa responds directly to hypoxia-inducible factor-1 (HIF-1) and seems to play an important role in hypoxia-induced cell death with the participation of ROS [
<xref rid="B218-cancers-11-01030" ref-type="bibr">218</xref>
]. From the previous discussion, we found that ROS generation during the process of apoptosis is considered to be correlated with the malfunction of the mitochondrial respiratory chain, the disengagement of cytochrome c, and modification of the mitochondrial transmembrane potential and membrane permeability [
<xref rid="B219-cancers-11-01030" ref-type="bibr">219</xref>
,
<xref rid="B220-cancers-11-01030" ref-type="bibr">220</xref>
]. Although mtDNA and the respiratory function are not always essential for the process of apoptosis, their absence or the impairments of their functions can influence the rate of ROS generation and the kinetics of the apoptotic process and therefore modulate drug-induced apoptosis, possibly leading to the enhanced action of anticancer drugs [
<xref rid="B221-cancers-11-01030" ref-type="bibr">221</xref>
].</p>
<p>Based on research conducted thus far, it has also been found that ROS can be involved in collateral sensitivity by means of either P-glycoprotein (P-gp)-based ATPase stimulation or non-P-gp-dependent ROS hypersensitivity [
<xref rid="B222-cancers-11-01030" ref-type="bibr">222</xref>
,
<xref rid="B223-cancers-11-01030" ref-type="bibr">223</xref>
]. P-gp is a plasma membrane protein that is encoded by the multidrug-resistant gene(s). An increasing number of studies show that ROS can regulate the expression of P-gp and can function as a negative regulator to downregulate P-gp expression [
<xref rid="B224-cancers-11-01030" ref-type="bibr">224</xref>
,
<xref rid="B225-cancers-11-01030" ref-type="bibr">225</xref>
]. A P-gp-based ATPase stimulation pathway has been supported by earlier studies and other recent evidence [
<xref rid="B223-cancers-11-01030" ref-type="bibr">223</xref>
,
<xref rid="B226-cancers-11-01030" ref-type="bibr">226</xref>
]. A non-P-gp-dependent pathway is also being gradually demonstrated in other studies. It is certain that ROS species have great potential and can eventually act as an agent to improve the condition of cancer treatments by improving drug sensitivity and solving the problem of drug resistance in a controlled way. As noted earlier, some important anticancer drugs show action by modulating the amount of ROS in cancer cells, and their action depends on the ROS. Moreover, the exact amount and concentration of ROS can enhance their action, which would be a blessing for those undergoing cancer treatments. The most valuable aspect to explore in the future can be the establishment of the amounts of ROS that are needed for enhancing drug sensitivity and playing a positive role in drug resistance. Discovering threshold limits to avoid the detrimental effects that can be caused by ROS during cancer treatment is another noble goal.</p>
<p>By following the ROS-inducing effect, some other important and potential methods can play significant roles in cancer treatment strategy. It has been reported that some monoclonal antibodies and tyrosine kinase inhibitors (TKIs) provide anticancer activity on patients via ROS-mediated mechanisms of action, which can also be related to their efficacy [
<xref rid="B227-cancers-11-01030" ref-type="bibr">227</xref>
]. Again, there is another very promising therapy called sonodynamic therapy (SDT), which can enhance the level of ROS in cancer cells and affect the cancer microenvironment, which in turn can stop the development of cancer [
<xref rid="B228-cancers-11-01030" ref-type="bibr">228</xref>
]. ROS is also a very good modulator of tumor-associated macrophages, which in turn evoke strong antitumor immune action resulting in the suppression of tumors [
<xref rid="B229-cancers-11-01030" ref-type="bibr">229</xref>
]. The other promising ROS-based therapies are listed in
<xref rid="cancers-11-01030-t002" ref-type="table">Table 2</xref>
.</p>
</sec>
</sec>
<sec id="sec5-cancers-11-01030">
<title>5. Role of Plasma in the Inhibition of Cancer and its Mechanism</title>
<p>ROS originating in plasma (directly from plasma or subsequently produced in media) initially come into contact with the cytoplasmic membrane. Shortly after a plasma treatment at a sufficiently high dosage, numerous cancer cells undergo a morphological change from a broadened shape to a contractive shape [
<xref rid="B231-cancers-11-01030" ref-type="bibr">231</xref>
,
<xref rid="B232-cancers-11-01030" ref-type="bibr">232</xref>
].</p>
<p>Plasma contains a collection of ROS, and these ROS can encourage oxidative stress and activate different signaling pathways in cells. The primary mechanism of a non-thermal plasma anticancer treatment is related to ROS production. In a recent paper, Watson reported that ROS can serve as a ‘positive energy for life’ due to their function in apoptosis, i.e., as an inner program that extremely stresses cells to induce death [
<xref rid="B233-cancers-11-01030" ref-type="bibr">233</xref>
]. On the other hand, ROS are also well recognized for their capability to irretrievably harm major proteins and nucleic acid molecules (DNA and RNA). It was also pointed out that the great majority of all the agents that are utilized to destroy cancer cells easily (ionizing radiation, most chemotherapeutic specialists, and some focused therapies) work by either straightforwardly or not directly producing ROS that obstruct key steps in the cellular cycle. It has been identified that a major boost of the intracellular ROS levels can cause DNA damage and apoptosis within the focused cells [
<xref rid="B14-cancers-11-01030" ref-type="bibr">14</xref>
,
<xref rid="B233-cancers-11-01030" ref-type="bibr">233</xref>
]. Preliminary observations also indicated that cancer cells consumed ROS much faster than other normal cells which supported the selective model based on aquaporins [
<xref rid="B234-cancers-11-01030" ref-type="bibr">234</xref>
]. Plasma tends to resist the development of cancer cells, but not the development of homologous normal cells by activating more apoptosis in cancer cells than in ordinary cells [
<xref rid="B235-cancers-11-01030" ref-type="bibr">235</xref>
,
<xref rid="B236-cancers-11-01030" ref-type="bibr">236</xref>
]. Considering these selective anticancer methods is one of the key challenges in this area. Such a specific impact may be mainly due to the broad discovery that a recognizable rise of ROS specifically occurs in cancer cells rather than normal cells during a similar plasma treatment [
<xref rid="B121-cancers-11-01030" ref-type="bibr">121</xref>
,
<xref rid="B237-cancers-11-01030" ref-type="bibr">237</xref>
,
<xref rid="B238-cancers-11-01030" ref-type="bibr">238</xref>
]. After the plasma treatment, the calculated ROS intensity in cancer cells is superior to that in normal cells. Nonetheless, in some instances, plasma kills more cancer cells than similar normal cells [
<xref rid="B36-cancers-11-01030" ref-type="bibr">36</xref>
,
<xref rid="B239-cancers-11-01030" ref-type="bibr">239</xref>
]</p>
<p>It is known that mitochondria are the key organelles that create ROS and the most common target of ROS-prompted damage, as discovered in different pathological states. In mitochondria, different types of ROS (mostly superoxide) are produced in three electron-transport chain complexes (Succinate-Q reductase, nicotinamide adenine dinucleotide phosphate-Q (NADP-Q) oxidoreductase, and Q-cytochrome oxidoreductase). As a counteract procedure, superoxide may be removed by targeting manganese (Mn)-reliant superoxide dismutase (MnSOD) in the matrix of mitochondria [
<xref rid="B21-cancers-11-01030" ref-type="bibr">21</xref>
]. Although it is very challenging to target MnSOD only in cancer cells, some research works found evidence that there is high variability in MnSOD gene expression in cancer cells compared to normal cells; also, targeting MnSOD can be therapeutically beneficial for cancer. It has also been found that the promoter region of human MnSOD consists of peroxisome proliferator response element (PPRE)-binding motifs. Activation of the peroxisome proliferator-activated receptor-γ (PPARγ) in invasive basal-like breast cancer cell can eventually result in a significant lowering of MnSOD mRNA and protein levels, and it can be done by PPARγ ligands. The repression of MnSOD levels in cancer cells can control the intracellular ROS level in cancer cells [
<xref rid="B240-cancers-11-01030" ref-type="bibr">240</xref>
].</p>
<p>Moreover, the phosphorylation of p53 is essential for triggering mitochondrion-based apoptosis pathways [
<xref rid="B241-cancers-11-01030" ref-type="bibr">241</xref>
]. p53 activates the expression of pro-apoptotic components, including Bax, Puma, and Noxa [
<xref rid="B242-cancers-11-01030" ref-type="bibr">242</xref>
]. These pro-apoptotic elements cause the discharge of cytochrome c and additional intermembrane mitochondrial proteins within the cytosol [
<xref rid="B243-cancers-11-01030" ref-type="bibr">243</xref>
], where cytochrome c is linked to apoptotic protease actuating element1, later forming the apoptosome [
<xref rid="B244-cancers-11-01030" ref-type="bibr">244</xref>
]. The apoptosome similarly actuates caspase-9 by means of cleavage [
<xref rid="B245-cancers-11-01030" ref-type="bibr">245</xref>
,
<xref rid="B246-cancers-11-01030" ref-type="bibr">246</xref>
]. The actuated caspase-9 advance enacts caspase-3/7 and eventually instigates the arrangement of apoptotic activities [
<xref rid="B245-cancers-11-01030" ref-type="bibr">245</xref>
]. Among them, the cleavage of poly (ADP-ribose) polymerase (PARP) is a vital early molecular marker of apoptosis [
<xref rid="B245-cancers-11-01030" ref-type="bibr">245</xref>
]. Apoptosis is the principal form of cancer cell death subsequent to a plasma treatment [
<xref rid="B246-cancers-11-01030" ref-type="bibr">246</xref>
]. In plasma-treated cancer cells, the discharge of cytochrome c into the cytosol [
<xref rid="B232-cancers-11-01030" ref-type="bibr">232</xref>
] and the appearance of caspase-3/7/9, Noxa [
<xref rid="B247-cancers-11-01030" ref-type="bibr">247</xref>
], Bax, the PARP cleavage, mitochondrial transmembrane potential failure, as well as DNA destruction have been generally observed. In short, plasma-treated cancer cells not only follow distinctive DNA damage pathways [
<xref rid="B248-cancers-11-01030" ref-type="bibr">248</xref>
], but they also maintain well-understood apoptosis pathways [
<xref rid="B249-cancers-11-01030" ref-type="bibr">249</xref>
].
<xref ref-type="fig" rid="cancers-11-01030-f004">Figure 4</xref>
shows the possible molecular mechanisms of the apoptosis of soft jet plasma in cancer.</p>
<p>However, most apoptosis pathways observed in plasma-treated cancer cells are dependent on the mitochondrial mechanism activated through DNA injury and/or mitochondrial damage. DNA damage has generally been observed as a premature stage event during plasma treatment [
<xref rid="B234-cancers-11-01030" ref-type="bibr">234</xref>
]. Double stranded break is the main damage type [
<xref rid="B22-cancers-11-01030" ref-type="bibr">22</xref>
,
<xref rid="B251-cancers-11-01030" ref-type="bibr">251</xref>
]. A vital marker of DSB is the particular phosphorylation of serine 139 on the H
<sub>2</sub>
AX histone (γ-H
<sub>2</sub>
AX), which is normally determined immediately after the plasma treatment [
<xref rid="B251-cancers-11-01030" ref-type="bibr">251</xref>
]. Although apoptosis is the main and the most prominent pathway derived by plasma-based treatment, in some cancer cell lines, plasma treatment is reported to follow autophagy; both processes (autophagy and apoptosis) may have occurred simultaneously [
<xref rid="B252-cancers-11-01030" ref-type="bibr">252</xref>
,
<xref rid="B253-cancers-11-01030" ref-type="bibr">253</xref>
,
<xref rid="B254-cancers-11-01030" ref-type="bibr">254</xref>
]. The enhanced oxidative stress has the ability to initiate autophagy. The redox signaling caused by the presence of ROS in cells can play a pivotal role in switching on autophagy. Again, we already discussed that DNA damage can be caused by plasma application, which can in turn cause DNA damage-induced autophagy, which can contribute as both a cell death and tumor-suppressor method [
<xref rid="B255-cancers-11-01030" ref-type="bibr">255</xref>
]. In some cancer cell lines, it has been evident that plasma can cause the necrosis of cancer cells by high levels of DNA damage [
<xref rid="B256-cancers-11-01030" ref-type="bibr">256</xref>
], but this is not as significant as the apoptosis mechanism.</p>
<p>In an endeavor to reveal in more detail the cascade of molecular activities that accompany a plasma treatment, human breast cancer cells were examined, and dose-based apoptosis appeared as a result of the plasma treatment [
<xref rid="B24-cancers-11-01030" ref-type="bibr">24</xref>
]. Plasma effects including ROS production and the actuation of H
<sub>2</sub>
AX may also arise via an isolated treatment of culture media without cells and with a consequent switch to a condition with cells. The amount of DNA damage identified by the phosphorylated histone variant H
<sub>2</sub>
AX, which is recruited to DNA damage foci, was neither notably affected by the elimination of charged particles nor mediated by the UV content. Utilizing dilution experiments, researchers hypothesized that the cellular effects are interceded by way of the peroxidation of amino acids within the cell culture medium. Later, the authors verified that DNA damage is initiated by means of intracellular reactive species. The phosphorylation of H
<sub>2</sub>
AX appears to be especially interceded by the ataxia–telangiectasia associated protein (ATR) and not by the ataxia–telangiectasia mutated (ATM) form, which is mostly involved in the reaction between IR and H
<sub>2</sub>
O
<sub>2</sub>
. Moreover, ROS hinders the effects of plasma on in human liver cancer cells, where a noteworthy boost of lipid peroxidation was recognized. In addition, it has been discovered that intracellular ROS may also result in mitochondrial disorder [
<xref rid="B35-cancers-11-01030" ref-type="bibr">35</xref>
].</p>
<p>Concentrating on cancer cells via ROS-mediated mechanisms has become an appealing method for the successful treatment of cancer while exploiting the abnormal redox characteristics of cancer cells [
<xref rid="B14-cancers-11-01030" ref-type="bibr">14</xref>
]. While the levels of ROS in cancer cells are close to the limit at which cell death occurs and the sources of ROS formation in most cancer cells are dissimilar from those in normal cells [
<xref rid="B257-cancers-11-01030" ref-type="bibr">257</xref>
], ROS have been investigated as anticancer remedial drugs. The opportunity for ROS upregulation through inhibitors of antioxidant enzymes or by means of ROS inducers has arisen, thus promoting oxidative stress and especially facilitating cancer cell death as anticancer healing agents [
<xref rid="B258-cancers-11-01030" ref-type="bibr">258</xref>
]. It is important that plasma effects are clearer in several tumor types as compared to conventional chemotherapy [
<xref rid="B232-cancers-11-01030" ref-type="bibr">232</xref>
]. Therefore, the collection of ROS directly initiated by plasma or through different mechanisms may present a novel basis on which a tumor remedy using plasma can be devised. We summarized some important studies on the effect of plasma toward cancer treatment in
<xref rid="cancers-11-01030-t003" ref-type="table">Table 3</xref>
.</p>
</sec>
<sec id="sec6-cancers-11-01030">
<title>6. Future Perspective</title>
<p>At present, the most lethal and dangerous family of disease is cancer. The common day-to-day treatment of cancer is becoming more challenging due to the emergence of the harmful side effects [
<xref rid="B271-cancers-11-01030" ref-type="bibr">271</xref>
] of cancer treatment strategies and the increasing resistance of therapeutics [
<xref rid="B272-cancers-11-01030" ref-type="bibr">272</xref>
]. Hence, finding new methods for cancer treatment is an emerging topic that has attracted a vast number of scientists. In this review paper, we discussed how reactive species play a key role in cancer pathology and showed how these species have been targeted in cancer treatments. A wide range of anticancer medications can produce ROS, and they can be used to treat cancer by a number of different mechanisms. Most of the anticancer drugs act on cancer cells by producing ROS, and research should be performed to reduce the usual side effects of these cancer drugs. As the complications related to side effects are increasing, a prodrug specific to the cancer cells can be designed that can be initiated by an enhanced level of ROS present in cancer cells, and it can minimize the risk of unwanted side effects [
<xref rid="B273-cancers-11-01030" ref-type="bibr">273</xref>
]. Similarly, the production of ROS can be targeted to develop a combinatorial treatment method of nanoparticles with anticancer drugs, which can provide a nanoparticle-based redox-directed combinational anticancer therapy to treat cancer [
<xref rid="B274-cancers-11-01030" ref-type="bibr">274</xref>
]. Besides the conventional treatment methods, the alternative medicines are gaining popularity because of their lower possibility of causing treatment-related complications. However, some of the dietary active compounds have the ability to produce ROS, induce oxidative stress, and consequently cause cancer cell death. The application of alternative medicines to enhance ROS in cancer cells can be a very promising therapeutic strategy, but in order for this to take place, the foremost need is to enhance the bioavailability of the dietary compounds. Poor bioavailability is the main drawback of using dietary compounds. By improving all the pharmacokinetics parameters of these dietary compounds, it would be possible to develop them into a dosage form that can boost the ROS level effectively to treat cancer [
<xref rid="B275-cancers-11-01030" ref-type="bibr">275</xref>
]. Photodynamic therapy is also a useful approach that can produce ROS. According to recent research works, improvements in nanotechnology and nanomedicine made it possible to develop ROS-generating systems by both photodynamic and non-photodynamic procedures, which create a possibility for photodynamic therapy to be applied as an anti-tumor agent [
<xref rid="B276-cancers-11-01030" ref-type="bibr">276</xref>
].</p>
<p>Plasma is also a great source of ROS, and it can modulate a number of pathways in biological systems. Significant numbers of studies have already been performed to determine the efficacy and possible mechanisms of plasma in treating cancer and discover the roles of plasma in different types of cancer. It is now recognized that plasma can destroy cancer cells with selective killing effects toward cancer cells [
<xref rid="B35-cancers-11-01030" ref-type="bibr">35</xref>
,
<xref rid="B38-cancers-11-01030" ref-type="bibr">38</xref>
]. Accordingly, plasma technology can represent a ray of hope in the present situation of cancer treatments.</p>
<p>In different research works, different types of plasma devices have been used to treat cancer cells derived from different tumor types. Thus, it may be that plasma with different characteristics will react by different pathways in different types of cancer. The different pathways that are involved in this process are not fully understood. Due to the identical reactions of tumor cell types, it appears as if the same mechanisms are engaged in different tumor types. Therefore, in order to understand the anticancer mechanism of plasma, it is necessary to determine the molecular mechanisms of plasma acting on cancer cells.</p>
<p>In the present scenario, future works should be designed to find the most effective carriers to administer plasma as a therapy for patients. Several types of plasma instruments have been used for experiments on cell lines and on animals. It is now necessary to design the most effective types for treating patients, and new research works should focus on this. Again, in some studies, researchers found that plasma-treated media, solutions, and water show beneficial and cancer cell-killing effects. For these cases, we should find a suitable carrier or method by which to maintain the efficacy of the plasma-treated solutions.</p>
<p>As a treatment method or as a therapeutic strategy, we cannot ignore the possibilities of harmful side effects or the risk of toxicity. For this reason, it is now necessary to focus on the toxicological possibilities of plasma treatments on biological systems. Although plasma is known to be a non-toxic and non-harmful method, it can have certain long-term harmful or toxicological effects on humans, and these possibilities must be explored in more depth. If plasma can cause toxic outcomes in animal models after long-term treatment, then effective and safe dosage levels during plasma treatments should be established. This is why future research works should focus on discovering the pharmacokinetic parameters of plasma treatment technologies for their safe administration.</p>
</sec>
</body>
<back>
<notes>
<title>Author Contributions</title>
<p>Conceptualization, S.M., N.N.L., N.K.K.; Resources, N.K.K., G.S.P., E.H.C.; Writing—original draft preparation, S.M., N.N.L., M.A., and N.K.K.; Writing—review and editing, S.M., N.N.L., N.K.K.; Supervision, N.K.K., G.S.P., and E.H.C.</p>
</notes>
<notes>
<title>Funding</title>
<p>This work is supported by a grant from the National Research Foundation of Korea (NRF), which is funded by the Korean Government, Ministry of Science, ICT and Future Planning (MSIP), Grant number NRF-2016K1A4A3914113. This work is supported by Kwangwoon University research fund in 2019.</p>
</notes>
<notes notes-type="COI-statement">
<title>Conflicts of Interest</title>
<p>The authors declare no conflict of interest.</p>
</notes>
<ref-list>
<title>References</title>
<ref id="B1-cancers-11-01030">
<label>1.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Sauer</surname>
<given-names>H.</given-names>
</name>
<name>
<surname>Wartenberg</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Hescheler</surname>
<given-names>J.</given-names>
</name>
</person-group>
<article-title>Reactive oxygen species as intracellular messengers during cell growth and differentiation</article-title>
<source>Cell. Physiol. Biochem.</source>
<year>2001</year>
<volume>11</volume>
<fpage>173</fpage>
<lpage>186</lpage>
<pub-id pub-id-type="doi">10.1159/000047804</pub-id>
<pub-id pub-id-type="pmid">11509825</pub-id>
</element-citation>
</ref>
<ref id="B2-cancers-11-01030">
<label>2.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Halliwell</surname>
<given-names>B.</given-names>
</name>
</person-group>
<article-title>Reactive oxygen species in living systems: Source, biochemistry, and role in human disease</article-title>
<source>Am. J. Med.</source>
<year>1991</year>
<volume>91</volume>
<fpage>S14</fpage>
<lpage>S22</lpage>
<pub-id pub-id-type="doi">10.1016/0002-9343(91)90279-7</pub-id>
</element-citation>
</ref>
<ref id="B3-cancers-11-01030">
<label>3.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Waris</surname>
<given-names>G.</given-names>
</name>
<name>
<surname>Ahsan</surname>
<given-names>H.</given-names>
</name>
</person-group>
<article-title>Reactive oxygen species: Role in the development of cancer and various chronic conditions</article-title>
<source>J. Carcinog.</source>
<year>2006</year>
<volume>5</volume>
<fpage>14</fpage>
<pub-id pub-id-type="doi">10.1186/1477-3163-5-14</pub-id>
<pub-id pub-id-type="pmid">16689993</pub-id>
</element-citation>
</ref>
<ref id="B4-cancers-11-01030">
<label>4.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Tong</surname>
<given-names>L.</given-names>
</name>
<name>
<surname>Chuang</surname>
<given-names>C.-C.</given-names>
</name>
<name>
<surname>Wu</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Zuo</surname>
<given-names>L.</given-names>
</name>
</person-group>
<article-title>Reactive oxygen species in redox cancer therapy</article-title>
<source>Cancer Lett.</source>
<year>2015</year>
<volume>367</volume>
<fpage>18</fpage>
<lpage>25</lpage>
<pub-id pub-id-type="doi">10.1016/j.canlet.2015.07.008</pub-id>
<pub-id pub-id-type="pmid">26187782</pub-id>
</element-citation>
</ref>
<ref id="B5-cancers-11-01030">
<label>5.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Silva</surname>
<given-names>F.</given-names>
</name>
<name>
<surname>Marques</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Chaveiro</surname>
<given-names>A.</given-names>
</name>
</person-group>
<article-title>Reactive oxygen species: A double-edged sword in reproduction</article-title>
<source>Open Vet. Sci. J.</source>
<year>2010</year>
<volume>4</volume>
<fpage>127</fpage>
<lpage>133</lpage>
<pub-id pub-id-type="doi">10.2174/1874318801004010127</pub-id>
</element-citation>
</ref>
<ref id="B6-cancers-11-01030">
<label>6.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Pan</surname>
<given-names>J.-S.</given-names>
</name>
<name>
<surname>Hong</surname>
<given-names>M.-Z.</given-names>
</name>
<name>
<surname>Ren</surname>
<given-names>J.-L.</given-names>
</name>
</person-group>
<article-title>Reactive oxygen species: A double-edged sword in oncogenesis</article-title>
<source>World J. Gastroenterol.</source>
<year>2009</year>
<volume>15</volume>
<fpage>1702</fpage>
<lpage>1707</lpage>
<pub-id pub-id-type="doi">10.3748/wjg.15.1702</pub-id>
<pub-id pub-id-type="pmid">19360913</pub-id>
</element-citation>
</ref>
<ref id="B7-cancers-11-01030">
<label>7.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Schumacker</surname>
<given-names>T.</given-names>
</name>
</person-group>
<article-title>Reactive oxygen species in cancer cells: Live by the sword, die by the sword</article-title>
<source>Cancer Cell</source>
<year>2006</year>
<volume>10</volume>
<fpage>175</fpage>
<lpage>176</lpage>
<pub-id pub-id-type="doi">10.1016/j.ccr.2006.08.015</pub-id>
<pub-id pub-id-type="pmid">16959608</pub-id>
</element-citation>
</ref>
<ref id="B8-cancers-11-01030">
<label>8.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Azad</surname>
<given-names>M.B.</given-names>
</name>
<name>
<surname>Chen</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Gibson</surname>
<given-names>S.B.</given-names>
</name>
</person-group>
<article-title>Regulation of autophagy by reactive oxygen species (ROS): Implications for cancer progression and treatment</article-title>
<source>Antioxid. Redox Signal.</source>
<year>2009</year>
<volume>11</volume>
<fpage>777</fpage>
<lpage>790</lpage>
<pub-id pub-id-type="doi">10.1089/ars.2008.2270</pub-id>
<pub-id pub-id-type="pmid">18828708</pub-id>
</element-citation>
</ref>
<ref id="B9-cancers-11-01030">
<label>9.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Raj</surname>
<given-names>L.</given-names>
</name>
<name>
<surname>Ide</surname>
<given-names>T.</given-names>
</name>
<name>
<surname>Gurkar</surname>
<given-names>A.U.</given-names>
</name>
<name>
<surname>Foley</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Schenone</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Li</surname>
<given-names>X.</given-names>
</name>
<name>
<surname>Tolliday</surname>
<given-names>N.J.</given-names>
</name>
<name>
<surname>Golub</surname>
<given-names>T.R.</given-names>
</name>
<name>
<surname>Carr</surname>
<given-names>S.A.</given-names>
</name>
<name>
<surname>Shamji</surname>
<given-names>A.F.</given-names>
</name>
</person-group>
<article-title>Selective killing of cancer cells by a small molecule targeting the stress response to ROS</article-title>
<source>Nature</source>
<year>2011</year>
<volume>475</volume>
<fpage>231</fpage>
<lpage>234</lpage>
<pub-id pub-id-type="doi">10.1038/nature10167</pub-id>
<pub-id pub-id-type="pmid">21753854</pub-id>
</element-citation>
</ref>
<ref id="B10-cancers-11-01030">
<label>10.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Circu</surname>
<given-names>M.L.</given-names>
</name>
<name>
<surname>Aw</surname>
<given-names>T.Y.</given-names>
</name>
</person-group>
<article-title>Reactive oxygen species, cellular redox systems, and apoptosis</article-title>
<source>Free Radic. Biol. Med.</source>
<year>2010</year>
<volume>48</volume>
<fpage>749</fpage>
<lpage>762</lpage>
<pub-id pub-id-type="doi">10.1016/j.freeradbiomed.2009.12.022</pub-id>
<pub-id pub-id-type="pmid">20045723</pub-id>
</element-citation>
</ref>
<ref id="B11-cancers-11-01030">
<label>11.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Akhtar</surname>
<given-names>M.J.</given-names>
</name>
<name>
<surname>Ahamed</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Kumar</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Khan</surname>
<given-names>M.M.</given-names>
</name>
<name>
<surname>Ahmad</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Alrokayan</surname>
<given-names>S.A.</given-names>
</name>
</person-group>
<article-title>Zinc oxide nanoparticles selectively induce apoptosis in human cancer cells through reactive oxygen species</article-title>
<source>Int. J. Nanomed.</source>
<year>2012</year>
<volume>7</volume>
<fpage>845</fpage>
<lpage>857</lpage>
</element-citation>
</ref>
<ref id="B12-cancers-11-01030">
<label>12.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Dawson</surname>
<given-names>M.A.</given-names>
</name>
<name>
<surname>Kouzarides</surname>
<given-names>T.</given-names>
</name>
</person-group>
<article-title>Cancer epigenetics: From mechanism to therapy</article-title>
<source>Cell</source>
<year>2012</year>
<volume>150</volume>
<fpage>12</fpage>
<lpage>27</lpage>
<pub-id pub-id-type="doi">10.1016/j.cell.2012.06.013</pub-id>
<pub-id pub-id-type="pmid">22770212</pub-id>
</element-citation>
</ref>
<ref id="B13-cancers-11-01030">
<label>13.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Hanahan</surname>
<given-names>D.</given-names>
</name>
<name>
<surname>Weinberg</surname>
<given-names>R.A.</given-names>
</name>
</person-group>
<article-title>The hallmarks of cancer</article-title>
<source>Cell</source>
<year>2000</year>
<volume>100</volume>
<fpage>57</fpage>
<lpage>70</lpage>
<pub-id pub-id-type="doi">10.1016/S0092-8674(00)81683-9</pub-id>
<pub-id pub-id-type="pmid">10647931</pub-id>
</element-citation>
</ref>
<ref id="B14-cancers-11-01030">
<label>14.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Trachootham</surname>
<given-names>D.</given-names>
</name>
<name>
<surname>Alexandre</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Huang</surname>
<given-names>P.</given-names>
</name>
</person-group>
<article-title>Targeting cancer cells by ROS-mediated mechanisms: A radical therapeutic approach?</article-title>
<source>Nat. Rev. Drug Discov.</source>
<year>2009</year>
<volume>8</volume>
<fpage>579</fpage>
<lpage>591</lpage>
<pub-id pub-id-type="doi">10.1038/nrd2803</pub-id>
<pub-id pub-id-type="pmid">19478820</pub-id>
</element-citation>
</ref>
<ref id="B15-cancers-11-01030">
<label>15.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Leach</surname>
<given-names>J.K.</given-names>
</name>
<name>
<surname>Van Tuyle</surname>
<given-names>G.</given-names>
</name>
<name>
<surname>Lin</surname>
<given-names>P.-S.</given-names>
</name>
<name>
<surname>Schmidt-Ullrich</surname>
<given-names>R.</given-names>
</name>
<name>
<surname>Mikkelsen</surname>
<given-names>R.B.</given-names>
</name>
</person-group>
<article-title>Ionizing radiation-induced, mitochondria-dependent generation of reactive oxygen/nitrogen</article-title>
<source>Cancer Res.</source>
<year>2001</year>
<volume>61</volume>
<fpage>3894</fpage>
<lpage>3901</lpage>
<pub-id pub-id-type="pmid">11358802</pub-id>
</element-citation>
</ref>
<ref id="B16-cancers-11-01030">
<label>16.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Prise</surname>
<given-names>K.M.</given-names>
</name>
<name>
<surname>O’sullivan</surname>
<given-names>J.M.</given-names>
</name>
</person-group>
<article-title>Radiation-induced bystander signalling in cancer therapy</article-title>
<source>Nat. Rev. Cancer</source>
<year>2009</year>
<volume>9</volume>
<fpage>351</fpage>
<lpage>360</lpage>
<pub-id pub-id-type="doi">10.1038/nrc2603</pub-id>
<pub-id pub-id-type="pmid">19377507</pub-id>
</element-citation>
</ref>
<ref id="B17-cancers-11-01030">
<label>17.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Mitra</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Dash</surname>
<given-names>R.</given-names>
</name>
</person-group>
<article-title>Natural Products for the Management and Prevention of Breast Cancer</article-title>
<source>Evid.-Based Complement. Altern. Med.</source>
<year>2018</year>
<volume>2018</volume>
<fpage>8324696</fpage>
<pub-id pub-id-type="doi">10.1155/2018/8324696</pub-id>
<pub-id pub-id-type="pmid">29681985</pub-id>
</element-citation>
</ref>
<ref id="B18-cancers-11-01030">
<label>18.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Lu</surname>
<given-names>X.</given-names>
</name>
<name>
<surname>Laroussi</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Puech</surname>
<given-names>V.</given-names>
</name>
</person-group>
<article-title>On atmospheric-pressure non-equilibrium plasma jets and plasma bullets</article-title>
<source>Plasma Sources Sci. Technol.</source>
<year>2012</year>
<volume>21</volume>
<fpage>034005</fpage>
<pub-id pub-id-type="doi">10.1088/0963-0252/21/3/034005</pub-id>
</element-citation>
</ref>
<ref id="B19-cancers-11-01030">
<label>19.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Kuchenbecker</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Bibinov</surname>
<given-names>N.</given-names>
</name>
<name>
<surname>Kaemlimg</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Wandke</surname>
<given-names>D.</given-names>
</name>
<name>
<surname>Awakowicz</surname>
<given-names>P.</given-names>
</name>
<name>
<surname>Viöl</surname>
<given-names>W.</given-names>
</name>
</person-group>
<article-title>Characterization of DBD plasma source for biomedical applications</article-title>
<source>J. Phys. D Appl. Phys.</source>
<year>2009</year>
<volume>42</volume>
<fpage>045212</fpage>
<pub-id pub-id-type="doi">10.1088/0022-3727/42/4/045212</pub-id>
</element-citation>
</ref>
<ref id="B20-cancers-11-01030">
<label>20.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Weltmann</surname>
<given-names>K.</given-names>
</name>
<name>
<surname>Von Woedtke</surname>
<given-names>T.</given-names>
</name>
</person-group>
<article-title>Fusion, Plasma medicine—Current state of research and medical application</article-title>
<source>Plasma Phys. Control. Fusion</source>
<year>2016</year>
<volume>59</volume>
<fpage>014031</fpage>
<pub-id pub-id-type="doi">10.1088/0741-3335/59/1/014031</pub-id>
</element-citation>
</ref>
<ref id="B21-cancers-11-01030">
<label>21.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Ratovitski</surname>
<given-names>E.A.</given-names>
</name>
<name>
<surname>Cheng</surname>
<given-names>X.</given-names>
</name>
<name>
<surname>Yan</surname>
<given-names>D.</given-names>
</name>
<name>
<surname>Sherman</surname>
<given-names>J.H.</given-names>
</name>
<name>
<surname>Canady</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Trink</surname>
<given-names>B.</given-names>
</name>
<name>
<surname>Keidar</surname>
<given-names>M.</given-names>
</name>
</person-group>
<article-title>Anti-cancer therapies of 21st century: Novel approach to treat human cancers using cold atmospheric plasma</article-title>
<source>Plasma Process. Polym.</source>
<year>2014</year>
<volume>11</volume>
<fpage>1128</fpage>
<lpage>1137</lpage>
<pub-id pub-id-type="doi">10.1002/ppap.201400071</pub-id>
</element-citation>
</ref>
<ref id="B22-cancers-11-01030">
<label>22.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Vandamme</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Robert</surname>
<given-names>E.</given-names>
</name>
<name>
<surname>Lerondel</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Sarron</surname>
<given-names>V.</given-names>
</name>
<name>
<surname>Ries</surname>
<given-names>D.</given-names>
</name>
<name>
<surname>Dozias</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Sobilo</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Gosset</surname>
<given-names>D.</given-names>
</name>
<name>
<surname>Kieda</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>Legrain</surname>
<given-names>B.</given-names>
</name>
</person-group>
<article-title>ROS implication in a new antitumor strategy based on non-thermal plasma</article-title>
<source>Int. J. Cancer</source>
<year>2012</year>
<volume>130</volume>
<fpage>2185</fpage>
<lpage>2194</lpage>
<pub-id pub-id-type="doi">10.1002/ijc.26252</pub-id>
<pub-id pub-id-type="pmid">21702038</pub-id>
</element-citation>
</ref>
<ref id="B23-cancers-11-01030">
<label>23.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Pai</surname>
<given-names>K.</given-names>
</name>
<name>
<surname>Timmons</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>Roehm</surname>
<given-names>K.D.</given-names>
</name>
<name>
<surname>Ngo</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Narayanan</surname>
<given-names>S.S.</given-names>
</name>
<name>
<surname>Ramachandran</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Jacob</surname>
<given-names>J.D.</given-names>
</name>
<name>
<surname>Ma</surname>
<given-names>L.M.</given-names>
</name>
<name>
<surname>Madihally</surname>
<given-names>S.V.</given-names>
</name>
</person-group>
<article-title>Investigation of the Roles of Plasma Species Generated by Surface Dielectric Barrier Discharge</article-title>
<source>Sci. Rep.</source>
<year>2018</year>
<volume>8</volume>
<fpage>1</fpage>
<lpage>13</lpage>
<pub-id pub-id-type="doi">10.1038/s41598-018-35166-0</pub-id>
<pub-id pub-id-type="pmid">29311619</pub-id>
</element-citation>
</ref>
<ref id="B24-cancers-11-01030">
<label>24.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Kalghatgi</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Kelly</surname>
<given-names>C.M.</given-names>
</name>
<name>
<surname>Cerchar</surname>
<given-names>E.</given-names>
</name>
<name>
<surname>Torabi</surname>
<given-names>B.</given-names>
</name>
<name>
<surname>Alekseev</surname>
<given-names>O.</given-names>
</name>
<name>
<surname>Fridman</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Friedman</surname>
<given-names>G.</given-names>
</name>
<name>
<surname>Azizkhan-Clifford</surname>
<given-names>J.</given-names>
</name>
</person-group>
<article-title>Effects of non-thermal plasma on mammalian cells</article-title>
<source>PLoS ONE</source>
<year>2011</year>
<volume>6</volume>
<elocation-id>e16270</elocation-id>
<pub-id pub-id-type="doi">10.1371/journal.pone.0016270</pub-id>
<pub-id pub-id-type="pmid">21283714</pub-id>
</element-citation>
</ref>
<ref id="B25-cancers-11-01030">
<label>25.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Kim</surname>
<given-names>C.-H.</given-names>
</name>
<name>
<surname>Bahn</surname>
<given-names>J.H.</given-names>
</name>
<name>
<surname>Lee</surname>
<given-names>S.-H.</given-names>
</name>
<name>
<surname>Kim</surname>
<given-names>G.-Y.</given-names>
</name>
<name>
<surname>Jun</surname>
<given-names>S.-I.</given-names>
</name>
<name>
<surname>Lee</surname>
<given-names>K.</given-names>
</name>
<name>
<surname>Baek</surname>
<given-names>S.J.</given-names>
</name>
</person-group>
<article-title>Induction of cell growth arrest by atmospheric non-thermal plasma in colorectal cancer cells</article-title>
<source>J. Biotechnol.</source>
<year>2010</year>
<volume>150</volume>
<fpage>530</fpage>
<lpage>538</lpage>
<pub-id pub-id-type="doi">10.1016/j.jbiotec.2010.10.003</pub-id>
<pub-id pub-id-type="pmid">20959125</pub-id>
</element-citation>
</ref>
<ref id="B26-cancers-11-01030">
<label>26.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Szatrowski</surname>
<given-names>T.P.</given-names>
</name>
<name>
<surname>Nathan</surname>
<given-names>C.F.</given-names>
</name>
</person-group>
<article-title>Production of large amounts of hydrogen peroxide by human tumor cells</article-title>
<source>Cancer Res.</source>
<year>1991</year>
<volume>51</volume>
<fpage>794</fpage>
<lpage>798</lpage>
<pub-id pub-id-type="pmid">1846317</pub-id>
</element-citation>
</ref>
<ref id="B27-cancers-11-01030">
<label>27.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Zhou</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Hileman</surname>
<given-names>E.O.</given-names>
</name>
<name>
<surname>Plunkett</surname>
<given-names>W.</given-names>
</name>
<name>
<surname>Keating</surname>
<given-names>M.J.</given-names>
</name>
<name>
<surname>Huang</surname>
<given-names>P.</given-names>
</name>
</person-group>
<article-title>Free radical stress in chronic lymphocytic leukemia cells and its role in cellular sensitivity to ROS-generating anticancer agents</article-title>
<source>Blood</source>
<year>2003</year>
<volume>101</volume>
<fpage>4098</fpage>
<lpage>4104</lpage>
<pub-id pub-id-type="doi">10.1182/blood-2002-08-2512</pub-id>
<pub-id pub-id-type="pmid">12531810</pub-id>
</element-citation>
</ref>
<ref id="B28-cancers-11-01030">
<label>28.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Heinlin</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Isbary</surname>
<given-names>G.</given-names>
</name>
<name>
<surname>Stolz</surname>
<given-names>W.</given-names>
</name>
<name>
<surname>Morfill</surname>
<given-names>G.</given-names>
</name>
<name>
<surname>Landthaler</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Shimizu</surname>
<given-names>T.</given-names>
</name>
<name>
<surname>Steffes</surname>
<given-names>B.</given-names>
</name>
<name>
<surname>Nosenko</surname>
<given-names>T.</given-names>
</name>
<name>
<surname>Zimmermann</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Karrer</surname>
<given-names>S.</given-names>
</name>
</person-group>
<article-title>Plasma applications in medicine with a special focus on dermatology</article-title>
<source>J. Eur. Acad. Dermatol. Venereol.</source>
<year>2011</year>
<volume>25</volume>
<fpage>1</fpage>
<lpage>11</lpage>
<pub-id pub-id-type="doi">10.1111/j.1468-3083.2010.03702.x</pub-id>
</element-citation>
</ref>
<ref id="B29-cancers-11-01030">
<label>29.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Fridman</surname>
<given-names>G.</given-names>
</name>
<name>
<surname>Friedman</surname>
<given-names>G.</given-names>
</name>
<name>
<surname>Gutsol</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Shekhter</surname>
<given-names>A.B.</given-names>
</name>
<name>
<surname>Vasilets</surname>
<given-names>V.N.</given-names>
</name>
<name>
<surname>Fridman</surname>
<given-names>A.</given-names>
</name>
</person-group>
<article-title>Applied plasma medicine</article-title>
<source>Plasma Process. Polym.</source>
<year>2008</year>
<volume>5</volume>
<fpage>503</fpage>
<lpage>533</lpage>
<pub-id pub-id-type="doi">10.1002/ppap.200700154</pub-id>
</element-citation>
</ref>
<ref id="B30-cancers-11-01030">
<label>30.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Kong</surname>
<given-names>M.G.</given-names>
</name>
<name>
<surname>Kroesen</surname>
<given-names>G.</given-names>
</name>
<name>
<surname>Morfill</surname>
<given-names>G.</given-names>
</name>
<name>
<surname>Nosenko</surname>
<given-names>T.</given-names>
</name>
<name>
<surname>Shimizu</surname>
<given-names>T.</given-names>
</name>
<name>
<surname>Van Dijk</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Zimmermann</surname>
<given-names>J.</given-names>
</name>
</person-group>
<article-title>Plasma medicine: An introductory review</article-title>
<source>New J. Phys.</source>
<year>2009</year>
<volume>11</volume>
<fpage>115012</fpage>
<pub-id pub-id-type="doi">10.1088/1367-2630/11/11/115012</pub-id>
</element-citation>
</ref>
<ref id="B31-cancers-11-01030">
<label>31.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Koban</surname>
<given-names>I.</given-names>
</name>
<name>
<surname>Holtfreter</surname>
<given-names>B.</given-names>
</name>
<name>
<surname>Hübner</surname>
<given-names>N.O.</given-names>
</name>
<name>
<surname>Matthes</surname>
<given-names>R.</given-names>
</name>
<name>
<surname>Sietmann</surname>
<given-names>R.</given-names>
</name>
<name>
<surname>Kindel</surname>
<given-names>E.</given-names>
</name>
<name>
<surname>Weltmann</surname>
<given-names>K.D.</given-names>
</name>
<name>
<surname>Welk</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Kramer</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Kocher</surname>
<given-names>T.</given-names>
</name>
</person-group>
<article-title>Antimicrobial efficacy of non-thermal plasma in comparison to chlorhexidine against dental biofilms on titanium discs in vitro–proof of principle experiment</article-title>
<source>J. Clin. Periodontol.</source>
<year>2011</year>
<volume>38</volume>
<fpage>956</fpage>
<lpage>965</lpage>
<pub-id pub-id-type="doi">10.1111/j.1600-051X.2011.01740.x</pub-id>
<pub-id pub-id-type="pmid">21762196</pub-id>
</element-citation>
</ref>
<ref id="B32-cancers-11-01030">
<label>32.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Laroussi</surname>
<given-names>M.</given-names>
</name>
</person-group>
<article-title>Low temperature plasma-based sterilization: Overview and state-of-the-art</article-title>
<source>Plasma Process. Polym.</source>
<year>2005</year>
<volume>2</volume>
<fpage>391</fpage>
<lpage>400</lpage>
<pub-id pub-id-type="doi">10.1002/ppap.200400078</pub-id>
</element-citation>
</ref>
<ref id="B33-cancers-11-01030">
<label>33.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Schmidt</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Wende</surname>
<given-names>K.</given-names>
</name>
<name>
<surname>Bekeschus</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Bundscherer</surname>
<given-names>L.</given-names>
</name>
<name>
<surname>Barton</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Ottmüller</surname>
<given-names>K.</given-names>
</name>
<name>
<surname>Weltmann</surname>
<given-names>K.-D.</given-names>
</name>
<name>
<surname>Masur</surname>
<given-names>K.</given-names>
</name>
</person-group>
<article-title>Non-thermal plasma treatment is associated with changes in transcriptome of human epithelial skin cells</article-title>
<source>Free Radic. Res.</source>
<year>2013</year>
<volume>47</volume>
<fpage>577</fpage>
<lpage>592</lpage>
<pub-id pub-id-type="doi">10.3109/10715762.2013.804623</pub-id>
<pub-id pub-id-type="pmid">23668811</pub-id>
</element-citation>
</ref>
<ref id="B34-cancers-11-01030">
<label>34.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Wang</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Holmes</surname>
<given-names>B.</given-names>
</name>
<name>
<surname>Cheng</surname>
<given-names>X.</given-names>
</name>
<name>
<surname>Zhu</surname>
<given-names>W.</given-names>
</name>
<name>
<surname>Keidar</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Zhang</surname>
<given-names>L.G.</given-names>
</name>
</person-group>
<article-title>Cold atmospheric plasma for selectively ablating metastatic breast cancer cells</article-title>
<source>PLoS ONE</source>
<year>2013</year>
<volume>8</volume>
<elocation-id>e73741</elocation-id>
<pub-id pub-id-type="doi">10.1371/journal.pone.0073741</pub-id>
<pub-id pub-id-type="pmid">24040051</pub-id>
</element-citation>
</ref>
<ref id="B35-cancers-11-01030">
<label>35.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Iseki</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Nakamura</surname>
<given-names>K.</given-names>
</name>
<name>
<surname>Hayashi</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Tanaka</surname>
<given-names>H.</given-names>
</name>
<name>
<surname>Kondo</surname>
<given-names>H.</given-names>
</name>
<name>
<surname>Kajiyama</surname>
<given-names>H.</given-names>
</name>
<name>
<surname>Kano</surname>
<given-names>H.</given-names>
</name>
<name>
<surname>Kikkawa</surname>
<given-names>F.</given-names>
</name>
<name>
<surname>Hori</surname>
<given-names>M.</given-names>
</name>
</person-group>
<article-title>Selective killing of ovarian cancer cells through induction of apoptosis by nonequilibrium atmospheric pressure plasma</article-title>
<source>Appl. Phys. Lett.</source>
<year>2012</year>
<volume>100</volume>
<fpage>113702</fpage>
<pub-id pub-id-type="doi">10.1063/1.3694928</pub-id>
</element-citation>
</ref>
<ref id="B36-cancers-11-01030">
<label>36.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Hirst</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Simms</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Mann</surname>
<given-names>V.</given-names>
</name>
<name>
<surname>Maitland</surname>
<given-names>N.</given-names>
</name>
<name>
<surname>O’connell</surname>
<given-names>D.</given-names>
</name>
<name>
<surname>Frame</surname>
<given-names>F.</given-names>
</name>
</person-group>
<article-title>Low-temperature plasma treatment induces DNA damage leading to necrotic cell death in primary prostate epithelial cells</article-title>
<source>Br. J. Cancer</source>
<year>2015</year>
<volume>112</volume>
<fpage>1536</fpage>
<lpage>1545</lpage>
<pub-id pub-id-type="doi">10.1038/bjc.2015.113</pub-id>
<pub-id pub-id-type="pmid">25839988</pub-id>
</element-citation>
</ref>
<ref id="B37-cancers-11-01030">
<label>37.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Panngom</surname>
<given-names>K.</given-names>
</name>
<name>
<surname>Baik</surname>
<given-names>K.</given-names>
</name>
<name>
<surname>Nam</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Han</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Rhim</surname>
<given-names>H.</given-names>
</name>
<name>
<surname>Choi</surname>
<given-names>E.</given-names>
</name>
</person-group>
<article-title>Preferential killing of human lung cancer cell lines with mitochondrial dysfunction by nonthermal dielectric barrier discharge plasma</article-title>
<source>Cell Death Dis.</source>
<year>2013</year>
<volume>4</volume>
<fpage>e642</fpage>
<pub-id pub-id-type="doi">10.1038/cddis.2013.168</pub-id>
<pub-id pub-id-type="pmid">23703387</pub-id>
</element-citation>
</ref>
<ref id="B38-cancers-11-01030">
<label>38.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Tanaka</surname>
<given-names>H.</given-names>
</name>
<name>
<surname>Mizuno</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Ishikawa</surname>
<given-names>K.</given-names>
</name>
<name>
<surname>Nakamura</surname>
<given-names>K.</given-names>
</name>
<name>
<surname>Kajiyama</surname>
<given-names>H.</given-names>
</name>
<name>
<surname>Kano</surname>
<given-names>H.</given-names>
</name>
<name>
<surname>Kikkawa</surname>
<given-names>F.</given-names>
</name>
<name>
<surname>Hori</surname>
<given-names>M.</given-names>
</name>
</person-group>
<article-title>Plasma-activated medium selectively kills glioblastoma brain tumor cells by down-regulating a survival signaling molecule, AKT kinase</article-title>
<source>Plasma Med.</source>
<year>2011</year>
<volume>1</volume>
<fpage>265</fpage>
<lpage>277</lpage>
<pub-id pub-id-type="doi">10.1615/PlasmaMed.2012006275</pub-id>
</element-citation>
</ref>
<ref id="B39-cancers-11-01030">
<label>39.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Fridman</surname>
<given-names>G.</given-names>
</name>
<name>
<surname>Shereshevsky</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Jost</surname>
<given-names>M.M.</given-names>
</name>
<name>
<surname>Brooks</surname>
<given-names>A.D.</given-names>
</name>
<name>
<surname>Fridman</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Gutsol</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Vasilets</surname>
<given-names>V.</given-names>
</name>
<name>
<surname>Friedman</surname>
<given-names>G.</given-names>
</name>
</person-group>
<article-title>Floating electrode dielectric barrier discharge plasma in air promoting apoptotic behavior in melanoma skin cancer cell lines</article-title>
<source>Plasma Chem. Plasma Process.</source>
<year>2007</year>
<volume>27</volume>
<fpage>163</fpage>
<lpage>176</lpage>
<pub-id pub-id-type="doi">10.1007/s11090-007-9048-4</pub-id>
</element-citation>
</ref>
<ref id="B40-cancers-11-01030">
<label>40.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Kim</surname>
<given-names>G.</given-names>
</name>
<name>
<surname>Kim</surname>
<given-names>G.</given-names>
</name>
<name>
<surname>Park</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Jeon</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Seo</surname>
<given-names>H.</given-names>
</name>
<name>
<surname>Iza</surname>
<given-names>F.</given-names>
</name>
<name>
<surname>Lee</surname>
<given-names>J.K.</given-names>
</name>
</person-group>
<article-title>Air plasma coupled with antibody-conjugated nanoparticles: A new weapon against cancer</article-title>
<source>J. Phys. D Appl. Phys.</source>
<year>2008</year>
<volume>42</volume>
<fpage>032005</fpage>
<pub-id pub-id-type="doi">10.1088/0022-3727/42/3/032005</pub-id>
</element-citation>
</ref>
<ref id="B41-cancers-11-01030">
<label>41.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Kehrer</surname>
<given-names>J.P.</given-names>
</name>
<name>
<surname>Klotz</surname>
<given-names>L.O.</given-names>
</name>
</person-group>
<article-title>Free radicals and related reactive species as mediators of tissue injury and disease: Implications for Health</article-title>
<source>Crit. Rev. Toxicol.</source>
<year>2015</year>
<volume>45</volume>
<fpage>765</fpage>
<lpage>798</lpage>
<pub-id pub-id-type="doi">10.3109/10408444.2015.1074159</pub-id>
<pub-id pub-id-type="pmid">26610815</pub-id>
</element-citation>
</ref>
<ref id="B42-cancers-11-01030">
<label>42.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Agnez-Lima</surname>
<given-names>L.F.</given-names>
</name>
<name>
<surname>Melo</surname>
<given-names>J.T.</given-names>
</name>
<name>
<surname>Silva</surname>
<given-names>A.E.</given-names>
</name>
<name>
<surname>Oliveira</surname>
<given-names>A.H.S.</given-names>
</name>
<name>
<surname>Timoteo</surname>
<given-names>A.R.S.</given-names>
</name>
<name>
<surname>Lima-Bessa</surname>
<given-names>K.M.</given-names>
</name>
<name>
<surname>Martinez</surname>
<given-names>G.R.</given-names>
</name>
<name>
<surname>Medeiros</surname>
<given-names>M.H.</given-names>
</name>
<name>
<surname>Di Mascio</surname>
<given-names>P.</given-names>
</name>
<name>
<surname>Galhardo</surname>
<given-names>R.S.</given-names>
</name>
</person-group>
<article-title>DNA damage by singlet oxygen and cellular protective mechanisms</article-title>
<source>Mutat. Res./Rev. Mutat. Res.</source>
<year>2012</year>
<volume>751</volume>
<fpage>15</fpage>
<lpage>28</lpage>
<pub-id pub-id-type="doi">10.1016/j.mrrev.2011.12.005</pub-id>
<pub-id pub-id-type="pmid">22266568</pub-id>
</element-citation>
</ref>
<ref id="B43-cancers-11-01030">
<label>43.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Nosaka</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Nosaka</surname>
<given-names>A.Y.</given-names>
</name>
</person-group>
<article-title>Generation and detection of reactive oxygen species in photocatalysis</article-title>
<source>Chem. Rev.</source>
<year>2017</year>
<volume>117</volume>
<fpage>11302</fpage>
<lpage>11336</lpage>
<pub-id pub-id-type="doi">10.1021/acs.chemrev.7b00161</pub-id>
<pub-id pub-id-type="pmid">28777548</pub-id>
</element-citation>
</ref>
<ref id="B44-cancers-11-01030">
<label>44.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Hayyan</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Hashim</surname>
<given-names>M.A.</given-names>
</name>
<name>
<surname>AlNashef</surname>
<given-names>I.M.</given-names>
</name>
</person-group>
<article-title>Superoxide ion: Generation and chemical implications</article-title>
<source>Chem. Rev.</source>
<year>2016</year>
<volume>116</volume>
<fpage>3029</fpage>
<lpage>3085</lpage>
<pub-id pub-id-type="doi">10.1021/acs.chemrev.5b00407</pub-id>
<pub-id pub-id-type="pmid">26875845</pub-id>
</element-citation>
</ref>
<ref id="B45-cancers-11-01030">
<label>45.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Koppenol</surname>
<given-names>W.H.</given-names>
</name>
</person-group>
<article-title>The Haber-Weiss cycle—70 years later</article-title>
<source>Redox Rep.</source>
<year>2001</year>
<volume>6</volume>
<fpage>229</fpage>
<lpage>234</lpage>
<pub-id pub-id-type="doi">10.1179/135100001101536373</pub-id>
<pub-id pub-id-type="pmid">11642713</pub-id>
</element-citation>
</ref>
<ref id="B46-cancers-11-01030">
<label>46.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Gligorovski</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Strekowski</surname>
<given-names>R.</given-names>
</name>
<name>
<surname>Barbati</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Vione</surname>
<given-names>D.</given-names>
</name>
</person-group>
<article-title>Environmental implications of hydroxyl radicals (• OH)</article-title>
<source>Chem. Rev.</source>
<year>2015</year>
<volume>115</volume>
<fpage>13051</fpage>
<lpage>13092</lpage>
<pub-id pub-id-type="doi">10.1021/cr500310b</pub-id>
<pub-id pub-id-type="pmid">26630000</pub-id>
</element-citation>
</ref>
<ref id="B47-cancers-11-01030">
<label>47.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Luis</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Sandalio</surname>
<given-names>L.M.</given-names>
</name>
<name>
<surname>Palma</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Bueno</surname>
<given-names>P.</given-names>
</name>
<name>
<surname>Corpas</surname>
<given-names>F.J.</given-names>
</name>
</person-group>
<article-title>Metabolism of oxygen radicals in peroxisomes and cellular implications</article-title>
<source>Free Radic. Biol. Med.</source>
<year>1992</year>
<volume>13</volume>
<fpage>557</fpage>
<lpage>580</lpage>
<pub-id pub-id-type="pmid">1334030</pub-id>
</element-citation>
</ref>
<ref id="B48-cancers-11-01030">
<label>48.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Finkel</surname>
<given-names>T.</given-names>
</name>
</person-group>
<article-title>Signal transduction by reactive oxygen species</article-title>
<source>J. Cell Biol.</source>
<year>2011</year>
<volume>194</volume>
<fpage>7</fpage>
<lpage>15</lpage>
<pub-id pub-id-type="doi">10.1083/jcb.201102095</pub-id>
<pub-id pub-id-type="pmid">21746850</pub-id>
</element-citation>
</ref>
<ref id="B49-cancers-11-01030">
<label>49.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Quan</surname>
<given-names>L.J.</given-names>
</name>
<name>
<surname>Zhang</surname>
<given-names>B.</given-names>
</name>
<name>
<surname>Shi</surname>
<given-names>W.W.</given-names>
</name>
<name>
<surname>Li</surname>
<given-names>H.Y.</given-names>
</name>
</person-group>
<article-title>Hydrogen peroxide in plants: A versatile molecule of the reactive oxygen species network</article-title>
<source>J. Integr. Plant Biol.</source>
<year>2008</year>
<volume>50</volume>
<fpage>2</fpage>
<lpage>18</lpage>
<pub-id pub-id-type="doi">10.1111/j.1744-7909.2007.00599.x</pub-id>
<pub-id pub-id-type="pmid">18666947</pub-id>
</element-citation>
</ref>
<ref id="B50-cancers-11-01030">
<label>50.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Schieber</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Chandel</surname>
<given-names>N.S.</given-names>
</name>
</person-group>
<article-title>ROS function in redox signaling and oxidative stress</article-title>
<source>Curr. Biol.</source>
<year>2014</year>
<volume>24</volume>
<fpage>R453</fpage>
<lpage>R462</lpage>
<pub-id pub-id-type="doi">10.1016/j.cub.2014.03.034</pub-id>
<pub-id pub-id-type="pmid">24845678</pub-id>
</element-citation>
</ref>
<ref id="B51-cancers-11-01030">
<label>51.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Apel</surname>
<given-names>K.</given-names>
</name>
<name>
<surname>Hirt</surname>
<given-names>H.</given-names>
</name>
</person-group>
<article-title>Reactive oxygen species: Metabolism, oxidative stress, and signal transduction</article-title>
<source>Annu. Rev. Plant Biol.</source>
<year>2004</year>
<volume>55</volume>
<fpage>373</fpage>
<lpage>399</lpage>
<pub-id pub-id-type="doi">10.1146/annurev.arplant.55.031903.141701</pub-id>
<pub-id pub-id-type="pmid">15377225</pub-id>
</element-citation>
</ref>
<ref id="B52-cancers-11-01030">
<label>52.</label>
<element-citation publication-type="book">
<person-group person-group-type="author">
<name>
<surname>Crichton</surname>
<given-names>R.</given-names>
</name>
<name>
<surname>Crichton</surname>
<given-names>R.R.</given-names>
</name>
<name>
<surname>Boelaert</surname>
<given-names>J.R.</given-names>
</name>
</person-group>
<source>Inorganic Biochemistry of Iron Metabolism: From Molecular Mechanisms to Clinical Consequences</source>
<publisher-name>John Wiley & Sons</publisher-name>
<publisher-loc>Hoboken, NJ, USA</publisher-loc>
<year>2001</year>
</element-citation>
</ref>
<ref id="B53-cancers-11-01030">
<label>53.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Cadenas</surname>
<given-names>E.</given-names>
</name>
</person-group>
<article-title>Biochemistry of oxygen toxicity</article-title>
<source>Annu. Rev. Biochem.</source>
<year>1989</year>
<volume>58</volume>
<fpage>79</fpage>
<lpage>110</lpage>
<pub-id pub-id-type="doi">10.1146/annurev.bi.58.070189.000455</pub-id>
<pub-id pub-id-type="pmid">2673022</pub-id>
</element-citation>
</ref>
<ref id="B54-cancers-11-01030">
<label>54.</label>
<element-citation publication-type="book">
<person-group person-group-type="author">
<name>
<surname>Halliwell</surname>
<given-names>B.</given-names>
</name>
</person-group>
<article-title>Protection against oxidants in biological systems. The superoxide theory of oxygen toxicity</article-title>
<source>Free Radicals in Biology and Medicine</source>
<publisher-name>Oxford University Press</publisher-name>
<publisher-loc>Oxford, UK</publisher-loc>
<year>1989</year>
</element-citation>
</ref>
<ref id="B55-cancers-11-01030">
<label>55.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Klotz</surname>
<given-names>L.-O.</given-names>
</name>
</person-group>
<article-title>Oxidant-induced signaling: Effects of peroxynitrite and singlet oxygen</article-title>
<source>Biol. Chem.</source>
<year>2002</year>
<volume>383</volume>
<fpage>443</fpage>
<lpage>456</lpage>
<pub-id pub-id-type="doi">10.1515/BC.2002.047</pub-id>
<pub-id pub-id-type="pmid">12033434</pub-id>
</element-citation>
</ref>
<ref id="B56-cancers-11-01030">
<label>56.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Feig</surname>
<given-names>D.I.</given-names>
</name>
<name>
<surname>Reid</surname>
<given-names>T.M.</given-names>
</name>
<name>
<surname>Loeb</surname>
<given-names>L.A.</given-names>
</name>
</person-group>
<article-title>Reactive oxygen species in tumorigenesis</article-title>
<source>Cancer Res.</source>
<year>1994</year>
<volume>54</volume>
<issue>Suppl. 7</issue>
<fpage>1890s</fpage>
<lpage>1894s</lpage>
<pub-id pub-id-type="pmid">8137306</pub-id>
</element-citation>
</ref>
<ref id="B57-cancers-11-01030">
<label>57.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Klaunig</surname>
<given-names>J.E.</given-names>
</name>
<name>
<surname>Xu</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Isenberg</surname>
<given-names>J.S.</given-names>
</name>
<name>
<surname>Bachowski</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Kolaja</surname>
<given-names>K.L.</given-names>
</name>
<name>
<surname>Jiang</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Stevenson</surname>
<given-names>D.E.</given-names>
</name>
<name>
<surname>Walborg</surname>
<given-names>E.F.</given-names>
<suffix>Jr.</suffix>
</name>
</person-group>
<article-title>The role of oxidative stress in chemical carcinogenesis</article-title>
<source>Environ. Health Perspect.</source>
<year>1998</year>
<volume>106</volume>
<issue>Suppl. 1</issue>
<fpage>289</fpage>
<pub-id pub-id-type="pmid">9539021</pub-id>
</element-citation>
</ref>
<ref id="B58-cancers-11-01030">
<label>58.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Kim</surname>
<given-names>Y.-W.</given-names>
</name>
<name>
<surname>West</surname>
<given-names>X.Z.</given-names>
</name>
<name>
<surname>Byzova</surname>
<given-names>T.V.</given-names>
</name>
</person-group>
<article-title>Inflammation and oxidative stress in angiogenesis and vascular disease</article-title>
<source>J. Mol. Med.</source>
<year>2013</year>
<volume>91</volume>
<fpage>323</fpage>
<lpage>328</lpage>
<pub-id pub-id-type="doi">10.1007/s00109-013-1007-3</pub-id>
<pub-id pub-id-type="pmid">23430240</pub-id>
</element-citation>
</ref>
<ref id="B59-cancers-11-01030">
<label>59.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Shelton</surname>
<given-names>P.</given-names>
</name>
<name>
<surname>Jaiswal</surname>
<given-names>A.K.</given-names>
</name>
</person-group>
<article-title>The transcription factor NF-E2-related factor 2 (Nrf2): A protooncogene?</article-title>
<source>FASEB J.</source>
<year>2013</year>
<volume>27</volume>
<fpage>414</fpage>
<lpage>423</lpage>
<pub-id pub-id-type="doi">10.1096/fj.12-217257</pub-id>
<pub-id pub-id-type="pmid">23109674</pub-id>
</element-citation>
</ref>
<ref id="B60-cancers-11-01030">
<label>60.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>St-Pierre</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Buckingham</surname>
<given-names>J.A.</given-names>
</name>
<name>
<surname>Roebuck</surname>
<given-names>S.J.</given-names>
</name>
<name>
<surname>Brand</surname>
<given-names>M.D.</given-names>
</name>
</person-group>
<article-title>Topology of superoxide production from different sites in the mitochondrial electron transport chain</article-title>
<source>J. Biol. Chem.</source>
<year>2002</year>
<volume>277</volume>
<fpage>44784</fpage>
<lpage>44790</lpage>
<pub-id pub-id-type="doi">10.1074/jbc.M207217200</pub-id>
<pub-id pub-id-type="pmid">12237311</pub-id>
</element-citation>
</ref>
<ref id="B61-cancers-11-01030">
<label>61.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Ray</surname>
<given-names>D.</given-names>
</name>
<name>
<surname>Huang</surname>
<given-names>B.-W.</given-names>
</name>
<name>
<surname>Tsuji</surname>
<given-names>Y.</given-names>
</name>
</person-group>
<article-title>Reactive oxygen species (ROS) homeostasis and redox regulation in cellular signaling</article-title>
<source>Cell. Signal.</source>
<year>2012</year>
<volume>24</volume>
<fpage>981</fpage>
<lpage>990</lpage>
<pub-id pub-id-type="doi">10.1016/j.cellsig.2012.01.008</pub-id>
<pub-id pub-id-type="pmid">22286106</pub-id>
</element-citation>
</ref>
<ref id="B62-cancers-11-01030">
<label>62.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Sena</surname>
<given-names>L.A.</given-names>
</name>
<name>
<surname>Chandel</surname>
<given-names>N.S.</given-names>
</name>
</person-group>
<article-title>Physiological roles of mitochondrial reactive oxygen species</article-title>
<source>Mol. Cell</source>
<year>2012</year>
<volume>48</volume>
<fpage>158</fpage>
<lpage>167</lpage>
<pub-id pub-id-type="doi">10.1016/j.molcel.2012.09.025</pub-id>
<pub-id pub-id-type="pmid">23102266</pub-id>
</element-citation>
</ref>
<ref id="B63-cancers-11-01030">
<label>63.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Ott</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Gogvadze</surname>
<given-names>V.</given-names>
</name>
<name>
<surname>Orrenius</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Zhivotovsky</surname>
<given-names>B.</given-names>
</name>
</person-group>
<article-title>Mitochondria, oxidative stress and cell death</article-title>
<source>Apoptosis</source>
<year>2007</year>
<volume>12</volume>
<fpage>913</fpage>
<lpage>922</lpage>
<pub-id pub-id-type="doi">10.1007/s10495-007-0756-2</pub-id>
<pub-id pub-id-type="pmid">17453160</pub-id>
</element-citation>
</ref>
<ref id="B64-cancers-11-01030">
<label>64.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Naudi</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Jove</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Ayala</surname>
<given-names>V.</given-names>
</name>
<name>
<surname>Cassanye</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Serrano</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Gonzalo</surname>
<given-names>H.</given-names>
</name>
<name>
<surname>Boada</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Prat</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Portero-Otin</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Pamplona</surname>
<given-names>R.</given-names>
</name>
</person-group>
<article-title>Cellular dysfunction in diabetes as maladaptive response to mitochondrial oxidative stress</article-title>
<source>Exp. Diabetes Res.</source>
<year>2012</year>
<volume>2012</volume>
<fpage>696215</fpage>
<pub-id pub-id-type="doi">10.1155/2012/696215</pub-id>
<pub-id pub-id-type="pmid">22253615</pub-id>
</element-citation>
</ref>
<ref id="B65-cancers-11-01030">
<label>65.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Chance</surname>
<given-names>B.</given-names>
</name>
<name>
<surname>Sies</surname>
<given-names>H.</given-names>
</name>
<name>
<surname>Boveris</surname>
<given-names>A.</given-names>
</name>
</person-group>
<article-title>Hydroperoxide metabolism in mammalian organs</article-title>
<source>Physiol. Rev.</source>
<year>1979</year>
<volume>59</volume>
<fpage>527</fpage>
<lpage>605</lpage>
<pub-id pub-id-type="doi">10.1152/physrev.1979.59.3.527</pub-id>
<pub-id pub-id-type="pmid">37532</pub-id>
</element-citation>
</ref>
<ref id="B66-cancers-11-01030">
<label>66.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Okado-Matsumoto</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Fridovich</surname>
<given-names>I.</given-names>
</name>
</person-group>
<article-title>Subcellular distribution of superoxide dismutases (SOD) in rat liver Cu, Zn-SOD in mitochondria</article-title>
<source>J. Biol. Chem.</source>
<year>2001</year>
<volume>276</volume>
<fpage>38388</fpage>
<lpage>38393</lpage>
<pub-id pub-id-type="doi">10.1074/jbc.M105395200</pub-id>
<pub-id pub-id-type="pmid">11507097</pub-id>
</element-citation>
</ref>
<ref id="B67-cancers-11-01030">
<label>67.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Sturtz</surname>
<given-names>L.A.</given-names>
</name>
<name>
<surname>Diekert</surname>
<given-names>K.</given-names>
</name>
<name>
<surname>Jensen</surname>
<given-names>L.T.</given-names>
</name>
<name>
<surname>Lill</surname>
<given-names>R.</given-names>
</name>
<name>
<surname>Culotta</surname>
<given-names>V.C.</given-names>
</name>
</person-group>
<article-title>A fraction of yeast cu, zn-superoxide dismutase and its metallochaperone, ccs, localize to the intermembrane space of mitochondria a physiological role for sod1 in guarding against mitochondrial oxidative damage</article-title>
<source>J. Biol. Chem.</source>
<year>2001</year>
<volume>276</volume>
<fpage>38084</fpage>
<lpage>38089</lpage>
<pub-id pub-id-type="pmid">11500508</pub-id>
</element-citation>
</ref>
<ref id="B68-cancers-11-01030">
<label>68.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Weisiger</surname>
<given-names>R.A.</given-names>
</name>
<name>
<surname>Fridovich</surname>
<given-names>I.</given-names>
</name>
</person-group>
<article-title>Superoxide dismutase organelle specificity</article-title>
<source>J. Biol. Chem.</source>
<year>1973</year>
<volume>248</volume>
<fpage>3582</fpage>
<lpage>3592</lpage>
<pub-id pub-id-type="pmid">4702877</pub-id>
</element-citation>
</ref>
<ref id="B69-cancers-11-01030">
<label>69.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Murphy</surname>
<given-names>M.P.</given-names>
</name>
</person-group>
<article-title>How mitochondria produce reactive oxygen species</article-title>
<source>Biochem. J.</source>
<year>2009</year>
<volume>417</volume>
<fpage>1</fpage>
<lpage>13</lpage>
<pub-id pub-id-type="doi">10.1042/BJ20081386</pub-id>
<pub-id pub-id-type="pmid">19061483</pub-id>
</element-citation>
</ref>
<ref id="B70-cancers-11-01030">
<label>70.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Brand</surname>
<given-names>M.D.</given-names>
</name>
</person-group>
<article-title>The sites and topology of mitochondrial superoxide production</article-title>
<source>Exp. Gerontol.</source>
<year>2010</year>
<volume>45</volume>
<fpage>466</fpage>
<lpage>472</lpage>
<pub-id pub-id-type="doi">10.1016/j.exger.2010.01.003</pub-id>
<pub-id pub-id-type="pmid">20064600</pub-id>
</element-citation>
</ref>
<ref id="B71-cancers-11-01030">
<label>71.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Zangar</surname>
<given-names>R.C.</given-names>
</name>
<name>
<surname>Davydov</surname>
<given-names>D.R.</given-names>
</name>
<name>
<surname>Verma</surname>
<given-names>S.</given-names>
</name>
</person-group>
<article-title>Mechanisms that regulate production of reactive oxygen species by cytochrome P450</article-title>
<source>Toxicol. Appl. Pharmacol.</source>
<year>2004</year>
<volume>199</volume>
<fpage>316</fpage>
<lpage>331</lpage>
<pub-id pub-id-type="doi">10.1016/j.taap.2004.01.018</pub-id>
<pub-id pub-id-type="pmid">15364547</pub-id>
</element-citation>
</ref>
<ref id="B72-cancers-11-01030">
<label>72.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Cao</surname>
<given-names>S.S.</given-names>
</name>
<name>
<surname>Kaufman</surname>
<given-names>R.J.</given-names>
</name>
</person-group>
<article-title>Endoplasmic reticulum stress and oxidative stress in cell fate decision and human disease</article-title>
<source>Antioxid. Redox Signal.</source>
<year>2014</year>
<volume>21</volume>
<fpage>396</fpage>
<lpage>413</lpage>
<pub-id pub-id-type="doi">10.1089/ars.2014.5851</pub-id>
<pub-id pub-id-type="pmid">24702237</pub-id>
</element-citation>
</ref>
<ref id="B73-cancers-11-01030">
<label>73.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Creighton</surname>
<given-names>T.E.</given-names>
</name>
<name>
<surname>Hillson</surname>
<given-names>D.A.</given-names>
</name>
<name>
<surname>Freedman</surname>
<given-names>R.B.</given-names>
</name>
</person-group>
<article-title>Catalysis by protein-disulphide isomerase of the unfolding and refolding of proteins with disulphide bonds</article-title>
<source>J. Mol. Biol.</source>
<year>1980</year>
<volume>142</volume>
<fpage>43</fpage>
<lpage>62</lpage>
<pub-id pub-id-type="doi">10.1016/0022-2836(80)90205-3</pub-id>
<pub-id pub-id-type="pmid">7431409</pub-id>
</element-citation>
</ref>
<ref id="B74-cancers-11-01030">
<label>74.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Tu</surname>
<given-names>B.P.</given-names>
</name>
<name>
<surname>Weissman</surname>
<given-names>J.S.</given-names>
</name>
</person-group>
<article-title>Oxidative protein folding in eukaryotes: Mechanisms and consequences</article-title>
<source>J. Cell Biol.</source>
<year>2004</year>
<volume>164</volume>
<fpage>341</fpage>
<lpage>346</lpage>
<pub-id pub-id-type="doi">10.1083/jcb.200311055</pub-id>
<pub-id pub-id-type="pmid">14757749</pub-id>
</element-citation>
</ref>
<ref id="B75-cancers-11-01030">
<label>75.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Kemp</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Go</surname>
<given-names>Y.-M.</given-names>
</name>
<name>
<surname>Jones</surname>
<given-names>D.P.</given-names>
</name>
</person-group>
<article-title>Nonequilibrium thermodynamics of thiol/disulfide redox systems: A perspective on redox systems biology</article-title>
<source>Free Radic. Biol. Med.</source>
<year>2008</year>
<volume>44</volume>
<fpage>921</fpage>
<lpage>937</lpage>
<pub-id pub-id-type="doi">10.1016/j.freeradbiomed.2007.11.008</pub-id>
<pub-id pub-id-type="pmid">18155672</pub-id>
</element-citation>
</ref>
<ref id="B76-cancers-11-01030">
<label>76.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Hwang</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>Sinskey</surname>
<given-names>A.J.</given-names>
</name>
<name>
<surname>Lodish</surname>
<given-names>H.F.</given-names>
</name>
</person-group>
<article-title>Oxidized redox state of glutathione in the endoplasmic reticulum</article-title>
<source>Science</source>
<year>1992</year>
<volume>257</volume>
<fpage>1496</fpage>
<lpage>1502</lpage>
<pub-id pub-id-type="doi">10.1126/science.1523409</pub-id>
<pub-id pub-id-type="pmid">1523409</pub-id>
</element-citation>
</ref>
<ref id="B77-cancers-11-01030">
<label>77.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Montezano</surname>
<given-names>A.C.</given-names>
</name>
<name>
<surname>Touyz</surname>
<given-names>R.M.</given-names>
</name>
</person-group>
<article-title>Reactive oxygen species and endothelial function—Role of nitric oxide synthase uncoupling and Nox family nicotinamide adenine dinucleotide phosphate oxidases</article-title>
<source>Basic Clin. Pharmacol. Toxicol.</source>
<year>2012</year>
<volume>110</volume>
<fpage>87</fpage>
<lpage>94</lpage>
<pub-id pub-id-type="doi">10.1111/j.1742-7843.2011.00785.x</pub-id>
<pub-id pub-id-type="pmid">21883939</pub-id>
</element-citation>
</ref>
<ref id="B78-cancers-11-01030">
<label>78.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Barnham</surname>
<given-names>K.J.</given-names>
</name>
<name>
<surname>Masters</surname>
<given-names>C.L.</given-names>
</name>
<name>
<surname>Bush</surname>
<given-names>A.I.</given-names>
</name>
</person-group>
<article-title>Neurodegenerative diseases and oxidative stress</article-title>
<source>Nat. Rev. Drug Discov.</source>
<year>2004</year>
<volume>3</volume>
<fpage>205</fpage>
<lpage>214</lpage>
<pub-id pub-id-type="doi">10.1038/nrd1330</pub-id>
<pub-id pub-id-type="pmid">15031734</pub-id>
</element-citation>
</ref>
<ref id="B79-cancers-11-01030">
<label>79.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Forman</surname>
<given-names>H.J.</given-names>
</name>
<name>
<surname>Torres</surname>
<given-names>M.</given-names>
</name>
</person-group>
<article-title>Reactive oxygen species and cell signaling: Respiratory burst in macrophage signaling</article-title>
<source>Am. J. Respir. Crit. Care Med.</source>
<year>2002</year>
<volume>166</volume>
<issue>Suppl. 1</issue>
<fpage>S4</fpage>
<lpage>S8</lpage>
<pub-id pub-id-type="doi">10.1164/rccm.2206007</pub-id>
<pub-id pub-id-type="pmid">12471082</pub-id>
</element-citation>
</ref>
<ref id="B80-cancers-11-01030">
<label>80.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Schrader</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Fahimi</surname>
<given-names>H.D.</given-names>
</name>
</person-group>
<article-title>Peroxisomes and oxidative stress</article-title>
<source>Biochim. Biophys. Acta (BBA)-Mol. Cell Res.</source>
<year>2006</year>
<volume>1763</volume>
<fpage>1755</fpage>
<lpage>1766</lpage>
<pub-id pub-id-type="doi">10.1016/j.bbamcr.2006.09.006</pub-id>
</element-citation>
</ref>
<ref id="B81-cancers-11-01030">
<label>81.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Abdal Dayem</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Hossain</surname>
<given-names>M.K.</given-names>
</name>
<name>
<surname>Lee</surname>
<given-names>S.B.</given-names>
</name>
<name>
<surname>Kim</surname>
<given-names>K.</given-names>
</name>
<name>
<surname>Saha</surname>
<given-names>S.K.</given-names>
</name>
<name>
<surname>Yang</surname>
<given-names>G.-M.</given-names>
</name>
<name>
<surname>Choi</surname>
<given-names>H.Y.</given-names>
</name>
<name>
<surname>Cho</surname>
<given-names>S.-G.</given-names>
</name>
</person-group>
<article-title>The role of reactive oxygen species (ROS) in the biological activities of metallic nanoparticles</article-title>
<source>Int. J. Mol. Sci.</source>
<year>2017</year>
<volume>18</volume>
<elocation-id>120</elocation-id>
<pub-id pub-id-type="doi">10.3390/ijms18010120</pub-id>
</element-citation>
</ref>
<ref id="B82-cancers-11-01030">
<label>82.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Hrycay</surname>
<given-names>E.G.</given-names>
</name>
<name>
<surname>Bandiera</surname>
<given-names>S.M.</given-names>
</name>
</person-group>
<article-title>Involvement of cytochrome P450 in reactive oxygen species formation and cancer</article-title>
<source>Adv. Pharmacol.</source>
<year>2015</year>
<volume>74</volume>
<fpage>35</fpage>
<lpage>84</lpage>
<pub-id pub-id-type="pmid">26233903</pub-id>
</element-citation>
</ref>
<ref id="B83-cancers-11-01030">
<label>83.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Halliwell</surname>
<given-names>B.</given-names>
</name>
</person-group>
<article-title>Oxidative stress and neurodegeneration: Where are we now?</article-title>
<source>J. Neurochem.</source>
<year>2006</year>
<volume>97</volume>
<fpage>1634</fpage>
<lpage>1658</lpage>
<pub-id pub-id-type="doi">10.1111/j.1471-4159.2006.03907.x</pub-id>
<pub-id pub-id-type="pmid">16805774</pub-id>
</element-citation>
</ref>
<ref id="B84-cancers-11-01030">
<label>84.</label>
<element-citation publication-type="book">
<person-group person-group-type="author">
<name>
<surname>Hardwick</surname>
<given-names>J.P.</given-names>
</name>
</person-group>
<source>Cytochrome P450 Function and Pharmacological Roles in Inflammation and Cancer</source>
<publisher-name>Academic Press</publisher-name>
<publisher-loc>Cambridge, UK</publisher-loc>
<year>2015</year>
<volume>Volume 74</volume>
</element-citation>
</ref>
<ref id="B85-cancers-11-01030">
<label>85.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Hrycay</surname>
<given-names>E.G.</given-names>
</name>
<name>
<surname>Bandiera</surname>
<given-names>S.M.</given-names>
</name>
</person-group>
<article-title>The monooxygenase, peroxidase, and peroxygenase properties of cytochrome P450</article-title>
<source>Arch. Biochem. Biophys.</source>
<year>2012</year>
<volume>522</volume>
<fpage>71</fpage>
<lpage>89</lpage>
<pub-id pub-id-type="doi">10.1016/j.abb.2012.01.003</pub-id>
<pub-id pub-id-type="pmid">22266245</pub-id>
</element-citation>
</ref>
<ref id="B86-cancers-11-01030">
<label>86.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Lewis</surname>
<given-names>D.</given-names>
</name>
<name>
<surname>Lake</surname>
<given-names>B.</given-names>
</name>
</person-group>
<article-title>Species differences in coumarin metabolism: A molecular modelling evaluation of CYP2A interactions</article-title>
<source>Xenobiotica</source>
<year>2002</year>
<volume>32</volume>
<fpage>547</fpage>
<lpage>561</lpage>
<pub-id pub-id-type="doi">10.1080/00498250210128693</pub-id>
<pub-id pub-id-type="pmid">12162851</pub-id>
</element-citation>
</ref>
<ref id="B87-cancers-11-01030">
<label>87.</label>
<element-citation publication-type="book">
<person-group person-group-type="author">
<name>
<surname>Kappus</surname>
<given-names>H.</given-names>
</name>
</person-group>
<article-title>Metabolic reactions: Role of cytochrome P-450 in the formation of reactive oxygen species</article-title>
<source>Cytochrome P450</source>
<publisher-name>Springer</publisher-name>
<publisher-loc>Berlin/Heidelberg, Germany</publisher-loc>
<year>1993</year>
<fpage>145</fpage>
<lpage>154</lpage>
</element-citation>
</ref>
<ref id="B88-cancers-11-01030">
<label>88.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Bagchi</surname>
<given-names>D.</given-names>
</name>
<name>
<surname>Bagchi</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Hassoun</surname>
<given-names>E.</given-names>
</name>
<name>
<surname>Stohs</surname>
<given-names>S.</given-names>
</name>
</person-group>
<article-title>In vitro and in vivo generation of reactive oxygen species, DNA damage and lactate dehydrogenase leakage by selected pesticides</article-title>
<source>Toxicology</source>
<year>1995</year>
<volume>104</volume>
<fpage>129</fpage>
<lpage>140</lpage>
<pub-id pub-id-type="doi">10.1016/0300-483X(95)03156-A</pub-id>
<pub-id pub-id-type="pmid">8560491</pub-id>
</element-citation>
</ref>
<ref id="B89-cancers-11-01030">
<label>89.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Wilhelm</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Sojkova</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Herget</surname>
<given-names>J.</given-names>
</name>
</person-group>
<article-title>Production of hydrogen peroxide by alveolar macrophages: Effect of barbiturates</article-title>
<source>Physiol. Res.</source>
<year>1995</year>
<volume>44</volume>
<fpage>369</fpage>
<lpage>376</lpage>
<pub-id pub-id-type="pmid">8798272</pub-id>
</element-citation>
</ref>
<ref id="B90-cancers-11-01030">
<label>90.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Datta</surname>
<given-names>R.</given-names>
</name>
<name>
<surname>Yoshinaga</surname>
<given-names>K.</given-names>
</name>
<name>
<surname>Kaneki</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Pandey</surname>
<given-names>P.</given-names>
</name>
<name>
<surname>Kufe</surname>
<given-names>D.</given-names>
</name>
</person-group>
<article-title>Phorbol ester-induced generation of reactive oxygen species is protein kinase Cβ-dependent and required for SAPK activation</article-title>
<source>J. Biol. Chem.</source>
<year>2000</year>
<volume>275</volume>
<fpage>41000</fpage>
<lpage>41003</lpage>
<pub-id pub-id-type="doi">10.1074/jbc.M009322200</pub-id>
<pub-id pub-id-type="pmid">11042219</pub-id>
</element-citation>
</ref>
<ref id="B91-cancers-11-01030">
<label>91.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Ice</surname>
<given-names>J.M.</given-names>
</name>
<name>
<surname>Diwan</surname>
<given-names>B.A.</given-names>
</name>
<name>
<surname>Hu</surname>
<given-names>H.</given-names>
</name>
<name>
<surname>Ward</surname>
<given-names>J.M.</given-names>
</name>
<name>
<surname>Nims</surname>
<given-names>R.W.</given-names>
</name>
<name>
<surname>Lubet</surname>
<given-names>R.A.</given-names>
</name>
</person-group>
<article-title>Enhancement of hepatocarcinogenesis and induction of specific cytochrome P450-dependent monooxygenase activities by the barbiturates allobarbital, aprobarbital, pentobarbital, secobarbital and 5-phenyl-and 5-ethylbarbituric acids</article-title>
<source>Carcinogenesis</source>
<year>1994</year>
<volume>15</volume>
<fpage>395</fpage>
<lpage>402</lpage>
<pub-id pub-id-type="doi">10.1093/carcin/15.2.395</pub-id>
<pub-id pub-id-type="pmid">8313534</pub-id>
</element-citation>
</ref>
<ref id="B92-cancers-11-01030">
<label>92.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Klaunig</surname>
<given-names>J.E.</given-names>
</name>
<name>
<surname>Kamendulis</surname>
<given-names>L.M.</given-names>
</name>
</person-group>
<article-title>The role of oxidative stress in carcinogenesis</article-title>
<source>Annu. Rev. Pharmacol. Toxicol.</source>
<year>2004</year>
<volume>44</volume>
<fpage>239</fpage>
<lpage>267</lpage>
<pub-id pub-id-type="doi">10.1146/annurev.pharmtox.44.101802.121851</pub-id>
<pub-id pub-id-type="pmid">14744246</pub-id>
</element-citation>
</ref>
<ref id="B93-cancers-11-01030">
<label>93.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Siesky</surname>
<given-names>A.M.</given-names>
</name>
<name>
<surname>Kamendulis</surname>
<given-names>L.M.</given-names>
</name>
<name>
<surname>Klaunig</surname>
<given-names>J.E.</given-names>
</name>
</person-group>
<article-title>Hepatic effects of 2-butoxyethanol in rodents</article-title>
<source>Toxicol. Sci.</source>
<year>2002</year>
<volume>70</volume>
<fpage>252</fpage>
<lpage>260</lpage>
<pub-id pub-id-type="doi">10.1093/toxsci/70.2.252</pub-id>
<pub-id pub-id-type="pmid">12441370</pub-id>
</element-citation>
</ref>
<ref id="B94-cancers-11-01030">
<label>94.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Kitazawa</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Anantharam</surname>
<given-names>V.</given-names>
</name>
<name>
<surname>Kanthasamy</surname>
<given-names>A.G.</given-names>
</name>
</person-group>
<article-title>Dieldrin-induced oxidative stress and neurochemical changes contribute to apoptopic cell death in dopaminergic cells</article-title>
<source>Free Radic. Biol. Med.</source>
<year>2001</year>
<volume>31</volume>
<fpage>1473</fpage>
<lpage>1485</lpage>
<pub-id pub-id-type="doi">10.1016/S0891-5849(01)00726-2</pub-id>
<pub-id pub-id-type="pmid">11728820</pub-id>
</element-citation>
</ref>
<ref id="B95-cancers-11-01030">
<label>95.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Kopf</surname>
<given-names>P.G.</given-names>
</name>
<name>
<surname>Walker</surname>
<given-names>M.</given-names>
</name>
</person-group>
<article-title>2, 3, 7, 8-tetrachlorodibenzo-p-dioxin increases reactive oxygen species production in human endothelial cells via induction of cytochrome P4501A1</article-title>
<source>Toxicol. Appl. Pharmacol.</source>
<year>2010</year>
<volume>245</volume>
<fpage>91</fpage>
<lpage>99</lpage>
<pub-id pub-id-type="doi">10.1016/j.taap.2010.02.007</pub-id>
<pub-id pub-id-type="pmid">20171976</pub-id>
</element-citation>
</ref>
<ref id="B96-cancers-11-01030">
<label>96.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Betoulle</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Duchiron</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>Deschaux</surname>
<given-names>P.</given-names>
</name>
</person-group>
<article-title>Lindane increases in vitro respiratory burst activity and intracellular calcium levels in rainbow trout (Oncorhynchus mykiss) head kidney phagocytes</article-title>
<source>Aquat. Toxicol.</source>
<year>2000</year>
<volume>48</volume>
<fpage>211</fpage>
<lpage>221</lpage>
<pub-id pub-id-type="doi">10.1016/S0166-445X(99)00041-7</pub-id>
<pub-id pub-id-type="pmid">10686327</pub-id>
</element-citation>
</ref>
<ref id="B97-cancers-11-01030">
<label>97.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Kinoshita</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Wanibuchi</surname>
<given-names>H.</given-names>
</name>
<name>
<surname>Imaoka</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Ogawa</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Masuda</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>Morimura</surname>
<given-names>K.</given-names>
</name>
<name>
<surname>Funae</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Fukushima</surname>
<given-names>S.</given-names>
</name>
</person-group>
<article-title>Formation of 8-hydroxydeoxyguanosine and cell-cycle arrest in the rat liver via generation of oxidative stress by phenobarbital: Association with expression profiles of p21WAF1/Cip1, cyclin D1 and Ogg1</article-title>
<source>Carcinogenesis</source>
<year>2002</year>
<volume>23</volume>
<fpage>341</fpage>
<lpage>349</lpage>
<pub-id pub-id-type="doi">10.1093/carcin/23.2.341</pub-id>
<pub-id pub-id-type="pmid">11872643</pub-id>
</element-citation>
</ref>
<ref id="B98-cancers-11-01030">
<label>98.</label>
<element-citation publication-type="book">
<person-group person-group-type="author">
<name>
<surname>Klaunig</surname>
<given-names>J.E.</given-names>
</name>
<name>
<surname>Xu</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Bachowski</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Jiang</surname>
<given-names>J.</given-names>
</name>
</person-group>
<article-title>Free-radical oxygen-induced changes in chemical carcinogenesis</article-title>
<source>Free Radical Toxicology</source>
<publisher-name>Taylor and Francis</publisher-name>
<publisher-loc>Abingdon, UK</publisher-loc>
<year>1997</year>
<fpage>375</fpage>
<lpage>400</lpage>
</element-citation>
</ref>
<ref id="B99-cancers-11-01030">
<label>99.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Formanowicz</surname>
<given-names>D.</given-names>
</name>
<name>
<surname>Radom</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Rybarczyk</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Formanowicz</surname>
<given-names>P.</given-names>
</name>
</person-group>
<article-title>The role of Fenton reaction in ROS-induced toxicity underlying atherosclerosis–modeled and analyzed using a Petri net-based approach</article-title>
<source>Biosystems</source>
<year>2018</year>
<volume>165</volume>
<fpage>71</fpage>
<lpage>87</lpage>
<pub-id pub-id-type="doi">10.1016/j.biosystems.2018.01.002</pub-id>
<pub-id pub-id-type="pmid">29317313</pub-id>
</element-citation>
</ref>
<ref id="B100-cancers-11-01030">
<label>100.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Pignatello</surname>
<given-names>J.J.</given-names>
</name>
<name>
<surname>Oliveros</surname>
<given-names>E.</given-names>
</name>
<name>
<surname>MacKay</surname>
<given-names>A.</given-names>
</name>
</person-group>
<article-title>Advanced oxidation processes for organic contaminant destruction based on the Fenton reaction and related chemistry</article-title>
<source>Crit. Rev. Environ. Sci. Technol.</source>
<year>2006</year>
<volume>36</volume>
<fpage>1</fpage>
<lpage>84</lpage>
<pub-id pub-id-type="doi">10.1080/10643380500326564</pub-id>
</element-citation>
</ref>
<ref id="B101-cancers-11-01030">
<label>101.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Sutton</surname>
<given-names>H.C.</given-names>
</name>
<name>
<surname>Winterbourn</surname>
<given-names>C.C.</given-names>
</name>
</person-group>
<article-title>On the participation of higher oxidation states of iron and copper in Fenton reactions</article-title>
<source>Free Radic. Biol. Med.</source>
<year>1989</year>
<volume>6</volume>
<fpage>53</fpage>
<lpage>60</lpage>
<pub-id pub-id-type="doi">10.1016/0891-5849(89)90160-3</pub-id>
<pub-id pub-id-type="pmid">2536343</pub-id>
</element-citation>
</ref>
<ref id="B102-cancers-11-01030">
<label>102.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Kehrer</surname>
<given-names>J.P.</given-names>
</name>
</person-group>
<article-title>The Haber–Weiss reaction and mechanisms of toxicity</article-title>
<source>Toxicology</source>
<year>2000</year>
<volume>149</volume>
<fpage>43</fpage>
<lpage>50</lpage>
<pub-id pub-id-type="doi">10.1016/S0300-483X(00)00231-6</pub-id>
<pub-id pub-id-type="pmid">10963860</pub-id>
</element-citation>
</ref>
<ref id="B103-cancers-11-01030">
<label>103.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Kanti Das</surname>
<given-names>T.</given-names>
</name>
<name>
<surname>Wati</surname>
<given-names>M.R.</given-names>
</name>
<name>
<surname>Fatima-Shad</surname>
<given-names>K.</given-names>
</name>
</person-group>
<article-title>Oxidative stress gated by Fenton and Haber Weiss reactions and its association with Alzheimer’s disease</article-title>
<source>Arch. Neurosci.</source>
<year>2014</year>
<pub-id pub-id-type="doi">10.5812/archneurosci.20078</pub-id>
</element-citation>
</ref>
<ref id="B104-cancers-11-01030">
<label>104.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Riley</surname>
<given-names>P.A.</given-names>
</name>
</person-group>
<article-title>Free radicals in biology: Oxidative stress and the effects of ionizing radiation</article-title>
<source>Int. J. Radiat. Biol.</source>
<year>1994</year>
<volume>65</volume>
<fpage>27</fpage>
<lpage>33</lpage>
<pub-id pub-id-type="doi">10.1080/09553009414550041</pub-id>
<pub-id pub-id-type="pmid">7905906</pub-id>
</element-citation>
</ref>
<ref id="B105-cancers-11-01030">
<label>105.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Adhami</surname>
<given-names>V.M.</given-names>
</name>
<name>
<surname>Afaq</surname>
<given-names>F.</given-names>
</name>
<name>
<surname>Ahmad</surname>
<given-names>N.</given-names>
</name>
</person-group>
<article-title>Suppression of ultraviolet B exposure-mediated activation of NF-κB in normal human keratinocytes by resveratrol</article-title>
<source>Neoplasia</source>
<year>2003</year>
<volume>5</volume>
<fpage>74</fpage>
<lpage>82</lpage>
<pub-id pub-id-type="doi">10.1016/S1476-5586(03)80019-2</pub-id>
<pub-id pub-id-type="pmid">12659672</pub-id>
</element-citation>
</ref>
<ref id="B106-cancers-11-01030">
<label>106.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Heck</surname>
<given-names>D.E.</given-names>
</name>
<name>
<surname>Vetrano</surname>
<given-names>A.M.</given-names>
</name>
<name>
<surname>Mariano</surname>
<given-names>T.M.</given-names>
</name>
<name>
<surname>Laskin</surname>
<given-names>J.D.</given-names>
</name>
</person-group>
<article-title>UVB light stimulates production of reactive oxygen species: Unexpected role for catalase</article-title>
<source>J. Biol. Chem.</source>
<year>2003</year>
<volume>278</volume>
<fpage>22432</fpage>
<lpage>22436</lpage>
<pub-id pub-id-type="doi">10.1074/jbc.C300048200</pub-id>
<pub-id pub-id-type="pmid">12730222</pub-id>
</element-citation>
</ref>
<ref id="B107-cancers-11-01030">
<label>107.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Baskar</surname>
<given-names>R.</given-names>
</name>
<name>
<surname>Dai</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Wenlong</surname>
<given-names>N.</given-names>
</name>
<name>
<surname>Yeo</surname>
<given-names>R.</given-names>
</name>
<name>
<surname>Yeoh</surname>
<given-names>K.-W.</given-names>
</name>
</person-group>
<article-title>Biological response of cancer cells to radiation treatment</article-title>
<source>Front. Mol. Biosci.</source>
<year>2014</year>
<volume>1</volume>
<fpage>24</fpage>
<pub-id pub-id-type="doi">10.3389/fmolb.2014.00024</pub-id>
<pub-id pub-id-type="pmid">25988165</pub-id>
</element-citation>
</ref>
<ref id="B108-cancers-11-01030">
<label>108.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Azzam</surname>
<given-names>E.I.</given-names>
</name>
<name>
<surname>Jay-Gerin</surname>
<given-names>J.-P.</given-names>
</name>
<name>
<surname>Pain</surname>
<given-names>D.</given-names>
</name>
</person-group>
<article-title>Ionizing radiation-induced metabolic oxidative stress and prolonged cell injury</article-title>
<source>Cancer Lett.</source>
<year>2012</year>
<volume>327</volume>
<fpage>48</fpage>
<lpage>60</lpage>
<pub-id pub-id-type="doi">10.1016/j.canlet.2011.12.012</pub-id>
<pub-id pub-id-type="pmid">22182453</pub-id>
</element-citation>
</ref>
<ref id="B109-cancers-11-01030">
<label>109.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Tateishi</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Sasabe</surname>
<given-names>E.</given-names>
</name>
<name>
<surname>Ueta</surname>
<given-names>E.</given-names>
</name>
<name>
<surname>Yamamoto</surname>
<given-names>T.</given-names>
</name>
</person-group>
<article-title>Ionizing irradiation induces apoptotic damage of salivary gland acinar cells via NADPH oxidase 1-dependent superoxide generation</article-title>
<source>Biochem. Biophys. Res. Commun.</source>
<year>2008</year>
<volume>366</volume>
<fpage>301</fpage>
<lpage>307</lpage>
<pub-id pub-id-type="doi">10.1016/j.bbrc.2007.11.039</pub-id>
<pub-id pub-id-type="pmid">18035043</pub-id>
</element-citation>
</ref>
<ref id="B110-cancers-11-01030">
<label>110.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Chen</surname>
<given-names>Q.</given-names>
</name>
<name>
<surname>Chai</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Mazumder</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Jiang</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>Macklis</surname>
<given-names>R.</given-names>
</name>
<name>
<surname>Chisolm</surname>
<given-names>G.</given-names>
</name>
<name>
<surname>Almasan</surname>
<given-names>A.</given-names>
</name>
</person-group>
<article-title>The late increase in intracellular free radical oxygen species during apoptosis is associated with cytochrome c release, caspase activation, and mitochondrial dysfunction</article-title>
<source>Cell Death Differ.</source>
<year>2003</year>
<volume>10</volume>
<fpage>323</fpage>
<lpage>334</lpage>
<pub-id pub-id-type="doi">10.1038/sj.cdd.4401148</pub-id>
<pub-id pub-id-type="pmid">12700632</pub-id>
</element-citation>
</ref>
<ref id="B111-cancers-11-01030">
<label>111.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Yamamori</surname>
<given-names>T.</given-names>
</name>
<name>
<surname>Yasui</surname>
<given-names>H.</given-names>
</name>
<name>
<surname>Yamazumi</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Wada</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Nakamura</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Nakamura</surname>
<given-names>H.</given-names>
</name>
<name>
<surname>Inanami</surname>
<given-names>O.</given-names>
</name>
</person-group>
<article-title>Ionizing radiation induces mitochondrial reactive oxygen species production accompanied by upregulation of mitochondrial electron transport chain function and mitochondrial content under control of the cell cycle checkpoint</article-title>
<source>Free Radic. Biol. Med.</source>
<year>2012</year>
<volume>53</volume>
<fpage>260</fpage>
<lpage>270</lpage>
<pub-id pub-id-type="doi">10.1016/j.freeradbiomed.2012.04.033</pub-id>
<pub-id pub-id-type="pmid">22580337</pub-id>
</element-citation>
</ref>
<ref id="B112-cancers-11-01030">
<label>112.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Farivar</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Malekshahabi</surname>
<given-names>T.</given-names>
</name>
<name>
<surname>Shiari</surname>
<given-names>R.</given-names>
</name>
</person-group>
<article-title>Biological effects of low level laser therapy</article-title>
<source>J. Lasers Med. Sci.</source>
<year>2014</year>
<volume>5</volume>
<fpage>58</fpage>
<lpage>62</lpage>
<pub-id pub-id-type="pmid">25653800</pub-id>
</element-citation>
</ref>
<ref id="B113-cancers-11-01030">
<label>113.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Karu</surname>
<given-names>T.</given-names>
</name>
</person-group>
<article-title>Photobiological fundamentals of low-power laser therapy</article-title>
<source>IEEE J. Quantum Electron.</source>
<year>1987</year>
<volume>23</volume>
<fpage>1703</fpage>
<lpage>1717</lpage>
<pub-id pub-id-type="doi">10.1109/JQE.1987.1073236</pub-id>
</element-citation>
</ref>
<ref id="B114-cancers-11-01030">
<label>114.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Eells</surname>
<given-names>J.T.</given-names>
</name>
<name>
<surname>Wong-Riley</surname>
<given-names>M.T.</given-names>
</name>
<name>
<surname>VerHoeve</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Henry</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Buchman</surname>
<given-names>E.V.</given-names>
</name>
<name>
<surname>Kane</surname>
<given-names>M.P.</given-names>
</name>
<name>
<surname>Gould</surname>
<given-names>L.J.</given-names>
</name>
<name>
<surname>Das</surname>
<given-names>R.</given-names>
</name>
<name>
<surname>Jett</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Hodgson</surname>
<given-names>B.D.</given-names>
</name>
</person-group>
<article-title>Mitochondrial signal transduction in accelerated wound and retinal healing by near-infrared light therapy</article-title>
<source>Mitochondrion</source>
<year>2004</year>
<volume>4</volume>
<fpage>559</fpage>
<lpage>567</lpage>
<pub-id pub-id-type="doi">10.1016/j.mito.2004.07.033</pub-id>
<pub-id pub-id-type="pmid">16120414</pub-id>
</element-citation>
</ref>
<ref id="B115-cancers-11-01030">
<label>115.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Karu</surname>
<given-names>T.</given-names>
</name>
<name>
<surname>Afanas’eva</surname>
<given-names>N.</given-names>
</name>
</person-group>
<article-title>Cytochrome c oxidase as a primary photoacceptor when laser irradiating cell culture by visible and near IR-range light</article-title>
<source>Doklady Akademii Nauk-Rossijskaya Akademiya Nauk</source>
<year>1995</year>
<volume>342</volume>
<fpage>693</fpage>
<lpage>695</lpage>
</element-citation>
</ref>
<ref id="B116-cancers-11-01030">
<label>116.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Conlan</surname>
<given-names>M.J.</given-names>
</name>
<name>
<surname>Rapley</surname>
<given-names>J.W.</given-names>
</name>
<name>
<surname>Cobb</surname>
<given-names>C.M.</given-names>
</name>
</person-group>
<article-title>Biostimulation of wound healing by low-energy laser irradiation A review</article-title>
<source>J. Clin. Periodontol.</source>
<year>1996</year>
<volume>23</volume>
<fpage>492</fpage>
<lpage>496</lpage>
<pub-id pub-id-type="doi">10.1111/j.1600-051X.1996.tb00580.x</pub-id>
<pub-id pub-id-type="pmid">8783057</pub-id>
</element-citation>
</ref>
<ref id="B117-cancers-11-01030">
<label>117.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Mester</surname>
<given-names>E.</given-names>
</name>
<name>
<surname>Mester</surname>
<given-names>A.F.</given-names>
</name>
<name>
<surname>Mester</surname>
<given-names>A.</given-names>
</name>
</person-group>
<article-title>The biomedical effects of laser application</article-title>
<source>Lasers Surg. Med.</source>
<year>1985</year>
<volume>5</volume>
<fpage>31</fpage>
<lpage>39</lpage>
<pub-id pub-id-type="doi">10.1002/lsm.1900050105</pub-id>
<pub-id pub-id-type="pmid">3982191</pub-id>
</element-citation>
</ref>
<ref id="B118-cancers-11-01030">
<label>118.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Ortiz</surname>
<given-names>M.C.S.</given-names>
</name>
<name>
<surname>Carrinho</surname>
<given-names>P.M.</given-names>
</name>
<name>
<surname>Santos</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Gonçalves</surname>
<given-names>R.C.</given-names>
</name>
<name>
<surname>Parizotto</surname>
<given-names>N.A.</given-names>
</name>
</person-group>
<article-title>Laser de baixa intensidade: Princípios e generalidades–Parte 1</article-title>
<source>Fisioter. Bras.</source>
<year>2001</year>
<volume>2</volume>
<fpage>221</fpage>
<lpage>240</lpage>
</element-citation>
</ref>
<ref id="B119-cancers-11-01030">
<label>119.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Stadler</surname>
<given-names>I.</given-names>
</name>
<name>
<surname>Evans</surname>
<given-names>R.</given-names>
</name>
<name>
<surname>Kolb</surname>
<given-names>B.</given-names>
</name>
<name>
<surname>Naim</surname>
<given-names>J.O.</given-names>
</name>
<name>
<surname>Narayan</surname>
<given-names>V.</given-names>
</name>
<name>
<surname>Buehner</surname>
<given-names>N.</given-names>
</name>
<name>
<surname>Lanzafame</surname>
<given-names>R.J.</given-names>
</name>
</person-group>
<article-title>In vitro effects of low-level laser irradiation at 660 nm on peripheral blood lymphocytes</article-title>
<source>Lasers Surg. Med.</source>
<year>2000</year>
<volume>27</volume>
<fpage>255</fpage>
<lpage>261</lpage>
<pub-id pub-id-type="doi">10.1002/1096-9101(2000)27:3<255::AID-LSM7>3.0.CO;2-L</pub-id>
<pub-id pub-id-type="pmid">11013387</pub-id>
</element-citation>
</ref>
<ref id="B120-cancers-11-01030">
<label>120.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Silveira</surname>
<given-names>P.</given-names>
</name>
<name>
<surname>Silva</surname>
<given-names>L.</given-names>
</name>
<name>
<surname>Tuon</surname>
<given-names>T.</given-names>
</name>
<name>
<surname>Freitas</surname>
<given-names>T.</given-names>
</name>
<name>
<surname>Streck</surname>
<given-names>E.</given-names>
</name>
<name>
<surname>Pinho</surname>
<given-names>R.</given-names>
</name>
</person-group>
<article-title>Effects of low-level laser therapy on epidermal oxidative response induced by wound healing</article-title>
<source>Braz. J. Phys. Ther.</source>
<year>2009</year>
<volume>13</volume>
<fpage>281</fpage>
<lpage>287</lpage>
<pub-id pub-id-type="doi">10.1590/S1413-35552009005000040</pub-id>
</element-citation>
</ref>
<ref id="B121-cancers-11-01030">
<label>121.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Ja Kim</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Min Joh</surname>
<given-names>H.</given-names>
</name>
<name>
<surname>Chung</surname>
<given-names>T.</given-names>
</name>
</person-group>
<article-title>Production of intracellular reactive oxygen species and change of cell viability induced by atmospheric pressure plasma in normal and cancer cells</article-title>
<source>Appl. Phys. Lett.</source>
<year>2013</year>
<volume>103</volume>
<fpage>153705</fpage>
<pub-id pub-id-type="doi">10.1063/1.4824986</pub-id>
</element-citation>
</ref>
<ref id="B122-cancers-11-01030">
<label>122.</label>
<element-citation publication-type="confproc">
<person-group person-group-type="author">
<name>
<surname>Sousa</surname>
<given-names>J.S.</given-names>
</name>
<name>
<surname>Tresp</surname>
<given-names>H.</given-names>
</name>
<name>
<surname>Dünnbier</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Iséni</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Hammer</surname>
<given-names>M.U.</given-names>
</name>
<name>
<surname>Winter</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Martin</surname>
<given-names>V.</given-names>
</name>
<name>
<surname>Puech</surname>
<given-names>V.</given-names>
</name>
<name>
<surname>Weltmann</surname>
<given-names>K.-D.</given-names>
</name>
<name>
<surname>Reuter</surname>
<given-names>S.</given-names>
</name>
</person-group>
<article-title>Plasma-generated reactive oxygen species for biomedical applications</article-title>
<source>Proceedings of the 4th International Conference on Plasma Medicine</source>
<conf-loc>Orléans, France</conf-loc>
<conf-date>17–21 June 2012</conf-date>
<fpage>36</fpage>
</element-citation>
</ref>
<ref id="B123-cancers-11-01030">
<label>123.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Klämpfl</surname>
<given-names>T.G.</given-names>
</name>
<name>
<surname>Isbary</surname>
<given-names>G.</given-names>
</name>
<name>
<surname>Shimizu</surname>
<given-names>T.</given-names>
</name>
<name>
<surname>Li</surname>
<given-names>Y.-F.</given-names>
</name>
<name>
<surname>Zimmermann</surname>
<given-names>J.L.</given-names>
</name>
<name>
<surname>Stolz</surname>
<given-names>W.</given-names>
</name>
<name>
<surname>Schlegel</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Morfill</surname>
<given-names>G.E.</given-names>
</name>
<name>
<surname>Schmidt</surname>
<given-names>H.-U.</given-names>
</name>
</person-group>
<article-title>Cold atmospheric air plasma sterilization against spores and other microorganisms of clinical interest</article-title>
<source>Appl. Environ. Microbiol.</source>
<year>2012</year>
<volume>78</volume>
<fpage>5077</fpage>
<lpage>5082</lpage>
<pub-id pub-id-type="doi">10.1128/AEM.00583-12</pub-id>
<pub-id pub-id-type="pmid">22582068</pub-id>
</element-citation>
</ref>
<ref id="B124-cancers-11-01030">
<label>124.</label>
<element-citation publication-type="confproc">
<person-group person-group-type="author">
<name>
<surname>Leclaire</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>Lecoq</surname>
<given-names>E.</given-names>
</name>
<name>
<surname>Orial</surname>
<given-names>G.</given-names>
</name>
<name>
<surname>Clement</surname>
<given-names>F.</given-names>
</name>
<name>
<surname>Bousta</surname>
<given-names>F.</given-names>
</name>
</person-group>
<article-title>Fungal decontamination by cold plasma: An innovating process for wood treatment</article-title>
<source>Proceedings of the COST Action IE0601/ESWM-International Conference</source>
<conf-loc>Braga, Portugal</conf-loc>
<conf-date>5–7 November 2008</conf-date>
</element-citation>
</ref>
<ref id="B125-cancers-11-01030">
<label>125.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Keidar</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Walk</surname>
<given-names>R.</given-names>
</name>
<name>
<surname>Shashurin</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Srinivasan</surname>
<given-names>P.</given-names>
</name>
<name>
<surname>Sandler</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Dasgupta</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Ravi</surname>
<given-names>R.</given-names>
</name>
<name>
<surname>Guerrero-Preston</surname>
<given-names>R.</given-names>
</name>
<name>
<surname>Trink</surname>
<given-names>B.</given-names>
</name>
</person-group>
<article-title>Cold plasma selectivity and the possibility of a paradigm shift in cancer therapy</article-title>
<source>Br. J. Cancer</source>
<year>2011</year>
<volume>105</volume>
<fpage>1295</fpage>
<lpage>1301</lpage>
<pub-id pub-id-type="doi">10.1038/bjc.2011.386</pub-id>
<pub-id pub-id-type="pmid">21979421</pub-id>
</element-citation>
</ref>
<ref id="B126-cancers-11-01030">
<label>126.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Ahn</surname>
<given-names>H.J.</given-names>
</name>
<name>
<surname>Kim</surname>
<given-names>K.I.</given-names>
</name>
<name>
<surname>Hoan</surname>
<given-names>N.N.</given-names>
</name>
<name>
<surname>Kim</surname>
<given-names>C.H.</given-names>
</name>
<name>
<surname>Moon</surname>
<given-names>E.</given-names>
</name>
<name>
<surname>Choi</surname>
<given-names>K.S.</given-names>
</name>
<name>
<surname>Yang</surname>
<given-names>S.S.</given-names>
</name>
<name>
<surname>Lee</surname>
<given-names>J.-S.</given-names>
</name>
</person-group>
<article-title>Targeting cancer cells with reactive oxygen and nitrogen species generated by atmospheric-pressure air plasma</article-title>
<source>PLoS ONE</source>
<year>2014</year>
<volume>9</volume>
<elocation-id>e86173</elocation-id>
<pub-id pub-id-type="doi">10.1371/journal.pone.0086173</pub-id>
<pub-id pub-id-type="pmid">24465942</pub-id>
</element-citation>
</ref>
<ref id="B127-cancers-11-01030">
<label>127.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Kumar</surname>
<given-names>N.</given-names>
</name>
<name>
<surname>Attri</surname>
<given-names>P.</given-names>
</name>
<name>
<surname>Yadav</surname>
<given-names>D.K.</given-names>
</name>
<name>
<surname>Choi</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Choi</surname>
<given-names>E.H.</given-names>
</name>
<name>
<surname>Uhm</surname>
<given-names>H.S.</given-names>
</name>
</person-group>
<article-title>Induced apoptosis in melanocytes cancer cell and oxidation in biomolecules through deuterium oxide generated from atmospheric pressure non-thermal plasma jet</article-title>
<source>Sci. Rep.</source>
<year>2014</year>
<volume>4</volume>
<fpage>7589</fpage>
<pub-id pub-id-type="doi">10.1038/srep07589</pub-id>
<pub-id pub-id-type="pmid">25534001</pub-id>
</element-citation>
</ref>
<ref id="B128-cancers-11-01030">
<label>128.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Yan</surname>
<given-names>D.</given-names>
</name>
<name>
<surname>Sherman</surname>
<given-names>J.H.</given-names>
</name>
<name>
<surname>Keidar</surname>
<given-names>M.</given-names>
</name>
</person-group>
<article-title>Cold atmospheric plasma, a novel promising anti-cancer treatment modality</article-title>
<source>Oncotarget</source>
<year>2017</year>
<volume>8</volume>
<fpage>15977</fpage>
<lpage>15995</lpage>
<pub-id pub-id-type="doi">10.18632/oncotarget.13304</pub-id>
<pub-id pub-id-type="pmid">27845910</pub-id>
</element-citation>
</ref>
<ref id="B129-cancers-11-01030">
<label>129.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Ahn</surname>
<given-names>H.J.</given-names>
</name>
<name>
<surname>Kim</surname>
<given-names>K.I.</given-names>
</name>
<name>
<surname>Kim</surname>
<given-names>G.</given-names>
</name>
<name>
<surname>Moon</surname>
<given-names>E.</given-names>
</name>
<name>
<surname>Yang</surname>
<given-names>S.S.</given-names>
</name>
<name>
<surname>Lee</surname>
<given-names>J.-S.</given-names>
</name>
</person-group>
<article-title>Atmospheric-pressure plasma jet induces apoptosis involving mitochondria via generation of free radicals</article-title>
<source>PLoS ONE</source>
<year>2011</year>
<volume>6</volume>
<elocation-id>e28154</elocation-id>
<pub-id pub-id-type="doi">10.1371/journal.pone.0028154</pub-id>
<pub-id pub-id-type="pmid">22140530</pub-id>
</element-citation>
</ref>
<ref id="B130-cancers-11-01030">
<label>130.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Gorrini</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>Harris</surname>
<given-names>I.S.</given-names>
</name>
<name>
<surname>Mak</surname>
<given-names>T.W.</given-names>
</name>
</person-group>
<article-title>Modulation of oxidative stress as an anticancer strategy</article-title>
<source>Nat. Rev. Drug Discov.</source>
<year>2013</year>
<volume>12</volume>
<fpage>931</fpage>
<lpage>947</lpage>
<pub-id pub-id-type="doi">10.1038/nrd4002</pub-id>
<pub-id pub-id-type="pmid">24287781</pub-id>
</element-citation>
</ref>
<ref id="B131-cancers-11-01030">
<label>131.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Wen</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>You</surname>
<given-names>K.-R.</given-names>
</name>
<name>
<surname>Lee</surname>
<given-names>S.-Y.</given-names>
</name>
<name>
<surname>Song</surname>
<given-names>C.-H.</given-names>
</name>
<name>
<surname>Kim</surname>
<given-names>D.-G.</given-names>
</name>
</person-group>
<article-title>Oxidative stress-mediated apoptosis the anticancer effect of the sesquiterpene lactone parthenolide</article-title>
<source>J. Biol. Chem.</source>
<year>2002</year>
<volume>277</volume>
<fpage>38954</fpage>
<lpage>38964</lpage>
<pub-id pub-id-type="doi">10.1074/jbc.M203842200</pub-id>
<pub-id pub-id-type="pmid">12151389</pub-id>
</element-citation>
</ref>
<ref id="B132-cancers-11-01030">
<label>132.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Lim</surname>
<given-names>J.-H.</given-names>
</name>
<name>
<surname>Lee</surname>
<given-names>Y.-M.</given-names>
</name>
<name>
<surname>Park</surname>
<given-names>S.R.</given-names>
</name>
<name>
<surname>DA HYE</surname>
<given-names>K.</given-names>
</name>
<name>
<surname>Lim</surname>
<given-names>B.O.</given-names>
</name>
</person-group>
<article-title>Anticancer activity of hispidin via reactive oxygen species-mediated apoptosis in colon cancer cells</article-title>
<source>Anticancer Res.</source>
<year>2014</year>
<volume>34</volume>
<fpage>4087</fpage>
<lpage>4093</lpage>
<pub-id pub-id-type="pmid">25075033</pub-id>
</element-citation>
</ref>
<ref id="B133-cancers-11-01030">
<label>133.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Pervaiz</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Clement</surname>
<given-names>M.-V.</given-names>
</name>
</person-group>
<article-title>Superoxide anion: Oncogenic reactive oxygen species?</article-title>
<source>Int. J. Biochem. Cell Biol.</source>
<year>2007</year>
<volume>39</volume>
<fpage>1297</fpage>
<lpage>1304</lpage>
<pub-id pub-id-type="doi">10.1016/j.biocel.2007.04.007</pub-id>
<pub-id pub-id-type="pmid">17531522</pub-id>
</element-citation>
</ref>
<ref id="B134-cancers-11-01030">
<label>134.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>McKeague</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Wilson</surname>
<given-names>D.</given-names>
</name>
<name>
<surname>Nelson</surname>
<given-names>J.</given-names>
</name>
</person-group>
<article-title>Staurosporine-induced apoptosis and hydrogen peroxide-induced necrosis in two human breast cell lines</article-title>
<source>Br. J. Cancer</source>
<year>2003</year>
<volume>88</volume>
<fpage>125</fpage>
<lpage>131</lpage>
<pub-id pub-id-type="doi">10.1038/sj.bjc.6600675</pub-id>
<pub-id pub-id-type="pmid">12556971</pub-id>
</element-citation>
</ref>
<ref id="B135-cancers-11-01030">
<label>135.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Simizu</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Takada</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Umezawa</surname>
<given-names>K.</given-names>
</name>
<name>
<surname>Imoto</surname>
<given-names>M.</given-names>
</name>
</person-group>
<article-title>Requirement of caspase-3(-like) protease-mediated hydrogen peroxide production for apoptosis induced by various anticancer drugs</article-title>
<source>J. Biol. Chem.</source>
<year>1998</year>
<volume>273</volume>
<fpage>26900</fpage>
<lpage>26907</lpage>
<pub-id pub-id-type="doi">10.1074/jbc.273.41.26900</pub-id>
<pub-id pub-id-type="pmid">9756937</pub-id>
</element-citation>
</ref>
<ref id="B136-cancers-11-01030">
<label>136.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Yokoyama</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>Sueyoshi</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Ema</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Mori</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Takaishi</surname>
<given-names>K.</given-names>
</name>
<name>
<surname>Hisatomi</surname>
<given-names>H.</given-names>
</name>
</person-group>
<article-title>Induction of oxidative stress by anticancer drugs in the presence and absence of cells</article-title>
<source>Oncol. Lett.</source>
<year>2017</year>
<volume>14</volume>
<fpage>6066</fpage>
<lpage>6070</lpage>
<pub-id pub-id-type="doi">10.3892/ol.2017.6931</pub-id>
<pub-id pub-id-type="pmid">29113247</pub-id>
</element-citation>
</ref>
<ref id="B137-cancers-11-01030">
<label>137.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Yamada</surname>
<given-names>T.</given-names>
</name>
<name>
<surname>Egashira</surname>
<given-names>N.</given-names>
</name>
<name>
<surname>Imuta</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Yano</surname>
<given-names>T.</given-names>
</name>
<name>
<surname>Yamauchi</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Watanabe</surname>
<given-names>H.</given-names>
</name>
<name>
<surname>Oishi</surname>
<given-names>R.</given-names>
</name>
</person-group>
<article-title>Role of oxidative stress in vinorelbine-induced vascular endothelial cell injury</article-title>
<source>Free Radic. Biol. Med.</source>
<year>2010</year>
<volume>48</volume>
<fpage>120</fpage>
<lpage>127</lpage>
<pub-id pub-id-type="doi">10.1016/j.freeradbiomed.2009.10.032</pub-id>
<pub-id pub-id-type="pmid">19837156</pub-id>
</element-citation>
</ref>
<ref id="B138-cancers-11-01030">
<label>138.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Mercuro</surname>
<given-names>G.</given-names>
</name>
<name>
<surname>Cadeddu</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>Piras</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Dessi</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Madeddu</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>Deidda</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Serpe</surname>
<given-names>R.</given-names>
</name>
<name>
<surname>Massa</surname>
<given-names>E.</given-names>
</name>
<name>
<surname>Mantovani</surname>
<given-names>G.</given-names>
</name>
</person-group>
<article-title>Early epirubicin-induced myocardial dysfunction revealed by serial tissue Doppler echocardiography: Correlation with inflammatory and oxidative stress markers</article-title>
<source>Oncologist</source>
<year>2007</year>
<volume>12</volume>
<fpage>1124</fpage>
<lpage>1133</lpage>
<pub-id pub-id-type="doi">10.1634/theoncologist.12-9-1124</pub-id>
<pub-id pub-id-type="pmid">17914082</pub-id>
</element-citation>
</ref>
<ref id="B139-cancers-11-01030">
<label>139.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Lo</surname>
<given-names>Y.-L.</given-names>
</name>
<name>
<surname>Wang</surname>
<given-names>W.</given-names>
</name>
</person-group>
<article-title>Formononetin potentiates epirubicin-induced apoptosis via ROS production in HeLa cells in vitro</article-title>
<source>Chem.-Biol. Interact.</source>
<year>2013</year>
<volume>205</volume>
<fpage>188</fpage>
<lpage>197</lpage>
<pub-id pub-id-type="doi">10.1016/j.cbi.2013.07.003</pub-id>
<pub-id pub-id-type="pmid">23867903</pub-id>
</element-citation>
</ref>
<ref id="B140-cancers-11-01030">
<label>140.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Gilliam</surname>
<given-names>L.A.</given-names>
</name>
<name>
<surname>Moylan</surname>
<given-names>J.S.</given-names>
</name>
<name>
<surname>Patterson</surname>
<given-names>E.W.</given-names>
</name>
<name>
<surname>Smith</surname>
<given-names>J.D.</given-names>
</name>
<name>
<surname>Wilson</surname>
<given-names>A.S.</given-names>
</name>
<name>
<surname>Rabbani</surname>
<given-names>Z.</given-names>
</name>
<name>
<surname>Reid</surname>
<given-names>M.B.</given-names>
</name>
</person-group>
<article-title>Doxorubicin acts via mitochondrial ROS to stimulate catabolism in C2C12 myotubes</article-title>
<source>Am. J. Physiol.-Cell Physiol.</source>
<year>2011</year>
<volume>302</volume>
<fpage>C195</fpage>
<lpage>C202</lpage>
<pub-id pub-id-type="doi">10.1152/ajpcell.00217.2011</pub-id>
<pub-id pub-id-type="pmid">21940668</pub-id>
</element-citation>
</ref>
<ref id="B141-cancers-11-01030">
<label>141.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Minotti</surname>
<given-names>G.</given-names>
</name>
<name>
<surname>Menna</surname>
<given-names>P.</given-names>
</name>
<name>
<surname>Salvatorelli</surname>
<given-names>E.</given-names>
</name>
<name>
<surname>Cairo</surname>
<given-names>G.</given-names>
</name>
<name>
<surname>Gianni</surname>
<given-names>L.</given-names>
</name>
</person-group>
<article-title>Anthracyclines: Molecular advances and pharmacologic developments in antitumor activity and cardiotoxicity</article-title>
<source>Pharmacol. Rev.</source>
<year>2004</year>
<volume>56</volume>
<fpage>185</fpage>
<lpage>229</lpage>
<pub-id pub-id-type="doi">10.1124/pr.56.2.6</pub-id>
<pub-id pub-id-type="pmid">15169927</pub-id>
</element-citation>
</ref>
<ref id="B142-cancers-11-01030">
<label>142.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Mizutani</surname>
<given-names>H.</given-names>
</name>
</person-group>
<article-title>Mechanism of DNA damage and apoptosis induced by anticancer drugs through generation of reactive oxygen species</article-title>
<source>Yakugaku zasshi J. Pharm. Soc. Jpn.</source>
<year>2007</year>
<volume>127</volume>
<fpage>1837</fpage>
<lpage>1842</lpage>
<pub-id pub-id-type="doi">10.1248/yakushi.127.1837</pub-id>
</element-citation>
</ref>
<ref id="B143-cancers-11-01030">
<label>143.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Li</surname>
<given-names>L.</given-names>
</name>
<name>
<surname>Yue</surname>
<given-names>G.</given-names>
</name>
<name>
<surname>Pu</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Sun</surname>
<given-names>H.</given-names>
</name>
<name>
<surname>Fung</surname>
<given-names>K.</given-names>
</name>
<name>
<surname>Leung</surname>
<given-names>P.</given-names>
</name>
<name>
<surname>Han</surname>
<given-names>Q.</given-names>
</name>
<name>
<surname>Lau</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>Leung</surname>
<given-names>P.</given-names>
</name>
</person-group>
<article-title>Eriocalyxin B-induced apoptosis in pancreatic adenocarcinoma cells through thiol-containing antioxidant systems and downstream signalling pathways</article-title>
<source>Curr. Mol. Med.</source>
<year>2014</year>
<volume>14</volume>
<fpage>673</fpage>
<lpage>689</lpage>
<pub-id pub-id-type="doi">10.2174/1566524014666140603102459</pub-id>
<pub-id pub-id-type="pmid">24894173</pub-id>
</element-citation>
</ref>
<ref id="B144-cancers-11-01030">
<label>144.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Noori</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Hassan</surname>
<given-names>Z.M.</given-names>
</name>
<name>
<surname>Farsam</surname>
<given-names>V.</given-names>
</name>
</person-group>
<article-title>Artemisinin as a Chinese medicine, selectively induces apoptosis in pancreatic tumor cell line</article-title>
<source>Chin. J. Integr. Med.</source>
<year>2014</year>
<volume>20</volume>
<fpage>618</fpage>
<lpage>623</lpage>
<pub-id pub-id-type="doi">10.1007/s11655-013-1454-2</pub-id>
<pub-id pub-id-type="pmid">23771805</pub-id>
</element-citation>
</ref>
<ref id="B145-cancers-11-01030">
<label>145.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Dando</surname>
<given-names>I.</given-names>
</name>
<name>
<surname>Fiorini</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>Dalla Pozza</surname>
<given-names>E.</given-names>
</name>
<name>
<surname>Padroni</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>Costanzo</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>Palmieri</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Donadelli</surname>
<given-names>M.</given-names>
</name>
</person-group>
<article-title>UCP2 inhibition triggers ROS-dependent nuclear translocation of GAPDH and autophagic cell death in pancreatic adenocarcinoma cells</article-title>
<source>Biochim. Biophys. Acta (BBA)-Mol. Cell Res.</source>
<year>2013</year>
<volume>1833</volume>
<fpage>672</fpage>
<lpage>679</lpage>
<pub-id pub-id-type="doi">10.1016/j.bbamcr.2012.10.028</pub-id>
</element-citation>
</ref>
<ref id="B146-cancers-11-01030">
<label>146.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Chen</surname>
<given-names>S.-H.</given-names>
</name>
<name>
<surname>Li</surname>
<given-names>D.-L.</given-names>
</name>
<name>
<surname>Yang</surname>
<given-names>F.</given-names>
</name>
<name>
<surname>Wu</surname>
<given-names>Z.</given-names>
</name>
<name>
<surname>Zhao</surname>
<given-names>Y.-Y.</given-names>
</name>
<name>
<surname>Jiang</surname>
<given-names>Y.</given-names>
</name>
</person-group>
<article-title>Gemcitabine-induced pancreatic cancer cell death is associated with MST1/Cyclophilin D mitochondrial complexation</article-title>
<source>Biochimie</source>
<year>2014</year>
<volume>103</volume>
<fpage>71</fpage>
<lpage>79</lpage>
<pub-id pub-id-type="doi">10.1016/j.biochi.2014.04.004</pub-id>
<pub-id pub-id-type="pmid">24732633</pub-id>
</element-citation>
</ref>
<ref id="B147-cancers-11-01030">
<label>147.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Zhao</surname>
<given-names>W.</given-names>
</name>
<name>
<surname>Li</surname>
<given-names>D.</given-names>
</name>
<name>
<surname>Liu</surname>
<given-names>Z.</given-names>
</name>
<name>
<surname>Zheng</surname>
<given-names>X.</given-names>
</name>
<name>
<surname>Wang</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Wang</surname>
<given-names>E.</given-names>
</name>
</person-group>
<article-title>Spiclomazine induces apoptosis associated with the suppression of cell viability, migration and invasion in pancreatic carcinoma cells</article-title>
<source>PLoS ONE</source>
<year>2013</year>
<volume>8</volume>
<elocation-id>e66362</elocation-id>
<pub-id pub-id-type="doi">10.1371/journal.pone.0066362</pub-id>
<pub-id pub-id-type="pmid">23840452</pub-id>
</element-citation>
</ref>
<ref id="B148-cancers-11-01030">
<label>148.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Wang</surname>
<given-names>B.</given-names>
</name>
<name>
<surname>Wang</surname>
<given-names>X.-B.</given-names>
</name>
<name>
<surname>Chen</surname>
<given-names>L.-Y.</given-names>
</name>
<name>
<surname>Huang</surname>
<given-names>L.</given-names>
</name>
<name>
<surname>Dong</surname>
<given-names>R.-Z.</given-names>
</name>
</person-group>
<article-title>Belinostat-induced apoptosis and growth inhibition in pancreatic cancer cells involve activation of TAK1-AMPK signaling axis</article-title>
<source>Biochem. Biophys. Res. Commun.</source>
<year>2013</year>
<volume>437</volume>
<fpage>1</fpage>
<lpage>6</lpage>
<pub-id pub-id-type="doi">10.1016/j.bbrc.2013.05.090</pub-id>
<pub-id pub-id-type="pmid">23743198</pub-id>
</element-citation>
</ref>
<ref id="B149-cancers-11-01030">
<label>149.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Du</surname>
<given-names>J.-H.</given-names>
</name>
<name>
<surname>Zhang</surname>
<given-names>H.-D.</given-names>
</name>
<name>
<surname>Ma</surname>
<given-names>Z.-J.</given-names>
</name>
<name>
<surname>Ji</surname>
<given-names>K.-M.</given-names>
</name>
</person-group>
<article-title>Artesunate induces oncosis-like cell death in vitro and has antitumor activity against pancreatic cancer xenografts in vivo</article-title>
<source>Cancer Chemother. Pharmacol.</source>
<year>2010</year>
<volume>65</volume>
<fpage>895</fpage>
<lpage>902</lpage>
<pub-id pub-id-type="doi">10.1007/s00280-009-1095-5</pub-id>
<pub-id pub-id-type="pmid">19690861</pub-id>
</element-citation>
</ref>
<ref id="B150-cancers-11-01030">
<label>150.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Khan</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Ding</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>Rasul</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Yi</surname>
<given-names>F.</given-names>
</name>
<name>
<surname>Li</surname>
<given-names>T.</given-names>
</name>
<name>
<surname>Gao</surname>
<given-names>H.</given-names>
</name>
<name>
<surname>Gao</surname>
<given-names>R.</given-names>
</name>
<name>
<surname>Zhong</surname>
<given-names>L.</given-names>
</name>
<name>
<surname>Zhang</surname>
<given-names>K.</given-names>
</name>
<name>
<surname>Fang</surname>
<given-names>X.</given-names>
</name>
</person-group>
<article-title>Isoalantolactone induces reactive oxygen species mediated apoptosis in pancreatic carcinoma PANC-1 cells</article-title>
<source>Int. J. Biol. Sci.</source>
<year>2012</year>
<volume>8</volume>
<fpage>533</fpage>
<lpage>547</lpage>
<pub-id pub-id-type="doi">10.7150/ijbs.3753</pub-id>
<pub-id pub-id-type="pmid">22532787</pub-id>
</element-citation>
</ref>
<ref id="B151-cancers-11-01030">
<label>151.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Kong</surname>
<given-names>R.</given-names>
</name>
<name>
<surname>Jia</surname>
<given-names>G.</given-names>
</name>
<name>
<surname>Cheng</surname>
<given-names>Z.-X.</given-names>
</name>
<name>
<surname>Wang</surname>
<given-names>Y.-W.</given-names>
</name>
<name>
<surname>Mu</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Wang</surname>
<given-names>S.-J.</given-names>
</name>
<name>
<surname>Pan</surname>
<given-names>S.-H.</given-names>
</name>
<name>
<surname>Gao</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Jiang</surname>
<given-names>H.-C.</given-names>
</name>
<name>
<surname>Dong</surname>
<given-names>D.-L.</given-names>
</name>
</person-group>
<article-title>Dihydroartemisinin enhances Apo2L/TRAIL-mediated apoptosis in pancreatic cancer cells via ROS-mediated up-regulation of death receptor 5</article-title>
<source>PLoS ONE</source>
<year>2012</year>
<volume>7</volume>
<elocation-id>e37222</elocation-id>
<pub-id pub-id-type="doi">10.1371/annotation/f7203563-87dc-4d11-a1b7-958f81cf743a</pub-id>
<pub-id pub-id-type="pmid">22666346</pub-id>
</element-citation>
</ref>
<ref id="B152-cancers-11-01030">
<label>152.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Han</surname>
<given-names>J.A.</given-names>
</name>
<name>
<surname>Park</surname>
<given-names>S.C.</given-names>
</name>
</person-group>
<article-title>Hydrogen peroxide mediates doxorubicin-induced transglutaminase 2 expression in PC-14 human lung cancer cell line</article-title>
<source>Exp. Mol. Med.</source>
<year>1999</year>
<volume>31</volume>
<fpage>83</fpage>
<lpage>88</lpage>
<pub-id pub-id-type="doi">10.1038/emm.1999.14</pub-id>
<pub-id pub-id-type="pmid">10410307</pub-id>
</element-citation>
</ref>
<ref id="B153-cancers-11-01030">
<label>153.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Kim</surname>
<given-names>S.-Y.</given-names>
</name>
<name>
<surname>Kim</surname>
<given-names>S.-J.</given-names>
</name>
<name>
<surname>Kim</surname>
<given-names>B.-J.</given-names>
</name>
<name>
<surname>Rah</surname>
<given-names>S.-Y.</given-names>
</name>
<name>
<surname>Chung</surname>
<given-names>S.M.</given-names>
</name>
<name>
<surname>Im</surname>
<given-names>M.-J.</given-names>
</name>
<name>
<surname>Kim</surname>
<given-names>U.-H.</given-names>
</name>
</person-group>
<article-title>Doxorubicin-induced reactive oxygen species generation and intracellular Ca2+ increase are reciprocally modulated in rat cardiomyocytes</article-title>
<source>Exp. Mol. Med.</source>
<year>2006</year>
<volume>38</volume>
<fpage>535</fpage>
<lpage>545</lpage>
<pub-id pub-id-type="doi">10.1038/emm.2006.63</pub-id>
<pub-id pub-id-type="pmid">17079870</pub-id>
</element-citation>
</ref>
<ref id="B154-cancers-11-01030">
<label>154.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Yuan</surname>
<given-names>L.</given-names>
</name>
<name>
<surname>Mishra</surname>
<given-names>R.</given-names>
</name>
<name>
<surname>Patel</surname>
<given-names>H.</given-names>
</name>
<name>
<surname>Abdulsalam</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Greis</surname>
<given-names>K.D.</given-names>
</name>
<name>
<surname>Kadekaro</surname>
<given-names>A.L.</given-names>
</name>
<name>
<surname>Merino</surname>
<given-names>E.J.</given-names>
</name>
<name>
<surname>Garrett</surname>
<given-names>J.T.</given-names>
</name>
</person-group>
<article-title>Utilization of Reactive Oxygen Species Targeted Therapy to Prolong the Efficacy of BRAF Inhibitors in Melanoma</article-title>
<source>J. Cancer</source>
<year>2018</year>
<volume>9</volume>
<fpage>4665</fpage>
<lpage>4676</lpage>
<pub-id pub-id-type="doi">10.7150/jca.27295</pub-id>
<pub-id pub-id-type="pmid">30588251</pub-id>
</element-citation>
</ref>
<ref id="B155-cancers-11-01030">
<label>155.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Brodská</surname>
<given-names>B.</given-names>
</name>
<name>
<surname>Holoubek</surname>
<given-names>A.</given-names>
</name>
</person-group>
<article-title>Generation of reactive oxygen species during apoptosis induced by DNA-damaging agents and/or histone deacetylase inhibitors</article-title>
<source>Oxid. Med. Cell. Longev.</source>
<year>2011</year>
<volume>2011</volume>
<fpage>253529</fpage>
<pub-id pub-id-type="doi">10.1155/2011/253529</pub-id>
<pub-id pub-id-type="pmid">21949898</pub-id>
</element-citation>
</ref>
<ref id="B156-cancers-11-01030">
<label>156.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Wu</surname>
<given-names>Y.-W.</given-names>
</name>
<name>
<surname>Lin</surname>
<given-names>C.-F.</given-names>
</name>
<name>
<surname>Lin</surname>
<given-names>Y.-S.</given-names>
</name>
<name>
<surname>Su</surname>
<given-names>W.-C.</given-names>
</name>
<name>
<surname>Chiu</surname>
<given-names>W.-H.</given-names>
</name>
</person-group>
<article-title>Autophagy regulates vinorelbine sensitivity due to continued Keap1-mediated ROS generation in lung adenocarcinoma cells</article-title>
<source>Cell Death Discov.</source>
<year>2018</year>
<volume>5</volume>
<fpage>33</fpage>
<pub-id pub-id-type="doi">10.1038/s41420-018-0098-6</pub-id>
</element-citation>
</ref>
<ref id="B157-cancers-11-01030">
<label>157.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Samadi</surname>
<given-names>N.</given-names>
</name>
<name>
<surname>Ghanbari</surname>
<given-names>P.</given-names>
</name>
<name>
<surname>Mohseni</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Tabasinezhad</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Sharifi</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Nazemieh</surname>
<given-names>H.</given-names>
</name>
<name>
<surname>Rashidi</surname>
<given-names>M.R.</given-names>
</name>
</person-group>
<article-title>Combination therapy increases the efficacy of docetaxel, vinblastine and tamoxifen in cancer cells</article-title>
<source>J. Cancer Res. Ther.</source>
<year>2014</year>
<volume>10</volume>
<fpage>715</fpage>
<lpage>721</lpage>
<pub-id pub-id-type="pmid">25313766</pub-id>
</element-citation>
</ref>
<ref id="B158-cancers-11-01030">
<label>158.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Ha</surname>
<given-names>S.W.</given-names>
</name>
<name>
<surname>Kim</surname>
<given-names>Y.J.</given-names>
</name>
<name>
<surname>Kim</surname>
<given-names>W.</given-names>
</name>
<name>
<surname>Lee</surname>
<given-names>C.S.</given-names>
</name>
</person-group>
<article-title>Antitumor Effects of Camptothecin Combined with Conventional Anticancer Drugs on the Cervical and Uterine Squamous Cell Carcinoma Cell Line SiHa</article-title>
<source>Korean J. Physiol. Pharmacol.</source>
<year>2009</year>
<volume>13</volume>
<fpage>115</fpage>
<lpage>121</lpage>
<pub-id pub-id-type="doi">10.4196/kjpp.2009.13.2.115</pub-id>
<pub-id pub-id-type="pmid">19885006</pub-id>
</element-citation>
</ref>
<ref id="B159-cancers-11-01030">
<label>159.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Alexandre</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Batteux</surname>
<given-names>F.</given-names>
</name>
<name>
<surname>Nicco</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>Chereau</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>Laurent</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Guillevin</surname>
<given-names>L.</given-names>
</name>
<name>
<surname>Weill</surname>
<given-names>B.</given-names>
</name>
<name>
<surname>Goldwasser</surname>
<given-names>F.</given-names>
</name>
</person-group>
<article-title>Accumulation of hydrogen peroxide is an early and crucial step for paclitaxel-induced cancer cell death both in vitro and in vivo</article-title>
<source>Int. J. Cancer</source>
<year>2006</year>
<volume>119</volume>
<fpage>41</fpage>
<lpage>48</lpage>
<pub-id pub-id-type="doi">10.1002/ijc.21685</pub-id>
<pub-id pub-id-type="pmid">16450384</pub-id>
</element-citation>
</ref>
<ref id="B160-cancers-11-01030">
<label>160.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Pan</surname>
<given-names>Z.</given-names>
</name>
<name>
<surname>Avila</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Gollahon</surname>
<given-names>L.</given-names>
</name>
</person-group>
<article-title>Paclitaxel Induces Apoptosis in Breast Cancer Cells through Different Calcium—Regulating Mechanisms Depending on External Calcium Conditions</article-title>
<source>Int. J. Mol. Sci.</source>
<year>2014</year>
<volume>15</volume>
<fpage>2672</fpage>
<lpage>2694</lpage>
<pub-id pub-id-type="doi">10.3390/ijms15022672</pub-id>
<pub-id pub-id-type="pmid">24549172</pub-id>
</element-citation>
</ref>
<ref id="B161-cancers-11-01030">
<label>161.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Kim</surname>
<given-names>H.S.</given-names>
</name>
<name>
<surname>Oh</surname>
<given-names>J.M.</given-names>
</name>
<name>
<surname>Jin</surname>
<given-names>D.H.</given-names>
</name>
<name>
<surname>Yang</surname>
<given-names>K.-H.</given-names>
</name>
<name>
<surname>Moon</surname>
<given-names>E.-Y.</given-names>
</name>
</person-group>
<article-title>Paclitaxel induces vascular endothelial growth factor expression through reactive oxygen species production</article-title>
<source>Pharmacology</source>
<year>2008</year>
<volume>81</volume>
<fpage>317</fpage>
<lpage>324</lpage>
<pub-id pub-id-type="doi">10.1159/000119756</pub-id>
<pub-id pub-id-type="pmid">18322419</pub-id>
</element-citation>
</ref>
<ref id="B162-cancers-11-01030">
<label>162.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Meshkini</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Yazdanparast</surname>
<given-names>R.</given-names>
</name>
</person-group>
<article-title>Involvement of oxidative stress in taxol-induced apoptosis in chronic myelogenous leukemia K562 cells</article-title>
<source>Exp. Toxicol. Pathol.</source>
<year>2012</year>
<volume>64</volume>
<fpage>357</fpage>
<lpage>365</lpage>
<pub-id pub-id-type="doi">10.1016/j.etp.2010.09.010</pub-id>
<pub-id pub-id-type="pmid">21074392</pub-id>
</element-citation>
</ref>
<ref id="B163-cancers-11-01030">
<label>163.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Liu</surname>
<given-names>L.</given-names>
</name>
<name>
<surname>Mu</surname>
<given-names>L.-M.</given-names>
</name>
<name>
<surname>Yan</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Wu</surname>
<given-names>J.-S.</given-names>
</name>
<name>
<surname>Hu</surname>
<given-names>Y.-J.</given-names>
</name>
<name>
<surname>Bu</surname>
<given-names>Y.-Z.</given-names>
</name>
<name>
<surname>Zhang</surname>
<given-names>J.-Y.</given-names>
</name>
<name>
<surname>Liu</surname>
<given-names>R.</given-names>
</name>
<name>
<surname>Li</surname>
<given-names>X.-Q.</given-names>
</name>
<name>
<surname>Lu</surname>
<given-names>W.-L.</given-names>
</name>
</person-group>
<article-title>The use of functional epirubicin liposomes to induce programmed death in refractory breast cancer</article-title>
<source>Int. J. Nanomed.</source>
<year>2017</year>
<volume>12</volume>
<fpage>4163</fpage>
<lpage>4176</lpage>
<pub-id pub-id-type="doi">10.2147/IJN.S133194</pub-id>
<pub-id pub-id-type="pmid">28615943</pub-id>
</element-citation>
</ref>
<ref id="B164-cancers-11-01030">
<label>164.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Miki</surname>
<given-names>H.</given-names>
</name>
<name>
<surname>Uehara</surname>
<given-names>N.</given-names>
</name>
<name>
<surname>Kimura</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Sasaki</surname>
<given-names>T.</given-names>
</name>
<name>
<surname>Yuri</surname>
<given-names>T.</given-names>
</name>
<name>
<surname>Yoshizawa</surname>
<given-names>K.</given-names>
</name>
<name>
<surname>Tsubura</surname>
<given-names>A.</given-names>
</name>
</person-group>
<article-title>Resveratrol induces apoptosis via ROS-triggered autophagy in human colon cancer cells</article-title>
<source>Int. J. Oncol.</source>
<year>2012</year>
<volume>40</volume>
<fpage>1020</fpage>
<lpage>1028</lpage>
<pub-id pub-id-type="doi">10.3892/ijo.2012.1325</pub-id>
<pub-id pub-id-type="pmid">22218562</pub-id>
</element-citation>
</ref>
<ref id="B165-cancers-11-01030">
<label>165.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Huang</surname>
<given-names>Z.</given-names>
</name>
<name>
<surname>Xu</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Peng</surname>
<given-names>W.</given-names>
</name>
</person-group>
<article-title>Colchicine induces apoptosis in HT-29 human colon cancer cells via the AKT and c-Jun N-terminal kinase signaling pathways</article-title>
<source>Mol. Med. Rep.</source>
<year>2015</year>
<volume>12</volume>
<fpage>5939</fpage>
<lpage>5944</lpage>
<pub-id pub-id-type="doi">10.3892/mmr.2015.4222</pub-id>
<pub-id pub-id-type="pmid">26299305</pub-id>
</element-citation>
</ref>
<ref id="B166-cancers-11-01030">
<label>166.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Davies</surname>
<given-names>K.J.A.</given-names>
</name>
</person-group>
<article-title>The Broad Spectrum of Responses to Oxidants in Proliferating Cells: A New Paradigm for Oxidative Stress</article-title>
<source>IUBMB Life</source>
<year>1999</year>
<volume>48</volume>
<fpage>41</fpage>
<lpage>47</lpage>
<pub-id pub-id-type="doi">10.1080/713803463</pub-id>
<pub-id pub-id-type="pmid">10791914</pub-id>
</element-citation>
</ref>
<ref id="B167-cancers-11-01030">
<label>167.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Matés</surname>
<given-names>J.M.</given-names>
</name>
<name>
<surname>Sánchez-Jiménez</surname>
<given-names>F.M.</given-names>
</name>
</person-group>
<article-title>Role of reactive oxygen species in apoptosis: Implications for cancer therapy</article-title>
<source>Int. J. Biochem. Cell Biol.</source>
<year>2000</year>
<volume>32</volume>
<fpage>157</fpage>
<lpage>170</lpage>
<pub-id pub-id-type="doi">10.1016/S1357-2725(99)00088-6</pub-id>
<pub-id pub-id-type="pmid">10687951</pub-id>
</element-citation>
</ref>
<ref id="B168-cancers-11-01030">
<label>168.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Kong</surname>
<given-names>Q.</given-names>
</name>
<name>
<surname>Beel</surname>
<given-names>J.A.</given-names>
</name>
<name>
<surname>Lillehei</surname>
<given-names>K.O.</given-names>
</name>
</person-group>
<article-title>A threshold concept for cancer therapy</article-title>
<source>Med. Hypotheses</source>
<year>2000</year>
<volume>55</volume>
<fpage>29</fpage>
<lpage>35</lpage>
<pub-id pub-id-type="doi">10.1054/mehy.1999.0982</pub-id>
<pub-id pub-id-type="pmid">11021322</pub-id>
</element-citation>
</ref>
<ref id="B169-cancers-11-01030">
<label>169.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Amri</surname>
<given-names>F.</given-names>
</name>
<name>
<surname>Ghouili</surname>
<given-names>I.</given-names>
</name>
<name>
<surname>Amri</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Carrier</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Masmoudi-Kouki</surname>
<given-names>O.</given-names>
</name>
</person-group>
<article-title>Neuroglobin protects astroglial cells from hydrogen peroxide-induced oxidative stress and apoptotic cell death</article-title>
<source>J. Neurochem.</source>
<year>2017</year>
<volume>140</volume>
<fpage>151</fpage>
<lpage>169</lpage>
<pub-id pub-id-type="doi">10.1111/jnc.13876</pub-id>
<pub-id pub-id-type="pmid">27787886</pub-id>
</element-citation>
</ref>
<ref id="B170-cancers-11-01030">
<label>170.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Weinberg</surname>
<given-names>S.E.</given-names>
</name>
<name>
<surname>Chandel</surname>
<given-names>N.S.</given-names>
</name>
</person-group>
<article-title>Targeting mitochondria metabolism for cancer therapy</article-title>
<source>Nat. Chem. Biol.</source>
<year>2015</year>
<volume>11</volume>
<fpage>9</fpage>
<lpage>15</lpage>
<pub-id pub-id-type="doi">10.1038/nchembio.1712</pub-id>
<pub-id pub-id-type="pmid">25517383</pub-id>
</element-citation>
</ref>
<ref id="B171-cancers-11-01030">
<label>171.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Cairns</surname>
<given-names>R.A.</given-names>
</name>
<name>
<surname>Harris</surname>
<given-names>I.S.</given-names>
</name>
<name>
<surname>Mak</surname>
<given-names>T.W.</given-names>
</name>
</person-group>
<article-title>Regulation of cancer cell metabolism</article-title>
<source>Nat. Rev. Cancer</source>
<year>2011</year>
<volume>11</volume>
<fpage>85</fpage>
<lpage>95</lpage>
<pub-id pub-id-type="doi">10.1038/nrc2981</pub-id>
<pub-id pub-id-type="pmid">21258394</pub-id>
</element-citation>
</ref>
<ref id="B172-cancers-11-01030">
<label>172.</label>
<element-citation publication-type="book">
<person-group person-group-type="author">
<name>
<surname>Cook</surname>
<given-names>J.A.</given-names>
</name>
<name>
<surname>Gius</surname>
<given-names>D.</given-names>
</name>
<name>
<surname>Wink</surname>
<given-names>D.A.</given-names>
</name>
<name>
<surname>Krishna</surname>
<given-names>M.C.</given-names>
</name>
<name>
<surname>Russo</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Mitchell</surname>
<given-names>J.B.</given-names>
</name>
</person-group>
<article-title>Oxidative stress, redox, and the tumor microenvironment</article-title>
<source>Seminars in Radiation Oncology</source>
<publisher-name>Elsevier</publisher-name>
<publisher-loc>Amsterdam, The Netherlands</publisher-loc>
<year>2004</year>
</element-citation>
</ref>
<ref id="B173-cancers-11-01030">
<label>173.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Poljsak</surname>
<given-names>B.</given-names>
</name>
<name>
<surname>Šuput</surname>
<given-names>D.</given-names>
</name>
<name>
<surname>Milisav</surname>
<given-names>I.</given-names>
</name>
</person-group>
<article-title>Achieving the balance between ROS and antioxidants: When to use the synthetic antioxidants</article-title>
<source>Oxid. Med. Cell. Longev.</source>
<year>2013</year>
<volume>2013</volume>
<fpage>956792</fpage>
<pub-id pub-id-type="doi">10.1155/2013/956792</pub-id>
<pub-id pub-id-type="pmid">23738047</pub-id>
</element-citation>
</ref>
<ref id="B174-cancers-11-01030">
<label>174.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Schafer</surname>
<given-names>F.Q.</given-names>
</name>
<name>
<surname>Buettner</surname>
<given-names>G.R.</given-names>
</name>
</person-group>
<article-title>Redox environment of the cell as viewed through the redox state of the glutathione disulfide/glutathione couple</article-title>
<source>Free Radic. Biol. Med.</source>
<year>2001</year>
<volume>30</volume>
<fpage>1191</fpage>
<lpage>1212</lpage>
<pub-id pub-id-type="doi">10.1016/S0891-5849(01)00480-4</pub-id>
<pub-id pub-id-type="pmid">11368918</pub-id>
</element-citation>
</ref>
<ref id="B175-cancers-11-01030">
<label>175.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Holmgren</surname>
<given-names>A.</given-names>
</name>
</person-group>
<article-title>Antioxidant function of thioredoxin and glutaredoxin systems</article-title>
<source>Antioxid. Redox Signal.</source>
<year>2000</year>
<volume>2</volume>
<fpage>811</fpage>
<lpage>820</lpage>
<pub-id pub-id-type="doi">10.1089/ars.2000.2.4-811</pub-id>
<pub-id pub-id-type="pmid">11213485</pub-id>
</element-citation>
</ref>
<ref id="B176-cancers-11-01030">
<label>176.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Landriscina</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Maddalena</surname>
<given-names>F.</given-names>
</name>
<name>
<surname>Laudiero</surname>
<given-names>G.</given-names>
</name>
<name>
<surname>Esposito</surname>
<given-names>F.</given-names>
</name>
</person-group>
<article-title>Adaptation to oxidative stress, chemoresistance, and cell survival</article-title>
<source>Antioxid. Redox Signal.</source>
<year>2009</year>
<volume>11</volume>
<fpage>2701</fpage>
<lpage>2716</lpage>
<pub-id pub-id-type="doi">10.1089/ars.2009.2692</pub-id>
<pub-id pub-id-type="pmid">19778285</pub-id>
</element-citation>
</ref>
<ref id="B177-cancers-11-01030">
<label>177.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Pelicano</surname>
<given-names>H.</given-names>
</name>
<name>
<surname>Carney</surname>
<given-names>D.</given-names>
</name>
<name>
<surname>Huang</surname>
<given-names>P.</given-names>
</name>
</person-group>
<article-title>ROS stress in cancer cells and therapeutic implications</article-title>
<source>Drug Resist. Updat.</source>
<year>2004</year>
<volume>7</volume>
<fpage>97</fpage>
<lpage>110</lpage>
<pub-id pub-id-type="doi">10.1016/j.drup.2004.01.004</pub-id>
<pub-id pub-id-type="pmid">15158766</pub-id>
</element-citation>
</ref>
<ref id="B178-cancers-11-01030">
<label>178.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Sastre</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Pallardó</surname>
<given-names>F.V.</given-names>
</name>
<name>
<surname>Viña</surname>
<given-names>J.</given-names>
</name>
</person-group>
<article-title>Mitochondrial oxidative stress plays a key role in aging and apoptosis</article-title>
<source>IUBMB Life</source>
<year>2000</year>
<volume>49</volume>
<fpage>427</fpage>
<lpage>435</lpage>
<pub-id pub-id-type="pmid">10902575</pub-id>
</element-citation>
</ref>
<ref id="B179-cancers-11-01030">
<label>179.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Carmody</surname>
<given-names>R.J.</given-names>
</name>
<name>
<surname>Cotter</surname>
<given-names>T.G.</given-names>
</name>
</person-group>
<article-title>Signalling apoptosis: A radical approach</article-title>
<source>Redox Rep.</source>
<year>2001</year>
<volume>6</volume>
<fpage>77</fpage>
<lpage>90</lpage>
<pub-id pub-id-type="doi">10.1179/135100001101536085</pub-id>
<pub-id pub-id-type="pmid">11450987</pub-id>
</element-citation>
</ref>
<ref id="B180-cancers-11-01030">
<label>180.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Hensley</surname>
<given-names>K.</given-names>
</name>
<name>
<surname>Robinson</surname>
<given-names>K.A.</given-names>
</name>
<name>
<surname>Gabbita</surname>
<given-names>S.P.</given-names>
</name>
<name>
<surname>Salsman</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Floyd</surname>
<given-names>R.A.</given-names>
</name>
</person-group>
<article-title>Reactive oxygen species, cell signaling, and cell injury</article-title>
<source>Free Radic. Biol. Med.</source>
<year>2000</year>
<volume>28</volume>
<fpage>1456</fpage>
<lpage>1462</lpage>
<pub-id pub-id-type="doi">10.1016/S0891-5849(00)00252-5</pub-id>
<pub-id pub-id-type="pmid">10927169</pub-id>
</element-citation>
</ref>
<ref id="B181-cancers-11-01030">
<label>181.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Levine</surname>
<given-names>R.L.</given-names>
</name>
<name>
<surname>Stadtman</surname>
<given-names>E.R.</given-names>
</name>
</person-group>
<article-title>Oxidative modification of proteins during aging</article-title>
<source>Exp. Gerontol.</source>
<year>2001</year>
<volume>36</volume>
<fpage>1495</fpage>
<lpage>1502</lpage>
<pub-id pub-id-type="doi">10.1016/S0531-5565(01)00135-8</pub-id>
<pub-id pub-id-type="pmid">11525872</pub-id>
</element-citation>
</ref>
<ref id="B182-cancers-11-01030">
<label>182.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Mallis</surname>
<given-names>R.J.</given-names>
</name>
<name>
<surname>Thomas</surname>
<given-names>J.A.</given-names>
</name>
</person-group>
<article-title>Oxidative modification of H-ras: S-thiolation and S-nitrosylation of reactive cysteines</article-title>
<source>Biochem. J.</source>
<year>2001</year>
<volume>355</volume>
<fpage>145</fpage>
<lpage>153</lpage>
<pub-id pub-id-type="doi">10.1042/bj3550145</pub-id>
<pub-id pub-id-type="pmid">11256959</pub-id>
</element-citation>
</ref>
<ref id="B183-cancers-11-01030">
<label>183.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Zhang</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Wang</surname>
<given-names>X.</given-names>
</name>
<name>
<surname>Vikash</surname>
<given-names>V.</given-names>
</name>
<name>
<surname>Ye</surname>
<given-names>Q.</given-names>
</name>
<name>
<surname>Wu</surname>
<given-names>D.</given-names>
</name>
<name>
<surname>Liu</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Dong</surname>
<given-names>W.</given-names>
</name>
</person-group>
<article-title>ROS and ROS-mediated cellular signaling</article-title>
<source>Oxid. Med. Cell. Longev.</source>
<year>2016</year>
<volume>2016</volume>
<fpage>4350965</fpage>
<pub-id pub-id-type="doi">10.1155/2016/4350965</pub-id>
<pub-id pub-id-type="pmid">26998193</pub-id>
</element-citation>
</ref>
<ref id="B184-cancers-11-01030">
<label>184.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Ozben</surname>
<given-names>T.</given-names>
</name>
</person-group>
<article-title>Oxidative stress and apoptosis: Impact on cancer therapy</article-title>
<source>J. Pharm. Sci.</source>
<year>2007</year>
<volume>96</volume>
<fpage>2181</fpage>
<lpage>2196</lpage>
<pub-id pub-id-type="doi">10.1002/jps.20874</pub-id>
<pub-id pub-id-type="pmid">17593552</pub-id>
</element-citation>
</ref>
<ref id="B185-cancers-11-01030">
<label>185.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Saitoh</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Nishitoh</surname>
<given-names>H.</given-names>
</name>
<name>
<surname>Fujii</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Takeda</surname>
<given-names>K.</given-names>
</name>
<name>
<surname>Tobiume</surname>
<given-names>K.</given-names>
</name>
<name>
<surname>Sawada</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Kawabata</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Miyazono</surname>
<given-names>K.</given-names>
</name>
<name>
<surname>Ichijo</surname>
<given-names>H.</given-names>
</name>
</person-group>
<article-title>Mammalian thioredoxin is a direct inhibitor of apoptosis signal-regulating kinase (ASK) 1</article-title>
<source>EMBO J.</source>
<year>1998</year>
<volume>17</volume>
<fpage>2596</fpage>
<lpage>2606</lpage>
<pub-id pub-id-type="doi">10.1093/emboj/17.9.2596</pub-id>
<pub-id pub-id-type="pmid">9564042</pub-id>
</element-citation>
</ref>
<ref id="B186-cancers-11-01030">
<label>186.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Takeda</surname>
<given-names>K.</given-names>
</name>
<name>
<surname>Matsuzawa</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Nishitoh</surname>
<given-names>H.</given-names>
</name>
<name>
<surname>Ichijo</surname>
<given-names>H.</given-names>
</name>
</person-group>
<article-title>Roles of MAPKKK ASK1 in stress-induced cell death</article-title>
<source>Cell Struct. Funct.</source>
<year>2003</year>
<volume>28</volume>
<fpage>23</fpage>
<lpage>29</lpage>
<pub-id pub-id-type="doi">10.1247/csf.28.23</pub-id>
<pub-id pub-id-type="pmid">12655147</pub-id>
</element-citation>
</ref>
<ref id="B187-cancers-11-01030">
<label>187.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Brunet</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Bonni</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Zigmond</surname>
<given-names>M.J.</given-names>
</name>
<name>
<surname>Lin</surname>
<given-names>M.Z.</given-names>
</name>
<name>
<surname>Juo</surname>
<given-names>P.</given-names>
</name>
<name>
<surname>Hu</surname>
<given-names>L.S.</given-names>
</name>
<name>
<surname>Anderson</surname>
<given-names>M.J.</given-names>
</name>
<name>
<surname>Arden</surname>
<given-names>K.C.</given-names>
</name>
<name>
<surname>Blenis</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Greenberg</surname>
<given-names>M.E.</given-names>
</name>
</person-group>
<article-title>Akt promotes cell survival by phosphorylating and inhibiting a Forkhead transcription factor</article-title>
<source>Cell</source>
<year>1999</year>
<volume>96</volume>
<fpage>857</fpage>
<lpage>868</lpage>
<pub-id pub-id-type="doi">10.1016/S0092-8674(00)80595-4</pub-id>
<pub-id pub-id-type="pmid">10102273</pub-id>
</element-citation>
</ref>
<ref id="B188-cancers-11-01030">
<label>188.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>You</surname>
<given-names>H.</given-names>
</name>
<name>
<surname>Yamamoto</surname>
<given-names>K.</given-names>
</name>
<name>
<surname>Mak</surname>
<given-names>T.W.</given-names>
</name>
</person-group>
<article-title>Regulation of transactivation-independent proapoptotic activity of p53 by FOXO3a</article-title>
<source>Proc. Natl. Acad. Sci. USA</source>
<year>2006</year>
<volume>103</volume>
<fpage>9051</fpage>
<lpage>9056</lpage>
<pub-id pub-id-type="doi">10.1073/pnas.0600889103</pub-id>
<pub-id pub-id-type="pmid">16757565</pub-id>
</element-citation>
</ref>
<ref id="B189-cancers-11-01030">
<label>189.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Morgan</surname>
<given-names>M.J.</given-names>
</name>
<name>
<surname>Kim</surname>
<given-names>Y.-S.</given-names>
</name>
<name>
<surname>Liu</surname>
<given-names>Z.-G.</given-names>
</name>
</person-group>
<article-title>TNFα and reactive oxygen species in necrotic cell death</article-title>
<source>Cell Res.</source>
<year>2008</year>
<volume>18</volume>
<fpage>343</fpage>
<lpage>349</lpage>
<pub-id pub-id-type="doi">10.1038/cr.2008.31</pub-id>
<pub-id pub-id-type="pmid">18301379</pub-id>
</element-citation>
</ref>
<ref id="B190-cancers-11-01030">
<label>190.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Schulze-Osthoff</surname>
<given-names>K.</given-names>
</name>
<name>
<surname>Beyaert</surname>
<given-names>R.</given-names>
</name>
<name>
<surname>Vandevoorde</surname>
<given-names>V.</given-names>
</name>
<name>
<surname>Haegeman</surname>
<given-names>G.</given-names>
</name>
<name>
<surname>Fiers</surname>
<given-names>W.</given-names>
</name>
</person-group>
<article-title>Depletion of the mitochondrial electron transport abrogates the cytotoxic and gene-inductive effects of TNF</article-title>
<source>EMBO J.</source>
<year>1993</year>
<volume>12</volume>
<fpage>3095</fpage>
<lpage>3104</lpage>
<pub-id pub-id-type="doi">10.1002/j.1460-2075.1993.tb05978.x</pub-id>
<pub-id pub-id-type="pmid">8344250</pub-id>
</element-citation>
</ref>
<ref id="B191-cancers-11-01030">
<label>191.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Xu</surname>
<given-names>Y.C.</given-names>
</name>
<name>
<surname>Wu</surname>
<given-names>R.F.</given-names>
</name>
<name>
<surname>Gu</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Yang</surname>
<given-names>Y.-S.</given-names>
</name>
<name>
<surname>Yang</surname>
<given-names>M.-C.</given-names>
</name>
<name>
<surname>Nwariaku</surname>
<given-names>F.E.</given-names>
</name>
<name>
<surname>Terada</surname>
<given-names>L.S.</given-names>
</name>
</person-group>
<article-title>Involvement of TRAF4 in oxidative activation of c-Jun N-terminal kinase</article-title>
<source>J. Biol. Chem.</source>
<year>2002</year>
<volume>277</volume>
<fpage>28051</fpage>
<lpage>28057</lpage>
<pub-id pub-id-type="doi">10.1074/jbc.M202665200</pub-id>
<pub-id pub-id-type="pmid">12023963</pub-id>
</element-citation>
</ref>
<ref id="B192-cancers-11-01030">
<label>192.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Wong</surname>
<given-names>G.</given-names>
</name>
<name>
<surname>Goeddel</surname>
<given-names>D.V.</given-names>
</name>
</person-group>
<article-title>Induction of manganous superoxide dismutase by tumor necrosis factor: Possible protective mechanism</article-title>
<source>Science</source>
<year>1988</year>
<volume>242</volume>
<fpage>941</fpage>
<lpage>944</lpage>
<pub-id pub-id-type="doi">10.1126/science.3263703</pub-id>
<pub-id pub-id-type="pmid">3263703</pub-id>
</element-citation>
</ref>
<ref id="B193-cancers-11-01030">
<label>193.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Halliwell</surname>
<given-names>B.</given-names>
</name>
<name>
<surname>Gutteridge</surname>
<given-names>J.</given-names>
</name>
</person-group>
<article-title>Free radicals, other reactive species and disease</article-title>
<source>Free Radic. Biol. Med.</source>
<year>1999</year>
<volume>3</volume>
<fpage>617</fpage>
<lpage>783</lpage>
</element-citation>
</ref>
<ref id="B194-cancers-11-01030">
<label>194.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Zdolsek</surname>
<given-names>J.M.</given-names>
</name>
<name>
<surname>Svensson</surname>
<given-names>I.</given-names>
</name>
</person-group>
<article-title>Effect of reactive oxygen species on lysosomal membrane integrity</article-title>
<source>Virchows Archiv. B</source>
<year>1993</year>
<volume>64</volume>
<fpage>401</fpage>
<lpage>406</lpage>
<pub-id pub-id-type="doi">10.1007/BF02915141</pub-id>
</element-citation>
</ref>
<ref id="B195-cancers-11-01030">
<label>195.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Kroemer</surname>
<given-names>G.</given-names>
</name>
<name>
<surname>Reed</surname>
<given-names>J.C.</given-names>
</name>
</person-group>
<article-title>Mitochondrial control of cell death</article-title>
<source>Nat. Med.</source>
<year>2000</year>
<volume>6</volume>
<fpage>513</fpage>
<lpage>519</lpage>
<pub-id pub-id-type="doi">10.1038/74994</pub-id>
<pub-id pub-id-type="pmid">10802706</pub-id>
</element-citation>
</ref>
<ref id="B196-cancers-11-01030">
<label>196.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Brown</surname>
<given-names>G.C.</given-names>
</name>
<name>
<surname>Borutaite</surname>
<given-names>V.</given-names>
</name>
</person-group>
<article-title>Nitric oxide inhibition of mitochondrial respiration and its role in cell death</article-title>
<source>Free Radic. Biol. Med.</source>
<year>2002</year>
<volume>33</volume>
<fpage>1440</fpage>
<lpage>1450</lpage>
<pub-id pub-id-type="doi">10.1016/S0891-5849(02)01112-7</pub-id>
<pub-id pub-id-type="pmid">12446201</pub-id>
</element-citation>
</ref>
<ref id="B197-cancers-11-01030">
<label>197.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Sade</surname>
<given-names>H.</given-names>
</name>
<name>
<surname>Krishna</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Sarin</surname>
<given-names>A.</given-names>
</name>
</person-group>
<article-title>The anti-apoptotic effect of Notch-1 requires p56lck-dependent, Akt/PKB-mediated signaling in T cells</article-title>
<source>J. Biol. Chem.</source>
<year>2004</year>
<volume>279</volume>
<fpage>2937</fpage>
<lpage>2944</lpage>
<pub-id pub-id-type="doi">10.1074/jbc.M309924200</pub-id>
<pub-id pub-id-type="pmid">14583609</pub-id>
</element-citation>
</ref>
<ref id="B198-cancers-11-01030">
<label>198.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Kroemer</surname>
<given-names>G.</given-names>
</name>
<name>
<surname>Dallaporta</surname>
<given-names>B.</given-names>
</name>
<name>
<surname>Resche-Rigon</surname>
<given-names>M.</given-names>
</name>
</person-group>
<article-title>The mitochondrial death/life regulator in apoptosis and necrosis</article-title>
<source>Annu. Rev. Physiol.</source>
<year>1998</year>
<volume>60</volume>
<fpage>619</fpage>
<lpage>642</lpage>
<pub-id pub-id-type="doi">10.1146/annurev.physiol.60.1.619</pub-id>
<pub-id pub-id-type="pmid">9558479</pub-id>
</element-citation>
</ref>
<ref id="B199-cancers-11-01030">
<label>199.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Honeychurch</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Alduaij</surname>
<given-names>W.</given-names>
</name>
<name>
<surname>Azizyan</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Cheadle</surname>
<given-names>E.J.</given-names>
</name>
<name>
<surname>Pelicano</surname>
<given-names>H.</given-names>
</name>
<name>
<surname>Ivanov</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Huang</surname>
<given-names>P.</given-names>
</name>
<name>
<surname>Cragg</surname>
<given-names>M.S.</given-names>
</name>
<name>
<surname>Illidge</surname>
<given-names>T.M.</given-names>
</name>
</person-group>
<article-title>Antibody-induced non-apoptotic cell death in human lymphoma and leukemia cells is mediated through a novel reactive oxygen species dependent pathway</article-title>
<source>Blood</source>
<year>2012</year>
<volume>119</volume>
<fpage>3523</fpage>
<lpage>3533</lpage>
<pub-id pub-id-type="doi">10.1182/blood-2011-12-395541</pub-id>
<pub-id pub-id-type="pmid">22354003</pub-id>
</element-citation>
</ref>
<ref id="B200-cancers-11-01030">
<label>200.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Yang</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Zhang</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Wang</surname>
<given-names>L.</given-names>
</name>
<name>
<surname>Lee</surname>
<given-names>S.</given-names>
</name>
</person-group>
<article-title>Levistolide a induces apoptosis via ROS-mediated ER stress pathway in colon cancer cells</article-title>
<source>Cell. Physiol. Biochem.</source>
<year>2017</year>
<volume>42</volume>
<fpage>929</fpage>
<lpage>938</lpage>
<pub-id pub-id-type="doi">10.1159/000478647</pub-id>
<pub-id pub-id-type="pmid">28662507</pub-id>
</element-citation>
</ref>
<ref id="B201-cancers-11-01030">
<label>201.</label>
<element-citation publication-type="book">
<person-group person-group-type="author">
<name>
<surname>Díaz-Laviada</surname>
<given-names>I.</given-names>
</name>
<name>
<surname>Rodríguez-Henche</surname>
<given-names>N.</given-names>
</name>
</person-group>
<article-title>The potential antitumor effects of capsaicin</article-title>
<source>Capsaicin as a Therapeutic Molecule</source>
<publisher-name>Springer</publisher-name>
<publisher-loc>Basel, Switzerland</publisher-loc>
<year>2014</year>
<fpage>181</fpage>
<lpage>208</lpage>
</element-citation>
</ref>
<ref id="B202-cancers-11-01030">
<label>202.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Medan</surname>
<given-names>D.</given-names>
</name>
<name>
<surname>Wang</surname>
<given-names>L.</given-names>
</name>
<name>
<surname>Toledo</surname>
<given-names>D.</given-names>
</name>
<name>
<surname>Lu</surname>
<given-names>B.</given-names>
</name>
<name>
<surname>Stehlik</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>Jiang</surname>
<given-names>B.H.</given-names>
</name>
<name>
<surname>Shi</surname>
<given-names>X.</given-names>
</name>
<name>
<surname>Rojanasakul</surname>
<given-names>Y.</given-names>
</name>
</person-group>
<article-title>Regulation of Fas (CD95)-induced apoptotic and necrotic cell death by reactive oxygen species in macrophages</article-title>
<source>J. Cell. Physiol.</source>
<year>2005</year>
<volume>203</volume>
<fpage>78</fpage>
<lpage>84</lpage>
<pub-id pub-id-type="doi">10.1002/jcp.20201</pub-id>
<pub-id pub-id-type="pmid">15368542</pub-id>
</element-citation>
</ref>
<ref id="B203-cancers-11-01030">
<label>203.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Uchikura</surname>
<given-names>K.</given-names>
</name>
<name>
<surname>Wada</surname>
<given-names>T.</given-names>
</name>
<name>
<surname>Hoshino</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Nagakawa</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Aiko</surname>
<given-names>T.</given-names>
</name>
<name>
<surname>Bulkley</surname>
<given-names>G.B.</given-names>
</name>
<name>
<surname>Klein</surname>
<given-names>A.S.</given-names>
</name>
<name>
<surname>Sun</surname>
<given-names>Z.</given-names>
</name>
</person-group>
<article-title>Lipopolysaccharides induced increases in Fas ligand expression by Kupffer cells via mechanisms dependent on reactive oxygen species</article-title>
<source>Am. J. Physiol.-Gastrointest. Liver Physiol.</source>
<year>2004</year>
<volume>287</volume>
<fpage>G620</fpage>
<lpage>G626</lpage>
<pub-id pub-id-type="doi">10.1152/ajpgi.00314.2003</pub-id>
<pub-id pub-id-type="pmid">15087279</pub-id>
</element-citation>
</ref>
<ref id="B204-cancers-11-01030">
<label>204.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Hunter</surname>
<given-names>D.J.</given-names>
</name>
<name>
<surname>Kraft</surname>
<given-names>P.</given-names>
</name>
<name>
<surname>Jacobs</surname>
<given-names>K.B.</given-names>
</name>
<name>
<surname>Cox</surname>
<given-names>D.G.</given-names>
</name>
<name>
<surname>Yeager</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Hankinson</surname>
<given-names>S.E.</given-names>
</name>
<name>
<surname>Wacholder</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Wang</surname>
<given-names>Z.</given-names>
</name>
<name>
<surname>Welch</surname>
<given-names>R.</given-names>
</name>
<name>
<surname>Hutchinson</surname>
<given-names>A.</given-names>
</name>
</person-group>
<article-title>A genome-wide association study identifies alleles in FGFR2 associated with risk of sporadic postmenopausal breast cancer</article-title>
<source>Nat. Genet.</source>
<year>2007</year>
<volume>39</volume>
<fpage>870</fpage>
<lpage>874</lpage>
<pub-id pub-id-type="doi">10.1038/ng2075</pub-id>
<pub-id pub-id-type="pmid">17529973</pub-id>
</element-citation>
</ref>
<ref id="B205-cancers-11-01030">
<label>205.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Ryoo</surname>
<given-names>H.D.</given-names>
</name>
<name>
<surname>Gorenc</surname>
<given-names>T.</given-names>
</name>
<name>
<surname>Steller</surname>
<given-names>H.</given-names>
</name>
</person-group>
<article-title>Apoptotic Cells Can Induce Compensatory Cell Proliferation through the JNK and the Wingless Signaling Pathways</article-title>
<source>Dev. Cell</source>
<year>2004</year>
<volume>7</volume>
<fpage>491</fpage>
<lpage>501</lpage>
<pub-id pub-id-type="doi">10.1016/j.devcel.2004.08.019</pub-id>
<pub-id pub-id-type="pmid">15469838</pub-id>
</element-citation>
</ref>
<ref id="B206-cancers-11-01030">
<label>206.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Lee</surname>
<given-names>K.</given-names>
</name>
<name>
<surname>Esselman</surname>
<given-names>W.J.</given-names>
</name>
</person-group>
<article-title>Inhibition of PTPs by H2O2 regulates the activation of distinct MAPK pathways</article-title>
<source>Free Radic. Biol. Med.</source>
<year>2002</year>
<volume>33</volume>
<fpage>1121</fpage>
<lpage>1132</lpage>
<pub-id pub-id-type="doi">10.1016/S0891-5849(02)01000-6</pub-id>
<pub-id pub-id-type="pmid">12374624</pub-id>
</element-citation>
</ref>
<ref id="B207-cancers-11-01030">
<label>207.</label>
<element-citation publication-type="book">
<person-group person-group-type="author">
<name>
<surname>Dunlop</surname>
<given-names>E.</given-names>
</name>
<name>
<surname>Tee</surname>
<given-names>A.</given-names>
</name>
</person-group>
<article-title>mTOR and autophagy: A dynamic relationship governed by nutrients and energy</article-title>
<source>Seminars in Cell & Developmental Biology</source>
<publisher-name>Elsevier</publisher-name>
<publisher-loc>Amsterdam, The Netherlands</publisher-loc>
<year>2014</year>
</element-citation>
</ref>
<ref id="B208-cancers-11-01030">
<label>208.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Scherz-Shouval</surname>
<given-names>R.</given-names>
</name>
<name>
<surname>Elazar</surname>
<given-names>Z.</given-names>
</name>
</person-group>
<article-title>ROS, mitochondria and the regulation of autophagy</article-title>
<source>Trends Cell Biol.</source>
<year>2007</year>
<volume>17</volume>
<fpage>422</fpage>
<lpage>427</lpage>
<pub-id pub-id-type="doi">10.1016/j.tcb.2007.07.009</pub-id>
<pub-id pub-id-type="pmid">17804237</pub-id>
</element-citation>
</ref>
<ref id="B209-cancers-11-01030">
<label>209.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Poillet-Perez</surname>
<given-names>L.</given-names>
</name>
<name>
<surname>Despouy</surname>
<given-names>G.</given-names>
</name>
<name>
<surname>Delage-Mourroux</surname>
<given-names>R.</given-names>
</name>
<name>
<surname>Boyer-Guittaut</surname>
<given-names>M.</given-names>
</name>
</person-group>
<article-title>Interplay between ROS and autophagy in cancer cells, from tumor initiation to cancer therapy</article-title>
<source>Redox Biol.</source>
<year>2015</year>
<volume>4</volume>
<fpage>184</fpage>
<lpage>192</lpage>
<pub-id pub-id-type="doi">10.1016/j.redox.2014.12.003</pub-id>
<pub-id pub-id-type="pmid">25590798</pub-id>
</element-citation>
</ref>
<ref id="B210-cancers-11-01030">
<label>210.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Son</surname>
<given-names>Y.-O.</given-names>
</name>
<name>
<surname>Wang</surname>
<given-names>X.</given-names>
</name>
<name>
<surname>Hitron</surname>
<given-names>J.A.</given-names>
</name>
<name>
<surname>Zhang</surname>
<given-names>Z.</given-names>
</name>
<name>
<surname>Cheng</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Budhraja</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Ding</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Lee</surname>
<given-names>J.-C.</given-names>
</name>
<name>
<surname>Shi</surname>
<given-names>X.</given-names>
</name>
</person-group>
<article-title>Cadmium induces autophagy through ROS-dependent activation of the LKB1–AMPK signaling in skin epidermal cells</article-title>
<source>Toxicol. Appl. Pharmacol.</source>
<year>2011</year>
<volume>255</volume>
<fpage>287</fpage>
<lpage>296</lpage>
<pub-id pub-id-type="doi">10.1016/j.taap.2011.06.024</pub-id>
<pub-id pub-id-type="pmid">21767558</pub-id>
</element-citation>
</ref>
<ref id="B211-cancers-11-01030">
<label>211.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Boyer-Guittaut</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Poillet</surname>
<given-names>L.</given-names>
</name>
<name>
<surname>Liang</surname>
<given-names>Q.</given-names>
</name>
<name>
<surname>Bôle-Richard</surname>
<given-names>E.</given-names>
</name>
<name>
<surname>Ouyang</surname>
<given-names>X.</given-names>
</name>
<name>
<surname>Benavides</surname>
<given-names>G.A.</given-names>
</name>
<name>
<surname>Chakrama</surname>
<given-names>F.-Z.</given-names>
</name>
<name>
<surname>Fraichard</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Darley-Usmar</surname>
<given-names>V.M.</given-names>
</name>
<name>
<surname>Despouy</surname>
<given-names>G.</given-names>
</name>
</person-group>
<article-title>The role of GABARAPL1/GEC1 in autophagic flux and mitochondrial quality control in MDA-MB-436 breast cancer cells</article-title>
<source>Autophagy</source>
<year>2014</year>
<volume>10</volume>
<fpage>986</fpage>
<lpage>1003</lpage>
<pub-id pub-id-type="doi">10.4161/auto.28390</pub-id>
<pub-id pub-id-type="pmid">24879149</pub-id>
</element-citation>
</ref>
<ref id="B212-cancers-11-01030">
<label>212.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Cai</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Niu</surname>
<given-names>X.</given-names>
</name>
<name>
<surname>Chen</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Hu</surname>
<given-names>Q.</given-names>
</name>
<name>
<surname>Shi</surname>
<given-names>G.</given-names>
</name>
<name>
<surname>Wu</surname>
<given-names>H.</given-names>
</name>
<name>
<surname>Wang</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Yi</surname>
<given-names>J.</given-names>
</name>
</person-group>
<article-title>Emodin-induced generation of reactive oxygen species inhibits RhoA activation to sensitize gastric carcinoma cells to anoikis</article-title>
<source>Neoplasia</source>
<year>2008</year>
<volume>10</volume>
<fpage>41</fpage>
<lpage>51</lpage>
<pub-id pub-id-type="doi">10.1593/neo.07754</pub-id>
<pub-id pub-id-type="pmid">18231637</pub-id>
</element-citation>
</ref>
<ref id="B213-cancers-11-01030">
<label>213.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Ghavami</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Asoodeh</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Klonisch</surname>
<given-names>T.</given-names>
</name>
<name>
<surname>Halayko</surname>
<given-names>A.J.</given-names>
</name>
<name>
<surname>Kadkhoda</surname>
<given-names>K.</given-names>
</name>
<name>
<surname>Kroczak</surname>
<given-names>T.J.</given-names>
</name>
<name>
<surname>Gibson</surname>
<given-names>S.B.</given-names>
</name>
<name>
<surname>Booy</surname>
<given-names>E.P.</given-names>
</name>
<name>
<surname>Naderi-Manesh</surname>
<given-names>H.</given-names>
</name>
<name>
<surname>Los</surname>
<given-names>M.</given-names>
</name>
</person-group>
<article-title>Brevinin-2R1 semi-selectively kills cancer cells by a distinct mechanism, which involves the lysosomal-mitochondrial death pathway</article-title>
<source>J. Cell. Mol. Med.</source>
<year>2008</year>
<volume>12</volume>
<fpage>1005</fpage>
<lpage>1022</lpage>
<pub-id pub-id-type="doi">10.1111/j.1582-4934.2008.00129.x</pub-id>
<pub-id pub-id-type="pmid">18494941</pub-id>
</element-citation>
</ref>
<ref id="B214-cancers-11-01030">
<label>214.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Kong</surname>
<given-names>Q.</given-names>
</name>
<name>
<surname>Kleinschmidt-DeMasters</surname>
<given-names>B.K.</given-names>
</name>
<name>
<surname>Lillehei</surname>
<given-names>K.O.</given-names>
</name>
</person-group>
<article-title>Intralesionally implanted cisplatin plus systemic carmustine for the treatment of brain tumor in rats</article-title>
<source>J. Surg. Oncol.</source>
<year>1998</year>
<volume>69</volume>
<fpage>76</fpage>
<lpage>82</lpage>
<pub-id pub-id-type="doi">10.1002/(SICI)1096-9098(199810)69:2<76::AID-JSO6>3.0.CO;2-9</pub-id>
<pub-id pub-id-type="pmid">9808509</pub-id>
</element-citation>
</ref>
<ref id="B215-cancers-11-01030">
<label>215.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Feinendegen</surname>
<given-names>L.</given-names>
</name>
</person-group>
<article-title>Reactive oxygen species in cell responses to toxic agents</article-title>
<source>Hum. Exp. Toxicol.</source>
<year>2002</year>
<volume>21</volume>
<fpage>85</fpage>
<lpage>90</lpage>
<pub-id pub-id-type="doi">10.1191/0960327102ht216oa</pub-id>
<pub-id pub-id-type="pmid">12102502</pub-id>
</element-citation>
</ref>
<ref id="B216-cancers-11-01030">
<label>216.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Tan</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Sagara</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Liu</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Maher</surname>
<given-names>P.</given-names>
</name>
<name>
<surname>Schubert</surname>
<given-names>D.</given-names>
</name>
</person-group>
<article-title>The regulation of reactive oxygen species production during programmed cell death</article-title>
<source>J. Cell Biol.</source>
<year>1998</year>
<volume>141</volume>
<fpage>1423</fpage>
<lpage>1432</lpage>
<pub-id pub-id-type="doi">10.1083/jcb.141.6.1423</pub-id>
<pub-id pub-id-type="pmid">9628898</pub-id>
</element-citation>
</ref>
<ref id="B217-cancers-11-01030">
<label>217.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Pelicano</surname>
<given-names>H.</given-names>
</name>
<name>
<surname>Feng</surname>
<given-names>L.</given-names>
</name>
<name>
<surname>Zhou</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Carew</surname>
<given-names>J.S.</given-names>
</name>
<name>
<surname>Hileman</surname>
<given-names>E.O.</given-names>
</name>
<name>
<surname>Plunkett</surname>
<given-names>W.</given-names>
</name>
<name>
<surname>Keating</surname>
<given-names>M.J.</given-names>
</name>
<name>
<surname>Huang</surname>
<given-names>P.</given-names>
</name>
</person-group>
<article-title>Inhibition of mitochondrial respiration a novel strategy to enhance drug-induced apoptosis in human leukemia cells by a reactive oxygen species-mediated mechanism</article-title>
<source>J. Biol. Chem.</source>
<year>2003</year>
<volume>278</volume>
<fpage>37832</fpage>
<lpage>37839</lpage>
<pub-id pub-id-type="doi">10.1074/jbc.M301546200</pub-id>
<pub-id pub-id-type="pmid">12853461</pub-id>
</element-citation>
</ref>
<ref id="B218-cancers-11-01030">
<label>218.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Kim</surname>
<given-names>J.-W.</given-names>
</name>
<name>
<surname>Tchernyshyov</surname>
<given-names>I.</given-names>
</name>
<name>
<surname>Semenza</surname>
<given-names>G.L.</given-names>
</name>
<name>
<surname>Dang</surname>
<given-names>C.V.</given-names>
</name>
</person-group>
<article-title>HIF-1-mediated expression of pyruvate dehydrogenase kinase: A metabolic switch required for cellular adaptation to hypoxia</article-title>
<source>Cell Metab.</source>
<year>2006</year>
<volume>3</volume>
<fpage>177</fpage>
<lpage>185</lpage>
<pub-id pub-id-type="doi">10.1016/j.cmet.2006.02.002</pub-id>
<pub-id pub-id-type="pmid">16517405</pub-id>
</element-citation>
</ref>
<ref id="B219-cancers-11-01030">
<label>219.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Zamzami</surname>
<given-names>N.</given-names>
</name>
<name>
<surname>Marchetti</surname>
<given-names>P.</given-names>
</name>
<name>
<surname>Castedo</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Decaudin</surname>
<given-names>D.</given-names>
</name>
<name>
<surname>Macho</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Hirsch</surname>
<given-names>T.</given-names>
</name>
<name>
<surname>Susin</surname>
<given-names>S.A.</given-names>
</name>
<name>
<surname>Petit</surname>
<given-names>P.X.</given-names>
</name>
<name>
<surname>Mignotte</surname>
<given-names>B.</given-names>
</name>
<name>
<surname>Kroemer</surname>
<given-names>G.</given-names>
</name>
</person-group>
<article-title>Sequential reduction of mitochondrial transmembrane potential and generation of reactive oxygen species in early programmed cell death</article-title>
<source>J. Exp. Med.</source>
<year>1995</year>
<volume>182</volume>
<fpage>367</fpage>
<lpage>377</lpage>
<pub-id pub-id-type="doi">10.1084/jem.182.2.367</pub-id>
<pub-id pub-id-type="pmid">7629499</pub-id>
</element-citation>
</ref>
<ref id="B220-cancers-11-01030">
<label>220.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Boya</surname>
<given-names>P.</given-names>
</name>
<name>
<surname>Gonzalez-Polo</surname>
<given-names>R.-A.</given-names>
</name>
<name>
<surname>Poncet</surname>
<given-names>D.</given-names>
</name>
<name>
<surname>Andreau</surname>
<given-names>K.</given-names>
</name>
<name>
<surname>Vieira</surname>
<given-names>H.L.</given-names>
</name>
<name>
<surname>Roumier</surname>
<given-names>T.</given-names>
</name>
<name>
<surname>Perfettini</surname>
<given-names>J.-L.</given-names>
</name>
<name>
<surname>Kroemer</surname>
<given-names>G.</given-names>
</name>
</person-group>
<article-title>Mitochondrial membrane permeabilization is a critical step of lysosome-initiated apoptosis induced by hydroxychloroquine</article-title>
<source>Oncogene</source>
<year>2003</year>
<volume>22</volume>
<fpage>3927</fpage>
<lpage>3936</lpage>
<pub-id pub-id-type="doi">10.1038/sj.onc.1206622</pub-id>
<pub-id pub-id-type="pmid">12813466</pub-id>
</element-citation>
</ref>
<ref id="B221-cancers-11-01030">
<label>221.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Chomyn</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Attardi</surname>
<given-names>G.</given-names>
</name>
</person-group>
<article-title>MtDNA mutations in aging and apoptosis</article-title>
<source>Biochem. Biophys. Res. Commun.</source>
<year>2003</year>
<volume>304</volume>
<fpage>519</fpage>
<lpage>529</lpage>
<pub-id pub-id-type="doi">10.1016/S0006-291X(03)00625-9</pub-id>
<pub-id pub-id-type="pmid">12729587</pub-id>
</element-citation>
</ref>
<ref id="B222-cancers-11-01030">
<label>222.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Hall</surname>
<given-names>M.D.</given-names>
</name>
<name>
<surname>Handley</surname>
<given-names>M.D.</given-names>
</name>
<name>
<surname>Gottesman</surname>
<given-names>M.M.</given-names>
</name>
</person-group>
<article-title>Is resistance useless? Multidrug resistance and collateral sensitivity</article-title>
<source>Trends Pharmacol. Sci.</source>
<year>2009</year>
<volume>30</volume>
<fpage>546</fpage>
<lpage>556</lpage>
<pub-id pub-id-type="doi">10.1016/j.tips.2009.07.003</pub-id>
<pub-id pub-id-type="pmid">19762091</pub-id>
</element-citation>
</ref>
<ref id="B223-cancers-11-01030">
<label>223.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Pluchino</surname>
<given-names>K.M.</given-names>
</name>
<name>
<surname>Hall</surname>
<given-names>M.D.</given-names>
</name>
<name>
<surname>Goldsborough</surname>
<given-names>A.S.</given-names>
</name>
<name>
<surname>Callaghan</surname>
<given-names>R.</given-names>
</name>
<name>
<surname>Gottesman</surname>
<given-names>M.M.</given-names>
</name>
</person-group>
<article-title>Collateral sensitivity as a strategy against cancer multidrug resistance</article-title>
<source>Drug Resist. Updat.</source>
<year>2012</year>
<volume>15</volume>
<fpage>98</fpage>
<lpage>105</lpage>
<pub-id pub-id-type="doi">10.1016/j.drup.2012.03.002</pub-id>
<pub-id pub-id-type="pmid">22483810</pub-id>
</element-citation>
</ref>
<ref id="B224-cancers-11-01030">
<label>224.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Wartenberg</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Richter</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Datchev</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Günther</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Milosevic</surname>
<given-names>N.</given-names>
</name>
<name>
<surname>Bekhite</surname>
<given-names>M.M.</given-names>
</name>
<name>
<surname>Figulla</surname>
<given-names>H.R.</given-names>
</name>
<name>
<surname>Aran</surname>
<given-names>J.M.</given-names>
</name>
<name>
<surname>Pétriz</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Sauer</surname>
<given-names>H.</given-names>
</name>
</person-group>
<article-title>Glycolytic pyruvate regulates P-Glycoprotein expression in multicellular tumor spheroids via modulation of the intracellular redox state</article-title>
<source>J. Cell. Biochem.</source>
<year>2010</year>
<volume>109</volume>
<fpage>434</fpage>
<lpage>446</lpage>
<pub-id pub-id-type="doi">10.1002/jcb.22422</pub-id>
<pub-id pub-id-type="pmid">19950199</pub-id>
</element-citation>
</ref>
<ref id="B225-cancers-11-01030">
<label>225.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Pandey</surname>
<given-names>V.</given-names>
</name>
<name>
<surname>Chaube</surname>
<given-names>B.</given-names>
</name>
<name>
<surname>Bhat</surname>
<given-names>M.K.</given-names>
</name>
</person-group>
<article-title>Hyperglycemia regulates MDR-1, drug accumulation and ROS levels causing increased toxicity of carboplatin and 5-fluorouracil in MCF-7 cells</article-title>
<source>J. Cell. Biochem.</source>
<year>2011</year>
<volume>112</volume>
<fpage>2942</fpage>
<lpage>2952</lpage>
<pub-id pub-id-type="doi">10.1002/jcb.23210</pub-id>
<pub-id pub-id-type="pmid">21630327</pub-id>
</element-citation>
</ref>
<ref id="B226-cancers-11-01030">
<label>226.</label>
<element-citation publication-type="book">
<person-group person-group-type="author">
<name>
<surname>Bakadlag</surname>
<given-names>R.</given-names>
</name>
</person-group>
<article-title>Collateral Sensitivity of P-glycoprotein Expressing Multidrug Resistant Cells to Tamoxifen is Mediated Through Oxidative Stress</article-title>
<source>Master of Science Thesis</source>
<publisher-name>McGill University</publisher-name>
<publisher-loc>Montreal, QC, Canada</publisher-loc>
<year>2016</year>
</element-citation>
</ref>
<ref id="B227-cancers-11-01030">
<label>227.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Teppo</surname>
<given-names>H.-R.</given-names>
</name>
<name>
<surname>Soini</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Karihtala</surname>
<given-names>P.</given-names>
</name>
</person-group>
<article-title>Reactive oxygen species-mediated mechanisms of action of targeted cancer therapy</article-title>
<source>Oxid. Med. Cell Longev.</source>
<year>2017</year>
<volume>2017</volume>
<fpage>1485283</fpage>
<pub-id pub-id-type="doi">10.1155/2017/1485283</pub-id>
<pub-id pub-id-type="pmid">28698765</pub-id>
</element-citation>
</ref>
<ref id="B228-cancers-11-01030">
<label>228.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Wan</surname>
<given-names>G.-Y.</given-names>
</name>
<name>
<surname>Liu</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Chen</surname>
<given-names>B.-W.</given-names>
</name>
<name>
<surname>Liu</surname>
<given-names>Y.-Y.</given-names>
</name>
<name>
<surname>Wang</surname>
<given-names>Y.-S.</given-names>
</name>
<name>
<surname>Zhang</surname>
<given-names>N.</given-names>
</name>
</person-group>
<article-title>Recent advances of sonodynamic therapy in cancer treatment</article-title>
<source>Cancer Biol. Med.</source>
<year>2016</year>
<volume>13</volume>
<fpage>325</fpage>
<lpage>338</lpage>
<pub-id pub-id-type="doi">10.20892/j.issn.2095-3941.2016.0068</pub-id>
<pub-id pub-id-type="pmid">27807500</pub-id>
</element-citation>
</ref>
<ref id="B229-cancers-11-01030">
<label>229.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Liu</surname>
<given-names>L.</given-names>
</name>
<name>
<surname>He</surname>
<given-names>H.</given-names>
</name>
<name>
<surname>Liang</surname>
<given-names>R.</given-names>
</name>
<name>
<surname>Yi</surname>
<given-names>H.</given-names>
</name>
<name>
<surname>Meng</surname>
<given-names>X.</given-names>
</name>
<name>
<surname>Chen</surname>
<given-names>Z.</given-names>
</name>
<name>
<surname>Pan</surname>
<given-names>H.</given-names>
</name>
<name>
<surname>Ma</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Cai</surname>
<given-names>L.</given-names>
</name>
</person-group>
<article-title>ROS-inducing micelles sensitize tumor-associated macrophages to TLR3 stimulation for potent immunotherapy</article-title>
<source>Biomacromolecules</source>
<year>2018</year>
<volume>19</volume>
<fpage>2146</fpage>
<lpage>2155</lpage>
<pub-id pub-id-type="doi">10.1021/acs.biomac.8b00239</pub-id>
<pub-id pub-id-type="pmid">29669207</pub-id>
</element-citation>
</ref>
<ref id="B230-cancers-11-01030">
<label>230.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Brenneisen</surname>
<given-names>P.</given-names>
</name>
<name>
<surname>Reichert</surname>
<given-names>A.S.</given-names>
</name>
</person-group>
<article-title>Nanotherapy and Reactive Oxygen Species (ROS) in Cancer: A Novel Perspective</article-title>
<source>Antioxidants</source>
<year>2018</year>
<volume>7</volume>
<elocation-id>31</elocation-id>
<pub-id pub-id-type="doi">10.3390/antiox7020031</pub-id>
</element-citation>
</ref>
<ref id="B231-cancers-11-01030">
<label>231.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Lee</surname>
<given-names>H.</given-names>
</name>
<name>
<surname>Shon</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>Kim</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Kim</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Kim</surname>
<given-names>G.</given-names>
</name>
<name>
<surname>Kong</surname>
<given-names>M.G.</given-names>
</name>
</person-group>
<article-title>Degradation of adhesion molecules of G361 melanoma cells by a non-thermal atmospheric pressure microplasma</article-title>
<source>New J. Phys.</source>
<year>2009</year>
<volume>11</volume>
<fpage>115026</fpage>
<pub-id pub-id-type="doi">10.1088/1367-2630/11/11/115026</pub-id>
</element-citation>
</ref>
<ref id="B232-cancers-11-01030">
<label>232.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Kim</surname>
<given-names>G.</given-names>
</name>
<name>
<surname>Kim</surname>
<given-names>W.</given-names>
</name>
<name>
<surname>Kim</surname>
<given-names>K.</given-names>
</name>
<name>
<surname>Lee</surname>
<given-names>J.</given-names>
</name>
</person-group>
<article-title>DNA damage and mitochondria dysfunction in cell apoptosis induced by nonthermal air plasma</article-title>
<source>Appl. Phys. Lett.</source>
<year>2010</year>
<volume>96</volume>
<fpage>021502</fpage>
<pub-id pub-id-type="doi">10.1063/1.3292206</pub-id>
</element-citation>
</ref>
<ref id="B233-cancers-11-01030">
<label>233.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Watson</surname>
<given-names>J.</given-names>
</name>
</person-group>
<article-title>Oxidants, antioxidants and the current incurability of metastatic cancers</article-title>
<source>Open Biol.</source>
<year>2013</year>
<volume>3</volume>
<fpage>120144</fpage>
<pub-id pub-id-type="doi">10.1098/rsob.120144</pub-id>
<pub-id pub-id-type="pmid">23303309</pub-id>
</element-citation>
</ref>
<ref id="B234-cancers-11-01030">
<label>234.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Yan</surname>
<given-names>D.</given-names>
</name>
<name>
<surname>Talbot</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Nourmohammadi</surname>
<given-names>N.</given-names>
</name>
<name>
<surname>Sherman</surname>
<given-names>J.H.</given-names>
</name>
<name>
<surname>Cheng</surname>
<given-names>X.</given-names>
</name>
<name>
<surname>Keidar</surname>
<given-names>M.</given-names>
</name>
</person-group>
<article-title>Toward understanding the selective anticancer capacity of cold atmospheric plasma—A model based on aquaporins</article-title>
<source>Biointerphases</source>
<year>2015</year>
<volume>10</volume>
<fpage>040801</fpage>
<pub-id pub-id-type="doi">10.1116/1.4938020</pub-id>
<pub-id pub-id-type="pmid">26700469</pub-id>
</element-citation>
</ref>
<ref id="B235-cancers-11-01030">
<label>235.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Georgescu</surname>
<given-names>N.</given-names>
</name>
<name>
<surname>Lupu</surname>
<given-names>A.R.</given-names>
</name>
</person-group>
<article-title>Tumoral and normal cells treatment with high-voltage pulsed cold atmospheric plasma jets</article-title>
<source>IEEE Trans. Plasma Sci.</source>
<year>2010</year>
<volume>38</volume>
<fpage>1949</fpage>
<lpage>1955</lpage>
<pub-id pub-id-type="doi">10.1109/TPS.2010.2041075</pub-id>
</element-citation>
</ref>
<ref id="B236-cancers-11-01030">
<label>236.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Kim</surname>
<given-names>J.Y.</given-names>
</name>
<name>
<surname>Ballato</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Foy</surname>
<given-names>P.</given-names>
</name>
<name>
<surname>Hawkins</surname>
<given-names>T.</given-names>
</name>
<name>
<surname>Wei</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Li</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Kim</surname>
<given-names>S.-O.</given-names>
</name>
</person-group>
<article-title>Apoptosis of lung carcinoma cells induced by a flexible optical fiber-based cold microplasma</article-title>
<source>Biosens. Bioelectron.</source>
<year>2011</year>
<volume>28</volume>
<fpage>333</fpage>
<lpage>338</lpage>
<pub-id pub-id-type="doi">10.1016/j.bios.2011.07.039</pub-id>
<pub-id pub-id-type="pmid">21820891</pub-id>
</element-citation>
</ref>
<ref id="B237-cancers-11-01030">
<label>237.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Ishaq</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Evans</surname>
<given-names>M.D.</given-names>
</name>
<name>
<surname>Ostrikov</surname>
<given-names>K.K.</given-names>
</name>
</person-group>
<article-title>Atmospheric pressure gas plasma-induced colorectal cancer cell death is mediated by Nox2–ASK1 apoptosis pathways and oxidative stress is mitigated by Srx–Nrf2 anti-oxidant system</article-title>
<source>Biochimica et Biophysica Acta (BBA)-Mol. Cell Res.</source>
<year>2014</year>
<volume>1843</volume>
<fpage>2827</fpage>
<lpage>2837</lpage>
<pub-id pub-id-type="doi">10.1016/j.bbamcr.2014.08.011</pub-id>
<pub-id pub-id-type="pmid">25173814</pub-id>
</element-citation>
</ref>
<ref id="B238-cancers-11-01030">
<label>238.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Kaushik</surname>
<given-names>N.K.</given-names>
</name>
<name>
<surname>Kaushik</surname>
<given-names>N.</given-names>
</name>
<name>
<surname>Park</surname>
<given-names>D.</given-names>
</name>
<name>
<surname>Choi</surname>
<given-names>E.H.</given-names>
</name>
</person-group>
<article-title>Altered antioxidant system stimulates dielectric barrier discharge plasma-induced cell death for solid tumor cell treatment</article-title>
<source>PLoS ONE</source>
<year>2014</year>
<volume>9</volume>
<elocation-id>e103349</elocation-id>
<pub-id pub-id-type="doi">10.1371/journal.pone.0103349</pub-id>
<pub-id pub-id-type="pmid">25068311</pub-id>
</element-citation>
</ref>
<ref id="B239-cancers-11-01030">
<label>239.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Volotskova</surname>
<given-names>O.</given-names>
</name>
<name>
<surname>Hawley</surname>
<given-names>T.S.</given-names>
</name>
<name>
<surname>Stepp</surname>
<given-names>M.A.</given-names>
</name>
<name>
<surname>Keidar</surname>
<given-names>M.</given-names>
</name>
</person-group>
<article-title>Targeting the cancer cell cycle by cold atmospheric plasma</article-title>
<source>Sci. Rep.</source>
<year>2012</year>
<volume>2</volume>
<fpage>636</fpage>
<pub-id pub-id-type="doi">10.1038/srep00636</pub-id>
<pub-id pub-id-type="pmid">22957140</pub-id>
</element-citation>
</ref>
<ref id="B240-cancers-11-01030">
<label>240.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Kumar</surname>
<given-names>A.P.</given-names>
</name>
<name>
<surname>Loo</surname>
<given-names>S.Y.</given-names>
</name>
<name>
<surname>Shin</surname>
<given-names>S.W.</given-names>
</name>
<name>
<surname>Tan</surname>
<given-names>T.Z.</given-names>
</name>
<name>
<surname>Eng</surname>
<given-names>C.B.</given-names>
</name>
<name>
<surname>Singh</surname>
<given-names>R.</given-names>
</name>
<name>
<surname>Putti</surname>
<given-names>T.C.</given-names>
</name>
<name>
<surname>Ong</surname>
<given-names>C.W.</given-names>
</name>
<name>
<surname>Salto-Tellez</surname>
<given-names>M.</given-names>
</name>
</person-group>
<article-title>Manganese superoxide dismutase is a promising target for enhancing chemosensitivity of basal-like breast carcinoma</article-title>
<source>Antioxid. Redox Signal.</source>
<year>2014</year>
<volume>20</volume>
<fpage>2326</fpage>
<lpage>2346</lpage>
<pub-id pub-id-type="doi">10.1089/ars.2013.5295</pub-id>
<pub-id pub-id-type="pmid">23964924</pub-id>
</element-citation>
</ref>
<ref id="B241-cancers-11-01030">
<label>241.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Vaseva</surname>
<given-names>A.V.</given-names>
</name>
<name>
<surname>Marchenko</surname>
<given-names>N.D.</given-names>
</name>
<name>
<surname>Ji</surname>
<given-names>K.</given-names>
</name>
<name>
<surname>Tsirka</surname>
<given-names>S.E.</given-names>
</name>
<name>
<surname>Holzmann</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Moll</surname>
<given-names>U.M.</given-names>
</name>
</person-group>
<article-title>p53 opens the mitochondrial permeability transition pore to trigger necrosis</article-title>
<source>Cell</source>
<year>2012</year>
<volume>149</volume>
<fpage>1536</fpage>
<lpage>1548</lpage>
<pub-id pub-id-type="doi">10.1016/j.cell.2012.05.014</pub-id>
<pub-id pub-id-type="pmid">22726440</pub-id>
</element-citation>
</ref>
<ref id="B242-cancers-11-01030">
<label>242.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Joerger</surname>
<given-names>A.C.</given-names>
</name>
<name>
<surname>Fersht</surname>
<given-names>A.R.</given-names>
</name>
</person-group>
<article-title>Structural biology of the tumor suppressor p53</article-title>
<source>Annu. Rev. Biochem.</source>
<year>2008</year>
<volume>77</volume>
<fpage>557</fpage>
<lpage>582</lpage>
<pub-id pub-id-type="doi">10.1146/annurev.biochem.77.060806.091238</pub-id>
<pub-id pub-id-type="pmid">18410249</pub-id>
</element-citation>
</ref>
<ref id="B243-cancers-11-01030">
<label>243.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Yan</surname>
<given-names>N.</given-names>
</name>
<name>
<surname>Shi</surname>
<given-names>Y.</given-names>
</name>
</person-group>
<article-title>Mechanisms of apoptosis through structural biology</article-title>
<source>Annu. Rev. Cell Dev. Biol.</source>
<year>2005</year>
<volume>21</volume>
<fpage>35</fpage>
<lpage>56</lpage>
<pub-id pub-id-type="doi">10.1146/annurev.cellbio.21.012704.131040</pub-id>
<pub-id pub-id-type="pmid">16212486</pub-id>
</element-citation>
</ref>
<ref id="B244-cancers-11-01030">
<label>244.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Yuan</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Yu</surname>
<given-names>X.</given-names>
</name>
<name>
<surname>Asara</surname>
<given-names>J.M.</given-names>
</name>
<name>
<surname>Heuser</surname>
<given-names>J.E.</given-names>
</name>
<name>
<surname>Ludtke</surname>
<given-names>S.J.</given-names>
</name>
<name>
<surname>Akey</surname>
<given-names>C.W.</given-names>
</name>
</person-group>
<article-title>The holo-apoptosome: Activation of procaspase-9 and interactions with caspase-3</article-title>
<source>Structure</source>
<year>2011</year>
<volume>19</volume>
<fpage>1084</fpage>
<lpage>1096</lpage>
<pub-id pub-id-type="doi">10.1016/j.str.2011.07.001</pub-id>
<pub-id pub-id-type="pmid">21827945</pub-id>
</element-citation>
</ref>
<ref id="B245-cancers-11-01030">
<label>245.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Slee</surname>
<given-names>E.A.</given-names>
</name>
<name>
<surname>Harte</surname>
<given-names>M.T.</given-names>
</name>
<name>
<surname>Kluck</surname>
<given-names>R.M.</given-names>
</name>
<name>
<surname>Wolf</surname>
<given-names>B.B.</given-names>
</name>
<name>
<surname>Casiano</surname>
<given-names>C.A.</given-names>
</name>
<name>
<surname>Newmeyer</surname>
<given-names>D.D.</given-names>
</name>
<name>
<surname>Wang</surname>
<given-names>H.-G.</given-names>
</name>
<name>
<surname>Reed</surname>
<given-names>J.C.</given-names>
</name>
<name>
<surname>Nicholson</surname>
<given-names>D.W.</given-names>
</name>
<name>
<surname>Alnemri</surname>
<given-names>E.S.</given-names>
</name>
</person-group>
<article-title>Ordering the cytochrome c–initiated caspase cascade: Hierarchical activation of caspases-2,-3,-6,-7,-8, and-10 in a caspase-9–dependent manner</article-title>
<source>J. Cell Biol.</source>
<year>1999</year>
<volume>144</volume>
<fpage>281</fpage>
<lpage>292</lpage>
<pub-id pub-id-type="doi">10.1083/jcb.144.2.281</pub-id>
<pub-id pub-id-type="pmid">9922454</pub-id>
</element-citation>
</ref>
<ref id="B246-cancers-11-01030">
<label>246.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Zou</surname>
<given-names>H.</given-names>
</name>
<name>
<surname>Li</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Liu</surname>
<given-names>X.</given-names>
</name>
<name>
<surname>Wang</surname>
<given-names>X.</given-names>
</name>
</person-group>
<article-title>An APAF-1· cytochrome c multimeric complex is a functional apoptosome that activates procaspase-9</article-title>
<source>J. Biol. Chem.</source>
<year>1999</year>
<volume>274</volume>
<fpage>11549</fpage>
<lpage>11556</lpage>
<pub-id pub-id-type="doi">10.1074/jbc.274.17.11549</pub-id>
<pub-id pub-id-type="pmid">10206961</pub-id>
</element-citation>
</ref>
<ref id="B247-cancers-11-01030">
<label>247.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Ishaq</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Bazaka</surname>
<given-names>K.</given-names>
</name>
<name>
<surname>Ostrikov</surname>
<given-names>K.</given-names>
</name>
</person-group>
<article-title>Pro-apoptotic NOXA is implicated in atmospheric-pressure plasma-induced melanoma cell death</article-title>
<source>J. Phys. D Appl. Phys.</source>
<year>2015</year>
<volume>48</volume>
<fpage>464002</fpage>
<pub-id pub-id-type="doi">10.1088/0022-3727/48/46/464002</pub-id>
</element-citation>
</ref>
<ref id="B248-cancers-11-01030">
<label>248.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Denicola</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Souza</surname>
<given-names>J.M.</given-names>
</name>
<name>
<surname>Radi</surname>
<given-names>R.</given-names>
</name>
</person-group>
<article-title>Diffusion of peroxynitrite across erythrocyte membranes</article-title>
<source>Proc. Natl. Acad. Sci. USA</source>
<year>1998</year>
<volume>95</volume>
<fpage>3566</fpage>
<lpage>3571</lpage>
<pub-id pub-id-type="doi">10.1073/pnas.95.7.3566</pub-id>
<pub-id pub-id-type="pmid">9520406</pub-id>
</element-citation>
</ref>
<ref id="B249-cancers-11-01030">
<label>249.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Shi</surname>
<given-names>Y.</given-names>
</name>
</person-group>
<article-title>Mechanisms of caspase activation and inhibition during apoptosis</article-title>
<source>Mol. Cell</source>
<year>2002</year>
<volume>9</volume>
<fpage>459</fpage>
<lpage>470</lpage>
<pub-id pub-id-type="doi">10.1016/S1097-2765(02)00482-3</pub-id>
<pub-id pub-id-type="pmid">11931755</pub-id>
</element-citation>
</ref>
<ref id="B250-cancers-11-01030">
<label>250.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Kaushik</surname>
<given-names>N.</given-names>
</name>
<name>
<surname>Uddin</surname>
<given-names>N.</given-names>
</name>
<name>
<surname>Sim</surname>
<given-names>G.B.</given-names>
</name>
<name>
<surname>Hong</surname>
<given-names>Y.J.</given-names>
</name>
<name>
<surname>Baik</surname>
<given-names>K.Y.</given-names>
</name>
<name>
<surname>Kim</surname>
<given-names>C.H.</given-names>
</name>
<name>
<surname>Lee</surname>
<given-names>S.J.</given-names>
</name>
<name>
<surname>Kaushik</surname>
<given-names>N.K.</given-names>
</name>
<name>
<surname>Choi</surname>
<given-names>E.H.</given-names>
</name>
</person-group>
<article-title>Responses of solid tumor cells in DMEM to reactive oxygen species generated by non-thermal plasma and chemically induced ROS systems</article-title>
<source>Sci. Rep.</source>
<year>2015</year>
<volume>5</volume>
<fpage>8587</fpage>
<pub-id pub-id-type="doi">10.1038/srep08587</pub-id>
<pub-id pub-id-type="pmid">25715710</pub-id>
</element-citation>
</ref>
<ref id="B251-cancers-11-01030">
<label>251.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Han</surname>
<given-names>X.</given-names>
</name>
<name>
<surname>Klas</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Liu</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Sharon Stack</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Ptasinska</surname>
<given-names>S.</given-names>
</name>
</person-group>
<article-title>DNA damage in oral cancer cells induced by nitrogen atmospheric pressure plasma jets</article-title>
<source>Appl. Phys. Lett.</source>
<year>2013</year>
<volume>102</volume>
<fpage>233703</fpage>
<pub-id pub-id-type="doi">10.1063/1.4809830</pub-id>
</element-citation>
</ref>
<ref id="B252-cancers-11-01030">
<label>252.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Azzariti</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Lacobazzi</surname>
<given-names>R.M.</given-names>
</name>
<name>
<surname>Di Fonte</surname>
<given-names>R.</given-names>
</name>
<name>
<surname>Porcelli</surname>
<given-names>L.</given-names>
</name>
<name>
<surname>Gristina</surname>
<given-names>R.</given-names>
</name>
<name>
<surname>Favia</surname>
<given-names>P.</given-names>
</name>
<name>
<surname>Fracassi</surname>
<given-names>F.</given-names>
</name>
<name>
<surname>Trizio</surname>
<given-names>I.</given-names>
</name>
<name>
<surname>Silvestris</surname>
<given-names>N.</given-names>
</name>
<name>
<surname>Guida</surname>
<given-names>G.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Plasma-activated medium triggers cell death and the presentation of immune activating danger signals in melanoma and pancreatic cancer cells</article-title>
<source>Sci. Rep.</source>
<year>2019</year>
<volume>9</volume>
<fpage>4099</fpage>
<pub-id pub-id-type="doi">10.1038/s41598-019-40637-z</pub-id>
<pub-id pub-id-type="pmid">30858524</pub-id>
</element-citation>
</ref>
<ref id="B253-cancers-11-01030">
<label>253.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Smolkova</surname>
<given-names>B.</given-names>
</name>
<name>
<surname>Lunova</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Lynnyk</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Uzhytchak</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Churpita</surname>
<given-names>O.</given-names>
</name>
<name>
<surname>Jirsa</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Kubinova</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Lunov</surname>
<given-names>O.</given-names>
</name>
<name>
<surname>Dejneka</surname>
<given-names>A.</given-names>
</name>
</person-group>
<article-title>Non-Thermal Plasma, as a New Physicochemical Source, to Induce Redox Imbalance and Subsequent Cell Death in Liver Cancer Cell Lines</article-title>
<source>Cell. Physiol. Biochem.</source>
<year>2019</year>
<volume>52</volume>
<fpage>119</fpage>
<lpage>140</lpage>
<pub-id pub-id-type="pmid">30790509</pub-id>
</element-citation>
</ref>
<ref id="B254-cancers-11-01030">
<label>254.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Santos</surname>
<given-names>G.M.P.</given-names>
</name>
<name>
<surname>Oliveira</surname>
<given-names>S.C.</given-names>
</name>
<name>
<surname>Monteiro</surname>
<given-names>J.C.</given-names>
</name>
<name>
<surname>Fagnani</surname>
<given-names>S.R.</given-names>
</name>
<name>
<surname>Sampaio</surname>
<given-names>F.P.</given-names>
</name>
<name>
<surname>Correia</surname>
<given-names>N.A.</given-names>
</name>
<name>
<surname>Crugeira</surname>
<given-names>P.J.</given-names>
</name>
<name>
<surname>Pinheiro</surname>
<given-names>A.L.B.</given-names>
</name>
</person-group>
<article-title>ROS-induced autophagy reduces B16F10 melanoma cell proliferative activity</article-title>
<source>Lasers Med. Sci.</source>
<year>2018</year>
<volume>33</volume>
<fpage>1335</fpage>
<lpage>1340</lpage>
<pub-id pub-id-type="doi">10.1007/s10103-018-2489-6</pub-id>
<pub-id pub-id-type="pmid">29611065</pub-id>
</element-citation>
</ref>
<ref id="B255-cancers-11-01030">
<label>255.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Filomeni</surname>
<given-names>G.</given-names>
</name>
<name>
<surname>De Zio</surname>
<given-names>D.</given-names>
</name>
<name>
<surname>Cecconi</surname>
<given-names>F.</given-names>
</name>
</person-group>
<article-title>Oxidative stress and autophagy: The clash between damage and metabolic needs</article-title>
<source>Cell Death Differ.</source>
<year>2015</year>
<volume>22</volume>
<fpage>377</fpage>
<lpage>388</lpage>
<pub-id pub-id-type="doi">10.1038/cdd.2014.150</pub-id>
<pub-id pub-id-type="pmid">25257172</pub-id>
</element-citation>
</ref>
<ref id="B256-cancers-11-01030">
<label>256.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Liu</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Tan</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Zhang</surname>
<given-names>H.</given-names>
</name>
<name>
<surname>Kong</surname>
<given-names>X.</given-names>
</name>
<name>
<surname>Ding</surname>
<given-names>L.</given-names>
</name>
<name>
<surname>Shen</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Lan</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Cheng</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>Zhu</surname>
<given-names>T.</given-names>
</name>
<name>
<surname>Xia</surname>
<given-names>W.</given-names>
</name>
</person-group>
<article-title>Selective effects of non-thermal atmospheric plasma on triple-negative breast normal and carcinoma cells through different cell signaling pathways</article-title>
<source>Sci. Rep.</source>
<year>2017</year>
<volume>7</volume>
<fpage>7980</fpage>
<pub-id pub-id-type="doi">10.1038/s41598-017-08792-3</pub-id>
<pub-id pub-id-type="pmid">28801613</pub-id>
</element-citation>
</ref>
<ref id="B257-cancers-11-01030">
<label>257.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Kong</surname>
<given-names>A.-N.T.</given-names>
</name>
<name>
<surname>Yu</surname>
<given-names>R.</given-names>
</name>
<name>
<surname>Chen</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>Mandlekar</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Primiano</surname>
<given-names>T.</given-names>
</name>
</person-group>
<article-title>Signal transduction events elicited by natural products: Role of MAPK and caspase pathways in homeostatic response and induction of apoptosis</article-title>
<source>Arch. Pharm. Res.</source>
<year>2000</year>
<volume>23</volume>
<fpage>1</fpage>
<lpage>16</lpage>
<pub-id pub-id-type="doi">10.1007/BF02976458</pub-id>
<pub-id pub-id-type="pmid">10728649</pub-id>
</element-citation>
</ref>
<ref id="B258-cancers-11-01030">
<label>258.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Henry</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Ducrocq</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>Drapier</surname>
<given-names>J.-C.</given-names>
</name>
<name>
<surname>Servent</surname>
<given-names>D.</given-names>
</name>
<name>
<surname>Pellat</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>Guissani</surname>
<given-names>A.</given-names>
</name>
</person-group>
<article-title>Nitric oxide, a biological effector</article-title>
<source>Eur. Biophys. J.</source>
<year>1991</year>
<volume>20</volume>
<fpage>1</fpage>
<lpage>15</lpage>
<pub-id pub-id-type="doi">10.1007/BF00183275</pub-id>
<pub-id pub-id-type="pmid">1657584</pub-id>
</element-citation>
</ref>
<ref id="B259-cancers-11-01030">
<label>259.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Liedtke</surname>
<given-names>K.R.</given-names>
</name>
<name>
<surname>Bekeschus</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Kaeding</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Hackbarth</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>Kuehn</surname>
<given-names>J.-P.</given-names>
</name>
<name>
<surname>Heidecke</surname>
<given-names>C.-D.</given-names>
</name>
<name>
<surname>von Bernstorff</surname>
<given-names>W.</given-names>
</name>
<name>
<surname>von Woedtke</surname>
<given-names>T.</given-names>
</name>
<name>
<surname>Partecke</surname>
<given-names>L.I.</given-names>
</name>
</person-group>
<article-title>Non-thermal plasma-treated solution demonstrates antitumor activity against pancreatic cancer cells in vitro and in vivo</article-title>
<source>Sci. Rep.</source>
<year>2017</year>
<volume>7</volume>
<fpage>8319</fpage>
<pub-id pub-id-type="doi">10.1038/s41598-017-08560-3</pub-id>
<pub-id pub-id-type="pmid">28814809</pub-id>
</element-citation>
</ref>
<ref id="B260-cancers-11-01030">
<label>260.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Li</surname>
<given-names>W.</given-names>
</name>
<name>
<surname>Yu</surname>
<given-names>K.N.</given-names>
</name>
<name>
<surname>Ma</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Shen</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Cheng</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>Zhou</surname>
<given-names>F.</given-names>
</name>
<name>
<surname>Cai</surname>
<given-names>Z.</given-names>
</name>
<name>
<surname>Han</surname>
<given-names>W.</given-names>
</name>
</person-group>
<article-title>Non-thermal plasma induces mitochondria-mediated apoptotic signaling pathway via ROS generation in HeLa cells</article-title>
<source>Arch. Biochem. Biophys.</source>
<year>2017</year>
<volume>633</volume>
<fpage>68</fpage>
<lpage>77</lpage>
<pub-id pub-id-type="doi">10.1016/j.abb.2017.09.005</pub-id>
<pub-id pub-id-type="pmid">28893509</pub-id>
</element-citation>
</ref>
<ref id="B261-cancers-11-01030">
<label>261.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Kang</surname>
<given-names>S.U.</given-names>
</name>
<name>
<surname>Cho</surname>
<given-names>J.H.</given-names>
</name>
<name>
<surname>Chang</surname>
<given-names>J.W.</given-names>
</name>
<name>
<surname>Shin</surname>
<given-names>Y.S.</given-names>
</name>
<name>
<surname>Kim</surname>
<given-names>K.I.</given-names>
</name>
<name>
<surname>Park</surname>
<given-names>J.K.</given-names>
</name>
<name>
<surname>Yang</surname>
<given-names>S.S.</given-names>
</name>
<name>
<surname>Lee</surname>
<given-names>J.S.</given-names>
</name>
<name>
<surname>Moon</surname>
<given-names>E.</given-names>
</name>
<name>
<surname>Lee</surname>
<given-names>K.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Nonthermal plasma induces head and neck cancer cell death: The potential involvement of mitogen-activated protein kinase-dependent mitochondrial reactive oxygen species</article-title>
<source>Cell Death Dis.</source>
<year>2014</year>
<volume>5</volume>
<fpage>e1056</fpage>
<pub-id pub-id-type="doi">10.1038/cddis.2014.33</pub-id>
<pub-id pub-id-type="pmid">24525732</pub-id>
</element-citation>
</ref>
<ref id="B262-cancers-11-01030">
<label>262.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Chen</surname>
<given-names>Z.</given-names>
</name>
<name>
<surname>Lin</surname>
<given-names>L.</given-names>
</name>
<name>
<surname>Cheng</surname>
<given-names>X.</given-names>
</name>
<name>
<surname>Gjika</surname>
<given-names>E.</given-names>
</name>
<name>
<surname>Keidar</surname>
<given-names>M.</given-names>
</name>
</person-group>
<article-title>Treatment of gastric cancer cells with nonthermal atmospheric plasma generated in water</article-title>
<source>Biointerphases</source>
<year>2016</year>
<volume>11</volume>
<fpage>031010</fpage>
<pub-id pub-id-type="doi">10.1116/1.4962130</pub-id>
<pub-id pub-id-type="pmid">27604078</pub-id>
</element-citation>
</ref>
<ref id="B263-cancers-11-01030">
<label>263.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Nguyen</surname>
<given-names>N.H.</given-names>
</name>
<name>
<surname>Park</surname>
<given-names>H.J.</given-names>
</name>
<name>
<surname>Yang</surname>
<given-names>S.S.</given-names>
</name>
<name>
<surname>Choi</surname>
<given-names>K.S.</given-names>
</name>
<name>
<surname>Lee</surname>
<given-names>J.-S.</given-names>
</name>
</person-group>
<article-title>Anti-cancer efficacy of nonthermal plasma dissolved in a liquid, liquid plasma in heterogeneous cancer cells</article-title>
<source>Sci. Rep.</source>
<year>2016</year>
<volume>6</volume>
<fpage>29020</fpage>
<pub-id pub-id-type="doi">10.1038/srep29020</pub-id>
<pub-id pub-id-type="pmid">27364630</pub-id>
</element-citation>
</ref>
<ref id="B264-cancers-11-01030">
<label>264.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Karki</surname>
<given-names>S.B.</given-names>
</name>
<name>
<surname>Gupta</surname>
<given-names>T.T.</given-names>
</name>
<name>
<surname>Yildirim-Ayan</surname>
<given-names>E.</given-names>
</name>
<name>
<surname>Eisenmann</surname>
<given-names>K.M.</given-names>
</name>
<name>
<surname>Ayan</surname>
<given-names>H.</given-names>
</name>
</person-group>
<article-title>Investigation of non-thermal plasma effects on lung cancer cells within 3D collagen matrices</article-title>
<source>J. Phys. D Appl. Phys.</source>
<year>2017</year>
<volume>50</volume>
<fpage>315401</fpage>
<pub-id pub-id-type="doi">10.1088/1361-6463/aa7b10</pub-id>
</element-citation>
</ref>
<ref id="B265-cancers-11-01030">
<label>265.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Kumar</surname>
<given-names>N.</given-names>
</name>
<name>
<surname>Attri</surname>
<given-names>P.</given-names>
</name>
<name>
<surname>Choi</surname>
<given-names>E.H.</given-names>
</name>
<name>
<surname>Uhm</surname>
<given-names>H.S.</given-names>
</name>
</person-group>
<article-title>Influence of water vapour with non-thermal plasma jet on the apoptosis of SK-BR-3 breast cancer cells</article-title>
<source>RSC Adv.</source>
<year>2015</year>
<volume>5</volume>
<fpage>14670</fpage>
<lpage>14677</lpage>
<pub-id pub-id-type="doi">10.1039/C4RA15879B</pub-id>
</element-citation>
</ref>
<ref id="B266-cancers-11-01030">
<label>266.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Choi</surname>
<given-names>J.-S.</given-names>
</name>
<name>
<surname>Kim</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Hong</surname>
<given-names>Y.-J.</given-names>
</name>
<name>
<surname>Bae</surname>
<given-names>W.-Y.</given-names>
</name>
<name>
<surname>Choi</surname>
<given-names>E.H.</given-names>
</name>
<name>
<surname>Jeong</surname>
<given-names>J.-W.</given-names>
</name>
<name>
<surname>Park</surname>
<given-names>H.-K.</given-names>
</name>
</person-group>
<article-title>Evaluation of non-thermal plasma-induced anticancer effects on human colon cancer cells</article-title>
<source>Biomed. Opt. Express</source>
<year>2017</year>
<volume>8</volume>
<fpage>2649</fpage>
<lpage>2659</lpage>
<pub-id pub-id-type="doi">10.1364/BOE.8.002649</pub-id>
<pub-id pub-id-type="pmid">28663896</pub-id>
</element-citation>
</ref>
<ref id="B267-cancers-11-01030">
<label>267.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Kaushik</surname>
<given-names>N.K.</given-names>
</name>
<name>
<surname>Kim</surname>
<given-names>Y.H.</given-names>
</name>
<name>
<surname>Han</surname>
<given-names>Y.G.</given-names>
</name>
<name>
<surname>Choi</surname>
<given-names>E.H.</given-names>
</name>
</person-group>
<article-title>Effect of jet plasma on T98G human brain cancer cells</article-title>
<source>Curr. Appl. Phys.</source>
<year>2013</year>
<volume>13</volume>
<fpage>176</fpage>
<lpage>180</lpage>
<pub-id pub-id-type="doi">10.1016/j.cap.2012.07.002</pub-id>
</element-citation>
</ref>
<ref id="B268-cancers-11-01030">
<label>268.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Conway</surname>
<given-names>G.E.</given-names>
</name>
<name>
<surname>Casey</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Milosavljevic</surname>
<given-names>V.</given-names>
</name>
<name>
<surname>Liu</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Howe</surname>
<given-names>O.</given-names>
</name>
<name>
<surname>Cullen</surname>
<given-names>P.J.</given-names>
</name>
<name>
<surname>Curtin</surname>
<given-names>J.F.</given-names>
</name>
</person-group>
<article-title>Non-thermal atmospheric plasma induces ROS-independent cell death in U373MG glioma cells and augments the cytotoxicity of temozolomide</article-title>
<source>Br. J. Cancer</source>
<year>2016</year>
<volume>114</volume>
<fpage>435</fpage>
<lpage>443</lpage>
<pub-id pub-id-type="doi">10.1038/bjc.2016.12</pub-id>
<pub-id pub-id-type="pmid">26882067</pub-id>
</element-citation>
</ref>
<ref id="B269-cancers-11-01030">
<label>269.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Schmidt</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Rödder</surname>
<given-names>K.</given-names>
</name>
<name>
<surname>Hasse</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Masur</surname>
<given-names>K.</given-names>
</name>
<name>
<surname>Toups</surname>
<given-names>L.</given-names>
</name>
<name>
<surname>Lillig</surname>
<given-names>C.H.</given-names>
</name>
<name>
<surname>von Woedtke</surname>
<given-names>T.</given-names>
</name>
<name>
<surname>Wende</surname>
<given-names>K.</given-names>
</name>
<name>
<surname>Bekeschus</surname>
<given-names>S.</given-names>
</name>
</person-group>
<article-title>Redox-regulation of activator protein 1 family members in blood cancer cell lines exposed to cold physical plasma-treated medium</article-title>
<source>Plasma Process. Polym.</source>
<year>2016</year>
<volume>13</volume>
<fpage>1179</fpage>
<lpage>1188</lpage>
<pub-id pub-id-type="doi">10.1002/ppap.201600090</pub-id>
</element-citation>
</ref>
<ref id="B270-cancers-11-01030">
<label>270.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Kaushik</surname>
<given-names>N.</given-names>
</name>
<name>
<surname>Kumar</surname>
<given-names>N.</given-names>
</name>
<name>
<surname>Kim</surname>
<given-names>C.H.</given-names>
</name>
<name>
<surname>Kaushik</surname>
<given-names>N.K.</given-names>
</name>
<name>
<surname>Choi</surname>
<given-names>E.H.</given-names>
</name>
</person-group>
<article-title>Dielectric barrier discharge plasma efficiently delivers an apoptotic response in human monocytic lymphoma</article-title>
<source>Plasma Process. Polym.</source>
<year>2014</year>
<volume>11</volume>
<fpage>1175</fpage>
<lpage>1187</lpage>
<pub-id pub-id-type="doi">10.1002/ppap.201400102</pub-id>
</element-citation>
</ref>
<ref id="B271-cancers-11-01030">
<label>271.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Coates</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Abraham</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Kaye</surname>
<given-names>S.B.</given-names>
</name>
<name>
<surname>Sowerbutts</surname>
<given-names>T.</given-names>
</name>
<name>
<surname>Frewin</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>Fox</surname>
<given-names>R.</given-names>
</name>
<name>
<surname>Tattersall</surname>
<given-names>M.</given-names>
</name>
</person-group>
<article-title>On the receiving end—Patient perception of the side-effects of cancer chemotherapy</article-title>
<source>Eur. J. Cancer Clin. Oncol.</source>
<year>1983</year>
<volume>19</volume>
<fpage>203</fpage>
<lpage>208</lpage>
<pub-id pub-id-type="doi">10.1016/0277-5379(83)90418-2</pub-id>
<pub-id pub-id-type="pmid">6681766</pub-id>
</element-citation>
</ref>
<ref id="B272-cancers-11-01030">
<label>272.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Pedersen</surname>
<given-names>B.</given-names>
</name>
<name>
<surname>Koktved</surname>
<given-names>D.P.</given-names>
</name>
<name>
<surname>Nielsen</surname>
<given-names>L.L.</given-names>
</name>
</person-group>
<article-title>Living with side effects from cancer treatment—A challenge to target information</article-title>
<source>Scand. J. Caring Sci.</source>
<year>2013</year>
<volume>27</volume>
<fpage>715</fpage>
<lpage>723</lpage>
<pub-id pub-id-type="doi">10.1111/j.1471-6712.2012.01085.x</pub-id>
<pub-id pub-id-type="pmid">23034150</pub-id>
</element-citation>
</ref>
<ref id="B273-cancers-11-01030">
<label>273.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Peng</surname>
<given-names>X.</given-names>
</name>
<name>
<surname>Gandhi</surname>
<given-names>V.</given-names>
</name>
</person-group>
<article-title>ROS-activated anticancer prodrugs: A new strategy for tumor-specific damage</article-title>
<source>Ther. Deliv.</source>
<year>2012</year>
<volume>3</volume>
<fpage>823</fpage>
<lpage>833</lpage>
<pub-id pub-id-type="doi">10.4155/tde.12.61</pub-id>
<pub-id pub-id-type="pmid">22900465</pub-id>
</element-citation>
</ref>
<ref id="B274-cancers-11-01030">
<label>274.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Rajivgandhi</surname>
<given-names>G.</given-names>
</name>
<name>
<surname>Maruthupandy</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Quero</surname>
<given-names>F.</given-names>
</name>
<name>
<surname>Li</surname>
<given-names>W.J.</given-names>
</name>
</person-group>
<article-title>Graphene/nickel oxide nanocomposites against isolated ESBL producing bacteria and A549 cancer cells</article-title>
<source>Mater. Sci. Eng. C</source>
<year>2019</year>
<volume>102</volume>
<fpage>829</fpage>
<lpage>843</lpage>
<pub-id pub-id-type="doi">10.1016/j.msec.2019.05.008</pub-id>
</element-citation>
</ref>
<ref id="B275-cancers-11-01030">
<label>275.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>NavaneethaKrishnan</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Rosales</surname>
<given-names>J.L.</given-names>
</name>
<name>
<surname>Lee</surname>
<given-names>K.-Y.</given-names>
</name>
</person-group>
<article-title>ROS-Mediated Cancer Cell Killing through Dietary Phytochemicals</article-title>
<source>Oxid. Med. Cell. Longev.</source>
<year>2019</year>
<volume>2019</volume>
<fpage>9051542</fpage>
<pub-id pub-id-type="doi">10.1155/2019/9051542</pub-id>
<pub-id pub-id-type="pmid">31217841</pub-id>
</element-citation>
</ref>
<ref id="B276-cancers-11-01030">
<label>276.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Zhou</surname>
<given-names>Z.</given-names>
</name>
<name>
<surname>Song</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Nie</surname>
<given-names>L.</given-names>
</name>
<name>
<surname>Chen</surname>
<given-names>X.</given-names>
</name>
</person-group>
<article-title>Reactive oxygen species generating systems meeting challenges of photodynamic cancer therapy</article-title>
<source>Chem. Soc. Rev.</source>
<year>2016</year>
<volume>45</volume>
<fpage>6597</fpage>
<lpage>6626</lpage>
<pub-id pub-id-type="doi">10.1039/C6CS00271D</pub-id>
<pub-id pub-id-type="pmid">27722328</pub-id>
</element-citation>
</ref>
</ref-list>
</back>
<floats-group>
<fig id="cancers-11-01030-f001" orientation="portrait" position="float">
<label>Figure 1</label>
<caption>
<p>Schematic of primary reactive oxygen species (ROS) production mechanism.</p>
</caption>
<graphic xlink:href="cancers-11-01030-g001"></graphic>
</fig>
<fig id="cancers-11-01030-f002" orientation="portrait" position="float">
<label>Figure 2</label>
<caption>
<p>Some major intracellular (mitochondria, peroxisome, endoplasmic reticulum (ER) stress, nicotinamide adenine dinucleotide phosphate hydrogen (NADPH) oxidase, metabolizing enzymes) and extracellular (Radiations, Xenobiotics) sources of reactive oxygen species (ROS) generation [
<xref rid="B81-cancers-11-01030" ref-type="bibr">81</xref>
].</p>
</caption>
<graphic xlink:href="cancers-11-01030-g002"></graphic>
</fig>
<fig id="cancers-11-01030-f003" orientation="portrait" position="float">
<label>Figure 3</label>
<caption>
<p>Role of reactive oxygen species (ROS) in cancer inhibition by four different mechanisms and the different pathways involved in those mechanisms.</p>
</caption>
<graphic xlink:href="cancers-11-01030-g003"></graphic>
</fig>
<fig id="cancers-11-01030-f004" orientation="portrait" position="float">
<label>Figure 4</label>
<caption>
<p>Molecular mechanism of soft-jet plasma-induced cancer cell apoptosis via the mitochondrial intrinsic pathway and extracellular signal-regulated kinase/mitogen-activated protein kinase (ERK/MAPK) activation [
<xref rid="B250-cancers-11-01030" ref-type="bibr">250</xref>
].</p>
</caption>
<graphic xlink:href="cancers-11-01030-g004"></graphic>
</fig>
<table-wrap id="cancers-11-01030-t001" orientation="portrait" position="float">
<object-id pub-id-type="pii">cancers-11-01030-t001_Table 1</object-id>
<label>Table 1</label>
<caption>
<p>List of anticancer agents applied to different cancer treatment and their mechanism of action by increasing ROS production.</p>
</caption>
<table frame="hsides" rules="groups">
<thead>
<tr>
<th align="center" valign="middle" style="border-top:solid thin;border-bottom:solid thin" rowspan="1" colspan="1">Published Year</th>
<th align="center" valign="middle" style="border-top:solid thin;border-bottom:solid thin" rowspan="1" colspan="1">Anticancer Agent</th>
<th align="center" valign="middle" style="border-top:solid thin;border-bottom:solid thin" rowspan="1" colspan="1">Types of Cancer</th>
<th align="center" valign="middle" style="border-top:solid thin;border-bottom:solid thin" rowspan="1" colspan="1">Mechanism</th>
</tr>
</thead>
<tbody>
<tr>
<td align="center" valign="middle" rowspan="1" colspan="1">1999</td>
<td align="center" valign="middle" rowspan="1" colspan="1">Doxorubicin</td>
<td align="center" valign="middle" rowspan="1" colspan="1">Lung cancer [
<xref rid="B152-cancers-11-01030" ref-type="bibr">152</xref>
]</td>
<td align="center" valign="middle" rowspan="1" colspan="1">BRAF inhibition by ROS [
<xref rid="B152-cancers-11-01030" ref-type="bibr">152</xref>
,
<xref rid="B153-cancers-11-01030" ref-type="bibr">153</xref>
]</td>
</tr>
<tr>
<td align="center" valign="middle" rowspan="1" colspan="1">2018</td>
<td align="center" valign="middle" rowspan="1" colspan="1">Actinomycin D or Decitabine</td>
<td align="center" valign="middle" rowspan="1" colspan="1">Skin cancer [
<xref rid="B154-cancers-11-01030" ref-type="bibr">154</xref>
]</td>
<td align="center" valign="middle" rowspan="1" colspan="1">Production of reactive species [
<xref rid="B155-cancers-11-01030" ref-type="bibr">155</xref>
]</td>
</tr>
<tr>
<td align="center" valign="middle" rowspan="1" colspan="1">2018</td>
<td align="center" valign="middle" rowspan="1" colspan="1">Vinorelbine</td>
<td align="center" valign="middle" rowspan="1" colspan="1">Lung cancer [
<xref rid="B156-cancers-11-01030" ref-type="bibr">156</xref>
]</td>
<td align="center" valign="middle" rowspan="1" colspan="1">ROS induced mechanism [
<xref rid="B137-cancers-11-01030" ref-type="bibr">137</xref>
]</td>
</tr>
<tr>
<td align="center" valign="middle" rowspan="1" colspan="1">2014</td>
<td align="center" valign="middle" rowspan="1" colspan="1">Vinblastine</td>
<td align="center" valign="middle" rowspan="1" colspan="1">Lung cancer and breast cancer [
<xref rid="B157-cancers-11-01030" ref-type="bibr">157</xref>
]</td>
<td align="center" valign="middle" rowspan="1" colspan="1">Apoptosis induced by ROS [
<xref rid="B136-cancers-11-01030" ref-type="bibr">136</xref>
]</td>
</tr>
<tr>
<td align="center" valign="middle" rowspan="1" colspan="1">2009</td>
<td align="center" valign="middle" rowspan="1" colspan="1">Camptothecin</td>
<td align="center" valign="middle" rowspan="1" colspan="1">Cervical and uterus cancer [
<xref rid="B158-cancers-11-01030" ref-type="bibr">158</xref>
]</td>
<td align="center" valign="middle" rowspan="1" colspan="1">Cell death induced by ROS</td>
</tr>
<tr>
<td align="center" valign="middle" rowspan="1" colspan="1">2006
<break></break>
2014</td>
<td align="center" valign="middle" rowspan="1" colspan="1">Paclitaxel</td>
<td align="center" valign="middle" rowspan="1" colspan="1">Lung cancer [
<xref rid="B159-cancers-11-01030" ref-type="bibr">159</xref>
]
<break></break>
Breast cancer [
<xref rid="B160-cancers-11-01030" ref-type="bibr">160</xref>
]</td>
<td align="center" valign="middle" rowspan="1" colspan="1">ROS-dependent activation of apoptotic cell death [
<xref rid="B161-cancers-11-01030" ref-type="bibr">161</xref>
]</td>
</tr>
<tr>
<td align="center" valign="middle" rowspan="1" colspan="1">2012</td>
<td align="center" valign="middle" rowspan="1" colspan="1">Taxol</td>
<td align="center" valign="middle" rowspan="1" colspan="1">Blood cancer [
<xref rid="B162-cancers-11-01030" ref-type="bibr">162</xref>
]</td>
<td align="center" valign="middle" rowspan="1" colspan="1">Apoptosis by generation of ROS [
<xref rid="B162-cancers-11-01030" ref-type="bibr">162</xref>
]</td>
</tr>
<tr>
<td align="center" valign="middle" rowspan="1" colspan="1">2017</td>
<td align="center" valign="middle" rowspan="1" colspan="1">Epirubicin</td>
<td align="center" valign="middle" rowspan="1" colspan="1">Breast cancer [
<xref rid="B163-cancers-11-01030" ref-type="bibr">163</xref>
]</td>
<td align="center" valign="middle" rowspan="1" colspan="1">Programmed death of cell by ROS [
<xref rid="B163-cancers-11-01030" ref-type="bibr">163</xref>
]</td>
</tr>
<tr>
<td align="center" valign="middle" rowspan="1" colspan="1">2012</td>
<td align="center" valign="middle" rowspan="1" colspan="1">Resveratrol </td>
<td align="center" valign="middle" rowspan="1" colspan="1">Colon cancer [
<xref rid="B164-cancers-11-01030" ref-type="bibr">164</xref>
]</td>
<td align="center" valign="middle" rowspan="1" colspan="1">ROS production [
<xref rid="B164-cancers-11-01030" ref-type="bibr">164</xref>
]</td>
</tr>
<tr>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">2015</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">Colchicine</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">Colon cancer [
<xref rid="B165-cancers-11-01030" ref-type="bibr">165</xref>
]</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">Increase ROS production in a dose dependent manner [
<xref rid="B165-cancers-11-01030" ref-type="bibr">165</xref>
]</td>
</tr>
</tbody>
</table>
<table-wrap-foot>
<fn>
<p>ROS: reactive oxygen species; BRAF:
<bold>serine/threonine-specific protein kinase</bold>
.</p>
</fn>
</table-wrap-foot>
</table-wrap>
<table-wrap id="cancers-11-01030-t002" orientation="portrait" position="float">
<object-id pub-id-type="pii">cancers-11-01030-t002_Table 2</object-id>
<label>Table 2</label>
<caption>
<p>List of other treatment methods used in cancer treatment via reactive oxygen species-based mechanisms.</p>
</caption>
<table frame="hsides" rules="groups">
<thead>
<tr>
<th align="center" valign="middle" style="border-top:solid thin;border-bottom:solid thin" rowspan="1" colspan="1">Treatment Methods</th>
<th align="center" valign="middle" style="border-top:solid thin;border-bottom:solid thin" rowspan="1" colspan="1">Mechanism</th>
<th align="center" valign="middle" style="border-top:solid thin;border-bottom:solid thin" rowspan="1" colspan="1">Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td align="center" valign="middle" rowspan="1" colspan="1">Sonodynamic therapy (SDT)</td>
<td align="center" valign="middle" rowspan="1" colspan="1">Alter cancer microenvironment by enhancing ROS level</td>
<td align="center" valign="middle" rowspan="1" colspan="1">[
<xref rid="B228-cancers-11-01030" ref-type="bibr">228</xref>
]</td>
</tr>
<tr>
<td align="center" valign="middle" rowspan="1" colspan="1">Tyrosin kinase inhibitor (TKI)</td>
<td align="center" valign="middle" rowspan="1" colspan="1">ROS inducing effect</td>
<td align="center" valign="middle" rowspan="1" colspan="1">[
<xref rid="B227-cancers-11-01030" ref-type="bibr">227</xref>
]</td>
</tr>
<tr>
<td align="center" valign="middle" rowspan="1" colspan="1">Monoclonal antibody</td>
<td align="center" valign="middle" rowspan="1" colspan="1">ROS mediated apotosis</td>
<td align="center" valign="middle" rowspan="1" colspan="1">[
<xref rid="B227-cancers-11-01030" ref-type="bibr">227</xref>
]</td>
</tr>
<tr>
<td align="center" valign="middle" rowspan="1" colspan="1">Anti-tumor immune action</td>
<td align="center" valign="middle" rowspan="1" colspan="1">By targeting tumor-associated macrophage by ROS</td>
<td align="center" valign="middle" rowspan="1" colspan="1">[
<xref rid="B229-cancers-11-01030" ref-type="bibr">229</xref>
]</td>
</tr>
<tr>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">Nanomedicine combination with anticancer drugs</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">ROS-inducing effect</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">[
<xref rid="B230-cancers-11-01030" ref-type="bibr">230</xref>
]</td>
</tr>
</tbody>
</table>
</table-wrap>
<table-wrap id="cancers-11-01030-t003" orientation="portrait" position="float">
<object-id pub-id-type="pii">cancers-11-01030-t003_Table 3</object-id>
<label>Table 3</label>
<caption>
<p>List of plasma instruments and methods used in different types of cancer with their mechanisms.</p>
</caption>
<table frame="hsides" rules="groups">
<thead>
<tr>
<th align="center" valign="middle" style="border-top:solid thin;border-bottom:solid thin" rowspan="1" colspan="1">Published Year</th>
<th align="center" valign="middle" style="border-top:solid thin;border-bottom:solid thin" rowspan="1" colspan="1">Plasma Equipment</th>
<th align="center" valign="middle" style="border-top:solid thin;border-bottom:solid thin" rowspan="1" colspan="1">Types of Cancer</th>
<th align="center" valign="middle" style="border-top:solid thin;border-bottom:solid thin" rowspan="1" colspan="1">Mechanism</th>
<th align="center" valign="middle" style="border-top:solid thin;border-bottom:solid thin" rowspan="1" colspan="1">Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td align="center" valign="middle" rowspan="1" colspan="1">2017</td>
<td align="center" valign="middle" rowspan="1" colspan="1">Plasma jet</td>
<td align="center" valign="middle" rowspan="1" colspan="1">Pancreatic cancer</td>
<td align="center" valign="middle" rowspan="1" colspan="1">Hydrogen peroxide</td>
<td align="center" valign="middle" rowspan="1" colspan="1">[
<xref rid="B259-cancers-11-01030" ref-type="bibr">259</xref>
]</td>
</tr>
<tr>
<td align="center" valign="middle" rowspan="1" colspan="1">2017</td>
<td align="center" valign="middle" rowspan="1" colspan="1">DBD plasma device</td>
<td align="center" valign="middle" rowspan="1" colspan="1">Cervical cancer</td>
<td align="center" valign="middle" rowspan="1" colspan="1">Hydrogen peroxide</td>
<td align="center" valign="middle" rowspan="1" colspan="1">[
<xref rid="B260-cancers-11-01030" ref-type="bibr">260</xref>
]</td>
</tr>
<tr>
<td align="center" valign="middle" rowspan="1" colspan="1">2014</td>
<td align="center" valign="middle" rowspan="1" colspan="1">Plasma jet</td>
<td align="center" valign="middle" rowspan="1" colspan="1">Head and neck cancer</td>
<td align="center" valign="middle" rowspan="1" colspan="1">DNA damage by ROS</td>
<td align="center" valign="middle" rowspan="1" colspan="1">[
<xref rid="B261-cancers-11-01030" ref-type="bibr">261</xref>
]</td>
</tr>
<tr>
<td align="center" valign="middle" rowspan="1" colspan="1">2016</td>
<td align="center" valign="middle" rowspan="1" colspan="1">Plasma generated in DI water</td>
<td align="center" valign="middle" rowspan="1" colspan="1">Gastric cancer</td>
<td align="center" valign="middle" rowspan="1" colspan="1">ROS-induced apoptosis</td>
<td align="center" valign="middle" rowspan="1" colspan="1">[
<xref rid="B262-cancers-11-01030" ref-type="bibr">262</xref>
]</td>
</tr>
<tr>
<td align="center" valign="middle" rowspan="1" colspan="1">2017</td>
<td align="center" valign="middle" rowspan="1" colspan="1">Air plasma by high voltage electrode</td>
<td align="center" valign="middle" rowspan="1" colspan="1">Triple negative breast cancer</td>
<td align="center" valign="middle" rowspan="1" colspan="1">Hydrogen peroxide-induced apoptosis</td>
<td align="center" valign="middle" rowspan="1" colspan="1">[
<xref rid="B256-cancers-11-01030" ref-type="bibr">256</xref>
]</td>
</tr>
<tr>
<td align="center" valign="middle" rowspan="1" colspan="1">2016</td>
<td align="center" valign="middle" rowspan="1" colspan="1">Microplasma jet produced liquid plasma</td>
<td align="center" valign="middle" rowspan="1" colspan="1">Triple negative breast cancer</td>
<td align="center" valign="middle" rowspan="1" colspan="1">ROS and RNS-induced apoptosis</td>
<td align="center" valign="middle" rowspan="1" colspan="1">[
<xref rid="B263-cancers-11-01030" ref-type="bibr">263</xref>
]</td>
</tr>
<tr>
<td align="center" valign="middle" rowspan="1" colspan="1">2017</td>
<td align="center" valign="middle" rowspan="1" colspan="1">DBD plasma device</td>
<td align="center" valign="middle" rowspan="1" colspan="1">Lung cancer</td>
<td align="center" valign="middle" rowspan="1" colspan="1">Apoptosis induced by ROS and RNS</td>
<td align="center" valign="middle" rowspan="1" colspan="1">[
<xref rid="B264-cancers-11-01030" ref-type="bibr">264</xref>
]</td>
</tr>
<tr>
<td align="center" valign="middle" rowspan="1" colspan="1">2015</td>
<td align="center" valign="middle" rowspan="1" colspan="1">Water vapor with plasma jet</td>
<td align="center" valign="middle" rowspan="1" colspan="1">Breast cancer</td>
<td align="center" valign="middle" rowspan="1" colspan="1">Hydrogen peroxide-induced apoptosis</td>
<td align="center" valign="middle" rowspan="1" colspan="1">[
<xref rid="B265-cancers-11-01030" ref-type="bibr">265</xref>
] </td>
</tr>
<tr>
<td align="center" valign="middle" rowspan="1" colspan="1">2017</td>
<td align="center" valign="middle" rowspan="1" colspan="1">DBD plasma</td>
<td align="center" valign="middle" rowspan="1" colspan="1">Colon cancer</td>
<td align="center" valign="middle" rowspan="1" colspan="1">Apoptosis and DNA damage by ROS</td>
<td align="center" valign="middle" rowspan="1" colspan="1">[
<xref rid="B266-cancers-11-01030" ref-type="bibr">266</xref>
]</td>
</tr>
<tr>
<td align="center" valign="middle" rowspan="1" colspan="1">2013</td>
<td align="center" valign="middle" rowspan="1" colspan="1">Jet plasma</td>
<td align="center" valign="middle" rowspan="1" colspan="1">Brain cancer</td>
<td align="center" valign="middle" rowspan="1" colspan="1">Plasma caused cell death</td>
<td align="center" valign="middle" rowspan="1" colspan="1">[
<xref rid="B267-cancers-11-01030" ref-type="bibr">267</xref>
]</td>
</tr>
<tr>
<td align="center" valign="middle" rowspan="1" colspan="1">2016</td>
<td align="center" valign="middle" rowspan="1" colspan="1">DBD plasma</td>
<td align="center" valign="middle" rowspan="1" colspan="1">Brain cancer</td>
<td align="center" valign="middle" rowspan="1" colspan="1">ROS-induced apoptosis</td>
<td align="center" valign="middle" rowspan="1" colspan="1">[
<xref rid="B268-cancers-11-01030" ref-type="bibr">268</xref>
]</td>
</tr>
<tr>
<td align="center" valign="middle" rowspan="1" colspan="1">2012</td>
<td align="center" valign="middle" rowspan="1" colspan="1">DBD plasma</td>
<td align="center" valign="middle" rowspan="1" colspan="1">Brain and colorectal cancer</td>
<td align="center" valign="middle" rowspan="1" colspan="1">Apoptosis and DNA damage by ROS</td>
<td align="center" valign="middle" rowspan="1" colspan="1">[
<xref rid="B22-cancers-11-01030" ref-type="bibr">22</xref>
]</td>
</tr>
<tr>
<td align="center" valign="middle" rowspan="1" colspan="1">2014</td>
<td align="center" valign="middle" rowspan="1" colspan="1">DBD plasma</td>
<td align="center" valign="middle" rowspan="1" colspan="1">Thyroid cancer, Oral cancer</td>
<td align="center" valign="middle" rowspan="1" colspan="1">ROS-induced DNA damage and apotosis</td>
<td align="center" valign="middle" rowspan="1" colspan="1">[
<xref rid="B238-cancers-11-01030" ref-type="bibr">238</xref>
]</td>
</tr>
<tr>
<td align="center" valign="middle" rowspan="1" colspan="1">2013</td>
<td align="center" valign="middle" rowspan="1" colspan="1">Plasma-treated media</td>
<td align="center" valign="middle" rowspan="1" colspan="1">Blood cancer</td>
<td align="center" valign="middle" rowspan="1" colspan="1">ROS-induced apoptosis</td>
<td align="center" valign="middle" rowspan="1" colspan="1">[
<xref rid="B269-cancers-11-01030" ref-type="bibr">269</xref>
]</td>
</tr>
<tr>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">2014</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">DBD plasma</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">Blood cancer</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">ROS-initiated apoptosis-related gene expression</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">[
<xref rid="B270-cancers-11-01030" ref-type="bibr">270</xref>
]</td>
</tr>
</tbody>
</table>
<table-wrap-foot>
<fn>
<p>DBD: dielectric barrier discharge; DI: deionized; ROS: reactive oxygen species; RNS: reactive nitrogen species.</p>
</fn>
</table-wrap-foot>
</table-wrap>
</floats-group>
</pmc>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/ChloroquineV1/Data/Pmc/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000892 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Pmc/Corpus/biblio.hfd -nk 000892 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    ChloroquineV1
   |flux=    Pmc
   |étape=   Corpus
   |type=    RBID
   |clé=     PMC:6678366
   |texte=   Impact of ROS Generated by Chemical, Physical, and Plasma Techniques on Cancer Attenuation
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Pmc/Corpus/RBID.i   -Sk "pubmed:31336648" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Pmc/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a ChloroquineV1 

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Wed Mar 25 22:43:59 2020. Site generation: Sun Jan 31 12:44:45 2021