Serveur d'exploration Chloroquine

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

The Interplay of Autophagy and Tumor Microenvironment in Colorectal Cancer—Ways of Enhancing Immunotherapy Action

Identifieur interne : 000885 ( Pmc/Corpus ); précédent : 000884; suivant : 000886

The Interplay of Autophagy and Tumor Microenvironment in Colorectal Cancer—Ways of Enhancing Immunotherapy Action

Auteurs : Evangelos Koustas ; Panagiotis Sarantis ; Georgia Kyriakopoulou ; Athanasios G. Papavassiliou ; Michalis V. Karamouzis

Source :

RBID : PMC:6520891

Abstract

Autophagy as a primary homeostatic and catabolic process is responsible for the degradation and recycling of proteins and cellular components. The mechanism of autophagy has a crucial role in several cellular functions and its dysregulation is associated with tumorigenesis, tumor–stroma interactions, and resistance to cancer therapy. A growing body of evidence suggests that autophagy is also a key regulator of the tumor microenvironment and cellular immune response in different types of cancer, including colorectal cancer (CRC). Furthermore, autophagy is responsible for initiating the immune response especially when it precedes cell death. However, the role of autophagy in CRC and the tumor microenvironment remains controversial. In this review, we identify the role of autophagy in tumor microenvironment regulation and the specific mechanism by which autophagy is implicated in immune responses during CRC tumorigenesis and the context of anticancer therapy.


Url:
DOI: 10.3390/cancers11040533
PubMed: 31013961
PubMed Central: 6520891

Links to Exploration step

PMC:6520891

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">The Interplay of Autophagy and Tumor Microenvironment in Colorectal Cancer—Ways of Enhancing Immunotherapy Action</title>
<author>
<name sortKey="Koustas, Evangelos" sort="Koustas, Evangelos" uniqKey="Koustas E" first="Evangelos" last="Koustas">Evangelos Koustas</name>
<affiliation>
<nlm:aff id="af1-cancers-11-00533">Molecular Oncology Unit, Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece;
<email>vang.koustas@gmail.com</email>
(E.K.);
<email>psarantis@bioacademy.gr</email>
(P.S.);
<email>gpkyriakopoulou@yahoo.com</email>
(G.K.);
<email>papavas@med.uoa.gr</email>
(A.G.P.)</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Sarantis, Panagiotis" sort="Sarantis, Panagiotis" uniqKey="Sarantis P" first="Panagiotis" last="Sarantis">Panagiotis Sarantis</name>
<affiliation>
<nlm:aff id="af1-cancers-11-00533">Molecular Oncology Unit, Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece;
<email>vang.koustas@gmail.com</email>
(E.K.);
<email>psarantis@bioacademy.gr</email>
(P.S.);
<email>gpkyriakopoulou@yahoo.com</email>
(G.K.);
<email>papavas@med.uoa.gr</email>
(A.G.P.)</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Kyriakopoulou, Georgia" sort="Kyriakopoulou, Georgia" uniqKey="Kyriakopoulou G" first="Georgia" last="Kyriakopoulou">Georgia Kyriakopoulou</name>
<affiliation>
<nlm:aff id="af1-cancers-11-00533">Molecular Oncology Unit, Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece;
<email>vang.koustas@gmail.com</email>
(E.K.);
<email>psarantis@bioacademy.gr</email>
(P.S.);
<email>gpkyriakopoulou@yahoo.com</email>
(G.K.);
<email>papavas@med.uoa.gr</email>
(A.G.P.)</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Papavassiliou, Athanasios G" sort="Papavassiliou, Athanasios G" uniqKey="Papavassiliou A" first="Athanasios G." last="Papavassiliou">Athanasios G. Papavassiliou</name>
<affiliation>
<nlm:aff id="af1-cancers-11-00533">Molecular Oncology Unit, Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece;
<email>vang.koustas@gmail.com</email>
(E.K.);
<email>psarantis@bioacademy.gr</email>
(P.S.);
<email>gpkyriakopoulou@yahoo.com</email>
(G.K.);
<email>papavas@med.uoa.gr</email>
(A.G.P.)</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Karamouzis, Michalis V" sort="Karamouzis, Michalis V" uniqKey="Karamouzis M" first="Michalis V." last="Karamouzis">Michalis V. Karamouzis</name>
<affiliation>
<nlm:aff id="af1-cancers-11-00533">Molecular Oncology Unit, Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece;
<email>vang.koustas@gmail.com</email>
(E.K.);
<email>psarantis@bioacademy.gr</email>
(P.S.);
<email>gpkyriakopoulou@yahoo.com</email>
(G.K.);
<email>papavas@med.uoa.gr</email>
(A.G.P.)</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="af2-cancers-11-00533">First Department of Internal Medicine, ‘Laiko’ General Hospital, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece</nlm:aff>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PMC</idno>
<idno type="pmid">31013961</idno>
<idno type="pmc">6520891</idno>
<idno type="url">http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6520891</idno>
<idno type="RBID">PMC:6520891</idno>
<idno type="doi">10.3390/cancers11040533</idno>
<date when="2019">2019</date>
<idno type="wicri:Area/Pmc/Corpus">000885</idno>
<idno type="wicri:explorRef" wicri:stream="Pmc" wicri:step="Corpus" wicri:corpus="PMC">000885</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a" type="main">The Interplay of Autophagy and Tumor Microenvironment in Colorectal Cancer—Ways of Enhancing Immunotherapy Action</title>
<author>
<name sortKey="Koustas, Evangelos" sort="Koustas, Evangelos" uniqKey="Koustas E" first="Evangelos" last="Koustas">Evangelos Koustas</name>
<affiliation>
<nlm:aff id="af1-cancers-11-00533">Molecular Oncology Unit, Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece;
<email>vang.koustas@gmail.com</email>
(E.K.);
<email>psarantis@bioacademy.gr</email>
(P.S.);
<email>gpkyriakopoulou@yahoo.com</email>
(G.K.);
<email>papavas@med.uoa.gr</email>
(A.G.P.)</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Sarantis, Panagiotis" sort="Sarantis, Panagiotis" uniqKey="Sarantis P" first="Panagiotis" last="Sarantis">Panagiotis Sarantis</name>
<affiliation>
<nlm:aff id="af1-cancers-11-00533">Molecular Oncology Unit, Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece;
<email>vang.koustas@gmail.com</email>
(E.K.);
<email>psarantis@bioacademy.gr</email>
(P.S.);
<email>gpkyriakopoulou@yahoo.com</email>
(G.K.);
<email>papavas@med.uoa.gr</email>
(A.G.P.)</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Kyriakopoulou, Georgia" sort="Kyriakopoulou, Georgia" uniqKey="Kyriakopoulou G" first="Georgia" last="Kyriakopoulou">Georgia Kyriakopoulou</name>
<affiliation>
<nlm:aff id="af1-cancers-11-00533">Molecular Oncology Unit, Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece;
<email>vang.koustas@gmail.com</email>
(E.K.);
<email>psarantis@bioacademy.gr</email>
(P.S.);
<email>gpkyriakopoulou@yahoo.com</email>
(G.K.);
<email>papavas@med.uoa.gr</email>
(A.G.P.)</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Papavassiliou, Athanasios G" sort="Papavassiliou, Athanasios G" uniqKey="Papavassiliou A" first="Athanasios G." last="Papavassiliou">Athanasios G. Papavassiliou</name>
<affiliation>
<nlm:aff id="af1-cancers-11-00533">Molecular Oncology Unit, Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece;
<email>vang.koustas@gmail.com</email>
(E.K.);
<email>psarantis@bioacademy.gr</email>
(P.S.);
<email>gpkyriakopoulou@yahoo.com</email>
(G.K.);
<email>papavas@med.uoa.gr</email>
(A.G.P.)</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Karamouzis, Michalis V" sort="Karamouzis, Michalis V" uniqKey="Karamouzis M" first="Michalis V." last="Karamouzis">Michalis V. Karamouzis</name>
<affiliation>
<nlm:aff id="af1-cancers-11-00533">Molecular Oncology Unit, Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece;
<email>vang.koustas@gmail.com</email>
(E.K.);
<email>psarantis@bioacademy.gr</email>
(P.S.);
<email>gpkyriakopoulou@yahoo.com</email>
(G.K.);
<email>papavas@med.uoa.gr</email>
(A.G.P.)</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="af2-cancers-11-00533">First Department of Internal Medicine, ‘Laiko’ General Hospital, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece</nlm:aff>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Cancers</title>
<idno type="eISSN">2072-6694</idno>
<imprint>
<date when="2019">2019</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<p>Autophagy as a primary homeostatic and catabolic process is responsible for the degradation and recycling of proteins and cellular components. The mechanism of autophagy has a crucial role in several cellular functions and its dysregulation is associated with tumorigenesis, tumor–stroma interactions, and resistance to cancer therapy. A growing body of evidence suggests that autophagy is also a key regulator of the tumor microenvironment and cellular immune response in different types of cancer, including colorectal cancer (CRC). Furthermore, autophagy is responsible for initiating the immune response especially when it precedes cell death. However, the role of autophagy in CRC and the tumor microenvironment remains controversial. In this review, we identify the role of autophagy in tumor microenvironment regulation and the specific mechanism by which autophagy is implicated in immune responses during CRC tumorigenesis and the context of anticancer therapy.</p>
</div>
</front>
<back>
<div1 type="bibliography">
<listBibl>
<biblStruct>
<analytic>
<author>
<name sortKey="Siegel, R L" uniqKey="Siegel R">R.L. Siegel</name>
</author>
<author>
<name sortKey="Miller, K D" uniqKey="Miller K">K.D. Miller</name>
</author>
<author>
<name sortKey="Jemal, A" uniqKey="Jemal A">A. Jemal</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Arnold, M" uniqKey="Arnold M">M. Arnold</name>
</author>
<author>
<name sortKey="Sierra, M S" uniqKey="Sierra M">M.S. Sierra</name>
</author>
<author>
<name sortKey="Laversanne, M" uniqKey="Laversanne M">M. Laversanne</name>
</author>
<author>
<name sortKey="Soerjomataram, I" uniqKey="Soerjomataram I">I. Soerjomataram</name>
</author>
<author>
<name sortKey="Jemal, A" uniqKey="Jemal A">A. Jemal</name>
</author>
<author>
<name sortKey="Bray, F" uniqKey="Bray F">F. Bray</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Mizushima, N" uniqKey="Mizushima N">N. Mizushima</name>
</author>
<author>
<name sortKey="Ohsumi, Y" uniqKey="Ohsumi Y">Y. Ohsumi</name>
</author>
<author>
<name sortKey="Yoshimori, T" uniqKey="Yoshimori T">T. Yoshimori</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Koustas, E" uniqKey="Koustas E">E. Koustas</name>
</author>
<author>
<name sortKey="Karamouzis, M V" uniqKey="Karamouzis M">M.V. Karamouzis</name>
</author>
<author>
<name sortKey="Mihailidou, C" uniqKey="Mihailidou C">C. Mihailidou</name>
</author>
<author>
<name sortKey="Schizas, D" uniqKey="Schizas D">D. Schizas</name>
</author>
<author>
<name sortKey="Papavassiliou, A G" uniqKey="Papavassiliou A">A.G. Papavassiliou</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Pandurangan, A K" uniqKey="Pandurangan A">A.K. Pandurangan</name>
</author>
<author>
<name sortKey="Divya, T" uniqKey="Divya T">T. Divya</name>
</author>
<author>
<name sortKey="Kumar, K" uniqKey="Kumar K">K. Kumar</name>
</author>
<author>
<name sortKey="Dineshbabu, V" uniqKey="Dineshbabu V">V. Dineshbabu</name>
</author>
<author>
<name sortKey="Velavan, B" uniqKey="Velavan B">B. Velavan</name>
</author>
<author>
<name sortKey="Sudhandiran, G" uniqKey="Sudhandiran G">G. Sudhandiran</name>
</author>
<author>
<name sortKey="Ashokkumar, P" uniqKey="Ashokkumar P">P. AshokKumar</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kroemer, G" uniqKey="Kroemer G">G. Kroemer</name>
</author>
<author>
<name sortKey="Mari O, G" uniqKey="Mari O G">G. Mariño</name>
</author>
<author>
<name sortKey="Levine, B" uniqKey="Levine B">B. Levine</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Burada, F" uniqKey="Burada F">F. Burada</name>
</author>
<author>
<name sortKey="Nicoli, E R" uniqKey="Nicoli E">E.R. Nicoli</name>
</author>
<author>
<name sortKey="Ciurea, M E" uniqKey="Ciurea M">M.E. Ciurea</name>
</author>
<author>
<name sortKey="Uscatu, D C" uniqKey="Uscatu D">D.C. Uscatu</name>
</author>
<author>
<name sortKey="Ioana, M" uniqKey="Ioana M">M. Ioana</name>
</author>
<author>
<name sortKey="Gheonea, D I" uniqKey="Gheonea D">D.I. Gheonea</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Koustas, E" uniqKey="Koustas E">E. Koustas</name>
</author>
<author>
<name sortKey="Sarantis, P" uniqKey="Sarantis P">P. Sarantis</name>
</author>
<author>
<name sortKey="Papavassiliou, A G" uniqKey="Papavassiliou A">A.G. Papavassiliou</name>
</author>
<author>
<name sortKey="Karamouzis, M" uniqKey="Karamouzis M">M. Karamouzis</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Schaaf, M B" uniqKey="Schaaf M">M.B. Schaaf</name>
</author>
<author>
<name sortKey="Houbaert, D" uniqKey="Houbaert D">D. Houbaert</name>
</author>
<author>
<name sortKey="Mece, O" uniqKey="Mece O">O. Meçe</name>
</author>
<author>
<name sortKey="Agostinis, P" uniqKey="Agostinis P">P. Agostinis</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Colella, B" uniqKey="Colella B">B. Colella</name>
</author>
<author>
<name sortKey="Faienza, F" uniqKey="Faienza F">F. Faienza</name>
</author>
<author>
<name sortKey="Di Bartolomeo, S" uniqKey="Di Bartolomeo S">S. Di Bartolomeo</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Yang, X" uniqKey="Yang X">X. Yang</name>
</author>
<author>
<name sortKey="Yu, D D" uniqKey="Yu D">D.-D. Yu</name>
</author>
<author>
<name sortKey="Yan, F" uniqKey="Yan F">F. Yan</name>
</author>
<author>
<name sortKey="Jing, Y Y" uniqKey="Jing Y">Y.-Y. Jing</name>
</author>
<author>
<name sortKey="Han, Z P" uniqKey="Han Z">Z.-P. Han</name>
</author>
<author>
<name sortKey="Sun, K" uniqKey="Sun K">K. Sun</name>
</author>
<author>
<name sortKey="Liang, L" uniqKey="Liang L">L. Liang</name>
</author>
<author>
<name sortKey="Hou, J" uniqKey="Hou J">J. Hou</name>
</author>
<author>
<name sortKey="Wei, L X" uniqKey="Wei L">L.-X. Wei</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="White, E" uniqKey="White E">E. White</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Guo, J Y" uniqKey="Guo J">J.Y. Guo</name>
</author>
<author>
<name sortKey="White, E" uniqKey="White E">E. White</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Mellor, H R" uniqKey="Mellor H">H.R. Mellor</name>
</author>
<author>
<name sortKey="Harris, A L" uniqKey="Harris A">A.L. Harris</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Huijbers, A" uniqKey="Huijbers A">A. Huijbers</name>
</author>
<author>
<name sortKey="Plantinga, T S" uniqKey="Plantinga T">T.S. Plantinga</name>
</author>
<author>
<name sortKey="Joosten, L A B" uniqKey="Joosten L">L.A.B. Joosten</name>
</author>
<author>
<name sortKey="Aben, K K H" uniqKey="Aben K">K.K.H. Aben</name>
</author>
<author>
<name sortKey="Gudmundsson, J" uniqKey="Gudmundsson J">J. Gudmundsson</name>
</author>
<author>
<name sortKey="Heijer, M D" uniqKey="Heijer M">M.D. Heijer</name>
</author>
<author>
<name sortKey="Kiemeney, L A L M" uniqKey="Kiemeney L">L.A.L.M. Kiemeney</name>
</author>
<author>
<name sortKey="Netea, M G" uniqKey="Netea M">M.G. Netea</name>
</author>
<author>
<name sortKey="Hermus, A R M M" uniqKey="Hermus A">A.R.M.M. Hermus</name>
</author>
<author>
<name sortKey="Netea Maier, R T" uniqKey="Netea Maier R">R.T. Netea-Maier</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Huang, C Y" uniqKey="Huang C">C.-Y. Huang</name>
</author>
<author>
<name sortKey="Huang, S P" uniqKey="Huang S">S.-P. Huang</name>
</author>
<author>
<name sortKey="Lin, V C" uniqKey="Lin V">V.C. Lin</name>
</author>
<author>
<name sortKey="Yu, C C" uniqKey="Yu C">C.-C. Yu</name>
</author>
<author>
<name sortKey="Chang, T Y" uniqKey="Chang T">T.-Y. Chang</name>
</author>
<author>
<name sortKey="Lu, T L" uniqKey="Lu T">T.-L. Lu</name>
</author>
<author>
<name sortKey="Chiang, H C" uniqKey="Chiang H">H.-C. Chiang</name>
</author>
<author>
<name sortKey="Bao, B Y" uniqKey="Bao B">B.-Y. Bao</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Yun, C W" uniqKey="Yun C">C.W. Yun</name>
</author>
<author>
<name sortKey="Lee, S H" uniqKey="Lee S">S.H. Lee</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Miracco, C" uniqKey="Miracco C">C. Miracco</name>
</author>
<author>
<name sortKey="Cosci, E" uniqKey="Cosci E">E. Cosci</name>
</author>
<author>
<name sortKey="Oliveri, G" uniqKey="Oliveri G">G. Oliveri</name>
</author>
<author>
<name sortKey="Luzi, P" uniqKey="Luzi P">P. Luzi</name>
</author>
<author>
<name sortKey="Pacenti, L" uniqKey="Pacenti L">L. Pacenti</name>
</author>
<author>
<name sortKey="Monciatti, I" uniqKey="Monciatti I">I. Monciatti</name>
</author>
<author>
<name sortKey="Mannucci, S" uniqKey="Mannucci S">S. Mannucci</name>
</author>
<author>
<name sortKey="De Nisi, M C" uniqKey="De Nisi M">M.C. De Nisi</name>
</author>
<author>
<name sortKey="Toscano, M" uniqKey="Toscano M">M. Toscano</name>
</author>
<author>
<name sortKey="Malagnino, V" uniqKey="Malagnino V">V. Malagnino</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Pickford, F" uniqKey="Pickford F">F. Pickford</name>
</author>
<author>
<name sortKey="Masliah, E" uniqKey="Masliah E">E. Masliah</name>
</author>
<author>
<name sortKey="Britschgi, M" uniqKey="Britschgi M">M. Britschgi</name>
</author>
<author>
<name sortKey="Lucin, K" uniqKey="Lucin K">K. Lucin</name>
</author>
<author>
<name sortKey="Narasimhan, R" uniqKey="Narasimhan R">R. Narasimhan</name>
</author>
<author>
<name sortKey="Jaeger, P A" uniqKey="Jaeger P">P.A. Jaeger</name>
</author>
<author>
<name sortKey="Small, S" uniqKey="Small S">S. Small</name>
</author>
<author>
<name sortKey="Spencer, B" uniqKey="Spencer B">B. Spencer</name>
</author>
<author>
<name sortKey="Rockenstein, E" uniqKey="Rockenstein E">E. Rockenstein</name>
</author>
<author>
<name sortKey="Levine, B" uniqKey="Levine B">B. Levine</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Mari O, G" uniqKey="Mari O G">G. Mariño</name>
</author>
<author>
<name sortKey="Salvador Montoliu, N" uniqKey="Salvador Montoliu N">N. Salvador-Montoliu</name>
</author>
<author>
<name sortKey="Fueyo, A" uniqKey="Fueyo A">A. Fueyo</name>
</author>
<author>
<name sortKey="Knecht, E" uniqKey="Knecht E">E. Knecht</name>
</author>
<author>
<name sortKey="Mizushima, N" uniqKey="Mizushima N">N. Mizushima</name>
</author>
<author>
<name sortKey="L Pez Otin, C" uniqKey="L Pez Otin C">C. López-Otín</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Oikonomou, E" uniqKey="Oikonomou E">E. Oikonomou</name>
</author>
<author>
<name sortKey="Koustas, E" uniqKey="Koustas E">E. Koustas</name>
</author>
<author>
<name sortKey="Goulielmaki, M" uniqKey="Goulielmaki M">M. Goulielmaki</name>
</author>
<author>
<name sortKey="Pintzas, A" uniqKey="Pintzas A">A. Pintzas</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Cianfanelli, V" uniqKey="Cianfanelli V">V. Cianfanelli</name>
</author>
<author>
<name sortKey="D Razio, M" uniqKey="D Razio M">M. D’Orazio</name>
</author>
<author>
<name sortKey="Cecconi, F" uniqKey="Cecconi F">F. Cecconi</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Yue, Z" uniqKey="Yue Z">Z. Yue</name>
</author>
<author>
<name sortKey="Jin, S" uniqKey="Jin S">S. Jin</name>
</author>
<author>
<name sortKey="Yang, C" uniqKey="Yang C">C. Yang</name>
</author>
<author>
<name sortKey="Levine, A J" uniqKey="Levine A">A.J. Levine</name>
</author>
<author>
<name sortKey="Heintz, N" uniqKey="Heintz N">N. Heintz</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Guo, J Y" uniqKey="Guo J">J.Y. Guo</name>
</author>
<author>
<name sortKey="Chen, H Y" uniqKey="Chen H">H.-Y. Chen</name>
</author>
<author>
<name sortKey="Mathew, R" uniqKey="Mathew R">R. Mathew</name>
</author>
<author>
<name sortKey="Fan, J" uniqKey="Fan J">J. Fan</name>
</author>
<author>
<name sortKey="Strohecker, A M" uniqKey="Strohecker A">A.M. Strohecker</name>
</author>
<author>
<name sortKey="Karsli Uzunbas, G" uniqKey="Karsli Uzunbas G">G. Karsli-Uzunbas</name>
</author>
<author>
<name sortKey="Kamphorst, J J" uniqKey="Kamphorst J">J.J. Kamphorst</name>
</author>
<author>
<name sortKey="Chen, G" uniqKey="Chen G">G. Chen</name>
</author>
<author>
<name sortKey="Lemons, J M" uniqKey="Lemons J">J.M. Lemons</name>
</author>
<author>
<name sortKey="Karantza, V" uniqKey="Karantza V">V. Karantza</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Zhong, Z" uniqKey="Zhong Z">Z. Zhong</name>
</author>
<author>
<name sortKey="Sanchez Lopez, E" uniqKey="Sanchez Lopez E">E. Sanchez-Lopez</name>
</author>
<author>
<name sortKey="Karin, M" uniqKey="Karin M">M. Karin</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Degenhardt, K" uniqKey="Degenhardt K">K. Degenhardt</name>
</author>
<author>
<name sortKey="Mathew, R" uniqKey="Mathew R">R. Mathew</name>
</author>
<author>
<name sortKey="Beaudoin, B" uniqKey="Beaudoin B">B. Beaudoin</name>
</author>
<author>
<name sortKey="Bray, K" uniqKey="Bray K">K. Bray</name>
</author>
<author>
<name sortKey="Anderson, D" uniqKey="Anderson D">D. Anderson</name>
</author>
<author>
<name sortKey="Chen, G" uniqKey="Chen G">G. Chen</name>
</author>
<author>
<name sortKey="Mukherjee, C" uniqKey="Mukherjee C">C. Mukherjee</name>
</author>
<author>
<name sortKey="Shi, Y" uniqKey="Shi Y">Y. Shi</name>
</author>
<author>
<name sortKey="Gelinas, C" uniqKey="Gelinas C">C. Gélinas</name>
</author>
<author>
<name sortKey="Fan, Y" uniqKey="Fan Y">Y. Fan</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Gerlinger, M" uniqKey="Gerlinger M">M. Gerlinger</name>
</author>
<author>
<name sortKey="Rowan, A J" uniqKey="Rowan A">A.J. Rowan</name>
</author>
<author>
<name sortKey="Horswell, S" uniqKey="Horswell S">S. Horswell</name>
</author>
<author>
<name sortKey="Math, M" uniqKey="Math M">M. Math</name>
</author>
<author>
<name sortKey="Larkin, J" uniqKey="Larkin J">J. Larkin</name>
</author>
<author>
<name sortKey="Endesfelder, D" uniqKey="Endesfelder D">D. Endesfelder</name>
</author>
<author>
<name sortKey="Gronroos, E" uniqKey="Gronroos E">E. Gronroos</name>
</author>
<author>
<name sortKey="Martinez, P" uniqKey="Martinez P">P. Martinez</name>
</author>
<author>
<name sortKey="Matthews, N" uniqKey="Matthews N">N. Matthews</name>
</author>
<author>
<name sortKey="Stewart, A" uniqKey="Stewart A">A. Stewart</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Molinari, C" uniqKey="Molinari C">C. Molinari</name>
</author>
<author>
<name sortKey="Marisi, G" uniqKey="Marisi G">G. Marisi</name>
</author>
<author>
<name sortKey="Passardi, A" uniqKey="Passardi A">A. Passardi</name>
</author>
<author>
<name sortKey="Matteucci, L" uniqKey="Matteucci L">L. Matteucci</name>
</author>
<author>
<name sortKey="De Maio, G" uniqKey="De Maio G">G. De Maio</name>
</author>
<author>
<name sortKey="Ulivi, P" uniqKey="Ulivi P">P. Ulivi</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Pietras, K" uniqKey="Pietras K">K. Pietras</name>
</author>
<author>
<name sortKey="Ostman, A" uniqKey="Ostman A">A. Östman</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Tape, C J" uniqKey="Tape C">C.J. Tape</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Fridman, W H" uniqKey="Fridman W">W.H. Fridman</name>
</author>
<author>
<name sortKey="Zitvogel, L" uniqKey="Zitvogel L">L. Zitvogel</name>
</author>
<author>
<name sortKey="Sautes Fridman, C" uniqKey="Sautes Fridman C">C. Sautès-Fridman</name>
</author>
<author>
<name sortKey="Kroemer, G" uniqKey="Kroemer G">G. Kroemer</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kather, J N" uniqKey="Kather J">J.N. Kather</name>
</author>
<author>
<name sortKey="Halama, N" uniqKey="Halama N">N. Halama</name>
</author>
<author>
<name sortKey="Jaeger, D" uniqKey="Jaeger D">D. Jaeger</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Bupathi, M" uniqKey="Bupathi M">M. Bupathi</name>
</author>
<author>
<name sortKey="Wu, C" uniqKey="Wu C">C. Wu</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Mlecnik, B" uniqKey="Mlecnik B">B. Mlecnik</name>
</author>
<author>
<name sortKey="Bindea, G" uniqKey="Bindea G">G. Bindea</name>
</author>
<author>
<name sortKey="Kirilovsky, A" uniqKey="Kirilovsky A">A. Kirilovsky</name>
</author>
<author>
<name sortKey="Angell, H K" uniqKey="Angell H">H.K. Angell</name>
</author>
<author>
<name sortKey="Obenauf, A C" uniqKey="Obenauf A">A.C. Obenauf</name>
</author>
<author>
<name sortKey="Tosolini, M" uniqKey="Tosolini M">M. Tosolini</name>
</author>
<author>
<name sortKey="Church, S E" uniqKey="Church S">S.E. Church</name>
</author>
<author>
<name sortKey="Maby, P" uniqKey="Maby P">P. Maby</name>
</author>
<author>
<name sortKey="Vasaturo, A" uniqKey="Vasaturo A">A. Vasaturo</name>
</author>
<author>
<name sortKey="Angelova, M" uniqKey="Angelova M">M. Angelova</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Nakagawa, K" uniqKey="Nakagawa K">K. Nakagawa</name>
</author>
<author>
<name sortKey="Tanaka, K" uniqKey="Tanaka K">K. Tanaka</name>
</author>
<author>
<name sortKey="Homma, Y" uniqKey="Homma Y">Y. Homma</name>
</author>
<author>
<name sortKey="Nojiri, K" uniqKey="Nojiri K">K. Nojiri</name>
</author>
<author>
<name sortKey="Kumamoto, T" uniqKey="Kumamoto T">T. Kumamoto</name>
</author>
<author>
<name sortKey="Takeda, K" uniqKey="Takeda K">K. Takeda</name>
</author>
<author>
<name sortKey="Endo, I" uniqKey="Endo I">I. Endo</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Yu, P" uniqKey="Yu P">P. Yu</name>
</author>
<author>
<name sortKey="Fu, Y X" uniqKey="Fu Y">Y.X. Fu</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Hu, Z" uniqKey="Hu Z">Z. Hu</name>
</author>
<author>
<name sortKey="Ma, Y" uniqKey="Ma Y">Y. Ma</name>
</author>
<author>
<name sortKey="Shang, Z" uniqKey="Shang Z">Z. Shang</name>
</author>
<author>
<name sortKey="Hu, S" uniqKey="Hu S">S. Hu</name>
</author>
<author>
<name sortKey="Liang, K" uniqKey="Liang K">K. Liang</name>
</author>
<author>
<name sortKey="Liang, W" uniqKey="Liang W">W. Liang</name>
</author>
<author>
<name sortKey="Xing, X" uniqKey="Xing X">X. Xing</name>
</author>
<author>
<name sortKey="Wang, Y" uniqKey="Wang Y">Y. Wang</name>
</author>
<author>
<name sortKey="Du, X" uniqKey="Du X">X. Du</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Pauken, K E" uniqKey="Pauken K">K.E. Pauken</name>
</author>
<author>
<name sortKey="Wherry, E J" uniqKey="Wherry E">E.J. Wherry</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Singh, P P" uniqKey="Singh P">P.P. Singh</name>
</author>
<author>
<name sortKey="Sharma, P K" uniqKey="Sharma P">P.K. Sharma</name>
</author>
<author>
<name sortKey="Krishnan, G" uniqKey="Krishnan G">G. Krishnan</name>
</author>
<author>
<name sortKey="Lockhart, A C" uniqKey="Lockhart A">A.C. Lockhart</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Derhovanessian, E" uniqKey="Derhovanessian E">E. Derhovanessian</name>
</author>
<author>
<name sortKey="Maier, A B" uniqKey="Maier A">A.B. Maier</name>
</author>
<author>
<name sortKey="Beck, R" uniqKey="Beck R">R. Beck</name>
</author>
<author>
<name sortKey="Jahn, G" uniqKey="Jahn G">G. Jahn</name>
</author>
<author>
<name sortKey="H Hnel, K" uniqKey="H Hnel K">K. Hähnel</name>
</author>
<author>
<name sortKey="Slagboom, P" uniqKey="Slagboom P">P. Slagboom</name>
</author>
<author>
<name sortKey="De Craen, A J M" uniqKey="De Craen A">A.J.M. De Craen</name>
</author>
<author>
<name sortKey="Westendorp, R G J" uniqKey="Westendorp R">R.G.J. Westendorp</name>
</author>
<author>
<name sortKey="Pawelec, G" uniqKey="Pawelec G">G. Pawelec</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Koustas, E" uniqKey="Koustas E">E. Koustas</name>
</author>
<author>
<name sortKey="Papavassiliou, A G" uniqKey="Papavassiliou A">A.G. Papavassiliou</name>
</author>
<author>
<name sortKey="Karamouzis, M V" uniqKey="Karamouzis M">M.V. Karamouzis</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Chen, Y" uniqKey="Chen Y">Y. Chen</name>
</author>
<author>
<name sortKey="Colello, J" uniqKey="Colello J">J. Colello</name>
</author>
<author>
<name sortKey="Jarjour, W" uniqKey="Jarjour W">W. Jarjour</name>
</author>
<author>
<name sortKey="Zheng, S G" uniqKey="Zheng S">S.G. Zheng</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Morikawa, H" uniqKey="Morikawa H">H. Morikawa</name>
</author>
<author>
<name sortKey="Sakaguchi, S" uniqKey="Sakaguchi S">S. Sakaguchi</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Herk, E H" uniqKey="Herk E">E.H. Herk</name>
</author>
<author>
<name sortKey="Velde, A A" uniqKey="Velde A">A.A. Velde</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Hori, S" uniqKey="Hori S">S. Hori</name>
</author>
<author>
<name sortKey="Nomura, T" uniqKey="Nomura T">T. Nomura</name>
</author>
<author>
<name sortKey="Sakaguchi, S" uniqKey="Sakaguchi S">S. Sakaguchi</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Fontenot, J D" uniqKey="Fontenot J">J.D. Fontenot</name>
</author>
<author>
<name sortKey="Gavin, M A" uniqKey="Gavin M">M.A. Gavin</name>
</author>
<author>
<name sortKey="Rudensky, A Y" uniqKey="Rudensky A">A.Y. Rudensky</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Salama, P" uniqKey="Salama P">P. Salama</name>
</author>
<author>
<name sortKey="Phillips, M" uniqKey="Phillips M">M. Phillips</name>
</author>
<author>
<name sortKey="Grieu, F" uniqKey="Grieu F">F. Grieu</name>
</author>
<author>
<name sortKey="Morris, M" uniqKey="Morris M">M. Morris</name>
</author>
<author>
<name sortKey="Zeps, N" uniqKey="Zeps N">N. Zeps</name>
</author>
<author>
<name sortKey="Joseph, D" uniqKey="Joseph D">D. Joseph</name>
</author>
<author>
<name sortKey="Platell, C" uniqKey="Platell C">C. Platell</name>
</author>
<author>
<name sortKey="Iacopetta, B" uniqKey="Iacopetta B">B. Iacopetta</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Sinicrope, F A" uniqKey="Sinicrope F">F.A. Sinicrope</name>
</author>
<author>
<name sortKey="Rego, R L" uniqKey="Rego R">R.L. Rego</name>
</author>
<author>
<name sortKey="Ansell, S M" uniqKey="Ansell S">S.M. Ansell</name>
</author>
<author>
<name sortKey="Knutson, K L" uniqKey="Knutson K">K.L. Knutson</name>
</author>
<author>
<name sortKey="Foster, N R" uniqKey="Foster N">N.R. Foster</name>
</author>
<author>
<name sortKey="Sargent, D J" uniqKey="Sargent D">D.J. Sargent</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Gao, D" uniqKey="Gao D">D. Gao</name>
</author>
<author>
<name sortKey="Mittal, V" uniqKey="Mittal V">V. Mittal</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Gabrilovich, D I" uniqKey="Gabrilovich D">D.I. Gabrilovich</name>
</author>
<author>
<name sortKey="Ostrand Rosenberg, S" uniqKey="Ostrand Rosenberg S">S. Ostrand-Rosenberg</name>
</author>
<author>
<name sortKey="Bronte, V" uniqKey="Bronte V">V. Bronte</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Mantovani, A" uniqKey="Mantovani A">A. Mantovani</name>
</author>
<author>
<name sortKey="Cassatella, M A" uniqKey="Cassatella M">M.A. Cassatella</name>
</author>
<author>
<name sortKey="Costantini, C" uniqKey="Costantini C">C. Costantini</name>
</author>
<author>
<name sortKey="Jaillon, S" uniqKey="Jaillon S">S. Jaillon</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Szebeni, G J" uniqKey="Szebeni G">G.J. Szebeni</name>
</author>
<author>
<name sortKey="Vizler, C" uniqKey="Vizler C">C. Vizler</name>
</author>
<author>
<name sortKey="Nagy, L I" uniqKey="Nagy L">L.I. Nagy</name>
</author>
<author>
<name sortKey="Kitajka, K" uniqKey="Kitajka K">K. Kitajka</name>
</author>
<author>
<name sortKey="Puskas, L G" uniqKey="Puskas L">L.G. Puskas</name>
</author>
<author>
<name sortKey="Tanaka, T" uniqKey="Tanaka T">T. Tanaka</name>
</author>
<author>
<name sortKey="Shimizu, M" uniqKey="Shimizu M">M. Shimizu</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Shaul, M E" uniqKey="Shaul M">M.E. Shaul</name>
</author>
<author>
<name sortKey="Fridlender, Z G" uniqKey="Fridlender Z">Z.G. Fridlender</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Houghton, A M" uniqKey="Houghton A">A.M. Houghton</name>
</author>
<author>
<name sortKey="Rzymkiewicz, D M" uniqKey="Rzymkiewicz D">D.M. Rzymkiewicz</name>
</author>
<author>
<name sortKey="Ji, H" uniqKey="Ji H">H. Ji</name>
</author>
<author>
<name sortKey="Gregory, A D" uniqKey="Gregory A">A.D. Gregory</name>
</author>
<author>
<name sortKey="Egea, E E" uniqKey="Egea E">E.E. Egea</name>
</author>
<author>
<name sortKey="Metz, H E" uniqKey="Metz H">H.E. Metz</name>
</author>
<author>
<name sortKey="Stolz, D B" uniqKey="Stolz D">D.B. Stolz</name>
</author>
<author>
<name sortKey="Land, S R" uniqKey="Land S">S.R. Land</name>
</author>
<author>
<name sortKey="Marconcini, L A" uniqKey="Marconcini L">L.A. Marconcini</name>
</author>
<author>
<name sortKey="Kliment, C R" uniqKey="Kliment C">C.R. Kliment</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Galdiero, M R" uniqKey="Galdiero M">M.R. Galdiero</name>
</author>
<author>
<name sortKey="Varricchi, G" uniqKey="Varricchi G">G. Varricchi</name>
</author>
<author>
<name sortKey="Loffredo, S" uniqKey="Loffredo S">S. Loffredo</name>
</author>
<author>
<name sortKey="Mantovani, A" uniqKey="Mantovani A">A. Mantovani</name>
</author>
<author>
<name sortKey="Marone, G" uniqKey="Marone G">G. Marone</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Wislez, M" uniqKey="Wislez M">M. Wislez</name>
</author>
<author>
<name sortKey="Rabbe, N" uniqKey="Rabbe N">N. Rabbe</name>
</author>
<author>
<name sortKey="Marchal, J" uniqKey="Marchal J">J. Marchal</name>
</author>
<author>
<name sortKey="Milleron, B" uniqKey="Milleron B">B. Milleron</name>
</author>
<author>
<name sortKey="Crestani, B" uniqKey="Crestani B">B. Crestani</name>
</author>
<author>
<name sortKey="Mayaud, C" uniqKey="Mayaud C">C. Mayaud</name>
</author>
<author>
<name sortKey="Antoine, M" uniqKey="Antoine M">M. Antoine</name>
</author>
<author>
<name sortKey="Soler, P" uniqKey="Soler P">P. Soler</name>
</author>
<author>
<name sortKey="Cadranel, J" uniqKey="Cadranel J">J. Cadranel</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Li, Z" uniqKey="Li Z">Z. Li</name>
</author>
<author>
<name sortKey="Zhao, R" uniqKey="Zhao R">R. Zhao</name>
</author>
<author>
<name sortKey="Cui, Y" uniqKey="Cui Y">Y. Cui</name>
</author>
<author>
<name sortKey="Zhou, Y" uniqKey="Zhou Y">Y. Zhou</name>
</author>
<author>
<name sortKey="Wu, X" uniqKey="Wu X">X. Wu</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Mizuno, R" uniqKey="Mizuno R">R. Mizuno</name>
</author>
<author>
<name sortKey="Kawada, K" uniqKey="Kawada K">K. Kawada</name>
</author>
<author>
<name sortKey="Itatani, Y" uniqKey="Itatani Y">Y. Itatani</name>
</author>
<author>
<name sortKey="Ogawa, R" uniqKey="Ogawa R">R. Ogawa</name>
</author>
<author>
<name sortKey="Kiyasu, Y" uniqKey="Kiyasu Y">Y. Kiyasu</name>
</author>
<author>
<name sortKey="Sakai, Y" uniqKey="Sakai Y">Y. Sakai</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Qian, B Z" uniqKey="Qian B">B.Z. Qian</name>
</author>
<author>
<name sortKey="Li, J" uniqKey="Li J">J. Li</name>
</author>
<author>
<name sortKey="Zhang, H" uniqKey="Zhang H">H. Zhang</name>
</author>
<author>
<name sortKey="Kitamura, T" uniqKey="Kitamura T">T. Kitamura</name>
</author>
<author>
<name sortKey="Zhang, J" uniqKey="Zhang J">J. Zhang</name>
</author>
<author>
<name sortKey="Campion, L R" uniqKey="Campion L">L.R. Campion</name>
</author>
<author>
<name sortKey="Kaiser, E A" uniqKey="Kaiser E">E.A. Kaiser</name>
</author>
<author>
<name sortKey="Snyder, L A" uniqKey="Snyder L">L.A. Snyder</name>
</author>
<author>
<name sortKey="Pollard, J W" uniqKey="Pollard J">J.W. Pollard</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kumar, V" uniqKey="Kumar V">V. Kumar</name>
</author>
<author>
<name sortKey="Patel, S" uniqKey="Patel S">S. Patel</name>
</author>
<author>
<name sortKey="Tcyganov, E" uniqKey="Tcyganov E">E. Tcyganov</name>
</author>
<author>
<name sortKey="Gabrilovich, D I" uniqKey="Gabrilovich D">D.I. Gabrilovich</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Haverkamp, J M" uniqKey="Haverkamp J">J.M. Haverkamp</name>
</author>
<author>
<name sortKey="Crist, S A" uniqKey="Crist S">S.A. Crist</name>
</author>
<author>
<name sortKey="Elzey, B D" uniqKey="Elzey B">B.D. Elzey</name>
</author>
<author>
<name sortKey="Cimen, C" uniqKey="Cimen C">C. Cimen</name>
</author>
<author>
<name sortKey="Ratliff, T L" uniqKey="Ratliff T">T.L. Ratliff</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Corzo, C A" uniqKey="Corzo C">C.A. Corzo</name>
</author>
<author>
<name sortKey="Condamine, T" uniqKey="Condamine T">T. Condamine</name>
</author>
<author>
<name sortKey="Lu, L" uniqKey="Lu L">L. Lu</name>
</author>
<author>
<name sortKey="Cotter, M J" uniqKey="Cotter M">M.J. Cotter</name>
</author>
<author>
<name sortKey="Youn, J I" uniqKey="Youn J">J.-I. Youn</name>
</author>
<author>
<name sortKey="Cheng, P" uniqKey="Cheng P">P. Cheng</name>
</author>
<author>
<name sortKey="Cho, H I" uniqKey="Cho H">H.-I. Cho</name>
</author>
<author>
<name sortKey="Celis, E" uniqKey="Celis E">E. Celis</name>
</author>
<author>
<name sortKey="Quiceno, D G" uniqKey="Quiceno D">D.G. Quiceno</name>
</author>
<author>
<name sortKey="Padhya, T" uniqKey="Padhya T">T. Padhya</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Jiang, G M" uniqKey="Jiang G">G.M. Jiang</name>
</author>
<author>
<name sortKey="Tan, Y" uniqKey="Tan Y">Y. Tan</name>
</author>
<author>
<name sortKey="Wang, H" uniqKey="Wang H">H. Wang</name>
</author>
<author>
<name sortKey="Peng, L" uniqKey="Peng L">L. Peng</name>
</author>
<author>
<name sortKey="Chen, H T" uniqKey="Chen H">H.T. Chen</name>
</author>
<author>
<name sortKey="Meng, X J" uniqKey="Meng X">X.J. Meng</name>
</author>
<author>
<name sortKey="Li, L L" uniqKey="Li L">L.L. Li</name>
</author>
<author>
<name sortKey="Liu, Y" uniqKey="Liu Y">Y. Liu</name>
</author>
<author>
<name sortKey="Li, W F" uniqKey="Li W">W.F. Li</name>
</author>
<author>
<name sortKey="Shan, H" uniqKey="Shan H">H. Shan</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Li, W" uniqKey="Li W">W. Li</name>
</author>
<author>
<name sortKey="Tanikawa, T" uniqKey="Tanikawa T">T. Tanikawa</name>
</author>
<author>
<name sortKey="Kryczek, I" uniqKey="Kryczek I">I. Kryczek</name>
</author>
<author>
<name sortKey="Xia, H" uniqKey="Xia H">H. Xia</name>
</author>
<author>
<name sortKey="Li, G" uniqKey="Li G">G. Li</name>
</author>
<author>
<name sortKey="Wu, K" uniqKey="Wu K">K. Wu</name>
</author>
<author>
<name sortKey="Wei, S" uniqKey="Wei S">S. Wei</name>
</author>
<author>
<name sortKey="Zhao, L" uniqKey="Zhao L">L. Zhao</name>
</author>
<author>
<name sortKey="Vatan, L" uniqKey="Vatan L">L. Vatan</name>
</author>
<author>
<name sortKey="Wen, B" uniqKey="Wen B">B. Wen</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="De Veirman, K" uniqKey="De Veirman K">K. De Veirman</name>
</author>
<author>
<name sortKey="Menu, E" uniqKey="Menu E">E. Menu</name>
</author>
<author>
<name sortKey="Maes, K" uniqKey="Maes K">K. Maes</name>
</author>
<author>
<name sortKey="De Beule, N" uniqKey="De Beule N">N. De Beule</name>
</author>
<author>
<name sortKey="De Smedt, E" uniqKey="De Smedt E">E. De Smedt</name>
</author>
<author>
<name sortKey="Maes, A" uniqKey="Maes A">A. Maes</name>
</author>
<author>
<name sortKey="Vlummens, P" uniqKey="Vlummens P">P. Vlummens</name>
</author>
<author>
<name sortKey="Fostier, K" uniqKey="Fostier K">K. Fostier</name>
</author>
<author>
<name sortKey="Kassambara, A" uniqKey="Kassambara A">A. Kassambara</name>
</author>
<author>
<name sortKey="Moreaux, J" uniqKey="Moreaux J">J. Moreaux</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Xing, F" uniqKey="Xing F">F. Xing</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Koliaraki, V" uniqKey="Koliaraki V">V. Koliaraki</name>
</author>
<author>
<name sortKey="Pallangyo, C K" uniqKey="Pallangyo C">C.K. Pallangyo</name>
</author>
<author>
<name sortKey="Greten, F R" uniqKey="Greten F">F.R. Greten</name>
</author>
<author>
<name sortKey="Kollias, G" uniqKey="Kollias G">G. Kollias</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Grillo, A R" uniqKey="Grillo A">A.R. Grillo</name>
</author>
<author>
<name sortKey="Scarpa, M" uniqKey="Scarpa M">M. Scarpa</name>
</author>
<author>
<name sortKey="D Nca, R" uniqKey="D Nca R">R. D’Inca</name>
</author>
<author>
<name sortKey="Brun, P" uniqKey="Brun P">P. Brun</name>
</author>
<author>
<name sortKey="Scarpa, M" uniqKey="Scarpa M">M. Scarpa</name>
</author>
<author>
<name sortKey="Porzionato, A" uniqKey="Porzionato A">A. Porzionato</name>
</author>
<author>
<name sortKey="De Caro, R" uniqKey="De Caro R">R. De Caro</name>
</author>
<author>
<name sortKey="Martines, D" uniqKey="Martines D">D. Martines</name>
</author>
<author>
<name sortKey="Buda, A" uniqKey="Buda A">A. Buda</name>
</author>
<author>
<name sortKey="Angriman, I" uniqKey="Angriman I">I. Angriman</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Hawinkels, L J A C" uniqKey="Hawinkels L">L.J.A.C. Hawinkels</name>
</author>
<author>
<name sortKey="Paauwe, M" uniqKey="Paauwe M">M. Paauwe</name>
</author>
<author>
<name sortKey="Verspaget, H W" uniqKey="Verspaget H">H.W. Verspaget</name>
</author>
<author>
<name sortKey="Wiercinska, E" uniqKey="Wiercinska E">E. Wiercinska</name>
</author>
<author>
<name sortKey="Van Der Zon, J M" uniqKey="Van Der Zon J">J.M. Van Der Zon</name>
</author>
<author>
<name sortKey="Van Der Ploeg, K" uniqKey="Van Der Ploeg K">K. Van Der Ploeg</name>
</author>
<author>
<name sortKey="Koelink, P J" uniqKey="Koelink P">P.J. Koelink</name>
</author>
<author>
<name sortKey="Lindeman, J H N" uniqKey="Lindeman J">J.H.N. Lindeman</name>
</author>
<author>
<name sortKey="Mesker, W" uniqKey="Mesker W">W. Mesker</name>
</author>
<author>
<name sortKey="Ten Dijke, P" uniqKey="Ten Dijke P">P. Ten Dijke</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Calon, A" uniqKey="Calon A">A. Calon</name>
</author>
<author>
<name sortKey="Espinet, E" uniqKey="Espinet E">E. Espinet</name>
</author>
<author>
<name sortKey="Palomo Ponce, S" uniqKey="Palomo Ponce S">S. Palomo-Ponce</name>
</author>
<author>
<name sortKey="Tauriello, D V F" uniqKey="Tauriello D">D.V.F. Tauriello</name>
</author>
<author>
<name sortKey="Iglesias, M" uniqKey="Iglesias M">M. Iglesias</name>
</author>
<author>
<name sortKey="Cespedes, M V" uniqKey="Cespedes M">M.V. Céspedes</name>
</author>
<author>
<name sortKey="Sevillano, M" uniqKey="Sevillano M">M. Sevillano</name>
</author>
<author>
<name sortKey="Nadal, C" uniqKey="Nadal C">C. Nadal</name>
</author>
<author>
<name sortKey="Jung, P" uniqKey="Jung P">P. Jung</name>
</author>
<author>
<name sortKey="Zhang, X H F" uniqKey="Zhang X">X.H.F. Zhang</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="O Onnell, J T" uniqKey="O Onnell J">J.T. O’Connell</name>
</author>
<author>
<name sortKey="Sugimoto, H" uniqKey="Sugimoto H">H. Sugimoto</name>
</author>
<author>
<name sortKey="Cooke, V G" uniqKey="Cooke V">V.G. Cooke</name>
</author>
<author>
<name sortKey="Macdonald, B A" uniqKey="Macdonald B">B.A. MacDonald</name>
</author>
<author>
<name sortKey="Mehta, A I" uniqKey="Mehta A">A.I. Mehta</name>
</author>
<author>
<name sortKey="Lebleu, V S" uniqKey="Lebleu V">V.S. LeBleu</name>
</author>
<author>
<name sortKey="Dewar, R" uniqKey="Dewar R">R. Dewar</name>
</author>
<author>
<name sortKey="Rocha, R M" uniqKey="Rocha R">R.M. Rocha</name>
</author>
<author>
<name sortKey="Brentani, R R" uniqKey="Brentani R">R.R. Brentani</name>
</author>
<author>
<name sortKey="Resnick, M B" uniqKey="Resnick M">M.B. Resnick</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Bonnans, C" uniqKey="Bonnans C">C. Bonnans</name>
</author>
<author>
<name sortKey="Chou, J" uniqKey="Chou J">J. Chou</name>
</author>
<author>
<name sortKey="Werb, Z" uniqKey="Werb Z">Z. Werb</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Charoentong, P" uniqKey="Charoentong P">P. Charoentong</name>
</author>
<author>
<name sortKey="Finotello, F" uniqKey="Finotello F">F. Finotello</name>
</author>
<author>
<name sortKey="Angelova, M" uniqKey="Angelova M">M. Angelova</name>
</author>
<author>
<name sortKey="Mayer, C" uniqKey="Mayer C">C. Mayer</name>
</author>
<author>
<name sortKey="Efremova, M" uniqKey="Efremova M">M. Efremova</name>
</author>
<author>
<name sortKey="Rieder, D" uniqKey="Rieder D">D. Rieder</name>
</author>
<author>
<name sortKey="Hackl, H" uniqKey="Hackl H">H. Hackl</name>
</author>
<author>
<name sortKey="Trajanoski, Z" uniqKey="Trajanoski Z">Z. Trajanoski</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Halama, N" uniqKey="Halama N">N. Halama</name>
</author>
<author>
<name sortKey="Braun, M" uniqKey="Braun M">M. Braun</name>
</author>
<author>
<name sortKey="Kahlert, C" uniqKey="Kahlert C">C. Kahlert</name>
</author>
<author>
<name sortKey="Spille, A" uniqKey="Spille A">A. Spille</name>
</author>
<author>
<name sortKey="Quack, C" uniqKey="Quack C">C. Quack</name>
</author>
<author>
<name sortKey="Rahbari, N" uniqKey="Rahbari N">N. Rahbari</name>
</author>
<author>
<name sortKey="Koch, M" uniqKey="Koch M">M. Koch</name>
</author>
<author>
<name sortKey="Weitz, J" uniqKey="Weitz J">J. Weitz</name>
</author>
<author>
<name sortKey="Kloor, M" uniqKey="Kloor M">M. Kloor</name>
</author>
<author>
<name sortKey="Zoernig, I" uniqKey="Zoernig I">I. Zoernig</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Vaupel, P" uniqKey="Vaupel P">P. Vaupel</name>
</author>
<author>
<name sortKey="Mayer, A" uniqKey="Mayer A">A. Mayer</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Levy, J M M" uniqKey="Levy J">J.M.M. Levy</name>
</author>
<author>
<name sortKey="Towers, C G" uniqKey="Towers C">C.G. Towers</name>
</author>
<author>
<name sortKey="Thorburn, A" uniqKey="Thorburn A">A. Thorburn</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Duraes, F V" uniqKey="Duraes F">F.V. Durães</name>
</author>
<author>
<name sortKey="Niven, J" uniqKey="Niven J">J. Niven</name>
</author>
<author>
<name sortKey="Dubrot, J" uniqKey="Dubrot J">J. Dubrot</name>
</author>
<author>
<name sortKey="Hugues, S" uniqKey="Hugues S">S. Hugues</name>
</author>
<author>
<name sortKey="Gannage, M" uniqKey="Gannage M">M. Gannagé</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Bernstein, C N" uniqKey="Bernstein C">C.N. Bernstein</name>
</author>
<author>
<name sortKey="Blanchard, J F" uniqKey="Blanchard J">J.F. Blanchard</name>
</author>
<author>
<name sortKey="Kliewer, E" uniqKey="Kliewer E">E. Kliewer</name>
</author>
<author>
<name sortKey="Wajda, A" uniqKey="Wajda A">A. Wajda</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Fukata, M" uniqKey="Fukata M">M. Fukata</name>
</author>
<author>
<name sortKey="Chen, A" uniqKey="Chen A">A. Chen</name>
</author>
<author>
<name sortKey="Vamadevan, A S" uniqKey="Vamadevan A">A.S. Vamadevan</name>
</author>
<author>
<name sortKey="Cohen, J" uniqKey="Cohen J">J. Cohen</name>
</author>
<author>
<name sortKey="Breglio, K" uniqKey="Breglio K">K. Breglio</name>
</author>
<author>
<name sortKey="Krishnareddy, S" uniqKey="Krishnareddy S">S. Krishnareddy</name>
</author>
<author>
<name sortKey="Hsu, D" uniqKey="Hsu D">D. Hsu</name>
</author>
<author>
<name sortKey="Xu, R" uniqKey="Xu R">R. Xu</name>
</author>
<author>
<name sortKey="Harpaz, N" uniqKey="Harpaz N">N. Harpaz</name>
</author>
<author>
<name sortKey="Dannenberg, A J" uniqKey="Dannenberg A">A.J. Dannenberg</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Chaturvedi, M M" uniqKey="Chaturvedi M">M.M. Chaturvedi</name>
</author>
<author>
<name sortKey="Sung, B" uniqKey="Sung B">B. Sung</name>
</author>
<author>
<name sortKey="Yadav, V R" uniqKey="Yadav V">V.R. Yadav</name>
</author>
<author>
<name sortKey="Kannappan, R" uniqKey="Kannappan R">R. Kannappan</name>
</author>
<author>
<name sortKey="Aggarwal, B B" uniqKey="Aggarwal B">B.B. Aggarwal</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Wu, Y" uniqKey="Wu Y">Y. Wu</name>
</author>
<author>
<name sortKey="Yao, J" uniqKey="Yao J">J. Yao</name>
</author>
<author>
<name sortKey="Xie, J" uniqKey="Xie J">J. Xie</name>
</author>
<author>
<name sortKey="Liu, Z" uniqKey="Liu Z">Z. Liu</name>
</author>
<author>
<name sortKey="Zhou, Y" uniqKey="Zhou Y">Y. Zhou</name>
</author>
<author>
<name sortKey="Pan, H" uniqKey="Pan H">H. Pan</name>
</author>
<author>
<name sortKey="Han, W" uniqKey="Han W">W. Han</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ning, C" uniqKey="Ning C">C. Ning</name>
</author>
<author>
<name sortKey="Li, Y Y" uniqKey="Li Y">Y.-Y. Li</name>
</author>
<author>
<name sortKey="Wang, Y" uniqKey="Wang Y">Y. Wang</name>
</author>
<author>
<name sortKey="Han, G C" uniqKey="Han G">G.-C. Han</name>
</author>
<author>
<name sortKey="Wang, R X" uniqKey="Wang R">R.-X. Wang</name>
</author>
<author>
<name sortKey="Xiao, H" uniqKey="Xiao H">H. Xiao</name>
</author>
<author>
<name sortKey="Li, X Y" uniqKey="Li X">X.-Y. Li</name>
</author>
<author>
<name sortKey="Hou, C M" uniqKey="Hou C">C.-M. Hou</name>
</author>
<author>
<name sortKey="Ma, Y F" uniqKey="Ma Y">Y.-F. Ma</name>
</author>
<author>
<name sortKey="Sheng, D S" uniqKey="Sheng D">D.-S. Sheng</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Olguin, J E" uniqKey="Olguin J">J.E. Olguín</name>
</author>
<author>
<name sortKey="Medina Andrade, I" uniqKey="Medina Andrade I">I. Medina-Andrade</name>
</author>
<author>
<name sortKey="Molina, E" uniqKey="Molina E">E. Molina</name>
</author>
<author>
<name sortKey="Vazquez, A" uniqKey="Vazquez A">A. Vázquez</name>
</author>
<author>
<name sortKey="Pacheco Fernandez, T" uniqKey="Pacheco Fernandez T">T. Pacheco-Fernández</name>
</author>
<author>
<name sortKey="Saavedra, R" uniqKey="Saavedra R">R. Saavedra</name>
</author>
<author>
<name sortKey="Perez Plasencia, C" uniqKey="Perez Plasencia C">C. Pérez-Plasencia</name>
</author>
<author>
<name sortKey="Chirino, Y I" uniqKey="Chirino Y">Y.I. Chirino</name>
</author>
<author>
<name sortKey="Vaca Paniagua, F" uniqKey="Vaca Paniagua F">F. Vaca-Paniagua</name>
</author>
<author>
<name sortKey="Arias Romero, L E" uniqKey="Arias Romero L">L.E. Arias-Romero</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ngabire, D" uniqKey="Ngabire D">D. Ngabire</name>
</author>
<author>
<name sortKey="Kim, G D" uniqKey="Kim G">G.-D. Kim</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Bellot, G" uniqKey="Bellot G">G. Bellot</name>
</author>
<author>
<name sortKey="Garcia Medina, R" uniqKey="Garcia Medina R">R. Garcia-Medina</name>
</author>
<author>
<name sortKey="Gounon, P" uniqKey="Gounon P">P. Gounon</name>
</author>
<author>
<name sortKey="Chiche, J" uniqKey="Chiche J">J. Chiche</name>
</author>
<author>
<name sortKey="Roux, D" uniqKey="Roux D">D. Roux</name>
</author>
<author>
<name sortKey="Pouyssegur, J" uniqKey="Pouyssegur J">J. Pouysségur</name>
</author>
<author>
<name sortKey="Mazure, N M" uniqKey="Mazure N">N.M. Mazure</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Lin, A" uniqKey="Lin A">A. Lin</name>
</author>
<author>
<name sortKey="Yao, J" uniqKey="Yao J">J. Yao</name>
</author>
<author>
<name sortKey="Zhuang, L" uniqKey="Zhuang L">L. Zhuang</name>
</author>
<author>
<name sortKey="Wang, D" uniqKey="Wang D">D. Wang</name>
</author>
<author>
<name sortKey="Han, J" uniqKey="Han J">J. Han</name>
</author>
<author>
<name sortKey="Lam, E W" uniqKey="Lam E">E.W. Lam</name>
</author>
<author>
<name sortKey="Network, T R" uniqKey="Network T">T.R. Network</name>
</author>
<author>
<name sortKey="Gan, B" uniqKey="Gan B">B. Gan</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Li, Y Y" uniqKey="Li Y">Y.-Y. Li</name>
</author>
<author>
<name sortKey="Feun, L G" uniqKey="Feun L">L.G. Feun</name>
</author>
<author>
<name sortKey="Thongkum, A" uniqKey="Thongkum A">A. Thongkum</name>
</author>
<author>
<name sortKey="Tu, C H" uniqKey="Tu C">C.-H. Tu</name>
</author>
<author>
<name sortKey="Chen, S M" uniqKey="Chen S">S.-M. Chen</name>
</author>
<author>
<name sortKey="Wangpaichitr, M" uniqKey="Wangpaichitr M">M. Wangpaichitr</name>
</author>
<author>
<name sortKey="Wu, C" uniqKey="Wu C">C. Wu</name>
</author>
<author>
<name sortKey="Kuo, M T" uniqKey="Kuo M">M.T. Kuo</name>
</author>
<author>
<name sortKey="Savaraj, N" uniqKey="Savaraj N">N. Savaraj</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Cam, H" uniqKey="Cam H">H. Çam</name>
</author>
<author>
<name sortKey="Easton, J B" uniqKey="Easton J">J.B. Easton</name>
</author>
<author>
<name sortKey="High, A" uniqKey="High A">A. High</name>
</author>
<author>
<name sortKey="Houghton, P J" uniqKey="Houghton P">P.J. Houghton</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Vale Ka, J" uniqKey="Vale Ka J">J. Valečka</name>
</author>
<author>
<name sortKey="Almeida, C R" uniqKey="Almeida C">C.R. Almeida</name>
</author>
<author>
<name sortKey="Su, B" uniqKey="Su B">B. Su</name>
</author>
<author>
<name sortKey="Pierre, P" uniqKey="Pierre P">P. Pierre</name>
</author>
<author>
<name sortKey="Gatti, E" uniqKey="Gatti E">E. Gatti</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Keller, C W" uniqKey="Keller C">C.W. Keller</name>
</author>
<author>
<name sortKey="Loi, M" uniqKey="Loi M">M. Loi</name>
</author>
<author>
<name sortKey="Ligeon, L A" uniqKey="Ligeon L">L.-A. Ligeon</name>
</author>
<author>
<name sortKey="Gannage, M" uniqKey="Gannage M">M. Gannage</name>
</author>
<author>
<name sortKey="Lunemann, J D" uniqKey="Lunemann J">J.D. Lunemann</name>
</author>
<author>
<name sortKey="Munz, C" uniqKey="Munz C">C. Münz</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Folkerts, H" uniqKey="Folkerts H">H. Folkerts</name>
</author>
<author>
<name sortKey="Hilgendorf, S" uniqKey="Hilgendorf S">S. Hilgendorf</name>
</author>
<author>
<name sortKey="Vellenga, E" uniqKey="Vellenga E">E. Vellenga</name>
</author>
<author>
<name sortKey="Bremer, E" uniqKey="Bremer E">E. Bremer</name>
</author>
<author>
<name sortKey="Wiersma, V R" uniqKey="Wiersma V">V.R. Wiersma</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Parekh, V V" uniqKey="Parekh V">V.V. Parekh</name>
</author>
<author>
<name sortKey="Wu, L" uniqKey="Wu L">L. Wu</name>
</author>
<author>
<name sortKey="Boyd, K L" uniqKey="Boyd K">K.L. Boyd</name>
</author>
<author>
<name sortKey="Williams, J A" uniqKey="Williams J">J.A. Williams</name>
</author>
<author>
<name sortKey="Gaddy, J A" uniqKey="Gaddy J">J.A. Gaddy</name>
</author>
<author>
<name sortKey="Olivares Villag Mez, D" uniqKey="Olivares Villag Mez D">D. Olivares-Villagómez</name>
</author>
<author>
<name sortKey="Cover, T L" uniqKey="Cover T">T.L. Cover</name>
</author>
<author>
<name sortKey="Zong, W X" uniqKey="Zong W">W.-X. Zong</name>
</author>
<author>
<name sortKey="Zhang, J" uniqKey="Zhang J">J. Zhang</name>
</author>
<author>
<name sortKey="Van Kaer, L" uniqKey="Van Kaer L">L. Van Kaer</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Loi, M" uniqKey="Loi M">M. Loi</name>
</author>
<author>
<name sortKey="Muller, A" uniqKey="Muller A">A. Müller</name>
</author>
<author>
<name sortKey="Steinbach, K" uniqKey="Steinbach K">K. Steinbach</name>
</author>
<author>
<name sortKey="Niven, J" uniqKey="Niven J">J. Niven</name>
</author>
<author>
<name sortKey="Barreira Da Silva, R" uniqKey="Barreira Da Silva R">R. Barreira da Silva</name>
</author>
<author>
<name sortKey="Paul, P" uniqKey="Paul P">P. Paul</name>
</author>
<author>
<name sortKey="Ligeon, L A" uniqKey="Ligeon L">L.A. Ligeon</name>
</author>
<author>
<name sortKey="Caruso, A" uniqKey="Caruso A">A. Caruso</name>
</author>
<author>
<name sortKey="Albrecht, R A" uniqKey="Albrecht R">R.A. Albrecht</name>
</author>
<author>
<name sortKey="Becker, A C" uniqKey="Becker A">A.C. Becker</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Germic, N" uniqKey="Germic N">N. Germic</name>
</author>
<author>
<name sortKey="Frangez, Z" uniqKey="Frangez Z">Z. Frangez</name>
</author>
<author>
<name sortKey="Yousefi, S" uniqKey="Yousefi S">S. Yousefi</name>
</author>
<author>
<name sortKey="Simon, H U" uniqKey="Simon H">H.-U. Simon</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Munz, C" uniqKey="Munz C">C. Münz</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Mintern, J D" uniqKey="Mintern J">J.D. Mintern</name>
</author>
<author>
<name sortKey="Macri, C" uniqKey="Macri C">C. Macri</name>
</author>
<author>
<name sortKey="Chin, W J" uniqKey="Chin W">W.J. Chin</name>
</author>
<author>
<name sortKey="Panozza, S E" uniqKey="Panozza S">S.E. Panozza</name>
</author>
<author>
<name sortKey="Segura, E" uniqKey="Segura E">E. Segura</name>
</author>
<author>
<name sortKey="Patterson, N L" uniqKey="Patterson N">N.L. Patterson</name>
</author>
<author>
<name sortKey="Zeller, P" uniqKey="Zeller P">P. Zeller</name>
</author>
<author>
<name sortKey="Bourges, D" uniqKey="Bourges D">D. Bourges</name>
</author>
<author>
<name sortKey="Bedoui, S" uniqKey="Bedoui S">S. Bedoui</name>
</author>
<author>
<name sortKey="Mcmillan, P J" uniqKey="Mcmillan P">P.J. McMillan</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Loi, M" uniqKey="Loi M">M. Loi</name>
</author>
<author>
<name sortKey="Ligeon, L A" uniqKey="Ligeon L">L.-A. Ligeon</name>
</author>
<author>
<name sortKey="Munz, C" uniqKey="Munz C">C. Münz</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Thiele, F" uniqKey="Thiele F">F. Thiele</name>
</author>
<author>
<name sortKey="Tao, S" uniqKey="Tao S">S. Tao</name>
</author>
<author>
<name sortKey="Zhang, Y" uniqKey="Zhang Y">Y. Zhang</name>
</author>
<author>
<name sortKey="Muschaweckh, A" uniqKey="Muschaweckh A">A. Muschaweckh</name>
</author>
<author>
<name sortKey="Zollmann, T" uniqKey="Zollmann T">T. Zollmann</name>
</author>
<author>
<name sortKey="Protzer, U" uniqKey="Protzer U">U. Protzer</name>
</author>
<author>
<name sortKey="Abele, R" uniqKey="Abele R">R. Abele</name>
</author>
<author>
<name sortKey="Drexler, I" uniqKey="Drexler I">I. Drexler</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Bronietzki, A W" uniqKey="Bronietzki A">A.W. Bronietzki</name>
</author>
<author>
<name sortKey="Schuster, M" uniqKey="Schuster M">M. Schuster</name>
</author>
<author>
<name sortKey="Schmitz, I" uniqKey="Schmitz I">I. Schmitz</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Nedjic, J" uniqKey="Nedjic J">J. Nedjic</name>
</author>
<author>
<name sortKey="Aichinger, M" uniqKey="Aichinger M">M. Aichinger</name>
</author>
<author>
<name sortKey="Mizushima, N" uniqKey="Mizushima N">N. Mizushima</name>
</author>
<author>
<name sortKey="Klein, L" uniqKey="Klein L">L. Klein</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Khan, N" uniqKey="Khan N">N. Khan</name>
</author>
<author>
<name sortKey="Vidyarthi, A" uniqKey="Vidyarthi A">A. Vidyarthi</name>
</author>
<author>
<name sortKey="Pahari, S" uniqKey="Pahari S">S. Pahari</name>
</author>
<author>
<name sortKey="Negi, S" uniqKey="Negi S">S. Negi</name>
</author>
<author>
<name sortKey="Aqdas, M" uniqKey="Aqdas M">M. Aqdas</name>
</author>
<author>
<name sortKey="Nadeem, S" uniqKey="Nadeem S">S. Nadeem</name>
</author>
<author>
<name sortKey="Agnihotri, T" uniqKey="Agnihotri T">T. Agnihotri</name>
</author>
<author>
<name sortKey="Agrewala, J N" uniqKey="Agrewala J">J.N. Agrewala</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Tey, S K" uniqKey="Tey S">S.-K. Tey</name>
</author>
<author>
<name sortKey="Khanna, R" uniqKey="Khanna R">R. Khanna</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Lee, H K" uniqKey="Lee H">H.K. Lee</name>
</author>
<author>
<name sortKey="Mattei, L M" uniqKey="Mattei L">L.M. Mattei</name>
</author>
<author>
<name sortKey="Steinberg, B E" uniqKey="Steinberg B">B.E. Steinberg</name>
</author>
<author>
<name sortKey="Alberts, P" uniqKey="Alberts P">P. Alberts</name>
</author>
<author>
<name sortKey="Lee, Y H" uniqKey="Lee Y">Y.H. Lee</name>
</author>
<author>
<name sortKey="Chervonsky, A" uniqKey="Chervonsky A">A. Chervonsky</name>
</author>
<author>
<name sortKey="Mizushima, N" uniqKey="Mizushima N">N. Mizushima</name>
</author>
<author>
<name sortKey="Grinstein, S" uniqKey="Grinstein S">S. Grinstein</name>
</author>
<author>
<name sortKey="Iwasaki, A" uniqKey="Iwasaki A">A. Iwasaki</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Galdiero, M R" uniqKey="Galdiero M">M.R. Galdiero</name>
</author>
<author>
<name sortKey="Bonavita, E" uniqKey="Bonavita E">E. Bonavita</name>
</author>
<author>
<name sortKey="Barajon, I" uniqKey="Barajon I">I. Barajon</name>
</author>
<author>
<name sortKey="Garlanda, C" uniqKey="Garlanda C">C. Garlanda</name>
</author>
<author>
<name sortKey="Mantovani, A" uniqKey="Mantovani A">A. Mantovani</name>
</author>
<author>
<name sortKey="Jaillon, S" uniqKey="Jaillon S">S. Jaillon</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Yang, M" uniqKey="Yang M">M. Yang</name>
</author>
<author>
<name sortKey="Liu, J" uniqKey="Liu J">J. Liu</name>
</author>
<author>
<name sortKey="Shao, J" uniqKey="Shao J">J. Shao</name>
</author>
<author>
<name sortKey="Qin, Y" uniqKey="Qin Y">Y. Qin</name>
</author>
<author>
<name sortKey="Ji, Q" uniqKey="Ji Q">Q. Ji</name>
</author>
<author>
<name sortKey="Zhang, X" uniqKey="Zhang X">X. Zhang</name>
</author>
<author>
<name sortKey="Du, J" uniqKey="Du J">J. Du</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Shao, L N" uniqKey="Shao L">L.-N. Shao</name>
</author>
<author>
<name sortKey="Xing, C G" uniqKey="Xing C">C.-G. Xing</name>
</author>
<author>
<name sortKey="Yang, X D" uniqKey="Yang X">X.-D. Yang</name>
</author>
<author>
<name sortKey="Young, W" uniqKey="Young W">W. Young</name>
</author>
<author>
<name sortKey="Zhu, B S" uniqKey="Zhu B">B.-S. Zhu</name>
</author>
<author>
<name sortKey="Cao, J P" uniqKey="Cao J">J.-P. Cao</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Viry, E" uniqKey="Viry E">E. Viry</name>
</author>
<author>
<name sortKey="Baginska, J" uniqKey="Baginska J">J. Baginska</name>
</author>
<author>
<name sortKey="Berchem, G" uniqKey="Berchem G">G. Berchem</name>
</author>
<author>
<name sortKey="Noman, M Z" uniqKey="Noman M">M.Z. Noman</name>
</author>
<author>
<name sortKey="Medves, S" uniqKey="Medves S">S. Medves</name>
</author>
<author>
<name sortKey="Chouaib, S" uniqKey="Chouaib S">S. Chouaib</name>
</author>
<author>
<name sortKey="Janji, B" uniqKey="Janji B">B. Janji</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Shibutani, S T" uniqKey="Shibutani S">S.T. Shibutani</name>
</author>
<author>
<name sortKey="Saitoh, T" uniqKey="Saitoh T">T. Saitoh</name>
</author>
<author>
<name sortKey="Nowag, H" uniqKey="Nowag H">H. Nowag</name>
</author>
<author>
<name sortKey="Munz, C" uniqKey="Munz C">C. Münz</name>
</author>
<author>
<name sortKey="Yoshimori, T" uniqKey="Yoshimori T">T. Yoshimori</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Oral, O" uniqKey="Oral O">O. Oral</name>
</author>
<author>
<name sortKey="Yedier, O" uniqKey="Yedier O">O. Yedier</name>
</author>
<author>
<name sortKey="Kilic, S" uniqKey="Kilic S">S. Kilic</name>
</author>
<author>
<name sortKey="Gozuacik, D" uniqKey="Gozuacik D">D. Gozuacik</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Willinger, T" uniqKey="Willinger T">T. Willinger</name>
</author>
<author>
<name sortKey="Flavell, R A" uniqKey="Flavell R">R.A. Flavell</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Xu, X" uniqKey="Xu X">X. Xu</name>
</author>
<author>
<name sortKey="Araki, K" uniqKey="Araki K">K. Araki</name>
</author>
<author>
<name sortKey="Li, S" uniqKey="Li S">S. Li</name>
</author>
<author>
<name sortKey="Han, J H" uniqKey="Han J">J.H. Han</name>
</author>
<author>
<name sortKey="Ye, L" uniqKey="Ye L">L. Ye</name>
</author>
<author>
<name sortKey="Tan, W G" uniqKey="Tan W">W.G. Tan</name>
</author>
<author>
<name sortKey="Konieczny, B T" uniqKey="Konieczny B">B.T. Konieczny</name>
</author>
<author>
<name sortKey="Bruinsma, M W" uniqKey="Bruinsma M">M.W. Bruinsma</name>
</author>
<author>
<name sortKey="Martinez, J" uniqKey="Martinez J">J. Martinez</name>
</author>
<author>
<name sortKey="Pearce, E L" uniqKey="Pearce E">E.L. Pearce</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Reed, M" uniqKey="Reed M">M. Reed</name>
</author>
<author>
<name sortKey="Morris, S H" uniqKey="Morris S">S.H. Morris</name>
</author>
<author>
<name sortKey="Jang, S" uniqKey="Jang S">S. Jang</name>
</author>
<author>
<name sortKey="Mukherjee, S" uniqKey="Mukherjee S">S. Mukherjee</name>
</author>
<author>
<name sortKey="Yue, Z" uniqKey="Yue Z">Z. Yue</name>
</author>
<author>
<name sortKey="Lukacs, N W" uniqKey="Lukacs N">N.W. Lukacs</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Henson, S M" uniqKey="Henson S">S.M. Henson</name>
</author>
<author>
<name sortKey="Lanna, A" uniqKey="Lanna A">A. Lanna</name>
</author>
<author>
<name sortKey="Riddel, N E" uniqKey="Riddel N">N.E. Riddel</name>
</author>
<author>
<name sortKey="Franzese, O" uniqKey="Franzese O">O. Franzese</name>
</author>
<author>
<name sortKey="Macaulay, R" uniqKey="Macaulay R">R. Macaulay</name>
</author>
<author>
<name sortKey="Griffiths, S J" uniqKey="Griffiths S">S.J. Griffiths</name>
</author>
<author>
<name sortKey="Puleston, D J" uniqKey="Puleston D">D.J. Puleston</name>
</author>
<author>
<name sortKey="Watson, A S" uniqKey="Watson A">A.S. Watson</name>
</author>
<author>
<name sortKey="Simon, A K" uniqKey="Simon A">A.K. Simon</name>
</author>
<author>
<name sortKey="Tooze, S A" uniqKey="Tooze S">S.A. Tooze</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Venook, A" uniqKey="Venook A">A. Venook</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Le, D T" uniqKey="Le D">D.T. Le</name>
</author>
<author>
<name sortKey="Durham, J N" uniqKey="Durham J">J.N. Durham</name>
</author>
<author>
<name sortKey="Smith, K N" uniqKey="Smith K">K.N. Smith</name>
</author>
<author>
<name sortKey="Wang, H" uniqKey="Wang H">H. Wang</name>
</author>
<author>
<name sortKey="Bartlett, B R" uniqKey="Bartlett B">B.R. Bartlett</name>
</author>
<author>
<name sortKey="Aulakh, L K" uniqKey="Aulakh L">L.K. Aulakh</name>
</author>
<author>
<name sortKey="Lu, S" uniqKey="Lu S">S. Lu</name>
</author>
<author>
<name sortKey="Kemberling, H" uniqKey="Kemberling H">H. Kemberling</name>
</author>
<author>
<name sortKey="Wilt, C" uniqKey="Wilt C">C. Wilt</name>
</author>
<author>
<name sortKey="Luber, B S" uniqKey="Luber B">B.S. Luber</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Zhou, C" uniqKey="Zhou C">C. Zhou</name>
</author>
<author>
<name sortKey="Zhang, J" uniqKey="Zhang J">J. Zhang</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Arora, S P" uniqKey="Arora S">S.P. Arora</name>
</author>
<author>
<name sortKey="Mahalingam, D" uniqKey="Mahalingam D">D. Mahalingam</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Lim, S O" uniqKey="Lim S">S.-O. Lim</name>
</author>
<author>
<name sortKey="Li, C W" uniqKey="Li C">C.-W. Li</name>
</author>
<author>
<name sortKey="Xia, W" uniqKey="Xia W">W. Xia</name>
</author>
<author>
<name sortKey="Cha, J H" uniqKey="Cha J">J.-H. Cha</name>
</author>
<author>
<name sortKey="Chan, L C" uniqKey="Chan L">L.-C. Chan</name>
</author>
<author>
<name sortKey="Wu, Y" uniqKey="Wu Y">Y. Wu</name>
</author>
<author>
<name sortKey="Chang, S S" uniqKey="Chang S">S.-S. Chang</name>
</author>
<author>
<name sortKey="Lin, W C" uniqKey="Lin W">W.-C. Lin</name>
</author>
<author>
<name sortKey="Hsu, J M" uniqKey="Hsu J">J.-M. Hsu</name>
</author>
<author>
<name sortKey="Hsu, Y H" uniqKey="Hsu Y">Y.-H. Hsu</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Juneja, V R" uniqKey="Juneja V">V.R. Juneja</name>
</author>
<author>
<name sortKey="Mcguire, K A" uniqKey="Mcguire K">K.A. McGuire</name>
</author>
<author>
<name sortKey="Manguso, R T" uniqKey="Manguso R">R.T. Manguso</name>
</author>
<author>
<name sortKey="Lafleur, M W" uniqKey="Lafleur M">M.W. LaFleur</name>
</author>
<author>
<name sortKey="Collins, N" uniqKey="Collins N">N. Collins</name>
</author>
<author>
<name sortKey="Haining, W N" uniqKey="Haining W">W.N. Haining</name>
</author>
<author>
<name sortKey="Freeman, G J" uniqKey="Freeman G">G.J. Freeman</name>
</author>
<author>
<name sortKey="Sharpe, A H" uniqKey="Sharpe A">A.H. Sharpe</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Yaghoubi, N" uniqKey="Yaghoubi N">N. Yaghoubi</name>
</author>
<author>
<name sortKey="Soltani, A" uniqKey="Soltani A">A. Soltani</name>
</author>
<author>
<name sortKey="Ghazvini, K" uniqKey="Ghazvini K">K. Ghazvini</name>
</author>
<author>
<name sortKey="Hassanian, S M" uniqKey="Hassanian S">S.M. Hassanian</name>
</author>
<author>
<name sortKey="Hashemy, S I" uniqKey="Hashemy S">S.I. Hashemy</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Bin Wang, H" uniqKey="Bin Wang H">H. Bin Wang</name>
</author>
<author>
<name sortKey="Yao, H" uniqKey="Yao H">H. Yao</name>
</author>
<author>
<name sortKey="Li, C S" uniqKey="Li C">C.S. Li</name>
</author>
<author>
<name sortKey="Liang, L X" uniqKey="Liang L">L.X. Liang</name>
</author>
<author>
<name sortKey="Zhang, Y" uniqKey="Zhang Y">Y. Zhang</name>
</author>
<author>
<name sortKey="Chen, Y X" uniqKey="Chen Y">Y.X. Chen</name>
</author>
<author>
<name sortKey="Fang, J Y" uniqKey="Fang J">J.-Y. Fang</name>
</author>
<author>
<name sortKey="Xu, J" uniqKey="Xu J">J. Xu</name>
</author>
<author>
<name sortKey="Fang, J" uniqKey="Fang J">J. Fang</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="O Onnell, J S" uniqKey="O Onnell J">J.S. O’Donnell</name>
</author>
<author>
<name sortKey="Massi, D" uniqKey="Massi D">D. Massi</name>
</author>
<author>
<name sortKey="Teng, M W" uniqKey="Teng M">M.W. Teng</name>
</author>
<author>
<name sortKey="Mandala, M" uniqKey="Mandala M">M. Mandala</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Battaglin, F" uniqKey="Battaglin F">F. Battaglin</name>
</author>
<author>
<name sortKey="Naseem, M" uniqKey="Naseem M">M. Naseem</name>
</author>
<author>
<name sortKey="Lenz, H J" uniqKey="Lenz H">H.J. Lenz</name>
</author>
<author>
<name sortKey="Salem, M E" uniqKey="Salem M">M.E. Salem</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Overman, M J" uniqKey="Overman M">M.J. Overman</name>
</author>
<author>
<name sortKey="Mcdermott, R" uniqKey="Mcdermott R">R. McDermott</name>
</author>
<author>
<name sortKey="Leach, J L" uniqKey="Leach J">J.L. Leach</name>
</author>
<author>
<name sortKey="Lonardi, S" uniqKey="Lonardi S">S. Lonardi</name>
</author>
<author>
<name sortKey="Lenz, H J" uniqKey="Lenz H">H.J. Lenz</name>
</author>
<author>
<name sortKey="Morse, M A" uniqKey="Morse M">M.A. Morse</name>
</author>
<author>
<name sortKey="Desai, J" uniqKey="Desai J">J. Desai</name>
</author>
<author>
<name sortKey="Hill, A" uniqKey="Hill A">A. Hill</name>
</author>
<author>
<name sortKey="Axelson, M" uniqKey="Axelson M">M. Axelson</name>
</author>
<author>
<name sortKey="Moss, R A" uniqKey="Moss R">R.A. Moss</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kang, Y K" uniqKey="Kang Y">Y.K. Kang</name>
</author>
<author>
<name sortKey="Boku, N" uniqKey="Boku N">N. Boku</name>
</author>
<author>
<name sortKey="Satoh, T" uniqKey="Satoh T">T. Satoh</name>
</author>
<author>
<name sortKey="Ryu, M H" uniqKey="Ryu M">M.H. Ryu</name>
</author>
<author>
<name sortKey="Chao, Y" uniqKey="Chao Y">Y. Chao</name>
</author>
<author>
<name sortKey="Kato, K" uniqKey="Kato K">K. Kato</name>
</author>
<author>
<name sortKey="Chung, H C" uniqKey="Chung H">H.C. Chung</name>
</author>
<author>
<name sortKey="Chen, J S" uniqKey="Chen J">J.S. Chen</name>
</author>
<author>
<name sortKey="Muro, K" uniqKey="Muro K">K. Muro</name>
</author>
<author>
<name sortKey="Kang, W K" uniqKey="Kang W">W.K. Kang</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Fuchs, C S" uniqKey="Fuchs C">C.S. Fuchs</name>
</author>
<author>
<name sortKey="Doi, T" uniqKey="Doi T">T. Doi</name>
</author>
<author>
<name sortKey="Jang, R W" uniqKey="Jang R">R.W. Jang</name>
</author>
<author>
<name sortKey="Muro, K" uniqKey="Muro K">K. Muro</name>
</author>
<author>
<name sortKey="Satoh, T" uniqKey="Satoh T">T. Satoh</name>
</author>
<author>
<name sortKey="Machado, M" uniqKey="Machado M">M. Machado</name>
</author>
<author>
<name sortKey="Sun, W" uniqKey="Sun W">W. Sun</name>
</author>
<author>
<name sortKey="I Jalal, S" uniqKey="I Jalal S">S. I Jalal</name>
</author>
<author>
<name sortKey="A Shah, M" uniqKey="A Shah M">M. A Shah</name>
</author>
<author>
<name sortKey="Metges, J P" uniqKey="Metges J">J.-P. Metges</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Chung, K Y" uniqKey="Chung K">K.Y. Chung</name>
</author>
<author>
<name sortKey="Fong, L" uniqKey="Fong L">L. Fong</name>
</author>
<author>
<name sortKey="Venook, A" uniqKey="Venook A">A. Venook</name>
</author>
<author>
<name sortKey="Beck, S B" uniqKey="Beck S">S.B. Beck</name>
</author>
<author>
<name sortKey="Dorazio, P" uniqKey="Dorazio P">P. Dorazio</name>
</author>
<author>
<name sortKey="Criscitiello, P J" uniqKey="Criscitiello P">P.J. Criscitiello</name>
</author>
<author>
<name sortKey="Healey, D I" uniqKey="Healey D">D.I. Healey</name>
</author>
<author>
<name sortKey="Huang, B" uniqKey="Huang B">B. Huang</name>
</author>
<author>
<name sortKey="G Mez Navarro, J" uniqKey="G Mez Navarro J">J. Gómez-Navarro</name>
</author>
<author>
<name sortKey="Saltz, L B" uniqKey="Saltz L">L.B. Saltz</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Le, D T" uniqKey="Le D">D.T. Le</name>
</author>
<author>
<name sortKey="Uram, J N" uniqKey="Uram J">J.N. Uram</name>
</author>
<author>
<name sortKey="Wang, H" uniqKey="Wang H">H. Wang</name>
</author>
<author>
<name sortKey="Bartlett, B" uniqKey="Bartlett B">B. Bartlett</name>
</author>
<author>
<name sortKey="Kemberling, H" uniqKey="Kemberling H">H. Kemberling</name>
</author>
<author>
<name sortKey="Eyring, A" uniqKey="Eyring A">A. Eyring</name>
</author>
<author>
<name sortKey="Skora, A" uniqKey="Skora A">A. Skora</name>
</author>
<author>
<name sortKey="Azad, N S" uniqKey="Azad N">N.S. Azad</name>
</author>
<author>
<name sortKey="Laheru, D A" uniqKey="Laheru D">D.A. Laheru</name>
</author>
<author>
<name sortKey="Donehower, R C" uniqKey="Donehower R">R.C. Donehower</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Overman, M J" uniqKey="Overman M">M.J. Overman</name>
</author>
<author>
<name sortKey="Lonardi, S" uniqKey="Lonardi S">S. Lonardi</name>
</author>
<author>
<name sortKey="Wong, K Y M" uniqKey="Wong K">K.Y.M. Wong</name>
</author>
<author>
<name sortKey="Lenz, H J" uniqKey="Lenz H">H.-J. Lenz</name>
</author>
<author>
<name sortKey="Gelsomino, F" uniqKey="Gelsomino F">F. Gelsomino</name>
</author>
<author>
<name sortKey="Aglietta, M" uniqKey="Aglietta M">M. Aglietta</name>
</author>
<author>
<name sortKey="Morse, M A" uniqKey="Morse M">M.A. Morse</name>
</author>
<author>
<name sortKey="Van Cutsem, E" uniqKey="Van Cutsem E">E. Van Cutsem</name>
</author>
<author>
<name sortKey="Mcdermott, R" uniqKey="Mcdermott R">R. McDermott</name>
</author>
<author>
<name sortKey="Hill, A" uniqKey="Hill A">A. Hill</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Rico, G T" uniqKey="Rico G">G.T. Rico</name>
</author>
<author>
<name sortKey="Price, T J" uniqKey="Price T">T.J. Price</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Calles, A" uniqKey="Calles A">A. Calles</name>
</author>
<author>
<name sortKey="Aguado, G" uniqKey="Aguado G">G. Aguado</name>
</author>
<author>
<name sortKey="Sandoval, C" uniqKey="Sandoval C">C. Sandoval</name>
</author>
<author>
<name sortKey="Alvarez, R" uniqKey="Alvarez R">R. Álvarez</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Herbst, R S" uniqKey="Herbst R">R.S. Herbst</name>
</author>
<author>
<name sortKey="Soria, J C" uniqKey="Soria J">J.-C. Soria</name>
</author>
<author>
<name sortKey="Kowanetz, M" uniqKey="Kowanetz M">M. Kowanetz</name>
</author>
<author>
<name sortKey="Fine, G D" uniqKey="Fine G">G.D. Fine</name>
</author>
<author>
<name sortKey="Hamid, O" uniqKey="Hamid O">O. Hamid</name>
</author>
<author>
<name sortKey="Gordon, M S" uniqKey="Gordon M">M.S. Gordon</name>
</author>
<author>
<name sortKey="Sosman, J A" uniqKey="Sosman J">J.A. Sosman</name>
</author>
<author>
<name sortKey="Mcdermott, D F" uniqKey="Mcdermott D">D.F. McDermott</name>
</author>
<author>
<name sortKey="Powderly, J D" uniqKey="Powderly J">J.D. Powderly</name>
</author>
<author>
<name sortKey="Gettinger, S N" uniqKey="Gettinger S">S.N. Gettinger</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Link, J T" uniqKey="Link J">J.T. Link</name>
</author>
<author>
<name sortKey="Overman, M J" uniqKey="Overman M">M.J. Overman</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Emambux, S" uniqKey="Emambux S">S. Emambux</name>
</author>
<author>
<name sortKey="Tachon, G" uniqKey="Tachon G">G. Tachon</name>
</author>
<author>
<name sortKey="Junca, A" uniqKey="Junca A">A. Junca</name>
</author>
<author>
<name sortKey="Tougeron, D" uniqKey="Tougeron D">D. Tougeron</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Zhong, X" uniqKey="Zhong X">X. Zhong</name>
</author>
<author>
<name sortKey="Tumang, J R" uniqKey="Tumang J">J.R. Tumang</name>
</author>
<author>
<name sortKey="Gao, W" uniqKey="Gao W">W. Gao</name>
</author>
<author>
<name sortKey="Bai, C" uniqKey="Bai C">C. Bai</name>
</author>
<author>
<name sortKey="Rothstein, T L" uniqKey="Rothstein T">T.L. Rothstein</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Wang, H" uniqKey="Wang H">H. Wang</name>
</author>
<author>
<name sortKey="Yao, H" uniqKey="Yao H">H. Yao</name>
</author>
<author>
<name sortKey="Li, C" uniqKey="Li C">C. Li</name>
</author>
<author>
<name sortKey="Liang, L" uniqKey="Liang L">L. Liang</name>
</author>
<author>
<name sortKey="Zhang, Y" uniqKey="Zhang Y">Y. Zhang</name>
</author>
<author>
<name sortKey="Shi, H" uniqKey="Shi H">H. Shi</name>
</author>
<author>
<name sortKey="Zhou, C" uniqKey="Zhou C">C. Zhou</name>
</author>
<author>
<name sortKey="Chen, Y" uniqKey="Chen Y">Y. Chen</name>
</author>
<author>
<name sortKey="Fang, J Y" uniqKey="Fang J">J.-Y. Fang</name>
</author>
<author>
<name sortKey="Xu, J" uniqKey="Xu J">J. Xu</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Guo, P D" uniqKey="Guo P">P.-D. Guo</name>
</author>
<author>
<name sortKey="Sun, Z W" uniqKey="Sun Z">Z.-W. Sun</name>
</author>
<author>
<name sortKey="Lai, H J" uniqKey="Lai H">H.-J. Lai</name>
</author>
<author>
<name sortKey="Yang, J" uniqKey="Yang J">J. Yang</name>
</author>
<author>
<name sortKey="Wu, P P" uniqKey="Wu P">P.-P. Wu</name>
</author>
<author>
<name sortKey="Guo, Y D" uniqKey="Guo Y">Y.-D. Guo</name>
</author>
<author>
<name sortKey="Sun, J" uniqKey="Sun J">J. Sun</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Taube, J M" uniqKey="Taube J">J.M. Taube</name>
</author>
<author>
<name sortKey="Klein, A" uniqKey="Klein A">A. Klein</name>
</author>
<author>
<name sortKey="Brahmer, J R" uniqKey="Brahmer J">J.R. Brahmer</name>
</author>
<author>
<name sortKey="Xu, H" uniqKey="Xu H">H. Xu</name>
</author>
<author>
<name sortKey="Pan, X" uniqKey="Pan X">X. Pan</name>
</author>
<author>
<name sortKey="Kim, J H" uniqKey="Kim J">J.H. Kim</name>
</author>
<author>
<name sortKey="Chen, L" uniqKey="Chen L">L. Chen</name>
</author>
<author>
<name sortKey="Pardoll, D M" uniqKey="Pardoll D">D.M. Pardoll</name>
</author>
<author>
<name sortKey="Topalian, S L" uniqKey="Topalian S">S.L. Topalian</name>
</author>
<author>
<name sortKey="Anders, R A" uniqKey="Anders R">R.A. Anders</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Seto, T" uniqKey="Seto T">T. Seto</name>
</author>
<author>
<name sortKey="Sam, D" uniqKey="Sam D">D. Sam</name>
</author>
<author>
<name sortKey="Pan, M" uniqKey="Pan M">M. Pan</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Curran, M A" uniqKey="Curran M">M.A. Curran</name>
</author>
<author>
<name sortKey="Montalvo, W" uniqKey="Montalvo W">W. Montalvo</name>
</author>
<author>
<name sortKey="Yagita, H" uniqKey="Yagita H">H. Yagita</name>
</author>
<author>
<name sortKey="Allison, J P" uniqKey="Allison J">J.P. Allison</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Janji, B" uniqKey="Janji B">B. Janji</name>
</author>
<author>
<name sortKey="Berchem, G" uniqKey="Berchem G">G. Berchem</name>
</author>
<author>
<name sortKey="Chouaib, S" uniqKey="Chouaib S">S. Chouaib</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Qian, H R" uniqKey="Qian H">H.-R. Qian</name>
</author>
<author>
<name sortKey="Shi, Z Q" uniqKey="Shi Z">Z.-Q. Shi</name>
</author>
<author>
<name sortKey="Zhu, H P" uniqKey="Zhu H">H.-P. Zhu</name>
</author>
<author>
<name sortKey="Gu, L H" uniqKey="Gu L">L.-H. Gu</name>
</author>
<author>
<name sortKey="Wang, X F" uniqKey="Wang X">X.-F. Wang</name>
</author>
<author>
<name sortKey="Yang, Y" uniqKey="Yang Y">Y. Yang</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Rosenfeld, M R" uniqKey="Rosenfeld M">M.R. Rosenfeld</name>
</author>
<author>
<name sortKey="Ye, X" uniqKey="Ye X">X. Ye</name>
</author>
<author>
<name sortKey="Supko, J G" uniqKey="Supko J">J.G. Supko</name>
</author>
<author>
<name sortKey="Desideri, S" uniqKey="Desideri S">S. Desideri</name>
</author>
<author>
<name sortKey="A Grossman, S" uniqKey="A Grossman S">S. A Grossman</name>
</author>
<author>
<name sortKey="Brem, S" uniqKey="Brem S">S. Brem</name>
</author>
<author>
<name sortKey="Mikkelson, T" uniqKey="Mikkelson T">T. Mikkelson</name>
</author>
<author>
<name sortKey="Wang, D" uniqKey="Wang D">D. Wang</name>
</author>
<author>
<name sortKey="Chang, Y C" uniqKey="Chang Y">Y.C. Chang</name>
</author>
<author>
<name sortKey="Hu, J" uniqKey="Hu J">J. Hu</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Goulielmaki, M" uniqKey="Goulielmaki M">M. Goulielmaki</name>
</author>
<author>
<name sortKey="Koustas, E" uniqKey="Koustas E">E. Koustas</name>
</author>
<author>
<name sortKey="Moysidou, E" uniqKey="Moysidou E">E. Moysidou</name>
</author>
<author>
<name sortKey="Vlassi, M" uniqKey="Vlassi M">M. Vlassi</name>
</author>
<author>
<name sortKey="Sasazuki, T" uniqKey="Sasazuki T">T. Sasazuki</name>
</author>
<author>
<name sortKey="Shirasawa, S" uniqKey="Shirasawa S">S. Shirasawa</name>
</author>
<author>
<name sortKey="Zografos, G" uniqKey="Zografos G">G. Zografos</name>
</author>
<author>
<name sortKey="Oikonomou, E" uniqKey="Oikonomou E">E. Oikonomou</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Boone, B A" uniqKey="Boone B">B.A. Boone</name>
</author>
<author>
<name sortKey="Bahary, N" uniqKey="Bahary N">N. Bahary</name>
</author>
<author>
<name sortKey="Zureikat, A H" uniqKey="Zureikat A">A.H. Zureikat</name>
</author>
<author>
<name sortKey="Moser, A J" uniqKey="Moser A">A.J. Moser</name>
</author>
<author>
<name sortKey="Normolle, D P" uniqKey="Normolle D">D.P. Normolle</name>
</author>
<author>
<name sortKey="Wu, W C" uniqKey="Wu W">W.C. Wu</name>
</author>
<author>
<name sortKey="Singhi, A D" uniqKey="Singhi A">A.D. Singhi</name>
</author>
<author>
<name sortKey="Bao, P" uniqKey="Bao P">P. Bao</name>
</author>
<author>
<name sortKey="Bartlett, D L" uniqKey="Bartlett D">D.L. Bartlett</name>
</author>
<author>
<name sortKey="Liotta, L A" uniqKey="Liotta L">L.A. Liotta</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Pellegrini, P" uniqKey="Pellegrini P">P. Pellegrini</name>
</author>
<author>
<name sortKey="Strambi, A" uniqKey="Strambi A">A. Strambi</name>
</author>
<author>
<name sortKey="Zipoli, C" uniqKey="Zipoli C">C. Zipoli</name>
</author>
<author>
<name sortKey="H Gg Olofsson, M" uniqKey="H Gg Olofsson M">M. Hägg-Olofsson</name>
</author>
<author>
<name sortKey="Buoncervello, M" uniqKey="Buoncervello M">M. Buoncervello</name>
</author>
<author>
<name sortKey="Linder, S" uniqKey="Linder S">S. Linder</name>
</author>
<author>
<name sortKey="De Milito, A" uniqKey="De Milito A">A. De Milito</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Amaravadi, R K" uniqKey="Amaravadi R">R.K. Amaravadi</name>
</author>
<author>
<name sortKey="Winkler, J D" uniqKey="Winkler J">J.D. Winkler</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ronan, B" uniqKey="Ronan B">B. Ronan</name>
</author>
<author>
<name sortKey="Flamand, O" uniqKey="Flamand O">O. Flamand</name>
</author>
<author>
<name sortKey="Vescovi, L" uniqKey="Vescovi L">L. Vescovi</name>
</author>
<author>
<name sortKey="Dureuil, C" uniqKey="Dureuil C">C. Dureuil</name>
</author>
<author>
<name sortKey="Durand, L" uniqKey="Durand L">L. Durand</name>
</author>
<author>
<name sortKey="Fassy, F" uniqKey="Fassy F">F. Fassy</name>
</author>
<author>
<name sortKey="Bachelot, M F" uniqKey="Bachelot M">M.-F. Bachelot</name>
</author>
<author>
<name sortKey="Lamberton, A" uniqKey="Lamberton A">A. Lamberton</name>
</author>
<author>
<name sortKey="Mathieu, M" uniqKey="Mathieu M">M. Mathieu</name>
</author>
<author>
<name sortKey="Bertrand, T" uniqKey="Bertrand T">T. Bertrand</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Egan, D F" uniqKey="Egan D">D.F. Egan</name>
</author>
<author>
<name sortKey="Chun, M G" uniqKey="Chun M">M.G. Chun</name>
</author>
<author>
<name sortKey="Vamos, M" uniqKey="Vamos M">M. Vamos</name>
</author>
<author>
<name sortKey="Zou, H" uniqKey="Zou H">H. Zou</name>
</author>
<author>
<name sortKey="Rong, J" uniqKey="Rong J">J. Rong</name>
</author>
<author>
<name sortKey="Miller, C J" uniqKey="Miller C">C.J. Miller</name>
</author>
<author>
<name sortKey="Lou, H J" uniqKey="Lou H">H.J. Lou</name>
</author>
<author>
<name sortKey="Raveendra Panickar, D" uniqKey="Raveendra Panickar D">D. Raveendra-Panickar</name>
</author>
<author>
<name sortKey="Yang, C C" uniqKey="Yang C">C.-C. Yang</name>
</author>
<author>
<name sortKey="Sheffler, D J" uniqKey="Sheffler D">D.J. Sheffler</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Vakifahmetoglu Norberg, H" uniqKey="Vakifahmetoglu Norberg H">H. Vakifahmetoglu-Norberg</name>
</author>
<author>
<name sortKey="Xia, H G" uniqKey="Xia H">H.-G. Xia</name>
</author>
<author>
<name sortKey="Yuan, J" uniqKey="Yuan J">J. Yuan</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Rossi, M" uniqKey="Rossi M">M. Rossi</name>
</author>
<author>
<name sortKey="Munarriz, E R" uniqKey="Munarriz E">E.R. Munarriz</name>
</author>
<author>
<name sortKey="Bartesaghi, S" uniqKey="Bartesaghi S">S. Bartesaghi</name>
</author>
<author>
<name sortKey="Milanese, M" uniqKey="Milanese M">M. Milanese</name>
</author>
<author>
<name sortKey="Dinsdale, D" uniqKey="Dinsdale D">D. Dinsdale</name>
</author>
<author>
<name sortKey="Guerra Martin, M A" uniqKey="Guerra Martin M">M.A. Guerra-Martin</name>
</author>
<author>
<name sortKey="Bampton, E T W" uniqKey="Bampton E">E.T.W. Bampton</name>
</author>
<author>
<name sortKey="Glynn, P" uniqKey="Glynn P">P. Glynn</name>
</author>
<author>
<name sortKey="Bonanno, G" uniqKey="Bonanno G">G. Bonanno</name>
</author>
<author>
<name sortKey="Knight, R A" uniqKey="Knight R">R.A. Knight</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Liu, J" uniqKey="Liu J">J. Liu</name>
</author>
<author>
<name sortKey="Xia, H" uniqKey="Xia H">H. Xia</name>
</author>
<author>
<name sortKey="Kim, M" uniqKey="Kim M">M. Kim</name>
</author>
<author>
<name sortKey="Xu, L" uniqKey="Xu L">L. Xu</name>
</author>
<author>
<name sortKey="Li, Y" uniqKey="Li Y">Y. Li</name>
</author>
<author>
<name sortKey="Zhang, L" uniqKey="Zhang L">L. Zhang</name>
</author>
<author>
<name sortKey="Cai, Y" uniqKey="Cai Y">Y. Cai</name>
</author>
<author>
<name sortKey="Norberg, H V" uniqKey="Norberg H">H.V. Norberg</name>
</author>
<author>
<name sortKey="Zhang, T" uniqKey="Zhang T">T. Zhang</name>
</author>
<author>
<name sortKey="Furuya, T" uniqKey="Furuya T">T. Furuya</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Starobinets, H" uniqKey="Starobinets H">H. Starobinets</name>
</author>
<author>
<name sortKey="Ye, J" uniqKey="Ye J">J. Ye</name>
</author>
<author>
<name sortKey="Broz, M" uniqKey="Broz M">M. Broz</name>
</author>
<author>
<name sortKey="Barry, K" uniqKey="Barry K">K. Barry</name>
</author>
<author>
<name sortKey="Goldsmith, J" uniqKey="Goldsmith J">J. Goldsmith</name>
</author>
<author>
<name sortKey="Marsh, T" uniqKey="Marsh T">T. Marsh</name>
</author>
<author>
<name sortKey="Rostker, F" uniqKey="Rostker F">F. Rostker</name>
</author>
<author>
<name sortKey="Krummel, M" uniqKey="Krummel M">M. Krummel</name>
</author>
<author>
<name sortKey="Debnath, J" uniqKey="Debnath J">J. Debnath</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Yang, Z J" uniqKey="Yang Z">Z.J. Yang</name>
</author>
<author>
<name sortKey="Chee, C E" uniqKey="Chee C">C.E. Chee</name>
</author>
<author>
<name sortKey="Huang, S" uniqKey="Huang S">S. Huang</name>
</author>
<author>
<name sortKey="Sinicrope, F A" uniqKey="Sinicrope F">F.A. Sinicrope</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Byun, S" uniqKey="Byun S">S. Byun</name>
</author>
<author>
<name sortKey="Lee, E" uniqKey="Lee E">E. Lee</name>
</author>
<author>
<name sortKey="Lee, K W" uniqKey="Lee K">K.W. Lee</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Wang, H" uniqKey="Wang H">H. Wang</name>
</author>
<author>
<name sortKey="Li, D" uniqKey="Li D">D. Li</name>
</author>
<author>
<name sortKey="Li, X" uniqKey="Li X">X. Li</name>
</author>
<author>
<name sortKey="Ou, X" uniqKey="Ou X">X. Ou</name>
</author>
<author>
<name sortKey="Liu, S" uniqKey="Liu S">S. Liu</name>
</author>
<author>
<name sortKey="Zhang, Y" uniqKey="Zhang Y">Y. Zhang</name>
</author>
<author>
<name sortKey="Ding, J" uniqKey="Ding J">J. Ding</name>
</author>
<author>
<name sortKey="Xie, B" uniqKey="Xie B">B. Xie</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Yeo, S K" uniqKey="Yeo S">S.K. Yeo</name>
</author>
<author>
<name sortKey="Paul, R" uniqKey="Paul R">R. Paul</name>
</author>
<author>
<name sortKey="Haas, M" uniqKey="Haas M">M. Haas</name>
</author>
<author>
<name sortKey="Wang, C" uniqKey="Wang C">C. Wang</name>
</author>
<author>
<name sortKey="Guan, J L" uniqKey="Guan J">J.-L. Guan</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Opydo Chanek, M" uniqKey="Opydo Chanek M">M. Opydo-Chanek</name>
</author>
<author>
<name sortKey="Gonzalo, O" uniqKey="Gonzalo O">O. Gonzalo</name>
</author>
<author>
<name sortKey="Marzo, I" uniqKey="Marzo I">I. Marzo</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Law, B Y K" uniqKey="Law B">B.Y.K. Law</name>
</author>
<author>
<name sortKey="Chan, W K" uniqKey="Chan W">W.K. Chan</name>
</author>
<author>
<name sortKey="Xu, S W" uniqKey="Xu S">S.W. Xu</name>
</author>
<author>
<name sortKey="Wang, J R" uniqKey="Wang J">J.R. Wang</name>
</author>
<author>
<name sortKey="Bai, L P" uniqKey="Bai L">L.P. Bai</name>
</author>
<author>
<name sortKey="Liu, L" uniqKey="Liu L">L. Liu</name>
</author>
<author>
<name sortKey="Wong, V K W" uniqKey="Wong V">V.K.W. Wong</name>
</author>
</analytic>
</biblStruct>
</listBibl>
</div1>
</back>
</TEI>
<pmc article-type="review-article">
<pmc-dir>properties open_access</pmc-dir>
<front>
<journal-meta>
<journal-id journal-id-type="nlm-ta">Cancers (Basel)</journal-id>
<journal-id journal-id-type="iso-abbrev">Cancers (Basel)</journal-id>
<journal-id journal-id-type="publisher-id">cancers</journal-id>
<journal-title-group>
<journal-title>Cancers</journal-title>
</journal-title-group>
<issn pub-type="epub">2072-6694</issn>
<publisher>
<publisher-name>MDPI</publisher-name>
</publisher>
</journal-meta>
<article-meta>
<article-id pub-id-type="pmid">31013961</article-id>
<article-id pub-id-type="pmc">6520891</article-id>
<article-id pub-id-type="doi">10.3390/cancers11040533</article-id>
<article-id pub-id-type="publisher-id">cancers-11-00533</article-id>
<article-categories>
<subj-group subj-group-type="heading">
<subject>Review</subject>
</subj-group>
</article-categories>
<title-group>
<article-title>The Interplay of Autophagy and Tumor Microenvironment in Colorectal Cancer—Ways of Enhancing Immunotherapy Action</article-title>
</title-group>
<contrib-group>
<contrib contrib-type="author">
<name>
<surname>Koustas</surname>
<given-names>Evangelos</given-names>
</name>
<xref ref-type="aff" rid="af1-cancers-11-00533">1</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Sarantis</surname>
<given-names>Panagiotis</given-names>
</name>
<xref ref-type="aff" rid="af1-cancers-11-00533">1</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Kyriakopoulou</surname>
<given-names>Georgia</given-names>
</name>
<xref ref-type="aff" rid="af1-cancers-11-00533">1</xref>
</contrib>
<contrib contrib-type="author">
<contrib-id contrib-id-type="orcid" authenticated="true">https://orcid.org/0000-0001-5803-4527</contrib-id>
<name>
<surname>Papavassiliou</surname>
<given-names>Athanasios G.</given-names>
</name>
<xref ref-type="aff" rid="af1-cancers-11-00533">1</xref>
</contrib>
<contrib contrib-type="author">
<contrib-id contrib-id-type="orcid" authenticated="true">https://orcid.org/0000-0003-1369-8201</contrib-id>
<name>
<surname>Karamouzis</surname>
<given-names>Michalis V.</given-names>
</name>
<xref ref-type="aff" rid="af1-cancers-11-00533">1</xref>
<xref ref-type="aff" rid="af2-cancers-11-00533">2</xref>
<xref rid="c1-cancers-11-00533" ref-type="corresp">*</xref>
</contrib>
</contrib-group>
<aff id="af1-cancers-11-00533">
<label>1</label>
Molecular Oncology Unit, Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece;
<email>vang.koustas@gmail.com</email>
(E.K.);
<email>psarantis@bioacademy.gr</email>
(P.S.);
<email>gpkyriakopoulou@yahoo.com</email>
(G.K.);
<email>papavas@med.uoa.gr</email>
(A.G.P.)</aff>
<aff id="af2-cancers-11-00533">
<label>2</label>
First Department of Internal Medicine, ‘Laiko’ General Hospital, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece</aff>
<author-notes>
<corresp id="c1-cancers-11-00533">
<label>*</label>
Correspondence:
<email>mkaramouz@med.uoa.gr</email>
; Tel.: +30-210-746-2508 or +30-210-746-2509; Fax: +30-210-746-2703</corresp>
</author-notes>
<pub-date pub-type="epub">
<day>14</day>
<month>4</month>
<year>2019</year>
</pub-date>
<pub-date pub-type="collection">
<month>4</month>
<year>2019</year>
</pub-date>
<volume>11</volume>
<issue>4</issue>
<elocation-id>533</elocation-id>
<history>
<date date-type="received">
<day>25</day>
<month>3</month>
<year>2019</year>
</date>
<date date-type="accepted">
<day>11</day>
<month>4</month>
<year>2019</year>
</date>
</history>
<permissions>
<copyright-statement>© 2019 by the authors.</copyright-statement>
<copyright-year>2019</copyright-year>
<license license-type="open-access">
<license-p>Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (
<ext-link ext-link-type="uri" xlink:href="http://creativecommons.org/licenses/by/4.0/">http://creativecommons.org/licenses/by/4.0/</ext-link>
).</license-p>
</license>
</permissions>
<abstract>
<p>Autophagy as a primary homeostatic and catabolic process is responsible for the degradation and recycling of proteins and cellular components. The mechanism of autophagy has a crucial role in several cellular functions and its dysregulation is associated with tumorigenesis, tumor–stroma interactions, and resistance to cancer therapy. A growing body of evidence suggests that autophagy is also a key regulator of the tumor microenvironment and cellular immune response in different types of cancer, including colorectal cancer (CRC). Furthermore, autophagy is responsible for initiating the immune response especially when it precedes cell death. However, the role of autophagy in CRC and the tumor microenvironment remains controversial. In this review, we identify the role of autophagy in tumor microenvironment regulation and the specific mechanism by which autophagy is implicated in immune responses during CRC tumorigenesis and the context of anticancer therapy.</p>
</abstract>
<kwd-group>
<kwd>Autophagy</kwd>
<kwd>colorectal cancer</kwd>
<kwd>immunotherapy</kwd>
<kwd>tumor stroma</kwd>
<kwd>tumor microenvironment</kwd>
</kwd-group>
</article-meta>
</front>
<body>
<sec sec-type="intro" id="sec1-cancers-11-00533">
<title>1. Introduction</title>
<p>Colorectal cancer (CRC) is the third most frequently diagnosed malignancy and the second leading cause of cancer-related deaths in the U.S.A. and worldwide [
<xref rid="B1-cancers-11-00533" ref-type="bibr">1</xref>
]. By 2030, the estimated global burden of CRC is expected to reach more than 2.2 million new cases and 1.1 million deaths [
<xref rid="B2-cancers-11-00533" ref-type="bibr">2</xref>
]. Despite significant advances in standard of care therapies, the 5-year survival rate for patients diagnosed with metastatic CRC remains very poor, at approximately 12% [
<xref rid="B1-cancers-11-00533" ref-type="bibr">1</xref>
]. Among others, autophagy is a major mechanism which is strongly associated with tumorigenesis in different types of cancer, including CRC. </p>
<p>The mechanism of autophagy has been identified as a catabolic process with an essential role to digest proteins and dysfunctional cellular organelles [
<xref rid="B3-cancers-11-00533" ref-type="bibr">3</xref>
]. Numerous steps related to autophagy include membrane trafficking vesicles, essential autophagy proteins, a double membrane organelle, which is called an autophagosome, and fusion with lysosomes to create the autophagolysosome. Autophagolysosome is a fundamental structure responsible for degrading the luminal content [
<xref rid="B4-cancers-11-00533" ref-type="bibr">4</xref>
]. The role of autophagy is extended from cellular homeostasis to tumor development [
<xref rid="B5-cancers-11-00533" ref-type="bibr">5</xref>
,
<xref rid="B6-cancers-11-00533" ref-type="bibr">6</xref>
].</p>
<p>Many genes and proteins are crucial for the initiation and progression of autophagy. Genes, like
<italic>Beclin-1</italic>
,
<italic>LC3</italic>
,
<italic>ATG5</italic>
, and
<italic>ATG6</italic>
, have a crucial role for autophagy from normal function to CRC, where these genes have been reported with high expression. Furthermore, these autophagy gene-markers are associated with a more aggressive CRC phenotype [
<xref rid="B7-cancers-11-00533" ref-type="bibr">7</xref>
].</p>
<p>Various morphological changes characterize the autophagy process. In the first step of autophagy, which is called initiation or nucleation, the phagophore, a double membrane structure, is formed through the activation of the class-III PI3K-Beclin-1 complex. Elongation is the next step in the autophagy process. This step is characterized by the arising of the phagophore from different double membrane organelles, such as the Endoplasmic Reticulum (ER), Golgi, and mitochondria. The phagophore starts to enclose the cytosolic cargos, leading to the formation of the autophagosome. The formation of the phagophore is highlighted by different Atgs, p62/ SQSTM1 (an adaptor protein responsible for the docking of specific cargoes), and the lipid-modification of LC3I to LC3II. The maturation step and the following fuse step include the autophagosome formation, which eventually fuses with lysosomes to form autolysosomes. Finally, during the degradation step, lysosomal/vacuolar hydrolases digest autolysosomal products and release them in the cytosol [
<xref rid="B4-cancers-11-00533" ref-type="bibr">4</xref>
].</p>
<p>Over the last years, many studies have been conducted that support the dual role of autophagy in CRC. Autophagy appears to be responsible for maintaining the energy homeostasis in cells, which is required for several cellular functions, such as proliferation [
<xref rid="B8-cancers-11-00533" ref-type="bibr">8</xref>
], angiogenesis, migration [
<xref rid="B9-cancers-11-00533" ref-type="bibr">9</xref>
], and EMT (epithelial-mesenchymal transition) phenotype [
<xref rid="B10-cancers-11-00533" ref-type="bibr">10</xref>
]. Autophagy is identified to be upregulated in a hypoxic region of already established tumors, where the energy demands are increased [
<xref rid="B11-cancers-11-00533" ref-type="bibr">11</xref>
]. Moreover, cancer cells of high graded tumors appear to be addicted to autophagy to maintain their energy balance [
<xref rid="B12-cancers-11-00533" ref-type="bibr">12</xref>
,
<xref rid="B13-cancers-11-00533" ref-type="bibr">13</xref>
]. Numerous studies report the impact of autophagy in cancer patients’ response to chemotherapy. Increasing levels of autophagy are linked with inadequate response to chemotherapeutic drugs and dismal survival rates [
<xref rid="B14-cancers-11-00533" ref-type="bibr">14</xref>
].</p>
<p>In different cancer types, such as CRC, a single-nucleotide polymorphism, in autophagy-related genes, like
<italic>ATG16L1</italic>
, is associated with a reduction of autophagy and a significant negative predictive value for patients’ survival with metastatic disease [
<xref rid="B15-cancers-11-00533" ref-type="bibr">15</xref>
,
<xref rid="B16-cancers-11-00533" ref-type="bibr">16</xref>
]. Besides, monoallelic deletion of other crucial autophagy genes, such as
<italic>Beclin-1</italic>
, which leads to autophagy reduction, has been identified in several diseases, such as cancer and Alzheimer’s [
<xref rid="B17-cancers-11-00533" ref-type="bibr">17</xref>
,
<xref rid="B18-cancers-11-00533" ref-type="bibr">18</xref>
,
<xref rid="B19-cancers-11-00533" ref-type="bibr">19</xref>
]. Other studies highlight the positive impact of monoallelic deletion or total loss of other genes, such as
<italic>ATG5</italic>
,
<italic>ATG7</italic>
, and
<italic>ATG4C</italic>
, in cancer development [
<xref rid="B20-cancers-11-00533" ref-type="bibr">20</xref>
]. In addition,
<italic>KRAS</italic>
, an essential oncogene in CRC development, is strongly associated with autophagy [
<xref rid="B21-cancers-11-00533" ref-type="bibr">21</xref>
]. Cancer cells of
<italic>KRAS</italic>
-dependent tumors use autophagy in order to support the growth of cancer cells under stressful conditions in hypoxic regions of tumors [
<xref rid="B8-cancers-11-00533" ref-type="bibr">8</xref>
]. All these studies highlight the dual role of autophagy as a tumor promoter or tumor suppressor mechanism. The accumulation of dysfunctional proteins and cellular organelles through the reduction of autophagy increases the risk for malignant transformation. Furthermore, low basic levels of autophagy are required for cell survival as was identified through experiments with a knockout of different autophagy genes, such as
<italic>ATG</italic>
genes,
<italic>Beclin-1</italic>
, or
<italic>AMBRA1</italic>
[
<xref rid="B22-cancers-11-00533" ref-type="bibr">22</xref>
,
<xref rid="B23-cancers-11-00533" ref-type="bibr">23</xref>
]. Autophagy is responsible for recycling cellular components and producing energy and pro-oncogenic factors [
<xref rid="B24-cancers-11-00533" ref-type="bibr">24</xref>
]. Different stage of tumors, anti-cancer treatment, mutations in
<italic>ATGs</italic>
, and oncogenes are closely associated with autophagy and its controversial role in tumorigenesis. Further study is required in order to address the link between autophagy and hallmarks of cancer. </p>
<p>Furthermore, the increasing levels of autophagy, in these regions, are strongly associated with the regulation of the immune response in the tumor microenvironment [
<xref rid="B11-cancers-11-00533" ref-type="bibr">11</xref>
,
<xref rid="B25-cancers-11-00533" ref-type="bibr">25</xref>
]. The microenvironment of different malignant tumors, including CRC, is characterized by numerous cell types (including immune, tumor, and other types of cells). All these stroma cell types utilize a different extent of autophagy. Therefore, focusing on autophagy and its role in the tumor microenvironment for the discovery of novel anti-cancer therapeutic targets should be further elucidated [
<xref rid="B11-cancers-11-00533" ref-type="bibr">11</xref>
,
<xref rid="B26-cancers-11-00533" ref-type="bibr">26</xref>
]. The role of autophagy in developing an immune response against tumor cells is far more complex. Therefore, autophagy may be a promising therapeutic target in combination with other anti-neoplastic drugs and immunotherapy in the context of this unique cellular composition of the tumor microenvironment.</p>
</sec>
<sec id="sec2-cancers-11-00533">
<title>2. The Major Players in the Tumor Microenvironment</title>
<p>For years, solid cancers were considered as a mass of homogenous cancer cells [
<xref rid="B27-cancers-11-00533" ref-type="bibr">27</xref>
]. Cancer evolution and resistance to treatment is caused by tumor heterogeneity. Over the past decade, it has become increasingly clear that there is a wild diversity of cells with tangled and branching pedigrees in the same tumor. One section of a tumor might be dense with cells containing a particular oncogene mutation, whereas another section might have vastly different mutation backgrounds driving their growth [
<xref rid="B28-cancers-11-00533" ref-type="bibr">28</xref>
]. Tumors should be perceived as separate tissues with a different and more complex cellular network with specialized or dedifferentiated malignant cell types, fibroblasts, tumor stem cells, immune, and endothelial cells. This complex network is characterized as a tumor stroma with unique potential for anticancer therapy [
<xref rid="B29-cancers-11-00533" ref-type="bibr">29</xref>
].</p>
<sec id="sec2dot1-cancers-11-00533">
<title>2.1. The Heterogeneity of the Tumor Microenvironment</title>
<p>The vast majority of solid tumors are composed of not only malignant cells, but also of fibroblasts. It is widely accepted that tumorigenesis is a multistep process, the progression of which depends on a sequential accumulation of mutations within tissue cells. Moreover, tumor initiation is associated with the activation of different stromal, endothelial and mesenchymal cells, fibroblasts, and immunogenic cells [
<xref rid="B30-cancers-11-00533" ref-type="bibr">30</xref>
,
<xref rid="B31-cancers-11-00533" ref-type="bibr">31</xref>
]. It is well known that tumor heterogeneity is associated with the more aggressive phenotype and a lack of response against anti-cancer therapy in different types of cancer, including CRC [
<xref rid="B32-cancers-11-00533" ref-type="bibr">32</xref>
].</p>
</sec>
<sec id="sec2dot2-cancers-11-00533">
<title>2.2. The Role of T-Lymphocytes</title>
<p>The major effectors of the immune response against tumor cells are the cytotoxic CD8+ T-lymphocytes or T-cells (CTL). The abundance of T-cells is a decisive prognostic factor for the response of chemotherapy and immunotherapy in cancer patients especially at early stages of the disease, where patients have a strong effector T cell response and more frequently present a high Immunoscore [
<xref rid="B33-cancers-11-00533" ref-type="bibr">33</xref>
,
<xref rid="B34-cancers-11-00533" ref-type="bibr">34</xref>
]. CTLs are responsible for killing hostile cells, such as tumor cells [
<xref rid="B35-cancers-11-00533" ref-type="bibr">35</xref>
]. Type 1 of T-helper cells (Th-1) regulates the activation of CTL and Th-2 initiates humoral immunity [
<xref rid="B36-cancers-11-00533" ref-type="bibr">36</xref>
]. In many studies, the activation of the immune system and tumor-infiltrating lymphocytes (TILs) are used for the grading of the tumor and as a putative prognostic marker for CRC patients. The characterization is based on TILs, tumor invasion, spread to the lymph nodes, and the tumor staging system [
<xref rid="B33-cancers-11-00533" ref-type="bibr">33</xref>
,
<xref rid="B35-cancers-11-00533" ref-type="bibr">35</xref>
]. </p>
<p>Many studies have identified that the activation of CTL is inhibited by the PD-L1/PD1 axis interaction in CRC tumors with the Mismatch repair deficiency/Microsatellite instability -high MMRd/MSI-H phenotype [
<xref rid="B37-cancers-11-00533" ref-type="bibr">37</xref>
,
<xref rid="B38-cancers-11-00533" ref-type="bibr">38</xref>
,
<xref rid="B39-cancers-11-00533" ref-type="bibr">39</xref>
]. The clinical effectiveness of anti-PD1 monoclonal antibodies is beneficial for this subgroup of patients [
<xref rid="B40-cancers-11-00533" ref-type="bibr">40</xref>
]. In contrast, with MSI-H CRC tumors, in almost all MSS CRC tumors, inhibition of the PD-L1/ PD1 axis has no significant clinical effect, thus underlining the complexity of this immunosuppressive mechanism [
<xref rid="B41-cancers-11-00533" ref-type="bibr">41</xref>
].</p>
<p>A particular group of lymphocytes that are strongly associated with tumors is the regulatory T-cells [
<xref rid="B42-cancers-11-00533" ref-type="bibr">42</xref>
]. The role of Tregs (regulatory T cells) is controversial because of the genetic and phenotypic differentiation of T-cells. The Treg-specific DNA hypo-methylated regions contribute to the stable expression of Treg function-associated key genes, including
<italic>Foxp3</italic>
. Accordingly,
<italic>FoxP3</italic>
robustly represses different genes, including
<italic>Il2</italic>
, contributing to Treg suppressive activity. In tumors, it is critical to deplete
<italic>FOXP3</italic>
high CD45RA_CD25 high effector Treg cells, which are firmly installed with the Treg-type hypo-methylation and are most suppressive [
<xref rid="B43-cancers-11-00533" ref-type="bibr">43</xref>
]. The origin of Tregs can be either directly from the thymus (tTreg) or by peripheral differentiation (pTreg) of conventional T lymphocytes [
<xref rid="B44-cancers-11-00533" ref-type="bibr">44</xref>
]. The majority of Tregs are characterized by a high expression of specific biomarkers such as FOXP3, IL-2 receptor alpha chain, CD25 IL-10, TGF-β, and IL-35. Also, proteins, like CTLA-4 (cytotoxic T-lymphocyte–associated antigen 4), PD-1 (programmed death 1), and GITR (the receptor of glucocorticoid-induced tumor necrosis factor), have been identified in the surface of Tregs [
<xref rid="B45-cancers-11-00533" ref-type="bibr">45</xref>
,
<xref rid="B46-cancers-11-00533" ref-type="bibr">46</xref>
,
<xref rid="B47-cancers-11-00533" ref-type="bibr">47</xref>
]. It is well known that molecules, like IL-27 and IL-33, are stimulators of Tregs in CRC through TGF-β-mediated differentiation of Tregs [
<xref rid="B44-cancers-11-00533" ref-type="bibr">44</xref>
].</p>
<p>The primary role of Tregs is to control inflammation and maintain peripheral tolerance in immune homeostasis. Furthermore, FOXP3+ Tregs are crucial in the inhibition of the cytotoxic effect of T-cells in many cancer types, including CRC [
<xref rid="B42-cancers-11-00533" ref-type="bibr">42</xref>
]. The lack of FOXP3+ Tregs and the ratio of CD3+/FOXP3+ T cell may be a prognostic marker for clinical outcomes in patients with CRC [
<xref rid="B48-cancers-11-00533" ref-type="bibr">48</xref>
].</p>
</sec>
<sec id="sec2dot3-cancers-11-00533">
<title>2.3. The Role of Tumor-Associated Myeloid Cells</title>
<p>Different cell types, such as cancer-associated fibroblasts (CAFs) and tumor-associated macrophages (TAMs), in the tumor microenvironment, regulate tumor growth, invasion, and the metastatic phenotype of cancer cells [
<xref rid="B49-cancers-11-00533" ref-type="bibr">49</xref>
,
<xref rid="B50-cancers-11-00533" ref-type="bibr">50</xref>
]. Many studies support the hypothesis that bone marrow-derived cells (TANs, TAMs, and myeloid-derived suppressor cells or MDSCs) are closely associated with the progression of the tumor [
<xref rid="B50-cancers-11-00533" ref-type="bibr">50</xref>
,
<xref rid="B51-cancers-11-00533" ref-type="bibr">51</xref>
].</p>
<p>Two different sub-populations of TAMs, the anti-tumorigenic and pro-tumorigenic or M1 and M2 phenotype, respectively, with high plasticity, have already been identified [
<xref rid="B52-cancers-11-00533" ref-type="bibr">52</xref>
,
<xref rid="B53-cancers-11-00533" ref-type="bibr">53</xref>
]. The most common myeloid infiltrate in solid tumors is composed of myeloid-derived suppressor cells (MDSCs) and tumor-associated macrophages (TAMs). These cells promote tumor growth through their inherent immunosuppressive activity, neoangiogenesis, and mediation of epithelial-mesenchymal transition. Several small molecules are already used in order to inhibit the tumorigenic action of these cells [
<xref rid="B52-cancers-11-00533" ref-type="bibr">52</xref>
]. It is well known that neutrophils regulate the tumor microenvironment through the production of several immunogenic, angiogenic, and inflammatory factors, such as matrix metalloproteinases (MMPs), Vascular endothelial growth factor (VEGF), neutrophil elastase, and hepatocyte growth factor [
<xref rid="B54-cancers-11-00533" ref-type="bibr">54</xref>
,
<xref rid="B55-cancers-11-00533" ref-type="bibr">55</xref>
,
<xref rid="B56-cancers-11-00533" ref-type="bibr">56</xref>
]. The number of neutrophils in peripheral blood is already evaluated as a negative clinical progression marker in various malignant tumors, including CRC [
<xref rid="B57-cancers-11-00533" ref-type="bibr">57</xref>
]. The two different types of neutrophils, N1 and N2 neutrophils, have been associated with tumor progression. N1 neutrophils reduce tumor immunosuppression through the production of several molecules, such as TNF-α, ROS (Reactive oxygen species), ICAM-1 (Intercellular Adhesion Molecule 1), and Fas. In contrast, N2 neutrophils, increase tumorigenicity through the production of MMP-9, VEGF, and several chemokines [
<xref rid="B58-cancers-11-00533" ref-type="bibr">58</xref>
].</p>
<p>Myeloid-derived suppressor cells or MDSCs have an immunosuppressive ability that is triggered by inflammation. MDSCs are abundant in different tumors types with a critical role in tumor progression [
<xref rid="B56-cancers-11-00533" ref-type="bibr">56</xref>
]. Tumors produce several chemokines, such as CCL2 and CCL5, which regulate the migration of MDSCs in tumors [
<xref rid="B59-cancers-11-00533" ref-type="bibr">59</xref>
]. Several studies support the idea that tumors attract MDSCs in the tumor microenvironment. MDSCs suppress the anti-tumor activity of the immune system through the activation of different genes associated with arg1 (Arginase 1), fatty acid oxidation (FAO), and ROS [
<xref rid="B60-cancers-11-00533" ref-type="bibr">60</xref>
]. Furthermore, MDSCs seem to inhibit both antigen-specific and nonspecific (CD3/CD28) proliferative responses in the tumor microenvironment in both ROS-dependent and independent ways. Also, MDSCs inhibit the stimulation of CD3/CD28 T-cells through the production of NO (Nitric Oxide) and Arg1 [
<xref rid="B61-cancers-11-00533" ref-type="bibr">61</xref>
]. In the tumor microenvironment, MDSCs are converted into nonspecific suppressor cells through the up-regulation of iNOS (inducible nitric oxide synthase) and arginase I. These enzymes are known to be actively involved in T cell suppression in a way that does not require antigen-specific contact between MDSC and T cells to inhibit their function [
<xref rid="B62-cancers-11-00533" ref-type="bibr">62</xref>
].</p>
<p>Several studies over the last years highlight the impact of autophagy in MDSCs’ survival in the tumor microenvironment. Glycolytic metabolism is strongly associated with the metabolism of MDSCs [
<xref rid="B63-cancers-11-00533" ref-type="bibr">63</xref>
]. Glycolysis prevents the AMPK-ULK1, a key player in autophagy regulation, which increases the GM-CSF (granulocyte macrophage colony-stimulating factor) expression and supports the development of MDSCs in the tumor microenvironment [
<xref rid="B64-cancers-11-00533" ref-type="bibr">64</xref>
]. Furthermore, MDSCs activate autophagy through phosphorylation of AMPK. The initiation of autophagy increases several anti-apoptotic factors, such as BCL-2 (B-cell lymphoma 2) and MCL-1 (Myeloid cell leukemia 1), which promotes multiple myeloma (MM) progression [
<xref rid="B65-cancers-11-00533" ref-type="bibr">65</xref>
].</p>
</sec>
<sec id="sec2dot4-cancers-11-00533">
<title>2.4. Cancer-Associated Fibroblasts (CAFs)</title>
<p>Cancer-associated fibroblasts or CAFs represent a heterogeneous group of cells. They are responsible for the remodeling of the extracellular matrix (ECM) and support the invasion and metastasis of cancer cells [
<xref rid="B66-cancers-11-00533" ref-type="bibr">66</xref>
]. Different molecules, such as FAP (fibroblast activation protein) and alpha-smooth muscle actin (a-SMA), have been already used as markers of activated CAFs and other fibroblasts [
<xref rid="B67-cancers-11-00533" ref-type="bibr">67</xref>
]. CRC transcriptome studies associate the presence of CAFs with poor outcomes of patients, thus underlining the clinical significance of CAFs as a prognostic marker. Furthermore, the differentiation of CAFs and induction of the fibrogenic phenotype is regulated by the signaling pathway of TGF-β, mechanical stress, and fibronectin [
<xref rid="B68-cancers-11-00533" ref-type="bibr">68</xref>
,
<xref rid="B69-cancers-11-00533" ref-type="bibr">69</xref>
,
<xref rid="B70-cancers-11-00533" ref-type="bibr">70</xref>
].</p>
</sec>
<sec id="sec2dot5-cancers-11-00533">
<title>2.5. Angiogenesis and Neo-Vascularization Process in Tumor Stroma</title>
<p>It is well known that the stroma of CRC is also the scaffold for the development of tumor-associated blood vessels. Mesenchymal cell type, such as fibroblasts and immune cells, are responsible for supplying the VEGF with tumors cells [
<xref rid="B71-cancers-11-00533" ref-type="bibr">71</xref>
]. Other molecules, like MMPs and associated proteases, that are expressed by immunosuppressive myeloid cells (IMCs) and CAFs appear to be increased in the tumor microenvironment. These enzymes help neo-angiogenesis by altering the ECM and proteolytic activation of embedded angiogenic factors (FGF and VEGF) [
<xref rid="B72-cancers-11-00533" ref-type="bibr">72</xref>
].</p>
</sec>
<sec id="sec2dot6-cancers-11-00533">
<title>2.6. Other Immune Cell Types in the Tumor Microenvironment</title>
<p>Several studies identified many other immune cell types in the tumor microenvironment of CRC. Immune cell types that appear in CRC microenvironment, like neutrophils, mast cells, natural killer (NK) cells, or eosinophils, did not appear to have a significant role in the impact of the clinical progression of CRC patients [
<xref rid="B73-cancers-11-00533" ref-type="bibr">73</xref>
,
<xref rid="B74-cancers-11-00533" ref-type="bibr">74</xref>
].</p>
</sec>
</sec>
<sec id="sec3-cancers-11-00533">
<title>3. The Role of Autophagy in Stroma Development, Inflammation, and the Immunity Response</title>
<p>It has been proven that autophagy affects the microenvironment of the tumor and vice versa. These microenvironmental factors include cytokines, hypoxia, and inflammation in the tumor environment [
<xref rid="B75-cancers-11-00533" ref-type="bibr">75</xref>
]. In response to stress conditions in the tumor microenvironment, autophagy is activated to maintain and supply energy. Additionally, digestion of intracellular components prevents the accumulation of toxic cellular remnants.</p>
<p>Cancer cells coexist with their microenvironment and the role of autophagy in modulating their interactions with other cell types may be a target for the modulation of autophagy, as a potential anti-cancerous treatment [
<xref rid="B76-cancers-11-00533" ref-type="bibr">76</xref>
]. Autophagy is also a key factor in the function of APCs and T-cells. Autophagy is implicated in the presentation of antigens in both MHC-I and MHC-II in Dendritic cells (DCs). Finally, autophagy contributes to the functional activity of immune cells by creating T-cell memory, depending on autophagy [
<xref rid="B77-cancers-11-00533" ref-type="bibr">77</xref>
].</p>
<sec id="sec3dot1-cancers-11-00533">
<title>3.1. The Role of Inflammation in Colorectal Cancer Development</title>
<p>Chronic inflammation is a high-risk factor for cancer. Patients with inflammatory bowel disease (IBD), including Crohn’s disease (CD) and ulcerative colitis (UC), have a three-fold increased risk of developing CRC. This type of cancer is known as “colitis-associated colorectal cancer (CAC)” [
<xref rid="B78-cancers-11-00533" ref-type="bibr">78</xref>
]. Activation of Toll-like receptor 4 (TLR4) promotes the development of colitis-associated cancer through activation of the Cox-2 and EGFR signaling pathway [
<xref rid="B79-cancers-11-00533" ref-type="bibr">79</xref>
]. Cancer development is due to the non-neoplastic inflammatory epithelium. Mutations in essential genes (
<italic>c-src</italic>
,
<italic>p53</italic>
,
<italic>K-RAS</italic>
,
<italic>β-catenin</italic>
, and
<italic>APC</italic>
) are caused by inflammation as well as DNA damage, which then leads to CAC onset in patients with IBD. Moreover, inflammation triggers signaling pathways, such as STAT3 (Signal transducer and activator of transcription 3) and β-catenin, which causes proliferation and remodeling of epithelial cells and then promotes tumor growth [
<xref rid="B80-cancers-11-00533" ref-type="bibr">80</xref>
]. The CAC microenvironment is a complex system of various types of cells, cytokines, and signaling molecules that play a significant role in tumorigenesis. Immune cells develop many individual functions in the CAC microenvironment. Macrophages promote CAC tumorigenesis and the development of reactive oxygen species (ROS), IL-5, and nitric oxide synthase (NOS) [
<xref rid="B80-cancers-11-00533" ref-type="bibr">80</xref>
]. Tregs and Th17 cells have tumor-promoting activity during CAC [
<xref rid="B81-cancers-11-00533" ref-type="bibr">81</xref>
,
<xref rid="B82-cancers-11-00533" ref-type="bibr">82</xref>
] formation while CD8+ T cells serve a protective role against CAC oncogenesis [
<xref rid="B83-cancers-11-00533" ref-type="bibr">83</xref>
]. TAMs and CADs regulate the production of cytokines, such as IL-6, IL-8, IL-10, and IFN-γ, in the tumor microenvironment. Cytokines are key molecules to the development of inflammation during tumor progression [
<xref rid="B84-cancers-11-00533" ref-type="bibr">84</xref>
]. Several studies support that autophagy is triggered via inflammation. In addition, NLRP3 (NLR Family Pyrin Domain Containing 3) inflammasome (a mitochondrion that is damaged depending on the structure) is negatively regulated by autophagy with IL-1b and IL-18 production and subsequent inflammation response under control [
<xref rid="B25-cancers-11-00533" ref-type="bibr">25</xref>
].</p>
</sec>
<sec id="sec3dot2-cancers-11-00533">
<title>3.2. Hypoxia-Induced Autophagy in the Tumor Microenvironment</title>
<p>Many studies have shown that many types of tumors are found under hypoxic conditions [
<xref rid="B4-cancers-11-00533" ref-type="bibr">4</xref>
,
<xref rid="B26-cancers-11-00533" ref-type="bibr">26</xref>
]. Autophagy in a hypoxic environment in tumors depends on the duration and percentage of hypoxia. Under moderate and chronic hypoxia, hypoxia-induced factor-1 (HIF-1a) and PKC-JNK regulate autophagy [
<xref rid="B85-cancers-11-00533" ref-type="bibr">85</xref>
]. Since hypoxia results in BNIP3 or REDD1 being dependent on autophagy, the question arises as to whether there is an association between BNIP3, HIF-1, and/or REDD1. Many published data support the notion that HIF-1α can up-regulate BNIP3 transcription. Enhanced BNIP3 then interferes with the Beclin1 and BCL2-forming complex and further suppresses Rheb-mTOR [
<xref rid="B86-cancers-11-00533" ref-type="bibr">86</xref>
,
<xref rid="B87-cancers-11-00533" ref-type="bibr">87</xref>
]. Hypoxia raises the levels of REDD1, which then separates the 14-3-3 proteins from the TSC2 complex and finally reduces mTOR [
<xref rid="B87-cancers-11-00533" ref-type="bibr">87</xref>
]. Also, a stress sensor, Ataxia Telangiectasia Mutated (ATM), was verified as being involved in the REDD1-modulated mTOR signaling. Under the hypoxic environment, ATM (Ataxia Telangiectasia Mutated) (-/-) MEFs perform decreased expressions of HIF-1α and REDD1. Overall, it is suggested that hypoxia-induced ATM activation results in increased HIF-1α-BNIP3 and REDD1 to increase autophagy through the inhibition of mTOR [
<xref rid="B87-cancers-11-00533" ref-type="bibr">87</xref>
,
<xref rid="B88-cancers-11-00533" ref-type="bibr">88</xref>
].</p>
</sec>
<sec id="sec3dot3-cancers-11-00533">
<title>3.3. The Cross-Talk between Autophagy and Antigen Presenting Cells</title>
<p>Activation of the anticancer T-cell is induced by identifying the antigenic tumor peptides present on the cell surface of professional APCs, like DCs. However, autophagy through DCs and macrophages affects the surface expression of the MHC-I and peptide complex. For example, the expression of MHC-I in embryo mice DCs and macrophages was upregulated during inhibition of autophagy using chemical inhibitors or downregulation of the main autophagy genes [
<xref rid="B89-cancers-11-00533" ref-type="bibr">89</xref>
,
<xref rid="B90-cancers-11-00533" ref-type="bibr">90</xref>
]. This adjustment was attributed to the slower internalization of classical MHC class I molecules, leading to increased CD8+ T cell stimulation [
<xref rid="B90-cancers-11-00533" ref-type="bibr">90</xref>
]. Hence, in the absence of autophagy, MHC-I molecules appear more consistently expressed and less degenerated [
<xref rid="B91-cancers-11-00533" ref-type="bibr">91</xref>
]. Equally, DCs from mice lacking VPS34 (vacuolar protein sorting-associated protein 34) expressed more MHC-I on the cell surface as well as MHC-II [
<xref rid="B92-cancers-11-00533" ref-type="bibr">92</xref>
]. In contrast, surface expression of MHC-II in macrophages was downregulated when inhibiting autophagy using 3-Methyladenine (3-MA) [
<xref rid="B91-cancers-11-00533" ref-type="bibr">91</xref>
]. Autophagy is associated with the cross-presentation of antigens in DCs. Cross-presentation is a process that permits the loading of MHC-I into DCs with extracellular antigens, which is essential for activating, for example, CTL responses in melanoma [
<xref rid="B91-cancers-11-00533" ref-type="bibr">91</xref>
,
<xref rid="B93-cancers-11-00533" ref-type="bibr">93</xref>
,
<xref rid="B94-cancers-11-00533" ref-type="bibr">94</xref>
,
<xref rid="B95-cancers-11-00533" ref-type="bibr">95</xref>
]. The cross-presentation capability of bone marrow-derived dendritic cells (DCs) is characterized by increased levels of autophagy [
<xref rid="B90-cancers-11-00533" ref-type="bibr">90</xref>
,
<xref rid="B96-cancers-11-00533" ref-type="bibr">96</xref>
].</p>
<p>Antigen presentation in MHC-II was similarly altered in the inhibition of autophagy with reduced DC treatment mediated by an immunodominant mycobacterial peptide with the reduced presentation of vaccinia virus Ankara antigens and herpes simplex virus (HSV) antigens [
<xref rid="B97-cancers-11-00533" ref-type="bibr">97</xref>
,
<xref rid="B98-cancers-11-00533" ref-type="bibr">98</xref>
]. Accordingly, antigen-specific T-cell responses were down-regulated. Thus, inhibition of autophagy modified the peptide pool presented in MHC and reducing the presentation of immunodominant epitopes [
<xref rid="B99-cancers-11-00533" ref-type="bibr">99</xref>
]. Although, inhibition of autophagy up-regulates surface expression of MHC-I, it also changes the group of immunogenic peptides presented on MHC. Thus, the effect on surface expression of MHC-I and II is less well-confirmed, which has been best determined in the context of the so-called cross-presentation in DCs [
<xref rid="B93-cancers-11-00533" ref-type="bibr">93</xref>
,
<xref rid="B100-cancers-11-00533" ref-type="bibr">100</xref>
,
<xref rid="B101-cancers-11-00533" ref-type="bibr">101</xref>
]. As it was mentioned before, increased levels of autophagy characterize the cross-presentation capability of DCs compared with DCs that do not cross-present antigens, and the autoimmune inhibition that reduces the cross-presentation of MHC-I mediated MHC-I [
<xref rid="B102-cancers-11-00533" ref-type="bibr">102</xref>
,
<xref rid="B103-cancers-11-00533" ref-type="bibr">103</xref>
]. Inhibition of autophagy modified the presentation of the different peptides in MHC and appeared to change the pool of immunodominant epitopes of these peptides. Further mechanistic studies are needed to define how autophagy serves as a target for MHC class I cross-presentation. The central role of autophagy in antigen-presenting cells (APCs) is presented in
<xref ref-type="fig" rid="cancers-11-00533-f001">Figure 1</xref>
.</p>
<p>In general, peptides are cleaved and digest from proteins through proteasome in the endogenous pathway. In the exogenous and cross-presentation pathway, the endocytotic peptides are closely associated with autophagy. Endosomes fuse with the autolysosomes in order to digest the peptides and the neo-antigens are loaded onto MHC I and II in the endoplasmic reticulum (ER). </p>
<p>In the already developed tumor microenvironment, M2-phenotype tumor-associated macrophages (TAMs) promote angiogenesis, growth, and metastasis of tumor and cancer cells [
<xref rid="B104-cancers-11-00533" ref-type="bibr">104</xref>
]. However, different studies support that M1 macrophages inhibit tumor growth [
<xref rid="B58-cancers-11-00533" ref-type="bibr">58</xref>
]. The latest reports have shown that autophagy plays a crucial role in the production and polarization of macrophages. Deficiency of TLR2 strongly inhibits autophagy and leads to the biosynthesis of the M2 macrophage, which in turn promotes oncogenesis [
<xref rid="B58-cancers-11-00533" ref-type="bibr">58</xref>
,
<xref rid="B105-cancers-11-00533" ref-type="bibr">105</xref>
]. Moreover, the initiation of autophagy in TAM can increase the radiosensitivity of CRC, inhibit proliferation, and trigger apoptotic cell death [
<xref rid="B106-cancers-11-00533" ref-type="bibr">106</xref>
].</p>
<p>Thus, autophagy in TAM can play a crucial role in cancer suppression. Also, the role of other native immune cells, such as NK cells and neutrophils, plays a vital role in the tumorigenesis of CRC. For example, tumor-associated neutrophils (TANs) facilitate the onset and development of CAC and increase autophagy in neutrophils, which are associated with increased migration of cancer cells [
<xref rid="B91-cancers-11-00533" ref-type="bibr">91</xref>
]. Several in vivo studies suggest that inhibition of autophagy in tumor cells reduces the development of tumors by facilitating the removal of cancer cells via NK cells [
<xref rid="B107-cancers-11-00533" ref-type="bibr">107</xref>
]. Analogous results have also been observed in other types of cancers, such as renal cell carcinoma and melanoma [
<xref rid="B81-cancers-11-00533" ref-type="bibr">81</xref>
].</p>
</sec>
<sec id="sec3dot4-cancers-11-00533">
<title>3.4. Autophagy—A Key Regulator of T-Cell Activation</title>
<p>The adaptive immune system includes the identification of pathogen or tumor proteins and their presence in MHC molecules by antigen-presenting cells (APCs). For this aim, MHC class I molecules are recognized by T cell receptors (TCRs) in CD8+ T cells. Subsequently, MHC class II molecules are recognized by TCRs in CD4+ T cells [
<xref rid="B90-cancers-11-00533" ref-type="bibr">90</xref>
,
<xref rid="B91-cancers-11-00533" ref-type="bibr">91</xref>
,
<xref rid="B92-cancers-11-00533" ref-type="bibr">92</xref>
]. T cells are activated and differentiated into various types of effector T cells, including Tregs, Th cells, and cytotoxic T cells. Tregs produce anti-inflammatory cytokines, like IL-10 and TGF-β. Also, Th-cells can produce pro-inflammatory cytokines, such as IL-2, IL-5, IL-13, and IL-17A, and interferon gamma (INF-γ). Cytotoxic T cells cause the apoptosis of infected or malignant cells with the release of perforin and granzymes [
<xref rid="B81-cancers-11-00533" ref-type="bibr">81</xref>
,
<xref rid="B108-cancers-11-00533" ref-type="bibr">108</xref>
].</p>
<p>It has been reported that autophagy enhances the adaptive immune response by facilitating APC recognition and preserving the function, survival, and homeostasis of T cells among others [
<xref rid="B77-cancers-11-00533" ref-type="bibr">77</xref>
]. T cell homeostasis involves the clearance of T cells deficient in autophagy [
<xref rid="B109-cancers-11-00533" ref-type="bibr">109</xref>
]. For example, the loss of VPS34 accumulates ROS, which causes an increase in pre-apoptotic protein expression and robust apoptosis of these T cells [
<xref rid="B110-cancers-11-00533" ref-type="bibr">110</xref>
]. Also, depletion of VPS34 also prevents the normal operation of Tregs. Moreover, the deletion of ATG5 and Beclin 1 results in inefficient proliferation and disordered function of CD8+ and CD4+ T cells, respectively, following TCR stimulation [
<xref rid="B111-cancers-11-00533" ref-type="bibr">111</xref>
,
<xref rid="B112-cancers-11-00533" ref-type="bibr">112</xref>
]. On the contrary, autophagy contributes to the maintenance of the survival and function of T cell lymphocytes CD8+ [
<xref rid="B113-cancers-11-00533" ref-type="bibr">113</xref>
].</p>
</sec>
</sec>
<sec sec-type="subjects" id="sec4-cancers-11-00533">
<title>4. The Current State of Immunotherapy in CRC Patients</title>
<p>The treatment for CRC patients with early-stage disease is surgical removal of tumors. Chemotherapy usually follows the surgery for more advanced disease [
<xref rid="B114-cancers-11-00533" ref-type="bibr">114</xref>
]. Recently, it has been shown that immunotherapy amplifies the immune responses against tumors and it has already been used for patients with solid tumors [
<xref rid="B115-cancers-11-00533" ref-type="bibr">115</xref>
].</p>
<p>In the last few years, many immunomodulating agents have been developed that show significant efficacy. The FDA (Food and Drug Administration) has already approved immune checkpoint inhibitors, such as ipilimumab (an anti-CTLA-4 MoAbs), nivolumab, and pembrolizumab (anti-PD-1 MoAbs) or atezolizumab, avelumab, and durvalumab (anti-PD-L1 MoAbs) for different types of cancer, like melanoma, lung cancer, and renal cell carcinoma. They have recently shown promising activity as a treatment for CRC, although efficacy is reserved for a specific subset of patients [
<xref rid="B116-cancers-11-00533" ref-type="bibr">116</xref>
,
<xref rid="B117-cancers-11-00533" ref-type="bibr">117</xref>
].</p>
<p>It is well known that PD-L1, on tumor and stromal cells, suppresses the antitumor activity of the immune system through stabilization of TNF-α [
<xref rid="B118-cancers-11-00533" ref-type="bibr">118</xref>
]. Furthermore, the PD-1/PD-L1 axis regulates inhibition of the immune response and leads T-cells to exhaustion and apoptotic cell death [
<xref rid="B119-cancers-11-00533" ref-type="bibr">119</xref>
,
<xref rid="B120-cancers-11-00533" ref-type="bibr">120</xref>
]. Wang et al. have shown that metastatic colorectal cancer (mCRC) has higher levels of PD-L1 [
<xref rid="B121-cancers-11-00533" ref-type="bibr">121</xref>
]. Furthermore, dysregulation of signaling pathways, like PI3K-AKT, or chromosomal amplification of the 9q24.1 locus regulates the expression of PD-L1 and PD-L2 in different types of gastrointestinal cancers [
<xref rid="B120-cancers-11-00533" ref-type="bibr">120</xref>
,
<xref rid="B122-cancers-11-00533" ref-type="bibr">122</xref>
].</p>
<p>It is well known that the MSI phenotype in CRC varies according to the stage of the disease. CRC patients with mismatch repair (MMR) deficiency (15% to 20% of stage II/III CRCs) have a better prognosis. Metastatic CRC with deficient MMR represent around 5% and is associated with a poor prognosis [
<xref rid="B123-cancers-11-00533" ref-type="bibr">123</xref>
]. Predictive biomarkers, like MMR and microsatellite status, a mutation in proto-oncogenes, and the expression of PD-L1 have already been used to classify patients in whom immunotherapy might be more beneficial [
<xref rid="B116-cancers-11-00533" ref-type="bibr">116</xref>
,
<xref rid="B124-cancers-11-00533" ref-type="bibr">124</xref>
]. Unfortunately, the percentage of patients with gastrointestinal cancer who will acquire durable clinical responses remains limited. The response rate for CRC patients with mismatch repair deficiency is less than 50% [
<xref rid="B125-cancers-11-00533" ref-type="bibr">125</xref>
] and less than 30% for gastroesophageal cancer [
<xref rid="B125-cancers-11-00533" ref-type="bibr">125</xref>
,
<xref rid="B126-cancers-11-00533" ref-type="bibr">126</xref>
].</p>
<p>In many types of cancer, immunotherapy has been proven as a prominent therapeutic approach. Moreover, in the last few years, significant advances have also been made in CRC. An anti-CTLA-4 monoclonal antibody (tremelimumab) has proven useful for CRC patients, obtaining one 6-month strong response [
<xref rid="B127-cancers-11-00533" ref-type="bibr">127</xref>
]. In a phase II trial, three groups of patients were formed according to their microsatellite status—MSI-H, non-MSI-H, and MSS CRC—in order to test the clinical activity of anti-PD1 MoAb, Pembrolizumab. The immune-related objective response rate (ORR) and immune-related 6-month PFS progression-free survival (PFS) rate were 40% and 78%, respectively, for mismatch repair–deficient (dMMR) colorectal cancers and 0% and 11% for mismatch repair-proficient colorectal cancers patients. The KEYNOTE-177 phase III trial evaluated the above results in patients with dMMR mCRC after treatment with Pembrolizumab versus standard therapy. In Checkmate 142, treatment with Nivolumab alone or in combination with Ipilimumab was tested in metastatic CRC patients according to the microsatellite status. In the update published on Lancet, 31% of CRC patients who were treated with Nivolumab had an objective response, with a disease control rate of 69% for 12 weeks or longer [
<xref rid="B123-cancers-11-00533" ref-type="bibr">123</xref>
]. The combinatorial treatment of Nivolumab and Ipilimumab showed a 55% ORR, while the disease control rate for 12 weeks or longer was 80% [
<xref rid="B128-cancers-11-00533" ref-type="bibr">128</xref>
,
<xref rid="B129-cancers-11-00533" ref-type="bibr">129</xref>
].</p>
<p>The first anti-PD-L1 monoclonal antibody with FDA approval is atezolizumab. This is a fully humanized antibody which targets explicitly PD-L1. It is currently approved for patients with metastatic NSCLC and metastatic urothelial carcinoma with disease progression after treatment of platinum-based chemotherapy [
<xref rid="B130-cancers-11-00533" ref-type="bibr">130</xref>
,
<xref rid="B131-cancers-11-00533" ref-type="bibr">131</xref>
]. Atezolizumab shows response rates higher for patients with PD-L1 positive tumors [
<xref rid="B132-cancers-11-00533" ref-type="bibr">132</xref>
,
<xref rid="B133-cancers-11-00533" ref-type="bibr">133</xref>
]. A similar antibody is durvalumab. The safety and tolerability of durvalumab alone or in combination with tremelimumab have already been tested in a phase I trial for patients with CRC. Promising results have been presented in patients with PD-L1-expressing tumors with microsatellite instability [
<xref rid="B120-cancers-11-00533" ref-type="bibr">120</xref>
,
<xref rid="B133-cancers-11-00533" ref-type="bibr">133</xref>
,
<xref rid="B134-cancers-11-00533" ref-type="bibr">134</xref>
]. These kinds of tumors are characterized by a higher number of infiltrated immune cells. </p>
<p>Furthermore, anti-PD-L1 therapy is more efficient in combination because of the differential expression of PD-1 and PD-L1 in the tumor microenvironment. On the other hand, several types of cancers, such as melanoma and breast cancer, are characterized by PD-L1 expression in both tumors and infiltrating immune cells [
<xref rid="B120-cancers-11-00533" ref-type="bibr">120</xref>
]. The other, a less studied ligand of PD-1 is PD-L2. PD-L2 has been identified to be expressed in macrophages, B-cells, and dendritic cells [
<xref rid="B124-cancers-11-00533" ref-type="bibr">124</xref>
,
<xref rid="B135-cancers-11-00533" ref-type="bibr">135</xref>
]. In CRC, the expression of PD-L2 is approximately 40% and it is regulated by glycosylation and IFNγ [
<xref rid="B136-cancers-11-00533" ref-type="bibr">136</xref>
]. Further, ongoing studies are evaluating the combinations of PD-1, PD-L1, and/or CTLA-4 monoclonal antibodies with other chemotherapeutic molecules, which will re-activate the immune system against CRC tumors (
<xref rid="cancers-11-00533-t001" ref-type="table">Table 1</xref>
).</p>
<p>Several studies associate the expression of PD-L1 with PD-L2 and with the geographical association of different types of immune cells. The protein levels of PD-L1 and PD-L2 are associated with the response of anti-PD1 MoAbs. Thus, PD-L2 may be a promising target in immunotherapeutic schemes for CRC [
<xref rid="B137-cancers-11-00533" ref-type="bibr">137</xref>
,
<xref rid="B138-cancers-11-00533" ref-type="bibr">138</xref>
]. It is well known that increasing levels of CD73 block the activation of lymphocytes via increasing adenosine levels. Thus, inhibition of CD73 enhances the therapeutic effect of anti-PD1 and anti-CTL4 monoclonal antibodies [
<xref rid="B139-cancers-11-00533" ref-type="bibr">139</xref>
]. Furthermore, several studies, have explored the relationship between the inhibition of PD-1/CTLA-4 and the increasing levels of CD8+ and CD4+ T cells and cytokines, Tregs inhibition, and other molecules essential for T-cell function [
<xref rid="B120-cancers-11-00533" ref-type="bibr">120</xref>
,
<xref rid="B140-cancers-11-00533" ref-type="bibr">140</xref>
].</p>
</sec>
<sec id="sec5-cancers-11-00533">
<title>5. Targeting Autophagy—A Promising Anti-Cancer Strategy</title>
<sec id="sec5dot1-cancers-11-00533">
<title>5.1. The Main Autophagy Inhibitors in Cancer Therapy</title>
<p>Different studies in the last years support the concept of the protective role of autophagy against a different type of cancer therapy, like radiotherapy, chemotherapy, and immunotherapy [
<xref rid="B141-cancers-11-00533" ref-type="bibr">141</xref>
]. The crucial role of autophagy is to regulate the energy and metabolic balance of cancer cells [
<xref rid="B17-cancers-11-00533" ref-type="bibr">17</xref>
] and through the impairment of cell death [
<xref rid="B142-cancers-11-00533" ref-type="bibr">142</xref>
]. Years of efforts have led to the development of molecules that inhibit autophagy. Because of the crucial role of autophagy in cancer cell initiation and progression, the inhibition of autophagy has been shown to be beneficial in anticancer treatment.</p>
<p>Chloroquine (CQ) and its derivative, hydroxychloroquine (HCQ), is one of the most well-known inhibitors that target the fusion of the autophagosome with a lysosome. Over the last years, different clinical trials have attempted to evaluate the clinical significance of autophagy inhibition with CQ or HCQ in several types of cancers [
<xref rid="B76-cancers-11-00533" ref-type="bibr">76</xref>
]. Unfortunately, these clinical trials failed to provide clinically significant benefits because of a lack of consistent inhibition of autophagy with CQ and its derivative, HCQ [
<xref rid="B143-cancers-11-00533" ref-type="bibr">143</xref>
]. However, the combination of autophagy inhibition with other agents provides some encouraging results [
<xref rid="B76-cancers-11-00533" ref-type="bibr">76</xref>
,
<xref rid="B144-cancers-11-00533" ref-type="bibr">144</xref>
]. The combination of HCQ with chemotherapy, like gemcitabine, in pancreatic adenocarcinoma reduced the level of tumor marker 19-9 around 60% [
<xref rid="B145-cancers-11-00533" ref-type="bibr">145</xref>
]. Furthermore, inhibition of autophagy may also have benefits in immunotherapy. The combination of CQ with IL-2 has proven effective with limited toxicity in a preclinical murine hepatic metastasis model. Moreover, this combinatorial scheme increases long term survival and the proliferation and infiltration of immune cells in the liver and spleen [
<xref rid="B141-cancers-11-00533" ref-type="bibr">141</xref>
].</p>
<p>The clinical response of CQ and HCQ appears to vary widely. CQ and its derivative, CHQ, are not specific inhibitors of autophagy [
<xref rid="B141-cancers-11-00533" ref-type="bibr">141</xref>
] and this appears to affect the bioavailability of other drugs by altering the tumor pH [
<xref rid="B143-cancers-11-00533" ref-type="bibr">143</xref>
,
<xref rid="B146-cancers-11-00533" ref-type="bibr">146</xref>
]. Also, the lack of a specific biomarker, which evaluates the inhibition of autophagy, add to the difficulties of these autophagy inhibitors to provide clinically significant results. New, more specific autophagy inhibitors may provide benefits for patients [
<xref rid="B76-cancers-11-00533" ref-type="bibr">76</xref>
,
<xref rid="B141-cancers-11-00533" ref-type="bibr">141</xref>
].</p>
<p>A more potent autophagy inhibitor is Lys05, a dimeric for of Chloroquine. Lys05 alters the acidification of the lysosomes and causes impairment of lysosomal enzymes. It can be used in lower doses. Thus, it is more tolerated and associated with stronger anti-tumor activity [
<xref rid="B147-cancers-11-00533" ref-type="bibr">147</xref>
]. Another autophagy inhibitor is SAR405. SAR405 is a specific kinase inhibitor of Vps18 and Vps34. Vps34 and Beclin-1 regulate the initiation of the autophagy process. Inhibition of Vps34 leads to dysfunctional lysosome and vesicle trafficking activity [
<xref rid="B148-cancers-11-00533" ref-type="bibr">148</xref>
]. Several studies support that inhibition of Beclin-1 reduces tumor growth and enhances anti-tumor NK cell activity. Decreasing levels of Beclin-1 leads tumor cells to overexpress CCL5 cytokine, which regulates the trafficking of NK cells to the tumors [
<xref rid="B141-cancers-11-00533" ref-type="bibr">141</xref>
]. SBI-0206965 is a highly selective, small molecule inhibitor for ULK1 (Unc-51 like kinase-1). This molecule inhibits autophagy through the reduction of ULK1-mediated phosphorylation events in cells. In vivo experiments support the antitumor activity of SBI-0206965 via inhibition of autophagy in different types of cancer [
<xref rid="B149-cancers-11-00533" ref-type="bibr">149</xref>
]. Several other drugs, such as verteporfin, clomipramine, and desmethylclomipramine (DCMI), have been FDA-approved for use in therapy. All these agents alter the acidification of lysosomes or block autophagosome-lysosome fusion [
<xref rid="B150-cancers-11-00533" ref-type="bibr">150</xref>
]. Specifically, autophagy inhibition through DCMI enhances the efficacy of doxorybicin in in vitro studies [
<xref rid="B151-cancers-11-00533" ref-type="bibr">151</xref>
]. Another potent autophagy inhibitor is spautin-1. The mechanism by which spautin-1 inhibits autophagy has already been identified. It inhibits two ubiquitin-specific peptidases, USP10 and USP13, which regulate the deubiquitination of Beclin-1 in Vps34 complexes. Thus, autophagy initiation is inhibited [
<xref rid="B152-cancers-11-00533" ref-type="bibr">152</xref>
]. Due to the strong association of autophagy with the tumor microenvironment and the immune response against tumors, autophagy inhibition may have a negative effect on the adaptive antitumor immunity against tumors. Starobinets et al. (2016) identified that adaptive antitumor immunity is not adversely associated with autophagy inhibition in breast and melanoma cancer models. Thus, autophagy inhibitors can be safely combined with other chemotherapeutic drugs, such as anthracyclines, and still trigger a productive antitumor T cell response against tumors [
<xref rid="B153-cancers-11-00533" ref-type="bibr">153</xref>
].</p>
</sec>
<sec id="sec5dot2-cancers-11-00533">
<title>5.2. Activators of Autophagy for Cancer Therapy</title>
<p>The current review attempts to extensively analyze the role of autophagy in the development of the tumor microenvironment and anti-cancer immunotherapy. In many cases, it is well understood that autophagy has a crucial role in the anti-tumor immune response in CRC. Autophagy not only regulates the antigen presentation in MHC I and II, but it has also been associated with apoptotic cell death in some cases. Due to the multifaceted role of autophagy in cancer, several molecules that induce autophagy have been developed in order to have benefits in anti-cancer therapy.</p>
<p>The most well-known autophagy activators are rapamycin and rapalogs (everolimus, temsirolimus, and deforolimus—analogs of rapamycin). They are inhibitors of mTOR and mTORC1, respectively, and consequently activate autophagy [
<xref rid="B154-cancers-11-00533" ref-type="bibr">154</xref>
]. In endometrial cancer cells, everolimus has been identified as a suppressor of proliferation, especially when it is combined with paclitaxel [
<xref rid="B155-cancers-11-00533" ref-type="bibr">155</xref>
]. Rapamycin was reported to enhance radiation therapy in A549 lung cancer cells through the induction of autophagy and delaying of DNA damage repair [
<xref rid="B156-cancers-11-00533" ref-type="bibr">156</xref>
]. Rapamycin and rapalogs are putative therapeutic molecules that act through autophagy induction, especially when combined with other anti-neoplastic drugs. The clinical application of autophagy activators requires further investigation [
<xref rid="B155-cancers-11-00533" ref-type="bibr">155</xref>
].</p>
<p>Another compound which reduces cell proliferation through the induction of autophagy is metformin. Inhibition of autophagy with specific autophagy inhibitors or knockdown of Beclin-1 reversed the cytotoxic effects of metformin. Furthermore, metformin was identified to increase TNF-related apoptosis-inducing ligand (TRAIL)-dependent apoptosis in lung adenocarcinoma cells through the induction of autophagy machinery [
<xref rid="B152-cancers-11-00533" ref-type="bibr">152</xref>
]. In a BRCA1-deficient mammary tumor model, the combination of metformin with spautin-1 sensitizes BRCA1-deficient breast tumors to mitochondrial disruptors. It is well known that these two agents target different aspects of mitochondrial function and thus it may partially explain the contradictory observation of an autophagy inhibitor (spautin-1) with an autophagy inducer (metformin) in the reduction of cell viability [
<xref rid="B157-cancers-11-00533" ref-type="bibr">157</xref>
].</p>
<p>Obatoclax, a molecule that specifically targets the Bcl-2 family, has been identified as an anti-cancer agent against hematologic malignancies [
<xref rid="B158-cancers-11-00533" ref-type="bibr">158</xref>
]. The main anticancer mechanism of Obatoclax is strongly associated with autophagy induction. Furthermore, Obatoclax stimulates the assembly of necrosomes in the membranes of autophagosomes and consequently induces necroptosis [
<xref rid="B154-cancers-11-00533" ref-type="bibr">154</xref>
]. Several studies have established natural alkaloids, such as isoliensinine, cepharanthine, and liensinine, as inducers of autophagy in cancer [
<xref rid="B159-cancers-11-00533" ref-type="bibr">159</xref>
]. Alkaloids regulate autophagy through phosphorylation of AMPK and inhibition of mTOR. These kinds of alkaloids have been reported to induce apoptotic cell death in apoptosis-resistant MEFs [
<xref rid="B154-cancers-11-00533" ref-type="bibr">154</xref>
].</p>
<p>Herein, we provide two summarized tables about small molecules that inhibit or activate autophagy. Regulation of autophagy is already used in research to develop new chemotherapeutic strategies with immunotherapy for different types of cancer, including CRC (
<xref rid="cancers-11-00533-t002" ref-type="table">Table 2</xref>
and
<xref rid="cancers-11-00533-t003" ref-type="table">Table 3</xref>
).</p>
</sec>
</sec>
<sec sec-type="conclusions" id="sec6-cancers-11-00533">
<title>6. Conclusions</title>
<p>In the last decade, autophagy has been strongly associated with tumorigenesis in colorectal cancer. The dual role of autophagy as survival and a pro-death mechanism has become a field of research in order to develop more effective therapeutic schemes against cancer. In established tumors, autophagy has a vital role as a survival mechanism, especially in the hypoxic regions of tumors. It is well known that tumors are characterized by a highly heterogeneous population of cancer, mesenchymal, immune, and stromal cells in a complex structure, which is identified as the tumor microenvironment. A growing body of evidence supports the hypothesis that autophagy regulates not only the metabolic function of cancer cells, but also other types of cells in the tumor microenvironment. Autophagy has a crucial role as a regulator of immune responses by sustaining the activation, homeostasis, and biological functions of different immune cells, such as T-cells, macrophages, and antigen presenting cells. Moreover, the impact of autophagy on tumor cells has also been observed in the active participation in intracellular and extracellular antigen processing for MHC-I and/or MHC-II presentation. Besides, autophagy has also been reported to associate with the cross-presentation of neo-antigens for MHC-I presentation and the internalization process. Several studies support autophagy as a potential target to strengthen or attenuate the effects of immunotherapy against different types of cancer, including CRC. In the future, efforts should be focused on how to regulate autophagy in the tumor microenvironment in order to strengthen the response of the immune system and overcome anti-tumor immune resistance in immunotherapy for colorectal cancer.</p>
</sec>
</body>
<back>
<notes>
<title>Author Contributions</title>
<p>E.K., P.S. and G.K. made substantial contributions to acquisition, analysis and interpretation of data. A.G.P. and M.V.K. made substantial contributions in the conception, design and interpretation of the data as well as in drafting the manuscript and revising it critically for important intellectual content.</p>
</notes>
<notes>
<title>Funding</title>
<p>This research received no external funding.</p>
</notes>
<notes notes-type="COI-statement">
<title>Conflicts of Interest</title>
<p>The authors declare that they have no competing interests.</p>
</notes>
<glossary>
<title>Abbreviations</title>
<array orientation="portrait">
<tbody>
<tr>
<td align="left" valign="middle" rowspan="1" colspan="1">ATGs</td>
<td align="left" valign="middle" rowspan="1" colspan="1">Autophagy-related genes</td>
</tr>
<tr>
<td align="left" valign="middle" rowspan="1" colspan="1">CAFs</td>
<td align="left" valign="middle" rowspan="1" colspan="1">Cancer-associated fibroblasts</td>
</tr>
<tr>
<td align="left" valign="middle" rowspan="1" colspan="1">CRC</td>
<td align="left" valign="middle" rowspan="1" colspan="1">Colorectal cancer</td>
</tr>
<tr>
<td align="left" valign="middle" rowspan="1" colspan="1">CTLs</td>
<td align="left" valign="middle" rowspan="1" colspan="1">Cytotoxic T lymphocytes</td>
</tr>
<tr>
<td align="left" valign="middle" rowspan="1" colspan="1">CTLA-4</td>
<td align="left" valign="middle" rowspan="1" colspan="1">cytotoxic T-lymphocyte-associated antigen-4</td>
</tr>
<tr>
<td align="left" valign="middle" rowspan="1" colspan="1">CQ</td>
<td align="left" valign="middle" rowspan="1" colspan="1">Chloroquine</td>
</tr>
<tr>
<td align="left" valign="middle" rowspan="1" colspan="1">PD-1</td>
<td align="left" valign="middle" rowspan="1" colspan="1">Programmed cell death protein 1</td>
</tr>
<tr>
<td align="left" valign="middle" rowspan="1" colspan="1">PD-L1</td>
<td align="left" valign="middle" rowspan="1" colspan="1">Programmed death-ligand 1</td>
</tr>
<tr>
<td align="left" valign="middle" rowspan="1" colspan="1">HCQ</td>
<td align="left" valign="middle" rowspan="1" colspan="1">Hydroxyl-chloroquine</td>
</tr>
<tr>
<td align="left" valign="middle" rowspan="1" colspan="1">mCRC</td>
<td align="left" valign="middle" rowspan="1" colspan="1">metastatic Colorectal cancer</td>
</tr>
<tr>
<td align="left" valign="middle" rowspan="1" colspan="1">MDSCs</td>
<td align="left" valign="middle" rowspan="1" colspan="1">Myeloid-derived suppressor cell</td>
</tr>
<tr>
<td align="left" valign="middle" rowspan="1" colspan="1">MHC I and II</td>
<td align="left" valign="middle" rowspan="1" colspan="1">Major histocompatibility complex I and II</td>
</tr>
<tr>
<td align="left" valign="middle" rowspan="1" colspan="1">MoAbs</td>
<td align="left" valign="middle" rowspan="1" colspan="1">Monoclonal antibodies</td>
</tr>
<tr>
<td align="left" valign="middle" rowspan="1" colspan="1">NSCLC</td>
<td align="left" valign="middle" rowspan="1" colspan="1">Non-small cell lung cancer</td>
</tr>
<tr>
<td align="left" valign="middle" rowspan="1" colspan="1">MMRd</td>
<td align="left" valign="middle" rowspan="1" colspan="1">Mismatch repair deficiency</td>
</tr>
<tr>
<td align="left" valign="middle" rowspan="1" colspan="1">MSI-H</td>
<td align="left" valign="middle" rowspan="1" colspan="1">Microsatellite instability-High</td>
</tr>
<tr>
<td align="left" valign="middle" rowspan="1" colspan="1">MSS</td>
<td align="left" valign="middle" rowspan="1" colspan="1">Microsatellite stable</td>
</tr>
<tr>
<td align="left" valign="middle" rowspan="1" colspan="1">TANs</td>
<td align="left" valign="middle" rowspan="1" colspan="1">Tumor-associated neutrophils</td>
</tr>
<tr>
<td align="left" valign="middle" rowspan="1" colspan="1">TAMs</td>
<td align="left" valign="middle" rowspan="1" colspan="1">Tumor-associated macrophages</td>
</tr>
<tr>
<td align="left" valign="middle" rowspan="1" colspan="1">TCR</td>
<td align="left" valign="middle" rowspan="1" colspan="1">T-cell receptor</td>
</tr>
<tr>
<td align="left" valign="middle" rowspan="1" colspan="1">TILs</td>
<td align="left" valign="middle" rowspan="1" colspan="1">Tumor-infiltrating lymphocytes</td>
</tr>
<tr>
<td align="left" valign="middle" rowspan="1" colspan="1">Tregs</td>
<td align="left" valign="middle" rowspan="1" colspan="1">Regulatory T cells</td>
</tr>
<tr>
<td align="left" valign="middle" rowspan="1" colspan="1">3-MA</td>
<td align="left" valign="middle" rowspan="1" colspan="1">3-Methyladenine</td>
</tr>
</tbody>
</array>
</glossary>
<ref-list>
<title>References</title>
<ref id="B1-cancers-11-00533">
<label>1.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Siegel</surname>
<given-names>R.L.</given-names>
</name>
<name>
<surname>Miller</surname>
<given-names>K.D.</given-names>
</name>
<name>
<surname>Jemal</surname>
<given-names>A.</given-names>
</name>
</person-group>
<article-title>Cancer statistics, 2019</article-title>
<source>CA Cancer J. Clin.</source>
<year>2019</year>
<volume>69</volume>
<fpage>7</fpage>
<lpage>34</lpage>
<pub-id pub-id-type="doi">10.3322/caac.21551</pub-id>
<pub-id pub-id-type="pmid">30620402</pub-id>
</element-citation>
</ref>
<ref id="B2-cancers-11-00533">
<label>2.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Arnold</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Sierra</surname>
<given-names>M.S.</given-names>
</name>
<name>
<surname>Laversanne</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Soerjomataram</surname>
<given-names>I.</given-names>
</name>
<name>
<surname>Jemal</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Bray</surname>
<given-names>F.</given-names>
</name>
</person-group>
<article-title>Global patterns and trends in colorectal cancer incidence and mortality</article-title>
<source>Gut</source>
<year>2017</year>
<volume>66</volume>
<fpage>683</fpage>
<lpage>691</lpage>
<pub-id pub-id-type="doi">10.1136/gutjnl-2015-310912</pub-id>
<pub-id pub-id-type="pmid">26818619</pub-id>
</element-citation>
</ref>
<ref id="B3-cancers-11-00533">
<label>3.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Mizushima</surname>
<given-names>N.</given-names>
</name>
<name>
<surname>Ohsumi</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Yoshimori</surname>
<given-names>T.</given-names>
</name>
</person-group>
<article-title>Autophagosome Formation in Mammalian Cells</article-title>
<source>Cell Struct. Funct.</source>
<year>2002</year>
<volume>27</volume>
<fpage>421</fpage>
<lpage>429</lpage>
<pub-id pub-id-type="doi">10.1247/csf.27.421</pub-id>
<pub-id pub-id-type="pmid">12576635</pub-id>
</element-citation>
</ref>
<ref id="B4-cancers-11-00533">
<label>4.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Koustas</surname>
<given-names>E.</given-names>
</name>
<name>
<surname>Karamouzis</surname>
<given-names>M.V.</given-names>
</name>
<name>
<surname>Mihailidou</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>Schizas</surname>
<given-names>D.</given-names>
</name>
<name>
<surname>Papavassiliou</surname>
<given-names>A.G.</given-names>
</name>
</person-group>
<article-title>Co-targeting of EGFR and autophagy signaling is an emerging treatment strategy in metastatic colorectal cancer</article-title>
<source>Cancer Lett.</source>
<year>2017</year>
<volume>396</volume>
<fpage>94</fpage>
<lpage>102</lpage>
<pub-id pub-id-type="doi">10.1016/j.canlet.2017.03.023</pub-id>
<pub-id pub-id-type="pmid">28323034</pub-id>
</element-citation>
</ref>
<ref id="B5-cancers-11-00533">
<label>5.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Pandurangan</surname>
<given-names>A.K.</given-names>
</name>
<name>
<surname>Divya</surname>
<given-names>T.</given-names>
</name>
<name>
<surname>Kumar</surname>
<given-names>K.</given-names>
</name>
<name>
<surname>Dineshbabu</surname>
<given-names>V.</given-names>
</name>
<name>
<surname>Velavan</surname>
<given-names>B.</given-names>
</name>
<name>
<surname>Sudhandiran</surname>
<given-names>G.</given-names>
</name>
<name>
<surname>AshokKumar</surname>
<given-names>P.</given-names>
</name>
</person-group>
<article-title>Colorectal carcinogenesis: Insights into the cell death and signal transduction pathways: A review</article-title>
<source>J. Gastrointest. Oncol.</source>
<year>2018</year>
<volume>10</volume>
<fpage>244</fpage>
<lpage>259</lpage>
</element-citation>
</ref>
<ref id="B6-cancers-11-00533">
<label>6.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Kroemer</surname>
<given-names>G.</given-names>
</name>
<name>
<surname>Mariño</surname>
<given-names>G.</given-names>
</name>
<name>
<surname>Levine</surname>
<given-names>B.</given-names>
</name>
</person-group>
<article-title>Autophagy and the integrated stress response</article-title>
<source>Mol. Cell</source>
<year>2010</year>
<volume>40</volume>
<fpage>280</fpage>
<lpage>293</lpage>
<pub-id pub-id-type="doi">10.1016/j.molcel.2010.09.023</pub-id>
<pub-id pub-id-type="pmid">20965422</pub-id>
</element-citation>
</ref>
<ref id="B7-cancers-11-00533">
<label>7.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Burada</surname>
<given-names>F.</given-names>
</name>
<name>
<surname>Nicoli</surname>
<given-names>E.R.</given-names>
</name>
<name>
<surname>Ciurea</surname>
<given-names>M.E.</given-names>
</name>
<name>
<surname>Uscatu</surname>
<given-names>D.C.</given-names>
</name>
<name>
<surname>Ioana</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Gheonea</surname>
<given-names>D.I.</given-names>
</name>
</person-group>
<article-title>Autophagy in colorectal cancer: An important switch from physiology to pathology</article-title>
<source>World J. Gastrointest. Oncol.</source>
<year>2015</year>
<volume>7</volume>
<fpage>271</fpage>
<lpage>284</lpage>
<pub-id pub-id-type="doi">10.4251/wjgo.v7.i11.271</pub-id>
<pub-id pub-id-type="pmid">26600927</pub-id>
</element-citation>
</ref>
<ref id="B8-cancers-11-00533">
<label>8.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Koustas</surname>
<given-names>E.</given-names>
</name>
<name>
<surname>Sarantis</surname>
<given-names>P.</given-names>
</name>
<name>
<surname>Papavassiliou</surname>
<given-names>A.G.</given-names>
</name>
<name>
<surname>Karamouzis</surname>
<given-names>M.</given-names>
</name>
</person-group>
<article-title>V Upgraded role of autophagy in colorectal carcinomas</article-title>
<source>World J. Gastrointest. Oncol.</source>
<year>2018</year>
<volume>10</volume>
<fpage>367</fpage>
<lpage>369</lpage>
<pub-id pub-id-type="doi">10.4251/wjgo.v10.i11.367</pub-id>
<pub-id pub-id-type="pmid">30487948</pub-id>
</element-citation>
</ref>
<ref id="B9-cancers-11-00533">
<label>9.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Schaaf</surname>
<given-names>M.B.</given-names>
</name>
<name>
<surname>Houbaert</surname>
<given-names>D.</given-names>
</name>
<name>
<surname>Meçe</surname>
<given-names>O.</given-names>
</name>
<name>
<surname>Agostinis</surname>
<given-names>P.</given-names>
</name>
</person-group>
<article-title>Autophagy in endothelial cells and tumor angiogenesis</article-title>
<source>Cell Death Differ.</source>
<year>2019</year>
<volume>26</volume>
<fpage>665</fpage>
<lpage>679</lpage>
<pub-id pub-id-type="doi">10.1038/s41418-019-0287-8</pub-id>
<pub-id pub-id-type="pmid">30692642</pub-id>
</element-citation>
</ref>
<ref id="B10-cancers-11-00533">
<label>10.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Colella</surname>
<given-names>B.</given-names>
</name>
<name>
<surname>Faienza</surname>
<given-names>F.</given-names>
</name>
<name>
<surname>Di Bartolomeo</surname>
<given-names>S.</given-names>
</name>
</person-group>
<article-title>EMT Regulation by Autophagy: A New Perspective in Glioblastoma Biology</article-title>
<source>Cancers</source>
<year>2019</year>
<volume>11</volume>
<elocation-id>312</elocation-id>
<pub-id pub-id-type="doi">10.3390/cancers11030312</pub-id>
<pub-id pub-id-type="pmid">30845654</pub-id>
</element-citation>
</ref>
<ref id="B11-cancers-11-00533">
<label>11.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Yang</surname>
<given-names>X.</given-names>
</name>
<name>
<surname>Yu</surname>
<given-names>D.-D.</given-names>
</name>
<name>
<surname>Yan</surname>
<given-names>F.</given-names>
</name>
<name>
<surname>Jing</surname>
<given-names>Y.-Y.</given-names>
</name>
<name>
<surname>Han</surname>
<given-names>Z.-P.</given-names>
</name>
<name>
<surname>Sun</surname>
<given-names>K.</given-names>
</name>
<name>
<surname>Liang</surname>
<given-names>L.</given-names>
</name>
<name>
<surname>Hou</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Wei</surname>
<given-names>L.-X.</given-names>
</name>
</person-group>
<article-title>The role of autophagy induced by tumor microenvironment in different cells and stages of cancer</article-title>
<source>Cell Biosci.</source>
<year>2015</year>
<volume>5</volume>
<fpage>14</fpage>
<pub-id pub-id-type="doi">10.1186/s13578-015-0005-2</pub-id>
<pub-id pub-id-type="pmid">25844158</pub-id>
</element-citation>
</ref>
<ref id="B12-cancers-11-00533">
<label>12.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>White</surname>
<given-names>E.</given-names>
</name>
</person-group>
<article-title>Deconvoluting the context-dependent role for autophagy in cancer</article-title>
<source>Nat. Rev. Cancer</source>
<year>2012</year>
<volume>12</volume>
<fpage>401</fpage>
<lpage>410</lpage>
<pub-id pub-id-type="doi">10.1038/nrc3262</pub-id>
<pub-id pub-id-type="pmid">22534666</pub-id>
</element-citation>
</ref>
<ref id="B13-cancers-11-00533">
<label>13.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Guo</surname>
<given-names>J.Y.</given-names>
</name>
<name>
<surname>White</surname>
<given-names>E.</given-names>
</name>
</person-group>
<article-title>Autophagy, metabolism, and cancer</article-title>
<source>Cold Spring Harb. Symp. Quant. Biol.</source>
<year>2016</year>
<volume>81</volume>
<fpage>73</fpage>
<lpage>78</lpage>
<pub-id pub-id-type="doi">10.1101/sqb.2016.81.030981</pub-id>
<pub-id pub-id-type="pmid">28209717</pub-id>
</element-citation>
</ref>
<ref id="B14-cancers-11-00533">
<label>14.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Mellor</surname>
<given-names>H.R.</given-names>
</name>
<name>
<surname>Harris</surname>
<given-names>A.L.</given-names>
</name>
</person-group>
<article-title>The role of the hypoxia-inducible BH3-only proteins BNIP3 and BNIP3L in cancer</article-title>
<source>Cancer Metastasis Rev.</source>
<year>2007</year>
<volume>26</volume>
<fpage>553</fpage>
<lpage>566</lpage>
<pub-id pub-id-type="doi">10.1007/s10555-007-9080-0</pub-id>
<pub-id pub-id-type="pmid">17805942</pub-id>
</element-citation>
</ref>
<ref id="B15-cancers-11-00533">
<label>15.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Huijbers</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Plantinga</surname>
<given-names>T.S.</given-names>
</name>
<name>
<surname>Joosten</surname>
<given-names>L.A.B.</given-names>
</name>
<name>
<surname>Aben</surname>
<given-names>K.K.H.</given-names>
</name>
<name>
<surname>Gudmundsson</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Heijer</surname>
<given-names>M.D.</given-names>
</name>
<name>
<surname>Kiemeney</surname>
<given-names>L.A.L.M.</given-names>
</name>
<name>
<surname>Netea</surname>
<given-names>M.G.</given-names>
</name>
<name>
<surname>Hermus</surname>
<given-names>A.R.M.M.</given-names>
</name>
<name>
<surname>Netea-Maier</surname>
<given-names>R.T.</given-names>
</name>
</person-group>
<article-title>The effect of the ATG16L1 Thr300Ala polymorphism on susceptibility and outcome of patients with epithelial cell-derived thyroid carcinoma</article-title>
<source>Endocr. Relat. Cancer</source>
<year>2012</year>
<volume>19</volume>
<fpage>L15</fpage>
<lpage>L18</lpage>
<pub-id pub-id-type="doi">10.1530/ERC-11-0302</pub-id>
<pub-id pub-id-type="pmid">22302078</pub-id>
</element-citation>
</ref>
<ref id="B16-cancers-11-00533">
<label>16.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Huang</surname>
<given-names>C.-Y.</given-names>
</name>
<name>
<surname>Huang</surname>
<given-names>S.-P.</given-names>
</name>
<name>
<surname>Lin</surname>
<given-names>V.C.</given-names>
</name>
<name>
<surname>Yu</surname>
<given-names>C.-C.</given-names>
</name>
<name>
<surname>Chang</surname>
<given-names>T.-Y.</given-names>
</name>
<name>
<surname>Lu</surname>
<given-names>T.-L.</given-names>
</name>
<name>
<surname>Chiang</surname>
<given-names>H.-C.</given-names>
</name>
<name>
<surname>Bao</surname>
<given-names>B.-Y.</given-names>
</name>
</person-group>
<article-title>Genetic variants of the autophagy pathway as prognostic indicators for prostate cancer</article-title>
<source>Sci. Rep.</source>
<year>2015</year>
<volume>5</volume>
<fpage>14045</fpage>
<pub-id pub-id-type="doi">10.1038/srep14045</pub-id>
<pub-id pub-id-type="pmid">26365175</pub-id>
</element-citation>
</ref>
<ref id="B17-cancers-11-00533">
<label>17.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Yun</surname>
<given-names>C.W.</given-names>
</name>
<name>
<surname>Lee</surname>
<given-names>S.H.</given-names>
</name>
</person-group>
<article-title>The Roles of Autophagy in Cancer</article-title>
<source>Int. J. Mol. Sci.</source>
<year>2018</year>
<volume>19</volume>
<elocation-id>3466</elocation-id>
<pub-id pub-id-type="doi">10.3390/ijms19113466</pub-id>
</element-citation>
</ref>
<ref id="B18-cancers-11-00533">
<label>18.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Miracco</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>Cosci</surname>
<given-names>E.</given-names>
</name>
<name>
<surname>Oliveri</surname>
<given-names>G.</given-names>
</name>
<name>
<surname>Luzi</surname>
<given-names>P.</given-names>
</name>
<name>
<surname>Pacenti</surname>
<given-names>L.</given-names>
</name>
<name>
<surname>Monciatti</surname>
<given-names>I.</given-names>
</name>
<name>
<surname>Mannucci</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>De Nisi</surname>
<given-names>M.C.</given-names>
</name>
<name>
<surname>Toscano</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Malagnino</surname>
<given-names>V.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Protein and mRNA expression of autophagy gene Beclin 1 in human brain tumours</article-title>
<source>Int. J. Oncol.</source>
<year>2007</year>
<volume>30</volume>
<fpage>429</fpage>
<lpage>436</lpage>
<pub-id pub-id-type="pmid">17203225</pub-id>
</element-citation>
</ref>
<ref id="B19-cancers-11-00533">
<label>19.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Pickford</surname>
<given-names>F.</given-names>
</name>
<name>
<surname>Masliah</surname>
<given-names>E.</given-names>
</name>
<name>
<surname>Britschgi</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Lucin</surname>
<given-names>K.</given-names>
</name>
<name>
<surname>Narasimhan</surname>
<given-names>R.</given-names>
</name>
<name>
<surname>Jaeger</surname>
<given-names>P.A.</given-names>
</name>
<name>
<surname>Small</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Spencer</surname>
<given-names>B.</given-names>
</name>
<name>
<surname>Rockenstein</surname>
<given-names>E.</given-names>
</name>
<name>
<surname>Levine</surname>
<given-names>B.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>The autophagy-related protein beclin 1 shows reduced expression in early Alzheimer disease and regulates amyloid β accumulation in mice</article-title>
<source>J. Clin. Investig.</source>
<year>2008</year>
<volume>118</volume>
<fpage>2190</fpage>
<lpage>2199</lpage>
<pub-id pub-id-type="doi">10.1172/JCI33585</pub-id>
<pub-id pub-id-type="pmid">18497889</pub-id>
</element-citation>
</ref>
<ref id="B20-cancers-11-00533">
<label>20.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Mariño</surname>
<given-names>G.</given-names>
</name>
<name>
<surname>Salvador-Montoliu</surname>
<given-names>N.</given-names>
</name>
<name>
<surname>Fueyo</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Knecht</surname>
<given-names>E.</given-names>
</name>
<name>
<surname>Mizushima</surname>
<given-names>N.</given-names>
</name>
<name>
<surname>López-Otín</surname>
<given-names>C.</given-names>
</name>
</person-group>
<article-title>Tissue-specific Autophagy Alterations and Increased Tumorigenesis in Mice Deficient in Atg4C/Autophagin-3</article-title>
<source>J. Biol. Chem.</source>
<year>2007</year>
<volume>282</volume>
<fpage>18573</fpage>
<lpage>18583</lpage>
<pub-id pub-id-type="doi">10.1074/jbc.M701194200</pub-id>
<pub-id pub-id-type="pmid">17442669</pub-id>
</element-citation>
</ref>
<ref id="B21-cancers-11-00533">
<label>21.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Oikonomou</surname>
<given-names>E.</given-names>
</name>
<name>
<surname>Koustas</surname>
<given-names>E.</given-names>
</name>
<name>
<surname>Goulielmaki</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Pintzas</surname>
<given-names>A.</given-names>
</name>
</person-group>
<article-title>BRAF vs. RAS oncogenes: Are mutations of the same pathway equal? Differential signalling and therapeutic implications</article-title>
<source>Oncotarget</source>
<year>2015</year>
<volume>5</volume>
<fpage>11752</fpage>
<lpage>11777</lpage>
<pub-id pub-id-type="doi">10.18632/oncotarget.2555</pub-id>
</element-citation>
</ref>
<ref id="B22-cancers-11-00533">
<label>22.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Cianfanelli</surname>
<given-names>V.</given-names>
</name>
<name>
<surname>D’Orazio</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Cecconi</surname>
<given-names>F.</given-names>
</name>
</person-group>
<article-title>AMBRA1 and BECLIN 1 interplay in the crosstalk between autophagy and cell proliferation</article-title>
<source>Cell Cycle</source>
<year>2015</year>
<volume>14</volume>
<fpage>959</fpage>
<lpage>963</lpage>
<pub-id pub-id-type="doi">10.1080/15384101.2015.1021526</pub-id>
<pub-id pub-id-type="pmid">25803737</pub-id>
</element-citation>
</ref>
<ref id="B23-cancers-11-00533">
<label>23.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Yue</surname>
<given-names>Z.</given-names>
</name>
<name>
<surname>Jin</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Yang</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>Levine</surname>
<given-names>A.J.</given-names>
</name>
<name>
<surname>Heintz</surname>
<given-names>N.</given-names>
</name>
</person-group>
<article-title>Beclin 1, an autophagy gene essential for early embryonic development, is a haploinsufficient tumor suppressor</article-title>
<source>Proc. Natl. Acad. Sci. USA</source>
<year>2003</year>
<volume>100</volume>
<fpage>15077</fpage>
<lpage>15082</lpage>
<pub-id pub-id-type="doi">10.1073/pnas.2436255100</pub-id>
<pub-id pub-id-type="pmid">14657337</pub-id>
</element-citation>
</ref>
<ref id="B24-cancers-11-00533">
<label>24.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Guo</surname>
<given-names>J.Y.</given-names>
</name>
<name>
<surname>Chen</surname>
<given-names>H.-Y.</given-names>
</name>
<name>
<surname>Mathew</surname>
<given-names>R.</given-names>
</name>
<name>
<surname>Fan</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Strohecker</surname>
<given-names>A.M.</given-names>
</name>
<name>
<surname>Karsli-Uzunbas</surname>
<given-names>G.</given-names>
</name>
<name>
<surname>Kamphorst</surname>
<given-names>J.J.</given-names>
</name>
<name>
<surname>Chen</surname>
<given-names>G.</given-names>
</name>
<name>
<surname>Lemons</surname>
<given-names>J.M.</given-names>
</name>
<name>
<surname>Karantza</surname>
<given-names>V.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Activated Ras requires autophagy to maintain oxidative metabolism and tumorigenesis</article-title>
<source>Genes Dev.</source>
<year>2011</year>
<volume>25</volume>
<fpage>460</fpage>
<lpage>470</lpage>
<pub-id pub-id-type="doi">10.1101/gad.2016311</pub-id>
<pub-id pub-id-type="pmid">21317241</pub-id>
</element-citation>
</ref>
<ref id="B25-cancers-11-00533">
<label>25.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Zhong</surname>
<given-names>Z.</given-names>
</name>
<name>
<surname>Sanchez-Lopez</surname>
<given-names>E.</given-names>
</name>
<name>
<surname>Karin</surname>
<given-names>M.</given-names>
</name>
</person-group>
<article-title>Autophagy, Inflammation and Immunity: A Troika Governing Cancer and Its Treatment</article-title>
<source>Cell</source>
<year>2016</year>
<volume>166</volume>
<fpage>288</fpage>
<lpage>298</lpage>
<pub-id pub-id-type="doi">10.1016/j.cell.2016.05.051</pub-id>
<pub-id pub-id-type="pmid">27419869</pub-id>
</element-citation>
</ref>
<ref id="B26-cancers-11-00533">
<label>26.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Degenhardt</surname>
<given-names>K.</given-names>
</name>
<name>
<surname>Mathew</surname>
<given-names>R.</given-names>
</name>
<name>
<surname>Beaudoin</surname>
<given-names>B.</given-names>
</name>
<name>
<surname>Bray</surname>
<given-names>K.</given-names>
</name>
<name>
<surname>Anderson</surname>
<given-names>D.</given-names>
</name>
<name>
<surname>Chen</surname>
<given-names>G.</given-names>
</name>
<name>
<surname>Mukherjee</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>Shi</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Gélinas</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>Fan</surname>
<given-names>Y.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Autophagy promotes tumor cell survival and restricts necrosis, inflammation, and tumorigenesis</article-title>
<source>Cancer Cell</source>
<year>2006</year>
<volume>10</volume>
<fpage>51</fpage>
<lpage>64</lpage>
<pub-id pub-id-type="doi">10.1016/j.ccr.2006.06.001</pub-id>
<pub-id pub-id-type="pmid">16843265</pub-id>
</element-citation>
</ref>
<ref id="B27-cancers-11-00533">
<label>27.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Gerlinger</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Rowan</surname>
<given-names>A.J.</given-names>
</name>
<name>
<surname>Horswell</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Math</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Larkin</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Endesfelder</surname>
<given-names>D.</given-names>
</name>
<name>
<surname>Gronroos</surname>
<given-names>E.</given-names>
</name>
<name>
<surname>Martinez</surname>
<given-names>P.</given-names>
</name>
<name>
<surname>Matthews</surname>
<given-names>N.</given-names>
</name>
<name>
<surname>Stewart</surname>
<given-names>A.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Intratumor heterogeneity and branched evolution revealed by multiregion sequencing</article-title>
<source>N. Engl. J. Med.</source>
<year>2012</year>
<volume>366</volume>
<fpage>883</fpage>
<lpage>892</lpage>
<pub-id pub-id-type="doi">10.1056/NEJMoa1113205</pub-id>
<pub-id pub-id-type="pmid">22397650</pub-id>
</element-citation>
</ref>
<ref id="B28-cancers-11-00533">
<label>28.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Molinari</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>Marisi</surname>
<given-names>G.</given-names>
</name>
<name>
<surname>Passardi</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Matteucci</surname>
<given-names>L.</given-names>
</name>
<name>
<surname>De Maio</surname>
<given-names>G.</given-names>
</name>
<name>
<surname>Ulivi</surname>
<given-names>P.</given-names>
</name>
</person-group>
<article-title>Heterogeneity in Colorectal Cancer: A Challenge for Personalized Medicine?</article-title>
<source>Int. J. Mol. Sci.</source>
<year>2018</year>
<volume>19</volume>
<elocation-id>3733</elocation-id>
<pub-id pub-id-type="doi">10.3390/ijms19123733</pub-id>
</element-citation>
</ref>
<ref id="B29-cancers-11-00533">
<label>29.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Pietras</surname>
<given-names>K.</given-names>
</name>
<name>
<surname>Östman</surname>
<given-names>A.</given-names>
</name>
</person-group>
<article-title>Hallmarks of cancer: Interactions with the tumor stroma</article-title>
<source>Exp. Cell Res.</source>
<year>2010</year>
<volume>316</volume>
<fpage>1324</fpage>
<lpage>1331</lpage>
<pub-id pub-id-type="doi">10.1016/j.yexcr.2010.02.045</pub-id>
<pub-id pub-id-type="pmid">20211171</pub-id>
</element-citation>
</ref>
<ref id="B30-cancers-11-00533">
<label>30.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Tape</surname>
<given-names>C.J.</given-names>
</name>
</person-group>
<article-title>The Heterocellular Emergence of Colorectal Cancer</article-title>
<source>Trends Cancer</source>
<year>2017</year>
<volume>3</volume>
<fpage>79</fpage>
<lpage>88</lpage>
<pub-id pub-id-type="doi">10.1016/j.trecan.2016.12.004</pub-id>
<pub-id pub-id-type="pmid">28239669</pub-id>
</element-citation>
</ref>
<ref id="B31-cancers-11-00533">
<label>31.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Fridman</surname>
<given-names>W.H.</given-names>
</name>
<name>
<surname>Zitvogel</surname>
<given-names>L.</given-names>
</name>
<name>
<surname>Sautès-Fridman</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>Kroemer</surname>
<given-names>G.</given-names>
</name>
</person-group>
<article-title>The immune contexture in cancer prognosis and treatment</article-title>
<source>Nat. Rev. Clin. Oncol.</source>
<year>2017</year>
<volume>14</volume>
<fpage>717</fpage>
<lpage>734</lpage>
<pub-id pub-id-type="doi">10.1038/nrclinonc.2017.101</pub-id>
<pub-id pub-id-type="pmid">28741618</pub-id>
</element-citation>
</ref>
<ref id="B32-cancers-11-00533">
<label>32.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Kather</surname>
<given-names>J.N.</given-names>
</name>
<name>
<surname>Halama</surname>
<given-names>N.</given-names>
</name>
<name>
<surname>Jaeger</surname>
<given-names>D.</given-names>
</name>
</person-group>
<article-title>Genomics and emerging biomarkers for immunotherapy of colorectal cancer</article-title>
<source>Semin. Cancer Biol.</source>
<year>2018</year>
<volume>52</volume>
<fpage>189</fpage>
<lpage>197</lpage>
<pub-id pub-id-type="doi">10.1016/j.semcancer.2018.02.010</pub-id>
<pub-id pub-id-type="pmid">29501787</pub-id>
</element-citation>
</ref>
<ref id="B33-cancers-11-00533">
<label>33.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Bupathi</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Wu</surname>
<given-names>C.</given-names>
</name>
</person-group>
<article-title>Biomarkers for immune therapy in colorectal cancer: Mismatch-repair deficiency and others</article-title>
<source>J. Gastrointest. Oncol.</source>
<year>2016</year>
<volume>7</volume>
<fpage>713</fpage>
<lpage>720</lpage>
<pub-id pub-id-type="doi">10.21037/jgo.2016.07.03</pub-id>
<pub-id pub-id-type="pmid">27747085</pub-id>
</element-citation>
</ref>
<ref id="B34-cancers-11-00533">
<label>34.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Mlecnik</surname>
<given-names>B.</given-names>
</name>
<name>
<surname>Bindea</surname>
<given-names>G.</given-names>
</name>
<name>
<surname>Kirilovsky</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Angell</surname>
<given-names>H.K.</given-names>
</name>
<name>
<surname>Obenauf</surname>
<given-names>A.C.</given-names>
</name>
<name>
<surname>Tosolini</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Church</surname>
<given-names>S.E.</given-names>
</name>
<name>
<surname>Maby</surname>
<given-names>P.</given-names>
</name>
<name>
<surname>Vasaturo</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Angelova</surname>
<given-names>M.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>The tumor microenvironment and Immunoscore are critical determinants of dissemination to distant metastasis</article-title>
<source>Sci. Transl. Med.</source>
<year>2016</year>
<volume>8</volume>
<fpage>327</fpage>
<pub-id pub-id-type="doi">10.1126/scitranslmed.aad6352</pub-id>
</element-citation>
</ref>
<ref id="B35-cancers-11-00533">
<label>35.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Nakagawa</surname>
<given-names>K.</given-names>
</name>
<name>
<surname>Tanaka</surname>
<given-names>K.</given-names>
</name>
<name>
<surname>Homma</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Nojiri</surname>
<given-names>K.</given-names>
</name>
<name>
<surname>Kumamoto</surname>
<given-names>T.</given-names>
</name>
<name>
<surname>Takeda</surname>
<given-names>K.</given-names>
</name>
<name>
<surname>Endo</surname>
<given-names>I.</given-names>
</name>
</person-group>
<article-title>Low Infiltration of Peritumoral Regulatory T Cells Predicts Worse Outcome Following Resection of Colorectal Liver Metastases</article-title>
<source>Ann. Surg. Oncol.</source>
<year>2015</year>
<volume>22</volume>
<fpage>180</fpage>
<lpage>186</lpage>
<pub-id pub-id-type="doi">10.1245/s10434-014-3974-1</pub-id>
<pub-id pub-id-type="pmid">25120248</pub-id>
</element-citation>
</ref>
<ref id="B36-cancers-11-00533">
<label>36.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Yu</surname>
<given-names>P.</given-names>
</name>
<name>
<surname>Fu</surname>
<given-names>Y.X.</given-names>
</name>
</person-group>
<article-title>Tumor-infiltrating T lymphocytes: Friends or foes?</article-title>
<source>Lab. Investig.</source>
<year>2006</year>
<volume>86</volume>
<fpage>231</fpage>
<lpage>245</lpage>
<pub-id pub-id-type="doi">10.1038/labinvest.3700389</pub-id>
<pub-id pub-id-type="pmid">16446705</pub-id>
</element-citation>
</ref>
<ref id="B37-cancers-11-00533">
<label>37.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Hu</surname>
<given-names>Z.</given-names>
</name>
<name>
<surname>Ma</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Shang</surname>
<given-names>Z.</given-names>
</name>
<name>
<surname>Hu</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Liang</surname>
<given-names>K.</given-names>
</name>
<name>
<surname>Liang</surname>
<given-names>W.</given-names>
</name>
<name>
<surname>Xing</surname>
<given-names>X.</given-names>
</name>
<name>
<surname>Wang</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Du</surname>
<given-names>X.</given-names>
</name>
</person-group>
<article-title>Improving immunotherapy for colorectal cancer using dendritic cells combined with anti-programmed death-ligand in vitro</article-title>
<source>Oncol. Lett.</source>
<year>2018</year>
<volume>15</volume>
<fpage>5345</fpage>
<lpage>5351</lpage>
<pub-id pub-id-type="doi">10.3892/ol.2018.7978</pub-id>
<pub-id pub-id-type="pmid">29552177</pub-id>
</element-citation>
</ref>
<ref id="B38-cancers-11-00533">
<label>38.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Pauken</surname>
<given-names>K.E.</given-names>
</name>
<name>
<surname>Wherry</surname>
<given-names>E.J.</given-names>
</name>
</person-group>
<article-title>Overcoming T cell exhaustion in infection and cancer</article-title>
<source>Trends Immunol.</source>
<year>2015</year>
<volume>36</volume>
<fpage>265</fpage>
<lpage>276</lpage>
<pub-id pub-id-type="doi">10.1016/j.it.2015.02.008</pub-id>
<pub-id pub-id-type="pmid">25797516</pub-id>
</element-citation>
</ref>
<ref id="B39-cancers-11-00533">
<label>39.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Singh</surname>
<given-names>P.P.</given-names>
</name>
<name>
<surname>Sharma</surname>
<given-names>P.K.</given-names>
</name>
<name>
<surname>Krishnan</surname>
<given-names>G.</given-names>
</name>
<name>
<surname>Lockhart</surname>
<given-names>A.C.</given-names>
</name>
</person-group>
<article-title>Immune checkpoints and immunotherapy for colorectal cancer</article-title>
<source>Gastroenterol. Rep.</source>
<year>2015</year>
<volume>3</volume>
<fpage>289</fpage>
<lpage>297</lpage>
<pub-id pub-id-type="doi">10.1093/gastro/gov053</pub-id>
</element-citation>
</ref>
<ref id="B40-cancers-11-00533">
<label>40.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Derhovanessian</surname>
<given-names>E.</given-names>
</name>
<name>
<surname>Maier</surname>
<given-names>A.B.</given-names>
</name>
<name>
<surname>Beck</surname>
<given-names>R.</given-names>
</name>
<name>
<surname>Jahn</surname>
<given-names>G.</given-names>
</name>
<name>
<surname>Hähnel</surname>
<given-names>K.</given-names>
</name>
<name>
<surname>Slagboom</surname>
<given-names>P.</given-names>
</name>
<name>
<surname>De Craen</surname>
<given-names>A.J.M.</given-names>
</name>
<name>
<surname>Westendorp</surname>
<given-names>R.G.J.</given-names>
</name>
<name>
<surname>Pawelec</surname>
<given-names>G.</given-names>
</name>
</person-group>
<article-title>Hallmark Features of Immunosenescence Are Absent in Familial Longevity</article-title>
<source>J. Immunol.</source>
<year>2010</year>
<volume>185</volume>
<fpage>4618</fpage>
<lpage>4624</lpage>
<pub-id pub-id-type="doi">10.4049/jimmunol.1001629</pub-id>
<pub-id pub-id-type="pmid">20855876</pub-id>
</element-citation>
</ref>
<ref id="B41-cancers-11-00533">
<label>41.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Koustas</surname>
<given-names>E.</given-names>
</name>
<name>
<surname>Papavassiliou</surname>
<given-names>A.G.</given-names>
</name>
<name>
<surname>Karamouzis</surname>
<given-names>M.V.</given-names>
</name>
</person-group>
<article-title>The role of autophagy in the treatment of BRAF mutant colorectal carcinomas differs based on microsatellite instability status</article-title>
<source>PLoS ONE</source>
<year>2018</year>
<volume>13</volume>
<elocation-id>e0207227</elocation-id>
<pub-id pub-id-type="doi">10.1371/journal.pone.0207227</pub-id>
<pub-id pub-id-type="pmid">30427914</pub-id>
</element-citation>
</ref>
<ref id="B42-cancers-11-00533">
<label>42.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Chen</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Colello</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Jarjour</surname>
<given-names>W.</given-names>
</name>
<name>
<surname>Zheng</surname>
<given-names>S.G.</given-names>
</name>
</person-group>
<article-title>Cellular Metabolic Regulation in the Differentiation and Function of Regulatory T Cells</article-title>
<source>Cells</source>
<year>2019</year>
<volume>8</volume>
<elocation-id>188</elocation-id>
<pub-id pub-id-type="doi">10.3390/cells8020188</pub-id>
</element-citation>
</ref>
<ref id="B43-cancers-11-00533">
<label>43.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Morikawa</surname>
<given-names>H.</given-names>
</name>
<name>
<surname>Sakaguchi</surname>
<given-names>S.</given-names>
</name>
</person-group>
<article-title>Genetic and epigenetic basis of Treg cell development and function: From a FoxP3-centered view to an epigenome-defined view of natural Treg cells</article-title>
<source>Immunol. Rev.</source>
<year>2014</year>
<volume>259</volume>
<fpage>192</fpage>
<lpage>205</lpage>
<pub-id pub-id-type="doi">10.1111/imr.12174</pub-id>
<pub-id pub-id-type="pmid">24712467</pub-id>
</element-citation>
</ref>
<ref id="B44-cancers-11-00533">
<label>44.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Herk</surname>
<given-names>E.H.</given-names>
</name>
<name>
<surname>Velde</surname>
<given-names>A.A.</given-names>
</name>
</person-group>
<article-title>Treg subsets in inflammatory bowel disease and colorectal carcinoma. Characteristics, role and therapeutic targets</article-title>
<source>J. Gastroenterol. Hepatol.</source>
<year>2016</year>
<volume>31</volume>
<fpage>1393</fpage>
<lpage>1404</lpage>
<pub-id pub-id-type="doi">10.1111/jgh.13342</pub-id>
<pub-id pub-id-type="pmid">26990130</pub-id>
</element-citation>
</ref>
<ref id="B45-cancers-11-00533">
<label>45.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Hori</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Nomura</surname>
<given-names>T.</given-names>
</name>
<name>
<surname>Sakaguchi</surname>
<given-names>S.</given-names>
</name>
</person-group>
<article-title>Control of Regulatory T Cell Development by the Transcription Factor Foxp3</article-title>
<source>Science</source>
<year>2003</year>
<volume>299</volume>
<fpage>1057</fpage>
<lpage>1061</lpage>
<pub-id pub-id-type="doi">10.1126/science.1079490</pub-id>
<pub-id pub-id-type="pmid">12522256</pub-id>
</element-citation>
</ref>
<ref id="B46-cancers-11-00533">
<label>46.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Fontenot</surname>
<given-names>J.D.</given-names>
</name>
<name>
<surname>Gavin</surname>
<given-names>M.A.</given-names>
</name>
<name>
<surname>Rudensky</surname>
<given-names>A.Y.</given-names>
</name>
</person-group>
<article-title>Foxp3 programs the development and function of CD4+CD25+ regulatory T cells</article-title>
<source>Nat. Immunol.</source>
<year>2003</year>
<volume>4</volume>
<fpage>330</fpage>
<lpage>336</lpage>
<pub-id pub-id-type="doi">10.1038/ni904</pub-id>
<pub-id pub-id-type="pmid">12612578</pub-id>
</element-citation>
</ref>
<ref id="B47-cancers-11-00533">
<label>47.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Salama</surname>
<given-names>P.</given-names>
</name>
<name>
<surname>Phillips</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Grieu</surname>
<given-names>F.</given-names>
</name>
<name>
<surname>Morris</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Zeps</surname>
<given-names>N.</given-names>
</name>
<name>
<surname>Joseph</surname>
<given-names>D.</given-names>
</name>
<name>
<surname>Platell</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>Iacopetta</surname>
<given-names>B.</given-names>
</name>
</person-group>
<article-title>Tumor-infiltrating FOXP3+ T regulatory cells show strong prognostic significance in colorectal cancer</article-title>
<source>J. Clin. Oncol.</source>
<year>2009</year>
<volume>27</volume>
<fpage>186</fpage>
<lpage>192</lpage>
<pub-id pub-id-type="doi">10.1200/JCO.2008.18.7229</pub-id>
<pub-id pub-id-type="pmid">19064967</pub-id>
</element-citation>
</ref>
<ref id="B48-cancers-11-00533">
<label>48.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Sinicrope</surname>
<given-names>F.A.</given-names>
</name>
<name>
<surname>Rego</surname>
<given-names>R.L.</given-names>
</name>
<name>
<surname>Ansell</surname>
<given-names>S.M.</given-names>
</name>
<name>
<surname>Knutson</surname>
<given-names>K.L.</given-names>
</name>
<name>
<surname>Foster</surname>
<given-names>N.R.</given-names>
</name>
<name>
<surname>Sargent</surname>
<given-names>D.J.</given-names>
</name>
</person-group>
<article-title>Intraepithelial Effector (CD3+)/Regulatory (FoxP3+) T-Cell Ratio Predicts a Clinical Outcome of Human Colon Carcinoma</article-title>
<source>Gastroenterology</source>
<year>2009</year>
<volume>137</volume>
<fpage>1270</fpage>
<lpage>1279</lpage>
<pub-id pub-id-type="doi">10.1053/j.gastro.2009.06.053</pub-id>
<pub-id pub-id-type="pmid">19577568</pub-id>
</element-citation>
</ref>
<ref id="B49-cancers-11-00533">
<label>49.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Gao</surname>
<given-names>D.</given-names>
</name>
<name>
<surname>Mittal</surname>
<given-names>V.</given-names>
</name>
</person-group>
<article-title>The role of bone-marrow-derived cells in tumor growth, metastasis initiation and progression</article-title>
<source>Trends Mol. Med.</source>
<year>2009</year>
<volume>15</volume>
<fpage>333</fpage>
<lpage>343</lpage>
<pub-id pub-id-type="doi">10.1016/j.molmed.2009.06.006</pub-id>
<pub-id pub-id-type="pmid">19665928</pub-id>
</element-citation>
</ref>
<ref id="B50-cancers-11-00533">
<label>50.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Gabrilovich</surname>
<given-names>D.I.</given-names>
</name>
<name>
<surname>Ostrand-Rosenberg</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Bronte</surname>
<given-names>V.</given-names>
</name>
</person-group>
<article-title>Coordinated regulation of myeloid cells by tumours</article-title>
<source>Nat. Rev. Immunol.</source>
<year>2012</year>
<volume>12</volume>
<fpage>253</fpage>
<lpage>268</lpage>
<pub-id pub-id-type="doi">10.1038/nri3175</pub-id>
<pub-id pub-id-type="pmid">22437938</pub-id>
</element-citation>
</ref>
<ref id="B51-cancers-11-00533">
<label>51.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Mantovani</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Cassatella</surname>
<given-names>M.A.</given-names>
</name>
<name>
<surname>Costantini</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>Jaillon</surname>
<given-names>S.</given-names>
</name>
</person-group>
<article-title>Neutrophils in the activation and regulation of innate and adaptive immunity</article-title>
<source>Nat. Rev. Immunol.</source>
<year>2011</year>
<volume>11</volume>
<fpage>519</fpage>
<lpage>531</lpage>
<pub-id pub-id-type="doi">10.1038/nri3024</pub-id>
<pub-id pub-id-type="pmid">21785456</pub-id>
</element-citation>
</ref>
<ref id="B52-cancers-11-00533">
<label>52.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Szebeni</surname>
<given-names>G.J.</given-names>
</name>
<name>
<surname>Vizler</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>Nagy</surname>
<given-names>L.I.</given-names>
</name>
<name>
<surname>Kitajka</surname>
<given-names>K.</given-names>
</name>
<name>
<surname>Puskas</surname>
<given-names>L.G.</given-names>
</name>
<name>
<surname>Tanaka</surname>
<given-names>T.</given-names>
</name>
<name>
<surname>Shimizu</surname>
<given-names>M.</given-names>
</name>
</person-group>
<article-title>Pro-Tumoral Inflammatory Myeloid Cells as Emerging Therapeutic Targets</article-title>
<source>Int. J. Mol. Sci.</source>
<year>2016</year>
<volume>17</volume>
<elocation-id>1958</elocation-id>
<pub-id pub-id-type="doi">10.3390/ijms17111958</pub-id>
</element-citation>
</ref>
<ref id="B53-cancers-11-00533">
<label>53.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Shaul</surname>
<given-names>M.E.</given-names>
</name>
<name>
<surname>Fridlender</surname>
<given-names>Z.G.</given-names>
</name>
</person-group>
<article-title>Neutrophils as active regulators of the immune system in the tumor microenvironment</article-title>
<source>J. Leukoc. Biol.</source>
<year>2017</year>
<volume>102</volume>
<fpage>343</fpage>
<lpage>349</lpage>
<pub-id pub-id-type="doi">10.1189/jlb.5MR1216-508R</pub-id>
<pub-id pub-id-type="pmid">28264904</pub-id>
</element-citation>
</ref>
<ref id="B54-cancers-11-00533">
<label>54.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Houghton</surname>
<given-names>A.M.</given-names>
</name>
<name>
<surname>Rzymkiewicz</surname>
<given-names>D.M.</given-names>
</name>
<name>
<surname>Ji</surname>
<given-names>H.</given-names>
</name>
<name>
<surname>Gregory</surname>
<given-names>A.D.</given-names>
</name>
<name>
<surname>Egea</surname>
<given-names>E.E.</given-names>
</name>
<name>
<surname>Metz</surname>
<given-names>H.E.</given-names>
</name>
<name>
<surname>Stolz</surname>
<given-names>D.B.</given-names>
</name>
<name>
<surname>Land</surname>
<given-names>S.R.</given-names>
</name>
<name>
<surname>Marconcini</surname>
<given-names>L.A.</given-names>
</name>
<name>
<surname>Kliment</surname>
<given-names>C.R.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Neutrophil Elastase-Mediated Degradation of IRS-1 Accelerates Lung Tumor Growth</article-title>
<source>Nat. Med.</source>
<year>2010</year>
<volume>16</volume>
<fpage>219</fpage>
<lpage>223</lpage>
<pub-id pub-id-type="doi">10.1038/nm.2084</pub-id>
<pub-id pub-id-type="pmid">20081861</pub-id>
</element-citation>
</ref>
<ref id="B55-cancers-11-00533">
<label>55.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Galdiero</surname>
<given-names>M.R.</given-names>
</name>
<name>
<surname>Varricchi</surname>
<given-names>G.</given-names>
</name>
<name>
<surname>Loffredo</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Mantovani</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Marone</surname>
<given-names>G.</given-names>
</name>
</person-group>
<article-title>Roles ofneutrophils in cancer growth and progression</article-title>
<source>J. Leukoc. Biol.</source>
<year>2018</year>
<volume>103</volume>
<fpage>457</fpage>
<lpage>464</lpage>
<pub-id pub-id-type="doi">10.1002/JLB.3MR0717-292R</pub-id>
<pub-id pub-id-type="pmid">29345348</pub-id>
</element-citation>
</ref>
<ref id="B56-cancers-11-00533">
<label>56.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Wislez</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Rabbe</surname>
<given-names>N.</given-names>
</name>
<name>
<surname>Marchal</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Milleron</surname>
<given-names>B.</given-names>
</name>
<name>
<surname>Crestani</surname>
<given-names>B.</given-names>
</name>
<name>
<surname>Mayaud</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>Antoine</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Soler</surname>
<given-names>P.</given-names>
</name>
<name>
<surname>Cadranel</surname>
<given-names>J.</given-names>
</name>
</person-group>
<article-title>Hepatocyte growth factor production by neutrophils infiltrating bronchioloalveolar subtype pulmonary adenocarcinoma: Role in tumor progression and death</article-title>
<source>Cancer Res.</source>
<year>2003</year>
<volume>63</volume>
<fpage>1405</fpage>
<lpage>1412</lpage>
<pub-id pub-id-type="pmid">12649206</pub-id>
</element-citation>
</ref>
<ref id="B57-cancers-11-00533">
<label>57.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Li</surname>
<given-names>Z.</given-names>
</name>
<name>
<surname>Zhao</surname>
<given-names>R.</given-names>
</name>
<name>
<surname>Cui</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Zhou</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Wu</surname>
<given-names>X.</given-names>
</name>
</person-group>
<article-title>The dynamic change of neutrophil to lymphocyte ratio can predict clinical outcome in stage I–III colon cancer</article-title>
<source>Sci. Rep.</source>
<year>2018</year>
<volume>8</volume>
<fpage>9453</fpage>
<pub-id pub-id-type="doi">10.1038/s41598-018-27896-y</pub-id>
<pub-id pub-id-type="pmid">29930287</pub-id>
</element-citation>
</ref>
<ref id="B58-cancers-11-00533">
<label>58.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Mizuno</surname>
<given-names>R.</given-names>
</name>
<name>
<surname>Kawada</surname>
<given-names>K.</given-names>
</name>
<name>
<surname>Itatani</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Ogawa</surname>
<given-names>R.</given-names>
</name>
<name>
<surname>Kiyasu</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Sakai</surname>
<given-names>Y.</given-names>
</name>
</person-group>
<article-title>The Role of Tumor-Associated Neutrophils in Colorectal Cancer</article-title>
<source>Int. J. Mol. Sci.</source>
<year>2019</year>
<volume>20</volume>
<elocation-id>529</elocation-id>
<pub-id pub-id-type="doi">10.3390/ijms20030529</pub-id>
<pub-id pub-id-type="pmid">30691207</pub-id>
</element-citation>
</ref>
<ref id="B59-cancers-11-00533">
<label>59.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Qian</surname>
<given-names>B.Z.</given-names>
</name>
<name>
<surname>Li</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Zhang</surname>
<given-names>H.</given-names>
</name>
<name>
<surname>Kitamura</surname>
<given-names>T.</given-names>
</name>
<name>
<surname>Zhang</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Campion</surname>
<given-names>L.R.</given-names>
</name>
<name>
<surname>Kaiser</surname>
<given-names>E.A.</given-names>
</name>
<name>
<surname>Snyder</surname>
<given-names>L.A.</given-names>
</name>
<name>
<surname>Pollard</surname>
<given-names>J.W.</given-names>
</name>
</person-group>
<article-title>CCL2 recruits inflammatory monocytes to facilitate breast-tumour metastasis</article-title>
<source>Nature</source>
<year>2011</year>
<volume>475</volume>
<fpage>222</fpage>
<lpage>225</lpage>
<pub-id pub-id-type="doi">10.1038/nature10138</pub-id>
<pub-id pub-id-type="pmid">21654748</pub-id>
</element-citation>
</ref>
<ref id="B60-cancers-11-00533">
<label>60.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Kumar</surname>
<given-names>V.</given-names>
</name>
<name>
<surname>Patel</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Tcyganov</surname>
<given-names>E.</given-names>
</name>
<name>
<surname>Gabrilovich</surname>
<given-names>D.I.</given-names>
</name>
</person-group>
<article-title>The nature of myeloid-derived suppressor cells in the tumor microenvironment</article-title>
<source>Trends Immunol.</source>
<year>2016</year>
<volume>37</volume>
<fpage>208</fpage>
<lpage>220</lpage>
<pub-id pub-id-type="doi">10.1016/j.it.2016.01.004</pub-id>
<pub-id pub-id-type="pmid">26858199</pub-id>
</element-citation>
</ref>
<ref id="B61-cancers-11-00533">
<label>61.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Haverkamp</surname>
<given-names>J.M.</given-names>
</name>
<name>
<surname>Crist</surname>
<given-names>S.A.</given-names>
</name>
<name>
<surname>Elzey</surname>
<given-names>B.D.</given-names>
</name>
<name>
<surname>Cimen</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>Ratliff</surname>
<given-names>T.L.</given-names>
</name>
</person-group>
<article-title>In vivo suppressive function of myeloid-derived suppressor cells is limited to the inflammatory site</article-title>
<source>Eur. J. Immunol.</source>
<year>2011</year>
<volume>41</volume>
<fpage>749</fpage>
<lpage>759</lpage>
<pub-id pub-id-type="doi">10.1002/eji.201041069</pub-id>
<pub-id pub-id-type="pmid">21287554</pub-id>
</element-citation>
</ref>
<ref id="B62-cancers-11-00533">
<label>62.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Corzo</surname>
<given-names>C.A.</given-names>
</name>
<name>
<surname>Condamine</surname>
<given-names>T.</given-names>
</name>
<name>
<surname>Lu</surname>
<given-names>L.</given-names>
</name>
<name>
<surname>Cotter</surname>
<given-names>M.J.</given-names>
</name>
<name>
<surname>Youn</surname>
<given-names>J.-I.</given-names>
</name>
<name>
<surname>Cheng</surname>
<given-names>P.</given-names>
</name>
<name>
<surname>Cho</surname>
<given-names>H.-I.</given-names>
</name>
<name>
<surname>Celis</surname>
<given-names>E.</given-names>
</name>
<name>
<surname>Quiceno</surname>
<given-names>D.G.</given-names>
</name>
<name>
<surname>Padhya</surname>
<given-names>T.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>HIF-1α regulates function and differentiation of myeloid-derived suppressor cells in the tumor microenvironment</article-title>
<source>J. Exp. Med.</source>
<year>2010</year>
<volume>207</volume>
<fpage>2439</fpage>
<lpage>2453</lpage>
<pub-id pub-id-type="doi">10.1084/jem.20100587</pub-id>
<pub-id pub-id-type="pmid">20876310</pub-id>
</element-citation>
</ref>
<ref id="B63-cancers-11-00533">
<label>63.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Jiang</surname>
<given-names>G.M.</given-names>
</name>
<name>
<surname>Tan</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Wang</surname>
<given-names>H.</given-names>
</name>
<name>
<surname>Peng</surname>
<given-names>L.</given-names>
</name>
<name>
<surname>Chen</surname>
<given-names>H.T.</given-names>
</name>
<name>
<surname>Meng</surname>
<given-names>X.J.</given-names>
</name>
<name>
<surname>Li</surname>
<given-names>L.L.</given-names>
</name>
<name>
<surname>Liu</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Li</surname>
<given-names>W.F.</given-names>
</name>
<name>
<surname>Shan</surname>
<given-names>H.</given-names>
</name>
</person-group>
<article-title>The relationship between autophagy and the immune system and its applications for tumor immunotherapy</article-title>
<source>Mol. Cancer</source>
<year>2019</year>
<volume>18</volume>
<fpage>17</fpage>
<pub-id pub-id-type="doi">10.1186/s12943-019-0944-z</pub-id>
<pub-id pub-id-type="pmid">30678689</pub-id>
</element-citation>
</ref>
<ref id="B64-cancers-11-00533">
<label>64.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Li</surname>
<given-names>W.</given-names>
</name>
<name>
<surname>Tanikawa</surname>
<given-names>T.</given-names>
</name>
<name>
<surname>Kryczek</surname>
<given-names>I.</given-names>
</name>
<name>
<surname>Xia</surname>
<given-names>H.</given-names>
</name>
<name>
<surname>Li</surname>
<given-names>G.</given-names>
</name>
<name>
<surname>Wu</surname>
<given-names>K.</given-names>
</name>
<name>
<surname>Wei</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Zhao</surname>
<given-names>L.</given-names>
</name>
<name>
<surname>Vatan</surname>
<given-names>L.</given-names>
</name>
<name>
<surname>Wen</surname>
<given-names>B.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Aerobic Glycolysis Controls Myeloid-Derived Suppressor Cells and Tumor Immunity via a Specific CEBPB Isoform in Triple-Negative Breast Cancer</article-title>
<source>Cell Metab.</source>
<year>2018</year>
<volume>28</volume>
<fpage>87</fpage>
<lpage>103.e6</lpage>
<pub-id pub-id-type="doi">10.1016/j.cmet.2018.04.022</pub-id>
<pub-id pub-id-type="pmid">29805099</pub-id>
</element-citation>
</ref>
<ref id="B65-cancers-11-00533">
<label>65.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>De Veirman</surname>
<given-names>K.</given-names>
</name>
<name>
<surname>Menu</surname>
<given-names>E.</given-names>
</name>
<name>
<surname>Maes</surname>
<given-names>K.</given-names>
</name>
<name>
<surname>De Beule</surname>
<given-names>N.</given-names>
</name>
<name>
<surname>De Smedt</surname>
<given-names>E.</given-names>
</name>
<name>
<surname>Maes</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Vlummens</surname>
<given-names>P.</given-names>
</name>
<name>
<surname>Fostier</surname>
<given-names>K.</given-names>
</name>
<name>
<surname>Kassambara</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Moreaux</surname>
<given-names>J.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Myeloid-derived suppressor cells induce multiple myeloma cell survival by activating the AMPK pathway</article-title>
<source>Cancer Lett.</source>
<year>2019</year>
<volume>442</volume>
<fpage>233</fpage>
<lpage>241</lpage>
<pub-id pub-id-type="doi">10.1016/j.canlet.2018.11.002</pub-id>
<pub-id pub-id-type="pmid">30419344</pub-id>
</element-citation>
</ref>
<ref id="B66-cancers-11-00533">
<label>66.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Xing</surname>
<given-names>F.</given-names>
</name>
</person-group>
<article-title>Cancer associated fibroblasts (CAFs) in tumor microenvironment</article-title>
<source>Front. Biosci.</source>
<year>2010</year>
<volume>15</volume>
<fpage>166</fpage>
<pub-id pub-id-type="doi">10.2741/3613</pub-id>
</element-citation>
</ref>
<ref id="B67-cancers-11-00533">
<label>67.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Koliaraki</surname>
<given-names>V.</given-names>
</name>
<name>
<surname>Pallangyo</surname>
<given-names>C.K.</given-names>
</name>
<name>
<surname>Greten</surname>
<given-names>F.R.</given-names>
</name>
<name>
<surname>Kollias</surname>
<given-names>G.</given-names>
</name>
</person-group>
<article-title>Mesenchymal Cells in Colon Cancer</article-title>
<source>Gastroenterology</source>
<year>2017</year>
<volume>152</volume>
<fpage>964</fpage>
<lpage>979</lpage>
<pub-id pub-id-type="doi">10.1053/j.gastro.2016.11.049</pub-id>
<pub-id pub-id-type="pmid">28111227</pub-id>
</element-citation>
</ref>
<ref id="B68-cancers-11-00533">
<label>68.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Grillo</surname>
<given-names>A.R.</given-names>
</name>
<name>
<surname>Scarpa</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>D’Inca</surname>
<given-names>R.</given-names>
</name>
<name>
<surname>Brun</surname>
<given-names>P.</given-names>
</name>
<name>
<surname>Scarpa</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Porzionato</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>De Caro</surname>
<given-names>R.</given-names>
</name>
<name>
<surname>Martines</surname>
<given-names>D.</given-names>
</name>
<name>
<surname>Buda</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Angriman</surname>
<given-names>I.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>TAK1 is a key modulator of the profibrogenic phenotype of human ileal myofibroblasts in Crohn’s disease</article-title>
<source>Am. J. Physiol. Gastrointest. Liver Physiol.</source>
<year>2015</year>
<volume>309</volume>
<fpage>443</fpage>
<lpage>454</lpage>
<pub-id pub-id-type="doi">10.1152/ajpgi.00400.2014</pub-id>
</element-citation>
</ref>
<ref id="B69-cancers-11-00533">
<label>69.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Hawinkels</surname>
<given-names>L.J.A.C.</given-names>
</name>
<name>
<surname>Paauwe</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Verspaget</surname>
<given-names>H.W.</given-names>
</name>
<name>
<surname>Wiercinska</surname>
<given-names>E.</given-names>
</name>
<name>
<surname>Van Der Zon</surname>
<given-names>J.M.</given-names>
</name>
<name>
<surname>Van Der Ploeg</surname>
<given-names>K.</given-names>
</name>
<name>
<surname>Koelink</surname>
<given-names>P.J.</given-names>
</name>
<name>
<surname>Lindeman</surname>
<given-names>J.H.N.</given-names>
</name>
<name>
<surname>Mesker</surname>
<given-names>W.</given-names>
</name>
<name>
<surname>Ten Dijke</surname>
<given-names>P.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Interaction with colon cancer cells hyperactivates TGF-β signaling in cancer-associated fibroblasts</article-title>
<source>Oncogene</source>
<year>2014</year>
<volume>33</volume>
<fpage>97</fpage>
<lpage>107</lpage>
<pub-id pub-id-type="doi">10.1038/onc.2012.536</pub-id>
<pub-id pub-id-type="pmid">23208491</pub-id>
</element-citation>
</ref>
<ref id="B70-cancers-11-00533">
<label>70.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Calon</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Espinet</surname>
<given-names>E.</given-names>
</name>
<name>
<surname>Palomo-Ponce</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Tauriello</surname>
<given-names>D.V.F.</given-names>
</name>
<name>
<surname>Iglesias</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Céspedes</surname>
<given-names>M.V.</given-names>
</name>
<name>
<surname>Sevillano</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Nadal</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>Jung</surname>
<given-names>P.</given-names>
</name>
<name>
<surname>Zhang</surname>
<given-names>X.H.F.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Dependency of Colorectal Cancer on a TGF-β-Driven Program in Stromal Cells for Metastasis Initiation</article-title>
<source>Cancer Cell</source>
<year>2012</year>
<volume>22</volume>
<fpage>571</fpage>
<lpage>584</lpage>
<pub-id pub-id-type="doi">10.1016/j.ccr.2012.08.013</pub-id>
<pub-id pub-id-type="pmid">23153532</pub-id>
</element-citation>
</ref>
<ref id="B71-cancers-11-00533">
<label>71.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>O’Connell</surname>
<given-names>J.T.</given-names>
</name>
<name>
<surname>Sugimoto</surname>
<given-names>H.</given-names>
</name>
<name>
<surname>Cooke</surname>
<given-names>V.G.</given-names>
</name>
<name>
<surname>MacDonald</surname>
<given-names>B.A.</given-names>
</name>
<name>
<surname>Mehta</surname>
<given-names>A.I.</given-names>
</name>
<name>
<surname>LeBleu</surname>
<given-names>V.S.</given-names>
</name>
<name>
<surname>Dewar</surname>
<given-names>R.</given-names>
</name>
<name>
<surname>Rocha</surname>
<given-names>R.M.</given-names>
</name>
<name>
<surname>Brentani</surname>
<given-names>R.R.</given-names>
</name>
<name>
<surname>Resnick</surname>
<given-names>M.B.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>VEGF-A and Tenascin-C produced by S100A4+ stromal cells are important for metastatic colonization</article-title>
<source>Proc. Natl. Acad. Sci. USA</source>
<year>2011</year>
<volume>108</volume>
<fpage>16002</fpage>
<lpage>16007</lpage>
<pub-id pub-id-type="doi">10.1073/pnas.1109493108</pub-id>
<pub-id pub-id-type="pmid">21911392</pub-id>
</element-citation>
</ref>
<ref id="B72-cancers-11-00533">
<label>72.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Bonnans</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>Chou</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Werb</surname>
<given-names>Z.</given-names>
</name>
</person-group>
<article-title>Remodelling the extracellular matrix in development and disease</article-title>
<source>Nat. Rev. Mol. Cell Biol.</source>
<year>2014</year>
<volume>15</volume>
<fpage>786</fpage>
<lpage>801</lpage>
<pub-id pub-id-type="doi">10.1038/nrm3904</pub-id>
<pub-id pub-id-type="pmid">25415508</pub-id>
</element-citation>
</ref>
<ref id="B73-cancers-11-00533">
<label>73.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Charoentong</surname>
<given-names>P.</given-names>
</name>
<name>
<surname>Finotello</surname>
<given-names>F.</given-names>
</name>
<name>
<surname>Angelova</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Mayer</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>Efremova</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Rieder</surname>
<given-names>D.</given-names>
</name>
<name>
<surname>Hackl</surname>
<given-names>H.</given-names>
</name>
<name>
<surname>Trajanoski</surname>
<given-names>Z.</given-names>
</name>
</person-group>
<article-title>Pan-cancer Immunogenomic Analyses Reveal Genotype-Immunophenotype Relationships and Predictors of Response to Checkpoint Blockade</article-title>
<source>Cell Rep.</source>
<year>2017</year>
<volume>18</volume>
<fpage>248</fpage>
<lpage>262</lpage>
<pub-id pub-id-type="doi">10.1016/j.celrep.2016.12.019</pub-id>
<pub-id pub-id-type="pmid">28052254</pub-id>
</element-citation>
</ref>
<ref id="B74-cancers-11-00533">
<label>74.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Halama</surname>
<given-names>N.</given-names>
</name>
<name>
<surname>Braun</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Kahlert</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>Spille</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Quack</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>Rahbari</surname>
<given-names>N.</given-names>
</name>
<name>
<surname>Koch</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Weitz</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Kloor</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Zoernig</surname>
<given-names>I.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Natural Killer Cells are Scarce in Colorectal Carcinoma Tissue Despite High Levels of Chemokines and Cytokines</article-title>
<source>Clin. Cancer Res.</source>
<year>2011</year>
<volume>17</volume>
<fpage>678</fpage>
<lpage>689</lpage>
<pub-id pub-id-type="doi">10.1158/1078-0432.CCR-10-2173</pub-id>
<pub-id pub-id-type="pmid">21325295</pub-id>
</element-citation>
</ref>
<ref id="B75-cancers-11-00533">
<label>75.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Vaupel</surname>
<given-names>P.</given-names>
</name>
<name>
<surname>Mayer</surname>
<given-names>A.</given-names>
</name>
</person-group>
<article-title>Hypoxia and anemia: Effects on tumor biology and treatment resistance</article-title>
<source>Transfus. Clin. Biol.</source>
<year>2005</year>
<volume>12</volume>
<fpage>5</fpage>
<lpage>10</lpage>
<pub-id pub-id-type="doi">10.1016/j.tracli.2004.11.005</pub-id>
<pub-id pub-id-type="pmid">15814285</pub-id>
</element-citation>
</ref>
<ref id="B76-cancers-11-00533">
<label>76.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Levy</surname>
<given-names>J.M.M.</given-names>
</name>
<name>
<surname>Towers</surname>
<given-names>C.G.</given-names>
</name>
<name>
<surname>Thorburn</surname>
<given-names>A.</given-names>
</name>
</person-group>
<article-title>Targeting Autophagy in Cancer Therapy</article-title>
<source>Nat. Rev. Cancer</source>
<year>2016</year>
<volume>17</volume>
<fpage>528</fpage>
<lpage>542</lpage>
<pub-id pub-id-type="doi">10.1038/nrc.2017.53</pub-id>
</element-citation>
</ref>
<ref id="B77-cancers-11-00533">
<label>77.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Durães</surname>
<given-names>F.V.</given-names>
</name>
<name>
<surname>Niven</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Dubrot</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Hugues</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Gannagé</surname>
<given-names>M.</given-names>
</name>
</person-group>
<article-title>Macroautophagy in Endogenous Processing of Self- and Pathogen-Derived Antigens for MHC Class II Presentation</article-title>
<source>Front. Immunol.</source>
<year>2015</year>
<volume>6</volume>
<fpage>79</fpage>
<pub-id pub-id-type="doi">10.3389/fimmu.2015.00459</pub-id>
<pub-id pub-id-type="pmid">25759693</pub-id>
</element-citation>
</ref>
<ref id="B78-cancers-11-00533">
<label>78.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Bernstein</surname>
<given-names>C.N.</given-names>
</name>
<name>
<surname>Blanchard</surname>
<given-names>J.F.</given-names>
</name>
<name>
<surname>Kliewer</surname>
<given-names>E.</given-names>
</name>
<name>
<surname>Wajda</surname>
<given-names>A.</given-names>
</name>
</person-group>
<article-title>Cancer risk in patients with inflammatory bowel disease: A population-based study</article-title>
<source>Cancer</source>
<year>2001</year>
<volume>91</volume>
<fpage>854</fpage>
<lpage>862</lpage>
<pub-id pub-id-type="doi">10.1002/1097-0142(20010215)91:4<854::AID-CNCR1073>3.0.CO;2-Z</pub-id>
<pub-id pub-id-type="pmid">11241255</pub-id>
</element-citation>
</ref>
<ref id="B79-cancers-11-00533">
<label>79.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Fukata</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Chen</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Vamadevan</surname>
<given-names>A.S.</given-names>
</name>
<name>
<surname>Cohen</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Breglio</surname>
<given-names>K.</given-names>
</name>
<name>
<surname>Krishnareddy</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Hsu</surname>
<given-names>D.</given-names>
</name>
<name>
<surname>Xu</surname>
<given-names>R.</given-names>
</name>
<name>
<surname>Harpaz</surname>
<given-names>N.</given-names>
</name>
<name>
<surname>Dannenberg</surname>
<given-names>A.J.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Toll-like receptor-4 promotes the development of colitis-associated colorectal tumors</article-title>
<source>Gastroenterology</source>
<year>2007</year>
<volume>133</volume>
<fpage>1869</fpage>
<lpage>1881</lpage>
<pub-id pub-id-type="doi">10.1053/j.gastro.2007.09.008</pub-id>
<pub-id pub-id-type="pmid">18054559</pub-id>
</element-citation>
</ref>
<ref id="B80-cancers-11-00533">
<label>80.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Chaturvedi</surname>
<given-names>M.M.</given-names>
</name>
<name>
<surname>Sung</surname>
<given-names>B.</given-names>
</name>
<name>
<surname>Yadav</surname>
<given-names>V.R.</given-names>
</name>
<name>
<surname>Kannappan</surname>
<given-names>R.</given-names>
</name>
<name>
<surname>Aggarwal</surname>
<given-names>B.B.</given-names>
</name>
</person-group>
<article-title>NF-κB addiction and its role in cancer: One size does not fit all</article-title>
<source>Oncogene</source>
<year>2011</year>
<volume>30</volume>
<fpage>1615</fpage>
<lpage>1630</lpage>
<pub-id pub-id-type="doi">10.1038/onc.2010.566</pub-id>
<pub-id pub-id-type="pmid">21170083</pub-id>
</element-citation>
</ref>
<ref id="B81-cancers-11-00533">
<label>81.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Wu</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Yao</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Xie</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Liu</surname>
<given-names>Z.</given-names>
</name>
<name>
<surname>Zhou</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Pan</surname>
<given-names>H.</given-names>
</name>
<name>
<surname>Han</surname>
<given-names>W.</given-names>
</name>
</person-group>
<article-title>The role of autophagy in colitis-associated colorectal cancer</article-title>
<source>Signal Transduct. Target. Ther.</source>
<year>2018</year>
<volume>3</volume>
<fpage>31</fpage>
<pub-id pub-id-type="doi">10.1038/s41392-018-0031-8</pub-id>
<pub-id pub-id-type="pmid">30510778</pub-id>
</element-citation>
</ref>
<ref id="B82-cancers-11-00533">
<label>82.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Ning</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>Li</surname>
<given-names>Y.-Y.</given-names>
</name>
<name>
<surname>Wang</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Han</surname>
<given-names>G.-C.</given-names>
</name>
<name>
<surname>Wang</surname>
<given-names>R.-X.</given-names>
</name>
<name>
<surname>Xiao</surname>
<given-names>H.</given-names>
</name>
<name>
<surname>Li</surname>
<given-names>X.-Y.</given-names>
</name>
<name>
<surname>Hou</surname>
<given-names>C.-M.</given-names>
</name>
<name>
<surname>Ma</surname>
<given-names>Y.-F.</given-names>
</name>
<name>
<surname>Sheng</surname>
<given-names>D.-S.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Complement activation promotes colitis-associated carcinogenesis through activating intestinal IL-1β/IL-17A axis</article-title>
<source>Mucosal Immunol.</source>
<year>2015</year>
<volume>8</volume>
<fpage>1275</fpage>
<lpage>1284</lpage>
<pub-id pub-id-type="doi">10.1038/mi.2015.18</pub-id>
<pub-id pub-id-type="pmid">25736459</pub-id>
</element-citation>
</ref>
<ref id="B83-cancers-11-00533">
<label>83.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Olguín</surname>
<given-names>J.E.</given-names>
</name>
<name>
<surname>Medina-Andrade</surname>
<given-names>I.</given-names>
</name>
<name>
<surname>Molina</surname>
<given-names>E.</given-names>
</name>
<name>
<surname>Vázquez</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Pacheco-Fernández</surname>
<given-names>T.</given-names>
</name>
<name>
<surname>Saavedra</surname>
<given-names>R.</given-names>
</name>
<name>
<surname>Pérez-Plasencia</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>Chirino</surname>
<given-names>Y.I.</given-names>
</name>
<name>
<surname>Vaca-Paniagua</surname>
<given-names>F.</given-names>
</name>
<name>
<surname>Arias-Romero</surname>
<given-names>L.E.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Early and partial reduction in CD4+Foxp3+ regulatory T cells during colitis-associated colon cancer induces CD4+ and CD8+ T cell activation inhibiting tumorigenesis</article-title>
<source>J. Cancer</source>
<year>2018</year>
<volume>9</volume>
<fpage>239</fpage>
<lpage>249</lpage>
<pub-id pub-id-type="doi">10.7150/jca.21336</pub-id>
<pub-id pub-id-type="pmid">29344269</pub-id>
</element-citation>
</ref>
<ref id="B84-cancers-11-00533">
<label>84.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Ngabire</surname>
<given-names>D.</given-names>
</name>
<name>
<surname>Kim</surname>
<given-names>G.-D.</given-names>
</name>
</person-group>
<article-title>Autophagy and Inflammatory Response in the Tumor Microenvironment</article-title>
<source>Int. J. Mol. Sci.</source>
<year>2017</year>
<volume>18</volume>
<elocation-id>2016</elocation-id>
<pub-id pub-id-type="doi">10.3390/ijms18092016</pub-id>
</element-citation>
</ref>
<ref id="B85-cancers-11-00533">
<label>85.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Bellot</surname>
<given-names>G.</given-names>
</name>
<name>
<surname>Garcia-Medina</surname>
<given-names>R.</given-names>
</name>
<name>
<surname>Gounon</surname>
<given-names>P.</given-names>
</name>
<name>
<surname>Chiche</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Roux</surname>
<given-names>D.</given-names>
</name>
<name>
<surname>Pouysségur</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Mazure</surname>
<given-names>N.M.</given-names>
</name>
</person-group>
<article-title>Hypoxia-Induced Autophagy Is Mediated through Hypoxia-Inducible Factor Induction of BNIP3 and BNIP3L via Their BH3 Domains</article-title>
<source>Mol. Cell. Biol.</source>
<year>2009</year>
<volume>29</volume>
<fpage>2570</fpage>
<lpage>2581</lpage>
<pub-id pub-id-type="doi">10.1128/MCB.00166-09</pub-id>
<pub-id pub-id-type="pmid">19273585</pub-id>
</element-citation>
</ref>
<ref id="B86-cancers-11-00533">
<label>86.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Lin</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Yao</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Zhuang</surname>
<given-names>L.</given-names>
</name>
<name>
<surname>Wang</surname>
<given-names>D.</given-names>
</name>
<name>
<surname>Han</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Lam</surname>
<given-names>E.W.</given-names>
</name>
<name>
<surname>Network</surname>
<given-names>T.R.</given-names>
</name>
<name>
<surname>Gan</surname>
<given-names>B.</given-names>
</name>
</person-group>
<article-title>The Foxo-BNIP3 axis exerts a unique regulation of mTORC1 and cell survival under energy stress</article-title>
<source>Oncogene</source>
<year>2014</year>
<volume>33</volume>
<fpage>3183</fpage>
<lpage>3194</lpage>
<pub-id pub-id-type="doi">10.1038/onc.2013.273</pub-id>
<pub-id pub-id-type="pmid">23851496</pub-id>
</element-citation>
</ref>
<ref id="B87-cancers-11-00533">
<label>87.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Li</surname>
<given-names>Y.-Y.</given-names>
</name>
<name>
<surname>Feun</surname>
<given-names>L.G.</given-names>
</name>
<name>
<surname>Thongkum</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Tu</surname>
<given-names>C.-H.</given-names>
</name>
<name>
<surname>Chen</surname>
<given-names>S.-M.</given-names>
</name>
<name>
<surname>Wangpaichitr</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Wu</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>Kuo</surname>
<given-names>M.T.</given-names>
</name>
<name>
<surname>Savaraj</surname>
<given-names>N.</given-names>
</name>
</person-group>
<article-title>Autophagic Mechanism in Anti-Cancer Immunity: Its Pros and Cons for Cancer Therapy</article-title>
<source>Int. J. Mol. Sci.</source>
<year>2017</year>
<volume>18</volume>
<elocation-id>1297</elocation-id>
<pub-id pub-id-type="doi">10.3390/ijms18061297</pub-id>
</element-citation>
</ref>
<ref id="B88-cancers-11-00533">
<label>88.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Çam</surname>
<given-names>H.</given-names>
</name>
<name>
<surname>Easton</surname>
<given-names>J.B.</given-names>
</name>
<name>
<surname>High</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Houghton</surname>
<given-names>P.J.</given-names>
</name>
</person-group>
<article-title>mTORC1 signaling under hypoxic conditions is controlled by ATM-dependent phosphorylation of HIF-1α</article-title>
<source>Mol. Cell</source>
<year>2010</year>
<volume>40</volume>
<fpage>509</fpage>
<lpage>520</lpage>
<pub-id pub-id-type="doi">10.1016/j.molcel.2010.10.030</pub-id>
<pub-id pub-id-type="pmid">21095582</pub-id>
</element-citation>
</ref>
<ref id="B89-cancers-11-00533">
<label>89.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Valečka</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Almeida</surname>
<given-names>C.R.</given-names>
</name>
<name>
<surname>Su</surname>
<given-names>B.</given-names>
</name>
<name>
<surname>Pierre</surname>
<given-names>P.</given-names>
</name>
<name>
<surname>Gatti</surname>
<given-names>E.</given-names>
</name>
</person-group>
<article-title>Autophagy and MHC-restricted antigen presentation</article-title>
<source>Mol. Immunol.</source>
<year>2018</year>
<volume>99</volume>
<fpage>163</fpage>
<lpage>170</lpage>
<pub-id pub-id-type="doi">10.1016/j.molimm.2018.05.009</pub-id>
<pub-id pub-id-type="pmid">29787980</pub-id>
</element-citation>
</ref>
<ref id="B90-cancers-11-00533">
<label>90.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Keller</surname>
<given-names>C.W.</given-names>
</name>
<name>
<surname>Loi</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Ligeon</surname>
<given-names>L.-A.</given-names>
</name>
<name>
<surname>Gannage</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Lunemann</surname>
<given-names>J.D.</given-names>
</name>
<name>
<surname>Münz</surname>
<given-names>C.</given-names>
</name>
</person-group>
<article-title>Endocytosis regulation by autophagy proteins in MHC restricted antigen presentation</article-title>
<source>Curr. Opin. Immunol.</source>
<year>2018</year>
<volume>52</volume>
<fpage>68</fpage>
<lpage>73</lpage>
<pub-id pub-id-type="doi">10.1016/j.coi.2018.04.014</pub-id>
<pub-id pub-id-type="pmid">29719275</pub-id>
</element-citation>
</ref>
<ref id="B91-cancers-11-00533">
<label>91.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Folkerts</surname>
<given-names>H.</given-names>
</name>
<name>
<surname>Hilgendorf</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Vellenga</surname>
<given-names>E.</given-names>
</name>
<name>
<surname>Bremer</surname>
<given-names>E.</given-names>
</name>
<name>
<surname>Wiersma</surname>
<given-names>V.R.</given-names>
</name>
</person-group>
<article-title>The multifaceted role of autophagy in cancer and the microenvironment</article-title>
<source>Med. Res. Rev.</source>
<year>2019</year>
<volume>39</volume>
<fpage>517</fpage>
<lpage>560</lpage>
<pub-id pub-id-type="doi">10.1002/med.21531</pub-id>
<pub-id pub-id-type="pmid">30302772</pub-id>
</element-citation>
</ref>
<ref id="B92-cancers-11-00533">
<label>92.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Parekh</surname>
<given-names>V.V.</given-names>
</name>
<name>
<surname>Wu</surname>
<given-names>L.</given-names>
</name>
<name>
<surname>Boyd</surname>
<given-names>K.L.</given-names>
</name>
<name>
<surname>Williams</surname>
<given-names>J.A.</given-names>
</name>
<name>
<surname>Gaddy</surname>
<given-names>J.A.</given-names>
</name>
<name>
<surname>Olivares-Villagómez</surname>
<given-names>D.</given-names>
</name>
<name>
<surname>Cover</surname>
<given-names>T.L.</given-names>
</name>
<name>
<surname>Zong</surname>
<given-names>W.-X.</given-names>
</name>
<name>
<surname>Zhang</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Van Kaer</surname>
<given-names>L.</given-names>
</name>
</person-group>
<article-title>Impaired autophagy, defective T cell homeostasis and a wasting syndrome in mice with a T cell-specific deletion of Vps34</article-title>
<source>J. Immunol.</source>
<year>2013</year>
<volume>190</volume>
<fpage>5086</fpage>
<lpage>5101</lpage>
<pub-id pub-id-type="doi">10.4049/jimmunol.1202071</pub-id>
<pub-id pub-id-type="pmid">23596309</pub-id>
</element-citation>
</ref>
<ref id="B93-cancers-11-00533">
<label>93.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Loi</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Müller</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Steinbach</surname>
<given-names>K.</given-names>
</name>
<name>
<surname>Niven</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Barreira da Silva</surname>
<given-names>R.</given-names>
</name>
<name>
<surname>Paul</surname>
<given-names>P.</given-names>
</name>
<name>
<surname>Ligeon</surname>
<given-names>L.A.</given-names>
</name>
<name>
<surname>Caruso</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Albrecht</surname>
<given-names>R.A.</given-names>
</name>
<name>
<surname>Becker</surname>
<given-names>A.C.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Macroautophagy Proteins Control MHC Class I Levels on Dendritic Cells and Shape Anti-viral CD8+ T Cell Responses</article-title>
<source>Cell Rep.</source>
<year>2016</year>
<volume>15</volume>
<fpage>1076</fpage>
<lpage>1087</lpage>
<pub-id pub-id-type="doi">10.1016/j.celrep.2016.04.002</pub-id>
<pub-id pub-id-type="pmid">27117419</pub-id>
</element-citation>
</ref>
<ref id="B94-cancers-11-00533">
<label>94.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Germic</surname>
<given-names>N.</given-names>
</name>
<name>
<surname>Frangez</surname>
<given-names>Z.</given-names>
</name>
<name>
<surname>Yousefi</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Simon</surname>
<given-names>H.-U.</given-names>
</name>
</person-group>
<article-title>Regulation of the innate immune system by autophagy: Monocytes, macrophages, dendritic cells and antigen presentation</article-title>
<source>Cell Death Differ.</source>
<year>2019</year>
<volume>26</volume>
<fpage>715</fpage>
<lpage>727</lpage>
<pub-id pub-id-type="doi">10.1038/s41418-019-0297-6</pub-id>
<pub-id pub-id-type="pmid">30737475</pub-id>
</element-citation>
</ref>
<ref id="B95-cancers-11-00533">
<label>95.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Münz</surname>
<given-names>C.</given-names>
</name>
</person-group>
<article-title>Autophagy proteins in antigen processing for presentation on MHC molecules</article-title>
<source>Immunol. Rev.</source>
<year>2016</year>
<volume>272</volume>
<fpage>17</fpage>
<lpage>27</lpage>
<pub-id pub-id-type="doi">10.1111/imr.12422</pub-id>
<pub-id pub-id-type="pmid">27319339</pub-id>
</element-citation>
</ref>
<ref id="B96-cancers-11-00533">
<label>96.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Mintern</surname>
<given-names>J.D.</given-names>
</name>
<name>
<surname>Macri</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>Chin</surname>
<given-names>W.J.</given-names>
</name>
<name>
<surname>Panozza</surname>
<given-names>S.E.</given-names>
</name>
<name>
<surname>Segura</surname>
<given-names>E.</given-names>
</name>
<name>
<surname>Patterson</surname>
<given-names>N.L.</given-names>
</name>
<name>
<surname>Zeller</surname>
<given-names>P.</given-names>
</name>
<name>
<surname>Bourges</surname>
<given-names>D.</given-names>
</name>
<name>
<surname>Bedoui</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>McMillan</surname>
<given-names>P.J.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Differential use of autophagy by primary dendritic cells specialized in cross-presentation</article-title>
<source>Autophagy</source>
<year>2015</year>
<volume>11</volume>
<fpage>906</fpage>
<lpage>917</lpage>
<pub-id pub-id-type="doi">10.1080/15548627.2015.1045178</pub-id>
<pub-id pub-id-type="pmid">25950899</pub-id>
</element-citation>
</ref>
<ref id="B97-cancers-11-00533">
<label>97.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Loi</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Ligeon</surname>
<given-names>L.-A.</given-names>
</name>
<name>
<surname>Münz</surname>
<given-names>C.</given-names>
</name>
</person-group>
<article-title>MHC Class I Internalization via Autophagy Proteins</article-title>
<source>Methods Mol. Biol.</source>
<year>2019</year>
<volume>1880</volume>
<fpage>455</fpage>
<lpage>477</lpage>
<pub-id pub-id-type="pmid">30610715</pub-id>
</element-citation>
</ref>
<ref id="B98-cancers-11-00533">
<label>98.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Thiele</surname>
<given-names>F.</given-names>
</name>
<name>
<surname>Tao</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Zhang</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Muschaweckh</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Zollmann</surname>
<given-names>T.</given-names>
</name>
<name>
<surname>Protzer</surname>
<given-names>U.</given-names>
</name>
<name>
<surname>Abele</surname>
<given-names>R.</given-names>
</name>
<name>
<surname>Drexler</surname>
<given-names>I.</given-names>
</name>
</person-group>
<article-title>Modified vaccinia virus Ankara-infected dendritic cells present CD4+ T-cell epitopes by endogenous major histocompatibility complex class II presentation pathways</article-title>
<source>J. Virol.</source>
<year>2015</year>
<volume>89</volume>
<fpage>2698</fpage>
<lpage>2709</lpage>
<pub-id pub-id-type="doi">10.1128/JVI.03244-14</pub-id>
<pub-id pub-id-type="pmid">25520512</pub-id>
</element-citation>
</ref>
<ref id="B99-cancers-11-00533">
<label>99.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Bronietzki</surname>
<given-names>A.W.</given-names>
</name>
<name>
<surname>Schuster</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Schmitz</surname>
<given-names>I.</given-names>
</name>
</person-group>
<article-title>Autophagy in T-cell development, activation and differentiation</article-title>
<source>Immunol. Cell Biol.</source>
<year>2015</year>
<volume>93</volume>
<fpage>25</fpage>
<lpage>34</lpage>
<pub-id pub-id-type="doi">10.1038/icb.2014.81</pub-id>
<pub-id pub-id-type="pmid">25287445</pub-id>
</element-citation>
</ref>
<ref id="B100-cancers-11-00533">
<label>100.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Nedjic</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Aichinger</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Mizushima</surname>
<given-names>N.</given-names>
</name>
<name>
<surname>Klein</surname>
<given-names>L.</given-names>
</name>
</person-group>
<article-title>Macroautophagy, endogenous MHC II loading and T cell selection: The benefits of breaking the rules</article-title>
<source>Curr. Opin. Immunol.</source>
<year>2009</year>
<volume>21</volume>
<fpage>92</fpage>
<lpage>97</lpage>
<pub-id pub-id-type="doi">10.1016/j.coi.2009.01.013</pub-id>
<pub-id pub-id-type="pmid">19246181</pub-id>
</element-citation>
</ref>
<ref id="B101-cancers-11-00533">
<label>101.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Khan</surname>
<given-names>N.</given-names>
</name>
<name>
<surname>Vidyarthi</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Pahari</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Negi</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Aqdas</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Nadeem</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Agnihotri</surname>
<given-names>T.</given-names>
</name>
<name>
<surname>Agrewala</surname>
<given-names>J.N.</given-names>
</name>
</person-group>
<article-title>Signaling through NOD-2 and TLR-4 Bolsters the T cell Priming Capability of Dendritic cells by Inducing Autophagy</article-title>
<source>Sci. Rep.</source>
<year>2016</year>
<volume>6</volume>
<fpage>19084</fpage>
<pub-id pub-id-type="doi">10.1038/srep19084</pub-id>
<pub-id pub-id-type="pmid">26754352</pub-id>
</element-citation>
</ref>
<ref id="B102-cancers-11-00533">
<label>102.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Tey</surname>
<given-names>S.-K.</given-names>
</name>
<name>
<surname>Khanna</surname>
<given-names>R.</given-names>
</name>
</person-group>
<article-title>Autophagy mediates transporter associated with antigen processing-independent presentation of viral epitopes through MHC class I pathway</article-title>
<source>Blood</source>
<year>2012</year>
<volume>120</volume>
<fpage>994</fpage>
<lpage>1004</lpage>
<pub-id pub-id-type="doi">10.1182/blood-2012-01-402404</pub-id>
<pub-id pub-id-type="pmid">22723550</pub-id>
</element-citation>
</ref>
<ref id="B103-cancers-11-00533">
<label>103.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Lee</surname>
<given-names>H.K.</given-names>
</name>
<name>
<surname>Mattei</surname>
<given-names>L.M.</given-names>
</name>
<name>
<surname>Steinberg</surname>
<given-names>B.E.</given-names>
</name>
<name>
<surname>Alberts</surname>
<given-names>P.</given-names>
</name>
<name>
<surname>Lee</surname>
<given-names>Y.H.</given-names>
</name>
<name>
<surname>Chervonsky</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Mizushima</surname>
<given-names>N.</given-names>
</name>
<name>
<surname>Grinstein</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Iwasaki</surname>
<given-names>A.</given-names>
</name>
</person-group>
<article-title>In Vivo Requirement for Atg5 in Antigen Presentation by Dendritic Cells</article-title>
<source>Immunity</source>
<year>2010</year>
<volume>32</volume>
<fpage>227</fpage>
<lpage>239</lpage>
<pub-id pub-id-type="doi">10.1016/j.immuni.2009.12.006</pub-id>
<pub-id pub-id-type="pmid">20171125</pub-id>
</element-citation>
</ref>
<ref id="B104-cancers-11-00533">
<label>104.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Galdiero</surname>
<given-names>M.R.</given-names>
</name>
<name>
<surname>Bonavita</surname>
<given-names>E.</given-names>
</name>
<name>
<surname>Barajon</surname>
<given-names>I.</given-names>
</name>
<name>
<surname>Garlanda</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>Mantovani</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Jaillon</surname>
<given-names>S.</given-names>
</name>
</person-group>
<article-title>Tumor associated macrophages and neutrophils in cancer</article-title>
<source>Immunobiology</source>
<year>2013</year>
<volume>218</volume>
<fpage>1402</fpage>
<lpage>1410</lpage>
<pub-id pub-id-type="doi">10.1016/j.imbio.2013.06.003</pub-id>
<pub-id pub-id-type="pmid">23891329</pub-id>
</element-citation>
</ref>
<ref id="B105-cancers-11-00533">
<label>105.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Yang</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Liu</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Shao</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Qin</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Ji</surname>
<given-names>Q.</given-names>
</name>
<name>
<surname>Zhang</surname>
<given-names>X.</given-names>
</name>
<name>
<surname>Du</surname>
<given-names>J.</given-names>
</name>
</person-group>
<article-title>Cathepsin S-mediated autophagic flux in tumor-associated macrophages accelerate tumor development by promoting M2 polarization</article-title>
<source>Mol. Cancer</source>
<year>2014</year>
<volume>13</volume>
<fpage>43</fpage>
<pub-id pub-id-type="doi">10.1186/1476-4598-13-43</pub-id>
<pub-id pub-id-type="pmid">24580730</pub-id>
</element-citation>
</ref>
<ref id="B106-cancers-11-00533">
<label>106.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Shao</surname>
<given-names>L.-N.</given-names>
</name>
<name>
<surname>Xing</surname>
<given-names>C.-G.</given-names>
</name>
<name>
<surname>Yang</surname>
<given-names>X.-D.</given-names>
</name>
<name>
<surname>Young</surname>
<given-names>W.</given-names>
</name>
<name>
<surname>Zhu</surname>
<given-names>B.-S.</given-names>
</name>
<name>
<surname>Cao</surname>
<given-names>J.-P.</given-names>
</name>
</person-group>
<article-title>Effects of autophagy regulation of tumor-associated macrophages on radiosensitivity of colorectal cancer cells</article-title>
<source>Mol. Med. Rep.</source>
<year>2016</year>
<volume>13</volume>
<fpage>2661</fpage>
<lpage>2670</lpage>
<pub-id pub-id-type="doi">10.3892/mmr.2016.4820</pub-id>
<pub-id pub-id-type="pmid">26821367</pub-id>
</element-citation>
</ref>
<ref id="B107-cancers-11-00533">
<label>107.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Viry</surname>
<given-names>E.</given-names>
</name>
<name>
<surname>Baginska</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Berchem</surname>
<given-names>G.</given-names>
</name>
<name>
<surname>Noman</surname>
<given-names>M.Z.</given-names>
</name>
<name>
<surname>Medves</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Chouaib</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Janji</surname>
<given-names>B.</given-names>
</name>
</person-group>
<article-title>Autophagic degradation of GZMB/granzyme B: A new mechanism of hypoxic tumor cell escape from natural killer cell-mediated lysis</article-title>
<source>Autophagy</source>
<year>2014</year>
<volume>10</volume>
<fpage>173</fpage>
<lpage>175</lpage>
<pub-id pub-id-type="doi">10.4161/auto.26924</pub-id>
<pub-id pub-id-type="pmid">24248158</pub-id>
</element-citation>
</ref>
<ref id="B108-cancers-11-00533">
<label>108.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Shibutani</surname>
<given-names>S.T.</given-names>
</name>
<name>
<surname>Saitoh</surname>
<given-names>T.</given-names>
</name>
<name>
<surname>Nowag</surname>
<given-names>H.</given-names>
</name>
<name>
<surname>Münz</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>Yoshimori</surname>
<given-names>T.</given-names>
</name>
</person-group>
<article-title>Autophagy and autophagy-related proteins in the immune system</article-title>
<source>Nat. Immunol.</source>
<year>2015</year>
<volume>16</volume>
<fpage>1014</fpage>
<lpage>1024</lpage>
<pub-id pub-id-type="doi">10.1038/ni.3273</pub-id>
<pub-id pub-id-type="pmid">26382870</pub-id>
</element-citation>
</ref>
<ref id="B109-cancers-11-00533">
<label>109.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Oral</surname>
<given-names>O.</given-names>
</name>
<name>
<surname>Yedier</surname>
<given-names>O.</given-names>
</name>
<name>
<surname>Kilic</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Gozuacik</surname>
<given-names>D.</given-names>
</name>
</person-group>
<article-title>Involvement of autophagy in T cellbiology</article-title>
<source>Histol. Histopathol.</source>
<year>2017</year>
<volume>32</volume>
<fpage>11</fpage>
<lpage>20</lpage>
<pub-id pub-id-type="pmid">27225864</pub-id>
</element-citation>
</ref>
<ref id="B110-cancers-11-00533">
<label>110.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Willinger</surname>
<given-names>T.</given-names>
</name>
<name>
<surname>Flavell</surname>
<given-names>R.A.</given-names>
</name>
</person-group>
<article-title>Canonical autophagy dependent on the class III phosphoinositide-3 kinase Vps34 is required for naive T-cell homeostasis</article-title>
<source>Proc. Natl. Acad. Sci. USA</source>
<year>2012</year>
<volume>109</volume>
<fpage>8670</fpage>
<lpage>8675</lpage>
<pub-id pub-id-type="doi">10.1073/pnas.1205305109</pub-id>
<pub-id pub-id-type="pmid">22592798</pub-id>
</element-citation>
</ref>
<ref id="B111-cancers-11-00533">
<label>111.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Xu</surname>
<given-names>X.</given-names>
</name>
<name>
<surname>Araki</surname>
<given-names>K.</given-names>
</name>
<name>
<surname>Li</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Han</surname>
<given-names>J.H.</given-names>
</name>
<name>
<surname>Ye</surname>
<given-names>L.</given-names>
</name>
<name>
<surname>Tan</surname>
<given-names>W.G.</given-names>
</name>
<name>
<surname>Konieczny</surname>
<given-names>B.T.</given-names>
</name>
<name>
<surname>Bruinsma</surname>
<given-names>M.W.</given-names>
</name>
<name>
<surname>Martinez</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Pearce</surname>
<given-names>E.L.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Autophagy is essential for effector CD8(+) T cell survival and memory formation</article-title>
<source>Nat. Immunol.</source>
<year>2014</year>
<volume>15</volume>
<fpage>1152</fpage>
<lpage>1161</lpage>
<pub-id pub-id-type="doi">10.1038/ni.3025</pub-id>
<pub-id pub-id-type="pmid">25362489</pub-id>
</element-citation>
</ref>
<ref id="B112-cancers-11-00533">
<label>112.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Reed</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Morris</surname>
<given-names>S.H.</given-names>
</name>
<name>
<surname>Jang</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Mukherjee</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Yue</surname>
<given-names>Z.</given-names>
</name>
<name>
<surname>Lukacs</surname>
<given-names>N.W.</given-names>
</name>
</person-group>
<article-title>Autophagy-inducing protein beclin-1 in dendritic cells regulates CD4 T cell responses and disease severity during respiratory syncytial virus infection</article-title>
<source>J. Immunol.</source>
<year>2013</year>
<volume>191</volume>
<fpage>2526</fpage>
<lpage>2537</lpage>
<pub-id pub-id-type="doi">10.4049/jimmunol.1300477</pub-id>
<pub-id pub-id-type="pmid">23894198</pub-id>
</element-citation>
</ref>
<ref id="B113-cancers-11-00533">
<label>113.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Henson</surname>
<given-names>S.M.</given-names>
</name>
<name>
<surname>Lanna</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Riddel</surname>
<given-names>N.E.</given-names>
</name>
<name>
<surname>Franzese</surname>
<given-names>O.</given-names>
</name>
<name>
<surname>Macaulay</surname>
<given-names>R.</given-names>
</name>
<name>
<surname>Griffiths</surname>
<given-names>S.J.</given-names>
</name>
<name>
<surname>Puleston</surname>
<given-names>D.J.</given-names>
</name>
<name>
<surname>Watson</surname>
<given-names>A.S.</given-names>
</name>
<name>
<surname>Simon</surname>
<given-names>A.K.</given-names>
</name>
<name>
<surname>Tooze</surname>
<given-names>S.A.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>P38 signaling inhibits mTORC1-independent autophagy in senescent human CD8+ T cells</article-title>
<source>J. Clin. Investig.</source>
<year>2014</year>
<volume>124</volume>
<fpage>4004</fpage>
<lpage>4016</lpage>
<pub-id pub-id-type="doi">10.1172/JCI75051</pub-id>
<pub-id pub-id-type="pmid">25083993</pub-id>
</element-citation>
</ref>
<ref id="B114-cancers-11-00533">
<label>114.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Venook</surname>
<given-names>A.</given-names>
</name>
</person-group>
<article-title>Critical Evaluation of Current Treatments in Metastatic Colorectal Cancer</article-title>
<source>Oncologist</source>
<year>2005</year>
<volume>10</volume>
<fpage>250</fpage>
<lpage>261</lpage>
<pub-id pub-id-type="doi">10.1634/theoncologist.10-4-250</pub-id>
<pub-id pub-id-type="pmid">15821245</pub-id>
</element-citation>
</ref>
<ref id="B115-cancers-11-00533">
<label>115.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Le</surname>
<given-names>D.T.</given-names>
</name>
<name>
<surname>Durham</surname>
<given-names>J.N.</given-names>
</name>
<name>
<surname>Smith</surname>
<given-names>K.N.</given-names>
</name>
<name>
<surname>Wang</surname>
<given-names>H.</given-names>
</name>
<name>
<surname>Bartlett</surname>
<given-names>B.R.</given-names>
</name>
<name>
<surname>Aulakh</surname>
<given-names>L.K.</given-names>
</name>
<name>
<surname>Lu</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Kemberling</surname>
<given-names>H.</given-names>
</name>
<name>
<surname>Wilt</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>Luber</surname>
<given-names>B.S.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Mismatch-repair deficiency predicts response of solid tumors to PD-1 blockade</article-title>
<source>Science</source>
<year>2017</year>
<volume>357</volume>
<fpage>409</fpage>
<lpage>413</lpage>
<pub-id pub-id-type="doi">10.1126/science.aan6733</pub-id>
<pub-id pub-id-type="pmid">28596308</pub-id>
</element-citation>
</ref>
<ref id="B116-cancers-11-00533">
<label>116.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Zhou</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>Zhang</surname>
<given-names>J.</given-names>
</name>
</person-group>
<article-title>Immunotherapy-based combination strategies for treatment of gastrointestinal cancers: Current status and future prospects</article-title>
<source>Front. Med.</source>
<year>2019</year>
<volume>13</volume>
<fpage>12</fpage>
<lpage>23</lpage>
<pub-id pub-id-type="doi">10.1007/s11684-019-0685-9</pub-id>
<pub-id pub-id-type="pmid">30796606</pub-id>
</element-citation>
</ref>
<ref id="B117-cancers-11-00533">
<label>117.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Arora</surname>
<given-names>S.P.</given-names>
</name>
<name>
<surname>Mahalingam</surname>
<given-names>D.</given-names>
</name>
</person-group>
<article-title>Immunotherapy in colorectal cancer: For the select few or all?</article-title>
<source>J. Gastrointest. Oncol.</source>
<year>2018</year>
<volume>9</volume>
<fpage>170</fpage>
<lpage>179</lpage>
<pub-id pub-id-type="doi">10.21037/jgo.2017.06.10</pub-id>
<pub-id pub-id-type="pmid">29564183</pub-id>
</element-citation>
</ref>
<ref id="B118-cancers-11-00533">
<label>118.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Lim</surname>
<given-names>S.-O.</given-names>
</name>
<name>
<surname>Li</surname>
<given-names>C.-W.</given-names>
</name>
<name>
<surname>Xia</surname>
<given-names>W.</given-names>
</name>
<name>
<surname>Cha</surname>
<given-names>J.-H.</given-names>
</name>
<name>
<surname>Chan</surname>
<given-names>L.-C.</given-names>
</name>
<name>
<surname>Wu</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Chang</surname>
<given-names>S.-S.</given-names>
</name>
<name>
<surname>Lin</surname>
<given-names>W.-C.</given-names>
</name>
<name>
<surname>Hsu</surname>
<given-names>J.-M.</given-names>
</name>
<name>
<surname>Hsu</surname>
<given-names>Y.-H.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Deubiquitination and Stabilization of PD-L1 by CSN5</article-title>
<source>Cancer Cell</source>
<year>2016</year>
<volume>30</volume>
<fpage>925</fpage>
<lpage>939</lpage>
<pub-id pub-id-type="doi">10.1016/j.ccell.2016.10.010</pub-id>
<pub-id pub-id-type="pmid">27866850</pub-id>
</element-citation>
</ref>
<ref id="B119-cancers-11-00533">
<label>119.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Juneja</surname>
<given-names>V.R.</given-names>
</name>
<name>
<surname>McGuire</surname>
<given-names>K.A.</given-names>
</name>
<name>
<surname>Manguso</surname>
<given-names>R.T.</given-names>
</name>
<name>
<surname>LaFleur</surname>
<given-names>M.W.</given-names>
</name>
<name>
<surname>Collins</surname>
<given-names>N.</given-names>
</name>
<name>
<surname>Haining</surname>
<given-names>W.N.</given-names>
</name>
<name>
<surname>Freeman</surname>
<given-names>G.J.</given-names>
</name>
<name>
<surname>Sharpe</surname>
<given-names>A.H.</given-names>
</name>
</person-group>
<article-title>PD-L1 on tumor cells is sufficient for immune evasion in immunogenic tumors and inhibits CD8 T cell cytotoxicity</article-title>
<source>J. Exp. Med.</source>
<year>2017</year>
<volume>214</volume>
<fpage>895</fpage>
<lpage>904</lpage>
<pub-id pub-id-type="doi">10.1084/jem.20160801</pub-id>
<pub-id pub-id-type="pmid">28302645</pub-id>
</element-citation>
</ref>
<ref id="B120-cancers-11-00533">
<label>120.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Yaghoubi</surname>
<given-names>N.</given-names>
</name>
<name>
<surname>Soltani</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Ghazvini</surname>
<given-names>K.</given-names>
</name>
<name>
<surname>Hassanian</surname>
<given-names>S.M.</given-names>
</name>
<name>
<surname>Hashemy</surname>
<given-names>S.I.</given-names>
</name>
</person-group>
<article-title>PD-1/ PD-L1 blockade as a novel treatment for colorectal cancer</article-title>
<source>Biomed. Pharmacother.</source>
<year>2019</year>
<volume>110</volume>
<fpage>312</fpage>
<lpage>318</lpage>
<pub-id pub-id-type="doi">10.1016/j.biopha.2018.11.105</pub-id>
<pub-id pub-id-type="pmid">30522017</pub-id>
</element-citation>
</ref>
<ref id="B121-cancers-11-00533">
<label>121.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Bin Wang</surname>
<given-names>H.</given-names>
</name>
<name>
<surname>Yao</surname>
<given-names>H.</given-names>
</name>
<name>
<surname>Li</surname>
<given-names>C.S.</given-names>
</name>
<name>
<surname>Liang</surname>
<given-names>L.X.</given-names>
</name>
<name>
<surname>Zhang</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Chen</surname>
<given-names>Y.X.</given-names>
</name>
<name>
<surname>Fang</surname>
<given-names>J.-Y.</given-names>
</name>
<name>
<surname>Xu</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Fang</surname>
<given-names>J.</given-names>
</name>
</person-group>
<article-title>Rise of PD-L1 expression during metastasis of colorectal cancer: Implications for immunotherapy</article-title>
<source>J. Dig. Dis.</source>
<year>2017</year>
<volume>18</volume>
<fpage>574</fpage>
<lpage>581</lpage>
<pub-id pub-id-type="doi">10.1111/1751-2980.12538</pub-id>
<pub-id pub-id-type="pmid">28851046</pub-id>
</element-citation>
</ref>
<ref id="B122-cancers-11-00533">
<label>122.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>O’Donnell</surname>
<given-names>J.S.</given-names>
</name>
<name>
<surname>Massi</surname>
<given-names>D.</given-names>
</name>
<name>
<surname>Teng</surname>
<given-names>M.W.</given-names>
</name>
<name>
<surname>Mandala</surname>
<given-names>M.</given-names>
</name>
</person-group>
<article-title>PI3K-AKT-mTOR inhibition in cancer immunotherapy, redux</article-title>
<source>Semin. Biol.</source>
<year>2018</year>
<volume>48</volume>
<fpage>91</fpage>
<lpage>103</lpage>
<pub-id pub-id-type="doi">10.1016/j.semcancer.2017.04.015</pub-id>
</element-citation>
</ref>
<ref id="B123-cancers-11-00533">
<label>123.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Battaglin</surname>
<given-names>F.</given-names>
</name>
<name>
<surname>Naseem</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Lenz</surname>
<given-names>H.J.</given-names>
</name>
<name>
<surname>Salem</surname>
<given-names>M.E.</given-names>
</name>
</person-group>
<article-title>Microsatellite instability in colorectal cancer: Overview of its clinical significance and novel perspectives</article-title>
<source>Clin. Adv. Hematol. Oncol.</source>
<year>2018</year>
<volume>16</volume>
<fpage>735</fpage>
<lpage>745</lpage>
<pub-id pub-id-type="pmid">30543589</pub-id>
</element-citation>
</ref>
<ref id="B124-cancers-11-00533">
<label>124.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Overman</surname>
<given-names>M.J.</given-names>
</name>
<name>
<surname>McDermott</surname>
<given-names>R.</given-names>
</name>
<name>
<surname>Leach</surname>
<given-names>J.L.</given-names>
</name>
<name>
<surname>Lonardi</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Lenz</surname>
<given-names>H.J.</given-names>
</name>
<name>
<surname>Morse</surname>
<given-names>M.A.</given-names>
</name>
<name>
<surname>Desai</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Hill</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Axelson</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Moss</surname>
<given-names>R.A.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Nivolumab in patients with metastatic DNA mismatch repair-deficient or microsatellite instability-high colorectal cancer (CheckMate 142): An open-label, multicentre, phase 2 study</article-title>
<source>Lancet Oncol.</source>
<year>2017</year>
<volume>18</volume>
<fpage>1182</fpage>
<lpage>1191</lpage>
<pub-id pub-id-type="doi">10.1016/S1470-2045(17)30422-9</pub-id>
<pub-id pub-id-type="pmid">28734759</pub-id>
</element-citation>
</ref>
<ref id="B125-cancers-11-00533">
<label>125.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Kang</surname>
<given-names>Y.K.</given-names>
</name>
<name>
<surname>Boku</surname>
<given-names>N.</given-names>
</name>
<name>
<surname>Satoh</surname>
<given-names>T.</given-names>
</name>
<name>
<surname>Ryu</surname>
<given-names>M.H.</given-names>
</name>
<name>
<surname>Chao</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Kato</surname>
<given-names>K.</given-names>
</name>
<name>
<surname>Chung</surname>
<given-names>H.C.</given-names>
</name>
<name>
<surname>Chen</surname>
<given-names>J.S.</given-names>
</name>
<name>
<surname>Muro</surname>
<given-names>K.</given-names>
</name>
<name>
<surname>Kang</surname>
<given-names>W.K.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Nivolumab in patients with advanced gastric or gastro-oesophageal junction cancer refractory to, or intolerant of, at least two previous chemotherapy regimens (ONO-4538-12, ATTRACTION-2): A randomised, double-blind, placebo-controlled, phase 3 trial</article-title>
<source>Lancet</source>
<year>2017</year>
<volume>390</volume>
<fpage>2461</fpage>
<lpage>2471</lpage>
<pub-id pub-id-type="doi">10.1016/S0140-6736(17)31827-5</pub-id>
<pub-id pub-id-type="pmid">28993052</pub-id>
</element-citation>
</ref>
<ref id="B126-cancers-11-00533">
<label>126.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Fuchs</surname>
<given-names>C.S.</given-names>
</name>
<name>
<surname>Doi</surname>
<given-names>T.</given-names>
</name>
<name>
<surname>Jang</surname>
<given-names>R.W.</given-names>
</name>
<name>
<surname>Muro</surname>
<given-names>K.</given-names>
</name>
<name>
<surname>Satoh</surname>
<given-names>T.</given-names>
</name>
<name>
<surname>Machado</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Sun</surname>
<given-names>W.</given-names>
</name>
<name>
<surname>I Jalal</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>A Shah</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Metges</surname>
<given-names>J.-P.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Safety and Efficacy of Pembrolizumab Monotherapy in Patients with Previously Treated Advanced Gastric and Gastroesophageal Junction Cancer: Phase 2 Clinical KEYNOTE-059 Trial</article-title>
<source>JAMA Oncol.</source>
<year>2018</year>
<volume>4</volume>
<fpage>e180013</fpage>
<pub-id pub-id-type="doi">10.1001/jamaoncol.2018.0013</pub-id>
<pub-id pub-id-type="pmid">29543932</pub-id>
</element-citation>
</ref>
<ref id="B127-cancers-11-00533">
<label>127.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Chung</surname>
<given-names>K.Y.</given-names>
</name>
<name>
<surname>Fong</surname>
<given-names>L.</given-names>
</name>
<name>
<surname>Venook</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Beck</surname>
<given-names>S.B.</given-names>
</name>
<name>
<surname>Dorazio</surname>
<given-names>P.</given-names>
</name>
<name>
<surname>Criscitiello</surname>
<given-names>P.J.</given-names>
</name>
<name>
<surname>Healey</surname>
<given-names>D.I.</given-names>
</name>
<name>
<surname>Huang</surname>
<given-names>B.</given-names>
</name>
<name>
<surname>Gómez-Navarro</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Saltz</surname>
<given-names>L.B.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Phase II Study of the Anti-Cytotoxic T-Lymphocyte–Associated Antigen 4 Monoclonal Antibody, Tremelimumab, in Patients with Refractory Metastatic Colorectal Cancer</article-title>
<source>J. Clin. Oncol.</source>
<year>2010</year>
<volume>28</volume>
<fpage>3485</fpage>
<lpage>3490</lpage>
<pub-id pub-id-type="doi">10.1200/JCO.2010.28.3994</pub-id>
<pub-id pub-id-type="pmid">20498386</pub-id>
</element-citation>
</ref>
<ref id="B128-cancers-11-00533">
<label>128.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Le</surname>
<given-names>D.T.</given-names>
</name>
<name>
<surname>Uram</surname>
<given-names>J.N.</given-names>
</name>
<name>
<surname>Wang</surname>
<given-names>H.</given-names>
</name>
<name>
<surname>Bartlett</surname>
<given-names>B.</given-names>
</name>
<name>
<surname>Kemberling</surname>
<given-names>H.</given-names>
</name>
<name>
<surname>Eyring</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Skora</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Azad</surname>
<given-names>N.S.</given-names>
</name>
<name>
<surname>Laheru</surname>
<given-names>D.A.</given-names>
</name>
<name>
<surname>Donehower</surname>
<given-names>R.C.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>PD-1 blockade in tumors with mismatch repair deficiency</article-title>
<source>N. Engl. J. Med.</source>
<year>2015</year>
<volume>372</volume>
<fpage>2509</fpage>
<lpage>2520</lpage>
<pub-id pub-id-type="doi">10.1056/NEJMoa1500596</pub-id>
<pub-id pub-id-type="pmid">26028255</pub-id>
</element-citation>
</ref>
<ref id="B129-cancers-11-00533">
<label>129.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Overman</surname>
<given-names>M.J.</given-names>
</name>
<name>
<surname>Lonardi</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Wong</surname>
<given-names>K.Y.M.</given-names>
</name>
<name>
<surname>Lenz</surname>
<given-names>H.-J.</given-names>
</name>
<name>
<surname>Gelsomino</surname>
<given-names>F.</given-names>
</name>
<name>
<surname>Aglietta</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Morse</surname>
<given-names>M.A.</given-names>
</name>
<name>
<surname>Van Cutsem</surname>
<given-names>E.</given-names>
</name>
<name>
<surname>McDermott</surname>
<given-names>R.</given-names>
</name>
<name>
<surname>Hill</surname>
<given-names>A.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Durable Clinical Benefit with Nivolumab Plus Ipilimumab in DNA Mismatch Repair-Deficient/Microsatellite Instability-High Metastatic Colorectal Cancer</article-title>
<source>J. Clin. Oncol.</source>
<year>2018</year>
<volume>36</volume>
<fpage>773</fpage>
<lpage>779</lpage>
<pub-id pub-id-type="doi">10.1200/JCO.2017.76.9901</pub-id>
<pub-id pub-id-type="pmid">29355075</pub-id>
</element-citation>
</ref>
<ref id="B130-cancers-11-00533">
<label>130.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Rico</surname>
<given-names>G.T.</given-names>
</name>
<name>
<surname>Price</surname>
<given-names>T.J.</given-names>
</name>
</person-group>
<article-title>Atezolizumab for the treatment of colorectal cancer: The latest evidence and clinical potential</article-title>
<source>Opin. Biol. Ther.</source>
<year>2018</year>
<volume>18</volume>
<fpage>449</fpage>
<lpage>457</lpage>
<pub-id pub-id-type="doi">10.1080/14712598.2018.1444024</pub-id>
</element-citation>
</ref>
<ref id="B131-cancers-11-00533">
<label>131.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Calles</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Aguado</surname>
<given-names>G.</given-names>
</name>
<name>
<surname>Sandoval</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>Álvarez</surname>
<given-names>R.</given-names>
</name>
</person-group>
<article-title>The role of immunotherapy in small cell lung cancer</article-title>
<source>Clin. Transl. Oncol.</source>
<year>2019</year>
<fpage>1</fpage>
<lpage>16</lpage>
<pub-id pub-id-type="doi">10.1007/s12094-018-02011-9</pub-id>
<pub-id pub-id-type="pmid">30627983</pub-id>
</element-citation>
</ref>
<ref id="B132-cancers-11-00533">
<label>132.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Herbst</surname>
<given-names>R.S.</given-names>
</name>
<name>
<surname>Soria</surname>
<given-names>J.-C.</given-names>
</name>
<name>
<surname>Kowanetz</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Fine</surname>
<given-names>G.D.</given-names>
</name>
<name>
<surname>Hamid</surname>
<given-names>O.</given-names>
</name>
<name>
<surname>Gordon</surname>
<given-names>M.S.</given-names>
</name>
<name>
<surname>Sosman</surname>
<given-names>J.A.</given-names>
</name>
<name>
<surname>McDermott</surname>
<given-names>D.F.</given-names>
</name>
<name>
<surname>Powderly</surname>
<given-names>J.D.</given-names>
</name>
<name>
<surname>Gettinger</surname>
<given-names>S.N.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Predictive correlates of response to the anti-PD-L1 antibody MPDL3280A in cancer patients</article-title>
<source>Nature</source>
<year>2014</year>
<volume>515</volume>
<fpage>563</fpage>
<lpage>567</lpage>
<pub-id pub-id-type="doi">10.1038/nature14011</pub-id>
<pub-id pub-id-type="pmid">25428504</pub-id>
</element-citation>
</ref>
<ref id="B133-cancers-11-00533">
<label>133.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Link</surname>
<given-names>J.T.</given-names>
</name>
<name>
<surname>Overman</surname>
<given-names>M.J.</given-names>
</name>
</person-group>
<article-title>Immunotherapy Progress in Mismatch Repair–Deficient Colorectal Cancer and Future Therapeutic Challenges</article-title>
<source>Cancer J.</source>
<year>2016</year>
<volume>22</volume>
<fpage>190</fpage>
<lpage>195</lpage>
<pub-id pub-id-type="doi">10.1097/PPO.0000000000000196</pub-id>
<pub-id pub-id-type="pmid">27341597</pub-id>
</element-citation>
</ref>
<ref id="B134-cancers-11-00533">
<label>134.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Emambux</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Tachon</surname>
<given-names>G.</given-names>
</name>
<name>
<surname>Junca</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Tougeron</surname>
<given-names>D.</given-names>
</name>
</person-group>
<article-title>Results and challenges of immune checkpoint inhibitors in colorectal cancer</article-title>
<source>Expert Opin. Biol. Ther.</source>
<year>2018</year>
<volume>18</volume>
<fpage>561</fpage>
<lpage>573</lpage>
<pub-id pub-id-type="doi">10.1080/14712598.2018.1445222</pub-id>
<pub-id pub-id-type="pmid">29471676</pub-id>
</element-citation>
</ref>
<ref id="B135-cancers-11-00533">
<label>135.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Zhong</surname>
<given-names>X.</given-names>
</name>
<name>
<surname>Tumang</surname>
<given-names>J.R.</given-names>
</name>
<name>
<surname>Gao</surname>
<given-names>W.</given-names>
</name>
<name>
<surname>Bai</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>Rothstein</surname>
<given-names>T.L.</given-names>
</name>
</person-group>
<article-title>PD-L2 expression extends beyond dendritic cells/macrophages to B1 cells enriched for VH11/VH12 and phosphatidylcholine binding</article-title>
<source>Eur. J. Immunol.</source>
<year>2007</year>
<volume>37</volume>
<fpage>2405</fpage>
<lpage>2410</lpage>
<pub-id pub-id-type="doi">10.1002/eji.200737461</pub-id>
<pub-id pub-id-type="pmid">17683117</pub-id>
</element-citation>
</ref>
<ref id="B136-cancers-11-00533">
<label>136.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Wang</surname>
<given-names>H.</given-names>
</name>
<name>
<surname>Yao</surname>
<given-names>H.</given-names>
</name>
<name>
<surname>Li</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>Liang</surname>
<given-names>L.</given-names>
</name>
<name>
<surname>Zhang</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Shi</surname>
<given-names>H.</given-names>
</name>
<name>
<surname>Zhou</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>Chen</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Fang</surname>
<given-names>J.-Y.</given-names>
</name>
<name>
<surname>Xu</surname>
<given-names>J.</given-names>
</name>
</person-group>
<article-title>PD-L2 expression in colorectal cancer: Independent prognostic effect and targetability by deglycosylation</article-title>
<source>Oncoimmunology</source>
<year>2017</year>
<volume>6</volume>
<fpage>e1327494</fpage>
<pub-id pub-id-type="doi">10.1080/2162402X.2017.1327494</pub-id>
<pub-id pub-id-type="pmid">28811964</pub-id>
</element-citation>
</ref>
<ref id="B137-cancers-11-00533">
<label>137.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Guo</surname>
<given-names>P.-D.</given-names>
</name>
<name>
<surname>Sun</surname>
<given-names>Z.-W.</given-names>
</name>
<name>
<surname>Lai</surname>
<given-names>H.-J.</given-names>
</name>
<name>
<surname>Yang</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Wu</surname>
<given-names>P.-P.</given-names>
</name>
<name>
<surname>Guo</surname>
<given-names>Y.-D.</given-names>
</name>
<name>
<surname>Sun</surname>
<given-names>J.</given-names>
</name>
</person-group>
<article-title>Clinicopathological analysis of PD-L2 expression in colorectal cancer</article-title>
<source>OncoTargets Ther.</source>
<year>2018</year>
<volume>11</volume>
<fpage>7635</fpage>
<lpage>7642</lpage>
<pub-id pub-id-type="doi">10.2147/OTT.S177329</pub-id>
</element-citation>
</ref>
<ref id="B138-cancers-11-00533">
<label>138.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Taube</surname>
<given-names>J.M.</given-names>
</name>
<name>
<surname>Klein</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Brahmer</surname>
<given-names>J.R.</given-names>
</name>
<name>
<surname>Xu</surname>
<given-names>H.</given-names>
</name>
<name>
<surname>Pan</surname>
<given-names>X.</given-names>
</name>
<name>
<surname>Kim</surname>
<given-names>J.H.</given-names>
</name>
<name>
<surname>Chen</surname>
<given-names>L.</given-names>
</name>
<name>
<surname>Pardoll</surname>
<given-names>D.M.</given-names>
</name>
<name>
<surname>Topalian</surname>
<given-names>S.L.</given-names>
</name>
<name>
<surname>Anders</surname>
<given-names>R.A.</given-names>
</name>
</person-group>
<article-title>Association of PD-1, PD-1 ligands, and other features of the tumor immune microenvironment with response to anti-PD-1 therapy</article-title>
<source>Clin. Cancer Res.</source>
<year>2014</year>
<volume>20</volume>
<fpage>5064</fpage>
<lpage>5074</lpage>
<pub-id pub-id-type="doi">10.1158/1078-0432.CCR-13-3271</pub-id>
<pub-id pub-id-type="pmid">24714771</pub-id>
</element-citation>
</ref>
<ref id="B139-cancers-11-00533">
<label>139.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Seto</surname>
<given-names>T.</given-names>
</name>
<name>
<surname>Sam</surname>
<given-names>D.</given-names>
</name>
<name>
<surname>Pan</surname>
<given-names>M.</given-names>
</name>
</person-group>
<article-title>Mechanisms of Primary and Secondary Resistanceto Immune Checkpoint Inhibitors in Cancer</article-title>
<source>Med. Sci.</source>
<year>2019</year>
<volume>7</volume>
<fpage>14</fpage>
</element-citation>
</ref>
<ref id="B140-cancers-11-00533">
<label>140.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Curran</surname>
<given-names>M.A.</given-names>
</name>
<name>
<surname>Montalvo</surname>
<given-names>W.</given-names>
</name>
<name>
<surname>Yagita</surname>
<given-names>H.</given-names>
</name>
<name>
<surname>Allison</surname>
<given-names>J.P.</given-names>
</name>
</person-group>
<article-title>PD-1 and CTLA-4 combination blockade expands infiltrating T cells and reduces regulatory T and myeloid cells within B16 melanoma tumors</article-title>
<source>Proc. Natl. Acad. Sci. USA</source>
<year>2010</year>
<volume>107</volume>
<fpage>4275</fpage>
<lpage>4280</lpage>
<pub-id pub-id-type="doi">10.1073/pnas.0915174107</pub-id>
<pub-id pub-id-type="pmid">20160101</pub-id>
</element-citation>
</ref>
<ref id="B141-cancers-11-00533">
<label>141.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Janji</surname>
<given-names>B.</given-names>
</name>
<name>
<surname>Berchem</surname>
<given-names>G.</given-names>
</name>
<name>
<surname>Chouaib</surname>
<given-names>S.</given-names>
</name>
</person-group>
<article-title>Targeting Autophagy in the Tumor Microenvironment: New Challenges and Opportunities for Regulating Tumor Immunity</article-title>
<source>Front. Immunol.</source>
<year>2018</year>
<volume>9</volume>
<fpage>887</fpage>
<pub-id pub-id-type="doi">10.3389/fimmu.2018.00887</pub-id>
<pub-id pub-id-type="pmid">29922284</pub-id>
</element-citation>
</ref>
<ref id="B142-cancers-11-00533">
<label>142.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Qian</surname>
<given-names>H.-R.</given-names>
</name>
<name>
<surname>Shi</surname>
<given-names>Z.-Q.</given-names>
</name>
<name>
<surname>Zhu</surname>
<given-names>H.-P.</given-names>
</name>
<name>
<surname>Gu</surname>
<given-names>L.-H.</given-names>
</name>
<name>
<surname>Wang</surname>
<given-names>X.-F.</given-names>
</name>
<name>
<surname>Yang</surname>
<given-names>Y.</given-names>
</name>
</person-group>
<article-title>Interplay between apoptosis and autophagy in colorectal cancer</article-title>
<source>Oncotarget</source>
<year>2017</year>
<volume>8</volume>
<fpage>62759</fpage>
<lpage>62768</lpage>
<pub-id pub-id-type="doi">10.18632/oncotarget.18663</pub-id>
<pub-id pub-id-type="pmid">28977986</pub-id>
</element-citation>
</ref>
<ref id="B143-cancers-11-00533">
<label>143.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Rosenfeld</surname>
<given-names>M.R.</given-names>
</name>
<name>
<surname>Ye</surname>
<given-names>X.</given-names>
</name>
<name>
<surname>Supko</surname>
<given-names>J.G.</given-names>
</name>
<name>
<surname>Desideri</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>A Grossman</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Brem</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Mikkelson</surname>
<given-names>T.</given-names>
</name>
<name>
<surname>Wang</surname>
<given-names>D.</given-names>
</name>
<name>
<surname>Chang</surname>
<given-names>Y.C.</given-names>
</name>
<name>
<surname>Hu</surname>
<given-names>J.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>A phase I/II trial of hydroxychloroquine in conjunction with radiation therapy and concurrent and adjuvant temozolomide in patients with newly diagnosed glioblastoma multiforme</article-title>
<source>Autophagy</source>
<year>2014</year>
<volume>10</volume>
<fpage>1359</fpage>
<lpage>1368</lpage>
<pub-id pub-id-type="doi">10.4161/auto.28984</pub-id>
<pub-id pub-id-type="pmid">24991840</pub-id>
</element-citation>
</ref>
<ref id="B144-cancers-11-00533">
<label>144.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Goulielmaki</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Koustas</surname>
<given-names>E.</given-names>
</name>
<name>
<surname>Moysidou</surname>
<given-names>E.</given-names>
</name>
<name>
<surname>Vlassi</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Sasazuki</surname>
<given-names>T.</given-names>
</name>
<name>
<surname>Shirasawa</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Zografos</surname>
<given-names>G.</given-names>
</name>
<name>
<surname>Oikonomou</surname>
<given-names>E.</given-names>
</name>
</person-group>
<article-title>BRAF associated autophagy exploitation: BRAF and autophagy inhibitors synergise to efficiently overcome resistance of BRAF mutant colorectal cancer cells</article-title>
<source>Oncotarget</source>
<year>2015</year>
<volume>7</volume>
<fpage>9188</fpage>
<lpage>9221</lpage>
<pub-id pub-id-type="doi">10.18632/oncotarget.6942</pub-id>
<pub-id pub-id-type="pmid">26802026</pub-id>
</element-citation>
</ref>
<ref id="B145-cancers-11-00533">
<label>145.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Boone</surname>
<given-names>B.A.</given-names>
</name>
<name>
<surname>Bahary</surname>
<given-names>N.</given-names>
</name>
<name>
<surname>Zureikat</surname>
<given-names>A.H.</given-names>
</name>
<name>
<surname>Moser</surname>
<given-names>A.J.</given-names>
</name>
<name>
<surname>Normolle</surname>
<given-names>D.P.</given-names>
</name>
<name>
<surname>Wu</surname>
<given-names>W.C.</given-names>
</name>
<name>
<surname>Singhi</surname>
<given-names>A.D.</given-names>
</name>
<name>
<surname>Bao</surname>
<given-names>P.</given-names>
</name>
<name>
<surname>Bartlett</surname>
<given-names>D.L.</given-names>
</name>
<name>
<surname>Liotta</surname>
<given-names>L.A.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Safety and Biologic Response of Pre-operative Autophagy Inhibition in Combination with Gemcitabine in Patients with Pancreatic Adenocarcinoma</article-title>
<source>Ann. Surg. Oncol.</source>
<year>2015</year>
<volume>22</volume>
<fpage>4402</fpage>
<lpage>4410</lpage>
<pub-id pub-id-type="doi">10.1245/s10434-015-4566-4</pub-id>
<pub-id pub-id-type="pmid">25905586</pub-id>
</element-citation>
</ref>
<ref id="B146-cancers-11-00533">
<label>146.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Pellegrini</surname>
<given-names>P.</given-names>
</name>
<name>
<surname>Strambi</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Zipoli</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>Hägg-Olofsson</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Buoncervello</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Linder</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>De Milito</surname>
<given-names>A.</given-names>
</name>
</person-group>
<article-title>Acidic extracellular pH neutralizes the autophagy-inhibiting activity of chloroquine: Implications for cancer therapies</article-title>
<source>Autophagy</source>
<year>2014</year>
<volume>10</volume>
<fpage>562</fpage>
<lpage>571</lpage>
<pub-id pub-id-type="doi">10.4161/auto.27901</pub-id>
<pub-id pub-id-type="pmid">24492472</pub-id>
</element-citation>
</ref>
<ref id="B147-cancers-11-00533">
<label>147.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Amaravadi</surname>
<given-names>R.K.</given-names>
</name>
<name>
<surname>Winkler</surname>
<given-names>J.D.</given-names>
</name>
</person-group>
<article-title>Lys05: A new lysosomal autophagy inhibitor</article-title>
<source>Autophagy</source>
<year>2012</year>
<volume>8</volume>
<fpage>1383</fpage>
<lpage>1384</lpage>
<pub-id pub-id-type="doi">10.4161/auto.20958</pub-id>
<pub-id pub-id-type="pmid">22878685</pub-id>
</element-citation>
</ref>
<ref id="B148-cancers-11-00533">
<label>148.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Ronan</surname>
<given-names>B.</given-names>
</name>
<name>
<surname>Flamand</surname>
<given-names>O.</given-names>
</name>
<name>
<surname>Vescovi</surname>
<given-names>L.</given-names>
</name>
<name>
<surname>Dureuil</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>Durand</surname>
<given-names>L.</given-names>
</name>
<name>
<surname>Fassy</surname>
<given-names>F.</given-names>
</name>
<name>
<surname>Bachelot</surname>
<given-names>M.-F.</given-names>
</name>
<name>
<surname>Lamberton</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Mathieu</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Bertrand</surname>
<given-names>T.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>A highly potent and selective Vps34 inhibitor alters vesicle trafficking and autophagy</article-title>
<source>Nat. Chem. Biol.</source>
<year>2014</year>
<volume>10</volume>
<fpage>1013</fpage>
<lpage>1019</lpage>
<pub-id pub-id-type="doi">10.1038/nchembio.1681</pub-id>
<pub-id pub-id-type="pmid">25326666</pub-id>
</element-citation>
</ref>
<ref id="B149-cancers-11-00533">
<label>149.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Egan</surname>
<given-names>D.F.</given-names>
</name>
<name>
<surname>Chun</surname>
<given-names>M.G.</given-names>
</name>
<name>
<surname>Vamos</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Zou</surname>
<given-names>H.</given-names>
</name>
<name>
<surname>Rong</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Miller</surname>
<given-names>C.J.</given-names>
</name>
<name>
<surname>Lou</surname>
<given-names>H.J.</given-names>
</name>
<name>
<surname>Raveendra-Panickar</surname>
<given-names>D.</given-names>
</name>
<name>
<surname>Yang</surname>
<given-names>C.-C.</given-names>
</name>
<name>
<surname>Sheffler</surname>
<given-names>D.J.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Small Molecule Inhibition of the Autophagy Kinase ULK1 and Identification of ULK1 Substrates</article-title>
<source>Mol. Cell</source>
<year>2015</year>
<volume>59</volume>
<fpage>285</fpage>
<lpage>297</lpage>
<pub-id pub-id-type="doi">10.1016/j.molcel.2015.05.031</pub-id>
<pub-id pub-id-type="pmid">26118643</pub-id>
</element-citation>
</ref>
<ref id="B150-cancers-11-00533">
<label>150.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Vakifahmetoglu-Norberg</surname>
<given-names>H.</given-names>
</name>
<name>
<surname>Xia</surname>
<given-names>H.-G.</given-names>
</name>
<name>
<surname>Yuan</surname>
<given-names>J.</given-names>
</name>
</person-group>
<article-title>Pharmacologic agents targeting autophagy</article-title>
<source>J. Clin. Investig.</source>
<year>2015</year>
<volume>125</volume>
<fpage>5</fpage>
<lpage>13</lpage>
<pub-id pub-id-type="doi">10.1172/JCI73937</pub-id>
<pub-id pub-id-type="pmid">25654545</pub-id>
</element-citation>
</ref>
<ref id="B151-cancers-11-00533">
<label>151.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Rossi</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Munarriz</surname>
<given-names>E.R.</given-names>
</name>
<name>
<surname>Bartesaghi</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Milanese</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Dinsdale</surname>
<given-names>D.</given-names>
</name>
<name>
<surname>Guerra-Martin</surname>
<given-names>M.A.</given-names>
</name>
<name>
<surname>Bampton</surname>
<given-names>E.T.W.</given-names>
</name>
<name>
<surname>Glynn</surname>
<given-names>P.</given-names>
</name>
<name>
<surname>Bonanno</surname>
<given-names>G.</given-names>
</name>
<name>
<surname>Knight</surname>
<given-names>R.A.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Desmethylclomipramine induces the accumulation of autophagy markers by blocking autophagic flux</article-title>
<source>J. Cell Sci.</source>
<year>2009</year>
<volume>122</volume>
<fpage>3330</fpage>
<lpage>3339</lpage>
<pub-id pub-id-type="doi">10.1242/jcs.048181</pub-id>
<pub-id pub-id-type="pmid">19706685</pub-id>
</element-citation>
</ref>
<ref id="B152-cancers-11-00533">
<label>152.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Liu</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Xia</surname>
<given-names>H.</given-names>
</name>
<name>
<surname>Kim</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Xu</surname>
<given-names>L.</given-names>
</name>
<name>
<surname>Li</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Zhang</surname>
<given-names>L.</given-names>
</name>
<name>
<surname>Cai</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Norberg</surname>
<given-names>H.V.</given-names>
</name>
<name>
<surname>Zhang</surname>
<given-names>T.</given-names>
</name>
<name>
<surname>Furuya</surname>
<given-names>T.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Beclin1 Controls the Levels of p53 by Regulating the Deubiquitination Activity of USP10 and USP13</article-title>
<source>Cell</source>
<year>2011</year>
<volume>147</volume>
<fpage>223</fpage>
<lpage>234</lpage>
<pub-id pub-id-type="doi">10.1016/j.cell.2011.08.037</pub-id>
<pub-id pub-id-type="pmid">21962518</pub-id>
</element-citation>
</ref>
<ref id="B153-cancers-11-00533">
<label>153.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Starobinets</surname>
<given-names>H.</given-names>
</name>
<name>
<surname>Ye</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Broz</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Barry</surname>
<given-names>K.</given-names>
</name>
<name>
<surname>Goldsmith</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Marsh</surname>
<given-names>T.</given-names>
</name>
<name>
<surname>Rostker</surname>
<given-names>F.</given-names>
</name>
<name>
<surname>Krummel</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Debnath</surname>
<given-names>J.</given-names>
</name>
</person-group>
<article-title>Antitumor adaptive immunity remains intact following inhibition of autophagy and antimalarial treatment</article-title>
<source>J. Clin. Investig.</source>
<year>2016</year>
<volume>126</volume>
<fpage>4417</fpage>
<lpage>4429</lpage>
<pub-id pub-id-type="doi">10.1172/JCI85705</pub-id>
<pub-id pub-id-type="pmid">27775547</pub-id>
</element-citation>
</ref>
<ref id="B154-cancers-11-00533">
<label>154.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Yang</surname>
<given-names>Z.J.</given-names>
</name>
<name>
<surname>Chee</surname>
<given-names>C.E.</given-names>
</name>
<name>
<surname>Huang</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Sinicrope</surname>
<given-names>F.A.</given-names>
</name>
</person-group>
<article-title>The Role of Autophagy in Cancer: Therapeutic Implications</article-title>
<source>Mol. Cancer Ther.</source>
<year>2011</year>
<volume>10</volume>
<fpage>1533</fpage>
<lpage>1541</lpage>
<pub-id pub-id-type="doi">10.1158/1535-7163.MCT-11-0047</pub-id>
<pub-id pub-id-type="pmid">21878654</pub-id>
</element-citation>
</ref>
<ref id="B155-cancers-11-00533">
<label>155.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Byun</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Lee</surname>
<given-names>E.</given-names>
</name>
<name>
<surname>Lee</surname>
<given-names>K.W.</given-names>
</name>
</person-group>
<article-title>Therapeutic Implications of Autophagy Inducers in Immunological Disorders, Infection, and Cancer</article-title>
<source>Int. J. Mol. Sci.</source>
<year>2017</year>
<volume>18</volume>
<elocation-id>1959</elocation-id>
<pub-id pub-id-type="doi">10.3390/ijms18091959</pub-id>
</element-citation>
</ref>
<ref id="B156-cancers-11-00533">
<label>156.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Wang</surname>
<given-names>H.</given-names>
</name>
<name>
<surname>Li</surname>
<given-names>D.</given-names>
</name>
<name>
<surname>Li</surname>
<given-names>X.</given-names>
</name>
<name>
<surname>Ou</surname>
<given-names>X.</given-names>
</name>
<name>
<surname>Liu</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Zhang</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Ding</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Xie</surname>
<given-names>B.</given-names>
</name>
</person-group>
<article-title>Mammalian target of rapamycin inhibitor RAD001 sensitizes endometrial cancer cells to paclitaxel-induced apoptosis via the induction of autophagy</article-title>
<source>Oncol. Lett.</source>
<year>2016</year>
<volume>12</volume>
<fpage>5029</fpage>
<lpage>5035</lpage>
<pub-id pub-id-type="doi">10.3892/ol.2016.5338</pub-id>
<pub-id pub-id-type="pmid">28105210</pub-id>
</element-citation>
</ref>
<ref id="B157-cancers-11-00533">
<label>157.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Yeo</surname>
<given-names>S.K.</given-names>
</name>
<name>
<surname>Paul</surname>
<given-names>R.</given-names>
</name>
<name>
<surname>Haas</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Wang</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>Guan</surname>
<given-names>J.-L.</given-names>
</name>
</person-group>
<article-title>Improved efficacy of mitochondrial disrupting agents upon inhibition of autophagy in a mouse model of BRCA1-deficient breast cancer</article-title>
<source>Autophagy</source>
<year>2018</year>
<volume>14</volume>
<fpage>1214</fpage>
<lpage>1225</lpage>
<pub-id pub-id-type="doi">10.1080/15548627.2018.1460010</pub-id>
<pub-id pub-id-type="pmid">29938573</pub-id>
</element-citation>
</ref>
<ref id="B158-cancers-11-00533">
<label>158.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Opydo-Chanek</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Gonzalo</surname>
<given-names>O.</given-names>
</name>
<name>
<surname>Marzo</surname>
<given-names>I.</given-names>
</name>
</person-group>
<article-title>Multifaceted anticancer activity of BH3 mimetics: Current evidence and future prospects</article-title>
<source>Biochem. Pharmacol.</source>
<year>2017</year>
<volume>136</volume>
<fpage>12</fpage>
<lpage>23</lpage>
<pub-id pub-id-type="doi">10.1016/j.bcp.2017.03.006</pub-id>
<pub-id pub-id-type="pmid">28288819</pub-id>
</element-citation>
</ref>
<ref id="B159-cancers-11-00533">
<label>159.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Law</surname>
<given-names>B.Y.K.</given-names>
</name>
<name>
<surname>Chan</surname>
<given-names>W.K.</given-names>
</name>
<name>
<surname>Xu</surname>
<given-names>S.W.</given-names>
</name>
<name>
<surname>Wang</surname>
<given-names>J.R.</given-names>
</name>
<name>
<surname>Bai</surname>
<given-names>L.P.</given-names>
</name>
<name>
<surname>Liu</surname>
<given-names>L.</given-names>
</name>
<name>
<surname>Wong</surname>
<given-names>V.K.W.</given-names>
</name>
</person-group>
<article-title>Natural small-molecule enhancers of autophagy induce autophagic cell death in apoptosis-defective cells</article-title>
<source>Sci. Rep.</source>
<year>2014</year>
<volume>4</volume>
<fpage>5510</fpage>
<pub-id pub-id-type="doi">10.1038/srep05510</pub-id>
<pub-id pub-id-type="pmid">24981420</pub-id>
</element-citation>
</ref>
</ref-list>
</back>
<floats-group>
<fig id="cancers-11-00533-f001" orientation="portrait" position="float">
<label>Figure 1</label>
<caption>
<p>The role of autophagy in the presentation of immunogenic peptides in antigen-presenting cells (APCs). Autophagy has a vital role in the degradation of proteins in order for APCs to use them as antigenic peptides on Major Histocompatibility Complex (MHC)-I and II. Three distinct pathways of antigen processing by the APC have been identified: Exogenous (1A), cross-presentation (1B), and endogenous (1C) pathway. In the exogenous pathway, different antigens and peptides are produced outside the APC and placed on the MHC class II for recognition by CD4+ T cells. The exogenous pathway occurs in macrophages, dendritic cells, and B cells. The endogenous pathway loads cell-produced antigenic peptides onto MHC class I for recognition by CD8+ T cells. The endogenous pathway is responsible for immune recognition of peptides from the virus or self-digested peptides. The endogenous pathway characterizes many cell types, not just APCs, allowing for sensing of viral infection in all cell types. In the cross-presentation pathway, different peptides, from endocytosis and the autophagy degradation pathway, are loaded on MHC class I for recognition by CD8+ T cells. The peptides originate from the surrounding cell environment of tumor apoptotic bodies. This pathway targets virus-infected cells other than APCs and the tumor. The cross-presentation pathway is identified as the most efficient in dendritic cells.</p>
</caption>
<graphic xlink:href="cancers-11-00533-g001"></graphic>
</fig>
<table-wrap id="cancers-11-00533-t001" orientation="portrait" position="float">
<object-id pub-id-type="pii">cancers-11-00533-t001_Table 1</object-id>
<label>Table 1</label>
<caption>
<p>Clinical studies with immunotherapy for patients with Please define this term if appropriate.</p>
</caption>
<table frame="hsides" rules="groups">
<thead>
<tr>
<th align="center" valign="middle" style="border-top:solid thin;border-bottom:solid thin" rowspan="1" colspan="1">Number of Study</th>
<th align="center" valign="middle" style="border-top:solid thin;border-bottom:solid thin" rowspan="1" colspan="1">Immune Target</th>
<th align="center" valign="middle" style="border-top:solid thin;border-bottom:solid thin" rowspan="1" colspan="1">Agent/Compound</th>
<th align="center" valign="middle" style="border-top:solid thin;border-bottom:solid thin" rowspan="1" colspan="1">Phase of Study</th>
</tr>
</thead>
<tbody>
<tr>
<td align="center" valign="middle" rowspan="1" colspan="1">NCT01876511</td>
<td align="center" valign="middle" rowspan="1" colspan="1">PD-1</td>
<td align="center" valign="middle" rowspan="1" colspan="1">Pembrolizumab</td>
<td align="center" valign="middle" rowspan="1" colspan="1">II</td>
</tr>
<tr>
<td align="center" valign="middle" rowspan="1" colspan="1">NCT02981524</td>
<td align="center" valign="middle" rowspan="1" colspan="1">PD-1</td>
<td align="center" valign="middle" rowspan="1" colspan="1">Cyclophosphamide followed by Pembrolizumab</td>
<td align="center" valign="middle" rowspan="1" colspan="1">II</td>
</tr>
<tr>
<td align="center" valign="middle" rowspan="1" colspan="1">NCT03657641</td>
<td align="center" valign="middle" rowspan="1" colspan="1">PD-1</td>
<td align="center" valign="middle" rowspan="1" colspan="1">Pembrolizumab + Vicriviroc</td>
<td align="center" valign="middle" rowspan="1" colspan="1">I/II</td>
</tr>
<tr>
<td align="center" valign="middle" rowspan="1" colspan="1">NCT03631407</td>
<td align="center" valign="middle" rowspan="1" colspan="1">PD-1</td>
<td align="center" valign="middle" rowspan="1" colspan="1">Pembrolizumab + Regorafenib</td>
<td align="center" valign="middle" rowspan="1" colspan="1">II</td>
</tr>
<tr>
<td align="center" valign="middle" rowspan="1" colspan="1">NCT03475004</td>
<td align="center" valign="middle" rowspan="1" colspan="1">PD-1</td>
<td align="center" valign="middle" rowspan="1" colspan="1">Pembrolizumab, Bevacizumab, and Binimetinib</td>
<td align="center" valign="middle" rowspan="1" colspan="1">II</td>
</tr>
<tr>
<td align="center" valign="middle" rowspan="1" colspan="1">NCT03658772</td>
<td align="center" valign="middle" rowspan="1" colspan="1">PD-1</td>
<td align="center" valign="middle" rowspan="1" colspan="1">Pembrolizumab + grapiprant</td>
<td align="center" valign="middle" rowspan="1" colspan="1">I</td>
</tr>
<tr>
<td align="center" valign="middle" rowspan="1" colspan="1">NCT03519412</td>
<td align="center" valign="middle" rowspan="1" colspan="1">PD-1</td>
<td align="center" valign="middle" rowspan="1" colspan="1">Pembrolizumab + temozolomide</td>
<td align="center" valign="middle" rowspan="1" colspan="1">II</td>
</tr>
<tr>
<td align="center" valign="middle" rowspan="1" colspan="1">NCT02713373</td>
<td align="center" valign="middle" rowspan="1" colspan="1">PD-1</td>
<td align="center" valign="middle" rowspan="1" colspan="1">Pembrolizumab + cetuximab</td>
<td align="center" valign="middle" rowspan="1" colspan="1">I/II</td>
</tr>
<tr>
<td align="center" valign="middle" rowspan="1" colspan="1">NCT02375672</td>
<td align="center" valign="middle" rowspan="1" colspan="1">PD-1</td>
<td align="center" valign="middle" rowspan="1" colspan="1">Pembrolizumab + FOLFOX</td>
<td align="center" valign="middle" rowspan="1" colspan="1">II</td>
</tr>
<tr>
<td align="center" valign="middle" rowspan="1" colspan="1">NCT03332498</td>
<td align="center" valign="middle" rowspan="1" colspan="1">PD-1</td>
<td align="center" valign="middle" rowspan="1" colspan="1">Pembrolizumab + Ibrutinib</td>
<td align="center" valign="middle" rowspan="1" colspan="1">I/II</td>
</tr>
<tr>
<td align="center" valign="middle" rowspan="1" colspan="1">NCT02851004</td>
<td align="center" valign="middle" rowspan="1" colspan="1">PD-1</td>
<td align="center" valign="middle" rowspan="1" colspan="1">Pembrolizumab + SBRT</td>
<td align="center" valign="middle" rowspan="1" colspan="1">I/II</td>
</tr>
<tr>
<td align="center" valign="middle" rowspan="1" colspan="1">NCT02837263</td>
<td align="center" valign="middle" rowspan="1" colspan="1">PD-1</td>
<td align="center" valign="middle" rowspan="1" colspan="1">Pembrolizumab + BBI609</td>
<td align="center" valign="middle" rowspan="1" colspan="1">I</td>
</tr>
<tr>
<td align="center" valign="middle" rowspan="1" colspan="1">NCT02992912</td>
<td align="center" valign="middle" rowspan="1" colspan="1">PD-1</td>
<td align="center" valign="middle" rowspan="1" colspan="1">Atezolizumab + stereotactic ablative radiotherapy</td>
<td align="center" valign="middle" rowspan="1" colspan="1">II</td>
</tr>
<tr>
<td align="center" valign="middle" rowspan="1" colspan="1">NCT03712943</td>
<td align="center" valign="middle" rowspan="1" colspan="1">PD-1</td>
<td align="center" valign="middle" rowspan="1" colspan="1">Nivolumab + Regorafenib</td>
<td align="center" valign="middle" rowspan="1" colspan="1">I</td>
</tr>
<tr>
<td align="center" valign="middle" rowspan="1" colspan="1">NCT03711058</td>
<td align="center" valign="middle" rowspan="1" colspan="1">PD-1</td>
<td align="center" valign="middle" rowspan="1" colspan="1">Nivolumab + Copanlisib</td>
<td align="center" valign="middle" rowspan="1" colspan="1">I/II</td>
</tr>
<tr>
<td align="center" valign="middle" rowspan="1" colspan="1">NCT03414983</td>
<td align="center" valign="middle" rowspan="1" colspan="1">PD-1</td>
<td align="center" valign="middle" rowspan="1" colspan="1">Nivolumab, Oxaliplatin, Leucovorin, Fluorouracil, Bevacizumab</td>
<td align="center" valign="middle" rowspan="1" colspan="1">II/III</td>
</tr>
<tr>
<td align="center" valign="middle" rowspan="1" colspan="1">NCT02860546</td>
<td align="center" valign="middle" rowspan="1" colspan="1">PD-1</td>
<td align="center" valign="middle" rowspan="1" colspan="1">Nivolumab + TAS-102</td>
<td align="center" valign="middle" rowspan="1" colspan="1">II</td>
</tr>
<tr>
<td align="center" valign="middle" rowspan="1" colspan="1">NCT03026140</td>
<td align="center" valign="middle" rowspan="1" colspan="1">PD-1 and CTLA-4</td>
<td align="center" valign="middle" rowspan="1" colspan="1">Nivolumab + Ipilimumab +/− celecoxib</td>
<td align="center" valign="middle" rowspan="1" colspan="1">I/III</td>
</tr>
<tr>
<td align="center" valign="middle" rowspan="1" colspan="1">NCT03693846</td>
<td align="center" valign="middle" rowspan="1" colspan="1">PD-1 and CTLA-4</td>
<td align="center" valign="middle" rowspan="1" colspan="1">Nivolumab + Ipilimumab</td>
<td align="center" valign="middle" rowspan="1" colspan="1">II</td>
</tr>
<tr>
<td align="center" valign="middle" rowspan="1" colspan="1">NCT03104439</td>
<td align="center" valign="middle" rowspan="1" colspan="1">PD-1 and CTLA-4</td>
<td align="center" valign="middle" rowspan="1" colspan="1">Nivolumab + Ipilimumab + radiotherapy</td>
<td align="center" valign="middle" rowspan="1" colspan="1">II</td>
</tr>
<tr>
<td align="center" valign="middle" rowspan="1" colspan="1">NCT03377361</td>
<td align="center" valign="middle" rowspan="1" colspan="1">PD-1 and CTLA-4</td>
<td align="center" valign="middle" rowspan="1" colspan="1">Nivolumab + Ipilimumab + Trametinib</td>
<td align="center" valign="middle" rowspan="1" colspan="1">I/II</td>
</tr>
<tr>
<td align="center" valign="middle" rowspan="1" colspan="1">NCT03832621</td>
<td align="center" valign="middle" rowspan="1" colspan="1">PD-1 and CTLA-4</td>
<td align="center" valign="middle" rowspan="1" colspan="1">Nivolumab, Ipilimumab, Temozolomide</td>
<td align="center" valign="middle" rowspan="1" colspan="1">II</td>
</tr>
<tr>
<td align="center" valign="middle" rowspan="1" colspan="1">NCT02327078</td>
<td align="center" valign="middle" rowspan="1" colspan="1">PD-1 and IDO</td>
<td align="center" valign="middle" rowspan="1" colspan="1">Nivolumab + Epacadostat</td>
<td align="center" valign="middle" rowspan="1" colspan="1">VII</td>
</tr>
<tr>
<td align="center" valign="middle" rowspan="1" colspan="1">NCT02983578</td>
<td align="center" valign="middle" rowspan="1" colspan="1">PD-L1</td>
<td align="center" valign="middle" rowspan="1" colspan="1">AZD9150 + MEDI4736</td>
<td align="center" valign="middle" rowspan="1" colspan="1">II</td>
</tr>
<tr>
<td align="center" valign="middle" rowspan="1" colspan="1">NCT02982694</td>
<td align="center" valign="middle" rowspan="1" colspan="1">PD-L1</td>
<td align="center" valign="middle" rowspan="1" colspan="1">Atezolizumab + Bevacizumab</td>
<td align="center" valign="middle" rowspan="1" colspan="1">II</td>
</tr>
<tr>
<td align="center" valign="middle" rowspan="1" colspan="1">NCT02777710</td>
<td align="center" valign="middle" rowspan="1" colspan="1">PD-L1</td>
<td align="center" valign="middle" rowspan="1" colspan="1">Durvalumab + Pexidartinib</td>
<td align="center" valign="middle" rowspan="1" colspan="1">I</td>
</tr>
<tr>
<td align="center" valign="middle" rowspan="1" colspan="1">NCT03827044</td>
<td align="center" valign="middle" rowspan="1" colspan="1">PD-L1</td>
<td align="center" valign="middle" rowspan="1" colspan="1">Avelumab</td>
<td align="center" valign="middle" rowspan="1" colspan="1">III</td>
</tr>
<tr>
<td align="center" valign="middle" rowspan="1" colspan="1">NCT02669914</td>
<td align="center" valign="middle" rowspan="1" colspan="1">PD-L1</td>
<td align="center" valign="middle" rowspan="1" colspan="1">Durvalumab</td>
<td align="center" valign="middle" rowspan="1" colspan="1">II</td>
</tr>
<tr>
<td align="center" valign="middle" rowspan="1" colspan="1">NCT02754856</td>
<td align="center" valign="middle" rowspan="1" colspan="1">PD-L1 and CTLA-4</td>
<td align="center" valign="middle" rowspan="1" colspan="1">MEDI4736 + Tremelimumab</td>
<td align="center" valign="middle" rowspan="1" colspan="1">I</td>
</tr>
<tr>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">NCT03202758</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">PD-L1 and CTLA-4</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">Durvalumab, Tremelimumab, and FOLFOX</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">I/II</td>
</tr>
</tbody>
</table>
<table-wrap-foot>
<fn>
<p>NCT, national clinical trial; PD-1, programmed cell death-1; PD-1, programmed cell death-1 ligand; CTLA-4, cytotoxic T-lymphocyte-associated protein 4; IDO, indoleamine-pyrrole 2,3-dioxygenase.</p>
</fn>
</table-wrap-foot>
</table-wrap>
<table-wrap id="cancers-11-00533-t002" orientation="portrait" position="float">
<object-id pub-id-type="pii">cancers-11-00533-t002_Table 2</object-id>
<label>Table 2</label>
<caption>
<p>Commonly used molecules inhibiting autophagy. Small molecules that have been identified as inhibitors of autophagy and the main mechanism of action.</p>
</caption>
<table frame="hsides" rules="groups">
<thead>
<tr>
<th rowspan="2" align="center" valign="middle" style="border-top:solid thin;border-bottom:solid thin" colspan="1">Compound</th>
<th align="center" valign="middle" style="border-top:solid thin;border-bottom:solid thin" rowspan="1" colspan="1">Autophagy Inhibitors</th>
</tr>
<tr>
<th align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">Mechanism of Action</th>
</tr>
</thead>
<tbody>
<tr>
<td align="center" valign="middle" rowspan="1" colspan="1">Bafilomycin A1</td>
<td align="center" valign="middle" rowspan="1" colspan="1">Inhibitor of v-ATPase, inhibition of lysosomal acidification</td>
</tr>
<tr>
<td align="center" valign="middle" rowspan="1" colspan="1">Concanamycin A</td>
<td align="center" valign="middle" rowspan="1" colspan="1">Inhibitor of v-ATPase, inhibition of lysosomal acidification</td>
</tr>
<tr>
<td align="center" valign="middle" rowspan="1" colspan="1">Azithromycin</td>
<td align="center" valign="middle" rowspan="1" colspan="1">Inhibitor of v-ATPase, inhibition of lysosomal acidification</td>
</tr>
<tr>
<td align="center" valign="middle" rowspan="1" colspan="1">3-Methyladenine (3-MA)</td>
<td align="center" valign="middle" rowspan="1" colspan="1">Inhibitor of class III PI3K</td>
</tr>
<tr>
<td align="center" valign="middle" rowspan="1" colspan="1">Chloroquine (CQ)</td>
<td align="center" valign="middle" rowspan="1" colspan="1">Neutralizes the acidic pH of intracellular vesicles</td>
</tr>
<tr>
<td align="center" valign="middle" rowspan="1" colspan="1">Hydroxy-chloroquine (HCQ)</td>
<td align="center" valign="middle" rowspan="1" colspan="1">CQ derivative-Neutralizes the acidic pH of intracellular vesicles</td>
</tr>
<tr>
<td align="center" valign="middle" rowspan="1" colspan="1">Lys05</td>
<td align="center" valign="middle" rowspan="1" colspan="1">CQ derivative-alter the acidification of the lysosomes</td>
</tr>
<tr>
<td align="center" valign="middle" rowspan="1" colspan="1">SAR405</td>
<td align="center" valign="middle" rowspan="1" colspan="1">Kinase inhibitor of Vps18 and Vps34</td>
</tr>
<tr>
<td align="center" valign="middle" rowspan="1" colspan="1">SBI-0206965</td>
<td align="center" valign="middle" rowspan="1" colspan="1">Inhibitor of ULK1</td>
</tr>
<tr>
<td align="center" valign="middle" rowspan="1" colspan="1">Verteporfin</td>
<td align="center" valign="middle" rowspan="1" colspan="1">Inhibit acidification of lysosomes</td>
</tr>
<tr>
<td align="center" valign="middle" rowspan="1" colspan="1">Clomipramine</td>
<td align="center" valign="middle" rowspan="1" colspan="1">Inhibit acidification of lysosomes</td>
</tr>
<tr>
<td align="center" valign="middle" rowspan="1" colspan="1">desmethylclomipramine (DCMI)</td>
<td align="center" valign="middle" rowspan="1" colspan="1">Inhibit Autophagosome-Lysosome fusion</td>
</tr>
<tr>
<td align="center" valign="middle" rowspan="1" colspan="1">Paclitaxel</td>
<td align="center" valign="middle" rowspan="1" colspan="1">Microtubule stabilizer- inhibits phosphorylation of VPS34 at T159</td>
</tr>
<tr>
<td align="center" valign="middle" rowspan="1" colspan="1">SAHA</td>
<td align="center" valign="middle" rowspan="1" colspan="1">Interact in autophagosome-lysosome fusion</td>
</tr>
<tr>
<td align="center" valign="middle" rowspan="1" colspan="1">Monensin</td>
<td align="center" valign="middle" rowspan="1" colspan="1">Inhibit autophagosome-lysosome fusion</td>
</tr>
<tr>
<td align="center" valign="middle" rowspan="1" colspan="1">Sputin-1</td>
<td align="center" valign="middle" rowspan="1" colspan="1">Inhibits the activity of ubiquitin-specific peptidases, USP10 and USP13</td>
</tr>
<tr>
<td align="center" valign="middle" rowspan="1" colspan="1">SP600125</td>
<td align="center" valign="middle" rowspan="1" colspan="1">Inhibition of JNK—reduction of Beclin-1</td>
</tr>
<tr>
<td align="center" valign="middle" rowspan="1" colspan="1">U0126</td>
<td align="center" valign="middle" rowspan="1" colspan="1">Inhibitor of MEK1 and MEK2</td>
</tr>
<tr>
<td align="center" valign="middle" rowspan="1" colspan="1">Wortmannin</td>
<td align="center" valign="middle" rowspan="1" colspan="1">PI3K inhibitor</td>
</tr>
<tr>
<td align="center" valign="middle" rowspan="1" colspan="1">LY294002</td>
<td align="center" valign="middle" rowspan="1" colspan="1">PI3K inhibitor</td>
</tr>
<tr>
<td align="center" valign="middle" rowspan="1" colspan="1">SB202190</td>
<td align="center" valign="middle" rowspan="1" colspan="1">Cross-inhibition of the PI3K/mTOR and MAPKs pathway</td>
</tr>
<tr>
<td align="center" valign="middle" rowspan="1" colspan="1">SB203580</td>
<td align="center" valign="middle" rowspan="1" colspan="1">Inhibit autophagy by interfering with the trafficking of Atg9</td>
</tr>
<tr>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">MHY1485</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">mTOR activator</td>
</tr>
</tbody>
</table>
</table-wrap>
<table-wrap id="cancers-11-00533-t003" orientation="portrait" position="float">
<object-id pub-id-type="pii">cancers-11-00533-t003_Table 3</object-id>
<label>Table 3</label>
<caption>
<p>Commonly used molecules to induce autophagy. Small molecules that have been identified as autophagy inducers and the primary mechanism of action.</p>
</caption>
<table frame="hsides" rules="groups">
<thead>
<tr>
<th rowspan="2" align="center" valign="middle" style="border-top:solid thin;border-bottom:solid thin" colspan="1">Compound/Molecule</th>
<th align="center" valign="middle" style="border-top:solid thin;border-bottom:solid thin" rowspan="1" colspan="1">Autophagy Inducers</th>
</tr>
<tr>
<th align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">Mechanism of Action</th>
</tr>
</thead>
<tbody>
<tr>
<td align="center" valign="middle" rowspan="1" colspan="1">Rapamycin</td>
<td align="center" valign="middle" rowspan="1" colspan="1">mTORC1 inhibitor</td>
</tr>
<tr>
<td align="center" valign="middle" rowspan="1" colspan="1">Temsirolimus</td>
<td align="center" valign="middle" rowspan="1" colspan="1">mTORC1 inhibitor</td>
</tr>
<tr>
<td align="center" valign="middle" rowspan="1" colspan="1">Deforolimus</td>
<td align="center" valign="middle" rowspan="1" colspan="1">mTORC1 inhibitor</td>
</tr>
<tr>
<td align="center" valign="middle" rowspan="1" colspan="1">Everolimus</td>
<td align="center" valign="middle" rowspan="1" colspan="1">mTORC1 inhibitor</td>
</tr>
<tr>
<td align="center" valign="middle" rowspan="1" colspan="1">Metformin</td>
<td align="center" valign="middle" rowspan="1" colspan="1">AMPK activator</td>
</tr>
<tr>
<td align="center" valign="middle" rowspan="1" colspan="1">Obatoclax</td>
<td align="center" valign="middle" rowspan="1" colspan="1">Inhibitor of Bcl-2 family proteins </td>
</tr>
<tr>
<td align="center" valign="middle" rowspan="1" colspan="1">isoliensinine</td>
<td align="center" valign="middle" rowspan="1" colspan="1">Natural alkaloid </td>
</tr>
<tr>
<td align="center" valign="middle" rowspan="1" colspan="1">cepharanthine</td>
<td align="center" valign="middle" rowspan="1" colspan="1">Natural alkaloid </td>
</tr>
<tr>
<td align="center" valign="middle" rowspan="1" colspan="1">liensinine</td>
<td align="center" valign="middle" rowspan="1" colspan="1">Natural alkaloid </td>
</tr>
<tr>
<td align="center" valign="middle" rowspan="1" colspan="1">Perifosine</td>
<td align="center" valign="middle" rowspan="1" colspan="1">AKT inhibitor</td>
</tr>
<tr>
<td align="center" valign="middle" rowspan="1" colspan="1">Tat–Beclin-1 peptide</td>
<td align="center" valign="middle" rowspan="1" colspan="1">Releases beclin-1 into cytoplasm-regulate autophagosome formation</td>
</tr>
<tr>
<td align="center" valign="middle" rowspan="1" colspan="1">Lithium</td>
<td align="center" valign="middle" rowspan="1" colspan="1">Increase the levels of Beclin-1/VPS34 complexes</td>
</tr>
<tr>
<td align="center" valign="middle" rowspan="1" colspan="1">GDC-0980</td>
<td align="center" valign="middle" rowspan="1" colspan="1">Dual inhibitor of PI3K and mTORC1</td>
</tr>
<tr>
<td align="center" valign="middle" rowspan="1" colspan="1">GDC-0941</td>
<td align="center" valign="middle" rowspan="1" colspan="1">Inhibitor of class I PI3K </td>
</tr>
<tr>
<td align="center" valign="middle" rowspan="1" colspan="1">fluspirilene</td>
<td align="center" valign="middle" rowspan="1" colspan="1">Antagonists of L-type Ca2+ channels</td>
</tr>
<tr>
<td align="center" valign="middle" rowspan="1" colspan="1">verapamil</td>
<td align="center" valign="middle" rowspan="1" colspan="1">Antagonists of L-type Ca2+ channels</td>
</tr>
<tr>
<td align="center" valign="middle" rowspan="1" colspan="1">loperamide</td>
<td align="center" valign="middle" rowspan="1" colspan="1">Antagonists of L-type Ca2+ channels</td>
</tr>
<tr>
<td align="center" valign="middle" rowspan="1" colspan="1">nimodipine</td>
<td align="center" valign="middle" rowspan="1" colspan="1">Antagonists of L-type Ca2+ channels</td>
</tr>
<tr>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">amiodarone</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">Antagonists of L-type Ca2+ channels</td>
</tr>
</tbody>
</table>
</table-wrap>
</floats-group>
</pmc>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/ChloroquineV1/Data/Pmc/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000885 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Pmc/Corpus/biblio.hfd -nk 000885 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    ChloroquineV1
   |flux=    Pmc
   |étape=   Corpus
   |type=    RBID
   |clé=     PMC:6520891
   |texte=   The Interplay of Autophagy and Tumor Microenvironment in Colorectal Cancer—Ways of Enhancing Immunotherapy Action
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Pmc/Corpus/RBID.i   -Sk "pubmed:31013961" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Pmc/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a ChloroquineV1 

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Wed Mar 25 22:43:59 2020. Site generation: Sun Jan 31 12:44:45 2021