Serveur d'exploration Chloroquine

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

TOLLIP deficiency is associated with increased resistance to Legionella pneumophila pneumonia

Identifieur interne : 000853 ( Pmc/Corpus ); précédent : 000852; suivant : 000854

TOLLIP deficiency is associated with increased resistance to Legionella pneumophila pneumonia

Auteurs : Javeed A. Shah ; Robyn Emery ; Brian Lee ; Sambasivan Venkatasubramanian ; Jason D. Simmons ; Melanie Brown ; Chi F. Hung ; Jan M. Prins ; Annelies Verbon ; Thomas R. Hawn ; Shawn J. Skerrett

Source :

RBID : PMC:6824992

Abstract

Legionella pneumophila (Lp) is a flagellated, intracellular bacterium that can cause Legionnaires’ disease (LD). Lp activates multiple innate immune receptors, and TOLLIP dampens MyD88-dependent signaling and may influence susceptibility to LD. We evaluated the effect of TOLLIP on innate immunity, pneumonia severity, and LD susceptibility in mouse lungs and human populations. To accomplish this, we evaluated the effect of TOLLIP on lung-specific Lp control and immune response and associated a common functional TOLLIP variant with Lp-induced innate immune responses and LD susceptibility in humans. After aerosol Lp infection, Tollip−/− mice demonstrated significantly fewer bacterial CFU and increased cytokine responses from BAL fluid. Tollip−/− macrophages also suppressed intracellular Lp replication in a flagellin-independent manner. The presence of a previously characterized, functionally active SNP associated with decreased TOLLIP mRNA transcript in monocytes was associated with increased TNF and IL-6 secretion after Lp stimulation of PBMC ex vivo. This genotype was separately associated with decreased LD susceptibility (309 controls, 88 cases, p = 0.008, OR 0.36, 95% CI 0.16 – 0.76) in a candidate gene association study. These results suggest that TOLLIP decreases lung-specific TLR responses to increase LD susceptibility in human populations. Better understanding of TOLLIP may lead to novel immunomodulatory therapies.


Url:
DOI: 10.1038/s41385-019-0196-7
PubMed: 31462698
PubMed Central: 6824992

Links to Exploration step

PMC:6824992

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">TOLLIP deficiency is associated with increased resistance to
<italic>Legionella pneumophila</italic>
pneumonia</title>
<author>
<name sortKey="Shah, Javeed A" sort="Shah, Javeed A" uniqKey="Shah J" first="Javeed A." last="Shah">Javeed A. Shah</name>
<affiliation>
<nlm:aff id="A1">Department of Medicine, University of Washington School of Medicine, Seattle, Washington.</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="A2">Veterans Affairs Puget Sound Health Care System, Seattle, Washington.</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Emery, Robyn" sort="Emery, Robyn" uniqKey="Emery R" first="Robyn" last="Emery">Robyn Emery</name>
<affiliation>
<nlm:aff id="A1">Department of Medicine, University of Washington School of Medicine, Seattle, Washington.</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Lee, Brian" sort="Lee, Brian" uniqKey="Lee B" first="Brian" last="Lee">Brian Lee</name>
<affiliation>
<nlm:aff id="A1">Department of Medicine, University of Washington School of Medicine, Seattle, Washington.</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Venkatasubramanian, Sambasivan" sort="Venkatasubramanian, Sambasivan" uniqKey="Venkatasubramanian S" first="Sambasivan" last="Venkatasubramanian">Sambasivan Venkatasubramanian</name>
<affiliation>
<nlm:aff id="A1">Department of Medicine, University of Washington School of Medicine, Seattle, Washington.</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Simmons, Jason D" sort="Simmons, Jason D" uniqKey="Simmons J" first="Jason D." last="Simmons">Jason D. Simmons</name>
<affiliation>
<nlm:aff id="A1">Department of Medicine, University of Washington School of Medicine, Seattle, Washington.</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Brown, Melanie" sort="Brown, Melanie" uniqKey="Brown M" first="Melanie" last="Brown">Melanie Brown</name>
<affiliation>
<nlm:aff id="A1">Department of Medicine, University of Washington School of Medicine, Seattle, Washington.</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Hung, Chi F" sort="Hung, Chi F" uniqKey="Hung C" first="Chi F." last="Hung">Chi F. Hung</name>
<affiliation>
<nlm:aff id="A1">Department of Medicine, University of Washington School of Medicine, Seattle, Washington.</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Prins, Jan M" sort="Prins, Jan M" uniqKey="Prins J" first="Jan M." last="Prins">Jan M. Prins</name>
<affiliation>
<nlm:aff id="A4">University of Amsterdam, Amsterdam, the Netherlands.</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Verbon, Annelies" sort="Verbon, Annelies" uniqKey="Verbon A" first="Annelies" last="Verbon">Annelies Verbon</name>
<affiliation>
<nlm:aff id="A3">Erasmus Medical Center, Rotterdam, the Netherlands.</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Hawn, Thomas R" sort="Hawn, Thomas R" uniqKey="Hawn T" first="Thomas R." last="Hawn">Thomas R. Hawn</name>
<affiliation>
<nlm:aff id="A1">Department of Medicine, University of Washington School of Medicine, Seattle, Washington.</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Skerrett, Shawn J" sort="Skerrett, Shawn J" uniqKey="Skerrett S" first="Shawn J." last="Skerrett">Shawn J. Skerrett</name>
<affiliation>
<nlm:aff id="A1">Department of Medicine, University of Washington School of Medicine, Seattle, Washington.</nlm:aff>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PMC</idno>
<idno type="pmid">31462698</idno>
<idno type="pmc">6824992</idno>
<idno type="url">http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6824992</idno>
<idno type="RBID">PMC:6824992</idno>
<idno type="doi">10.1038/s41385-019-0196-7</idno>
<date when="2019">2019</date>
<idno type="wicri:Area/Pmc/Corpus">000853</idno>
<idno type="wicri:explorRef" wicri:stream="Pmc" wicri:step="Corpus" wicri:corpus="PMC">000853</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a" type="main">TOLLIP deficiency is associated with increased resistance to
<italic>Legionella pneumophila</italic>
pneumonia</title>
<author>
<name sortKey="Shah, Javeed A" sort="Shah, Javeed A" uniqKey="Shah J" first="Javeed A." last="Shah">Javeed A. Shah</name>
<affiliation>
<nlm:aff id="A1">Department of Medicine, University of Washington School of Medicine, Seattle, Washington.</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="A2">Veterans Affairs Puget Sound Health Care System, Seattle, Washington.</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Emery, Robyn" sort="Emery, Robyn" uniqKey="Emery R" first="Robyn" last="Emery">Robyn Emery</name>
<affiliation>
<nlm:aff id="A1">Department of Medicine, University of Washington School of Medicine, Seattle, Washington.</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Lee, Brian" sort="Lee, Brian" uniqKey="Lee B" first="Brian" last="Lee">Brian Lee</name>
<affiliation>
<nlm:aff id="A1">Department of Medicine, University of Washington School of Medicine, Seattle, Washington.</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Venkatasubramanian, Sambasivan" sort="Venkatasubramanian, Sambasivan" uniqKey="Venkatasubramanian S" first="Sambasivan" last="Venkatasubramanian">Sambasivan Venkatasubramanian</name>
<affiliation>
<nlm:aff id="A1">Department of Medicine, University of Washington School of Medicine, Seattle, Washington.</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Simmons, Jason D" sort="Simmons, Jason D" uniqKey="Simmons J" first="Jason D." last="Simmons">Jason D. Simmons</name>
<affiliation>
<nlm:aff id="A1">Department of Medicine, University of Washington School of Medicine, Seattle, Washington.</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Brown, Melanie" sort="Brown, Melanie" uniqKey="Brown M" first="Melanie" last="Brown">Melanie Brown</name>
<affiliation>
<nlm:aff id="A1">Department of Medicine, University of Washington School of Medicine, Seattle, Washington.</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Hung, Chi F" sort="Hung, Chi F" uniqKey="Hung C" first="Chi F." last="Hung">Chi F. Hung</name>
<affiliation>
<nlm:aff id="A1">Department of Medicine, University of Washington School of Medicine, Seattle, Washington.</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Prins, Jan M" sort="Prins, Jan M" uniqKey="Prins J" first="Jan M." last="Prins">Jan M. Prins</name>
<affiliation>
<nlm:aff id="A4">University of Amsterdam, Amsterdam, the Netherlands.</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Verbon, Annelies" sort="Verbon, Annelies" uniqKey="Verbon A" first="Annelies" last="Verbon">Annelies Verbon</name>
<affiliation>
<nlm:aff id="A3">Erasmus Medical Center, Rotterdam, the Netherlands.</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Hawn, Thomas R" sort="Hawn, Thomas R" uniqKey="Hawn T" first="Thomas R." last="Hawn">Thomas R. Hawn</name>
<affiliation>
<nlm:aff id="A1">Department of Medicine, University of Washington School of Medicine, Seattle, Washington.</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Skerrett, Shawn J" sort="Skerrett, Shawn J" uniqKey="Skerrett S" first="Shawn J." last="Skerrett">Shawn J. Skerrett</name>
<affiliation>
<nlm:aff id="A1">Department of Medicine, University of Washington School of Medicine, Seattle, Washington.</nlm:aff>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Mucosal immunology</title>
<idno type="ISSN">1933-0219</idno>
<idno type="eISSN">1935-3456</idno>
<imprint>
<date when="2019">2019</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<p id="P2">
<italic>Legionella pneumophila</italic>
(Lp) is a flagellated, intracellular bacterium that can cause Legionnaires’ disease (LD). Lp activates multiple innate immune receptors, and TOLLIP dampens MyD88-dependent signaling and may influence susceptibility to LD. We evaluated the effect of TOLLIP on innate immunity, pneumonia severity, and LD susceptibility in mouse lungs and human populations. To accomplish this, we evaluated the effect of TOLLIP on lung-specific Lp control and immune response and associated a common functional TOLLIP variant with Lp-induced innate immune responses and LD susceptibility in humans. After aerosol Lp infection,
<italic>Tollip</italic>
<sup>−/−</sup>
mice demonstrated significantly fewer bacterial CFU and increased cytokine responses from BAL fluid.
<italic>Tollip</italic>
<sup>−/−</sup>
macrophages also suppressed intracellular Lp replication in a flagellin-independent manner. The presence of a previously characterized, functionally active SNP associated with decreased TOLLIP mRNA transcript in monocytes was associated with increased TNF and IL-6 secretion after Lp stimulation of PBMC
<italic>ex vivo.</italic>
This genotype was separately associated with decreased LD susceptibility (309 controls, 88 cases, p = 0.008, OR 0.36, 95% CI 0.16 – 0.76) in a candidate gene association study. These results suggest that TOLLIP decreases lung-specific TLR responses to increase LD susceptibility in human populations. Better understanding of TOLLIP may lead to novel immunomodulatory therapies.</p>
</div>
</front>
<back>
<div1 type="bibliography">
<listBibl>
<biblStruct>
<analytic>
<author>
<name sortKey="Phin, N" uniqKey="Phin N">N Phin</name>
</author>
<author>
<name sortKey="Parry Ford, F" uniqKey="Parry Ford F">F Parry-Ford</name>
</author>
<author>
<name sortKey="Harrison, T" uniqKey="Harrison T">T Harrison</name>
</author>
<author>
<name sortKey="Stagg, Hr" uniqKey="Stagg H">HR Stagg</name>
</author>
<author>
<name sortKey="Zhang, N" uniqKey="Zhang N">N Zhang</name>
</author>
<author>
<name sortKey="Kumar, K" uniqKey="Kumar K">K Kumar</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Dominguez, A" uniqKey="Dominguez A">A Dominguez</name>
</author>
<author>
<name sortKey="Alvarez, J" uniqKey="Alvarez J">J Alvarez</name>
</author>
<author>
<name sortKey="Sabria, M" uniqKey="Sabria M">M Sabria</name>
</author>
<author>
<name sortKey="Carmona, G" uniqKey="Carmona G">G Carmona</name>
</author>
<author>
<name sortKey="Torner, N" uniqKey="Torner N">N Torner</name>
</author>
<author>
<name sortKey="Oviedo, M" uniqKey="Oviedo M">M Oviedo</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Horwitz, Ma" uniqKey="Horwitz M">MA Horwitz</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Bornstein, N" uniqKey="Bornstein N">N Bornstein</name>
</author>
<author>
<name sortKey="Marmet, D" uniqKey="Marmet D">D Marmet</name>
</author>
<author>
<name sortKey="Dumaine, Mh" uniqKey="Dumaine M">MH Dumaine</name>
</author>
<author>
<name sortKey="Surgot, M" uniqKey="Surgot M">M Surgot</name>
</author>
<author>
<name sortKey="Fleurette, J" uniqKey="Fleurette J">J Fleurette</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Girard, R" uniqKey="Girard R">R Girard</name>
</author>
<author>
<name sortKey="Pedron, T" uniqKey="Pedron T">T Pedron</name>
</author>
<author>
<name sortKey="Uematsu, S" uniqKey="Uematsu S">S Uematsu</name>
</author>
<author>
<name sortKey="Balloy, V" uniqKey="Balloy V">V Balloy</name>
</author>
<author>
<name sortKey="Chignard, M" uniqKey="Chignard M">M Chignard</name>
</author>
<author>
<name sortKey="Akira, S" uniqKey="Akira S">S Akira</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Sherwood, Rk" uniqKey="Sherwood R">RK Sherwood</name>
</author>
<author>
<name sortKey="Roy, Cr" uniqKey="Roy C">CR Roy</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Fernandez Moreira, E" uniqKey="Fernandez Moreira E">E Fernandez-Moreira</name>
</author>
<author>
<name sortKey="Helbig, Jh" uniqKey="Helbig J">JH Helbig</name>
</author>
<author>
<name sortKey="Swanson, Ms" uniqKey="Swanson M">MS Swanson</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Hempstead, Ad" uniqKey="Hempstead A">AD Hempstead</name>
</author>
<author>
<name sortKey="Isberg, Rr" uniqKey="Isberg R">RR Isberg</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ziltener, P" uniqKey="Ziltener P">P Ziltener</name>
</author>
<author>
<name sortKey="Reinheckel, T" uniqKey="Reinheckel T">T Reinheckel</name>
</author>
<author>
<name sortKey="Oxenius, A" uniqKey="Oxenius A">A Oxenius</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kawamoto, Y" uniqKey="Kawamoto Y">Y Kawamoto</name>
</author>
<author>
<name sortKey="Morinaga, Y" uniqKey="Morinaga Y">Y Morinaga</name>
</author>
<author>
<name sortKey="Kimura, Y" uniqKey="Kimura Y">Y Kimura</name>
</author>
<author>
<name sortKey="Kaku, N" uniqKey="Kaku N">N Kaku</name>
</author>
<author>
<name sortKey="Kosai, K" uniqKey="Kosai K">K Kosai</name>
</author>
<author>
<name sortKey="Uno, N" uniqKey="Uno N">N Uno</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Akamine, M" uniqKey="Akamine M">M Akamine</name>
</author>
<author>
<name sortKey="Higa, F" uniqKey="Higa F">F Higa</name>
</author>
<author>
<name sortKey="Arakaki, N" uniqKey="Arakaki N">N Arakaki</name>
</author>
<author>
<name sortKey="Kawakami, K" uniqKey="Kawakami K">K Kawakami</name>
</author>
<author>
<name sortKey="Takeda, K" uniqKey="Takeda K">K Takeda</name>
</author>
<author>
<name sortKey="Akira, S" uniqKey="Akira S">S Akira</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Molofsky, Ab" uniqKey="Molofsky A">AB Molofsky</name>
</author>
<author>
<name sortKey="Byrne, Bg" uniqKey="Byrne B">BG Byrne</name>
</author>
<author>
<name sortKey="Whitfield, Nn" uniqKey="Whitfield N">NN Whitfield</name>
</author>
<author>
<name sortKey="Madigan, Ca" uniqKey="Madigan C">CA Madigan</name>
</author>
<author>
<name sortKey="Fuse, Et" uniqKey="Fuse E">ET Fuse</name>
</author>
<author>
<name sortKey="Tateda, K" uniqKey="Tateda K">K Tateda</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Zamboni, Ds" uniqKey="Zamboni D">DS Zamboni</name>
</author>
<author>
<name sortKey="Kobayashi, Ks" uniqKey="Kobayashi K">KS Kobayashi</name>
</author>
<author>
<name sortKey="Kohlsdorf, T" uniqKey="Kohlsdorf T">T Kohlsdorf</name>
</author>
<author>
<name sortKey="Ogura, Y" uniqKey="Ogura Y">Y Ogura</name>
</author>
<author>
<name sortKey="Long, Em" uniqKey="Long E">EM Long</name>
</author>
<author>
<name sortKey="Vance, Re" uniqKey="Vance R">RE Vance</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Hawn, Tr" uniqKey="Hawn T">TR Hawn</name>
</author>
<author>
<name sortKey="Berrington, Wr" uniqKey="Berrington W">WR Berrington</name>
</author>
<author>
<name sortKey="Smith, Ia" uniqKey="Smith I">IA Smith</name>
</author>
<author>
<name sortKey="Uematsu, S" uniqKey="Uematsu S">S Uematsu</name>
</author>
<author>
<name sortKey="Akira, S" uniqKey="Akira S">S Akira</name>
</author>
<author>
<name sortKey="Aderem, A" uniqKey="Aderem A">A Aderem</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Zhao, Y" uniqKey="Zhao Y">Y Zhao</name>
</author>
<author>
<name sortKey="Yang, J" uniqKey="Yang J">J Yang</name>
</author>
<author>
<name sortKey="Shi, J" uniqKey="Shi J">J Shi</name>
</author>
<author>
<name sortKey="Gong, Yn" uniqKey="Gong Y">YN Gong</name>
</author>
<author>
<name sortKey="Lu, Q" uniqKey="Lu Q">Q Lu</name>
</author>
<author>
<name sortKey="Xu, H" uniqKey="Xu H">H Xu</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Burns, K" uniqKey="Burns K">K Burns</name>
</author>
<author>
<name sortKey="Clatworthy, J" uniqKey="Clatworthy J">J Clatworthy</name>
</author>
<author>
<name sortKey="Martin, L" uniqKey="Martin L">L Martin</name>
</author>
<author>
<name sortKey="Martinon, F" uniqKey="Martinon F">F Martinon</name>
</author>
<author>
<name sortKey="Plumpton, C" uniqKey="Plumpton C">C Plumpton</name>
</author>
<author>
<name sortKey="Maschera, B" uniqKey="Maschera B">B Maschera</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Zhang, G" uniqKey="Zhang G">G Zhang</name>
</author>
<author>
<name sortKey="Ghosh, S" uniqKey="Ghosh S">S Ghosh</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Lu, K" uniqKey="Lu K">K Lu</name>
</author>
<author>
<name sortKey="Psakhye, I" uniqKey="Psakhye I">I Psakhye</name>
</author>
<author>
<name sortKey="Jentsch, S" uniqKey="Jentsch S">S Jentsch</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Jongsma, Ml" uniqKey="Jongsma M">ML Jongsma</name>
</author>
<author>
<name sortKey="Berlin, I" uniqKey="Berlin I">I Berlin</name>
</author>
<author>
<name sortKey="Wijdeven, Rh" uniqKey="Wijdeven R">RH Wijdeven</name>
</author>
<author>
<name sortKey="Janssen, L" uniqKey="Janssen L">L Janssen</name>
</author>
<author>
<name sortKey="Janssen, Gm" uniqKey="Janssen G">GM Janssen</name>
</author>
<author>
<name sortKey="Garstka, Ma" uniqKey="Garstka M">MA Garstka</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Shah, Ja" uniqKey="Shah J">JA Shah</name>
</author>
<author>
<name sortKey="Vary, Jc" uniqKey="Vary J">JC Vary</name>
</author>
<author>
<name sortKey="Chau, Tt" uniqKey="Chau T">TT Chau</name>
</author>
<author>
<name sortKey="Bang, Nd" uniqKey="Bang N">ND Bang</name>
</author>
<author>
<name sortKey="Yen, Nt" uniqKey="Yen N">NT Yen</name>
</author>
<author>
<name sortKey="Farrar, Jj" uniqKey="Farrar J">JJ Farrar</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Araujo, Fj" uniqKey="Araujo F">FJ Araujo</name>
</author>
<author>
<name sortKey="Silva, Ld" uniqKey="Silva L">LD Silva</name>
</author>
<author>
<name sortKey="Mesquita, Tg" uniqKey="Mesquita T">TG Mesquita</name>
</author>
<author>
<name sortKey="Pinheiro, Sk" uniqKey="Pinheiro S">SK Pinheiro</name>
</author>
<author>
<name sortKey="Vital Wde, S" uniqKey="Vital Wde S">S Vital Wde</name>
</author>
<author>
<name sortKey="Chrusciak Talhari, A" uniqKey="Chrusciak Talhari A">A Chrusciak-Talhari</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Shah, Ja" uniqKey="Shah J">JA Shah</name>
</author>
<author>
<name sortKey="Berrington, Wr" uniqKey="Berrington W">WR Berrington</name>
</author>
<author>
<name sortKey="Vary, Jc" uniqKey="Vary J">JC Vary</name>
</author>
<author>
<name sortKey="Wells, Rd" uniqKey="Wells R">RD Wells</name>
</author>
<author>
<name sortKey="Peterson, Gj" uniqKey="Peterson G">GJ Peterson</name>
</author>
<author>
<name sortKey="Kunwar, Cb" uniqKey="Kunwar C">CB Kunwar</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Casanova, Jl" uniqKey="Casanova J">JL Casanova</name>
</author>
<author>
<name sortKey="Abel, L" uniqKey="Abel L">L Abel</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ruiz Moreno, Js" uniqKey="Ruiz Moreno J">JS Ruiz-Moreno</name>
</author>
<author>
<name sortKey="Hamann, L" uniqKey="Hamann L">L Hamann</name>
</author>
<author>
<name sortKey="Shah, Ja" uniqKey="Shah J">JA Shah</name>
</author>
<author>
<name sortKey="Verbon, A" uniqKey="Verbon A">A Verbon</name>
</author>
<author>
<name sortKey="Mockenhaupt, Fp" uniqKey="Mockenhaupt F">FP Mockenhaupt</name>
</author>
<author>
<name sortKey="Puzianowska Kuznicka, M" uniqKey="Puzianowska Kuznicka M">M Puzianowska-Kuznicka</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Hawn, Tr" uniqKey="Hawn T">TR Hawn</name>
</author>
<author>
<name sortKey="Verbon, A" uniqKey="Verbon A">A Verbon</name>
</author>
<author>
<name sortKey="Lettinga, Kd" uniqKey="Lettinga K">KD Lettinga</name>
</author>
<author>
<name sortKey="Zhao, Lp" uniqKey="Zhao L">LP Zhao</name>
</author>
<author>
<name sortKey="Li, Ss" uniqKey="Li S">SS Li</name>
</author>
<author>
<name sortKey="Laws, Rj" uniqKey="Laws R">RJ Laws</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Shah, Ja" uniqKey="Shah J">JA Shah</name>
</author>
<author>
<name sortKey="Musvosvi, M" uniqKey="Musvosvi M">M Musvosvi</name>
</author>
<author>
<name sortKey="Shey, M" uniqKey="Shey M">M Shey</name>
</author>
<author>
<name sortKey="Horne, Dj" uniqKey="Horne D">DJ Horne</name>
</author>
<author>
<name sortKey="Wells, Rd" uniqKey="Wells R">RD Wells</name>
</author>
<author>
<name sortKey="Peterson, Gj" uniqKey="Peterson G">GJ Peterson</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Den Boer, Jw" uniqKey="Den Boer J">JW Den Boer</name>
</author>
<author>
<name sortKey="Yzerman, Ep" uniqKey="Yzerman E">EP Yzerman</name>
</author>
<author>
<name sortKey="Schellekens, J" uniqKey="Schellekens J">J Schellekens</name>
</author>
<author>
<name sortKey="Lettinga, Kd" uniqKey="Lettinga K">KD Lettinga</name>
</author>
<author>
<name sortKey="Boshuizen, Hc" uniqKey="Boshuizen H">HC Boshuizen</name>
</author>
<author>
<name sortKey="Van Steenbergen, Je" uniqKey="Van Steenbergen J">JE Van Steenbergen</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Nahid, P" uniqKey="Nahid P">P Nahid</name>
</author>
<author>
<name sortKey="Horne, Dj" uniqKey="Horne D">DJ Horne</name>
</author>
<author>
<name sortKey="Jarlsberg, Lg" uniqKey="Jarlsberg L">LG Jarlsberg</name>
</author>
<author>
<name sortKey="Reiner, Ap" uniqKey="Reiner A">AP Reiner</name>
</author>
<author>
<name sortKey="Osmond, D" uniqKey="Osmond D">D Osmond</name>
</author>
<author>
<name sortKey="Hopewell, Pc" uniqKey="Hopewell P">PC Hopewell</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ibrahim, Gf" uniqKey="Ibrahim G">GF Ibrahim</name>
</author>
<author>
<name sortKey="Fleet, Gh" uniqKey="Fleet G">GH Fleet</name>
</author>
<author>
<name sortKey="Lyons, Mj" uniqKey="Lyons M">MJ Lyons</name>
</author>
<author>
<name sortKey="Walker, Ra" uniqKey="Walker R">RA Walker</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Edelstein, Ph" uniqKey="Edelstein P">PH Edelstein</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Didierlaurent, A" uniqKey="Didierlaurent A">A Didierlaurent</name>
</author>
<author>
<name sortKey="Brissoni, B" uniqKey="Brissoni B">B Brissoni</name>
</author>
<author>
<name sortKey="Velin, D" uniqKey="Velin D">D Velin</name>
</author>
<author>
<name sortKey="Aebi, N" uniqKey="Aebi N">N Aebi</name>
</author>
<author>
<name sortKey="Tardivel, A" uniqKey="Tardivel A">A Tardivel</name>
</author>
<author>
<name sortKey="Kaslin, E" uniqKey="Kaslin E">E Kaslin</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Walters, Ka" uniqKey="Walters K">KA Walters</name>
</author>
<author>
<name sortKey="Olsufka, R" uniqKey="Olsufka R">R Olsufka</name>
</author>
<author>
<name sortKey="Kuestner, Re" uniqKey="Kuestner R">RE Kuestner</name>
</author>
<author>
<name sortKey="Wu, X" uniqKey="Wu X">X Wu</name>
</author>
<author>
<name sortKey="Wang, K" uniqKey="Wang K">K Wang</name>
</author>
<author>
<name sortKey="Skerrett, Sj" uniqKey="Skerrett S">SJ Skerrett</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Copenhaver, Am" uniqKey="Copenhaver A">AM Copenhaver</name>
</author>
<author>
<name sortKey="Casson, Cn" uniqKey="Casson C">CN Casson</name>
</author>
<author>
<name sortKey="Nguyen, Ht" uniqKey="Nguyen H">HT Nguyen</name>
</author>
<author>
<name sortKey="Fung, Tc" uniqKey="Fung T">TC Fung</name>
</author>
<author>
<name sortKey="Duda, Mm" uniqKey="Duda M">MM Duda</name>
</author>
<author>
<name sortKey="Roy, Cr" uniqKey="Roy C">CR Roy</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Uematsu, S" uniqKey="Uematsu S">S Uematsu</name>
</author>
<author>
<name sortKey="Jang, Mh" uniqKey="Jang M">MH Jang</name>
</author>
<author>
<name sortKey="Chevrier, N" uniqKey="Chevrier N">N Chevrier</name>
</author>
<author>
<name sortKey="Guo, Z" uniqKey="Guo Z">Z Guo</name>
</author>
<author>
<name sortKey="Kumagai, Y" uniqKey="Kumagai Y">Y Kumagai</name>
</author>
<author>
<name sortKey="Yamamoto, M" uniqKey="Yamamoto M">M Yamamoto</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Vinzing, M" uniqKey="Vinzing M">M Vinzing</name>
</author>
<author>
<name sortKey="Eitel, J" uniqKey="Eitel J">J Eitel</name>
</author>
<author>
<name sortKey="Lippmann, J" uniqKey="Lippmann J">J Lippmann</name>
</author>
<author>
<name sortKey="Hocke, Ac" uniqKey="Hocke A">AC Hocke</name>
</author>
<author>
<name sortKey="Zahlten, J" uniqKey="Zahlten J">J Zahlten</name>
</author>
<author>
<name sortKey="Slevogt, H" uniqKey="Slevogt H">H Slevogt</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Chen, K" uniqKey="Chen K">K Chen</name>
</author>
<author>
<name sortKey="Yuan, R" uniqKey="Yuan R">R Yuan</name>
</author>
<author>
<name sortKey="Zhang, Y" uniqKey="Zhang Y">Y Zhang</name>
</author>
<author>
<name sortKey="Geng, S" uniqKey="Geng S">S Geng</name>
</author>
<author>
<name sortKey="Li, L" uniqKey="Li L">L Li</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Deretic, V" uniqKey="Deretic V">V Deretic</name>
</author>
<author>
<name sortKey="Saitoh, T" uniqKey="Saitoh T">T Saitoh</name>
</author>
<author>
<name sortKey="Akira, S" uniqKey="Akira S">S Akira</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Deretic, V" uniqKey="Deretic V">V Deretic</name>
</author>
<author>
<name sortKey="Kimura, T" uniqKey="Kimura T">T Kimura</name>
</author>
<author>
<name sortKey="Timmins, G" uniqKey="Timmins G">G Timmins</name>
</author>
<author>
<name sortKey="Moseley, P" uniqKey="Moseley P">P Moseley</name>
</author>
<author>
<name sortKey="Chauhan, S" uniqKey="Chauhan S">S Chauhan</name>
</author>
<author>
<name sortKey="Mandell, M" uniqKey="Mandell M">M Mandell</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Shah, Ja" uniqKey="Shah J">JA Shah</name>
</author>
<author>
<name sortKey="Musvosvi, M" uniqKey="Musvosvi M">M Musvosvi</name>
</author>
<author>
<name sortKey="Shey, M" uniqKey="Shey M">M Shey</name>
</author>
<author>
<name sortKey="Horne, Dj" uniqKey="Horne D">DJ Horne</name>
</author>
<author>
<name sortKey="Wells, Rd" uniqKey="Wells R">RD Wells</name>
</author>
<author>
<name sortKey="Peterson, Gj" uniqKey="Peterson G">GJ Peterson</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Hawn, Tr" uniqKey="Hawn T">TR Hawn</name>
</author>
<author>
<name sortKey="Verbon, A" uniqKey="Verbon A">A Verbon</name>
</author>
<author>
<name sortKey="Lettinga, Kd" uniqKey="Lettinga K">KD Lettinga</name>
</author>
<author>
<name sortKey="Zhao, Lp" uniqKey="Zhao L">LP Zhao</name>
</author>
<author>
<name sortKey="Li, Ss" uniqKey="Li S">SS Li</name>
</author>
<author>
<name sortKey="Laws, Rj" uniqKey="Laws R">RJ Laws</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Fontana, Mf" uniqKey="Fontana M">MF Fontana</name>
</author>
<author>
<name sortKey="Vance, Re" uniqKey="Vance R">RE Vance</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Saitoh, T" uniqKey="Saitoh T">T Saitoh</name>
</author>
<author>
<name sortKey="Fujita, N" uniqKey="Fujita N">N Fujita</name>
</author>
<author>
<name sortKey="Jang, Mh" uniqKey="Jang M">MH Jang</name>
</author>
<author>
<name sortKey="Uematsu, S" uniqKey="Uematsu S">S Uematsu</name>
</author>
<author>
<name sortKey="Yang, Bg" uniqKey="Yang B">BG Yang</name>
</author>
<author>
<name sortKey="Satoh, T" uniqKey="Satoh T">T Satoh</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Nastase, Mv" uniqKey="Nastase M">MV Nastase</name>
</author>
<author>
<name sortKey="Zeng Brouwers, J" uniqKey="Zeng Brouwers J">J Zeng-Brouwers</name>
</author>
<author>
<name sortKey="Frey, H" uniqKey="Frey H">H Frey</name>
</author>
<author>
<name sortKey="Hsieh, Lt" uniqKey="Hsieh L">LT Hsieh</name>
</author>
<author>
<name sortKey="Poluzzi, C" uniqKey="Poluzzi C">C Poluzzi</name>
</author>
<author>
<name sortKey="Beckmann, J" uniqKey="Beckmann J">J Beckmann</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Rolando, M" uniqKey="Rolando M">M Rolando</name>
</author>
<author>
<name sortKey="Escoll, P" uniqKey="Escoll P">P Escoll</name>
</author>
<author>
<name sortKey="Buchrieser, C" uniqKey="Buchrieser C">C Buchrieser</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Nakahira, K" uniqKey="Nakahira K">K Nakahira</name>
</author>
<author>
<name sortKey="Haspel, Ja" uniqKey="Haspel J">JA Haspel</name>
</author>
<author>
<name sortKey="Rathinam, Va" uniqKey="Rathinam V">VA Rathinam</name>
</author>
<author>
<name sortKey="Lee, Sj" uniqKey="Lee S">SJ Lee</name>
</author>
<author>
<name sortKey="Dolinay, T" uniqKey="Dolinay T">T Dolinay</name>
</author>
<author>
<name sortKey="Lam, Hc" uniqKey="Lam H">HC Lam</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Sakaguchi, S" uniqKey="Sakaguchi S">S Sakaguchi</name>
</author>
<author>
<name sortKey="Negishi, H" uniqKey="Negishi H">H Negishi</name>
</author>
<author>
<name sortKey="Asagiri, M" uniqKey="Asagiri M">M Asagiri</name>
</author>
<author>
<name sortKey="Nakajima, C" uniqKey="Nakajima C">C Nakajima</name>
</author>
<author>
<name sortKey="Mizutani, T" uniqKey="Mizutani T">T Mizutani</name>
</author>
<author>
<name sortKey="Takaoka, A" uniqKey="Takaoka A">A Takaoka</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Zhang, K" uniqKey="Zhang K">K Zhang</name>
</author>
<author>
<name sortKey="Kaufman, Rj" uniqKey="Kaufman R">RJ Kaufman</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Cordell, Hj" uniqKey="Cordell H">HJ Cordell</name>
</author>
<author>
<name sortKey="Clayton, Dg" uniqKey="Clayton D">DG Clayton</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Samrakandi, Mm" uniqKey="Samrakandi M">MM Samrakandi</name>
</author>
<author>
<name sortKey="Cirillo, Sl" uniqKey="Cirillo S">SL Cirillo</name>
</author>
<author>
<name sortKey="Ridenour, Da" uniqKey="Ridenour D">DA Ridenour</name>
</author>
<author>
<name sortKey="Bermudez, Le" uniqKey="Bermudez L">LE Bermudez</name>
</author>
<author>
<name sortKey="Cirillo, Jd" uniqKey="Cirillo J">JD Cirillo</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Shames, Sr" uniqKey="Shames S">SR Shames</name>
</author>
<author>
<name sortKey="Liu, L" uniqKey="Liu L">L Liu</name>
</author>
<author>
<name sortKey="Havey, Jc" uniqKey="Havey J">JC Havey</name>
</author>
<author>
<name sortKey="Schofield, Wb" uniqKey="Schofield W">WB Schofield</name>
</author>
<author>
<name sortKey="Goodman, Al" uniqKey="Goodman A">AL Goodman</name>
</author>
<author>
<name sortKey="Roy, Cr" uniqKey="Roy C">CR Roy</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Burstein, D" uniqKey="Burstein D">D Burstein</name>
</author>
<author>
<name sortKey="Amaro, F" uniqKey="Amaro F">F Amaro</name>
</author>
<author>
<name sortKey="Zusman, T" uniqKey="Zusman T">T Zusman</name>
</author>
<author>
<name sortKey="Lifshitz, Z" uniqKey="Lifshitz Z">Z Lifshitz</name>
</author>
<author>
<name sortKey="Cohen, O" uniqKey="Cohen O">O Cohen</name>
</author>
<author>
<name sortKey="Gilbert, Ja" uniqKey="Gilbert J">JA Gilbert</name>
</author>
</analytic>
</biblStruct>
</listBibl>
</div1>
</back>
</TEI>
<pmc article-type="research-article">
<pmc-dir>properties open_access</pmc-dir>
<pmc-dir>properties manuscript</pmc-dir>
<front>
<journal-meta>
<journal-id journal-id-type="nlm-journal-id">101299742</journal-id>
<journal-id journal-id-type="pubmed-jr-id">35518</journal-id>
<journal-id journal-id-type="nlm-ta">Mucosal Immunol</journal-id>
<journal-id journal-id-type="iso-abbrev">Mucosal Immunol</journal-id>
<journal-title-group>
<journal-title>Mucosal immunology</journal-title>
</journal-title-group>
<issn pub-type="ppub">1933-0219</issn>
<issn pub-type="epub">1935-3456</issn>
</journal-meta>
<article-meta>
<article-id pub-id-type="pmid">31462698</article-id>
<article-id pub-id-type="pmc">6824992</article-id>
<article-id pub-id-type="doi">10.1038/s41385-019-0196-7</article-id>
<article-id pub-id-type="manuscript">NIHMS1536669</article-id>
<article-categories>
<subj-group subj-group-type="heading">
<subject>Article</subject>
</subj-group>
</article-categories>
<title-group>
<article-title>TOLLIP deficiency is associated with increased resistance to
<italic>Legionella pneumophila</italic>
pneumonia</article-title>
</title-group>
<contrib-group>
<contrib contrib-type="author">
<name>
<surname>Shah</surname>
<given-names>Javeed A.</given-names>
</name>
<xref ref-type="aff" rid="A1">1</xref>
<xref ref-type="aff" rid="A2">2</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Emery</surname>
<given-names>Robyn</given-names>
</name>
<xref ref-type="aff" rid="A1">1</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Lee</surname>
<given-names>Brian</given-names>
</name>
<xref ref-type="aff" rid="A1">1</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Venkatasubramanian</surname>
<given-names>Sambasivan</given-names>
</name>
<xref ref-type="aff" rid="A1">1</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Simmons</surname>
<given-names>Jason D.</given-names>
</name>
<xref ref-type="aff" rid="A1">1</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Brown</surname>
<given-names>Melanie</given-names>
</name>
<xref ref-type="aff" rid="A1">1</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Hung</surname>
<given-names>Chi F.</given-names>
</name>
<xref ref-type="aff" rid="A1">1</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Prins</surname>
<given-names>Jan M.</given-names>
</name>
<xref ref-type="aff" rid="A4">4</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Verbon</surname>
<given-names>Annelies</given-names>
</name>
<xref ref-type="aff" rid="A3">3</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Hawn</surname>
<given-names>Thomas R.</given-names>
</name>
<xref ref-type="aff" rid="A1">1</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Skerrett</surname>
<given-names>Shawn J.</given-names>
</name>
<xref ref-type="aff" rid="A1">1</xref>
</contrib>
</contrib-group>
<aff id="A1">
<label>1</label>
Department of Medicine, University of Washington School of Medicine, Seattle, Washington.</aff>
<aff id="A2">
<label>2</label>
Veterans Affairs Puget Sound Health Care System, Seattle, Washington.</aff>
<aff id="A3">
<label>3</label>
Erasmus Medical Center, Rotterdam, the Netherlands.</aff>
<aff id="A4">
<label>4</label>
University of Amsterdam, Amsterdam, the Netherlands.</aff>
<author-notes>
<fn fn-type="con" id="FN1">
<p id="P1">
<bold>Author Contributions.</bold>
Study design: JAS, SJS. Manuscript preparation and editing: JAS, SJS, TRH. Data acquisition, analysis, and interpretation: JAS, RE, BL, SV, JDS, MB, CFH, SJS. Human cohort recruitment and data analysis: JAS, JMP, AV, TRH.</p>
</fn>
<corresp id="CR1">
<underline>Corresponding Author</underline>
: Javeed A. Shah, 750 Republican Street, Room E700, Seattle, WA 98109;
<email>jashah@uw.edu</email>
; Phone: 206-543-8728; Fax: 206-616-4898.</corresp>
</author-notes>
<pub-date pub-type="nihms-submitted">
<day>5</day>
<month>8</month>
<year>2019</year>
</pub-date>
<pub-date pub-type="epub">
<day>28</day>
<month>8</month>
<year>2019</year>
</pub-date>
<pub-date pub-type="ppub">
<month>11</month>
<year>2019</year>
</pub-date>
<pub-date pub-type="pmc-release">
<day>28</day>
<month>2</month>
<year>2020</year>
</pub-date>
<volume>12</volume>
<issue>6</issue>
<fpage>1382</fpage>
<lpage>1390</lpage>
<pmc-comment>elocation-id from pubmed: 10.1038/s41385-019-0196-7</pmc-comment>
<permissions>
<license xlink:href="http://www.nature.com/authors/editorial_policies/license.html#terms">
<license-p>Users may view, print, copy, and download text and data-mine the content in such documents, for the purposes of academic research, subject always to the full Conditions of use:
<ext-link ext-link-type="uri" xlink:href="http://www.nature.com/authors/editorial_policies/license.html#terms">http://www.nature.com/authors/editorial_policies/license.html#terms</ext-link>
</license-p>
</license>
</permissions>
<abstract id="ABS1">
<p id="P2">
<italic>Legionella pneumophila</italic>
(Lp) is a flagellated, intracellular bacterium that can cause Legionnaires’ disease (LD). Lp activates multiple innate immune receptors, and TOLLIP dampens MyD88-dependent signaling and may influence susceptibility to LD. We evaluated the effect of TOLLIP on innate immunity, pneumonia severity, and LD susceptibility in mouse lungs and human populations. To accomplish this, we evaluated the effect of TOLLIP on lung-specific Lp control and immune response and associated a common functional TOLLIP variant with Lp-induced innate immune responses and LD susceptibility in humans. After aerosol Lp infection,
<italic>Tollip</italic>
<sup>−/−</sup>
mice demonstrated significantly fewer bacterial CFU and increased cytokine responses from BAL fluid.
<italic>Tollip</italic>
<sup>−/−</sup>
macrophages also suppressed intracellular Lp replication in a flagellin-independent manner. The presence of a previously characterized, functionally active SNP associated with decreased TOLLIP mRNA transcript in monocytes was associated with increased TNF and IL-6 secretion after Lp stimulation of PBMC
<italic>ex vivo.</italic>
This genotype was separately associated with decreased LD susceptibility (309 controls, 88 cases, p = 0.008, OR 0.36, 95% CI 0.16 – 0.76) in a candidate gene association study. These results suggest that TOLLIP decreases lung-specific TLR responses to increase LD susceptibility in human populations. Better understanding of TOLLIP may lead to novel immunomodulatory therapies.</p>
</abstract>
</article-meta>
</front>
<body>
<sec id="S1">
<title>Introduction</title>
<p id="P3">An outbreak of severe pneumonia at a Philadelphia American Legion convention in 1976 led to identification of
<italic>Legionella</italic>
spp. as a cause of pneumonia.
<sup>
<xref rid="R1" ref-type="bibr">1</xref>
</sup>
<italic>Legionella</italic>
pneumonia ranges from a mild illness to a severe multifocal pneumonia termed Legionnaires’ disease (LD) with significant mortality.
<sup>
<xref rid="R2" ref-type="bibr">2</xref>
</sup>
In mammals, Lp infects alveolar macrophages after inhalation into the deep airways.
<sup>
<xref rid="R3" ref-type="bibr">3</xref>
</sup>
Lp is unique from other pulmonary pathogens; it contains flagellin, displays LPS that avoids detection by TLR4, and secretes multiple immunoregulatory proteins into the cytosol of infected macrophages to impair host immune responses.
<sup>
<xref rid="R4" ref-type="bibr">4</xref>
<xref rid="R6" ref-type="bibr">6</xref>
</sup>
To survive intracellularly, Lp alters the phagolysosome within the macrophage, creating the Legionella-containing vacuole (LCV).
<sup>
<xref rid="R6" ref-type="bibr">6</xref>
</sup>
Lp recruits proteins to the LCV that inhibit macrophage proinflammatory responses and permit its intracellular survival.
<sup>
<xref rid="R7" ref-type="bibr">7</xref>
,
<xref rid="R8" ref-type="bibr">8</xref>
</sup>
IL-1β and TNF produced by infected and bystander macrophages induce antibacterial defense by activating and recruiting macrophages to the infected site
<sup>
<xref rid="R9" ref-type="bibr">9</xref>
,
<xref rid="R10" ref-type="bibr">10</xref>
</sup>
Macrophages recognize Lp via multiple pathogen recognition receptors, including TLR2, TLR5, NLRC4, and NAIP5 in mice.
<sup>
<xref rid="R11" ref-type="bibr">11</xref>
<xref rid="R15" ref-type="bibr">15</xref>
</sup>
Understanding the factors that influence signaling activity of these pathways may provide insight into unique mechanisms of host resistance and susceptibility to infection.</p>
<p id="P4">Toll-Interacting Protein (TOLLIP) regulates many innate immune processes that influence Lp immunity, including TLR2 and IL-1R, autophagy, and endosomal transport.
<sup>
<xref rid="R16" ref-type="bibr">16</xref>
<xref rid="R19" ref-type="bibr">19</xref>
</sup>
In humans, common genetic variation in the TOLLIP gene is associated with susceptibility to multiple intracellular infections.
<sup>
<xref rid="R20" ref-type="bibr">20</xref>
<xref rid="R22" ref-type="bibr">22</xref>
</sup>
How TOLLIP influences infectious disease host defense within the lung is not well understood. We hypothesized that TOLLIP, acting as a ubiquitin-binding autophagy receptor, negatively regulates the innate immune response after Lp infection, which results in increased susceptibility to LD.</p>
<p id="P5">Host genetic variation influences innate immune responses and susceptibility to many infections.
<sup>
<xref rid="R23" ref-type="bibr">23</xref>
</sup>
Functional polymorphisms in TLR5 and STING are associated with altered cytokine responses and susceptibility to LD, but assessing genetic associations are challenging given the episodic nature of pneumonia outbreaks.
<sup>
<xref rid="R24" ref-type="bibr">24</xref>
,
<xref rid="R25" ref-type="bibr">25</xref>
</sup>
In prior studies, we identified a functionally active SNP at rs5743854 that is associated with decreased TOLLIP mRNA expression in monocytes and increased TNF after TLR2 stimulation.
<sup>
<xref rid="R20" ref-type="bibr">20</xref>
,
<xref rid="R26" ref-type="bibr">26</xref>
</sup>
In this paper, we characterize effect of this variant on Lp-specific macrophage immune responses in a cohort of healthy volunteers and evaluate the genetic association of this variant on LD susceptibility in a second well-characterized cohort from the Netherlands. Overall, using a mouse model, cellular studies, human cellular immunology, and a case-control population study of highly exposed individuals, we herein evaluate the role of TOLLIP on Lp pathogenesis and critical host immune mechanisms of control.</p>
</sec>
<sec id="S2">
<title>Methods</title>
<sec id="S3">
<title>Human Subjects</title>
<p id="P6">Approval for human study protocols was obtained from the human subjects’ review boards at the University of Amsterdam Medical Center and the University of Washington Medical Center. All participants gave written informed consent. Genomic DNA was purified form peripheral blood leukocytes from 10ml of blood. Enrollment of the cases and controls from a Legionnaires’ disease (LD) outbreak at a flower show in the Netherlands was described previously.
<sup>
<xref rid="R25" ref-type="bibr">25</xref>
,
<xref rid="R27" ref-type="bibr">27</xref>
</sup>
Of the 188 cases identified in the original investigation of the flower show outbreak, 141 consented for the study. 18 individuals died and no DNA was available for genotyping. 88 cases were available with both DNA and epidemiologic data for TOLLIP genotyping. Control subjects (N=309) were drawn from the exhibitioners who worked at the same flower show and were at high risk for exposure to
<italic>Legionella pneumophila.</italic>
Studies in Seattle included 62 healthy volunteers who donated peripheral blood for immunogenetic analysis. The ethnic composition of these subjects was 73% Caucasian (45/62) and 27% East Asian (17/62).</p>
</sec>
<sec id="S4">
<title>Genotyping</title>
<p id="P7">Genomic DNA was isolated from whole blood and genotyping of selected SNPs was performed using a Fluidigm Biomark 96 × 96 chip (Fluidigm, Inc.). Cluster plots were visually inspected to ensure accurate genotyping calls. SNPs were manually assessed for data quality and only high-quality calls were accepted. 88 cases and 309 controls had high-quality genotyping data available for analysis. Genotypes were assessed for HWE with a Chi-square test comparing observed and expected frequencies in the control population. No SNPs violated HWE (P<0.001).</p>
</sec>
<sec id="S5">
<title>Genetic Analysis</title>
<p id="P8">We assessed the genetic association between the TOLLIP rs5743854 G/G genotype and Legionnaires’ disease with a recessive genetic model using Stata 13 (Stata Corp, College Station, TX) and the user-written package “genass.”
<sup>
<xref rid="R28" ref-type="bibr">28</xref>
</sup>
</p>
</sec>
<sec id="S6">
<title>Reagents</title>
<p id="P9">RPMI Medium 1640 and DMEM was purchased from Invitrogen (Carlsbad, CA.). Ultrapure LPS was purified from
<italic>Salmonella minnesota</italic>
R595 (List Biological Laboratories). Flagellin C (FliC) was purified from
<italic>Salmonella typhimurium</italic>
strain TH4778, which is
<italic>flijB/fliC+.</italic>
<sup>
<xref rid="R29" ref-type="bibr">29</xref>
</sup>
Flagellin A (FlaA) was purified from
<italic>L. pneumophila</italic>
Corby strain by the same method with bacteria grown as described below on buffered charcoal yeast extract (BCYE) agar plates. Bone marrow was harvested from mice and grown in DMEM supplemented with 10% heat inactivated FCS (Atlas Bio, Fort Collins, CO) and 20% LCL-conditioned medium. Bone marrow-derived macrophages (BMDM) were used after 4–10 days of culture. Bronchoalveolar fluid was obtained by intratracheal lavage with cold PBS (10ml). Cells were then plated in RPMI 1640 supplemented with 10% heat-inactivated FCS. After a 4hr adherence step, the cells were washed six times with PBS before stimulation immediately or the next day.</p>
</sec>
<sec id="S7">
<title>Microbiology</title>
<p id="P10">
<italic>Legionella pneumophila</italic>
(Lp) was cultured in buffered charcoal yeast extract (BCYE) medium was prepared with α-ketoglutarate.
<sup>
<xref rid="R30" ref-type="bibr">30</xref>
</sup>
Bacteria were inoculated from a frozen stock onto BCYE agar for four days at 35 C. Bacterial cultures used for cellular stimulation or replication assays were placed in RPMI culture medium supplemented with 10% FCS and thymidine. Aerosol infection experiments with WT Lp used
<italic>Legionella pneumophila</italic>
Philadelphia-01 strain (ATCC 33152). Macrophage experiments with mutant Lp used the
<italic>Legionella pneumophila</italic>
serogroup 1 JR32-derived (
<italic>rpsLK88R</italic>
and
<italic>hsdR</italic>
) strain lacking either
<italic>flaA</italic>
<italic>flaA</italic>
Lp) or dot/icm locus (Δ
<italic>dotA</italic>
Lp).
<sup>
<xref rid="R31" ref-type="bibr">31</xref>
,
<xref rid="R32" ref-type="bibr">32</xref>
</sup>
</p>
</sec>
<sec id="S8">
<title>Knockout Mouse Generation and Screening</title>
<p id="P11">Embryos from B6.Cg-Tollip
<sup>tm1Kbns</sup>
/Cnrm (
<italic>Tollip</italic>
<sup>−/−</sup>
) mice were obtained from the European Mutant Mouse Archive (
<ext-link ext-link-type="uri" xlink:href="http://www.infrafrontier.eu/">www.infrafrontier.eu</ext-link>
), which were generated by Didierlaurent
<italic>et al.</italic>
<sup>
<xref rid="R33" ref-type="bibr">33</xref>
</sup>
Mice were backcrossed 8 times on C57BL/6J background and were confirmed to be >95% C57BL/6J genetically by screening 150 SNP ancestry informative markers (Jax Genome Scanning Services, Jax, Inc). Genotyping was performed using DNA primers for neomycin (Forward sequence: AGG ATC TCC TGT CAT CTC ACC TTG CTC CTG; Reverse sequence AAG AAC TCG TCA AGA AGG CGA TAG AAG GCG) and the first exon of TOLLIP (Forward sequence: AGC TAC TGG GAG GCC ATA CA; Reverse sequence: CGT GTA CGG GAG ACC CAT TT). TOLLIP protein expression was confirmed in both knockout and control mice by Western blot (
<xref rid="SD1" ref-type="supplementary-material">Supplemental Figure 1</xref>
). TOLLIP antibodies for Western blotting were polyclonal (#4748, Cell Signaling). All wild type control mice were age-matched littermates of
<italic>Tollip</italic>
<sup>−/−</sup>
mice to ensure a common genetic background.</p>
</sec>
<sec id="S9">
<title>Model of pneumonic legionellosis</title>
<p id="P12">The University of Washington Institutional Animal Care and Use Committee approved all animal protocols. Buffered charcoal yeast extract (BCYE) medium was prepared with alpha-ketoglutarate as described elsewhere.
<sup>
<xref rid="R25" ref-type="bibr">25</xref>
</sup>
Bacteria were inoculated from a frozen stock onto BCYE agar for four days at 35C, harvested by rinsing plates with PBS, pelleted by centrifugation, and resuspended in PBS to a concentration of 10
<sup>10</sup>
cfu/ml (estimated by optical density at 540nm and confirmed by quantitative culture).
<sup>
<xref rid="R25" ref-type="bibr">25</xref>
</sup>
The mice were exposed to aerosolized bacteria in a whole animal exposure chamber (Biaera Technologies, Hagerstown, MD) with aerosols generated by a mini-Heart Hi-Flo jet nebulizers (Westmed, Tucson, AZ).
<sup>
<xref rid="R34" ref-type="bibr">34</xref>
</sup>
Bacterial deposition in the lungs was determined from quantitative culture of homogenized lung tissue harvested from mice euthanized with pentobarbital and exsanguinated immediately after aerosol exposure. At subsequent time points, mice were euthanized and exsanguinated for tissue harvests. The trachea was cannulated and the right lung was lavaged with 0.85% saline/0.6mml/L EDTA to determine cell counts and differentials. The left lung was homogenized in PBS and serially diluted in Mueller-Hinton broth for quantitative culture on BCYE agar. The remaining lung homogenate was mixed 1:1 with lysis buffer containing 2x protease inhibitor mixture, incubated for 30min on ice, clarified by centrifugation at 2500rpm, and then the supernatant was saved at −80C.</p>
</sec>
<sec id="S10">
<title>Histology</title>
<p id="P13">To prepare organs for histology, the lung was inflated to 15cm pressure with 4% paraformaldehyde, fixed in the same solution, embedded in paraffin, and then 4μm sections were generated. Sections stained with hematoxylin and eosin were examined by a pathologist blinded to mouse genotype.</p>
</sec>
<sec id="S11">
<title>Cytokine analysis</title>
<p id="P14">Multiplex cytokine analysis was performed as follows: samples of WT and
<italic>Tollip</italic>
<sup>−/−</sup>
mouse bronchoalveolar lavage fluid were thawed on ice and centrifuged at 10,000g for 5–10 minutes to remove particulates. 50μL of each sample was added in triplicate to a 96-well plate. Samples were then added to 50μL of magnetic Simplex beads and incubated with shaking for 1hr at room temperature. Beads were washed 3X and stained with detection antibody cocktail (IFNγ; IL-12p70; IL-13; IL-1β; IL-2; IL-4; IL-5; IL-6; TNF; GM-CSF; IL-18; IL-10; IL-17A; IL-22; IL-23; IL-27; IL-9; GROα; IP-10; MCP-1; MCP-3; MIP-1α; MIP-1β; MIP-2; RANTES; Eotaxin; ThermoFisher Scientific) and incubated with shaking for 30min at room temperature. Beads were washed 3X and incubated with streptavidin-HRP with shaking for 30min at RT. Beads with sample cytokines and detection antibody were resuspended in 120μL of Reading Buffer and cytokine data was acquired immediately on Luminex™ 100/200. Analytes were captured by Ab-coated, fluorochrome-embedded microspheres and detected by biotin-streptavidin-PE using reagents purchased from R&D or Luminex. For single cytokine analysis, concentrations were determined with ELISA (R&D Systems) according to the manufacturer’s instructions.</p>
</sec>
<sec id="S12">
<title>Western blotting</title>
<p id="P15">Cell extracts were prepared from BMDM by lysis with 100μl Cell Extraction Buffer (Life Technologies) along with protease inhibitors (Thermo Scientific). Lysates were stored at −20° C. Western blotting of lysates was performed on 4–15% polyacrylamide gels and transferred onto PVDF membrane. Antibodies included anti-TOLLIP antibody (Pierce PA5–30747) at 1:1000 dilution, anti-GAPDH (Sigma, catalog A2066) at 1:2000 dilution, and anti-rabbit IgG-HRP secondary antibody (Sigma, catalog A0545) at 1:2000 dilution.</p>
</sec>
<sec id="S13">
<title>Statistics</title>
<p id="P16">For in vivo CFU count analysis, comparisons between groups were made by the Mann-Whitney test without presupposition of normality of the data. For mouse experiments, groups of 5 mice were compared with one another unless otherwise indicated. Cytokine measurements and cell counts were compared using a two-sided Students’ t-test. A value of p < 0.05 was considered a statistically significant result. Statistics were calculated using Prism version 7.1 (GraphPad, Inc.).</p>
</sec>
</sec>
<sec id="S14">
<title>Results</title>
<sec id="S15">
<title>Aerosolized lung infection of mice with Lp</title>
<p id="P17">To understand the role of TOLLIP in Lp pathogenesis, we re-derived C57Bl/6 mice lacking the
<italic>Tollip</italic>
gene from embryos and confirmed lack of TOLLIP expression by Western blot (
<xref rid="SD1" ref-type="supplementary-material">Supplemental Figure 1</xref>
). We infected groups of 5 WT and 5
<italic>Tollip</italic>
<sup>−/−</sup>
mice with Lp Philadelphia-1 strain and measured lung CFU at 0, 24, 72, and 144 hours after infection.
<italic>Tollip</italic>
<sup>−/−</sup>
mice demonstrated significantly fewer CFU in the lung compared with WT littermates at 72 and 144hr after infection (
<xref rid="F1" ref-type="fig">Figure 1A</xref>
, mean WT 4.3×10
<sup>5</sup>
CFU, mean
<italic>Tollip</italic>
<sup>−/−</sup>
8.5×10
<sup>4</sup>
CFU at 72hr, p = 0.014). We also examined the recruitment of neutrophils and mononuclear cells to the lungs after infection in these mice. We collected bronchoalveolar lavage (BAL) fluid and measured cell counts at 24, 72, and 144 hours after infection. We did not detect significant differences in cell counts in
<italic>Tollip</italic>
<sup>−/−</sup>
mice at 24 hours after infection, but by 72h after infection significantly fewer PMN were present in BAL samples harvested from
<italic>Tollip</italic>
<sup>−/−</sup>
lungs. (
<xref rid="F1" ref-type="fig">Figure 1B</xref>
, WT mean 2.2×10
<sup>6</sup>
cells/ml, mean
<italic>Tollip</italic>
<sup>−/−</sup>
1.3×10
<sup>6</sup>
cells/ml, p = 0.046). Similarly, monocyte counts were increased in WT mice compared with
<italic>Tollip</italic>
<sup>−/−</sup>
mice after 72hr of infection (
<xref rid="F1" ref-type="fig">Figure 1C</xref>
, mean WT 9.4×10
<sup>5</sup>
cells/ml, mean
<italic>Tollip</italic>
<sup>−/−</sup>
6.4×10
<sup>5</sup>
cells/ml, p = 0.018). After 72h,
<italic>Tollip</italic>
<sup>−/−</sup>
mice demonstrated reduced airspace filling and leukocyte infiltration (
<xref rid="F1" ref-type="fig">Figure 1D</xref>
) compared with controls (
<xref rid="F1" ref-type="fig">Figure 1E</xref>
) by histopathology observations. In summary,
<italic>Tollip</italic>
<sup>−/−</sup>
mice demonstrated accelerated bacterial clearance and decreased pulmonary inflammation after inhalation of Lp compared to WT controls.</p>
</sec>
<sec id="S16">
<title>In Vivo Cytokine Responses After Lp Infection</title>
<p id="P18">Given TOLLIP’s known role regulating innate immune responses, we next evaluated whether TOLLIP influenced lung cytokine concentrations after Lp infection. Twenty-four hours after aerosol infection with 10
<sup>6</sup>
CFU Lp, we euthanized mice (n = 5 per group) and measured cytokine responses from BAL fluid and serum.
<italic>Tollip</italic>
<sup>−/−</sup>
mice demonstrated significantly increased levels of multiple cytokines critical for Lp control in BAL fluid, including IL-1β (
<xref rid="F2" ref-type="fig">Figure 2A</xref>
; p = 0.001), TNF (p = 0.025), IL-12p40 (p = 0.001), and IL-18 (p = 0.04) by ELISA. We also evaluated a panel of 26 cytokines from BAL fluid in WT and
<italic>Tollip</italic>
<sup>−/−</sup>
mice after Lp infection by multiplex array. We found that
<italic>Tollip</italic>
<sup>−/−</sup>
mice produce significantly more IFNγ, IL-12p70, IL-18, IL-6, TNF, IL-22, IL-17A, Eotaxin, IL-27, and IP-10 (p<0.05 with false discovery rate < 1%,
<xref rid="F2" ref-type="fig">Figure 2B</xref>
). We detected significantly decreased MIP-2 in
<italic>Tollip</italic>
<sup>−/−</sup>
mice, but no differences in GM-CSF, IL-23, IL-9, αKC, MCP-1, MCP-3, MIP-1α, and MIP-1β. IL-13, IL-2, IL-4, IL-5, and IL-10 cytokine concentrations were below the limit of detection (data not shown). We did not detect statistically significant differences between WT and
<italic>Tollip</italic>
<sup>−/−</sup>
cytokine concentrations in serum (
<xref rid="F2" ref-type="fig">Figure 2C</xref>
). In summary,
<italic>Tollip</italic>
<sup>−/−</sup>
mice demonstrated broadly increased cytokine responses from BAL fluid but not in serum after Lp infection.</p>
</sec>
<sec id="S17">
<title>Pattern-recognition Receptor (PRR) Responses and TOLLIP</title>
<p id="P19">Macrophages are essential reservoirs for Lp
<italic>in vivo</italic>
<sup>
<xref rid="R35" ref-type="bibr">35</xref>
</sup>
TOLLIP downregulates PRR signaling in macrophages, however, and which specific PRR signaling complexes explain the improved control of Lp infection is not known. We hypothesized that multiple PRRs that are necessary for Lp control, including TLR2, TLR4, NLRC4, and NLRP3, are influenced by TOLLIP in macrophages. To evaluate the role of TOLLIP on TLR signaling, we stimulated WT and
<italic>Tollip</italic>
<sup>−/−</sup>
peritoneal macrophages (PEM) with PAM3 (TLR2/1 agonist) or LPS (TLR4 agonist) for 24 hours, then measured TNF and IL-10 cytokine concentrations from cell culture supernatants by ELISA.
<italic>Tollip</italic>
<sup>−/−</sup>
macrophages secreted increased concentrations of TNF after PAM3 (
<xref rid="F3" ref-type="fig">Figure 3A</xref>
, p = 0.002) or LPS stimulation (
<xref rid="F3" ref-type="fig">Figure 3A</xref>
, p = 0.01) when compared with WT macrophages. Conversely,
<italic>Tollip</italic>
<sup>−/−</sup>
PEM secreted significantly less IL-10 than WT PEM after 24 hours’ stimulation with either PAM3 (p = 0.019) or LPS (p = 0.012,
<xref rid="F3" ref-type="fig">Figure 3B</xref>
).</p>
<p id="P20">We also evaluated the effect of TOLLIP deficiency on NLRP3- and NLRC4-induced cytokine responses. We stimulated WT and
<italic>Tollip</italic>
<sup>−/−</sup>
BMDM with 100pg/ml LPS, followed 2 hours later by nigericin (NLRP3 ligand; 10μg/mL). We found that BMDM isolated from
<italic>Tollip</italic>
<sup>−/−</sup>
mice demonstrated significantly increased IL-1β release when compared to BMDM from WT mice (
<xref rid="F3" ref-type="fig">Figure 3C</xref>
, p = 0.026). Next, we compared IL-1β secretion from BMDM transfected with flagellin (NLRC4 ligand) via coincubation with cationic lipids as compared to bovine serum albumin-transfected BMDM controls. As with nigericin, we found that
<italic>Tollip</italic>
<sup>−/−</sup>
BMDM secreted significantly more IL-1β after overnight incubation (
<xref rid="F3" ref-type="fig">Figure 3D</xref>
, p = 0.005). No BMDM, from either WT or
<italic>Tollip</italic>
<sup>−/−</sup>
mice, produced detectable TNF or IL-6 after flagellin stimulation without transfection (50 ng/ml, data not shown), which is consistent with prior data demonstrating that murine BMDM do not express the flagellin receptor TLR5 on the cell surface.
<sup>
<xref rid="R36" ref-type="bibr">36</xref>
</sup>
These data demonstrate that TOLLIP-deficient macrophages induce increased TNF and IL-1β after TLR and NLR stimulation, responses that may contribute to the
<italic>in vivo</italic>
phenotype observed in
<xref rid="F1" ref-type="fig">Figure 1</xref>
.</p>
</sec>
<sec id="S18">
<title>Cytokine Responses to Live Lp Macrophage Infection</title>
<p id="P21">Lp influences immune activation in macrophages, so we tested the hypothesis that cytokine responses in TOLLIP-deficient macrophages were increased after live Lp infection
<italic>in vitro.</italic>
We plated 10
<sup>5</sup>
BMDM from WT and
<italic>Tollip</italic>
<sup>−/−</sup>
mice and infected them at MOI 10 with wild-type Lp, Δ
<italic>flaA</italic>
Lp, or Δ
<italic>dotA</italic>
Lp that lacks the Type IV secretion system, making them incapable of intracellular replication, and collected supernatants after 24 hours’ infection. As compared to WT BMDM controls, BMDM lacking TOLLIP secreted significantly more TNF after infection with WT (
<xref rid="F4" ref-type="fig">Figure 4A</xref>
, p = 0.025), Δ
<italic>flaA</italic>
Lp (
<xref rid="F4" ref-type="fig">Figure 4A</xref>
, p = 0.004), and Δ
<italic>dotA</italic>
Lp (
<xref rid="F4" ref-type="fig">Figure 4A</xref>
, p = 0.018). Further, IL-1β was increased in
<italic>Tollip</italic>
<sup>−/−</sup>
BMDM after WT Lp (
<xref rid="F4" ref-type="fig">Figure 4B</xref>
, p = 0.047) and Δ
<italic>flaA</italic>
Lp (
<xref rid="F4" ref-type="fig">Figure 4B</xref>
, p = 0.002) infection, but no IL-1β was detected after ΔDotA Lp incubation. IL-6 secretion was not significantly different between WT and Tollip
<sup>−/−</sup>
BMDM after infection with any of the Lp straines tested (
<xref rid="F4" ref-type="fig">Figure 4C</xref>
). These data show that TOLLIP deletion induces more TNF and IL-1β after infection with WT or Δ
<italic>flaA</italic>
Lp, suggesting that flagellin is not necessary for altered Lp cytokine responses by TOLLIP.</p>
</sec>
<sec id="S19">
<title>Intracellular Replication in Murine Macrophages</title>
<p id="P22">Although TOLLIP influences the innate immune response to Lp, many of these responses may be induced by bystander macrophages. Further, Lp induces an immune signature by inhibiting host protein translation.
<sup>
<xref rid="R37" ref-type="bibr">37</xref>
</sup>
We assessed overall control of Lp within macrophages by measuring Lp intracellular replication in macrophages. We infected WT and
<italic>Tollip</italic>
<sup>−/−</sup>
BMDM with Δ
<italic>flaA</italic>
Lp (MOI 0.02), which is replication-competent in macrophages.
<sup>
<xref rid="R38" ref-type="bibr">38</xref>
</sup>
<italic>Tollip</italic>
<sup>−/−</sup>
macrophages markedly suppressed replication Δ
<italic>flaA</italic>
Lp in comparison with WT BMDM (
<xref rid="F5" ref-type="fig">Figure 5A</xref>
, p < 0.001). These data demonstrate that Lp replication is suppressed within
<italic>Tollip</italic>
<sup>−/−</sup>
macrophages.</p>
</sec>
<sec id="S20">
<title>Nonselective Autophagy in Macrophages</title>
<p id="P23">The mechanism by which TOLLIP influences Lp-specific cytokine responses and controls intracellular replication is not clear. TOLLIP is an autophagy receptor and influences clearance of lipids from atherosclerotic plaques and insoluble protein aggregates in brain tissue.
<sup>
<xref rid="R18" ref-type="bibr">18</xref>
,
<xref rid="R39" ref-type="bibr">39</xref>
</sup>
Macrophages use autophagy for direct antimicrobial killing, but also to dampen immune responses.
<sup>
<xref rid="R40" ref-type="bibr">40</xref>
</sup>
However, the role of TOLLIP on nonspecific autophagy in macrophages has not been established. We cultured THP-1 cells with TOLLIP deleted (TOLLIP-KO,
<xref rid="SD1" ref-type="supplementary-material">Supplemental Figure 2</xref>
) using CRISPR-Cas9 gene editing, along with empty vector control (EV) cells, for four hours in a nutrient rich (RPMI supplemented with 10% FCS) or starvation (EBSS) medium. Under typical conditions, starvation inhibits mTOR, a constitutive inhibitor of autophagic flux, leading to transient induction and organization of LC3-II, which forms the structural backbone of the autophagosome and attracts autophagy receptors to coordinate fusion with the lysosome.
<sup>
<xref rid="R41" ref-type="bibr">41</xref>
</sup>
Starvation of EV cells for four hours induced increased numbers of LC3
<sup>+</sup>
autophagosomes (
<xref rid="F5" ref-type="fig">Figure 5B</xref>
and
<xref rid="F5" ref-type="fig">5C</xref>
, p < 0.001) compared to starvation of TOLLIP-KO cells. There were no significant differences in the number of autophagosomes present in EV and TOLLIP-KO cells in nutrient-rich conditions. Furthermore, EV cells, but not TOLLIP-KO cells incubated in starvation medium (EBSS) for four hours demonstrated significantly more LC3-II protein expression than EV cells incubated with nutrient-rich media (RPMI;
<xref rid="F5" ref-type="fig">Figure 5D</xref>
and
<xref rid="F5" ref-type="fig">5E</xref>
, p < 0.05). Addition of chloroquine, a known inhibitor of lysosomal fusion and LC3 degradation, led to increased LC3-II levels in both EV and TOLLIP-KO cells (
<xref rid="F5" ref-type="fig">Figure 5D</xref>
and
<xref rid="F5" ref-type="fig">5E</xref>
). We did not detect differences in ubiquitin staining between EV and TOLLIP-KO cells (
<xref rid="SD1" ref-type="supplementary-material">Supplemental Figure 3</xref>
). This data suggests that TOLLIP deficiency leads to reduced autophagic flux in monocytes and offers insight into the potential role of TOLLIP on specific autophagy functions.</p>
</sec>
<sec id="S21">
<title>TOLLIP SNP rs5743854 is Associated with Increased Cytokine Responses to Live Lp</title>
<p id="P24">In prior studies, we characterized a functionally active promoter-region SNP in the TOLLIP gene region, rs5743854, that is associated with decreased TOLLIP expression in monocytes.
<sup>
<xref rid="R42" ref-type="bibr">42</xref>
</sup>
We hypothesized that macrophages from individuals with this SNP would be associated with increased TNF responses after WT Lp and Δ
<italic>flaA</italic>
Lp infection. We isolated peripheral blood mononuclear cells from 62 healthy volunteers in the Seattle area and stimulated them with live WT and Δ
<italic>flaA</italic>
Lp (MOI 1) overnight, then measured IL-6 and TNF concentrations in cellular supernatants. Individuals with rs5743854 G/G genotype demonstrated increased TNF responses to WT Lp (
<xref rid="F6" ref-type="fig">Figure 6A</xref>
p = 0.013; C/C = 34, G/C = 24, G/G = 4) but not ΔflaA Lp (
<xref rid="F6" ref-type="fig">Figure 6B</xref>
, p = 0.82) when compared to those with either C/C or G/C genotype. Similarly, the same individuals demonstrated increased IL-6 responses to WT Lp (
<xref rid="F6" ref-type="fig">Figure 6C</xref>
, p = 0.0007) and Δ
<italic>flaA</italic>
Lp (
<xref rid="F6" ref-type="fig">Figure 6D</xref>
, p = 0.037). Thus, the presence of a functionally active common genetic variant that is associated with decreased TOLLIP mRNA expression in monocytes is also associated with increased TNF secretion after Lp infection.</p>
</sec>
<sec id="S22">
<title>TOLLIP SNP rs5743854 is Associated with Decreased Risk for LD</title>
<p id="P25">We further hypothesized that TOLLIP-deficiency (genotype G/G) is associated with susceptibility to LD in humans.
<sup>
<xref rid="R16" ref-type="bibr">16</xref>
,
<xref rid="R18" ref-type="bibr">18</xref>
</sup>
We performed a candidate gene case-control study on a cohort of individuals (N=88 LD cases and 309 controls) were exposed to Lp during a flower show.
<sup>
<xref rid="R43" ref-type="bibr">43</xref>
</sup>
The TOLLIP SNP rs5743854 G/G genotype was associated with decreased LD susceptibility in a recessive model (p = 0.032; OR 0.44, 95% confidence interval (CI) 0.22 – 0.96). After adjustment for smoking, age, gender, and comorbidities as covariates, the significance of this association increased (
<xref rid="T1" ref-type="table">Table 1</xref>
, p = 0.008, OR 0.36, 95% CI 0.16 – 0.76). We evaluated the this association in relation to other LD susceptibility SNPs in TLR5
<sup>
<xref rid="R25" ref-type="bibr">25</xref>
</sup>
and in STING.
<sup>
<xref rid="R24" ref-type="bibr">24</xref>
</sup>
We conducted a logistic regression evaluating the association between rs5743854 G/G genotype and LD with presence of the TLR5 stop codon allele or the HAQ allele of STING as covariates. In the presence of inactivated TLR5, the association of rs5743854 G/G genotype remains robust (p = 0.009, 95% CI 0.16 – 0.77, but the presence of STING deficiency abolishes the association (p = 0.273, 95% CI 0.17 – 1.65). Overall, these data demonstrate that the presence of the TOLLIP deficiency SNP is associated with increased cytokine responses after Lp infection and decreased risk for LD after exposure in a well-characterized case-control study.</p>
</sec>
</sec>
<sec id="S23">
<title>Discussion</title>
<p id="P26">Deletion of the TOLLIP gene in mice leads to faster clearance of Lp after aerosol infection and increased proinflammatory cytokine responses within the lungs of Lp-infected mice. Importantly, TOLLIP-deficient macrophages are resistant to Lp intracellular replication independently of flagellin, suggesting that TOLLIP acts independently of TLR5 and NLRC4 to influence immune responses. We link this finding to human immune responses and susceptibility to LD by demonstrating that a common, functionally active variant associated with TOLLIP deficiency (rs5743854 G/G genotype) is associated with increased cytokine responses to Lp and decreased risk for developing LD in a genetic case-control cohort from the Netherlands. Thus, we found that TOLLIP acts broadly to diminish innate immune responses and influence Lp pathogenesis.</p>
<p id="P27">We hypothesize that TOLLIP influences TLR2 signaling primarily to influence Lp disease. Lp is recognized by TLR2 (via Lp peptidoglycan-associated lipoprotein), TLR5, NLRP3, NLRC4, and AIM2. TNF is increased and IL-10 is decreased in TOLLIP-deficient macrophages after TLR2 stimulation, which both suppress intracellular Lp replication. Infection of
<italic>Tollip</italic>
<sup>−/−</sup>
macrophages with Δ
<italic>flaA</italic>
Lp induces increased TNF and IL-1β and diminished intracellular replication, further supporting the critical effects of TOLLIP on TLR2 activity as sufficient for TOLLIP’s effect on Lp pathogenesis. Several questions remain, however. We demonstrate that TOLLIP acts upon TLR signaling and also influences IL-1β induction, even after infection with Δ
<italic>flaA</italic>
Lp. IL-1β is induced by the inflammasome, and inflammasome activation requires two signals: a priming signal, often MyD88-dependent, that upregulates expression of inflammasome components and pro-IL-1β, followed by an activation signal induced by ATP or nigericin for NLRP3, or cytosolic flagellin for NLRC4.
<sup>
<xref rid="R44" ref-type="bibr">44</xref>
</sup>
TOLLIP-deficient macrophages demonstrate hyperactive induction of the first signal. TOLLIP may diminish the second signal of inflammasome activation as well. TOLLIP contains the CUE ubiquitin-binding domain, which has multiple binding partners and may thus influence signaling across multiple innate immune pathways. Other autophagy proteins, such as Atg16L, diminish inflammasome activation.
<sup>
<xref rid="R45" ref-type="bibr">45</xref>
</sup>
Further, linear ubiquitin binding accessory protein SHARPIN suppresses both TLR and inflammasome activation directly.
<sup>
<xref rid="R46" ref-type="bibr">46</xref>
</sup>
Detailed study of TOLLIP’s activity after intracellular infection may provide insight into how ubiquitin signaling may influence innate immunity.</p>
<p id="P28">Lp avoids antimicrobial killing via multiple mechanisms, including by impairing autophagy.
<sup>
<xref rid="R47" ref-type="bibr">47</xref>
</sup>
However, we found that TOLLIP deficient macrophages demonstrated impaired starvation-induced autophagic flux, while simultaneously inhibiting Lp replication. To reconcile these seemingly contradictory data, we hypothesize that TOLLIP deficiency impairs the capacity for autophagy-induced immune inhibition. Depletion of critical autophagy proteins LC3 or Beclin leads to increased IL-1β production via two mechanisms: 1) decreased degradation of pro-IL-1β and 2) impaired degradation of inflammasome components.
<sup>
<xref rid="R48" ref-type="bibr">48</xref>
</sup>
If TOLLIP similarly influences immune responses, then different autophagy receptors may impact specific functions. One of the challenges to using small molecule autophagy inhibitors
<italic>in vivo</italic>
are side effects from off target functions. Therefore, this insight may identify novel drug targets that influence autophagy innate immune responses with minimal non-immune activity.</p>
<p id="P29">Intriguingly, we identified that TLR2 signaling in the absence of TOLLIP induces increased TNF and pro-inflammatory cytokines but diminished anti-inflammatory IL-10. The mechanism of this discrepancy is unclear. First, TOLLIP may selectively suppresses proinflammatory cytokine production in the TLR signaling cascade via novel, non-IRAK binding partners. Selective TRIF signaling, which occurs via nonclassical TLR4 activation induces Type I interferon activation followed by IL-10 induction.
<sup>
<xref rid="R49" ref-type="bibr">49</xref>
</sup>
Alternately, induction of ER stress from infection in the setting TOLLIP deficiency may alter the cytokine balance in macrophages. ER stress occurs during the unfolded protein response (UPR), and a characteristic of ER stress is the selective induction of proinflammatory cytokines and inflammation.
<sup>
<xref rid="R50" ref-type="bibr">50</xref>
</sup>
TOLLIP is a critical receptor for recycling insoluble protein aggregates, suggesting its importance in the UPR.
<sup>
<xref rid="R18" ref-type="bibr">18</xref>
</sup>
Further understanding of how TOLLIP selectively influences proinflammatory cytokine induction will provide novel insights into immune regulation.</p>
<p id="P30">TOLLIP SNP rs5743854 was associated with increased cytokine responses to Lp and decreased susceptibility to LD. This finding is consistent with prior observations that the TOLLIP rs5743854 G allele was functionally active, associated with decreased TOLLIP mRNA expression in monocytes, and altered the innate and adaptive immune responses to mycobacteria.
<sup>
<xref rid="R26" ref-type="bibr">26</xref>
</sup>
Currently, genetic variation in TOLLIP is also associated with susceptibility to tuberculosis, leprosy, leishmaniasis, and malaria. However, presence of the G/G allele is associated with increased risk for tuberculosis but decreased risk for LD and increased proinflammatory cytokine responses after infection with both pathogens. Given this well-characterized phenotype, we believe that the differences in susceptibility demonstrate the differential survival strategies of these two pathogens. Lp induces decreased inflammation to survive but
<italic>M. tuberculosis</italic>
requires inflammation in later stages of disease. Further comparative studies across diseases will improve our understanding of the role of inflammation in multiple infections.</p>
<p id="P31">Limitations of our study included the possible confounding of the genetic findings by heterogeneity of the population substructure.
<sup>
<xref rid="R51" ref-type="bibr">51</xref>
</sup>
We performed logistic regression by self-identified ethnicity and comorbidity and report these results in this paper. Another possible limitation could be misclassification of cases and controls. However, study participants were followed for a year to determine case status. rs5743854 G/G genotype is a functionally active SNP associated with TOLLIP deficiency in monocytes
<sup>
<xref rid="R26" ref-type="bibr">26</xref>
</sup>
and is associated with increased Lp-specific PBMC cytokine responses, suggesting that this data represents effects of TOLLIP deficiency. We used different Lp strains for
<italic>in vivo</italic>
infection experiments and macrophage assays – Philadelphia-1 and JR32 for Δ
<italic>flaA</italic>
and Δ
<italic>dotA.</italic>
These strains demonstrate some differences in the host response, apart from the presence of flagellin, including the presence of the
<italic>lvh</italic>
locus.
<sup>52−54</sup>
We confirmed TOLLIP’s effect using specific ligands and live bacteria, and we controlled each infection with a comparison with WT littermates. Despite this, TOLLIP diminished TLR2-dependent activity and impaired the immune response to Lp
<italic>in vivo</italic>
and in human populations.</p>
<p id="P32">In this paper, we demonstrate that TOLLIP deficiency increases Lp clearance in macrophages and
<italic>in vivo</italic>
by influencing TLR2 activity. We also found that presence of a known TOLLIP deficiency genotype is associated with decreased susceptibility to LD. Further studies targeting TOLLIP as a target for therapeutics may lead to novel treatments for intracellular infections and inflammatory disorders.</p>
</sec>
<sec sec-type="supplementary-material" id="SM1">
<title>Supplementary Material</title>
<supplementary-material content-type="local-data" id="SD1">
<label>1</label>
<media xlink:href="NIHMS1536669-supplement-1.pdf" orientation="portrait" xlink:type="simple" id="d36e1003" position="anchor"></media>
</supplementary-material>
</sec>
</body>
<back>
<ack id="S24">
<title>Acknowledgements</title>
<p id="P33">We would like to thank the families who participated in the study. We thank Kevin Hybiske, Meghan Zuck, and Stephen Hawn for valuable intellectual contributions and assay development. We would also acknowledge the support of the Cell Analysis Flow Cytometry and Imaging Core in the Department of Immunology at the University of Washington. This work was supported by R01 AI136971, K08 AI102971, and VA R&D to JAS, R01 AI093646 to SJS, K24 AI137310 to TRH, K08 HL127075 to CFH. Lp strains were a gift of Klaus Heuner and Russell Vance.</p>
</ack>
<fn-group>
<fn fn-type="COI-statement" id="FN2">
<p id="P34">Conflict of Interest: The authors declare no financial or personal conflicts of interest to report.</p>
</fn>
</fn-group>
<ref-list>
<title>References</title>
<ref id="R1">
<label>1.</label>
<mixed-citation publication-type="journal">
<name>
<surname>Phin</surname>
<given-names>N</given-names>
</name>
,
<name>
<surname>Parry-Ford</surname>
<given-names>F</given-names>
</name>
,
<name>
<surname>Harrison</surname>
<given-names>T</given-names>
</name>
,
<name>
<surname>Stagg</surname>
<given-names>HR</given-names>
</name>
,
<name>
<surname>Zhang</surname>
<given-names>N</given-names>
</name>
,
<name>
<surname>Kumar</surname>
<given-names>K</given-names>
</name>
<etal></etal>
<article-title>Epidemiology and clinical management of Legionnaires’ disease</article-title>
.
<source>Lancet Infect Dis</source>
<year>2014</year>
;
<volume>14</volume>
(
<issue>10</issue>
):
<fpage>1011</fpage>
<lpage>1021</lpage>
.
<pub-id pub-id-type="pmid">24970283</pub-id>
</mixed-citation>
</ref>
<ref id="R2">
<label>2.</label>
<mixed-citation publication-type="journal">
<name>
<surname>Dominguez</surname>
<given-names>A</given-names>
</name>
,
<name>
<surname>Alvarez</surname>
<given-names>J</given-names>
</name>
,
<name>
<surname>Sabria</surname>
<given-names>M</given-names>
</name>
,
<name>
<surname>Carmona</surname>
<given-names>G</given-names>
</name>
,
<name>
<surname>Torner</surname>
<given-names>N</given-names>
</name>
,
<name>
<surname>Oviedo</surname>
<given-names>M</given-names>
</name>
<etal></etal>
<article-title>Factors influencing the case-fatality rate of Legionnaires’ disease</article-title>
.
<source>Int J Tuberc Lung Dis</source>
<year>2009</year>
;
<volume>13</volume>
(
<issue>3</issue>
):
<fpage>407</fpage>
<lpage>412</lpage>
.
<pub-id pub-id-type="pmid">19275805</pub-id>
</mixed-citation>
</ref>
<ref id="R3">
<label>3.</label>
<mixed-citation publication-type="journal">
<name>
<surname>Horwitz</surname>
<given-names>MA</given-names>
</name>
.
<article-title>Phagocytosis of the Legionnaires’ disease bacterium (Legionella pneumophila) occurs by a novel mechanism: engulfment within a pseudopod coil</article-title>
.
<source>Cell</source>
<year>1984</year>
;
<volume>36</volume>
(
<issue>1</issue>
):
<fpage>27</fpage>
<lpage>33</lpage>
.
<pub-id pub-id-type="pmid">6692469</pub-id>
</mixed-citation>
</ref>
<ref id="R4">
<label>4.</label>
<mixed-citation publication-type="journal">
<name>
<surname>Bornstein</surname>
<given-names>N</given-names>
</name>
,
<name>
<surname>Marmet</surname>
<given-names>D</given-names>
</name>
,
<name>
<surname>Dumaine</surname>
<given-names>MH</given-names>
</name>
,
<name>
<surname>Surgot</surname>
<given-names>M</given-names>
</name>
,
<name>
<surname>Fleurette</surname>
<given-names>J</given-names>
</name>
.
<article-title>Detection of flagella in 278 Legionella strains by latex reagent sensitized with antiflagellum immunoglobulins</article-title>
.
<source>J Clin Microbiol</source>
<year>1991</year>
;
<volume>29</volume>
(
<issue>5</issue>
):
<fpage>953</fpage>
<lpage>956</lpage>
.
<pub-id pub-id-type="pmid">2056063</pub-id>
</mixed-citation>
</ref>
<ref id="R5">
<label>5.</label>
<mixed-citation publication-type="journal">
<name>
<surname>Girard</surname>
<given-names>R</given-names>
</name>
,
<name>
<surname>Pedron</surname>
<given-names>T</given-names>
</name>
,
<name>
<surname>Uematsu</surname>
<given-names>S</given-names>
</name>
,
<name>
<surname>Balloy</surname>
<given-names>V</given-names>
</name>
,
<name>
<surname>Chignard</surname>
<given-names>M</given-names>
</name>
,
<name>
<surname>Akira</surname>
<given-names>S</given-names>
</name>
<etal></etal>
<article-title>Lipopolysaccharides from Legionella and Rhizobium stimulate mouse bone marrow granulocytes via Toll-like receptor 2</article-title>
.
<source>J Cell Sci</source>
<year>2003</year>
;
<volume>116</volume>
(
<issue>Pt 2</issue>
):
<fpage>293</fpage>
<lpage>302</lpage>
.
<pub-id pub-id-type="pmid">12482915</pub-id>
</mixed-citation>
</ref>
<ref id="R6">
<label>6.</label>
<mixed-citation publication-type="journal">
<name>
<surname>Sherwood</surname>
<given-names>RK</given-names>
</name>
,
<name>
<surname>Roy</surname>
<given-names>CR</given-names>
</name>
.
<article-title>Autophagy Evasion and Endoplasmic Reticulum Subversion: The Yin and Yang of Legionella Intracellular Infection</article-title>
.
<source>Annu Rev Microbiol</source>
<year>2016</year>
;
<volume>70</volume>
:
<fpage>413</fpage>
<lpage>433</lpage>
.
<pub-id pub-id-type="pmid">27607556</pub-id>
</mixed-citation>
</ref>
<ref id="R7">
<label>7.</label>
<mixed-citation publication-type="journal">
<name>
<surname>Fernandez-Moreira</surname>
<given-names>E</given-names>
</name>
,
<name>
<surname>Helbig</surname>
<given-names>JH</given-names>
</name>
,
<name>
<surname>Swanson</surname>
<given-names>MS</given-names>
</name>
.
<article-title>Membrane vesicles shed by Legionella pneumophila inhibit fusion of phagosomes with lysosomes</article-title>
.
<source>Infect Immun</source>
<year>2006</year>
;
<volume>74</volume>
(
<issue>6</issue>
):
<fpage>3285</fpage>
<lpage>3295</lpage>
.
<pub-id pub-id-type="pmid">16714556</pub-id>
</mixed-citation>
</ref>
<ref id="R8">
<label>8.</label>
<mixed-citation publication-type="journal">
<name>
<surname>Hempstead</surname>
<given-names>AD</given-names>
</name>
,
<name>
<surname>Isberg</surname>
<given-names>RR</given-names>
</name>
.
<article-title>Inhibition of host cell translation elongation by Legionella pneumophila blocks the host cell unfolded protein response</article-title>
.
<source>Proceedings of the National Academy of Sciences of the United States of America</source>
<year>2015</year>
;
<volume>112</volume>
(
<issue>49</issue>
):
<fpage>E6790</fpage>
<lpage>6797</lpage>
.
<pub-id pub-id-type="pmid">26598709</pub-id>
</mixed-citation>
</ref>
<ref id="R9">
<label>9.</label>
<mixed-citation publication-type="journal">
<name>
<surname>Ziltener</surname>
<given-names>P</given-names>
</name>
,
<name>
<surname>Reinheckel</surname>
<given-names>T</given-names>
</name>
,
<name>
<surname>Oxenius</surname>
<given-names>A</given-names>
</name>
.
<article-title>Neutrophil and Alveolar Macrophage-Mediated Innate Immune Control of Legionella pneumophila Lung Infection via TNF and ROS</article-title>
.
<source>PLoS Pathog</source>
<year>2016</year>
;
<volume>12</volume>
(
<issue>4</issue>
):
<fpage>e1005591</fpage>
.
<pub-id pub-id-type="pmid">27105352</pub-id>
</mixed-citation>
</ref>
<ref id="R10">
<label>10.</label>
<mixed-citation publication-type="journal">
<name>
<surname>Kawamoto</surname>
<given-names>Y</given-names>
</name>
,
<name>
<surname>Morinaga</surname>
<given-names>Y</given-names>
</name>
,
<name>
<surname>Kimura</surname>
<given-names>Y</given-names>
</name>
,
<name>
<surname>Kaku</surname>
<given-names>N</given-names>
</name>
,
<name>
<surname>Kosai</surname>
<given-names>K</given-names>
</name>
,
<name>
<surname>Uno</surname>
<given-names>N</given-names>
</name>
<etal></etal>
<article-title>TNF-alpha inhibits the growth of Legionella pneumophila in airway epithelial cells by inducing apoptosis</article-title>
.
<source>J Infect Chemother</source>
<year>2017</year>
;
<volume>23</volume>
(
<issue>1</issue>
):
<fpage>51</fpage>
<lpage>55</lpage>
.
<pub-id pub-id-type="pmid">27865699</pub-id>
</mixed-citation>
</ref>
<ref id="R11">
<label>11.</label>
<mixed-citation publication-type="journal">
<name>
<surname>Akamine</surname>
<given-names>M</given-names>
</name>
,
<name>
<surname>Higa</surname>
<given-names>F</given-names>
</name>
,
<name>
<surname>Arakaki</surname>
<given-names>N</given-names>
</name>
,
<name>
<surname>Kawakami</surname>
<given-names>K</given-names>
</name>
,
<name>
<surname>Takeda</surname>
<given-names>K</given-names>
</name>
,
<name>
<surname>Akira</surname>
<given-names>S</given-names>
</name>
<etal></etal>
<article-title>Differential roles of Toll-like receptors 2 and 4 in in vitro responses of macrophages to Legionella pneumophila</article-title>
.
<source>Infect Immun</source>
<year>2005</year>
;
<volume>73</volume>
(
<issue>1</issue>
):
<fpage>352</fpage>
<lpage>361</lpage>
.
<pub-id pub-id-type="pmid">15618172</pub-id>
</mixed-citation>
</ref>
<ref id="R12">
<label>12.</label>
<mixed-citation publication-type="journal">
<name>
<surname>Molofsky</surname>
<given-names>AB</given-names>
</name>
,
<name>
<surname>Byrne</surname>
<given-names>BG</given-names>
</name>
,
<name>
<surname>Whitfield</surname>
<given-names>NN</given-names>
</name>
,
<name>
<surname>Madigan</surname>
<given-names>CA</given-names>
</name>
,
<name>
<surname>Fuse</surname>
<given-names>ET</given-names>
</name>
,
<name>
<surname>Tateda</surname>
<given-names>K</given-names>
</name>
<etal></etal>
<article-title>Cytosolic recognition of flagellin by mouse macrophages restricts Legionella pneumophila infection</article-title>
.
<source>J Exp Med</source>
<year>2006</year>
;
<volume>203</volume>
(
<issue>4</issue>
):
<fpage>1093</fpage>
<lpage>1104</lpage>
.
<pub-id pub-id-type="pmid">16606669</pub-id>
</mixed-citation>
</ref>
<ref id="R13">
<label>13.</label>
<mixed-citation publication-type="journal">
<name>
<surname>Zamboni</surname>
<given-names>DS</given-names>
</name>
,
<name>
<surname>Kobayashi</surname>
<given-names>KS</given-names>
</name>
,
<name>
<surname>Kohlsdorf</surname>
<given-names>T</given-names>
</name>
,
<name>
<surname>Ogura</surname>
<given-names>Y</given-names>
</name>
,
<name>
<surname>Long</surname>
<given-names>EM</given-names>
</name>
,
<name>
<surname>Vance</surname>
<given-names>RE</given-names>
</name>
<etal></etal>
<article-title>The Birc1e cytosolic pattern-recognition receptor contributes to the detection and control of Legionella pneumophila infection</article-title>
.
<source>Nat Immunol</source>
<year>2006</year>
;
<volume>7</volume>
(
<issue>3</issue>
):
<fpage>318</fpage>
<lpage>325</lpage>
.
<pub-id pub-id-type="pmid">16444259</pub-id>
</mixed-citation>
</ref>
<ref id="R14">
<label>14.</label>
<mixed-citation publication-type="journal">
<name>
<surname>Hawn</surname>
<given-names>TR</given-names>
</name>
,
<name>
<surname>Berrington</surname>
<given-names>WR</given-names>
</name>
,
<name>
<surname>Smith</surname>
<given-names>IA</given-names>
</name>
,
<name>
<surname>Uematsu</surname>
<given-names>S</given-names>
</name>
,
<name>
<surname>Akira</surname>
<given-names>S</given-names>
</name>
,
<name>
<surname>Aderem</surname>
<given-names>A</given-names>
</name>
<etal></etal>
<article-title>Altered inflammatory responses in TLR5-deficient mice infected with Legionella pneumophila</article-title>
.
<source>Journal of immunology (Baltimore, Md: 1950)</source>
<year>2007</year>
;
<volume>179</volume>
(
<issue>10</issue>
):
<fpage>6981</fpage>
<lpage>6987</lpage>
.</mixed-citation>
</ref>
<ref id="R15">
<label>15.</label>
<mixed-citation publication-type="journal">
<name>
<surname>Zhao</surname>
<given-names>Y</given-names>
</name>
,
<name>
<surname>Yang</surname>
<given-names>J</given-names>
</name>
,
<name>
<surname>Shi</surname>
<given-names>J</given-names>
</name>
,
<name>
<surname>Gong</surname>
<given-names>YN</given-names>
</name>
,
<name>
<surname>Lu</surname>
<given-names>Q</given-names>
</name>
,
<name>
<surname>Xu</surname>
<given-names>H</given-names>
</name>
<etal></etal>
<article-title>The NLRC4 inflammasome receptors for bacterial flagellin and type III secretion apparatus</article-title>
.
<source>Nature</source>
<year>2011</year>
;
<volume>477</volume>
(
<issue>7366</issue>
):
<fpage>596</fpage>
<lpage>600</lpage>
.
<pub-id pub-id-type="pmid">21918512</pub-id>
</mixed-citation>
</ref>
<ref id="R16">
<label>16.</label>
<mixed-citation publication-type="journal">
<name>
<surname>Burns</surname>
<given-names>K</given-names>
</name>
,
<name>
<surname>Clatworthy</surname>
<given-names>J</given-names>
</name>
,
<name>
<surname>Martin</surname>
<given-names>L</given-names>
</name>
,
<name>
<surname>Martinon</surname>
<given-names>F</given-names>
</name>
,
<name>
<surname>Plumpton</surname>
<given-names>C</given-names>
</name>
,
<name>
<surname>Maschera</surname>
<given-names>B</given-names>
</name>
<etal></etal>
<article-title>Tollip, a new component of the IL-1RI pathway, links IRAK to the IL-1 receptor</article-title>
.
<source>Nature cell biology</source>
<year>2000</year>
;
<volume>2</volume>
(
<issue>6</issue>
):
<fpage>346</fpage>
<lpage>351</lpage>
.
<pub-id pub-id-type="pmid">10854325</pub-id>
</mixed-citation>
</ref>
<ref id="R17">
<label>17.</label>
<mixed-citation publication-type="journal">
<name>
<surname>Zhang</surname>
<given-names>G</given-names>
</name>
,
<name>
<surname>Ghosh</surname>
<given-names>S</given-names>
</name>
.
<article-title>Negative Regulation of Toll-like Receptor-mediated Signaling by Tollip</article-title>
.
<source>Journal of Biological Chemistry</source>
<year>2002</year>
;
<volume>277</volume>
(
<issue>9</issue>
):
<fpage>7059</fpage>
<lpage>7065</lpage>
.
<pub-id pub-id-type="pmid">11751856</pub-id>
</mixed-citation>
</ref>
<ref id="R18">
<label>18.</label>
<mixed-citation publication-type="journal">
<name>
<surname>Lu</surname>
<given-names>K</given-names>
</name>
,
<name>
<surname>Psakhye</surname>
<given-names>I</given-names>
</name>
,
<name>
<surname>Jentsch</surname>
<given-names>S</given-names>
</name>
.
<article-title>Autophagic clearance of polyQ proteins mediated by ubiquitin-Atg8 adaptors of the conserved CUET protein family</article-title>
.
<source>Cell</source>
<year>2014</year>
;
<volume>158</volume>
(
<issue>3</issue>
):
<fpage>549</fpage>
<lpage>563</lpage>
.
<pub-id pub-id-type="pmid">25042851</pub-id>
</mixed-citation>
</ref>
<ref id="R19">
<label>19.</label>
<mixed-citation publication-type="journal">
<name>
<surname>Jongsma</surname>
<given-names>ML</given-names>
</name>
,
<name>
<surname>Berlin</surname>
<given-names>I</given-names>
</name>
,
<name>
<surname>Wijdeven</surname>
<given-names>RH</given-names>
</name>
,
<name>
<surname>Janssen</surname>
<given-names>L</given-names>
</name>
,
<name>
<surname>Janssen</surname>
<given-names>GM</given-names>
</name>
,
<name>
<surname>Garstka</surname>
<given-names>MA</given-names>
</name>
<etal></etal>
<article-title>An ER-Associated Pathway Defines Endosomal Architecture for Controlled Cargo Transport</article-title>
.
<source>Cell</source>
<year>2016</year>
;
<volume>166</volume>
(
<issue>1</issue>
):
<fpage>152</fpage>
<lpage>166</lpage>
.
<pub-id pub-id-type="pmid">27368102</pub-id>
</mixed-citation>
</ref>
<ref id="R20">
<label>20.</label>
<mixed-citation publication-type="journal">
<name>
<surname>Shah</surname>
<given-names>JA</given-names>
</name>
,
<name>
<surname>Vary</surname>
<given-names>JC</given-names>
</name>
,
<name>
<surname>Chau</surname>
<given-names>TT</given-names>
</name>
,
<name>
<surname>Bang</surname>
<given-names>ND</given-names>
</name>
,
<name>
<surname>Yen</surname>
<given-names>NT</given-names>
</name>
,
<name>
<surname>Farrar</surname>
<given-names>JJ</given-names>
</name>
<etal></etal>
<article-title>Human TOLLIP Regulates TLR2 and TLR4 Signaling and Its Polymorphisms Are Associated with Susceptibility to Tuberculosis</article-title>
.
<source>J Immunol</source>
<year>2012</year>
;
<volume>189</volume>
(
<issue>4</issue>
):
<fpage>1737</fpage>
<lpage>1746</lpage>
.
<pub-id pub-id-type="pmid">22778396</pub-id>
</mixed-citation>
</ref>
<ref id="R21">
<label>21.</label>
<mixed-citation publication-type="journal">
<name>
<surname>Araujo</surname>
<given-names>FJ</given-names>
</name>
,
<name>
<surname>Silva</surname>
<given-names>LD</given-names>
</name>
,
<name>
<surname>Mesquita</surname>
<given-names>TG</given-names>
</name>
,
<name>
<surname>Pinheiro</surname>
<given-names>SK</given-names>
</name>
,
<name>
<surname>Vital Wde</surname>
<given-names>S</given-names>
</name>
,
<name>
<surname>Chrusciak-Talhari</surname>
<given-names>A</given-names>
</name>
<etal></etal>
<article-title>Polymorphisms in the TOLLIP Gene Influence Susceptibility to Cutaneous Leishmaniasis Caused by Leishmania guyanensis in the Amazonas State of Brazil</article-title>
.
<source>PLoS Negl Trop Dis</source>
<year>2015</year>
;
<volume>9</volume>
(
<issue>6</issue>
):
<fpage>e0003875</fpage>
.
<pub-id pub-id-type="pmid">26107286</pub-id>
</mixed-citation>
</ref>
<ref id="R22">
<label>22.</label>
<mixed-citation publication-type="journal">
<name>
<surname>Shah</surname>
<given-names>JA</given-names>
</name>
,
<name>
<surname>Berrington</surname>
<given-names>WR</given-names>
</name>
,
<name>
<surname>Vary</surname>
<given-names>JC</given-names>
<suffix>Jr.</suffix>
</name>
,
<name>
<surname>Wells</surname>
<given-names>RD</given-names>
</name>
,
<name>
<surname>Peterson</surname>
<given-names>GJ</given-names>
</name>
,
<name>
<surname>Kunwar</surname>
<given-names>CB</given-names>
</name>
<etal></etal>
<article-title>Genetic Variation in Toll-Interacting Protein Is Associated With Leprosy Susceptibility and Cutaneous Expression of Interleukin 1 Receptor Antagonist</article-title>
.
<source>J Infect Dis</source>
<year>2016</year>
;
<volume>213</volume>
(
<issue>7</issue>
):
<fpage>1189</fpage>
<lpage>1197</lpage>
.
<pub-id pub-id-type="pmid">26610735</pub-id>
</mixed-citation>
</ref>
<ref id="R23">
<label>23.</label>
<mixed-citation publication-type="journal">
<name>
<surname>Casanova</surname>
<given-names>JL</given-names>
</name>
,
<name>
<surname>Abel</surname>
<given-names>L</given-names>
</name>
.
<article-title>The genetic theory of infectious diseases: a brief history and selected illustrations</article-title>
.
<source>Annu Rev Genomics Hum Genet</source>
<year>2013</year>
;
<volume>14</volume>
:
<fpage>215</fpage>
<lpage>243</lpage>
.
<pub-id pub-id-type="pmid">23724903</pub-id>
</mixed-citation>
</ref>
<ref id="R24">
<label>24.</label>
<mixed-citation publication-type="journal">
<name>
<surname>Ruiz-Moreno</surname>
<given-names>JS</given-names>
</name>
,
<name>
<surname>Hamann</surname>
<given-names>L</given-names>
</name>
,
<name>
<surname>Shah</surname>
<given-names>JA</given-names>
</name>
,
<name>
<surname>Verbon</surname>
<given-names>A</given-names>
</name>
,
<name>
<surname>Mockenhaupt</surname>
<given-names>FP</given-names>
</name>
,
<name>
<surname>Puzianowska-Kuznicka</surname>
<given-names>M</given-names>
</name>
<etal></etal>
<article-title>The common HAQ STING variant impairs cGAS-dependent antibacterial responses and is associated with susceptibility to Legionnaires’ disease in humans</article-title>
.
<source>PLoS Pathog</source>
<year>2018</year>
;
<volume>14</volume>
(
<issue>1</issue>
):
<fpage>e1006829</fpage>
.
<pub-id pub-id-type="pmid">29298342</pub-id>
</mixed-citation>
</ref>
<ref id="R25">
<label>25.</label>
<mixed-citation publication-type="journal">
<name>
<surname>Hawn</surname>
<given-names>TR</given-names>
</name>
,
<name>
<surname>Verbon</surname>
<given-names>A</given-names>
</name>
,
<name>
<surname>Lettinga</surname>
<given-names>KD</given-names>
</name>
,
<name>
<surname>Zhao</surname>
<given-names>LP</given-names>
</name>
,
<name>
<surname>Li</surname>
<given-names>SS</given-names>
</name>
,
<name>
<surname>Laws</surname>
<given-names>RJ</given-names>
</name>
<etal></etal>
<article-title>A common dominant TLR5 stop codon polymorphism abolishes flagellin signaling and is associated with susceptibility to legionnaires’ disease</article-title>
.
<source>JExp Med</source>
<year>2003</year>
;
<volume>198</volume>
(
<issue>10</issue>
):
<fpage>1563</fpage>
<lpage>1572</lpage>
.
<pub-id pub-id-type="pmid">14623910</pub-id>
</mixed-citation>
</ref>
<ref id="R26">
<label>26.</label>
<mixed-citation publication-type="journal">
<name>
<surname>Shah</surname>
<given-names>JA</given-names>
</name>
,
<name>
<surname>Musvosvi</surname>
<given-names>M</given-names>
</name>
,
<name>
<surname>Shey</surname>
<given-names>M</given-names>
</name>
,
<name>
<surname>Horne</surname>
<given-names>DJ</given-names>
</name>
,
<name>
<surname>Wells</surname>
<given-names>RD</given-names>
</name>
,
<name>
<surname>Peterson</surname>
<given-names>GJ</given-names>
</name>
<etal></etal>
<article-title>A Functional TOLLIP Variant is Associated with BCG-Specific Immune Responses and Tuberculosis</article-title>
.
<source>Am J Respir Crit Care Med</source>
<year>2017</year>
.</mixed-citation>
</ref>
<ref id="R27">
<label>27.</label>
<mixed-citation publication-type="journal">
<name>
<surname>Den Boer</surname>
<given-names>JW</given-names>
</name>
,
<name>
<surname>Yzerman</surname>
<given-names>EP</given-names>
</name>
,
<name>
<surname>Schellekens</surname>
<given-names>J</given-names>
</name>
,
<name>
<surname>Lettinga</surname>
<given-names>KD</given-names>
</name>
,
<name>
<surname>Boshuizen</surname>
<given-names>HC</given-names>
</name>
,
<name>
<surname>Van Steenbergen</surname>
<given-names>JE</given-names>
</name>
<etal></etal>
<article-title>A large outbreak of Legionnaires’ disease at a flower show, the Netherlands, 1999</article-title>
.
<source>EmergInfectDis</source>
<year>2002</year>
;
<volume>8</volume>
(
<issue>1</issue>
):
<fpage>37</fpage>
<lpage>43</lpage>
.</mixed-citation>
</ref>
<ref id="R28">
<label>28.</label>
<mixed-citation publication-type="journal">
<name>
<surname>Nahid</surname>
<given-names>P</given-names>
</name>
,
<name>
<surname>Horne</surname>
<given-names>DJ</given-names>
</name>
,
<name>
<surname>Jarlsberg</surname>
<given-names>LG</given-names>
</name>
,
<name>
<surname>Reiner</surname>
<given-names>AP</given-names>
</name>
,
<name>
<surname>Osmond</surname>
<given-names>D</given-names>
</name>
,
<name>
<surname>Hopewell</surname>
<given-names>PC</given-names>
</name>
<etal></etal>
<article-title>Racial differences in tuberculosis infection in United States communities: the coronary artery risk development in young adults study</article-title>
.
<source>Clin Infect Dis</source>
<year>2011</year>
;
<volume>53</volume>
(
<issue>3</issue>
):
<fpage>291</fpage>
<lpage>294</lpage>
.
<pub-id pub-id-type="pmid">21765079</pub-id>
</mixed-citation>
</ref>
<ref id="R29">
<label>29.</label>
<mixed-citation publication-type="journal">
<name>
<surname>Ibrahim</surname>
<given-names>GF</given-names>
</name>
,
<name>
<surname>Fleet</surname>
<given-names>GH</given-names>
</name>
,
<name>
<surname>Lyons</surname>
<given-names>MJ</given-names>
</name>
,
<name>
<surname>Walker</surname>
<given-names>RA</given-names>
</name>
.
<article-title>Method for the isolation of highly purified Salmonella flagellins</article-title>
.
<source>J Clin Microbiol</source>
<year>1985</year>
;
<volume>22</volume>
(
<issue>6</issue>
):
<fpage>1040</fpage>
<lpage>1044</lpage>
.
<pub-id pub-id-type="pmid">4066915</pub-id>
</mixed-citation>
</ref>
<ref id="R30">
<label>30.</label>
<mixed-citation publication-type="journal">
<name>
<surname>Edelstein</surname>
<given-names>PH</given-names>
</name>
. [
<article-title>Biological diagnosis of Legionnaire’s disease</article-title>
].
<source>Rev Mal Respir</source>
<year>1984</year>
;
<volume>1</volume>
(
<issue>1</issue>
):
<fpage>11</fpage>
<lpage>14</lpage>
.
<pub-id pub-id-type="pmid">6379782</pub-id>
</mixed-citation>
</ref>
<ref id="R31">
<label>31.</label>
<mixed-citation publication-type="journal">
<name>
<surname>Didierlaurent</surname>
<given-names>A</given-names>
</name>
,
<name>
<surname>Brissoni</surname>
<given-names>B</given-names>
</name>
,
<name>
<surname>Velin</surname>
<given-names>D</given-names>
</name>
,
<name>
<surname>Aebi</surname>
<given-names>N</given-names>
</name>
,
<name>
<surname>Tardivel</surname>
<given-names>A</given-names>
</name>
,
<name>
<surname>Kaslin</surname>
<given-names>E</given-names>
</name>
<etal></etal>
<article-title>Tollip regulates proinflammatory responses to interleukin-1 and lipopolysaccharide</article-title>
.
<source>Mol Cell Biol</source>
<year>2006</year>
;
<volume>26</volume>
(
<issue>3</issue>
):
<fpage>735</fpage>
<lpage>742</lpage>
.
<pub-id pub-id-type="pmid">16428431</pub-id>
</mixed-citation>
</ref>
<ref id="R32">
<label>32.</label>
<mixed-citation publication-type="journal">
<name>
<surname>Walters</surname>
<given-names>KA</given-names>
</name>
,
<name>
<surname>Olsufka</surname>
<given-names>R</given-names>
</name>
,
<name>
<surname>Kuestner</surname>
<given-names>RE</given-names>
</name>
,
<name>
<surname>Wu</surname>
<given-names>X</given-names>
</name>
,
<name>
<surname>Wang</surname>
<given-names>K</given-names>
</name>
,
<name>
<surname>Skerrett</surname>
<given-names>SJ</given-names>
</name>
<etal></etal>
<article-title>Prior infection with Type A Francisella tularensis antagonizes the pulmonary transcriptional response to an aerosolized Toll-like receptor 4 agonist</article-title>
.
<source>BMC Genomics</source>
<year>2015</year>
;
<volume>16</volume>
:
<fpage>874</fpage>
.
<pub-id pub-id-type="pmid">26510639</pub-id>
</mixed-citation>
</ref>
<ref id="R33">
<label>33.</label>
<mixed-citation publication-type="journal">
<name>
<surname>Copenhaver</surname>
<given-names>AM</given-names>
</name>
,
<name>
<surname>Casson</surname>
<given-names>CN</given-names>
</name>
,
<name>
<surname>Nguyen</surname>
<given-names>HT</given-names>
</name>
,
<name>
<surname>Fung</surname>
<given-names>TC</given-names>
</name>
,
<name>
<surname>Duda</surname>
<given-names>MM</given-names>
</name>
,
<name>
<surname>Roy</surname>
<given-names>CR</given-names>
</name>
<etal></etal>
<article-title>Alveolar macrophages and neutrophils are the primary reservoirs for Legionella pneumophila and mediate cytosolic surveillance of type IV secretion</article-title>
.
<source>Infect Immun</source>
<year>2014</year>
;
<volume>82</volume>
(
<issue>10</issue>
):
<fpage>4325</fpage>
<lpage>4336</lpage>
.
<pub-id pub-id-type="pmid">25092908</pub-id>
</mixed-citation>
</ref>
<ref id="R34">
<label>34.</label>
<mixed-citation publication-type="journal">
<name>
<surname>Uematsu</surname>
<given-names>S</given-names>
</name>
,
<name>
<surname>Jang</surname>
<given-names>MH</given-names>
</name>
,
<name>
<surname>Chevrier</surname>
<given-names>N</given-names>
</name>
,
<name>
<surname>Guo</surname>
<given-names>Z</given-names>
</name>
,
<name>
<surname>Kumagai</surname>
<given-names>Y</given-names>
</name>
,
<name>
<surname>Yamamoto</surname>
<given-names>M</given-names>
</name>
<etal></etal>
<article-title>Detection of pathogenic intestinal bacteria by Toll-like receptor 5 on intestinal CD11c+ lamina propria cells</article-title>
.
<source>Nat Immunol</source>
<year>2006</year>
;
<volume>7</volume>
(
<issue>8</issue>
):
<fpage>868</fpage>
<lpage>874</lpage>
.
<pub-id pub-id-type="pmid">16829963</pub-id>
</mixed-citation>
</ref>
<ref id="R35">
<label>35.</label>
<mixed-citation publication-type="journal">
<name>
<surname>Vinzing</surname>
<given-names>M</given-names>
</name>
,
<name>
<surname>Eitel</surname>
<given-names>J</given-names>
</name>
,
<name>
<surname>Lippmann</surname>
<given-names>J</given-names>
</name>
,
<name>
<surname>Hocke</surname>
<given-names>AC</given-names>
</name>
,
<name>
<surname>Zahlten</surname>
<given-names>J</given-names>
</name>
,
<name>
<surname>Slevogt</surname>
<given-names>H</given-names>
</name>
<etal></etal>
<article-title>NAIP and Ipaf control Legionella pneumophila replication in human cells</article-title>
.
<source>J Immunol</source>
<year>2008</year>
;
<volume>180</volume>
(
<issue>10</issue>
):
<fpage>6808</fpage>
<lpage>6815</lpage>
.
<pub-id pub-id-type="pmid">18453601</pub-id>
</mixed-citation>
</ref>
<ref id="R36">
<label>36.</label>
<mixed-citation publication-type="journal">
<name>
<surname>Chen</surname>
<given-names>K</given-names>
</name>
,
<name>
<surname>Yuan</surname>
<given-names>R</given-names>
</name>
,
<name>
<surname>Zhang</surname>
<given-names>Y</given-names>
</name>
,
<name>
<surname>Geng</surname>
<given-names>S</given-names>
</name>
,
<name>
<surname>Li</surname>
<given-names>L</given-names>
</name>
.
<article-title>Tollip Deficiency Alters Atherosclerosis and Steatosis by Disrupting Lipophagy</article-title>
.
<source>J Am Heart Assoc</source>
<year>2017</year>
;
<volume>6</volume>
(
<issue>4</issue>
).</mixed-citation>
</ref>
<ref id="R37">
<label>37.</label>
<mixed-citation publication-type="journal">
<name>
<surname>Deretic</surname>
<given-names>V</given-names>
</name>
,
<name>
<surname>Saitoh</surname>
<given-names>T</given-names>
</name>
,
<name>
<surname>Akira</surname>
<given-names>S</given-names>
</name>
.
<article-title>Autophagy in infection, inflammation and immunity</article-title>
.
<source>Nat Rev Immunol</source>
<year>2013</year>
;
<volume>13</volume>
(
<issue>10</issue>
):
<fpage>722</fpage>
<lpage>737</lpage>
.
<pub-id pub-id-type="pmid">24064518</pub-id>
</mixed-citation>
</ref>
<ref id="R38">
<label>38.</label>
<mixed-citation publication-type="journal">
<name>
<surname>Deretic</surname>
<given-names>V</given-names>
</name>
,
<name>
<surname>Kimura</surname>
<given-names>T</given-names>
</name>
,
<name>
<surname>Timmins</surname>
<given-names>G</given-names>
</name>
,
<name>
<surname>Moseley</surname>
<given-names>P</given-names>
</name>
,
<name>
<surname>Chauhan</surname>
<given-names>S</given-names>
</name>
,
<name>
<surname>Mandell</surname>
<given-names>M</given-names>
</name>
.
<article-title>Immunologic manifestations of autophagy</article-title>
.
<source>J Clin Invest</source>
<year>2015</year>
;
<volume>125</volume>
(
<issue>1</issue>
):
<fpage>75</fpage>
<lpage>84</lpage>
.
<pub-id pub-id-type="pmid">25654553</pub-id>
</mixed-citation>
</ref>
<ref id="R39">
<label>39.</label>
<mixed-citation publication-type="journal">
<name>
<surname>Shah</surname>
<given-names>JA</given-names>
</name>
,
<name>
<surname>Musvosvi</surname>
<given-names>M</given-names>
</name>
,
<name>
<surname>Shey</surname>
<given-names>M</given-names>
</name>
,
<name>
<surname>Horne</surname>
<given-names>DJ</given-names>
</name>
,
<name>
<surname>Wells</surname>
<given-names>RD</given-names>
</name>
,
<name>
<surname>Peterson</surname>
<given-names>GJ</given-names>
</name>
<etal></etal>
<article-title>A Functional Toll-Interacting Protein Variant Is Associated with Bacillus Calmette-Guerin-Specific Immune Responses and Tuberculosis</article-title>
.
<source>Am J Respir Crit Care Med</source>
<year>2017</year>
;
<volume>196</volume>
(
<issue>4</issue>
):
<fpage>502</fpage>
<lpage>511</lpage>
.
<pub-id pub-id-type="pmid">28463648</pub-id>
</mixed-citation>
</ref>
<ref id="R40">
<label>40.</label>
<mixed-citation publication-type="journal">
<name>
<surname>Hawn</surname>
<given-names>TR</given-names>
</name>
,
<name>
<surname>Verbon</surname>
<given-names>A</given-names>
</name>
,
<name>
<surname>Lettinga</surname>
<given-names>KD</given-names>
</name>
,
<name>
<surname>Zhao</surname>
<given-names>LP</given-names>
</name>
,
<name>
<surname>Li</surname>
<given-names>SS</given-names>
</name>
,
<name>
<surname>Laws</surname>
<given-names>RJ</given-names>
</name>
<etal></etal>
<article-title>A common dominant TLR5 stop codon polymorphism abolishes flagellin signaling and is associated with susceptibility to Legionnaires’ Disease</article-title>
.
<source>J Exp Med</source>
<year>2003</year>
;
<volume>198</volume>
:
<fpage>1563</fpage>
<lpage>1572</lpage>
.
<pub-id pub-id-type="pmid">14623910</pub-id>
</mixed-citation>
</ref>
<ref id="R41">
<label>41.</label>
<mixed-citation publication-type="journal">
<name>
<surname>Fontana</surname>
<given-names>MF</given-names>
</name>
,
<name>
<surname>Vance</surname>
<given-names>RE</given-names>
</name>
.
<article-title>Two signal models in innate immunity</article-title>
.
<source>Immunol Rev</source>
<year>2011</year>
;
<volume>243</volume>
(
<issue>1</issue>
):
<fpage>26</fpage>
<lpage>39</lpage>
.
<pub-id pub-id-type="pmid">21884165</pub-id>
</mixed-citation>
</ref>
<ref id="R42">
<label>42.</label>
<mixed-citation publication-type="journal">
<name>
<surname>Saitoh</surname>
<given-names>T</given-names>
</name>
,
<name>
<surname>Fujita</surname>
<given-names>N</given-names>
</name>
,
<name>
<surname>Jang</surname>
<given-names>MH</given-names>
</name>
,
<name>
<surname>Uematsu</surname>
<given-names>S</given-names>
</name>
,
<name>
<surname>Yang</surname>
<given-names>BG</given-names>
</name>
,
<name>
<surname>Satoh</surname>
<given-names>T</given-names>
</name>
<etal></etal>
<article-title>Loss of the autophagy protein Atg16L1 enhances endotoxin-induced IL-1beta production</article-title>
.
<source>Nature</source>
<year>2008</year>
;
<volume>456</volume>
(
<issue>7219</issue>
):
<fpage>264</fpage>
<lpage>268</lpage>
.
<pub-id pub-id-type="pmid">18849965</pub-id>
</mixed-citation>
</ref>
<ref id="R43">
<label>43.</label>
<mixed-citation publication-type="journal">
<name>
<surname>Nastase</surname>
<given-names>MV</given-names>
</name>
,
<name>
<surname>Zeng-Brouwers</surname>
<given-names>J</given-names>
</name>
,
<name>
<surname>Frey</surname>
<given-names>H</given-names>
</name>
,
<name>
<surname>Hsieh</surname>
<given-names>LT</given-names>
</name>
,
<name>
<surname>Poluzzi</surname>
<given-names>C</given-names>
</name>
,
<name>
<surname>Beckmann</surname>
<given-names>J</given-names>
</name>
<etal></etal>
<article-title>An Essential Role for SHARPIN in the Regulation of Caspase 1 Activity in Sepsis</article-title>
.
<source>Am J Pathol</source>
<year>2016</year>
;
<volume>186</volume>
(
<issue>5</issue>
):
<fpage>1206</fpage>
<lpage>1220</lpage>
.
<pub-id pub-id-type="pmid">26968342</pub-id>
</mixed-citation>
</ref>
<ref id="R44">
<label>44.</label>
<mixed-citation publication-type="journal">
<name>
<surname>Rolando</surname>
<given-names>M</given-names>
</name>
,
<name>
<surname>Escoll</surname>
<given-names>P</given-names>
</name>
,
<name>
<surname>Buchrieser</surname>
<given-names>C</given-names>
</name>
.
<article-title>Legionella pneumophila restrains autophagy by modulating the host’s sphingolipid metabolism</article-title>
.
<source>Autophagy</source>
<year>2016</year>
;
<volume>12</volume>
(
<issue>6</issue>
):
<fpage>1053</fpage>
<lpage>1054</lpage>
.
<pub-id pub-id-type="pmid">27191778</pub-id>
</mixed-citation>
</ref>
<ref id="R45">
<label>45.</label>
<mixed-citation publication-type="journal">
<name>
<surname>Nakahira</surname>
<given-names>K</given-names>
</name>
,
<name>
<surname>Haspel</surname>
<given-names>JA</given-names>
</name>
,
<name>
<surname>Rathinam</surname>
<given-names>VA</given-names>
</name>
,
<name>
<surname>Lee</surname>
<given-names>SJ</given-names>
</name>
,
<name>
<surname>Dolinay</surname>
<given-names>T</given-names>
</name>
,
<name>
<surname>Lam</surname>
<given-names>HC</given-names>
</name>
<etal></etal>
<article-title>Autophagy proteins regulate innate immune responses by inhibiting the release of mitochondrial DNA mediated by the NALP3 inflammasome</article-title>
.
<source>Nat Immunol</source>
<year>2011</year>
;
<volume>12</volume>
(
<issue>3</issue>
):
<fpage>222</fpage>
<lpage>230</lpage>
.
<pub-id pub-id-type="pmid">21151103</pub-id>
</mixed-citation>
</ref>
<ref id="R46">
<label>46.</label>
<mixed-citation publication-type="journal">
<name>
<surname>Sakaguchi</surname>
<given-names>S</given-names>
</name>
,
<name>
<surname>Negishi</surname>
<given-names>H</given-names>
</name>
,
<name>
<surname>Asagiri</surname>
<given-names>M</given-names>
</name>
,
<name>
<surname>Nakajima</surname>
<given-names>C</given-names>
</name>
,
<name>
<surname>Mizutani</surname>
<given-names>T</given-names>
</name>
,
<name>
<surname>Takaoka</surname>
<given-names>A</given-names>
</name>
<etal></etal>
<article-title>Essential role of IRF-3 in lipopolysaccharide-induced interferon-beta gene expression and endotoxin shock</article-title>
.
<source>Biochem Biophys Res Commun</source>
<year>2003</year>
;
<volume>306</volume>
(
<issue>4</issue>
):
<fpage>860</fpage>
<lpage>866</lpage>
.
<pub-id pub-id-type="pmid">12821121</pub-id>
</mixed-citation>
</ref>
<ref id="R47">
<label>47.</label>
<mixed-citation publication-type="journal">
<name>
<surname>Zhang</surname>
<given-names>K</given-names>
</name>
,
<name>
<surname>Kaufman</surname>
<given-names>RJ</given-names>
</name>
.
<article-title>From endoplasmic-reticulum stress to the inflammatory response</article-title>
.
<source>Nature</source>
<year>2008</year>
;
<volume>454</volume>
(
<issue>7203</issue>
):
<fpage>455</fpage>
<lpage>462</lpage>
.
<pub-id pub-id-type="pmid">18650916</pub-id>
</mixed-citation>
</ref>
<ref id="R48">
<label>48.</label>
<mixed-citation publication-type="journal">
<name>
<surname>Cordell</surname>
<given-names>HJ</given-names>
</name>
,
<name>
<surname>Clayton</surname>
<given-names>DG</given-names>
</name>
.
<article-title>Genetic association studies</article-title>
.
<source>Lancet</source>
<year>2005</year>
;
<volume>366</volume>
(
<issue>9491</issue>
):
<fpage>1121</fpage>
<lpage>1131</lpage>
.
<pub-id pub-id-type="pmid">16182901</pub-id>
</mixed-citation>
</ref>
<ref id="R49">
<label>49.</label>
<mixed-citation publication-type="journal">
<name>
<surname>Samrakandi</surname>
<given-names>MM</given-names>
</name>
,
<name>
<surname>Cirillo</surname>
<given-names>SL</given-names>
</name>
,
<name>
<surname>Ridenour</surname>
<given-names>DA</given-names>
</name>
,
<name>
<surname>Bermudez</surname>
<given-names>LE</given-names>
</name>
,
<name>
<surname>Cirillo</surname>
<given-names>JD</given-names>
</name>
.
<article-title>Genetic and phenotypic differences between Legionella pneumophila strains</article-title>
.
<source>J Clin Microbiol</source>
<year>2002</year>
;
<volume>40</volume>
(
<issue>4</issue>
):
<fpage>1352</fpage>
<lpage>1362</lpage>
.
<pub-id pub-id-type="pmid">11923356</pub-id>
</mixed-citation>
</ref>
<ref id="R50">
<label>50.</label>
<mixed-citation publication-type="journal">
<name>
<surname>Shames</surname>
<given-names>SR</given-names>
</name>
,
<name>
<surname>Liu</surname>
<given-names>L</given-names>
</name>
,
<name>
<surname>Havey</surname>
<given-names>JC</given-names>
</name>
,
<name>
<surname>Schofield</surname>
<given-names>WB</given-names>
</name>
,
<name>
<surname>Goodman</surname>
<given-names>AL</given-names>
</name>
,
<name>
<surname>Roy</surname>
<given-names>CR</given-names>
</name>
.
<article-title>Multiple Legionella pneumophila effector virulence phenotypes revealed through high-throughput analysis of targeted mutant libraries</article-title>
.
<source>Proc Natl Acad Sci U S A</source>
<year>2017</year>
;
<volume>114</volume>
(
<issue>48</issue>
):
<fpage>E10446</fpage>
<lpage>E10454</lpage>
.
<pub-id pub-id-type="pmid">29133401</pub-id>
</mixed-citation>
</ref>
<ref id="R51">
<label>51.</label>
<mixed-citation publication-type="journal">
<name>
<surname>Burstein</surname>
<given-names>D</given-names>
</name>
,
<name>
<surname>Amaro</surname>
<given-names>F</given-names>
</name>
,
<name>
<surname>Zusman</surname>
<given-names>T</given-names>
</name>
,
<name>
<surname>Lifshitz</surname>
<given-names>Z</given-names>
</name>
,
<name>
<surname>Cohen</surname>
<given-names>O</given-names>
</name>
,
<name>
<surname>Gilbert</surname>
<given-names>JA</given-names>
</name>
<etal></etal>
<article-title>Genomic analysis of 38 Legionella species identifies large and diverse effector repertoires</article-title>
.
<source>Nature genetics</source>
<year>2016</year>
;
<volume>48</volume>
(
<issue>2</issue>
):
<fpage>167</fpage>
<lpage>175</lpage>
.
<pub-id pub-id-type="pmid">26752266</pub-id>
</mixed-citation>
</ref>
</ref-list>
</back>
<floats-group>
<fig id="F1" orientation="portrait" position="float">
<label>Figure 1.</label>
<caption>
<title>TOLLIP-deficient mice demonstrate enhanced clearance of
<italic>L. pneumophila</italic>
(Lp) after aerosol infection.</title>
<p id="P35">Mice were infected with approximately 10
<sup>6</sup>
CFU WT Lp Philadelphia-1 strain and at 24, 72, and 144 hours post infection, lungs were harvested. A) Bacterial counts were measured by CFU on BCYE agar plates. B) Total polymorphonuclear cell counts from bronchoalveolar fluid. C) Total mononuclear cells from bronchoalveolar fluid samples. D) Hematoxylin and eosin staining of representative sections of D) WT and E)
<italic>Tollip</italic>
<sup>−/−</sup>
mouse lung 72hr after Lp aerosol infection. * p< 0.05, Student’s t-test, two sided. Error bars represent +/− SEM. N = 5 mice in each group at each time point. Data are representative of three independent experiments.</p>
</caption>
<graphic xlink:href="nihms-1536669-f0001"></graphic>
</fig>
<fig id="F2" orientation="portrait" position="float">
<label>Figure 2.</label>
<caption>
<title>Cytokine Responses from WT and
<italic>Tollip</italic>
<sup>−/−</sup>
mice after
<italic>L. pneumophila</italic>
(Lp) aerosol infection.</title>
<p id="P36">Mice were infected with 10
<sup>6</sup>
CFU WT Lp Philadelphia-1 strain and after 24 hours, cytokine concentrations were measured from bronchoalveolar (BAL) fluid and serum. A) BAL cytokine concentrations measured by ELISA from WT and
<italic>Tollip</italic>
<sup>−/−</sup>
mice. * p < 0.05, Student’s two-sided t-test. B) BAL cytokines, measured by Luminex cytokine assay 24 hours after Lp aerosol infection. * p < 0.05, ** p < 0.01, *** p < 0.001, at 1% false discovery rate. Error bars represent +/− SEM. C) Serum cytokine concentrations measured by ELISA. * p < 0.05, Student’s two-sided t-test. Error bars represent +/− SEM. Data are representative of three independent experiments with N = 5 in each group.</p>
</caption>
<graphic xlink:href="nihms-1536669-f0002"></graphic>
</fig>
<fig id="F3" orientation="portrait" position="float">
<label>Figure 3.</label>
<caption>
<title>WT and
<italic>Tollip</italic>
<sup>−/−</sup>
Macrophage Cytokine Responses after TLR and NLR Stimulation.</title>
<p id="P37">Bone marrow-derived macrophages (BMDM) were isolated from WT and
<italic>Tollip</italic>
<sup>−/−</sup>
mice and stimulated with media, PAM3 (250ng/ml), a TLR 2/1 agonist, or LPS (10ng/ml), TLR4 agonist, for 24hr, and concentrations of A) TNF and B) IL-10 were measured from cellular supernatants. C) We stimulated mouse BMDM with LPS 100pg/ml for 2 hours, then stimulated overnight with C) media control or the NLRP3 ligand nigericin (100μg/ml) and D) NLRC4 ligand
<italic>Salmonella</italic>
flagellin (FliC, 100ng/ml) or bovine serum albumin (100ng/ml), coincubated with Lipofectamine 2000 to permit cytosolic translocation of each protein. IL-1β concentrations from cellular supernatants were measured by ELISA. Error bars are means ± SEM; statistical analyses were performed by paired t-tests using Prism 7.0e. * p < 0.05, Student’s two-sided t-test. The experiment shown is representative of three independent experiments, each conducted in triplicate.</p>
</caption>
<graphic xlink:href="nihms-1536669-f0003"></graphic>
</fig>
<fig id="F4" orientation="portrait" position="float">
<label>Figure 4.</label>
<caption>
<title>WT and
<italic>Tollip</italic>
<sup>−/−</sup>
Macrophage Cytokine Responses after
<italic>L. pneumophila</italic>
(Lp) Infection
<italic>in vitro.</italic>
</title>
<p id="P38">Bone marrow-derived macrophages were isolated and infected with either negative control (mock), WT
<italic>L. pneumophila</italic>
(WT Lp), flagellin-deficient
<italic>L. pneumophila</italic>
<italic>flaA</italic>
Lp), or
<italic>dot</italic>
-
<italic>icm</italic>
-locus-deficient
<italic>L. pneumophila</italic>
<italic>dotA</italic>
Lp) on the JR32 background at MOI 10 overnight and A) TNF, B) IL-1β, and C) IL-6 concentrations were measured from cellular supernatants. * p < 0.05, Student’s two-sided t-test. Experiment shown is representative of three independent experiments, each performed in triplicate. Error bars represent +/− SEM of mean.</p>
</caption>
<graphic xlink:href="nihms-1536669-f0004"></graphic>
</fig>
<fig id="F5" orientation="portrait" position="float">
<label>Figure 5.</label>
<caption>
<title>Intracellular
<italic>L. pneumophila</italic>
(Lp) Replication and Nonspecific Autophagy in WT and
<italic>Tollip</italic>
<sup>−/−</sup>
Macrophages.</title>
<p id="P39">A) Bone marrow-derived macrophages (BMDM) from WT and
<italic>Tollip</italic>
<sup>−/−</sup>
mice were infected with flagellin-deficient
<italic>L. pneumophila</italic>
(JR32 strain) expressing the luminescent
<italic>lux</italic>
gene. Relative luminescence was measured over time. B) Representative images depicting LC3+ organelles (
<italic>green</italic>
) and DAPI-stained nuclei (
<italic>blue</italic>
) from control (EV) or THP-1 cells with TOLLIP deleted via CRISPR-Cas9 gene editing (TOLLIP-KO) in RPMI supplemented with 10% FCS (ctrl) or EBSS (starve) for 4 hours. C) Tukey plot of the number of autophagosomes counted from 100 cells in EV and TOLLIP-KO cells in nutrient-enriched or starvation medium after 4 hours. Box demonstrates median and interquartile range of values. * p < 0.05, Mann-Whitney U-test, data is representative of three independent experiments. D) Western blot of THP-1 cells comparing LC3-II expression with β-actin as a control in TOLLIP-KO and control cell lines under nutrient-rich and starvation conditions, with or without chloroquine. E) Quantitative analysis of LC3-II expression, normalized to β-actin, in TOLLIP-deficient cells in control and TOLLIP-KO cells. Data are expressed as mean +/− SD of three separate experiments grouped together. * p < 0.05 by Student’s t test.</p>
</caption>
<graphic xlink:href="nihms-1536669-f0005"></graphic>
</fig>
<fig id="F6" orientation="portrait" position="float">
<label>Figure 6.</label>
<caption>
<title>rs5743854 G/G allele is associated with increased proinflammatory cytokine secretion after
<italic>L. pneumophila</italic>
(Lp) infection.</title>
<p id="P40">Peripheral blood mononuclear cells were isolated from 62 healthy volunteers in Seattle and stimulated with media, WT Lp (MOI 1) or Δ
<italic>flaA</italic>
Lp (MOI 1) for 24 hours. Secreted TNF and IL-6 levels were measured in supernatants via ELISA. TNF responses after A) WT Lp or B) Δ
<italic>flaA</italic>
Lp infection, stratified by rs5743854 genotype. Number of individuals tested per genotype -- C/C = 34, G/C = 24, G/G = 4. IL-6 responses after C) WT Lp or D) Δ
<italic>flaA</italic>
Lp infection, stratified by rs5743854 genotype. Dots represent cytokine values for individual volunteers. Median value represented by red lines. * p < 0.05 by Mann-Whitney U-test in a recessive genetic model (GG vs (CC + CG)).</p>
</caption>
<graphic xlink:href="nihms-1536669-f0006"></graphic>
</fig>
<table-wrap id="T1" position="float" orientation="portrait">
<label>Table 1.</label>
<caption>
<p id="P41">Distribution of TOLLIP rs5743854 G allele in Netherlands cohort.</p>
</caption>
<table frame="box" rules="all">
<colgroup span="1">
<col align="left" valign="middle" span="1"></col>
<col align="left" valign="middle" span="1"></col>
<col align="left" valign="middle" span="1"></col>
<col align="left" valign="middle" span="1"></col>
<col align="left" valign="middle" span="1"></col>
</colgroup>
<thead>
<tr>
<th align="left" valign="top" rowspan="1" colspan="1"></th>
<th align="left" valign="top" rowspan="1" colspan="1">Control</th>
<th align="left" valign="top" rowspan="1" colspan="1">Cases</th>
<th align="left" valign="middle" rowspan="1" colspan="1">P value</th>
<th align="left" valign="top" rowspan="1" colspan="1">Odds Ratio (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td align="left" valign="top" rowspan="1" colspan="1">N</td>
<td align="left" valign="top" rowspan="1" colspan="1">309</td>
<td align="left" valign="middle" rowspan="1" colspan="1">88</td>
<td align="left" valign="top" rowspan="1" colspan="1"></td>
<td align="left" valign="top" rowspan="1" colspan="1"></td>
</tr>
<tr>
<td align="left" valign="top" rowspan="1" colspan="1">Male, f
<xref rid="TFN1" ref-type="table-fn">*</xref>
(n)</td>
<td align="left" valign="top" rowspan="1" colspan="1">0.51 (159)</td>
<td align="left" valign="top" rowspan="1" colspan="1">0.52 (44)</td>
<td align="left" valign="middle" rowspan="1" colspan="1">0.128</td>
<td align="left" valign="top" rowspan="1" colspan="1"></td>
</tr>
<tr>
<td align="left" valign="top" rowspan="1" colspan="1">Age (median, IQR)</td>
<td align="left" valign="top" rowspan="1" colspan="1">49.6 (35.2 – 56.1)</td>
<td align="left" valign="top" rowspan="1" colspan="1">64.7 (54.2 – 71.5)</td>
<td align="left" valign="top" rowspan="1" colspan="1">< 0.001</td>
<td align="left" valign="top" rowspan="1" colspan="1"></td>
</tr>
<tr>
<td align="left" valign="top" rowspan="1" colspan="1">Smoker, f
<xref rid="TFN1" ref-type="table-fn">*</xref>
(n)</td>
<td align="left" valign="top" rowspan="1" colspan="1">0.31</td>
<td align="left" valign="top" rowspan="1" colspan="1">0.49</td>
<td align="left" valign="middle" rowspan="1" colspan="1">0.022</td>
<td align="left" valign="top" rowspan="1" colspan="1"></td>
</tr>
<tr>
<td align="left" valign="top" rowspan="1" colspan="1">COPD, f (n)</td>
<td align="left" valign="top" rowspan="1" colspan="1">0.10 (24)</td>
<td align="left" valign="top" rowspan="1" colspan="1">0.07 (6)</td>
<td align="left" valign="top" rowspan="1" colspan="1"></td>
<td align="left" valign="top" rowspan="1" colspan="1"></td>
</tr>
<tr>
<td align="left" valign="top" rowspan="1" colspan="1">Diabetes Mellitus, f (n)</td>
<td align="left" valign="top" rowspan="1" colspan="1">0.04 (3)</td>
<td align="left" valign="top" rowspan="1" colspan="1">0.09 (8)</td>
<td align="left" valign="top" rowspan="1" colspan="1"></td>
<td align="left" valign="top" rowspan="1" colspan="1"></td>
</tr>
<tr>
<td align="left" valign="top" rowspan="1" colspan="1">Cancer, f(n)</td>
<td align="left" valign="top" rowspan="1" colspan="1">0.02 (2)</td>
<td align="left" valign="top" rowspan="1" colspan="1">0.04 (4)</td>
<td align="left" valign="top" rowspan="1" colspan="1"></td>
<td align="left" valign="top" rowspan="1" colspan="1"></td>
</tr>
<tr>
<td align="left" valign="top" rowspan="1" colspan="1">Hx. Transplant, f(n)</td>
<td align="left" valign="top" rowspan="1" colspan="1">0.02 (2)</td>
<td align="left" valign="top" rowspan="1" colspan="1">0 (0)</td>
<td align="left" valign="top" rowspan="1" colspan="1"></td>
<td align="left" valign="top" rowspan="1" colspan="1"></td>
</tr>
<tr>
<td align="left" valign="top" rowspan="1" colspan="1">Autoimmune Dz, f(n)</td>
<td align="left" valign="top" rowspan="1" colspan="1">0 (0)</td>
<td align="left" valign="top" rowspan="1" colspan="1">0.02 (2)</td>
<td align="left" valign="top" rowspan="1" colspan="1"></td>
<td align="left" valign="top" rowspan="1" colspan="1"></td>
</tr>
<tr>
<td align="left" valign="top" rowspan="1" colspan="1">Alcohol Use, f(n)</td>
<td align="left" valign="top" rowspan="1" colspan="1">0.73 (61)</td>
<td align="left" valign="top" rowspan="1" colspan="1">0.35 (32)</td>
<td align="left" valign="top" rowspan="1" colspan="1"></td>
<td align="left" valign="top" rowspan="1" colspan="1"></td>
</tr>
<tr>
<td align="left" valign="top" rowspan="1" colspan="1">Rs5743854 genotype</td>
<td align="left" valign="top" rowspan="1" colspan="1"></td>
<td align="left" valign="top" rowspan="1" colspan="1"></td>
<td align="left" valign="middle" rowspan="1" colspan="1">0.008</td>
<td align="left" valign="top" rowspan="1" colspan="1">0.35 (0.16 – 0.76)
<xref rid="TFN2" ref-type="table-fn"></xref>
</td>
</tr>
<tr>
<td align="left" valign="top" rowspan="1" colspan="1">C/C f(n)</td>
<td align="left" valign="top" rowspan="1" colspan="1">0.32 (99)</td>
<td align="left" valign="top" rowspan="1" colspan="1">0.33 (29)</td>
<td align="left" valign="top" rowspan="1" colspan="1"></td>
<td align="left" valign="top" rowspan="1" colspan="1"></td>
</tr>
<tr>
<td align="left" valign="top" rowspan="1" colspan="1">G/C</td>
<td align="left" valign="top" rowspan="1" colspan="1">0.41 (127)</td>
<td align="left" valign="top" rowspan="1" colspan="1">0.52 (46)</td>
<td align="left" valign="top" rowspan="1" colspan="1"></td>
<td align="left" valign="top" rowspan="1" colspan="1"></td>
</tr>
<tr>
<td align="left" valign="top" rowspan="1" colspan="1">G/G</td>
<td align="left" valign="top" rowspan="1" colspan="1">0.27 (83)</td>
<td align="left" valign="top" rowspan="1" colspan="1">0.14 (12)</td>
<td align="left" valign="top" rowspan="1" colspan="1"></td>
<td align="left" valign="top" rowspan="1" colspan="1"></td>
</tr>
</tbody>
</table>
<table-wrap-foot>
<fn id="TFN1">
<label>*</label>
<p id="P42">f=frequency</p>
</fn>
<fn id="TFN2">
<label></label>
<p id="P43">recessive genetic model adjusted for gender, age, and comorbidities.</p>
</fn>
</table-wrap-foot>
</table-wrap>
</floats-group>
</pmc>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/ChloroquineV1/Data/Pmc/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000853 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Pmc/Corpus/biblio.hfd -nk 000853 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    ChloroquineV1
   |flux=    Pmc
   |étape=   Corpus
   |type=    RBID
   |clé=     PMC:6824992
   |texte=   TOLLIP deficiency is associated with increased resistance to Legionella pneumophila pneumonia
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Pmc/Corpus/RBID.i   -Sk "pubmed:31462698" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Pmc/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a ChloroquineV1 

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Wed Mar 25 22:43:59 2020. Site generation: Sun Jan 31 12:44:45 2021