Serveur d'exploration Chloroquine

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Neutrophils promote CXCR3-dependent itch in the development of atopic dermatitis

Identifieur interne : 000845 ( Pmc/Corpus ); précédent : 000844; suivant : 000846

Neutrophils promote CXCR3-dependent itch in the development of atopic dermatitis

Auteurs : Carolyn M. Walsh ; Rose Z. Hill ; Jamie Schwendinger-Schreck ; Jacques Deguine ; Emily C. Brock ; Natalie Kucirek ; Ziad Rifi ; Jessica Wei ; Karsten Gronert ; Rachel B. Brem ; Gregory M. Barton ; Diana M. Bautista

Source :

RBID : PMC:6884397

Abstract

Chronic itch remains a highly prevalent disorder with limited treatment options. Most chronic itch diseases are thought to be driven by both the nervous and immune systems, but the fundamental molecular and cellular interactions that trigger the development of itch and the acute-to-chronic itch transition remain unknown. Here, we show that skin-infiltrating neutrophils are key initiators of itch in atopic dermatitis, the most prevalent chronic itch disorder. Neutrophil depletion significantly attenuated itch-evoked scratching in a mouse model of atopic dermatitis. Neutrophils were also required for several key hallmarks of chronic itch, including skin hyperinnervation, enhanced expression of itch signaling molecules, and upregulation of inflammatory cytokines, activity-induced genes, and markers of neuropathic itch. Finally, we demonstrate that neutrophils are required for induction of CXCL10, a ligand of the CXCR3 receptor that promotes itch via activation of sensory neurons, and we find that that CXCR3 antagonism attenuates chronic itch.


Url:
DOI: 10.7554/eLife.48448
PubMed: 31631836
PubMed Central: 6884397

Links to Exploration step

PMC:6884397

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Neutrophils promote CXCR3-dependent itch in the development of atopic dermatitis</title>
<author>
<name sortKey="Walsh, Carolyn M" sort="Walsh, Carolyn M" uniqKey="Walsh C" first="Carolyn M" last="Walsh">Carolyn M. Walsh</name>
<affiliation>
<nlm:aff id="aff1">
<institution content-type="dept">Department of Molecular and Cell Biology</institution>
<institution>University of California, Berkeley</institution>
<addr-line>Berkeley</addr-line>
<country>United States</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Hill, Rose Z" sort="Hill, Rose Z" uniqKey="Hill R" first="Rose Z" last="Hill">Rose Z. Hill</name>
<affiliation>
<nlm:aff id="aff1">
<institution content-type="dept">Department of Molecular and Cell Biology</institution>
<institution>University of California, Berkeley</institution>
<addr-line>Berkeley</addr-line>
<country>United States</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Schwendinger Schreck, Jamie" sort="Schwendinger Schreck, Jamie" uniqKey="Schwendinger Schreck J" first="Jamie" last="Schwendinger-Schreck">Jamie Schwendinger-Schreck</name>
<affiliation>
<nlm:aff id="aff1">
<institution content-type="dept">Department of Molecular and Cell Biology</institution>
<institution>University of California, Berkeley</institution>
<addr-line>Berkeley</addr-line>
<country>United States</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Deguine, Jacques" sort="Deguine, Jacques" uniqKey="Deguine J" first="Jacques" last="Deguine">Jacques Deguine</name>
<affiliation>
<nlm:aff id="aff1">
<institution content-type="dept">Department of Molecular and Cell Biology</institution>
<institution>University of California, Berkeley</institution>
<addr-line>Berkeley</addr-line>
<country>United States</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Brock, Emily C" sort="Brock, Emily C" uniqKey="Brock E" first="Emily C" last="Brock">Emily C. Brock</name>
<affiliation>
<nlm:aff id="aff1">
<institution content-type="dept">Department of Molecular and Cell Biology</institution>
<institution>University of California, Berkeley</institution>
<addr-line>Berkeley</addr-line>
<country>United States</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Kucirek, Natalie" sort="Kucirek, Natalie" uniqKey="Kucirek N" first="Natalie" last="Kucirek">Natalie Kucirek</name>
<affiliation>
<nlm:aff id="aff1">
<institution content-type="dept">Department of Molecular and Cell Biology</institution>
<institution>University of California, Berkeley</institution>
<addr-line>Berkeley</addr-line>
<country>United States</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Rifi, Ziad" sort="Rifi, Ziad" uniqKey="Rifi Z" first="Ziad" last="Rifi">Ziad Rifi</name>
<affiliation>
<nlm:aff id="aff1">
<institution content-type="dept">Department of Molecular and Cell Biology</institution>
<institution>University of California, Berkeley</institution>
<addr-line>Berkeley</addr-line>
<country>United States</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Wei, Jessica" sort="Wei, Jessica" uniqKey="Wei J" first="Jessica" last="Wei">Jessica Wei</name>
<affiliation>
<nlm:aff id="aff2">
<institution content-type="dept">Vision Science Program, School of Optometry</institution>
<institution>University of California, Berkeley</institution>
<addr-line>Berkeley</addr-line>
<country>United States</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Gronert, Karsten" sort="Gronert, Karsten" uniqKey="Gronert K" first="Karsten" last="Gronert">Karsten Gronert</name>
<affiliation>
<nlm:aff id="aff2">
<institution content-type="dept">Vision Science Program, School of Optometry</institution>
<institution>University of California, Berkeley</institution>
<addr-line>Berkeley</addr-line>
<country>United States</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Brem, Rachel B" sort="Brem, Rachel B" uniqKey="Brem R" first="Rachel B" last="Brem">Rachel B. Brem</name>
<affiliation>
<nlm:aff id="aff3">
<institution content-type="dept">Department of Plant and Microbial Biology</institution>
<institution>University of California, Berkeley</institution>
<addr-line>Berkeley</addr-line>
<country>United States</country>
</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="aff4">
<institution>Buck Institute for Research on Aging</institution>
<addr-line>Novato</addr-line>
<country>United States</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Barton, Gregory M" sort="Barton, Gregory M" uniqKey="Barton G" first="Gregory M" last="Barton">Gregory M. Barton</name>
<affiliation>
<nlm:aff id="aff1">
<institution content-type="dept">Department of Molecular and Cell Biology</institution>
<institution>University of California, Berkeley</institution>
<addr-line>Berkeley</addr-line>
<country>United States</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Bautista, Diana M" sort="Bautista, Diana M" uniqKey="Bautista D" first="Diana M" last="Bautista">Diana M. Bautista</name>
<affiliation>
<nlm:aff id="aff1">
<institution content-type="dept">Department of Molecular and Cell Biology</institution>
<institution>University of California, Berkeley</institution>
<addr-line>Berkeley</addr-line>
<country>United States</country>
</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="aff5">
<institution content-type="dept">Helen Wills Neuroscience Institute</institution>
<institution>University of California, Berkeley</institution>
<addr-line>Berkeley</addr-line>
<country>United States</country>
</nlm:aff>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PMC</idno>
<idno type="pmid">31631836</idno>
<idno type="pmc">6884397</idno>
<idno type="url">http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6884397</idno>
<idno type="RBID">PMC:6884397</idno>
<idno type="doi">10.7554/eLife.48448</idno>
<date when="????">????</date>
<idno type="wicri:Area/Pmc/Corpus">000845</idno>
<idno type="wicri:explorRef" wicri:stream="Pmc" wicri:step="Corpus" wicri:corpus="PMC">000845</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a" type="main">Neutrophils promote CXCR3-dependent itch in the development of atopic dermatitis</title>
<author>
<name sortKey="Walsh, Carolyn M" sort="Walsh, Carolyn M" uniqKey="Walsh C" first="Carolyn M" last="Walsh">Carolyn M. Walsh</name>
<affiliation>
<nlm:aff id="aff1">
<institution content-type="dept">Department of Molecular and Cell Biology</institution>
<institution>University of California, Berkeley</institution>
<addr-line>Berkeley</addr-line>
<country>United States</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Hill, Rose Z" sort="Hill, Rose Z" uniqKey="Hill R" first="Rose Z" last="Hill">Rose Z. Hill</name>
<affiliation>
<nlm:aff id="aff1">
<institution content-type="dept">Department of Molecular and Cell Biology</institution>
<institution>University of California, Berkeley</institution>
<addr-line>Berkeley</addr-line>
<country>United States</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Schwendinger Schreck, Jamie" sort="Schwendinger Schreck, Jamie" uniqKey="Schwendinger Schreck J" first="Jamie" last="Schwendinger-Schreck">Jamie Schwendinger-Schreck</name>
<affiliation>
<nlm:aff id="aff1">
<institution content-type="dept">Department of Molecular and Cell Biology</institution>
<institution>University of California, Berkeley</institution>
<addr-line>Berkeley</addr-line>
<country>United States</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Deguine, Jacques" sort="Deguine, Jacques" uniqKey="Deguine J" first="Jacques" last="Deguine">Jacques Deguine</name>
<affiliation>
<nlm:aff id="aff1">
<institution content-type="dept">Department of Molecular and Cell Biology</institution>
<institution>University of California, Berkeley</institution>
<addr-line>Berkeley</addr-line>
<country>United States</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Brock, Emily C" sort="Brock, Emily C" uniqKey="Brock E" first="Emily C" last="Brock">Emily C. Brock</name>
<affiliation>
<nlm:aff id="aff1">
<institution content-type="dept">Department of Molecular and Cell Biology</institution>
<institution>University of California, Berkeley</institution>
<addr-line>Berkeley</addr-line>
<country>United States</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Kucirek, Natalie" sort="Kucirek, Natalie" uniqKey="Kucirek N" first="Natalie" last="Kucirek">Natalie Kucirek</name>
<affiliation>
<nlm:aff id="aff1">
<institution content-type="dept">Department of Molecular and Cell Biology</institution>
<institution>University of California, Berkeley</institution>
<addr-line>Berkeley</addr-line>
<country>United States</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Rifi, Ziad" sort="Rifi, Ziad" uniqKey="Rifi Z" first="Ziad" last="Rifi">Ziad Rifi</name>
<affiliation>
<nlm:aff id="aff1">
<institution content-type="dept">Department of Molecular and Cell Biology</institution>
<institution>University of California, Berkeley</institution>
<addr-line>Berkeley</addr-line>
<country>United States</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Wei, Jessica" sort="Wei, Jessica" uniqKey="Wei J" first="Jessica" last="Wei">Jessica Wei</name>
<affiliation>
<nlm:aff id="aff2">
<institution content-type="dept">Vision Science Program, School of Optometry</institution>
<institution>University of California, Berkeley</institution>
<addr-line>Berkeley</addr-line>
<country>United States</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Gronert, Karsten" sort="Gronert, Karsten" uniqKey="Gronert K" first="Karsten" last="Gronert">Karsten Gronert</name>
<affiliation>
<nlm:aff id="aff2">
<institution content-type="dept">Vision Science Program, School of Optometry</institution>
<institution>University of California, Berkeley</institution>
<addr-line>Berkeley</addr-line>
<country>United States</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Brem, Rachel B" sort="Brem, Rachel B" uniqKey="Brem R" first="Rachel B" last="Brem">Rachel B. Brem</name>
<affiliation>
<nlm:aff id="aff3">
<institution content-type="dept">Department of Plant and Microbial Biology</institution>
<institution>University of California, Berkeley</institution>
<addr-line>Berkeley</addr-line>
<country>United States</country>
</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="aff4">
<institution>Buck Institute for Research on Aging</institution>
<addr-line>Novato</addr-line>
<country>United States</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Barton, Gregory M" sort="Barton, Gregory M" uniqKey="Barton G" first="Gregory M" last="Barton">Gregory M. Barton</name>
<affiliation>
<nlm:aff id="aff1">
<institution content-type="dept">Department of Molecular and Cell Biology</institution>
<institution>University of California, Berkeley</institution>
<addr-line>Berkeley</addr-line>
<country>United States</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Bautista, Diana M" sort="Bautista, Diana M" uniqKey="Bautista D" first="Diana M" last="Bautista">Diana M. Bautista</name>
<affiliation>
<nlm:aff id="aff1">
<institution content-type="dept">Department of Molecular and Cell Biology</institution>
<institution>University of California, Berkeley</institution>
<addr-line>Berkeley</addr-line>
<country>United States</country>
</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="aff5">
<institution content-type="dept">Helen Wills Neuroscience Institute</institution>
<institution>University of California, Berkeley</institution>
<addr-line>Berkeley</addr-line>
<country>United States</country>
</nlm:aff>
</affiliation>
</author>
</analytic>
<series>
<title level="j">eLife</title>
<idno type="eISSN">2050-084X</idno>
<imprint>
<date when="????">????</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<p>Chronic itch remains a highly prevalent disorder with limited treatment options. Most chronic itch diseases are thought to be driven by both the nervous and immune systems, but the fundamental molecular and cellular interactions that trigger the development of itch and the acute-to-chronic itch transition remain unknown. Here, we show that skin-infiltrating neutrophils are key initiators of itch in atopic dermatitis, the most prevalent chronic itch disorder. Neutrophil depletion significantly attenuated itch-evoked scratching in a mouse model of atopic dermatitis. Neutrophils were also required for several key hallmarks of chronic itch, including skin hyperinnervation, enhanced expression of itch signaling molecules, and upregulation of inflammatory cytokines, activity-induced genes, and markers of neuropathic itch. Finally, we demonstrate that neutrophils are required for induction of CXCL10, a ligand of the CXCR3 receptor that promotes itch via activation of sensory neurons, and we find that that CXCR3 antagonism attenuates chronic itch.</p>
</div>
</front>
<back>
<div1 type="bibliography">
<listBibl>
<biblStruct>
<analytic>
<author>
<name sortKey="Anders, S" uniqKey="Anders S">S Anders</name>
</author>
<author>
<name sortKey="Mccarthy, Dj" uniqKey="Mccarthy D">DJ McCarthy</name>
</author>
<author>
<name sortKey="Chen, Y" uniqKey="Chen Y">Y Chen</name>
</author>
<author>
<name sortKey="Okoniewski, M" uniqKey="Okoniewski M">M Okoniewski</name>
</author>
<author>
<name sortKey="Smyth, Gk" uniqKey="Smyth G">GK Smyth</name>
</author>
<author>
<name sortKey="Huber, W" uniqKey="Huber W">W Huber</name>
</author>
<author>
<name sortKey="Robinson, Md" uniqKey="Robinson M">MD Robinson</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Anders, S" uniqKey="Anders S">S Anders</name>
</author>
<author>
<name sortKey="Huber, W" uniqKey="Huber W">W Huber</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Andersson, S" uniqKey="Andersson S">S Andersson</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Baral, P" uniqKey="Baral P">P Baral</name>
</author>
<author>
<name sortKey="Umans, Bd" uniqKey="Umans B">BD Umans</name>
</author>
<author>
<name sortKey="Li, L" uniqKey="Li L">L Li</name>
</author>
<author>
<name sortKey="Wallrapp, A" uniqKey="Wallrapp A">A Wallrapp</name>
</author>
<author>
<name sortKey="Bist, M" uniqKey="Bist M">M Bist</name>
</author>
<author>
<name sortKey="Kirschbaum, T" uniqKey="Kirschbaum T">T Kirschbaum</name>
</author>
<author>
<name sortKey="Wei, Y" uniqKey="Wei Y">Y Wei</name>
</author>
<author>
<name sortKey="Zhou, Y" uniqKey="Zhou Y">Y Zhou</name>
</author>
<author>
<name sortKey="Kuchroo, Vk" uniqKey="Kuchroo V">VK Kuchroo</name>
</author>
<author>
<name sortKey="Burkett, Pr" uniqKey="Burkett P">PR Burkett</name>
</author>
<author>
<name sortKey="Yipp, Bg" uniqKey="Yipp B">BG Yipp</name>
</author>
<author>
<name sortKey="Liberles, Sd" uniqKey="Liberles S">SD Liberles</name>
</author>
<author>
<name sortKey="Chiu, Im" uniqKey="Chiu I">IM Chiu</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Bautista, Dm" uniqKey="Bautista D">DM Bautista</name>
</author>
<author>
<name sortKey="Jordt, Se" uniqKey="Jordt S">SE Jordt</name>
</author>
<author>
<name sortKey="Nikai, T" uniqKey="Nikai T">T Nikai</name>
</author>
<author>
<name sortKey="Tsuruda, Pr" uniqKey="Tsuruda P">PR Tsuruda</name>
</author>
<author>
<name sortKey="Read, Aj" uniqKey="Read A">AJ Read</name>
</author>
<author>
<name sortKey="Poblete, J" uniqKey="Poblete J">J Poblete</name>
</author>
<author>
<name sortKey="Yamoah, En" uniqKey="Yamoah E">EN Yamoah</name>
</author>
<author>
<name sortKey="Basbaum, Ai" uniqKey="Basbaum A">AI Basbaum</name>
</author>
<author>
<name sortKey="Julius, D" uniqKey="Julius D">D Julius</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Blake, Kj" uniqKey="Blake K">KJ Blake</name>
</author>
<author>
<name sortKey="Baral, P" uniqKey="Baral P">P Baral</name>
</author>
<author>
<name sortKey="Voisin, T" uniqKey="Voisin T">T Voisin</name>
</author>
<author>
<name sortKey="Lubkin, A" uniqKey="Lubkin A">A Lubkin</name>
</author>
<author>
<name sortKey="Pinho Ribeiro, Fa" uniqKey="Pinho Ribeiro F">FA Pinho-Ribeiro</name>
</author>
<author>
<name sortKey="Adams, Kl" uniqKey="Adams K">KL Adams</name>
</author>
<author>
<name sortKey="Roberson, Dp" uniqKey="Roberson D">DP Roberson</name>
</author>
<author>
<name sortKey="Ma, Yc" uniqKey="Ma Y">YC Ma</name>
</author>
<author>
<name sortKey="Otto, M" uniqKey="Otto M">M Otto</name>
</author>
<author>
<name sortKey="Woolf, Cj" uniqKey="Woolf C">CJ Woolf</name>
</author>
<author>
<name sortKey="Torres, Vj" uniqKey="Torres V">VJ Torres</name>
</author>
<author>
<name sortKey="Chiu, Im" uniqKey="Chiu I">IM Chiu</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Briot, A" uniqKey="Briot A">A Briot</name>
</author>
<author>
<name sortKey="Deraison, C" uniqKey="Deraison C">C Deraison</name>
</author>
<author>
<name sortKey="Lacroix, M" uniqKey="Lacroix M">M Lacroix</name>
</author>
<author>
<name sortKey="Bonnart, C" uniqKey="Bonnart C">C Bonnart</name>
</author>
<author>
<name sortKey="Robin, A" uniqKey="Robin A">A Robin</name>
</author>
<author>
<name sortKey="Besson, C" uniqKey="Besson C">C Besson</name>
</author>
<author>
<name sortKey="Dubus, P" uniqKey="Dubus P">P Dubus</name>
</author>
<author>
<name sortKey="Hovnanian, A" uniqKey="Hovnanian A">A Hovnanian</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Briot, A" uniqKey="Briot A">A Briot</name>
</author>
<author>
<name sortKey="Lacroix, M" uniqKey="Lacroix M">M Lacroix</name>
</author>
<author>
<name sortKey="Robin, A" uniqKey="Robin A">A Robin</name>
</author>
<author>
<name sortKey="Steinhoff, M" uniqKey="Steinhoff M">M Steinhoff</name>
</author>
<author>
<name sortKey="Deraison, C" uniqKey="Deraison C">C Deraison</name>
</author>
<author>
<name sortKey="Hovnanian, A" uniqKey="Hovnanian A">A Hovnanian</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Brunner, Pm" uniqKey="Brunner P">PM Brunner</name>
</author>
<author>
<name sortKey="Guttman Yassky, E" uniqKey="Guttman Yassky E">E Guttman-Yassky</name>
</author>
<author>
<name sortKey="Leung, Dy" uniqKey="Leung D">DY Leung</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Caceres, Ai" uniqKey="Caceres A">AI Caceres</name>
</author>
<author>
<name sortKey="Brackmann, M" uniqKey="Brackmann M">M Brackmann</name>
</author>
<author>
<name sortKey="Elia, Md" uniqKey="Elia M">MD Elia</name>
</author>
<author>
<name sortKey="Bessac, Bf" uniqKey="Bessac B">BF Bessac</name>
</author>
<author>
<name sortKey="Del Camino, D" uniqKey="Del Camino D">D del Camino</name>
</author>
<author>
<name sortKey="D Amours, M" uniqKey="D Amours M">M D'Amours</name>
</author>
<author>
<name sortKey="Witek, Js" uniqKey="Witek J">JS Witek</name>
</author>
<author>
<name sortKey="Fanger, Cm" uniqKey="Fanger C">CM Fanger</name>
</author>
<author>
<name sortKey="Chong, Ja" uniqKey="Chong J">JA Chong</name>
</author>
<author>
<name sortKey="Hayward, Nj" uniqKey="Hayward N">NJ Hayward</name>
</author>
<author>
<name sortKey="Homer, Rj" uniqKey="Homer R">RJ Homer</name>
</author>
<author>
<name sortKey="Cohn, L" uniqKey="Cohn L">L Cohn</name>
</author>
<author>
<name sortKey="Huang, X" uniqKey="Huang X">X Huang</name>
</author>
<author>
<name sortKey="Moran, Mm" uniqKey="Moran M">MM Moran</name>
</author>
<author>
<name sortKey="Jordt, Se" uniqKey="Jordt S">SE Jordt</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Carpino, N" uniqKey="Carpino N">N Carpino</name>
</author>
<author>
<name sortKey="Thierfelder, We" uniqKey="Thierfelder W">WE Thierfelder</name>
</author>
<author>
<name sortKey="Chang, Ms" uniqKey="Chang M">MS Chang</name>
</author>
<author>
<name sortKey="Saris, C" uniqKey="Saris C">C Saris</name>
</author>
<author>
<name sortKey="Turner, Sj" uniqKey="Turner S">SJ Turner</name>
</author>
<author>
<name sortKey="Ziegler, Sf" uniqKey="Ziegler S">SF Ziegler</name>
</author>
<author>
<name sortKey="Ihle, Jn" uniqKey="Ihle J">JN Ihle</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Carreira, Eu" uniqKey="Carreira E">EU Carreira</name>
</author>
<author>
<name sortKey="Carregaro, V" uniqKey="Carregaro V">V Carregaro</name>
</author>
<author>
<name sortKey="Teixeira, Mm" uniqKey="Teixeira M">MM Teixeira</name>
</author>
<author>
<name sortKey="Moriconi, A" uniqKey="Moriconi A">A Moriconi</name>
</author>
<author>
<name sortKey="Aramini, A" uniqKey="Aramini A">A Aramini</name>
</author>
<author>
<name sortKey="Verri, Wa" uniqKey="Verri W">WA Verri</name>
</author>
<author>
<name sortKey="Ferreira, Sh" uniqKey="Ferreira S">SH Ferreira</name>
</author>
<author>
<name sortKey="Cunha, Fq" uniqKey="Cunha F">FQ Cunha</name>
</author>
<author>
<name sortKey="Cunha, Tm" uniqKey="Cunha T">TM Cunha</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Cevikbas, F" uniqKey="Cevikbas F">F Cevikbas</name>
</author>
<author>
<name sortKey="Wang, X" uniqKey="Wang X">X Wang</name>
</author>
<author>
<name sortKey="Akiyama, T" uniqKey="Akiyama T">T Akiyama</name>
</author>
<author>
<name sortKey="Kempkes, C" uniqKey="Kempkes C">C Kempkes</name>
</author>
<author>
<name sortKey="Savinko, T" uniqKey="Savinko T">T Savinko</name>
</author>
<author>
<name sortKey="Antal, A" uniqKey="Antal A">A Antal</name>
</author>
<author>
<name sortKey="Kukova, G" uniqKey="Kukova G">G Kukova</name>
</author>
<author>
<name sortKey="Buhl, T" uniqKey="Buhl T">T Buhl</name>
</author>
<author>
<name sortKey="Ikoma, A" uniqKey="Ikoma A">A Ikoma</name>
</author>
<author>
<name sortKey="Buddenkotte, J" uniqKey="Buddenkotte J">J Buddenkotte</name>
</author>
<author>
<name sortKey="Soumelis, V" uniqKey="Soumelis V">V Soumelis</name>
</author>
<author>
<name sortKey="Feld, M" uniqKey="Feld M">M Feld</name>
</author>
<author>
<name sortKey="Alenius, H" uniqKey="Alenius H">H Alenius</name>
</author>
<author>
<name sortKey="Dillon, Sr" uniqKey="Dillon S">SR Dillon</name>
</author>
<author>
<name sortKey="Carstens, E" uniqKey="Carstens E">E Carstens</name>
</author>
<author>
<name sortKey="Homey, B" uniqKey="Homey B">B Homey</name>
</author>
<author>
<name sortKey="Basbaum, A" uniqKey="Basbaum A">A Basbaum</name>
</author>
<author>
<name sortKey="Steinhoff, M" uniqKey="Steinhoff M">M Steinhoff</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Chatterjea, D" uniqKey="Chatterjea D">D Chatterjea</name>
</author>
<author>
<name sortKey="Martinov, T" uniqKey="Martinov T">T Martinov</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Choy, Df" uniqKey="Choy D">DF Choy</name>
</author>
<author>
<name sortKey="Hsu, Dk" uniqKey="Hsu D">DK Hsu</name>
</author>
<author>
<name sortKey="Seshasayee, D" uniqKey="Seshasayee D">D Seshasayee</name>
</author>
<author>
<name sortKey="Fung, Ma" uniqKey="Fung M">MA Fung</name>
</author>
<author>
<name sortKey="Modrusan, Z" uniqKey="Modrusan Z">Z Modrusan</name>
</author>
<author>
<name sortKey="Martin, F" uniqKey="Martin F">F Martin</name>
</author>
<author>
<name sortKey="Liu, Ft" uniqKey="Liu F">FT Liu</name>
</author>
<author>
<name sortKey="Arron, Jr" uniqKey="Arron J">JR Arron</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Cunha, Jm" uniqKey="Cunha J">JM Cunha</name>
</author>
<author>
<name sortKey="Sachs, D" uniqKey="Sachs D">D Sachs</name>
</author>
<author>
<name sortKey="Canetti, Ca" uniqKey="Canetti C">CA Canetti</name>
</author>
<author>
<name sortKey="Poole, S" uniqKey="Poole S">S Poole</name>
</author>
<author>
<name sortKey="Ferreira, Sh" uniqKey="Ferreira S">SH Ferreira</name>
</author>
<author>
<name sortKey="Cunha, Fq" uniqKey="Cunha F">FQ Cunha</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Dai, J" uniqKey="Dai J">J Dai</name>
</author>
<author>
<name sortKey="Choo, Mk" uniqKey="Choo M">MK Choo</name>
</author>
<author>
<name sortKey="Park, Jm" uniqKey="Park J">JM Park</name>
</author>
<author>
<name sortKey="Fisher, De" uniqKey="Fisher D">DE Fisher</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Dalgard, Fj" uniqKey="Dalgard F">FJ Dalgard</name>
</author>
<author>
<name sortKey="Gieler, U" uniqKey="Gieler U">U Gieler</name>
</author>
<author>
<name sortKey="Tomas Aragones, L" uniqKey="Tomas Aragones L">L Tomas-Aragones</name>
</author>
<author>
<name sortKey="Lien, L" uniqKey="Lien L">L Lien</name>
</author>
<author>
<name sortKey="Poot, F" uniqKey="Poot F">F Poot</name>
</author>
<author>
<name sortKey="Jemec, Gbe" uniqKey="Jemec G">GBE Jemec</name>
</author>
<author>
<name sortKey="Misery, L" uniqKey="Misery L">L Misery</name>
</author>
<author>
<name sortKey="Szabo, C" uniqKey="Szabo C">C Szabo</name>
</author>
<author>
<name sortKey="Linder, D" uniqKey="Linder D">D Linder</name>
</author>
<author>
<name sortKey="Sampogna, F" uniqKey="Sampogna F">F Sampogna</name>
</author>
<author>
<name sortKey="Evers, Awm" uniqKey="Evers A">AWM Evers</name>
</author>
<author>
<name sortKey="Halvorsen, Ja" uniqKey="Halvorsen J">JA Halvorsen</name>
</author>
<author>
<name sortKey="Balieva, F" uniqKey="Balieva F">F Balieva</name>
</author>
<author>
<name sortKey="Szepietowski, J" uniqKey="Szepietowski J">J Szepietowski</name>
</author>
<author>
<name sortKey="Romanov, D" uniqKey="Romanov D">D Romanov</name>
</author>
<author>
<name sortKey="Marron, Se" uniqKey="Marron S">SE Marron</name>
</author>
<author>
<name sortKey="Altunay, Ik" uniqKey="Altunay I">IK Altunay</name>
</author>
<author>
<name sortKey="Finlay, Ay" uniqKey="Finlay A">AY Finlay</name>
</author>
<author>
<name sortKey="Salek, Ss" uniqKey="Salek S">SS Salek</name>
</author>
<author>
<name sortKey="Kupfer, J" uniqKey="Kupfer J">J Kupfer</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Deftu, Af" uniqKey="Deftu A">AF Deftu</name>
</author>
<author>
<name sortKey="Filippi, A" uniqKey="Filippi A">A Filippi</name>
</author>
<author>
<name sortKey="Shibsaki, K" uniqKey="Shibsaki K">K Shibsaki</name>
</author>
<author>
<name sortKey="Gheorghe, Ro" uniqKey="Gheorghe R">RO Gheorghe</name>
</author>
<author>
<name sortKey="Chiritoiu, M" uniqKey="Chiritoiu M">M Chiritoiu</name>
</author>
<author>
<name sortKey="Ristoiu, V" uniqKey="Ristoiu V">V Ristoiu</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Deftu, Af" uniqKey="Deftu A">AF Deftu</name>
</author>
<author>
<name sortKey="Filippi, A" uniqKey="Filippi A">A Filippi</name>
</author>
<author>
<name sortKey="Gheorghe, Ro" uniqKey="Gheorghe R">RO Gheorghe</name>
</author>
<author>
<name sortKey="Ristoiu, V" uniqKey="Ristoiu V">V Ristoiu</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Demehri, S" uniqKey="Demehri S">S Demehri</name>
</author>
<author>
<name sortKey="Morimoto, M" uniqKey="Morimoto M">M Morimoto</name>
</author>
<author>
<name sortKey="Holtzman, Mj" uniqKey="Holtzman M">MJ Holtzman</name>
</author>
<author>
<name sortKey="Kopan, R" uniqKey="Kopan R">R Kopan</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Dhand, A" uniqKey="Dhand A">A Dhand</name>
</author>
<author>
<name sortKey="Aminoff, Mj" uniqKey="Aminoff M">MJ Aminoff</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Dong, X" uniqKey="Dong X">X Dong</name>
</author>
<author>
<name sortKey="Dong, X" uniqKey="Dong X">X Dong</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ewald, Da" uniqKey="Ewald D">DA Ewald</name>
</author>
<author>
<name sortKey="Noda, S" uniqKey="Noda S">S Noda</name>
</author>
<author>
<name sortKey="Oliva, M" uniqKey="Oliva M">M Oliva</name>
</author>
<author>
<name sortKey="Litman, T" uniqKey="Litman T">T Litman</name>
</author>
<author>
<name sortKey="Nakajima, S" uniqKey="Nakajima S">S Nakajima</name>
</author>
<author>
<name sortKey="Li, X" uniqKey="Li X">X Li</name>
</author>
<author>
<name sortKey="Xu, H" uniqKey="Xu H">H Xu</name>
</author>
<author>
<name sortKey="Workman, Ct" uniqKey="Workman C">CT Workman</name>
</author>
<author>
<name sortKey="Scheipers, P" uniqKey="Scheipers P">P Scheipers</name>
</author>
<author>
<name sortKey="Svitacheva, N" uniqKey="Svitacheva N">N Svitacheva</name>
</author>
<author>
<name sortKey="Labuda, T" uniqKey="Labuda T">T Labuda</name>
</author>
<author>
<name sortKey="Krueger, Jg" uniqKey="Krueger J">JG Krueger</name>
</author>
<author>
<name sortKey="Suarez Fari As, M" uniqKey="Suarez Fari As M">M Suárez-Fariñas</name>
</author>
<author>
<name sortKey="Kabashima, K" uniqKey="Kabashima K">K Kabashima</name>
</author>
<author>
<name sortKey="Guttman Yassky, E" uniqKey="Guttman Yassky E">E Guttman-Yassky</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Finley, A" uniqKey="Finley A">A Finley</name>
</author>
<author>
<name sortKey="Chen, Z" uniqKey="Chen Z">Z Chen</name>
</author>
<author>
<name sortKey="Esposito, E" uniqKey="Esposito E">E Esposito</name>
</author>
<author>
<name sortKey="Cuzzocrea, S" uniqKey="Cuzzocrea S">S Cuzzocrea</name>
</author>
<author>
<name sortKey="Sabbadini, R" uniqKey="Sabbadini R">R Sabbadini</name>
</author>
<author>
<name sortKey="Salvemini, D" uniqKey="Salvemini D">D Salvemini</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Fogh, K" uniqKey="Fogh K">K Fogh</name>
</author>
<author>
<name sortKey="Herlin, T" uniqKey="Herlin T">T Herlin</name>
</author>
<author>
<name sortKey="Kragballe, K" uniqKey="Kragballe K">K Kragballe</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Gao, Ps" uniqKey="Gao P">PS Gao</name>
</author>
<author>
<name sortKey="Rafaels, Nm" uniqKey="Rafaels N">NM Rafaels</name>
</author>
<author>
<name sortKey="Mu, D" uniqKey="Mu D">D Mu</name>
</author>
<author>
<name sortKey="Hand, T" uniqKey="Hand T">T Hand</name>
</author>
<author>
<name sortKey="Murray, T" uniqKey="Murray T">T Murray</name>
</author>
<author>
<name sortKey="Boguniewicz, M" uniqKey="Boguniewicz M">M Boguniewicz</name>
</author>
<author>
<name sortKey="Hata, T" uniqKey="Hata T">T Hata</name>
</author>
<author>
<name sortKey="Schneider, L" uniqKey="Schneider L">L Schneider</name>
</author>
<author>
<name sortKey="Hanifin, Jm" uniqKey="Hanifin J">JM Hanifin</name>
</author>
<author>
<name sortKey="Gallo, Rl" uniqKey="Gallo R">RL Gallo</name>
</author>
<author>
<name sortKey="Gao, L" uniqKey="Gao L">L Gao</name>
</author>
<author>
<name sortKey="Beaty, Th" uniqKey="Beaty T">TH Beaty</name>
</author>
<author>
<name sortKey="Beck, La" uniqKey="Beck L">LA Beck</name>
</author>
<author>
<name sortKey="Leung, Dy" uniqKey="Leung D">DY Leung</name>
</author>
<author>
<name sortKey="Barnes, Kc" uniqKey="Barnes K">KC Barnes</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ghasemlou, N" uniqKey="Ghasemlou N">N Ghasemlou</name>
</author>
<author>
<name sortKey="Chiu, Im" uniqKey="Chiu I">IM Chiu</name>
</author>
<author>
<name sortKey="Julien, Jp" uniqKey="Julien J">JP Julien</name>
</author>
<author>
<name sortKey="Woolf, Cj" uniqKey="Woolf C">CJ Woolf</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Gittler, Jk" uniqKey="Gittler J">JK Gittler</name>
</author>
<author>
<name sortKey="Shemer, A" uniqKey="Shemer A">A Shemer</name>
</author>
<author>
<name sortKey="Suarez Fari As, M" uniqKey="Suarez Fari As M">M Suárez-Fariñas</name>
</author>
<author>
<name sortKey="Fuentes Duculan, J" uniqKey="Fuentes Duculan J">J Fuentes-Duculan</name>
</author>
<author>
<name sortKey="Gulewicz, Kj" uniqKey="Gulewicz K">KJ Gulewicz</name>
</author>
<author>
<name sortKey="Wang, Cq" uniqKey="Wang C">CQ Wang</name>
</author>
<author>
<name sortKey="Mitsui, H" uniqKey="Mitsui H">H Mitsui</name>
</author>
<author>
<name sortKey="Cardinale, I" uniqKey="Cardinale I">I Cardinale</name>
</author>
<author>
<name sortKey="De Guzman Strong, C" uniqKey="De Guzman Strong C">C de Guzman Strong</name>
</author>
<author>
<name sortKey="Krueger, Jg" uniqKey="Krueger J">JG Krueger</name>
</author>
<author>
<name sortKey="Guttman Yassky, E" uniqKey="Guttman Yassky E">E Guttman-Yassky</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Guerrero, At" uniqKey="Guerrero A">AT Guerrero</name>
</author>
<author>
<name sortKey="Verri, Wa" uniqKey="Verri W">WA Verri</name>
</author>
<author>
<name sortKey="Cunha, Tm" uniqKey="Cunha T">TM Cunha</name>
</author>
<author>
<name sortKey="Silva, Ta" uniqKey="Silva T">TA Silva</name>
</author>
<author>
<name sortKey="Schivo, Ir" uniqKey="Schivo I">IR Schivo</name>
</author>
<author>
<name sortKey="Dal Secco, D" uniqKey="Dal Secco D">D Dal-Secco</name>
</author>
<author>
<name sortKey="Canetti, C" uniqKey="Canetti C">C Canetti</name>
</author>
<author>
<name sortKey="Rocha, Fa" uniqKey="Rocha F">FA Rocha</name>
</author>
<author>
<name sortKey="Parada, Ca" uniqKey="Parada C">CA Parada</name>
</author>
<author>
<name sortKey="Cunha, Fq" uniqKey="Cunha F">FQ Cunha</name>
</author>
<author>
<name sortKey="Ferreira, Sh" uniqKey="Ferreira S">SH Ferreira</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Guttman Yassky, E" uniqKey="Guttman Yassky E">E Guttman-Yassky</name>
</author>
<author>
<name sortKey="Suarez Fari As, M" uniqKey="Suarez Fari As M">M Suárez-Fariñas</name>
</author>
<author>
<name sortKey="Chiricozzi, A" uniqKey="Chiricozzi A">A Chiricozzi</name>
</author>
<author>
<name sortKey="Nograles, Ke" uniqKey="Nograles K">KE Nograles</name>
</author>
<author>
<name sortKey="Shemer, A" uniqKey="Shemer A">A Shemer</name>
</author>
<author>
<name sortKey="Fuentes Duculan, J" uniqKey="Fuentes Duculan J">J Fuentes-Duculan</name>
</author>
<author>
<name sortKey="Cardinale, I" uniqKey="Cardinale I">I Cardinale</name>
</author>
<author>
<name sortKey="Lin, P" uniqKey="Lin P">P Lin</name>
</author>
<author>
<name sortKey="Bergman, R" uniqKey="Bergman R">R Bergman</name>
</author>
<author>
<name sortKey="Bowcock, Am" uniqKey="Bowcock A">AM Bowcock</name>
</author>
<author>
<name sortKey="Krueger, Jg" uniqKey="Krueger J">JG Krueger</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Guttman Yassky, E" uniqKey="Guttman Yassky E">E Guttman-Yassky</name>
</author>
<author>
<name sortKey="Krueger, Jg" uniqKey="Krueger J">JG Krueger</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Haas, S" uniqKey="Haas S">S Haas</name>
</author>
<author>
<name sortKey="Capellino, S" uniqKey="Capellino S">S Capellino</name>
</author>
<author>
<name sortKey="Phan, Nq" uniqKey="Phan N">NQ Phan</name>
</author>
<author>
<name sortKey="Bohm, M" uniqKey="Bohm M">M Böhm</name>
</author>
<author>
<name sortKey="Luger, Ta" uniqKey="Luger T">TA Luger</name>
</author>
<author>
<name sortKey="Straub, Rh" uniqKey="Straub R">RH Straub</name>
</author>
<author>
<name sortKey="St Nder, S" uniqKey="St Nder S">S Ständer</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Hamilton, Jd" uniqKey="Hamilton J">JD Hamilton</name>
</author>
<author>
<name sortKey="Suarez Fari As, M" uniqKey="Suarez Fari As M">M Suárez-Fariñas</name>
</author>
<author>
<name sortKey="Dhingra, N" uniqKey="Dhingra N">N Dhingra</name>
</author>
<author>
<name sortKey="Cardinale, I" uniqKey="Cardinale I">I Cardinale</name>
</author>
<author>
<name sortKey="Li, X" uniqKey="Li X">X Li</name>
</author>
<author>
<name sortKey="Kostic, A" uniqKey="Kostic A">A Kostic</name>
</author>
<author>
<name sortKey="Ming, Je" uniqKey="Ming J">JE Ming</name>
</author>
<author>
<name sortKey="Radin, Ar" uniqKey="Radin A">AR Radin</name>
</author>
<author>
<name sortKey="Krueger, Jg" uniqKey="Krueger J">JG Krueger</name>
</author>
<author>
<name sortKey="Graham, N" uniqKey="Graham N">N Graham</name>
</author>
<author>
<name sortKey="Yancopoulos, Gd" uniqKey="Yancopoulos G">GD Yancopoulos</name>
</author>
<author>
<name sortKey="Pirozzi, G" uniqKey="Pirozzi G">G Pirozzi</name>
</author>
<author>
<name sortKey="Guttman Yassky, E" uniqKey="Guttman Yassky E">E Guttman-Yassky</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Hammond, Tr" uniqKey="Hammond T">TR Hammond</name>
</author>
<author>
<name sortKey="Robinton, D" uniqKey="Robinton D">D Robinton</name>
</author>
<author>
<name sortKey="Stevens, B" uniqKey="Stevens B">B Stevens</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Hashimoto, T" uniqKey="Hashimoto T">T Hashimoto</name>
</author>
<author>
<name sortKey="Rosen, Jd" uniqKey="Rosen J">JD Rosen</name>
</author>
<author>
<name sortKey="Sanders, Km" uniqKey="Sanders K">KM Sanders</name>
</author>
<author>
<name sortKey="Yosipovitch, G" uniqKey="Yosipovitch G">G Yosipovitch</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Hidaka, T" uniqKey="Hidaka T">T Hidaka</name>
</author>
<author>
<name sortKey="Ogawa, E" uniqKey="Ogawa E">E Ogawa</name>
</author>
<author>
<name sortKey="Kobayashi, Eh" uniqKey="Kobayashi E">EH Kobayashi</name>
</author>
<author>
<name sortKey="Suzuki, T" uniqKey="Suzuki T">T Suzuki</name>
</author>
<author>
<name sortKey="Funayama, R" uniqKey="Funayama R">R Funayama</name>
</author>
<author>
<name sortKey="Nagashima, T" uniqKey="Nagashima T">T Nagashima</name>
</author>
<author>
<name sortKey="Fujimura, T" uniqKey="Fujimura T">T Fujimura</name>
</author>
<author>
<name sortKey="Aiba, S" uniqKey="Aiba S">S Aiba</name>
</author>
<author>
<name sortKey="Nakayama, K" uniqKey="Nakayama K">K Nakayama</name>
</author>
<author>
<name sortKey="Okuyama, R" uniqKey="Okuyama R">R Okuyama</name>
</author>
<author>
<name sortKey="Yamamoto, M" uniqKey="Yamamoto M">M Yamamoto</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Hill, Rz" uniqKey="Hill R">RZ Hill</name>
</author>
<author>
<name sortKey="Hoffman, Bu" uniqKey="Hoffman B">BU Hoffman</name>
</author>
<author>
<name sortKey="Morita, T" uniqKey="Morita T">T Morita</name>
</author>
<author>
<name sortKey="Campos, Sm" uniqKey="Campos S">SM Campos</name>
</author>
<author>
<name sortKey="Lumpkin, Ea" uniqKey="Lumpkin E">EA Lumpkin</name>
</author>
<author>
<name sortKey="Brem, Rb" uniqKey="Brem R">RB Brem</name>
</author>
<author>
<name sortKey="Bautista, Dm" uniqKey="Bautista D">DM Bautista</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Hill, Rz" uniqKey="Hill R">RZ Hill</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Huang, J" uniqKey="Huang J">J Huang</name>
</author>
<author>
<name sortKey="Polgar, E" uniqKey="Polgar E">E Polgár</name>
</author>
<author>
<name sortKey="Solinski, Hj" uniqKey="Solinski H">HJ Solinski</name>
</author>
<author>
<name sortKey="Mishra, Sk" uniqKey="Mishra S">SK Mishra</name>
</author>
<author>
<name sortKey="Tseng, Py" uniqKey="Tseng P">PY Tseng</name>
</author>
<author>
<name sortKey="Iwagaki, N" uniqKey="Iwagaki N">N Iwagaki</name>
</author>
<author>
<name sortKey="Boyle, Ka" uniqKey="Boyle K">KA Boyle</name>
</author>
<author>
<name sortKey="Dickie, Ac" uniqKey="Dickie A">AC Dickie</name>
</author>
<author>
<name sortKey="Kriegbaum, Mc" uniqKey="Kriegbaum M">MC Kriegbaum</name>
</author>
<author>
<name sortKey="Wildner, H" uniqKey="Wildner H">H Wildner</name>
</author>
<author>
<name sortKey="Zeilhofer, Hu" uniqKey="Zeilhofer H">HU Zeilhofer</name>
</author>
<author>
<name sortKey="Watanabe, M" uniqKey="Watanabe M">M Watanabe</name>
</author>
<author>
<name sortKey="Riddell, Js" uniqKey="Riddell J">JS Riddell</name>
</author>
<author>
<name sortKey="Todd, Aj" uniqKey="Todd A">AJ Todd</name>
</author>
<author>
<name sortKey="Hoon, Ma" uniqKey="Hoon M">MA Hoon</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ikoma, A" uniqKey="Ikoma A">A Ikoma</name>
</author>
<author>
<name sortKey="Steinhoff, M" uniqKey="Steinhoff M">M Steinhoff</name>
</author>
<author>
<name sortKey="St Nder, S" uniqKey="St Nder S">S Ständer</name>
</author>
<author>
<name sortKey="Yosipovitch, G" uniqKey="Yosipovitch G">G Yosipovitch</name>
</author>
<author>
<name sortKey="Schmelz, M" uniqKey="Schmelz M">M Schmelz</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ioannidis, Lj" uniqKey="Ioannidis L">LJ Ioannidis</name>
</author>
<author>
<name sortKey="Nie, Cq" uniqKey="Nie C">CQ Nie</name>
</author>
<author>
<name sortKey="Ly, A" uniqKey="Ly A">A Ly</name>
</author>
<author>
<name sortKey="Ryg Cornejo, V" uniqKey="Ryg Cornejo V">V Ryg-Cornejo</name>
</author>
<author>
<name sortKey="Chiu, Cy" uniqKey="Chiu C">CY Chiu</name>
</author>
<author>
<name sortKey="Hansen, Ds" uniqKey="Hansen D">DS Hansen</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Jabbari, A" uniqKey="Jabbari A">A Jabbari</name>
</author>
<author>
<name sortKey="Suarez Fari As, M" uniqKey="Suarez Fari As M">M Suárez-Fariñas</name>
</author>
<author>
<name sortKey="Dewell, S" uniqKey="Dewell S">S Dewell</name>
</author>
<author>
<name sortKey="Krueger, Jg" uniqKey="Krueger J">JG Krueger</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Jing, Pb" uniqKey="Jing P">PB Jing</name>
</author>
<author>
<name sortKey="Cao, Dl" uniqKey="Cao D">DL Cao</name>
</author>
<author>
<name sortKey="Li, Ss" uniqKey="Li S">SS Li</name>
</author>
<author>
<name sortKey="Zhu, M" uniqKey="Zhu M">M Zhu</name>
</author>
<author>
<name sortKey="Bai, Xq" uniqKey="Bai X">XQ Bai</name>
</author>
<author>
<name sortKey="Wu, Xb" uniqKey="Wu X">XB Wu</name>
</author>
<author>
<name sortKey="Gao, Yj" uniqKey="Gao Y">YJ Gao</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kamo, A" uniqKey="Kamo A">A Kamo</name>
</author>
<author>
<name sortKey="Tominaga, M" uniqKey="Tominaga M">M Tominaga</name>
</author>
<author>
<name sortKey="Taneda, K" uniqKey="Taneda K">K Taneda</name>
</author>
<author>
<name sortKey="Ogawa, H" uniqKey="Ogawa H">H Ogawa</name>
</author>
<author>
<name sortKey="Takamori, K" uniqKey="Takamori K">K Takamori</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kanda, N" uniqKey="Kanda N">N Kanda</name>
</author>
<author>
<name sortKey="Shimizu, T" uniqKey="Shimizu T">T Shimizu</name>
</author>
<author>
<name sortKey="Tada, Y" uniqKey="Tada Y">Y Tada</name>
</author>
<author>
<name sortKey="Watanabe, S" uniqKey="Watanabe S">S Watanabe</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kim, Bs" uniqKey="Kim B">BS Kim</name>
</author>
<author>
<name sortKey="Siracusa, Mc" uniqKey="Siracusa M">MC Siracusa</name>
</author>
<author>
<name sortKey="Saenz, Sa" uniqKey="Saenz S">SA Saenz</name>
</author>
<author>
<name sortKey="Noti, M" uniqKey="Noti M">M Noti</name>
</author>
<author>
<name sortKey="Monticelli, La" uniqKey="Monticelli L">LA Monticelli</name>
</author>
<author>
<name sortKey="Sonnenberg, Gf" uniqKey="Sonnenberg G">GF Sonnenberg</name>
</author>
<author>
<name sortKey="Hepworth, Mr" uniqKey="Hepworth M">MR Hepworth</name>
</author>
<author>
<name sortKey="Van Voorhees, As" uniqKey="Van Voorhees A">AS Van Voorhees</name>
</author>
<author>
<name sortKey="Comeau, Mr" uniqKey="Comeau M">MR Comeau</name>
</author>
<author>
<name sortKey="Artis, D" uniqKey="Artis D">D Artis</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kim, D" uniqKey="Kim D">D Kim</name>
</author>
<author>
<name sortKey="Kobayashi, T" uniqKey="Kobayashi T">T Kobayashi</name>
</author>
<author>
<name sortKey="Nagao, K" uniqKey="Nagao K">K Nagao</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kitamura, A" uniqKey="Kitamura A">A Kitamura</name>
</author>
<author>
<name sortKey="Takata, R" uniqKey="Takata R">R Takata</name>
</author>
<author>
<name sortKey="Aizawa, S" uniqKey="Aizawa S">S Aizawa</name>
</author>
<author>
<name sortKey="Watanabe, H" uniqKey="Watanabe H">H Watanabe</name>
</author>
<author>
<name sortKey="Wada, T" uniqKey="Wada T">T Wada</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Koga, C" uniqKey="Koga C">C Koga</name>
</author>
<author>
<name sortKey="Kabashima, K" uniqKey="Kabashima K">K Kabashima</name>
</author>
<author>
<name sortKey="Shiraishi, N" uniqKey="Shiraishi N">N Shiraishi</name>
</author>
<author>
<name sortKey="Kobayashi, M" uniqKey="Kobayashi M">M Kobayashi</name>
</author>
<author>
<name sortKey="Tokura, Y" uniqKey="Tokura Y">Y Tokura</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Koro, O" uniqKey="Koro O">O Koro</name>
</author>
<author>
<name sortKey="Furutani, K" uniqKey="Furutani K">K Furutani</name>
</author>
<author>
<name sortKey="Hide, M" uniqKey="Hide M">M Hide</name>
</author>
<author>
<name sortKey="Yamada, S" uniqKey="Yamada S">S Yamada</name>
</author>
<author>
<name sortKey="Yamamoto, S" uniqKey="Yamamoto S">S Yamamoto</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kou, K" uniqKey="Kou K">K Kou</name>
</author>
<author>
<name sortKey="Nakamura, F" uniqKey="Nakamura F">F Nakamura</name>
</author>
<author>
<name sortKey="Aihara, M" uniqKey="Aihara M">M Aihara</name>
</author>
<author>
<name sortKey="Chen, H" uniqKey="Chen H">H Chen</name>
</author>
<author>
<name sortKey="Seto, K" uniqKey="Seto K">K Seto</name>
</author>
<author>
<name sortKey="Komori Yamaguchi, J" uniqKey="Komori Yamaguchi J">J Komori-Yamaguchi</name>
</author>
<author>
<name sortKey="Kambara, T" uniqKey="Kambara T">T Kambara</name>
</author>
<author>
<name sortKey="Nagashima, Y" uniqKey="Nagashima Y">Y Nagashima</name>
</author>
<author>
<name sortKey="Goshima, Y" uniqKey="Goshima Y">Y Goshima</name>
</author>
<author>
<name sortKey="Ikezawa, Z" uniqKey="Ikezawa Z">Z Ikezawa</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Langmead, B" uniqKey="Langmead B">B Langmead</name>
</author>
<author>
<name sortKey="Trapnell, C" uniqKey="Trapnell C">C Trapnell</name>
</author>
<author>
<name sortKey="Pop, M" uniqKey="Pop M">M Pop</name>
</author>
<author>
<name sortKey="Salzberg, Sl" uniqKey="Salzberg S">SL Salzberg</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Langmead, B" uniqKey="Langmead B">B Langmead</name>
</author>
<author>
<name sortKey="Salzberg, Sl" uniqKey="Salzberg S">SL Salzberg</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Levine, Jd" uniqKey="Levine J">JD Levine</name>
</author>
<author>
<name sortKey="Khasar, Sg" uniqKey="Khasar S">SG Khasar</name>
</author>
<author>
<name sortKey="Green, Pg" uniqKey="Green P">PG Green</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Li, M" uniqKey="Li M">M Li</name>
</author>
<author>
<name sortKey="Hener, P" uniqKey="Hener P">P Hener</name>
</author>
<author>
<name sortKey="Zhang, Z" uniqKey="Zhang Z">Z Zhang</name>
</author>
<author>
<name sortKey="Kato, S" uniqKey="Kato S">S Kato</name>
</author>
<author>
<name sortKey="Metzger, D" uniqKey="Metzger D">D Metzger</name>
</author>
<author>
<name sortKey="Chambon, P" uniqKey="Chambon P">P Chambon</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Li, M" uniqKey="Li M">M Li</name>
</author>
<author>
<name sortKey="Hener, P" uniqKey="Hener P">P Hener</name>
</author>
<author>
<name sortKey="Zhang, Z" uniqKey="Zhang Z">Z Zhang</name>
</author>
<author>
<name sortKey="Ganti, Kp" uniqKey="Ganti K">KP Ganti</name>
</author>
<author>
<name sortKey="Metzger, D" uniqKey="Metzger D">D Metzger</name>
</author>
<author>
<name sortKey="Chambon, P" uniqKey="Chambon P">P Chambon</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Li, C" uniqKey="Li C">C Li</name>
</author>
<author>
<name sortKey="Maillet, I" uniqKey="Maillet I">I Maillet</name>
</author>
<author>
<name sortKey="Mackowiak, C" uniqKey="Mackowiak C">C Mackowiak</name>
</author>
<author>
<name sortKey="Viala, C" uniqKey="Viala C">C Viala</name>
</author>
<author>
<name sortKey="Di Padova, F" uniqKey="Di Padova F">F Di Padova</name>
</author>
<author>
<name sortKey="Li, M" uniqKey="Li M">M Li</name>
</author>
<author>
<name sortKey="Togbe, D" uniqKey="Togbe D">D Togbe</name>
</author>
<author>
<name sortKey="Quesniaux, V" uniqKey="Quesniaux V">V Quesniaux</name>
</author>
<author>
<name sortKey="Lai, Y" uniqKey="Lai Y">Y Lai</name>
</author>
<author>
<name sortKey="Ryffel, B" uniqKey="Ryffel B">B Ryffel</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Liu, B" uniqKey="Liu B">B Liu</name>
</author>
<author>
<name sortKey="Tai, Y" uniqKey="Tai Y">Y Tai</name>
</author>
<author>
<name sortKey="Achanta, S" uniqKey="Achanta S">S Achanta</name>
</author>
<author>
<name sortKey="Kaelberer, Mm" uniqKey="Kaelberer M">MM Kaelberer</name>
</author>
<author>
<name sortKey="Caceres, Ai" uniqKey="Caceres A">AI Caceres</name>
</author>
<author>
<name sortKey="Shao, X" uniqKey="Shao X">X Shao</name>
</author>
<author>
<name sortKey="Fang, J" uniqKey="Fang J">J Fang</name>
</author>
<author>
<name sortKey="Jordt, Se" uniqKey="Jordt S">SE Jordt</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Liu, B" uniqKey="Liu B">B Liu</name>
</author>
<author>
<name sortKey="Tai, Y" uniqKey="Tai Y">Y Tai</name>
</author>
<author>
<name sortKey="Liu, B" uniqKey="Liu B">B Liu</name>
</author>
<author>
<name sortKey="Caceres, Ai" uniqKey="Caceres A">AI Caceres</name>
</author>
<author>
<name sortKey="Yin, C" uniqKey="Yin C">C Yin</name>
</author>
<author>
<name sortKey="Jordt, S E" uniqKey="Jordt S">S-E Jordt</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Liu, T" uniqKey="Liu T">T Liu</name>
</author>
<author>
<name sortKey="Ji, Rr" uniqKey="Ji R">RR Ji</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Malik, K" uniqKey="Malik K">K Malik</name>
</author>
<author>
<name sortKey="Ungar, B" uniqKey="Ungar B">B Ungar</name>
</author>
<author>
<name sortKey="Garcet, S" uniqKey="Garcet S">S Garcet</name>
</author>
<author>
<name sortKey="Dutt, R" uniqKey="Dutt R">R Dutt</name>
</author>
<author>
<name sortKey="Dickstein, D" uniqKey="Dickstein D">D Dickstein</name>
</author>
<author>
<name sortKey="Zheng, X" uniqKey="Zheng X">X Zheng</name>
</author>
<author>
<name sortKey="Xu, H" uniqKey="Xu H">H Xu</name>
</author>
<author>
<name sortKey="Estrada, Yd" uniqKey="Estrada Y">YD Estrada</name>
</author>
<author>
<name sortKey="Suarez Fari As, M" uniqKey="Suarez Fari As M">M Suárez-Fariñas</name>
</author>
<author>
<name sortKey="Shemer, A" uniqKey="Shemer A">A Shemer</name>
</author>
<author>
<name sortKey="Krueger, Jg" uniqKey="Krueger J">JG Krueger</name>
</author>
<author>
<name sortKey="Guttman Yassky, E" uniqKey="Guttman Yassky E">E Guttman-Yassky</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Mansouri, Y" uniqKey="Mansouri Y">Y Mansouri</name>
</author>
<author>
<name sortKey="Guttman Yassky, E" uniqKey="Guttman Yassky E">E Guttman-Yassky</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Marshall, Kl" uniqKey="Marshall K">KL Marshall</name>
</author>
<author>
<name sortKey="Clary, Rc" uniqKey="Clary R">RC Clary</name>
</author>
<author>
<name sortKey="Baba, Y" uniqKey="Baba Y">Y Baba</name>
</author>
<author>
<name sortKey="Orlowsky, Rl" uniqKey="Orlowsky R">RL Orlowsky</name>
</author>
<author>
<name sortKey="Gerling, Gj" uniqKey="Gerling G">GJ Gerling</name>
</author>
<author>
<name sortKey="Lumpkin, Ea" uniqKey="Lumpkin E">EA Lumpkin</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Martel, Bc" uniqKey="Martel B">BC Martel</name>
</author>
<author>
<name sortKey="Lovato, P" uniqKey="Lovato P">P Lovato</name>
</author>
<author>
<name sortKey="B Umer, W" uniqKey="B Umer W">W Bäumer</name>
</author>
<author>
<name sortKey="Olivry, T" uniqKey="Olivry T">T Olivry</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Matterne, U" uniqKey="Matterne U">U Matterne</name>
</author>
<author>
<name sortKey="Apfelbacher, Cj" uniqKey="Apfelbacher C">CJ Apfelbacher</name>
</author>
<author>
<name sortKey="Loerbroks, A" uniqKey="Loerbroks A">A Loerbroks</name>
</author>
<author>
<name sortKey="Schwarzer, T" uniqKey="Schwarzer T">T Schwarzer</name>
</author>
<author>
<name sortKey="Buttner, M" uniqKey="Buttner M">M Büttner</name>
</author>
<author>
<name sortKey="Ofenloch, R" uniqKey="Ofenloch R">R Ofenloch</name>
</author>
<author>
<name sortKey="Diepgen, Tl" uniqKey="Diepgen T">TL Diepgen</name>
</author>
<author>
<name sortKey="Weisshaar, E" uniqKey="Weisshaar E">E Weisshaar</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Meixiong, J" uniqKey="Meixiong J">J Meixiong</name>
</author>
<author>
<name sortKey="Anderson, M" uniqKey="Anderson M">M Anderson</name>
</author>
<author>
<name sortKey="Limjunyawong, N" uniqKey="Limjunyawong N">N Limjunyawong</name>
</author>
<author>
<name sortKey="Sabbagh, Mf" uniqKey="Sabbagh M">MF Sabbagh</name>
</author>
<author>
<name sortKey="Hu, E" uniqKey="Hu E">E Hu</name>
</author>
<author>
<name sortKey="Mack, Mr" uniqKey="Mack M">MR Mack</name>
</author>
<author>
<name sortKey="Oetjen, Lk" uniqKey="Oetjen L">LK Oetjen</name>
</author>
<author>
<name sortKey="Wang, F" uniqKey="Wang F">F Wang</name>
</author>
<author>
<name sortKey="Kim, Bs" uniqKey="Kim B">BS Kim</name>
</author>
<author>
<name sortKey="Dong, X" uniqKey="Dong X">X Dong</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Meng, J" uniqKey="Meng J">J Meng</name>
</author>
<author>
<name sortKey="Moriyama, M" uniqKey="Moriyama M">M Moriyama</name>
</author>
<author>
<name sortKey="Feld, M" uniqKey="Feld M">M Feld</name>
</author>
<author>
<name sortKey="Buddenkotte, J" uniqKey="Buddenkotte J">J Buddenkotte</name>
</author>
<author>
<name sortKey="Buhl, T" uniqKey="Buhl T">T Buhl</name>
</author>
<author>
<name sortKey="Szollosi, A" uniqKey="Szollosi A">A Szöllösi</name>
</author>
<author>
<name sortKey="Zhang, J" uniqKey="Zhang J">J Zhang</name>
</author>
<author>
<name sortKey="Miller, P" uniqKey="Miller P">P Miller</name>
</author>
<author>
<name sortKey="Ghetti, A" uniqKey="Ghetti A">A Ghetti</name>
</author>
<author>
<name sortKey="Fischer, M" uniqKey="Fischer M">M Fischer</name>
</author>
<author>
<name sortKey="Reeh, Pw" uniqKey="Reeh P">PW Reeh</name>
</author>
<author>
<name sortKey="Shan, C" uniqKey="Shan C">C Shan</name>
</author>
<author>
<name sortKey="Wang, J" uniqKey="Wang J">J Wang</name>
</author>
<author>
<name sortKey="Steinhoff, M" uniqKey="Steinhoff M">M Steinhoff</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Michalec, L" uniqKey="Michalec L">L Michalec</name>
</author>
<author>
<name sortKey="Choudhury, Bk" uniqKey="Choudhury B">BK Choudhury</name>
</author>
<author>
<name sortKey="Postlethwait, E" uniqKey="Postlethwait E">E Postlethwait</name>
</author>
<author>
<name sortKey="Wild, Js" uniqKey="Wild J">JS Wild</name>
</author>
<author>
<name sortKey="Alam, R" uniqKey="Alam R">R Alam</name>
</author>
<author>
<name sortKey="Lett Brown, M" uniqKey="Lett Brown M">M Lett-Brown</name>
</author>
<author>
<name sortKey="Sur, S" uniqKey="Sur S">S Sur</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Mihm, Mc" uniqKey="Mihm M">MC Mihm</name>
</author>
<author>
<name sortKey="Soter, Na" uniqKey="Soter N">NA Soter</name>
</author>
<author>
<name sortKey="Dvorak, Hf" uniqKey="Dvorak H">HF Dvorak</name>
</author>
<author>
<name sortKey="Austen, Kf" uniqKey="Austen K">KF Austen</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Mollanazar, Nk" uniqKey="Mollanazar N">NK Mollanazar</name>
</author>
<author>
<name sortKey="Smith, Pk" uniqKey="Smith P">PK Smith</name>
</author>
<author>
<name sortKey="Yosipovitch, G" uniqKey="Yosipovitch G">G Yosipovitch</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Moosbrugger Martinz, V" uniqKey="Moosbrugger Martinz V">V Moosbrugger-Martinz</name>
</author>
<author>
<name sortKey="Schmuth, M" uniqKey="Schmuth M">M Schmuth</name>
</author>
<author>
<name sortKey="Dubrac, S" uniqKey="Dubrac S">S Dubrac</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Morita, T" uniqKey="Morita T">T Morita</name>
</author>
<author>
<name sortKey="Mcclain, Sp" uniqKey="Mcclain S">SP McClain</name>
</author>
<author>
<name sortKey="Batia, Lm" uniqKey="Batia L">LM Batia</name>
</author>
<author>
<name sortKey="Pellegrino, M" uniqKey="Pellegrino M">M Pellegrino</name>
</author>
<author>
<name sortKey="Wilson, Sr" uniqKey="Wilson S">SR Wilson</name>
</author>
<author>
<name sortKey="Kienzler, Ma" uniqKey="Kienzler M">MA Kienzler</name>
</author>
<author>
<name sortKey="Lyman, K" uniqKey="Lyman K">K Lyman</name>
</author>
<author>
<name sortKey="Olsen, As" uniqKey="Olsen A">AS Olsen</name>
</author>
<author>
<name sortKey="Wong, Jf" uniqKey="Wong J">JF Wong</name>
</author>
<author>
<name sortKey="Stucky, Cl" uniqKey="Stucky C">CL Stucky</name>
</author>
<author>
<name sortKey="Brem, Rb" uniqKey="Brem R">RB Brem</name>
</author>
<author>
<name sortKey="Bautista, Dm" uniqKey="Bautista D">DM Bautista</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Nattkemper, La" uniqKey="Nattkemper L">LA Nattkemper</name>
</author>
<author>
<name sortKey="Tey, Hl" uniqKey="Tey H">HL Tey</name>
</author>
<author>
<name sortKey="Valdes Rodriguez, R" uniqKey="Valdes Rodriguez R">R Valdes-Rodriguez</name>
</author>
<author>
<name sortKey="Lee, H" uniqKey="Lee H">H Lee</name>
</author>
<author>
<name sortKey="Mollanazar, Nk" uniqKey="Mollanazar N">NK Mollanazar</name>
</author>
<author>
<name sortKey="Albornoz, C" uniqKey="Albornoz C">C Albornoz</name>
</author>
<author>
<name sortKey="Sanders, Km" uniqKey="Sanders K">KM Sanders</name>
</author>
<author>
<name sortKey="Yosipovitch, G" uniqKey="Yosipovitch G">G Yosipovitch</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Oaklander, Al" uniqKey="Oaklander A">AL Oaklander</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Oaklander, Al" uniqKey="Oaklander A">AL Oaklander</name>
</author>
<author>
<name sortKey="Siegel, Sm" uniqKey="Siegel S">SM Siegel</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Oetjen, Lk" uniqKey="Oetjen L">LK Oetjen</name>
</author>
<author>
<name sortKey="Mack, Mr" uniqKey="Mack M">MR Mack</name>
</author>
<author>
<name sortKey="Feng, J" uniqKey="Feng J">J Feng</name>
</author>
<author>
<name sortKey="Whelan, Tm" uniqKey="Whelan T">TM Whelan</name>
</author>
<author>
<name sortKey="Niu, H" uniqKey="Niu H">H Niu</name>
</author>
<author>
<name sortKey="Guo, Cj" uniqKey="Guo C">CJ Guo</name>
</author>
<author>
<name sortKey="Chen, S" uniqKey="Chen S">S Chen</name>
</author>
<author>
<name sortKey="Trier, Am" uniqKey="Trier A">AM Trier</name>
</author>
<author>
<name sortKey="Xu, Az" uniqKey="Xu A">AZ Xu</name>
</author>
<author>
<name sortKey="Tripathi, Sv" uniqKey="Tripathi S">SV Tripathi</name>
</author>
<author>
<name sortKey="Luo, J" uniqKey="Luo J">J Luo</name>
</author>
<author>
<name sortKey="Gao, X" uniqKey="Gao X">X Gao</name>
</author>
<author>
<name sortKey="Yang, L" uniqKey="Yang L">L Yang</name>
</author>
<author>
<name sortKey="Hamilton, Sl" uniqKey="Hamilton S">SL Hamilton</name>
</author>
<author>
<name sortKey="Wang, Pl" uniqKey="Wang P">PL Wang</name>
</author>
<author>
<name sortKey="Brestoff, Jr" uniqKey="Brestoff J">JR Brestoff</name>
</author>
<author>
<name sortKey="Council, Ml" uniqKey="Council M">ML Council</name>
</author>
<author>
<name sortKey="Brasington, R" uniqKey="Brasington R">R Brasington</name>
</author>
<author>
<name sortKey="Schaffer, A" uniqKey="Schaffer A">A Schaffer</name>
</author>
<author>
<name sortKey="Brombacher, F" uniqKey="Brombacher F">F Brombacher</name>
</author>
<author>
<name sortKey="Hsieh, Cs" uniqKey="Hsieh C">CS Hsieh</name>
</author>
<author>
<name sortKey="Gereau, Rw" uniqKey="Gereau R">RW Gereau</name>
</author>
<author>
<name sortKey="Miller, Mj" uniqKey="Miller M">MJ Miller</name>
</author>
<author>
<name sortKey="Chen, Zf" uniqKey="Chen Z">ZF Chen</name>
</author>
<author>
<name sortKey="Hu, H" uniqKey="Hu H">H Hu</name>
</author>
<author>
<name sortKey="Davidson, S" uniqKey="Davidson S">S Davidson</name>
</author>
<author>
<name sortKey="Liu, Q" uniqKey="Liu Q">Q Liu</name>
</author>
<author>
<name sortKey="Kim, Bs" uniqKey="Kim B">BS Kim</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Oetjen, Lk" uniqKey="Oetjen L">LK Oetjen</name>
</author>
<author>
<name sortKey="Kim, Bs" uniqKey="Kim B">BS Kim</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Oyoshi, Mk" uniqKey="Oyoshi M">MK Oyoshi</name>
</author>
<author>
<name sortKey="He, R" uniqKey="He R">R He</name>
</author>
<author>
<name sortKey="Li, Y" uniqKey="Li Y">Y Li</name>
</author>
<author>
<name sortKey="Mondal, S" uniqKey="Mondal S">S Mondal</name>
</author>
<author>
<name sortKey="Yoon, J" uniqKey="Yoon J">J Yoon</name>
</author>
<author>
<name sortKey="Afshar, R" uniqKey="Afshar R">R Afshar</name>
</author>
<author>
<name sortKey="Chen, M" uniqKey="Chen M">M Chen</name>
</author>
<author>
<name sortKey="Lee, Dm" uniqKey="Lee D">DM Lee</name>
</author>
<author>
<name sortKey="Luo, Hr" uniqKey="Luo H">HR Luo</name>
</author>
<author>
<name sortKey="Luster, Ad" uniqKey="Luster A">AD Luster</name>
</author>
<author>
<name sortKey="Cho, Js" uniqKey="Cho J">JS Cho</name>
</author>
<author>
<name sortKey="Miller, Ls" uniqKey="Miller L">LS Miller</name>
</author>
<author>
<name sortKey="Larson, A" uniqKey="Larson A">A Larson</name>
</author>
<author>
<name sortKey="Murphy, Gf" uniqKey="Murphy G">GF Murphy</name>
</author>
<author>
<name sortKey="Geha, Rs" uniqKey="Geha R">RS Geha</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Padovan, E" uniqKey="Padovan E">E Padovan</name>
</author>
<author>
<name sortKey="Spagnoli, Gc" uniqKey="Spagnoli G">GC Spagnoli</name>
</author>
<author>
<name sortKey="Ferrantini, M" uniqKey="Ferrantini M">M Ferrantini</name>
</author>
<author>
<name sortKey="Heberer, M" uniqKey="Heberer M">M Heberer</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Palmer, Cn" uniqKey="Palmer C">CN Palmer</name>
</author>
<author>
<name sortKey="Irvine, Ad" uniqKey="Irvine A">AD Irvine</name>
</author>
<author>
<name sortKey="Terron Kwiatkowski, A" uniqKey="Terron Kwiatkowski A">A Terron-Kwiatkowski</name>
</author>
<author>
<name sortKey="Zhao, Y" uniqKey="Zhao Y">Y Zhao</name>
</author>
<author>
<name sortKey="Liao, H" uniqKey="Liao H">H Liao</name>
</author>
<author>
<name sortKey="Lee, Sp" uniqKey="Lee S">SP Lee</name>
</author>
<author>
<name sortKey="Goudie, Dr" uniqKey="Goudie D">DR Goudie</name>
</author>
<author>
<name sortKey="Sandilands, A" uniqKey="Sandilands A">A Sandilands</name>
</author>
<author>
<name sortKey="Campbell, Le" uniqKey="Campbell L">LE Campbell</name>
</author>
<author>
<name sortKey="Smith, Fj" uniqKey="Smith F">FJ Smith</name>
</author>
<author>
<name sortKey="O Regan, Gm" uniqKey="O Regan G">GM O'Regan</name>
</author>
<author>
<name sortKey="Watson, Rm" uniqKey="Watson R">RM Watson</name>
</author>
<author>
<name sortKey="Cecil, Je" uniqKey="Cecil J">JE Cecil</name>
</author>
<author>
<name sortKey="Bale, Sj" uniqKey="Bale S">SJ Bale</name>
</author>
<author>
<name sortKey="Compton, Jg" uniqKey="Compton J">JG Compton</name>
</author>
<author>
<name sortKey="Digiovanna, Jj" uniqKey="Digiovanna J">JJ DiGiovanna</name>
</author>
<author>
<name sortKey="Fleckman, P" uniqKey="Fleckman P">P Fleckman</name>
</author>
<author>
<name sortKey="Lewis Jones, S" uniqKey="Lewis Jones S">S Lewis-Jones</name>
</author>
<author>
<name sortKey="Arseculeratne, G" uniqKey="Arseculeratne G">G Arseculeratne</name>
</author>
<author>
<name sortKey="Sergeant, A" uniqKey="Sergeant A">A Sergeant</name>
</author>
<author>
<name sortKey="Munro, Cs" uniqKey="Munro C">CS Munro</name>
</author>
<author>
<name sortKey="El Houate, B" uniqKey="El Houate B">B El Houate</name>
</author>
<author>
<name sortKey="Mcelreavey, K" uniqKey="Mcelreavey K">K McElreavey</name>
</author>
<author>
<name sortKey="Halkjaer, Lb" uniqKey="Halkjaer L">LB Halkjaer</name>
</author>
<author>
<name sortKey="Bisgaard, H" uniqKey="Bisgaard H">H Bisgaard</name>
</author>
<author>
<name sortKey="Mukhopadhyay, S" uniqKey="Mukhopadhyay S">S Mukhopadhyay</name>
</author>
<author>
<name sortKey="Mclean, Wh" uniqKey="Mclean W">WH McLean</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Pereira, Mp" uniqKey="Pereira M">MP Pereira</name>
</author>
<author>
<name sortKey="Muhl, S" uniqKey="Muhl S">S Mühl</name>
</author>
<author>
<name sortKey="Pogatzki Zahn, Em" uniqKey="Pogatzki Zahn E">EM Pogatzki-Zahn</name>
</author>
<author>
<name sortKey="Agelopoulos, K" uniqKey="Agelopoulos K">K Agelopoulos</name>
</author>
<author>
<name sortKey="St Nder, S" uniqKey="St Nder S">S Ständer</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Perkins, Nm" uniqKey="Perkins N">NM Perkins</name>
</author>
<author>
<name sortKey="Tracey, Dj" uniqKey="Tracey D">DJ Tracey</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Pinho Ribeiro, Fa" uniqKey="Pinho Ribeiro F">FA Pinho-Ribeiro</name>
</author>
<author>
<name sortKey="Verri, Wa" uniqKey="Verri W">WA Verri</name>
</author>
<author>
<name sortKey="Chiu, Im" uniqKey="Chiu I">IM Chiu</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Pinho Ribeiro, Fa" uniqKey="Pinho Ribeiro F">FA Pinho-Ribeiro</name>
</author>
<author>
<name sortKey="Baddal, B" uniqKey="Baddal B">B Baddal</name>
</author>
<author>
<name sortKey="Haarsma, R" uniqKey="Haarsma R">R Haarsma</name>
</author>
<author>
<name sortKey="O Seaghdha, M" uniqKey="O Seaghdha M">M O'Seaghdha</name>
</author>
<author>
<name sortKey="Yang, Nj" uniqKey="Yang N">NJ Yang</name>
</author>
<author>
<name sortKey="Blake, Kj" uniqKey="Blake K">KJ Blake</name>
</author>
<author>
<name sortKey="Portley, M" uniqKey="Portley M">M Portley</name>
</author>
<author>
<name sortKey="Verri, Wa" uniqKey="Verri W">WA Verri</name>
</author>
<author>
<name sortKey="Dale, Jb" uniqKey="Dale J">JB Dale</name>
</author>
<author>
<name sortKey="Wessels, Mr" uniqKey="Wessels M">MR Wessels</name>
</author>
<author>
<name sortKey="Chiu, Im" uniqKey="Chiu I">IM Chiu</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Qu, L" uniqKey="Qu L">L Qu</name>
</author>
<author>
<name sortKey="Fu, K" uniqKey="Fu K">K Fu</name>
</author>
<author>
<name sortKey="Yang, J" uniqKey="Yang J">J Yang</name>
</author>
<author>
<name sortKey="Shimada, Sg" uniqKey="Shimada S">SG Shimada</name>
</author>
<author>
<name sortKey="Lamotte, Rh" uniqKey="Lamotte R">RH LaMotte</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Qu, L" uniqKey="Qu L">L Qu</name>
</author>
<author>
<name sortKey="Fu, K" uniqKey="Fu K">K Fu</name>
</author>
<author>
<name sortKey="Shimada, Sg" uniqKey="Shimada S">SG Shimada</name>
</author>
<author>
<name sortKey="Lamotte, Rh" uniqKey="Lamotte R">RH LaMotte</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Rattenholl, A" uniqKey="Rattenholl A">A Rattenholl</name>
</author>
<author>
<name sortKey="Steinhoff, M" uniqKey="Steinhoff M">M Steinhoff</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Salvemini, D" uniqKey="Salvemini D">D Salvemini</name>
</author>
<author>
<name sortKey="Little, Jw" uniqKey="Little J">JW Little</name>
</author>
<author>
<name sortKey="Doyle, T" uniqKey="Doyle T">T Doyle</name>
</author>
<author>
<name sortKey="Neumann, Wl" uniqKey="Neumann W">WL Neumann</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Sandilands, A" uniqKey="Sandilands A">A Sandilands</name>
</author>
<author>
<name sortKey="Terron Kwiatkowski, A" uniqKey="Terron Kwiatkowski A">A Terron-Kwiatkowski</name>
</author>
<author>
<name sortKey="Hull, Pr" uniqKey="Hull P">PR Hull</name>
</author>
<author>
<name sortKey="O Regan, Gm" uniqKey="O Regan G">GM O'Regan</name>
</author>
<author>
<name sortKey="Clayton, Th" uniqKey="Clayton T">TH Clayton</name>
</author>
<author>
<name sortKey="Watson, Rm" uniqKey="Watson R">RM Watson</name>
</author>
<author>
<name sortKey="Carrick, T" uniqKey="Carrick T">T Carrick</name>
</author>
<author>
<name sortKey="Evans, At" uniqKey="Evans A">AT Evans</name>
</author>
<author>
<name sortKey="Liao, H" uniqKey="Liao H">H Liao</name>
</author>
<author>
<name sortKey="Zhao, Y" uniqKey="Zhao Y">Y Zhao</name>
</author>
<author>
<name sortKey="Campbell, Le" uniqKey="Campbell L">LE Campbell</name>
</author>
<author>
<name sortKey="Schmuth, M" uniqKey="Schmuth M">M Schmuth</name>
</author>
<author>
<name sortKey="Gruber, R" uniqKey="Gruber R">R Gruber</name>
</author>
<author>
<name sortKey="Janecke, Ar" uniqKey="Janecke A">AR Janecke</name>
</author>
<author>
<name sortKey="Elias, Pm" uniqKey="Elias P">PM Elias</name>
</author>
<author>
<name sortKey="Van Steensel, Ma" uniqKey="Van Steensel M">MA van Steensel</name>
</author>
<author>
<name sortKey="Nagtzaam, I" uniqKey="Nagtzaam I">I Nagtzaam</name>
</author>
<author>
<name sortKey="Van Geel, M" uniqKey="Van Geel M">M van Geel</name>
</author>
<author>
<name sortKey="Steijlen, Pm" uniqKey="Steijlen P">PM Steijlen</name>
</author>
<author>
<name sortKey="Munro, Cs" uniqKey="Munro C">CS Munro</name>
</author>
<author>
<name sortKey="Bradley, Dg" uniqKey="Bradley D">DG Bradley</name>
</author>
<author>
<name sortKey="Palmer, Cn" uniqKey="Palmer C">CN Palmer</name>
</author>
<author>
<name sortKey="Smith, Fj" uniqKey="Smith F">FJ Smith</name>
</author>
<author>
<name sortKey="Mclean, Wh" uniqKey="Mclean W">WH McLean</name>
</author>
<author>
<name sortKey="Irvine, Ad" uniqKey="Irvine A">AD Irvine</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Sapieha, P" uniqKey="Sapieha P">P Sapieha</name>
</author>
<author>
<name sortKey="Stahl, A" uniqKey="Stahl A">A Stahl</name>
</author>
<author>
<name sortKey="Chen, J" uniqKey="Chen J">J Chen</name>
</author>
<author>
<name sortKey="Seaward, Mr" uniqKey="Seaward M">MR Seaward</name>
</author>
<author>
<name sortKey="Willett, Kl" uniqKey="Willett K">KL Willett</name>
</author>
<author>
<name sortKey="Krah, Nm" uniqKey="Krah N">NM Krah</name>
</author>
<author>
<name sortKey="Dennison, Rj" uniqKey="Dennison R">RJ Dennison</name>
</author>
<author>
<name sortKey="Connor, Km" uniqKey="Connor K">KM Connor</name>
</author>
<author>
<name sortKey="Aderman, Cm" uniqKey="Aderman C">CM Aderman</name>
</author>
<author>
<name sortKey="Liclican, E" uniqKey="Liclican E">E Liclican</name>
</author>
<author>
<name sortKey="Carughi, A" uniqKey="Carughi A">A Carughi</name>
</author>
<author>
<name sortKey="Perelman, D" uniqKey="Perelman D">D Perelman</name>
</author>
<author>
<name sortKey="Kanaoka, Y" uniqKey="Kanaoka Y">Y Kanaoka</name>
</author>
<author>
<name sortKey="Sangiovanni, Jp" uniqKey="Sangiovanni J">JP Sangiovanni</name>
</author>
<author>
<name sortKey="Gronert, K" uniqKey="Gronert K">K Gronert</name>
</author>
<author>
<name sortKey="Smith, Le" uniqKey="Smith L">LE Smith</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Saunders, Sp" uniqKey="Saunders S">SP Saunders</name>
</author>
<author>
<name sortKey="Moran, T" uniqKey="Moran T">T Moran</name>
</author>
<author>
<name sortKey="Floudas, A" uniqKey="Floudas A">A Floudas</name>
</author>
<author>
<name sortKey="Wurlod, F" uniqKey="Wurlod F">F Wurlod</name>
</author>
<author>
<name sortKey="Kaszlikowska, A" uniqKey="Kaszlikowska A">A Kaszlikowska</name>
</author>
<author>
<name sortKey="Salimi, M" uniqKey="Salimi M">M Salimi</name>
</author>
<author>
<name sortKey="Quinn, Em" uniqKey="Quinn E">EM Quinn</name>
</author>
<author>
<name sortKey="Oliphant, Cj" uniqKey="Oliphant C">CJ Oliphant</name>
</author>
<author>
<name sortKey="Nu Ez, G" uniqKey="Nu Ez G">G Núñez</name>
</author>
<author>
<name sortKey="Mcmanus, R" uniqKey="Mcmanus R">R McManus</name>
</author>
<author>
<name sortKey="Hams, E" uniqKey="Hams E">E Hams</name>
</author>
<author>
<name sortKey="Irvine, Ad" uniqKey="Irvine A">AD Irvine</name>
</author>
<author>
<name sortKey="Mckenzie, An" uniqKey="Mckenzie A">AN McKenzie</name>
</author>
<author>
<name sortKey="Ogg, Gs" uniqKey="Ogg G">GS Ogg</name>
</author>
<author>
<name sortKey="Fallon, Pg" uniqKey="Fallon P">PG Fallon</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Schon, M" uniqKey="Schon M">M Schön</name>
</author>
<author>
<name sortKey="Denzer, D" uniqKey="Denzer D">D Denzer</name>
</author>
<author>
<name sortKey="Kubitza, Rc" uniqKey="Kubitza R">RC Kubitza</name>
</author>
<author>
<name sortKey="Ruzicka, T" uniqKey="Ruzicka T">T Ruzicka</name>
</author>
<author>
<name sortKey="Schon, Mp" uniqKey="Schon M">MP Schön</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Schuttenhelm, Bn" uniqKey="Schuttenhelm B">BN Schüttenhelm</name>
</author>
<author>
<name sortKey="Duraku, Ls" uniqKey="Duraku L">LS Duraku</name>
</author>
<author>
<name sortKey="Dijkstra, Jf" uniqKey="Dijkstra J">JF Dijkstra</name>
</author>
<author>
<name sortKey="Walbeehm, Et" uniqKey="Walbeehm E">ET Walbeehm</name>
</author>
<author>
<name sortKey="Holstege, Jc" uniqKey="Holstege J">JC Holstege</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Scott, Dl" uniqKey="Scott D">DL Scott</name>
</author>
<author>
<name sortKey="Wolfe, F" uniqKey="Wolfe F">F Wolfe</name>
</author>
<author>
<name sortKey="Huizinga, Twj" uniqKey="Huizinga T">TWJ Huizinga</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Shalit, M" uniqKey="Shalit M">M Shalit</name>
</author>
<author>
<name sortKey="Campbell, De" uniqKey="Campbell D">DE Campbell</name>
</author>
<author>
<name sortKey="Von Allmen, C" uniqKey="Von Allmen C">C von Allmen</name>
</author>
<author>
<name sortKey="Atkins, Pc" uniqKey="Atkins P">PC Atkins</name>
</author>
<author>
<name sortKey="Douglas, Sd" uniqKey="Douglas S">SD Douglas</name>
</author>
<author>
<name sortKey="Zweiman, B" uniqKey="Zweiman B">B Zweiman</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Shimada, Sg" uniqKey="Shimada S">SG Shimada</name>
</author>
<author>
<name sortKey="Lamotte, Rh" uniqKey="Lamotte R">RH LaMotte</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Shiratori Hayashi, M" uniqKey="Shiratori Hayashi M">M Shiratori-Hayashi</name>
</author>
<author>
<name sortKey="Koga, K" uniqKey="Koga K">K Koga</name>
</author>
<author>
<name sortKey="Tozaki Saitoh, H" uniqKey="Tozaki Saitoh H">H Tozaki-Saitoh</name>
</author>
<author>
<name sortKey="Kohro, Y" uniqKey="Kohro Y">Y Kohro</name>
</author>
<author>
<name sortKey="Toyonaga, H" uniqKey="Toyonaga H">H Toyonaga</name>
</author>
<author>
<name sortKey="Yamaguchi, C" uniqKey="Yamaguchi C">C Yamaguchi</name>
</author>
<author>
<name sortKey="Hasegawa, A" uniqKey="Hasegawa A">A Hasegawa</name>
</author>
<author>
<name sortKey="Nakahara, T" uniqKey="Nakahara T">T Nakahara</name>
</author>
<author>
<name sortKey="Hachisuka, J" uniqKey="Hachisuka J">J Hachisuka</name>
</author>
<author>
<name sortKey="Akira, S" uniqKey="Akira S">S Akira</name>
</author>
<author>
<name sortKey="Okano, H" uniqKey="Okano H">H Okano</name>
</author>
<author>
<name sortKey="Furue, M" uniqKey="Furue M">M Furue</name>
</author>
<author>
<name sortKey="Inoue, K" uniqKey="Inoue K">K Inoue</name>
</author>
<author>
<name sortKey="Tsuda, M" uniqKey="Tsuda M">M Tsuda</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Simpson, El" uniqKey="Simpson E">EL Simpson</name>
</author>
<author>
<name sortKey="Bieber, T" uniqKey="Bieber T">T Bieber</name>
</author>
<author>
<name sortKey="Guttman Yassky, E" uniqKey="Guttman Yassky E">E Guttman-Yassky</name>
</author>
<author>
<name sortKey="Beck, La" uniqKey="Beck L">LA Beck</name>
</author>
<author>
<name sortKey="Blauvelt, A" uniqKey="Blauvelt A">A Blauvelt</name>
</author>
<author>
<name sortKey="Cork, Mj" uniqKey="Cork M">MJ Cork</name>
</author>
<author>
<name sortKey="Silverberg, Ji" uniqKey="Silverberg J">JI Silverberg</name>
</author>
<author>
<name sortKey="Deleuran, M" uniqKey="Deleuran M">M Deleuran</name>
</author>
<author>
<name sortKey="Kataoka, Y" uniqKey="Kataoka Y">Y Kataoka</name>
</author>
<author>
<name sortKey="Lacour, Jp" uniqKey="Lacour J">JP Lacour</name>
</author>
<author>
<name sortKey="Kingo, K" uniqKey="Kingo K">K Kingo</name>
</author>
<author>
<name sortKey="Worm, M" uniqKey="Worm M">M Worm</name>
</author>
<author>
<name sortKey="Poulin, Y" uniqKey="Poulin Y">Y Poulin</name>
</author>
<author>
<name sortKey="Wollenberg, A" uniqKey="Wollenberg A">A Wollenberg</name>
</author>
<author>
<name sortKey="Soo, Y" uniqKey="Soo Y">Y Soo</name>
</author>
<author>
<name sortKey="Graham, Nm" uniqKey="Graham N">NM Graham</name>
</author>
<author>
<name sortKey="Pirozzi, G" uniqKey="Pirozzi G">G Pirozzi</name>
</author>
<author>
<name sortKey="Akinlade, B" uniqKey="Akinlade B">B Akinlade</name>
</author>
<author>
<name sortKey="Staudinger, H" uniqKey="Staudinger H">H Staudinger</name>
</author>
<author>
<name sortKey="Mastey, V" uniqKey="Mastey V">V Mastey</name>
</author>
<author>
<name sortKey="Eckert, L" uniqKey="Eckert L">L Eckert</name>
</author>
<author>
<name sortKey="Gadkari, A" uniqKey="Gadkari A">A Gadkari</name>
</author>
<author>
<name sortKey="Stahl, N" uniqKey="Stahl N">N Stahl</name>
</author>
<author>
<name sortKey="Yancopoulos, Gd" uniqKey="Yancopoulos G">GD Yancopoulos</name>
</author>
<author>
<name sortKey="Ardeleanu, M" uniqKey="Ardeleanu M">M Ardeleanu</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Sivick, Ke" uniqKey="Sivick K">KE Sivick</name>
</author>
<author>
<name sortKey="Arpaia, N" uniqKey="Arpaia N">N Arpaia</name>
</author>
<author>
<name sortKey="Reiner, Gl" uniqKey="Reiner G">GL Reiner</name>
</author>
<author>
<name sortKey="Lee, Bl" uniqKey="Lee B">BL Lee</name>
</author>
<author>
<name sortKey="Russell, Br" uniqKey="Russell B">BR Russell</name>
</author>
<author>
<name sortKey="Barton, Gm" uniqKey="Barton G">GM Barton</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Solinski, Hj" uniqKey="Solinski H">HJ Solinski</name>
</author>
<author>
<name sortKey="Dranchak, P" uniqKey="Dranchak P">P Dranchak</name>
</author>
<author>
<name sortKey="Oliphant, E" uniqKey="Oliphant E">E Oliphant</name>
</author>
<author>
<name sortKey="Gu, X" uniqKey="Gu X">X Gu</name>
</author>
<author>
<name sortKey="Earnest, Tw" uniqKey="Earnest T">TW Earnest</name>
</author>
<author>
<name sortKey="Braisted, J" uniqKey="Braisted J">J Braisted</name>
</author>
<author>
<name sortKey="Inglese, J" uniqKey="Inglese J">J Inglese</name>
</author>
<author>
<name sortKey="Hoon, Ma" uniqKey="Hoon M">MA Hoon</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Solinski, Hj" uniqKey="Solinski H">HJ Solinski</name>
</author>
<author>
<name sortKey="Kriegbaum, Mc" uniqKey="Kriegbaum M">MC Kriegbaum</name>
</author>
<author>
<name sortKey="Tseng, Py" uniqKey="Tseng P">PY Tseng</name>
</author>
<author>
<name sortKey="Earnest, Tw" uniqKey="Earnest T">TW Earnest</name>
</author>
<author>
<name sortKey="Gu, X" uniqKey="Gu X">X Gu</name>
</author>
<author>
<name sortKey="Barik, A" uniqKey="Barik A">A Barik</name>
</author>
<author>
<name sortKey="Chesler, At" uniqKey="Chesler A">AT Chesler</name>
</author>
<author>
<name sortKey="Hoon, Ma" uniqKey="Hoon M">MA Hoon</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Spergel, Jm" uniqKey="Spergel J">JM Spergel</name>
</author>
<author>
<name sortKey="Paller, As" uniqKey="Paller A">AS Paller</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="St Nder, S" uniqKey="St Nder S">S Ständer</name>
</author>
<author>
<name sortKey="Steinhoff, M" uniqKey="Steinhoff M">M Steinhoff</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Suarez Fari As, M" uniqKey="Suarez Fari As M">M Suárez-Fariñas</name>
</author>
<author>
<name sortKey="Dhingra, N" uniqKey="Dhingra N">N Dhingra</name>
</author>
<author>
<name sortKey="Gittler, J" uniqKey="Gittler J">J Gittler</name>
</author>
<author>
<name sortKey="Shemer, A" uniqKey="Shemer A">A Shemer</name>
</author>
<author>
<name sortKey="Cardinale, I" uniqKey="Cardinale I">I Cardinale</name>
</author>
<author>
<name sortKey="De Guzman Strong, C" uniqKey="De Guzman Strong C">C de Guzman Strong</name>
</author>
<author>
<name sortKey="Krueger, Jg" uniqKey="Krueger J">JG Krueger</name>
</author>
<author>
<name sortKey="Guttman Yassky, E" uniqKey="Guttman Yassky E">E Guttman-Yassky</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Sumida, H" uniqKey="Sumida H">H Sumida</name>
</author>
<author>
<name sortKey="Yanagida, K" uniqKey="Yanagida K">K Yanagida</name>
</author>
<author>
<name sortKey="Kita, Y" uniqKey="Kita Y">Y Kita</name>
</author>
<author>
<name sortKey="Abe, J" uniqKey="Abe J">J Abe</name>
</author>
<author>
<name sortKey="Matsushima, K" uniqKey="Matsushima K">K Matsushima</name>
</author>
<author>
<name sortKey="Nakamura, M" uniqKey="Nakamura M">M Nakamura</name>
</author>
<author>
<name sortKey="Ishii, S" uniqKey="Ishii S">S Ishii</name>
</author>
<author>
<name sortKey="Sato, S" uniqKey="Sato S">S Sato</name>
</author>
<author>
<name sortKey="Shimizu, T" uniqKey="Shimizu T">T Shimizu</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Takeda, M" uniqKey="Takeda M">M Takeda</name>
</author>
<author>
<name sortKey="Takahashi, M" uniqKey="Takahashi M">M Takahashi</name>
</author>
<author>
<name sortKey="Matsumoto, S" uniqKey="Matsumoto S">S Matsumoto</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Tamassia, N" uniqKey="Tamassia N">N Tamassia</name>
</author>
<author>
<name sortKey="Calzetti, F" uniqKey="Calzetti F">F Calzetti</name>
</author>
<author>
<name sortKey="Ear, T" uniqKey="Ear T">T Ear</name>
</author>
<author>
<name sortKey="Cloutier, A" uniqKey="Cloutier A">A Cloutier</name>
</author>
<author>
<name sortKey="Gasperini, S" uniqKey="Gasperini S">S Gasperini</name>
</author>
<author>
<name sortKey="Bazzoni, F" uniqKey="Bazzoni F">F Bazzoni</name>
</author>
<author>
<name sortKey="Mcdonald, Pp" uniqKey="Mcdonald P">PP McDonald</name>
</author>
<author>
<name sortKey="Cassatella, Ma" uniqKey="Cassatella M">MA Cassatella</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Tominaga, M" uniqKey="Tominaga M">M Tominaga</name>
</author>
<author>
<name sortKey="Ozawa, S" uniqKey="Ozawa S">S Ozawa</name>
</author>
<author>
<name sortKey="Ogawa, H" uniqKey="Ogawa H">H Ogawa</name>
</author>
<author>
<name sortKey="Takamori, K" uniqKey="Takamori K">K Takamori</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Tominaga, M" uniqKey="Tominaga M">M Tominaga</name>
</author>
<author>
<name sortKey="Tengara, S" uniqKey="Tengara S">S Tengara</name>
</author>
<author>
<name sortKey="Kamo, A" uniqKey="Kamo A">A Kamo</name>
</author>
<author>
<name sortKey="Ogawa, H" uniqKey="Ogawa H">H Ogawa</name>
</author>
<author>
<name sortKey="Takamori, K" uniqKey="Takamori K">K Takamori</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Tominaga, M" uniqKey="Tominaga M">M Tominaga</name>
</author>
<author>
<name sortKey="Takamori, K" uniqKey="Takamori K">K Takamori</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Tominaga, M" uniqKey="Tominaga M">M Tominaga</name>
</author>
<author>
<name sortKey="Takamori, K" uniqKey="Takamori K">K Takamori</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Usoskin, D" uniqKey="Usoskin D">D Usoskin</name>
</author>
<author>
<name sortKey="Furlan, A" uniqKey="Furlan A">A Furlan</name>
</author>
<author>
<name sortKey="Islam, S" uniqKey="Islam S">S Islam</name>
</author>
<author>
<name sortKey="Abdo, H" uniqKey="Abdo H">H Abdo</name>
</author>
<author>
<name sortKey="Lonnerberg, P" uniqKey="Lonnerberg P">P Lönnerberg</name>
</author>
<author>
<name sortKey="Lou, D" uniqKey="Lou D">D Lou</name>
</author>
<author>
<name sortKey="Hjerling Leffler, J" uniqKey="Hjerling Leffler J">J Hjerling-Leffler</name>
</author>
<author>
<name sortKey="Haeggstrom, J" uniqKey="Haeggstrom J">J Haeggström</name>
</author>
<author>
<name sortKey="Kharchenko, O" uniqKey="Kharchenko O">O Kharchenko</name>
</author>
<author>
<name sortKey="Kharchenko, Pv" uniqKey="Kharchenko P">PV Kharchenko</name>
</author>
<author>
<name sortKey="Linnarsson, S" uniqKey="Linnarsson S">S Linnarsson</name>
</author>
<author>
<name sortKey="Ernfors, P" uniqKey="Ernfors P">P Ernfors</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Von Moltke, J" uniqKey="Von Moltke J">J von Moltke</name>
</author>
<author>
<name sortKey="Trinidad, Nj" uniqKey="Trinidad N">NJ Trinidad</name>
</author>
<author>
<name sortKey="Moayeri, M" uniqKey="Moayeri M">M Moayeri</name>
</author>
<author>
<name sortKey="Kintzer, Af" uniqKey="Kintzer A">AF Kintzer</name>
</author>
<author>
<name sortKey="Wang, Sb" uniqKey="Wang S">SB Wang</name>
</author>
<author>
<name sortKey="Van Rooijen, N" uniqKey="Van Rooijen N">N van Rooijen</name>
</author>
<author>
<name sortKey="Brown, Cr" uniqKey="Brown C">CR Brown</name>
</author>
<author>
<name sortKey="Krantz, Ba" uniqKey="Krantz B">BA Krantz</name>
</author>
<author>
<name sortKey="Leppla, Sh" uniqKey="Leppla S">SH Leppla</name>
</author>
<author>
<name sortKey="Gronert, K" uniqKey="Gronert K">K Gronert</name>
</author>
<author>
<name sortKey="Vance, Re" uniqKey="Vance R">RE Vance</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Wang, J" uniqKey="Wang J">J Wang</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Wilson, Sr" uniqKey="Wilson S">SR Wilson</name>
</author>
<author>
<name sortKey="Gerhold, Ka" uniqKey="Gerhold K">KA Gerhold</name>
</author>
<author>
<name sortKey="Bifolck Fisher, A" uniqKey="Bifolck Fisher A">A Bifolck-Fisher</name>
</author>
<author>
<name sortKey="Liu, Q" uniqKey="Liu Q">Q Liu</name>
</author>
<author>
<name sortKey="Patel, Kn" uniqKey="Patel K">KN Patel</name>
</author>
<author>
<name sortKey="Dong, X" uniqKey="Dong X">X Dong</name>
</author>
<author>
<name sortKey="Bautista, Dm" uniqKey="Bautista D">DM Bautista</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Yellin, M" uniqKey="Yellin M">M Yellin</name>
</author>
<author>
<name sortKey="Paliienko, I" uniqKey="Paliienko I">I Paliienko</name>
</author>
<author>
<name sortKey="Balanescu, A" uniqKey="Balanescu A">A Balanescu</name>
</author>
<author>
<name sortKey="Ter Vartanian, S" uniqKey="Ter Vartanian S">S Ter-Vartanian</name>
</author>
<author>
<name sortKey="Tseluyko, V" uniqKey="Tseluyko V">V Tseluyko</name>
</author>
<author>
<name sortKey="Xu, La" uniqKey="Xu L">LA Xu</name>
</author>
<author>
<name sortKey="Tao, X" uniqKey="Tao X">X Tao</name>
</author>
<author>
<name sortKey="Cardarelli, Pm" uniqKey="Cardarelli P">PM Cardarelli</name>
</author>
<author>
<name sortKey="Leblanc, H" uniqKey="Leblanc H">H Leblanc</name>
</author>
<author>
<name sortKey="Nichol, G" uniqKey="Nichol G">G Nichol</name>
</author>
<author>
<name sortKey="Ancuta, C" uniqKey="Ancuta C">C Ancuta</name>
</author>
<author>
<name sortKey="Chirieac, R" uniqKey="Chirieac R">R Chirieac</name>
</author>
<author>
<name sortKey="Luo, A" uniqKey="Luo A">A Luo</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Yosipovitch, G" uniqKey="Yosipovitch G">G Yosipovitch</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Yosipovitch, G" uniqKey="Yosipovitch G">G Yosipovitch</name>
</author>
<author>
<name sortKey="Papoiu, Ad" uniqKey="Papoiu A">AD Papoiu</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Zhang, Z" uniqKey="Zhang Z">Z Zhang</name>
</author>
<author>
<name sortKey="Hener, P" uniqKey="Hener P">P Hener</name>
</author>
<author>
<name sortKey="Frossard, N" uniqKey="Frossard N">N Frossard</name>
</author>
<author>
<name sortKey="Kato, S" uniqKey="Kato S">S Kato</name>
</author>
<author>
<name sortKey="Metzger, D" uniqKey="Metzger D">D Metzger</name>
</author>
<author>
<name sortKey="Li, M" uniqKey="Li M">M Li</name>
</author>
<author>
<name sortKey="Chambon, P" uniqKey="Chambon P">P Chambon</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Zhang, Y" uniqKey="Zhang Y">Y Zhang</name>
</author>
<author>
<name sortKey="Yan, J" uniqKey="Yan J">J Yan</name>
</author>
<author>
<name sortKey="Hu, R" uniqKey="Hu R">R Hu</name>
</author>
<author>
<name sortKey="Sun, Y" uniqKey="Sun Y">Y Sun</name>
</author>
<author>
<name sortKey="Ma, Y" uniqKey="Ma Y">Y Ma</name>
</author>
<author>
<name sortKey="Chen, Z" uniqKey="Chen Z">Z Chen</name>
</author>
<author>
<name sortKey="Jiang, H" uniqKey="Jiang H">H Jiang</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Zheng, T" uniqKey="Zheng T">T Zheng</name>
</author>
<author>
<name sortKey="Yu, J" uniqKey="Yu J">J Yu</name>
</author>
<author>
<name sortKey="Oh, Mh" uniqKey="Oh M">MH Oh</name>
</author>
<author>
<name sortKey="Zhu, Z" uniqKey="Zhu Z">Z Zhu</name>
</author>
</analytic>
</biblStruct>
</listBibl>
</div1>
</back>
</TEI>
<pmc article-type="research-article">
<pmc-dir>properties open_access</pmc-dir>
<front>
<journal-meta>
<journal-id journal-id-type="nlm-ta">eLife</journal-id>
<journal-id journal-id-type="iso-abbrev">Elife</journal-id>
<journal-id journal-id-type="publisher-id">eLife</journal-id>
<journal-title-group>
<journal-title>eLife</journal-title>
</journal-title-group>
<issn pub-type="epub">2050-084X</issn>
<publisher>
<publisher-name>eLife Sciences Publications, Ltd</publisher-name>
</publisher>
</journal-meta>
<article-meta>
<article-id pub-id-type="pmid">31631836</article-id>
<article-id pub-id-type="pmc">6884397</article-id>
<article-id pub-id-type="publisher-id">48448</article-id>
<article-id pub-id-type="doi">10.7554/eLife.48448</article-id>
<article-categories>
<subj-group subj-group-type="display-channel">
<subject>Research Article</subject>
</subj-group>
<subj-group subj-group-type="heading">
<subject>Immunology and Inflammation</subject>
</subj-group>
<subj-group subj-group-type="heading">
<subject>Neuroscience</subject>
</subj-group>
</article-categories>
<title-group>
<article-title>Neutrophils promote CXCR3-dependent itch in the development of atopic dermatitis</article-title>
</title-group>
<contrib-group>
<contrib id="author-143400" contrib-type="author" equal-contrib="yes">
<name>
<surname>Walsh</surname>
<given-names>Carolyn M</given-names>
</name>
<xref ref-type="aff" rid="aff1">1</xref>
<xref ref-type="author-notes" rid="equal-contrib1"></xref>
<xref ref-type="fn" rid="con1"></xref>
<xref ref-type="fn" rid="conf1"></xref>
<xref ref-type="author-notes" rid="fn1">§</xref>
</contrib>
<contrib id="author-79962" contrib-type="author" equal-contrib="yes">
<name>
<surname>Hill</surname>
<given-names>Rose Z</given-names>
</name>
<contrib-id authenticated="true" contrib-id-type="orcid">https://orcid.org/0000-0001-9558-6400</contrib-id>
<xref ref-type="aff" rid="aff1">1</xref>
<xref ref-type="author-notes" rid="equal-contrib1"></xref>
<xref ref-type="fn" rid="con2"></xref>
<xref ref-type="fn" rid="conf1"></xref>
<xref ref-type="author-notes" rid="fn1">§</xref>
<xref ref-type="author-notes" rid="pa1"></xref>
</contrib>
<contrib id="author-143401" contrib-type="author">
<name>
<surname>Schwendinger-Schreck</surname>
<given-names>Jamie</given-names>
</name>
<xref ref-type="aff" rid="aff1">1</xref>
<xref ref-type="fn" rid="con3"></xref>
<xref ref-type="fn" rid="conf1"></xref>
</contrib>
<contrib id="author-143402" contrib-type="author">
<name>
<surname>Deguine</surname>
<given-names>Jacques</given-names>
</name>
<xref ref-type="aff" rid="aff1">1</xref>
<xref ref-type="other" rid="fund9"></xref>
<xref ref-type="fn" rid="con4"></xref>
<xref ref-type="fn" rid="conf1"></xref>
</contrib>
<contrib id="author-143403" contrib-type="author">
<name>
<surname>Brock</surname>
<given-names>Emily C</given-names>
</name>
<xref ref-type="aff" rid="aff1">1</xref>
<xref ref-type="fn" rid="con5"></xref>
<xref ref-type="fn" rid="conf1"></xref>
</contrib>
<contrib id="author-143404" contrib-type="author">
<name>
<surname>Kucirek</surname>
<given-names>Natalie</given-names>
</name>
<xref ref-type="aff" rid="aff1">1</xref>
<xref ref-type="fn" rid="con6"></xref>
<xref ref-type="fn" rid="conf1"></xref>
</contrib>
<contrib id="author-143405" contrib-type="author">
<name>
<surname>Rifi</surname>
<given-names>Ziad</given-names>
</name>
<xref ref-type="aff" rid="aff1">1</xref>
<xref ref-type="fn" rid="con7"></xref>
<xref ref-type="fn" rid="conf1"></xref>
</contrib>
<contrib id="author-143406" contrib-type="author">
<name>
<surname>Wei</surname>
<given-names>Jessica</given-names>
</name>
<contrib-id authenticated="true" contrib-id-type="orcid">https://orcid.org/0000-0002-7329-2812</contrib-id>
<xref ref-type="aff" rid="aff2">2</xref>
<xref ref-type="fn" rid="con8"></xref>
<xref ref-type="fn" rid="conf1"></xref>
</contrib>
<contrib id="author-141871" contrib-type="author">
<name>
<surname>Gronert</surname>
<given-names>Karsten</given-names>
</name>
<xref ref-type="aff" rid="aff2">2</xref>
<xref ref-type="other" rid="fund10"></xref>
<xref ref-type="fn" rid="con9"></xref>
<xref ref-type="fn" rid="conf1"></xref>
</contrib>
<contrib id="author-143407" contrib-type="author">
<name>
<surname>Brem</surname>
<given-names>Rachel B</given-names>
</name>
<xref ref-type="aff" rid="aff3">3</xref>
<xref ref-type="aff" rid="aff4">4</xref>
<xref ref-type="other" rid="fund2"></xref>
<xref ref-type="other" rid="fund11"></xref>
<xref ref-type="fn" rid="con10"></xref>
<xref ref-type="fn" rid="conf1"></xref>
</contrib>
<contrib id="author-2443" contrib-type="author" corresp="yes">
<name>
<surname>Barton</surname>
<given-names>Gregory M</given-names>
</name>
<contrib-id authenticated="true" contrib-id-type="orcid">https://orcid.org/0000-0002-3793-0100</contrib-id>
<email>barton@berkeley.edu</email>
<xref ref-type="aff" rid="aff1">1</xref>
<xref ref-type="other" rid="fund4"></xref>
<xref ref-type="other" rid="fund5"></xref>
<xref ref-type="other" rid="fund6"></xref>
<xref ref-type="other" rid="fund7"></xref>
<xref ref-type="other" rid="fund8"></xref>
<xref ref-type="fn" rid="con11"></xref>
<xref ref-type="fn" rid="conf1"></xref>
</contrib>
<contrib id="author-9174" contrib-type="author" corresp="yes">
<name>
<surname>Bautista</surname>
<given-names>Diana M</given-names>
</name>
<contrib-id authenticated="true" contrib-id-type="orcid">https://orcid.org/0000-0002-6809-8951</contrib-id>
<email>dbautista@berkeley.edu</email>
<xref ref-type="aff" rid="aff1">1</xref>
<xref ref-type="aff" rid="aff5">5</xref>
<xref ref-type="other" rid="fund1"></xref>
<xref ref-type="other" rid="fund2"></xref>
<xref ref-type="other" rid="fund11"></xref>
<xref ref-type="other" rid="fund3"></xref>
<xref ref-type="fn" rid="con12"></xref>
<xref ref-type="fn" rid="conf1"></xref>
</contrib>
<aff id="aff1">
<label>1</label>
<institution content-type="dept">Department of Molecular and Cell Biology</institution>
<institution>University of California, Berkeley</institution>
<addr-line>Berkeley</addr-line>
<country>United States</country>
</aff>
<aff id="aff2">
<label>2</label>
<institution content-type="dept">Vision Science Program, School of Optometry</institution>
<institution>University of California, Berkeley</institution>
<addr-line>Berkeley</addr-line>
<country>United States</country>
</aff>
<aff id="aff3">
<label>3</label>
<institution content-type="dept">Department of Plant and Microbial Biology</institution>
<institution>University of California, Berkeley</institution>
<addr-line>Berkeley</addr-line>
<country>United States</country>
</aff>
<aff id="aff4">
<label>4</label>
<institution>Buck Institute for Research on Aging</institution>
<addr-line>Novato</addr-line>
<country>United States</country>
</aff>
<aff id="aff5">
<label>5</label>
<institution content-type="dept">Helen Wills Neuroscience Institute</institution>
<institution>University of California, Berkeley</institution>
<addr-line>Berkeley</addr-line>
<country>United States</country>
</aff>
</contrib-group>
<contrib-group>
<contrib contrib-type="editor">
<name>
<surname>King</surname>
<given-names>Andrew J</given-names>
</name>
<role>Reviewing Editor</role>
<aff>
<institution>University of Oxford</institution>
<country>United Kingdom</country>
</aff>
</contrib>
<contrib contrib-type="editor">
<name>
<surname>King</surname>
<given-names>Andrew J</given-names>
</name>
<role>Senior Editor</role>
<aff>
<institution>University of Oxford</institution>
<country>United Kingdom</country>
</aff>
</contrib>
</contrib-group>
<author-notes>
<fn fn-type="present-address" id="pa1">
<label></label>
<p>The Scripps Research Institute, La Jolla, United States.</p>
</fn>
<fn fn-type="other" id="fn1">
<label>§</label>
<p>Author order was randomly determined by a coin flip.</p>
</fn>
<fn fn-type="con" id="equal-contrib1">
<label></label>
<p>These authors contributed equally to this work.</p>
</fn>
</author-notes>
<pub-date date-type="pub" publication-format="electronic">
<day>21</day>
<month>10</month>
<year>2019</year>
</pub-date>
<pub-date pub-type="collection">
<year>2019</year>
</pub-date>
<volume>8</volume>
<elocation-id>e48448</elocation-id>
<history>
<date date-type="received" iso-8601-date="2019-05-14">
<day>14</day>
<month>5</month>
<year>2019</year>
</date>
<date date-type="accepted" iso-8601-date="2019-10-17">
<day>17</day>
<month>10</month>
<year>2019</year>
</date>
</history>
<permissions>
<copyright-statement>© 2019, Walsh et al</copyright-statement>
<copyright-year>2019</copyright-year>
<copyright-holder>Walsh et al</copyright-holder>
<ali:free_to_read></ali:free_to_read>
<license xlink:href="http://creativecommons.org/licenses/by/4.0/">
<ali:license_ref>http://creativecommons.org/licenses/by/4.0/</ali:license_ref>
<license-p>This article is distributed under the terms of the
<ext-link ext-link-type="uri" xlink:href="http://creativecommons.org/licenses/by/4.0/">Creative Commons Attribution License</ext-link>
, which permits unrestricted use and redistribution provided that the original author and source are credited.</license-p>
</license>
</permissions>
<self-uri content-type="pdf" xlink:href="elife-48448.pdf"></self-uri>
<related-article related-article-type="commentary" id="d35e343" ext-link-type="doi" xlink:href="10.7554/eLife.52931"></related-article>
<abstract>
<p>Chronic itch remains a highly prevalent disorder with limited treatment options. Most chronic itch diseases are thought to be driven by both the nervous and immune systems, but the fundamental molecular and cellular interactions that trigger the development of itch and the acute-to-chronic itch transition remain unknown. Here, we show that skin-infiltrating neutrophils are key initiators of itch in atopic dermatitis, the most prevalent chronic itch disorder. Neutrophil depletion significantly attenuated itch-evoked scratching in a mouse model of atopic dermatitis. Neutrophils were also required for several key hallmarks of chronic itch, including skin hyperinnervation, enhanced expression of itch signaling molecules, and upregulation of inflammatory cytokines, activity-induced genes, and markers of neuropathic itch. Finally, we demonstrate that neutrophils are required for induction of CXCL10, a ligand of the CXCR3 receptor that promotes itch via activation of sensory neurons, and we find that that CXCR3 antagonism attenuates chronic itch.</p>
</abstract>
<abstract abstract-type="executive-summary">
<title>eLife digest</title>
<p>Chronic itch is a debilitating disorder that can last for months or years. Eczema, or atopic dermatitis, is the most common cause for chronic itch, affecting one in ten people worldwide. Many treatments for the condition are ineffective, and the exact cause of the disease is unknown, but many different types of cells are likely involved. These include skin cells and inflammation-promoting immune cells, as well as nerve cells that detect inflammation, relay itch and pain information to the brain, and regulate the immune system.</p>
<p>Learning more about how these cells interact in eczema may help scientists find better treatments for the condition. So far, a lot of research has focused on static ‘snapshots’ of mature eczema lesions from human skin or animal models. These studies have identified abnormalities in genes or cells, but have not revealed how these genes and cells interact over time to cause chronic itch and inflammation.</p>
<p>Now, Walsh et al. reveal that immune cells called neutrophils trigger chronic itch in eczema. The experiments involved mice with a condition that mimics eczema, and showed that removing the neutrophils in these mice alleviated their itching. They also showed that dramatic and rapid changes occur in the nervous system of mice suffering from the eczema-like condition. For example, excess nerves grow in the animals’ damaged skin, genes in the nerves that detect sensations become hyperactive, and changes occur in the spinal cord that have been linked to nerve pain. When neutrophils are absent, these changes do not take place.</p>
<p>These findings show that neutrophils play a key role in chronic itch and inflammation in eczema. Drugs that target neutrophils, which are already used to treat other diseases, might help with chronic itch, but they would need to be tested before they can be used on people with eczema.</p>
</abstract>
<kwd-group kwd-group-type="author-keywords">
<kwd>chronic itch</kwd>
<kwd>neutrophils</kwd>
<kwd>somatosensory</kwd>
<kwd>neuroimmune</kwd>
<kwd>itch</kwd>
<kwd>atopic dermatitis</kwd>
</kwd-group>
<kwd-group kwd-group-type="research-organism">
<title>Research organism</title>
<kwd>Mouse</kwd>
</kwd-group>
<funding-group>
<award-group id="fund1">
<funding-source>
<institution-wrap>
<institution-id institution-id-type="FundRef">http://dx.doi.org/10.13039/100000069</institution-id>
<institution>National Institute of Arthritis and Musculoskeletal and Skin Diseases</institution>
</institution-wrap>
</funding-source>
<award-id>AR059385</award-id>
<principal-award-recipient>
<name>
<surname>Bautista</surname>
<given-names>Diana M</given-names>
</name>
</principal-award-recipient>
</award-group>
<award-group id="fund2">
<funding-source>
<institution-wrap>
<institution-id institution-id-type="FundRef">http://dx.doi.org/10.13039/100000065</institution-id>
<institution>National Institute of Neurological Disorders and Stroke</institution>
</institution-wrap>
</funding-source>
<award-id>NS07224</award-id>
<principal-award-recipient>
<name>
<surname>Brem</surname>
<given-names>Rachel B</given-names>
</name>
<name>
<surname>Bautista</surname>
<given-names>Diana M</given-names>
</name>
</principal-award-recipient>
</award-group>
<award-group id="fund3">
<funding-source>
<institution-wrap>
<institution-id institution-id-type="FundRef">http://dx.doi.org/10.13039/100000011</institution-id>
<institution>Howard Hughes Medical Institute</institution>
</institution-wrap>
</funding-source>
<principal-award-recipient>
<name>
<surname>Bautista</surname>
<given-names>Diana M</given-names>
</name>
</principal-award-recipient>
</award-group>
<award-group id="fund4">
<funding-source>
<institution-wrap>
<institution-id institution-id-type="FundRef">http://dx.doi.org/10.13039/100000060</institution-id>
<institution>National Institute of Allergy and Infectious Diseases</institution>
</institution-wrap>
</funding-source>
<award-id>AI072429</award-id>
<principal-award-recipient>
<name>
<surname>Barton</surname>
<given-names>Gregory M</given-names>
</name>
</principal-award-recipient>
</award-group>
<award-group id="fund5">
<funding-source>
<institution-wrap>
<institution-id institution-id-type="FundRef">http://dx.doi.org/10.13039/100000060</institution-id>
<institution>National Institute of Allergy and Infectious Diseases</institution>
</institution-wrap>
</funding-source>
<award-id>AI063302</award-id>
<principal-award-recipient>
<name>
<surname>Barton</surname>
<given-names>Gregory M</given-names>
</name>
</principal-award-recipient>
</award-group>
<award-group id="fund6">
<funding-source>
<institution-wrap>
<institution-id institution-id-type="FundRef">http://dx.doi.org/10.13039/100000060</institution-id>
<institution>National Institute of Allergy and Infectious Diseases</institution>
</institution-wrap>
</funding-source>
<award-id>AI104914</award-id>
<principal-award-recipient>
<name>
<surname>Barton</surname>
<given-names>Gregory M</given-names>
</name>
</principal-award-recipient>
</award-group>
<award-group id="fund7">
<funding-source>
<institution-wrap>
<institution-id institution-id-type="FundRef">http://dx.doi.org/10.13039/100000060</institution-id>
<institution>National Institute of Allergy and Infectious Diseases</institution>
</institution-wrap>
</funding-source>
<award-id>AI105184</award-id>
<principal-award-recipient>
<name>
<surname>Barton</surname>
<given-names>Gregory M</given-names>
</name>
</principal-award-recipient>
</award-group>
<award-group id="fund8">
<funding-source>
<institution-wrap>
<institution-id institution-id-type="FundRef">http://dx.doi.org/10.13039/100000861</institution-id>
<institution>Burroughs Wellcome Fund</institution>
</institution-wrap>
</funding-source>
<principal-award-recipient>
<name>
<surname>Barton</surname>
<given-names>Gregory M</given-names>
</name>
</principal-award-recipient>
</award-group>
<award-group id="fund9">
<funding-source>
<institution-wrap>
<institution-id institution-id-type="FundRef">http://dx.doi.org/10.13039/501100000854</institution-id>
<institution>Human Frontier Science Program</institution>
</institution-wrap>
</funding-source>
<award-id>LT-000081/2013-L</award-id>
<principal-award-recipient>
<name>
<surname>Deguine</surname>
<given-names>Jacques</given-names>
</name>
</principal-award-recipient>
</award-group>
<award-group id="fund10">
<funding-source>
<institution-wrap>
<institution-id institution-id-type="FundRef">http://dx.doi.org/10.13039/100000053</institution-id>
<institution>National Eye Institute</institution>
</institution-wrap>
</funding-source>
<award-id>EY026082</award-id>
<principal-award-recipient>
<name>
<surname>Gronert</surname>
<given-names>Karsten</given-names>
</name>
</principal-award-recipient>
</award-group>
<award-group id="fund11">
<funding-source>
<institution-wrap>
<institution-id institution-id-type="FundRef">http://dx.doi.org/10.13039/100000065</institution-id>
<institution>National Institute of Neurological Disorders and Stroke</institution>
</institution-wrap>
</funding-source>
<award-id>NS098097</award-id>
<principal-award-recipient>
<name>
<surname>Brem</surname>
<given-names>Rachel B</given-names>
</name>
<name>
<surname>Bautista</surname>
<given-names>Diana M</given-names>
</name>
</principal-award-recipient>
</award-group>
<funding-statement>The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.</funding-statement>
</funding-group>
<custom-meta-group>
<custom-meta specific-use="meta-only">
<meta-name>Author impact statement</meta-name>
<meta-value>Neutrophils are essential for itch in a mouse model of atopic dermatitis, and promote the transition from acute to chronic itch via induction of CXCL10/CXCR3 signaling.</meta-value>
</custom-meta>
</custom-meta-group>
</article-meta>
</front>
<body>
<sec sec-type="intro" id="s1">
<title>Introduction</title>
<p>Chronic itch is a debilitating disorder that affects millions of people worldwide (
<xref rid="bib66" ref-type="bibr">Matterne et al., 2011</xref>
;
<xref rid="bib71" ref-type="bibr">Mollanazar et al., 2016</xref>
;
<xref rid="bib18" ref-type="bibr">Dalgard et al., 2015</xref>
). It is a symptom of a number of skin diseases and systemic disorders, as well as a side effect of a growing list of medications. Like chronic pain, chronic itch can be a disease in and of itself (
<xref rid="bib104" ref-type="bibr">Ständer and Steinhoff, 2002</xref>
;
<xref rid="bib75" ref-type="bibr">Oaklander, 2011</xref>
;
<xref rid="bib22" ref-type="bibr">Dhand and Aminoff, 2014</xref>
). Unlike acute itch, which can facilitate removal of crawling insects, parasites, or irritants, persistent scratching in chronic itch disorders has no discernable benefit; scratching damages skin, leading to secondary infection, disfiguring lesions, and exacerbation of disease severity (
<xref rid="bib71" ref-type="bibr">Mollanazar et al., 2016</xref>
;
<xref rid="bib119" ref-type="bibr">Yosipovitch and Papoiu, 2008</xref>
;
<xref rid="bib41" ref-type="bibr">Ikoma et al., 2006</xref>
). The most common chronic itch disorder is atopic dermatitis (AD; commonly known as eczema), which affects fifteen million people in the United States alone (
<xref rid="bib103" ref-type="bibr">Spergel and Paller, 2003</xref>
). Severe AD can trigger the atopic march, where chronic itch and inflammation progress to food allergy, allergic rhinitis, and asthma (
<xref rid="bib103" ref-type="bibr">Spergel and Paller, 2003</xref>
;
<xref rid="bib122" ref-type="bibr">Zheng et al., 2011</xref>
).</p>
<p>Little is known about the underlying mechanisms that drive chronic itch pathogenesis. As such, studies of human chronic itch disorders have sought to identify candidate mechanisms of disease progression. A number of studies have identified biomarkers and disease genes in itchy human AD lesions (
<xref rid="bib24" ref-type="bibr">Ewald et al., 2017</xref>
;
<xref rid="bib15" ref-type="bibr">Choy et al., 2012</xref>
;
<xref rid="bib31" ref-type="bibr">Guttman-Yassky et al., 2009</xref>
;
<xref rid="bib105" ref-type="bibr">Suárez-Fariñas et al., 2013</xref>
;
<xref rid="bib43" ref-type="bibr">Jabbari et al., 2012</xref>
). Indeed, a recent study compared the transcriptomes of healthy skin to itchy and non-itchy skin from psoriasis and AD patients, revealing dramatic changes in expression of genes associated with cytokines, immune cells, epithelial cells, and sensory neurons (
<xref rid="bib74" ref-type="bibr">Nattkemper et al., 2018</xref>
). However, due to the difficulty in staging lesion development and obtaining staged samples from patients, there is currently no temporal map of when individual molecules and cell types contribute to chronic itch pathogenesis. Furthermore, the use of human patient data does not allow for rigorous mechanistic study of how disease genes contribute to chronic itch. To this end, we used a well-characterized inducible animal model of itch to define where, when, and how these genes identified from patient data contribute to chronic itch pathogenesis.</p>
<p>We employed the MC903 mouse model of AD and the atopic march (
<xref rid="bib17" ref-type="bibr">Dai et al., 2017</xref>
;
<xref rid="bib57" ref-type="bibr">Li et al., 2009</xref>
;
<xref rid="bib56" ref-type="bibr">Li et al., 2006</xref>
;
<xref rid="bib120" ref-type="bibr">Zhang et al., 2009</xref>
;
<xref rid="bib72" ref-type="bibr">Moosbrugger-Martinz et al., 2017</xref>
) to provide a framework within which to identify the molecules and cells that initiate the development of atopic itch. The MC903 model is ideal for our approach because of its highly reproducible phenotypes that closely resemble human AD and its ability to induce the development of lesions and scratching (
<xref rid="bib57" ref-type="bibr">Li et al., 2009</xref>
;
<xref rid="bib56" ref-type="bibr">Li et al., 2006</xref>
;
<xref rid="bib120" ref-type="bibr">Zhang et al., 2009</xref>
;
<xref rid="bib77" ref-type="bibr">Oetjen et al., 2017</xref>
;
<xref rid="bib73" ref-type="bibr">Morita et al., 2015</xref>
;
<xref rid="bib48" ref-type="bibr">Kim et al., 2019</xref>
). By contrast, it is difficult to synchronously time the development of lesions in commonly used genetic models of AD, such as filaggrin mutant mice or Nc/Nga mice. Another advantage of the MC903 model is that it displays collectively more hallmarks of human AD than any one particular genetic mouse model. For example, the commonly used IL-31
<sup>tg</sup>
overexpressor model (
<xref rid="bib13" ref-type="bibr">Cevikbas et al., 2014</xref>
;
<xref rid="bib68" ref-type="bibr">Meng et al., 2018</xref>
) lacks strong Th2 induction, (
<xref rid="bib65" ref-type="bibr">Martel et al., 2017</xref>
) and itch behaviors have not yet been rigorously characterized in the keratinocyte-TSLP overexpressor model. As MC903 is widely used to study the chronic phase of AD, we hypothesized that MC903 could also be used to define the early mechanisms underlying the development of chronic itch, beginning with healthy skin. We performed RNA-seq of skin at key time points in the model. We complemented this approach with measurements of itch behavior and immune cell infiltration. The primary goal of our study was to identify the inciting molecules and cell types driving development of chronic itch. To that end, we show that infiltration of neutrophils into skin is required for development of chronic itch. Additionally, we demonstrate that neutrophils direct early hyperinnervation of skin, and the upregulation of itch signaling molecules and activity-induced genes in sensory neurons. Finally, we identify CXCL10/CXCR3 signaling as a key link between infiltrating neutrophils and sensory neurons that drives itch behaviors.</p>
</sec>
<sec sec-type="results" id="s2">
<title>Results</title>
<sec id="s2-1">
<title>MC903 triggers rapid changes in expression of skin barrier, epithelial cell-derived cytokine, and axon guidance genes</title>
<p>Although a variety of AD- and chronic itch-associated genes have been identified, when and how they contribute to disease pathogenesis is unclear. Using RNA-seq of MC903-treated skin, we observed distinct temporal patterns by which these classes of genes are differentially expressed across the first eight days of the model (
<xref ref-type="fig" rid="fig1">Figure 1A–B</xref>
,
<xref ref-type="fig" rid="fig1s1">Figure 1—figure supplement 1A</xref>
). Overall, we found that 62% of genes from a recent study of human chronic itch lesions (
<xref rid="bib74" ref-type="bibr">Nattkemper et al., 2018</xref>
) (
<xref ref-type="fig" rid="fig1s1">Figure 1—figure supplement 1A</xref>
) and 67% of AD-related genes (
<xref ref-type="fig" rid="fig1">Figure 1B</xref>
) were significantly changed for at least one of the time points examined, suggesting that the MC903 mouse model recapitulates many key transcriptional changes occuring in human chronic itch and AD. MC903 dramatically alters the transcriptional profile of keratinocytes by derepressing genomic loci under the control of the Vitamin D Receptor. In line with rapid changes in transcription, proteases (
<italic>Klk6</italic>
,
<italic>Klk13</italic>
, among others) and skin barrier genes (
<italic>Cdhr1</italic>
) changed as early as six hours after the first treatment, before mice begin scratching (
<xref ref-type="fig" rid="fig1">Figure 1B</xref>
). Increased protease activity in AD skin is thought to promote breakdown of the epidermal barrier and release of inflammatory cytokines from keratinocytes (
<xref rid="bib88" ref-type="bibr">Rattenholl and Steinhoff, 2003</xref>
;
<xref rid="bib118" ref-type="bibr">Yosipovitch, 2004</xref>
). One such cytokine, thymic stromal lymphopoetin (TSLP) is a key inducer of the Type two immune response, which is characteristic of human AD and the MC903 model, via signaling in CD4
<sup>+</sup>
T cells, basophils, and other immune cells (
<xref rid="bib56" ref-type="bibr">Li et al., 2006</xref>
;
<xref rid="bib120" ref-type="bibr">Zhang et al., 2009</xref>
;
<xref rid="bib8" ref-type="bibr">Briot et al., 2010</xref>
;
<xref rid="bib21" ref-type="bibr">Demehri et al., 2009</xref>
;
<xref rid="bib27" ref-type="bibr">Gao et al., 2010</xref>
;
<xref rid="bib47" ref-type="bibr">Kim et al., 2013</xref>
). Beginning at day two, before any significant itch-evoked scratching (
<xref ref-type="fig" rid="fig1">Figure 1C</xref>
), immune cell infiltration (
<xref ref-type="fig" rid="fig1">Figure 1E–G</xref>
,
<xref ref-type="fig" rid="fig1s3">Figure 1—figure supplements 3A</xref>
,
<xref ref-type="fig" rid="fig1s4">4A</xref>
and
<xref ref-type="fig" rid="fig1s5">5A–C</xref>
), or skin lesions (data not shown) (
<xref rid="bib73" ref-type="bibr">Morita et al., 2015</xref>
) were observed, we saw increases in
<italic>Tslp</italic>
, as well as several other epithelial-derived cytokines, including the neutrophil chemoattractant genes
<italic>Cxcl1, Cxcl2, Cxcl3,</italic>
and
<italic>Cxcl5</italic>
(
<xref ref-type="fig" rid="fig1">Figure 1D</xref>
). To ask whether upregulation of these chemokine genes was dependent on protease activity, we treated human keratinocytes with the protease-activated receptor two agonist SLIGRL. SLIGRL treatment triggered increased expression of several of these chemokine genes, including
<italic>IL8</italic>
, the human ortholog of mouse
<italic>Cxcl1/Cxcl2,</italic>
and
<italic>CXCL2</italic>
(
<xref ref-type="fig" rid="fig1s6">Figure 1—figure supplement 6A</xref>
). These increases occurred after a few hours of exposure to SLIGRL, suggesting that increased protease activity can rapidly trigger increases in neutrophil chemoattractants in skin, similar to what we observe in MC903-treated mouse skin.</p>
<fig id="fig1" position="float" orientation="portrait">
<label>Figure 1.</label>
<caption>
<title>The MC903 model parallels the progression of human atopic disease and suggests a temporal sequence of AD pathogenesis.</title>
<p>(
<bold>A</bold>
) Exact permutation test (10,000 iterations, see Materials and methods) for significance of mean absolute log
<sub>2</sub>
fold change in gene expression at Day 8 (MC903 vs. ethanol) of custom-defined groups of genes for indicated categories (see
<xref ref-type="supplementary-material" rid="fig1sdata1">Figure 1—source data 1</xref>
). (
<bold>B</bold>
) Log
<sub>2</sub>
fold change in gene expression (MC903 vs. ethanol) in mouse skin at indicated time points for key immune and mouse/human AD genes that were significantly differentially expressed for at least one time point in the MC903 model. Only genes from our initial list (see Materials and methods) differentially expressed at corrected p<0.05 and changing >2 fold between treatments for at least one condition are shown. Green bars = increased expression in MC903 relative to ethanol; magenta = decreased expression. Exact values and corrected
<italic>p</italic>
-values are reported in
<xref ref-type="supplementary-material" rid="fig1sdata2">Figure 1—source data 2</xref>
and
<xref ref-type="supplementary-material" rid="sdata1">Source Data 1</xref>
Supplemental Data, respectively. D1 = 6 hr post-treatment; D2 = Day 2; D5 = Day 5; D8 = Day 8. (
<bold>C</bold>
) Scratching behavior of mice treated with MC903 or ethanol for indicated length of time (two-way ANOVA: ****
<italic>p</italic>
<sub>interaction</sub>
 <0.0001, F(2,409) = 13.25; Sidak’s multiple comparisons:
<italic>p
<sub>day 3</sub>
</italic>
 = 0.1309, n = 62,51 mice; *
<italic>p
<sub>day 5</sub>
</italic>
 = 0.0171, n = 69,56 mice; ****
<italic>p
<sub>day 8</sub>
</italic>
 < 0.0001, n = 92,85 mice). Exact values displayed in
<xref ref-type="supplementary-material" rid="fig1sdata3">Figure 1—source data 3</xref>
. (
<bold>D</bold>
) Log
<sub>2</sub>
fold change in gene expression of neutrophil chemoattractants (upper), Th2 cytokines (middle) and T cell chemoattractants (lower, from RNA-seq data). (
<bold>E</bold>
) Neutrophil counts in MC903- and ethanol-treated skin at indicated time points (two-way ANOVA: **
<italic>p</italic>
<sub>treatment</sub>
 = 0.0023, F(1,102) = 9.82; Sidak’s multiple comparisons:
<italic>p
<sub>day 2</sub>
</italic>
 > 0.999, n = 4,4 mice;
<italic>p
<sub>day 3</sub>
</italic>
 = 0.9801, n = 5,5 mice; ***
<italic>p
<sub>day 5</sub>
</italic>
 = 0.0003, n = 6,8 mice; ***
<italic>p
<sub>day 8</sub>
</italic>
 = 0.0001, n = 40,38 mice). (
<bold>F</bold>
) Basophil counts in MC903- and ethanol-treated skin at indicated time points (two-way ANOVA: **
<italic>p</italic>
<sub>treatment</sub>
 = 0.0051, F(1,102) = 8.17; Sidak’s multiple comparisons:
<italic>p
<sub>day 2</sub>
</italic>
 > 0.999, n = 4,4 mice;
<italic>p
<sub>day 3</sub>
</italic>
 = 0.8850, n = 5,5 mice;
<italic>p
<sub>day 5</sub>
</italic>
 = 0.0606, n = 6,8 mice; ****
<italic>p
<sub>day 8</sub>
</italic>
 < 0.0001, n = 40,38 mice). (
<bold>G</bold>
) CD4
<sup>+</sup>
T cell counts in MC903- and ethanol-treated skin at indicated time points (two-way ANOVA: **
<italic>p</italic>
<sub>time</sub>
 = 0.0042, F(1,44) = 9.10;
<italic>p
<sub>day 3</sub>
</italic>
 = 0.9998, n = 8,6 mice;
<italic>p
<sub>day 5</sub>
</italic>
 = 0.2223, n = 9,8 mice; **
<italic>p
<sub>day 8</sub>
</italic>
 = 0.0021, n = 11,8 mice). Day 8 immune cell infiltrate represented as % of CD45
<sup>+</sup>
cells in
<xref ref-type="fig" rid="fig1s2">Figure 1—figure supplement 2A–B</xref>
(see
<xref ref-type="supplementary-material" rid="supp3">Supplementary file 3</xref>
for all experimental conditions). Exact values displayed in
<xref ref-type="supplementary-material" rid="fig1sdata4">Figure 1—source data 4</xref>
and representative FACS plots for myeloid and T cell gating shown in
<xref ref-type="fig" rid="fig1s3">Figure 1—figure supplement 3A</xref>
and
<xref ref-type="fig" rid="fig1s4">Figure 1—figure supplement 4A</xref>
. For
<xref ref-type="fig" rid="fig4">Figure 4E–G</xref>
, data from mice receiving i.p. injection of PBS (see
<xref ref-type="fig" rid="fig4">Figure 4</xref>
) in addition to MC903 or EtOH are also included. (
<bold>H</bold>
) (Upper and Lower) Representative maximum intensity Z-projections from immunohistochemistry (IHC) of whole-mount mouse skin on Day 2 of the MC903 model. Skin was stained with neuronal marker beta-tubulin III (BTIII; green). Hair follicle autofluorescence is visible in the magenta channel. Images were acquired on a confocal using a 20x water objective. (
<bold>I</bold>
) Quantification of innervation (see Materials and methods) of mouse skin as determined from BTIII staining (*p=0.012; two-tailed t-test (
<italic>t</italic>
 = 3.114; df = 9); n = 7,4 images each from two mice per treatment). Day 1 IHC results as follows: 31.78 ± 18.39% (MC903) and 31.51 ± 16.43% (EtOH); p=0.988; two-tailed unpaired t-test; n = 6 images each from two mice per treatment. Exact values are reported in
<xref ref-type="supplementary-material" rid="fig1sdata5">Figure 1—source data 5</xref>
. (
<bold>J</bold>
) Quantification of CGRP
<sup>+</sup>
nerve fibers (see Materials and methods) in skin (**p=0.0083; two-tailed t-test (
<italic>t</italic>
 = 2.868; df = 25); n = 15, 12 images from three mice per treatment). Exact values are reported in
<xref ref-type="supplementary-material" rid="fig1sdata5">Figure 1—source data 5</xref>
. Representative images in
<xref ref-type="fig" rid="fig1s9">Figure 1—figure supplement 9A</xref>
.</p>
<p>
<supplementary-material content-type="local-data" id="fig1sdata1">
<label>Figure 1—source data 1.</label>
<caption>
<title>Values displayed in the bar plot shown in
<xref ref-type="fig" rid="fig1">Figure 1A</xref>
.</title>
</caption>
<media mime-subtype="octet-stream" mimetype="application" xlink:href="elife-48448-fig1-data1.csv" orientation="portrait" id="d35e997" position="anchor"></media>
</supplementary-material>
</p>
<p>
<supplementary-material content-type="local-data" id="fig1sdata2">
<label>Figure 1—source data 2.</label>
<caption>
<title>Values displayed in the heat map shown in
<xref ref-type="fig" rid="fig1">Figure 1B</xref>
.</title>
</caption>
<media mime-subtype="octet-stream" mimetype="application" xlink:href="elife-48448-fig1-data2.csv" orientation="portrait" id="d35e1008" position="anchor"></media>
</supplementary-material>
</p>
<p>
<supplementary-material content-type="local-data" id="fig1sdata3">
<label>Figure 1—source data 3.</label>
<caption>
<title>Values displayed in the bar plot shown in
<xref ref-type="fig" rid="fig1">Figure 1C</xref>
.</title>
</caption>
<media mime-subtype="octet-stream" mimetype="application" xlink:href="elife-48448-fig1-data3.csv" orientation="portrait" id="d35e1019" position="anchor"></media>
</supplementary-material>
</p>
<p>
<supplementary-material content-type="local-data" id="fig1sdata4">
<label>Figure 1—source data 4.</label>
<caption>
<title>Values displayed in the bar plots shown in
<xref ref-type="fig" rid="fig1">Figure 1E–G</xref>
and
<xref ref-type="fig" rid="fig1s5">Figure 1—figure supplement 5A–C</xref>
.</title>
</caption>
<media mime-subtype="octet-stream" mimetype="application" xlink:href="elife-48448-fig1-data4.csv" orientation="portrait" id="d35e1033" position="anchor"></media>
</supplementary-material>
</p>
<p>
<supplementary-material content-type="local-data" id="fig1sdata5">
<label>Figure 1—source data 5.</label>
<caption>
<title>Values displayed in the bar plots shown in
<xref ref-type="fig" rid="fig1">Figure 1I</xref>
and
<xref ref-type="fig" rid="fig1">Figure 1J</xref>
.</title>
</caption>
<media mime-subtype="octet-stream" mimetype="application" xlink:href="elife-48448-fig1-data5.csv" orientation="portrait" id="d35e1047" position="anchor"></media>
</supplementary-material>
</p>
<p>
<supplementary-material content-type="local-data" id="fig1sdata6">
<label>Figure 1—source data 6.</label>
<caption>
<title>Values displayed in the heat map shown in
<xref ref-type="fig" rid="fig1s1">Figure 1—figure supplement 1A</xref>
.</title>
</caption>
<media mime-subtype="octet-stream" mimetype="application" xlink:href="elife-48448-fig1-data6.csv" orientation="portrait" id="d35e1058" position="anchor"></media>
</supplementary-material>
</p>
<p>
<supplementary-material content-type="local-data" id="fig1sdata7">
<label>Figure 1—source data 7.</label>
<caption>
<title>Values displayed in the heat map shown in
<xref ref-type="fig" rid="fig1s6">Figure 1—figure supplement 6A</xref>
.</title>
</caption>
<media mime-subtype="octet-stream" mimetype="application" xlink:href="elife-48448-fig1-data7.csv" orientation="portrait" id="d35e1069" position="anchor"></media>
</supplementary-material>
</p>
<p>
<supplementary-material content-type="local-data" id="fig1sdata8">
<label>Figure 1—source data 8.</label>
<caption>
<title>Values displayed in the heat map shown in
<xref ref-type="fig" rid="fig1s7">Figure 1—figure supplement 7A</xref>
.</title>
</caption>
<media mime-subtype="octet-stream" mimetype="application" xlink:href="elife-48448-fig1-data8.csv" orientation="portrait" id="d35e1080" position="anchor"></media>
</supplementary-material>
</p>
<p>
<supplementary-material content-type="local-data" id="fig1sdata9">
<label>Figure 1—source data 9.</label>
<caption>
<title>Values displayed in the bar plot shown in
<xref ref-type="fig" rid="fig1s10">Figure 1—figure supplement 10A</xref>
.</title>
</caption>
<media mime-subtype="octet-stream" mimetype="application" xlink:href="elife-48448-fig1-data9.csv" orientation="portrait" id="d35e1091" position="anchor"></media>
</supplementary-material>
</p>
</caption>
<graphic xlink:href="elife-48448-fig1"></graphic>
<p content-type="supplemental-figure">
<fig id="fig1s1" specific-use="child-fig" orientation="portrait" position="anchor">
<label>Figure 1—figure supplement 1.</label>
<caption>
<title>Expression of mouse and human itch genes.</title>
<p>(
<bold>A</bold>
) Log
<sub>2</sub>
fold change in gene expression (MC903 vs. ethanol) in mouse skin at indicated time points for genes implicated in mouse or human acute or chronic itch that were significantly differentially expressed for at least one time point in the MC903 model. Green bars = increased expression in MC903 relative to ethanol; magenta = decreased expression. Exact values and corrected
<italic>p</italic>
-values are reported in
<xref ref-type="supplementary-material" rid="fig1sdata6">Figure 1—source data 6</xref>
and
<xref ref-type="supplementary-material" rid="sdata1">Source Data 1</xref>
Supplemental Data, respectively.</p>
</caption>
<graphic xlink:href="elife-48448-fig1-figsupp1"></graphic>
</fig>
</p>
<p content-type="supplemental-figure">
<fig id="fig1s2" specific-use="child-fig" orientation="portrait" position="anchor">
<label>Figure 1—figure supplement 2.</label>
<caption>
<title>Immune cells represented as % of CD45
<sup>+</sup>
cells.</title>
<p>(
<bold>A</bold>
) Number of CD45
<sup>+</sup>
cells in MC903-treated skin on days 2–8 of the model. (
<bold>B</bold>
) Skin-infiltrating immune cell subtypes on days 2–8 of the MC903 model shown in
<xref ref-type="fig" rid="fig1">Figure 1</xref>
, represented as % of CD45
<sup>+</sup>
cells. CD4
<sup>+</sup>
T cell measurements were acquired using a separate staining panel from different animals than the myeloid cell measurements (see Materials and methods) and were not included. See
<xref ref-type="supplementary-material" rid="supp3">Supplementary file 3</xref>
for % of CD45
<sup>+</sup>
cell measurements for all flow cytometry experiments. Error bars represent mean ± SEM.</p>
</caption>
<graphic xlink:href="elife-48448-fig1-figsupp2"></graphic>
</fig>
</p>
<p content-type="supplemental-figure">
<fig id="fig1s3" specific-use="child-fig" orientation="portrait" position="anchor">
<label>Figure 1—figure supplement 3.</label>
<caption>
<title>Myeloid and granulocyte gating strategy.</title>
<p>(
<bold>A-C</bold>
) Representative FACS plots of cells isolated from MC903-treated cheek skin showing gating strategy for neutrophils (
<bold>A</bold>
), inflammatory monocytes (
<bold>A</bold>
), mast cells (
<bold>B</bold>
), basophils (
<bold>B</bold>
), and eosinophils (
<bold>C</bold>
) as shown in
<xref ref-type="fig" rid="fig1">Figure 1E–F</xref>
and
<xref ref-type="fig" rid="fig1s5">Figure 1—figure supplement 5</xref>
.</p>
</caption>
<graphic xlink:href="elife-48448-fig1-figsupp3"></graphic>
</fig>
</p>
<p content-type="supplemental-figure">
<fig id="fig1s4" specific-use="child-fig" orientation="portrait" position="anchor">
<label>Figure 1—figure supplement 4.</label>
<caption>
<title>T cell gating strategy.</title>
<p>(
<bold>A</bold>
) Representative FACS plots of cells isolated from MC903-treated cheek skin showing gating strategy for CD4
<sup>+</sup>
T cells as shown in
<xref ref-type="fig" rid="fig1">Figure 1G</xref>
.</p>
</caption>
<graphic xlink:href="elife-48448-fig1-figsupp4"></graphic>
</fig>
</p>
<p content-type="supplemental-figure">
<fig id="fig1s5" specific-use="child-fig" orientation="portrait" position="anchor">
<label>Figure 1—figure supplement 5.</label>
<caption>
<title>Immune cell counts in MC903-treated skin.</title>
<p>(
<bold>A</bold>
) Inflammatory monocyte counts in MC903- and ethanol-treated skin at indicated time points (two-way ANOVA:
<italic>p</italic>
<sub>treatment</sub>
 = 0.0662, F(1,102) = 3.44; n = 4,4,5,5,6,8,40,38 mice). (
<bold>B</bold>
) Mast cell counts in MC903- and ethanol-treated skin at indicated time points (two-way ANOVA: **
<italic>p</italic>
<sub>treatment</sub>
 = 0.0024, F(1,102) = 9.69; Sidak’s multiple comparisons:
<italic>p
<sub>day 2</sub>
</italic>
 > 0.999, n = 4,4 mice;
<italic>p
<sub>day 3</sub>
</italic>
 = 0.3019, n = 5,5 mice;
<italic>p
<sub>day 5</sub>
</italic>
 = 0.0586, n = 6,8 mice; ****
<italic>p
<sub>day 8</sub>
</italic>
 < 0.0001, n = 40,38 mice). (
<bold>C</bold>
) Eosinophil counts in MC903- and ethanol-treated skin at indicated time points (two-way ANOVA:
<italic>p</italic>
<sub>time</sub>
 = 0.0471, F(3,102) = 2.74; Sidak’s multiple comparisons:
<italic>p
<sub>day 2</sub>
</italic>
 > 0.999, n = 4,4 mice;
<italic>p
<sub>day 3</sub>
</italic>
 = 0.3596, n = 5,5 mice;
<italic>p
<sub>day 5</sub>
</italic>
 = 0.9998, n = 6,8 mice; **
<italic>p
<sub>day 8</sub>
</italic>
 = 0.0020, n = 40,38 mice). Data from mice receiving i.p. injection of PBS (see
<xref ref-type="fig" rid="fig4">Figure 4</xref>
) in addition to MC903 or EtOH are also included. Exact values displayed in
<xref ref-type="supplementary-material" rid="fig1sdata4">Figure 1—source data 4</xref>
.</p>
</caption>
<graphic xlink:href="elife-48448-fig1-figsupp5"></graphic>
</fig>
</p>
<p content-type="supplemental-figure">
<fig id="fig1s6" specific-use="child-fig" orientation="portrait" position="anchor">
<label>Figure 1—figure supplement 6.</label>
<caption>
<title>Protease receptor activation triggers rapid upregulation of neutrophil chemoattractant genes in human keratinocytes.</title>
<p>(
<bold>A</bold>
) Heat map showing log
<sub>2</sub>
fold change in gene expression in cultured human keratinocytes 3 hr after SLIGRL treatment (100 µM; bottom; see
<xref ref-type="supplementary-material" rid="fig1sdata7">Figure 1—source data 7</xref>
) compared to vehicle controls, as measured by RNA-seq. Genes are sorted by descending corrected
<italic>p</italic>
-value; only significantly differentially expressed (p<0.05) are displayed. Exact values and corrected
<italic>p</italic>
-values are reported in
<xref ref-type="supplementary-material" rid="fig1sdata7">Figure 1—source data 7</xref>
and
<xref ref-type="supplementary-material" rid="sdata1">Source Data 1</xref>
Supplemental Data, respectively.</p>
</caption>
<graphic xlink:href="elife-48448-fig1-figsupp6"></graphic>
</fig>
</p>
<p content-type="supplemental-figure">
<fig id="fig1s7" specific-use="child-fig" orientation="portrait" position="anchor">
<label>Figure 1—figure supplement 7.</label>
<caption>
<title>Expression of neuronal genes and axon guidance molecules in skin.</title>
<p>(
<bold>A</bold>
) Log
<sub>2</sub>
fold change in gene expression (MC903 vs. EtOH) in mouse skin at indicated time points for markers of locally translated sensory neuronal transcripts or genes implicated in neurite remodeling and/or axon guidance that were significantly differentially expressed for at least one time point in the MC903 model. Green bars = increased expression in MC903 relative to ethanol; magenta = decreased expression. Exact values and corrected
<italic>p</italic>
-values are reported in
<xref ref-type="supplementary-material" rid="fig1sdata8">Figure 1—source data 8</xref>
and
<xref ref-type="supplementary-material" rid="sdata1">Source Data 1</xref>
Supplemental Data, respectively.</p>
</caption>
<graphic xlink:href="elife-48448-fig1-figsupp7"></graphic>
</fig>
</p>
<p content-type="supplemental-figure">
<fig id="fig1s8" specific-use="child-fig" orientation="portrait" position="anchor">
<label>Figure 1—figure supplement 8.</label>
<caption>
<title>Method of image quantification for whole mount skin.</title>
<p>(
<bold>A</bold>
) Representative maximum intensity z-projection of beta tubulin III staining in cheek skin. (
<bold>B</bold>
) Binary image after edge-detection. (
<bold>C</bold>
) % Area innervated was calculated from the percentage of the image area which was occupied by the regions of interest (ROIs) outlined in red.</p>
</caption>
<graphic xlink:href="elife-48448-fig1-figsupp8"></graphic>
</fig>
</p>
<p content-type="supplemental-figure">
<fig id="fig1s9" specific-use="child-fig" orientation="portrait" position="anchor">
<label>Figure 1—figure supplement 9.</label>
<caption>
<title>Peptidergic fibers display hyperinnervation in MC903-treated skin.</title>
<p>(
<bold>A</bold>
) Representative maximum intensity Z-projections from immunohistochemistry (IHC) of whole-mount mouse skin on day 2 of the MC903 model. Skin was stained with peptidergic neuronal marker Calcitonin related-gene peptide (CGRP; white). Images were acquired on a confocal microscope using a 20x water objective.</p>
</caption>
<graphic xlink:href="elife-48448-fig1-figsupp9"></graphic>
</fig>
</p>
<p content-type="supplemental-figure">
<fig id="fig1s10" specific-use="child-fig" orientation="portrait" position="anchor">
<label>Figure 1—figure supplement 10.</label>
<caption>
<title>Inflammatory lipids in MC903-treated skin.</title>
<p>(
<bold>A</bold>
) Quantification of indicated lipids from 6 mm biopsy punches of cheek skin of MC903- and EtOH-treated mice (at day 8) by LC-MS/MS (**p=0.006 (
<italic>t</italic>
 = 4.148,
<italic>df</italic>
 = 6), *p=0.024 (
<italic>t</italic>
 = 3.003,
<italic>df</italic>
 = 6), ***p=0.0007 (
<italic>t</italic>
 = 6.392,
<italic>df</italic>
 = 6), *p=0.022 (
<italic>t</italic>
 = 3.058,
<italic>df</italic>
 = 6); two-tailed unpaired t-tests; n = 4 mice per group, see
<xref ref-type="supplementary-material" rid="fig1sdata8">Figure 1—source data 8</xref>
).</p>
</caption>
<graphic xlink:href="elife-48448-fig1-figsupp10"></graphic>
</fig>
</p>
</fig>
<p>Unexpectedly, in the skin we observed early changes in a number of transcripts encoding neuronal outgrowth factors (
<italic>Ngf</italic>
,
<italic>Artn</italic>
) and axon pathfinding molecules (
<italic>Slit1</italic>
,
<italic>Sema3d, Sema3a</italic>
), some of which are directly implicated in chronic itch (
<xref rid="bib37" ref-type="bibr">Hidaka et al., 2017</xref>
;
<xref rid="bib52" ref-type="bibr">Kou et al., 2012</xref>
;
<xref rid="bib111" ref-type="bibr">Tominaga and Takamori, 2013</xref>
;
<xref rid="bib109" ref-type="bibr">Tominaga et al., 2007</xref>
;
<xref rid="bib112" ref-type="bibr">Tominaga and Takamori, 2014</xref>
;
<xref ref-type="fig" rid="fig1s7">Figure 1—figure supplement 7A</xref>
), prior to when mice began scratching. We thus used immunohistochemistry (IHC) of whole-mount skin to examine innervation at this time point. We saw increased innervation of lesions at day two but not day one of the model (
<xref ref-type="fig" rid="fig1">Figure 1H–I</xref>
,
<xref ref-type="fig" rid="fig1s8">Figure 1—figure supplement 8A</xref>
). Our RNA-seq data showed elevation in skin CGRP transcript
<italic>Calca</italic>
, along with other markers of peptidergic nerve endings, specifically at day 2. Indeed, we saw an increase in CGRP
<sup>+</sup>
innervation of skin at day 2 (
<xref ref-type="fig" rid="fig1">Figure 1J</xref>
,
<xref ref-type="fig" rid="fig1s9">Figure 1—figure supplement 9A</xref>
), which suggests that elevation of neuronal transcripts in skin is due to hyperinnervation of peptidergic itch and/or pain fibers. The increased innervation was surprising because such changes had previously only been reported in mature lesions from human chronic itch patients (
<xref rid="bib74" ref-type="bibr">Nattkemper et al., 2018</xref>
;
<xref rid="bib33" ref-type="bibr">Haas et al., 2010</xref>
;
<xref rid="bib45" ref-type="bibr">Kamo et al., 2013</xref>
;
<xref rid="bib76" ref-type="bibr">Oaklander and Siegel, 2005</xref>
;
<xref rid="bib94" ref-type="bibr">Schüttenhelm et al., 2015</xref>
;
<xref rid="bib82" ref-type="bibr">Pereira et al., 2016</xref>
;
<xref rid="bib110" ref-type="bibr">Tominaga et al., 2009</xref>
). Our findings suggest that early hyperinnervation is promoted by local signaling in the skin and is independent of the itch-scratch cycle.</p>
</sec>
<sec id="s2-2">
<title>Neutrophils are the first immune cells to infiltrate AD skin</title>
<p>By day five, mice exhibited robust itch behaviors (
<xref ref-type="fig" rid="fig1">Figure 1C</xref>
) and stark changes in a number of AD disease genes (
<xref ref-type="fig" rid="fig1">Figure 1A–B</xref>
). For example, loss-of-function mutations in filaggrin (
<italic>FLG)</italic>
are a major risk factor for human eczema (
<xref rid="bib81" ref-type="bibr">Palmer et al., 2006</xref>
;
<xref rid="bib90" ref-type="bibr">Sandilands et al., 2007</xref>
). Interestingly,
<italic>Flg2</italic>
levels sharply decreased at day five. In parallel, we saw continued and significant elevation in neutrophil and basophil chemoattractant genes (
<italic>Cxcl1,2,3,5</italic>
, and
<italic>Tslp</italic>
,
<xref ref-type="fig" rid="fig1">Figure 1D</xref>
). Using flow cytometry, we observed a number of infiltrating immune cells in the skin at day 5. Of these, we neutrophils were the most abundant immune cell subtype (
<xref ref-type="fig" rid="fig1">Figure 1E</xref>
,
<xref ref-type="fig" rid="fig1s3">Figure 1—figure supplement 3A</xref>
). It was not until day eight that we observed the classical AD-associated immune signature in the skin, (
<xref rid="bib29" ref-type="bibr">Gittler et al., 2012</xref>
) with upregulation of
<italic>Il4, Il33</italic>
and other Th2-associated genes (
<xref ref-type="fig" rid="fig1">Figure 1B</xref>
,
<xref ref-type="fig" rid="fig1">Figure 1D</xref>
). We also observed increases in the T cell chemoattractant genes
<italic>Cxcl9, Cxcl10,</italic>
and
<italic>Cxcl11</italic>
(
<xref ref-type="fig" rid="fig1">Figure 1D</xref>
), which are thought to be hallmarks of chronic AD lesions in humans (
<xref rid="bib78" ref-type="bibr">Oetjen and Kim, 2018</xref>
;
<xref rid="bib63" ref-type="bibr">Mansouri and Guttman-Yassky, 2015</xref>
). Neutrophils and a number of other immune cells that started to infiltrate on day five were robustly elevated in skin by day eight, including basophils (
<xref ref-type="fig" rid="fig1">Figure 1F</xref>
), CD4
<sup>+</sup>
T cells (
<xref ref-type="fig" rid="fig1">Figure 1G</xref>
,
<xref ref-type="fig" rid="fig1s4">Figure 1—figure supplement 4A</xref>
), eosinophils (
<xref ref-type="fig" rid="fig1s5">Figure 1—figure supplement 5C</xref>
), and mast cells (
<xref ref-type="fig" rid="fig1s5">Figure 1—figure supplement 5B</xref>
), but not inflammatory monocytes (
<xref ref-type="fig" rid="fig1s5">Figure 1—figure supplement 5A</xref>
).</p>
<p>CD4
<sup>+</sup>
T cells are ubiquitous in mature human AD lesions (
<xref rid="bib32" ref-type="bibr">Guttman-Yassky and Krueger, 2017</xref>
) and promote chronic AD itch and inflammation. More specifically, they play a key role in IL4Rα-dependent sensitization of pruriceptors in the second week of the MC903 model (
<xref rid="bib77" ref-type="bibr">Oetjen et al., 2017</xref>
). Thus, we were quite surprised to find that itch behaviors preceded significant CD4
<sup>+</sup>
T cell infiltration. Therefore, neutrophils drew our attention as potential early mediators of MC903 itch. While neutrophil infiltration is a hallmark of acute inflammation, it remains unclear whether neutrophils contribute to the pathogenesis of chronic itch. Moreover, neutrophils release known pruritogens, including proteases, reactive oxygen species, and/or histamine, inflammatory lipids, and cytokines that sensitize and/or activate pruriceptors (
<xref rid="bib23" ref-type="bibr">Dong and Dong, 2018</xref>
;
<xref rid="bib36" ref-type="bibr">Hashimoto et al., 2018</xref>
). Increased levels of the prostaglandin PGE
<sub>2</sub>
and the neutrophil-specific leukotriene LTB
<sub>4</sub>
have also been reported in skin of AD patients (
<xref rid="bib26" ref-type="bibr">Fogh et al., 1989</xref>
). Indeed, by mass spectrometry, we observed increases in several of these inflammatory lipids, PGD
<sub>2</sub>
and PGE
<sub>2</sub>
, as well as LTB
<sub>4</sub>
and its precursor 5-HETE (
<xref ref-type="fig" rid="fig1s10">Figure 1—figure supplement 10A</xref>
) in MC903-treated skin, implicating neutrophils in driving AD itch and inflammation. Thus, we next tested the requirement of neutrophils to itch in the MC903 model.</p>
</sec>
<sec id="s2-3">
<title>Neutrophils are required for early itch behaviors in the MC903 model of AD</title>
<p>We first asked whether neutrophils, the most abundant population of infiltrating immune cells in this chronic itch model, were required for MC903-evoked itch. Systemic depletion of neutrophils using daily injections of an anti-Gr1 (aGr1) antibody (
<xref rid="bib28" ref-type="bibr">Ghasemlou et al., 2015</xref>
;
<xref rid="bib100" ref-type="bibr">Sivick et al., 2014</xref>
) dramatically attenuated itch-evoked scratching through the first eight days of the model (
<xref ref-type="fig" rid="fig2">Figure 2A</xref>
). Consistent with a key role for neutrophils in driving chronic itch, our depletion strategy significantly and selectively reduced circulating and skin infiltrating neutrophils on days five and eight, days on which control, but not depleted mice, scratched robustly (
<xref ref-type="fig" rid="fig2">Figure 2B</xref>
;
<xref ref-type="fig" rid="fig2s1">Figure 2—figure supplement 1A–C</xref>
). In contrast, basophils and CD4
<sup>+</sup>
T cells continued to infiltrate the skin following aGr1 treatment (
<xref ref-type="fig" rid="fig2">Figure 2C–D</xref>
), suggesting that these cells are not required for early MC903 itch.</p>
<fig id="fig2" position="float" orientation="portrait">
<label>Figure 2.</label>
<caption>
<title>Neutrophils are necessary and sufficient for itch behaviors.</title>
<p>(
<bold>A</bold>
) Scratching behavior of uninjected and PBS-injected mice (combined) and aGr1-injected mice treated with MC903 or ethanol for indicated length of time (two-way ANOVA: ****
<italic>p</italic>
<sub>interaction</sub>
 <0.0001, F(4,447) = 7.16; Tukey’s multiple comparisons:
<italic>p
<sub>day 3 MC903 vs. EtOH</sub>
</italic>
 = 0.1111 n = 62,51,17 mice; *
<italic>p
<sub>day 5 MC903 vs. EtOH</sub>
</italic>
 = 0.0154,
<italic>p
<sub>day 5 MC903 vs. aGr1</sub>
</italic>
 = 0.9854,
<italic>p
<sub>day 5 aGr1 vs. EtOH</sub>
</italic>
 = 0.2267, n = 69,56,17 mice; ****
<italic>p
<sub>day 8 MC903 vs. EtOH</sub>
</italic>
 <0.0001, ***
<italic>p
<sub>day 8 MC903 vs. aGr1</sub>
</italic>
 = 0.0007,
<italic>p
<sub>day 8 aGr1 vs. EtOH</sub>
</italic>
 = 0.1543, n = 92,85,17 mice). (
<bold>B</bold>
) Neutrophil count from cheek skin of uninjected/PBS-injected MC903- and ethanol-treated, and aGr1-injected MC903-treated mice on day 8 (one-way ANOVA: ****p<0.0001, F(2,92) = 10.59; Tukey’s multiple comparisons: ****
<italic>p
<sub>MC903 vs. EtOH</sub>
</italic>
 <0.00001, n = 40,38 mice; *
<italic>p
<sub>MC903 vs. aGr1 MC903</sub>
</italic>
 = 0.0109, n = 40,17 mice;
<italic>p
<sub>aGr1</sub>
</italic>
<sub>vs. EtOH</sub>
= 0.8859, n = 38,17 mice). (
<bold>C</bold>
) Basophil count from cheek skin of uninjected/PBS-injected MC903- and ethanol-treated, and aGr1-injected MC903-treated mice on day 8 (one-way ANOVA: ****p=0.0001, F(2,92) = 14.61; Tukey’s multiple comparisons:
<italic>p
<sub>MC903 vs. aGr1 MC903</sub>
</italic>
 = 0.3217, n = 40,17 mice, ****
<italic>p
<sub>MC903 vs. EtOH</sub>
</italic>
 <0.0001, n = 40,38 mice, *
<italic>p
<sub>aGr1 MC903 vs. EtOH</sub>
</italic>
 = 0.0204, n = 17,38 mice). (
<bold>D</bold>
) CD4
<sup>+</sup>
T cell count from cheek skin of PBS-injected MC903- and ethanol-treated, and aGr1-injected MC903-treated mice on day 8 (two-way ANOVA: **
<italic>p
<sub>treatment</sub>
</italic>
 = 0.0035, F(1,35) = 9.82; Holm-Sidak multiple comparisons for PBS versus aGr1:
<italic>p
<sub>MC903</sub>
</italic>
 = 0.8878, n = 9,11 mice;
<italic>p
<sub>EtOH</sub>
</italic>
 = 0.5201, n = 8,9 mice). Control MC903 and EtOH data from
<xref ref-type="fig" rid="fig2">Figure 2B–C</xref>
are also displayed in
<xref ref-type="fig" rid="fig1">Figure 1</xref>
. Exact values displayed for
<xref ref-type="fig" rid="fig2">Figure 2A–D</xref>
in
<xref ref-type="supplementary-material" rid="fig2sdata1">Figure 2—source data 1</xref>
. (
<bold>E</bold>
) Scratching behavior of mice immediately after injection of 1 µg CXCL1 or PBS (s.c. cheek). For neutrophil-depletion experiments, mice received 250 µg anti-Gr1 (aGr1) 20 hr prior to cheek injection of CXCL1 or PBS (one-way ANOVA: ****p<0.0001, F(4,88) = 75.53; Tukey’s multiple comparisons: *
<italic>p
<sub>CXCL1 vs. PBS</sub>
</italic>
 = 0.0126, n = 36,31 mice;
<italic>p
<sub>aGr1-CXCL1 vs. aGr1-PBS</sub>
</italic>
 > 0.9999, n = 10,10 mice;
<italic>p
<sub>aGr1-CXCL1</sub>
</italic>
<sub>vs. PBS</sub>
= 0.9986, n = 10,31 mice). Exact values displayed in
<xref ref-type="supplementary-material" rid="fig2sdata2">Figure 2—source data 2</xref>
. (
<bold>F</bold>
) Scratching behavior of WT and TSLPR KO (TSLPR KO) mice treated with MC903 or ethanol for indicated length of time (two-way ANOVA: ****
<italic>p</italic>
<sub>interaction</sub>
 <0.0001, F(9,657) = 4.93; Tukey’s multiple comparisons: ****
<italic>p
<sub>day 8 WT MC903 vs. EtOH</sub>
</italic>
 <0.0001, *
<italic>p
<sub>day 8 WT MC903 vs. KO MC903</sub>
</italic>
 = 0.0194,
<italic>**p
<sub>day 8 KO MC903 vs. KO EtOH</sub>
</italic>
 = 0.0039, n = 92,85,36,26 mice; ****
<italic>p
<sub>day 12 WT MC903 vs. EtOH</sub>
</italic>
 <0.0001, **
<italic>p
<sub>day 12 WT MC903 vs. KO MC903</sub>
</italic>
 = 0.0028,
<italic>p
<sub>day 12 KO MC903 vs. KO EtOH</sub>
</italic>
 = 0.7061, n = 26,26,27,23 mice). (
<bold>G</bold>
) Neutrophil count from cheek skin of wild-type MC903- and ethanol-treated, and TSLPR KO MC903-treated mice on day 5 (two-way ANOVA: **
<italic>p</italic>
<sub>genotype</sub>
 = 0.0025, F(2,125) = 6.28; Tukey’s multiple comparisons: ****
<italic>p
<sub>day 5 WT MC903 vs. WT EtOH</sub>
</italic>
 <0.0001, n = 6,8 mice;
<italic>p
<sub>day 5 WT MC903 vs. KO MC903</sub>
</italic>
 = 0.2198, n = 6,6 mice; *
<italic>p
<sub>day 5 WT EtOH vs. KO MC903</sub>
</italic>
 = 0.0212, n = 8,6 mice). (
<bold>H</bold>
) Basophil count from cheek skin of wild-type MC903- and ethanol-treated, and TSLPR KO MC903-treated mice on day 8 (two-way ANOVA: **
<italic>p</italic>
<sub>genotype</sub>
 = 0.0003, F(2,117) = 8.87; Tukey’s multiple comparisons: ****
<italic>p
<sub>day 8 WT MC903 vs. WT EtOH</sub>
</italic>
 <0.0001, n = 40,38 mice; ****
<italic>p
<sub>day 8 WT MC903 vs. KO MC903</sub>
</italic>
 <0.0001, n = 40,15 mice;
<italic>p
<sub>day 8 WT EtOH vs. KO MC903</sub>
</italic>
 = 0.9519, n = 38,15 mice). See also
<xref ref-type="fig" rid="fig2s5">Figure 2—figure supplement 5A</xref>
. For
<xref ref-type="fig" rid="fig2">Figure 2G–H</xref>
, data from days 3, 5, and 8 are presented in
<xref ref-type="supplementary-material" rid="fig2sdata3">Figure 2—source data 3</xref>
. (
<bold>I</bold>
) CD4
<sup>+</sup>
T cell count from cheek skin of wild-type MC903- and ethanol-treated, and TSLPR KO MC903-treated mice on day 8 (one-way ANOVA: **p=0.0053, F(2,24) = 6.564; Tukey’s multiple comparisons: *
<italic>p
<sub>WT MC903 vs. WT EtOH</sub>
</italic>
 = 0.0163, n = 11,8 mice; *
<italic>p
<sub>MC903 vs. KO MC903</sub>
</italic>
 = 0.0130, n = 11,8 mice;
<italic>p
<sub>WT EtOH vs. KO MC903</sub>
</italic>
 = 0.9953, n = 8,8 mice). Wild-type MC903 and EtOH data from
<bold>2</bold>
F-H are also displayed in
<xref ref-type="fig" rid="fig1">Figure 1</xref>
. Exact values for
<xref ref-type="fig" rid="fig2">Figure 2F–I</xref>
displayed in
<xref ref-type="supplementary-material" rid="fig2sdata3">Figure 2—source data 3</xref>
. (
<bold>J</bold>
) Neutrophil count from cheek skin of wild-type MC903- and ethanol-treated mice on day 12 of the MC903 model. MC903-treated animals received daily i.p. injections of 250 µg aGr1 antibody or PBS (250 µL) on days 8–11 of the model (one-way ANOVA: *p=0.01, F(2,13) = 6.69; Tukey’s multiple comparisons: *
<italic>p
<sub>MC903-PBS vs. EtOH</sub>
</italic>
 = 0.0141, n = 6,5 mice; *
<italic>p
<sub>MC903-PBS vs. MC903-aGr1</sub>
</italic>
 = 0.10330, n = 6,5 mice;
<italic>p
<sub>MC903-aGr1 vs. EtOH</sub>
</italic>
 = 0.9005, n = 5,5 mice). (
<bold>K</bold>
) Time spent scratching over a thirty minute interval for wild-type MC903- and ethanol-treated mice on day 12 of the MC903 model. MC903-treated animals received daily i.p. injections of 250 µg aGr1 antibody or PBS (250 µL) on days 8–11 of the model (one-way ANOVA: ****p<0.0001, F(2,26) = 53.1; Tukey’s multiple comparisons: ****
<italic>p
<sub>MC903-PBS vs. EtOH</sub>
</italic>
 <0.0001, n = 12,5 mice; ****
<italic>p
<sub>MC903-PBS vs. MC903-aGr1</sub>
</italic>
 < 0.0001, n = 12,12 mice;
<italic>p
<sub>MC903-aGr1 vs. EtOH</sub>
</italic>
 = 0.3734, n = 12,5 mice). Values from bar plots are reported in
<xref ref-type="supplementary-material" rid="fig2sdata5">Figure 2—source data 5</xref>
.</p>
<p>
<supplementary-material content-type="local-data" id="fig2sdata1">
<label>Figure 2—source data 1.</label>
<caption>
<title>Values displayed in bar plots shown in
<xref ref-type="fig" rid="fig2">Figure 2A–D</xref>
.</title>
</caption>
<media mime-subtype="xlsx" mimetype="application" xlink:href="elife-48448-fig2-data1.xlsx" orientation="portrait" id="d35e1982" position="anchor"></media>
</supplementary-material>
</p>
<p>
<supplementary-material content-type="local-data" id="fig2sdata2">
<label>Figure 2—source data 2.</label>
<caption>
<title>Values displayed in the bar plots shown in
<xref ref-type="fig" rid="fig2">Figure 2E</xref>
and Figs.</title>
<p>
<xref ref-type="fig" rid="fig2s2">Figure 2—figure supplements 2</xref>
<xref ref-type="fig" rid="fig2s3">3</xref>
.</p>
</caption>
<media mime-subtype="xlsx" mimetype="application" xlink:href="elife-48448-fig2-data2.xlsx" orientation="portrait" id="d35e2000" position="anchor"></media>
</supplementary-material>
</p>
<p>
<supplementary-material content-type="local-data" id="fig2sdata3">
<label>Figure 2—source data 3.</label>
<caption>
<title>Values displayed in the bar plots shown in
<xref ref-type="fig" rid="fig2">Figure 2F–I</xref>
and
<xref ref-type="fig" rid="fig2s4">Figure 2—figure supplement 4A–B</xref>
.</title>
</caption>
<media mime-subtype="xlsx" mimetype="application" xlink:href="elife-48448-fig2-data3.xlsx" orientation="portrait" id="d35e2014" position="anchor"></media>
</supplementary-material>
</p>
<p>
<supplementary-material content-type="local-data" id="fig2sdata4">
<label>Figure 2—source data 4.</label>
<caption>
<title>Values used to generate the line plots shown in
<xref ref-type="fig" rid="fig2s1">Figure 2—figure supplement 1C</xref>
.</title>
</caption>
<media mime-subtype="octet-stream" mimetype="application" xlink:href="elife-48448-fig2-data4.csv" orientation="portrait" id="d35e2025" position="anchor"></media>
</supplementary-material>
</p>
<p>
<supplementary-material content-type="local-data" id="fig2sdata5">
<label>Figure 2—source data 5.</label>
<caption>
<title>Values displayed in the bar plots shown in
<xref ref-type="fig" rid="fig2">Figure 2J–K</xref>
.</title>
</caption>
<media mime-subtype="xlsx" mimetype="application" xlink:href="elife-48448-fig2-data5.xlsx" orientation="portrait" id="d35e2036" position="anchor"></media>
</supplementary-material>
</p>
<p>
<supplementary-material content-type="local-data" id="fig2sdata6">
<label>Figure 2—source data 6.</label>
<caption>
<title>Values displayed in the bar plots in
<xref ref-type="fig" rid="fig2s5">Figure 2—figure supplement 5A</xref>
.</title>
</caption>
<media mime-subtype="xlsx" mimetype="application" xlink:href="elife-48448-fig2-data6.xlsx" orientation="portrait" id="d35e2047" position="anchor"></media>
</supplementary-material>
</p>
</caption>
<graphic xlink:href="elife-48448-fig2"></graphic>
<p content-type="supplemental-figure">
<fig id="fig2s1" specific-use="child-fig" orientation="portrait" position="anchor">
<label>Figure 2—figure supplement 1.</label>
<caption>
<title>aGr1 treatment preferentially depletes neutrophils.</title>
<p>(
<bold>A</bold>
) Representative flow cytometry plots of cells collected from blood of mice injected with PBS or aGr1 (250 μg, i.p.) once-daily for five days concurrent with daily MC903 topical treatment. Shown are CD45.2
<sup>+</sup>
CD11b
<sup>+</sup>
cells, plotted by Ly6G and Ly6C signal, with neutrophil (Neuts.) and inflammatory monocyte (IMs) populations indicated. Neutrophils were defined as Cd11b
<sup>+</sup>
Ly6G
<sup>+</sup>
Ly6C
<sup>mid/high</sup>
and IMs were defined as Cd11b
<sup>+</sup>
Ly6G
<sup>-</sup>
Ly6C
<sup>high</sup>
(see Materials and methods). (
<bold>B</bold>
) Representative flow cytometry plot as in A, depicting neutrophil and IM populations from blood collected on day 8. (
<bold>C</bold>
) (Left) Neutrophil counts in blood shown as % of Cd11b
<sup>+</sup>
cells from aGr1/MC903 (black triangles) and PBS/MC903 (gray circles)-treated animals on days 3, 5, and 8 of the model (two-way repeated measures ANOVA: ****
<italic>p</italic>
<sub>treatment</sub>
 <0.0001, F(1,31) = 299.5; Sidak’s multiple comparisons: ****
<italic>p
<sub>day 3</sub>
</italic>
 < 0.0001; ****
<italic>p
<sub>day 5</sub>
</italic>
 < 0.0001; ****
<italic>p
<sub>day 8</sub>
</italic>
 < 0.0001, n = 16,17 mice). (Right) Inflammatory monocyte counts in blood shown as % of Cd11b
<sup>+</sup>
cells from aGr1/MC903 and PBS/MC903-treated animals on days 3, 5, and 8 of the model (two-way repeated measures ANOVA: *
<italic>p</italic>
<sub>treatment</sub>
 = 0.0468, F(1,31) = 4.287; Sidak’s multiple comparisons: **
<italic>p
<sub>day 3</sub>
</italic>
 = 0.0015;
<italic>p
<sub>day 5</sub>
</italic>
 = 0.1918;
<italic>p
<sub>day 8</sub>
</italic>
 = 0.2013, n = 16,17 mice). Exact values displayed in
<xref ref-type="supplementary-material" rid="fig2sdata4">Figure 2—source data 4</xref>
.</p>
</caption>
<graphic xlink:href="elife-48448-fig2-figsupp1"></graphic>
</fig>
</p>
<p content-type="supplemental-figure">
<fig id="fig2s2" specific-use="child-fig" orientation="portrait" position="anchor">
<label>Figure 2—figure supplement 2.</label>
<caption>
<title>CXCL1 rapidly and selectively recruits neutrophils to skin.</title>
<p>(
<bold>A</bold>
) Representative flow cytometry plots of cells from cheek skin of mice injected with PBS or CXCL1 (1 μg in 20 µL, s.c.). Shown are CD45.2
<sup>+</sup>
CD11b
<sup>+</sup>
cells, plotted by Ly6G and Ly6C signal, with neutrophil and inflammatory monocyte (IMs) populations indicated. (
<bold>B</bold>
) Neutrophil count from cheek skin of mice 5, 15, and 30 min after injection of CXCL1 or PBS (two-way ANOVA: *
<italic>p</italic>
<sub>interaction</sub>
 = 0.0239, F(2,21) = 4.48; Sidak’s multiple comparisons:
<italic>p
<sub>5 min</sub>
</italic>
 >0.9999, n = 4,5 mice; *
<italic>p
<sub>day 15 min</sub>
</italic>
 = 0.0141, n = 4,4 mice; **
<italic>p
<sub>day 30 min</sub>
</italic>
 = 0.0031, n = 3,7 mice). Exact values displayed in
<xref ref-type="supplementary-material" rid="fig2sdata2">Figure 2—source data 2</xref>
. (
<bold>C</bold>
) Blood neutrophils as % of Cd11b
<sup>+</sup>
cells approximately 20 hr after injection of 250 µg aGr1 (n = 15 mice). Mice assayed for CXCL1-evoked itch behavior immediately preceding blood isolation (see
<xref ref-type="fig" rid="fig2">Figure 2E</xref>
). Exact values displayed in
<xref ref-type="supplementary-material" rid="fig2sdata2">Figure 2—source data 2</xref>
. See
<xref ref-type="fig" rid="fig2s1">Figure 2—figure supplement 1C</xref>
for representative blood neutrophil measurements from PBS-injected animals.</p>
</caption>
<graphic xlink:href="elife-48448-fig2-figsupp2"></graphic>
</fig>
</p>
<p content-type="supplemental-figure">
<fig id="fig2s3" specific-use="child-fig" orientation="portrait" position="anchor">
<label>Figure 2—figure supplement 3.</label>
<caption>
<title>Neutrophil depletion does not affect chloroquine-evoked itch.</title>
<p>(
<bold>A</bold>
) Scratching behavior of mice immediately after injection of chloroquine (CQ) or PBS (s.c. cheek). For neutrophil-depletion experiments, mice received 250 µg anti-Gr1 (aGr1) 20 hr prior to cheek injection of CQ or PBS (two-tailed t-test: ****p<0.0001 (
<italic>t</italic>
 = 10.58,
<italic>df</italic>
 = 14); n = 6,10 mice). Exact values displayed in
<xref ref-type="supplementary-material" rid="fig2sdata2">Figure 2—source data 2</xref>
.</p>
</caption>
<graphic xlink:href="elife-48448-fig2-figsupp3"></graphic>
</fig>
</p>
<p content-type="supplemental-figure">
<fig id="fig2s4" specific-use="child-fig" orientation="portrait" position="anchor">
<label>Figure 2—figure supplement 4.</label>
<caption>
<title>Loss of TSLPR reduces skin basophil and mast cell numbers in the first week of AD development.</title>
<p>(
<bold>A</bold>
) Basophil count from cheek skin of wild-type MC903- and ethanol-treated, and TSLPR KO MC903-treated mice after 3 or 5 days of treatment (two-way ANOVA: ***
<italic>p</italic>
<sub>time</sub>
 = 0.0003, F(2,117) = 8.87; Tukey’s multiple comparisons:
<italic>p
<sub>day3 WT MC903 vs. KO MC903</sub>
</italic>
 = 0.6540, n = 3,5 mice; *
<italic>p
<sub>day 5 WT MC903 vs. KO MC903</sub>
</italic>
 = 0.1023, n = 6,6 mice;
<italic>p
<sub>day 5 WT EtOH vs. KO MC903</sub>
</italic>
 = 0.9077, n = 8,6 mice;
<italic>p
<sub>day 5 WT MC903 vs. WT EtOH</sub>
</italic>
 = 0.0264, n = 6,8 mice). (
<bold>B</bold>
) Mast cell count from cheek skin of wild-type MC903- and ethanol-treated, and TSLPR KO MC903-treated mice after 3, 5, or 8 days of treatment (two-way ANOVA: *
<italic>p</italic>
<sub>genotype</sub>
 = 0.0384, F(2,117) = 3.35; Tukey’s multiple comparisons:
<italic>p
<sub>day 3 WT MC903 vs. KO MC903</sub>
</italic>
 = 0.4133, n = 3,5 mice;
<italic>p
<sub>day 5 WT MC903 vs. KO MC903</sub>
</italic>
 = 0.9882, n = 6,6 mice;
<italic>*p
<sub>day 5 WT MC903 vs. WT EtOH</sub>
</italic>
 = 0.0440, n = 6,5 mice;
<italic>*p
<sub>day 5 KO MC903 vs. WT EtOH</sub>
</italic>
 = 0.0294, n = 6,5 mice; *
<italic>p
<sub>day 8 WT MC903 vs. KO MC903</sub>
</italic>
 = 0.0188, n = 40,15 mice; ****
<italic>p
<sub>day 8 WT MC903 vs. WT EtOH</sub>
</italic>
 < 0.0001, n = 40,38 mice;
<italic>p
<sub>day 8 WT EtOH vs. KO MC903</sub>
</italic>
 = 0.7810, n = 38,15 mice). Data from days 3, 5, and 8 are presented in
<xref ref-type="supplementary-material" rid="fig2sdata3">Figure 2—source data 3</xref>
.</p>
</caption>
<graphic xlink:href="elife-48448-fig2-figsupp4"></graphic>
</fig>
</p>
<p content-type="supplemental-figure">
<fig id="fig2s5" specific-use="child-fig" orientation="portrait" position="anchor">
<label>Figure 2—figure supplement 5.</label>
<caption>
<title>Neutrophils robustly infiltrate the skin in the DNFB mouse model of atopic dermatitis.</title>
<p>(
<bold>A</bold>
) Neutrophil count from ear skin of wild-type DNFB- and vehicle-treated mice 24 hr after challenge with DNFB or vehicle performed five days after initial DNFB sensitization on shaved rostral back skin (***p=0.0004; two-tailed t-test (
<italic>t</italic>
 = 4.290;
<italic>df</italic>
 = 18); n = 10 mice per group). Values from bar plot is reported in
<xref ref-type="supplementary-material" rid="fig2sdata6">Figure 2—source data 6</xref>
.</p>
</caption>
<graphic xlink:href="elife-48448-fig2-figsupp5"></graphic>
</fig>
</p>
</fig>
<p>We next used the cheek model of acute itch (
<xref rid="bib97" ref-type="bibr">Shimada and LaMotte, 2008</xref>
) to ask whether neutrophil recruitment is sufficient to trigger scratching behaviors. As expected, we observed significant and selective recruitment of neutrophils to cheek skin within 15 min after CXCL1 injection (
<xref ref-type="fig" rid="fig2s2">Figure 2—figure supplement 2A–B</xref>
). CXCL1 injection also triggered robust scratching behaviors (
<xref ref-type="fig" rid="fig2">Figure 2E</xref>
) on a similar time course to neutrophil infiltration (
<xref ref-type="fig" rid="fig2s2">Figure 2—figure supplement 2B</xref>
). Thus, we next acutely depleted neutrophils with aGr1 to determine whether neutrophils were required for CXCL1-evoked acute itch. Indeed, aGr1-treatment rapidly reduced circulating neutrophils (
<xref ref-type="fig" rid="fig2s2">Figure 2—figure supplement 2C</xref>
) and resulted in a dramatic loss of CXCL1-evoked itch behaviors (
<xref ref-type="fig" rid="fig2">Figure 2C</xref>
). This effect was specific to neutrophil-induced itch, as injection of chloroquine, a pruritogen that directly activates pruriceptors to trigger itch, still triggered robust scratching in aGr1-treated animals (
<xref ref-type="fig" rid="fig2s3">Figure 2—figure supplement 3A</xref>
). Given that CXCL1 has been shown to directly excite and/or sensitize sensory neurons, (
<xref rid="bib19" ref-type="bibr">Deftu et al., 2017</xref>
;
<xref rid="bib20" ref-type="bibr">Deftu et al., 2018</xref>
) it is possible that the mechanism by which CXCL1 elicits itch may also involve neuronal pathways. However, our results show that CXCL1-mediated neutrophil infiltration is sufficient to drive acute itch behaviors, and that neutrophils are necessary for itch in the MC903 model.</p>
<p>We also examined MC903-evoked itch behaviors in mice deficient in
<italic>Crlf2</italic>
, the gene encoding the TSLP Receptor (TSLPR KO mice;
<xref rid="bib11" ref-type="bibr">Carpino et al., 2004</xref>
). TSLPR is expressed by both immune cells and sensory neurons and is a key mediator of AD in humans and in mouse models (
<xref rid="bib57" ref-type="bibr">Li et al., 2009</xref>
;
<xref rid="bib56" ref-type="bibr">Li et al., 2006</xref>
;
<xref rid="bib120" ref-type="bibr">Zhang et al., 2009</xref>
;
<xref rid="bib21" ref-type="bibr">Demehri et al., 2009</xref>
;
<xref rid="bib7" ref-type="bibr">Briot et al., 2009</xref>
). Surprisingly, MC903-treated TSLPR KO mice displayed robust scratching behaviors through the first eight days of the model (
<xref ref-type="fig" rid="fig2">Figure 2F</xref>
). In contrast to our results in aGr1-injected mice, TSLPR KO mice displayed robust neutrophil infiltration (
<xref ref-type="fig" rid="fig2">Figure 2G</xref>
), but completely lacked basophil and CD4
<sup>+</sup>
T cell infiltration into the skin (
<xref ref-type="fig" rid="fig2">Figure 2H–I</xref>
,
<xref ref-type="fig" rid="fig2s4">Figure 2—figure supplement 4A</xref>
), and additionally displayed a reduction in mast cells (
<xref ref-type="fig" rid="fig2s4">Figure 2—figure supplement 4A</xref>
). These results suggest that basophils and CD4
<sup>+</sup>
T cells are not required for early itch and further support an inciting role for neutrophils. Previous studies have shown that TSLP drives the expression of Type two cytokines and related immune cells that promote itch and inflammation in mature AD skin lesions (
<xref rid="bib57" ref-type="bibr">Li et al., 2009</xref>
;
<xref rid="bib56" ref-type="bibr">Li et al., 2006</xref>
;
<xref rid="bib120" ref-type="bibr">Zhang et al., 2009</xref>
;
<xref rid="bib21" ref-type="bibr">Demehri et al., 2009</xref>
;
<xref rid="bib7" ref-type="bibr">Briot et al., 2009</xref>
). Consistent with a later role for TSLP signaling in AD, we did observe a significant reduction in itch-evoked scratching in TSLPR KO mice in the second week of the model (
<xref ref-type="fig" rid="fig2">Figure 2F</xref>
). Thus, our data support a model in which neutrophils are necessary for initiation of AD and itch behaviors early in the development of AD, whereas TSLPR signaling mediates the recruitment of basophils and CD4
<sup>+</sup>
T cells to promote later stage itch and chronic inflammation.</p>
<p>The incomplete loss of itch behaviors on day 12 in the TSLPR KO animals (
<xref ref-type="fig" rid="fig2">Figure 2F</xref>
) raised the question of whether neutrophils might also contribute to itch during the second week of the MC903 model. To directly answer this question, we measured neutrophil infiltration and itch-evoked scratching on day 12 in mice that received either aGr1 or PBS on days 8–11 of the model to selectively deplete neutrophils solely during the second week. Neutrophil depletion in the second week with aGr1 robustly decreased skin-infiltrating neutrophils (
<xref ref-type="fig" rid="fig2">Figure 2J</xref>
), and substantially reduced scratching behaviors at day 12 (
<xref ref-type="fig" rid="fig2">Figure 2K</xref>
), supporting a role for neutrophils in chronic itch. Interestingly, we observed a 79% mean reduction in time spent scratching after neutrophil depletion at day 12, whereas loss of TSLPR effected a 44% reduction in time spent scratching. We speculate that neutrophils and TSLP signaling comprise independent mechanisms that together account for the majority of AD itch. In order to ascertain whether neutrophils could be salient players in other models of AD, and not just MC903, we measured neutrophil infiltration into ear skin in the 1-fluoro-2,4-dinitrobenzene (DNFB) model of atopic dermatitis, which relies on hapten-induced sensitization to drive increased IgE, mixed Th1/Th2 cytokine response, skin thickening, inflammation, and robust scratching behaviors in mice (
<xref rid="bib121" ref-type="bibr">Zhang et al., 2015</xref>
;
<xref rid="bib49" ref-type="bibr">Kitamura et al., 2018</xref>
;
<xref rid="bib101" ref-type="bibr">Solinski et al., 2019a</xref>
). Indeed, neutrophils also infiltrated DNFB- but not vehicle-treated skin (
<xref ref-type="fig" rid="fig2s5">Figure 2—figure supplement 5A</xref>
). Taken together, these observations are complementary to published datasets showing evidence for neutrophil chemokines and transcripts in human AD lesions (
<xref rid="bib24" ref-type="bibr">Ewald et al., 2017</xref>
;
<xref rid="bib15" ref-type="bibr">Choy et al., 2012</xref>
;
<xref rid="bib31" ref-type="bibr">Guttman-Yassky et al., 2009</xref>
;
<xref rid="bib105" ref-type="bibr">Suárez-Fariñas et al., 2013</xref>
;
<xref rid="bib43" ref-type="bibr">Jabbari et al., 2012</xref>
). Overall, our data support a key role for neutrophils in promoting AD itch and inflammation.</p>
</sec>
<sec id="s2-4">
<title>MC903 drives rapid and robust changes in the peripheral and central nervous systems</title>
<p>But how do neutrophils drive AD itch? Itchy stimuli are detected and transduced by specialized subsets of peripheral somatosensory neurons. Thus, to answer this question we first profiled the transcriptional changes in somatosensory neurons in the MC903 model, which were previously unstudied. In general, little is known regarding neuronal changes in chronic itch. Our initial examination of early hyperinnervation and changes in axon guidance molecules in skin suggested that neurons are indeed affected early on in the MC903 model, before the onset of itch-evoked scratching behaviors. In contrast to the skin, where we saw many early transcriptional changes, we did not see any significant transcriptional changes in the trigeminal ganglia (TG) until five days after the first treatment, and in total only 84 genes were differentially expressed through the eighth day (
<xref ref-type="fig" rid="fig3">Figure 3A–B</xref>
). These hits included genes related to excitability of itch sensory neurons, (
<xref rid="bib23" ref-type="bibr">Dong and Dong, 2018</xref>
;
<xref rid="bib113" ref-type="bibr">Usoskin et al., 2015</xref>
) neuroinflammatory genes, (
<xref rid="bib107" ref-type="bibr">Takeda et al., 2009</xref>
) and activity-induced or immediate early genes (
<xref ref-type="fig" rid="fig3">Figure 3A</xref>
). Interestingly, we observed enrichment of neuronal markers expressed by one specific subset of somatosensory neurons that are dedicated to itch (
<italic>Il31ra, Osmr, Trpa1, Cysltr2,</italic>
and
<italic>Nppb</italic>
), termed ‘NP3’ neurons (
<xref rid="bib23" ref-type="bibr">Dong and Dong, 2018</xref>
;
<xref rid="bib113" ref-type="bibr">Usoskin et al., 2015</xref>
;
<xref rid="bib40" ref-type="bibr">Huang et al., 2018</xref>
;
<xref rid="bib102" ref-type="bibr">Solinski et al., 2019b</xref>
). Similar to what has been reported in mouse models of chronic pain, we observed changes in neuroinflammatory (
<italic>Bdnf, Nptx1, Nptx2, Nptxr</italic>
) and immune genes (
<italic>Itk, Cd19, Rag, Tmem173</italic>
). However, these transcriptional changes occurred just a few days after itch onset, in contrast to the slow changes in nerve injury and pain models that occur over weeks, indicating that neuropathic changes may occur sooner than previously thought in chronic itch. These changes occurred in tandem with the onset of scratching behaviors (
<xref ref-type="fig" rid="fig1">Figure 1C</xref>
), suggesting that the early molecular and cellular changes we observed by this time point may be important for development or maintenance of itch-evoked scratching.</p>
<fig id="fig3" position="float" orientation="portrait">
<label>Figure 3.</label>
<caption>
<title>The MC903 model induces rapid and robust changes in neuronal tissue.</title>
<p>(
<bold>A</bold>
) Exact permutation test (10,000 iterations, see Materials and methods) for significance of mean absolute log
<sub>2</sub>
fold change in gene expression at Day 8 (MC903 vs. ethanol) of custom-defined groups of genes for indicated categories (see
<xref ref-type="supplementary-material" rid="fig3sdata1">Figure 3—source data 1</xref>
). (
<bold>B</bold>
) Log
<sub>2</sub>
fold change in gene expression (MC903 vs. ethanol) in mouse trigeminal ganglia (TG) at indicated time points for all genes which were significantly differentially expressed for at least one time point in the MC903 model. Green bars = increased expression in MC903 relative to ethanol; magenta = decreased expression. Exact values and corrected
<italic>p</italic>
-values are reported in
<xref ref-type="supplementary-material" rid="fig3sdata2">Figure 3—source data 2</xref>
and
<xref ref-type="supplementary-material" rid="sdata1">Source Data 1</xref>
Supplemental Data, respectively. (
<bold>C</bold>
) Representative composite images showing immune cells (CD45, green), and sensory neurons (Prph, magenta) with DAPI (blue) in sectioned trigeminal ganglia from mice treated with Vehicle or MC903 for five days on the cheek. (
<bold>D</bold>
) Quantification of images examining average number of CD45
<sup>+</sup>
cells per section and average ratio of CD45:Peripherin cells per section after five days of treatment (p=0.562 (
<italic>t</italic>
 = 0.6318,
<italic>df</italic>
 = 4), 0.542 (
<italic>t</italic>
 = 0.6660,
<italic>df</italic>
 = 4); two-tailed unpaired t-tests, n = 33–159 fields of view (images) each of both trigeminal ganglia from three mice per condition treated bilaterally). (
<bold>E</bold>
) Representative composite images showing immune cells (CD45, green), and sensory neurons (Peripherin (Prph), magenta) with DAPI (blue) in sectioned trigeminal ganglia from mice treated with Vehicle or MC903 for eight days on the cheek. (
<bold>F</bold>
) Quantification of images examining average number of CD45
<sup>+</sup>
cells per section and average ratio of CD45:Peripherin cells per section after eight days of treatment (**p=0.0019 (
<italic>t</italic>
 = 5.977,
<italic>df</italic>
 = 5), **p
<italic>=</italic>
0.0093 (
<italic>t</italic>
 = 4.107,
<italic>df</italic>
 = 4); two-tailed unpaired t-tests; n = 42–172 fields of view (images) each of both trigeminal ganglia from 3 EtOH or 4 MC903 animals treated bilaterally). Scale bar = 100 µm. Images were acquired on a fluorescence microscope using a 10x air objective. Values from bar plots and all TG IHC data are available in
<xref ref-type="supplementary-material" rid="fig3sdata3">Figure 3—source data 3</xref>
. (
<bold>G</bold>
) Log
<sub>2</sub>
fold change in gene expression (MC903 vs. ethanol) in mouse spinal cord on day 8 showing selected differentially expressed genes (
<italic>p
<sub>adjusted</sub>
 <</italic>
0.05). Exact values and corrected
<italic>p</italic>
-values are reported in
<xref ref-type="supplementary-material" rid="sdata1">Source Data 1</xref>
Supplemental Data.</p>
<p>
<supplementary-material content-type="local-data" id="fig3sdata1">
<label>Figure 3—source data 1.</label>
<caption>
<title>Values displayed in the bar plot shown in
<xref ref-type="fig" rid="fig3">Figure 3A</xref>
.</title>
</caption>
<media mime-subtype="octet-stream" mimetype="application" xlink:href="elife-48448-fig3-data1.csv" orientation="portrait" id="d35e2632" position="anchor"></media>
</supplementary-material>
</p>
<p>
<supplementary-material content-type="local-data" id="fig3sdata2">
<label>Figure 3—source data 2.</label>
<caption>
<title>Values displayed in the heat map shown in
<xref ref-type="fig" rid="fig3">Figure 3B</xref>
.</title>
</caption>
<media mime-subtype="octet-stream" mimetype="application" xlink:href="elife-48448-fig3-data2.csv" orientation="portrait" id="d35e2643" position="anchor"></media>
</supplementary-material>
</p>
<p>
<supplementary-material content-type="local-data" id="fig3sdata3">
<label>Figure 3—source data 3.</label>
<caption>
<title>Quantification of all IHC samples from trigeminal ganglia, and Values displayed in the bar plots shown in
<xref ref-type="fig" rid="fig3">Figure 3D,F</xref>
.</title>
</caption>
<media mime-subtype="octet-stream" mimetype="application" xlink:href="elife-48448-fig3-data3.csv" orientation="portrait" id="d35e2654" position="anchor"></media>
</supplementary-material>
</p>
</caption>
<graphic xlink:href="elife-48448-fig3"></graphic>
<p content-type="supplemental-figure">
<fig id="fig3s1" specific-use="child-fig" orientation="portrait" position="anchor">
<label>Figure 3—figure supplement 1.</label>
<caption>
<title>Method of image quantification for sectioned trigeminal ganglia.</title>
<p>(
<bold>A</bold>
) Representative composite image showing CD45 (green), Peripherin (magenta), and DAPI (blue). (
<bold>B</bold>
) Single-channel CD45 image with automated min/max intensity thresholding. (
<bold>C</bold>
) Resultant binary image generated from (
<bold>B</bold>
). (
<bold>D</bold>
) Cells were counted as the number of regions of interest (ROIs) outlined in blue.</p>
</caption>
<graphic xlink:href="elife-48448-fig3-figsupp1"></graphic>
</fig>
</p>
</fig>
<p>The changes we observed in immune-related genes in the TG were suggestive of infiltration or expansion of immune cell populations, which has been reported in models of nerve injury and chronic pain, but has never been reported in chronic itch. To validate our observations, we used IHC to ask whether CD45
<sup>+</sup>
immune cells increase in the TG. We observed a significant increase in TG immune cell counts at day eight but not day five (
<xref ref-type="fig" rid="fig3">Figure 3C–F</xref>
,
<xref ref-type="fig" rid="fig3s1">Figure 3—figure supplement 1A–D</xref>
). Because we observed such dramatic expression changes in the TG on day eight of the model, we postulated that the CNS may also be affected by this time point. Thus, we performed RNA-seq on spinal cord segments that innervate the MC903-treated rostral back skin of mice. To date, only one study has examined changes in the spinal cord during chronic itch (
<xref rid="bib98" ref-type="bibr">Shiratori-Hayashi et al., 2015</xref>
). The authors showed that upregulation of the STAT3-dependent gene
<italic>Lcn2</italic>
occurred three weeks after induction of chronic itch and was essential for sustained scratching behaviors. Surprisingly, we saw upregulation of
<italic>Lcn2</italic>
on day eight of the MC903 model and, additionally, we observed robust induction of immediate early genes (
<italic>Fos, Junb,</italic>
<xref ref-type="fig" rid="fig3">Figure 3G</xref>
), suggesting that MC903 itch drives activity-dependent changes in the spinal cord as early as one week after beginning treatment. Together, our findings show that sustained itch and inflammation can drive changes in the PNS and CNS much sooner than previously thought, within days rather than weeks after the onset of scratching. We next set out to explore how loss of neutrophils impacts the molecular changes observed in skin and sensory neurons in the MC903 model, and which of these changes might contribute to neutrophil-dependent itch.</p>
</sec>
<sec id="s2-5">
<title>Neutrophils are required for upregulation of select itch- and atopic-related genes, including the itch-inducing chemokine CXCL10</title>
<p>To ask how neutrophils promote itch in the MC903 model, we examined the transcriptional changes in skin and sensory ganglia isolated from non-itchy neutrophil-depleted animals and from the TSLPR KO mice, which scratched robustly. A number of AD-associated cytokines that were upregulated in control MC903 skin were not upregulated in TSLPR KO and neutrophil-depleted skin. For example,
<italic>Il33</italic>
upregulation is both neutrophil- and TSLPR-dependent (
<xref ref-type="fig" rid="fig4">Figure 4A</xref>
,
<xref ref-type="fig" rid="fig4s1">Figure 4—figure supplement 1A</xref>
). By contrast, upregulation of epithelial-derived cytokines and chemokines
<italic>Tslp</italic>
,
<italic>Cxcl1</italic>
,
<italic>Cxcl2</italic>
,
<italic>Cxcl3</italic>
, and
<italic>Cxcl5</italic>
was unaffected by either loss of TSLPR or neutrophil depletion (
<xref ref-type="fig" rid="fig4">Figure 4B</xref>
), suggesting these molecules are produced by skin cells even when the MC903-evoked immune response is compromised. Consistent with previous studies,
<italic>Il4</italic>
upregulation was completely dependent on TSLPR but not neutrophils, establishing a role for TSLP signaling in the Type two immune response. Among the hundreds of MC903-dependent genes we examined, only a handful of genes were uniquely affected by neutrophil depletion. One such gene was
<italic>Cxcl10</italic>
, a chemokine known to be released by skin epithelial cells, neutrophils, and other myeloid cells (
<xref rid="bib36" ref-type="bibr">Hashimoto et al., 2018</xref>
;
<xref rid="bib42" ref-type="bibr">Ioannidis et al., 2016</xref>
;
<xref rid="bib46" ref-type="bibr">Kanda et al., 2007</xref>
;
<xref rid="bib50" ref-type="bibr">Koga et al., 2008</xref>
;
<xref rid="bib69" ref-type="bibr">Michalec et al., 2002</xref>
;
<xref rid="bib80" ref-type="bibr">Padovan et al., 2002</xref>
;
<xref rid="bib108" ref-type="bibr">Tamassia et al., 2007</xref>
).
<italic>Cxcl10</italic>
expression was increased in TSLPR KO but not neutrophil-depleted skin (
<xref ref-type="fig" rid="fig4">Figure 4B</xref>
,
<xref ref-type="fig" rid="fig4s1">Figure 4—figure supplement 1A</xref>
). CXCL10 has been previously shown to drive acute itch in a model of allergic contact dermatitis via CXCR3 signaling in sensory neurons, (
<xref rid="bib86" ref-type="bibr">Qu et al., 2015</xref>
) and is elevated in skin of AD patients (
<xref rid="bib63" ref-type="bibr">Mansouri and Guttman-Yassky, 2015</xref>
). Expression of
<italic>Cxcl9</italic>
and
<italic>Cxcl11</italic>
, two other CXCR3 ligands that are elevated in AD but have an unknown role in itch, was also decreased in AD skin of neutrophil-depleted mice (
<xref ref-type="fig" rid="fig4">Figure 4B</xref>
).</p>
<fig id="fig4" position="float" orientation="portrait">
<label>Figure 4.</label>
<caption>
<title>Neutrophils are required for induction of the itch-inducing chemokine CXCL10.</title>
<p>(
<bold>A</bold>
) Log
<sub>2</sub>
fold change (Day 8 MC903 vs. EtOH) of Th2 genes in skin from uninjected wild-type, aGR1-treated, and TSLPR KO animals. (
<bold>B</bold>
) Log
<sub>2</sub>
fold change (Day 8 MC903 vs. EtOH) of chemokine genes in skin from uninjected wild-type, aGr1-treated, and TSLPR KO animals. (
<bold>C</bold>
) Log
<sub>2</sub>
fold change (Day 8 MC903 vs. EtOH) of activity-induced genes in trigeminal ganglia from uninjected wild-type, aGr1-treated, and TSLPR KO animals. (
<bold>D</bold>
) Log
<sub>2</sub>
fold change (Day 8 MC903 vs. EtOH) of
<italic>Lcn2</italic>
and activity-induced genes in spinal cord from uninjected and aGr1-treated wild-type mice on day 8. For
<xref ref-type="fig" rid="fig4">Figure 4A–D</xref>
, exact values and corrected
<italic>p</italic>
-values are reported in
<xref ref-type="supplementary-material" rid="sdata1">Source Data 1</xref>
Supplemental Data. (
<bold>E</bold>
) Quantification of innervation (see Materials and methods) of MC903 and EtOH-treated mouse skin as determined from BTIII staining (p=0.8985; two-tailed t-test (
<italic>t</italic>
 = 0.1294; df = 18); n = 9,11 images each from two mice per treatment. Exact values are reported in
<xref ref-type="supplementary-material" rid="fig4sdata1">Figure 4—source data 1</xref>
. (
<bold>F</bold>
) CXCL10 levels in skin homogenate as measured by ELISA on day 8 of the MC903 model for uninjected animals (left; *p=0.029 (
<italic>t</italic>
 = 2.715,
<italic>df</italic>
 = 7); two-tailed t-test; n = 4,5 animals), animals which received aGr1 for 8 days (middle; p=0.43 (
<italic>t</italic>
 = 0.815,
<italic>df</italic>
 = 11); two-tailed t-test; n = 6,6 animals), and TSLPR KO animals (right; *p=0.0357 (
<italic>t</italic>
 = 2.696,
<italic>df</italic>
 = 6); two-tailed t-test; n = 4,4 animals. Skin homogenates were isolated on separate days and so uninjected, WT samples were not compared to aGr1-treated samples or to TSLPR KO samples. (
<bold>G</bold>
) (Left) Time spent scratching over a thirty minute interval on days 5, 8, and 12 of the MC903 model, one hour after mice were injected with either 3.31 mM of the CXCR3 antagonist AMG 487 or vehicle (20% HPCD in PBS; 50 µL s.c. in rostral back); (two-way ANOVA: ****
<italic>p</italic>
<sub>treatment</sub>
 <0.0001, F(1,67) = 50.64; Tukey’s multiple comparisons: *
<italic>p
<sub>day 5</sub>
</italic>
 = 0.0216, n = 8,10 mice; ***
<italic>p
<sub>day 8</sub>
</italic>
 = 0.0007, n = 18,21 mice; ****
<italic>p
<sub>day 12</sub>
</italic>
 < 0.0001, n = 8,8 mice). (Right) Time spent scratching over a thirty minute interval one hour after mice were injected with either 3.31 mM of the CXCR3 antagonist AMG 487 or vehicle (20% HPCD in PBS; 50 µL s.c. in rostral back), and immediately after mice were injected with 50 mM chloroquine (20 µL i.d., cheek). p=0.92 (
<italic>t</italic>
 = 0.0964,
<italic>df</italic>
 = 8); two-tailed t-test; n = 5,5 mice. Values from bar plots in
<xref ref-type="fig" rid="fig4">Figure 4F–G</xref>
are displayed in
<xref ref-type="supplementary-material" rid="fig4sdata2">Figure 4—source data 2</xref>
.</p>
<p>
<supplementary-material content-type="local-data" id="fig4sdata1">
<label>Figure 4—source data 1.</label>
<caption>
<title>Values displayed in the bar plot shown in
<xref ref-type="fig" rid="fig4">Figure 4E</xref>
.</title>
</caption>
<media mime-subtype="octet-stream" mimetype="application" xlink:href="elife-48448-fig4-data1.csv" orientation="portrait" id="d35e2919" position="anchor"></media>
</supplementary-material>
</p>
<p>
<supplementary-material content-type="local-data" id="fig4sdata2">
<label>Figure 4—source data 2.</label>
<caption>
<title>Values displayed in the bar plots shown in
<xref ref-type="fig" rid="fig4">Figure 4F–G</xref>
.</title>
</caption>
<media mime-subtype="octet-stream" mimetype="application" xlink:href="elife-48448-fig4-data2.csv" orientation="portrait" id="d35e2930" position="anchor"></media>
</supplementary-material>
</p>
<p>
<supplementary-material content-type="local-data" id="fig4sdata3">
<label>Figure 4—source data 3.</label>
<caption>
<title>Values displayed in the heat map shown in
<xref ref-type="fig" rid="fig4s1">Figure 4—figure supplement 1A</xref>
.</title>
</caption>
<media mime-subtype="octet-stream" mimetype="application" xlink:href="elife-48448-fig4-data3.csv" orientation="portrait" id="d35e2941" position="anchor"></media>
</supplementary-material>
</p>
<p>
<supplementary-material content-type="local-data" id="fig4sdata4">
<label>Figure 4—source data 4.</label>
<caption>
<title>Values displayed in the heat map shown in
<xref ref-type="fig" rid="fig4s1">Figure 4—figure supplement 1B</xref>
.</title>
</caption>
<media mime-subtype="octet-stream" mimetype="application" xlink:href="elife-48448-fig4-data4.csv" orientation="portrait" id="d35e2952" position="anchor"></media>
</supplementary-material>
</p>
</caption>
<graphic xlink:href="elife-48448-fig4"></graphic>
<p content-type="supplemental-figure">
<fig id="fig4s1" specific-use="child-fig" orientation="portrait" position="anchor">
<label>Figure 4—figure supplement 1.</label>
<caption>
<title>MC903-dependent gene expression changes in aGr1-treated and TSLPR KO animals.</title>
<p>(
<bold>A</bold>
) Heat map showing log
<sub>2</sub>
fold change in gene expression (Day 8 MC903 vs. EtOH) for itch-associated genes in wild-type, aGr1-treated, and TSLPR KO skin. Green bars = increased expression in MC903 relative to ethanol; magenta = decreased expression. Exact values and corrected
<italic>p</italic>
-values are reported in
<xref ref-type="supplementary-material" rid="fig4sdata3">Figure 4—source data 3</xref>
and
<xref ref-type="supplementary-material" rid="sdata1">Source Data 1</xref>
Supplemental Data, respectively. (
<bold>B</bold>
) Heat map showing log
<sub>2</sub>
fold change in gene expression (Day 8 MC903 vs. EtOH) for wild-type, aGr1-treated, and TSLPR KO mouse trigeminal ganglia (TG) at indicated time points for all genes which were significantly differentially expressed for at least one time point in the MC903 model (See
<xref ref-type="fig" rid="fig2">Figure 2D</xref>
). Green bars = increased expression in MC903 relative to ethanol; magenta = decreased expression. Exact values and corrected
<italic>p</italic>
-values are reported in
<xref ref-type="supplementary-material" rid="fig4sdata4">Figure 4—source data 4</xref>
and
<xref ref-type="supplementary-material" rid="sdata1">Source Data 1</xref>
Supplemental Data, respectively.</p>
</caption>
<graphic xlink:href="elife-48448-fig4-figsupp1"></graphic>
</fig>
</p>
</fig>
</sec>
<sec id="s2-6">
<title>CXCR3 signaling is necessary for MC903-evoked chronic itch</title>
<p>We hypothesized that neutrophil-dependent upregulation of CXCL10 activates sensory neurons to drive itch behaviors. Consistent with this model, neutrophil depletion attenuated the expression of activity-induced immediate early genes (
<italic>Vgf, Junb</italic>
) in the TG, suggestive of neutrophil-dependent sensory neuronal activity (
<xref ref-type="fig" rid="fig4">Figure 4C</xref>
,
<xref ref-type="fig" rid="fig4s1">Figure 4—figure supplement 1B</xref>
). We found that neutrophils also contributed to other sensory neuronal phenotypes in the model. For example, we observed that expression of
<italic>Lcn2</italic>
, a marker of neuropathic itch, and activity-induced genes
<italic>Fos</italic>
and
<italic>Junb</italic>
were not increased in spinal cord isolated from neutrophil-depleted animals, indicating that neutrophil-dependent scratching behaviors may indeed drive changes in the CNS (
<xref ref-type="fig" rid="fig4">Figure 4D</xref>
). We also observed that neutrophil-depleted animals displayed no skin hyperinnervation at day two (
<xref ref-type="fig" rid="fig4">Figure 4E</xref>
). This result was surprising because we did not observe significant neutrophil infiltration at this early time point, but these data suggest that low numbers of skin neutrophils are sufficient to mediate these early effects.</p>
<p>To test our model wherein CXCL10 activates CXCR3 to drive neutrophil-dependent itch, we first asked whether this CXCR3 ligand is in fact released in MC903-treated skin. We performed ELISA on cheek skin homogenate and found that CXCL10 protein was increased in MC903-treated skin from uninjected wild-type and TSLPR KO animals, but not in skin from neutrophil-depleted mice (
<xref ref-type="fig" rid="fig4">Figure 4F</xref>
). To test whether CXCR3 signaling directly contributes to AD itch, we asked whether acute blockade of CXCR3 using the antagonist AMG 487 (
<xref rid="bib86" ref-type="bibr">Qu et al., 2015</xref>
) affected scratching behaviors in the MC903 model. We found that the CXCR3 antagonist strongly attenuated scratching behaviors on days five, eight, and twelve (
<xref ref-type="fig" rid="fig4">Figure 4G</xref>
), with the greatest effect at day eight. In contrast, CXCR3 blockade did not attenuate scratching behaviors in naive mice injected with the pruritogen chloroquine (
<xref ref-type="fig" rid="fig4">Figure 4G</xref>
), demonstrating that CXCR3 signaling contributes to chronic itch but is not required for scratching in response to an acute pruritogen. Thus, we propose that neutrophils promote chronic itch in atopic dermatitis via upregulation of CXCL10 and subsequent activation of CXCR3-dependent itch pathways (
<xref ref-type="fig" rid="fig5">Figure 5</xref>
).</p>
<fig id="fig5" orientation="portrait" position="float">
<label>Figure 5.</label>
<caption>
<title>Model of early AD pathogenesis.</title>
<p>(
<bold>A</bold>
) AD induction first results in increased protease expression and barrier dysfunction, which drives production of the cytokines TSLP and CXCL1 via PAR2 activation within keratinocytes. CXCL1 can recruit neutrophils via its receptor CXCR2. Neutrophils may evoke itch by multiple pathways, including degranulation and release of proteases and histamine, production of sensitizing lipids such as PGE
<sub>2</sub>
and LTB
<sub>4</sub>
, (
<xref rid="bib36" ref-type="bibr">Hashimoto et al., 2018</xref>
) and induction of CXCL10 expression, which can activate sensory neurons via CXCR3. TSLP activates a number of immune cells to elicit IL-4 production, including basophils, which results in increased IL-4, recruitment of CD4
<sup>+</sup>
T cells, (
<xref rid="bib77" ref-type="bibr">Oetjen et al., 2017</xref>
) and sensitization of neurons to promote itch later in the model.</p>
</caption>
<graphic xlink:href="elife-48448-fig5"></graphic>
</fig>
</sec>
</sec>
<sec sec-type="discussion" id="s3">
<title>Discussion</title>
<p>There is great interest in unraveling the neuroimmune interactions that promote acute and chronic itch. Here, we show that neutrophils are essential for the early development of MC903-evoked itch. We further show that the recruitment of neutrophils to the skin is sufficient to drive itch behaviors within minutes of infiltration. While neutrophils are known to release a variety of pruritogens, their roles in itch and AD were not studied (
<xref rid="bib36" ref-type="bibr">Hashimoto et al., 2018</xref>
). Only a few studies have even reported the presence of neutrophils in human AD lesions (
<xref rid="bib15" ref-type="bibr">Choy et al., 2012</xref>
;
<xref rid="bib51" ref-type="bibr">Koro et al., 1999</xref>
;
<xref rid="bib70" ref-type="bibr">Mihm et al., 1976</xref>
;
<xref rid="bib96" ref-type="bibr">Shalit et al., 1987</xref>
). Neutrophils have been implicated in psoriatic inflammation and inflammatory pain, (
<xref rid="bib106" ref-type="bibr">Sumida et al., 2014</xref>
;
<xref rid="bib83" ref-type="bibr">Perkins and Tracey, 2000</xref>
;
<xref rid="bib30" ref-type="bibr">Guerrero et al., 2008</xref>
;
<xref rid="bib16" ref-type="bibr">Cunha et al., 2003</xref>
;
<xref rid="bib25" ref-type="bibr">Finley et al., 2013</xref>
;
<xref rid="bib12" ref-type="bibr">Carreira et al., 2013</xref>
;
<xref rid="bib55" ref-type="bibr">Levine et al., 2006</xref>
;
<xref rid="bib93" ref-type="bibr">Schön et al., 2000</xref>
) where they are thought to rapidly respond to tissue injury and inflammation, (
<xref rid="bib79" ref-type="bibr">Oyoshi et al., 2012</xref>
) but they have not been directly linked to itch.</p>
<p>There is a strong precedence for immune cell-neuronal interactions that drive modality-specific outcomes, such as itch versus pain, under distinct inflammatory conditions. In allergy, mast cells infiltrate the upper dermis and epidermis and release pruritogens to cause itch, (
<xref rid="bib102" ref-type="bibr">Solinski et al., 2019b</xref>
;
<xref rid="bib67" ref-type="bibr">Meixiong et al., 2019</xref>
) whereas in tissue injury, mast cell activation can trigger pain hypersensitivity (
<xref rid="bib14" ref-type="bibr">Chatterjea and Martinov, 2015</xref>
). Likewise, neutrophils are also implicated in both pain and itch. For example, pyoderma gangrenosum, which causes painful skin ulcerations recruits neutrophils to the deep dermal layers to promote tissue damage and pain (
<xref rid="bib36" ref-type="bibr">Hashimoto et al., 2018</xref>
). In AD, neutrophils are recruited to the upper dermis and epidermis, (
<xref rid="bib15" ref-type="bibr">Choy et al., 2012</xref>
;
<xref rid="bib96" ref-type="bibr">Shalit et al., 1987</xref>
) and we now show that neutrophils trigger itch in AD. Adding to the complex and diverse roles of neutrophils, neutrophils recruited to subcutaneous sites during invasive streptococcal infection alleviate pain by clearing the tissue of bacteria (
<xref rid="bib85" ref-type="bibr">Pinho-Ribeiro et al., 2018</xref>
). Several potential mechanisms may explain these diverse effects of neutrophils. First, the location of the inflammatory insult could promote preferential engagement of pain versus itch nerve fibers (
<xref rid="bib36" ref-type="bibr">Hashimoto et al., 2018</xref>
). This is supported by observations that neutrophil-derived reactive oxygen species and leukotrienes can promote either itch or pain under different inflammatory conditions (
<xref rid="bib89" ref-type="bibr">Salvemini et al., 2011</xref>
;
<xref rid="bib5" ref-type="bibr">Bautista et al., 2006</xref>
;
<xref rid="bib61" ref-type="bibr">Liu and Ji, 2012</xref>
;
<xref rid="bib10" ref-type="bibr">Caceres et al., 2009</xref>
). Second, it has been proposed that there are distinct functional subsets of neutrophils that release modality-specific inflammatory mediators (
<xref rid="bib115" ref-type="bibr">Wang, 2018</xref>
). Third, the disease-specific inflammatory milieu may induce neutrophils to specifically secrete mediators of either itch or pain. Indeed, all three of these mechanisms have been proposed to underlie the diverse functions of microglia and macrophages in homeostasis, tissue repair, injury, and neurodegenerative disease (
<xref rid="bib35" ref-type="bibr">Hammond et al., 2018</xref>
). It will be of great interest to the field to decipher the distinct mechanisms by which neutrophils and other immune cells interact with the nervous system to drive pain and itch.</p>
<p>In addition to neutrophils, TSLP signaling and the Type two immune response plays an important role in the development of itch in the second week of the MC903 model. Dendritic cells, mast cells, basophils, and CD4
<sup>+</sup>
T cells are all major effectors of the TSLP inflammatory pathway in the skin. We propose that neutrophils play an early role in triggering itch and also contribute to chronic itch in parallel with the TSLP-Type two response. While we have ruled out an early role for TSLP signaling and basophils and CD4
<sup>+</sup>
T cells in early itch, other cell types such as mast cells, which have recently been linked directly to chronic itch, (
<xref rid="bib102" ref-type="bibr">Solinski et al., 2019b</xref>
;
<xref rid="bib67" ref-type="bibr">Meixiong et al., 2019</xref>
) and dendritic cells may be playing an important role in setting the stage for itch and inflammation prior to infiltration of neutrophils.</p>
<p>Given the large magnitude of the itch deficit in the neutrophil-depleted mice, we were surprised to find fewer expression differences in MC903-dependent, AD-associated genes between neutrophil depleted and non-depleted mice than were observed between WT and TSLPR KO mice. One of the few exceptions were the Th1-associated genes
<italic>Cxcl9/10/11</italic>
(
<xref rid="bib24" ref-type="bibr">Ewald et al., 2017</xref>
;
<xref rid="bib9" ref-type="bibr">Brunner et al., 2017</xref>
). We found that induction of these genes and of CXCL10 protein was completely dependent on neutrophils. While our results do not identify the particular cell type(s) responsible for neutrophil-dependent CXCL10 production, a number of cell types present in skin have been shown to produce CXCL10, including epithelial keratinocytes, myeloid cells, and sensory neurons (
<xref rid="bib36" ref-type="bibr">Hashimoto et al., 2018</xref>
;
<xref rid="bib42" ref-type="bibr">Ioannidis et al., 2016</xref>
;
<xref rid="bib46" ref-type="bibr">Kanda et al., 2007</xref>
;
<xref rid="bib50" ref-type="bibr">Koga et al., 2008</xref>
;
<xref rid="bib69" ref-type="bibr">Michalec et al., 2002</xref>
;
<xref rid="bib80" ref-type="bibr">Padovan et al., 2002</xref>
;
<xref rid="bib108" ref-type="bibr">Tamassia et al., 2007</xref>
). In support of a role for neutrophils in promoting chronic itch, we observed striking differences in neutrophil-dependent gene expression in the spinal cord, where expression of activity-induced genes and the chronic itch gene
<italic>Lcn2</italic>
were markedly attenuated by loss of neutrophils. Moreover, we also demonstrate that depletion of neutrophils in the second week of the MC903 model can attenuate chronic itch-evoked scratching. In examining previous characterizations of both human and mouse models of AD and related chronic itch disorders, several studies report that neutrophils and/or neutrophil chemokines are indeed present in chronic lesions (
<xref rid="bib24" ref-type="bibr">Ewald et al., 2017</xref>
;
<xref rid="bib15" ref-type="bibr">Choy et al., 2012</xref>
;
<xref rid="bib31" ref-type="bibr">Guttman-Yassky et al., 2009</xref>
;
<xref rid="bib105" ref-type="bibr">Suárez-Fariñas et al., 2013</xref>
;
<xref rid="bib43" ref-type="bibr">Jabbari et al., 2012</xref>
;
<xref rid="bib74" ref-type="bibr">Nattkemper et al., 2018</xref>
;
<xref rid="bib58" ref-type="bibr">Li et al., 2017</xref>
;
<xref rid="bib92" ref-type="bibr">Saunders et al., 2016</xref>
;
<xref rid="bib3" ref-type="bibr">Andersson, 2015</xref>
;
<xref rid="bib60" ref-type="bibr">Liu et al., 2019</xref>
;
<xref rid="bib62" ref-type="bibr">Malik et al., 2017</xref>
). Our observations newly implicate neutrophils in setting the stage for the acute-to-chronic itch transition by triggering molecular changes necessary to develop a chronic, itchy lesion and also contributing to persistent itch.</p>
<p>Additionally, we demonstrate a novel role of CXCR3 signaling in MC903-induced itch. The CXCR3 ligand CXCL10 contributes to mouse models of acute and allergic itch (
<xref rid="bib86" ref-type="bibr">Qu et al., 2015</xref>
;
<xref rid="bib87" ref-type="bibr">Qu et al., 2017</xref>
;
<xref rid="bib44" ref-type="bibr">Jing et al., 2018</xref>
); however, its role in chronic itch was previously unknown. We speculate that the residual itch behaviors after administration of the CXCR3 antagonist could be due to TSLPR-dependent IL-4 signaling, as TSLPR-deficient mice display reduced itch behaviors by the second week of the model, or due to some other aspect of neutrophil signaling, such as release of proteases, leukotrienes, prostaglandins, or reactive oxygen species, all of which can directly trigger itch via activation of somatosensory neurons (
<xref rid="bib36" ref-type="bibr">Hashimoto et al., 2018</xref>
). Our observations are in alignment with a recent study showing that dupilumab, a new AD drug that blocks IL4Rα, a major downstream effector of the TSLP signaling pathway, does not significantly reduce CXCL10 protein levels in human AD lesions (
<xref rid="bib34" ref-type="bibr">Hamilton et al., 2014</xref>
). Taken together, these findings suggest that the TSLP/IL-4 and neutrophil/CXCL10 pathways are not highly interdependent, and supports our findings that
<italic>Il4</italic>
transcript is robustly upregulated in the absence of neutrophils. Additionally, targeting IL4Rα signaling has been successful in treating itch and inflammation in some, but not all, AD patients (
<xref rid="bib99" ref-type="bibr">Simpson et al., 2016</xref>
). We propose that biologics or compounds targeting neutrophils and/or the CXCR3 pathway may be useful for AD that is incompletely cleared by dupilumab monotherapy. Drugs targeting neutrophils are currently in clinical trials for the treatment of psoriasis, asthma, and other inflammatory disorders. For example, MDX-1100, a biologic that targets CXCL10, has already shown efficacy for treatment of rheumatoid arthritis in phase II clinical trials (
<xref rid="bib117" ref-type="bibr">Yellin et al., 2012</xref>
). While rheumatoid arthritis and AD have distinct etiologies, (
<xref rid="bib95" ref-type="bibr">Scott et al., 2010</xref>
) our body of work indicates that CXCL10 or CXCR3 may be promising targets for treating chronic itch. Our findings may also be applicable to other itch disorders where neutrophil chemoattractants and/or CXCL10 are also elevated, such as psoriasis and allergic contact dermatitis. Overall, our data suggest that neutrophils incite itch and inflammation in early AD through several mechanisms, including: 1) directly triggering itch upon infiltration into the skin, as shown by acute injection of CXCL1, and, 2) indirectly triggering itch by altering expression of endogenous pruritogens (e.g. induction of
<italic>Cxcl10</italic>
expression;
<xref rid="bib36" ref-type="bibr">Hashimoto et al., 2018</xref>
;
<xref rid="bib42" ref-type="bibr">Ioannidis et al., 2016</xref>
;
<xref rid="bib46" ref-type="bibr">Kanda et al., 2007</xref>
;
<xref rid="bib50" ref-type="bibr">Koga et al., 2008</xref>
;
<xref rid="bib69" ref-type="bibr">Michalec et al., 2002</xref>
;
<xref rid="bib80" ref-type="bibr">Padovan et al., 2002</xref>
;
<xref rid="bib108" ref-type="bibr">Tamassia et al., 2007</xref>
). Together, these direct and indirect mechanisms for neutrophil-dependent itch may explain why neutrophils have a dramatic effect on scratching behaviors on not only days eight and twelve but also day five of the model, when neutrophils are recruited in large numbers, but CXCR3 ligands are not as robustly induced.</p>
<p>More generally, our study provides a framework for understanding how and when human chronic itch disease genes contribute to the distinct stages of AD pathogenesis. Our analysis of MC903-evoked transcriptional changes suggests we may be able to extend findings in the model not only to atopic dermatitis, but also to related disorders, including specific genetic forms of atopy. For example, we provide evidence that MC903 treatment may also model the filaggrin loss-of-function mutations, which are a key inciting factor in human heritable atopic disease (
<xref rid="bib81" ref-type="bibr">Palmer et al., 2006</xref>
;
<xref rid="bib90" ref-type="bibr">Sandilands et al., 2007</xref>
). There are many rich datasets looking at mature patient lesions and datasets for mature lesions in other mouse models of chronic itch (
<xref rid="bib24" ref-type="bibr">Ewald et al., 2017</xref>
;
<xref rid="bib15" ref-type="bibr">Choy et al., 2012</xref>
;
<xref rid="bib31" ref-type="bibr">Guttman-Yassky et al., 2009</xref>
;
<xref rid="bib43" ref-type="bibr">Jabbari et al., 2012</xref>
;
<xref rid="bib74" ref-type="bibr">Nattkemper et al., 2018</xref>
;
<xref rid="bib77" ref-type="bibr">Oetjen et al., 2017</xref>
;
<xref rid="bib60" ref-type="bibr">Liu et al., 2019</xref>
;
<xref rid="bib59" ref-type="bibr">Liu et al., 2016</xref>
). Our study adds a temporal frame of reference to these existing datasets and sets the stage for probing the function of AD disease genes in greater detail. Furthermore, we have mapped the time course of gene expression changes in primary sensory ganglia and spinal cord during chronic itch development. We show that the MC903 model recapitulates several hallmarks of neuropathic disease on a time course much shorter than has been reported for chronic itch, or chronic pain. Nervous system tissues are extremely difficult to obtain from human AD patients, and thus little is known regarding the neuronal changes in chronic itch disorders in both mouse models and human patients. Our findings can now be compared to existing and future datasets examining neuronal changes in chronic pain, diabetic neuropathy, shingles, neuropathic itch, psoriasis, and other inflammatory disorders where neuronal changes are poorly understood but may contribute to disease progression. The early changes we see in skin innervation, sensory ganglia, and spinal cord dovetail with recent studies examining neuroimmune interactions in other inflammatory conditions, (
<xref rid="bib85" ref-type="bibr">Pinho-Ribeiro et al., 2018</xref>
;
<xref rid="bib4" ref-type="bibr">Baral et al., 2018</xref>
;
<xref rid="bib84" ref-type="bibr">Pinho-Ribeiro et al., 2017</xref>
;
<xref rid="bib6" ref-type="bibr">Blake et al., 2018</xref>
) which all implicate early involvement of sensory neurons in the pathogenesis of inflammatory diseases.</p>
</sec>
<sec sec-type="materials|methods" id="s4">
<title>Materials and methods</title>
<table-wrap id="keyresource" orientation="portrait" position="anchor">
<label>Key resources table</label>
<table frame="hsides" rules="groups">
<thead>
<tr>
<th rowspan="1" colspan="1">Reagent type
<break></break>
(species) or resource</th>
<th rowspan="1" colspan="1">Designation</th>
<th rowspan="1" colspan="1">Source or
<break></break>
reference</th>
<th rowspan="1" colspan="1">Identifiers</th>
<th rowspan="1" colspan="1">Additional
<break></break>
information</th>
</tr>
</thead>
<tbody>
<tr>
<td valign="bottom" rowspan="1" colspan="1">Strain,
<break></break>
strain background
<break></break>
(
<italic>Mus musculus</italic>
)</td>
<td valign="bottom" rowspan="1" colspan="1">C57BL/6; WT; wild-type</td>
<td valign="bottom" rowspan="1" colspan="1">The Jackson Laboratory</td>
<td valign="bottom" rowspan="1" colspan="1">Jackson Stock #: 000664; RRID:
<ext-link ext-link-type="uri" xlink:href="https://scicrunch.org/resolver/IMSR_JAX:000664">IMSR_JAX:000664</ext-link>
</td>
<td valign="bottom" rowspan="1" colspan="1"></td>
</tr>
<tr>
<td valign="bottom" rowspan="1" colspan="1">Strain, strain background(
<italic>Mus musculus</italic>
)</td>
<td valign="bottom" rowspan="1" colspan="1">C57BL/6; WT; wild-type</td>
<td valign="bottom" rowspan="1" colspan="1">Charles River Laboratories</td>
<td valign="bottom" rowspan="1" colspan="1">RRID:
<ext-link ext-link-type="uri" xlink:href="https://scicrunch.org/resolver/IMSR_CRL:27">IMSR_CRL:27</ext-link>
; Charles River strain code #: 027;</td>
<td valign="bottom" rowspan="1" colspan="1"></td>
</tr>
<tr>
<td valign="bottom" rowspan="1" colspan="1">Strain, strain background(
<italic>Mus musculus</italic>
)</td>
<td valign="bottom" rowspan="1" colspan="1">Crlf2tm1Jni; TSLPR KO</td>
<td valign="bottom" rowspan="1" colspan="1">PMID:
<ext-link ext-link-type="uri" xlink:href="https://www.ncbi.nlm.nih.gov/pubmed/14993294">14993294</ext-link>
</td>
<td valign="bottom" rowspan="1" colspan="1">RRID:
<ext-link ext-link-type="uri" xlink:href="https://scicrunch.org/resolver/MGI:3039553">MGI:3039553</ext-link>
; MGI Cat# 3039553</td>
<td valign="bottom" rowspan="1" colspan="1">Obtained from the laboratory of Steven F. Ziegler (Ben Aroya Research Institute)</td>
</tr>
<tr>
<td valign="bottom" rowspan="1" colspan="1">Antibody</td>
<td valign="bottom" rowspan="1" colspan="1">Purified anti-mouse Ly-6G/Gr-1 antibody. Low endotoxin, no azide, in PBS; anti-GR1 (RB6-8C5); aGr1</td>
<td valign="bottom" rowspan="1" colspan="1">UCSF Core</td>
<td valign="bottom" rowspan="1" colspan="1">UCSF Core Cat# AM051</td>
<td valign="bottom" rowspan="1" colspan="1">Obtained from the laboratory of Daniel Portnoy (UC Berkeley)</td>
</tr>
<tr>
<td valign="bottom" rowspan="1" colspan="1">Antibody</td>
<td valign="bottom" rowspan="1" colspan="1">LEAF Purified anti-mouse Ly-6G/Ly-6C (Gr-1); antibody; RB6-8C5; aGr1</td>
<td valign="bottom" rowspan="1" colspan="1">Biolegend</td>
<td valign="bottom" rowspan="1" colspan="1">RRID:
<ext-link ext-link-type="uri" xlink:href="https://scicrunch.org/resolver/AB_313379">AB_313379</ext-link>
; BioLegend Cat# 108414</td>
<td valign="bottom" rowspan="1" colspan="1"></td>
</tr>
<tr>
<td valign="bottom" rowspan="1" colspan="1">Antibody</td>
<td valign="bottom" rowspan="1" colspan="1">Anti-β-tubulin III (Rabbit polyclonal; 1:1000)</td>
<td valign="bottom" rowspan="1" colspan="1">Abcam</td>
<td valign="bottom" rowspan="1" colspan="1">RRID:
<ext-link ext-link-type="uri" xlink:href="https://scicrunch.org/resolver/AB_444319">AB_444319</ext-link>
; Cat # ab18207</td>
<td valign="bottom" rowspan="1" colspan="1"></td>
</tr>
<tr>
<td valign="bottom" rowspan="1" colspan="1">Antibody</td>
<td valign="bottom" rowspan="1" colspan="1">Anti-CGRP (Rabbit polyclonal; 1:1000)</td>
<td valign="bottom" rowspan="1" colspan="1">Immunostar</td>
<td valign="bottom" rowspan="1" colspan="1">RRID:
<ext-link ext-link-type="uri" xlink:href="https://scicrunch.org/resolver/AB_572217">AB_572217</ext-link>
; Cat # 24112</td>
<td valign="bottom" rowspan="1" colspan="1"></td>
</tr>
<tr>
<td valign="bottom" rowspan="1" colspan="1">Antibody</td>
<td valign="bottom" rowspan="1" colspan="1">Anti-Peripherin (Chicken polyclonal; 1:1000)</td>
<td valign="bottom" rowspan="1" colspan="1">Abcam</td>
<td valign="bottom" rowspan="1" colspan="1">RRID:
<ext-link ext-link-type="uri" xlink:href="https://scicrunch.org/resolver/AB_777207">AB_777207</ext-link>
; Cat # ab39374</td>
<td valign="bottom" rowspan="1" colspan="1"></td>
</tr>
<tr>
<td valign="bottom" rowspan="1" colspan="1">Antibody</td>
<td valign="bottom" rowspan="1" colspan="1">Goat Anti-Mouse
<break></break>
IgG H and L Alexa Fluor 488 (Goat polyclonal; 1:1000)</td>
<td valign="bottom" rowspan="1" colspan="1">Abcam</td>
<td valign="bottom" rowspan="1" colspan="1">RRID:
<ext-link ext-link-type="uri" xlink:href="https://scicrunch.org/resolver/AB_2688012">AB_2688012</ext-link>
; Cat # ab150117</td>
<td valign="bottom" rowspan="1" colspan="1"></td>
</tr>
<tr>
<td valign="bottom" rowspan="1" colspan="1">Antibody</td>
<td valign="bottom" rowspan="1" colspan="1">Goat anti-Chicken IgY (H+L) Secondary Antibody, Alexa Fluor 488 (Goat polyclonal; 1:1000)</td>
<td valign="bottom" rowspan="1" colspan="1">ThermoFisher Scientific</td>
<td valign="bottom" rowspan="1" colspan="1">RRID:
<ext-link ext-link-type="uri" xlink:href="https://scicrunch.org/resolver/AB_2534096">AB_2534096</ext-link>
; Cat # A-11039</td>
<td valign="bottom" rowspan="1" colspan="1"></td>
</tr>
<tr>
<td valign="bottom" rowspan="1" colspan="1">Antibody</td>
<td valign="bottom" rowspan="1" colspan="1">Goat Anti-Chicken IgG (H+L) Secondary Antibody, Alexa Fluor 594 (Goat polyclonal; 1:1000)</td>
<td valign="bottom" rowspan="1" colspan="1">ThermoFisher Scientific</td>
<td valign="bottom" rowspan="1" colspan="1">RRID:
<ext-link ext-link-type="uri" xlink:href="https://scicrunch.org/resolver/AB_2534099">AB_2534099</ext-link>
; Cat # A11042</td>
<td valign="bottom" rowspan="1" colspan="1"></td>
</tr>
<tr>
<td valign="bottom" rowspan="1" colspan="1">Antibody</td>
<td valign="bottom" rowspan="1" colspan="1">Goat anti-Rabbit IgG (H+L) Secondary Antibody, Alexa Fluor 594 (Goat polyclonal; 1:1000)</td>
<td valign="bottom" rowspan="1" colspan="1">Invitrogen</td>
<td valign="bottom" rowspan="1" colspan="1">RRID:
<ext-link ext-link-type="uri" xlink:href="https://scicrunch.org/resolver/AB_2556545">AB_2556545</ext-link>
; Cat # R37117</td>
<td valign="bottom" rowspan="1" colspan="1"></td>
</tr>
<tr>
<td valign="bottom" rowspan="1" colspan="1">Commercial assay or kit</td>
<td valign="bottom" rowspan="1" colspan="1">Promocell Keratinocyte Growth Medium 2</td>
<td valign="bottom" rowspan="1" colspan="1">Promocell</td>
<td valign="bottom" rowspan="1" colspan="1">Cat # C-20011</td>
<td valign="bottom" rowspan="1" colspan="1"></td>
</tr>
<tr>
<td valign="bottom" rowspan="1" colspan="1">Cell line (human)</td>
<td valign="bottom" rowspan="1" colspan="1">Normal Human Epidermal Keratinocytes (NHEK), single juvenile donor, cryopreserved</td>
<td valign="bottom" rowspan="1" colspan="1">Promocell</td>
<td valign="bottom" rowspan="1" colspan="1">Cat # C-12001</td>
<td valign="bottom" rowspan="1" colspan="1"></td>
</tr>
<tr>
<td valign="bottom" rowspan="1" colspan="1">Other</td>
<td valign="bottom" rowspan="1" colspan="1">Liberase TM Research Grade; Liberase</td>
<td valign="bottom" rowspan="1" colspan="1">Roche</td>
<td valign="bottom" rowspan="1" colspan="1">Cat # 5401119001</td>
<td valign="bottom" rowspan="1" colspan="1"></td>
</tr>
<tr>
<td valign="bottom" rowspan="1" colspan="1">Other</td>
<td valign="bottom" rowspan="1" colspan="1">Dnase I from bovine pancreas</td>
<td valign="bottom" rowspan="1" colspan="1">Sigma</td>
<td valign="bottom" rowspan="1" colspan="1">Cat # 11284932001</td>
<td valign="bottom" rowspan="1" colspan="1"></td>
</tr>
<tr>
<td valign="bottom" rowspan="1" colspan="1">Other</td>
<td valign="bottom" rowspan="1" colspan="1">Ambionª DNase I (RNase-free); DNAse</td>
<td valign="bottom" rowspan="1" colspan="1">Ambion</td>
<td valign="bottom" rowspan="1" colspan="1">Cat # AM2222</td>
<td valign="bottom" rowspan="1" colspan="1"></td>
</tr>
<tr>
<td rowspan="1" colspan="1">Peptide, recombinant protein</td>
<td valign="bottom" rowspan="1" colspan="1">SLIGRL-NH2;
<break></break>
SLIGRL</td>
<td valign="bottom" rowspan="1" colspan="1">Tocris</td>
<td valign="bottom" rowspan="1" colspan="1">Cas 171436-38-7; Cat #1468</td>
<td valign="bottom" rowspan="1" colspan="1"></td>
</tr>
<tr>
<td valign="bottom" rowspan="1" colspan="1">Commercial assay or kit</td>
<td valign="bottom" rowspan="1" colspan="1">Qiagen RNeasy
<break></break>
mini kit</td>
<td valign="bottom" rowspan="1" colspan="1">Qiagen</td>
<td valign="bottom" rowspan="1" colspan="1">Cat # 74104</td>
<td valign="bottom" rowspan="1" colspan="1"></td>
</tr>
<tr>
<td valign="bottom" rowspan="1" colspan="1">Commercial assay or kit</td>
<td valign="bottom" rowspan="1" colspan="1">RNAzol RT</td>
<td valign="bottom" rowspan="1" colspan="1">Sigma-Aldrich</td>
<td valign="bottom" rowspan="1" colspan="1">Cat # R4533-50ML</td>
<td valign="bottom" rowspan="1" colspan="1"></td>
</tr>
<tr>
<td valign="bottom" rowspan="1" colspan="1">Chemical compound, drug</td>
<td valign="bottom" rowspan="1" colspan="1">(2-Hydroxypropyl)-
<break></break>
β-cyclodextrin; HPCD</td>
<td valign="bottom" rowspan="1" colspan="1">Sigma-Aldrich</td>
<td valign="bottom" rowspan="1" colspan="1">Cas 128446-35-5; Cat # H107</td>
<td valign="bottom" rowspan="1" colspan="1"></td>
</tr>
<tr>
<td valign="bottom" rowspan="1" colspan="1">Chemical compound, drug</td>
<td valign="bottom" rowspan="1" colspan="1">Methyl alcohol; Methanol; MeOH</td>
<td valign="bottom" rowspan="1" colspan="1">Sigma-Aldrich</td>
<td valign="bottom" rowspan="1" colspan="1">Cas 67-56-1;
<break></break>
Cat # 34860</td>
<td valign="bottom" rowspan="1" colspan="1"></td>
</tr>
<tr>
<td valign="bottom" rowspan="1" colspan="1">Chemical compound, drug</td>
<td valign="bottom" rowspan="1" colspan="1">Ethanol, Absolute (200 Proof), Molecular Biology Grade, Fisher BioReagents; Absolute Ethanol, Molecular-Biology grade; Ethanol; EtOH</td>
<td valign="bottom" rowspan="1" colspan="1">Fischer Scientific</td>
<td valign="bottom" rowspan="1" colspan="1">Cas 64-17-5; Cat # BP2818100</td>
<td valign="bottom" rowspan="1" colspan="1"></td>
</tr>
<tr>
<td valign="bottom" rowspan="1" colspan="1">Chemical compound, drug</td>
<td valign="bottom" rowspan="1" colspan="1">MC903; Calcipotriol</td>
<td valign="bottom" rowspan="1" colspan="1">Tocris</td>
<td valign="bottom" rowspan="1" colspan="1">Cas 112965-21-6; Cat # 2700</td>
<td valign="bottom" rowspan="1" colspan="1"></td>
</tr>
<tr>
<td valign="bottom" rowspan="1" colspan="1">Chemical compound, drug</td>
<td valign="bottom" rowspan="1" colspan="1">(±)-AMG 487; AMG</td>
<td valign="bottom" rowspan="1" colspan="1">Tocris</td>
<td valign="bottom" rowspan="1" colspan="1">Cas 947536-03-0; Cat # 4487</td>
<td valign="bottom" rowspan="1" colspan="1"></td>
</tr>
<tr>
<td rowspan="1" colspan="1">Chemical
<break></break>
compound, drug</td>
<td valign="bottom" rowspan="1" colspan="1">Chloroquine diphosphate; Chloroquine</td>
<td valign="bottom" rowspan="1" colspan="1">Sigma-Aldrich</td>
<td valign="bottom" rowspan="1" colspan="1">CAS 50-63-5; Cat # C6628</td>
<td valign="bottom" rowspan="1" colspan="1"></td>
</tr>
<tr>
<td rowspan="1" colspan="1">Chemical
<break></break>
compound, drug</td>
<td valign="bottom" rowspan="1" colspan="1">Dimethyl sulfoxide; DMSO</td>
<td valign="bottom" rowspan="1" colspan="1">Sigma-Aldrich</td>
<td valign="bottom" rowspan="1" colspan="1">Cat # 8418–100 mL</td>
<td valign="bottom" rowspan="1" colspan="1"></td>
</tr>
<tr>
<td rowspan="1" colspan="1">Chemical compound, drug</td>
<td valign="bottom" rowspan="1" colspan="1">Formaldehyde, 16%, methanol free, Ultra Pure; Paraformaldehyde; PFA</td>
<td valign="bottom" rowspan="1" colspan="1">Polysciences, Inc.</td>
<td valign="bottom" rowspan="1" colspan="1">Cat # 18814–10</td>
<td valign="bottom" rowspan="1" colspan="1"></td>
</tr>
<tr>
<td rowspan="1" colspan="1">Chemical compound, drug</td>
<td valign="bottom" rowspan="1" colspan="1">Tissue Tek Optimal cutting temperature compound (OCT)</td>
<td valign="bottom" rowspan="1" colspan="1">Sakura Finetek USA</td>
<td valign="bottom" rowspan="1" colspan="1">Cat # 4583</td>
<td valign="bottom" rowspan="1" colspan="1"></td>
</tr>
<tr>
<td rowspan="1" colspan="1">Chemical compound, drug</td>
<td valign="bottom" rowspan="1" colspan="1">Triton X-100 solution; Triton X-100</td>
<td valign="bottom" rowspan="1" colspan="1">BioUltra</td>
<td valign="bottom" rowspan="1" colspan="1">CAS 9002-93-1; Cat # 93443</td>
<td valign="bottom" rowspan="1" colspan="1"></td>
</tr>
<tr>
<td rowspan="1" colspan="1">Chemical
<break></break>
compound, drug</td>
<td valign="bottom" rowspan="1" colspan="1">Phosphate-buffered saline (PBS), pH 7.4; PBS</td>
<td valign="bottom" rowspan="1" colspan="1">Gibco</td>
<td valign="bottom" rowspan="1" colspan="1">Cat # 10010023</td>
<td valign="bottom" rowspan="1" colspan="1"></td>
</tr>
<tr>
<td rowspan="1" colspan="1">Chemical compound, drug</td>
<td valign="bottom" rowspan="1" colspan="1">Benzyl benzoate</td>
<td valign="bottom" rowspan="1" colspan="1">Sigma-Aldrich</td>
<td valign="bottom" rowspan="1" colspan="1">CAS 120-51-4; Cat # B6630</td>
<td valign="bottom" rowspan="1" colspan="1"></td>
</tr>
<tr>
<td rowspan="1" colspan="1">Chemical compound, drug</td>
<td valign="bottom" rowspan="1" colspan="1">Benzyl alcohol</td>
<td valign="bottom" rowspan="1" colspan="1">Sigma-Aldrich</td>
<td valign="bottom" rowspan="1" colspan="1">CAS 100-51-6; Cat # 305197</td>
<td valign="bottom" rowspan="1" colspan="1"></td>
</tr>
<tr>
<td rowspan="1" colspan="1">Chemical
<break></break>
compound, drug</td>
<td valign="bottom" rowspan="1" colspan="1">Sucrose</td>
<td valign="bottom" rowspan="1" colspan="1">Sigma-Aldrich</td>
<td valign="bottom" rowspan="1" colspan="1">CAS 57-50-1; Cat # S0389</td>
<td valign="bottom" rowspan="1" colspan="1"></td>
</tr>
<tr>
<td rowspan="1" colspan="1">Chemical compound, drug</td>
<td valign="bottom" rowspan="1" colspan="1">LIVE/DEAD Fixable Aqua Dead Cell Stain Kit, for405 nm excitation; Aqua</td>
<td valign="bottom" rowspan="1" colspan="1">ThermoFisher Scientific</td>
<td valign="bottom" rowspan="1" colspan="1">Cat # L34957</td>
<td valign="bottom" rowspan="1" colspan="1"></td>
</tr>
<tr>
<td rowspan="1" colspan="1">Chemical compound, drug</td>
<td valign="bottom" rowspan="1" colspan="1">Isoflurane</td>
<td valign="bottom" rowspan="1" colspan="1">Piramal</td>
<td valign="bottom" rowspan="1" colspan="1">CAS 26675-46-7</td>
<td valign="bottom" rowspan="1" colspan="1"></td>
</tr>
<tr>
<td rowspan="1" colspan="1">Chemical compound, drug</td>
<td valign="bottom" rowspan="1" colspan="1">4',6-Diamidino-2-Phenylindole, Dihydrochloride; DAPI</td>
<td valign="bottom" rowspan="1" colspan="1">ThermoFisher Scientific</td>
<td valign="bottom" rowspan="1" colspan="1">CAS 28718-90-3; Cat # 1306</td>
<td valign="bottom" rowspan="1" colspan="1"></td>
</tr>
<tr>
<td rowspan="1" colspan="1">Chemical compound, drug</td>
<td valign="bottom" rowspan="1" colspan="1">4',6-Diamidino-2-Phenylindole, Dihydrochloride; DAPI LIVE/DEAD</td>
<td valign="bottom" rowspan="1" colspan="1">Invitrogen</td>
<td valign="bottom" rowspan="1" colspan="1">Cat # L34961</td>
<td valign="bottom" rowspan="1" colspan="1"></td>
</tr>
<tr>
<td rowspan="1" colspan="1">Chemical compound, drug</td>
<td valign="bottom" rowspan="1" colspan="1">Fluoromount-G</td>
<td valign="bottom" rowspan="1" colspan="1">ThermoFisher Scientific</td>
<td valign="bottom" rowspan="1" colspan="1">Cat # 00-4958-02</td>
<td valign="bottom" rowspan="1" colspan="1"></td>
</tr>
<tr>
<td rowspan="1" colspan="1">Antibody</td>
<td valign="bottom" rowspan="1" colspan="1">Goat Anti-Mouse IgG - H and L - Fab Fragment Polyclonal Antibody, Unconjugated, Abcam; F(ab) anti-mouse IgG (Goat polyclonal; 1:200)</td>
<td valign="bottom" rowspan="1" colspan="1">Abcam</td>
<td valign="bottom" rowspan="1" colspan="1">RRID:
<ext-link ext-link-type="uri" xlink:href="https://scicrunch.org/resolver/AB_955960">AB_955960</ext-link>
; Cat # ab6668</td>
<td valign="bottom" rowspan="1" colspan="1"></td>
</tr>
<tr>
<td rowspan="1" colspan="1">Antibody</td>
<td valign="bottom" rowspan="1" colspan="1">Anti-Mouse CD45.2 Purified 100 ug antibody, Thermo Fisher Scientific; Mouse anti-CD45.2 (Mouse monoclonal; 1:1000)</td>
<td valign="bottom" rowspan="1" colspan="1">eBioscience</td>
<td valign="bottom" rowspan="1" colspan="1">RRID:
<ext-link ext-link-type="uri" xlink:href="https://scicrunch.org/resolver/AB_467261">AB_467261</ext-link>
; Cat # 14-0454-82</td>
<td valign="bottom" rowspan="1" colspan="1"></td>
</tr>
<tr>
<td rowspan="1" colspan="1">Antibody</td>
<td valign="bottom" rowspan="1" colspan="1">Purified anti-mouse CD16/32 antibody. Low endotoxin, no azide, in PBS; Rat anti-Mouse CD16/32 (2.4G2) (Rat monoclonal; 1:1000)</td>
<td valign="bottom" rowspan="1" colspan="1">UCSF Core</td>
<td valign="bottom" rowspan="1" colspan="1">UCSF Core Cat# AM004</td>
<td valign="bottom" rowspan="1" colspan="1"></td>
</tr>
<tr>
<td rowspan="1" colspan="1">Commercial assay or kit</td>
<td valign="bottom" rowspan="1" colspan="1">DuoSet ELISA Ancillary Reagent Kit 2</td>
<td valign="bottom" rowspan="1" colspan="1">R and D Systems</td>
<td valign="bottom" rowspan="1" colspan="1">Cat # DY008</td>
<td valign="bottom" rowspan="1" colspan="1"></td>
</tr>
<tr>
<td rowspan="1" colspan="1">Commercial
<break></break>
assay or kit</td>
<td valign="bottom" rowspan="1" colspan="1">Mouse CXCl10 DuoSet ELISA</td>
<td valign="bottom" rowspan="1" colspan="1">R and D Systems</td>
<td valign="bottom" rowspan="1" colspan="1">Cat # DY466</td>
<td valign="bottom" rowspan="1" colspan="1"></td>
</tr>
<tr>
<td rowspan="1" colspan="1">Commercial assay or kit</td>
<td valign="bottom" rowspan="1" colspan="1">Pierce BCA Protein Assay Kit - Reducing Agent
<break></break>
Compatible</td>
<td valign="bottom" rowspan="1" colspan="1">ThermoFisher Scientific</td>
<td valign="bottom" rowspan="1" colspan="1">Cat # 23250</td>
<td valign="bottom" rowspan="1" colspan="1"></td>
</tr>
<tr>
<td rowspan="1" colspan="1">Chemical compound, drug</td>
<td valign="bottom" rowspan="1" colspan="1">2-Amino-2-(hydroxymethyl)−1,3-propanediol; Trizma base, TRIS, TRIS base</td>
<td valign="bottom" rowspan="1" colspan="1">Sigma-Aldrich</td>
<td valign="bottom" rowspan="1" colspan="1">Cas 77-86-1; Cat # T4661</td>
<td valign="bottom" rowspan="1" colspan="1"></td>
</tr>
<tr>
<td rowspan="1" colspan="1">Chemical compound, drug</td>
<td valign="bottom" rowspan="1" colspan="1">Ethylene glycol-bis(2-aminoethylether)-N,N,N′,N′-tetraacetic acid; EGTA</td>
<td valign="bottom" rowspan="1" colspan="1">Sigma-Aldrich</td>
<td valign="bottom" rowspan="1" colspan="1">Cas 67-42-5; Cat # E3889</td>
<td valign="bottom" rowspan="1" colspan="1"></td>
</tr>
<tr>
<td rowspan="1" colspan="1">Chemical compound, drug</td>
<td valign="bottom" rowspan="1" colspan="1">Ethylenedinitrilo)tetraacetic acid; EDTA</td>
<td valign="bottom" rowspan="1" colspan="1">Sigma-Aldrich</td>
<td valign="bottom" rowspan="1" colspan="1">Cas 60-00-4; Cat # E9884</td>
<td valign="bottom" rowspan="1" colspan="1"></td>
</tr>
<tr>
<td rowspan="1" colspan="1">Commercial assay or kit</td>
<td valign="bottom" rowspan="1" colspan="1">PhosSTOP inhibitor</td>
<td valign="bottom" rowspan="1" colspan="1">Roche</td>
<td valign="bottom" rowspan="1" colspan="1">Cat # 4906845001</td>
<td valign="bottom" rowspan="1" colspan="1"></td>
</tr>
<tr>
<td rowspan="1" colspan="1">Chemical compound, drug</td>
<td valign="bottom" rowspan="1" colspan="1">Sodium deoxycholate,≥97% (titration); Sodium deoxycholate</td>
<td valign="bottom" rowspan="1" colspan="1">Sigma-Aldrich</td>
<td valign="bottom" rowspan="1" colspan="1">Cas 302-95-4; Cat # D6750</td>
<td valign="bottom" rowspan="1" colspan="1"></td>
</tr>
<tr>
<td rowspan="1" colspan="1">Chemical compound, drug</td>
<td valign="bottom" rowspan="1" colspan="1">Phenylmethylsulfonyl fluoride; PMSF</td>
<td valign="bottom" rowspan="1" colspan="1">Sigma-Aldrich</td>
<td valign="bottom" rowspan="1" colspan="1">Cas 329-98-6; Cat # 10837091001</td>
<td valign="bottom" rowspan="1" colspan="1"></td>
</tr>
<tr>
<td rowspan="1" colspan="1">Chemical
<break></break>
compound, drug</td>
<td valign="bottom" rowspan="1" colspan="1">1-Fluoro-2,4,-dinitrobenzene; DNFB</td>
<td valign="bottom" rowspan="1" colspan="1">Sigma</td>
<td valign="bottom" rowspan="1" colspan="1">Cas 70-34-8; Cat # D1529</td>
<td valign="bottom" rowspan="1" colspan="1"></td>
</tr>
<tr>
<td rowspan="1" colspan="1">Commercial assay or kit</td>
<td valign="bottom" rowspan="1" colspan="1">cOmplete protease inhibitor cocktail</td>
<td valign="bottom" rowspan="1" colspan="1">Roche</td>
<td valign="bottom" rowspan="1" colspan="1">Cat # 11697498001</td>
<td valign="bottom" rowspan="1" colspan="1"></td>
</tr>
<tr>
<td rowspan="1" colspan="1">Other</td>
<td valign="bottom" rowspan="1" colspan="1">Advanced RPMI Medium 1640; RPMI</td>
<td valign="bottom" rowspan="1" colspan="1">Gibco</td>
<td valign="bottom" rowspan="1" colspan="1">Cat # 12633012</td>
<td valign="bottom" rowspan="1" colspan="1"></td>
</tr>
<tr>
<td rowspan="1" colspan="1">Other</td>
<td valign="bottom" rowspan="1" colspan="1">Fetal Bovine Serum; FBS; FCS</td>
<td valign="bottom" rowspan="1" colspan="1">HyClone</td>
<td valign="bottom" rowspan="1" colspan="1">Cat # 30396.03</td>
<td valign="bottom" rowspan="1" colspan="1"></td>
</tr>
<tr>
<td rowspan="1" colspan="1">Other</td>
<td valign="bottom" rowspan="1" colspan="1">sodium pyruvate 100 mM</td>
<td valign="bottom" rowspan="1" colspan="1">Gibco</td>
<td valign="bottom" rowspan="1" colspan="1">Cat # 11360070</td>
<td valign="bottom" rowspan="1" colspan="1"></td>
</tr>
<tr>
<td rowspan="1" colspan="1">Other</td>
<td valign="bottom" rowspan="1" colspan="1">N-2-hydroxyethylpiperazine-N-2-ethane sulfonic acid; HEPES 1M</td>
<td valign="bottom" rowspan="1" colspan="1">Gibco</td>
<td valign="bottom" rowspan="1" colspan="1">Cat # 15630080</td>
<td valign="bottom" rowspan="1" colspan="1"></td>
</tr>
<tr>
<td rowspan="1" colspan="1">Other</td>
<td valign="bottom" rowspan="1" colspan="1">L-Glutamine 200 mM</td>
<td valign="bottom" rowspan="1" colspan="1">Gibco</td>
<td valign="bottom" rowspan="1" colspan="1">Cat # 25030081</td>
<td valign="bottom" rowspan="1" colspan="1"></td>
</tr>
<tr>
<td rowspan="1" colspan="1">Other</td>
<td valign="bottom" rowspan="1" colspan="1">Penicillin-Streptomycin (10,000 U/mL; Pen-Strep</td>
<td valign="bottom" rowspan="1" colspan="1">Gibco</td>
<td valign="bottom" rowspan="1" colspan="1">Cat # 15140122</td>
<td valign="bottom" rowspan="1" colspan="1"></td>
</tr>
<tr>
<td rowspan="1" colspan="1">Other</td>
<td valign="bottom" rowspan="1" colspan="1">Collagenase VIII</td>
<td valign="bottom" rowspan="1" colspan="1">Sigma-Aldrich</td>
<td valign="bottom" rowspan="1" colspan="1">Cat # C2139-500MG</td>
<td valign="bottom" rowspan="1" colspan="1"></td>
</tr>
<tr>
<td rowspan="1" colspan="1">Commercial assay or kit</td>
<td valign="bottom" rowspan="1" colspan="1">Invitrogen
<break></break>
CountBright Absolute Counting Beads, for flow cytometry; Counting Beads</td>
<td valign="bottom" rowspan="1" colspan="1">Invitrogen</td>
<td valign="bottom" rowspan="1" colspan="1">Cat # C36950</td>
<td valign="bottom" rowspan="1" colspan="1"></td>
</tr>
<tr>
<td rowspan="1" colspan="1">Antibody</td>
<td valign="bottom" rowspan="1" colspan="1">CD45 Monoclonal Antibody (30-F11), APC-eFluor 780, eBioscience(TM), Thermo Fisher Scientific; CD45-APC/eFluor 780 (30-F11) (Rat monoclonal; 1:200)</td>
<td valign="bottom" rowspan="1" colspan="1">eBioscience</td>
<td valign="bottom" rowspan="1" colspan="1">RRID:
<ext-link ext-link-type="uri" xlink:href="https://scicrunch.org/resolver/AB_1548781">AB_1548781</ext-link>
; Cat # 47-0451-82</td>
<td valign="bottom" rowspan="1" colspan="1"></td>
</tr>
<tr>
<td rowspan="1" colspan="1">Antibody</td>
<td valign="bottom" rowspan="1" colspan="1">CD11b Monoclonal Antibody (M1/70), PE-Cyanine7, eBioscience(TM), Thermo Fisher Scientific; CD11b-PE/Cy7 (M1/70) (Rat monoclonal; 1:200)</td>
<td valign="bottom" rowspan="1" colspan="1">BD Biosciences</td>
<td valign="bottom" rowspan="1" colspan="1">RRID:
<ext-link ext-link-type="uri" xlink:href="https://scicrunch.org/resolver/AB_469588">AB_469588</ext-link>
; Cat # 25-0112-82</td>
<td valign="bottom" rowspan="1" colspan="1"></td>
</tr>
<tr>
<td rowspan="1" colspan="1">Antibody</td>
<td valign="bottom" rowspan="1" colspan="1">PE-Cyanine7 Anti-Human/Mouse CD45R (B220) (RA3-6B2) Antibody, Tonbo Biosciences; B220-PE/Cy7 (RA3-6B2) (Rat monoclonal; 1:200)</td>
<td valign="bottom" rowspan="1" colspan="1">Tonbo Biosciences</td>
<td valign="bottom" rowspan="1" colspan="1">RRID:
<ext-link ext-link-type="uri" xlink:href="https://scicrunch.org/resolver/AB_2621849">AB_2621849</ext-link>
; Cat # 60–0452</td>
<td valign="bottom" rowspan="1" colspan="1"></td>
</tr>
<tr>
<td rowspan="1" colspan="1">Antibody</td>
<td valign="bottom" rowspan="1" colspan="1">CD11c Monoclonal Antibody (N418), PE-Cyanine7, eBioscience(TM), Thermo Fisher Scientific; CD11c-PE/Cy7 (N418) (Armenian Hamster monoclonal; 1:200)</td>
<td valign="bottom" rowspan="1" colspan="1">eBioscience</td>
<td valign="bottom" rowspan="1" colspan="1">RRID:
<ext-link ext-link-type="uri" xlink:href="https://scicrunch.org/resolver/AB_469590">AB_469590</ext-link>
; Cat # 25-0114-82</td>
<td valign="bottom" rowspan="1" colspan="1"></td>
</tr>
<tr>
<td rowspan="1" colspan="1">Antibody</td>
<td valign="bottom" rowspan="1" colspan="1">CD3e Monoclonal Antibody (145–2 C11), FITC, eBioscience(TM), Thermo Fisher Scientific; CD3-FITC (145–2 C11) (Armenian Hamster monoclonal; 1:200)</td>
<td valign="bottom" rowspan="1" colspan="1">eBioscience</td>
<td valign="bottom" rowspan="1" colspan="1">RRID:
<ext-link ext-link-type="uri" xlink:href="https://scicrunch.org/resolver/AB_464882">AB_464882</ext-link>
; Cat # 11-0031-82</td>
<td valign="bottom" rowspan="1" colspan="1"></td>
</tr>
<tr>
<td rowspan="1" colspan="1">Antibody</td>
<td valign="bottom" rowspan="1" colspan="1">Brilliant Violet 785 anti-mouse CD8a antibody, BioLegend; CD8-BV785 (53–6.7) (Rat monoclonal; 1:200)</td>
<td valign="bottom" rowspan="1" colspan="1">Biolegend</td>
<td valign="bottom" rowspan="1" colspan="1">RRID:
<ext-link ext-link-type="uri" xlink:href="https://scicrunch.org/resolver/AB_1121880">AB_1121880</ext-link>
; Cat # 100749</td>
<td valign="bottom" rowspan="1" colspan="1"></td>
</tr>
<tr>
<td rowspan="1" colspan="1">Antibody</td>
<td valign="bottom" rowspan="1" colspan="1">Rat Anti-CD4 Monoclonal Antibody, Phycoerythrin Conjugated, Clone GK1.5, BD Biosciences; CD4-PE (GK1.5) (Rat monoclonal; 1:200)</td>
<td valign="bottom" rowspan="1" colspan="1">BD Biosciences</td>
<td valign="bottom" rowspan="1" colspan="1">RRID:
<ext-link ext-link-type="uri" xlink:href="https://scicrunch.org/resolver/AB_395014">AB_395014</ext-link>
; Cat # 553730</td>
<td valign="bottom" rowspan="1" colspan="1"></td>
</tr>
<tr>
<td rowspan="1" colspan="1">Antibody</td>
<td valign="bottom" rowspan="1" colspan="1">Alexa Fluor 647 anti-mouse TCR γ/δ Antibody; gdTCR-AF647 (GL3) (Armenian Hamster monoclonal; 1:200)</td>
<td valign="bottom" rowspan="1" colspan="1">Biolegend</td>
<td valign="bottom" rowspan="1" colspan="1">RRID:
<ext-link ext-link-type="uri" xlink:href="https://scicrunch.org/resolver/AB_313826">AB_313826</ext-link>
; Cat # 118133</td>
<td valign="bottom" rowspan="1" colspan="1"></td>
</tr>
<tr>
<td valign="bottom" rowspan="1" colspan="1">Antibody</td>
<td valign="bottom" rowspan="1" colspan="1">CD117 (c-Kit) Monoclonal Antibody (2B8), Biotin; c-Kit-Biotin (ACK2) (Rat monoclonal; 1:200)</td>
<td valign="bottom" rowspan="1" colspan="1">eBioscience</td>
<td valign="bottom" rowspan="1" colspan="1">RRID:
<ext-link ext-link-type="uri" xlink:href="https://scicrunch.org/resolver/AB_466569">AB_466569</ext-link>
; Cat # 13-1171-82</td>
<td valign="bottom" rowspan="1" colspan="1"></td>
</tr>
<tr>
<td valign="bottom" rowspan="1" colspan="1">Antibody</td>
<td valign="bottom" rowspan="1" colspan="1">FceR1 alpha Monoclonal Antibody (MAR-1), PE, eBioscience; FceRI-PE (MAR-1) (Armenian Hamster monoclonal; 1:200)</td>
<td valign="bottom" rowspan="1" colspan="1">eBioscience</td>
<td valign="bottom" rowspan="1" colspan="1">RRID:
<ext-link ext-link-type="uri" xlink:href="https://scicrunch.org/resolver/AB_466028">AB_466028</ext-link>
; Cat # 12-5898-82</td>
<td valign="bottom" rowspan="1" colspan="1"></td>
</tr>
<tr>
<td valign="bottom" rowspan="1" colspan="1">Antibody</td>
<td valign="bottom" rowspan="1" colspan="1">CD49b (Integrin alpha 2) Monoclonal Antibody (DX5), PE-Cyanine7, eBioscience;
<break></break>
CD49b-PE/Cy7 (DX5) (Rat monoclonal; 1:200)</td>
<td valign="bottom" rowspan="1" colspan="1">eBioscience</td>
<td valign="bottom" rowspan="1" colspan="1">RRID:
<ext-link ext-link-type="uri" xlink:href="https://scicrunch.org/resolver/AB_469667">AB_469667</ext-link>
; Cat # 25-5971-82</td>
<td valign="bottom" rowspan="1" colspan="1"></td>
</tr>
<tr>
<td valign="bottom" rowspan="1" colspan="1">Antibody</td>
<td valign="bottom" rowspan="1" colspan="1">Anti-Siglec-F-APC, mouse (clone: REA798); SiglecF-APC; (Rat monoclonal; 1:200)</td>
<td valign="bottom" rowspan="1" colspan="1">Miltenyi Biotech</td>
<td valign="bottom" rowspan="1" colspan="1">RRID:
<ext-link ext-link-type="uri" xlink:href="https://scicrunch.org/resolver/AB_2653441">AB_2653441</ext-link>
; Cat # 130-112-333</td>
<td valign="bottom" rowspan="1" colspan="1"></td>
</tr>
<tr>
<td valign="bottom" rowspan="1" colspan="1">Other</td>
<td valign="bottom" rowspan="1" colspan="1">Streptavidin FITC; SA-FITC</td>
<td valign="bottom" rowspan="1" colspan="1">eBioscience</td>
<td valign="bottom" rowspan="1" colspan="1">RRID:
<ext-link ext-link-type="uri" xlink:href="https://scicrunch.org/resolver/AB_11431787">AB_11431787</ext-link>
; Cat # 11-4317-87</td>
<td valign="bottom" rowspan="1" colspan="1"></td>
</tr>
<tr>
<td valign="bottom" rowspan="1" colspan="1">Antibody</td>
<td valign="bottom" rowspan="1" colspan="1">Ly-6C Monoclonal Antibody (HK1.4), PerCP-Cyanine5.5, eBioscience; Ly6C-PerCP/Cy5.5 (HK1.4) (Rat monoclonal; 1:200)</td>
<td valign="bottom" rowspan="1" colspan="1">eBioscience</td>
<td valign="bottom" rowspan="1" colspan="1">RRID:
<ext-link ext-link-type="uri" xlink:href="https://scicrunch.org/resolver/AB_1518762">AB_1518762</ext-link>
;
<break></break>
Cat # 45-5932-82</td>
<td valign="bottom" rowspan="1" colspan="1"></td>
</tr>
<tr>
<td valign="bottom" rowspan="1" colspan="1">Antibody</td>
<td valign="bottom" rowspan="1" colspan="1">violetFluor 450 Anti-Human/Mouse CD11b (M1/70); CD11b-violet fluor 450 (M1/70) (Rat monoclonal; 1:200)</td>
<td valign="bottom" rowspan="1" colspan="1">Tonbo Biosciences</td>
<td valign="bottom" rowspan="1" colspan="1">RRID:
<ext-link ext-link-type="uri" xlink:href="https://scicrunch.org/resolver/AB_2621936">AB_2621936</ext-link>
; Cat # 75–0112</td>
<td valign="bottom" rowspan="1" colspan="1"></td>
</tr>
<tr>
<td valign="bottom" rowspan="1" colspan="1">Antibody</td>
<td valign="bottom" rowspan="1" colspan="1">AF700 anti-mouse Ly-6G Antibody (1A8); Ly6G-AF700 (1A8) (Rat monoclonal; 1:200)</td>
<td valign="bottom" rowspan="1" colspan="1">BioLegend</td>
<td valign="bottom" rowspan="1" colspan="1">RRID:
<ext-link ext-link-type="uri" xlink:href="https://scicrunch.org/resolver/AB_1064045">AB_1064045</ext-link>
; Cat # 127621</td>
<td valign="bottom" rowspan="1" colspan="1"></td>
</tr>
<tr>
<td valign="bottom" rowspan="1" colspan="1">Antibody</td>
<td valign="bottom" rowspan="1" colspan="1">CD45.2 Monoclonal Antibody (104), APC-Cy7, eBioscience; CD45.2-APC/Cy7 (104) (Mouse monoclonal, 1:200)</td>
<td valign="bottom" rowspan="1" colspan="1">eBioscience</td>
<td valign="bottom" rowspan="1" colspan="1">RRID:
<ext-link ext-link-type="uri" xlink:href="https://scicrunch.org/resolver/AB_1272175">AB_1272175</ext-link>
; Cat # 47-0454-82</td>
<td valign="bottom" rowspan="1" colspan="1"></td>
</tr>
<tr>
<td rowspan="1" colspan="1">Software, algorithm</td>
<td valign="bottom" rowspan="1" colspan="1">IgorPro version 6.3</td>
<td valign="bottom" rowspan="1" colspan="1">WaveMetrics</td>
<td valign="bottom" rowspan="1" colspan="1">
<ext-link ext-link-type="uri" xlink:href="https://www.wavemetrics.com/order/order_igordownloads6.htm">https://www.wavemetrics.com/order/order_igordownloads6.htm</ext-link>
</td>
<td valign="bottom" rowspan="1" colspan="1"></td>
</tr>
<tr>
<td rowspan="1" colspan="1">Software, algorithm</td>
<td valign="bottom" rowspan="1" colspan="1">Microsoft Excel 2011</td>
<td valign="bottom" rowspan="1" colspan="1">Microsoft</td>
<td valign="bottom" rowspan="1" colspan="1">
<ext-link ext-link-type="uri" xlink:href="https://www.microsoft.com/en-us/store/d/excel-2016-for-mac/">https://www.microsoft.com/en-us/store/d/excel-2016-for-mac/</ext-link>
</td>
<td valign="bottom" rowspan="1" colspan="1"></td>
</tr>
<tr>
<td rowspan="1" colspan="1">Software, algorithm</td>
<td valign="bottom" rowspan="1" colspan="1">FIJI</td>
<td valign="bottom" rowspan="1" colspan="1">NIH</td>
<td valign="bottom" rowspan="1" colspan="1">
<ext-link ext-link-type="uri" xlink:href="https://imagej.net/Fiji/Downloads">https://imagej.net/Fiji/Downloads</ext-link>
</td>
<td valign="bottom" rowspan="1" colspan="1"></td>
</tr>
<tr>
<td rowspan="1" colspan="1">Software, algorithm</td>
<td valign="bottom" rowspan="1" colspan="1">Graphpad Prism 7</td>
<td valign="bottom" rowspan="1" colspan="1">Graphpad</td>
<td valign="bottom" rowspan="1" colspan="1">
<ext-link ext-link-type="uri" xlink:href="https://www.graphpad.com/scientific-software/prism/">https://www.graphpad.com/scientific-software/prism/</ext-link>
</td>
<td valign="bottom" rowspan="1" colspan="1"></td>
</tr>
<tr>
<td rowspan="1" colspan="1">Software, algorithm</td>
<td valign="bottom" rowspan="1" colspan="1">R-3.6.0</td>
<td valign="bottom" rowspan="1" colspan="1">The R Project for Statistical Computing</td>
<td valign="bottom" rowspan="1" colspan="1">
<ext-link ext-link-type="uri" xlink:href="https://cran.r-project.org/bin/macosx/">https://cran.r-project.org/bin/macosx/</ext-link>
</td>
<td valign="bottom" rowspan="1" colspan="1"></td>
</tr>
<tr>
<td rowspan="1" colspan="1">Software, algorithm</td>
<td valign="bottom" rowspan="1" colspan="1">Python 2.7</td>
<td valign="bottom" rowspan="1" colspan="1">Anaconda</td>
<td valign="bottom" rowspan="1" colspan="1">
<ext-link ext-link-type="uri" xlink:href="https://www.anaconda.com/distribution/">https://www.anaconda.com/distribution/</ext-link>
</td>
<td valign="bottom" rowspan="1" colspan="1"></td>
</tr>
<tr>
<td rowspan="1" colspan="1">Software, algorithm</td>
<td valign="bottom" rowspan="1" colspan="1">HTSeq 0.11.1</td>
<td valign="bottom" rowspan="1" colspan="1">Python Package Index</td>
<td valign="bottom" rowspan="1" colspan="1">
<ext-link ext-link-type="uri" xlink:href="https://htseq.readthedocs.io/en/release_0.11.1/install.html">https://htseq.readthedocs.io/en/release_0.11.1/install.html</ext-link>
</td>
<td valign="bottom" rowspan="1" colspan="1"></td>
</tr>
<tr>
<td rowspan="1" colspan="1">Software, algorithm</td>
<td valign="bottom" rowspan="1" colspan="1">Trimmomatic</td>
<td valign="bottom" rowspan="1" colspan="1">PMID:
<ext-link ext-link-type="uri" xlink:href="https://www.ncbi.nlm.nih.gov/pubmed/24695404">24695404</ext-link>
</td>
<td valign="bottom" rowspan="1" colspan="1">
<ext-link ext-link-type="uri" xlink:href="https://github.com/timflutre/trimmomatic">https://github.com/timflutre/trimmomatic</ext-link>
</td>
<td valign="bottom" rowspan="1" colspan="1"></td>
</tr>
<tr>
<td rowspan="1" colspan="1">Software, algorithm</td>
<td valign="bottom" rowspan="1" colspan="1">Tophat 2.1.1</td>
<td valign="bottom" rowspan="1" colspan="1">PMID:
<ext-link ext-link-type="uri" xlink:href="https://www.ncbi.nlm.nih.gov/pubmed/19289445">19289445</ext-link>
</td>
<td valign="bottom" rowspan="1" colspan="1">
<ext-link ext-link-type="uri" xlink:href="https://ccb.jhu.edu/software/tophat/">https://ccb.jhu.edu/software/tophat/</ext-link>
</td>
<td valign="bottom" rowspan="1" colspan="1"></td>
</tr>
<tr>
<td rowspan="1" colspan="1">Software, algorithm</td>
<td valign="bottom" rowspan="1" colspan="1">EdgeR</td>
<td valign="bottom" rowspan="1" colspan="1">PMID:
<ext-link ext-link-type="uri" xlink:href="https://www.ncbi.nlm.nih.gov/pubmed/19910308">19910308</ext-link>
; PMID:
<ext-link ext-link-type="uri" xlink:href="https://www.ncbi.nlm.nih.gov/pubmed/22287627">22287627</ext-link>
</td>
<td valign="bottom" rowspan="1" colspan="1">
<ext-link ext-link-type="uri" xlink:href="https://bioconductor.org/packages/release/bioc/html/edgeR.html">https://bioconductor.org/packages/release/bioc/html/edgeR.html</ext-link>
</td>
<td valign="bottom" rowspan="1" colspan="1"></td>
</tr>
<tr>
<td rowspan="1" colspan="1">Software, algorithm</td>
<td valign="bottom" rowspan="1" colspan="1">DESeq</td>
<td valign="bottom" rowspan="1" colspan="1">PMID:
<ext-link ext-link-type="uri" xlink:href="https://www.ncbi.nlm.nih.gov/pubmed/20979621">20979621</ext-link>
</td>
<td valign="bottom" rowspan="1" colspan="1">
<ext-link ext-link-type="uri" xlink:href="https://bioconductor.org/packages/release/bioc/html/DESeq.html">https://bioconductor.org/packages/release/bioc/html/DESeq.html</ext-link>
</td>
<td valign="bottom" rowspan="1" colspan="1"></td>
</tr>
<tr>
<td rowspan="1" colspan="1">Software, algorithm</td>
<td valign="bottom" rowspan="1" colspan="1">FlowJo 10.4.2</td>
<td valign="bottom" rowspan="1" colspan="1">FlowJo; Treestar</td>
<td valign="bottom" rowspan="1" colspan="1">
<ext-link ext-link-type="uri" xlink:href="https://www.flowjo.com/solutions/flowjo/downloads">https://www.flowjo.com/solutions/flowjo/downloads</ext-link>
</td>
<td valign="bottom" rowspan="1" colspan="1"></td>
</tr>
<tr>
<td rowspan="1" colspan="1">Other</td>
<td valign="bottom" rowspan="1" colspan="1">Bovine serum albumin, cold ethanol fraction, pH 5.2,≥96%; BSA</td>
<td valign="bottom" rowspan="1" colspan="1">Sigma-Aldrich</td>
<td valign="bottom" rowspan="1" colspan="1">CAS 9048-46-8; Cat # A4503</td>
<td valign="bottom" rowspan="1" colspan="1"></td>
</tr>
<tr>
<td rowspan="1" colspan="1">Other</td>
<td valign="bottom" rowspan="1" colspan="1">NGS; Goat serum; Normal goat serum</td>
<td valign="bottom" rowspan="1" colspan="1">Abcam</td>
<td valign="bottom" rowspan="1" colspan="1">Cat # ab7481</td>
<td valign="bottom" rowspan="1" colspan="1"></td>
</tr>
</tbody>
</table>
</table-wrap>
<sec id="s4-1">
<title>Mouse studies</title>
<p>All mice were housed in standard conditions in accordance with standards approved by the Animal Care and Use Committee of the University of California Berkeley (12 hr light-dark cycle, 21 °C). Wild-type C57BL/6 mice were obtained from Charles River or Jackson Laboratories and raised in-house. TSLPR KO mice were kindly provided by Dr. Steven Ziegler (
<italic>Crlf2
<sup>tm1Jni</sup>
</italic>
<xref rid="bib11" ref-type="bibr">Carpino et al., 2004</xref>
) and backcrossed onto C57BL/6. All experiments were performed under the policies and recommendations of the International Association for the Study of Pain and approved by the University of California Berkeley Animal Care and Use Committee. Where appropriate, genotypes were assessed using standard PCR.</p>
</sec>
<sec id="s4-2">
<title>MC903 model of atopic dermatitis</title>
<p>MC903 (Calcipotriol; R and D Systems) was applied to the shaved mouse cheek (20 μl of 0.2 mM in ethanol) or rostral back (40 µl of 0.2 mM in ethanol) once per day for 1–12 days using a pipette. 100% ethanol was used. All MC903 studies were performed on 8–12 week old age-matched mice. Behavior, RNA-seq, flow cytometry, and immunohistochemistry were performed on days 1, 2, 3, 5, eight and/or 12. For AMG 487 experiments in the MC903 model, 50 µL 3.31 mM AMG 487 (Tocris) or 20% HPCD-PBS vehicle was injected subcutaneously one hour prior to recording behavior (
<xref rid="bib86" ref-type="bibr">Qu et al., 2015</xref>
). Spontaneous scratching was manually scored for the first 30 min of observation. Both bout number and length were recorded. Behavioral scoring was performed while blind to experimental condition and mouse genotype.</p>
</sec>
<sec id="s4-3">
<title>MC903 RNA isolation and sequencing</title>
<p>On days 1 (six hours post-treatment), 2, 5, or eight post-treatment, mice treated with MC903 and vehicle were euthanized via isoflurane and cervical dislocation. Cheek skin was removed, flash-frozen in liquid nitrogen, and cryo-homogenized with a mortar and pestle. Ipsilateral trigeminal ganglia were dissected and both skin and trigeminal ganglia were homogenized for three minutes (skin) or one minute (TG) in 1 mL RNAzol RT (Sigma-Aldrich). Thoracic spinal cord was dissected from mice treated with 40 µL MC903 or ethanol on the shaved rostral back skin and homogenized for one minute in 1 mL RNAzol. Large RNA was extracted using RNAzol RT per manufacturer’s instructions. RNA pellets were DNase treated (Ambion), resuspended in 50 µL DEPC-treated water, and subjected to poly(A) selection and RNA-seq library preparation (Apollo 324) at the Functional Genomics Laboratory (UC Berkeley). Single-end read sequencing (length = 50 bp) was performed by the QB3 Vincent G. Coates Genomic Sequencing Laboratory (UC Berkeley) on an Illumina HiSeq4000. See
<xref ref-type="supplementary-material" rid="supp1">Supplementary file 1</xref>
for number of mice per experimental condition and number of mapped reads per sample. Data are available at Gene Expression Omnibus under GSE132173.</p>
</sec>
<sec id="s4-4">
<title>MC903 RNA sequencing analysis</title>
<p>Reads were mapped to the mm10 mouse genome using Bowtie2 and Tophat, and reads were assigned to transcripts using htseq-count (
<xref rid="bib53" ref-type="bibr">Langmead et al., 2009</xref>
;
<xref rid="bib54" ref-type="bibr">Langmead and Salzberg, 2012</xref>
). For a given time point, replicate measurements for each gene from treated and control mice were used as input for DESeq (R) and genes with
<italic>p</italic>
<sub>adjusted</sub>
 <0.05 (for skin and spinal cord) or
<italic>p</italic>
<sub>adjusted</sub>
 <0.1 (for trigeminal ganglia) for at least one time point were retained for analysis (
<xref rid="bib2" ref-type="bibr">Anders and Huber, 2012</xref>
;
<xref rid="bib1" ref-type="bibr">Anders et al., 2013</xref>
). For the skin dataset, we collated a set of AD-related immune cell markers, cytokines, atopic dermatitis disease genes, neurite outgrown/axonal guidance genes, and locally expressed neuronal transcripts, and from this list visualized genes that were significantly differentially expressed for at least one time point. For the trigeminal ganglia dataset, we plotted all genes that were significantly differentially expressed for at least one time point. Genes from these lists were plotted with hierarchical clustering using heatmap2 (R) (
<xref rid="bib39" ref-type="bibr">Hill, 2019</xref>
).</p>
</sec>
<sec id="s4-5">
<title>Custom gene groups</title>
<p>Genes were clustered into functional groups and significance was evaluated using a permutation test. Briefly, we first tabulated the absolute value of the log
<sub>2</sub>
fold change of gene expression (between MC903 and EtOH) of each gene in a given group of
<italic>n</italic>
genes in turn, and then we calculated the median of these fold change values,
<italic>z
<sub>true</sub>
</italic>
. We then drew
<italic>n</italic>
random genes from the set of all genes detected in the samples and computed the median log
<sub>2</sub>
fold change as above using this null set,
<italic>z
<sub>null</sub>
</italic>
. Repeating the latter 10,000 times established a null distribution of median log
<sub>2</sub>
fold change values; we took the proportion of resampled gene groups that exhibited (
<italic>z
<sub>true</sub>
</italic>
 ≥
<italic>z
<sub>null</sub>
</italic>
) as an empirical
<italic>p</italic>
-value reporting the significance of changes in gene expression for a given group of
<italic>n</italic>
genes.</p>
</sec>
<sec id="s4-6">
<title>Flow cytometry</title>
<p>Skin samples were collected from the cheek of mice at the indicated time points with a 4- or 6 mm biopsy punch into cold RPMI 1640 medium (RPMI; Gibco) and minced into smaller pieces with surgical scissors. When ear skin was collected, whole ears were dissected postmortem into cold RPMI and finely minced with scissors. For isolation of immune cells, skin samples were digested for 1 hr at 37 °C using 1 U/mL Liberase TM (Roche) and 5 µg/mL DNAse I (Sigma). At the end of the digestion, samples were washed in FACS buffer (PBS with 0.5% FCS and 2 mM EDTA) and filtered through a 70 or 100 µm strainer (Falcon). Cells were stained with LIVE/DEAD fixable stain Aqua in PBS (Invitrogen), then blocked with anti-CD16/32 (UCSF Core) and stained with the following fluorophore-conjugated antibodies (all from eBiosciences unless stated otherwise) in FACS buffer: cKit-Biotin (clone ACK2; secondary stain with SA-FITC), CD11b-violet fluor 450 (Tonbo; clone M1/70), Ly6C-PerCP/Cy5.5 (clone HK1.4), CD49b-PE/Cy7 (clone DX5), CD45.2-APC/Cy7 (clone 104), FceRI-PE (MAR-1), Ly6G-AF700 (clone 1A8). 10 µL of counting beads (Invitrogen) were added after the last wash to measure absolute cell counts. For measurement of CD4
<sup>+</sup>
T cells, 6 mm skin biopsy punch samples were digested for 30 min at 37 °C using Collagenase VIII (Sigma). At the end of the digestion, cells were washed in RPMI buffer (RPMI with: 5% FCS, 1% penicillin-streptomycin, 2 mM L-glutamine, 10 mM HEPES buffer, 1 mM sodium pyruvate). Cells were blocked with anti-CD16/32 (UCSF Core) and stained with the following fluorophore-conjugated antibodies in FACS buffer (PBS with 5% FCS and 2 mM EDTA): CD45-APC-eFluor780 (clone 30-F11; eBiosciences), CD11b-PE/Cy7 (clone M1/70; BD Biosciences), B220-PE/Cy7 (clone RA3-6B2; Tonbo Biosciences), CD11c-PE/Cy7 (clone N418; eBiosciences), CD3-FITC (clone 145–2 C11; eBiosciences), CD8-BV785 (clone 53–6.7; Biolegend), CD4-PE (clone GK1.5; BD Biosciences), gdTCR-AF647 (clone GL3; Biolegend). 10 µL of counting beads (Invitrogen) were added after the last wash to measure absolute cell counts, and samples were resuspended in DAPI LIVE/DEAD (Invitrogen). Blood samples were collected from saphenous vein or from terminal bleed following decapitation. Red blood cells were lysed using ACK lysis buffer (Gibco), and samples were washed with FACS buffer (PBS with 0.5% FCS and 2 mM EDTA), and blocked with anti-CD16/32. Cells were stained with Ly6G-PE (1A8; BD Biosciences), CD11b-violet fluor 450 (M1/70, Tonbo), Ly6C-PerCP/Cy5.5 (HK1.4, Biolegend), and aGr1-APC/Cy7 (RB6-8C5, eBiosciences). For all experiments, single cell suspensions were analyzed on an LSR II or LSR Fortessa (BD Biosciences), and data were analyzed using FlowJo (TreeStar, v.9.9.3) software.</p>
</sec>
<sec id="s4-7">
<title>Human keratinocyte RNA sequencing</title>
<p>Normal human epidermal keratinocytes from juvenile skin (PromoCell #C-12001) were cultured in PromoCell Keratinocyte Growth Medium two and passaged fewer than five times. Cells were treated for three hours at room temperature with 100 μM SLIGRL or vehicle (Ringer’s + 0.1% DMSO). Total RNA was extracted by column purification (Qiagen RNeasy Mini Kit). RNA was sent to the Vincent J. Coates Sequencing Laboratory at UC Berkeley for standard library preparation and sequenced on an Illumina HiSeq2500 or 4000. Sequences were trimmed (Trimmomatic), mapped (hg19, TopHat) and assigned to transcripts using htseq-count. Differential gene expression was assessed using R (edgeR) (
<xref rid="bib39" ref-type="bibr">Hill, 2019</xref>
). Data are available at Gene Expression Omnibus under GSE132174.</p>
</sec>
<sec id="s4-8">
<title>IHC of whole-mount skin</title>
<p>Staining was performed as previously described (
<xref rid="bib38" ref-type="bibr">Hill et al., 2018</xref>
;
<xref rid="bib64" ref-type="bibr">Marshall et al., 2016</xref>
). Briefly, 8 week old mice were euthanized and the cheek skin was shaved. The removed skin was fixed overnight in 4% PFA, then washed in PBS (3X for 10 min each). Dermal fat was scraped away with a scalpel and skin was washed in PBST (0.3% Triton X-100; 3X for two hours each) then incubated in 1:500 primary antibody (Rabbit anti beta-Tubulin II; Abcam #ab18207 or Rabbit anti-CGRP; Immunostar #24112) in blocking buffer (PBST with 5% goat serum and 20% DMSO) for 6 days at 4°C. Skin was washed as before and incubated in 1:500 secondary antibody (Goat anti-Rabbit Alexa 594; Invitrogen #R37117) in blocking buffer for 3 days at 4°C. Skin was washed in PBST, serially dried in methanol: PBS solutions, incubated overnight in 100% methanol, and finally cleared with a 1:2 solution of benzyl alcohol: benzyl benzoate (BABB; Sigma) before mounting between No. 1.5 coverglass. Whole mount skin samples were imaged on a Zeiss LSM 880 confocal microscope with OPO using a 20x water objective. Image analysis was performed using a custom macro in FIJI. Briefly, maximum intensity z-projections of the beta-tubulin III or CGRP channel were converted to binary files that underwent edge-detection analysis. Regions were defined by circling all stained regions. Region sizes and locations were saved.</p>
</sec>
<sec id="s4-9">
<title>IHC of sectioned trigeminal ganglia</title>
<p>TG were dissected from 8- to 12 week old adult mice and post-fixed in 4% PFA for one hour. TG were cryo-protected overnight at 4°C in 30% sucrose-PBS, embedded in OCT, and then cryosectioned at 14 μm onto slides for staining. Slides were washed 3x in PBST (0.3% Triton X-100), blocked in 2.5% Normal Goat serum + 2.5% BSA-PBST, washed 3X in PBST, blocked in endogenous IgG block (1:10 F(ab) anti-mouse IgG (Abcam ab6668) + 1:1000 Rat anti-mouse CD16/CD32 (UCSF MAB Core) in 0.3% PBST), washed 3X in PBST and incubated overnight at 4°C in 1:1000 primary antibody in PBST + 0.5% Normal Goat Serum + 0.5% BSA. Slides were washed 3x in PBS, incubated 2 hr at RT in 1:1000 secondary antibody, washed 3X in PBS, and then incubated 30 min in 1:2000 DAPI-PBS. Slides were washed 3x in PBS and mounted in Fluoromount-G with No. 1.5 coverglass. Primary antibodies used: Mouse anti-CD45 (eBioscience #14-054-82) and Chicken anti-Peripherin (Abcam #39374). Secondary antibodies used: Goat anti-Chicken Alexa 594 (ThermoFisher #A11042) and Goat anti-Mouse Alexa 488 (Abcam #150117). DAPI (ThermoFisher #D1306) was also used to mark nuclei. Imaging of TG IHC experiments was performed on an Olympus IX71 microscope with a Lambda LS-xl light source (Sutter Instruments). For TG IHC analysis, images were analyzed using automated scripts in FIJI (ImageJ) software (
<xref rid="bib39" ref-type="bibr">Hill, 2019</xref>
). Briefly, images were separated into the DAPI, CD45, and Peripherin channels. The minimum/maximum intensity thresholds were batch-adjusted to pre-determined levels, and adjusted images were converted to binary files. Regions were defined by circling all stained regions with pre-determined size-criteria. Region sizes and locations were saved.</p>
</sec>
<sec id="s4-10">
<title>Neutrophil depletion</title>
<p>Neutrophils were acutely depleted using intraperitoneal injection with 250 µg aGR1 in PBS (clone RB6-8C5, a gift from D. Portnoy, UC Berkeley, or from Biolegend), 16–24 hr before behavioral and flow cytometry experiments. Depletion was verified using flow cytometry on blood collected from terminal bleed following decapitation. For longer depletion experiments using the MC903 model, mice were injected (with 250 µg aGR1 in PBS or PBS vehicle, i.p.) beginning one day prior to MC903 administration and each afternoon thereafter through day 7 of the model, or on days 8–11 for measurement of day 12 itch behaviors, and blood was collected via saphenous venipuncture at days 3, 5, or by decapitation at day eight to verify depletion.</p>
</sec>
<sec id="s4-11">
<title>CXCL10 ELISA measurements in skin</title>
<p>Neutrophil-depleted or uninjected mice were treated with MC903 or ethanol for 7 days. On day 8, 6 mm biopsy punches of cheek skin were harvested, flash-frozen in liquid nitrogen, cryo-homogenized by mortar and pestle, and homogenized on ice for three minutes at maximum speed in 0.5 mL of the following tissue homogenization buffer (all reagents from Sigma unless stated otherwise): 100 mM Tris, pH 7.4; 150 mM NaCl, 1 mM EGTA, 1 mM EDTA, 1% Triton X-100, and 0.5% Sodium deoxycholate in ddH2O; on the day of the experiment, 200 mM fresh PMSF in 100% ethanol was added to 1 mM, with one tablet cOmplete protease inhibitor (Roche) per 50 mL, and five tablets PhosSTOP inhibitor (Roche) per 50 mL buffer. Tissues were agitated in buffer for two hours at 4°C, and centrifuged at 13,000 rpm for 20 min at 4°C. Supernatants were aliquoted and stored at −80°C for up to one week. After thawing, samples were centrifuged at 10,000 rpm for five minutes at 4°C. Protein content of skin homogenates was quantified by BCA (Thermo Scientific) and homogenates were diluted to 2 mg/mL protein in PBS and were subsequently diluted 1:2 in Reagent Diluent (R and D Systems). CXCL10 protein was quantified using the Mouse CXCL10 Duoset ELISA kit (R and D Systems; #DY466-05) according to manufacturer’s instructions. Plate was read at 450 nm and CXCL10 was quantified using a seven-point standard curve (with blank and buffer controls) and fitted with a 4-parameter logistic curve.</p>
</sec>
<sec id="s4-12">
<title>Acute itch behavior</title>
<p>Itch behavioral measurements were performed as previously described (
<xref rid="bib97" ref-type="bibr">Shimada and LaMotte, 2008</xref>
;
<xref rid="bib116" ref-type="bibr">Wilson et al., 2011</xref>
;
<xref rid="bib73" ref-type="bibr">Morita et al., 2015</xref>
). Mice were shaved one week prior to itch behavior and acclimated in behavior chambers once for thirty minutes at the same time of day on the day prior to the experiment. Behavioral experiments were performed during the day. Compounds injected: 1 µg carrier-free CXCL1 (R and D systems) in PBS, 3.31 mM AMG 487 (Tocris, prepared from 100 mM DMSO stock) in 20% HPCD-PBS, 50 mM Chloroquine diphosphate (Sigma) in PBS, along with corresponding vehicle controls. Acute pruritogens were injected using the cheek model (20 µL, subcutaneous/s.c.) of itch, as previously described (
<xref rid="bib97" ref-type="bibr">Shimada and LaMotte, 2008</xref>
). AMG 487 (50 µL) or vehicle was injected s.c. into the rostral back skin one hour prior to recording of behavior. Behavioral scoring was performed as described above.</p>
</sec>
<sec id="s4-13">
<title>Lipidomics</title>
<p>Skin was collected from the cheek of mice post-mortem with a 6 mm biopsy punch and immediately flash-frozen in liquid nitrogen. Lipid mediators and metabolites were quantified via liquid chromatography-tandem mass spectrometry (LC-MS/MS) as described before (
<xref rid="bib114" ref-type="bibr">von Moltke et al., 2012</xref>
). In brief, skin was homogenized in cold methanol to stabilize lipid mediators. Deuterated internal standards (PGE
<sub>2</sub>
-d4, LTB
<sub>4</sub>
-d4, 15-HETE-d8, LXA
<sub>4</sub>
-d5, DHA-d5, AA-d8) were added to samples to calculate extraction recovery. LC-MS/MS system consisted of an Agilent 1200 Series HPLC, Luna C18 column (Phenomenex, Torrance, CA, USA), and AB Sciex QTRAP 4500 mass spectrometer. Analysis was carried out in negative ion mode, and lipid 30 mediators quantified using scheduled multiple reaction monitoring (MRM) mode using four to six specific transition ions per analyte (
<xref rid="bib91" ref-type="bibr">Sapieha et al., 2011</xref>
).</p>
</sec>
<sec id="s4-14">
<title>1-Fluoro-2,4-dinitrobenzene (DNFB) model of atopic dermatitis</title>
<p>The DNFB model was conducted as described previously (
<xref rid="bib101" ref-type="bibr">Solinski et al., 2019a</xref>
). Briefly, the rostral backs of isofluorane-anesthetized mice were shaved using surgical clippers. Two days after shaving, mice were treated with 25 µL 0.5% DNFB (Sigma) dissolved in 4:1 acetone:olive oil vehicle on the rostral back using a pipette. Five days after the initial DNFB sensitization, mice were challenged with 40 µL 0.2% DNFB or 4:1 acetone:olive oil vehicle applied to the outer surface of the right ear. Twenty-four hours after DNFB or vehicle challenge, mice were euthanized and ear skin was harvested for flow cytometry.</p>
</sec>
<sec id="s4-15">
<title>Statistical analyses</title>
<p>Different control experimental conditions (
<italic>e.g.</italic>
uninjected versus PBS-injected animals) were pooled when the appropriate statistical test showed they were not significantly different (
<xref ref-type="supplementary-material" rid="supp2">Supplementary file 2</xref>
). For all experiments except RNA-seq (see above), the following statistical tests were used, where appropriate: Student’s t-test, one-way ANOVA with Tukey-Kramer post hoc comparison, and two-way ANOVA with Tukey Kramer or Sidak’s post-hoc comparison. Bar graphs show mean ± SEM. Statistical analyses were performed using PRISM seven software (GraphPad). For all
<italic>p</italic>
values, *=0.01 < p<0.05, **=0.001 < p<0.01, ***=0.0001 < p<0.001, and ****=
<italic>p</italic>
 < 0.0001.</p>
</sec>
</sec>
</body>
<back>
<sec sec-type="funding-information">
<title>Funding Information</title>
<p>This paper was supported by the following grants:</p>
<list list-type="bullet">
<list-item>
<p>
<funding-source>
<institution-wrap>
<institution-id institution-id-type="FundRef">http://dx.doi.org/10.13039/100000069</institution-id>
<institution>National Institute of Arthritis and Musculoskeletal and Skin Diseases</institution>
</institution-wrap>
</funding-source>
<award-id>AR059385</award-id>
to Diana M Bautista.</p>
</list-item>
<list-item>
<p>
<funding-source>
<institution-wrap>
<institution-id institution-id-type="FundRef">http://dx.doi.org/10.13039/100000065</institution-id>
<institution>National Institute of Neurological Disorders and Stroke</institution>
</institution-wrap>
</funding-source>
<award-id>NS07224</award-id>
to Rachel B Brem, Diana M Bautista.</p>
</list-item>
<list-item>
<p>
<funding-source>
<institution-wrap>
<institution-id institution-id-type="FundRef">http://dx.doi.org/10.13039/100000011</institution-id>
<institution>Howard Hughes Medical Institute</institution>
</institution-wrap>
</funding-source>
to Diana M Bautista.</p>
</list-item>
<list-item>
<p>
<funding-source>
<institution-wrap>
<institution-id institution-id-type="FundRef">http://dx.doi.org/10.13039/100000060</institution-id>
<institution>National Institute of Allergy and Infectious Diseases</institution>
</institution-wrap>
</funding-source>
<award-id>AI072429</award-id>
to Gregory M Barton.</p>
</list-item>
<list-item>
<p>
<funding-source>
<institution-wrap>
<institution-id institution-id-type="FundRef">http://dx.doi.org/10.13039/100000060</institution-id>
<institution>National Institute of Allergy and Infectious Diseases</institution>
</institution-wrap>
</funding-source>
<award-id>AI063302</award-id>
to Gregory M Barton.</p>
</list-item>
<list-item>
<p>
<funding-source>
<institution-wrap>
<institution-id institution-id-type="FundRef">http://dx.doi.org/10.13039/100000060</institution-id>
<institution>National Institute of Allergy and Infectious Diseases</institution>
</institution-wrap>
</funding-source>
<award-id>AI104914</award-id>
to Gregory M Barton.</p>
</list-item>
<list-item>
<p>
<funding-source>
<institution-wrap>
<institution-id institution-id-type="FundRef">http://dx.doi.org/10.13039/100000060</institution-id>
<institution>National Institute of Allergy and Infectious Diseases</institution>
</institution-wrap>
</funding-source>
<award-id>AI105184</award-id>
to Gregory M Barton.</p>
</list-item>
<list-item>
<p>
<funding-source>
<institution-wrap>
<institution-id institution-id-type="FundRef">http://dx.doi.org/10.13039/100000861</institution-id>
<institution>Burroughs Wellcome Fund</institution>
</institution-wrap>
</funding-source>
to Gregory M Barton.</p>
</list-item>
<list-item>
<p>
<funding-source>
<institution-wrap>
<institution-id institution-id-type="FundRef">http://dx.doi.org/10.13039/501100000854</institution-id>
<institution>Human Frontier Science Program</institution>
</institution-wrap>
</funding-source>
<award-id>LT-000081/2013-L</award-id>
to Jacques Deguine.</p>
</list-item>
<list-item>
<p>
<funding-source>
<institution-wrap>
<institution-id institution-id-type="FundRef">http://dx.doi.org/10.13039/100000053</institution-id>
<institution>National Eye Institute</institution>
</institution-wrap>
</funding-source>
<award-id>EY026082</award-id>
to Karsten Gronert.</p>
</list-item>
<list-item>
<p>
<funding-source>
<institution-wrap>
<institution-id institution-id-type="FundRef">http://dx.doi.org/10.13039/100000065</institution-id>
<institution>National Institute of Neurological Disorders and Stroke</institution>
</institution-wrap>
</funding-source>
<award-id>NS098097</award-id>
to Rachel B Brem, Diana M Bautista.</p>
</list-item>
</list>
</sec>
<ack id="ack">
<title>Acknowledgements</title>
<p>The authors would like to thank members of the Bautista and Barton labs for helpful discussions on the data. We are grateful to S Ziegler (Ben Aroya Research Institute) for the gift of the TSLPR KO mouse. We also thank M Pellegrino and L Thé for pilot studies on human keratinocyte transcriptome, and T Morita and J Wong for technical assistance withTSLPR KO mouse behavioral experiments. DMB is supported by the NIH (AR059385; NS07224 and NS098097, also to RBB) and the Howard Hughes Medical Institute. GMB is supported by the NIH (AI072429, AI063302, AI104914, AI105184) and the Burroughs Wellcome Fund. JD was supported by a Long-Term Fellowship from the Human Frontier Science Program (LT-000081/2013 L). KG is supported by NIH grant EY026082. Confocal imaging experiments were conducted at the CRL Molecular Imaging Center, supported by the Helen Wills Neuroscience Institute (UC Berkeley). We would like to thank H Aaron and F Ives for their microscopy training and assistance. This work used the Functional Genomics Laboratory and the Vincent J Coates Genomics Sequencing Laboratory at UC Berkeley, supported by NIH S10 OD018174 Instrumentation Grant.</p>
</ack>
<sec id="s5" sec-type="additional-information">
<title>Additional information</title>
<fn-group content-type="competing-interest">
<title>
<bold>Competing interests</bold>
</title>
<fn fn-type="COI-statement" id="conf1">
<p>No competing interests declared.</p>
</fn>
</fn-group>
<fn-group content-type="author-contribution">
<title>
<bold>Author contributions</bold>
</title>
<fn fn-type="con" id="con1">
<p>Conceptualization, Formal analysis, Investigation, Visualization, Methodology, Writing—original draft, Writing—review and editing, Performed flow cytometry and behavior experiments, and made substantial contributions to Figures 1C, 1G, 2A, 2D, 2E, 2F, 2I, Figure 2—figure supplement 2, and Figure 2—figure supplement 4.</p>
</fn>
<fn fn-type="con" id="con2">
<p>Conceptualization, Data curation, Software, Formal analysis, Investigation, Visualization, Methodology, Writing—original draft, Writing—review and editing, Performed flow cytometry, behavior, skin, somatosensory ganglia and spinal cord RNA-seq, IHC, ELISA, and made substantial contributions to Figures 1A, 1B, 1C, 1H, 1I, 1J, Figure 1—figure supplement 1, Figure 1—figure supplement 7, Figure 1—figure supplement 9, Figures 2J, 2K, 3A, 3B, 3C, 3D, 3E, 3F, 3G, 4A, 4B, 4C, 4D, 4E, 4F, 4G, Figure 4—figure supplement 1, and Figure 4—figure supplement 2.</p>
</fn>
<fn fn-type="con" id="con3">
<p>Conceptualization, Investigation, Methodology, Writing—review and editing, Performed flow cytometry, keratinocyte RNA-Seq and behavior experiments, and made substantial contributions to Figure 1—figure supplement 6, Figure 1—figure supplement 10, Figures 2A, 2E, Figure 2—figure supplement 2, and Figure 2—figure supplement 3.</p>
</fn>
<fn fn-type="con" id="con4">
<p>Conceptualization, Formal analysis, Investigation, Methodology, Writing—review and editing, Performed flow cytometry experiments, and made substantial contributions to Figures 2A, 2B, 2C, 2E, 2G, 2H, Figure 2—figure supplement 1, Figure 2—figure supplement 2, and Figure 2—figure supplement 4.</p>
</fn>
<fn fn-type="con" id="con5">
<p>Conceptualization, Formal analysis, Investigation, Methodology, Writing—review and editing, Performed flow cytometry and behavior experiments, and made substantial contributions to Figures 1C, 1E, 1F, Figure 1—figure supplement 5, Figures 2A, 2B, 2C, 2F, 2G, 2H, Figure 2—figure supplement 1, Figures 2—figure supplement 2, and Figure 2—figure supplement 4.</p>
</fn>
<fn fn-type="con" id="con6">
<p>Investigation, Writing—review and editing, Performed behavior experiments, and made substantial contributions to Figures 1C and 2F.</p>
</fn>
<fn fn-type="con" id="con7">
<p>Investigation, Writing—review and editing, Performed IHC experiments, and made substantial contributions to Figures 3C, 3D, 3E, and 3F.</p>
</fn>
<fn fn-type="con" id="con8">
<p>Investigation, Performed mass spectrometry experiments, and made substantial contributions to Figure 1—figure supplement 10.</p>
</fn>
<fn fn-type="con" id="con9">
<p>Resources, Supervision, Funding acquisition, Methodology, Project administration, Writing—review and editing.</p>
</fn>
<fn fn-type="con" id="con10">
<p>Conceptualization, Resources, Supervision, Funding acquisition, Methodology, Project administration, Writing—review and editing.</p>
</fn>
<fn fn-type="con" id="con11">
<p>Conceptualization, Resources, Supervision, Funding acquisition, Methodology, Project administration, Writing—review and editing.</p>
</fn>
<fn fn-type="con" id="con12">
<p>Conceptualization, Resources, Formal analysis, Supervision, Funding acquisition, Methodology, Writing—original draft, Project administration, Writing—review and editing.</p>
</fn>
</fn-group>
<fn-group content-type="ethics-information">
<title>
<bold>Ethics</bold>
</title>
<fn fn-type="other" id="fn2">
<p>Animal experimentation: All mice were housed in standard conditions in accordance with standards approved by the Animal Care and Use Committee of the University of California Berkeley. All experiments were performed under the policies and recommendations of the International Association for the Study of Pain and approved by the University of California Berkeley Animal Care and Use Committee (Protocol Number: 2017-02-9550).</p>
</fn>
</fn-group>
</sec>
<sec id="s6" sec-type="supplementary-material">
<title>Additional files</title>
<supplementary-material content-type="local-data" id="sdata1">
<label>Source data 1.</label>
<caption>
<title>The outputs of all DESeq differential expression analyses used to determine adjusted
<italic>p</italic>
value and log
<sub>2</sub>
fold change for all RNA-seq experiments in the manuscript.</title>
</caption>
<media mime-subtype="zip" mimetype="application" xlink:href="elife-48448-data1.zip" orientation="portrait" id="d35e4757" position="anchor"></media>
</supplementary-material>
<supplementary-material content-type="local-data" id="supp1">
<label>Supplementary file 1.</label>
<caption>
<title>Number of mapped reads and sample information for all RNA-seq samples represented in the manuscript.</title>
</caption>
<media mime-subtype="octet-stream" mimetype="application" xlink:href="elife-48448-supp1.csv" orientation="portrait" id="d35e4764" position="anchor"></media>
</supplementary-material>
<supplementary-material content-type="local-data" id="supp2">
<label>Supplementary file 2.</label>
<caption>
<title>Outputs of statistical tests performed on behavioral and flow cytometry data to determine whether select data sets could be combined.</title>
</caption>
<media mime-subtype="xlsx" mimetype="application" xlink:href="elife-48448-supp2.xlsx" orientation="portrait" id="d35e4771" position="anchor"></media>
</supplementary-material>
<supplementary-material content-type="local-data" id="supp3">
<label>Supplementary file 3.</label>
<caption>
<title>All flow cytometry data from
<xref ref-type="fig" rid="fig1">Figures 1</xref>
<xref ref-type="fig" rid="fig2">2</xref>
represented as % of CD45
<sup>+</sup>
cells.</title>
</caption>
<media mime-subtype="xlsx" mimetype="application" xlink:href="elife-48448-supp3.xlsx" orientation="portrait" id="d35e4787" position="anchor"></media>
</supplementary-material>
<supplementary-material content-type="local-data" id="transrepform">
<label>Transparent reporting form</label>
<media mime-subtype="pdf" mimetype="application" xlink:href="elife-48448-transrepform.pdf" orientation="portrait" id="d35e4791" position="anchor"></media>
</supplementary-material>
</sec>
<sec id="s7" sec-type="data-availability">
<title>Data availability</title>
<p>All data generated or analyzed during this study are included in the manuscript and supporting files. Data from RNA-seq experiments are uploaded to GEO under accession codes GSE132173 and GSE132174. Processed sequencing data (DESeq output tables) are provided as a Source data 1. Code used to analyze data is available at
<ext-link ext-link-type="uri" xlink:href="https://github.com/rzhill/10.1101-653873">https://github.com/rzhill/10.1101-653873</ext-link>
(copy archived at
<ext-link ext-link-type="uri" xlink:href="https://github.com/elifesciences-publications/10.1101-653873">https://github.com/elifesciences-publications/10.1101-653873</ext-link>
).</p>
<p>The following datasets were generated:</p>
<p>
<element-citation publication-type="data" id="dataset1">
<person-group person-group-type="author">
<name>
<surname>Bautista</surname>
<given-names>DM</given-names>
</name>
<name>
<surname>Hill</surname>
<given-names>RZ</given-names>
</name>
</person-group>
<year iso-8601-date="2019">2019</year>
<data-title>RNA-seq of tissues from MC903- and Ethanol-treated mice</data-title>
<source>NCBI Gene Expression Omnibus</source>
<pub-id assigning-authority="NCBI" pub-id-type="accession" xlink:href="https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE132173">GSE132173</pub-id>
</element-citation>
</p>
<p>
<element-citation publication-type="data" id="dataset2">
<person-group person-group-type="author">
<name>
<surname>Bautista</surname>
<given-names>DM</given-names>
</name>
</person-group>
<year iso-8601-date="2019">2019</year>
<data-title>SLIGRL-induced gene expression changes in NHEK cells</data-title>
<source>NCBI Gene Expression Omnibus</source>
<pub-id assigning-authority="NCBI" pub-id-type="accession" xlink:href="https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE132174">GSE132174</pub-id>
</element-citation>
</p>
</sec>
<ref-list>
<title>References</title>
<ref id="bib1">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Anders</surname>
<given-names>S</given-names>
</name>
<name>
<surname>McCarthy</surname>
<given-names>DJ</given-names>
</name>
<name>
<surname>Chen</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Okoniewski</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Smyth</surname>
<given-names>GK</given-names>
</name>
<name>
<surname>Huber</surname>
<given-names>W</given-names>
</name>
<name>
<surname>Robinson</surname>
<given-names>MD</given-names>
</name>
</person-group>
<year>2013</year>
<article-title>Count-based differential expression analysis of RNA sequencing data using R and bioconductor</article-title>
<source>Nature Protocols</source>
<volume>8</volume>
<fpage>1765</fpage>
<lpage>1786</lpage>
<pub-id pub-id-type="doi">10.1038/nprot.2013.099</pub-id>
<pub-id pub-id-type="pmid">23975260</pub-id>
</element-citation>
</ref>
<ref id="bib2">
<element-citation publication-type="book">
<person-group person-group-type="author">
<name>
<surname>Anders</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Huber</surname>
<given-names>W</given-names>
</name>
</person-group>
<year>2012</year>
<data-title>Differential expression of RNA-Seq data at the gene level–the DESeq package</data-title>
<publisher-loc>Heidelberg</publisher-loc>
<ext-link ext-link-type="uri" xlink:href="http://watson.nci.nih.gov/bioc_mirror/packages/2.11/bioc/vignettes/DESeq/inst/doc/DESeq.pdf">http://watson.nci.nih.gov/bioc_mirror/packages/2.11/bioc/vignettes/DESeq/inst/doc/DESeq.pdf</ext-link>
</element-citation>
</ref>
<ref id="bib3">
<element-citation publication-type="book">
<person-group person-group-type="author">
<name>
<surname>Andersson</surname>
<given-names>S</given-names>
</name>
</person-group>
<year>2015</year>
<article-title>The role of mast cells and mast cell mediators in the development of atopic dermatitis in a mouse model</article-title>
<publisher-loc>Uppsala, Sweden</publisher-loc>
<publisher-name>SLU, Department of Biomedical Sciences and Veterinary Public Health</publisher-name>
<ext-link ext-link-type="uri" xlink:href="https://stud.epsilon.slu.se/6630/">https://stud.epsilon.slu.se/6630/</ext-link>
</element-citation>
</ref>
<ref id="bib4">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Baral</surname>
<given-names>P</given-names>
</name>
<name>
<surname>Umans</surname>
<given-names>BD</given-names>
</name>
<name>
<surname>Li</surname>
<given-names>L</given-names>
</name>
<name>
<surname>Wallrapp</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Bist</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Kirschbaum</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Wei</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Zhou</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Kuchroo</surname>
<given-names>VK</given-names>
</name>
<name>
<surname>Burkett</surname>
<given-names>PR</given-names>
</name>
<name>
<surname>Yipp</surname>
<given-names>BG</given-names>
</name>
<name>
<surname>Liberles</surname>
<given-names>SD</given-names>
</name>
<name>
<surname>Chiu</surname>
<given-names>IM</given-names>
</name>
</person-group>
<year>2018</year>
<article-title>Nociceptor sensory neurons suppress neutrophil and γδ T cell responses in bacterial lung infections and lethal pneumonia</article-title>
<source>Nature Medicine</source>
<volume>24</volume>
<fpage>417</fpage>
<lpage>426</lpage>
<pub-id pub-id-type="doi">10.1038/nm.4501</pub-id>
<pub-id pub-id-type="pmid">29505031</pub-id>
</element-citation>
</ref>
<ref id="bib5">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Bautista</surname>
<given-names>DM</given-names>
</name>
<name>
<surname>Jordt</surname>
<given-names>SE</given-names>
</name>
<name>
<surname>Nikai</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Tsuruda</surname>
<given-names>PR</given-names>
</name>
<name>
<surname>Read</surname>
<given-names>AJ</given-names>
</name>
<name>
<surname>Poblete</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Yamoah</surname>
<given-names>EN</given-names>
</name>
<name>
<surname>Basbaum</surname>
<given-names>AI</given-names>
</name>
<name>
<surname>Julius</surname>
<given-names>D</given-names>
</name>
</person-group>
<year>2006</year>
<article-title>TRPA1 mediates the inflammatory actions of environmental irritants and proalgesic agents</article-title>
<source>Cell</source>
<volume>124</volume>
<fpage>1269</fpage>
<lpage>1282</lpage>
<pub-id pub-id-type="doi">10.1016/j.cell.2006.02.023</pub-id>
<pub-id pub-id-type="pmid">16564016</pub-id>
</element-citation>
</ref>
<ref id="bib6">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Blake</surname>
<given-names>KJ</given-names>
</name>
<name>
<surname>Baral</surname>
<given-names>P</given-names>
</name>
<name>
<surname>Voisin</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Lubkin</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Pinho-Ribeiro</surname>
<given-names>FA</given-names>
</name>
<name>
<surname>Adams</surname>
<given-names>KL</given-names>
</name>
<name>
<surname>Roberson</surname>
<given-names>DP</given-names>
</name>
<name>
<surname>Ma</surname>
<given-names>YC</given-names>
</name>
<name>
<surname>Otto</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Woolf</surname>
<given-names>CJ</given-names>
</name>
<name>
<surname>Torres</surname>
<given-names>VJ</given-names>
</name>
<name>
<surname>Chiu</surname>
<given-names>IM</given-names>
</name>
</person-group>
<year>2018</year>
<article-title>Staphylococcus aureus produces pain through pore-forming toxins and neuronal TRPV1 that is silenced by QX-314</article-title>
<source>Nature Communications</source>
<volume>9</volume>
<elocation-id>37</elocation-id>
<pub-id pub-id-type="doi">10.1038/s41467-017-02448-6</pub-id>
<pub-id pub-id-type="pmid">29295977</pub-id>
</element-citation>
</ref>
<ref id="bib7">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Briot</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Deraison</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Lacroix</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Bonnart</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Robin</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Besson</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Dubus</surname>
<given-names>P</given-names>
</name>
<name>
<surname>Hovnanian</surname>
<given-names>A</given-names>
</name>
</person-group>
<year>2009</year>
<article-title>Kallikrein 5 induces atopic dermatitis-like lesions through PAR2-mediated thymic stromal lymphopoietin expression in netherton syndrome</article-title>
<source>The Journal of Experimental Medicine</source>
<volume>206</volume>
<fpage>1135</fpage>
<lpage>1147</lpage>
<pub-id pub-id-type="doi">10.1084/jem.20082242</pub-id>
<pub-id pub-id-type="pmid">19414552</pub-id>
</element-citation>
</ref>
<ref id="bib8">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Briot</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Lacroix</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Robin</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Steinhoff</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Deraison</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Hovnanian</surname>
<given-names>A</given-names>
</name>
</person-group>
<year>2010</year>
<article-title>Par2 inactivation inhibits early production of TSLP, but not cutaneous inflammation, in netherton syndrome adult mouse model</article-title>
<source>Journal of Investigative Dermatology</source>
<volume>130</volume>
<fpage>2736</fpage>
<lpage>2742</lpage>
<pub-id pub-id-type="doi">10.1038/jid.2010.233</pub-id>
<pub-id pub-id-type="pmid">20703245</pub-id>
</element-citation>
</ref>
<ref id="bib9">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Brunner</surname>
<given-names>PM</given-names>
</name>
<name>
<surname>Guttman-Yassky</surname>
<given-names>E</given-names>
</name>
<name>
<surname>Leung</surname>
<given-names>DY</given-names>
</name>
</person-group>
<year>2017</year>
<article-title>The immunology of atopic dermatitis and its reversibility with broad-spectrum and targeted therapies</article-title>
<source>Journal of Allergy and Clinical Immunology</source>
<volume>139</volume>
<fpage>S65</fpage>
<lpage>S76</lpage>
<pub-id pub-id-type="doi">10.1016/j.jaci.2017.01.011</pub-id>
<pub-id pub-id-type="pmid">28390479</pub-id>
</element-citation>
</ref>
<ref id="bib10">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Caceres</surname>
<given-names>AI</given-names>
</name>
<name>
<surname>Brackmann</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Elia</surname>
<given-names>MD</given-names>
</name>
<name>
<surname>Bessac</surname>
<given-names>BF</given-names>
</name>
<name>
<surname>del Camino</surname>
<given-names>D</given-names>
</name>
<name>
<surname>D'Amours</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Witek</surname>
<given-names>JS</given-names>
</name>
<name>
<surname>Fanger</surname>
<given-names>CM</given-names>
</name>
<name>
<surname>Chong</surname>
<given-names>JA</given-names>
</name>
<name>
<surname>Hayward</surname>
<given-names>NJ</given-names>
</name>
<name>
<surname>Homer</surname>
<given-names>RJ</given-names>
</name>
<name>
<surname>Cohn</surname>
<given-names>L</given-names>
</name>
<name>
<surname>Huang</surname>
<given-names>X</given-names>
</name>
<name>
<surname>Moran</surname>
<given-names>MM</given-names>
</name>
<name>
<surname>Jordt</surname>
<given-names>SE</given-names>
</name>
</person-group>
<year>2009</year>
<article-title>A sensory neuronal ion channel essential for airway inflammation and hyperreactivity in asthma</article-title>
<source>PNAS</source>
<volume>106</volume>
<fpage>9099</fpage>
<lpage>9104</lpage>
<pub-id pub-id-type="doi">10.1073/pnas.0900591106</pub-id>
<pub-id pub-id-type="pmid">19458046</pub-id>
</element-citation>
</ref>
<ref id="bib11">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Carpino</surname>
<given-names>N</given-names>
</name>
<name>
<surname>Thierfelder</surname>
<given-names>WE</given-names>
</name>
<name>
<surname>Chang</surname>
<given-names>MS</given-names>
</name>
<name>
<surname>Saris</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Turner</surname>
<given-names>SJ</given-names>
</name>
<name>
<surname>Ziegler</surname>
<given-names>SF</given-names>
</name>
<name>
<surname>Ihle</surname>
<given-names>JN</given-names>
</name>
</person-group>
<year>2004</year>
<article-title>Absence of an essential role for thymic stromal lymphopoietin receptor in murine B-cell development</article-title>
<source>Molecular and Cellular Biology</source>
<volume>24</volume>
<fpage>2584</fpage>
<lpage>2592</lpage>
<pub-id pub-id-type="doi">10.1128/MCB.24.6.2584-2592.2004</pub-id>
<pub-id pub-id-type="pmid">14993294</pub-id>
</element-citation>
</ref>
<ref id="bib12">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Carreira</surname>
<given-names>EU</given-names>
</name>
<name>
<surname>Carregaro</surname>
<given-names>V</given-names>
</name>
<name>
<surname>Teixeira</surname>
<given-names>MM</given-names>
</name>
<name>
<surname>Moriconi</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Aramini</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Verri</surname>
<given-names>WA</given-names>
</name>
<name>
<surname>Ferreira</surname>
<given-names>SH</given-names>
</name>
<name>
<surname>Cunha</surname>
<given-names>FQ</given-names>
</name>
<name>
<surname>Cunha</surname>
<given-names>TM</given-names>
</name>
</person-group>
<year>2013</year>
<article-title>Neutrophils recruited by CXCR1/2 signalling mediate post-incisional pain</article-title>
<source>European Journal of Pain</source>
<volume>17</volume>
<fpage>654</fpage>
<lpage>663</lpage>
<pub-id pub-id-type="doi">10.1002/j.1532-2149.2012.00240.x</pub-id>
<pub-id pub-id-type="pmid">23132735</pub-id>
</element-citation>
</ref>
<ref id="bib13">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Cevikbas</surname>
<given-names>F</given-names>
</name>
<name>
<surname>Wang</surname>
<given-names>X</given-names>
</name>
<name>
<surname>Akiyama</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Kempkes</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Savinko</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Antal</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Kukova</surname>
<given-names>G</given-names>
</name>
<name>
<surname>Buhl</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Ikoma</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Buddenkotte</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Soumelis</surname>
<given-names>V</given-names>
</name>
<name>
<surname>Feld</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Alenius</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Dillon</surname>
<given-names>SR</given-names>
</name>
<name>
<surname>Carstens</surname>
<given-names>E</given-names>
</name>
<name>
<surname>Homey</surname>
<given-names>B</given-names>
</name>
<name>
<surname>Basbaum</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Steinhoff</surname>
<given-names>M</given-names>
</name>
</person-group>
<year>2014</year>
<article-title>A sensory neuron-expressed IL-31 receptor mediates T helper cell-dependent itch: involvement of TRPV1 and TRPA1</article-title>
<source>Journal of Allergy and Clinical Immunology</source>
<volume>133</volume>
<fpage>448</fpage>
<lpage>460</lpage>
<pub-id pub-id-type="doi">10.1016/j.jaci.2013.10.048</pub-id>
<pub-id pub-id-type="pmid">24373353</pub-id>
</element-citation>
</ref>
<ref id="bib14">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Chatterjea</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Martinov</surname>
<given-names>T</given-names>
</name>
</person-group>
<year>2015</year>
<article-title>Mast cells: versatile gatekeepers of pain</article-title>
<source>Molecular Immunology</source>
<volume>63</volume>
<fpage>38</fpage>
<lpage>44</lpage>
<pub-id pub-id-type="doi">10.1016/j.molimm.2014.03.001</pub-id>
<pub-id pub-id-type="pmid">24666768</pub-id>
</element-citation>
</ref>
<ref id="bib15">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Choy</surname>
<given-names>DF</given-names>
</name>
<name>
<surname>Hsu</surname>
<given-names>DK</given-names>
</name>
<name>
<surname>Seshasayee</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Fung</surname>
<given-names>MA</given-names>
</name>
<name>
<surname>Modrusan</surname>
<given-names>Z</given-names>
</name>
<name>
<surname>Martin</surname>
<given-names>F</given-names>
</name>
<name>
<surname>Liu</surname>
<given-names>FT</given-names>
</name>
<name>
<surname>Arron</surname>
<given-names>JR</given-names>
</name>
</person-group>
<year>2012</year>
<article-title>Comparative transcriptomic analyses of atopic dermatitis and psoriasis reveal shared neutrophilic inflammation</article-title>
<source>Journal of Allergy and Clinical Immunology</source>
<volume>130</volume>
<fpage>1335</fpage>
<lpage>1343</lpage>
<pub-id pub-id-type="doi">10.1016/j.jaci.2012.06.044</pub-id>
<pub-id pub-id-type="pmid">22920495</pub-id>
</element-citation>
</ref>
<ref id="bib16">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Cunha</surname>
<given-names>JM</given-names>
</name>
<name>
<surname>Sachs</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Canetti</surname>
<given-names>CA</given-names>
</name>
<name>
<surname>Poole</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Ferreira</surname>
<given-names>SH</given-names>
</name>
<name>
<surname>Cunha</surname>
<given-names>FQ</given-names>
</name>
</person-group>
<year>2003</year>
<article-title>The critical role of leukotriene B4 in antigen-induced mechanical hyperalgesia in immunised rats</article-title>
<source>British Journal of Pharmacology</source>
<volume>139</volume>
<fpage>1135</fpage>
<lpage>1145</lpage>
<pub-id pub-id-type="doi">10.1038/sj.bjp.0705346</pub-id>
<pub-id pub-id-type="pmid">12871832</pub-id>
</element-citation>
</ref>
<ref id="bib17">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Dai</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Choo</surname>
<given-names>MK</given-names>
</name>
<name>
<surname>Park</surname>
<given-names>JM</given-names>
</name>
<name>
<surname>Fisher</surname>
<given-names>DE</given-names>
</name>
</person-group>
<year>2017</year>
<article-title>Topical ROR inverse agonists suppress inflammation in mouse models of atopic dermatitis and acute irritant dermatitis</article-title>
<source>Journal of Investigative Dermatology</source>
<volume>137</volume>
<fpage>2523</fpage>
<lpage>2531</lpage>
<pub-id pub-id-type="doi">10.1016/j.jid.2017.07.819</pub-id>
<pub-id pub-id-type="pmid">28774591</pub-id>
</element-citation>
</ref>
<ref id="bib18">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Dalgard</surname>
<given-names>FJ</given-names>
</name>
<name>
<surname>Gieler</surname>
<given-names>U</given-names>
</name>
<name>
<surname>Tomas-Aragones</surname>
<given-names>L</given-names>
</name>
<name>
<surname>Lien</surname>
<given-names>L</given-names>
</name>
<name>
<surname>Poot</surname>
<given-names>F</given-names>
</name>
<name>
<surname>Jemec</surname>
<given-names>GBE</given-names>
</name>
<name>
<surname>Misery</surname>
<given-names>L</given-names>
</name>
<name>
<surname>Szabo</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Linder</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Sampogna</surname>
<given-names>F</given-names>
</name>
<name>
<surname>Evers</surname>
<given-names>AWM</given-names>
</name>
<name>
<surname>Halvorsen</surname>
<given-names>JA</given-names>
</name>
<name>
<surname>Balieva</surname>
<given-names>F</given-names>
</name>
<name>
<surname>Szepietowski</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Romanov</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Marron</surname>
<given-names>SE</given-names>
</name>
<name>
<surname>Altunay</surname>
<given-names>IK</given-names>
</name>
<name>
<surname>Finlay</surname>
<given-names>AY</given-names>
</name>
<name>
<surname>Salek</surname>
<given-names>SS</given-names>
</name>
<name>
<surname>Kupfer</surname>
<given-names>J</given-names>
</name>
</person-group>
<year>2015</year>
<article-title>The psychological burden of skin diseases: a cross-sectional multicenter study among dermatological out-patients in 13 european countries</article-title>
<source>Journal of Investigative Dermatology</source>
<volume>135</volume>
<fpage>984</fpage>
<lpage>991</lpage>
<pub-id pub-id-type="doi">10.1038/jid.2014.530</pub-id>
<pub-id pub-id-type="pmid">25521458</pub-id>
</element-citation>
</ref>
<ref id="bib19">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Deftu</surname>
<given-names>AF</given-names>
</name>
<name>
<surname>Filippi</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Shibsaki</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Gheorghe</surname>
<given-names>RO</given-names>
</name>
<name>
<surname>Chiritoiu</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Ristoiu</surname>
<given-names>V</given-names>
</name>
</person-group>
<year>2017</year>
<article-title>Chemokine (C-X-C motif) ligand 1 (CXCL1) and chemokine (C-X-C motif) ligand 2 (CXCL2) modulate the activity of TRPV1+/IB4+ cultured rat dorsal root ganglia neurons upon short-term and acute application</article-title>
<source>Journal of Physiology and Pharmacology</source>
<volume>68</volume>
<fpage>385</fpage>
<lpage>395</lpage>
<pub-id pub-id-type="pmid">28820395</pub-id>
</element-citation>
</ref>
<ref id="bib20">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Deftu</surname>
<given-names>AF</given-names>
</name>
<name>
<surname>Filippi</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Gheorghe</surname>
<given-names>RO</given-names>
</name>
<name>
<surname>Ristoiu</surname>
<given-names>V</given-names>
</name>
</person-group>
<year>2018</year>
<article-title>CXCL1 activates TRPV1 via gi/o protein and actin filaments</article-title>
<source>Life Sciences</source>
<volume>193</volume>
<fpage>282</fpage>
<lpage>291</lpage>
<pub-id pub-id-type="doi">10.1016/j.lfs.2017.09.041</pub-id>
<pub-id pub-id-type="pmid">28966134</pub-id>
</element-citation>
</ref>
<ref id="bib21">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Demehri</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Morimoto</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Holtzman</surname>
<given-names>MJ</given-names>
</name>
<name>
<surname>Kopan</surname>
<given-names>R</given-names>
</name>
</person-group>
<year>2009</year>
<article-title>Skin-derived TSLP triggers progression from epidermal-barrier defects to asthma</article-title>
<source>PLOS Biology</source>
<volume>7</volume>
<elocation-id>e1000067</elocation-id>
<pub-id pub-id-type="doi">10.1371/journal.pbio.1000067</pub-id>
<pub-id pub-id-type="pmid">19557146</pub-id>
</element-citation>
</ref>
<ref id="bib22">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Dhand</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Aminoff</surname>
<given-names>MJ</given-names>
</name>
</person-group>
<year>2014</year>
<article-title>The neurology of itch</article-title>
<source>Brain</source>
<volume>137</volume>
<fpage>313</fpage>
<lpage>322</lpage>
<pub-id pub-id-type="doi">10.1093/brain/awt158</pub-id>
<pub-id pub-id-type="pmid">23794605</pub-id>
</element-citation>
</ref>
<ref id="bib23">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Dong</surname>
<given-names>X</given-names>
</name>
<name>
<surname>Dong</surname>
<given-names>X</given-names>
</name>
</person-group>
<year>2018</year>
<article-title>Peripheral and central mechanisms of itch</article-title>
<source>Neuron</source>
<volume>98</volume>
<fpage>482</fpage>
<lpage>494</lpage>
<pub-id pub-id-type="doi">10.1016/j.neuron.2018.03.023</pub-id>
<pub-id pub-id-type="pmid">29723501</pub-id>
</element-citation>
</ref>
<ref id="bib24">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Ewald</surname>
<given-names>DA</given-names>
</name>
<name>
<surname>Noda</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Oliva</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Litman</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Nakajima</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Li</surname>
<given-names>X</given-names>
</name>
<name>
<surname>Xu</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Workman</surname>
<given-names>CT</given-names>
</name>
<name>
<surname>Scheipers</surname>
<given-names>P</given-names>
</name>
<name>
<surname>Svitacheva</surname>
<given-names>N</given-names>
</name>
<name>
<surname>Labuda</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Krueger</surname>
<given-names>JG</given-names>
</name>
<name>
<surname>Suárez-Fariñas</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Kabashima</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Guttman-Yassky</surname>
<given-names>E</given-names>
</name>
</person-group>
<year>2017</year>
<article-title>Major differences between human atopic dermatitis and murine models, as determined by using global transcriptomic profiling</article-title>
<source>Journal of Allergy and Clinical Immunology</source>
<volume>139</volume>
<fpage>562</fpage>
<lpage>571</lpage>
<pub-id pub-id-type="doi">10.1016/j.jaci.2016.08.029</pub-id>
<pub-id pub-id-type="pmid">27702671</pub-id>
</element-citation>
</ref>
<ref id="bib25">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Finley</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Chen</surname>
<given-names>Z</given-names>
</name>
<name>
<surname>Esposito</surname>
<given-names>E</given-names>
</name>
<name>
<surname>Cuzzocrea</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Sabbadini</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Salvemini</surname>
<given-names>D</given-names>
</name>
</person-group>
<year>2013</year>
<article-title>Sphingosine 1-phosphate mediates hyperalgesia via a neutrophil-dependent mechanism</article-title>
<source>PLOS ONE</source>
<volume>8</volume>
<elocation-id>e55255</elocation-id>
<pub-id pub-id-type="doi">10.1371/journal.pone.0055255</pub-id>
<pub-id pub-id-type="pmid">23372844</pub-id>
</element-citation>
</ref>
<ref id="bib26">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Fogh</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Herlin</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Kragballe</surname>
<given-names>K</given-names>
</name>
</person-group>
<year>1989</year>
<article-title>Eicosanoids in skin of patients with atopic dermatitis: prostaglandin E2 and leukotriene B4 are present in biologically active concentrations</article-title>
<source>Journal of Allergy and Clinical Immunology</source>
<volume>83</volume>
<fpage>450</fpage>
<lpage>455</lpage>
<pub-id pub-id-type="doi">10.1016/0091-6749(89)90132-2</pub-id>
<pub-id pub-id-type="pmid">2537352</pub-id>
</element-citation>
</ref>
<ref id="bib27">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Gao</surname>
<given-names>PS</given-names>
</name>
<name>
<surname>Rafaels</surname>
<given-names>NM</given-names>
</name>
<name>
<surname>Mu</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Hand</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Murray</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Boguniewicz</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Hata</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Schneider</surname>
<given-names>L</given-names>
</name>
<name>
<surname>Hanifin</surname>
<given-names>JM</given-names>
</name>
<name>
<surname>Gallo</surname>
<given-names>RL</given-names>
</name>
<name>
<surname>Gao</surname>
<given-names>L</given-names>
</name>
<name>
<surname>Beaty</surname>
<given-names>TH</given-names>
</name>
<name>
<surname>Beck</surname>
<given-names>LA</given-names>
</name>
<name>
<surname>Leung</surname>
<given-names>DY</given-names>
</name>
<name>
<surname>Barnes</surname>
<given-names>KC</given-names>
</name>
</person-group>
<year>2010</year>
<article-title>Genetic variants in thymic stromal lymphopoietin are associated with atopic dermatitis and eczema herpeticum</article-title>
<source>Journal of Allergy and Clinical Immunology</source>
<volume>125</volume>
<fpage>1403</fpage>
<lpage>1407</lpage>
<pub-id pub-id-type="doi">10.1016/j.jaci.2010.03.016</pub-id>
<pub-id pub-id-type="pmid">20466416</pub-id>
</element-citation>
</ref>
<ref id="bib28">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Ghasemlou</surname>
<given-names>N</given-names>
</name>
<name>
<surname>Chiu</surname>
<given-names>IM</given-names>
</name>
<name>
<surname>Julien</surname>
<given-names>JP</given-names>
</name>
<name>
<surname>Woolf</surname>
<given-names>CJ</given-names>
</name>
</person-group>
<year>2015</year>
<article-title>CD11b+Ly6G- myeloid cells mediate mechanical inflammatory pain hypersensitivity</article-title>
<source>PNAS</source>
<volume>112</volume>
<fpage>E6808</fpage>
<lpage>E6817</lpage>
<pub-id pub-id-type="doi">10.1073/pnas.1501372112</pub-id>
<pub-id pub-id-type="pmid">26598697</pub-id>
</element-citation>
</ref>
<ref id="bib29">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Gittler</surname>
<given-names>JK</given-names>
</name>
<name>
<surname>Shemer</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Suárez-Fariñas</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Fuentes-Duculan</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Gulewicz</surname>
<given-names>KJ</given-names>
</name>
<name>
<surname>Wang</surname>
<given-names>CQ</given-names>
</name>
<name>
<surname>Mitsui</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Cardinale</surname>
<given-names>I</given-names>
</name>
<name>
<surname>de Guzman Strong</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Krueger</surname>
<given-names>JG</given-names>
</name>
<name>
<surname>Guttman-Yassky</surname>
<given-names>E</given-names>
</name>
</person-group>
<year>2012</year>
<article-title>Progressive activation of T(H)2/T(H)22 cytokines and selective epidermal proteins characterizes acute and chronic atopic dermatitis</article-title>
<source>Journal of Allergy and Clinical Immunology</source>
<volume>130</volume>
<fpage>1344</fpage>
<lpage>1354</lpage>
<pub-id pub-id-type="doi">10.1016/j.jaci.2012.07.012</pub-id>
<pub-id pub-id-type="pmid">22951056</pub-id>
</element-citation>
</ref>
<ref id="bib30">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Guerrero</surname>
<given-names>AT</given-names>
</name>
<name>
<surname>Verri</surname>
<given-names>WA</given-names>
</name>
<name>
<surname>Cunha</surname>
<given-names>TM</given-names>
</name>
<name>
<surname>Silva</surname>
<given-names>TA</given-names>
</name>
<name>
<surname>Schivo</surname>
<given-names>IR</given-names>
</name>
<name>
<surname>Dal-Secco</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Canetti</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Rocha</surname>
<given-names>FA</given-names>
</name>
<name>
<surname>Parada</surname>
<given-names>CA</given-names>
</name>
<name>
<surname>Cunha</surname>
<given-names>FQ</given-names>
</name>
<name>
<surname>Ferreira</surname>
<given-names>SH</given-names>
</name>
</person-group>
<year>2008</year>
<article-title>Involvement of LTB4 in zymosan-induced joint nociception in mice: participation of neutrophils and PGE2</article-title>
<source>Journal of Leukocyte Biology</source>
<volume>83</volume>
<fpage>122</fpage>
<lpage>130</lpage>
<pub-id pub-id-type="doi">10.1189/jlb.0207123</pub-id>
<pub-id pub-id-type="pmid">17913976</pub-id>
</element-citation>
</ref>
<ref id="bib31">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Guttman-Yassky</surname>
<given-names>E</given-names>
</name>
<name>
<surname>Suárez-Fariñas</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Chiricozzi</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Nograles</surname>
<given-names>KE</given-names>
</name>
<name>
<surname>Shemer</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Fuentes-Duculan</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Cardinale</surname>
<given-names>I</given-names>
</name>
<name>
<surname>Lin</surname>
<given-names>P</given-names>
</name>
<name>
<surname>Bergman</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Bowcock</surname>
<given-names>AM</given-names>
</name>
<name>
<surname>Krueger</surname>
<given-names>JG</given-names>
</name>
</person-group>
<year>2009</year>
<article-title>Broad defects in epidermal cornification in atopic dermatitis identified through genomic analysis</article-title>
<source>Journal of Allergy and Clinical Immunology</source>
<volume>124</volume>
<fpage>1235</fpage>
<lpage>1244</lpage>
<pub-id pub-id-type="doi">10.1016/j.jaci.2009.09.031</pub-id>
<pub-id pub-id-type="pmid">20004782</pub-id>
</element-citation>
</ref>
<ref id="bib32">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Guttman-Yassky</surname>
<given-names>E</given-names>
</name>
<name>
<surname>Krueger</surname>
<given-names>JG</given-names>
</name>
</person-group>
<year>2017</year>
<article-title>Atopic dermatitis and psoriasis: two different immune diseases or one spectrum?</article-title>
<source>Current Opinion in Immunology</source>
<volume>48</volume>
<fpage>68</fpage>
<lpage>73</lpage>
<pub-id pub-id-type="doi">10.1016/j.coi.2017.08.008</pub-id>
<pub-id pub-id-type="pmid">28869867</pub-id>
</element-citation>
</ref>
<ref id="bib33">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Haas</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Capellino</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Phan</surname>
<given-names>NQ</given-names>
</name>
<name>
<surname>Böhm</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Luger</surname>
<given-names>TA</given-names>
</name>
<name>
<surname>Straub</surname>
<given-names>RH</given-names>
</name>
<name>
<surname>Ständer</surname>
<given-names>S</given-names>
</name>
</person-group>
<year>2010</year>
<article-title>Low density of sympathetic nerve fibers relative to substance P-positive nerve fibers in Lesional skin of chronic pruritus and prurigo nodularis</article-title>
<source>Journal of Dermatological Science</source>
<volume>58</volume>
<fpage>193</fpage>
<lpage>197</lpage>
<pub-id pub-id-type="doi">10.1016/j.jdermsci.2010.03.020</pub-id>
<pub-id pub-id-type="pmid">20417061</pub-id>
</element-citation>
</ref>
<ref id="bib34">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Hamilton</surname>
<given-names>JD</given-names>
</name>
<name>
<surname>Suárez-Fariñas</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Dhingra</surname>
<given-names>N</given-names>
</name>
<name>
<surname>Cardinale</surname>
<given-names>I</given-names>
</name>
<name>
<surname>Li</surname>
<given-names>X</given-names>
</name>
<name>
<surname>Kostic</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Ming</surname>
<given-names>JE</given-names>
</name>
<name>
<surname>Radin</surname>
<given-names>AR</given-names>
</name>
<name>
<surname>Krueger</surname>
<given-names>JG</given-names>
</name>
<name>
<surname>Graham</surname>
<given-names>N</given-names>
</name>
<name>
<surname>Yancopoulos</surname>
<given-names>GD</given-names>
</name>
<name>
<surname>Pirozzi</surname>
<given-names>G</given-names>
</name>
<name>
<surname>Guttman-Yassky</surname>
<given-names>E</given-names>
</name>
</person-group>
<year>2014</year>
<article-title>Dupilumab improves the molecular signature in skin of patients with moderate-to-severe atopic dermatitis</article-title>
<source>Journal of Allergy and Clinical Immunology</source>
<volume>134</volume>
<fpage>1293</fpage>
<lpage>1300</lpage>
<pub-id pub-id-type="doi">10.1016/j.jaci.2014.10.013</pub-id>
<pub-id pub-id-type="pmid">25482871</pub-id>
</element-citation>
</ref>
<ref id="bib35">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Hammond</surname>
<given-names>TR</given-names>
</name>
<name>
<surname>Robinton</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Stevens</surname>
<given-names>B</given-names>
</name>
</person-group>
<year>2018</year>
<article-title>Microglia and the brain: complementary partners in development and disease</article-title>
<source>Annual Review of Cell and Developmental Biology</source>
<volume>34</volume>
<fpage>523</fpage>
<lpage>544</lpage>
<pub-id pub-id-type="doi">10.1146/annurev-cellbio-100616-060509</pub-id>
<pub-id pub-id-type="pmid">30089221</pub-id>
</element-citation>
</ref>
<ref id="bib36">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Hashimoto</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Rosen</surname>
<given-names>JD</given-names>
</name>
<name>
<surname>Sanders</surname>
<given-names>KM</given-names>
</name>
<name>
<surname>Yosipovitch</surname>
<given-names>G</given-names>
</name>
</person-group>
<year>2018</year>
<article-title>Possible role of neutrophils in itch</article-title>
<source>Itch</source>
<volume>3</volume>
<fpage>e17</fpage>
<pub-id pub-id-type="doi">10.1097/itx.0000000000000017</pub-id>
</element-citation>
</ref>
<ref id="bib37">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Hidaka</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Ogawa</surname>
<given-names>E</given-names>
</name>
<name>
<surname>Kobayashi</surname>
<given-names>EH</given-names>
</name>
<name>
<surname>Suzuki</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Funayama</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Nagashima</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Fujimura</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Aiba</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Nakayama</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Okuyama</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Yamamoto</surname>
<given-names>M</given-names>
</name>
</person-group>
<year>2017</year>
<article-title>The aryl hydrocarbon receptor AhR links atopic dermatitis and air pollution via induction of the neurotrophic factor artemin</article-title>
<source>Nature Immunology</source>
<volume>18</volume>
<fpage>64</fpage>
<lpage>73</lpage>
<pub-id pub-id-type="doi">10.1038/ni.3614</pub-id>
<pub-id pub-id-type="pmid">27869817</pub-id>
</element-citation>
</ref>
<ref id="bib38">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Hill</surname>
<given-names>RZ</given-names>
</name>
<name>
<surname>Hoffman</surname>
<given-names>BU</given-names>
</name>
<name>
<surname>Morita</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Campos</surname>
<given-names>SM</given-names>
</name>
<name>
<surname>Lumpkin</surname>
<given-names>EA</given-names>
</name>
<name>
<surname>Brem</surname>
<given-names>RB</given-names>
</name>
<name>
<surname>Bautista</surname>
<given-names>DM</given-names>
</name>
</person-group>
<year>2018</year>
<article-title>The signaling lipid sphingosine 1-phosphate regulates mechanical pain</article-title>
<source>eLife</source>
<volume>7</volume>
<elocation-id>e33285</elocation-id>
<pub-id pub-id-type="doi">10.7554/eLife.33285</pub-id>
<pub-id pub-id-type="pmid">29561262</pub-id>
</element-citation>
</ref>
<ref id="bib39">
<element-citation publication-type="software">
<person-group person-group-type="author">
<name>
<surname>Hill</surname>
<given-names>RZ</given-names>
</name>
</person-group>
<year>2019</year>
<data-title>10.1101-653873</data-title>
<source>Github</source>
<version designator="bcbb047">bcbb047</version>
<ext-link ext-link-type="uri" xlink:href="https://github.com/rzhill/10.1101-653873">https://github.com/rzhill/10.1101-653873</ext-link>
</element-citation>
</ref>
<ref id="bib40">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Huang</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Polgár</surname>
<given-names>E</given-names>
</name>
<name>
<surname>Solinski</surname>
<given-names>HJ</given-names>
</name>
<name>
<surname>Mishra</surname>
<given-names>SK</given-names>
</name>
<name>
<surname>Tseng</surname>
<given-names>PY</given-names>
</name>
<name>
<surname>Iwagaki</surname>
<given-names>N</given-names>
</name>
<name>
<surname>Boyle</surname>
<given-names>KA</given-names>
</name>
<name>
<surname>Dickie</surname>
<given-names>AC</given-names>
</name>
<name>
<surname>Kriegbaum</surname>
<given-names>MC</given-names>
</name>
<name>
<surname>Wildner</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Zeilhofer</surname>
<given-names>HU</given-names>
</name>
<name>
<surname>Watanabe</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Riddell</surname>
<given-names>JS</given-names>
</name>
<name>
<surname>Todd</surname>
<given-names>AJ</given-names>
</name>
<name>
<surname>Hoon</surname>
<given-names>MA</given-names>
</name>
</person-group>
<year>2018</year>
<article-title>Circuit dissection of the role of somatostatin in itch and pain</article-title>
<source>Nature Neuroscience</source>
<volume>21</volume>
<fpage>707</fpage>
<lpage>716</lpage>
<pub-id pub-id-type="doi">10.1038/s41593-018-0119-z</pub-id>
<pub-id pub-id-type="pmid">29556030</pub-id>
</element-citation>
</ref>
<ref id="bib41">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Ikoma</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Steinhoff</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Ständer</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Yosipovitch</surname>
<given-names>G</given-names>
</name>
<name>
<surname>Schmelz</surname>
<given-names>M</given-names>
</name>
</person-group>
<year>2006</year>
<article-title>The neurobiology of itch</article-title>
<source>Nature Reviews Neuroscience</source>
<volume>7</volume>
<fpage>535</fpage>
<lpage>547</lpage>
<pub-id pub-id-type="doi">10.1038/nrn1950</pub-id>
<pub-id pub-id-type="pmid">16791143</pub-id>
</element-citation>
</ref>
<ref id="bib42">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Ioannidis</surname>
<given-names>LJ</given-names>
</name>
<name>
<surname>Nie</surname>
<given-names>CQ</given-names>
</name>
<name>
<surname>Ly</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Ryg-Cornejo</surname>
<given-names>V</given-names>
</name>
<name>
<surname>Chiu</surname>
<given-names>CY</given-names>
</name>
<name>
<surname>Hansen</surname>
<given-names>DS</given-names>
</name>
</person-group>
<year>2016</year>
<article-title>Monocyte- and Neutrophil-Derived CXCL10 impairs efficient control of Blood-Stage malaria infection and promotes severe disease</article-title>
<source>The Journal of Immunology</source>
<volume>196</volume>
<fpage>1227</fpage>
<lpage>1238</lpage>
<pub-id pub-id-type="doi">10.4049/jimmunol.1501562</pub-id>
<pub-id pub-id-type="pmid">26718341</pub-id>
</element-citation>
</ref>
<ref id="bib43">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Jabbari</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Suárez-Fariñas</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Dewell</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Krueger</surname>
<given-names>JG</given-names>
</name>
</person-group>
<year>2012</year>
<article-title>Transcriptional profiling of psoriasis using RNA-seq reveals previously unidentified differentially expressed genes</article-title>
<source>Journal of Investigative Dermatology</source>
<volume>132</volume>
<fpage>246</fpage>
<lpage>249</lpage>
<pub-id pub-id-type="doi">10.1038/jid.2011.267</pub-id>
<pub-id pub-id-type="pmid">21850022</pub-id>
</element-citation>
</ref>
<ref id="bib44">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Jing</surname>
<given-names>PB</given-names>
</name>
<name>
<surname>Cao</surname>
<given-names>DL</given-names>
</name>
<name>
<surname>Li</surname>
<given-names>SS</given-names>
</name>
<name>
<surname>Zhu</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Bai</surname>
<given-names>XQ</given-names>
</name>
<name>
<surname>Wu</surname>
<given-names>XB</given-names>
</name>
<name>
<surname>Gao</surname>
<given-names>YJ</given-names>
</name>
</person-group>
<year>2018</year>
<article-title>Chemokine receptor CXCR3 in the spinal cord contributes to chronic itch in mice</article-title>
<source>Neuroscience Bulletin</source>
<volume>34</volume>
<fpage>54</fpage>
<lpage>63</lpage>
<pub-id pub-id-type="doi">10.1007/s12264-017-0128-z</pub-id>
<pub-id pub-id-type="pmid">28401489</pub-id>
</element-citation>
</ref>
<ref id="bib45">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Kamo</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Tominaga</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Taneda</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Ogawa</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Takamori</surname>
<given-names>K</given-names>
</name>
</person-group>
<year>2013</year>
<article-title>Neurotropin inhibits the increase in intraepidermal nerve density in the acetone-treated dry-skin mouse model</article-title>
<source>Clinical and Experimental Dermatology</source>
<volume>38</volume>
<fpage>665</fpage>
<lpage>668</lpage>
<pub-id pub-id-type="doi">10.1111/ced.12100</pub-id>
<pub-id pub-id-type="pmid">23745989</pub-id>
</element-citation>
</ref>
<ref id="bib46">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Kanda</surname>
<given-names>N</given-names>
</name>
<name>
<surname>Shimizu</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Tada</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Watanabe</surname>
<given-names>S</given-names>
</name>
</person-group>
<year>2007</year>
<article-title>IL-18 enhances IFN-gamma-induced production of CXCL9, CXCL10, and CXCL11 in human keratinocytes</article-title>
<source>European Journal of Immunology</source>
<volume>37</volume>
<fpage>338</fpage>
<lpage>350</lpage>
<pub-id pub-id-type="doi">10.1002/eji.200636420</pub-id>
<pub-id pub-id-type="pmid">17274000</pub-id>
</element-citation>
</ref>
<ref id="bib47">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Kim</surname>
<given-names>BS</given-names>
</name>
<name>
<surname>Siracusa</surname>
<given-names>MC</given-names>
</name>
<name>
<surname>Saenz</surname>
<given-names>SA</given-names>
</name>
<name>
<surname>Noti</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Monticelli</surname>
<given-names>LA</given-names>
</name>
<name>
<surname>Sonnenberg</surname>
<given-names>GF</given-names>
</name>
<name>
<surname>Hepworth</surname>
<given-names>MR</given-names>
</name>
<name>
<surname>Van Voorhees</surname>
<given-names>AS</given-names>
</name>
<name>
<surname>Comeau</surname>
<given-names>MR</given-names>
</name>
<name>
<surname>Artis</surname>
<given-names>D</given-names>
</name>
</person-group>
<year>2013</year>
<article-title>TSLP elicits IL-33-independent innate lymphoid cell responses to promote skin inflammation</article-title>
<source>Science Translational Medicine</source>
<volume>5</volume>
<fpage>170ra16</fpage>
<pub-id pub-id-type="doi">10.1126/scitranslmed.3005374</pub-id>
<pub-id pub-id-type="pmid">23363980</pub-id>
</element-citation>
</ref>
<ref id="bib48">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Kim</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Kobayashi</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Nagao</surname>
<given-names>K</given-names>
</name>
</person-group>
<year>2019</year>
<article-title>Research techniques made simple: mouse models of atopic dermatitis</article-title>
<source>Journal of Investigative Dermatology</source>
<volume>139</volume>
<fpage>984</fpage>
<lpage>990</lpage>
<pub-id pub-id-type="doi">10.1016/j.jid.2019.02.014</pub-id>
<pub-id pub-id-type="pmid">31010529</pub-id>
</element-citation>
</ref>
<ref id="bib49">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Kitamura</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Takata</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Aizawa</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Watanabe</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Wada</surname>
<given-names>T</given-names>
</name>
</person-group>
<year>2018</year>
<article-title>A murine model of atopic dermatitis can be generated by painting the dorsal skin with hapten twice 14 days apart</article-title>
<source>Scientific Reports</source>
<volume>8</volume>
<fpage>1</fpage>
<lpage>9</lpage>
<pub-id pub-id-type="doi">10.1038/s41598-018-24363-6</pub-id>
<pub-id pub-id-type="pmid">29311619</pub-id>
</element-citation>
</ref>
<ref id="bib50">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Koga</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Kabashima</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Shiraishi</surname>
<given-names>N</given-names>
</name>
<name>
<surname>Kobayashi</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Tokura</surname>
<given-names>Y</given-names>
</name>
</person-group>
<year>2008</year>
<article-title>Possible pathogenic role of Th17 cells for atopic dermatitis</article-title>
<source>Journal of Investigative Dermatology</source>
<volume>128</volume>
<fpage>2625</fpage>
<lpage>2630</lpage>
<pub-id pub-id-type="doi">10.1038/jid.2008.111</pub-id>
<pub-id pub-id-type="pmid">18432274</pub-id>
</element-citation>
</ref>
<ref id="bib51">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Koro</surname>
<given-names>O</given-names>
</name>
<name>
<surname>Furutani</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Hide</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Yamada</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Yamamoto</surname>
<given-names>S</given-names>
</name>
</person-group>
<year>1999</year>
<article-title>Chemical mediators in atopic dermatitis: involvement of leukotriene B4 released by a type I allergic reaction in the pathogenesis of atopic dermatitis</article-title>
<source>Journal of Allergy and Clinical Immunology</source>
<volume>103</volume>
<fpage>663</fpage>
<lpage>670</lpage>
<pub-id pub-id-type="doi">10.1016/S0091-6749(99)70240-X</pub-id>
<pub-id pub-id-type="pmid">10200017</pub-id>
</element-citation>
</ref>
<ref id="bib52">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Kou</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Nakamura</surname>
<given-names>F</given-names>
</name>
<name>
<surname>Aihara</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Chen</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Seto</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Komori-Yamaguchi</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Kambara</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Nagashima</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Goshima</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Ikezawa</surname>
<given-names>Z</given-names>
</name>
</person-group>
<year>2012</year>
<article-title>Decreased expression of semaphorin-3A, a neurite-collapsing factor, is associated with itch in psoriatic skin</article-title>
<source>Acta Dermato Venereologica</source>
<volume>92</volume>
<fpage>521</fpage>
<lpage>528</lpage>
<pub-id pub-id-type="doi">10.2340/00015555-1350</pub-id>
<pub-id pub-id-type="pmid">22565412</pub-id>
</element-citation>
</ref>
<ref id="bib53">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Langmead</surname>
<given-names>B</given-names>
</name>
<name>
<surname>Trapnell</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Pop</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Salzberg</surname>
<given-names>SL</given-names>
</name>
</person-group>
<year>2009</year>
<article-title>Ultrafast and memory-efficient alignment of short DNA sequences to the human genome</article-title>
<source>Genome Biology</source>
<volume>10</volume>
<elocation-id>R25</elocation-id>
<pub-id pub-id-type="doi">10.1186/gb-2009-10-3-r25</pub-id>
<pub-id pub-id-type="pmid">19261174</pub-id>
</element-citation>
</ref>
<ref id="bib54">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Langmead</surname>
<given-names>B</given-names>
</name>
<name>
<surname>Salzberg</surname>
<given-names>SL</given-names>
</name>
</person-group>
<year>2012</year>
<article-title>Fast gapped-read alignment with bowtie 2</article-title>
<source>Nature Methods</source>
<volume>9</volume>
<fpage>357</fpage>
<lpage>359</lpage>
<pub-id pub-id-type="doi">10.1038/nmeth.1923</pub-id>
<pub-id pub-id-type="pmid">22388286</pub-id>
</element-citation>
</ref>
<ref id="bib55">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Levine</surname>
<given-names>JD</given-names>
</name>
<name>
<surname>Khasar</surname>
<given-names>SG</given-names>
</name>
<name>
<surname>Green</surname>
<given-names>PG</given-names>
</name>
</person-group>
<year>2006</year>
<article-title>Neurogenic inflammation and arthritis</article-title>
<source>Annals of the New York Academy of Sciences</source>
<volume>1069</volume>
<fpage>155</fpage>
<lpage>167</lpage>
<pub-id pub-id-type="doi">10.1196/annals.1351.014</pub-id>
<pub-id pub-id-type="pmid">16855143</pub-id>
</element-citation>
</ref>
<ref id="bib56">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Li</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Hener</surname>
<given-names>P</given-names>
</name>
<name>
<surname>Zhang</surname>
<given-names>Z</given-names>
</name>
<name>
<surname>Kato</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Metzger</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Chambon</surname>
<given-names>P</given-names>
</name>
</person-group>
<year>2006</year>
<article-title>Topical vitamin D3 and low-calcemic analogs induce thymic stromal lymphopoietin in mouse keratinocytes and trigger an atopic dermatitis</article-title>
<source>PNAS</source>
<volume>103</volume>
<fpage>11736</fpage>
<lpage>11741</lpage>
<pub-id pub-id-type="doi">10.1073/pnas.0604575103</pub-id>
<pub-id pub-id-type="pmid">16880407</pub-id>
</element-citation>
</ref>
<ref id="bib57">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Li</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Hener</surname>
<given-names>P</given-names>
</name>
<name>
<surname>Zhang</surname>
<given-names>Z</given-names>
</name>
<name>
<surname>Ganti</surname>
<given-names>KP</given-names>
</name>
<name>
<surname>Metzger</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Chambon</surname>
<given-names>P</given-names>
</name>
</person-group>
<year>2009</year>
<article-title>Induction of thymic stromal lymphopoietin expression in keratinocytes is necessary for generating an atopic dermatitis upon application of the active vitamin D3 analogue MC903 on mouse skin</article-title>
<source>Journal of Investigative Dermatology</source>
<volume>129</volume>
<fpage>498</fpage>
<lpage>502</lpage>
<pub-id pub-id-type="doi">10.1038/jid.2008.232</pub-id>
<pub-id pub-id-type="pmid">18650845</pub-id>
</element-citation>
</ref>
<ref id="bib58">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Li</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Maillet</surname>
<given-names>I</given-names>
</name>
<name>
<surname>Mackowiak</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Viala</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Di Padova</surname>
<given-names>F</given-names>
</name>
<name>
<surname>Li</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Togbe</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Quesniaux</surname>
<given-names>V</given-names>
</name>
<name>
<surname>Lai</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Ryffel</surname>
<given-names>B</given-names>
</name>
</person-group>
<year>2017</year>
<article-title>Experimental atopic dermatitis depends on IL-33R signaling via MyD88 in dendritic cells</article-title>
<source>Cell Death & Disease</source>
<volume>8</volume>
<elocation-id>e2735</elocation-id>
<pub-id pub-id-type="doi">10.1038/cddis.2017.90</pub-id>
<pub-id pub-id-type="pmid">28383552</pub-id>
</element-citation>
</ref>
<ref id="bib59">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Liu</surname>
<given-names>B</given-names>
</name>
<name>
<surname>Tai</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Achanta</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Kaelberer</surname>
<given-names>MM</given-names>
</name>
<name>
<surname>Caceres</surname>
<given-names>AI</given-names>
</name>
<name>
<surname>Shao</surname>
<given-names>X</given-names>
</name>
<name>
<surname>Fang</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Jordt</surname>
<given-names>SE</given-names>
</name>
</person-group>
<year>2016</year>
<article-title>IL-33/ST2 signaling excites sensory neurons and mediates itch response in a mouse model of poison ivy contact allergy</article-title>
<source>PNAS</source>
<volume>113</volume>
<fpage>E7572</fpage>
<lpage>E7579</lpage>
<pub-id pub-id-type="doi">10.1073/pnas.1606608113</pub-id>
<pub-id pub-id-type="pmid">27821781</pub-id>
</element-citation>
</ref>
<ref id="bib60">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Liu</surname>
<given-names>B</given-names>
</name>
<name>
<surname>Tai</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Liu</surname>
<given-names>B</given-names>
</name>
<name>
<surname>Caceres</surname>
<given-names>AI</given-names>
</name>
<name>
<surname>Yin</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Jordt</surname>
<given-names>S-E</given-names>
</name>
</person-group>
<year>2019</year>
<article-title>Transcriptome profiling reveals Th2 Bias and identifies endogenous itch mediators in poison ivy contact dermatitis</article-title>
<source>JCI Insight</source>
<volume>4</volume>
<elocation-id>e124497</elocation-id>
<pub-id pub-id-type="doi">10.1172/jci.insight.124497</pub-id>
</element-citation>
</ref>
<ref id="bib61">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Liu</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Ji</surname>
<given-names>RR</given-names>
</name>
</person-group>
<year>2012</year>
<article-title>Oxidative stress induces itch via activation of transient receptor potential subtype ankyrin 1 in mice</article-title>
<source>Neuroscience Bulletin</source>
<volume>28</volume>
<fpage>145</fpage>
<lpage>154</lpage>
<pub-id pub-id-type="doi">10.1007/s12264-012-1207-9</pub-id>
<pub-id pub-id-type="pmid">22466125</pub-id>
</element-citation>
</ref>
<ref id="bib62">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Malik</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Ungar</surname>
<given-names>B</given-names>
</name>
<name>
<surname>Garcet</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Dutt</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Dickstein</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Zheng</surname>
<given-names>X</given-names>
</name>
<name>
<surname>Xu</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Estrada</surname>
<given-names>YD</given-names>
</name>
<name>
<surname>Suárez-Fariñas</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Shemer</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Krueger</surname>
<given-names>JG</given-names>
</name>
<name>
<surname>Guttman-Yassky</surname>
<given-names>E</given-names>
</name>
</person-group>
<year>2017</year>
<article-title>Dust mite induces multiple polar T cell axes in human skin</article-title>
<source>Clinical & Experimental Allergy</source>
<volume>47</volume>
<fpage>1648</fpage>
<lpage>1660</lpage>
<pub-id pub-id-type="doi">10.1111/cea.13040</pub-id>
<pub-id pub-id-type="pmid">28977706</pub-id>
</element-citation>
</ref>
<ref id="bib63">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Mansouri</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Guttman-Yassky</surname>
<given-names>E</given-names>
</name>
</person-group>
<year>2015</year>
<article-title>Immune pathways in atopic dermatitis, and definition of biomarkers through broad and targeted therapeutics</article-title>
<source>Journal of Clinical Medicine</source>
<volume>4</volume>
<fpage>858</fpage>
<lpage>873</lpage>
<pub-id pub-id-type="doi">10.3390/jcm4050858</pub-id>
<pub-id pub-id-type="pmid">26239452</pub-id>
</element-citation>
</ref>
<ref id="bib64">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Marshall</surname>
<given-names>KL</given-names>
</name>
<name>
<surname>Clary</surname>
<given-names>RC</given-names>
</name>
<name>
<surname>Baba</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Orlowsky</surname>
<given-names>RL</given-names>
</name>
<name>
<surname>Gerling</surname>
<given-names>GJ</given-names>
</name>
<name>
<surname>Lumpkin</surname>
<given-names>EA</given-names>
</name>
</person-group>
<year>2016</year>
<article-title>Touch receptors undergo rapid remodeling in healthy skin</article-title>
<source>Cell Reports</source>
<volume>17</volume>
<fpage>1719</fpage>
<lpage>1727</lpage>
<pub-id pub-id-type="doi">10.1016/j.celrep.2016.10.034</pub-id>
<pub-id pub-id-type="pmid">27829143</pub-id>
</element-citation>
</ref>
<ref id="bib65">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Martel</surname>
<given-names>BC</given-names>
</name>
<name>
<surname>Lovato</surname>
<given-names>P</given-names>
</name>
<name>
<surname>Bäumer</surname>
<given-names>W</given-names>
</name>
<name>
<surname>Olivry</surname>
<given-names>T</given-names>
</name>
</person-group>
<year>2017</year>
<article-title>Translational animal models of atopic dermatitis for preclinical studies</article-title>
<source>The Yale Journal of Biology and Medicine</source>
<volume>90</volume>
<fpage>389</fpage>
<lpage>402</lpage>
<pub-id pub-id-type="pmid">28955179</pub-id>
</element-citation>
</ref>
<ref id="bib66">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Matterne</surname>
<given-names>U</given-names>
</name>
<name>
<surname>Apfelbacher</surname>
<given-names>CJ</given-names>
</name>
<name>
<surname>Loerbroks</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Schwarzer</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Büttner</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Ofenloch</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Diepgen</surname>
<given-names>TL</given-names>
</name>
<name>
<surname>Weisshaar</surname>
<given-names>E</given-names>
</name>
</person-group>
<year>2011</year>
<article-title>Prevalence, correlates and characteristics of chronic pruritus: a population-based cross-sectional study</article-title>
<source>Acta Dermato Venereologica</source>
<volume>91</volume>
<fpage>674</fpage>
<lpage>679</lpage>
<pub-id pub-id-type="doi">10.2340/00015555-1159</pub-id>
<pub-id pub-id-type="pmid">21879245</pub-id>
</element-citation>
</ref>
<ref id="bib67">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Meixiong</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Anderson</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Limjunyawong</surname>
<given-names>N</given-names>
</name>
<name>
<surname>Sabbagh</surname>
<given-names>MF</given-names>
</name>
<name>
<surname>Hu</surname>
<given-names>E</given-names>
</name>
<name>
<surname>Mack</surname>
<given-names>MR</given-names>
</name>
<name>
<surname>Oetjen</surname>
<given-names>LK</given-names>
</name>
<name>
<surname>Wang</surname>
<given-names>F</given-names>
</name>
<name>
<surname>Kim</surname>
<given-names>BS</given-names>
</name>
<name>
<surname>Dong</surname>
<given-names>X</given-names>
</name>
</person-group>
<year>2019</year>
<article-title>Activation of Mast-Cell-Expressed Mas-Related G-Protein-Coupled receptors drives Non-histaminergic itch</article-title>
<source>Immunity</source>
<volume>50</volume>
<fpage>1163</fpage>
<lpage>1171</lpage>
<pub-id pub-id-type="doi">10.1016/j.immuni.2019.03.013</pub-id>
<pub-id pub-id-type="pmid">31027996</pub-id>
</element-citation>
</ref>
<ref id="bib68">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Meng</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Moriyama</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Feld</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Buddenkotte</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Buhl</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Szöllösi</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Zhang</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Miller</surname>
<given-names>P</given-names>
</name>
<name>
<surname>Ghetti</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Fischer</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Reeh</surname>
<given-names>PW</given-names>
</name>
<name>
<surname>Shan</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Wang</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Steinhoff</surname>
<given-names>M</given-names>
</name>
</person-group>
<year>2018</year>
<article-title>New mechanism underlying IL-31-induced atopic dermatitis</article-title>
<source>Journal of Allergy and Clinical Immunology</source>
<volume>141</volume>
<fpage>1677</fpage>
<lpage>1689</lpage>
<pub-id pub-id-type="doi">10.1016/j.jaci.2017.12.1002</pub-id>
<pub-id pub-id-type="pmid">29427643</pub-id>
</element-citation>
</ref>
<ref id="bib69">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Michalec</surname>
<given-names>L</given-names>
</name>
<name>
<surname>Choudhury</surname>
<given-names>BK</given-names>
</name>
<name>
<surname>Postlethwait</surname>
<given-names>E</given-names>
</name>
<name>
<surname>Wild</surname>
<given-names>JS</given-names>
</name>
<name>
<surname>Alam</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Lett-Brown</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Sur</surname>
<given-names>S</given-names>
</name>
</person-group>
<year>2002</year>
<article-title>CCL7 and CXCL10 orchestrate oxidative stress-induced neutrophilic lung inflammation</article-title>
<source>The Journal of Immunology</source>
<volume>168</volume>
<fpage>846</fpage>
<lpage>852</lpage>
<pub-id pub-id-type="doi">10.4049/jimmunol.168.2.846</pub-id>
<pub-id pub-id-type="pmid">11777981</pub-id>
</element-citation>
</ref>
<ref id="bib70">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Mihm</surname>
<given-names>MC</given-names>
</name>
<name>
<surname>Soter</surname>
<given-names>NA</given-names>
</name>
<name>
<surname>Dvorak</surname>
<given-names>HF</given-names>
</name>
<name>
<surname>Austen</surname>
<given-names>KF</given-names>
</name>
</person-group>
<year>1976</year>
<article-title>The structure of normal skin and the morphology of atopic eczema</article-title>
<source>Journal of Investigative Dermatology</source>
<volume>67</volume>
<fpage>305</fpage>
<lpage>312</lpage>
<pub-id pub-id-type="doi">10.1111/1523-1747.ep12514346</pub-id>
<pub-id pub-id-type="pmid">965785</pub-id>
</element-citation>
</ref>
<ref id="bib71">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Mollanazar</surname>
<given-names>NK</given-names>
</name>
<name>
<surname>Smith</surname>
<given-names>PK</given-names>
</name>
<name>
<surname>Yosipovitch</surname>
<given-names>G</given-names>
</name>
</person-group>
<year>2016</year>
<article-title>Mediators of chronic pruritus in atopic dermatitis: getting the itch out?</article-title>
<source>Clinical Reviews in Allergy & Immunology</source>
<volume>51</volume>
<fpage>263</fpage>
<lpage>292</lpage>
<pub-id pub-id-type="doi">10.1007/s12016-015-8488-5</pub-id>
<pub-id pub-id-type="pmid">25931325</pub-id>
</element-citation>
</ref>
<ref id="bib72">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Moosbrugger-Martinz</surname>
<given-names>V</given-names>
</name>
<name>
<surname>Schmuth</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Dubrac</surname>
<given-names>S</given-names>
</name>
</person-group>
<year>2017</year>
<article-title>A mouse model for atopic dermatitis using topical application of vitamin D3 or of its analog MC903</article-title>
<source>Methods in Molecular Biology</source>
<volume>1559</volume>
<fpage>91</fpage>
<lpage>106</lpage>
<pub-id pub-id-type="doi">10.1007/978-1-4939-6786-5_8</pub-id>
<pub-id pub-id-type="pmid">28063040</pub-id>
</element-citation>
</ref>
<ref id="bib73">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Morita</surname>
<given-names>T</given-names>
</name>
<name>
<surname>McClain</surname>
<given-names>SP</given-names>
</name>
<name>
<surname>Batia</surname>
<given-names>LM</given-names>
</name>
<name>
<surname>Pellegrino</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Wilson</surname>
<given-names>SR</given-names>
</name>
<name>
<surname>Kienzler</surname>
<given-names>MA</given-names>
</name>
<name>
<surname>Lyman</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Olsen</surname>
<given-names>AS</given-names>
</name>
<name>
<surname>Wong</surname>
<given-names>JF</given-names>
</name>
<name>
<surname>Stucky</surname>
<given-names>CL</given-names>
</name>
<name>
<surname>Brem</surname>
<given-names>RB</given-names>
</name>
<name>
<surname>Bautista</surname>
<given-names>DM</given-names>
</name>
</person-group>
<year>2015</year>
<article-title>HTR7 mediates serotonergic acute and chronic itch</article-title>
<source>Neuron</source>
<volume>87</volume>
<fpage>124</fpage>
<lpage>138</lpage>
<pub-id pub-id-type="doi">10.1016/j.neuron.2015.05.044</pub-id>
<pub-id pub-id-type="pmid">26074006</pub-id>
</element-citation>
</ref>
<ref id="bib74">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Nattkemper</surname>
<given-names>LA</given-names>
</name>
<name>
<surname>Tey</surname>
<given-names>HL</given-names>
</name>
<name>
<surname>Valdes-Rodriguez</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Lee</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Mollanazar</surname>
<given-names>NK</given-names>
</name>
<name>
<surname>Albornoz</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Sanders</surname>
<given-names>KM</given-names>
</name>
<name>
<surname>Yosipovitch</surname>
<given-names>G</given-names>
</name>
</person-group>
<year>2018</year>
<article-title>The genetics of chronic itch: gene expression in the skin of patients with atopic dermatitis and psoriasis with severe Itch</article-title>
<source>Journal of Investigative Dermatology</source>
<volume>138</volume>
<fpage>1311</fpage>
<lpage>1317</lpage>
<pub-id pub-id-type="doi">10.1016/j.jid.2017.12.029</pub-id>
<pub-id pub-id-type="pmid">29317264</pub-id>
</element-citation>
</ref>
<ref id="bib75">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Oaklander</surname>
<given-names>AL</given-names>
</name>
</person-group>
<year>2011</year>
<article-title>Neuropathic itch</article-title>
<source>Seminars in Cutaneous Medicine and Surgery</source>
<volume>30</volume>
<fpage>87</fpage>
<lpage>92</lpage>
<pub-id pub-id-type="doi">10.1016/j.sder.2011.04.006</pub-id>
<pub-id pub-id-type="pmid">21767768</pub-id>
</element-citation>
</ref>
<ref id="bib76">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Oaklander</surname>
<given-names>AL</given-names>
</name>
<name>
<surname>Siegel</surname>
<given-names>SM</given-names>
</name>
</person-group>
<year>2005</year>
<article-title>Cutaneous innervation: form and function</article-title>
<source>Journal of the American Academy of Dermatology</source>
<volume>53</volume>
<fpage>1027</fpage>
<lpage>1037</lpage>
<pub-id pub-id-type="doi">10.1016/j.jaad.2005.08.049</pub-id>
<pub-id pub-id-type="pmid">16310064</pub-id>
</element-citation>
</ref>
<ref id="bib77">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Oetjen</surname>
<given-names>LK</given-names>
</name>
<name>
<surname>Mack</surname>
<given-names>MR</given-names>
</name>
<name>
<surname>Feng</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Whelan</surname>
<given-names>TM</given-names>
</name>
<name>
<surname>Niu</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Guo</surname>
<given-names>CJ</given-names>
</name>
<name>
<surname>Chen</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Trier</surname>
<given-names>AM</given-names>
</name>
<name>
<surname>Xu</surname>
<given-names>AZ</given-names>
</name>
<name>
<surname>Tripathi</surname>
<given-names>SV</given-names>
</name>
<name>
<surname>Luo</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Gao</surname>
<given-names>X</given-names>
</name>
<name>
<surname>Yang</surname>
<given-names>L</given-names>
</name>
<name>
<surname>Hamilton</surname>
<given-names>SL</given-names>
</name>
<name>
<surname>Wang</surname>
<given-names>PL</given-names>
</name>
<name>
<surname>Brestoff</surname>
<given-names>JR</given-names>
</name>
<name>
<surname>Council</surname>
<given-names>ML</given-names>
</name>
<name>
<surname>Brasington</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Schaffer</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Brombacher</surname>
<given-names>F</given-names>
</name>
<name>
<surname>Hsieh</surname>
<given-names>CS</given-names>
</name>
<name>
<surname>Gereau</surname>
<given-names>RW</given-names>
</name>
<name>
<surname>Miller</surname>
<given-names>MJ</given-names>
</name>
<name>
<surname>Chen</surname>
<given-names>ZF</given-names>
</name>
<name>
<surname>Hu</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Davidson</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Liu</surname>
<given-names>Q</given-names>
</name>
<name>
<surname>Kim</surname>
<given-names>BS</given-names>
</name>
</person-group>
<year>2017</year>
<article-title>Sensory neurons Co-opt classical immune signaling pathways to mediate chronic itch</article-title>
<source>Cell</source>
<volume>171</volume>
<fpage>217</fpage>
<lpage>228</lpage>
<pub-id pub-id-type="doi">10.1016/j.cell.2017.08.006</pub-id>
<pub-id pub-id-type="pmid">28890086</pub-id>
</element-citation>
</ref>
<ref id="bib78">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Oetjen</surname>
<given-names>LK</given-names>
</name>
<name>
<surname>Kim</surname>
<given-names>BS</given-names>
</name>
</person-group>
<year>2018</year>
<article-title>Interactions of the immune and sensory nervous systems in atopy</article-title>
<source>The FEBS Journal</source>
<volume>285</volume>
<fpage>3138</fpage>
<lpage>3151</lpage>
<pub-id pub-id-type="doi">10.1111/febs.14465</pub-id>
<pub-id pub-id-type="pmid">29637705</pub-id>
</element-citation>
</ref>
<ref id="bib79">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Oyoshi</surname>
<given-names>MK</given-names>
</name>
<name>
<surname>He</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Li</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Mondal</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Yoon</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Afshar</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Chen</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Lee</surname>
<given-names>DM</given-names>
</name>
<name>
<surname>Luo</surname>
<given-names>HR</given-names>
</name>
<name>
<surname>Luster</surname>
<given-names>AD</given-names>
</name>
<name>
<surname>Cho</surname>
<given-names>JS</given-names>
</name>
<name>
<surname>Miller</surname>
<given-names>LS</given-names>
</name>
<name>
<surname>Larson</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Murphy</surname>
<given-names>GF</given-names>
</name>
<name>
<surname>Geha</surname>
<given-names>RS</given-names>
</name>
</person-group>
<year>2012</year>
<article-title>Leukotriene B4-driven neutrophil recruitment to the skin is essential for allergic skin inflammation</article-title>
<source>Immunity</source>
<volume>37</volume>
<fpage>747</fpage>
<lpage>758</lpage>
<pub-id pub-id-type="doi">10.1016/j.immuni.2012.06.018</pub-id>
<pub-id pub-id-type="pmid">23063331</pub-id>
</element-citation>
</ref>
<ref id="bib80">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Padovan</surname>
<given-names>E</given-names>
</name>
<name>
<surname>Spagnoli</surname>
<given-names>GC</given-names>
</name>
<name>
<surname>Ferrantini</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Heberer</surname>
<given-names>M</given-names>
</name>
</person-group>
<year>2002</year>
<article-title>IFN-a2a induces IP-10/CXCL10 and MIG/CXCL9 production in monocyte-derived dendritic cells and enhances their capacity to attract and stimulate CD8+ effector T cells</article-title>
<source>Journal of Leukocyte Biology</source>
<volume>71</volume>
<fpage>669</fpage>
<lpage>676</lpage>
<pub-id pub-id-type="pmid">11927654</pub-id>
</element-citation>
</ref>
<ref id="bib81">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Palmer</surname>
<given-names>CN</given-names>
</name>
<name>
<surname>Irvine</surname>
<given-names>AD</given-names>
</name>
<name>
<surname>Terron-Kwiatkowski</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Zhao</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Liao</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Lee</surname>
<given-names>SP</given-names>
</name>
<name>
<surname>Goudie</surname>
<given-names>DR</given-names>
</name>
<name>
<surname>Sandilands</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Campbell</surname>
<given-names>LE</given-names>
</name>
<name>
<surname>Smith</surname>
<given-names>FJ</given-names>
</name>
<name>
<surname>O'Regan</surname>
<given-names>GM</given-names>
</name>
<name>
<surname>Watson</surname>
<given-names>RM</given-names>
</name>
<name>
<surname>Cecil</surname>
<given-names>JE</given-names>
</name>
<name>
<surname>Bale</surname>
<given-names>SJ</given-names>
</name>
<name>
<surname>Compton</surname>
<given-names>JG</given-names>
</name>
<name>
<surname>DiGiovanna</surname>
<given-names>JJ</given-names>
</name>
<name>
<surname>Fleckman</surname>
<given-names>P</given-names>
</name>
<name>
<surname>Lewis-Jones</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Arseculeratne</surname>
<given-names>G</given-names>
</name>
<name>
<surname>Sergeant</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Munro</surname>
<given-names>CS</given-names>
</name>
<name>
<surname>El Houate</surname>
<given-names>B</given-names>
</name>
<name>
<surname>McElreavey</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Halkjaer</surname>
<given-names>LB</given-names>
</name>
<name>
<surname>Bisgaard</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Mukhopadhyay</surname>
<given-names>S</given-names>
</name>
<name>
<surname>McLean</surname>
<given-names>WH</given-names>
</name>
</person-group>
<year>2006</year>
<article-title>Common loss-of-function variants of the epidermal barrier protein filaggrin are a major predisposing factor for atopic dermatitis</article-title>
<source>Nature Genetics</source>
<volume>38</volume>
<fpage>441</fpage>
<lpage>446</lpage>
<pub-id pub-id-type="doi">10.1038/ng1767</pub-id>
<pub-id pub-id-type="pmid">16550169</pub-id>
</element-citation>
</ref>
<ref id="bib82">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Pereira</surname>
<given-names>MP</given-names>
</name>
<name>
<surname>Mühl</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Pogatzki-Zahn</surname>
<given-names>EM</given-names>
</name>
<name>
<surname>Agelopoulos</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Ständer</surname>
<given-names>S</given-names>
</name>
</person-group>
<year>2016</year>
<article-title>Intraepidermal nerve fiber density: diagnostic and therapeutic relevance in the management of chronic pruritus: a review</article-title>
<source>Dermatology and Therapy</source>
<volume>6</volume>
<fpage>509</fpage>
<lpage>517</lpage>
<pub-id pub-id-type="doi">10.1007/s13555-016-0146-1</pub-id>
<pub-id pub-id-type="pmid">27730494</pub-id>
</element-citation>
</ref>
<ref id="bib83">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Perkins</surname>
<given-names>NM</given-names>
</name>
<name>
<surname>Tracey</surname>
<given-names>DJ</given-names>
</name>
</person-group>
<year>2000</year>
<article-title>Hyperalgesia due to nerve injury: role of neutrophils</article-title>
<source>Neuroscience</source>
<volume>101</volume>
<fpage>745</fpage>
<lpage>757</lpage>
<pub-id pub-id-type="doi">10.1016/S0306-4522(00)00396-1</pub-id>
<pub-id pub-id-type="pmid">11113323</pub-id>
</element-citation>
</ref>
<ref id="bib84">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Pinho-Ribeiro</surname>
<given-names>FA</given-names>
</name>
<name>
<surname>Verri</surname>
<given-names>WA</given-names>
</name>
<name>
<surname>Chiu</surname>
<given-names>IM</given-names>
</name>
</person-group>
<year>2017</year>
<article-title>Nociceptor sensory Neuron-Immune interactions in pain and inflammation</article-title>
<source>Trends in Immunology</source>
<volume>38</volume>
<fpage>5</fpage>
<lpage>19</lpage>
<pub-id pub-id-type="doi">10.1016/j.it.2016.10.001</pub-id>
<pub-id pub-id-type="pmid">27793571</pub-id>
</element-citation>
</ref>
<ref id="bib85">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Pinho-Ribeiro</surname>
<given-names>FA</given-names>
</name>
<name>
<surname>Baddal</surname>
<given-names>B</given-names>
</name>
<name>
<surname>Haarsma</surname>
<given-names>R</given-names>
</name>
<name>
<surname>O'Seaghdha</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Yang</surname>
<given-names>NJ</given-names>
</name>
<name>
<surname>Blake</surname>
<given-names>KJ</given-names>
</name>
<name>
<surname>Portley</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Verri</surname>
<given-names>WA</given-names>
</name>
<name>
<surname>Dale</surname>
<given-names>JB</given-names>
</name>
<name>
<surname>Wessels</surname>
<given-names>MR</given-names>
</name>
<name>
<surname>Chiu</surname>
<given-names>IM</given-names>
</name>
</person-group>
<year>2018</year>
<article-title>Blocking neuronal signaling to immune cells treats streptococcal invasive infection</article-title>
<source>Cell</source>
<volume>173</volume>
<fpage>1083</fpage>
<lpage>1097</lpage>
<pub-id pub-id-type="doi">10.1016/j.cell.2018.04.006</pub-id>
<pub-id pub-id-type="pmid">29754819</pub-id>
</element-citation>
</ref>
<ref id="bib86">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Qu</surname>
<given-names>L</given-names>
</name>
<name>
<surname>Fu</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Yang</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Shimada</surname>
<given-names>SG</given-names>
</name>
<name>
<surname>LaMotte</surname>
<given-names>RH</given-names>
</name>
</person-group>
<year>2015</year>
<article-title>CXCR3 chemokine receptor signaling mediates itch in experimental allergic contact dermatitis</article-title>
<source>Pain</source>
<volume>156</volume>
<fpage>1737</fpage>
<lpage>1746</lpage>
<pub-id pub-id-type="doi">10.1097/j.pain.0000000000000208</pub-id>
<pub-id pub-id-type="pmid">25932692</pub-id>
</element-citation>
</ref>
<ref id="bib87">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Qu</surname>
<given-names>L</given-names>
</name>
<name>
<surname>Fu</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Shimada</surname>
<given-names>SG</given-names>
</name>
<name>
<surname>LaMotte</surname>
<given-names>RH</given-names>
</name>
</person-group>
<year>2017</year>
<article-title>Cl
<sup>-</sup>
channel is required for CXCL10
<sup>-</sup>
induced neuronal activation and itch response in a murine model of allergic contact dermatitis</article-title>
<source>Journal of Neurophysiology</source>
<volume>118</volume>
<fpage>619</fpage>
<lpage>624</lpage>
<pub-id pub-id-type="doi">10.1152/jn.00187.2017</pub-id>
<pub-id pub-id-type="pmid">28446581</pub-id>
</element-citation>
</ref>
<ref id="bib88">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Rattenholl</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Steinhoff</surname>
<given-names>M</given-names>
</name>
</person-group>
<year>2003</year>
<article-title>Role of proteinase-activated receptors in cutaneous biology and disease</article-title>
<source>Drug Development Research</source>
<volume>59</volume>
<fpage>408</fpage>
<lpage>416</lpage>
<pub-id pub-id-type="doi">10.1002/ddr.10311</pub-id>
</element-citation>
</ref>
<ref id="bib89">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Salvemini</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Little</surname>
<given-names>JW</given-names>
</name>
<name>
<surname>Doyle</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Neumann</surname>
<given-names>WL</given-names>
</name>
</person-group>
<year>2011</year>
<article-title>Roles of reactive oxygen and nitrogen species in pain</article-title>
<source>Free Radical Biology and Medicine</source>
<volume>51</volume>
<fpage>951</fpage>
<lpage>966</lpage>
<pub-id pub-id-type="doi">10.1016/j.freeradbiomed.2011.01.026</pub-id>
<pub-id pub-id-type="pmid">21277369</pub-id>
</element-citation>
</ref>
<ref id="bib90">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Sandilands</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Terron-Kwiatkowski</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Hull</surname>
<given-names>PR</given-names>
</name>
<name>
<surname>O'Regan</surname>
<given-names>GM</given-names>
</name>
<name>
<surname>Clayton</surname>
<given-names>TH</given-names>
</name>
<name>
<surname>Watson</surname>
<given-names>RM</given-names>
</name>
<name>
<surname>Carrick</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Evans</surname>
<given-names>AT</given-names>
</name>
<name>
<surname>Liao</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Zhao</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Campbell</surname>
<given-names>LE</given-names>
</name>
<name>
<surname>Schmuth</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Gruber</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Janecke</surname>
<given-names>AR</given-names>
</name>
<name>
<surname>Elias</surname>
<given-names>PM</given-names>
</name>
<name>
<surname>van Steensel</surname>
<given-names>MA</given-names>
</name>
<name>
<surname>Nagtzaam</surname>
<given-names>I</given-names>
</name>
<name>
<surname>van Geel</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Steijlen</surname>
<given-names>PM</given-names>
</name>
<name>
<surname>Munro</surname>
<given-names>CS</given-names>
</name>
<name>
<surname>Bradley</surname>
<given-names>DG</given-names>
</name>
<name>
<surname>Palmer</surname>
<given-names>CN</given-names>
</name>
<name>
<surname>Smith</surname>
<given-names>FJ</given-names>
</name>
<name>
<surname>McLean</surname>
<given-names>WH</given-names>
</name>
<name>
<surname>Irvine</surname>
<given-names>AD</given-names>
</name>
</person-group>
<year>2007</year>
<article-title>Comprehensive analysis of the gene encoding filaggrin uncovers prevalent and rare mutations in ichthyosis vulgaris and atopic eczema</article-title>
<source>Nature Genetics</source>
<volume>39</volume>
<fpage>650</fpage>
<lpage>654</lpage>
<pub-id pub-id-type="doi">10.1038/ng2020</pub-id>
<pub-id pub-id-type="pmid">17417636</pub-id>
</element-citation>
</ref>
<ref id="bib91">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Sapieha</surname>
<given-names>P</given-names>
</name>
<name>
<surname>Stahl</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Chen</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Seaward</surname>
<given-names>MR</given-names>
</name>
<name>
<surname>Willett</surname>
<given-names>KL</given-names>
</name>
<name>
<surname>Krah</surname>
<given-names>NM</given-names>
</name>
<name>
<surname>Dennison</surname>
<given-names>RJ</given-names>
</name>
<name>
<surname>Connor</surname>
<given-names>KM</given-names>
</name>
<name>
<surname>Aderman</surname>
<given-names>CM</given-names>
</name>
<name>
<surname>Liclican</surname>
<given-names>E</given-names>
</name>
<name>
<surname>Carughi</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Perelman</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Kanaoka</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Sangiovanni</surname>
<given-names>JP</given-names>
</name>
<name>
<surname>Gronert</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Smith</surname>
<given-names>LE</given-names>
</name>
</person-group>
<year>2011</year>
<article-title>5-Lipoxygenase metabolite 4-HDHA is a mediator of the antiangiogenic effect of ω-3 polyunsaturated fatty acids</article-title>
<source>Science Translational Medicine</source>
<volume>3</volume>
<elocation-id>69ra12</elocation-id>
<pub-id pub-id-type="doi">10.1126/scitranslmed.3001571</pub-id>
<pub-id pub-id-type="pmid">21307302</pub-id>
</element-citation>
</ref>
<ref id="bib92">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Saunders</surname>
<given-names>SP</given-names>
</name>
<name>
<surname>Moran</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Floudas</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Wurlod</surname>
<given-names>F</given-names>
</name>
<name>
<surname>Kaszlikowska</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Salimi</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Quinn</surname>
<given-names>EM</given-names>
</name>
<name>
<surname>Oliphant</surname>
<given-names>CJ</given-names>
</name>
<name>
<surname>Núñez</surname>
<given-names>G</given-names>
</name>
<name>
<surname>McManus</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Hams</surname>
<given-names>E</given-names>
</name>
<name>
<surname>Irvine</surname>
<given-names>AD</given-names>
</name>
<name>
<surname>McKenzie</surname>
<given-names>AN</given-names>
</name>
<name>
<surname>Ogg</surname>
<given-names>GS</given-names>
</name>
<name>
<surname>Fallon</surname>
<given-names>PG</given-names>
</name>
</person-group>
<year>2016</year>
<article-title>Spontaneous atopic dermatitis is mediated by innate immunity, with the secondary lung inflammation of the atopic march requiring adaptive immunity</article-title>
<source>Journal of Allergy and Clinical Immunology</source>
<volume>137</volume>
<fpage>482</fpage>
<lpage>491</lpage>
<pub-id pub-id-type="doi">10.1016/j.jaci.2015.06.045</pub-id>
<pub-id pub-id-type="pmid">26299987</pub-id>
</element-citation>
</ref>
<ref id="bib93">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Schön</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Denzer</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Kubitza</surname>
<given-names>RC</given-names>
</name>
<name>
<surname>Ruzicka</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Schön</surname>
<given-names>MP</given-names>
</name>
</person-group>
<year>2000</year>
<article-title>Critical role of neutrophils for the generation of psoriasiform skin lesions in flaky skin mice</article-title>
<source>Journal of Investigative Dermatology</source>
<volume>114</volume>
<fpage>976</fpage>
<lpage>983</lpage>
<pub-id pub-id-type="doi">10.1046/j.1523-1747.2000.00953.x</pub-id>
<pub-id pub-id-type="pmid">10771480</pub-id>
</element-citation>
</ref>
<ref id="bib94">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Schüttenhelm</surname>
<given-names>BN</given-names>
</name>
<name>
<surname>Duraku</surname>
<given-names>LS</given-names>
</name>
<name>
<surname>Dijkstra</surname>
<given-names>JF</given-names>
</name>
<name>
<surname>Walbeehm</surname>
<given-names>ET</given-names>
</name>
<name>
<surname>Holstege</surname>
<given-names>JC</given-names>
</name>
</person-group>
<year>2015</year>
<article-title>Differential changes in the peptidergic and the Non-Peptidergic skin innervation in rat models for inflammation, dry skin itch, and dermatitis</article-title>
<source>Journal of Investigative Dermatology</source>
<volume>135</volume>
<fpage>2049</fpage>
<lpage>2057</lpage>
<pub-id pub-id-type="doi">10.1038/jid.2015.137</pub-id>
<pub-id pub-id-type="pmid">25848979</pub-id>
</element-citation>
</ref>
<ref id="bib95">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Scott</surname>
<given-names>DL</given-names>
</name>
<name>
<surname>Wolfe</surname>
<given-names>F</given-names>
</name>
<name>
<surname>Huizinga</surname>
<given-names>TWJ</given-names>
</name>
</person-group>
<year>2010</year>
<article-title>Rheumatoid arthritis</article-title>
<source>The Lancet</source>
<volume>376</volume>
<fpage>1094</fpage>
<lpage>1108</lpage>
<pub-id pub-id-type="doi">10.1016/S0140-6736(10)60826-4</pub-id>
</element-citation>
</ref>
<ref id="bib96">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Shalit</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Campbell</surname>
<given-names>DE</given-names>
</name>
<name>
<surname>von Allmen</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Atkins</surname>
<given-names>PC</given-names>
</name>
<name>
<surname>Douglas</surname>
<given-names>SD</given-names>
</name>
<name>
<surname>Zweiman</surname>
<given-names>B</given-names>
</name>
</person-group>
<year>1987</year>
<article-title>Neutrophil activation in human inflammatory skin reactions</article-title>
<source>Journal of Allergy and Clinical Immunology</source>
<volume>80</volume>
<fpage>87</fpage>
<lpage>93</lpage>
<pub-id pub-id-type="doi">10.1016/S0091-6749(87)80196-3</pub-id>
<pub-id pub-id-type="pmid">3598032</pub-id>
</element-citation>
</ref>
<ref id="bib97">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Shimada</surname>
<given-names>SG</given-names>
</name>
<name>
<surname>LaMotte</surname>
<given-names>RH</given-names>
</name>
</person-group>
<year>2008</year>
<article-title>Behavioral differentiation between itch and pain in mouse</article-title>
<source>Pain</source>
<volume>139</volume>
<fpage>681</fpage>
<lpage>687</lpage>
<pub-id pub-id-type="doi">10.1016/j.pain.2008.08.002</pub-id>
<pub-id pub-id-type="pmid">18789837</pub-id>
</element-citation>
</ref>
<ref id="bib98">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Shiratori-Hayashi</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Koga</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Tozaki-Saitoh</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Kohro</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Toyonaga</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Yamaguchi</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Hasegawa</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Nakahara</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Hachisuka</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Akira</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Okano</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Furue</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Inoue</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Tsuda</surname>
<given-names>M</given-names>
</name>
</person-group>
<year>2015</year>
<article-title>STAT3-dependent reactive astrogliosis in the spinal dorsal horn underlies chronic itch</article-title>
<source>Nature Medicine</source>
<volume>21</volume>
<fpage>927</fpage>
<lpage>931</lpage>
<pub-id pub-id-type="doi">10.1038/nm.3912</pub-id>
<pub-id pub-id-type="pmid">26193341</pub-id>
</element-citation>
</ref>
<ref id="bib99">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Simpson</surname>
<given-names>EL</given-names>
</name>
<name>
<surname>Bieber</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Guttman-Yassky</surname>
<given-names>E</given-names>
</name>
<name>
<surname>Beck</surname>
<given-names>LA</given-names>
</name>
<name>
<surname>Blauvelt</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Cork</surname>
<given-names>MJ</given-names>
</name>
<name>
<surname>Silverberg</surname>
<given-names>JI</given-names>
</name>
<name>
<surname>Deleuran</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Kataoka</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Lacour</surname>
<given-names>JP</given-names>
</name>
<name>
<surname>Kingo</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Worm</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Poulin</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Wollenberg</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Soo</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Graham</surname>
<given-names>NM</given-names>
</name>
<name>
<surname>Pirozzi</surname>
<given-names>G</given-names>
</name>
<name>
<surname>Akinlade</surname>
<given-names>B</given-names>
</name>
<name>
<surname>Staudinger</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Mastey</surname>
<given-names>V</given-names>
</name>
<name>
<surname>Eckert</surname>
<given-names>L</given-names>
</name>
<name>
<surname>Gadkari</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Stahl</surname>
<given-names>N</given-names>
</name>
<name>
<surname>Yancopoulos</surname>
<given-names>GD</given-names>
</name>
<name>
<surname>Ardeleanu</surname>
<given-names>M</given-names>
</name>
<collab>SOLO 1 and SOLO 2 Investigators</collab>
</person-group>
<year>2016</year>
<article-title>Two phase 3 trials of dupilumab versus placebo in atopic dermatitis</article-title>
<source>New England Journal of Medicine</source>
<volume>375</volume>
<fpage>2335</fpage>
<lpage>2348</lpage>
<pub-id pub-id-type="doi">10.1056/NEJMoa1610020</pub-id>
<pub-id pub-id-type="pmid">27690741</pub-id>
</element-citation>
</ref>
<ref id="bib100">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Sivick</surname>
<given-names>KE</given-names>
</name>
<name>
<surname>Arpaia</surname>
<given-names>N</given-names>
</name>
<name>
<surname>Reiner</surname>
<given-names>GL</given-names>
</name>
<name>
<surname>Lee</surname>
<given-names>BL</given-names>
</name>
<name>
<surname>Russell</surname>
<given-names>BR</given-names>
</name>
<name>
<surname>Barton</surname>
<given-names>GM</given-names>
</name>
</person-group>
<year>2014</year>
<article-title>Toll-like receptor-deficient mice reveal how innate immune signaling influences Salmonella virulence strategies</article-title>
<source>Cell Host & Microbe</source>
<volume>15</volume>
<fpage>203</fpage>
<lpage>213</lpage>
<pub-id pub-id-type="doi">10.1016/j.chom.2014.01.013</pub-id>
<pub-id pub-id-type="pmid">24528866</pub-id>
</element-citation>
</ref>
<ref id="bib101">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Solinski</surname>
<given-names>HJ</given-names>
</name>
<name>
<surname>Dranchak</surname>
<given-names>P</given-names>
</name>
<name>
<surname>Oliphant</surname>
<given-names>E</given-names>
</name>
<name>
<surname>Gu</surname>
<given-names>X</given-names>
</name>
<name>
<surname>Earnest</surname>
<given-names>TW</given-names>
</name>
<name>
<surname>Braisted</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Inglese</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Hoon</surname>
<given-names>MA</given-names>
</name>
</person-group>
<year>2019a</year>
<article-title>Inhibition of natriuretic peptide receptor 1 reduces itch in mice</article-title>
<source>Science Translational Medicine</source>
<volume>11</volume>
<elocation-id>eaav5464</elocation-id>
<pub-id pub-id-type="doi">10.1126/scitranslmed.aav5464</pub-id>
<pub-id pub-id-type="pmid">31292265</pub-id>
</element-citation>
</ref>
<ref id="bib102">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Solinski</surname>
<given-names>HJ</given-names>
</name>
<name>
<surname>Kriegbaum</surname>
<given-names>MC</given-names>
</name>
<name>
<surname>Tseng</surname>
<given-names>PY</given-names>
</name>
<name>
<surname>Earnest</surname>
<given-names>TW</given-names>
</name>
<name>
<surname>Gu</surname>
<given-names>X</given-names>
</name>
<name>
<surname>Barik</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Chesler</surname>
<given-names>AT</given-names>
</name>
<name>
<surname>Hoon</surname>
<given-names>MA</given-names>
</name>
</person-group>
<year>2019b</year>
<article-title>Nppb neurons are sensors of mast Cell-Induced itch</article-title>
<source>Cell Reports</source>
<volume>26</volume>
<fpage>3561</fpage>
<lpage>3573</lpage>
<pub-id pub-id-type="doi">10.1016/j.celrep.2019.02.089</pub-id>
<pub-id pub-id-type="pmid">30917312</pub-id>
</element-citation>
</ref>
<ref id="bib103">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Spergel</surname>
<given-names>JM</given-names>
</name>
<name>
<surname>Paller</surname>
<given-names>AS</given-names>
</name>
</person-group>
<year>2003</year>
<article-title>Atopic dermatitis and the atopic march</article-title>
<source>Journal of Allergy and Clinical Immunology</source>
<volume>112</volume>
<fpage>S118</fpage>
<lpage>S127</lpage>
<pub-id pub-id-type="doi">10.1016/j.jaci.2003.09.033</pub-id>
<pub-id pub-id-type="pmid">14657842</pub-id>
</element-citation>
</ref>
<ref id="bib104">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Ständer</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Steinhoff</surname>
<given-names>M</given-names>
</name>
</person-group>
<year>2002</year>
<article-title>Pathophysiology of pruritus in atopic dermatitis: an overview</article-title>
<source>Experimental Dermatology</source>
<volume>11</volume>
<fpage>12</fpage>
<lpage>24</lpage>
<pub-id pub-id-type="doi">10.1034/j.1600-0625.2002.110102.x</pub-id>
<pub-id pub-id-type="pmid">11952824</pub-id>
</element-citation>
</ref>
<ref id="bib105">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Suárez-Fariñas</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Dhingra</surname>
<given-names>N</given-names>
</name>
<name>
<surname>Gittler</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Shemer</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Cardinale</surname>
<given-names>I</given-names>
</name>
<name>
<surname>de Guzman Strong</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Krueger</surname>
<given-names>JG</given-names>
</name>
<name>
<surname>Guttman-Yassky</surname>
<given-names>E</given-names>
</name>
</person-group>
<year>2013</year>
<article-title>Intrinsic atopic dermatitis shows similar TH2 and higher TH17 immune activation compared with extrinsic atopic dermatitis</article-title>
<source>Journal of Allergy and Clinical Immunology</source>
<volume>132</volume>
<fpage>361</fpage>
<lpage>370</lpage>
<pub-id pub-id-type="doi">10.1016/j.jaci.2013.04.046</pub-id>
<pub-id pub-id-type="pmid">23777851</pub-id>
</element-citation>
</ref>
<ref id="bib106">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Sumida</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Yanagida</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Kita</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Abe</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Matsushima</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Nakamura</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Ishii</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Sato</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Shimizu</surname>
<given-names>T</given-names>
</name>
</person-group>
<year>2014</year>
<article-title>Interplay between CXCR2 and BLT1 facilitates neutrophil infiltration and resultant keratinocyte activation in a murine model of imiquimod-induced psoriasis</article-title>
<source>The Journal of Immunology</source>
<volume>192</volume>
<fpage>4361</fpage>
<lpage>4369</lpage>
<pub-id pub-id-type="doi">10.4049/jimmunol.1302959</pub-id>
<pub-id pub-id-type="pmid">24663678</pub-id>
</element-citation>
</ref>
<ref id="bib107">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Takeda</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Takahashi</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Matsumoto</surname>
<given-names>S</given-names>
</name>
</person-group>
<year>2009</year>
<article-title>Contribution of the activation of satellite Glia in sensory ganglia to pathological pain</article-title>
<source>Neuroscience & Biobehavioral Reviews</source>
<volume>33</volume>
<fpage>784</fpage>
<lpage>792</lpage>
<pub-id pub-id-type="doi">10.1016/j.neubiorev.2008.12.005</pub-id>
<pub-id pub-id-type="pmid">19167424</pub-id>
</element-citation>
</ref>
<ref id="bib108">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Tamassia</surname>
<given-names>N</given-names>
</name>
<name>
<surname>Calzetti</surname>
<given-names>F</given-names>
</name>
<name>
<surname>Ear</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Cloutier</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Gasperini</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Bazzoni</surname>
<given-names>F</given-names>
</name>
<name>
<surname>McDonald</surname>
<given-names>PP</given-names>
</name>
<name>
<surname>Cassatella</surname>
<given-names>MA</given-names>
</name>
</person-group>
<year>2007</year>
<article-title>Molecular mechanisms underlying the synergistic induction of CXCL10 by LPS and IFN-gamma in human neutrophils</article-title>
<source>European Journal of Immunology</source>
<volume>37</volume>
<fpage>2627</fpage>
<lpage>2634</lpage>
<pub-id pub-id-type="doi">10.1002/eji.200737340</pub-id>
<pub-id pub-id-type="pmid">17668902</pub-id>
</element-citation>
</ref>
<ref id="bib109">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Tominaga</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Ozawa</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Ogawa</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Takamori</surname>
<given-names>K</given-names>
</name>
</person-group>
<year>2007</year>
<article-title>A hypothetical mechanism of intraepidermal neurite formation in NC/Nga mice with atopic dermatitis</article-title>
<source>Journal of Dermatological Science</source>
<volume>46</volume>
<fpage>199</fpage>
<lpage>210</lpage>
<pub-id pub-id-type="doi">10.1016/j.jdermsci.2007.02.002</pub-id>
<pub-id pub-id-type="pmid">17350228</pub-id>
</element-citation>
</ref>
<ref id="bib110">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Tominaga</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Tengara</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Kamo</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Ogawa</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Takamori</surname>
<given-names>K</given-names>
</name>
</person-group>
<year>2009</year>
<article-title>Psoralen-ultraviolet A therapy alters epidermal Sema3A and NGF levels and modulates epidermal innervation in atopic dermatitis</article-title>
<source>Journal of Dermatological Science</source>
<volume>55</volume>
<fpage>40</fpage>
<lpage>46</lpage>
<pub-id pub-id-type="doi">10.1016/j.jdermsci.2009.03.007</pub-id>
<pub-id pub-id-type="pmid">19443185</pub-id>
</element-citation>
</ref>
<ref id="bib111">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Tominaga</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Takamori</surname>
<given-names>K</given-names>
</name>
</person-group>
<year>2013</year>
<article-title>An update on peripheral mechanisms and treatments of itch</article-title>
<source>Biological and Pharmaceutical Bulletin</source>
<volume>36</volume>
<fpage>1241</fpage>
<lpage>1247</lpage>
<pub-id pub-id-type="doi">10.1248/bpb.b13-00319</pub-id>
<pub-id pub-id-type="pmid">23902967</pub-id>
</element-citation>
</ref>
<ref id="bib112">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Tominaga</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Takamori</surname>
<given-names>K</given-names>
</name>
</person-group>
<year>2014</year>
<article-title>Itch and nerve fibers with special reference to atopic dermatitis: therapeutic implications</article-title>
<source>The Journal of Dermatology</source>
<volume>41</volume>
<fpage>205</fpage>
<lpage>212</lpage>
<pub-id pub-id-type="doi">10.1111/1346-8138.12317</pub-id>
<pub-id pub-id-type="pmid">24628070</pub-id>
</element-citation>
</ref>
<ref id="bib113">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Usoskin</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Furlan</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Islam</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Abdo</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Lönnerberg</surname>
<given-names>P</given-names>
</name>
<name>
<surname>Lou</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Hjerling-Leffler</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Haeggström</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Kharchenko</surname>
<given-names>O</given-names>
</name>
<name>
<surname>Kharchenko</surname>
<given-names>PV</given-names>
</name>
<name>
<surname>Linnarsson</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Ernfors</surname>
<given-names>P</given-names>
</name>
</person-group>
<year>2015</year>
<article-title>Unbiased classification of sensory neuron types by large-scale single-cell RNA sequencing</article-title>
<source>Nature Neuroscience</source>
<volume>18</volume>
<fpage>145</fpage>
<lpage>153</lpage>
<pub-id pub-id-type="doi">10.1038/nn.3881</pub-id>
<pub-id pub-id-type="pmid">25420068</pub-id>
</element-citation>
</ref>
<ref id="bib114">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>von Moltke</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Trinidad</surname>
<given-names>NJ</given-names>
</name>
<name>
<surname>Moayeri</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Kintzer</surname>
<given-names>AF</given-names>
</name>
<name>
<surname>Wang</surname>
<given-names>SB</given-names>
</name>
<name>
<surname>van Rooijen</surname>
<given-names>N</given-names>
</name>
<name>
<surname>Brown</surname>
<given-names>CR</given-names>
</name>
<name>
<surname>Krantz</surname>
<given-names>BA</given-names>
</name>
<name>
<surname>Leppla</surname>
<given-names>SH</given-names>
</name>
<name>
<surname>Gronert</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Vance</surname>
<given-names>RE</given-names>
</name>
</person-group>
<year>2012</year>
<article-title>Rapid induction of inflammatory lipid mediators by the inflammasome in vivo</article-title>
<source>Nature</source>
<volume>490</volume>
<fpage>107</fpage>
<lpage>111</lpage>
<pub-id pub-id-type="doi">10.1038/nature11351</pub-id>
<pub-id pub-id-type="pmid">22902502</pub-id>
</element-citation>
</ref>
<ref id="bib115">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Wang</surname>
<given-names>J</given-names>
</name>
</person-group>
<year>2018</year>
<article-title>Neutrophils in tissue injury and repair</article-title>
<source>Cell and Tissue Research</source>
<volume>371</volume>
<fpage>531</fpage>
<lpage>539</lpage>
<pub-id pub-id-type="doi">10.1007/s00441-017-2785-7</pub-id>
<pub-id pub-id-type="pmid">29383445</pub-id>
</element-citation>
</ref>
<ref id="bib116">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Wilson</surname>
<given-names>SR</given-names>
</name>
<name>
<surname>Gerhold</surname>
<given-names>KA</given-names>
</name>
<name>
<surname>Bifolck-Fisher</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Liu</surname>
<given-names>Q</given-names>
</name>
<name>
<surname>Patel</surname>
<given-names>KN</given-names>
</name>
<name>
<surname>Dong</surname>
<given-names>X</given-names>
</name>
<name>
<surname>Bautista</surname>
<given-names>DM</given-names>
</name>
</person-group>
<year>2011</year>
<article-title>TRPA1 is required for histamine-independent, Mas-related G protein-coupled receptor-mediated itch</article-title>
<source>Nature Neuroscience</source>
<volume>14</volume>
<fpage>595</fpage>
<lpage>602</lpage>
<pub-id pub-id-type="doi">10.1038/nn.2789</pub-id>
<pub-id pub-id-type="pmid">21460831</pub-id>
</element-citation>
</ref>
<ref id="bib117">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Yellin</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Paliienko</surname>
<given-names>I</given-names>
</name>
<name>
<surname>Balanescu</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Ter-Vartanian</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Tseluyko</surname>
<given-names>V</given-names>
</name>
<name>
<surname>Xu</surname>
<given-names>LA</given-names>
</name>
<name>
<surname>Tao</surname>
<given-names>X</given-names>
</name>
<name>
<surname>Cardarelli</surname>
<given-names>PM</given-names>
</name>
<name>
<surname>Leblanc</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Nichol</surname>
<given-names>G</given-names>
</name>
<name>
<surname>Ancuta</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Chirieac</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Luo</surname>
<given-names>A</given-names>
</name>
</person-group>
<year>2012</year>
<article-title>A phase II, randomized, double-blind, placebo-controlled study evaluating the efficacy and safety of MDX-1100, a fully human anti-CXCL10 monoclonal antibody, in combination with methotrexate in patients with rheumatoid arthritis</article-title>
<source>Arthritis & Rheumatism</source>
<volume>64</volume>
<fpage>1730</fpage>
<lpage>1739</lpage>
<pub-id pub-id-type="doi">10.1002/art.34330</pub-id>
<pub-id pub-id-type="pmid">22147649</pub-id>
</element-citation>
</ref>
<ref id="bib118">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Yosipovitch</surname>
<given-names>G</given-names>
</name>
</person-group>
<year>2004</year>
<article-title>Dry skin and impairment of barrier function associated with itch - new insights</article-title>
<source>International Journal of Cosmetic Science</source>
<volume>26</volume>
<fpage>1</fpage>
<lpage>7</lpage>
<pub-id pub-id-type="doi">10.1111/j.0142-5463.2004.00199.x</pub-id>
<pub-id pub-id-type="pmid">18494919</pub-id>
</element-citation>
</ref>
<ref id="bib119">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Yosipovitch</surname>
<given-names>G</given-names>
</name>
<name>
<surname>Papoiu</surname>
<given-names>AD</given-names>
</name>
</person-group>
<year>2008</year>
<article-title>What causes itch in atopic dermatitis?</article-title>
<source>Current Allergy and Asthma Reports</source>
<volume>8</volume>
<fpage>306</fpage>
<lpage>311</lpage>
<pub-id pub-id-type="doi">10.1007/s11882-008-0049-z</pub-id>
<pub-id pub-id-type="pmid">18606082</pub-id>
</element-citation>
</ref>
<ref id="bib120">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Zhang</surname>
<given-names>Z</given-names>
</name>
<name>
<surname>Hener</surname>
<given-names>P</given-names>
</name>
<name>
<surname>Frossard</surname>
<given-names>N</given-names>
</name>
<name>
<surname>Kato</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Metzger</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Li</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Chambon</surname>
<given-names>P</given-names>
</name>
</person-group>
<year>2009</year>
<article-title>Thymic stromal lymphopoietin overproduced by keratinocytes in mouse skin aggravates experimental asthma</article-title>
<source>PNAS</source>
<volume>106</volume>
<fpage>1536</fpage>
<lpage>1541</lpage>
<pub-id pub-id-type="doi">10.1073/pnas.0812668106</pub-id>
<pub-id pub-id-type="pmid">19188585</pub-id>
</element-citation>
</ref>
<ref id="bib121">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Zhang</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Yan</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Hu</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Sun</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Ma</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Chen</surname>
<given-names>Z</given-names>
</name>
<name>
<surname>Jiang</surname>
<given-names>H</given-names>
</name>
</person-group>
<year>2015</year>
<article-title>Microglia are involved in Pruritus induced by DNFB via the CX3CR1/p38 MAPK pathway</article-title>
<source>Cellular Physiology and Biochemistry</source>
<volume>35</volume>
<fpage>1023</fpage>
<lpage>1033</lpage>
<pub-id pub-id-type="doi">10.1159/000373929</pub-id>
<pub-id pub-id-type="pmid">25661672</pub-id>
</element-citation>
</ref>
<ref id="bib122">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Zheng</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Yu</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Oh</surname>
<given-names>MH</given-names>
</name>
<name>
<surname>Zhu</surname>
<given-names>Z</given-names>
</name>
</person-group>
<year>2011</year>
<article-title>The atopic march: progression from atopic dermatitis to allergic rhinitis and asthma</article-title>
<source>Allergy, Asthma and Immunology Research</source>
<volume>3</volume>
<fpage>67</fpage>
<lpage>73</lpage>
<pub-id pub-id-type="doi">10.4168/aair.2011.3.2.67</pub-id>
</element-citation>
</ref>
</ref-list>
</back>
<sub-article id="sa1" article-type="decision-letter">
<front-stub>
<article-id pub-id-type="doi">10.7554/eLife.48448.sa1</article-id>
<title-group>
<article-title>Decision letter</article-title>
</title-group>
<contrib-group>
<contrib contrib-type="editor">
<name>
<surname>King</surname>
<given-names>Andrew J</given-names>
</name>
<role>Reviewing Editor</role>
<aff>
<institution>University of Oxford</institution>
<country>United Kingdom</country>
</aff>
</contrib>
<contrib contrib-type="reviewer">
<name>
<surname>Rothlin</surname>
<given-names>Carla V</given-names>
</name>
<role>Reviewer</role>
<aff>
<institution>Yale University</institution>
<country>United States</country>
</aff>
</contrib>
</contrib-group>
</front-stub>
<body>
<boxed-text position="float" orientation="portrait">
<p>In the interests of transparency, eLife publishes the most substantive revision requests and the accompanying author responses.</p>
</boxed-text>
<p>Thank you for submitting your article "Neutrophils promote CXCR3-dependent itch in the development of atopic dermatitis" for consideration by
<italic>eLife</italic>
. Your article has been reviewed by three peer reviewers, and the evaluation has been overseen by Andrew King as the Senior and Reviewing Editor. The following individual involved in review of your submission has agreed to reveal their identity: Carla V Rothlin (Reviewer #1).</p>
<p>The reviewers have discussed the reviews with one another, and the Reviewing Editor has drafted this decision to help you prepare a revised submission.</p>
<p>Summary:</p>
<p>This paper describes a comprehensive and rigorous immunological analysis of the immune response to MC903 in mice, a model for atopic dermatitis, which affects millions of people. The authors demonstrate early neutrophilic infiltration in the affected skin, which drives initial itch responses. Furthermore, they show that neutrophil depletion leads to a significant reduction in scratching behaviour and reduced a series of hallmarks of chronic itch. They also show that neutrophils are required for the production of itch-inducing chemokines, such as CXCL10, and that pharmacological inhibition of CXCR3 (a receptor for CXCL10) inhibited itch. Overall, the reviewers thought that this is an excellent study, which provides important insights into the mechanisms underlying atopic dermatitis development and that targeting CXCL10/CXCR3 may be a promising way to treat atopic dermatitis associated itch. This paper is likely to inspire future studies on the neuroimmunological basis of chronic itch.</p>
<p>Essential revisions:</p>
<p>Although they were very positive about the study, describing the results as novel and of broad interest, the reviewers made several points that need to be addressed. These are summarized in the following, but the key points relate to the number of animals used and the variation across different time points in the study, and whether the increase in neutrophil number persists into the chronic stage of atopic dermatitis.</p>
<p>1) The authors propose a model wherein neutrophil infiltration drives the early response (first week), while TSLP is dispensable during the first week and only required for itch in the second week. However, the current study does not address whether neutrophils are required in the chronic setting. Do increased number of neutrophils persist in the second week? If so, does ablation of neutrophils later on affect itch behavior?</p>
<p>2) Are the findings broadly applicable to other models of atopic dermatitis? It would be useful to assess neutrophil recruitment in other models of atopic dermatitis.</p>
<p>3) Neutrophil recruitment is a common response to multiple insults, yet not all of them appear to be associated with itch. Can the authors provide an explanation for this? Is the CXCL10/CXCR3 axis selectively engaged in this condition? Or do other signals present in other settings associated with neutrophil recruitment (i.e., bacterial infection) override this pruritogenic axis? A discussion on this is merited.</p>
<p>4) In addition to interacting with and producing cytokines, chemokines and lipid mediators, neutrophils produce reactive oxygen and chlorinated species that, while produced to attack pathogens, can induce itch, pain and significant tissue damage. The role of this unique function of neutrophils, potentially in the residual itch responses observed by the authors, should be discussed.</p>
<p>5) The number of mice used in different time point varies largely. For example, in Figure 1F and Figure 1—figure supplement 2, less than 10 mice were examined for days 3 and 5 whereas around 40 mice were tested at day 8. The insignificance of the differences at days 3 and 5 is likely due to the small N numbers. In addition, large number of mice (>60/group) were used for the MC903 model which is way higher than the number of mice (around 10/group) being used in the field. What is the rationale for the large N number and the minimum number of mice needed for the model? The authors claim that neutrophils are the first immune cells to infiltrate atopic dermatitis skin. However, the data in Figure 1 suggest other immune cells (i.e. basophils in Figure 1F, inflammatory monocytes in Figure 1—figure supplement 2A, mast cells in Figure 1—figure supplement 2B) could have infiltrated atopic dermatitis skin at day 3 earlier than neutrophil recruitment at day 5. A significance increase could be found if a larger sample size is tested for these cell types at day 3 as that of day 8.</p>
</body>
</sub-article>
<sub-article id="sa2" article-type="reply">
<front-stub>
<article-id pub-id-type="doi">10.7554/eLife.48448.sa2</article-id>
<title-group>
<article-title>Author response</article-title>
</title-group>
</front-stub>
<body>
<disp-quote content-type="editor-comment">
<p>Essential revisions:</p>
<p>Although they were very positive about the study, describing the results as novel and of broad interest, the reviewers made several points that need to be addressed. These are summarized in the following, but the key points relate to the number of animals used and the variation across different time points in the study, and whether the increase in neutrophil number persists into the chronic stage of atopic dermatitis.</p>
<p>1) The authors propose a model wherein neutrophil infiltration drives the early response (first week), while TSLP is dispensable during the first week and only required for itch in the second week. However, the current study does not address whether neutrophils are required in the chronic setting. Do increased number of neutrophils persist in the second week? If so, does ablation of neutrophils later on affect itch behavior?</p>
</disp-quote>
<p>We thank the reviewers for suggesting we examine neutrophils in chronic itch. We have performed additional experiments assessing the presence and role of neutrophils in the second week of the MC903 model. In these new experiments we depleted neutrophils on days 8-11 to and show robust neutrophil infiltration into MC903 lesions on day 12 (Figure 2J), and loss of itch behaviors at day 12 in neutrophil-depleted mice (Figure 2K). We also performed a comprehensive review of the literature and our results are supported by a number of studies that report the presence of neutrophils in late-stage atopic dermatitis lesions. One study reported neutrophils in MC903 lesions at days 12 and 13, using histology and measurements of neutrophil-derived enzymatic activity in skin tissue (Li et al., 2017). Likewise, a study of mice deficient in filaggrin, the most commonly mutated gene in human AD patients, also found neutrophils present in the lesions of filaggrin mutant mice at 12 weeks, when the mice develop dermatitis (Saunders et al., 2016). These findings in mouse are also consistent with a number of human studies reporting the presence of neutrophils in AD (Choy et al., 2012, Mihm et al., 1976, Shalit et al., 1987). We have added the following new text to the manuscript:</p>
<p>Results section:</p>
<p>“The incomplete loss of itch behaviors on day 12 in the TSLPRKO animals (Figure 2F) raised the question of whether neutrophils might also contribute to itch during the second week of the MC903 model. […] We speculate that neutrophils and TSLP signaling comprise independent mechanisms that together account for the majority of AD itch.”</p>
<p>Discussion:</p>
<p>“Moreover, we also demonstrate that depletion of neutrophils in the second week of the MC903 model can attenuate chronic itch-evoked scratching. […] Our observations newly implicate neutrophils in setting the stage for the acute-to-chronic itch transition by triggering molecular changes necessary to develop a chronic, itchy lesion and also contributing to persistent itch.”</p>
<disp-quote content-type="editor-comment">
<p>2) Are the findings broadly applicable to other models of atopic dermatitis? It would be useful to assess neutrophil recruitment in other models of atopic dermatitis.</p>
</disp-quote>
<p>Our data and others’ studies support a broad role for neutrophils in AD. At the suggestion of the reviewers, we have performed experiments measuring neutrophil infiltration in a second AD model, the 1-fluoro-2,4-dinitrobenzene (DNFB) model of AD and allergic dermatitis. A previous study showed that topical treatment with DNFB to the ear triggered chronic itch and inflammation (Solinski et al., 2019). As in the MC903 model, we found that neutrophils robustly infiltrate DNFB-treated skin (Figure 2—figure supplement 5A). We have amended the Results as follows:</p>
<p>“In order to ascertain whether neutrophils could be salient players in other models of AD, and not just MC903, we measured neutrophil infiltration into ear skin in the 1-fluoro-2,4dinitrobenzene (DNFB) model of atopic dermatitis, which relies on hapten-induced sensitization to drive increased IgE, mixed Th1/Th2 cytokine response, skin thickening, inflammation, and robust scratching behaviors in mice (Kitamura et al., 2018; Solinski et al., 2019; Zhang et al., 2015). Indeed, neutrophils also infiltrated DNFB- but not vehicle-treated skin (Figure 2—figure supplement 5A). […] Overall, our data support a key role for neutrophils in promoting AD itch and inflammation.”</p>
<p>Additionally, two studies in mouse models of AD (Li et al., 2017; Saunders et al., 2015) and several studies in humans (Choy et al., 2012; Mihm et al., 1976; Shalit et al., 1987) show that neutrophils are present in AD lesions. We also mined published transcriptomic datasets from human AD lesions for neutrophil-associated chemokines, chemokine receptors, and other transcripts. This meta-analysis yielded strong evidence supporting the presence of neutrophils in human AD lesions (Liu et al., 2019; Oetjen et al., 2017; Nattkemper et al., 2018; Suárez-Fariñas et al., 2011; Guttman-Yassky et al., 2009; Ewald et al., 2017; Li et al., 2014). We have amended the Discussion accordingly:</p>
<p>“In examining previous characterizations of both human and mouse models of AD and related chronic itch disorders, several studies report that neutrophils and/or neutrophil chemokines are indeed present in chronic lesions (Ewald et al., 2017; Choy et al., 2012; Guttman-Yassky et al., 2009; Suárez-Fariñas et al., 2013; Jabbari et al., 2012; Nattkemper et al., 2018; Li et al., 2017; Saunders et al., 2016; Andersson, 2014; Malik et al., 2017). Our observations newly implicate neutrophils in setting the stage for the acute-to-chronic itch transition by triggering molecular changes necessary to develop a chronic, itchy lesion and also contributing to persistent itch.”</p>
<disp-quote content-type="editor-comment">
<p>3) Neutrophil recruitment is a common response to multiple insults, yet not all of them appear to be associated with itch. Can the authors provide an explanation for this? Is the CXCL10/CXCR3 axis selectively engaged in this condition? Or do other signals present in other settings associated with neutrophil recruitment (i.e., bacterial infection) override this pruritogenic axis? A discussion on this is merited.</p>
<p>4) In addition to interacting with and producing cytokines, chemokines and lipid mediators, neutrophils produce reactive oxygen and chlorinated species that, while produced to attack pathogens, can induce itch, pain and significant tissue damage. The role of this unique function of neutrophils, potentially in the residual itch responses observed by the authors, should be discussed.</p>
</disp-quote>
<p>We agree with the reviewers that these are interesting discussion points. As such, we have added them to the manuscript:</p>
<p>Discussion section:</p>
<p>“There is a strong precedence for immune cell-neuronal interactions that drive modality-specific outcomes, such as itch versus pain, under distinct inflammatory conditions. […] It will be of great interest to the field to decipher the distinct mechanisms by which neutrophils and other immune cells interact with the nervous system to drive pain and itch.”</p>
<disp-quote content-type="editor-comment">
<p>5) The number of mice used in different time point varies largely. For example, in Figure 1F and Figure 1—figure supplement 2, less than 10 mice were examined for days 3 and 5 whereas around 40 mice were tested at day 8. The insignificance of the differences at days 3 and 5 is likely due to the small N numbers. In addition, large number of mice (>60/group) were used for the MC903 model which is way higher than the number of mice (around 10/group) being used in the field. What is the rationale for the large N number and the minimum number of mice needed for the model? The authors claim that neutrophils are the first immune cells to infiltrate atopic dermatitis skin. However, the data in Figure 1 suggest other immune cells (i.e. basophils in Figure 1F, inflammatory monocytes in Figure 1—figure supplement 2A, mast cells in Figure 1—figure supplement 2B) could have infiltrated atopic dermatitis skin at day 3 earlier than neutrophil recruitment at day 5. A significance increase could be found if a larger sample size is tested for these cell types at day 3 as that of day 8.</p>
</disp-quote>
<p>We began our study by probing immune cell infiltration and itch behaviors on day 8 of the model, and later performed experiments to assess the time course of immune cell infiltration. As a result, we had many more animals for day 8 measurements than at days 3 or 5. To ensure rigor and transparency, we included all mice that were assessed using itch behavior and flow cytometry because we had no exclusion criteria defined prior to beginning the study that would justify elimination of these data. That being said, post hoc calculation of achieved power suggests that day 5 is not underpowered (see
<xref rid="resptable1" ref-type="table">Author response table 1</xref>
). Day 3 counts were quite low for all cells examined and no subtype of immune cell displayed robustly elevated counts compared to vehicle treatment (including the neutrophils, which were the most numerous subtype).</p>
<table-wrap id="resptable1" orientation="portrait" position="float">
<label>Author response table 1.</label>
<table frame="hsides" rules="groups">
<thead>
<tr>
<th rowspan="1" colspan="1"></th>
<th colspan="2" rowspan="1">Neutrophils</th>
<th rowspan="1" colspan="1">Basophils</th>
<th valign="top" rowspan="1" colspan="1"></th>
<th colspan="2" rowspan="1">Infl. Monos.</th>
<th rowspan="1" colspan="1">Mast Cells</th>
<th valign="top" rowspan="1" colspan="1"></th>
</tr>
</thead>
<tbody>
<tr>
<td rowspan="1" colspan="1">
<underline>INPUT</underline>
</td>
<td rowspan="1" colspan="1">
<underline>Day 5</underline>
</td>
<td rowspan="1" colspan="1">
<underline>Day 8</underline>
</td>
<td rowspan="1" colspan="1">
<underline>Day 5</underline>
</td>
<td rowspan="1" colspan="1">
<underline>Day 8</underline>
</td>
<td rowspan="1" colspan="1">
<underline>Day 5</underline>
</td>
<td rowspan="1" colspan="1">
<underline>Day 8</underline>
</td>
<td rowspan="1" colspan="1">
<underline>Day 5</underline>
</td>
<td rowspan="1" colspan="1">
<underline>Day 8</underline>
</td>
</tr>
<tr>
<td rowspan="1" colspan="1">
<underline>Effect size</underline>
</td>
<td rowspan="1" colspan="1">1.518</td>
<td rowspan="1" colspan="1">0.836</td>
<td rowspan="1" colspan="1">1.433</td>
<td rowspan="1" colspan="1">1.002</td>
<td rowspan="1" colspan="1">1.1711</td>
<td rowspan="1" colspan="1">0.8241</td>
<td rowspan="1" colspan="1">0.736</td>
<td rowspan="1" colspan="1">1.0670</td>
</tr>
<tr>
<td rowspan="1" colspan="1">
<underline>α error prob</underline>
</td>
<td rowspan="1" colspan="1">0.05</td>
<td rowspan="1" colspan="1">0.05</td>
<td rowspan="1" colspan="1">0.05</td>
<td rowspan="1" colspan="1">0.05</td>
<td rowspan="1" colspan="1">0.05</td>
<td rowspan="1" colspan="1">0.05</td>
<td rowspan="1" colspan="1">0.05</td>
<td rowspan="1" colspan="1">0.05</td>
</tr>
<tr>
<td rowspan="1" colspan="1">
<underline># groups</underline>
</td>
<td rowspan="1" colspan="1">2</td>
<td rowspan="1" colspan="1">2</td>
<td rowspan="1" colspan="1">2</td>
<td rowspan="1" colspan="1">2</td>
<td rowspan="1" colspan="1">2</td>
<td rowspan="1" colspan="1">2</td>
<td rowspan="1" colspan="1">2</td>
<td rowspan="1" colspan="1">2</td>
</tr>
<tr>
<td rowspan="1" colspan="1">
<underline>sample size</underline>
</td>
<td rowspan="1" colspan="1">14</td>
<td rowspan="1" colspan="1">78</td>
<td rowspan="1" colspan="1">14</td>
<td rowspan="1" colspan="1">78</td>
<td rowspan="1" colspan="1">14</td>
<td rowspan="1" colspan="1">78</td>
<td rowspan="1" colspan="1">14</td>
<td rowspan="1" colspan="1">78</td>
</tr>
<tr>
<td rowspan="1" colspan="1">
<underline>OUTPUT</underline>
</td>
<td colspan="2" valign="top" rowspan="1"></td>
<td valign="top" rowspan="1" colspan="1"></td>
<td valign="top" rowspan="1" colspan="1"></td>
<td colspan="2" valign="top" rowspan="1"></td>
<td valign="top" rowspan="1" colspan="1"></td>
<td valign="top" rowspan="1" colspan="1"></td>
</tr>
<tr>
<td rowspan="1" colspan="1">
<underline>λ</underline>
</td>
<td rowspan="1" colspan="1">32.26</td>
<td rowspan="1" colspan="1">54.618</td>
<td rowspan="1" colspan="1">28.99</td>
<td rowspan="1" colspan="1">102.34</td>
<td rowspan="1" colspan="1">19.2</td>
<td rowspan="1" colspan="1">52.98</td>
<td rowspan="1" colspan="1">7.583</td>
<td rowspan="1" colspan="1">31.54</td>
</tr>
<tr>
<td rowspan="1" colspan="1">
<underline>Fcrit</underline>
</td>
<td rowspan="1" colspan="1">4.747</td>
<td rowspan="1" colspan="1">3.966</td>
<td rowspan="1" colspan="1">4.747</td>
<td rowspan="1" colspan="1">3.966</td>
<td rowspan="1" colspan="1">4.747</td>
<td rowspan="1" colspan="1">3.966</td>
<td rowspan="1" colspan="1">4.747</td>
<td rowspan="1" colspan="1">3.966</td>
</tr>
<tr>
<td rowspan="1" colspan="1">
<underline>Num. df</underline>
</td>
<td rowspan="1" colspan="1">1</td>
<td rowspan="1" colspan="1">1</td>
<td rowspan="1" colspan="1">1</td>
<td rowspan="1" colspan="1">1</td>
<td rowspan="1" colspan="1">1</td>
<td rowspan="1" colspan="1">1</td>
<td rowspan="1" colspan="1">1</td>
<td rowspan="1" colspan="1">1</td>
</tr>
<tr>
<td rowspan="1" colspan="1">
<underline>Denom. df</underline>
</td>
<td rowspan="1" colspan="1">12</td>
<td rowspan="1" colspan="1">76</td>
<td rowspan="1" colspan="1">12</td>
<td rowspan="1" colspan="1">76</td>
<td rowspan="1" colspan="1">12</td>
<td rowspan="1" colspan="1">76</td>
<td rowspan="1" colspan="1">12</td>
<td rowspan="1" colspan="1">76</td>
</tr>
<tr>
<td rowspan="1" colspan="1">
<underline>Power</underline>
</td>
<td rowspan="1" colspan="1">0.993</td>
<td rowspan="1" colspan="1">1</td>
<td rowspan="1" colspan="1">0.986</td>
<td rowspan="1" colspan="1">1</td>
<td rowspan="1" colspan="1">0.979</td>
<td rowspan="1" colspan="1">0.999</td>
<td rowspan="1" colspan="1">0.715</td>
<td rowspan="1" colspan="1">0.999</td>
</tr>
</tbody>
</table>
</table-wrap>
</body>
</sub-article>
</pmc>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/ChloroquineV1/Data/Pmc/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000845 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Pmc/Corpus/biblio.hfd -nk 000845 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    ChloroquineV1
   |flux=    Pmc
   |étape=   Corpus
   |type=    RBID
   |clé=     PMC:6884397
   |texte=   Neutrophils promote CXCR3-dependent itch in the development of atopic dermatitis
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Pmc/Corpus/RBID.i   -Sk "pubmed:31631836" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Pmc/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a ChloroquineV1 

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Wed Mar 25 22:43:59 2020. Site generation: Sun Jan 31 12:44:45 2021