Serveur d'exploration Chloroquine

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Mitochondrial Phosphoenolpyruvate Carboxykinase Regulates Osteogenic Differentiation by Modulating AMPK/ULK1‐Dependent Autophagy

Identifieur interne : 000809 ( Pmc/Corpus ); précédent : 000808; suivant : 000810

Mitochondrial Phosphoenolpyruvate Carboxykinase Regulates Osteogenic Differentiation by Modulating AMPK/ULK1‐Dependent Autophagy

Auteurs : Zheng Li ; Xuenan Liu ; Yuan Zhu ; Yangge Du ; Xuejiao Liu ; Longwei Lv ; Xiao Zhang ; Yunsong Liu ; Ping Zhang ; Yongsheng Zhou

Source :

RBID : PMC:6916635

Abstract

Abstract

Mitochondrial phosphoenolpyruvate carboxykinase (PCK2) is a rate‐limiting enzyme that plays critical roles in multiple physiological processes. The decompensation of PCK2 leads to various energy metabolic disorders. However, little is known regarding the effects of PCK2 on osteogenesis by human mesenchymal stem cells (hMSCs). Here, we report a novel function of PCK2 as a positive regulator of MSCs osteogenic differentiation. In addition to its well‐known role in anabolism, we demonstrate that PCK2 regulates autophagy. PCK2 deficiency significantly suppressed autophagy, leading to the impairment of osteogenic capacity of MSCs. On the other hand, autophagy was promoted by PCK2 overexpression; this was accompanied by increased osteogenic differentiation of MSCs. Moreover, PCK2 regulated osteogenic differentiation of MSCs via AMP‐activated protein kinase (AMPK)/unc‐51 like autophagy activating kinase 1(ULK1)‐dependent autophagy. Collectively, our present study unveiled a novel role for PCK2 in integrating autophagy and bone formation, providing a potential target for stem cell‐based bone tissue engineering that may lead to improved therapies for metabolic bone diseases. stem cells2019;37:1542–1555


Url:
DOI: 10.1002/stem.3091
PubMed: 31574189
PubMed Central: 6916635

Links to Exploration step

PMC:6916635

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Mitochondrial Phosphoenolpyruvate Carboxykinase Regulates Osteogenic Differentiation by Modulating AMPK/ULK1‐Dependent Autophagy</title>
<author>
<name sortKey="Li, Zheng" sort="Li, Zheng" uniqKey="Li Z" first="Zheng" last="Li">Zheng Li</name>
<affiliation>
<nlm:aff id="stem3091-aff-0001"></nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="stem3091-aff-0002"></nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Liu, Xuenan" sort="Liu, Xuenan" uniqKey="Liu X" first="Xuenan" last="Liu">Xuenan Liu</name>
<affiliation>
<nlm:aff id="stem3091-aff-0001"></nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="stem3091-aff-0002"></nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Zhu, Yuan" sort="Zhu, Yuan" uniqKey="Zhu Y" first="Yuan" last="Zhu">Yuan Zhu</name>
<affiliation>
<nlm:aff id="stem3091-aff-0001"></nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="stem3091-aff-0002"></nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Du, Yangge" sort="Du, Yangge" uniqKey="Du Y" first="Yangge" last="Du">Yangge Du</name>
<affiliation>
<nlm:aff id="stem3091-aff-0001"></nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="stem3091-aff-0002"></nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Liu, Xuejiao" sort="Liu, Xuejiao" uniqKey="Liu X" first="Xuejiao" last="Liu">Xuejiao Liu</name>
<affiliation>
<nlm:aff id="stem3091-aff-0001"></nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="stem3091-aff-0002"></nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Lv, Longwei" sort="Lv, Longwei" uniqKey="Lv L" first="Longwei" last="Lv">Longwei Lv</name>
<affiliation>
<nlm:aff id="stem3091-aff-0001"></nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="stem3091-aff-0002"></nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Zhang, Xiao" sort="Zhang, Xiao" uniqKey="Zhang X" first="Xiao" last="Zhang">Xiao Zhang</name>
<affiliation>
<nlm:aff id="stem3091-aff-0001"></nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="stem3091-aff-0002"></nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Liu, Yunsong" sort="Liu, Yunsong" uniqKey="Liu Y" first="Yunsong" last="Liu">Yunsong Liu</name>
<affiliation>
<nlm:aff id="stem3091-aff-0001"></nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="stem3091-aff-0002"></nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Zhang, Ping" sort="Zhang, Ping" uniqKey="Zhang P" first="Ping" last="Zhang">Ping Zhang</name>
<affiliation>
<nlm:aff id="stem3091-aff-0001"></nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="stem3091-aff-0002"></nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Zhou, Yongsheng" sort="Zhou, Yongsheng" uniqKey="Zhou Y" first="Yongsheng" last="Zhou">Yongsheng Zhou</name>
<affiliation>
<nlm:aff id="stem3091-aff-0001"></nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="stem3091-aff-0002"></nlm:aff>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PMC</idno>
<idno type="pmid">31574189</idno>
<idno type="pmc">6916635</idno>
<idno type="url">http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6916635</idno>
<idno type="RBID">PMC:6916635</idno>
<idno type="doi">10.1002/stem.3091</idno>
<date when="2019">2019</date>
<idno type="wicri:Area/Pmc/Corpus">000809</idno>
<idno type="wicri:explorRef" wicri:stream="Pmc" wicri:step="Corpus" wicri:corpus="PMC">000809</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a" type="main">Mitochondrial Phosphoenolpyruvate Carboxykinase Regulates Osteogenic Differentiation by Modulating AMPK/ULK1‐Dependent Autophagy</title>
<author>
<name sortKey="Li, Zheng" sort="Li, Zheng" uniqKey="Li Z" first="Zheng" last="Li">Zheng Li</name>
<affiliation>
<nlm:aff id="stem3091-aff-0001"></nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="stem3091-aff-0002"></nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Liu, Xuenan" sort="Liu, Xuenan" uniqKey="Liu X" first="Xuenan" last="Liu">Xuenan Liu</name>
<affiliation>
<nlm:aff id="stem3091-aff-0001"></nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="stem3091-aff-0002"></nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Zhu, Yuan" sort="Zhu, Yuan" uniqKey="Zhu Y" first="Yuan" last="Zhu">Yuan Zhu</name>
<affiliation>
<nlm:aff id="stem3091-aff-0001"></nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="stem3091-aff-0002"></nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Du, Yangge" sort="Du, Yangge" uniqKey="Du Y" first="Yangge" last="Du">Yangge Du</name>
<affiliation>
<nlm:aff id="stem3091-aff-0001"></nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="stem3091-aff-0002"></nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Liu, Xuejiao" sort="Liu, Xuejiao" uniqKey="Liu X" first="Xuejiao" last="Liu">Xuejiao Liu</name>
<affiliation>
<nlm:aff id="stem3091-aff-0001"></nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="stem3091-aff-0002"></nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Lv, Longwei" sort="Lv, Longwei" uniqKey="Lv L" first="Longwei" last="Lv">Longwei Lv</name>
<affiliation>
<nlm:aff id="stem3091-aff-0001"></nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="stem3091-aff-0002"></nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Zhang, Xiao" sort="Zhang, Xiao" uniqKey="Zhang X" first="Xiao" last="Zhang">Xiao Zhang</name>
<affiliation>
<nlm:aff id="stem3091-aff-0001"></nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="stem3091-aff-0002"></nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Liu, Yunsong" sort="Liu, Yunsong" uniqKey="Liu Y" first="Yunsong" last="Liu">Yunsong Liu</name>
<affiliation>
<nlm:aff id="stem3091-aff-0001"></nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="stem3091-aff-0002"></nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Zhang, Ping" sort="Zhang, Ping" uniqKey="Zhang P" first="Ping" last="Zhang">Ping Zhang</name>
<affiliation>
<nlm:aff id="stem3091-aff-0001"></nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="stem3091-aff-0002"></nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Zhou, Yongsheng" sort="Zhou, Yongsheng" uniqKey="Zhou Y" first="Yongsheng" last="Zhou">Yongsheng Zhou</name>
<affiliation>
<nlm:aff id="stem3091-aff-0001"></nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="stem3091-aff-0002"></nlm:aff>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Stem Cells (Dayton, Ohio)</title>
<idno type="ISSN">1066-5099</idno>
<idno type="eISSN">1549-4918</idno>
<imprint>
<date when="2019">2019</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<title>Abstract</title>
<p>Mitochondrial phosphoenolpyruvate carboxykinase (PCK2) is a rate‐limiting enzyme that plays critical roles in multiple physiological processes. The decompensation of PCK2 leads to various energy metabolic disorders. However, little is known regarding the effects of PCK2 on osteogenesis by human mesenchymal stem cells (hMSCs). Here, we report a novel function of PCK2 as a positive regulator of MSCs osteogenic differentiation. In addition to its well‐known role in anabolism, we demonstrate that PCK2 regulates autophagy. PCK2 deficiency significantly suppressed autophagy, leading to the impairment of osteogenic capacity of MSCs. On the other hand, autophagy was promoted by PCK2 overexpression; this was accompanied by increased osteogenic differentiation of MSCs. Moreover, PCK2 regulated osteogenic differentiation of MSCs via AMP‐activated protein kinase (AMPK)/unc‐51 like autophagy activating kinase 1(ULK1)‐dependent autophagy. Collectively, our present study unveiled a novel role for PCK2 in integrating autophagy and bone formation, providing a potential target for stem cell‐based bone tissue engineering that may lead to improved therapies for metabolic bone diseases.
<sc>stem cells</sc>
<italic>2019;37:1542–1555</italic>
</p>
</div>
</front>
<back>
<div1 type="bibliography">
<listBibl>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
</listBibl>
</div1>
</back>
</TEI>
<pmc article-type="research-article">
<pmc-dir>properties open_access</pmc-dir>
<front>
<journal-meta>
<journal-id journal-id-type="nlm-ta">Stem Cells</journal-id>
<journal-id journal-id-type="iso-abbrev">Stem Cells</journal-id>
<journal-id journal-id-type="doi">10.1002/(ISSN)1549-4918</journal-id>
<journal-id journal-id-type="publisher-id">STEM</journal-id>
<journal-title-group>
<journal-title>Stem Cells (Dayton, Ohio)</journal-title>
</journal-title-group>
<issn pub-type="ppub">1066-5099</issn>
<issn pub-type="epub">1549-4918</issn>
<publisher>
<publisher-name>John Wiley & Sons, Inc.</publisher-name>
<publisher-loc>Hoboken, USA</publisher-loc>
</publisher>
</journal-meta>
<article-meta>
<article-id pub-id-type="pmid">31574189</article-id>
<article-id pub-id-type="pmc">6916635</article-id>
<article-id pub-id-type="doi">10.1002/stem.3091</article-id>
<article-id pub-id-type="publisher-id">STEM3091</article-id>
<article-categories>
<subj-group subj-group-type="overline">
<subject>Stem Cell Technology: Epigenetics, Genomics, Proteomics, and Metabonomics</subject>
</subj-group>
<subj-group subj-group-type="heading">
<subject>Stem Cell Technology: Epigenetics, Genomics, Proteomics, and Metabonomics</subject>
</subj-group>
</article-categories>
<title-group>
<article-title>Mitochondrial Phosphoenolpyruvate Carboxykinase Regulates Osteogenic Differentiation by Modulating AMPK/ULK1‐Dependent Autophagy</article-title>
<alt-title alt-title-type="right-running-head">PCK2 Promotes Osteogenesis by MSCs via Autophagy</alt-title>
<alt-title alt-title-type="left-running-head">Li, Liu, Zhu et al.</alt-title>
</title-group>
<contrib-group>
<contrib id="stem3091-cr-0001" contrib-type="author">
<name>
<surname>Li</surname>
<given-names>Zheng</given-names>
</name>
<contrib-id contrib-id-type="orcid" authenticated="false">https://orcid.org/0000-0003-0215-4401</contrib-id>
<xref ref-type="aff" rid="stem3091-aff-0001">
<sup>1</sup>
</xref>
<xref ref-type="aff" rid="stem3091-aff-0002">
<sup>2</sup>
</xref>
</contrib>
<contrib id="stem3091-cr-0002" contrib-type="author">
<name>
<surname>Liu</surname>
<given-names>Xuenan</given-names>
</name>
<xref ref-type="aff" rid="stem3091-aff-0001">
<sup>1</sup>
</xref>
<xref ref-type="aff" rid="stem3091-aff-0002">
<sup>2</sup>
</xref>
</contrib>
<contrib id="stem3091-cr-0003" contrib-type="author">
<name>
<surname>Zhu</surname>
<given-names>Yuan</given-names>
</name>
<xref ref-type="aff" rid="stem3091-aff-0001">
<sup>1</sup>
</xref>
<xref ref-type="aff" rid="stem3091-aff-0002">
<sup>2</sup>
</xref>
</contrib>
<contrib id="stem3091-cr-0004" contrib-type="author">
<name>
<surname>Du</surname>
<given-names>Yangge</given-names>
</name>
<xref ref-type="aff" rid="stem3091-aff-0001">
<sup>1</sup>
</xref>
<xref ref-type="aff" rid="stem3091-aff-0002">
<sup>2</sup>
</xref>
</contrib>
<contrib id="stem3091-cr-0005" contrib-type="author">
<name>
<surname>Liu</surname>
<given-names>Xuejiao</given-names>
</name>
<xref ref-type="aff" rid="stem3091-aff-0001">
<sup>1</sup>
</xref>
<xref ref-type="aff" rid="stem3091-aff-0002">
<sup>2</sup>
</xref>
</contrib>
<contrib id="stem3091-cr-0006" contrib-type="author">
<name>
<surname>Lv</surname>
<given-names>Longwei</given-names>
</name>
<xref ref-type="aff" rid="stem3091-aff-0001">
<sup>1</sup>
</xref>
<xref ref-type="aff" rid="stem3091-aff-0002">
<sup>2</sup>
</xref>
</contrib>
<contrib id="stem3091-cr-0007" contrib-type="author">
<name>
<surname>Zhang</surname>
<given-names>Xiao</given-names>
</name>
<xref ref-type="aff" rid="stem3091-aff-0001">
<sup>1</sup>
</xref>
<xref ref-type="aff" rid="stem3091-aff-0002">
<sup>2</sup>
</xref>
</contrib>
<contrib id="stem3091-cr-0008" contrib-type="author">
<name>
<surname>Liu</surname>
<given-names>Yunsong</given-names>
</name>
<xref ref-type="aff" rid="stem3091-aff-0001">
<sup>1</sup>
</xref>
<xref ref-type="aff" rid="stem3091-aff-0002">
<sup>2</sup>
</xref>
</contrib>
<contrib id="stem3091-cr-0009" contrib-type="author" corresp="yes">
<name>
<surname>Zhang</surname>
<given-names>Ping</given-names>
</name>
<xref ref-type="aff" rid="stem3091-aff-0001">
<sup>1</sup>
</xref>
<xref ref-type="aff" rid="stem3091-aff-0002">
<sup>2</sup>
</xref>
<address>
<email>zhangping332@bjmu.edu.cn</email>
</address>
</contrib>
<contrib id="stem3091-cr-0010" contrib-type="author" corresp="yes">
<name>
<surname>Zhou</surname>
<given-names>Yongsheng</given-names>
</name>
<xref ref-type="aff" rid="stem3091-aff-0001">
<sup>1</sup>
</xref>
<xref ref-type="aff" rid="stem3091-aff-0002">
<sup>2</sup>
</xref>
<address>
<email>kqzhouysh@hsc.pku.edu.cn</email>
</address>
</contrib>
</contrib-group>
<aff id="stem3091-aff-0001">
<label>
<sup>1</sup>
</label>
<named-content content-type="organisation-division">Department of Prosthodontics</named-content>
<institution>School and Hospital of Stomatology, Peking University</institution>
<city>Beijing</city>
<country country="CN">People's Republic of China</country>
</aff>
<aff id="stem3091-aff-0002">
<label>
<sup>2</sup>
</label>
<named-content content-type="organisation-division">National Engineering Lab for Digital and Material Technology of Stomatology, National Clinical Research Center for Oral Diseases</named-content>
<institution>Peking University School and Hospital of Stomatology, Peking University</institution>
<city>Beijing</city>
<country country="CN">People's Republic of China</country>
</aff>
<author-notes>
<corresp id="correspondenceTo">
<label>*</label>
Correspondence: Ping Zhang, Ph.D., Department of Prosthodontics, Peking University School and Hospital of Stomatology, 22 Zhongguancun South Avenue, Haidian District, Beijing 100081, People's Republic of China. Telephone: 86‐10‐82195370; e‐mail:
<email>zhangping332@bjmu.edu.cn</email>
; or Yongsheng Zhou, D.D.S., Ph.D., Vice Dean of the School, Chair and Professor of Department of Prosthodontics, Peking University School and Hospital of Stomatology, 22 Zhongguancun South Avenue, Haidian District, Beijing 100081, People's Republic of China. Telephone: 86‐10‐82195370; e‐mail:
<email>kqzhouysh@hsc.pku.edu.cn</email>
</corresp>
</author-notes>
<pub-date pub-type="epub">
<day>14</day>
<month>10</month>
<year>2019</year>
</pub-date>
<pub-date pub-type="ppub">
<month>12</month>
<year>2019</year>
</pub-date>
<volume>37</volume>
<issue>12</issue>
<issue-id pub-id-type="doi">10.1002/stem.v37.12</issue-id>
<fpage>1542</fpage>
<lpage>1555</lpage>
<history>
<date date-type="received">
<day>05</day>
<month>3</month>
<year>2019</year>
</date>
<date date-type="accepted">
<day>01</day>
<month>9</month>
<year>2019</year>
</date>
</history>
<permissions>
<pmc-comment> © 2019 AlphaMed Press </pmc-comment>
<copyright-statement content-type="article-copyright">©2019 The Authors.
<sc>stem cells</sc>
published by Wiley Periodicals, Inc. on behalf of AlphaMed Press 2019</copyright-statement>
<license license-type="creativeCommonsBy-nc">
<license-p>This is an open access article under the terms of the
<ext-link ext-link-type="uri" xlink:href="http://creativecommons.org/licenses/by-nc/4.0/">http://creativecommons.org/licenses/by-nc/4.0/</ext-link>
License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited and is not used for commercial purposes.</license-p>
</license>
</permissions>
<self-uri content-type="pdf" xlink:href="file:STEM-37-1542.pdf"></self-uri>
<abstract>
<title>Abstract</title>
<p>Mitochondrial phosphoenolpyruvate carboxykinase (PCK2) is a rate‐limiting enzyme that plays critical roles in multiple physiological processes. The decompensation of PCK2 leads to various energy metabolic disorders. However, little is known regarding the effects of PCK2 on osteogenesis by human mesenchymal stem cells (hMSCs). Here, we report a novel function of PCK2 as a positive regulator of MSCs osteogenic differentiation. In addition to its well‐known role in anabolism, we demonstrate that PCK2 regulates autophagy. PCK2 deficiency significantly suppressed autophagy, leading to the impairment of osteogenic capacity of MSCs. On the other hand, autophagy was promoted by PCK2 overexpression; this was accompanied by increased osteogenic differentiation of MSCs. Moreover, PCK2 regulated osteogenic differentiation of MSCs via AMP‐activated protein kinase (AMPK)/unc‐51 like autophagy activating kinase 1(ULK1)‐dependent autophagy. Collectively, our present study unveiled a novel role for PCK2 in integrating autophagy and bone formation, providing a potential target for stem cell‐based bone tissue engineering that may lead to improved therapies for metabolic bone diseases.
<sc>stem cells</sc>
<italic>2019;37:1542–1555</italic>
</p>
</abstract>
<abstract abstract-type="graphical">
<p>The essential role of mitochondrial phosphoenolpyruvate carboxykinase (PCK2) in regulating gluconeogenesis and TCA cycle flux makes it indispensable for mesenchymal stem cells osteogenic differentiation, which is a nutrient‐consuming process. PCK2 regulates osteogenic differentiation of mesenchymal stem cells through modulating autophagy. The phosphorylation of AMP‐activated protein kinase (AMPK) and phosphorylation unc‐51 like autophagy activating kinase 1 (ULK1) are regulated by PCK2 during osteogenic differentiation, suggesting that AMPK/ULK1‐mediated autophagy is involved in the PCK2 regulated osteogenic capacity of mesenchymal stem cells.
<boxed-text position="anchor" content-type="graphic" id="stem3091-blkfxd-0001" orientation="portrait">
<graphic xlink:href="STEM-37-1542-g007.jpg" position="anchor" id="nlm-graphic-1" orientation="portrait"></graphic>
</boxed-text>
</p>
</abstract>
<kwd-group kwd-group-type="author-generated">
<kwd id="stem3091-kwd-0001">Autophagy</kwd>
<kwd id="stem3091-kwd-0002">Mesenchymal stem cells</kwd>
<kwd id="stem3091-kwd-0004">Osteogenic differentiation</kwd>
<kwd id="stem3091-kwd-0003">Mitochondrial phosphoenolpyruvate carboxykinase</kwd>
</kwd-group>
<funding-group>
<award-group id="funding-0001">
<funding-source>
<institution-wrap>
<institution>National Natural Science Foundation of China </institution>
<institution-id institution-id-type="open-funder-registry">10.13039/501100001809</institution-id>
</institution-wrap>
</funding-source>
<award-id>81870742</award-id>
</award-group>
<award-group id="funding-0002">
<funding-source>
<institution-wrap>
<institution>Beijing Nova Program </institution>
<institution-id institution-id-type="open-funder-registry">10.13039/501100005090</institution-id>
</institution-wrap>
</funding-source>
<award-id>Z181100006218037</award-id>
</award-group>
<award-group id="funding-0003">
<funding-source>Capital Culturing Project for Leading Talents in Scientific and Technological Innovation in Beijing</funding-source>
<award-id>Z171100001117169</award-id>
</award-group>
</funding-group>
<counts>
<fig-count count="6"></fig-count>
<table-count count="1"></table-count>
<page-count count="14"></page-count>
<word-count count="10501"></word-count>
</counts>
<custom-meta-group>
<custom-meta>
<meta-name>source-schema-version-number</meta-name>
<meta-value>2.0</meta-value>
</custom-meta>
<custom-meta>
<meta-name>cover-date</meta-name>
<meta-value>December 2019</meta-value>
</custom-meta>
<custom-meta>
<meta-name>details-of-publishers-convertor</meta-name>
<meta-value>Converter:WILEY_ML3GV2_TO_JATSPMC version:5.7.3 mode:remove_FC converted:17.12.2019</meta-value>
</custom-meta>
</custom-meta-group>
</article-meta>
</front>
<body id="stem3091-body-0001">
<p>
<boxed-text position="anchor" content-type="box" id="stem3091-blkfxd-0002" orientation="portrait">
<caption>
<title>Significance Statement</title>
</caption>
<p>The degradation substances from autophagy can be used as optional nutrient supply for cell survival and differentiation, making autophagy a suitable energy‐refueling process during osteogenesis by mesenchymal stem cells (MSCs). Although mitochondrial phosphoenolpyruvate carboxykinase (PCK2) has been suggested as a critical enzyme for anabolism, it has been unclear whether PCK2 plays critical roles in autophagy. The study first determines that PCK2 promotes osteogenic differentiation by positively regulating autophagy in MSCs, which facilities better application of bone tissue engineering and maintenance of bone homeostasis.</p>
</boxed-text>
</p>
<sec id="stem3091-sec-0003">
<title>Introduction</title>
<p>Due to the ease of their accessibility and their multipotent properties, mesenchymal stem cells (MSCs) have emerged as promising candidates for use in bone tissue engineering to repair bone defects
<xref rid="stem3091-bib-0001" ref-type="ref">1</xref>
. Exploration of mechanisms underlying differentiation of MSCs toward osteogenic lineages may facilitate improved clinical application of MSCs in the treatment of metabolic bone diseases, which confers significant burden for patients and the healthcare system.</p>
<p>During the process of forming new bone matrix and mineral deposition, MSCs can encounter deficiencies in energy supply, and may have difficulty meeting the increased metabolic demand associated with self‐renewal and osteogenic differentiation
<xref rid="stem3091-bib-0002" ref-type="ref">2</xref>
. Under these conditions, anabolism in MSCs is elevated to ensure a sufficient energy supply, including reduced glycolysis and increased mitochondrial respiration
<xref rid="stem3091-bib-0003" ref-type="ref">3</xref>
. With the increase of anabolism, useless organelles and metabolites accumulate in cells. To maintain homeostasis in MSCs, the amount of cellular proteins and organelles should be strictly restricted. Autophagy is a degradative mechanism by which cells remove damaged and dysfunctional components to recycle macromolecules and provide energy under the stress of differentiation
<xref rid="stem3091-bib-0004" ref-type="ref">4</xref>
. Amino acids from organelles degraded by autophagy can be used as an optional nutrient supply for cell survival
<xref rid="stem3091-bib-0005" ref-type="ref">5</xref>
, making autophagy a suitable energy‐refueling process during osteogenesis by MSCs. Previous studies have found the levels of autophagosomes present in MSCs
<xref rid="stem3091-bib-0006" ref-type="ref">6</xref>
,
<xref rid="stem3091-bib-0007" ref-type="ref">7</xref>
is higher than that of many differentiated cells. The autophagic flux was observed in early MSC osteogenesis, suggesting that autophagy is critical in MSC differentiation
<xref rid="stem3091-bib-0007" ref-type="ref">7</xref>
. Activation of autophagy was reported to significantly increase osteogenic differentiation and could rescue bone volume (BV)
<xref rid="stem3091-bib-0008" ref-type="ref">8</xref>
. Impaired autophagy was also found in the well‐known skeletal degenerative diseases—osteoporosis
<xref rid="stem3091-bib-0009" ref-type="ref">9</xref>
. These studies suggest that autophagy, as a vital link in the chain of energy metabolism, has a profound impact on the osteogenesis by MSCs. However, the regular mechanisms between autophagy and osteogenesis by MSCs have not been elaborately demonstrated.</p>
<p>Under conditions of nutrient‐deprivation environment, gluconeogenesis is the primary source for endogenous glucose production
<xref rid="stem3091-bib-0010" ref-type="ref">10</xref>
. Phosphoenolpyruvate carboxykinase (PEPCK) is an important enzyme in gluconeogenesis that catalyzes the decarboxylation of oxaloacetate (OAA) to phosphoenolpyruvate (PEP) in the tricarboxylic acid (TCA) cycle. Subsequently, through the activity of various enzymes in the glycolytic pathway, PEP can be transformed to glucose
<xref rid="stem3091-bib-0011" ref-type="ref">11</xref>
. There are two isoforms of PEPCK: a cytosolic isoform (PEPCK1 or phosphoenolpyruvate carboxykinase [PCK1]) and a mitochondrial isoform (PEPCK2 or PCK2). Although the physiological function and regulatory patterns of PCK1 have been extensively explored
<xref rid="stem3091-bib-0012" ref-type="ref">12</xref>
,
<xref rid="stem3091-bib-0013" ref-type="ref">13</xref>
, the biological role of PCK2 is poorly understood. It has been reported that the stability of PCK1
<xref rid="stem3091-bib-0014" ref-type="ref">14</xref>
is regulated by acylation, and that hyperacetylated PCK1 can promote anaplerotic activity
<xref rid="stem3091-bib-0015" ref-type="ref">15</xref>
. Additionally, PCK1 promotes the ability of cells to uptake glucose and glutamine by increasing the metabolism of fatty acids and nucleic acids
<xref rid="stem3091-bib-0012" ref-type="ref">12</xref>
. Nevertheless, a mitochondrial mtGTP/PCK2 signaling may regulate glucose homeostasis by modulating the production and clearance of glucose, which suggests a role for PCK2 as a “metabolic tachometer” to sense TCA cycle flux
<xref rid="stem3091-bib-0016" ref-type="ref">16</xref>
. Under low‐glucose conditions, PCK2 allows cells to produce PEP from glutamine, which is used as a biosynthetic intermediate
<xref rid="stem3091-bib-0017" ref-type="ref">17</xref>
. Therefore, the essential function of PCK2 in regulating gluconeogenesis is required for cells in a nutrient‐deficient environment
<xref rid="stem3091-bib-0018" ref-type="ref">18</xref>
. In light of the increasing energy demands during osteogenic differentiation, we wondered if PCK2 modulates osteogenic differentiation by influencing the cellular metabolic network.</p>
<p>The decompensation of PCK2 could lead to a series of energy metabolic disorders, such as diabetes mellitus
<xref rid="stem3091-bib-0019" ref-type="ref">19</xref>
and glucose intolerance
<xref rid="stem3091-bib-0020" ref-type="ref">20</xref>
, which will further lead to bone metabolic diseases. Exploration of the role of PCK2 in regulating osteogenesis is central to the understanding of the pathogenesis and treatment of skeletal diseases such as osteoporosis. In the current study, we discovered that PCK2 is a positive regulator of osteogenesis by MSCs and serves an indispensable role in autophagy. Mechanistically, PCK2 promotes the osteogenic capacity of MSCs through AMP‐activated protein kinase (AMPK)/unc‐51 like autophagy activating kinase 1 (ULK1)‐mediated autophagy. This study was the first to emphasize the vital role of PCK2 in promoting the osteogenic capacity of MSCs by regulating autophagy, which may lead to the establishment of new strategies for bone tissue engineering. Moreover, therapeutic intervention by targeting PCK2 in certain types of metabolic disorders might be beneficial.</p>
</sec>
<sec id="stem3091-sec-0004">
<title>Materials and Methods</title>
<sec id="stem3091-sec-0005">
<title>Cell Culture</title>
<p>The human adipose‐derived stem cells (hASCs) and human bone marrow mesenchymal stem cells (hBMSCs) used in our study were obtained from ScienCell Research Laboratory (Carlsbad, CA). Cells in this study were between three and five passages and obtained from three healthy adult donors. All materials used in cell culture were bought from Sigma–Aldrich (St. Louis, MO). For the in vitro experiments, proliferation medium (PM) for hASCs consisted of fetal bovine serum (FBS; 10%, vol/vol), penicillin G (100 U/ml), and streptomycin (100 mg ml) into Dulbecco's modified Eagle's medium; the PM for hBMSCs consisted of Minimum Essential Medium α (α‐MEM, Gibco, Grand island, USA), 10% (vol/vol) FBS, penicillin G (100 U/ml), and streptomycin (100 mg/ml). Dexamethasone (100 nM),
<sc>l</sc>
‐ascorbic acid (200 mM), and β‐glycerophosphate (10 mM) were added into PM to make osteogenic medium (OM). The cell culture conditions were 95% air, 5% CO
<sub>2</sub>
, 100% relative humidity, and 37°C.</p>
</sec>
<sec id="stem3091-sec-0006">
<title>Lentiviral Transfection</title>
<p>Lentiviral transfection was performed as previously described
<xref rid="stem3091-bib-0021" ref-type="ref">21</xref>
. Lentiviruses targeting PCK2 (sh1‐
<italic>PCK2</italic>
, sh2‐
<italic>PCK2</italic>
) and negative control (NC) vectors (NC1/NC2) were purchased from GenePharma Co. (Suzhou, China). Lentiviruses targeting ATG7 (sh1‐
<italic>ATG7</italic>
, sh2‐
<italic>ATG7</italic>
), NC, and lentiviruses containing PCK2 and the scramble control (vector) were purchased from Vector Builder Co. (Guangzhou, China). Multiplicity of infection of 100 was found to be suitable for transfection. When cells were exposed to the viral suspension, 5 mg/ml polybrene (Sigma) was added. After 72–96 hours, cells were incubated with puromycin (1 μg/ml, Sigma–Aldrich). The shRNA sequences used for PCK2 and ATG7 knockdown are shown in Table
<xref rid="stem3091-tbl-0001" ref-type="table">1</xref>
.</p>
<table-wrap id="stem3091-tbl-0001" xml:lang="en" orientation="portrait" position="float">
<label>Table 1</label>
<caption>
<p>Sequences of RNA and DNA oligonucleotides</p>
</caption>
<table frame="hsides" rules="cols">
<col align="left" span="1"></col>
<col align="left" span="1"></col>
<col align="left" span="1"></col>
<thead valign="bottom">
<tr style="border-bottom:solid 1px #000000">
<th align="left" valign="bottom" rowspan="1" colspan="1">Name</th>
<th align="center" valign="bottom" rowspan="1" colspan="1">Sense strand/sense primer (5′‐3′)</th>
<th align="center" valign="bottom" rowspan="1" colspan="1">Antisense strand/antisense primer (5′‐3′)</th>
</tr>
</thead>
<tbody valign="top">
<tr>
<td align="left" valign="top" rowspan="1" colspan="1">
<italic>Primers</italic>
</td>
<td align="left" valign="top" rowspan="1" colspan="1"></td>
<td align="left" valign="top" rowspan="1" colspan="1"></td>
</tr>
<tr>
<td style="padding-left:10%" align="left" valign="top" rowspan="1" colspan="1">
<italic>PCK2</italic>
</td>
<td align="left" valign="top" rowspan="1" colspan="1">GAGTGTTTCCCTCCCCAAGG</td>
<td align="left" valign="top" rowspan="1" colspan="1">GCGTGCCTTTGGTGATTCAG</td>
</tr>
<tr>
<td style="padding-left:10%" align="left" valign="top" rowspan="1" colspan="1">
<italic>PCK1</italic>
</td>
<td align="left" valign="top" rowspan="1" colspan="1">CATCCACATCTGTGACGGCTCTG</td>
<td align="left" valign="top" rowspan="1" colspan="1">TCTTTGCTCTTGGGTGACGATAA</td>
</tr>
<tr>
<td style="padding-left:10%" align="left" valign="top" rowspan="1" colspan="1">
<italic>RUNX2</italic>
</td>
<td align="left" valign="top" rowspan="1" colspan="1">CCGCCTCAGTGATTTAGGGC</td>
<td align="left" valign="top" rowspan="1" colspan="1">GGGTCTGTAATCTGACTCTGTCC</td>
</tr>
<tr>
<td style="padding-left:10%" align="left" valign="top" rowspan="1" colspan="1">
<italic>OCN</italic>
</td>
<td align="left" valign="top" rowspan="1" colspan="1">CACTCCTCGCCCTATTGGC</td>
<td align="left" valign="top" rowspan="1" colspan="1">CCCTCCTGCTTGGACACAAAG</td>
</tr>
<tr>
<td style="padding-left:10%" align="left" valign="top" rowspan="1" colspan="1">
<italic>GAPDH</italic>
</td>
<td align="left" valign="top" rowspan="1" colspan="1">GGTCACCAGGGCTGCTTTT</td>
<td align="left" valign="top" rowspan="1" colspan="1">GGATCTCGCTCCTGGAAGATG</td>
</tr>
<tr>
<td style="padding-left:10%" align="left" valign="top" rowspan="1" colspan="1">
<italic>ALP</italic>
</td>
<td align="left" valign="top" rowspan="1" colspan="1">GACCTCCTCGGAAGACACTC</td>
<td align="left" valign="top" rowspan="1" colspan="1">TGAAGGGCTTCTTGTCTGTG</td>
</tr>
<tr>
<td style="padding-left:10%" align="left" valign="top" rowspan="1" colspan="1">
<italic>ATG7</italic>
</td>
<td align="left" valign="top" rowspan="1" colspan="1">AGCGGCGGCAAGAAATAA</td>
<td align="left" valign="top" rowspan="1" colspan="1">CCAGCCGATACTCGTTCA</td>
</tr>
<tr>
<td style="padding-left:10%" align="left" valign="top" rowspan="1" colspan="1">
<italic>LC3B</italic>
</td>
<td align="left" valign="top" rowspan="1" colspan="1">GCACCTTCGAACAAAGAGTAGA</td>
<td align="left" valign="top" rowspan="1" colspan="1">GCACCTTCGAACAAAGAGTAGA</td>
</tr>
<tr>
<td style="padding-left:10%" align="left" valign="top" rowspan="1" colspan="1">
<italic>P62</italic>
</td>
<td align="left" valign="top" rowspan="1" colspan="1">AGAGCAGCAGCGTCAGGAA</td>
<td align="left" valign="top" rowspan="1" colspan="1">ACGCCAAACTGTTGTAGGACTT</td>
</tr>
<tr>
<td style="padding-left:10%" align="left" valign="top" rowspan="1" colspan="1">
<italic>ULK1</italic>
</td>
<td align="left" valign="top" rowspan="1" colspan="1">CCTGCTGAGCCGAGAATG</td>
<td align="left" valign="top" rowspan="1" colspan="1">CTGCTTCACAGTGGACGACA</td>
</tr>
<tr>
<td align="left" valign="top" rowspan="1" colspan="1">
<italic>shRNA</italic>
</td>
<td align="left" valign="top" rowspan="1" colspan="1"></td>
<td align="left" valign="top" rowspan="1" colspan="1"></td>
</tr>
<tr>
<td style="padding-left:10%" align="left" valign="top" rowspan="1" colspan="1">Control</td>
<td align="left" valign="top" rowspan="1" colspan="1">TTCTCCGAACGTGTCACGT</td>
<td align="left" valign="top" rowspan="1" colspan="1"></td>
</tr>
<tr>
<td style="padding-left:10%" align="left" valign="top" rowspan="1" colspan="1">sh1‐
<italic>PCK2</italic>
</td>
<td align="left" valign="top" rowspan="1" colspan="1">GGTGGCAAGCATGCGTATTAT</td>
<td align="left" valign="top" rowspan="1" colspan="1"></td>
</tr>
<tr>
<td style="padding-left:10%" align="left" valign="top" rowspan="1" colspan="1">sh2‐
<italic>PCK2</italic>
</td>
<td align="left" valign="top" rowspan="1" colspan="1">GGGATGATATTGCTTGGATGA</td>
<td align="left" valign="top" rowspan="1" colspan="1"></td>
</tr>
<tr>
<td style="padding-left:10%" align="left" valign="top" rowspan="1" colspan="1">sh1‐ATG7</td>
<td align="left" valign="top" rowspan="1" colspan="1">CAAGGACATTAAGGGTTATTA</td>
<td align="left" valign="top" rowspan="1" colspan="1"></td>
</tr>
<tr>
<td style="padding-left:10%" align="left" valign="top" rowspan="1" colspan="1">sh2‐
<italic>ATG7</italic>
</td>
<td align="left" valign="top" rowspan="1" colspan="1">TCCAAAGTTCTTGATCAATAT</td>
<td align="left" valign="top" rowspan="1" colspan="1"></td>
</tr>
<tr>
<td align="left" valign="top" rowspan="1" colspan="1">
<italic>si‐RNA</italic>
</td>
<td align="left" valign="top" rowspan="1" colspan="1"></td>
<td align="left" valign="top" rowspan="1" colspan="1"></td>
</tr>
<tr>
<td style="padding-left:10%" align="left" valign="top" rowspan="1" colspan="1">si1‐
<italic>ULK1</italic>
</td>
<td align="left" valign="top" rowspan="1" colspan="1">GGUACCUCCAGAGCAACAUTT</td>
<td align="left" valign="top" rowspan="1" colspan="1">AUGUUGCUCUGGAGGUACCTT</td>
</tr>
<tr>
<td style="padding-left:10%" align="left" valign="top" rowspan="1" colspan="1">si2‐ULK1</td>
<td align="left" valign="top" rowspan="1" colspan="1">GGCUGAAUGAGCUGUACAATT</td>
<td align="left" valign="top" rowspan="1" colspan="1">UUGUACAGCUCAUUCAGCCTT</td>
</tr>
<tr>
<td style="padding-left:10%" align="left" valign="top" rowspan="1" colspan="1">si‐AMPK</td>
<td align="left" valign="top" rowspan="1" colspan="1">CGGGAUCAGUUAGCAACUAdTdT</td>
<td align="left" valign="top" rowspan="1" colspan="1">AGUUGCUAACUGAUCCCGdTdT</td>
</tr>
<tr>
<td style="padding-left:10%" align="left" valign="top" rowspan="1" colspan="1">Negative control</td>
<td align="left" valign="top" rowspan="1" colspan="1">UUCUCCGAACGUGUCACGUTT</td>
<td align="left" valign="top" rowspan="1" colspan="1">ACGUGACACGUUCGGAGAATT</td>
</tr>
</tbody>
</table>
<table-wrap-foot id="stem3091-ntgp-0002">
<fn id="stem3091-note-0002">
<p>Abbreviations: shRNA, short‐hairpin RNA; si‐RNA, short interfering RNA.</p>
</fn>
</table-wrap-foot>
</table-wrap>
</sec>
<sec id="stem3091-sec-0007">
<title>RNA Interference and Plasmid Transfection</title>
<p>The sequences of short interfering (si) RNAs targeting ULK1 (si1‐
<italic>ULK1</italic>
, si2‐
<italic>ULK1</italic>
) and the negative control (si‐NC) are listed in Table
<xref rid="stem3091-tbl-0001" ref-type="table">1</xref>
and were purchased from GenePharma Co. The si‐RNA targeting AMP‐activated protein kinase (si‐AMPK) was obtained from HanBio (Shanghai, China). The pCIP‐AMPKα1_WT plasmid was a gift from Reuben Shaw (Addgene plasmid # 79010;
<ext-link ext-link-type="uri" xlink:href="http://n2t.net/addgene:79010">http://n2t.net/addgene:79010</ext-link>
; RRID: Addgene_79010). The wild‐type PCK2 (pEnCMV‐PCK2‐3 × FLAG) and mutant PCK2 plasmids (pEnCMV‐PCK2‐K261.262R‐3 × FLAG) were constructed. Based on the manufacturer instructions, Lipofectamine 3000 (Invitrogen, Carlsbad, USA) was used as a transfection agent. After 48 hours, cells were collected and gene expressions were analyzed. During the process of osteogenesis, transfection was repeated every 5 days to ensure transfection efficiency and hASCs were harvested at 7 and 14 days after osteogenic induction.</p>
</sec>
<sec id="stem3091-sec-0008">
<title>Cell Proliferation Assay</title>
<p>Cells were seeded in 96‐well plates at a density of ∼2 × 10
<sup>3</sup>
 cells per well. At days 1–8, cells were incubated with 20 μl cell counting kit‐8 (CCK‐8) assay kit to analyze cell proliferation (Dojindo Laboratories, Kumamoto, Japan). After 1.5 hours at 37°C, the absorbance at 490 nm was measured for each well, and cell proliferation curves were plotted. The experiments were repeated at least three times. Each group was tested in three replicate wells.</p>
</sec>
<sec id="stem3091-sec-0009">
<title>Alkaline Phosphatase Staining and Activity</title>
<p>Cells (hASCs and hBMSCs) were seeded in six‐well plates. After 7 days of osteoinduction, alkaline phosphatase (ALP) staining and activity were conducted according to previously established protocols
<xref rid="stem3091-bib-0022" ref-type="ref">22</xref>
. The 5‐bromo‐4‐chloro‐3‐indolyl‐phosphate/Nitro‐Blue‐Tetrazolium staining kit (CoWin Biosciences, Beijing, China), bicinchoninic acid (BCA) protein assay kit (Prod#23225, Pierce Thermo Scientific, Waltham, MA) and ALP assay kit (A059‐2, Nanjing Jiancheng Bioengineering Institute, Nanjing, China) were used.</p>
</sec>
<sec id="stem3091-sec-0010">
<title>Alizarin Red S Staining and Quantification</title>
<p>For alizarin red S (ARS) staining and quantification, hASCs were seeded in six‐well plates. On the 14th day of osteoinduction, cells were fixed with 95% ethanol for 30 minutes at room temperature. After washed with distilled water for three times, the cells were incubated with ARS solution (2%, pH 4.2, Sigma–Aldrich). For quantification, the plate was incubated with 100 mM cetylpyridinium chloride (Sigma–Aldrich) for 1 hour and the solution was collected. According to previously established protocols
<xref rid="stem3091-bib-0023" ref-type="ref">23</xref>
,
<xref rid="stem3091-bib-0024" ref-type="ref">24</xref>
, the absorbance of solution was measured at 562 nm and normalized to the total protein concentration.</p>
</sec>
<sec id="stem3091-sec-0011">
<title>RNA Collection and Quantitative Reverse Transcription Polymerase Chain Reaction</title>
<p>Cells (hASCs and hBMSCs) were seeded in six‐well plates, and total cellular RNA was extracted after 7 and 14 days of osteoinduction. Quantitative real‐time PCR was conducted as described previously
<xref rid="stem3091-bib-0025" ref-type="ref">25</xref>
. The expression of glyceraldehyde 3‐phosphate dehydrogenase (GAPDH) was detected for normalization of gene expression. The primers used for
<italic>PCK2</italic>
,
<italic>PCK1</italic>
,
<italic>GAPDH</italic>
,
<italic>ATG7</italic>
,
<italic>RUNX2</italic>
,
<italic>ALP</italic>
,
<italic>OCN</italic>
,
<italic>LC3B</italic>
,
<italic>p62</italic>
, and
<italic>ULK1</italic>
are listed in Table
<xref rid="stem3091-tbl-0001" ref-type="table">1</xref>
. To analyze the fold differences in relative expression, the cycle threshold values (Ct values) were calculated using the 2
<sup>−ΔΔCt</sup>
method.</p>
</sec>
<sec id="stem3091-sec-0012">
<title>Immunofluorescence Staining</title>
<p>The hASCs were seeded on confocal plates cultured in PM and OM, separately. After 7 days, cells were fixed in 4% paraformaldehyde and treated as previously described
<xref rid="stem3091-bib-0026" ref-type="ref">26</xref>
. The antibody (1:200 dilution) against the autophagy marker LC3B was from Cell Signaling Technology (Danvers, MA) and goat anti‐rabbit fluoresceine isothiocyanate (green, 1:150 dilution) was from Gibco. DAPI (blue) was used for staining nuclei. Fluorescence staining was visualized using a Confocal Zeiss Axiovert 650 microscope with the appropriate excitation wavelengths.</p>
</sec>
<sec id="stem3091-sec-0013">
<title>Western Blot Analysis</title>
<p>The total protein of hASCs or hBMSCs were prepared in radioimmunoprecipitation assay buffer including protease inhibitor mixture (Roche Applied Science, Mannheim, Germany) and phosphatase inhibitors (Keygenbio China, kgp602). Then the lysates were harvested and centrifuged at 14,000 rpm at 4°C for 15 minutes. The protein concentration was measured by using Pierce BCA protein assay kit (Thermo Scientific). Equal amount of the protein extracts was separated on proper SDS‐PAGE (7.5%, 10%, or 15%) and transferred to polyvinylidene difluoride membrane (Bio‐Rad). After blocking in 5% milk for 2 hours, the membranes were incubated with the primary antibodies at 4°C overnight. The electrochemiluminescence (ECL) kit (CWBIO) was used to detect the protein bands after incubation with secondary antibodies at room temperature for 1 hour. The following antibodies were used and diluted 1:1,000; Cell Signaling Technology: PCK2 (8565), PCK1 (12940), LC3B (2775), SQSTM1/p62 (88588), RUNX2 (12556), ATG7 (8558), ULK1 (8054), and phospho‐AMPK α (2635); Abcam (Cambridge, UK): phospho‐ULK1 (Ser 556; ab203207), phospho‐ULK1 (Ser 555; ab229537), phosphor‐ULK1 (Ser 757; ab6888), and AMPK (Ab32047); Huaxingbochuang Biotechnology (Beijing, China): GAPDH (HX1832).</p>
</sec>
<sec id="stem3091-sec-0014">
<title>Heterotypic Bone Formation Assay in Vivo</title>
<p>The hASCs stably infected with NC, sh1‐
<italic>PCK2</italic>
, sh2‐
<italic>PCK2</italic>
,
<italic>PCK2</italic>
, and vector,
<italic>PCK2</italic>
 + sh1‐
<italic>ATG7</italic>
,
<italic>PCK2</italic>
 + si‐
<italic>ULK1</italic>
were mixed with beta‐tricalcium phosphate (β‐TCP; Bicon, Boston, MA) particles. The complexes were implanted subcutaneously under the dorsal space of 42‐day‐old, BALB/c homozygous nude (nu/nu) mice (
<italic>n</italic>
= 10 mice per group, each experiment was performed three times). The specific procedure for nude mouse implantation has been previously described
<xref rid="stem3091-bib-0022" ref-type="ref">22</xref>
,
<xref rid="stem3091-bib-0023" ref-type="ref">23</xref>
,
<xref rid="stem3091-bib-0024" ref-type="ref">24</xref>
. The Institutional Animal Care and Use Committee of the Peking University Health Science Center approved the performance of this study (LA2014233) and all in vivo experiments were conducted in accordance with Institutional Animal Guidelines.</p>
</sec>
<sec id="stem3091-sec-0015">
<title>Micro‐Computed Tomography Analysis of Xenograft Mice</title>
<p>To assess the mass and shape of the new bone among each group, the specimens were scanned with an Inveon MM system (Siemens, Munich, Germany) after fixation as previously described
<xref rid="stem3091-bib-0027" ref-type="ref">27</xref>
. The scanning conditions were an X‐ray voltage of 80 kV, current of 500 μA, and exposure time of 1,500 ms for each of the 360 rotational steps. For quantification of the images, BV/total volume (TV)
<xref rid="stem3091-bib-0028" ref-type="ref">28</xref>
was calculated using an Inveon Research Workplace (Siemens). Image‐Pro Plus software (Media Cybernetics, Rockville, MD) was used to measure the percentage of new bone or collagen formation area [(bone or collagen area/total tissue area) * 100%]. Quantitative results were exhibited by histograms.</p>
</sec>
<sec id="stem3091-sec-0016">
<title>OAA Concentration Measurement</title>
<p>The hASCs transfected with pcDNA3.1, wild‐type, and mutant PCK2 were incubated with 4 μg OAA (Macklin, 328‐42‐7) for 1 hour and the cells were rapidly homogenized with OAA assay buffer. The remnant OAA concentration was measured according to the protocol of OAA assay kit (Sigma, MAK070). The concentrations of OAA were calculated by building the calibration curve for 0–1 nmole per well standards.</p>
</sec>
<sec id="stem3091-sec-0017">
<title>Analyses of Bone Formation In Vivo</title>
<p>Samples were collected after 8 weeks and fixed in 4% paraformaldehyde for 24 hours. Samples were decalcified for 14 days using 10% ethylene diamine tetra acetic acid (EDTA; pH 7.4). Samples were then dehydrated and embedded in paraffin. Next, sections were cut into 5–6 μm thick slices and stained with hematoxylin and eosin (H&E) and Masson's trichome. An inverted fluorescent microscope (Olympus Co., Tokyo, Japan) was used for visualization and analysis of tissue slices.</p>
</sec>
<sec id="stem3091-sec-0018">
<title>Statistical Analysis</title>
<p>SPSS Statistics 20.0 software (IBM, Armonk, NY) was used for statistical analysis. The results are presented as a summary of the mean of three independent experiments and data were indicated as mean ± SD. For comparisons between two experimental groups, Student's
<italic>t</italic>
test was used. A two‐tailed
<italic>p</italic>
‐value ≤.05 was considered to indicate statistical significance.</p>
</sec>
</sec>
<sec id="stem3091-sec-0019">
<title>Results</title>
<sec id="stem3091-sec-0020">
<title>PCK2 Promotes Osteogenic Differentiation of MSCs</title>
<p>To explore PCK2 impact upon MSCs as they differentiate toward osteogenic lineages, stable hASCs and hBMSCs cell lines transfected with lentivirus for
<italic>PCK2</italic>
knockdown or overexpression were constructed. Two shRNA sequences targeting
<italic>PCK2</italic>
were used to avoid off‐target effects. The lentiviral transduction efficiency of hASCs was confirmed by fluorescent staining (Supporting Information Fig.
<xref rid="stem3091-supitem-0001" ref-type="supplementary-material">S1</xref>
A), quantitative reverse transcription polymerase chain reaction (qRT‐PCR; Supporting Information Fig.
<xref rid="stem3091-supitem-0001" ref-type="supplementary-material">S1</xref>
B,
<xref rid="stem3091-supitem-0001" ref-type="supplementary-material">S1</xref>
C), and Western blottings (Fig.
<xref rid="stem3091-fig-0001" ref-type="fig">1</xref>
A; Supporting Information Fig.
<xref rid="stem3091-supitem-0001" ref-type="supplementary-material">S1</xref>
D). Moreover, CCK‐8 assays (Supporting Information Fig.
<xref rid="stem3091-supitem-0001" ref-type="supplementary-material">S1</xref>
E,
<xref rid="stem3091-supitem-0001" ref-type="supplementary-material">S1</xref>
F) demonstrated that changes in PCK2 expression have no obvious effects on cell proliferation. After 7 days of osteogenic induction, we found that PCK2 deficiency resulted in significantly decreased ALP activity (Fig.
<xref rid="stem3091-fig-0001" ref-type="fig">1</xref>
B,
<xref rid="stem3091-fig-0001" ref-type="fig">1</xref>
C; Supporting Information Fig.
<xref rid="stem3091-supitem-0002" ref-type="supplementary-material">S2</xref>
A,
<xref rid="stem3091-supitem-0002" ref-type="supplementary-material">S2</xref>
B). We also measured the mRNA expressions of osteogenic markers by qRT‐PCR. PCK2 knockdown significantly decreased the expression of
<italic>Runt‐related transcription factor 2</italic>
(
<italic>RUNX2</italic>
) and
<italic>ALP</italic>
after 7 days of osteogenic induction (Fig.
<xref rid="stem3091-fig-0001" ref-type="fig">1</xref>
D,
<xref rid="stem3091-fig-0001" ref-type="fig">1</xref>
E; Supporting Information Fig.
<xref rid="stem3091-supitem-0002" ref-type="supplementary-material">S2</xref>
C,
<xref rid="stem3091-supitem-0002" ref-type="supplementary-material">S2</xref>
D). After 14 days of osteogenic differentiation, ARS staining and quantification, indicating extracellular matrix mineralization, was also decreased after depletion of PCK2 (Fig.
<xref rid="stem3091-fig-0001" ref-type="fig">1</xref>
F,
<xref rid="stem3091-fig-0001" ref-type="fig">1</xref>
G; Supporting Information Fig.
<xref rid="stem3091-supitem-0002" ref-type="supplementary-material">S2</xref>
E,
<xref rid="stem3091-supitem-0002" ref-type="supplementary-material">S2</xref>
F). Moreover, the relative mRNA expression of
<italic>RUNX2</italic>
and
<italic>osteocalcin</italic>
(
<italic>OCN</italic>
) were reduced in PCK2 knockdown cells after 14 days of osteogenic induction (Fig.
<xref rid="stem3091-fig-0001" ref-type="fig">1</xref>
H,
<xref rid="stem3091-fig-0001" ref-type="fig">1</xref>
I; Supporting Information Fig.
<xref rid="stem3091-supitem-0002" ref-type="supplementary-material">S2</xref>
G,
<xref rid="stem3091-supitem-0002" ref-type="supplementary-material">S2</xref>
H). In addition, overexpression of PCK2 enhanced ALP activity (Fig.
<xref rid="stem3091-fig-0002" ref-type="fig">2</xref>
A,
<xref rid="stem3091-fig-0002" ref-type="fig">2</xref>
B). Overexpressing PCK2 resulted in an increase in the relative mRNA expression levels of
<italic>RUNX2</italic>
and
<italic>ALP</italic>
after 7 days of osteogenic differentiation (Fig.
<xref rid="stem3091-fig-0002" ref-type="fig">2</xref>
C,
<xref rid="stem3091-fig-0002" ref-type="fig">2</xref>
D). In addition, PCK2 overexpressing cells demonstrated more extracellular matrix mineralization (Fig.
<xref rid="stem3091-fig-0002" ref-type="fig">2</xref>
E,
<xref rid="stem3091-fig-0002" ref-type="fig">2</xref>
F) and elevated gene expression of osteogenic markers after 14 days of osteogenic induction (Fig.
<xref rid="stem3091-fig-0002" ref-type="fig">2</xref>
G,
<xref rid="stem3091-fig-0002" ref-type="fig">2</xref>
H). Moreover, compared with control cells, the protein level of RUNX2 was upregulated in PCK2 overexpressing cells (Fig.
<xref rid="stem3091-fig-0002" ref-type="fig">2</xref>
I) and was downregulated in PCK2 deficient cells (Fig.
<xref rid="stem3091-fig-0002" ref-type="fig">2</xref>
L; Supporting Information Fig.
<xref rid="stem3091-supitem-0002" ref-type="supplementary-material">S2</xref>
I).</p>
<fig fig-type="Figure" xml:lang="en" id="stem3091-fig-0001" orientation="portrait" position="float">
<label>Figure 1</label>
<caption>
<p>PCK2 knockdown impairs the osteogenic capacity of hASCs in vitro.
<bold>(A):</bold>
Efficiency of PCK2 knockdown and overexpression was validated by Western blot analysis. GAPDH was used for normalization.
<bold>(B, C):</bold>
Knockdown of PCK2 decreased ALP staining (B) and activity (C) on the seventh day after osteogenic induction of hASCs.
<bold>(D, E):</bold>
After 7 days of osteogenic induction, relative mRNA expressions of osteogenic marker
<italic>RUNX2</italic>
(D) and
<italic>ALP</italic>
(E) were decreased by the depletion of PCK2.
<bold>(F, G):</bold>
Extracellular matrix mineralization (F) and ARS quantification (G) were decreased in PCK2 knockdown cells on the 14th day of osteogenic induction.
<bold>(H, I):</bold>
Relative mRNA expression of
<italic>RUNX2</italic>
(H) and
<italic>OCN</italic>
(I) were downregulated by depletion of PCK2 after 14 days of osteogenic induction. Data represent three independent experiments and values are presented as mean ± SD. **,
<italic>p</italic>
 ≤ .01; *,
<italic>p</italic>
 ≤ .05; Student's
<italic>t</italic>
test. Abbreviations: ALP, alkaline phosphatase; ARS, alizarin red S; hASCs, human adipose‐derived stem cells; NC1, negative control for sh1‐PCK2; OCN, osteocalcin; OM, osteogenic media; PCK2, mitochondrial phosphoenolpyruvate carboxykinase; PM, proliferation media; RUNX2, runt‐related transcription factor 2.</p>
</caption>
<graphic id="nlm-graphic-3" xlink:href="STEM-37-1542-g001"></graphic>
</fig>
<fig fig-type="Figure" xml:lang="en" id="stem3091-fig-0002" orientation="portrait" position="float">
<label>Figure 2</label>
<caption>
<p>PCK2 overexpression enhances the osteogenic capacity of hASCs in vitro.
<bold>(A, B):</bold>
Overexpression of PCK2 significantly increased ALP staining (A) and activity (B) after 7 days of osteogenic induction.
<bold>(C, D):</bold>
PCK2 overexpression upregulates relative mRNA expression of
<italic>RUNX2</italic>
(C) and
<italic>ALP</italic>
(D) after 7 days of osteogenic differentiation.
<bold>(E, F):</bold>
The ARS staining (E) and quantification (F) showed an increasing trend after overexpression of PCK2.
<bold>(G, H):</bold>
Osteogenic gene markers
<italic>RUNX2</italic>
(G) and
<italic>OCN</italic>
(H) were unregulated on the 14th day of osteogenic differentiation.
<bold>(I, J):</bold>
Knockdown of PCK2 downregulated the protein level of RUNX2 (I) while PCK2 overexpression upregulated RUNX2 expression (J). GAPDH was used for normalization. Data represent three independent experiments and values are presented as mean ± SD. **,
<italic>p</italic>
 ≤ .01; *,
<italic>p</italic>
 ≤ .05; Student's
<italic>t</italic>
test. Abbreviations: ALP, alkaline phosphatase; ARS, alizarin red S; OCN, osteocalcin; OM, osteogenic media; PCK2, mitochondrial phosphoenolpyruvate carboxykinase; PM, proliferation media; RUNX2, runt‐related transcription factor 2.</p>
</caption>
<graphic id="nlm-graphic-5" xlink:href="STEM-37-1542-g002"></graphic>
</fig>
<p>In confirmation of the PCK2‐regulated osteogenic differentiation of hASCs as a general phenomenon, we constructed stable cell lines of hBMSCs transfected lentivirus for PCK2 knockdown and overexpression. The transfection efficiency was confirmed (Supporting Information Fig.
<xref rid="stem3091-supitem-0001" ref-type="supplementary-material">S1</xref>
G–S1I). The observations suggested similar results when hBMSCs were treated under the same conditions (Supporting Information Fig.
<xref rid="stem3091-supitem-0002" ref-type="supplementary-material">S2</xref>
J–S2Q). Furthermore, as a critical enzyme for glucose anabolism, PCK2 catalyzes OAA to PEP. To assess whether PCK2‐mediated osteogenic differentiation is associated with enzymatic activity of PCK2, pcDNA3.1, FLAG‐tagged wild‐type, and mutant PCK2 plasmids were transfected in hASCs. After incubation of 4 μg OAA for 1 hour, the remnant OAA concentration in hASCs were measured showing that the remnant OAA concentration was relatively higher in mutant PCK2 group than wild‐type group (Supporting Information Fig.
<xref rid="stem3091-supitem-0002" ref-type="supplementary-material">S2</xref>
R). The mutant PCK2 transfection decreased ALP activity during osteogenic differentiation, compared with wild‐type PCK2 group (Supporting Information Fig.
<xref rid="stem3091-supitem-0002" ref-type="supplementary-material">S2</xref>
S,
<xref rid="stem3091-supitem-0002" ref-type="supplementary-material">S2</xref>
T). Collectively, these data demonstrate that PCK2 is a positive regulator of the osteogenic capacity of MSCs in vitro.</p>
</sec>
<sec id="stem3091-sec-0021">
<title>PCK2 Enhances Ectopic Bone Formation from hASCs In Vivo</title>
<p>The in vitro results suggest that PCK2 exerts a vital regulatory effect on osteogenesis by hASCs and we next explored whether PCK2 plays an important role in bone formation in vivo. The hASCs expressing
<italic>PCK2</italic>
, sh1‐
<italic>PCK2</italic>
, and sh2‐
<italic>PCK2</italic>
were mixed with β/TCP, separately, and the complexes were implanted into nude mice (
<italic>n</italic>
= 10 for each group). The samples were harvested at 8 weeks. According to representative images of H&E staining, hASCs/sh1‐
<italic>PCK2</italic>
cells and hASCs/sh2‐
<italic>PCK2</italic>
cells formed much less osteoid tissues, with some scaffold remnants, compared with control cells (Fig.
<xref rid="stem3091-fig-0003" ref-type="fig">3</xref>
A). Simultaneously, lower amounts of organized extracellular matrix with collagen fiber accumulated in PCK2 knockdown groups (blue color as indicated by Masson's trichrome staining; Fig.
<xref rid="stem3091-fig-0003" ref-type="fig">3</xref>
B). Histomorphometry analysis of bone‐like tissues illustrated that the area of bone formation was markedly decreased in PCK2 knockdown groups compared with the control group (Fig.
<xref rid="stem3091-fig-0003" ref-type="fig">3</xref>
A, B). Consistently, micro‐CT analysis also suggested that PCK2 knockdown groups exhibited less new bone formation and more scaffold remnants (Fig.
<xref rid="stem3091-fig-0003" ref-type="fig">3</xref>
C). Quantifications of micro‐CT images further displayed that the percentage of BV to TV in the PCK2 knockdown groups was less than the control group. In contrast, overexpression of PCK2 resulted in much more uniform, acidophilic osteoid tissue as shown by H&E staining, compared with the control vector group, including some microvascular formation (Fig.
<xref rid="stem3091-fig-0003" ref-type="fig">3</xref>
D). Meanwhile, more organized extracellular matrix with collagen fiber accumulation (Fig.
<xref rid="stem3091-fig-0003" ref-type="fig">3</xref>
E) was shown in PCK2‐expressing group. Consistently, micro‐CT and quantitative measurement also demonstrated that the percentage of BV to TV in the PCK2 overexpression group was more than the control group (Fig.
<xref rid="stem3091-fig-0003" ref-type="fig">3</xref>
F). These results displayed similar outcomes to the in vitro findings (Figs.
<xref rid="stem3091-fig-0001" ref-type="fig">1</xref>
and
<xref rid="stem3091-fig-0002" ref-type="fig">2</xref>
; Supporting Information Figs.
<xref rid="stem3091-supitem-0001" ref-type="supplementary-material">S1</xref>
and
<xref rid="stem3091-supitem-0002" ref-type="supplementary-material">S2</xref>
) and further confirmed that PCK2 enhances the osteogenic differentiation, thereby promoting ectopic bone formation in vivo (Fig.
<xref rid="stem3091-fig-0003" ref-type="fig">3</xref>
).</p>
<fig fig-type="Figure" xml:lang="en" id="stem3091-fig-0003" orientation="portrait" position="float">
<label>Figure 3</label>
<caption>
<p>PCK2 enhances hASC osteogenesis in vivo. The hASCs transfected with sh1‐
<italic>PCK2</italic>
, sh2‐
<italic>PCK2</italic>
, NC,
<italic>PCK2</italic>
, and vector were mixed with β‐TCP carriers and were subcutaneously implanted into the dorsal side of the mice. After 8 weeks, the samples were harvested.
<bold>(A, B, D, E):</bold>
H&E staining (A, D), Masson's trichrome staining (B, E) and the histomorphometry analysis of the implanted hASC‐scaffold hybrids are presented.
<bold>(C, F):</bold>
Representative micro‐CT images and quantitative analysis of BV/TV (%) are shown. H&E staining of implanted hASCs‐TCP hybrids is presented. The black arrows in (D) point to microvascular formation. Scale bar = 100 μm. Images are representative of three independent experiments, each including 10 BALB/c nude mice. Results are presented as the mean ± SD,
<italic>n</italic>
= 3. *,
<italic>p</italic>
 < .01; **,
<italic>p</italic>
 < .05. Abbreviations: BV/TV, bone volume to total volume; hASCs, human adipose‐derived stem cells; H&E, hematoxylin and eosin; β‐TCP, beta‐tricalcium phosphate; NC, negative control for sh1‐PCK2 and sh2‐PCK2; PCK2, mitochondrial phosphoenolpyruvate carboxykinase.</p>
</caption>
<graphic id="nlm-graphic-7" xlink:href="STEM-37-1542-g003"></graphic>
</fig>
</sec>
<sec id="stem3091-sec-0022">
<title>PCK2 Modulates Autophagy During Osteogenic Differentiation</title>
<p>Our results indicated that PCK2 plays a significant role in promoting osteogenic differentiation of MSCs, but the regulatory mechanism involved in this process remained unclear. Because autophagy is an important process in protecting stem cells from metabolic stress
<xref rid="stem3091-bib-0029" ref-type="ref">29</xref>
, we next examined whether PCK2 is involved in regulating autophagy of MSCs. Microtubule associated protein 1 light chain 3 β (LC3B) accumulation and p62/SQSTM1 (p62) degradation were used as two biological markers of autophagy
<xref rid="stem3091-bib-0030" ref-type="ref">30</xref>
, and were evaluated by immunoblotting. Treatment with H
<sub>2</sub>
O
<sub>2</sub>
(500 μM)‐induced p62 degradation or accumulation of LC3B in control cells, but not in PCK2 knockdown cells (Fig.
<xref rid="stem3091-fig-0004" ref-type="fig">4</xref>
A; Supporting Information Fig.
<xref rid="stem3091-supitem-0003" ref-type="supplementary-material">S3</xref>
A). However, the increase in LC3B not only demonstrates increased autophagy flux, but also indicates the inhibition of autophagosome degradation
<xref rid="stem3091-bib-0031" ref-type="ref">31</xref>
. To measure the autophagy flux precisely, protease inhibitors E64d (10 μg/ml) and pepstatin A (pep, 10 μg/ml) were used to suppress the fusion of autophagosomes with the lysosome, resulting in the accumulation of LC3B and the blockade of p62 degradation. H
<sub>2</sub>
O
<sub>2</sub>
treatment significantly increased autophagy flux in control cells, but not in PCK2 knockdown cells (Fig.
<xref rid="stem3091-fig-0004" ref-type="fig">4</xref>
B; Supporting Information Fig.
<xref rid="stem3091-supitem-0003" ref-type="supplementary-material">S3</xref>
F), further suggesting that depletion of PCK2 markedly suppresses autophagy. Meanwhile, compared with the control group, overexpression of PCK2 promoted the accumulation of LC3B and the degradation of p62 (Fig.
<xref rid="stem3091-fig-0004" ref-type="fig">4</xref>
C; Supporting Information Fig.
<xref rid="stem3091-supitem-0003" ref-type="supplementary-material">S3</xref>
D). To confirm the positive regulatory effect of PCK2 on autophagy, we assessed autophagy flux in cells cultured under conditions of serum starvation with or without pep + E64d. As expected, we observed a similar trend to the treatment with H
<sub>2</sub>
O
<sub>2</sub>
(Fig.
<xref rid="stem3091-fig-0004" ref-type="fig">4</xref>
D–
<xref rid="stem3091-fig-0004" ref-type="fig">4</xref>
F; Supporting Information Fig.
<xref rid="stem3091-supitem-0003" ref-type="supplementary-material">S3</xref>
B,
<xref rid="stem3091-supitem-0003" ref-type="supplementary-material">S3</xref>
E)
<sub>.</sub>
Altogether, these results demonstrate that PCK2 plays an important role in enhancing autophagy of MSCs.</p>
<fig fig-type="Figure" xml:lang="en" id="stem3091-fig-0004" orientation="portrait" position="float">
<label>Figure 4</label>
<caption>
<p>PCK2 positively regulates autophagy during osteogenesis by hASCs.
<bold>(A):</bold>
PCK2 knockdown and control cells were cultured in regular PM or PM containing 500 μM H
<sub>2</sub>
O
<sub>2</sub>
for 24 hours.
<bold>(B):</bold>
The control cells or PCK2 knockdown cells were cultured in PM, PM containing 500 μM H
<sub>2</sub>
O
<sub>2</sub>
, or PM containing 500 μM H
<sub>2</sub>
O
<sub>2</sub>
and 10 μg/ml pep + E64d for 24 hours.
<bold>(C):</bold>
The control vector cells or PCK2‐expressing and cells were cultured in PM or PM containing 500 μM H
<sub>2</sub>
O
<sub>2</sub>
for 24 hours.
<bold>(D):</bold>
The control cells or PCK2 knockdown cells were cultured in PM or PM without serum (SS medium) for 48 hours.
<bold>(E):</bold>
The sh1‐
<italic>PCK2</italic>
or NC1 cells were cultured in PM, SS medium, or SS medium containing 10 μg/ml pep + E64d for 48 hours.
<bold>(F):</bold>
The PCK2‐expressing and control vector cells were cultured in PM or SS medium for 7 days.
<bold>(G, H):</bold>
The control cells and PCK2 knockdown cells were cultured in PM or OM (G). The control vector cells and PCK2‐expressing cells were cultured in PM or OM (H).
<bold>(I):</bold>
The control cells and PCK2 knockdown cells were cultured in PM and OM, with or without 10 μg/ml pep + E64d for 7 days.
<bold>(J):</bold>
Confocal microscopy of LC3B with DAPI counterstaining on the seventh day of osteogenic induction. Scale bars = 100 μm. Images represent three independent experiments. GAPDH was used as loading control. Abbreviations: DAPI, 4′,6‐diamidino‐2‐phenylindole; LC3B, microtubule associated protein 1 light chain 3 β; NC1, negative control for sh1‐
<italic>PCK2</italic>
; OM, osteogenic media; PCK2, mitochondrial phosphoenolpyruvate carboxykinase; p62, p62/SQSTM1; pep: pepstain A; PM, proliferation media; OM, osteogenic media; RUNX2, runt‐related transcription factor 2; SS, serum starvation.</p>
</caption>
<graphic id="nlm-graphic-9" xlink:href="STEM-37-1542-g004"></graphic>
</fig>
<p>To investigate whether PCK2 exerts a regulatory influence on autophagy during osteogenic differentiation, we examined the autophagy flux of hASCs after 7 days of osteogenic induction. The increasing level of RUNX2 protein determined the osteogenic differentiation of hASCs (Fig.
<xref rid="stem3091-fig-0004" ref-type="fig">4</xref>
G and Supporting Information Fig.
<xref rid="stem3091-supitem-0003" ref-type="supplementary-material">S3</xref>
C). In contrast to the control cells, a dramatic decrease of LC3B and reduced p62 degradation were observed in PCK2 knockdown cells cultured in OM. Concurrently, after 7 days of osteogenic induction, overexpression of PCK2 increased autophagy compared with the control vector group, as demonstrated by increased aggregation of LC3B and degradation of p62 (Fig.
<xref rid="stem3091-fig-0004" ref-type="fig">4</xref>
H). These results demonstrate that PCK2 positively regulates autophagy during osteogenesis by MSCs.</p>
<p>To further evaluate the dynamic variation of autophagy flux during osteogenesis by MSCs, LC3B turnover was measured after pep + E64d treatment. During osteogenic differentiation of hASCs, knockdown of PCK2 significantly reduced autophagy flux (Fig.
<xref rid="stem3091-fig-0004" ref-type="fig">4</xref>
I). The similar trend was observed during osteogenic differentiation of hBMSCs (Supporting Information Fig.
<xref rid="stem3091-supitem-0003" ref-type="supplementary-material">S3</xref>
H). In addition, autophagosomes were observed by fluorescence microscopy, indicated by a marked increase in LC3B puncta after osteogenic induction (Fig.
<xref rid="stem3091-fig-0004" ref-type="fig">4</xref>
J). Based on these data, it can be inferred that PCK2 regulates osteogenic differentiation of MSCs through modulating autophagy.</p>
</sec>
<sec id="stem3091-sec-0023">
<title>Autophagy Is Indispensable for Osteogenic Differentiation</title>
<p>We investigated the specific role of autophagy as a regulator of osteogenesis by hASCs. ALP activity and ARS staining/quantification were used to confirm the osteogenic capacity of hASCs (Supporting Information Fig.
<xref rid="stem3091-supitem-0004" ref-type="supplementary-material">S4</xref>
A–S4C). Western blot analysis showed that LC3B accumulates during osteogenic differentiation, accompanied by degradation of p62 (Supporting Information Fig.
<xref rid="stem3091-supitem-0005" ref-type="supplementary-material">S5</xref>
A,
<xref rid="stem3091-supitem-0005" ref-type="supplementary-material">S5</xref>
B). Gene expressions determined by qRT‐PCR corroborated these findings (Supporting Information Fig.
<xref rid="stem3091-supitem-0004" ref-type="supplementary-material">S4</xref>
D–S4F). These data suggest that autophagy is involved in hASCs osteogenic differentiation.</p>
<p>Autophagy is a multistep process and can be suppressed at different stages
<xref rid="stem3091-bib-0032" ref-type="ref">32</xref>
. To examine the regulatory effect of autophagy on osteogenic capacity, we used two classic inhibitors of autophagy: 3‐methyladenine (3‐MA, 5 mM), which suppresses phosphoinositide 3‐kinases (PI3Ks), and chloroquine (10 μM), which impairs the fusion of the autophagosome to the lysosome. Both inhibitors blocked osteogenesis by hASCs as demonstrated by a decrease in ALP activity (Supporting Information Fig.
<xref rid="stem3091-supitem-0004" ref-type="supplementary-material">S4</xref>
G–S4J) and reduced expression of
<italic>RUNX2</italic>
mRNA (Supporting Information Fig.
<xref rid="stem3091-supitem-0004" ref-type="supplementary-material">S4</xref>
K–S4L).</p>
<p>To further substantiate the regulatory effects of autophagy on osteogenesis, two lentiviral sequences encoding sh‐
<italic>ATG7</italic>
and the scrambled control shRNA (NC) were transfected into hASCs. Transduction efficiency was confirmed by immunofluorescence, qRT‐PCR (Supporting Information Fig.
<xref rid="stem3091-supitem-0005" ref-type="supplementary-material">S5</xref>
C,
<xref rid="stem3091-supitem-0005" ref-type="supplementary-material">S5</xref>
D), and Western blot (Supporting Information Fig.
<xref rid="stem3091-supitem-0005" ref-type="supplementary-material">S5</xref>
E). After 7 days of osteogenic induction, depletion of ATG7 downregulated ALP activity (Fig.
<xref rid="stem3091-fig-0005" ref-type="fig">5</xref>
A,
<xref rid="stem3091-fig-0005" ref-type="fig">5</xref>
B). Moreover, the extracellular matrix mineralization and quantification were also decreased in ATG7 depleted cells after 14 days of osteogenic induction (Fig.
<xref rid="stem3091-fig-0005" ref-type="fig">5</xref>
C,
<xref rid="stem3091-fig-0005" ref-type="fig">5</xref>
D). Furthermore, qRT‐PCR results demonstrated a corresponding reduction in the relative mRNA level of osteogenic‐related marker genes at the 7th (Supporting Information Fig.
<xref rid="stem3091-supitem-0005" ref-type="supplementary-material">S5</xref>
F,
<xref rid="stem3091-supitem-0005" ref-type="supplementary-material">S5</xref>
G) and 14th days (Fig.
<xref rid="stem3091-fig-0005" ref-type="fig">5</xref>
H,
<xref rid="stem3091-fig-0005" ref-type="fig">5</xref>
I) of osteogenic differentiation. During the course of osteogenic differentiation, knockdown of ATG7 led to significant impairment of autophagy flux and inhibited osteogenic differentiation of hASCs (Fig.
<xref rid="stem3091-fig-0005" ref-type="fig">5</xref>
E), as indicated by decreased RUNX2 protein expression. Altogether, these data show that activation of autophagy is necessary for the osteogenesis by hASCs.</p>
<fig fig-type="Figure" xml:lang="en" id="stem3091-fig-0005" orientation="portrait" position="float">
<label>Figure 5</label>
<caption>
<p>Autophagy is required for the osteogenic differentiation of hASCs.
<bold>(A, B):</bold>
Depletion of ATG7 decreased ALP staining (A) and activity (B) on the seventh day after induction of osteogenic differentiation of hASCs.
<bold>(C, D):</bold>
Extracellular matrix mineralization (C) and ARS quantification (D) were decreased in ATG7 knockdown cells after 14 days of osteogenic induction.
<bold>(E):</bold>
Protein levels of RUNX2, p62, and LC3B are indicated as shown. GAPDH was used as internal loading control.
<bold>(F–M):</bold>
Treatment with 5 mM 3‐MA decreased the osteogenic capacity of PCK2‐expressing cells. Relative mRNA expression of
<italic>RUNX2</italic>
(F) and
<italic>ALP</italic>
(G) on the seventh day of osteogenic induction are shown. Relative mRNA expression of
<italic>RUNX2</italic>
(H) and
<italic>OCN</italic>
(I) after 14 days of osteogenic induction is shown. ALP staining (J) and activity (K) on the seventh day of osteogenic induction are shown. Extracellular matrix mineralization (L) and ARS quantification (M) on the 14th day of osteogenic induction are presented.
<bold>(N):</bold>
Protein expression patterns of PCK2, RUNX2, p62, and LC3B are shown. The control vector cells and PCK2‐expressing cells were cultured in PM, PM containing 5 mM 3‐MA, OM, or OM containing 5 mM 3‐MA for 5 days. GAPDH was used as internal loading control. Data are represented as mean ± SD. **,
<italic>p</italic>
 ≤ .01; *,
<italic>p</italic>
 ≤ .05, Student's
<italic>t</italic>
test. Abbreviations: 3‐MA, 3‐methyladenine; ALP, alkaline phosphatase; ARS, alizarin red S; ATG7, autophagy‐related‐gene‐7; LC3B, microtubule associated protein 1 light chain 3 β; OCN, osteocalcin; NC, negative control for sh‐
<italic>ATG7</italic>
; NS, not significant; OM, osteogenic media; p62, p62/SQSTM1; PCK2, mitochondrial phosphoenolpyruvate carboxykinase; PM, proliferation media; RUNX2, runt‐related transcription factor 2.</p>
</caption>
<graphic id="nlm-graphic-11" xlink:href="STEM-37-1542-g005"></graphic>
</fig>
</sec>
<sec id="stem3091-sec-0024">
<title>PCK2 Promotes Osteogenic Differentiation by Regulating AMPK/ULK1‐Mediated Autophagy</title>
<p>To precisely assess the regulatory effects of PCK2 on osteogenic differentiation through autophagy, 3‐MA, which inhibits autophagy activity, was used to treat PCK2‐expressing cells. Compared with PCK2‐overexpressing cells, the mRNA expression of osteoblastic markers was attenuated in
<italic>PCK2</italic>
 + 3‐MA cells during osteogenic induction (Supporting Information Fig.
<xref rid="stem3091-supitem-0005" ref-type="supplementary-material">S5</xref>
F–S5I). Similarly, treatment of cells with 5 mM 3‐MA inhibited ALP activity (Fig.
<xref rid="stem3091-fig-0005" ref-type="fig">5</xref>
J,
<xref rid="stem3091-fig-0005" ref-type="fig">5</xref>
K) and reduced ARS staining/quantification (Fig.
<xref rid="stem3091-fig-0005" ref-type="fig">5</xref>
L,
<xref rid="stem3091-fig-0005" ref-type="fig">5</xref>
M), which were enhanced by PCK2 overexpression. Most importantly, upon 3‐MA treatment, overexpression of PCK2 failed to elevate osteogenesis in hASCs, as shown by the significant reduction of RUNX2 protein (Fig.
<xref rid="stem3091-fig-0005" ref-type="fig">5</xref>
N). These results prove that PCK2 facilitates osteogenic differentiation of hASCs by regulating autophagy.</p>
<p>As a key initiator of lysosomal‐dependent autophagy, unc‐51 like autophagy activating kinase 1 (ULK1) serves important roles in cellular nutrient degradation during processes such as glucose metabolism and lipid metabolism
<xref rid="stem3091-bib-0026" ref-type="ref">26</xref>
,
<xref rid="stem3091-bib-0033" ref-type="ref">33</xref>
. To further explore the molecular mechanism by which PCK2 regulates autophagy during osteogenic differentiation, we performed Western blot analysis to score changes of ULK activity in PCK2 knockdown cells. We found a dramatic increase in ULK1 phosphorylation during osteogenic differentiation, particularly at serine 555 (Ser 555), serine 556 (Ser 556), and serine 757 (Ser 757; Fig.
<xref rid="stem3091-fig-0006" ref-type="fig">6</xref>
A; Supporting Information Fig.
<xref rid="stem3091-supitem-0006" ref-type="supplementary-material">S6</xref>
A). However, knockdown of PCK2 significantly attenuated phosphorylation of ULK1 (Fig.
<xref rid="stem3091-fig-0006" ref-type="fig">6</xref>
A; Supporting Information Fig.
<xref rid="stem3091-supitem-0006" ref-type="supplementary-material">S6</xref>
A). Meanwhile, overexpression of PCK2 led to upregulation of ULK1 phosphorylation at Ser 555, Ser 556, and Ser 757 during osteogenesis (Fig.
<xref rid="stem3091-fig-0006" ref-type="fig">6</xref>
B). AMPK integrates various metabolic signals and can activate ULK1 through phosphorylation at multiple sites
<xref rid="stem3091-bib-0034" ref-type="ref">34</xref>
,
<xref rid="stem3091-bib-0035" ref-type="ref">35</xref>
,
<xref rid="stem3091-bib-0036" ref-type="ref">36</xref>
. Our results indicate that the pattern of AMPK phosphorylation corresponds with ULK1 expression after knockdown or overexpression of PCK2 (Fig.
<xref rid="stem3091-fig-0006" ref-type="fig">6</xref>
A,
<xref rid="stem3091-fig-0006" ref-type="fig">6</xref>
B; Supporting Information Fig.
<xref rid="stem3091-supitem-0006" ref-type="supplementary-material">S6</xref>
A).</p>
<fig fig-type="Figure" xml:lang="en" id="stem3091-fig-0006" orientation="portrait" position="float">
<label>Figure 6</label>
<caption>
<p>PCK2 enhances osteogenic differentiation of hASCs via modulating AMPK/ULK1‐dependent autophagy.
<bold>(A):</bold>
Protein expression levels of p‐ULK1 (ser 555), p‐ULK1 (ser 556), p‐ULK1 (ser 757), ULK1, p‐AMPK α, and AMPK in PCK2‐knockdown and control cells are shown.
<bold>(B):</bold>
Western blots of p‐ULK1 (ser 555), p‐ULK1 (ser 556), p‐ULK1 (ser 757), ULK1, p‐AMPK α, and AMPK in PCK2‐expressing and control vector cells.
<bold>(C, D):</bold>
Relative mRNA expression levels of ULK1 (C) and RUNX2 (D) in hASCs transfected with si1‐
<italic>ULK1</italic>
, si2‐
<italic>ULK1</italic>
, and negative control (si‐NC) after 7 days of osteogenic induction. Data represent three independent experiments.
<bold>(E, F):</bold>
Depletion of ULK1 decreases ALP staining (E) and activity (F) on the seventh day after induction of osteogenic differentiation in hASCs.
<bold>(G, H):</bold>
Knockdown of ULK1 decreases ARS staining (G) and activity (H) on the 14th day after induction of osteogenic differentiation in hASCs.
<bold>(I):</bold>
Inhibition of AMPK in PCK2‐expressing hASCs suppresses osteogenic ability and autophagy activity of hASCs, as shown by the protein expressions of RUNX2, LC3B, and p62.
<bold>(J):</bold>
PCK2‐knockdown cells expressing wild‐type AMPK increase the osteogenic capacity and autophagy activity of hASCs. The protein expression patterns of RUNX2, LC3B, and p62 are presented. GAPDH was used as internal loading control in (A, B) and (I, J). (
<bold>K–N):</bold>
H&E staining, Masson's trichrome staining from implanted hASC‐scaffold hybrids. Scale bar = 100 μm,
<italic>n</italic>
= 10. Data in this figure represent three independent experiments and are presented as mean ± SD. **,
<italic>p</italic>
 ≤ .01; *,
<italic>p</italic>
 ≤ .05; Student's
<italic>t</italic>
test. Abbreviations: ALP, alkaline phosphatase; AMPK, AMP‐activated protein kinase; ARS, alizarin red S; ATG7, autophagy‐related‐gene‐7; hASCs, human adipose‐derived stem cells; H&E, hematoxylin and eosin; LC3B, Microtubule associated protein 1 light chain 3 β; NS, not significant; OM, osteogenic media; p62, p62/SQSTM1; PCK2, mitochondrial phosphoenolpyruvate carboxykinase; PM, proliferation media; RUNX2, runt‐related transcription factor 2; ULK1, unc‐51 like autophagy activating kinase 1.</p>
</caption>
<graphic id="nlm-graphic-13" xlink:href="STEM-37-1542-g006"></graphic>
</fig>
<p>To examine the potential role of ULK1 during the osteogenesis by hASCs, two si‐RNA sequences were used to suppress ULK1 expression, and the knockdown efficiency was confirmed by the qRT‐PCR (Fig.
<xref rid="stem3091-fig-0006" ref-type="fig">6</xref>
C). Analysis of the mRNA expression of
<italic>RUNX2</italic>
(Fig.
<xref rid="stem3091-fig-0006" ref-type="fig">6</xref>
D), ALP activity (Fig.
<xref rid="stem3091-fig-0006" ref-type="fig">6</xref>
E,
<xref rid="stem3091-fig-0006" ref-type="fig">6</xref>
F), and ARS staining/quantification (Fig.
<xref rid="stem3091-fig-0006" ref-type="fig">6</xref>
G,
<xref rid="stem3091-fig-0006" ref-type="fig">6</xref>
H) showed that depletion of ULK1 significantly inhibits osteogenic differentiation of hASCs. These data demonstrate that ULK1 is a positive regulator of osteogenic differentiation. To further explore the regulatory effect of PCK2 on autophagy and osteogenic differentiation through AMPK/ULK1 signaling pathway, si‐AMPK was added in the PCK2‐expressing cells and wild‐type‐AMPK plasmid was transfected in the PCK2‐knockdown cells. The transfection efficiency was confirmed by Western blot (Supporting Information Fig.
<xref rid="stem3091-supitem-0006" ref-type="supplementary-material">S6</xref>
B). The results displayed that elevated osteogenic capacity and autophagy activity of PCK2‐overexpression cells was significantly suppressed by the inhibition of AMPK (Fig.
<xref rid="stem3091-fig-0006" ref-type="fig">6</xref>
I), whereas the decreased osteogenic ability and autophagy activity induced by PCK2 inhibition was rescued by overexpression of AMPK (Fig.
<xref rid="stem3091-fig-0006" ref-type="fig">6</xref>
J). To verify our in vitro findings, we next investigated the potential role of AMPK/ULK1 on osteogenic differentiation in vivo. H&E staining, Masson's trichrome staining from implanted hASC‐scaffold hybrids demonstrated that inhibiting ATG7 or suppressing ULK1 expression in PCK2‐expressing cells led to significant suppression of osteogenic differentiation (Fig.
<xref rid="stem3091-fig-0006" ref-type="fig">6</xref>
K–
<xref rid="stem3091-fig-0006" ref-type="fig">6</xref>
N). Altogether, these findings suggest that PCK2 regulates osteogenic differentiation through AMPK/ULK1‐mediated autophagy.</p>
</sec>
</sec>
<sec id="stem3091-sec-0025">
<title>Discussion</title>
<p>The important effects that PCK2 exerts in regulating gluconeogenesis and the TCA cycle ideally fulfill the energy requirements of MSCs osteogenic differentiation, and prompted us to examine the roles of PCK2 in the osteogenic capacity of MSCs. The increasing energy demands on MSCs during osteogenic differentiation not only require increased anabolism, but also require a strict regulation of protein turnover and lysosome‐mediated degradation of cellular substances
<xref rid="stem3091-bib-0037" ref-type="ref">37</xref>
. Autophagy is a catabolic process that efficiently degrades damaged organelles and macromolecules in the lysosome, allowing the nutrients to be recycled under conditions where there the external energy supply is limited
<xref rid="stem3091-bib-0038" ref-type="ref">38</xref>
. In our current study, we discovered that PCK2 acts as a potent regulator promoting the osteogenic capacity of MSCs, and we unveiled a previously unreported function of PCK2. Our findings extend the knowledge about the molecular mechanisms of PCK2 as a positive factor in the osteogenic differentiation of MSCs. Interestingly, through exploring potential mechanisms, we observed a positive regulatory effect of PCK2 on autophagy during osteogenesis by MSCs. A recent study demonstrated that depletion of autophagy‐related‐genes, such as
<italic>ATG5</italic>
and
<italic>BECN</italic>
, leads to impaired osteogenic ability of BMSCs in vivo
<xref rid="stem3091-bib-0009" ref-type="ref">9</xref>
. In accordance with this study, we found that autophagy was indispensable for the osteogenesis by MSCs. More importantly, we demonstrated that PCK2 enhances the osteogenic differentiation through AMPK/ULK1‐dependent autophagy. Taken together, our study identified PCK2 as a critical modulator that regulates autophagy and the osteogenic differentiation, demonstrating that PCK2 may be a potential therapeutic target for metabolic bone diseases.</p>
<p>PCK2 is responsible for approximately 50% of the total hepatic PEPCK functions in many mammals, including humans
<xref rid="stem3091-bib-0039" ref-type="ref">39</xref>
,
<xref rid="stem3091-bib-0040" ref-type="ref">40</xref>
,
<xref rid="stem3091-bib-0041" ref-type="ref">41</xref>
. However, the specific biological roles of PCK2 are largely unknown. PCK2 has been reported to be critically involved in modulating glucose metabolism and lipid metabolism
<xref rid="stem3091-bib-0041" ref-type="ref">41</xref>
. In addition, PCK2 regulates both insulin secretion and gluconeogenesis in order to ensure continuous cataplerotic PEP production
<xref rid="stem3091-bib-0018" ref-type="ref">18</xref>
. The activity and expression of PCK2 were elevated under low‐glucose conditions
<xref rid="stem3091-bib-0042" ref-type="ref">42</xref>
. In general, PCK2 can be regarded as a key factor in energy metabolism by regulating glucose homeostasis and TCA cycle activity. We speculated that the metaphorical “metabolic tachometer” mechanism enables PCK2 to sense and coordinate appropriate responses to energy changes during the osteogenesis of MSCs. In order to explore the potential role of PCK2, we constructed stable PCK2 knockdown and overexpressing cells and determined the effects of modulating PCK2 expression on the osteogenic capacity of MSCs. Moreover, we observed that PCK2 is involved in positively regulating autophagy. PCK2‐deficient cells demonstrated decreased autophagy flux whereas PCK2‐overexpressing cells displayed significantly increased autophagy flux. The relationship between PCK2 and autophagy during osteogenesis by hASCs was further examined, and we found that depletion of PCK2 repressed autophagy, resulting in the impairment of the osteogenic ability of MSCs. On the contrary, when PCK2 was overexpressed, we found that autophagy was increased, accompanied by upregulation of osteogenic differentiation of MSCs. Incubation of autophagy inhibitors 3‐MA significantly suppressed the osteogenic differentiation of PCK2‐overexpression cells. Consistently, inhibition of
<italic>ATG7</italic>
resulted in the decrease of osteogenic ability in PCK2‐expressing cells in vivo, which verifies the idea that PCK2 regulates osteogenic ability of hASCs via modulating autophagy. Therefore, we provide the first demonstration that PCK2 exhibits a positive regulatory effect on osteogenic capacity of MSCs via modulating autophagy. In addition, our results offer a clue that PCK2, which is a critical enzyme for energy metabolism may constitute a new target for innovative therapeutic research in bone pathologies.</p>
<p>Emerging evidence has shown that autophagy is actively involved in the maintenance of bone homeostasis and regulation of skeletal metabolism
<xref rid="stem3091-bib-0029" ref-type="ref">29</xref>
,
<xref rid="stem3091-bib-0043" ref-type="ref">43</xref>
. However, previous studies have mainly concentrated on terminally differentiated cells in the bone system, such as osteoblasts, osteocytes, and osteoclasts
<xref rid="stem3091-bib-0044" ref-type="ref">44</xref>
,
<xref rid="stem3091-bib-0045" ref-type="ref">45</xref>
, and the potential regulatory role of autophagy in MSCs remains unclear
<xref rid="stem3091-bib-0046" ref-type="ref">46</xref>
. It was reported that constitutive autophagy activity in human bone marrow‐derived stem cells (hBMSCs) is upregulated in early stages of osteogenic induction
<xref rid="stem3091-bib-0047" ref-type="ref">47</xref>
. The activation of autophagy promotes the osteogenic ability of hBMSCs from osteoporotic vertebrae
<xref rid="stem3091-bib-0022" ref-type="ref">22</xref>
. Moreover, a recent study showed that diminished lineage differentiation could be partly rescued by activation of autophagy in osteoporotic BMSCs
<xref rid="stem3091-bib-0009" ref-type="ref">9</xref>
. Investigations on the involvement of autophagy in hASCs have displayed similar results. A study reported that the suppression of autophagy led to the activation of the NF‐E2‐related factor 2 (Nrf2) pathway and the impairment of osteogenic ability of ASCs following stimulation with reactive oxygen species
<xref rid="stem3091-bib-0021" ref-type="ref">21</xref>
. Consistent with this report, our study showed that the addition of the autophagy inhibitors 3‐MA and CQ significantly suppressed the osteogenic capacity of hASCs (Supporting Information Fig.
<xref rid="stem3091-supitem-0004" ref-type="supplementary-material">S4</xref>
G–S4L). We further confirmed the regulatory effects of autophagy on osteogenic differentiation of hASCs by depletion of ATG7. Knockdown of ATG7 inhibited bone formation, as demonstrated by mRNA (Supporting Information Fig.
<xref rid="stem3091-supitem-0005" ref-type="supplementary-material">S5</xref>
F‐
<xref rid="stem3091-supitem-0005" ref-type="supplementary-material">S5</xref>
I) and protein (Fig.
<xref rid="stem3091-fig-0005" ref-type="fig">5</xref>
E) expression analysis of bone formation factors. Our results demonstrate that autophagy plays a positive role during the osteogenesis by hASCs.</p>
<p>A close interaction between autophagy and glucose metabolism has long been a focus of study, and the existence of a dynamic feedback between cellular energy balance and autophagy has been established
<xref rid="stem3091-bib-0048" ref-type="ref">48</xref>
,
<xref rid="stem3091-bib-0049" ref-type="ref">49</xref>
. It has been reported that ULK1 acts as a dual integrator of energy metabolism and autophagy, by sustaining glucose metabolic fluxes through activation of autophagy, especially in conditions of nutritional‐shortage
<xref rid="stem3091-bib-0050" ref-type="ref">50</xref>
. AMPK is another important intracellular energy sensor, and activates autophagy by directly phosphorylating ULK1
<xref rid="stem3091-bib-0034" ref-type="ref">34</xref>
. Our data showed that both the phosphorylation of AMPK α subunit and phosphorylation ULK1 were regulated by PCK2 during osteogenic differentiation. In addition, inhibition of AMPK suppressed the osteogenic ability of PCK2‐expressing cells, whereas transfection of wild‐type AMPK rescued the decreased osteogenic capacity of PCK2‐knockdown cells. Furthermore, suppressing of ULK1 expression impaired the osteogenic differentiation of PCK2‐expressing cells in vivo. These results suggest that AMPK/ULK1‐mediated autophagy is involved in the PCK2‐regulated osteogenic differentiation. However, there are still some questions that remain to be explored. For example, while our study elucidated the regulatory function of PCK2 on autophagy and osteogenic differentiation of MSCs, the functional domain of PCK2 involved in this regulation remains unknown. In future studies, we aim to further evaluate the sites on the PCK2 protein, which are directly responsible for its regulatory functions.</p>
</sec>
<sec id="stem3091-sec-0026">
<title>Conclusion</title>
<p>In conclusion, our current study demonstrates a novel role of PCK2 in promoting bone formation of MSCs. Besides unraveling the function of PCK2 in osteogenic differentiation, our observations also contribute to the understanding of molecular mechanisms governing osteogenic capacity of MSCs. Mechanistically, PCK2 regulates osteogenic differentiation through regulating AMPK/ULK1‐dependent autophagy. This newly discovered function for PCK2 could be exploited as a novel metabolic target for maintaining energy homeostasis and could facilitate the development of MSC‐based clinical applications to treat bone metabolic diseases.</p>
</sec>
<sec id="stem3091-sec-0028">
<title>Author Contributions</title>
<p>P.Z., Y. Zhou: conception and design, financial support, data analysis, manuscript editing and final approval of manuscript, revised the manuscript for intellectual content; Z.L.: laboratory work, data collection and analysis, manuscript writing and final approval of manuscript, revised the manuscript for intellectual content; Xuenan Liu, Y.D., Y. Zhu, Xuejiao Liu, L.L., X.Z., Y.L.: laboratory work, data collection and final approval of manuscript, revised the manuscript for intellectual content.</p>
</sec>
<sec sec-type="COI-statement" id="stem3091-sec-0029">
<title>Disclosure of Potential Conflicts of Interest</title>
<p>The authors indicated no potential conflicts of interest.</p>
</sec>
<sec sec-type="supplementary-material">
<title>Supporting information</title>
<supplementary-material content-type="local-data" id="stem3091-supitem-0001">
<caption>
<p>
<bold>Figure S1 Construction of PCK2 knockdown or overexpression stable cell lines</bold>
.</p>
<p>
<bold>(A)</bold>
: Micrographs of GFP‐positive hASCs under regular and fluorescent light in the control and PCK2 knockdown cells are shown. Scale bar = 100 μm.
<bold>(B, C)</bold>
: PCK2 knockdown
<bold>(B)</bold>
or overexpression
<bold>(C)</bold>
efficiency of hASCs was determined by qRT‐PCR.
<bold>(D)</bold>
: Protein levels of PCK2 and PCK1 after knockdown of PCK2 were shown.
<bold>(E‐F)</bold>
: CCK8 assays were conducted for hASCs expressing sh1‐
<italic>PCK2</italic>
, sh2‐
<italic>PCK2</italic>
and their corresponding NC
<bold>(E)</bold>
,
<italic>PCK2</italic>
, and control vector
<bold>(F)</bold>
.
<bold>(G‐H)</bold>
: PCK2 knockdown
<bold>(G)</bold>
or overexpression
<bold>(H)</bold>
efficiency of hASCs was determined by qRT‐PCR.
<bold>(I)</bold>
: Protein levels of PCK2 after knockdown or expression of PCK2 were shown. Data represent three independent experiments and are presented as mean ± SD. **
<italic>P</italic>
 ≤ .01; Student's
<italic>t</italic>
‐test. Abbreviations: PCK2, mitochondrial phosphoenolpyruvate carboxykinase.</p>
</caption>
<media xlink:href="STEM-37-1542-s001.jpg">
<caption>
<p>Click here for additional data file.</p>
</caption>
</media>
</supplementary-material>
<supplementary-material content-type="local-data" id="stem3091-supitem-0002">
<caption>
<p>
<bold>Figure S2 PCK2 promotes the osteogenesis of MSCs in vitro</bold>
.</p>
<p>
<bold>(A, B)</bold>
: Depletion of PCK2 decreased ALP staining
<bold>(A)</bold>
and activity
<bold>(B)</bold>
after 7 days of osteogenic induction of hASCs.
<bold>(C, D)</bold>
: Knockdown of PCK2 decreased relative mRNA expression of
<italic>RUNX2</italic>
<bold>(C)</bold>
and
<italic>ALP</italic>
<bold>(D)</bold>
after 7 days of osteogenic induction of hASCs.
<bold>(E, F)</bold>
: Extracellular matrix mineralization
<bold>(E)</bold>
and ARS quantification
<bold>(F)</bold>
were decreased in PCK2 knockdown cells (hASCs) after 14 days of osteogenic induction.
<bold>(G, H)</bold>
: Relative mRNA expression of
<italic>RUNX2</italic>
<bold>(G)</bold>
and
<italic>OCN</italic>
<bold>(H)</bold>
were downregulated by knockdown of PCK2 after 14 days of osteogenic induction of hASCs.
<bold>(I)</bold>
: Knockdown of PCK2 downregulates the protein level of RUNX2 in hASCs. (
<bold>J, K</bold>
): Inhibition of PCK2 decreased ALP staining
<bold>(J)</bold>
and activity
<bold>(K)</bold>
after 7 days of osteogenic induction of hBMSCs. (
<bold>L</bold>
): Knockdown of PCK2 suppressed relative mRNA expression of
<italic>RUNX2</italic>
after 7 days of osteogenic induction of hBMSCs.
<bold>(O, P)</bold>
: Overexpression of PCK2 increased ALP staining
<bold>(O)</bold>
and activity
<bold>(P)</bold>
after 7 days of osteogenic induction of hBMSCs.
<bold>(Q)</bold>
: Overexpression of PCK2 upregulated relative mRNA expression of
<italic>RUNX2</italic>
after 7 days of osteogenic induction of hBMSCs. (
<bold>R</bold>
): Relative OAA quantification of cells transfected with pcDNA 3.1, wild type‐PCK2 and mutant‐PCK2. (S, T): ALP staining (S) and ALP activity (T) are decreased in hASCs transfected with mutant‐PCK2, compared with hASCs transfected with wild type‐PCK2. All the experiments were repeated three times. GAPDH was used for internal control. Values are presented as mean ± SD. **
<italic>P</italic>
 ≤ .01, *
<italic>P</italic>
 ≤ .05, NS = not significant; Student
<italic>'</italic>
s
<italic>t</italic>
‐test. Abbreviations: ALP, alkaline phosphatase; ARS, alizarin red S; hASCs, human adipose‐derived stem cells; hBMSCs, human bone marrow mesenchymal stem cells; mu‐PCK2, mutant‐mitochondrial phosphoenolpyruvate carboxykinase; NC2, negative control for sh2‐
<italic>PCK2</italic>
; OM, osteogenic media; OCN, osteocalcin; PCK2, mitochondrial phosphoenolpyruvate carboxykinase; PM, proliferation media; RUNX2, runt‐related transcription factor 2; wt‐PCK2, wild type‐mitochondrial phosphoenolpyruvate carboxykinase.</p>
</caption>
<media xlink:href="STEM-37-1542-s002.jpg">
<caption>
<p>Click here for additional data file.</p>
</caption>
</media>
</supplementary-material>
<supplementary-material content-type="local-data" id="stem3091-supitem-0003">
<caption>
<p>
<bold>Figure S3 PCK2 positively modulates autophagy during the osteogenesis by MSCs</bold>
.</p>
<p>
<bold>(A)</bold>
: Expression levels of LC3B and p62 are shown. The PCK2 knockdown and control cells (hASCs) were cultured in PM or PM containing 500 μM H
<sub>2</sub>
O
<sub>2</sub>
for 24 hours.
<bold>(B)</bold>
: Expression levels of LC3B and p62 are shown. The PCK2 knockdown and control cells (hASCs) were cultured in PM or SS medium for 48 hours.
<bold>(C)</bold>
: Expression levels of RUNX2, LC3B and p62 are shown. The control cells and PCK2 knockdown cells (hASCs) were cultured in PM or OM.
<bold>(D)</bold>
: Expression levels of LC3B and p62 are shown. The PCK2‐expressing and vector cells (hBMSCs) were cultured in PM or PM containing 500 μM H
<sub>2</sub>
O
<sub>2</sub>
for 24 hours.
<bold>(E)</bold>
: Expression levels of LC3B and p62 are shown. The PCK2‐overexpression and vector cells (hBMSCs) were cultured in PM or SS medium for 48 hours.
<bold>(F)</bold>
: The control cells or PCK2 knockdown cells (hBMSCs) were cultured in PM, PM containing 500 μM H
<sub>2</sub>
O
<sub>2</sub>
, or PM containing 500 μM H
<sub>2</sub>
O
<sub>2</sub>
and 10 μg/ml pep + E64d for 24 hours.
<bold>(G)</bold>
: The sh1
<italic>‐PCK2</italic>
or NC1 cells (hBMSCs) were cultured in PM, SS medium, or SS medium containing 10 μg/ml pep + E64d for 48 hours.
<bold>(I)</bold>
: The control cells and PCK2 knockdown hBMSCs were cultured in PM and OM, with or without 10 μg/ml pep + E64d for 7 days. GAPDH was used as an internal control. Images represent three independent experiments. Abbreviations: hASCs, human adipose‐derived stem cells; hBMSCs, human bone marrow mesenchymal stem cells; LC3B, Microtubule associated protein 1 light chain 3 β; NC2, negative control for sh2‐
<italic>PCK2</italic>
; OM, osteogenic media; p62, p62/SQSTM1; PCK2, mitochondrial phosphoenolpyruvate carboxykinase; PM, proliferation medium; OM, osteogenic media; RUNX2, runt‐related transcription factor 2; SS, serum starvation.</p>
</caption>
<media xlink:href="STEM-37-1542-s003.jpg">
<caption>
<p>Click here for additional data file.</p>
</caption>
</media>
</supplementary-material>
<supplementary-material content-type="local-data" id="stem3091-supitem-0004">
<caption>
<p>
<bold>Figure S4 Autophagy is indispensable for the osteogenic differentiation of hASCs</bold>
.</p>
<p>
<bold>(A‐C)</bold>
: ALP staining/activity and ARS staining/quantification at the 7th and 14th day of osteogenic induction in hASCs are shown.
<bold>(D‐F)</bold>
: The relative mRNA expression of
<italic>RUNX2</italic>
<bold>(D)</bold>
,
<italic>LC3B</italic>
<bold>(E)</bold>
, and
<italic>p62</italic>
<bold>(F)</bold>
at 7 days and 14 days of osteogenic induction in hASCs are shown.
<bold>(G‐L)</bold>
: During osteogenic differentiation, hASCs were treated with 15 mM CQ or 5 mM 3‐MA; ALP staining
<bold>(G, H)</bold>
and ALP activity
<bold>(I, J)</bold>
are shown. The relative mRNA expression of
<italic>RUNX2</italic>
was determined by qRT‐PCR
<bold>(K, L)</bold>
. Data in this figure represent three independent experiments and values are presented as mean ± SD. **
<italic>P</italic>
 ≤ .01, *
<italic>P</italic>
 ≤ .05, NS = not significant; Student's
<italic>t</italic>
‐test. Abbreviations: 3‐MA, 3‐methyladenine; ALP, alkaline phosphatase; ARS, alizarin red S; hASCs, human adipose‐derived stem cells; CQ, chloroquine; LC3B, Microtubule associated protein 1 light chain 3 β; NC, negative control for sh‐ATG7; OM, osteogenic media; p62, p62/SQSTM1; PCK2, mitochondrial phosphoenolpyruvate carboxykinase; PM, proliferation media; RUNX2, runt‐related transcription factor 2.</p>
</caption>
<media xlink:href="STEM-37-1542-s004.jpg">
<caption>
<p>Click here for additional data file.</p>
</caption>
</media>
</supplementary-material>
<supplementary-material content-type="local-data" id="stem3091-supitem-0005">
<caption>
<p>
<bold>Figure S5 Knockdown of ATG7 impairs autophagy activity of hASCs</bold>
.</p>
<p>
<bold>(A)</bold>
: Expression patterns of RUNX2, LC3B and p62 are shown after 7 days and 14 days induction of osteogenic differentiation of hASCs.
<bold>(B)</bold>
: Quantifications of the protein expressions obtained in
<bold>(A)</bold>
were performed using Image J software.
<bold>(C, D)</bold>
: The transfection efficiency of ATG7 was confirmed by micrographs of GFP‐positive hASCs under regular and fluorescent light
<bold>(C)</bold>
and qRT‐PCR analysis
<bold>(D)</bold>
. Scale bar = 100 μm.
<bold>(E)</bold>
: Efficiency of ATG7 knockdown was determined by western blot analysis. GAPDH was used as internal control in
<bold>(A)</bold>
and
<bold>(E)</bold>
.
<bold>(F, G)</bold>
: Relative mRNA expressions of
<italic>RUNX2</italic>
<bold>(F)</bold>
and
<italic>ALP</italic>
<bold>(G)</bold>
were decreased by ATG7 knockdown after 7 days of osteogenic induction.
<bold>(H, I)</bold>
: The relative mRNA expression of
<italic>RUNX2</italic>
<bold>(H)</bold>
and
<italic>OCN</italic>
<bold>(I)</bold>
were downregulated after 14 days of osteogenic induction. The images in this figure are representative of three independent experiments. Data in this figure is presented as mean ± SD. **
<italic>P</italic>
 ≤ .01, NS = not significant; Student's
<italic>t</italic>
‐test. Abbreviations: ALP, alkaline phosphatase; ARS, alizarin red S; ATG7, autophagy‐related‐gene‐7; LC3B, Microtubule associated protein 1 light chain 3 β; NC, negative control for sh‐ATG7; OCN, osteocalcin; OM, osteogenic media; p62, p62/SQSTM1; PCK2, mitochondrial phosphoenolpyruvate carboxykinase; PM, proliferation media; RUNX2, runt‐related transcription factor 2.</p>
</caption>
<media xlink:href="STEM-37-1542-s005.jpg">
<caption>
<p>Click here for additional data file.</p>
</caption>
</media>
</supplementary-material>
<supplementary-material content-type="local-data" id="stem3091-supitem-0006">
<caption>
<p>
<bold>Figure S6 PCK2 regulates the osteogenic capacity of hASCs by modulating AMPK/ULK1‐mediated autophagy</bold>
.</p>
<p>
<bold>(A)</bold>
: Western blots of p‐ULK1 (ser 555), p‐ULK1 (ser 556), p‐ULK1 (ser 757), ULK1, p‐AMPK α, and AMPK in PCK2‐knockdown and control cells are shown. (B): The transfection efficiency of si‐AMPK and AMPK was confirmed by western blots. The pcDNA3.0 vector and NC were used as negative control. GAPDH was used for as internal control. Images represent three independent experiments. Values are presented as mean ± SD. **
<italic>P</italic>
 ≤ .01, *
<italic>P</italic>
 ≤ .05, NS = not significant; Student's
<italic>t</italic>
‐test. Abbreviations: AMPK, AMP‐activated protein kinase; hASCs, human adipose‐derived stem cells; NC, negative control for si‐AMPK; NC2, negative control for sh2‐PCK2; OAA, Oxaloacetate; OM, osteogenic media; PCK2, mitochondrial phosphoenolpyruvate carboxykinase; PM, proliferation media; ULK1, unc‐51 like autophagy activating kinase 1.</p>
</caption>
<media xlink:href="STEM-37-1542-s006.jpg">
<caption>
<p>Click here for additional data file.</p>
</caption>
</media>
</supplementary-material>
</sec>
</body>
<back>
<ack id="stem3091-sec-0027">
<title>Acknowledgments</title>
<p>We thank all the members in our laboratory for their helpful advice and technical support. This work was supported by the National Natural Science Foundation of China under grant 81870742 to Y.Z.; the Capital Culturing Project for Leading Talents in Scientific and Technological Innovation in Beijing under grant Z171100001117169 to Y.Z.; and the Beijing Nova Program under grant Z181100006218037 to P.Z.</p>
</ack>
<sec sec-type="data-availability" id="stem3091-sec-0032">
<title>Data Availability Statement</title>
<p>The data that support the findings of this study are available from the corresponding author upon reasonable request.</p>
</sec>
<ref-list id="stem3091-bibl-0001" content-type="cited-references">
<title>References</title>
<ref id="stem3091-bib-0001">
<label>1</label>
<mixed-citation publication-type="journal" id="stem3091-cit-0001">
<string-name>
<surname>Mihaila</surname>
<given-names>SM</given-names>
</string-name>
,
<string-name>
<surname>Gaharwar</surname>
<given-names>AK</given-names>
</string-name>
,
<string-name>
<surname>Reis</surname>
<given-names>RL</given-names>
</string-name>
et al.
<article-title>The osteogenic differentiation of SSEA‐4 sub‐population of human adipose derived stem cells using silicate nanoplatelets</article-title>
.
<source xml:lang="en">Biomaterials</source>
<year>2014</year>
;
<volume>35</volume>
:
<fpage>9087</fpage>
<lpage>9099</lpage>
.
<pub-id pub-id-type="pmid">25123923</pub-id>
</mixed-citation>
</ref>
<ref id="stem3091-bib-0002">
<label>2</label>
<mixed-citation publication-type="journal" id="stem3091-cit-0002">
<string-name>
<surname>Huang</surname>
<given-names>T</given-names>
</string-name>
,
<string-name>
<surname>Liu</surname>
<given-names>R</given-names>
</string-name>
,
<string-name>
<surname>Fu</surname>
<given-names>X</given-names>
</string-name>
et al.
<article-title>Aging reduces an ERRalpha‐directed mitochondrial glutaminase expression suppressing glutamine anaplerosis and osteogenic differentiation of mesenchymal stem cells</article-title>
.
<source xml:lang="en">Stem Cells</source>
<year>2017</year>
;
<volume>35</volume>
:
<fpage>411</fpage>
<lpage>424</lpage>
.
<pub-id pub-id-type="pmid">27501743</pub-id>
</mixed-citation>
</ref>
<ref id="stem3091-bib-0003">
<label>3</label>
<mixed-citation publication-type="journal" id="stem3091-cit-0003">
<string-name>
<surname>Guan</surname>
<given-names>M</given-names>
</string-name>
,
<string-name>
<surname>Wei</surname>
<given-names>Y</given-names>
</string-name>
,
<string-name>
<surname>Liu</surname>
<given-names>R</given-names>
</string-name>
et al.
<article-title>Directing mesenchymal stem cells to bone to augment bone formation and increase bone mass</article-title>
.
<source xml:lang="en">Nat Med</source>
<year>2012</year>
;
<volume>18</volume>
:
<fpage>456</fpage>
.
<pub-id pub-id-type="pmid">22306732</pub-id>
</mixed-citation>
</ref>
<ref id="stem3091-bib-0004">
<label>4</label>
<mixed-citation publication-type="journal" id="stem3091-cit-0004">
<string-name>
<surname>Sato</surname>
<given-names>K</given-names>
</string-name>
,
<string-name>
<surname>Tsuchihara</surname>
<given-names>K</given-names>
</string-name>
,
<string-name>
<surname>Fujii</surname>
<given-names>S</given-names>
</string-name>
et al.
<article-title>Autophagy is activated in colorectal cancer cells and contributes to the tolerance to nutrient deprivation</article-title>
.
<source xml:lang="en">Cancer Res</source>
<year>2007</year>
;
<volume>67</volume>
:
<fpage>9677</fpage>
<lpage>9684</lpage>
.
<pub-id pub-id-type="pmid">17942897</pub-id>
</mixed-citation>
</ref>
<ref id="stem3091-bib-0005">
<label>5</label>
<mixed-citation publication-type="journal" id="stem3091-cit-0005">
<string-name>
<surname>Levine</surname>
<given-names>B</given-names>
</string-name>
,
<string-name>
<surname>Klionsky</surname>
<given-names>DJ</given-names>
</string-name>
.
<article-title>Development by self‐digestion: Molecular mechanisms and biological functions of autophagy</article-title>
.
<source xml:lang="en">Dev Cell</source>
<year>2004</year>
;
<volume>6</volume>
:
<fpage>463</fpage>
<lpage>477</lpage>
.
<pub-id pub-id-type="pmid">15068787</pub-id>
</mixed-citation>
</ref>
<ref id="stem3091-bib-0006">
<label>6</label>
<mixed-citation publication-type="journal" id="stem3091-cit-0006">
<string-name>
<surname>Pantovic</surname>
<given-names>A</given-names>
</string-name>
,
<string-name>
<surname>Krstic</surname>
<given-names>A</given-names>
</string-name>
,
<string-name>
<surname>Janjetovic</surname>
<given-names>K</given-names>
</string-name>
et al.
<article-title>Coordinated time‐dependent modulation of AMPK/Akt/mTOR signaling and autophagy controls osteogenic differentiation of human mesenchymal stem cells</article-title>
.
<source xml:lang="en">Bone</source>
<year>2013</year>
;
<volume>52</volume>
:
<fpage>524</fpage>
<lpage>531</lpage>
.
<pub-id pub-id-type="pmid">23111315</pub-id>
</mixed-citation>
</ref>
<ref id="stem3091-bib-0007">
<label>7</label>
<mixed-citation publication-type="journal" id="stem3091-cit-0007">
<string-name>
<surname>Nuschke</surname>
<given-names>A</given-names>
</string-name>
,
<string-name>
<surname>Rodrigues</surname>
<given-names>M</given-names>
</string-name>
,
<string-name>
<surname>Stolz</surname>
<given-names>DB</given-names>
</string-name>
et al.
<article-title>Human mesenchymal stem cells/multipotent stromal cells consume accumulated autophagosomes early in differentiation</article-title>
.
<source xml:lang="en">Stem Cell Res Ther</source>
<year>2014</year>
;
<volume>5</volume>
:
<fpage>140</fpage>
.
<pub-id pub-id-type="pmid">25523618</pub-id>
</mixed-citation>
</ref>
<ref id="stem3091-bib-0008">
<label>8</label>
<mixed-citation publication-type="journal" id="stem3091-cit-0008">
<string-name>
<surname>Zhou</surname>
<given-names>Z</given-names>
</string-name>
,
<string-name>
<surname>Shi</surname>
<given-names>G</given-names>
</string-name>
,
<string-name>
<surname>Zheng</surname>
<given-names>X</given-names>
</string-name>
et al.
<article-title>Autophagy activation facilitates mechanical stimulation‐promoted osteoblast differentiation and ameliorates hindlimb unloading‐induced bone loss</article-title>
.
<source xml:lang="en">Biochem Biophys Res Commun</source>
<year>2018</year>
;
<volume>498</volume>
:
<fpage>667</fpage>
<lpage>673</lpage>
.
<pub-id pub-id-type="pmid">29524406</pub-id>
</mixed-citation>
</ref>
<ref id="stem3091-bib-0009">
<label>9</label>
<mixed-citation publication-type="journal" id="stem3091-cit-0009">
<string-name>
<surname>Qi</surname>
<given-names>M</given-names>
</string-name>
,
<string-name>
<surname>Zhang</surname>
<given-names>L</given-names>
</string-name>
,
<string-name>
<surname>Ma</surname>
<given-names>Y</given-names>
</string-name>
et al.
<article-title>Autophagy maintains the function of bone marrow mesenchymal stem cells to prevent estrogen deficiency‐induced osteoporosis</article-title>
.
<source xml:lang="en">Theranostics</source>
<year>2017</year>
;
<volume>7</volume>
:
<fpage>4498</fpage>
<lpage>4516</lpage>
.
<pub-id pub-id-type="pmid">29158841</pub-id>
</mixed-citation>
</ref>
<ref id="stem3091-bib-0010">
<label>10</label>
<mixed-citation publication-type="journal" id="stem3091-cit-0010">
<string-name>
<surname>Rui</surname>
<given-names>L</given-names>
</string-name>
.
<article-title>Energy metabolism in the liver</article-title>
.
<source xml:lang="en">Compr Physiol</source>
<year>2014</year>
;
<volume>4</volume>
:
<fpage>177</fpage>
<lpage>197</lpage>
.
<pub-id pub-id-type="pmid">24692138</pub-id>
</mixed-citation>
</ref>
<ref id="stem3091-bib-0011">
<label>11</label>
<mixed-citation publication-type="journal" id="stem3091-cit-0011">
<string-name>
<surname>Mendez‐Lucas</surname>
<given-names>A</given-names>
</string-name>
,
<string-name>
<surname>Duarte</surname>
<given-names>JA</given-names>
</string-name>
,
<string-name>
<surname>Sunny</surname>
<given-names>NE</given-names>
</string-name>
et al.
<article-title>PEPCK‐M expression in mouse liver potentiates, not replaces, PEPCK‐C mediated gluconeogenesis</article-title>
.
<source xml:lang="en">J Hepatol</source>
<year>2013</year>
;
<volume>59</volume>
:
<fpage>105</fpage>
<lpage>113</lpage>
.
<pub-id pub-id-type="pmid">23466304</pub-id>
</mixed-citation>
</ref>
<ref id="stem3091-bib-0012">
<label>12</label>
<mixed-citation publication-type="journal" id="stem3091-cit-0012">
<string-name>
<surname>Montal</surname>
<given-names>ED</given-names>
</string-name>
,
<string-name>
<surname>Dewi</surname>
<given-names>R</given-names>
</string-name>
,
<string-name>
<surname>Bhalla</surname>
<given-names>K</given-names>
</string-name>
et al.
<article-title>PEPCK coordinates the regulation of central carbon metabolism to promote cancer cell growth</article-title>
.
<source xml:lang="en">Mol Cell</source>
<year>2015</year>
;
<volume>60</volume>
:
<fpage>571</fpage>
<lpage>583</lpage>
.
<pub-id pub-id-type="pmid">26481663</pub-id>
</mixed-citation>
</ref>
<ref id="stem3091-bib-0013">
<label>13</label>
<mixed-citation publication-type="journal" id="stem3091-cit-0013">
<string-name>
<surname>Burgess</surname>
<given-names>SC</given-names>
</string-name>
,
<string-name>
<surname>Hausler</surname>
<given-names>N</given-names>
</string-name>
,
<string-name>
<surname>Merritt</surname>
<given-names>M</given-names>
</string-name>
et al.
<article-title>Impaired tricarboxylic acid cycle activity in mouse livers lacking cytosolic phosphoenolpyruvate carboxykinase</article-title>
.
<source xml:lang="en">J Biol Chem</source>
<year>2004</year>
;
<volume>279</volume>
:
<fpage>48941</fpage>
<lpage>48949</lpage>
.
<pub-id pub-id-type="pmid">15347677</pub-id>
</mixed-citation>
</ref>
<ref id="stem3091-bib-0014">
<label>14</label>
<mixed-citation publication-type="journal" id="stem3091-cit-0014">
<string-name>
<surname>Jiang</surname>
<given-names>W</given-names>
</string-name>
,
<string-name>
<surname>Wang</surname>
<given-names>S</given-names>
</string-name>
,
<string-name>
<surname>Xiao</surname>
<given-names>M</given-names>
</string-name>
et al.
<article-title>Acetylation regulates gluconeogenesis by promoting PEPCK1 degradation via recruiting the UBR5 ubiquitin ligase</article-title>
.
<source xml:lang="en">Mol Cell</source>
<year>2011</year>
;
<volume>43</volume>
:
<fpage>33</fpage>
<lpage>44</lpage>
.
<pub-id pub-id-type="pmid">21726808</pub-id>
</mixed-citation>
</ref>
<ref id="stem3091-bib-0015">
<label>15</label>
<mixed-citation publication-type="journal" id="stem3091-cit-0015">
<string-name>
<surname>Latorre‐Muro</surname>
<given-names>P</given-names>
</string-name>
,
<string-name>
<surname>Baeza</surname>
<given-names>J</given-names>
</string-name>
,
<string-name>
<surname>Armstrong</surname>
<given-names>EA</given-names>
</string-name>
et al.
<article-title>Dynamic acetylation of phosphoenolpyruvate carboxykinase toggles enzyme activity between gluconeogenic and anaplerotic reactions</article-title>
.
<source xml:lang="en">Mol Cell</source>
<year>2018</year>
;
<volume>71</volume>
:
<fpage>718.e719</fpage>
<lpage>732.e719</lpage>
.
<pub-id pub-id-type="pmid">30193097</pub-id>
</mixed-citation>
</ref>
<ref id="stem3091-bib-0016">
<label>16</label>
<mixed-citation publication-type="journal" id="stem3091-cit-0016">
<string-name>
<surname>Stark</surname>
<given-names>R</given-names>
</string-name>
,
<string-name>
<surname>Pasquel</surname>
<given-names>F</given-names>
</string-name>
,
<string-name>
<surname>Turcu</surname>
<given-names>A</given-names>
</string-name>
et al.
<article-title>Phosphoenolpyruvate cycling via mitochondrial phosphoenolpyruvate carboxykinase links anaplerosis and mitochondrial GTP with insulin secretion</article-title>
.
<source xml:lang="en">J Biol Chem</source>
<year>2009</year>
;
<volume>284</volume>
:
<fpage>26578</fpage>
<lpage>26590</lpage>
.
<pub-id pub-id-type="pmid">19635791</pub-id>
</mixed-citation>
</ref>
<ref id="stem3091-bib-0017">
<label>17</label>
<mixed-citation publication-type="journal" id="stem3091-cit-0017">
<string-name>
<surname>Vincent</surname>
<given-names>EE</given-names>
</string-name>
,
<string-name>
<surname>Sergushichev</surname>
<given-names>A</given-names>
</string-name>
,
<string-name>
<surname>Griss</surname>
<given-names>T</given-names>
</string-name>
et al.
<article-title>Mitochondrial phosphoenolpyruvate carboxykinase regulates metabolic adaptation and enables glucose‐independent tumor growth</article-title>
.
<source xml:lang="en">Mol Cell</source>
<year>2015</year>
;
<volume>60</volume>
:
<fpage>195</fpage>
<lpage>207</lpage>
.
<pub-id pub-id-type="pmid">26474064</pub-id>
</mixed-citation>
</ref>
<ref id="stem3091-bib-0018">
<label>18</label>
<mixed-citation publication-type="journal" id="stem3091-cit-0018">
<string-name>
<surname>Stark</surname>
<given-names>R</given-names>
</string-name>
,
<string-name>
<surname>Guebre‐Egziabher</surname>
<given-names>F</given-names>
</string-name>
,
<string-name>
<surname>Zhao</surname>
<given-names>X</given-names>
</string-name>
et al.
<article-title>A role for mitochondrial phosphoenolpyruvate carboxykinase (PEPCK‐M) in the regulation of hepatic gluconeogenesis</article-title>
.
<source xml:lang="en">J Biol Chem</source>
<year>2014</year>
;
<volume>289</volume>
:
<fpage>7257</fpage>
<lpage>7263</lpage>
.
<pub-id pub-id-type="pmid">24497630</pub-id>
</mixed-citation>
</ref>
<ref id="stem3091-bib-0019">
<label>19</label>
<mixed-citation publication-type="journal" id="stem3091-cit-0019">
<string-name>
<surname>Haeusler</surname>
<given-names>RA</given-names>
</string-name>
,
<string-name>
<surname>Camastra</surname>
<given-names>S</given-names>
</string-name>
,
<string-name>
<surname>Astiarraga</surname>
<given-names>B</given-names>
</string-name>
et al.
<article-title>Decreased expression of hepatic glucokinase in type 2 diabetes</article-title>
.
<source xml:lang="en">Mol Metab</source>
<year>2015</year>
;
<volume>4</volume>
:
<fpage>222</fpage>
<lpage>226</lpage>
.
<pub-id pub-id-type="pmid">25737948</pub-id>
</mixed-citation>
</ref>
<ref id="stem3091-bib-0020">
<label>20</label>
<mixed-citation publication-type="journal" id="stem3091-cit-0020">
<string-name>
<surname>Yokoyama</surname>
<given-names>N</given-names>
</string-name>
,
<string-name>
<surname>Ishimura</surname>
<given-names>T</given-names>
</string-name>
,
<string-name>
<surname>Oda</surname>
<given-names>T</given-names>
</string-name>
et al.
<article-title>Association of the PCK2 gene polymorphism with new‐onset glucose intolerance in japanese kidney transplant recipients</article-title>
.
<source xml:lang="en">Transplant Proc</source>
<year>2018</year>
;
<volume>50</volume>
:
<fpage>1045</fpage>
<lpage>1049</lpage>
.
<pub-id pub-id-type="pmid">29731064</pub-id>
</mixed-citation>
</ref>
<ref id="stem3091-bib-0021">
<label>21</label>
<mixed-citation publication-type="journal" id="stem3091-cit-0021">
<string-name>
<surname>Tao</surname>
<given-names>J</given-names>
</string-name>
,
<string-name>
<surname>Wang</surname>
<given-names>H</given-names>
</string-name>
,
<string-name>
<surname>Zhai</surname>
<given-names>Y</given-names>
</string-name>
et al.
<article-title>Downregulation of Nrf2 promotes autophagy‐dependent osteoblastic differentiation of adipose‐derived mesenchymal stem cells</article-title>
.
<source xml:lang="en">Exp Cell Res</source>
<year>2016</year>
;
<volume>349</volume>
:
<fpage>221</fpage>
<lpage>229</lpage>
.
<pub-id pub-id-type="pmid">27669641</pub-id>
</mixed-citation>
</ref>
<ref id="stem3091-bib-0022">
<label>22</label>
<mixed-citation publication-type="journal" id="stem3091-cit-0022">
<string-name>
<surname>Wan</surname>
<given-names>Y</given-names>
</string-name>
,
<string-name>
<surname>Zhuo</surname>
<given-names>N</given-names>
</string-name>
,
<string-name>
<surname>Li</surname>
<given-names>Y</given-names>
</string-name>
et al.
<article-title>Autophagy promotes osteogenic differentiation of human bone marrow mesenchymal stem cell derived from osteoporotic vertebrae</article-title>
.
<source xml:lang="en">Biochem Biophys Res Commun</source>
<year>2017</year>
;
<volume>488</volume>
:
<fpage>46</fpage>
<lpage>52</lpage>
.
<pub-id pub-id-type="pmid">28476617</pub-id>
</mixed-citation>
</ref>
<ref id="stem3091-bib-0023">
<label>23</label>
<mixed-citation publication-type="journal" id="stem3091-cit-0023">
<string-name>
<surname>Ge</surname>
<given-names>W</given-names>
</string-name>
,
<string-name>
<surname>Shi</surname>
<given-names>L</given-names>
</string-name>
,
<string-name>
<surname>Zhou</surname>
<given-names>Y</given-names>
</string-name>
et al.
<article-title>Inhibition of osteogenic differentiation of human adipose‐derived stromal cells by retinoblastoma binding protein 2 repression of RUNX2‐activated transcription</article-title>
.
<source xml:lang="en">Stem Cells</source>
<year>2011</year>
;
<volume>29</volume>
:
<fpage>1112</fpage>
<lpage>1125</lpage>
.
<pub-id pub-id-type="pmid">21604327</pub-id>
</mixed-citation>
</ref>
<ref id="stem3091-bib-0024">
<label>24</label>
<mixed-citation publication-type="journal" id="stem3091-cit-0024">
<string-name>
<surname>Ge</surname>
<given-names>W</given-names>
</string-name>
,
<string-name>
<surname>Liu</surname>
<given-names>Y</given-names>
</string-name>
,
<string-name>
<surname>Chen</surname>
<given-names>T</given-names>
</string-name>
et al.
<article-title>The epigenetic promotion of osteogenic differentiation of human adipose‐derived stem cells by the genetic and chemical blockade of histone demethylase LSD1</article-title>
.
<source xml:lang="en">Biomaterials</source>
<year>2014</year>
;
<volume>35</volume>
:
<fpage>6015</fpage>
<lpage>6025</lpage>
.
<pub-id pub-id-type="pmid">24794925</pub-id>
</mixed-citation>
</ref>
<ref id="stem3091-bib-0025">
<label>25</label>
<mixed-citation publication-type="journal" id="stem3091-cit-0025">
<string-name>
<surname>Jia</surname>
<given-names>LF</given-names>
</string-name>
,
<string-name>
<surname>Wei</surname>
<given-names>SB</given-names>
</string-name>
,
<string-name>
<surname>Gan</surname>
<given-names>YH</given-names>
</string-name>
et al.
<article-title>Expression, regulation and roles of miR‐26a and MEG3 in tongue squamous cell carcinoma</article-title>
.
<source xml:lang="en">Int J Cancer</source>
<year>2014</year>
;
<volume>135</volume>
:
<fpage>2282</fpage>
<lpage>2293</lpage>
.
<pub-id pub-id-type="pmid">24343426</pub-id>
</mixed-citation>
</ref>
<ref id="stem3091-bib-0026">
<label>26</label>
<mixed-citation publication-type="journal" id="stem3091-cit-0026">
<string-name>
<surname>Si</surname>
<given-names>C</given-names>
</string-name>
,
<string-name>
<surname>Zheng</surname>
<given-names>Y</given-names>
</string-name>
,
<string-name>
<surname>Shan</surname>
<given-names>Z</given-names>
</string-name>
et al.
<article-title>Promotion effects of miR‐375 on the osteogenic differentiation of human adipose‐derived mesenchymal stem cells</article-title>
.
<source xml:lang="en">Stem Cell Rep</source>
<year>2017</year>
;
<volume>8</volume>
:
<fpage>773</fpage>
<lpage>786</lpage>
.</mixed-citation>
</ref>
<ref id="stem3091-bib-0027">
<label>27</label>
<mixed-citation publication-type="journal" id="stem3091-cit-0027">
<string-name>
<surname>Tang</surname>
<given-names>Y</given-names>
</string-name>
,
<string-name>
<surname>Lv</surname>
<given-names>L</given-names>
</string-name>
,
<string-name>
<surname>Li</surname>
<given-names>W</given-names>
</string-name>
et al.
<article-title>Protein deubiquitinase USP7 is required for osteogenic differentiation of human adipose‐derived stem cells</article-title>
.
<source xml:lang="en">Stem Cell Res Ther</source>
<year>2017</year>
;
<volume>8</volume>
:
<fpage>186</fpage>
.
<pub-id pub-id-type="pmid">28807012</pub-id>
</mixed-citation>
</ref>
<ref id="stem3091-bib-0028">
<label>28</label>
<mixed-citation publication-type="journal" id="stem3091-cit-0028">
<string-name>
<surname>Liu</surname>
<given-names>H</given-names>
</string-name>
,
<string-name>
<surname>Li</surname>
<given-names>W</given-names>
</string-name>
,
<string-name>
<surname>Liu</surname>
<given-names>Y</given-names>
</string-name>
et al.
<article-title>Co‐administration of aspirin and allogeneic adipose‐derived stromal cells attenuates bone loss in ovariectomized rats through the anti‐inflammatory and chemotactic abilities of aspirin</article-title>
.
<source xml:lang="en">Stem Cell Res Ther</source>
<year>2015</year>
;
<volume>6</volume>
:
<fpage>200</fpage>
.
<pub-id pub-id-type="pmid">26474767</pub-id>
</mixed-citation>
</ref>
<ref id="stem3091-bib-0029">
<label>29</label>
<mixed-citation publication-type="journal" id="stem3091-cit-0029">
<string-name>
<surname>Hocking</surname>
<given-names>LJ</given-names>
</string-name>
,
<string-name>
<surname>Whitehouse</surname>
<given-names>C</given-names>
</string-name>
,
<string-name>
<surname>Helfrich</surname>
<given-names>MH</given-names>
</string-name>
.
<article-title>Autophagy: A new player in skeletal maintenance?</article-title>
<source xml:lang="en">J Bone Miner Res</source>
<year>2012</year>
;
<volume>27</volume>
:
<fpage>1439</fpage>
<lpage>1447</lpage>
.
<pub-id pub-id-type="pmid">22706899</pub-id>
</mixed-citation>
</ref>
<ref id="stem3091-bib-0030">
<label>30</label>
<mixed-citation publication-type="journal" id="stem3091-cit-0030">
<string-name>
<surname>Komatsu</surname>
<given-names>M</given-names>
</string-name>
,
<string-name>
<surname>Waguri</surname>
<given-names>S</given-names>
</string-name>
,
<string-name>
<surname>Koike</surname>
<given-names>M</given-names>
</string-name>
et al.
<article-title>Homeostatic levels of p62 control cytoplasmic inclusion body formation in autophagy‐deficient mice</article-title>
.
<source xml:lang="en">Cell</source>
<year>2007</year>
;
<volume>131</volume>
:
<fpage>1149</fpage>
<lpage>1163</lpage>
.
<pub-id pub-id-type="pmid">18083104</pub-id>
</mixed-citation>
</ref>
<ref id="stem3091-bib-0031">
<label>31</label>
<mixed-citation publication-type="journal" id="stem3091-cit-0031">
<string-name>
<surname>Mizushima</surname>
<given-names>N</given-names>
</string-name>
,
<string-name>
<surname>Yoshimori</surname>
<given-names>T</given-names>
</string-name>
,
<string-name>
<surname>Levine</surname>
<given-names>B</given-names>
</string-name>
.
<article-title>Methods in mammalian autophagy research</article-title>
.
<source xml:lang="en">Cell</source>
<year>2010</year>
;
<volume>140</volume>
:
<fpage>313</fpage>
<lpage>326</lpage>
.
<pub-id pub-id-type="pmid">20144757</pub-id>
</mixed-citation>
</ref>
<ref id="stem3091-bib-0032">
<label>32</label>
<mixed-citation publication-type="journal" id="stem3091-cit-0032">
<string-name>
<surname>Klionsky</surname>
<given-names>DJ</given-names>
</string-name>
,
<string-name>
<surname>Abdelmohsen</surname>
<given-names>K</given-names>
</string-name>
,
<string-name>
<surname>Abe</surname>
<given-names>A</given-names>
</string-name>
et al.
<article-title>Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition)</article-title>
.
<source xml:lang="en">Autophagy</source>
<year>2016</year>
;
<volume>12</volume>
:
<fpage>1</fpage>
<lpage>222</lpage>
.
<pub-id pub-id-type="pmid">26799652</pub-id>
</mixed-citation>
</ref>
<ref id="stem3091-bib-0033">
<label>33</label>
<mixed-citation publication-type="journal" id="stem3091-cit-0033">
<string-name>
<surname>Shang</surname>
<given-names>L</given-names>
</string-name>
,
<string-name>
<surname>Chen</surname>
<given-names>S</given-names>
</string-name>
,
<string-name>
<surname>Du</surname>
<given-names>F</given-names>
</string-name>
et al.
<article-title>Nutrient starvation elicits an acute autophagic response mediated by Ulk1 dephosphorylation and its subsequent dissociation from AMPK</article-title>
.
<source xml:lang="en">Proc Natl Acad Sci USA</source>
<year>2011</year>
;
<volume>108</volume>
:
<fpage>4788</fpage>
<lpage>4793</lpage>
.
<pub-id pub-id-type="pmid">21383122</pub-id>
</mixed-citation>
</ref>
<ref id="stem3091-bib-0034">
<label>34</label>
<mixed-citation publication-type="journal" id="stem3091-cit-0034">
<string-name>
<surname>Egan</surname>
<given-names>DF</given-names>
</string-name>
,
<string-name>
<surname>Shackelford</surname>
<given-names>DB</given-names>
</string-name>
,
<string-name>
<surname>Mihaylova</surname>
<given-names>MM</given-names>
</string-name>
et al.
<article-title>Phosphorylation of ULK1 (hATG1) by AMP‐activated protein kinase connects energy sensing to mitophagy</article-title>
.
<source xml:lang="en">Science</source>
<year>2011</year>
;
<volume>331</volume>
:
<fpage>456</fpage>
<lpage>461</lpage>
.
<pub-id pub-id-type="pmid">21205641</pub-id>
</mixed-citation>
</ref>
<ref id="stem3091-bib-0035">
<label>35</label>
<mixed-citation publication-type="journal" id="stem3091-cit-0035">
<string-name>
<surname>Laker</surname>
<given-names>RC</given-names>
</string-name>
,
<string-name>
<surname>Drake</surname>
<given-names>JC</given-names>
</string-name>
,
<string-name>
<surname>Wilson</surname>
<given-names>RJ</given-names>
</string-name>
et al.
<article-title>Ampk phosphorylation of Ulk1 is required for targeting of mitochondria to lysosomes in exercise‐induced mitophagy</article-title>
.
<source xml:lang="en">Nat Commun</source>
<year>2017</year>
;
<volume>8</volume>
:
<fpage>548</fpage>
.
<pub-id pub-id-type="pmid">28916822</pub-id>
</mixed-citation>
</ref>
<ref id="stem3091-bib-0036">
<label>36</label>
<mixed-citation publication-type="journal" id="stem3091-cit-0036">
<string-name>
<surname>Hoffman</surname>
<given-names>NJ</given-names>
</string-name>
,
<string-name>
<surname>Parker</surname>
<given-names>BL</given-names>
</string-name>
,
<string-name>
<surname>Chaudhuri</surname>
<given-names>R</given-names>
</string-name>
et al.
<article-title>Global phosphoproteomic analysis of human skeletal muscle reveals a network of exercise‐regulated kinases and AMPK substrates</article-title>
.
<source xml:lang="en">Cell Metab</source>
<year>2015</year>
;
<volume>22</volume>
:
<fpage>922</fpage>
<lpage>935</lpage>
.
<pub-id pub-id-type="pmid">26437602</pub-id>
</mixed-citation>
</ref>
<ref id="stem3091-bib-0037">
<label>37</label>
<mixed-citation publication-type="journal" id="stem3091-cit-0037">
<string-name>
<surname>Pi</surname>
<given-names>H</given-names>
</string-name>
,
<string-name>
<surname>Li</surname>
<given-names>M</given-names>
</string-name>
,
<string-name>
<surname>Zou</surname>
<given-names>L</given-names>
</string-name>
et al.
<article-title>AKT inhibition‐mediated dephosphorylation of TFE3 promotes overactive autophagy independent of MTORC1 in cadmium‐exposed bone mesenchymal stem cells</article-title>
.
<source xml:lang="en">Autophagy</source>
<year>2018</year>
;
<volume>16</volume>
:
<fpage>1</fpage>
<lpage>18</lpage>
.</mixed-citation>
</ref>
<ref id="stem3091-bib-0038">
<label>38</label>
<mixed-citation publication-type="journal" id="stem3091-cit-0038">
<string-name>
<surname>Ho</surname>
<given-names>TT</given-names>
</string-name>
,
<string-name>
<surname>Warr</surname>
<given-names>MR</given-names>
</string-name>
,
<string-name>
<surname>Adelman</surname>
<given-names>ER</given-names>
</string-name>
et al.
<article-title>Autophagy maintains the metabolism and function of young and old stem cells</article-title>
.
<source xml:lang="en">Nature</source>
<year>2017</year>
;
<volume>543</volume>
:
<fpage>205</fpage>
<lpage>210</lpage>
.
<pub-id pub-id-type="pmid">28241143</pub-id>
</mixed-citation>
</ref>
<ref id="stem3091-bib-0039">
<label>39</label>
<mixed-citation publication-type="journal" id="stem3091-cit-0039">
<string-name>
<surname>Luo</surname>
<given-names>S</given-names>
</string-name>
,
<string-name>
<surname>Li</surname>
<given-names>Y</given-names>
</string-name>
,
<string-name>
<surname>Ma</surname>
<given-names>R</given-names>
</string-name>
et al.
<article-title>Downregulation of PCK2 remodels tricarboxylic acid cycle in tumor‐repopulating cells of melanoma</article-title>
.
<source xml:lang="en">Oncogene</source>
<year>2017</year>
;
<volume>36</volume>
:
<fpage>3609</fpage>
<lpage>3617</lpage>
.
<pub-id pub-id-type="pmid">28166201</pub-id>
</mixed-citation>
</ref>
<ref id="stem3091-bib-0040">
<label>40</label>
<mixed-citation publication-type="journal" id="stem3091-cit-0040">
<string-name>
<surname>Leithner</surname>
<given-names>K</given-names>
</string-name>
,
<string-name>
<surname>Triebl</surname>
<given-names>A</given-names>
</string-name>
,
<string-name>
<surname>Trotzmuller</surname>
<given-names>M</given-names>
</string-name>
et al.
<article-title>The glycerol backbone of phospholipids derives from noncarbohydrate precursors in starved lung cancer cells</article-title>
.
<source xml:lang="en">Proc Natl Acad Sci USA</source>
<year>2018</year>
;
<volume>115</volume>
:
<fpage>6225</fpage>
<lpage>6230</lpage>
.
<pub-id pub-id-type="pmid">29844165</pub-id>
</mixed-citation>
</ref>
<ref id="stem3091-bib-0041">
<label>41</label>
<mixed-citation publication-type="journal" id="stem3091-cit-0041">
<string-name>
<surname>Stark</surname>
<given-names>R</given-names>
</string-name>
,
<string-name>
<surname>Kibbey</surname>
<given-names>RG</given-names>
</string-name>
.
<article-title>The mitochondrial isoform of phosphoenolpyruvate carboxykinase (PEPCK‐M) and glucose homeostasis: Has it been overlooked?</article-title>
<source xml:lang="en">Biochim Biophys Acta</source>
<year>1840</year>
;
<volume>2014</volume>
:
<fpage>1313</fpage>
<lpage>1330</lpage>
.</mixed-citation>
</ref>
<ref id="stem3091-bib-0042">
<label>42</label>
<mixed-citation publication-type="journal" id="stem3091-cit-0042">
<string-name>
<surname>Leithner</surname>
<given-names>K</given-names>
</string-name>
,
<string-name>
<surname>Hrzenjak</surname>
<given-names>A</given-names>
</string-name>
,
<string-name>
<surname>Trotzmuller</surname>
<given-names>M</given-names>
</string-name>
et al.
<article-title>PCK2 activation mediates an adaptive response to glucose depletion in lung cancer</article-title>
.
<source xml:lang="en">Oncogene</source>
<year>2015</year>
;
<volume>34</volume>
:
<fpage>1044</fpage>
<lpage>1050</lpage>
.
<pub-id pub-id-type="pmid">24632615</pub-id>
</mixed-citation>
</ref>
<ref id="stem3091-bib-0043">
<label>43</label>
<mixed-citation publication-type="journal" id="stem3091-cit-0043">
<string-name>
<surname>Rubinsztein</surname>
<given-names>DC</given-names>
</string-name>
,
<string-name>
<surname>Codogno</surname>
<given-names>P</given-names>
</string-name>
,
<string-name>
<surname>Levine</surname>
<given-names>B</given-names>
</string-name>
.
<article-title>Autophagy modulation as a potential therapeutic target for diverse diseases</article-title>
.
<source xml:lang="en">Nat Rev Drug Discov</source>
<year>2012</year>
;
<volume>11</volume>
:
<fpage>709</fpage>
<lpage>730</lpage>
.
<pub-id pub-id-type="pmid">22935804</pub-id>
</mixed-citation>
</ref>
<ref id="stem3091-bib-0044">
<label>44</label>
<mixed-citation publication-type="journal" id="stem3091-cit-0044">
<string-name>
<surname>Nollet</surname>
<given-names>M</given-names>
</string-name>
,
<string-name>
<surname>Santucci‐Darmanin</surname>
<given-names>S</given-names>
</string-name>
,
<string-name>
<surname>Breuil</surname>
<given-names>V</given-names>
</string-name>
et al.
<article-title>Autophagy in osteoblasts is involved in mineralization and bone homeostasis</article-title>
.
<source xml:lang="en">Autophagy</source>
<year>2014</year>
;
<volume>10</volume>
:
<fpage>1965</fpage>
<lpage>1977</lpage>
.
<pub-id pub-id-type="pmid">25484092</pub-id>
</mixed-citation>
</ref>
<ref id="stem3091-bib-0045">
<label>45</label>
<mixed-citation publication-type="journal" id="stem3091-cit-0045">
<string-name>
<surname>Liu</surname>
<given-names>F</given-names>
</string-name>
,
<string-name>
<surname>Fang</surname>
<given-names>F</given-names>
</string-name>
,
<string-name>
<surname>Yuan</surname>
<given-names>H</given-names>
</string-name>
et al.
<article-title>Suppression of autophagy by FIP200 deletion leads to osteopenia in mice through the inhibition of osteoblast terminal differentiation</article-title>
.
<source xml:lang="en">J Bone Miner Res</source>
<year>2013</year>
;
<volume>28</volume>
:
<fpage>2414</fpage>
<lpage>2430</lpage>
.
<pub-id pub-id-type="pmid">23633228</pub-id>
</mixed-citation>
</ref>
<ref id="stem3091-bib-0046">
<label>46</label>
<mixed-citation publication-type="journal" id="stem3091-cit-0046">
<string-name>
<surname>Chen</surname>
<given-names>X</given-names>
</string-name>
,
<string-name>
<surname>He</surname>
<given-names>Y</given-names>
</string-name>
,
<string-name>
<surname>Lu</surname>
<given-names>F</given-names>
</string-name>
.
<article-title>Autophagy in stem cell biology: A perspective on stem cell self‐renewal and differentiation</article-title>
.
<source xml:lang="en">Stem Cells Int</source>
<year>2018</year>
;
<volume>2018</volume>
:
<fpage>9131397</fpage>
.
<pub-id pub-id-type="pmid">29765428</pub-id>
</mixed-citation>
</ref>
<ref id="stem3091-bib-0047">
<label>47</label>
<mixed-citation publication-type="journal" id="stem3091-cit-0047">
<string-name>
<surname>Oliver</surname>
<given-names>L</given-names>
</string-name>
,
<string-name>
<surname>Hue</surname>
<given-names>E</given-names>
</string-name>
,
<string-name>
<surname>Priault</surname>
<given-names>M</given-names>
</string-name>
et al.
<article-title>Basal autophagy decreased during the differentiation of human adult mesenchymal stem cells</article-title>
.
<source xml:lang="en">Stem Cells Dev</source>
<year>2012</year>
;
<volume>21</volume>
:
<fpage>2779</fpage>
<lpage>2788</lpage>
.
<pub-id pub-id-type="pmid">22519885</pub-id>
</mixed-citation>
</ref>
<ref id="stem3091-bib-0048">
<label>48</label>
<mixed-citation publication-type="journal" id="stem3091-cit-0048">
<string-name>
<surname>Okamoto</surname>
<given-names>S</given-names>
</string-name>
,
<string-name>
<surname>Asgar</surname>
<given-names>NF</given-names>
</string-name>
,
<string-name>
<surname>Yokota</surname>
<given-names>S</given-names>
</string-name>
et al.
<article-title>Role of the alpha2 subunit of AMP‐activated protein kinase and its nuclear localization in mitochondria and energy metabolism‐related gene expressions in C2C12 cells</article-title>
.
<source xml:lang="en">Metabolism</source>
<year>2018</year>
;
<volume>90</volume>
:
<fpage>52</fpage>
<lpage>68</lpage>
.
<pub-id pub-id-type="pmid">30359677</pub-id>
</mixed-citation>
</ref>
<ref id="stem3091-bib-0049">
<label>49</label>
<mixed-citation publication-type="journal" id="stem3091-cit-0049">
<string-name>
<surname>Li</surname>
<given-names>Y</given-names>
</string-name>
,
<string-name>
<surname>Jiang</surname>
<given-names>J</given-names>
</string-name>
,
<string-name>
<surname>Liu</surname>
<given-names>W</given-names>
</string-name>
et al.
<article-title>microRNA‐378 promotes autophagy and inhibits apoptosis in skeletal muscle</article-title>
.
<source xml:lang="en">Proc Natl Acad Sci USA</source>
<year>2018</year>
;
<volume>115</volume>
:
<fpage>E10849</fpage>
<lpage>E10858</lpage>
.
<pub-id pub-id-type="pmid">30373812</pub-id>
</mixed-citation>
</ref>
<ref id="stem3091-bib-0050">
<label>50</label>
<mixed-citation publication-type="journal" id="stem3091-cit-0050">
<string-name>
<surname>Alizadeh</surname>
<given-names>E</given-names>
</string-name>
,
<string-name>
<surname>Eslaminejad</surname>
<given-names>MB</given-names>
</string-name>
,
<string-name>
<surname>Akbarzadeh</surname>
<given-names>A</given-names>
</string-name>
et al.
<article-title>Upregulation of MiR‐122 via trichostatin A treatments in hepatocyte‐like cells derived from mesenchymal stem cells</article-title>
.
<source xml:lang="en">Chem Biol Drug Des</source>
<year>2016</year>
;
<volume>87</volume>
:
<fpage>296</fpage>
<lpage>305</lpage>
.
<pub-id pub-id-type="pmid">26360933</pub-id>
</mixed-citation>
</ref>
</ref-list>
</back>
</pmc>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/ChloroquineV1/Data/Pmc/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000809 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Pmc/Corpus/biblio.hfd -nk 000809 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    ChloroquineV1
   |flux=    Pmc
   |étape=   Corpus
   |type=    RBID
   |clé=     PMC:6916635
   |texte=   Mitochondrial Phosphoenolpyruvate Carboxykinase Regulates Osteogenic Differentiation by Modulating AMPK/ULK1‐Dependent Autophagy
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Pmc/Corpus/RBID.i   -Sk "pubmed:31574189" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Pmc/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a ChloroquineV1 

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Wed Mar 25 22:43:59 2020. Site generation: Sun Jan 31 12:44:45 2021