Serveur d'exploration Chloroquine

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Helicobacter pylori DNA promotes cellular proliferation, migration, and invasion of gastric cancer by activating toll-like receptor 9

Identifieur interne : 000806 ( Pmc/Corpus ); précédent : 000805; suivant : 000807

Helicobacter pylori DNA promotes cellular proliferation, migration, and invasion of gastric cancer by activating toll-like receptor 9

Auteurs : Xiang-Rong Qin ; Jia Wu ; Xin-Yu Yao ; Jin Huang ; Xiao-Yong Wang

Source :

RBID : PMC:6526737

Abstract

Background/Aim:

Helicobacter pylori (H. pylori) infection is a well-known risk factor for gastric cancer. Toll-like receptor 9 (TLR9) plays an important role in many cancers and is important for immunity to H. pylori infection. Thus, the present study aimed to evaluate the influence of H. pylori on TLR9 and explore its roles in gastric cancer.

Materials and Methods:

TLR9 expression in MKN45 cells, which were cocultured with or without H. pylori or H. pylori DNA, was detected using quantitative reverse transcription-polymerase chain reaction and Western blot assays. Then, TLR9 was knocked down through RNA interference technology in MKN45 cells. Cell Counting Kit-8 assay was performed to investigate cell proliferation, and the Transwell system was established to test the migrative and invasive abilities of MKN45 cells.

Results:

H. pylori infection or H. pylori DNA level was positively correlated with TLR9 upregulation in MKN45 cells. In vitro, H. pylori DNA significantly accelerated cell proliferation and promoted the migration and invasion in MKN45 cells. In contrast, the knockdown of TLR9 significantly suppressed cell proliferation and inhibited the migration and invasion in MKN45 cells.

Conclusions:

The present results suggest that the H. pylori DNA/TLR9-signaling pathway plays an important role in gastric cancer, which might be a potential therapeutic target.


Url:
DOI: 10.4103/sjg.SJG_309_18
PubMed: 30618438
PubMed Central: 6526737

Links to Exploration step

PMC:6526737

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">
<italic>Helicobacter pylori</italic>
DNA promotes cellular proliferation, migration, and invasion of gastric cancer by activating toll-like receptor 9</title>
<author>
<name sortKey="Qin, Xiang Rong" sort="Qin, Xiang Rong" uniqKey="Qin X" first="Xiang-Rong" last="Qin">Xiang-Rong Qin</name>
<affiliation>
<nlm:aff id="aff1">Department of Gastroenterology, Changzhou No. 2 People's Hospital, Changzhou, China</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Wu, Jia" sort="Wu, Jia" uniqKey="Wu J" first="Jia" last="Wu">Jia Wu</name>
<affiliation>
<nlm:aff id="aff2">Department of Gynecology, Changzhou No. 2 People's Hospital, Changzhou, China</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Yao, Xin Yu" sort="Yao, Xin Yu" uniqKey="Yao X" first="Xin-Yu" last="Yao">Xin-Yu Yao</name>
<affiliation>
<nlm:aff id="aff1">Department of Gastroenterology, Changzhou No. 2 People's Hospital, Changzhou, China</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Huang, Jin" sort="Huang, Jin" uniqKey="Huang J" first="Jin" last="Huang">Jin Huang</name>
<affiliation>
<nlm:aff id="aff1">Department of Gastroenterology, Changzhou No. 2 People's Hospital, Changzhou, China</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Wang, Xiao Yong" sort="Wang, Xiao Yong" uniqKey="Wang X" first="Xiao-Yong" last="Wang">Xiao-Yong Wang</name>
<affiliation>
<nlm:aff id="aff1">Department of Gastroenterology, Changzhou No. 2 People's Hospital, Changzhou, China</nlm:aff>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PMC</idno>
<idno type="pmid">30618438</idno>
<idno type="pmc">6526737</idno>
<idno type="url">http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6526737</idno>
<idno type="RBID">PMC:6526737</idno>
<idno type="doi">10.4103/sjg.SJG_309_18</idno>
<date when="2019">2019</date>
<idno type="wicri:Area/Pmc/Corpus">000806</idno>
<idno type="wicri:explorRef" wicri:stream="Pmc" wicri:step="Corpus" wicri:corpus="PMC">000806</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a" type="main">
<italic>Helicobacter pylori</italic>
DNA promotes cellular proliferation, migration, and invasion of gastric cancer by activating toll-like receptor 9</title>
<author>
<name sortKey="Qin, Xiang Rong" sort="Qin, Xiang Rong" uniqKey="Qin X" first="Xiang-Rong" last="Qin">Xiang-Rong Qin</name>
<affiliation>
<nlm:aff id="aff1">Department of Gastroenterology, Changzhou No. 2 People's Hospital, Changzhou, China</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Wu, Jia" sort="Wu, Jia" uniqKey="Wu J" first="Jia" last="Wu">Jia Wu</name>
<affiliation>
<nlm:aff id="aff2">Department of Gynecology, Changzhou No. 2 People's Hospital, Changzhou, China</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Yao, Xin Yu" sort="Yao, Xin Yu" uniqKey="Yao X" first="Xin-Yu" last="Yao">Xin-Yu Yao</name>
<affiliation>
<nlm:aff id="aff1">Department of Gastroenterology, Changzhou No. 2 People's Hospital, Changzhou, China</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Huang, Jin" sort="Huang, Jin" uniqKey="Huang J" first="Jin" last="Huang">Jin Huang</name>
<affiliation>
<nlm:aff id="aff1">Department of Gastroenterology, Changzhou No. 2 People's Hospital, Changzhou, China</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Wang, Xiao Yong" sort="Wang, Xiao Yong" uniqKey="Wang X" first="Xiao-Yong" last="Wang">Xiao-Yong Wang</name>
<affiliation>
<nlm:aff id="aff1">Department of Gastroenterology, Changzhou No. 2 People's Hospital, Changzhou, China</nlm:aff>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Saudi Journal of Gastroenterology : Official Journal of the Saudi Gastroenterology Association</title>
<idno type="ISSN">1319-3767</idno>
<idno type="eISSN">1998-4049</idno>
<imprint>
<date when="2019">2019</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<sec id="st1">
<title>Background/Aim:</title>
<p>
<italic>Helicobacter pylori</italic>
(
<italic>H. pylori</italic>
) infection is a well-known risk factor for gastric cancer. Toll-like receptor 9 (TLR9) plays an important role in many cancers and is important for immunity to
<italic>H. pylori</italic>
infection. Thus, the present study aimed to evaluate the influence of
<italic>H. pylori</italic>
on TLR9 and explore its roles in gastric cancer.</p>
</sec>
<sec id="st2">
<title>Materials and Methods:</title>
<p>TLR9 expression in MKN45 cells, which were cocultured with or without
<italic>H. pylori</italic>
or
<italic>H. pylori</italic>
DNA, was detected using quantitative reverse transcription-polymerase chain reaction and Western blot assays. Then, TLR9 was knocked down through RNA interference technology in MKN45 cells. Cell Counting Kit-8 assay was performed to investigate cell proliferation, and the Transwell system was established to test the migrative and invasive abilities of MKN45 cells.</p>
</sec>
<sec id="st3">
<title>Results:</title>
<p>
<italic>H. pylori</italic>
infection or
<italic>H. pylori</italic>
DNA level was positively correlated with TLR9 upregulation in MKN45 cells.
<italic>In vitro</italic>
,
<italic>H. pylori</italic>
DNA significantly accelerated cell proliferation and promoted the migration and invasion in MKN45 cells. In contrast, the knockdown of TLR9 significantly suppressed cell proliferation and inhibited the migration and invasion in MKN45 cells.</p>
</sec>
<sec id="st4">
<title>Conclusions:</title>
<p>The present results suggest that the
<italic>H. pylori</italic>
DNA/TLR9-signaling pathway plays an important role in gastric cancer, which might be a potential therapeutic target.</p>
</sec>
</div>
</front>
<back>
<div1 type="bibliography">
<listBibl>
<biblStruct>
<analytic>
<author>
<name sortKey="Mccoll, Ke" uniqKey="Mccoll K">KE McColl</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Amieva, M" uniqKey="Amieva M">M Amieva</name>
</author>
<author>
<name sortKey="Peek, Rm" uniqKey="Peek R">RM Peek</name>
</author>
</analytic>
</biblStruct>
<biblStruct></biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Torre, La" uniqKey="Torre L">LA Torre</name>
</author>
<author>
<name sortKey="Bray, F" uniqKey="Bray F">F Bray</name>
</author>
<author>
<name sortKey="Siegel, Rl" uniqKey="Siegel R">RL Siegel</name>
</author>
<author>
<name sortKey="Ferlay, J" uniqKey="Ferlay J">J Ferlay</name>
</author>
<author>
<name sortKey="Lortet Tieulent, J" uniqKey="Lortet Tieulent J">J Lortet-Tieulent</name>
</author>
<author>
<name sortKey="Jemal, A" uniqKey="Jemal A">A Jemal</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ribaldone, Dg" uniqKey="Ribaldone D">DG Ribaldone</name>
</author>
<author>
<name sortKey="Pellicano, R" uniqKey="Pellicano R">R Pellicano</name>
</author>
<author>
<name sortKey="Actis, Gc" uniqKey="Actis G">GC Actis</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Akira, S" uniqKey="Akira S">S Akira</name>
</author>
<author>
<name sortKey="Hemmi, H" uniqKey="Hemmi H">H Hemmi</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="De Nardo, D" uniqKey="De Nardo D">D De Nardo</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Hemmi, H" uniqKey="Hemmi H">H Hemmi</name>
</author>
<author>
<name sortKey="Takeuchi, O" uniqKey="Takeuchi O">O Takeuchi</name>
</author>
<author>
<name sortKey="Kawai, T" uniqKey="Kawai T">T Kawai</name>
</author>
<author>
<name sortKey="Kaisho, T" uniqKey="Kaisho T">T Kaisho</name>
</author>
<author>
<name sortKey="Sato, S" uniqKey="Sato S">S Sato</name>
</author>
<author>
<name sortKey="Sanjo, H" uniqKey="Sanjo H">H Sanjo</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Varga, Mg" uniqKey="Varga M">MG Varga</name>
</author>
<author>
<name sortKey="Peek, Rm" uniqKey="Peek R">RM Peek</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Wagner, H" uniqKey="Wagner H">H Wagner</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Xie, W" uniqKey="Xie W">W Xie</name>
</author>
<author>
<name sortKey="Wang, Y" uniqKey="Wang Y">Y Wang</name>
</author>
<author>
<name sortKey="Huang, Y" uniqKey="Huang Y">Y Huang</name>
</author>
<author>
<name sortKey="Yang, H" uniqKey="Yang H">H Yang</name>
</author>
<author>
<name sortKey="Wang, J" uniqKey="Wang J">J Wang</name>
</author>
<author>
<name sortKey="Hu, Z" uniqKey="Hu Z">Z Hu</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Merrell, Ma" uniqKey="Merrell M">MA Merrell</name>
</author>
<author>
<name sortKey="Ilvesaro, Jm" uniqKey="Ilvesaro J">JM Ilvesaro</name>
</author>
<author>
<name sortKey="Lehtonen, N" uniqKey="Lehtonen N">N Lehtonen</name>
</author>
<author>
<name sortKey="Sorsa, T" uniqKey="Sorsa T">T Sorsa</name>
</author>
<author>
<name sortKey="Gehrs, B" uniqKey="Gehrs B">B Gehrs</name>
</author>
<author>
<name sortKey="Rosenthal, E" uniqKey="Rosenthal E">E Rosenthal</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Luo, Y" uniqKey="Luo Y">Y Luo</name>
</author>
<author>
<name sortKey="Jiang, Qw" uniqKey="Jiang Q">QW Jiang</name>
</author>
<author>
<name sortKey="Wu, Jy" uniqKey="Wu J">JY Wu</name>
</author>
<author>
<name sortKey="Qiu, Jg" uniqKey="Qiu J">JG Qiu</name>
</author>
<author>
<name sortKey="Zhang, Wj" uniqKey="Zhang W">WJ Zhang</name>
</author>
<author>
<name sortKey="Mei, Xl" uniqKey="Mei X">XL Mei</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ruan, M" uniqKey="Ruan M">M Ruan</name>
</author>
<author>
<name sortKey="Zhang, Z" uniqKey="Zhang Z">Z Zhang</name>
</author>
<author>
<name sortKey="Li, S" uniqKey="Li S">S Li</name>
</author>
<author>
<name sortKey="Yan, M" uniqKey="Yan M">M Yan</name>
</author>
<author>
<name sortKey="Liu, S" uniqKey="Liu S">S Liu</name>
</author>
<author>
<name sortKey="Yang, W" uniqKey="Yang W">W Yang</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Zhang, Y" uniqKey="Zhang Y">Y Zhang</name>
</author>
<author>
<name sortKey="Li, Y" uniqKey="Li Y">Y Li</name>
</author>
<author>
<name sortKey="Li, Y" uniqKey="Li Y">Y Li</name>
</author>
<author>
<name sortKey="Li, R" uniqKey="Li R">R Li</name>
</author>
<author>
<name sortKey="Ma, Y" uniqKey="Ma Y">Y Ma</name>
</author>
<author>
<name sortKey="Wang, H" uniqKey="Wang H">H Wang</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Wang, Tr" uniqKey="Wang T">TR Wang</name>
</author>
<author>
<name sortKey="Peng, Jc" uniqKey="Peng J">JC Peng</name>
</author>
<author>
<name sortKey="Qiao, Yq" uniqKey="Qiao Y">YQ Qiao</name>
</author>
<author>
<name sortKey="Zhu, Mm" uniqKey="Zhu M">MM Zhu</name>
</author>
<author>
<name sortKey="Zhao, D" uniqKey="Zhao D">D Zhao</name>
</author>
<author>
<name sortKey="Shen, J" uniqKey="Shen J">J Shen</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Schmausser, B" uniqKey="Schmausser B">B Schmausser</name>
</author>
<author>
<name sortKey="Andrulis, M" uniqKey="Andrulis M">M Andrulis</name>
</author>
<author>
<name sortKey="Endrich, S" uniqKey="Endrich S">S Endrich</name>
</author>
<author>
<name sortKey="Muller Hermelink, Hk" uniqKey="Muller Hermelink H">HK Müller-Hermelink</name>
</author>
<author>
<name sortKey="Eck, M" uniqKey="Eck M">M Eck</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Jiang, Ds" uniqKey="Jiang D">DS Jiang</name>
</author>
<author>
<name sortKey="Wang, Yw" uniqKey="Wang Y">YW Wang</name>
</author>
<author>
<name sortKey="Jiang, J" uniqKey="Jiang J">J Jiang</name>
</author>
<author>
<name sortKey="Li, Sm" uniqKey="Li S">SM Li</name>
</author>
<author>
<name sortKey="Liang, Sz" uniqKey="Liang S">SZ Liang</name>
</author>
<author>
<name sortKey="Fang, Hy" uniqKey="Fang H">HY Fang</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kauppila, Jh" uniqKey="Kauppila J">JH Kauppila</name>
</author>
<author>
<name sortKey="Karttunen, Tj" uniqKey="Karttunen T">TJ Karttunen</name>
</author>
<author>
<name sortKey="Saarnio, J" uniqKey="Saarnio J">J Saarnio</name>
</author>
<author>
<name sortKey="Nyberg, P" uniqKey="Nyberg P">P Nyberg</name>
</author>
<author>
<name sortKey="Salo, T" uniqKey="Salo T">T Salo</name>
</author>
<author>
<name sortKey="Graves, De" uniqKey="Graves D">DE Graves</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Schmausser, B" uniqKey="Schmausser B">B Schmausser</name>
</author>
<author>
<name sortKey="Andrulis, M" uniqKey="Andrulis M">M Andrulis</name>
</author>
<author>
<name sortKey="Endrich, S" uniqKey="Endrich S">S Endrich</name>
</author>
<author>
<name sortKey="Lee, Sk" uniqKey="Lee S">SK Lee</name>
</author>
<author>
<name sortKey="Josenhans, C" uniqKey="Josenhans C">C Josenhans</name>
</author>
<author>
<name sortKey="Muller Hermelink, Hk" uniqKey="Muller Hermelink H">HK Müller-Hermelink</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Varga, Mg" uniqKey="Varga M">MG Varga</name>
</author>
<author>
<name sortKey="Shaffer, Cl" uniqKey="Shaffer C">CL Shaffer</name>
</author>
<author>
<name sortKey="Sierra, Jc" uniqKey="Sierra J">JC Sierra</name>
</author>
<author>
<name sortKey="Suarez, G" uniqKey="Suarez G">G Suarez</name>
</author>
<author>
<name sortKey="Piazuelo, Mb" uniqKey="Piazuelo M">MB Piazuelo</name>
</author>
<author>
<name sortKey="Whitaker, Me" uniqKey="Whitaker M">ME Whitaker</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Rad, R" uniqKey="Rad R">R Rad</name>
</author>
<author>
<name sortKey="Ballhorn, W" uniqKey="Ballhorn W">W Ballhorn</name>
</author>
<author>
<name sortKey="Voland, P" uniqKey="Voland P">P Voland</name>
</author>
<author>
<name sortKey="Eisen Cher, K" uniqKey="Eisen Cher K">K Eisenächer</name>
</author>
<author>
<name sortKey="Mages, J" uniqKey="Mages J">J Mages</name>
</author>
<author>
<name sortKey="Rad, L" uniqKey="Rad L">L Rad</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Alvarez Arellano, L" uniqKey="Alvarez Arellano L">L Alvarez-Arellano</name>
</author>
<author>
<name sortKey="Cortes Reynosa, P" uniqKey="Cortes Reynosa P">P Cortés-Reynosa</name>
</author>
<author>
<name sortKey="Sanchez Zauco, N" uniqKey="Sanchez Zauco N">N Sánchez-Zauco</name>
</author>
<author>
<name sortKey="Salazar, E" uniqKey="Salazar E">E Salazar</name>
</author>
<author>
<name sortKey="Torres, J" uniqKey="Torres J">J Torres</name>
</author>
<author>
<name sortKey="Maldonado Bernal, C" uniqKey="Maldonado Bernal C">C Maldonado-Bernal</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Gianfagna, F" uniqKey="Gianfagna F">F Gianfagna</name>
</author>
<author>
<name sortKey="De Feo, E" uniqKey="De Feo E">E De Feo</name>
</author>
<author>
<name sortKey="Van Duijn, Cm" uniqKey="Van Duijn C">CM van Duijn</name>
</author>
<author>
<name sortKey="Ricciardi, G" uniqKey="Ricciardi G">G Ricciardi</name>
</author>
<author>
<name sortKey="Boccia, S" uniqKey="Boccia S">S Boccia</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Waugh, Dj" uniqKey="Waugh D">DJ Waugh</name>
</author>
<author>
<name sortKey="Wilson, C" uniqKey="Wilson C">C Wilson</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Chang, Yj" uniqKey="Chang Y">YJ Chang</name>
</author>
<author>
<name sortKey="Wu, Ms" uniqKey="Wu M">MS Wu</name>
</author>
<author>
<name sortKey="Lin, Jt" uniqKey="Lin J">JT Lin</name>
</author>
<author>
<name sortKey="Chen, Cc" uniqKey="Chen C">CC Chen</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ilvesaro, Jm" uniqKey="Ilvesaro J">JM Ilvesaro</name>
</author>
<author>
<name sortKey="Merrell, Ma" uniqKey="Merrell M">MA Merrell</name>
</author>
<author>
<name sortKey="Swain, Tm" uniqKey="Swain T">TM Swain</name>
</author>
<author>
<name sortKey="Davidson, J" uniqKey="Davidson J">J Davidson</name>
</author>
<author>
<name sortKey="Zayzafoon, M" uniqKey="Zayzafoon M">M Zayzafoon</name>
</author>
<author>
<name sortKey="Harris, Kw" uniqKey="Harris K">KW Harris</name>
</author>
</analytic>
</biblStruct>
</listBibl>
</div1>
</back>
</TEI>
<pmc article-type="research-article">
<pmc-dir>properties open_access</pmc-dir>
<front>
<journal-meta>
<journal-id journal-id-type="nlm-ta">Saudi J Gastroenterol</journal-id>
<journal-id journal-id-type="iso-abbrev">Saudi J Gastroenterol</journal-id>
<journal-id journal-id-type="publisher-id">SJG</journal-id>
<journal-title-group>
<journal-title>Saudi Journal of Gastroenterology : Official Journal of the Saudi Gastroenterology Association</journal-title>
</journal-title-group>
<issn pub-type="ppub">1319-3767</issn>
<issn pub-type="epub">1998-4049</issn>
<publisher>
<publisher-name>Wolters Kluwer - Medknow</publisher-name>
<publisher-loc>India</publisher-loc>
</publisher>
</journal-meta>
<article-meta>
<article-id pub-id-type="pmid">30618438</article-id>
<article-id pub-id-type="pmc">6526737</article-id>
<article-id pub-id-type="publisher-id">SJG-25-181</article-id>
<article-id pub-id-type="doi">10.4103/sjg.SJG_309_18</article-id>
<article-categories>
<subj-group subj-group-type="heading">
<subject>Original Article</subject>
</subj-group>
</article-categories>
<title-group>
<article-title>
<italic>Helicobacter pylori</italic>
DNA promotes cellular proliferation, migration, and invasion of gastric cancer by activating toll-like receptor 9</article-title>
</title-group>
<contrib-group>
<contrib contrib-type="author">
<name>
<surname>Qin</surname>
<given-names>Xiang-Rong</given-names>
</name>
<xref ref-type="aff" rid="aff1"></xref>
<xref ref-type="corresp" rid="fn1">*</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Wu</surname>
<given-names>Jia</given-names>
</name>
<xref ref-type="aff" rid="aff2">1</xref>
<xref ref-type="corresp" rid="fn1">*</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Yao</surname>
<given-names>Xin-Yu</given-names>
</name>
<xref ref-type="aff" rid="aff1"></xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Huang</surname>
<given-names>Jin</given-names>
</name>
<xref ref-type="aff" rid="aff1"></xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Wang</surname>
<given-names>Xiao-Yong</given-names>
</name>
<xref ref-type="aff" rid="aff1"></xref>
<xref ref-type="corresp" rid="cor1"></xref>
</contrib>
</contrib-group>
<aff id="aff1">Department of Gastroenterology, Changzhou No. 2 People's Hospital, Changzhou, China</aff>
<aff id="aff2">
<label>1</label>
Department of Gynecology, Changzhou No. 2 People's Hospital, Changzhou, China</aff>
<author-notes>
<corresp id="cor1">
<bold>Address for correspondence:</bold>
Dr. Xiao-Yong Wang, Xinglong Xiang 29, Changzhou City, Jiangsu Province, China. E-mail:
<email xlink:href="wxy20009@126.com">wxy20009@126.com</email>
</corresp>
<fn id="fn1">
<label>*</label>
<p>These authors contributed equally to this study.</p>
</fn>
</author-notes>
<pub-date pub-type="ppub">
<season>May-Jun</season>
<year>2019</year>
</pub-date>
<volume>25</volume>
<issue>3</issue>
<fpage>181</fpage>
<lpage>187</lpage>
<permissions>
<copyright-statement>Copyright: © 2019 Saudi Journal of Gastroenterology</copyright-statement>
<copyright-year>2019</copyright-year>
<license license-type="open-access" xlink:href="http://creativecommons.org/licenses/by-nc-sa/4.0">
<license-p>This is an open access journal, and articles are distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 License, which allows others to remix, tweak, and build upon the work non-commercially, as long as appropriate credit is given and the new creations are licensed under the identical terms.</license-p>
</license>
</permissions>
<abstract>
<sec id="st1">
<title>Background/Aim:</title>
<p>
<italic>Helicobacter pylori</italic>
(
<italic>H. pylori</italic>
) infection is a well-known risk factor for gastric cancer. Toll-like receptor 9 (TLR9) plays an important role in many cancers and is important for immunity to
<italic>H. pylori</italic>
infection. Thus, the present study aimed to evaluate the influence of
<italic>H. pylori</italic>
on TLR9 and explore its roles in gastric cancer.</p>
</sec>
<sec id="st2">
<title>Materials and Methods:</title>
<p>TLR9 expression in MKN45 cells, which were cocultured with or without
<italic>H. pylori</italic>
or
<italic>H. pylori</italic>
DNA, was detected using quantitative reverse transcription-polymerase chain reaction and Western blot assays. Then, TLR9 was knocked down through RNA interference technology in MKN45 cells. Cell Counting Kit-8 assay was performed to investigate cell proliferation, and the Transwell system was established to test the migrative and invasive abilities of MKN45 cells.</p>
</sec>
<sec id="st3">
<title>Results:</title>
<p>
<italic>H. pylori</italic>
infection or
<italic>H. pylori</italic>
DNA level was positively correlated with TLR9 upregulation in MKN45 cells.
<italic>In vitro</italic>
,
<italic>H. pylori</italic>
DNA significantly accelerated cell proliferation and promoted the migration and invasion in MKN45 cells. In contrast, the knockdown of TLR9 significantly suppressed cell proliferation and inhibited the migration and invasion in MKN45 cells.</p>
</sec>
<sec id="st4">
<title>Conclusions:</title>
<p>The present results suggest that the
<italic>H. pylori</italic>
DNA/TLR9-signaling pathway plays an important role in gastric cancer, which might be a potential therapeutic target.</p>
</sec>
</abstract>
<kwd-group>
<kwd>Gastric cancer</kwd>
<kwd>
<italic>H. pylori</italic>
</kwd>
<kwd>invasion</kwd>
<kwd>proliferation</kwd>
<kwd>toll-like receptor 9</kwd>
</kwd-group>
</article-meta>
</front>
<body>
<sec sec-type="intro" id="sec1-1">
<title>INTRODUCTION</title>
<p>As a common gram-negative pathogen, the consistent infection of
<italic>Helicobacter pylori</italic>
(
<italic>H. pylori</italic>
) has been demonstrated to be closely correlated with chronic gastritis and peptic ulcers, and a strong cause of gastric cancer.[
<xref rid="ref1" ref-type="bibr">1</xref>
] According to previous reports, approximately 80% of gastric cancers and 5.5% of all malignancies could be attributed to
<italic>H. pylori</italic>
infection.[
<xref rid="ref2" ref-type="bibr">2</xref>
] Thus, the World Health Organization has classified
<italic>H. pylori</italic>
as one of the class I carcinogens in 1994.[
<xref rid="ref3" ref-type="bibr">3</xref>
] At present, gastric cancer remains one of the most common malignancies and the leading cause of cancer-related deaths.[
<xref rid="ref4" ref-type="bibr">4</xref>
] Unfortunately, the mechanism underlying gastric cancer caused by
<italic>H. pylori</italic>
infection has not been fully uncovered.</p>
<p>Toll-like receptors (TLRs) are evolutionarily conserved transmembrane proteins that can orchestrate host immune responses targeting pathogens
<italic>via</italic>
selective recognition of pathogen-associated molecules and mediate pathogen–epithelium interactions.[
<xref rid="ref5" ref-type="bibr">5</xref>
<xref rid="ref6" ref-type="bibr">6</xref>
] In human beings, researchers have found 10 TLRs that participate in the progress of microbial pathogen recognition and innate immunity initiation.[
<xref rid="ref7" ref-type="bibr">7</xref>
] TLR9 is an endosome-bound, transmembrane receptor that can recognize and target hypo-methylated CpG motifs (being abundant in the DNA of bacteria and viruses).[
<xref rid="ref8" ref-type="bibr">8</xref>
] When infection occurs, the DNA can be released actively, or due to the degradation from invading microbes or injured host cells.[
<xref rid="ref9" ref-type="bibr">9</xref>
] By recognizing these aberrant DNAs, TLR9 is activated and triggers alterations in cellular redox balance, as well as the activation of mitogen-activated protein kinases (MAPKs) and nuclear factor kappa-B. These increase the production of inflammatory mediators, thereby causing a much higher risk for chronic inflammatory diseases and cancer.[
<xref rid="ref10" ref-type="bibr">10</xref>
]</p>
<p>Recently, a large body of evidence indicated that TLRs play an important role in tumorigenesis and metastasis. For example, TLR2 and TLR9 have been proven to be able to promote the migration of breast cancer cells.[
<xref rid="ref11" ref-type="bibr">11</xref>
<xref rid="ref12" ref-type="bibr">12</xref>
] Moreover, TLR9 signaling could also promote cellular migrative and invasive abilities in prostate cancer and oral cancer.[
<xref rid="ref13" ref-type="bibr">13</xref>
<xref rid="ref14" ref-type="bibr">14</xref>
]</p>
<p>In gastric cancer, several studies have reported that the upregulation of TLR9 may play a role in the progression of gastric cancer.[
<xref rid="ref15" ref-type="bibr">15</xref>
<xref rid="ref16" ref-type="bibr">16</xref>
<xref rid="ref17" ref-type="bibr">17</xref>
] However, there is limited knowledge on the mechanism of the upregulation of TLR9 and the roles of TLR9 in gastric cancer. Thus, the present study aimed to evaluate the influence of
<italic>H. pylori</italic>
on the expression and functions of TLR9 in gastric cancer.</p>
</sec>
<sec sec-type="materials|methods" id="sec1-2">
<title>MATERIALS AND METHODS</title>
<sec id="sec2-1">
<title>Culture and isolation of
<italic>Helicobacter pylori</italic>
DNA</title>
<p>
<italic>H. pylori</italic>
26695 (ATCC) was cultured in Columbia agar (Guangdong Huankai Microbial Technology Co., Ltd.) with the addition of 5% sheep blood (Oxoid). Bacterial cells were cultured in a microaerophilic chamber, containing 10% CO
<sub>2</sub>
, 5% O
<sub>2</sub>
, and 85%
<italic>N</italic>
<sub>2</sub>
, at 37°C. After 48-h culture on plates coated with Columbia agar, bacterial cells were carefully washed with phosphate buffer solution (PBS) and collected. Finally, these bacterial cells were centrifugated and resuspended in PBS buffer (pH 7.4) for use on the following experiments. A Wizard genomic DNA purification kit (Promega, Madison, WI, USA) was used to extract the genomic DNA of
<italic>H. pylori</italic>
26695. In order to remove the bacterial lipopolysaccharide, the genomic DNA was treated with polymyxin B (Sigma-Aldrich) (5 mg/ml of DNA) for 1 h at room temperature.</p>
</sec>
<sec id="sec2-2">
<title>Cell culture</title>
<p>MKN-45 (an immortalized human gastric cancer cell line) was obtained from the Institute of Basic Medical Sciences of the Chinese Academy of Medical Sciences (Beijing, China). MKN45 cells were cocultured with
<italic>H. pylori</italic>
or
<italic>H. pylori</italic>
DNA (5 μg/ml) for 12 h in antibiotics-free RPMI1640 (GIBCO, Grand Island, NY, USA) with the addition of 10% fetal bovine serum (GIBCO). The multiplicity of infection was set as 150:1. Cells were maintained in a humidified atmosphere with 5% CO
<sub>2</sub>
at 37°C.</p>
</sec>
<sec id="sec2-3">
<title>Knockdown of TLR9 in MKN45 cells</title>
<p>Four precursor microRNA (pre-miRNA) sequences targeting TLR9 (Gene Bank accession no. NM_138688) were designed using Internet-based application (Invitrogen, USA;
<xref rid="T1" ref-type="table">Table 1</xref>
). The double-stranded DNA oligonucleotides encoding these four pre-miRNAs were inserted into the pcDNATM6.2-GW/EmGFP-miR expression vector (Invitrogen) and named as pcDNA-TLR9-miR 1#, 2#, 3#, and 4#, respectively. The negative control (pcDNA-TLR9-miR-neg) with no TLR9-targeting sequence inserted was constructed. The transient transfection was performed using Lipofectamine 2000 (Invitrogen), according to manufacturer's instructions. After 48 h, the efficacy of the transfection was observed using a fluorescent microscope. Then, the mRNA and protein expression of TLR9 were detected using quantitative reverse transcription-polymerase chain reaction (qRT-PCR) and Western blot.</p>
<table-wrap id="T1" position="float">
<label>Table 1</label>
<caption>
<p>MiRNA sequences targeting TLR9</p>
</caption>
<table frame="hsides" rules="groups">
<tbody>
<tr>
<td align="left" rowspan="1" colspan="1">TLR9-miR-F1</td>
<td align="left" rowspan="1" colspan="1">TGCTGAGAACTGTCCTTCAACACCAGGTTTTGGCCACTGACTGACCTGGTGTTAGGACAGTTCT</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">TLR9-miR-R1</td>
<td align="left" rowspan="1" colspan="1">CCTGAGAACTGTCCTAACACCAGGTCAGTCAGTGGCCAAAACCTGGTGTTGAAGGACAGTTCTC</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">TLR9-miR-F2</td>
<td align="left" rowspan="1" colspan="1">TGCTGAGAAGATGCCGTGCATGTCCAGTTTTGGCCACTGACTGACTGGACATGCGGCATCTTCT</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">TLR9-miR-R2</td>
<td align="left" rowspan="1" colspan="1">CCTGAGAAGATGCCGCATGTCCAGTCAGTCAGTGGCCAAAACTGGACATGCACGGCATCTTCTC</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">TLR9-miR-F3</td>
<td align="left" rowspan="1" colspan="1">TGCTGTAGAGGTCCAGCTTATTGTGGGTTTTGGCCACTGACTGACCCACAATACTGGACCTCTA</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">TLR9-miR-R3</td>
<td align="left" rowspan="1" colspan="1">CCTGTAGAGGTCCAGTATTGTGGGTCAGTCAGTGGCCAAAACCCACAATAAGCTGGACCTCTAC</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">TLR9-miR-F4</td>
<td align="left" rowspan="1" colspan="1">TGCTGAAAGAAGGCCAGGTAATTGTCGTTTTGGCCACTGACTGACGACAATTATGGCCTTCTTT</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">TLR9-miR-R4</td>
<td align="left" rowspan="1" colspan="1">CCTGAAAGAAGGCCATAATTGTCGTCAGTCAGTGGCCAAAACGACAATTACCTGGCCTTCTTTC</td>
</tr>
</tbody>
</table>
</table-wrap>
</sec>
<sec id="sec2-4">
<title>Quantitative reverse transcription-polymerase chain reaction</title>
<p>Total RNA was extracted from MKN45 cells using Trizol reagent (Invitrogen), according to manufacturer's instructions. The primer sequences were as follows: TLR9: forward: 5′- CACGAGCACTCATTCACGG-3′, reverse: 5′- GACAAGTCCAGCCAGATCAAA-3′; β-actin (internal control): forward: 5′- GGCACTCTTCCAGCCTTCC-3′, reverse: 5′- GAGCCGCCGATCCACAC-3′. These results were analyzed using the comparative CT (ΔΔCT) method to establish the relative expression curves.</p>
</sec>
<sec id="sec2-5">
<title>Western blot</title>
<p>Total protein was extracted from MKN45 cells using a radio-immunoprecipitation assay lysis buffer (Beyotime Biotechnology, Shanghai, China), and the protein concentrations were determined using a BCA Protein Assay kit (Beyotime). The samples were resolved by 5% sodium dodecyl–sulfate polyacrylamide gel electrophoresis and transferred onto PVDF (polyvinylidene fluoride) membranes (EMD Millipore, Billerica, MA, USA). Then, these membranes were blocked with 5% nonfat milk and reacted with the primary antibody of TLR9 (Abcam, UK) overnight at 4°C. Thereafter, the secondary antibody (Jackson) was added and allowed to further react for 1 h at room temperature. The specific bands were detected using a Tanon-4200 automatic chemiluminescence image analysis system (Tanon, Shanghai, China). The results were analyzed using ImageJ software.</p>
</sec>
<sec id="sec2-6">
<title>Cell Counting Kit-8 assay</title>
<p>Cell proliferation was determined using Cell Counting Kit-8 (CCK-8) (Dojindo, Kumamoto, Japan). In brief, 4 × 10
<sup>3</sup>
cells per well were seeded into a 96-well plate (NEST). After 1 h of incubation, 5 μg of DNA was added and cocultured with normal medium for 12 h. Then, 10 μl of the CCK-8 solution was added into each well, and absorbance at 450 nm was measured on a microplate reader (Thermo) after 2 h.</p>
</sec>
<sec id="sec2-7">
<title>Transwell assay</title>
<p>Cellular migration and invasion were detected using the Transwell system (Corning Incorporated, CA, USA). In brief, after 48 h of posttransfection with miRNA, 600 μl of RPMI 1640 plus 10% FBS was added into the lower chamber. Then, the upper chamber, which was coated with (to measure cellular invasion) or without (to measure cellular migration) a Matrigel layer (BD Biosciences, CA, USA), was added with 100 μl of MKN45 cell suspension (2 × 10
<sup>5</sup>
cells/ml, containing
<italic>H. pylori</italic>
DNA at concentrations of 0 and 5 μg/ml). After 72 h, noninvading cells in the filter were removed. Then, cells on the underside of the filter were fixed with 4% paraformaldehyde for 15 min at room temperature, stained with 1% crystal violet (Genemed, No. GMS10007) for 10 min at room temperature, and photographed. For the quantitative assessment, five visual fields per filter were randomly selected, and the number of invading cells was counted using a microscope. Finally, the number of migrating or invading cells stained with crystal violet was lysated and detected at 570 nm on a plate reader (Thermo).</p>
</sec>
<sec id="sec2-8">
<title>Statistical analysis</title>
<p>SPSS software version 19.0 (SPSS, Inc., Chicago, IL, USA) was used for the statistical analysis. All data were expressed as mean ± standard deviation.
<italic>t</italic>
-Test and analysis of variance were used for comparisons between two groups and multiple groups, respectively.
<italic>P</italic>
< 0.05 was considered statistically significant.</p>
</sec>
</sec>
<sec sec-type="results" id="sec1-3">
<title>RESULTS</title>
<sec id="sec2-9">
<title>
<italic>H. pylori</italic>
DNA increased the expression of TLR9 in MKN45 cells</title>
<p>First, the expression of TLR9 in MKN45 cells was investigated using qRT-PCR and Western blot. As shown in the present data, TLR9 was abundantly expressed in MKN45 cells, and the treatment with
<italic>H. pylori</italic>
significantly increased the level of TLR9 [
<xref ref-type="fig" rid="F1">Figure 1</xref>
]. Since
<italic>H. pylori</italic>
DNA was reported to be a ligand of TLR9, the effect of
<italic>H. pylori</italic>
DNA on TLR9 expression was further evaluated. It was found that the 12-h treatment of
<italic>H. pylori</italic>
DNA notably increased the expression of TLR9 in MKN45 cells [
<xref ref-type="fig" rid="F2">Figure 2</xref>
].</p>
<fig id="F1" position="float">
<label>Figure 1</label>
<caption>
<p>
<italic>Helicobacter pylori</italic>
(
<italic>H. pylori</italic>
) upregulates the expression of TLR9 in MKN45 cells. MKN45 cells were stimulated with
<italic>H. pylori</italic>
for 12 h at a bacterium-to-cell ratio of 150:1, and the expression of TLR9 was detected using Western blot (a) and qRT-PCR (b). **
<italic>P</italic>
< 0.01, compared with controls</p>
</caption>
<graphic xlink:href="SJG-25-181-g001"></graphic>
</fig>
<fig id="F2" position="float">
<label>Figure 2</label>
<caption>
<p>
<italic>Helicobacter pylori</italic>
(
<italic>H. pylori</italic>
) DNA increased the expression of TLR9 in MKN45 cells. After culturing with 5 μg/ml of DNA for 12 h, the mRNA (a) and protein (b) expression of TLR9 were significantly upregulated in MKN-45 cells. **
<italic>P</italic>
< 0.01, compared with that in MKN45 cells treated without DNA</p>
</caption>
<graphic xlink:href="SJG-25-181-g002"></graphic>
</fig>
</sec>
<sec id="sec2-10">
<title>Identification of specific and efficient miRNA sequences that could silence TLR9</title>
<p>As shown in
<xref ref-type="fig" rid="F3">Figure 3</xref>
, the DNA sequencing results confirmed the successful insertion of the four pre-miRNA sequences targeting TLR9, and no mutations were detected. At 48 h after transfection, qRT-PCR and Western blot assays were used to validate the knockdown of TLR9. As shown in
<xref ref-type="fig" rid="F4">Figure 4</xref>
, MKN45 cells transfected with pcDNA-TLR9-miR 2# had the lowest expression of TLR9.</p>
<fig id="F3" position="float">
<label>Figure 3</label>
<caption>
<p>The construction of recombinant plasmids containing the miRNA insert fragments targeting TLR9. The DNA sequencing results revealed that the inserts are correct, and no mutation was found in the recombinants</p>
</caption>
<graphic xlink:href="SJG-25-181-g003"></graphic>
</fig>
<fig id="F4" position="float">
<label>Figure 4</label>
<caption>
<p>Knockdown of TLR9 by the specific miRNA. The silencing effect of TLR9 miRNA was evaluated by RT-PCR (a) and Western blot (b) in MKN-45 cells. Blank: untreated; NC: cells transfected with pcDNA-TLR9-miR-neg with no TLR9-targeting sequences inserted. **
<italic>P</italic>
< 0.01, compared with the blank group. *
<italic>P</italic>
< 0.05</p>
</caption>
<graphic xlink:href="SJG-25-181-g004"></graphic>
</fig>
</sec>
<sec id="sec2-11">
<title>
<italic>H. pylori</italic>
DNA enhanced cell proliferation, migration, and invasion by upregulating TLR9 expression</title>
<p>The effects of TLR9 silencing on cellular proliferation were first examined. As revealed by the CCK-8 assay, MKN45 cells with TLR9 silencing exhibited significantly less viability, when compared with cells in the control group (
<italic>P</italic>
< 0.01,
<xref ref-type="fig" rid="F5">Figure 5</xref>
). Next, the influence of
<italic>H. pylori</italic>
DNA on cell proliferation was evaluated, and it was found that
<italic>H. pylori</italic>
DNA could promote cell proliferation, while MKN45 cells with TLR9 downregulation exhibited a significantly lower viability, when compared to parental cells. Moreover, the Transwell assay revealed that both the migration and invasion of MKN45 cells treated by
<italic>H. pylori</italic>
DNA significantly increased, when compared with controls (
<italic>P</italic>
< 0.01 and
<italic>P</italic>
< 0.01; Figures
<xref ref-type="fig" rid="F6">6</xref>
and
<xref ref-type="fig" rid="F7">7</xref>
). In addition, the effects of TLR9 on tumor migration and invasion were also examined. According to the present data, the migration and invasion of MKN45 cells were markedly impaired following the knockdown of TLR9 [Figures
<xref ref-type="fig" rid="F6">6</xref>
and
<xref ref-type="fig" rid="F7">7</xref>
]. Collectively, these results indicate that
<italic>H. pylori</italic>
DNA could enhance proliferation, migration, and invasion by activating TLR9 in human gastric cancer cells.</p>
<fig id="F5" position="float">
<label>Figure 5</label>
<caption>
<p>The silencing of TLR9 suppressed proliferation, whereas
<italic>Helicobacter pylori</italic>
(
<italic>H. pylori</italic>
) DNA induced cell proliferation in MKN45 cells. Cell growth viability was investigated in TLR9-knockdown cells with or without
<italic>H. pylori</italic>
DNA treatment. **
<italic>P</italic>
< 0.01, compared with NC;
<sup>##</sup>
<italic>P</italic>
< 0.01, compared with NC + DNA</p>
</caption>
<graphic xlink:href="SJG-25-181-g005"></graphic>
</fig>
<fig id="F6" position="float">
<label>Figure 6</label>
<caption>
<p>The silencing of TLR9 inhibits migration, whereas
<italic>Helicobacter pylori</italic>
(
<italic>H. pylori</italic>
) DNA promotes cell migration in MKN45 cells. MKN45 cells were transfected with the scrambled miRNA or indicated miRNA and cocultured with DNA, respectively. Cells that migrated into the lower wall were stained and counted under a microscope. For quantitative assessment, the number of migrating cells stained with crystal violet was lysated and detected at 570 nm on a plate reader. **
<italic>P</italic>
< 0.01, compared with the blank group;
<sup>##</sup>
<italic>P</italic>
< 0.01, compared with the NC + DNA group</p>
</caption>
<graphic xlink:href="SJG-25-181-g006"></graphic>
</fig>
<fig id="F7" position="float">
<label>Figure 7</label>
<caption>
<p>The silencing of TLR9 inhibits invasion, whereas
<italic>Helicobacter pylori</italic>
(
<italic>H. pylori</italic>
) DNA promotes cell invasion in MKN45 cells. MKN45 cells were transfected with the scrambled miRNA or indicated miRNA and cocultured with
<italic>H. pylori</italic>
DNA, respectively. **
<italic>P</italic>
< 0.01, compared with the blank group;
<sup>##</sup>
<italic>P</italic>
< 0.01, compared with the NC + DNA group</p>
</caption>
<graphic xlink:href="SJG-25-181-g007"></graphic>
</fig>
</sec>
</sec>
<sec sec-type="discussion" id="sec1-4">
<title>DISCUSSION</title>
<p>Recently, growing evidence has revealed that TLR9 plays an important role during the initiation and progression of various cancers, such as breast cancer, prostate cancer, and lung cancer.[
<xref rid="ref11" ref-type="bibr">11</xref>
<xref rid="ref12" ref-type="bibr">12</xref>
<xref rid="ref13" ref-type="bibr">13</xref>
<xref rid="ref18" ref-type="bibr">18</xref>
] At present, little is known about the functions of TLR9 in gastric cancer. Kauppila
<italic>et al</italic>
.[
<xref rid="ref19" ref-type="bibr">19</xref>
] found that
<italic>H. pylori</italic>
DNA could promote the invasion in AGS (a human gastric adenocarcinoma cell line) gastric cancer cells, whereas chloroquine (a nonspecific TLR9 inhibitor) could inhibit
<italic>H. pylori</italic>
DNA-induced invasion. However, these did not directly demonstrate that these effects were TLR9-mediated. Hence, the investigators called for these needs to be further confirmed through the controlled downregulation of TLR9 in other studies. In the present study, it was demonstrated that
<italic>H. pylori</italic>
infection and
<italic>H. pylori</italic>
DNA could upregulate the expression of TLR9 and enhance cellular proliferation, migration, and invasion in human gastric cancer cells. Furthermore, the knockdown of TLR9 significantly inhibited cellular proliferation, migration, and invasion. These results strongly propose that TLR9 is involved in the tumorigenesis and progression of gastric cancer.</p>
<p>TLRs have been found to play important roles in host cell responses toward pathogens and result in the increased production of inflammatory mediators, which eventually led to higher risk of chronic inflammatory diseases. As it is known, chronic inflammation plays a crucial role in the development of many human cancers. In previous studies, the positive expression of TLR9 was detected in epithelial cells of the human stomach.[
<xref rid="ref16" ref-type="bibr">16</xref>
<xref rid="ref17" ref-type="bibr">17</xref>
<xref rid="ref20" ref-type="bibr">20</xref>
] In addition, TLR9 could recognize the existence of
<italic>H. pylori</italic>
DNA and induce pro-inflammatory responses.[
<xref rid="ref21" ref-type="bibr">21</xref>
<xref rid="ref22" ref-type="bibr">22</xref>
] Interestingly, another study reported that interactions between
<italic>H. pylori</italic>
DNA and TLR9 could significantly enhance the production of interleukin (IL)-8.[
<xref rid="ref23" ref-type="bibr">23</xref>
] Similarly, there is a correlation between IL-8 mRNA expression and the severity of tissue damage in the gastric wall.[
<xref rid="ref24" ref-type="bibr">24</xref>
] Moreover, it was found that the overexpression of IL-8 was associated with the development of gastric cancer.[
<xref rid="ref25" ref-type="bibr">25</xref>
] Recently, substantial evidence has suggested that cyclooxygenase-2 (COX-2) and matrix metalloproteinase (MMP) might serve as downstream targets and regulate cellular migration and invasion in gastric cancer. Chang
<italic>et al</italic>
. reported that TLR2/TLR9 signaling could activate MAPKs and promote a panel of transcriptional factors to bind with the cAMP response element and activator protein 1 elements within the COX-2 promoter. Then, prostaglandin E2 is released to promote invasion and angiogenesis in gastric cancer.[
<xref rid="ref26" ref-type="bibr">26</xref>
] Kauppila
<italic>et al</italic>
. reported that the stimulation of TLR9 with its agonist increased the expression of MMP13 in gastric cancer cells.[
<xref rid="ref19" ref-type="bibr">19</xref>
] Consistently, Ilvesaro
<italic>et al</italic>
. found that TLR9 increased the invasion of human prostate cancer cells via upregulating MMP13.[
<xref rid="ref27" ref-type="bibr">27</xref>
] In the future, we intend to conduct a microarray analysis to further explore the regulation network of
<italic>H. pylori</italic>
DNA and TLR9 signaling in gastric cancer. We also will use GES (a human immortalized gastric epithelial cell line), AGS, SGC7901 gastric cells, and a xenograft model to strengthen the significance of the present study.</p>
</sec>
<sec sec-type="conclusion" id="sec1-5">
<title>CONCLUSION</title>
<p>In conclusion, we demonstrated that
<italic>H. pylori</italic>
DNA can enhance proliferation, migration and invasion by activating TLR9 in gastric cancer. These findings propose TLR9 as a therapeutic target for gastric cancer. The application of the TLR9 inhibitor or neutralizing antibody may provide an alternative therapy to reduce the development of
<italic>H. pylori</italic>
-mediated gastric cancer after controlling its targeting, specifically to gastric cancer cells.</p>
<sec id="sec2-12">
<title>Financial support and sponsorship</title>
<p>Nil.</p>
</sec>
<sec id="sec2-13" sec-type="COI-statement">
<title>Conflicts of interest</title>
<p>There are no conflicts of interest.</p>
</sec>
</sec>
</body>
<back>
<ack>
<title>Acknowledgments</title>
<p>This study was supported by the Applied Basic Research Fund of Changzhou, China (Grant no. CJ20140022), the High-level Medicine Talents Training Project (2016CZBJ022), and the Youth Science and Technology Project of Changzhou Health and Family Planning Commission (QN201601).</p>
</ack>
<ref-list>
<title>REFERENCES</title>
<ref id="ref1">
<label>1</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>McColl</surname>
<given-names>KE</given-names>
</name>
</person-group>
<article-title>Clinical practice.
<italic>Helicobacter pylori</italic>
infection</article-title>
<source>N Engl J Med</source>
<year>2010</year>
<volume>362</volume>
<fpage>1597</fpage>
<lpage>604</lpage>
<pub-id pub-id-type="pmid">20427808</pub-id>
</element-citation>
</ref>
<ref id="ref2">
<label>2</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Amieva</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Peek</surname>
<given-names>RM</given-names>
<suffix>Jr</suffix>
</name>
</person-group>
<article-title>Pathobiology of Helicobacter pylori-induced gastric cancer</article-title>
<source>Gastroenterology</source>
<year>2016</year>
<volume>150</volume>
<fpage>64</fpage>
<lpage>78</lpage>
<pub-id pub-id-type="pmid">26385073</pub-id>
</element-citation>
</ref>
<ref id="ref3">
<label>3</label>
<element-citation publication-type="journal">
<collab>IARC Working Group. Schistosomes, liver flukes and
<italic>Helicobacter pylori</italic>
</collab>
<article-title>IARC working group on the evaluation of carcinogenic risks to humans. Lyon</article-title>
<source>IARC Monogr Eval Carcinog Risks Hum</source>
<year>1994</year>
<volume>61</volume>
<fpage>1</fpage>
<lpage>241</lpage>
<pub-id pub-id-type="pmid">7715068</pub-id>
</element-citation>
</ref>
<ref id="ref4">
<label>4</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Torre</surname>
<given-names>LA</given-names>
</name>
<name>
<surname>Bray</surname>
<given-names>F</given-names>
</name>
<name>
<surname>Siegel</surname>
<given-names>RL</given-names>
</name>
<name>
<surname>Ferlay</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Lortet-Tieulent</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Jemal</surname>
<given-names>A</given-names>
</name>
</person-group>
<article-title>Global cancer statistics, 2012</article-title>
<source>CA Cancer J Clin</source>
<year>2015</year>
<volume>65</volume>
<fpage>87</fpage>
<lpage>108</lpage>
<pub-id pub-id-type="pmid">25651787</pub-id>
</element-citation>
</ref>
<ref id="ref5">
<label>5</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Ribaldone</surname>
<given-names>DG</given-names>
</name>
<name>
<surname>Pellicano</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Actis</surname>
<given-names>GC</given-names>
</name>
</person-group>
<article-title>Inflammation: A highly conserved, Janus-like phenomenon-a gastroenterologist’ perspective</article-title>
<source>J Mol Med (Berl)</source>
<year>2018</year>
<comment>doi: 10.1007/s00109-018-1668-z</comment>
</element-citation>
</ref>
<ref id="ref6">
<label>6</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Akira</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Hemmi</surname>
<given-names>H</given-names>
</name>
</person-group>
<article-title>Recognition of pathogen-associated molecular patterns by TLR family</article-title>
<source>Immunol Lett</source>
<year>2003</year>
<volume>85</volume>
<fpage>85</fpage>
<lpage>95</lpage>
<pub-id pub-id-type="pmid">12527213</pub-id>
</element-citation>
</ref>
<ref id="ref7">
<label>7</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>De Nardo</surname>
<given-names>D</given-names>
</name>
</person-group>
<article-title>Toll-like receptors: Activation, signalling and transcriptional modulation</article-title>
<source>Cytokine</source>
<year>2015</year>
<volume>74</volume>
<fpage>181</fpage>
<lpage>9</lpage>
<pub-id pub-id-type="pmid">25846205</pub-id>
</element-citation>
</ref>
<ref id="ref8">
<label>8</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Hemmi</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Takeuchi</surname>
<given-names>O</given-names>
</name>
<name>
<surname>Kawai</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Kaisho</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Sato</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Sanjo</surname>
<given-names>H</given-names>
</name>
<etal></etal>
</person-group>
<article-title>A Toll-like receptor recognizes bacterial DNA</article-title>
<source>Nature</source>
<year>2000</year>
<volume>408</volume>
<fpage>740</fpage>
<lpage>5</lpage>
<pub-id pub-id-type="pmid">11130078</pub-id>
</element-citation>
</ref>
<ref id="ref9">
<label>9</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Varga</surname>
<given-names>MG</given-names>
</name>
<name>
<surname>Peek</surname>
<given-names>RM</given-names>
</name>
</person-group>
<article-title>DNA Transfer and toll-like receptor modulation by
<italic>Helicobacter pylori</italic>
</article-title>
<source>Curr Top Microbiol Immunol</source>
<year>2017</year>
<volume>400</volume>
<fpage>169</fpage>
<lpage>93</lpage>
<pub-id pub-id-type="pmid">28124154</pub-id>
</element-citation>
</ref>
<ref id="ref10">
<label>10</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Wagner</surname>
<given-names>H</given-names>
</name>
</person-group>
<article-title>The immunobiology of the TLR9 subfamily</article-title>
<source>Trends Immunol</source>
<year>2004</year>
<volume>25</volume>
<fpage>381</fpage>
<lpage>6</lpage>
<pub-id pub-id-type="pmid">15207506</pub-id>
</element-citation>
</ref>
<ref id="ref11">
<label>11</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Xie</surname>
<given-names>W</given-names>
</name>
<name>
<surname>Wang</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Huang</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Yang</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Wang</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Hu</surname>
<given-names>Z</given-names>
</name>
</person-group>
<article-title>Toll-like receptor 2 mediates invasion via activating NF-kappaB in MDA-MB-231 breast cancer cells</article-title>
<source>Biochem Biophys Res Commun</source>
<year>2009</year>
<volume>379</volume>
<fpage>1027</fpage>
<lpage>32</lpage>
<pub-id pub-id-type="pmid">19141294</pub-id>
</element-citation>
</ref>
<ref id="ref12">
<label>12</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Merrell</surname>
<given-names>MA</given-names>
</name>
<name>
<surname>Ilvesaro</surname>
<given-names>JM</given-names>
</name>
<name>
<surname>Lehtonen</surname>
<given-names>N</given-names>
</name>
<name>
<surname>Sorsa</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Gehrs</surname>
<given-names>B</given-names>
</name>
<name>
<surname>Rosenthal</surname>
<given-names>E</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Toll-like receptor 9 agonists promote cellular invasion by increasing matrix metalloproteinase activity</article-title>
<source>Mol Cancer Res</source>
<year>2006</year>
<volume>4</volume>
<fpage>437</fpage>
<lpage>47</lpage>
<pub-id pub-id-type="pmid">16849519</pub-id>
</element-citation>
</ref>
<ref id="ref13">
<label>13</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Luo</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Jiang</surname>
<given-names>QW</given-names>
</name>
<name>
<surname>Wu</surname>
<given-names>JY</given-names>
</name>
<name>
<surname>Qiu</surname>
<given-names>JG</given-names>
</name>
<name>
<surname>Zhang</surname>
<given-names>WJ</given-names>
</name>
<name>
<surname>Mei</surname>
<given-names>XL</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Regulation of migration and invasion by Toll-like receptor-9 signaling network in prostate cancer</article-title>
<source>Oncotarget</source>
<year>2015</year>
<volume>6</volume>
<fpage>22564</fpage>
<lpage>74</lpage>
<pub-id pub-id-type="pmid">26087186</pub-id>
</element-citation>
</ref>
<ref id="ref14">
<label>14</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Ruan</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Zhang</surname>
<given-names>Z</given-names>
</name>
<name>
<surname>Li</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Yan</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Liu</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Yang</surname>
<given-names>W</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Activation of toll-like receptor-9 promotes cellular migration via up-regulating MMP-2 expression in oral squamous cell carcinoma</article-title>
<source>PLoS One</source>
<year>2014</year>
<volume>9</volume>
<fpage>e92748</fpage>
<pub-id pub-id-type="pmid">24658023</pub-id>
</element-citation>
</ref>
<ref id="ref15">
<label>15</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Zhang</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Li</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Li</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Li</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Ma</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Wang</surname>
<given-names>H</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Chloroquine inhibits MGC803 gastric cancer cell migration via the Toll-like receptor 9/nuclear factor kappa B signaling pathway</article-title>
<source>Mol Med Rep</source>
<year>2015</year>
<volume>11</volume>
<fpage>1366</fpage>
<lpage>71</lpage>
<pub-id pub-id-type="pmid">25369757</pub-id>
</element-citation>
</ref>
<ref id="ref16">
<label>16</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Wang</surname>
<given-names>TR</given-names>
</name>
<name>
<surname>Peng</surname>
<given-names>JC</given-names>
</name>
<name>
<surname>Qiao</surname>
<given-names>YQ</given-names>
</name>
<name>
<surname>Zhu</surname>
<given-names>MM</given-names>
</name>
<name>
<surname>Zhao</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Shen</surname>
<given-names>J</given-names>
</name>
<etal></etal>
</person-group>
<article-title>
<italic>Helicobacter pylori</italic>
regulates TLR4 and TLR9 during gastric carcinogenesis</article-title>
<source>Int J Clin Exp Pathol</source>
<year>2014</year>
<volume>7</volume>
<fpage>6950</fpage>
<lpage>5</lpage>
<pub-id pub-id-type="pmid">25400780</pub-id>
</element-citation>
</ref>
<ref id="ref17">
<label>17</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Schmausser</surname>
<given-names>B</given-names>
</name>
<name>
<surname>Andrulis</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Endrich</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Müller-Hermelink</surname>
<given-names>HK</given-names>
</name>
<name>
<surname>Eck</surname>
<given-names>M</given-names>
</name>
</person-group>
<article-title>Toll-like receptors TLR4, TLR5 and TLR9 on gastric carcinoma cells: An implication for interaction with
<italic>Helicobacter pylori</italic>
</article-title>
<source>Int J Med Microbiol</source>
<year>2005</year>
<volume>295</volume>
<fpage>179</fpage>
<lpage>85</lpage>
<pub-id pub-id-type="pmid">16044857</pub-id>
</element-citation>
</ref>
<ref id="ref18">
<label>18</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Jiang</surname>
<given-names>DS</given-names>
</name>
<name>
<surname>Wang</surname>
<given-names>YW</given-names>
</name>
<name>
<surname>Jiang</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Li</surname>
<given-names>SM</given-names>
</name>
<name>
<surname>Liang</surname>
<given-names>SZ</given-names>
</name>
<name>
<surname>Fang</surname>
<given-names>HY</given-names>
</name>
</person-group>
<article-title>MicroRNA-26a involved in Toll-like receptor 9mediated lung cancer growth and migration</article-title>
<source>Int J Mol Med</source>
<year>2014</year>
<volume>34</volume>
<fpage>307</fpage>
<lpage>12</lpage>
<pub-id pub-id-type="pmid">24788552</pub-id>
</element-citation>
</ref>
<ref id="ref19">
<label>19</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Kauppila</surname>
<given-names>JH</given-names>
</name>
<name>
<surname>Karttunen</surname>
<given-names>TJ</given-names>
</name>
<name>
<surname>Saarnio</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Nyberg</surname>
<given-names>P</given-names>
</name>
<name>
<surname>Salo</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Graves</surname>
<given-names>DE</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Short DNA sequences and bacterial DNA induce esophageal, gastric, and colorectal cancer cell invasion</article-title>
<source>APMIS</source>
<year>2013</year>
<volume>121</volume>
<fpage>511</fpage>
<lpage>22</lpage>
<pub-id pub-id-type="pmid">23082743</pub-id>
</element-citation>
</ref>
<ref id="ref20">
<label>20</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Schmausser</surname>
<given-names>B</given-names>
</name>
<name>
<surname>Andrulis</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Endrich</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Lee</surname>
<given-names>SK</given-names>
</name>
<name>
<surname>Josenhans</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Müller-Hermelink</surname>
<given-names>HK</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Expression and subcellular distribution of toll-like receptors TLR4, TLR5 and TLR9 on the gastric epithelium in
<italic>Helicobacter pylori</italic>
infection</article-title>
<source>Clin Exp Immunol</source>
<year>2004</year>
<volume>136</volume>
<fpage>521</fpage>
<lpage>6</lpage>
<pub-id pub-id-type="pmid">15147355</pub-id>
</element-citation>
</ref>
<ref id="ref21">
<label>21</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Varga</surname>
<given-names>MG</given-names>
</name>
<name>
<surname>Shaffer</surname>
<given-names>CL</given-names>
</name>
<name>
<surname>Sierra</surname>
<given-names>JC</given-names>
</name>
<name>
<surname>Suarez</surname>
<given-names>G</given-names>
</name>
<name>
<surname>Piazuelo</surname>
<given-names>MB</given-names>
</name>
<name>
<surname>Whitaker</surname>
<given-names>ME</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Pathogenic
<italic>Helicobacter pylori</italic>
strains translocate DNA and activate TLR9 via the cancer-associated cag type IV secretion system</article-title>
<source>Oncogene</source>
<year>2016</year>
<volume>35</volume>
<fpage>6262</fpage>
<lpage>9</lpage>
<pub-id pub-id-type="pmid">27157617</pub-id>
</element-citation>
</ref>
<ref id="ref22">
<label>22</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Rad</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Ballhorn</surname>
<given-names>W</given-names>
</name>
<name>
<surname>Voland</surname>
<given-names>P</given-names>
</name>
<name>
<surname>Eisenächer</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Mages</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Rad</surname>
<given-names>L</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Extracellular and intracellular pattern recognition receptors cooperate in the recognition of
<italic>Helicobacter pylori</italic>
</article-title>
<source>Gastroenterology</source>
<year>2009</year>
<volume>136</volume>
<fpage>2247</fpage>
<lpage>57</lpage>
<pub-id pub-id-type="pmid">19272387</pub-id>
</element-citation>
</ref>
<ref id="ref23">
<label>23</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Alvarez-Arellano</surname>
<given-names>L</given-names>
</name>
<name>
<surname>Cortés-Reynosa</surname>
<given-names>P</given-names>
</name>
<name>
<surname>Sánchez-Zauco</surname>
<given-names>N</given-names>
</name>
<name>
<surname>Salazar</surname>
<given-names>E</given-names>
</name>
<name>
<surname>Torres</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Maldonado-Bernal</surname>
<given-names>C</given-names>
</name>
</person-group>
<article-title>TLR9 and NF-κB are partially involved in activation of human neutrophils by
<italic>Helicobacter pylori</italic>
and its purified DNA</article-title>
<source>PLoS One</source>
<year>2014</year>
<volume>9</volume>
<fpage>e101342</fpage>
<pub-id pub-id-type="pmid">24987851</pub-id>
</element-citation>
</ref>
<ref id="ref24">
<label>24</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Gianfagna</surname>
<given-names>F</given-names>
</name>
<name>
<surname>De Feo</surname>
<given-names>E</given-names>
</name>
<name>
<surname>van Duijn</surname>
<given-names>CM</given-names>
</name>
<name>
<surname>Ricciardi</surname>
<given-names>G</given-names>
</name>
<name>
<surname>Boccia</surname>
<given-names>S</given-names>
</name>
</person-group>
<article-title>A systematic review of meta-analyses on gene polymorphisms and gastric cancer risk</article-title>
<source>Curr Genomics</source>
<year>2008</year>
<volume>9</volume>
<fpage>361</fpage>
<lpage>74</lpage>
<pub-id pub-id-type="pmid">19506726</pub-id>
</element-citation>
</ref>
<ref id="ref25">
<label>25</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Waugh</surname>
<given-names>DJ</given-names>
</name>
<name>
<surname>Wilson</surname>
<given-names>C</given-names>
</name>
</person-group>
<article-title>The interleukin-8 pathway in cancer</article-title>
<source>Clin Cancer Res</source>
<year>2008</year>
<volume>14</volume>
<fpage>6735</fpage>
<lpage>41</lpage>
<pub-id pub-id-type="pmid">18980965</pub-id>
</element-citation>
</ref>
<ref id="ref26">
<label>26</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Chang</surname>
<given-names>YJ</given-names>
</name>
<name>
<surname>Wu</surname>
<given-names>MS</given-names>
</name>
<name>
<surname>Lin</surname>
<given-names>JT</given-names>
</name>
<name>
<surname>Chen</surname>
<given-names>CC</given-names>
</name>
</person-group>
<article-title>Helicobacter pylori-Induced invasion and angiogenesis of gastric cells is mediated by cyclooxygenase-2 induction through TLR2/TLR9 and promoter regulation</article-title>
<source>J Immunol</source>
<year>2005</year>
<volume>175</volume>
<fpage>8242</fpage>
<lpage>52</lpage>
<pub-id pub-id-type="pmid">16339564</pub-id>
</element-citation>
</ref>
<ref id="ref27">
<label>27</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Ilvesaro</surname>
<given-names>JM</given-names>
</name>
<name>
<surname>Merrell</surname>
<given-names>MA</given-names>
</name>
<name>
<surname>Swain</surname>
<given-names>TM</given-names>
</name>
<name>
<surname>Davidson</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Zayzafoon</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Harris</surname>
<given-names>KW</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Toll like receptor-9 agonists stimulate prostate cancer invasion
<italic>in vitro</italic>
</article-title>
<source>Prostate</source>
<year>2007</year>
<volume>67</volume>
<fpage>774</fpage>
<lpage>81</lpage>
<pub-id pub-id-type="pmid">17373717</pub-id>
</element-citation>
</ref>
</ref-list>
</back>
</pmc>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/ChloroquineV1/Data/Pmc/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000806 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Pmc/Corpus/biblio.hfd -nk 000806 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    ChloroquineV1
   |flux=    Pmc
   |étape=   Corpus
   |type=    RBID
   |clé=     PMC:6526737
   |texte=   Helicobacter pylori DNA promotes cellular proliferation, migration, and invasion of gastric cancer by activating toll-like receptor 9
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Pmc/Corpus/RBID.i   -Sk "pubmed:30618438" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Pmc/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a ChloroquineV1 

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Wed Mar 25 22:43:59 2020. Site generation: Sun Jan 31 12:44:45 2021