Serveur d'exploration Chloroquine

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Paclitaxel-Trastuzumab Mixed Nanovehicle to Target HER2-Overexpressing Tumors

Identifieur interne : 000728 ( Pmc/Corpus ); précédent : 000727; suivant : 000729

Paclitaxel-Trastuzumab Mixed Nanovehicle to Target HER2-Overexpressing Tumors

Auteurs : Celia Nieto ; Ariana Centa ; Jesús A. Rodríguez-Rodríguez ; Atanasio Pandiella ; Eva M. Martín Del Valle

Source :

RBID : PMC:6669497

Abstract

Paclitaxel is one of the most widely used chemotherapeutic agents thanks to its effectiveness and broad spectrum of antitumor activity. However, it has a very poor aqueous solubility and a limited specificity. To solve these handicaps, a novel paclitaxel-trastuzumab targeted transport nanosystem has been developed and characterized in this work to specifically treat cancer cells that overexpress the human epidermal growth factor receptor-2 (HER2). Methods: Alginate and piperazine nanoparticles were synthetized and conjugated with paclitaxel:β-cyclodextrins complexes and trastuzumab. Conjugated nanoparticles (300 nm) were characterized and their internalization in HER2-overexpressing tumor cells was analyzed by immunofluorescence. Its specific antitumor activity was studied in vitro using human cell lines with different levels of HER2-expression. Results: In comparison with free paclitaxel:β-cyclodextrins complexes, the developed conjugated nanovehicle presented specificity for the treatment of HER2-overpressing cells, in which it was internalized by endocytosis. Conclusions: It seems that potentially avoiding the conventional adverse effects of paclitaxel treatment could be possible with the use of the proposed mixed nanovehicle, which improves its bioavailability and targets HER2-positive cancer cells.


Url:
DOI: 10.3390/nano9070948
PubMed: 31261957
PubMed Central: 6669497

Links to Exploration step

PMC:6669497

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Paclitaxel-Trastuzumab Mixed Nanovehicle to Target HER2-Overexpressing Tumors</title>
<author>
<name sortKey="Nieto, Celia" sort="Nieto, Celia" uniqKey="Nieto C" first="Celia" last="Nieto">Celia Nieto</name>
<affiliation>
<nlm:aff id="af1-nanomaterials-09-00948">Departamento de Ingeniería Química y Textil, Facultad de Ciencias Químicas, Universidad de Salamanca, 37008 Salamanca, Spain</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Centa, Ariana" sort="Centa, Ariana" uniqKey="Centa A" first="Ariana" last="Centa">Ariana Centa</name>
<affiliation>
<nlm:aff id="af2-nanomaterials-09-00948">Instituto de Biología Molecular y Celular del Cáncer (IBMCC), CSIC, CIBERONC-IBSAL, 37007 Salamanca, Spain</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Rodriguez Rodriguez, Jesus A" sort="Rodriguez Rodriguez, Jesus A" uniqKey="Rodriguez Rodriguez J" first="Jesús A." last="Rodríguez-Rodríguez">Jesús A. Rodríguez-Rodríguez</name>
<affiliation>
<nlm:aff id="af1-nanomaterials-09-00948">Departamento de Ingeniería Química y Textil, Facultad de Ciencias Químicas, Universidad de Salamanca, 37008 Salamanca, Spain</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Pandiella, Atanasio" sort="Pandiella, Atanasio" uniqKey="Pandiella A" first="Atanasio" last="Pandiella">Atanasio Pandiella</name>
<affiliation>
<nlm:aff id="af2-nanomaterials-09-00948">Instituto de Biología Molecular y Celular del Cáncer (IBMCC), CSIC, CIBERONC-IBSAL, 37007 Salamanca, Spain</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Martin Del Valle, Eva M" sort="Martin Del Valle, Eva M" uniqKey="Martin Del Valle E" first="Eva M." last="Martín Del Valle">Eva M. Martín Del Valle</name>
<affiliation>
<nlm:aff id="af1-nanomaterials-09-00948">Departamento de Ingeniería Química y Textil, Facultad de Ciencias Químicas, Universidad de Salamanca, 37008 Salamanca, Spain</nlm:aff>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PMC</idno>
<idno type="pmid">31261957</idno>
<idno type="pmc">6669497</idno>
<idno type="url">http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6669497</idno>
<idno type="RBID">PMC:6669497</idno>
<idno type="doi">10.3390/nano9070948</idno>
<date when="2019">2019</date>
<idno type="wicri:Area/Pmc/Corpus">000728</idno>
<idno type="wicri:explorRef" wicri:stream="Pmc" wicri:step="Corpus" wicri:corpus="PMC">000728</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a" type="main">Paclitaxel-Trastuzumab Mixed Nanovehicle to Target HER2-Overexpressing Tumors</title>
<author>
<name sortKey="Nieto, Celia" sort="Nieto, Celia" uniqKey="Nieto C" first="Celia" last="Nieto">Celia Nieto</name>
<affiliation>
<nlm:aff id="af1-nanomaterials-09-00948">Departamento de Ingeniería Química y Textil, Facultad de Ciencias Químicas, Universidad de Salamanca, 37008 Salamanca, Spain</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Centa, Ariana" sort="Centa, Ariana" uniqKey="Centa A" first="Ariana" last="Centa">Ariana Centa</name>
<affiliation>
<nlm:aff id="af2-nanomaterials-09-00948">Instituto de Biología Molecular y Celular del Cáncer (IBMCC), CSIC, CIBERONC-IBSAL, 37007 Salamanca, Spain</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Rodriguez Rodriguez, Jesus A" sort="Rodriguez Rodriguez, Jesus A" uniqKey="Rodriguez Rodriguez J" first="Jesús A." last="Rodríguez-Rodríguez">Jesús A. Rodríguez-Rodríguez</name>
<affiliation>
<nlm:aff id="af1-nanomaterials-09-00948">Departamento de Ingeniería Química y Textil, Facultad de Ciencias Químicas, Universidad de Salamanca, 37008 Salamanca, Spain</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Pandiella, Atanasio" sort="Pandiella, Atanasio" uniqKey="Pandiella A" first="Atanasio" last="Pandiella">Atanasio Pandiella</name>
<affiliation>
<nlm:aff id="af2-nanomaterials-09-00948">Instituto de Biología Molecular y Celular del Cáncer (IBMCC), CSIC, CIBERONC-IBSAL, 37007 Salamanca, Spain</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Martin Del Valle, Eva M" sort="Martin Del Valle, Eva M" uniqKey="Martin Del Valle E" first="Eva M." last="Martín Del Valle">Eva M. Martín Del Valle</name>
<affiliation>
<nlm:aff id="af1-nanomaterials-09-00948">Departamento de Ingeniería Química y Textil, Facultad de Ciencias Químicas, Universidad de Salamanca, 37008 Salamanca, Spain</nlm:aff>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Nanomaterials</title>
<idno type="eISSN">2079-4991</idno>
<imprint>
<date when="2019">2019</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<p>Paclitaxel is one of the most widely used chemotherapeutic agents thanks to its effectiveness and broad spectrum of antitumor activity. However, it has a very poor aqueous solubility and a limited specificity. To solve these handicaps, a novel paclitaxel-trastuzumab targeted transport nanosystem has been developed and characterized in this work to specifically treat cancer cells that overexpress the human epidermal growth factor receptor-2 (HER2). Methods: Alginate and piperazine nanoparticles were synthetized and conjugated with paclitaxel:β-cyclodextrins complexes and trastuzumab. Conjugated nanoparticles (300 nm) were characterized and their internalization in HER2-overexpressing tumor cells was analyzed by immunofluorescence. Its specific antitumor activity was studied
<italic>in vitro</italic>
using human cell lines with different levels of HER2-expression. Results: In comparison with free paclitaxel:β-cyclodextrins complexes, the developed conjugated nanovehicle presented specificity for the treatment of HER2-overpressing cells, in which it was internalized by endocytosis. Conclusions: It seems that potentially avoiding the conventional adverse effects of paclitaxel treatment could be possible with the use of the proposed mixed nanovehicle, which improves its bioavailability and targets HER2-positive cancer cells.</p>
</div>
</front>
<back>
<div1 type="bibliography">
<listBibl>
<biblStruct>
<analytic>
<author>
<name sortKey="Luzzati, T" uniqKey="Luzzati T">T. Luzzati</name>
</author>
<author>
<name sortKey="Parenti, A" uniqKey="Parenti A">A. Parenti</name>
</author>
<author>
<name sortKey="Rughi, T" uniqKey="Rughi T">T. Rughi</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Dickens, E" uniqKey="Dickens E">E. Dickens</name>
</author>
<author>
<name sortKey="Ahmed, S" uniqKey="Ahmed S">S. Ahmed</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Krukiewicz, K" uniqKey="Krukiewicz K">K. Krukiewicz</name>
</author>
<author>
<name sortKey="Zak, J K" uniqKey="Zak J">J.K. Zak</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Abandansari, H S" uniqKey="Abandansari H">H.S. Abandansari</name>
</author>
<author>
<name sortKey="Abuali, M" uniqKey="Abuali M">M. Abuali</name>
</author>
<author>
<name sortKey="Nabid, M R" uniqKey="Nabid M">M.R. Nabid</name>
</author>
<author>
<name sortKey="Niknejad, H" uniqKey="Niknejad H">H. Niknejad</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Wang, F" uniqKey="Wang F">F. Wang</name>
</author>
<author>
<name sortKey="Porter, M" uniqKey="Porter M">M. Porter</name>
</author>
<author>
<name sortKey="Konstantopoulos, A" uniqKey="Konstantopoulos A">A. Konstantopoulos</name>
</author>
<author>
<name sortKey="Zhang, P" uniqKey="Zhang P">P. Zhang</name>
</author>
<author>
<name sortKey="Cui, H" uniqKey="Cui H">H. Cui</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Bernabeu, E" uniqKey="Bernabeu E">E. Bernabeu</name>
</author>
<author>
<name sortKey="Cagel, M" uniqKey="Cagel M">M. Cagel</name>
</author>
<author>
<name sortKey="Lagomarsino, E" uniqKey="Lagomarsino E">E. Lagomarsino</name>
</author>
<author>
<name sortKey="Moretton, M" uniqKey="Moretton M">M. Moretton</name>
</author>
<author>
<name sortKey="Chiappetta, D A" uniqKey="Chiappetta D">D.A. Chiappetta</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Sofias, A M" uniqKey="Sofias A">A.M. Sofias</name>
</author>
<author>
<name sortKey="Dunne, M" uniqKey="Dunne M">M. Dunne</name>
</author>
<author>
<name sortKey="Storm, G" uniqKey="Storm G">G. Storm</name>
</author>
<author>
<name sortKey="Allen, C" uniqKey="Allen C">C. Allen</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Du, X" uniqKey="Du X">X. Du</name>
</author>
<author>
<name sortKey="Khan, A R" uniqKey="Khan A">A.R. Khan</name>
</author>
<author>
<name sortKey="Fu, M" uniqKey="Fu M">M. Fu</name>
</author>
<author>
<name sortKey="Ji, J" uniqKey="Ji J">J. Ji</name>
</author>
<author>
<name sortKey="Yu, A" uniqKey="Yu A">A. Yu</name>
</author>
<author>
<name sortKey="Zhai, G" uniqKey="Zhai G">G. Zhai</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Khuroo, T" uniqKey="Khuroo T">T. Khuroo</name>
</author>
<author>
<name sortKey="Verma, D" uniqKey="Verma D">D. Verma</name>
</author>
<author>
<name sortKey="Khuroo, A" uniqKey="Khuroo A">A. Khuroo</name>
</author>
<author>
<name sortKey="Ali, A" uniqKey="Ali A">A. Ali</name>
</author>
<author>
<name sortKey="Iqbal, Z" uniqKey="Iqbal Z">Z. Iqbal</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Gupta, D" uniqKey="Gupta D">D. Gupta</name>
</author>
<author>
<name sortKey="Kumar, M" uniqKey="Kumar M">M. Kumar</name>
</author>
<author>
<name sortKey="Tyagi, P" uniqKey="Tyagi P">P. Tyagi</name>
</author>
<author>
<name sortKey="Kapoor, S" uniqKey="Kapoor S">S. Kapoor</name>
</author>
<author>
<name sortKey="Tyagi, A" uniqKey="Tyagi A">A. Tyagi</name>
</author>
<author>
<name sortKey="Barman, T K" uniqKey="Barman T">T.K. Barman</name>
</author>
<author>
<name sortKey="Kharbanda, S" uniqKey="Kharbanda S">S. Kharbanda</name>
</author>
<author>
<name sortKey="Kufe, D" uniqKey="Kufe D">D. Kufe</name>
</author>
<author>
<name sortKey="Singh, H" uniqKey="Singh H">H. Singh</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Chowdhury, P" uniqKey="Chowdhury P">P. Chowdhury</name>
</author>
<author>
<name sortKey="Nagesh, P K B" uniqKey="Nagesh P">P.K.B. Nagesh</name>
</author>
<author>
<name sortKey="Hatami, E" uniqKey="Hatami E">E. Hatami</name>
</author>
<author>
<name sortKey="Wagh, S" uniqKey="Wagh S">S. Wagh</name>
</author>
<author>
<name sortKey="Dan, N" uniqKey="Dan N">N. Dan</name>
</author>
<author>
<name sortKey="Tripathi, M K" uniqKey="Tripathi M">M.K. Tripathi</name>
</author>
<author>
<name sortKey="Khan, S" uniqKey="Khan S">S. Khan</name>
</author>
<author>
<name sortKey="Hafrez, B B" uniqKey="Hafrez B">B.B. Hafrez</name>
</author>
<author>
<name sortKey="Meibohm, B" uniqKey="Meibohm B">B. Meibohm</name>
</author>
<author>
<name sortKey="Chauhan, S C" uniqKey="Chauhan S">S.C. Chauhan</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Huang, R" uniqKey="Huang R">R. Huang</name>
</author>
<author>
<name sortKey="Wang, Q" uniqKey="Wang Q">Q. Wang</name>
</author>
<author>
<name sortKey="Zhang, X" uniqKey="Zhang X">X. Zhang</name>
</author>
<author>
<name sortKey="Zhu, J" uniqKey="Zhu J">J. Zhu</name>
</author>
<author>
<name sortKey="Sun, B" uniqKey="Sun B">B. Sun</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Nguyen, H T" uniqKey="Nguyen H">H.T. Nguyen</name>
</author>
<author>
<name sortKey="Tran, T H" uniqKey="Tran T">T.H. Tran</name>
</author>
<author>
<name sortKey="Thapa, R K" uniqKey="Thapa R">R.K. Thapa</name>
</author>
<author>
<name sortKey="Phung, C D" uniqKey="Phung C">C.D. Phung</name>
</author>
<author>
<name sortKey="Shin, B S" uniqKey="Shin B">B.S. Shin</name>
</author>
<author>
<name sortKey="Jeong, J H" uniqKey="Jeong J">J.H. Jeong</name>
</author>
<author>
<name sortKey="Choi, H G" uniqKey="Choi H">H.G. Choi</name>
</author>
<author>
<name sortKey="Yong, C S" uniqKey="Yong C">C.S. Yong</name>
</author>
<author>
<name sortKey="Kim, J O" uniqKey="Kim J">J.O. Kim</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Huang, R" uniqKey="Huang R">R. Huang</name>
</author>
<author>
<name sortKey="Sun, Y" uniqKey="Sun Y">Y. Sun</name>
</author>
<author>
<name sortKey="Zhang, X Y" uniqKey="Zhang X">X.Y. Zhang</name>
</author>
<author>
<name sortKey="Sun, B W" uniqKey="Sun B">B.W. Sun</name>
</author>
<author>
<name sortKey="Wang, Q C" uniqKey="Wang Q">Q.C. Wang</name>
</author>
<author>
<name sortKey="Zhu, Z" uniqKey="Zhu Z">Z. Zhu</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Morimura, O" uniqKey="Morimura O">O. Morimura</name>
</author>
<author>
<name sortKey="Minami, T" uniqKey="Minami T">T. Minami</name>
</author>
<author>
<name sortKey="Kijima, T" uniqKey="Kijima T">T. Kijima</name>
</author>
<author>
<name sortKey="Koyama, S" uniqKey="Koyama S">S. Koyama</name>
</author>
<author>
<name sortKey="Otsuka, T" uniqKey="Otsuka T">T. Otsuka</name>
</author>
<author>
<name sortKey="Kinehara, Y" uniqKey="Kinehara Y">Y. Kinehara</name>
</author>
<author>
<name sortKey="Osa, A" uniqKey="Osa A">A. Osa</name>
</author>
<author>
<name sortKey="Higashiguchi, M" uniqKey="Higashiguchi M">M. Higashiguchi</name>
</author>
<author>
<name sortKey="Miyake, K" uniqKey="Miyake K">K. Miyake</name>
</author>
<author>
<name sortKey="Nagatomo, I" uniqKey="Nagatomo I">I. Nagatomo</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Daniels, B" uniqKey="Daniels B">B. Daniels</name>
</author>
<author>
<name sortKey="Kiely, B E" uniqKey="Kiely B">B.E. Kiely</name>
</author>
<author>
<name sortKey="Lord, S J" uniqKey="Lord S">S.J. Lord</name>
</author>
<author>
<name sortKey="Houssami, N" uniqKey="Houssami N">N. Houssami</name>
</author>
<author>
<name sortKey="Lu, C Y" uniqKey="Lu C">C.Y. Lu</name>
</author>
<author>
<name sortKey="Ward, R L" uniqKey="Ward R">R.L. Ward</name>
</author>
<author>
<name sortKey="Pearson, S A" uniqKey="Pearson S">S.A. Pearson</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Baselga, J" uniqKey="Baselga J">J. Baselga</name>
</author>
<author>
<name sortKey="Manikhas, A" uniqKey="Manikhas A">A. Manikhas</name>
</author>
<author>
<name sortKey="Cortes, J" uniqKey="Cortes J">J. Cortés</name>
</author>
<author>
<name sortKey="Llombart, A" uniqKey="Llombart A">A. Llombart</name>
</author>
<author>
<name sortKey="Roman, L" uniqKey="Roman L">L. Roman</name>
</author>
<author>
<name sortKey="Semiglazov, V F" uniqKey="Semiglazov V">V.F. Semiglazov</name>
</author>
<author>
<name sortKey="Byakhov, M" uniqKey="Byakhov M">M. Byakhov</name>
</author>
<author>
<name sortKey="Lokanatha, D" uniqKey="Lokanatha D">D. Lokanatha</name>
</author>
<author>
<name sortKey="Forenza, S" uniqKey="Forenza S">S. Forenza</name>
</author>
<author>
<name sortKey="Goldfarb, R H" uniqKey="Goldfarb R">R.H. Goldfarb</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Roman, J V" uniqKey="Roman J">J.V. Román</name>
</author>
<author>
<name sortKey="Rodriguez Rodriguez, J A" uniqKey="Rodriguez Rodriguez J">J.A. Rodríguez-Rodríguez</name>
</author>
<author>
<name sortKey="Martin Del Valle, E M" uniqKey="Martin Del Valle E">E.M. Martín del Valle</name>
</author>
<author>
<name sortKey="Galan, M A" uniqKey="Galan M">M.A. Galán</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Huang, J" uniqKey="Huang J">J. Huang</name>
</author>
<author>
<name sortKey="Li, J" uniqKey="Li J">J. Li</name>
</author>
<author>
<name sortKey="Feng, Y" uniqKey="Feng Y">Y. Feng</name>
</author>
<author>
<name sortKey="Li, K" uniqKey="Li K">K. Li</name>
</author>
<author>
<name sortKey="Yan, H" uniqKey="Yan H">H. Yan</name>
</author>
<author>
<name sortKey="Gao, P" uniqKey="Gao P">P. Gao</name>
</author>
<author>
<name sortKey="Xiao, T" uniqKey="Xiao T">T. Xiao</name>
</author>
<author>
<name sortKey="Wang, C" uniqKey="Wang C">C. Wang</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Shah, A" uniqKey="Shah A">A. Shah</name>
</author>
<author>
<name sortKey="Shah, A M" uniqKey="Shah A">A.M. Shah</name>
</author>
<author>
<name sortKey="Parveen, N" uniqKey="Parveen N">N. Parveen</name>
</author>
<author>
<name sortKey="Rehman, Z" uniqKey="Rehman Z">Z. Rehman</name>
</author>
<author>
<name sortKey="Khan, S Z" uniqKey="Khan S">S.Z. Khan</name>
</author>
<author>
<name sortKey="Rana, U A" uniqKey="Rana U">U.A. Rana</name>
</author>
<author>
<name sortKey="Khan, S U" uniqKey="Khan S">S.U. Khan</name>
</author>
<author>
<name sortKey="Nisar, J" uniqKey="Nisar J">J. Nisar</name>
</author>
<author>
<name sortKey="Lashin, A" uniqKey="Lashin A">A. Lashin</name>
</author>
<author>
<name sortKey="Qureshi, R" uniqKey="Qureshi R">R. Qureshi</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Fytas, C" uniqKey="Fytas C">C. Fytas</name>
</author>
<author>
<name sortKey="Zoidis, G" uniqKey="Zoidis G">G. Zoidis</name>
</author>
<author>
<name sortKey="Tsotinis, A" uniqKey="Tsotinis A">A. Tsotinis</name>
</author>
<author>
<name sortKey="Fytas, G" uniqKey="Fytas G">G. Fytas</name>
</author>
<author>
<name sortKey="Khan, M A" uniqKey="Khan M">M.A. Khan</name>
</author>
<author>
<name sortKey="Khtar, S A" uniqKey="Khtar S">S.A. Khtar</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Martin Del Valle, E M" uniqKey="Martin Del Valle E">E.M. Martín del Valle</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Shelley, H" uniqKey="Shelley H">H. Shelley</name>
</author>
<author>
<name sortKey="Babu, R J" uniqKey="Babu R">R.J. Babu</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Oroujeni, M" uniqKey="Oroujeni M">M. Oroujeni</name>
</author>
<author>
<name sortKey="Kaboudin, B" uniqKey="Kaboudin B">B. Kaboudin</name>
</author>
<author>
<name sortKey="Xia, W" uniqKey="Xia W">W. Xia</name>
</author>
<author>
<name sortKey="Johsson, P" uniqKey="Johsson P">P. Jöhsson</name>
</author>
<author>
<name sortKey="Ossipov, D A" uniqKey="Ossipov D">D.A. Ossipov</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Basha, R Y" uniqKey="Basha R">R.Y. Basha</name>
</author>
<author>
<name sortKey="Kumar, S" uniqKey="Kumar S">S. Kumar</name>
</author>
<author>
<name sortKey="Doble, M" uniqKey="Doble M">M. Doble</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Shah, M" uniqKey="Shah M">M. Shah</name>
</author>
<author>
<name sortKey="Shah, V" uniqKey="Shah V">V. Shah</name>
</author>
<author>
<name sortKey="Ghosh, A" uniqKey="Ghosh A">A. Ghosh</name>
</author>
<author>
<name sortKey="Zhang, Z" uniqKey="Zhang Z">Z. Zhang</name>
</author>
<author>
<name sortKey="Minko, T" uniqKey="Minko T">T. Minko</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Bhatt, P" uniqKey="Bhatt P">P. Bhatt</name>
</author>
<author>
<name sortKey="Lalani, R" uniqKey="Lalani R">R. Lalani</name>
</author>
<author>
<name sortKey="Vhora, I" uniqKey="Vhora I">I. Vhora</name>
</author>
<author>
<name sortKey="Patil, S" uniqKey="Patil S">S. Patil</name>
</author>
<author>
<name sortKey="Amrutiya, J" uniqKey="Amrutiya J">J. Amrutiya</name>
</author>
<author>
<name sortKey="Misra, A" uniqKey="Misra A">A. Misra</name>
</author>
<author>
<name sortKey="Mashru, R" uniqKey="Mashru R">R. Mashru</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Alcaro, S" uniqKey="Alcaro S">S. Alcaro</name>
</author>
<author>
<name sortKey="Ventura, C A" uniqKey="Ventura C">C.A. Ventura</name>
</author>
<author>
<name sortKey="Paolino, D" uniqKey="Paolino D">D. Paolino</name>
</author>
<author>
<name sortKey="Battaglia, D" uniqKey="Battaglia D">D. Battaglia</name>
</author>
<author>
<name sortKey="Ortuso, F" uniqKey="Ortuso F">F. Ortuso</name>
</author>
<author>
<name sortKey="Cattel, L" uniqKey="Cattel L">L. Cattel</name>
</author>
<author>
<name sortKey="Puglisi, G" uniqKey="Puglisi G">G. Puglisi</name>
</author>
<author>
<name sortKey="Fresta, M" uniqKey="Fresta M">M. Fresta</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Hamada, H" uniqKey="Hamada H">H. Hamada</name>
</author>
<author>
<name sortKey="Ishihara, K" uniqKey="Ishihara K">K. Ishihara</name>
</author>
<author>
<name sortKey="Masuoka, N" uniqKey="Masuoka N">N. Masuoka</name>
</author>
<author>
<name sortKey="Mikuni, K" uniqKey="Mikuni K">K. Mikuni</name>
</author>
<author>
<name sortKey="Nakajima, N" uniqKey="Nakajima N">N. Nakajima</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Badea, I" uniqKey="Badea I">I. Badea</name>
</author>
<author>
<name sortKey="Ciutaru, D" uniqKey="Ciutaru D">D. Ciutaru</name>
</author>
<author>
<name sortKey="Lazar, L" uniqKey="Lazar L">L. Lazar</name>
</author>
<author>
<name sortKey="Nicolescu, D" uniqKey="Nicolescu D">D. Nicolescu</name>
</author>
<author>
<name sortKey="Tudose, A" uniqKey="Tudose A">A. Tudose</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Chung, W J" uniqKey="Chung W">W.J. Chung</name>
</author>
<author>
<name sortKey="Lee, D Y" uniqKey="Lee D">D.Y. Lee</name>
</author>
<author>
<name sortKey="Yoo, S Y" uniqKey="Yoo S">S.Y. Yoo</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Campuzano, S" uniqKey="Campuzano S">S. Campuzano</name>
</author>
<author>
<name sortKey="Yanez Sede O, P" uniqKey="Yanez Sede O P">P. Yánez-Sedeño</name>
</author>
<author>
<name sortKey="Pingarr N, J M" uniqKey="Pingarr N J">J.M. Pingarrón</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kelestemur, S" uniqKey="Kelestemur S">S. Kelestemur</name>
</author>
<author>
<name sortKey="Altunbek, M" uniqKey="Altunbek M">M. Altunbek</name>
</author>
<author>
<name sortKey="Culha, M" uniqKey="Culha M">M. Culha</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Hua, J" uniqKey="Hua J">J. Hua</name>
</author>
<author>
<name sortKey="Li, Z" uniqKey="Li Z">Z. Li</name>
</author>
<author>
<name sortKey="Xia, W" uniqKey="Xia W">W. Xia</name>
</author>
<author>
<name sortKey="Yang, N" uniqKey="Yang N">N. Yang</name>
</author>
<author>
<name sortKey="Gong, J" uniqKey="Gong J">J. Gong</name>
</author>
<author>
<name sortKey="Zhang, J" uniqKey="Zhang J">J. Zhang</name>
</author>
<author>
<name sortKey="Qiao, C" uniqKey="Qiao C">C. Qiao</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Bradford, M M" uniqKey="Bradford M">M.M. Bradford</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Montero, J C" uniqKey="Montero J">J.C. Montero</name>
</author>
<author>
<name sortKey="Seoane, S" uniqKey="Seoane S">S. Seoane</name>
</author>
<author>
<name sortKey="Oca A, A" uniqKey="Oca A A">A. Ocaña</name>
</author>
<author>
<name sortKey="Pandiella, A" uniqKey="Pandiella A">A. Pandiella</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Esparis Ogando, A" uniqKey="Esparis Ogando A">A. Esparís-Ogando</name>
</author>
<author>
<name sortKey="Diaz Rodriguez, E" uniqKey="Diaz Rodriguez E">E. Díaz-Rodríguez</name>
</author>
<author>
<name sortKey="Montero, J C" uniqKey="Montero J">J.C. Montero</name>
</author>
<author>
<name sortKey="Yuste, L" uniqKey="Yuste L">L. Yuste</name>
</author>
<author>
<name sortKey="Crespo, P" uniqKey="Crespo P">P. Crespo</name>
</author>
<author>
<name sortKey="Pandiella, A" uniqKey="Pandiella A">A. Pandiella</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Mosmann, T" uniqKey="Mosmann T">T. Mosmann</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Haug, A" uniqKey="Haug A">A. Haug</name>
</author>
<author>
<name sortKey="Larsen, B" uniqKey="Larsen B">B. Larsen</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Khalili, F" uniqKey="Khalili F">F. Khalili</name>
</author>
<author>
<name sortKey="Henri, A" uniqKey="Henri A">A. Henri</name>
</author>
<author>
<name sortKey="East, A L L" uniqKey="East A">A.L.L. East</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kaufman, P A" uniqKey="Kaufman P">P.A. Kaufman</name>
</author>
<author>
<name sortKey="Wildiers, H" uniqKey="Wildiers H">H. Wildiers</name>
</author>
<author>
<name sortKey="Freyer, G" uniqKey="Freyer G">G. Freyer</name>
</author>
<author>
<name sortKey="Kemeny, M" uniqKey="Kemeny M">M. Kemeny</name>
</author>
<author>
<name sortKey="Goncalves, A" uniqKey="Goncalves A">A. Gonçalves</name>
</author>
<author>
<name sortKey="Jerusalem, G" uniqKey="Jerusalem G">G. Jerusalem</name>
</author>
<author>
<name sortKey="Stopeck, A" uniqKey="Stopeck A">A. Stopeck</name>
</author>
<author>
<name sortKey="Vrindavanam, N" uniqKey="Vrindavanam N">N. Vrindavanam</name>
</author>
<author>
<name sortKey="Dalenc, F" uniqKey="Dalenc F">F. Dalenc</name>
</author>
<author>
<name sortKey="Nanayakkara, N" uniqKey="Nanayakkara N">N. Nanayakkara</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Van Ramshorst, M S" uniqKey="Van Ramshorst M">M.S. Van Ramshorst</name>
</author>
<author>
<name sortKey="Van Werkhoven, E" uniqKey="Van Werkhoven E">E. van Werkhoven</name>
</author>
<author>
<name sortKey="Mandjes, I A M" uniqKey="Mandjes I">I.A.M. Mandjes</name>
</author>
<author>
<name sortKey="Schot, M" uniqKey="Schot M">M. Schot</name>
</author>
<author>
<name sortKey="Wesseling, J" uniqKey="Wesseling J">J. Wesseling</name>
</author>
<author>
<name sortKey="Vrancken Peeters, M T F D" uniqKey="Vrancken Peeters M">M.T.F.D. Vrancken Peeters</name>
</author>
<author>
<name sortKey="Meerum Terwogt, J M" uniqKey="Meerum Terwogt J">J.M. Meerum Terwogt</name>
</author>
<author>
<name sortKey="Bos, M E M" uniqKey="Bos M">M.E.M. Bos</name>
</author>
<author>
<name sortKey="Oosterkamp, H M" uniqKey="Oosterkamp H">H.M. Oosterkamp</name>
</author>
<author>
<name sortKey="Rodenhuis, S" uniqKey="Rodenhuis S">S. Rodenhuis</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Subik, K" uniqKey="Subik K">K. Subik</name>
</author>
<author>
<name sortKey="Lee, J F" uniqKey="Lee J">J.F. Lee</name>
</author>
<author>
<name sortKey="Baxter, L" uniqKey="Baxter L">L. Baxter</name>
</author>
<author>
<name sortKey="Strzepek, T" uniqKey="Strzepek T">T. Strzepek</name>
</author>
<author>
<name sortKey="Costello, D" uniqKey="Costello D">D. Costello</name>
</author>
<author>
<name sortKey="Crowley, P" uniqKey="Crowley P">P. Crowley</name>
</author>
<author>
<name sortKey="Xing, L" uniqKey="Xing L">L. Xing</name>
</author>
<author>
<name sortKey="Hung, M C" uniqKey="Hung M">M.C. Hung</name>
</author>
<author>
<name sortKey="Bonfiglio, T" uniqKey="Bonfiglio T">T. Bonfiglio</name>
</author>
<author>
<name sortKey="Hicks, D G" uniqKey="Hicks D">D.G. Hicks</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="He, J" uniqKey="He J">J. He</name>
</author>
<author>
<name sortKey="Jing, Y" uniqKey="Jing Y">Y. Jing</name>
</author>
<author>
<name sortKey="Li, W" uniqKey="Li W">W. Li</name>
</author>
<author>
<name sortKey="Qian, X" uniqKey="Qian X">X. Qian</name>
</author>
<author>
<name sortKey="Xu, Q" uniqKey="Xu Q">Q. Xu</name>
</author>
<author>
<name sortKey="Li, F S" uniqKey="Li F">F.S. Li</name>
</author>
<author>
<name sortKey="Liu, L Z" uniqKey="Liu L">L.Z. Liu</name>
</author>
<author>
<name sortKey="Jiang, B H" uniqKey="Jiang B">B.H. Jiang</name>
</author>
<author>
<name sortKey="Jiang, Y" uniqKey="Jiang Y">Y. Jiang</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Patel, R V" uniqKey="Patel R">R.V. Patel</name>
</author>
<author>
<name sortKey="Park, S W" uniqKey="Park S">S.W. Park</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Donahue, N D" uniqKey="Donahue N">N.D. Donahue</name>
</author>
<author>
<name sortKey="Acar, H" uniqKey="Acar H">H. Acar</name>
</author>
<author>
<name sortKey="Wilhelm, S" uniqKey="Wilhelm S">S. Wilhelm</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Mohanraj, V J" uniqKey="Mohanraj V">V.J. Mohanraj</name>
</author>
<author>
<name sortKey="Chen, Y" uniqKey="Chen Y">Y. Chen</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Alessandrini, F" uniqKey="Alessandrini F">F. Alessandrini</name>
</author>
<author>
<name sortKey="Pezze, L" uniqKey="Pezze L">L. Pezzè</name>
</author>
<author>
<name sortKey="Ciribilli, Y" uniqKey="Ciribilli Y">Y. Ciribilli</name>
</author>
</analytic>
</biblStruct>
</listBibl>
</div1>
</back>
</TEI>
<pmc article-type="research-article">
<pmc-dir>properties open_access</pmc-dir>
<front>
<journal-meta>
<journal-id journal-id-type="nlm-ta">Nanomaterials (Basel)</journal-id>
<journal-id journal-id-type="iso-abbrev">Nanomaterials (Basel)</journal-id>
<journal-id journal-id-type="publisher-id">nanomaterials</journal-id>
<journal-title-group>
<journal-title>Nanomaterials</journal-title>
</journal-title-group>
<issn pub-type="epub">2079-4991</issn>
<publisher>
<publisher-name>MDPI</publisher-name>
</publisher>
</journal-meta>
<article-meta>
<article-id pub-id-type="pmid">31261957</article-id>
<article-id pub-id-type="pmc">6669497</article-id>
<article-id pub-id-type="doi">10.3390/nano9070948</article-id>
<article-id pub-id-type="publisher-id">nanomaterials-09-00948</article-id>
<article-categories>
<subj-group subj-group-type="heading">
<subject>Article</subject>
</subj-group>
</article-categories>
<title-group>
<article-title>Paclitaxel-Trastuzumab Mixed Nanovehicle to Target HER2-Overexpressing Tumors</article-title>
</title-group>
<contrib-group>
<contrib contrib-type="author">
<name>
<surname>Nieto</surname>
<given-names>Celia</given-names>
</name>
<xref ref-type="aff" rid="af1-nanomaterials-09-00948">1</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Centa</surname>
<given-names>Ariana</given-names>
</name>
<xref ref-type="aff" rid="af2-nanomaterials-09-00948">2</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Rodríguez-Rodríguez</surname>
<given-names>Jesús A.</given-names>
</name>
<xref ref-type="aff" rid="af1-nanomaterials-09-00948">1</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Pandiella</surname>
<given-names>Atanasio</given-names>
</name>
<xref ref-type="aff" rid="af2-nanomaterials-09-00948">2</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Martín del Valle</surname>
<given-names>Eva M.</given-names>
</name>
<xref ref-type="aff" rid="af1-nanomaterials-09-00948">1</xref>
<xref rid="c1-nanomaterials-09-00948" ref-type="corresp">*</xref>
</contrib>
</contrib-group>
<aff id="af1-nanomaterials-09-00948">
<label>1</label>
Departamento de Ingeniería Química y Textil, Facultad de Ciencias Químicas, Universidad de Salamanca, 37008 Salamanca, Spain</aff>
<aff id="af2-nanomaterials-09-00948">
<label>2</label>
Instituto de Biología Molecular y Celular del Cáncer (IBMCC), CSIC, CIBERONC-IBSAL, 37007 Salamanca, Spain</aff>
<author-notes>
<corresp id="c1-nanomaterials-09-00948">
<label>*</label>
Correspondence:
<email>emvalle@usal.es</email>
; Tel.: +34-923294479</corresp>
</author-notes>
<pub-date pub-type="epub">
<day>29</day>
<month>6</month>
<year>2019</year>
</pub-date>
<pub-date pub-type="collection">
<month>7</month>
<year>2019</year>
</pub-date>
<volume>9</volume>
<issue>7</issue>
<elocation-id>948</elocation-id>
<history>
<date date-type="received">
<day>10</day>
<month>6</month>
<year>2019</year>
</date>
<date date-type="accepted">
<day>28</day>
<month>6</month>
<year>2019</year>
</date>
</history>
<permissions>
<copyright-statement>© 2019 by the authors.</copyright-statement>
<copyright-year>2019</copyright-year>
<license license-type="open-access">
<license-p>Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (
<ext-link ext-link-type="uri" xlink:href="http://creativecommons.org/licenses/by/4.0/">http://creativecommons.org/licenses/by/4.0/</ext-link>
).</license-p>
</license>
</permissions>
<abstract>
<p>Paclitaxel is one of the most widely used chemotherapeutic agents thanks to its effectiveness and broad spectrum of antitumor activity. However, it has a very poor aqueous solubility and a limited specificity. To solve these handicaps, a novel paclitaxel-trastuzumab targeted transport nanosystem has been developed and characterized in this work to specifically treat cancer cells that overexpress the human epidermal growth factor receptor-2 (HER2). Methods: Alginate and piperazine nanoparticles were synthetized and conjugated with paclitaxel:β-cyclodextrins complexes and trastuzumab. Conjugated nanoparticles (300 nm) were characterized and their internalization in HER2-overexpressing tumor cells was analyzed by immunofluorescence. Its specific antitumor activity was studied
<italic>in vitro</italic>
using human cell lines with different levels of HER2-expression. Results: In comparison with free paclitaxel:β-cyclodextrins complexes, the developed conjugated nanovehicle presented specificity for the treatment of HER2-overpressing cells, in which it was internalized by endocytosis. Conclusions: It seems that potentially avoiding the conventional adverse effects of paclitaxel treatment could be possible with the use of the proposed mixed nanovehicle, which improves its bioavailability and targets HER2-positive cancer cells.</p>
</abstract>
<kwd-group>
<kwd>targeted nanoparticles</kwd>
<kwd>paclitaxel</kwd>
<kwd>trastuzumab</kwd>
<kwd>HER2-specificity</kwd>
<kwd>sodium alginate</kwd>
<kwd>piperazine</kwd>
</kwd-group>
</article-meta>
</front>
<body>
<sec sec-type="intro" id="sec1-nanomaterials-09-00948">
<title>1. Introduction</title>
<p>Cancer therapy improvement has become one of the most important health challenges for the time being due to the high incidence of this disease. Systemic chemotherapy is the necessary choice when cancer is late diagnosed and, unfortunately, it is often accompanied by severe side effects [
<xref rid="B1-nanomaterials-09-00948" ref-type="bibr">1</xref>
,
<xref rid="B2-nanomaterials-09-00948" ref-type="bibr">2</xref>
]. As most employed cytotoxic agents affect cell cycle progression, not only cancer cells are killed by antitumor drugs, but also normal cells that proliferate rapidly [
<xref rid="B3-nanomaterials-09-00948" ref-type="bibr">3</xref>
,
<xref rid="B4-nanomaterials-09-00948" ref-type="bibr">4</xref>
].</p>
<p>Such side effects are present, for instance, in paclitaxel (PTX)-containing treatments. This taxane diterpenoid drug targets β-tubulin in cells and arrests them in the G2/M cell cycle phase [
<xref rid="B5-nanomaterials-09-00948" ref-type="bibr">5</xref>
]. Due to its broad spectrum of antitumor activity and high effectiveness, it is normally employed to treat breast, ovarian, and non-small cell lung cancers [
<xref rid="B6-nanomaterials-09-00948" ref-type="bibr">6</xref>
]. In this manner, PTX is one of the three most administered chemotherapy agents today, but it presents an important handicap. Its aqueous solubility is very limited (0.3–0.5 μg/mL) and intravenous PTX’s formulations have had to be developed [
<xref rid="B7-nanomaterials-09-00948" ref-type="bibr">7</xref>
]. Among them, they are only two that are approved to be used in clinic and the major drawback is that, in the most used one [
<xref rid="B5-nanomaterials-09-00948" ref-type="bibr">5</xref>
], PTX is dissolved into a chemical solvent mixture that entails important side effects. Thus, such mixture reduces the taxane effectiveness and limits the doses that can be administered to patients [
<xref rid="B6-nanomaterials-09-00948" ref-type="bibr">6</xref>
].</p>
<p>In this context, the need of novel PTX’s therapeutic systems and the relevance of the nanomedicine field in this task are understood. Nowadays, PTX inclusion complexes with cyclodextrins as well as PTX polymeric nanoparticles, liposomes, micelles, and polymeric conjugates can be found in the literature [
<xref rid="B6-nanomaterials-09-00948" ref-type="bibr">6</xref>
,
<xref rid="B8-nanomaterials-09-00948" ref-type="bibr">8</xref>
,
<xref rid="B9-nanomaterials-09-00948" ref-type="bibr">9</xref>
,
<xref rid="B10-nanomaterials-09-00948" ref-type="bibr">10</xref>
,
<xref rid="B11-nanomaterials-09-00948" ref-type="bibr">11</xref>
]. All of them look for an improved vehiculization of the taxane and this fact can be achieved by the addition of a specific monoclonal antibody (mAb) to the nanosystems. mAbs are excellent targeting proteins and their inclusion in drug delivery vehicles could enhance their endocytosis and lysosomal degradation, with the resulting release of the cytotoxic agent [
<xref rid="B12-nanomaterials-09-00948" ref-type="bibr">12</xref>
].</p>
<p>One humanized mAb approved by the U.S. Food and Drug Administration (FDA) is trastuzumab. It binds to the extracellular domain of the HER2/neu receptor, inhibits downstream signaling and activates immune mechanisms that ultimately contribute to its antitumor effect [
<xref rid="B13-nanomaterials-09-00948" ref-type="bibr">13</xref>
]. HER2 is overexpressed in a variety of carcinomas, like breast, ovarian, lung, and gastric tumors [
<xref rid="B14-nanomaterials-09-00948" ref-type="bibr">14</xref>
,
<xref rid="B15-nanomaterials-09-00948" ref-type="bibr">15</xref>
]. Among them, trastuzumab administration is allowed to treat HER2-positive metastatic breast cancers and HER2-positive stomach tumors and it has transformed the complicated prognosis of these subtypes of carcinomas [
<xref rid="B16-nanomaterials-09-00948" ref-type="bibr">16</xref>
]. Nevertheless, although this mAb has demonstrated a proper antitumor efficacy, it is normally administered in combination with chemotherapeutic drugs, like taxanes, to enhance the effect of both of them [
<xref rid="B14-nanomaterials-09-00948" ref-type="bibr">14</xref>
,
<xref rid="B17-nanomaterials-09-00948" ref-type="bibr">17</xref>
]. However, one of the limitations of trastuzumab-taxane therapies is their toxicity.</p>
<p>Given everything here mentioned, the objective of the present work has been the development, characterization, and validation of a novel administration PTX’s nanovehicle, consisting of sodium alginate and piperazine nanoparticles (APPZ) [
<xref rid="B18-nanomaterials-09-00948" ref-type="bibr">18</xref>
]. In such nanosystem, PTX has been included into β-cyclodextrins molecules (βCD) to improve its water-solubility. Moreover, trastuzumab has also been attached to APPZ surface. The aim of the addition of this antibody was to favor specific targeting of HER2-overexpressing cancer cells.</p>
<p>Of the chemical compounds named above, sodium alginate is a harmless anionic polysaccharide that is commonly used as a gelling agent for cosmetic and food products [
<xref rid="B19-nanomaterials-09-00948" ref-type="bibr">19</xref>
]. As for piperazine, it is a heterocyclic compound having two nitrogen atoms at opposite positions in a six membered ring that confer it a potent antioxidant power [
<xref rid="B20-nanomaterials-09-00948" ref-type="bibr">20</xref>
]. Piperazine derivatives have been developed in recent years as a basis for alternative antitumor agents and, in our case, such chemical compound allowed a chemical crosslinking of the sodium alginate chains and, thus, the formation of nanoparticles [
<xref rid="B18-nanomaterials-09-00948" ref-type="bibr">18</xref>
,
<xref rid="B21-nanomaterials-09-00948" ref-type="bibr">21</xref>
]. Finally, βCD are cyclic oligosaccharides with a hydrophobic interior. These molecules are able to form inclusion complexes with a variety of lipophilic molecules and are used for many pharmaceutical applications [
<xref rid="B22-nanomaterials-09-00948" ref-type="bibr">22</xref>
]. Besides, βCD have become commonly employed in nanoparticle-based drug delivery systems thanks to their benefits [
<xref rid="B23-nanomaterials-09-00948" ref-type="bibr">23</xref>
,
<xref rid="B24-nanomaterials-09-00948" ref-type="bibr">24</xref>
,
<xref rid="B25-nanomaterials-09-00948" ref-type="bibr">25</xref>
] and some nanovehicles based on βCD-PTX complexes have been already describe in literature [
<xref rid="B26-nanomaterials-09-00948" ref-type="bibr">26</xref>
,
<xref rid="B27-nanomaterials-09-00948" ref-type="bibr">27</xref>
].</p>
</sec>
<sec id="sec2-nanomaterials-09-00948">
<title>2. Materials and Methods </title>
<sec id="sec2dot1-nanomaterials-09-00948">
<title>2.1. APPZ Synthesis and Characterization</title>
<p>APPZ were synthesized by preparing sodium alginate (1 mg/mL) and piperazine (2 mg/mL) solutions with a 4.7 pH value [
<xref rid="B18-nanomaterials-09-00948" ref-type="bibr">18</xref>
]. Different amounts of the piperazine solution were dropped over the alginate one. The mixture was magnetically stirred and suspensions of APPZ with different properties were obtained. To isolate them, pH of the suspensions was dropped to 1.0 and APPZ were centrifuged.</p>
<p>In order to characterize them, APPZ were re-suspended in deionized water (1 mg/mL). The pH of these suspensions was set again at 4.7. APPZ sizes and zeta potentials were measured by Dynamic Light Scattering (DLS) and Laser Doppler Electrophoresis (LDE) with a 90˚ fixed angle detector, using a 633 nm wavelength laser (ZetaSizer Nano ZS90, Malvern Instruments Inc., Royston, Hertfordshire, UK). APPZ with the best size/surface charge values were selected and pH effect over both parameters was studied with them. Variation of their diameter and zeta potential was analyzed over 8 consecutive days to determine APPZ stability over time. In addition, such properties were also studied at pH 7.2, re-suspending selected APPZ in PBS.</p>
</sec>
<sec id="sec2dot2-nanomaterials-09-00948">
<title>2.2. Preparation of PTX:βCD Inclusion Complexes</title>
<p>PTX:βCD complexes were prepared by means of a freeze-dying method. PTX was dissolved in pure ethanol (0.8 mg/mL) in dark conditions, whereas βCD were dissolved in deionized water (0.9 mg/mL). βCD aqueous solution was added to the PTX one (1:1 molar ratio) and the resulting hydroalcoholic solution was mechanically stirred for 5 hours. Then, it was freeze-dried and dissolved in deionized water [
<xref rid="B28-nanomaterials-09-00948" ref-type="bibr">28</xref>
,
<xref rid="B29-nanomaterials-09-00948" ref-type="bibr">29</xref>
]. PTX inclusion efficiency in βCD was analyzed by mass spectrometry (LC 2795 chromatograph connected to a ZQ-4000 mass spectrometer, Waters Corporation, Milford, MA, USA) [
<xref rid="B30-nanomaterials-09-00948" ref-type="bibr">30</xref>
].</p>
</sec>
<sec id="sec2dot3-nanomaterials-09-00948">
<title>2.3. APPZ Conjugation with Trastuzumab and PTX:βCD Complexes and Conjugated APPZ Characterization</title>
<p>1-Ethyl-3-(3-dimethylaminopropyl)carbodiimide/N-hydroxysuccinimide (EDC/NHS) coupling chemistry was the one selected to conjugate APPZ with trastuzumab and the obtained PTX:βCD complexes. EDC (193 mg/mL) and NHS (58 mg/mL) aqueous solutions were prepared and added to an APPZ suspension (100 mg/mL, pH 4.7). The mixture was stirred for 40 minutes and a trastuzumab (3.2 µg/mL) aqueous solution was later joined. The suspension was again stirred for 3 h and PTX:βCD complexes (0.8 mg/mL PTX equivalent) were added to it. Final suspension was kept in agitation in the dark overnight [
<xref rid="B31-nanomaterials-09-00948" ref-type="bibr">31</xref>
,
<xref rid="B32-nanomaterials-09-00948" ref-type="bibr">32</xref>
,
<xref rid="B33-nanomaterials-09-00948" ref-type="bibr">33</xref>
,
<xref rid="B34-nanomaterials-09-00948" ref-type="bibr">34</xref>
]. Conjugated APPZ were isolated by decreasing suspension pH value until 1.0 and by centrifuging them [
<xref rid="B18-nanomaterials-09-00948" ref-type="bibr">18</xref>
]. Supernatant was preserved to determine PTX:βCD and trastuzumab conjugation efficiencies (CEs) on APPZ.</p>
<p>To finish, conjugated APPZs were characterized. Their size and zeta potential were measured at the conjugation and at the physiological pH values in deionized water and phosphate buffered saline (PBS), respectively. Moreover, these parameters were determined over 8 consecutive days at pH 4.7 to study conjugated APPZ stability, too.</p>
</sec>
<sec id="sec2dot4-nanomaterials-09-00948">
<title>2.4. Determination of PTX and Trastuzumab Conjugation Efficiencies on APPZ </title>
<p>The amount of PTX:βCD and trastuzumab present in APPZ supernatant were analyzed by mass spectrometry and the Bradford method, respectively. In this last case, APPZ supernatant (100 µL) was mixed with Bradford reagent (1 mL). After 5 min, the absorbance of the mixture was measured at 595 nm (UV-1800 spectrophotometer, Shimadzu Corporation, Soraku-gun, Kyoto, Japan) [
<xref rid="B35-nanomaterials-09-00948" ref-type="bibr">35</xref>
]. Once trastuzumab amount present in APPZ supernatant was known, the antibody and the drug CEs were determined by difference, according to equation (1):</p>
<p>CE = (PTX/trastuzumab initial amount − supernatant PTX/trastuzumab)/nanoparticles amount (1)</p>
</sec>
<sec id="sec2dot5-nanomaterials-09-00948">
<title>2.5. Cell Culture</title>
<p>BT474, SKBR3, OVCAR3, and HS5 cell lines were cultured with medium supplemented with FBS (10%), containing high glucose (4500 mg/L) and antibiotics (penicillin 100 U/ml, streptomycin 100 mg/mL). Cell lines were cultured at 37 °C in a humidified atmosphere in the presence of CO
<sub>2</sub>
(5%).</p>
</sec>
<sec id="sec2dot6-nanomaterials-09-00948">
<title>2.6. Determination of BT474, SKBR3, OVCAR3, and HS5 Cellular Levels of HER2-Expression</title>
<p>To determine HER2 and phosphorylated-HER2 (pHER2)-expression in the BT474, SKBR3, OVCAR3 and HS5 cell lines a western blot was carried out. Calnexin was selected as a loading control. Detailed procedures for the protein extraction, quantification, and immunoprecipitation, as well as for the western blotting, can be consulted in Montero et al. [
<xref rid="B36-nanomaterials-09-00948" ref-type="bibr">36</xref>
].</p>
</sec>
<sec id="sec2dot7-nanomaterials-09-00948">
<title>2.7. Conjugated APPZ Internalization in HER2-Overexpressing Cancer Cells</title>
<p>BT474 cells were cultured on coverslips and incubated with culture medium supplemented with FBS (10%) and chloroquine (50 µM) for 1 h. Cells were treated with conjugated APPZ (6.8 μg PTX-equivalent/mL medium) for 30 minutes, 4, 24, and 48 h. Dilutions (1:100) of the anti-LAMP1 antibody were employed for analyzing the HER2 and cellular lysosomes co-localization.</p>
<p>After conjugated APPZ treatment, an immunofluorescence assay was performed according as it was described in Esparís-Ogando et al. and analyzed by confocal laser scanning microscopy (CLSM) (Leica TCS SP5, Leica Microsystems, L’Hospitalet de Llobregat, Spain) [
<xref rid="B37-nanomaterials-09-00948" ref-type="bibr">37</xref>
].</p>
</sec>
<sec id="sec2dot8-nanomaterials-09-00948">
<title>2.8. Conjugated APPZ Specificity: Targeting HER2-Positive Cancer Cells</title>
<p>A BT474 and HS5 cell lines’ co-culture was treated with conjugated APPZ in order to demonstrate their specificity. BT474 and HS5 cell lines were stained with CellTracker
<sup>TM</sup>
Green CMFDA and CellTracker
<sup>TM</sup>
Red CMPTX, respectively. After 24 h, both cell lines were seed together in 6-well plates in a 150,000:300,000 BT474:HS5 cellular ratio. Next day, cells were treated with PTX:βCD complexes (6.8 µg PTX-equivalent/mL) and conjugated APPZ (6.8 μg PTX-equivalent/mL) for 48 h. The effect of both systems was analyzed each 24 h by immunofluorescence [
<xref rid="B37-nanomaterials-09-00948" ref-type="bibr">37</xref>
]. In order to compare the specificity of the free PTX:βCD complexes and the conjugated APPZ, the number of cells of the BT474 and HS5 cell lines was counted in 12 different images for each treatment and the mean ± SD was calculated.</p>
</sec>
<sec id="sec2dot9-nanomaterials-09-00948">
<title>2.9. Conjugated APPZ Cytotoxic Effect According to Cellular Levels of HER2-Expression</title>
<p>Antitumor activity of PTX:βCD complexes and trastuzumab conjugated APPZ (APPZ-PTX:βCD-T) was studied through 3-(4,5-Dimethylthiazol-2-yl)-2,5-Diphenyltetrazolium Bromide (MTT) assays [
<xref rid="B38-nanomaterials-09-00948" ref-type="bibr">38</xref>
]. Cells from the BT474, SKBR3, OVSCAR3, and HS5 cell lines were seed in 24 well-plates and cultured with medium, supplemented with FBS (10%), overnight. The next day, culture medium was replaced by supplemented medium containing PBS (control), free PTX:βCD complexes (6.8 µg PTX-equivalent/mL), trastuzumab (T) (8 ng/mL), APPZ (1 mg/mL), and APPZ-PTX:βCD-T (1 mg/mL, 6.8 μg PTX-equivalent/mL). Free PTX (6.8 µg/mL), previously dissolved in PBS, and APPZ-PTX:βCD (1 mg/mL, 6.8 μg PTX-equivalent/mL) were also tested in the BT474 and HS5 cell lines. In all cases, cell proliferation was analyzed for 4 days, each 24 h. Shown results are the mean ± SD of four replicas for each different treatment.</p>
</sec>
<sec id="sec2dot10-nanomaterials-09-00948">
<title>2.10. Statistical Analyses</title>
<p>Data shown in APPZ characterization, regarding to their size and zeta potential, is the mean ± SD of three different measurements. Results of the MTT assays have been represented as the mean ± SD of four replicas for each treatment of three different experiments and results were considered statistically significant were
<italic>p</italic>
< 0.05. Otherwise, the quantification of the bands obtained in the western blot assay was carried out with the ImageJ 1.44 software (National Institutes of Health, Bethesda, MD, USA). The intensity of each band was determined with regard to the control values and data has been represented as the percentage of the maximum value obtained for each experiment.</p>
</sec>
</sec>
<sec sec-type="results" id="sec3-nanomaterials-09-00948">
<title>3. Results</title>
<sec id="sec3dot1-nanomaterials-09-00948">
<title>3.1. Stable APPZ Synthesis and Characterization</title>
<p>As it was mentioned before, APPZ were synthesized by dropping a piperazine aqueous solution over a sodium alginate one, in different molar ratios, at pH 4.7. Mannuronic and guluronic acid units from sodium alginate chains have a pKa of 3.4 and 3.7, respectively [
<xref rid="B39-nanomaterials-09-00948" ref-type="bibr">39</xref>
]. Piperazine pKa values are, approximately, 5.7 and 9.7 [
<xref rid="B40-nanomaterials-09-00948" ref-type="bibr">40</xref>
]. In this manner, at the working pH, electrostatic interactions took place between both compounds and nanoparticles were formed due to a sodium alginate chains’ chemical crosslinking (
<xref ref-type="fig" rid="nanomaterials-09-00948-f001">Figure 1</xref>
a [
<xref rid="B18-nanomaterials-09-00948" ref-type="bibr">18</xref>
]).</p>
<p>Once obtained, APPZ were isolated, re-suspended in deionized water and characterized. Size and zeta potential of the APPZ synthetized with different piperazine:alginate molar ratios were determined (
<xref ref-type="app" rid="app1-nanomaterials-09-00948">Figure S1a</xref>
). The best size/surface charge relationship was achieved with a 0.25 piperazine:alginate molar ratio and APPZ developed in this manner were selected for further characterization. First, their size and superficial charge were determined at the synthesis pH, finding values of 208 ± 40 nm (PDI = 0.3) and −13.2 ± 1.6 mV, respectively (
<xref ref-type="fig" rid="nanomaterials-09-00948-f001">Figure 1</xref>
b). Next, pH influence over both parameters was analyzed (
<xref ref-type="app" rid="app1-nanomaterials-09-00948">Figure S1b</xref>
). As it is shown, APPZ size did not vary significantly at pH values between 3.0 and 6.0. However, it increased due to the loss of the electrostatic interactions between the alginate chains and piperazine at very acid or basic pH values. As for the APPZ zeta potential, it had more positive values at acid pH values due to the protonation of the –COOH alginate groups. APPZ stability over time was also studied. Variation of their diameter and zeta potential was determined over 8 consecutive days, preserving APPZ at room temperature (
<xref ref-type="fig" rid="nanomaterials-09-00948-f001">Figure 1</xref>
c).Over this period, size only varied a 3.5% ± 0.27% in respect of the first measurement obtained, while superficial charge changed a 5.4 ± 0.3% among the different days of the study. Finally, APPZ properties were analyzed when they were re-suspended in PBS at pH 7.2 and, in this case, they showed a 214 ± 55 nm mean diameter (PDI = 0.4) and a −19.8 ± 1.1 mV superficial charge.</p>
</sec>
<sec id="sec3dot2-nanomaterials-09-00948">
<title>3.2. APPZ Conjugation with Trastuzumab and PTX:βCD Complexes and Later Characterization</title>
<p>Before starting with APPZ conjugation, PTX inclusion efficiency in βCD was analyzed by High-Performance Liquid Chromatography (HPLC) and mass spectrometry. It was found that such inclusion efficiency was about a 0.79 mg PTX/mg βCD [
<xref rid="B30-nanomaterials-09-00948" ref-type="bibr">30</xref>
].</p>
<p>Then, once APPZ were isolated after being synthetized, trastuzumab and the obtained PTX:βCD complexes were covalently attached to their surface (
<xref ref-type="fig" rid="nanomaterials-09-00948-f002">Figure 2</xref>
a). EDC, in a non-cytotoxic concentration (0.01M) [
<xref rid="B34-nanomaterials-09-00948" ref-type="bibr">34</xref>
], was employed to transform alginate carboxylic groups into stable O-acylurea intermediates. Besides, NHS was added to improve EDC stability [
<xref rid="B33-nanomaterials-09-00948" ref-type="bibr">33</xref>
]. Later, O-acylurea intermediates reacted with trastuzumab amine groups from lysine residues to form amide bonds when the antibody was joined [
<xref rid="B12-nanomaterials-09-00948" ref-type="bibr">12</xref>
,
<xref rid="B14-nanomaterials-09-00948" ref-type="bibr">14</xref>
]. In the same manner, PTX:βCD complexes were added to the active APPZ suspension and βCD molecules were attached to them through ester bonds.</p>
<p>Non-attached trastuzumab and PTX:βCD complexes were discarded by a second APPZ isolation through centrifugation. The amount of the antibody and the antitumor drug present in conjugated APPZ supernatant was analyzed. CEs were found to be 8 ng trastuzumab/mg APPZ and a 6.8 μg PTX/mg APPZ, which were adequate results according to the doses of these compounds that have to be administered in vivo [
<xref rid="B41-nanomaterials-09-00948" ref-type="bibr">41</xref>
,
<xref rid="B42-nanomaterials-09-00948" ref-type="bibr">42</xref>
]. Likewise, trastuzumab and PTX:βCD complexes attachment to APPZ was proved with a Fourier Transform-Infrared Spectroscopy (FT-IR) analysis in the 500–4000 cm
<sup>−1</sup>
region (
<xref ref-type="fig" rid="nanomaterials-09-00948-f002">Figure 2</xref>
c). Compared with the APPZ, the main changes in the APPZ-PTX:βCD-T spectra appeared at 1232, 1704, and 3500–4000 cm
<sup>−1</sup>
. The first shift could correspond to the βCD conjugation through an ester bond, while the other two demonstrated trastuzumab attachment. Thus, the shift from 1704 cm
<sup>−1</sup>
could be assigned to an amide bond vibration and there could be more amide shifts in the 1570–1670 cm
<sup>−1</sup>
region that would be masked by the wide alginate signal [
<xref rid="B34-nanomaterials-09-00948" ref-type="bibr">34</xref>
].</p>
<p>To finish with conjugated APPZ characterization, their size and zeta potential were determined. At the conjugation pH value, their size was near 296 ± 50 nm (PDI = 0.4), while their superficial charge was about −24 ± 1.4 mV (
<xref ref-type="app" rid="app1-nanomaterials-09-00948">Figure S2</xref>
). Otherwise, when they were re-suspended in PBS, the values of these parameters were 359 ± 60 nm (PDI = 0.45) and –26.2 ± 2.1 mV at the physiological pH (7.2). Conjugated APPZ stability was also studied for 8 consecutive days at pH 4.7 (
<xref ref-type="fig" rid="nanomaterials-09-00948-f002">Figure 2</xref>
b). Variations in their diameter and superficial charge were determined and it was found that first property varied a 2.25% ± 0.84 % in respect of the first day measurement. On the other hand, superficial charge changed a 3.13% ± 0.27 % among the different performed measurements.</p>
</sec>
<sec id="sec3dot3-nanomaterials-09-00948">
<title>3.3. Conjugated APPZ are Internalized in HER2-Overexpressing Cancer Cells by Endocytosis</title>
<p>Different cell lines expressing distinct HER2 levels were selected to study conjugated APPZ biological properties. As described in the literature [
<xref rid="B43-nanomaterials-09-00948" ref-type="bibr">43</xref>
,
<xref rid="B44-nanomaterials-09-00948" ref-type="bibr">44</xref>
], it was found that total HER2 and pHER2 were great overexpressed in the BT474 and SKBR3 cell lines. OVCAR3 and HS5 cells also expressed HER2, although to a much lesser extent. This fact can be noticed in the overexposed western blot (
<xref ref-type="fig" rid="nanomaterials-09-00948-f003">Figure 3</xref>
a).</p>
<p>Conjugated APPZ internalization was studied in BT474 cells. Thanks to the presence of trastuzumab in the APPZ surface, it was expected that APPZ would be internalized in HER2-overpressing cells through an endocytosis process. In addition, it was also considered that part of the administered PTX could pass through the cellular membrane and arrived directly to the microtubules, its therapeutic center of action (
<xref ref-type="fig" rid="nanomaterials-09-00948-f003">Figure 3</xref>
b). The first fact was proven by means of immunofluorescence and CLSM. BT474 cells were incubated with conjugated APPZ for different times and the location of trastuzumab was visualized using a secondary antibody. Incubation with APPZ resulted in progressive accumulation of trastuzumab in intracellular sites (
<xref ref-type="fig" rid="nanomaterials-09-00948-f003">Figure 3</xref>
c). Furthermore, a co-staining of trastuzumab and the cellular lysosomes was carried out, using a LAMP1 marker, to check whether APPZ were targeted to lysosomes. There was a co-localization of both markers that proved that APPZ would end up in such organelles in treated cells (
<xref ref-type="fig" rid="nanomaterials-09-00948-f003">Figure 3</xref>
d).</p>
</sec>
<sec id="sec3dot4-nanomaterials-09-00948">
<title>3.4. Conjugated APPZ Present HER2-Overexpressing Specificity</title>
<p>In order to compare conjugated APPZ specificity with that of the free PTX:βCD complexes, a co-culture of the HER2-overexpressing BT474 and the human stromal HS5 cell lines was performed. Both cell lines were separately stained and once they were cultured together, they were treated with conjugated APPZ (
<xref ref-type="fig" rid="nanomaterials-09-00948-f004">Figure 4</xref>
a). CLSM images were taken 24 and 48 h after such treatment (
<xref ref-type="fig" rid="nanomaterials-09-00948-f004">Figure 4</xref>
b). It could be seen that free PTX:βCD complexes really affect to BT474 cells’ viability, but they also notably reduced HS5 cells’ survival, especially after 48 h. By contrast, conjugated APPZ achieved to reduce BT474 cells’ viability without affecting HS5 cells’ survival in an analogous manner (
<xref ref-type="fig" rid="nanomaterials-09-00948-f004">Figure 4</xref>
c).</p>
</sec>
<sec id="sec3dot5-nanomaterials-09-00948">
<title>3.5. Conjugated APPZ Have Different Cytotoxic Effect According to Cellular Levels of HER2-Expression</title>
<p>Conjugated APPZ antiproliferative activity was analyzed through MTT assays with the BT474, SKBR3, OVCAR3, and HS5 cell lines. As it was shown before, BT474 and SKBR3 cells presented a HER2-overexpression, while such expression was lower in the OVCAR3 and HS5 cell lines, respectively (
<xref ref-type="fig" rid="nanomaterials-09-00948-f003">Figure 3</xref>
a). Thus, conjugated APPZ resulted almost as efficient as equivalent free PTX:βCD complexes in the first two HER2-overpressing cell lines (
<xref ref-type="fig" rid="nanomaterials-09-00948-f005">Figure 5</xref>
a,b). Nevertheless, their antitumor effect decreased in the non HER2-overexpressing cells in comparison with the free PTX:βCD complexes activity (
<xref ref-type="fig" rid="nanomaterials-09-00948-f005">Figure 5</xref>
c,d). This difference proved again the specificity of the targeted nanosystem. In addition, it could be seen that non-conjugated APPZ decreased tumor cells’ proliferation rate, possible due to piperazine antioxidant effect [
<xref rid="B45-nanomaterials-09-00948" ref-type="bibr">45</xref>
], but that such treatment did not affect non-HER2-overexpressing cells’ survival rate.</p>
<p>With the aim of demonstrating that the specificity of the targeted nanovehicle was favored by the conjugation of trastuzumab, APPZ-PTX:βCD effect over cellular viability was also tested in BT474 and HS5 cells. As result, it was proven that APPZ-PTX:βCD decreased BT474 cells’ survival rate in a lesser extent than APPZ-PTX:βCD-T did, probably because of a minor endocytosis rate, non-receptor mediated. On the contrary, APPZ-PTX:βCD were responsible for a further reduction in HS5 cells’ viability in comparison with APPZ-PTX:βCD-T (
<xref ref-type="app" rid="app1-nanomaterials-09-00948">Figure S3</xref>
).</p>
<p>At last, improvement of PTX aqueous solubility with its inclusion into βCD was shown with MTT experiments with BT474 and HS5 cell lines, too. Free PTX was tested in both types of cells and it was not as much efficient as PTX:βCD complexes were. Even conjugated nanoparticles had a more remarkable effect over BT474 cellular viability (
<xref ref-type="app" rid="app1-nanomaterials-09-00948">Figure S3</xref>
).</p>
</sec>
</sec>
<sec sec-type="discussion" id="sec4-nanomaterials-09-00948">
<title>4. Discussion</title>
<p>In spite of being one of the most employed chemotherapy drugs these days, PTX has a very limited aqueous solubility. As consequence, it is normally administered with solvents that add more toxicity to the taxane and limit their bioavailability. Besides, PTX inhibits microtubules’ depolymerization and presents a restricted tumor-selectivity and all these handicaps confine its possible given doses [
<xref rid="B6-nanomaterials-09-00948" ref-type="bibr">6</xref>
,
<xref rid="B7-nanomaterials-09-00948" ref-type="bibr">7</xref>
].</p>
<p>Herein, the scientific community is making great efforts in order to reduce these PTX disadvantages and [
<xref rid="B7-nanomaterials-09-00948" ref-type="bibr">7</xref>
,
<xref rid="B8-nanomaterials-09-00948" ref-type="bibr">8</xref>
], in this work, such drawbacks’ reduction was the main aim.</p>
<p>In this manner, a novel PTX targeted nanovehicle, which had been synthetized in previous works to transport other conventional drugs [
<xref rid="B18-nanomaterials-09-00948" ref-type="bibr">18</xref>
], was developed. Integrated by piperazine and sodium alginate nanoparticles, such nanovehicles were obtained thanks to the electrostatic interactions that took place between both biocompatible compounds at acid pH values. Once obtained, the PTX transport nanosystem was characterized at the development pH value. Moreover, their size and superficial charge were determined at other pH values, like the physiological pH. In any case, APPZ showed zeta potential values that guaranteed their colloidal stability and that, along with their mean size values and stability, were adequate for a potential in vivo administration of the nanoparticles [
<xref rid="B46-nanomaterials-09-00948" ref-type="bibr">46</xref>
].</p>
<p>On the developed nanovehicle’s surface, trastuzumab and PTX, included in βCD molecules, were attached thanks to the EDC/NHS chemistry, previously employed in literature to anchor proteins on other nanoparticles and hydrogels [
<xref rid="B33-nanomaterials-09-00948" ref-type="bibr">33</xref>
,
<xref rid="B34-nanomaterials-09-00948" ref-type="bibr">34</xref>
]. PTX was included in βCD with the objective of improving its solubility in aqueous media [
<xref rid="B22-nanomaterials-09-00948" ref-type="bibr">22</xref>
] and the used of trastuzumab was intended to target HER2-overexpressing cells. Their attachment to the APPZ surface was proven with a FT-IR analysis and the CEs of both, the antibody and the PTX:βCD complexes, were suitable according to the doses of these compounds that have to be administered to achieve a therapeutic effect. Once conjugated, APPZ were again characterized and anew presented a proper size, zeta potential, and stability to potentially be in vivo administered [
<xref rid="B47-nanomaterials-09-00948" ref-type="bibr">47</xref>
].</p>
<p>For the next step, conjugated APPZ internalization was studied in the BT474 HER2-overexpressing cell line. As expected [
<xref rid="B46-nanomaterials-09-00948" ref-type="bibr">46</xref>
], it was demonstrated with an immunofluorescence assay and CLSM that conjugated APPZ were internalized into cellular cytoplasm by endocytosis. Thus, it could be seen that trastuzumab fluorescence signal was displaced from the cellular membrane to the cytoplasm only after 4 h of treatment and that such signal overlapped with the one of the lysosomal marker LAMP1 [
<xref rid="B48-nanomaterials-09-00948" ref-type="bibr">48</xref>
].</p>
<p>Finally, conjugated APPZ specificity and antitumor activity was in vitro validated to check if the main objective of the work was accomplished. For the first fact, a co-culture between the BT474 and the HS5 cell lines was carried out and treated with the targeted nanovehicle and with equivalent free PTX:βCD complexes. As result, it was shown that while the free PTX:βCD complexes reduced both the HER2-overexpressing and the non-HER2-overexpressing cellular viability in a notable manner, conjugated APPZ were more specific. They were almost as much efficient as PTX:βCD complexes killing BT474 cells after 48 h, but they did not reduce HS5 viability in the same way. Even the number of such healthy cells was increased in comparison with the control 48 h after being treated with the conjugated APPZ, possibly due to higher space availability in the culture wells.</p>
<p>Furthermore, conjugated APPZ specificity was afresh demonstrated when their antiproliferative activity was analyzed with MTT assays. When HER2-overpressing cell lines (BT474 and SKBR3) were treated with them, conjugated APPZ almost had the same viability effect as the free PTX:βCD complexes. However, in the cell lines that had a lower HER2-expression (OVCAR3 and HS5), there was a significant difference between the targeted nanosystem and the PTX:βCD complexes activity. Hence, it was shown that PTX aqueous solubility, bioavailability, and specificity conferred by the presence of trastuzumab, were improved and that the aim of the study was attained.</p>
</sec>
<sec sec-type="conclusions" id="sec5-nanomaterials-09-00948">
<title>5. Conclusions</title>
<p>On the whole, a novel and targeted PTX nanovehicle has been developed in this work with the aim of improving its bioavailability and specificity for the treatment of HER2-positive tumors. Integrated by piperazine and sodium alginate nanoparticles, the surface of such nanovehicles was properly activated by means of the EDC/NHS chemistry to covalently attach to it trastuzumab and PTX, included in β-cyclodextrin molecules to improve its water-solubility.</p>
<p>Once conjugated, the nanosystem showed a proper size, surface charge, and stability to be potentially in vivo administered. In vitro, it was demonstrated that the targeted nanovehicle was internalized into the cytoplasm of HER2-overexpressing tumor cells through an endocytosis mechanism and that it ended up entering their lysosomes. Moreover, the specificity of the conjugated nanoparticles in comparison with that of the free drug was twice proven. Firstly, a co-culture of HER2- and non-HER2-overexpressing cells was performed and, secondly, MTT assays with cell lines with a different level of HER2-expression were carried out. In both cases, the obtained results were similar. While the conjugated nanoparticles were almost as efficient as the free administered PTX:βCD in reducing HER2-overexpressing cancer cells’ viability, they did not affect non-HER2-overexpressing survival rate in the same manner. Such specificity was consequence of the conjugation of trastuzumab to the nanosystem, as additional MTT assays showed. Hence, the employment of the PTX-trastuzumab nanovehicle that is here proposed could help to reduce its frequent adverse effects, being more specific and efficient for the treatment of any HER2-positive tumor.</p>
</sec>
</body>
<back>
<ack>
<title>Acknowledgments</title>
<p>The authors would like to thank all the funding sources that have made possible this work.</p>
</ack>
<app-group>
<app id="app1-nanomaterials-09-00948">
<title>Supplementary Materials</title>
<p>The following are available online at
<uri xlink:href="https://www.mdpi.com/2079-4991/9/7/948/s1">https://www.mdpi.com/2079-4991/9/7/948/s1</uri>
, Figure S1: APPZ synthesis and characterization. Figure S2: Conjugated APPZ size and zeta potential determination at the conjugation-pH value. Figure S3: Results of the additional MTT experiments performed with the (a) BT474 and the (b) HS5 cell lines. They showed that conjugated APPZ specificity was favoured by trastuzumab conjugation and that PTX inclusion into βCD improved its aqueous solubility. Shown results are the mean ± SD of four replicas for each different treatment. </p>
<supplementary-material content-type="local-data" id="nanomaterials-09-00948-s001">
<media xlink:href="nanomaterials-09-00948-s001.zip">
<caption>
<p>Click here for additional data file.</p>
</caption>
</media>
</supplementary-material>
</app>
</app-group>
<notes>
<title>Author Contributions</title>
<p>Conceptualization, A.P. and E.M.M.d.V.; Funding acquisition, A.P. and E.M.M.d.V.; Investigation, C.N. and A.C.; Methodology, C.N. and A.C.; Supervision, J.A.R.-R., A.P., and E.M.M.d.V.; Writing —original draft, C.N.; Writing—review & editing, A.C., J.A.R.-R., A.P., and E.M.M.d.V.</p>
</notes>
<notes>
<title>Funding</title>
<p>This work was supported by a UE ERC Starting Grant (MYCAP. Development of a technology to produce microcapsules, based on the formation of drops from viscous non-Newtonians liquids sprayed through fan-jet nozzles, to use in cancer therapy), by the Spanish Ministry of Economy and Competitiveness (BFU2012-39151, BFU2015-71371R, CTQ2016-78988-R, PI15/00684, and FEDER), the CRIS Cancer Foundation and the Scientific Foundation of the Spanish Association Against Cancer (AECC). CN is recipient of a predoctoral contract from the Junta de Castilla y León, co-funded by the European Social Foundation (EDU/602/2016) and AC was supported by a doctoral fellowship from Coordination for the Improvement of Higher Education Personnel (CAPES) from the Ministry of Education of Brazil.</p>
</notes>
<notes notes-type="COI-statement">
<title>Conflicts of Interest</title>
<p>Part of this work (the nanosystem development and characterization, and its cytotoxicity for the BT474 cell line) was presented at the AIChE Annual Meeting 2016 Conference (San Francisco, USA) and at the BIOTEC2017 Conference (Murcia, Spain) as an oral communication with interim finding.</p>
</notes>
<ref-list>
<title>References</title>
<ref id="B1-nanomaterials-09-00948">
<label>1.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Luzzati</surname>
<given-names>T.</given-names>
</name>
<name>
<surname>Parenti</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Rughi</surname>
<given-names>T.</given-names>
</name>
</person-group>
<article-title>Economic growth and cancer incidence</article-title>
<source>Ecol. Econ.</source>
<year>2018</year>
<volume>146</volume>
<fpage>381</fpage>
<lpage>396</lpage>
<pub-id pub-id-type="doi">10.1016/j.ecolecon.2017.11.031</pub-id>
</element-citation>
</ref>
<ref id="B2-nanomaterials-09-00948">
<label>2.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Dickens</surname>
<given-names>E.</given-names>
</name>
<name>
<surname>Ahmed</surname>
<given-names>S.</given-names>
</name>
</person-group>
<article-title>Principles of cancer treatment chemotherapy</article-title>
<source>Surgery</source>
<year>2017</year>
<volume>36</volume>
<fpage>134</fpage>
<lpage>138</lpage>
<pub-id pub-id-type="doi">10.1016/j.mpsur.2017.12.002</pub-id>
</element-citation>
</ref>
<ref id="B3-nanomaterials-09-00948">
<label>3.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Krukiewicz</surname>
<given-names>K.</given-names>
</name>
<name>
<surname>Zak</surname>
<given-names>J.K.</given-names>
</name>
</person-group>
<article-title>Biomaterial-based regional chemotherapy: Local anticancer drug delivery to enhance chemotherapy and minimize its size-effects</article-title>
<source>Mater. Sci. Eng. C</source>
<year>2016</year>
<volume>62</volume>
<fpage>927</fpage>
<lpage>942</lpage>
<pub-id pub-id-type="doi">10.1016/j.msec.2016.01.063</pub-id>
<pub-id pub-id-type="pmid">26952500</pub-id>
</element-citation>
</ref>
<ref id="B4-nanomaterials-09-00948">
<label>4.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Abandansari</surname>
<given-names>H.S.</given-names>
</name>
<name>
<surname>Abuali</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Nabid</surname>
<given-names>M.R.</given-names>
</name>
<name>
<surname>Niknejad</surname>
<given-names>H.</given-names>
</name>
</person-group>
<article-title>Enhance chemotherapy efficacy and minimize anticancer drug side effects by using reversible pH- and redox- responsive cross-linked unimolecular micelles</article-title>
<source>Polymer</source>
<year>2017</year>
<volume>116</volume>
<fpage>16</fpage>
<lpage>26</lpage>
<pub-id pub-id-type="doi">10.1016/j.polymer.2017.03.062</pub-id>
</element-citation>
</ref>
<ref id="B5-nanomaterials-09-00948">
<label>5.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Wang</surname>
<given-names>F.</given-names>
</name>
<name>
<surname>Porter</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Konstantopoulos</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Zhang</surname>
<given-names>P.</given-names>
</name>
<name>
<surname>Cui</surname>
<given-names>H.</given-names>
</name>
</person-group>
<article-title>Preclinical development of drug delivery systems for paclitaxel-based cancer chemotherapy</article-title>
<source>J. Control. Release</source>
<year>2017</year>
<volume>267</volume>
<fpage>100</fpage>
<lpage>118</lpage>
<pub-id pub-id-type="doi">10.1016/j.jconrel.2017.09.026</pub-id>
<pub-id pub-id-type="pmid">28958854</pub-id>
</element-citation>
</ref>
<ref id="B6-nanomaterials-09-00948">
<label>6.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Bernabeu</surname>
<given-names>E.</given-names>
</name>
<name>
<surname>Cagel</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Lagomarsino</surname>
<given-names>E.</given-names>
</name>
<name>
<surname>Moretton</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Chiappetta</surname>
<given-names>D.A.</given-names>
</name>
</person-group>
<article-title>Paclitaxel: What has been done and the challenges remain ahead</article-title>
<source>Int. J. Pharm.</source>
<year>2017</year>
<volume>526</volume>
<fpage>474</fpage>
<lpage>495</lpage>
<pub-id pub-id-type="doi">10.1016/j.ijpharm.2017.05.016</pub-id>
<pub-id pub-id-type="pmid">28501439</pub-id>
</element-citation>
</ref>
<ref id="B7-nanomaterials-09-00948">
<label>7.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Sofias</surname>
<given-names>A.M.</given-names>
</name>
<name>
<surname>Dunne</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Storm</surname>
<given-names>G.</given-names>
</name>
<name>
<surname>Allen</surname>
<given-names>C.</given-names>
</name>
</person-group>
<article-title>The battle of nano-paclitaxel</article-title>
<source>Adv. Drug. Deliv. Rev.</source>
<year>2017</year>
<volume>122</volume>
<fpage>20</fpage>
<lpage>30</lpage>
<pub-id pub-id-type="doi">10.1016/j.addr.2017.02.003</pub-id>
<pub-id pub-id-type="pmid">28257998</pub-id>
</element-citation>
</ref>
<ref id="B8-nanomaterials-09-00948">
<label>8.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Du</surname>
<given-names>X.</given-names>
</name>
<name>
<surname>Khan</surname>
<given-names>A.R.</given-names>
</name>
<name>
<surname>Fu</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Ji</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Yu</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Zhai</surname>
<given-names>G.</given-names>
</name>
</person-group>
<article-title>Current development in the formulations of non-injection administration of paclitaxel</article-title>
<source>Int. J. Pharm.</source>
<year>2018</year>
<volume>542</volume>
<fpage>242</fpage>
<lpage>252</lpage>
<pub-id pub-id-type="doi">10.1016/j.ijpharm.2018.03.030</pub-id>
<pub-id pub-id-type="pmid">29555439</pub-id>
</element-citation>
</ref>
<ref id="B9-nanomaterials-09-00948">
<label>9.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Khuroo</surname>
<given-names>T.</given-names>
</name>
<name>
<surname>Verma</surname>
<given-names>D.</given-names>
</name>
<name>
<surname>Khuroo</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Ali</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Iqbal</surname>
<given-names>Z.</given-names>
</name>
</person-group>
<article-title>Simultaneous delivery of paclitaxel and erlotinib from dual drug loaded PLGA nanoparticles: Formulation development, thorough optimization and in vitro release</article-title>
<source>J. Mol. Liq.</source>
<year>2018</year>
<volume>257</volume>
<fpage>52</fpage>
<lpage>68</lpage>
<pub-id pub-id-type="doi">10.1016/j.molliq.2018.02.091</pub-id>
</element-citation>
</ref>
<ref id="B10-nanomaterials-09-00948">
<label>10.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Gupta</surname>
<given-names>D.</given-names>
</name>
<name>
<surname>Kumar</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Tyagi</surname>
<given-names>P.</given-names>
</name>
<name>
<surname>Kapoor</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Tyagi</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Barman</surname>
<given-names>T.K.</given-names>
</name>
<name>
<surname>Kharbanda</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Kufe</surname>
<given-names>D.</given-names>
</name>
<name>
<surname>Singh</surname>
<given-names>H.</given-names>
</name>
</person-group>
<article-title>Concomitant delivery of paclitaxel and NuBCP-9 peptide for synergistic enhancement of cancer therapy</article-title>
<source>Nanomedicine</source>
<year>2018</year>
<volume>14</volume>
<fpage>1301</fpage>
<lpage>1313</lpage>
<pub-id pub-id-type="doi">10.1016/j.nano.2018.03.010</pub-id>
<pub-id pub-id-type="pmid">29641982</pub-id>
</element-citation>
</ref>
<ref id="B11-nanomaterials-09-00948">
<label>11.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Chowdhury</surname>
<given-names>P.</given-names>
</name>
<name>
<surname>Nagesh</surname>
<given-names>P.K.B.</given-names>
</name>
<name>
<surname>Hatami</surname>
<given-names>E.</given-names>
</name>
<name>
<surname>Wagh</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Dan</surname>
<given-names>N.</given-names>
</name>
<name>
<surname>Tripathi</surname>
<given-names>M.K.</given-names>
</name>
<name>
<surname>Khan</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Hafrez</surname>
<given-names>B.B.</given-names>
</name>
<name>
<surname>Meibohm</surname>
<given-names>B.</given-names>
</name>
<name>
<surname>Chauhan</surname>
<given-names>S.C.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Tannic acid-inspired paclitaxel nanoparticles for enhanced anticancer effects in breast cancer cells</article-title>
<source>J. Colloid Interface Sci.</source>
<year>2019</year>
<volume>535</volume>
<fpage>133</fpage>
<lpage>148</lpage>
<pub-id pub-id-type="doi">10.1016/j.jcis.2018.09.072</pub-id>
<pub-id pub-id-type="pmid">30292104</pub-id>
</element-citation>
</ref>
<ref id="B12-nanomaterials-09-00948">
<label>12.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Huang</surname>
<given-names>R.</given-names>
</name>
<name>
<surname>Wang</surname>
<given-names>Q.</given-names>
</name>
<name>
<surname>Zhang</surname>
<given-names>X.</given-names>
</name>
<name>
<surname>Zhu</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Sun</surname>
<given-names>B.</given-names>
</name>
</person-group>
<article-title>Trastuzumab-cisplatin conjugates for targeted delivery of cisplatin to HER2-overexpressing cancer cells</article-title>
<source>Biomed. Pharmacother.</source>
<year>2015</year>
<volume>72</volume>
<fpage>17</fpage>
<lpage>23</lpage>
<pub-id pub-id-type="doi">10.1016/j.biopha.2015.03.004</pub-id>
<pub-id pub-id-type="pmid">26054670</pub-id>
</element-citation>
</ref>
<ref id="B13-nanomaterials-09-00948">
<label>13.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Nguyen</surname>
<given-names>H.T.</given-names>
</name>
<name>
<surname>Tran</surname>
<given-names>T.H.</given-names>
</name>
<name>
<surname>Thapa</surname>
<given-names>R.K.</given-names>
</name>
<name>
<surname>Phung</surname>
<given-names>C.D.</given-names>
</name>
<name>
<surname>Shin</surname>
<given-names>B.S.</given-names>
</name>
<name>
<surname>Jeong</surname>
<given-names>J.H.</given-names>
</name>
<name>
<surname>Choi</surname>
<given-names>H.G.</given-names>
</name>
<name>
<surname>Yong</surname>
<given-names>C.S.</given-names>
</name>
<name>
<surname>Kim</surname>
<given-names>J.O.</given-names>
</name>
</person-group>
<article-title>Targeted co-delivery of polypyrrole and rapamycin by trastuzumab-conjugated liposomes for combined chemo-photothermal therapy</article-title>
<source>Int. J. Pharm.</source>
<year>2017</year>
<volume>527</volume>
<fpage>61</fpage>
<lpage>71</lpage>
<pub-id pub-id-type="doi">10.1016/j.ijpharm.2017.05.034</pub-id>
<pub-id pub-id-type="pmid">28528212</pub-id>
</element-citation>
</ref>
<ref id="B14-nanomaterials-09-00948">
<label>14.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Huang</surname>
<given-names>R.</given-names>
</name>
<name>
<surname>Sun</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Zhang</surname>
<given-names>X.Y.</given-names>
</name>
<name>
<surname>Sun</surname>
<given-names>B.W.</given-names>
</name>
<name>
<surname>Wang</surname>
<given-names>Q.C.</given-names>
</name>
<name>
<surname>Zhu</surname>
<given-names>Z.</given-names>
</name>
</person-group>
<article-title>Biological evaluation of a novel Herceptin-platinum (II) conjugate for efficient and cancer cell specific delivery</article-title>
<source>Biomed. Pharmacother.</source>
<year>2015</year>
<volume>73</volume>
<fpage>116</fpage>
<lpage>122</lpage>
<pub-id pub-id-type="doi">10.1016/j.biopha.2015.05.013</pub-id>
<pub-id pub-id-type="pmid">26211591</pub-id>
</element-citation>
</ref>
<ref id="B15-nanomaterials-09-00948">
<label>15.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Morimura</surname>
<given-names>O.</given-names>
</name>
<name>
<surname>Minami</surname>
<given-names>T.</given-names>
</name>
<name>
<surname>Kijima</surname>
<given-names>T.</given-names>
</name>
<name>
<surname>Koyama</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Otsuka</surname>
<given-names>T.</given-names>
</name>
<name>
<surname>Kinehara</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Osa</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Higashiguchi</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Miyake</surname>
<given-names>K.</given-names>
</name>
<name>
<surname>Nagatomo</surname>
<given-names>I.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Trastuzumab emtansine suppresses the growth of HER2-positive small-cell lung cancer in preclinical models</article-title>
<source>Biochem. Biophys. Res. Commun.</source>
<year>2017</year>
<volume>488</volume>
<fpage>596</fpage>
<lpage>602</lpage>
<pub-id pub-id-type="doi">10.1016/j.bbrc.2017.05.090</pub-id>
<pub-id pub-id-type="pmid">28526406</pub-id>
</element-citation>
</ref>
<ref id="B16-nanomaterials-09-00948">
<label>16.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Daniels</surname>
<given-names>B.</given-names>
</name>
<name>
<surname>Kiely</surname>
<given-names>B.E.</given-names>
</name>
<name>
<surname>Lord</surname>
<given-names>S.J.</given-names>
</name>
<name>
<surname>Houssami</surname>
<given-names>N.</given-names>
</name>
<name>
<surname>Lu</surname>
<given-names>C.Y.</given-names>
</name>
<name>
<surname>Ward</surname>
<given-names>R.L.</given-names>
</name>
<name>
<surname>Pearson</surname>
<given-names>S.A.</given-names>
</name>
</person-group>
<article-title>Trastuzumab for metastatic breast cancer: real world outcomes from an Australian whole-of-population cohort (2001-2006)</article-title>
<source>Breast</source>
<year>2018</year>
<volume>38</volume>
<fpage>7</fpage>
<lpage>13</lpage>
<pub-id pub-id-type="doi">10.1016/j.breast.2017.11.007</pub-id>
<pub-id pub-id-type="pmid">29172171</pub-id>
</element-citation>
</ref>
<ref id="B17-nanomaterials-09-00948">
<label>17.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Baselga</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Manikhas</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Cortés</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Llombart</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Roman</surname>
<given-names>L.</given-names>
</name>
<name>
<surname>Semiglazov</surname>
<given-names>V.F.</given-names>
</name>
<name>
<surname>Byakhov</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Lokanatha</surname>
<given-names>D.</given-names>
</name>
<name>
<surname>Forenza</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Goldfarb</surname>
<given-names>R.H.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Phase III trial of nonpegylated liposomal doxorubicin in combination with trastuzumab and paclitaxel in HER2-positive metastatic breast cancer</article-title>
<source>Ann. Oncol.</source>
<year>2014</year>
<volume>25</volume>
<issue>3</issue>
<fpage>592</fpage>
<lpage>598</lpage>
<pub-id pub-id-type="doi">10.1093/annonc/mdt543</pub-id>
<pub-id pub-id-type="pmid">24401928</pub-id>
</element-citation>
</ref>
<ref id="B18-nanomaterials-09-00948">
<label>18.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Román</surname>
<given-names>J.V.</given-names>
</name>
<name>
<surname>Rodríguez-Rodríguez</surname>
<given-names>J.A.</given-names>
</name>
<name>
<surname>Martín del Valle</surname>
<given-names>E.M.</given-names>
</name>
<name>
<surname>Galán</surname>
<given-names>M.A.</given-names>
</name>
</person-group>
<article-title>Synthesis of a new nanoparticle system based on the electrostatic alginate-piperazine interactions</article-title>
<source>Polym. Adv. Technol.</source>
<year>2016</year>
<volume>27</volume>
<fpage>623</fpage>
<lpage>629</lpage>
<pub-id pub-id-type="doi">10.1002/pat.3731</pub-id>
</element-citation>
</ref>
<ref id="B19-nanomaterials-09-00948">
<label>19.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Huang</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Li</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Feng</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Li</surname>
<given-names>K.</given-names>
</name>
<name>
<surname>Yan</surname>
<given-names>H.</given-names>
</name>
<name>
<surname>Gao</surname>
<given-names>P.</given-names>
</name>
<name>
<surname>Xiao</surname>
<given-names>T.</given-names>
</name>
<name>
<surname>Wang</surname>
<given-names>C.</given-names>
</name>
</person-group>
<article-title>Aggregation behavior of derivatives of sodium alginate and N-octyl-D-glucopyranoside in aqueous solutions</article-title>
<source>Colloids Surf. A</source>
<year>2015</year>
<volume>479</volume>
<fpage>11</fpage>
<lpage>17</lpage>
<pub-id pub-id-type="doi">10.1016/j.colsurfa.2015.03.050</pub-id>
</element-citation>
</ref>
<ref id="B20-nanomaterials-09-00948">
<label>20.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Shah</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Shah</surname>
<given-names>A.M.</given-names>
</name>
<name>
<surname>Parveen</surname>
<given-names>N.</given-names>
</name>
<name>
<surname>Rehman</surname>
<given-names>Z.</given-names>
</name>
<name>
<surname>Khan</surname>
<given-names>S.Z.</given-names>
</name>
<name>
<surname>Rana</surname>
<given-names>U.A.</given-names>
</name>
<name>
<surname>Khan</surname>
<given-names>S.U.</given-names>
</name>
<name>
<surname>Nisar</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Lashin</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Qureshi</surname>
<given-names>R.</given-names>
</name>
</person-group>
<article-title>Synthesis and electrochemical investigations of piperazines</article-title>
<source>Electrochim. Acta</source>
<year>2016</year>
<volume>220</volume>
<fpage>705</fpage>
<lpage>711</lpage>
<pub-id pub-id-type="doi">10.1016/j.electacta.2016.10.165</pub-id>
</element-citation>
</ref>
<ref id="B21-nanomaterials-09-00948">
<label>21.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Fytas</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>Zoidis</surname>
<given-names>G.</given-names>
</name>
<name>
<surname>Tsotinis</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Fytas</surname>
<given-names>G.</given-names>
</name>
<name>
<surname>Khan</surname>
<given-names>M.A.</given-names>
</name>
<name>
<surname>Khtar</surname>
<given-names>S.A.</given-names>
</name>
</person-group>
<article-title>Novel1-(2-aryl-2-adamantyl) piperazine derivatives with antiproliferative activity</article-title>
<source>Eur. J. Med. Chem.</source>
<year>2015</year>
<volume>93</volume>
<fpage>281</fpage>
<lpage>290</lpage>
<pub-id pub-id-type="doi">10.1016/j.ejmech.2015.02.021</pub-id>
<pub-id pub-id-type="pmid">25703296</pub-id>
</element-citation>
</ref>
<ref id="B22-nanomaterials-09-00948">
<label>22.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Martín del Valle</surname>
<given-names>E.M.</given-names>
</name>
</person-group>
<article-title>Cyclodextrins and their uses: a review</article-title>
<source>Process. Biochem.</source>
<year>2004</year>
<volume>39</volume>
<fpage>1033</fpage>
<lpage>1046</lpage>
<pub-id pub-id-type="doi">10.1016/S0032-9592(03)00258-9</pub-id>
</element-citation>
</ref>
<ref id="B23-nanomaterials-09-00948">
<label>23.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Shelley</surname>
<given-names>H.</given-names>
</name>
<name>
<surname>Babu</surname>
<given-names>R.J.</given-names>
</name>
</person-group>
<article-title>Role of cyclodextrins in nanoparticle-based drug delivery systems</article-title>
<source>J. Pharm. Sci.</source>
<year>2018</year>
<volume>107</volume>
<fpage>1741</fpage>
<lpage>1753</lpage>
<pub-id pub-id-type="doi">10.1016/j.xphs.2018.03.021</pub-id>
<pub-id pub-id-type="pmid">29625157</pub-id>
</element-citation>
</ref>
<ref id="B24-nanomaterials-09-00948">
<label>24.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Oroujeni</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Kaboudin</surname>
<given-names>B.</given-names>
</name>
<name>
<surname>Xia</surname>
<given-names>W.</given-names>
</name>
<name>
<surname>Jöhsson</surname>
<given-names>P.</given-names>
</name>
<name>
<surname>Ossipov</surname>
<given-names>D.A.</given-names>
</name>
</person-group>
<article-title>Conjugation of cyclodextrin to magnetic Fe
<sub>3</sub>
O
<sub>4</sub>
nanoparticles via polydopamine coating for drug delivery</article-title>
<source>Prog. Org. Coat.</source>
<year>2018</year>
<volume>114</volume>
<fpage>154</fpage>
<lpage>161</lpage>
<pub-id pub-id-type="doi">10.1016/j.porgcoat.2017.10.007</pub-id>
</element-citation>
</ref>
<ref id="B25-nanomaterials-09-00948">
<label>25.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Basha</surname>
<given-names>R.Y.</given-names>
</name>
<name>
<surname>Kumar</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Doble</surname>
<given-names>M.</given-names>
</name>
</person-group>
<article-title>Dual delivery of tuberculosis drugs via cyclodextrin conjugated curdlan nanoparticles to infect macrophages</article-title>
<source>Carbohydr. Polym.</source>
<year>2019</year>
<volume>218</volume>
<fpage>53</fpage>
<lpage>62</lpage>
<pub-id pub-id-type="doi">10.1016/j.carbpol.2019.04.056</pub-id>
<pub-id pub-id-type="pmid">31221343</pub-id>
</element-citation>
</ref>
<ref id="B26-nanomaterials-09-00948">
<label>26.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Shah</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Shah</surname>
<given-names>V.</given-names>
</name>
<name>
<surname>Ghosh</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Zhang</surname>
<given-names>Z.</given-names>
</name>
<name>
<surname>Minko</surname>
<given-names>T.</given-names>
</name>
</person-group>
<article-title>Molecular inclusion complexes of β-cyclodextrins derivatives enhance aqueous solubility and cellular internalization of paclitaxel: Preformulation and in vitro assessments</article-title>
<source>J. Pharm. Pharmacol.</source>
<year>2015</year>
<volume>2</volume>
<issue>2</issue>
<fpage>8</fpage>
</element-citation>
</ref>
<ref id="B27-nanomaterials-09-00948">
<label>27.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Bhatt</surname>
<given-names>P.</given-names>
</name>
<name>
<surname>Lalani</surname>
<given-names>R.</given-names>
</name>
<name>
<surname>Vhora</surname>
<given-names>I.</given-names>
</name>
<name>
<surname>Patil</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Amrutiya</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Misra</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Mashru</surname>
<given-names>R.</given-names>
</name>
</person-group>
<article-title>Liposomes encapsulating native and cyclodextrin enclosed paclitaxel: Enhanced loading efficiency and its pharmacokinetic evaluation</article-title>
<source>Int. J. Pharm.</source>
<year>2018</year>
<volume>536</volume>
<issue>1</issue>
<fpage>95</fpage>
<lpage>107</lpage>
<pub-id pub-id-type="doi">10.1016/j.ijpharm.2017.11.048</pub-id>
<pub-id pub-id-type="pmid">29175440</pub-id>
</element-citation>
</ref>
<ref id="B28-nanomaterials-09-00948">
<label>28.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Alcaro</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Ventura</surname>
<given-names>C.A.</given-names>
</name>
<name>
<surname>Paolino</surname>
<given-names>D.</given-names>
</name>
<name>
<surname>Battaglia</surname>
<given-names>D.</given-names>
</name>
<name>
<surname>Ortuso</surname>
<given-names>F.</given-names>
</name>
<name>
<surname>Cattel</surname>
<given-names>L.</given-names>
</name>
<name>
<surname>Puglisi</surname>
<given-names>G.</given-names>
</name>
<name>
<surname>Fresta</surname>
<given-names>M.</given-names>
</name>
</person-group>
<article-title>Preparation, characterization, molecular modelling and in vitro activity of paclitaxel-cyclodextrins complexes</article-title>
<source>Bioorg. Med. Chem. Lett.</source>
<year>2002</year>
<volume>12</volume>
<fpage>1637</fpage>
<lpage>1641</lpage>
<pub-id pub-id-type="doi">10.1016/S0960-894X(02)00217-2</pub-id>
<pub-id pub-id-type="pmid">12039580</pub-id>
</element-citation>
</ref>
<ref id="B29-nanomaterials-09-00948">
<label>29.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Hamada</surname>
<given-names>H.</given-names>
</name>
<name>
<surname>Ishihara</surname>
<given-names>K.</given-names>
</name>
<name>
<surname>Masuoka</surname>
<given-names>N.</given-names>
</name>
<name>
<surname>Mikuni</surname>
<given-names>K.</given-names>
</name>
<name>
<surname>Nakajima</surname>
<given-names>N.</given-names>
</name>
</person-group>
<article-title>Enhancement of water-solubility and bioactivity of paclitaxel using modified cyclodextrins</article-title>
<source>J. Biosci. Bioeng.</source>
<year>2006</year>
<volume>102</volume>
<fpage>369</fpage>
<lpage>371</lpage>
<pub-id pub-id-type="doi">10.1263/jbb.102.369</pub-id>
<pub-id pub-id-type="pmid">17116587</pub-id>
</element-citation>
</ref>
<ref id="B30-nanomaterials-09-00948">
<label>30.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Badea</surname>
<given-names>I.</given-names>
</name>
<name>
<surname>Ciutaru</surname>
<given-names>D.</given-names>
</name>
<name>
<surname>Lazar</surname>
<given-names>L.</given-names>
</name>
<name>
<surname>Nicolescu</surname>
<given-names>D.</given-names>
</name>
<name>
<surname>Tudose</surname>
<given-names>A.</given-names>
</name>
</person-group>
<article-title>Rapid HPLC method for the determination of paclitaxel in pharmaceutical forms without separation</article-title>
<source>J. Pharm. Biomed.</source>
<year>2004</year>
<volume>34</volume>
<fpage>501</fpage>
<lpage>507</lpage>
<pub-id pub-id-type="doi">10.1016/S0731-7085(03)00628-9</pub-id>
</element-citation>
</ref>
<ref id="B31-nanomaterials-09-00948">
<label>31.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Chung</surname>
<given-names>W.J.</given-names>
</name>
<name>
<surname>Lee</surname>
<given-names>D.Y.</given-names>
</name>
<name>
<surname>Yoo</surname>
<given-names>S.Y.</given-names>
</name>
</person-group>
<article-title>Chemical modulation of M13 bacteriophage and its functional opportunities for nanomedicine</article-title>
<source>Int. J. Nanomed.</source>
<year>2014</year>
<volume>9</volume>
<fpage>5825</fpage>
<lpage>5836</lpage>
</element-citation>
</ref>
<ref id="B32-nanomaterials-09-00948">
<label>32.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Campuzano</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Yánez-Sedeño</surname>
<given-names>P.</given-names>
</name>
<name>
<surname>Pingarrón</surname>
<given-names>J.M.</given-names>
</name>
</person-group>
<article-title>Electrochemical affinity biosensors in food safety</article-title>
<source>Chemosensors</source>
<year>2017</year>
<volume>5</volume>
<elocation-id>8</elocation-id>
<pub-id pub-id-type="doi">10.3390/chemosensors5010008</pub-id>
</element-citation>
</ref>
<ref id="B33-nanomaterials-09-00948">
<label>33.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Kelestemur</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Altunbek</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Culha</surname>
<given-names>M.</given-names>
</name>
</person-group>
<article-title>Influence of EDC/NHS coupling chemistry on stability and cytotoxicity of ZnO nanoparticles modified with proteins</article-title>
<source>Appl. Surf. Sci.</source>
<year>2017</year>
<volume>403</volume>
<fpage>455</fpage>
<lpage>463</lpage>
<pub-id pub-id-type="doi">10.1016/j.apsusc.2017.01.235</pub-id>
</element-citation>
</ref>
<ref id="B34-nanomaterials-09-00948">
<label>34.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Hua</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Li</surname>
<given-names>Z.</given-names>
</name>
<name>
<surname>Xia</surname>
<given-names>W.</given-names>
</name>
<name>
<surname>Yang</surname>
<given-names>N.</given-names>
</name>
<name>
<surname>Gong</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Zhang</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Qiao</surname>
<given-names>C.</given-names>
</name>
</person-group>
<article-title>Preparation and properties of EDC/NHS mediated crosslinking poly (gamma-glutamic acid)/ epsilon-polylysine hydrogels</article-title>
<source>Mater. Sci. Eng. C</source>
<year>2016</year>
<volume>61</volume>
<fpage>879</fpage>
<lpage>892</lpage>
<pub-id pub-id-type="doi">10.1016/j.msec.2016.01.001</pub-id>
<pub-id pub-id-type="pmid">26838920</pub-id>
</element-citation>
</ref>
<ref id="B35-nanomaterials-09-00948">
<label>35.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Bradford</surname>
<given-names>M.M.</given-names>
</name>
</person-group>
<article-title>A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding</article-title>
<source>Anal. Biochem.</source>
<year>1976</year>
<volume>72</volume>
<fpage>248</fpage>
<lpage>254</lpage>
<pub-id pub-id-type="doi">10.1016/0003-2697(76)90527-3</pub-id>
<pub-id pub-id-type="pmid">942051</pub-id>
</element-citation>
</ref>
<ref id="B36-nanomaterials-09-00948">
<label>36.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Montero</surname>
<given-names>J.C.</given-names>
</name>
<name>
<surname>Seoane</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Ocaña</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Pandiella</surname>
<given-names>A.</given-names>
</name>
</person-group>
<article-title>P-Rex1 participates in neuregulin- ErbB signal trasduction and its expression correlates with patient outcome in breast cancer</article-title>
<source>Oncogene</source>
<year>2011</year>
<volume>30</volume>
<fpage>1059</fpage>
<lpage>1071</lpage>
<pub-id pub-id-type="doi">10.1038/onc.2010.489</pub-id>
<pub-id pub-id-type="pmid">21042280</pub-id>
</element-citation>
</ref>
<ref id="B37-nanomaterials-09-00948">
<label>37.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Esparís-Ogando</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Díaz-Rodríguez</surname>
<given-names>E.</given-names>
</name>
<name>
<surname>Montero</surname>
<given-names>J.C.</given-names>
</name>
<name>
<surname>Yuste</surname>
<given-names>L.</given-names>
</name>
<name>
<surname>Crespo</surname>
<given-names>P.</given-names>
</name>
<name>
<surname>Pandiella</surname>
<given-names>A.</given-names>
</name>
</person-group>
<article-title>Erk5 participates in neuregulin signal trasduction and is constitutively active in breast cancer cells overexpressing Erb2</article-title>
<source>Mol. Cell. Biol.</source>
<year>2002</year>
<volume>22</volume>
<fpage>270</fpage>
<lpage>285</lpage>
<pub-id pub-id-type="doi">10.1128/MCB.22.1.270-285.2002</pub-id>
<pub-id pub-id-type="pmid">11739740</pub-id>
</element-citation>
</ref>
<ref id="B38-nanomaterials-09-00948">
<label>38.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Mosmann</surname>
<given-names>T.</given-names>
</name>
</person-group>
<article-title>Rapid colorimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assays</article-title>
<source>J. Inmmunol. Methods</source>
<year>1983</year>
<volume>65</volume>
<fpage>55</fpage>
<lpage>63</lpage>
<pub-id pub-id-type="doi">10.1016/0022-1759(83)90303-4</pub-id>
</element-citation>
</ref>
<ref id="B39-nanomaterials-09-00948">
<label>39.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Haug</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Larsen</surname>
<given-names>B.</given-names>
</name>
</person-group>
<article-title>Separation of uronic acids by paper electrophoresis</article-title>
<source>Acta Chem. Scand.</source>
<year>1961</year>
<volume>15</volume>
<fpage>1395</fpage>
<lpage>1396</lpage>
<pub-id pub-id-type="doi">10.3891/acta.chem.scand.15-1395</pub-id>
</element-citation>
</ref>
<ref id="B40-nanomaterials-09-00948">
<label>40.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Khalili</surname>
<given-names>F.</given-names>
</name>
<name>
<surname>Henri</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>East</surname>
<given-names>A.L.L.</given-names>
</name>
</person-group>
<article-title>pKa values of some piperazines at (198, 302, 313 and 323) K</article-title>
<source>J. Chem. Eng. Data</source>
<year>2009</year>
<volume>54</volume>
<fpage>2914</fpage>
<lpage>2917</lpage>
<pub-id pub-id-type="doi">10.1021/je900005c</pub-id>
</element-citation>
</ref>
<ref id="B41-nanomaterials-09-00948">
<label>41.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Kaufman</surname>
<given-names>P.A.</given-names>
</name>
<name>
<surname>Wildiers</surname>
<given-names>H.</given-names>
</name>
<name>
<surname>Freyer</surname>
<given-names>G.</given-names>
</name>
<name>
<surname>Kemeny</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Gonçalves</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Jerusalem</surname>
<given-names>G.</given-names>
</name>
<name>
<surname>Stopeck</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Vrindavanam</surname>
<given-names>N.</given-names>
</name>
<name>
<surname>Dalenc</surname>
<given-names>F.</given-names>
</name>
<name>
<surname>Nanayakkara</surname>
<given-names>N.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Phase 1b study of trebananib plus paclitaxel and trastuzumab in patients with HER2-positive locally recurrent or metastatic breast cancer</article-title>
<source>Clin. Breast Cancer</source>
<year>2019</year>
<volume>19</volume>
<issue>1</issue>
<fpage>47</fpage>
<lpage>57</lpage>
<pub-id pub-id-type="doi">10.1016/j.clbc.2018.09.012</pub-id>
<pub-id pub-id-type="pmid">30420181</pub-id>
</element-citation>
</ref>
<ref id="B42-nanomaterials-09-00948">
<label>42.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Van Ramshorst</surname>
<given-names>M.S.</given-names>
</name>
<name>
<surname>van Werkhoven</surname>
<given-names>E.</given-names>
</name>
<name>
<surname>Mandjes</surname>
<given-names>I.A.M.</given-names>
</name>
<name>
<surname>Schot</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Wesseling</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Vrancken Peeters</surname>
<given-names>M.T.F.D.</given-names>
</name>
<name>
<surname>Meerum Terwogt</surname>
<given-names>J.M.</given-names>
</name>
<name>
<surname>Bos</surname>
<given-names>M.E.M.</given-names>
</name>
<name>
<surname>Oosterkamp</surname>
<given-names>H.M.</given-names>
</name>
<name>
<surname>Rodenhuis</surname>
<given-names>S.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Trastuzumab in combination with weekly paclitaxel and carboplatin as neo-adjuvant treatment for HER2-positive breast cancer: the TRAIN study</article-title>
<source>Eur. J. Cancer</source>
<year>2017</year>
<volume>74</volume>
<fpage>47</fpage>
<lpage>54</lpage>
<pub-id pub-id-type="doi">10.1016/j.ejca.2016.12.023</pub-id>
<pub-id pub-id-type="pmid">28335887</pub-id>
</element-citation>
</ref>
<ref id="B43-nanomaterials-09-00948">
<label>43.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Subik</surname>
<given-names>K.</given-names>
</name>
<name>
<surname>Lee</surname>
<given-names>J.F.</given-names>
</name>
<name>
<surname>Baxter</surname>
<given-names>L.</given-names>
</name>
<name>
<surname>Strzepek</surname>
<given-names>T.</given-names>
</name>
<name>
<surname>Costello</surname>
<given-names>D.</given-names>
</name>
<name>
<surname>Crowley</surname>
<given-names>P.</given-names>
</name>
<name>
<surname>Xing</surname>
<given-names>L.</given-names>
</name>
<name>
<surname>Hung</surname>
<given-names>M.C.</given-names>
</name>
<name>
<surname>Bonfiglio</surname>
<given-names>T.</given-names>
</name>
<name>
<surname>Hicks</surname>
<given-names>D.G.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>The expression patterns of ER, PR, HER2, CK516, EGFR, Ki-67 and AR by inmmunohistochemical analysis in breast cancer cell lines</article-title>
<source>Breast Cancer</source>
<year>2010</year>
<volume>4</volume>
<fpage>35</fpage>
<lpage>41</lpage>
<pub-id pub-id-type="pmid">20697531</pub-id>
</element-citation>
</ref>
<ref id="B44-nanomaterials-09-00948">
<label>44.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>He</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Jing</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Li</surname>
<given-names>W.</given-names>
</name>
<name>
<surname>Qian</surname>
<given-names>X.</given-names>
</name>
<name>
<surname>Xu</surname>
<given-names>Q.</given-names>
</name>
<name>
<surname>Li</surname>
<given-names>F.S.</given-names>
</name>
<name>
<surname>Liu</surname>
<given-names>L.Z.</given-names>
</name>
<name>
<surname>Jiang</surname>
<given-names>B.H.</given-names>
</name>
<name>
<surname>Jiang</surname>
<given-names>Y.</given-names>
</name>
</person-group>
<article-title>Roles and mechanism of miR-199a and miR-125b in tumor angiogenesis</article-title>
<source>Plos ONE</source>
<year>2013</year>
<volume>8</volume>
<elocation-id>e56647</elocation-id>
<pub-id pub-id-type="doi">10.1371/journal.pone.0056647</pub-id>
<pub-id pub-id-type="pmid">23437196</pub-id>
</element-citation>
</ref>
<ref id="B45-nanomaterials-09-00948">
<label>45.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Patel</surname>
<given-names>R.V.</given-names>
</name>
<name>
<surname>Park</surname>
<given-names>S.W.</given-names>
</name>
</person-group>
<article-title>An evolving role of Piperazine moieties in drug design and discovery</article-title>
<source>Mini-Rev. Med. Chem.</source>
<year>2013</year>
<volume>13</volume>
<fpage>1579</fpage>
<lpage>1601</lpage>
<pub-id pub-id-type="doi">10.2174/13895575113139990073</pub-id>
<pub-id pub-id-type="pmid">23895191</pub-id>
</element-citation>
</ref>
<ref id="B46-nanomaterials-09-00948">
<label>46.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Donahue</surname>
<given-names>N.D.</given-names>
</name>
<name>
<surname>Acar</surname>
<given-names>H.</given-names>
</name>
<name>
<surname>Wilhelm</surname>
<given-names>S.</given-names>
</name>
</person-group>
<article-title>Concepts of nanoparticle cellular uptake, intracellular trafficking, and kinetics in nanomedicine</article-title>
<source>Adv. Drug Deliv. Rev</source>
<year>2019</year>
<comment>In press</comment>
<pub-id pub-id-type="doi">10.1016/j.addr.2019.04.008</pub-id>
<pub-id pub-id-type="pmid">31022434</pub-id>
</element-citation>
</ref>
<ref id="B47-nanomaterials-09-00948">
<label>47.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Mohanraj</surname>
<given-names>V.J.</given-names>
</name>
<name>
<surname>Chen</surname>
<given-names>Y.</given-names>
</name>
</person-group>
<article-title>Nanoparticles – A review</article-title>
<source>Trop. J. Pharm. Res.</source>
<year>2006</year>
<volume>5</volume>
<fpage>561</fpage>
<lpage>573</lpage>
<pub-id pub-id-type="doi">10.4314/tjpr.v5i1.14634</pub-id>
</element-citation>
</ref>
<ref id="B48-nanomaterials-09-00948">
<label>48.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Alessandrini</surname>
<given-names>F.</given-names>
</name>
<name>
<surname>Pezzè</surname>
<given-names>L.</given-names>
</name>
<name>
<surname>Ciribilli</surname>
<given-names>Y.</given-names>
</name>
</person-group>
<article-title>LAMPs: Shedding light on cancer biology</article-title>
<source>Semin. Oncol.</source>
<year>2017</year>
<volume>44</volume>
<fpage>239</fpage>
<lpage>253</lpage>
<pub-id pub-id-type="doi">10.1053/j.seminoncol.2017.10.013</pub-id>
<pub-id pub-id-type="pmid">29526252</pub-id>
</element-citation>
</ref>
</ref-list>
</back>
<floats-group>
<fig id="nanomaterials-09-00948-f001" orientation="portrait" position="float">
<label>Figure 1</label>
<caption>
<p>APPZ synthesis and characterization. (
<bold>a</bold>
) APPZ development. (
<bold>b</bold>
) APPZ size and a zeta potential at the synthesis (4.7) and physiological (7.2) pH values in deionized water and PBS, respectively. These parameters were determined by DLS and LDE as the mean ± SD of three measurements. The diagram corresponds to APPZ mean size at pH 4.7. (
<bold>c</bold>
) APPZ diameter and surface charge stability over 8 consecutive days. All the values are the mean ± SD of three measurements, too.</p>
</caption>
<graphic xlink:href="nanomaterials-09-00948-g001"></graphic>
</fig>
<fig id="nanomaterials-09-00948-f002" orientation="portrait" position="float">
<label>Figure 2</label>
<caption>
<p>APPZ conjugation and later characterization. (
<bold>a</bold>
) APPZ conjugation with trastuzumab and PTX:βCD complexes. (
<bold>b</bold>
) Conjugated APPZ diameter and surface charge stability over 8 consecutive days. All the values are the mean ± SD of three measurements. (
<bold>c</bold>
) Results of the FT-IR analysis that corroborate APPZ conjugation.</p>
</caption>
<graphic xlink:href="nanomaterials-09-00948-g002"></graphic>
</fig>
<fig id="nanomaterials-09-00948-f003" orientation="portrait" position="float">
<label>Figure 3</label>
<caption>
<p>Conjugated APPZ internalization in BT474 cells. (
<bold>a</bold>
) Study of the HER2 and pHER2 expression levels in the BT474, SKBR3, OVCAR3, and HS5 cell lines. Calnexin was employed as loading control. (
<bold>b</bold>
) Expected conjugated APPZ internalization into HER2-overexpressing cancer cells. (
<bold>c</bold>
) HER2 internalization into BT474 cells’ cytoplasm after treatment with conjugated APPZ. Scale bar, 10 µm. (
<bold>d</bold>
) Co-localization (orange) between HER2 and LAMP1 staining after conjugated APPZ treatment. Scale bar, 10 µm.</p>
</caption>
<graphic xlink:href="nanomaterials-09-00948-g003"></graphic>
</fig>
<fig id="nanomaterials-09-00948-f004" orientation="portrait" position="float">
<label>Figure 4</label>
<caption>
<p>Targeting HER2-overexpressing cells with conjugated APPZ. (
<bold>a</bold>
) BT474 and HS5 cells were co-culture and treat equivalent free PTX:βCD complexes and conjugated APPZ. (
<bold>b</bold>
) Obtained results after the treatment of the co-cultured BT474 (green) and HS5 (red) cells, stained with DAPI (blue). Scale bar, 50 µm. (
<bold>c</bold>
) Living BT474 and HS5 cells from 12 different confocal images were counted in order to analyze the specificity of the conjugated APPZ. Results are the mean of these 12 images ± SD.</p>
</caption>
<graphic xlink:href="nanomaterials-09-00948-g004"></graphic>
</fig>
<fig id="nanomaterials-09-00948-f005" orientation="portrait" position="float">
<label>Figure 5</label>
<caption>
<p>Conjugated APPZ antiproliferation effect in (
<bold>a</bold>
) BT474; (
<bold>b</bold>
) SKBR3; (
<bold>c</bold>
) OVCAR; and (
<bold>d</bold>
) HS5 cells. Shown results are the mean ± SD of four replicas for each different treatment.</p>
</caption>
<graphic xlink:href="nanomaterials-09-00948-g005"></graphic>
</fig>
</floats-group>
</pmc>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/ChloroquineV1/Data/Pmc/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000728 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Pmc/Corpus/biblio.hfd -nk 000728 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    ChloroquineV1
   |flux=    Pmc
   |étape=   Corpus
   |type=    RBID
   |clé=     PMC:6669497
   |texte=   Paclitaxel-Trastuzumab Mixed Nanovehicle to Target HER2-Overexpressing Tumors
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Pmc/Corpus/RBID.i   -Sk "pubmed:31261957" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Pmc/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a ChloroquineV1 

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Wed Mar 25 22:43:59 2020. Site generation: Sun Jan 31 12:44:45 2021