Serveur d'exploration Chloroquine

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Zerumbone Protects against Carbon Tetrachloride (CCl4)-Induced Acute Liver Injury in Mice via Inhibiting Oxidative Stress and the Inflammatory Response: Involving the TLR4/NF-κB/COX-2 Pathway

Identifieur interne : 000713 ( Pmc/Corpus ); précédent : 000712; suivant : 000714

Zerumbone Protects against Carbon Tetrachloride (CCl4)-Induced Acute Liver Injury in Mice via Inhibiting Oxidative Stress and the Inflammatory Response: Involving the TLR4/NF-κB/COX-2 Pathway

Auteurs : Meilin Wang ; Jingling Niu ; Lina Ou ; Bo Deng ; Yingyi Wang ; Sanqiang Li

Source :

RBID : PMC:6571963

Abstract

The natural compound Zerumbone (hereinafter referred to as ZER), a monocyclic sesquiterpenoid, has been reported to possess many pharmacological properties, including antioxidant and anti-inflammatory properties. This study aimed to investigate the underlying mechanism of ZER against acute liver injury (ALI) in CCl4-induced mice models. ICR mice were pretreated intraperitoneally with ZER for five days, then received a CCl4 injection two hours after the last ZER administration and were sacrificed 24 h later. Examination of serum aspartate aminotransferase (AST) and alanine aminotransferase (ALT) activities and the histopathological analysis confirmed the hepatoprotective effect of ZER. Biochemical assays revealed that ZER pretreatment recovered the activities of antioxidant enzymes superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px), restored the glutathione (GSH) reservoir, and reduced the production of malondialdehyde (MDA), all in a dose-dependent manner. Furthermore, administration of ZER in vivo reduced the release amounts of pro-inflammatory cytokines interleukin-6 (IL-6) and tumor necrosis factor alpha (TNF-α) and inhibited the increased protein levels of Toll-like receptor 4 (TLR4), nuclear factor-kappaB (NF-κB) p-p65, and cyclooxygenase (COX-2). Further studies in lipopolysaccharide (LPS)-induced Raw264.7 inflammatory cellular models verified that ZER could inhibit inflammation via inactivating the TLR4/NF-κB/COX-2 pathway. Thus, our study indicated that ZER exhibited a hepatoprotective effect against ALI through its antioxidant and anti-inflammatory activities and the possible mechanism might be mediated by the TLR4/NF-κB/COX-2 pathway. Collectively, our studies indicate ZER could be a potential candidate for chemical liver injury treatment.


Url:
DOI: 10.3390/molecules24101964
PubMed: 31121820
PubMed Central: 6571963

Links to Exploration step

PMC:6571963

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Zerumbone Protects against Carbon Tetrachloride (CCl
<sub>4</sub>
)-Induced Acute Liver Injury in Mice via Inhibiting Oxidative Stress and the Inflammatory Response: Involving the TLR4/NF-κB/COX-2 Pathway</title>
<author>
<name sortKey="Wang, Meilin" sort="Wang, Meilin" uniqKey="Wang M" first="Meilin" last="Wang">Meilin Wang</name>
</author>
<author>
<name sortKey="Niu, Jingling" sort="Niu, Jingling" uniqKey="Niu J" first="Jingling" last="Niu">Jingling Niu</name>
</author>
<author>
<name sortKey="Ou, Lina" sort="Ou, Lina" uniqKey="Ou L" first="Lina" last="Ou">Lina Ou</name>
</author>
<author>
<name sortKey="Deng, Bo" sort="Deng, Bo" uniqKey="Deng B" first="Bo" last="Deng">Bo Deng</name>
</author>
<author>
<name sortKey="Wang, Yingyi" sort="Wang, Yingyi" uniqKey="Wang Y" first="Yingyi" last="Wang">Yingyi Wang</name>
</author>
<author>
<name sortKey="Li, Sanqiang" sort="Li, Sanqiang" uniqKey="Li S" first="Sanqiang" last="Li">Sanqiang Li</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PMC</idno>
<idno type="pmid">31121820</idno>
<idno type="pmc">6571963</idno>
<idno type="url">http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6571963</idno>
<idno type="RBID">PMC:6571963</idno>
<idno type="doi">10.3390/molecules24101964</idno>
<date when="2019">2019</date>
<idno type="wicri:Area/Pmc/Corpus">000713</idno>
<idno type="wicri:explorRef" wicri:stream="Pmc" wicri:step="Corpus" wicri:corpus="PMC">000713</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a" type="main">Zerumbone Protects against Carbon Tetrachloride (CCl
<sub>4</sub>
)-Induced Acute Liver Injury in Mice via Inhibiting Oxidative Stress and the Inflammatory Response: Involving the TLR4/NF-κB/COX-2 Pathway</title>
<author>
<name sortKey="Wang, Meilin" sort="Wang, Meilin" uniqKey="Wang M" first="Meilin" last="Wang">Meilin Wang</name>
</author>
<author>
<name sortKey="Niu, Jingling" sort="Niu, Jingling" uniqKey="Niu J" first="Jingling" last="Niu">Jingling Niu</name>
</author>
<author>
<name sortKey="Ou, Lina" sort="Ou, Lina" uniqKey="Ou L" first="Lina" last="Ou">Lina Ou</name>
</author>
<author>
<name sortKey="Deng, Bo" sort="Deng, Bo" uniqKey="Deng B" first="Bo" last="Deng">Bo Deng</name>
</author>
<author>
<name sortKey="Wang, Yingyi" sort="Wang, Yingyi" uniqKey="Wang Y" first="Yingyi" last="Wang">Yingyi Wang</name>
</author>
<author>
<name sortKey="Li, Sanqiang" sort="Li, Sanqiang" uniqKey="Li S" first="Sanqiang" last="Li">Sanqiang Li</name>
</author>
</analytic>
<series>
<title level="j">Molecules</title>
<idno type="eISSN">1420-3049</idno>
<imprint>
<date when="2019">2019</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<p>The natural compound Zerumbone (hereinafter referred to as ZER), a monocyclic sesquiterpenoid, has been reported to possess many pharmacological properties, including antioxidant and anti-inflammatory properties. This study aimed to investigate the underlying mechanism of ZER against acute liver injury (ALI) in CCl
<sub>4</sub>
-induced mice models. ICR mice were pretreated intraperitoneally with ZER for five days, then received a CCl
<sub>4</sub>
injection two hours after the last ZER administration and were sacrificed 24 h later. Examination of serum aspartate aminotransferase (AST) and alanine aminotransferase (ALT) activities and the histopathological analysis confirmed the hepatoprotective effect of ZER. Biochemical assays revealed that ZER pretreatment recovered the activities of antioxidant enzymes superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px), restored the glutathione (GSH) reservoir, and reduced the production of malondialdehyde (MDA), all in a dose-dependent manner. Furthermore, administration of ZER in vivo reduced the release amounts of pro-inflammatory cytokines interleukin-6 (IL-6) and tumor necrosis factor alpha (TNF-α) and inhibited the increased protein levels of Toll-like receptor 4 (TLR4), nuclear factor-kappaB (NF-κB) p-p65, and cyclooxygenase (COX-2). Further studies in lipopolysaccharide (LPS)-induced Raw264.7 inflammatory cellular models verified that ZER could inhibit inflammation via inactivating the TLR4/NF-κB/COX-2 pathway. Thus, our study indicated that ZER exhibited a hepatoprotective effect against ALI through its antioxidant and anti-inflammatory activities and the possible mechanism might be mediated by the TLR4/NF-κB/COX-2 pathway. Collectively, our studies indicate ZER could be a potential candidate for chemical liver injury treatment.</p>
</div>
</front>
<back>
<div1 type="bibliography">
<listBibl>
<biblStruct>
<analytic>
<author>
<name sortKey="Patten, D A" uniqKey="Patten D">D.A. Patten</name>
</author>
<author>
<name sortKey="Shepherd, E L" uniqKey="Shepherd E">E.L. Shepherd</name>
</author>
<author>
<name sortKey="Weston, C J" uniqKey="Weston C">C.J. Weston</name>
</author>
<author>
<name sortKey="Shetty, S" uniqKey="Shetty S">S. Shetty</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Shen, T" uniqKey="Shen T">T. Shen</name>
</author>
<author>
<name sortKey="Liu, Y" uniqKey="Liu Y">Y. Liu</name>
</author>
<author>
<name sortKey="Shang, J" uniqKey="Shang J">J. Shang</name>
</author>
<author>
<name sortKey="Xie, Q" uniqKey="Xie Q">Q. Xie</name>
</author>
<author>
<name sortKey="Li, J" uniqKey="Li J">J. Li</name>
</author>
<author>
<name sortKey="Yan, M" uniqKey="Yan M">M. Yan</name>
</author>
<author>
<name sortKey="Xu, J M" uniqKey="Xu J">J.M. Xu</name>
</author>
<author>
<name sortKey="Niu, J Q" uniqKey="Niu J">J.Q. Niu</name>
</author>
<author>
<name sortKey="Liu, J J" uniqKey="Liu J">J.J. Liu</name>
</author>
<author>
<name sortKey="Paul, B W" uniqKey="Paul B">B.W. Paul</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Trepotec, Z" uniqKey="Trepotec Z">Z. Trepotec</name>
</author>
<author>
<name sortKey="Lichtenegger, E" uniqKey="Lichtenegger E">E. Lichtenegger</name>
</author>
<author>
<name sortKey="Plank, C" uniqKey="Plank C">C. Plank</name>
</author>
<author>
<name sortKey="Aneja, M K" uniqKey="Aneja M">M.K. Aneja</name>
</author>
<author>
<name sortKey="Rudolph, C" uniqKey="Rudolph C">C. Rudolph</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Reyes Gordillo, K" uniqKey="Reyes Gordillo K">K. Reyes-Gordillo</name>
</author>
<author>
<name sortKey="Shah, R" uniqKey="Shah R">R. Shah</name>
</author>
<author>
<name sortKey="Muriel, P" uniqKey="Muriel P">P. Muriel</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Dai, C" uniqKey="Dai C">C. Dai</name>
</author>
<author>
<name sortKey="Xiao, X" uniqKey="Xiao X">X. Xiao</name>
</author>
<author>
<name sortKey="Li, D" uniqKey="Li D">D. Li</name>
</author>
<author>
<name sortKey="Tun, S" uniqKey="Tun S">S. Tun</name>
</author>
<author>
<name sortKey="Wang, Y" uniqKey="Wang Y">Y. Wang</name>
</author>
<author>
<name sortKey="Velkov, T" uniqKey="Velkov T">T. Velkov</name>
</author>
<author>
<name sortKey="Tang, S S" uniqKey="Tang S">S.S. Tang</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Mitazaki, S" uniqKey="Mitazaki S">S. Mitazaki</name>
</author>
<author>
<name sortKey="Kotajima, N" uniqKey="Kotajima N">N. Kotajima</name>
</author>
<author>
<name sortKey="Matsuda, S" uniqKey="Matsuda S">S. Matsuda</name>
</author>
<author>
<name sortKey="Ida, N" uniqKey="Ida N">N. Ida</name>
</author>
<author>
<name sortKey="Iide, M" uniqKey="Iide M">M. Iide</name>
</author>
<author>
<name sortKey="Honma, S" uniqKey="Honma S">S. Honma</name>
</author>
<author>
<name sortKey="Suto, M" uniqKey="Suto M">M. Suto</name>
</author>
<author>
<name sortKey="Kato, N" uniqKey="Kato N">N. Kato</name>
</author>
<author>
<name sortKey="Kurode, N" uniqKey="Kurode N">N. Kurode</name>
</author>
<author>
<name sortKey="Hiraiwa, K" uniqKey="Hiraiwa K">K. Hiraiwa</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Wang, W" uniqKey="Wang W">W. Wang</name>
</author>
<author>
<name sortKey="Wang, S" uniqKey="Wang S">S. Wang</name>
</author>
<author>
<name sortKey="Liu, J" uniqKey="Liu J">J. Liu</name>
</author>
<author>
<name sortKey="Cai, E" uniqKey="Cai E">E. Cai</name>
</author>
<author>
<name sortKey="Zhu, H" uniqKey="Zhu H">H. Zhu</name>
</author>
<author>
<name sortKey="He, Z M" uniqKey="He Z">Z.M. He</name>
</author>
<author>
<name sortKey="Gao, Y G" uniqKey="Gao Y">Y.G. Gao</name>
</author>
<author>
<name sortKey="Li, P Y" uniqKey="Li P">P.Y. Li</name>
</author>
<author>
<name sortKey="Zhao, Y" uniqKey="Zhao Y">Y. Zhao</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Mahesh, A" uniqKey="Mahesh A">A. Mahesh</name>
</author>
<author>
<name sortKey="Jeyachandran, R" uniqKey="Jeyachandran R">R. Jeyachandran</name>
</author>
<author>
<name sortKey="Cindrella, L" uniqKey="Cindrella L">L. Cindrella</name>
</author>
<author>
<name sortKey="Thangadurai, D" uniqKey="Thangadurai D">D. Thangadurai</name>
</author>
<author>
<name sortKey="Veerapur, V P" uniqKey="Veerapur V">V.P. Veerapur</name>
</author>
<author>
<name sortKey="Muralidha, P" uniqKey="Muralidha P">P. Muralidha</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Arosio, B" uniqKey="Arosio B">B. Arosio</name>
</author>
<author>
<name sortKey="Gagliano, N" uniqKey="Gagliano N">N. Gagliano</name>
</author>
<author>
<name sortKey="Fusaro, L M" uniqKey="Fusaro L">L.M. Fusaro</name>
</author>
<author>
<name sortKey="Parmeggiani, L" uniqKey="Parmeggiani L">L. Parmeggiani</name>
</author>
<author>
<name sortKey="Tagliabue, J" uniqKey="Tagliabue J">J. Tagliabue</name>
</author>
<author>
<name sortKey="Galetti, P" uniqKey="Galetti P">P. Galetti</name>
</author>
<author>
<name sortKey="Castri, D D" uniqKey="Castri D">D.D. Castri</name>
</author>
<author>
<name sortKey="Moscheni, C" uniqKey="Moscheni C">C. Moscheni</name>
</author>
<author>
<name sortKey="Annoni, G" uniqKey="Annoni G">G. Annoni</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Li, P" uniqKey="Li P">P. Li</name>
</author>
<author>
<name sortKey="He, K" uniqKey="He K">K. He</name>
</author>
<author>
<name sortKey="Li, J" uniqKey="Li J">J. Li</name>
</author>
<author>
<name sortKey="Li, Z J" uniqKey="Li Z">Z.J. Li</name>
</author>
<author>
<name sortKey="Gong, J P" uniqKey="Gong J">J.P. Gong</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Yin, Y" uniqKey="Yin Y">Y. Yin</name>
</author>
<author>
<name sortKey="Zhang, Y" uniqKey="Zhang Y">Y. Zhang</name>
</author>
<author>
<name sortKey="Li, H" uniqKey="Li H">H. Li</name>
</author>
<author>
<name sortKey="Zhao, Y" uniqKey="Zhao Y">Y. Zhao</name>
</author>
<author>
<name sortKey="Cai, E" uniqKey="Cai E">E. Cai</name>
</author>
<author>
<name sortKey="Zhu, H Y" uniqKey="Zhu H">H.Y. Zhu</name>
</author>
<author>
<name sortKey="Li, P Y" uniqKey="Li P">P.Y. Li</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Meng, X" uniqKey="Meng X">X. Meng</name>
</author>
<author>
<name sortKey="Wang, Z" uniqKey="Wang Z">Z. Wang</name>
</author>
<author>
<name sortKey="Liang, S" uniqKey="Liang S">S. Liang</name>
</author>
<author>
<name sortKey="Tang, Z" uniqKey="Tang Z">Z. Tang</name>
</author>
<author>
<name sortKey="Liu, J" uniqKey="Liu J">J. Liu</name>
</author>
<author>
<name sortKey="Xin, Y" uniqKey="Xin Y">Y. Xin</name>
</author>
<author>
<name sortKey="Kuang, H" uniqKey="Kuang H">H. Kuang</name>
</author>
<author>
<name sortKey="Wang, Q" uniqKey="Wang Q">Q. Wang</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Tacke, F" uniqKey="Tacke F">F. Tacke</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Woolbright, B L" uniqKey="Woolbright B">B.L. Woolbright</name>
</author>
<author>
<name sortKey="Jaeschke, H" uniqKey="Jaeschke H">H. Jaeschke</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Li, M" uniqKey="Li M">M. Li</name>
</author>
<author>
<name sortKey="Wang, S" uniqKey="Wang S">S. Wang</name>
</author>
<author>
<name sortKey="Li, X" uniqKey="Li X">X. Li</name>
</author>
<author>
<name sortKey="Kou, R" uniqKey="Kou R">R. Kou</name>
</author>
<author>
<name sortKey="Wang, Q" uniqKey="Wang Q">Q. Wang</name>
</author>
<author>
<name sortKey="Wang, X" uniqKey="Wang X">X. Wang</name>
</author>
<author>
<name sortKey="Zhao, N" uniqKey="Zhao N">N. Zhao</name>
</author>
<author>
<name sortKey="Zeng, T" uniqKey="Zeng T">T. Zeng</name>
</author>
<author>
<name sortKey="Xie, K" uniqKey="Xie K">K. Xie</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Chen, C Y" uniqKey="Chen C">C.Y. Chen</name>
</author>
<author>
<name sortKey="Kao, C L" uniqKey="Kao C">C.L. Kao</name>
</author>
<author>
<name sortKey="Liu, C M" uniqKey="Liu C">C.M. Liu</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ding, Y" uniqKey="Ding Y">Y. Ding</name>
</author>
<author>
<name sortKey="Liu, P" uniqKey="Liu P">P. Liu</name>
</author>
<author>
<name sortKey="Chen, Z L" uniqKey="Chen Z">Z.L. Chen</name>
</author>
<author>
<name sortKey="Zhang, S J" uniqKey="Zhang S">S.J. Zhang</name>
</author>
<author>
<name sortKey="Wang, Y Q" uniqKey="Wang Y">Y.Q. Wang</name>
</author>
<author>
<name sortKey="Cai, X" uniqKey="Cai X">X. Cai</name>
</author>
<author>
<name sortKey="Luo, L" uniqKey="Luo L">L. Luo</name>
</author>
<author>
<name sortKey="Zhou, X" uniqKey="Zhou X">X. Zhou</name>
</author>
<author>
<name sortKey="Zhao, L" uniqKey="Zhao L">L. Zhao</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kuramochi, M" uniqKey="Kuramochi M">M. Kuramochi</name>
</author>
<author>
<name sortKey="Izawa, T" uniqKey="Izawa T">T. Izawa</name>
</author>
<author>
<name sortKey="Pervin, M" uniqKey="Pervin M">M. Pervin</name>
</author>
<author>
<name sortKey="Bondoc, A" uniqKey="Bondoc A">A. Bondoc</name>
</author>
<author>
<name sortKey="Kuwamura, M" uniqKey="Kuwamura M">M. Kuwamura</name>
</author>
<author>
<name sortKey="Yamate, J" uniqKey="Yamate J">J. Yamate</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Roy, A" uniqKey="Roy A">A. Roy</name>
</author>
<author>
<name sortKey="Srivastava, M" uniqKey="Srivastava M">M. Srivastava</name>
</author>
<author>
<name sortKey="Saqib, U" uniqKey="Saqib U">U. Saqib</name>
</author>
<author>
<name sortKey="Liu, D" uniqKey="Liu D">D. Liu</name>
</author>
<author>
<name sortKey="Faisal, S M" uniqKey="Faisal S">S.M. Faisal</name>
</author>
<author>
<name sortKey="Sugathan, S" uniqKey="Sugathan S">S. Sugathan</name>
</author>
<author>
<name sortKey="Bishnoi, S" uniqKey="Bishnoi S">S. Bishnoi</name>
</author>
<author>
<name sortKey="Baij, M S" uniqKey="Baij M">M.S. Baij</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ceccarelli, S" uniqKey="Ceccarelli S">S. Ceccarelli</name>
</author>
<author>
<name sortKey="Nobili, V" uniqKey="Nobili V">V. Nobili</name>
</author>
<author>
<name sortKey="Alisi, A" uniqKey="Alisi A">A. Alisi</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Girisa, S" uniqKey="Girisa S">S. Girisa</name>
</author>
<author>
<name sortKey="Shabnam, B" uniqKey="Shabnam B">B. Shabnam</name>
</author>
<author>
<name sortKey="Monisha, J" uniqKey="Monisha J">J. Monisha</name>
</author>
<author>
<name sortKey="Fan, L" uniqKey="Fan L">L. Fan</name>
</author>
<author>
<name sortKey="Halim, C E" uniqKey="Halim C">C.E. Halim</name>
</author>
<author>
<name sortKey="Arfuso, F" uniqKey="Arfuso F">F. Arfuso</name>
</author>
<author>
<name sortKey="Ahn, K S" uniqKey="Ahn K">K.S. Ahn</name>
</author>
<author>
<name sortKey="Sethi, G" uniqKey="Sethi G">G. Sethi</name>
</author>
<author>
<name sortKey="Kunnumakkara, A B" uniqKey="Kunnumakkara A">A.B. Kunnumakkara</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Chien, T Y" uniqKey="Chien T">T.Y. Chien</name>
</author>
<author>
<name sortKey="Huang, S K" uniqKey="Huang S">S.K. Huang</name>
</author>
<author>
<name sortKey="Lee, C J" uniqKey="Lee C">C.J. Lee</name>
</author>
<author>
<name sortKey="Tsai, P W" uniqKey="Tsai P">P.W. Tsai</name>
</author>
<author>
<name sortKey="Wang, C C" uniqKey="Wang C">C.C. Wang</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Liu, W Y" uniqKey="Liu W">W.Y. Liu</name>
</author>
<author>
<name sortKey="Tzeng, T F" uniqKey="Tzeng T">T.F. Tzeng</name>
</author>
<author>
<name sortKey="Liu, I M" uniqKey="Liu I">I.M. Liu</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Tzeng, T F" uniqKey="Tzeng T">T.F. Tzeng</name>
</author>
<author>
<name sortKey="Liou, S S" uniqKey="Liou S">S.S. Liou</name>
</author>
<author>
<name sortKey="Chang, C J" uniqKey="Chang C">C.J. Chang</name>
</author>
<author>
<name sortKey="Liu, I M" uniqKey="Liu I">I.M. Liu</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Hemn, H O" uniqKey="Hemn H">H.O. Hemn</name>
</author>
<author>
<name sortKey="Noordin, M M" uniqKey="Noordin M">M.M. Noordin</name>
</author>
<author>
<name sortKey="Rahman, H S" uniqKey="Rahman H">H.S. Rahman</name>
</author>
<author>
<name sortKey="Hazilawati, H" uniqKey="Hazilawati H">H. Hazilawati</name>
</author>
<author>
<name sortKey="Zuki, A" uniqKey="Zuki A">A. Zuki</name>
</author>
<author>
<name sortKey="Chartrand, M S" uniqKey="Chartrand M">M.S. Chartrand</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Zulazmi, N A" uniqKey="Zulazmi N">N.A. Zulazmi</name>
</author>
<author>
<name sortKey="Gopalsamy, B" uniqKey="Gopalsamy B">B. Gopalsamy</name>
</author>
<author>
<name sortKey="Min, J C" uniqKey="Min J">J.C. Min</name>
</author>
<author>
<name sortKey="Farouk, A A" uniqKey="Farouk A">A.A. Farouk</name>
</author>
<author>
<name sortKey="Sulaiman, M R" uniqKey="Sulaiman M">M.R. Sulaiman</name>
</author>
<author>
<name sortKey="Bharatham, B H" uniqKey="Bharatham B">B.H. Bharatham</name>
</author>
<author>
<name sortKey="Perimal, E K" uniqKey="Perimal E">E.K. Perimal</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Lee, C Y" uniqKey="Lee C">C.Y. Lee</name>
</author>
<author>
<name sortKey="Chen, S P" uniqKey="Chen S">S.P. Chen</name>
</author>
<author>
<name sortKey="Su, C H" uniqKey="Su C">C.H. Su</name>
</author>
<author>
<name sortKey="Ho, Y C" uniqKey="Ho Y">Y.C. Ho</name>
</author>
<author>
<name sortKey="Yang, M L" uniqKey="Yang M">M.L. Yang</name>
</author>
<author>
<name sortKey="Lee, S S" uniqKey="Lee S">S.S. Lee</name>
</author>
<author>
<name sortKey="Huang, L R" uniqKey="Huang L">L.R. Huang</name>
</author>
<author>
<name sortKey="Yang, C P" uniqKey="Yang C">C.P. Yang</name>
</author>
<author>
<name sortKey="Chan, C J" uniqKey="Chan C">C.J. Chan</name>
</author>
<author>
<name sortKey="Kuan, Y H" uniqKey="Kuan Y">Y.H. Kuan</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Prasannan, R" uniqKey="Prasannan R">R. Prasannan</name>
</author>
<author>
<name sortKey="Kalesh, K A" uniqKey="Kalesh K">K.A. Kalesh</name>
</author>
<author>
<name sortKey="Shanmugam, M K" uniqKey="Shanmugam M">M.K. Shanmugam</name>
</author>
<author>
<name sortKey="Nachiyappan, A" uniqKey="Nachiyappan A">A. Nachiyappan</name>
</author>
<author>
<name sortKey="Ramachandran, L" uniqKey="Ramachandran L">L. Ramachandran</name>
</author>
<author>
<name sortKey="Nguyen, A H" uniqKey="Nguyen A">A.H. Nguyen</name>
</author>
<author>
<name sortKey="Kumar, A P" uniqKey="Kumar A">A.P. Kumar</name>
</author>
<author>
<name sortKey="Lakshmanan, M" uniqKey="Lakshmanan M">M. Lakshmanan</name>
</author>
<author>
<name sortKey="Sethi, G" uniqKey="Sethi G">G. Sethi</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Tzeng, T F" uniqKey="Tzeng T">T.F. Tzeng</name>
</author>
<author>
<name sortKey="Liou, S S" uniqKey="Liou S">S.S. Liou</name>
</author>
<author>
<name sortKey="Chang, C J" uniqKey="Chang C">C.J. Chang</name>
</author>
<author>
<name sortKey="Liu, M H" uniqKey="Liu M">M.H. Liu</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kim, J W" uniqKey="Kim J">J.W. Kim</name>
</author>
<author>
<name sortKey="Yang, D" uniqKey="Yang D">D. Yang</name>
</author>
<author>
<name sortKey="Jeong, H" uniqKey="Jeong H">H. Jeong</name>
</author>
<author>
<name sortKey="Park, I S" uniqKey="Park I">I.S. Park</name>
</author>
<author>
<name sortKey="Lee, M H" uniqKey="Lee M">M.H. Lee</name>
</author>
<author>
<name sortKey="Lim, C W" uniqKey="Lim C">C.W. Lim</name>
</author>
<author>
<name sortKey="Kim, B" uniqKey="Kim B">B. Kim</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Hamid, A" uniqKey="Hamid A">A. Hamid</name>
</author>
<author>
<name sortKey="Lee, L S" uniqKey="Lee L">L.S. Lee</name>
</author>
<author>
<name sortKey="Karim, S R" uniqKey="Karim S">S.R. Karim</name>
</author>
<author>
<name sortKey="Jufri, N F" uniqKey="Jufri N">N.F. Jufri</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Woolbright, B L" uniqKey="Woolbright B">B.L. Woolbright</name>
</author>
<author>
<name sortKey="Jaeschke, H" uniqKey="Jaeschke H">H. Jaeschke</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kalantari, K" uniqKey="Kalantari K">K. Kalantari</name>
</author>
<author>
<name sortKey="Moniri, M" uniqKey="Moniri M">M. Moniri</name>
</author>
<author>
<name sortKey="Boroumand, M A" uniqKey="Boroumand M">M.A. Boroumand</name>
</author>
<author>
<name sortKey="Abdul Rahim, R" uniqKey="Abdul Rahim R">R. Abdul Rahim</name>
</author>
<author>
<name sortKey="Bin Ariff, A" uniqKey="Bin Ariff A">A. Bin Ariff</name>
</author>
<author>
<name sortKey="Izadiyan, Z" uniqKey="Izadiyan Z">Z. Izadiyan</name>
</author>
<author>
<name sortKey="Mohamad, R" uniqKey="Mohamad R">R. Mohamad</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Xu, M" uniqKey="Xu M">M. Xu</name>
</author>
<author>
<name sortKey="Rui, D" uniqKey="Rui D">D. Rui</name>
</author>
<author>
<name sortKey="Yan, Y" uniqKey="Yan Y">Y. Yan</name>
</author>
<author>
<name sortKey="Xu, S" uniqKey="Xu S">S. Xu</name>
</author>
<author>
<name sortKey="Niu, Q" uniqKey="Niu Q">Q. Niu</name>
</author>
<author>
<name sortKey="Feng, G" uniqKey="Feng G">G. Feng</name>
</author>
<author>
<name sortKey="Wang, Y" uniqKey="Wang Y">Y. Wang</name>
</author>
<author>
<name sortKey="Li, S" uniqKey="Li S">S. Li</name>
</author>
<author>
<name sortKey="Jing, M" uniqKey="Jing M">M. Jing</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ghazalee, N S" uniqKey="Ghazalee N">N.S. Ghazalee</name>
</author>
<author>
<name sortKey="Jantan, I" uniqKey="Jantan I">I. Jantan</name>
</author>
<author>
<name sortKey="Arshad, L" uniqKey="Arshad L">L. Arshad</name>
</author>
<author>
<name sortKey="Haque, M A" uniqKey="Haque M">M.A. Haque</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Yang, H L" uniqKey="Yang H">H.L. Yang</name>
</author>
<author>
<name sortKey="Lee, C L" uniqKey="Lee C">C.L. Lee</name>
</author>
<author>
<name sortKey="Korivi, M" uniqKey="Korivi M">M. Korivi</name>
</author>
<author>
<name sortKey="Liao, J W" uniqKey="Liao J">J.W. Liao</name>
</author>
<author>
<name sortKey="Rajendran, P" uniqKey="Rajendran P">P. Rajendran</name>
</author>
<author>
<name sortKey="Wu, J J" uniqKey="Wu J">J.J. Wu</name>
</author>
<author>
<name sortKey="Hseu, Y C" uniqKey="Hseu Y">Y.C. Hseu</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Fadhel Abbas Albaayit, S" uniqKey="Fadhel Abbas Albaayit S">S. Fadhel Abbas Albaayit</name>
</author>
<author>
<name sortKey="Maharjan, R" uniqKey="Maharjan R">R. Maharjan</name>
</author>
<author>
<name sortKey="Liao, J W" uniqKey="Liao J">J.W. Liao</name>
</author>
<author>
<name sortKey="Rajendran, P" uniqKey="Rajendran P">P. Rajendran</name>
</author>
<author>
<name sortKey="Wu, J J" uniqKey="Wu J">J.J. Wu</name>
</author>
<author>
<name sortKey="Hseu, Y C" uniqKey="Hseu Y">Y.C. Hseu</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Al Suhaimi, E A" uniqKey="Al Suhaimi E">E.A. Al-Suhaimi</name>
</author>
<author>
<name sortKey="Al Riziza, N A" uniqKey="Al Riziza N">N.A. Al-Riziza</name>
</author>
<author>
<name sortKey="Al Essa, R A" uniqKey="Al Essa R">R.A. Al-Essa</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Wang, C" uniqKey="Wang C">C. Wang</name>
</author>
<author>
<name sortKey="Zou, S" uniqKey="Zou S">S. Zou</name>
</author>
<author>
<name sortKey="Cui, Z" uniqKey="Cui Z">Z. Cui</name>
</author>
<author>
<name sortKey="Guo, P" uniqKey="Guo P">P. Guo</name>
</author>
<author>
<name sortKey="Meng, Q" uniqKey="Meng Q">Q. Meng</name>
</author>
<author>
<name sortKey="Shi, X" uniqKey="Shi X">X. Shi</name>
</author>
<author>
<name sortKey="Gao, Y" uniqKey="Gao Y">Y. Gao</name>
</author>
<author>
<name sortKey="Yang, G" uniqKey="Yang G">G. Yang</name>
</author>
<author>
<name sortKey="Han, Z" uniqKey="Han Z">Z. Han</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Sithara, T" uniqKey="Sithara T">T. Sithara</name>
</author>
<author>
<name sortKey="Dhanya, B P" uniqKey="Dhanya B">B.P. Dhanya</name>
</author>
<author>
<name sortKey="Arun, K B" uniqKey="Arun K">K.B. Arun</name>
</author>
<author>
<name sortKey="Sini, S" uniqKey="Sini S">S. Sini</name>
</author>
<author>
<name sortKey="Dan, M" uniqKey="Dan M">M. Dan</name>
</author>
<author>
<name sortKey="Kokkuvayil Vasu, R" uniqKey="Kokkuvayil Vasu R">R. Kokkuvayil-Vasu</name>
</author>
<author>
<name sortKey="Nisha, P" uniqKey="Nisha P">P. Nisha</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Yan, H" uniqKey="Yan H">H. Yan</name>
</author>
<author>
<name sortKey="Ren, M Y" uniqKey="Ren M">M.Y. Ren</name>
</author>
<author>
<name sortKey="Wang, Z X" uniqKey="Wang Z">Z.X. Wang</name>
</author>
<author>
<name sortKey="Feng, S J" uniqKey="Feng S">S.J. Feng</name>
</author>
<author>
<name sortKey="Li, S" uniqKey="Li S">S. Li</name>
</author>
<author>
<name sortKey="Cheng, Y" uniqKey="Cheng Y">Y. Cheng</name>
</author>
<author>
<name sortKey="Hu, C X" uniqKey="Hu C">C.X. Hu</name>
</author>
<author>
<name sortKey="Gao, S Q" uniqKey="Gao S">S.Q. Gao</name>
</author>
<author>
<name sortKey="Zhang, G Q" uniqKey="Zhang G">G.Q. Zhang</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Rajan, I" uniqKey="Rajan I">I. Rajan</name>
</author>
<author>
<name sortKey="Jayasree, P R" uniqKey="Jayasree P">P.R. Jayasree</name>
</author>
<author>
<name sortKey="Kumar, P R" uniqKey="Kumar P">P.R. Kumar</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Hu, Z" uniqKey="Hu Z">Z. Hu</name>
</author>
<author>
<name sortKey="Zeng, Q" uniqKey="Zeng Q">Q. Zeng</name>
</author>
<author>
<name sortKey="Zhang, B" uniqKey="Zhang B">B. Zhang</name>
</author>
<author>
<name sortKey="Liu, H" uniqKey="Liu H">H. Liu</name>
</author>
<author>
<name sortKey="Wang, W" uniqKey="Wang W">W. Wang</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Sobhan, P K" uniqKey="Sobhan P">P.K. Sobhan</name>
</author>
<author>
<name sortKey="Seervi, M" uniqKey="Seervi M">M. Seervi</name>
</author>
<author>
<name sortKey="Deb, L" uniqKey="Deb L">L. Deb</name>
</author>
<author>
<name sortKey="Varghese, S" uniqKey="Varghese S">S. Varghese</name>
</author>
<author>
<name sortKey="Soman, A" uniqKey="Soman A">A. Soman</name>
</author>
<author>
<name sortKey="Joseph, J" uniqKey="Joseph J">J. Joseph</name>
</author>
<author>
<name sortKey="Mathew, K A" uniqKey="Mathew K">K.A. Mathew</name>
</author>
<author>
<name sortKey="Raghu, G" uniqKey="Raghu G">G. Raghu</name>
</author>
<author>
<name sortKey="Thomas, G" uniqKey="Thomas G">G. Thomas</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Tzeng, T F" uniqKey="Tzeng T">T.F. Tzeng</name>
</author>
<author>
<name sortKey="Liou, S S" uniqKey="Liou S">S.S. Liou</name>
</author>
<author>
<name sortKey="Tzeng, Y C" uniqKey="Tzeng Y">Y.C. Tzeng</name>
</author>
<author>
<name sortKey="Liu, I M" uniqKey="Liu I">I.M. Liu</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kim, M J" uniqKey="Kim M">M.J. Kim</name>
</author>
<author>
<name sortKey="Yun, J M" uniqKey="Yun J">J.M. Yun</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Haque, M A" uniqKey="Haque M">M.A. Haque</name>
</author>
<author>
<name sortKey="Jantan, I" uniqKey="Jantan I">I. Jantan</name>
</author>
<author>
<name sortKey="Harikrishnan, H" uniqKey="Harikrishnan H">H. Harikrishnan</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Yang, D W" uniqKey="Yang D">D.W. Yang</name>
</author>
<author>
<name sortKey="Qian, G B" uniqKey="Qian G">G.B. Qian</name>
</author>
<author>
<name sortKey="Jiang, M J" uniqKey="Jiang M">M.J. Jiang</name>
</author>
<author>
<name sortKey="Wang, P" uniqKey="Wang P">P. Wang</name>
</author>
<author>
<name sortKey="Wang, K Z" uniqKey="Wang K">K.Z. Wang</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Hamid, M" uniqKey="Hamid M">M. Hamid</name>
</author>
<author>
<name sortKey="Liu, D" uniqKey="Liu D">D. Liu</name>
</author>
<author>
<name sortKey="Abdulrahim, Y" uniqKey="Abdulrahim Y">Y. Abdulrahim</name>
</author>
<author>
<name sortKey="Khan, A" uniqKey="Khan A">A. Khan</name>
</author>
<author>
<name sortKey="Qian, G" uniqKey="Qian G">G. Qian</name>
</author>
<author>
<name sortKey="Huang, G" uniqKey="Huang G">G. Huang</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Iracheta Vellve, A" uniqKey="Iracheta Vellve A">A. Iracheta-Vellve</name>
</author>
<author>
<name sortKey="Petrasek, J" uniqKey="Petrasek J">J. Petrasek</name>
</author>
<author>
<name sortKey="Gyongyosi, B" uniqKey="Gyongyosi B">B. Gyongyosi</name>
</author>
<author>
<name sortKey="Abhishek, S" uniqKey="Abhishek S">S. Abhishek</name>
</author>
<author>
<name sortKey="Patrick, L" uniqKey="Patrick L">L. Patrick</name>
</author>
<author>
<name sortKey="Karen, K" uniqKey="Karen K">K. Karen</name>
</author>
<author>
<name sortKey="Donna, C" uniqKey="Donna C">C. Donna</name>
</author>
<author>
<name sortKey="Charles, D" uniqKey="Charles D">D. Charles</name>
</author>
<author>
<name sortKey="Calenda, E" uniqKey="Calenda E">E. Calenda</name>
</author>
<author>
<name sortKey="Kurt, J" uniqKey="Kurt J">J. Kurt</name>
</author>
<author>
<name sortKey="Katherine, A" uniqKey="Katherine A">A. Katherine</name>
</author>
<author>
<name sortKey="Gyongyi, S" uniqKey="Gyongyi S">S. Gyongyi</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Li, H" uniqKey="Li H">H. Li</name>
</author>
<author>
<name sortKey="Zhang, T" uniqKey="Zhang T">T. Zhang</name>
</author>
<author>
<name sortKey="Wang, K" uniqKey="Wang K">K. Wang</name>
</author>
<author>
<name sortKey="Lu, M" uniqKey="Lu M">M. Lu</name>
</author>
<author>
<name sortKey="Guo, Y H" uniqKey="Guo Y">Y.H. Guo</name>
</author>
<author>
<name sortKey="Zhang, Y" uniqKey="Zhang Y">Y. Zhang</name>
</author>
<author>
<name sortKey="Chen, Z N" uniqKey="Chen Z">Z.N. Chen</name>
</author>
<author>
<name sortKey="Bian, H J" uniqKey="Bian H">H.J. Bian</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Wang, B" uniqKey="Wang B">B. Wang</name>
</author>
<author>
<name sortKey="Zhou, T Y" uniqKey="Zhou T">T.Y. Zhou</name>
</author>
<author>
<name sortKey="Nie, C H" uniqKey="Nie C">C.H. Nie</name>
</author>
<author>
<name sortKey="Wan, D L" uniqKey="Wan D">D.L. Wan</name>
</author>
<author>
<name sortKey="Zheng, S S" uniqKey="Zheng S">S.S. Zheng</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Jian, T" uniqKey="Jian T">T. Jian</name>
</author>
<author>
<name sortKey="Ao, X" uniqKey="Ao X">X. Ao</name>
</author>
<author>
<name sortKey="Wu, Y" uniqKey="Wu Y">Y. Wu</name>
</author>
<author>
<name sortKey="Lv, H" uniqKey="Lv H">H. Lv</name>
</author>
<author>
<name sortKey="Ma, L" uniqKey="Ma L">L. Ma</name>
</author>
<author>
<name sortKey="Zhao, L" uniqKey="Zhao L">L. Zhao</name>
</author>
<author>
<name sortKey="Tong, B" uniqKey="Tong B">B. Tong</name>
</author>
<author>
<name sortKey="Ren, B" uniqKey="Ren B">B. Ren</name>
</author>
<author>
<name sortKey="Chen, J" uniqKey="Chen J">J. Chen</name>
</author>
<author>
<name sortKey="Li, W" uniqKey="Li W">W. Li</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Xin, X" uniqKey="Xin X">X. Xin</name>
</author>
<author>
<name sortKey="Yang, W" uniqKey="Yang W">W. Yang</name>
</author>
<author>
<name sortKey="Yasen, M" uniqKey="Yasen M">M. Yasen</name>
</author>
<author>
<name sortKey="Zhao, H" uniqKey="Zhao H">H. Zhao</name>
</author>
<author>
<name sortKey="Aisa, H" uniqKey="Aisa H">H. Aisa</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Zwicker, P" uniqKey="Zwicker P">P. Zwicker</name>
</author>
<author>
<name sortKey="Schultze, N" uniqKey="Schultze N">N. Schultze</name>
</author>
<author>
<name sortKey="Niehs, S" uniqKey="Niehs S">S. Niehs</name>
</author>
<author>
<name sortKey="Albrecht, D" uniqKey="Albrecht D">D. Albrecht</name>
</author>
<author>
<name sortKey="Methling, K" uniqKey="Methling K">K. Methling</name>
</author>
<author>
<name sortKey="Wurster, M" uniqKey="Wurster M">M. Wurster</name>
</author>
<author>
<name sortKey="Wachlin, G" uniqKey="Wachlin G">G. Wachlin</name>
</author>
<author>
<name sortKey="Lalk, M" uniqKey="Lalk M">M. Lalk</name>
</author>
<author>
<name sortKey="Lindequist, U" uniqKey="Lindequist U">U. Lindequist</name>
</author>
<author>
<name sortKey="Haertel, B" uniqKey="Haertel B">B. Haertel</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Jodynis Liebert, J" uniqKey="Jodynis Liebert J">J. Jodynis-Liebert</name>
</author>
<author>
<name sortKey="Murias, M" uniqKey="Murias M">M. Murias</name>
</author>
<author>
<name sortKey="Bloszyk, E" uniqKey="Bloszyk E">E. Bloszyk</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Meilin, W" uniqKey="Meilin W">W. Meilin</name>
</author>
<author>
<name sortKey="Jingling, N" uniqKey="Jingling N">N. Jingling</name>
</author>
<author>
<name sortKey="Lei, G" uniqKey="Lei G">G. Lei</name>
</author>
<author>
<name sortKey="Yang, G" uniqKey="Yang G">G. Yang</name>
</author>
<author>
<name sortKey="Shegan, G" uniqKey="Shegan G">G. Shegan</name>
</author>
</analytic>
</biblStruct>
</listBibl>
</div1>
</back>
</TEI>
<pmc article-type="research-article">
<pmc-dir>properties open_access</pmc-dir>
<front>
<journal-meta>
<journal-id journal-id-type="nlm-ta">Molecules</journal-id>
<journal-id journal-id-type="iso-abbrev">Molecules</journal-id>
<journal-id journal-id-type="publisher-id">molecules</journal-id>
<journal-title-group>
<journal-title>Molecules</journal-title>
</journal-title-group>
<issn pub-type="epub">1420-3049</issn>
<publisher>
<publisher-name>MDPI</publisher-name>
</publisher>
</journal-meta>
<article-meta>
<article-id pub-id-type="pmid">31121820</article-id>
<article-id pub-id-type="pmc">6571963</article-id>
<article-id pub-id-type="doi">10.3390/molecules24101964</article-id>
<article-id pub-id-type="publisher-id">molecules-24-01964</article-id>
<article-categories>
<subj-group subj-group-type="heading">
<subject>Article</subject>
</subj-group>
</article-categories>
<title-group>
<article-title>Zerumbone Protects against Carbon Tetrachloride (CCl
<sub>4</sub>
)-Induced Acute Liver Injury in Mice via Inhibiting Oxidative Stress and the Inflammatory Response: Involving the TLR4/NF-κB/COX-2 Pathway</article-title>
</title-group>
<contrib-group>
<contrib contrib-type="author">
<name>
<surname>Wang</surname>
<given-names>Meilin</given-names>
</name>
<xref ref-type="author-notes" rid="fn1-molecules-24-01964"></xref>
</contrib>
<contrib contrib-type="author">
<contrib-id contrib-id-type="orcid" authenticated="true">https://orcid.org/0000-0002-6638-2692</contrib-id>
<name>
<surname>Niu</surname>
<given-names>Jingling</given-names>
</name>
<xref ref-type="author-notes" rid="fn1-molecules-24-01964"></xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Ou</surname>
<given-names>Lina</given-names>
</name>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Deng</surname>
<given-names>Bo</given-names>
</name>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Wang</surname>
<given-names>Yingyi</given-names>
</name>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Li</surname>
<given-names>Sanqiang</given-names>
</name>
<xref rid="c1-molecules-24-01964" ref-type="corresp">*</xref>
</contrib>
</contrib-group>
<aff id="af1-molecules-24-01964">Medical College, Henan University of Science and Technology, Luoyang 471023, China;
<email>meilin11954@163.com</email>
(M.W.);
<email>18438591806@163.com</email>
(J.N.);
<email>lina.ou@163.com</email>
(L.O.);
<email>deng_bo888@163.com</email>
(B.D.);
<email>yingyiwang2019@163.com</email>
(Y.W.)</aff>
<author-notes>
<corresp id="c1-molecules-24-01964">
<label>*</label>
Correspondence:
<email>sanqiangli2001@163.com</email>
; Tel.: +86-152-9059-6918</corresp>
<fn id="fn1-molecules-24-01964">
<label></label>
<p>These two authors contributed equally to this paper.</p>
</fn>
</author-notes>
<pub-date pub-type="epub">
<day>22</day>
<month>5</month>
<year>2019</year>
</pub-date>
<pub-date pub-type="collection">
<month>5</month>
<year>2019</year>
</pub-date>
<volume>24</volume>
<issue>10</issue>
<elocation-id>1964</elocation-id>
<history>
<date date-type="received">
<day>16</day>
<month>4</month>
<year>2019</year>
</date>
<date date-type="accepted">
<day>15</day>
<month>5</month>
<year>2019</year>
</date>
</history>
<permissions>
<copyright-statement>© 2019 by the authors.</copyright-statement>
<copyright-year>2019</copyright-year>
<license license-type="open-access">
<license-p>Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (
<ext-link ext-link-type="uri" xlink:href="http://creativecommons.org/licenses/by/4.0/">http://creativecommons.org/licenses/by/4.0/</ext-link>
).</license-p>
</license>
</permissions>
<abstract>
<p>The natural compound Zerumbone (hereinafter referred to as ZER), a monocyclic sesquiterpenoid, has been reported to possess many pharmacological properties, including antioxidant and anti-inflammatory properties. This study aimed to investigate the underlying mechanism of ZER against acute liver injury (ALI) in CCl
<sub>4</sub>
-induced mice models. ICR mice were pretreated intraperitoneally with ZER for five days, then received a CCl
<sub>4</sub>
injection two hours after the last ZER administration and were sacrificed 24 h later. Examination of serum aspartate aminotransferase (AST) and alanine aminotransferase (ALT) activities and the histopathological analysis confirmed the hepatoprotective effect of ZER. Biochemical assays revealed that ZER pretreatment recovered the activities of antioxidant enzymes superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px), restored the glutathione (GSH) reservoir, and reduced the production of malondialdehyde (MDA), all in a dose-dependent manner. Furthermore, administration of ZER in vivo reduced the release amounts of pro-inflammatory cytokines interleukin-6 (IL-6) and tumor necrosis factor alpha (TNF-α) and inhibited the increased protein levels of Toll-like receptor 4 (TLR4), nuclear factor-kappaB (NF-κB) p-p65, and cyclooxygenase (COX-2). Further studies in lipopolysaccharide (LPS)-induced Raw264.7 inflammatory cellular models verified that ZER could inhibit inflammation via inactivating the TLR4/NF-κB/COX-2 pathway. Thus, our study indicated that ZER exhibited a hepatoprotective effect against ALI through its antioxidant and anti-inflammatory activities and the possible mechanism might be mediated by the TLR4/NF-κB/COX-2 pathway. Collectively, our studies indicate ZER could be a potential candidate for chemical liver injury treatment.</p>
</abstract>
<kwd-group>
<kwd>Zerumbone</kwd>
<kwd>acute liver injury</kwd>
<kwd>antioxidant</kwd>
<kwd>anti-inflammation</kwd>
<kwd>pro-inflammatory cytokine</kwd>
<kwd>TNF-α</kwd>
<kwd>IL-6</kwd>
<kwd>TLR4</kwd>
<kwd>NF-κB</kwd>
<kwd>COX-2</kwd>
</kwd-group>
</article-meta>
</front>
<body>
<sec sec-type="intro" id="sec1-molecules-24-01964">
<title>1. Introduction</title>
<p>The liver, the largest digestive gland in human body, not only carries out the metabolism of carbohydrates, proteins, and lipids, but is also involved in secretion and biotransformation. Meanwhile, as the main executer of detoxification, the liver is highly vulnerable to all kinds of xenobiotics, such as exogenous chemicals, viruses, many drugs, and bacteria metabolites [
<xref rid="B1-molecules-24-01964" ref-type="bibr">1</xref>
]. Using drug-induced liver injury as an example, the annual incidence in the general population was estimated to be 23.80 per 100,000 persons in mainland China [
<xref rid="B2-molecules-24-01964" ref-type="bibr">2</xref>
]. Clearly, hepatic disease has become a major global burden on human health. However, it is still a therapeutic challenge to develop hepatoprotective drugs with high efficacy and low side effects [
<xref rid="B1-molecules-24-01964" ref-type="bibr">1</xref>
,
<xref rid="B3-molecules-24-01964" ref-type="bibr">3</xref>
].</p>
<p>A large amount of evidence indicates that oxidative stress and inflammation are two of the most important pathogenic mechanisms for hepatic disease [
<xref rid="B4-molecules-24-01964" ref-type="bibr">4</xref>
]. CCl
<sub>4</sub>
is a well-known hepatotoxin. Acute administration of CCl
<sub>4</sub>
to rodents, which rapidly leads to oxidative stress and an inflammatory response, is the most widely accepted in vivo experimental model [
<xref rid="B5-molecules-24-01964" ref-type="bibr">5</xref>
,
<xref rid="B6-molecules-24-01964" ref-type="bibr">6</xref>
] and is extensively used to identify new, effective drugs and investigate the underlying mechanisms [
<xref rid="B7-molecules-24-01964" ref-type="bibr">7</xref>
,
<xref rid="B8-molecules-24-01964" ref-type="bibr">8</xref>
]. The toxic effects observed in CCl
<sub>4</sub>
intoxication come from a toxic metabolite of CCl
<sub>4</sub>
, trichloromethylperoxy radical, which triggers lipid peroxidation and oxidative stress [
<xref rid="B4-molecules-24-01964" ref-type="bibr">4</xref>
,
<xref rid="B9-molecules-24-01964" ref-type="bibr">9</xref>
]. CCl
<sub>4</sub>
intoxication also causes localized necrosis of liver tissues, followed by the activation of Kupffer cells [
<xref rid="B10-molecules-24-01964" ref-type="bibr">10</xref>
]. Together with the damaged hepatocytes, the activated Kupffer cells release chemokines and inflammatory cytokines, such as TNF-α and IL-6, which lead to an inflammatory response [
<xref rid="B7-molecules-24-01964" ref-type="bibr">7</xref>
,
<xref rid="B11-molecules-24-01964" ref-type="bibr">11</xref>
,
<xref rid="B12-molecules-24-01964" ref-type="bibr">12</xref>
]. Healthy inflammation helps to clear the necrotic cell debris and stimulate regeneration of hepatocytes, however, unregulated inflammatory response can provoke further hepatic damage [
<xref rid="B13-molecules-24-01964" ref-type="bibr">13</xref>
]. Many pharmaceutical interventions that are effective against acute liver injury (ALI) have shown the benefits of inflammation inhibition [
<xref rid="B14-molecules-24-01964" ref-type="bibr">14</xref>
,
<xref rid="B15-molecules-24-01964" ref-type="bibr">15</xref>
].</p>
<p>Toll-like receptors (TLRs) are a well-known family of pattern-recognition receptors, which are expressed in a series of cell types including Kupffer cells and other inflammatory cells [
<xref rid="B16-molecules-24-01964" ref-type="bibr">16</xref>
,
<xref rid="B17-molecules-24-01964" ref-type="bibr">17</xref>
]. During acute liver injury (ALI), necrosis of the hepatocytes gives rise to the release of cellular constituents such as ATP, mitochondrial DNA, and molecules like high mobility group box-1 protein (HMGB1), which are recognized as damage-associated molecular patterns (DAMPs) to trigger the TLRs [
<xref rid="B18-molecules-24-01964" ref-type="bibr">18</xref>
]. TLR triggering leads to the production of pro-inflammatory cytokines and mediators such as TNF-α, IL-6, and COX-2 via the phosphorylation and activation of NF-κB [
<xref rid="B18-molecules-24-01964" ref-type="bibr">18</xref>
,
<xref rid="B19-molecules-24-01964" ref-type="bibr">19</xref>
,
<xref rid="B20-molecules-24-01964" ref-type="bibr">20</xref>
].</p>
<p>Recently, various natural products extracted from traditional Chinese medicine plants have drawn great attention in treatment of liver diseases [
<xref rid="B7-molecules-24-01964" ref-type="bibr">7</xref>
,
<xref rid="B12-molecules-24-01964" ref-type="bibr">12</xref>
]. Zerumbone (ZER) is a monocyclic sesquiterpenoid isolated from
<italic>Zingiber zerumbet</italic>
Smith, a perennial medicine herb. It has many biomedical properties, such as antioxidant, anti-inflammatory, anti-allergic, and anti-neoplastic properties [
<xref rid="B21-molecules-24-01964" ref-type="bibr">21</xref>
]. Over the past few years, evidence has accumulated showing that ZER is a multi-targeted phytochemical with potential to treat many diseases, including osteoarthritis [
<xref rid="B22-molecules-24-01964" ref-type="bibr">22</xref>
], diabetic complications [
<xref rid="B23-molecules-24-01964" ref-type="bibr">23</xref>
,
<xref rid="B24-molecules-24-01964" ref-type="bibr">24</xref>
], atherosclerosis [
<xref rid="B25-molecules-24-01964" ref-type="bibr">25</xref>
], neuropathic pain [
<xref rid="B26-molecules-24-01964" ref-type="bibr">26</xref>
], acute lung injury [
<xref rid="B27-molecules-24-01964" ref-type="bibr">27</xref>
], and cancer, through the modulation of various molecular targets and cellular signaling cascades [
<xref rid="B21-molecules-24-01964" ref-type="bibr">21</xref>
,
<xref rid="B28-molecules-24-01964" ref-type="bibr">28</xref>
].</p>
<p>ZER is reported to have pharmacological activity against hepatic disease, including nonalcoholic fatty liver disease, chronic liver fibrosis, and ALI [
<xref rid="B29-molecules-24-01964" ref-type="bibr">29</xref>
,
<xref rid="B30-molecules-24-01964" ref-type="bibr">30</xref>
,
<xref rid="B31-molecules-24-01964" ref-type="bibr">31</xref>
]. However, the underlying mechanism for ALI has not yet been well-studied. Therefore, the present study was undertaken to explore the hepatoprotective mechanism of ZER against ALI in vivo and in vitro. A CCl
<sub>4</sub>
-induced ALI mice model was employed. ICR mice were pretreated intraperitoneally with ZER at 1.25, 5, and 20 μmol/kg for five days, then received a CCl
<sub>4</sub>
injection two hours after the last ZER administration. Then, the oxidative stress levels and the extent of the inflammatory response was evaluated. Our in vivo data indicate that ZER exhibited hepatoprotective effects against ALI by alleviating oxidative stress and inhibiting the inflammatory response and the possible mechanism might be mediated by the TLR4/NF-κB/COX-2 pathway. Our in vitro experiments confirmed that ZER could inhibit the inflammatory response through the TLR4/NF-κB/COX-2 pathway.</p>
</sec>
<sec sec-type="results" id="sec2-molecules-24-01964">
<title>2. Results</title>
<sec id="sec2dot1-molecules-24-01964">
<title>2.1. Effects of ZER on Serum Aspartate Aminotransferase (AST), Alanine Aminotransferase (ALT), and Liver Index</title>
<p>The structure of ZER is shown in
<xref ref-type="fig" rid="molecules-24-01964-f001">Figure 1</xref>
A. Bifendate (BIF) was used as a positive control, which is widely prescribed to treat hepatic injury. The mice were pretreated with ZER for five consecutive days and then challenged with a one-time intraperitoneal injection. The protective effects of ZER were first assessed by serum biochemical parameters. As shown in
<xref ref-type="fig" rid="molecules-24-01964-f001">Figure 1</xref>
B and
<xref ref-type="fig" rid="molecules-24-01964-f001">Figure 1</xref>
C, the activities of serum AST and ALT were markedly elevated in the CCl
<sub>4</sub>
injection group with respect to the control group, indicating that the model of ALI induced by CCl
<sub>4</sub>
was successfully established. ZER pretreatment effectively lowered the increase of serum AST and ALT activities in a dose-dependent manner. The ALT activity in the 20 μmol/kg ZER group was even lower than the BIF-positive control group. These results suggested that the CCl
<sub>4</sub>
-induced ALI mice model was successfully established and ZER harbors hepatoprotective properties against CCl
<sub>4</sub>
-induced ALI.</p>
<p>Liver disease usually accompanied the rise of liver index. In the CCl
<sub>4</sub>
-intoxicated animals, we also observed the increase of the liver index with respect to the normal group, which is shown in
<xref ref-type="fig" rid="molecules-24-01964-f001">Figure 1</xref>
D. Unsurprisingly, ZER pretreatment markedly decreased the liver index in a dose-dependent fashion, as demonstrated by the gradual decrease of the liver index with respect to that of the CC1
<sub>4</sub>
group.</p>
</sec>
<sec id="sec2dot2-molecules-24-01964">
<title>2.2. Histopathological Effect of ZER in Liver</title>
<p>To further assess the protective effects of ZER on CCl
<sub>4</sub>
-induced ALI, an examination of the liver histophathology was employed to evaluate the extent of the hepatic damage. After intoxication of the mice with CCl
<sub>4</sub>
, a moderate degree of hepatocyte necrosis was evident in the central lobular areas, which accounted for 49% (the model) of the liver section, indicating a successful mouse model of ALI (
<xref ref-type="fig" rid="molecules-24-01964-f002">Figure 2</xref>
B,G). However, ZER pretreatment significantly decreased the necrosis in a dose-dependent fashion (
<xref ref-type="fig" rid="molecules-24-01964-f002">Figure 2</xref>
C–G). The necrotic area decreased from 49% to 39.4% (ZER-L), 26.9% (ZER-M), or 19.7% (ZER-H) (
<xref ref-type="fig" rid="molecules-24-01964-f002">Figure 2</xref>
G). The histopathological results demonstrated that pretreatment with ZER effectively alleviated CCl
<sub>4</sub>
-induced centrolobular necrosis.</p>
</sec>
<sec id="sec2dot3-molecules-24-01964">
<title>2.3. Effects of ZER on Oxidative Stress Parameters</title>
<p>It is well elucidated that oxidative stress is an important mechanism of action of hepatotoxicity induced by CCl
<sub>4</sub>
. CCl
<sub>4</sub>
intoxication causes increasing generation of reactive oxygen species (ROS) in hepatocytes, which triggers GSH depletion and lipid peroxidation. MDA is the end product of lipid peroxidation and can be used as a marker for oxidative stress. ROS also results in a significant decrease in antioxidant enzyme activity, including SOD and GSH-Px. To understand the potential mechanisms of the observed hepatoprotective effects, oxidative stress parameters was evaluated by measuring MDA levels, GSH levels, and the activities of SOD and GSH-Px. As can be seen in
<xref ref-type="fig" rid="molecules-24-01964-f003">Figure 3</xref>
, MDA contents was remarkably increased, GSH levels were remarkably decreased, and SOD and GSH-Px activities were significantly decreased comparing to those in the control group after intoxication with CCl
<sub>4</sub>
. However, with ZER pretreatment, the generation of MDA in liver tissues was reduced, the depleted GSH levels were restored, and the decreased SOD and GSH-Px activities were increased, all in a dose-dependent manner. These results suggest that ZER exerts hepatoprotective effects by alleviating oxidative stress.</p>
</sec>
<sec id="sec2dot4-molecules-24-01964">
<title>2.4. Effects of ZER on the Levels of TNF-α and IL-6 In Vivo</title>
<p>Besides oxidative stress, CCl
<sub>4</sub>
-induced ALI is also characterized by an inflammatory response due to pro-inflammatory cytokines such as TNF-α and IL-6 released by damaged hepatocytes, sinusoidal endothelial cells, and activated Kupffer cells. To investigate if ZER provides protection against CCl
<sub>4</sub>
-induced ALI via anti-inflammation, the change in levels of two main pro-inflammatory cytokines, TNF-α and IL-6, was examined. As can be seen in
<xref ref-type="fig" rid="molecules-24-01964-f004">Figure 4</xref>
, both serum and liver tissue TNF-α and IL-6 levels were elevated in the CCl
<sub>4</sub>
-intoxication group than in the control group, as determined by ELISA. However, pretreatment with ZER inhibited TNF-α and IL-6 production with respect to the CCl
<sub>4</sub>
-intoxication group in a dose-dependent manner. The results clearly showed that ZER-pretreatment could inhibit the CCl
<sub>4</sub>
-intoxication-induced production of inflammatory cytokines TNF-α and IL-6. These results hint that the hepatoprotective effect of ZER is achieved by down-regulating the inflammatory response.</p>
</sec>
<sec id="sec2dot5-molecules-24-01964">
<title>2.5. Effects of ZER on TLR4/NF-κB/COX-2 Signaling In Vivo</title>
<p>We further explored the underlying anti-inflammatory mechanism of ZER against ALI induced by CCl
<sub>4</sub>
. As is well-known, the production of pro-inflammatory cytokines TNF-α and IL-6 are induced by activation of NF-κB signaling, so we first detected the change in the level of phosphorylated p65, which forms the most common heterodimer of NF-κB together with p50. As shown in
<xref ref-type="fig" rid="molecules-24-01964-f005">Figure 5</xref>
, compared with the control group, the protein level of p-p65 was increased in the liver tissue of the CCl
<sub>4</sub>
-challenged model group. The levels of p-p65 in the ZER-pretreated groups were decreased compared with that of the model group and the decrement was exhibited in a dose-dependent manner. We then detected the change in the levels of TLR4 and COX-2 proteins, which are the upstream and downstream molecules of the NF-κB pathway, respectively. The change in the levels of TLR4 and COX-2 were in accordance with that of p65, as can be seen in
<xref ref-type="fig" rid="molecules-24-01964-f005">Figure 5</xref>
. These results suggested that CCl
<sub>4</sub>
intoxication may mediate the inflammatory response via TLR4/NF-κB/COX-2 signaling and ZER could inhibit inflammation by blocking the activation of the TLR4/NF-κB/COX-2 signaling pathway.</p>
</sec>
<sec id="sec2dot6-molecules-24-01964">
<title>2.6. Effects of ZER on TLR4/NF-κB/COX-2 Signaling In Vitro</title>
<p>The expression analysis of the liver tissue samples suggested that ZER protects CCl
<sub>4</sub>
-induced ALI by ameliorating the inflammatory response through TLR4/NF-κB/COX-2 signaling. To further verify the involvement of this pathway in vitro, anLPS-induced Raw264.7 inflammatory cellular model was established and employed. We first assessed the potential inhibitory effects of ZER and LPS on cell viability against Raw264.7 cells at different concentrations. As shown in
<xref ref-type="fig" rid="molecules-24-01964-f006">Figure 6</xref>
A, the 75% viability of ZER inhibition of cell viability was observed at about 7.5 μmol/L and 50% at about 25 μmol/L. According to the 3-[4,5-dimethylthiazol-2-yl]-2,5 diphenyl tetrazolium bromide (MTT) results, we set two ZER treatment groups: 2.5 μmol/L as the low dose group and 5 μmol/L as the high dose group. As shown in
<xref ref-type="fig" rid="molecules-24-01964-f006">Figure 6</xref>
B, the cell viability of Raw264.7 cells treated with 0.5 μg/mL LPS for 36 h was about 80%. We further determined the activation situation of TLR4/NF-κB/COX-2 signaling upon ZER pretreatment in LPS-stimulated Raw264.7 cells. The results showed that LPS stimulation significantly activated the TLR4/NF-κB/COX-2 signaling, as evidenced by the up-regulated protein levels of TLR4, p-p65, and COX-2. Unsurprisingly, after treatment with different concentrations of ZER, the protein levels of TLR4, p-p65, and COX-2 were markedly decreased, as shown in
<xref ref-type="fig" rid="molecules-24-01964-f006">Figure 6</xref>
C,D. These results clearly confirmed that ZER could inhibit inflammation by blocking the activation of the TLR4/NF-κB/COX-2 signaling pathway.</p>
</sec>
</sec>
<sec sec-type="discussion" id="sec3-molecules-24-01964">
<title>3. Discussion</title>
<p>ALI, which is caused by a number of factors, such as toxic chemicals, drugs, viruses, and bacteria, seriously threatens human health [
<xref rid="B1-molecules-24-01964" ref-type="bibr">1</xref>
,
<xref rid="B4-molecules-24-01964" ref-type="bibr">4</xref>
]. Recently, great attention and effort have been devoted to discovering phytochemicals with preventive or therapeutic effects against ALI [
<xref rid="B6-molecules-24-01964" ref-type="bibr">6</xref>
,
<xref rid="B7-molecules-24-01964" ref-type="bibr">7</xref>
,
<xref rid="B11-molecules-24-01964" ref-type="bibr">11</xref>
,
<xref rid="B12-molecules-24-01964" ref-type="bibr">12</xref>
,
<xref rid="B16-molecules-24-01964" ref-type="bibr">16</xref>
,
<xref rid="B17-molecules-24-01964" ref-type="bibr">17</xref>
,
<xref rid="B30-molecules-24-01964" ref-type="bibr">30</xref>
]. In the current study, we found that ZER exhibits a hepatoprotective activity against CCl
<sub>4</sub>
-induced ALI by reducing the level of oxidative stress and inhibiting the inflammatory response. Further results revealed that the anti-inflammation mechanism for ZER against CCl
<sub>4</sub>
-induced ALI involved inactivation of the TLR4/NF-κB/COX-2 signaling pathway. Together, these findings explain the pharmacological mechanism of ZER acting on CCl
<sub>4</sub>
-induced ALI and provided an experimental and theoretical basis for the application of ZER in the clinical treatment of ALI.</p>
<p>The decreased serum levels of ALT and AST upon ZER pretreatment imply the hepatoprotective effect against CCl
<sub>4</sub>
-induced ALI and pathological analysis further confirmed this beneficial effect by effectively decreasing the area of centrolobular necrosis. When trying to elucidate the underlying mechanism, two pathogenic events were taken into consideration, oxidative stress and inflammation, since these two events during ALI normally serve as the mechanisms for liver damage [
<xref rid="B4-molecules-24-01964" ref-type="bibr">4</xref>
,
<xref rid="B32-molecules-24-01964" ref-type="bibr">32</xref>
]. Meanwhile, ZER is reported to possess many pharmacological properties, including antioxidant and anti-inflammatory properties [
<xref rid="B33-molecules-24-01964" ref-type="bibr">33</xref>
]. Therefore, we hypothesized that ZER would exert hepatoprotective activity against ALI by alleviating oxidative stress and the inflammatory response. In light of the assessment of oxidative stress parameters in the liver tissues, including SOD, GSH-Px, GSH, and MDA, we confirmed that ZER exerts hepatoprotective effects against CCl
<sub>4</sub>
-induced ALI through reducing oxidative stress by recovering the activities of antioxidant enzymes, restoring the GSH reservoir, and reducing lipid peroxidation specifically. Afterward, the evaluation of the change in serum and hepatic levels of pro-inflammatory cytokines IL-6 and TNF-α upon ZER pretreatment confirmed the involvement of anti-inflammation for ZER against ALI, which is consistent with Kim et al.’s report [
<xref rid="B30-molecules-24-01964" ref-type="bibr">30</xref>
]. Based on this observation, we tried to seek the signaling pathways responsible for the protection of ZER against ALI. Protein expression analysis of liver tissue samples hinted at the TLR4/NF-κB/COX-2 signaling pathway. Further in vitro studies in Raw264.7 cells verified the involvement of this pathway, as evidenced by the reduced release amounts of IL-6 and TNF-α and down-regulated protein levels of TLR4, NF-κB, and COX-2, which were originally elevated upon LPS stimulation. Thus, the anti-inflammation activity for ZER against CCl
<sub>4</sub>
-induced ALI may occur through the TLR4/NF-κB/COX-2 signaling pathway.</p>
<p>Antioxidant enzymes, such as SOD and GSH-Px plus GSH, which are scavengers of ROS in the liver, are the first line of defense against oxidative stress-induced tissue injury [
<xref rid="B34-molecules-24-01964" ref-type="bibr">34</xref>
]. Several previous studies have shown that ZER can inhibit the generation of ROS [
<xref rid="B35-molecules-24-01964" ref-type="bibr">35</xref>
,
<xref rid="B36-molecules-24-01964" ref-type="bibr">36</xref>
,
<xref rid="B37-molecules-24-01964" ref-type="bibr">37</xref>
,
<xref rid="B38-molecules-24-01964" ref-type="bibr">38</xref>
]. For instance, ZER was found to provide protection to pancreatic β cells from high glucose-induced cytotoxicity through directly interfering with ROS production [
<xref rid="B39-molecules-24-01964" ref-type="bibr">39</xref>
]. Our data also suggested this inhibition of ROS generation. However, contrary observations have been reported. For example, treatment with ZER has been found to significantly increase reactive oxygen species levels in colorectal cancer cells and melanoma cells [
<xref rid="B40-molecules-24-01964" ref-type="bibr">40</xref>
,
<xref rid="B41-molecules-24-01964" ref-type="bibr">41</xref>
]. These discrepancies may arise from distinct disease contexts and different cellular processes involved in the studies; the observations of ZER in favor of ROS generation were implicated in apoptosis under the cancer context [
<xref rid="B40-molecules-24-01964" ref-type="bibr">40</xref>
,
<xref rid="B41-molecules-24-01964" ref-type="bibr">41</xref>
,
<xref rid="B42-molecules-24-01964" ref-type="bibr">42</xref>
,
<xref rid="B43-molecules-24-01964" ref-type="bibr">43</xref>
,
<xref rid="B44-molecules-24-01964" ref-type="bibr">44</xref>
], whereas the observations of ZER against ROS generation were mostly related to inflammation and inflammatory-associated diseases, such as hepatic disease, osteoarthritis, and diabetes and diabetic complications [
<xref rid="B22-molecules-24-01964" ref-type="bibr">22</xref>
,
<xref rid="B24-molecules-24-01964" ref-type="bibr">24</xref>
,
<xref rid="B39-molecules-24-01964" ref-type="bibr">39</xref>
,
<xref rid="B45-molecules-24-01964" ref-type="bibr">45</xref>
].</p>
<p>An excessive inflammatory response can aggravate injured hepatic tissue and hinder repair processes [
<xref rid="B13-molecules-24-01964" ref-type="bibr">13</xref>
,
<xref rid="B32-molecules-24-01964" ref-type="bibr">32</xref>
]. Previous studies have reported the hepatoprotective activity of ZER against ALI via anti-inflammation [
<xref rid="B30-molecules-24-01964" ref-type="bibr">30</xref>
,
<xref rid="B31-molecules-24-01964" ref-type="bibr">31</xref>
]. However, our results further suggested that ZER might inhibit CCl
<sub>4</sub>
-induced inflammation through TLR4/NF-κB/COX-2 signaling. There are studies in the literature that support our observations. An in vitro study conducted in human leukemic cell line THP-1 cell-derived macrophages activated by LPS showed that ZER inhibits the secretion of pro-inflammatory cytokines TNF-α and IL-6, the induction of NF-κB and COX-2, and also decreases the elevated mRNA levels of TLR2 and TLR4 [
<xref rid="B46-molecules-24-01964" ref-type="bibr">46</xref>
]. Lee and Haque reported the inhibition of NF-κB p65 phosphorylation and pro-inflammatory cytokines release by ZER, respectively [
<xref rid="B27-molecules-24-01964" ref-type="bibr">27</xref>
,
<xref rid="B47-molecules-24-01964" ref-type="bibr">47</xref>
]. It is well established that hepatic macrophages, including activated Kupffer cells, hold central functions in initiating, perpetuating, and even restricting inflammation in the liver [
<xref rid="B10-molecules-24-01964" ref-type="bibr">10</xref>
,
<xref rid="B13-molecules-24-01964" ref-type="bibr">13</xref>
]. According to our results both in vivo and in vitro, it is likely that ZER targets hepatic macrophages to inhibit unregulated inflammatory responses, thus preventing further hepatic injury and promoting hepatic tissue repair. However, this hypothesis needs to be tested.</p>
<p>Hepatocellular injury leads to cell death, including both necrosis and apoptosis [
<xref rid="B48-molecules-24-01964" ref-type="bibr">48</xref>
,
<xref rid="B49-molecules-24-01964" ref-type="bibr">49</xref>
,
<xref rid="B50-molecules-24-01964" ref-type="bibr">50</xref>
]. However, uncontrolled necrosis and apoptosis can provoke further hepatic damage [
<xref rid="B30-molecules-24-01964" ref-type="bibr">30</xref>
,
<xref rid="B51-molecules-24-01964" ref-type="bibr">51</xref>
]. Our results show that ZER pretreatment effectively decreases the necrotic area of the injured liver by inhibiting the inflammatory response through the TLR4/NF-κB/COX-2 signaling pathway. Meanwhile, Kim et al. reported that ZER exerts a hepatoprotective activity by inhibiting apoptosis through inhibiting the translocation of activated hepatic JNK to mitochondria, thus ameliorating CCl
<sub>4</sub>
-intoxication-induced oxidative stress. Hence, ZER provides protection against CCl
<sub>4</sub>
-induced ALI via alleviating both necrosis and apoptosis.</p>
<p>The present study revealed that ZER, which is a monocyclic sesquiterpene [
<xref rid="B30-molecules-24-01964" ref-type="bibr">30</xref>
], provided protection against ALI through ameliorating oxidative stress and inflammation. Meanwhile, several previous studies showed that sesquiterpene or sesquiterpene lactones exhibit hepatoproctive activities toward different types of hepatic disease [
<xref rid="B8-molecules-24-01964" ref-type="bibr">8</xref>
,
<xref rid="B52-molecules-24-01964" ref-type="bibr">52</xref>
,
<xref rid="B53-molecules-24-01964" ref-type="bibr">53</xref>
,
<xref rid="B54-molecules-24-01964" ref-type="bibr">54</xref>
]. Another two studies showed that a mixture with 21 kinds of sesquiterpenoids extracted from the root of
<italic>Panax Ginseng</italic>
exhibited strong hepatoproctive effects, which were also mediated by reducing oxidative stress and inhibiting the inflammation response [
<xref rid="B7-molecules-24-01964" ref-type="bibr">7</xref>
]. In fact, more and more sesquiterpenoids, including sesquiterpenes and sesquiterpene lactones, have been reported as having either anti-oxidation or anti-inflammation activities, or both [
<xref rid="B7-molecules-24-01964" ref-type="bibr">7</xref>
,
<xref rid="B22-molecules-24-01964" ref-type="bibr">22</xref>
,
<xref rid="B55-molecules-24-01964" ref-type="bibr">55</xref>
,
<xref rid="B56-molecules-24-01964" ref-type="bibr">56</xref>
]. Given that oxidative stress and inflammation are usually present simultaneously and intertwined to aggravate already-existing liver tissue damage [
<xref rid="B4-molecules-24-01964" ref-type="bibr">4</xref>
,
<xref rid="B13-molecules-24-01964" ref-type="bibr">13</xref>
] and the clinical consideration and therapeutic strategy for liver diseases predominantly focuses on anti-oxidation and anti-inflammation [
<xref rid="B1-molecules-24-01964" ref-type="bibr">1</xref>
,
<xref rid="B14-molecules-24-01964" ref-type="bibr">14</xref>
], we speculate that natural products of sesquiterpenoids extracted from plants may be a promising reservoir to screen effective therapeutic drugs for hepatic disease with high efficacy and low toxicity.</p>
<p>Collectively, our work revealed a new mechanism of ZER against ALI, which is through ameliorating oxidative stress. Furthermore, unlike the previous study, we unraveled the involvement of inactivation of the TLR4/NF-κB/COX-2 signaling pathway in the modulation of the inflammatory response upon ZER pretreatment. We also acknowledge that the validation data about the involvement of TLR4/NF-κB/COX-2 signaling was only conducted in vitro and so may not be convincing. Employment of an NF-κB inhibitor in vivo is a better way to confirm the correlation. Last but not least, a better understanding of the mechanism underlying the hepatoprotective activity of ZER against ALI is very necessary so that successful translation of ZER to clinical applications can be developed rapidly for liver disease.</p>
<p>In conclusion, our study raises the possibility that ZER could be used as a potential therapeutic drug for hepatic disease.</p>
</sec>
<sec id="sec4-molecules-24-01964">
<title>4. Materials and Methods</title>
<sec id="sec4dot1-molecules-24-01964">
<title>4.1. Chemicals and Reagents</title>
<p>Zerumbone (ZER) was purchased from Sigma Aldrich (No.Z3902, St. Louis, MO, USA), dissolved in DMSO (Dimethyl sulfoxide). Bifendate (BIF) was purchased from Beijing Yuehe Pharmaceutical Factory (H11020980, Beijing, China). LPS was purchased from Beyotime Biotechnology (No.S1732, Shanghai, China). RPMI 1640 Medium was purchased from Hyclone (Logan, UT, USA). Fetal bovine serum (FBS) was purchased from Gibco (Gaithersburg, MA, USA). The assay kits for ALT, AST, SOD, GSH-Px, GSH, and MDA were purchased from Nanjing Jiancheng Bioengineering Institute (Nanjing, China). Bicinchoninic acid (BCA) assay kit and MTT were purchased from Solarbio (Beijing, China). Mouse IL-6 and TNF-α ELISA kits was purchased from ShangHai Haling Biological Technology Co., Ltd. (ShangHai, China). Rabbit anti-TLR4 antibody (#14358, 1:1000), rabbit anti-COX-2 antibody (#4842, 1:1000), rabbit anti-p-NF-κB p65 (Ser536) antibody (#3033, 1:1000), mouse anti-β-Actin antibody (#3700, 1:2000) were purchased from Cell Signaling Technology (Danvers, MA, USA). All other chemicals and reagents were purchased from local firms.</p>
</sec>
<sec id="sec4dot2-molecules-24-01964">
<title>4.2. Animals</title>
<p>Specific pathogen-free (SPF) male ICR mice (SCXK20140007), weighting 20 ± 2g, 7~8 weeks, were purchased from Jinan Pengyue Experimental Animal Breeding Co., Ltd. (Jinan, Shandong, China). The mice were kept in the Laboratory Animal Centre of the First Affiliated Hospital of Henan University of Science and Technology. The feeding conditions for the mice were provided with a constant temperature of 22 ± 2 °C and a relative humidity of 55 ± 5% with a 12 h/12 h light–dark cycle. During the experiment, the mice were given a standard diet with clean mineral water and pellet feed. All experiments were conducted in accordance with the Guide for the Care and Use of Laboratory Animals and the animal experiment protocols were approved by the Institutional Ethical Committee of Henan University of Science and Technology.</p>
</sec>
<sec id="sec4dot3-molecules-24-01964">
<title>4.3. Experimental Design</title>
<p>After a five-day acclimation based on body weight, sixty ICR mice were equally divided into six groups of 10 animals each, as follows: The control (Con) group, the CCl
<sub>4</sub>
model group, the ZER-L (1.25 μmol/kg of body weight (BW), dissolved in DMSO) group, the ZER-M (5 μmol/Kg) group, the ZER-H (20 μmol/Kg) group, and the positive control group treated with BIF (350 μmol/Kg/day). The final concentration (
<italic>v/v</italic>
) of DMSO in the in vivo experiment was 1%. During the experiment, the mice were given a standard diet. All mice were intraperitoneally injected with corresponding drugs for 5 consecutive days: The control group and the CCl
<sub>4</sub>
model group injected with DMSO, three ZER groups with ZER with the corresponding concentrations, and the positive control group with BIF. Two hours after the last administration, all the animals from each group received a one-time intraperitoneal injection of CCl
<sub>4</sub>
(0.01 mL/g body weight, 0.2% in soybean oil) to establish the ALI model, except for the control group, which were received the same volume of soybean oil. Twelve hours fasting followed with the CCl
<sub>4</sub>
challenge.</p>
<p>The mice were sacrificed under anesthesia (6% chloral hydrate, 10 mL/kg) 12 h after the CCl
<sub>4</sub>
challenge. Blood and liver tissue were collected for experiments. The serum was obtained by centrifuging (3000 rpm, 4 °C, 15 min) and then immediately subjected to the following biochemical analysis. For the liver, a whole lobe without any mechanical damage was fixed in 10% formalin for histopathological analysis, while the rest of the liver tissue samples were stored in liquid nitrogen for further experiments.</p>
</sec>
<sec id="sec4dot4-molecules-24-01964">
<title>4.4. Detections of Biochemistry Indexes</title>
<p>The activities of ALT and AST in serum and the activities or levels of SOD, GSH-Px, GSH, and MDA in liver homogenates were determined by commercial kits according to the manufacturer’s instructions. The 10% liver homogenates were prepared as follows: The liver tissues were homogenized in nine-fold (
<italic>w/v</italic>
) cold saline on ice and then centrifuged (12,000 rpm, 30 min, 4 °C), supernatants were collected for detection.</p>
</sec>
<sec id="sec4dot5-molecules-24-01964">
<title>4.5. Histopathological Analysis</title>
<p>The liver lobes fixed in 10% formalin were embedded in paraffin and processed into 4 μm thick sections, which were subjected to H&E staining. All sections were examined and pictured under an optical microscope. Areas of necrosis were quantified using ImageJ v1.8.0 software (National Institutes of Health, Bethesda, MD, USA).</p>
</sec>
<sec id="sec4dot6-molecules-24-01964">
<title>4.6. Detections of Inflammatory Cytokines IL-6 and TNF-α</title>
<p>The levels of IL-6 and TNF-α both in serum and in liver tissue were analyzed by ELISA kits according to the manufacturer’s instructions. The serum was prepared as in
<xref ref-type="sec" rid="sec4dot3-molecules-24-01964">Section 4.3</xref>
and 10% liver homogenates were prepared as in
<xref ref-type="sec" rid="sec4dot4-molecules-24-01964">Section 4.4</xref>
.</p>
</sec>
<sec id="sec4dot7-molecules-24-01964">
<title>4.7. Cell Culture and LPS Treatment</title>
<p>The Raw264.7 cell line was a generous gift from Dr Ruifang Li, who also works in Medical School of Henan University of Science and Technology. The Raw264.7 cell line was cultured in Roswell Park Memorial Institute (RPMI) 1640 medium supplemented with 10% (
<italic>v/v</italic>
) FBS and antibiotics (100 U/mL penicillin G and streptomycin sulfate) in an incubator at 37 °C with 5% CO
<sub>2</sub>
and saturated humidity. ZER was dissolved in DMSO to a concentration of 10 mM for the in vitro experiment. The final concentration (
<italic>v/v</italic>
) of DMSO in the in vivo experiment was 0.05%. For LPS stimulation, the dosage and timing for activating the Raw264.7 cells was 0.5 μg/mL LPS for 36 h. The cells in the exponential growth phase were harvested and seeded into 6-well plates at 6 × 10
<sup>5</sup>
cells per well, then stimulated by LPS (0.5 μg/mL) for 12 h when the cells were of 80% confluence. ZER was then added for another 24 h. The cells were lysed and subjected to Western blotting analysis.</p>
</sec>
<sec id="sec4dot8-molecules-24-01964">
<title>4.8. Cytotoxicity Assessment of ZER and LPS by MTT Assay</title>
<p>The cytotoxicity of ZER and LPS toward Raw264.7 cells were evaluated by MMT assays. The procedure was carried out as previously described with little modification [
<xref rid="B57-molecules-24-01964" ref-type="bibr">57</xref>
]. Raw264.7 cells were seeded into 96-well plates with 1 × 10
<sup>4</sup>
cells in 100 μL medium per well overnight. Then, the cells were treated with different concentrations of ZER (0, 2.5, 5, 10, 20, and 40 μmol/L) for 24 h or different concentrations of LPS (0, 0.5, 1.0, 1.5, and 2.0 μg/mL) for 36 h. The control group was treated with DMSO or ddH
<sub>2</sub>
O. Subsequently, 15 μL of MTT (5 mg/mL, Sigma, St. Louis, MO, USA) was added to each well and 4 h later, the medium was discarded and the purple formazan crystals were solubilized in 150 μL DMSO per well. Absorbance was detected at 490 nm on Microplate Readers (Bio-Tek, USA). The viability rate was calculated as follows: Viability rate (%) = (A
<sub>model</sub>
/A
<sub>control</sub>
) × 100%.</p>
</sec>
<sec id="sec4dot9-molecules-24-01964">
<title>4.9. Western Blotting Analysis</title>
<p>This procedure was described in our previous study. The total proteins of liver tissue or Raw264.7 cells were extracted by Radio Immunoprecipitation Assay (RIPA) lysis solution (Solarbio, Beijing, China) with phenylmethanesulfonyl fluoride (PMSF) on ice following the user guide. BCA protein content determination was used for quantification. The same amount of protein (40 μg) was subjected to Western blotting analysis as previously described [
<xref rid="B53-molecules-24-01964" ref-type="bibr">53</xref>
]. The signals were detected by the Western Bright
<sup>TM</sup>
electrochemiluminescence (ECL)kit (Advansta, Menlo Park, CA, USA), then acquired and analyzed by Image Lab Software (Bio-RadLaboratories, Hercules, CA, USA).</p>
</sec>
<sec id="sec4dot10-molecules-24-01964">
<title>4.10. Statistical Analysis</title>
<p>All experimental data were expressed as mean ± SD (standard deviation). Statistical significance was determined by SPSS 16.0 software (IBM,.Chicago, IL, USA), using one-way analysis of variance (ANOVA) with LSD Fisher post hoc test.
<italic>p</italic>
< 0.05 was considered as significant.</p>
</sec>
</sec>
</body>
<back>
<ack>
<title>Acknowledgments</title>
<p>The cell used in this work was generously given by Ruifang Li, who also works in Medical School of Henan University of Science and Technology. The experimental animal room was provided generously by Shegan Gao, who is the dean of Medical School of Henan University of Science and Technology.</p>
</ack>
<fn-group>
<fn>
<p>
<bold>Sample Availability:</bold>
Samples of the compounds are not available from the authors.</p>
</fn>
</fn-group>
<notes>
<title>Author Contributions</title>
<p>M.W. and S.L. conceived and designed the research; J.N. and Y.W. performed the experiments; L.O. and B.D. performed the statistical analysis; M.W. and S.L. wrote the main manuscript text; M.W. and J.N. prepared figures. All authors reviewed the manuscript.</p>
</notes>
<notes>
<title>Funding</title>
<p>This research was funded by the National Natural Science Foundation of China (No. 31500631).</p>
</notes>
<notes notes-type="COI-statement">
<title>Conflicts of Interest</title>
<p>The authors declare no conflict of interest.</p>
</notes>
<glossary>
<title>Abbreviations</title>
<array orientation="portrait">
<tbody>
<tr>
<td align="left" valign="top" rowspan="1" colspan="1">CCl
<sub>4</sub>
</td>
<td align="left" valign="top" rowspan="1" colspan="1">Carbon tetrachloride</td>
</tr>
<tr>
<td align="left" valign="top" rowspan="1" colspan="1">ALI</td>
<td align="left" valign="top" rowspan="1" colspan="1">Acute liver injury</td>
</tr>
<tr>
<td align="left" valign="top" rowspan="1" colspan="1">ZER</td>
<td align="left" valign="top" rowspan="1" colspan="1">Zerumbone</td>
</tr>
<tr>
<td align="left" valign="top" rowspan="1" colspan="1">AST</td>
<td align="left" valign="top" rowspan="1" colspan="1">Aspartate aminotransferase</td>
</tr>
<tr>
<td align="left" valign="top" rowspan="1" colspan="1">ALT</td>
<td align="left" valign="top" rowspan="1" colspan="1">Alanine aminotransferase</td>
</tr>
<tr>
<td align="left" valign="top" rowspan="1" colspan="1">SOD</td>
<td align="left" valign="top" rowspan="1" colspan="1">Superoxide dismutase</td>
</tr>
<tr>
<td align="left" valign="top" rowspan="1" colspan="1">GSH-Px</td>
<td align="left" valign="top" rowspan="1" colspan="1">Glutathione peroxidase</td>
</tr>
<tr>
<td align="left" valign="top" rowspan="1" colspan="1">GSH</td>
<td align="left" valign="top" rowspan="1" colspan="1">Glutathione</td>
</tr>
<tr>
<td align="left" valign="top" rowspan="1" colspan="1">MDA</td>
<td align="left" valign="top" rowspan="1" colspan="1">Malondialdehyde</td>
</tr>
<tr>
<td align="left" valign="top" rowspan="1" colspan="1">IL-6</td>
<td align="left" valign="top" rowspan="1" colspan="1">Interleukin-6</td>
</tr>
<tr>
<td align="left" valign="top" rowspan="1" colspan="1">TNF-α</td>
<td align="left" valign="top" rowspan="1" colspan="1">Tumor necrosis factor alpha</td>
</tr>
<tr>
<td align="left" valign="top" rowspan="1" colspan="1">TLR4</td>
<td align="left" valign="top" rowspan="1" colspan="1">Toll-like Receptor 4</td>
</tr>
<tr>
<td align="left" valign="top" rowspan="1" colspan="1">NF-κB</td>
<td align="left" valign="top" rowspan="1" colspan="1">Nuclear factor -κB</td>
</tr>
<tr>
<td align="left" valign="top" rowspan="1" colspan="1">COX-2</td>
<td align="left" valign="top" rowspan="1" colspan="1">Cyclooxygenase-2</td>
</tr>
<tr>
<td align="left" valign="top" rowspan="1" colspan="1">TLRs</td>
<td align="left" valign="top" rowspan="1" colspan="1">Toll-like receptors</td>
</tr>
<tr>
<td align="left" valign="top" rowspan="1" colspan="1">HMGB1</td>
<td align="left" valign="top" rowspan="1" colspan="1">High mobility group box-1 protein</td>
</tr>
<tr>
<td align="left" valign="top" rowspan="1" colspan="1">DAMPs</td>
<td align="left" valign="top" rowspan="1" colspan="1">Damage associated molecular patterns</td>
</tr>
<tr>
<td align="left" valign="top" rowspan="1" colspan="1">BIF</td>
<td align="left" valign="top" rowspan="1" colspan="1">Bifendate</td>
</tr>
<tr>
<td align="left" valign="top" rowspan="1" colspan="1">LPS</td>
<td align="left" valign="top" rowspan="1" colspan="1">Lipopolysaccharide</td>
</tr>
<tr>
<td align="left" valign="top" rowspan="1" colspan="1">ROS</td>
<td align="left" valign="top" rowspan="1" colspan="1">Reactive oxygen species</td>
</tr>
<tr>
<td align="left" valign="top" rowspan="1" colspan="1">FBS</td>
<td align="left" valign="top" rowspan="1" colspan="1">Fetal bovine serum</td>
</tr>
<tr>
<td align="left" valign="top" rowspan="1" colspan="1">H&E</td>
<td align="left" valign="top" rowspan="1" colspan="1">Hematoxylin and Eosin</td>
</tr>
</tbody>
</array>
</glossary>
<ref-list>
<title>References</title>
<ref id="B1-molecules-24-01964">
<label>1.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Patten</surname>
<given-names>D.A.</given-names>
</name>
<name>
<surname>Shepherd</surname>
<given-names>E.L.</given-names>
</name>
<name>
<surname>Weston</surname>
<given-names>C.J.</given-names>
</name>
<name>
<surname>Shetty</surname>
<given-names>S.</given-names>
</name>
</person-group>
<article-title>Novel Targets in the Immune Microenvironment of the Hepatic Sinusoids for Treating Liver Diseases</article-title>
<source>Semin. Liver Dis.</source>
<year>2019</year>
<volume>39</volume>
<fpage>111</fpage>
<lpage>123</lpage>
<pub-id pub-id-type="pmid">30912097</pub-id>
</element-citation>
</ref>
<ref id="B2-molecules-24-01964">
<label>2.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Shen</surname>
<given-names>T.</given-names>
</name>
<name>
<surname>Liu</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Shang</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Xie</surname>
<given-names>Q.</given-names>
</name>
<name>
<surname>Li</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Yan</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Xu</surname>
<given-names>J.M.</given-names>
</name>
<name>
<surname>Niu</surname>
<given-names>J.Q.</given-names>
</name>
<name>
<surname>Liu</surname>
<given-names>J.J.</given-names>
</name>
<name>
<surname>Paul</surname>
<given-names>B.W.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Incidence and Etiology of Drug-Induced Liver Injury in Mainland China</article-title>
<source>Gastroenterology</source>
<year>2019</year>
<volume>156</volume>
<fpage>1</fpage>
<lpage>12</lpage>
<pub-id pub-id-type="doi">10.1053/j.gastro.2019.02.002</pub-id>
</element-citation>
</ref>
<ref id="B3-molecules-24-01964">
<label>3.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Trepotec</surname>
<given-names>Z.</given-names>
</name>
<name>
<surname>Lichtenegger</surname>
<given-names>E.</given-names>
</name>
<name>
<surname>Plank</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>Aneja</surname>
<given-names>M.K.</given-names>
</name>
<name>
<surname>Rudolph</surname>
<given-names>C.</given-names>
</name>
</person-group>
<article-title>Delivery of mRNA Therapeutics for the Treatment of Hepatic Diseases</article-title>
<source>Mol. Ther.</source>
<year>2019</year>
<volume>27</volume>
<fpage>794</fpage>
<lpage>802</lpage>
<pub-id pub-id-type="doi">10.1016/j.ymthe.2018.12.012</pub-id>
<pub-id pub-id-type="pmid">30655211</pub-id>
</element-citation>
</ref>
<ref id="B4-molecules-24-01964">
<label>4.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Reyes-Gordillo</surname>
<given-names>K.</given-names>
</name>
<name>
<surname>Shah</surname>
<given-names>R.</given-names>
</name>
<name>
<surname>Muriel</surname>
<given-names>P.</given-names>
</name>
</person-group>
<article-title>Oxidative Stress and Inflammation in Hepatic Diseases: Current and Future Therapy</article-title>
<source>Oxid. Med. Cell Longev.</source>
<year>2017</year>
<volume>2017</volume>
<fpage>3140673</fpage>
<pub-id pub-id-type="doi">10.1155/2017/3140673</pub-id>
<pub-id pub-id-type="pmid">28203318</pub-id>
</element-citation>
</ref>
<ref id="B5-molecules-24-01964">
<label>5.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Dai</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>Xiao</surname>
<given-names>X.</given-names>
</name>
<name>
<surname>Li</surname>
<given-names>D.</given-names>
</name>
<name>
<surname>Tun</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Wang</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Velkov</surname>
<given-names>T.</given-names>
</name>
<name>
<surname>Tang</surname>
<given-names>S.S.</given-names>
</name>
</person-group>
<article-title>Chloroquine ameliorates carbon tetrachloride-induced acute liver injury in mice via the concomitant inhibition of inflammation and induction of apoptosis</article-title>
<source>Cell Death Dis.</source>
<year>2018</year>
<volume>9</volume>
<fpage>1164</fpage>
<pub-id pub-id-type="doi">10.1038/s41419-018-1136-2</pub-id>
<pub-id pub-id-type="pmid">30478280</pub-id>
</element-citation>
</ref>
<ref id="B6-molecules-24-01964">
<label>6.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Mitazaki</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Kotajima</surname>
<given-names>N.</given-names>
</name>
<name>
<surname>Matsuda</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Ida</surname>
<given-names>N.</given-names>
</name>
<name>
<surname>Iide</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Honma</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Suto</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Kato</surname>
<given-names>N.</given-names>
</name>
<name>
<surname>Kurode</surname>
<given-names>N.</given-names>
</name>
<name>
<surname>Hiraiwa</surname>
<given-names>K.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Dimethylthiourea ameliorates carbon tetrachloride-induced acute liver injury in ovariectomized mice</article-title>
<source>Biomed. Pharmacother.</source>
<year>2018</year>
<volume>104</volume>
<fpage>427</fpage>
<lpage>436</lpage>
<pub-id pub-id-type="doi">10.1016/j.biopha.2018.05.065</pub-id>
<pub-id pub-id-type="pmid">29787990</pub-id>
</element-citation>
</ref>
<ref id="B7-molecules-24-01964">
<label>7.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Wang</surname>
<given-names>W.</given-names>
</name>
<name>
<surname>Wang</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Liu</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Cai</surname>
<given-names>E.</given-names>
</name>
<name>
<surname>Zhu</surname>
<given-names>H.</given-names>
</name>
<name>
<surname>He</surname>
<given-names>Z.M.</given-names>
</name>
<name>
<surname>Gao</surname>
<given-names>Y.G.</given-names>
</name>
<name>
<surname>Li</surname>
<given-names>P.Y.</given-names>
</name>
<name>
<surname>Zhao</surname>
<given-names>Y.</given-names>
</name>
</person-group>
<article-title>Sesquiterpenoids from the root of Panax Ginseng protect CCl4-induced acute liver injury by anti-inflammatory and anti-oxidative capabilities in mice</article-title>
<source>Biomed. Pharmacother.</source>
<year>2018</year>
<volume>102</volume>
<fpage>412</fpage>
<lpage>419</lpage>
<pub-id pub-id-type="doi">10.1016/j.biopha.2018.02.041</pub-id>
<pub-id pub-id-type="pmid">29573620</pub-id>
</element-citation>
</ref>
<ref id="B8-molecules-24-01964">
<label>8.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Mahesh</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Jeyachandran</surname>
<given-names>R.</given-names>
</name>
<name>
<surname>Cindrella</surname>
<given-names>L.</given-names>
</name>
<name>
<surname>Thangadurai</surname>
<given-names>D.</given-names>
</name>
<name>
<surname>Veerapur</surname>
<given-names>V.P.</given-names>
</name>
<name>
<surname>Muralidha</surname>
<given-names>P.</given-names>
</name>
</person-group>
<article-title>Hepatocurative potential of sesquiterpene lactones of Taraxacum officinale on carbon tetrachloride induced liver toxicity in mice</article-title>
<source>Acta Biol. Hung.</source>
<year>2010</year>
<volume>61</volume>
<fpage>175</fpage>
<lpage>190</lpage>
<pub-id pub-id-type="doi">10.1556/ABiol.61.2010.2.6</pub-id>
<pub-id pub-id-type="pmid">20519172</pub-id>
</element-citation>
</ref>
<ref id="B9-molecules-24-01964">
<label>9.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Arosio</surname>
<given-names>B.</given-names>
</name>
<name>
<surname>Gagliano</surname>
<given-names>N.</given-names>
</name>
<name>
<surname>Fusaro</surname>
<given-names>L.M.</given-names>
</name>
<name>
<surname>Parmeggiani</surname>
<given-names>L.</given-names>
</name>
<name>
<surname>Tagliabue</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Galetti</surname>
<given-names>P.</given-names>
</name>
<name>
<surname>Castri</surname>
<given-names>D.D.</given-names>
</name>
<name>
<surname>Moscheni</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>Annoni</surname>
<given-names>G.</given-names>
</name>
</person-group>
<article-title>Aloe-Emodin quinone pretreatment reduces acute liver injury induced by carbon tetrachloride</article-title>
<source>Pharmacol. Toxicol.</source>
<year>2000</year>
<volume>87</volume>
<fpage>229</fpage>
<lpage>233</lpage>
<pub-id pub-id-type="pmid">11129503</pub-id>
</element-citation>
</ref>
<ref id="B10-molecules-24-01964">
<label>10.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Li</surname>
<given-names>P.</given-names>
</name>
<name>
<surname>He</surname>
<given-names>K.</given-names>
</name>
<name>
<surname>Li</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Li</surname>
<given-names>Z.J.</given-names>
</name>
<name>
<surname>Gong</surname>
<given-names>J.P.</given-names>
</name>
</person-group>
<article-title>The role of Kupffer cells in hepatic diseases</article-title>
<source>Mol. Immunol.</source>
<year>2017</year>
<volume>85</volume>
<fpage>222</fpage>
<lpage>229</lpage>
<pub-id pub-id-type="doi">10.1016/j.molimm.2017.02.018</pub-id>
<pub-id pub-id-type="pmid">28314211</pub-id>
</element-citation>
</ref>
<ref id="B11-molecules-24-01964">
<label>11.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Yin</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Zhang</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Li</surname>
<given-names>H.</given-names>
</name>
<name>
<surname>Zhao</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Cai</surname>
<given-names>E.</given-names>
</name>
<name>
<surname>Zhu</surname>
<given-names>H.Y.</given-names>
</name>
<name>
<surname>Li</surname>
<given-names>P.Y.</given-names>
</name>
</person-group>
<article-title>Triterpenoids from fruits of Sorbus pohuashanensis inhibit acetaminophen-induced acute liver injury in mice</article-title>
<source>Biomed. Pharmacother.</source>
<year>2019</year>
<volume>109</volume>
<fpage>493</fpage>
<lpage>502</lpage>
<pub-id pub-id-type="doi">10.1016/j.biopha.2018.10.160</pub-id>
<pub-id pub-id-type="pmid">30399585</pub-id>
</element-citation>
</ref>
<ref id="B12-molecules-24-01964">
<label>12.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Meng</surname>
<given-names>X.</given-names>
</name>
<name>
<surname>Wang</surname>
<given-names>Z.</given-names>
</name>
<name>
<surname>Liang</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Tang</surname>
<given-names>Z.</given-names>
</name>
<name>
<surname>Liu</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Xin</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Kuang</surname>
<given-names>H.</given-names>
</name>
<name>
<surname>Wang</surname>
<given-names>Q.</given-names>
</name>
</person-group>
<article-title>Hepatoprotective effect of a polysaccharide from Radix Cyathulae officinalis Kuan against CCl4-induced acute liver injury in rat</article-title>
<source>Int. J. Biol. Macromol.</source>
<year>2019</year>
<volume>132</volume>
<fpage>1057</fpage>
<lpage>1067</lpage>
<pub-id pub-id-type="doi">10.1016/j.ijbiomac.2019.04.018</pub-id>
<pub-id pub-id-type="pmid">30954593</pub-id>
</element-citation>
</ref>
<ref id="B13-molecules-24-01964">
<label>13.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Tacke</surname>
<given-names>F.</given-names>
</name>
</person-group>
<article-title>Targeting hepatic macrophages to treat liver diseases</article-title>
<source>J. Hepatol.</source>
<year>2017</year>
<volume>66</volume>
<fpage>1300</fpage>
<lpage>1312</lpage>
<pub-id pub-id-type="doi">10.1016/j.jhep.2017.02.026</pub-id>
<pub-id pub-id-type="pmid">28267621</pub-id>
</element-citation>
</ref>
<ref id="B14-molecules-24-01964">
<label>14.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Woolbright</surname>
<given-names>B.L.</given-names>
</name>
<name>
<surname>Jaeschke</surname>
<given-names>H.</given-names>
</name>
</person-group>
<article-title>Sterile inflammation in acute liver injury: Myth or mystery?</article-title>
<source>Expert Rev. Gastroenterol. Hepatol.</source>
<year>2015</year>
<volume>9</volume>
<fpage>1027</fpage>
<lpage>1029</lpage>
<pub-id pub-id-type="doi">10.1586/17474124.2015.1060855</pub-id>
<pub-id pub-id-type="pmid">26186639</pub-id>
</element-citation>
</ref>
<ref id="B15-molecules-24-01964">
<label>15.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Li</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Wang</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Li</surname>
<given-names>X.</given-names>
</name>
<name>
<surname>Kou</surname>
<given-names>R.</given-names>
</name>
<name>
<surname>Wang</surname>
<given-names>Q.</given-names>
</name>
<name>
<surname>Wang</surname>
<given-names>X.</given-names>
</name>
<name>
<surname>Zhao</surname>
<given-names>N.</given-names>
</name>
<name>
<surname>Zeng</surname>
<given-names>T.</given-names>
</name>
<name>
<surname>Xie</surname>
<given-names>K.</given-names>
</name>
</person-group>
<article-title>Diallyl sulfide treatment protects against acetaminophen-/carbon tetrachloride-induced acute liver injury by inhibiting oxidative stress, inflammation and apoptosis in mice</article-title>
<source>Toxicol. Res.</source>
<year>2019</year>
<volume>8</volume>
<fpage>67</fpage>
<lpage>76</lpage>
<pub-id pub-id-type="doi">10.1039/C8TX00185E</pub-id>
</element-citation>
</ref>
<ref id="B16-molecules-24-01964">
<label>16.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Chen</surname>
<given-names>C.Y.</given-names>
</name>
<name>
<surname>Kao</surname>
<given-names>C.L.</given-names>
</name>
<name>
<surname>Liu</surname>
<given-names>C.M.</given-names>
</name>
</person-group>
<article-title>The Cancer Prevention, Anti-Inflammatory and Anti-Oxidation of Bioactive Phytochemicals Targeting the TLR4 Signaling Pathway</article-title>
<source>Int. J. Mol. Sci.</source>
<year>2018</year>
<volume>19</volume>
<elocation-id>2729</elocation-id>
<pub-id pub-id-type="doi">10.3390/ijms19092729</pub-id>
</element-citation>
</ref>
<ref id="B17-molecules-24-01964">
<label>17.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Ding</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Liu</surname>
<given-names>P.</given-names>
</name>
<name>
<surname>Chen</surname>
<given-names>Z.L.</given-names>
</name>
<name>
<surname>Zhang</surname>
<given-names>S.J.</given-names>
</name>
<name>
<surname>Wang</surname>
<given-names>Y.Q.</given-names>
</name>
<name>
<surname>Cai</surname>
<given-names>X.</given-names>
</name>
<name>
<surname>Luo</surname>
<given-names>L.</given-names>
</name>
<name>
<surname>Zhou</surname>
<given-names>X.</given-names>
</name>
<name>
<surname>Zhao</surname>
<given-names>L.</given-names>
</name>
</person-group>
<article-title>Emodin Attenuates Lipopolysaccharide-Induced Acute Liver Injury via Inhibiting the TLR4 Signaling Pathway in vitro and in vivo</article-title>
<source>Front. Pharmacol.</source>
<year>2018</year>
<volume>9</volume>
<fpage>962</fpage>
<pub-id pub-id-type="doi">10.3389/fphar.2018.00962</pub-id>
<pub-id pub-id-type="pmid">30186181</pub-id>
</element-citation>
</ref>
<ref id="B18-molecules-24-01964">
<label>18.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Kuramochi</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Izawa</surname>
<given-names>T.</given-names>
</name>
<name>
<surname>Pervin</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Bondoc</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Kuwamura</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Yamate</surname>
<given-names>J.</given-names>
</name>
</person-group>
<article-title>The kinetics of damage-associated molecular patterns (DAMPs) and toll-like receptors during thioacetamide-induced acute liver injury in rats</article-title>
<source>Exp. Toxicol. Pathol.</source>
<year>2016</year>
<volume>68</volume>
<fpage>471</fpage>
<lpage>477</lpage>
<pub-id pub-id-type="doi">10.1016/j.etp.2016.06.005</pub-id>
<pub-id pub-id-type="pmid">27522298</pub-id>
</element-citation>
</ref>
<ref id="B19-molecules-24-01964">
<label>19.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Roy</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Srivastava</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Saqib</surname>
<given-names>U.</given-names>
</name>
<name>
<surname>Liu</surname>
<given-names>D.</given-names>
</name>
<name>
<surname>Faisal</surname>
<given-names>S.M.</given-names>
</name>
<name>
<surname>Sugathan</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Bishnoi</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Baij</surname>
<given-names>M.S.</given-names>
</name>
</person-group>
<article-title>Potential therapeutic targets for inflammation in toll-like receptor 4 (TLR4)-mediated signaling pathways</article-title>
<source>Int. Immunopharmacol.</source>
<year>2016</year>
<volume>40</volume>
<fpage>79</fpage>
<lpage>89</lpage>
<pub-id pub-id-type="doi">10.1016/j.intimp.2016.08.026</pub-id>
<pub-id pub-id-type="pmid">27584057</pub-id>
</element-citation>
</ref>
<ref id="B20-molecules-24-01964">
<label>20.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Ceccarelli</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Nobili</surname>
<given-names>V.</given-names>
</name>
<name>
<surname>Alisi</surname>
<given-names>A.</given-names>
</name>
</person-group>
<article-title>Toll-like receptor-mediated signaling cascade as a regulator of the inflammation network during alcoholic liver disease</article-title>
<source>World J. Gastroenterol.</source>
<year>2014</year>
<volume>20</volume>
<fpage>16443</fpage>
<lpage>16451</lpage>
<pub-id pub-id-type="doi">10.3748/wjg.v20.i44.16443</pub-id>
<pub-id pub-id-type="pmid">25469012</pub-id>
</element-citation>
</ref>
<ref id="B21-molecules-24-01964">
<label>21.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Girisa</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Shabnam</surname>
<given-names>B.</given-names>
</name>
<name>
<surname>Monisha</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Fan</surname>
<given-names>L.</given-names>
</name>
<name>
<surname>Halim</surname>
<given-names>C.E.</given-names>
</name>
<name>
<surname>Arfuso</surname>
<given-names>F.</given-names>
</name>
<name>
<surname>Ahn</surname>
<given-names>K.S.</given-names>
</name>
<name>
<surname>Sethi</surname>
<given-names>G.</given-names>
</name>
<name>
<surname>Kunnumakkara</surname>
<given-names>A.B.</given-names>
</name>
</person-group>
<article-title>Potential of Zerumbone as an Anti-Cancer Agent</article-title>
<source>Molecules</source>
<year>2019</year>
<volume>24</volume>
<elocation-id>734</elocation-id>
<pub-id pub-id-type="doi">10.3390/molecules24040734</pub-id>
</element-citation>
</ref>
<ref id="B22-molecules-24-01964">
<label>22.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Chien</surname>
<given-names>T.Y.</given-names>
</name>
<name>
<surname>Huang</surname>
<given-names>S.K.</given-names>
</name>
<name>
<surname>Lee</surname>
<given-names>C.J.</given-names>
</name>
<name>
<surname>Tsai</surname>
<given-names>P.W.</given-names>
</name>
<name>
<surname>Wang</surname>
<given-names>C.C.</given-names>
</name>
</person-group>
<article-title>Antinociceptive and Anti-Inflammatory Effects of Zerumbone against Mono-Iodoacetate-Induced Arthritis</article-title>
<source>Int. J. Mol. Sci.</source>
<year>2016</year>
<volume>17</volume>
<elocation-id>249</elocation-id>
<pub-id pub-id-type="doi">10.3390/ijms17020249</pub-id>
<pub-id pub-id-type="pmid">26901193</pub-id>
</element-citation>
</ref>
<ref id="B23-molecules-24-01964">
<label>23.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Liu</surname>
<given-names>W.Y.</given-names>
</name>
<name>
<surname>Tzeng</surname>
<given-names>T.F.</given-names>
</name>
<name>
<surname>Liu</surname>
<given-names>I.M.</given-names>
</name>
</person-group>
<article-title>Zerumbone, a Bioactive Sesquiterpene, Ameliorates Diabetes-Induced Retinal Microvascular Damage through Inhibition of Phospho-p38 Mitogen-Activated Protein Kinase and Nuclear Factor-kappaB Pathways</article-title>
<source>Molecules</source>
<year>2016</year>
<volume>21</volume>
<elocation-id>1708</elocation-id>
<pub-id pub-id-type="doi">10.3390/molecules21121708</pub-id>
</element-citation>
</ref>
<ref id="B24-molecules-24-01964">
<label>24.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Tzeng</surname>
<given-names>T.F.</given-names>
</name>
<name>
<surname>Liou</surname>
<given-names>S.S.</given-names>
</name>
<name>
<surname>Chang</surname>
<given-names>C.J.</given-names>
</name>
<name>
<surname>Liu</surname>
<given-names>I.M.</given-names>
</name>
</person-group>
<article-title>Zerumbone, a tropical ginger sesquiterpene, ameliorates streptozotocin-induced diabetic nephropathy in rats by reducing the hyperglycemia-induced inflammatory response</article-title>
<source>Nutr. Metab.</source>
<year>2013</year>
<volume>10</volume>
<fpage>64</fpage>
<pub-id pub-id-type="doi">10.1186/1743-7075-10-64</pub-id>
</element-citation>
</ref>
<ref id="B25-molecules-24-01964">
<label>25.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Hemn</surname>
<given-names>H.O.</given-names>
</name>
<name>
<surname>Noordin</surname>
<given-names>M.M.</given-names>
</name>
<name>
<surname>Rahman</surname>
<given-names>H.S.</given-names>
</name>
<name>
<surname>Hazilawati</surname>
<given-names>H.</given-names>
</name>
<name>
<surname>Zuki</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Chartrand</surname>
<given-names>M.S.</given-names>
</name>
</person-group>
<article-title>Antihypercholesterolemic and antioxidant efficacies of zerumbone on the formation, development, and establishment of atherosclerosis in cholesterol-fed rabbits</article-title>
<source>Drug Des. Dev. Ther.</source>
<year>2015</year>
<volume>9</volume>
<fpage>4173</fpage>
<lpage>4208</lpage>
</element-citation>
</ref>
<ref id="B26-molecules-24-01964">
<label>26.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Zulazmi</surname>
<given-names>N.A.</given-names>
</name>
<name>
<surname>Gopalsamy</surname>
<given-names>B.</given-names>
</name>
<name>
<surname>Min</surname>
<given-names>J.C.</given-names>
</name>
<name>
<surname>Farouk</surname>
<given-names>A.A.</given-names>
</name>
<name>
<surname>Sulaiman</surname>
<given-names>M.R.</given-names>
</name>
<name>
<surname>Bharatham</surname>
<given-names>B.H.</given-names>
</name>
<name>
<surname>Perimal</surname>
<given-names>E.K.</given-names>
</name>
</person-group>
<article-title>Zerumbone Alleviates Neuropathic Pain through the Involvement of l-Arginine-Nitric Oxide-cGMP-K(+) ATP Channel Pathways in Chronic Constriction Injury in Mice Model</article-title>
<source>Molecules</source>
<year>2017</year>
<volume>22</volume>
<elocation-id>555</elocation-id>
<pub-id pub-id-type="doi">10.3390/molecules22040555</pub-id>
</element-citation>
</ref>
<ref id="B27-molecules-24-01964">
<label>27.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Lee</surname>
<given-names>C.Y.</given-names>
</name>
<name>
<surname>Chen</surname>
<given-names>S.P.</given-names>
</name>
<name>
<surname>Su</surname>
<given-names>C.H.</given-names>
</name>
<name>
<surname>Ho</surname>
<given-names>Y.C.</given-names>
</name>
<name>
<surname>Yang</surname>
<given-names>M.L.</given-names>
</name>
<name>
<surname>Lee</surname>
<given-names>S.S.</given-names>
</name>
<name>
<surname>Huang</surname>
<given-names>L.R.</given-names>
</name>
<name>
<surname>Yang</surname>
<given-names>C.P.</given-names>
</name>
<name>
<surname>Chan</surname>
<given-names>C.J.</given-names>
</name>
<name>
<surname>Kuan</surname>
<given-names>Y.H.</given-names>
</name>
</person-group>
<article-title>Zerumbone from Zingiber zerumbet Ameliorates Lipopolysaccharide-Induced ICAM-1 and Cytokines Expression via p38 MAPK/JNK-IkappaB/NF-kappaB Pathway in Mouse Model of Acute Lung Injury</article-title>
<source>Chin. J. Physiol.</source>
<year>2018</year>
<volume>61</volume>
<fpage>171</fpage>
<lpage>180</lpage>
<pub-id pub-id-type="doi">10.4077/CJP.2018.BAG562</pub-id>
<pub-id pub-id-type="pmid">29962177</pub-id>
</element-citation>
</ref>
<ref id="B28-molecules-24-01964">
<label>28.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Prasannan</surname>
<given-names>R.</given-names>
</name>
<name>
<surname>Kalesh</surname>
<given-names>K.A.</given-names>
</name>
<name>
<surname>Shanmugam</surname>
<given-names>M.K.</given-names>
</name>
<name>
<surname>Nachiyappan</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Ramachandran</surname>
<given-names>L.</given-names>
</name>
<name>
<surname>Nguyen</surname>
<given-names>A.H.</given-names>
</name>
<name>
<surname>Kumar</surname>
<given-names>A.P.</given-names>
</name>
<name>
<surname>Lakshmanan</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Sethi</surname>
<given-names>G.</given-names>
</name>
</person-group>
<article-title>Key cell signaling pathways modulated by zerumbone: Role in the prevention and treatment of cancer</article-title>
<source>Biochem. Pharmacol.</source>
<year>2012</year>
<volume>84</volume>
<fpage>1268</fpage>
<lpage>1276</lpage>
<pub-id pub-id-type="doi">10.1016/j.bcp.2012.07.015</pub-id>
<pub-id pub-id-type="pmid">22842489</pub-id>
</element-citation>
</ref>
<ref id="B29-molecules-24-01964">
<label>29.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Tzeng</surname>
<given-names>T.F.</given-names>
</name>
<name>
<surname>Liou</surname>
<given-names>S.S.</given-names>
</name>
<name>
<surname>Chang</surname>
<given-names>C.J.</given-names>
</name>
<name>
<surname>Liu</surname>
<given-names>M.H.</given-names>
</name>
</person-group>
<article-title>Zerumbone, a Natural Cyclic Sesquiterpene of Zingiber zerumbet Smith, Attenuates Nonalcoholic Fatty Liver Disease in Hamsters Fed on High-Fat Diet</article-title>
<source>Evid. Based Complement. Alternat. Med.</source>
<year>2013</year>
<volume>2013</volume>
<fpage>303061</fpage>
<pub-id pub-id-type="doi">10.1155/2013/303061</pub-id>
<pub-id pub-id-type="pmid">24223615</pub-id>
</element-citation>
</ref>
<ref id="B30-molecules-24-01964">
<label>30.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Kim</surname>
<given-names>J.W.</given-names>
</name>
<name>
<surname>Yang</surname>
<given-names>D.</given-names>
</name>
<name>
<surname>Jeong</surname>
<given-names>H.</given-names>
</name>
<name>
<surname>Park</surname>
<given-names>I.S.</given-names>
</name>
<name>
<surname>Lee</surname>
<given-names>M.H.</given-names>
</name>
<name>
<surname>Lim</surname>
<given-names>C.W.</given-names>
</name>
<name>
<surname>Kim</surname>
<given-names>B.</given-names>
</name>
</person-group>
<article-title>Dietary zerumbone, a sesquiterpene, ameliorates hepatotoxin-mediated acute and chronic liver injury in mice</article-title>
<source>Phytother. Res.</source>
<year>2019</year>
<volume>33</volume>
<fpage>1</fpage>
<lpage>13</lpage>
<pub-id pub-id-type="doi">10.1002/ptr.6346</pub-id>
</element-citation>
</ref>
<ref id="B31-molecules-24-01964">
<label>31.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Hamid</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Lee</surname>
<given-names>L.S.</given-names>
</name>
<name>
<surname>Karim</surname>
<given-names>S.R.</given-names>
</name>
<name>
<surname>Jufri</surname>
<given-names>N.F.</given-names>
</name>
</person-group>
<article-title>Hepatoprotective Effects of Zerumbone against Paracetamol-Induced Acute Hepatotoxicity in Rats</article-title>
<source>Malays. J. Med. Sci.</source>
<year>2018</year>
<volume>25</volume>
<fpage>64</fpage>
<lpage>71</lpage>
<pub-id pub-id-type="doi">10.21315/mjms2018.25.2.7</pub-id>
<pub-id pub-id-type="pmid">30918456</pub-id>
</element-citation>
</ref>
<ref id="B32-molecules-24-01964">
<label>32.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Woolbright</surname>
<given-names>B.L.</given-names>
</name>
<name>
<surname>Jaeschke</surname>
<given-names>H.</given-names>
</name>
</person-group>
<article-title>The impact of sterile inflammation in acute liver injury</article-title>
<source>J. Clin. Transl. Res.</source>
<year>2017</year>
<volume>3</volume>
<fpage>170</fpage>
<lpage>188</lpage>
<pub-id pub-id-type="doi">10.18053/jctres.03.2017S1.003</pub-id>
<pub-id pub-id-type="pmid">28670626</pub-id>
</element-citation>
</ref>
<ref id="B33-molecules-24-01964">
<label>33.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Kalantari</surname>
<given-names>K.</given-names>
</name>
<name>
<surname>Moniri</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Boroumand</surname>
<given-names>M.A.</given-names>
</name>
<name>
<surname>Abdul Rahim</surname>
<given-names>R.</given-names>
</name>
<name>
<surname>Bin Ariff</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Izadiyan</surname>
<given-names>Z.</given-names>
</name>
<name>
<surname>Mohamad</surname>
<given-names>R.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>A Review of the Biomedical Applications of Zerumbone and the Techniques for Its Extraction from Ginger Rhizomes</article-title>
<source>Molecules</source>
<year>2017</year>
<volume>22</volume>
<elocation-id>1645</elocation-id>
<pub-id pub-id-type="doi">10.3390/molecules22101645</pub-id>
</element-citation>
</ref>
<ref id="B34-molecules-24-01964">
<label>34.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Xu</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Rui</surname>
<given-names>D.</given-names>
</name>
<name>
<surname>Yan</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Xu</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Niu</surname>
<given-names>Q.</given-names>
</name>
<name>
<surname>Feng</surname>
<given-names>G.</given-names>
</name>
<name>
<surname>Wang</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Li</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Jing</surname>
<given-names>M.</given-names>
</name>
</person-group>
<article-title>Oxidative Damage Induced by Arsenic in Mice or Rats: A Systematic Review and Meta-Analysis</article-title>
<source>Biol. Trace Elem. Res.</source>
<year>2017</year>
<volume>176</volume>
<fpage>154</fpage>
<lpage>175</lpage>
<pub-id pub-id-type="doi">10.1007/s12011-016-0810-4</pub-id>
<pub-id pub-id-type="pmid">27498811</pub-id>
</element-citation>
</ref>
<ref id="B35-molecules-24-01964">
<label>35.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Ghazalee</surname>
<given-names>N.S.</given-names>
</name>
<name>
<surname>Jantan</surname>
<given-names>I.</given-names>
</name>
<name>
<surname>Arshad</surname>
<given-names>L.</given-names>
</name>
<name>
<surname>Haque</surname>
<given-names>M.A.</given-names>
</name>
</person-group>
<article-title>Immunosuppressive effects of the standardized extract of Zingiber zerumbet on innate immune responses in Wistar rats</article-title>
<source>Phytother. Res.</source>
<year>2019</year>
<volume>33</volume>
<fpage>1</fpage>
<lpage>10</lpage>
<pub-id pub-id-type="doi">10.1002/ptr.6285</pub-id>
</element-citation>
</ref>
<ref id="B36-molecules-24-01964">
<label>36.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Yang</surname>
<given-names>H.L.</given-names>
</name>
<name>
<surname>Lee</surname>
<given-names>C.L.</given-names>
</name>
<name>
<surname>Korivi</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Liao</surname>
<given-names>J.W.</given-names>
</name>
<name>
<surname>Rajendran</surname>
<given-names>P.</given-names>
</name>
<name>
<surname>Wu</surname>
<given-names>J.J.</given-names>
</name>
<name>
<surname>Hseu</surname>
<given-names>Y.C.</given-names>
</name>
</person-group>
<article-title>Zerumbone protects human skin keratinocytes against UVA-irradiated damages through Nrf2 induction</article-title>
<source>Biochem. Pharmacol.</source>
<year>2018</year>
<volume>148</volume>
<fpage>130</fpage>
<lpage>146</lpage>
<pub-id pub-id-type="doi">10.1016/j.bcp.2017.12.014</pub-id>
<pub-id pub-id-type="pmid">29273513</pub-id>
</element-citation>
</ref>
<ref id="B37-molecules-24-01964">
<label>37.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Fadhel Abbas Albaayit</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Maharjan</surname>
<given-names>R.</given-names>
</name>
<name>
<surname>Liao</surname>
<given-names>J.W.</given-names>
</name>
<name>
<surname>Rajendran</surname>
<given-names>P.</given-names>
</name>
<name>
<surname>Wu</surname>
<given-names>J.J.</given-names>
</name>
<name>
<surname>Hseu</surname>
<given-names>Y.C.</given-names>
</name>
</person-group>
<article-title>Immunomodulation of Zerumbone via Decreasing the Production of Reactive Oxygen Species from Immune Cells</article-title>
<source>Pak. J. Biol. Sci.</source>
<year>2018</year>
<volume>21</volume>
<fpage>475</fpage>
<lpage>479</lpage>
<pub-id pub-id-type="doi">10.3923/pjbs.2018.475.479</pub-id>
<pub-id pub-id-type="pmid">30724050</pub-id>
</element-citation>
</ref>
<ref id="B38-molecules-24-01964">
<label>38.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Al-Suhaimi</surname>
<given-names>E.A.</given-names>
</name>
<name>
<surname>Al-Riziza</surname>
<given-names>N.A.</given-names>
</name>
<name>
<surname>Al-Essa</surname>
<given-names>R.A.</given-names>
</name>
</person-group>
<article-title>Physiological and therapeutical roles of ginger and turmeric on endocrine functions</article-title>
<source>Am. J. Chin. Med.</source>
<year>2011</year>
<volume>39</volume>
<fpage>215</fpage>
<lpage>231</lpage>
<pub-id pub-id-type="doi">10.1142/S0192415X11008762</pub-id>
<pub-id pub-id-type="pmid">21476200</pub-id>
</element-citation>
</ref>
<ref id="B39-molecules-24-01964">
<label>39.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Wang</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>Zou</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Cui</surname>
<given-names>Z.</given-names>
</name>
<name>
<surname>Guo</surname>
<given-names>P.</given-names>
</name>
<name>
<surname>Meng</surname>
<given-names>Q.</given-names>
</name>
<name>
<surname>Shi</surname>
<given-names>X.</given-names>
</name>
<name>
<surname>Gao</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Yang</surname>
<given-names>G.</given-names>
</name>
<name>
<surname>Han</surname>
<given-names>Z.</given-names>
</name>
</person-group>
<article-title>Zerumbone protects INS-1 rat pancreatic beta cells from high glucose-induced apoptosis through generation of reactive oxygen species</article-title>
<source>Biochem. Biophys. Res. Commun.</source>
<year>2015</year>
<volume>460</volume>
<fpage>205</fpage>
<lpage>209</lpage>
<pub-id pub-id-type="doi">10.1016/j.bbrc.2015.03.009</pub-id>
<pub-id pub-id-type="pmid">25769956</pub-id>
</element-citation>
</ref>
<ref id="B40-molecules-24-01964">
<label>40.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Sithara</surname>
<given-names>T.</given-names>
</name>
<name>
<surname>Dhanya</surname>
<given-names>B.P.</given-names>
</name>
<name>
<surname>Arun</surname>
<given-names>K.B.</given-names>
</name>
<name>
<surname>Sini</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Dan</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Kokkuvayil-Vasu</surname>
<given-names>R.</given-names>
</name>
<name>
<surname>Nisha</surname>
<given-names>P.</given-names>
</name>
</person-group>
<article-title>Zerumbone, a Cyclic Sesquiterpene from Zingiber zerumbet Induces Apoptosis, Cell Cycle Arrest, and Antimigratory Effects in SW480 Colorectal Cancer Cells</article-title>
<source>J. Agric. Food Chem.</source>
<year>2018</year>
<volume>66</volume>
<fpage>602</fpage>
<lpage>612</lpage>
<pub-id pub-id-type="doi">10.1021/acs.jafc.7b04472</pub-id>
<pub-id pub-id-type="pmid">29276946</pub-id>
</element-citation>
</ref>
<ref id="B41-molecules-24-01964">
<label>41.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Yan</surname>
<given-names>H.</given-names>
</name>
<name>
<surname>Ren</surname>
<given-names>M.Y.</given-names>
</name>
<name>
<surname>Wang</surname>
<given-names>Z.X.</given-names>
</name>
<name>
<surname>Feng</surname>
<given-names>S.J.</given-names>
</name>
<name>
<surname>Li</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Cheng</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Hu</surname>
<given-names>C.X.</given-names>
</name>
<name>
<surname>Gao</surname>
<given-names>S.Q.</given-names>
</name>
<name>
<surname>Zhang</surname>
<given-names>G.Q.</given-names>
</name>
</person-group>
<article-title>Zerumbone inhibits melanoma cell proliferation and migration by altering mitochondrial functions</article-title>
<source>Oncol. Lett.</source>
<year>2017</year>
<volume>13</volume>
<fpage>2397</fpage>
<lpage>2402</lpage>
<pub-id pub-id-type="doi">10.3892/ol.2017.5742</pub-id>
<pub-id pub-id-type="pmid">28454410</pub-id>
</element-citation>
</ref>
<ref id="B42-molecules-24-01964">
<label>42.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Rajan</surname>
<given-names>I.</given-names>
</name>
<name>
<surname>Jayasree</surname>
<given-names>P.R.</given-names>
</name>
<name>
<surname>Kumar</surname>
<given-names>P.R.</given-names>
</name>
</person-group>
<article-title>Zerumbone induces mitochondria-mediated apoptosis via increased calcium, generation of reactive oxygen species and upregulation of soluble histone H2AX in K562 chronic myelogenous leukemia cells</article-title>
<source>Tumour Biol.</source>
<year>2015</year>
<volume>36</volume>
<fpage>8479</fpage>
<lpage>8489</lpage>
<pub-id pub-id-type="doi">10.1007/s13277-015-3583-z</pub-id>
<pub-id pub-id-type="pmid">26026585</pub-id>
</element-citation>
</ref>
<ref id="B43-molecules-24-01964">
<label>43.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Hu</surname>
<given-names>Z.</given-names>
</name>
<name>
<surname>Zeng</surname>
<given-names>Q.</given-names>
</name>
<name>
<surname>Zhang</surname>
<given-names>B.</given-names>
</name>
<name>
<surname>Liu</surname>
<given-names>H.</given-names>
</name>
<name>
<surname>Wang</surname>
<given-names>W.</given-names>
</name>
</person-group>
<article-title>Promotion of p53 expression and reactive oxidative stress production is involved in zerumbone-induced cisplatin sensitization of non-small cell lung cancer cells</article-title>
<source>Biochimie</source>
<year>2014</year>
<volume>107</volume>
<fpage>257</fpage>
<lpage>262</lpage>
<pub-id pub-id-type="doi">10.1016/j.biochi.2014.09.001</pub-id>
<pub-id pub-id-type="pmid">25220870</pub-id>
</element-citation>
</ref>
<ref id="B44-molecules-24-01964">
<label>44.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Sobhan</surname>
<given-names>P.K.</given-names>
</name>
<name>
<surname>Seervi</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Deb</surname>
<given-names>L.</given-names>
</name>
<name>
<surname>Varghese</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Soman</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Joseph</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Mathew</surname>
<given-names>K.A.</given-names>
</name>
<name>
<surname>Raghu</surname>
<given-names>G.</given-names>
</name>
<name>
<surname>Thomas</surname>
<given-names>G.</given-names>
</name>
</person-group>
<article-title>Calpain and reactive oxygen species targets Bax for mitochondrial permeabilisation and caspase activation in zerumbone induced apoptosis</article-title>
<source>PLoS ONE</source>
<year>2013</year>
<volume>8</volume>
<elocation-id>e59350</elocation-id>
<pub-id pub-id-type="doi">10.1371/journal.pone.0059350</pub-id>
<pub-id pub-id-type="pmid">23593137</pub-id>
</element-citation>
</ref>
<ref id="B45-molecules-24-01964">
<label>45.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Tzeng</surname>
<given-names>T.F.</given-names>
</name>
<name>
<surname>Liou</surname>
<given-names>S.S.</given-names>
</name>
<name>
<surname>Tzeng</surname>
<given-names>Y.C.</given-names>
</name>
<name>
<surname>Liu</surname>
<given-names>I.M.</given-names>
</name>
</person-group>
<article-title>Zerumbone, a Phytochemical of Subtropical Ginger, Protects against Hyperglycemia-Induced Retinal Damage in Experimental Diabetic Rats</article-title>
<source>Nutrients</source>
<year>2016</year>
<volume>8</volume>
<elocation-id>449</elocation-id>
<pub-id pub-id-type="doi">10.3390/nu8080449</pub-id>
</element-citation>
</ref>
<ref id="B46-molecules-24-01964">
<label>46.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Kim</surname>
<given-names>M.J.</given-names>
</name>
<name>
<surname>Yun</surname>
<given-names>J.M.</given-names>
</name>
</person-group>
<article-title>Molecular Mechanism of the Protective Effect of Zerumbone on Lipopolysaccharide-Induced Inflammation of THP-1 Cell-Derived Macrophages</article-title>
<source>J. Med. Food</source>
<year>2019</year>
<volume>22</volume>
<fpage>62</fpage>
<lpage>73</lpage>
<pub-id pub-id-type="doi">10.1089/jmf.2018.4253</pub-id>
<pub-id pub-id-type="pmid">30383973</pub-id>
</element-citation>
</ref>
<ref id="B47-molecules-24-01964">
<label>47.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Haque</surname>
<given-names>M.A.</given-names>
</name>
<name>
<surname>Jantan</surname>
<given-names>I.</given-names>
</name>
<name>
<surname>Harikrishnan</surname>
<given-names>H.</given-names>
</name>
</person-group>
<article-title>Zerumbone suppresses the activation of inflammatory mediators in LPS-stimulated U937 macrophages through MyD88-dependent NF-kappaB/MAPK/PI3K-Akt signaling pathways</article-title>
<source>Int. Immunopharmacol.</source>
<year>2018</year>
<volume>55</volume>
<fpage>312</fpage>
<lpage>322</lpage>
<pub-id pub-id-type="doi">10.1016/j.intimp.2018.01.001</pub-id>
<pub-id pub-id-type="pmid">29310107</pub-id>
</element-citation>
</ref>
<ref id="B48-molecules-24-01964">
<label>48.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Yang</surname>
<given-names>D.W.</given-names>
</name>
<name>
<surname>Qian</surname>
<given-names>G.B.</given-names>
</name>
<name>
<surname>Jiang</surname>
<given-names>M.J.</given-names>
</name>
<name>
<surname>Wang</surname>
<given-names>P.</given-names>
</name>
<name>
<surname>Wang</surname>
<given-names>K.Z.</given-names>
</name>
</person-group>
<article-title>Inhibition of microRNA-495 suppresses chondrocyte apoptosis through activation of the NF-kappaB signaling pathway by regulating CCL4 in osteoarthritis</article-title>
<source>Gene Ther.</source>
<year>2019</year>
<volume>26</volume>
<fpage>1</fpage>
<lpage>13</lpage>
<pub-id pub-id-type="doi">10.1038/s41434-019-0068-5</pub-id>
<pub-id pub-id-type="pmid">30323352</pub-id>
</element-citation>
</ref>
<ref id="B49-molecules-24-01964">
<label>49.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Hamid</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Liu</surname>
<given-names>D.</given-names>
</name>
<name>
<surname>Abdulrahim</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Khan</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Qian</surname>
<given-names>G.</given-names>
</name>
<name>
<surname>Huang</surname>
<given-names>G.</given-names>
</name>
</person-group>
<article-title>Inactivation of Kupffer cells by selenizing astragalus polysaccharides prevents CCl4-Induced hepatocellular necrosis in the male Wistar rat</article-title>
<source>Biol. Trace Elem. Res.</source>
<year>2017</year>
<volume>179</volume>
<fpage>226</fpage>
<lpage>236</lpage>
<pub-id pub-id-type="doi">10.1007/s12011-017-0970-x</pub-id>
<pub-id pub-id-type="pmid">28243851</pub-id>
</element-citation>
</ref>
<ref id="B50-molecules-24-01964">
<label>50.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Iracheta-Vellve</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Petrasek</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Gyongyosi</surname>
<given-names>B.</given-names>
</name>
<name>
<surname>Abhishek</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Patrick</surname>
<given-names>L.</given-names>
</name>
<name>
<surname>Karen</surname>
<given-names>K.</given-names>
</name>
<name>
<surname>Donna</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>Charles</surname>
<given-names>D.</given-names>
</name>
<name>
<surname>Calenda</surname>
<given-names>E.</given-names>
</name>
<name>
<surname>Kurt</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Katherine</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Gyongyi</surname>
<given-names>S.</given-names>
</name>
</person-group>
<article-title>Endoplasmic reticulum stress-induced hepatocellular death pathways mediate liver injury and fibrosis via stimulator of interferon genes</article-title>
<source>J. Biol. Chem.</source>
<year>2016</year>
<volume>291</volume>
<fpage>26794</fpage>
<lpage>26805</lpage>
<pub-id pub-id-type="doi">10.1074/jbc.M116.736991</pub-id>
<pub-id pub-id-type="pmid">27810900</pub-id>
</element-citation>
</ref>
<ref id="B51-molecules-24-01964">
<label>51.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Li</surname>
<given-names>H.</given-names>
</name>
<name>
<surname>Zhang</surname>
<given-names>T.</given-names>
</name>
<name>
<surname>Wang</surname>
<given-names>K.</given-names>
</name>
<name>
<surname>Lu</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Guo</surname>
<given-names>Y.H.</given-names>
</name>
<name>
<surname>Zhang</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Chen</surname>
<given-names>Z.N.</given-names>
</name>
<name>
<surname>Bian</surname>
<given-names>H.J.</given-names>
</name>
</person-group>
<article-title>MFGE8 protects against CCl4 -induced liver injury by reducing apoptosis and promoting proliferation of hepatocytes</article-title>
<source>J. Cell Physiol.</source>
<year>2019</year>
<volume>234</volume>
<fpage>1</fpage>
<lpage>12</lpage>
<pub-id pub-id-type="doi">10.1002/jcp.28314</pub-id>
</element-citation>
</ref>
<ref id="B52-molecules-24-01964">
<label>52.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Wang</surname>
<given-names>B.</given-names>
</name>
<name>
<surname>Zhou</surname>
<given-names>T.Y.</given-names>
</name>
<name>
<surname>Nie</surname>
<given-names>C.H.</given-names>
</name>
<name>
<surname>Wan</surname>
<given-names>D.L.</given-names>
</name>
<name>
<surname>Zheng</surname>
<given-names>S.S.</given-names>
</name>
</person-group>
<article-title>Bigelovin, a sesquiterpene lactone, suppresses tumor growth through inducing apoptosis and autophagy via the inhibition of mTOR pathway regulated by ROS generation in liver cancer</article-title>
<source>Biochem. Biophys. Res. Commun.</source>
<year>2018</year>
<volume>499</volume>
<fpage>156</fpage>
<lpage>163</lpage>
<pub-id pub-id-type="doi">10.1016/j.bbrc.2018.03.091</pub-id>
<pub-id pub-id-type="pmid">29548826</pub-id>
</element-citation>
</ref>
<ref id="B53-molecules-24-01964">
<label>53.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Jian</surname>
<given-names>T.</given-names>
</name>
<name>
<surname>Ao</surname>
<given-names>X.</given-names>
</name>
<name>
<surname>Wu</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Lv</surname>
<given-names>H.</given-names>
</name>
<name>
<surname>Ma</surname>
<given-names>L.</given-names>
</name>
<name>
<surname>Zhao</surname>
<given-names>L.</given-names>
</name>
<name>
<surname>Tong</surname>
<given-names>B.</given-names>
</name>
<name>
<surname>Ren</surname>
<given-names>B.</given-names>
</name>
<name>
<surname>Chen</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Li</surname>
<given-names>W.</given-names>
</name>
</person-group>
<article-title>Total sesquiterpene glycosides from Loquat (Eriobotrya japonica) leaf alleviate high-fat diet induced non-alcoholic fatty liver disease through cytochrome P450 2E1 inhibition</article-title>
<source>Biomed. Pharmacother.</source>
<year>2017</year>
<volume>91</volume>
<fpage>229</fpage>
<lpage>237</lpage>
<pub-id pub-id-type="doi">10.1016/j.biopha.2017.04.056</pub-id>
<pub-id pub-id-type="pmid">28458161</pub-id>
</element-citation>
</ref>
<ref id="B54-molecules-24-01964">
<label>54.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Xin</surname>
<given-names>X.</given-names>
</name>
<name>
<surname>Yang</surname>
<given-names>W.</given-names>
</name>
<name>
<surname>Yasen</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Zhao</surname>
<given-names>H.</given-names>
</name>
<name>
<surname>Aisa</surname>
<given-names>H.</given-names>
</name>
</person-group>
<article-title>The mechanism of hepatoprotective effect of sesquiterpene rich fraction from Cichorum glandulosum Boiss. et Huet on immune reaction-induced liver injury in mice</article-title>
<source>J. Ethnopharmacol.</source>
<year>2014</year>
<volume>155</volume>
<fpage>1068</fpage>
<lpage>1075</lpage>
<pub-id pub-id-type="pmid">24933227</pub-id>
</element-citation>
</ref>
<ref id="B55-molecules-24-01964">
<label>55.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Zwicker</surname>
<given-names>P.</given-names>
</name>
<name>
<surname>Schultze</surname>
<given-names>N.</given-names>
</name>
<name>
<surname>Niehs</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Albrecht</surname>
<given-names>D.</given-names>
</name>
<name>
<surname>Methling</surname>
<given-names>K.</given-names>
</name>
<name>
<surname>Wurster</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Wachlin</surname>
<given-names>G.</given-names>
</name>
<name>
<surname>Lalk</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Lindequist</surname>
<given-names>U.</given-names>
</name>
<name>
<surname>Haertel</surname>
<given-names>B.</given-names>
</name>
</person-group>
<article-title>Differential effects of Helenalin, an anti-inflammatory sesquiterpene lactone, on the proteome, metabolome and the oxidative stress response in several immune cell types</article-title>
<source>Toxicol. In Vitro</source>
<year>2017</year>
<volume>40</volume>
<fpage>45</fpage>
<lpage>54</lpage>
<pub-id pub-id-type="doi">10.1016/j.tiv.2016.12.010</pub-id>
<pub-id pub-id-type="pmid">27998807</pub-id>
</element-citation>
</ref>
<ref id="B56-molecules-24-01964">
<label>56.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Jodynis-Liebert</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Murias</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Bloszyk</surname>
<given-names>E.</given-names>
</name>
</person-group>
<article-title>Effect of sesquiterpene lactones on antioxidant enzymes and some drug-metabolizing enzymes in rat liver and kidney</article-title>
<source>Planta Med.</source>
<year>2000</year>
<volume>66</volume>
<fpage>199</fpage>
<lpage>205</lpage>
<pub-id pub-id-type="doi">10.1055/s-2000-8566</pub-id>
<pub-id pub-id-type="pmid">10821042</pub-id>
</element-citation>
</ref>
<ref id="B57-molecules-24-01964">
<label>57.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Meilin</surname>
<given-names>W.</given-names>
</name>
<name>
<surname>Jingling</surname>
<given-names>N.</given-names>
</name>
<name>
<surname>Lei</surname>
<given-names>G.</given-names>
</name>
<name>
<surname>Yang</surname>
<given-names>G.</given-names>
</name>
<name>
<surname>Shegan</surname>
<given-names>G.</given-names>
</name>
</person-group>
<article-title>Zerombone inhibits migration in ESCC via promoting Rac1 ubiquitination</article-title>
<source>Biomed. Pharmacother.</source>
<year>2019</year>
<volume>109</volume>
<fpage>2447</fpage>
<lpage>2455</lpage>
<pub-id pub-id-type="pmid">30551505</pub-id>
</element-citation>
</ref>
</ref-list>
</back>
<floats-group>
<fig id="molecules-24-01964-f001" orientation="portrait" position="float">
<label>Figure 1</label>
<caption>
<p>The structure of ZER (
<bold>A</bold>
) and the inhibitory effects of ZER on serum aspartate aminotransferase AST (
<bold>B</bold>
), alanine aminotransferase ALT (
<bold>C</bold>
), and liver index (
<bold>D</bold>
) on CCl
<sub>4</sub>
-induced acute liver injury (ALI) in mice. ZER-L, low dose group; ZER-M, medium dose group; ZER-L, high dose group. Values represent the mean ± SD (
<italic>n</italic>
= 10).
<sup>###</sup>
<italic>p</italic>
< 0.001 compared with the control group; *
<italic>p</italic>
< 0.05 and ***
<italic>p</italic>
< 0.001 compared with the CCl
<sub>4</sub>
-treated group.</p>
</caption>
<graphic xlink:href="molecules-24-01964-g001"></graphic>
</fig>
<fig id="molecules-24-01964-f002" orientation="portrait" position="float">
<label>Figure 2</label>
<caption>
<p>Protective effects of ZER on liver histopathology in CCl
<sub>4</sub>
-induced ALI mice. Liver tissues were stained with Hematoxylin and Eosin (H&E) staining (40×). (
<bold>A</bold>
), control group; (
<bold>B</bold>
), CCl
<sub>4</sub>
group; (
<bold>C</bold>
), ZER-L group; (
<bold>D</bold>
), ZER-M group; (
<bold>E</bold>
), ZER-H group; (
<bold>F</bold>
), Bifendate (BIF) group. The pale pink areas are the necrotic areas. (
<bold>G</bold>
) Quantification of liver necrosis in histological sections (
<italic>n</italic>
= 10). Values represent the mean ± SD.
<sup>###</sup>
<italic>p</italic>
< 0.001 compared with the control group; *
<italic>p</italic>
< 0.05, **
<italic>p</italic>
< 0.01, and ***
<italic>p</italic>
< 0.001 compared with the CCl
<sub>4</sub>
-treated group.</p>
</caption>
<graphic xlink:href="molecules-24-01964-g002"></graphic>
</fig>
<fig id="molecules-24-01964-f003" orientation="portrait" position="float">
<label>Figure 3</label>
<caption>
<p>Effects of ZER on oxidative stress parameters (
<bold>A</bold>
) MDA, (
<bold>B</bold>
) GSH, (
<bold>C</bold>
) SOD, and (
<bold>D</bold>
) GSH-Px in liver tissue of CCl
<sub>4</sub>
-induced ALI mice. Values represent the mean ± SD (
<italic>n</italic>
= 10).
<sup>###</sup>
<italic>p</italic>
< 0.001 compared with the control group; *
<italic>p</italic>
< 0.05, **
<italic>p</italic>
< 0.01, and ***
<italic>p</italic>
< 0.001 compared with the CCl
<sub>4</sub>
-treated group.</p>
</caption>
<graphic xlink:href="molecules-24-01964-g003"></graphic>
</fig>
<fig id="molecules-24-01964-f004" orientation="portrait" position="float">
<label>Figure 4</label>
<caption>
<p>Effects of ZER on the levels of IL-6 ((
<bold>A</bold>
) serum and (
<bold>C</bold>
) liver tissue) and TNF-α ((
<bold>B</bold>
) serum and (
<bold>D</bold>
) liver tissue) in CCl
<sub>4</sub>
-induced ALI mice. Values represent the mean ± SD (
<italic>n</italic>
= 10).
<sup>###</sup>
<italic>p</italic>
< 0.001 compared with the control group; *
<italic>p</italic>
< 0.05, **
<italic>p</italic>
< 0.01, and ***
<italic>p</italic>
< 0.001 compared with the CCl
<sub>4</sub>
-treated group.</p>
</caption>
<graphic xlink:href="molecules-24-01964-g004"></graphic>
</fig>
<fig id="molecules-24-01964-f005" orientation="portrait" position="float">
<label>Figure 5</label>
<caption>
<p>Effects of ZER on the protein levels of TLR4, NF-κB (p-p65), and COX-2 in liver tissue of CCl
<sub>4</sub>
-induced ALI mice. (
<bold>A</bold>
) Western blotting analysis of TLR4, NF-κB (p-p65), and COX-2; Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) was used as the loading control. (
<bold>B</bold>
) Quantification of the relative protein levels of TLR4, NF-κB (p-p65), and COX-2. Values represent the mean ± SD (
<italic>n</italic>
= 3).
<sup>#</sup>
<italic>p</italic>
< 0.05 and
<sup>##</sup>
<italic>p</italic>
< 0.01 compared with the control group; *
<italic>p</italic>
< 0.05 and **
<italic>p</italic>
< 0.01 compared with the CCl
<sub>4</sub>
-treated group.</p>
</caption>
<graphic xlink:href="molecules-24-01964-g005"></graphic>
</fig>
<fig id="molecules-24-01964-f006" orientation="portrait" position="float">
<label>Figure 6</label>
<caption>
<p>Effects of ZER on TLR4/NF-κB/COX-2 signaling in LPS-induced Raw264.7 cells. (
<bold>A</bold>
) The cytotoxicity of ZER was evaluated by MTT assay. (
<bold>B</bold>
) The cytotoxicity of LPS was evaluated by MTT assay. (
<bold>C</bold>
) Western blotting analysis of TLR4, NF-κB (p-p65), and COX-2; GAPDH was used as the loading control. (
<bold>D</bold>
) Quantification of the relative protein levels of TLR4, NF-κB (p-p65), and COX-2. Values represent the mean ± SD (
<italic>n</italic>
= 3).
<sup>##</sup>
<italic>p</italic>
< 0.01 and
<sup>###</sup>
<italic>p</italic>
< 0.001 compared with the control group; *
<italic>p</italic>
< 0.05 and **
<italic>p</italic>
< 0.01 compared with the LPS treated group.</p>
</caption>
<graphic xlink:href="molecules-24-01964-g006"></graphic>
</fig>
</floats-group>
</pmc>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/ChloroquineV1/Data/Pmc/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000713 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Pmc/Corpus/biblio.hfd -nk 000713 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    ChloroquineV1
   |flux=    Pmc
   |étape=   Corpus
   |type=    RBID
   |clé=     PMC:6571963
   |texte=   Zerumbone Protects against Carbon Tetrachloride (CCl4)-Induced Acute Liver Injury in Mice via Inhibiting Oxidative Stress and the Inflammatory Response: Involving the TLR4/NF-κB/COX-2 Pathway
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Pmc/Corpus/RBID.i   -Sk "pubmed:31121820" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Pmc/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a ChloroquineV1 

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Wed Mar 25 22:43:59 2020. Site generation: Sun Jan 31 12:44:45 2021