Serveur d'exploration Chloroquine

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

miRNA-129/FBW7/NF-κB, a Novel Regulatory Pathway in Inflammatory Bowel Disease

Identifieur interne : 000711 ( Pmc/Corpus ); précédent : 000710; suivant : 000712

miRNA-129/FBW7/NF-κB, a Novel Regulatory Pathway in Inflammatory Bowel Disease

Auteurs : Qinghui Meng ; Weihua Wu ; Tiemin Pei ; Junlin Xue ; Peng Xiao ; Liang Sun ; Long Li ; Desen Liang

Source :

RBID : PMC:6965515

Abstract

F-box and WD repeat domain-containing protein 7 (FBW7) has been documented to be implicated in nuclear factor κB (NF-κB) signaling and inflammation, but its role in the pathogenesis of inflammatory bowel disease (IBD) remains unknown. FBW7 was increased both in colon tissues from IBD patients and trinitrobenzene sulphonic acid (TNBS)-induced colitis mice. Immunoprecipitation assay identified that FBW7 as a novel inhibitor of κBα (IκBα)-binding partner. FBW7 upregulation promoted IκBα ubiquitin-dependent degradation, NF-κB activation, and subsequent intestinal inflammation in intestinal epithelial cells, whereas inhibition of FBW7 produced the opposite effects. Computational analysis revealed that microRNA-129 (miR-129) directly targets at 3′ UTR of FBW7. The miR-129-suppressed proteasome pathway mediated the degradation of IκBα by negatively regulating FBW7. The in vivo study demonstrated that upregulation of miR-129 ameliorated intestinal inflammation in TNBS-induced colitis mice through inhibition of the NF-κB signaling pathway. In conclusion, FBW7 is a novel E3 ubiquitin ligase for IκBα and thereby leads to NF-κB activation and inflammation. miR-129 negatively regulates FBW7 expression, resulting in secondary inhibition of the NF-κB pathway and amelioration of intestinal inflammation. Our findings provide new insight into the development of therapeutic strategies for the treatment of IBD.


Url:
DOI: 10.1016/j.omtn.2019.10.048
PubMed: 31945730
PubMed Central: 6965515

Links to Exploration step

PMC:6965515

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">miRNA-129/FBW7/NF-κB, a Novel Regulatory Pathway in Inflammatory Bowel Disease</title>
<author>
<name sortKey="Meng, Qinghui" sort="Meng, Qinghui" uniqKey="Meng Q" first="Qinghui" last="Meng">Qinghui Meng</name>
<affiliation>
<nlm:aff id="aff1">Department of General Surgery, The First Clinical Medical School of Harbin Medical University, Harbin 150001, Heilongjiang Province, People’s Republic of China</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Wu, Weihua" sort="Wu, Weihua" uniqKey="Wu W" first="Weihua" last="Wu">Weihua Wu</name>
<affiliation>
<nlm:aff id="aff1">Department of General Surgery, The First Clinical Medical School of Harbin Medical University, Harbin 150001, Heilongjiang Province, People’s Republic of China</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Pei, Tiemin" sort="Pei, Tiemin" uniqKey="Pei T" first="Tiemin" last="Pei">Tiemin Pei</name>
<affiliation>
<nlm:aff id="aff1">Department of General Surgery, The First Clinical Medical School of Harbin Medical University, Harbin 150001, Heilongjiang Province, People’s Republic of China</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Xue, Junlin" sort="Xue, Junlin" uniqKey="Xue J" first="Junlin" last="Xue">Junlin Xue</name>
<affiliation>
<nlm:aff id="aff1">Department of General Surgery, The First Clinical Medical School of Harbin Medical University, Harbin 150001, Heilongjiang Province, People’s Republic of China</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Xiao, Peng" sort="Xiao, Peng" uniqKey="Xiao P" first="Peng" last="Xiao">Peng Xiao</name>
<affiliation>
<nlm:aff id="aff1">Department of General Surgery, The First Clinical Medical School of Harbin Medical University, Harbin 150001, Heilongjiang Province, People’s Republic of China</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Sun, Liang" sort="Sun, Liang" uniqKey="Sun L" first="Liang" last="Sun">Liang Sun</name>
<affiliation>
<nlm:aff id="aff1">Department of General Surgery, The First Clinical Medical School of Harbin Medical University, Harbin 150001, Heilongjiang Province, People’s Republic of China</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Li, Long" sort="Li, Long" uniqKey="Li L" first="Long" last="Li">Long Li</name>
<affiliation>
<nlm:aff id="aff1">Department of General Surgery, The First Clinical Medical School of Harbin Medical University, Harbin 150001, Heilongjiang Province, People’s Republic of China</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Liang, Desen" sort="Liang, Desen" uniqKey="Liang D" first="Desen" last="Liang">Desen Liang</name>
<affiliation>
<nlm:aff id="aff1">Department of General Surgery, The First Clinical Medical School of Harbin Medical University, Harbin 150001, Heilongjiang Province, People’s Republic of China</nlm:aff>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PMC</idno>
<idno type="pmid">31945730</idno>
<idno type="pmc">6965515</idno>
<idno type="url">http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6965515</idno>
<idno type="RBID">PMC:6965515</idno>
<idno type="doi">10.1016/j.omtn.2019.10.048</idno>
<date when="2019">2019</date>
<idno type="wicri:Area/Pmc/Corpus">000711</idno>
<idno type="wicri:explorRef" wicri:stream="Pmc" wicri:step="Corpus" wicri:corpus="PMC">000711</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a" type="main">miRNA-129/FBW7/NF-κB, a Novel Regulatory Pathway in Inflammatory Bowel Disease</title>
<author>
<name sortKey="Meng, Qinghui" sort="Meng, Qinghui" uniqKey="Meng Q" first="Qinghui" last="Meng">Qinghui Meng</name>
<affiliation>
<nlm:aff id="aff1">Department of General Surgery, The First Clinical Medical School of Harbin Medical University, Harbin 150001, Heilongjiang Province, People’s Republic of China</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Wu, Weihua" sort="Wu, Weihua" uniqKey="Wu W" first="Weihua" last="Wu">Weihua Wu</name>
<affiliation>
<nlm:aff id="aff1">Department of General Surgery, The First Clinical Medical School of Harbin Medical University, Harbin 150001, Heilongjiang Province, People’s Republic of China</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Pei, Tiemin" sort="Pei, Tiemin" uniqKey="Pei T" first="Tiemin" last="Pei">Tiemin Pei</name>
<affiliation>
<nlm:aff id="aff1">Department of General Surgery, The First Clinical Medical School of Harbin Medical University, Harbin 150001, Heilongjiang Province, People’s Republic of China</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Xue, Junlin" sort="Xue, Junlin" uniqKey="Xue J" first="Junlin" last="Xue">Junlin Xue</name>
<affiliation>
<nlm:aff id="aff1">Department of General Surgery, The First Clinical Medical School of Harbin Medical University, Harbin 150001, Heilongjiang Province, People’s Republic of China</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Xiao, Peng" sort="Xiao, Peng" uniqKey="Xiao P" first="Peng" last="Xiao">Peng Xiao</name>
<affiliation>
<nlm:aff id="aff1">Department of General Surgery, The First Clinical Medical School of Harbin Medical University, Harbin 150001, Heilongjiang Province, People’s Republic of China</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Sun, Liang" sort="Sun, Liang" uniqKey="Sun L" first="Liang" last="Sun">Liang Sun</name>
<affiliation>
<nlm:aff id="aff1">Department of General Surgery, The First Clinical Medical School of Harbin Medical University, Harbin 150001, Heilongjiang Province, People’s Republic of China</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Li, Long" sort="Li, Long" uniqKey="Li L" first="Long" last="Li">Long Li</name>
<affiliation>
<nlm:aff id="aff1">Department of General Surgery, The First Clinical Medical School of Harbin Medical University, Harbin 150001, Heilongjiang Province, People’s Republic of China</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Liang, Desen" sort="Liang, Desen" uniqKey="Liang D" first="Desen" last="Liang">Desen Liang</name>
<affiliation>
<nlm:aff id="aff1">Department of General Surgery, The First Clinical Medical School of Harbin Medical University, Harbin 150001, Heilongjiang Province, People’s Republic of China</nlm:aff>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Molecular Therapy. Nucleic Acids</title>
<idno type="eISSN">2162-2531</idno>
<imprint>
<date when="2019">2019</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<p>F-box and WD repeat domain-containing protein 7 (FBW7) has been documented to be implicated in nuclear factor κB (NF-κB) signaling and inflammation, but its role in the pathogenesis of inflammatory bowel disease (IBD) remains unknown. FBW7 was increased both in colon tissues from IBD patients and trinitrobenzene sulphonic acid (TNBS)-induced colitis mice. Immunoprecipitation assay identified that FBW7 as a novel inhibitor of κBα (IκBα)-binding partner. FBW7 upregulation promoted IκBα ubiquitin-dependent degradation, NF-κB activation, and subsequent intestinal inflammation in intestinal epithelial cells, whereas inhibition of FBW7 produced the opposite effects. Computational analysis revealed that microRNA-129 (miR-129) directly targets at 3′ UTR of FBW7. The miR-129-suppressed proteasome pathway mediated the degradation of IκBα by negatively regulating FBW7. The
<italic>in vivo</italic>
study demonstrated that upregulation of miR-129 ameliorated intestinal inflammation in TNBS-induced colitis mice through inhibition of the NF-κB signaling pathway. In conclusion, FBW7 is a novel E3 ubiquitin ligase for IκBα and thereby leads to NF-κB activation and inflammation. miR-129 negatively regulates FBW7 expression, resulting in secondary inhibition of the NF-κB pathway and amelioration of intestinal inflammation. Our findings provide new insight into the development of therapeutic strategies for the treatment of IBD.</p>
</div>
</front>
<back>
<div1 type="bibliography">
<listBibl>
<biblStruct>
<analytic>
<author>
<name sortKey="Baumgart, D C" uniqKey="Baumgart D">D.C. Baumgart</name>
</author>
<author>
<name sortKey="Carding, S R" uniqKey="Carding S">S.R. Carding</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Lee, S H" uniqKey="Lee S">S.H. Lee</name>
</author>
<author>
<name sortKey="Kwon, J E" uniqKey="Kwon J">J.E. Kwon</name>
</author>
<author>
<name sortKey="Cho, M L" uniqKey="Cho M">M.L. Cho</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Weersma, R K" uniqKey="Weersma R">R.K. Weersma</name>
</author>
<author>
<name sortKey="Van Dullemen, H M" uniqKey="Van Dullemen H">H.M. van Dullemen</name>
</author>
<author>
<name sortKey="Van Der Steege, G" uniqKey="Van Der Steege G">G. van der Steege</name>
</author>
<author>
<name sortKey="Nolte, I M" uniqKey="Nolte I">I.M. Nolte</name>
</author>
<author>
<name sortKey="Kleibeuker, J H" uniqKey="Kleibeuker J">J.H. Kleibeuker</name>
</author>
<author>
<name sortKey="Dijkstra, G" uniqKey="Dijkstra G">G. Dijkstra</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Sun, S C" uniqKey="Sun S">S.C. Sun</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Baker, R G" uniqKey="Baker R">R.G. Baker</name>
</author>
<author>
<name sortKey="Hayden, M S" uniqKey="Hayden M">M.S. Hayden</name>
</author>
<author>
<name sortKey="Ghosh, S" uniqKey="Ghosh S">S. Ghosh</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Perse, M" uniqKey="Perse M">M. Perše</name>
</author>
<author>
<name sortKey="Cerar, A" uniqKey="Cerar A">A. Cerar</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Wang, X" uniqKey="Wang X">X. Wang</name>
</author>
<author>
<name sortKey="Sun, Y" uniqKey="Sun Y">Y. Sun</name>
</author>
<author>
<name sortKey="Zhao, Y" uniqKey="Zhao Y">Y. Zhao</name>
</author>
<author>
<name sortKey="Ding, Y" uniqKey="Ding Y">Y. Ding</name>
</author>
<author>
<name sortKey="Zhang, X" uniqKey="Zhang X">X. Zhang</name>
</author>
<author>
<name sortKey="Kong, L" uniqKey="Kong L">L. Kong</name>
</author>
<author>
<name sortKey="Li, Z" uniqKey="Li Z">Z. Li</name>
</author>
<author>
<name sortKey="Guo, Q" uniqKey="Guo Q">Q. Guo</name>
</author>
<author>
<name sortKey="Zhao, L" uniqKey="Zhao L">L. Zhao</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Spencer, E" uniqKey="Spencer E">E. Spencer</name>
</author>
<author>
<name sortKey="Jiang, J" uniqKey="Jiang J">J. Jiang</name>
</author>
<author>
<name sortKey="Chen, Z J" uniqKey="Chen Z">Z.J. Chen</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Shirane, M" uniqKey="Shirane M">M. Shirane</name>
</author>
<author>
<name sortKey="Hatakeyama, S" uniqKey="Hatakeyama S">S. Hatakeyama</name>
</author>
<author>
<name sortKey="Hattori, K" uniqKey="Hattori K">K. Hattori</name>
</author>
<author>
<name sortKey="Nakayama, K" uniqKey="Nakayama K">K. Nakayama</name>
</author>
<author>
<name sortKey="Nakayama, K" uniqKey="Nakayama K">K. Nakayama</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Shih, V F" uniqKey="Shih V">V.F. Shih</name>
</author>
<author>
<name sortKey="Tsui, R" uniqKey="Tsui R">R. Tsui</name>
</author>
<author>
<name sortKey="Caldwell, A" uniqKey="Caldwell A">A. Caldwell</name>
</author>
<author>
<name sortKey="Hoffmann, A" uniqKey="Hoffmann A">A. Hoffmann</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ciechanover, A" uniqKey="Ciechanover A">A. Ciechanover</name>
</author>
<author>
<name sortKey="Orian, A" uniqKey="Orian A">A. Orian</name>
</author>
<author>
<name sortKey="Schwartz, A L" uniqKey="Schwartz A">A.L. Schwartz</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Tang, H" uniqKey="Tang H">H. Tang</name>
</author>
<author>
<name sortKey="Shao, H" uniqKey="Shao H">H. Shao</name>
</author>
<author>
<name sortKey="Yu, C" uniqKey="Yu C">C. Yu</name>
</author>
<author>
<name sortKey="Hou, J" uniqKey="Hou J">J. Hou</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Yada, M" uniqKey="Yada M">M. Yada</name>
</author>
<author>
<name sortKey="Hatakeyama, S" uniqKey="Hatakeyama S">S. Hatakeyama</name>
</author>
<author>
<name sortKey="Kamura, T" uniqKey="Kamura T">T. Kamura</name>
</author>
<author>
<name sortKey="Nishiyama, M" uniqKey="Nishiyama M">M. Nishiyama</name>
</author>
<author>
<name sortKey="Tsunematsu, R" uniqKey="Tsunematsu R">R. Tsunematsu</name>
</author>
<author>
<name sortKey="Imaki, H" uniqKey="Imaki H">H. Imaki</name>
</author>
<author>
<name sortKey="Ishida, N" uniqKey="Ishida N">N. Ishida</name>
</author>
<author>
<name sortKey="Okumura, F" uniqKey="Okumura F">F. Okumura</name>
</author>
<author>
<name sortKey="Nakayama, K" uniqKey="Nakayama K">K. Nakayama</name>
</author>
<author>
<name sortKey="Nakayama, K I" uniqKey="Nakayama K">K.I. Nakayama</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Biswas, M" uniqKey="Biswas M">M. Biswas</name>
</author>
<author>
<name sortKey="Phan, D" uniqKey="Phan D">D. Phan</name>
</author>
<author>
<name sortKey="Watanabe, M" uniqKey="Watanabe M">M. Watanabe</name>
</author>
<author>
<name sortKey="Chan, J Y" uniqKey="Chan J">J.Y. Chan</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Tong, J" uniqKey="Tong J">J. Tong</name>
</author>
<author>
<name sortKey="Wang, P" uniqKey="Wang P">P. Wang</name>
</author>
<author>
<name sortKey="Tan, S" uniqKey="Tan S">S. Tan</name>
</author>
<author>
<name sortKey="Chen, D" uniqKey="Chen D">D. Chen</name>
</author>
<author>
<name sortKey="Nikolovska Coleska, Z" uniqKey="Nikolovska Coleska Z">Z. Nikolovska-Coleska</name>
</author>
<author>
<name sortKey="Zou, F" uniqKey="Zou F">F. Zou</name>
</author>
<author>
<name sortKey="Yu, J" uniqKey="Yu J">J. Yu</name>
</author>
<author>
<name sortKey="Zhang, L" uniqKey="Zhang L">L. Zhang</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Inuzuka, H" uniqKey="Inuzuka H">H. Inuzuka</name>
</author>
<author>
<name sortKey="Shaik, S" uniqKey="Shaik S">S. Shaik</name>
</author>
<author>
<name sortKey="Onoyama, I" uniqKey="Onoyama I">I. Onoyama</name>
</author>
<author>
<name sortKey="Gao, D" uniqKey="Gao D">D. Gao</name>
</author>
<author>
<name sortKey="Tseng, A" uniqKey="Tseng A">A. Tseng</name>
</author>
<author>
<name sortKey="Maser, R S" uniqKey="Maser R">R.S. Maser</name>
</author>
<author>
<name sortKey="Zhai, B" uniqKey="Zhai B">B. Zhai</name>
</author>
<author>
<name sortKey="Wan, L" uniqKey="Wan L">L. Wan</name>
</author>
<author>
<name sortKey="Gutierrez, A" uniqKey="Gutierrez A">A. Gutierrez</name>
</author>
<author>
<name sortKey="Lau, A W" uniqKey="Lau A">A.W. Lau</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Fukushima, H" uniqKey="Fukushima H">H. Fukushima</name>
</author>
<author>
<name sortKey="Matsumoto, A" uniqKey="Matsumoto A">A. Matsumoto</name>
</author>
<author>
<name sortKey="Inuzuka, H" uniqKey="Inuzuka H">H. Inuzuka</name>
</author>
<author>
<name sortKey="Zhai, B" uniqKey="Zhai B">B. Zhai</name>
</author>
<author>
<name sortKey="Lau, A W" uniqKey="Lau A">A.W. Lau</name>
</author>
<author>
<name sortKey="Wan, L" uniqKey="Wan L">L. Wan</name>
</author>
<author>
<name sortKey="Gao, D" uniqKey="Gao D">D. Gao</name>
</author>
<author>
<name sortKey="Shaik, S" uniqKey="Shaik S">S. Shaik</name>
</author>
<author>
<name sortKey="Yuan, M" uniqKey="Yuan M">M. Yuan</name>
</author>
<author>
<name sortKey="Gygi, S P" uniqKey="Gygi S">S.P. Gygi</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Balamurugan, K" uniqKey="Balamurugan K">K. Balamurugan</name>
</author>
<author>
<name sortKey="Sharan, S" uniqKey="Sharan S">S. Sharan</name>
</author>
<author>
<name sortKey="Klarmann, K D" uniqKey="Klarmann K">K.D. Klarmann</name>
</author>
<author>
<name sortKey="Zhang, Y" uniqKey="Zhang Y">Y. Zhang</name>
</author>
<author>
<name sortKey="Coppola, V" uniqKey="Coppola V">V. Coppola</name>
</author>
<author>
<name sortKey="Summers, G H" uniqKey="Summers G">G.H. Summers</name>
</author>
<author>
<name sortKey="Roger, T" uniqKey="Roger T">T. Roger</name>
</author>
<author>
<name sortKey="Morrison, D K" uniqKey="Morrison D">D.K. Morrison</name>
</author>
<author>
<name sortKey="Keller, J R" uniqKey="Keller J">J.R. Keller</name>
</author>
<author>
<name sortKey="Sterneck, E" uniqKey="Sterneck E">E. Sterneck</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Xu, W D" uniqKey="Xu W">W.D. Xu</name>
</author>
<author>
<name sortKey="Pan, H F" uniqKey="Pan H">H.F. Pan</name>
</author>
<author>
<name sortKey="Li, J H" uniqKey="Li J">J.H. Li</name>
</author>
<author>
<name sortKey="Ye, D Q" uniqKey="Ye D">D.Q. Ye</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Wertz, I E" uniqKey="Wertz I">I.E. Wertz</name>
</author>
<author>
<name sortKey="Dixit, V M" uniqKey="Dixit V">V.M. Dixit</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ardley, H C" uniqKey="Ardley H">H.C. Ardley</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ordureau, A" uniqKey="Ordureau A">A. Ordureau</name>
</author>
<author>
<name sortKey="Munch, C" uniqKey="Munch C">C. Münch</name>
</author>
<author>
<name sortKey="Harper, J W" uniqKey="Harper J">J.W. Harper</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kuang, E" uniqKey="Kuang E">E. Kuang</name>
</author>
<author>
<name sortKey="Qi, J" uniqKey="Qi J">J. Qi</name>
</author>
<author>
<name sortKey="Ronai, Z" uniqKey="Ronai Z">Z. Ronai</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ramon, H E" uniqKey="Ramon H">H.E. Ramon</name>
</author>
<author>
<name sortKey="Riling, C R" uniqKey="Riling C">C.R. Riling</name>
</author>
<author>
<name sortKey="Bradfield, J" uniqKey="Bradfield J">J. Bradfield</name>
</author>
<author>
<name sortKey="Yang, B" uniqKey="Yang B">B. Yang</name>
</author>
<author>
<name sortKey="Hakonarson, H" uniqKey="Hakonarson H">H. Hakonarson</name>
</author>
<author>
<name sortKey="Oliver, P M" uniqKey="Oliver P">P.M. Oliver</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Yu, Q" uniqKey="Yu Q">Q. Yu</name>
</author>
<author>
<name sortKey="Zhang, S" uniqKey="Zhang S">S. Zhang</name>
</author>
<author>
<name sortKey="Chao, K" uniqKey="Chao K">K. Chao</name>
</author>
<author>
<name sortKey="Feng, R" uniqKey="Feng R">R. Feng</name>
</author>
<author>
<name sortKey="Wang, H" uniqKey="Wang H">H. Wang</name>
</author>
<author>
<name sortKey="Li, M" uniqKey="Li M">M. Li</name>
</author>
<author>
<name sortKey="Chen, B" uniqKey="Chen B">B. Chen</name>
</author>
<author>
<name sortKey="He, Y" uniqKey="He Y">Y. He</name>
</author>
<author>
<name sortKey="Zeng, Z" uniqKey="Zeng Z">Z. Zeng</name>
</author>
<author>
<name sortKey="Chen, M" uniqKey="Chen M">M. Chen</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Yokobori, T" uniqKey="Yokobori T">T. Yokobori</name>
</author>
<author>
<name sortKey="Mimori, K" uniqKey="Mimori K">K. Mimori</name>
</author>
<author>
<name sortKey="Iwatsuki, M" uniqKey="Iwatsuki M">M. Iwatsuki</name>
</author>
<author>
<name sortKey="Ishii, H" uniqKey="Ishii H">H. Ishii</name>
</author>
<author>
<name sortKey="Onoyama, I" uniqKey="Onoyama I">I. Onoyama</name>
</author>
<author>
<name sortKey="Fukagawa, T" uniqKey="Fukagawa T">T. Fukagawa</name>
</author>
<author>
<name sortKey="Kuwano, H" uniqKey="Kuwano H">H. Kuwano</name>
</author>
<author>
<name sortKey="Nakayama, K I" uniqKey="Nakayama K">K.I. Nakayama</name>
</author>
<author>
<name sortKey="Mori, M" uniqKey="Mori M">M. Mori</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Iwatsuki, M" uniqKey="Iwatsuki M">M. Iwatsuki</name>
</author>
<author>
<name sortKey="Mimori, K" uniqKey="Mimori K">K. Mimori</name>
</author>
<author>
<name sortKey="Ishii, H" uniqKey="Ishii H">H. Ishii</name>
</author>
<author>
<name sortKey="Yokobori, T" uniqKey="Yokobori T">T. Yokobori</name>
</author>
<author>
<name sortKey="Takatsuno, Y" uniqKey="Takatsuno Y">Y. Takatsuno</name>
</author>
<author>
<name sortKey="Sato, T" uniqKey="Sato T">T. Sato</name>
</author>
<author>
<name sortKey="Toh, H" uniqKey="Toh H">H. Toh</name>
</author>
<author>
<name sortKey="Onoyama, I" uniqKey="Onoyama I">I. Onoyama</name>
</author>
<author>
<name sortKey="Nakayama, K I" uniqKey="Nakayama K">K.I. Nakayama</name>
</author>
<author>
<name sortKey="Baba, H" uniqKey="Baba H">H. Baba</name>
</author>
<author>
<name sortKey="Mori, M" uniqKey="Mori M">M. Mori</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Legarda Addison, D" uniqKey="Legarda Addison D">D. Legarda-Addison</name>
</author>
<author>
<name sortKey="Ting, A T" uniqKey="Ting A">A.T. Ting</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kalla, R" uniqKey="Kalla R">R. Kalla</name>
</author>
<author>
<name sortKey="Ventham, N T" uniqKey="Ventham N">N.T. Ventham</name>
</author>
<author>
<name sortKey="Kennedy, N A" uniqKey="Kennedy N">N.A. Kennedy</name>
</author>
<author>
<name sortKey="Quintana, J F" uniqKey="Quintana J">J.F. Quintana</name>
</author>
<author>
<name sortKey="Nimmo, E R" uniqKey="Nimmo E">E.R. Nimmo</name>
</author>
<author>
<name sortKey="Buck, A H" uniqKey="Buck A">A.H. Buck</name>
</author>
<author>
<name sortKey="Satsangi, J" uniqKey="Satsangi J">J. Satsangi</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Fesler, A" uniqKey="Fesler A">A. Fesler</name>
</author>
<author>
<name sortKey="Zhai, H" uniqKey="Zhai H">H. Zhai</name>
</author>
<author>
<name sortKey="Ju, J" uniqKey="Ju J">J. Ju</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ya, G" uniqKey="Ya G">G. Ya</name>
</author>
<author>
<name sortKey="Wang, H" uniqKey="Wang H">H. Wang</name>
</author>
<author>
<name sortKey="Ma, Y" uniqKey="Ma Y">Y. Ma</name>
</author>
<author>
<name sortKey="Hu, A" uniqKey="Hu A">A. Hu</name>
</author>
<author>
<name sortKey="Ma, Y" uniqKey="Ma Y">Y. Ma</name>
</author>
<author>
<name sortKey="Hu, J" uniqKey="Hu J">J. Hu</name>
</author>
<author>
<name sortKey="Yu, Y" uniqKey="Yu Y">Y. Yu</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Zhang, P F" uniqKey="Zhang P">P.F. Zhang</name>
</author>
<author>
<name sortKey="Sheng, L L" uniqKey="Sheng L">L.L. Sheng</name>
</author>
<author>
<name sortKey="Wang, G" uniqKey="Wang G">G. Wang</name>
</author>
<author>
<name sortKey="Tian, M" uniqKey="Tian M">M. Tian</name>
</author>
<author>
<name sortKey="Zhu, L Y" uniqKey="Zhu L">L.Y. Zhu</name>
</author>
<author>
<name sortKey="Zhang, R" uniqKey="Zhang R">R. Zhang</name>
</author>
<author>
<name sortKey="Zhang, J" uniqKey="Zhang J">J. Zhang</name>
</author>
<author>
<name sortKey="Zhu, J S" uniqKey="Zhu J">J.S. Zhu</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Li, J" uniqKey="Li J">J. Li</name>
</author>
<author>
<name sortKey="Guo, Y" uniqKey="Guo Y">Y. Guo</name>
</author>
<author>
<name sortKey="Liang, X" uniqKey="Liang X">X. Liang</name>
</author>
<author>
<name sortKey="Sun, M" uniqKey="Sun M">M. Sun</name>
</author>
<author>
<name sortKey="Wang, G" uniqKey="Wang G">G. Wang</name>
</author>
<author>
<name sortKey="De, W" uniqKey="De W">W. De</name>
</author>
<author>
<name sortKey="Wu, W" uniqKey="Wu W">W. Wu</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Lerner, M" uniqKey="Lerner M">M. Lerner</name>
</author>
<author>
<name sortKey="Lundgren, J" uniqKey="Lundgren J">J. Lundgren</name>
</author>
<author>
<name sortKey="Akhoondi, S" uniqKey="Akhoondi S">S. Akhoondi</name>
</author>
<author>
<name sortKey="Jahn, A" uniqKey="Jahn A">A. Jahn</name>
</author>
<author>
<name sortKey="Ng, H F" uniqKey="Ng H">H.F. Ng</name>
</author>
<author>
<name sortKey="Akbari Moqadam, F" uniqKey="Akbari Moqadam F">F. Akbari Moqadam</name>
</author>
<author>
<name sortKey="Oude Vrielink, J A" uniqKey="Oude Vrielink J">J.A. Oude Vrielink</name>
</author>
<author>
<name sortKey="Agami, R" uniqKey="Agami R">R. Agami</name>
</author>
<author>
<name sortKey="Den Boer, M L" uniqKey="Den Boer M">M.L. Den Boer</name>
</author>
<author>
<name sortKey="Grander, D" uniqKey="Grander D">D. Grandér</name>
</author>
<author>
<name sortKey="Sangfelt, O" uniqKey="Sangfelt O">O. Sangfelt</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Li, X Q" uniqKey="Li X">X.Q. Li</name>
</author>
<author>
<name sortKey="Chen, F S" uniqKey="Chen F">F.S. Chen</name>
</author>
<author>
<name sortKey="Tan, W F" uniqKey="Tan W">W.F. Tan</name>
</author>
<author>
<name sortKey="Fang, B" uniqKey="Fang B">B. Fang</name>
</author>
<author>
<name sortKey="Zhang, Z L" uniqKey="Zhang Z">Z.L. Zhang</name>
</author>
<author>
<name sortKey="Ma, H" uniqKey="Ma H">H. Ma</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Silverberg, M S" uniqKey="Silverberg M">M.S. Silverberg</name>
</author>
<author>
<name sortKey="Satsangi, J" uniqKey="Satsangi J">J. Satsangi</name>
</author>
<author>
<name sortKey="Ahmad, T" uniqKey="Ahmad T">T. Ahmad</name>
</author>
<author>
<name sortKey="Arnott, I D" uniqKey="Arnott I">I.D. Arnott</name>
</author>
<author>
<name sortKey="Bernstein, C N" uniqKey="Bernstein C">C.N. Bernstein</name>
</author>
<author>
<name sortKey="Brant, S R" uniqKey="Brant S">S.R. Brant</name>
</author>
<author>
<name sortKey="Caprilli, R" uniqKey="Caprilli R">R. Caprilli</name>
</author>
<author>
<name sortKey="Colombel, J F" uniqKey="Colombel J">J.F. Colombel</name>
</author>
<author>
<name sortKey="Gasche, C" uniqKey="Gasche C">C. Gasche</name>
</author>
<author>
<name sortKey="Geboes, K" uniqKey="Geboes K">K. Geboes</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Dignass, A" uniqKey="Dignass A">A. Dignass</name>
</author>
<author>
<name sortKey="Eliakim, R" uniqKey="Eliakim R">R. Eliakim</name>
</author>
<author>
<name sortKey="Magro, F" uniqKey="Magro F">F. Magro</name>
</author>
<author>
<name sortKey="Maaser, C" uniqKey="Maaser C">C. Maaser</name>
</author>
<author>
<name sortKey="Chowers, Y" uniqKey="Chowers Y">Y. Chowers</name>
</author>
<author>
<name sortKey="Geboes, K" uniqKey="Geboes K">K. Geboes</name>
</author>
<author>
<name sortKey="Mantzaris, G" uniqKey="Mantzaris G">G. Mantzaris</name>
</author>
<author>
<name sortKey="Reinisch, W" uniqKey="Reinisch W">W. Reinisch</name>
</author>
<author>
<name sortKey="Colombel, J F" uniqKey="Colombel J">J.F. Colombel</name>
</author>
<author>
<name sortKey="Vermeire, S" uniqKey="Vermeire S">S. Vermeire</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Huang, L Y" uniqKey="Huang L">L.Y. Huang</name>
</author>
<author>
<name sortKey="He, Q" uniqKey="He Q">Q. He</name>
</author>
<author>
<name sortKey="Liang, S J" uniqKey="Liang S">S.J. Liang</name>
</author>
<author>
<name sortKey="Su, Y X" uniqKey="Su Y">Y.X. Su</name>
</author>
<author>
<name sortKey="Xiong, L X" uniqKey="Xiong L">L.X. Xiong</name>
</author>
<author>
<name sortKey="Wu, Q Q" uniqKey="Wu Q">Q.Q. Wu</name>
</author>
<author>
<name sortKey="Wu, Q Y" uniqKey="Wu Q">Q.Y. Wu</name>
</author>
<author>
<name sortKey="Tao, J" uniqKey="Tao J">J. Tao</name>
</author>
<author>
<name sortKey="Wang, J P" uniqKey="Wang J">J.P. Wang</name>
</author>
<author>
<name sortKey="Tang, Y B" uniqKey="Tang Y">Y.B. Tang</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Eckle, T" uniqKey="Eckle T">T. Eckle</name>
</author>
<author>
<name sortKey="Grenz, A" uniqKey="Grenz A">A. Grenz</name>
</author>
<author>
<name sortKey="Laucher, S" uniqKey="Laucher S">S. Laucher</name>
</author>
<author>
<name sortKey="Eltzschig, H K" uniqKey="Eltzschig H">H.K. Eltzschig</name>
</author>
</analytic>
</biblStruct>
</listBibl>
</div1>
</back>
</TEI>
<pmc article-type="research-article">
<pmc-dir>properties open_access</pmc-dir>
<front>
<journal-meta>
<journal-id journal-id-type="nlm-ta">Mol Ther Nucleic Acids</journal-id>
<journal-id journal-id-type="iso-abbrev">Mol Ther Nucleic Acids</journal-id>
<journal-title-group>
<journal-title>Molecular Therapy. Nucleic Acids</journal-title>
</journal-title-group>
<issn pub-type="epub">2162-2531</issn>
<publisher>
<publisher-name>American Society of Gene & Cell Therapy</publisher-name>
</publisher>
</journal-meta>
<article-meta>
<article-id pub-id-type="pmid">31945730</article-id>
<article-id pub-id-type="pmc">6965515</article-id>
<article-id pub-id-type="publisher-id">S2162-2531(19)30386-5</article-id>
<article-id pub-id-type="doi">10.1016/j.omtn.2019.10.048</article-id>
<article-categories>
<subj-group subj-group-type="heading">
<subject>Article</subject>
</subj-group>
</article-categories>
<title-group>
<article-title>miRNA-129/FBW7/NF-κB, a Novel Regulatory Pathway in Inflammatory Bowel Disease</article-title>
</title-group>
<contrib-group>
<contrib contrib-type="author" id="au1">
<name>
<surname>Meng</surname>
<given-names>Qinghui</given-names>
</name>
<email>jessica_wu@yeah.com</email>
<xref rid="aff1" ref-type="aff">1</xref>
<xref rid="fn1" ref-type="fn">2</xref>
<xref rid="cor1" ref-type="corresp"></xref>
</contrib>
<contrib contrib-type="author" id="au2">
<name>
<surname>Wu</surname>
<given-names>Weihua</given-names>
</name>
<xref rid="aff1" ref-type="aff">1</xref>
<xref rid="fn1" ref-type="fn">2</xref>
</contrib>
<contrib contrib-type="author" id="au3">
<name>
<surname>Pei</surname>
<given-names>Tiemin</given-names>
</name>
<email>wwz_vinc@163.com</email>
<xref rid="aff1" ref-type="aff">1</xref>
<xref rid="cor2" ref-type="corresp">∗∗</xref>
</contrib>
<contrib contrib-type="author" id="au4">
<name>
<surname>Xue</surname>
<given-names>Junlin</given-names>
</name>
<xref rid="aff1" ref-type="aff">1</xref>
</contrib>
<contrib contrib-type="author" id="au5">
<name>
<surname>Xiao</surname>
<given-names>Peng</given-names>
</name>
<xref rid="aff1" ref-type="aff">1</xref>
</contrib>
<contrib contrib-type="author" id="au6">
<name>
<surname>Sun</surname>
<given-names>Liang</given-names>
</name>
<xref rid="aff1" ref-type="aff">1</xref>
</contrib>
<contrib contrib-type="author" id="au7">
<name>
<surname>Li</surname>
<given-names>Long</given-names>
</name>
<xref rid="aff1" ref-type="aff">1</xref>
</contrib>
<contrib contrib-type="author" id="au8">
<name>
<surname>Liang</surname>
<given-names>Desen</given-names>
</name>
<xref rid="aff1" ref-type="aff">1</xref>
</contrib>
</contrib-group>
<aff id="aff1">
<label>1</label>
Department of General Surgery, The First Clinical Medical School of Harbin Medical University, Harbin 150001, Heilongjiang Province, People’s Republic of China</aff>
<author-notes>
<corresp id="cor1">
<label></label>
Corresponding author: Qinghui Meng, Department of General Surgery, The First Clinical Medical School of Harbin Medical University, 23 Youzheng Road, Nangang District, Harbin 150001, Heilongjiang Province, People’s Republic of China.
<email>jessica_wu@yeah.com</email>
</corresp>
<corresp id="cor2">
<label>∗∗</label>
Corresponding author: Tiemin Pei, Department of General Surgery, The First Clinical Medical School of Harbin Medical University, 23 Youzheng Road, Nangang District, Harbin 150001, Heilongjiang Province, People’s Republic of China.
<email>wwz_vinc@163.com</email>
</corresp>
<fn id="fn1">
<label>2</label>
<p id="ntpara0010">These authors contributed equally to this work.</p>
</fn>
</author-notes>
<pub-date pub-type="pmc-release">
<day>30</day>
<month>11</month>
<year>2019</year>
</pub-date>
<pmc-comment> PMC Release delay is 0 months and 0 days and was based on .</pmc-comment>
<pub-date pub-type="collection">
<day>06</day>
<month>3</month>
<year>2020</year>
</pub-date>
<pub-date pub-type="epub">
<day>30</day>
<month>11</month>
<year>2019</year>
</pub-date>
<volume>19</volume>
<fpage>731</fpage>
<lpage>740</lpage>
<history>
<date date-type="received">
<day>3</day>
<month>3</month>
<year>2019</year>
</date>
<date date-type="accepted">
<day>27</day>
<month>10</month>
<year>2019</year>
</date>
</history>
<permissions>
<copyright-statement>© 2020 The Authors</copyright-statement>
<copyright-year>2020</copyright-year>
<license license-type="CC BY-NC-ND" xlink:href="http://creativecommons.org/licenses/by-nc-nd/4.0/">
<license-p>This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).</license-p>
</license>
</permissions>
<abstract id="abs0010">
<p>F-box and WD repeat domain-containing protein 7 (FBW7) has been documented to be implicated in nuclear factor κB (NF-κB) signaling and inflammation, but its role in the pathogenesis of inflammatory bowel disease (IBD) remains unknown. FBW7 was increased both in colon tissues from IBD patients and trinitrobenzene sulphonic acid (TNBS)-induced colitis mice. Immunoprecipitation assay identified that FBW7 as a novel inhibitor of κBα (IκBα)-binding partner. FBW7 upregulation promoted IκBα ubiquitin-dependent degradation, NF-κB activation, and subsequent intestinal inflammation in intestinal epithelial cells, whereas inhibition of FBW7 produced the opposite effects. Computational analysis revealed that microRNA-129 (miR-129) directly targets at 3′ UTR of FBW7. The miR-129-suppressed proteasome pathway mediated the degradation of IκBα by negatively regulating FBW7. The
<italic>in vivo</italic>
study demonstrated that upregulation of miR-129 ameliorated intestinal inflammation in TNBS-induced colitis mice through inhibition of the NF-κB signaling pathway. In conclusion, FBW7 is a novel E3 ubiquitin ligase for IκBα and thereby leads to NF-κB activation and inflammation. miR-129 negatively regulates FBW7 expression, resulting in secondary inhibition of the NF-κB pathway and amelioration of intestinal inflammation. Our findings provide new insight into the development of therapeutic strategies for the treatment of IBD.</p>
</abstract>
<kwd-group id="kwrds0010">
<title>Keywords</title>
<kwd>inflammatory bowel disease</kwd>
<kwd>intestinal inflammation</kwd>
<kwd>IκBα</kwd>
<kwd>FBW7</kwd>
<kwd>miRNA-129</kwd>
</kwd-group>
</article-meta>
</front>
<body>
<sec id="sec1">
<title>Introduction</title>
<p id="p0010">Inflammatory bowel disease (IBD) is a chronic debilitating disease referring to local inflammation that can affect all parts of the gastrointestinal tract.
<xref rid="bib1" ref-type="bibr">
<sup>1</sup>
</xref>
Crohn’s disease (CD) and ulcerative colitis (UC) are the two major common subtypes of IBD. It has been well documented that IBD results from immune dysregulation, although the exact etiology is unknown.
<xref rid="bib2" ref-type="bibr">
<sup>2</sup>
</xref>
<sup>,</sup>
<xref rid="bib3" ref-type="bibr">
<sup>3</sup>
</xref>
</p>
<p id="p0015">Nuclear factor κB (NF-κB), a transcriptional factor, is the hallmark of immune response.
<xref rid="bib4" ref-type="bibr">
<sup>4</sup>
</xref>
<sup>,</sup>
<xref rid="bib5" ref-type="bibr">
<sup>5</sup>
</xref>
Several studies have demonstrated that overwhelming inflammatory responses, including NF-κB activation and proinflammatory cytokine overexpression, contribute to colitis.
<xref rid="bib6" ref-type="bibr">
<sup>6</sup>
</xref>
<sup>,</sup>
<xref rid="bib7" ref-type="bibr">
<sup>7</sup>
</xref>
Upon stimulation with proinflammatory cytokines, such as tumor necrosis factor α (TNF-α), interleukin (IL)-1β, IL-6, and IL-8, the inhibitor of κB (IκB) kinase (IKK) complex occurs and activates, which lead to phosphorylation and ubiquitin-dependent degradation of NF-κB inhibitory protein IκB (e.g., IκBα) by skp1-Cullin-F-box-β-transducin repeat-containing protein (SCF
<sup>β-TRCP</sup>
).
<xref rid="bib8" ref-type="bibr">
<sup>8</sup>
</xref>
<sup>,</sup>
<xref rid="bib9" ref-type="bibr">
<sup>9</sup>
</xref>
This allows NF-κB to translocate into the nucleus and triggers a variety of target gene transcriptions.
<xref rid="bib10" ref-type="bibr">
<sup>10</sup>
</xref>
</p>
<p id="p0020">Protein degradation plays a critical role in various cellular functions and the pathogenesis of human diseases.
<xref rid="bib11" ref-type="bibr">
<sup>11</sup>
</xref>
F-box and WD repeat domain-containing protein 7 (FBW7) is another type of SCF ubiquitin ligase that targets various mammalian oncoproteins for degradation, such as c-Jun, c-Myc, cyclin E, and Notch.
<xref rid="bib12" ref-type="bibr">12</xref>
,
<xref rid="bib13" ref-type="bibr">13</xref>
,
<xref rid="bib14" ref-type="bibr">14</xref>
,
<xref rid="bib15" ref-type="bibr">15</xref>
Consistent with the anti-carcinogenic role of FBW7, it also suppresses the development of colorectal cancer,
<xref rid="bib15" ref-type="bibr">
<sup>15</sup>
</xref>
<sup>,</sup>
<xref rid="bib16" ref-type="bibr">
<sup>16</sup>
</xref>
but the role of FBW7 in IBD has not been addressed. Interestingly, similar to β-TRCP, FBW7 governs the destruction of the p100 precursor, a recently identified inhibitor of NF-κB, suggesting a key role of FBW7 in the inflammatory signaling pathway.
<xref rid="bib4" ref-type="bibr">
<sup>4</sup>
</xref>
<sup>,</sup>
<xref rid="bib17" ref-type="bibr">
<sup>17</sup>
</xref>
<sup>,</sup>
<xref rid="bib18" ref-type="bibr">
<sup>18</sup>
</xref>
Furthermore, our present study observed that FBW7 was increased both in colon tissues from IBD patients and the experimental mouse colitis model. However, whether and how FBW7 participates with IBD remain unknown. Here, the aim of this study is to investigate the involvement of FBW7 in the pathogenesis of IBD and the underlying mechanism. Our results suggest that FBW7 is an important regulator of the NF-κB pathway and intestinal inflammation.</p>
</sec>
<sec id="sec2">
<title>Results</title>
<sec id="sec2.1">
<title>FBW7 Is Increased in Colon Tissues of IBD Patients and Experimental Colitis Mice</title>
<p id="p0025">To unveil the role of FBW7 in IBD, the expression of FBW7 in colon tissues from healthy individuals, CD patients, or UC patients was determined (
<xref rid="mmc1" ref-type="supplementary-material">Table S1</xref>
). As shown in
<xref rid="fig1" ref-type="fig">Figure 1</xref>
A, FBW7 mRNA expression was significantly increased in colon tissues from CD and UC patients compared with those from non-IBD individuals. FBW7 expression was elevated in 141/172 CD patients and 89/147 UC patients. Interestingly, the mRNA level of FBW7 was significantly connected with the CD endoscopic index of severity (CDEIS) for CD patients and Mayo score for UC patients (
<xref rid="tbl1" ref-type="table">Table 1</xref>
). Western blotting also showed upregulated protein expression of FBW7 in CD or UC colitis specimens (
<xref rid="fig1" ref-type="fig">Figure 1</xref>
B). Moreover, immunohistochemistry found increased membrane staining for FBW7 in colonic epithelial cells of CD and UC patients compared with non-IBD individuals (
<xref rid="fig1" ref-type="fig">Figure 1</xref>
C). However, no significant difference of FBW7 level was observed between the IBD group and the control group in the blood (
<xref rid="fig1" ref-type="fig">Figure 1</xref>
D). These results suggest that FBW7 expression in the inflamed tissues, but not in the blood, was correlated with the disease activity. To confirm the change of FBW7 expression in the development of IBD, we also examined FBW7 expression in an animal model of IBD. An experimental mouse colitis model was established by rectal injection with trinitrobenzene sulphonic acid (TNBS). Consistent with the observations in human specimens, FBW7 mRNA and protein expression were significantly increased in the TNBS-induced colitic mice (
<xref rid="fig1" ref-type="fig">Figures 1</xref>
E and 1F). Immunohistochemical staining further confirmed that TNBS injection enhanced colonic FBW7 expression compared with control mice (
<xref rid="fig1" ref-type="fig">Figure 1</xref>
G).
<fig id="fig1">
<label>Figure 1</label>
<caption>
<p>Increased Expression of FBW7 in Colon Tissues of Inflammatory Bowel Disease (IBD) Patients and the Trinitrobenzene Sulphonic Acid (TNBS)-Induced Mouse Colitis Model</p>
<p>(A) The mRNA expression of FBW7 in colon tissues from control individuals (non-IBD, n = 189) and patients with Crohn’s disease (CD; n = 172) and patients with ulcerative colitis (UC; n = 147) was determined by RT-PCR. **p < 0.01 versus non-IBD. (B) Western blotting analysis of FBW7 protein expression in non-IBD individuals and patients with CD and patients with UC; n = 40 in each group. **p < 0.01 versus non-IBD. (C) Representative images of hematoxylin and eosin staining and immunohistochemistry for FBW7 expression. Scale bar, 50 μm. (D) The mRNA expression of FBW7 in blood from IBD patients was determined; n = 40 in each group. (E and F) A mouse acute experimental colitis was induced by rectal injection with TNBS. The expression of FBW7 in colon tissues was analyzed by RT-PCR (E) and western blotting (F). **p < 0.01 versus control, n = 12. (G) Representative images of immunohistochemistry for colonic FBW7 expression; n = 4 in each group. Scale bar, 50 μm.</p>
</caption>
<graphic xlink:href="gr1"></graphic>
</fig>
<table-wrap position="float" id="tbl1">
<label>Table 1</label>
<caption>
<p>Correlation between FBW7 mRNA Level and Disease Severity of IBD Patients</p>
</caption>
<table frame="hsides" rules="groups">
<thead>
<tr>
<th rowspan="2">Index</th>
<th colspan="3">FBW7
<hr></hr>
</th>
</tr>
<tr>
<th>n</th>
<th>r</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>CD (CDEIS)</td>
<td>172</td>
<td>0.513</td>
<td><0.01</td>
</tr>
<tr>
<td>UC (Mayo)</td>
<td>147</td>
<td>0.304</td>
<td>0.017</td>
</tr>
</tbody>
</table>
<table-wrap-foot>
<fn>
<p>IBD, inflammatory bowel disease; CD, Crohn’s disease; CDEIS, Crohn’s disease endoscopic index of severity; UC, ulcerative colitis.</p>
</fn>
</table-wrap-foot>
</table-wrap>
</p>
</sec>
<sec id="sec2.2">
<title>FBW7 Induces IκBα Degradation and NF-κB Activation</title>
<p id="p0030">To explore whether FBW7 was involved in the regulation of the NF-κB pathway, we used up- and downregulation of FBW7 expression approaches in Caco-2 cells. RT-PCR and western blotting confirmed the efficiency of FBW7 small interfering RNA (siRNA) transfection or FBW7 adenovirus infection, respectively (
<xref rid="fig2" ref-type="fig">Figures 2</xref>
A–2D). Downregulation of FBW7 markedly increased IκBα expression, which in turn, inhibited IκBα phosphorylation and p65 expression (
<xref rid="fig2" ref-type="fig">Figure 2</xref>
C). On the contrary, FBW7 overexpression reduced IκBα expression and increased IκBα phosphorylation and p65 expression (
<xref rid="fig2" ref-type="fig">Figure 2</xref>
D). Consequently, several proinflammatory cytokines, including TNF-α, IL-1β, IL-6, and IL-8, were reduced by FBW7 siRNA treatment, but increased by FBW7 adenovirus infection (
<xref rid="fig2" ref-type="fig">Figures 2</xref>
E–2H). To determine the mechanism of how FBW7 regulates IκBα expression, we initially examined the mRNA expression of IκBα. No difference was detected in IκBα mRNA expression after knockdown or overexpression of FBW7 (
<xref rid="mmc1" ref-type="supplementary-material">Figures S1</xref>
A and S1B), indicating that the post-transcriptional regulation does not take place. Given that FBW7 is an E3 ubiquitin ligase that targets substrate proteins for degradation, we examined the effect of FBW7 on IκBα protein stability by using a protein synthesis inhibitor cycloheximide (10 μg/mL). The results showed that cycloheximide caused a time-dependent decrease in IκBα protein expression in Caco-2 cells. Compared with the negative siRNA group, FBW7 knockdown attenuated the degradation of IκBα, whereas overexpression of FBW7 significantly increased the rate of IκBα degradation (
<xref rid="fig2" ref-type="fig">Figures 2</xref>
I and 2J). The effect of FBW7 overexpression on IκBα expression was dramatically restored by the proteasome inhibitor MG132 but not the lysosome blocker chloroquine (
<xref rid="fig2" ref-type="fig">Figures 2</xref>
K and 2L). This suggests that FBW7 inhibits IκBα expression by enhancing IκBα degradation through the proteasome degradation pathway. The endogenous immunoprecipitation assay clearly showed that IκBα bound with FBW7 (
<xref rid="fig2" ref-type="fig">Figure 2</xref>
M). To validate this interaction further, Caco-2 cells were cotransfected with a construct encoding IκBα with a hemagglutinin (HA) tag and an adenovirus encoding FBW7 with a GFP tag. Immunoprecipitation of HA-IκBα with an HA antibody led to coimmunoprecipitation of FBW7 (
<xref rid="fig2" ref-type="fig">Figure 2</xref>
N). We next tested the effect of FBW7 on IκBα protein degradation. By cotransfection with myc-ubiquitin, HA- IκBα, and FBW7 siRNA or negative siRNA in Caco-2 cells, immunoprecipitation of HA antibody revealed that inhibition of FBW7 significantly inhibited IκBα ubiquitination, followed with immunoblotting against the myc tag (
<xref rid="fig2" ref-type="fig">Figure 2</xref>
O). However, upregulation of FBW7 caused a significant increase in the ubiquitination of IκBα (
<xref rid="fig2" ref-type="fig">Figure 2</xref>
P). These results suggest that FBW7 binds with IκBα and causes IκBα degradation and thus activates NF-κB signaling.
<fig id="fig2">
<label>Figure 2</label>
<caption>
<p>FBW7 Decreases IκBα Expression and Promotes NF-κB Activation</p>
<p>(A) Caco-2 cells were transfected with FBW7 siRNA (20 nM) or negative siRNA (negative) for 48 h. FBW7 mRNA expression was determined by RT-PCR. (B) The cells were infected with adenovirus encoding FBW7-GFP (FBW7-GFP, 50 MOI) or GFP for 48 h. RT-PCR analysis of FBW7 mRNA expression. **p < 0.01 versus control, n = 6. (C and D) Western blotting analysis of FBW7, IκBα, and p65 expression and IκBα phosphorylation in cells treated with FBW7 siRNA (C) or FBW7-GFP adenovirus (D). FBW7 knockdown significantly increased IκBα expression and decreased IκBα phosphorylation and p65 expression, whereas FBW7 upregulation reduced IκBα expression and increased IκBα phosphorylation and p65 expression. Representative images from six independent repetitions were shown. (E–H) The mRNA expression of TNF-α (E), IL-1β (F), IL-6 (G), and IL-8 (H) was examined by RT-PCR. **p < 0.01 versus negative siRNA or GFP adenovirus, n = 6. (I and J) Caco-2 cells were treated with FBW7 siRNA (I) and FBW7-GFP adenovirus (J) for 48 h, and then cycloheximide (CHX) was added at 10 μg/mL for the indicated times. IκBα expression was determined by western blotting. The degradation of IκBα-induced cycloheximide was significantly inhibited by FBW7 downregulation but enhanced by FBW7 overexpression; n = 4. (K and L) Western blotting analysis of IκBα expression in Caco-2 cells pretreated with MG132 (10 μg/mL) (K) or chloroquine (10 μg/mL) (L) for 30 min, followed by FBW7 siRNA for another 48 h. MG132, but not chloroquine, significantly reversed the inhibitory effect of FBW7 knockdown on IκBα expression. n = 5. (M) Cell lysates were immunoprecipitated with IκBα antibody, and immunoprecipitated proteins were blotted with FBW7 antibody; n = 4. (N) Caco-2 cells were cotransfected with HA-IκBα plasmid and FBW7-GFP adenovirus. HA-IκBα was immunoprecipitated (IP) and immunoblotted (IB) with GFP antibody; n = 4. (O and P) Cell were cotransfected with myc-ubiquitin (myc-Ub), HA-IκBα, and FBW7 siRNA (O) or FBW7-GFP adenovirus (P). After immunoprecipitation with HA antibody, proteins were immunoblotted with myc antibody to show IκBα ubiquitination; n = 6.</p>
</caption>
<graphic xlink:href="gr2"></graphic>
</fig>
</p>
</sec>
<sec id="sec2.3">
<title>Verification of FBW7 As a Target Gene of miR-129</title>
<p id="p0035">microRNA (miRNA) regulation plays an important role in intestinal inflammation.
<xref rid="bib19" ref-type="bibr">
<sup>19</sup>
</xref>
Computational mRNA target analysis by bioinformatic software miRanda reveals that miR-129 contains a potential binding site in FBW7. A 7-bp fragment of FBW7 3′ UTR is complementary to the miR-129 seed sequence. This binding site is conserved in human and mouse (
<xref rid="fig3" ref-type="fig">Figure 3</xref>
A). To investigate whether miR-129 directly binds to FBW7 and inhibits its translation, we increased or decreased the expression of miR-129 and measured the luciferase activity of FBW7 3′ UTR. Successful overexpression or downregulation of miR-129 was evidenced by RT-PCR (
<xref rid="fig3" ref-type="fig">Figures 3</xref>
B and 3C). By cotransfection with miR-129 mimics and FBW7 3′ UTR luciferase reporter into Caco-2 cells, the luciferase assay showed that overexpression of miR-129 dramatically decreased the luciferase activity of FBW7 3′ UTR (
<xref rid="fig3" ref-type="fig">Figure 3</xref>
D). Conversely, the miR-129 inhibitor was associated with increased FBW7 3′ UTR luciferase activity (
<xref rid="fig3" ref-type="fig">Figure 3</xref>
E). Furthermore, the effect of miR-129 on endogenous FBW7 protein expression was determined. Consistently, the protein expression of FBW7 after miR-129 mimics or inhibitor transfection showed the similar changes in the luciferase activity (
<xref rid="fig3" ref-type="fig">Figures 3</xref>
F and 3G). These data indicate that miR-129 directly targets at FBW7 3′ UTR.
<fig id="fig3">
<label>Figure 3</label>
<caption>
<p>miR-129 Directly Targets FBW7 3′ UTR</p>
<p>(A) Predicted miR-129 seed matches the sequence in the 3′ UTR of FBW7 in human and mouse species. (B and C) Caco-2 cells were transfected with miR-129 mimics (MiR-129-m; 10 nM) or mimics negative control (NC-m) (B) or miR-129 inhibitor (MiR-129-I; 10 nM) or inhibitor negative control (NC-i) (C) for 48 h. The expression of miR-129 was determined by RT-PCR. (D and E) Dual luciferase activity assay was performed by cotransfection of luciferase reporter containing FBW7 3′ UTR or the mutant one with miR-129 mimics (D) or miR-129 inhibitor (E) in Caco-2 cells. (F and G) Western blotting analysis of FBW7 protein expression in cells transfected with miR-129 mimics (F) and miR-129 inhibitor (G). All data were presented as mean value ± SEM. **p < 0.01 versus control; n = 6.</p>
</caption>
<graphic xlink:href="gr3"></graphic>
</fig>
</p>
</sec>
<sec id="sec2.4">
<title>The Crosstalk between miR-129 and IκBα</title>
<p id="p0040">With the consideration that miR-129 negatively regulated FBW7 expression, we next examined whether miR-129 affected IκBα expression and degradation. Western blotting showed that miR-129 mimics significantly increased IκBα protein expression. However, when the cells were cotransfected with miR-129b mimics and FBW7 adenovirus, no significant difference was observed between miR-129 mimics and mimics negative control groups (
<xref rid="fig4" ref-type="fig">Figure 4</xref>
A). In addition, inhibition of miR-129 caused a marked decrease in IκBα protein expression. Similarly, the inhibition of the miR-129 inhibitor on IκBα expression was significantly attenuated by transfection of FBW7 siRNA (
<xref rid="fig4" ref-type="fig">Figure 4</xref>
B). Consistently, miR-129 upregulation was associated with reduced IκBα ubiquitination. Following ectopic expression of FBW7, miR-129 failed to suppress the ubiquitination of IκBα (
<xref rid="fig4" ref-type="fig">Figure 4</xref>
C). Furthermore, the increased ubiquitination of IκBα in miR-129 inhibitor-treated cells was completely abrogated by FBW7 siRNA (
<xref rid="fig4" ref-type="fig">Figure 4</xref>
D). These results indicate that miR-129 suppresses IκBα ubiquitination and increases IκBα expression, and these effects are dependent on FBW7.
<fig id="fig4">
<label>Figure 4</label>
<caption>
<p>miR-129 Suppresses IκBα Ubiquitination and Increases IκBα Expression</p>
<p>(A) Caco-2 cells were transfected with miR-129 mimics (MiR-129-m) or mimics negative control (NC-m) in the presence or absence of FBW7-GFP adenovirus treatment for 48 h. IκBα protein expression was examined by western blotting. (B) miR-129 inhibitor (MiR-129-i; 10 nM) or inhibitor negative control (NC-i) was cotransfected with or without FBW7 siRNA into cells. IκBα protein expression was determined. **p < 0.01 versus mimics negative control or inhibitor negative control; ##p < 0.01 versus miR-129 mimics or inhibitor; n = 6. (C and D) Caco-2 cells transfected with myc-ubiquitin (myc-Ub) and HA-IκBα were treated as above. HA-IκBα was immunoprecipitated (IP) and immunoblotted (IB) with myc antibody. Upregulation of FBW7 reversed the miR-129-induced decrease in ubiquitination of IκBα (C), while miR-129 inhibitor failed to induce ubiquitination of IκBα in FBW7 siRNA-treated cells (D); n = 5.</p>
</caption>
<graphic xlink:href="gr4"></graphic>
</fig>
</p>
</sec>
<sec id="sec2.5">
<title>Restoration of miR-129 Expression Ameliorates TNBS-Induced Colitis by Inhibiting the NF-κB Pathway</title>
<p id="p0045">The results of RT-PCR showed that miR-129 expression was remarkably decreased in CD or UC patients compared with healthy individuals (
<xref rid="fig5" ref-type="fig">Figure 5</xref>
A). Similar to the results of IBD colon tissues, we also found that the expression of miR-129 was inhibited in TNBS-induced colitic mice (
<xref rid="fig5" ref-type="fig">Figure 5</xref>
B). To clarify the role of miR-129 in intestinal inflammation, mice were injected with miR-129 mimics or mimics negative control followed by TNBS challenge. miR-129 mimics treatment expectedly restored the TNBS-induced decrease in miR-129 expression (
<xref rid="fig5" ref-type="fig">Figure 5</xref>
C). Compared with mimics negative control, the survival rate of miR-129 mimics-injected mice was increased during the TNBS treatment period (
<xref rid="fig5" ref-type="fig">Figure 5</xref>
D). The TNBS-induced loss of body weight and the shorting of colon length were significantly less pronounced in the miR-129 mimics group than in the mimics negative control group (
<xref rid="fig5" ref-type="fig">Figures 5</xref>
E–5G). Hematoxylin and eosin staining revealed that TNBS induced marked disruption of the colon architecture, which was effectively improved by miR-129 mimics (
<xref rid="fig5" ref-type="fig">Figures 5</xref>
H and HI). Moreover, TNBS induced the increase in myeloperoxidase (MPO) activity in colon tissues, which indicates neutrophil infiltration was markedly inhibited by miR-129 upregulation (
<xref rid="fig5" ref-type="fig">Figure 5</xref>
J). Overexpression of miR-129 was also associated with reduced mRNA expression of proinflammatory cytokines, including TNF-α, IL-1β, IL-6, and IL-8 (
<xref rid="fig5" ref-type="fig">Figures 5</xref>
K–5N). A subsequent western blotting showed that restoration of miR-129 significantly attenuated the TNBS-induced increase in FBW7 and p65 expression, concomitantly with increased IκBα expression (
<xref rid="fig5" ref-type="fig">Figures 5</xref>
O–5Q). Additionally, immunoprecipitation of IκBα in colon tissue lysate from TNBS-treated mice showed a significant increase in IκBα ubiquitination, as revealed by the ubiquitin antibody immunoblotting. However, miR-129 upregulation was associated with reduced IκBα ubiquitination (
<xref rid="fig5" ref-type="fig">Figure 5</xref>
R). These data suggest that miR-129 ameliorates intestinal inflammation by inhibiting IκBα ubiquitination and NF-κB activation.
<fig id="fig5">
<label>Figure 5</label>
<caption>
<p>miR-129 Prevents TNBS-Induced Colitis in Mouse</p>
<p>(A) The expression of miR-129 in non-IBD individuals (n = 189) and patients with Crohn’s disease (CD; n = 172) and patients with ulcerative colitis (UC; n = 147) was determined by RT-PCR. **p < 0.01 versus non-IBD individuals. (B) Colonic miR-129 expression in mice treated with TNBS was analyzed by RT-PCR. (C) Mice were treated with miR-129 mimics (129-m) or mimics negative control (NC-m) for 7 days prior to TNBS-induced colitis. The expression of miR-129 was determined. **p < 0.01 versus control; ##p < 0.01 versus TNBS + mimics negative control; n = 10 in each group. (D) Survival curves were recorded until day 14 after the start of TNBS treatment; n = 20 in each group. (E) The change of body weight of mice. *p < 0.05, **p < 0.01 versus TNBS + mimics negative control; n = 15 in each group. (F and G) Mice were sacrificed on day 7 (F), and the colon length was measured (G). MiR-129 overexpression inhbited TNBS-induced the shorting of colon length. **p < 0.01 versus mimics negative control; ##p < 0.01 versus TNBS + mimics negative control; n = 6 in each group. (H) Histopathological changes in colon tissue were examined by hematoxylin and eosin staining. Scale bar, 50 μm. (I) Semiquantitative scoring of histopathology was performed. **p < 0.01 versus TNBS + mimics negative control; n = 6 in each group. (J) The activity of myeloperoxidase (MPO) was assessed. (K–N) The colonic mRNA expression of TNF-α (K), IL-1β (L), IL-6 (M), and IL-8 (N) was examined by RT-PCR. (O–Q) Western blotting analysis of FBW7 (O), IκBα (P), and p65 (Q) protein expression in colon tissues. *p < 0.01, **p < 0.01 versus mimics negative control; ##p < 0.01 versus TNBS + mimics negative control; n = 6 in each group. (R) Lysates of colon tissues were immunoprecipitated with IκBα antibody, and proteins were blotted with ubiquitin antibody to detect the ubiquitination of IκBα. n = 5.</p>
</caption>
<graphic xlink:href="gr5"></graphic>
</fig>
</p>
</sec>
</sec>
<sec id="sec3">
<title>Discussion</title>
<p id="p0050">In this study, to the best of our knowledge, we provide the first evidence demonstrating that miR-129/FBW7/NF-κB is a novel and critical axis in the pathogenesis of IBD. The central findings of the present study were summarized as follows: (1) ubiquitin E3 ligase FBW7 is upregulated in colon tissues from IBD patients and experimental colitic mice; (2) we identify that IκBα, a suppressor of NF-κB, as a novel substrate of the ubiquitin E3 ligase FBW7; therefore, FBW7 promotes ubiquitin-mediated degradation of IκBα, which enhances NF-κB activation and proinflammatory cytokines; and (3) miR-129 directly targets the 3′ UTR of FBW7 and negatively regulates FBW7 expression. Overexpression of miR-129 ameliorates TNBS-induced intestinal inflammation and colitis, an effect that inhibited FBW7-mediated IκBα degradation and NF-κB activation.</p>
<p id="p0055">Elevated proteolytic activity has been observed in colonic specimens of IBD patients, suggesting that ubiquitin-related protein degradation may be implicated in immune recognition and inflammation.
<xref rid="bib20" ref-type="bibr">
<sup>20</sup>
</xref>
<sup>,</sup>
<xref rid="bib21" ref-type="bibr">
<sup>21</sup>
</xref>
Protein ubiquitination is a highly conserved process that is characterized by binding a ubiquitin molecule to a lysine residue within a target substrate protein via a cascade formed by three enzymatic proteins: the ubiquitin-activating enzyme E1, the ubiquitin-conjugating enzyme E2, and the ubiquitin ligase E3.
<xref rid="bib22" ref-type="bibr">
<sup>22</sup>
</xref>
E3 ubiquitin ligases control the specificity of the ubiquitination cascade, and several E3 ligases have been demonstrated to be implicated in IBD.
<xref rid="bib23" ref-type="bibr">
<sup>23</sup>
</xref>
<sup>,</sup>
<xref rid="bib24" ref-type="bibr">
<sup>24</sup>
</xref>
Recently, the E3 ligases, such as Ndfip1, Itch, and RNF186, were shown to be critical for gastrointestinal inflammation. Knockout of Ndfip was associated with a gastrointestinal inflammation phenotype in mice, whereas Itch mutant mice showed much less severe inflammation in the gastrointestinal tract.
<xref rid="bib23" ref-type="bibr">
<sup>23</sup>
</xref>
In addition, RNF186 was upregulated in colon tissues from IBD patients and targeted IκBα, which led to NF-κB activation and IBD progression.
<xref rid="bib25" ref-type="bibr">
<sup>25</sup>
</xref>
FBW7, a member of the F-box protein family, functions as a substrate recognition component of SCF ubiquitin ligases.
<xref rid="bib13" ref-type="bibr">
<sup>13</sup>
</xref>
<sup>,</sup>
<xref rid="bib14" ref-type="bibr">
<sup>14</sup>
</xref>
In keeping with the antitumor activity of FBW7, decreased FBW7 expression is significantly associated with gastrointestinal carcinomas, including gastric cancer and colorectal cancer.
<xref rid="bib26" ref-type="bibr">
<sup>26</sup>
</xref>
<sup>,</sup>
<xref rid="bib27" ref-type="bibr">
<sup>27</sup>
</xref>
Although FBW7 has been reported to be a prognostics factor for patients with gastric cancer or colorectal cancer,
<xref rid="bib15" ref-type="bibr">
<sup>15</sup>
</xref>
<sup>,</sup>
<xref rid="bib16" ref-type="bibr">
<sup>16</sup>
</xref>
<sup>,</sup>
<xref rid="bib25" ref-type="bibr">
<sup>25</sup>
</xref>
<sup>,</sup>
<xref rid="bib26" ref-type="bibr">
<sup>26</sup>
</xref>
information regarding to role of FBW7 in IBD is very limited. In this study, we found that FBW7 expression was increased in colon tissues from both IBD patients and TNBS-induced colitis mice. Importantly, the increased FBW7 expression was parallel with the severity of inflammation in the colonic mucosa of CD or UC patients observed by endoscopy. This suggests that the change of FBW7 expression may serve as a mediator or a causal factor in the pathogenesis of IBD. However, in the blood, no significant difference was found in the FBW7 level between IBD patients and non-IBD individuals. The possible reason for this discrepancy is likely that FBW7 is not a circulating protein associated with an acute phase reaction, indicating that FBW7 may play an organ-specific role the inflammatory process of IBD.</p>
<p id="p0060">NF-κB signaling pathway is one of the most important pathways involved in inflammation.
<xref rid="bib5" ref-type="bibr">
<sup>5</sup>
</xref>
The NF-κB family consists of proteins p50, p52, p65 (RelA), RelB, and cRel.
<xref rid="bib10" ref-type="bibr">
<sup>10</sup>
</xref>
The precursors of p50 and p52 are inhibitory proteins of p105 and p100, respectively, and function as inactivate factors of NF-κB. NF-κB signaling divides into two major pathways: canonical and noncanonical pathways.
<xref rid="bib10" ref-type="bibr">
<sup>10</sup>
</xref>
The canonical pathway is activated by proinflammatory agents, which allow the IKK complex formation, leading to phosphorylation and subsequent degradation of IκB.
<xref rid="bib17" ref-type="bibr">
<sup>17</sup>
</xref>
<sup>,</sup>
<xref rid="bib28" ref-type="bibr">
<sup>28</sup>
</xref>
For the noncanonical pathway, ligand binding activates the IKK complex and in turn, triggers ubiquitination of precursor p100. This leads the process into a mature p52 subunit, which with RelB, forms and activates the NF-κB dimer of the noncanonical pathway.
<xref rid="bib4" ref-type="bibr">
<sup>4</sup>
</xref>
Several E3 ligases have been reported to contribute to the regulation of NF-κB activation. For example, RNF186 targeted IκBα for ubiquitination, and it is crucial for NF-κB activation.
<xref rid="bib24" ref-type="bibr">
<sup>24</sup>
</xref>
SCF
<sup>β-TRCP</sup>
enhanced both p50 and p52 activation by ubiquitination of p105 and p100 precursor proteins, which ultimately leads to activation of both canonical and noncanonical NF-κB pathways.
<xref rid="bib5" ref-type="bibr">
<sup>5</sup>
</xref>
<sup>,</sup>
<xref rid="bib27" ref-type="bibr">
<sup>27</sup>
</xref>
It is noteworthy that p100 ubiquitination was also governed by FBW7 in a glycogen synthase kinase 3 (GSK3)-dependent manner.
<xref rid="bib17" ref-type="bibr">
<sup>17</sup>
</xref>
Herein, we reported for the first time that IκBα is a novel FBW-interacting protein. Thus, FBW7 decreased IκBα expression by ubiquitin-mediated degradation, resulting in NF-κB-p65 activation and inflammation in intestinal epithelial cells. The enhanced effect of FBW7 on NF-κB and inflammation, revealed in our work, was consistent with the results of a previous study.
<xref rid="bib17" ref-type="bibr">
<sup>17</sup>
</xref>
By contrast, a report by Sterneck and coworkers
<xref rid="bib18" ref-type="bibr">
<sup>18</sup>
</xref>
showed that FBW7 suppressed inflammation in macrophages and tumor cells by targeting Toll-like receptor 4 (TLR4). Presumably, the discrepancy is probably related to different functions of FBW7 in different cell types, even under the same acute inflammatory stimulation, indicating the organ-specific role of FBW7 in the pathogenesis of IBD.</p>
<p id="p0065">Another significant finding of our study was that miR-129 directly targeted the 3′ UTR of FBW7 and subsequently regulated the IκBα/NF-κB signaling pathway. Accumulating evidence has demonstrated that miRNAs are strongly implicated in the pathogenesis of IBD for their important roles in the regulation of immune inflammation.
<xref rid="bib19" ref-type="bibr">
<sup>19</sup>
</xref>
<sup>,</sup>
<xref rid="bib29" ref-type="bibr">
<sup>29</sup>
</xref>
miR-129, which is known to function as a tumor suppressor, has been suggested to be a biomarker for gastrointestinal and colorectal cancer.
<xref rid="bib30" ref-type="bibr">
<sup>30</sup>
</xref>
<sup>,</sup>
<xref rid="bib31" ref-type="bibr">
<sup>31</sup>
</xref>
Although several miRNAs have been evidenced to control FBW7 through binding to specific target sequences in the 3′ UTR of the gene, as shown for miR-363, miR-223, and miR-27a,
<xref rid="bib32" ref-type="bibr">32</xref>
,
<xref rid="bib33" ref-type="bibr">33</xref>
,
<xref rid="bib34" ref-type="bibr">34</xref>
we found that miR-129 had the strongest inhibitory effect on FBW7 expression (
<xref rid="mmc1" ref-type="supplementary-material">Figures S2</xref>
A and S2B). More importantly, we observed a significant decrease in miR-129 expression in colon tissues from both IBD patients and TNBS-induced colitis mice, but the expression of miR-363, miR-223, and miR-27a was unchanged. This indicates that the downregulation of miR-129 increases FBW7 expression and IκBα degradation, leading to intestinal inflammation and IBD (
<xref rid="mmc1" ref-type="supplementary-material">Figures S2</xref>
C–S2H). Indeed, restoration of miR-129 ameliorated TNBS-induced colitis by attenuating intestinal inflammation through the IκBα/NF-κB signaling pathway. These results were consistent with the report that miR-129 upregulation also prevented inflammation in the neuron.
<xref rid="bib35" ref-type="bibr">
<sup>35</sup>
</xref>
Here, we also investigated whether modulation of FBW7 expression could influence the effect of miR-129 on IκBα expression and ubiquitination. We found that elevation of FBW7 reversed the miR-129 overexpression-induced decrease in IκBα degradation. On the contrary, inhibition of FBW7 abolished the enhanced effect of miR-129 knockdown on IκBα degradation. These results further support that miR-129 inhibits IκBα degradation through targeting FBW7.</p>
<sec id="sec3.1">
<title>Conclusion</title>
<p id="p0070">Our study demonstrates that FBW7, which is negatively regulated by miR-129, functions as a novel E3 ubiquitin ligase for IκBα and thereby leads to NF-κB activation and intestinal inflammation. This work suggests that miR-129/FBW7/NF-κB may be an important molecular mechanism in the pathogenesis of IBD.</p>
</sec>
</sec>
<sec id="sec4">
<title>Materials and Methods</title>
<sec id="sec4.1">
<title>Materials and Reagents</title>
<p id="p0075">Antibodies against FBW7, ubiquitin, GFP, and glyceraldehyde 3-phosphate dehydrogenase (GAPDH) were obtained from Abcam (MA, USA). IκBα, p-IκBα, p65, HA, myc, and immunoglobulin G (IgG) antibodies were purchased from Cell Signaling Technology (MA, USA). miR-129) mimics, miR-363 mimics, miR-223 mimics, miR-27a mimics, mimics negative control, miR-129 inhibitor, inhibitor negative control, FBW7 siRNA, negative siRNA, and miR-129 and U6 primers were synthesized from RiboBio (Guangzhou, China). Mammalian expression plasmids for myc-tagged ubiquitin and HA-tagged IκBα were constructed by BioVector NTCC (Beijing, China). Adenovirus encoding human FBW7 cDNA and GFP were provided by Sunbio Biotechnology (Shanghai, China). Dulbecco’s minimum essential medium (DMEM), OptiMEM I medium, fetal bovine serum (FBS), penicillin, streptomycin, and Lipofectamine 2000 were obtained from Invitrogen (CA, USA). All other reagents utilized were purchased from Sigma Chemical (MO, USA) unless otherwise specified.</p>
</sec>
<sec id="sec4.2">
<title>Human Studies</title>
<p id="p0080">The research protocols related to human specimens were approved by the Ethics Committee of Harbin Medical University and performed in accordance with the Declaration of Helsinki and Good Clinical Practice. The IBD patients, including 172 CD patients and 147 UC patients, met the criteria of the Montreal Classification system and were recruited in this study between 2011 and 2015 in the First Affiliated Hospital of Harbin Medical University.
<xref rid="bib36" ref-type="bibr">
<sup>36</sup>
</xref>
The disease severity of CD patients was evaluated by CDEIS, and the disease activity of UC patients was graded according to the Mayo score.
<xref rid="bib37" ref-type="bibr">
<sup>37</sup>
</xref>
The normal group was non-IBD individuals (n = 189) undergoing colonoscopy for abdominal pain or screening purposes, for which IBD was excluded. Informed consent was obtained from all subjects in this study.</p>
</sec>
<sec id="sec4.3">
<title>Animal Studies</title>
<p id="p0085">The experimental protocol related to animals was approved by the Institutional Animal Care and Use Committee of Harbin Medical University and carried out in accordance with the guidelines for the Care and Use of Laboratory Animals. 8-Week-old male C57BL/6J mice (20 ± 2 g) were purchased from The Jackson Laboratory (ME, USA). Mice were treated with miR-129 mimics or mimics negative control for 7 days before TNBS-induced colitis. Briefly, 1 μL of 1 nM miR-129 mimics or mimics negative control was mixed with 99 μL phosphate buffer saline (PBS). 30 μL Lipofectamine 2000 was mixed with 70 μL PBS. The above solutions were placed at room temperature for 15 min and were mixed for further coincubation for 30 min. The mixture was injected into the tail veins of mice. After 7 days of systemic delivery of miR-129, mice were presensitized with TNBS at a dose of 40 mg/kg body weight through the skin for 7 days. Then, the presensitized mice received TNBS by rectal injection at a dose of 100 mg/kg body weight, as previously described.
<xref rid="bib39" ref-type="bibr">
<sup>39</sup>
</xref>
</p>
</sec>
<sec id="sec4.4">
<title>RT-PCR</title>
<p id="p0090">Total RNA from human colon tissues, mouse colon tissues, or Caco-2 cells was isolated using the QIAGEN RNAeasy Mini Kit (QIAGEN, CA, USA), according to the manufacturer’s instructions. The concentration of the isolated RNA was determined by UV spectrometry. 1 μg of RNA was reverse transcribed to cDNA using a first-strand cDNA synthesis kit (Thermo Fisher Scientific, IL, USA). Blood DNA was isolated from 200 μL heparinized blood sample using the Blood & Cell Culture DNA Mini Kit (QIAGEN), according to the manufacturer’s instruction. Levels of miR-129, miR-363, miR-223, miR-27a, and mRNAs were examined by Fast SYBR Green Master Mix Kit (Applied Biosystems, CA, USA) with the ABI 7500 RT-PCR System (Applied Biosystems). The relative mRNA expression index was normalized with U6 or 18S. The primer sequences for RT-PCR of gene expression were as follows: FBW7 (human), 5′-AGTCCGAAGGAGGAAGGGAA-3′ and 5′-GAACGGGCAGGTCCACAATA-3′; FBW7 (mouse), 5′-TTGGCTTGGGACAACAGACT-3′ and 5′-ATAAGCAGCCCGTGTTTGGA-3′; TNF-α (human), 5′-AGAACTCACTGGGGCCTACA-3′ and 5′-GCTCCGTGTCTCAAGGAAGT-3′; TNF-α (mouse), 5′-GATCGGTCCCCAAAGGGATG-3′ and 5′- GGGAGGCCATTTGGGAACTT-3′; IL-1β (human), 5′-CTGAGCTCGCCAGTGAAATG-3′ and 5′-TGTCCATGGCCACAACAACT-3′; IL-1β (mouse), 5′-ATCTCGCAGCAGCACATCAA-3′ and 5′-ATGGGAACGTCACACACCAG-3′; IL-6 (human), 5′-CTCAATATTAGAGTCTCAACCCCCA-3′ and 5′-GAGAAGGCAACTGGACCGAA-3′; IL-6 (mouse), 5′-AGTTGCCTTCTTGGGACTGA-3′ and 5′-TCCACGATTTCCCAGAGAAC-3′; IL-8 (human), 5′-TTGCCAGCTGTGTTGGTAGT-3′ and 5′-AACAAAATGCTAAGGGGAAGCAT-3′; IL-8 (mouse), 5′-AGTTGCCTTCTTGGGACTGA-3′ and 5′-TCCACGATTTCCCAGAGAAC-3′; 18S rRNA (human), 5′-CGGCTACCACATCCAAGGAA-3′ and 5′-CTGGAATTACCGCGGCT-3′; 18S rRNA (mouse), 5′-GCAATTATTCCCCATGAACG-3′ and 5′-GGCCTCACTAAACCATCCAA-3′.</p>
</sec>
<sec id="sec4.5">
<title>Western Blotting and Immunoprecipitation</title>
<p id="p0095">The colon tissues or Caco-2 cells were lysed in radioimmunoprecipitation assay (RIPA) lysis buffer (Beyotime, Shanghai, China) containing 1% protease and phosphatase inhibitors (Thermo Fisher Scientific). Protein concentration of each sample was determined by the Enhanced BCA Protein Assay Kit (Beyotime, Shanghai, China), and equal protein was separated on 8%–10% SDS-polyacrylamide gel electrophoresis and then transferred to polyvinylidene fluoride (PVDF) membranes (Millipore, MA, USA). The membranes were blocked by 5% skim milk powder in Tris-buffered saline-Tween 20 (TBST; 10 mM Tris-HCl, 150 mM NaCl, 0.05% Tween-20 [pH 7.6]) for 1 h and incubated with primary antibodies at 4°C overnight. After washing and incubation with horseradish peroxidase (HRP)-conjugated secondary antibodies, the blots were visualized by the chemiluminescence system (Thermo Fisher Scientific) and quantified by ImageJ software. For immunoprecipitation, nonspecific binding was precleared with A/G agarose beads (Santa Cruz Biotechnology, CA, USA) and then the lysates were coincubated with indicated primary antibodies and A/G agarose beads at 4°C for 4 h. The beads containing the bound proteins were washed with PBS three times and boiled in lysis buffer at 95°C for 10 min. The supernatant was subjected for western blotting analysis.</p>
</sec>
<sec id="sec4.6">
<title>Histological Analyses</title>
<p id="p0100">Immunohistochemistry for FBW7 was performed on 4 μm paraffin-embedded sections from human or mouse colon tissues using the streptavidin-biotin-peroxidase complex system, according to the supplier’s instructions (Dako Japan, Tokyo, Japan). The sections were heated for 30 min at 65°C, de-waxed in xylene, and rehydrated by 100%, 95%, 70%, and 50% alcohol at room temperature for 1 min. The endogenous peroxidase activity was blocked by 5% H
<sub>2</sub>
O
<sub>2</sub>
, and the nonspecific staining was prevented by 2% nonimmune serum solution. The sections were incubated with antibody against FBW7, diluted in nonimmune serum solution overnight at 4°C. After rinsing with PBS three times, the sections were treated with biotinylated secondary antibody and then incubated with the streptavidin-peroxidase reaction using 3,3′-diaminobenzidine. The sections were counterstained with hematoxylin. For histopathological examination, the slides of colon tissues were stained with hematoxylin andeosin. All slides were observed and examined using a light microscope (CKX41; Olympus, Tokyo, Japan). Histological score was calculated by a pathologist, as previously described.
<xref rid="bib38" ref-type="bibr">
<sup>38</sup>
</xref>
</p>
</sec>
<sec id="sec4.7">
<title>MPO Activity Assay</title>
<p id="p0105">The infiltration of neutrophil into the colon tissue was determined by MPO activity, as previously described.
<xref rid="bib39" ref-type="bibr">
<sup>39</sup>
</xref>
The colon tissues were homogenized and centrifuged. Then, the pellet was resuspended and centrifuged. The supernatant was harvested and added to the substrate containing o-dianisidine hydrochloride (0.167 mg/mL), 0.0005% hydrogen peroxide, and KH
<sub>2</sub>
PO
<sub>4</sub>
(50 mM). The absorbance was measured at 460 nm immediately and recorded as the optical density (OD) value. The second OD value was read after 5 min. The changes of OD value in 5 min were represented as MPO activity, which were normalized to total protein concentration.</p>
</sec>
<sec id="sec4.8">
<title>Cell Transfection and Infection</title>
<p id="p0110">The human colon cancer cell line Caco-2 was purchased from the American Type Culture Collection (ATCC; VA, USA) and cultured in DMEM, supplemented with 0.5% heat-inactivated FBS, 100 μg/mL streptomycin, and 100 U/mL penicillin. For siRNA or miRNA transfection, FBW7 siRNA or negative siRNA, miR-129 mimics or miR-129 inhibitor, mimics negative control, or inhibitor negative control were diluted with OptiMEM I medium and transfected into cells with Lipofectamine 2000, according to the supplier’s instructions. For overexpression of FBW7, Caco-2 cells were cultured in FBS-free DMEM containing FBW7 adenovirus or GFP adenovirus. After 6 h incubation, the cells were transferred into complete medium and cultured for a further 48 h.</p>
</sec>
<sec id="sec4.9">
<title>Luciferase Assay</title>
<p id="p0115">The wild-type human 3′ UTR of FBW7, which contains the predicted binding site for miR-129, was cloned into the pMIR vector (Promega, WI, USA). The mutant FBW7 3′ UTR was generated from wild-type FBW7 3′ UTR by site-directed mutagenesis. 2 × 10
<sup>5</sup>
Caco-2 cells were transfected with miR-129 mimics or miR-129 inhibitor or corresponding negative controls and wild-type or mutant 3′ UTR of FBW7 dual luciferase reporter vector using Lipofectamine 2000. After 48 h transfection, luciferase activities were quantified using a dual luciferase reporter system (Promega) on a luminometer (Elecsys 2010; Roche Diagnostics, Basel, Switzerland).</p>
</sec>
<sec id="sec4.10">
<title>Statistical Analysis</title>
<p id="p0120">Data were presented as mean value ± standard error of mean (SEM). The number of samples in each experiment was indicated in figure legends. The differences between groups were analyzed by two-tailed Student’s t test or one-way ANOVA, followed by the Bonferroni multiple comparison test. Statistical analysis was performed by SPSS 18.0 software (SPSS, IL, USA). p < 0.05 was considered statistically significant.</p>
</sec>
</sec>
<sec id="sec5">
<title>Author Contributions</title>
<p id="p0140">Data Curation, P.X.; Formal Analysis, L.L.; Investigation, Q.M. and W.W.; Methodology, W.W., J.X., and L.S.; Project Administration, Q.M. and T.P.; Software, J.X. and D.L.; Supervision, Q.M. and T.P.; Validation, P.X.; Writing – Original Draft, T.P.; Writing – Review & Editing, Q.M. and T.P.</p>
</sec>
<sec id="sec6">
<title>Conflicts of Interest</title>
<p id="p0370">The authors declare no competing interests.</p>
</sec>
</body>
<back>
<ref-list id="cebib0010">
<title>References</title>
<ref id="bib1">
<label>1</label>
<element-citation publication-type="journal" id="sref1">
<person-group person-group-type="author">
<name>
<surname>Baumgart</surname>
<given-names>D.C.</given-names>
</name>
<name>
<surname>Carding</surname>
<given-names>S.R.</given-names>
</name>
</person-group>
<article-title>Inflammatory bowel disease: cause and immunobiology</article-title>
<source>Lancet</source>
<volume>369</volume>
<year>2007</year>
<fpage>1627</fpage>
<lpage>1640</lpage>
<pub-id pub-id-type="pmid">17499605</pub-id>
</element-citation>
</ref>
<ref id="bib2">
<label>2</label>
<element-citation publication-type="journal" id="sref2">
<person-group person-group-type="author">
<name>
<surname>Lee</surname>
<given-names>S.H.</given-names>
</name>
<name>
<surname>Kwon</surname>
<given-names>J.E.</given-names>
</name>
<name>
<surname>Cho</surname>
<given-names>M.L.</given-names>
</name>
</person-group>
<article-title>Immunological pathogenesis of inflammatory bowel disease</article-title>
<source>Intest. Res.</source>
<volume>16</volume>
<year>2018</year>
<fpage>26</fpage>
<lpage>42</lpage>
<pub-id pub-id-type="pmid">29422795</pub-id>
</element-citation>
</ref>
<ref id="bib3">
<label>3</label>
<element-citation publication-type="journal" id="sref3">
<person-group person-group-type="author">
<name>
<surname>Weersma</surname>
<given-names>R.K.</given-names>
</name>
<name>
<surname>van Dullemen</surname>
<given-names>H.M.</given-names>
</name>
<name>
<surname>van der Steege</surname>
<given-names>G.</given-names>
</name>
<name>
<surname>Nolte</surname>
<given-names>I.M.</given-names>
</name>
<name>
<surname>Kleibeuker</surname>
<given-names>J.H.</given-names>
</name>
<name>
<surname>Dijkstra</surname>
<given-names>G.</given-names>
</name>
</person-group>
<article-title>Review article: Inflammatory bowel disease and genetics</article-title>
<source>Aliment. Pharmacol. Ther.</source>
<volume>26</volume>
<issue>Suppl 2</issue>
<year>2007</year>
<fpage>57</fpage>
<lpage>65</lpage>
<pub-id pub-id-type="pmid">18081650</pub-id>
</element-citation>
</ref>
<ref id="bib4">
<label>4</label>
<element-citation publication-type="journal" id="sref4">
<person-group person-group-type="author">
<name>
<surname>Sun</surname>
<given-names>S.C.</given-names>
</name>
</person-group>
<article-title>The noncanonical NF-κB pathway</article-title>
<source>Immunol. Rev.</source>
<volume>246</volume>
<year>2012</year>
<fpage>125</fpage>
<lpage>140</lpage>
<pub-id pub-id-type="pmid">22435551</pub-id>
</element-citation>
</ref>
<ref id="bib5">
<label>5</label>
<element-citation publication-type="journal" id="sref5">
<person-group person-group-type="author">
<name>
<surname>Baker</surname>
<given-names>R.G.</given-names>
</name>
<name>
<surname>Hayden</surname>
<given-names>M.S.</given-names>
</name>
<name>
<surname>Ghosh</surname>
<given-names>S.</given-names>
</name>
</person-group>
<article-title>NF-κB, inflammation, and metabolic disease</article-title>
<source>Cell Metab.</source>
<volume>13</volume>
<year>2011</year>
<fpage>11</fpage>
<lpage>22</lpage>
<pub-id pub-id-type="pmid">21195345</pub-id>
</element-citation>
</ref>
<ref id="bib6">
<label>6</label>
<element-citation publication-type="journal" id="sref6">
<person-group person-group-type="author">
<name>
<surname>Perše</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Cerar</surname>
<given-names>A.</given-names>
</name>
</person-group>
<article-title>Dextran sodium sulphate colitis mouse model: traps and tricks</article-title>
<source>J. Biomed. Biotechnol.</source>
<volume>2012</volume>
<year>2012</year>
<fpage>718617</fpage>
<pub-id pub-id-type="pmid">22665990</pub-id>
</element-citation>
</ref>
<ref id="bib7">
<label>7</label>
<element-citation publication-type="journal" id="sref7">
<person-group person-group-type="author">
<name>
<surname>Wang</surname>
<given-names>X.</given-names>
</name>
<name>
<surname>Sun</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Zhao</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Ding</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Zhang</surname>
<given-names>X.</given-names>
</name>
<name>
<surname>Kong</surname>
<given-names>L.</given-names>
</name>
<name>
<surname>Li</surname>
<given-names>Z.</given-names>
</name>
<name>
<surname>Guo</surname>
<given-names>Q.</given-names>
</name>
<name>
<surname>Zhao</surname>
<given-names>L.</given-names>
</name>
</person-group>
<article-title>Oroxyloside prevents dextran sulfate sodium-induced experimental colitis in mice by inhibiting NF-κB pathway through PPARγ activation</article-title>
<source>Biochem. Pharmacol.</source>
<volume>106</volume>
<year>2016</year>
<fpage>70</fpage>
<lpage>81</lpage>
<pub-id pub-id-type="pmid">26947454</pub-id>
</element-citation>
</ref>
<ref id="bib8">
<label>8</label>
<element-citation publication-type="journal" id="sref8">
<person-group person-group-type="author">
<name>
<surname>Spencer</surname>
<given-names>E.</given-names>
</name>
<name>
<surname>Jiang</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Chen</surname>
<given-names>Z.J.</given-names>
</name>
</person-group>
<article-title>Signal-induced ubiquitination of IkappaBalpha by the F-box protein Slimb/beta-TrCP</article-title>
<source>Genes Dev.</source>
<volume>13</volume>
<year>1999</year>
<fpage>284</fpage>
<lpage>294</lpage>
<pub-id pub-id-type="pmid">9990853</pub-id>
</element-citation>
</ref>
<ref id="bib9">
<label>9</label>
<element-citation publication-type="journal" id="sref9">
<person-group person-group-type="author">
<name>
<surname>Shirane</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Hatakeyama</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Hattori</surname>
<given-names>K.</given-names>
</name>
<name>
<surname>Nakayama</surname>
<given-names>K.</given-names>
</name>
<name>
<surname>Nakayama</surname>
<given-names>K.</given-names>
</name>
</person-group>
<article-title>Common pathway for the ubiquitination of IkappaBalpha, IkappaBbeta, and IkappaBepsilon mediated by the F-box protein FWD1</article-title>
<source>J. Biol. Chem.</source>
<volume>274</volume>
<year>1999</year>
<fpage>28169</fpage>
<lpage>28174</lpage>
<pub-id pub-id-type="pmid">10497169</pub-id>
</element-citation>
</ref>
<ref id="bib10">
<label>10</label>
<element-citation publication-type="journal" id="sref10">
<person-group person-group-type="author">
<name>
<surname>Shih</surname>
<given-names>V.F.</given-names>
</name>
<name>
<surname>Tsui</surname>
<given-names>R.</given-names>
</name>
<name>
<surname>Caldwell</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Hoffmann</surname>
<given-names>A.</given-names>
</name>
</person-group>
<article-title>A single NFκB system for both canonical and non-canonical signaling</article-title>
<source>Cell Res.</source>
<volume>21</volume>
<year>2011</year>
<fpage>86</fpage>
<lpage>102</lpage>
<pub-id pub-id-type="pmid">21102550</pub-id>
</element-citation>
</ref>
<ref id="bib11">
<label>11</label>
<element-citation publication-type="journal" id="sref11">
<person-group person-group-type="author">
<name>
<surname>Ciechanover</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Orian</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Schwartz</surname>
<given-names>A.L.</given-names>
</name>
</person-group>
<article-title>Ubiquitin-mediated proteolysis: biological regulation via destruction</article-title>
<source>BioEssays</source>
<volume>22</volume>
<year>2000</year>
<fpage>442</fpage>
<lpage>451</lpage>
<pub-id pub-id-type="pmid">10797484</pub-id>
</element-citation>
</ref>
<ref id="bib12">
<label>12</label>
<element-citation publication-type="journal" id="sref12">
<person-group person-group-type="author">
<name>
<surname>Tang</surname>
<given-names>H.</given-names>
</name>
<name>
<surname>Shao</surname>
<given-names>H.</given-names>
</name>
<name>
<surname>Yu</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>Hou</surname>
<given-names>J.</given-names>
</name>
</person-group>
<article-title>Mcl-1 downregulation by YM155 contributes to its synergistic anti-tumor activities with ABT-263</article-title>
<source>Biochem. Pharmacol.</source>
<volume>82</volume>
<year>2011</year>
<fpage>1066</fpage>
<lpage>1072</lpage>
<pub-id pub-id-type="pmid">21784061</pub-id>
</element-citation>
</ref>
<ref id="bib13">
<label>13</label>
<element-citation publication-type="journal" id="sref13">
<person-group person-group-type="author">
<name>
<surname>Yada</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Hatakeyama</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Kamura</surname>
<given-names>T.</given-names>
</name>
<name>
<surname>Nishiyama</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Tsunematsu</surname>
<given-names>R.</given-names>
</name>
<name>
<surname>Imaki</surname>
<given-names>H.</given-names>
</name>
<name>
<surname>Ishida</surname>
<given-names>N.</given-names>
</name>
<name>
<surname>Okumura</surname>
<given-names>F.</given-names>
</name>
<name>
<surname>Nakayama</surname>
<given-names>K.</given-names>
</name>
<name>
<surname>Nakayama</surname>
<given-names>K.I.</given-names>
</name>
</person-group>
<article-title>Phosphorylation-dependent degradation of c-Myc is mediated by the F-box protein Fbw7</article-title>
<source>EMBO J.</source>
<volume>23</volume>
<year>2004</year>
<fpage>2116</fpage>
<lpage>2125</lpage>
<pub-id pub-id-type="pmid">15103331</pub-id>
</element-citation>
</ref>
<ref id="bib14">
<label>14</label>
<element-citation publication-type="journal" id="sref14">
<person-group person-group-type="author">
<name>
<surname>Biswas</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Phan</surname>
<given-names>D.</given-names>
</name>
<name>
<surname>Watanabe</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Chan</surname>
<given-names>J.Y.</given-names>
</name>
</person-group>
<article-title>The Fbw7 tumor suppressor regulates nuclear factor E2-related factor 1 transcription factor turnover through proteasome-mediated proteolysis</article-title>
<source>J. Biol. Chem.</source>
<volume>286</volume>
<year>2011</year>
<fpage>39282</fpage>
<lpage>39289</lpage>
<pub-id pub-id-type="pmid">21953459</pub-id>
</element-citation>
</ref>
<ref id="bib15">
<label>15</label>
<element-citation publication-type="journal" id="sref15">
<person-group person-group-type="author">
<name>
<surname>Tong</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Wang</surname>
<given-names>P.</given-names>
</name>
<name>
<surname>Tan</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Chen</surname>
<given-names>D.</given-names>
</name>
<name>
<surname>Nikolovska-Coleska</surname>
<given-names>Z.</given-names>
</name>
<name>
<surname>Zou</surname>
<given-names>F.</given-names>
</name>
<name>
<surname>Yu</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Zhang</surname>
<given-names>L.</given-names>
</name>
</person-group>
<article-title>Mcl-1 Degradation Is Required for Targeted Therapeutics to Eradicate Colon Cancer Cells</article-title>
<source>Cancer Res.</source>
<volume>77</volume>
<year>2017</year>
<fpage>2512</fpage>
<lpage>2521</lpage>
<pub-id pub-id-type="pmid">28202514</pub-id>
</element-citation>
</ref>
<ref id="bib16">
<label>16</label>
<element-citation publication-type="journal" id="sref16">
<person-group person-group-type="author">
<name>
<surname>Inuzuka</surname>
<given-names>H.</given-names>
</name>
<name>
<surname>Shaik</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Onoyama</surname>
<given-names>I.</given-names>
</name>
<name>
<surname>Gao</surname>
<given-names>D.</given-names>
</name>
<name>
<surname>Tseng</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Maser</surname>
<given-names>R.S.</given-names>
</name>
<name>
<surname>Zhai</surname>
<given-names>B.</given-names>
</name>
<name>
<surname>Wan</surname>
<given-names>L.</given-names>
</name>
<name>
<surname>Gutierrez</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Lau</surname>
<given-names>A.W.</given-names>
</name>
</person-group>
<article-title>SCF(FBW7) regulates cellular apoptosis by targeting MCL1 for ubiquitylation and destruction</article-title>
<source>Nature</source>
<volume>471</volume>
<year>2011</year>
<fpage>104</fpage>
<lpage>109</lpage>
<pub-id pub-id-type="pmid">21368833</pub-id>
</element-citation>
</ref>
<ref id="bib17">
<label>17</label>
<element-citation publication-type="journal" id="sref17">
<person-group person-group-type="author">
<name>
<surname>Fukushima</surname>
<given-names>H.</given-names>
</name>
<name>
<surname>Matsumoto</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Inuzuka</surname>
<given-names>H.</given-names>
</name>
<name>
<surname>Zhai</surname>
<given-names>B.</given-names>
</name>
<name>
<surname>Lau</surname>
<given-names>A.W.</given-names>
</name>
<name>
<surname>Wan</surname>
<given-names>L.</given-names>
</name>
<name>
<surname>Gao</surname>
<given-names>D.</given-names>
</name>
<name>
<surname>Shaik</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Yuan</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Gygi</surname>
<given-names>S.P.</given-names>
</name>
</person-group>
<article-title>SCF(Fbw7) modulates the NFkB signaling pathway by targeting NFkB2 for ubiquitination and destruction</article-title>
<source>Cell Rep.</source>
<volume>1</volume>
<year>2012</year>
<fpage>434</fpage>
<lpage>443</lpage>
<pub-id pub-id-type="pmid">22708077</pub-id>
</element-citation>
</ref>
<ref id="bib18">
<label>18</label>
<element-citation publication-type="journal" id="sref18">
<person-group person-group-type="author">
<name>
<surname>Balamurugan</surname>
<given-names>K.</given-names>
</name>
<name>
<surname>Sharan</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Klarmann</surname>
<given-names>K.D.</given-names>
</name>
<name>
<surname>Zhang</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Coppola</surname>
<given-names>V.</given-names>
</name>
<name>
<surname>Summers</surname>
<given-names>G.H.</given-names>
</name>
<name>
<surname>Roger</surname>
<given-names>T.</given-names>
</name>
<name>
<surname>Morrison</surname>
<given-names>D.K.</given-names>
</name>
<name>
<surname>Keller</surname>
<given-names>J.R.</given-names>
</name>
<name>
<surname>Sterneck</surname>
<given-names>E.</given-names>
</name>
</person-group>
<article-title>FBXW7α attenuates inflammatory signalling by downregulating C/EBPδ and its target gene Tlr4</article-title>
<source>Nat. Commun.</source>
<volume>4</volume>
<year>2013</year>
<fpage>1662</fpage>
<pub-id pub-id-type="pmid">23575666</pub-id>
</element-citation>
</ref>
<ref id="bib19">
<label>19</label>
<element-citation publication-type="journal" id="sref19">
<person-group person-group-type="author">
<name>
<surname>Xu</surname>
<given-names>W.D.</given-names>
</name>
<name>
<surname>Pan</surname>
<given-names>H.F.</given-names>
</name>
<name>
<surname>Li</surname>
<given-names>J.H.</given-names>
</name>
<name>
<surname>Ye</surname>
<given-names>D.Q.</given-names>
</name>
</person-group>
<article-title>MicroRNA-21 with therapeutic potential in autoimmune diseases</article-title>
<source>Expert Opin. Ther. Targets</source>
<volume>17</volume>
<year>2013</year>
<fpage>659</fpage>
<lpage>665</lpage>
<pub-id pub-id-type="pmid">23506112</pub-id>
</element-citation>
</ref>
<ref id="bib20">
<label>20</label>
<element-citation publication-type="journal" id="sref20">
<person-group person-group-type="author">
<name>
<surname>Wertz</surname>
<given-names>I.E.</given-names>
</name>
<name>
<surname>Dixit</surname>
<given-names>V.M.</given-names>
</name>
</person-group>
<article-title>Signaling to NF-kappaB: regulation by ubiquitination</article-title>
<source>Cold Spring Harb. Perspect. Biol.</source>
<volume>2</volume>
<year>2010</year>
<fpage>a003350</fpage>
<pub-id pub-id-type="pmid">20300215</pub-id>
</element-citation>
</ref>
<ref id="bib21">
<label>21</label>
<element-citation publication-type="journal" id="sref21">
<person-group person-group-type="author">
<name>
<surname>Ardley</surname>
<given-names>H.C.</given-names>
</name>
</person-group>
<article-title>Ring finger ubiquitin protein ligases and their implication to the pathogenesis of human diseases</article-title>
<source>Curr. Pharm. Des.</source>
<volume>15</volume>
<year>2009</year>
<fpage>3697</fpage>
<lpage>3715</lpage>
<pub-id pub-id-type="pmid">19925421</pub-id>
</element-citation>
</ref>
<ref id="bib22">
<label>22</label>
<element-citation publication-type="journal" id="sref22">
<person-group person-group-type="author">
<name>
<surname>Ordureau</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Münch</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>Harper</surname>
<given-names>J.W.</given-names>
</name>
</person-group>
<article-title>Quantifying ubiquitin signaling</article-title>
<source>Mol. Cell</source>
<volume>58</volume>
<year>2015</year>
<fpage>660</fpage>
<lpage>676</lpage>
<pub-id pub-id-type="pmid">26000850</pub-id>
</element-citation>
</ref>
<ref id="bib23">
<label>23</label>
<element-citation publication-type="journal" id="sref23">
<person-group person-group-type="author">
<name>
<surname>Kuang</surname>
<given-names>E.</given-names>
</name>
<name>
<surname>Qi</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Ronai</surname>
<given-names>Z.</given-names>
</name>
</person-group>
<article-title>Emerging roles of E3 ubiquitin ligases in autophagy</article-title>
<source>Trends Biochem. Sci.</source>
<volume>38</volume>
<year>2013</year>
<fpage>453</fpage>
<lpage>460</lpage>
<pub-id pub-id-type="pmid">23870665</pub-id>
</element-citation>
</ref>
<ref id="bib24">
<label>24</label>
<element-citation publication-type="journal" id="sref24">
<person-group person-group-type="author">
<name>
<surname>Ramon</surname>
<given-names>H.E.</given-names>
</name>
<name>
<surname>Riling</surname>
<given-names>C.R.</given-names>
</name>
<name>
<surname>Bradfield</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Yang</surname>
<given-names>B.</given-names>
</name>
<name>
<surname>Hakonarson</surname>
<given-names>H.</given-names>
</name>
<name>
<surname>Oliver</surname>
<given-names>P.M.</given-names>
</name>
</person-group>
<article-title>The ubiquitin ligase adaptor Ndfip1 regulates T cell-mediated gastrointestinal inflammation and inflammatory bowel disease susceptibility</article-title>
<source>Mucosal Immunol.</source>
<volume>4</volume>
<year>2011</year>
<fpage>314</fpage>
<lpage>324</lpage>
<pub-id pub-id-type="pmid">20962770</pub-id>
</element-citation>
</ref>
<ref id="bib25">
<label>25</label>
<element-citation publication-type="journal" id="sref25">
<person-group person-group-type="author">
<name>
<surname>Yu</surname>
<given-names>Q.</given-names>
</name>
<name>
<surname>Zhang</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Chao</surname>
<given-names>K.</given-names>
</name>
<name>
<surname>Feng</surname>
<given-names>R.</given-names>
</name>
<name>
<surname>Wang</surname>
<given-names>H.</given-names>
</name>
<name>
<surname>Li</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Chen</surname>
<given-names>B.</given-names>
</name>
<name>
<surname>He</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Zeng</surname>
<given-names>Z.</given-names>
</name>
<name>
<surname>Chen</surname>
<given-names>M.</given-names>
</name>
</person-group>
<article-title>E3 Ubiquitin ligase RNF183 Is a Novel Regulator in Inflammatory Bowel Disease</article-title>
<source>J. Crohn’s Colitis</source>
<volume>10</volume>
<year>2016</year>
<fpage>713</fpage>
<lpage>725</lpage>
<pub-id pub-id-type="pmid">26818663</pub-id>
</element-citation>
</ref>
<ref id="bib26">
<label>26</label>
<element-citation publication-type="journal" id="sref26">
<person-group person-group-type="author">
<name>
<surname>Yokobori</surname>
<given-names>T.</given-names>
</name>
<name>
<surname>Mimori</surname>
<given-names>K.</given-names>
</name>
<name>
<surname>Iwatsuki</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Ishii</surname>
<given-names>H.</given-names>
</name>
<name>
<surname>Onoyama</surname>
<given-names>I.</given-names>
</name>
<name>
<surname>Fukagawa</surname>
<given-names>T.</given-names>
</name>
<name>
<surname>Kuwano</surname>
<given-names>H.</given-names>
</name>
<name>
<surname>Nakayama</surname>
<given-names>K.I.</given-names>
</name>
<name>
<surname>Mori</surname>
<given-names>M.</given-names>
</name>
</person-group>
<article-title>p53-Altered FBXW7 expression determines poor prognosis in gastric cancer cases</article-title>
<source>Cancer Res.</source>
<volume>69</volume>
<year>2009</year>
<fpage>3788</fpage>
<lpage>3794</lpage>
<pub-id pub-id-type="pmid">19366810</pub-id>
</element-citation>
</ref>
<ref id="bib27">
<label>27</label>
<element-citation publication-type="journal" id="sref27">
<person-group person-group-type="author">
<name>
<surname>Iwatsuki</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Mimori</surname>
<given-names>K.</given-names>
</name>
<name>
<surname>Ishii</surname>
<given-names>H.</given-names>
</name>
<name>
<surname>Yokobori</surname>
<given-names>T.</given-names>
</name>
<name>
<surname>Takatsuno</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Sato</surname>
<given-names>T.</given-names>
</name>
<name>
<surname>Toh</surname>
<given-names>H.</given-names>
</name>
<name>
<surname>Onoyama</surname>
<given-names>I.</given-names>
</name>
<name>
<surname>Nakayama</surname>
<given-names>K.I.</given-names>
</name>
<name>
<surname>Baba</surname>
<given-names>H.</given-names>
</name>
<name>
<surname>Mori</surname>
<given-names>M.</given-names>
</name>
</person-group>
<article-title>Loss of FBXW7, a cell cycle regulating gene, in colorectal cancer: clinical significance</article-title>
<source>Int. J. Cancer</source>
<volume>126</volume>
<year>2010</year>
<fpage>1828</fpage>
<lpage>1837</lpage>
<pub-id pub-id-type="pmid">19739118</pub-id>
</element-citation>
</ref>
<ref id="bib28">
<label>28</label>
<element-citation publication-type="journal" id="sref28">
<person-group person-group-type="author">
<name>
<surname>Legarda-Addison</surname>
<given-names>D.</given-names>
</name>
<name>
<surname>Ting</surname>
<given-names>A.T.</given-names>
</name>
</person-group>
<article-title>Negative regulation of TCR signaling by NF-kappaB2/p100</article-title>
<source>J. Immunol.</source>
<volume>178</volume>
<year>2007</year>
<fpage>7767</fpage>
<lpage>7778</lpage>
<pub-id pub-id-type="pmid">17548614</pub-id>
</element-citation>
</ref>
<ref id="bib29">
<label>29</label>
<element-citation publication-type="journal" id="sref29">
<person-group person-group-type="author">
<name>
<surname>Kalla</surname>
<given-names>R.</given-names>
</name>
<name>
<surname>Ventham</surname>
<given-names>N.T.</given-names>
</name>
<name>
<surname>Kennedy</surname>
<given-names>N.A.</given-names>
</name>
<name>
<surname>Quintana</surname>
<given-names>J.F.</given-names>
</name>
<name>
<surname>Nimmo</surname>
<given-names>E.R.</given-names>
</name>
<name>
<surname>Buck</surname>
<given-names>A.H.</given-names>
</name>
<name>
<surname>Satsangi</surname>
<given-names>J.</given-names>
</name>
</person-group>
<article-title>MicroRNAs: new players in IBD</article-title>
<source>Gut</source>
<volume>64</volume>
<year>2015</year>
<fpage>504</fpage>
<lpage>517</lpage>
<pub-id pub-id-type="pmid">25475103</pub-id>
</element-citation>
</ref>
<ref id="bib30">
<label>30</label>
<element-citation publication-type="journal" id="sref30">
<person-group person-group-type="author">
<name>
<surname>Fesler</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Zhai</surname>
<given-names>H.</given-names>
</name>
<name>
<surname>Ju</surname>
<given-names>J.</given-names>
</name>
</person-group>
<article-title>miR-129 as a novel therapeutic target and biomarker in gastrointestinal cancer</article-title>
<source>OncoTargets Ther.</source>
<volume>7</volume>
<year>2014</year>
<fpage>1481</fpage>
<lpage>1485</lpage>
</element-citation>
</ref>
<ref id="bib31">
<label>31</label>
<element-citation publication-type="journal" id="sref31">
<person-group person-group-type="author">
<name>
<surname>Ya</surname>
<given-names>G.</given-names>
</name>
<name>
<surname>Wang</surname>
<given-names>H.</given-names>
</name>
<name>
<surname>Ma</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Hu</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Ma</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Hu</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Yu</surname>
<given-names>Y.</given-names>
</name>
</person-group>
<article-title>Serum miR-129 functions as a biomarker for colorectal cancer by targeting estrogen receptor (ER) β</article-title>
<source>Pharmazie</source>
<volume>72</volume>
<year>2017</year>
<fpage>107</fpage>
<lpage>112</lpage>
<pub-id pub-id-type="pmid">29441863</pub-id>
</element-citation>
</ref>
<ref id="bib32">
<label>32</label>
<element-citation publication-type="journal" id="sref32">
<person-group person-group-type="author">
<name>
<surname>Zhang</surname>
<given-names>P.F.</given-names>
</name>
<name>
<surname>Sheng</surname>
<given-names>L.L.</given-names>
</name>
<name>
<surname>Wang</surname>
<given-names>G.</given-names>
</name>
<name>
<surname>Tian</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Zhu</surname>
<given-names>L.Y.</given-names>
</name>
<name>
<surname>Zhang</surname>
<given-names>R.</given-names>
</name>
<name>
<surname>Zhang</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Zhu</surname>
<given-names>J.S.</given-names>
</name>
</person-group>
<article-title>miR-363 promotes proliferation and chemo-resistance of human gastric cancer via targeting of FBW7 ubiquitin ligase expression</article-title>
<source>Oncotarget</source>
<volume>7</volume>
<year>2016</year>
<fpage>35284</fpage>
<lpage>35292</lpage>
<pub-id pub-id-type="pmid">27167197</pub-id>
</element-citation>
</ref>
<ref id="bib33">
<label>33</label>
<element-citation publication-type="journal" id="sref33">
<person-group person-group-type="author">
<name>
<surname>Li</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Guo</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Liang</surname>
<given-names>X.</given-names>
</name>
<name>
<surname>Sun</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Wang</surname>
<given-names>G.</given-names>
</name>
<name>
<surname>De</surname>
<given-names>W.</given-names>
</name>
<name>
<surname>Wu</surname>
<given-names>W.</given-names>
</name>
</person-group>
<article-title>MicroRNA-223 functions as an oncogene in human gastric cancer by targeting FBXW7/hCdc4</article-title>
<source>J. Cancer Res. Clin. Oncol.</source>
<volume>138</volume>
<year>2012</year>
<fpage>763</fpage>
<lpage>774</lpage>
<pub-id pub-id-type="pmid">22270966</pub-id>
</element-citation>
</ref>
<ref id="bib34">
<label>34</label>
<element-citation publication-type="journal" id="sref34">
<person-group person-group-type="author">
<name>
<surname>Lerner</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Lundgren</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Akhoondi</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Jahn</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Ng</surname>
<given-names>H.F.</given-names>
</name>
<name>
<surname>Akbari Moqadam</surname>
<given-names>F.</given-names>
</name>
<name>
<surname>Oude Vrielink</surname>
<given-names>J.A.</given-names>
</name>
<name>
<surname>Agami</surname>
<given-names>R.</given-names>
</name>
<name>
<surname>Den Boer</surname>
<given-names>M.L.</given-names>
</name>
<name>
<surname>Grandér</surname>
<given-names>D.</given-names>
</name>
<name>
<surname>Sangfelt</surname>
<given-names>O.</given-names>
</name>
</person-group>
<article-title>MiRNA-27a controls FBW7/hCDC4-dependent cyclin E degradation and cell cycle progression</article-title>
<source>Cell Cycle</source>
<volume>10</volume>
<year>2011</year>
<fpage>2172</fpage>
<lpage>2183</lpage>
<pub-id pub-id-type="pmid">21597324</pub-id>
</element-citation>
</ref>
<ref id="bib35">
<label>35</label>
<element-citation publication-type="journal" id="sref35">
<person-group person-group-type="author">
<name>
<surname>Li</surname>
<given-names>X.Q.</given-names>
</name>
<name>
<surname>Chen</surname>
<given-names>F.S.</given-names>
</name>
<name>
<surname>Tan</surname>
<given-names>W.F.</given-names>
</name>
<name>
<surname>Fang</surname>
<given-names>B.</given-names>
</name>
<name>
<surname>Zhang</surname>
<given-names>Z.L.</given-names>
</name>
<name>
<surname>Ma</surname>
<given-names>H.</given-names>
</name>
</person-group>
<article-title>Elevated microRNA-129-5p level ameliorates neuroinflammation and blood-spinal cord barrier damage after ischemia-reperfusion by inhibiting HMGB1 and the TLR3-cytokine pathway</article-title>
<source>J. Neuroinflammation</source>
<volume>14</volume>
<year>2017</year>
<fpage>205</fpage>
<pub-id pub-id-type="pmid">29061187</pub-id>
</element-citation>
</ref>
<ref id="bib36">
<label>36</label>
<element-citation publication-type="journal" id="sref36">
<person-group person-group-type="author">
<name>
<surname>Silverberg</surname>
<given-names>M.S.</given-names>
</name>
<name>
<surname>Satsangi</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Ahmad</surname>
<given-names>T.</given-names>
</name>
<name>
<surname>Arnott</surname>
<given-names>I.D.</given-names>
</name>
<name>
<surname>Bernstein</surname>
<given-names>C.N.</given-names>
</name>
<name>
<surname>Brant</surname>
<given-names>S.R.</given-names>
</name>
<name>
<surname>Caprilli</surname>
<given-names>R.</given-names>
</name>
<name>
<surname>Colombel</surname>
<given-names>J.F.</given-names>
</name>
<name>
<surname>Gasche</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>Geboes</surname>
<given-names>K.</given-names>
</name>
</person-group>
<article-title>Toward an integrated clinical, molecular and serological classification of inflammatory bowel disease: report of a Working Party of the 2005 Montreal World Congress of Gastroenterology</article-title>
<source>Can. J. Gastroenterol.</source>
<volume>19</volume>
<issue>Suppl A</issue>
<year>2005</year>
<fpage>5A</fpage>
<lpage>36A</lpage>
</element-citation>
</ref>
<ref id="bib37">
<label>37</label>
<element-citation publication-type="journal" id="sref37">
<person-group person-group-type="author">
<name>
<surname>Dignass</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Eliakim</surname>
<given-names>R.</given-names>
</name>
<name>
<surname>Magro</surname>
<given-names>F.</given-names>
</name>
<name>
<surname>Maaser</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>Chowers</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Geboes</surname>
<given-names>K.</given-names>
</name>
<name>
<surname>Mantzaris</surname>
<given-names>G.</given-names>
</name>
<name>
<surname>Reinisch</surname>
<given-names>W.</given-names>
</name>
<name>
<surname>Colombel</surname>
<given-names>J.F.</given-names>
</name>
<name>
<surname>Vermeire</surname>
<given-names>S.</given-names>
</name>
</person-group>
<article-title>Second European evidence-based consensus on the diagnosis and management of ulcerative colitis part 1: definitions and diagnosis</article-title>
<source>J. Crohn’s Colitis</source>
<volume>6</volume>
<year>2012</year>
<fpage>965</fpage>
<lpage>990</lpage>
<pub-id pub-id-type="pmid">23040452</pub-id>
</element-citation>
</ref>
<ref id="bib38">
<label>38</label>
<element-citation publication-type="journal" id="sref38">
<person-group person-group-type="author">
<name>
<surname>Huang</surname>
<given-names>L.Y.</given-names>
</name>
<name>
<surname>He</surname>
<given-names>Q.</given-names>
</name>
<name>
<surname>Liang</surname>
<given-names>S.J.</given-names>
</name>
<name>
<surname>Su</surname>
<given-names>Y.X.</given-names>
</name>
<name>
<surname>Xiong</surname>
<given-names>L.X.</given-names>
</name>
<name>
<surname>Wu</surname>
<given-names>Q.Q.</given-names>
</name>
<name>
<surname>Wu</surname>
<given-names>Q.Y.</given-names>
</name>
<name>
<surname>Tao</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Wang</surname>
<given-names>J.P.</given-names>
</name>
<name>
<surname>Tang</surname>
<given-names>Y.B.</given-names>
</name>
</person-group>
<article-title>ClC-3 chloride channel/antiporter defect contributes to inflammatory bowel disease in humans and mice</article-title>
<source>Gut</source>
<volume>63</volume>
<year>2014</year>
<fpage>1587</fpage>
<lpage>1595</lpage>
<pub-id pub-id-type="pmid">24440986</pub-id>
</element-citation>
</ref>
<ref id="bib39">
<label>39</label>
<element-citation publication-type="journal" id="sref39">
<person-group person-group-type="author">
<name>
<surname>Eckle</surname>
<given-names>T.</given-names>
</name>
<name>
<surname>Grenz</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Laucher</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Eltzschig</surname>
<given-names>H.K.</given-names>
</name>
</person-group>
<article-title>A2B adenosine receptor signaling attenuates acute lung injury by enhancing alveolar fluid clearance in mice</article-title>
<source>J. Clin. Invest.</source>
<volume>118</volume>
<year>2008</year>
<fpage>3301</fpage>
<lpage>3315</lpage>
<pub-id pub-id-type="pmid">18787641</pub-id>
</element-citation>
</ref>
</ref-list>
<sec id="appsec2" sec-type="supplementary-material">
<title>Supplemental Information</title>
<p id="p0135">
<supplementary-material content-type="local-data" id="mmc1">
<caption>
<title>Document S1. Table S1 and Figures S1 and S2</title>
</caption>
<media xlink:href="mmc1.pdf"></media>
</supplementary-material>
<supplementary-material content-type="local-data" id="mmc2">
<caption>
<title>Document S2. Article plus Supplemental Information</title>
</caption>
<media xlink:href="mmc2.pdf"></media>
</supplementary-material>
</p>
</sec>
<ack id="ack0010">
<title>Acknowledgments</title>
<p>This work was supported by the
<funding-source id="gs1">National Natural Science Foundation of China</funding-source>
(81602050), and
<funding-source id="gs2">Wujieping Medical Foundation</funding-source>
(320.6750.16018).</p>
</ack>
<fn-group>
<fn id="appsec1" fn-type="supplementary-material">
<p id="p0130">Supplemental Information can be found online at
<ext-link ext-link-type="uri" xlink:href="https://doi.org/10.1016/j.omtn.2019.10.048" id="intref0010">https://doi.org/10.1016/j.omtn.2019.10.048</ext-link>
.</p>
</fn>
</fn-group>
</back>
</pmc>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/ChloroquineV1/Data/Pmc/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000711 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Pmc/Corpus/biblio.hfd -nk 000711 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    ChloroquineV1
   |flux=    Pmc
   |étape=   Corpus
   |type=    RBID
   |clé=     PMC:6965515
   |texte=   miRNA-129/FBW7/NF-κB, a Novel Regulatory Pathway in Inflammatory Bowel Disease
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Pmc/Corpus/RBID.i   -Sk "pubmed:31945730" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Pmc/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a ChloroquineV1 

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Wed Mar 25 22:43:59 2020. Site generation: Sun Jan 31 12:44:45 2021