Serveur d'exploration Chloroquine

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Studies of Non-Protective Autophagy Provide Evidence that Recovery from Therapy-Induced Senescence is Independent of Early Autophagy

Identifieur interne : 000628 ( Pmc/Corpus ); précédent : 000627; suivant : 000629

Studies of Non-Protective Autophagy Provide Evidence that Recovery from Therapy-Induced Senescence is Independent of Early Autophagy

Auteurs : Tareq Saleh ; Liliya Tyutyunyk-Massey ; Nipa H. Patel ; Emmanuel K. Cudjoe ; Moureq Alotaibi ; David A. Gewirtz

Source :

RBID : PMC:7073138

Abstract

Autophagy and senescence, predominant responses that may dictate cell fate after chemotherapy or radiation, often occur in tandem. Cells in states of senescence and/or autophagy are frequently growth arrested. We have previously reported that tumor cells induced into senescence by therapy can re-emerge from the growth-arrested state, a phenomenon termed proliferative recovery. The current work shows that, while tumor cells collaterally induced into senescence and autophagy by etoposide, doxorubicin, or radiation undergo proliferative recovery, neither pharmacological nor genetic inhibition of early autophagy alter the extent of senescence or the ability of cells to recover from senescence. These findings confirm and extend our previous observations, essentially dissociating senescence from autophagy, and further indicate that re-emergence from senescence does not appear to be facilitated by or dependent on autophagy. Our results also provide additional evidence for the promotion of the non-protective form of autophagy by both chemotherapeutic drugs and radiation, which may complicate current efforts to inhibit autophagy for therapeutic benefit.


Url:
DOI: 10.3390/ijms21041427
PubMed: 32093197
PubMed Central: 7073138

Links to Exploration step

PMC:7073138

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Studies of Non-Protective Autophagy Provide Evidence that Recovery from Therapy-Induced Senescence is Independent of Early Autophagy</title>
<author>
<name sortKey="Saleh, Tareq" sort="Saleh, Tareq" uniqKey="Saleh T" first="Tareq" last="Saleh">Tareq Saleh</name>
<affiliation>
<nlm:aff id="af1-ijms-21-01427">Department of Basic Medical Sciences, Faculty of Medicine, The Hashemite University, Zarqa 13133, Jordan;
<email>tareq@hu.edu.jo</email>
</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="af2-ijms-21-01427">Massey Cancer Center, Goodwin Research Laboratories, Virginia Commonwealth University, Richmond, VA 23298, USA;
<email>tyutyunykmals@vcu.edu</email>
(L.T.-M.);
<email>patelnh3@vcu.edu</email>
(N.H.P.)</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Tyutyunyk Massey, Liliya" sort="Tyutyunyk Massey, Liliya" uniqKey="Tyutyunyk Massey L" first="Liliya" last="Tyutyunyk-Massey">Liliya Tyutyunyk-Massey</name>
<affiliation>
<nlm:aff id="af2-ijms-21-01427">Massey Cancer Center, Goodwin Research Laboratories, Virginia Commonwealth University, Richmond, VA 23298, USA;
<email>tyutyunykmals@vcu.edu</email>
(L.T.-M.);
<email>patelnh3@vcu.edu</email>
(N.H.P.)</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="af3-ijms-21-01427">Department of Pharmacology and Toxicology and Medicine, Virginia Commonwealth University, Richmond, VA 23298, USA</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="H Patel, Nipa" sort="H Patel, Nipa" uniqKey="H Patel N" first="Nipa" last="H. Patel">Nipa H. Patel</name>
<affiliation>
<nlm:aff id="af2-ijms-21-01427">Massey Cancer Center, Goodwin Research Laboratories, Virginia Commonwealth University, Richmond, VA 23298, USA;
<email>tyutyunykmals@vcu.edu</email>
(L.T.-M.);
<email>patelnh3@vcu.edu</email>
(N.H.P.)</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="af3-ijms-21-01427">Department of Pharmacology and Toxicology and Medicine, Virginia Commonwealth University, Richmond, VA 23298, USA</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="K Cudjoe, Emmanuel" sort="K Cudjoe, Emmanuel" uniqKey="K Cudjoe E" first="Emmanuel" last="K. Cudjoe">Emmanuel K. Cudjoe</name>
<affiliation>
<nlm:aff id="af4-ijms-21-01427">Department of Pharmacotherapy & Outcomes Science, Virginia Commonwealth University, Richmond, VA 23298, USA;
<email>cudjoeek@vcu.edu</email>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Alotaibi, Moureq" sort="Alotaibi, Moureq" uniqKey="Alotaibi M" first="Moureq" last="Alotaibi">Moureq Alotaibi</name>
<affiliation>
<nlm:aff id="af5-ijms-21-01427">College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia;
<email>mralotaibi@ksu.edu.sa</email>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="A Gewirtz, David" sort="A Gewirtz, David" uniqKey="A Gewirtz D" first="David" last="A. Gewirtz">David A. Gewirtz</name>
<affiliation>
<nlm:aff id="af2-ijms-21-01427">Massey Cancer Center, Goodwin Research Laboratories, Virginia Commonwealth University, Richmond, VA 23298, USA;
<email>tyutyunykmals@vcu.edu</email>
(L.T.-M.);
<email>patelnh3@vcu.edu</email>
(N.H.P.)</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="af3-ijms-21-01427">Department of Pharmacology and Toxicology and Medicine, Virginia Commonwealth University, Richmond, VA 23298, USA</nlm:aff>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PMC</idno>
<idno type="pmid">32093197</idno>
<idno type="pmc">7073138</idno>
<idno type="url">http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7073138</idno>
<idno type="RBID">PMC:7073138</idno>
<idno type="doi">10.3390/ijms21041427</idno>
<date when="2020">2020</date>
<idno type="wicri:Area/Pmc/Corpus">000628</idno>
<idno type="wicri:explorRef" wicri:stream="Pmc" wicri:step="Corpus" wicri:corpus="PMC">000628</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a" type="main">Studies of Non-Protective Autophagy Provide Evidence that Recovery from Therapy-Induced Senescence is Independent of Early Autophagy</title>
<author>
<name sortKey="Saleh, Tareq" sort="Saleh, Tareq" uniqKey="Saleh T" first="Tareq" last="Saleh">Tareq Saleh</name>
<affiliation>
<nlm:aff id="af1-ijms-21-01427">Department of Basic Medical Sciences, Faculty of Medicine, The Hashemite University, Zarqa 13133, Jordan;
<email>tareq@hu.edu.jo</email>
</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="af2-ijms-21-01427">Massey Cancer Center, Goodwin Research Laboratories, Virginia Commonwealth University, Richmond, VA 23298, USA;
<email>tyutyunykmals@vcu.edu</email>
(L.T.-M.);
<email>patelnh3@vcu.edu</email>
(N.H.P.)</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Tyutyunyk Massey, Liliya" sort="Tyutyunyk Massey, Liliya" uniqKey="Tyutyunyk Massey L" first="Liliya" last="Tyutyunyk-Massey">Liliya Tyutyunyk-Massey</name>
<affiliation>
<nlm:aff id="af2-ijms-21-01427">Massey Cancer Center, Goodwin Research Laboratories, Virginia Commonwealth University, Richmond, VA 23298, USA;
<email>tyutyunykmals@vcu.edu</email>
(L.T.-M.);
<email>patelnh3@vcu.edu</email>
(N.H.P.)</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="af3-ijms-21-01427">Department of Pharmacology and Toxicology and Medicine, Virginia Commonwealth University, Richmond, VA 23298, USA</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="H Patel, Nipa" sort="H Patel, Nipa" uniqKey="H Patel N" first="Nipa" last="H. Patel">Nipa H. Patel</name>
<affiliation>
<nlm:aff id="af2-ijms-21-01427">Massey Cancer Center, Goodwin Research Laboratories, Virginia Commonwealth University, Richmond, VA 23298, USA;
<email>tyutyunykmals@vcu.edu</email>
(L.T.-M.);
<email>patelnh3@vcu.edu</email>
(N.H.P.)</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="af3-ijms-21-01427">Department of Pharmacology and Toxicology and Medicine, Virginia Commonwealth University, Richmond, VA 23298, USA</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="K Cudjoe, Emmanuel" sort="K Cudjoe, Emmanuel" uniqKey="K Cudjoe E" first="Emmanuel" last="K. Cudjoe">Emmanuel K. Cudjoe</name>
<affiliation>
<nlm:aff id="af4-ijms-21-01427">Department of Pharmacotherapy & Outcomes Science, Virginia Commonwealth University, Richmond, VA 23298, USA;
<email>cudjoeek@vcu.edu</email>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Alotaibi, Moureq" sort="Alotaibi, Moureq" uniqKey="Alotaibi M" first="Moureq" last="Alotaibi">Moureq Alotaibi</name>
<affiliation>
<nlm:aff id="af5-ijms-21-01427">College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia;
<email>mralotaibi@ksu.edu.sa</email>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="A Gewirtz, David" sort="A Gewirtz, David" uniqKey="A Gewirtz D" first="David" last="A. Gewirtz">David A. Gewirtz</name>
<affiliation>
<nlm:aff id="af2-ijms-21-01427">Massey Cancer Center, Goodwin Research Laboratories, Virginia Commonwealth University, Richmond, VA 23298, USA;
<email>tyutyunykmals@vcu.edu</email>
(L.T.-M.);
<email>patelnh3@vcu.edu</email>
(N.H.P.)</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="af3-ijms-21-01427">Department of Pharmacology and Toxicology and Medicine, Virginia Commonwealth University, Richmond, VA 23298, USA</nlm:aff>
</affiliation>
</author>
</analytic>
<series>
<title level="j">International Journal of Molecular Sciences</title>
<idno type="eISSN">1422-0067</idno>
<imprint>
<date when="2020">2020</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<p>Autophagy and senescence, predominant responses that may dictate cell fate after chemotherapy or radiation, often occur in tandem. Cells in states of senescence and/or autophagy are frequently growth arrested. We have previously reported that tumor cells induced into senescence by therapy can re-emerge from the growth-arrested state, a phenomenon termed proliferative recovery. The current work shows that, while tumor cells collaterally induced into senescence and autophagy by etoposide, doxorubicin, or radiation undergo proliferative recovery, neither pharmacological nor genetic inhibition of early autophagy alter the extent of senescence or the ability of cells to recover from senescence. These findings confirm and extend our previous observations, essentially dissociating senescence from autophagy, and further indicate that re-emergence from senescence does not appear to be facilitated by or dependent on autophagy. Our results also provide additional evidence for the promotion of the non-protective form of autophagy by both chemotherapeutic drugs and radiation, which may complicate current efforts to inhibit autophagy for therapeutic benefit.</p>
</div>
</front>
<back>
<div1 type="bibliography">
<listBibl>
<biblStruct>
<analytic>
<author>
<name sortKey="Ewald, J A" uniqKey="Ewald J">J.A. Ewald</name>
</author>
<author>
<name sortKey="Desotelle, J A" uniqKey="Desotelle J">J.A. Desotelle</name>
</author>
<author>
<name sortKey="Wilding, G" uniqKey="Wilding G">G. Wilding</name>
</author>
<author>
<name sortKey="Jarrard, D F" uniqKey="Jarrard D">D.F. Jarrard</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Gewirtz, D A" uniqKey="Gewirtz D">D.A. Gewirtz</name>
</author>
<author>
<name sortKey="Holt, S E" uniqKey="Holt S">S.E. Holt</name>
</author>
<author>
<name sortKey="Elmore, L W" uniqKey="Elmore L">L.W. Elmore</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Hernandez Segura, A" uniqKey="Hernandez Segura A">A. Hernandez-Segura</name>
</author>
<author>
<name sortKey="Nehme, J" uniqKey="Nehme J">J. Nehme</name>
</author>
<author>
<name sortKey="Demaria, M" uniqKey="Demaria M">M. Demaria</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Lee, S" uniqKey="Lee S">S. Lee</name>
</author>
<author>
<name sortKey="Lee, J S" uniqKey="Lee J">J.S. Lee</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Chakradeo, S" uniqKey="Chakradeo S">S. Chakradeo</name>
</author>
<author>
<name sortKey="Elmore, L W" uniqKey="Elmore L">L.W. Elmore</name>
</author>
<author>
<name sortKey="Gewirtz, D A" uniqKey="Gewirtz D">D.A. Gewirtz</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Saleh, T" uniqKey="Saleh T">T. Saleh</name>
</author>
<author>
<name sortKey="Tyutyunyk Massey, L" uniqKey="Tyutyunyk Massey L">L. Tyutyunyk-Massey</name>
</author>
<author>
<name sortKey="Murray, G F" uniqKey="Murray G">G.F. Murray</name>
</author>
<author>
<name sortKey="Alotaibi, M R" uniqKey="Alotaibi M">M.R. Alotaibi</name>
</author>
<author>
<name sortKey="Kawale, A S" uniqKey="Kawale A">A.S. Kawale</name>
</author>
<author>
<name sortKey="Elsayed, Z" uniqKey="Elsayed Z">Z. Elsayed</name>
</author>
<author>
<name sortKey="Henderson, S C" uniqKey="Henderson S">S.C. Henderson</name>
</author>
<author>
<name sortKey="Yakovlev, V" uniqKey="Yakovlev V">V. Yakovlev</name>
</author>
<author>
<name sortKey="Elmore, L W" uniqKey="Elmore L">L.W. Elmore</name>
</author>
<author>
<name sortKey="Toor, A" uniqKey="Toor A">A. Toor</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Vijayaraghavan, S" uniqKey="Vijayaraghavan S">S. Vijayaraghavan</name>
</author>
<author>
<name sortKey="Karakas, C" uniqKey="Karakas C">C. Karakas</name>
</author>
<author>
<name sortKey="Doostan, I" uniqKey="Doostan I">I. Doostan</name>
</author>
<author>
<name sortKey="Chen, X" uniqKey="Chen X">X. Chen</name>
</author>
<author>
<name sortKey="Bui, T" uniqKey="Bui T">T. Bui</name>
</author>
<author>
<name sortKey="Yi, M" uniqKey="Yi M">M. Yi</name>
</author>
<author>
<name sortKey="Raghavendra, A S" uniqKey="Raghavendra A">A.S. Raghavendra</name>
</author>
<author>
<name sortKey="Zhao, Y" uniqKey="Zhao Y">Y. Zhao</name>
</author>
<author>
<name sortKey="Bashour, S I" uniqKey="Bashour S">S.I. Bashour</name>
</author>
<author>
<name sortKey="Ibrahim, N K" uniqKey="Ibrahim N">N.K. Ibrahim</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Milanovic, M" uniqKey="Milanovic M">M. Milanovic</name>
</author>
<author>
<name sortKey="Fan, D N Y" uniqKey="Fan D">D.N.Y. Fan</name>
</author>
<author>
<name sortKey="Belenki, D" uniqKey="Belenki D">D. Belenki</name>
</author>
<author>
<name sortKey="D Britz, J H M" uniqKey="D Britz J">J.H.M. Däbritz</name>
</author>
<author>
<name sortKey="Zhao, Z" uniqKey="Zhao Z">Z. Zhao</name>
</author>
<author>
<name sortKey="Yu, Y" uniqKey="Yu Y">Y. Yu</name>
</author>
<author>
<name sortKey="Dorr, J R" uniqKey="Dorr J">J.R. Dörr</name>
</author>
<author>
<name sortKey="Dimitrova, L" uniqKey="Dimitrova L">L. Dimitrova</name>
</author>
<author>
<name sortKey="Lenze, D" uniqKey="Lenze D">D. Lenze</name>
</author>
<author>
<name sortKey="Monteiro Barbosa, I A" uniqKey="Monteiro Barbosa I">I.A. Monteiro Barbosa</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Demaria, M" uniqKey="Demaria M">M. Demaria</name>
</author>
<author>
<name sortKey="Leary, M N O" uniqKey="Leary M">M.N.O. Leary</name>
</author>
<author>
<name sortKey="Chang, J" uniqKey="Chang J">J. Chang</name>
</author>
<author>
<name sortKey="Shao, L" uniqKey="Shao L">L. Shao</name>
</author>
<author>
<name sortKey="Liu, S" uniqKey="Liu S">S. Liu</name>
</author>
<author>
<name sortKey="Alimirah, F" uniqKey="Alimirah F">F. Alimirah</name>
</author>
<author>
<name sortKey="Koenig, K" uniqKey="Koenig K">K. Koenig</name>
</author>
<author>
<name sortKey="Le, C" uniqKey="Le C">C. Le</name>
</author>
<author>
<name sortKey="Mitin, N" uniqKey="Mitin N">N. Mitin</name>
</author>
<author>
<name sortKey="Deal, A M" uniqKey="Deal A">A.M. Deal</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Lecot, P" uniqKey="Lecot P">P. Lecot</name>
</author>
<author>
<name sortKey="Alimirah, F" uniqKey="Alimirah F">F. Alimirah</name>
</author>
<author>
<name sortKey="Desprez, P" uniqKey="Desprez P">P. Desprez</name>
</author>
<author>
<name sortKey="Campisi, J" uniqKey="Campisi J">J. Campisi</name>
</author>
<author>
<name sortKey="Wiley, C" uniqKey="Wiley C">C. Wiley</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Saleh, T" uniqKey="Saleh T">T. Saleh</name>
</author>
<author>
<name sortKey="Tyutyunyk Massey, L" uniqKey="Tyutyunyk Massey L">L. Tyutyunyk-Massey</name>
</author>
<author>
<name sortKey="Gewirtz, D A" uniqKey="Gewirtz D">D.A. Gewirtz</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Sosa, M S" uniqKey="Sosa M">M.S. Sosa</name>
</author>
<author>
<name sortKey="Bragado, P" uniqKey="Bragado P">P. Bragado</name>
</author>
<author>
<name sortKey="Julio, A" uniqKey="Julio A">A. Julio</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Thorburn, A" uniqKey="Thorburn A">A. Thorburn</name>
</author>
<author>
<name sortKey="Thamm, D H" uniqKey="Thamm D">D.H. Thamm</name>
</author>
<author>
<name sortKey="Gustafson, D L" uniqKey="Gustafson D">D.L. Gustafson</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Gewirtz, D A" uniqKey="Gewirtz D">D.A. Gewirtz</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Goehe, R W" uniqKey="Goehe R">R.W. Goehe</name>
</author>
<author>
<name sortKey="Di, X" uniqKey="Di X">X. Di</name>
</author>
<author>
<name sortKey="Sharma, K" uniqKey="Sharma K">K. Sharma</name>
</author>
<author>
<name sortKey="Bristol, M L" uniqKey="Bristol M">M.L. Bristol</name>
</author>
<author>
<name sortKey="Henderson, S C" uniqKey="Henderson S">S.C. Henderson</name>
</author>
<author>
<name sortKey="Valerie, K" uniqKey="Valerie K">K. Valerie</name>
</author>
<author>
<name sortKey="Rodier, F" uniqKey="Rodier F">F. Rodier</name>
</author>
<author>
<name sortKey="Davalos, A R" uniqKey="Davalos A">A.R. Davalos</name>
</author>
<author>
<name sortKey="Gewirtz, D A" uniqKey="Gewirtz D">D.A. Gewirtz</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Sharma, K" uniqKey="Sharma K">K. Sharma</name>
</author>
<author>
<name sortKey="Goehe, R W" uniqKey="Goehe R">R.W. Goehe</name>
</author>
<author>
<name sortKey="Di, X" uniqKey="Di X">X. Di</name>
</author>
<author>
<name sortKey="Hicks, M A" uniqKey="Hicks M">M.A. Hicks</name>
</author>
<author>
<name sortKey="Torti, S V" uniqKey="Torti S">S.V. Torti</name>
</author>
<author>
<name sortKey="Torti, F M" uniqKey="Torti F">F.M. Torti</name>
</author>
<author>
<name sortKey="Harada, H" uniqKey="Harada H">H. Harada</name>
</author>
<author>
<name sortKey="Gewirtz, D A" uniqKey="Gewirtz D">D.A. Gewirtz</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Alotaibi, M" uniqKey="Alotaibi M">M. Alotaibi</name>
</author>
<author>
<name sortKey="Sharma, K" uniqKey="Sharma K">K. Sharma</name>
</author>
<author>
<name sortKey="Saleh, T" uniqKey="Saleh T">T. Saleh</name>
</author>
<author>
<name sortKey="Povirk, L F" uniqKey="Povirk L">L.F. Povirk</name>
</author>
<author>
<name sortKey="Hendrickson, E A" uniqKey="Hendrickson E">E.A. Hendrickson</name>
</author>
<author>
<name sortKey="Gewirtz, D A" uniqKey="Gewirtz D">D.A. Gewirtz</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Mar, F A" uniqKey="Mar F">F.A. Mar</name>
</author>
<author>
<name sortKey="Debnath, J" uniqKey="Debnath J">J. Debnath</name>
</author>
<author>
<name sortKey="Stohr, B A" uniqKey="Stohr B">B.A. Stohr</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kang, C" uniqKey="Kang C">C. Kang</name>
</author>
<author>
<name sortKey="Elledge, S J" uniqKey="Elledge S">S.J. Elledge</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="So, K S" uniqKey="So K">K.S. So</name>
</author>
<author>
<name sortKey="Kim, C H" uniqKey="Kim C">C.H. Kim</name>
</author>
<author>
<name sortKey="Rho, J K" uniqKey="Rho J">J.K. Rho</name>
</author>
<author>
<name sortKey="Kim, S Y" uniqKey="Kim S">S.Y. Kim</name>
</author>
<author>
<name sortKey="Choi, Y J" uniqKey="Choi Y">Y.J. Choi</name>
</author>
<author>
<name sortKey="Song, J S" uniqKey="Song J">J.S. Song</name>
</author>
<author>
<name sortKey="Kim, W S" uniqKey="Kim W">W.S. Kim</name>
</author>
<author>
<name sortKey="Choi, C M" uniqKey="Choi C">C.M. Choi</name>
</author>
<author>
<name sortKey="Chun, Y J" uniqKey="Chun Y">Y.J. Chun</name>
</author>
<author>
<name sortKey="Lee, J C" uniqKey="Lee J">J.C. Lee</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Sui, X" uniqKey="Sui X">X. Sui</name>
</author>
<author>
<name sortKey="Chen, R" uniqKey="Chen R">R. Chen</name>
</author>
<author>
<name sortKey="Wang, Z" uniqKey="Wang Z">Z. Wang</name>
</author>
<author>
<name sortKey="Huang, Z" uniqKey="Huang Z">Z. Huang</name>
</author>
<author>
<name sortKey="Kong, N" uniqKey="Kong N">N. Kong</name>
</author>
<author>
<name sortKey="Zhang, M" uniqKey="Zhang M">M. Zhang</name>
</author>
<author>
<name sortKey="Han, W" uniqKey="Han W">W. Han</name>
</author>
<author>
<name sortKey="Lou, F" uniqKey="Lou F">F. Lou</name>
</author>
<author>
<name sortKey="Yang, J" uniqKey="Yang J">J. Yang</name>
</author>
<author>
<name sortKey="Zhang, Q" uniqKey="Zhang Q">Q. Zhang</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Duffy, A" uniqKey="Duffy A">A. Duffy</name>
</author>
<author>
<name sortKey="Le, J" uniqKey="Le J">J. Le</name>
</author>
<author>
<name sortKey="Sausville, E" uniqKey="Sausville E">E. Sausville</name>
</author>
<author>
<name sortKey="Emadi, A" uniqKey="Emadi A">A. Emadi</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Gewirtz, D A" uniqKey="Gewirtz D">D.A. Gewirtz</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Debacq Chainiaux, F" uniqKey="Debacq Chainiaux F">F. Debacq-Chainiaux</name>
</author>
<author>
<name sortKey="Erusalimsky, J D" uniqKey="Erusalimsky J">J.D. Erusalimsky</name>
</author>
<author>
<name sortKey="Campisi, J" uniqKey="Campisi J">J. Campisi</name>
</author>
<author>
<name sortKey="Toussaint, O" uniqKey="Toussaint O">O. Toussaint</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kaminskyy, V O" uniqKey="Kaminskyy V">V.O. Kaminskyy</name>
</author>
<author>
<name sortKey="Piskunova, T" uniqKey="Piskunova T">T. Piskunova</name>
</author>
<author>
<name sortKey="Zborovskaya, I B" uniqKey="Zborovskaya I">I.B. Zborovskaya</name>
</author>
<author>
<name sortKey="Tchevkina, E M" uniqKey="Tchevkina E">E.M. Tchevkina</name>
</author>
<author>
<name sortKey="Zhivotovsky, B" uniqKey="Zhivotovsky B">B. Zhivotovsky</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Boya, P" uniqKey="Boya P">P. Boya</name>
</author>
<author>
<name sortKey="Gonzalez Polo, R A" uniqKey="Gonzalez Polo R">R.A. Gonzalez-Polo</name>
</author>
<author>
<name sortKey="Casares, N" uniqKey="Casares N">N. Casares</name>
</author>
<author>
<name sortKey="Perfettini, J L" uniqKey="Perfettini J">J.L. Perfettini</name>
</author>
<author>
<name sortKey="Dessen, P" uniqKey="Dessen P">P. Dessen</name>
</author>
<author>
<name sortKey="Larochette, N" uniqKey="Larochette N">N. Larochette</name>
</author>
<author>
<name sortKey="Metivier, D" uniqKey="Metivier D">D. Métivier</name>
</author>
<author>
<name sortKey="Meley, D" uniqKey="Meley D">D. Meley</name>
</author>
<author>
<name sortKey="Souquere, S" uniqKey="Souquere S">S. Souquere</name>
</author>
<author>
<name sortKey="Yoshimori, T" uniqKey="Yoshimori T">T. Yoshimori</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Sharma, N" uniqKey="Sharma N">N. Sharma</name>
</author>
<author>
<name sortKey="Thomas, S" uniqKey="Thomas S">S. Thomas</name>
</author>
<author>
<name sortKey="Golden, E B" uniqKey="Golden E">E.B. Golden</name>
</author>
<author>
<name sortKey="Hofman, F M" uniqKey="Hofman F">F.M. Hofman</name>
</author>
<author>
<name sortKey="Chen, T C" uniqKey="Chen T">T.C. Chen</name>
</author>
<author>
<name sortKey="Petasis, N A" uniqKey="Petasis N">N.A. Petasis</name>
</author>
<author>
<name sortKey="Schonthal, A H" uniqKey="Schonthal A">A.H. Schönthal</name>
</author>
<author>
<name sortKey="Louie, S G" uniqKey="Louie S">S.G. Louie</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ren, J H H" uniqKey="Ren J">J.-H.H. Ren</name>
</author>
<author>
<name sortKey="He, W S S" uniqKey="He W">W.-S.S. He</name>
</author>
<author>
<name sortKey="Nong, L" uniqKey="Nong L">L. Nong</name>
</author>
<author>
<name sortKey="Zhu, Q Y Y" uniqKey="Zhu Q">Q.-Y.Y. Zhu</name>
</author>
<author>
<name sortKey="Hu, K" uniqKey="Hu K">K. Hu</name>
</author>
<author>
<name sortKey="Zhang, R G G" uniqKey="Zhang R">R.-G.G. Zhang</name>
</author>
<author>
<name sortKey="Huang, L L L" uniqKey="Huang L">L.-L.L. Huang</name>
</author>
<author>
<name sortKey="Zhu, F" uniqKey="Zhu F">F. Zhu</name>
</author>
<author>
<name sortKey="Wu, G" uniqKey="Wu G">G. Wu</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ji, C" uniqKey="Ji C">C. Ji</name>
</author>
<author>
<name sortKey="Zhang, L" uniqKey="Zhang L">L. Zhang</name>
</author>
<author>
<name sortKey="Cheng, Y" uniqKey="Cheng Y">Y. Cheng</name>
</author>
<author>
<name sortKey="Patel, R" uniqKey="Patel R">R. Patel</name>
</author>
<author>
<name sortKey="Wu, H" uniqKey="Wu H">H. Wu</name>
</author>
<author>
<name sortKey="Zhang, Y" uniqKey="Zhang Y">Y. Zhang</name>
</author>
<author>
<name sortKey="Wang, M" uniqKey="Wang M">M. Wang</name>
</author>
<author>
<name sortKey="Ji, S" uniqKey="Ji S">S. Ji</name>
</author>
<author>
<name sortKey="Belani, C P" uniqKey="Belani C">C.P. Belani</name>
</author>
<author>
<name sortKey="Yang, J M" uniqKey="Yang J">J.-M. Yang</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Frohlich, E" uniqKey="Frohlich E">E. Fröhlich</name>
</author>
<author>
<name sortKey="Meindl, C" uniqKey="Meindl C">C. Meindl</name>
</author>
<author>
<name sortKey="Roblegg, E" uniqKey="Roblegg E">E. Roblegg</name>
</author>
<author>
<name sortKey="Ebner, B" uniqKey="Ebner B">B. Ebner</name>
</author>
<author>
<name sortKey="Absenger, M" uniqKey="Absenger M">M. Absenger</name>
</author>
<author>
<name sortKey="Pieber, T R" uniqKey="Pieber T">T.R. Pieber</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Wang, X" uniqKey="Wang X">X. Wang</name>
</author>
<author>
<name sortKey="Zhang, X" uniqKey="Zhang X">X. Zhang</name>
</author>
<author>
<name sortKey="Chu, E S H" uniqKey="Chu E">E.S.H. Chu</name>
</author>
<author>
<name sortKey="Chen, X" uniqKey="Chen X">X. Chen</name>
</author>
<author>
<name sortKey="Kang, W" uniqKey="Kang W">W. Kang</name>
</author>
<author>
<name sortKey="Wu, F" uniqKey="Wu F">F. Wu</name>
</author>
<author>
<name sortKey="To, K F" uniqKey="To K">K.F. To</name>
</author>
<author>
<name sortKey="Wong, V W S" uniqKey="Wong V">V.W.S. Wong</name>
</author>
<author>
<name sortKey="Chan, H L Y" uniqKey="Chan H">H.L.Y. Chan</name>
</author>
<author>
<name sortKey="Chan, M T V" uniqKey="Chan M">M.T.V. Chan</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Bristol, M L" uniqKey="Bristol M">M.L. Bristol</name>
</author>
<author>
<name sortKey="Emery, S M" uniqKey="Emery S">S.M. Emery</name>
</author>
<author>
<name sortKey="Maycotte, P" uniqKey="Maycotte P">P. Maycotte</name>
</author>
<author>
<name sortKey="Thorburn, A" uniqKey="Thorburn A">A. Thorburn</name>
</author>
<author>
<name sortKey="Chakradeo, S" uniqKey="Chakradeo S">S. Chakradeo</name>
</author>
<author>
<name sortKey="Gewirtz, D A" uniqKey="Gewirtz D">D.A. Gewirtz</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Vicencio, J M" uniqKey="Vicencio J">J.M. Vicencio</name>
</author>
<author>
<name sortKey="Galluzzi, L" uniqKey="Galluzzi L">L. Galluzzi</name>
</author>
<author>
<name sortKey="Tajeddine, N" uniqKey="Tajeddine N">N. Tajeddine</name>
</author>
<author>
<name sortKey="Ortiz, C" uniqKey="Ortiz C">C. Ortiz</name>
</author>
<author>
<name sortKey="Criollo, A" uniqKey="Criollo A">A. Criollo</name>
</author>
<author>
<name sortKey="Tasdemir, E" uniqKey="Tasdemir E">E. Tasdemir</name>
</author>
<author>
<name sortKey="Morselli, E" uniqKey="Morselli E">E. Morselli</name>
</author>
<author>
<name sortKey="Ben Younes, A" uniqKey="Ben Younes A">A. Ben Younes</name>
</author>
<author>
<name sortKey="Maiuri, M C" uniqKey="Maiuri M">M.C. Maiuri</name>
</author>
<author>
<name sortKey="Lavandero, S" uniqKey="Lavandero S">S. Lavandero</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Eapen, V V" uniqKey="Eapen V">V.V. Eapen</name>
</author>
<author>
<name sortKey="Waterman, D P" uniqKey="Waterman D">D.P. Waterman</name>
</author>
<author>
<name sortKey="Bernard, A" uniqKey="Bernard A">A. Bernard</name>
</author>
<author>
<name sortKey="Schiffmann, N" uniqKey="Schiffmann N">N. Schiffmann</name>
</author>
<author>
<name sortKey="Sayas, E" uniqKey="Sayas E">E. Sayas</name>
</author>
<author>
<name sortKey="Kamber, R" uniqKey="Kamber R">R. Kamber</name>
</author>
<author>
<name sortKey="Lemos, B" uniqKey="Lemos B">B. Lemos</name>
</author>
<author>
<name sortKey="Memisoglu, G" uniqKey="Memisoglu G">G. Memisoglu</name>
</author>
<author>
<name sortKey="Ang, J" uniqKey="Ang J">J. Ang</name>
</author>
<author>
<name sortKey="Mazella, A" uniqKey="Mazella A">A. Mazella</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Eliopoulos, A G" uniqKey="Eliopoulos A">A.G. Eliopoulos</name>
</author>
<author>
<name sortKey="Havaki, S" uniqKey="Havaki S">S. Havaki</name>
</author>
<author>
<name sortKey="Gorgoulis, V G" uniqKey="Gorgoulis V">V.G. Gorgoulis</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Paglin, S" uniqKey="Paglin S">S. Paglin</name>
</author>
<author>
<name sortKey="Hollister, T" uniqKey="Hollister T">T. Hollister</name>
</author>
<author>
<name sortKey="Delohery, T" uniqKey="Delohery T">T. Delohery</name>
</author>
<author>
<name sortKey="Hackett, N" uniqKey="Hackett N">N. Hackett</name>
</author>
<author>
<name sortKey="Mcmahill, M" uniqKey="Mcmahill M">M. McMahill</name>
</author>
<author>
<name sortKey="Sphicas, E" uniqKey="Sphicas E">E. Sphicas</name>
</author>
<author>
<name sortKey="Domingo, D" uniqKey="Domingo D">D. Domingo</name>
</author>
<author>
<name sortKey="Yahalom, J" uniqKey="Yahalom J">J. Yahalom</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Guo, L" uniqKey="Guo L">L. Guo</name>
</author>
<author>
<name sortKey="Xie, B" uniqKey="Xie B">B. Xie</name>
</author>
<author>
<name sortKey="Mao, Z" uniqKey="Mao Z">Z. Mao</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Slobodnyuk, K" uniqKey="Slobodnyuk K">K. Slobodnyuk</name>
</author>
<author>
<name sortKey="Radic, N" uniqKey="Radic N">N. Radic</name>
</author>
<author>
<name sortKey="Llado, A" uniqKey="Llado A">A. Llado</name>
</author>
<author>
<name sortKey="Trempolec, N" uniqKey="Trempolec N">N. Trempolec</name>
</author>
<author>
<name sortKey="Zorzano, A" uniqKey="Zorzano A">A. Zorzano</name>
</author>
<author>
<name sortKey="Nebreda, A R" uniqKey="Nebreda A">A.R. Nebreda</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Young, A R J" uniqKey="Young A">A.R.J. Young</name>
</author>
<author>
<name sortKey="Narita, M" uniqKey="Narita M">M. Narita</name>
</author>
<author>
<name sortKey="Ferreira, M" uniqKey="Ferreira M">M. Ferreira</name>
</author>
<author>
<name sortKey="Kirschner, K" uniqKey="Kirschner K">K. Kirschner</name>
</author>
<author>
<name sortKey="Sadaie, M" uniqKey="Sadaie M">M. Sadaie</name>
</author>
<author>
<name sortKey="Darot, J F J" uniqKey="Darot J">J.F.J. Darot</name>
</author>
<author>
<name sortKey="Tavare, S" uniqKey="Tavare S">S. Tavaré</name>
</author>
<author>
<name sortKey="Arakawa, S" uniqKey="Arakawa S">S. Arakawa</name>
</author>
<author>
<name sortKey="Shimizu, S" uniqKey="Shimizu S">S. Shimizu</name>
</author>
<author>
<name sortKey="Watt, F M" uniqKey="Watt F">F.M. Watt</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Gerland, L M" uniqKey="Gerland L">L.M. Gerland</name>
</author>
<author>
<name sortKey="Peyrol, S" uniqKey="Peyrol S">S. Peyrol</name>
</author>
<author>
<name sortKey="Lallemand, C" uniqKey="Lallemand C">C. Lallemand</name>
</author>
<author>
<name sortKey="Branche, R" uniqKey="Branche R">R. Branche</name>
</author>
<author>
<name sortKey="Magaud, J P" uniqKey="Magaud J">J.P. Magaud</name>
</author>
<author>
<name sortKey="Ffrench, M" uniqKey="Ffrench M">M. Ffrench</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Saleh, T" uniqKey="Saleh T">T. Saleh</name>
</author>
<author>
<name sortKey="Cuttino, L" uniqKey="Cuttino L">L. Cuttino</name>
</author>
<author>
<name sortKey="Gewirtz, D A" uniqKey="Gewirtz D">D.A. Gewirtz</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kondo, Y" uniqKey="Kondo Y">Y. Kondo</name>
</author>
<author>
<name sortKey="Kanzawa, T" uniqKey="Kanzawa T">T. Kanzawa</name>
</author>
<author>
<name sortKey="Sawaya, R" uniqKey="Sawaya R">R. Sawaya</name>
</author>
<author>
<name sortKey="Kondo, S" uniqKey="Kondo S">S. Kondo</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Janku, F" uniqKey="Janku F">F. Janku</name>
</author>
<author>
<name sortKey="Mcconkey, D J" uniqKey="Mcconkey D">D.J. McConkey</name>
</author>
<author>
<name sortKey="Hong, D S" uniqKey="Hong D">D.S. Hong</name>
</author>
<author>
<name sortKey="Kurzrock, R" uniqKey="Kurzrock R">R. Kurzrock</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Gewirtz, D A" uniqKey="Gewirtz D">D.A. Gewirtz</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="White, E" uniqKey="White E">E. White</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Chakradeo, S" uniqKey="Chakradeo S">S. Chakradeo</name>
</author>
<author>
<name sortKey="Sharma, K" uniqKey="Sharma K">K. Sharma</name>
</author>
<author>
<name sortKey="Alhaddad, A" uniqKey="Alhaddad A">A. Alhaddad</name>
</author>
<author>
<name sortKey="Bakhshwin, D" uniqKey="Bakhshwin D">D. Bakhshwin</name>
</author>
<author>
<name sortKey="Le, N" uniqKey="Le N">N. Le</name>
</author>
<author>
<name sortKey="Harada, H" uniqKey="Harada H">H. Harada</name>
</author>
<author>
<name sortKey="Nakajima, W" uniqKey="Nakajima W">W. Nakajima</name>
</author>
<author>
<name sortKey="Yeudall, W A" uniqKey="Yeudall W">W.A. Yeudall</name>
</author>
<author>
<name sortKey="Torti, S V" uniqKey="Torti S">S.V. Torti</name>
</author>
<author>
<name sortKey="Torti, F M" uniqKey="Torti F">F.M. Torti</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Eng, C H" uniqKey="Eng C">C.H. Eng</name>
</author>
<author>
<name sortKey="Wang, Z" uniqKey="Wang Z">Z. Wang</name>
</author>
<author>
<name sortKey="Tkach, D" uniqKey="Tkach D">D. Tkach</name>
</author>
<author>
<name sortKey="Toral Barza, L" uniqKey="Toral Barza L">L. Toral-Barza</name>
</author>
<author>
<name sortKey="Ugwonali, S" uniqKey="Ugwonali S">S. Ugwonali</name>
</author>
<author>
<name sortKey="Liu, S" uniqKey="Liu S">S. Liu</name>
</author>
<author>
<name sortKey="Fitzgerald, S L" uniqKey="Fitzgerald S">S.L. Fitzgerald</name>
</author>
<author>
<name sortKey="George, E" uniqKey="George E">E. George</name>
</author>
<author>
<name sortKey="Frias, E" uniqKey="Frias E">E. Frias</name>
</author>
<author>
<name sortKey="Cochran, N" uniqKey="Cochran N">N. Cochran</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Michaud, M" uniqKey="Michaud M">M. Michaud</name>
</author>
<author>
<name sortKey="Martins, I" uniqKey="Martins I">I. Martins</name>
</author>
<author>
<name sortKey="Sukkurwala, A Q" uniqKey="Sukkurwala A">A.Q. Sukkurwala</name>
</author>
<author>
<name sortKey="Adjemian, S" uniqKey="Adjemian S">S. Adjemian</name>
</author>
<author>
<name sortKey="Ma, Y" uniqKey="Ma Y">Y. Ma</name>
</author>
<author>
<name sortKey="Pellegatti, P" uniqKey="Pellegatti P">P. Pellegatti</name>
</author>
<author>
<name sortKey="Shen, S" uniqKey="Shen S">S. Shen</name>
</author>
<author>
<name sortKey="Kepp, O" uniqKey="Kepp O">O. Kepp</name>
</author>
<author>
<name sortKey="Scoazec, M" uniqKey="Scoazec M">M. Scoazec</name>
</author>
<author>
<name sortKey="Mignot, G" uniqKey="Mignot G">G. Mignot</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Martinez Carreres, L" uniqKey="Martinez Carreres L">L. Martínez-Carreres</name>
</author>
<author>
<name sortKey="Puyal, J" uniqKey="Puyal J">J. Puyal</name>
</author>
<author>
<name sortKey="Leal Esteban, L C" uniqKey="Leal Esteban L">L.C. Leal-Esteban</name>
</author>
<author>
<name sortKey="Orpinell, M" uniqKey="Orpinell M">M. Orpinell</name>
</author>
<author>
<name sortKey="Castillo Armengol, J" uniqKey="Castillo Armengol J">J. Castillo-Armengol</name>
</author>
<author>
<name sortKey="Giralt, A" uniqKey="Giralt A">A. Giralt</name>
</author>
<author>
<name sortKey="Dergai, O" uniqKey="Dergai O">O. Dergai</name>
</author>
<author>
<name sortKey="Moret, C" uniqKey="Moret C">C. Moret</name>
</author>
<author>
<name sortKey="Barquissau, V" uniqKey="Barquissau V">V. Barquissau</name>
</author>
<author>
<name sortKey="Nasrallah, A" uniqKey="Nasrallah A">A. Nasrallah</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Poklepovic, A" uniqKey="Poklepovic A">A. Poklepovic</name>
</author>
<author>
<name sortKey="Gewirtz, D A" uniqKey="Gewirtz D">D.A. Gewirtz</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Tonnessen Murray, C A" uniqKey="Tonnessen Murray C">C.A. Tonnessen-Murray</name>
</author>
<author>
<name sortKey="Frey, W D" uniqKey="Frey W">W.D. Frey</name>
</author>
<author>
<name sortKey="Rao, S G" uniqKey="Rao S">S.G. Rao</name>
</author>
<author>
<name sortKey="Shahbandi, A" uniqKey="Shahbandi A">A. Shahbandi</name>
</author>
<author>
<name sortKey="Ungerleider, N A" uniqKey="Ungerleider N">N.A. Ungerleider</name>
</author>
<author>
<name sortKey="Olayiwola, J O" uniqKey="Olayiwola J">J.O. Olayiwola</name>
</author>
<author>
<name sortKey="Murray, L B" uniqKey="Murray L">L.B. Murray</name>
</author>
<author>
<name sortKey="Vinson, B T" uniqKey="Vinson B">B.T. Vinson</name>
</author>
<author>
<name sortKey="Chrisey, D B" uniqKey="Chrisey D">D.B. Chrisey</name>
</author>
<author>
<name sortKey="Lord, C J" uniqKey="Lord C">C.J. Lord</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Dimri, G P" uniqKey="Dimri G">G.P. Dimri</name>
</author>
<author>
<name sortKey="Lee, X" uniqKey="Lee X">X. Lee</name>
</author>
<author>
<name sortKey="Basile, G" uniqKey="Basile G">G. Basile</name>
</author>
<author>
<name sortKey="Acosta, M" uniqKey="Acosta M">M. Acosta</name>
</author>
<author>
<name sortKey="Scott, G" uniqKey="Scott G">G. Scott</name>
</author>
<author>
<name sortKey="Roskelley, C" uniqKey="Roskelley C">C. Roskelley</name>
</author>
<author>
<name sortKey="Medrano, E E" uniqKey="Medrano E">E.E. Medrano</name>
</author>
<author>
<name sortKey="Linskensi, M" uniqKey="Linskensi M">M. Linskensi</name>
</author>
<author>
<name sortKey="Rubelj, I" uniqKey="Rubelj I">I. Rubelj</name>
</author>
<author>
<name sortKey="Pereira Smith, O" uniqKey="Pereira Smith O">O. Pereira-Smith</name>
</author>
</analytic>
</biblStruct>
</listBibl>
</div1>
</back>
</TEI>
<pmc article-type="research-article">
<pmc-dir>properties open_access</pmc-dir>
<front>
<journal-meta>
<journal-id journal-id-type="nlm-ta">Int J Mol Sci</journal-id>
<journal-id journal-id-type="iso-abbrev">Int J Mol Sci</journal-id>
<journal-id journal-id-type="publisher-id">ijms</journal-id>
<journal-title-group>
<journal-title>International Journal of Molecular Sciences</journal-title>
</journal-title-group>
<issn pub-type="epub">1422-0067</issn>
<publisher>
<publisher-name>MDPI</publisher-name>
</publisher>
</journal-meta>
<article-meta>
<article-id pub-id-type="pmid">32093197</article-id>
<article-id pub-id-type="pmc">7073138</article-id>
<article-id pub-id-type="doi">10.3390/ijms21041427</article-id>
<article-id pub-id-type="publisher-id">ijms-21-01427</article-id>
<article-categories>
<subj-group subj-group-type="heading">
<subject>Article</subject>
</subj-group>
</article-categories>
<title-group>
<article-title>Studies of Non-Protective Autophagy Provide Evidence that Recovery from Therapy-Induced Senescence is Independent of Early Autophagy</article-title>
</title-group>
<contrib-group>
<contrib contrib-type="author">
<name>
<surname>Saleh</surname>
<given-names>Tareq</given-names>
</name>
<xref ref-type="aff" rid="af1-ijms-21-01427">1</xref>
<xref ref-type="aff" rid="af2-ijms-21-01427">2</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Tyutyunyk-Massey</surname>
<given-names>Liliya</given-names>
</name>
<xref ref-type="aff" rid="af2-ijms-21-01427">2</xref>
<xref ref-type="aff" rid="af3-ijms-21-01427">3</xref>
</contrib>
<contrib contrib-type="author">
<contrib-id contrib-id-type="orcid" authenticated="true">https://orcid.org/0000-0002-2183-3170</contrib-id>
<name>
<surname>H. Patel</surname>
<given-names>Nipa</given-names>
</name>
<xref ref-type="aff" rid="af2-ijms-21-01427">2</xref>
<xref ref-type="aff" rid="af3-ijms-21-01427">3</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>K. Cudjoe</surname>
<given-names>Emmanuel</given-names>
<suffix>Jr.</suffix>
</name>
<xref ref-type="aff" rid="af4-ijms-21-01427">4</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Alotaibi</surname>
<given-names>Moureq</given-names>
</name>
<xref ref-type="aff" rid="af5-ijms-21-01427">5</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>A. Gewirtz</surname>
<given-names>David</given-names>
</name>
<xref ref-type="aff" rid="af2-ijms-21-01427">2</xref>
<xref ref-type="aff" rid="af3-ijms-21-01427">3</xref>
<xref rid="c1-ijms-21-01427" ref-type="corresp">*</xref>
</contrib>
</contrib-group>
<aff id="af1-ijms-21-01427">
<label>1</label>
Department of Basic Medical Sciences, Faculty of Medicine, The Hashemite University, Zarqa 13133, Jordan;
<email>tareq@hu.edu.jo</email>
</aff>
<aff id="af2-ijms-21-01427">
<label>2</label>
Massey Cancer Center, Goodwin Research Laboratories, Virginia Commonwealth University, Richmond, VA 23298, USA;
<email>tyutyunykmals@vcu.edu</email>
(L.T.-M.);
<email>patelnh3@vcu.edu</email>
(N.H.P.)</aff>
<aff id="af3-ijms-21-01427">
<label>3</label>
Department of Pharmacology and Toxicology and Medicine, Virginia Commonwealth University, Richmond, VA 23298, USA</aff>
<aff id="af4-ijms-21-01427">
<label>4</label>
Department of Pharmacotherapy & Outcomes Science, Virginia Commonwealth University, Richmond, VA 23298, USA;
<email>cudjoeek@vcu.edu</email>
</aff>
<aff id="af5-ijms-21-01427">
<label>5</label>
College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia;
<email>mralotaibi@ksu.edu.sa</email>
</aff>
<author-notes>
<corresp id="c1-ijms-21-01427">
<label>*</label>
Correspondence:
<email>david.gewirtz@vcuhealth.org</email>
</corresp>
</author-notes>
<pub-date pub-type="epub">
<day>20</day>
<month>2</month>
<year>2020</year>
</pub-date>
<pub-date pub-type="collection">
<month>2</month>
<year>2020</year>
</pub-date>
<volume>21</volume>
<issue>4</issue>
<elocation-id>1427</elocation-id>
<history>
<date date-type="received">
<day>12</day>
<month>10</month>
<year>2019</year>
</date>
<date date-type="accepted">
<day>11</day>
<month>2</month>
<year>2020</year>
</date>
</history>
<permissions>
<copyright-statement>© 2020 by the authors.</copyright-statement>
<copyright-year>2020</copyright-year>
<license license-type="open-access">
<license-p>Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (
<ext-link ext-link-type="uri" xlink:href="http://creativecommons.org/licenses/by/4.0/">http://creativecommons.org/licenses/by/4.0/</ext-link>
).</license-p>
</license>
</permissions>
<abstract>
<p>Autophagy and senescence, predominant responses that may dictate cell fate after chemotherapy or radiation, often occur in tandem. Cells in states of senescence and/or autophagy are frequently growth arrested. We have previously reported that tumor cells induced into senescence by therapy can re-emerge from the growth-arrested state, a phenomenon termed proliferative recovery. The current work shows that, while tumor cells collaterally induced into senescence and autophagy by etoposide, doxorubicin, or radiation undergo proliferative recovery, neither pharmacological nor genetic inhibition of early autophagy alter the extent of senescence or the ability of cells to recover from senescence. These findings confirm and extend our previous observations, essentially dissociating senescence from autophagy, and further indicate that re-emergence from senescence does not appear to be facilitated by or dependent on autophagy. Our results also provide additional evidence for the promotion of the non-protective form of autophagy by both chemotherapeutic drugs and radiation, which may complicate current efforts to inhibit autophagy for therapeutic benefit.</p>
</abstract>
<kwd-group>
<kwd>senescence</kwd>
<kwd>autophagy</kwd>
<kwd>cancer</kwd>
<kwd>chemotherapy</kwd>
<kwd>radiotherapy</kwd>
<kwd>proliferative recovery</kwd>
</kwd-group>
</article-meta>
</front>
<body>
<sec sec-type="intro" id="sec1-ijms-21-01427">
<title>1. Introduction</title>
<p>Accelerated or premature senescence is a common tumor cell response to conventional cancer therapy [
<xref rid="B1-ijms-21-01427" ref-type="bibr">1</xref>
,
<xref rid="B2-ijms-21-01427" ref-type="bibr">2</xref>
]. Senescent tumor cells are growth-arrested and exhibit flat and hypertrophic cellular morphology, increased activity of the lysosomal senescence-associated β-galactosidase (SA-β-gal), epigenetic changes, as well as a genetic expression profile reflective of the senescence-associated secretory phenotype (SASP) [
<xref rid="B3-ijms-21-01427" ref-type="bibr">3</xref>
]. Due to the durable nature of the senescent growth arrest, the use of senescence-inducing agents is considered an adventitious approach for cancer therapy based on the promotion of a static barrier against further tumor growth [
<xref rid="B4-ijms-21-01427" ref-type="bibr">4</xref>
]. However, recent studies have strongly suggested that the senescent growth arrest precipitated by anticancer therapy [therapy-induced senescence (TIS)] is not terminal, and that a subpopulation of the senescent tumor cells can resume division, a process termed proliferative recovery [
<xref rid="B5-ijms-21-01427" ref-type="bibr">5</xref>
,
<xref rid="B6-ijms-21-01427" ref-type="bibr">6</xref>
]. Furthermore, the recovery from TIS was found to be permissive for the development of a more aggressive malignant phenotype [
<xref rid="B7-ijms-21-01427" ref-type="bibr">7</xref>
,
<xref rid="B8-ijms-21-01427" ref-type="bibr">8</xref>
,
<xref rid="B9-ijms-21-01427" ref-type="bibr">9</xref>
]. Finally, the SASP has been shown to potentially promote tumor growth [
<xref rid="B10-ijms-21-01427" ref-type="bibr">10</xref>
].</p>
<p>Based on these findings, we recently suggested that senescence could be one form of tumor dormancy, and, consequently, that recovery from senescence could contribute to disease recurrence [
<xref rid="B11-ijms-21-01427" ref-type="bibr">11</xref>
]. It has also been suggested that macroautophagy (hereafter, autophagy) contributes to the maintenance of tumors in a dormant state [
<xref rid="B12-ijms-21-01427" ref-type="bibr">12</xref>
]. Autophagy is a homeostatic process that involves lysosomal-dependent intracellular degradation of damaged organelles and misfolded proteins and scavenging of reactive oxygen species [
<xref rid="B13-ijms-21-01427" ref-type="bibr">13</xref>
,
<xref rid="B14-ijms-21-01427" ref-type="bibr">14</xref>
]. Autophagy and senescence tend to occur in parallel [
<xref rid="B15-ijms-21-01427" ref-type="bibr">15</xref>
,
<xref rid="B16-ijms-21-01427" ref-type="bibr">16</xref>
,
<xref rid="B17-ijms-21-01427" ref-type="bibr">17</xref>
]; in a recent report, we demonstrated a linear relationship between autophagy and senescence induced by radiation in HCT-116 colorectal cancer cells [
<xref rid="B17-ijms-21-01427" ref-type="bibr">17</xref>
]. A number of studies have investigated the putative, or potential, relationship between autophagy and senescence, generally concluding that, while autophagy may accelerate both oncogene-induced senescence and chemotherapy-induced senescence, senescence can and does occur even in the absence of autophagy [
<xref rid="B15-ijms-21-01427" ref-type="bibr">15</xref>
,
<xref rid="B18-ijms-21-01427" ref-type="bibr">18</xref>
,
<xref rid="B19-ijms-21-01427" ref-type="bibr">19</xref>
]. However, one intrinsic limitation relating to studies of this relationship is that, when autophagy expresses its cytoprotective form, autophagy inhibition results in apoptotic cell death [
<xref rid="B20-ijms-21-01427" ref-type="bibr">20</xref>
,
<xref rid="B21-ijms-21-01427" ref-type="bibr">21</xref>
,
<xref rid="B22-ijms-21-01427" ref-type="bibr">22</xref>
]; consequently, it becomes difficult to distinguish between the impact of autophagy inhibition on cell killing and the direct effects of autophagy inhibition on senescence.</p>
<p>To circumvent this limitation, the current studies were performed using three tumor cell lines and therapeutic modalities that induce what we have previously termed the non-protective form of autophagy [
<xref rid="B23-ijms-21-01427" ref-type="bibr">23</xref>
]. By definition, when non-protective autophagy is inhibited, there is no increase in apoptotic cell death or alterations in drug or radiation sensitivity. Utilizing this approach, we were able to essentially dissociate autophagy from both senescence induction as well as recovery/escape from senescence. These studies therefore indicate that the generation of energy and metabolic precursors that are the hallmarks of autophagy do not appear to be required for the cells to enter into senescence arrest or facilitate subsequent proliferative recovery. Extrapolating these findings to the clinical impact of cancer therapy, we propose that autophagy (at least in its early stages) may not contribute to the capacity of tumor cells to enter a state of dormancy or to re-emerge from dormancy into an active reproductive state.</p>
</sec>
<sec sec-type="results" id="sec2-ijms-21-01427">
<title>2. Results</title>
<sec id="sec2dot1-ijms-21-01427">
<title>2.1. Etoposide-Induced Autophagy does not Influence the Survival or Recovery of H460 NSCLC Senescent Cells</title>
<p>Our first series of studies examined the induction of senescence and autophagy in H460 non-small cell lung cancer cells exposed to etoposide. Within three days after initiation of drug treatment, H460 cells exhibited numerous features collectively indicative of senescence, specifically a flattened and enlarged appearance with abundant granulation and histochemical staining for SA-β-galactosidase (SA-β-gal) activity (
<xref ref-type="fig" rid="ijms-21-01427-f001">Figure 1</xref>
A). Using an established C
<sub>12</sub>
FDG (a fluorescent SA-β-gal surrogate) fluorescent labeling procedure of flow cytometric analysis coupled with fluorescent microscopy [
<xref rid="B24-ijms-21-01427" ref-type="bibr">24</xref>
], quantification of H460 cells expressing SA-β-gal activity was determined over a range of etoposide concentrations (
<xref ref-type="fig" rid="ijms-21-01427-f001">Figure 1</xref>
B).
<xref ref-type="fig" rid="ijms-21-01427-f001">Figure 1</xref>
C shows C
<sub>12</sub>
FDG staining indicative of drug-induced senescence by fluorescence microscopy.
<xref ref-type="fig" rid="ijms-21-01427-f001">Figure 1</xref>
D indicates that H460 cells exposed to etoposide were growth arrested for at least five days, consistent with the induction of TIS. This senescent growth arrest was followed by proliferative recovery between 5 and 7 days post-drug exposure, in agreement with our previously reported findings of the capacity of a subpopulation of senescent tumor cells to regain proliferative capacity [
<xref rid="B6-ijms-21-01427" ref-type="bibr">6</xref>
].</p>
<p>As would have been anticipated based on the fact that etoposide has previously been shown to promote autophagy in the A549 and U1810 NSCLC cells [
<xref rid="B25-ijms-21-01427" ref-type="bibr">25</xref>
], autophagy was also evident in the H460 cells exposed to etoposide, as indicated by the increased formation of acridine orange-stained acidic vesicular organelles (
<xref ref-type="fig" rid="ijms-21-01427-f001">Figure 1</xref>
E, with quantification in
<xref ref-type="fig" rid="ijms-21-01427-f001">Figure 1</xref>
F). The induction of autophagy was confirmed based on the increased formation of GFP-LC3 puncta, indicative of autophagosome formation (
<xref ref-type="fig" rid="ijms-21-01427-f001">Figure 1</xref>
G).</p>
<p>Autophagy has historically been considered a survival response under conditions of nutrient deprivation or hypoxia as well as a process that facilitates tumor growth and serves as a mechanism of resistance to therapy [
<xref rid="B26-ijms-21-01427" ref-type="bibr">26</xref>
,
<xref rid="B27-ijms-21-01427" ref-type="bibr">27</xref>
,
<xref rid="B28-ijms-21-01427" ref-type="bibr">28</xref>
,
<xref rid="B29-ijms-21-01427" ref-type="bibr">29</xref>
]. Consequently, we hypothesized that autophagy could serve to maintain metabolic homeostasis in the senescent tumor cells and might thereby be necessary for maintenance of the senescent state. To determine the potential involvement of etoposide-induced autophagy in maintaining senescence in the H460 cells, autophagy was suppressed using both pharmacological and genetic strategies applied early and followed by exposure to etoposide. The impact on cell viability was then monitored. H460 cells were pretreated for 3 hours with the autophagy inhibitors chloroquine (CQ, 10 µM) or bafilomycin A1 (Baf, 5 nM) followed by 24 hours of exposure to etoposide in the presence of the CQ or Baf. Exposure of H460 cells to the lysosomotropic agents CQ and Baf resulted in failure of lysosomal acidification [
<xref rid="B30-ijms-21-01427" ref-type="bibr">30</xref>
,
<xref rid="B31-ijms-21-01427" ref-type="bibr">31</xref>
], which is reflected by the yellow staining of vacuoles by acridine orange (
<xref ref-type="fig" rid="ijms-21-01427-f002">Figure 2</xref>
A); autophagy inhibition was confirmed by decreased degradation of p62/SQSTM1 in the presence of CQ or Baf in etoposide-treated cells (
<xref ref-type="fig" rid="ijms-21-01427-f002">Figure 2</xref>
B). The minimal effect of CQ and Baf on p62/SQSTM1 levels in etoposide-untreated cells is likely reflective of low basal levels of autophagy.</p>
<p>Inhibition of autophagy did not alter sensitivity to etoposide, as determined by clonogenic survival assays (
<xref ref-type="fig" rid="ijms-21-01427-f002">Figure 2</xref>
C) (except moderately with Baf at 1 µM etoposide), suggesting that the etoposide-induced autophagy was exhibiting a non-protective function and that the autophagy did not significantly contribute to the survival of senescent H460 cells [
<xref rid="B23-ijms-21-01427" ref-type="bibr">23</xref>
]. This conclusion was further supported by the fact that early pharmacological autophagy inhibition did not alter growth arrest induced by etoposide, etoposide-induced apoptosis, or the proliferative recovery from etoposide-induced growth arrest and senescence (
<xref ref-type="fig" rid="ijms-21-01427-f002">Figure 2</xref>
D–F). Similar outcomes were evident when autophagy was inhibited by silencing Atg5-Atg12 (
<xref ref-type="fig" rid="ijms-21-01427-f002">Figure 2</xref>
G–K).
<xref ref-type="fig" rid="ijms-21-01427-f002">Figure 2</xref>
G presents a Western blot showing the knockdown of Atg5 and the consequent interference with etoposide-induced degradation of p62/SQSTM1.
<xref ref-type="fig" rid="ijms-21-01427-f002">Figure 2</xref>
H shows that silencing of
<italic>Atg5</italic>
did not significantly decrease the viability of senescent H460 cells (a small decrease in sensitivity was evident at the 0.25 µM concentration). As was the case with CQ and Baf, genetic autophagy inhibition failed to alter the extent of senescence (
<xref ref-type="fig" rid="ijms-21-01427-f002">Figure 2</xref>
J,K), the profile of growth arrest (
<xref ref-type="fig" rid="ijms-21-01427-f002">Figure 2</xref>
I), or the capacity of senescent tumor cells to undergo proliferative recovery (
<xref ref-type="fig" rid="ijms-21-01427-f002">Figure 2</xref>
I).</p>
</sec>
<sec id="sec2dot2-ijms-21-01427">
<title>2.2. Doxorubicin-Induced Autophagy does not Influence the Survival or Recovery of 4T1 Breast Tumor Senescent Cells</title>
<p>The experimental data presented above provide another example of the non-protective form of autophagy induced by chemotherapy and further indicate that, while autophagy and senescence are induced collaterally by chemotherapy in tumor cells, autophagy is not necessary for the maintenance of senescence and does not appear to play a role in the recovery from senescence. In order to demonstrate that these findings are not limited to one therapeutic agent or experimental tumor cell line, similar studies were performed in 4T1 murine breast tumor cell lines exposed to doxorubicin (Dox). Here, it should be noted that we and our collaborators have previously identified the non-protective form of autophagy in response to radiation in the 4T1 cells [
<xref rid="B32-ijms-21-01427" ref-type="bibr">32</xref>
].</p>
<p>
<xref ref-type="fig" rid="ijms-21-01427-f003">Figure 3</xref>
shows the collateral induction of senescence and autophagy in 4T1 cells by exposure to Dox. As above, senescence induction was analyzed based on β-galactosidase staining (
<xref ref-type="fig" rid="ijms-21-01427-f003">Figure 3</xref>
A) and quantification by flow cytometry (
<xref ref-type="fig" rid="ijms-21-01427-f003">Figure 3</xref>
B), while autophagy was detected based on acridine orange vacuole formation and quantification (
<xref ref-type="fig" rid="ijms-21-01427-f003">Figure 3</xref>
C,D) and confirmed by Western blotting showing p62/SQSTM1 degradation (
<xref ref-type="fig" rid="ijms-21-01427-f003">Figure 3</xref>
E). Autophagy inhibition was shown by increased accumulation of phagosomes resulting when lysosomal acidification was blocked by chloroquine (
<xref ref-type="fig" rid="ijms-21-01427-f003">Figure 3</xref>
C,D) and further confirmed by the accumulation of LC3B II protein (
<xref ref-type="fig" rid="ijms-21-01427-f003">Figure 3</xref>
F). It is important here to emphasize that Dox exposure in these experiments was limited to 2 hours and that, in response, autophagy was induced rapidly (
<xref ref-type="fig" rid="ijms-21-01427-f003">Figure 3</xref>
F); however, completion of autophagy was delayed for up to 6 days following drug removal, as indicated by p62/SQSTM1 degradation (
<xref ref-type="fig" rid="ijms-21-01427-f003">Figure 3</xref>
E). Early pharmacologic inhibition of autophagy did not interfere with the induction of senescence in the 4T1 cells, as SA-β-gal staining was prominent under both conditions—cells exposed to Dox alone and cells exposed to the combination of Dox and CQ (
<xref ref-type="fig" rid="ijms-21-01427-f003">Figure 3</xref>
A). Furthermore, the percentage of C
<sub>12</sub>
FDG-positive population was essentially identical when quantified by flow cytometry for cells exposed to Dox alone or to the Dox and CQ drug combination (
<xref ref-type="fig" rid="ijms-21-01427-f003">Figure 3</xref>
B). Similar to the outcomes for H460 cells exposed to etoposide, 4T1 cells exposed to Dox entered into a prolonged growth arrest followed by proliferative recovery, a profile that was not altered with inhibition of autophagy by CQ (
<xref ref-type="fig" rid="ijms-21-01427-f004">Figure 4</xref>
A and adjoining expanded figure).</p>
<p>As was the case with the H460 cells induced into autophagy/senescence by etoposide, the autophagy induced by Dox in the 4T1 cells was also shown to be non-protective. Silencing of Atg5 (
<xref ref-type="fig" rid="ijms-21-01427-f004">Figure 4</xref>
B,C) did not lead to increased apoptosis (
<xref ref-type="fig" rid="ijms-21-01427-f004">Figure 4</xref>
D), did not result in decreased cell survival based on colony formation (
<xref ref-type="fig" rid="ijms-21-01427-f004">Figure 4</xref>
E), and did not compromise the induction of senescence (
<xref ref-type="fig" rid="ijms-21-01427-f004">Figure 4</xref>
F,G). Cells were also induced into a prolonged growth arrest followed by proliferative recovery after 10 days independent of the Atg5 status of the cells (
<xref ref-type="fig" rid="ijms-21-01427-f004">Figure 4</xref>
H and expanded adjoining figure).</p>
</sec>
<sec id="sec2dot3-ijms-21-01427">
<title>2.3. Radiation-Induced Autophagy does not Influence the Survival or the Recovery of HCT116 Senescent Cells</title>
<p>While etoposide and doxorubicin are both chemotherapeutic agents and largely have the same cellular target, i.e., topoisomerase II, it was important to determine whether these observations had broader implications by interrogating an entirely different therapeutic moiety, ionizing radiation, albeit one that also acts largely through the promotion of DNA damage, as is also the case for doxorubicin and etoposide. These experiments were performed in the HCT-116 colorectal carcinoma cell line.</p>
<p>
<xref ref-type="fig" rid="ijms-21-01427-f005">Figure 5</xref>
A,B show the collateral induction of autophagy and senescence by ionizing radiation in the HCT-116 tumor cell lines. Autophagy and senescence induction were dose-dependent and occurred in parallel, as reported previously [
<xref rid="B17-ijms-21-01427" ref-type="bibr">17</xref>
]. As in the studies presented in the H460 and/or the 4T1 cells, autophagy was pharmacologically inhibited early using CQ (
<xref ref-type="fig" rid="ijms-21-01427-f005">Figure 5</xref>
C). Specifically, HCT116 cells were pretreated with CQ (5 µM) for 3 hours before being irradiated and then maintained in culture medium for an additional 24 hours. Failure of lysosomal acidification in cells treated with CQ was demonstrated by the yellow staining of autophagic vacuoles (
<xref ref-type="fig" rid="ijms-21-01427-f005">Figure 5</xref>
D).</p>
<p>As shown in
<xref ref-type="fig" rid="ijms-21-01427-f005">Figure 5</xref>
E,F, senescence induced by radiation in the HCT-116 cells was not affected by autophagy inhibition. More specifically, inhibition of autophagy by CQ did not alter the sensitivity of HCT116 cells to radiation and did not promote radiation-induced apoptosis (
<xref ref-type="fig" rid="ijms-21-01427-f005">Figure 5</xref>
G,H), consistent with the radiation-induced non-protective autophagy observed in this experimental model.
<xref ref-type="fig" rid="ijms-21-01427-f005">Figure 5</xref>
I shows that HCT116 cells underwent growth arrest followed by proliferative recovery, evident 3 days post-radiation.
<xref ref-type="fig" rid="ijms-21-01427-f005">Figure 5</xref>
I further demonstrates that growth arrest and proliferative recovery profiles were virtually identical in HCT116 cells with and without pharmacological autophagy inhibition.</p>
<p>Finally, as was the case with chemotherapy in the H460 and 4T1 cell lines, genetic autophagy inhibition (silencing of ATG5,
<xref ref-type="fig" rid="ijms-21-01427-f005">Figure 5</xref>
J) did not influence radiation sensitivity (
<xref ref-type="fig" rid="ijms-21-01427-f005">Figure 5</xref>
K), growth arrest (
<xref ref-type="fig" rid="ijms-21-01427-f005">Figure 5</xref>
L), or proliferative recovery (
<xref ref-type="fig" rid="ijms-21-01427-f005">Figure 5</xref>
L).</p>
</sec>
</sec>
<sec sec-type="discussion" id="sec3-ijms-21-01427">
<title>3. Discussion</title>
<p>Both senescence and autophagy are established responses to stress resulting from DNA damage and oxidative injury. When apoptosis is not the predominant response to therapy, senescence represents a major determinant of cell fate, where cells remain in a growth-abrogated state as they maintain their metabolic activity [
<xref rid="B33-ijms-21-01427" ref-type="bibr">33</xref>
]. In fact, it is feasible that senescence could represent one basis for tumor cells remaining dormant for prolonged periods of time [
<xref rid="B11-ijms-21-01427" ref-type="bibr">11</xref>
]. Autophagy is also considered a “first or early responder” to cellular stress (in this case, DNA damage) resulting from the exposure to cancer chemotherapeutics or radiation [
<xref rid="B34-ijms-21-01427" ref-type="bibr">34</xref>
,
<xref rid="B35-ijms-21-01427" ref-type="bibr">35</xref>
,
<xref rid="B36-ijms-21-01427" ref-type="bibr">36</xref>
]. It has been suggested that the regulatory pathways of both processes are intertwined [
<xref rid="B37-ijms-21-01427" ref-type="bibr">37</xref>
,
<xref rid="B38-ijms-21-01427" ref-type="bibr">38</xref>
,
<xref rid="B39-ijms-21-01427" ref-type="bibr">39</xref>
], and it is clear that senescent cells develop abundant acidic vacuoles [
<xref rid="B40-ijms-21-01427" ref-type="bibr">40</xref>
]. However, the relationship of the autophagic response to the induction and the maintenance of senescence does not appear to be consistent across the types of stimuli that promote these responses or the cell lines in which they have been studied [
<xref rid="B19-ijms-21-01427" ref-type="bibr">19</xref>
].</p>
<p>While autophagy might have been anticipated to contribute to the maintenance of the metabolic integrity of the senescent tumor cells, early inhibition of autophagy induced following stress exposure did not appear to affect senescent cell survival. Furthermore, inhibition of autophagy, prior to and during drug or radiation exposure failed to prevent the tumor cell population from recovering and resuming growth. Consequently, while autophagy may potentially represent an intrinsic component of the senescent response elicited by cancer therapy, this current study indicates that autophagy plays a minor, if any, role in facilitating proliferative recovery in this system or interfering with the fate of senescent cells. The ability to reach this conclusion was facilitated by the fact that the autophagy was non-protective in function in all three experimental models, as illustrated in
<xref ref-type="fig" rid="ijms-21-01427-f006">Figure 6</xref>
[
<xref rid="B23-ijms-21-01427" ref-type="bibr">23</xref>
,
<xref rid="B41-ijms-21-01427" ref-type="bibr">41</xref>
].</p>
<p>Although the bulk of the literature has focused on the cytoprotective function of autophagy [
<xref rid="B42-ijms-21-01427" ref-type="bibr">42</xref>
,
<xref rid="B43-ijms-21-01427" ref-type="bibr">43</xref>
], we and others have shown in a number of studies that interference with autophagy can fail to alter drug or radiation sensitivity or to promote apoptosis [
<xref rid="B44-ijms-21-01427" ref-type="bibr">44</xref>
]. In this context, p53 appears to play an important regulatory role in determining the functional outcome of autophagy [
<xref rid="B45-ijms-21-01427" ref-type="bibr">45</xref>
]. As would be expected, functional p53 is required for autophagy to exhibit a cytoprotective function, and, consequently, loss of p53 will either reduce the extent of the autophagic response or suppress its protective function. Accordingly, the non-protective function of radiation-induced autophagy was previously shown to be dependent on the cells being mutant or null in p53 [
<xref rid="B46-ijms-21-01427" ref-type="bibr">46</xref>
]. However, in the current work, it is clear that autophagy induced by chemotherapy or radiation in the p53 wild-type H460 and HCT116 and p53 null 4T1 cells is also non-protective. These findings are consistent with a recent report by Eng et al. demonstrating non-protective autophagy induced by more than 30 chemotherapeutic drugs or radiation in the A549 NSCLC cell line [
<xref rid="B47-ijms-21-01427" ref-type="bibr">47</xref>
]. In fact, previous studies addressing the involvement of autophagy in promoting an effective antitumor immune response following chemotherapy
<italic>in vivo</italic>
also demonstrated the non-protective form of autophagy (although this terminology had not been established at that time) [
<xref rid="B48-ijms-21-01427" ref-type="bibr">48</xref>
]. Lastly, the induction of non-protective autophagy in senescent cells could be attributed to the accompanying lysosomal dysfunction resulting in failure of appropriate degradation of intra-lysosomal contents with possible alterations of the functional outcome of autophagy [
<xref rid="B49-ijms-21-01427" ref-type="bibr">49</xref>
]. In agreement with our results, non-protective autophagy does not seem to be essential for the generation of senescent cells exhibiting dysregulated lysosomal biogenesis, as when when tumor cells are induced into senescence by CDK4/6 inhibitors [
<xref rid="B49-ijms-21-01427" ref-type="bibr">49</xref>
].</p>
<p>The current study has a number of implications. One is that, since autophagy can be non-protective in tumor cells responding to chemotherapy or radiation, current clinical trials combining autophagy inhibition with cancer therapeutics are likely to be successful in demonstrating enhanced patient response only in those cases where the autophagy is actually protective [
<xref rid="B50-ijms-21-01427" ref-type="bibr">50</xref>
]. A related conclusion is that the function of autophagy (whether it be protective or non-protective) cannot be uniformly linked to the p53 status of the tumor cell. Since senescence also appears to be a common response to therapeutics in solid tumors, interference with autophagy cannot be anticipated to prevent the prolonged growth arrest associated with senescence that may, in fact, serve to protect the tumor cells from therapy by preventing apoptosis. Finally, even in the case where the therapy-induced autophagy is protective and autophagy inhibition promotes cell killing, autophagy inhibition is unlikely to directly interfere with the generation of a residual, typically resistant, senescent tumor cell population. Consequently, if recovery from senescence proves to be one form of disease recurrence from dormancy, then autophagy inhibition may not directly interfere with disease recurrence. From an energetic perspective, it appears that senescent cells may not require, for their survival, the recycling of cellular organelles that is a central event in autophagy. It is therefore proposed that the elimination of tumor cells that survive the onslaught of chemotherapy or radiation by entering a state of senescence from which some tumor cells can ultimately escape will require the direct action of agents (e.g., senolytics) that are specific for this tumor cell population.</p>
<p>We recognize that a major limitation of the current work is the absence of studies to determine the contribution of autophagy to the survival of senescent tumor cells in tumor-bearing animals. Future studies will be designed to compare the tumor-initiating potential of autophagy-proficient and autophagy-deficient senescent tumor cells in an immunocompetent mouse model. In addition, experimental models will be developed where autophagy inhibition is sustained both in cell culture and in tumor-bearing animals in order to determine whether senescence and proliferative recovery might be compromised under conditions of prolonged autophagy suppression. Nevertheless, we believe that the current work serves to address a fundamental question relating to senescence and proliferative recovery (and possibly tumor dormancy and disease recurrence), which is whether the autophagy that generally accompanies senescence is necessary for senescence maintenance. In this regard, a recent publication identified a process of cellular cannibalism as potentially providing the energy necessary for senescent cell survival [
<xref rid="B51-ijms-21-01427" ref-type="bibr">51</xref>
].</p>
</sec>
<sec id="sec4-ijms-21-01427">
<title>4. Materials and Methods</title>
<sec id="sec4dot1-ijms-21-01427">
<title>4.1. Cell Culture and Drug Treatment</title>
<p>The wild-type (WT) TP53 H460 cell lung cancer and HCT116 cell lines were generously provided by Dr. Richard Moran and Dr. Sarah Spiegel, respectively, at Virginia Commonwealth University. H460 and 4T1 cells were cultured in Dulbecco’s Modified Eagle Medium (DMEM), and HCT-116 cells were cultured in RPMI both supplemented with 10% (
<italic>v</italic>
/
<italic>v</italic>
) fetal bovine serum (Thermo Scientific, SH30066.03), 100 U/mL penicillin G sodium (Invitrogen, 15140–122), and 100 μg/mL streptomycin sulfate (Invitrogen, 15140–122). Cells were maintained at 37 °C under a humidified, 5% CO2 atmosphere at sub-confluent densities.</p>
<p>The ATG5-knocked down H460, HCT-116, and 4T1 variants were generated as follows: mission shRNA bacterial stocks for ATG5 were purchased from Sigma-Aldrich (TRCN00151963), and lentivirus generation was conducted in the HEK 293TN cells. Co-transfection was performed using lipofectamine (Invitrogen, 11668–019) with a packaging mixture of psPAX2 and pMD2.G constructs (Addgene, 12260, 12259). After 48 h, viruses shed into the media were collected and used to infect cells under ultrasonic centrifugation for 2 hours. Selection was performed in puromycin (Sigma-Aldrich, P8833) (1–2 μg/mL).</p>
<p>H460 LC3-GFP were generated previously [
<xref rid="B16-ijms-21-01427" ref-type="bibr">16</xref>
]. In brief, cells were transfected with GFP-LC3 (Addgene, 22405) using lipofectamine (Invitrogen, 11668–019). Cells were fixed and fluorescence visualized using an Olympus inverted microscope (20X objective, Q-Color3™ Olympus Camera; Olympus, Tokyo, Japan). The number of LC3-GFP puncta for each cell was quantified.</p>
<p>At all etoposide (Sigma-Aldrich, E1383) concentrations, H460 cells were exposed to the drug-containing medium for 24 hours, followed by replacement with fresh medium. The 4T1 cells were exposed to doxorubicin (Tocris, 2252) for 2 hours, washed with phosphate-buffered saline (PBS), and supplemented with fresh medium. Incubation with chloroquine (CQ, 5 or 10 µM) or bafilomycin A1 (Baf, 5 nM) was utilized to interfere with lysosomal acidification and autophagosome/lysosome fusion. Cells were treated with the autophagy inhibitors for 3 hours prior to the subsequent exposure to etoposide, doxorubicin, or radiation and the autophagy inhibitor for an additional 24 hours to ensure blockade of autophagy. All drugs were protected from light during handling.</p>
</sec>
<sec id="sec4dot2-ijms-21-01427">
<title>4.2. Growth Inhibition and Clonogenic Survival</title>
<p>Growth curves were generated based on cell viability as assessed by Trypan blue exclusion. Cells were seeded, treated (on day 0), and counted at the indicated time points following the removal of the drug from the medium. For clonogenic assays in H460 cells, cells were seeded, pre-treated with CQ (5 or 10 µM) or Baf (5 nM) for 3 h, then treated with etoposide (0.25, 0.5, 1.0, or 5 µM), doxorubicin (0.25, 0.5 µM), and radiation (2, 4, 6 Gy) alone or in combination with CQ or Baf. Drugs were then removed and replaced with fresh media after 24 hours. Cells were incubated for 7 days, then fixed with methanol, stained with crystal violet, and counted (ColCount, Discovery Technology International).</p>
</sec>
<sec id="sec4dot3-ijms-21-01427">
<title>4.3. Analysis of Senescence and Autophagy by Flow Cytometry and Microscopy</title>
<p>All of the flow cytometry analyses were performed using BD FACSCanto II and BD FACSDiva software at the Virginia Commonwealth University Flow Cytometry Core Facility. For C
<sub>12</sub>
FDG (Life Technologies, D2893) and acridine orange analyses, 10,000 cells per replicate within the gated region were analyzed. Three replicates for each condition were analyzed in each independent experiment. Labeling procedures, gating, and analysis followed our previously published protocols with minor adjustment for the tested cell line [
<xref rid="B15-ijms-21-01427" ref-type="bibr">15</xref>
,
<xref rid="B16-ijms-21-01427" ref-type="bibr">16</xref>
,
<xref rid="B17-ijms-21-01427" ref-type="bibr">17</xref>
]. To measure acidic vesicle formation, cells were stained with 1 μg/mL acridine orange for 20 min at 37 °C, washed with PBS, and visualized under a fluorescent microscope (20X objective, Q-Color3™ Olympus Camera; Olympus, Tokyo, Japan) or quantified using flow cytometry. For β-galactosidase and C
<sub>12</sub>
FDG staining, β-galactosidase labeling was performed as previously described by Dimri et al. [
<xref rid="B52-ijms-21-01427" ref-type="bibr">52</xref>
] and in our previous publications [
<xref rid="B15-ijms-21-01427" ref-type="bibr">15</xref>
,
<xref rid="B16-ijms-21-01427" ref-type="bibr">16</xref>
,
<xref rid="B17-ijms-21-01427" ref-type="bibr">17</xref>
]. Phase contrast images were taken using an Olympus inverted microscope (20X objective, Q-Color3™ Olympus Camera; Olympus, Tokyo, Japan). The C
<sub>12</sub>
FDG staining protocol was adopted from Debacq-Chainiaux et al. [
<xref rid="B24-ijms-21-01427" ref-type="bibr">24</xref>
].</p>
</sec>
<sec id="sec4dot4-ijms-21-01427">
<title>4.4. Western Blotting</title>
<p>Western blotting was performed as previously described [
<xref rid="B16-ijms-21-01427" ref-type="bibr">16</xref>
]. Primary antibodies were used at a 1:1000 dilution except for GAPDH (1:2000-1:8000 dilutions). Primary antibodies: SQSTM1/p62 (BD Biosciences, 610497), ATG5 (Cell Signaling Technology, 2630), LC3B (Cell Signaling Technology, 3868).</p>
</sec>
<sec id="sec4dot5-ijms-21-01427">
<title>4.5. Analysis of Apoptotic Cell Death</title>
<p>Apoptosis was monitored utilizing annexin-V-FITC/propidium iodide (PI) staining. H460 and HCT116 cells were stained 48 h post-treatment according to manufacturer protocol (Annexin V-FITC Apoptosis Detection Kit; BD Biosciences, 556547), and fluorescence was measured utilizing flow cytometry. Apoptosis in 4T1 cells was measured utilizing APC/annexin V-FITC with 7-AAD staining 24 h post-drug removal according to manufacturer protocol (APC/annexin V-FITC with 7-AAD Apoptosis Detection Kit: BioLegend, 640930). Fluorescence was measured using flow cytometry. All of the flow cytometry analyses were performed using BD FACSCanto II and BD FACSDiva software at the Virginia Commonwealth University Flow Cytometry Core Facility. For annexin-V-FITC/PI analysis and APC/annexin-V-FITC with 7-AAD analysis, 10,000 cells per replicate within the gated region were analyzed. Three replicates for each condition were analyzed in each independent experiment.</p>
</sec>
<sec id="sec4dot6-ijms-21-01427">
<title>4.6. Statistical Analysis</title>
<p>GraphPad Prism 5.0 software was utilized to conduct statistical analysis. Data are shown as mean ± SEM from at least three separate experiments unless indicated otherwise. Statistical comparisons between groups were assessed via one-way ANOVA followed by Bonferroni post-hoc test and two-tailed
<italic>t</italic>
tests;
<italic>p</italic>
-value < 0.05 was considered statistically significant.</p>
</sec>
</sec>
<sec sec-type="conclusions" id="sec5-ijms-21-01427">
<title>5. Conclusions</title>
<p>Taken together, the current studies indicate that neither the induction of senescence, the maintenance of senescence, nor the recovery from senescence appear to be dependent on the energetics and the metabolic precursor generation associated with the promotion of autophagy that occurs in response to anticancer therapy. These observations are more likely to be true when the therapy-induced autophagy exhibits a non-protective function, where inhibition of therapy-induced autophagy does not significantly affect the survival of tumor cells. These observations represent a foundation for further studies to elucidate the precise cellular mechanism(s) that are associated with maintaining the survival of senescent tumor cells and/or facilitating their potential recovery from a state of dormancy.</p>
</sec>
</body>
<back>
<ack>
<title>Acknowledgments</title>
<p>The authors would like to thank Khushboo Sharma for assistance with generating the shControl, shAtg5 and GFP-LC3 H460 cells and Julie Farnsworth for her continuous help with flow cytometry analysis.</p>
</ack>
<notes>
<title>Author Contributions</title>
<p>Conceptualization and experimental design are by T.S. and D.A.G., T.S., L.T.-M., N.H.P., E.K.C.J. and M.A. contributed to conduction of the experiments, validation, data curation and analysis. TS and DAG wrote the manuscript. This work was completed under the supervision of D.A.G. All authors have read and agreed to the published version of the manuscript.</p>
</notes>
<notes>
<title>Funding</title>
<p>Work in Dr. Gewirtz’s laboratory was supported by the Office of the Assistant Secretary of Defense for Health Affairs through the Breast Cancer Research Program [Grant no. W81XWH-14-1-0088 (DAG)] and Massey Center Support Grant P30 CA016059. Services and products in support of the flow cytometry analyses in this research project were generated by the VCU Massey Cancer Center Flow Cytometry Shared Resource, supported, in part, with funding from NIH-NCI Cancer Center Support Grant P30 CA016059.</p>
</notes>
<notes notes-type="COI-statement">
<title>Conflicts of Interest</title>
<p>The authors declare no conflict of interest. The funders had no role in the design of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, or in the decision to publish the results.</p>
</notes>
<ref-list>
<title>References</title>
<ref id="B1-ijms-21-01427">
<label>1.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Ewald</surname>
<given-names>J.A.</given-names>
</name>
<name>
<surname>Desotelle</surname>
<given-names>J.A.</given-names>
</name>
<name>
<surname>Wilding</surname>
<given-names>G.</given-names>
</name>
<name>
<surname>Jarrard</surname>
<given-names>D.F.</given-names>
</name>
</person-group>
<article-title>Therapy-Induced Senescence in Cancer</article-title>
<source>J. Natl. Cancer Inst.</source>
<year>2010</year>
<volume>102</volume>
<fpage>1536</fpage>
<lpage>1546</lpage>
<pub-id pub-id-type="doi">10.1093/jnci/djq364</pub-id>
<pub-id pub-id-type="pmid">20858887</pub-id>
</element-citation>
</ref>
<ref id="B2-ijms-21-01427">
<label>2.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Gewirtz</surname>
<given-names>D.A.</given-names>
</name>
<name>
<surname>Holt</surname>
<given-names>S.E.</given-names>
</name>
<name>
<surname>Elmore</surname>
<given-names>L.W.</given-names>
</name>
</person-group>
<article-title>Accelerated senescence: An emerging role in tumor cell response to chemotherapy and radiation</article-title>
<source>Biochem. Pharmacol.</source>
<year>2008</year>
<volume>76</volume>
<fpage>947</fpage>
<lpage>957</lpage>
<pub-id pub-id-type="doi">10.1016/j.bcp.2008.06.024</pub-id>
<pub-id pub-id-type="pmid">18657518</pub-id>
</element-citation>
</ref>
<ref id="B3-ijms-21-01427">
<label>3.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Hernandez-Segura</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Nehme</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Demaria</surname>
<given-names>M.</given-names>
</name>
</person-group>
<article-title>Hallmarks of Cellular Senescence</article-title>
<source>Trends Cell Biol.</source>
<year>2018</year>
<volume>28</volume>
<fpage>436</fpage>
<lpage>453</lpage>
<pub-id pub-id-type="doi">10.1016/j.tcb.2018.02.001</pub-id>
<pub-id pub-id-type="pmid">29477613</pub-id>
</element-citation>
</ref>
<ref id="B4-ijms-21-01427">
<label>4.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Lee</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Lee</surname>
<given-names>J.S.</given-names>
</name>
</person-group>
<article-title>Cellular senescence: A promising strategy for cancer therapy</article-title>
<source>BMB Rep.</source>
<year>2019</year>
<volume>52</volume>
<fpage>35</fpage>
<lpage>41</lpage>
<pub-id pub-id-type="doi">10.5483/BMBRep.2019.52.1.294</pub-id>
<pub-id pub-id-type="pmid">30526771</pub-id>
</element-citation>
</ref>
<ref id="B5-ijms-21-01427">
<label>5.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Chakradeo</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Elmore</surname>
<given-names>L.W.</given-names>
</name>
<name>
<surname>Gewirtz</surname>
<given-names>D.A.</given-names>
</name>
</person-group>
<article-title>Is Senescence Reversible?</article-title>
<source>Curr. Drug Targets</source>
<year>2016</year>
<volume>17</volume>
<fpage>460</fpage>
<lpage>466</lpage>
<pub-id pub-id-type="doi">10.2174/1389450116666150825113500</pub-id>
<pub-id pub-id-type="pmid">26302802</pub-id>
</element-citation>
</ref>
<ref id="B6-ijms-21-01427">
<label>6.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Saleh</surname>
<given-names>T.</given-names>
</name>
<name>
<surname>Tyutyunyk-Massey</surname>
<given-names>L.</given-names>
</name>
<name>
<surname>Murray</surname>
<given-names>G.F.</given-names>
</name>
<name>
<surname>Alotaibi</surname>
<given-names>M.R.</given-names>
</name>
<name>
<surname>Kawale</surname>
<given-names>A.S.</given-names>
</name>
<name>
<surname>Elsayed</surname>
<given-names>Z.</given-names>
</name>
<name>
<surname>Henderson</surname>
<given-names>S.C.</given-names>
</name>
<name>
<surname>Yakovlev</surname>
<given-names>V.</given-names>
</name>
<name>
<surname>Elmore</surname>
<given-names>L.W.</given-names>
</name>
<name>
<surname>Toor</surname>
<given-names>A.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Tumor cell escape from therapy-induced senescence</article-title>
<source>Biochem. Pharmacol.</source>
<year>2019</year>
<volume>162</volume>
<fpage>202</fpage>
<lpage>212</lpage>
<pub-id pub-id-type="doi">10.1016/j.bcp.2018.12.013</pub-id>
<pub-id pub-id-type="pmid">30576620</pub-id>
</element-citation>
</ref>
<ref id="B7-ijms-21-01427">
<label>7.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Vijayaraghavan</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Karakas</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>Doostan</surname>
<given-names>I.</given-names>
</name>
<name>
<surname>Chen</surname>
<given-names>X.</given-names>
</name>
<name>
<surname>Bui</surname>
<given-names>T.</given-names>
</name>
<name>
<surname>Yi</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Raghavendra</surname>
<given-names>A.S.</given-names>
</name>
<name>
<surname>Zhao</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Bashour</surname>
<given-names>S.I.</given-names>
</name>
<name>
<surname>Ibrahim</surname>
<given-names>N.K.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>CDK4/6 and autophagy inhibitors synergistically induce senescence in Rb positive cytoplasmic cyclin e negative cancers</article-title>
<source>Nat. Commun.</source>
<year>2017</year>
<volume>8</volume>
<fpage>1</fpage>
<lpage>17</lpage>
<pub-id pub-id-type="doi">10.1038/ncomms15916</pub-id>
<pub-id pub-id-type="pmid">28232747</pub-id>
</element-citation>
</ref>
<ref id="B8-ijms-21-01427">
<label>8.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Milanovic</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Fan</surname>
<given-names>D.N.Y.</given-names>
</name>
<name>
<surname>Belenki</surname>
<given-names>D.</given-names>
</name>
<name>
<surname>Däbritz</surname>
<given-names>J.H.M.</given-names>
</name>
<name>
<surname>Zhao</surname>
<given-names>Z.</given-names>
</name>
<name>
<surname>Yu</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Dörr</surname>
<given-names>J.R.</given-names>
</name>
<name>
<surname>Dimitrova</surname>
<given-names>L.</given-names>
</name>
<name>
<surname>Lenze</surname>
<given-names>D.</given-names>
</name>
<name>
<surname>Monteiro Barbosa</surname>
<given-names>I.A.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Senescence-associated reprogramming promotes cancer stemness</article-title>
<source>Nature</source>
<year>2018</year>
<volume>553</volume>
<fpage>96</fpage>
<lpage>100</lpage>
<pub-id pub-id-type="doi">10.1038/nature25167</pub-id>
<pub-id pub-id-type="pmid">29258294</pub-id>
</element-citation>
</ref>
<ref id="B9-ijms-21-01427">
<label>9.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Demaria</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Leary</surname>
<given-names>M.N.O.</given-names>
</name>
<name>
<surname>Chang</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Shao</surname>
<given-names>L.</given-names>
</name>
<name>
<surname>Liu</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Alimirah</surname>
<given-names>F.</given-names>
</name>
<name>
<surname>Koenig</surname>
<given-names>K.</given-names>
</name>
<name>
<surname>Le</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>Mitin</surname>
<given-names>N.</given-names>
</name>
<name>
<surname>Deal</surname>
<given-names>A.M.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Cellular Senescence Promotes Adverse Effects of Chemotherapy and Cancer Relapse</article-title>
<source>Cancer Discov.</source>
<year>2017</year>
<volume>7</volume>
<fpage>165</fpage>
<lpage>177</lpage>
<pub-id pub-id-type="doi">10.1158/2159-8290.CD-16-0241</pub-id>
<pub-id pub-id-type="pmid">27979832</pub-id>
</element-citation>
</ref>
<ref id="B10-ijms-21-01427">
<label>10.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Lecot</surname>
<given-names>P.</given-names>
</name>
<name>
<surname>Alimirah</surname>
<given-names>F.</given-names>
</name>
<name>
<surname>Desprez</surname>
<given-names>P.</given-names>
</name>
<name>
<surname>Campisi</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Wiley</surname>
<given-names>C.</given-names>
</name>
</person-group>
<article-title>Context-dependent effects of cellular senescence in cancer development</article-title>
<source>Br. J. Cancer</source>
<year>2016</year>
<volume>114</volume>
<fpage>1180</fpage>
<lpage>1184</lpage>
<pub-id pub-id-type="doi">10.1038/bjc.2016.115</pub-id>
<pub-id pub-id-type="pmid">27140310</pub-id>
</element-citation>
</ref>
<ref id="B11-ijms-21-01427">
<label>11.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Saleh</surname>
<given-names>T.</given-names>
</name>
<name>
<surname>Tyutyunyk-Massey</surname>
<given-names>L.</given-names>
</name>
<name>
<surname>Gewirtz</surname>
<given-names>D.A.</given-names>
</name>
</person-group>
<article-title>Tumor Cell Escape from Therapy-Induced Senescence as a Model of Disease Recurrence after Dormancy</article-title>
<source>Cancer Res.</source>
<year>2019</year>
<volume>79</volume>
<fpage>1044</fpage>
<lpage>1046</lpage>
<pub-id pub-id-type="doi">10.1158/0008-5472.CAN-18-3437</pub-id>
<pub-id pub-id-type="pmid">30803994</pub-id>
</element-citation>
</ref>
<ref id="B12-ijms-21-01427">
<label>12.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Sosa</surname>
<given-names>M.S.</given-names>
</name>
<name>
<surname>Bragado</surname>
<given-names>P.</given-names>
</name>
<name>
<surname>Julio</surname>
<given-names>A.</given-names>
</name>
</person-group>
<article-title>Aguirre-Ghiso Mechanisms of disseminated cancer cell dormancy: An awakening field</article-title>
<source>Nat. Rev. Cancer</source>
<year>2014</year>
<volume>14</volume>
<fpage>611</fpage>
<lpage>622</lpage>
<pub-id pub-id-type="doi">10.1038/nrc3793</pub-id>
<pub-id pub-id-type="pmid">25118602</pub-id>
</element-citation>
</ref>
<ref id="B13-ijms-21-01427">
<label>13.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Thorburn</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Thamm</surname>
<given-names>D.H.</given-names>
</name>
<name>
<surname>Gustafson</surname>
<given-names>D.L.</given-names>
</name>
</person-group>
<article-title>Autophagy and Cancer Therapy</article-title>
<source>Mol. Pharmacol.</source>
<year>2014</year>
<volume>85</volume>
<fpage>830</fpage>
<lpage>838</lpage>
<pub-id pub-id-type="doi">10.1124/mol.114.091850</pub-id>
<pub-id pub-id-type="pmid">24574520</pub-id>
</element-citation>
</ref>
<ref id="B14-ijms-21-01427">
<label>14.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Gewirtz</surname>
<given-names>D.A.</given-names>
</name>
</person-group>
<article-title>Autophagy and Senescence in Cancer Therapy</article-title>
<source>J. Cell. Physiol.</source>
<year>2014</year>
<volume>229</volume>
<fpage>6</fpage>
<lpage>9</lpage>
<pub-id pub-id-type="doi">10.1002/jcp.24420</pub-id>
<pub-id pub-id-type="pmid">23794221</pub-id>
</element-citation>
</ref>
<ref id="B15-ijms-21-01427">
<label>15.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Goehe</surname>
<given-names>R.W.</given-names>
</name>
<name>
<surname>Di</surname>
<given-names>X.</given-names>
</name>
<name>
<surname>Sharma</surname>
<given-names>K.</given-names>
</name>
<name>
<surname>Bristol</surname>
<given-names>M.L.</given-names>
</name>
<name>
<surname>Henderson</surname>
<given-names>S.C.</given-names>
</name>
<name>
<surname>Valerie</surname>
<given-names>K.</given-names>
</name>
<name>
<surname>Rodier</surname>
<given-names>F.</given-names>
</name>
<name>
<surname>Davalos</surname>
<given-names>A.R.</given-names>
</name>
<name>
<surname>Gewirtz</surname>
<given-names>D.A.</given-names>
</name>
</person-group>
<article-title>The Autophagy-Senescence Connection in Chemotherapy: Must Tumor Cells (Self) Eat Before They Sleep?</article-title>
<source>J. Pharmacol. Exp. Ther.</source>
<year>2012</year>
<volume>343</volume>
<fpage>763</fpage>
<lpage>778</lpage>
<pub-id pub-id-type="doi">10.1124/jpet.112.197590</pub-id>
<pub-id pub-id-type="pmid">22927544</pub-id>
</element-citation>
</ref>
<ref id="B16-ijms-21-01427">
<label>16.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Sharma</surname>
<given-names>K.</given-names>
</name>
<name>
<surname>Goehe</surname>
<given-names>R.W.</given-names>
</name>
<name>
<surname>Di</surname>
<given-names>X.</given-names>
</name>
<name>
<surname>Hicks</surname>
<given-names>M.A.</given-names>
</name>
<name>
<surname>Torti</surname>
<given-names>S.V.</given-names>
</name>
<name>
<surname>Torti</surname>
<given-names>F.M.</given-names>
</name>
<name>
<surname>Harada</surname>
<given-names>H.</given-names>
</name>
<name>
<surname>Gewirtz</surname>
<given-names>D.A.</given-names>
</name>
</person-group>
<article-title>A novel cytostatic form of autophagy in sensitization of non-small cell lung cancer cells to radiation by vitamin D and the vitamin D analog, EB 1089</article-title>
<source>Autophagy</source>
<year>2014</year>
<volume>10</volume>
<fpage>2346</fpage>
<lpage>2361</lpage>
<pub-id pub-id-type="doi">10.4161/15548627.2014.993283</pub-id>
<pub-id pub-id-type="pmid">25629933</pub-id>
</element-citation>
</ref>
<ref id="B17-ijms-21-01427">
<label>17.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Alotaibi</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Sharma</surname>
<given-names>K.</given-names>
</name>
<name>
<surname>Saleh</surname>
<given-names>T.</given-names>
</name>
<name>
<surname>Povirk</surname>
<given-names>L.F.</given-names>
</name>
<name>
<surname>Hendrickson</surname>
<given-names>E.A.</given-names>
</name>
<name>
<surname>Gewirtz</surname>
<given-names>D.A.</given-names>
</name>
</person-group>
<article-title>Radiosensitization by PARP Inhibition in DNA Repair Proficient and Deficient Tumor Cells: Proliferative Recovery in Senescent Cells</article-title>
<source>Radiat. Res.</source>
<year>2016</year>
<volume>185</volume>
<fpage>229</fpage>
<lpage>245</lpage>
<pub-id pub-id-type="doi">10.1667/RR14202.1</pub-id>
<pub-id pub-id-type="pmid">26934368</pub-id>
</element-citation>
</ref>
<ref id="B18-ijms-21-01427">
<label>18.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Mar</surname>
<given-names>F.A.</given-names>
</name>
<name>
<surname>Debnath</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Stohr</surname>
<given-names>B.A.</given-names>
</name>
</person-group>
<article-title>Autophagy-independent senescence and genome instability driven by targeted telomere dysfunction</article-title>
<source>Autophagy</source>
<year>2015</year>
<volume>11</volume>
<fpage>527</fpage>
<lpage>537</lpage>
<pub-id pub-id-type="doi">10.1080/15548627.2015.1017189</pub-id>
<pub-id pub-id-type="pmid">25751002</pub-id>
</element-citation>
</ref>
<ref id="B19-ijms-21-01427">
<label>19.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Kang</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>Elledge</surname>
<given-names>S.J.</given-names>
</name>
</person-group>
<article-title>How autophagy both activates and inhibits cellular senescence</article-title>
<source>Autophagy</source>
<year>2016</year>
<volume>12</volume>
<fpage>898</fpage>
<lpage>899</lpage>
<pub-id pub-id-type="doi">10.1080/15548627.2015.1121361</pub-id>
<pub-id pub-id-type="pmid">27129029</pub-id>
</element-citation>
</ref>
<ref id="B20-ijms-21-01427">
<label>20.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>So</surname>
<given-names>K.S.</given-names>
</name>
<name>
<surname>Kim</surname>
<given-names>C.H.</given-names>
</name>
<name>
<surname>Rho</surname>
<given-names>J.K.</given-names>
</name>
<name>
<surname>Kim</surname>
<given-names>S.Y.</given-names>
</name>
<name>
<surname>Choi</surname>
<given-names>Y.J.</given-names>
</name>
<name>
<surname>Song</surname>
<given-names>J.S.</given-names>
</name>
<name>
<surname>Kim</surname>
<given-names>W.S.</given-names>
</name>
<name>
<surname>Choi</surname>
<given-names>C.M.</given-names>
</name>
<name>
<surname>Chun</surname>
<given-names>Y.J.</given-names>
</name>
<name>
<surname>Lee</surname>
<given-names>J.C.</given-names>
</name>
</person-group>
<article-title>Autophagosome-mediated EGFR down-regulation induced by the CK2 inhibitor enhances the efficacy of EGFR-TKI on EGFR-mutant lung cancer cells with resistance by T790M</article-title>
<source>PLoS ONE</source>
<year>2014</year>
<volume>9</volume>
<elocation-id>e114000</elocation-id>
<pub-id pub-id-type="doi">10.1371/journal.pone.0114000</pub-id>
<pub-id pub-id-type="pmid">25486409</pub-id>
</element-citation>
</ref>
<ref id="B21-ijms-21-01427">
<label>21.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Sui</surname>
<given-names>X.</given-names>
</name>
<name>
<surname>Chen</surname>
<given-names>R.</given-names>
</name>
<name>
<surname>Wang</surname>
<given-names>Z.</given-names>
</name>
<name>
<surname>Huang</surname>
<given-names>Z.</given-names>
</name>
<name>
<surname>Kong</surname>
<given-names>N.</given-names>
</name>
<name>
<surname>Zhang</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Han</surname>
<given-names>W.</given-names>
</name>
<name>
<surname>Lou</surname>
<given-names>F.</given-names>
</name>
<name>
<surname>Yang</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Zhang</surname>
<given-names>Q.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Autophagy and chemotherapy resistance: A promising therapeutic target for cancer treatment</article-title>
<source>Cell Death Dis.</source>
<year>2013</year>
<volume>4</volume>
<fpage>e838</fpage>
<pub-id pub-id-type="doi">10.1038/cddis.2013.350</pub-id>
<pub-id pub-id-type="pmid">24113172</pub-id>
</element-citation>
</ref>
<ref id="B22-ijms-21-01427">
<label>22.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Duffy</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Le</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Sausville</surname>
<given-names>E.</given-names>
</name>
<name>
<surname>Emadi</surname>
<given-names>A.</given-names>
</name>
</person-group>
<article-title>Autophagy modulation: A target for cancer treatment development</article-title>
<source>Cancer Chemother. Pharmacol.</source>
<year>2015</year>
<volume>75</volume>
<fpage>439</fpage>
<lpage>447</lpage>
<pub-id pub-id-type="doi">10.1007/s00280-014-2637-z</pub-id>
<pub-id pub-id-type="pmid">25422156</pub-id>
</element-citation>
</ref>
<ref id="B23-ijms-21-01427">
<label>23.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Gewirtz</surname>
<given-names>D.A.</given-names>
</name>
</person-group>
<article-title>Cytoprotective and non-protective autophagy in cancer therapy</article-title>
<source>Autophagy</source>
<year>2013</year>
<volume>9</volume>
<fpage>1263</fpage>
<lpage>1265</lpage>
<pub-id pub-id-type="doi">10.4161/auto.25233</pub-id>
<pub-id pub-id-type="pmid">23800720</pub-id>
</element-citation>
</ref>
<ref id="B24-ijms-21-01427">
<label>24.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Debacq-Chainiaux</surname>
<given-names>F.</given-names>
</name>
<name>
<surname>Erusalimsky</surname>
<given-names>J.D.</given-names>
</name>
<name>
<surname>Campisi</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Toussaint</surname>
<given-names>O.</given-names>
</name>
</person-group>
<article-title>Protocols to detect senescence-associated beta-galactosidase (SA-betagal) activity, a biomarker of senescent cells in culture and in vivo</article-title>
<source>Nat. Protoc.</source>
<year>2009</year>
<volume>4</volume>
<fpage>1798</fpage>
<lpage>1806</lpage>
<pub-id pub-id-type="doi">10.1038/nprot.2009.191</pub-id>
<pub-id pub-id-type="pmid">20010931</pub-id>
</element-citation>
</ref>
<ref id="B25-ijms-21-01427">
<label>25.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Kaminskyy</surname>
<given-names>V.O.</given-names>
</name>
<name>
<surname>Piskunova</surname>
<given-names>T.</given-names>
</name>
<name>
<surname>Zborovskaya</surname>
<given-names>I.B.</given-names>
</name>
<name>
<surname>Tchevkina</surname>
<given-names>E.M.</given-names>
</name>
<name>
<surname>Zhivotovsky</surname>
<given-names>B.</given-names>
</name>
</person-group>
<article-title>Suppression of basal autophagy reduces lung cancer cell proliferation and enhances caspase-dependent and -independent apoptosis by stimulating ROS formation</article-title>
<source>Autophagy</source>
<year>2012</year>
<volume>8</volume>
<fpage>1032</fpage>
<lpage>1044</lpage>
<pub-id pub-id-type="doi">10.4161/auto.20123</pub-id>
<pub-id pub-id-type="pmid">22562073</pub-id>
</element-citation>
</ref>
<ref id="B26-ijms-21-01427">
<label>26.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Boya</surname>
<given-names>P.</given-names>
</name>
<name>
<surname>Gonzalez-Polo</surname>
<given-names>R.A.</given-names>
</name>
<name>
<surname>Casares</surname>
<given-names>N.</given-names>
</name>
<name>
<surname>Perfettini</surname>
<given-names>J.L.</given-names>
</name>
<name>
<surname>Dessen</surname>
<given-names>P.</given-names>
</name>
<name>
<surname>Larochette</surname>
<given-names>N.</given-names>
</name>
<name>
<surname>Métivier</surname>
<given-names>D.</given-names>
</name>
<name>
<surname>Meley</surname>
<given-names>D.</given-names>
</name>
<name>
<surname>Souquere</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Yoshimori</surname>
<given-names>T.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Inhibition of Macroautophagy Triggers Apoptosis</article-title>
<source>Mol. Cell. Biol.</source>
<year>2005</year>
<volume>25</volume>
<fpage>1025</fpage>
<lpage>1040</lpage>
<pub-id pub-id-type="doi">10.1128/MCB.25.3.1025-1040.2005</pub-id>
<pub-id pub-id-type="pmid">15657430</pub-id>
</element-citation>
</ref>
<ref id="B27-ijms-21-01427">
<label>27.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Sharma</surname>
<given-names>N.</given-names>
</name>
<name>
<surname>Thomas</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Golden</surname>
<given-names>E.B.</given-names>
</name>
<name>
<surname>Hofman</surname>
<given-names>F.M.</given-names>
</name>
<name>
<surname>Chen</surname>
<given-names>T.C.</given-names>
</name>
<name>
<surname>Petasis</surname>
<given-names>N.A.</given-names>
</name>
<name>
<surname>Schönthal</surname>
<given-names>A.H.</given-names>
</name>
<name>
<surname>Louie</surname>
<given-names>S.G.</given-names>
</name>
</person-group>
<article-title>Inhibition of autophagy and induction of breast cancer cell death by mefloquine, an antimalarial agent</article-title>
<source>Cancer Lett.</source>
<year>2012</year>
<volume>326</volume>
<fpage>143</fpage>
<lpage>154</lpage>
<pub-id pub-id-type="doi">10.1016/j.canlet.2012.07.029</pub-id>
<pub-id pub-id-type="pmid">22863539</pub-id>
</element-citation>
</ref>
<ref id="B28-ijms-21-01427">
<label>28.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Ren</surname>
<given-names>J.-H.H.</given-names>
</name>
<name>
<surname>He</surname>
<given-names>W.-S.S.</given-names>
</name>
<name>
<surname>Nong</surname>
<given-names>L.</given-names>
</name>
<name>
<surname>Zhu</surname>
<given-names>Q.-Y.Y.</given-names>
</name>
<name>
<surname>Hu</surname>
<given-names>K.</given-names>
</name>
<name>
<surname>Zhang</surname>
<given-names>R.-G.G.</given-names>
</name>
<name>
<surname>Huang</surname>
<given-names>L.-L.L.</given-names>
</name>
<name>
<surname>Zhu</surname>
<given-names>F.</given-names>
</name>
<name>
<surname>Wu</surname>
<given-names>G.</given-names>
</name>
</person-group>
<article-title>Acquired cisplatin resistance in human lung adenocarcinoma cells is associated with enhanced autophagy. TL-25</article-title>
<source>Cancer Biother. Radiopharm.</source>
<year>2010</year>
<volume>25 VN-r</volume>
<fpage>75</fpage>
<lpage>80</lpage>
<pub-id pub-id-type="doi">10.1089/cbr.2009.0701</pub-id>
<pub-id pub-id-type="pmid">20187799</pub-id>
</element-citation>
</ref>
<ref id="B29-ijms-21-01427">
<label>29.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Ji</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>Zhang</surname>
<given-names>L.</given-names>
</name>
<name>
<surname>Cheng</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Patel</surname>
<given-names>R.</given-names>
</name>
<name>
<surname>Wu</surname>
<given-names>H.</given-names>
</name>
<name>
<surname>Zhang</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Wang</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Ji</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Belani</surname>
<given-names>C.P.</given-names>
</name>
<name>
<surname>Yang</surname>
<given-names>J.-M.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Induction of autophagy contributes to crizotinib resistance in ALK-positive lung cancer</article-title>
<source>Cancer Biol. Ther.</source>
<year>2014</year>
<volume>15</volume>
<fpage>570</fpage>
<lpage>577</lpage>
<pub-id pub-id-type="doi">10.4161/cbt.28162</pub-id>
<pub-id pub-id-type="pmid">24556908</pub-id>
</element-citation>
</ref>
<ref id="B30-ijms-21-01427">
<label>30.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Fröhlich</surname>
<given-names>E.</given-names>
</name>
<name>
<surname>Meindl</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>Roblegg</surname>
<given-names>E.</given-names>
</name>
<name>
<surname>Ebner</surname>
<given-names>B.</given-names>
</name>
<name>
<surname>Absenger</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Pieber</surname>
<given-names>T.R.</given-names>
</name>
</person-group>
<article-title>Action of polystyrene nanoparticles of different sizes on lysosomal function and integrity</article-title>
<source>Part. Fibre Toxicol.</source>
<year>2012</year>
<volume>9</volume>
<fpage>1</fpage>
<lpage>13</lpage>
<pub-id pub-id-type="doi">10.1186/1743-8977-9-26</pub-id>
<pub-id pub-id-type="pmid">22239852</pub-id>
</element-citation>
</ref>
<ref id="B31-ijms-21-01427">
<label>31.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Wang</surname>
<given-names>X.</given-names>
</name>
<name>
<surname>Zhang</surname>
<given-names>X.</given-names>
</name>
<name>
<surname>Chu</surname>
<given-names>E.S.H.</given-names>
</name>
<name>
<surname>Chen</surname>
<given-names>X.</given-names>
</name>
<name>
<surname>Kang</surname>
<given-names>W.</given-names>
</name>
<name>
<surname>Wu</surname>
<given-names>F.</given-names>
</name>
<name>
<surname>To</surname>
<given-names>K.F.</given-names>
</name>
<name>
<surname>Wong</surname>
<given-names>V.W.S.</given-names>
</name>
<name>
<surname>Chan</surname>
<given-names>H.L.Y.</given-names>
</name>
<name>
<surname>Chan</surname>
<given-names>M.T.V.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Defective lysosomal clearance of autophagosomes and its clinical implications in nonalcoholic steatohepatitis</article-title>
<source>FASEB J.</source>
<year>2018</year>
<volume>32</volume>
<fpage>37</fpage>
<lpage>51</lpage>
<pub-id pub-id-type="doi">10.1096/fj.201601393R</pub-id>
<pub-id pub-id-type="pmid">28842428</pub-id>
</element-citation>
</ref>
<ref id="B32-ijms-21-01427">
<label>32.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Bristol</surname>
<given-names>M.L.</given-names>
</name>
<name>
<surname>Emery</surname>
<given-names>S.M.</given-names>
</name>
<name>
<surname>Maycotte</surname>
<given-names>P.</given-names>
</name>
<name>
<surname>Thorburn</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Chakradeo</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Gewirtz</surname>
<given-names>D.A.</given-names>
</name>
</person-group>
<article-title>Autophagy inhibition for chemosensitization and radiosensitization in cancer: Do the preclinical data support this therapeutic strategy?</article-title>
<source>J. Pharmacol. Exp. Ther.</source>
<year>2013</year>
<volume>344</volume>
<fpage>544</fpage>
<lpage>552</lpage>
<pub-id pub-id-type="doi">10.1124/jpet.112.199802</pub-id>
<pub-id pub-id-type="pmid">23291713</pub-id>
</element-citation>
</ref>
<ref id="B33-ijms-21-01427">
<label>33.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Vicencio</surname>
<given-names>J.M.</given-names>
</name>
<name>
<surname>Galluzzi</surname>
<given-names>L.</given-names>
</name>
<name>
<surname>Tajeddine</surname>
<given-names>N.</given-names>
</name>
<name>
<surname>Ortiz</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>Criollo</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Tasdemir</surname>
<given-names>E.</given-names>
</name>
<name>
<surname>Morselli</surname>
<given-names>E.</given-names>
</name>
<name>
<surname>Ben Younes</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Maiuri</surname>
<given-names>M.C.</given-names>
</name>
<name>
<surname>Lavandero</surname>
<given-names>S.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Senescence, apoptosis or autophagy? When a damaged cell must decide its path</article-title>
<source>Gerontology</source>
<year>2008</year>
<volume>54</volume>
<fpage>92</fpage>
<lpage>99</lpage>
<pub-id pub-id-type="doi">10.1159/000129697</pub-id>
<pub-id pub-id-type="pmid">18451641</pub-id>
</element-citation>
</ref>
<ref id="B34-ijms-21-01427">
<label>34.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Eapen</surname>
<given-names>V.V.</given-names>
</name>
<name>
<surname>Waterman</surname>
<given-names>D.P.</given-names>
</name>
<name>
<surname>Bernard</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Schiffmann</surname>
<given-names>N.</given-names>
</name>
<name>
<surname>Sayas</surname>
<given-names>E.</given-names>
</name>
<name>
<surname>Kamber</surname>
<given-names>R.</given-names>
</name>
<name>
<surname>Lemos</surname>
<given-names>B.</given-names>
</name>
<name>
<surname>Memisoglu</surname>
<given-names>G.</given-names>
</name>
<name>
<surname>Ang</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Mazella</surname>
<given-names>A.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>A pathway of targeted autophagy is induced by DNA damage in budding yeast</article-title>
<source>Proc. Natl. Acad. Sci. USA</source>
<year>2017</year>
<volume>114</volume>
<fpage>1158</fpage>
<lpage>1167</lpage>
<pub-id pub-id-type="doi">10.1073/pnas.1614364114</pub-id>
<pub-id pub-id-type="pmid">28154131</pub-id>
</element-citation>
</ref>
<ref id="B35-ijms-21-01427">
<label>35.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Eliopoulos</surname>
<given-names>A.G.</given-names>
</name>
<name>
<surname>Havaki</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Gorgoulis</surname>
<given-names>V.G.</given-names>
</name>
</person-group>
<article-title>DNA damage response and autophagy: A meaningful partnership</article-title>
<source>Front. Genet.</source>
<year>2016</year>
<volume>7</volume>
<fpage>204</fpage>
<pub-id pub-id-type="doi">10.3389/fgene.2016.00204</pub-id>
<pub-id pub-id-type="pmid">27917193</pub-id>
</element-citation>
</ref>
<ref id="B36-ijms-21-01427">
<label>36.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Paglin</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Hollister</surname>
<given-names>T.</given-names>
</name>
<name>
<surname>Delohery</surname>
<given-names>T.</given-names>
</name>
<name>
<surname>Hackett</surname>
<given-names>N.</given-names>
</name>
<name>
<surname>McMahill</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Sphicas</surname>
<given-names>E.</given-names>
</name>
<name>
<surname>Domingo</surname>
<given-names>D.</given-names>
</name>
<name>
<surname>Yahalom</surname>
<given-names>J.</given-names>
</name>
</person-group>
<article-title>A novel response of cancer cells to radiation involves autophagy and formation of acidic vesicles</article-title>
<source>Cancer Res.</source>
<year>2001</year>
<volume>61</volume>
<fpage>439</fpage>
<lpage>444</lpage>
<pub-id pub-id-type="pmid">11212227</pub-id>
</element-citation>
</ref>
<ref id="B37-ijms-21-01427">
<label>37.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Guo</surname>
<given-names>L.</given-names>
</name>
<name>
<surname>Xie</surname>
<given-names>B.</given-names>
</name>
<name>
<surname>Mao</surname>
<given-names>Z.</given-names>
</name>
</person-group>
<article-title>Autophagy in premature senescent cells is activated via AMPK pathway</article-title>
<source>Int. J. Mol. Sci.</source>
<year>2012</year>
<volume>13</volume>
<fpage>3563</fpage>
<lpage>3582</lpage>
<pub-id pub-id-type="doi">10.3390/ijms13033563</pub-id>
<pub-id pub-id-type="pmid">22489168</pub-id>
</element-citation>
</ref>
<ref id="B38-ijms-21-01427">
<label>38.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Slobodnyuk</surname>
<given-names>K.</given-names>
</name>
<name>
<surname>Radic</surname>
<given-names>N.</given-names>
</name>
<name>
<surname>Llado</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Trempolec</surname>
<given-names>N.</given-names>
</name>
<name>
<surname>Zorzano</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Nebreda</surname>
<given-names>A.R.</given-names>
</name>
</person-group>
<article-title>Autophagy-induced senescence is regulated by p38 α signaling</article-title>
<source>Cell Death Dis.</source>
<year>2019</year>
<volume>10</volume>
<fpage>1</fpage>
<lpage>18</lpage>
<pub-id pub-id-type="doi">10.1038/s41419-019-1607-0</pub-id>
</element-citation>
</ref>
<ref id="B39-ijms-21-01427">
<label>39.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Young</surname>
<given-names>A.R.J.</given-names>
</name>
<name>
<surname>Narita</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Ferreira</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Kirschner</surname>
<given-names>K.</given-names>
</name>
<name>
<surname>Sadaie</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Darot</surname>
<given-names>J.F.J.</given-names>
</name>
<name>
<surname>Tavaré</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Arakawa</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Shimizu</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Watt</surname>
<given-names>F.M.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Autophagy mediates the mitotic senescence transition</article-title>
<source>Genes Dev.</source>
<year>2009</year>
<volume>23</volume>
<fpage>798</fpage>
<lpage>803</lpage>
<pub-id pub-id-type="doi">10.1101/gad.519709</pub-id>
<pub-id pub-id-type="pmid">19279323</pub-id>
</element-citation>
</ref>
<ref id="B40-ijms-21-01427">
<label>40.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Gerland</surname>
<given-names>L.M.</given-names>
</name>
<name>
<surname>Peyrol</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Lallemand</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>Branche</surname>
<given-names>R.</given-names>
</name>
<name>
<surname>Magaud</surname>
<given-names>J.P.</given-names>
</name>
<name>
<surname>Ffrench</surname>
<given-names>M.</given-names>
</name>
</person-group>
<article-title>Association of increased autophagic inclusions labeled for β-galactosidase with fibroblastic aging</article-title>
<source>Exp. Gerontol.</source>
<year>2003</year>
<volume>38</volume>
<fpage>887</fpage>
<lpage>895</lpage>
<pub-id pub-id-type="doi">10.1016/S0531-5565(03)00132-3</pub-id>
<pub-id pub-id-type="pmid">12915210</pub-id>
</element-citation>
</ref>
<ref id="B41-ijms-21-01427">
<label>41.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Saleh</surname>
<given-names>T.</given-names>
</name>
<name>
<surname>Cuttino</surname>
<given-names>L.</given-names>
</name>
<name>
<surname>Gewirtz</surname>
<given-names>D.A.</given-names>
</name>
</person-group>
<article-title>Autophagy is not uniformly cytoprotective: A personalized medicine approach for autophagy inhibition as a therapeutic strategy in non-small cell lung cancer</article-title>
<source>Biochim. Biophys. Acta-Gen. Subj.</source>
<year>2016</year>
<volume>1860</volume>
<fpage>2130</fpage>
<lpage>2136</lpage>
<pub-id pub-id-type="doi">10.1016/j.bbagen.2016.06.012</pub-id>
<pub-id pub-id-type="pmid">27316314</pub-id>
</element-citation>
</ref>
<ref id="B42-ijms-21-01427">
<label>42.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Kondo</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Kanzawa</surname>
<given-names>T.</given-names>
</name>
<name>
<surname>Sawaya</surname>
<given-names>R.</given-names>
</name>
<name>
<surname>Kondo</surname>
<given-names>S.</given-names>
</name>
</person-group>
<article-title>The role of autophagy in cancer development and response to therapy</article-title>
<source>Nat. Rev. Cancer</source>
<year>2005</year>
<volume>5</volume>
<fpage>726</fpage>
<lpage>734</lpage>
<pub-id pub-id-type="doi">10.1038/nrc1692</pub-id>
<pub-id pub-id-type="pmid">16148885</pub-id>
</element-citation>
</ref>
<ref id="B43-ijms-21-01427">
<label>43.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Janku</surname>
<given-names>F.</given-names>
</name>
<name>
<surname>McConkey</surname>
<given-names>D.J.</given-names>
</name>
<name>
<surname>Hong</surname>
<given-names>D.S.</given-names>
</name>
<name>
<surname>Kurzrock</surname>
<given-names>R.</given-names>
</name>
</person-group>
<article-title>Autophagy as a target for anticancer therapy</article-title>
<source>Nat. Rev. Clin. Oncol.</source>
<year>2011</year>
<volume>8</volume>
<fpage>528</fpage>
<lpage>539</lpage>
<pub-id pub-id-type="doi">10.1038/nrclinonc.2011.71</pub-id>
<pub-id pub-id-type="pmid">21587219</pub-id>
</element-citation>
</ref>
<ref id="B44-ijms-21-01427">
<label>44.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Gewirtz</surname>
<given-names>D.A.</given-names>
</name>
</person-group>
<article-title>The four faces of autophagy: Implications for cancer therapy</article-title>
<source>Cancer Res.</source>
<year>2014</year>
<volume>74</volume>
<fpage>647</fpage>
<lpage>651</lpage>
<pub-id pub-id-type="doi">10.1158/0008-5472.CAN-13-2966</pub-id>
<pub-id pub-id-type="pmid">24459182</pub-id>
</element-citation>
</ref>
<ref id="B45-ijms-21-01427">
<label>45.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>White</surname>
<given-names>E.</given-names>
</name>
</person-group>
<article-title>Autophagy and p53</article-title>
<source>Cold Spring Harb. Perspect. Med.</source>
<year>2016</year>
<volume>6</volume>
<fpage>a026120</fpage>
<pub-id pub-id-type="doi">10.1101/cshperspect.a026120</pub-id>
<pub-id pub-id-type="pmid">27037419</pub-id>
</element-citation>
</ref>
<ref id="B46-ijms-21-01427">
<label>46.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Chakradeo</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Sharma</surname>
<given-names>K.</given-names>
</name>
<name>
<surname>Alhaddad</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Bakhshwin</surname>
<given-names>D.</given-names>
</name>
<name>
<surname>Le</surname>
<given-names>N.</given-names>
</name>
<name>
<surname>Harada</surname>
<given-names>H.</given-names>
</name>
<name>
<surname>Nakajima</surname>
<given-names>W.</given-names>
</name>
<name>
<surname>Yeudall</surname>
<given-names>W.A.</given-names>
</name>
<name>
<surname>Torti</surname>
<given-names>S.V.</given-names>
</name>
<name>
<surname>Torti</surname>
<given-names>F.M.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Yet another function of p53—The switch that determines whether radiation-induced autophagy will be cytoprotective or non-protective: Implications for autophagy inhibition as a therapeutic strategy</article-title>
<source>Mol. Pharmacol.</source>
<year>2015</year>
<volume>87</volume>
<fpage>803</fpage>
<lpage>814</lpage>
<pub-id pub-id-type="doi">10.1124/mol.114.095273</pub-id>
<pub-id pub-id-type="pmid">25667224</pub-id>
</element-citation>
</ref>
<ref id="B47-ijms-21-01427">
<label>47.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Eng</surname>
<given-names>C.H.</given-names>
</name>
<name>
<surname>Wang</surname>
<given-names>Z.</given-names>
</name>
<name>
<surname>Tkach</surname>
<given-names>D.</given-names>
</name>
<name>
<surname>Toral-Barza</surname>
<given-names>L.</given-names>
</name>
<name>
<surname>Ugwonali</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Liu</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Fitzgerald</surname>
<given-names>S.L.</given-names>
</name>
<name>
<surname>George</surname>
<given-names>E.</given-names>
</name>
<name>
<surname>Frias</surname>
<given-names>E.</given-names>
</name>
<name>
<surname>Cochran</surname>
<given-names>N.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Macroautophagy is dispensable for growth of KRAS mutant tumors and chloroquine efficacy</article-title>
<source>Proc. Natl. Acad. Sci. USA</source>
<year>2016</year>
<volume>113</volume>
<fpage>182</fpage>
<lpage>187</lpage>
<pub-id pub-id-type="doi">10.1073/pnas.1515617113</pub-id>
<pub-id pub-id-type="pmid">26677873</pub-id>
</element-citation>
</ref>
<ref id="B48-ijms-21-01427">
<label>48.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Michaud</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Martins</surname>
<given-names>I.</given-names>
</name>
<name>
<surname>Sukkurwala</surname>
<given-names>A.Q.</given-names>
</name>
<name>
<surname>Adjemian</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Ma</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Pellegatti</surname>
<given-names>P.</given-names>
</name>
<name>
<surname>Shen</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Kepp</surname>
<given-names>O.</given-names>
</name>
<name>
<surname>Scoazec</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Mignot</surname>
<given-names>G.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Autophagy-Dependent Anticancer Immune Responses Induced by Chemotherapeutic Agents in Mice</article-title>
<source>Science</source>
<year>2011</year>
<volume>334</volume>
<fpage>1573</fpage>
<lpage>1578</lpage>
<pub-id pub-id-type="doi">10.1126/science.1208347</pub-id>
<pub-id pub-id-type="pmid">22174255</pub-id>
</element-citation>
</ref>
<ref id="B49-ijms-21-01427">
<label>49.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Martínez-Carreres</surname>
<given-names>L.</given-names>
</name>
<name>
<surname>Puyal</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Leal-Esteban</surname>
<given-names>L.C.</given-names>
</name>
<name>
<surname>Orpinell</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Castillo-Armengol</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Giralt</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Dergai</surname>
<given-names>O.</given-names>
</name>
<name>
<surname>Moret</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>Barquissau</surname>
<given-names>V.</given-names>
</name>
<name>
<surname>Nasrallah</surname>
<given-names>A.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>CDK4 regulates lysosomal function and mTORC1 activation to promote cancer cell survival</article-title>
<source>Cancer Res.</source>
<year>2019</year>
<volume>79</volume>
<fpage>5245</fpage>
<lpage>5259</lpage>
<pub-id pub-id-type="doi">10.1158/0008-5472.CAN-19-0708</pub-id>
<pub-id pub-id-type="pmid">31395606</pub-id>
</element-citation>
</ref>
<ref id="B50-ijms-21-01427">
<label>50.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Poklepovic</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Gewirtz</surname>
<given-names>D.A.</given-names>
</name>
</person-group>
<article-title>Outcome of early clinical trials of the combination of hydroxychloroquine with chemotherapy in cancer</article-title>
<source>Autophagy</source>
<year>2014</year>
<volume>10</volume>
<fpage>1478</fpage>
<lpage>1480</lpage>
<pub-id pub-id-type="doi">10.4161/auto.29428</pub-id>
<pub-id pub-id-type="pmid">24991829</pub-id>
</element-citation>
</ref>
<ref id="B51-ijms-21-01427">
<label>51.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Tonnessen-Murray</surname>
<given-names>C.A.</given-names>
</name>
<name>
<surname>Frey</surname>
<given-names>W.D.</given-names>
</name>
<name>
<surname>Rao</surname>
<given-names>S.G.</given-names>
</name>
<name>
<surname>Shahbandi</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Ungerleider</surname>
<given-names>N.A.</given-names>
</name>
<name>
<surname>Olayiwola</surname>
<given-names>J.O.</given-names>
</name>
<name>
<surname>Murray</surname>
<given-names>L.B.</given-names>
</name>
<name>
<surname>Vinson</surname>
<given-names>B.T.</given-names>
</name>
<name>
<surname>Chrisey</surname>
<given-names>D.B.</given-names>
</name>
<name>
<surname>Lord</surname>
<given-names>C.J.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Chemotherapy-induced senescent cancer cells engulf other cells to enhance their survival</article-title>
<source>J. Cell Biol.</source>
<year>2019</year>
<volume>218</volume>
<fpage>3827</fpage>
<lpage>3844</lpage>
<pub-id pub-id-type="doi">10.1083/jcb.201904051</pub-id>
<pub-id pub-id-type="pmid">31530580</pub-id>
</element-citation>
</ref>
<ref id="B52-ijms-21-01427">
<label>52.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Dimri</surname>
<given-names>G.P.</given-names>
</name>
<name>
<surname>Lee</surname>
<given-names>X.</given-names>
</name>
<name>
<surname>Basile</surname>
<given-names>G.</given-names>
</name>
<name>
<surname>Acosta</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Scott</surname>
<given-names>G.</given-names>
</name>
<name>
<surname>Roskelley</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>Medrano</surname>
<given-names>E.E.</given-names>
</name>
<name>
<surname>Linskensi</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Rubelj</surname>
<given-names>I.</given-names>
</name>
<name>
<surname>Pereira-Smith</surname>
<given-names>O.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>A biomarker that identifies senescent human cells in culture and in aging skin in vivo</article-title>
<source>Proc. Natl. Acad. Sci. USA</source>
<year>1995</year>
<volume>92</volume>
<fpage>9363</fpage>
<lpage>9367</lpage>
<pub-id pub-id-type="doi">10.1073/pnas.92.20.9363</pub-id>
<pub-id pub-id-type="pmid">7568133</pub-id>
</element-citation>
</ref>
</ref-list>
</back>
<floats-group>
<fig id="ijms-21-01427-f001" orientation="portrait" position="float">
<label>Figure 1</label>
<caption>
<p>The induction of senescence and autophagy in H460 cells in response to etoposide. (
<bold>A</bold>
) Senescence-associated β-galactosidase staining of H460 cells exposed to etoposide (0.25, 0.5, or 1 µM) 48 h after drug removal (20x objective). (
<bold>B</bold>
) Quantification of senescence based on C
<sub>12</sub>
FDG staining of H460 cells followed by fluorescence-activated cell sorting (FACS) analysis. (
<bold>C</bold>
) Widefield fluorescent microscopy showing C
<sub>12</sub>
FDG staining. Nuclei stained with Hoechst 33342 (20x objective). Staining and analysis were performed 48 h after drug removal (
<bold>D</bold>
) Growth arrest and proliferative recovery of H460 cells exposed to etoposide (1 µM) for 24 h (day 0). (
<bold>E</bold>
) Fluorescence microscopy showing concentration-dependent increase in acridine orange-stained vacuoles induced by 0.25, 0.5, and 1 µM etoposide (20x objective). (
<bold>F</bold>
) Quantification of acidic vesicular organelles (AVOs) by FACS analysis in response to increasing concentrations of etoposide. (
<bold>G</bold>
) Fluorescence microscopy showing increased GFP-LC3 puncta in response to etoposide (1 µM) exposure. Imaging performed 48 h after drug removal. (20x objective). Quantification of GFP-LC3 puncta formation in response to etoposide exposure. Results presented were from three independent experiments, unless otherwise indicated. *
<italic>p</italic>
< 0.05 compared to untreated controls.</p>
</caption>
<graphic xlink:href="ijms-21-01427-g001"></graphic>
</fig>
<fig id="ijms-21-01427-f002" orientation="portrait" position="float">
<label>Figure 2</label>
<caption>
<p>Inhibition of autophagy does not interfere with the induction or the recovery from senescence in H460 cells exposed to etoposide. (
<bold>A</bold>
) Fluorescence microscopy showing failure of lysosomal acidification following chloroquine (CQ, 10 µM) or bafilomycin A1 (Baf, 5 nM) co-treatment with etoposide (ETO, 1 µM). Cells were pretreated with CQ and Baf followed by an additional 24 h with etoposide. Images were taken 48 h after drug removal. Nuclei stained with Hoechst 33342 (20x objective). (
<bold>B</bold>
) Western blot showing autophagy blockade by CQ (10 µM) and Baf (5 nM) based on levels of p62/SQSTM1 (
<bold>C</bold>
) Clonogenic survival assay showing influence of CQ (10 µM) or Baf (5 nM) on sensitivity of H460 cells to etoposide. Cells were pretreated with CQ or Baf for 3 h followed by co-treatment with etoposide for 24 h. Colonies were counted 7 days following removal of drugs and replacement with fresh medium. Bars represent mean survival ± SD relative to untreated controls (α = 0.05/3, *
<italic>p</italic>
< 0.016). (
<bold>D</bold>
) and (
<bold>E</bold>
) Temporal response to etoposide in H460 cells after pharmacological autophagy inhibition. Viable H460 cell number was determined at the indicated days following etoposide exposure in combination with 10 µM CQ (D) or 5 nM Baf (
<bold>E</bold>
). (
<bold>F</bold>
) Assessment of apoptosis 48 h after drug removal (n.s. = no significant difference). (
<bold>G</bold>
) Western blot following short hairpin RNA (shRNA)-mediated knockdown of Atg5. (
<bold>H</bold>
) Clonogenic survival assay comparing sensitivity of shControl and shAtg5 H460 cells in response to multiple etoposide concentrations. Bars represent mean survival ± SD relative to untreated controls (α = 0.05/3, *
<italic>p</italic>
< 0.016). (
<bold>I</bold>
) Temporal response to etoposide in shControl H460 cells and H460 cells with knockdown of Atg5. (
<bold>J</bold>
) Etoposide-induced senescence in both autophagy-proficient and autophagy-deficient H460 cells by staining for SA-β-gal activity (20x objective). (
<bold>K</bold>
) Percent senescence based on C
<sub>12</sub>
FDG staining at day 3 post-etoposide exposure in shControl cells and shAtg5 cells. Results presented were from three independent experiments unless otherwise indicated.</p>
</caption>
<graphic xlink:href="ijms-21-01427-g002"></graphic>
</fig>
<fig id="ijms-21-01427-f003" orientation="portrait" position="float">
<label>Figure 3</label>
<caption>
<p>The induction of senescence and autophagy in 4T1 cells in response to doxorubicin (
<bold>A</bold>
) Induction of senescence determined by elevated senescence-associated β-galactosidase staining in 4T1 cells treated with 1 µM doxorubicin (Dox) for 2 hours (20x objective). (
<bold>B</bold>
) Quantification of senescence by FACS analysis based on C
<sub>12</sub>
FDG staining of 4T1 cells. (
<bold>C</bold>
) Fluorescence microscopy images showing an increase in acridine orange staining in cells treated with Dox (1 µM). 4T1 cells were pre-treated with CQ (10 µM) for 3 hours followed by 2 hour exposure to Dox with or without CQ (20x objective). (
<bold>D</bold>
) Quantification of autophagic cells by FACS analysis in response to Dox treatment showing accumulation of acridine orange (AO) positive cells that is further enhanced by inhibition of acidic degradation by CQ. (
<bold>E</bold>
) Induction of autophagy confirmed by Western Blot showing degradation of p62/SQSTM1 protein following a 2 h exposure to Dox (1 µM). (
<bold>F</bold>
) Blockade of autophagic flux by chloroquine resulting in accumulation of LC3BII protein. *
<italic>p</italic>
< 0.05 compared to untreated controls.</p>
</caption>
<graphic xlink:href="ijms-21-01427-g003"></graphic>
</fig>
<fig id="ijms-21-01427-f004" orientation="portrait" position="float">
<label>Figure 4</label>
<caption>
<p>Inhibition of autophagy does not interfere with the induction or the recovery from senescence in 4T1 cells exposed to doxorubicin (
<bold>A</bold>
) Temporal response to Dox (1 µM) in 4T1 cells after pharmacological inhibition of autophagy with CQ. Viable cell number was determined at the indicated time points after treatment with Dox in combination with CQ (10 µM). Adjoining figure shows expanded scale for lower portion of the graph. (
<bold>B</bold>
) Knockdown of Atg5 in 4T1 cells confirmed by Western blot. (
<bold>C</bold>
) Western blot of Atg5 deficient 4T1 exposed to Dox showing conversion of LC3BI to LC3BII in WT cells, accumulation of LC3BI with decreased LC3BII in autophagy deficient cells. (
<bold>D</bold>
) Assessment of apoptosis by FACS analysis 24 hours post-treatment with Dox using APC/7AAD [Annexin 5/propidium iodide (PI) equivalent] dye. Genetic inhibition of autophagy did not result in increased apoptosis. (
<bold>E</bold>
) Colony formation assay comparing clonogenic survival of shControl and shAtg5 4T1 cells in response to multiple Dox concentrations. (
<bold>F</bold>
) Induction of senescence determined by SA-β-gal staining in shControl and shAtg5 4T1 cells treated with 1 µM Dox (20x objective). (
<bold>G</bold>
) Percent senescence based on quantification of C
<sub>12</sub>
FDG staining 48 hours after exposure of shControl cells and shAtg5 cells to Dox. (
<bold>H</bold>
) Temporal assessment of growth arrest followed by proliferative recovery in shControl and shAtg5 4T1 cells. Viable cell number was determined at the indicated time points after treatment with doxorubicin. Adjoining figure shows expanded scale for lower portion of the graph. (n.s. = no significant difference).</p>
</caption>
<graphic xlink:href="ijms-21-01427-g004a"></graphic>
<graphic xlink:href="ijms-21-01427-g004b"></graphic>
</fig>
<fig id="ijms-21-01427-f005" orientation="portrait" position="float">
<label>Figure 5</label>
<caption>
<p>The induction of senescence and autophagy in HCT116 cells in response to radiation. (
<bold>A</bold>
) SA- β-galactosidase staining of HCT116 cells treated with 4 Gy radiation demonstrating induction of senescence (20x objective). (
<bold>B</bold>
) Fluorescent microscopy images of acridine orange staining 48 hours post-radiation (4 Gy). Increased acidic vesicle formation is visualized (20x objective). C-G. Cells were pre-treated with CQ (5 µM) 3 h prior to radiation (4 Gy) exposure. Media was replenished 24 h post-treatment. (
<bold>C</bold>
) Western blot analysis demonstrating autophagy blockade via p62 accumulation in cells pre-treated with CQ. (
<bold>D</bold>
) Acridine orange staining indicating blockade of lysosomal fusion in cells pre-treated with CQ (20x objective). (
<bold>E</bold>
) SA-β-galactosidase staining demonstrating increased SA-β-galactosidase activity in both cells exposed to radiation alone or pre-treated with CQ prior to radiation (20x objective). (
<bold>F</bold>
) SA-β-galactosidase activity was monitored by measuring C
<sub>12</sub>
FDG staining using flow cytometry. (
<bold>G</bold>
) Clonogenic survival assay showing radiation-induced growth inhibition in cells exposed to radiation (4 Gy) alone and in combination with CQ (5 µM). (
<bold>H</bold>
) Annexin 5/PI staining was used to assess apoptosis 48 h post-radiation [radiation (4 Gy) alone or with CQ (5 µM) pre-treatment]. Autophagy blockade did not alter radiation-induced apoptosis (
<italic>n</italic>
= 2). (
<bold>I</bold>
) Cells were treated with 4 Gy radiation alone or with CQ pre-treatment, and viable cell number was assessed via trypan blue exclusion on the indicated days. The adjoining figure shows the expanded scale for the lower portion of the graph. (
<bold>J</bold>
) Western blot demonstrating ATG5 knockdown. Autophagy blockade by shATG5 in the HCT-116 cells was established in our previous report [
<xref rid="B17-ijms-21-01427" ref-type="bibr">17</xref>
]. (
<bold>K</bold>
) Clonogenic survival demonstrating dose-dependent reduction in both shControl and shATG5 knockdown cells. (
<bold>L</bold>
) Viable cell number was assessed in shControl and shATG5 HCT116 cells exposed to 4 Gy radiation. Representative curves of three independent studies are shown (
<italic>n</italic>
= 3). Results presented were from three independent experiments, unless otherwise indicated; n.s. represents no significant difference compared to radiation alone.</p>
</caption>
<graphic xlink:href="ijms-21-01427-g005"></graphic>
</fig>
<fig id="ijms-21-01427-f006" orientation="portrait" position="float">
<label>Figure 6</label>
<caption>
<p>Early inhibition of non-protective autophagy does not interfere with recovery from therapy-induced senescence in tumor cells. Both senescence and autophagy are stress responses frequently induced in parallel in tumor cells exposed to DNA-damaging therapy. Therapy-induced senescence engenders a phase of stable growth arrest whereby a subpopulation of tumor cells can ultimately recover proliferative capacity. Autophagy induced in tumor cells in response to conventional chemotherapy or radiation takes on different functional outcomes. Of those, autophagy can be non-protective, meaning that when autophagy is blocked by pharmacological or genetic approaches, survival of tumor cells is not essentially affected. This figure illustrates how the inhibition of non-protective autophagy in therapy-induced senescent tumor cells does not interfere with tumor cell survival or the ability of these cells to recover from senescence.</p>
</caption>
<graphic xlink:href="ijms-21-01427-g006"></graphic>
</fig>
</floats-group>
</pmc>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/ChloroquineV1/Data/Pmc/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000628 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Pmc/Corpus/biblio.hfd -nk 000628 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    ChloroquineV1
   |flux=    Pmc
   |étape=   Corpus
   |type=    RBID
   |clé=     PMC:7073138
   |texte=   Studies of Non-Protective Autophagy Provide Evidence that Recovery from Therapy-Induced Senescence is Independent of Early Autophagy
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Pmc/Corpus/RBID.i   -Sk "pubmed:32093197" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Pmc/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a ChloroquineV1 

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Wed Mar 25 22:43:59 2020. Site generation: Sun Jan 31 12:44:45 2021