Serveur d'exploration Chloroquine

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Blockade of crizotinib-induced BCL2 elevation in ALK-positive anaplastic large cell lymphoma triggers autophagy associated with cell death

Identifieur interne : 000584 ( Pmc/Corpus ); précédent : 000583; suivant : 000585

Blockade of crizotinib-induced BCL2 elevation in ALK-positive anaplastic large cell lymphoma triggers autophagy associated with cell death

Auteurs : Avedis Torossian ; Nicolas Broin ; Julie Frentzel ; Camille Daugrois ; Sarah Gandarillas ; Talal Al Saati ; Laurence Lamant ; Pierre Brousset ; Sylvie Giuriato ; Estelle Espinos

Source :

RBID : PMC:6601090

Abstract

Anaplastic lymphoma kinase (ALK)-positive anaplastic large cell lymphomas are tumors that carry translocations involving the ALK gene at the 2p23 locus, leading to the expression of ALK tyrosine kinase fusion oncoproteins. Amongst hematologic malignancies, these lymphomas are particular in that they express very low levels of B-cell lymphoma 2 (BCL2), a recognized inhibitor of apoptosis and autophagy, two processes that share complex interconnections. We have previously shown that treatment of ALK-positive anaplastic large cell lymphoma cells with the ALK tyrosine kinase inhibitor crizotinib induces autophagy as a pro-survival response. Here, we observed that crizotinib-mediated inactivation of ALK caused an increase in BCL2 levels that restrained the cytotoxic effects of the drug. BCL2 downregulation in combination with crizotinib treatment potentiated loss of cell viability through both an increase in autophagic flux and cell death, including apoptosis. More importantly, our data revealed that the blockade of autophagic flux completely reversed impaired cell viability, which demonstrates that excessive autophagy is associated with cell death. We propose that the downregulation of BCL2 protein, which plays a central role in the autophagic and apoptotic machinery, combined with crizotinib treatment may represent a promising therapeutic alternative to current ALK-positive anaplastic large cell lymphoma treatments.


Url:
DOI: 10.3324/haematol.2017.181966
PubMed: 30679328
PubMed Central: 6601090

Links to Exploration step

PMC:6601090

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Blockade of crizotinib-induced BCL2 elevation in ALK-positive anaplastic large cell lymphoma triggers autophagy associated with cell death</title>
<author>
<name sortKey="Torossian, Avedis" sort="Torossian, Avedis" uniqKey="Torossian A" first="Avedis" last="Torossian">Avedis Torossian</name>
<affiliation>
<nlm:aff id="af1-1041428">Inserm, UMR1037 CRCT, F-31000 Toulouse, France</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="af2-1041428">Université Toulouse III-Paul Sabatier, UMR1037 CRCT, F-31000 Toulouse, France</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="af3-1041428">CNRS, ERL5294 UMR1037 CRCT, F-31000, Toulouse, France</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Broin, Nicolas" sort="Broin, Nicolas" uniqKey="Broin N" first="Nicolas" last="Broin">Nicolas Broin</name>
<affiliation>
<nlm:aff id="af1-1041428">Inserm, UMR1037 CRCT, F-31000 Toulouse, France</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="af2-1041428">Université Toulouse III-Paul Sabatier, UMR1037 CRCT, F-31000 Toulouse, France</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="af3-1041428">CNRS, ERL5294 UMR1037 CRCT, F-31000, Toulouse, France</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Frentzel, Julie" sort="Frentzel, Julie" uniqKey="Frentzel J" first="Julie" last="Frentzel">Julie Frentzel</name>
<affiliation>
<nlm:aff id="af1-1041428">Inserm, UMR1037 CRCT, F-31000 Toulouse, France</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="af2-1041428">Université Toulouse III-Paul Sabatier, UMR1037 CRCT, F-31000 Toulouse, France</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="af3-1041428">CNRS, ERL5294 UMR1037 CRCT, F-31000, Toulouse, France</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Daugrois, Camille" sort="Daugrois, Camille" uniqKey="Daugrois C" first="Camille" last="Daugrois">Camille Daugrois</name>
<affiliation>
<nlm:aff id="af1-1041428">Inserm, UMR1037 CRCT, F-31000 Toulouse, France</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="af2-1041428">Université Toulouse III-Paul Sabatier, UMR1037 CRCT, F-31000 Toulouse, France</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="af3-1041428">CNRS, ERL5294 UMR1037 CRCT, F-31000, Toulouse, France</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="af4-1041428">Laboratoire d’Excellence Toulouse-Cancer-TOUCAN, F-31024 Toulouse, France</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Gandarillas, Sarah" sort="Gandarillas, Sarah" uniqKey="Gandarillas S" first="Sarah" last="Gandarillas">Sarah Gandarillas</name>
<affiliation>
<nlm:aff id="af5-1041428">Inserm/UPS, US006/CREFRE, F-31000 Toulouse, France</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Saati, Talal Al" sort="Saati, Talal Al" uniqKey="Saati T" first="Talal Al" last="Saati">Talal Al Saati</name>
<affiliation>
<nlm:aff id="af6-1041428">Inserm/UPS, US006/CREFRE, Service d’Histopathologie, F-31000 Toulouse, France</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Lamant, Laurence" sort="Lamant, Laurence" uniqKey="Lamant L" first="Laurence" last="Lamant">Laurence Lamant</name>
<affiliation>
<nlm:aff id="af1-1041428">Inserm, UMR1037 CRCT, F-31000 Toulouse, France</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="af2-1041428">Université Toulouse III-Paul Sabatier, UMR1037 CRCT, F-31000 Toulouse, France</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="af3-1041428">CNRS, ERL5294 UMR1037 CRCT, F-31000, Toulouse, France</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="af4-1041428">Laboratoire d’Excellence Toulouse-Cancer-TOUCAN, F-31024 Toulouse, France</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="af7-1041428">Département de Pathologie, IUCT, F-31000 Toulouse, France</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="af8-1041428">European Research Initiative on ALK-related Malignancies (ERIA), Cambridge, UK</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Brousset, Pierre" sort="Brousset, Pierre" uniqKey="Brousset P" first="Pierre" last="Brousset">Pierre Brousset</name>
<affiliation>
<nlm:aff id="af1-1041428">Inserm, UMR1037 CRCT, F-31000 Toulouse, France</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="af2-1041428">Université Toulouse III-Paul Sabatier, UMR1037 CRCT, F-31000 Toulouse, France</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="af3-1041428">CNRS, ERL5294 UMR1037 CRCT, F-31000, Toulouse, France</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="af4-1041428">Laboratoire d’Excellence Toulouse-Cancer-TOUCAN, F-31024 Toulouse, France</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="af7-1041428">Département de Pathologie, IUCT, F-31000 Toulouse, France</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="af8-1041428">European Research Initiative on ALK-related Malignancies (ERIA), Cambridge, UK</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Giuriato, Sylvie" sort="Giuriato, Sylvie" uniqKey="Giuriato S" first="Sylvie" last="Giuriato">Sylvie Giuriato</name>
<affiliation>
<nlm:aff id="af1-1041428">Inserm, UMR1037 CRCT, F-31000 Toulouse, France</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="af2-1041428">Université Toulouse III-Paul Sabatier, UMR1037 CRCT, F-31000 Toulouse, France</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="af3-1041428">CNRS, ERL5294 UMR1037 CRCT, F-31000, Toulouse, France</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="af8-1041428">European Research Initiative on ALK-related Malignancies (ERIA), Cambridge, UK</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="af9-1041428">Transautophagy: European network for multidisciplinary research and translation of autophagy knowledge, COST Action CA15138, Brussel, Belgium</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Espinos, Estelle" sort="Espinos, Estelle" uniqKey="Espinos E" first="Estelle" last="Espinos">Estelle Espinos</name>
<affiliation>
<nlm:aff id="af1-1041428">Inserm, UMR1037 CRCT, F-31000 Toulouse, France</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="af2-1041428">Université Toulouse III-Paul Sabatier, UMR1037 CRCT, F-31000 Toulouse, France</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="af3-1041428">CNRS, ERL5294 UMR1037 CRCT, F-31000, Toulouse, France</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="af4-1041428">Laboratoire d’Excellence Toulouse-Cancer-TOUCAN, F-31024 Toulouse, France</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="af8-1041428">European Research Initiative on ALK-related Malignancies (ERIA), Cambridge, UK</nlm:aff>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PMC</idno>
<idno type="pmid">30679328</idno>
<idno type="pmc">6601090</idno>
<idno type="url">http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6601090</idno>
<idno type="RBID">PMC:6601090</idno>
<idno type="doi">10.3324/haematol.2017.181966</idno>
<date when="2019">2019</date>
<idno type="wicri:Area/Pmc/Corpus">000584</idno>
<idno type="wicri:explorRef" wicri:stream="Pmc" wicri:step="Corpus" wicri:corpus="PMC">000584</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a" type="main">Blockade of crizotinib-induced BCL2 elevation in ALK-positive anaplastic large cell lymphoma triggers autophagy associated with cell death</title>
<author>
<name sortKey="Torossian, Avedis" sort="Torossian, Avedis" uniqKey="Torossian A" first="Avedis" last="Torossian">Avedis Torossian</name>
<affiliation>
<nlm:aff id="af1-1041428">Inserm, UMR1037 CRCT, F-31000 Toulouse, France</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="af2-1041428">Université Toulouse III-Paul Sabatier, UMR1037 CRCT, F-31000 Toulouse, France</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="af3-1041428">CNRS, ERL5294 UMR1037 CRCT, F-31000, Toulouse, France</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Broin, Nicolas" sort="Broin, Nicolas" uniqKey="Broin N" first="Nicolas" last="Broin">Nicolas Broin</name>
<affiliation>
<nlm:aff id="af1-1041428">Inserm, UMR1037 CRCT, F-31000 Toulouse, France</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="af2-1041428">Université Toulouse III-Paul Sabatier, UMR1037 CRCT, F-31000 Toulouse, France</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="af3-1041428">CNRS, ERL5294 UMR1037 CRCT, F-31000, Toulouse, France</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Frentzel, Julie" sort="Frentzel, Julie" uniqKey="Frentzel J" first="Julie" last="Frentzel">Julie Frentzel</name>
<affiliation>
<nlm:aff id="af1-1041428">Inserm, UMR1037 CRCT, F-31000 Toulouse, France</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="af2-1041428">Université Toulouse III-Paul Sabatier, UMR1037 CRCT, F-31000 Toulouse, France</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="af3-1041428">CNRS, ERL5294 UMR1037 CRCT, F-31000, Toulouse, France</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Daugrois, Camille" sort="Daugrois, Camille" uniqKey="Daugrois C" first="Camille" last="Daugrois">Camille Daugrois</name>
<affiliation>
<nlm:aff id="af1-1041428">Inserm, UMR1037 CRCT, F-31000 Toulouse, France</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="af2-1041428">Université Toulouse III-Paul Sabatier, UMR1037 CRCT, F-31000 Toulouse, France</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="af3-1041428">CNRS, ERL5294 UMR1037 CRCT, F-31000, Toulouse, France</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="af4-1041428">Laboratoire d’Excellence Toulouse-Cancer-TOUCAN, F-31024 Toulouse, France</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Gandarillas, Sarah" sort="Gandarillas, Sarah" uniqKey="Gandarillas S" first="Sarah" last="Gandarillas">Sarah Gandarillas</name>
<affiliation>
<nlm:aff id="af5-1041428">Inserm/UPS, US006/CREFRE, F-31000 Toulouse, France</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Saati, Talal Al" sort="Saati, Talal Al" uniqKey="Saati T" first="Talal Al" last="Saati">Talal Al Saati</name>
<affiliation>
<nlm:aff id="af6-1041428">Inserm/UPS, US006/CREFRE, Service d’Histopathologie, F-31000 Toulouse, France</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Lamant, Laurence" sort="Lamant, Laurence" uniqKey="Lamant L" first="Laurence" last="Lamant">Laurence Lamant</name>
<affiliation>
<nlm:aff id="af1-1041428">Inserm, UMR1037 CRCT, F-31000 Toulouse, France</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="af2-1041428">Université Toulouse III-Paul Sabatier, UMR1037 CRCT, F-31000 Toulouse, France</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="af3-1041428">CNRS, ERL5294 UMR1037 CRCT, F-31000, Toulouse, France</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="af4-1041428">Laboratoire d’Excellence Toulouse-Cancer-TOUCAN, F-31024 Toulouse, France</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="af7-1041428">Département de Pathologie, IUCT, F-31000 Toulouse, France</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="af8-1041428">European Research Initiative on ALK-related Malignancies (ERIA), Cambridge, UK</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Brousset, Pierre" sort="Brousset, Pierre" uniqKey="Brousset P" first="Pierre" last="Brousset">Pierre Brousset</name>
<affiliation>
<nlm:aff id="af1-1041428">Inserm, UMR1037 CRCT, F-31000 Toulouse, France</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="af2-1041428">Université Toulouse III-Paul Sabatier, UMR1037 CRCT, F-31000 Toulouse, France</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="af3-1041428">CNRS, ERL5294 UMR1037 CRCT, F-31000, Toulouse, France</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="af4-1041428">Laboratoire d’Excellence Toulouse-Cancer-TOUCAN, F-31024 Toulouse, France</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="af7-1041428">Département de Pathologie, IUCT, F-31000 Toulouse, France</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="af8-1041428">European Research Initiative on ALK-related Malignancies (ERIA), Cambridge, UK</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Giuriato, Sylvie" sort="Giuriato, Sylvie" uniqKey="Giuriato S" first="Sylvie" last="Giuriato">Sylvie Giuriato</name>
<affiliation>
<nlm:aff id="af1-1041428">Inserm, UMR1037 CRCT, F-31000 Toulouse, France</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="af2-1041428">Université Toulouse III-Paul Sabatier, UMR1037 CRCT, F-31000 Toulouse, France</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="af3-1041428">CNRS, ERL5294 UMR1037 CRCT, F-31000, Toulouse, France</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="af8-1041428">European Research Initiative on ALK-related Malignancies (ERIA), Cambridge, UK</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="af9-1041428">Transautophagy: European network for multidisciplinary research and translation of autophagy knowledge, COST Action CA15138, Brussel, Belgium</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Espinos, Estelle" sort="Espinos, Estelle" uniqKey="Espinos E" first="Estelle" last="Espinos">Estelle Espinos</name>
<affiliation>
<nlm:aff id="af1-1041428">Inserm, UMR1037 CRCT, F-31000 Toulouse, France</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="af2-1041428">Université Toulouse III-Paul Sabatier, UMR1037 CRCT, F-31000 Toulouse, France</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="af3-1041428">CNRS, ERL5294 UMR1037 CRCT, F-31000, Toulouse, France</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="af4-1041428">Laboratoire d’Excellence Toulouse-Cancer-TOUCAN, F-31024 Toulouse, France</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="af8-1041428">European Research Initiative on ALK-related Malignancies (ERIA), Cambridge, UK</nlm:aff>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Haematologica</title>
<idno type="ISSN">0390-6078</idno>
<idno type="eISSN">1592-8721</idno>
<imprint>
<date when="2019">2019</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<p>Anaplastic lymphoma kinase (ALK)-positive anaplastic large cell lymphomas are tumors that carry translocations involving the
<italic>ALK</italic>
gene at the 2p23 locus, leading to the expression of ALK tyrosine kinase fusion oncoproteins. Amongst hematologic malignancies, these lymphomas are particular in that they express very low levels of B-cell lymphoma 2 (BCL2), a recognized inhibitor of apoptosis and autophagy, two processes that share complex interconnections. We have previously shown that treatment of ALK-positive anaplastic large cell lymphoma cells with the ALK tyrosine kinase inhibitor crizotinib induces autophagy as a pro-survival response. Here, we observed that crizotinib-mediated inactivation of ALK caused an increase in BCL2 levels that restrained the cytotoxic effects of the drug. BCL2 downregulation in combination with crizotinib treatment potentiated loss of cell viability through both an increase in autophagic flux and cell death, including apoptosis. More importantly, our data revealed that the blockade of autophagic flux completely reversed impaired cell viability, which demonstrates that excessive autophagy is associated with cell death. We propose that the downregulation of BCL2 protein, which plays a central role in the autophagic and apoptotic machinery, combined with crizotinib treatment may represent a promising therapeutic alternative to current ALK-positive anaplastic large cell lymphoma treatments.</p>
</div>
</front>
<back>
<div1 type="bibliography">
<listBibl>
<biblStruct>
<analytic>
<author>
<name sortKey="Turner, Sd" uniqKey="Turner S">SD Turner</name>
</author>
<author>
<name sortKey="Lamant, L" uniqKey="Lamant L">L Lamant</name>
</author>
<author>
<name sortKey="Kenner, L" uniqKey="Kenner L">L Kenner</name>
</author>
<author>
<name sortKey="Brugieres, L" uniqKey="Brugieres L">L Brugières</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Swerdlow, Sh" uniqKey="Swerdlow S">SH Swerdlow</name>
</author>
<author>
<name sortKey="Campo, E" uniqKey="Campo E">E Campo</name>
</author>
<author>
<name sortKey="Pileri, Sa" uniqKey="Pileri S">SA Pileri</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Morris, Sw" uniqKey="Morris S">SW Morris</name>
</author>
<author>
<name sortKey="Kirstein, Mn" uniqKey="Kirstein M">MN Kirstein</name>
</author>
<author>
<name sortKey="Valentine, Mb" uniqKey="Valentine M">MB Valentine</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Chiarle, R" uniqKey="Chiarle R">R Chiarle</name>
</author>
<author>
<name sortKey="Voena, C" uniqKey="Voena C">C Voena</name>
</author>
<author>
<name sortKey="Ambrogio, C" uniqKey="Ambrogio C">C Ambrogio</name>
</author>
<author>
<name sortKey="Piva, R" uniqKey="Piva R">R Piva</name>
</author>
<author>
<name sortKey="Inghirami, G" uniqKey="Inghirami G">G Inghirami</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Werner, Mt" uniqKey="Werner M">MT Werner</name>
</author>
<author>
<name sortKey="Zhao, C" uniqKey="Zhao C">C Zhao</name>
</author>
<author>
<name sortKey="Zhang, Q" uniqKey="Zhang Q">Q Zhang</name>
</author>
<author>
<name sortKey="Wasik, Ma" uniqKey="Wasik M">MA Wasik</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Christensen, Jg" uniqKey="Christensen J">JG Christensen</name>
</author>
<author>
<name sortKey="Zou, Hy" uniqKey="Zou H">HY Zou</name>
</author>
<author>
<name sortKey="Arango, Me" uniqKey="Arango M">ME Arango</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Gambacorti Passerini, C" uniqKey="Gambacorti Passerini C">C Gambacorti Passerini</name>
</author>
<author>
<name sortKey="Farina, F" uniqKey="Farina F">F Farina</name>
</author>
<author>
<name sortKey="Stasia, A" uniqKey="Stasia A">A Stasia</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kruczynski, A" uniqKey="Kruczynski A">A Kruczynski</name>
</author>
<author>
<name sortKey="Delsol, G" uniqKey="Delsol G">G Delsol</name>
</author>
<author>
<name sortKey="Laurent, C" uniqKey="Laurent C">C Laurent</name>
</author>
<author>
<name sortKey="Brousset, P" uniqKey="Brousset P">P Brousset</name>
</author>
<author>
<name sortKey="Lamant, L" uniqKey="Lamant L">L Lamant</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Sharma, Gg" uniqKey="Sharma G">GG Sharma</name>
</author>
<author>
<name sortKey="Mota, I" uniqKey="Mota I">I Mota</name>
</author>
<author>
<name sortKey="Mologni, L" uniqKey="Mologni L">L Mologni</name>
</author>
<author>
<name sortKey="Patrucco, E" uniqKey="Patrucco E">E Patrucco</name>
</author>
<author>
<name sortKey="Gambacorti Passerini, C" uniqKey="Gambacorti Passerini C">C Gambacorti-Passerini</name>
</author>
<author>
<name sortKey="Chiarle, R" uniqKey="Chiarle R">R Chiarle</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Frentzel, J" uniqKey="Frentzel J">J Frentzel</name>
</author>
<author>
<name sortKey="Sorrentino, D" uniqKey="Sorrentino D">D Sorrentino</name>
</author>
<author>
<name sortKey="Giuriato, S" uniqKey="Giuriato S">S Giuriato</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Feng, Y" uniqKey="Feng Y">Y Feng</name>
</author>
<author>
<name sortKey="He, D" uniqKey="He D">D He</name>
</author>
<author>
<name sortKey="Yao, Z" uniqKey="Yao Z">Z Yao</name>
</author>
<author>
<name sortKey="Klionsky, Dj" uniqKey="Klionsky D">DJ Klionsky</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="White, E" uniqKey="White E">E White</name>
</author>
<author>
<name sortKey="Dipaola, Rs" uniqKey="Dipaola R">RS DiPaola</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Galluzzi, L" uniqKey="Galluzzi L">L Galluzzi</name>
</author>
<author>
<name sortKey="Pietrocola, F" uniqKey="Pietrocola F">F Pietrocola</name>
</author>
<author>
<name sortKey="Bravo San Pedro, Jm" uniqKey="Bravo San Pedro J">JM Bravo-San Pedro</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Joffre, C" uniqKey="Joffre C">C Joffre</name>
</author>
<author>
<name sortKey="Djavaheri Mergny, M" uniqKey="Djavaheri Mergny M">M Djavaheri-Mergny</name>
</author>
<author>
<name sortKey="Pattingre, S" uniqKey="Pattingre S">S Pattingre</name>
</author>
<author>
<name sortKey="Giuriato, S" uniqKey="Giuriato S">S Giuriato</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Doherty, J" uniqKey="Doherty J">J Doherty</name>
</author>
<author>
<name sortKey="Baehrecke, Eh" uniqKey="Baehrecke E">EH Baehrecke</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Lalaoui, N" uniqKey="Lalaoui N">N Lalaoui</name>
</author>
<author>
<name sortKey="Lindqvist, Lm" uniqKey="Lindqvist L">LM Lindqvist</name>
</author>
<author>
<name sortKey="Sandow, Jj" uniqKey="Sandow J">JJ Sandow</name>
</author>
<author>
<name sortKey="Ekert, Pg" uniqKey="Ekert P">PG Ekert</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Long, Js" uniqKey="Long J">JS Long</name>
</author>
<author>
<name sortKey="Ryan, Km" uniqKey="Ryan K">KM Ryan</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Yip, Kw" uniqKey="Yip K">KW Yip</name>
</author>
<author>
<name sortKey="Reed, Jc" uniqKey="Reed J">JC Reed</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Pattingre, S" uniqKey="Pattingre S">S Pattingre</name>
</author>
<author>
<name sortKey="Tassa, A" uniqKey="Tassa A">A Tassa</name>
</author>
<author>
<name sortKey="Qu, X" uniqKey="Qu X">X Qu</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Lindqvist, Lm" uniqKey="Lindqvist L">LM Lindqvist</name>
</author>
<author>
<name sortKey="Heinlein, M" uniqKey="Heinlein M">M Heinlein</name>
</author>
<author>
<name sortKey="Huang, Dcs" uniqKey="Huang D">DCS Huang</name>
</author>
<author>
<name sortKey="Vaux, Dl" uniqKey="Vaux D">DL Vaux</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Lindqvist, Lm" uniqKey="Lindqvist L">LM Lindqvist</name>
</author>
<author>
<name sortKey="Vaux, Dl" uniqKey="Vaux D">DL Vaux</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Pattingre, S" uniqKey="Pattingre S">S Pattingre</name>
</author>
<author>
<name sortKey="Levine, B" uniqKey="Levine B">B Levine</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Souers, Aj" uniqKey="Souers A">AJ Souers</name>
</author>
<author>
<name sortKey="Leverson, Jd" uniqKey="Leverson J">JD Leverson</name>
</author>
<author>
<name sortKey="Boghaert, Er" uniqKey="Boghaert E">ER Boghaert</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Mihalyova, J" uniqKey="Mihalyova J">J Mihalyova</name>
</author>
<author>
<name sortKey="Jelinek, T" uniqKey="Jelinek T">T Jelinek</name>
</author>
<author>
<name sortKey="Growkova, K" uniqKey="Growkova K">K Growkova</name>
</author>
<author>
<name sortKey="Hrdinka, M" uniqKey="Hrdinka M">M Hrdinka</name>
</author>
<author>
<name sortKey="Simicek, M" uniqKey="Simicek M">M Simicek</name>
</author>
<author>
<name sortKey="Hajek, R" uniqKey="Hajek R">R Hajek</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Tolcher, Aw" uniqKey="Tolcher A">AW Tolcher</name>
</author>
<author>
<name sortKey="Rodrigueza, Wv" uniqKey="Rodrigueza W">WV Rodrigueza</name>
</author>
<author>
<name sortKey="Rasco, Dw" uniqKey="Rasco D">DW Rasco</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Misso, G" uniqKey="Misso G">G Misso</name>
</author>
<author>
<name sortKey="Di Martino, Mt" uniqKey="Di Martino M">MT Di Martino</name>
</author>
<author>
<name sortKey="De Rosa, G" uniqKey="De Rosa G">G De Rosa</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Zarone, Mr" uniqKey="Zarone M">MR Zarone</name>
</author>
<author>
<name sortKey="Misso, G" uniqKey="Misso G">G Misso</name>
</author>
<author>
<name sortKey="Grimaldi, A" uniqKey="Grimaldi A">A Grimaldi</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Farooqi, A" uniqKey="Farooqi A">A Farooqi</name>
</author>
<author>
<name sortKey="Tabassum, S" uniqKey="Tabassum S">S Tabassum</name>
</author>
<author>
<name sortKey="Ahmad, A" uniqKey="Ahmad A">A Ahmad</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Lamant, L" uniqKey="Lamant L">L Lamant</name>
</author>
<author>
<name sortKey="Espinos, E" uniqKey="Espinos E">E Espinos</name>
</author>
<author>
<name sortKey="Duplantier, M" uniqKey="Duplantier M">M Duplantier</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Mitou, G" uniqKey="Mitou G">G Mitou</name>
</author>
<author>
<name sortKey="Frentzel, J" uniqKey="Frentzel J">J Frentzel</name>
</author>
<author>
<name sortKey="Desquesnes, A" uniqKey="Desquesnes A">A Desquesnes</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Villalva, C" uniqKey="Villalva C">C Villalva</name>
</author>
<author>
<name sortKey="Bougrine, F" uniqKey="Bougrine F">F Bougrine</name>
</author>
<author>
<name sortKey="Delsol, G" uniqKey="Delsol G">G Delsol</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Rassidakis, Gz" uniqKey="Rassidakis G">GZ Rassidakis</name>
</author>
<author>
<name sortKey="Sarris, Ah" uniqKey="Sarris A">AH Sarris</name>
</author>
<author>
<name sortKey="Herling, M" uniqKey="Herling M">M Herling</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Fulda, S" uniqKey="Fulda S">S Fulda</name>
</author>
<author>
<name sortKey="Kogel, D" uniqKey="Kogel D">D Kögel</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Hosokawa, N" uniqKey="Hosokawa N">N Hosokawa</name>
</author>
<author>
<name sortKey="Hara, T" uniqKey="Hara T">T Hara</name>
</author>
<author>
<name sortKey="Kaizuka, T" uniqKey="Kaizuka T">T Kaizuka</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Saxton, Ra" uniqKey="Saxton R">RA Saxton</name>
</author>
<author>
<name sortKey="Sabatini, Dm" uniqKey="Sabatini D">DM Sabatini</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Monch, D" uniqKey="Monch D">D Mönch</name>
</author>
<author>
<name sortKey="Bode Erdmann, S" uniqKey="Bode Erdmann S">S Bode-Erdmann</name>
</author>
<author>
<name sortKey="Kalla, J" uniqKey="Kalla J">J Kalla</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Schl Fli, Am" uniqKey="Schl Fli A">AM Schläfli</name>
</author>
<author>
<name sortKey="Berezowska, S" uniqKey="Berezowska S">S Berezowska</name>
</author>
<author>
<name sortKey="Adams, O" uniqKey="Adams O">O Adams</name>
</author>
<author>
<name sortKey="Langer, R" uniqKey="Langer R">R Langer</name>
</author>
<author>
<name sortKey="Tschan, Mp" uniqKey="Tschan M">MP Tschan</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Holt, Sv" uniqKey="Holt S">SV Holt</name>
</author>
<author>
<name sortKey="Wyspianska, B" uniqKey="Wyspianska B">B Wyspianska</name>
</author>
<author>
<name sortKey="Randall, Kj" uniqKey="Randall K">KJ Randall</name>
</author>
<author>
<name sortKey="James, D" uniqKey="James D">D James</name>
</author>
<author>
<name sortKey="Foster, Jr" uniqKey="Foster J">JR Foster</name>
</author>
<author>
<name sortKey="Wilkinson, Rw" uniqKey="Wilkinson R">RW Wilkinson</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Rust, R" uniqKey="Rust R">R Rust</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Desjobert, C" uniqKey="Desjobert C">C Desjobert</name>
</author>
<author>
<name sortKey="Renalier, Mh" uniqKey="Renalier M">MH Renalier</name>
</author>
<author>
<name sortKey="Bergalet, J" uniqKey="Bergalet J">J Bergalet</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Yang, F" uniqKey="Yang F">F Yang</name>
</author>
<author>
<name sortKey="Li, Q" uniqKey="Li Q">Q Li</name>
</author>
<author>
<name sortKey="Gong, Z" uniqKey="Gong Z">Z Gong</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Li, L" uniqKey="Li L">L Li</name>
</author>
<author>
<name sortKey="Yuan, L" uniqKey="Yuan L">L Yuan</name>
</author>
<author>
<name sortKey="Luo, J" uniqKey="Luo J">J Luo</name>
</author>
<author>
<name sortKey="Gao, J" uniqKey="Gao J">J Gao</name>
</author>
<author>
<name sortKey="Guo, J" uniqKey="Guo J">J Guo</name>
</author>
<author>
<name sortKey="Xie, X" uniqKey="Xie X">X Xie</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Craig, Vj" uniqKey="Craig V">VJ Craig</name>
</author>
<author>
<name sortKey="Tzankov, A" uniqKey="Tzankov A">A Tzankov</name>
</author>
<author>
<name sortKey="Flori, M" uniqKey="Flori M">M Flori</name>
</author>
<author>
<name sortKey="Schmid, Ca" uniqKey="Schmid C">CA Schmid</name>
</author>
<author>
<name sortKey="Bader, Ag" uniqKey="Bader A">AG Bader</name>
</author>
<author>
<name sortKey="Muller, A" uniqKey="Muller A">A Müller</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Scognamiglio, I" uniqKey="Scognamiglio I">I Scognamiglio</name>
</author>
<author>
<name sortKey="Di Martino, Mt" uniqKey="Di Martino M">MT Di Martino</name>
</author>
<author>
<name sortKey="Campani, V" uniqKey="Campani V">V Campani</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Beg, Ms" uniqKey="Beg M">MS Beg</name>
</author>
<author>
<name sortKey="Brenner, Aj" uniqKey="Brenner A">AJ Brenner</name>
</author>
<author>
<name sortKey="Sachdev, J" uniqKey="Sachdev J">J Sachdev</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Basit, F" uniqKey="Basit F">F Basit</name>
</author>
<author>
<name sortKey="Cristofanon, S" uniqKey="Cristofanon S">S Cristofanon</name>
</author>
<author>
<name sortKey="Fulda, S" uniqKey="Fulda S">S Fulda</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Sakamaki, J" uniqKey="Sakamaki J">J Sakamaki</name>
</author>
<author>
<name sortKey="Ryan, Km" uniqKey="Ryan K">KM Ryan</name>
</author>
</analytic>
</biblStruct>
</listBibl>
</div1>
</back>
</TEI>
<pmc article-type="research-article">
<pmc-dir>properties open_access</pmc-dir>
<front>
<journal-meta>
<journal-id journal-id-type="nlm-ta">Haematologica</journal-id>
<journal-id journal-id-type="iso-abbrev">Haematologica</journal-id>
<journal-id journal-id-type="hwp">haematol</journal-id>
<journal-id journal-id-type="publisher-id">Haematologica</journal-id>
<journal-title-group>
<journal-title>Haematologica</journal-title>
</journal-title-group>
<issn pub-type="ppub">0390-6078</issn>
<issn pub-type="epub">1592-8721</issn>
<publisher>
<publisher-name>Ferrata Storti Foundation</publisher-name>
</publisher>
</journal-meta>
<article-meta>
<article-id pub-id-type="pmid">30679328</article-id>
<article-id pub-id-type="pmc">6601090</article-id>
<article-id pub-id-type="doi">10.3324/haematol.2017.181966</article-id>
<article-id pub-id-type="publisher-id">1041428</article-id>
<article-categories>
<subj-group subj-group-type="heading">
<subject>Article</subject>
<subj-group subj-group-type="heading">
<subject>Non-Hodgkin Lymphoma</subject>
</subj-group>
</subj-group>
</article-categories>
<title-group>
<article-title>Blockade of crizotinib-induced BCL2 elevation in ALK-positive anaplastic large cell lymphoma triggers autophagy associated with cell death</article-title>
</title-group>
<contrib-group>
<contrib contrib-type="author">
<name>
<surname>Torossian</surname>
<given-names>Avedis</given-names>
</name>
<xref ref-type="aff" rid="af1-1041428">1</xref>
<xref ref-type="aff" rid="af2-1041428">2</xref>
<xref ref-type="aff" rid="af3-1041428">3</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Broin</surname>
<given-names>Nicolas</given-names>
</name>
<xref ref-type="aff" rid="af1-1041428">1</xref>
<xref ref-type="aff" rid="af2-1041428">2</xref>
<xref ref-type="aff" rid="af3-1041428">3</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Frentzel</surname>
<given-names>Julie</given-names>
</name>
<xref ref-type="aff" rid="af1-1041428">1</xref>
<xref ref-type="aff" rid="af2-1041428">2</xref>
<xref ref-type="aff" rid="af3-1041428">3</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Daugrois</surname>
<given-names>Camille</given-names>
</name>
<xref ref-type="aff" rid="af1-1041428">1</xref>
<xref ref-type="aff" rid="af2-1041428">2</xref>
<xref ref-type="aff" rid="af3-1041428">3</xref>
<xref ref-type="aff" rid="af4-1041428">4</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Gandarillas</surname>
<given-names>Sarah</given-names>
</name>
<xref ref-type="aff" rid="af5-1041428">5</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Saati</surname>
<given-names>Talal Al</given-names>
</name>
<xref ref-type="aff" rid="af6-1041428">6</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Lamant</surname>
<given-names>Laurence</given-names>
</name>
<xref ref-type="aff" rid="af1-1041428">1</xref>
<xref ref-type="aff" rid="af2-1041428">2</xref>
<xref ref-type="aff" rid="af3-1041428">3</xref>
<xref ref-type="aff" rid="af4-1041428">4</xref>
<xref ref-type="aff" rid="af7-1041428">7</xref>
<xref ref-type="aff" rid="af8-1041428">8</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Brousset</surname>
<given-names>Pierre</given-names>
</name>
<xref ref-type="aff" rid="af1-1041428">1</xref>
<xref ref-type="aff" rid="af2-1041428">2</xref>
<xref ref-type="aff" rid="af3-1041428">3</xref>
<xref ref-type="aff" rid="af4-1041428">4</xref>
<xref ref-type="aff" rid="af7-1041428">7</xref>
<xref ref-type="aff" rid="af8-1041428">8</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Giuriato</surname>
<given-names>Sylvie</given-names>
</name>
<xref ref-type="aff" rid="af1-1041428">1</xref>
<xref ref-type="aff" rid="af2-1041428">2</xref>
<xref ref-type="aff" rid="af3-1041428">3</xref>
<xref ref-type="aff" rid="af8-1041428">8</xref>
<xref ref-type="aff" rid="af9-1041428">9</xref>
<xref ref-type="corresp" rid="c1-1041428"></xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Espinos</surname>
<given-names>Estelle</given-names>
</name>
<xref ref-type="aff" rid="af1-1041428">1</xref>
<xref ref-type="aff" rid="af2-1041428">2</xref>
<xref ref-type="aff" rid="af3-1041428">3</xref>
<xref ref-type="aff" rid="af4-1041428">4</xref>
<xref ref-type="aff" rid="af8-1041428">8</xref>
<xref ref-type="corresp" rid="c1-1041428"></xref>
</contrib>
</contrib-group>
<aff id="af1-1041428">
<label>1</label>
Inserm, UMR1037 CRCT, F-31000 Toulouse, France</aff>
<aff id="af2-1041428">
<label>2</label>
Université Toulouse III-Paul Sabatier, UMR1037 CRCT, F-31000 Toulouse, France</aff>
<aff id="af3-1041428">
<label>3</label>
CNRS, ERL5294 UMR1037 CRCT, F-31000, Toulouse, France</aff>
<aff id="af4-1041428">
<label>4</label>
Laboratoire d’Excellence Toulouse-Cancer-TOUCAN, F-31024 Toulouse, France</aff>
<aff id="af5-1041428">
<label>5</label>
Inserm/UPS, US006/CREFRE, F-31000 Toulouse, France</aff>
<aff id="af6-1041428">
<label>6</label>
Inserm/UPS, US006/CREFRE, Service d’Histopathologie, F-31000 Toulouse, France</aff>
<aff id="af7-1041428">
<label>7</label>
Département de Pathologie, IUCT, F-31000 Toulouse, France</aff>
<aff id="af8-1041428">
<label>8</label>
European Research Initiative on ALK-related Malignancies (ERIA), Cambridge, UK</aff>
<aff id="af9-1041428">
<label>9</label>
Transautophagy: European network for multidisciplinary research and translation of autophagy knowledge, COST Action CA15138, Brussel, Belgium</aff>
<author-notes>
<corresp id="c1-1041428">Correspondence:
<italic>ESTELLE ESPINOS</italic>
<email>estelle.espinos@inserm.fr</email>
/
<italic>SYLVIE GIURIATO</italic>
<email>sylvie.giuriato@inserm.fr</email>
</corresp>
</author-notes>
<pub-date pub-type="ppub">
<month>7</month>
<year>2019</year>
</pub-date>
<pub-date pub-type="epreprint">
<day>24</day>
<month>1</month>
<year>2019</year>
</pub-date>
<volume>104</volume>
<issue>7</issue>
<fpage>1428</fpage>
<lpage>1439</lpage>
<history>
<date date-type="received">
<day>11</day>
<month>10</month>
<year>2017</year>
</date>
<date date-type="accepted">
<day>22</day>
<month>1</month>
<year>2019</year>
</date>
</history>
<permissions>
<copyright-statement>Copyright© 2019 Ferrata Storti Foundation</copyright-statement>
<copyright-year>2019</copyright-year>
<license license-type="open-access">
<license-p>Material published in Haematologica is covered by copyright. All rights are reserved to the Ferrata Storti Foundation. Use of published material is allowed under the following terms and conditions:</license-p>
<license-p>
<ext-link ext-link-type="uri" xlink:href="https://creativecommons.org/licenses/by-nc/4.0/legalcode">https://creativecommons.org/licenses/by-nc/4.0/legalcode</ext-link>
. Copies of published material are allowed for personal or internal use. Sharing published material for non-commercial purposes is subject to the following conditions:</license-p>
<license-p>
<ext-link ext-link-type="uri" xlink:href="https://creativecommons.org/licenses/by-nc/4.0/legalcode">https://creativecommons.org/licenses/by-nc/4.0/legalcode</ext-link>
, sect. 3. Reproducing and sharing published material for commercial purposes is not allowed without permission in writing from the publisher.</license-p>
</license>
</permissions>
<self-uri content-type="pdf" xlink:type="simple" xlink:href="1041428.pdf"></self-uri>
<abstract>
<p>Anaplastic lymphoma kinase (ALK)-positive anaplastic large cell lymphomas are tumors that carry translocations involving the
<italic>ALK</italic>
gene at the 2p23 locus, leading to the expression of ALK tyrosine kinase fusion oncoproteins. Amongst hematologic malignancies, these lymphomas are particular in that they express very low levels of B-cell lymphoma 2 (BCL2), a recognized inhibitor of apoptosis and autophagy, two processes that share complex interconnections. We have previously shown that treatment of ALK-positive anaplastic large cell lymphoma cells with the ALK tyrosine kinase inhibitor crizotinib induces autophagy as a pro-survival response. Here, we observed that crizotinib-mediated inactivation of ALK caused an increase in BCL2 levels that restrained the cytotoxic effects of the drug. BCL2 downregulation in combination with crizotinib treatment potentiated loss of cell viability through both an increase in autophagic flux and cell death, including apoptosis. More importantly, our data revealed that the blockade of autophagic flux completely reversed impaired cell viability, which demonstrates that excessive autophagy is associated with cell death. We propose that the downregulation of BCL2 protein, which plays a central role in the autophagic and apoptotic machinery, combined with crizotinib treatment may represent a promising therapeutic alternative to current ALK-positive anaplastic large cell lymphoma treatments.</p>
</abstract>
</article-meta>
</front>
<body>
<sec sec-type="intro">
<title>Introduction</title>
<p>Anaplastic large cell lymphoma (ALCL) is an aggressive subtype of peripheral T-cell non-Hodgkin lymphoma that accounts for 10-15% of childhood lymphomas.
<sup>
<xref rid="b1-1041428" ref-type="bibr">1</xref>
</sup>
Two systemic forms of ALCL are currently recognized based on the 2016 revised World Health Organization (WHO) lymphoma classification,
<sup>
<xref rid="b2-1041428" ref-type="bibr">2</xref>
</sup>
according to the presence or absence of chromosomal translocations involving the anaplastic lymphoma kinase (
<italic>ALK</italic>
) gene at the 2p23 locus. Almost 90% of ALK-positive ALCL in children carry a characteristic t(2;5) (p23;q35) chromosomal translocation, leading to the intracellular expression of the oncogenic fusion protein nucleophosmin (NPM)-ALK.
<sup>
<xref rid="b3-1041428" ref-type="bibr">3</xref>
</sup>
ALK fusion proteins are constitutively active tyrosine kinases that lead to the activation of several downstream pathways, such as MEK/ERK, STATs and PI3K/AKT/mTOR, which result in abnormal proliferation and cell survival.
<sup>
<xref rid="b4-1041428" ref-type="bibr">4</xref>
,
<xref rid="b5-1041428" ref-type="bibr">5</xref>
</sup>
</p>
<p>Current standard therapies for ALCL in children and adolescents, most commonly based on short-pulse chemotherapy courses, reach event-free survival rates of 70%.
<sup>
<xref rid="b1-1041428" ref-type="bibr">1</xref>
</sup>
However, some patients still fail therapy and continued therapeutic improvements with reduced toxicity are being pursued. Recently, targeted therapy against ALK using the dual ALK/MET tyrosine kinase inhibitor crizotinib has been shown to be effective in relapsed/resistant ALK-positive ALCL.
<sup>
<xref rid="b6-1041428" ref-type="bibr">6</xref>
,
<xref rid="b7-1041428" ref-type="bibr">7</xref>
</sup>
However, as reported for other tyrosine kinase inhibitors, escape mechanisms which allow cancer cells to overcome the effects of crizotinib have already been described in ALK-positive non-small cell lung carcinoma (NSCLC), inflammatory myofibroblastic tumors (IMT), and ALCL patients.
<sup>
<xref rid="b8-1041428" ref-type="bibr">8</xref>
,
<xref rid="b9-1041428" ref-type="bibr">9</xref>
</sup>
</p>
<p>Recently, several studies performed in ALK-associated cancers, including ours in ALCL, demonstrated that macroautophagy (hereafter referred to as “autophagy”) is induced following treatments with ALK tyrosine kinase inhibitors and acts as a cell survival-promoting mechanism restraining the cytotoxic effects of the drugs.
<sup>
<xref rid="b10-1041428" ref-type="bibr">10</xref>
</sup>
Autophagy is a highly-conserved catabolic pathway and a dynamic process (autophagic flux) that is responsible for double membrane autophagosome synthesis, delivery of autophagic substrates to the lysosomes, and degradation of autophagic substrates inside lysosomes.
<sup>
<xref rid="b11-1041428" ref-type="bibr">11</xref>
</sup>
In cancer, autophagy is often described as a cell survival-promoting mechanism, but cell death-promoting roles have also been reported according to the stage of cancer development and treatments administered.
<sup>
<xref rid="b12-1041428" ref-type="bibr">12</xref>
<xref rid="b14-1041428" ref-type="bibr">14</xref>
</sup>
Thus, autophagy is considered to be a multifaceted regulator of cell death and outstanding questions remain as to how it interacts with other forms of cell death, including apoptosis and necrosis/necroptosis.
<sup>
<xref rid="b15-1041428" ref-type="bibr">15</xref>
</sup>
</p>
<p>Indeed, the inter-relationship between these different forms of cell death is extremely complex and the common underlying molecular machinery makes it difficult to distinguish one form from another.
<sup>
<xref rid="b15-1041428" ref-type="bibr">15</xref>
<xref rid="b17-1041428" ref-type="bibr">17</xref>
</sup>
BCL2-family proteins regulate all major types of cell death, including apoptosis, necrosis and autophagy, thus operating as nodal points at the convergence of multiple oncological pathways.
<sup>
<xref rid="b18-1041428" ref-type="bibr">18</xref>
</sup>
The pro-survival BCL2 family members, BCL2 and BCL2L1 (BCL-XL/S) have been reported to directly inhibit autophagy by binding to a BH3-like domain of the BECN1 autophagy protein.
<sup>
<xref rid="b19-1041428" ref-type="bibr">19</xref>
</sup>
Lindqvist
<italic>et al</italic>
. have, however, recently proposed that pro-survival BCL2 family members indirectly inhibit components of the autophagy pathway by inhibiting the activation of BAX and BAK.
<sup>
<xref rid="b20-1041428" ref-type="bibr">20</xref>
,
<xref rid="b21-1041428" ref-type="bibr">21</xref>
</sup>
</p>
<p>Deregulation of BCL2 and other anti-apoptotic proteins has been demonstrated to be an important resistance mechanism to treatments in solid tumors and hematologic malignancies.
<sup>
<xref rid="b18-1041428" ref-type="bibr">18</xref>
</sup>
It has been proposed that the oncogenic properties of BCL2 could originate not only from its ability to block apoptosis but also from its capacity to inhibit BECN1-dependent autophagy, thus preventing BECN1-dependent autophagic cell death.
<sup>
<xref rid="b22-1041428" ref-type="bibr">22</xref>
</sup>
This further supports BCL2 as a critical target for cancer treatment, and numerous BCL2 targeting strategies are being developed for therapeutic applications. These include pharmacological inhibitors, such as the highly selective BCL2 inhibitor venetoclax (ABT-199)
<sup>
<xref rid="b23-1041428" ref-type="bibr">23</xref>
,
<xref rid="b24-1041428" ref-type="bibr">24</xref>
</sup>
and, more recently, BCL2-targeted DNAi
<sup>
<xref rid="b25-1041428" ref-type="bibr">25</xref>
</sup>
or microRNA mimics like miR-34a.
<sup>
<xref rid="b26-1041428" ref-type="bibr">26</xref>
<xref rid="b28-1041428" ref-type="bibr">28</xref>
</sup>
</p>
<p>Here, we show for the first time that ALK inactivation in ALK-positive ALCL induces an increase in BCL2 levels, which could contribute to therapeutic failures of current ALK-targeted therapies. We found that BCL2 downregulation strongly potentiates the cytotoxic effects of crizotinib both
<italic>in vitro</italic>
and
<italic>in vivo</italic>
, by increasing the intensity of the autophagic flux as a support for subsequent cell death. Our data strongly suggest that the BCL2 protein, acting at the crossroads between different forms of cell death, is the keystone of an escape mechanism in therapeutically-challenged ALK-positive ALCL. Therefore, BCL2 downregulation in combination with crizotinib treatment could significantly improve clinical outcome in ALK-positive ALCL patients.</p>
</sec>
<sec sec-type="methods">
<title>Methods</title>
<sec>
<title>Human cell lines</title>
<p>KARPAS-299, COST, and SU-DHL-1 ALK-positive ALCL cell lines which express the NPM-ALK fusion protein were originally obtained from DSMZ (German Collection of Microorganisms and Cell Culture, Braunschweig, Germany) or established in our laboratory.
<sup>
<xref rid="b29-1041428" ref-type="bibr">29</xref>
</sup>
The ALK-negative ALCL cell line FE-PD was a kind gift from Dr. K. Pulford (Oxford University, Oxford, UK). Cells were cultured as previously described.
<sup>
<xref rid="b30-1041428" ref-type="bibr">30</xref>
</sup>
The mRFP-EGFP-LC3 KARPAS-299 cell line (clonal cell population) was established in our laboratory (
<italic>Online Supplementary Methods</italic>
). This study was carried out in accordance with protocols approved by the institutional review board, and the procedures followed were in accordance with the Declaration of Helsinki of 1975, as revised in 2000.</p>
</sec>
<sec>
<title>Chemicals</title>
<p>Crizotinib (PF-2341066) was synthesized and purchased from @rtMolecule (Poitiers, France). Chloroquine was purchased from Sigma-Aldrich (St. Louis, MO, USA). Rapamycin was provided with the Cyto-ID Autophagy detection kit (Enzo Life Sciences, Switzerland). Stock solutions of crizotinib (500 μM), chloroquine (50 mM) were prepared in phosphate buffered saline (PBS). Stock solutions of rapamycin (500 μM) were prepared in dimethyl sulfoxide (DMSO).</p>
</sec>
<sec>
<title>Cell viability determination by MTS colorimetric measurements</title>
<p>The CellTiter 96AQueus One Solution Cell Proliferation assay (Promega, Fitchburg, WI, USA) was used according to the manufacturer’s instructions to follow the growth of the cells and determine the number of viable cells.</p>
</sec>
<sec>
<title>Cell death measurements using annexin V/propidium iodide staining</title>
<p>Analysis of dying cells was carried out using annexin V (Annexin V-PE) and propidium iodide (PI) staining (BD Biosciences), according to standard protocols. This was followed by flow cytometry using a MACSQUANT MQ10 (Miltenyi Biotec, Santa Barbara, CA, USA). Results were analyzed using FlowJo software (v.10, BD Biosciences).</p>
</sec>
<sec>
<title>Flow cytometric quantification of autophagic flux</title>
<p>Autophagic flux was either assessed on a stable clonal population of mRFP-EGFP-LC3-expressing KARPAS-299 cells, recently generated in our laboratory (
<italic>Online Supplementary Methods</italic>
) or on whole cell population of KARPAS-299, SU-DHL-1 and COST cells using the Cyto-ID- based procedure, according to the manufacturer’s instructions (Enzo Life Sciences, Switzerland).</p>
</sec>
<sec>
<title>Confocal microscopy</title>
<p>Cells were fixed (20 min, 4% PFA) on polylysine-coated slides (0.01%) and stained with DAPI using ProLong
<sup>®</sup>
Gold Antifade Mountant with DAPI (Thermofisher, Waltham, MA, USA). Analysis by confocal microscopy (LSM-780, Zeiss) was performed in order to observe fluorescent signals in mRFP-EGFP-LC3 KARPAS-299 cells. Image analysis was performed using the ImageJ software (US National Institutes of Health, Bethesda, MD, USA).</p>
</sec>
<sec sec-type="methods">
<title>Statistical analysis</title>
<p>Results are presented as mean values±Standard Error of Mean (SEM) from at least three independent experiments, unless otherwise indicated. Determination of statistical significance was performed using the two-tailed Student
<italic>t</italic>
-test for side-by-side comparison of two conditions. Statistical analyses of xenografted tumor growths were performed using the two-way analysis of variance (ANOVA) followed by the Bonferroni test using GraphPad Prism 6 software (GraphPad, San Diego, CA, USA). For all tests, statistical significance is indicated by: *
<italic>P</italic>
≤0.05; **
<italic>P</italic>
≤0.01; ***
<italic>P</italic>
≤0.001; ****
<italic>P</italic>
≤0.0001.</p>
</sec>
</sec>
<sec sec-type="results">
<title>Results</title>
<sec>
<title>BCL2 levels inversely correlate with ALK expression and ALK activity in anaplastic large cell lymphoma cells</title>
<p>Whereas overexpression of BCL2 is a classical feature in cancers, including hematopoietic tumors, previous studies reported very low levels of BCL2 in ALK-positive primary tissue samples.
<sup>
<xref rid="b31-1041428" ref-type="bibr">31</xref>
,
<xref rid="b32-1041428" ref-type="bibr">32</xref>
</sup>
To investigate whether there was a link between ALK and BCL2 expression, we first checked the relative abundance of these two proteins in three ALK-positive and one ALK-negative cell lines (
<xref ref-type="fig" rid="f1-1041428">Figure 1A</xref>
). BCL2 protein levels were found to be very low in the three ALK-positive cell lines tested (KARPAS-299, SU-DHL-1, and COST) but were much more abundant in the ALK-negative (FE-PD) cell line, suggesting an inverse correlation between the expression of NPM-ALK and BCL2. We then monitored BCL2 levels following treatment with the crizotinib compound for 24 hours (h) at the known plasmatic dose (500 nM) observed in patients
<sup>
<xref rid="b30-1041428" ref-type="bibr">30</xref>
</sup>
(
<xref ref-type="fig" rid="f1-1041428">Figure 1B</xref>
). Our data indicate that the abolition of ALK kinase activity resulted in a consistent and highly reproducible increase in BCL2 levels in ALK-positive cells, with no effect in ALK-negative cells (for quantification, see
<italic>Online Supplementary Figure S1A</italic>
). ALK knockdown, through the use of a targeted siRNA, confirmed these results, showing an ALK-dependent increase in BCL2 levels (
<xref ref-type="fig" rid="f1-1041428">Figure 1C</xref>
and
<italic>Online Supplementary Figure S1B</italic>
for quantification). Finally, as crizotinib is known to inhibit both ALK and MET tyrosine kinases,
<sup>
<xref rid="b6-1041428" ref-type="bibr">6</xref>
</sup>
we then checked the effects of the specific molecular downregulation of MET, using a targeted siRNA, on BCL2 cellular levels. We did not observe any increase in BCL2 levels following MET knockdown (
<italic>Online Supplementary Figure S2</italic>
). Thus, this result rules out the contribution of MET inactivation in the increase of BCL2 levels following crizotinib treatment. Altogether, these data support the existence of a strictly ALK-dependent BCL2 repression mechanism at work. Therefore, treating ALK-positive ALCL with crizotinib impairs this mechanism and leads to the re-expression of the
<italic>BCL2</italic>
oncogene.</p>
<fig id="f1-1041428" position="float">
<label>Figure 1.</label>
<caption>
<p>BCL2 levels inversely correlate with NPM-ALK expression and ALK tyrosine kinase activity in anaplastic large cell lymphoma (ALCL) cells. (A) Western blot showing NPM-ALK and BCL2 protein levels in ALK-positive (KARPAS-299, SU-DHL-1, COST) and ALK-negative (FE-PD) ALCL cell lines. β-actin served as the internal control to ensure equal loading. (B) Western blot showing BCL2 protein levels in ALK-positive and ALK-negative ALCL cells following 24 hours (h) of treatment with crizotinib (500 nM). The loss of NPM-ALK tyrosine phosphorylation (P-NPM-ALK, Y1604) served as an internal control to ensure efficiency of crizotinib. (C) Western blot showing NPM-ALK and BCL2 protein levels in ALK-positive and ALK-negative ALCL cells that were transfected with either a negative control siRNA (siCTL) or a siRNA targeting ALK mRNA (siALK) for 72 h.</p>
</caption>
<graphic xlink:href="1041428.fig1"></graphic>
</fig>
</sec>
<sec>
<title>Increased BCL2 levels limit the cytotoxic effects of crizotinib</title>
<p>We next asked whether crizotinib-mediated increase in BCL2 levels could limit the cytotoxic effects of the drug. We thus performed viability assays, cell cycle analyses, and Annexin V/PI staining in cells that were knocked down or not for BCL2, and treated or not with crizotinib (
<xref ref-type="fig" rid="f2-1041428">Figure 2</xref>
). BCL2 knockdown (confirmed by western blot analysis) (
<italic>Online Supplementary Figure S3</italic>
) was achieved by RNA interference using either a targeted siRNA directed against BCL2 mRNA, or miR-34a mimics, another promising BCL2 targeting strategy for clinical application.
<sup>
<xref rid="b26-1041428" ref-type="bibr">26</xref>
<xref rid="b28-1041428" ref-type="bibr">28</xref>
</sup>
Viability assays showed that BCL2 knockdown, which restrained BCL2 elevation in crizotinib-treated cells (without up-regulating other BCL2 family isoforms, including MCL1, BCL-XL/S and BCL-W;
<italic>data not shown</italic>
), significantly enhanced the effects of crizotinib, as only 20% of siBCL2-transfected cells remained viable after 72 h when compared to approximately 50% of siCTL- transfected cells (
<xref ref-type="fig" rid="f2-1041428">Figure 2A</xref>
). More pronounced effects on cell viability were obtained when BCL2 knockdown was achieved using miR-34a mimics, as only 6% of cells were viable at the end of the combined treatment.</p>
<fig id="f2-1041428" position="float">
<label>Figure 2.</label>
<caption>
<p>BCL2 downregulation potentiates crizotinib-induced loss in cell viability, which involves an increase in cell death. Twenty-four hours (h) after the transfection of BCL2-targeted interfering RNAs (siBCL-2 or miR-34a mimics), or their corresponding negative controls (siCTL or miR-Neg), KARPAS-299 were treated (or not) with crizotinib (500 nM) for 72 h. (A) Cell viability was assessed by MTS colorimetric measurement. Each set of data was normalized to its related untreated negative control condition (siCTL or miR-Neg) and represents mean±Standard Error of Mean (SEM); n=3. **
<italic>P</italic>
≤0.01; ***
<italic>P</italic>
≤0.001; ****
<italic>P</italic>
≤0.0001; unpaired Student
<italic>t</italic>
-test. (B) Flow cytometry analysis of cell cycle. Graph represents the mean percentage of cells in sub-G1, G1, S and G2/M phases. Data represent mean±SEM; n=3; Statistical analysis was performed by two-way ANOVA with Bonferroni correction; **
<italic>P</italic>
≤0.01; ***
<italic>P</italic>
≤0.001; ****
<italic>P</italic>
≤0.0001. (C) Flow cytometry analysis of annexin V-positive KARPAS-299 cells. Graph represents the percentage of annexin V-positive cells from six independent experiments±SEM. *
<italic>P</italic>
≤0.05; **
<italic>P</italic>
≤0.01; ***
<italic>P</italic>
≤0.001; unpaired Student
<italic>t</italic>
-test.</p>
</caption>
<graphic xlink:href="1041428.fig2"></graphic>
</fig>
<p>We then explored whether this loss in cell viability involved a decrease in cellular growth, by analyzing the effects of BCL2 silencing and/or crizotinib treatment on cell cycle distribution (
<xref ref-type="fig" rid="f2-1041428">Figure 2B</xref>
). We found that BCL2 downregulation using a targeted siRNA did not increase either the potent G1-S phase cell cycle arrest or the number of cells in sub-G1 phase observed following crizotinib treatment. On the contrary, the use of miR-34a mimics induced
<italic>per se</italic>
a blockade in G1 phase and an increase in the number of cells in sub-G1 phase, which were further potentiated upon crizotinib addition (
<xref ref-type="fig" rid="f2-1041428">Figure 2B</xref>
).</p>
<p>To better assess the effects of BCL2 knockdown on cell death, we performed Annexin V/PI staining. Our data first showed that crizotinib treatment (500 nM, 72 h) induced apoptosis, as reflected by a significant increase in the number of annexin V-stained cells in siCTL and miR-Neg conditions (
<xref ref-type="fig" rid="f2-1041428">Figure 2C</xref>
). Additionally, and in agreement with the sharp loss in cell viability observed in response to combined treatments, we observed that BCL2 knockdown triggered an increase in apoptotic cell death in crizotinib-treated cells, as revealed by both a significant increase in the number of annexin V-stained cells and an activation of caspase 3/7 (
<italic>Online Supplementary Figure S4</italic>
).</p>
<p>Taken together, our data indicate that the cytotoxic effects of crizotinib in ALK-expressing ALCL cells are restricted through an elevation of BCL2 levels. Indeed, we demonstrate that BCL2 downregulation in addition to crizotinib treatment potentiates crizotinib-induced loss in cell viability essentially through an increase in apoptotic cell death. Of note, similar results on cell viability and apoptosis were obtained using SU-DHL-1, another ALK-positive ALCL cell line (
<italic>Online Supplementary Figure S5</italic>
).</p>
</sec>
<sec>
<title>BCL2 downregulation enhances crizotinib-triggered autophagic flux</title>
<p>Besides its role in apoptosis, BCL2 is also a known inhibitor of autophagy,
<sup>
<xref rid="b19-1041428" ref-type="bibr">19</xref>
<xref rid="b22-1041428" ref-type="bibr">22</xref>
</sup>
a process that has been described to influence cell death mechanisms in many cancers following drug treatment.
<sup>
<xref rid="b12-1041428" ref-type="bibr">12</xref>
,
<xref rid="b15-1041428" ref-type="bibr">15</xref>
,
<xref rid="b33-1041428" ref-type="bibr">33</xref>
</sup>
Since we recently showed that ALK inactivation induced autophagy endowed with pro-survival properties in ALK-positive ALCL cell lines,
<sup>
<xref rid="b30-1041428" ref-type="bibr">30</xref>
</sup>
we investigated whether concomitant elevation of BCL2 could account for the cytoprotective function of the autophagic process in these conditions. To address this question, we generated a modified and clonal KARPAS-299 cell line stably transfected with a transgene encoding the LC3 protein (microtubule-associated protein 1 light chain 3), an early marker of autophagosomes, coupled to both RFP and EGFP (
<italic>Online Supplementary Methods and Online Supplementary Figure S6</italic>
). The expression of this tandem fluorescently-tagged LC3 reporter protein enabled flow cytometric quantification and confocal microscopy-based analysis of autophagic flux. In accordance with our previous study,
<sup>
<xref rid="b30-1041428" ref-type="bibr">30</xref>
</sup>
we observed that crizotinib induced autophagic flux in a dose-dependent manner, as revealed by an increase in the percentage of cells that exhibited high RFP/EGFP fluorescence ratios (
<xref ref-type="fig" rid="f3-1041428">Figure 3A</xref>
). More importantly, and in keeping with the known function of BCL2 in autophagy downregulation,
<sup>
<xref rid="b19-1041428" ref-type="bibr">19</xref>
<xref rid="b22-1041428" ref-type="bibr">22</xref>
</sup>
we found that BCL2 knockdown, using either siBCL2 (
<xref ref-type="fig" rid="f3-1041428">Figure 3A and B</xref>
) or miR-34a mimics (
<xref ref-type="fig" rid="f3-1041428">Figure 3A and C</xref>
), strongly increased the percentage of cells with high RFP/EGFP ratios, indicative of a higher autophagic flux, which was observed both in basal and crizotinib-treatment conditions. We confirmed these results by performing two other assays to monitor and quantify autophagic flux in the KARPAS-299 whole cell population (
<italic>Online Supplementary Figures S7-S9</italic>
), and in two other ALK-positive ALCL cell lines (
<italic>Online Supplementary Figure S10</italic>
). Altogether our results strongly indicate that BCL2 plays a key role in restraining both the basal- and crizotinib-induced autophagic flux in ALK-positive ALCL.</p>
<fig id="f3-1041428" position="float">
<label>Figure 3.</label>
<caption>
<p>BCL2 downregulation enhances crizotinib-triggered autophagic flux. (A) Flow cytometry analysis of autophagic flux following the knockdown of BCL2 and crizotinib treatment in KARPAS-299 cells expressing a tandem fluorescently-tagged LC3 reporter protein. mRFP-EGFP-LC3 KARPAS-299 cells (described in
<italic>Online Supplementary Methods</italic>
) were transfected with either negative controls (siCTL or miR-Neg) or with siBCL2 or miR-34a mimics. Twenty-four hours (h) later, transfected cells were treated or not with increasing doses of crizotinib (0 to 500 nM) for a further 48 h. Induction of autophagic flux was analyzed by monitoring the RFP/EGFP fluorescence ratio in individual cells. Cells were split into two groups based on their relative RFP/EGFP fluorescence ratios: cells with low/basal autophagic flux and cells with high/induced autophagic flux. A representative experiment is shown. (B and C) Histograms representing the percentage of cells with a RFP/EGFP ratio reflective of high autophagic flux, from n=5 (siBCL2) or n=3 (miR-34a mimics) independent experiments ± Standard Error of Mean; *
<italic>P</italic>
≤0.05; **
<italic>P</italic>
≤0.01; ***
<italic>P</italic>
≤0.001; unpaired Student’s
<italic>t</italic>
-test.</p>
</caption>
<graphic xlink:href="1041428.fig3"></graphic>
</fig>
</sec>
<sec>
<title>Enhanced autophagic flux induced by BCL2 downregulation and crizotinib treatment is associated with impaired cell viability</title>
<p>To elucidate whether this substantial increase in autophagic flux upon combined crizotinib treatment and BCL2 downregulation could be involved in the increased loss of cell viability observed under the same conditions, we followed the survival of cells in which the autophagic machinery was impaired through the knockdown of ULK1, a key factor involved in the very early stages of the autophagy process.
<sup>
<xref rid="b34-1041428" ref-type="bibr">34</xref>
</sup>
mRFP-EGFP-LC3 KARPAS-299 cells were transfected with siRNA directed against ULK1 mRNA (siULK1) and/or against BCL2 mRNA (siBCL2), in the presence or absence of crizotinib. ULK1 knockdown (validated by western blot analyses,
<italic>Online Supplementary Figure S11</italic>
) efficiently blocked the autophagy process, as revealed by a decrease in both yellow (reflecting autophagosomes) and red (reflecting autolysosomes) punctate staining (
<xref ref-type="fig" rid="f4-1041428">Figure 4A</xref>
). Flow cytometry monitoring of autophagic flux confirmed firstly that the blockade of BCL2 expression increased the number of cells exhibiting high autophagy in both untreated and crizotinib-treated cells (
<xref ref-type="fig" rid="f4-1041428">Figure 4B and C</xref>
), and secondly that ULK1 downregulation successfully blocked the autophagic machinery as it reduced basal autophagy levels and restrained the crizotinib-triggered autophagic flux observed in BCL2-knocked down cells (2-fold decrease). Most interestingly, MTS viability assays showed that the effects of BCL2 downregulation in further reducing cell viability in crizotinib-treated cells was completely reversed by the knockdown of ULK1 (
<xref ref-type="fig" rid="f4-1041428">Figure 4D</xref>
). These results strongly suggest that BCL2 downregulation following crizotinib treatment reinforced autophagic flux, which was deleterious for ALK-positive ALCL cells, and thereby led to a greater loss in viability under these conditions.</p>
<fig id="f4-1041428" position="float">
<label>Figure 4.</label>
<caption>
<p>Enhanced autophagic flux induced by BCL2 downregulation and crizotinib treatment is associated with impaired cell viability. Twenty-four hours (h) after ULK1 knockdown either alone or in combination with BCL2 knockdown, mRFP-EGFP-LC3 KARPAS-299 cells were treated or not with crizotinib (200nM) for a further 72 h. Representative data of (A) confocal microscopy and (B) flow cytometry analysis of autophagic flux are shown. (C) Histograms representing the percentage of cells with high autophagic flux from five independent experiments ± Standard Error of Mean (SEM); *
<italic>P</italic>
≤0.05; **
<italic>P</italic>
≤0.01; ***
<italic>P</italic>
≤0.001; unpaired Student
<italic>t</italic>
-test. (D) Cell viability was assessed by MTS colorimetric measurements in the same experimental conditions. Data represent mean±SEM; n=3; *
<italic>P</italic>
≤0.05; **
<italic>P</italic>
≤0.01; unpaired Student
<italic>t</italic>
-test.</p>
</caption>
<graphic xlink:href="1041428.fig4"></graphic>
</fig>
<p>To address the question of whether potentiation of the autophagic flux in our model was sufficient to trigger cell death, we next performed experiments with a combination of crizotinib and rapamycin, a well-known mTOR inhibitor and strong inducer of autophagy, namely in ALK-positive tumor cells.
<sup>
<xref rid="b35-1041428" ref-type="bibr">35</xref>
,
<xref rid="b36-1041428" ref-type="bibr">36</xref>
</sup>
We first confirmed that rapamycin alone (100 nM) did induce autophagy in KARPAS-299 cells as 60% and 75% of cells harbored a high autophagic flux following 24 h and 48 h of treatment, respectively (
<xref ref-type="fig" rid="f5-1041428">Figure 5A</xref>
). We then observed that combining crizotinib and rapamycin treatments resulted in a clear potentiation of the autophagic flux, with more pronounced effects obtained with the lowest dose of crizotinib used in our assays (125 nM). We also found that this potentiation of the autophagic flux was associated with a decrease in cell viability, as measured by MTS colorimetric assays (
<xref ref-type="fig" rid="f5-1041428">Figure 5B</xref>
), an effect that was more pronounced after 48 h and 72 h of treatment. However, Annexin-V/PI staining revealed no significant differences in the number of cells undergoing apoptotic cell death when comparing crizotinib treatment alone with crizotinib and rapamycin combined treatment, independently of the dose of crizotinib used and the duration of the treatment (
<xref ref-type="fig" rid="f5-1041428">Figure 5C</xref>
). Altogether these results indicate that excessive autophagy upon crizotinib and rapamycin co-treatment contributes to cell death independently of apoptosis.</p>
<fig id="f5-1041428" position="float">
<label>Figure 5.</label>
<caption>
<p>Enhanced autophagic flux induced by rapamycin and crizotinib co-treatment is associated with impaired viability but does not rely on an increase in apoptotic cell death. KARPAS-299 cells were co-treated or not with crizotinib (125 or 500 nM) and rapamycin (100 nM) for 24, 48 and 72 hours (h). (A) Histogram representation of the percentage of cells with high autophagic flux after 24 h (left) or 48 h (right) of treatment with crizotinib and/or rapamycin. Data represent mean±Standard Error of Mean (SEM); n=5. **
<italic>P</italic>
≤0.01; ***
<italic>P</italic>
≤0.001; ****
<italic>P</italic>
≤0.0001, unpaired Student
<italic>t</italic>
-test. (B) Cell viability was assessed by MTS colorimetric measurements after 24, 48 and 72 h of treatment. Data represent mean±SEM; n=3. (C) Flow cytometry analysis of annexin V-positive KARPAS-299 cells treated as described above. Graphs represent the percentage of annexin V-positive cells from five independent experiments ± SEM. ns: not significant; **
<italic>P</italic>
≤0.01; ***
<italic>P</italic>
≤0.001; unpaired Student
<italic>t</italic>
-test.</p>
</caption>
<graphic xlink:href="1041428.fig5"></graphic>
</fig>
</sec>
<sec>
<title>MiR-34a-mediated BCL2 downregulation potentiates the antitumoral effects of crizotinib in NOD/SCID mice xenografted with ALK-positive anaplastic large cell lymphoma cells</title>
<p>Finally, we explored whether the combination of BCL2 downregulation and crizotinib treatment would have a significant therapeutic benefit
<italic>in vivo</italic>
. To address this question, NOD/SCID mice were xenografted with KARPAS-299 cells that were either transfected with miR-Neg or miR-34a mimics. Crizotinib was administered orally for 22 days, during which time tumor growth was monitored (
<xref ref-type="fig" rid="f6-1041428">Figure 6A</xref>
). On the day of sacrifice, tumors were weighed (
<xref ref-type="fig" rid="f6-1041428">Figure 6B</xref>
) and samples were retrieved for immunohistochemistry (IHC) analysis (
<xref ref-type="fig" rid="f6-1041428">Figure 6C</xref>
).</p>
<fig id="f6-1041428" position="float">
<label>Figure 6.</label>
<caption>
<p>miR-34-mediated BCL2 downregulation potentiates the antitumoral effects of crizotinib
<italic>in vivo</italic>
. (A) ALK-positive KARPAS-299 cells, transfected with either a negative control microRNA (miR-Neg) or miR-34a mimics (miR-34a), were injected subcutaneously into the left or right flank of 16 NOD/SCID mice, respectively. Eight of these mice received oral crizotinib (2.5 mg/kg) for 22 days, while the remaining eight received vehicle. Tumor volume was evaluated over time by caliper measurements and was reported as means±Standard Error of Mean (SEM). Statistical analysis was performed by two-way ANOVA with Bonferroni correction; ****
<italic>P</italic>
≤0.0001. (B) Representative tumors resected from mice xenografted with miR-Neg or miR-34a cells that received either vehicle or crizotinib treatment (scale in cm). Their weights are indicated (mg). (C) Micrographs showing Hematoxylin & Eosin (HE), anti-LC3B and anti-P62 stainings of excised miR-Neg or miR-34a tumors that in addition received either vehicle or crizotinib treatment (scale bars: 20 μm, inset HE staining 5000 μm). Arrows indicate cells with phenotypic hallmarks of nuclear piknosis and general cellular fragility.</p>
</caption>
<graphic xlink:href="1041428.fig6"></graphic>
</fig>
<p>In accordance with the data collected
<italic>in vitro</italic>
, we observed that mice xenografted with miR-34a-transfected cells developed significantly smaller tumors than those xenografted with miR-Neg-transfected cells in the presence of crizotinib (
<xref ref-type="fig" rid="f6-1041428">Figure 6A and B</xref>
). As seen in our
<italic>in vitro</italic>
viability assays, miR-34a-mediated BCL2 knockdown alone impaired tumor growth, albeit to a lesser extent than with the miR-34a/crizotinib combination. Hematoxylin & Eosin (HE) staining performed on samples excised from tumors treated with the miR-34a/crizotinib combination also exhibited hallmarks of higher cell fragility (
<xref ref-type="fig" rid="f6-1041428">Figure 6C</xref>
). To confirm our
<italic>in vitro</italic>
findings showing higher levels and deleterious effects of autophagy in KARPAS-299 cells under miR-34a/crizotinib combination, we looked at
<italic>in vivo</italic>
autophagy activity by performing LC3B and p62 IHC analyses in tissues from the tumor xenografts (
<xref ref-type="fig" rid="f6-1041428">Figure 6C</xref>
and
<italic>Online Supplementary Figure S12</italic>
), as previously reported.
<sup>
<xref rid="b37-1041428" ref-type="bibr">37</xref>
,
<xref rid="b38-1041428" ref-type="bibr">38</xref>
</sup>
We observed that dot-like patterns of both LC3B and p62 staining increased strongly and significantly in cells that received the combined miR-34a/crizotinib treatment in comparison with the single treatment. These results are consistent with increased autophagy activity.</p>
</sec>
</sec>
<sec sec-type="discussion">
<title>Discussion</title>
<p>Our study is the first to report that the expression of ALK and BCL2, two major oncogenes, are inversely correlated in ALK-positive ALCL through an ALK-dependent BCL2 repression mechanism. Indeed, we demonstrated that BCL2 levels increased following either the pharmacological inhibition (crizotinib treatment) or the siRNA-targeted knockdown of ALK (siALK transfection) in ALK-positive ALCL cells. These data are consistent with and complete previous studies reporting a lack of BCL2 protein expression in primary tissue samples of ALK-positive ALCL
<sup>
<xref rid="b31-1041428" ref-type="bibr">31</xref>
,
<xref rid="b32-1041428" ref-type="bibr">32</xref>
</sup>
and low mRNA levels in the ALK-positive ALCL cell line, KARPAS-299.
<sup>
<xref rid="b39-1041428" ref-type="bibr">39</xref>
</sup>
This observation in a cancerous environment seems paradoxical but is balanced by the fact that these tumor cells over-express MCL1, through a molecular mechanism that involves miR-29a.
<sup>
<xref rid="b32-1041428" ref-type="bibr">32</xref>
,
<xref rid="b39-1041428" ref-type="bibr">39</xref>
,
<xref rid="b40-1041428" ref-type="bibr">40</xref>
</sup>
In the present study, to rule out a potential compensation of BCL2 downregulation by BCL2 isoforms in crizotinib-treated cells, we checked the expression of MCL1, BCL-XL/S and BCL-W and did not find any significant variations in the levels of all of these isoforms when comparing crizotinib-treated siCTL- to siBCL2-transfected cells (
<italic>data not shown</italic>
). We then demonstrated that increased BCL2 levels limit the cytotoxic effects of crizotinib. To do so, we used two molecular approaches to target BCL2: i) a specific BCL2 siRNA; and ii) miR-34a mimics, which have been reported to reduce cell viability and induce apoptosis through efficient BCL2 downregulation.
<sup>
<xref rid="b41-1041428" ref-type="bibr">41</xref>
,
<xref rid="b42-1041428" ref-type="bibr">42</xref>
</sup>
We found that miR-34a mimics potentiated crizotinib cytotoxicity more efficiently than siBCL2, an effect that could be attributed to the versatile role of miR-34a in regulating the expression of myriads of targets that include not only proteins involved in apoptosis, such as BCL2, but also proteins controlling cell cycle and other processes that are necessary for cell viability.
<sup>
<xref rid="b26-1041428" ref-type="bibr">26</xref>
,
<xref rid="b28-1041428" ref-type="bibr">28</xref>
</sup>
The broad anti-oncogenic activity of miR-34a is nowadays considered to be a clear advantage for the treatment of multi-genic diseases such as cancer and justifies the development of miR-34a mimics delivery-based strategies to combat cancer cells.
<sup>
<xref rid="b27-1041428" ref-type="bibr">27</xref>
,
<xref rid="b43-1041428" ref-type="bibr">43</xref>
,
<xref rid="b44-1041428" ref-type="bibr">44</xref>
</sup>
MRX34, a liposome-based miR-34a mimic is the first miRNA mimic to be used in clinical studies and has already been evaluated in phase I clinical trials in patients with advanced solid tumors.
<sup>
<xref rid="b45-1041428" ref-type="bibr">45</xref>
</sup>
The combination of miR-34a mimics with other anti-cancer agents could thus represent a novel way to counteract therapeutic failure. In addition, we carried out experiments with the BH3-mimetic venetoclax. We treated KARPAS-299 ALCL cells with venetoclax concentrations (from 10nM to 25μM), which were described by Souers
<italic>et al</italic>
. for cells with high and low levels of BCL2, respectively.
<sup>
<xref rid="b23-1041428" ref-type="bibr">23</xref>
</sup>
We found low concentrations of venetoclax to have no impact either on cell viability or autophagy. Conversely, high doses were found to be highly toxic, even in the absence of crizotinib, a result most likely attributable to off-target effects (
<italic>data not shown</italic>
). Thus, in accordance with literature highlighting the efficiency of this compound in the treatment of tumors harboring high expression of BCL2 but its uncommon use in lymphoma, we found that the pharmacological inhibition of BCL2 with venetoclax in KARPAS-299 ALK positive cells did not recapitulate the effects of BCL2 targeted downregulation, a result that should stimulate further investigation.</p>
<p>Our team previously demonstrated that treatment of ALK-positive ALCL cells with crizotinib induces an autophagic flux endowed with pro-survival properties.
<sup>
<xref rid="b30-1041428" ref-type="bibr">30</xref>
</sup>
In the present study, we further demonstrated that crizotinib-induced autophagy was associated with an upregulation of BCL2, which limits the cytotoxic effects of the drug. Indeed, BCL2 knockdown combined to crizotinib treatment led to a profound loss of cell viability that was found to be due to an increase in apoptosis. This did not, however, exclude the occurrence of another type of cell death. Indeed, in addition, our data showed that crizotinib/BCL2 knockdown treatments also led to a significant potentiation of autophagic flux (
<xref ref-type="fig" rid="f7-1041428">Figure 7</xref>
). Several lines of evidence clearly indicate that autophagy is a multifaceted regulator of cell death.
<sup>
<xref rid="b12-1041428" ref-type="bibr">12</xref>
<xref rid="b14-1041428" ref-type="bibr">14</xref>
</sup>
However, controversy remains as to whether autophagy directly executes cell death or how it interferes with other forms of death, including apoptosis and necrosis/necroptosis.
<sup>
<xref rid="b15-1041428" ref-type="bibr">15</xref>
</sup>
In the present study, the contribution of excessive autophagy in the process of cell death was first evidenced by the fact that impairing the autophagic machinery (by the molecular targeting of ULK1) resulted in a complete reversal of the potent loss of cell viability in BCL2-knocked down cells. Secondly, our
<italic>in vivo</italic>
data further revealed LC3B and p62 stainings consistent with increased autophagy activity in tumor tissues harvested from ALK-positive ALCL cells xenografted mice submitted to crizotinib and miR34a-mediated BCL2 knockdown, which was associated with a remarkable impairment in subcutaneous tumor development. Finally, we used a combination of rapamycin and crizotinib to induce an overactivation of autophagy, which did not rely on BCL2 downregulation. We found that enhanced autophagic flux correlated with impaired cell viability but occurred independently of apoptosis, suggesting the involvement of another cell death modality. Autophagy has, indeed, been shown to provide a scaffold for the necroptotic machinery
<sup>
<xref rid="b46-1041428" ref-type="bibr">46</xref>
</sup>
and also to determine the means of cell death by serving as a switch between apoptosis and necroptosis.
<sup>
<xref rid="b47-1041428" ref-type="bibr">47</xref>
</sup>
</p>
<fig id="f7-1041428" position="float">
<label>Figure 7.</label>
<caption>
<p>Proposed model of the combined ALK and BCL2 inhibitions on the fate of ALK-positive anaplastic large cell lymphoma (ALCL) cells. (A) An ALK-dependent BCL2 repression mechanism is at work In ALK-positive ALCL cells. (B) Strategies based on the inhibition of ALK activity, such as crizotinib treatment, impair this repression mechanism. This leads to an increase in BCL2 levels that, in turn, limits both cell death and autophagy induction. (C) Blocking crizotinib-induced BCL2 elevation results in a potentiation of the cytotoxic effects of the drug, through both overactivation of autophagic flux and an increase in cell death (including apoptosis and, potentially, other cell death modalities).</p>
</caption>
<graphic xlink:href="1041428.fig7"></graphic>
</fig>
<p>Further investigations are currently under way to decipher whether excessive autophagy and promotion of cell death upon ALK and BCL2 downregulation in ALK-positive ALCL involve the activation of convergent and interlinked cell death pathways, including autophagy, apoptosis and necroptosis. Either way, our results provide strong evidence for a massive reduction in tumor cell viability following combined ALK and BCL2 inactivation in ALK-positive ALCL, demonstrating that the molecular targeting of BCL2 could widen the therapeutic options for these patients and potentially improve their outcome by reducing the options for cancer cell escape routes.</p>
</sec>
<sec sec-type="supplementary-material">
<title>Supplementary Material</title>
<supplementary-material id="PMC_1" content-type="local-data">
<caption>
<title>Torosian et al. Supplementary Appendix</title>
</caption>
<media mimetype="text" mime-subtype="html" xlink:href="supp_2017.181966_haematol.2017.181966.DC1.html"></media>
<media xlink:role="associated-file" mimetype="application" mime-subtype="pdf" xlink:href="2017.181966.TOROSSIAN_SUPPL.pdf"></media>
</supplementary-material>
<supplementary-material id="PMC_2" content-type="local-data">
<caption>
<title>Disclosures and Contributions</title>
</caption>
<media mimetype="text" mime-subtype="html" xlink:href="supp_2017.181966_haematol.2017.181966.DC2.html"></media>
<media xlink:role="associated-file" mimetype="application" mime-subtype="pdf" xlink:href="2017_181966-Disclosures_and_Contributions.pdf"></media>
</supplementary-material>
</sec>
</body>
<back>
<ack>
<title>Acknowledgments</title>
<p>The authors would like to thank the Inserm and Fondation ARC pour la Recherche sur le Cancer (SGiu and EE), the European Union’s Horizon 2020 Research and Innovation Program under the Marie Sklodowska-Curie grant agreement n. 675712 (SGiu and EE), the ANR-16-CE12-018-03 (EE) for grants. The authors also thank the Université Paul Sabatier (AT), the Ligue Nationale contre le Cancer (JF) and Labex TOUCAN/Laboratoire d’excellence Toulouse Cancer (CD) for individual fellowships. The authors thank the Anexplo-Génotoul platform, Inserm/UPS, US006/CREFRE, Toulouse, France (F. Capilla and C. Salon at the histology facility) and the flow cytometry facility of CRCT/UMR1037/Inserm/UPS/ERL5294 CNRS, Toulouse, France (M. Farcé) for their technical assistance. They thank Dr. G. Mitou (CRCT/Inserm/UMR1037) for her help in the development of the mRFP-EGFP-LC3 KARPAS-299 cells, Dr S. Kermorgant (Barts Cancer Institute, London, UK) for generously providing tools and advice regarding the c-MET protein and Dr. C. Philippe (CRCT/Inserm/UMR1037/UPS) for her help with cell cycle flow cytometry analyses. They also thank Dr. R. Chiarle, Dr. S. Ducamp (Boston Children Hospital, Boston, USA), Dr. F. Meggetto and Dr. C. Joffre (CRCT/Inserm/UMR1037) for helpful discussions. English proofreading was performed by Greenland scientific proofreading.</p>
</ack>
<fn-group>
<fn id="fn1-1041428">
<p>Check the online version for the most updated information on this article, online supplements, and information on authorship & disclosures:
<ext-link ext-link-type="uri" xlink:href="http://www.haematologica.org/content/104/7/1428">www.haematologica.org/content/104/7/1428</ext-link>
</p>
</fn>
</fn-group>
<ref-list>
<title>References</title>
<ref id="b1-1041428">
<label>1.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Turner</surname>
<given-names>SD</given-names>
</name>
<name>
<surname>Lamant</surname>
<given-names>L</given-names>
</name>
<name>
<surname>Kenner</surname>
<given-names>L</given-names>
</name>
<name>
<surname>Brugières</surname>
<given-names>L</given-names>
</name>
</person-group>
<article-title>Anaplastic large cell lymphoma in paediatric and young adult patients</article-title>
.
<source>Br J Haematol</source>
.
<year>2016</year>
;
<volume>173</volume>
(
<issue>4</issue>
):
<fpage>560</fpage>
<lpage>572</lpage>
.
<pub-id pub-id-type="pmid">26913827</pub-id>
</mixed-citation>
</ref>
<ref id="b2-1041428">
<label>2.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Swerdlow</surname>
<given-names>SH</given-names>
</name>
<name>
<surname>Campo</surname>
<given-names>E</given-names>
</name>
<name>
<surname>Pileri</surname>
<given-names>SA</given-names>
</name>
<etal></etal>
</person-group>
<article-title>The 2016 revision of the World Health Organization classification of lymphoid neoplasms</article-title>
.
<source>Blood</source>
.
<year>2016</year>
;
<volume>127</volume>
(
<issue>20</issue>
):
<fpage>2375</fpage>
<lpage>2390</lpage>
.
<pub-id pub-id-type="pmid">26980727</pub-id>
</mixed-citation>
</ref>
<ref id="b3-1041428">
<label>3.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Morris</surname>
<given-names>SW</given-names>
</name>
<name>
<surname>Kirstein</surname>
<given-names>MN</given-names>
</name>
<name>
<surname>Valentine</surname>
<given-names>MB</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Fusion of a kinase gene, ALK, to a nucleolar protein gene, NPM, in non-Hodgkin’s lymphoma</article-title>
.
<source>Science</source>
.
<year>1994</year>
;
<volume>263</volume>
(
<issue>5151</issue>
):
<fpage>1281</fpage>
<lpage>1284</lpage>
.
<pub-id pub-id-type="pmid">8122112</pub-id>
</mixed-citation>
</ref>
<ref id="b4-1041428">
<label>4.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Chiarle</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Voena</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Ambrogio</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Piva</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Inghirami</surname>
<given-names>G</given-names>
</name>
</person-group>
<article-title>The anaplastic lymphoma kinase in the pathogenesis of cancer</article-title>
.
<source>Nat Rev Cancer</source>
.
<year>2008</year>
;
<volume>8</volume>
(
<issue>1</issue>
):
<fpage>11</fpage>
<lpage>23</lpage>
.
<pub-id pub-id-type="pmid">18097461</pub-id>
</mixed-citation>
</ref>
<ref id="b5-1041428">
<label>5.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Werner</surname>
<given-names>MT</given-names>
</name>
<name>
<surname>Zhao</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Zhang</surname>
<given-names>Q</given-names>
</name>
<name>
<surname>Wasik</surname>
<given-names>MA</given-names>
</name>
</person-group>
<article-title>Nucleophosmin-anaplastic lymphoma kinase: the ultimate oncogene and therapeutic target</article-title>
.
<source>Blood</source>
.
<year>2017</year>
;
<volume>129</volume>
(
<issue>7</issue>
):
<fpage>823</fpage>
<lpage>831</lpage>
.
<pub-id pub-id-type="pmid">27879258</pub-id>
</mixed-citation>
</ref>
<ref id="b6-1041428">
<label>6.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Christensen</surname>
<given-names>JG</given-names>
</name>
<name>
<surname>Zou</surname>
<given-names>HY</given-names>
</name>
<name>
<surname>Arango</surname>
<given-names>ME</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Cytoreductive antitumor activity of PF-2341066, a novel inhibitor of anaplastic lymphoma kinase and c-Met, in experimental models of anaplastic large-cell lymphoma</article-title>
.
<source>Mol Cancer Ther</source>
.
<year>2007</year>
;
<volume>6</volume>
(
<issue>12</issue>
):
<fpage>3314</fpage>
<lpage>3322</lpage>
.
<pub-id pub-id-type="pmid">18089725</pub-id>
</mixed-citation>
</ref>
<ref id="b7-1041428">
<label>7.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Gambacorti Passerini</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Farina</surname>
<given-names>F</given-names>
</name>
<name>
<surname>Stasia</surname>
<given-names>A</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Crizotinib in Advanced, Chemoresistant Anaplastic Lymphoma Kinase-Positive Lymphoma Patients</article-title>
.
<source>J Natl Cancer Inst</source>
.
<year>2014</year>
;
<volume>106</volume>
(
<issue>2</issue>
):
<fpage>djt378</fpage>
.
<pub-id pub-id-type="pmid">24491302</pub-id>
</mixed-citation>
</ref>
<ref id="b8-1041428">
<label>8.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Kruczynski</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Delsol</surname>
<given-names>G</given-names>
</name>
<name>
<surname>Laurent</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Brousset</surname>
<given-names>P</given-names>
</name>
<name>
<surname>Lamant</surname>
<given-names>L</given-names>
</name>
</person-group>
<article-title>Anaplastic lymphoma kinase as a therapeutic target</article-title>
.
<source>Expert Opin Ther Targets</source>
<year>2012</year>
;
<volume>16</volume>
(
<issue>11</issue>
):
<fpage>1127</fpage>
<lpage>1138</lpage>
.
<pub-id pub-id-type="pmid">22998583</pub-id>
</mixed-citation>
</ref>
<ref id="b9-1041428">
<label>9.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Sharma</surname>
<given-names>GG</given-names>
</name>
<name>
<surname>Mota</surname>
<given-names>I</given-names>
</name>
<name>
<surname>Mologni</surname>
<given-names>L</given-names>
</name>
<name>
<surname>Patrucco</surname>
<given-names>E</given-names>
</name>
<name>
<surname>Gambacorti-Passerini</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Chiarle</surname>
<given-names>R</given-names>
</name>
</person-group>
<article-title>Tumor Resistance against ALK Targeted Therapy-Where It Comes From and Where It Goes</article-title>
.
<source>Cancers (Basel)</source>
.
<year>2018</year>
;
<volume>10</volume>
(
<issue>3</issue>
).</mixed-citation>
</ref>
<ref id="b10-1041428">
<label>10.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Frentzel</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Sorrentino</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Giuriato</surname>
<given-names>S</given-names>
</name>
</person-group>
<article-title>Targeting Autophagy in ALK-Associated Cancers</article-title>
.
<source>Cancers (Basel)</source>
.
<year>2017</year>
;
<volume>9</volume>
(
<issue>12</issue>
).</mixed-citation>
</ref>
<ref id="b11-1041428">
<label>11.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Feng</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>He</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Yao</surname>
<given-names>Z</given-names>
</name>
<name>
<surname>Klionsky</surname>
<given-names>DJ</given-names>
</name>
</person-group>
<article-title>The machinery of macroautophagy</article-title>
.
<source>Cell Res</source>
.
<year>2014</year>
;
<volume>24</volume>
(
<issue>1</issue>
):
<fpage>24</fpage>
<lpage>41</lpage>
.
<pub-id pub-id-type="pmid">24366339</pub-id>
</mixed-citation>
</ref>
<ref id="b12-1041428">
<label>12.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>White</surname>
<given-names>E</given-names>
</name>
<name>
<surname>DiPaola</surname>
<given-names>RS</given-names>
</name>
</person-group>
<article-title>The double-edged sword of autophagy modulation in cancer</article-title>
.
<source>Clin Cancer Res</source>
.
<year>2009</year>
;
<volume>15</volume>
(
<issue>17</issue>
):
<fpage>5308</fpage>
<lpage>5316</lpage>
.
<pub-id pub-id-type="pmid">19706824</pub-id>
</mixed-citation>
</ref>
<ref id="b13-1041428">
<label>13.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Galluzzi</surname>
<given-names>L</given-names>
</name>
<name>
<surname>Pietrocola</surname>
<given-names>F</given-names>
</name>
<name>
<surname>Bravo-San Pedro</surname>
<given-names>JM</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Autophagy in malignant transformation and cancer progression</article-title>
.
<source>EMBO J</source>
.
<year>2015</year>
;
<volume>34</volume>
(
<issue>7</issue>
):
<fpage>856</fpage>
<lpage>880</lpage>
.
<pub-id pub-id-type="pmid">25712477</pub-id>
</mixed-citation>
</ref>
<ref id="b14-1041428">
<label>14.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Joffre</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Djavaheri-Mergny</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Pattingre</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Giuriato</surname>
<given-names>S</given-names>
</name>
</person-group>
<article-title>L’autophagie: le yin et le yang des cancers</article-title>
.
<source>Med Sci (Paris)</source>
.
<year>2017</year>
;
<volume>33</volume>
(
<issue>3</issue>
):
<fpage>328</fpage>
<lpage>334</lpage>
.
<pub-id pub-id-type="pmid">28367821</pub-id>
</mixed-citation>
</ref>
<ref id="b15-1041428">
<label>15.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Doherty</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Baehrecke</surname>
<given-names>EH</given-names>
</name>
</person-group>
<article-title>Life, death and autophagy</article-title>
.
<source>Nat Cell Biol</source>
.
<year>2018</year>
;
<volume>20</volume>
(
<issue>10</issue>
):
<fpage>1110</fpage>
<lpage>1117</lpage>
.
<pub-id pub-id-type="pmid">30224761</pub-id>
</mixed-citation>
</ref>
<ref id="b16-1041428">
<label>16.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Lalaoui</surname>
<given-names>N</given-names>
</name>
<name>
<surname>Lindqvist</surname>
<given-names>LM</given-names>
</name>
<name>
<surname>Sandow</surname>
<given-names>JJ</given-names>
</name>
<name>
<surname>Ekert</surname>
<given-names>PG</given-names>
</name>
</person-group>
<article-title>The molecular relationships between apoptosis, autophagy and necroptosis</article-title>
.
<source>Semin Cell Dev Biol</source>
.
<year>2015</year>
;
<fpage>3963</fpage>
<lpage>3969</lpage>
.</mixed-citation>
</ref>
<ref id="b17-1041428">
<label>17.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Long</surname>
<given-names>JS</given-names>
</name>
<name>
<surname>Ryan</surname>
<given-names>KM</given-names>
</name>
</person-group>
<article-title>New frontiers in promoting tumour cell death: targeting apoptosis, necroptosis and autophagy</article-title>
.
<source>Oncogene</source>
.
<year>2012</year>
;
<volume>31</volume>
(
<issue>49</issue>
):
<fpage>5045</fpage>
<lpage>5060</lpage>
.
<pub-id pub-id-type="pmid">22310284</pub-id>
</mixed-citation>
</ref>
<ref id="b18-1041428">
<label>18.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Yip</surname>
<given-names>KW</given-names>
</name>
<name>
<surname>Reed</surname>
<given-names>JC</given-names>
</name>
</person-group>
<article-title>Bcl-2 family proteins and cancer</article-title>
.
<source>Oncogene</source>
.
<year>2008</year>
;
<volume>27</volume>
(
<issue>50</issue>
):
<fpage>6398</fpage>
<lpage>6406</lpage>
.
<pub-id pub-id-type="pmid">18955968</pub-id>
</mixed-citation>
</ref>
<ref id="b19-1041428">
<label>19.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Pattingre</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Tassa</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Qu</surname>
<given-names>X</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Bcl-2 anti-apoptotic proteins inhibit Beclin 1-dependent autophagy</article-title>
.
<source>Cell</source>
.
<year>2005</year>
;
<volume>122</volume>
(
<issue>6</issue>
):
<fpage>927</fpage>
<lpage>939</lpage>
.
<pub-id pub-id-type="pmid">16179260</pub-id>
</mixed-citation>
</ref>
<ref id="b20-1041428">
<label>20.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Lindqvist</surname>
<given-names>LM</given-names>
</name>
<name>
<surname>Heinlein</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Huang</surname>
<given-names>DCS</given-names>
</name>
<name>
<surname>Vaux</surname>
<given-names>DL</given-names>
</name>
</person-group>
<article-title>Prosurvival Bcl-2 family members affect autophagy only indirectly, by inhibiting Bax and Bak</article-title>
.
<source>Proc Natl Acad Sci U S A</source>
.
<year>2014</year>
;
<volume>111</volume>
(
<issue>23</issue>
):
<fpage>8512</fpage>
<lpage>8517</lpage>
.
<pub-id pub-id-type="pmid">24912196</pub-id>
</mixed-citation>
</ref>
<ref id="b21-1041428">
<label>21.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Lindqvist</surname>
<given-names>LM</given-names>
</name>
<name>
<surname>Vaux</surname>
<given-names>DL</given-names>
</name>
</person-group>
<article-title>BCL2 and related prosurvival proteins require BAK1 and BAX to affect autophagy</article-title>
.
<source>Autophagy</source>
.
<year>2014</year>
;
<volume>10</volume>
(
<issue>8</issue>
):
<fpage>1474</fpage>
<lpage>1475</lpage>
.
<pub-id pub-id-type="pmid">24991825</pub-id>
</mixed-citation>
</ref>
<ref id="b22-1041428">
<label>22.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Pattingre</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Levine</surname>
<given-names>B</given-names>
</name>
</person-group>
<article-title>Bcl-2 inhibition of autophagy: a new route to cancer?</article-title>
<source>Cancer Res</source>
.
<year>2006</year>
;
<volume>66</volume>
(
<issue>6</issue>
):
<fpage>2885</fpage>
<lpage>2888</lpage>
.
<pub-id pub-id-type="pmid">16540632</pub-id>
</mixed-citation>
</ref>
<ref id="b23-1041428">
<label>23.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Souers</surname>
<given-names>AJ</given-names>
</name>
<name>
<surname>Leverson</surname>
<given-names>JD</given-names>
</name>
<name>
<surname>Boghaert</surname>
<given-names>ER</given-names>
</name>
<etal></etal>
</person-group>
<article-title>ABT-199, a potent and selective BCL-2 inhibitor, achieves antitumor activity while sparing platelets</article-title>
.
<source>Nat Med</source>
.
<year>2013</year>
;
<volume>19</volume>
(
<issue>2</issue>
):
<fpage>202</fpage>
<lpage>208</lpage>
.
<pub-id pub-id-type="pmid">23291630</pub-id>
</mixed-citation>
</ref>
<ref id="b24-1041428">
<label>24.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Mihalyova</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Jelinek</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Growkova</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Hrdinka</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Simicek</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Hajek</surname>
<given-names>R</given-names>
</name>
</person-group>
<article-title>Venetoclax: A new wave in hematooncology</article-title>
.
<source>Exp Hematol</source>
.
<year>2018</year>
:
<volume>61</volume>
:
<fpage>10</fpage>
<lpage>25</lpage>
.
<pub-id pub-id-type="pmid">29477371</pub-id>
</mixed-citation>
</ref>
<ref id="b25-1041428">
<label>25.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Tolcher</surname>
<given-names>AW</given-names>
</name>
<name>
<surname>Rodrigueza</surname>
<given-names>WV</given-names>
</name>
<name>
<surname>Rasco</surname>
<given-names>DW</given-names>
</name>
<etal></etal>
</person-group>
<article-title>A phase 1 study of the BCL2-targeted deoxyribonucleic acid inhibitor (DNAi) PNT2258 in patients with advanced solid tumors</article-title>
.
<source>Cancer Chemother Pharmacol</source>
.
<year>2014</year>
;
<volume>73</volume>
(
<issue>2</issue>
):
<fpage>363</fpage>
<lpage>371</lpage>
.
<pub-id pub-id-type="pmid">24297683</pub-id>
</mixed-citation>
</ref>
<ref id="b26-1041428">
<label>26.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Misso</surname>
<given-names>G</given-names>
</name>
<name>
<surname>Di Martino</surname>
<given-names>MT</given-names>
</name>
<name>
<surname>De Rosa</surname>
<given-names>G</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Mir-34: a new weapon against cancer?</article-title>
<source>Mol Ther Nucleic Acids</source>
.
<year>2014</year>
;
<volume>3</volume>
(
<issue>9</issue>
):
<fpage>e194</fpage>
.</mixed-citation>
</ref>
<ref id="b27-1041428">
<label>27.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Zarone</surname>
<given-names>MR</given-names>
</name>
<name>
<surname>Misso</surname>
<given-names>G</given-names>
</name>
<name>
<surname>Grimaldi</surname>
<given-names>A</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Evidence of novel miR-34a-based therapeutic approaches for multiple myeloma treatment</article-title>
.
<source>Sci Rep</source>
.
<year>2017</year>
;
<volume>7</volume>
(
<issue>1</issue>
):
<fpage>17949</fpage>
.
<pub-id pub-id-type="pmid">29263373</pub-id>
</mixed-citation>
</ref>
<ref id="b28-1041428">
<label>28.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Farooqi</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Tabassum</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Ahmad</surname>
<given-names>A</given-names>
</name>
</person-group>
<article-title>MicroRNA-34a: A Versatile Regulator of Myriads of Targets in Different Cancers</article-title>
.
<source>Int J Mol Sci</source>
..
<year>2017</year>
;
<volume>18</volume>
(
<issue>10</issue>
).</mixed-citation>
</ref>
<ref id="b29-1041428">
<label>29.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Lamant</surname>
<given-names>L</given-names>
</name>
<name>
<surname>Espinos</surname>
<given-names>E</given-names>
</name>
<name>
<surname>Duplantier</surname>
<given-names>M</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Establishment of a novel anaplastic large-cell lymphoma-cell line (COST) from a “small-cell variant” of ALCL</article-title>
.
<source>Leukemia</source>
.
<year>2004</year>
;
<volume>18</volume>
(
<issue>10</issue>
):
<fpage>1693</fpage>
<lpage>1698</lpage>
.
<pub-id pub-id-type="pmid">15356659</pub-id>
</mixed-citation>
</ref>
<ref id="b30-1041428">
<label>30.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Mitou</surname>
<given-names>G</given-names>
</name>
<name>
<surname>Frentzel</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Desquesnes</surname>
<given-names>A</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Targeting autophagy enhances the antitumoral action of crizotinib in ALK-positive anaplastic large cell lymphoma</article-title>
.
<source>Oncotarget</source>
.
<year>2015</year>
;
<volume>6</volume>
(
<issue>30</issue>
):
<fpage>30149</fpage>
<lpage>30164</lpage>
.
<pub-id pub-id-type="pmid">26338968</pub-id>
</mixed-citation>
</ref>
<ref id="b31-1041428">
<label>31.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Villalva</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Bougrine</surname>
<given-names>F</given-names>
</name>
<name>
<surname>Delsol</surname>
<given-names>G</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Bcl-2 expression in anaplastic large cell lym phoma</article-title>
.
<source>Am J Pathol</source>
.
<year>2001</year>
;
<volume>158</volume>
(
<issue>5</issue>
):
<fpage>1889</fpage>
<lpage>1890</lpage>
.
<pub-id pub-id-type="pmid">11337388</pub-id>
</mixed-citation>
</ref>
<ref id="b32-1041428">
<label>32.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Rassidakis</surname>
<given-names>GZ</given-names>
</name>
<name>
<surname>Sarris</surname>
<given-names>AH</given-names>
</name>
<name>
<surname>Herling</surname>
<given-names>M</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Differential Expression of BCL-2 Family Proteins in ALK-Positive and ALK-Negative Anaplastic Large Cell Lymphoma of T/Null-Cell Lineage</article-title>
.
<source>Am J Pathol</source>
.
<year>2001</year>
;
<volume>159</volume>
(
<issue>2</issue>
):
<fpage>527</fpage>
<lpage>535</lpage>
.
<pub-id pub-id-type="pmid">11485911</pub-id>
</mixed-citation>
</ref>
<ref id="b33-1041428">
<label>33.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Fulda</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Kögel</surname>
<given-names>D</given-names>
</name>
</person-group>
<article-title>Cell death by autophagy: emerging molecular mechanisms and implications for cancer therapy</article-title>
.
<source>Oncogene</source>
.
<year>2015</year>
;
<volume>34</volume>
(
<issue>40</issue>
):
<fpage>5105</fpage>
<lpage>5113</lpage>
.
<pub-id pub-id-type="pmid">25619832</pub-id>
</mixed-citation>
</ref>
<ref id="b34-1041428">
<label>34.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Hosokawa</surname>
<given-names>N</given-names>
</name>
<name>
<surname>Hara</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Kaizuka</surname>
<given-names>T</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Nutrient-dependent mTORC1 association with the ULK1-Atg13-FIP200 complex required for autophagy</article-title>
.
<source>Mol Biol Cell</source>
.
<year>2009</year>
;
<volume>20</volume>
(
<issue>7</issue>
):
<fpage>1981</fpage>
<lpage>1991</lpage>
.
<pub-id pub-id-type="pmid">19211835</pub-id>
</mixed-citation>
</ref>
<ref id="b35-1041428">
<label>35.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Saxton</surname>
<given-names>RA</given-names>
</name>
<name>
<surname>Sabatini</surname>
<given-names>DM</given-names>
</name>
</person-group>
<article-title>mTOR Signaling in Growth, Metabolism, and Disease</article-title>
.
<source>Cell</source>
.
<year>2017</year>
;
<volume>168</volume>
(
<issue>6</issue>
):
<fpage>960</fpage>
<lpage>976</lpage>
.
<pub-id pub-id-type="pmid">28283069</pub-id>
</mixed-citation>
</ref>
<ref id="b36-1041428">
<label>36.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Mönch</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Bode-Erdmann</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Kalla</surname>
<given-names>J</given-names>
</name>
<etal></etal>
</person-group>
<article-title>A subgroup of pleural mesothelioma expresses ALK protein and may be targetable by combined rapamycin and crizotinib therapy</article-title>
.
<source>Oncotarget</source>
.
<year>2018</year>
;
<volume>9</volume>
(
<issue>29</issue>
):
<fpage>20781</fpage>
<lpage>20794</lpage>
.
<pub-id pub-id-type="pmid">29755689</pub-id>
</mixed-citation>
</ref>
<ref id="b37-1041428">
<label>37.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Schläfli</surname>
<given-names>AM</given-names>
</name>
<name>
<surname>Berezowska</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Adams</surname>
<given-names>O</given-names>
</name>
<name>
<surname>Langer</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Tschan</surname>
<given-names>MP</given-names>
</name>
</person-group>
<article-title>Reliable LC3 and p62 autophagy marker detection in formalin fixed paraffin embedded human tissue by immunohistochemistry</article-title>
.
<source>Eur J Histochem</source>
.
<year>2015</year>
;
<volume>59</volume>
(
<issue>2</issue>
):
<fpage>2481</fpage>
.
<pub-id pub-id-type="pmid">26150155</pub-id>
</mixed-citation>
</ref>
<ref id="b38-1041428">
<label>38.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Holt</surname>
<given-names>SV</given-names>
</name>
<name>
<surname>Wyspianska</surname>
<given-names>B</given-names>
</name>
<name>
<surname>Randall</surname>
<given-names>KJ</given-names>
</name>
<name>
<surname>James</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Foster</surname>
<given-names>JR</given-names>
</name>
<name>
<surname>Wilkinson</surname>
<given-names>RW</given-names>
</name>
</person-group>
<article-title>The Development of an Immunohistochemical Method to Detect the Autophagy-Associated Protein LC3-II in Human Tumor Xenografts</article-title>
.
<source>Toxicol Pathol</source>
.
<year>2011</year>
;
<volume>39</volume>
(
<issue>3</issue>
):
<fpage>516</fpage>
<lpage>523</lpage>
.
<pub-id pub-id-type="pmid">21441228</pub-id>
</mixed-citation>
</ref>
<ref id="b39-1041428">
<label>39.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Rust</surname>
<given-names>R</given-names>
</name>
</person-group>
<article-title>High expression of Mcl-1 in ALK positive and negative anaplastic large cell lymphoma</article-title>
.
<source>J Clin Pathol</source>
.
<year>2005</year>
;
<volume>58</volume>
(
<issue>5</issue>
):
<fpage>520</fpage>
<lpage>524</lpage>
.
<pub-id pub-id-type="pmid">15858125</pub-id>
</mixed-citation>
</ref>
<ref id="b40-1041428">
<label>40.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Desjobert</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Renalier</surname>
<given-names>MH</given-names>
</name>
<name>
<surname>Bergalet</surname>
<given-names>J</given-names>
</name>
<etal></etal>
</person-group>
<article-title>MiR-29a down-regulation in ALK-positive anaplastic large cell lymphomas contributes to apoptosis blockade through MCL-1 overexpression</article-title>
.
<source>Blood</source>
.
<year>2011</year>
;
<volume>117</volume>
(
<issue>24</issue>
):
<fpage>6627</fpage>
<lpage>6637</lpage>
.
<pub-id pub-id-type="pmid">21471522</pub-id>
</mixed-citation>
</ref>
<ref id="b41-1041428">
<label>41.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Yang</surname>
<given-names>F</given-names>
</name>
<name>
<surname>Li</surname>
<given-names>Q</given-names>
</name>
<name>
<surname>Gong</surname>
<given-names>Z</given-names>
</name>
<etal></etal>
</person-group>
<article-title>MicroRNA-34a Targets Bcl-2 and sensitizes human hepatocellular carcinoma cells to sorafenib treatment</article-title>
.
<source>Technol Cancer Res Treat</source>
.
<year>2013</year>
;
<volume>13</volume>
(
<issue>1</issue>
):
<fpage>77</fpage>
<lpage>86</lpage>
.
<pub-id pub-id-type="pmid">23862748</pub-id>
</mixed-citation>
</ref>
<ref id="b42-1041428">
<label>42.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Li</surname>
<given-names>L</given-names>
</name>
<name>
<surname>Yuan</surname>
<given-names>L</given-names>
</name>
<name>
<surname>Luo</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Gao</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Guo</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Xie</surname>
<given-names>X</given-names>
</name>
</person-group>
<article-title>MiR-34a inhibits proliferation and migration of breast cancer through down-regulation of Bcl-2 and SIRT1</article-title>
.
<source>Clin Exp Med</source>
.
<year>2013</year>
;
<volume>13</volume>
(
<issue>2</issue>
):
<fpage>109</fpage>
<lpage>117</lpage>
.
<pub-id pub-id-type="pmid">22623155</pub-id>
</mixed-citation>
</ref>
<ref id="b43-1041428">
<label>43.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Craig</surname>
<given-names>VJ</given-names>
</name>
<name>
<surname>Tzankov</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Flori</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Schmid</surname>
<given-names>CA</given-names>
</name>
<name>
<surname>Bader</surname>
<given-names>AG</given-names>
</name>
<name>
<surname>Müller</surname>
<given-names>A</given-names>
</name>
</person-group>
<article-title>Systemic microRNA-34a delivery induces apoptosis and abrogates growth of diffuse large B-cell lymphoma in vivo</article-title>
.
<source>Leukemia</source>
.
<year>2012</year>
;
<volume>26</volume>
(
<issue>11</issue>
):
<fpage>2421</fpage>
<lpage>2424</lpage>
.
<pub-id pub-id-type="pmid">22522790</pub-id>
</mixed-citation>
</ref>
<ref id="b44-1041428">
<label>44.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Scognamiglio</surname>
<given-names>I</given-names>
</name>
<name>
<surname>Di Martino</surname>
<given-names>MT</given-names>
</name>
<name>
<surname>Campani</surname>
<given-names>V</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Transferrin-conjugated SNALPs encapsulating 2’-O-methylated miR-34a for the treatment of multiple myeloma</article-title>
.
<source>Biomed Res Int</source>
.
<year>2014</year>
;
<volume>2014</volume>
:
<fpage>217365</fpage>
.
<pub-id pub-id-type="pmid">24683542</pub-id>
</mixed-citation>
</ref>
<ref id="b45-1041428">
<label>45.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Beg</surname>
<given-names>MS</given-names>
</name>
<name>
<surname>Brenner</surname>
<given-names>AJ</given-names>
</name>
<name>
<surname>Sachdev</surname>
<given-names>J</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Phase I study of MRX34, a liposomal miR-34a mimic, administered twice weekly in patients with advanced solid tumors</article-title>
.
<source>Invest New Drugs</source>
.
<year>2017</year>
;
<volume>35</volume>
(
<issue>2</issue>
):
<fpage>180</fpage>
<lpage>188</lpage>
.
<pub-id pub-id-type="pmid">27917453</pub-id>
</mixed-citation>
</ref>
<ref id="b46-1041428">
<label>46.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Basit</surname>
<given-names>F</given-names>
</name>
<name>
<surname>Cristofanon</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Fulda</surname>
<given-names>S</given-names>
</name>
</person-group>
<article-title>Obatoclax (GX15-070) triggers necroptosis by promoting the assembly of the necrosome on autophagosomal membranes</article-title>
.
<source>Cell Death Differ</source>
.
<year>2013</year>
;
<volume>20</volume>
(
<issue>9</issue>
):
<fpage>1161</fpage>
<lpage>1173</lpage>
.
<pub-id pub-id-type="pmid">23744296</pub-id>
</mixed-citation>
</ref>
<ref id="b47-1041428">
<label>47.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Sakamaki</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Ryan</surname>
<given-names>KM</given-names>
</name>
</person-group>
<article-title>Autophagy Determines the Path on the TRAIL to Death</article-title>
.
<source>Dev Cell</source>
.
<year>2016</year>
;
<volume>37</volume>
(
<issue>4</issue>
):
<fpage>291</fpage>
<lpage>293</lpage>
.
<pub-id pub-id-type="pmid">27219055</pub-id>
</mixed-citation>
</ref>
</ref-list>
</back>
</pmc>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/ChloroquineV1/Data/Pmc/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000584 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Pmc/Corpus/biblio.hfd -nk 000584 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    ChloroquineV1
   |flux=    Pmc
   |étape=   Corpus
   |type=    RBID
   |clé=     PMC:6601090
   |texte=   Blockade of crizotinib-induced BCL2 elevation in ALK-positive anaplastic large cell lymphoma triggers autophagy associated with cell death
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Pmc/Corpus/RBID.i   -Sk "pubmed:30679328" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Pmc/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a ChloroquineV1 

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Wed Mar 25 22:43:59 2020. Site generation: Sun Jan 31 12:44:45 2021