Serveur d'exploration Chloroquine

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Scopoletin Suppresses Activation of Dendritic Cells and Pathogenesis of Experimental Autoimmune Encephalomyelitis by Inhibiting NF-κB Signaling

Identifieur interne : 000571 ( Pmc/Corpus ); précédent : 000570; suivant : 000572

Scopoletin Suppresses Activation of Dendritic Cells and Pathogenesis of Experimental Autoimmune Encephalomyelitis by Inhibiting NF-κB Signaling

Auteurs : Fei Zhang ; Yuan Zhang ; Ting Yang ; Ze-Qing Ye ; Jing Tian ; Hai-Rong Fang ; Juan-Juan Han ; Zhe-Zhi Wang ; Xing Li

Source :

RBID : PMC:6688631

Abstract

Scopoletin, a phenolic coumarin derived from many medical or edible plants, is involved in various pharmacological functions. In the present study, we showed that Scopoletin effectively ameliorated experimental autoimmune encephalomyelitis (EAE), an animal model of multiple sclerosis (MS), through novel regulatory mechanisms involving inhibition of NF-κB activity in dendritic cells (DCs). Scopoletin treatment significantly improved the severity of the disease and prominently decreased inflammation and demyelination of central nervous system (CNS) in EAE mice. Disease alleviation correlated with the downregulation of major histocompatibility complex (MHC) class II, CD80 and CD86, expressed on DCs of CNS or spleens, and the infiltration and polarization of encephalitogenic Th1/Th17 cells. Consistent with the in vivo data, Scopoletin-treated, bone marrow-derived dendritic cells (BM-DCs) exhibited reduced expression of MHC class II and costimulatory molecules (e.g., CD80 and CD86) and reduced NF-κB phosphorylation. These findings, for the first time, demonstrated the ability of Scopoletin to impair DC activation, downregulating pathogenic Th1/Th17 inflammatory cell responses and, eventually, reducing EAE severity. Our study demonstrates new evidence that natural products derived from medical or edible plants, such as Scopoletin, will be valuable in developing a novel therapeutic agent for MS in the future.


Url:
DOI: 10.3389/fphar.2019.00863
PubMed: 31427972
PubMed Central: 6688631

Links to Exploration step

PMC:6688631

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Scopoletin Suppresses Activation of Dendritic Cells and Pathogenesis of Experimental Autoimmune Encephalomyelitis by Inhibiting NF-κB Signaling</title>
<author>
<name sortKey="Zhang, Fei" sort="Zhang, Fei" uniqKey="Zhang F" first="Fei" last="Zhang">Fei Zhang</name>
</author>
<author>
<name sortKey="Zhang, Yuan" sort="Zhang, Yuan" uniqKey="Zhang Y" first="Yuan" last="Zhang">Yuan Zhang</name>
</author>
<author>
<name sortKey="Yang, Ting" sort="Yang, Ting" uniqKey="Yang T" first="Ting" last="Yang">Ting Yang</name>
</author>
<author>
<name sortKey="Ye, Ze Qing" sort="Ye, Ze Qing" uniqKey="Ye Z" first="Ze-Qing" last="Ye">Ze-Qing Ye</name>
</author>
<author>
<name sortKey="Tian, Jing" sort="Tian, Jing" uniqKey="Tian J" first="Jing" last="Tian">Jing Tian</name>
</author>
<author>
<name sortKey="Fang, Hai Rong" sort="Fang, Hai Rong" uniqKey="Fang H" first="Hai-Rong" last="Fang">Hai-Rong Fang</name>
</author>
<author>
<name sortKey="Han, Juan Juan" sort="Han, Juan Juan" uniqKey="Han J" first="Juan-Juan" last="Han">Juan-Juan Han</name>
</author>
<author>
<name sortKey="Wang, Zhe Zhi" sort="Wang, Zhe Zhi" uniqKey="Wang Z" first="Zhe-Zhi" last="Wang">Zhe-Zhi Wang</name>
</author>
<author>
<name sortKey="Li, Xing" sort="Li, Xing" uniqKey="Li X" first="Xing" last="Li">Xing Li</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PMC</idno>
<idno type="pmid">31427972</idno>
<idno type="pmc">6688631</idno>
<idno type="url">http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6688631</idno>
<idno type="RBID">PMC:6688631</idno>
<idno type="doi">10.3389/fphar.2019.00863</idno>
<date when="2019">2019</date>
<idno type="wicri:Area/Pmc/Corpus">000571</idno>
<idno type="wicri:explorRef" wicri:stream="Pmc" wicri:step="Corpus" wicri:corpus="PMC">000571</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a" type="main">Scopoletin Suppresses Activation of Dendritic Cells and Pathogenesis of Experimental Autoimmune Encephalomyelitis by Inhibiting NF-κB Signaling</title>
<author>
<name sortKey="Zhang, Fei" sort="Zhang, Fei" uniqKey="Zhang F" first="Fei" last="Zhang">Fei Zhang</name>
</author>
<author>
<name sortKey="Zhang, Yuan" sort="Zhang, Yuan" uniqKey="Zhang Y" first="Yuan" last="Zhang">Yuan Zhang</name>
</author>
<author>
<name sortKey="Yang, Ting" sort="Yang, Ting" uniqKey="Yang T" first="Ting" last="Yang">Ting Yang</name>
</author>
<author>
<name sortKey="Ye, Ze Qing" sort="Ye, Ze Qing" uniqKey="Ye Z" first="Ze-Qing" last="Ye">Ze-Qing Ye</name>
</author>
<author>
<name sortKey="Tian, Jing" sort="Tian, Jing" uniqKey="Tian J" first="Jing" last="Tian">Jing Tian</name>
</author>
<author>
<name sortKey="Fang, Hai Rong" sort="Fang, Hai Rong" uniqKey="Fang H" first="Hai-Rong" last="Fang">Hai-Rong Fang</name>
</author>
<author>
<name sortKey="Han, Juan Juan" sort="Han, Juan Juan" uniqKey="Han J" first="Juan-Juan" last="Han">Juan-Juan Han</name>
</author>
<author>
<name sortKey="Wang, Zhe Zhi" sort="Wang, Zhe Zhi" uniqKey="Wang Z" first="Zhe-Zhi" last="Wang">Zhe-Zhi Wang</name>
</author>
<author>
<name sortKey="Li, Xing" sort="Li, Xing" uniqKey="Li X" first="Xing" last="Li">Xing Li</name>
</author>
</analytic>
<series>
<title level="j">Frontiers in Pharmacology</title>
<idno type="eISSN">1663-9812</idno>
<imprint>
<date when="2019">2019</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<p>Scopoletin, a phenolic coumarin derived from many medical or edible plants, is involved in various pharmacological functions. In the present study, we showed that Scopoletin effectively ameliorated experimental autoimmune encephalomyelitis (EAE), an animal model of multiple sclerosis (MS), through novel regulatory mechanisms involving inhibition of NF-κB activity in dendritic cells (DCs). Scopoletin treatment significantly improved the severity of the disease and prominently decreased inflammation and demyelination of central nervous system (CNS) in EAE mice. Disease alleviation correlated with the downregulation of major histocompatibility complex (MHC) class II, CD80 and CD86, expressed on DCs of CNS or spleens, and the infiltration and polarization of encephalitogenic Th1/Th17 cells. Consistent with the
<italic>in vivo</italic>
data, Scopoletin-treated, bone marrow-derived dendritic cells (BM-DCs) exhibited reduced expression of MHC class II and costimulatory molecules (e.g., CD80 and CD86) and reduced NF-κB phosphorylation. These findings, for the first time, demonstrated the ability of Scopoletin to impair DC activation, downregulating pathogenic Th1/Th17 inflammatory cell responses and, eventually, reducing EAE severity. Our study demonstrates new evidence that natural products derived from medical or edible plants, such as Scopoletin, will be valuable in developing a novel therapeutic agent for MS in the future.</p>
</div>
</front>
<back>
<div1 type="bibliography">
<listBibl>
<biblStruct>
<analytic>
<author>
<name sortKey="Agalioti, T" uniqKey="Agalioti T">T. Agalioti</name>
</author>
<author>
<name sortKey="Villablanca, E J" uniqKey="Villablanca E">E. J. Villablanca</name>
</author>
<author>
<name sortKey="Huber, S" uniqKey="Huber S">S. Huber</name>
</author>
<author>
<name sortKey="Gagliani, N" uniqKey="Gagliani N">N. Gagliani</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Amodio, G" uniqKey="Amodio G">G. Amodio</name>
</author>
<author>
<name sortKey="Gregori, S" uniqKey="Gregori S">S. Gregori</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Arcos, M L B" uniqKey="Arcos M">M. L. B. Arcos</name>
</author>
<author>
<name sortKey="Cremaschi, G" uniqKey="Cremaschi G">G. Cremaschi</name>
</author>
<author>
<name sortKey="Werner, S" uniqKey="Werner S">S. Werner</name>
</author>
<author>
<name sortKey="Coussio, J" uniqKey="Coussio J">J. Coussio</name>
</author>
<author>
<name sortKey="Ferraro, G" uniqKey="Ferraro G">G. Ferraro</name>
</author>
<author>
<name sortKey="Anesini, C" uniqKey="Anesini C">C. Anesini</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ardeshna, K M" uniqKey="Ardeshna K">K. M. Ardeshna</name>
</author>
<author>
<name sortKey="Pizzey, A R" uniqKey="Pizzey A">A. R. Pizzey</name>
</author>
<author>
<name sortKey="Devereux, S A K A" uniqKey="Devereux S">S. a. K. A. Devereux</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Arellano, G" uniqKey="Arellano G">G. Arellano</name>
</author>
<author>
<name sortKey="Acuna, E" uniqKey="Acuna E">E. Acuna</name>
</author>
<author>
<name sortKey="Reyes, L I" uniqKey="Reyes L">L. I. Reyes</name>
</author>
<author>
<name sortKey="Ottum, P A" uniqKey="Ottum P">P. A. Ottum</name>
</author>
<author>
<name sortKey="De Sarno, P" uniqKey="De Sarno P">P. De Sarno</name>
</author>
<author>
<name sortKey="Villarroel, L" uniqKey="Villarroel L">L. Villarroel</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Baratin, M" uniqKey="Baratin M">M. Baratin</name>
</author>
<author>
<name sortKey="Foray, C" uniqKey="Foray C">C. Foray</name>
</author>
<author>
<name sortKey="Demaria, O" uniqKey="Demaria O">O. Demaria</name>
</author>
<author>
<name sortKey="Habbeddine, M" uniqKey="Habbeddine M">M. Habbeddine</name>
</author>
<author>
<name sortKey="Pollet, E" uniqKey="Pollet E">E. Pollet</name>
</author>
<author>
<name sortKey="Maurizio, J" uniqKey="Maurizio J">J. Maurizio</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Basu, M" uniqKey="Basu M">M. Basu</name>
</author>
<author>
<name sortKey="Mayana, K" uniqKey="Mayana K">K. Mayana</name>
</author>
<author>
<name sortKey="Xavier, S" uniqKey="Xavier S">S. Xavier</name>
</author>
<author>
<name sortKey="Balachandran, S" uniqKey="Balachandran S">S. Balachandran</name>
</author>
<author>
<name sortKey="Mishra, N" uniqKey="Mishra N">N. Mishra</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Besusso, D" uniqKey="Besusso D">D. Besusso</name>
</author>
<author>
<name sortKey="Saul, L" uniqKey="Saul L">L. Saul</name>
</author>
<author>
<name sortKey="Leech, M D" uniqKey="Leech M">M. D. Leech</name>
</author>
<author>
<name sortKey="O Onnor, R A" uniqKey="O Onnor R">R. A. O’connor</name>
</author>
<author>
<name sortKey="Macdonald, A S" uniqKey="Macdonald A">A. S. Macdonald</name>
</author>
<author>
<name sortKey="Anderton, S M" uniqKey="Anderton S">S. M. Anderton</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Chesi, M" uniqKey="Chesi M">M. Chesi</name>
</author>
<author>
<name sortKey="Mirza, N N" uniqKey="Mirza N">N. N. Mirza</name>
</author>
<author>
<name sortKey="Garbitt, V M" uniqKey="Garbitt V">V. M. Garbitt</name>
</author>
<author>
<name sortKey="Sharik, M E" uniqKey="Sharik M">M. E. Sharik</name>
</author>
<author>
<name sortKey="Dueck, A C" uniqKey="Dueck A">A. C. Dueck</name>
</author>
<author>
<name sortKey="Asmann, Y W" uniqKey="Asmann Y">Y. W. Asmann</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Chiang, K C" uniqKey="Chiang K">K. C. Chiang</name>
</author>
<author>
<name sortKey="Tsui, K H" uniqKey="Tsui K">K. H. Tsui</name>
</author>
<author>
<name sortKey="Chung, L C" uniqKey="Chung L">L. C. Chung</name>
</author>
<author>
<name sortKey="Yeh, C N" uniqKey="Yeh C">C. N. Yeh</name>
</author>
<author>
<name sortKey="Chen, W T" uniqKey="Chen W">W. T. Chen</name>
</author>
<author>
<name sortKey="Chang, P L" uniqKey="Chang P">P. L. Chang</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Codarri, L" uniqKey="Codarri L">L. Codarri</name>
</author>
<author>
<name sortKey="Gyulveszi, G" uniqKey="Gyulveszi G">G. Gyulveszi</name>
</author>
<author>
<name sortKey="Tosevski, V" uniqKey="Tosevski V">V. Tosevski</name>
</author>
<author>
<name sortKey="Hesske, L" uniqKey="Hesske L">L. Hesske</name>
</author>
<author>
<name sortKey="Fontana, A" uniqKey="Fontana A">A. Fontana</name>
</author>
<author>
<name sortKey="Magnenat, L" uniqKey="Magnenat L">L. Magnenat</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Connell, B J" uniqKey="Connell B">B. J. Connell</name>
</author>
<author>
<name sortKey="Saleh, M C" uniqKey="Saleh M">M. C. Saleh</name>
</author>
<author>
<name sortKey="Rajagopal, D" uniqKey="Rajagopal D">D. Rajagopal</name>
</author>
<author>
<name sortKey="Saleh, T M" uniqKey="Saleh T">T. M. Saleh</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ding, Z" uniqKey="Ding Z">Z. Ding</name>
</author>
<author>
<name sortKey="Dai, Y" uniqKey="Dai Y">Y. Dai</name>
</author>
<author>
<name sortKey="Wang, Z" uniqKey="Wang Z">Z. Wang</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Dou, Y" uniqKey="Dou Y">Y. Dou</name>
</author>
<author>
<name sortKey="Tong, B" uniqKey="Tong B">B. Tong</name>
</author>
<author>
<name sortKey="Wei, Z" uniqKey="Wei Z">Z. Wei</name>
</author>
<author>
<name sortKey="Li, Y" uniqKey="Li Y">Y. Li</name>
</author>
<author>
<name sortKey="Xia, Y" uniqKey="Xia Y">Y. Xia</name>
</author>
<author>
<name sortKey="Dai, Y" uniqKey="Dai Y">Y. Dai</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="El Behi, M" uniqKey="El Behi M">M. El-Behi</name>
</author>
<author>
<name sortKey="Ciric, B" uniqKey="Ciric B">B. Ciric</name>
</author>
<author>
<name sortKey="Dai, H" uniqKey="Dai H">H. Dai</name>
</author>
<author>
<name sortKey="Yan, Y" uniqKey="Yan Y">Y. Yan</name>
</author>
<author>
<name sortKey="Cullimore, M" uniqKey="Cullimore M">M. Cullimore</name>
</author>
<author>
<name sortKey="Safavi, F" uniqKey="Safavi F">F. Safavi</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="El Behi, M" uniqKey="El Behi M">M. El-Behi</name>
</author>
<author>
<name sortKey="Rostami, A" uniqKey="Rostami A">A. Rostami</name>
</author>
<author>
<name sortKey="Ciric, B" uniqKey="Ciric B">B. Ciric</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Forino, M" uniqKey="Forino M">M. Forino</name>
</author>
<author>
<name sortKey="Tartaglione, L" uniqKey="Tartaglione L">L. Tartaglione</name>
</author>
<author>
<name sortKey="Dell Versano, C" uniqKey="Dell Versano C">C. Dell’aversano</name>
</author>
<author>
<name sortKey="Ciminiello, P" uniqKey="Ciminiello P">P. Ciminiello</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Gabriele, L" uniqKey="Gabriele L">L. Gabriele</name>
</author>
<author>
<name sortKey="Ozato, K" uniqKey="Ozato K">K. Ozato</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Garcia Morales, G" uniqKey="Garcia Morales G">G. Garcia-Morales</name>
</author>
<author>
<name sortKey="Huerta Reyes, M" uniqKey="Huerta Reyes M">M. Huerta-Reyes</name>
</author>
<author>
<name sortKey="Gonzalez Cortazar, M" uniqKey="Gonzalez Cortazar M">M. Gonzalez-Cortazar</name>
</author>
<author>
<name sortKey="Zamilpa, A" uniqKey="Zamilpa A">A. Zamilpa</name>
</author>
<author>
<name sortKey="Jimenez Ferrer, E" uniqKey="Jimenez Ferrer E">E. Jimenez-Ferrer</name>
</author>
<author>
<name sortKey="Silva Garcia, R" uniqKey="Silva Garcia R">R. Silva-Garcia</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ginwala, R" uniqKey="Ginwala R">R. Ginwala</name>
</author>
<author>
<name sortKey="Mctish, E" uniqKey="Mctish E">E. Mctish</name>
</author>
<author>
<name sortKey="Raman, C" uniqKey="Raman C">C. Raman</name>
</author>
<author>
<name sortKey="Singh, N" uniqKey="Singh N">N. Singh</name>
</author>
<author>
<name sortKey="Nagarkatti, M" uniqKey="Nagarkatti M">M. Nagarkatti</name>
</author>
<author>
<name sortKey="Nagarkatti, P" uniqKey="Nagarkatti P">P. Nagarkatti</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Giralt, M" uniqKey="Giralt M">M. Giralt</name>
</author>
<author>
<name sortKey="Ramos, R" uniqKey="Ramos R">R. Ramos</name>
</author>
<author>
<name sortKey="Quintana, A" uniqKey="Quintana A">A. Quintana</name>
</author>
<author>
<name sortKey="Ferrer, B" uniqKey="Ferrer B">B. Ferrer</name>
</author>
<author>
<name sortKey="Erta, M" uniqKey="Erta M">M. Erta</name>
</author>
<author>
<name sortKey="Castro Freire, M" uniqKey="Castro Freire M">M. Castro-Freire</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Grigoriadis, N" uniqKey="Grigoriadis N">N. Grigoriadis</name>
</author>
<author>
<name sortKey="Van Pesch, V" uniqKey="Van Pesch V">V. Van Pesch</name>
</author>
<author>
<name sortKey="Paradig, M S G" uniqKey="Paradig M">M. S. G. Paradig</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Grimbert, P" uniqKey="Grimbert P">P. Grimbert</name>
</author>
<author>
<name sortKey="Audard, V" uniqKey="Audard V">V. Audard</name>
</author>
<author>
<name sortKey="Diet, C" uniqKey="Diet C">C. Diet</name>
</author>
<author>
<name sortKey="Matignon, M" uniqKey="Matignon M">M. Matignon</name>
</author>
<author>
<name sortKey="Plonquet, A" uniqKey="Plonquet A">A. Plonquet</name>
</author>
<author>
<name sortKey="Mansour, H" uniqKey="Mansour H">H. Mansour</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="He, Z" uniqKey="He Z">Z. He</name>
</author>
<author>
<name sortKey="Ma, J" uniqKey="Ma J">J. Ma</name>
</author>
<author>
<name sortKey="Wang, R" uniqKey="Wang R">R. Wang</name>
</author>
<author>
<name sortKey="Zhang, J" uniqKey="Zhang J">J. Zhang</name>
</author>
<author>
<name sortKey="Huang, Z" uniqKey="Huang Z">Z. Huang</name>
</author>
<author>
<name sortKey="Wang, F" uniqKey="Wang F">F. Wang</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Hemmer, B" uniqKey="Hemmer B">B. Hemmer</name>
</author>
<author>
<name sortKey="Kerschensteiner, M" uniqKey="Kerschensteiner M">M. Kerschensteiner</name>
</author>
<author>
<name sortKey="Korn, T" uniqKey="Korn T">T. Korn</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Honda, K" uniqKey="Honda K">K. Honda</name>
</author>
<author>
<name sortKey="Yanai, H" uniqKey="Yanai H">H. Yanai</name>
</author>
<author>
<name sortKey="Negishi, H" uniqKey="Negishi H">H. Negishi</name>
</author>
<author>
<name sortKey="Asagiri, M" uniqKey="Asagiri M">M. Asagiri</name>
</author>
<author>
<name sortKey="Sato, M" uniqKey="Sato M">M. Sato</name>
</author>
<author>
<name sortKey="Mizutani, T" uniqKey="Mizutani T">T. Mizutani</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Jamuna, S" uniqKey="Jamuna S">S. Jamuna</name>
</author>
<author>
<name sortKey="Karthika, K" uniqKey="Karthika K">K. Karthika</name>
</author>
<author>
<name sortKey="Paulsamy, S" uniqKey="Paulsamy S">S. Paulsamy</name>
</author>
<author>
<name sortKey="Thenmozhi, K" uniqKey="Thenmozhi K">K. Thenmozhi</name>
</author>
<author>
<name sortKey="Kathiravan, S" uniqKey="Kathiravan S">S. Kathiravan</name>
</author>
<author>
<name sortKey="Venkatesh, R" uniqKey="Venkatesh R">R. Venkatesh</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kornberg, M D" uniqKey="Kornberg M">M. D. Kornberg</name>
</author>
<author>
<name sortKey="Smith, M D" uniqKey="Smith M">M. D. Smith</name>
</author>
<author>
<name sortKey="Shirazi, H A" uniqKey="Shirazi H">H. A. Shirazi</name>
</author>
<author>
<name sortKey="Calabresi, P A" uniqKey="Calabresi P">P. A. Calabresi</name>
</author>
<author>
<name sortKey="Snyder, S H" uniqKey="Snyder S">S. H. Snyder</name>
</author>
<author>
<name sortKey="Kim, P M" uniqKey="Kim P">P. M. Kim</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Lassmann, H" uniqKey="Lassmann H">H. Lassmann</name>
</author>
<author>
<name sortKey="Bradl, M" uniqKey="Bradl M">M. Bradl</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Lee, H I" uniqKey="Lee H">H. I. Lee</name>
</author>
<author>
<name sortKey="Yun, K W" uniqKey="Yun K">K. W. Yun</name>
</author>
<author>
<name sortKey="Seo, K I" uniqKey="Seo K">K. I. Seo</name>
</author>
<author>
<name sortKey="Kim, M J" uniqKey="Kim M">M. J. Kim</name>
</author>
<author>
<name sortKey="Lee, M K" uniqKey="Lee M">M. K. Lee</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Li, G" uniqKey="Li G">G. Li</name>
</author>
<author>
<name sortKey="Yamasaki, R" uniqKey="Yamasaki R">R. Yamasaki</name>
</author>
<author>
<name sortKey="Fang, M" uniqKey="Fang M">M. Fang</name>
</author>
<author>
<name sortKey="Masaki, K" uniqKey="Masaki K">K. Masaki</name>
</author>
<author>
<name sortKey="Ochi, H" uniqKey="Ochi H">H. Ochi</name>
</author>
<author>
<name sortKey="Matsushita, T" uniqKey="Matsushita T">T. Matsushita</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Li, X" uniqKey="Li X">X. Li</name>
</author>
<author>
<name sortKey="Zhang, Y" uniqKey="Zhang Y">Y. Zhang</name>
</author>
<author>
<name sortKey="Yan, Y" uniqKey="Yan Y">Y. Yan</name>
</author>
<author>
<name sortKey="Ciric, B" uniqKey="Ciric B">B. Ciric</name>
</author>
<author>
<name sortKey="Ma, C G" uniqKey="Ma C">C. G. Ma</name>
</author>
<author>
<name sortKey="Chin, J" uniqKey="Chin J">J. Chin</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Li, X" uniqKey="Li X">X. Li</name>
</author>
<author>
<name sortKey="Zhang, Y" uniqKey="Zhang Y">Y. Zhang</name>
</author>
<author>
<name sortKey="Yan, Y" uniqKey="Yan Y">Y. Yan</name>
</author>
<author>
<name sortKey="Ciric, B" uniqKey="Ciric B">B. Ciric</name>
</author>
<author>
<name sortKey="Ma, C G" uniqKey="Ma C">C. G. Ma</name>
</author>
<author>
<name sortKey="Gran, B" uniqKey="Gran B">B. Gran</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Lin, Y Z" uniqKey="Lin Y">Y. Z. Lin</name>
</author>
<author>
<name sortKey="Yao, S Y" uniqKey="Yao S">S. Y. Yao</name>
</author>
<author>
<name sortKey="Veach, R A" uniqKey="Veach R">R. A. Veach</name>
</author>
<author>
<name sortKey="Torgerson, T R" uniqKey="Torgerson T">T. R. Torgerson</name>
</author>
<author>
<name sortKey="Hawiger, J" uniqKey="Hawiger J">J. Hawiger</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Lu, Y" uniqKey="Lu Y">Y. Lu</name>
</author>
<author>
<name sortKey="Chen, B" uniqKey="Chen B">B. Chen</name>
</author>
<author>
<name sortKey="Song, J H" uniqKey="Song J">J. H. Song</name>
</author>
<author>
<name sortKey="Zhen, T" uniqKey="Zhen T">T. Zhen</name>
</author>
<author>
<name sortKey="Wang, B Y" uniqKey="Wang B">B. Y. Wang</name>
</author>
<author>
<name sortKey="Li, X" uniqKey="Li X">X. Li</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Lu, Y" uniqKey="Lu Y">Y. Lu</name>
</author>
<author>
<name sortKey="Zhang, M" uniqKey="Zhang M">M. Zhang</name>
</author>
<author>
<name sortKey="Wang, S" uniqKey="Wang S">S. Wang</name>
</author>
<author>
<name sortKey="Hong, B" uniqKey="Hong B">B. Hong</name>
</author>
<author>
<name sortKey="Wang, Z" uniqKey="Wang Z">Z. Wang</name>
</author>
<author>
<name sortKey="Li, H" uniqKey="Li H">H. Li</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Luckheeram, R V" uniqKey="Luckheeram R">R. V. Luckheeram</name>
</author>
<author>
<name sortKey="Zhou, R" uniqKey="Zhou R">R. Zhou</name>
</author>
<author>
<name sortKey="Verma, A D" uniqKey="Verma A">A. D. Verma</name>
</author>
<author>
<name sortKey="Xia, B" uniqKey="Xia B">B. Xia</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Malik, S" uniqKey="Malik S">S. Malik</name>
</author>
<author>
<name sortKey="Sadhu, S" uniqKey="Sadhu S">S. Sadhu</name>
</author>
<author>
<name sortKey="Elesela, S" uniqKey="Elesela S">S. Elesela</name>
</author>
<author>
<name sortKey="Pandey, R P" uniqKey="Pandey R">R. P. Pandey</name>
</author>
<author>
<name sortKey="Chawla, A S" uniqKey="Chawla A">A. S. Chawla</name>
</author>
<author>
<name sortKey="Sharma, D" uniqKey="Sharma D">D. Sharma</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Moon, P D" uniqKey="Moon P">P. D. Moon</name>
</author>
<author>
<name sortKey="Lee, B H" uniqKey="Lee B">B. H. Lee</name>
</author>
<author>
<name sortKey="Jeong, H J" uniqKey="Jeong H">H. J. Jeong</name>
</author>
<author>
<name sortKey="An, H J" uniqKey="An H">H. J. An</name>
</author>
<author>
<name sortKey="Park, S J" uniqKey="Park S">S. J. Park</name>
</author>
<author>
<name sortKey="Kim, H R" uniqKey="Kim H">H. R. Kim</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Pan, R" uniqKey="Pan R">R. Pan</name>
</author>
<author>
<name sortKey="Gao, X H" uniqKey="Gao X">X. H. Gao</name>
</author>
<author>
<name sortKey="Li, Y" uniqKey="Li Y">Y. Li</name>
</author>
<author>
<name sortKey="Xia, Y F" uniqKey="Xia Y">Y. F. Xia</name>
</author>
<author>
<name sortKey="Dai, Y" uniqKey="Dai Y">Y. Dai</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Procaccini, C" uniqKey="Procaccini C">C. Procaccini</name>
</author>
<author>
<name sortKey="De Rosa, V" uniqKey="De Rosa V">V. De Rosa</name>
</author>
<author>
<name sortKey="Pucino, V" uniqKey="Pucino V">V. Pucino</name>
</author>
<author>
<name sortKey="Formisano, L" uniqKey="Formisano L">L. Formisano</name>
</author>
<author>
<name sortKey="Matarese, G" uniqKey="Matarese G">G. Matarese</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Rasouli, J" uniqKey="Rasouli J">J. Rasouli</name>
</author>
<author>
<name sortKey="Ciric, B" uniqKey="Ciric B">B. Ciric</name>
</author>
<author>
<name sortKey="Imitola, J" uniqKey="Imitola J">J. Imitola</name>
</author>
<author>
<name sortKey="Gonnella, P" uniqKey="Gonnella P">P. Gonnella</name>
</author>
<author>
<name sortKey="Hwang, D" uniqKey="Hwang D">D. Hwang</name>
</author>
<author>
<name sortKey="Mahajan, K" uniqKey="Mahajan K">K. Mahajan</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Rescigno, M" uniqKey="Rescigno M">M. Rescigno</name>
</author>
<author>
<name sortKey="Martino, M" uniqKey="Martino M">M. Martino</name>
</author>
<author>
<name sortKey="Sutherland, C L" uniqKey="Sutherland C">C. L. Sutherland</name>
</author>
<author>
<name sortKey="Gold, M R" uniqKey="Gold M">M. R. Gold</name>
</author>
<author>
<name sortKey="Ricciardi, C P" uniqKey="Ricciardi C">C. P. Ricciardi</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Shalan, N A M" uniqKey="Shalan N">N.a.M. Shalan</name>
</author>
<author>
<name sortKey="Mustapha, N M" uniqKey="Mustapha N">N. M. Mustapha</name>
</author>
<author>
<name sortKey="Mohamed, S" uniqKey="Mohamed S">S. Mohamed</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Smith, J A" uniqKey="Smith J">J. A. Smith</name>
</author>
<author>
<name sortKey="Colbert, R A" uniqKey="Colbert R">R. A. Colbert</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Thome, R" uniqKey="Thome R">R. Thome</name>
</author>
<author>
<name sortKey="Bonfanti, A P" uniqKey="Bonfanti A">A. P. Bonfanti</name>
</author>
<author>
<name sortKey="Rasouli, J" uniqKey="Rasouli J">J. Rasouli</name>
</author>
<author>
<name sortKey="Mari, E R" uniqKey="Mari E">E. R. Mari</name>
</author>
<author>
<name sortKey="Zhang, G X" uniqKey="Zhang G">G. X. Zhang</name>
</author>
<author>
<name sortKey="Rostami, A" uniqKey="Rostami A">A. Rostami</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Thome, R" uniqKey="Thome R">R. Thome</name>
</author>
<author>
<name sortKey="Issayama, L K" uniqKey="Issayama L">L. K. Issayama</name>
</author>
<author>
<name sortKey="Alves Da Costa, T" uniqKey="Alves Da Costa T">T. Alves Da Costa</name>
</author>
<author>
<name sortKey="Gangi, R D" uniqKey="Gangi R">R. D. Gangi</name>
</author>
<author>
<name sortKey="Ferreira, I T" uniqKey="Ferreira I">I. T. Ferreira</name>
</author>
<author>
<name sortKey="Raposo, C" uniqKey="Raposo C">C. Raposo</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Thome, R" uniqKey="Thome R">R. Thome</name>
</author>
<author>
<name sortKey="Issayama, L K" uniqKey="Issayama L">L. K. Issayama</name>
</author>
<author>
<name sortKey="Digangi, R" uniqKey="Digangi R">R. Digangi</name>
</author>
<author>
<name sortKey="Bombeiro, A L" uniqKey="Bombeiro A">A. L. Bombeiro</name>
</author>
<author>
<name sortKey="Da Costa, T A" uniqKey="Da Costa T">T. A. Da Costa</name>
</author>
<author>
<name sortKey="Ferreira, I T" uniqKey="Ferreira I">I. T. Ferreira</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Thompson, A J" uniqKey="Thompson A">A. J. Thompson</name>
</author>
<author>
<name sortKey="Baranzini, S E" uniqKey="Baranzini S">S. E. Baranzini</name>
</author>
<author>
<name sortKey="Geurts, J" uniqKey="Geurts J">J. Geurts</name>
</author>
<author>
<name sortKey="Hemmer, B" uniqKey="Hemmer B">B. Hemmer</name>
</author>
<author>
<name sortKey="Ciccarelli, O" uniqKey="Ciccarelli O">O. Ciccarelli</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Yamamoto, S" uniqKey="Yamamoto S">S. Yamamoto</name>
</author>
<author>
<name sortKey="Nava, R G" uniqKey="Nava R">R. G. Nava</name>
</author>
<author>
<name sortKey="Zhu, J" uniqKey="Zhu J">J. Zhu</name>
</author>
<author>
<name sortKey="Huang, H J" uniqKey="Huang H">H. J. Huang</name>
</author>
<author>
<name sortKey="Ibrahim, M" uniqKey="Ibrahim M">M. Ibrahim</name>
</author>
<author>
<name sortKey="Mohanakumar, T" uniqKey="Mohanakumar T">T. Mohanakumar</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Yao, X" uniqKey="Yao X">X. Yao</name>
</author>
<author>
<name sortKey="Huang, J" uniqKey="Huang J">J. Huang</name>
</author>
<author>
<name sortKey="Zhong, H" uniqKey="Zhong H">H. Zhong</name>
</author>
<author>
<name sortKey="Shen, N" uniqKey="Shen N">N. Shen</name>
</author>
<author>
<name sortKey="Faggioni, R" uniqKey="Faggioni R">R. Faggioni</name>
</author>
<author>
<name sortKey="Fung, M" uniqKey="Fung M">M. Fung</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Yasuda, K" uniqKey="Yasuda K">K. Yasuda</name>
</author>
<author>
<name sortKey="Richez, C" uniqKey="Richez C">C. Richez</name>
</author>
<author>
<name sortKey="Maciaszek, J W" uniqKey="Maciaszek J">J. W. Maciaszek</name>
</author>
<author>
<name sortKey="Agrawal, N" uniqKey="Agrawal N">N. Agrawal</name>
</author>
<author>
<name sortKey="Akira, S" uniqKey="Akira S">S. Akira</name>
</author>
<author>
<name sortKey="Marshak Rothstein, A" uniqKey="Marshak Rothstein A">A. Marshak-Rothstein</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Zeng, Y C" uniqKey="Zeng Y">Y. C. Zeng</name>
</author>
<author>
<name sortKey="Li, S" uniqKey="Li S">S. Li</name>
</author>
<author>
<name sortKey="Liu, C" uniqKey="Liu C">C. Liu</name>
</author>
<author>
<name sortKey="Gong, T" uniqKey="Gong T">T. Gong</name>
</author>
<author>
<name sortKey="Sun, X" uniqKey="Sun X">X. Sun</name>
</author>
<author>
<name sortKey="Fu, Y" uniqKey="Fu Y">Y. Fu</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Zhang, Y" uniqKey="Zhang Y">Y. Zhang</name>
</author>
<author>
<name sortKey="Li, X" uniqKey="Li X">X. Li</name>
</author>
<author>
<name sortKey="Ciric, B" uniqKey="Ciric B">B. Ciric</name>
</author>
<author>
<name sortKey="Ma, C G" uniqKey="Ma C">C. G. Ma</name>
</author>
<author>
<name sortKey="Gran, B" uniqKey="Gran B">B. Gran</name>
</author>
<author>
<name sortKey="Rostami, A" uniqKey="Rostami A">A. Rostami</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Zhao, L" uniqKey="Zhao L">L. Zhao</name>
</author>
<author>
<name sortKey="Li, X" uniqKey="Li X">X. Li</name>
</author>
<author>
<name sortKey="Ye, Z Q" uniqKey="Ye Z">Z. Q. Ye</name>
</author>
<author>
<name sortKey="Zhang, F" uniqKey="Zhang F">F. Zhang</name>
</author>
<author>
<name sortKey="Han, J J" uniqKey="Han J">J. J. Han</name>
</author>
<author>
<name sortKey="Yang, T" uniqKey="Yang T">T. Yang</name>
</author>
</analytic>
</biblStruct>
</listBibl>
</div1>
</back>
</TEI>
<pmc article-type="research-article">
<pmc-dir>properties open_access</pmc-dir>
<front>
<journal-meta>
<journal-id journal-id-type="nlm-ta">Front Pharmacol</journal-id>
<journal-id journal-id-type="iso-abbrev">Front Pharmacol</journal-id>
<journal-id journal-id-type="publisher-id">Front. Pharmacol.</journal-id>
<journal-title-group>
<journal-title>Frontiers in Pharmacology</journal-title>
</journal-title-group>
<issn pub-type="epub">1663-9812</issn>
<publisher>
<publisher-name>Frontiers Media S.A.</publisher-name>
</publisher>
</journal-meta>
<article-meta>
<article-id pub-id-type="pmid">31427972</article-id>
<article-id pub-id-type="pmc">6688631</article-id>
<article-id pub-id-type="doi">10.3389/fphar.2019.00863</article-id>
<article-categories>
<subj-group subj-group-type="heading">
<subject>Pharmacology</subject>
<subj-group>
<subject>Original Research</subject>
</subj-group>
</subj-group>
</article-categories>
<title-group>
<article-title>Scopoletin Suppresses Activation of Dendritic Cells and Pathogenesis of Experimental Autoimmune Encephalomyelitis by Inhibiting NF-κB Signaling</article-title>
</title-group>
<contrib-group>
<contrib contrib-type="author">
<name>
<surname>Zhang</surname>
<given-names>Fei</given-names>
</name>
<xref ref-type="author-notes" rid="fn003">
<sup></sup>
</xref>
<uri xlink:type="simple" xlink:href="https://loop.frontiersin.org/people/690515"></uri>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Zhang</surname>
<given-names>Yuan</given-names>
</name>
<xref ref-type="author-notes" rid="fn003">
<sup></sup>
</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Yang</surname>
<given-names>Ting</given-names>
</name>
<xref ref-type="author-notes" rid="fn003">
<sup></sup>
</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Ye</surname>
<given-names>Ze-Qing</given-names>
</name>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Tian</surname>
<given-names>Jing</given-names>
</name>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Fang</surname>
<given-names>Hai-Rong</given-names>
</name>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Han</surname>
<given-names>Juan-Juan</given-names>
</name>
<uri xlink:type="simple" xlink:href="https://loop.frontiersin.org/people/593515"></uri>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Wang</surname>
<given-names>Zhe-Zhi</given-names>
</name>
<xref ref-type="author-notes" rid="fn001">
<sup>*</sup>
</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Li</surname>
<given-names>Xing</given-names>
</name>
<xref ref-type="author-notes" rid="fn001">
<sup>*</sup>
</xref>
</contrib>
</contrib-group>
<aff id="aff1">
<institution>National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, The Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, The Ministry of Education, College of Life Sciences, Shaanxi Normal University</institution>
,
<addr-line>Xi’an</addr-line>
,
<country>China</country>
</aff>
<author-notes>
<fn fn-type="edited-by">
<p>Edited by: Pietro Giusti, University of Padova, Italy</p>
</fn>
<fn fn-type="edited-by">
<p>Reviewed by: Jose Martinez-Navio, University of Miami Health System, United States; Narendra Prasad Singh, University of South Carolina, United States</p>
</fn>
<corresp id="fn001">*Correspondence: Zhe-Zhi Wang,
<email xlink:href="mailto:zzwang@snnu.edu.cn" xlink:type="simple">zzwang@snnu.edu.cn</email>
; Xing Li,
<email xlink:href="mailto:xingli_xian@126.com" xlink:type="simple">xingli_xian@126.com</email>
</corresp>
<fn fn-type="other" id="fn002">
<p>This article was submitted to Neuropharmacology, a section of the journal Frontiers in Pharmacology</p>
</fn>
<fn fn-type="equal" id="fn003">
<p>†These authors have contributed equally to this work.</p>
</fn>
</author-notes>
<pub-date pub-type="epub">
<day>02</day>
<month>8</month>
<year>2019</year>
</pub-date>
<pub-date pub-type="collection">
<year>2019</year>
</pub-date>
<volume>10</volume>
<elocation-id>863</elocation-id>
<history>
<date date-type="received">
<day>27</day>
<month>2</month>
<year>2019</year>
</date>
<date date-type="accepted">
<day>08</day>
<month>7</month>
<year>2019</year>
</date>
</history>
<permissions>
<copyright-statement>Copyright © 2019 Zhang, Zhang, Yang, Ye, Tian, Fang, Han, Wang and Li</copyright-statement>
<copyright-year>2019</copyright-year>
<copyright-holder>Zhang, Zhang, Yang, Ye, Tian, Fang, Han, Wang and Li</copyright-holder>
<license xlink:href="http://creativecommons.org/licenses/by/4.0/">
<license-p>This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.</license-p>
</license>
</permissions>
<abstract>
<p>Scopoletin, a phenolic coumarin derived from many medical or edible plants, is involved in various pharmacological functions. In the present study, we showed that Scopoletin effectively ameliorated experimental autoimmune encephalomyelitis (EAE), an animal model of multiple sclerosis (MS), through novel regulatory mechanisms involving inhibition of NF-κB activity in dendritic cells (DCs). Scopoletin treatment significantly improved the severity of the disease and prominently decreased inflammation and demyelination of central nervous system (CNS) in EAE mice. Disease alleviation correlated with the downregulation of major histocompatibility complex (MHC) class II, CD80 and CD86, expressed on DCs of CNS or spleens, and the infiltration and polarization of encephalitogenic Th1/Th17 cells. Consistent with the
<italic>in vivo</italic>
data, Scopoletin-treated, bone marrow-derived dendritic cells (BM-DCs) exhibited reduced expression of MHC class II and costimulatory molecules (e.g., CD80 and CD86) and reduced NF-κB phosphorylation. These findings, for the first time, demonstrated the ability of Scopoletin to impair DC activation, downregulating pathogenic Th1/Th17 inflammatory cell responses and, eventually, reducing EAE severity. Our study demonstrates new evidence that natural products derived from medical or edible plants, such as Scopoletin, will be valuable in developing a novel therapeutic agent for MS in the future.</p>
</abstract>
<kwd-group>
<kwd>scopoletin</kwd>
<kwd>experimental autoimmune encephalomyelitis</kwd>
<kwd>multiple sclerosis</kwd>
<kwd>dendritic cells</kwd>
<kwd>NF-κB signaling</kwd>
</kwd-group>
<counts>
<fig-count count="7"></fig-count>
<table-count count="0"></table-count>
<equation-count count="0"></equation-count>
<ref-count count="55"></ref-count>
<page-count count="14"></page-count>
<word-count count="5592"></word-count>
</counts>
</article-meta>
</front>
<body>
<sec sec-type="intro" id="s1">
<title>Introduction</title>
<p>Multiple sclerosis (MS) is a T-cell-mediated chronic autoimmune disease featured by neuroinflammation and demyelination in the central nervous system (CNS), affecting 2.5 million people worldwide, and the incidence continues to increase (
<xref rid="B25" ref-type="bibr">Hemmer et al., 2015</xref>
). Experimental autoimmune encephalomyelitis (EAE) is a well-known animal model of MS that is used to study the underlying mechanism and that provides the theoretical basis for developing new therapies of MS (
<xref rid="B41" ref-type="bibr">Procaccini et al., 2015</xref>
;
<xref rid="B29" ref-type="bibr">Lassmann and Bradl, 2016</xref>
).</p>
<p>Dendritic cells (DCs) are antigen-presenting cells that connect the innate and adaptive immune response. Depending on the variety activation status, DCs can either activate or modulate naive T lymphocytes. When DCs are activated, costimulatory molecules are upregulated and produce cytokines that drive T-cell priming and effector differentiation (
<xref rid="B2" ref-type="bibr">Amodio and Gregori, 2012</xref>
). In the absence of activation, antigen presentation by steady-state DCs can result to T-cell unresponsiveness and tolerance (
<xref rid="B8" ref-type="bibr">Besusso et al., 2015</xref>
). Therefore, modulation of DCs has been shown to be a promising area for the treatment of autoimmune disease. For instance, it was proved that DCs treated with natural compounds or synthetic drugs blocked the inflammatory signal and halted disease development (
<xref rid="B20" ref-type="bibr">Ginwala et al., 2016</xref>
;
<xref rid="B28" ref-type="bibr">Kornberg et al., 2018</xref>
). DC-induced suppression is mainly dependent on inhibiting Th17 cell differentiation or promoting Treg cell generation (
<xref rid="B47" ref-type="bibr">Thome et al., 2014a</xref>
;
<xref rid="B46" ref-type="bibr">Thome et al., 2018</xref>
). It is known that naive CD4
<sup>+</sup>
T cells can develop into various effector subsets containing Th1, Th2, Th17, and Treg cells, etc.; among these, Th17 cells are crucially related to the pathogenesis of MS/EAE (
<xref rid="B24" ref-type="bibr">He et al., 2017</xref>
;
<xref rid="B38" ref-type="bibr">Malik et al., 2017</xref>
). Suppression of the cellular response, Th17 cells in particular, can therefore act as a therapeutic target for controlling autoimmune and inflammatory diseases.</p>
<p>NF-κB is a broad transcription factor which can regulate various biological functions containing inflammation, immunity, cell growth, and survival, and its signaling pathway plays a role in DC activation and maturation (
<xref rid="B4" ref-type="bibr">Ardeshna et al., 2000</xref>
). Phosphorylation of NF-κB in innate immune cells induces inflammation reaction, cytokine secretion, and tissue damage, thus promoting to the progress of autoimmune diseases including EAE (
<xref rid="B35" ref-type="bibr">Lu et al., 2013</xref>
). In addition, immature DCs respond to danger signals or antigen and, when mature, produce abundance of proinflammatory cytokines, such as type I interferons (IFN). Subsequently, mature DCs present antigens to T lymphocytes to stimulate a sustained immune response, given the interferon regulatory factor (IRF) family’s important role in DC development and maturation. For example, IRF-7 is necessary for producing IFN-α and IFN-β, and it serves as the prime regulator of type-I interferon-dependent immune responses (
<xref rid="B26" ref-type="bibr">Honda et al., 2005</xref>
;
<xref rid="B18" ref-type="bibr">Gabriele and Ozato, 2007</xref>
;
<xref rid="B52" ref-type="bibr">Yasuda et al., 2007</xref>
).</p>
<p>Scopoletin is a phenolic coumarin extracted from many medical plants, including
<italic>Erycibe obtusifolia</italic>
,
<italic>Aster tataricus</italic>
,
<italic>Foeniculum vulgare</italic>
, and
<italic>Artemisia iwayomogi</italic>
, as well as some edible plants, such as
<italic>Lycium barbarum</italic>
and
<italic>Morinda citrifolia</italic>
(
<xref rid="B14" ref-type="bibr">Dou et al., 2013</xref>
;
<xref rid="B30" ref-type="bibr">Lee et al., 2014</xref>
;
<xref rid="B17" ref-type="bibr">Forino et al., 2016</xref>
;
<xref rid="B44" ref-type="bibr">Shalan et al., 2016</xref>
). Scopoletin has been shown to possess anti-inflammatory, antioxidant, antidepressant, hypouricemic, and neuroprotective effects (
<xref rid="B13" ref-type="bibr">Ding et al., 2005</xref>
;
<xref rid="B7" ref-type="bibr">Basu et al., 2016</xref>
). Moreover, a recent report suggests that Scopoletin is effective in an adjuvant-induced arthritis rat model, increasing the possibility of its application as a therapeutic agent for autoimmune diseases (
<xref rid="B40" ref-type="bibr">Pan et al., 2010</xref>
). However, little is known about the regulatory properties and underlying mechanism of Scopoletin relative to innate immune cells such as DCs and its effect on the pathogenic progression of MS and EAE. In light of the pharmacological profile of Scopoletin and its reported immunoregulatory properties, we hypothesized that Scopoletin might have a therapeutic effect on the animal model of MS and EAE. The purpose of this study was, therefore, to test the therapeutic activity of Scopoletin on EAE and to elucidate the underlying therapeutic mechanisms of its action, as part of our ongoing search for development of immunomodulation medicine extracted from medical plants or edible plants (
<xref rid="B55" ref-type="bibr">Zhao et al., 2018</xref>
).</p>
</sec>
<sec sec-type="materials|methods" id="s2">
<title>Materials and Methods</title>
<sec id="s2_1">
<title>Reagents and Animals</title>
<p>Scopoletin was purchased from Sigma (Sigma-Aldrich, St. Louis, MO). C57BL/6 mice, female, 8 weeks old, were obtained from the Fourth Military University (Xi’an, China). Studies were carried out by a protocol approved by the Animal Ethics Experimental Committee at of Shaanxi Normal University, and all experiments were operated strictly according to approved institutional guidelines and regulations.</p>
</sec>
<sec id="s2_2">
<title>EAE Induction and Treatment</title>
<p>EAE was induced by subcutaneously injecting an emulsion containing 200 μg Myelin Oligodendrocyte Glycoprotein
<sub>35–55</sub>
(MOG
<sub>35–55</sub>
) (Genescript, Piscataway, NJ), complete Freund’s adjuvant (CFA) (Sigma-Aldrich), and 5 mg/ml
<italic>Mycobacterium tuberculosis</italic>
H37Ra (Difco Laboratories, Lawrence, KS), and intraperitoneally (i.p.) injected 200 ng pertussis toxin (Sigma-Aldrich) in PBS on day 0 and 2 postimmunization (p.i.) (
<xref rid="B54" ref-type="bibr">Zhang et al., 2015</xref>
). Disease progression of EAE mouse was evaluated daily in a blind way by two researchers, scoring standard for EAE disease progression as follows: 0, no symptoms; 0.5, stiff tail; 1, limp tail; 1.5, limp tail and waddle; 2, paralysis of one limb; 2.5, paralysis of one limb and weakness of one other limb; 3, complete paralysis of two hind limbs; 4, moribund; and 5, death. (
<xref rid="B33" ref-type="bibr">Li et al., 2016</xref>
). Scopoletin was prepared in dimethylsulfoxide (DMSO) at 100 mg/ml for stock, which was further diluted 20 times with PBS as a working solution. DMSO (5%) was dissolved in PBS as vehicle. Vehicle or Scopoletin (50 mg/kg) was injected i.p. daily from the day 0 p.i.</p>
</sec>
<sec id="s2_3">
<title>Histopathology</title>
<p>Mice were killed at day 20 postimmunization (p.i.). To assess CNS histopathological, mice were perfused through the heart with cold PBS; spinal cord was then fixed with 4% paraformaldehyde, cut into 7-μm sections, and stained with hematoxylin and eosin (H&E) or Luxol fast blue (LFB) for evaluation of inflammation or demyelination, respectively. Slides were evaluated in a blinded fashion for inflammation using a 0–3 scale as description, and two investigators selected 10 areas in the white matter of the spinal cord and scored for slides, evaluation methods, and criteria as description followed our previous studies (
<xref rid="B33" ref-type="bibr">Li et al., 2016</xref>
). The white matter area was manually outlined, and the Image-Pro Plus software was used to calculated areas (%) of demyelination for evaluation of demyelination (
<xref rid="B32" ref-type="bibr">Li et al., 2017</xref>
). Demyelination area percentage was quantified as the area without LFB staining (white) in white matter divided by the area white matter of spinal cord slices. Fixed spinal cords were embedded in optimum cutting temperature (OCT) solution (Tissue-Tek, Sakura Finetek, Japan) and then sectioned coronally cut into 12 μm. Finally, sections stained with primary and secondary antibodies. Results were acquired by Nikon Eclipse E600 fluorescent microscopy (Melville, NY).</p>
</sec>
<sec id="s2_4">
<title>Mononuclear Cells (MNCs) and BMDCs Preparation</title>
<p>Spleens were mechanically grinded and filtrated with a 100-µm cell strainer (Falcon, Tewksbury, MA) to harvest splenic cells, subsequently incubated with red blood cell lysis buffer (Biolegend, San Diego, CA) for 60 s. After washing cells with cold PBS, cells were stimulated with MOG
<sub>35–55</sub>
<italic>in vitro</italic>
. To acquire CNS infiltrating cells, the protocol was followed as previously described (
<xref rid="B32" ref-type="bibr">Li et al., 2017</xref>
). To acquire the bone-marrow-derived dendritic cells (BM-DCs), femurs and tibias were separated from the naive adult C57BL/6 mice, and the cells were blown out of the bone marrow with a syringe full of the precooled PBS. After filtering with 100-µm cell strainer, the harvested cells were subsequently cultured with PRMI1640 containing granulocyte colony-stimulating factor (GM-CSF) cytokine (10 ng/ml) until the ninth day to obtain mature BM-DCs. Dendritic cells are cultured in medium without GM-CSF cytokine after ninth day.</p>
</sec>
<sec id="s2_5">
<title>Drug Preparation for Cell Experiments</title>
<p>Stock solution of Scopoletin was dissolved into the concentration of 30 mM for cell experiments with DMSO.</p>
</sec>
<sec id="s2_6">
<title>T-cell Proliferation Assay</title>
<p>Splenic CD4+ T cells were isolated from the naive adult C57BL/6 mice using a CD4+ T Cell Isolation Kit (Miltenyi Biotec) and labeled with CFSE. Both BM-DCs and T cells were cocultured at 1:10 ratio in the presence of 10 μg/ml of MOG
<sub>35–55</sub>
(Genescript, Piscataway, NJ) and 100 ng/ml of lipopolysaccharide (LPS) (Sigma-Aldrich). T-cell proliferation was measured by analyzing CFSE intensity by flow cytometry after 72 h.</p>
</sec>
<sec id="s2_7">
<title>Enzyme Linked Immunosorbent Assay (ELISA)</title>
<p>DCs culture medium or supernatants from splenocytes were harvested at 18 or 72 h, and sandwich ELISA was performed to determine the concentrations of cytokine production by ELISA kits (R&D Systems, Minneapolis, MN). according to the manufacturer’s instructions, including IFN-γ, IL-17, GM-CSF, IL-1β, IL-6, and IL-23. Briefly, the capture antibody was used to precoat overnight. Then, the plate was washed with wash buffer (R&D Systems, Minneapolis, MN). for three times. Blocking with 1% BSA in PBS for 1 h, gradient standard, and samples were added to the plate for 2 h incubation. Next, the samples and standard were removed clearly, and the detection antibody was incubated for 2 h. The wells were again washed, a TMB substrate solution was added to the wells, and color developed in proportion to the amounts of cytokines. The Stop Solution changed color from blue to yellow, and the intensity of the color was measured at 450 nm. A standard curve was run for each microwell plate. According to the standard curve, the concentration of cytokine was determined.</p>
</sec>
<sec id="s2_8">
<title>Flow Cytometry Analysis</title>
<p>For surface-marker staining, cells were washed with PBS and incubated 30 min at 4°C with anti-CD4, anti-CD8, anti-CD11b, anti-CD11c, anti-CD80, and anti-CD86 (BD Biosciences, San Jose, CA) or isotype control Abs according to the manufacturer’s instructions to dilute. With 25 or 10 μg/ml MOG
<sub>35–55</sub>
to stimulate splenocytes or infiltrating MNCs in CNS for 72 h or overnight to analyze Th1 and Th17 response to MOG
<sub>35–55</sub>
. For intracellular staining, cells were stimulated with 50 ng/ml PMA, 500 ng/ml ionomycin, and GolgiPlug for 5 h. For blocking the nonspecific staining, 1 μg Fc Block reagent for the FcγII/III receptor (BD Biosciences, San Jose, CA) was addded to 1 × 10
<sup>6</sup>
cells in 100 μl staining buffer (BD Biosciences) and incubated for 15 min at 4°C. The cells are then washed. For surface staining, cells were incubated with anti-CD4, anti-CD8, anti-CD11b, anti-CD11c, anti-MHC class II, anti-CD80, and anti-CD86. Then, cells were fixed and permeabilized by Fix & Perm Medium (Invitrogen, Waltham, MA), using Abs anti-IL-17, anti-IFN-γ, or anti-GM-CSF (BD Biosciences, San Jose, CA) and were incubated overnight at 4°C to stain intracellular cytokines. FACS Aria was used for flow cytometric analysis (BD Biosciences, San Jose, CA). The results were evaluated by FlowJo (Treestar, Ashland, OR).</p>
</sec>
<sec id="s2_9">
<title>Western Blot</title>
<p>Mature BM-DCs were placed in six-well plates with a density of 1.5 × 10
<sup>6</sup>
cells/ml and stimulated with 100 ng/ml LPS to induce DC activation. Meanwhile, 100 μM Scopoletin was added to DCs. After 18 h, proteins were extracted from BM-DCs as described. The total protein contents were measured by Pierce
<sup></sup>
BCA Protein Assay Kit (Thermo Fisher Scientific, Rockford, MA). DC proteins were equally loaded onto SDS-PAGE, electrophoresed, transferred onto PVDF membranes, and after blocking with 5% nonfat milk in TBS, the PVDF membranes were incubated with primary antibody over 12 h at 4°C (
<xref rid="B31" ref-type="bibr">Li et al., 2018</xref>
), including JNK, p-JNK, NF-κB, p-NF-κB, p38, p-p38 (cell signal technology), IRF-7, ERK1/2, p-ERK1/2 (Abcam, Cambridge, UK), and p-IRF-7 (Signalway Antibody, College Park, MD). After washing, the membranes were incubated with 0.5% horseradish peroxidase-labeled IgG. Temembrane-bound antibodies were detected with an Immolilon
<sup></sup>
Western chemiluminescent HRP Substrate (Millipore, Billerica, MA) and analyzed with an ImageJ (ChemiDoc XRS System; Bio-Rad).</p>
</sec>
<sec id="s2_10">
<title>Quantitative RT-PCR</title>
<p>Total RNA was extracted by RNeasy Mini Kit (Qiagen, Valencia, CA). cDNA was subsequently synthesized by QuantiTect
<sup>®</sup>
Reverse Transcription Kit (QIAGEN). Quantitative RT-PCR was performed with the QuantiFast
<sup></sup>
SYBR
<sup>®</sup>
Green PCR Kit (QIAGEN) under standard thermocycler conditions (Applied Biosystems, Foster City, CA). Quantification was performed by normalization with housekeeping genes glyceraldehyde 3-phosphate dehydrogenase (GAPDH) and relative expression level as fold changes
<italic>via</italic>
the 2
<sup>−ΔΔCt</sup>
method. Primers are summarized in
<xref ref-type="supplementary-material" rid="SM1">
<bold>Supplementary Table 1</bold>
</xref>
.</p>
</sec>
<sec id="s2_11">
<title>Statistical Analysis</title>
<p>Results are described as mean ± SD. Statistical differences between two or multiple groups were implemented using Student’s
<italic>t</italic>
-test or the ANOVA.
<italic>P</italic>
< 0.05 was considered statistically significant. All statistical analyses were performed by GraphPad Prism 6 (GraphPad, La Jolla, CA).</p>
</sec>
</sec>
<sec sec-type="results" id="s3">
<title>Results</title>
<sec id="s3_1">
<title>Scopoletin Suppressed the Development of EAE</title>
<p>Previous studies have shown that Scopoletin is safe at the dosage of 10–100 mg/kg daily with no other side effects in
<italic>in vivo</italic>
experiment (
<xref rid="B27" ref-type="bibr">Jamuna et al., 2015</xref>
;
<xref rid="B7" ref-type="bibr">Basu et al., 2016</xref>
;
<xref rid="B53" ref-type="bibr">Zeng et al., 2017</xref>
). To assess the effect of Scopoletin on the disease course of EAE, EAE mice were i.p. injected Scopoletin (50 mg/kg) from day 0 p.i. Vehicle-treated EAE mice demonstrated a progressive increase in disease severity after day 10 p.i., while the Scopoletin-treated group showed a marked decrease in mean disease course from day 14 to 20 p.i. (
<xref ref-type="fig" rid="f1">
<bold>Figure 1A</bold>
</xref>
). Consistent with the disease development, mice treated with vehicle demonstrated abundant inflammatory cell infiltrated in the white matter compared with the Scopoletin-treated EAE mice (
<xref ref-type="fig" rid="f1">
<bold>Figures 1B, C</bold>
</xref>
). At the same time, there was a dramatic decrease in demyelination areas in the spinal cord of Scopoletin-treated EAE mice compared to control (
<xref ref-type="fig" rid="f1">
<bold>Figures 1D, E</bold>
</xref>
). In the therapeutic regimen, Scopoletin administration starting from disease onset (day 11 p.i.) effectively ameliorated EAE progression (
<xref ref-type="supplementary-material" rid="SM1">
<bold>Supplementary Figure 1</bold>
</xref>
). Together, these results indicate that Scopoletin effectively suppressed EAE pathogenesis.</p>
<fig id="f1" position="float">
<label>Figure 1</label>
<caption>
<p>Scopoletin suppressed the development of experimental autoimmune encephalomyelitis (EAE).
<bold>(A)</bold>
Mice were injected i.p. with vehicle or Scopoletin (50 mg/kg) daily from day 0 p.i. to day 20 p.i. experimental autoimmune encephalomyelitis (EAE) development were evaluated and recorded daily following a 0–5 scale.
<bold>(B)</bold>
Hematoxylin and eosin (H&E), below is high magnification of H&E analysis of the spinal cord sections, and
<bold>(D)</bold>
Luxol fast blue staining, below is high magnification of Luxol fast blue (LFB) analysis of the spinal cord sections.
<bold>(C)</bold>
Mean score of inflammation in H&E staining.
<bold>(E)</bold>
Quantification of demyelination area was analyzed by Image-Pro Plus software. Scale bar = 100 µm.
<italic>n</italic>
= 8 mice each group. Symbols represent mean ± SD, **
<italic>P</italic>
< 0.01 and ***
<italic>P</italic>
< 0.001, determined by two-way ANOVA
<bold>(A)</bold>
, or Student’s
<italic>t</italic>
-test
<bold>(B, D, F)</bold>
. Data are combined from three independent experiments.</p>
</caption>
<graphic xlink:href="fphar-10-00863-g001"></graphic>
</fig>
</sec>
<sec id="s3_2">
<title>Scopoletin Treatment Inhibited DC Activation
<italic>In Vivo</italic>
</title>
<p>To assess the impact of Scopoletin on peripheral immune responses in EAE, splenocytes were harvested from EAE mice treated with Scopoletin or vehicle at day 20 p.i. and cultured in the presence of MOG
<sub>35–55</sub>
(25 μg/ml) for 72 h. Expression of costimulatory molecules on CD11c
<sup>+</sup>
DCs was examined by flow cytometry, which showed significantly decreased levels of MHC class II, CD80 and CD86 in Scopoletin-treated EAE mice compared to the vehicle group (
<xref ref-type="fig" rid="f2">
<bold>Figures 2A–D</bold>
</xref>
). These results indicate that Scopoletin inhibited DC activation during the development of EAE.</p>
<fig id="f2" position="float">
<label>Figure 2</label>
<caption>
<p>Scopoletin treatment reduced periphery inflammatory responses. Scopoletin- or vehicle-treated EAE mice were killed at day 20 p.i. and spleens were harvested.
<bold>(A–F)</bold>
Splenocytes were cultured in the presence of MOG
<sub>35–55</sub>
(25 μg/ml) for 72 h and analyzed for the median fluorescence intensity (MFI) of
<bold>(A)</bold>
CD11c
<sup>+</sup>
,
<bold>(B)</bold>
MHC II
<sup>+</sup>
,
<bold>(C)</bold>
CD80
<sup>+</sup>
,
<bold>(D)</bold>
CD86
<sup>+</sup>
(the positive cells of CD80 and CD86 are gated below the CD11c positive cells),
<bold>(E)</bold>
CD4
<sup>+</sup>
, and
<bold>(F)</bold>
CD8
<sup>+</sup>
.
<bold>(G</bold>
,
<bold>H)</bold>
Frequencies of Th1 and Th17 cells were assessed by flow cytometry.
<bold>(I)</bold>
Percentages of Th1 and Th17 cells were analyzed.
<bold>(J)</bold>
Supernatants derived from splenocyte cultures were analyzed for the level of indicated cytokines. Figures
<bold>(A–H)</bold>
are one representative of three independent experiments. Data
<bold>(A–F, I, J)</bold>
were determined by Student’s
<italic>t</italic>
-test and symbols represent mean ± SD, *
<italic>P</italic>
< 0.05 and **
<italic>P</italic>
< 0.01.</p>
</caption>
<graphic xlink:href="fphar-10-00863-g002"></graphic>
</fig>
<p>Consistent with the observed effect of Scopoletin in EAE and DC activation, there was a remarkable diminishment in the percentages of CD4
<sup>+</sup>
and CD8
<sup>+</sup>
T cells in the periphery (
<xref ref-type="fig" rid="f2">
<bold>Figures 2E, F</bold>
</xref>
). The percentages of Th1 and Th17 cells were also determined by intracellular staining and showed an obvious inhibition under Scopoletin treatment (
<xref ref-type="fig" rid="f2">
<bold>Figures 2G–I</bold>
</xref>
). When stimulated with MOG
<sub>35–55</sub>
<italic>ex vivo</italic>
, splenocytes of Scopoletin-treated EAE mice secreted significantly lower levels of MOG-induced IFN-γ, IL-17, and GM-CSF (
<xref ref-type="fig" rid="f2">
<bold>Figure 2J</bold>
</xref>
). When EAE symptoms is at its peak, spleen cells were harvested at 15 days p.i. and stimulated with MOG
<sub>35–55</sub>
for 3 days. The concentration of IFN-γ, IL-17, and GM-CSF in cells culture supernatants were significantly decreased in Scopoletin-treated group (
<xref ref-type="supplementary-material" rid="SM1">
<bold>Supplementary Figure 3A</bold>
</xref>
). Furthermore, the inflammatory cytokine expression levels from sera were also detected by ELISA and RT-PCR. Although we did not detected protein expression by ELISA due to limited samples from sera, RT-PCR results showed that IL-17A, GM-CSF, and IL-1β expression were significantly decreased after Scopoletin treatment (
<xref ref-type="supplementary-material" rid="SM1">
<bold>Supplementary Figure 3B</bold>
</xref>
). These results indicated that Scopoletin alleviated the disease development of EAE by altering expression of costimulatory molecules and reduced activation of DCs, inhibiting Th1 and Th17 cells development, as well as suppressing proinflammatory cytokine secretion.</p>
</sec>
<sec id="s3_3">
<title>Scopoletin Treatment Alleviated CNS Inflammation</title>
<p>In the CNS, effector T cells produce a number of molecules that recruit inflammatory leukocytes, ultimately leading to demyelination (
<xref rid="B48" ref-type="bibr">Thome et al., 2014b</xref>
). To evaluate the effect of Scopoletin on EAE-related CNS pathology, thoracic spinal cords were harvested from Scopoletin- or vehicle-treated EAE mice. Immunofluorescence evaluation of CNS tissues showed that Scopoletin markedly decreased infiltration of CD45
<sup>+</sup>
cells compared with control mice (
<xref ref-type="fig" rid="f3">
<bold>Figures 3A, B</bold>
</xref>
). The number of MNCs in the CNS of Scopoletin-treated mice was dramatically decreased compared to the vehicle group (
<xref ref-type="fig" rid="f3">
<bold>Figure 3C</bold>
</xref>
). Furthermore, flow cytometry was used to analyze CD45
<sup>+</sup>
(leukocyte), CD11c
<sup>+</sup>
(DC), and CD11b
<sup>+</sup>
(macrophage/microglia) cell populations. Results showed that the percentages and absolute numbers of these cells were significantly reduced in the CNS of Scopoletin-treated mice compared with vehicle-treated EAE mice. In addition, Scopoletin-treated mice have lower percentages and absolute numbers of CD4
<sup>+</sup>
and CD8
<sup>+</sup>
T cells in the CNS (
<xref ref-type="fig" rid="f3">
<bold>Figures 3D–F</bold>
</xref>
).</p>
<fig id="f3" position="float">
<label>Figure 3</label>
<caption>
<p>Scopoletin treatment alleviated central nervous system (CNS) inflammation. Scopoletin- or vehicle-treated EAE mice were killed at day 20 p.i., mononuclear cells (MNCs) were isolated from spinal cords and brains.
<bold>(A, B)</bold>
Spinal cords were subjected to immunofluorescent staining analysis. Representative sections of thoracic spinal cord from vehicle-treated mice or Scopoletin-treated mice were stained with CD45 to evaluate inflammatory infiltration. Scale bar = 100 µm.
<bold>(C)</bold>
Total MNCs numbers in CNS were counted under light microscopy.
<bold>(D, E)</bold>
The percentages of CD45
<sup>+</sup>
leukocytes, CD11b
<sup>+</sup>
microglia/macrophage cells, CD11c
<sup>+</sup>
DCs, CD4
<sup>+</sup>
, and CD8
<sup>+</sup>
T cells were measured by flow cytometry.
<bold>(F)</bold>
Absolute numbers of different subtypes of CNS infiltrates were calculated by multiplying the percentages of these cells with total numbers of MNCs in each spinal cord and brain tissue. Figures
<bold>(A, D)</bold>
are one representative of three independent experiments. Data were determined by Student’s
<italic>t</italic>
-test, and symbols represent mean ± SD, *
<italic>P</italic>
< 0.05, **
<italic>P</italic>
< 0.01, and ***
<italic>P</italic>
< 0.001.</p>
</caption>
<graphic xlink:href="fphar-10-00863-g003"></graphic>
</fig>
<p>Emerging data suggest that both interferon-γ-producing (Th1) and interlukin-17-producing Th17 (Th17) cells contribute to CNS autoimmunity and mediate disease pathogenesis in EAE (
<xref rid="B16" ref-type="bibr">El-Behi et al., 2010</xref>
). In addition, although various cell types produce GM-CSF, myelin-specific CD4+ T cells are essential to EAE development (
<xref rid="B42" ref-type="bibr">Rasouli et al., 2015</xref>
). To explore potential mechanisms underlying the therapeutic effect of Scopoletin in EAE, we measured the numbers of Th1, Th17, and pathogenic CD4
<sup>+</sup>
GM-CSF
<sup>+</sup>
(
<xref rid="B42" ref-type="bibr">Rasouli et al., 2015</xref>
) cells in the CNS of EAE mice. As shown in
<xref ref-type="fig" rid="f4">
<bold>Figures 4A–C</bold>
</xref>
, the percentages and absolute numbers of Th17 cells were reduced in the Scopoletin-treated group in comparison to the vehicle-treated mice. While the percentages of CD4
<sup>+</sup>
IFN-γ
<sup>+</sup>
and CD4
<sup>+</sup>
IL-17
<sup>+</sup>
T cells were not significantly changed, the absolute numbers of these cells were decreased in the Scopoletin-treated group (
<xref ref-type="fig" rid="f4">
<bold>Figures 4A–C</bold>
</xref>
) due to the reduced total numbers of CD4
<sup>+</sup>
T cells in the CNS after Scopoletin treatment (
<xref ref-type="fig" rid="f3">
<bold>Figures 3D–F</bold>
</xref>
). CD4
<sup>+</sup>
GM-CSF
<sup>+</sup>
T cells infiltration in the CNS was found in these groups. Our data therefore suggest that the effect of Scopoletin in alleviating EAE development may be due to an alteration in the differentiation of Th1, Th17, and CD4
<sup>+</sup>
GM-CSF
<sup>+</sup>
T cells (
<xref ref-type="fig" rid="f4">
<bold>Figures 4A–C</bold>
</xref>
).</p>
<fig id="f4" position="float">
<label>Figure 4</label>
<caption>
<p>Scopoletin treatment reduced numbers of IFN-γ, IL-17-, and GM-CSF-producing CD4
<sup>+</sup>
T cells in the CNS. Scopoletin- or vehicle-treated EAE mice were killed at day 20 p.i., spinal cords and brains were harvested, and MNCs were isolated.
<bold>(A, B)</bold>
Percentages of IFN-γ-, IL-17-, and GM-CSF-producing CD4
<sup>+</sup>
T cells were assessed by flow cytometry.
<bold>(C)</bold>
Absolute numbers of these cells were calculated by multiplying their percentages of cytokine-producing cells and total CD4
<sup>+</sup>
cell numbers in each CNS. Data are representative of three independent experiments. Symbols represent mean ± SD (n = 5 each group), **
<italic>P</italic>
< 0.01 and ***
<italic>P</italic>
< 0.001, determined by Student’s t-test.</p>
</caption>
<graphic xlink:href="fphar-10-00863-g004"></graphic>
</fig>
</sec>
<sec id="s3_4">
<title>Scopoletin Inhibited the Activation of Murine BM-DCs
<italic>In Vitro</italic>
</title>
<p>We have shown the inhibitory effect of Scopoletin on DC activation
<italic>in vivo</italic>
in EAE mice (
<xref ref-type="fig" rid="f2">
<bold>Figures 2A–D</bold>
</xref>
); here, we evaluated its direct effects on DCs
<italic>in vitro</italic>
. To that end, BM-DCs were generated. Upon LPS stimulation, DCs expressed relatively high levels of MHC class II, CD80, and CD86, the markers of DCs activation, and their expression was significantly inhibited by Scopoletin treatment (
<xref ref-type="fig" rid="f5">
<bold>Figures 5A–F</bold>
</xref>
). Scopoletin, thus, showed a potential for restricting DCs activation and inhibiting expression of costimulatory molecules in BM-DCs cultures.</p>
<fig id="f5" position="float">
<label>Figure 5</label>
<caption>
<p>Scopoletin inhibited the activation of murine bone marrow-derived dendritic cells (BM-DCs) by inhibiting NF-κB signaling
<italic>in vitro</italic>
. BM-DCs were generated and stimulated with 100 ng/µl LPS, and cultured with Scopoletin at a dose of 100 µM. After 18 h, expression of
<bold>(A)</bold>
CD80,
<bold>(C)</bold>
CD86,
<bold>(E)</bold>
MHC II (the positive cells of CD80, CD86, and MHC II are gated below the CD11c positive cells) was measured by flow cytometry following overnight incubation and treatment with or without Scopoletin.
<bold>(B, D, F)</bold>
Percentages of each molecule were counted. Figures
<bold>(A, C, E</bold>
) are one representative of three independent experiments. Statistical data are expressed as mean ± SD of three independent experiments. *
<italic>P</italic>
< 0.05 by Student’s
<italic>t</italic>
-test.</p>
</caption>
<graphic xlink:href="fphar-10-00863-g005"></graphic>
</fig>
<p>To further examine the inhibitory effect of Scopoletin on BM-DCs activation, we then determined the mRNA levels of multiple inflammatory-associated genes expressed by BM-DCs, such as IL-6, IL-12p35, IL-12/IL23p40, IL-23p19, IL-1β, and TNF-α. Previous studies have shown that IL-12 is probably related to Th1 cells differentiation, and IL-23 and IL-6 are crucial to the Th17 cells differentiation (
<xref rid="B37" ref-type="bibr">Luckheeram et al., 2012</xref>
). Importantly, Scopoletin treatment caused a remarkably inhibition in the expression of these genes except for IL-1β (
<xref ref-type="fig" rid="f6">
<bold>Figure 6A</bold>
</xref>
). ELISA analysis indicated the suppressive effects of Scopoletin on the secretion of IL-6, IL-23, and TNF-α by BM-DCs (
<xref ref-type="fig" rid="f6">
<bold>Figure 6B</bold>
</xref>
). These findings suggest that the effect of Scopoletin treatment may be through inhibiting production of proinflammatory cytokines and expression of costimulatory molecules in DCs.</p>
<fig id="f6" position="float">
<label>Figure 6</label>
<caption>
<p>Scopoletin treatment decreased expression of inflammation-related genes and production of proinflammatory cytokines of BM-DCs.
<bold>(A)</bold>
BM-DCs were generated and activated with 100 ng/μl LPS. mRNA levels of inflammatory-related genes from BM-DCs were determined at 4, 8, 12, and 18 h by qRT-PCR after Scopoletin treatment.
<bold>(B)</bold>
Supernatants were assayed by ELISA for production of IL-1β, IL-6, IL-23, and TNF-α. Data are mean ± SD of three independent experiments. *
<italic>P</italic>
< 0.05 and **
<italic>P</italic>
< 0.01 by two-way ANOVA.</p>
</caption>
<graphic xlink:href="fphar-10-00863-g006"></graphic>
</fig>
<p>To test the effects of Scopoletin in DC-induced T-cell proliferation assays, we performed the DC and T-cell coculture and quantified the T-cell proliferation with CFSE; the results showed that Scopoletin reduced the T-cell proliferation
<italic>via</italic>
DCs induction (
<xref ref-type="supplementary-material" rid="SM1">
<bold>Supplementary Figure 3C</bold>
</xref>
).</p>
</sec>
<sec id="s3_5">
<title>Scopoletin Inhibited NF-κB Signaling During LPS-Stimulated DC Activation
<italic>In Vitro</italic>
</title>
<p>It is well known that NF-κB and MAPK signaling pathways play a central role in the coordinated regulation of gene expression during DC activation (
<xref rid="B36" ref-type="bibr">Lu et al., 2014</xref>
;
<xref rid="B6" ref-type="bibr">Baratin et al., 2015</xref>
). Thus, expression of the total and phosphorylation forms of IRF-7, p38, JNK, and NF-κB in BM-DCs was determined by Western blot. The level of phosphorylation of NF-κB was significantly lower in Scopoletin-treated BM-DCs when compared to DCs stimulated with LPS alone. In contrast, expression of IRF-7, p38, and JNK were not markedly affected by Scopoletin treatment (
<xref ref-type="fig" rid="f7">
<bold>Figures 7A, B</bold>
</xref>
). In addition, BM-DCs were pretreated with SN50 (20 μM) for 1 h, a specific NF-κB peptide inhibitor (
<xref rid="B34" ref-type="bibr">Lin et al., 1995</xref>
), before LPS (100 ng/ml) stimulation and Scopoletin (100 μM) treatment, after 4 h cells were collected, and then, expression level of cytokines were determined by quantitative real time PCR (qRT-PCR). The expression of NF-κB downstream genes such as IL-1β and TNF-α was significantly decreased by Scopoletin and SN50 treatment. When combined with SN-50 and Scopoletin, TNF-α expression level was significantly enhanced compared with Scopoletin only (
<xref ref-type="supplementary-material" rid="SM1">
<bold>Supplementary Figure 3D</bold>
</xref>
). These data suggest that Scopoletin may exert its action and ameliorate the progression of EAE specifically through inhibiting NF-κB signaling.</p>
<fig id="f7" position="float">
<label>Figure 7</label>
<caption>
<p>Scopoletin inhibited NF-κB signaling in LPS-stimulated BM-DCs
<italic>in vitro</italic>
. BM-DCs were activated with LPS and cultured with Scopoletin at a dose of 100 µM. After 18 h, cells were harvested and homogenized for Western blot.
<bold>(A)</bold>
Protein expression levels of nuclear transcription factors and protein kinase were measured by Western blot.
<bold>(B)</bold>
Densitometry was determined by ImageJ, and data were analyzed by GraphPad Prism 6. Data are expressed as mean ± SD of three biological replicates. **
<italic>P</italic>
< 0.01 by Student’s
<italic>t</italic>
-test. Figure A is one representative of three independent experiments.</p>
</caption>
<graphic xlink:href="fphar-10-00863-g007"></graphic>
</fig>
</sec>
</sec>
<sec sec-type="discussion" id="s4">
<title>Discussion</title>
<p>In this study, we provide evidence, for the first time, of the anti-inflammatory activities and protective effects of Scopoletin in the mouse model of MS, EAE. Our data present a promising bioactive drug, derived from a natural source, for the treatment of MS and possibly other autoimmune diseases.</p>
<p>In addition, Scopoletin is also the main coumarin constituent occurring in the stems of
<italic>Erycibe obtusifolia</italic>
, a classical medicinal plant that has demonstrated various biological activities mainly used for rheumatoid arthritis with a long history (
<xref rid="B40" ref-type="bibr">Pan et al., 2010</xref>
). Scopoletin has been reported to have anti-inflammatory properties, e.g., inhibition of lymphocyte proliferation and reduction of cytokine production (
<xref rid="B3" ref-type="bibr">Arcos et al., 2006</xref>
).
<italic>In vitro</italic>
studies showed that Scopoletin inhibited proinflammatory cytokine secretion from RAW 246.7 and HMC-1 cell lines (
<xref rid="B39" ref-type="bibr">Moon et al., 2007</xref>
;
<xref rid="B12" ref-type="bibr">Connell et al., 2017</xref>
). Scopoletin also exhibited anti-inflammatory, antioxidant, and antiacetylcholinesterase potential against Alzheimer’s disease (
<xref rid="B19" ref-type="bibr">Garcia-Morales et al., 2015</xref>
). However, its role is unknown in the regulation of APC functions in an autoimmune disease such as MS.</p>
<p>In autoimmune diseases, DCs as professional APCs have a potent ability to trigger naive T-cell reaction and activate an autoreactive response (
<xref rid="B49" ref-type="bibr">Thompson et al., 2018</xref>
), and decreasing CD80/86 prevented T-cell activation and Th-cell differentiation by inhibiting the costimulatory second signal (
<xref rid="B23" ref-type="bibr">Grimbert et al., 2011</xref>
;
<xref rid="B50" ref-type="bibr">Yamamoto et al., 2012</xref>
). Our results showed that the therapeutic effects of Scopoletin were largely dependent on the suppression of DC activation. Scopoletin reduced the expression of costimulatory molecules CD80 and CD86 as well as MHC class II
<italic>in vivo</italic>
and
<italic>in vitro</italic>
. Furthermore, in MS patients and EAE mice, there is a marked increase in the levels of IFN-γ and IL-17, signature cytokines for Th1 and Th17 cells, respectively (
<xref rid="B5" ref-type="bibr">Arellano et al., 2017</xref>
). As drivers of autoimmune response, pathogenic Th1 and Th17 cells are therefore considered to be the main culprits in MS and EAE (
<xref rid="B22" ref-type="bibr">Grigoriadis et al., 2015</xref>
). Our data demonstrated that Scopoletin treatment remarkably decreased the percentages of Th1 and Th17 cells. On the other hand, GM-CSF, which can be produced by both Th1 and Th17 cells, is required for encephalitogenicity of these pathogenic T-cell subsets (
<xref rid="B11" ref-type="bibr">Codarri et al., 2011</xref>
;
<xref rid="B15" ref-type="bibr">El-Behi et al., 2011</xref>
). Reduced numbers of CD4
<sup>+</sup>
GM-CSF
<sup>+</sup>
T cells in the spleen and CNS following Scopoletin treatment would, therefore, be an important mechanism underlying the effect of Scopoletin on EAE. When the direct effect of Scopoletin on Th1 and Th17 cell differentiation was further investigated
<italic>in vitro</italic>
, our results showed that differentiation of Th1 and Th17 was not significantly altered by Scopoletin treatment (
<xref ref-type="supplementary-material" rid="SM1">
<bold>Supplementary Figure 2</bold>
</xref>
). Furthermore, the inhibitory effect of Scopoletin treatment on Th1/Th17 cells
<italic>in vivo</italic>
in EAE mice must therefore be through an indirect mechanism, i.e., by inhibition of DC activation during EAE progression.</p>
<p>It has been well documented that IL-6 plays a key role in determination of Th17 polarization, and knockout of these cytokines completely inhibits EAE development (
<xref rid="B21" ref-type="bibr">Giralt et al., 2013</xref>
). In addition, IL-23 is important for expanding and maintaining the developing Th17 population (
<xref rid="B45" ref-type="bibr">Smith and Colbert, 2014</xref>
) and is required for differentiation of Th17 cells and the pathogenic role of these T cells (
<xref rid="B15" ref-type="bibr">El-Behi et al., 2011</xref>
). Given that DCs are major producers of these cytokines, differentiation of naive T cells into Th17 phenotype is dependent on activated DCs (
<xref rid="B1" ref-type="bibr">Agalioti et al., 2018</xref>
). IL-6 signaling plays a key role in the differentiation of CD4 + T cells, in combination with TGF-β, IL-1β, IL-23, and IL-6, promotes the differentiation of Th17 cells by activating transcription factors containing signal transducers and activators of transcription 3 (STAT3), retinoic acid-related orphan receptors gamma t (RORγt) (
<xref rid="B51" ref-type="bibr">Yao et al., 2014</xref>
). Here, we found that Scopoletin treatment significantly decreased expression of activation and costimulation markers of DCs and their IL-6 and IL-23 production, further indicating that Scopoletin blocked DC secretion of Th17-inducing cytokines, thus resulting in inhibited Th17 phenotype formation.</p>
<p>When antigen presentation occurs, epitope-major histocompatibility complexes identified by T-cell receptors and costimulatory signals are sent by interaction of CD80, CD86 of DCs and CD28 expressing on T cells, as well as the cytokine milieu formed by DCs and other inflammatory cells in the microenvironment (
<xref rid="B48" ref-type="bibr">Thome et al., 2014b</xref>
). These signals working together results in T cell polarization into Th1, Th17, and other effector CD4
<sup>+</sup>
T cells. Studies have shown that the activation of DCs is possibly regulated by three intracellular signaling pathways, including NF-κB, MAPKs, and PI3K (
<xref rid="B9" ref-type="bibr">Chesi et al., 2016</xref>
;
<xref rid="B43" ref-type="bibr">Rescigno et al., 1998</xref>
). To further explore the mechanism of Scopoletin-induced amelioration of EAE, we investigated the effects of Scopoletin on BM-DCs
<italic>in vitro,</italic>
which indicated decreased expression of a series of inflammation-related genes. While the activation of MAPKs containing ERK, p38, and JNK was not prominently influenced in LPS-stimulated DCs, Scopoletin treatment exerted a profound inhibitory effect on NF-κB activity during DC activation. It was shown that Scopoletin markedly suppressed the phosphorylation of NF-κB, which plays a significant role in the activation and maturation of DCs. Previous studies showed that IL-6 gene expression was reduced through downregulating of NF-κB signaling (
<xref rid="B10" ref-type="bibr">Chiang et al., 2014</xref>
), and the promoter activity of IL-23 was modulated by the NF-κB pathway. Our results indicated that the therapeutic effect of Scopoletin may be mediated by inhibiting the NF-κB signaling pathway, which is vitally involved in producing proinflammatory cytokines.</p>
<p>In summary, we reported, for the first time, that natural compound Scopoletin ameliorated the severity of EAE by regulating DC activation and reducing CNS inflammation
<italic>via</italic>
suppression of NF-κB signaling. Scopoletin treatment could therefore be a potential candidate for the modulation of inflammatory conditions of autoimmune diseases.</p>
</sec>
<sec sec-type="conclusions" id="s5">
<title>Conclusion</title>
<p>Our study demonstrates that natural products Scopoletin derived from medical or edible plants will be valuable in developing a novel therapeutic agent for MS in the future.</p>
</sec>
<sec sec-type="data-availability" id="s6">
<title>Data Availability</title>
<p>The raw data supporting the conclusions of this manuscript will be made available by the authors, without undue reservation, to any qualified researcher.</p>
</sec>
<sec id="s7">
<title>Ethics Statement</title>
<p>This study was carried out in accordance with the recommendations of ‘institutional guidelines and regulations approved by the Animal Ethics Experimental Committee at of Shaanxi Normal University’, ‘the Animal Ethics Experimental Committee at of Shaanxi Normal University’. The protocol was approved by the ‘Animal Ethics Experimental Committee at of Shaanxi Normal University’.</p>
</sec>
<sec id="s8">
<title>Author Contributions</title>
<p>FZ, YZ, TY, and XL conceived and designed the experiments. FZ, Z-QY, TY, H-RF, and J-JH carried out the experiments. FZ, YZ, TY, JT, and XL analyzed data and wrote the manuscript. Z-ZW and XL cosupervised the study and revised the paper. All authors read and approved the final manuscript.</p>
</sec>
<sec sec-type="funding-information" id="s9">
<title>Funding</title>
<p>This study was supported by the Chinese National Natural Science Foundation (Grant No. 81771345, 81501062, 31670299), the Natural Science Foundation of Shaanxi Province, China (Grant No. 2018JZ3001, 2018JQ8033, 2019KJXX-022), and the Fundamental Research Funds for the Central Universities (Grant No. GK201903062, GK20182010, GK201701009, 2018CSLZ018, 2018CSLZ019, 2018CSLZ020, 201810718052).</p>
</sec>
<sec id="s10">
<title>Conflict of Interest Statement</title>
<p>The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.</p>
</sec>
</body>
<back>
<ack>
<title>Acknowledgment</title>
<p>We gratefully thank Katherine Regan for editorial assistance.</p>
</ack>
<sec sec-type="supplementary-material" id="s11">
<title>Supplementary Material</title>
<p>The Supplementary Material for this article can be found online at:
<ext-link ext-link-type="uri" xlink:href="https://www.frontiersin.org/articles/10.3389/fphar.2019.00863/full#supplementary-material">https://www.frontiersin.org/articles/10.3389/fphar.2019.00863/full#supplementary-material</ext-link>
</p>
<supplementary-material content-type="local-data" id="SM1">
<media xlink:href="DataSheet_1.docx">
<caption>
<p>Click here for additional data file.</p>
</caption>
</media>
</supplementary-material>
</sec>
<ref-list>
<title>References</title>
<ref id="B1">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Agalioti</surname>
<given-names>T.</given-names>
</name>
<name>
<surname>Villablanca</surname>
<given-names>E. J.</given-names>
</name>
<name>
<surname>Huber</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Gagliani</surname>
<given-names>N.</given-names>
</name>
</person-group>
(
<year>2018</year>
).
<article-title>TH17cell plasticity: the role of dendritic cells and molecular mechanisms</article-title>
.
<source>J. Autoimmun.</source>
<volume>87</volume>
,
<fpage>50</fpage>
<lpage>60</lpage>
.
<pub-id pub-id-type="doi">10.1016/j.jaut.2017.12.003</pub-id>
<pub-id pub-id-type="pmid">29371049</pub-id>
</mixed-citation>
</ref>
<ref id="B2">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Amodio</surname>
<given-names>G.</given-names>
</name>
<name>
<surname>Gregori</surname>
<given-names>S.</given-names>
</name>
</person-group>
(
<year>2012</year>
).
<article-title>Dendritic cells a double-edge sword in autoimmune responses</article-title>
.
<source>Front. Immunol.</source>
<volume>3</volume>
,
<fpage>233</fpage>
.
<pub-id pub-id-type="doi">10.3389/fimmu.2012.00233</pub-id>
<pub-id pub-id-type="pmid">22876246</pub-id>
</mixed-citation>
</ref>
<ref id="B3">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Arcos</surname>
<given-names>M. L. B.</given-names>
</name>
<name>
<surname>Cremaschi</surname>
<given-names>G.</given-names>
</name>
<name>
<surname>Werner</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Coussio</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Ferraro</surname>
<given-names>G.</given-names>
</name>
<name>
<surname>Anesini</surname>
<given-names>C.</given-names>
</name>
</person-group>
(
<year>2006</year>
).
<article-title>
<italic>Tilia cordata</italic>
Mill. extracts and scopoletin (isolated compound): differential cell growth effects on lymphocytes</article-title>
.
<source>Phytother. Res.</source>
<volume>20</volume>
,
<fpage>34</fpage>
<lpage>40</lpage>
.
<pub-id pub-id-type="doi">10.1002/ptr.1798</pub-id>
<pub-id pub-id-type="pmid">16397918</pub-id>
</mixed-citation>
</ref>
<ref id="B4">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Ardeshna</surname>
<given-names>K. M.</given-names>
</name>
<name>
<surname>Pizzey</surname>
<given-names>A. R.</given-names>
</name>
<name>
<surname>Devereux</surname>
<given-names>S. a. K. A.</given-names>
</name>
</person-group>
(
<year>2000</year>
).
<article-title>The PI3 kinase, p38 SAP kinase, and NF-κB signal transduction pathways are involved in the survival and maturation of lipopolysaccharide-stimulated human monocyte-derived dendritic cells</article-title>
.
<source>Blood</source>
<volume>96</volume>
,
<fpage>1039</fpage>
<lpage>1046</lpage>
.
<pub-id pub-id-type="pmid">10910920</pub-id>
</mixed-citation>
</ref>
<ref id="B5">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Arellano</surname>
<given-names>G.</given-names>
</name>
<name>
<surname>Acuna</surname>
<given-names>E.</given-names>
</name>
<name>
<surname>Reyes</surname>
<given-names>L. I.</given-names>
</name>
<name>
<surname>Ottum</surname>
<given-names>P. A.</given-names>
</name>
<name>
<surname>De Sarno</surname>
<given-names>P.</given-names>
</name>
<name>
<surname>Villarroel</surname>
<given-names>L.</given-names>
</name>
<etal></etal>
</person-group>
(
<year>2017</year>
).
<article-title>Th1 and Th17 cells and associated cytokines discriminate among clinically isolated syndrome and multiple sclerosis phenotypes</article-title>
.
<source>Front. Immunol.</source>
<volume>8</volume>
,
<fpage>753</fpage>
.
<pub-id pub-id-type="doi">10.3389/fimmu.2017.00753</pub-id>
<pub-id pub-id-type="pmid">28713377</pub-id>
</mixed-citation>
</ref>
<ref id="B6">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Baratin</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Foray</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>Demaria</surname>
<given-names>O.</given-names>
</name>
<name>
<surname>Habbeddine</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Pollet</surname>
<given-names>E.</given-names>
</name>
<name>
<surname>Maurizio</surname>
<given-names>J.</given-names>
</name>
<etal></etal>
</person-group>
(
<year>2015</year>
).
<article-title>Homeostatic NF-kappaB signaling in steady-state migratory dendritic cells regulates immune homeostasis and tolerance</article-title>
.
<source>Immunity</source>
<volume>42</volume>
,
<fpage>627</fpage>
<lpage>639</lpage>
.
<pub-id pub-id-type="doi">10.1016/j.immuni.2015.03.003</pub-id>
<pub-id pub-id-type="pmid">25862089</pub-id>
</mixed-citation>
</ref>
<ref id="B7">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Basu</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Mayana</surname>
<given-names>K.</given-names>
</name>
<name>
<surname>Xavier</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Balachandran</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Mishra</surname>
<given-names>N.</given-names>
</name>
</person-group>
(
<year>2016</year>
).
<article-title>Effect of scopoletin on monoamine oxidases and brain amines</article-title>
.
<source>Neurochem. Int.</source>
<volume>93</volume>
,
<fpage>113</fpage>
<lpage>117</lpage>
.
<pub-id pub-id-type="doi">10.1016/j.neuint.2016.01.001</pub-id>
<pub-id pub-id-type="pmid">26796202</pub-id>
</mixed-citation>
</ref>
<ref id="B8">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Besusso</surname>
<given-names>D.</given-names>
</name>
<name>
<surname>Saul</surname>
<given-names>L.</given-names>
</name>
<name>
<surname>Leech</surname>
<given-names>M. D.</given-names>
</name>
<name>
<surname>O’connor</surname>
<given-names>R. A.</given-names>
</name>
<name>
<surname>Macdonald</surname>
<given-names>A. S.</given-names>
</name>
<name>
<surname>Anderton</surname>
<given-names>S. M.</given-names>
</name>
<etal></etal>
</person-group>
(
<year>2015</year>
).
<article-title>1,25-Dihydroxyvitamin D3-conditioned CD11c+ dendritic cells are effective initiators of CNS autoimmune disease</article-title>
.
<source>Front. Immunol.</source>
<volume>6</volume>
,
<fpage>575</fpage>
.
<pub-id pub-id-type="doi">10.3389/fimmu.2015.00575</pub-id>
<pub-id pub-id-type="pmid">26635791</pub-id>
</mixed-citation>
</ref>
<ref id="B9">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Chesi</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Mirza</surname>
<given-names>N. N.</given-names>
</name>
<name>
<surname>Garbitt</surname>
<given-names>V. M.</given-names>
</name>
<name>
<surname>Sharik</surname>
<given-names>M. E.</given-names>
</name>
<name>
<surname>Dueck</surname>
<given-names>A. C.</given-names>
</name>
<name>
<surname>Asmann</surname>
<given-names>Y. W.</given-names>
</name>
<etal></etal>
</person-group>
(
<year>2016</year>
).
<article-title>IAP antagonists induce anti-tumor immunity in multiple myeloma 22</article-title>
.
<source>Nat. Med.</source>
<fpage>1411</fpage>
<lpage>1420</lpage>
.
<pub-id pub-id-type="doi">10.1038/nm.4229</pub-id>
<pub-id pub-id-type="pmid">27841872</pub-id>
</mixed-citation>
</ref>
<ref id="B10">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Chiang</surname>
<given-names>K. C.</given-names>
</name>
<name>
<surname>Tsui</surname>
<given-names>K. H.</given-names>
</name>
<name>
<surname>Chung</surname>
<given-names>L. C.</given-names>
</name>
<name>
<surname>Yeh</surname>
<given-names>C. N.</given-names>
</name>
<name>
<surname>Chen</surname>
<given-names>W. T.</given-names>
</name>
<name>
<surname>Chang</surname>
<given-names>P. L.</given-names>
</name>
<etal></etal>
</person-group>
(
<year>2014</year>
).
<article-title>Celastrol blocks interleukin-6 gene expression
<italic>via</italic>
downregulation of NF-kappaB in prostate carcinoma cells</article-title>
.
<source>PLoS One</source>
<volume>9</volume>
,
<elocation-id>e93151</elocation-id>
.
<pub-id pub-id-type="doi">10.1371/journal.pone.0093151</pub-id>
<pub-id pub-id-type="pmid">24664372</pub-id>
</mixed-citation>
</ref>
<ref id="B11">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Codarri</surname>
<given-names>L.</given-names>
</name>
<name>
<surname>Gyulveszi</surname>
<given-names>G.</given-names>
</name>
<name>
<surname>Tosevski</surname>
<given-names>V.</given-names>
</name>
<name>
<surname>Hesske</surname>
<given-names>L.</given-names>
</name>
<name>
<surname>Fontana</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Magnenat</surname>
<given-names>L.</given-names>
</name>
<etal></etal>
</person-group>
(
<year>2011</year>
).
<article-title>RORgammat drives production of the cytokine GM-CSF in helper T cells, which is essential for the effector phase of autoimmune neuroinflammation</article-title>
.
<source>Nat. Immunol.</source>
<volume>12</volume>
,
<fpage>560</fpage>
<lpage>567</lpage>
.
<pub-id pub-id-type="doi">10.1038/ni.2027</pub-id>
<pub-id pub-id-type="pmid">21516112</pub-id>
</mixed-citation>
</ref>
<ref id="B12">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Connell</surname>
<given-names>B. J.</given-names>
</name>
<name>
<surname>Saleh</surname>
<given-names>M. C.</given-names>
</name>
<name>
<surname>Rajagopal</surname>
<given-names>D.</given-names>
</name>
<name>
<surname>Saleh</surname>
<given-names>T. M.</given-names>
</name>
</person-group>
(
<year>2017</year>
).
<article-title>UPEI-400, a conjugate of lipoic acid and scopoletin, mediates neuroprotection in a rat model of ischemia/reperfusion</article-title>
.
<source>Food Chem. Toxicol.</source>
<volume>100</volume>
,
<fpage>175</fpage>
<lpage>182</lpage>
.
<pub-id pub-id-type="doi">10.1016/j.fct.2016.12.026</pub-id>
<pub-id pub-id-type="pmid">28017701</pub-id>
</mixed-citation>
</ref>
<ref id="B13">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Ding</surname>
<given-names>Z.</given-names>
</name>
<name>
<surname>Dai</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Wang</surname>
<given-names>Z.</given-names>
</name>
</person-group>
(
<year>2005</year>
).
<article-title>Hypouricemic action of scopoletin arising from xanthine oxidase inhibition and uricosuric activity</article-title>
.
<source>Planta Medica</source>
<volume>71</volume>
,
<fpage>183</fpage>
<lpage>185</lpage>
.
<pub-id pub-id-type="doi">10.1055/s-2005-837789</pub-id>
<pub-id pub-id-type="pmid">15729630</pub-id>
</mixed-citation>
</ref>
<ref id="B14">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Dou</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Tong</surname>
<given-names>B.</given-names>
</name>
<name>
<surname>Wei</surname>
<given-names>Z.</given-names>
</name>
<name>
<surname>Li</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Xia</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Dai</surname>
<given-names>Y.</given-names>
</name>
</person-group>
(
<year>2013</year>
).
<article-title>Scopoletin suppresses IL-6 production from fibroblast-like synoviocytes of adjuvant arthritis rats induced by IL-1beta stimulation</article-title>
.
<source>Int. Immunopharmacol.</source>
<volume>17</volume>
,
<fpage>1037</fpage>
<lpage>1043</lpage>
.
<pub-id pub-id-type="doi">10.1016/j.intimp.2013.10.011</pub-id>
<pub-id pub-id-type="pmid">24455774</pub-id>
</mixed-citation>
</ref>
<ref id="B15">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>El-Behi</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Ciric</surname>
<given-names>B.</given-names>
</name>
<name>
<surname>Dai</surname>
<given-names>H.</given-names>
</name>
<name>
<surname>Yan</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Cullimore</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Safavi</surname>
<given-names>F.</given-names>
</name>
<etal></etal>
</person-group>
(
<year>2011</year>
).
<article-title>The encephalitogenicity of T(H)17 cells is dependent on IL-1- and IL-23-induced production of the cytokine GM-CSF</article-title>
.
<source>Nat. Immunol.</source>
<volume>12</volume>
,
<fpage>568</fpage>
<lpage>575</lpage>
.
<pub-id pub-id-type="doi">10.1038/ni.2031</pub-id>
<pub-id pub-id-type="pmid">21516111</pub-id>
</mixed-citation>
</ref>
<ref id="B16">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>El-Behi</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Rostami</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Ciric</surname>
<given-names>B.</given-names>
</name>
</person-group>
(
<year>2010</year>
).
<article-title>Current views on the roles of Th1 and Th17 cells in experimental autoimmune encephalomyelitis</article-title>
.
<source>J. Neuroimmune Pharmacol</source>
.
<volume>5</volume>
,
<fpage>189</fpage>
<lpage>197</lpage>
.
<pub-id pub-id-type="doi">10.1007/s11481-009-9188-9</pub-id>
<pub-id pub-id-type="pmid">20107924</pub-id>
</mixed-citation>
</ref>
<ref id="B17">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Forino</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Tartaglione</surname>
<given-names>L.</given-names>
</name>
<name>
<surname>Dell’aversano</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>Ciminiello</surname>
<given-names>P.</given-names>
</name>
</person-group>
(
<year>2016</year>
).
<article-title>NMR-based identification of the phenolic profile of fruits of Lycium barbarum (goji berries). Isolation and structural determination of a novel N-feruloyl tyramine dimer as the most abundant antioxidant polyphenol of goji berries</article-title>
.
<source>Food Chem.</source>
<volume>194</volume>
,
<fpage>1254</fpage>
<lpage>1259</lpage>
.
<pub-id pub-id-type="doi">10.1016/j.foodchem.2015.08.129</pub-id>
<pub-id pub-id-type="pmid">26471679</pub-id>
</mixed-citation>
</ref>
<ref id="B18">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Gabriele</surname>
<given-names>L.</given-names>
</name>
<name>
<surname>Ozato</surname>
<given-names>K.</given-names>
</name>
</person-group>
(
<year>2007</year>
).
<article-title>The role of the interferon regulatory factor (IRF) family in dendritic cell development and function</article-title>
.
<source>Cytokine Growth Factor Rev.</source>
<volume>18</volume>
,
<fpage>503</fpage>
<lpage>510</lpage>
.
<pub-id pub-id-type="doi">10.1016/j.cytogfr.2007.06.008</pub-id>
<pub-id pub-id-type="pmid">17702640</pub-id>
</mixed-citation>
</ref>
<ref id="B19">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Garcia-Morales</surname>
<given-names>G.</given-names>
</name>
<name>
<surname>Huerta-Reyes</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Gonzalez-Cortazar</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Zamilpa</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Jimenez-Ferrer</surname>
<given-names>E.</given-names>
</name>
<name>
<surname>Silva-Garcia</surname>
<given-names>R.</given-names>
</name>
<etal></etal>
</person-group>
(
<year>2015</year>
).
<article-title>Anti-inflammatory, antioxidant and anti-acetylcholinesterase activities of
<italic>Bouvardia ternifolia</italic>
: potential implications in Alzheimer’s disease</article-title>
.
<source>Arch. Pharm. Res.</source>
<volume>38</volume>
,
<fpage>1369</fpage>
<lpage>1379</lpage>
.
<pub-id pub-id-type="doi">10.1007/s12272-015-0587-6</pub-id>
<pub-id pub-id-type="pmid">25740217</pub-id>
</mixed-citation>
</ref>
<ref id="B20">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Ginwala</surname>
<given-names>R.</given-names>
</name>
<name>
<surname>Mctish</surname>
<given-names>E.</given-names>
</name>
<name>
<surname>Raman</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>Singh</surname>
<given-names>N.</given-names>
</name>
<name>
<surname>Nagarkatti</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Nagarkatti</surname>
<given-names>P.</given-names>
</name>
<etal></etal>
</person-group>
(
<year>2016</year>
).
<article-title>Apigenin, a natural flavonoid, attenuates EAE severity through the modulation of dendritic cell and other immune cell functions</article-title>
.
<source>J. Neuroimmune Pharmacol.</source>
<volume>11</volume>
,
<fpage>36</fpage>
<lpage>47</lpage>
.
<pub-id pub-id-type="doi">10.1007/s11481-015-9617-x</pub-id>
<pub-id pub-id-type="pmid">26040501</pub-id>
</mixed-citation>
</ref>
<ref id="B21">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Giralt</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Ramos</surname>
<given-names>R.</given-names>
</name>
<name>
<surname>Quintana</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Ferrer</surname>
<given-names>B.</given-names>
</name>
<name>
<surname>Erta</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Castro-Freire</surname>
<given-names>M.</given-names>
</name>
<etal></etal>
</person-group>
(
<year>2013</year>
).
<article-title>Induction of atypical EAE mediated by transgenic production of IL-6 in astrocytes in the absence of systemic IL-6</article-title>
.
<source>Glia</source>
<volume>61</volume>
,
<fpage>587</fpage>
<lpage>600</lpage>
.
<pub-id pub-id-type="doi">10.1002/glia.22457</pub-id>
<pub-id pub-id-type="pmid">23322593</pub-id>
</mixed-citation>
</ref>
<ref id="B22">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Grigoriadis</surname>
<given-names>N.</given-names>
</name>
<name>
<surname>Van Pesch</surname>
<given-names>V.</given-names>
</name>
<name>
<surname>Paradig</surname>
<given-names>M. S. G.</given-names>
</name>
</person-group>
(
<year>2015</year>
).
<article-title>A basic overview of multiple sclerosis immunopathology</article-title>
.
<source>Eur. J. Neurol.</source>
<volume>22</volume>
(
<issue>Suppl 2</issue>
),
<fpage>3</fpage>
<lpage>13</lpage>
.
<pub-id pub-id-type="doi">10.1111/ene.12798</pub-id>
<pub-id pub-id-type="pmid">26374508</pub-id>
</mixed-citation>
</ref>
<ref id="B23">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Grimbert</surname>
<given-names>P.</given-names>
</name>
<name>
<surname>Audard</surname>
<given-names>V.</given-names>
</name>
<name>
<surname>Diet</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>Matignon</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Plonquet</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Mansour</surname>
<given-names>H.</given-names>
</name>
<etal></etal>
</person-group>
(
<year>2011</year>
).
<article-title>T-cell phenotype in protocol renal biopsy from transplant recipients treated with belatacept-mediated co-stimulatory blockade</article-title>
.
<source>Nephrol. Dial. Transplant</source>
<volume>26</volume>
,
<fpage>1087</fpage>
<lpage>1093</lpage>
.
<pub-id pub-id-type="doi">10.1093/ndt/gfq453</pub-id>
<pub-id pub-id-type="pmid">20667993</pub-id>
</mixed-citation>
</ref>
<ref id="B24">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>He</surname>
<given-names>Z.</given-names>
</name>
<name>
<surname>Ma</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Wang</surname>
<given-names>R.</given-names>
</name>
<name>
<surname>Zhang</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Huang</surname>
<given-names>Z.</given-names>
</name>
<name>
<surname>Wang</surname>
<given-names>F.</given-names>
</name>
<etal></etal>
</person-group>
(
<year>2017</year>
).
<article-title>A two-amino-acid substitution in the transcription factor RORgammat disrupts its function in TH17 differentiation but not in thymocyte development</article-title>
.
<source>Nat. Immunol.</source>
<volume>18</volume>
,
<fpage>1128</fpage>
<lpage>1138</lpage>
.
<pub-id pub-id-type="doi">10.1038/ni.3832</pub-id>
<pub-id pub-id-type="pmid">28846085</pub-id>
</mixed-citation>
</ref>
<ref id="B25">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Hemmer</surname>
<given-names>B.</given-names>
</name>
<name>
<surname>Kerschensteiner</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Korn</surname>
<given-names>T.</given-names>
</name>
</person-group>
(
<year>2015</year>
).
<article-title>Role of the innate and adaptive immune responses in the course of multiple sclerosis</article-title>
.
<source>Lancet Neurol.</source>
<volume>14</volume>
,
<fpage>406</fpage>
<lpage>419</lpage>
.
<pub-id pub-id-type="doi">10.1016/S1474-4422(14)70305-9</pub-id>
<pub-id pub-id-type="pmid">25792099</pub-id>
</mixed-citation>
</ref>
<ref id="B26">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Honda</surname>
<given-names>K.</given-names>
</name>
<name>
<surname>Yanai</surname>
<given-names>H.</given-names>
</name>
<name>
<surname>Negishi</surname>
<given-names>H.</given-names>
</name>
<name>
<surname>Asagiri</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Sato</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Mizutani</surname>
<given-names>T.</given-names>
</name>
<etal></etal>
</person-group>
(
<year>2005</year>
).
<article-title>IRF-7 is the master regulator of type-I interferon-dependent immune responses</article-title>
.
<source>Nature</source>
<volume>434</volume>
,
<fpage>772</fpage>
<lpage>777</lpage>
.
<pub-id pub-id-type="doi">10.1038/nature03464</pub-id>
<pub-id pub-id-type="pmid">15800576</pub-id>
</mixed-citation>
</ref>
<ref id="B27">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Jamuna</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Karthika</surname>
<given-names>K.</given-names>
</name>
<name>
<surname>Paulsamy</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Thenmozhi</surname>
<given-names>K.</given-names>
</name>
<name>
<surname>Kathiravan</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Venkatesh</surname>
<given-names>R.</given-names>
</name>
</person-group>
(
<year>2015</year>
).
<article-title>Confertin and scopoletin from leaf and root extracts of
<italic>Hypochaeris radicata</italic>
have anti-inflammatory and antioxidant activities</article-title>
.
<source>Ind. Crops Prod.</source>
<volume>70</volume>
,
<fpage>221</fpage>
<lpage>230</lpage>
.
<pub-id pub-id-type="doi">10.1016/j.indcrop.2015.03.039</pub-id>
</mixed-citation>
</ref>
<ref id="B28">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Kornberg</surname>
<given-names>M. D.</given-names>
</name>
<name>
<surname>Smith</surname>
<given-names>M. D.</given-names>
</name>
<name>
<surname>Shirazi</surname>
<given-names>H. A.</given-names>
</name>
<name>
<surname>Calabresi</surname>
<given-names>P. A.</given-names>
</name>
<name>
<surname>Snyder</surname>
<given-names>S. H.</given-names>
</name>
<name>
<surname>Kim</surname>
<given-names>P. M.</given-names>
</name>
</person-group>
(
<year>2018</year>
).
<article-title>Bryostatin-1 alleviates experimental multiple sclerosis</article-title>
.
<source>Proc. Nat. Acad. Sci. U. S. A.</source>
<volume>115</volume>
,
<fpage>2186</fpage>
<lpage>2191</lpage>
.
<pub-id pub-id-type="doi">10.1073/pnas.1719902115</pub-id>
</mixed-citation>
</ref>
<ref id="B29">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Lassmann</surname>
<given-names>H.</given-names>
</name>
<name>
<surname>Bradl</surname>
<given-names>M.</given-names>
</name>
</person-group>
(
<year>2016</year>
).
<article-title>Multiple sclerosis: experimental models and reality</article-title>
.
<source>Acta Neuropathol.</source>
<volume>133</volume>
, 223-
<fpage>244</fpage>
.
<pub-id pub-id-type="doi">10.1007/s00401-016-1631-4</pub-id>
</mixed-citation>
</ref>
<ref id="B30">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Lee</surname>
<given-names>H. I.</given-names>
</name>
<name>
<surname>Yun</surname>
<given-names>K. W.</given-names>
</name>
<name>
<surname>Seo</surname>
<given-names>K. I.</given-names>
</name>
<name>
<surname>Kim</surname>
<given-names>M. J.</given-names>
</name>
<name>
<surname>Lee</surname>
<given-names>M. K.</given-names>
</name>
</person-group>
(
<year>2014</year>
).
<article-title>Scopoletin prevents alcohol-induced hepatic lipid accumulation by modulating the AMPK-SREBP pathway in diet-induced obese mice</article-title>
.
<source>Metabolism</source>
<volume>63</volume>
,
<fpage>593</fpage>
<lpage>601</lpage>
.
<pub-id pub-id-type="doi">10.1016/j.metabol.2014.01.003</pub-id>
<pub-id pub-id-type="pmid">24559844</pub-id>
</mixed-citation>
</ref>
<ref id="B31">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Li</surname>
<given-names>G.</given-names>
</name>
<name>
<surname>Yamasaki</surname>
<given-names>R.</given-names>
</name>
<name>
<surname>Fang</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Masaki</surname>
<given-names>K.</given-names>
</name>
<name>
<surname>Ochi</surname>
<given-names>H.</given-names>
</name>
<name>
<surname>Matsushita</surname>
<given-names>T.</given-names>
</name>
<etal></etal>
</person-group>
(
<year>2018</year>
).
<article-title>Novel disease-modifying anti-rheumatic drug iguratimod suppresses chronic experimental autoimmune encephalomyelitis by down-regulating activation of macrophages/microglia through an NF-kappaB pathway</article-title>
.
<source>Sci. Rep.</source>
<volume>8</volume>
,
<fpage>1933</fpage>
.
<pub-id pub-id-type="doi">10.1038/s41598-018-20390-5</pub-id>
<pub-id pub-id-type="pmid">29386552</pub-id>
</mixed-citation>
</ref>
<ref id="B32">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Li</surname>
<given-names>X.</given-names>
</name>
<name>
<surname>Zhang</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Yan</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Ciric</surname>
<given-names>B.</given-names>
</name>
<name>
<surname>Ma</surname>
<given-names>C. G.</given-names>
</name>
<name>
<surname>Chin</surname>
<given-names>J.</given-names>
</name>
<etal></etal>
</person-group>
(
<year>2017</year>
).
<article-title>LINGO-1-Fc-transduced neural stem cells are effective therapy for chronic stage experimental autoimmune encephalomyelitis</article-title>
.
<source>Mol. Neurobiol.</source>
<volume>54</volume>
,
<fpage>4365</fpage>
<lpage>4378</lpage>
.
<pub-id pub-id-type="doi">10.1007/s12035-016-9994-z</pub-id>
<pub-id pub-id-type="pmid">27344330</pub-id>
</mixed-citation>
</ref>
<ref id="B33">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Li</surname>
<given-names>X.</given-names>
</name>
<name>
<surname>Zhang</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Yan</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Ciric</surname>
<given-names>B.</given-names>
</name>
<name>
<surname>Ma</surname>
<given-names>C. G.</given-names>
</name>
<name>
<surname>Gran</surname>
<given-names>B.</given-names>
</name>
<etal></etal>
</person-group>
(
<year>2016</year>
).
<article-title>Neural stem cells engineered to express three therapeutic factors mediate recovery from chronic stage CNS autoimmunity</article-title>
.
<source>Mol. Ther.</source>
<volume>24</volume>
,
<fpage>1456</fpage>
<lpage>1469</lpage>
.
<pub-id pub-id-type="doi">10.1038/mt.2016.104</pub-id>
<pub-id pub-id-type="pmid">27203442</pub-id>
</mixed-citation>
</ref>
<ref id="B34">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Lin</surname>
<given-names>Y. Z.</given-names>
</name>
<name>
<surname>Yao</surname>
<given-names>S. Y.</given-names>
</name>
<name>
<surname>Veach</surname>
<given-names>R. A.</given-names>
</name>
<name>
<surname>Torgerson</surname>
<given-names>T. R.</given-names>
</name>
<name>
<surname>Hawiger</surname>
<given-names>J.</given-names>
</name>
</person-group>
(
<year>1995</year>
).
<article-title>Inhibition of nuclear translocation of transcription factor NF-kappa B by a synthetic peptide containing a cell membrane-permeable motif and nuclear localization sequence</article-title>
.
<source>J. Biol. Chem.</source>
<volume>270</volume>
,
<fpage>14255</fpage>
<lpage>14258</lpage>
.
<pub-id pub-id-type="doi">10.1074/jbc.270.24.14255</pub-id>
<pub-id pub-id-type="pmid">7782278</pub-id>
</mixed-citation>
</ref>
<ref id="B35">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Lu</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Chen</surname>
<given-names>B.</given-names>
</name>
<name>
<surname>Song</surname>
<given-names>J. H.</given-names>
</name>
<name>
<surname>Zhen</surname>
<given-names>T.</given-names>
</name>
<name>
<surname>Wang</surname>
<given-names>B. Y.</given-names>
</name>
<name>
<surname>Li</surname>
<given-names>X.</given-names>
</name>
<etal></etal>
</person-group>
(
<year>2013</year>
).
<article-title>Eriocalyxin B ameliorates experimental autoimmune encephalomyelitis by suppressing Th1 and Th17 cells</article-title>
.
<source>PNAS</source>
<volume>110</volume>
(
<issue>116</issue>
),
<fpage>2258</fpage>
<lpage>2263</lpage>
.
<pub-id pub-id-type="doi">10.1073/pnas.1222426110</pub-id>
<pub-id pub-id-type="pmid">23345445</pub-id>
</mixed-citation>
</ref>
<ref id="B36">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Lu</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Zhang</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Wang</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Hong</surname>
<given-names>B.</given-names>
</name>
<name>
<surname>Wang</surname>
<given-names>Z.</given-names>
</name>
<name>
<surname>Li</surname>
<given-names>H.</given-names>
</name>
<etal></etal>
</person-group>
(
<year>2014</year>
).
<article-title>p38 MAPK-inhibited dendritic cells induce superior antitumour immune responses and overcome regulatory T-cell-mediated immunosuppression</article-title>
.
<source>Nat. Commun.</source>
<volume>5</volume>
,
<fpage>4229</fpage>
.
<pub-id pub-id-type="doi">10.1038/ncomms5229</pub-id>
<pub-id pub-id-type="pmid">24957461</pub-id>
</mixed-citation>
</ref>
<ref id="B37">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Luckheeram</surname>
<given-names>R. V.</given-names>
</name>
<name>
<surname>Zhou</surname>
<given-names>R.</given-names>
</name>
<name>
<surname>Verma</surname>
<given-names>A. D.</given-names>
</name>
<name>
<surname>Xia</surname>
<given-names>B.</given-names>
</name>
</person-group>
(
<year>2012</year>
).
<article-title>CD4+T Cells: Differentiation and functions</article-title>
.
<source>Clin. Dev. Immunol.</source>
<volume>2012</volume>
,
<fpage>1</fpage>
<lpage>12</lpage>
.
<pub-id pub-id-type="doi">10.1155/2012/925135</pub-id>
</mixed-citation>
</ref>
<ref id="B38">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Malik</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Sadhu</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Elesela</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Pandey</surname>
<given-names>R. P.</given-names>
</name>
<name>
<surname>Chawla</surname>
<given-names>A. S.</given-names>
</name>
<name>
<surname>Sharma</surname>
<given-names>D.</given-names>
</name>
<etal></etal>
</person-group>
(
<year>2017</year>
).
<article-title>Transcription factor Foxo1 is essential for IL-9 induction in T helper cells</article-title>
.
<source>Nat. Commun.</source>
<volume>8</volume>
,
<fpage>815</fpage>
.
<pub-id pub-id-type="doi">10.1038/s41467-017-00674-6</pub-id>
<pub-id pub-id-type="pmid">28993609</pub-id>
</mixed-citation>
</ref>
<ref id="B39">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Moon</surname>
<given-names>P. D.</given-names>
</name>
<name>
<surname>Lee</surname>
<given-names>B. H.</given-names>
</name>
<name>
<surname>Jeong</surname>
<given-names>H. J.</given-names>
</name>
<name>
<surname>An</surname>
<given-names>H. J.</given-names>
</name>
<name>
<surname>Park</surname>
<given-names>S. J.</given-names>
</name>
<name>
<surname>Kim</surname>
<given-names>H. R.</given-names>
</name>
<etal></etal>
</person-group>
(
<year>2007</year>
).
<article-title>Use of scopoletin to inhibit the production of inflammatory cytokines through inhibition of the IkappaB/NF-kappaB signal cascade in the human mast cell line HMC-1</article-title>
.
<source>Eur. J. Pharmacol.</source>
<volume>555</volume>
,
<fpage>218</fpage>
<lpage>225</lpage>
.
<pub-id pub-id-type="doi">10.1016/j.ejphar.2006.10.021</pub-id>
<pub-id pub-id-type="pmid">17113069</pub-id>
</mixed-citation>
</ref>
<ref id="B40">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Pan</surname>
<given-names>R.</given-names>
</name>
<name>
<surname>Gao</surname>
<given-names>X. H.</given-names>
</name>
<name>
<surname>Li</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Xia</surname>
<given-names>Y. F.</given-names>
</name>
<name>
<surname>Dai</surname>
<given-names>Y.</given-names>
</name>
</person-group>
(
<year>2010</year>
).
<article-title>Anti-arthritic effect of scopoletin, a coumarin compound occurring in
<italic>Erycibe obtusifolia</italic>
Benth stems, is associated with decreased angiogenesis in synovium</article-title>
.
<source>Fundam. Clin. Pharmacol.</source>
<volume>24</volume>
,
<fpage>477</fpage>
<lpage>490</lpage>
.
<pub-id pub-id-type="doi">10.1111/j.1472-8206.2009.00784.x</pub-id>
<pub-id pub-id-type="pmid">19845767</pub-id>
</mixed-citation>
</ref>
<ref id="B41">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Procaccini</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>De Rosa</surname>
<given-names>V.</given-names>
</name>
<name>
<surname>Pucino</surname>
<given-names>V.</given-names>
</name>
<name>
<surname>Formisano</surname>
<given-names>L.</given-names>
</name>
<name>
<surname>Matarese</surname>
<given-names>G.</given-names>
</name>
</person-group>
(
<year>2015</year>
).
<article-title>Animal models of multiple sclerosis</article-title>
.
<source>Eur. J. Pharmacol.</source>
<volume>759</volume>
,
<fpage>182</fpage>
<lpage>191</lpage>
.
<pub-id pub-id-type="doi">10.1016/j.ejphar.2015.03.042</pub-id>
<pub-id pub-id-type="pmid">25823807</pub-id>
</mixed-citation>
</ref>
<ref id="B42">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Rasouli</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Ciric</surname>
<given-names>B.</given-names>
</name>
<name>
<surname>Imitola</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Gonnella</surname>
<given-names>P.</given-names>
</name>
<name>
<surname>Hwang</surname>
<given-names>D.</given-names>
</name>
<name>
<surname>Mahajan</surname>
<given-names>K.</given-names>
</name>
<etal></etal>
</person-group>
(
<year>2015</year>
).
<article-title>Expression of GM-CSF in T cells is increased in multiple sclerosis and suppressed by IFN-beta therapy</article-title>
.
<source>J. Immunol.</source>
<volume>194</volume>
,
<fpage>5085</fpage>
<lpage>5093</lpage>
.
<pub-id pub-id-type="doi">10.4049/jimmunol.1403243</pub-id>
<pub-id pub-id-type="pmid">25917097</pub-id>
</mixed-citation>
</ref>
<ref id="B43">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Rescigno</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Martino</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Sutherland</surname>
<given-names>C. L.</given-names>
</name>
<name>
<surname>Gold</surname>
<given-names>M. R.</given-names>
</name>
<name>
<surname>Ricciardi</surname>
<given-names>C. P.</given-names>
</name>
</person-group>
(
<year>1998</year>
).
<article-title>Dendritic cell survival and maturation are regulated by different signaling pathways</article-title>
.
<source>J. Exp. Med.</source>
<volume>188</volume>
,
<fpage>2175</fpage>
<lpage>2180</lpage>
.
<pub-id pub-id-type="doi">10.1084/jem.188.11.2175</pub-id>
<pub-id pub-id-type="pmid">9841930</pub-id>
</mixed-citation>
</ref>
<ref id="B44">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Shalan</surname>
<given-names>N.a.M.</given-names>
</name>
<name>
<surname>Mustapha</surname>
<given-names>N. M.</given-names>
</name>
<name>
<surname>Mohamed</surname>
<given-names>S.</given-names>
</name>
</person-group>
(
<year>2016</year>
).
<article-title>
<italic>Morinda citrifolia</italic>
leaf enhanced performance by improving angiogenesis, mitochondrial biogenesis, antioxidant, anti-inflammatory & stress responses</article-title>
.
<source>Food Chem.</source>
<volume>212</volume>
,
<fpage>443</fpage>
<lpage>452</lpage>
.
<pub-id pub-id-type="doi">10.1016/j.foodchem.2016.05.179</pub-id>
<pub-id pub-id-type="pmid">27374554</pub-id>
</mixed-citation>
</ref>
<ref id="B45">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Smith</surname>
<given-names>J. A.</given-names>
</name>
<name>
<surname>Colbert</surname>
<given-names>R. A.</given-names>
</name>
</person-group>
(
<year>2014</year>
).
<article-title>Review: The interleukin-23/interleukin-17 axis in spondyloarthritis pathogenesis: Th17 and beyond</article-title>
.
<source>Arthritis Rheumatol.</source>
<volume>66</volume>
,
<fpage>231</fpage>
<lpage>241</lpage>
.
<pub-id pub-id-type="doi">10.1002/art.38291</pub-id>
<pub-id pub-id-type="pmid">24504793</pub-id>
</mixed-citation>
</ref>
<ref id="B46">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Thome</surname>
<given-names>R.</given-names>
</name>
<name>
<surname>Bonfanti</surname>
<given-names>A. P.</given-names>
</name>
<name>
<surname>Rasouli</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Mari</surname>
<given-names>E. R.</given-names>
</name>
<name>
<surname>Zhang</surname>
<given-names>G. X.</given-names>
</name>
<name>
<surname>Rostami</surname>
<given-names>A.</given-names>
</name>
<etal></etal>
</person-group>
(
<year>2018</year>
).
<article-title>Chloroquine-treated dendritic cells require STAT1 signaling for their tolerogenic activity</article-title>
.
<source>Eur. J. Immunol.</source>
<volume>48</volume>
,
<fpage>1228</fpage>
<lpage>1234</lpage>
.
<pub-id pub-id-type="doi">10.1002/eji.201747362</pub-id>
<pub-id pub-id-type="pmid">29572810</pub-id>
</mixed-citation>
</ref>
<ref id="B47">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Thome</surname>
<given-names>R.</given-names>
</name>
<name>
<surname>Issayama</surname>
<given-names>L. K.</given-names>
</name>
<name>
<surname>Alves Da Costa</surname>
<given-names>T.</given-names>
</name>
<name>
<surname>Gangi</surname>
<given-names>R. D.</given-names>
</name>
<name>
<surname>Ferreira</surname>
<given-names>I. T.</given-names>
</name>
<name>
<surname>Raposo</surname>
<given-names>C.</given-names>
</name>
<etal></etal>
</person-group>
(
<year>2014</year>
a).
<article-title>Dendritic cells treated with crude
<italic>Plasmodium berghei</italic>
extracts acquire immune-modulatory properties and suppress the development of autoimmune neuroinflammation</article-title>
.
<source>Immunology</source>
<volume>143</volume>
,
<fpage>164</fpage>
<lpage>173</lpage>
.
<pub-id pub-id-type="doi">10.1111/imm.12298</pub-id>
<pub-id pub-id-type="pmid">24689455</pub-id>
</mixed-citation>
</ref>
<ref id="B48">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Thome</surname>
<given-names>R.</given-names>
</name>
<name>
<surname>Issayama</surname>
<given-names>L. K.</given-names>
</name>
<name>
<surname>Digangi</surname>
<given-names>R.</given-names>
</name>
<name>
<surname>Bombeiro</surname>
<given-names>A. L.</given-names>
</name>
<name>
<surname>Da Costa</surname>
<given-names>T. A.</given-names>
</name>
<name>
<surname>Ferreira</surname>
<given-names>I. T.</given-names>
</name>
<etal></etal>
</person-group>
(
<year>2014</year>
b).
<article-title>Dendritic cells treated with chloroquine modulate experimental autoimmune encephalomyelitis</article-title>
.
<source>Immunol. Cell Biol.</source>
<volume>92</volume>
,
<fpage>124</fpage>
<lpage>132</lpage>
.
<pub-id pub-id-type="doi">10.1038/icb.2013.73</pub-id>
<pub-id pub-id-type="pmid">24217811</pub-id>
</mixed-citation>
</ref>
<ref id="B49">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Thompson</surname>
<given-names>A. J.</given-names>
</name>
<name>
<surname>Baranzini</surname>
<given-names>S. E.</given-names>
</name>
<name>
<surname>Geurts</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Hemmer</surname>
<given-names>B.</given-names>
</name>
<name>
<surname>Ciccarelli</surname>
<given-names>O.</given-names>
</name>
</person-group>
(
<year>2018</year>
).
<article-title>Multiple sclerosis</article-title>
.
<source>Lancet</source>
<volume>391</volume>
,
<fpage>1622</fpage>
<lpage>1636</lpage>
.
<pub-id pub-id-type="doi">10.1016/S0140-6736(18)30481-1</pub-id>
<pub-id pub-id-type="pmid">29576504</pub-id>
</mixed-citation>
</ref>
<ref id="B50">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Yamamoto</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Nava</surname>
<given-names>R. G.</given-names>
</name>
<name>
<surname>Zhu</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Huang</surname>
<given-names>H. J.</given-names>
</name>
<name>
<surname>Ibrahim</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Mohanakumar</surname>
<given-names>T.</given-names>
</name>
<etal></etal>
</person-group>
(
<year>2012</year>
).
<article-title>Cutting edge:
<italic>Pseudomonas aeruginosa</italic>
abolishes established lung transplant tolerance by stimulating B7 expression on neutrophils</article-title>
.
<source>J. Immunol.</source>
<volume>189</volume>
,
<fpage>4221</fpage>
<lpage>4225</lpage>
.
<pub-id pub-id-type="doi">10.4049/jimmunol.1201683</pub-id>
<pub-id pub-id-type="pmid">23018463</pub-id>
</mixed-citation>
</ref>
<ref id="B51">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Yao</surname>
<given-names>X.</given-names>
</name>
<name>
<surname>Huang</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Zhong</surname>
<given-names>H.</given-names>
</name>
<name>
<surname>Shen</surname>
<given-names>N.</given-names>
</name>
<name>
<surname>Faggioni</surname>
<given-names>R.</given-names>
</name>
<name>
<surname>Fung</surname>
<given-names>M.</given-names>
</name>
<etal></etal>
</person-group>
(
<year>2014</year>
).
<article-title>Targeting interleukin-6 in inflammatory autoimmune diseases and cancers</article-title>
.
<source>Pharmacol. Ther.</source>
<volume>141</volume>
,
<fpage>125</fpage>
<lpage>139</lpage>
.
<pub-id pub-id-type="doi">10.1016/j.pharmthera.2013.09.004</pub-id>
<pub-id pub-id-type="pmid">24076269</pub-id>
</mixed-citation>
</ref>
<ref id="B52">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Yasuda</surname>
<given-names>K.</given-names>
</name>
<name>
<surname>Richez</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>Maciaszek</surname>
<given-names>J. W.</given-names>
</name>
<name>
<surname>Agrawal</surname>
<given-names>N.</given-names>
</name>
<name>
<surname>Akira</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Marshak-Rothstein</surname>
<given-names>A.</given-names>
</name>
<etal></etal>
</person-group>
(
<year>2007</year>
).
<article-title>Murine dendritic cell type I IFN production induced by human IgG-RNA immune complexes is IFN regulatory factor (IRF)5 and IRF7 dependent and is required for IL-6 production</article-title>
.
<source>J. Immunol.</source>
<volume>178</volume>
,
<fpage>6876</fpage>
<lpage>6885</lpage>
.
<pub-id pub-id-type="doi">10.4049/jimmunol.178.11.6876</pub-id>
<pub-id pub-id-type="pmid">17513736</pub-id>
</mixed-citation>
</ref>
<ref id="B53">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Zeng</surname>
<given-names>Y. C.</given-names>
</name>
<name>
<surname>Li</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Liu</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>Gong</surname>
<given-names>T.</given-names>
</name>
<name>
<surname>Sun</surname>
<given-names>X.</given-names>
</name>
<name>
<surname>Fu</surname>
<given-names>Y.</given-names>
</name>
<etal></etal>
</person-group>
(
<year>2017</year>
).
<article-title>Soluplus micelles for improving the oral bioavailability of scopoletin and their hypouricemic effect
<italic>in vivo</italic>
</article-title>
.
<source>Acta Pharmacol. Sin.</source>
<volume>38</volume>
,
<fpage>424</fpage>
<lpage>433</lpage>
.
<pub-id pub-id-type="doi">10.1038/aps.2016.126</pub-id>
<pub-id pub-id-type="pmid">28112183</pub-id>
</mixed-citation>
</ref>
<ref id="B54">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Zhang</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Li</surname>
<given-names>X.</given-names>
</name>
<name>
<surname>Ciric</surname>
<given-names>B.</given-names>
</name>
<name>
<surname>Ma</surname>
<given-names>C. G.</given-names>
</name>
<name>
<surname>Gran</surname>
<given-names>B.</given-names>
</name>
<name>
<surname>Rostami</surname>
<given-names>A.</given-names>
</name>
<etal></etal>
</person-group>
(
<year>2015</year>
).
<article-title>Therapeutic effect of baicalin on experimental autoimmune encephalomyelitis is mediated by SOCS3 regulatory pathway</article-title>
.
<source>Sci. Rep.</source>
<volume>5</volume>
,
<fpage>17407</fpage>
.
<pub-id pub-id-type="doi">10.1038/srep17407</pub-id>
<pub-id pub-id-type="pmid">26616302</pub-id>
</mixed-citation>
</ref>
<ref id="B55">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Zhao</surname>
<given-names>L.</given-names>
</name>
<name>
<surname>Li</surname>
<given-names>X.</given-names>
</name>
<name>
<surname>Ye</surname>
<given-names>Z. Q.</given-names>
</name>
<name>
<surname>Zhang</surname>
<given-names>F.</given-names>
</name>
<name>
<surname>Han</surname>
<given-names>J. J.</given-names>
</name>
<name>
<surname>Yang</surname>
<given-names>T.</given-names>
</name>
<etal></etal>
</person-group>
(
<year>2018</year>
).
<article-title>Nutshell extracts of
<italic>Xanthoceras sorbifolia</italic>
: a new potential source of bioactive phenolic compounds as a natural antioxidant and immunomodulator</article-title>
.
<source>J. Agric. Food Chem.</source>
<volume>66</volume>
,
<fpage>3783</fpage>
<lpage>3792</lpage>
.
<pub-id pub-id-type="doi">10.1021/acs.jafc.7b05590</pub-id>
<pub-id pub-id-type="pmid">29613792</pub-id>
</mixed-citation>
</ref>
</ref-list>
</back>
</pmc>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/ChloroquineV1/Data/Pmc/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000571 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Pmc/Corpus/biblio.hfd -nk 000571 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    ChloroquineV1
   |flux=    Pmc
   |étape=   Corpus
   |type=    RBID
   |clé=     PMC:6688631
   |texte=   Scopoletin Suppresses Activation of Dendritic Cells and Pathogenesis of Experimental Autoimmune Encephalomyelitis by Inhibiting NF-κB Signaling
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Pmc/Corpus/RBID.i   -Sk "pubmed:31427972" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Pmc/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a ChloroquineV1 

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Wed Mar 25 22:43:59 2020. Site generation: Sun Jan 31 12:44:45 2021