Serveur d'exploration Chloroquine

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Bicaudal D1 impairs autophagosome maturation in chronic obstructive pulmonary disease

Identifieur interne : 000525 ( Pmc/Corpus ); précédent : 000524; suivant : 000526

Bicaudal D1 impairs autophagosome maturation in chronic obstructive pulmonary disease

Auteurs : Nicolas Mercado ; Thomas Colley ; Jonathan R. Baker ; Chaitanya Vuppussetty ; Yuta Kono ; Colin Clarke ; Sharon Tooze ; Terje Johansen ; Peter J. Barnes

Source :

RBID : PMC:6996363

Abstract

Abstract

Bicaudal D1 (BICD1), an adaptor for the dynein‐dynactin motor complex, has been identified as a susceptibility gene in chronic obstructive pulmonary disease (COPD). Autophagy, an essential cellular homeostasis process, is defective in COPD, in which oxidative stress‐induced misfolded proteins accumulate into toxic aggregates dependent on the accumulation of the autophagic cargo receptor p62. Defective autophagy can be caused by mutations in the dynein and dynactin motor complex suggesting a possible link between BICD1 and defective autophagy in COPD. BICD1 levels were measured in peripheral lung tissue from COPD patients together with markers of autophagy and found to be increased in COPD together with autophagosomes, p62 and p62 oligomers. In vitro exposure of bronchial epithelial cells to cigarette smoke extracts (CSEs) revealed that high concentrations of CSE induced defective autophagosome maturation with accumulation of BICD1, p62 and ubiquitin‐associated p62 oligomers. This was confirmed in vivo using CS‐exposed mice. Furthermore, we identified that formation of CS‐induced p62 oligomers required an interaction with Keap1. Overexpression and ablation of BICD1 confirmed that increased BICD1 negatively regulates autophagosome maturation inducing accumulation of p62 and p62 oligomers and that it can be reversed by cardiac glycosides. We conclude that defective autophagosome maturation in COPD is caused by oxidative stress‐mediated BICD1 accumulation.


Url:
DOI: 10.1096/fba.2018-00055
PubMed: 32123815
PubMed Central: 6996363

Links to Exploration step

PMC:6996363

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Bicaudal D1 impairs autophagosome maturation in chronic obstructive pulmonary disease</title>
<author>
<name sortKey="Mercado, Nicolas" sort="Mercado, Nicolas" uniqKey="Mercado N" first="Nicolas" last="Mercado">Nicolas Mercado</name>
<affiliation>
<nlm:aff id="fba21090-aff-0001"></nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="fba21090-aff-0002"></nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Colley, Thomas" sort="Colley, Thomas" uniqKey="Colley T" first="Thomas" last="Colley">Thomas Colley</name>
<affiliation>
<nlm:aff id="fba21090-aff-0001"></nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="fba21090-aff-0003"></nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Baker, Jonathan R" sort="Baker, Jonathan R" uniqKey="Baker J" first="Jonathan R." last="Baker">Jonathan R. Baker</name>
<affiliation>
<nlm:aff id="fba21090-aff-0001"></nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Vuppussetty, Chaitanya" sort="Vuppussetty, Chaitanya" uniqKey="Vuppussetty C" first="Chaitanya" last="Vuppussetty">Chaitanya Vuppussetty</name>
<affiliation>
<nlm:aff id="fba21090-aff-0001"></nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Kono, Yuta" sort="Kono, Yuta" uniqKey="Kono Y" first="Yuta" last="Kono">Yuta Kono</name>
<affiliation>
<nlm:aff id="fba21090-aff-0001"></nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Clarke, Colin" sort="Clarke, Colin" uniqKey="Clarke C" first="Colin" last="Clarke">Colin Clarke</name>
<affiliation>
<nlm:aff id="fba21090-aff-0001"></nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Tooze, Sharon" sort="Tooze, Sharon" uniqKey="Tooze S" first="Sharon" last="Tooze">Sharon Tooze</name>
<affiliation>
<nlm:aff id="fba21090-aff-0004"></nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Johansen, Terje" sort="Johansen, Terje" uniqKey="Johansen T" first="Terje" last="Johansen">Terje Johansen</name>
<affiliation>
<nlm:aff id="fba21090-aff-0005"></nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Barnes, Peter J" sort="Barnes, Peter J" uniqKey="Barnes P" first="Peter J." last="Barnes">Peter J. Barnes</name>
<affiliation>
<nlm:aff id="fba21090-aff-0001"></nlm:aff>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PMC</idno>
<idno type="pmid">32123815</idno>
<idno type="pmc">6996363</idno>
<idno type="url">http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6996363</idno>
<idno type="RBID">PMC:6996363</idno>
<idno type="doi">10.1096/fba.2018-00055</idno>
<date when="2019">2019</date>
<idno type="wicri:Area/Pmc/Corpus">000525</idno>
<idno type="wicri:explorRef" wicri:stream="Pmc" wicri:step="Corpus" wicri:corpus="PMC">000525</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a" type="main">Bicaudal D1 impairs autophagosome maturation in chronic obstructive pulmonary disease</title>
<author>
<name sortKey="Mercado, Nicolas" sort="Mercado, Nicolas" uniqKey="Mercado N" first="Nicolas" last="Mercado">Nicolas Mercado</name>
<affiliation>
<nlm:aff id="fba21090-aff-0001"></nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="fba21090-aff-0002"></nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Colley, Thomas" sort="Colley, Thomas" uniqKey="Colley T" first="Thomas" last="Colley">Thomas Colley</name>
<affiliation>
<nlm:aff id="fba21090-aff-0001"></nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="fba21090-aff-0003"></nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Baker, Jonathan R" sort="Baker, Jonathan R" uniqKey="Baker J" first="Jonathan R." last="Baker">Jonathan R. Baker</name>
<affiliation>
<nlm:aff id="fba21090-aff-0001"></nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Vuppussetty, Chaitanya" sort="Vuppussetty, Chaitanya" uniqKey="Vuppussetty C" first="Chaitanya" last="Vuppussetty">Chaitanya Vuppussetty</name>
<affiliation>
<nlm:aff id="fba21090-aff-0001"></nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Kono, Yuta" sort="Kono, Yuta" uniqKey="Kono Y" first="Yuta" last="Kono">Yuta Kono</name>
<affiliation>
<nlm:aff id="fba21090-aff-0001"></nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Clarke, Colin" sort="Clarke, Colin" uniqKey="Clarke C" first="Colin" last="Clarke">Colin Clarke</name>
<affiliation>
<nlm:aff id="fba21090-aff-0001"></nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Tooze, Sharon" sort="Tooze, Sharon" uniqKey="Tooze S" first="Sharon" last="Tooze">Sharon Tooze</name>
<affiliation>
<nlm:aff id="fba21090-aff-0004"></nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Johansen, Terje" sort="Johansen, Terje" uniqKey="Johansen T" first="Terje" last="Johansen">Terje Johansen</name>
<affiliation>
<nlm:aff id="fba21090-aff-0005"></nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Barnes, Peter J" sort="Barnes, Peter J" uniqKey="Barnes P" first="Peter J." last="Barnes">Peter J. Barnes</name>
<affiliation>
<nlm:aff id="fba21090-aff-0001"></nlm:aff>
</affiliation>
</author>
</analytic>
<series>
<title level="j">FASEB bioAdvances</title>
<idno type="eISSN">2573-9832</idno>
<imprint>
<date when="2019">2019</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<title>Abstract</title>
<p>Bicaudal D1 (BICD1), an adaptor for the dynein‐dynactin motor complex, has been identified as a susceptibility gene in chronic obstructive pulmonary disease (COPD). Autophagy, an essential cellular homeostasis process, is defective in COPD, in which oxidative stress‐induced misfolded proteins accumulate into toxic aggregates dependent on the accumulation of the autophagic cargo receptor p62. Defective autophagy can be caused by mutations in the dynein and dynactin motor complex suggesting a possible link between BICD1 and defective autophagy in COPD. BICD1 levels were measured in peripheral lung tissue from COPD patients together with markers of autophagy and found to be increased in COPD together with autophagosomes, p62 and p62 oligomers. In vitro exposure of bronchial epithelial cells to cigarette smoke extracts (CSEs) revealed that high concentrations of CSE induced defective autophagosome maturation with accumulation of BICD1, p62 and ubiquitin‐associated p62 oligomers. This was confirmed in vivo using CS‐exposed mice. Furthermore, we identified that formation of CS‐induced p62 oligomers required an interaction with Keap1. Overexpression and ablation of BICD1 confirmed that increased BICD1 negatively regulates autophagosome maturation inducing accumulation of p62 and p62 oligomers and that it can be reversed by cardiac glycosides. We conclude that defective autophagosome maturation in COPD is caused by oxidative stress‐mediated BICD1 accumulation.</p>
</div>
</front>
<back>
<div1 type="bibliography">
<listBibl>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
</listBibl>
</div1>
</back>
</TEI>
<pmc article-type="research-article">
<pmc-dir>properties open_access</pmc-dir>
<front>
<journal-meta>
<journal-id journal-id-type="nlm-ta">FASEB Bioadv</journal-id>
<journal-id journal-id-type="iso-abbrev">FASEB Bioadv</journal-id>
<journal-id journal-id-type="doi">10.1096/(ISSN)2573-9832</journal-id>
<journal-id journal-id-type="publisher-id">FBA2</journal-id>
<journal-title-group>
<journal-title>FASEB bioAdvances</journal-title>
</journal-title-group>
<issn pub-type="epub">2573-9832</issn>
<publisher>
<publisher-name>John Wiley and Sons Inc.</publisher-name>
<publisher-loc>Hoboken</publisher-loc>
</publisher>
</journal-meta>
<article-meta>
<article-id pub-id-type="pmid">32123815</article-id>
<article-id pub-id-type="pmc">6996363</article-id>
<article-id pub-id-type="doi">10.1096/fba.2018-00055</article-id>
<article-id pub-id-type="publisher-id">FBA21090</article-id>
<article-categories>
<subj-group subj-group-type="overline">
<subject>Research Article</subject>
</subj-group>
<subj-group subj-group-type="heading">
<subject>Research Articles</subject>
</subj-group>
</article-categories>
<title-group>
<article-title>Bicaudal D1 impairs autophagosome maturation in chronic obstructive pulmonary disease</article-title>
<alt-title alt-title-type="left-running-head">MERCADO et al</alt-title>
</title-group>
<contrib-group>
<contrib id="fba21090-cr-0001" contrib-type="author" corresp="yes">
<name>
<surname>Mercado</surname>
<given-names>Nicolas</given-names>
</name>
<xref ref-type="aff" rid="fba21090-aff-0001">
<sup>1</sup>
</xref>
<xref ref-type="aff" rid="fba21090-aff-0002">
<sup>2</sup>
</xref>
<address>
<email>nicolas.mercado@novartis.com</email>
<email>nicolas.mercado78@outlook.com</email>
</address>
</contrib>
<contrib id="fba21090-cr-0002" contrib-type="author">
<name>
<surname>Colley</surname>
<given-names>Thomas</given-names>
</name>
<xref ref-type="aff" rid="fba21090-aff-0001">
<sup>1</sup>
</xref>
<xref ref-type="aff" rid="fba21090-aff-0003">
<sup>3</sup>
</xref>
</contrib>
<contrib id="fba21090-cr-0003" contrib-type="author">
<name>
<surname>Baker</surname>
<given-names>Jonathan R.</given-names>
</name>
<xref ref-type="aff" rid="fba21090-aff-0001">
<sup>1</sup>
</xref>
</contrib>
<contrib id="fba21090-cr-0004" contrib-type="author">
<name>
<surname>Vuppussetty</surname>
<given-names>Chaitanya</given-names>
</name>
<xref ref-type="aff" rid="fba21090-aff-0001">
<sup>1</sup>
</xref>
</contrib>
<contrib id="fba21090-cr-0005" contrib-type="author">
<name>
<surname>Kono</surname>
<given-names>Yuta</given-names>
</name>
<xref ref-type="aff" rid="fba21090-aff-0001">
<sup>1</sup>
</xref>
</contrib>
<contrib id="fba21090-cr-0006" contrib-type="author">
<name>
<surname>Clarke</surname>
<given-names>Colin</given-names>
</name>
<xref ref-type="aff" rid="fba21090-aff-0001">
<sup>1</sup>
</xref>
</contrib>
<contrib id="fba21090-cr-0007" contrib-type="author">
<name>
<surname>Tooze</surname>
<given-names>Sharon</given-names>
</name>
<xref ref-type="aff" rid="fba21090-aff-0004">
<sup>4</sup>
</xref>
</contrib>
<contrib id="fba21090-cr-0008" contrib-type="author">
<name>
<surname>Johansen</surname>
<given-names>Terje</given-names>
</name>
<xref ref-type="aff" rid="fba21090-aff-0005">
<sup>5</sup>
</xref>
</contrib>
<contrib id="fba21090-cr-0009" contrib-type="author">
<name>
<surname>Barnes</surname>
<given-names>Peter J.</given-names>
</name>
<xref ref-type="aff" rid="fba21090-aff-0001">
<sup>1</sup>
</xref>
</contrib>
</contrib-group>
<aff id="fba21090-aff-0001">
<label>
<sup>1</sup>
</label>
<named-content content-type="organisation-division">Airway Disease Section</named-content>
<institution>National Heart and Lung Institute</institution>
<institution>Imperial College</institution>
<city>London</city>
<country country="GB">UK</country>
</aff>
<aff id="fba21090-aff-0002">
<label>
<sup>2</sup>
</label>
<institution>Novartis Institutes for BioMedical Research</institution>
<city>Basel</city>
<country country="CH">Switzerland</country>
</aff>
<aff id="fba21090-aff-0003">
<label>
<sup>3</sup>
</label>
<institution>Pulmocide Ltd</institution>
<city>London</city>
<country country="GB">UK</country>
</aff>
<aff id="fba21090-aff-0004">
<label>
<sup>4</sup>
</label>
<institution>London Research Institute</institution>
<institution>Cancer Research UK</institution>
<city>London</city>
<country country="GB">UK</country>
</aff>
<aff id="fba21090-aff-0005">
<label>
<sup>5</sup>
</label>
<named-content content-type="organisation-division">Molecular Cancer Research Group</named-content>
<named-content content-type="organisation-division">Institute of Medical Biology</named-content>
<institution>University of Tromsø – The Arctic University of Norway</institution>
<city>Tromsø</city>
<country country="NO">Norway</country>
</aff>
<author-notes>
<corresp id="correspondenceTo">
<label>*</label>
<bold>Correspondence</bold>
<break></break>
Nicolas Mercado, Novartis Campus, Fabrikstrasse 22.4, 4056 Basel, Switzerland.
<break></break>
Email:
<email>nicolas.mercado@novartis.com</email>
or
<email>nicolas.mercado78@outlook.com</email>
<break></break>
</corresp>
</author-notes>
<pub-date pub-type="epub">
<day>29</day>
<month>10</month>
<year>2019</year>
</pub-date>
<pub-date pub-type="collection">
<month>11</month>
<year>2019</year>
</pub-date>
<volume>1</volume>
<issue>11</issue>
<issue-id pub-id-type="doi">10.1096/fba2.v1.11</issue-id>
<fpage>688</fpage>
<lpage>705</lpage>
<history>
<date date-type="received">
<day>20</day>
<month>11</month>
<year>2018</year>
</date>
<date date-type="rev-recd">
<day>20</day>
<month>11</month>
<year>2018</year>
</date>
<date date-type="accepted">
<day>24</day>
<month>9</month>
<year>2019</year>
</date>
</history>
<permissions>
<pmc-comment> © 2019 Federation of American Societies for Experimental Biology (FASEB) </pmc-comment>
<copyright-statement content-type="article-copyright">© 2019 The Authors.</copyright-statement>
<license license-type="creativeCommonsBy">
<license-p>This is an open access article under the terms of the
<ext-link ext-link-type="uri" xlink:href="http://creativecommons.org/licenses/by/4.0/">http://creativecommons.org/licenses/by/4.0/</ext-link>
License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.</license-p>
</license>
</permissions>
<self-uri content-type="pdf" xlink:href="file:FBA2-1-688.pdf"></self-uri>
<abstract id="fba21090-abs-0001">
<title>Abstract</title>
<p>Bicaudal D1 (BICD1), an adaptor for the dynein‐dynactin motor complex, has been identified as a susceptibility gene in chronic obstructive pulmonary disease (COPD). Autophagy, an essential cellular homeostasis process, is defective in COPD, in which oxidative stress‐induced misfolded proteins accumulate into toxic aggregates dependent on the accumulation of the autophagic cargo receptor p62. Defective autophagy can be caused by mutations in the dynein and dynactin motor complex suggesting a possible link between BICD1 and defective autophagy in COPD. BICD1 levels were measured in peripheral lung tissue from COPD patients together with markers of autophagy and found to be increased in COPD together with autophagosomes, p62 and p62 oligomers. In vitro exposure of bronchial epithelial cells to cigarette smoke extracts (CSEs) revealed that high concentrations of CSE induced defective autophagosome maturation with accumulation of BICD1, p62 and ubiquitin‐associated p62 oligomers. This was confirmed in vivo using CS‐exposed mice. Furthermore, we identified that formation of CS‐induced p62 oligomers required an interaction with Keap1. Overexpression and ablation of BICD1 confirmed that increased BICD1 negatively regulates autophagosome maturation inducing accumulation of p62 and p62 oligomers and that it can be reversed by cardiac glycosides. We conclude that defective autophagosome maturation in COPD is caused by oxidative stress‐mediated BICD1 accumulation.</p>
</abstract>
<kwd-group kwd-group-type="author-generated">
<kwd id="fba21090-kwd-0001">autophagosome maturation</kwd>
<kwd id="fba21090-kwd-0002">cardiac glycosides</kwd>
<kwd id="fba21090-kwd-0003">keap1</kwd>
<kwd id="fba21090-kwd-0004">oxidative stress</kwd>
<kwd id="fba21090-kwd-0005">p62</kwd>
</kwd-group>
<funding-group>
<award-group id="funding-0001">
<funding-source>NIHR Respiratory Biomedical Research Unit</funding-source>
</award-group>
<award-group id="funding-0002">
<funding-source>
<institution-wrap>
<institution>Royal Brompton and Harefield NHS Foundation Trust </institution>
<institution-id institution-id-type="open-funder-registry">10.13039/100012147</institution-id>
</institution-wrap>
</funding-source>
</award-group>
<award-group id="funding-0003">
<funding-source>
<institution-wrap>
<institution>Imperial College London </institution>
<institution-id institution-id-type="open-funder-registry">10.13039/501100000761</institution-id>
</institution-wrap>
</funding-source>
</award-group>
<award-group id="funding-0004">
<funding-source>
<institution-wrap>
<institution>Wellcome Trust program </institution>
<institution-id institution-id-type="open-funder-registry">10.13039/100004440</institution-id>
</institution-wrap>
</funding-source>
<award-id>093080/Z/10/Z</award-id>
</award-group>
</funding-group>
<counts>
<fig-count count="9"></fig-count>
<table-count count="2"></table-count>
<page-count count="18"></page-count>
<word-count count="10614"></word-count>
</counts>
<custom-meta-group>
<custom-meta>
<meta-name>source-schema-version-number</meta-name>
<meta-value>2.0</meta-value>
</custom-meta>
<custom-meta>
<meta-name>cover-date</meta-name>
<meta-value>November 2019</meta-value>
</custom-meta>
<custom-meta>
<meta-name>details-of-publishers-convertor</meta-name>
<meta-value>Converter:WILEY_ML3GV2_TO_JATSPMC version:5.7.5 mode:remove_FC converted:18.02.2020</meta-value>
</custom-meta>
</custom-meta-group>
</article-meta>
<notes>
<p content-type="self-citation">
<mixed-citation publication-type="journal" id="fba21090-cit-1001">
<string-name>
<surname>Mercado</surname>
<given-names>N</given-names>
</string-name>
,
<string-name>
<surname>Colley</surname>
<given-names>T</given-names>
</string-name>
,
<string-name>
<surname>Baker</surname>
<given-names>JR</given-names>
</string-name>
, et al.
<article-title>Bicaudal D1 impairs autophagosome maturation in chronic obstructive pulmonary disease</article-title>
.
<source xml:lang="en">FASEB BioAdvances</source>
.
<year>2019</year>
;
<volume>1</volume>
:
<fpage>688</fpage>
<lpage>705</lpage>
.
<pub-id pub-id-type="doi">10.1096/fba.2018-00055</pub-id>
</mixed-citation>
</p>
</notes>
</front>
<body id="fba21090-body-0001">
<def-list list-content="abbreviations" id="fba21090-lp-0001">
<title>Abbreviations</title>
<def-item>
<term>AL</term>
<def>
<p>autolysosome</p>
</def>
</def-item>
<def-item>
<term>AP</term>
<def>
<p>autophagosome</p>
</def>
</def-item>
<def-item>
<term>BICD1</term>
<def>
<p>Bicaudal D1</p>
</def>
</def-item>
<def-item>
<term>COPD</term>
<def>
<p>chronic obstructive pulmonary disease</p>
</def>
</def-item>
<def-item>
<term>HBECs</term>
<def>
<p>human bronchial epithelial cells</p>
</def>
</def-item>
<def-item>
<term>HC‐CSE</term>
<def>
<p>high concentration cigarette smoke extract</p>
</def>
</def-item>
<def-item>
<term>LC3‐I</term>
<def>
<p>microtubule‐associated proteins 1A/1B light chain 3B</p>
</def>
</def-item>
<def-item>
<term>LC3‐II</term>
<def>
<p>phosphatidylethanolamine conjugated microtubule‐associated proteins 1A/1B light chain 3B</p>
</def>
</def-item>
</def-list>
<sec id="fba21090-sec-0001">
<label>1</label>
<title>INTRODUCTION</title>
<p>Chronic obstructive pulmonary disease (COPD) is an age‐related condition caused by oxidative stress, usually resulting from long‐term cigarette smoking or biomass smoke exposure that, with no current drugs that can stop the progressive decline in lung function, is set to become the third leading cause of death worldwide.
<xref rid="fba21090-bib-0001" ref-type="ref">1</xref>
</p>
<p>COPD has been associated with defective turnover of macromolecules damaged by oxidative stress that results in the accumulation of ubiquitinated protein aggregates (aggresomes). The association of aggresomes with the autophagic cargo receptor p62 suggests defective autophagy in COPD lung;
<xref rid="fba21090-bib-0002" ref-type="ref">2</xref>
,
<xref rid="fba21090-bib-0003" ref-type="ref">3</xref>
,
<xref rid="fba21090-bib-0004" ref-type="ref">4</xref>
however, other studies suggest that excessive activation of autophagy is involved in apoptosis and alveolar destruction in emphysema.
<xref rid="fba21090-bib-0005" ref-type="ref">5</xref>
,
<xref rid="fba21090-bib-0006" ref-type="ref">6</xref>
,
<xref rid="fba21090-bib-0007" ref-type="ref">7</xref>
,
<xref rid="fba21090-bib-0008" ref-type="ref">8</xref>
,
<xref rid="fba21090-bib-0009" ref-type="ref">9</xref>
</p>
<p>Macroautophagy (hereafter referred to as autophagy) is an evolutionary conserved lysosomal degradation process for the elimination and recycling of damaged or surplus cytosolic components. This process involves the sequestration of cytoplasmic proteins and organelles into a double membrane vesicle called the autophagosome.
<xref rid="fba21090-bib-0010" ref-type="ref">10</xref>
During the maturation step, autophagosomes fuse with lysosomes to form autolysosomes, where the final hydrolytic degradation of the engulfed cytoplasmic material takes place.
<xref rid="fba21090-bib-0010" ref-type="ref">10</xref>
Distinct from the ubiquitin proteasome system (UPS), autophagy can selectively degrade large structures such as protein aggregates, intracellular bacteria, viral capsids, and protein aggregates.
<xref rid="fba21090-bib-0010" ref-type="ref">10</xref>
,
<xref rid="fba21090-bib-0011" ref-type="ref">11</xref>
A more unselective, bulk autophagy process is also induced by nutrient limitation. The formation of autophagosomes requires a well‐orchestrated activation of protein complexes that constitute the basal autophagy apparatus.
<xref rid="fba21090-bib-0012" ref-type="ref">12</xref>
Among these autophagy‐related (Atg) proteins are the Atg8 family proteins, including microtubule‐associated protein 1A/1B‐light chain 3 (LC3‐I) that, by conjugation to phosphatidylethanolamine, becomes LC3‐II and is integrated into autophagosomes.
<xref rid="fba21090-bib-0013" ref-type="ref">13</xref>
Selective autophagy receptors such as p62, NBR1, and NDP52 recognize ubiquitinated proteins and intracellular pathogens destined for autophagy and the cargo is directed toward developing autophagosomes where they bind LC3 via their LC3‐interacting regions.
<xref rid="fba21090-bib-0014" ref-type="ref">14</xref>
“Autophagic flux” is the term used to define the process of autophagosome synthesis (initiation), delivery of autophagic substrates to the lysosome and subsequent degradation of autophagic substrates inside the lysosome.
<xref rid="fba21090-bib-0015" ref-type="ref">15</xref>
Both the delivery of autophagosome to the lysosome and degradation are also called “autophagosome maturation.” The presence of autophagosomes can equally mean the activation of autophagy or defective autophagosome maturation. The mTOR inhibitor, rapamycin, is an inducer of autophagy and therefore a potential drug for the restoration of defective autophagy in various diseases.
<xref rid="fba21090-bib-0016" ref-type="ref">16</xref>
Whereas mTOR is involved primarily in the initiation steps of autophagy, the use of rapamycin for defects in autophagosome maturation could be potentially detrimental as shown in a murine model of amyotrophic lateral sclerosis where treatment with rapamycin induced further accumulation of protein aggregates and reduced cell viability.
<xref rid="fba21090-bib-0017" ref-type="ref">17</xref>
,
<xref rid="fba21090-bib-0018" ref-type="ref">18</xref>
Thus understanding the pathway involved in defective autophagic flux is crucial for developing therapies to reverse pathological conditions such as COPD.</p>
<p>Kong et al
<xref rid="fba21090-bib-0019" ref-type="ref">19</xref>
recently identified in a genome‐wide association study of emphysema an association of a single‐nucleotide polymorphism in bicaudal‐D1 (BICD1) with the presence or absence of emphysema. BICD1 is one of the two mammalian homologues of
<italic>Drosophila</italic>
bicaudal‐D1, acting as adaptor proteins that can regulate dynein‐based vesicle motility within the cytoplasm.
<xref rid="fba21090-bib-0020" ref-type="ref">20</xref>
,
<xref rid="fba21090-bib-0021" ref-type="ref">21</xref>
BICD1 is involved in microtubule anchorage at the centrosome and the regulation of microtubular function.
<xref rid="fba21090-bib-0022" ref-type="ref">22</xref>
Autophagosomes move in the direction of lysosomes located near the centrosome by association with the dynein motor complex.
<xref rid="fba21090-bib-0023" ref-type="ref">23</xref>
Kong et al
<xref rid="fba21090-bib-0019" ref-type="ref">19</xref>
showed that the locus most highly associated with emphysema is in a region that covers the second exon of the gene BICD1 that encodes the sequence located in the coiled‐coil domain at the N terminus of the protein, which directly interacts with dynein. The role of BICD1 in COPD and autophagy however remains unknown.</p>
<p>Our findings confirmed the presence of autophagosomes in lung tissue from COPD patients together with an accumulation of p62 and p62 oligomers and total LC3, suggesting a defect in autophagosome maturation. We also show that BICD1 is increased in COPD lung and accumulation of this protein results in defective autophagosome maturation. We recapitulated these findings using an in vitro cigarette smoke (CS) model within a bronchial epithelial cell line and found that, accumulation of p62, p62 oligomers and autophagosomes were observed at high concentrations of CS. In addition, p62 oligomers were found to be strongly associated with ubiquitinated substrates and that oligomerization depended on direct association with Keap1 during defective autophagosome maturation. Finally, cardiac glycosides, but not rapamycin, reversed the defective autophagosome maturation.</p>
</sec>
<sec sec-type="materials-and-methods" id="fba21090-sec-0002">
<label>2</label>
<title>MATERIALS AND METHODS</title>
<sec id="fba21090-sec-0003">
<label>2.1</label>
<title>Reagents and antibodies</title>
<p>Chloroquine, ammonium chloride, digoxin, digoxigenin, strophanthidin, DAPI mounting media, rapamycin, 3‐(4,5‐dimethylthiazol‐2yr)‐2‐5‐diphenyltetrazoliumbromide (MTT), actinomycin D, bafilomycin SMER28 and N‐acetylcysteine from Sigma (Poole, UK) were used.</p>
<p>Protein A magnetic beads were purchased from Thermo Scientific (East Riding of Yorkshire, UK). Antibodies against the following were used for immunoblotting: p62 (rabbit polyclonal; #P0067), LC3 (rabbit polyclonal; #L8918), Ubiquitin (rabbit polyclonal; #SAB1306222), NBR1 (rabbit polyclonal, #SAB2107031) from Sigma. p62 (mouse monoclonal; # sc‐28359), caspase‐3 (rabbit polyclonal; #sc‐136219) from Santa Cruz Biotechnology. Beta‐actin (mouse monoclonal; #ab8226), GFP (#ab1218), and LAMP1 (rabbit polyclonal; #ab24170) from Abcam. Cleaved caspase‐3 (rabbit polyclonal; #9661) from Cell Signalling (New England Biolabs). Keap1 (mouse monoclonal; #TA502059) and FLAG (mouse monoclonal; #TA50011‐100) from Origene).</p>
</sec>
<sec id="fba21090-sec-0004">
<label>2.2</label>
<title>Cell culture</title>
<p>BEAS‐2B cells (human bronchial epithelial) (ATCC,) were cultured as previously described.
<xref rid="fba21090-bib-0024" ref-type="ref">24</xref>
BEAS‐2B cells were serum starved 24 hours before stimulation. Normal human bronchial epithelial cells (HBEC) were purchased from Lonza (Basel, Switzerland) and cultured as specified by the company. Human epithelial kidney cell line HEK293 cells (ATCC) were grown in Dulbecco's modified Eagle's medium supplemented with 10% fetal calf serum supplemented with nonessential amino acids, 2 mmol/L L‐glutamine, penicillin (100 units/mL), and streptomycin (100 µg/mL). A549 cells (ATCC) were cultured as previously described.
<xref rid="fba21090-bib-0025" ref-type="ref">25</xref>
A549 cells were serum starved 24 hours before CSE treatment.</p>
</sec>
<sec id="fba21090-sec-0005">
<label>2.3</label>
<title>Peripheral lung tissue</title>
<p>Peripheral lung tissue from four nonsmokers (healthy volunteers) subjects with normal lung function, 10 smoker subjects with normal lung function, eight subjects with GOLD stage 1 (mild), eight with stage 2 (moderate), four with stage 3 (severe), and eight with stage 4 (very severe) COPD were obtained using a tissue bank linked to an established patient registry and kindly provided by Dr James Hogg and Dr Mark Elliot (University of British Columbia).
<xref rid="fba21090-bib-0026" ref-type="ref">26</xref>
</p>
</sec>
<sec id="fba21090-sec-0006">
<label>2.4</label>
<title>Plasmids and transfections</title>
<p>BEAS‐2B cells were transfected with siRNA for nonspecific oligonucleotide control (NC) and Keap1 (Life Technologies) using HiPerfect (Qiagen) for 48 hours or 72 hours. HEK293 cells were transfected with different plasmids using Lipofectamine (Invitrogen). The following plasmids were characterized in a previous work by Lamark et al
<xref rid="fba21090-bib-0027" ref-type="ref">27</xref>
: pDest‐EGFP‐p62 WT, pDest‐EGFP‐p62 ∆123‐170, pDest‐EGFP‐p62 ∆170‐256, pDest‐EGFP‐p62 ∆256‐370, pDest‐EGFP‐p62 ∆346‐385, pDest‐EGFP‐p62 (1‐385) that is ∆UBA (∆385‐440), pDest‐mCherry‐EGFP‐p62, pDest‐mCherry‐EGFP‐LC3B, and pDest‐EGFP‐p62 E352A (KIR point mutant). pBABE‐puro mCherry‐EGFP‐LC3B were a gift from Ana Maria Cuervo and pEGFP‐LC3B was purchased from Addgene.</p>
</sec>
<sec id="fba21090-sec-0007">
<label>2.5</label>
<title>Quantification of autophagososmes and autolysosomes</title>
<p>HEK293 was transiently transfected with pBABE‐puro mCherry‐EGFP‐LC3B (500ng) using 1 µL of lipofectamine in 100µl Opti‐MEM™ I Reduced Serum Medium (Invitrogen) for 48 hours. Cells were then incubated with LC‐CSE or HC‐CSE for 5, 24, and 24 hours plus another 24 hours in fresh media without CSE (48 hours). Autophagosomes (Yellow color) and Autolysosomes (Red color) were quantified using CellProfiler.</p>
</sec>
<sec id="fba21090-sec-0008">
<label>2.6</label>
<title>Preparation of cigarette smoke extracts</title>
<p>One full‐strength Marlboro cigarette with filter removed (Phillip Morris USA) was directed via a tube into 10 mL of serum‐free culture media using a peristaltic pump. Cigarette smoke extract (CSE) was then passed through a 0.2 µm filter to sterilize and remove particulate matter and was used immediately. The optical density was measured at 320λ (OD 0.85 ± 0.03). The concentration of CSE used was calculated as % v/v of CSE vs total volume of media.</p>
</sec>
<sec id="fba21090-sec-0009">
<label>2.7</label>
<title>Western blotting and immunoprecipitation</title>
<p>Protein extracts were prepared using RIPA buffer (Sigma: 150 mmol/L NaCl, 1.0% IGEPAL® CA‐630, 0.5% sodium deoxycholate, 0.1% SDS, and 50 mmol/L Tris, pH 8.0.) and completed with protease inhibitor (Roche, Welwyn Garden City, UK). N‐ethylmaleimide (NEM; 25 mmol/L, Sigma) was also added to the RIPA buffer for detecting ubiquitin linked to immunoprecipitation of p62. Immunoprecipitation was conducted with anti‐p62 in 300‐600 μg of whole‐cell lysate overnight at 4°C. Immunoprecipitates were captured with Protein A magnetic beads. After extensive washing, bound proteins were released by boiling in SDS‐PAGE sample buffer. Protein extracts (40 µg of immunoprecipitates) were analyzed by SDS‐PAGE (Invitrogen) and detected with Western Blot analysis by chemiluminescence (ECL Plus; GE Healthcare). Protein expression levels were expressed relative to β‐actin.</p>
</sec>
<sec id="fba21090-sec-0010">
<label>2.8</label>
<title>Immunocytochemistry</title>
<p>BEAS‐2B and HEK293 cells were grown on poly‐L‐lysine coated glass coverslips in 24‐well plates. After experimental procedures, the cells were washed with PBS and fixed in 4% paraformaldehyde in PBS for 15 minutes. Cells were then washed twice with PBS and permeabilized with ice‐cold methanol (−20°C, 10 minutes). BEAS‐2B cells were blocked in 5% (w/v) milk in PBS for 1 hour followed by 2 hours incubation with rabbit anti‐LC3 (1/50) and mouse LAMP1 (1/50) in 5% milk. After washing three times with PBS, cells were further incubated with Alexa fluor® 488 Donkey Anti‐Rabbit (1/400) and APC anti‐mouse antibodies (1/100) for 1 hour. Cells were then washed three times with PBS and mounted onto slides using Fluoroshield with DAPI. Confocal microscopy was performed using a Zeiss LSM‐510 microscope and the Zeiss LSM Image Browser software was used to generate images. In addition to single images, Z‐series stacks of 0.5 µm were taken in order to spatially resolve the position of autophagosomes within the cells using a 63X oil lens magnification. To visualize the XZ and YZ planes at a given point of the stack, orthogonal views were also taken. Quantification of total LC3 area per nuclei and the number of LC3 punctae per nuclei was assessed using Image J analysis.</p>
</sec>
<sec id="fba21090-sec-0011">
<label>2.9</label>
<title>Statistical analysis</title>
<p>Data are expressed as median ± SEM. Results were analyzed using
<italic>t</italic>
test and one‐ or two‐way ANOVA for repeated measures with Dunnett or Bonferroni posttests using the Graph Pad Prism Software (Prism). Clinical data were analyzed by Kruskal‐Wallis followed by Mann‐Whitney.
<italic>P</italic>
 < .05 was considered statistically significant.</p>
</sec>
</sec>
<sec sec-type="results" id="fba21090-sec-0012">
<label>3</label>
<title>RESULTS</title>
<sec id="fba21090-sec-0013">
<label>3.1</label>
<title>BICD1, LC3‐II, p62, and total LC3 are increased in COPD lungs</title>
<p>Whole‐cell extracts were obtained from four healthy volunteers (HV), 10 healthy smokers (SM), 16 patients with mild COPD (CD1/2; GOLD1 plus GOLD 2), and 12 severe COPD (CD3/4; GOLD3 plus GOLD4) (Table
<xref rid="fba21090-tbl-0001" ref-type="table">1</xref>
). HV data were not used in the statistical analysis due to low numbers. The expression of markers of autophagy LC3‐II, total LC3 (I + II), and p62 was measured by Western blotting. As shown in previous studies,
<xref rid="fba21090-bib-0003" ref-type="ref">3</xref>
,
<xref rid="fba21090-bib-0005" ref-type="ref">5</xref>
,
<xref rid="fba21090-bib-0006" ref-type="ref">6</xref>
autophagosomes (LC3‐II) were significantly increased in CD3/4 patients compared to SM (
<italic>P</italic>
 < .01), but also when compared to CD1/2 patients (
<italic>P</italic>
 < .01) (Figure
<xref rid="fba21090-fig-0001" ref-type="fig">1</xref>
A,B). Although CD1/2 also displayed high levels of LC3‐II, these were not significantly different compared to SM (
<italic>P</italic>
 = .12) (Figure
<xref rid="fba21090-fig-0001" ref-type="fig">1</xref>
A,B). LC3‐II accumulation measures the presence of autophagosomes whereas total LC3 (cytoplasmic LC3‐I and autophagosomal LC3‐II) and p62 can indirectly indicate a defect in autophagy maturation.
<xref rid="fba21090-bib-0015" ref-type="ref">15</xref>
Total LC3 protein levels in CD3/4 patients were significantly increased compared to SM (
<italic>P</italic>
 < .05) and CD1/2 (
<italic>P</italic>
 < .05) (Figure
<xref rid="fba21090-fig-0001" ref-type="fig">1</xref>
A,C). The accumulation of LC3‐II negatively correlated with % predicted FEV
<sub>1</sub>
(forced expiratory volume in 1 second) in COPD patients (
<italic>r</italic>
 = −0.56;
<italic>P</italic>
 < .005) (Table
<xref rid="fba21090-tbl-0002" ref-type="table">2</xref>
). The expression of p62 was significantly increased in CD3/4 compared with SM (
<italic>P</italic>
 < .01) and the increase in CD1/2 patients was also higher than smokers, although not significantly (
<italic>P</italic>
 = .1) (Figure
<xref rid="fba21090-fig-0001" ref-type="fig">1</xref>
A,D). Interestingly, the expression of p62 negatively correlated with lung function by FEV
<sub>1</sub>
(% predicted) in all COPD patients and only CD3/4 patients (Table
<xref rid="fba21090-tbl-0002" ref-type="table">2</xref>
). In addition, p62 oligomers were increased in CD1/2 and CD3/4 compared to SM; however, these were not significant (Figure
<xref rid="fba21090-fig-0001" ref-type="fig">1</xref>
A,E). A positive correlation between smoking history as measured by pack years versus p62 oligomers were observed in all smokers and COPD patients (
<italic>r</italic>
 = 0.54;
<italic>P</italic>
 < .01) (Table
<xref rid="fba21090-tbl-0002" ref-type="table">2</xref>
). CSEs have been shown to induce p62 and LC3 protein expression in bronchial epithelial cells
<xref rid="fba21090-bib-0028" ref-type="ref">28</xref>
so we compared the markers of autophagy between non/ex‐smokers versus current smokers (Figure
<xref rid="fba21090-sup-0001" ref-type="supplementary-material">S1</xref>
). Our data suggest that current smokers do not display higher levels of LC3 and p62 expression as compared to nonsmokers.</p>
<table-wrap id="fba21090-tbl-0001" xml:lang="en" orientation="portrait" position="float">
<label>Table 1</label>
<caption>
<p>Patient's profile</p>
</caption>
<table frame="hsides" rules="groups">
<col style="border-right:solid 1px #000000" span="1"></col>
<col style="border-right:solid 1px #000000" span="1"></col>
<col style="border-right:solid 1px #000000" span="1"></col>
<col style="border-right:solid 1px #000000" span="1"></col>
<col style="border-right:solid 1px #000000" span="1"></col>
<thead valign="top">
<tr style="border-bottom:solid 1px #000000">
<th align="left" valign="top" rowspan="1" colspan="1"> </th>
<th align="left" valign="top" rowspan="1" colspan="1">HV</th>
<th align="left" valign="top" rowspan="1" colspan="1">SM</th>
<th align="left" valign="top" rowspan="1" colspan="1">COPD gold1/2</th>
<th align="left" valign="top" rowspan="1" colspan="1">
<p>COPD</p>
<p>gold3/4</p>
</th>
</tr>
</thead>
<tbody>
<tr>
<td align="left" rowspan="1" colspan="1">Age</td>
<td align="left" rowspan="1" colspan="1">55.6 ± 13.2</td>
<td align="left" rowspan="1" colspan="1">65.8 ± 4.0</td>
<td align="left" rowspan="1" colspan="1">65.2 ± 2.1</td>
<td align="left" rowspan="1" colspan="1">60.3 ± 1.7</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">Sex (M/F)</td>
<td align="left" rowspan="1" colspan="1">2/2</td>
<td align="left" rowspan="1" colspan="1">4/6</td>
<td align="left" rowspan="1" colspan="1">9/6</td>
<td align="left" rowspan="1" colspan="1">5/7</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">Smoking (pack‐year)</td>
<td align="left" rowspan="1" colspan="1">0</td>
<td align="left" rowspan="1" colspan="1">58 ± 10</td>
<td align="left" rowspan="1" colspan="1">56 ± 9 (n = 15)</td>
<td align="left" rowspan="1" colspan="1">46 ± 6 (n = 10)</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">pre‐FEV1 (L)</td>
<td align="left" rowspan="1" colspan="1">2.83 ± 0.40</td>
<td align="left" rowspan="1" colspan="1">2.42 ± 0.19</td>
<td align="left" rowspan="1" colspan="1">2.06 ± 0.16</td>
<td align="left" rowspan="1" colspan="1">0.79 ± 0.17 (n = 11)
<xref ref-type="fn" rid="fba21090-note-0004">***</xref>
</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">post‐FEV1 (L)</td>
<td align="left" rowspan="1" colspan="1">2.98 ± 0.49</td>
<td align="left" rowspan="1" colspan="1">2.57 ± 0.19</td>
<td align="left" rowspan="1" colspan="1">2.18 ± 0.16</td>
<td align="left" rowspan="1" colspan="1">0.86 ± 0.16
<xref ref-type="fn" rid="fba21090-note-0004">***</xref>
</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">pre‐FVC (L)</td>
<td align="left" rowspan="1" colspan="1">3.60 ± 0.60</td>
<td align="left" rowspan="1" colspan="1">3.36 ± 0.28</td>
<td align="left" rowspan="1" colspan="1">3.40 ± 0.25</td>
<td align="left" rowspan="1" colspan="1">1.99 ± 0.28 (n = 11)
<xref ref-type="fn" rid="fba21090-note-0005">*</xref>
</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">post‐FVC (L)</td>
<td align="left" rowspan="1" colspan="1">3.71 ± 0.68</td>
<td align="left" rowspan="1" colspan="1">3.49 ± 0.27</td>
<td align="left" rowspan="1" colspan="1">3.56 ± 0.27</td>
<td align="left" rowspan="1" colspan="1">2.24 ± 0.28 (n = 11)
<xref ref-type="fn" rid="fba21090-note-0005">*</xref>
</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">FEV1 (%pred)</td>
<td align="left" rowspan="1" colspan="1">98 ± 7</td>
<td align="left" rowspan="1" colspan="1">96 ± 5</td>
<td align="left" rowspan="1" colspan="1">76 ± 4</td>
<td align="left" rowspan="1" colspan="1">28 ± 5
<xref ref-type="fn" rid="fba21090-note-0003">****</xref>
</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">FEV1/FVC (%)</td>
<td align="left" rowspan="1" colspan="1">81 ± 2</td>
<td align="left" rowspan="1" colspan="1">74 ± 1</td>
<td align="left" rowspan="1" colspan="1">62 ± 2
<xref ref-type="fn" rid="fba21090-note-0005">*</xref>
</td>
<td align="left" rowspan="1" colspan="1">62 ± 3 (n = 11)
<xref ref-type="fn" rid="fba21090-note-0003">****</xref>
</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">PO2 (mmHg)</td>
<td align="left" rowspan="1" colspan="1">116 (n = 2)</td>
<td align="left" rowspan="1" colspan="1">107 ± 22 (n = 4)</td>
<td align="left" rowspan="1" colspan="1">105 ± 11 (n = 13)</td>
<td align="left" rowspan="1" colspan="1">63 ± 4 (n = 9)
<xref ref-type="fn" rid="fba21090-note-0005">*</xref>
<sup>,</sup>
<xref ref-type="fn" rid="fba21090-note-0002">a</xref>
</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">O2SAT</td>
<td align="left" rowspan="1" colspan="1">0.98 (n = 2)</td>
<td align="left" rowspan="1" colspan="1">0.95 ± 0.02 (n = 4)</td>
<td align="left" rowspan="1" colspan="1">0.97 ± 0.01 (n = 13)</td>
<td align="left" rowspan="1" colspan="1">0.92 ± 0.03 (n = 5)</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">PCO2 (mmHg)</td>
<td align="left" rowspan="1" colspan="1">40.5 (n = 2)</td>
<td align="left" rowspan="1" colspan="1">43 ± 1 (n = 4)</td>
<td align="left" rowspan="1" colspan="1">48 ± 2 (n = 13)</td>
<td align="left" rowspan="1" colspan="1">53 ± 2 (n = 8)</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">HCO3 (mmol/L)</td>
<td align="left" rowspan="1" colspan="1">25 (=2)</td>
<td align="left" rowspan="1" colspan="1">23 ± 1 (n = 4)</td>
<td align="left" rowspan="1" colspan="1">25 ± 0.4 (n = 13)</td>
<td align="left" rowspan="1" colspan="1">28 ± 3 (n = 4)</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">PH</td>
<td align="left" rowspan="1" colspan="1">7.41 (n = 2)</td>
<td align="left" rowspan="1" colspan="1">7.3 ± 0.1 (n = 4)</td>
<td align="left" rowspan="1" colspan="1">7.3 ± 0.02 (n = 13)</td>
<td align="left" rowspan="1" colspan="1">7.4 ± 0.02 (n = 8)</td>
</tr>
</tbody>
</table>
<table-wrap-foot id="fba21090-ntgp-0001">
<fn id="fba21090-note-0001">
<p>Abbreviations: HV, healthy volunteers; SM, Non‐COPD smokers.</p>
</fn>
<fn id="fba21090-note-0002">
<label>a</label>
<p>Significant in COPD3/4 vs COPD1/2. Nonparametric Kruskal‐Wallis followed by Dunn's multiple comparison tests (only showing SM vs COPD1/2 or COPD3/4).</p>
</fn>
<fn id="fba21090-note-0003">
<label>****</label>
<p>
<italic>P</italic>
 < .0001.</p>
</fn>
<fn id="fba21090-note-0004">
<label>***</label>
<p>
<italic>P</italic>
 < .001.</p>
</fn>
<fn id="fba21090-note-0005">
<label>*</label>
<p>
<italic>P</italic>
 < .05.</p>
</fn>
</table-wrap-foot>
<permissions>
<copyright-holder>John Wiley & Sons, Ltd</copyright-holder>
</permissions>
</table-wrap>
<fig fig-type="Figure" xml:lang="en" id="fba21090-fig-0001" orientation="portrait" position="float">
<label>Figure 1</label>
<caption>
<p>Increased p62, LC3‐II, total LC3, and BICD1 proteins in chronic obstructive pulmonary disease (COPD) patients. Lung tissue from surgical resections were obtained from four healthy volunteers (HV), 10 non‐COPD smoker volunteers (SM), 16 mild CD1/2 (COPD GOLD stage 1 plus GOLD stage 2), and 12 severe CD G3/4 (COPD GOLD stage 3 plus GOLD stage 4) and whole cell extracts were prepared for Western blot. (A) Representative blot.
<italic>Ct</italic>
: Control whole cell extract from BEAS‐2B cells. Immunoblotting for p62, LC3‐II, and BICD1 were performed and relative protein amounts were calculated and plotted on a graph against β‐actin: (B) LC3‐II, (C) LC3‐I + LC3‐II (total LC3) (D) p62, (E) p62 oligomers, and (F) BICD1. (G) Correlation between p62 and BICD1 in all patients. (H) Correlation between total LC3 and BICD1 in all patients. Data were analyzed by using Kruskal‐Wallis followed by Mann‐Whitney.
<italic>P</italic>
 < .05 was considered statistically significant. *
<italic>P</italic>
 < .05, **
<italic>P</italic>
 < .01. Whole cell extracts from BEAS‐2B cells were used as control (
<italic>Ct</italic>
) in the Western blot membrane</p>
</caption>
<graphic id="nlm-graphic-1" xlink:href="FBA2-1-688-g001"></graphic>
</fig>
<table-wrap id="fba21090-tbl-0002" xml:lang="en" orientation="portrait" position="float">
<label>Table 2</label>
<caption>
<p>Correlations</p>
</caption>
<table frame="hsides" rules="groups">
<col style="border-right:solid 1px #000000" span="1"></col>
<col style="border-right:solid 1px #000000" span="1"></col>
<col style="border-right:solid 1px #000000" span="1"></col>
<col style="border-right:solid 1px #000000" span="1"></col>
<col style="border-right:solid 1px #000000" span="1"></col>
<col style="border-right:solid 1px #000000" span="1"></col>
<col style="border-right:solid 1px #000000" span="1"></col>
<col style="border-right:solid 1px #000000" span="1"></col>
<col style="border-right:solid 1px #000000" span="1"></col>
<col style="border-right:solid 1px #000000" span="1"></col>
<col style="border-right:solid 1px #000000" span="1"></col>
<col style="border-right:solid 1px #000000" span="1"></col>
<col style="border-right:solid 1px #000000" span="1"></col>
<thead valign="top">
<tr style="border-bottom:solid 1px #000000">
<th align="left" rowspan="2" valign="top" colspan="1"> </th>
<th align="left" colspan="3" style="border-bottom:solid 1px #000000" valign="top" rowspan="1">SM</th>
<th align="left" colspan="3" style="border-bottom:solid 1px #000000" valign="top" rowspan="1">COPD Gold 1/2</th>
<th align="left" colspan="3" style="border-bottom:solid 1px #000000" valign="top" rowspan="1">COPD Gold 3/4</th>
<th align="left" colspan="3" style="border-bottom:solid 1px #000000" valign="top" rowspan="1">All COPD</th>
</tr>
<tr style="border-bottom:solid 1px #000000">
<th align="left" valign="top" rowspan="1" colspan="1">FEV
<sub>1</sub>
</th>
<th align="left" valign="top" rowspan="1" colspan="1">FEV
<sub>1</sub>
/FVC</th>
<th align="left" valign="top" rowspan="1" colspan="1">SM Pack‐y</th>
<th align="left" valign="top" rowspan="1" colspan="1">FEV
<sub>1</sub>
</th>
<th align="left" valign="top" rowspan="1" colspan="1">FEV
<sub>1</sub>
/FVC</th>
<th align="left" valign="top" rowspan="1" colspan="1">SM Pack‐y</th>
<th align="left" valign="top" rowspan="1" colspan="1">FEV
<sub>1</sub>
</th>
<th align="left" valign="top" rowspan="1" colspan="1">FEV
<sub>1</sub>
/FVC</th>
<th align="left" valign="top" rowspan="1" colspan="1">SM Pack‐y</th>
<th align="left" valign="top" rowspan="1" colspan="1">FEV
<sub>1</sub>
</th>
<th align="left" valign="top" rowspan="1" colspan="1">FEV
<sub>1</sub>
/FVC</th>
<th align="left" valign="top" rowspan="1" colspan="1">SM Pack‐y</th>
</tr>
</thead>
<tbody>
<tr>
<td align="left" rowspan="1" colspan="1">p62</td>
<td align="left" rowspan="1" colspan="1">
<p>
<italic>R</italic>
 = −.22</p>
<p>
<italic>P</italic>
 = .54</p>
</td>
<td align="left" rowspan="1" colspan="1">
<p>
<italic>R</italic>
 = −.19</p>
<p>
<italic>P</italic>
 = .61</p>
</td>
<td align="left" rowspan="1" colspan="1">
<p>
<italic>R</italic>
 = .36</p>
<p>
<italic>P</italic>
 = 31</p>
</td>
<td align="left" rowspan="1" colspan="1">
<p>
<italic>R</italic>
 = −.42</p>
<p>
<italic>P</italic>
 = .10</p>
</td>
<td align="left" rowspan="1" colspan="1">
<p>
<italic>R</italic>
 = .30</p>
<p>
<italic>P</italic>
 = .25</p>
</td>
<td align="left" rowspan="1" colspan="1">
<p>
<italic>R</italic>
 = .07</p>
<p>
<italic>P</italic>
 = .81</p>
</td>
<td align="left" rowspan="1" colspan="1">
<p>
<bold>
<italic>R</italic>
 = −.60</bold>
</p>
<p>
<bold>
<italic>P</italic>
 = .043</bold>
<xref ref-type="fn" rid="fba21090-note-0010">*</xref>
</p>
</td>
<td align="left" rowspan="1" colspan="1">
<p>
<italic>R</italic>
 = −.31</p>
<p>
<italic>P</italic>
 = .33</p>
</td>
<td align="left" rowspan="1" colspan="1">
<p>
<italic>R</italic>
 = .06</p>
<p>
<italic>P</italic>
 = .88</p>
</td>
<td align="left" rowspan="1" colspan="1">
<p>
<bold>
<italic>R</italic>
 = −.45</bold>
</p>
<p>
<bold>
<italic>P</italic>
 = .017</bold>
<xref ref-type="fn" rid="fba21090-note-0010">
<bold>*</bold>
</xref>
</p>
</td>
<td align="left" rowspan="1" colspan="1">
<p>
<italic>R</italic>
 = −.11</p>
<p>
<italic>P</italic>
 = .59</p>
</td>
<td align="left" rowspan="1" colspan="1">
<p>
<italic>R</italic>
 = −.04</p>
<p>
<italic>P</italic>
 = .85</p>
</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">p62 dimer</td>
<td align="left" rowspan="1" colspan="1">
<p>
<italic>R</italic>
 = .19</p>
<p>
<italic>P</italic>
 = .61</p>
</td>
<td align="left" rowspan="1" colspan="1">
<p>
<italic>R</italic>
 = .36</p>
<p>
<italic>P</italic>
 = .32</p>
</td>
<td align="left" rowspan="1" colspan="1">
<p>
<italic>R</italic>
 = .49</p>
<p>
<italic>P</italic>
 = .15</p>
</td>
<td align="left" rowspan="1" colspan="1">
<p>
<italic>R</italic>
 = −.36</p>
<p>
<italic>P</italic>
 = .17</p>
</td>
<td align="left" rowspan="1" colspan="1">
<p>
<italic>R</italic>
 = −.29</p>
<p>
<italic>P</italic>
 = .27</p>
</td>
<td align="left" rowspan="1" colspan="1">
<p>
<bold>
<italic>R</italic>
 = .82</bold>
</p>
<p>
<bold>
<italic>P</italic>
 = .0004</bold>
<xref ref-type="fn" rid="fba21090-note-0008">***</xref>
</p>
</td>
<td align="left" rowspan="1" colspan="1">
<p>
<italic>R</italic>
 = −.52</p>
<p>
<italic>P</italic>
 = .094</p>
</td>
<td align="left" rowspan="1" colspan="1">
<p>
<italic>R</italic>
 = −.30</p>
<p>
<italic>P</italic>
 = .34</p>
</td>
<td align="left" rowspan="1" colspan="1">
<p>
<italic>R</italic>
 = −.16</p>
<p>
<italic>P</italic>
 = .66</p>
</td>
<td align="left" rowspan="1" colspan="1">
<p>
<italic>R</italic>
 = −.27</p>
<p>
<italic>P</italic>
 = .16</p>
</td>
<td align="left" rowspan="1" colspan="1">
<p>
<italic>R</italic>
 = −.21</p>
<p>
<italic>P</italic>
 = .24</p>
</td>
<td align="left" rowspan="1" colspan="1">
<p>
<bold>
<italic>R</italic>
 = .54</bold>
</p>
<p>
<bold>
<italic>P</italic>
 = .006</bold>
<xref ref-type="fn" rid="fba21090-note-0009">**</xref>
</p>
</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">LC3‐II</td>
<td align="left" rowspan="1" colspan="1">
<p>
<italic>R</italic>
 = −.37</p>
<p>
<italic>P</italic>
 = .30</p>
</td>
<td align="left" rowspan="1" colspan="1">
<p>
<italic>R</italic>
 = −.2</p>
<p>
<italic>P</italic>
 = .57</p>
</td>
<td align="left" rowspan="1" colspan="1">
<p>
<italic>R</italic>
 = .07</p>
<p>
<italic>P</italic>
 = .87</p>
</td>
<td align="left" rowspan="1" colspan="1">
<p>
<italic>R</italic>
 = −.35</p>
<p>
<italic>P</italic>
 = .18</p>
</td>
<td align="left" rowspan="1" colspan="1">
<p>
<italic>R</italic>
 = .32</p>
<p>
<italic>P</italic>
 = .22</p>
</td>
<td align="left" rowspan="1" colspan="1">
<p>
<italic>R</italic>
 = .18</p>
<p>
<italic>P</italic>
 = .53</p>
</td>
<td align="left" rowspan="1" colspan="1">
<p>
<italic>R</italic>
 = .09</p>
<p>
<italic>P</italic>
 = .78</p>
</td>
<td align="left" rowspan="1" colspan="1">
<p>
<italic>R</italic>
 = .01</p>
<p>
<italic>P</italic>
 = .99</p>
</td>
<td align="left" rowspan="1" colspan="1">
<p>
<italic>R</italic>
 = .18</p>
<p>
<italic>P</italic>
 = .62</p>
</td>
<td align="left" rowspan="1" colspan="1">
<p>
<bold>
<italic>R</italic>
 = −.56</bold>
</p>
<p>
<bold>
<italic>P</italic>
 = .002</bold>
<xref ref-type="fn" rid="fba21090-note-0009">
<bold>**</bold>
</xref>
</p>
</td>
<td align="left" rowspan="1" colspan="1">
<p>
<italic>R</italic>
 = −.36</p>
<p>
<italic>P</italic>
 = .056</p>
</td>
<td align="left" rowspan="1" colspan="1">
<p>
<italic>R</italic>
 = −.12</p>
<p>
<italic>P</italic>
 = .57</p>
</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">Total LC3</td>
<td align="left" rowspan="1" colspan="1">
<p>
<italic>R</italic>
 = −.33</p>
<p>
<italic>P</italic>
 = .34</p>
</td>
<td align="left" rowspan="1" colspan="1">
<p>
<italic>R</italic>
 = −.26</p>
<p>
<italic>P</italic>
 = .47</p>
</td>
<td align="left" rowspan="1" colspan="1">
<p>
<italic>R</italic>
 = −.13</p>
<p>
<italic>P</italic>
 = .73</p>
</td>
<td align="left" rowspan="1" colspan="1">
<p>
<italic>R</italic>
 = −.35</p>
<p>
<italic>P</italic>
 = .18</p>
</td>
<td align="left" rowspan="1" colspan="1">
<p>
<italic>R</italic>
 = .06</p>
<p>
<italic>P</italic>
 = .82</p>
</td>
<td align="left" rowspan="1" colspan="1">
<p>
<italic>R</italic>
 = −.24</p>
<p>
<italic>P</italic>
 = .39</p>
</td>
<td align="left" rowspan="1" colspan="1">
<p>
<italic>R</italic>
 = .07</p>
<p>
<italic>P</italic>
 = .83</p>
</td>
<td align="left" rowspan="1" colspan="1">
<p>
<italic>R</italic>
 = .0</p>
<p>
<italic>P</italic>
 = 1.0</p>
</td>
<td align="left" rowspan="1" colspan="1">
<p>
<italic>R</italic>
 = .04</p>
<p>
<italic>P</italic>
 = .93</p>
</td>
<td align="left" rowspan="1" colspan="1">
<p>
<bold>
<italic>R</italic>
 = −.38</bold>
</p>
<p>
<bold>
<italic>P</italic>
 = .045</bold>
<xref ref-type="fn" rid="fba21090-note-0010">
<bold>*</bold>
</xref>
</p>
</td>
<td align="left" rowspan="1" colspan="1">
<p>
<bold>
<italic>R</italic>
 = −.38</bold>
</p>
<p>
<bold>
<italic>P</italic>
 = .044</bold>
<xref ref-type="fn" rid="fba21090-note-0010">
<bold>*</bold>
</xref>
</p>
</td>
<td align="left" rowspan="1" colspan="1">
<p>
<italic>R</italic>
 = −.15</p>
<p>
<italic>P</italic>
 = .47</p>
</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">BICD1</td>
<td align="left" rowspan="1" colspan="1">
<p>
<italic>R</italic>
 = −.14</p>
<p>
<italic>P</italic>
 = .7</p>
</td>
<td align="left" rowspan="1" colspan="1">
<p>
<italic>R</italic>
 = .11</p>
<p>
<italic>P</italic>
 = .76</p>
</td>
<td align="left" rowspan="1" colspan="1">
<p>
<italic>R</italic>
 = .20</p>
<p>
<italic>P</italic>
 = .58</p>
</td>
<td align="left" rowspan="1" colspan="1">
<p>
<italic>R</italic>
 = −.48</p>
<p>
<italic>P</italic>
 = .06</p>
</td>
<td align="left" rowspan="1" colspan="1">
<p>
<italic>R</italic>
 = .18</p>
<p>
<italic>P</italic>
 = .51</p>
</td>
<td align="left" rowspan="1" colspan="1">
<p>
<italic>R</italic>
 = .37</p>
<p>
<italic>P</italic>
 = .17</p>
</td>
<td align="left" rowspan="1" colspan="1">
<p>
<bold>
<italic>R</italic>
 = .59</bold>
</p>
<p>
<bold>
<italic>P</italic>
 = .049</bold>
<xref ref-type="fn" rid="fba21090-note-0010">*</xref>
</p>
</td>
<td align="left" rowspan="1" colspan="1">
<p>
<italic>R</italic>
 = .43</p>
<p>
<italic>P</italic>
 = .17</p>
</td>
<td align="left" rowspan="1" colspan="1">
<p>
<italic>R</italic>
 = .01</p>
<p>
<italic>P</italic>
 = .99</p>
</td>
<td align="left" rowspan="1" colspan="1">
<p>
<bold>
<italic>R</italic>
 = −.45</bold>
</p>
<p>
<bold>
<italic>P</italic>
 = .017</bold>
<xref ref-type="fn" rid="fba21090-note-0010">
<bold>*</bold>
</xref>
</p>
</td>
<td align="left" rowspan="1" colspan="1">
<p>
<italic>R</italic>
 = −.20</p>
<p>
<italic>P</italic>
 = .31</p>
</td>
<td align="left" rowspan="1" colspan="1">
<p>
<italic>R</italic>
 = .15</p>
<p>
<italic>P</italic>
 = .46</p>
</td>
</tr>
</tbody>
</table>
<table-wrap-foot id="fba21090-ntgp-0002">
<fn id="fba21090-note-0006">
<p>Abbreviations: HV, healthy volunteers; SM, Non‐COPD smokers.</p>
</fn>
<fn id="fba21090-note-0007">
<p>
<italic>Note</italic>
: Spearman correlation (nonparametric).</p>
</fn>
<fn id="fba21090-note-0008">
<label>***</label>
<p>
<italic>P</italic>
 < .001.</p>
</fn>
<fn id="fba21090-note-0009">
<label>**</label>
<p>
<italic>P</italic>
 < .01.</p>
</fn>
<fn id="fba21090-note-0010">
<label>*</label>
<p>
<italic>P</italic>
 < .05. Bold values simply highlights correlations that are statistically significant.</p>
</fn>
</table-wrap-foot>
<permissions>
<copyright-holder>John Wiley & Sons, Ltd</copyright-holder>
</permissions>
</table-wrap>
<p>We observed a significant increase in BICD1 in CD1/2 and CD3/4 as compared to SM (Figure
<xref rid="fba21090-fig-0001" ref-type="fig">1</xref>
A,F). BICD1 positively correlated with p62 monomers (
<italic>r</italic>
 = 0.76,
<italic>P</italic>
 < .0001) (Figure
<xref rid="fba21090-fig-0001" ref-type="fig">1</xref>
G) and was close to significance with total LC3 (
<italic>r</italic>
 = 0.31,
<italic>P</italic>
 < .055) (Figure
<xref rid="fba21090-fig-0001" ref-type="fig">1</xref>
H). In addition, BICD1 negatively correlated with lung function by FEV
<sub>1</sub>
(% predicted) in all COPD patients and only CD3/4 patients (Table
<xref rid="fba21090-tbl-0002" ref-type="table">2</xref>
). Together these data suggest that although autophagosomes are increased as COPD severity progresses, this might be due to a defect in autophagosome maturation resulting in increased total LC3 and p62 together with evidence of p62 oligomer formation. Our data also suggest that an increase in BICD1 in milder CD1/2 precedes the accumulation of p62 and total LC3 observed in more severe CD3/4.</p>
</sec>
<sec id="fba21090-sec-0014">
<label>3.2</label>
<title>Cigarette smoke impairs autophagic clearance of p62 oligomers and autophagosomes</title>
<p>In order to understand how cigarette smoke exposure affects the autophagic process in the lung, bronchial epithelial cells (BEAS‐2B cells) were incubated with increasing concentrations of CSE and markers of autophagy (LC3‐II, total LC3, and p62) were assessed by Western blotting. CSE induced a concentration‐dependent increase in autophagosomes (LC3‐II) 24 hours postexposure (visible from CSE 7.5%) (Figure
<xref rid="fba21090-fig-0002" ref-type="fig">2</xref>
A). As previously observed in COPD patients, CSE also induced a concentration‐dependent increase in p62 oligomers which were resistant to the reducing conditions of the SDS‐PAGE (Figure
<xref rid="fba21090-fig-0002" ref-type="fig">2</xref>
A). This increase in p62 oligomers correlated with an increase in total LC3. At higher concentrations of CSE (HC‐CSE [9%‐10%]), the increase in total LC3 and p62 oligomers are particularly visible (Figure
<xref rid="fba21090-fig-0002" ref-type="fig">2</xref>
A), suggesting a defect in autophagy maturation at high concentration of CSE only. CSE induced a concentration‐dependent decrease in cell viability with a maximum of 34% at HC‐CSE (
<italic>P</italic>
 < .001) (Figure
<xref rid="fba21090-sup-0001" ref-type="supplementary-material">S2</xref>
). An increase in cleaved caspase‐3 at HC‐CSE but not with lower CSE concentration suggests that apoptosis could be responsible for the reduction in cell viability observed (Figure
<xref rid="fba21090-sup-0001" ref-type="supplementary-material">S3</xref>
). In order to compare a CSE concentration that induces autophagy versus a concentration that seemed to induce defective autophagic flux, BEAS‐2B cells were exposed to low concentration of CSE (LC‐CSE or 3.3%) and high concentrations (HC‐CSE or 10%) for 1, 5, 24 hours, and an additional time point 24 hours after washing cells with PBS and incubating with fresh media (48 hours). Both LC‐ and HC‐CSE induced autophagy (1‐5 hours) as shown by the conversion of LC3‐I to LC3‐II, suggesting an increase in LC3‐II incorporation into autophagosomes (Figure
<xref rid="fba21090-fig-0002" ref-type="fig">2</xref>
B,C). Whereas LC‐CSE induction of LC3‐II goes back to baseline levels at 24 hours, the increase in autophagosomes by HC‐CSE is further increased with time, despite the CSE stimulus having been removed (48 hours) (Figure
<xref rid="fba21090-fig-0002" ref-type="fig">2</xref>
B,C). These findings were confirmed using confocal microscopy by detection of autophagosomes using a specific antibody against LC3 which was conjugated to GPF (Figure
<xref rid="fba21090-fig-0002" ref-type="fig">2</xref>
E). Anti‐LAMP1 was used to localize lysosomes (conjugated to Alexa Fluor 594) (Figure
<xref rid="fba21090-fig-0002" ref-type="fig">2</xref>
E). LC‐CSE induced autophagosomes (LC3 punctae and total LC3 area), peaking at 24 hours and returning to baseline levels after cells were washed and incubated in fresh media after 24 hours (48 hours time point) (Figure
<xref rid="fba21090-fig-0002" ref-type="fig">2</xref>
E). HC‐CSE also induced autophagosomes; however, these failed to return to basal levels as shown at the 48 hours time point as compared to NT (total LC3 area and LC3 punctae) (Figure
<xref rid="fba21090-fig-0002" ref-type="fig">2</xref>
E). Hence, HC‐CSE induced persistent autophagosomes that were not cleared even 48 hours posttreatment, suggesting a lack of autophagosome clearance as a result of defective autophagosome maturation. In addition to p62 monomer accumulation, CSE also induced a concentration‐dependent increase in p62 oligomers that were resistant to the reducing conditions of SDS‐PAGE (Figure
<xref rid="fba21090-fig-0002" ref-type="fig">2</xref>
B). Similar to LC3‐II, LC‐CSE induced p62 oligomers that peaked at 5 hours and returned to basal levels at 24 hours. At HC‐CSE, p62 oligomers peaked between 5 hours and 24 hours but remained elevated at 48 hours (Figure
<xref rid="fba21090-fig-0002" ref-type="fig">2</xref>
B). p62 monomers were also increased at 24 hours and 48 hours time points. Preincubation with the antioxidant N‐acetyl cysteine (NAC, 10 mmol/L) totally prevented CSE‐induced p62, p62 oligomers, LC3‐II, and accumulation of total LC3, thus demonstrating that oxidants present in CSE are responsible for autophagy induction and accumulation of autophagic adaptors (Figure
<xref rid="fba21090-sup-0001" ref-type="supplementary-material">S4</xref>
).</p>
<fig fig-type="Figure" xml:lang="en" id="fba21090-fig-0002" orientation="portrait" position="float">
<label>Figure 2</label>
<caption>
<p>Increased p62, LC3‐II, and total LC3 in bronchial epithelial cell line (BEAS‐2B) treated with cigarette smoke extract (CSE). (A) Whole‐cell extracts from BEAS‐2B cells that were treated with increasing concentration of CSE (3.3%‐10% v/v) for 24 h were analyzed by immunoblotting for LC3, p62, and β‐actin, n = 3 (B) Whole‐cell extracts from BEAS‐2B cells treated with a low and high concentration of CSE (LC‐CSE (3.3% v/v) and HC‐CSE (10% v/v)) at increasing time points (1‐48 h) and analyzed by immunoblotting for LC3, p62, and β‐actin, n = 4. (C) Autophagosomes (AP) formation was assessed by LC3‐II vs β‐actin from (B) and plotted. (D) Total LC3 proteins levels were assessed against β‐actin from (B). For (C) and (D) statistical analysis was performed using two‐way ANOVA for repeated measures with Bonferroni posttests. *
<italic>P</italic>
< .05, **
<italic>P</italic>
< .01, ***
<italic>P</italic>
< .001. (E) APs were detected by confocal microscopy using a rabbit anti‐LC3 antibody conjugated to 488 Donkey Anti‐rabbit and lysosomes were detected by using mouse anti‐LAMP1 antibody conjugated to anti‐mouse APC. DAPI was used to visualize nuclei. Cells were incubated with CSE as described in (B) Scale bar: 10 μm. Statistical analysis was performed by comparing HC (*) and LC‐CSE ($) vs NT control
<italic>P</italic>
< .05,
<italic>P</italic>
< .01,
<italic>P</italic>
< .0001. Data are expressed as median ± SD of n = 3. * means comparing NT vs HC‐CSE; *
<italic>P</italic>
< .05, **
<italic>P</italic>
< .01, ***
<italic>P</italic>
< .001. (F) An “LC3 turnover” assay was performed by incubating BEAS‐2B cells with LC‐CSE and HC‐CSE for 19 hours plus 5 hours in the presence of ammonium chloride (AC, left graph, 10mM) or chloroquine (CQ, right graph, 100 µmol/L). The amount of LC3‐II was plotted against β‐actin. Data are expressed as median ± SEM</p>
</caption>
<graphic id="nlm-graphic-3" xlink:href="FBA2-1-688-g002"></graphic>
</fig>
</sec>
<sec id="fba21090-sec-0015">
<label>3.3</label>
<title>CSE impairs the autophagic flux by inhibiting autophagy maturation</title>
<p>LC3‐II is normally present at either side of the double membrane of autophagosomes. LC3‐II present inside the autophagosome is digested with the internal cargo whereas LC3‐II present outside is recycled back into LC3‐I in the cytoplasm. If the autophagic flux is impaired at the maturation step, total levels of LC3 (LC3‐I + LC3‐II) are increased due to newly synthesized LC3 and a lack of LC3‐II degradation.
<xref rid="fba21090-bib-0029" ref-type="ref">29</xref>
After exposure to HC‐CSE, total LC3 was significantly increased at 24 hours and 48 hours compared to LC‐CSE and control suggesting defective autophagy maturation (Figure
<xref rid="fba21090-fig-0002" ref-type="fig">2</xref>
B,D). An “LC3 turnover” assay was performed in order to assess the autophagic flux at the initiation step. In the presence of the lysosomotropic compounds ammonium chloride (AC) or chloroquine (CQ) for 5 hours, baseline autophagic flux can be observed by an accumulation of autophagosomes (LC3‐II) (Figure
<xref rid="fba21090-fig-0002" ref-type="fig">2</xref>
F). Accumulation of autophagosomes still happens when cells were treated with LC‐CSE for 24 hours plus 5 hours with lysosomotropic compounds (Figure
<xref rid="fba21090-fig-0002" ref-type="fig">2</xref>
F). Interestingly, despite high levels of HC‐CSE‐induced LC3‐II, autophagosomes are still being formed suggesting that the early steps of the autophagic flux (initiation) are fully functional (Figure
<xref rid="fba21090-fig-0002" ref-type="fig">2</xref>
F). These findings were confirmed when using the inhibitor of lysosome to autophagosome fusion, bafilomycin, for 2 hours after HC‐CSE treatment (Figure
<xref rid="fba21090-sup-0001" ref-type="supplementary-material">S5</xref>
). Our data imply that cells treated with HC‐CSE could be defective in autophagosome maturation such as the binding of autophagosomes to lysosomes to form autolysosomes. In order to detect if autolysosmes were visible in CSE‐incubated cells, BEAS‐2B cells were co‐stained with LAMP1 (lysosomal marker) and LC3 (Figure
<xref rid="fba21090-fig-0002" ref-type="fig">2</xref>
E); however, no co‐localization was observed. We also transiently transfected HEK293 cells with p62‐FLAG and GFP‐LC3 plasmids in order to optimize CSE concentrations that recreated normal CSE‐induced autophagy activation and CSE‐induced defective autophagic flux (Figure
<xref rid="fba21090-fig-0003" ref-type="fig">3</xref>
A). LC‐CSE induced LC3‐II and p62 oligomer accumulation 24 hours posttreatment, and, as seen in BEAS‐2B, these were partially reduced 24 hours after the CSE stimulus was removed (48 hours). In contrast, HC‐CSE strongly induced p62 oligomer accumulation at 24 hours, and this increase continued even after the CSE stimulus was removed (48 hours) (Figure
<xref rid="fba21090-fig-0003" ref-type="fig">3</xref>
A). p62 monomers were also increased. As expected, autophagosome (LC3‐II) formation followed a similar trend, with an accumulation at 24 hours that was further increased after 24 hours in fresh media (Figure
<xref rid="fba21090-fig-0003" ref-type="fig">3</xref>
A). This was associated with an overall increase in total LC3 protein (Figure
<xref rid="fba21090-fig-0003" ref-type="fig">3</xref>
A). Thus, HC‐CSE induced defective autophagy maturation in transfected HEK293 cells. In order to confirm if defective autophagy maturation could be visualized by microscopy, HEK293 cells were transiently transfected using a GFP‐mCherry‐LC3 tandem construct. Using this construct, autophagosomes and autolysosomes were labeled with yellow (mCherry and GFP) and red (mCherry only) signals, respectively. If autophagy is activated, both yellow and red punctae are increased. However, if autophagosome maturation into autolysosomes is blocked, only yellow punctae are increased without a concomitant increase in red punctae. We observed that at LC‐CSE autophagosomes were visible (yellow punctae) after 5 hours incubation and that they progressively became autolysosomes (red punctae) over time (24‐48 hours) (Figure
<xref rid="fba21090-fig-0003" ref-type="fig">3</xref>
B). HC‐CSE induced greater autophagosomes formation (yellow punctae, 5 hours) that remained constant over time with little evidence of autophagosome conversion to autolysosomes (red punctae) (Figure
<xref rid="fba21090-fig-0003" ref-type="fig">3</xref>
B). Quantification of autophagosomes (AP, yellow punctae) and autolysosomes (AL, red punctae only) suggest a persistence of autophagosomes over autolysosomes (Figure
<xref rid="fba21090-fig-0003" ref-type="fig">3</xref>
B; graph) as compared to control and similar to CQ after 5 hours. HC‐CSE induced some large structures that could not be autophagosomes. These likely represent p62 aggregates that have recruited GFP‐mCherry‐LC3. It has previously been shown that p62 can recruit GFP‐LC3 into protein aggregates in an autophagy‐independent manner.
<xref rid="fba21090-bib-0030" ref-type="ref">30</xref>
Interestingly, when HEK293 cells were incubated with chloroquine, to inhibit the binding of autophagosome to lysosome, the continuous presence of autophagosomes was observed, similar to the treatment with HC‐CSE (yellow punctae) (Figure
<xref rid="fba21090-fig-0003" ref-type="fig">3</xref>
C). Hence, a lack of autolysosome formation suggests that autophagosomes are unable to bind lysosomes after incubation with high concentration of CSE resulting in malfunctioning autophagic flux by defective autophagosome maturation.</p>
<fig fig-type="Figure" xml:lang="en" id="fba21090-fig-0003" orientation="portrait" position="float">
<label>Figure 3</label>
<caption>
<p>Evidence of defective autophagosome maturation in CSE‐treated HEK293 cells. (A) HEK293 cells were transfected with p62‐FLAG and LC3‐GFP and incubated with low or high CSE (LC‐CSE and HC‐CSE) for 24 h. Cells were washed and incubated with fresh media without CSE for another 24 h (48 h). Whole‐cell extracts were resolved by Western blot and immune‐stained against GFP and FLAG. (B) HEK293 cells were transfected with GFP‐mCherry‐LC3 plasmid and incubated with LC‐CSE or HC‐CSE for 5 h, 24 h, and 24 h plus another 24 h in fresh media without CSE (48 h). GFP and mCherry were visualized by confocal microscopy. DAPI was used as a nuclear control. Scale bar: 10 μm. The ratio of autophagosomes vs autolysosomes (AL/AP) was calculated and plotted. HC‐CSE vs NT at 48 h;
<italic>P</italic>
 = .07 (C) HEK293 cells were transfected with GFP‐mCherry‐LC3 plasmid incubated with CQ for 5 h. Data are representative of three independent experiments</p>
</caption>
<graphic id="nlm-graphic-5" xlink:href="FBA2-1-688-g003"></graphic>
</fig>
</sec>
<sec id="fba21090-sec-0016">
<label>3.4</label>
<title>Impairment of autophagic clearance of LC3 and p62 oligomers by high concentration of CSE confirmed in primary human bronchial epithelial cells</title>
<p>We confirmed these observations in primary HBECs. HBECs were incubated with LC‐CSE and HC‐CSE for a period of 1, 5, and 24 hours and a further 24 hours in minimal media without CSE (48 hours). At both concentrations of CSE, early LC3‐II was observed (1‐5 hours) with marked increase in p62 oligomers after 5 hours exposure (Figure
<xref rid="fba21090-fig-0004" ref-type="fig">4</xref>
). After 24 hours incubation both LC‐CSE and HC‐CSE induced a strong accumulation of LC3‐II, total LC3, and p62 oligomers (Figure
<xref rid="fba21090-fig-0004" ref-type="fig">4</xref>
). However, at the 48 hours time point, basal levels of LC3 and p62 oligomers were observed with LC‐CSE suggesting a resolution of autophagy and subsequent clearance of autophagososmes. On the contrary, cells incubated with HC‐CSE showed a continuous presence of p62 oligomers and LC3‐II and increased total LC3 at 48 hours, suggesting impaired autophagic flux (Figure
<xref rid="fba21090-fig-0004" ref-type="fig">4</xref>
).</p>
<fig fig-type="Figure" xml:lang="en" id="fba21090-fig-0004" orientation="portrait" position="float">
<label>Figure 4</label>
<caption>
<p>Defective autophagosome maturation in CSE‐treated primary human bronchial epithelial cells. HBECs from a healthy volunteer were treated with low or high CSE (LC‐CSE (20% v/v) and HC‐CSE (30% v/v)) at increasing times (1‐48 h) and analyzed by immunoblotting for LC3, p62, and β‐actin. At the 48 h time point, cells were washed and incubated with fresh media without CSE</p>
</caption>
<graphic id="nlm-graphic-7" xlink:href="FBA2-1-688-g004"></graphic>
</fig>
</sec>
<sec id="fba21090-sec-0017">
<label>3.5</label>
<title>CSE‐induced p62 oligomers depend on the Keap1 interacting region</title>
<p>p62 acts as a cargo receptor for the autophagic degradation of ubiquitinated substrates. p62 contains an N‐terminal PB1 domain that allows polymerization, a LIR motif interacting with LC3, a C‐terminal UBA domain that interacts with ubiquitin and a Keap1 interacting region (KIR) that interacts with Keap1 thus controlling Keap1 stability (Figure
<xref rid="fba21090-fig-0005" ref-type="fig">5</xref>
D).
<xref rid="fba21090-bib-0031" ref-type="ref">31</xref>
,
<xref rid="fba21090-bib-0032" ref-type="ref">32</xref>
CSE‐induced p62 oligomers, that are resistant to SDS‐PAGE reducing conditions, have been observed in macrophages from smokers and after hydrogen peroxide treatment.
<xref rid="fba21090-bib-0033" ref-type="ref">33</xref>
,
<xref rid="fba21090-bib-0034" ref-type="ref">34</xref>
The characteristics of these oligomers, their role in the flux of autophagy and the amino acid sequence of p62 that is responsible for the oligomer formation remain unknown. Endogenous p62, immunoprecipitated from BEAS‐2B cells that were incubated with HC‐CSE, displayed association with polyubiquitinated substrates (Figure
<xref rid="fba21090-fig-0005" ref-type="fig">5</xref>
A). The UBA region of p62 is known to bind polyubiquitin and is needed to form cytoplasmic bodies.
<xref rid="fba21090-bib-0035" ref-type="ref">35</xref>
p62 was also associated with LC3‐II at baseline levels, possibly as part of the basal autophagic flux. After HC‐CSE incubation, binding did not increase despite the presence of more LC3‐II (Figure
<xref rid="fba21090-fig-0005" ref-type="fig">5</xref>
A). Interestingly HC‐CSE also induced binding to cytoplasmic LC3‐I (Figure
<xref rid="fba21090-fig-0005" ref-type="fig">5</xref>
A). This is consistent with the recruitment of GFP‐mCherry‐LC3 to p62 aggregates seen in Figure
<xref rid="fba21090-fig-0003" ref-type="fig">3</xref>
B. NBR1 is another autophagy adaptor that contains a PB1 domain allowing heteropolymerization with p62. We found that p62 is associated with NBR1 but that the association was not increased after HC‐CSE incubation. In fact, NBR1 neither form SDS‐PAGE‐resistant oligomers, nor did it accumulate like p62 (Figure
<xref rid="fba21090-sup-0001" ref-type="supplementary-material">S6</xref>
). Using 3%‐8% Tris‐acetate gels and a higher molecular weight ladder, we separated FLAG‐p62 that were overexpressed in HEK293 cells in order to predict the size of the oligomers induced by CSE. Despite FLAG's molecular size of 13kDa, p62 monomer was found at 62.5kDa mark (Figure
<xref rid="fba21090-fig-0005" ref-type="fig">5</xref>
B). In total six p62 oligomers were identified as possible dimers, trimers, tetramers, hexamers, and heptamers (Figure
<xref rid="fba21090-fig-0005" ref-type="fig">5</xref>
B). Incubation of IP‐p62 from CSE‐treated BEAS‐2B cells with the deubiquitinase USP2 also showed that deubiquitination did not result in reduced CSE‐induced p62 oligomers but reduced p62 association with ubiquitinated substrates (Figure
<xref rid="fba21090-fig-0005" ref-type="fig">5</xref>
C). In order to map the amino acid region of p62 involved in oligomer formation we used different GFP‐p62 deletion plasmids that were expressed in HEK293 followed by incubation with CSE (Figure
<xref rid="fba21090-fig-0005" ref-type="fig">5</xref>
E). As p62 expression changed according to the functional domain being deleted, we assessed p62 oligomer formation as p62 dimer versus monomer (Figure
<xref rid="fba21090-fig-0005" ref-type="fig">5</xref>
E). We found that deletion of amino acids 170 to 256 (
<bold>Δ</bold>
170‐256) actually increased dimer formation at baseline (about eightfold) and that deletion of the UBA (
<bold>Δ</bold>
386‐440) domain induced p62 dimer formation by about threefold. CSE induced p62 dimers by about 30‐fold in WT GFP‐p62. CSE also further induced GFP‐p62 (
<bold>Δ</bold>
170‐256) dimer formation compared to WT (by 60%). Interestingly, GFP‐p62 deletion plasmids
<bold>Δ</bold>
346‐385 and particularly
<bold>Δ</bold>
256‐370 prevented CSE‐induced dimer formation suggesting that one or more amino acids contained in these sequences are important for oligomer formation. Both GFP‐p62
<bold>Δ</bold>
346‐385 and
<bold>Δ</bold>
256‐370 have in common the amino acid deletion sequence between 346 and 370 that includes the KIR (344‐356). This region is important for p62 direct association with Keap1 and subsequent autophagy‐mediated degradation. It is possible that amino acids contained in the KIR are responsible for CSE‐induced p62 oligomers. A549 lung cancer cell line, which harbors mutated Keap1 (G333C), is unable to bind to p62.
<xref rid="fba21090-bib-0036" ref-type="ref">36</xref>
We found that CSE only mildly induced p62 dimer formation in A549 cells, but did not induce any oligomers despite increasing LC3‐II and also LC3‐I at the highest concentrations (Figure
<xref rid="fba21090-sup-0001" ref-type="supplementary-material">S7</xref>
). The importance of p62 interaction with Keap1 was confirmed by knocking down Keap1 in BEAS‐2B cells and looking at the effect on CSE‐induced p62 oligomers. Ablation of Keap1 reduced CSE‐induced oligomers and monomers (Figure
<xref rid="fba21090-fig-0005" ref-type="fig">5</xref>
F). Confirmation was obtained by looking at the effect of HC‐CSE on GFP‐p62 KIR mutant in HEK293 cells. CSE‐induced oligomers were dramatically decreased in HEK293 expressing the p62 KIR mutant (Figure
<xref rid="fba21090-fig-0005" ref-type="fig">5</xref>
G).</p>
<fig fig-type="Figure" xml:lang="en" id="fba21090-fig-0005" orientation="portrait" position="float">
<label>Figure 5</label>
<caption>
<p>CSE induces p62 oligomers via their Keap1 interaction region (KIR). (A) BEAS‐2B cells were incubated with HC‐CSE for 24 hours and p62 was immunoprecipitated (IP) from whole‐cell extracts. IP‐p62 species were resolved by SDS‐PAGE followed by Western blot (WB) and membranes immune‐stained against ubiquitin (Ub), LC3, and p62. IgG control (no whole‐cell lysates used). (B) Molecular weight characterization of p62 oligomers. HEK293 cells were transfected with p62‐FLAG and incubated with HC‐CSE for 24 h. Whole‐cell extracts were resolved by WB and immune‐stained against FLAG. A molecular marker for high molecular weights (MW) was used. A graph extrapolating distance of bands from origin and MW determined the expected size of p62 oligomers and the possible combinations. (C) Deubiquitination assay of IP‐p62. BEAS‐2B cells were prepared as indicated in (A). Samples were divided by two and p62 was IP. IP‐p62 beads were incubated in deubiquitin buffer plus/minus Ubiquitin specific peptidase 2 (USP2). (D) Schematic representation of p62 functional domains: PB1, ZZ (ZZ‐type zinc finger domain), LIR, KIR, and UBA and schematic representation of the different deletion p62 mutants used in (E). (E) HEK293 cells were transfected with either WT p62‐GFP, or the following p62‐GFP deletion plasmids: ∆123‐170, ∆170‐256, ∆256‐370, ∆346‐385, and ∆UBA (∆386‐440) and incubated with HC‐CSE for another 24 h. WB was performed and membranes were immune‐stained using anti‐GFP and β‐actin. (F) BEAS‐2B cells were transfected with siRNA for Keap1 or a random oligonucleotide control (NC) and incubated with LC‐ and HC‐CSE for a further 24 h. WB was performed and membranes were immune‐stained using against p62, LC3, Keap1, and β‐actin. (G) HEK293 cells were transfected with either WT p62‐GFP or a KIR deletion p62‐GFP plasmid and incubated with HC‐CSE for another 24 h. WB was performed and membranes were immune‐stained using anti‐GFP and β‐actin. Data are representative of at least two independent experiments</p>
</caption>
<graphic id="nlm-graphic-9" xlink:href="FBA2-1-688-g005"></graphic>
</fig>
</sec>
<sec id="fba21090-sec-0018">
<label>3.6</label>
<title>BICD1 expression is involved in defective autophagosome maturation</title>
<p>Having identified an increased BICD1 expression in COPD biopsies which was associated with p62 expression (Figure
<xref rid="fba21090-fig-0001" ref-type="fig">1</xref>
), we investigated the role of BICD1 as a possible protein involved in defective autophagy maturation. We looked at the concentration‐dependent effect of CSE on BICD1. Although two bands were visible, an increase in the lower band only happened when concentrations of CSE reached 10% (Figure
<xref rid="fba21090-fig-0006" ref-type="fig">6</xref>
A). This correlated with evidence of impaired autophagic flux (increased LC3 and p62 oligomers) (Figure
<xref rid="fba21090-fig-0006" ref-type="fig">6</xref>
A). In addition, HC‐CSE‐induced BICD1 was observed only at 24 and 48 hours time points, when autophagosome maturation was defective (Figures
<xref rid="fba21090-fig-0006" ref-type="fig">6</xref>
B and
<xref rid="fba21090-fig-0002" ref-type="fig">2</xref>
B). Defective autophagic flux could be responsible for BICD1 accumulation, hence when BICD1 was knocked down (KD) and cells incubated with increasing concentrations of CSE (3.3%‐10%), the accumulation of p62 oligomers was actually decreased as compared to random oligonucleotide control (RO) thus suggesting that BICD1 is a negative regulator of autophagy (Figure
<xref rid="fba21090-fig-0006" ref-type="fig">6</xref>
C). siRNA treatment increased LC3‐II levels so we used p62 to assess autophagy (Figure
<xref rid="fba21090-fig-0006" ref-type="fig">6</xref>
C). Interestingly, BICD1 knockdown only reduced the lower of the two bands observed thus identifying the lower band as BICD1 protein (Figure
<xref rid="fba21090-fig-0006" ref-type="fig">6</xref>
C). Overexpression of BICD1, as compared to an empty vector (EV), confirmed that BICD1 plays a role in impairing autophagic flux as CSE‐induced p62 oligomers were visibly increased (Figure
<xref rid="fba21090-fig-0006" ref-type="fig">6</xref>
D). LC3‐II levels were clearly increased with overexpressed BICD1 as compared to EV possibly suggesting a complete impairment of the autophagic flux (Figure
<xref rid="fba21090-fig-0006" ref-type="fig">6</xref>
D). Preincubation with the antioxidant NAC totally prevented CSE‐induced p62, p62 oligomers, LC3‐II, and accumulation as shown in Figure
<xref rid="fba21090-sup-0001" ref-type="supplementary-material">S4</xref>
. We also established that NAC prevented an increase in BICD1 protein levels (Figure
<xref rid="fba21090-fig-0006" ref-type="fig">6</xref>
E). In fact, BICD1 expression was induced by CSE at the gene expression level (Figure
<xref rid="fba21090-fig-0006" ref-type="fig">6</xref>
F). Furthermore, pretreatment with actinomycin D reduced HC‐CSE‐induced BICD1 protein expression and prevented LC3‐II as well as reduced p62 monomers and oligomers thus averting defective autophagosome maturation (Figure
<xref rid="fba21090-sup-0001" ref-type="supplementary-material">S8</xref>
).</p>
<fig fig-type="Figure" xml:lang="en" id="fba21090-fig-0006" orientation="portrait" position="float">
<label>Figure 6</label>
<caption>
<p>CSE induces BICD1 thus inhibiting autophagosome maturation. (A) Whole‐cell extracts from BEAS‐2B cells were treated with increasing concentrations of CSE (1.5%‐10% v/v) for 24 h and analyzed by immunoblotting for LC3, p62, BICD1, and β‐actin. The BICD1, p62, and β‐actin pictures were obtained from a 3%‐8% Tris‐acetate gel. The LC3 and (lower) β‐actin pictures were obtained from the same samples but using a 4%‐12% Bis‐tris gel. (B) Whole‐cell extracts from BEAS‐2B cells treated with LC‐ and HC‐CSE at increasing times (1‐48 h) and analyzed by immunoblotting for BICD1 and β‐actin. (C) BEAS‐2B cells were transfected with siRNA for BICD1 for 48 h or a random oligonucleotide control (NC) and incubated with increasing concentrations of CSE for a further 24 h. Western blot was performed and membranes were immune‐stained against p62, LC3, BICD1, and β‐actin. (D) BEAS‐2B cells were transfected either with an empty mCherry vector (EV) or with a mCherry‐BICD1 plasmid prior to incubation with increasing concentrations of CSE for a further 24 h. Western blot was performed and membranes were immune‐stained against LC3, BICD1, p62, and β‐actin. Data are representative of at least two independent experiments. (E) BEAS‐2B cells were preincubated with NAC (10 mmol/L) for 30 min prior to stimulation with LC‐ and HC‐CSE for 24 h. Western blot was performed and membranes were immune‐stained against BICD1, p62, and β‐actin. N = 3, *
<italic>P</italic>
 < .05, ****
<italic>P</italic>
 < .0001 using ANOVA with multiple comparisons. (F) BEAS‐2B cells were treated with HC‐CSE (10%) for 24 h. mRNA expression of BICD1 was determined and normalized to GNB2L1 mRNA levels. **
<italic>P</italic>
 < .01</p>
</caption>
<graphic id="nlm-graphic-11" xlink:href="FBA2-1-688-g006"></graphic>
</fig>
</sec>
<sec id="fba21090-sec-0019">
<label>3.7</label>
<title>p62, LC3, and BICD1 are increased in the lungs of CS‐exposed mice</title>
<p>As shown in Figure
<xref rid="fba21090-fig-0007" ref-type="fig">7</xref>
A,B, p62 monomers accumulated in the lungs of mice that were exposed chronically to CS although no evidence of p62 oligomers was visible. CS also induced LC3‐II suggesting that autophagosomes are present in the lung tissue (Figure
<xref rid="fba21090-fig-0007" ref-type="fig">7</xref>
A,C). Overall LC3 expression was also significantly increased, as observed in COPD, thus suggesting a possible block in autophagy maturation (Figure
<xref rid="fba21090-fig-0007" ref-type="fig">7</xref>
A,D). In agreement with the data observed in COPD biopsies and HC‐CSE experiments, the protein levels of BICD1 were significantly increased in all CS‐exposed mice (Figure
<xref rid="fba21090-fig-0007" ref-type="fig">7</xref>
A,E).</p>
<fig fig-type="Figure" xml:lang="en" id="fba21090-fig-0007" orientation="portrait" position="float">
<label>Figure 7</label>
<caption>
<p>Defective autophagosome maturation in a chronic mice‐smoking model. A/J mice were exposed to cigarette smoke (or fresh air) for 30 min/d for 12 days using Hi‐lite cigarettes. Lungs were removed and homogenized for immunoblotting. Western blot was performed and membranes were immune‐stained against p62 (B), LC3(C,D), BICD1 (E), and β‐actin. N1‐N4: Control mice, CS1‐CS4: smoking mice. Protein amounts were calculated against β‐actin and plotted in graphs. Data were analyzed by using
<italic>t</italic>
test.
<italic>P</italic>
 < .05 was considered statistically significant. *
<italic>P</italic>
 < .05, n = 4</p>
</caption>
<graphic id="nlm-graphic-13" xlink:href="FBA2-1-688-g007"></graphic>
</fig>
</sec>
<sec id="fba21090-sec-0020">
<label>3.8</label>
<title>Cardiac glycosides reverse defective autophagosome maturation</title>
<p>In order to reverse defective autophagic flux caused by ineffective autophagy maturation, the effect of cardiac glycosides, previously identified as possible inducers of autophagosome maturation,
<xref rid="fba21090-bib-0037" ref-type="ref">37</xref>
,
<xref rid="fba21090-bib-0038" ref-type="ref">38</xref>
was investigated and compared to rapamycin. BEAS‐2B cells, preincubated with the cardiac glycosides strophanthidin (SP), digoxin (D), and digoxigenin (DG) (all at 100 ng/mL) prior to HC‐CSE, prevented p62 oligomer formation and an increase in p62, and also reduced HC‐CSE‐induced BICD1 (Figure
<xref rid="fba21090-fig-0008" ref-type="fig">8</xref>
A). In contrast, rapamycin did not prevent induction of p62 and p62 oligomers (Figure
<xref rid="fba21090-fig-0008" ref-type="fig">8</xref>
A). In addition, rapamycin (20 µmol/L), which increased LC3‐II, did not reduce BICD1 levels and even further increased p62 expression (Figure
<xref rid="fba21090-fig-0008" ref-type="fig">8</xref>
A). The effect of cardiac glycosides on autophagic induction by LC3‐II formation was not clear and further investigated using an LC3‐turnover assay. The “LC3‐turnover” assay was performed using CQ in order to see the effects of a digoxin on the autophagic flux. We showed that under defective autophagic flux (CQ treatment) digoxin did not further increased LC3‐II with or without HC‐CSE suggesting that autophagy initiation is not activated by cardiac glycosides (Figure
<xref rid="fba21090-fig-0008" ref-type="fig">8</xref>
B). We also confirmed that despite LC3‐II accumulation by HC‐CSE, this is further increased after CQ treatment suggesting that initiation of autophagy is not affected by HC‐CSE as shown in Figure
<xref rid="fba21090-fig-0002" ref-type="fig">2</xref>
(Figure
<xref rid="fba21090-fig-0008" ref-type="fig">8</xref>
B). Interestingly, HC‐CSE‐induced p62 (
<italic>P</italic>
 < .05) is not significantly upregulated with digoxin preincubation suggesting that autophagosome maturation restoration must be involved as autophagosomes are not induced by digoxin (Figure
<xref rid="fba21090-fig-0008" ref-type="fig">8</xref>
B). Whereas CQ treatment shows a significant increase in autophagosomes (LC3‐II), it is not the case for p62 suggesting that baseline autophagy in BEAS2B cells turns over p62 slowly (Figure
<xref rid="fba21090-fig-0008" ref-type="fig">8</xref>
B). We confirmed that digoxin significantly reduced HC‐CSE‐induced BICD1 implying that cardiac glycosides restore autophagosome maturation by decreasing BICD1 expression (Figure
<xref rid="fba21090-fig-0008" ref-type="fig">8</xref>
B). Interestingly, despite an increase in BICD1 mRNA transcripts by HC‐CSE, digoxin does not affect BICD1 transcription levels (Figure
<xref rid="fba21090-fig-0008" ref-type="fig">8</xref>
C).</p>
<fig fig-type="Figure" xml:lang="en" id="fba21090-fig-0008" orientation="portrait" position="float">
<label>Figure 8</label>
<caption>
<p>Cardiac glycosides reverse defective CSE‐induced defective autophagosome maturation. (A) BEAS‐2B cells were preincubated either with digoxin (D), digoxigenin (DG), and strophanthidin (SP) or with rapamycin for 6 hours before treatment with HC‐CSE for 24 h. Western blot was performed and membranes were immune‐stained against p62, BICD1, LC3, and β‐actin. (B) BEAS‐2B cells were preincubated with digoxin (D) for 2 h before a 4 h treatment with CQ. Cells were then treated with HC‐CSE for 24 h. Western blot was performed and membranes were immune‐stained against p62, BICD1, LC3, and β‐actin (# p62 unspecific band detected). N = 3, *
<italic>P</italic>
 < .05, **
<italic>P</italic>
 < .01, ***
<italic>P</italic>
 < .001, ****
<italic>P</italic>
< .0001. (C) BEAS‐2B cells were preincubated with digoxin (D) and then treated with HC‐CSE (10%) for 24 h. mRNA expression of BICD1 was determined and normalized to GNB2L1 mRNA levels. N = 3, **
<italic>P</italic>
 < .01. (D) HBECs were preincubated with digoxin (D) at 1, 5, and 25 ng/mL prior to treatment with LC‐ (20%) and HC‐ (30%) CSE for 24 h. Western blot was performed and membranes were immune‐stained against p62, LC3, and β‐actin. (E) HBECs were preincubated with 25ng/mL of digoxin (D) prior to treatment with LC‐ (20%) and HC‐ (30%) CSE for 24 h. Western blot was performed and membranes were immune‐stained against BICD1 and β‐actin</p>
</caption>
<graphic id="nlm-graphic-15" xlink:href="FBA2-1-688-g008"></graphic>
</fig>
<p>We confirmed our findings in HBECs where preincubation with increasing concentrations of digoxin (1‐25 ng/mL), but not with rapamycin, prevented HC‐CSE‐induced p62 monomer and oligomer accumulation in addition to partly restoring baseline levels of CSE‐induced LC3 (Figure
<xref rid="fba21090-fig-0008" ref-type="fig">8</xref>
D). CSE also induced a concentration‐dependent increase in BICD1 (lower band) that was reduced by preincubation with digoxin (Figure
<xref rid="fba21090-fig-0008" ref-type="fig">8</xref>
E).</p>
<p>An increase in total LC3 and LC3‐II has been associated with autophagic‐induced apoptosis and emphysema via caspase‐3 activation.
<xref rid="fba21090-bib-0006" ref-type="ref">6</xref>
We showed that cardiac glycosides completely inhibited HC‐CSE‐induced cleaved caspase‐3 whereas rapamycin only partially prevented this (Figure
<xref rid="fba21090-sup-0001" ref-type="supplementary-material">S9</xref>
). Interestingly, SMER28, a compound known to induce the clearance of mutant huntingtin fragments independent of mTOR inhibition, also cleared p62 oligomers (Figure
<xref rid="fba21090-sup-0001" ref-type="supplementary-material">S10</xref>
).
<xref rid="fba21090-bib-0039" ref-type="ref">39</xref>
SMER28 also prevented HC‐CSE‐induced cleaved caspase‐3 as did strophanthidin but not rapamycin (Figure
<xref rid="fba21090-sup-0001" ref-type="supplementary-material">S10</xref>
). Also, SMER28 treatment did not reduce BICD1 protein supporting the concept of a different mechanism of action (Figure
<xref rid="fba21090-sup-0001" ref-type="supplementary-material">S11</xref>
).</p>
</sec>
</sec>
<sec sec-type="discussion" id="fba21090-sec-0021">
<label>4</label>
<title>DISCUSSION</title>
<p>Increasingly, defects in autophagosome maturation are being associated with various pathologies, particularly in neurodegenerative disorders such as Alzheimer's disease, Hungtington's chorea, and Parkinson's disease.
<xref rid="fba21090-bib-0040" ref-type="ref">40</xref>
In addition, defective autophagosome maturation has been associated with the aging of the human vascular system, as demonstrated by accumulation of autophagosomes (LC3‐II) with increased total LC3 levels as well as p62.
<xref rid="fba21090-bib-0041" ref-type="ref">41</xref>
Recently, aggresome bodies have been described in the lung of COPD patients, together with LC3‐II and p62.
<xref rid="fba21090-bib-0002" ref-type="ref">2</xref>
,
<xref rid="fba21090-bib-0003" ref-type="ref">3</xref>
We have confirmed that patients suffering from COPD show elevated levels of p62, LC3, and LC3‐II, suggesting that increased presence of autophagosomes is not indicative of high level activation of autophagy but on the contrary, the result of defective autophagosome maturation. Our in vitro data using bronchial epithelial cells that were treated with the main causative factor of COPD, cigarette smoke support this hypothesis. CSE activated the autophagy via an oxidative stress mechanism possibly involving cysteine protease Atg4 inhibition allowing LC3‐I to be converted into LC3‐II.
<xref rid="fba21090-bib-0042" ref-type="ref">42</xref>
An increase in LC3‐II with low concentration of CSE was not followed by a decreased p62 protein levels possibly due to the fact that oxidative stress induces p62 transcription levels as shown recently.
<xref rid="fba21090-bib-0043" ref-type="ref">43</xref>
Only at higher concentration of CSE did we see a partial reduction of p62 protein 5 hours after incubation. This might represent a state where the degradation of p62 by autophagy was higher than the rate of p62 transcription. High concentrations of CSE induced accumulation of total LC3, p62, and p62 oligomers even after cells were washed and incubated in fresh media. This was associated with persistent presence of autophagosomes as observed in diseases associated with defective autophagosome maturation and in COPD. On the contrary, a lower concentration of CSE only induced transient activation of LC3‐II and p62 oligomers that returned to baseline levels over time. Autophagosome maturation includes the binding between autophagosomes and lysosomes to form autophagolysosomes. We confirmed these findings using HEK293 cells that overexpress the tandem GFP‐mCherry‐LC3 where lower concentrations of CSE induced transient autophagosomes that became autophagolysosomes over time. This was not the case with higher concentrations of CSE where increased numbers of autophagosomes failed to become autophagolysosomes, suggesting a mechanism where lysosomes fail to bind autophagosomes. The different effects of differing concentrations of CSE on the autophagy machinery is cell‐dependent and might be dependent on how much the machinery can cope with oxidative stress‐induced oxidized proteins and organelles which need to be degraded to maintain cellular homeostasis.</p>
<p>We have shown for the first time that BICD1 protein is significantly increased in both mild and severe COPD as compared to non‐COPD smokers, suggesting this increase is an early event in COPD. Also, increased BICD1 was associated with increased lung obstruction and markers of defective autophagosome maturation (LC3, p62, and p62 dimers). In vitro data using BEAS‐2Bs confirmed that only at a high concentration of CSE, which induces defective autophagosome maturation, BICD1 protein was increased, alongside persistent LC3‐II and p62 expressions. It was also observed that CSE induced increased BICD1 transcript levels, and inhibition of transcription by actinomycin D prevented CSE‐induced BICD1 mRNA expression, indicating increased transcription initiation by CSE as opposed to interference with RNA degradation mechanisms. These findings were supported by data obtained in primary bronchial epithelial cells. Mice chronically exposed to CS also displayed increased lung expression of BICD1, which also correlated with accumulation of p62 and total LC3. Knockdown of BICD1 confirmed that CSE‐induced BICD1 is most likely responsible for an accumulation of p62 due to defective autophagosome maturation. Overexpression of the C‐terminal domain of BICD1, which can interact with Rab6A (a protein involved in regulation of protein transport), but not with cytoplasmic dynein, has been shown to alter microtubule movement of Rab6A vesicles inducing an accumulation of these vesicles in the cell.
<xref rid="fba21090-bib-0020" ref-type="ref">20</xref>
Recent studies have suggested that BICD1 is unlikely to be involved in lysosome biogenesis or function, but plays an important role in the regulation of endosome trafficking of cargoes to the lysosome.
<xref rid="fba21090-bib-0022" ref-type="ref">22</xref>
An accumulation of BICD1 may alter normal trafficking of the autophagosome to the lysosome preventing fusion and resulting in impaired autophagic flux. Our clinical data suggest that accumulation of BICD1 is an early event in COPD and our in vitro data suggest that high concentrations of CSE can cause this accumulation. The reason for the lower levels of BICD1 observed in non‐COPD smokers is not related to the smoking history that is similar between these groups. All non‐COPD except one were current smokers before lung samples were collected. It is possible that some individuals have a propensity to induce BICD1, which could deregulate the normal flux of autophagy thus accumulating cellular damage over time.</p>
<p>Inhibition of autophagy typically results in the accumulation of p62, leading to the formation of large aggregates positive for p62 and ubiquitinated proteins.
<xref rid="fba21090-bib-0044" ref-type="ref">44</xref>
CSE‐induced p62 oligomer formation is possibly linked with aggresome formation previously observed in lung from COPD patients.
<xref rid="fba21090-bib-0002" ref-type="ref">2</xref>
These oligomers might sequester autophagosomes and autophagic cargo into structures physically too large to degrade, thus bloating the autophagy machinery, disrupting homeostasis, and compromising viability. Formation of SDS‐resistant p62 oligomers has previously been observed with arsenic exposure and in macrophages from smokers.
<xref rid="fba21090-bib-0033" ref-type="ref">33</xref>
,
<xref rid="fba21090-bib-0045" ref-type="ref">45</xref>
Both studies showed that p62 oligomers were associated with ubiquitinated substrates. More recently, Donohue et al
<xref rid="fba21090-bib-0034" ref-type="ref">34</xref>
showed that the autophagy inhibitor verteporfin induces p62 dimers via a mechanism involving low‐level singlet oxygen production. In fact hydrogen peroxide mimicked p62 dimer formation but without p62 monomer accumulation.
<xref rid="fba21090-bib-0034" ref-type="ref">34</xref>
We confirmed that CSE induced p62 oligomers in a concentration‐ and time‐dependent manner. At low concentrations of CSE, p62 oligomers were transient, reflecting a functional increased autophagic flux. At higher CSE, p62 oligomers were still present in the cells despite washing‐out CSE. Immunoprecipitation showed that p62 was heavily associated with ubiquitinated substrates after CSE treatment and that deubiquitination by USP2 did not affect oligomer formation. p62 was found to be associated with LC3‐II, as expected, but also with cytoplasmic LC3‐I. This is further proof that oligomers and LC3‐I might exist as aggresomes inside cells. CSE did not further enhance p62 association with the adaptor protein NBR1 and neither did it induce NBR1 SDS‐PAGE resistant oligomers. It is possible that p62 oligomers can affect the flux of autophagy. Donohue et al
<xref rid="fba21090-bib-0034" ref-type="ref">34</xref>
showed that oxidant‐induced p62 oligomers needed a functional PB1 domain, thus suggesting that previous aggregation was necessary. We did not confirm these findings and identified the amino acid region of p62 most likely to be involved in oligomer formation as the KIR. Knockdown of Keap1 clearly decreased CSE‐induced oligomer formation and in A549 cells, which have mutant Keap1 that is unable to bind to p62, there were no oligomers after CSE exposure. Mutation of the KIR domain also reduced CSE‐induced oligomers. In fact, NBR1, which lacks a KIR domain, also failed to form oligomers. The exact reason as to why the interaction of p62 with Keap1, which is based on hydrogen bonds, results in these oligomers is not yet understood.</p>
<p>Further proof that CSE induced defective autophagosome maturation was provided by cardiac glycosides. Two studies identified cardiac glycosides as potential compounds that induce autophagosome maturation.
<xref rid="fba21090-bib-0037" ref-type="ref">37</xref>
,
<xref rid="fba21090-bib-0038" ref-type="ref">38</xref>
In addition, digoxin was also found to be able to induce autophagosomes via activation of the AMPK pathway resulting in mTOR inhibition.
<xref rid="fba21090-bib-0046" ref-type="ref">46</xref>
We could not confirm that cardiac glycosides induce LC3‐II formation using an “LC3 turnover assay”; however, we showed how they reduced HC‐CSE‐induced p62 and p62 oligomers suggesting that they target autophagosome maturation. In contrast, an mTOR inhibitor, rapamycin, known to induce autophagosome formation, was unable to clear p62 oligomers via autophagy. We also showed how cardiac glycosides reduced BICD1 expression suggesting a mechanism by which autophagosome maturation is restored under HC‐CSE. Cardiac glycosides increase the level of calcium by inhibiting the Na
<sup>+</sup>
/K
<sup>+</sup>
‐ATPase, resulting in augmented contractile force in cardiomyocytes.
<xref rid="fba21090-bib-0047" ref-type="ref">47</xref>
In fact, intracellular calcium induces autophagy.
<xref rid="fba21090-bib-0048" ref-type="ref">48</xref>
The use of cardiac glycosides has been mainly suggested for cancer therapy, and their stimulatory effect on autophagy may be important in this context.
<xref rid="fba21090-bib-0049" ref-type="ref">49</xref>
Recently, cardiac glycosides have been shown to inhibit Tat‐Beclin1‐induced autophagic‐mediated cell death, known as autosis.
<xref rid="fba21090-bib-0050" ref-type="ref">50</xref>
However, digoxin had no effect on staurosporine‐induced apoptotic death.
<xref rid="fba21090-bib-0050" ref-type="ref">50</xref>
We found that CSE‐induced cleaved caspase‐3 was reversed by cardiac glycosides, including digoxin, whereas rapamycin had no effect. Another cardiac glycoside, bufalin, can inhibit tumor necrosis factor (TNF), IFN, and CXCL‐8.
<xref rid="fba21090-bib-0051" ref-type="ref">51</xref>
These novel anti‐inflammatory effects could be related to the modulation of autophagic flux and thus relevant to COPD that is associated with chronic inflammation and autoimmunity.
<xref rid="fba21090-bib-0012" ref-type="ref">12</xref>
</p>
<p>We have identified BICD1 as novel candidate for defective autophagosome maturation and shown that in COPD, increased BICD1 levels could explain elevated levels of autophagosomes and p62 (Figure
<xref rid="fba21090-fig-0009" ref-type="fig">9</xref>
). Previous research in COPD has also identified the presence of LC3‐II in lung tissue suggestive of an activation of autophagosomes.
<xref rid="fba21090-bib-0006" ref-type="ref">6</xref>
,
<xref rid="fba21090-bib-0008" ref-type="ref">8</xref>
However, these studies did not measure overall LC3, which also appeared to be increased, as well as p62 levels. The latter is known to negatively correlate with autophagy activation. Increased p62 monomer and oligomer accumulation causes protein aggregates that in turn could result in toxicity for cells as homeostasis is compromised. In fact, protein aggregation, which has been observed in COPD patients, could be caused by defective autophagosome maturation as also observed in several neurodegenerative diseases.
<xref rid="fba21090-bib-0002" ref-type="ref">2</xref>
,
<xref rid="fba21090-bib-0007" ref-type="ref">7</xref>
,
<xref rid="fba21090-bib-0040" ref-type="ref">40</xref>
We have also identified cardiac glycosides as compounds able to restore autophagosome maturation. Thus, cardiac glycosides are possible target for novel drugs that can reverse defective autophagic flux and offer a potential future therapeutic approach in COPD. Further studies would be needed to establish which cell types in the lung of COPD patients are responsible for increased BICD1 expression and defective autophagosome maturation and follow‐up studies in GFP‐LC3 transgenic mice would be required to verify if cardiac glycosides do restore normal levels of autophagy in a COPD model.</p>
<fig fig-type="Figure" xml:lang="en" id="fba21090-fig-0009" orientation="portrait" position="float">
<label>Figure 9</label>
<caption>
<p>Defective autophagosome maturation hypothesis in chronic obstructive pulmonary disease (COPD). In non‐COPD smokers, CSE induces ubiquitinated proteins that are recognized by p62 and driven toward LC3‐II‐containing double membranes. These double membranes close to become autophagosomes (APs) thus engulfing p62 with ubiquitinated proteins. APs then bind lysosomes (lys) in order to become autophagolysosomes (ALs) and degrade intracellular cargo via lysosomal hydrolases. In COPD, BICD1 accumulates due to excessive CSE exposure over a lifetime. Baseline or CSE‐induced autophagosomes accumulate due to BICD1 preventing autophagosome to lysosome fusion</p>
</caption>
<graphic id="nlm-graphic-17" xlink:href="FBA2-1-688-g009"></graphic>
</fig>
</sec>
<sec sec-type="COI-statement" id="fba21090-sec-0024">
<title>Conflict of Interest</title>
<p>No conflict of interest for any author.</p>
</sec>
<sec id="fba21090-sec-0022">
<title>AUTHOR CONTRIBUTIONS</title>
<p>NM, TJ, KI, ST, and PJB designed the research. NM, TC, CC, CV, YC, and JRB performed the research. TJ and PJB contributed the reagents. NM and TC analyzed the data. NM, TC, PJB, and TJ wrote the manuscript.</p>
</sec>
<sec sec-type="supplementary-material">
<title>Supporting information</title>
<supplementary-material content-type="local-data" id="fba21090-sup-0001">
<caption>
<p> </p>
</caption>
<media xlink:href="FBA2-1-688-s001.pdf">
<caption>
<p>Click here for additional data file.</p>
</caption>
</media>
</supplementary-material>
</sec>
</body>
<back>
<ack id="fba21090-sec-0023">
<title>ACKNOWLEDGEMENTS</title>
<p>We thank Ana Maria Cuervo for the generous gift of a pBABE‐puro mCherry‐EGFP‐LC3B plasmid. We also thank Dr James Hogg and Dr Mark Elliot for providing COPD samples.</p>
</ack>
<ref-list content-type="cited-references" id="fba21090-bibl-0001">
<title>REFERENCES</title>
<ref id="fba21090-bib-0001">
<label>1</label>
<mixed-citation publication-type="journal" id="fba21090-cit-0001">
<string-name>
<surname>Barnes</surname>
<given-names>PJ</given-names>
</string-name>
.
<article-title>New anti‐inflammatory targets for chronic obstructive pulmonary disease</article-title>
.
<source xml:lang="en">Nat Rev Drug Discov</source>
.
<year>2013</year>
;
<volume>12</volume>
:
<fpage>543</fpage>
<lpage>559</lpage>
.
<pub-id pub-id-type="pmid">23977698</pub-id>
</mixed-citation>
</ref>
<ref id="fba21090-bib-0002">
<label>2</label>
<mixed-citation publication-type="journal" id="fba21090-cit-0002">
<string-name>
<surname>Tran</surname>
<given-names>I</given-names>
</string-name>
,
<string-name>
<surname>Ji</surname>
<given-names>C</given-names>
</string-name>
,
<string-name>
<surname>Ni</surname>
<given-names>I</given-names>
</string-name>
,
<string-name>
<surname>Min</surname>
<given-names>T</given-names>
</string-name>
,
<string-name>
<surname>Tang</surname>
<given-names>D</given-names>
</string-name>
,
<string-name>
<surname>Vij</surname>
<given-names>N</given-names>
</string-name>
.
<article-title>Role of cigarette smoke‐induced aggresome‐formation in COPD‐emphysema pathogenesis</article-title>
.
<source xml:lang="en">Am J Respir Cell Mol Biol</source>
.
<year>2015</year>
;
<volume>53</volume>
:
<fpage>159</fpage>
<lpage>173</lpage>
.
<pub-id pub-id-type="pmid">25490051</pub-id>
</mixed-citation>
</ref>
<ref id="fba21090-bib-0003">
<label>3</label>
<mixed-citation publication-type="journal" id="fba21090-cit-0003">
<string-name>
<surname>Vij</surname>
<given-names>N</given-names>
</string-name>
,
<string-name>
<surname>Chandramani‐Shivalingappa</surname>
<given-names>P</given-names>
</string-name>
,
<string-name>
<surname>Westphal</surname>
<given-names>CV</given-names>
</string-name>
,
<string-name>
<surname>Hole</surname>
<given-names>R</given-names>
</string-name>
,
<string-name>
<surname>Bodas</surname>
<given-names>M</given-names>
</string-name>
.
<article-title>Cigarette smoke‐induced autophagy impairment accelerates lung aging, COPD‐emphysema exacerbations and pathogenesis</article-title>
.
<source xml:lang="en">Am J Physiol Cell Physiol</source>
.
<year>2018</year>
;
<volume>314</volume>
:
<fpage>C73</fpage>
<lpage>C87</lpage>
.
<pub-id pub-id-type="pmid">27413169</pub-id>
</mixed-citation>
</ref>
<ref id="fba21090-bib-0004">
<label>4</label>
<mixed-citation publication-type="journal" id="fba21090-cit-0004">
<string-name>
<surname>Fujii</surname>
<given-names>S</given-names>
</string-name>
,
<string-name>
<surname>Hara</surname>
<given-names>H</given-names>
</string-name>
,
<string-name>
<surname>Araya</surname>
<given-names>J</given-names>
</string-name>
, et al.
<article-title>Insufficient autophagy promotes bronchial epithelial cell senescence in chronic obstructive pulmonary disease</article-title>
.
<source xml:lang="en">Oncoimmunology</source>
.
<year>2012</year>
;
<volume>1</volume>
:
<fpage>630</fpage>
<lpage>641</lpage>
.
<pub-id pub-id-type="pmid">22934255</pub-id>
</mixed-citation>
</ref>
<ref id="fba21090-bib-0005">
<label>5</label>
<mixed-citation publication-type="journal" id="fba21090-cit-0005">
<string-name>
<surname>Chen</surname>
<given-names>ZH</given-names>
</string-name>
,
<string-name>
<surname>Lam</surname>
<given-names>HC</given-names>
</string-name>
,
<string-name>
<surname>Jin</surname>
<given-names>Y</given-names>
</string-name>
, et al.
<article-title>Autophagy protein microtubule‐associated protein 1 light chain‐3B (LC3B) activates extrinsic apoptosis during cigarette smoke‐induced emphysema</article-title>
.
<source xml:lang="en">Proc Natl Acad Sci USA</source>
.
<year>2010</year>
;
<volume>107</volume>
:
<fpage>18880</fpage>
<lpage>18885</lpage>
.
<pub-id pub-id-type="pmid">20956295</pub-id>
</mixed-citation>
</ref>
<ref id="fba21090-bib-0006">
<label>6</label>
<mixed-citation publication-type="journal" id="fba21090-cit-0006">
<string-name>
<surname>Chen</surname>
<given-names>Z‐H</given-names>
</string-name>
,
<string-name>
<surname>Kim</surname>
<given-names>HP</given-names>
</string-name>
,
<string-name>
<surname>Sciurba</surname>
<given-names>FC</given-names>
</string-name>
, et al.
<article-title>Egr‐1 regulates autophagy in cigarette smoke‐induced chronic obstructive pulmonary disease</article-title>
.
<source xml:lang="en">PLoS ONE</source>
.
<year>2008</year>
;
<volume>3</volume>
:
<elocation-id>e3316</elocation-id>
.
<pub-id pub-id-type="pmid">18830406</pub-id>
</mixed-citation>
</ref>
<ref id="fba21090-bib-0007">
<label>7</label>
<mixed-citation publication-type="journal" id="fba21090-cit-0007">
<string-name>
<surname>Lam</surname>
<given-names>HC</given-names>
</string-name>
,
<string-name>
<surname>Cloonan</surname>
<given-names>SM</given-names>
</string-name>
,
<string-name>
<surname>Bhashyam</surname>
<given-names>AR</given-names>
</string-name>
, et al.
<article-title>Histone deacetylase 6–mediated selective autophagy regulates COPD‐associated cilia dysfunction</article-title>
.
<source xml:lang="en">J Clin Investig</source>
.
<year>2013</year>
;
<volume>123</volume>
:
<fpage>5212</fpage>
<lpage>5230</lpage>
.
<pub-id pub-id-type="pmid">24200693</pub-id>
</mixed-citation>
</ref>
<ref id="fba21090-bib-0008">
<label>8</label>
<mixed-citation publication-type="journal" id="fba21090-cit-0008">
<string-name>
<surname>An</surname>
<given-names>CH</given-names>
</string-name>
,
<string-name>
<surname>Wang</surname>
<given-names>XM</given-names>
</string-name>
,
<string-name>
<surname>Lam</surname>
<given-names>HC</given-names>
</string-name>
, et al.
<article-title>TLR4 deficiency promotes autophagy during cigarette smoke‐induced pulmonary emphysema</article-title>
.
<source xml:lang="en">Am J Physiol Lung Cell Mol Physiol</source>
.
<year>2012</year>
;
<volume>303</volume>
:
<fpage>L748</fpage>
<lpage>L757</lpage>
.
<pub-id pub-id-type="pmid">22983353</pub-id>
</mixed-citation>
</ref>
<ref id="fba21090-bib-0009">
<label>9</label>
<mixed-citation publication-type="journal" id="fba21090-cit-0009">
<string-name>
<surname>Mizumura</surname>
<given-names>K</given-names>
</string-name>
,
<string-name>
<surname>Cloonan</surname>
<given-names>SM</given-names>
</string-name>
,
<string-name>
<surname>Nakahira</surname>
<given-names>K</given-names>
</string-name>
, et al.
<article-title>Mitophagy‐dependent necroptosis contributes to the pathogenesis of COPD</article-title>
.
<source xml:lang="en">J Clin Investig</source>
.
<year>2014</year>
;
<volume>124</volume>
:
<fpage>3987</fpage>
<lpage>4003</lpage>
.
<pub-id pub-id-type="pmid">25083992</pub-id>
</mixed-citation>
</ref>
<ref id="fba21090-bib-0010">
<label>10</label>
<mixed-citation publication-type="journal" id="fba21090-cit-0010">
<string-name>
<surname>Klionsky</surname>
<given-names>DJ</given-names>
</string-name>
,
<string-name>
<surname>Schulman</surname>
<given-names>BA</given-names>
</string-name>
.
<article-title>Dynamic regulation of macroautophagy by distinctive ubiquitin‐like proteins</article-title>
.
<source xml:lang="en">Nat Struct Mol Biol</source>
.
<year>2014</year>
;
<volume>21</volume>
:
<fpage>336</fpage>
<lpage>345</lpage>
.
<pub-id pub-id-type="pmid">24699082</pub-id>
</mixed-citation>
</ref>
<ref id="fba21090-bib-0011">
<label>11</label>
<mixed-citation publication-type="journal" id="fba21090-cit-0011">
<string-name>
<surname>Rogov</surname>
<given-names>V</given-names>
</string-name>
,
<string-name>
<surname>Dötsch</surname>
<given-names>V</given-names>
</string-name>
,
<string-name>
<surname>Johansen</surname>
<given-names>T</given-names>
</string-name>
,
<string-name>
<surname>Kirkin</surname>
<given-names>V</given-names>
</string-name>
.
<article-title>Interactions between autophagy receptors and ubiquitin‐like proteins form the molecular basis for selective autophagy</article-title>
.
<source xml:lang="en">Mol Cell</source>
.
<year>2014</year>
;
<volume>53</volume>
:
<fpage>167</fpage>
<lpage>178</lpage>
.
<pub-id pub-id-type="pmid">24462201</pub-id>
</mixed-citation>
</ref>
<ref id="fba21090-bib-0012">
<label>12</label>
<mixed-citation publication-type="journal" id="fba21090-cit-0012">
<string-name>
<surname>Levine</surname>
<given-names>B</given-names>
</string-name>
,
<string-name>
<surname>Mizushima</surname>
<given-names>N</given-names>
</string-name>
,
<string-name>
<surname>Virgin</surname>
<given-names>HW</given-names>
</string-name>
.
<article-title>Autophagy in immunity and inflammation</article-title>
.
<source xml:lang="en">Nature</source>
.
<year>2011</year>
;
<volume>469</volume>
:
<fpage>323</fpage>
<lpage>335</lpage>
.
<pub-id pub-id-type="pmid">21248839</pub-id>
</mixed-citation>
</ref>
<ref id="fba21090-bib-0013">
<label>13</label>
<mixed-citation publication-type="journal" id="fba21090-cit-0013">
<string-name>
<surname>Mizushima</surname>
<given-names>N</given-names>
</string-name>
,
<string-name>
<surname>Levine</surname>
<given-names>B</given-names>
</string-name>
,
<string-name>
<surname>Cuervo</surname>
<given-names>AM</given-names>
</string-name>
,
<string-name>
<surname>Klionsky</surname>
<given-names>DJ</given-names>
</string-name>
.
<article-title>Autophagy fights disease through cellular self‐digestion</article-title>
.
<source xml:lang="en">Nature</source>
.
<year>2008</year>
;
<volume>451</volume>
:
<fpage>1069</fpage>
<lpage>1075</lpage>
.
<pub-id pub-id-type="pmid">18305538</pub-id>
</mixed-citation>
</ref>
<ref id="fba21090-bib-0014">
<label>14</label>
<mixed-citation publication-type="journal" id="fba21090-cit-0014">
<string-name>
<surname>Johansen</surname>
<given-names>T</given-names>
</string-name>
,
<string-name>
<surname>Lamark</surname>
<given-names>T</given-names>
</string-name>
.
<article-title>Selective autophagy mediated by autophagic adapter proteins</article-title>
.
<source xml:lang="en">Autophagy</source>
.
<year>2011</year>
;
<volume>7</volume>
:
<fpage>279</fpage>
<lpage>296</lpage>
.
<pub-id pub-id-type="pmid">21189453</pub-id>
</mixed-citation>
</ref>
<ref id="fba21090-bib-0015">
<label>15</label>
<mixed-citation publication-type="journal" id="fba21090-cit-0015">
<string-name>
<surname>Mizushima</surname>
<given-names>N</given-names>
</string-name>
,
<string-name>
<surname>Yoshimori</surname>
<given-names>T</given-names>
</string-name>
,
<string-name>
<surname>Levine</surname>
<given-names>B</given-names>
</string-name>
.
<article-title>Methods in mammalian autophagy research</article-title>
.
<source xml:lang="en">Cell</source>
.
<year>2010</year>
;
<volume>140</volume>
:
<fpage>313</fpage>
<lpage>326</lpage>
.
<pub-id pub-id-type="pmid">20144757</pub-id>
</mixed-citation>
</ref>
<ref id="fba21090-bib-0016">
<label>16</label>
<mixed-citation publication-type="journal" id="fba21090-cit-0016">
<string-name>
<surname>Vidal</surname>
<given-names>RL</given-names>
</string-name>
,
<string-name>
<surname>Matus</surname>
<given-names>S</given-names>
</string-name>
,
<string-name>
<surname>Bargsted</surname>
<given-names>L</given-names>
</string-name>
,
<string-name>
<surname>Hetz</surname>
<given-names>C</given-names>
</string-name>
.
<article-title>Targeting autophagy in neurodegenerative diseases</article-title>
.
<source xml:lang="en">Trends Pharmacol Sci</source>
.
<year>2014</year>
;
<volume>35</volume>
(
<issue>11</issue>
):
<fpage>583</fpage>
<lpage>591</lpage>
.
<pub-id pub-id-type="pmid">25270767</pub-id>
</mixed-citation>
</ref>
<ref id="fba21090-bib-0017">
<label>17</label>
<mixed-citation publication-type="journal" id="fba21090-cit-0017">
<string-name>
<surname>Zhang</surname>
<given-names>X</given-names>
</string-name>
,
<string-name>
<surname>Li</surname>
<given-names>L</given-names>
</string-name>
,
<string-name>
<surname>Chen</surname>
<given-names>S</given-names>
</string-name>
, et al.
<article-title>Rapamycin treatment augments motor neuron degeneration in SOD1G93A mouse model of amyotrophic lateral sclerosis</article-title>
.
<source xml:lang="en">Autophagy</source>
.
<year>2011</year>
;
<volume>7</volume>
:
<fpage>412</fpage>
<lpage>425</lpage>
.
<pub-id pub-id-type="pmid">21193837</pub-id>
</mixed-citation>
</ref>
<ref id="fba21090-bib-0018">
<label>18</label>
<mixed-citation publication-type="journal" id="fba21090-cit-0018">
<string-name>
<surname>Zhang</surname>
<given-names>X‐J</given-names>
</string-name>
,
<string-name>
<surname>Chen</surname>
<given-names>S</given-names>
</string-name>
,
<string-name>
<surname>Huang</surname>
<given-names>K‐X</given-names>
</string-name>
,
<string-name>
<surname>Le</surname>
<given-names>W‐D</given-names>
</string-name>
.
<article-title>Why should autophagic flux be assessed?</article-title>
<source xml:lang="en">Acta Pharmacol Sin</source>
.
<year>2013</year>
;
<volume>34</volume>
:
<fpage>595</fpage>
<lpage>599</lpage>
.
<pub-id pub-id-type="pmid">23474710</pub-id>
</mixed-citation>
</ref>
<ref id="fba21090-bib-0019">
<label>19</label>
<mixed-citation publication-type="journal" id="fba21090-cit-0019">
<string-name>
<surname>Kong</surname>
<given-names>X</given-names>
</string-name>
,
<string-name>
<surname>Cho</surname>
<given-names>MH</given-names>
</string-name>
,
<string-name>
<surname>Anderson</surname>
<given-names>W</given-names>
</string-name>
, et al.
<article-title>Genome‐wide Association Study Identifies BICD1 as a Susceptibility Gene for Emphysema</article-title>
.
<source xml:lang="en">Am J Respir Crit Care Med</source>
.
<year>2011</year>
;
<volume>183</volume>
:
<fpage>43</fpage>
<lpage>49</lpage>
.
<pub-id pub-id-type="pmid">20709820</pub-id>
</mixed-citation>
</ref>
<ref id="fba21090-bib-0020">
<label>20</label>
<mixed-citation publication-type="journal" id="fba21090-cit-0020">
<string-name>
<surname>Matanis</surname>
<given-names>T</given-names>
</string-name>
,
<string-name>
<surname>Akhmanova</surname>
<given-names>A</given-names>
</string-name>
,
<string-name>
<surname>Wulf</surname>
<given-names>P</given-names>
</string-name>
, et al.
<article-title>Bicaudal‐D regulates COPI‐independent Golgi‐ER transport by recruiting the dynein‐dynactin motor complex</article-title>
.
<source xml:lang="en">Nat Cell Biol</source>
.
<year>2002</year>
;
<volume>4</volume>
:
<fpage>986</fpage>
<lpage>992</lpage>
.
<pub-id pub-id-type="pmid">12447383</pub-id>
</mixed-citation>
</ref>
<ref id="fba21090-bib-0021">
<label>21</label>
<mixed-citation publication-type="journal" id="fba21090-cit-0021">
<string-name>
<surname>Schlager</surname>
<given-names>MA</given-names>
</string-name>
,
<string-name>
<surname>Serra‐Marques</surname>
<given-names>A</given-names>
</string-name>
,
<string-name>
<surname>Grigoriev</surname>
<given-names>I</given-names>
</string-name>
, et al.
<article-title>Bicaudal D family adaptor proteins control the velocity of dynein‐based movements</article-title>
.
<source xml:lang="en">Cell Rep</source>
.
<year>2014</year>
;
<volume>8</volume>
:
<fpage>1248</fpage>
<lpage>1256</lpage>
.
<pub-id pub-id-type="pmid">25176647</pub-id>
</mixed-citation>
</ref>
<ref id="fba21090-bib-0022">
<label>22</label>
<mixed-citation publication-type="journal" id="fba21090-cit-0022">
<string-name>
<surname>Terenzio</surname>
<given-names>M</given-names>
</string-name>
,
<string-name>
<surname>Schiavo</surname>
<given-names>G</given-names>
</string-name>
.
<article-title>The more, the better: the BICD family gets bigger</article-title>
.
<source xml:lang="en">EMBO J</source>
.
<year>2010</year>
;
<volume>29</volume>
:
<fpage>1625</fpage>
<lpage>1626</lpage>
.
<pub-id pub-id-type="pmid">20485297</pub-id>
</mixed-citation>
</ref>
<ref id="fba21090-bib-0023">
<label>23</label>
<mixed-citation publication-type="journal" id="fba21090-cit-0023">
<string-name>
<surname>Jahreiss</surname>
<given-names>L</given-names>
</string-name>
,
<string-name>
<surname>Menzies</surname>
<given-names>FM</given-names>
</string-name>
,
<string-name>
<surname>Rubinsztein</surname>
<given-names>DC</given-names>
</string-name>
.
<article-title>The Itinerary of Autophagosomes: from peripheral formation to kiss‐and‐run fusion with lysosomes</article-title>
.
<source xml:lang="en">Traffic</source>
.
<year>2008</year>
;
<volume>9</volume>
:
<fpage>574</fpage>
<lpage>587</lpage>
.
<pub-id pub-id-type="pmid">18182013</pub-id>
</mixed-citation>
</ref>
<ref id="fba21090-bib-0024">
<label>24</label>
<mixed-citation publication-type="journal" id="fba21090-cit-0024">
<string-name>
<surname>Mercado</surname>
<given-names>N</given-names>
</string-name>
,
<string-name>
<surname>Thimmulappa</surname>
<given-names>R</given-names>
</string-name>
,
<string-name>
<surname>Thomas</surname>
<given-names>CM</given-names>
</string-name>
, et al.
<article-title>Decreased histone deacetylase 2 impairs Nrf2 activation by oxidative stress</article-title>
.
<source xml:lang="en">Biochem Biophys Res Commun</source>
.
<year>2011</year>
;
<volume>406</volume>
:
<fpage>292</fpage>
<lpage>298</lpage>
.
<pub-id pub-id-type="pmid">21320471</pub-id>
</mixed-citation>
</ref>
<ref id="fba21090-bib-0025">
<label>25</label>
<mixed-citation publication-type="journal" id="fba21090-cit-0025">
<string-name>
<surname>Osoata</surname>
<given-names>GO</given-names>
</string-name>
,
<string-name>
<surname>Yamamura</surname>
<given-names>S</given-names>
</string-name>
,
<string-name>
<surname>Ito</surname>
<given-names>M</given-names>
</string-name>
, et al.
<article-title>Nitration of distinct tyrosine residues causes inactivation of histone deacetylase 2</article-title>
.
<source xml:lang="en">Biochem Biophys Res Comm</source>
.
<year>2009</year>
;
<volume>384</volume>
:
<fpage>366</fpage>
<lpage>371</lpage>
.
<pub-id pub-id-type="pmid">19410558</pub-id>
</mixed-citation>
</ref>
<ref id="fba21090-bib-0026">
<label>26</label>
<mixed-citation publication-type="journal" id="fba21090-cit-0026">
<string-name>
<surname>Ito</surname>
<given-names>K</given-names>
</string-name>
,
<string-name>
<surname>Ito</surname>
<given-names>M</given-names>
</string-name>
,
<string-name>
<surname>Elliott</surname>
<given-names>WM</given-names>
</string-name>
, et al.
<article-title>Decreased histone deacetylase activity in chronic obstructive pulmonary disease</article-title>
.
<source xml:lang="en">N Engl J Med</source>
.
<year>2005</year>
;
<volume>352</volume>
:
<fpage>1967</fpage>
<lpage>1976</lpage>
.
<pub-id pub-id-type="pmid">15888697</pub-id>
</mixed-citation>
</ref>
<ref id="fba21090-bib-0027">
<label>27</label>
<mixed-citation publication-type="journal" id="fba21090-cit-0027">
<string-name>
<surname>Lamark</surname>
<given-names>T</given-names>
</string-name>
,
<string-name>
<surname>Perander</surname>
<given-names>M</given-names>
</string-name>
,
<string-name>
<surname>Outzen</surname>
<given-names>H</given-names>
</string-name>
, et al.
<article-title>Interaction codes within the family of mammalian Phox and Bem1p domain‐containing proteins</article-title>
.
<source xml:lang="en">J Biol Chem</source>
.
<year>2003</year>
;
<volume>278</volume>
:
<fpage>34568</fpage>
<lpage>34581</lpage>
.
<pub-id pub-id-type="pmid">12813044</pub-id>
</mixed-citation>
</ref>
<ref id="fba21090-bib-0028">
<label>28</label>
<mixed-citation publication-type="journal" id="fba21090-cit-0028">
<string-name>
<surname>Wang</surname>
<given-names>G</given-names>
</string-name>
,
<string-name>
<surname>Zhou</surname>
<given-names>H</given-names>
</string-name>
,
<string-name>
<surname>Strulovici‐Barel</surname>
<given-names>Y</given-names>
</string-name>
, et al.
<article-title>Role of OSGIN1 in mediating smoking‐induced autophagy in the human airway epithelium</article-title>
.
<source xml:lang="en">Autophagy</source>
.
<year>2017</year>
;
<volume>13</volume>
:
<fpage>1205</fpage>
<lpage>1220</lpage>
.
<pub-id pub-id-type="pmid">28548877</pub-id>
</mixed-citation>
</ref>
<ref id="fba21090-bib-0029">
<label>29</label>
<mixed-citation publication-type="journal" id="fba21090-cit-0029">
<string-name>
<surname>Mizushima</surname>
<given-names>N</given-names>
</string-name>
.
<article-title>Autophagy: process and function</article-title>
.
<source xml:lang="en">Genes Dev</source>
.
<year>2007</year>
;
<volume>21</volume>
:
<fpage>2861</fpage>
<lpage>2873</lpage>
.
<pub-id pub-id-type="pmid">18006683</pub-id>
</mixed-citation>
</ref>
<ref id="fba21090-bib-0030">
<label>30</label>
<mixed-citation publication-type="journal" id="fba21090-cit-0030">
<string-name>
<surname>Shvets</surname>
<given-names>E</given-names>
</string-name>
,
<string-name>
<surname>Elazar</surname>
<given-names>Z</given-names>
</string-name>
.
<article-title>Autophagy‐independent incorporation of GFP‐LC3 into protein aggregates is dependent on its interaction with p62/SQSTM1</article-title>
.
<source xml:lang="en">Autophagy</source>
.
<year>2008</year>
;
<volume>4</volume>
:
<fpage>1054</fpage>
<lpage>1056</lpage>
.
<pub-id pub-id-type="pmid">18776740</pub-id>
</mixed-citation>
</ref>
<ref id="fba21090-bib-0031">
<label>31</label>
<mixed-citation publication-type="journal" id="fba21090-cit-0031">
<string-name>
<surname>Jain</surname>
<given-names>A</given-names>
</string-name>
,
<string-name>
<surname>Lamark</surname>
<given-names>T</given-names>
</string-name>
,
<string-name>
<surname>Sjottem</surname>
<given-names>E</given-names>
</string-name>
, et al.
<article-title>p62/SQSTM1 is a target gene for transcription factor NRF2 and creates a positive feedback loop by inducing antioxidant response element‐driven gene transcription</article-title>
.
<source xml:lang="en">J Biol Chem</source>
.
<year>2010</year>
;
<volume>285</volume>
:
<fpage>22576</fpage>
<lpage>22591</lpage>
.
<pub-id pub-id-type="pmid">20452972</pub-id>
</mixed-citation>
</ref>
<ref id="fba21090-bib-0032">
<label>32</label>
<mixed-citation publication-type="journal" id="fba21090-cit-0032">
<string-name>
<surname>Komatsu</surname>
<given-names>M</given-names>
</string-name>
,
<string-name>
<surname>Kurokawa</surname>
<given-names>H</given-names>
</string-name>
,
<string-name>
<surname>Waguri</surname>
<given-names>S</given-names>
</string-name>
, et al.
<article-title>The selective autophagy substrate p62 activates the stress responsive transcription factor Nrf2 through inactivation of Keap1</article-title>
.
<source xml:lang="en">Nat Cell Biol</source>
.
<year>2010</year>
;
<volume>12</volume>
:
<fpage>213</fpage>
<lpage>223</lpage>
.
<pub-id pub-id-type="pmid">20173742</pub-id>
</mixed-citation>
</ref>
<ref id="fba21090-bib-0033">
<label>33</label>
<mixed-citation publication-type="journal" id="fba21090-cit-0033">
<string-name>
<surname>Monick</surname>
<given-names>MM</given-names>
</string-name>
,
<string-name>
<surname>Powers</surname>
<given-names>LS</given-names>
</string-name>
,
<string-name>
<surname>Walters</surname>
<given-names>K</given-names>
</string-name>
, et al.
<article-title>Identification of an autophagy defect in smokers' alveolar macrophages</article-title>
.
<source xml:lang="en">J Immunol</source>
.
<year>2010</year>
;
<volume>185</volume>
:
<fpage>5425</fpage>
<lpage>5435</lpage>
.
<pub-id pub-id-type="pmid">20921532</pub-id>
</mixed-citation>
</ref>
<ref id="fba21090-bib-0034">
<label>34</label>
<mixed-citation publication-type="journal" id="fba21090-cit-0034">
<string-name>
<surname>Donohue</surname>
<given-names>E</given-names>
</string-name>
,
<string-name>
<surname>Balgi</surname>
<given-names>AD</given-names>
</string-name>
,
<string-name>
<surname>Komatsu</surname>
<given-names>M</given-names>
</string-name>
,
<string-name>
<surname>Roberge</surname>
<given-names>M</given-names>
</string-name>
.
<article-title>Induction of covalently crosslinked p62 oligomers with reduced binding to polyubiquitinated proteins by the autophagy inhibitor verteporfin</article-title>
.
<source xml:lang="en">PLoS ONE</source>
.
<year>2014</year>
;
<volume>9</volume>
:
<elocation-id>e114964</elocation-id>
.
<pub-id pub-id-type="pmid">25494214</pub-id>
</mixed-citation>
</ref>
<ref id="fba21090-bib-0035">
<label>35</label>
<mixed-citation publication-type="journal" id="fba21090-cit-0035">
<string-name>
<surname>Bjørkøy</surname>
<given-names>G</given-names>
</string-name>
,
<string-name>
<surname>Lamark</surname>
<given-names>T</given-names>
</string-name>
,
<string-name>
<surname>Brech</surname>
<given-names>A</given-names>
</string-name>
, et al.
<article-title>p62/SQSTM1 forms protein aggregates degraded by autophagy and has a protective effect on huntingtin‐induced cell death</article-title>
.
<source xml:lang="en">J Cell Biol</source>
.
<year>2005</year>
;
<volume>171</volume>
:
<fpage>603</fpage>
<lpage>614</lpage>
.
<pub-id pub-id-type="pmid">16286508</pub-id>
</mixed-citation>
</ref>
<ref id="fba21090-bib-0036">
<label>36</label>
<mixed-citation publication-type="journal" id="fba21090-cit-0036">
<string-name>
<surname>Hast</surname>
<given-names>BE</given-names>
</string-name>
,
<string-name>
<surname>Cloer</surname>
<given-names>EW</given-names>
</string-name>
,
<string-name>
<surname>Goldfarb</surname>
<given-names>D</given-names>
</string-name>
, et al.
<article-title>Cancer‐derived mutations in KEAP1 impair NRF2 degradation but not ubiquitination</article-title>
.
<source xml:lang="en">Can Res</source>
.
<year>2014</year>
;
<volume>74</volume>
:
<fpage>808</fpage>
<lpage>817</lpage>
.</mixed-citation>
</ref>
<ref id="fba21090-bib-0037">
<label>37</label>
<mixed-citation publication-type="journal" id="fba21090-cit-0037">
<string-name>
<surname>Hundeshagen</surname>
<given-names>P</given-names>
</string-name>
,
<string-name>
<surname>Hamacher‐Brady</surname>
<given-names>A</given-names>
</string-name>
,
<string-name>
<surname>Eils</surname>
<given-names>R</given-names>
</string-name>
,
<string-name>
<surname>Brady</surname>
<given-names>N</given-names>
</string-name>
.
<article-title>Concurrent detection of autolysosome formation and lysosomal degradation by flow cytometry in a high‐content screen for inducers of autophagy</article-title>
.
<source xml:lang="en">BMC Biol</source>
.
<year>2011</year>
;
<volume>9</volume>
:
<fpage>38</fpage>
.
<pub-id pub-id-type="pmid">21635740</pub-id>
</mixed-citation>
</ref>
<ref id="fba21090-bib-0038">
<label>38</label>
<mixed-citation publication-type="journal" id="fba21090-cit-0038">
<string-name>
<surname>Shaw</surname>
<given-names>SY</given-names>
</string-name>
,
<string-name>
<surname>Tran</surname>
<given-names>K</given-names>
</string-name>
,
<string-name>
<surname>Castoreno</surname>
<given-names>AB</given-names>
</string-name>
, et al.
<article-title>Selective modulation of autophagy, innate immunity, and adaptive immunity by small molecules</article-title>
.
<source xml:lang="en">ACS Chem Biol</source>
.
<year>2013</year>
;
<volume>8</volume>
:
<fpage>2724</fpage>
<lpage>2733</lpage>
.
<pub-id pub-id-type="pmid">24168452</pub-id>
</mixed-citation>
</ref>
<ref id="fba21090-bib-0039">
<label>39</label>
<mixed-citation publication-type="journal" id="fba21090-cit-0039">
<string-name>
<surname>Sarkar</surname>
<given-names>S</given-names>
</string-name>
,
<string-name>
<surname>Perlstein</surname>
<given-names>EO</given-names>
</string-name>
,
<string-name>
<surname>Imarisio</surname>
<given-names>S</given-names>
</string-name>
, et al.
<article-title>Small molecules enhance autophagy and reduce toxicity in Huntington's disease models</article-title>
.
<source xml:lang="en">Nat Chem Biol</source>
.
<year>2007</year>
;
<volume>3</volume>
:
<fpage>331</fpage>
<lpage>338</lpage>
.
<pub-id pub-id-type="pmid">17486044</pub-id>
</mixed-citation>
</ref>
<ref id="fba21090-bib-0040">
<label>40</label>
<mixed-citation publication-type="journal" id="fba21090-cit-0040">
<string-name>
<surname>Nixon</surname>
<given-names>RA</given-names>
</string-name>
.
<article-title>The role of autophagy in neurodegenerative disease</article-title>
.
<source xml:lang="en">Nat Med</source>
.
<year>2013</year>
;
<volume>19</volume>
:
<fpage>983</fpage>
<lpage>997</lpage>
.
<pub-id pub-id-type="pmid">23921753</pub-id>
</mixed-citation>
</ref>
<ref id="fba21090-bib-0041">
<label>41</label>
<mixed-citation publication-type="journal" id="fba21090-cit-0041">
<string-name>
<surname>LaRocca</surname>
<given-names>TJ</given-names>
</string-name>
,
<string-name>
<surname>Henson</surname>
<given-names>GD</given-names>
</string-name>
,
<string-name>
<surname>Thorburn</surname>
<given-names>A</given-names>
</string-name>
,
<string-name>
<surname>Sindler</surname>
<given-names>AL</given-names>
</string-name>
,
<string-name>
<surname>Pierce</surname>
<given-names>GL</given-names>
</string-name>
,
<string-name>
<surname>Seals</surname>
<given-names>DR</given-names>
</string-name>
.
<article-title>Translational evidence that impaired autophagy contributes to arterial ageing</article-title>
.
<source xml:lang="en">J Physiol</source>
.
<year>2012</year>
;
<volume>590</volume>
:
<fpage>3305</fpage>
<lpage>3316</lpage>
.
<pub-id pub-id-type="pmid">22570377</pub-id>
</mixed-citation>
</ref>
<ref id="fba21090-bib-0042">
<label>42</label>
<mixed-citation publication-type="journal" id="fba21090-cit-0042">
<string-name>
<surname>Scherz‐Shouval</surname>
<given-names>R</given-names>
</string-name>
,
<string-name>
<surname>Shvets</surname>
<given-names>E</given-names>
</string-name>
,
<string-name>
<surname>Fass</surname>
<given-names>E</given-names>
</string-name>
,
<string-name>
<surname>Shorer</surname>
<given-names>H</given-names>
</string-name>
,
<string-name>
<surname>Gil</surname>
<given-names>L</given-names>
</string-name>
,
<string-name>
<surname>Elazar</surname>
<given-names>Z</given-names>
</string-name>
.
<article-title>Reactive oxygen species are essential for autophagy and specifically regulate the activity of Atg4</article-title>
.
<source xml:lang="en">EMBO J</source>
.
<year>2007</year>
;
<volume>26</volume>
(
<issue>7</issue>
):
<fpage>1749</fpage>
<lpage>1760</lpage>
.
<pub-id pub-id-type="pmid">17347651</pub-id>
</mixed-citation>
</ref>
<ref id="fba21090-bib-0043">
<label>43</label>
<mixed-citation publication-type="journal" id="fba21090-cit-0043">
<string-name>
<surname>Zhu</surname>
<given-names>L</given-names>
</string-name>
,
<string-name>
<surname>Barret</surname>
<given-names>EC</given-names>
</string-name>
,
<string-name>
<surname>Xu</surname>
<given-names>Y</given-names>
</string-name>
,
<string-name>
<surname>Liu</surname>
<given-names>Z</given-names>
</string-name>
,
<string-name>
<surname>Manoharan</surname>
<given-names>A</given-names>
</string-name>
,
<string-name>
<surname>Chen</surname>
<given-names>Y</given-names>
</string-name>
.
<article-title>Regulation of cigarette smoke (CS)‐induced autophagy by Nrf2</article-title>
.
<source xml:lang="en">PLoS ONE</source>
.
<year>2013</year>
;
<volume>8</volume>
(
<issue>4</issue>
):
<elocation-id>e55695</elocation-id>
.
<pub-id pub-id-type="pmid">23585825</pub-id>
</mixed-citation>
</ref>
<ref id="fba21090-bib-0044">
<label>44</label>
<mixed-citation publication-type="journal" id="fba21090-cit-0044">
<string-name>
<surname>Komatsu</surname>
<given-names>M</given-names>
</string-name>
,
<string-name>
<surname>Kageyama</surname>
<given-names>S</given-names>
</string-name>
,
<string-name>
<surname>Ichimura</surname>
<given-names>Y</given-names>
</string-name>
.
<article-title>p62/SQSTM1/A170: physiology and pathology</article-title>
.
<source xml:lang="en">Pharmacol Res</source>
.
<year>2012</year>
;
<volume>66</volume>
:
<fpage>457</fpage>
<lpage>462</lpage>
.
<pub-id pub-id-type="pmid">22841931</pub-id>
</mixed-citation>
</ref>
<ref id="fba21090-bib-0045">
<label>45</label>
<mixed-citation publication-type="journal" id="fba21090-cit-0045">
<string-name>
<surname>Aono</surname>
<given-names>J</given-names>
</string-name>
,
<string-name>
<surname>Yanagawa</surname>
<given-names>T</given-names>
</string-name>
,
<string-name>
<surname>Itoh</surname>
<given-names>K</given-names>
</string-name>
, et al.
<article-title>Activation of Nrf2 and accumulation of ubiquitinated A170 by arsenic in osteoblasts</article-title>
.
<source xml:lang="en">Biochem Biophys Res Comm</source>
.
<year>2003</year>
;
<volume>305</volume>
:
<fpage>271</fpage>
<lpage>277</lpage>
.
<pub-id pub-id-type="pmid">12745069</pub-id>
</mixed-citation>
</ref>
<ref id="fba21090-bib-0046">
<label>46</label>
<mixed-citation publication-type="journal" id="fba21090-cit-0046">
<string-name>
<surname>Wang</surname>
<given-names>Y</given-names>
</string-name>
,
<string-name>
<surname>Qiu</surname>
<given-names>Q</given-names>
</string-name>
,
<string-name>
<surname>Shen</surname>
<given-names>J‐J</given-names>
</string-name>
, et al.
<article-title>Cardiac glycosides induce autophagy in human non‐small cell lung cancer cells through regulation of dual signaling pathways</article-title>
.
<source xml:lang="en">Int J Biochem Cell Biol</source>
.
<year>2012</year>
;
<volume>44</volume>
:
<fpage>1813</fpage>
<lpage>1824</lpage>
.
<pub-id pub-id-type="pmid">22750415</pub-id>
</mixed-citation>
</ref>
<ref id="fba21090-bib-0047">
<label>47</label>
<mixed-citation publication-type="journal" id="fba21090-cit-0047">
<string-name>
<surname>Hansen</surname>
<given-names>T</given-names>
</string-name>
,
<string-name>
<surname>Johansen</surname>
<given-names>T</given-names>
</string-name>
.
<article-title>Following autophagy step by step</article-title>
.
<source xml:lang="en">BMC Biol</source>
.
<year>2011</year>
;
<volume>9</volume>
:
<fpage>39</fpage>
.
<pub-id pub-id-type="pmid">21635796</pub-id>
</mixed-citation>
</ref>
<ref id="fba21090-bib-0048">
<label>48</label>
<mixed-citation publication-type="journal" id="fba21090-cit-0048">
<string-name>
<surname>Xiong</surname>
<given-names>J</given-names>
</string-name>
,
<string-name>
<surname>Xia</surname>
<given-names>M</given-names>
</string-name>
,
<string-name>
<surname>Xu</surname>
<given-names>M</given-names>
</string-name>
, et al.
<article-title>Autophagy maturation associated with CD38‐mediated regulation of lysosome function in mouse glomerular podocytes</article-title>
.
<source xml:lang="en">J Cell Mol Med</source>
.
<year>2013</year>
;
<volume>17</volume>
:
<fpage>1598</fpage>
<lpage>1607</lpage>
.
<pub-id pub-id-type="pmid">24238063</pub-id>
</mixed-citation>
</ref>
<ref id="fba21090-bib-0049">
<label>49</label>
<mixed-citation publication-type="journal" id="fba21090-cit-0049">
<string-name>
<surname>Prassas</surname>
<given-names>I</given-names>
</string-name>
,
<string-name>
<surname>Diamandis</surname>
<given-names>EP</given-names>
</string-name>
.
<article-title>Novel therapeutic applications of cardiac glycosides</article-title>
.
<source xml:lang="en">Nat Rev Drug Discov</source>
.
<year>2008</year>
;
<volume>7</volume>
:
<fpage>926</fpage>
<lpage>935</lpage>
.
<pub-id pub-id-type="pmid">18948999</pub-id>
</mixed-citation>
</ref>
<ref id="fba21090-bib-0050">
<label>50</label>
<mixed-citation publication-type="journal" id="fba21090-cit-0050">
<string-name>
<surname>Liu</surname>
<given-names>Y</given-names>
</string-name>
,
<string-name>
<surname>Shoji‐Kawata</surname>
<given-names>S</given-names>
</string-name>
,
<string-name>
<surname>Sumpter</surname>
<given-names>RM</given-names>
</string-name>
, et al.
<article-title>Autosis is a Na+,K+‐ATPase‐regulated form of cell death triggered by autophagy‐inducing peptides, starvation, and hypoxia‐ischemia</article-title>
.
<source xml:lang="en">Proc Natl Acad Sci USA</source>
.
<year>2013</year>
;
<volume>110</volume>
(
<issue>51</issue>
):
<fpage>20364</fpage>
<lpage>20371</lpage>
.
<pub-id pub-id-type="pmid">24277826</pub-id>
</mixed-citation>
</ref>
<ref id="fba21090-bib-0051">
<label>51</label>
<mixed-citation publication-type="journal" id="fba21090-cit-0051">
<string-name>
<surname>Ye</surname>
<given-names>J</given-names>
</string-name>
,
<string-name>
<surname>Chen</surname>
<given-names>S</given-names>
</string-name>
,
<string-name>
<surname>Maniatis</surname>
<given-names>T</given-names>
</string-name>
.
<article-title>Cardiac glycosides are potent inhibitors of interferon‐β gene expression</article-title>
.
<source xml:lang="en">Nat Chem Biol</source>
.
<year>2011</year>
;
<volume>7</volume>
:
<fpage>25</fpage>
<lpage>33</lpage>
.
<pub-id pub-id-type="pmid">21076398</pub-id>
</mixed-citation>
</ref>
</ref-list>
</back>
</pmc>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/ChloroquineV1/Data/Pmc/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000525 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Pmc/Corpus/biblio.hfd -nk 000525 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    ChloroquineV1
   |flux=    Pmc
   |étape=   Corpus
   |type=    RBID
   |clé=     PMC:6996363
   |texte=   Bicaudal D1 impairs autophagosome maturation in chronic obstructive pulmonary disease
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Pmc/Corpus/RBID.i   -Sk "pubmed:32123815" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Pmc/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a ChloroquineV1 

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Wed Mar 25 22:43:59 2020. Site generation: Sun Jan 31 12:44:45 2021