Serveur d'exploration Chloroquine

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.
***** Acces problem to record *****\

Identifieur interne : 000518 ( Pmc/Corpus ); précédent : 0005179; suivant : 0005190 ***** probable Xml problem with record *****

Links to Exploration step


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Angelicin inhibits the malignant behaviours of human cervical cancer potentially via inhibiting autophagy</title>
<author>
<name sortKey="Wang, Yiran" sort="Wang, Yiran" uniqKey="Wang Y" first="Yiran" last="Wang">Yiran Wang</name>
<affiliation>
<nlm:aff id="af1-etm-0-0-7985">Department of Obstetrics and Gynecology, Southwest Hospital, Third Military Medical University, Chongqing 400038, P.R. China</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Chen, Yueqi" sort="Chen, Yueqi" uniqKey="Chen Y" first="Yueqi" last="Chen">Yueqi Chen</name>
<affiliation>
<nlm:aff id="af2-etm-0-0-7985">Department of Orthopedics, Southwest Hospital, Third Military Medical University, Chongqing 400038, P.R. China</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Chen, Xuedan" sort="Chen, Xuedan" uniqKey="Chen X" first="Xuedan" last="Chen">Xuedan Chen</name>
<affiliation>
<nlm:aff id="af3-etm-0-0-7985">Department of Medical Genetics, College of Basic Medical Science, Third Military Medical University, Chongqing 400038, P.R. China</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Liang, Yan" sort="Liang, Yan" uniqKey="Liang Y" first="Yan" last="Liang">Yan Liang</name>
<affiliation>
<nlm:aff id="af4-etm-0-0-7985">Department of Respiratory Medicine, The General Hospital of PLA Rocket Force, Beijing 100088, P.R. China</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Yang, Dapeng" sort="Yang, Dapeng" uniqKey="Yang D" first="Dapeng" last="Yang">Dapeng Yang</name>
<affiliation>
<nlm:aff id="af1-etm-0-0-7985">Department of Obstetrics and Gynecology, Southwest Hospital, Third Military Medical University, Chongqing 400038, P.R. China</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Dong, Jiao" sort="Dong, Jiao" uniqKey="Dong J" first="Jiao" last="Dong">Jiao Dong</name>
<affiliation>
<nlm:aff id="af1-etm-0-0-7985">Department of Obstetrics and Gynecology, Southwest Hospital, Third Military Medical University, Chongqing 400038, P.R. China</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Yang, Neng" sort="Yang, Neng" uniqKey="Yang N" first="Neng" last="Yang">Neng Yang</name>
<affiliation>
<nlm:aff id="af1-etm-0-0-7985">Department of Obstetrics and Gynecology, Southwest Hospital, Third Military Medical University, Chongqing 400038, P.R. China</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Liang, Zhiqing" sort="Liang, Zhiqing" uniqKey="Liang Z" first="Zhiqing" last="Liang">Zhiqing Liang</name>
<affiliation>
<nlm:aff id="af1-etm-0-0-7985">Department of Obstetrics and Gynecology, Southwest Hospital, Third Military Medical University, Chongqing 400038, P.R. China</nlm:aff>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PMC</idno>
<idno type="pmid">31602210</idno>
<idno type="pmc">6777310</idno>
<idno type="url">http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6777310</idno>
<idno type="RBID">PMC:6777310</idno>
<idno type="doi">10.3892/etm.2019.7985</idno>
<date when="2019">2019</date>
<idno type="wicri:Area/Pmc/Corpus">000518</idno>
<idno type="wicri:explorRef" wicri:stream="Pmc" wicri:step="Corpus" wicri:corpus="PMC">000518</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a" type="main">Angelicin inhibits the malignant behaviours of human cervical cancer potentially via inhibiting autophagy</title>
<author>
<name sortKey="Wang, Yiran" sort="Wang, Yiran" uniqKey="Wang Y" first="Yiran" last="Wang">Yiran Wang</name>
<affiliation>
<nlm:aff id="af1-etm-0-0-7985">Department of Obstetrics and Gynecology, Southwest Hospital, Third Military Medical University, Chongqing 400038, P.R. China</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Chen, Yueqi" sort="Chen, Yueqi" uniqKey="Chen Y" first="Yueqi" last="Chen">Yueqi Chen</name>
<affiliation>
<nlm:aff id="af2-etm-0-0-7985">Department of Orthopedics, Southwest Hospital, Third Military Medical University, Chongqing 400038, P.R. China</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Chen, Xuedan" sort="Chen, Xuedan" uniqKey="Chen X" first="Xuedan" last="Chen">Xuedan Chen</name>
<affiliation>
<nlm:aff id="af3-etm-0-0-7985">Department of Medical Genetics, College of Basic Medical Science, Third Military Medical University, Chongqing 400038, P.R. China</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Liang, Yan" sort="Liang, Yan" uniqKey="Liang Y" first="Yan" last="Liang">Yan Liang</name>
<affiliation>
<nlm:aff id="af4-etm-0-0-7985">Department of Respiratory Medicine, The General Hospital of PLA Rocket Force, Beijing 100088, P.R. China</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Yang, Dapeng" sort="Yang, Dapeng" uniqKey="Yang D" first="Dapeng" last="Yang">Dapeng Yang</name>
<affiliation>
<nlm:aff id="af1-etm-0-0-7985">Department of Obstetrics and Gynecology, Southwest Hospital, Third Military Medical University, Chongqing 400038, P.R. China</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Dong, Jiao" sort="Dong, Jiao" uniqKey="Dong J" first="Jiao" last="Dong">Jiao Dong</name>
<affiliation>
<nlm:aff id="af1-etm-0-0-7985">Department of Obstetrics and Gynecology, Southwest Hospital, Third Military Medical University, Chongqing 400038, P.R. China</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Yang, Neng" sort="Yang, Neng" uniqKey="Yang N" first="Neng" last="Yang">Neng Yang</name>
<affiliation>
<nlm:aff id="af1-etm-0-0-7985">Department of Obstetrics and Gynecology, Southwest Hospital, Third Military Medical University, Chongqing 400038, P.R. China</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Liang, Zhiqing" sort="Liang, Zhiqing" uniqKey="Liang Z" first="Zhiqing" last="Liang">Zhiqing Liang</name>
<affiliation>
<nlm:aff id="af1-etm-0-0-7985">Department of Obstetrics and Gynecology, Southwest Hospital, Third Military Medical University, Chongqing 400038, P.R. China</nlm:aff>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Experimental and Therapeutic Medicine</title>
<idno type="ISSN">1792-0981</idno>
<idno type="eISSN">1792-1015</idno>
<imprint>
<date when="2019">2019</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<p>Angelicin is an active compound isolated from the Chinese herb
<italic>Angelica archangelica</italic>
, which has been reported to exert antitumor effects by inhibiting malignant behaviors in several types of tumor, including proliferation, colony formation, migration and invasion. However, the effects of angelicin on human cervical cancer cells is yet to be elucidated. The present study evaluated the antitumor effects of angelicin on cervical cancer cells. The results demonstrated that cervical cancer cells were more sensitive to angelicin than cervical epithelial cells. At its IC
<sub>30</sub>
, angelicin inhibited the proliferation of HeLa and SiHa cells by blocking the cell cycle at the G1/G0 phase and inhibiting other malignant behaviors, including colony formation, tumor formation in soft agar, migration and invasion. At the IC
<sub>50</sub>
, angelicin induced cell death potentially by promoting apoptosis. By identifying the hallmarks of autophagy, it was observed that angelicin treatment caused the accumulation of microtubule associated protein 1 light chain 3-β (LC3B) in the cytoplasm of HeLa and SiHa cells. Western blotting results demonstrated that cleaved LC3B-II and autophagy related proteins (Atg)3, Atg7 and Atg12-5 were upregulated following angelicin treatment. It was also determined that the phosphorylation of mTOR was induced by angelicin treatment. Furthermore, the inhibition of angelicin-induced mTOR phosphorylation did not disrupt its inhibitory effect on autophagy, indicating that angelicin inhibited autophagy in an mTOR-independent manner. Taken together, the present results suggested that angelicin regulated malignant behaviors in cervical cancer cells by inhibiting autophagy in an mTOR-independent manner. Findings suggested that autophagy might be a potential therapeutic target for cervical cancer.</p>
</div>
</front>
<back>
<div1 type="bibliography">
<listBibl>
<biblStruct>
<analytic>
<author>
<name sortKey="Torre, La" uniqKey="Torre L">LA Torre</name>
</author>
<author>
<name sortKey="Bray, F" uniqKey="Bray F">F Bray</name>
</author>
<author>
<name sortKey="Siegel, Rl" uniqKey="Siegel R">RL Siegel</name>
</author>
<author>
<name sortKey="Ferlay, J" uniqKey="Ferlay J">J Ferlay</name>
</author>
<author>
<name sortKey="Lortet Tieulent, J" uniqKey="Lortet Tieulent J">J Lortet-Tieulent</name>
</author>
<author>
<name sortKey="Jemal, A" uniqKey="Jemal A">A Jemal</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Burger, H" uniqKey="Burger H">H Burger</name>
</author>
<author>
<name sortKey="Loos, Wj" uniqKey="Loos W">WJ Loos</name>
</author>
<author>
<name sortKey="Eechoute, K" uniqKey="Eechoute K">K Eechoute</name>
</author>
<author>
<name sortKey="Verweij, J" uniqKey="Verweij J">J Verweij</name>
</author>
<author>
<name sortKey="Mathijssen, Rh" uniqKey="Mathijssen R">RH Mathijssen</name>
</author>
<author>
<name sortKey="Wiemer, Ea" uniqKey="Wiemer E">EA Wiemer</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Lilic, V" uniqKey="Lilic V">V Lilic</name>
</author>
<author>
<name sortKey="Lilic, G" uniqKey="Lilic G">G Lilic</name>
</author>
<author>
<name sortKey="Filipovic, S" uniqKey="Filipovic S">S Filipovic</name>
</author>
<author>
<name sortKey="Milosevic, J" uniqKey="Milosevic J">J Milosevic</name>
</author>
<author>
<name sortKey="Tasic, M" uniqKey="Tasic M">M Tasic</name>
</author>
<author>
<name sortKey="Stojiljkovic, M" uniqKey="Stojiljkovic M">M Stojiljkovic</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Rodriguez Villalba, S" uniqKey="Rodriguez Villalba S">S Rodríguez Villalba</name>
</author>
<author>
<name sortKey="Diaz Canejaplanell, C" uniqKey="Diaz Canejaplanell C">C Díaz-CanejaPlanell</name>
</author>
<author>
<name sortKey="Cervera Grau, Jm" uniqKey="Cervera Grau J">JM Cervera Grau</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Tsai, Jh" uniqKey="Tsai J">JH Tsai</name>
</author>
<author>
<name sortKey="Hsu, Ls" uniqKey="Hsu L">LS Hsu</name>
</author>
<author>
<name sortKey="Huang, Hc" uniqKey="Huang H">HC Huang</name>
</author>
<author>
<name sortKey="Lin, Cl" uniqKey="Lin C">CL Lin</name>
</author>
<author>
<name sortKey="Pan, Mh" uniqKey="Pan M">MH Pan</name>
</author>
<author>
<name sortKey="Hong, Hm" uniqKey="Hong H">HM Hong</name>
</author>
<author>
<name sortKey="Chen, Wj" uniqKey="Chen W">WJ Chen</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Li, N" uniqKey="Li N">N Li</name>
</author>
<author>
<name sortKey="Zhang, W" uniqKey="Zhang W">W Zhang</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kavli, G" uniqKey="Kavli G">G Kavli</name>
</author>
<author>
<name sortKey="Midelfart, K" uniqKey="Midelfart K">K Midelfart</name>
</author>
<author>
<name sortKey="Raa, J" uniqKey="Raa J">J Raa</name>
</author>
<author>
<name sortKey="Volden, G" uniqKey="Volden G">G Volden</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Lampronti, I" uniqKey="Lampronti I">I Lampronti</name>
</author>
<author>
<name sortKey="Bianchi, N" uniqKey="Bianchi N">N Bianchi</name>
</author>
<author>
<name sortKey="Borgatti, M" uniqKey="Borgatti M">M Borgatti</name>
</author>
<author>
<name sortKey="Fibach, E" uniqKey="Fibach E">E Fibach</name>
</author>
<author>
<name sortKey="Prus, E" uniqKey="Prus E">E Prus</name>
</author>
<author>
<name sortKey="Gambari, R" uniqKey="Gambari R">R Gambari</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Mira, A" uniqKey="Mira A">A Mira</name>
</author>
<author>
<name sortKey="Shimizu, K" uniqKey="Shimizu K">K Shimizu</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Wang, F" uniqKey="Wang F">F Wang</name>
</author>
<author>
<name sortKey="Li, J" uniqKey="Li J">J Li</name>
</author>
<author>
<name sortKey="Li, R" uniqKey="Li R">R Li</name>
</author>
<author>
<name sortKey="Pan, G" uniqKey="Pan G">G Pan</name>
</author>
<author>
<name sortKey="Bai, M" uniqKey="Bai M">M Bai</name>
</author>
<author>
<name sortKey="Huang, Q" uniqKey="Huang Q">Q Huang</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Fang, W" uniqKey="Fang W">W Fang</name>
</author>
<author>
<name sortKey="Shu, S" uniqKey="Shu S">S Shu</name>
</author>
<author>
<name sortKey="Yongmei, L" uniqKey="Yongmei L">L Yongmei</name>
</author>
<author>
<name sortKey="Endong, Z" uniqKey="Endong Z">Z Endong</name>
</author>
<author>
<name sortKey="Lirong, Y" uniqKey="Lirong Y">Y Lirong</name>
</author>
<author>
<name sortKey="Bei, S" uniqKey="Bei S">S Bei</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Span, V" uniqKey="Span V">V Spanò</name>
</author>
<author>
<name sortKey="Parrino, B" uniqKey="Parrino B">B Parrino</name>
</author>
<author>
<name sortKey="Carbone, A" uniqKey="Carbone A">A Carbone</name>
</author>
<author>
<name sortKey="Montalbano, A" uniqKey="Montalbano A">A Montalbano</name>
</author>
<author>
<name sortKey="Salvador, A" uniqKey="Salvador A">A Salvador</name>
</author>
<author>
<name sortKey="Brun, P" uniqKey="Brun P">P Brun</name>
</author>
<author>
<name sortKey="Vedaldi, D" uniqKey="Vedaldi D">D Vedaldi</name>
</author>
<author>
<name sortKey="Diana, P" uniqKey="Diana P">P Diana</name>
</author>
<author>
<name sortKey="Cirrincione, G" uniqKey="Cirrincione G">G Cirrincione</name>
</author>
<author>
<name sortKey="Barraja, P" uniqKey="Barraja P">P Barraja</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Bruni, R" uniqKey="Bruni R">R Bruni</name>
</author>
<author>
<name sortKey="Barreca, D" uniqKey="Barreca D">D Barreca</name>
</author>
<author>
<name sortKey="Protti, M" uniqKey="Protti M">M Protti</name>
</author>
<author>
<name sortKey="Brighenti, V" uniqKey="Brighenti V">V Brighenti</name>
</author>
<author>
<name sortKey="Righetti, L" uniqKey="Righetti L">L Righetti</name>
</author>
<author>
<name sortKey="Anceschi, L" uniqKey="Anceschi L">L Anceschi</name>
</author>
<author>
<name sortKey="Mercolini, L" uniqKey="Mercolini L">L Mercolini</name>
</author>
<author>
<name sortKey="Benvenuti, S" uniqKey="Benvenuti S">S Benvenuti</name>
</author>
<author>
<name sortKey="Gattuso, G" uniqKey="Gattuso G">G Gattuso</name>
</author>
<author>
<name sortKey="Pellati, F" uniqKey="Pellati F">F Pellati</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Colter, Dc" uniqKey="Colter D">DC Colter</name>
</author>
<author>
<name sortKey="Class, R" uniqKey="Class R">R Class</name>
</author>
<author>
<name sortKey="Digirolamo, Cm" uniqKey="Digirolamo C">CM DiGirolamo</name>
</author>
<author>
<name sortKey="Prockop, Dj" uniqKey="Prockop D">DJ Prockop</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Hu, L" uniqKey="Hu L">L Hu</name>
</author>
<author>
<name sortKey="Sun, S" uniqKey="Sun S">S Sun</name>
</author>
<author>
<name sortKey="Wang, T" uniqKey="Wang T">T Wang</name>
</author>
<author>
<name sortKey="Li, Y" uniqKey="Li Y">Y Li</name>
</author>
<author>
<name sortKey="Jiang, K" uniqKey="Jiang K">K Jiang</name>
</author>
<author>
<name sortKey="Lin, G" uniqKey="Lin G">G Lin</name>
</author>
<author>
<name sortKey="Ma, Y" uniqKey="Ma Y">Y Ma</name>
</author>
<author>
<name sortKey="Barr, Mp" uniqKey="Barr M">MP Barr</name>
</author>
<author>
<name sortKey="Song, F" uniqKey="Song F">F Song</name>
</author>
<author>
<name sortKey="Zhang, G" uniqKey="Zhang G">G Zhang</name>
</author>
<author>
<name sortKey="Meng, S" uniqKey="Meng S">S Meng</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Hanahan, D" uniqKey="Hanahan D">D Hanahan</name>
</author>
<author>
<name sortKey="Weinberg, Ra" uniqKey="Weinberg R">RA Weinberg</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Trout, Jj" uniqKey="Trout J">JJ Trout</name>
</author>
<author>
<name sortKey="Stauber, Wt" uniqKey="Stauber W">WT Stauber</name>
</author>
<author>
<name sortKey="Schottelius, Ba" uniqKey="Schottelius B">BA Schottelius</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Yang, Z" uniqKey="Yang Z">Z Yang</name>
</author>
<author>
<name sortKey="Klionsky, Dj" uniqKey="Klionsky D">DJ Klionsky</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Feng, Y" uniqKey="Feng Y">Y Feng</name>
</author>
<author>
<name sortKey="He, D" uniqKey="He D">D He</name>
</author>
<author>
<name sortKey="Yao, Z" uniqKey="Yao Z">Z Yao</name>
</author>
<author>
<name sortKey="Klionsky, Dj" uniqKey="Klionsky D">DJ Klionsky</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Tooze, Sa" uniqKey="Tooze S">SA Tooze</name>
</author>
<author>
<name sortKey="Yoshimori, T" uniqKey="Yoshimori T">T Yoshimori</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Adem, J" uniqKey="Adem J">J Adem</name>
</author>
<author>
<name sortKey="Ropponen, A" uniqKey="Ropponen A">A Ropponen</name>
</author>
<author>
<name sortKey="Eeva, J" uniqKey="Eeva J">J Eeva</name>
</author>
<author>
<name sortKey="Eray, M" uniqKey="Eray M">M Eray</name>
</author>
<author>
<name sortKey="Nuutinen, U" uniqKey="Nuutinen U">U Nuutinen</name>
</author>
<author>
<name sortKey="Pelkonen, J" uniqKey="Pelkonen J">J Pelkonen</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Chen, Tc" uniqKey="Chen T">TC Chen</name>
</author>
<author>
<name sortKey="Yu, Mc" uniqKey="Yu M">MC Yu</name>
</author>
<author>
<name sortKey="Chien, Cc" uniqKey="Chien C">CC Chien</name>
</author>
<author>
<name sortKey="Wu, Ms" uniqKey="Wu M">MS Wu</name>
</author>
<author>
<name sortKey="Lee, Yc" uniqKey="Lee Y">YC Lee</name>
</author>
<author>
<name sortKey="Chen, Yc" uniqKey="Chen Y">YC Chen</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Hsieh, Mj" uniqKey="Hsieh M">MJ Hsieh</name>
</author>
<author>
<name sortKey="Chen, Mk" uniqKey="Chen M">MK Chen</name>
</author>
<author>
<name sortKey="Yu, Yy" uniqKey="Yu Y">YY Yu</name>
</author>
<author>
<name sortKey="Sheu, Gt" uniqKey="Sheu G">GT Sheu</name>
</author>
<author>
<name sortKey="Chiou, Hl" uniqKey="Chiou H">HL Chiou</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="D Anqiolillo, F" uniqKey="D Anqiolillo F">F D'Anqiolillo</name>
</author>
<author>
<name sortKey="Pistellia, L" uniqKey="Pistellia L">L Pistellia</name>
</author>
<author>
<name sortKey="Noccioli, C" uniqKey="Noccioli C">C Noccioli</name>
</author>
<author>
<name sortKey="Ruffoni, B" uniqKey="Ruffoni B">B Ruffoni</name>
</author>
<author>
<name sortKey="Piaqqi, S" uniqKey="Piaqqi S">S Piaqqi</name>
</author>
<author>
<name sortKey="Scarpato, R" uniqKey="Scarpato R">R Scarpato</name>
</author>
<author>
<name sortKey="Pistelli, L" uniqKey="Pistelli L">L Pistelli</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Li, M" uniqKey="Li M">M Li</name>
</author>
<author>
<name sortKey="Gao, P" uniqKey="Gao P">P Gao</name>
</author>
<author>
<name sortKey="Zhang, J" uniqKey="Zhang J">J Zhang</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kamada, Y" uniqKey="Kamada Y">Y Kamada</name>
</author>
<author>
<name sortKey="Yoshino, K" uniqKey="Yoshino K">K Yoshino</name>
</author>
<author>
<name sortKey="Kondo, C" uniqKey="Kondo C">C Kondo</name>
</author>
<author>
<name sortKey="Kawamata, T" uniqKey="Kawamata T">T Kawamata</name>
</author>
<author>
<name sortKey="Oshiro, N" uniqKey="Oshiro N">N Oshiro</name>
</author>
<author>
<name sortKey="Yonezawa, K" uniqKey="Yonezawa K">K Yonezawa</name>
</author>
<author>
<name sortKey="Ohsumi, Y" uniqKey="Ohsumi Y">Y Ohsumi</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Hara, T" uniqKey="Hara T">T Hara</name>
</author>
<author>
<name sortKey="Mizushima, N" uniqKey="Mizushima N">N Mizushima</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Mizushima, N" uniqKey="Mizushima N">N Mizushima</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Choi, H" uniqKey="Choi H">H Choi</name>
</author>
<author>
<name sortKey="Merceron, C" uniqKey="Merceron C">C Merceron</name>
</author>
<author>
<name sortKey="Mangiavini, L" uniqKey="Mangiavini L">L Mangiavini</name>
</author>
<author>
<name sortKey="Seifert, El" uniqKey="Seifert E">EL Seifert</name>
</author>
<author>
<name sortKey="Schipani, E" uniqKey="Schipani E">E Schipani</name>
</author>
<author>
<name sortKey="Shapiro, Im" uniqKey="Shapiro I">IM Shapiro</name>
</author>
<author>
<name sortKey="Risbud, Mv" uniqKey="Risbud M">MV Risbud</name>
</author>
</analytic>
</biblStruct>
</listBibl>
</div1>
</back>
</TEI>
<pmc article-type="research-article">
<pmc-dir>properties open_access</pmc-dir>
<front>
<journal-meta>
<journal-id journal-id-type="nlm-ta">Exp Ther Med</journal-id>
<journal-id journal-id-type="iso-abbrev">Exp Ther Med</journal-id>
<journal-id journal-id-type="publisher-id">ETM</journal-id>
<journal-title-group>
<journal-title>Experimental and Therapeutic Medicine</journal-title>
</journal-title-group>
<issn pub-type="ppub">1792-0981</issn>
<issn pub-type="epub">1792-1015</issn>
<publisher>
<publisher-name>D.A. Spandidos</publisher-name>
</publisher>
</journal-meta>
<article-meta>
<article-id pub-id-type="pmid">31602210</article-id>
<article-id pub-id-type="pmc">6777310</article-id>
<article-id pub-id-type="doi">10.3892/etm.2019.7985</article-id>
<article-id pub-id-type="publisher-id">ETM-0-0-7985</article-id>
<article-categories>
<subj-group subj-group-type="heading">
<subject>Articles</subject>
</subj-group>
</article-categories>
<title-group>
<article-title>Angelicin inhibits the malignant behaviours of human cervical cancer potentially via inhibiting autophagy</article-title>
</title-group>
<contrib-group>
<contrib contrib-type="author">
<name>
<surname>Wang</surname>
<given-names>Yiran</given-names>
</name>
<xref ref-type="aff" rid="af1-etm-0-0-7985">1</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Chen</surname>
<given-names>Yueqi</given-names>
</name>
<xref ref-type="aff" rid="af2-etm-0-0-7985">2</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Chen</surname>
<given-names>Xuedan</given-names>
</name>
<xref ref-type="aff" rid="af3-etm-0-0-7985">3</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Liang</surname>
<given-names>Yan</given-names>
</name>
<xref ref-type="aff" rid="af4-etm-0-0-7985">4</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Yang</surname>
<given-names>Dapeng</given-names>
</name>
<xref ref-type="aff" rid="af1-etm-0-0-7985">1</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Dong</surname>
<given-names>Jiao</given-names>
</name>
<xref ref-type="aff" rid="af1-etm-0-0-7985">1</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Yang</surname>
<given-names>Neng</given-names>
</name>
<xref ref-type="aff" rid="af1-etm-0-0-7985">1</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Liang</surname>
<given-names>Zhiqing</given-names>
</name>
<xref ref-type="aff" rid="af1-etm-0-0-7985">1</xref>
<xref rid="c1-etm-0-0-7985" ref-type="corresp"></xref>
</contrib>
</contrib-group>
<aff id="af1-etm-0-0-7985">
<label>1</label>
Department of Obstetrics and Gynecology, Southwest Hospital, Third Military Medical University, Chongqing 400038, P.R. China</aff>
<aff id="af2-etm-0-0-7985">
<label>2</label>
Department of Orthopedics, Southwest Hospital, Third Military Medical University, Chongqing 400038, P.R. China</aff>
<aff id="af3-etm-0-0-7985">
<label>3</label>
Department of Medical Genetics, College of Basic Medical Science, Third Military Medical University, Chongqing 400038, P.R. China</aff>
<aff id="af4-etm-0-0-7985">
<label>4</label>
Department of Respiratory Medicine, The General Hospital of PLA Rocket Force, Beijing 100088, P.R. China</aff>
<author-notes>
<corresp id="c1-etm-0-0-7985">
<italic>Correspondence to</italic>
: Professor Zhiqing Liang, Department of Obstetrics and Gynecology, Southwest Hospital, Third Military Medical University, 30 Gao-Tan-Yan Street, Shapingba, Chongqing 400038, P.R. China, E-mail:
<email>zhi_lzliang@163.com</email>
</corresp>
</author-notes>
<pub-date pub-type="ppub">
<month>11</month>
<year>2019</year>
</pub-date>
<pub-date pub-type="epub">
<day>06</day>
<month>9</month>
<year>2019</year>
</pub-date>
<pub-date pub-type="pmc-release">
<day>06</day>
<month>9</month>
<year>2019</year>
</pub-date>
<pmc-comment> PMC Release delay is 0 months and 0 days and was based on the . </pmc-comment>
<volume>18</volume>
<issue>5</issue>
<fpage>3365</fpage>
<lpage>3374</lpage>
<history>
<date date-type="received">
<day>14</day>
<month>9</month>
<year>2018</year>
</date>
<date date-type="accepted">
<day>24</day>
<month>7</month>
<year>2019</year>
</date>
</history>
<permissions>
<copyright-statement>Copyright: © Wang et al.</copyright-statement>
<copyright-year>2019</copyright-year>
<license license-type="open-access">
<license-p>This is an open access article distributed under the terms of the
<ext-link ext-link-type="uri" xlink:href="https://creativecommons.org/licenses/by-nc-nd/4.0/">Creative Commons Attribution-NonCommercial-NoDerivs License</ext-link>
, which permits use and distribution in any medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made.</license-p>
</license>
</permissions>
<abstract>
<p>Angelicin is an active compound isolated from the Chinese herb
<italic>Angelica archangelica</italic>
, which has been reported to exert antitumor effects by inhibiting malignant behaviors in several types of tumor, including proliferation, colony formation, migration and invasion. However, the effects of angelicin on human cervical cancer cells is yet to be elucidated. The present study evaluated the antitumor effects of angelicin on cervical cancer cells. The results demonstrated that cervical cancer cells were more sensitive to angelicin than cervical epithelial cells. At its IC
<sub>30</sub>
, angelicin inhibited the proliferation of HeLa and SiHa cells by blocking the cell cycle at the G1/G0 phase and inhibiting other malignant behaviors, including colony formation, tumor formation in soft agar, migration and invasion. At the IC
<sub>50</sub>
, angelicin induced cell death potentially by promoting apoptosis. By identifying the hallmarks of autophagy, it was observed that angelicin treatment caused the accumulation of microtubule associated protein 1 light chain 3-β (LC3B) in the cytoplasm of HeLa and SiHa cells. Western blotting results demonstrated that cleaved LC3B-II and autophagy related proteins (Atg)3, Atg7 and Atg12-5 were upregulated following angelicin treatment. It was also determined that the phosphorylation of mTOR was induced by angelicin treatment. Furthermore, the inhibition of angelicin-induced mTOR phosphorylation did not disrupt its inhibitory effect on autophagy, indicating that angelicin inhibited autophagy in an mTOR-independent manner. Taken together, the present results suggested that angelicin regulated malignant behaviors in cervical cancer cells by inhibiting autophagy in an mTOR-independent manner. Findings suggested that autophagy might be a potential therapeutic target for cervical cancer.</p>
</abstract>
<kwd-group>
<kwd>angelicin</kwd>
<kwd>cervical cancer</kwd>
<kwd>mTOR</kwd>
<kwd>autophagy</kwd>
<kwd>malignant behaviors</kwd>
</kwd-group>
</article-meta>
</front>
<body>
<sec sec-type="intro">
<title>Introduction</title>
<p>In less developed countries, cervical cancer is the second most commonly diagnosed cancer, with a high mortality rate (
<xref rid="b1-etm-0-0-7985" ref-type="bibr">1</xref>
). Early stage patients [International Federation of Gynaecology and Obstetrics (FIGO) stages I–IIA] may experience favourable outcomes by undergoing radical surgery or radiotherapy, as indicated by an overall 5-year survival rate of >65% (
<xref rid="b2-etm-0-0-7985" ref-type="bibr">2</xref>
,
<xref rid="b3-etm-0-0-7985" ref-type="bibr">3</xref>
). However, patients with later-stage disease, including stage IIB-IV, require more severe therapeutic strategies, including radiotherapy in addition to chemotherapy. The 5-year survival rate for patients with stage IIB-III cancer is 25–30% (
<xref rid="b2-etm-0-0-7985" ref-type="bibr">2</xref>
,
<xref rid="b3-etm-0-0-7985" ref-type="bibr">3</xref>
). For stage IV cancer, the survival rate is <15% (
<xref rid="b2-etm-0-0-7985" ref-type="bibr">2</xref>
,
<xref rid="b3-etm-0-0-7985" ref-type="bibr">3</xref>
) due to chemoresistance resulting in local recurrence or distant metastasis. Presently, chemotherapy is clinically employed as one of the most efficient strategies in the systematic treatment of cervical cancer. A combination of cisplatin with other chemotherapeutic drugs has remained the dominant systemic therapeutic modality for locally advanced and metastatic cervical cancer for several decades (
<xref rid="b4-etm-0-0-7985" ref-type="bibr">4</xref>
). However, chemoresistance limits the therapeutic effect of these chemoagent and frequently results in poor prognosis. Therefore, there is an urgent need for novel chemotherapeutic agents for use alone or in combination with a primary chemotherapeutic agent.</p>
<p>The natural molecule angelicin, 2-oxo-(2H)-furo(2,3-h)-1-benzopyran, is one of the major active compounds isolated from the traditional Chinese herb
<italic>Angelica archangelica</italic>
. For decades, angelicin has been clinically used to exert therapeutic effects on various skin diseases, such as lichen planus, acting as a photosensitizer (
<xref rid="b5-etm-0-0-7985" ref-type="bibr">5</xref>
,
<xref rid="b6-etm-0-0-7985" ref-type="bibr">6</xref>
). Angelicin exertsgenotoxic effects and thus induces cytotoxicity in several types of tumour and non-tumour cells (
<xref rid="b7-etm-0-0-7985" ref-type="bibr">7</xref>
,
<xref rid="b8-etm-0-0-7985" ref-type="bibr">8</xref>
). Mira and Shimizu (
<xref rid="b9-etm-0-0-7985" ref-type="bibr">9</xref>
) identified that angelicin causes cytotoxicity by inhibiting tubulin polymerization and histone deacetylase 8 activity in several types of tumour cells, including human hepatocellular carcinoma, rhabdomyosarcoma and colorectal carcinoma (
<xref rid="b9-etm-0-0-7985" ref-type="bibr">9</xref>
). To investigate the potential mechanism for proliferation inhibition, Wang
<italic>et al</italic>
(
<xref rid="b10-etm-0-0-7985" ref-type="bibr">10</xref>
) used liver cancer for therapeutic research both
<italic>in vitro</italic>
and
<italic>in vivo</italic>
. The study determined that the dose- and time-dependent apoptotic effect of angelicin is caused by the regulation of mitochondria, involving the P13K/AKT1 signalling pathway. Accordingly, angelicin affects physiological processes in both tumour and non-tumour cells.</p>
<p>Autophagy is a highly conserved multi-step lysosomal degradation process. Cellular components are sequestered in autophagosomes that subsequently fuse with lysosomes to degrade the contents (
<xref rid="b11-etm-0-0-7985" ref-type="bibr">11</xref>
). Accumulating evidence has established a close association between autophagy and tumour progression, with autophagy having different functions during tumour progression, including tumour suppression and enhancement (
<xref rid="b5-etm-0-0-7985" ref-type="bibr">5</xref>
,
<xref rid="b6-etm-0-0-7985" ref-type="bibr">6</xref>
,
<xref rid="b12-etm-0-0-7985" ref-type="bibr">12</xref>
). Tsai
<italic>et al</italic>
(
<xref rid="b5-etm-0-0-7985" ref-type="bibr">5</xref>
) reported that the natural agent 1-(2-hydroxy-5-methylphenyl)-3-phenyl-1,3-propanedione, exerts growth-inhibiting effects by promoting the autophagy of HeLa cervical cancer cells. Li
<italic>et al</italic>
(
<xref rid="b6-etm-0-0-7985" ref-type="bibr">6</xref>
) determined that protein kinase C-β inhibited autophagy and consequently sensitized HeLa cells to chemotherapy. The study also reported that an increase in autophagy inhibited cell growth and induced apoptotic cell death (
<xref rid="b12-etm-0-0-7985" ref-type="bibr">12</xref>
). The dynamic role of autophagy in tumour progression has been the focus of research for potential therapeutics. However, further studies into strategies for controlling autophagy are required to increase understanding into the association between autophagy and tumour progression.</p>
<p>The growth-inhibiting and apoptosis-promoting effects of angelicin in several types of cancers have been previously reported (
<xref rid="b13-etm-0-0-7985" ref-type="bibr">13</xref>
). However, whether cervical cancer is chemosensitive to angelicin has not been demonstrated. Therefore, the present study used the human cervical carcinoma cell line, HeLa and the human cervical squamous cell carcinoma cell line, SiHa as
<italic>in vitro</italic>
models to determine the anticancer effects of angelicin. To evaluate its specific activity on cervical cancer cells, the non-tumour cervical epithelial cell line ECT1/E6E7 was also employed. The investigation primarily focused on the regulation of malignant behaviours by inducing or inhibiting autophagy in HeLa and SiHa. In addition, the effects of angelicin on autophagy and the potentially relevant mTOR signalling pathway were explored. The results of the present study may reveal the novel effects of angelicin as a chemotherapeutic strategy in certain types of cervical carcinomas.</p>
</sec>
<sec sec-type="materials|methods">
<title>Materials and methods</title>
<sec>
<title></title>
<sec>
<title>Cell culture and treatment</title>
<p>The human cervical carcinoma cell line, HeLa and the cervical squamous cell carcinoma cell line, SiHa was obtained from the American Type Culture Collection (accession no. HTB-35). The cervical epithelial cell line, ECT1/E6E7 was purchased from Jennio Biotech Co., Ltd. and used for identifying the difference of chemosensitivity between cancer cell lines and a non-tumor cell line. All cells were cultured at 37°C in a 5% CO
<sub>2</sub>
incubator in DMEM (Gibco; Thermo Fisher Scientific, Inc.) supplemented with 100 µg/ml streptomycin, 100 U/ml penicillin and 10% FBS (Gibco; Thermo Fisher Scientific, Inc.). Cells were passaged every 3 days.</p>
<p>For identifying chemosensitivity, 0, 20, 40, 60, 80, 100, 120, 140, 160, 180 or 200 µM angelicin (cat. no. A0956-10MG; Sigma-Aldrich; Merck KGaA) was added to the medium of HeLa or SiHa for 24 h. For 5-ethynyl-2′-deoxyuridine (Edu) staining, cell cycle distribution, colony formation, tumor formation in soft agar, migration and invasion assays, the IC30 of angelicin (27.8 µM) was employed to evaluate the effects of angelicin on malignant behaviors. For carboxyfluorescein succinimidyl ester (CFSE)/propidium iodide (PI) or Annexin V FITC/PI double staining, the IC
<sub>50</sub>
of angelicin was employed. For inhibiting the degradation of microtubule associated protein 1 light chain 3-β (LC3B)-II, cells were pretreated with 10 µM of chloroquine (cat. no. C6628; Sigma-Aldrich; Merck KGaA) for 6 h. For rapamycin (cat. no. V900930; Sigma-Aldrich; Merck KGaA) pretreatment, cells were pretreated with 1 µM of rapamycin for 6 h. Mock group containing vehicle only was considered as negative control in all the experiments.</p>
</sec>
<sec>
<title>Cell counting kit-8 (CCK-8) assay</title>
<p>To determine HeLa or SiHa cell viability, 5×10
<sup>3</sup>
cells were plated in 96-well plates. The aforementioned treatment was administered and 10 µl tetrazolium salt WST-8 (KeyGen Biotech. Co. Ltd.) was added to each well for a 4 h incubation at 37°C. Optical density (OD) was measured at a wavelength of 450 nm using a microplate reader (Synergy 2 Multi-Mode Microplate Reader; BioTek Instruments, Inc.).</p>
</sec>
<sec>
<title>EdU staining</title>
<p>HeLa or SiHa cells were seeded at a density of 2×10
<sup>5</sup>
cells per well in 6-well plates supplemented with DMEM containing 50 µM EdU (RiboBio Co. Ltd.). Following 2 h incubation at room temperature, cells were washed with ice-cold PBS and fixed with 4% paraformaldehyde for 10 min at room temperature. EdU immunostaining was performed with Apollo staining reaction buffer followed by nuclei staining with Hoechst 33342 (cat. no. B2261; Sigma-Aldrich; Merck KGaA) at final concentration of 10 µg/ml at room temperature for 10 min. Stained cells were imaged under a X71 (U-RFL-T) fluorescence microscope (Olympus Corporation; magnification, ×40).</p>
</sec>
<sec>
<title>PI staining</title>
<p>HeLa or SiHa cells were dissociated using 0.25% trypsin (Thermo Fisher Scientific, Inc.) and three time washed with PBS. Following the last wash, the cell pellet, which was centrifuged at 400 × g for 10 min at room temperature, was suspended and fixed in 70% ice-cold alcohol overnight at 4°C. Cells were then washed in triplicate with ice-cold PBS and suspended in 400 µl PI solution (5 µg/ml) for 30 min in the dark. Apoptotic cells were analyzed via flow cytometry using a 3 laser Navios flow cytometer (Beckman Coulter, Inc.) and analyzed using FlowJo software (FlowJo LLC; version 9).</p>
</sec>
<sec>
<title>Colony formation</title>
<p>HeLa or SiHa cells were seeded in 6-well plates at a density of 1,000 cells/well. Cells were then cultured at 37°C for 10 days until visible colonies appeared. Colonies were stained with 500 µl Giemsa solution (Nanjing KeyGen Biotech Co., Ltd.) and incubated for 30 min at 37°C. Colonies were then imaged using a X71 (U-RFL-T) fluorescence microscope (Olympus Corporation; magnification, ×40).</p>
</sec>
<sec>
<title>Tumor formation in soft agar</title>
<p>To assess tumor formation
<italic>in vitro</italic>
, soft agar clonogenic assays were performed. Each well of a 6-well plate was coated with 2 ml of 0.5% (w/v) low-melting agar (Sigma-Aldrich; Merck KGaA) in DMEM with 10% FBS. Cells were mixed and 5×10
<sup>3</sup>
cells in 2 ml 0.3% low-melting agar with 10% FBS were added above the polymerized base solution. Plates were incubated (37°C; 5% CO
<sub>2</sub>
) for 14 days before colony number and diameter were quantified microscopically using a X71 (U-RFL-T) fluorescence microscope (Olympus Corporation; magnification, ×40).</p>
</sec>
<sec>
<title>Scratch wound healing assay</title>
<p>HeLa or SiHa cells were seeded at a density of 1×10
<sup>6</sup>
in 6-well plates and allowed to attach for 24 h. When cell confluence reached ~100%, a scratch wound was subsequently introduced by scraping the cell monolayer with a 10 µl sterile micropipette tip. Cells were then washed with PBS to remove unattached cells and incubated at 37°C for 24 h in medium containing 1% FBS. Cells were then imaged at the same site at 0 and 24 h following induction of the scratch using a X71 (U-RFL-T) fluorescence microscope (Olympus Corporation; magnification, ×40).</p>
</sec>
<sec>
<title>Transwell invasion assay</title>
<p>HeLa or SiHa cells were dissociated with 0.25% trypsin and washed three times with ice-cold PBS. In the lower chamber, 500 µl of DMEM supplemented with 10% FBS was added. A total of 200 µl of cells at the concentration of 2×10
<sup>5</sup>
/ml were seeded into the top chamber of transwell inserts containing 8 µM pore polycarbonate filters (Corning Inc.) that had been precoated with Matrigel for 2 h at room temperature (BD Biosciences). The plate was incubated at 37°C for 24 h. Experiments were performed in triplicate. Following 24 h of incubation, the cells on the upper membrane were removed and the invaded cells were stained with 0.25% crystal violet (Beyotime Institute of Biotechnology) at room temperature for 10 min then counted using a X71 (U-RFL-T) fluorescence microscope (Olympus Corporation; magnification, ×40).</p>
</sec>
<sec>
<title>CFSE/PI double staining</title>
<p>A total of 1×10
<sup>6</sup>
HeLa or SiHa cells were seeded in 6-well plates and allowed to attach overnight. Then 100 µl of CFSE fluorescent dye (Sigma-Aldrich; Merck KGaA) was added and incubated at 37°C for 15 min. Supernatant was removed and cells were washed with DMEM without FBS. Following the aforementioned treatments, cells were incubated with PI to a final concentration of 5 µg/ml at room temperature for 10 min. Cells were imaged using a X71 (U-RFL-T) fluorescence microscope (Olympus Corporation; magnification, ×40).</p>
</sec>
<sec>
<title>Annexin V/PI double staining</title>
<p>HeLa or SiHa cells were dissociated using 0.25% Trypsin and washed three times with ice-cold PBS. Following the last wash, cells were suspended in PBS and the cell concentration was adjusted to 1×10
<sup>6</sup>
cells/ml. Cells were simultaneously stained with Annexin V-FITC (green fluorescence) and PI (red fluorescence), which allowed for the identification of intact cells (FITC
<sup></sup>
/PI
<sup></sup>
), early apoptotic cells (FITC
<sup>+</sup>
/PI
<sup></sup>
) and late apoptotic cells (FITC
<sup>+</sup>
/PI
<sup>+</sup>
). Samples were analyzed using the FACS LSRII flow cytometer (BD Biosciences) with FlowJo software (FlowJo LLC; version 9).</p>
</sec>
<sec>
<title>Immunofluorescence microscopy</title>
<p>HeLa or SiHa cells were plated in 6-well plates on coverslips and allowed to attach for 24 h. Cells were fixed with 4% paraformaldehyde for 20 min and permeabilized with 0.2% Triton X-100 (Sigma-Aldrich; Merck KGaA) for 10 min at room temperature. Normal goat serum (5%; Sigma-Aldrich; Merck KGaA) in PBS was used for unspecific blocking at room temperature for 30 min. Cells were incubated with primary antibodies against LC3B (1:2,000; cat. no. ab48394; Abcam) at room temperature for 2 h. Cells were then rinsed four times with PBS-Tween 20 and incubated with secondary antibodies produced in rabbit (1:500 in 0.5% normal goat serum) conjugated with Alexa Fluor 488 for 1 h at room temperature. Cell nuclei were stained with DAPI (Sigma-Aldrich; Merck KGaA) at room temperature for 10 min. Images were captured with a X71 (U-RFL-T) fluorescence microscope (Olympus Corporation) at a magnification of ×200.</p>
</sec>
<sec>
<title>Western blot analysis</title>
<p>Following the aforementioned treatments, HeLa or SiHa cells were lysed in chilled lysis buffer containing 50 mM Tris-HCl (pH 7.4), 150 mM NaCl, 1% Triton X-100, 5 mM EDTA, 1 mM Na
<sub>3</sub>
VO
<sub>4</sub>
, 1 mM NaF and 10 µM PMSF on ice for 10 min. Supernatants were collected via centrifugation at 12,000 × g for 10 min at 4°C. The extracted protein concentration was measured using Bicinochoninic Acid kit (Sigma-Aldrich; Merck KGaA) for Protein Determination according to the manufacturer's protocol. For each sample, 20 µg of total protein was loaded per lane and separated via SDS-PAGE on a 12.5% gel, then transferred onto a nitrocellulose membrane (EMD Millipore) followed by blocking using 5% BSA (Sigma–Aldrich; Merck KGaA). The membrane was subsequently incubated with the following primary antibodies at a dilution of 1:1,000 overnight at 4°C: Rabbit anti-LC3B (cat. no. ab48394; Abcam), rabbit anti-β-actin (cat. no. ab8227; Abcam), rabbit anti-autophagy related protein (Atg)-3 (cat. no. ab108251; Abcam), rabbit anti-Atg7 (cat. no. ab133528; Abcam), rabbit anti-β-actin (cat. no. ab8227; Abcam), rabbit anti-Atg12-Atg5 (cat. no. orb375397; Biorbyt Ltd.), rabbit anti-mTOR (cat. no. ab2732; Abcam) and rabbit anti-mTOR (phospho S2448, cat. no. ab109268, Abcam). Membranes were subsequently incubated with horseradish peroxidase-conjugated secondary antibodies (goat anti-rabbit IgG H&L antibody; cat. no. ab7090; 1:5,000; Abcam) for 2 h at room temperature. Enhanced chemiluminescence reagents (cat. no. PRN2232; GE Healthcare Bio-Sciences) were used to visualize protein bands.</p>
</sec>
<sec>
<title>Statistical analysis</title>
<p>Statistical analysis was performed with SPSS version 13.0 (SPSS, Inc.). Data were expressed as the mean ± standard deviation. All experiments were repeated three times, independently. Comparisons between groups were assessed using a Student's t-test for two groups and one-way analysis of variance followed by Bonferroni post hoc analysis for multiple groups. P<0.05 was considered to indicate statistical significance.</p>
</sec>
</sec>
</sec>
<sec sec-type="results">
<title>Results</title>
<sec>
<title></title>
<sec>
<title>Cervical cancer cells are more sensitive to angelicin than cervical epithelial cells</title>
<p>It has been reported that angelicin is cytotoxic to hepatic cancer cells (
<xref rid="b10-etm-0-0-7985" ref-type="bibr">10</xref>
). To investigate the effects of angelicin in cervical cancer cells (HeLa and SiHa), cell viability was determined using CCK-8 assay following exposure to a range of angelicin concentrations for 24 h. For comparison, the sensitivity of cervical epithelial cells (ECT1/E6E7) to angelicin was also measured to evaluate the 30% inhibitory concentration (IC
<sub>30</sub>
) and 50% inhibitory concentration (IC
<sub>50</sub>
). The results revealed that HeLa (IC
<sub>30</sub>
, 27.8 µM; IC
<sub>50</sub>
, 38.2 µM) and SiHa (IC
<sub>30</sub>
, 36.6 µM; IC
<sub>50</sub>
, 51.3 µM) cells were more sensitive to angelicin than ECT1/E6E7 cells (IC
<sub>30</sub>
, 82.7 µM; IC
<sub>50</sub>
, 138.5 µM;
<xref rid="f1-etm-0-0-7985" ref-type="fig">Fig. 1A</xref>
). Cell viability was assessed on days 1–5 following treatment with angelicin at the IC
<sub>30</sub>
. The results revealed that Angelicin treatment significantly inhibited HeLa and SiHa cell proliferation (P<0.05 vs. mock group containing vehicle only;
<xref rid="f1-etm-0-0-7985" ref-type="fig">Fig. 1B</xref>
). To confirm that the decrease in cell viability was due to a change in cell proliferation, EdU labelling of proliferating cells was performed. The results revealed that HeLa and SiHa cell treatment with angelicin at the IC
<sub>30</sub>
substantially decreased the number of proliferating cells compared with the control (
<xref rid="f1-etm-0-0-7985" ref-type="fig">Fig. 1C</xref>
).</p>
</sec>
<sec>
<title>Angelicin treatment inhibits the migration and invasion of cervical cancer cells</title>
<p>To determine whether angelicin inhibited cell proliferation by regulating cell cycle phase distribution, flow cytometry of PI-stained cells was performed to detect cell cycle entry following angelicin treatment. The ratio of cells in the G1 and G0 phases following angelicin treatment increased significantly compared with the mock group (P<0.05;
<xref rid="f2-etm-0-0-7985" ref-type="fig">Fig. 2A</xref>
), whilst the ratio of cells in the G2/M phases decreased substantially (P<0.05;
<xref rid="f2-etm-0-0-7985" ref-type="fig">Fig. 2A</xref>
). To investigate the effects of angelicin IC
<sub>30</sub>
treatment on HeLa or SiHa cells, colony formation was assessed by seeding cells at low density to obtain single-cell-derived colonies as previously described (
<xref rid="b14-etm-0-0-7985" ref-type="bibr">14</xref>
). Mock-treated HeLa and SiHa cells formed single-cell-derived colonies (
<xref rid="f2-etm-0-0-7985" ref-type="fig">Fig. 2B</xref>
). By contrast, angelicin treatment substantially decreased the colony formation ability of both HeLa and SiHa cells (
<xref rid="f2-etm-0-0-7985" ref-type="fig">Fig. 2B</xref>
). The effect of angelicin on tumour formation in soft agar was investigated. Consistent with the effects exerted on colony formation (>50 µM in diameter), angelicin treatment markedly decreased the tumour formation ability of the cells in soft agar compared with the control (
<xref rid="f2-etm-0-0-7985" ref-type="fig">Fig. 2C</xref>
). Angelicin treatment substantially inhibited the migration and invasion of cells compared with mock treated cells (
<xref rid="f2-etm-0-0-7985" ref-type="fig">Fig. 2D and E</xref>
).</p>
</sec>
<sec>
<title>Angelicin induces apoptotic cell death in HeLa and SiHa cells</title>
<p>The cytotoxic effect of angelicin was verified by a cytotoxicity assay with CFSE-labelled HeLa or SiHa cells. CFSE-positive cells demonstrated no significant change following angelicin treatment compared with mock treated cells (
<xref rid="f3-etm-0-0-7985" ref-type="fig">Fig. 3A</xref>
). Following PI staining, it was observed that angelicin treatment markedly increased the number of PI-positive cells compared with mock treated cells, indicating that angelicin treatment increased the cell death rate (
<xref rid="f3-etm-0-0-7985" ref-type="fig">Fig. 3A</xref>
). To further confirm that the increased cell death by angelicin treatment was due to induction of apoptosis, Annexin V/PI double-staining was performed. Angelicin treatment increased the apoptotic cell death rate (Annexin V
<sup>+</sup>
/PI
<sup></sup>
and Annexin V
<sup>+</sup>
/PI
<sup>+</sup>
) in both HeLa (18.7±2.4%) and SiHa (16.9±3.1%) cells (P<0.05;
<xref rid="f3-etm-0-0-7985" ref-type="fig">Fig. 3B</xref>
). Taken together, the results indicated that angelicin treatment inhibited the malignant behaviours of HeLa and SiHa cervical cancer cells and induced apoptotic cell death.</p>
</sec>
<sec>
<title>Angelicin inhibits autophagy in cervical cancer cells</title>
<p>The chemotherapy-induced inhibition of cell viability, proliferation or cell death leading to the demise of cancer cells is mediated by autophagic pathways (
<xref rid="b15-etm-0-0-7985" ref-type="bibr">15</xref>
,
<xref rid="b16-etm-0-0-7985" ref-type="bibr">16</xref>
). Therefore, the effects of angelicin treatment on autophagy were investigated in the present study. The regulatory effects of angelicin on autophagy were assessed by performing LC3B immunostaining. The results revealed that the LC3B-stained signal was greatly decreased following angelicin treatment for 24 h compared with the mock group in HeLa and SiHa cells (
<xref rid="f4-etm-0-0-7985" ref-type="fig">Fig. 4A</xref>
). Chloroquine, a lysosome inhibitor inhibiting the fusion of autophagosomes and lysosomes and/or the activity of autolysosomes (
<xref rid="b17-etm-0-0-7985" ref-type="bibr">17</xref>
) was employed to accumulate LC3B-I and -II. Following the inhibition of LC3B degradation, the results revealed that angelicin treatment decreased the quantity of LC3B and cleaved LC3B-II compared with mock cells (
<xref rid="f4-etm-0-0-7985" ref-type="fig">Fig. 4B</xref>
). The formation of an autophagosome involves the coordinated action of several Atg protein complexes (
<xref rid="b18-etm-0-0-7985" ref-type="bibr">18</xref>
<xref rid="b20-etm-0-0-7985" ref-type="bibr">20</xref>
). Thus, the expression of certain Atg proteins, including Atg3, Atg7 and Atg12-5, was determined via western blot analysis. Consistent with the change in LC3B, Atg3, Atg7 and Atg12-5 protein levels decreased following angelicin treatment compared with mock treatment (
<xref rid="f4-etm-0-0-7985" ref-type="fig">Fig. 4C</xref>
).</p>
</sec>
<sec>
<title>Angelicin activates mTOR phosphorylation and potentially regulates malignant behaviours by modulating autophagy in cervical cancer cells</title>
<p>mTOR is a central regulator of several physiological processes, including autophagy. Therefore, the current study assessed whether angelicin treatment regulated mTOR and thus affected autophagy. The results revealed that Angelicin treatment markedly increased the phosphorylation of mTOR in HeLa and SiHa cells, and decreased LC3B-II when compared with mock treated cells (
<xref rid="f5-etm-0-0-7985" ref-type="fig">Fig. 5A</xref>
). Following the addition of rapamycin, angelicin-induced mTOR phosphorylation was decreased, but the inhibitory effects of angelicin on autophagy were not fully reversed, indicating that mTOR might not be a direct target of angelicin, at least in part. To further confirm these results, cell viability and colony formation were measured following co-incubation with rapamycin and angelicin or rapamycin alone. As presented in
<xref rid="f5-etm-0-0-7985" ref-type="fig">Fig. 5B and C</xref>
, angelicin treatment decreased the malignant behaviors of HeLa and SiHa cells, and indicated that rapamycin may exert its inhibitory effect in an mTOR-independent manner. Taken together, the results indicated that angelicin treatment regulated the phosphorylation of mTOR; however, this was not the main mechanism for affecting autophagy, which remains unknown.</p>
</sec>
</sec>
</sec>
<sec sec-type="discussion">
<title>Discussion</title>
<p>Angelicin has been previously reported to possess anticancer properties. In liver cancer, by activating the PI3K/AKT1 signalling pathway, angelicin treatment induced mitochondrial-dependent apoptotic cell death (
<xref rid="b10-etm-0-0-7985" ref-type="bibr">10</xref>
). Angelicin transcriptionally regulates members of the Bcl-2 family of proteins that serve key roles in the regulation of the mitochondrial apoptotic pathway (
<xref rid="b21-etm-0-0-7985" ref-type="bibr">21</xref>
). The Bax/Bcl-2 ratio is therefore altered to cause mitochondrial destabilization, which leads to the release of proapoptotic factors (
<xref rid="b22-etm-0-0-7985" ref-type="bibr">22</xref>
). In the non-small cell lung cancer cell line and its sub-line (A549 and A549/D16, respectively) that exhibits multidrug resistance, angelicin treatment promoted chemotherapy-induced apoptotic cell death and sensitized A549/D16 cells to chemotherapy (
<xref rid="b23-etm-0-0-7985" ref-type="bibr">23</xref>
). However, the antitumor effects of angelicin in human cervical carcinoma, as well as the mechanisms underlying its actions, are largely unknown. D'Anqiolillo
<italic>et al</italic>
(
<xref rid="b24-etm-0-0-7985" ref-type="bibr">24</xref>
) reported that angelicin exerts cytotoxic activity on HeLa cells, but did not elucidate the exact mechanism by which this occurs (
<xref rid="b24-etm-0-0-7985" ref-type="bibr">24</xref>
). Therefore, the aim of the present study was to assess the effects of angelicin on the human cervical carcinoma cell lines, HeLa and SiHa, and to investigate the molecular mechanisms underlying its action. To determine whether cervical carcinomas were sensitive to angelicin, the non-tumour cervical epithelial cell line ECT1/E6E7 was also analyzed.</p>
<p>The present study determined that angelicin exerted antitumor effects on HeLa and SiHa cells but demonstrated no detectable cytotoxity to ECT1/E6E7 cells. Treatment of both HeLa and SiHa cells with angelicin at the IC
<sub>30</sub>
suppressed malignant behaviours, including proliferation, colony formation, tumour formation in soft agar, migration and invasion. When evaluating migrating ability, medium containing 1% FBS was used instead of serum-free medium, which may be a limitation to the present study. Treatment with the IC
<sub>50</sub>
of angelicin significantly induced cell death via apoptosis. Flow cytometry was employed to determine angelicin-induced apoptosis, however, a study limitation was that the detection of apoptosis markers, such as caspase-3, was not performed. The present study identified that angelicin treatment greatly inhibited autophagy by measuring hallmarks of autophagy, including LC3BI, LC3BII, Atg3, Atg7 and Atg12-5. Emerging evidence has indicated that interactions between autophagy and apoptosis occur via crucial proteins, including mTOR and Atgs (
<xref rid="b25-etm-0-0-7985" ref-type="bibr">25</xref>
). Through these regulatory mediators of crosstalk, cooperation between autophagy and apoptosis has been established. However, the present
<italic>in vitro</italic>
study requires
<italic>in vivo</italic>
research to further confirm the results gained.</p>
<p>mTOR is a critical regulator of autophagy that integrates nutrient signals and cytokines from different pathways, inhibiting autophagy and promoting cell growth (
<xref rid="b26-etm-0-0-7985" ref-type="bibr">26</xref>
). Signal starvation inhibits the phosphorylation of mTOR and initiates autophagy by forming theunc-51-like kinase complex, which comprises Atg13 and a protein tyrosine kinase 2-family interacting protein of 200 kDa (
<xref rid="b27-etm-0-0-7985" ref-type="bibr">27</xref>
,
<xref rid="b28-etm-0-0-7985" ref-type="bibr">28</xref>
). The present study determined that angelicin treatment induced marked phosphorylation of mTOR without altering the total amount of mTOR. However, mTOR signalling has also been revealed to have no significant role in controlling autophagic flux (
<xref rid="b29-etm-0-0-7985" ref-type="bibr">29</xref>
), which may explain why rapamycin treatment failed to inhibit the effects of angelicin on autophagy regulation.</p>
<p>In conclusion, the present study demonstrated that angelicin treatment significantly inhibited malignant behaviours, including proliferation, colony formation, tumour formation, migration and invasion, in cervical cancer cells, potentially by inhibiting autophagy. Although angelicin treatment induced the phosphorylation of mTOR, its regulatory roles on autophagy and malignant behaviours were identified to be independent of mTOR signalling. Further studies are required to elucidate the exact molecular mechanisms underlying the regulatory role of angelicin on cervical cancer malignant behaviours. The results of the current study indicated that angelicin may have potential as a chemotherapeutic agent against cervical cancer.</p>
</sec>
</body>
<back>
<ack>
<title>Acknowledgements</title>
<p>The author would like to thank Mrs. Yun Bai (Third Military Medical University, Chongqing) for language editing.</p>
</ack>
<sec>
<title>Funding</title>
<p>No funding was received.</p>
</sec>
<sec sec-type="data-availability">
<title>Availability of data and materials</title>
<p>The datasets generated and/or analyzed during the current study are available from the corresponding author on reasonable request.</p>
</sec>
<sec>
<title>Authors' contributions</title>
<p>YW, ZL and YC designed the experiments. XC, YL and DY performed cell culture and data analysis. YW wrote the manuscript. JD collected data and performed statistical analysis. NY is responsible for data collection. All authors read and approved the final manuscript.</p>
</sec>
<sec>
<title>Ethics approval and consent to participate</title>
<p>Not applicable.</p>
</sec>
<sec>
<title>Patient consent for publication</title>
<p>Not applicable.</p>
</sec>
<sec>
<title>Competing interests</title>
<p>The authors declare that they have no competing interests.</p>
</sec>
<ref-list>
<title>References</title>
<ref id="b1-etm-0-0-7985">
<label>1</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Torre</surname>
<given-names>LA</given-names>
</name>
<name>
<surname>Bray</surname>
<given-names>F</given-names>
</name>
<name>
<surname>Siegel</surname>
<given-names>RL</given-names>
</name>
<name>
<surname>Ferlay</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Lortet-Tieulent</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Jemal</surname>
<given-names>A</given-names>
</name>
</person-group>
<article-title>Global cancer statistics, 2012</article-title>
<source>CA Cancer J Clin</source>
<volume>65</volume>
<fpage>87</fpage>
<lpage>108</lpage>
<year>2015</year>
<pub-id pub-id-type="doi">10.3322/caac.21262</pub-id>
<pub-id pub-id-type="pmid">25651787</pub-id>
</element-citation>
</ref>
<ref id="b2-etm-0-0-7985">
<label>2</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Burger</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Loos</surname>
<given-names>WJ</given-names>
</name>
<name>
<surname>Eechoute</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Verweij</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Mathijssen</surname>
<given-names>RH</given-names>
</name>
<name>
<surname>Wiemer</surname>
<given-names>EA</given-names>
</name>
</person-group>
<article-title>Drug transporters of platinum-based anticancer agents and their clinical significance</article-title>
<source>Drug Resist Updat</source>
<volume>14</volume>
<fpage>22</fpage>
<lpage>34</lpage>
<year>2011</year>
<pub-id pub-id-type="doi">10.1016/j.drup.2010.12.002</pub-id>
<pub-id pub-id-type="pmid">21251871</pub-id>
</element-citation>
</ref>
<ref id="b3-etm-0-0-7985">
<label>3</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Lilic</surname>
<given-names>V</given-names>
</name>
<name>
<surname>Lilic</surname>
<given-names>G</given-names>
</name>
<name>
<surname>Filipovic</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Milosevic</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Tasic</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Stojiljkovic</surname>
<given-names>M</given-names>
</name>
</person-group>
<article-title>Modern treatment of invasive carcinoma of the uterine cervix</article-title>
<source>J BUON</source>
<volume>14</volume>
<fpage>587</fpage>
<lpage>592</lpage>
<year>2009</year>
<pub-id pub-id-type="pmid">20148447</pub-id>
</element-citation>
</ref>
<ref id="b4-etm-0-0-7985">
<label>4</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Rodríguez Villalba</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Díaz-CanejaPlanell</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Cervera Grau</surname>
<given-names>JM</given-names>
</name>
</person-group>
<article-title>Current opinion in cervix carcinoma</article-title>
<source>Clin Transl Oncol</source>
<volume>13</volume>
<fpage>378</fpage>
<lpage>384</lpage>
<year>2011</year>
<pub-id pub-id-type="doi">10.1007/s12094-011-0671-4</pub-id>
<pub-id pub-id-type="pmid">21680298</pub-id>
</element-citation>
</ref>
<ref id="b5-etm-0-0-7985">
<label>5</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Tsai</surname>
<given-names>JH</given-names>
</name>
<name>
<surname>Hsu</surname>
<given-names>LS</given-names>
</name>
<name>
<surname>Huang</surname>
<given-names>HC</given-names>
</name>
<name>
<surname>Lin</surname>
<given-names>CL</given-names>
</name>
<name>
<surname>Pan</surname>
<given-names>MH</given-names>
</name>
<name>
<surname>Hong</surname>
<given-names>HM</given-names>
</name>
<name>
<surname>Chen</surname>
<given-names>WJ</given-names>
</name>
</person-group>
<article-title>1-(2-Hydroxy-5-methylphenyl)-3-phenyl-1,3-propanedione induces g1 cell cycle arrest and autophagy in HeLa cervical cancer cells</article-title>
<source>Int J Mol Sci</source>
<volume>17</volume>
<fpage>E1274</fpage>
<year>2016</year>
<pub-id pub-id-type="doi">10.3390/ijms17081274</pub-id>
<pub-id pub-id-type="pmid">27527160</pub-id>
</element-citation>
</ref>
<ref id="b6-etm-0-0-7985">
<label>6</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Li</surname>
<given-names>N</given-names>
</name>
<name>
<surname>Zhang</surname>
<given-names>W</given-names>
</name>
</person-group>
<article-title>Protein kinase C β inhibits autophagy and sensitizes cervical cancer HeLa cells to cisplatin</article-title>
<source>Biosci Rep</source>
<volume>37</volume>
<fpage>BSR20160445</fpage>
<year>2017</year>
<pub-id pub-id-type="doi">10.1042/BSR20160445</pub-id>
<pub-id pub-id-type="pmid">28246354</pub-id>
</element-citation>
</ref>
<ref id="b7-etm-0-0-7985">
<label>7</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Kavli</surname>
<given-names>G</given-names>
</name>
<name>
<surname>Midelfart</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Raa</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Volden</surname>
<given-names>G</given-names>
</name>
</person-group>
<article-title>Phototoxicity from furocoumarins (psoralens) of Heracleum laciniatum in a patient with vitiligo. Action spectrum studies on bergapten, pimpinellin, angelicin and sphondin</article-title>
<source>Contact Dermatitis</source>
<volume>9</volume>
<fpage>364</fpage>
<lpage>336</lpage>
<year>1983</year>
<pub-id pub-id-type="doi">10.1111/j.1600-0536.1983.tb04386.x</pub-id>
<pub-id pub-id-type="pmid">6627920</pub-id>
</element-citation>
</ref>
<ref id="b8-etm-0-0-7985">
<label>8</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Lampronti</surname>
<given-names>I</given-names>
</name>
<name>
<surname>Bianchi</surname>
<given-names>N</given-names>
</name>
<name>
<surname>Borgatti</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Fibach</surname>
<given-names>E</given-names>
</name>
<name>
<surname>Prus</surname>
<given-names>E</given-names>
</name>
<name>
<surname>Gambari</surname>
<given-names>R</given-names>
</name>
</person-group>
<article-title>Accumulation of gamma-globin mRNA in human erythroid cells treated with angelicin</article-title>
<source>Eur J Haematol</source>
<volume>71</volume>
<fpage>189</fpage>
<lpage>195</lpage>
<year>2003</year>
<pub-id pub-id-type="doi">10.1034/j.1600-0609.2003.00113.x</pub-id>
<pub-id pub-id-type="pmid">12930320</pub-id>
</element-citation>
</ref>
<ref id="b9-etm-0-0-7985">
<label>9</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Mira</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Shimizu</surname>
<given-names>K</given-names>
</name>
</person-group>
<article-title>In vitro cytotoxic activities and molecular mechanisms of angelica shikokiana extract and its isolated compounds</article-title>
<source>Pharmacogn Mag</source>
<volume>11</volume>
<issue>Suppl 4</issue>
<fpage>S564</fpage>
<lpage>S569</lpage>
<year>2015</year>
<pub-id pub-id-type="doi">10.4103/0973-1296.172962</pub-id>
<pub-id pub-id-type="pmid">27013795</pub-id>
</element-citation>
</ref>
<ref id="b10-etm-0-0-7985">
<label>10</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Wang</surname>
<given-names>F</given-names>
</name>
<name>
<surname>Li</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Li</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Pan</surname>
<given-names>G</given-names>
</name>
<name>
<surname>Bai</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Huang</surname>
<given-names>Q</given-names>
</name>
</person-group>
<article-title>Angelicin inhibits liver cancer growth
<italic>in vitro</italic>
and
<italic>in vivo</italic>
</article-title>
<source>Mol Med Rep</source>
<volume>16</volume>
<fpage>5441</fpage>
<lpage>5449</lpage>
<year>2017</year>
<pub-id pub-id-type="doi">10.3892/mmr.2017.7219</pub-id>
<pub-id pub-id-type="pmid">28849216</pub-id>
</element-citation>
</ref>
<ref id="b11-etm-0-0-7985">
<label>11</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Fang</surname>
<given-names>W</given-names>
</name>
<name>
<surname>Shu</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Yongmei</surname>
<given-names>L</given-names>
</name>
<name>
<surname>Endong</surname>
<given-names>Z</given-names>
</name>
<name>
<surname>Lirong</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Bei</surname>
<given-names>S</given-names>
</name>
</person-group>
<article-title>miR-224-3p inhibits autophagy in cervical cancer cells by targeting FIP200</article-title>
<source>Sci Rep</source>
<volume>6</volume>
<fpage>33229</fpage>
<year>2016</year>
<pub-id pub-id-type="doi">10.1038/srep33229</pub-id>
<pub-id pub-id-type="pmid">27615604</pub-id>
</element-citation>
</ref>
<ref id="b12-etm-0-0-7985">
<label>12</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Spanò</surname>
<given-names>V</given-names>
</name>
<name>
<surname>Parrino</surname>
<given-names>B</given-names>
</name>
<name>
<surname>Carbone</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Montalbano</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Salvador</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Brun</surname>
<given-names>P</given-names>
</name>
<name>
<surname>Vedaldi</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Diana</surname>
<given-names>P</given-names>
</name>
<name>
<surname>Cirrincione</surname>
<given-names>G</given-names>
</name>
<name>
<surname>Barraja</surname>
<given-names>P</given-names>
</name>
</person-group>
<article-title>Pyrazolo[3,4-h]quinolines promising photosensitizing agents in the treatment of cancer</article-title>
<source>Eur J Med Chem</source>
<volume>102</volume>
<fpage>334</fpage>
<lpage>351</lpage>
<year>2015</year>
<pub-id pub-id-type="doi">10.1016/j.ejmech.2015.08.003</pub-id>
<pub-id pub-id-type="pmid">26295175</pub-id>
</element-citation>
</ref>
<ref id="b13-etm-0-0-7985">
<label>13</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Bruni</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Barreca</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Protti</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Brighenti</surname>
<given-names>V</given-names>
</name>
<name>
<surname>Righetti</surname>
<given-names>L</given-names>
</name>
<name>
<surname>Anceschi</surname>
<given-names>L</given-names>
</name>
<name>
<surname>Mercolini</surname>
<given-names>L</given-names>
</name>
<name>
<surname>Benvenuti</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Gattuso</surname>
<given-names>G</given-names>
</name>
<name>
<surname>Pellati</surname>
<given-names>F</given-names>
</name>
</person-group>
<article-title>Botanical sources, chemistry, analysis, and biological activity of furanocoumarins of pharmaceutical interest</article-title>
<source>Molecules</source>
<volume>24</volume>
<fpage>E2163</fpage>
<year>2019</year>
<pub-id pub-id-type="doi">10.3390/molecules24112163</pub-id>
<pub-id pub-id-type="pmid">31181737</pub-id>
</element-citation>
</ref>
<ref id="b14-etm-0-0-7985">
<label>14</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Colter</surname>
<given-names>DC</given-names>
</name>
<name>
<surname>Class</surname>
<given-names>R</given-names>
</name>
<name>
<surname>DiGirolamo</surname>
<given-names>CM</given-names>
</name>
<name>
<surname>Prockop</surname>
<given-names>DJ</given-names>
</name>
</person-group>
<article-title>Rapid expansion of recycling stem cells in cultures of plastic-adherent cells from human bone marrow</article-title>
<source>Proc Natl Acad Sci USA</source>
<volume>97</volume>
<fpage>3213</fpage>
<lpage>3218</lpage>
<year>2000</year>
<pub-id pub-id-type="doi">10.1073/pnas.97.7.3213</pub-id>
<pub-id pub-id-type="pmid">10725391</pub-id>
</element-citation>
</ref>
<ref id="b15-etm-0-0-7985">
<label>15</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Hu</surname>
<given-names>L</given-names>
</name>
<name>
<surname>Sun</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Wang</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Li</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Jiang</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Lin</surname>
<given-names>G</given-names>
</name>
<name>
<surname>Ma</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Barr</surname>
<given-names>MP</given-names>
</name>
<name>
<surname>Song</surname>
<given-names>F</given-names>
</name>
<name>
<surname>Zhang</surname>
<given-names>G</given-names>
</name>
<name>
<surname>Meng</surname>
<given-names>S</given-names>
</name>
</person-group>
<article-title>Oncolytic newcastle disease virus triggers cell death of lung cancer spheroids and is enhanced by pharmacological inhibition of autophagy</article-title>
<source>Am J Cancer Res</source>
<volume>5</volume>
<fpage>3612</fpage>
<lpage>3623</lpage>
<year>2015</year>
<pub-id pub-id-type="pmid">26885450</pub-id>
</element-citation>
</ref>
<ref id="b16-etm-0-0-7985">
<label>16</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Hanahan</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Weinberg</surname>
<given-names>RA</given-names>
</name>
</person-group>
<article-title>Hallmarks of cancer: The next generation</article-title>
<source>Cell</source>
<volume>144</volume>
<fpage>646</fpage>
<lpage>674</lpage>
<year>2011</year>
<pub-id pub-id-type="doi">10.1016/j.cell.2011.02.013</pub-id>
<pub-id pub-id-type="pmid">21376230</pub-id>
</element-citation>
</ref>
<ref id="b17-etm-0-0-7985">
<label>17</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Trout</surname>
<given-names>JJ</given-names>
</name>
<name>
<surname>Stauber</surname>
<given-names>WT</given-names>
</name>
<name>
<surname>Schottelius</surname>
<given-names>BA</given-names>
</name>
</person-group>
<article-title>Increased autophagy in chloroquine-treated tonic and phasic muscles: An alternative view</article-title>
<source>Tissue Cell</source>
<volume>13</volume>
<fpage>393</fpage>
<lpage>401</lpage>
<year>1981</year>
<pub-id pub-id-type="doi">10.1016/0040-8166(81)90013-6</pub-id>
<pub-id pub-id-type="pmid">7314075</pub-id>
</element-citation>
</ref>
<ref id="b18-etm-0-0-7985">
<label>18</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Yang</surname>
<given-names>Z</given-names>
</name>
<name>
<surname>Klionsky</surname>
<given-names>DJ</given-names>
</name>
</person-group>
<article-title>Mammalian autophagy: Core molecular machinery and signaling regulation</article-title>
<source>CurrOpin Cell Biol</source>
<volume>22</volume>
<fpage>124</fpage>
<lpage>131</lpage>
<year>2010</year>
</element-citation>
</ref>
<ref id="b19-etm-0-0-7985">
<label>19</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Feng</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>He</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Yao</surname>
<given-names>Z</given-names>
</name>
<name>
<surname>Klionsky</surname>
<given-names>DJ</given-names>
</name>
</person-group>
<article-title>The machinery of macroautophagy</article-title>
<source>Cell Res</source>
<volume>24</volume>
<fpage>24</fpage>
<lpage>41</lpage>
<year>2014</year>
<pub-id pub-id-type="doi">10.1038/cr.2013.168</pub-id>
<pub-id pub-id-type="pmid">24366339</pub-id>
</element-citation>
</ref>
<ref id="b20-etm-0-0-7985">
<label>20</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Tooze</surname>
<given-names>SA</given-names>
</name>
<name>
<surname>Yoshimori</surname>
<given-names>T</given-names>
</name>
</person-group>
<article-title>The origin of the autophagosomal membrane</article-title>
<source>Nat Cell Biol</source>
<volume>12</volume>
<fpage>831</fpage>
<lpage>835</lpage>
<year>2010</year>
<pub-id pub-id-type="doi">10.1038/ncb0910-831</pub-id>
<pub-id pub-id-type="pmid">20811355</pub-id>
</element-citation>
</ref>
<ref id="b21-etm-0-0-7985">
<label>21</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Adem</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Ropponen</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Eeva</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Eray</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Nuutinen</surname>
<given-names>U</given-names>
</name>
<name>
<surname>Pelkonen</surname>
<given-names>J</given-names>
</name>
</person-group>
<article-title>Differential expression of Bcl-2 family proteins determines the sensitivity of human follicular lymphoma cells to dexamethasone-mediated and anti-BCR-mediated apoptosis</article-title>
<source>J Immunother</source>
<volume>39</volume>
<fpage>8</fpage>
<lpage>14</lpage>
<year>2016</year>
<pub-id pub-id-type="doi">10.1097/CJI.0000000000000102</pub-id>
<pub-id pub-id-type="pmid">26641257</pub-id>
</element-citation>
</ref>
<ref id="b22-etm-0-0-7985">
<label>22</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Chen</surname>
<given-names>TC</given-names>
</name>
<name>
<surname>Yu</surname>
<given-names>MC</given-names>
</name>
<name>
<surname>Chien</surname>
<given-names>CC</given-names>
</name>
<name>
<surname>Wu</surname>
<given-names>MS</given-names>
</name>
<name>
<surname>Lee</surname>
<given-names>YC</given-names>
</name>
<name>
<surname>Chen</surname>
<given-names>YC</given-names>
</name>
</person-group>
<article-title>Nilotinib reduced the viability of human ovarian cancer cells via mitochondria-dependent apoptosis, independent of JNK activation</article-title>
<source>Toxicol In Vitro</source>
<volume>31</volume>
<fpage>1</fpage>
<lpage>11</lpage>
<year>2016</year>
<pub-id pub-id-type="doi">10.1016/j.tiv.2015.11.002</pub-id>
<pub-id pub-id-type="pmid">26549707</pub-id>
</element-citation>
</ref>
<ref id="b23-etm-0-0-7985">
<label>23</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Hsieh</surname>
<given-names>MJ</given-names>
</name>
<name>
<surname>Chen</surname>
<given-names>MK</given-names>
</name>
<name>
<surname>Yu</surname>
<given-names>YY</given-names>
</name>
<name>
<surname>Sheu</surname>
<given-names>GT</given-names>
</name>
<name>
<surname>Chiou</surname>
<given-names>HL</given-names>
</name>
</person-group>
<article-title>Psoralen reverses docetaxel-induced multidrug resistance in A549/D16 human lung cancer cells lines</article-title>
<source>Phytomedicine</source>
<volume>21</volume>
<fpage>970</fpage>
<lpage>977</lpage>
<year>2014</year>
<pub-id pub-id-type="doi">10.1016/j.phymed.2014.03.008</pub-id>
<pub-id pub-id-type="pmid">24703328</pub-id>
</element-citation>
</ref>
<ref id="b24-etm-0-0-7985">
<label>24</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>D'Anqiolillo</surname>
<given-names>F</given-names>
</name>
<name>
<surname>Pistellia</surname>
<given-names>L</given-names>
</name>
<name>
<surname>Noccioli</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Ruffoni</surname>
<given-names>B</given-names>
</name>
<name>
<surname>Piaqqi</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Scarpato</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Pistelli</surname>
<given-names>L</given-names>
</name>
</person-group>
<article-title>In vitro cultures of Bituminariabituminosa: Pterocarpan, furanocoumarin and isoflavone production and cytotoxic activity evaluation</article-title>
<source>Nat Prod Commun</source>
<volume>9</volume>
<fpage>477</fpage>
<lpage>480</lpage>
<year>2014</year>
<pub-id pub-id-type="pmid">24868860</pub-id>
</element-citation>
</ref>
<ref id="b25-etm-0-0-7985">
<label>25</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Li</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Gao</surname>
<given-names>P</given-names>
</name>
<name>
<surname>Zhang</surname>
<given-names>J</given-names>
</name>
</person-group>
<article-title>Crosstalk between autophagy and apoptosis: Potential and emerging therapeutic targets for cardiac diseases</article-title>
<source>Int J Mol Sci</source>
<volume>17</volume>
<fpage>332</fpage>
<year>2016</year>
<pub-id pub-id-type="doi">10.3390/ijms17030332</pub-id>
<pub-id pub-id-type="pmid">26950124</pub-id>
</element-citation>
</ref>
<ref id="b26-etm-0-0-7985">
<label>26</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Kamada</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Yoshino</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Kondo</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Kawamata</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Oshiro</surname>
<given-names>N</given-names>
</name>
<name>
<surname>Yonezawa</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Ohsumi</surname>
<given-names>Y</given-names>
</name>
</person-group>
<article-title>Tor directly controls the Atg1 kinase complex to regulate autophagy</article-title>
<source>Mol Cell Biol</source>
<volume>30</volume>
<fpage>1049</fpage>
<lpage>1058</lpage>
<year>2010</year>
<pub-id pub-id-type="doi">10.1128/MCB.01344-09</pub-id>
<pub-id pub-id-type="pmid">19995911</pub-id>
</element-citation>
</ref>
<ref id="b27-etm-0-0-7985">
<label>27</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Hara</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Mizushima</surname>
<given-names>N</given-names>
</name>
</person-group>
<article-title>Role of ULK-FIP200 complex in mammalian autophagy: FIP200, a counterpart of yeast Atg17?</article-title>
<source>Autophagy</source>
<volume>5</volume>
<fpage>85</fpage>
<lpage>87</lpage>
<year>2009</year>
<pub-id pub-id-type="doi">10.4161/auto.5.1.7180</pub-id>
<pub-id pub-id-type="pmid">18981720</pub-id>
</element-citation>
</ref>
<ref id="b28-etm-0-0-7985">
<label>28</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Mizushima</surname>
<given-names>N</given-names>
</name>
</person-group>
<article-title>The role of the Atg1/ULK1 complex in autophagy regulation</article-title>
<source>CurrOpin Cell Biol</source>
<volume>22</volume>
<fpage>132</fpage>
<lpage>139</lpage>
<year>2010</year>
</element-citation>
</ref>
<ref id="b29-etm-0-0-7985">
<label>29</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Choi</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Merceron</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Mangiavini</surname>
<given-names>L</given-names>
</name>
<name>
<surname>Seifert</surname>
<given-names>EL</given-names>
</name>
<name>
<surname>Schipani</surname>
<given-names>E</given-names>
</name>
<name>
<surname>Shapiro</surname>
<given-names>IM</given-names>
</name>
<name>
<surname>Risbud</surname>
<given-names>MV</given-names>
</name>
</person-group>
<article-title>Hypoxia promotes noncanonical autophagy in nucleus pulposus cells independent of MTOR and HIF1A signaling</article-title>
<source>Autophagy</source>
<volume>12</volume>
<fpage>1631</fpage>
<lpage>1646</lpage>
<year>2016</year>
<pub-id pub-id-type="doi">10.1080/15548627.2016.1192753</pub-id>
<pub-id pub-id-type="pmid">27314664</pub-id>
</element-citation>
</ref>
</ref-list>
</back>
<floats-group>
<fig id="f1-etm-0-0-7985" orientation="portrait" position="float">
<label>Figure 1.</label>
<caption>
<p>HeLa and SiHa cervical cancer cells were sensitive to angelicin treatment, whereas ECT1/E6E7 cervical epithelial cells were not. (A) Cell survival rate was measured by performing a cell counting kit-8 assay following angelicin treatment with indicated concentrations for 24 h. The 30% inhibitory concentration (IC
<sub>30</sub>
) and 50% inhibitory concentration (IC
<sub>50</sub>
) were calculated accordingly. (B) Cell viability was measured following angelicin treatment at the IC
<sub>30</sub>
from day 1 to 5. (C) EdU staining was performed to specifically label proliferating cells where blue staining represents cell nuclei and red staining represents proliferating cells. *P<0.05 vs. the mock group. Edu, 5-ethynyl-2′-deoxyuridine; OD, optical density.</p>
</caption>
<graphic xlink:href="etm-18-05-3365-g00"></graphic>
</fig>
<fig id="f2-etm-0-0-7985" orientation="portrait" position="float">
<label>Figure 2.</label>
<caption>
<p>Angelicin inhibits the proliferation, colony formation, migration and invasion of cervical cancer cells. (A) Cell cycle distribution was measured by flow cytometry following propidium iodide staining. (B) Angelicin treatment reduced colony formation (C) tumour formation in soft agar (D), migration and (E) invasion in HeLa and SiHa compared with the mock group. *P<0.05 vs. mock group.</p>
</caption>
<graphic xlink:href="etm-18-05-3365-g01"></graphic>
</fig>
<fig id="f3-etm-0-0-7985" orientation="portrait" position="float">
<label>Figure 3.</label>
<caption>
<p>Angelicin treatment induced cervical cancer cell death via apoptosis. (A) Following staining with CFSE, HeLa or SiHa cells were treated with angelicin at the IC
<sub>50</sub>
for 24 h, followed by PI staining. The CFSE
<sup>+</sup>
/PI
<sup>+</sup>
subpopulation indicated dead cells. (B) Annexin V-FITC and PI double-staining was performed following 24 h treatment with angelicin at the IC
<sub>50</sub>
with Annexin V-FITC
<sup>+</sup>
/PI
<sup></sup>
and Annexin V-FITC
<sup>+</sup>
/PI
<sup>+</sup>
cells. Representative histograms and quantification are presented. *P<0.05 vs. mock group. CFSE, carboxyfluorescein succinimidyl ester; PI, propidium iodide.</p>
</caption>
<graphic xlink:href="etm-18-05-3365-g02"></graphic>
</fig>
<fig id="f4-etm-0-0-7985" orientation="portrait" position="float">
<label>Figure 4.</label>
<caption>
<p>Angelicin promoted autophagy in cervical cancer cells. (A) Immunofluorescence micrographs demonstrating LC3B staining (green) and nucleus staining (blue) following gangelicin treatment (27.8 µM for HeLa, 36.6 µM for SiHa). (B) Western blot analysis detected angelicin-induced LC3B expression in HeLa and SiHa cells. To inhibit the degradation of LC3B-II, cells were pre-treated with 5 µM chloroquine for 6 h. (C) Western blot analysis of Atg3, Atg7 and Atg12-Atg5 protein expression in both HeLa and SiHa cells. LC3B, microtubule associated protein 1 light chain 3-β; Atg, autophagy related proteins.</p>
</caption>
<graphic xlink:href="etm-18-05-3365-g03"></graphic>
</fig>
<fig id="f5-etm-0-0-7985" orientation="portrait" position="float">
<label>Figure 5.</label>
<caption>
<p>Angelicin activates mTOR phosphorylation and inhibits autophagy by an mTOR-independent pathway in cervical cancer cells. (A) Western blot analysis was performed following RAPA and angelicin co-treatment to identify whether autophagy stimulation by angelicin was dependent on mTOR phosphorylation. Following rapamycin and angelicin co-treatment, (B) cell viability and (C) colony formation were measured in HeLa and SiHa cells. *P<0.05 vs. mock group. RAPA, rapamycin; p, phosphorylated; LC3B, microtubule associated protein 1 light chain 3-β; OD, optical density.</p>
</caption>
<graphic xlink:href="etm-18-05-3365-g04"></graphic>
</fig>
</floats-group>
</pmc>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/ChloroquineV1/Data/Pmc/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000518  | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Pmc/Corpus/biblio.hfd -nk 000518  | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    ChloroquineV1
   |flux=    Pmc
   |étape=   Corpus
   |type=    RBID
   |clé=     
   |texte=   
}}

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Wed Mar 25 22:43:59 2020. Site generation: Sun Jan 31 12:44:45 2021