Serveur d'exploration Chloroquine

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.
***** Acces problem to record *****\

Identifieur interne : 0005080 ( Pmc/Corpus ); précédent : 0005079; suivant : 0005081 ***** probable Xml problem with record *****

Links to Exploration step


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Apelin inhibition prevents resistance and metastasis associated with anti‐angiogenic therapy</title>
<author>
<name sortKey="Uribesalgo, Iris" sort="Uribesalgo, Iris" uniqKey="Uribesalgo I" first="Iris" last="Uribesalgo">Iris Uribesalgo</name>
<affiliation>
<nlm:aff id="emmm201809266-aff-0001"></nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Hoffmann, David" sort="Hoffmann, David" uniqKey="Hoffmann D" first="David" last="Hoffmann">David Hoffmann</name>
<affiliation>
<nlm:aff id="emmm201809266-aff-0001"></nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Zhang, Yin" sort="Zhang, Yin" uniqKey="Zhang Y" first="Yin" last="Zhang">Yin Zhang</name>
<affiliation>
<nlm:aff id="emmm201809266-aff-0002"></nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="emmm201809266-aff-0003"></nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Kavirayani, Anoop" sort="Kavirayani, Anoop" uniqKey="Kavirayani A" first="Anoop" last="Kavirayani">Anoop Kavirayani</name>
<affiliation>
<nlm:aff id="emmm201809266-aff-0004"></nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Lazovic, Jelena" sort="Lazovic, Jelena" uniqKey="Lazovic J" first="Jelena" last="Lazovic">Jelena Lazovic</name>
<affiliation>
<nlm:aff id="emmm201809266-aff-0005"></nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Berta, Judit" sort="Berta, Judit" uniqKey="Berta J" first="Judit" last="Berta">Judit Berta</name>
<affiliation>
<nlm:aff id="emmm201809266-aff-0006"></nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Novatchkova, Maria" sort="Novatchkova, Maria" uniqKey="Novatchkova M" first="Maria" last="Novatchkova">Maria Novatchkova</name>
<affiliation>
<nlm:aff id="emmm201809266-aff-0001"></nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Pai, Tsung In" sort="Pai, Tsung In" uniqKey="Pai T" first="Tsung-Pin" last="Pai">Tsung-Pin Pai</name>
<affiliation>
<nlm:aff id="emmm201809266-aff-0001"></nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Wimmer, Reiner A" sort="Wimmer, Reiner A" uniqKey="Wimmer R" first="Reiner A" last="Wimmer">Reiner A. Wimmer</name>
<affiliation>
<nlm:aff id="emmm201809266-aff-0001"></nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Laszl, Vikt Ria" sort="Laszl, Vikt Ria" uniqKey="Laszl V" first="Vikt Ria" last="Lászl">Vikt Ria Lászl</name>
<affiliation>
<nlm:aff id="emmm201809266-aff-0007"></nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="emmm201809266-aff-0008"></nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Schramek, Daniel" sort="Schramek, Daniel" uniqKey="Schramek D" first="Daniel" last="Schramek">Daniel Schramek</name>
<affiliation>
<nlm:aff id="emmm201809266-aff-0001"></nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="emmm201809266-aff-0009"></nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Karim, Rezaul" sort="Karim, Rezaul" uniqKey="Karim R" first="Rezaul" last="Karim">Rezaul Karim</name>
<affiliation>
<nlm:aff id="emmm201809266-aff-0001"></nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Tortola, Luigi" sort="Tortola, Luigi" uniqKey="Tortola L" first="Luigi" last="Tortola">Luigi Tortola</name>
<affiliation>
<nlm:aff id="emmm201809266-aff-0001"></nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Deswal, Sumit" sort="Deswal, Sumit" uniqKey="Deswal S" first="Sumit" last="Deswal">Sumit Deswal</name>
<affiliation>
<nlm:aff id="emmm201809266-aff-0010"></nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Haas, Lisa" sort="Haas, Lisa" uniqKey="Haas L" first="Lisa" last="Haas">Lisa Haas</name>
<affiliation>
<nlm:aff id="emmm201809266-aff-0010"></nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Zuber, Johannes" sort="Zuber, Johannes" uniqKey="Zuber J" first="Johannes" last="Zuber">Johannes Zuber</name>
<affiliation>
<nlm:aff id="emmm201809266-aff-0010"></nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Sz Cs, Mikl S" sort="Sz Cs, Mikl S" uniqKey="Sz Cs M" first="Mikl S" last="Sz Cs">Mikl S Sz Cs</name>
<affiliation>
<nlm:aff id="emmm201809266-aff-0011"></nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Kuba, Keiji" sort="Kuba, Keiji" uniqKey="Kuba K" first="Keiji" last="Kuba">Keiji Kuba</name>
<affiliation>
<nlm:aff id="emmm201809266-aff-0001"></nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="emmm201809266-aff-0012"></nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Dome, Balazs" sort="Dome, Balazs" uniqKey="Dome B" first="Balazs" last="Dome">Balazs Dome</name>
<affiliation>
<nlm:aff id="emmm201809266-aff-0006"></nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="emmm201809266-aff-0007"></nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="emmm201809266-aff-0013"></nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Cao, Yihai" sort="Cao, Yihai" uniqKey="Cao Y" first="Yihai" last="Cao">Yihai Cao</name>
<affiliation>
<nlm:aff id="emmm201809266-aff-0002"></nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Haubner, Bernhard J" sort="Haubner, Bernhard J" uniqKey="Haubner B" first="Bernhard J" last="Haubner">Bernhard J. Haubner</name>
<affiliation>
<nlm:aff id="emmm201809266-aff-0001"></nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="emmm201809266-aff-0014"></nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Penninger, Josef M" sort="Penninger, Josef M" uniqKey="Penninger J" first="Josef M" last="Penninger">Josef M. Penninger</name>
<affiliation>
<nlm:aff id="emmm201809266-aff-0001"></nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="emmm201809266-aff-0015"></nlm:aff>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PMC</idno>
<idno type="pmid">31267692</idno>
<idno type="pmc">6685079</idno>
<idno type="url">http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6685079</idno>
<idno type="RBID">PMC:6685079</idno>
<idno type="doi">10.15252/emmm.201809266</idno>
<date when="2019">2019</date>
<idno type="wicri:Area/Pmc/Corpus">000508</idno>
<idno type="wicri:explorRef" wicri:stream="Pmc" wicri:step="Corpus" wicri:corpus="PMC">000508</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a" type="main">Apelin inhibition prevents resistance and metastasis associated with anti‐angiogenic therapy</title>
<author>
<name sortKey="Uribesalgo, Iris" sort="Uribesalgo, Iris" uniqKey="Uribesalgo I" first="Iris" last="Uribesalgo">Iris Uribesalgo</name>
<affiliation>
<nlm:aff id="emmm201809266-aff-0001"></nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Hoffmann, David" sort="Hoffmann, David" uniqKey="Hoffmann D" first="David" last="Hoffmann">David Hoffmann</name>
<affiliation>
<nlm:aff id="emmm201809266-aff-0001"></nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Zhang, Yin" sort="Zhang, Yin" uniqKey="Zhang Y" first="Yin" last="Zhang">Yin Zhang</name>
<affiliation>
<nlm:aff id="emmm201809266-aff-0002"></nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="emmm201809266-aff-0003"></nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Kavirayani, Anoop" sort="Kavirayani, Anoop" uniqKey="Kavirayani A" first="Anoop" last="Kavirayani">Anoop Kavirayani</name>
<affiliation>
<nlm:aff id="emmm201809266-aff-0004"></nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Lazovic, Jelena" sort="Lazovic, Jelena" uniqKey="Lazovic J" first="Jelena" last="Lazovic">Jelena Lazovic</name>
<affiliation>
<nlm:aff id="emmm201809266-aff-0005"></nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Berta, Judit" sort="Berta, Judit" uniqKey="Berta J" first="Judit" last="Berta">Judit Berta</name>
<affiliation>
<nlm:aff id="emmm201809266-aff-0006"></nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Novatchkova, Maria" sort="Novatchkova, Maria" uniqKey="Novatchkova M" first="Maria" last="Novatchkova">Maria Novatchkova</name>
<affiliation>
<nlm:aff id="emmm201809266-aff-0001"></nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Pai, Tsung In" sort="Pai, Tsung In" uniqKey="Pai T" first="Tsung-Pin" last="Pai">Tsung-Pin Pai</name>
<affiliation>
<nlm:aff id="emmm201809266-aff-0001"></nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Wimmer, Reiner A" sort="Wimmer, Reiner A" uniqKey="Wimmer R" first="Reiner A" last="Wimmer">Reiner A. Wimmer</name>
<affiliation>
<nlm:aff id="emmm201809266-aff-0001"></nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Laszl, Vikt Ria" sort="Laszl, Vikt Ria" uniqKey="Laszl V" first="Vikt Ria" last="Lászl">Vikt Ria Lászl</name>
<affiliation>
<nlm:aff id="emmm201809266-aff-0007"></nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="emmm201809266-aff-0008"></nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Schramek, Daniel" sort="Schramek, Daniel" uniqKey="Schramek D" first="Daniel" last="Schramek">Daniel Schramek</name>
<affiliation>
<nlm:aff id="emmm201809266-aff-0001"></nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="emmm201809266-aff-0009"></nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Karim, Rezaul" sort="Karim, Rezaul" uniqKey="Karim R" first="Rezaul" last="Karim">Rezaul Karim</name>
<affiliation>
<nlm:aff id="emmm201809266-aff-0001"></nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Tortola, Luigi" sort="Tortola, Luigi" uniqKey="Tortola L" first="Luigi" last="Tortola">Luigi Tortola</name>
<affiliation>
<nlm:aff id="emmm201809266-aff-0001"></nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Deswal, Sumit" sort="Deswal, Sumit" uniqKey="Deswal S" first="Sumit" last="Deswal">Sumit Deswal</name>
<affiliation>
<nlm:aff id="emmm201809266-aff-0010"></nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Haas, Lisa" sort="Haas, Lisa" uniqKey="Haas L" first="Lisa" last="Haas">Lisa Haas</name>
<affiliation>
<nlm:aff id="emmm201809266-aff-0010"></nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Zuber, Johannes" sort="Zuber, Johannes" uniqKey="Zuber J" first="Johannes" last="Zuber">Johannes Zuber</name>
<affiliation>
<nlm:aff id="emmm201809266-aff-0010"></nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Sz Cs, Mikl S" sort="Sz Cs, Mikl S" uniqKey="Sz Cs M" first="Mikl S" last="Sz Cs">Mikl S Sz Cs</name>
<affiliation>
<nlm:aff id="emmm201809266-aff-0011"></nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Kuba, Keiji" sort="Kuba, Keiji" uniqKey="Kuba K" first="Keiji" last="Kuba">Keiji Kuba</name>
<affiliation>
<nlm:aff id="emmm201809266-aff-0001"></nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="emmm201809266-aff-0012"></nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Dome, Balazs" sort="Dome, Balazs" uniqKey="Dome B" first="Balazs" last="Dome">Balazs Dome</name>
<affiliation>
<nlm:aff id="emmm201809266-aff-0006"></nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="emmm201809266-aff-0007"></nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="emmm201809266-aff-0013"></nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Cao, Yihai" sort="Cao, Yihai" uniqKey="Cao Y" first="Yihai" last="Cao">Yihai Cao</name>
<affiliation>
<nlm:aff id="emmm201809266-aff-0002"></nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Haubner, Bernhard J" sort="Haubner, Bernhard J" uniqKey="Haubner B" first="Bernhard J" last="Haubner">Bernhard J. Haubner</name>
<affiliation>
<nlm:aff id="emmm201809266-aff-0001"></nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="emmm201809266-aff-0014"></nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Penninger, Josef M" sort="Penninger, Josef M" uniqKey="Penninger J" first="Josef M" last="Penninger">Josef M. Penninger</name>
<affiliation>
<nlm:aff id="emmm201809266-aff-0001"></nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="emmm201809266-aff-0015"></nlm:aff>
</affiliation>
</author>
</analytic>
<series>
<title level="j">EMBO Molecular Medicine</title>
<idno type="ISSN">1757-4676</idno>
<idno type="eISSN">1757-4684</idno>
<imprint>
<date when="2019">2019</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<title>Abstract</title>
<p>Angiogenesis is a hallmark of cancer, promoting growth and metastasis. Anti‐angiogenic treatment has limited efficacy due to therapy‐induced blood vessel alterations, often followed by local hypoxia, tumor adaptation, progression, and metastasis. It is therefore paramount to overcome therapy‐induced resistance. We show that Apelin inhibition potently remodels the tumor microenvironment, reducing angiogenesis, and effectively blunting tumor growth. Functionally, targeting Apelin improves vessel function and reduces polymorphonuclear myeloid‐derived suppressor cell infiltration. Importantly, in mammary and lung cancer, Apelin prevents resistance to anti‐angiogenic receptor tyrosine kinase (RTK) inhibitor therapy, reducing growth and angiogenesis in lung and breast cancer models without increased hypoxia in the tumor microenvironment. Apelin blockage also prevents RTK inhibitor‐induced metastases, and high Apelin levels correlate with poor prognosis of anti‐angiogenic therapy patients. These data identify a druggable anti‐angiogenic drug target that reduces tumor blood vessel densities and normalizes the tumor vasculature to decrease metastases.</p>
</div>
</front>
<back>
<div1 type="bibliography">
<listBibl>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
</listBibl>
</div1>
</back>
</TEI>
<pmc article-type="research-article">
<pmc-dir>properties open_access</pmc-dir>
<front>
<journal-meta>
<journal-id journal-id-type="nlm-ta">EMBO Mol Med</journal-id>
<journal-id journal-id-type="iso-abbrev">EMBO Mol Med</journal-id>
<journal-id journal-id-type="doi">10.1002/(ISSN)1757-4684</journal-id>
<journal-id journal-id-type="publisher-id">EMMM</journal-id>
<journal-id journal-id-type="hwp">embomm</journal-id>
<journal-title-group>
<journal-title>EMBO Molecular Medicine</journal-title>
</journal-title-group>
<issn pub-type="ppub">1757-4676</issn>
<issn pub-type="epub">1757-4684</issn>
<publisher>
<publisher-name>John Wiley and Sons Inc.</publisher-name>
<publisher-loc>Hoboken</publisher-loc>
</publisher>
</journal-meta>
<article-meta>
<article-id pub-id-type="pmid">31267692</article-id>
<article-id pub-id-type="pmc">6685079</article-id>
<article-id pub-id-type="doi">10.15252/emmm.201809266</article-id>
<article-id pub-id-type="publisher-id">EMMM201809266</article-id>
<article-categories>
<subj-group subj-group-type="overline">
<subject>Article</subject>
</subj-group>
<subj-group subj-group-type="heading">
<subject>Articles</subject>
</subj-group>
</article-categories>
<title-group>
<article-title>Apelin inhibition prevents resistance and metastasis associated with anti‐angiogenic therapy</article-title>
<alt-title alt-title-type="left-running-head">Iris Uribesalgo
<italic>et al</italic>
</alt-title>
</title-group>
<contrib-group>
<contrib id="emmm201809266-cr-0001" contrib-type="author" corresp="yes">
<name>
<surname>Uribesalgo</surname>
<given-names>Iris</given-names>
</name>
<contrib-id contrib-id-type="orcid">https://orcid.org/0000-0001-9492-1000</contrib-id>
<address>
<email>iris.uribesalgo@imba.oeaw.ac.at</email>
</address>
<xref ref-type="aff" rid="emmm201809266-aff-0001">
<sup>1</sup>
</xref>
<xref ref-type="author-notes" rid="emmm201809266-note-1001">
<sup></sup>
</xref>
</contrib>
<contrib id="emmm201809266-cr-0002" contrib-type="author">
<name>
<surname>Hoffmann</surname>
<given-names>David</given-names>
</name>
<xref ref-type="aff" rid="emmm201809266-aff-0001">
<sup>1</sup>
</xref>
<xref ref-type="author-notes" rid="emmm201809266-note-1001">
<sup></sup>
</xref>
</contrib>
<contrib id="emmm201809266-cr-0003" contrib-type="author">
<name>
<surname>Zhang</surname>
<given-names>Yin</given-names>
</name>
<xref ref-type="aff" rid="emmm201809266-aff-0002">
<sup>2</sup>
</xref>
<xref ref-type="aff" rid="emmm201809266-aff-0003">
<sup>3</sup>
</xref>
</contrib>
<contrib id="emmm201809266-cr-0004" contrib-type="author">
<name>
<surname>Kavirayani</surname>
<given-names>Anoop</given-names>
</name>
<xref ref-type="aff" rid="emmm201809266-aff-0004">
<sup>4</sup>
</xref>
</contrib>
<contrib id="emmm201809266-cr-0005" contrib-type="author">
<name>
<surname>Lazovic</surname>
<given-names>Jelena</given-names>
</name>
<xref ref-type="aff" rid="emmm201809266-aff-0005">
<sup>5</sup>
</xref>
</contrib>
<contrib id="emmm201809266-cr-0006" contrib-type="author">
<name>
<surname>Berta</surname>
<given-names>Judit</given-names>
</name>
<xref ref-type="aff" rid="emmm201809266-aff-0006">
<sup>6</sup>
</xref>
</contrib>
<contrib id="emmm201809266-cr-0007" contrib-type="author">
<name>
<surname>Novatchkova</surname>
<given-names>Maria</given-names>
</name>
<xref ref-type="aff" rid="emmm201809266-aff-0001">
<sup>1</sup>
</xref>
</contrib>
<contrib id="emmm201809266-cr-0008" contrib-type="author">
<name>
<surname>Pai</surname>
<given-names>Tsung‐Pin</given-names>
</name>
<xref ref-type="aff" rid="emmm201809266-aff-0001">
<sup>1</sup>
</xref>
</contrib>
<contrib id="emmm201809266-cr-0009" contrib-type="author">
<name>
<surname>Wimmer</surname>
<given-names>Reiner A</given-names>
</name>
<xref ref-type="aff" rid="emmm201809266-aff-0001">
<sup>1</sup>
</xref>
</contrib>
<contrib id="emmm201809266-cr-0010" contrib-type="author">
<name>
<surname>László</surname>
<given-names>Viktória</given-names>
</name>
<xref ref-type="aff" rid="emmm201809266-aff-0007">
<sup>7</sup>
</xref>
<xref ref-type="aff" rid="emmm201809266-aff-0008">
<sup>8</sup>
</xref>
</contrib>
<contrib id="emmm201809266-cr-0011" contrib-type="author">
<name>
<surname>Schramek</surname>
<given-names>Daniel</given-names>
</name>
<xref ref-type="aff" rid="emmm201809266-aff-0001">
<sup>1</sup>
</xref>
<xref ref-type="aff" rid="emmm201809266-aff-0009">
<sup>9</sup>
</xref>
</contrib>
<contrib id="emmm201809266-cr-0012" contrib-type="author">
<name>
<surname>Karim</surname>
<given-names>Rezaul</given-names>
</name>
<xref ref-type="aff" rid="emmm201809266-aff-0001">
<sup>1</sup>
</xref>
</contrib>
<contrib id="emmm201809266-cr-0013" contrib-type="author">
<name>
<surname>Tortola</surname>
<given-names>Luigi</given-names>
</name>
<xref ref-type="aff" rid="emmm201809266-aff-0001">
<sup>1</sup>
</xref>
</contrib>
<contrib id="emmm201809266-cr-0014" contrib-type="author">
<name>
<surname>Deswal</surname>
<given-names>Sumit</given-names>
</name>
<xref ref-type="aff" rid="emmm201809266-aff-0010">
<sup>10</sup>
</xref>
</contrib>
<contrib id="emmm201809266-cr-0015" contrib-type="author">
<name>
<surname>Haas</surname>
<given-names>Lisa</given-names>
</name>
<xref ref-type="aff" rid="emmm201809266-aff-0010">
<sup>10</sup>
</xref>
</contrib>
<contrib id="emmm201809266-cr-0016" contrib-type="author">
<name>
<surname>Zuber</surname>
<given-names>Johannes</given-names>
</name>
<xref ref-type="aff" rid="emmm201809266-aff-0010">
<sup>10</sup>
</xref>
</contrib>
<contrib id="emmm201809266-cr-0017" contrib-type="author">
<name>
<surname>Szűcs</surname>
<given-names>Miklós</given-names>
</name>
<xref ref-type="aff" rid="emmm201809266-aff-0011">
<sup>11</sup>
</xref>
</contrib>
<contrib id="emmm201809266-cr-0018" contrib-type="author">
<name>
<surname>Kuba</surname>
<given-names>Keiji</given-names>
</name>
<xref ref-type="aff" rid="emmm201809266-aff-0001">
<sup>1</sup>
</xref>
<xref ref-type="aff" rid="emmm201809266-aff-0012">
<sup>12</sup>
</xref>
</contrib>
<contrib id="emmm201809266-cr-0019" contrib-type="author">
<name>
<surname>Dome</surname>
<given-names>Balazs</given-names>
</name>
<xref ref-type="aff" rid="emmm201809266-aff-0006">
<sup>6</sup>
</xref>
<xref ref-type="aff" rid="emmm201809266-aff-0007">
<sup>7</sup>
</xref>
<xref ref-type="aff" rid="emmm201809266-aff-0013">
<sup>13</sup>
</xref>
</contrib>
<contrib id="emmm201809266-cr-0020" contrib-type="author">
<name>
<surname>Cao</surname>
<given-names>Yihai</given-names>
</name>
<xref ref-type="aff" rid="emmm201809266-aff-0002">
<sup>2</sup>
</xref>
</contrib>
<contrib id="emmm201809266-cr-0021" contrib-type="author">
<name>
<surname>Haubner</surname>
<given-names>Bernhard J</given-names>
</name>
<xref ref-type="aff" rid="emmm201809266-aff-0001">
<sup>1</sup>
</xref>
<xref ref-type="aff" rid="emmm201809266-aff-0014">
<sup>14</sup>
</xref>
</contrib>
<contrib id="emmm201809266-cr-0022" contrib-type="author" corresp="yes">
<name>
<surname>Penninger</surname>
<given-names>Josef M</given-names>
</name>
<contrib-id contrib-id-type="orcid">https://orcid.org/0000-0002-8194-3777</contrib-id>
<address>
<email>josef.penninger@imba.oeaw.ac.at</email>
</address>
<xref ref-type="aff" rid="emmm201809266-aff-0001">
<sup>1</sup>
</xref>
<xref ref-type="aff" rid="emmm201809266-aff-0015">
<sup>15</sup>
</xref>
</contrib>
</contrib-group>
<aff id="emmm201809266-aff-0001">
<label>
<sup>1</sup>
</label>
<named-content content-type="organisation-division">Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA)</named-content>
<institution>Vienna BioCenter</institution>
<named-content content-type="city">Vienna</named-content>
<country country="AT">Austria</country>
</aff>
<aff id="emmm201809266-aff-0002">
<label>
<sup>2</sup>
</label>
<named-content content-type="organisation-division">Department of Microbiology, Tumor and Cell Biology</named-content>
<named-content content-type="organisation-division">Biomedicum</named-content>
<institution>Karolinska Institutet</institution>
<named-content content-type="city">Stockholm</named-content>
<country country="SE">Sweden</country>
</aff>
<aff id="emmm201809266-aff-0003">
<label>
<sup>3</sup>
</label>
<named-content content-type="organisation-division">Medicine and Pharmacy Research Center</named-content>
<institution>Binzhou Medical University</institution>
<named-content content-type="city">Yantai</named-content>
<named-content content-type="country-part">Shandong Province</named-content>
<country country="CN">China</country>
</aff>
<aff id="emmm201809266-aff-0004">
<label>
<sup>4</sup>
</label>
<named-content content-type="organisation-division">VBCF Histopathology</named-content>
<institution>Vienna BioCenter</institution>
<named-content content-type="city">Vienna</named-content>
<country country="AT">Austria</country>
</aff>
<aff id="emmm201809266-aff-0005">
<label>
<sup>5</sup>
</label>
<named-content content-type="organisation-division">VBCF Preclinical Imaging</named-content>
<institution>Vienna BioCenter</institution>
<named-content content-type="city">Vienna</named-content>
<country country="AT">Austria</country>
</aff>
<aff id="emmm201809266-aff-0006">
<label>
<sup>6</sup>
</label>
<named-content content-type="organisation-division">Department of Tumor Biology</named-content>
<institution>National Koranyi Institute of Pulmonology</institution>
<named-content content-type="city">Budapest</named-content>
<country country="HU">Hungary</country>
</aff>
<aff id="emmm201809266-aff-0007">
<label>
<sup>7</sup>
</label>
<named-content content-type="organisation-division">Division of Thoracic Surgery</named-content>
<named-content content-type="organisation-division">Department of Surgery</named-content>
<named-content content-type="organisation-division">Comprehensive Cancer Center</named-content>
<institution>Medical University of Vienna</institution>
<named-content content-type="city">Vienna</named-content>
<country country="AT">Austria</country>
</aff>
<aff id="emmm201809266-aff-0008">
<label>
<sup>8</sup>
</label>
<named-content content-type="organisation-division">Division of Molecular and Gender Imaging</named-content>
<named-content content-type="organisation-division">Department of Biomedical Imaging and Image‐guided Therapy</named-content>
<institution>Medical University of Vienna</institution>
<named-content content-type="city">Vienna</named-content>
<country country="AT">Austria</country>
</aff>
<aff id="emmm201809266-aff-0009">
<label>
<sup>9</sup>
</label>
<named-content content-type="organisation-division">Department of Molecular Genetics</named-content>
<named-content content-type="organisation-division">Lunenfeld‐Tanenbaum Research Institute</named-content>
<named-content content-type="organisation-division">Mount Sinai Hospital</named-content>
<institution>University of Toronto</institution>
<named-content content-type="city">Toronto</named-content>
<named-content content-type="country-part">ON</named-content>
<country country="CA">Canada</country>
</aff>
<aff id="emmm201809266-aff-0010">
<label>
<sup>10</sup>
</label>
<named-content content-type="organisation-division">Institute of Molecular Pathology (IMP)</named-content>
<institution>Vienna BioCenter</institution>
<named-content content-type="city">Vienna</named-content>
<country country="AT">Austria</country>
</aff>
<aff id="emmm201809266-aff-0011">
<label>
<sup>11</sup>
</label>
<named-content content-type="organisation-division">Department of Urology</named-content>
<institution>Semmelweis University</institution>
<named-content content-type="city">Budapest</named-content>
<country country="HU">Hungary</country>
</aff>
<aff id="emmm201809266-aff-0012">
<label>
<sup>12</sup>
</label>
<named-content content-type="organisation-division">Department Biochemistry and Metabolic Science</named-content>
<institution>Akita University Graduate School of Medicine</institution>
<named-content content-type="city">Akita</named-content>
<country country="JP">Japan</country>
</aff>
<aff id="emmm201809266-aff-0013">
<label>
<sup>13</sup>
</label>
<named-content content-type="organisation-division">Department of Thoracic Surgery</named-content>
<institution>National Institute of Oncology‐Semmelweis University</institution>
<named-content content-type="city">Budapest</named-content>
<country country="HU">Hungary</country>
</aff>
<aff id="emmm201809266-aff-0014">
<label>
<sup>14</sup>
</label>
<named-content content-type="organisation-division">Department of Internal Medicine III (Cardiology and Angiology)</named-content>
<institution>Medical University of Innsbruck</institution>
<named-content content-type="city">Innsbruck</named-content>
<country country="AT">Austria</country>
</aff>
<aff id="emmm201809266-aff-0015">
<label>
<sup>15</sup>
</label>
<named-content content-type="organisation-division">Department of Medical Genetics</named-content>
<named-content content-type="organisation-division">Life Science Institute</named-content>
<institution>University of British Columbia</institution>
<named-content content-type="city">Vancouver</named-content>
<named-content content-type="country-part">BC</named-content>
<country country="CA">Canada</country>
</aff>
<author-notes>
<corresp id="correspondenceTo">
<label>*</label>
Corresponding author. Tel: +43 (1)790 44; E‐mail:
<email>iris.uribesalgo@imba.oeaw.ac.at</email>
<break></break>
Corresponding author. Tel: +43 (1)790 44; E‐mail:
<email>josef.penninger@imba.oeaw.ac.at</email>
<break></break>
</corresp>
<fn fn-type="equal" id="emmm201809266-note-1001">
<label></label>
<p>These authors contributed equally to this work</p>
</fn>
</author-notes>
<pub-date pub-type="epub">
<day>24</day>
<month>6</month>
<year>2019</year>
</pub-date>
<pub-date pub-type="ppub">
<month>8</month>
<year>2019</year>
</pub-date>
<volume>11</volume>
<issue>8</issue>
<issue-id pub-id-type="doi">10.1002/emmm.v11.8</issue-id>
<elocation-id>e9266</elocation-id>
<history>
<date date-type="received">
<day>25</day>
<month>4</month>
<year>2018</year>
</date>
<date date-type="rev-recd">
<day>22</day>
<month>5</month>
<year>2019</year>
</date>
<date date-type="accepted">
<day>28</day>
<month>5</month>
<year>2019</year>
</date>
</history>
<permissions>
<pmc-comment> © 2019 EMBO </pmc-comment>
<copyright-statement content-type="article-copyright">© 2019 The Authors. Published under the terms of the CC BY 4.0 license</copyright-statement>
<license license-type="creativeCommonsBy">
<license-p>This is an open access article under the terms of the
<ext-link ext-link-type="uri" xlink:href="http://creativecommons.org/licenses/by/4.0/">http://creativecommons.org/licenses/by/4.0/</ext-link>
License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.</license-p>
</license>
</permissions>
<self-uri content-type="pdf" xlink:type="simple" xlink:href="file:EMMM-11-e9266.pdf"></self-uri>
<abstract id="emmm201809266-abs-0001">
<title>Abstract</title>
<p>Angiogenesis is a hallmark of cancer, promoting growth and metastasis. Anti‐angiogenic treatment has limited efficacy due to therapy‐induced blood vessel alterations, often followed by local hypoxia, tumor adaptation, progression, and metastasis. It is therefore paramount to overcome therapy‐induced resistance. We show that Apelin inhibition potently remodels the tumor microenvironment, reducing angiogenesis, and effectively blunting tumor growth. Functionally, targeting Apelin improves vessel function and reduces polymorphonuclear myeloid‐derived suppressor cell infiltration. Importantly, in mammary and lung cancer, Apelin prevents resistance to anti‐angiogenic receptor tyrosine kinase (RTK) inhibitor therapy, reducing growth and angiogenesis in lung and breast cancer models without increased hypoxia in the tumor microenvironment. Apelin blockage also prevents RTK inhibitor‐induced metastases, and high Apelin levels correlate with poor prognosis of anti‐angiogenic therapy patients. These data identify a druggable anti‐angiogenic drug target that reduces tumor blood vessel densities and normalizes the tumor vasculature to decrease metastases.</p>
</abstract>
<kwd-group kwd-group-type="author-generated">
<kwd id="emmm201809266-kwd-0001">anti‐angiogenic therapy</kwd>
<kwd id="emmm201809266-kwd-0002">Apelin–Apelin receptor</kwd>
<kwd id="emmm201809266-kwd-0003">therapy‐induced resistance</kwd>
<kwd id="emmm201809266-kwd-0004">tumor angiogenesis</kwd>
<kwd id="emmm201809266-kwd-0005">VEGF‐VEGFR</kwd>
</kwd-group>
<kwd-group kwd-group-type="subject-categories">
<title>Subject Categories</title>
<kwd>Cancer</kwd>
<kwd>Vascular Biology & Angiogenesis</kwd>
</kwd-group>
<funding-group>
<award-group>
<funding-source>EMBO Long‐term Fellowship</funding-source>
</award-group>
<award-group>
<funding-source>Era of Hope Innovator award</funding-source>
</award-group>
<award-group>
<funding-source>Marie Curie Fellowship</funding-source>
</award-group>
<award-group>
<funding-source>Hungarian National Research, Development and Innovation Office</funding-source>
<award-id>PD111656</award-id>
<award-id>K109626</award-id>
<award-id>KNN121510</award-id>
</award-group>
<award-group>
<funding-source>Janos Bolyai Research Scholarship</funding-source>
</award-group>
<award-group>
<funding-source>IMBA</funding-source>
</award-group>
<award-group>
<funding-source>Austrian Ministry of Sciences</funding-source>
</award-group>
<award-group>
<funding-source>Austrian Academy of Sciences</funding-source>
</award-group>
<award-group>
<funding-source>ERC Advanced Grant</funding-source>
</award-group>
<award-group>
<funding-source>T. von Zastrow Foundation</funding-source>
</award-group>
</funding-group>
<counts>
<fig-count count="11"></fig-count>
<table-count count="0"></table-count>
<page-count count="19"></page-count>
<word-count count="15446"></word-count>
</counts>
<custom-meta-group>
<custom-meta>
<meta-name>source-schema-version-number</meta-name>
<meta-value>2.0</meta-value>
</custom-meta>
<custom-meta>
<meta-name>component-id</meta-name>
<meta-value>emmm201809266</meta-value>
</custom-meta>
<custom-meta>
<meta-name>cover-date</meta-name>
<meta-value>August 2019</meta-value>
</custom-meta>
<custom-meta>
<meta-name>details-of-publishers-convertor</meta-name>
<meta-value>Converter:WILEY_ML3GV2_TO_NLMPMC version:5.6.7 mode:remove_FC converted:07.08.2019</meta-value>
</custom-meta>
</custom-meta-group>
</article-meta>
<notes>
<p content-type="self-citation">
<mixed-citation publication-type="journal" id="emmm201809266-cit-1001">
<source xml:lang="en">EMBO Mol Med</source>
(
<year>2019</year>
)
<volume>11</volume>
:
<elocation-id>e9266</elocation-id>
</mixed-citation>
</p>
<fn-group id="emmm201809266-ntgp-0001">
<fn id="emmm201809266-note-1002">
<p>See also:
<ext-link ext-link-type="uri" xlink:href="https://doi.org/10.15252/emmm.201910892">L Claesson‐Welsh</ext-link>
(August 2019)</p>
</fn>
</fn-group>
</notes>
</front>
<body>
<sec id="emmm201809266-sec-0001">
<title>Introduction</title>
<p>Angiogenesis, the sprouting of new blood vessels from the existing vasculature, is a hallmark of cancer that facilitates rapid tumor growth and metastasis (Hanahan & Weinberg,
<xref rid="emmm201809266-bib-0023" ref-type="ref">2011</xref>
). Activation of an “angiogenic switch” during cancer progression causes aberrant capillary sprouting, tortuous and excessive vessel branching, enlarged vessels, erratic blood flow, micro‐hemorrhages, leakiness, and abnormal endothelial cell proliferation (Hanahan & Weinberg,
<xref rid="emmm201809266-bib-0023" ref-type="ref">2011</xref>
). Inhibition of this angiogenic switch has therefore been proposed as a key cancer treatment strategy. Given the importance of vascular endothelial growth factors (VEGFs) in angiogenesis, much attention has been focused on developing anti‐angiogenic receptor tyrosine kinase (RTK) inhibitors targeting the VEGFR signaling pathway to treat a variety of cancers by blocking tumor angiogenesis. Although various clinical trials have demonstrated the efficacy of these therapies, the benefits are usually transitory and, in certain cases, VEGFR pathway inhibitors may even lead to a more aggressive disease (Carmeliet & Jain,
<xref rid="emmm201809266-bib-0009" ref-type="ref">2011a</xref>
).</p>
<p>The large‐scale eradication of tumor blood vessels results in necrosis and hypoxia, which can trigger several resistance mechanisms that drive tumor regrowth and malignancy (Bergers & Hanahan,
<xref rid="emmm201809266-bib-0002" ref-type="ref">2008</xref>
; Carmeliet & Jain,
<xref rid="emmm201809266-bib-0009" ref-type="ref">2011a</xref>
; Potente
<italic>et al</italic>
,
<xref rid="emmm201809266-bib-0061" ref-type="ref">2011</xref>
). In recent years, the concept of vessel normalization has been proposed to restore vascular abnormalities in tumors, with vessels becoming less permeable and better structured (Jain,
<xref rid="emmm201809266-bib-0028" ref-type="ref">2001</xref>
). Promoting vessel normalization has been linked to decreased metastasis and an increased efficacy of other therapies such as chemotherapies (Carmeliet & Jain,
<xref rid="emmm201809266-bib-0010" ref-type="ref">2011b</xref>
; Leite de Oliveira
<italic>et al</italic>
,
<xref rid="emmm201809266-bib-0043" ref-type="ref">2012</xref>
; Maes
<italic>et al</italic>
,
<xref rid="emmm201809266-bib-0048" ref-type="ref">2014</xref>
). However, treatment with VEGF/VEGFR inhibitors alone leads to a transient, usually rather short period of vessel normalization after which hypoxia recurs and acquired resistance emerges (Rivera & Bergers,
<xref rid="emmm201809266-bib-0063" ref-type="ref">2015</xref>
). In the last years, combination of VEGF and angiopoietin‐2 (Ang2) blockage has shown greater effects than single targeting of both molecules in decreasing tumor growth, angiogenesis, vascular abnormality, and metastasis (Brown
<italic>et al</italic>
,
<xref rid="emmm201809266-bib-0006" ref-type="ref">2010</xref>
; Koh
<italic>et al</italic>
,
<xref rid="emmm201809266-bib-0040" ref-type="ref">2010</xref>
; Kienast
<italic>et al</italic>
,
<xref rid="emmm201809266-bib-0038" ref-type="ref">2013</xref>
; Rigamonti
<italic>et al</italic>
,
<xref rid="emmm201809266-bib-0062" ref-type="ref">2014</xref>
; Scholz
<italic>et al</italic>
,
<xref rid="emmm201809266-bib-0068" ref-type="ref">2016</xref>
; Allen
<italic>et al</italic>
,
<xref rid="emmm201809266-bib-0001" ref-type="ref">2017</xref>
; Schmittnaegel
<italic>et al</italic>
,
<xref rid="emmm201809266-bib-0067" ref-type="ref">2017</xref>
), thus increasing the promise of anti‐angiogenic VEGF‐targeting in combinatory therapies. However, this strategy increased hypoxia (Koh
<italic>et al</italic>
,
<xref rid="emmm201809266-bib-0040" ref-type="ref">2010</xref>
; Rigamonti
<italic>et al</italic>
,
<xref rid="emmm201809266-bib-0062" ref-type="ref">2014</xref>
; Scholz
<italic>et al</italic>
,
<xref rid="emmm201809266-bib-0068" ref-type="ref">2016</xref>
), which can worsen the tumor microenvironment and induce treatment resistance (Jain,
<xref rid="emmm201809266-bib-0030" ref-type="ref">2014</xref>
). Thus, there is a need to identify safe new agents that can retain the therapeutic advantages of current anti‐angiogenic treatments, such as the reduction of angiogenesis and primary tumor growth, and at the same time prevent its resistance‐associated features such as hypoxia and therapy‐induced metastases.</p>
<p>Apelin is an evolutionarily conserved peptide that acts as the endogenous ligand for the G protein‐coupled Apelin receptor (Tatemoto
<italic>et al</italic>
,
<xref rid="emmm201809266-bib-0072" ref-type="ref">1998</xref>
). The Apelin/Apelin receptor signaling pathway has been implicated in developmental angiogenesis (Saint‐Geniez
<italic>et al</italic>
,
<xref rid="emmm201809266-bib-0066" ref-type="ref">2002</xref>
; Kasai
<italic>et al</italic>
,
<xref rid="emmm201809266-bib-0034" ref-type="ref">2004</xref>
,
<xref rid="emmm201809266-bib-0035" ref-type="ref">2010</xref>
; Cox
<italic>et al</italic>
,
<xref rid="emmm201809266-bib-0013" ref-type="ref">2006</xref>
; Kälin
<italic>et al</italic>
,
<xref rid="emmm201809266-bib-0033" ref-type="ref">2007</xref>
; Kidoya
<italic>et al</italic>
,
<xref rid="emmm201809266-bib-0036" ref-type="ref">2008</xref>
; del Toro
<italic>et al</italic>
,
<xref rid="emmm201809266-bib-0073" ref-type="ref">2010</xref>
; Kidoya & Takakura,
<xref rid="emmm201809266-bib-0037" ref-type="ref">2012</xref>
). Although the Apelin/Apelin receptor pathway is downregulated in adulthood, it is frequently reactivated and upregulated in tumors (Sorli
<italic>et al</italic>
,
<xref rid="emmm201809266-bib-0071" ref-type="ref">2007</xref>
; Berta
<italic>et al</italic>
,
<xref rid="emmm201809266-bib-0003" ref-type="ref">2010</xref>
), including in endothelial cells within the tumor microenvironment (Seaman
<italic>et al</italic>
,
<xref rid="emmm201809266-bib-0069" ref-type="ref">2007</xref>
). Further, elevated levels of Apelin are associated with poor clinical outcome in certain human cancers (Berta
<italic>et al</italic>
,
<xref rid="emmm201809266-bib-0003" ref-type="ref">2010</xref>
). Although these observations make the Apelin/Apelin receptor pathway a potentially attractive target for anti‐angiogenic cancer therapy, the detailed effects of its targeting for cancer treatment
<italic>in vivo</italic>
are poorly understood. In addition, some reports suggest that the Apelin/Apelin receptor pathway is not redundant with VEGFR signaling and that both have independent roles in angiogenesis (Kidoya
<italic>et al</italic>
,
<xref rid="emmm201809266-bib-0036" ref-type="ref">2008</xref>
; del Toro
<italic>et al</italic>
,
<xref rid="emmm201809266-bib-0073" ref-type="ref">2010</xref>
; Heo
<italic>et al</italic>
,
<xref rid="emmm201809266-bib-0025" ref-type="ref">2012</xref>
). Therefore, we wanted to explore whether combinations of Apelin blockade with current anti‐angiogenic therapies may be of therapeutic benefit in cancer.</p>
<p>Here, we show that genetic and pharmacological inhibition of Apelin is a feasible strategy to reduce tumor blood vessel formation, vessel leakiness, and hypoxia, as well as to reduce suppressive immune cell infiltration, thereby significantly diminishing growth of primary lung and mammary tumors. In 3D vascular sprouts, Apelin is essential for VEGF to trigger blood vessel outgrowth, indicating that Apelin might be a key pathway that interfaces with VEGF signaling. Combining targeting of Apelin with clinically relevant RTK inhibitors like sunitinib,
<italic>in vivo</italic>
not only reduced blood vessel density and leakage in tumors, but also decreased hypoxia and metastases induced by sunitinib treatment. Further, elevated Apelin levels in serum samples from renal cell cancer patients treated with sunitinib as a single agent were associated with a worse prognosis. Our findings unveil a new strategy that combines clinically relevant anti‐angiogenic treatments with Apelin inhibition to diminish tumor growth, blood vessel density, and vessel abnormality within the tumor environment, and thus hypoxia, tumor resistance, and anti‐angiogenic therapy‐induced metastasis.</p>
</sec>
<sec id="emmm201809266-sec-0002">
<title>Results</title>
<sec id="emmm201809266-sec-0003">
<title>Apelin blockage improves survival in mammary and lung cancer models</title>
<p>To corroborate that Apelin expression is associated with outcome in human breast cancer, we performed an unbiased meta‐analysis of multiple datasets using the Kmplot (Györffy
<italic>et al</italic>
,
<xref rid="emmm201809266-bib-0500" ref-type="ref">2010</xref>
) and PrognoScan (Mizuno
<italic>et al</italic>
,
<xref rid="emmm201809266-bib-0054" ref-type="ref">2009</xref>
) databases. We confirmed that high levels of Apelin expression in tumors are significantly associated with poor prognosis in breast cancer patients (Fig 
<xref rid="emmm201809266-fig-0001ev" ref-type="fig">EV1</xref>
A). Next, we determined whether Apelin blockage is a suitable strategy to ameliorate cancer progression by ablating its expression in mammary cancer. Apelin‐deficient (
<italic>Apln</italic>
<sup>−/−</sup>
) mice (Kuba
<italic>et al</italic>
,
<xref rid="emmm201809266-bib-0041" ref-type="ref">2007</xref>
) were crossed with MMTV‐
<italic>NeuT</italic>
transgenic mice (Lucchini
<italic>et al</italic>
,
<xref rid="emmm201809266-bib-0046" ref-type="ref">1992</xref>
) to generate MMTV‐
<italic>NeuT; Apln</italic>
<sup>−/−</sup>
and MMTV‐
<italic>NeuT; Apln</italic>
<sup>+/+</sup>
control littermates (termed
<italic>NeuT;Apln</italic>
<sup>−/−</sup>
and
<italic>NeuT;Apln</italic>
<sup>+/+</sup>
hereafter). Apelin has been previously shown to be upregulated in tumor cells (Seaman
<italic>et al</italic>
,
<xref rid="emmm201809266-bib-0069" ref-type="ref">2007</xref>
; Wang
<italic>et al</italic>
,
<xref rid="emmm201809266-bib-0076" ref-type="ref">2007</xref>
; Liu
<italic>et al</italic>
,
<xref rid="emmm201809266-bib-0044" ref-type="ref">2015</xref>
). We confirmed that Apelin expression is enhanced in tumors of MMTV‐
<italic>NeuT</italic>
mice compared to epithelial cells isolated from the mammary gland of healthy mice (Fig 
<xref rid="emmm201809266-fig-0001ev" ref-type="fig">EV1</xref>
B), recapitulating human breast cancer (Sorli
<italic>et al</italic>
,
<xref rid="emmm201809266-bib-0071" ref-type="ref">2007</xref>
) and validating our model. Importantly,
<italic>NeuT;Apln</italic>
<sup>−/−</sup>
tumor‐bearing mice displayed a delay in the onset of NeuT‐driven mammary tumors and a significantly prolonged survival compared with
<italic>NeuT;Apln</italic>
<sup>+/+</sup>
littermates (Figs 
<xref rid="emmm201809266-fig-0001ev" ref-type="fig">EV1</xref>
C and
<xref rid="emmm201809266-fig-0001" ref-type="fig">1</xref>
A). In line with enhanced survival,
<italic>Apelin</italic>
‐null mice displayed a decreased tumor burden in the mammary glands compared to age‐matched controls (Fig 
<xref rid="emmm201809266-fig-0001ev" ref-type="fig">EV1</xref>
D).</p>
<fig fig-type="Figure" xml:lang="en" specific-use="collapsible" id="emmm201809266-fig-0001ev" orientation="portrait" position="float">
<label>Figure EV1</label>
<caption>
<title>Apelin inactivation improves survival and reduces tumor burden in mammary and lung cancer</title>
<p>
<list list-type="alpha-upper" id="emmm201809266-list-0012">
<list-item>
<p>Kaplan–Meier survival plot from the KM‐plotter database (Győrffy
<italic>et al</italic>
,
<xref rid="emmm201809266-bib-0022" ref-type="ref">2013</xref>
) for high and low Apelin (APLN)‐expressing groups in human breast cancer. Relapse‐free survival. Patients were split by the median. Affymetrix Apelin ID 222856_at.</p>
</list-item>
<list-item>
<p>RT‐qPCR of Apelin (
<italic>Apln</italic>
) expression in
<italic>NeuT;Apln</italic>
<sup>+/+</sup>
tumors (orange bar,
<italic>n</italic>
 = 7) and purified normal (
<italic>Apln</italic>
<sup>+/+</sup>
) mammary gland epithelial cells (gray bar,
<italic>n</italic>
 = 3). Data points from individual tumors or mammary glands and means (black bars) are shown.</p>
</list-item>
<list-item>
<p>Kaplan–Meier plot for mammary tumor onset in
<italic>NeuT;Apln</italic>
<sup>+/+</sup>
(
<italic>n</italic>
 = 20) and
<italic>NeuT;Apln</italic>
<sup>−/−</sup>
(
<italic>n</italic>
 = 24) mice.
<italic>P</italic>
 = 0.0019; log‐rank test.</p>
</list-item>
<list-item>
<p>Mean percentages ± SEM of tumor burden in
<italic>NeuT;Apln</italic>
<sup>+/+</sup>
(
<italic>n</italic>
 = 6) and
<italic>NeuT;Apln</italic>
<sup>−/−</sup>
(
<italic>n</italic>
 = 9) mammary glands assessed 4 weeks after tumor onset. *
<italic>P</italic>
 < 0.05;
<italic>t</italic>
‐test.</p>
</list-item>
<list-item>
<p>Kaplan–Meier plot from the KM‐plotter database (Győrffy
<italic>et al</italic>
,
<xref rid="emmm201809266-bib-0022" ref-type="ref">2013</xref>
) for high and low APELIN‐expressing groups in lung cancer patients. Overall survival. Patients were split by the median. Affymetrix Apelin ID 222856_at.</p>
</list-item>
<list-item>
<p>Kaplan–Meier plot for survival in
<italic>KRas;Apln</italic>
<sup>+/
<italic>y</italic>
</sup>
(
<italic>n</italic>
 = 6) and
<italic>KRas;Apln</italic>
<sup>−/
<italic>y</italic>
</sup>
(
<italic>n</italic>
 = 4) mice with non‐small cell lung cancer (NSCLC) after oncogenic KRas induction by AdenoCre inhalation. **
<italic>P</italic>
 < 0.01; log‐rank test.</p>
</list-item>
<list-item>
<p>Kaplan–Meier plot for survival in
<italic>p53</italic>
<sup>
<italic>f</italic>
/
<italic>f</italic>
</sup>
<italic>;KRas;Apln</italic>
<sup>+/
<italic>y</italic>
</sup>
(
<italic>n</italic>
 = 7) and
<italic>p53</italic>
<sup>
<italic>f</italic>
/
<italic>f</italic>
</sup>
<italic>;KRas;Apln</italic>
<sup>−/
<italic>y</italic>
</sup>
(
<italic>n</italic>
 = 9) mice with NSCLC after AdenoCre inhalation. **
<italic>P</italic>
 < 0.01; log‐rank test.</p>
</list-item>
<list-item>
<p>Percentages and representative histology of lung adenoma/adenocarcinoma and hyperplasia (±SEM) in age‐matched
<italic>KRas;Apln</italic>
<sup>+/
<italic>y</italic>
</sup>
(
<italic>n</italic>
 = 4) and
<italic>KRas;Apln</italic>
<sup>−/
<italic>y</italic>
</sup>
(
<italic>n</italic>
 = 4) mice analyzed 18 weeks after AdenoCre inhalation. *
<italic>P</italic>
 < 0.05, ns = not significant;
<italic>t</italic>
‐test; three sections per lung were analyzed.</p>
</list-item>
</list>
</p>
<p>
<named-content content-type="attribution">Source data are available online for this figure.</named-content>
</p>
</caption>
<graphic id="nlm-graphic-5" xlink:href="EMMM-11-e9266-g003"></graphic>
</fig>
<fig fig-type="Figure" xml:lang="en" id="emmm201809266-fig-0001" orientation="portrait" position="float">
<label>Figure 1</label>
<caption>
<title>Genetic and pharmacological inhibition of Apelin impairs mammary tumor growth and tumor angiogenesis in a paracrine manner</title>
<p>
<list list-type="alpha-upper" id="emmm201809266-list-0006">
<list-item>
<p>Kaplan–Meier plot for survival in
<italic>NeuT;Apln</italic>
<sup>+/+</sup>
(
<italic>n</italic>
 = 11) and
<italic>NeuT;Apln</italic>
<sup>−/−</sup>
(
<italic>n</italic>
 = 10) mice with mammary cancer after tumor onset. *
<italic>P</italic>
 = 0.0185; log‐rank test. Mice were sacrificed when the tumor size reached 1 cm
<sup>3</sup>
, following ethical guidelines.</p>
</list-item>
<list-item>
<p>Tumor volumes, followed over time, of control mammary tumor E0771 cells (
<italic>shRenilla</italic>
) and Apelin‐depleted (
<italic>shApln</italic>
) E0771 cells orthotopically injected into both syngeneic C57BL/6J
<italic>Apln</italic>
<sup>+/+</sup>
and
<italic>Apln</italic>
<sup>−/−</sup>
mice (5 × 10
<sup>5</sup>
cells/mouse), respectively. Tumor volumes were determined using calipers and are shown as mean tumor volumes ± SEM. Data shown are pooled from two independent experiments.
<italic>Apln</italic>
<sup>+/+</sup>
<italic>;shRenilla</italic>
(
<italic>n</italic>
 = 18),
<italic>Apln</italic>
<sup>+/+</sup>
<italic>;shApln</italic>
(
<italic>n</italic>
 = 17),
<italic>Apln</italic>
<sup>−/−</sup>
<italic>;shRenilla</italic>
(
<italic>n</italic>
 = 14),
<italic>Apln</italic>
<sup>−/−</sup>
<italic>;shApln</italic>
(
<italic>n</italic>
 = 15); **
<italic>P</italic>
 < 0.01, ***
<italic>P</italic>
 < 0.001; two‐way ANOVA.</p>
</list-item>
<list-item>
<p>Mean percentages (±SEM) of CD31
<sup>+</sup>
area in E0771
<italic>shRenilla</italic>
(
<italic>n</italic>
 = 3) or
<italic>shApln</italic>
(
<italic>n</italic>
 = 3) mammary tumors, assessed on day 23 post‐orthotopic injection into C57BL/6J
<italic>Apln</italic>
<sup>+/+</sup>
or
<italic>Apln</italic>
<sup>−/−</sup>
mice, respectively. **
<italic>P</italic>
 < 0.01;
<italic>t</italic>
‐test.</p>
</list-item>
<list-item>
<p>Mean percentages (±SEM) of extravasated Dextran in E0771
<italic>shRenilla</italic>
(
<italic>n</italic>
 = 9) or
<italic>shApln</italic>
(
<italic>n</italic>
 = 12) mammary tumors, assessed on day 19 post‐orthotopic injection into C57BL/6J
<italic>Apln</italic>
<sup>+/+</sup>
or
<italic>Apln</italic>
<sup>−/−</sup>
mice, respectively. **
<italic>P</italic>
 < 0.01;
<italic>t</italic>
‐test. Right panel shows representative immunofluorescence of Dextran (red), CD31
<sup>+</sup>
vessels (green), and DAPI (blue). The white arrows indicate regions of Dextran extravasation. Scale bars = 100 μm.</p>
</list-item>
<list-item>
<p>Mean counts (±SEM) of pimonidazole positive foci, assessed on day 26 post‐orthotopic injection of E0771
<italic>shRenilla</italic>
(
<italic>n</italic>
 = 6) or
<italic>shApln</italic>
(
<italic>n</italic>
 = 4) into C57BL/6J wild‐type mice (5 × 10
<sup>5</sup>
cells/mouse). *
<italic>P</italic>
 < 0.05;
<italic>t</italic>
‐test. Right panels show representative immunohistochemical pimonidazole staining at two different magnifications; scale bars = 200 μm (upper panels) and 50 μm (lower panels).</p>
</list-item>
<list-item>
<p>Mean percentage (±SEM) of tumor‐infiltrating immune cells normalized to CD45
<sup>+</sup>
. E0771
<italic>shRenilla</italic>
(
<italic>n</italic>
 = 8) or
<italic>shApln</italic>
(
<italic>n</italic>
 = 6) were orthotopically injected into C57BL/6J
<italic>Apln</italic>
<sup>+/+</sup>
or
<italic>Apln</italic>
<sup>−/−</sup>
mice (5 × 10
<sup>5</sup>
cells/mouse), respectively, and tumors were harvested day 25 post‐injection. *
<italic>P</italic>
 < 0.05, **
<italic>P</italic>
 < 0.01;
<italic>t</italic>
‐test. All immune cell populations were gated for viable CD45
<sup>+</sup>
cells and then further defined as: CD8 T cells (Thy1.2
<sup>+</sup>
, CD8
<sup>+</sup>
), CD4 T cells (Thy1.2
<sup>+</sup>
, CD4
<sup>+</sup>
), inflammatory monocytes (Ly6C
<sup>+</sup>
, Cd11b
<sup>+</sup>
, Ly6G
<sup></sup>
), PMN‐MDSCs (Ly6G
<sup>+</sup>
, Cd11b
<sup>+</sup>
), natural killer cells (Thy1.2
<sup></sup>
, Ly6G
<sup></sup>
, NK1.1
<sup>+</sup>
), natural killer T cells (Thy1.2
<sup>+</sup>
, CD4
<sup></sup>
, CD8
<sup></sup>
, NK1.1
<sup>+</sup>
), and peripheral dendritic cells (Ly6G
<sup></sup>
,Ly6C
<sup>+</sup>
, Cd11b
<sup></sup>
, PDAC1
<sup>+</sup>
, B220
<sup>+</sup>
).</p>
</list-item>
</list>
</p>
<p>
<named-content content-type="attribution">Source data are available online for this figure.</named-content>
</p>
</caption>
<graphic id="nlm-graphic-7" xlink:href="EMMM-11-e9266-g002"></graphic>
</fig>
<p>We further extended our studies to lung cancer as a second solid tumor model of epithelial origin. Similar to breast cancer, we confirmed that high levels of Apelin expression are significantly associated with poor prognosis in lung cancer patients (Fig 
<xref rid="emmm201809266-fig-0001ev" ref-type="fig">EV1</xref>
E) (Györffy
<italic>et al</italic>
, 2013). To be able to experimentally dissect the role of Apelin in lung cancer,
<italic>Apln</italic>
<sup>−/−</sup>
mice were crossed to the
<italic>Lox‐Stop‐Lox‐KRas</italic>
<sup>
<italic>G12D</italic>
</sup>
lung cancer model (
<italic>KRas;Apln</italic>
<sup>+/
<italic>y</italic>
</sup>
and
<italic>KRas;Apln</italic>
<sup>−/
<italic>y</italic>
</sup>
hereafter; the Apelin gene is located on the X chromosome; Kuba
<italic>et al</italic>
,
<xref rid="emmm201809266-bib-0041" ref-type="ref">2007</xref>
) (Jackson,
<xref rid="emmm201809266-bib-0026" ref-type="ref">2001</xref>
). We also extended the investigation to a more aggressive form of non‐small cell lung cancer (NSCLC) driven by the KRas
<sup>G12D</sup>
oncogene combined with loss of the tumor suppressor p53 (
<italic>p53</italic>
<sup>
<italic>f</italic>
/
<italic>f</italic>
</sup>
<italic>;KRas;Apln</italic>
<sup>+/
<italic>y</italic>
</sup>
and
<italic>p53</italic>
<sup>
<italic>f</italic>
/
<italic>f</italic>
</sup>
<italic>;KRas;Apln</italic>
<sup>−/
<italic>y</italic>
</sup>
; DuPage
<italic>et al</italic>
,
<xref rid="emmm201809266-bib-0015" ref-type="ref">2009</xref>
). Knockout of Apelin resulted in enhanced survival and reduced tumor burden in these lung cancer models (Fig 
<xref rid="emmm201809266-fig-0001ev" ref-type="fig">EV1</xref>
F–H).</p>
<p>We also explored whether
<italic>Apela</italic>
, the recently described second ligand for Apelin receptor (Pauli
<italic>et al</italic>
,
<xref rid="emmm201809266-bib-0059" ref-type="ref">2014</xref>
), might also be overexpressed in NeuT‐driven mammary tumors or KRas‐driven lung tumors, but we failed to detect its expression, even using sensitive and multi‐cycle qPCR analysis. Thus, we conclude that Apelin is the primary Apelin receptor ligand upregulated in our models of mammary and lung cancer. Of note, we did not detect abnormalities in mammary glands or lungs from non‐tumor‐bearing adult and background‐matched
<italic>Apln</italic>
<sup>+/+</sup>
and
<italic>Apln</italic>
<sup>−/−</sup>
mice without oncogenic drivers. These results not only extend the findings of previous overexpression studies (Sorli
<italic>et al</italic>
,
<xref rid="emmm201809266-bib-0071" ref-type="ref">2007</xref>
; Berta
<italic>et al</italic>
,
<xref rid="emmm201809266-bib-0003" ref-type="ref">2010</xref>
), but validate Apelin as a target in tumor models of epithelial origin. Thus, high Apelin levels correlate with a worse prognosis in breast and lung cancer patients, and Apelin inactivation increases the survival of mice with breast and lung cancer.</p>
</sec>
<sec id="emmm201809266-sec-0004">
<title>Apelin modulates the tumor microenvironment through paracrine stimulation of tumor angiogenesis</title>
<p>Apelin has previously been shown to stimulate tumor angiogenesis and is upregulated in tumor‐associated endothelial cells (Seaman
<italic>et al</italic>
,
<xref rid="emmm201809266-bib-0069" ref-type="ref">2007</xref>
; Wang
<italic>et al</italic>
,
<xref rid="emmm201809266-bib-0076" ref-type="ref">2007</xref>
; Liu
<italic>et al</italic>
,
<xref rid="emmm201809266-bib-0044" ref-type="ref">2015</xref>
), which we could confirm in endothelial cells isolated from MMTV‐NeuT tumors compared to normal mammary gland (Fig 
<xref rid="emmm201809266-fig-0002ev" ref-type="fig">EV2</xref>
A). Despite the known role of Apelin in tumor angiogenesis, the detailed effects of Apelin within the tumor cells and its microenvironment
<italic>in vivo</italic>
remain poorly understood.</p>
<fig fig-type="Figure" xml:lang="en" specific-use="collapsible" id="emmm201809266-fig-0002ev" orientation="portrait" position="float">
<label>Figure EV2</label>
<caption>
<title>Tumor cell‐derived Apelin induces angiogenesis in a paracrine manner</title>
<p>
<list list-type="alpha-upper" id="emmm201809266-list-0013">
<list-item>
<p>RT‐qPCR of Apelin
<italic>(Apln)</italic>
expression in endothelial cells (ECs) isolated from
<italic>NeuT;Apln</italic>
<sup>+/+</sup>
tumors, normal
<italic>Apln</italic>
<sup>+/+</sup>
mammary glands. Data are shown as relative mRNA levels normalized to the normal mammary gland endothelium (set to 1) ± SEM.
<italic>n</italic>
 = 2 per cohort; **
<italic>P</italic>
 < 0.01,
<italic>t</italic>
‐test.</p>
</list-item>
<list-item>
<p>RT‐qPCR of
<italic>Apln</italic>
and
<italic>Aplnr</italic>
in control E0771 mammary cancer cells (
<italic>shRenilla</italic>
) and Apelin or Apelin receptor‐depleted E0771 cells (
<italic>shApln</italic>
and
<italic>shAplnr</italic>
, respectively). Data are shown as relative mRNA levels normalized to control E0771 cells (set to 1) ± SEM.
<italic>n</italic>
 = 2 per cohort; **
<italic>P</italic>
 < 0.01;
<italic>t</italic>
‐test.</p>
</list-item>
<list-item>
<p>Relative levels of AplnR mRNA (mean ± SEM) in isolated tumor endothelial cells compared to tumor epithelial cells from NeuT‐driven
<italic>Apln</italic>
<sup>+/+</sup>
mouse mammary tumors;
<italic>n</italic>
 = 4 per cohort. Data are shown as relative mRNA levels normalized to epithelial cells (set to 1) ± SEM.</p>
</list-item>
<list-item>
<p>
<italic>In vitro</italic>
growth curves of
<italic>shRenilla</italic>
,
<italic> shApln</italic>
or
<italic>shAplnr</italic>
E0771 cells in the absence or presence of an active Apelin peptide (AplnPyr13, 1000 nM). No difference in growth was observed. A representative experiment is shown.</p>
</list-item>
<list-item>
<p>Tumor volume, followed over time, of orthotopically injected
<italic>shRenilla, shApln,</italic>
and
<italic>shAplnr</italic>
E0771 cells. Data were determined using calipers and are shown as mean tumor volumes ± SEM.
<italic>n</italic>
 = 4 syngeneic C57BL/6J mice per cohort; *
<italic>P</italic>
 < 0.05, ***
<italic>P</italic>
 < 0.001, two‐way ANOVA.</p>
</list-item>
<list-item>
<p>Quantification (mean percentages ± SEM) and representative immunohistochemistry of CD31
<sup>+</sup>
area in
<italic>shRenilla</italic>
(
<italic>n</italic>
 = 6),
<italic>shApln</italic>
(
<italic>n</italic>
 = 6) or
<italic>shAplnr</italic>
(
<italic>n</italic>
 = 7) E0771 mammary tumors in C57BL/6J wild‐type mice, analyzed on day 12 post‐orthotopic injection. *
<italic>P</italic>
 < 0.05, **
<italic>P</italic>
 < 0.01; one‐way ANOVA. Scale bars = 200 μm.</p>
</list-item>
</list>
</p>
</caption>
<graphic id="nlm-graphic-9" xlink:href="EMMM-11-e9266-g005"></graphic>
</fig>
<p>To study the contribution to tumor growth of Apelin from cancer cells or cells of the tumor microenvironment, we used the E0771 mammary cancer model and, first, specifically downregulated the expression of
<italic>Apln</italic>
in cancer cells using shRNA (Fig 
<xref rid="emmm201809266-fig-0002ev" ref-type="fig">EV2</xref>
B). Then, we orthotopically injected control
<italic>shRenilla</italic>
E0771 cells and
<italic>Apln</italic>
‐depleted (
<italic>shApln)</italic>
E0771 cells into syngeneic C57BL/6J
<italic>Apln</italic>
<sup>+/+</sup>
as well as
<italic>Apln</italic>
<sup>−/−</sup>
mice (Fig 
<xref rid="emmm201809266-fig-0001" ref-type="fig">1</xref>
B). Comparing Apelin wild‐type (
<italic>Apln</italic>
<sup>+/+</sup>
<italic>;</italic>
E0771
<italic>shRen</italic>
) with Apelin‐depleted (
<italic>Apln</italic>
<sup>−/−</sup>
<italic>;</italic>
E0771
<italic>shApln</italic>
) tumors, we could recapitulate the phenotype observed with the constitutive Apelin knockout in the
<italic>NeuT</italic>
model (Fig 
<xref rid="emmm201809266-fig-0001" ref-type="fig">1</xref>
A and B). By specifically depleting Apelin expression in tumor epithelial cells (
<italic>Apln</italic>
<sup>+/+</sup>
<italic>;</italic>
E0771
<italic>shApln</italic>
) or the cells of the tumor microenvironment (
<italic>Apln</italic>
<sup>−/−</sup>
<italic>;</italic>
E0771
<italic>shRen</italic>
), we could investigate the importance of these two sources of Apelin for the observed growth decrease in fully Apelin‐depleted tumors (
<italic>Apln</italic>
<sup>−/−</sup>
<italic>;</italic>
E0771
<italic>shApln</italic>
). We found that both Apelin sources are of equal importance for the Apelin‐mediated increase in tumor growth (Fig 
<xref rid="emmm201809266-fig-0001" ref-type="fig">1</xref>
B).</p>
<p>While the Apelin receptor has been detected in both tumor and endothelial cells, we find that its expression was considerably higher in tumor‐associated endothelial cells (Fig 
<xref rid="emmm201809266-fig-0002ev" ref-type="fig">EV2</xref>
C). To assess whether Apelin exerts its effects in the tumor epithelial cells or in the tumor endothelial cells, we used the E0771 mammary cancer model and specifically downregulated the expression of the Apelin receptor (
<italic>Aplnr)</italic>
in the cancer cells using shRNA (Fig 
<xref rid="emmm201809266-fig-0002ev" ref-type="fig">EV2</xref>
B). Whereas
<italic>in vitro shRenilla</italic>
,
<italic> shApln</italic>
and
<italic>shAplnr</italic>
E0771 cells grew similarly (Fig 
<xref rid="emmm201809266-fig-0002ev" ref-type="fig">EV2</xref>
D), tumors from injected
<italic>shAplnr</italic>
E0771 cells in syngeneic wild‐type mice did not show a reduction in tumor growth compared to tumors from injected
<italic>shRenilla</italic>
E0771 cells, in contrast to tumors from
<italic>shApln</italic>
E0771 cells (Fig 
<xref rid="emmm201809266-fig-0002ev" ref-type="fig">EV2</xref>
E). In addition, only tumors from
<italic>shApln</italic>
E0771 cells presented a decreased microvessel density (Fig 
<xref rid="emmm201809266-fig-0002ev" ref-type="fig">EV2</xref>
F), indicating that tumor epithelial cell‐derived Apelin induces tumor angiogenesis in a paracrine fashion.</p>
<p>Importantly, loss of Apelin expression also significantly decreased microvessel densities in both E0771 and NeuT‐driven mammary tumors, as well as KRas
<sup>G12D</sup>
‐driven lung tumors (Fig 
<xref rid="emmm201809266-fig-0001" ref-type="fig">1</xref>
C, and
<xref rid="emmm201809266-sup-0001" ref-type="supplementary-material">Appendix Fig S1A and B</xref>
). Functionally, E0771
<italic>shApln</italic>
cells injected into
<italic>Apln</italic>
<sup>−/−</sup>
mice displayed markedly reduced vessel leakage
<italic>in vivo</italic>
as compared to control
<italic>shRenilla</italic>
E0771 cells injected into
<italic>Apln</italic>
<sup>+/+</sup>
mice (Fig 
<xref rid="emmm201809266-fig-0001" ref-type="fig">1</xref>
D). Using pimonidazole staining to detect tissue hypoxia (Varia
<italic>et al</italic>
,
<xref rid="emmm201809266-bib-0075" ref-type="ref">1998</xref>
) revealed a decreased number of hypoxic foci in
<italic>shApln</italic>
E0771 mammary tumors (Fig 
<xref rid="emmm201809266-fig-0001" ref-type="fig">1</xref>
E).</p>
<p>Angiogenic proteins, like VEGF, have been reported to be able to affect immune cell infiltration in different tumor models (Yang
<italic>et al</italic>
,
<xref rid="emmm201809266-bib-0078" ref-type="ref">2018</xref>
). To complement our findings, we profiled the immune cell infiltration in the
<italic>Apln</italic>
<sup>+/+</sup>
<italic>;</italic>
E0771
<italic>shRenilla</italic>
and
<italic>Apln</italic>
<sup>−/−</sup>
<italic>;</italic>
E0771
<italic>shApln</italic>
tumor groups. While total immune cell infiltration, as determined by the numbers of CD45
<sup>+</sup>
cells in the tumor, was unchanged (
<xref rid="emmm201809266-sup-0001" ref-type="supplementary-material">Appendix Fig S1C</xref>
), we found a significant decrease of polymorphonuclear myeloid‐derived suppressor cells (PMN‐MDSC) and a significant increase in NK T cells in tumor from Apelin‐depleted mice (Fig 
<xref rid="emmm201809266-fig-0001" ref-type="fig">1</xref>
F). Of note, it has been previously reported that PMN‐MDSC cells accumulate in hypoxic tumor regions and are associated with increased angiogenesis
<italic>in vivo</italic>
and enhanced tumor cell invasion (Marvel & Gabrilovich,
<xref rid="emmm201809266-bib-0049" ref-type="ref">2015</xref>
). Together, these results show that tumor cell‐derived as well as microenvironment‐derived Apelin contributes to cancer progression through stimulation of tumor angiogenesis, enhancing vessel leakiness and tumor hypoxia, and altered infiltration of immune cells.</p>
</sec>
<sec id="emmm201809266-sec-0005">
<title>Apelin induces pro‐angiogenic pathways in endothelial cells and enhances VEGF‐induced vessel sprouting</title>
<p>Having established that Apelin is a modulator of tumor blood vessels, we next explored gene expression changes of CD31
<sup>+</sup>
/CD105
<sup>+</sup>
endothelial cells (ECs) sorted from Apelin wild‐type and Apln‐depleted tumors. We used ingenuity pathway analysis (IPA) to predict regulation of downstream biological processes and found a significant decrease in processes associated with endothelial cell proliferation and angiogenesis in ECs sorted out of Apelin‐depleted tumors (Fig 
<xref rid="emmm201809266-fig-0002" ref-type="fig">2</xref>
A), consistent with our previous findings (Fig 
<xref rid="emmm201809266-fig-0001" ref-type="fig">1</xref>
C,
<xref rid="emmm201809266-sup-0001" ref-type="supplementary-material">Appendix Fig S1A and B</xref>
). Further, IPA predicted a decrease in the adhesion of granulocytes (the cellular family to which PMN‐MDSCs belong), also in line with our findings (Figs 
<xref rid="emmm201809266-fig-0001" ref-type="fig">1</xref>
F and
<xref rid="emmm201809266-fig-0002" ref-type="fig">2</xref>
A). IPA is also suitable to predict upstream regulators and their activation state based on the up‐ or downregulation of differentially expressed genes. We find that proteins of the TGF superfamily, Inhibin‐βA and TGF‐β1, as well as C/EBP‐α, β‐catenin, ErbB2 and EGFR are predicted to be inhibited upstream regulators in ECs isolated from Apelin‐depleted tumors (Fig 
<xref rid="emmm201809266-fig-0003ev" ref-type="fig">EV3</xref>
A). Thus, Apelin depletion results in impaired angiogenesis as determined by decreased blood vessel numbers and transcriptome analysis of tumor‐associated endothelial cells.</p>
<fig fig-type="Figure" xml:lang="en" id="emmm201809266-fig-0002" orientation="portrait" position="float">
<label>Figure 2</label>
<caption>
<title>Apelin deletion delays VEGF‐induced blood vessel sprouting</title>
<p>
<list list-type="alpha-upper" id="emmm201809266-list-0007">
<list-item>
<p>Left—Heatmap of RNA‐Seq transcriptome analysis of CD31
<sup>+</sup>
/CD105
<sup>+</sup>
endothelial cells sorted from tumors established by E0771
<italic>shRenilla</italic>
(
<italic>n</italic>
 = 6) or
<italic>shApln</italic>
(
<italic>n</italic>
 = 3) cells orthotopically injected into C57BL/6J
<italic>Apln</italic>
<sup>+/+</sup>
or
<italic>Apln</italic>
<sup>−/−</sup>
mice, respectively. Tumors were harvested day 25 post‐injection and genes displayed are significantly deregulated at the adjusted
<italic>P</italic>
‐value cutoff of 0.05. Right—ingenuity pathway analysis for biological processes predicted to be decreased downstream of the differentially expressed genes.</p>
</list-item>
<list-item>
<p>Quantification of vessel sprouts (mean values ± SEM) upon VEGF treatment (30 ng/ml) of embryoid bodies (EB) derived from murine ES cells (mESCs) with sense integrations in the Apelin gene (
<italic>Apln</italic>
STOP) of the splice acceptor described in
<xref rid="emmm201809266-sup-0001" ref-type="supplementary-material">Appendix Fig S1B</xref>
or Cre‐reverted antisense (
<italic>Apln</italic>
GO) sister cells.
<italic>Apln</italic>
GO (Day 2
<italic>n</italic>
 = 6; Day 4
<italic>n</italic>
 = 40, Day 6
<italic>n</italic>
 = 54, Day 8
<italic>n</italic>
 = 32, Day 10
<italic>n</italic>
 = 35, Day 11
<italic>n</italic>
 = 31),
<italic>Apln</italic>
STOP (Day 2
<italic>n</italic>
 = 4; Day 4
<italic>n</italic>
 = 15, Day 6
<italic>n</italic>
 = 31, Day 8
<italic>n</italic>
 = 28, Day 10
<italic>n</italic>
 = 32, Day 11
<italic>n</italic>
 = 37); **
<italic>P</italic>
 < 0.01, ***
<italic>P</italic>
 < 0.001, two‐way ANOVA. Representative brightfield images and automated analysis of vessel sprouts by Definiens software are shown in the bottom panels. Scale bars = 200 μm.</p>
</list-item>
<list-item>
<p>Differentially expressed genes using RNA‐Seq transcriptome analysis of CD31
<sup>+</sup>
endothelial cells (ECs) sorted from sprouting EBs from Apelin STOP cells stimulated with VEGF (30 ng/ml) and DMSO (
<italic>−Apln</italic>
) and repaired Apelin GO sister cells stimulated with VEGF and Apelin (1,000 nM; +
<italic>Apln</italic>
). VEGF target genes and angiogenesis‐related genes, predicted by ingenuity pathway analysis (IPA) software, are indicated by bars on the upper axis of the heatmap. GO terms were analyzed by DAVID online software.</p>
</list-item>
</list>
</p>
</caption>
<graphic id="nlm-graphic-11" xlink:href="EMMM-11-e9266-g004"></graphic>
</fig>
<fig fig-type="Figure" xml:lang="en" specific-use="collapsible" id="emmm201809266-fig-0003ev" orientation="portrait" position="float">
<label>Figure EV3</label>
<caption>
<title>Gene expression analysis in Apelin‐depleted tumor endothelial cells and endothelial sprouts</title>
<p>
<list list-type="alpha-upper" id="emmm201809266-list-0014">
<list-item>
<p>Ingenuity pathway analysis for upstream regulators predicted to be inhibited based on significantly differentially expressed genes from RNA‐Seq transcriptome analysis of CD31
<sup>+</sup>
/CD105
<sup>+</sup>
endothelial cells sorted from tumors established by E0771
<italic>shRenilla</italic>
(
<italic>n</italic>
 = 6) or
<italic>shApln</italic>
(
<italic>n</italic>
 = 3) cells orthotopically injected into C57BL/6J
<italic>Apln</italic>
<sup>+/+</sup>
or
<italic>Apln</italic>
<sup>−/−</sup>
mice, respectively. Tumors were harvested day 25 post‐injection.</p>
</list-item>
<list-item>
<p>Representative immunofluorescence images of sprouting embryoid bodies (EBs) derived from CCE mouse embryonic stem cells (mESCs) after 6 days of sprouting initiation. EBs were treated with VEGF (30 ng/ml) only or VEGF (30 ng/ml) followed by AplnPyr13 (1,000 nM) upon sprouting initiation. Scale bars = 200 μm.</p>
</list-item>
<list-item>
<p>Apelin knockout strategy and reversion of knockout by Cre addition in haploid murine embryonic stem cells (mESCs). If in sense, integration of the splice acceptor into an intron results in gene disruption due to splicing (STOP); after reverting the cassette into antisense by Cre addition, the cassette is spliced out and gene transcription occurs from the “repaired” locus (GO). SA: splicing acceptor; pA: polyA.</p>
</list-item>
<list-item>
<p>RT‐qPCR for Apelin in mESCs with
<italic>Apln</italic>
STOP and
<italic>Apln</italic>
GO integrations of the splice acceptor as shown in
<xref rid="emmm201809266-sup-0001" ref-type="supplementary-material">Appendix Fig S3C</xref>
.</p>
</list-item>
<list-item>
<p>Growth curve of
<italic>Apln</italic>
GO mESCs and their genetically repaired sister mESCs (
<italic>Apln</italic>
STOP). A representative experiment is shown.</p>
</list-item>
<list-item>
<p>Percentages (mean ± SEM) of CD31
<sup>+</sup>
ECs evaluated by FACS from mosaic EBs formed from mESCs of 1:1 mixed Apelin GO (mCherry
<sup>+</sup>
Cre
<sup>+</sup>
): Apelin STOP (GFP
<sup>+</sup>
). ***
<italic>P</italic>
 < 0.001, Mann–Whitney test;
<italic>n</italic>
 = 4 per cohort. Representative FACS analysis dot plot is shown.</p>
</list-item>
<list-item>
<p>Ingenuity pathway analysis (IPA) predicting inhibited upstream regulators based on differentially expressed genes in RNA‐Seq analysis from CD31
<sup>+</sup>
endothelial cells (ECs) isolated from sprouting EBs from either repaired
<italic>Apln</italic>
GO cells stimulated with VEGF (30 ng/ml) and Apelin (1,000 nM; full presence of Apelin) or
<italic>Apln</italic>
STOP sister cells stimulated with VEGF and control DMSO (total absence of Apelin).</p>
</list-item>
<list-item>
<p>Heatmap of the genes downstream of VEGF (
<xref rid="emmm201809266-sup-0001" ref-type="supplementary-material">Appendix Fig S3F</xref>
) comparing differentially expressed genes in RNA‐Seq analysis from CD31
<sup>+</sup>
endothelial cells isolated from sprouting EBs from either repaired
<italic>Apln</italic>
GO mESCs stimulated with VEGF (30 ng/ml) and Apelin (1,000 nM; +
<italic>Apln</italic>
) or
<italic>Apln</italic>
STOP sister cells stimulated with VEGF and control DMSO (
<italic>−Apln</italic>
).</p>
</list-item>
</list>
</p>
</caption>
<graphic id="nlm-graphic-13" xlink:href="EMMM-11-e9266-g007"></graphic>
</fig>
<p>To further investigate the role of Apelin in angiogenesis, we used an
<italic>in vitro</italic>
system of 3D vessel sprouting from embryoid bodies (EBs) that allowed us to study active angiogenesis in a controlled environment, mimicking
<italic>in vivo</italic>
vessel growth (Jakobsson
<italic>et al</italic>
,
<xref rid="emmm201809266-bib-0031" ref-type="ref">2010</xref>
). Although Apelin stimulation alone was not sufficient to initiate vessel sprouting, we found that it strongly increased VEGF‐dependent vessel growth (Fig 
<xref rid="emmm201809266-fig-0003ev" ref-type="fig">EV3</xref>
B). We next generated Apelin mutant mouse embryonic stem cells (mESCs) using a gene‐trap strategy in haploid stem cells (Elling
<italic>et al</italic>
,
<xref rid="emmm201809266-bib-0017" ref-type="ref">2011</xref>
,
<xref rid="emmm201809266-bib-0018" ref-type="ref">2017</xref>
). A sense splice acceptor disrupted Apelin mRNA expression (
<italic>Apln</italic>
STOP mESCs), whereas Cre expression “genetically repaired” Apelin expression in sister cells (
<italic>Apln</italic>
GO mESCs; Fig 
<xref rid="emmm201809266-fig-0003ev" ref-type="fig">EV3</xref>
C and D). Although
<italic>Apln</italic>
STOP mESCs displayed comparable growth kinetics (Fig 
<xref rid="emmm201809266-fig-0003ev" ref-type="fig">EV3</xref>
E),
<italic>Apln</italic>
STOP EBs exhibited markedly delayed sprouting upon VEGF treatment compared with their
<italic>Apln</italic>
GO controls (Fig 
<xref rid="emmm201809266-fig-0002" ref-type="fig">2</xref>
B). Of note, Cre expression
<italic>per se</italic>
did not affect vessel sprouting compared to a non‐Cre control. Thus, Apelin enhances VEGF‐induced vessel sprouting
<italic>in vitro</italic>
.</p>
<p>To characterize the functional behavior of endothelial cells with or without Apelin, we performed competition assays in which chimeric EBs were established by mixing
<italic>Apln</italic>
GO:
<italic>Apln</italic>
STOP sister mESCs 1:1 followed by stimulation with VEGF. To track
<italic>Apln</italic>
GO and
<italic>Apln</italic>
STOP cells, we incorporated a GFP signal in our gene‐trap strategy and a mCherry signal in our retroviral Cre vector;
<italic>Apln</italic>
STOP targeted cells are GFP
<sup>+</sup>
and
<italic>Apln</italic>
GO cells are mCherry
<sup>+</sup>
(Fig 
<xref rid="emmm201809266-fig-0003ev" ref-type="fig">EV3</xref>
C). Chimeric EBs treated with VEGF showed a significant decrease in the ratio of
<italic>Apln</italic>
STOP (GFP
<sup>+</sup>
):
<italic>Apln</italic>
GO (mCherry
<sup>+</sup>
Cre
<sup>+</sup>
) endothelial cells by FACS analysis (Fig 
<xref rid="emmm201809266-fig-0003ev" ref-type="fig">EV3</xref>
F), confirming the functional disadvantage of Apelin STOP cells in vessel sprouting.</p>
<p>In line with
<italic>in vivo</italic>
EC RNA sequencing (RNA‐Seq) and delayed vessel sprouting, downregulated genes of purified CD31
<sup>+</sup>
ECs isolated from sprouting
<italic>Apln</italic>
STOP EBs treated with VEGF showed angiogenesis as the top affected gene ontology category compared with
<italic>Apln</italic>
GO control cells (Fig 
<xref rid="emmm201809266-fig-0002" ref-type="fig">2</xref>
C). In addition, loss of Apelin modulated pathways in endothelial cells related to vasculogenesis, cell adhesion, and response to hypoxia (Fig 
<xref rid="emmm201809266-fig-0002" ref-type="fig">2</xref>
C). IPA identified VEGF as the main upstream regulator predicted to be inhibited in Apelin‐depleted endothelial cells, closely followed by TGFβ1 and TNF, all reduced in the absence of Apelin (Fig 
<xref rid="emmm201809266-fig-0003ev" ref-type="fig">EV3</xref>
G). Indeed, genes that IPA predicted to be downstream of VEGF showed strong downregulation in Apelin‐depleted ECs and were enriched for angiogenesis‐related genes (Fig 
<xref rid="emmm201809266-fig-0003ev" ref-type="fig">EV3</xref>
H). Thus, in a controlled model of VEGF‐induced angiogenesis, Apelin and VEGF induce similar downstream pathways and genes relevant for endothelial cell proliferation and blood vessel sprouting, suggesting that Apelin inhibition could complement and potentiate current anti‐angiogenic cancer treatment.</p>
</sec>
<sec id="emmm201809266-sec-0006">
<title>Apelin ablation enhances effectiveness of anti‐angiogenic treatment</title>
<p>Since we observed that Apelin depletion decreased VEGF‐dependent vessel sprouting (Figs 
<xref rid="emmm201809266-fig-0003ev" ref-type="fig">EV3</xref>
C–H, and
<xref rid="emmm201809266-fig-0002" ref-type="fig">2</xref>
B and C), we aimed to study the effects of targeting Apelin in tumors in combination with clinically used anti‐angiogenic treatments using inhibitors targeting receptor tyrosine kinases (RTKIs). We selected sunitinib, an inhibitor of multiple receptor tyrosine kinases implicated in angiogenesis, including VEGFR1, VEGFR2, and VEGFR3, PDGFRα, PDGFRβ, Kit, and others (Kim
<italic>et al</italic>
,
<xref rid="emmm201809266-bib-0039" ref-type="ref">2014</xref>
). Further, sunitinib is approved for clinical use in renal cell carcinoma, gastrointestinal stromal tumor and pancreatic neuroendocrine tumors (Rock
<italic>et al</italic>
,
<xref rid="emmm201809266-bib-0064" ref-type="ref">2007</xref>
; de Wilde
<italic>et al</italic>
,
<xref rid="emmm201809266-bib-0077" ref-type="ref">2012</xref>
).</p>
<p>To determine if blocking the Apelin pathway could complement current anti‐angiogenic therapies, we administered sunitinib to
<italic>NeuT;Apln</italic>
<sup>−/−</sup>
and
<italic>NeuT;Apln</italic>
<sup>+/+</sup>
mice at the time of mammary tumor onset. In
<italic>NeuT</italic>
<sup>+</sup>
mice, Apelin ablation combined with sunitinib treatment significantly increased survival and reduced the tumor burden compared with either intervention alone (Fig 
<xref rid="emmm201809266-fig-0003" ref-type="fig">3</xref>
A and B); blocking Apelin almost doubled the survival of sunitinib‐treated mice and tripled the survival compared to control untreated mice (Fig 
<xref rid="emmm201809266-fig-0003" ref-type="fig">3</xref>
A). It should be noted that mice had to be sacrificed when reaching a particular tumor size following ethical guidelines. Similar results were observed with E0771 mammary cancer cells (Fig 
<xref rid="emmm201809266-fig-0004ev" ref-type="fig">EV4</xref>
A) and with axitinib, a second clinically used anti‐angiogenic treatment (Fig 
<xref rid="emmm201809266-fig-0004ev" ref-type="fig">EV4</xref>
B), extending our findings to several cancer models and drugs. To further test whether Apelin cooperates with VEGFR signaling and whether the combinational blockage of both could be exploited in anti‐cancer treatment, we treated
<italic>shRenilla</italic>
and
<italic>shApln</italic>
E0771 cell‐bearing C57BL/6J mice with a specific anti‐VEGFR2 antibody (DC101 clone) and obtained similar results as with sunitinib and axitinib treatments (Fig 
<xref rid="emmm201809266-fig-0004ev" ref-type="fig">EV4</xref>
C). These data show that combining Apelin inhibition with other inhibitors of angiogenesis markedly delays mammary cancer growth.</p>
<fig fig-type="Figure" xml:lang="en" id="emmm201809266-fig-0003" orientation="portrait" position="float">
<label>Figure 3</label>
<caption>
<title>Combining Apelin blockage and anti‐angiogenic treatment improves survival and reduces mammary tumor growth</title>
<p>
<list list-type="alpha-upper" id="emmm201809266-list-0008">
<list-item>
<p>Experimental setup and (right) Kaplan–Meier survival plot of
<italic>NeuT;Apln</italic>
<sup>+/+</sup>
and
<italic>NeuT;Apln</italic>
<sup>−/−</sup>
mice with mammary cancer, left untreated (control) or treated with the indicate dose of the broad VEGFR blocker sunitinib.
<italic>NeuT;Apln</italic>
<sup>+/+</sup>
control (
<italic>n</italic>
 = 8),
<italic>NeuT;Apln</italic>
<sup>−/−</sup>
control (
<italic>n</italic>
 = 11),
<italic>NeuT;Apln</italic>
<sup>+/+</sup>
sunitinib (
<italic>n</italic>
 = 11),
<italic>NeuT;Apln</italic>
<sup>−/−</sup>
sunitinib (
<italic>n</italic>
 = 12); *
<italic>P</italic>
 < 0.05; ***
<italic>P</italic>
 < 0.001; log‐rank test. Mice were sacrificed when the tumor size reached 1 cm
<sup>3</sup>
, following ethical guidelines. The dotted line indicates 50% of survival.</p>
</list-item>
<list-item>
<p>Percentages (mean ± SEM) of tumor burden in mammary glands of untreated (control) and sunitinib‐treated
<italic>NeuT;Apln</italic>
<sup>+/+</sup>
and
<italic>NeuT;Apln</italic>
<sup>−/−</sup>
mice, assessed 4 weeks after tumor onset.
<italic>NeuT;Apln</italic>
<sup>+/+</sup>
control (
<italic>n</italic>
 = 6),
<italic>NeuT;Apln</italic>
<sup>−/−</sup>
control (
<italic>n</italic>
 = 8),
<italic>NeuT;Apln</italic>
<sup>+/+</sup>
sunitinib (
<italic>n</italic>
 = 5),
<italic>NeuT;Apln</italic>
<sup>−/−</sup>
sunitinib (
<italic>n</italic>
 = 5); *
<italic>P</italic>
 < 0.05; ***
<italic>P</italic>
 < 0.001; one‐way ANOVA. Representative H&E images are shown for each genotype in the right panels. Scale bars = 1,000 μm (large panels) and 50 μm (insets).</p>
</list-item>
<list-item>
<p>Tumor volumes of untreated (control) and sunitinib‐treated
<italic>NeuT;Apln</italic>
<sup>+/+</sup>
and
<italic>NeuT;Apln</italic>
<sup>−/−</sup>
mammary tumors, size‐matched at 20–70 mm
<sup>3</sup>
and followed over time by MRI analysis;
<italic>NeuT;Apln</italic>
<sup>+/+</sup>
control (
<italic>n</italic>
 = 7),
<italic>NeuT;Apln</italic>
<sup>−/−</sup>
control (
<italic>n</italic>
 = 5),
<italic>NeuT;Apln</italic>
<sup>+/+</sup>
sunitinib (
<italic>n</italic>
 = 5),
<italic>NeuT;Apln</italic>
<sup>−/−</sup>
sunitinib (
<italic>n</italic>
 = 6) mice per group; lines represent nonlinear fit of tumor growth. Box and arrow indicate the time point used for analysis in panel (D).</p>
</list-item>
<list-item>
<p>Mitotic counts (mean ± SEM) and representative H&E images of mammary tumors in untreated (control) and sunitinib‐treated
<italic>NeuT;Apln</italic>
<sup>+/+</sup>
and
<italic>NeuT;Apln</italic>
<sup>−/−</sup>
mice, assessed 6 weeks after tumor onset.;
<italic>NeuT;Apln</italic>
<sup>+/+</sup>
control (
<italic>n</italic>
 = 7),
<italic>NeuT;Apln</italic>
<sup>−/−</sup>
control (
<italic>n</italic>
 = 6),
<italic>NeuT;Apln</italic>
<sup>+/+</sup>
sunitinib (
<italic>n</italic>
 = 9),
<italic>NeuT;Apln</italic>
<sup>−/−</sup>
sunitinib (
<italic>n</italic>
 = 4) tumors per group; *
<italic>P</italic>
 < 0.05; one‐way ANOVA to sunitinib‐treated
<italic>NeuT;Apln</italic>
<sup>−/−</sup>
. White arrows indicate mitotic figures. Scale bars = 50 μm.</p>
</list-item>
<list-item>
<p>Tumor volumes, followed over the indicated time, of orthotopically injected E0771
<italic>shRenilla</italic>
cells left untreated (control) or treated three times a week from day 8 after tumor injection with an Apelin antagonist alone (MM54, 0.4 μg/g), sunitinib alone (60 mg/kg) or a combination of both. Tumor volumes were measured using calipers and are shown as mean tumor volumes ± SEM. E0771
<italic>shRenilla</italic>
control (
<italic>n</italic>
 = 6), MM54 (
<italic>n</italic>
 = 5), sunitinib (
<italic>n</italic>
 = 5), sunitinib + MM54 (
<italic>n</italic>
 = 5); *
<italic>P</italic>
 < 0.05, **
<italic>P</italic>
 < 0.01, ***
<italic>P</italic>
 < 0.001, two‐way ANOVA.</p>
</list-item>
</list>
</p>
<p>
<named-content content-type="attribution">Source data are available online for this figure.</named-content>
</p>
</caption>
<graphic id="nlm-graphic-15" xlink:href="EMMM-11-e9266-g006"></graphic>
</fig>
<fig fig-type="Figure" xml:lang="en" specific-use="collapsible" id="emmm201809266-fig-0004ev" orientation="portrait" position="float">
<label>Figure EV4</label>
<caption>
<title>Combining Apelin depletion and current anti‐angiogenic treatment reduces mammary tumor growth
<italic>in vivo</italic>
</title>
<p>
<list list-type="alpha-upper" id="emmm201809266-list-0015">
<list-item>
<p>Volume of mammary tumors from control (
<italic>shRenilla</italic>
) and Apelin‐depleted (
<italic>shApln</italic>
) E0771 cells orthotopically injected in C57BL/6J
<italic>Apln</italic>
<sup>+/+</sup>
or
<italic>Apln</italic>
<sup>−/−</sup>
mice, respectively, as indicated. E0771‐injected mice were left untreated (control) or
<italic>in vivo</italic>
treated with sunitinib (60 mg/ml, five times a week) starting on day 5 after cell injection. Tumor volumes were determined on the indicated time points using calipers and are shown as mean tumor volumes ± SEM.
<italic>Apln</italic>
<sup>+/+</sup>
<italic>;shRenilla</italic>
control (
<italic>n</italic>
 = 3),
<italic>Apln</italic>
<sup>−/−</sup>
<italic>;shApln</italic>
control (
<italic>n</italic>
 = 3),
<italic>Apln</italic>
<sup>+/+</sup>
<italic>;shRenilla</italic>
sunitinib (
<italic>n</italic>
 = 3),
<italic>Apln</italic>
<sup>−/−</sup>
<italic>;shApln</italic>
sunitinib (
<italic>n</italic>
 = 5); *
<italic>P</italic>
 < 0.05, **
<italic>P</italic>
 < 0.01, ***
<italic>P</italic>
 < 0.001, two‐way ANOVA.</p>
</list-item>
<list-item>
<p>Tumor volumes, followed over the indicated time, of orthotopically injected E0771
<italic>shRenilla</italic>
or
<italic>shApln</italic>
cells in C57BL/6J mice left untreated (control) or treated daily from day 10 after tumor injection with axitinib (30 mg/kg). Tumor volumes were measured using calipers and are shown as mean tumor volumes ± SEM. The mice that rejected the tumor were excluded from the analysis.
<italic>Apln</italic>
<sup>+/+</sup>
<italic>;shRenilla</italic>
control (
<italic>n</italic>
 = 5),
<italic>Apln</italic>
<sup>−/−</sup>
<italic>;shApln</italic>
control (
<italic>n</italic>
 = 3),
<italic>Apln</italic>
<sup>+/+</sup>
<italic>;shRenilla</italic>
Axitinib (
<italic>n</italic>
 = 3),
<italic>Apln</italic>
<sup>−/−</sup>
<italic>;shApln</italic>
Axitinib (
<italic>n</italic>
 = 3); *
<italic>P</italic>
 < 0.05, **
<italic>P</italic>
 < 0.01, ***
<italic>P</italic>
 < 0.001, two‐way ANOVA.</p>
</list-item>
<list-item>
<p>Tumor volumes, followed over the indicated time, of orthotopically injected E0771
<italic>shRenilla</italic>
or
<italic>shApln</italic>
cells in C57BL/6J mice and treated with an anti‐VEGFR2 antibody or its isotype control (control) from day 10 after tumor injection (1 mg per mouse, twice a week). Tumor volumes were measured using calipers and are shown as mean tumor volumes ± SEM.
<italic>n</italic>
 = 5 mice per cohort; **
<italic>P</italic>
 < 0.01, ***
<italic>P</italic>
 < 0.001, two‐way ANOVA.</p>
</list-item>
<list-item>
<p>Ki67 quantification of large size‐matched mammary tumors from
<italic>NeuT;Apln</italic>
<sup>+/+</sup>
and
<italic>NeuT;Apln</italic>
<sup>−/−</sup>
mice, left untreated (control) or treated with sunitinib (60 mg/kg, starting at tumor onset, three times per week). Data show percentages of Ki67
<sup>+</sup>
cells per breast tumor ± SEM.
<italic>NeuT;Apln</italic>
<sup>+/+</sup>
control (
<italic>n</italic>
 = 5),
<italic>NeuT;Apln</italic>
<sup>−/−</sup>
control (
<italic>n</italic>
 = 7),
<italic>NeuT;Apln</italic>
<sup>+/+</sup>
sunitinib (
<italic>n</italic>
 = 5),
<italic>NeuT;Apln</italic>
<sup>−/−</sup>
sunitinib (
<italic>n</italic>
 = 4); **
<italic>P</italic>
 < 0.01;
<italic>t</italic>
‐test. Right panels show representative Ki67 intra‐tumoral stainings. Scale bars = 200 μm (large panels) and 50 μm (insets).</p>
</list-item>
</list>
</p>
</caption>
<graphic id="nlm-graphic-17" xlink:href="EMMM-11-e9266-g009"></graphic>
</fig>
<p>We next followed individual tumors
<italic>in vivo</italic>
using non‐invasive magnetic resonance imaging (MRI). MRI analysis of tumor volume confirmed that inactivation of Apelin decreased the growth rate of NeuT
<sup>+</sup>
mammary tumors to levels comparable to sunitinib treatment (Fig 
<xref rid="emmm201809266-fig-0003" ref-type="fig">3</xref>
C and
<xref rid="emmm201809266-sup-0003" ref-type="supplementary-material">Movie EV1</xref>
). Importantly, sunitinib‐treated
<italic>NeuT;Apln</italic>
<sup>−/−</sup>
tumors showed a significant decrease in tumor growth (Fig 
<xref rid="emmm201809266-fig-0003" ref-type="fig">3</xref>
C and
<xref rid="emmm201809266-sup-0003" ref-type="supplementary-material">Movie EV1</xref>
), as well as reduced mitotic counts and Ki67 staining (Figs 
<xref rid="emmm201809266-fig-0003" ref-type="fig">3</xref>
D and
<xref rid="emmm201809266-fig-0004ev" ref-type="fig">EV4</xref>
D). Decreased mitotic counts and Ki67 levels are established markers of better prognosis in breast cancer (van Diest
<italic>et al</italic>
,
<xref rid="emmm201809266-bib-0014" ref-type="ref">2004</xref>
). Finally, we used MM54, an Apelin antagonist with a K
<sub>D</sub>
of 3.4 μM and no reported agonistic activity, to block Apelin signaling (Macaluso
<italic>et al</italic>
,
<xref rid="emmm201809266-bib-0047" ref-type="ref">2011</xref>
; Harford‐Wright
<italic>et al</italic>
,
<xref rid="emmm201809266-bib-0024" ref-type="ref">2017</xref>
). Pharmacologic inhibition of Apelin signaling by MM54 had the same effect as genetically ablating Apelin expression, synergizing with sunitinib to reduce tumor progression (Fig 
<xref rid="emmm201809266-fig-0003" ref-type="fig">3</xref>
E). We obtained similar results on overall survival, tumor growth, and tumor cell proliferation in the
<italic>p53</italic>
<sup>
<italic>f</italic>
/
<italic>f</italic>
</sup>
<italic>;KRas</italic>
lung cancer model (
<xref rid="emmm201809266-sup-0001" ref-type="supplementary-material">Appendix Fig S2A–C</xref>
). These data in mammary cancer and KRas‐driven lung cancer models indicate that inhibition of Apelin signaling improves the efficacy of anti‐angiogenic therapy to impair primary tumor growth and promote survival.</p>
</sec>
<sec id="emmm201809266-sec-0007">
<title>Combined Apelin and VEGFR inhibition normalizes blood vessels and prevents hypoxia in tumors</title>
<p>Previous findings have shown that RTKIs, despite reducing tumor vasculature and growth, have no or limited beneficial effects in cancer treatment. As one explanation, it has been reported that anti‐VEGFR treatment results in local hypoxia and consequently more metastases (Bergers & Hanahan,
<xref rid="emmm201809266-bib-0002" ref-type="ref">2008</xref>
). Therefore, we examined the tumor microenvironment and tumor cell dissemination. Having shown that inhibition of Apelin and administration of sunitinib markedly improves the outcome in different cancer models, we first assessed the impact of this combination therapy on the tumor vasculature. Size‐matched early stage tumors were imaged by 15.2 Tesla MRI at 2, 4, and 6 weeks, and the relative tumor blood volume (rTBV) was assessed (Fig 
<xref rid="emmm201809266-fig-0004" ref-type="fig">4</xref>
A). Whereas control
<italic>NeuT</italic>
;
<italic>Apln</italic>
<sup>+/+</sup>
tumors showed an increase in rTBV over time, sunitinib treatment reduced the rTBV in the tumors (Fig 
<xref rid="emmm201809266-fig-0004" ref-type="fig">4</xref>
B and C), confirming previous data (Pàez‐Ribes
<italic>et al</italic>
,
<xref rid="emmm201809266-bib-0057" ref-type="ref">2009</xref>
).
<italic>NeuT;Apln</italic>
<sup>−/−</sup>
tumors also displayed reduced rTBV, though to a lesser extent. Notably, sunitinib treatment of
<italic>NeuT;Apln</italic>
<sup>−/−</sup>
tumors enhanced the decrease in rTBV compared to either condition alone, and this was maintained over the entire observation period (Fig 
<xref rid="emmm201809266-fig-0004" ref-type="fig">4</xref>
B and C). We corroborated the rTBV MRI analysis with anti‐CD31 immunostaining to determine blood vessel density within tumors (Fig 
<xref rid="emmm201809266-fig-0004" ref-type="fig">4</xref>
D and E). In contrast to sunitinib‐treated
<italic>NeuT;Apln</italic>
<sup>+/+</sup>
tumors that displayed low vessel density and poor vessel structure, characterized by dilated blood vessels and reduced mural cell coverage, as determined by the ratio of αSMA
<sup>+</sup>
‐positive vascular smooth muscle cells to CD31
<sup>+</sup>
endothelial cells, sunitinib‐treated
<italic>NeuT;Apln</italic>
<sup>−/−</sup>
tumors exhibited markedly lower vessel densities and, importantly, normalized blood vessel structures (Fig 
<xref rid="emmm201809266-fig-0004" ref-type="fig">4</xref>
D and E).</p>
<fig fig-type="Figure" xml:lang="en" id="emmm201809266-fig-0004" orientation="portrait" position="float">
<label>Figure 4</label>
<caption>
<title>Combining Apelin blockage and sunitinib treatment reduces tumor angiogenesis and normalizes tumor blood vessels</title>
<p>
<list list-type="simple" id="emmm201809266-list-0009">
<list-item>
<label>A</label>
<p>Experimental setup for the MRI (non‐invasive magnetic resonance imaging) experiments.</p>
</list-item>
<list-item>
<label>B, C</label>
<p>(B) Representative MRI images; scale bar = 5 mm and (C) quantification (mean ± SEM) of relative tumor blood volume (rTBV) over time after NeuT
<sup>+</sup>
mammary tumors were size‐matched at 20–70 mm
<sup>3</sup>
(0 weeks). Treatments and genotypes are indicated.
<italic>NeuT;Apln</italic>
<sup>+/+</sup>
control (
<italic>n</italic>
 = 4),
<italic>NeuT;Apln</italic>
<sup>−/−</sup>
control (
<italic>n</italic>
 = 4),
<italic>NeuT;Apln</italic>
<sup>+/+</sup>
sunitinib (
<italic>n</italic>
 = 5),
<italic>NeuT;Apln</italic>
<sup>−/−</sup>
sunitinib (
<italic>n</italic>
 = 5); **
<italic>P</italic>
 < 0.01, and ***
<italic>P</italic>
 < 0.001 compared to untreated
<italic>NeuT;Apln</italic>
<sup>+/+</sup>
mice and
<sup>#</sup>
<italic>P</italic>
 < 0.05 compared to untreated control
<italic>NeuT;Apln</italic>
<sup>−/−</sup>
mice; two‐way ANOVA. Of note, in
<italic>NeuT;Apln</italic>
<sup>+/+</sup>
mice, only two tumors could be analyzed after 6 weeks as some mice had to be sacrificed due to the large tumor sizes following ethical guidelines. Thus, we did not perform any statistical analysis on the 6 weeks time points.</p>
</list-item>
<list-item>
<label>D</label>
<p>Analysis (mean values ± SEM) of CD31
<sup>+</sup>
area (×10
<sup>4</sup>
 μm
<sup>2</sup>
)/field, number of dilated tumor vessels, and percentage of alphaSMA
<sup>+</sup>
area per CD31
<sup>+</sup>
blood vessels in mammary tumors of untreated (control) and sunitinib‐treated
<italic>NeuT;Apln</italic>
<sup>+/+</sup>
and
<italic>NeuT;Apln</italic>
<sup>−/−</sup>
mice, assessed 6 weeks after mammary tumors were size‐matched.
<italic>NeuT;Apln</italic>
<sup>+/+</sup>
control (
<italic>n</italic>
 = 4),
<italic>NeuT;Apln</italic>
<sup>−/−</sup>
control (
<italic>n</italic>
 = 4),
<italic>NeuT;Apln</italic>
<sup>+/+</sup>
sunitinib (
<italic>n</italic>
 = 5),
<italic>NeuT;Apln</italic>
<sup>−/−</sup>
sunitinib (
<italic>n</italic>
 = 4); *
<italic>P</italic>
 < 0.05; **
<italic>P</italic>
 < 0.01; ***
<italic>P</italic>
 < 0.001; one‐way ANOVA and Kruskal–Wallis test.</p>
</list-item>
<list-item>
<label>E</label>
<p>Representative immunofluorescence and immunohistochemistry images from Fig 
<xref rid="emmm201809266-fig-0005" ref-type="fig">5</xref>
D quantification. Dilated blood vessels are marked by a red asterisk. DAPI (blue) is shown as a counterstain to visualize nuclei. Scale bars = 100 μm (upper panels), 50 μm (middle panels), and 20 μm (lower panels).</p>
</list-item>
</list>
</p>
</caption>
<graphic id="nlm-graphic-19" xlink:href="EMMM-11-e9266-g008"></graphic>
</fig>
<p>Next, we examined the functional consequences of combined Apelin inactivation and anti‐angiogenic therapy on local hypoxia and leakage of the tumor vasculature. Sunitinib treatment of
<italic>NeuT;Apln</italic>
<sup>+/+</sup>
tumors increased the percentage of hypoxic cells adjacent to tumor blood vessels compared to untreated
<italic>NeuT;Apln</italic>
<sup>+/+</sup>
tumors, evaluated by prototypic carbonic anhydrase 9 (CA9) immunostaining (Fig 
<xref rid="emmm201809266-fig-0005" ref-type="fig">5</xref>
A; Olive
<italic>et al</italic>
,
<xref rid="emmm201809266-bib-0056" ref-type="ref">2001</xref>
). In contrast, loss of Apelin reduced the percentage of hypoxic cells adjacent to tumor blood vessels in untreated and, most substantially, in sunitinib‐treated
<italic>NeuT;Apln</italic>
<sup>−/−</sup>
tumors (Fig 
<xref rid="emmm201809266-fig-0005" ref-type="fig">5</xref>
A). To complement these studies, we used MRI to visualize the dynamics of vessel permeability over time upon sunitinib therapy and Apelin targeting, following the same scheme used for rTBV assessment (see Fig 
<xref rid="emmm201809266-fig-0004" ref-type="fig">4</xref>
A). Systematic dynamic susceptibility contrast (DSC) perfusion analysis in tumor tissue by MRI confirmed that sunitinib‐treated
<italic>NeuT;Apln</italic>
<sup>−/−</sup>
tumors have the lowest vessel permeability (Fig 
<xref rid="emmm201809266-fig-0005" ref-type="fig">5</xref>
B and C). Together, our data reveal that combined inhibition of angiogenic pathways not only reduces tumor growth and angiogenesis but also improves blood vessel structure relative to either condition alone. Importantly, loss of Apelin prevents the detrimental effects of sunitinib treatment on blood vessel structure, leakage, and local hypoxia.</p>
<fig fig-type="Figure" xml:lang="en" id="emmm201809266-fig-0005" orientation="portrait" position="float">
<label>Figure 5</label>
<caption>
<title>Apelin inactivation reduces sunitinib therapy‐induced hypoxia and vessel permeability</title>
<p>
<list list-type="simple" id="emmm201809266-list-0010">
<list-item>
<label>A</label>
<p>Percentages of CA9
<sup>+</sup>
cells adjacent to CD31
<sup>+</sup>
tumor blood vessels (mean ± SEM) in untreated (control) and sunitinib‐treated
<italic>NeuT;Apln</italic>
<sup>+/+</sup>
and
<italic>NeuT;Apln</italic>
<sup>−/−</sup>
mice, 6 weeks after mammary tumors were size‐matched.
<italic>NeuT;Apln</italic>
<sup>+/+</sup>
control (
<italic>n</italic>
 = 4),
<italic>NeuT;Apln</italic>
<sup>−/−</sup>
control (
<italic>n</italic>
 = 4),
<italic>NeuT;Apln</italic>
<sup>+/+</sup>
sunitinib (
<italic>n</italic>
 = 4),
<italic>NeuT;Apln</italic>
<sup>−/−</sup>
sunitinib (
<italic>n</italic>
 = 4); 100–200 peri‐vascular intra‐tumoral regions per group were counted. ***
<italic>P</italic>
 < 0.001; one‐way ANOVA. Right panels show representative immunofluorescent images. Areas limited by dotted white lines indicate CA9
<sup>+</sup>
areas. Scale bars = 50 μm.</p>
</list-item>
<list-item>
<label>B, C</label>
<p>(B) Representative MRI images; scale bar = 5 mm and (C) quantification (mean ± SEM) of vessel permeability (
<italic>K</italic>
<sub>2</sub>
) in NeuT
<sup>+</sup>
mammary tumors followed over time. Treatments and genotypes are indicated.
<italic>NeuT;Apln</italic>
<sup>+/+</sup>
control (
<italic>n</italic>
 = 4),
<italic>NeuT;Apln</italic>
<sup>−/−</sup>
control (
<italic>n</italic>
 = 5),
<italic>NeuT;Apln</italic>
<sup>+/+</sup>
sunitinib (
<italic>n</italic>
 = 4),
<italic>NeuT;Apln</italic>
<sup>−/−</sup>
sunitinib (
<italic>n</italic>
 = 5); ***
<italic>P</italic>
 < 0.001, compared to untreated control
<italic>NeuT;Apln</italic>
<sup>+/+</sup>
mice and
<sup>§</sup>
<italic>P</italic>
 < 0.05 compared to sunitinib‐treated
<italic>NeuT;Apln</italic>
<sup>+/+</sup>
mice; two‐way ANOVA. Of note, in
<italic>NeuT;Apln</italic>
<sup>+/+</sup>
mice, only two tumors could be analyzed after 6 weeks as some mice had to be sacrificed due to the large tumor sizes following ethical guidelines. Thus, we did not perform any statistical analysis on the 6 weeks time points.</p>
</list-item>
</list>
</p>
</caption>
<graphic id="nlm-graphic-21" xlink:href="EMMM-11-e9266-g010"></graphic>
</fig>
</sec>
<sec id="emmm201809266-sec-0008">
<title>Apelin loss prevents sunitinib‐induced metastases</title>
<p>Tumors treated with sunitinib display increased hypoxia and invasiveness upon therapy‐induced resistance, resulting in more metastasis, which cannot be reverted by stopping the treatment (Ebos
<italic>et al</italic>
,
<xref rid="emmm201809266-bib-0016" ref-type="ref">2009</xref>
; Pàez‐Ribes
<italic>et al</italic>
,
<xref rid="emmm201809266-bib-0057" ref-type="ref">2009</xref>
). Therefore, we next evaluated how sunitinib treatment and loss of Apelin signaling affect the metastatic status of
<italic>NeuT;Apln</italic>
<sup>+/+</sup>
and
<italic>NeuT;Apln</italic>
<sup>−/−</sup>
mice. We analyzed lungs of tumor‐bearing mice 6 weeks after the primary mammary tumors were size‐matched at 20–70 mm
<sup>3</sup>
(see Fig 
<xref rid="emmm201809266-fig-0006" ref-type="fig">6</xref>
A). Although untreated
<italic>NeuT;Apln</italic>
<sup>+/+</sup>
mammary tumors are not highly metastatic, sunitinib treatment significantly increased the number of lung metastases (Fig 
<xref rid="emmm201809266-fig-0006" ref-type="fig">6</xref>
A), as previously observed (Ebos
<italic>et al</italic>
,
<xref rid="emmm201809266-bib-0016" ref-type="ref">2009</xref>
; Pàez‐Ribes
<italic>et al</italic>
,
<xref rid="emmm201809266-bib-0057" ref-type="ref">2009</xref>
). Apelin inactivation alone did not significantly alter metastasis of NeuT‐driven tumors. However, deletion of Apelin prevented sunitinib‐induced lung metastases (Fig 
<xref rid="emmm201809266-fig-0006" ref-type="fig">6</xref>
A). We obtained similar results in
<italic>NeuT</italic>
<sup>+</sup>
mice with large size‐matched mammary tumors (Fig 
<xref rid="emmm201809266-fig-0005ev" ref-type="fig">EV5</xref>
A). Further, we found that sunitinib treatment induced metastasis of tumors derived from
<italic>shRenilla</italic>
E0771 cells but not from
<italic>shApln</italic>
E0771 cells, providing additional evidence that Apelin inhibition prevents sunitinib‐induced metastasis (Fig 
<xref rid="emmm201809266-fig-0005ev" ref-type="fig">EV5</xref>
B and C).</p>
<fig fig-type="Figure" xml:lang="en" id="emmm201809266-fig-0006" orientation="portrait" position="float">
<label>Figure 6</label>
<caption>
<title>Apelin inactivation reduces sunitinib therapy‐induced metastasis and stratifies sunitinib therapy responses in patients</title>
<p>
<list list-type="alpha-upper" id="emmm201809266-list-0011">
<list-item>
<p>Number of metastatic lung foci in untreated (control) and sunitinib‐treated (60 mg/kg, three times a week from tumor initiation)
<italic>NeuT;Apln</italic>
<sup>+/+</sup>
or
<italic>NeuT;Apln</italic>
<sup>−/−</sup>
mice, assessed 6 weeks after mammary tumors were size‐matched. Data of individual lung sections and means (black bars) are shown. Right panels show representative H&E images, where black arrows and insets indicate metastatic foci. Scale bars = 1,000 μm (large panels) and 50 μm (insets). *
<italic>P</italic>
 < 0.05, **
<italic>P</italic>
 < 0.01; ***
<italic>P</italic>
 < 0.001; Kruskal–Wallis test;
<italic>n</italic>
 = 3 mice per cohort and three sections per lung were analyzed.</p>
</list-item>
<list-item>
<p>Kaplan–Meier survival plot for distant metastasis‐free survival from the KM‐plotter database (Győrffy
<italic>et al</italic>
,
<xref rid="emmm201809266-bib-0022" ref-type="ref">2013</xref>
) for high and low Apelin (APLN)‐expressing groups in human breast cancer. Patients were split by the median. Affymetrix Apelin ID 222856_at.</p>
</list-item>
<list-item>
<p>Kaplan–Meier plot for progression‐free survival stratifying RCC patients with high and low APELIN serum levels 3–5 months after the start date of sunitinib treatment. *
<italic>P</italic>
 = 0.0367; log‐rank test.</p>
</list-item>
<list-item>
<p>Kaplan–Meier plots for progression‐free survival in RCC patients stratified into groups of high or low levels of APELIN and VEGF. Cutoff levels were set by the median. Serum was analyzed 3–5 months after the start date of sunitinib treatment. *
<italic>P</italic>
 < 0.05, **
<italic>P</italic>
 < 0.01; log‐rank test.</p>
</list-item>
</list>
</p>
<p>
<named-content content-type="attribution">Source data are available online for this figure.</named-content>
</p>
</caption>
<graphic id="nlm-graphic-23" xlink:href="EMMM-11-e9266-g012"></graphic>
</fig>
<fig fig-type="Figure" xml:lang="en" specific-use="collapsible" id="emmm201809266-fig-0005ev" orientation="portrait" position="float">
<label>Figure EV5</label>
<caption>
<title>Apelin inhibition protects from anti‐angiogenic therapy‐induced metastases</title>
<p>
<list list-type="simple" id="emmm201809266-list-0016">
<list-item>
<label>A</label>
<p>Number of metastatic lung foci in untreated (control) and sunitinib‐treated (60 mg/kg, three times a week from tumor initiation)
<italic>NeuT;Apln</italic>
<sup>+/+</sup>
and
<italic>NeuT;Apln</italic>
<sup>−/−</sup>
mice with large size‐matched tumors. Data of individual lung sections and means (black bars) are shown. Identified outliers by ROUT method (
<italic>Q</italic>
 = 1%) were obviated. Right panels show representative H&E images, where black arrows and insets indicate metastatic foci. Scale bars = 1,000 μm (large panels) and 50 μm (insets). ***
<italic>P</italic>
 < 0.001; one‐way ANOVA;
<italic>NeuT;Apln</italic>
<sup>+/+</sup>
control (
<italic>n</italic>
 = 9),
<italic>NeuT;Apln</italic>
<sup>−/−</sup>
control (
<italic>n</italic>
 = 8),
<italic>NeuT;Apln</italic>
<sup>+/+</sup>
sunitinib (
<italic>n</italic>
 = 6),
<italic>NeuT;Apln</italic>
<sup>−/−</sup>
sunitinib (
<italic>n</italic>
 = 7); and three sections per lung were analyzed.</p>
</list-item>
<list-item>
<label>B, C</label>
<p>Number of metastatic lung foci per lung section from 1 to 1.5 cm
<sup>3</sup>
size‐matched E0771 control (
<italic>shRenilla</italic>
) and Apelin‐depleted (
<italic>shApln</italic>
) E0771 tumors orthotopically injected into C57BL/6J
<italic>Apln</italic>
<sup>+/+</sup>
(B) or orthotopically injected into C57BL/6J
<italic>Apln</italic>
<sup>+/+</sup>
or
<italic>Apln</italic>
<sup>−/−</sup>
mice (C). Mice were either left untreated (control) or treated with sunitinib (60 mg/kg, starting at day 5 after tumor injection, five times a week). Data of individual lung sections and means (black bars) are shown. Right panels show representative H&E images, where black arrows and insets indicate metastatic foci. Scale bars = 1,000 μm (large panels) and 50 μm (insets). E0771
<italic>shRenilla</italic>
control (
<italic>n</italic>
 = 7), E0771
<italic>shApln</italic>
control (
<italic>n</italic>
 = 4), E0771
<italic>shRenilla</italic>
sunitinib (
<italic>n</italic>
 = 5), E0771
<italic>shApln</italic>
sunitinib (
<italic>n</italic>
 = 3) (B) or
<italic>Apln</italic>
<sup>+/+</sup>
<italic>shRenilla</italic>
control (
<italic>n</italic>
 = 3),
<italic>Apln</italic>
<sup>−/−</sup>
<italic>shApln</italic>
control (
<italic>n</italic>
 = 3),
<italic>Apln</italic>
<sup>+/+</sup>
<italic>shRenilla</italic>
sunitinib (
<italic>n</italic>
 = 2),
<italic>Apln</italic>
<sup>−/−</sup>
<italic>shApln</italic>
sunitinib (
<italic>n</italic>
 = 3) (C) and three sections per lung were analyzed. **
<italic>P</italic>
 < 0.01; ***
<italic>P</italic>
 < 0.001; one‐way ANOVA.</p>
</list-item>
</list>
</p>
</caption>
<graphic id="nlm-graphic-25" xlink:href="EMMM-11-e9266-g011"></graphic>
</fig>
<p>To complement our studies in mice, we investigated whether Apelin levels correlate with the metastatic status of women with breast cancer. Unbiased meta‐analysis using the Kmplot database (Győrffy
<italic>et al</italic>
,
<xref rid="emmm201809266-bib-0022" ref-type="ref">2013</xref>
) indeed showed that high levels of intra‐tumoral Apelin expression significantly associated with an accelerated appearance of distant metastases in breast cancer (Fig 
<xref rid="emmm201809266-fig-0006" ref-type="fig">6</xref>
B). These results suggest that Apelin levels are a potential prognostic biomarker for metastasis, with higher levels correlating with a shorter time to metastasis in breast cancer patients. Our experimental mouse results show that, unlike sunitinib treatment, loss of Apelin does not increase metastasis. Rather, Apelin inhibition not only reduces tumor growth in our mammary tumor models, but also reduces the occurrence of anti‐angiogenic therapy‐induced metastases.</p>
</sec>
<sec id="emmm201809266-sec-0009">
<title>High Apelin levels correlate with poor prognosis of patients on sunitinib therapy</title>
<p>Sunitinib is a first‐line therapy for renal cell carcinoma (RCC) as a single agent (Kim
<italic>et al</italic>
,
<xref rid="emmm201809266-bib-0039" ref-type="ref">2014</xref>
). However, even in the treatment of RCC patients, it only temporarily stabilizes the disease (Kim
<italic>et al</italic>
,
<xref rid="emmm201809266-bib-0039" ref-type="ref">2014</xref>
). Based on our results, we hypothesized that low Apelin levels may correlate with a better prognosis in patients treated with anti‐angiogenic therapy. To test this hypothesis, we measured Apelin levels in serum samples from a cohort of 55 RCC patients that were treated for 3–5 months with sunitinib as a single agent (
<xref rid="emmm201809266-sup-0001" ref-type="supplementary-material">Appendix Fig S3A</xref>
) and evaluated their progression‐free survival (PFS). RCC patients with lower Apelin levels indeed had a significantly longer PFS (median survival = 459.5 days) than patients with higher Apelin levels (median survival = 280 days; Fig 
<xref rid="emmm201809266-fig-0006" ref-type="fig">6</xref>
C and
<xref rid="emmm201809266-sup-0001" ref-type="supplementary-material">Appendix Fig S3B</xref>
). We also evaluated the serum levels of both VEGF and Apelin in our cohort of sunitinib‐treated RCC patients and stratified high or low expression groups based on the median (Fig 
<xref rid="emmm201809266-fig-0006" ref-type="fig">6</xref>
D). Patients with both low Apelin and low VEGF serum levels had a significantly higher PFS (median survival = 623 days), whereas patients with high serum levels of both proteins had the lowest median survival (167 days). Low levels of only Apelin or VEGF showed a median survival of 340.5 and 343 days, respectively (Fig 
<xref rid="emmm201809266-fig-0006" ref-type="fig">6</xref>
D). Taken together, these results indicate that high Apelin levels in serum samples correlate with worse prognosis of renal cancer patients treated with approved and clinically utilized anti‐angiogenic therapy.</p>
</sec>
</sec>
<sec id="emmm201809266-sec-0010">
<title>Discussion</title>
<p>Tumor angiogenesis is required to nourish rapidly growing transformed cells. Anti‐angiogenic therapies currently in clinical use are based on the inhibition of VEGF and closely related pathways (Cao
<italic>et al</italic>
,
<xref rid="emmm201809266-bib-0007" ref-type="ref">2011</xref>
; Jayson
<italic>et al</italic>
,
<xref rid="emmm201809266-bib-0032" ref-type="ref">2016</xref>
). However, in many cases, anti‐angiogenic therapies result in abnormal blood vessels and local hypoxia in tumors, leading to even more aggressive growth and consequently metastases, thereby limiting the promise of blood vessel targeted anti‐cancer approaches (Bergers & Hanahan,
<xref rid="emmm201809266-bib-0002" ref-type="ref">2008</xref>
; Carmeliet & Jain,
<xref rid="emmm201809266-bib-0009" ref-type="ref">2011a</xref>
; Potente
<italic>et al</italic>
,
<xref rid="emmm201809266-bib-0061" ref-type="ref">2011</xref>
; Rivera & Bergers,
<xref rid="emmm201809266-bib-0063" ref-type="ref">2015</xref>
). Emerging evidence shows that combinational therapies have usually higher effectiveness than monotherapies for cancer treatment. Based on this concept, we aimed to identify novel druggable pathways that can alleviate the detrimental effects of current anti‐angiogenic therapies while maintaining their efficacy. Here, we show that ablating the small peptide Apelin strikes one Achilles heel of current anti‐angiogenic therapy, reducing tumor angiogenesis and growth of the primary tumor while at the same time maintaining a better structured vasculature with higher pericyte coverage, impairing malignant progression, preventing hypoxia and distant metastasis.</p>
<p>One intriguing aspect of our findings is that inactivation of Apelin not only reduces tumor growth and cancer neo‐angiogenesis in combination with anti‐angiogenic therapy, but results in tumor blood vessel normalization as defined by less capillary leakage, reduced tissue hypoxia, and maintained pericyte coverage. While sunitinib has been tested in many clinical trials for its capability to reduce tumor growth, due to limitations in trial design and patient recruitment, a conclusive analysis whether sunitinib is increasing metastasis in human disease is still outstanding. As reported previously, sunitinib robustly induces metastases in mouse models (Ebos
<italic>et al</italic>
,
<xref rid="emmm201809266-bib-0016" ref-type="ref">2009</xref>
; Pàez‐Ribes
<italic>et al</italic>
,
<xref rid="emmm201809266-bib-0057" ref-type="ref">2009</xref>
; Singh
<italic>et al</italic>
,
<xref rid="emmm201809266-bib-0070" ref-type="ref">2012</xref>
). Intriguingly, we did not observe an increase in metastasis upon Apelin blockage alone in both of our mammary cancer models. Importantly, Apelin blockade not only normalized blood vessels within the tumors but prevented the enhanced hypoxia and consequent metastases in animals treated with sunitinib. Thus, inhibition of distinct inducers of angiogenesis from different receptor families provides an additional benefit in lung and mammary cancer models.</p>
<p>Our experimental models using E0771 mammary tumor cells, NeuT oncogene‐driven spontaneous mammary cancer, as well as clonal induction of oncogenic KRas to trigger lung cancer, clearly demonstrate that loss of Apelin alone markedly reduces tumor angiogenesis, impairs tumor growth, and as a consequence improves survival of these animals. We find that impairing Apelin expression from both, the epithelial tumor cells, as well as from cells in the tumor microenvironment, is key to reduce tumor growth. We further show that Apelin depletion remodels the tumor microenvironment, by improving vessel leakiness, reducing hypoxia, and decreasing infiltration of PMN‐MDSCs, while increasing NK T cells. PMN‐MDSCs are an immune‐suppressive subset of the neutrophil lineage that suppress immune responses in an antigen‐dependent manner (Gabrilovich,
<xref rid="emmm201809266-bib-0021" ref-type="ref">2017</xref>
). MDSCs in general, can be recruited into hypoxic tissues and PMN‐MDSCs in particular have been shown to be capable of promoting angiogenesis (Binsfeld
<italic>et al</italic>
,
<xref rid="emmm201809266-bib-0004" ref-type="ref">2016</xref>
). Importantly, MDSCs are implicated in mediating resistance to anti‐angiogenic therapy by promoting new vessel growth and PMN‐MDSCs numbers have been correlated with responsiveness to sunitinib therapy (Condamine
<italic>et al</italic>
,
<xref rid="emmm201809266-bib-0012" ref-type="ref">2015</xref>
). Our gene expression profiles further indicate that Apelin‐depleted endothelial cells express factors involved in the recruitment of PMN‐MDSCs. Whether the loss of Apelin affects the homing and/or local expansion of PMN‐MDSCs needs to be examined in future experiments.</p>
<p>The effects of Apelin depletion on tumor cells and the cells of the tumor microenvironment might be model and context dependent. A recent publication found that Apelin depletion presents a double‐edged sword in glioblastoma, since it enhanced tumor cell invasion, while at the same time reducing vascular density, without accompanied changes in immune cell infiltration (Mastrella
<italic>et al</italic>
,
<xref rid="emmm201809266-bib-0050" ref-type="ref">2019</xref>
). In contrast to this study in glioblastoma, we find a consistent benefit of depleting Apelin in epithelial breast and lung cancer, associated with normalized vessel function, decreased hypoxia, and consequently reduced metastases. Importantly, in this glioblastoma study, it was also reported that a combination of Apelin‐F13A with anti‐VEGFR2 therapy is superior to either intervention alone. Apelin‐F13A is a poorly understood molecule proposed to be an antagonist of Apelin signaling but was shown to also exert agonistic effects (Fan
<italic>et al</italic>
,
<xref rid="emmm201809266-bib-0020" ref-type="ref">2003</xref>
; Medhurst
<italic>et al</italic>
,
<xref rid="emmm201809266-bib-0053" ref-type="ref">2003</xref>
; Lee
<italic>et al</italic>
,
<xref rid="emmm201809266-bib-0042" ref-type="ref">2005</xref>
). The combination of anti‐angiogenic treatment with Apelin‐F13A seems to be promising in glioblastoma, but due to its unclear mechanism of action its wider applicability as potential therapeutic in other types of cancers remains questionable. Nonetheless, it appears that Apelin is an ubiquitously used angiogenic pathway throughout many different types of cancers, i.e., glioblastoma, lung, and breast cancer. Whether Apelin exerts similar effects in other tumor types requires further studies.</p>
<p>One of the key factors limiting clinical benefits of anti‐angiogenic therapy in cancer patients is to define reliable biomarkers discriminating responsive patients from non‐responders. At the time of writing, to our knowledge such a reliable biomarker does not exist for guiding clinical practice. In multiple cancers, including breast and lung, Apelin expression levels in tumors inversely correlate with overall survival as well as metastasis‐free survival (our data and Berta
<italic>et al</italic>
,
<xref rid="emmm201809266-bib-0003" ref-type="ref">2010</xref>
; Heo
<italic>et al</italic>
,
<xref rid="emmm201809266-bib-0025" ref-type="ref">2012</xref>
). To directly correlate Apelin expression with anti‐angiogenic benefits, we accessed a cohort of renal cell carcinoma patients who received anti‐angiogenic sunitinib monotherapy. High circulating Apelin levels in patients receiving anti‐angiogenic therapy correlated with worse survival. Our data also show that serum Apelin levels in patients treated with sunitinib represent a potential biomarker to predict the efficacy of anti‐vascular drugs and to identify patients responsive to these therapies. This is in line with recent data in 30 patients with colorectal cancer, suggesting that Apelin expression may represent a predictive biomarker for bevacizumab unresponsiveness (Zuurbier
<italic>et al</italic>
,
<xref rid="emmm201809266-bib-0079" ref-type="ref">2017</xref>
), independently confirming our results in human patients.</p>
<p>Normalization of blood vessels has become a critical concept to fully realize the clinical benefits of anti‐angiogenic therapy. Although a combination therapy blocking both VEGF and angiopoietin‐2 is additive to reduce angiogenesis and tumor growth, it may promote even greater hypoxia than monotherapy (Koh
<italic>et al</italic>
,
<xref rid="emmm201809266-bib-0040" ref-type="ref">2010</xref>
; Rigamonti
<italic>et al</italic>
,
<xref rid="emmm201809266-bib-0062" ref-type="ref">2014</xref>
; Scholz
<italic>et al</italic>
,
<xref rid="emmm201809266-bib-0068" ref-type="ref">2016</xref>
). Targeting Apelin not only reduces growth and angiogenesis in our lung and breast cancer models, but also, most importantly, it does not result in increased hypoxia within the tumor microenvironment. Moreover, blocking Apelin nearly entirely prevents sunitinib‐induced metastases. This is of particular importance, because drug‐induced hypoxia is a key factor for drug resistance, metastasis, and metabolic reprogramming of cancer cells (Casanovas
<italic>et al</italic>
,
<xref rid="emmm201809266-bib-0011" ref-type="ref">2005</xref>
; Mazzone
<italic>et al</italic>
,
<xref rid="emmm201809266-bib-0052" ref-type="ref">2009</xref>
; Loo
<italic>et al</italic>
,
<xref rid="emmm201809266-bib-0045" ref-type="ref">2015</xref>
; Park
<italic>et al</italic>
,
<xref rid="emmm201809266-bib-0058" ref-type="ref">2017</xref>
). Preventing cancer hypoxia may therefore provide a mechanistic rationale for combination therapy with chemotherapeutics and radiation therapy, other anti‐angiogenic treatments, perhaps even immune therapy (Mauceri
<italic>et al</italic>
,
<xref rid="emmm201809266-bib-0051" ref-type="ref">1998</xref>
; Jain,
<xref rid="emmm201809266-bib-0029" ref-type="ref">2005</xref>
). In summary, we have identified a druggable pathway that could stratify and protect cancer patients from resistance to current anti‐angiogenic therapies and consequent metastasis, with the important feature of avoiding increased hypoxia and thus opening a new avenue for cancer treatment.</p>
</sec>
<sec id="emmm201809266-sec-0011">
<title>Materials and Methods</title>
<sec id="emmm201809266-sec-0012">
<title>Mice</title>
<p>Apelin knockout mice (
<italic>Apln</italic>
<sup>−/−</sup>
or
<italic>Apln</italic>
<sup>−/
<italic>y</italic>
</sup>
) were generated previously in our laboratories and carry a deletion of the Apelin gene in the germline (Kuba
<italic>et al</italic>
,
<xref rid="emmm201809266-bib-0041" ref-type="ref">2007</xref>
). These mice were backcrossed for at least ten generations onto a C57BL/6 background and then crossed to
<italic>LSL‐KRas</italic>
<sup>
<italic>G12D</italic>
</sup>
mice (Jackson,
<xref rid="emmm201809266-bib-0026" ref-type="ref">2001</xref>
) to generate
<italic>LSL‐KRas</italic>
<sup>
<italic>G12D</italic>
</sup>
<italic>;Apln</italic>
<sup>−/
<italic>y</italic>
</sup>
.
<italic>p53</italic>
<sup>
<italic>fl</italic>
/
<italic>fl</italic>
</sup>
mice have been previously described (Jackson
<italic>et al</italic>
,
<xref rid="emmm201809266-bib-0027" ref-type="ref">2005</xref>
). MMTV‐
<italic>Neu</italic>
T transgenic mice, which carry the activated c‐Neu oncogene driven by a mouse mammary tumor virus (MMTV) promoter (Muller
<italic>et al</italic>
,
<xref rid="emmm201809266-bib-0055" ref-type="ref">1988</xref>
), were crossed to C57BL/6
<italic>Apln</italic>
<sup>−/−</sup>
mice to generate MMTV
<italic>‐NeuT;Apln</italic>
<sup>−/−</sup>
animals. Tumor onset of mammary tumors was determined by weekly palpation of the mammary glands; mice were sacrificed when the tumor size reached the maximum permitted under ethical guidelines. Anti‐angiogenic treatment with the multimodal receptor tyrosine kinase (RTK) inhibitor sunitinib malate (1611, Biovision, 60 mg/kg body weight per dose by oral gavage, three times a week) was started only after cancer onset and followed until the mice were sacrificed. Mice were maintained in temperature‐controlled conditions, and genotypes were determined by PCR analysis of genomic DNA. In all experiments, mice were randomly distributed between the different groups and only littermate mice were used as controls. All mice were maintained according to the ethical animal license protocol complying with the Austrian and European legislation.</p>
</sec>
<sec id="emmm201809266-sec-0013">
<title>Histology, whole‐mount sections, immunohistochemistry, and immunofluorescence analysis</title>
<p>Tissue samples were fixed in freshly prepared 4% paraformaldehyde (PFA) overnight at 4°C and embedded in paraffin after dehydration in ascending concentrations of ethanol. For histological analysis, 2‐ to 4‐μm‐thick paraffin sections were prepared and stained with hematoxylin and eosin. Slides were evaluated with a Zeiss Axioskop 2 MOT microscope and scanned with a
<italic>Pannoramic 250 Flash II</italic>
Scanner (3D Histech). Tumor burden was evaluated by a pathologist and also automatically scored by an algorithm programmed and executed using the
<italic>Definiens Tissue Studio</italic>
software suite. Histopathologic designations were assigned to proliferative lesions of the mammary glands in accordance with the recommendations of the Annapolis Pathology Panel (Cardiff
<italic>et al</italic>
,
<xref rid="emmm201809266-bib-0008" ref-type="ref">2000</xref>
) and the INHAND project (Rudmann
<italic>et al</italic>
,
<xref rid="emmm201809266-bib-0065" ref-type="ref">2012</xref>
). For histological analysis of lung tumors, sections from at least two different longitudinal planes of the lungs were cut and analyzed. Mitotic counts were performed manually by a pathologist; 10 representative fields were counted per tumor. The quantification of the number of dilated vessels per mammary tumor was done by a pathologist; only vessels with prominent dilated lumina (bigger than 0.25 mm in length/diameter) in intact viable tumors and inside the tumor boundaries were enumerated. Numbers of metastatic lung foci were manually counted by a pathologist; sections from three different longitudinal planes of the lungs were cut and analyzed. For immunohistochemistry, the automated Leica Bond III system was used. Ki67‐positive cells and percentages of CD31 positive areas per tumor were automatically scored by an algorithm programmed and executed using the
<italic>Definiens Tissue Studio</italic>
software suite and visually controlled by a pathologist in a blinded fashion. For immunofluorescence, sections were deparaffinized in xylene and hydrated in subsequent dilutions of ethanol (100, 95, 70%), each two times for 5 min. Following antigen retrieval with unmasking solution (1:100 dilution, Vector Labs H3300) in a microwave, sections were cooled down at room temperature (RT), washed with PBS, blocked with 4% goat serum for 30 min (RT), and stained overnight with primary antibody at 4°C. The chosen fluorophore‐conjugated secondary antibody was incubated for 45 min at RT, washed, and mounted in Vectashield (Vector labs, H‐1000). CD31‐positive areas were manually quantified; at least five representative fields were counted per tumor. To quantify the mural cell coverage of vessels, virtually all intra‐tumoral CD31
<sup>+</sup>
vessels were manually selected and an algorithm, programmed and executed using the
<italic>Definiens Tissue Studio</italic>
software, detected alphaSMA
<sup>+</sup>
(alpha smooth muscle actin) and CD31
<sup>+</sup>
cells. CA9
<sup>+</sup>
cells were quantified by manual selection of 100–200 peri‐vascular intra‐tumoral regions and subsequent automatic analysis by an algorithm programmed and executed using the
<italic>Definiens Tissue Studio</italic>
software. Pimonidazole positive hypoxic foci were manually counted by a pathologist. For immunohistochemistry and immunofluorescence, the primary antibodies used were as follows: anti‐Ki67 (ab16667, Abcam, 1:200), anti‐CD31 (DIA310, Dianova, 1:20), anti‐alphaSMA (Clone 1A4, Dako, 1:20), and anti‐CA9 (AF2344, R&D Systems, 1:20). For pimonidazole staining, the Hydroxyprobe™ kit (HP1‐200Kit, Hydroxyprobe) was used.</p>
</sec>
<sec id="emmm201809266-sec-0014">
<title>Magnetic resonance imaging (MRI)</title>
<p>MRI was performed on a 15.2 T Bruker system (Bruker BioSpec, Ettlingen, Germany) with a 35‐mm quadrature birdcage coil. Mice were continuously monitored for tumor occurrence by palpation and MRI. When tumors reached 20–70 mm
<sup>3</sup>
, this time point was set as imaging day 0, and then, each tumor was imaged thereafter at 2, 4, and 6 weeks. Before imaging, a tail line was inserted for delivery of contrast agent (30‐gauge needle with silicon tubing). All animals were anesthetized with isoflurane (4% induction, maintenance with 1.5%). During imaging, respiration was monitored and isoflurane levels were adjusted if breathing was < 20 or > 60 breaths per minute. For measurement of tumor volume, a multi‐slice multi‐echo (MSME) spin‐echo sequence was used [repetition time (TR)/echo time (TE) = 3,000/5.8–81.18 ms, 14 echoes, 117 μm
<sup>2</sup>
in‐plane resolution, 0.5 mm slice thickness, number of experiments [NEX] = 1). Tumor volume was calculated by multiplying the slice thickness with the tumor area by an investigator blinded to the treatment group.</p>
<p>Dynamic susceptibility contrast (DSC) perfusion MRI was collected using fast imaging with steady‐state precession (FISP) with 500.6 ms temporal resolution (1 slice; TR/TE = 500/1.7 ms; flip‐angle = 5 degrees; 468 × 468 μm
<sup>2</sup>
in‐plane resolution; 1‐mm slice thickness; NEX = 2; 360 repetitions) following tail vein injection of 0.05 ml of 0.25 mol/l gadolinium‐based contrast agent (Magnevist, Berlex). Prior to and following DSC‐MRI, a T1‐weighted spin‐echo dataset was acquired (0.5 mm thick slices, TR/TE 500/5.8 ms, 117 × 117 μm
<sup>2</sup>
resolution, 2 NEX). DSC data were processed offline using ImageJ (National Institutes of Health;
<ext-link ext-link-type="uri" xlink:href="http://rsbweb.nih.gov/ij/">rsbweb.nih.gov/ij/</ext-link>
), and the DSCoMAN plug‐in (Duke University,
<ext-link ext-link-type="uri" xlink:href="https://dblab.duhs.duke.edu/wysiwyg/downloads/DSCoMAN_1.0.pdf">https://dblab.duhs.duke.edu/wysiwyg/downloads/DSCoMAN_1.0.pdf</ext-link>
). The analysis consisted of truncating the first five time points in the DSC‐MRI time series to ensure steady‐state magnetization, calculating the pre‐bolus signal intensity (
<mml:math id="nlm-math-1">
<mml:msub>
<mml:mi>S</mml:mi>
<mml:mn>0</mml:mn>
</mml:msub>
</mml:math>
) on a pixel‐wise basis, converting the truncated DSC‐MRI time series to a relaxivity–time curve (
<mml:math id="nlm-math-2">
<mml:mrow>
<mml:mi mathvariant="normal">Δ</mml:mi>
<mml:msubsup>
<mml:mi>R</mml:mi>
<mml:mn>2</mml:mn>
<mml:mrow>
<mml:mrow></mml:mrow>
<mml:mo></mml:mo>
</mml:mrow>
</mml:msubsup>
<mml:mrow>
<mml:mo stretchy="false">(</mml:mo>
<mml:mi>t</mml:mi>
<mml:mo stretchy="false">)</mml:mo>
</mml:mrow>
<mml:mo>=</mml:mo>
<mml:mo></mml:mo>
<mml:mrow>
<mml:mo stretchy="false">(</mml:mo>
<mml:mn>1</mml:mn>
<mml:mo stretchy="false">/</mml:mo>
<mml:mi>T</mml:mi>
<mml:mi>F</mml:mi>
<mml:mo stretchy="false">)</mml:mo>
</mml:mrow>
<mml:mo>ln</mml:mo>
<mml:mrow>
<mml:mo stretchy="false">(</mml:mo>
<mml:mi>S</mml:mi>
<mml:mrow>
<mml:mo stretchy="false">(</mml:mo>
<mml:mi>t</mml:mi>
<mml:mo stretchy="false">)</mml:mo>
</mml:mrow>
<mml:mo stretchy="false">/</mml:mo>
<mml:msub>
<mml:mi>S</mml:mi>
<mml:mn>0</mml:mn>
</mml:msub>
<mml:mo stretchy="false">)</mml:mo>
</mml:mrow>
</mml:mrow>
</mml:math>
),
<mml:math id="nlm-math-3">
<mml:mrow>
<mml:mi>S</mml:mi>
<mml:mo stretchy="false">(</mml:mo>
<mml:mi>t</mml:mi>
<mml:mo stretchy="false">)</mml:mo>
</mml:mrow>
</mml:math>
) is dynamic signal intensity curve, and correcting for the gadolinium leakage (
<italic>K</italic>
<sub>2</sub>
), as well as vessel density, as described previously (Boxerman
<italic>et al</italic>
,
<xref rid="emmm201809266-bib-0005" ref-type="ref">2006</xref>
). The effect of contrast agent leakage (
<italic>K</italic>
<sub>2</sub>
) was estimated based on pixels that exhibited signal enhancement following gadolinium injection compared to pixels that did not. Necrotic areas seen as hyperintense on T1‐weighted scans were excluded as they lack viable tumor vasculature. To account for possible small differences in the amount of contrast agent administered from mouse to mouse, all tumor
<italic>K</italic>
<sub>2</sub>
maps were subsequently corrected for
<italic>K</italic>
<sub>2</sub>
of the muscle (muscle
<italic>K</italic>
<sub>2</sub>
was set to 1).</p>
</sec>
<sec id="emmm201809266-sec-0015">
<title>Embryoid bodies and 3D vascular sprouts</title>
<p>EBs were generated as previously described (Jakobsson
<italic>et al</italic>
,
<xref rid="emmm201809266-bib-0031" ref-type="ref">2010</xref>
). Briefly, mESCs were trypsinized, depleted of LIF, mixed 1:1 in case of chimeric EBs and left in low adhesion plates (MS‐9096UZ, Sumitomo Bakelite Co; day 0). On day five (CCEs) or day eight (
<italic>Apln</italic>
GO and STOP mESCs), the formed EBs were transferred to a polymerized collagen I gel with addition of 30 ng/ml VEGFA164 (Peprotech; Jakobsson
<italic>et al</italic>
,
<xref rid="emmm201809266-bib-0031" ref-type="ref">2010</xref>
). The medium was changed every day after sprouting initiation. Apelin (ApelinPyr13, 1,000 nM, BACHEM H‐4568) or DMSO (control) was added, when indicated, after sprouting initiation.</p>
</sec>
<sec id="emmm201809266-sec-0016">
<title>Mammary cancer orthotopic model</title>
<p>E0771 cells were orthotopically injected in C57BL/6J mice as previously described (Ewens
<italic>et al</italic>
,
<xref rid="emmm201809266-bib-0019" ref-type="ref">2005</xref>
). In brief, cells were harvested for injection into mice by trypsin digestion for 5 min, washed in Hank's balanced salt solution, counted, diluted in this salt solution, and orthotopically injected into the fat pad of the fourth mammary gland (2.5 × 10
<sup>5</sup>
cells/200 μl/mouse, unless stated otherwise). Treatment with sunitinib malate (1611, Biovision, 60 mg/kg body weight per dose by oral gavage, three to five times a week), the Apelin antagonist MM54 (057‐07, Phoenix Pharmaceuticals, 0.4 mg/kg body weight per dose by intra‐peritoneal injection, three times a week), axitinib (A‐1107, LC Laboratories, 30 mg/kg body weight per dose by oral gavage, daily), or the anti‐VEGFR2 antibody (clone DC101, BioXcell, 1 mg by intra‐peritoneal injection, twice a week) was started only after tumors were palpable and followed until the mice were sacrificed following the ethical guidelines. Mice were randomly distributed between the different groups. Tumors were measured using digital calipers; the size of the tumor is expressed as length (mm) × width (mm) × height (mm) = tumor size (mm
<sup>3</sup>
).</p>
</sec>
<sec id="emmm201809266-sec-0017">
<title>Sunitinib‐treated RCC cancer patients</title>
<p>Serum samples from renal cell carcinoma (RCC) patients were collected between 2010 and 2013 3–5 months after sunitinib therapy at the Department of Urology, Semmelweis University (Budapest, Hungary). The study protocol was approved based on the ethical standards prescribed by the Helsinki Declaration of the World Medical Association and with the permission of the Scientific and Research Committee of the Hungarian Medical Research Council (ETT TUKEB 2521‐0/2010‐1018EKU, 153/PI/010). Samples were prepared from approximately 10 ml blood collected with BD Vacutainer Serum Separator tube (#367953). Samples were allowed to clot for 45 min at room temperature before being centrifuged at 2,650 
<italic>g</italic>
for 15 min, aliquoted, and stored at −80°C until use. Cutoff levels for high and low APELIN or VEGF levels were set by the median. Kaplan–Meier curves for progression‐free survival were evaluated for all patients, and the log‐rank test was used to establish the significance of the difference. Multivariate analysis of the clinical parameters was performed using the Cox regression model. Statistical analyses were performed using the PASW Statistics 18.0 package (Predictive Analytics Software, SPSS Inc., Chicago, IL, USA), the IBM SPSS Statistics 23.0 package (IBM Corp., Armonk, NY, USA), and GraphPad Prism 6.0 (GraphPad Inc., San Diego, CA, USA).</p>
</sec>
<sec id="emmm201809266-sec-0018">
<title>Induction of lung cancer</title>
<p>Intratracheal administration of adenoviruses expressing Cre was used to specifically induce
<italic>K‐Ras</italic>
<sup>
<italic>G12D</italic>
</sup>
expression and
<italic>p53</italic>
deletion in pneumocytes. Administration of AdCre viruses was performed in 8‐ to 12‐week‐old mice as previously reported (DuPage
<italic>et al</italic>
,
<xref rid="emmm201809266-bib-0015" ref-type="ref">2009</xref>
). In brief, experimental animals were anesthetized with Ketasol: Xylasol and placed on a heated pad. An AdCre‐CaCl
<sub>2</sub>
precipitate was produced by mixing 60 μl MEM, 2.5 μl AdCre (4 × 10
<sup>10</sup>
 pfu/ml; University of Iowa, Gene Transfer Vector Core Iowa, USA) and 0.6 μl CaCl
<sub>2</sub>
(1 M) for each mouse and incubated for 20 min at room temperature (21–22°C).</p>
</sec>
<sec id="emmm201809266-sec-0019">
<title>Primary cells and cell lines</title>
<p>E0771 breast adenocarcinoma cells were purchased from ATCC and maintained as a monolayer in RPM1 1640 supplemented with 10% fetal bovine serum, 2 mM L‐glutamine, penicillin/streptomycin (100 U Pen/ml; 0.1 mg Strep/ml), and 10 mM HEPES buffer. Primary human umbilical vein endothelial cells (HUVECs) were purchased from Life Technologies and maintained in Medium 200 (Life Technologies) supplemented with Low Serum Growth Supplement as specified by the supplier (LSGS, Life Technologies). Cells were kept at low passage and tested for mycoplasma regularly. All cells were mycoplasma negative.</p>
</sec>
<sec id="emmm201809266-sec-0020">
<title>Mouse embryonic stem cells</title>
<p>Apelin STOP (GFP
<sup>+</sup>
) and Apelin GO (mCherry
<sup>+</sup>
;Cre
<sup>+</sup>
) mouse embryonic stem cells (mESCs) as well as CCE mESCs were cultured in DMEM with 15% fetal calf serum (Invitrogen), penicillin/streptomycin (100 U Pen/ml; 0.1 mg Strep/ml), L‐glutamine (2 mM), non‐essential amino acids, 1 mM sodium pyruvate, 50 mM β‐mercaptoethanol, and leukemia inhibitory factor (LIF). All cells were maintained at 37°C and 5% CO
<sub>2</sub>
conditions.</p>
</sec>
<sec id="emmm201809266-sec-0021">
<title>Plasmids and retroviral infections</title>
<p>Apelin and Apelin receptor shRNAs were cloned into a GMPNIL retroviral vector (SSCV‐GFP‐miRE‐PGK‐Neomycin‐IRES‐Luciferase 2). PlatE cells were cultured at 37°C and 5% CO
<sub>2</sub>
in Dulbecco's modified Eagle's medium (DMEM) supplemented with 10% fetal bovine serum and transfected using the calcium phosphate co‐precipitation method. Selection of E0771 was done with 400 μg/ml of neomycin. Haploid murine ESCs carrying a Tol2 gene‐trap vector between exons 1 and 2 of the Apelin gene (named
<italic>Apln</italic>
STOP mESCs) were generated in‐house by Haplobank. Reversion of the splice acceptor element, to genetically “repair” the mutation (named
<italic>Apln</italic>
GO), was done by infection with a retroviral plasmid encoding for Cre recombinase as well as mCherry (MSCV‐mCherry‐IRES‐Cre).</p>
</sec>
<sec id="emmm201809266-sec-0022">
<title>Vascular permeability assay</title>
<p>Lysinated labeled dextran (70 kDa; Invitrogen, D1818, 1.25 mg in 100 μl ddH
<sub>2</sub>
O) was intravenously injected into the tail vein of each tumor‐bearing mouse. Fifteen minutes post‐injection, mice were sacrificed and tumors were harvested, followed by overnight fixation in 4% PFA. Whole‐mount immunostaining of tumor samples was performed with anti‐CD31 antibodies (DIA310, Dianova) followed by a goat Alexa 633 secondary antibody. Positive signals were examined by confocal microscopy and the numbers of vessels with extravasated dextran were quantified and corrected for differences in vessel densities.</p>
</sec>
<sec id="emmm201809266-sec-0023">
<title>Pimonidazole hypoxia assay</title>
<p>Pimonidazole (Hydroxyprobe™ kit, HP1‐200Kit, hydroxyprobe, 12 mg/ml in PBS) was intravenously injected at 60 mg/kg into the tail vein of each tumor‐bearing mouse. Mice were sacrificed 45 min post‐injection and tumors were harvested, followed by overnight fixation in 4% PFA. Immunohistochemical staining of tumor samples was performed according to the manufacturer's instructions.</p>
</sec>
<sec id="emmm201809266-sec-0024">
<title>Flow cytometry</title>
<p>Flow cytometry sorting of endothelial cells from tumors was performed by dissociating tumors with 2 mg/ml collagenase IV (LS004186, Worthington) and 0.2 mg/ml deoxyribonuclease I (LS002138, Worthington) in RPMI medium for 45 min at 37°C. The collagenase/Dnase solution was replaced with 10 ml cold FACS buffer (PBS, 2% fetal bovine serum), and the dissociated cells were passed through a 70‐μm cell strainer and then washed with 10 ml cold FACS buffer. The cells were stained with APC‐conjugated anti‐mouse CD31 antibody (17‐0311, eBioscience, 1:100), PE‐conjugated anti‐mouse CD105 antibody (120408, Biolegend, 1:100), PE‐Cy7‐conjugated anti‐mouse CD45 (103114, Biolegend, 1:400), as well as including an anti‐mouse CD16/CD32 Fc block (553142, BD Biosciences, 1:100) and DAPI (D1306, Thermo Fisher Scientific, 1:500 from a 5 mg/ml stock) all diluted in FACS buffer and incubated for 20 min at 4°C. Endothelial cells were isolated by sorting for DAPI
<sup></sup>
, CD45
<sup></sup>
, CD31
<sup>+</sup>
, and CD105
<sup>+</sup>
cells on a FACS Aria III cytometer. All data were analyzed with FlowJo v10.0.8r1.</p>
<p>For analysis of infiltrating immune cells, single‐cell suspensions from tumors were prepared as described above. The staining was split into two panels, panel one was comprised of FITC‐conjugated anti‐mouse CD45 antibody (103107, eBioscience, 1:500), PerCP‐Cy5.5‐conjugated anti‐mouse Cd11b antibody (101228, BioLegend, 1:200), PE‐Cy7‐conjugated anti‐mouse Thy1.2 antibody (B105326, Biolegend, 1:100), BV510‐conjugated anti‐mouse Ly6G‐antibody (127633, BioLegend, 1:100), BV711‐conjugated anti‐mouse NK1.1 antibody (108745, BioLegend, 1:100), BV‐570‐conjugated anti‐mouse CD4 antibody (B100542, BioLegend, 1:250), EF450‐conjugated anti‐mouse CD8 antibody (48‐0081‐80, eBiolegend, 1:300), eFlour780‐conjugated fixable viability dye (65‐0865‐14, eBioscience, 1:1,000) as well as including an anti‐mouse CD16/CD32 Fc block (553142, BD Biosciences, 1:100). Panel 2 was comprised of AF488‐conjugated anti‐mouse B220/CD45R antibody (103225, BioLegend, 1:100), PerCP‐Cy5.5‐conjugated anti‐mouse Cd11b antibody (101228, BioLegend, 1:200), PE‐Cy7‐conjugated anti‐mouse CD45 antibody (552848, BD Biosciences, 1:500), BV510‐conjugated anti‐mouse Ly6G‐antibody (127633, BioLegend, 1:100), BV785‐conjugated anti‐mouse Ly6C antibody (128041, BioLegend, 1:100), APC‐conjugated anti‐mouse PDCA1 antibody (17‐3171‐80, Thermo Fisher Scientific, 1:100), eFlour780‐conjugated fixable viability dye (65‐0865‐14, eBioscience, 1:1,000) as well as an anti‐mouse CD16/CD32 Fc block (553142, BD Biosciences, 1:100), all diluted in FACS buffer and incubated for 30 min at 4°C. Cells were acquired on a BD LSR Fortessa. All data were analyzed with FlowJo v10.0.8r1.</p>
<p>Flow cytometry analysis and sorting of endothelial cells in vessel sprouts were performed as described (Jakobsson
<italic>et al</italic>
,
<xref rid="emmm201809266-bib-0031" ref-type="ref">2010</xref>
). In brief, embryoid bodies in collagen were dissociated by treatment with 2.5 mg/ml collagenase A (10103578001, Roche) in ESC media without LIF, for 45 min at 37°C. The collagenase A solution was replaced with 10 ml cold FACS buffer (PBS, 2% fetal bovine serum and 25 mM HEPES), and the EBs were passed through a 70‐μm cell strainer and then washed with 10 ml cold FACS buffer. The cells were stained with APC‐conjugated anti‐CD31 antibodies (17‐0311, eBioscience, 1:100) including an anti‐mouse CD16/CD32 Fc block (553142, BD Biosciences, 1:100), all diluted in FACS buffer and incubated for 20 min at 4°C. FACS was performed using a FACS Aria III cytometer. All data were analyzed with FlowJo v10.0.8r1.</p>
</sec>
<sec id="emmm201809266-sec-0025">
<title>Gene expression analysis</title>
<p>Total RNA of tumors, isolated mammary epithelial cells, and tumor endothelial cells were prepared using the RNeasy Mini Kit (Qiagen), according to the manufacturer's instructions. cDNA synthesis was performed using the iScript cDNA synthesis kit (Bio‐Rad). RT‐qPCR analyses were carried out according to the manufacturer's instructions. Values were normalized by the expression of housekeeping genes as previously described (Uribesalgo
<italic>et al</italic>
,
<xref rid="emmm201809266-bib-0074" ref-type="ref">2011</xref>
).</p>
</sec>
<sec id="emmm201809266-sec-0026">
<title>Short hairpin RNA and primer sequences</title>
<p>The 22mer sequences are as follows:</p>
<p>
<list list-type="simple">
<list-item>
<p>
<italic>Apln</italic>
shRNA (MirE.2038), 5′‐TAAGTGAATATCGAGCTTCTGT‐3′;</p>
</list-item>
<list-item>
<p>
<italic>Aplnr</italic>
shRNA (MirE.2029), 5′‐TTGAAAGATACAGAGCTCCTGG‐3′.</p>
</list-item>
</list>
</p>
<p>Primer sequences for RT‐qPCR analysis are as follows:</p>
<p>
<list list-type="simple">
<list-item>
<p>
<italic>Apln</italic>
forward primer: 5′‐GCTCTGGCTCTCCTTGACTG‐3′;</p>
</list-item>
<list-item>
<p>
<italic>Apln</italic>
reverse primer: 5′‐CTCGAAGTTCTGGGCTTCAC‐3′;</p>
</list-item>
<list-item>
<p>
<italic>Aplnr</italic>
forward primer 5′‐GAGTTTGACTGGCCTTTTGG‐3′;</p>
</list-item>
<list-item>
<p>
<italic>Aplnr</italic>
reverse primer 5′‐GGTATCGGTCAAAGCTGAGG‐3′;</p>
</list-item>
<list-item>
<p>
<italic>PUM1</italic>
forward primer 5′‐TGTGGTCCAGAAGATGATCG‐3′</p>
</list-item>
<list-item>
<p>
<italic>PUM1</italic>
reverse primer 5′‐GGATGTGCTTGCCATAGGTG‐3′;</p>
</list-item>
<list-item>
<p>
<italic>bActin</italic>
forward primer 5′‐CGGTTCCGATGCCCTGAGGCTCTT‐3′;</p>
</list-item>
<list-item>
<p>
<italic>bActin</italic>
reverse primer 5′‐CGTCACACTTCATGATGGAATTGA‐3′.</p>
</list-item>
</list>
</p>
</sec>
<sec id="emmm201809266-sec-0027">
<title>RNA‐Seq data analysis</title>
<p>Full RNA was isolated from sorted tumor endothelial cells (TEC) and prepared as described by Picelli
<italic>et al</italic>
(
<xref rid="emmm201809266-bib-0060" ref-type="ref">2014</xref>
), with the following changes: Cells were sorted in 4 μl lysis buffer, to which oligo‐dT and dNTP were added. For Tagmentation, in‐house produced Tn5 was used. PolyA‐mRNA was isolated from endothelial cells FACS‐sorted from sprouting vessels (ES) in the presence or absence of Apelin. Both generated libraries were sequenced by 50‐bp single‐end Illumina mRNA sequencing. Reads were aligned using star v2.5.0a (ES) or v2.6c (TEC) in 2‐pass mode, TPM estimation was performed with RSEM v1.2.25 (ES) or v1.2.28 (TEC), aligned reads were counted with HTSeq v0.6.1p1 (ES) or featurecounts subread v1.6.2 (TEC), and differential expression analysis was performed with DESeq2 v1.10.1 (ES) or v1.18.1 (TEC). Gene sets with significant enrichment were selected based on a false discovery rate (FDR) q value cutoff of 5%. Heatmaps show scaled log2 gene expression values (log2(TPM + 1)) for differentially expressed genes (
<italic>P</italic>
adj < 0.05 and absLog2(Foldchange) > 1, DESeq2 v1.10.1 or v1.18.1). Differentially expressed gene lists were analyzed for the enrichment of canonical pathways using IPA (ingenuity pathways analysis; Ingenuity Systems,
<ext-link ext-link-type="uri" xlink:href="http://www.ingenuity.com">http://www.ingenuity.com</ext-link>
) where the effect directionality is estimated based on the provided logarithmic fold change values for the compared groups (DESeq2). GO analysis was performed with the online DAVID software.</p>
</sec>
<sec id="emmm201809266-sec-0028">
<title>ELISA assays</title>
<p>Quantikine VEGF ELISA (DVE00, R&D Systems) and Apelin‐36 ELISA (EKE‐057‐15, Phoenix Pharmaceuticals) kits were used. Sample preparation, standard curve generation, and measurement of samples in duplicates were performed according to the guidelines of the manufacturer.</p>
</sec>
<sec id="emmm201809266-sec-0029">
<title>Human database analysis</title>
<p>To analyze the prognostic value of Apelin in human cancer, we performed unbiased meta‐analysis of publicly available cancer microarray datasets with clinical annotation. For breast cancer, patient cohorts of 664 samples (distant metastasis‐free survival) and 1,764 samples (relapse‐free survival) were analyzed using the online survival analysis tool Kaplan–Meier Plotter (Győrffy
<italic>et al</italic>
,
<xref rid="emmm201809266-bib-0022" ref-type="ref">2013</xref>
; probe 222856_at); the data set GSE6532‐GPL570 from the PrognoScan database was also analyzed (Mizuno
<italic>et al</italic>
,
<xref rid="emmm201809266-bib-0054" ref-type="ref">2009</xref>
). For lung cancer, a patient cohort of 1,145 samples from the Kaplan–Meier Plotter was analyzed (probe 222856_at) (Györffy
<italic>et al</italic>
, 2013).</p>
</sec>
<sec id="emmm201809266-sec-0030">
<title>Statistics</title>
<p>Values are given as means ± standard error of the mean (SEM) unless otherwise stated. For tumor experiments, only mice that developed tumors were included in the analysis. Mice were allocated to experimental groups on the basis of their genotype and randomized within the given group. Sample sizes were typically between
<italic>n</italic>
 = 3–6 samples per group and at least
<italic>n</italic>
 = 7–8 for survival curves. For animal studies, the investigator was typically blinded toward the genotype, but not the treatment group. Single comparisons were analyzed by two‐tailed Student's
<italic>t</italic>
‐test or Mann–Whitney test in non‐normally distributed data; multiple comparisons were analyzed by one‐way ANOVA, two‐way ANOVA, or Kruskal–Wallis test in non‐normally distributed data followed by
<italic>post hoc</italic>
tests for multiple comparisons. Normality was tested using the D'Agostino–Pearson test for
<italic>n</italic>
 > 7; otherwise, Shapiro–Wilk was used. F test and Brown–Forsythe test were used to assess the equality of variances. For the Kaplan–Meier survival analysis, a log‐rank test was performed.
<italic>P</italic>
‐values are indicated in each figure legend.
<italic>P</italic>
 < 0.05 was considered to indicate statistical significance. All exact
<italic>P</italic>
‐values are listed in the
<xref rid="emmm201809266-sup-0001" ref-type="supplementary-material">Appendix Table S1</xref>
. Statistical analysis was performed using GraphPad Prism (GraphPad Software, San Diego, CA, USA).</p>
</sec>
</sec>
<sec id="emmm201809266-sec-0033">
<title>Author contributions</title>
<p>Conceptualization, IU and JMP; methodology, IU, DH, YZ, AK, JL, JB, VL, MN, RK, and KK; formal analysis, IU, DH, YZ, JL, JB, RAW, VL, and MN; investigation, IU, DH, BJH, YZ, AK, JL, JB, RAW, T‐PP, VL, RK, DS, LT, and LH; resources, SD, JZ, BD, MS, YC, and JMP; review and editing, IU, DH, and JMP; supervision, IU and JMP; funding acquisition, IU and JMP.</p>
</sec>
<sec sec-type="COI-statement" id="emmm201809266-sec-0034">
<title>Conflict of interest</title>
<p>The authors declare that they have no conflict of interest.</p>
</sec>
<sec id="emmm201809266-sec-0035">
<boxed-text position="float" content-type="box" id="emmm201809266-blk-0001" orientation="portrait">
<caption>
<title>The paper explained</title>
</caption>
<sec id="emmm201809266-sec-0036">
<title>Problem</title>
<p>Depriving tumors of nutrients and oxygen by inhibiting angiogenesis (the growth of new blood vessels) using anti‐angiogenic therapies is often accompanied by aberrant alteration of blood vessels and local hypoxia, which can contribute to tumor progression and increased metastasis. Existing anti‐angiogenic therapies have shown limited success in the clinic.</p>
</sec>
<sec id="emmm201809266-sec-0037">
<title>Results</title>
<p>In this study, we show that depriving the tumor of the angiogenic molecule Apelin reduces tumor growth without increasing metastasis. Apelin inhibition blocks angiogenesis, but at the same time results in a better functionality of the remaining intra‐tumoral blood vessels. In both breast and lung cancer, we found that the combination of Apelin inhibition with sunitinib, an anti‐angiogenic therapy used in patients, resulted in potent reduction of tumor growth and angiogenesis. Sunitinib single therapy is often accompanied by hypoxia, tumor progression, and increased metastasis. Importantly, combining Apelin inhibition with sunitinib did not increase hypoxia and led to a reduction in metastatic burden.</p>
</sec>
<sec id="emmm201809266-sec-0038">
<title>Impact</title>
<p>These results identify Apelin as a druggable target for anti‐angiogenic therapy in breast and lung cancer, but potentially also other tumor types. Further, our data indicate that Apelin inhibition can potentially prevent the negative consequences of current anti‐angiogenic treatments and thus might provide a clinically useful target for combination therapies with other anti‐angiogenic treatments.</p>
</sec>
</boxed-text>
</sec>
<sec id="emmm201809266-sec-0039">
<title>For more information</title>
<p>(i)
<ext-link ext-link-type="uri" xlink:href="https://www.uniprot.org/uniprot/Q9ULZ1">https://www.uniprot.org/uniprot/Q9ULZ1</ext-link>
</p>
<p>(ii)
<ext-link ext-link-type="uri" xlink:href="http://www.informatics.jax.org/marker/MGI:1353624">http://www.informatics.jax.org/marker/MGI:1353624</ext-link>
</p>
</sec>
<sec sec-type="supplementary-material">
<title>Supporting information</title>
<supplementary-material content-type="local-data"></supplementary-material>
<supplementary-material content-type="local-data" id="emmm201809266-sup-0001">
<caption>
<p>Appendix</p>
</caption>
<media xlink:href="EMMM-11-e9266-s001.pdf">
<caption>
<p>Click here for additional data file.</p>
</caption>
</media>
</supplementary-material>
<supplementary-material content-type="local-data" id="emmm201809266-sup-0002">
<caption>
<p>Expanded View Figures PDF</p>
</caption>
<media xlink:href="EMMM-11-e9266-s002.pdf">
<caption>
<p>Click here for additional data file.</p>
</caption>
</media>
</supplementary-material>
<supplementary-material content-type="local-data" id="emmm201809266-sup-0003">
<caption>
<p>Movie EV1</p>
</caption>
<media xlink:href="EMMM-11-e9266-s003.zip">
<caption>
<p>Click here for additional data file.</p>
</caption>
</media>
</supplementary-material>
<supplementary-material content-type="local-data" id="emmm201809266-sup-0007">
<caption>
<p>Source Data for Expanded View and Appendix</p>
</caption>
<media xlink:href="EMMM-11-e9266-s007.zip">
<caption>
<p>Click here for additional data file.</p>
</caption>
</media>
</supplementary-material>
<supplementary-material content-type="local-data">
<caption>
<p>Review Process File</p>
</caption>
<media xlink:href="EMMM-11-e9266-s008.pdf">
<caption>
<p>Click here for additional data file.</p>
</caption>
</media>
</supplementary-material>
<supplementary-material content-type="local-data" id="emmm201809266-supp-data-0001">
<caption>
<p>Source Data for Figure 1</p>
</caption>
<media xlink:href="EMMM-11-e9266-s004.pdf">
<caption>
<p>Click here for additional data file.</p>
</caption>
</media>
</supplementary-material>
<supplementary-material content-type="local-data" id="emmm201809266-supp-data-0002">
<caption>
<p>Source Data for Figure 3</p>
</caption>
<media xlink:href="EMMM-11-e9266-s005.pdf">
<caption>
<p>Click here for additional data file.</p>
</caption>
</media>
</supplementary-material>
<supplementary-material content-type="local-data" id="emmm201809266-supp-data-0003">
<caption>
<p>Source Data for Figure 6</p>
</caption>
<media xlink:href="EMMM-11-e9266-s006.pdf">
<caption>
<p>Click here for additional data file.</p>
</caption>
</media>
</supplementary-material>
</sec>
</body>
<back>
<ack id="emmm201809266-sec-0032">
<title>Acknowledgements</title>
<p>We would like to thank G. Schmauss, T. Lendl, and K. Aumayr for expert bio‐optics service as well as the VBCF Preclinical Imaging Facility, the VBCF NGS Facility and the VBCF HistoPathology Facility for their services. We also thank A. Walter and the BioImaging Austria/Correlated Multimodal Imaging Node (CMI) for their insights and expertise, P. Möseneder for his support, the IMBA/IMP Graphics Department for their assistance with the graphical abstract and the members of the Penninger laboratory for helpful discussions. I.U. is supported by an EMBO Long‐term Fellowship and a Marie Curie Fellowship from the European Commission. D.H. is supported by the T. von Zastrow foundation. J.B. acknowledges funding from the Hungarian National Research, Development and Innovation Office (PD111656) and is a recipient of a Janos Bolyai Research Scholarship of the Hungarian Academy of Sciences. B.D. acknowledges funding from the Hungarian National Research, Development and Innovation Office (K109626 and KNN121510). J.M.P. is supported by grants from IMBA, the Austrian Ministry of Sciences, the Austrian Academy of Sciences, an ERC Advanced Grant, the T. von Zastrow foundation, and an Era of Hope Innovator award.</p>
</ack>
<sec sec-type="data-availability" id="emmm201809266-sec-0031">
<title>Data availability</title>
<p>The datasets produced in this study are available in the following databases:</p>
<p>
<list list-type="bullet" id="emmm201809266-list-0004">
<list-item>
<p>RNA‐Seq: Gene Expression Omnibus GSE100293 (
<ext-link ext-link-type="uri" xlink:href="https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE100293">https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE100293</ext-link>
)</p>
</list-item>
</list>
</p>
</sec>
<ref-list content-type="cited-references" id="emmm201809266-bibl-0001">
<title>References</title>
<ref id="emmm201809266-bib-0001">
<mixed-citation publication-type="journal" id="emmm201809266-cit-0001">
<string-name>
<surname>Allen</surname>
<given-names>E</given-names>
</string-name>
,
<string-name>
<surname>Jabouille</surname>
<given-names>A</given-names>
</string-name>
,
<string-name>
<surname>Rivera</surname>
<given-names>LB</given-names>
</string-name>
,
<string-name>
<surname>Lodewijckx</surname>
<given-names>I</given-names>
</string-name>
,
<string-name>
<surname>Missiaen</surname>
<given-names>R</given-names>
</string-name>
,
<string-name>
<surname>Steri</surname>
<given-names>V</given-names>
</string-name>
,
<string-name>
<surname>Feyen</surname>
<given-names>K</given-names>
</string-name>
,
<string-name>
<surname>Tawney</surname>
<given-names>J</given-names>
</string-name>
,
<string-name>
<surname>Hanahan</surname>
<given-names>D</given-names>
</string-name>
,
<string-name>
<surname>Michael</surname>
<given-names>IP</given-names>
</string-name>
<italic>et al</italic>
(
<year>2017</year>
)
<article-title>Combined antiangiogenic and anti‐PD‐L1 therapy stimulates tumor immunity through HEV formation</article-title>
.
<source xml:lang="en">Sci Transl Med</source>
<volume>9</volume>
:
<fpage>eaak9679</fpage>
<pub-id pub-id-type="pmid">28404866</pub-id>
</mixed-citation>
</ref>
<ref id="emmm201809266-bib-0002">
<mixed-citation publication-type="journal" id="emmm201809266-cit-0002">
<string-name>
<surname>Bergers</surname>
<given-names>G</given-names>
</string-name>
,
<string-name>
<surname>Hanahan</surname>
<given-names>D</given-names>
</string-name>
(
<year>2008</year>
)
<article-title>Modes of resistance to anti‐angiogenic therapy</article-title>
.
<source xml:lang="en">Nat Rev Cancer</source>
<volume>8</volume>
:
<fpage>592</fpage>
<lpage>603</lpage>
<pub-id pub-id-type="pmid">18650835</pub-id>
</mixed-citation>
</ref>
<ref id="emmm201809266-bib-0003">
<mixed-citation publication-type="journal" id="emmm201809266-cit-0003">
<string-name>
<surname>Berta</surname>
<given-names>J</given-names>
</string-name>
,
<string-name>
<surname>Kenessey</surname>
<given-names>I</given-names>
</string-name>
,
<string-name>
<surname>Dobos</surname>
<given-names>J</given-names>
</string-name>
,
<string-name>
<surname>Tovari</surname>
<given-names>J</given-names>
</string-name>
,
<string-name>
<surname>Klepetko</surname>
<given-names>W</given-names>
</string-name>
,
<string-name>
<surname>Jan Ankersmit</surname>
<given-names>H</given-names>
</string-name>
,
<string-name>
<surname>Hegedus</surname>
<given-names>B</given-names>
</string-name>
,
<string-name>
<surname>Renyi‐Vamos</surname>
<given-names>F</given-names>
</string-name>
,
<string-name>
<surname>Varga</surname>
<given-names>J</given-names>
</string-name>
,
<string-name>
<surname>Lorincz</surname>
<given-names>Z</given-names>
</string-name>
<italic>et al</italic>
(
<year>2010</year>
)
<article-title>Apelin expression in human non‐small cell lung cancer: role in angiogenesis and prognosis</article-title>
.
<source xml:lang="en">J Thorac Oncol</source>
<volume>5</volume>
:
<fpage>1120</fpage>
<lpage>1129</lpage>
<pub-id pub-id-type="pmid">20581707</pub-id>
</mixed-citation>
</ref>
<ref id="emmm201809266-bib-0004">
<mixed-citation publication-type="journal" id="emmm201809266-cit-0004">
<string-name>
<surname>Binsfeld</surname>
<given-names>M</given-names>
</string-name>
,
<string-name>
<surname>Muller</surname>
<given-names>J</given-names>
</string-name>
,
<string-name>
<surname>Lamour</surname>
<given-names>V</given-names>
</string-name>
,
<string-name>
<surname>De Veirman</surname>
<given-names>K</given-names>
</string-name>
,
<string-name>
<surname>De Raeve</surname>
<given-names>H</given-names>
</string-name>
,
<string-name>
<surname>Bellahcène</surname>
<given-names>A</given-names>
</string-name>
,
<string-name>
<surname>Van Valckenborgh</surname>
<given-names>E</given-names>
</string-name>
,
<string-name>
<surname>Baron</surname>
<given-names>F</given-names>
</string-name>
,
<string-name>
<surname>Beguin</surname>
<given-names>Y</given-names>
</string-name>
,
<string-name>
<surname>Caers</surname>
<given-names>J</given-names>
</string-name>
<italic>et al</italic>
(
<year>2016</year>
)
<article-title>Granulocytic myeloid‐derived suppressor cells promote angiogenesis in the context of multiple myeloma</article-title>
.
<source xml:lang="en">Oncotarget</source>
<volume>7</volume>
:
<fpage>37931</fpage>
<lpage>37943</lpage>
<pub-id pub-id-type="pmid">27177328</pub-id>
</mixed-citation>
</ref>
<ref id="emmm201809266-bib-0005">
<mixed-citation publication-type="journal" id="emmm201809266-cit-0005">
<string-name>
<surname>Boxerman</surname>
<given-names>JL</given-names>
</string-name>
,
<string-name>
<surname>Schmainda</surname>
<given-names>KM</given-names>
</string-name>
,
<string-name>
<surname>Weisskoff</surname>
<given-names>RM</given-names>
</string-name>
(
<year>2006</year>
)
<article-title>Relative cerebral blood volume maps corrected for contrast agent extravasation significantly correlate with glioma tumor grade, whereas uncorrected maps do not</article-title>
.
<source xml:lang="en">AJNR Am J Neuroradiol</source>
<volume>27</volume>
:
<fpage>859</fpage>
<lpage>867</lpage>
<pub-id pub-id-type="pmid">16611779</pub-id>
</mixed-citation>
</ref>
<ref id="emmm201809266-bib-0006">
<mixed-citation publication-type="journal" id="emmm201809266-cit-0006">
<string-name>
<surname>Brown</surname>
<given-names>JL</given-names>
</string-name>
,
<string-name>
<surname>Cao</surname>
<given-names>ZA</given-names>
</string-name>
,
<string-name>
<surname>Pinzon‐Ortiz</surname>
<given-names>M</given-names>
</string-name>
,
<string-name>
<surname>Kendrew</surname>
<given-names>J</given-names>
</string-name>
,
<string-name>
<surname>Reimer</surname>
<given-names>C</given-names>
</string-name>
,
<string-name>
<surname>Wen</surname>
<given-names>S</given-names>
</string-name>
,
<string-name>
<surname>Zhou</surname>
<given-names>JQ</given-names>
</string-name>
,
<string-name>
<surname>Tabrizi</surname>
<given-names>M</given-names>
</string-name>
,
<string-name>
<surname>Emery</surname>
<given-names>S</given-names>
</string-name>
,
<string-name>
<surname>McDermott</surname>
<given-names>B</given-names>
</string-name>
<italic>et al</italic>
(
<year>2010</year>
)
<article-title>A human monoclonal anti‐ANG2 antibody leads to broad antitumor activity in combination with VEGF inhibitors and chemotherapy agents in preclinical models</article-title>
.
<source xml:lang="en">Mol Cancer Ther</source>
<volume>9</volume>
:
<fpage>145</fpage>
<lpage>156</lpage>
<pub-id pub-id-type="pmid">20053776</pub-id>
</mixed-citation>
</ref>
<ref id="emmm201809266-bib-0007">
<mixed-citation publication-type="journal" id="emmm201809266-cit-0007">
<string-name>
<surname>Cao</surname>
<given-names>Y</given-names>
</string-name>
,
<string-name>
<surname>Arbiser</surname>
<given-names>J</given-names>
</string-name>
,
<string-name>
<surname>D'Amato</surname>
<given-names>RJ</given-names>
</string-name>
,
<string-name>
<surname>D'Amore</surname>
<given-names>PA</given-names>
</string-name>
,
<string-name>
<surname>Ingber</surname>
<given-names>DE</given-names>
</string-name>
,
<string-name>
<surname>Kerbel</surname>
<given-names>R</given-names>
</string-name>
,
<string-name>
<surname>Klagsbrun</surname>
<given-names>M</given-names>
</string-name>
,
<string-name>
<surname>Lim</surname>
<given-names>S</given-names>
</string-name>
,
<string-name>
<surname>Moses</surname>
<given-names>MA</given-names>
</string-name>
,
<string-name>
<surname>Zetter</surname>
<given-names>B</given-names>
</string-name>
<italic>et al</italic>
(
<year>2011</year>
)
<article-title>Forty‐year journey of angiogenesis translational research</article-title>
.
<source xml:lang="en">Sci Transl Med</source>
<volume>3</volume>
:
<fpage>114rv3</fpage>
</mixed-citation>
</ref>
<ref id="emmm201809266-bib-0008">
<mixed-citation publication-type="journal" id="emmm201809266-cit-0008">
<string-name>
<surname>Cardiff</surname>
<given-names>RD</given-names>
</string-name>
,
<string-name>
<surname>Anver</surname>
<given-names>MR</given-names>
</string-name>
,
<string-name>
<surname>Gusterson</surname>
<given-names>BA</given-names>
</string-name>
,
<string-name>
<surname>Hennighausen</surname>
<given-names>L</given-names>
</string-name>
,
<string-name>
<surname>Jensen</surname>
<given-names>RA</given-names>
</string-name>
,
<string-name>
<surname>Merino</surname>
<given-names>MJ</given-names>
</string-name>
,
<string-name>
<surname>Rehm</surname>
<given-names>S</given-names>
</string-name>
,
<string-name>
<surname>Russo</surname>
<given-names>J</given-names>
</string-name>
,
<string-name>
<surname>Tavassoli</surname>
<given-names>FA</given-names>
</string-name>
,
<string-name>
<surname>Wakefield</surname>
<given-names>LM</given-names>
</string-name>
<italic>et al</italic>
(
<year>2000</year>
)
<article-title>The mammary pathology of genetically engineered mice: the consensus report and recommendations from the Annapolis meeting</article-title>
.
<source xml:lang="en">Oncogene</source>
<volume>19</volume>
:
<fpage>968</fpage>
<lpage>988</lpage>
<pub-id pub-id-type="pmid">10713680</pub-id>
</mixed-citation>
</ref>
<ref id="emmm201809266-bib-0009">
<mixed-citation publication-type="journal" id="emmm201809266-cit-0009">
<string-name>
<surname>Carmeliet</surname>
<given-names>P</given-names>
</string-name>
,
<string-name>
<surname>Jain</surname>
<given-names>RK</given-names>
</string-name>
(
<year>2011a</year>
)
<article-title>Molecular mechanisms and clinical applications of angiogenesis</article-title>
.
<source xml:lang="en">Nature</source>
<volume>473</volume>
:
<fpage>298</fpage>
<lpage>307</lpage>
<pub-id pub-id-type="pmid">21593862</pub-id>
</mixed-citation>
</ref>
<ref id="emmm201809266-bib-0010">
<mixed-citation publication-type="journal" id="emmm201809266-cit-0010">
<string-name>
<surname>Carmeliet</surname>
<given-names>P</given-names>
</string-name>
,
<string-name>
<surname>Jain</surname>
<given-names>RK</given-names>
</string-name>
(
<year>2011b</year>
)
<article-title>Principles and mechanisms of vessel normalization for cancer and other angiogenic diseases</article-title>
.
<source xml:lang="en">Nat Rev Drug Discov</source>
<volume>10</volume>
:
<fpage>417</fpage>
<lpage>427</lpage>
<pub-id pub-id-type="pmid">21629292</pub-id>
</mixed-citation>
</ref>
<ref id="emmm201809266-bib-0011">
<mixed-citation publication-type="journal" id="emmm201809266-cit-0011">
<string-name>
<surname>Casanovas</surname>
<given-names>O</given-names>
</string-name>
,
<string-name>
<surname>Hicklin</surname>
<given-names>DJ</given-names>
</string-name>
,
<string-name>
<surname>Bergers</surname>
<given-names>G</given-names>
</string-name>
,
<string-name>
<surname>Hanahan</surname>
<given-names>D</given-names>
</string-name>
(
<year>2005</year>
)
<article-title>Drug resistance by evasion of antiangiogenic targeting of VEGF signaling in late‐stage pancreatic islet tumors</article-title>
.
<source xml:lang="en">Cancer Cell</source>
<volume>8</volume>
:
<fpage>299</fpage>
<lpage>309</lpage>
<pub-id pub-id-type="pmid">16226705</pub-id>
</mixed-citation>
</ref>
<ref id="emmm201809266-bib-0012">
<mixed-citation publication-type="journal" id="emmm201809266-cit-0012">
<string-name>
<surname>Condamine</surname>
<given-names>T</given-names>
</string-name>
,
<string-name>
<surname>Ramachandran</surname>
<given-names>I</given-names>
</string-name>
,
<string-name>
<surname>Youn</surname>
<given-names>J‐I</given-names>
</string-name>
,
<string-name>
<surname>Gabrilovich</surname>
<given-names>DI</given-names>
</string-name>
(
<year>2015</year>
)
<article-title>Regulation of tumor metastasis by myeloid‐derived suppressor cells</article-title>
.
<source xml:lang="en">Annu Rev Med</source>
<volume>66</volume>
:
<fpage>97</fpage>
<lpage>110</lpage>
<pub-id pub-id-type="pmid">25341012</pub-id>
</mixed-citation>
</ref>
<ref id="emmm201809266-bib-0013">
<mixed-citation publication-type="journal" id="emmm201809266-cit-0013">
<string-name>
<surname>Cox</surname>
<given-names>CM</given-names>
</string-name>
,
<string-name>
<surname>D'Agostino</surname>
<given-names>SL</given-names>
</string-name>
,
<string-name>
<surname>Miller</surname>
<given-names>MK</given-names>
</string-name>
,
<string-name>
<surname>Heimark</surname>
<given-names>RL</given-names>
</string-name>
,
<string-name>
<surname>Krieg</surname>
<given-names>PA</given-names>
</string-name>
(
<year>2006</year>
)
<article-title>Apelin, the ligand for the endothelial G‐protein‐coupled receptor, APJ, is a potent angiogenic factor required for normal vascular development of the frog embryo</article-title>
.
<source xml:lang="en">Dev Biol</source>
<volume>296</volume>
:
<fpage>177</fpage>
<lpage>189</lpage>
<pub-id pub-id-type="pmid">16750822</pub-id>
</mixed-citation>
</ref>
<ref id="emmm201809266-bib-0014">
<mixed-citation publication-type="journal" id="emmm201809266-cit-0014">
<string-name>
<surname>van Diest</surname>
<given-names>PJ</given-names>
</string-name>
,
<string-name>
<surname>van der Wall</surname>
<given-names>E</given-names>
</string-name>
,
<string-name>
<surname>Baak</surname>
<given-names>JPA</given-names>
</string-name>
(
<year>2004</year>
)
<article-title>Prognostic value of proliferation in invasive breast cancer: a review</article-title>
.
<source xml:lang="en">J Clin Pathol</source>
<volume>57</volume>
:
<fpage>675</fpage>
<lpage>681</lpage>
<pub-id pub-id-type="pmid">15220356</pub-id>
</mixed-citation>
</ref>
<ref id="emmm201809266-bib-0015">
<mixed-citation publication-type="journal" id="emmm201809266-cit-0015">
<string-name>
<surname>DuPage</surname>
<given-names>M</given-names>
</string-name>
,
<string-name>
<surname>Dooley</surname>
<given-names>AL</given-names>
</string-name>
,
<string-name>
<surname>Jacks</surname>
<given-names>T</given-names>
</string-name>
(
<year>2009</year>
)
<article-title>Conditional mouse lung cancer models using adenoviral or lentiviral delivery of Cre recombinase</article-title>
.
<source xml:lang="en">Nat Protoc</source>
<volume>4</volume>
:
<fpage>1064</fpage>
<lpage>1072</lpage>
<pub-id pub-id-type="pmid">19561589</pub-id>
</mixed-citation>
</ref>
<ref id="emmm201809266-bib-0016">
<mixed-citation publication-type="journal" id="emmm201809266-cit-0016">
<string-name>
<surname>Ebos</surname>
<given-names>JML</given-names>
</string-name>
,
<string-name>
<surname>Lee</surname>
<given-names>CR</given-names>
</string-name>
,
<string-name>
<surname>Cruz‐Munoz</surname>
<given-names>W</given-names>
</string-name>
,
<string-name>
<surname>Bjarnason</surname>
<given-names>GA</given-names>
</string-name>
,
<string-name>
<surname>Christensen</surname>
<given-names>JG</given-names>
</string-name>
,
<string-name>
<surname>Kerbel</surname>
<given-names>RS</given-names>
</string-name>
(
<year>2009</year>
)
<article-title>Accelerated metastasis after short‐term treatment with a potent inhibitor of tumor angiogenesis</article-title>
.
<source xml:lang="en">Cancer Cell</source>
<volume>15</volume>
:
<fpage>232</fpage>
<lpage>239</lpage>
<pub-id pub-id-type="pmid">19249681</pub-id>
</mixed-citation>
</ref>
<ref id="emmm201809266-bib-0017">
<mixed-citation publication-type="journal" id="emmm201809266-cit-0017">
<string-name>
<surname>Elling</surname>
<given-names>U</given-names>
</string-name>
,
<string-name>
<surname>Taubenschmid</surname>
<given-names>J</given-names>
</string-name>
,
<string-name>
<surname>Wirnsberger</surname>
<given-names>G</given-names>
</string-name>
,
<string-name>
<surname>O'Malley</surname>
<given-names>R</given-names>
</string-name>
,
<string-name>
<surname>Demers</surname>
<given-names>S‐P</given-names>
</string-name>
,
<string-name>
<surname>Vanhaelen</surname>
<given-names>Q</given-names>
</string-name>
,
<string-name>
<surname>Shukalyuk</surname>
<given-names>AI</given-names>
</string-name>
,
<string-name>
<surname>Schmauss</surname>
<given-names>G</given-names>
</string-name>
,
<string-name>
<surname>Schramek</surname>
<given-names>D</given-names>
</string-name>
,
<string-name>
<surname>Schnuetgen</surname>
<given-names>F</given-names>
</string-name>
<italic>et al</italic>
(
<year>2011</year>
)
<article-title>Forward and reverse genetics through derivation of haploid mouse embryonic stem cells</article-title>
.
<source xml:lang="en">Cell Stem Cell</source>
<volume>9</volume>
:
<fpage>563</fpage>
<lpage>574</lpage>
<pub-id pub-id-type="pmid">22136931</pub-id>
</mixed-citation>
</ref>
<ref id="emmm201809266-bib-0018">
<mixed-citation publication-type="journal" id="emmm201809266-cit-0018">
<string-name>
<surname>Elling</surname>
<given-names>U</given-names>
</string-name>
,
<string-name>
<surname>Wimmer</surname>
<given-names>RA</given-names>
</string-name>
,
<string-name>
<surname>Leibbrandt</surname>
<given-names>A</given-names>
</string-name>
,
<string-name>
<surname>Burkard</surname>
<given-names>T</given-names>
</string-name>
,
<string-name>
<surname>Michlits</surname>
<given-names>G</given-names>
</string-name>
,
<string-name>
<surname>Leopoldi</surname>
<given-names>A</given-names>
</string-name>
,
<string-name>
<surname>Micheler</surname>
<given-names>T</given-names>
</string-name>
,
<string-name>
<surname>Abdeen</surname>
<given-names>D</given-names>
</string-name>
,
<string-name>
<surname>Zhuk</surname>
<given-names>S</given-names>
</string-name>
,
<string-name>
<surname>Aspalter</surname>
<given-names>IM</given-names>
</string-name>
<italic>et al</italic>
(
<year>2017</year>
)
<article-title>A reversible haploid mouse embryonic stem cell biobank resource for functional genomics</article-title>
.
<source xml:lang="en">Nature</source>
<volume>550</volume>
:
<fpage>114</fpage>
<lpage>118</lpage>
<pub-id pub-id-type="pmid">28953874</pub-id>
</mixed-citation>
</ref>
<ref id="emmm201809266-bib-0019">
<mixed-citation publication-type="journal" id="emmm201809266-cit-0019">
<string-name>
<surname>Ewens</surname>
<given-names>A</given-names>
</string-name>
,
<string-name>
<surname>Mihich</surname>
<given-names>E</given-names>
</string-name>
,
<string-name>
<surname>Ehrke</surname>
<given-names>MJ</given-names>
</string-name>
(
<year>2005</year>
)
<article-title>Distant metastasis from subcutaneously grown E0771 medullary breast adenocarcinoma</article-title>
.
<source xml:lang="en">Anticancer Res</source>
<volume>25</volume>
:
<fpage>3905</fpage>
<lpage>3915</lpage>
<pub-id pub-id-type="pmid">16312045</pub-id>
</mixed-citation>
</ref>
<ref id="emmm201809266-bib-0020">
<mixed-citation publication-type="journal" id="emmm201809266-cit-0020">
<string-name>
<surname>Fan</surname>
<given-names>X</given-names>
</string-name>
,
<string-name>
<surname>Zhou</surname>
<given-names>N</given-names>
</string-name>
,
<string-name>
<surname>Zhang</surname>
<given-names>X</given-names>
</string-name>
,
<string-name>
<surname>Mukhtar</surname>
<given-names>M</given-names>
</string-name>
,
<string-name>
<surname>Lu</surname>
<given-names>Z</given-names>
</string-name>
,
<string-name>
<surname>Fang</surname>
<given-names>J</given-names>
</string-name>
,
<string-name>
<surname>DuBois</surname>
<given-names>GC</given-names>
</string-name>
,
<string-name>
<surname>Pomerantz</surname>
<given-names>RJ</given-names>
</string-name>
(
<year>2003</year>
)
<article-title>Structural and functional study of the apelin‐13 peptide, an endogenous ligand of the HIV‐1 coreceptor, APJ</article-title>
.
<source xml:lang="en">Biochemistry</source>
<volume>42</volume>
:
<fpage>10163</fpage>
<lpage>10168</lpage>
<pub-id pub-id-type="pmid">12939143</pub-id>
</mixed-citation>
</ref>
<ref id="emmm201809266-bib-0021">
<mixed-citation publication-type="journal" id="emmm201809266-cit-0021">
<string-name>
<surname>Gabrilovich</surname>
<given-names>DI</given-names>
</string-name>
(
<year>2017</year>
)
<article-title>Myeloid‐derived suppressor cells</article-title>
.
<source xml:lang="en">Cancer Immunol Res</source>
<volume>5</volume>
:
<fpage>3</fpage>
<lpage>8</lpage>
<pub-id pub-id-type="pmid">28052991</pub-id>
</mixed-citation>
</ref>
<ref id="emmm201809266-bib-0500">
<mixed-citation publication-type="journal" id="emmm201809266-cit-0500">
<string-name>
<surname>Györffy</surname>
<given-names>B</given-names>
</string-name>
,
<string-name>
<surname>Lanczky</surname>
<given-names>A</given-names>
</string-name>
,
<string-name>
<surname>Eklund</surname>
<given-names>AC</given-names>
</string-name>
,
<string-name>
<surname>Denkert</surname>
<given-names>C</given-names>
</string-name>
,
<string-name>
<surname>Budczies</surname>
<given-names>J</given-names>
</string-name>
,
<string-name>
<surname>Li</surname>
<given-names>Q</given-names>
</string-name>
,
<string-name>
<surname>Szallasi</surname>
<given-names>Z</given-names>
</string-name>
(
<year>2010</year>
)
<article-title>An online survival analysis tool to rapidly assess the effect of 22,277 genes on breast cancer prognosis using microarray data of 1809 patients</article-title>
.
<source xml:lang="en">Breast Cancer Res Treatment</source>
<volume>123</volume>
:
<fpage>725</fpage>
<lpage>731</lpage>
</mixed-citation>
</ref>
<ref id="emmm201809266-bib-0022">
<mixed-citation publication-type="journal" id="emmm201809266-cit-0022">
<string-name>
<surname>Győrffy</surname>
<given-names>B</given-names>
</string-name>
,
<string-name>
<surname>Surowiak</surname>
<given-names>P</given-names>
</string-name>
,
<string-name>
<surname>Budczies</surname>
<given-names>J</given-names>
</string-name>
,
<string-name>
<surname>Lánczky</surname>
<given-names>A</given-names>
</string-name>
(
<year>2013</year>
)
<article-title>Online survival analysis software to assess the prognostic value of biomarkers using transcriptomic data in non‐small‐cell lung cancer</article-title>
.
<source xml:lang="en">PLoS One</source>
<volume>8</volume>
:
<fpage>e82241</fpage>
<pub-id pub-id-type="pmid">24367507</pub-id>
</mixed-citation>
</ref>
<ref id="emmm201809266-bib-0023">
<mixed-citation publication-type="journal" id="emmm201809266-cit-0023">
<string-name>
<surname>Hanahan</surname>
<given-names>D</given-names>
</string-name>
,
<string-name>
<surname>Weinberg</surname>
<given-names>RA</given-names>
</string-name>
(
<year>2011</year>
)
<article-title>Hallmarks of cancer: the next generation</article-title>
.
<source xml:lang="en">Cell</source>
<volume>144</volume>
:
<fpage>646</fpage>
<lpage>674</lpage>
<pub-id pub-id-type="pmid">21376230</pub-id>
</mixed-citation>
</ref>
<ref id="emmm201809266-bib-0024">
<mixed-citation publication-type="journal" id="emmm201809266-cit-0024">
<string-name>
<surname>Harford‐Wright</surname>
<given-names>E</given-names>
</string-name>
,
<string-name>
<surname>Andre‐Gregoire</surname>
<given-names>G</given-names>
</string-name>
,
<string-name>
<surname>Jacobs</surname>
<given-names>KA</given-names>
</string-name>
,
<string-name>
<surname>Treps</surname>
<given-names>L</given-names>
</string-name>
,
<string-name>
<surname>Le Gonidec</surname>
<given-names>S</given-names>
</string-name>
,
<string-name>
<surname>Leclair</surname>
<given-names>HM</given-names>
</string-name>
,
<string-name>
<surname>Gonzalez‐Diest</surname>
<given-names>S</given-names>
</string-name>
,
<string-name>
<surname>Roux</surname>
<given-names>Q</given-names>
</string-name>
,
<string-name>
<surname>Guillonneau</surname>
<given-names>F</given-names>
</string-name>
,
<string-name>
<surname>Loussouarn</surname>
<given-names>D</given-names>
</string-name>
<italic>et al</italic>
(
<year>2017</year>
)
<article-title>Pharmacological targeting of apelin impairs glioblastoma growth</article-title>
.
<source xml:lang="en">Brain</source>
<volume>140</volume>
:
<fpage>2939</fpage>
<lpage>2954</lpage>
<pub-id pub-id-type="pmid">29053791</pub-id>
</mixed-citation>
</ref>
<ref id="emmm201809266-bib-0025">
<mixed-citation publication-type="journal" id="emmm201809266-cit-0025">
<string-name>
<surname>Heo</surname>
<given-names>K</given-names>
</string-name>
,
<string-name>
<surname>Kim</surname>
<given-names>YH</given-names>
</string-name>
,
<string-name>
<surname>Sung</surname>
<given-names>HJ</given-names>
</string-name>
,
<string-name>
<surname>Li</surname>
<given-names>HY</given-names>
</string-name>
,
<string-name>
<surname>Yoo</surname>
<given-names>CW</given-names>
</string-name>
,
<string-name>
<surname>Kim</surname>
<given-names>JY</given-names>
</string-name>
,
<string-name>
<surname>Park</surname>
<given-names>JY</given-names>
</string-name>
,
<string-name>
<surname>Lee</surname>
<given-names>UL</given-names>
</string-name>
,
<string-name>
<surname>Nam</surname>
<given-names>BH</given-names>
</string-name>
,
<string-name>
<surname>Kim</surname>
<given-names>EO</given-names>
</string-name>
<italic>et al</italic>
(
<year>2012</year>
)
<article-title>Hypoxia‐induced up‐regulation of apelin is associated with a poor prognosis in oral squamous cell carcinoma patients</article-title>
.
<source xml:lang="en">Oral Oncol</source>
<volume>48</volume>
:
<fpage>500</fpage>
<lpage>506</lpage>
<pub-id pub-id-type="pmid">22285858</pub-id>
</mixed-citation>
</ref>
<ref id="emmm201809266-bib-0026">
<mixed-citation publication-type="journal" id="emmm201809266-cit-0026">
<string-name>
<surname>Jackson</surname>
<given-names>EL</given-names>
</string-name>
(
<year>2001</year>
)
<article-title>Analysis of lung tumor initiation and progression using conditional expression of oncogenic K‐ras</article-title>
.
<source xml:lang="en">Genes Dev</source>
<volume>15</volume>
:
<fpage>3243</fpage>
<lpage>3248</lpage>
<pub-id pub-id-type="pmid">11751630</pub-id>
</mixed-citation>
</ref>
<ref id="emmm201809266-bib-0027">
<mixed-citation publication-type="journal" id="emmm201809266-cit-0027">
<string-name>
<surname>Jackson</surname>
<given-names>EL</given-names>
</string-name>
,
<string-name>
<surname>Olive</surname>
<given-names>KP</given-names>
</string-name>
,
<string-name>
<surname>Tuveson</surname>
<given-names>DA</given-names>
</string-name>
,
<string-name>
<surname>Bronson</surname>
<given-names>R</given-names>
</string-name>
,
<string-name>
<surname>Crowley</surname>
<given-names>D</given-names>
</string-name>
,
<string-name>
<surname>Brown</surname>
<given-names>M</given-names>
</string-name>
,
<string-name>
<surname>Jacks</surname>
<given-names>T</given-names>
</string-name>
(
<year>2005</year>
)
<article-title>The differential effects of mutant p53 alleles on advanced murine lung cancer</article-title>
.
<source xml:lang="en">Can Res</source>
<volume>65</volume>
:
<fpage>10280</fpage>
<lpage>10288</lpage>
</mixed-citation>
</ref>
<ref id="emmm201809266-bib-0028">
<mixed-citation publication-type="journal" id="emmm201809266-cit-0028">
<string-name>
<surname>Jain</surname>
<given-names>RK</given-names>
</string-name>
(
<year>2001</year>
)
<article-title>Normalizing tumor vasculature with anti‐angiogenic therapy: a new paradigm for combination therapy</article-title>
.
<source xml:lang="en">Nat Med</source>
<volume>7</volume>
:
<fpage>987</fpage>
<lpage>989</lpage>
<pub-id pub-id-type="pmid">11533692</pub-id>
</mixed-citation>
</ref>
<ref id="emmm201809266-bib-0029">
<mixed-citation publication-type="journal" id="emmm201809266-cit-0029">
<string-name>
<surname>Jain</surname>
<given-names>RK</given-names>
</string-name>
(
<year>2005</year>
)
<article-title>Normalization of tumor vasculature: an emerging concept in antiangiogenic therapy</article-title>
.
<source xml:lang="en">Science</source>
<volume>307</volume>
:
<fpage>58</fpage>
<lpage>62</lpage>
<pub-id pub-id-type="pmid">15637262</pub-id>
</mixed-citation>
</ref>
<ref id="emmm201809266-bib-0030">
<mixed-citation publication-type="journal" id="emmm201809266-cit-0030">
<string-name>
<surname>Jain</surname>
<given-names>RK</given-names>
</string-name>
(
<year>2014</year>
)
<article-title>Antiangiogenesis strategies revisited: from starving tumors to alleviating hypoxia</article-title>
.
<source xml:lang="en">Cancer Cell</source>
<volume>26</volume>
:
<fpage>605</fpage>
<lpage>622</lpage>
<pub-id pub-id-type="pmid">25517747</pub-id>
</mixed-citation>
</ref>
<ref id="emmm201809266-bib-0031">
<mixed-citation publication-type="journal" id="emmm201809266-cit-0031">
<string-name>
<surname>Jakobsson</surname>
<given-names>L</given-names>
</string-name>
,
<string-name>
<surname>Franco</surname>
<given-names>CA</given-names>
</string-name>
,
<string-name>
<surname>Bentley</surname>
<given-names>K</given-names>
</string-name>
,
<string-name>
<surname>Collins</surname>
<given-names>RT</given-names>
</string-name>
,
<string-name>
<surname>Ponsioen</surname>
<given-names>B</given-names>
</string-name>
,
<string-name>
<surname>Aspalter</surname>
<given-names>IM</given-names>
</string-name>
,
<string-name>
<surname>Rosewell</surname>
<given-names>I</given-names>
</string-name>
,
<string-name>
<surname>Busse</surname>
<given-names>M</given-names>
</string-name>
,
<string-name>
<surname>Thurston</surname>
<given-names>G</given-names>
</string-name>
,
<string-name>
<surname>Medvinsky</surname>
<given-names>A</given-names>
</string-name>
<italic>et al</italic>
(
<year>2010</year>
)
<article-title>Endothelial cells dynamically compete for the tip cell position during angiogenic sprouting</article-title>
.
<source xml:lang="en">Nat Cell Biol</source>
<volume>12</volume>
:
<fpage>943</fpage>
<lpage>953</lpage>
<pub-id pub-id-type="pmid">20871601</pub-id>
</mixed-citation>
</ref>
<ref id="emmm201809266-bib-0032">
<mixed-citation publication-type="journal" id="emmm201809266-cit-0032">
<string-name>
<surname>Jayson</surname>
<given-names>GC</given-names>
</string-name>
,
<string-name>
<surname>Kerbel</surname>
<given-names>R</given-names>
</string-name>
,
<string-name>
<surname>Ellis</surname>
<given-names>LM</given-names>
</string-name>
,
<string-name>
<surname>Harris</surname>
<given-names>AL</given-names>
</string-name>
(
<year>2016</year>
)
<article-title>Antiangiogenic therapy in oncology: current status and future directions</article-title>
.
<source xml:lang="en">Lancet</source>
<volume>388</volume>
:
<fpage>518</fpage>
<lpage>529</lpage>
<pub-id pub-id-type="pmid">26853587</pub-id>
</mixed-citation>
</ref>
<ref id="emmm201809266-bib-0033">
<mixed-citation publication-type="journal" id="emmm201809266-cit-0033">
<string-name>
<surname>Kälin</surname>
<given-names>RE</given-names>
</string-name>
,
<string-name>
<surname>Kretz</surname>
<given-names>MP</given-names>
</string-name>
,
<string-name>
<surname>Meyer</surname>
<given-names>AM</given-names>
</string-name>
,
<string-name>
<surname>Kispert</surname>
<given-names>A</given-names>
</string-name>
,
<string-name>
<surname>Heppner</surname>
<given-names>FL</given-names>
</string-name>
,
<string-name>
<surname>Brändli</surname>
<given-names>AW</given-names>
</string-name>
(
<year>2007</year>
)
<article-title>Paracrine and autocrine mechanisms of apelin signaling govern embryonic and tumor angiogenesis</article-title>
.
<source xml:lang="en">Dev Biol</source>
<volume>305</volume>
:
<fpage>599</fpage>
<lpage>614</lpage>
<pub-id pub-id-type="pmid">17412318</pub-id>
</mixed-citation>
</ref>
<ref id="emmm201809266-bib-0034">
<mixed-citation publication-type="journal" id="emmm201809266-cit-0034">
<string-name>
<surname>Kasai</surname>
<given-names>A</given-names>
</string-name>
,
<string-name>
<surname>Shintani</surname>
<given-names>N</given-names>
</string-name>
,
<string-name>
<surname>Oda</surname>
<given-names>M</given-names>
</string-name>
,
<string-name>
<surname>Kakuda</surname>
<given-names>M</given-names>
</string-name>
,
<string-name>
<surname>Hashimoto</surname>
<given-names>H</given-names>
</string-name>
,
<string-name>
<surname>Matsuda</surname>
<given-names>T</given-names>
</string-name>
,
<string-name>
<surname>Hinuma</surname>
<given-names>S</given-names>
</string-name>
,
<string-name>
<surname>Baba</surname>
<given-names>A</given-names>
</string-name>
(
<year>2004</year>
)
<article-title>Apelin is a novel angiogenic factor in retinal endothelial cells</article-title>
.
<source xml:lang="en">Biochem Biophys Res Comm</source>
<volume>325</volume>
:
<fpage>395</fpage>
<lpage>400</lpage>
<pub-id pub-id-type="pmid">15530405</pub-id>
</mixed-citation>
</ref>
<ref id="emmm201809266-bib-0035">
<mixed-citation publication-type="journal" id="emmm201809266-cit-0035">
<string-name>
<surname>Kasai</surname>
<given-names>A</given-names>
</string-name>
,
<string-name>
<surname>Ishimaru</surname>
<given-names>Y</given-names>
</string-name>
,
<string-name>
<surname>Kinjo</surname>
<given-names>T</given-names>
</string-name>
,
<string-name>
<surname>Satooka</surname>
<given-names>T</given-names>
</string-name>
,
<string-name>
<surname>Matsumoto</surname>
<given-names>N</given-names>
</string-name>
,
<string-name>
<surname>Yoshioka</surname>
<given-names>Y</given-names>
</string-name>
,
<string-name>
<surname>Yamamuro</surname>
<given-names>A</given-names>
</string-name>
,
<string-name>
<surname>Gomi</surname>
<given-names>F</given-names>
</string-name>
,
<string-name>
<surname>Shintani</surname>
<given-names>N</given-names>
</string-name>
,
<string-name>
<surname>Baba</surname>
<given-names>A</given-names>
</string-name>
<italic>et al</italic>
(
<year>2010</year>
)
<article-title>Apelin is a crucial factor for hypoxia‐induced retinal angiogenesis</article-title>
.
<source xml:lang="en">Arterioscler Thromb Vasc Biol</source>
<volume>30</volume>
:
<fpage>2182</fpage>
<lpage>2187</lpage>
<pub-id pub-id-type="pmid">20705920</pub-id>
</mixed-citation>
</ref>
<ref id="emmm201809266-bib-0036">
<mixed-citation publication-type="journal" id="emmm201809266-cit-0036">
<string-name>
<surname>Kidoya</surname>
<given-names>H</given-names>
</string-name>
,
<string-name>
<surname>Ueno</surname>
<given-names>M</given-names>
</string-name>
,
<string-name>
<surname>Yamada</surname>
<given-names>Y</given-names>
</string-name>
,
<string-name>
<surname>Mochizuki</surname>
<given-names>N</given-names>
</string-name>
,
<string-name>
<surname>Nakata</surname>
<given-names>M</given-names>
</string-name>
,
<string-name>
<surname>Yano</surname>
<given-names>T</given-names>
</string-name>
,
<string-name>
<surname>Fujii</surname>
<given-names>R</given-names>
</string-name>
,
<string-name>
<surname>Takakura</surname>
<given-names>N</given-names>
</string-name>
(
<year>2008</year>
)
<article-title>Spatial and temporal role of the apelin/APJ system in the caliber size regulation of blood vessels during angiogenesis</article-title>
.
<source xml:lang="en">EMBO J</source>
<volume>27</volume>
:
<fpage>522</fpage>
<lpage>534</lpage>
<pub-id pub-id-type="pmid">18200044</pub-id>
</mixed-citation>
</ref>
<ref id="emmm201809266-bib-0037">
<mixed-citation publication-type="journal" id="emmm201809266-cit-0037">
<string-name>
<surname>Kidoya</surname>
<given-names>H</given-names>
</string-name>
,
<string-name>
<surname>Takakura</surname>
<given-names>N</given-names>
</string-name>
(
<year>2012</year>
)
<article-title>Biology of the apelin‐APJ axis in vascular formation</article-title>
.
<source xml:lang="en">J Biochem</source>
<volume>152</volume>
:
<fpage>125</fpage>
<lpage>131</lpage>
<pub-id pub-id-type="pmid">22745157</pub-id>
</mixed-citation>
</ref>
<ref id="emmm201809266-bib-0038">
<mixed-citation publication-type="journal" id="emmm201809266-cit-0038">
<string-name>
<surname>Kienast</surname>
<given-names>Y</given-names>
</string-name>
,
<string-name>
<surname>Klein</surname>
<given-names>C</given-names>
</string-name>
,
<string-name>
<surname>Scheuer</surname>
<given-names>W</given-names>
</string-name>
,
<string-name>
<surname>Raemsch</surname>
<given-names>R</given-names>
</string-name>
,
<string-name>
<surname>Lorenzon</surname>
<given-names>E</given-names>
</string-name>
,
<string-name>
<surname>Bernicke</surname>
<given-names>D</given-names>
</string-name>
,
<string-name>
<surname>Herting</surname>
<given-names>F</given-names>
</string-name>
,
<string-name>
<surname>Yu</surname>
<given-names>S</given-names>
</string-name>
,
<string-name>
<surname>The</surname>
<given-names>HH</given-names>
</string-name>
,
<string-name>
<surname>Martarello</surname>
<given-names>L</given-names>
</string-name>
<italic>et al</italic>
(
<year>2013</year>
)
<article-title>Ang‐2‐VEGF‐A CrossMab, a novel bispecific human IgG1 antibody blocking VEGF‐A and Ang‐2 functions simultaneously, mediates potent antitumor, antiangiogenic, and antimetastatic efficacy</article-title>
.
<source xml:lang="en">Clin Cancer Res</source>
<volume>19</volume>
:
<fpage>6730</fpage>
<lpage>6740</lpage>
<pub-id pub-id-type="pmid">24097868</pub-id>
</mixed-citation>
</ref>
<ref id="emmm201809266-bib-0039">
<mixed-citation publication-type="journal" id="emmm201809266-cit-0039">
<string-name>
<surname>Kim</surname>
<given-names>S</given-names>
</string-name>
,
<string-name>
<surname>Ding</surname>
<given-names>W</given-names>
</string-name>
,
<string-name>
<surname>Zhang</surname>
<given-names>L</given-names>
</string-name>
,
<string-name>
<surname>Tian</surname>
<given-names>W</given-names>
</string-name>
,
<string-name>
<surname>Chen</surname>
<given-names>S</given-names>
</string-name>
(
<year>2014</year>
)
<article-title>Clinical response to sunitinib as a multitargeted tyrosine‐kinase inhibitor (TKI) in solid cancers: a review of clinical trials</article-title>
.
<source xml:lang="en">Onco Targets Ther</source>
<volume>7</volume>
:
<fpage>719</fpage>
<lpage>728</lpage>
<pub-id pub-id-type="pmid">24872713</pub-id>
</mixed-citation>
</ref>
<ref id="emmm201809266-bib-0040">
<mixed-citation publication-type="journal" id="emmm201809266-cit-0040">
<string-name>
<surname>Koh</surname>
<given-names>YJ</given-names>
</string-name>
,
<string-name>
<surname>Kim</surname>
<given-names>H‐Z</given-names>
</string-name>
,
<string-name>
<surname>Hwang</surname>
<given-names>S‐I</given-names>
</string-name>
,
<string-name>
<surname>Lee</surname>
<given-names>JE</given-names>
</string-name>
,
<string-name>
<surname>Oh</surname>
<given-names>N</given-names>
</string-name>
,
<string-name>
<surname>Jung</surname>
<given-names>K</given-names>
</string-name>
,
<string-name>
<surname>Kim</surname>
<given-names>M</given-names>
</string-name>
,
<string-name>
<surname>Kim</surname>
<given-names>KE</given-names>
</string-name>
,
<string-name>
<surname>Kim</surname>
<given-names>H</given-names>
</string-name>
,
<string-name>
<surname>Lim</surname>
<given-names>N‐K</given-names>
</string-name>
<italic>et al</italic>
(
<year>2010</year>
)
<article-title>Double antiangiogenic protein, DAAP, targeting VEGF‐A and angiopoietins in tumor angiogenesis, metastasis, and vascular leakage</article-title>
.
<source xml:lang="en">Cancer Cell</source>
<volume>18</volume>
:
<fpage>171</fpage>
<lpage>184</lpage>
<pub-id pub-id-type="pmid">20708158</pub-id>
</mixed-citation>
</ref>
<ref id="emmm201809266-bib-0041">
<mixed-citation publication-type="journal" id="emmm201809266-cit-0041">
<string-name>
<surname>Kuba</surname>
<given-names>K</given-names>
</string-name>
,
<string-name>
<surname>Zhang</surname>
<given-names>L</given-names>
</string-name>
,
<string-name>
<surname>Imai</surname>
<given-names>Y</given-names>
</string-name>
,
<string-name>
<surname>Arab</surname>
<given-names>S</given-names>
</string-name>
,
<string-name>
<surname>Chen</surname>
<given-names>M</given-names>
</string-name>
,
<string-name>
<surname>Maekawa</surname>
<given-names>Y</given-names>
</string-name>
,
<string-name>
<surname>Leschnik</surname>
<given-names>M</given-names>
</string-name>
,
<string-name>
<surname>Leibbrandt</surname>
<given-names>A</given-names>
</string-name>
,
<string-name>
<surname>Markovic</surname>
<given-names>M</given-names>
</string-name>
,
<string-name>
<surname>Schwaighofer</surname>
<given-names>J</given-names>
</string-name>
<italic>et al</italic>
(
<year>2007</year>
)
<article-title>Impaired heart contractility in Apelin gene deficient mice associated with aging and pressure overload</article-title>
.
<source xml:lang="en">Circ Res</source>
<volume>101</volume>
:
<fpage>e32</fpage>
<lpage>e42</lpage>
<pub-id pub-id-type="pmid">17673668</pub-id>
</mixed-citation>
</ref>
<ref id="emmm201809266-bib-0042">
<mixed-citation publication-type="journal" id="emmm201809266-cit-0042">
<string-name>
<surname>Lee</surname>
<given-names>DK</given-names>
</string-name>
,
<string-name>
<surname>Saldivia</surname>
<given-names>VR</given-names>
</string-name>
,
<string-name>
<surname>Nguyen</surname>
<given-names>T</given-names>
</string-name>
,
<string-name>
<surname>Cheng</surname>
<given-names>R</given-names>
</string-name>
,
<string-name>
<surname>George</surname>
<given-names>SR</given-names>
</string-name>
,
<string-name>
<surname>O'Dowd</surname>
<given-names>BF</given-names>
</string-name>
(
<year>2005</year>
)
<article-title>Modification of the terminal residue of apelin‐13 antagonizes its hypotensive action</article-title>
.
<source xml:lang="en">Endocrinology</source>
<volume>146</volume>
:
<fpage>231</fpage>
<lpage>236</lpage>
<pub-id pub-id-type="pmid">15486224</pub-id>
</mixed-citation>
</ref>
<ref id="emmm201809266-bib-0043">
<mixed-citation publication-type="journal" id="emmm201809266-cit-0043">
<string-name>
<surname>Leite de Oliveira</surname>
<given-names>R</given-names>
</string-name>
,
<string-name>
<surname>Deschoemaeker</surname>
<given-names>S</given-names>
</string-name>
,
<string-name>
<surname>Henze</surname>
<given-names>A‐T</given-names>
</string-name>
,
<string-name>
<surname>Debackere</surname>
<given-names>K</given-names>
</string-name>
,
<string-name>
<surname>Finisguerra</surname>
<given-names>V</given-names>
</string-name>
,
<string-name>
<surname>Takeda</surname>
<given-names>Y</given-names>
</string-name>
,
<string-name>
<surname>Roncal</surname>
<given-names>C</given-names>
</string-name>
,
<string-name>
<surname>Dettori</surname>
<given-names>D</given-names>
</string-name>
,
<string-name>
<surname>Tack</surname>
<given-names>E</given-names>
</string-name>
,
<string-name>
<surname>Jönsson</surname>
<given-names>Y</given-names>
</string-name>
<italic>et al</italic>
(
<year>2012</year>
)
<article-title>Gene‐targeting of Phd2 improves tumor response to chemotherapy and prevents side‐toxicity</article-title>
.
<source xml:lang="en">Cancer Cell</source>
<volume>22</volume>
:
<fpage>263</fpage>
<lpage>277</lpage>
<pub-id pub-id-type="pmid">22897855</pub-id>
</mixed-citation>
</ref>
<ref id="emmm201809266-bib-0044">
<mixed-citation publication-type="journal" id="emmm201809266-cit-0044">
<string-name>
<surname>Liu</surname>
<given-names>Q</given-names>
</string-name>
,
<string-name>
<surname>Hu</surname>
<given-names>T</given-names>
</string-name>
,
<string-name>
<surname>He</surname>
<given-names>L</given-names>
</string-name>
,
<string-name>
<surname>Huang</surname>
<given-names>X</given-names>
</string-name>
,
<string-name>
<surname>Tian</surname>
<given-names>X</given-names>
</string-name>
,
<string-name>
<surname>Zhang</surname>
<given-names>H</given-names>
</string-name>
,
<string-name>
<surname>He</surname>
<given-names>L</given-names>
</string-name>
,
<string-name>
<surname>Pu</surname>
<given-names>W</given-names>
</string-name>
,
<string-name>
<surname>Zhang</surname>
<given-names>L</given-names>
</string-name>
,
<string-name>
<surname>Sun</surname>
<given-names>H</given-names>
</string-name>
<italic>et al</italic>
(
<year>2015</year>
)
<article-title>Genetic targeting of sprouting angiogenesis using Apln‐CreER</article-title>
.
<source xml:lang="en">Nat Commun</source>
<volume>6</volume>
:
<fpage>6020</fpage>
<pub-id pub-id-type="pmid">25597280</pub-id>
</mixed-citation>
</ref>
<ref id="emmm201809266-bib-0045">
<mixed-citation publication-type="journal" id="emmm201809266-cit-0045">
<string-name>
<surname>Loo</surname>
<given-names>JM</given-names>
</string-name>
,
<string-name>
<surname>Scherl</surname>
<given-names>A</given-names>
</string-name>
,
<string-name>
<surname>Nguyen</surname>
<given-names>A</given-names>
</string-name>
,
<string-name>
<surname>Man</surname>
<given-names>FY</given-names>
</string-name>
,
<string-name>
<surname>Weinberg</surname>
<given-names>E</given-names>
</string-name>
,
<string-name>
<surname>Zeng</surname>
<given-names>Z</given-names>
</string-name>
,
<string-name>
<surname>Saltz</surname>
<given-names>L</given-names>
</string-name>
,
<string-name>
<surname>Paty</surname>
<given-names>PB</given-names>
</string-name>
,
<string-name>
<surname>Tavazoie</surname>
<given-names>SF</given-names>
</string-name>
(
<year>2015</year>
)
<article-title>Extracellular metabolic energetics can promote cancer progression</article-title>
.
<source xml:lang="en">Cell</source>
<volume>160</volume>
:
<fpage>393</fpage>
<lpage>406</lpage>
<pub-id pub-id-type="pmid">25601461</pub-id>
</mixed-citation>
</ref>
<ref id="emmm201809266-bib-0046">
<mixed-citation publication-type="journal" id="emmm201809266-cit-0046">
<string-name>
<surname>Lucchini</surname>
<given-names>F</given-names>
</string-name>
,
<string-name>
<surname>Sacco</surname>
<given-names>MG</given-names>
</string-name>
,
<string-name>
<surname>Hu</surname>
<given-names>N</given-names>
</string-name>
,
<string-name>
<surname>Villa</surname>
<given-names>A</given-names>
</string-name>
,
<string-name>
<surname>Brown</surname>
<given-names>J</given-names>
</string-name>
,
<string-name>
<surname>Cesano</surname>
<given-names>L</given-names>
</string-name>
,
<string-name>
<surname>Mangiarini</surname>
<given-names>L</given-names>
</string-name>
,
<string-name>
<surname>Rindi</surname>
<given-names>G</given-names>
</string-name>
,
<string-name>
<surname>Kindl</surname>
<given-names>S</given-names>
</string-name>
,
<string-name>
<surname>Sessa</surname>
<given-names>F</given-names>
</string-name>
(
<year>1992</year>
)
<article-title>Early and multifocal tumors in breast, salivary, harderian and epididymal tissues developed in MMTY‐Neu transgenic mice</article-title>
.
<source xml:lang="en">Cancer Lett</source>
<volume>64</volume>
:
<fpage>203</fpage>
<lpage>209</lpage>
<pub-id pub-id-type="pmid">1322235</pub-id>
</mixed-citation>
</ref>
<ref id="emmm201809266-bib-0047">
<mixed-citation publication-type="journal" id="emmm201809266-cit-0047">
<string-name>
<surname>Macaluso</surname>
<given-names>NJM</given-names>
</string-name>
,
<string-name>
<surname>Pitkin</surname>
<given-names>SL</given-names>
</string-name>
,
<string-name>
<surname>Maguire</surname>
<given-names>JJ</given-names>
</string-name>
,
<string-name>
<surname>Davenport</surname>
<given-names>AP</given-names>
</string-name>
,
<string-name>
<surname>Glen</surname>
<given-names>RC</given-names>
</string-name>
(
<year>2011</year>
)
<article-title>Discovery of a competitive apelin receptor (APJ) antagonist</article-title>
.
<source xml:lang="en">ChemMedChem</source>
<volume>6</volume>
:
<fpage>1017</fpage>
<lpage>1023</lpage>
<pub-id pub-id-type="pmid">21560248</pub-id>
</mixed-citation>
</ref>
<ref id="emmm201809266-bib-0048">
<mixed-citation publication-type="journal" id="emmm201809266-cit-0048">
<string-name>
<surname>Maes</surname>
<given-names>H</given-names>
</string-name>
,
<string-name>
<surname>Kuchnio</surname>
<given-names>A</given-names>
</string-name>
,
<string-name>
<surname>Peric</surname>
<given-names>A</given-names>
</string-name>
,
<string-name>
<surname>Moens</surname>
<given-names>S</given-names>
</string-name>
,
<string-name>
<surname>Nys</surname>
<given-names>K</given-names>
</string-name>
,
<string-name>
<surname>De Bock</surname>
<given-names>K</given-names>
</string-name>
,
<string-name>
<surname>Quaegebeur</surname>
<given-names>A</given-names>
</string-name>
,
<string-name>
<surname>Schoors</surname>
<given-names>S</given-names>
</string-name>
,
<string-name>
<surname>Georgiadou</surname>
<given-names>M</given-names>
</string-name>
,
<string-name>
<surname>Wouters</surname>
<given-names>J</given-names>
</string-name>
<italic>et al</italic>
(
<year>2014</year>
)
<article-title>Tumor vessel normalization by chloroquine independent of autophagy</article-title>
.
<source xml:lang="en">Cancer Cell</source>
<volume>26</volume>
:
<fpage>190</fpage>
<lpage>206</lpage>
<pub-id pub-id-type="pmid">25117709</pub-id>
</mixed-citation>
</ref>
<ref id="emmm201809266-bib-0049">
<mixed-citation publication-type="journal" id="emmm201809266-cit-0049">
<string-name>
<surname>Marvel</surname>
<given-names>D</given-names>
</string-name>
,
<string-name>
<surname>Gabrilovich</surname>
<given-names>DI</given-names>
</string-name>
(
<year>2015</year>
)
<article-title>Myeloid‐derived suppressor cells in the tumor microenvironment: expect the unexpected</article-title>
.
<source xml:lang="en">J Clin Invest</source>
<volume>125</volume>
:
<fpage>3356</fpage>
<lpage>3364</lpage>
<pub-id pub-id-type="pmid">26168215</pub-id>
</mixed-citation>
</ref>
<ref id="emmm201809266-bib-0050">
<mixed-citation publication-type="journal" id="emmm201809266-cit-0050">
<string-name>
<surname>Mastrella</surname>
<given-names>G</given-names>
</string-name>
,
<string-name>
<surname>Hou</surname>
<given-names>M</given-names>
</string-name>
,
<string-name>
<surname>Li</surname>
<given-names>M</given-names>
</string-name>
,
<string-name>
<surname>Stoecklein</surname>
<given-names>VM</given-names>
</string-name>
,
<string-name>
<surname>Zdouc</surname>
<given-names>N</given-names>
</string-name>
,
<string-name>
<surname>Volmar</surname>
<given-names>MNM</given-names>
</string-name>
,
<string-name>
<surname>Miletic</surname>
<given-names>H</given-names>
</string-name>
,
<string-name>
<surname>Reinhard</surname>
<given-names>S</given-names>
</string-name>
,
<string-name>
<surname>Herold‐Mende</surname>
<given-names>CC</given-names>
</string-name>
,
<string-name>
<surname>Kleber</surname>
<given-names>S</given-names>
</string-name>
<italic>et al</italic>
(
<year>2019</year>
)
<article-title>Targeting APLN/APLNR improves antiangiogenic efficiency and blunts pro‐invasive side effects of VEGFA/VEGFR2 blockade in glioblastoma</article-title>
.
<source xml:lang="en">Can Res</source>
<volume>79</volume>
:
<fpage>2298</fpage>
<lpage>2313</lpage>
</mixed-citation>
</ref>
<ref id="emmm201809266-bib-0051">
<mixed-citation publication-type="journal" id="emmm201809266-cit-0051">
<string-name>
<surname>Mauceri</surname>
<given-names>HJ</given-names>
</string-name>
,
<string-name>
<surname>Hanna</surname>
<given-names>NN</given-names>
</string-name>
,
<string-name>
<surname>Beckett</surname>
<given-names>MA</given-names>
</string-name>
,
<string-name>
<surname>Gorski</surname>
<given-names>DH</given-names>
</string-name>
,
<string-name>
<surname>Staba</surname>
<given-names>MJ</given-names>
</string-name>
,
<string-name>
<surname>Stellato</surname>
<given-names>KA</given-names>
</string-name>
,
<string-name>
<surname>Bigelow</surname>
<given-names>K</given-names>
</string-name>
,
<string-name>
<surname>Heimann</surname>
<given-names>R</given-names>
</string-name>
,
<string-name>
<surname>Gately</surname>
<given-names>S</given-names>
</string-name>
,
<string-name>
<surname>Dhanabal</surname>
<given-names>M</given-names>
</string-name>
<italic>et al</italic>
(
<year>1998</year>
)
<article-title>Combined effects of angiostatin and ionizing radiation in antitumour therapy</article-title>
.
<source xml:lang="en">Nature</source>
<volume>394</volume>
:
<fpage>287</fpage>
<lpage>291</lpage>
<pub-id pub-id-type="pmid">9685160</pub-id>
</mixed-citation>
</ref>
<ref id="emmm201809266-bib-0052">
<mixed-citation publication-type="journal" id="emmm201809266-cit-0052">
<string-name>
<surname>Mazzone</surname>
<given-names>M</given-names>
</string-name>
,
<string-name>
<surname>Dettori</surname>
<given-names>D</given-names>
</string-name>
,
<string-name>
<surname>Leite de Oliveira</surname>
<given-names>R</given-names>
</string-name>
,
<string-name>
<surname>Loges</surname>
<given-names>S</given-names>
</string-name>
,
<string-name>
<surname>Schmidt</surname>
<given-names>T</given-names>
</string-name>
,
<string-name>
<surname>Jonckx</surname>
<given-names>B</given-names>
</string-name>
,
<string-name>
<surname>Tian</surname>
<given-names>Y‐M</given-names>
</string-name>
,
<string-name>
<surname>Lanahan</surname>
<given-names>AA</given-names>
</string-name>
,
<string-name>
<surname>Pollard</surname>
<given-names>P</given-names>
</string-name>
,
<string-name>
<surname>Ruiz de Almodovar</surname>
<given-names>C</given-names>
</string-name>
<italic>et al</italic>
(
<year>2009</year>
)
<article-title>Heterozygous deficiency of PHD2 restores tumor oxygenation and inhibits metastasis via endothelial normalization</article-title>
.
<source xml:lang="en">Cell</source>
<volume>136</volume>
:
<fpage>839</fpage>
<lpage>851</lpage>
<pub-id pub-id-type="pmid">19217150</pub-id>
</mixed-citation>
</ref>
<ref id="emmm201809266-bib-0053">
<mixed-citation publication-type="journal" id="emmm201809266-cit-0053">
<string-name>
<surname>Medhurst</surname>
<given-names>AD</given-names>
</string-name>
,
<string-name>
<surname>Jennings</surname>
<given-names>CA</given-names>
</string-name>
,
<string-name>
<surname>Robbins</surname>
<given-names>MJ</given-names>
</string-name>
,
<string-name>
<surname>Davis</surname>
<given-names>RP</given-names>
</string-name>
,
<string-name>
<surname>Ellis</surname>
<given-names>C</given-names>
</string-name>
,
<string-name>
<surname>Winborn</surname>
<given-names>KY</given-names>
</string-name>
,
<string-name>
<surname>Lawrie</surname>
<given-names>KWM</given-names>
</string-name>
,
<string-name>
<surname>Hervieu</surname>
<given-names>G</given-names>
</string-name>
,
<string-name>
<surname>Riley</surname>
<given-names>G</given-names>
</string-name>
,
<string-name>
<surname>Bolaky</surname>
<given-names>JE</given-names>
</string-name>
<italic>et al</italic>
(
<year>2003</year>
)
<article-title>Pharmacological and immunohistochemical characterization of the APJ receptor and its endogenous ligand apelin</article-title>
.
<source xml:lang="en">J Neurochem</source>
<volume>84</volume>
:
<fpage>1162</fpage>
<lpage>1172</lpage>
<pub-id pub-id-type="pmid">12603839</pub-id>
</mixed-citation>
</ref>
<ref id="emmm201809266-bib-0054">
<mixed-citation publication-type="journal" id="emmm201809266-cit-0054">
<string-name>
<surname>Mizuno</surname>
<given-names>H</given-names>
</string-name>
,
<string-name>
<surname>Kitada</surname>
<given-names>K</given-names>
</string-name>
,
<string-name>
<surname>Nakai</surname>
<given-names>K</given-names>
</string-name>
,
<string-name>
<surname>Sarai</surname>
<given-names>A</given-names>
</string-name>
(
<year>2009</year>
)
<article-title>PrognoScan: a new database for meta‐analysis of the prognostic value of genes</article-title>
.
<source xml:lang="en">BMC Med Genomics</source>
<volume>2</volume>
:
<fpage>18</fpage>
<pub-id pub-id-type="pmid">19393097</pub-id>
</mixed-citation>
</ref>
<ref id="emmm201809266-bib-0055">
<mixed-citation publication-type="journal" id="emmm201809266-cit-0055">
<string-name>
<surname>Muller</surname>
<given-names>WJ</given-names>
</string-name>
,
<string-name>
<surname>Sinn</surname>
<given-names>E</given-names>
</string-name>
,
<string-name>
<surname>Pattengale</surname>
<given-names>PK</given-names>
</string-name>
,
<string-name>
<surname>Wallace</surname>
<given-names>R</given-names>
</string-name>
,
<string-name>
<surname>Leder</surname>
<given-names>P</given-names>
</string-name>
(
<year>1988</year>
)
<article-title>Single‐step induction of mammary adenocarcinoma in transgenic mice bearing the activated c‐neu oncogene</article-title>
.
<source xml:lang="en">Cell</source>
<volume>54</volume>
:
<fpage>105</fpage>
<lpage>115</lpage>
<pub-id pub-id-type="pmid">2898299</pub-id>
</mixed-citation>
</ref>
<ref id="emmm201809266-bib-0056">
<mixed-citation publication-type="journal" id="emmm201809266-cit-0056">
<string-name>
<surname>Olive</surname>
<given-names>PL</given-names>
</string-name>
,
<string-name>
<surname>Aquino‐Parsons</surname>
<given-names>C</given-names>
</string-name>
,
<string-name>
<surname>MacPhail</surname>
<given-names>SH</given-names>
</string-name>
,
<string-name>
<surname>Liao</surname>
<given-names>SY</given-names>
</string-name>
,
<string-name>
<surname>Raleigh</surname>
<given-names>JA</given-names>
</string-name>
,
<string-name>
<surname>Lerman</surname>
<given-names>MI</given-names>
</string-name>
,
<string-name>
<surname>Stanbridge</surname>
<given-names>EJ</given-names>
</string-name>
(
<year>2001</year>
)
<article-title>Carbonic anhydrase 9 as an endogenous marker for hypoxic cells in cervical cancer</article-title>
.
<source xml:lang="en">Can Res</source>
<volume>61</volume>
:
<fpage>8924</fpage>
<lpage>8929</lpage>
</mixed-citation>
</ref>
<ref id="emmm201809266-bib-0057">
<mixed-citation publication-type="journal" id="emmm201809266-cit-0057">
<string-name>
<surname>Pàez‐Ribes</surname>
<given-names>M</given-names>
</string-name>
,
<string-name>
<surname>Allen</surname>
<given-names>E</given-names>
</string-name>
,
<string-name>
<surname>Hudock</surname>
<given-names>J</given-names>
</string-name>
,
<string-name>
<surname>Takeda</surname>
<given-names>T</given-names>
</string-name>
,
<string-name>
<surname>Okuyama</surname>
<given-names>H</given-names>
</string-name>
,
<string-name>
<surname>Viñals</surname>
<given-names>F</given-names>
</string-name>
,
<string-name>
<surname>Inoue</surname>
<given-names>M</given-names>
</string-name>
,
<string-name>
<surname>Bergers</surname>
<given-names>G</given-names>
</string-name>
,
<string-name>
<surname>Hanahan</surname>
<given-names>D</given-names>
</string-name>
,
<string-name>
<surname>Casanovas</surname>
<given-names>O</given-names>
</string-name>
(
<year>2009</year>
)
<article-title>Antiangiogenic therapy elicits malignant progression of tumors to increased local invasion and distant metastasis</article-title>
.
<source xml:lang="en">Cancer Cell</source>
<volume>15</volume>
:
<fpage>220</fpage>
<lpage>231</lpage>
<pub-id pub-id-type="pmid">19249680</pub-id>
</mixed-citation>
</ref>
<ref id="emmm201809266-bib-0058">
<mixed-citation publication-type="journal" id="emmm201809266-cit-0058">
<string-name>
<surname>Park</surname>
<given-names>J‐S</given-names>
</string-name>
,
<string-name>
<surname>Kim</surname>
<given-names>I‐K</given-names>
</string-name>
,
<string-name>
<surname>Han</surname>
<given-names>S</given-names>
</string-name>
,
<string-name>
<surname>Park</surname>
<given-names>I</given-names>
</string-name>
,
<string-name>
<surname>Kim</surname>
<given-names>C</given-names>
</string-name>
,
<string-name>
<surname>Bae</surname>
<given-names>J</given-names>
</string-name>
,
<string-name>
<surname>Oh</surname>
<given-names>SJ</given-names>
</string-name>
,
<string-name>
<surname>Lee</surname>
<given-names>S</given-names>
</string-name>
,
<string-name>
<surname>Kim</surname>
<given-names>JH</given-names>
</string-name>
,
<string-name>
<surname>Woo</surname>
<given-names>D‐C</given-names>
</string-name>
<italic>et al</italic>
(
<year>2017</year>
)
<article-title>Normalization of tumor vessels by Tie2 activation and Ang2 inhibition enhances drug delivery and produces a favorable tumor microenvironment</article-title>
.
<source xml:lang="en">Cancer Cell</source>
<volume>31</volume>
:
<fpage>157</fpage>
<lpage>158</lpage>
<pub-id pub-id-type="pmid">28073001</pub-id>
</mixed-citation>
</ref>
<ref id="emmm201809266-bib-0059">
<mixed-citation publication-type="journal" id="emmm201809266-cit-0059">
<string-name>
<surname>Pauli</surname>
<given-names>A</given-names>
</string-name>
,
<string-name>
<surname>Norris</surname>
<given-names>ML</given-names>
</string-name>
,
<string-name>
<surname>Valen</surname>
<given-names>E</given-names>
</string-name>
,
<string-name>
<surname>Chew</surname>
<given-names>G‐L</given-names>
</string-name>
,
<string-name>
<surname>Gagnon</surname>
<given-names>JA</given-names>
</string-name>
,
<string-name>
<surname>Zimmerman</surname>
<given-names>S</given-names>
</string-name>
,
<string-name>
<surname>Mitchell</surname>
<given-names>A</given-names>
</string-name>
,
<string-name>
<surname>Ma</surname>
<given-names>J</given-names>
</string-name>
,
<string-name>
<surname>Dubrulle</surname>
<given-names>J</given-names>
</string-name>
,
<string-name>
<surname>Reyon</surname>
<given-names>D</given-names>
</string-name>
<italic>et al</italic>
(
<year>2014</year>
)
<article-title>Toddler: an embryonic signal that promotes cell movement via Apelin receptors</article-title>
.
<source xml:lang="en">Science</source>
<volume>343</volume>
:
<fpage>1248636</fpage>
<pub-id pub-id-type="pmid">24407481</pub-id>
</mixed-citation>
</ref>
<ref id="emmm201809266-bib-0060">
<mixed-citation publication-type="journal" id="emmm201809266-cit-0060">
<string-name>
<surname>Picelli</surname>
<given-names>S</given-names>
</string-name>
,
<string-name>
<surname>Faridani</surname>
<given-names>OR</given-names>
</string-name>
,
<string-name>
<surname>Björklund</surname>
<given-names>AK</given-names>
</string-name>
,
<string-name>
<surname>Winberg</surname>
<given-names>G</given-names>
</string-name>
,
<string-name>
<surname>Sagasser</surname>
<given-names>S</given-names>
</string-name>
,
<string-name>
<surname>Sandberg</surname>
<given-names>R</given-names>
</string-name>
(
<year>2014</year>
)
<article-title>Full‐length RNA‐seq from single cells using Smart‐seq2</article-title>
.
<source xml:lang="en">Nat Protoc</source>
<volume>9</volume>
:
<fpage>171</fpage>
<lpage>181</lpage>
<pub-id pub-id-type="pmid">24385147</pub-id>
</mixed-citation>
</ref>
<ref id="emmm201809266-bib-0061">
<mixed-citation publication-type="journal" id="emmm201809266-cit-0061">
<string-name>
<surname>Potente</surname>
<given-names>M</given-names>
</string-name>
,
<string-name>
<surname>Gerhardt</surname>
<given-names>H</given-names>
</string-name>
,
<string-name>
<surname>Carmeliet</surname>
<given-names>P</given-names>
</string-name>
(
<year>2011</year>
)
<article-title>Basic and therapeutic aspects of angiogenesis</article-title>
.
<source xml:lang="en">Cell</source>
<volume>146</volume>
:
<fpage>873</fpage>
<lpage>887</lpage>
<pub-id pub-id-type="pmid">21925313</pub-id>
</mixed-citation>
</ref>
<ref id="emmm201809266-bib-0062">
<mixed-citation publication-type="journal" id="emmm201809266-cit-0062">
<string-name>
<surname>Rigamonti</surname>
<given-names>N</given-names>
</string-name>
,
<string-name>
<surname>Kadioglu</surname>
<given-names>E</given-names>
</string-name>
,
<string-name>
<surname>Keklikoglou</surname>
<given-names>I</given-names>
</string-name>
,
<string-name>
<surname>Wyser Rmili</surname>
<given-names>C</given-names>
</string-name>
,
<string-name>
<surname>Leow</surname>
<given-names>CC</given-names>
</string-name>
,
<string-name>
<surname>De Palma</surname>
<given-names>M</given-names>
</string-name>
(
<year>2014</year>
)
<article-title>Role of angiopoietin‐2 in adaptive tumor resistance to VEGF signaling blockade</article-title>
.
<source xml:lang="en">Cell Rep</source>
<volume>8</volume>
:
<fpage>696</fpage>
<lpage>706</lpage>
<pub-id pub-id-type="pmid">25088418</pub-id>
</mixed-citation>
</ref>
<ref id="emmm201809266-bib-0063">
<mixed-citation publication-type="journal" id="emmm201809266-cit-0063">
<string-name>
<surname>Rivera</surname>
<given-names>LB</given-names>
</string-name>
,
<string-name>
<surname>Bergers</surname>
<given-names>G</given-names>
</string-name>
(
<year>2015</year>
)
<article-title>CANCER. Tumor angiogenesis, from foe to friend</article-title>
.
<source xml:lang="en">Science</source>
<volume>349</volume>
:
<fpage>694</fpage>
<lpage>695</lpage>
<pub-id pub-id-type="pmid">26273044</pub-id>
</mixed-citation>
</ref>
<ref id="emmm201809266-bib-0064">
<mixed-citation publication-type="journal" id="emmm201809266-cit-0064">
<string-name>
<surname>Rock</surname>
<given-names>EP</given-names>
</string-name>
,
<string-name>
<surname>Goodman</surname>
<given-names>V</given-names>
</string-name>
,
<string-name>
<surname>Jiang</surname>
<given-names>JX</given-names>
</string-name>
,
<string-name>
<surname>Mahjoob</surname>
<given-names>K</given-names>
</string-name>
,
<string-name>
<surname>Verbois</surname>
<given-names>SL</given-names>
</string-name>
,
<string-name>
<surname>Morse</surname>
<given-names>D</given-names>
</string-name>
,
<string-name>
<surname>Dagher</surname>
<given-names>R</given-names>
</string-name>
,
<string-name>
<surname>Justice</surname>
<given-names>R</given-names>
</string-name>
,
<string-name>
<surname>Pazdur</surname>
<given-names>R</given-names>
</string-name>
(
<year>2007</year>
)
<article-title>Food and Drug Administration drug approval summary: Sunitinib malate for the treatment of gastrointestinal stromal tumor and advanced renal cell carcinoma</article-title>
.
<source xml:lang="en">Oncologist</source>
<volume>12</volume>
:
<fpage>107</fpage>
<lpage>113</lpage>
<pub-id pub-id-type="pmid">17227905</pub-id>
</mixed-citation>
</ref>
<ref id="emmm201809266-bib-0065">
<mixed-citation publication-type="journal" id="emmm201809266-cit-0065">
<string-name>
<surname>Rudmann</surname>
<given-names>D</given-names>
</string-name>
,
<string-name>
<surname>Cardiff</surname>
<given-names>R</given-names>
</string-name>
,
<string-name>
<surname>Chouinard</surname>
<given-names>L</given-names>
</string-name>
,
<string-name>
<surname>Goodman</surname>
<given-names>D</given-names>
</string-name>
,
<string-name>
<surname>Küttler</surname>
<given-names>K</given-names>
</string-name>
,
<string-name>
<surname>Marxfeld</surname>
<given-names>H</given-names>
</string-name>
,
<string-name>
<surname>Molinolo</surname>
<given-names>A</given-names>
</string-name>
,
<string-name>
<surname>Treumann</surname>
<given-names>S</given-names>
</string-name>
,
<string-name>
<surname>Yoshizawa</surname>
<given-names>K</given-names>
</string-name>
,
<collab collab-type="authors">INHAND Mammary, Zymbal's, Preputial, and Clitoral Gland Organ Working Group</collab>
(
<year>2012</year>
)
<article-title>Proliferative and nonproliferative lesions of the rat and mouse mammary, Zymbal's, preputial, and clitoral glands</article-title>
.
<source xml:lang="en">Toxicol Pathol</source>
<volume>40</volume>
:
<fpage>7S</fpage>
<lpage>39S</lpage>
</mixed-citation>
</ref>
<ref id="emmm201809266-bib-0066">
<mixed-citation publication-type="journal" id="emmm201809266-cit-0066">
<string-name>
<surname>Saint‐Geniez</surname>
<given-names>M</given-names>
</string-name>
,
<string-name>
<surname>Masri</surname>
<given-names>B</given-names>
</string-name>
,
<string-name>
<surname>Malecaze</surname>
<given-names>F</given-names>
</string-name>
,
<string-name>
<surname>Knibiehler</surname>
<given-names>B</given-names>
</string-name>
,
<string-name>
<surname>Audigier</surname>
<given-names>Y</given-names>
</string-name>
(
<year>2002</year>
)
<article-title>Expression of the murine msr/apj receptor and its ligand apelin is upregulated during formation of the retinal vessels</article-title>
.
<source xml:lang="en">Mech Dev</source>
<volume>110</volume>
:
<fpage>183</fpage>
<lpage>186</lpage>
<pub-id pub-id-type="pmid">11744380</pub-id>
</mixed-citation>
</ref>
<ref id="emmm201809266-bib-0067">
<mixed-citation publication-type="journal" id="emmm201809266-cit-0067">
<string-name>
<surname>Schmittnaegel</surname>
<given-names>M</given-names>
</string-name>
,
<string-name>
<surname>Rigamonti</surname>
<given-names>N</given-names>
</string-name>
,
<string-name>
<surname>Kadioglu</surname>
<given-names>E</given-names>
</string-name>
,
<string-name>
<surname>Cassará</surname>
<given-names>A</given-names>
</string-name>
,
<string-name>
<surname>Wyser Rmili</surname>
<given-names>C</given-names>
</string-name>
,
<string-name>
<surname>Kiialainen</surname>
<given-names>A</given-names>
</string-name>
,
<string-name>
<surname>Kienast</surname>
<given-names>Y</given-names>
</string-name>
,
<string-name>
<surname>Mueller</surname>
<given-names>H‐J</given-names>
</string-name>
,
<string-name>
<surname>Ooi</surname>
<given-names>C‐H</given-names>
</string-name>
,
<string-name>
<surname>Laoui</surname>
<given-names>D</given-names>
</string-name>
<italic>et al</italic>
(
<year>2017</year>
)
<article-title>Dual angiopoietin‐2 and VEGFA inhibition elicits antitumor immunity that is enhanced by PD‐1 checkpoint blockade</article-title>
.
<source xml:lang="en">Sci Transl Med</source>
<volume>9</volume>
:
<fpage>eaak9670</fpage>
<pub-id pub-id-type="pmid">28404865</pub-id>
</mixed-citation>
</ref>
<ref id="emmm201809266-bib-0068">
<mixed-citation publication-type="journal" id="emmm201809266-cit-0068">
<string-name>
<surname>Scholz</surname>
<given-names>A</given-names>
</string-name>
,
<string-name>
<surname>Harter</surname>
<given-names>PN</given-names>
</string-name>
,
<string-name>
<surname>Cremer</surname>
<given-names>S</given-names>
</string-name>
,
<string-name>
<surname>Yalcin</surname>
<given-names>BH</given-names>
</string-name>
,
<string-name>
<surname>Gurnik</surname>
<given-names>S</given-names>
</string-name>
,
<string-name>
<surname>Yamaji</surname>
<given-names>M</given-names>
</string-name>
,
<string-name>
<surname>Di Tacchio</surname>
<given-names>M</given-names>
</string-name>
,
<string-name>
<surname>Sommer</surname>
<given-names>K</given-names>
</string-name>
,
<string-name>
<surname>Baumgarten</surname>
<given-names>P</given-names>
</string-name>
,
<string-name>
<surname>Bähr</surname>
<given-names>O</given-names>
</string-name>
<italic>et al</italic>
(
<year>2016</year>
)
<article-title>Endothelial cell‐derived angiopoietin‐2 is a therapeutic target in treatment‐naive and bevacizumab‐resistant glioblastoma</article-title>
.
<source xml:lang="en">EMBO Mol Med</source>
<volume>8</volume>
:
<fpage>39</fpage>
<lpage>57</lpage>
<pub-id pub-id-type="pmid">26666269</pub-id>
</mixed-citation>
</ref>
<ref id="emmm201809266-bib-0069">
<mixed-citation publication-type="journal" id="emmm201809266-cit-0069">
<string-name>
<surname>Seaman</surname>
<given-names>S</given-names>
</string-name>
,
<string-name>
<surname>Stevens</surname>
<given-names>J</given-names>
</string-name>
,
<string-name>
<surname>Yang</surname>
<given-names>MY</given-names>
</string-name>
,
<string-name>
<surname>Logsdon</surname>
<given-names>D</given-names>
</string-name>
,
<string-name>
<surname>Graff‐Cherry</surname>
<given-names>C</given-names>
</string-name>
,
<string-name>
<surname>St Croix</surname>
<given-names>B</given-names>
</string-name>
(
<year>2007</year>
)
<article-title>Genes that distinguish physiological and pathological angiogenesis</article-title>
.
<source xml:lang="en">Cancer Cell</source>
<volume>11</volume>
:
<fpage>539</fpage>
<lpage>554</lpage>
<pub-id pub-id-type="pmid">17560335</pub-id>
</mixed-citation>
</ref>
<ref id="emmm201809266-bib-0070">
<mixed-citation publication-type="journal" id="emmm201809266-cit-0070">
<string-name>
<surname>Singh</surname>
<given-names>M</given-names>
</string-name>
,
<string-name>
<surname>Couto</surname>
<given-names>SS</given-names>
</string-name>
,
<string-name>
<surname>Forrest</surname>
<given-names>WF</given-names>
</string-name>
,
<string-name>
<surname>Lima</surname>
<given-names>A</given-names>
</string-name>
,
<string-name>
<surname>Cheng</surname>
<given-names>JH</given-names>
</string-name>
,
<string-name>
<surname>Molina</surname>
<given-names>R</given-names>
</string-name>
,
<string-name>
<surname>Long</surname>
<given-names>JE</given-names>
</string-name>
,
<string-name>
<surname>Hamilton</surname>
<given-names>P</given-names>
</string-name>
,
<string-name>
<surname>McNutt</surname>
<given-names>A</given-names>
</string-name>
,
<string-name>
<surname>Kasman</surname>
<given-names>I</given-names>
</string-name>
<italic>et al</italic>
(
<year>2012</year>
)
<article-title>Anti‐VEGF antibody therapy does not promote metastasis in genetically engineered mouse tumour models</article-title>
.
<source xml:lang="en">J Pathol</source>
<volume>227</volume>
:
<fpage>417</fpage>
<lpage>430</lpage>
<pub-id pub-id-type="pmid">22611036</pub-id>
</mixed-citation>
</ref>
<ref id="emmm201809266-bib-0071">
<mixed-citation publication-type="journal" id="emmm201809266-cit-0071">
<string-name>
<surname>Sorli</surname>
<given-names>SC</given-names>
</string-name>
,
<string-name>
<surname>Le Gonidec</surname>
<given-names>S</given-names>
</string-name>
,
<string-name>
<surname>Knibiehler</surname>
<given-names>B</given-names>
</string-name>
,
<string-name>
<surname>Audigier</surname>
<given-names>Y</given-names>
</string-name>
(
<year>2007</year>
)
<article-title>Apelin is a potent activator of tumour neoangiogenesis</article-title>
.
<source xml:lang="en">Oncogene</source>
<volume>26</volume>
:
<fpage>7692</fpage>
<lpage>7699</lpage>
<pub-id pub-id-type="pmid">17563744</pub-id>
</mixed-citation>
</ref>
<ref id="emmm201809266-bib-0072">
<mixed-citation publication-type="journal" id="emmm201809266-cit-0072">
<string-name>
<surname>Tatemoto</surname>
<given-names>K</given-names>
</string-name>
,
<string-name>
<surname>Hosoya</surname>
<given-names>M</given-names>
</string-name>
,
<string-name>
<surname>Habata</surname>
<given-names>Y</given-names>
</string-name>
,
<string-name>
<surname>Fujii</surname>
<given-names>R</given-names>
</string-name>
,
<string-name>
<surname>Kakegawa</surname>
<given-names>T</given-names>
</string-name>
,
<string-name>
<surname>Zou</surname>
<given-names>MX</given-names>
</string-name>
,
<string-name>
<surname>Kawamata</surname>
<given-names>Y</given-names>
</string-name>
,
<string-name>
<surname>Fukusumi</surname>
<given-names>S</given-names>
</string-name>
,
<string-name>
<surname>Hinuma</surname>
<given-names>S</given-names>
</string-name>
,
<string-name>
<surname>Kitada</surname>
<given-names>C</given-names>
</string-name>
<italic>et al</italic>
(
<year>1998</year>
)
<article-title>Isolation and characterization of a novel endogenous peptide ligand for the human APJ receptor</article-title>
.
<source xml:lang="en">Biochem Biophys Res Comm</source>
<volume>251</volume>
:
<fpage>471</fpage>
<lpage>476</lpage>
<pub-id pub-id-type="pmid">9792798</pub-id>
</mixed-citation>
</ref>
<ref id="emmm201809266-bib-0073">
<mixed-citation publication-type="journal" id="emmm201809266-cit-0073">
<string-name>
<surname>del Toro</surname>
<given-names>R</given-names>
</string-name>
,
<string-name>
<surname>Prahst</surname>
<given-names>C</given-names>
</string-name>
,
<string-name>
<surname>Mathivet</surname>
<given-names>T</given-names>
</string-name>
,
<string-name>
<surname>Siegfried</surname>
<given-names>G</given-names>
</string-name>
,
<string-name>
<surname>Kaminker</surname>
<given-names>JS</given-names>
</string-name>
,
<string-name>
<surname>Larrivee</surname>
<given-names>B</given-names>
</string-name>
,
<string-name>
<surname>Breant</surname>
<given-names>C</given-names>
</string-name>
,
<string-name>
<surname>Duarte</surname>
<given-names>A</given-names>
</string-name>
,
<string-name>
<surname>Takakura</surname>
<given-names>N</given-names>
</string-name>
,
<string-name>
<surname>Fukamizu</surname>
<given-names>A</given-names>
</string-name>
<italic>et al</italic>
(
<year>2010</year>
)
<article-title>Identification and functional analysis of endothelial tip cell‐enriched genes</article-title>
.
<source xml:lang="en">Blood</source>
<volume>116</volume>
:
<fpage>4025</fpage>
<lpage>4033</lpage>
<pub-id pub-id-type="pmid">20705756</pub-id>
</mixed-citation>
</ref>
<ref id="emmm201809266-bib-0074">
<mixed-citation publication-type="journal" id="emmm201809266-cit-0074">
<string-name>
<surname>Uribesalgo</surname>
<given-names>I</given-names>
</string-name>
,
<string-name>
<surname>Buschbeck</surname>
<given-names>M</given-names>
</string-name>
,
<string-name>
<surname>Gutiérrez</surname>
<given-names>A</given-names>
</string-name>
,
<string-name>
<surname>Teichmann</surname>
<given-names>S</given-names>
</string-name>
,
<string-name>
<surname>Demajo</surname>
<given-names>S</given-names>
</string-name>
,
<string-name>
<surname>Kuebler</surname>
<given-names>B</given-names>
</string-name>
,
<string-name>
<surname>Nomdedéu</surname>
<given-names>JF</given-names>
</string-name>
,
<string-name>
<surname>Martín‐Caballero</surname>
<given-names>J</given-names>
</string-name>
,
<string-name>
<surname>Roma</surname>
<given-names>G</given-names>
</string-name>
,
<string-name>
<surname>Benitah</surname>
<given-names>SA</given-names>
</string-name>
<italic>et al</italic>
(
<year>2011</year>
)
<article-title>E‐box‐independent regulation of transcription and differentiation by MYC</article-title>
.
<source xml:lang="en">Nat Cell Biol</source>
<volume>13</volume>
:
<fpage>1443</fpage>
<lpage>1449</lpage>
<pub-id pub-id-type="pmid">22020439</pub-id>
</mixed-citation>
</ref>
<ref id="emmm201809266-bib-0075">
<mixed-citation publication-type="journal" id="emmm201809266-cit-0075">
<string-name>
<surname>Varia</surname>
<given-names>MA</given-names>
</string-name>
,
<string-name>
<surname>Calkins‐Adams</surname>
<given-names>DP</given-names>
</string-name>
,
<string-name>
<surname>Rinker</surname>
<given-names>LH</given-names>
</string-name>
,
<string-name>
<surname>Kennedy</surname>
<given-names>AS</given-names>
</string-name>
,
<string-name>
<surname>Novotny</surname>
<given-names>DB</given-names>
</string-name>
,
<string-name>
<surname>Fowler</surname>
<given-names>WC</given-names>
</string-name>
,
<string-name>
<surname>Raleigh</surname>
<given-names>JA</given-names>
</string-name>
(
<year>1998</year>
)
<article-title>Pimonidazole: a novel hypoxia marker for complementary study of tumor hypoxia and cell proliferation in cervical carcinoma</article-title>
.
<source xml:lang="en">Gynecol Oncol</source>
<volume>71</volume>
:
<fpage>270</fpage>
<lpage>277</lpage>
<pub-id pub-id-type="pmid">9826471</pub-id>
</mixed-citation>
</ref>
<ref id="emmm201809266-bib-0076">
<mixed-citation publication-type="journal" id="emmm201809266-cit-0076">
<string-name>
<surname>Wang</surname>
<given-names>Z</given-names>
</string-name>
,
<string-name>
<surname>Greeley</surname>
<given-names>GH</given-names>
<suffix>Jr</suffix>
</string-name>
,
<string-name>
<surname>Qiu</surname>
<given-names>S</given-names>
</string-name>
(
<year>2007</year>
)
<article-title>Immunohistochemical localization of apelin in human normal breast and breast carcinoma</article-title>
.
<source xml:lang="en">J Mol Histol</source>
<volume>39</volume>
:
<fpage>121</fpage>
<lpage>124</lpage>
<pub-id pub-id-type="pmid">17823846</pub-id>
</mixed-citation>
</ref>
<ref id="emmm201809266-bib-0077">
<mixed-citation publication-type="journal" id="emmm201809266-cit-0077">
<string-name>
<surname>de Wilde</surname>
<given-names>RF</given-names>
</string-name>
,
<string-name>
<surname>Edil</surname>
<given-names>BH</given-names>
</string-name>
,
<string-name>
<surname>Hruban</surname>
<given-names>RH</given-names>
</string-name>
,
<string-name>
<surname>Maitra</surname>
<given-names>A</given-names>
</string-name>
(
<year>2012</year>
)
<article-title>Well‐differentiated pancreatic neuroendocrine tumors: from genetics to therapy</article-title>
.
<source xml:lang="en">Nat Rev Gastroenterol Hepatol</source>
<volume>9</volume>
:
<fpage>199</fpage>
<lpage>208</lpage>
<pub-id pub-id-type="pmid">22310917</pub-id>
</mixed-citation>
</ref>
<ref id="emmm201809266-bib-0078">
<mixed-citation publication-type="journal" id="emmm201809266-cit-0078">
<string-name>
<surname>Yang</surname>
<given-names>J</given-names>
</string-name>
,
<string-name>
<surname>Yan</surname>
<given-names>J</given-names>
</string-name>
,
<string-name>
<surname>Liu</surname>
<given-names>B</given-names>
</string-name>
(
<year>2018</year>
)
<article-title>Targeting VEGF/VEGFR to modulate antitumor immunity</article-title>
.
<source xml:lang="en">Front Immunol</source>
<volume>9</volume>
:
<fpage>978</fpage>
<pub-id pub-id-type="pmid">29774034</pub-id>
</mixed-citation>
</ref>
<ref id="emmm201809266-bib-0079">
<mixed-citation publication-type="journal" id="emmm201809266-cit-0079">
<string-name>
<surname>Zuurbier</surname>
<given-names>L</given-names>
</string-name>
,
<string-name>
<surname>Rahman</surname>
<given-names>A</given-names>
</string-name>
,
<string-name>
<surname>Cordes</surname>
<given-names>M</given-names>
</string-name>
,
<string-name>
<surname>Scheick</surname>
<given-names>J</given-names>
</string-name>
,
<string-name>
<surname>Wong</surname>
<given-names>TJ</given-names>
</string-name>
,
<string-name>
<surname>Rustenburg</surname>
<given-names>F</given-names>
</string-name>
,
<string-name>
<surname>Joseph</surname>
<given-names>JC</given-names>
</string-name>
,
<string-name>
<surname>Dynoodt</surname>
<given-names>P</given-names>
</string-name>
,
<string-name>
<surname>Casey</surname>
<given-names>R</given-names>
</string-name>
,
<string-name>
<surname>Drillenburg</surname>
<given-names>P</given-names>
</string-name>
<italic>et al</italic>
(
<year>2017</year>
)
<article-title>Apelin: a putative novel predictive biomarker for bevacizumab response in colorectal cancer</article-title>
.
<source xml:lang="en">Oncotarget</source>
<volume>8</volume>
:
<fpage>42949</fpage>
<lpage>42961</lpage>
<pub-id pub-id-type="pmid">28487489</pub-id>
</mixed-citation>
</ref>
</ref-list>
</back>
</pmc>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/ChloroquineV1/Data/Pmc/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 0005080 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Pmc/Corpus/biblio.hfd -nk 0005080 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    ChloroquineV1
   |flux=    Pmc
   |étape=   Corpus
   |type=    RBID
   |clé=     
   |texte=   
}}

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Wed Mar 25 22:43:59 2020. Site generation: Sun Jan 31 12:44:45 2021