Serveur d'exploration Chloroquine

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Synthesis of novel, DNA binding heterocyclic dehydroabietylamine derivatives as potential antiproliferative and apoptosis-inducing agents

Identifieur interne : 000495 ( Pmc/Corpus ); précédent : 000494; suivant : 000496

Synthesis of novel, DNA binding heterocyclic dehydroabietylamine derivatives as potential antiproliferative and apoptosis-inducing agents

Auteurs : Fengyi Zhao ; Xu Sun ; Wen Lu ; Li Xu ; Jiuzhou Shi ; Shilong Yang ; Mengyi Zhou ; Fan Su ; Feng Lin ; Fuliang Cao

Source :

RBID : PMC:7034089

Abstract

Abstract

Several dehydroabietylamine derivatives containing heterocyclic moieties such as thiophene and pyrazine ring were successfully synthesized. The antiproliferative activities of these thiophene-based Schiff-bases, thiophene amides, and pyrazine amides were investigated in vitro against Hela (cervix), MCF-7 (breast), A549 (lung), HepG2 (liver), and HUVEC (umbilical vein) cells by MTT assay. The toxicity of L1L10(IC50 = 5.92− >100 μM) was lower than L0(1.27 μM) and DOX (4.40 μM) in every case. Compound L1 had higher anti-HepG2 (0.66 μM), anti-MCF-7 (5.33 μM), and anti-A549 (2.11 μM) and compound L3 had higher anti-HepG2 (1.63 μM) and anti-MCF-7 (2.65 μM) activities. Both of these compounds were recognized with high efficiency in apoptosis induction in HepG2 cells and intercalated binding modes with DNA. Moreover, with average IC50 values of 0.66 and 5.98 μM, L1 was nine times more effective at suppressing cultured HepG2 cells viability than normal cells (SI = 9). The relative tumor proliferation rate (T/C) was 38.6%, the tumor inhibition rate was up to 61.2%, which indicated that L1 had no significant toxicity but high anti-HepG2 activity in vivo. Thus, it may be a potential antiproliferation drug with nontoxic side effects.


Url:
DOI: 10.1080/10717544.2020.1716879
PubMed: 31984809
PubMed Central: 7034089

Links to Exploration step

PMC:7034089

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Synthesis of novel, DNA binding heterocyclic dehydroabietylamine derivatives as potential antiproliferative and apoptosis-inducing agents</title>
<author>
<name sortKey="Zhao, Fengyi" sort="Zhao, Fengyi" uniqKey="Zhao F" first="Fengyi" last="Zhao">Fengyi Zhao</name>
<affiliation>
<nlm:aff id="AF0001">
<institution>Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University</institution>
, Nanjing,
<country>PR China</country>
;</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="AF0002">
<institution>College of Forestry, Nanjing Forestry University</institution>
, Nanjing,
<country>PR China</country>
;</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="AF0003">
<institution>College of Science, Nanjing Forestry University</institution>
, Nanjing,
<country>PR China</country>
;</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Sun, Xu" sort="Sun, Xu" uniqKey="Sun X" first="Xu" last="Sun">Xu Sun</name>
<affiliation>
<nlm:aff id="AF0003">
<institution>College of Science, Nanjing Forestry University</institution>
, Nanjing,
<country>PR China</country>
;</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="AF0004">
<institution>College of Information Science and Technology, Nanjing Forestry University</institution>
, Nanjing,
<country>PR China</country>
;</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Lu, Wen" sort="Lu, Wen" uniqKey="Lu W" first="Wen" last="Lu">Wen Lu</name>
<affiliation>
<nlm:aff id="AF0003">
<institution>College of Science, Nanjing Forestry University</institution>
, Nanjing,
<country>PR China</country>
;</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Xu, Li" sort="Xu, Li" uniqKey="Xu L" first="Li" last="Xu">Li Xu</name>
<affiliation>
<nlm:aff id="AF0001">
<institution>Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University</institution>
, Nanjing,
<country>PR China</country>
;</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="AF0003">
<institution>College of Science, Nanjing Forestry University</institution>
, Nanjing,
<country>PR China</country>
;</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Shi, Jiuzhou" sort="Shi, Jiuzhou" uniqKey="Shi J" first="Jiuzhou" last="Shi">Jiuzhou Shi</name>
<affiliation>
<nlm:aff id="AF0003">
<institution>College of Science, Nanjing Forestry University</institution>
, Nanjing,
<country>PR China</country>
;</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Yang, Shilong" sort="Yang, Shilong" uniqKey="Yang S" first="Shilong" last="Yang">Shilong Yang</name>
<affiliation>
<nlm:aff id="AF0005">
<institution>Advanced Analysis and Testing Center, Nanjing Forestry University</institution>
, Nanjing,
<country>PR China</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Zhou, Mengyi" sort="Zhou, Mengyi" uniqKey="Zhou M" first="Mengyi" last="Zhou">Mengyi Zhou</name>
<affiliation>
<nlm:aff id="AF0005">
<institution>Advanced Analysis and Testing Center, Nanjing Forestry University</institution>
, Nanjing,
<country>PR China</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Su, Fan" sort="Su, Fan" uniqKey="Su F" first="Fan" last="Su">Fan Su</name>
<affiliation>
<nlm:aff id="AF0005">
<institution>Advanced Analysis and Testing Center, Nanjing Forestry University</institution>
, Nanjing,
<country>PR China</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Lin, Feng" sort="Lin, Feng" uniqKey="Lin F" first="Feng" last="Lin">Feng Lin</name>
<affiliation>
<nlm:aff id="AF0005">
<institution>Advanced Analysis and Testing Center, Nanjing Forestry University</institution>
, Nanjing,
<country>PR China</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Cao, Fuliang" sort="Cao, Fuliang" uniqKey="Cao F" first="Fuliang" last="Cao">Fuliang Cao</name>
<affiliation>
<nlm:aff id="AF0001">
<institution>Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University</institution>
, Nanjing,
<country>PR China</country>
;</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="AF0002">
<institution>College of Forestry, Nanjing Forestry University</institution>
, Nanjing,
<country>PR China</country>
;</nlm:aff>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PMC</idno>
<idno type="pmid">31984809</idno>
<idno type="pmc">7034089</idno>
<idno type="url">http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7034089</idno>
<idno type="RBID">PMC:7034089</idno>
<idno type="doi">10.1080/10717544.2020.1716879</idno>
<date when="2020">2020</date>
<idno type="wicri:Area/Pmc/Corpus">000495</idno>
<idno type="wicri:explorRef" wicri:stream="Pmc" wicri:step="Corpus" wicri:corpus="PMC">000495</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a" type="main">Synthesis of novel, DNA binding heterocyclic dehydroabietylamine derivatives as potential antiproliferative and apoptosis-inducing agents</title>
<author>
<name sortKey="Zhao, Fengyi" sort="Zhao, Fengyi" uniqKey="Zhao F" first="Fengyi" last="Zhao">Fengyi Zhao</name>
<affiliation>
<nlm:aff id="AF0001">
<institution>Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University</institution>
, Nanjing,
<country>PR China</country>
;</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="AF0002">
<institution>College of Forestry, Nanjing Forestry University</institution>
, Nanjing,
<country>PR China</country>
;</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="AF0003">
<institution>College of Science, Nanjing Forestry University</institution>
, Nanjing,
<country>PR China</country>
;</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Sun, Xu" sort="Sun, Xu" uniqKey="Sun X" first="Xu" last="Sun">Xu Sun</name>
<affiliation>
<nlm:aff id="AF0003">
<institution>College of Science, Nanjing Forestry University</institution>
, Nanjing,
<country>PR China</country>
;</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="AF0004">
<institution>College of Information Science and Technology, Nanjing Forestry University</institution>
, Nanjing,
<country>PR China</country>
;</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Lu, Wen" sort="Lu, Wen" uniqKey="Lu W" first="Wen" last="Lu">Wen Lu</name>
<affiliation>
<nlm:aff id="AF0003">
<institution>College of Science, Nanjing Forestry University</institution>
, Nanjing,
<country>PR China</country>
;</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Xu, Li" sort="Xu, Li" uniqKey="Xu L" first="Li" last="Xu">Li Xu</name>
<affiliation>
<nlm:aff id="AF0001">
<institution>Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University</institution>
, Nanjing,
<country>PR China</country>
;</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="AF0003">
<institution>College of Science, Nanjing Forestry University</institution>
, Nanjing,
<country>PR China</country>
;</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Shi, Jiuzhou" sort="Shi, Jiuzhou" uniqKey="Shi J" first="Jiuzhou" last="Shi">Jiuzhou Shi</name>
<affiliation>
<nlm:aff id="AF0003">
<institution>College of Science, Nanjing Forestry University</institution>
, Nanjing,
<country>PR China</country>
;</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Yang, Shilong" sort="Yang, Shilong" uniqKey="Yang S" first="Shilong" last="Yang">Shilong Yang</name>
<affiliation>
<nlm:aff id="AF0005">
<institution>Advanced Analysis and Testing Center, Nanjing Forestry University</institution>
, Nanjing,
<country>PR China</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Zhou, Mengyi" sort="Zhou, Mengyi" uniqKey="Zhou M" first="Mengyi" last="Zhou">Mengyi Zhou</name>
<affiliation>
<nlm:aff id="AF0005">
<institution>Advanced Analysis and Testing Center, Nanjing Forestry University</institution>
, Nanjing,
<country>PR China</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Su, Fan" sort="Su, Fan" uniqKey="Su F" first="Fan" last="Su">Fan Su</name>
<affiliation>
<nlm:aff id="AF0005">
<institution>Advanced Analysis and Testing Center, Nanjing Forestry University</institution>
, Nanjing,
<country>PR China</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Lin, Feng" sort="Lin, Feng" uniqKey="Lin F" first="Feng" last="Lin">Feng Lin</name>
<affiliation>
<nlm:aff id="AF0005">
<institution>Advanced Analysis and Testing Center, Nanjing Forestry University</institution>
, Nanjing,
<country>PR China</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Cao, Fuliang" sort="Cao, Fuliang" uniqKey="Cao F" first="Fuliang" last="Cao">Fuliang Cao</name>
<affiliation>
<nlm:aff id="AF0001">
<institution>Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University</institution>
, Nanjing,
<country>PR China</country>
;</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="AF0002">
<institution>College of Forestry, Nanjing Forestry University</institution>
, Nanjing,
<country>PR China</country>
;</nlm:aff>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Drug Delivery</title>
<idno type="ISSN">1071-7544</idno>
<idno type="eISSN">1521-0464</idno>
<imprint>
<date when="2020">2020</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<title>Abstract</title>
<p>Several dehydroabietylamine derivatives containing heterocyclic moieties such as thiophene and pyrazine ring were successfully synthesized. The antiproliferative activities of these thiophene-based Schiff-bases, thiophene amides, and pyrazine amides were investigated
<italic>in vitro</italic>
against Hela (cervix), MCF-7 (breast), A549 (lung), HepG2 (liver), and HUVEC (umbilical vein) cells by MTT assay. The toxicity of
<bold>L
<sup>1</sup>
</bold>
<bold>L
<sup>10</sup>
</bold>
(IC
<sub>50</sub>
= 5.92− >100 μM) was lower than
<bold>L
<sup>0</sup>
</bold>
(1.27 μM) and DOX (4.40 μM) in every case. Compound
<bold>L
<sup>1</sup>
</bold>
had higher anti-HepG2
<bold>(</bold>
0.66 μM), anti-MCF-7 (5.33 μM), and anti-A549 (2.11 μM) and compound
<bold>L
<sup>3</sup>
</bold>
had higher anti-HepG2 (1.63 μM) and anti-MCF-7 (2.65 μM) activities. Both of these compounds were recognized with high efficiency in apoptosis induction in HepG2 cells and intercalated binding modes with DNA. Moreover, with average IC
<sub>50</sub>
values of 0.66 and 5.98 μM,
<bold>L
<sup>1</sup>
</bold>
was nine times more effective at suppressing cultured HepG2 cells viability than normal cells (SI = 9). The relative tumor proliferation rate (T/C) was 38.6%, the tumor inhibition rate was up to 61.2%, which indicated that
<bold>L
<sup>1</sup>
</bold>
had no significant toxicity but high anti-HepG2 activity
<italic>in vivo</italic>
. Thus, it may be a potential antiproliferation drug with nontoxic side effects.</p>
</div>
</front>
<back>
<div1 type="bibliography">
<listBibl>
<biblStruct>
<analytic>
<author>
<name sortKey="Ahmed, Hea" uniqKey="Ahmed H">HEA Ahmed</name>
</author>
<author>
<name sortKey="Ihmaid, Sk" uniqKey="Ihmaid S">SK Ihmaid</name>
</author>
<author>
<name sortKey="Omar, Am" uniqKey="Omar A">AM Omar</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Aissi, Re" uniqKey="Aissi R">RE Aissi</name>
</author>
<author>
<name sortKey="Liu, J" uniqKey="Liu J">J Liu</name>
</author>
<author>
<name sortKey="Besse, S" uniqKey="Besse S">S Besse</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Arjmand, F" uniqKey="Arjmand F">F Arjmand</name>
</author>
<author>
<name sortKey="Aziz, M" uniqKey="Aziz M">M Aziz</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Auxiliadora, Mda" uniqKey="Auxiliadora M">MDA Auxiliadora</name>
</author>
<author>
<name sortKey="Pablo, Br" uniqKey="Pablo B">BR Pablo</name>
</author>
<author>
<name sortKey="Francisco, Bf" uniqKey="Francisco B">BF Francisco</name>
</author>
<author>
<name sortKey="Miguel, Ag" uniqKey="Miguel A">AG Miguel</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Azuine, Ma" uniqKey="Azuine M">MA Azuine</name>
</author>
<author>
<name sortKey="Tokuda, H" uniqKey="Tokuda H">H Tokuda</name>
</author>
<author>
<name sortKey="Tokuda, H" uniqKey="Tokuda H">H Tokuda</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Badrinarayanan, S" uniqKey="Badrinarayanan S">S Badrinarayanan</name>
</author>
<author>
<name sortKey="Sperry, J" uniqKey="Sperry J">J Sperry</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Bahekar, Sp" uniqKey="Bahekar S">SP Bahekar</name>
</author>
<author>
<name sortKey="Hande, Sv" uniqKey="Hande S">SV Hande</name>
</author>
<author>
<name sortKey="Agrawal, Nr" uniqKey="Agrawal N">NR Agrawal</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Dalvie, Dk" uniqKey="Dalvie D">DK Dalvie</name>
</author>
<author>
<name sortKey="Kalgutkar, As" uniqKey="Kalgutkar A">AS Kalgutkar</name>
</author>
<author>
<name sortKey="Khojasteh Bakht, Sc" uniqKey="Khojasteh Bakht S">SC Khojasteh-Bakht</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Dyreborg, S" uniqKey="Dyreborg S">S Dyreborg</name>
</author>
<author>
<name sortKey="Arvin, E" uniqKey="Arvin E">E Arvin</name>
</author>
<author>
<name sortKey="Broholm, K" uniqKey="Broholm K">K Broholm</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Fei, Bl" uniqKey="Fei B">BL Fei</name>
</author>
<author>
<name sortKey="Yin, B" uniqKey="Yin B">B Yin</name>
</author>
<author>
<name sortKey="Li, Dd" uniqKey="Li D">DD Li</name>
</author>
<author>
<name sortKey="Xu, Ws" uniqKey="Xu W">WS Xu</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Gao, Ej" uniqKey="Gao E">EJ Gao</name>
</author>
<author>
<name sortKey="Wang, Kh" uniqKey="Wang K">KH Wang</name>
</author>
<author>
<name sortKey="Zhu, Mc" uniqKey="Zhu M">MC Zhu</name>
</author>
<author>
<name sortKey="Liu, L" uniqKey="Liu L">L Liu</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Garton, Aj" uniqKey="Garton A">AJ Garton</name>
</author>
<author>
<name sortKey="Crew, Apa" uniqKey="Crew A">APA Crew</name>
</author>
<author>
<name sortKey="Franklin, M" uniqKey="Franklin M">M Franklin</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ghorab, Mm" uniqKey="Ghorab M">MM Ghorab</name>
</author>
<author>
<name sortKey="Alsaid, Ms" uniqKey="Alsaid M">MS Alsaid</name>
</author>
<author>
<name sortKey="Al Dosari, Ms" uniqKey="Al Dosari M">MS Al-Dosari</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Hana, Hy" uniqKey="Hana H">HY Hana</name>
</author>
<author>
<name sortKey="Khalil, Wkb" uniqKey="Khalil W">WKB Khalil</name>
</author>
<author>
<name sortKey="Elmakawy, Ai" uniqKey="Elmakawy A">AI Elmakawy</name>
</author>
<author>
<name sortKey="Elmegeed, Ga" uniqKey="Elmegeed G">GA Elmegeed</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Hande, Kr" uniqKey="Hande K">KR Hande</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Huang, Xc" uniqKey="Huang X">XC Huang</name>
</author>
<author>
<name sortKey="Huang, Rz" uniqKey="Huang R">RZ Huang</name>
</author>
<author>
<name sortKey="Li, Lx" uniqKey="Li L">LX Li</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Huang, Lh" uniqKey="Huang L">LH Huang</name>
</author>
<author>
<name sortKey="Zheng, Yf" uniqKey="Zheng Y">YF Zheng</name>
</author>
<author>
<name sortKey="Song, Cj" uniqKey="Song C">CJ Song</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ingle, R" uniqKey="Ingle R">R Ingle</name>
</author>
<author>
<name sortKey="Marathe, R" uniqKey="Marathe R">R Marathe</name>
</author>
<author>
<name sortKey="Magar, D" uniqKey="Magar D">D Magar</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ivanyi, Z" uniqKey="Ivanyi Z">Z Iványi</name>
</author>
<author>
<name sortKey="Szab, N" uniqKey="Szab N">N Szabó</name>
</author>
<author>
<name sortKey="Huber, J" uniqKey="Huber J">J Huber</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Khalil, Am" uniqKey="Khalil A">AM Khalil</name>
</author>
<author>
<name sortKey="Berghot, Ma" uniqKey="Berghot M">MA Berghot</name>
</author>
<author>
<name sortKey="Ghada, Ea" uniqKey="Ghada E">EA Ghada</name>
</author>
<author>
<name sortKey="Gouda, Ma" uniqKey="Gouda M">MA Gouda</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kulandasamy, R" uniqKey="Kulandasamy R">R Kulandasamy</name>
</author>
<author>
<name sortKey="Adhikari, Av" uniqKey="Adhikari A">AV Adhikari</name>
</author>
<author>
<name sortKey="Stables, Jp" uniqKey="Stables J">JP Stables</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Lee, Sb" uniqKey="Lee S">SB Lee</name>
</author>
<author>
<name sortKey="Park, Yi" uniqKey="Park Y">YI Park</name>
</author>
<author>
<name sortKey="Dong, Ms" uniqKey="Dong M">MS Dong</name>
</author>
<author>
<name sortKey="Gong, Yd" uniqKey="Gong Y">YD Gong</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Lei, M" uniqKey="Lei M">M Lei</name>
</author>
<author>
<name sortKey="Miao, H" uniqKey="Miao H">H Miao</name>
</author>
<author>
<name sortKey="Wang, Xy" uniqKey="Wang X">XY Wang</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Lei, M" uniqKey="Lei M">M Lei</name>
</author>
<author>
<name sortKey="Sha, Sj" uniqKey="Sha S">SJ Sha</name>
</author>
<author>
<name sortKey="Wang, Xy" uniqKey="Wang X">XY Wang</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Lei, M" uniqKey="Lei M">M Lei</name>
</author>
<author>
<name sortKey="Zhang, Hy" uniqKey="Zhang H">HY Zhang</name>
</author>
<author>
<name sortKey="Miao, H" uniqKey="Miao H">H Miao</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Lesyk, R" uniqKey="Lesyk R">R Lesyk</name>
</author>
<author>
<name sortKey="Zimenkovsky, B" uniqKey="Zimenkovsky B">B Zimenkovsky</name>
</author>
<author>
<name sortKey="Atamanyuk, D" uniqKey="Atamanyuk D">D Atamanyuk</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Li, Z" uniqKey="Li Z">Z Li</name>
</author>
<author>
<name sortKey="Wang, J" uniqKey="Wang J">J Wang</name>
</author>
<author>
<name sortKey="Zhou, Y" uniqKey="Zhou Y">Y Zhou</name>
</author>
<author>
<name sortKey="Liu, H" uniqKey="Liu H">H Liu</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Li, Q" uniqKey="Li Q">Q Li</name>
</author>
<author>
<name sortKey="Chu, Dtw" uniqKey="Chu D">DTW Chu</name>
</author>
<author>
<name sortKey="Claiborne, A" uniqKey="Claiborne A">A Claiborne</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Lin, Tt" uniqKey="Lin T">TT Lin</name>
</author>
<author>
<name sortKey="Gonzalez, Ma" uniqKey="Gonzalez M">MA González</name>
</author>
<author>
<name sortKey="Carboni, Mg" uniqKey="Carboni M">MG Carboni</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Lindsley, Cw" uniqKey="Lindsley C">CW Lindsley</name>
</author>
<author>
<name sortKey="Zhao, Zj" uniqKey="Zhao Z">ZJ Zhao</name>
</author>
<author>
<name sortKey="Leister, Wh" uniqKey="Leister W">WH Leister</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Liu, Cx" uniqKey="Liu C">CX Liu</name>
</author>
<author>
<name sortKey="Lin, Zx" uniqKey="Lin Z">ZX Lin</name>
</author>
<author>
<name sortKey="Zhou, Am" uniqKey="Zhou A">AM Zhou</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Liu, Xy" uniqKey="Liu X">XY Liu</name>
</author>
<author>
<name sortKey="Zhang, Rh" uniqKey="Zhang R">RH Zhang</name>
</author>
<author>
<name sortKey="Li, Tq" uniqKey="Li T">TQ Li</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Lu, W" uniqKey="Lu W">W Lu</name>
</author>
<author>
<name sortKey="Yang, Sl" uniqKey="Yang S">SL Yang</name>
</author>
<author>
<name sortKey="Xu, L" uniqKey="Xu L">L Xu</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Mathew, V" uniqKey="Mathew V">V Mathew</name>
</author>
<author>
<name sortKey="Keshavayya, J" uniqKey="Keshavayya J">J Keshavayya</name>
</author>
<author>
<name sortKey="Vaidya, Vp" uniqKey="Vaidya V">VP Vaidya</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Medower, C" uniqKey="Medower C">C Medower</name>
</author>
<author>
<name sortKey="Wen, L" uniqKey="Wen L">L Wen</name>
</author>
<author>
<name sortKey="Johnson, Ww" uniqKey="Johnson W">WW Johnson</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Mohareb, Rm" uniqKey="Mohareb R">RM Mohareb</name>
</author>
<author>
<name sortKey="Al Omran, F" uniqKey="Al Omran F">F Al-Omran</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Mondal, R" uniqKey="Mondal R">R Mondal</name>
</author>
<author>
<name sortKey="Ko, S" uniqKey="Ko S">S Ko</name>
</author>
<author>
<name sortKey="Bao, Z" uniqKey="Bao Z">Z Bao</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Muhammad, Sr" uniqKey="Muhammad S">SR Muhammad</name>
</author>
<author>
<name sortKey="Bashir, S" uniqKey="Bashir S">S Bashir</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Nomiya, K" uniqKey="Nomiya K">K Nomiya</name>
</author>
<author>
<name sortKey="Noguchi, R" uniqKey="Noguchi R">R Noguchi</name>
</author>
<author>
<name sortKey="Ohsawa, K" uniqKey="Ohsawa K">K Ohsawa</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Petti, F" uniqKey="Petti F">F Petti</name>
</author>
<author>
<name sortKey="Thelemann, A" uniqKey="Thelemann A">A Thelemann</name>
</author>
<author>
<name sortKey="Kahler, J" uniqKey="Kahler J">J Kahler</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Qi, S" uniqKey="Qi S">S Qi</name>
</author>
<author>
<name sortKey="Guo, L" uniqKey="Guo L">L Guo</name>
</author>
<author>
<name sortKey="Yan, S" uniqKey="Yan S">S Yan</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Rajendiran, V" uniqKey="Rajendiran V">V Rajendiran</name>
</author>
<author>
<name sortKey="Karthik, R" uniqKey="Karthik R">R Karthik</name>
</author>
<author>
<name sortKey="Palaniandavar, M" uniqKey="Palaniandavar M">M Palaniandavar</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Rao, Xp" uniqKey="Rao X">XP Rao</name>
</author>
<author>
<name sortKey="Huang, Xz" uniqKey="Huang X">XZ Huang</name>
</author>
<author>
<name sortKey="He, L" uniqKey="He L">L He</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Saito, R" uniqKey="Saito R">R Saito</name>
</author>
<author>
<name sortKey="Matsumura, Y" uniqKey="Matsumura Y">Y Matsumura</name>
</author>
<author>
<name sortKey="Suzuki, S" uniqKey="Suzuki S">S Suzuki</name>
</author>
<author>
<name sortKey="Okazaki, N" uniqKey="Okazaki N">N Okazaki</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Seitz, Le" uniqKey="Seitz L">LE Seitz</name>
</author>
<author>
<name sortKey="Suling, Wj" uniqKey="Suling W">WJ Suling</name>
</author>
<author>
<name sortKey="Reynolds, Rc" uniqKey="Reynolds R">RC Reynolds</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Shi, Jc" uniqKey="Shi J">JC Shi</name>
</author>
<author>
<name sortKey="Wen, Tf" uniqKey="Wen T">TF Wen</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Singh, N" uniqKey="Singh N">N Singh</name>
</author>
<author>
<name sortKey="Mishra, Bb" uniqKey="Mishra B">BB Mishra</name>
</author>
<author>
<name sortKey="Bajpai, S" uniqKey="Bajpai S">S Bajpai</name>
</author>
<author>
<name sortKey="Singh, Rk" uniqKey="Singh R">RK Singh</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Smits, Ra" uniqKey="Smits R">RA Smits</name>
</author>
<author>
<name sortKey="Lim, Hd" uniqKey="Lim H">HD Lim</name>
</author>
<author>
<name sortKey="Hanzer, A" uniqKey="Hanzer A">A Hanzer</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Soozani, A" uniqKey="Soozani A">A Soozani</name>
</author>
<author>
<name sortKey="Keivanloo, A" uniqKey="Keivanloo A">A Keivanloo</name>
</author>
<author>
<name sortKey="Bakherad, M" uniqKey="Bakherad M">M Bakherad</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Sridevi, Ch" uniqKey="Sridevi C">CH Sridevi</name>
</author>
<author>
<name sortKey="Balaji, K" uniqKey="Balaji K">K Balaji</name>
</author>
<author>
<name sortKey="Naidu, A" uniqKey="Naidu A">A Naidu</name>
</author>
<author>
<name sortKey="Sudhakaran, R" uniqKey="Sudhakaran R">R Sudhakaran</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Sun, J" uniqKey="Sun J">J Sun</name>
</author>
<author>
<name sortKey="Ye, C" uniqKey="Ye C">C Ye</name>
</author>
<author>
<name sortKey="Bai, E" uniqKey="Bai E">E Bai</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Vicente, E" uniqKey="Vicente E">E Vicente</name>
</author>
<author>
<name sortKey="Duchowicz, Pr" uniqKey="Duchowicz P">PR Duchowicz</name>
</author>
<author>
<name sortKey="Castro, Ea" uniqKey="Castro E">EA Castro</name>
</author>
<author>
<name sortKey="Monge, A" uniqKey="Monge A">A Monge</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Wang, Yy" uniqKey="Wang Y">YY Wang</name>
</author>
<author>
<name sortKey="He, Y" uniqKey="He Y">Y He</name>
</author>
<author>
<name sortKey="Yang, Lf" uniqKey="Yang L">LF Yang</name>
</author>
<author>
<name sortKey="Peng, Sh" uniqKey="Peng S">SH Peng</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Wang, Sw" uniqKey="Wang S">SW Wang</name>
</author>
<author>
<name sortKey="Konorev, Ea" uniqKey="Konorev E">EA Konorev</name>
</author>
<author>
<name sortKey="Kotamraju, S" uniqKey="Kotamraju S">S Kotamraju</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Xia, B" uniqKey="Xia B">B Xia</name>
</author>
<author>
<name sortKey="Wang, B" uniqKey="Wang B">B Wang</name>
</author>
<author>
<name sortKey="Zhang, Wy" uniqKey="Zhang W">WY Zhang</name>
</author>
<author>
<name sortKey="Shi, Js" uniqKey="Shi J">JS Shi</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Xin, Jc" uniqKey="Xin J">JC Xin</name>
</author>
<author>
<name sortKey="Li, N" uniqKey="Li N">N Li</name>
</author>
<author>
<name sortKey="Ma, Qs" uniqKey="Ma Q">QS Ma</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ye, D" uniqKey="Ye D">D Ye</name>
</author>
<author>
<name sortKey="Zhang, Y" uniqKey="Zhang Y">Y Zhang</name>
</author>
<author>
<name sortKey="Wang, F" uniqKey="Wang F">F Wang</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Zhao, Fy" uniqKey="Zhao F">FY Zhao</name>
</author>
<author>
<name sortKey="Lu, W" uniqKey="Lu W">W Lu</name>
</author>
<author>
<name sortKey="Su, F" uniqKey="Su F">F Su</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Zhao, Fy" uniqKey="Zhao F">FY Zhao</name>
</author>
<author>
<name sortKey="Wang, Wf" uniqKey="Wang W">WF Wang</name>
</author>
<author>
<name sortKey="Lu, W" uniqKey="Lu W">W Lu</name>
</author>
<author>
<name sortKey="Xu, L" uniqKey="Xu L">L Xu</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Zitko, J" uniqKey="Zitko J">J Zitko</name>
</author>
<author>
<name sortKey="Dolezal, M" uniqKey="Dolezal M">M Dolezal</name>
</author>
<author>
<name sortKey="Svobodova, M" uniqKey="Svobodova M">M Svobodova</name>
</author>
</analytic>
</biblStruct>
</listBibl>
</div1>
</back>
</TEI>
<pmc article-type="research-article">
<pmc-dir>properties open_access</pmc-dir>
<front>
<journal-meta>
<journal-id journal-id-type="nlm-ta">Drug Deliv</journal-id>
<journal-id journal-id-type="iso-abbrev">Drug Deliv</journal-id>
<journal-id journal-id-type="publisher-id">IDRD</journal-id>
<journal-id journal-id-type="publisher-id">idrd20</journal-id>
<journal-title-group>
<journal-title>Drug Delivery</journal-title>
</journal-title-group>
<issn pub-type="ppub">1071-7544</issn>
<issn pub-type="epub">1521-0464</issn>
<publisher>
<publisher-name>Taylor & Francis</publisher-name>
</publisher>
</journal-meta>
<article-meta>
<article-id pub-id-type="pmid">31984809</article-id>
<article-id pub-id-type="pmc">7034089</article-id>
<article-id pub-id-type="doi">10.1080/10717544.2020.1716879</article-id>
<article-id pub-id-type="publisher-id">1716879</article-id>
<article-categories>
<subj-group subj-group-type="heading">
<subject>Research Article</subject>
</subj-group>
</article-categories>
<title-group>
<article-title>Synthesis of novel, DNA binding heterocyclic dehydroabietylamine derivatives as potential antiproliferative and apoptosis-inducing agents</article-title>
<alt-title alt-title-type="running-authors">F. Zhao et al.</alt-title>
</title-group>
<contrib-group>
<contrib contrib-type="author">
<name>
<surname>Zhao</surname>
<given-names>Fengyi</given-names>
</name>
<xref ref-type="aff" rid="AF0001">
<sup>a</sup>
</xref>
<xref ref-type="aff" rid="AF0002">
<sup>b</sup>
</xref>
<xref ref-type="aff" rid="AF0003">
<sup>c</sup>
</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Sun</surname>
<given-names>Xu</given-names>
</name>
<xref ref-type="aff" rid="AF0003">
<sup>c</sup>
</xref>
<xref ref-type="aff" rid="AF0004">
<sup>d</sup>
</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Lu</surname>
<given-names>Wen</given-names>
</name>
<xref ref-type="aff" rid="AF0003">
<sup>c</sup>
</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Xu</surname>
<given-names>Li</given-names>
</name>
<xref ref-type="aff" rid="AF0001">
<sup>a</sup>
</xref>
<xref ref-type="aff" rid="AF0003">
<sup>c</sup>
</xref>
<xref ref-type="corresp" rid="AN0001"></xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Shi</surname>
<given-names>Jiuzhou</given-names>
</name>
<xref ref-type="aff" rid="AF0003">
<sup>c</sup>
</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Yang</surname>
<given-names>Shilong</given-names>
</name>
<xref ref-type="aff" rid="AF0005">
<sup>e</sup>
</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Zhou</surname>
<given-names>Mengyi</given-names>
</name>
<xref ref-type="aff" rid="AF0005">
<sup>e</sup>
</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Su</surname>
<given-names>Fan</given-names>
</name>
<xref ref-type="aff" rid="AF0005">
<sup>e</sup>
</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Lin</surname>
<given-names>Feng</given-names>
</name>
<xref ref-type="aff" rid="AF0005">
<sup>e</sup>
</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Cao</surname>
<given-names>Fuliang</given-names>
</name>
<xref ref-type="aff" rid="AF0001">
<sup>a</sup>
</xref>
<xref ref-type="aff" rid="AF0002">
<sup>b</sup>
</xref>
</contrib>
<aff id="AF0001">
<label>a</label>
<institution>Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University</institution>
, Nanjing,
<country>PR China</country>
;</aff>
<aff id="AF0002">
<label>b</label>
<institution>College of Forestry, Nanjing Forestry University</institution>
, Nanjing,
<country>PR China</country>
;</aff>
<aff id="AF0003">
<label>c</label>
<institution>College of Science, Nanjing Forestry University</institution>
, Nanjing,
<country>PR China</country>
;</aff>
<aff id="AF0004">
<label>d</label>
<institution>College of Information Science and Technology, Nanjing Forestry University</institution>
, Nanjing,
<country>PR China</country>
;</aff>
<aff id="AF0005">
<label>e</label>
<institution>Advanced Analysis and Testing Center, Nanjing Forestry University</institution>
, Nanjing,
<country>PR China</country>
</aff>
</contrib-group>
<author-notes>
<fn id="AUFN1">
<p>Supplemental data for this article can be accessed
<ext-link ext-link-type="uri" xlink:href="https://doi.org/10.1080/10717544.2020.1716879">
<underline>here</underline>
</ext-link>
.</p>
</fn>
<corresp id="AN0001">CONTACT Li Xu
<email>2016qlsz@njfu.edu.cn</email>
<institution>Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University</institution>
, Nanjing, 210037,
<country>PR China</country>
</corresp>
</author-notes>
<pub-date pub-type="collection">
<year>2020</year>
</pub-date>
<pub-date pub-type="epub">
<day>27</day>
<month>1</month>
<year>2020</year>
</pub-date>
<volume>27</volume>
<issue>1</issue>
<fpage seq="19">216</fpage>
<lpage>227</lpage>
<history>
<date date-type="received">
<day>27</day>
<month>11</month>
<year>2019</year>
</date>
<date date-type="rev-recd">
<day>05</day>
<month>1</month>
<year>2020</year>
</date>
<date date-type="accepted">
<day>13</day>
<month>1</month>
<year>2020</year>
</date>
</history>
<permissions>
<copyright-statement>© 2020 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group.</copyright-statement>
<copyright-year>2020</copyright-year>
<copyright-holder>The Author(s)</copyright-holder>
<license license-type="open-access" xlink:href="http://creativecommons.org/licenses/by/4.0/">
<license-p>This is an Open Access article distributed under the terms of the Creative Commons Attribution License (
<ext-link ext-link-type="uri" xlink:href="http://creativecommons.org/licenses/by/4.0/">http://creativecommons.org/licenses/by/4.0/</ext-link>
), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.</license-p>
</license>
</permissions>
<self-uri content-type="pdf" xlink:href="IDRD_27_1716879.pdf"></self-uri>
<abstract>
<title>Abstract</title>
<p>Several dehydroabietylamine derivatives containing heterocyclic moieties such as thiophene and pyrazine ring were successfully synthesized. The antiproliferative activities of these thiophene-based Schiff-bases, thiophene amides, and pyrazine amides were investigated
<italic>in vitro</italic>
against Hela (cervix), MCF-7 (breast), A549 (lung), HepG2 (liver), and HUVEC (umbilical vein) cells by MTT assay. The toxicity of
<bold>L
<sup>1</sup>
</bold>
<bold>L
<sup>10</sup>
</bold>
(IC
<sub>50</sub>
= 5.92− >100 μM) was lower than
<bold>L
<sup>0</sup>
</bold>
(1.27 μM) and DOX (4.40 μM) in every case. Compound
<bold>L
<sup>1</sup>
</bold>
had higher anti-HepG2
<bold>(</bold>
0.66 μM), anti-MCF-7 (5.33 μM), and anti-A549 (2.11 μM) and compound
<bold>L
<sup>3</sup>
</bold>
had higher anti-HepG2 (1.63 μM) and anti-MCF-7 (2.65 μM) activities. Both of these compounds were recognized with high efficiency in apoptosis induction in HepG2 cells and intercalated binding modes with DNA. Moreover, with average IC
<sub>50</sub>
values of 0.66 and 5.98 μM,
<bold>L
<sup>1</sup>
</bold>
was nine times more effective at suppressing cultured HepG2 cells viability than normal cells (SI = 9). The relative tumor proliferation rate (T/C) was 38.6%, the tumor inhibition rate was up to 61.2%, which indicated that
<bold>L
<sup>1</sup>
</bold>
had no significant toxicity but high anti-HepG2 activity
<italic>in vivo</italic>
. Thus, it may be a potential antiproliferation drug with nontoxic side effects.</p>
</abstract>
<kwd-group kwd-group-type="author">
<title>Keywords</title>
<kwd>Dehydroabietylamine derivatives</kwd>
<kwd>antiproliferative</kwd>
<kwd>lower toxicity</kwd>
<kwd>apoptosis</kwd>
</kwd-group>
<funding-group>
<award-group>
<funding-source>
<named-content content-type="funder-name">National Key Research and Development Program of China</named-content>
<named-content content-type="funderidentifier">10.13039/501100002852</named-content>
</funding-source>
<award-id>706</award-id>
</award-group>
<award-group>
<funding-source>
<named-content content-type="funder-name">Sate Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Guangxi Normal University)</named-content>
</funding-source>
<award-id>-B06</award-id>
</award-group>
<funding-statement>This work was supported by the National Key Research and Development Program of China [grant number 2017YFD0600706] and Sate Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Guangxi Normal University) [grant number CMEMR2017-B06].</funding-statement>
</funding-group>
<counts>
<fig-count count="7"></fig-count>
<table-count count="4"></table-count>
<page-count count="12"></page-count>
<word-count count="8137"></word-count>
</counts>
</article-meta>
</front>
<body>
<sec id="s0001">
<label>1.</label>
<title>Introduction</title>
<p>Currently, various chemotherapy drugs have been developed for the treatment of different cancers; however, undesirable side effects may greatly impede their use in clinical progression. Among a variety of cancer cures, the antiproliferative approach plays a crucial role in controlling this deadly disease (Xin et al.,
<xref rid="CIT0056" ref-type="bibr">2018</xref>
; Lei et al.,
<xref rid="CIT0024" ref-type="bibr">2019b</xref>
). Up to now, numerous molecules containing heterocyclic rings have showed great antiproliferative potential, particularly those with thiophene and pyrazine rings.</p>
<p>Thiophene derivatives are ubiquitous in nature and can be found in the structure of various drugs and medicines, produced by combustion of fossil fuels or by the general cooking process (Dyreborg et al.,
<xref rid="CIT0009" ref-type="bibr">1996</xref>
; Dalvie et al.,
<xref rid="CIT0008" ref-type="bibr">2002</xref>
; Medower et al.,
<xref rid="CIT0035" ref-type="bibr">2008</xref>
). Thiophenes bear extensive pharmacological properties such as analgesic, antipyretic, and antiandrogenic activities (Hana et al.,
<xref rid="CIT0014" ref-type="bibr">2008</xref>
; Huang et al.,
<xref rid="CIT0017" ref-type="bibr">2012</xref>
; Iványi et al.,
<xref rid="CIT0019" ref-type="bibr">2012</xref>
). Furthermore, a great number of thiophene derivatives are used as antitumor agents (Lesyk et al.,
<xref rid="CIT0026" ref-type="bibr">2006</xref>
; Kulandasamy et al.,
<xref rid="CIT0021" ref-type="bibr">2009</xref>
; Khalil et al.,
<xref rid="CIT0020" ref-type="bibr">2010</xref>
; Ye et al.,
<xref rid="CIT0057" ref-type="bibr">2010</xref>
). For instance, OSI-930 is an investigational anticancer agent which contains thiophene moiety (Petti et al.,
<xref rid="CIT0040" ref-type="bibr">2005</xref>
; Garton et al.,
<xref rid="CIT0012" ref-type="bibr">2006</xref>
). Ghorab et al. (
<xref rid="CIT0013" ref-type="bibr">2016</xref>
) reported a series of thiophene derivatives with high anti-MCF-7 (breast adenocarcinoma) cancer activity (half maximal inhibitory concentration [IC
<sub>50</sub>
] = 33.1–66.3 μM). Mohareb and Al-Omran (
<xref rid="CIT0036" ref-type="bibr">2012</xref>
) have studied three thiophene derivatives exhibited much higher inhibitory effects toward three tumor cell lines, MCF-7, NCI-H460 (non-small cell lung cancer), and SF-268 (CNS cancer) with GC
<sub>50</sub>
value in the range of 0.01–16.2 μM than the reference drug, doxorubicin (DOX).</p>
<p>Recently, nitrogen heterocycles have also been reported to exhibit therapeutics anticancer (Azuine et al.,
<xref rid="CIT0005" ref-type="bibr">2004</xref>
; Lei et al.,
<xref rid="CIT0023" ref-type="bibr">2019a</xref>
,
<xref rid="CIT0025" ref-type="bibr">c</xref>
) and anti-microbial (Nomiya et al.,
<xref rid="CIT0039" ref-type="bibr">2000</xref>
; Mathew et al.,
<xref rid="CIT0034" ref-type="bibr">2006</xref>
) activities. Among them, the pyrazine heterocycles have widespread application in food science, materials, and medicinal chemistry (Mondal et al.,
<xref rid="CIT0037" ref-type="bibr">2010</xref>
; Saito et al.,
<xref rid="CIT0044" ref-type="bibr">2010</xref>
; Badrinarayanan & Sperry,
<xref rid="CIT0006" ref-type="bibr">2011</xref>
; Zitko et al.,
<xref rid="CIT0060" ref-type="bibr">2011</xref>
). For example, pyrazinamide, a pyrazine derivative, is an antimicrobial agent that is most commonly used for treatment of active tuberculosis during the initial phase of therapy in combination with other agents. Quinoxaline compounds have been reported to possess a wide range of interesting biological properties such as anticancer, antiviral, antimicrobial, antifungal, antitubercular, anti-inflammatory, and anti-angiogenesis agents (Seitz et al.,
<xref rid="CIT0045" ref-type="bibr">2002</xref>
; Smits et al.,
<xref rid="CIT0048" ref-type="bibr">2008</xref>
; Vicente et al.,
<xref rid="CIT0052" ref-type="bibr">2009</xref>
; Lee et al.,
<xref rid="CIT0022" ref-type="bibr">2010</xref>
; Sridevi et al.,
<xref rid="CIT0050" ref-type="bibr">2010</xref>
; Ingle et al.,
<xref rid="CIT0018" ref-type="bibr">2013</xref>
; Aissi et al.,
<xref rid="CIT0002" ref-type="bibr">2014</xref>
; Soozani et al.,
<xref rid="CIT0049" ref-type="bibr">2018</xref>
), containing pyrazine motif. Ahmed et al. (
<xref rid="CIT0001" ref-type="bibr">2018</xref>
) have synthesized several compounds and evaluated anticancer effects against three cancer lines (HCT-116, MCF-7, and HepG2), and the results revealed that pyrazine derivatives were the most active compounds with IC
<sub>50</sub>
value of 1.89 and 2.05 Μm. Another pyrazine derivative, pyrazin-2(1H)-one, has attracted considerable attention due to its biological activities, such as anti-viral, antibacterial, anti-inflammatory, and anticancer (colon cancer therapies) activities (Lindsley et al.,
<xref rid="CIT0030" ref-type="bibr">2005</xref>
).</p>
<p>Recently, dehydroabietylamine (
<bold>L
<sup>0</sup>
</bold>
), which is one of the most vital modified products of rosin, has attracted considerable attention due to the broad spectrum of biological properties (Singh et al.,
<xref rid="CIT0047" ref-type="bibr">2014</xref>
; Lin et al.,
<xref rid="CIT0029" ref-type="bibr">2015</xref>
; Auxiliadora et al.,
<xref rid="CIT0004" ref-type="bibr">2016</xref>
; Bahekar et al.,
<xref rid="CIT0007" ref-type="bibr">2016</xref>
; Fei et al.,
<xref rid="CIT0010" ref-type="bibr">2016</xref>
; Liu et al.,
<xref rid="CIT0031" ref-type="bibr">2016</xref>
; Wang et al.,
<xref rid="CIT0053" ref-type="bibr">2016</xref>
; Huang et al.,
<xref rid="CIT0016" ref-type="bibr">2017</xref>
; Liu et al.,
<xref rid="CIT0032" ref-type="bibr">2017</xref>
). In general, a focus of research on dehydroabietylamine derivatives with their anticancer, antibacterial, antifungal, and cytotoxic activities has been paid their attention in forest chemistry too. Rao et al. (
<xref rid="CIT0043" ref-type="bibr">2012</xref>
) screened a series of imines, amides, and ureas with a dehydroabietyl skeleton for their anticancer activities against SMMC7721 (liver), A549 (lung), C6 (glioma), and MCF-7 cancer cell lines with smallest IC
<sub>50</sub>
values of 6.65, 0.75, 0.81, and 10.65 μM. Lately, our group has found that several Schiff-bases and amide compounds displayed highly potent inhibitory activities against HepG2 (liver), MCF-7 and A549 cells with smallest IC
<sub>50</sub>
values of 0.14, 0.24, 2.58, and 3.17 μM (Zhao et al.,
<xref rid="CIT0058" ref-type="bibr">2018</xref>
).</p>
<p>Up until this day, finding new molecules with more effective, less toxic, and target-specific DNA binding properties is one of the most important interest in medicinal chemistry. Cisplatin, a well-known active anticancer drug, can covalently bind to DNA, but its usage is limited with side effects and acquired cellular resistance (Rajendiran et al.,
<xref rid="CIT0042" ref-type="bibr">2007</xref>
). The aforementioned thiophene, pyrazine, and dehydroabietylamine analogs are all recognized as excellent antiproliferative agents; thus, our group was interested in the further investigation of these derivatives. Our goal was to achieve high anticancer activity, low toxicity, and target-specific DNA binding properties with the dehydroabietylamine derivatives including thiophene Schiff-bases (
<bold>L
<sup>1</sup>
−L
<sup>3</sup>
</bold>
), thiophene amides (
<bold>L
<sup>4</sup>
−L
<sup>6</sup>
</bold>
), and pyrazine amides (
<bold>L
<sup>7</sup>
−L
<sup>10</sup>
</bold>
). These new compounds were screened for antiproliferative activities against Hela (cervix), MCF-7, A549, HepG2 human cancer cell lines
<italic>in vitro</italic>
by MTT assay, in addition to
<bold>L
<sup>1</sup>
</bold>
<italic>in vivo</italic>
. We have verified that several compounds owned high antiproliferative activities against these cancer cells and some of them exhibited more potent antiproliferative activities as compared to dehydroabietylamine. Subsequently, the induction of apoptosis effect on
<bold>L
<sup>1</sup>
</bold>
and
<bold>L
<sup>3</sup>
</bold>
with HepG2 cells was also investigated and the result suggested they could inhibit cell proliferation by inducing apoptosis. In this report, we hope to display a simple but effective strategy that may make contributions to the exploration of future anticancer drugs.</p>
</sec>
<sec id="s0002">
<label>2.</label>
<title>Results and discussion</title>
<sec id="s0003">
<label>2.1.</label>
<title>Chemistry</title>
<p>All compounds were synthesized by the facile and efficient synthetic route from the commercially available (+)-Dehydroabietylamine, [α]20 D = +55.1 (c 2.4 pyridine) (
<xref ref-type="scheme" rid="SCH0001">Scheme 1</xref>
). To explore the relationship between the compound’s structures and biological activities, three thiophene aldehydes with different functional groups, three carboxylic acids, and four pyrazine carboxylic acids with various substituents were designed to react with dehydroabietylamine to prepare thiophene Schiff-bases (
<bold>L
<sup>1</sup>
−L
<sup>3</sup>
</bold>
), thiophene amides (
<bold>L
<sup>4</sup>
−L
<sup>6</sup>
</bold>
), and pyrazine amides (
<bold>L
<sup>7</sup>
−L
<sup>10</sup>
</bold>
).
<bold>L
<sup>1</sup>
−L
<sup>10</sup>
</bold>
were obtained under neutral to slightly alkaline conditions (pH = 7.0–7.4) during the experimental process.</p>
<fig id="SCH0001" orientation="portrait" position="float">
<label>Scheme 1.</label>
<caption>
<p>Synthesis of
<bold>L
<sup>1</sup>
−L
<sup>10</sup>
</bold>
.</p>
</caption>
<graphic content-type="color" xlink:href="IDRD_A_1716879_SCH0001_C"></graphic>
</fig>
<p>Both of the thiophene Schiff-bases
<bold>L
<sup>3</sup>
</bold>
and thiophene amides
<bold>L
<sup>4</sup>
</bold>
owned novel structural features with two aromatic rings (thiophene ring and benzene ring) and two aliphatic rings from dehydroabietylamine. For
<bold>L
<sup>3</sup>
</bold>
, its faint yellow block-shaped single crystal was found to be a monoclinic crystal in a chiral space group
<italic>P</italic>
2
<sub>1</sub>
with a Flack parameter of 0.009(8). The thiophene ring with C5, N1, and C6 was coplanar (
<xref ref-type="fig" rid="F0001">Figure 1(a)</xref>
). The molecules are stably connected by slightly weak C1 − H1⋅⋅⋅S1
<sup>#</sup>
hydrogen bond to assemble an infinite one-dimensional chain structure along
<italic>b</italic>
axis (
<xref ref-type="fig" rid="F0001">Figure 1(b)</xref>
). The distance of H1⋅⋅⋅S1 (2.8019(18) Å) and C1⋅⋅⋅S1 (3.6459(64) Å) is corresponding to Shi’s report (H16⋅⋅⋅S2 2.95 Å and C16⋅⋅⋅S2 3.61 Å), which is slightly shorter than the sum of van der Waals radii, proving that a weak interaction existed between H1⋅⋅⋅S1 (Shi & Wen,
<xref rid="CIT0046" ref-type="bibr">1998</xref>
). The length of the new imine double bond C5 − N1 (1.2520(7) Å) is in accordance with the report from Lu (C10 − N2 1.2913(3) Å) (Lu et al.,
<xref rid="CIT0033" ref-type="bibr">2016</xref>
) and our previous result of C7 − N1 1.2690(4) Å (Zhao et al.,
<xref rid="CIT0059" ref-type="bibr">2018</xref>
). For
<bold>L
<sup>4</sup>
</bold>
, its colorless block-shaped single crystal was obtained as orthorhombic crystal system in a chiral space group
<italic>P</italic>
2
<sub>1</sub>
with a Flack parameter of 0.08(5). The molecules are connected by N1 − H1⋅⋅⋅O1
<sup>#</sup>
hydrogen bond to assemble an infinite one-dimensional chain structure along
<italic>b</italic>
axis (
<xref ref-type="fig" rid="F0002">Figure 2(b)</xref>
). The hydrogen-bond parameters of
<bold>L
<sup>3</sup>
</bold>
and
<bold>L
<sup>4</sup>
</bold>
are shown in
<xref rid="t0001" ref-type="table">Table 1</xref>
. Selected bond lengths and angles of
<bold>L
<sup>3</sup>
</bold>
and
<bold>L
<sup>4</sup>
</bold>
are shown in
<xref rid="t0002" ref-type="table">Table 2</xref>
. The crystallographic data are shown in
<ext-link ext-link-type="uri" xlink:href="https://doi.org/10.1080/10717544.2020.1716879">Table S1</ext-link>
in
<ext-link ext-link-type="uri" xlink:href="https://doi.org/10.1080/10717544.2020.1716879">Supplementary Material</ext-link>
.</p>
<fig id="F0001" orientation="portrait" position="float">
<label>Figure 1.</label>
<caption>
<p>(a) Molecular structure of
<bold>L
<sup>3</sup>
</bold>
(hydrogen atoms omitted for clarity). (b) The 1D chain structure formed by intermolecular hydrogen bonds.</p>
</caption>
<graphic content-type="color" xlink:href="IDRD_A_1716879_F0001_C"></graphic>
</fig>
<fig id="F0002" orientation="portrait" position="float">
<label>Figure 2.</label>
<caption>
<p>(a) Molecular structure of
<bold>L
<sup>4</sup>
</bold>
(hydrogen atoms omitted for clarity). (b) The 1D chain structure formed by intermolecular hydrogen bonds.</p>
</caption>
<graphic content-type="color" xlink:href="IDRD_A_1716879_F0002_C"></graphic>
</fig>
<table-wrap id="t0001" orientation="portrait" position="float">
<label>Table 1.</label>
<caption>
<p>Hydrogen bonds of
<bold>L
<sup>3</sup>
</bold>
and
<bold>L
<sup>4</sup>
</bold>
.</p>
</caption>
<pmc-comment>OASIS TABLE HERE</pmc-comment>
<table frame="hsides" rules="groups">
<colgroup>
<col width="1*"></col>
<col width="1*"></col>
<col width="1*"></col>
<col width="1*"></col>
<col width="1*"></col>
<col width="1*"></col>
</colgroup>
<thead>
<tr>
<th align="left">Compd.</th>
<th align="center">D–H⋅⋅⋅A</th>
<th align="center">d(D–H)(Å)</th>
<th align="center">d(H⋅⋅⋅A)(Å)</th>
<th align="center">d(D⋅⋅⋅A)(Å)</th>
<th align="center">∠DHA( ° )</th>
</tr>
</thead>
<tbody valign="top">
<tr>
<td align="left">
<bold>L
<sup>3</sup>
</bold>
</td>
<td align="char" char=".">
<bold>C1–H1⋅⋅⋅S1</bold>
<sup>a</sup>
</td>
<td align="char" char=".">0.9304(62)</td>
<td align="char" char=".">2.8019(18)</td>
<td align="char" char=".">3.6459(64)</td>
<td align="char" char=".">151.365(379)</td>
</tr>
<tr>
<td align="left">
<bold>L
<sup>4</sup>
</bold>
</td>
<td align="char" char=".">
<bold>N1–H1⋅⋅⋅O1</bold>
<sup>b</sup>
</td>
<td align="char" char=".">0.8579(30)</td>
<td align="char" char=".">2.2648(30)</td>
<td align="char" char=".">3.0015(42)</td>
<td align="char" char=".">143.759(209)</td>
</tr>
</tbody>
</table>
<table-wrap-foot>
<fn id="TF1">
<p>Symmetry code:
<sup>a</sup>
<italic>x</italic>
, –2 +
<italic>y</italic>
,
<italic>z</italic>
;
<sup>b</sup>
<italic>x</italic>
, –1 +
<italic>y</italic>
,
<italic>z</italic>
.</p>
</fn>
</table-wrap-foot>
</table-wrap>
<table-wrap id="t0002" orientation="portrait" position="float">
<label>Table 2.</label>
<caption>
<p>Selected bond lengths (Å) and angles (deg) for
<bold>L
<sup>3</sup>
</bold>
and
<bold>L
<sup>4</sup>
</bold>
.</p>
</caption>
<pmc-comment>OASIS TABLE HERE</pmc-comment>
<table frame="hsides" rules="groups">
<colgroup>
<col width="1*"></col>
<col width="1*"></col>
<col width="1*"></col>
<col width="1*"></col>
<col width="1*"></col>
<col width="1*"></col>
</colgroup>
<thead>
<tr>
<th colspan="4" align="left">L
<sup>3</sup>
</th>
<th colspan="2" align="center">L
<sup>4</sup>
</th>
</tr>
</thead>
<tbody valign="top">
<tr>
<td align="left">Br1 − C3</td>
<td align="char" char=".">1.866(7)</td>
<td align="char" char=".">N1–C6</td>
<td align="char" char=".">1.471(7)</td>
<td align="left">C5 − O1</td>
<td align="char" char=".">1.226(5)</td>
</tr>
<tr>
<td align="left">S1 − C4</td>
<td align="char" char=".">1.706(6)</td>
<td align="left">C4 − S1 − C3</td>
<td align="char" char=".">91.6(3)</td>
<td align="left">N1 − C5</td>
<td align="char" char=".">1.346(5)</td>
</tr>
<tr>
<td align="left">S1 − C3</td>
<td align="char" char=".">1.709(6)</td>
<td align="left">C5 − N1 − C6</td>
<td align="char" char=".">115.7(5)</td>
<td align="left">O1 − C5 − N1</td>
<td align="char" char=".">123.7(4)</td>
</tr>
<tr>
<td align="left">N1 − C5</td>
<td align="char" char=".">1.252(7)</td>
<td align="left">S1 − C3 − Br1</td>
<td align="char" char=".">120.1(4)</td>
<td align="left">C1 − S1 − C4</td>
<td align="char" char=".">91.3(2)</td>
</tr>
</tbody>
</table>
</table-wrap>
</sec>
<sec id="s0004">
<label>2.2.</label>
<title>Biological evaluation</title>
<sec id="s0005">
<label>2.2.1.</label>
<title>Antiproliferative activities</title>
<p>Compounds
<bold>L
<sup>1</sup>
</bold>
<bold>L
<sup>10</sup>
</bold>
were evaluated against human cancer cell lines Hela, HepG2, MCF-7, A549, and the normal cell HUVEC with the antiproliferative activities
<italic>in vitro</italic>
by MTT assay, and results are summarized as IC
<sub>50</sub>
values in
<xref rid="t0003" ref-type="table">Table 3</xref>
. DMSO was used as negative control and DOX (Doxorubicin) as positive control, which is a common chemotherapy medication used to cure cancer (Wang et al.,
<xref rid="CIT0054" ref-type="bibr">2004</xref>
).</p>
<table-wrap id="t0003" orientation="portrait" position="float">
<label>Table 3.</label>
<caption>
<p>Cytotoxicity of
<bold>L
<sup>1</sup>
</bold>
<bold>L
<sup>10</sup>
</bold>
and DOX against certain axenic cancer cells and normal cell.</p>
</caption>
<pmc-comment>OASIS TABLE HERE</pmc-comment>
<table frame="hsides" rules="groups">
<colgroup>
<col width="1*"></col>
<col width="1*"></col>
<col width="1*"></col>
<col width="1*"></col>
<col width="1*"></col>
<col width="1*"></col>
</colgroup>
<thead>
<tr>
<th colspan="6" align="left">
<bold>IC
<sub>50</sub>
± SE</bold>
<sup>a</sup>
<bold>(
<italic>μ</italic>
M )</bold>
<hr></hr>
</th>
</tr>
<tr>
<th align="left">Compd.</th>
<th align="center">Hela</th>
<th align="center">HepG2</th>
<th align="center">MCF-7</th>
<th align="center">A549</th>
<th align="center">HUVEC</th>
</tr>
</thead>
<tbody valign="top">
<tr>
<td align="left">
<bold>L
<sup>0</sup>
</bold>
</td>
<td align="char" char="±">2.02 ± 0.02</td>
<td align="char" char="±">2.56 ± 0.04</td>
<td align="char" char="±">19.45 ± 0.39</td>
<td align="char" char="±">5.02 ± 0.19</td>
<td align="char" char="±">1.27 ± 0.03</td>
</tr>
<tr>
<td align="left">
<bold>L
<sup>1</sup>
</bold>
</td>
<td align="char" char="±">9.02 ± 0.25
<xref ref-type="table-fn" rid="TF6">***</xref>
</td>
<td align="char" char="±">0.66 ± 0.02
<xref ref-type="table-fn" rid="TF6">***</xref>
</td>
<td align="char" char="±">5.33 ± 0.16
<xref ref-type="table-fn" rid="TF6">***</xref>
</td>
<td align="char" char="±">2.11 ± 0.06
<xref ref-type="table-fn" rid="TF6">***</xref>
</td>
<td align="char" char="±">5.92 ± 0.17
<xref ref-type="table-fn" rid="TF6">***</xref>
</td>
</tr>
<tr>
<td align="left">
<bold>L
<sup>2</sup>
</bold>
</td>
<td align="char" char="±">59.52 ± 0.27
<xref ref-type="table-fn" rid="TF6">***</xref>
</td>
<td align="char" char="±">28.78 ± 0.19
<xref ref-type="table-fn" rid="TF6">***</xref>
</td>
<td align="char" char="±">14.48 ± 2.48
<xref ref-type="table-fn" rid="TF6">*</xref>
</td>
<td align="char" char="±">>100</td>
<td align="char" char="±">34.02 ± 1.57
<xref ref-type="table-fn" rid="TF6">***</xref>
</td>
</tr>
<tr>
<td align="left">
<bold>L
<sup>3</sup>
</bold>
</td>
<td align="char" char="±">54.38 ± 0.38
<xref ref-type="table-fn" rid="TF6">***</xref>
</td>
<td align="char" char="±">1.63 ± 0.39
<xref ref-type="table-fn" rid="TF6">***</xref>
</td>
<td align="char" char="±">2.65 ± 0.07
<xref ref-type="table-fn" rid="TF6">***</xref>
</td>
<td align="char" char="±">95.48 ± 2.48
<xref ref-type="table-fn" rid="TF6">***</xref>
</td>
<td align="char" char="±">16.65 ± 1.08
<xref ref-type="table-fn" rid="TF6">*</xref>
</td>
</tr>
<tr>
<td align="left">
<bold>L
<sup>4</sup>
</bold>
</td>
<td align="char" char="±">14.80 ± 0.22
<sup>ns</sup>
</td>
<td align="char" char="±">45.99 ± 1.13
<sup>ns</sup>
</td>
<td align="char" char="±">8.21 ± 0.65
<xref ref-type="table-fn" rid="TF6">***</xref>
</td>
<td align="char" char="±">>100</td>
<td align="char" char="±">>100</td>
</tr>
<tr>
<td align="left">
<bold>L
<sup>5</sup>
</bold>
</td>
<td align="char" char="±">>100</td>
<td align="char" char="±">53.14 ± 1.95
<xref ref-type="table-fn" rid="TF6">***</xref>
</td>
<td align="char" char="±">8.27 ± 0.21
<xref ref-type="table-fn" rid="TF6">***</xref>
</td>
<td align="char" char="±">>100</td>
<td align="char" char="±">>100</td>
</tr>
<tr>
<td align="left">
<bold>L
<sup>6</sup>
</bold>
</td>
<td align="char" char="±">>100</td>
<td align="char" char="±">51.44 ± 2
<xref ref-type="table-fn" rid="TF6">***</xref>
</td>
<td align="char" char="±">55.56 ± 2.56
<xref ref-type="table-fn" rid="TF6">***</xref>
</td>
<td align="char" char="±">94.39 ± 2.56
<xref ref-type="table-fn" rid="TF6">***</xref>
</td>
<td align="char" char="±">75.45 ± 12.44
<xref ref-type="table-fn" rid="TF6">***</xref>
</td>
</tr>
<tr>
<td align="left">
<bold>L
<sup>7</sup>
</bold>
</td>
<td align="char" char="±">43.53 ± 1.34
<xref ref-type="table-fn" rid="TF6">***</xref>
</td>
<td align="char" char="±">24.01 ± 1.33
<xref ref-type="table-fn" rid="TF6">***</xref>
</td>
<td align="char" char="±">11.82 ± 0.54
<xref ref-type="table-fn" rid="TF6">**</xref>
</td>
<td align="char" char="±">83.60 ± 15.65
<xref ref-type="table-fn" rid="TF6">***</xref>
</td>
<td align="char" char="±">66.77 ± 2.60
<xref ref-type="table-fn" rid="TF6">***</xref>
</td>
</tr>
<tr>
<td align="left">
<bold>L
<sup>8</sup>
</bold>
</td>
<td align="char" char="±">20.22 ± 0.89
<xref ref-type="table-fn" rid="TF6">**</xref>
</td>
<td align="char" char="±">17.06 ± 0.07
<xref ref-type="table-fn" rid="TF6">**</xref>
</td>
<td align="char" char="±">8.81 ± 0.54
<xref ref-type="table-fn" rid="TF6">***</xref>
</td>
<td align="char" char="±">36.02 ± 2.18
<xref ref-type="table-fn" rid="TF6">**</xref>
</td>
<td align="char" char="±">95.11 ± 0.97
<xref ref-type="table-fn" rid="TF6">***</xref>
</td>
</tr>
<tr>
<td align="left">
<bold>L
<sup>9</sup>
</bold>
</td>
<td align="char" char="±">52.46 ± 0.54
<xref ref-type="table-fn" rid="TF6">***</xref>
</td>
<td align="char" char="±">44.94 ± 0.75
<xref ref-type="table-fn" rid="TF6">***</xref>
</td>
<td align="char" char="±">6.66 ± 0.24
<xref ref-type="table-fn" rid="TF6">***</xref>
</td>
<td align="char" char="±">>100</td>
<td align="char" char="±">18.91 ± 1.72
<xref ref-type="table-fn" rid="TF6">**</xref>
</td>
</tr>
<tr>
<td align="left">
<bold>L
<sup>10</sup>
</bold>
</td>
<td align="char" char="±">>100</td>
<td align="char" char="±">56.08 ± 6.11
<xref ref-type="table-fn" rid="TF6">***</xref>
</td>
<td align="char" char="±">88.81 ± 3.46
<xref ref-type="table-fn" rid="TF6">***</xref>
</td>
<td align="char" char="±">39.63 ± 1.74
<xref ref-type="table-fn" rid="TF6">**</xref>
</td>
<td align="char" char="±">29.38 ± 2.35
<xref ref-type="table-fn" rid="TF6">***</xref>
</td>
</tr>
<tr>
<td align="left">
<bold>DOX</bold>
</td>
<td align="char" char="±">3.55 ± 0.17
<sup>ns</sup>
</td>
<td align="char" char="±">1.20 ± 0.04
<sup>ns</sup>
</td>
<td align="char" char="±">14 ± 1.03
<xref ref-type="table-fn" rid="TF6">*</xref>
</td>
<td align="char" char="±">3.35 ± 0.69
<sup>ns</sup>
</td>
<td align="char" char="±">4.40 ± 0.55***</td>
</tr>
</tbody>
</table>
<table-wrap-foot>
<fn id="TF2">
<p>ns: not significant, complexes compared with
<bold>L
<sup>0</sup>
</bold>
, respectively.</p>
</fn>
<fn id="TF3">
<p>
<sup>a</sup>
Average IC
<sub>50</sub>
values from at least three independent experiments.</p>
</fn>
<fn id="TF4">
<p>***
<italic>p</italic>
 < .001.</p>
</fn>
<fn id="TF5">
<p>**
<italic>p</italic>
 < .01.</p>
</fn>
<fn id="TF6">
<p>*
<italic>p</italic>
 < .05.</p>
</fn>
</table-wrap-foot>
</table-wrap>
<p>A histogram was drawn more distinctly to compare the antiproliferative activity of
<bold>L
<sup>0</sup>
−L
<sup>10</sup>
</bold>
against axenic cancer cells and cytotoxicity based on IC
<sub>50</sub>
values (
<xref rid="t0003" ref-type="table">Table 3</xref>
). We used DOX as positive control,
<bold>L
<sup>0</sup>
</bold>
also as control to compare the antiproliferative activity among its modified products for the reasoned that the antiproliferative activity of
<bold>L
<sup>0</sup>
</bold>
was slightly lower than DOX (except Hela cells), whereas that was better than a variety of pharmaceutical products. The values of
<italic>p</italic>
 > 0.05 were considered that the antiproliferative activity of
<bold>L
<sup>0</sup>
</bold>
and DOX in statistics difference were insignificant, except for MCF-7 cells. The result is shown in
<xref ref-type="fig" rid="F0003">Figure 3</xref>
.</p>
<fig id="F0003" orientation="portrait" position="float">
<label>Figure 3.</label>
<caption>
<p>The comparison of antiproliferative effects and cytotoxicity of DOX,
<bold>L
<sup>0</sup>
</bold>
<bold>L
<sup>10</sup>
</bold>
.</p>
</caption>
<graphic content-type="color" xlink:href="IDRD_A_1716879_F0003_C"></graphic>
</fig>
<p>From
<xref ref-type="fig" rid="F0003">Figure 3</xref>
, the result showed quite clearly that
<bold>L
<sup>1</sup>
</bold>
and
<bold>L
<sup>3</sup>
</bold>
had higher antiproliferative activity against HepG2 cells while
<bold>L
<sup>2</sup>
</bold>
had higher antiproliferative activity against A549 cells.
<bold>L
<sup>1</sup>
</bold>
<bold>L
<sup>10</sup>
</bold>
were low toxic as their toxicity (IC
<sub>50</sub>
 = 5.92− >100 μM) was all lower than
<bold>L
<sup>0</sup>
</bold>
(1.27 μM) and DOX (4.40 μM) for HUVEC cells. For further observation, for HepG2 cells, the IC
<sub>50</sub>
values of
<bold>L
<sup>1</sup>
</bold>
(0.66 μM) and
<bold>L
<sup>3</sup>
</bold>
(1.63 μM) were much smaller than those of
<bold>L
<sup>0</sup>
</bold>
. Moreover, with average IC
<sub>50</sub>
values of 0.66 and 5.92 μM,
<bold>L
<sup>1</sup>
</bold>
was nine times more effective at suppressing cultured HepG2 cells viability than normal cells, and
<bold>L
<sup>3</sup>
</bold>
as well with average IC
<sub>50</sub>
values of 1.63 and 16.65 μM. For MCF-7 cells, most compounds had higher anti-MCF-7 activity than both
<bold>L
<sup>0</sup>
</bold>
and DOX with their smaller IC
<sub>50</sub>
value compared to
<bold>L
<sup>0</sup>
</bold>
(excluding
<bold>L
<sup>6</sup>
</bold>
and
<bold>L
<sup>10</sup>
</bold>
), particularly,
<bold>L
<sup>1</sup>
</bold>
(5.33 μM) and
<bold>L
<sup>3</sup>
</bold>
(2.65 μM). For A549 cells, the IC
<sub>50</sub>
value of
<bold>L
<sup>1</sup>
</bold>
(2.11 μM) was smaller than
<bold>L
<sup>0</sup>
</bold>
, which meant
<bold>L
<sup>1</sup>
</bold>
had higher anti-A549 activity than
<bold>L
<sup>0</sup>
</bold>
; in especial, the IC
<sub>50</sub>
value of
<bold>L
<sup>1</sup>
</bold>
was smaller than DOX. The security index (SI) value of
<bold>L
<sup>1</sup>
</bold>
is 9.0 and
<bold>L
<sup>3</sup>
</bold>
is 10.2, which suggested they had higher anticancer activity and lower toxicity compared with L
<bold>
<sup>0</sup>
</bold>
0.5)and DOX (3.7). Actually, among these investigated compounds,
<bold>L
<sup>1</sup>
</bold>
had the smallest IC
<sub>50</sub>
value of 0.66 μM against HepG2 cells and lower toxicity, which shows that
<bold>L
<sup>1</sup>
</bold>
may be a promising anticancer drug.</p>
<p>Furthermore, by contrast with the structure and cytotoxicity
<italic>in vitro</italic>
on the cancer cell lines of
<bold>L
<sup>1</sup>
−L
<sup>10</sup>
</bold>
, compounds owned − CH
<sub>3</sub>
electron-donating group (
<bold>L
<sup>2</sup>
</bold>
,
<bold>L
<sup>5</sup>
</bold>
,
<bold>L
<sup>9</sup>
</bold>
) had relatively lower antiproliferative activity than those without electron-donating group (
<bold>L
<sup>1</sup>
</bold>
,
<bold>L
<sup>4</sup>
</bold>
,
<bold>L
<sup>7</sup>
</bold>
). As reported by Hande, introduction of a polar group containing a hydrogen-bond donor resulted to enhanced anticancer activity (Hande,
<xref rid="CIT0015" ref-type="bibr">1998</xref>
). Although the correspondingly better solubility of Schiff-bases and the special structure of Schiff-base (−CH = N−), which can conjugate with the thiophene ring and grant it with higher stability and bioactivity, these Schiff-base compounds (
<bold>L
<sup>1</sup>
</bold>
<bold>L
<sup>3</sup>
</bold>
) had higher antiproliferative activity against HepG2 and MCF-7 cells. As a whole, all these synthetic compounds could inhibit the proliferation of cancer cells by penetrating into cytoplasm with endocytosis, we reasoned that the strong chelating ability of ‘S’ and ‘N’ may lead to the easy formation of hydrogen bonds with carboxyl and amino groups in the cancer cell lines through their unique lone pair electrons.</p>
</sec>
<sec id="s0006">
<label>2.2.2.</label>
<title>Induction of apoptosis</title>
<p>As a routine chemotherapeutic agent for a broad range of malignancies, DOX can prevent tumor proliferation via inducing apoptosis. Apoptosis, known as programed cell death, is a crucial process related to the regulation of development and homeostasis (Arjmand & Aziz,
<xref rid="CIT0003" ref-type="bibr">2009</xref>
; Qi et al.,
<xref rid="CIT0041" ref-type="bibr">2019</xref>
). It plays an important role in cancer, as its induction in cancer cells is significant to a successful therapy, thereby carrying out apoptosis assay can afford meaningful information to the study of the mode of action. In this paper, we have estimated the potential mechanism of cell proliferation inhibitory activity of
<bold>L
<sup>1</sup>
</bold>
and
<bold>L
<sup>3</sup>
</bold>
through the assay apoptosis with Annexin V-FITC/PI and flow cytometry in HepG2 cells. The flow-cytometric analysis is shown in
<xref ref-type="fig" rid="F0004">Figure 4</xref>
.</p>
<fig id="F0004" orientation="portrait" position="float">
<label>Figure 4.</label>
<caption>
<p>Apoptosis assay of HepG2 cells treated with
<bold>L
<sup>1</sup>
</bold>
and
<bold>L
<sup>3</sup>
</bold>
. C was DMSO (negative control), others were
<bold>L
<sup>1</sup>
</bold>
at 0.26, 2.6, 13 μM, and
<bold>L
<sup>3</sup>
</bold>
at 0.22, 2.2, 11 μM, respectively.</p>
</caption>
<graphic content-type="color" xlink:href="IDRD_A_1716879_F0004_C"></graphic>
</fig>
<p>According to
<xref ref-type="fig" rid="F0004">Figure 4</xref>
, after
<bold>L
<sup>1</sup>
</bold>
and
<bold>L
<sup>3</sup>
</bold>
incubated with HepG2 cells with the concentration range from 0.22 to 13 μM, respectively, live cells reduced and apoptotic cells increased; herein, they obviously exhibited the dosage-dependent manner. When the concentrations of
<bold>L
<sup>1</sup>
</bold>
were 0.26, 2.6, and 13 μM, the apoptotic ratios of
<bold>L
<sup>1</sup>
</bold>
were 12.67%, 36.76%, and 80.60%, respectively. Simultaneously, when the concentrations of
<bold>L
<sup>1</sup>
</bold>
were 0.22, 2.2, and 11 μM, the apoptotic ratios of
<bold>L
<sup>3</sup>
</bold>
were 8.55%, 12.97%, and 39.21%, respectively. Compared to the apoptotic ratio of these two compounds,
<bold>L
<sup>1</sup>
</bold>
had obviously higher ability to induce apoptosis at the similar concentration. During the induction of apoptosis process, live cells trend to develop toward apoptotic cells with the enhanced concentration. Herein the reported results distinctly illustrated that
<bold>L
<sup>1</sup>
</bold>
and
<bold>L
<sup>3</sup>
</bold>
could inhibit cell proliferation by inducing apoptosis.</p>
<p>For further investigation, the logP values of all compounds were calculated by hyperchem 8.0 (
<xref rid="t0004" ref-type="table">Table 4</xref>
). Compared with DOX (1.50), the values of logP of
<bold>L
<sup>1</sup>
</bold>
(0.98),
<bold>L
<sup>2</sup>
</bold>
(1.17) and
<bold>L
<sup>3</sup>
</bold>
(1.32) were smaller with stronger hydrophily, which implied they had better solubility and may be in favor of excellent cytotoxic activities. According to a report, the ideal drug potency and satisfied pharmacokinetic profiles required good water solubility to achieve the desired therapeutic efficacy (Li et al.,
<xref rid="CIT0027" ref-type="bibr">2014</xref>
). Any drug to be absorbed should exist in the form of solution at the site of absorption (Muhammad & Bashir,
<xref rid="CIT0038" ref-type="bibr">2017</xref>
). The value of logP of
<bold>L
<sup>4</sup>
</bold>
<bold>L
<sup>10</sup>
</bold>
(>3) was larger, which suggested they had stronger lipophicity and its slightly poor solubility might lead to relatively worse effects on cancer cells. All compounds herein had been next examined with p
<italic>K</italic>
<sub>b</sub>
in the range of 9.00–14.96; thus, they seemed no regular effect on cytotoxic activities.</p>
<table-wrap id="t0004" orientation="portrait" position="float">
<label>Table 4.</label>
<caption>
<p>Physicochemical data (logP and p
<italic>K</italic>
<sub>b</sub>
) of
<bold>L
<sup>1</sup>
−L
<sup>10</sup>
</bold>
, DOX.</p>
</caption>
<pmc-comment>OASIS TABLE HERE</pmc-comment>
<table frame="hsides" rules="groups">
<colgroup>
<col width="1*"></col>
<col width="1*"></col>
<col width="1*"></col>
<col width="1*"></col>
<col width="1*"></col>
<col width="1*"></col>
<col width="1*"></col>
<col width="1*"></col>
<col width="1*"></col>
<col width="1*"></col>
<col width="1*"></col>
<col width="1*"></col>
<col width="1*"></col>
</colgroup>
<thead>
<tr>
<th align="left">Compd.</th>
<th align="center">
<bold>L
<sup>0</sup>
</bold>
</th>
<th align="center">
<bold>L
<sup>1</sup>
</bold>
</th>
<th align="center">
<bold>L
<sup>2</sup>
</bold>
</th>
<th align="center">
<bold>L
<sup>3</sup>
</bold>
</th>
<th align="center">
<bold>L
<sup>4</sup>
</bold>
</th>
<th align="center">
<bold>L
<sup>5</sup>
</bold>
</th>
<th align="center">
<bold>L
<sup>6</sup>
</bold>
</th>
<th align="center">
<bold>L
<sup>7</sup>
</bold>
</th>
<th align="center">
<bold>L
<sup>8</sup>
</bold>
</th>
<th align="center">
<bold>L
<sup>9</sup>
</bold>
</th>
<th align="center">
<bold>L
<sup>10</sup>
</bold>
</th>
<th align="center">
<bold>DOX</bold>
</th>
</tr>
</thead>
<tbody valign="top">
<tr>
<td align="left">
<bold>logP</bold>
</td>
<td align="char" char=".">0.40</td>
<td align="char" char=".">0.98</td>
<td align="char" char=".">1.17</td>
<td align="char" char=".">1.32</td>
<td align="char" char=".">3.46</td>
<td align="char" char=".">3.48</td>
<td align="char" char=".">4.90</td>
<td align="char" char=".">3.65</td>
<td align="char" char=".">4.35</td>
<td align="char" char=".">3.68</td>
<td align="char" char=".">4.79</td>
<td align="char" char=".">1.50</td>
</tr>
<tr>
<td align="left">
<bold>p
<italic>K</italic>
<sub>b</sub>
</bold>
</td>
<td align="char" char=".">7.00</td>
<td align="char" char=".">9.00</td>
<td align="char" char=".">10.18</td>
<td align="char" char=".">9.90</td>
<td align="char" char=".">14.30</td>
<td align="char" char=".">14.16</td>
<td align="char" char=".">14.96</td>
<td align="char" char=".">11.12</td>
<td align="char" char=".">10.36</td>
<td align="char" char=".">13.38</td>
<td align="char" char=".">11.50</td>
<td align="char" char=".">5.80</td>
</tr>
</tbody>
</table>
</table-wrap>
</sec>
<sec id="s0007">
<label>2.2.3.</label>
<title>DNA binding modes</title>
<p>Intercalation is well known to strongly influence the properties of the DNA and has been reported as a preliminary step in mutagenesis. It was reported that DOX had the ability to remain inside nucleated cells because of its lipophilic characteristics and DNA intercalating or binding properties (Arjmand & Aziz,
<xref rid="CIT0003" ref-type="bibr">2009</xref>
; Sun et al.,
<xref rid="CIT0051" ref-type="bibr">2019</xref>
). We further investigated whether
<bold>L
<sup>1</sup>
</bold>
and
<bold>L
<sup>3</sup>
</bold>
had similar activity to DOX; herein we studied DNA binding properties of them. The DNA (Salmon Sperm DNA) binding modes were evaluated by ethidium bromide (EB) fluorescence displacement experiments. Actually, EB had no perceptible emission in buffer solution; after adding DNA, the fluorescence intensity improved obviously, which was considered of its strongly intercalation with DNA base pairs. The intercalation of the compound with the base pairs of DNA can be confirmed when the DNA − EB emission can be decreased or quenched upon adding a compound (Li et al.,
<xref rid="CIT0028" ref-type="bibr">1996</xref>
; Gao et al.,
<xref rid="CIT0011" ref-type="bibr">2010</xref>
). As expected, the emission intensity apparently reduced (shown in
<xref ref-type="fig" rid="F0005">Figure 5</xref>
) by adding
<bold>L
<sup>1</sup>
</bold>
and
<bold>L
<sup>3</sup>
</bold>
to DNA-EB, which exhibits that
<bold>L
<sup>1</sup>
</bold>
and
<bold>L
<sup>3</sup>
</bold>
can bind to DNA at the sites occupied by EB, and it can interact with DNA by intercalation.</p>
<fig id="F0005" orientation="portrait" position="float">
<label>Figure 5.</label>
<caption>
<p>Emission spectra of DNA − EB in the absence and presence of increasing amounts of
<bold>L
<sup>1</sup>
</bold>
and
<bold>L
<sup>3</sup>
</bold>
at room temperature, respectively ([EB] = 2 × 10
<sup>−5</sup>
M, [DNA] = 1 × 10
<sup>−4</sup>
M, and [
<bold>L
<sup>1</sup>
</bold>
,
<bold>L
<sup>3</sup>
</bold>
] = 1.5 × 10
<sup>−5 </sup>
M).</p>
</caption>
<graphic content-type="color" xlink:href="IDRD_A_1716879_F0005_C"></graphic>
</fig>
<p>The DNA binding modes of
<bold>L
<sup>1</sup>
</bold>
and
<bold>L
<sup>3</sup>
</bold>
were detected by the application of Absorption Spectral as well (shown in
<xref ref-type="fig" rid="F0006">Figure 6</xref>
). Normally, a compound binding to DNA can generate hypochromism and bathochromism by intercalation. The absorption spectra exhibited a hypochromic shift after promoting added amounts of DNA to solution of
<bold>L
<sup>3</sup>
</bold>
, which illustrated an intercalative binding mode. The result was in coincidence with that of fluorescence studies. To sum up, the absorption and fluorescence spectral all verified that
<bold>L
<sup>1</sup>
</bold>
and
<bold>L
<sup>3</sup>
</bold>
with the same as DOX could bind with DNA through intercalation.</p>
<fig id="F0006" orientation="portrait" position="float">
<label>Figure 6.</label>
<caption>
<p>Absorption spectra of
<bold>L
<sup>1</sup>
</bold>
and
<bold>L
<sup>3</sup>
</bold>
(5 × 10
<sup>−5 </sup>
M) in the absence and presence of increasing amounts of DNA (5 × 10
<sup>−5 </sup>
M to 10
<sup>−3</sup>
M) at room temperature in Tris-NaCl-HCl buffer (pH = 7.3). The arrow shows the absorbance change when increasing the DNA concentration.</p>
</caption>
<graphic content-type="color" xlink:href="IDRD_A_1716879_F0006_C"></graphic>
</fig>
<p>In view of aforementioned findings, these synthetic dehydroabietylamine derivatives had relatively high potential antiproliferative activity and low toxicity, some of them also could induce apoptosis at low concentration. Moreover, to understand the cytotoxicity and the DNA binding modes was significative for designing new and potential drugs.</p>
</sec>
<sec id="s0008">
<label>2.2.4.</label>
<title>Antiproliferation activity in vivo</title>
<p>Herein, we have intravenously injected compound
<bold>L
<sup>1</sup>
</bold>
(dose: 0.6 mg/kg) into the mice with HepG2 cells during 25 days with every 3 days
<italic>in vivo</italic>
experiment for further investigation.</p>
<p>As shown in
<xref ref-type="fig" rid="F0007">Figure 7(a–f)</xref>
, it is obvious that the volume and weight of tumor mice were decreased after injected with compound
<bold>L
<sup>1</sup>
</bold>
(0.6 mg/kg) as compared with PBS control. The average volume of tumor (HepG2) was 0.739 cm
<sup>3</sup>
when the PBS control was 1.876 cm
<sup>3</sup>
. In addition, the weight of tumor was 0.84 g compared with PBS control was 2.16 g. The relative tumor proliferation rate (T/C) was 38.6% and the tumor inhibition rate was up to 61.2%. Moreover, no obvious toxicity was also observed in the heart, liver, spleen, lung, kidney, and brain tissues of the mice injected with compound
<bold>L
<sup>1</sup>
</bold>
in
<xref ref-type="fig" rid="F0007">Figure 7(f)</xref>
, which exhibited no significant changes in morphology of these organs. In
<xref ref-type="fig" rid="F0007">Figure 7(g)</xref>
, CD31 immumohistochemical staining with mice was taken on the 25th day after an intravenous injection of compound
<bold>L
<sup>1</sup>
</bold>
(0.6 mg/kg) showed tumor angiogenesis rate was decreased compared with PBS control, which demonstrated compound
<bold>L
<sup>1</sup>
</bold>
could suppress tumor growth. In general, these findings suggested that
<bold>L
<sup>1</sup>
</bold>
had high anti-HepG2 activity both
<italic>in vitro</italic>
and
<italic>in vivo</italic>
, and
<bold>L
<sup>1</sup>
</bold>
had great promising future as nontoxic side effects and effective antiproliferation drug.</p>
<fig id="F0007" orientation="portrait" position="float">
<label>Figure 7.</label>
<caption>
<p>(a) Whole appearance and (b) the volume of tumor mice injected with PBS (control) and compound
<bold>L
<sup>1</sup>
</bold>
after 25 days. (c) Change in tumor volume of mice injected with compound
<bold>L
<sup>1</sup>
</bold>
(0.6 mg/kg) compared with PBS control. (d) Change in body weight of mice injected with compound
<bold>L
<sup>1</sup>
</bold>
(0.6 mg/kg) and PBS. (e) The tumor weight of mice injected with compound
<bold>L
<sup>1</sup>
</bold>
(0.6 mg/kg) and PBS control after 25 days. (f) H&E staining of the brain, heart, liver, spleen, lung, and kidney tissues collected from mice on the 25th day after an intravenous injection of compound
<bold>L
<sup>1</sup>
</bold>
(0.6 mg/kg) and PBS control. (g) CD31 immumohistochemical staining with mice on the 25th day after an intravenous injection of compound
<bold>L
<sup>1</sup>
</bold>
(0.6 mg/kg) and PBS control. Scale bar = 20 μm; error bars are based on standard errors of the mean (
<italic>n</italic>
 = 5).</p>
</caption>
<graphic content-type="color" xlink:href="IDRD_A_1716879_F0007_C"></graphic>
</fig>
</sec>
</sec>
</sec>
<sec id="s0009">
<label>3.</label>
<title>Conclusions</title>
<p>In conclusion, our formulation has shown thiophene Schiff-bases (
<bold>L
<sup>1</sup>
</bold>
<bold>L
<sup>3</sup>
</bold>
), thiophene amides (
<bold>L
<sup>4</sup>
</bold>
<bold>L
<sup>6</sup>
</bold>
) and pyrazine amides (
<bold>L
<sup>7</sup>
</bold>
<bold>L
<sup>10</sup>
</bold>
) with high antiproliferative activity, relatively low toxicity and DNA binding modes. The toxicity of
<bold>L
<sup>1</sup>
</bold>
<bold>L
<sup>10</sup>
</bold>
(IC
<sub>50</sub>
 = 5.92− >100 μM) was all lower than
<bold>L
<sup>0</sup>
</bold>
(1.27 μM) and DOX (4.40 μM). Compound
<bold>L
<sup>1</sup>
</bold>
had higher anti-HepG2
<bold>(</bold>
0.66 μM), anti-MCF-7 (5.33 μM) and anti-A549 (2.11 μM) activity. Compound
<bold>L
<sup>3</sup>
</bold>
had higher anti-HepG2 (1.63 μM) and anti-MCF-7 (2.65 μM) activity. Additionally,
<bold>L
<sup>1</sup>
</bold>
and
<bold>L
<sup>3</sup>
</bold>
were verified with high efficiency apoptosis induction in HepG2 cells and intercalated modes of binding with DNA.
<bold>L
<sup>1</sup>
</bold>
had no significant toxicity but high anti-HepG2 activity both
<italic>in vitro</italic>
and
<italic>in vivo</italic>
; it may be an effective antiproliferation drug with nontoxic side effects.</p>
<p>These findings can provide a convenient procedure of the rational design in new and potential cellular targeting compounds, which may help to explore the future selective anticancer drugs directly toward cellular targets. However, the possible cellular and structural mechanisms are still unclear and its investigation is currently ongoing.</p>
</sec>
<sec id="s0010">
<label>4.</label>
<title>Experimental section</title>
<sec id="s0011">
<label>4.1.</label>
<title>General experimental procedures</title>
<p>All reagents and solvents were analytical reagent (AR) grade and used as received unless otherwise indicated. The IR spectra were recorded on a Bruker Vectex 80 FT − IR spectrometer with KBr discs in the 4000–500 cm
<sup>−1</sup>
range. The
<sup>1 </sup>
H NMR spectra were measured on a Bruker Avance III 600 MHz NMR spectrometer (Billerica, MA, USA).
<sup>1 </sup>
H and
<sup>13 </sup>
C {
<sup>1 </sup>
H} NMR spectra were recorded in CDCl
<sub>3</sub>
as solvent unless otherwise stated. Chemical shifts (
<italic>δ</italic>
) were given as parts per million (ppm) relative to the NMR solvent signals (CDCl
<sub>3</sub>
7.26 and 77.00 ppm for
<sup>1 </sup>
H and
<sup>13 </sup>
C{
<sup>1</sup>
H} NMR, respectively).
<italic>J</italic>
values were given in Hz. HRMS were measured to determine purity of all tested compounds by LTQ Orbitrap XL mass spectrometer (Thermo Electron, USA). Reactions were monitored by TLC using silica gel 60 F–254 in 0.25 mm thick plates. Compounds on TLC plates were detected under UV light at 254 nm. Purifications were performed by flash chromatography on silica gel (300–400 mesh). The DNA binding modes were investigated by Lambda 950 (Perkin Elmer, USA) and LS55 Fluorescence Spectrophotometer (Perkin Elmer, USA).</p>
</sec>
<sec id="s0012">
<label>4.2.</label>
<title>Synthesis of compound L
<sup>1</sup>
−L
<sup>10</sup>
</title>
<p>Thiophene Schiff-bases (
<bold>L
<sup>1</sup>
</bold>
<bold>L
<sup>3</sup>
</bold>
), thiophene amides (
<bold>L
<sup>4</sup>
</bold>
<bold>L
<sup>6</sup>
</bold>
), and pyrazine amides (
<bold>L
<sup>7</sup>
</bold>
<bold>L
<sup>10</sup>
</bold>
) were synthesized by the following methods.</p>
<sec id="s0013">
<label>4.2.1.</label>
<title>Synthesis of 2-thiophene-dehydroabietylamine-Schiff-base (L
<sup>1</sup>
)</title>
<p>
<bold>L
<sup>0</sup>
</bold>
(1.43 g, 5.0 mmol), 2-thiopehne-formaldehyde (0.56 g 5.0 mmol) with acetic acid as the catalyst was dissolved in ethanol (50 mL) and refluxed for 24 h. When reaction mixture was cooled to the room temperature, lots of white needlelike crystal precipitation appeared. Then white needlelike crystals were obtained by recrystallization from ethanol solution. (1.58 g, 83%), mp: 83.6-85.4 °C; IR (neat)
<italic>ν</italic>
<sub>max</sub>
/cm
<sup>−1</sup>
3423, 2929, 2861, 1649, 1598, 1450, 1375, 1036, 977, 747, 637;
<sup>1 </sup>
H-NMR (CDCl
<sub>3</sub>
, 600 MHz)
<italic>δ</italic>
1.04 (3 H, s), 1.21-1.23 (9 H, t,
<italic>J</italic>
 = 7.2 Hz), 1.30-1.50 (3 H, m), 1.60-1.66 (2 H, m), 1.71–1.79 (2 H, m), 1.88–1.90 (1 H, m), 2.24–2.26 (1 H, d,
<italic>J</italic>
 = 12 Hz); 2.79–2.81 (2 H, m), 2.81–2.86 (1 H, m), 3.40 (2 H, m), 6.86 (1 H, s), 6.98 (1 H, d,
<italic>J</italic>
 = 7.8 Hz), 7.02 (1 H, dd,
<italic>J</italic>
 = 3.6 Hz), 7.17 (1 H, d,
<italic>J</italic>
 = 8.4 Hz), 7.25 (1 H, d,
<italic>J</italic>
 = 3.0 Hz), 7.31–7.32 (1 H, m), 8.30 (1 H, s);
<sup>13 </sup>
C{
<sup>1</sup>
H} (CDCl
<sub>3</sub>
, 151 MHz)
<italic>δ</italic>
18.95, 19.45, 24.04, 24.05, 25.72, 30.58, 33.46, 36.72, 37.73, 38.27, 38.48, 46.11, 123.83, 124.48, 126.88, 127.26, 128.52, 129.70, 135.01, 143.02, 145.39, 147.51, 153.95; MS [M + H]
<sup>+</sup>
<italic>m/z</italic>
380.2419 (calcd for C
<sub>25</sub>
H
<sub>33</sub>
NS 379.2334). Anal. calcd for C
<sub>25</sub>
H
<sub>33</sub>
NS: C, 79.10; H, 8.76; N, 3.69; S, 8.45. Found: C, 79.21; H, 8.62; N, 3.81; S, 8.36.</p>
</sec>
<sec id="s0014">
<label>4.2.2.</label>
<title>Synthesis of 3-methyl-2-thiophene-dehydroabietylamine-Schiff-base (L
<sup>2</sup>
)</title>
<p>When the mixture was cooled to the room temperature, removed the solvent by reduced pressure distillation, and received the brown oil compound. Finally, the brown products were obtained by recrystallization from methanol solution and dried in vacuum. (1.34 g, 68%), mp: 38.2–39.1 °C; IR (neat)
<italic>ν</italic>
<sub>max</sub>
/cm
<sup>−1</sup>
3428, 2929, 2868, 1629, 1447, 1378, 1207, 1050, 825, 716, 620;
<sup>1 </sup>
H–NMR (CDCl
<sub>3</sub>
, 600 MHz)
<italic>δ</italic>
1.02 (3 H, s), 1.21–1.24 (9 H, t,
<italic>J</italic>
 = 7.2 Hz), 1.38–1.52 (3 H, m), 1.60–1.66 (2 H, m), 1.69–1.80 (2 H, m), 1.91–1.95 (1 H, m), 2.25–2.27 (1 H, d,
<italic>J</italic>
 = 11.4 Hz), 2.37(3 H, s), 2.80–2.87 (3 H, m), 3.41 (2 H, m), 6.83 (1 H, s), 6.98 (1 H, d,
<italic>J</italic>
 = 7.2 Hz), 7.17 (1 H, dd,
<italic>J</italic>
 = 8.4 Hz), 7.22 (1 H, d,
<italic>J</italic>
 = 4.8 Hz), 7.24–7.25 (1 H, m), 8.36 (1 H, s);
<sup>13 </sup>
C{
<sup>1</sup>
H} ((CD
<sub>3</sub>
)
<sub>2</sub>
SO, 151 MHz)
<italic>δ</italic>
15.79, 18.50, 18.69, 24.37, 24.45, 25.45, 29.46, 33.38, 35.02, 36.08, 37.40, 38.01, 40.41, 44.88, 50.04, 123.96, 124.36, 126.03, 126.81, 129.54, 134.89, 141.97, 142.87, 145.45, 147.28, 165.57; MS [M + H]
<sup>+</sup>
<italic>m/z</italic>
394.5419 (calcd for C
<sub>26</sub>
H
<sub>35</sub>
NS 393.2490). Anal. calcd for C
<sub>26</sub>
H
<sub>35</sub>
NS: C, 79.33; H, 8.96; N, 3.56; S, 8.15. Found: C, 79.02; H, 8.69; N, 3.75; S, 8.54.</p>
</sec>
<sec id="s0015">
<label>4.2.3.</label>
<title>Synthesis of 5-bromine-2-thiophene-dehydroabietylamine-Schiff-base (L
<sup>3</sup>
)</title>
<p>After the reaction mixture cooling to the room temperature, lots of pale yellow needlelike crystal precipitation appeared. Then faint yellow block-shaped single crystals were obtained by recrystallization from ethanol solution. (1.99 g, 87%), mp: 132.9–134.3 °C; IR (neat)
<italic>ν</italic>
<sub>max</sub>
/cm
<sup>−1</sup>
3394, 2977, 2922, 1630, 1427, 1378, 1085, 1044, 879, 797, 620;
<sup>1 </sup>
H–NMR (CDCl
<sub>3</sub>
, 600 MHz)
<italic>δ</italic>
1.04 (3 H, s), 1.21–1.23 (9 H, t,
<italic>J</italic>
 = 7.2 Hz), 1.30–1.50 (3 H, m), 1.60–1.66 (2 H, m), 1.71–1.79 (2 H, m),1.88–1.90 (1 H, m), 2.24–2.26 (1 H, d,
<italic>J</italic>
 = 12 Hz); 2.79–2.81 (2 H, m), 2.81–2.86 (1 H, m), 3.40 (2 H, dd,
<italic>J</italic>
 = 12 Hz), 6.89 (1 H, s), 6.99–7.01 (3 H, m), 7.19–7.20 (1 H, d,
<italic>J</italic>
 = 8.4 Hz), 8.19 (1 H, s);
<sup>13 </sup>
C{
<sup>1</sup>
H} (CDCl
<sub>3</sub>
, 151 MHz)
<italic>δ</italic>
18.92, 18.95, 19.40, 24.00, 25.63, 30.54, 33.45, 36.74, 37.70, 38.24, 38.49, 46.15, 72.94, 116.61, 123.83, 124.43, 126.86, 129.52, 130.19, 134.89, 144.72, 145.39, 147.42, 153.02; MS [M + H]
<sup>+</sup>
<italic>m/z</italic>
458.1526 (calcd for C
<sub>25</sub>
H
<sub>32</sub>
BrNS 457.1439). Anal. calcd for C
<sub>25</sub>
H
<sub>32</sub>
BrNS: C, 65.49; H, 7.03; N, 3.05; S, 6.99. Found: C, 65.34; H, 7.12; N, 3.11; S, 6.90.</p>
</sec>
<sec id="s0016">
<label>4.2.4.</label>
<title>Synthesis of 2–thiophene-acyl-dehydroabietylamine (L
<sup>4</sup>
)</title>
<p>Equal 2-thiophene-carboxylic acid (0.64 g, 5.0 mmol) and HOBT (0.68 g, 5.0 mmol) were dissolved in ethyl acetate (40 mL), stirred for 0.5 h at 0 °C. Then DCC (1.03 g, 5.0 mmol) was slowly added, stirred for 2.5 h at 0 °C. The ethyl acetate solution (10 mL) of
<bold>L
<sup>0</sup>
</bold>
(1.43 g, 5.0 mmol) was added to the reaction system slowly, the mixture was stirred at room temperature for 8 h. Filter to remove DCU, filtrate was diluted to 200 mL and washed with 5% NaHCO
<sub>3</sub>
(3*20 mL), 10% citric acid (2*20 mL) and saturated salt water. Ethyl acetate layer was dried with anhydrous Na
<sub>2</sub>
SO
<sub>4</sub>
for 2 h, and solvents were evaporated to get milky white powders. Then colorless block-shaped single crystals were obtained by recrystallization from ethanol solution. (1.74 g, 88%), mp: 153.7–156.0 °C; IR (neat)
<italic>ν</italic>
<sub>max</sub>
/cm
<sup>−1</sup>
3428, 2922, 2860, 1638, 1561, 1439, 1371, 1044, 976, 771, 606;
<sup>1 </sup>
H NMR (CDCl
<sub>3</sub>
, 600 MHz):
<italic>δ</italic>
1.05 (3 H, s), 1.21–1.24 (9 H, s), 1.38–1.44 (2 H, m), 1.56–1.57 (1 H, m), 1.60–1.67 (2 H, m), 1.71–1.81 (2 H, m), 1.89–1.92 (1 H, m), 2.25–2.30 (1 H, m), 2.76–2.91 (3 H, m), 3.42–3.61 (2 H, dd,
<italic>J</italic>
 = 12 Hz), 6.87 (1 H, s), 6.98 (1 H, dd,
<italic>J</italic>
 = 7.2 Hz), 7.14 (1 H, d,
<italic>J</italic>
 = 7.2 Hz), 7.18 (1 H, d,
<italic>J</italic>
 = 8.4 Hz), 7.29–7.30 (1 H, m), 7.69–7.72 (1 H, m), 8.01–8.05 (1 H, m), 8.34 (1 H, s), 8.61(1 H, d,
<italic>J</italic>
 = 3.6 Hz);
<sup>13 </sup>
C{
<sup>1</sup>
H} NMR (CDCl
<sub>3</sub>
, 151 MHz):
<italic>δ</italic>
18.76, 18.90, 19.64, 23.96, 25.64, 30.48, 33.40, 36.60, 37.66, 38.20, 38.42, 45.63, 58.45, 72.91, 121.16, 123.80, 124.41, 124.61, 126.87, 135.00, 136.55, 145.39, 147.47, 149.18, 154.68, 161.83; MS [M + H]
<sup>+</sup>
<italic>m/z</italic>
375.2800 (calcd for C
<sub>26</sub>
H
<sub>34</sub>
N
<sub>2</sub>
374.2722). Anal. calcd for C
<sub>26</sub>
H
<sub>34</sub>
N
<sub>2</sub>
: C, 83.37; H, 9.15; N, 7.48. Found: C, 83.43; H, 9.28; N, 7.29.</p>
</sec>
<sec id="s0017">
<label>4.2.5.</label>
<title>Synthesis of 5-methyl-2-thiophene-acyl-dehydroabietylamine (L
<sup>5</sup>
)</title>
<p>The condensation reaction used HOBT and DCC like the method of
<bold>L
<sup>4</sup>
</bold>
. The solution was dried with anhydrous Na
<sub>2</sub>
SO
<sub>4</sub>
and evaporated to get milky white powders. (1.72 g, 84%), mp: 169.4–171.7 °C; IR (neat)
<italic>ν</italic>
<sub>max</sub>
/cm
<sup>−1</sup>
3413, 2922, 2854, 1629, 1553, 1453, 1290, 1050, 1046, 811, 743, 606;
<sup>1 </sup>
H–NMR ((CD
<sub>3</sub>
)
<sub>2</sub>
SO, 600 MHz)
<italic>δ</italic>
0.90 (3 H, s), 1.13–1.15 (9 H, t,
<italic>J</italic>
 = 7.2 Hz), 1.32–1.36(2H, m), 1.43–1.45 (1 H, m), 1.56–1.61(2H, m), 1.69–1.71 (2 H, m), 1.96–1.99 (1 H, m), 2.24 (1 H, d,
<italic>J</italic>
 = 12.6 Hz), 2.42–2.44 (3 H, s), 2.73–2.78 (3 H, m), 2.90–3.40 (2 H, dd,
<italic>J</italic>
 = 7.2 Hz), 6.77 (1 H, s), 6.82 (1 H, d,
<italic>J</italic>
 = 1.8 Hz), 6.92 (1 H, dd,
<italic>J</italic>
 = 8.4 Hz), 7.12 (1 H, d,
<italic>J</italic>
 = 8.4 Hz), 7.60 (1 H, d,
<italic>J</italic>
 = 3.6 Hz), 8.09 (1 H, s, –NH);
<sup>13 </sup>
C{
<sup>1</sup>
H} NMR ((CD
<sub>3</sub>
)
<sub>2</sub>
SO, 151 MHz)
<italic>δ</italic>
15.61, 18.74, 19.13, 19.30, 24.35, 24.40, 25.82, 30.37, 33.35, 36.35, 37.48, 38.32, 45.04, 49.72, 123.93, 124.46, 126.64, 126.88, 128.64, 135.00, 138.10, 144.73, 145.28, 147.44, 161.88; MS [M + H]
<sup>+</sup>
<italic>m/z</italic>
410.2527, MS [M + Na]
<sup>+</sup>
<italic>m/z</italic>
432.2346 (calcd for C
<sub>26</sub>
H
<sub>35</sub>
NOS 409.2439). Anal. calcd for C
<sub>26</sub>
H
<sub>35</sub>
NOS: C, 76.24; H, 8.61; N, 3.42; S, 7.83. Found: C, 76.19; H, 8.72; N, 3.36; S, 7.74.</p>
</sec>
<sec id="s0018">
<label>4.2.6.</label>
<title>Synthesis of 5-bromine-2-thiophene-acyl-dehydroabietylamine (L
<sup>6</sup>
)</title>
<p>HOBT and DCC were used in the condensation reaction (same as
<bold>L
<sup>4</sup>
</bold>
). Ethyl acetate was dried with and evaporated to get milky white powders. (1.92 g, 81%), mp: 170.7–173.2 °C; IR (neat)
<italic>ν</italic>
<sub>max</sub>
/cm
<sup>−1</sup>
3414, 2922, 2849, 1629, 1550, 1413, 1282, 1077, 805, 736, 620;
<sup>1 </sup>
H–NMR ((CD
<sub>3</sub>
)
<sub>2</sub>
SO, 600 MHz)
<italic>δ</italic>
0.90 (3 H, s), 1.13–1.15 (9 H, t,
<italic>J</italic>
 = 6.6 Hz), 1.32–1.35 (2 H, m), 1.42–1.46 (1 H, m), 1.57–1.61(2H, m), 1.62–1.73 (2 H, m), 1.95–1.99 (1 H, m), 2.24 (1 H, d,
<italic>J</italic>
 = 12.6 Hz), 2.72–2.79 (3 H, m), 2.92–3.41 (2 H, m), 6.82 (1 H, s), 6.92 (1 H, dd,
<italic>J</italic>
 = 7.8 Hz), 7.12 (1 H, d,
<italic>J</italic>
 = 7.8 Hz), 7.22 (1 H, d,
<italic>J</italic>
 = 3.6 Hz), 7.68 (1 H, d,
<italic>J</italic>
 = 4.2 Hz), 8.33 (1 H, s, –NH);
<sup>13 </sup>
C{
<sup>1</sup>
H} NMR ((CD
<sub>3</sub>
)
<sub>2</sub>
SO, 151 MHz)
<italic>δ</italic>
18.71, 19.12, 19.26, 24.35, 24.40, 25.81, 30.34, 33.34, 36.35, 37.48, 38.34, 40.42, 45.78, 45.08, 49.87, 117.02, 123.94, 124.46, 126.89, 129.26, 131.81, 134.95, 142.47, 145.29, 147.40, 160.88; MS [M + H]
<sup>+</sup>
<italic>m/z</italic>
475.3262 (calcd for C
<sub>25</sub>
H
<sub>32</sub>
BrNOS 474.3138). Anal. calcd for C
<sub>25</sub>
H
<sub>32</sub>
BrNOS: C, 63.28; H, 6.80; N, 2.95; S, 6.76. Found: C, 63.19; H, 6.87; N, 2.83; S, 6.82.</p>
</sec>
<sec id="s0019">
<label>4.2.7.</label>
<title>Synthesis of 2-pyrazine-acyl-dehydroabietylamine (L
<sup>7</sup>
)</title>
<p>After the condensation reaction of 2-pyrazine-carboxylic acid (0.62 g, 5.0 mmol) and dehydroabietylamine (1.43 g, 5.0 mmol) used HOBT and DCC, which was same as
<bold>L
<sup>4</sup>
</bold>
, solvents were evaporated to get yellow powders. (1.53 g, 78%), mp: 159.8–162.3 °C; IR (neat)
<italic>ν</italic>
<sub>max</sub>
/cm
<sup>−1</sup>
3401, 2929, 2854, 1653, 1524, 1392, 1153, 1016, 873, 819, 620;
<sup>1 </sup>
H–NMR (CDCl
<sub>3</sub>
, 600 MHz)
<italic>δ</italic>
1.02 (3 H, s), 1.21–1.23 (9 H, t,
<italic>J</italic>
 = 7.2 Hz), 1.38–1.41 (1 H, m), 1.51–1.53 (2 H, m), 1.66–1.71(1H, m), 1.77–1.79 (2 H, m), 1.91–2.04 (2 H, m), 2.29 (1 H, d,
<italic>J</italic>
 = 12.6 Hz), 2.80–2.89 (2 H, m), 2.90–2.95(1H, m), 3.26–3.54 (2 H, dd,
<italic>J</italic>
 = 7.2 Hz), 6.89 (1 H, s), 6.98 (1 H, dd,
<italic>J</italic>
 = 8.4 Hz), 7.16 (1 H, d,
<italic>J</italic>
 = 7.8 Hz), 7.91 (1 H, s, –NH), 8.49 (1 H, d,
<italic>J</italic>
 = 1.2 Hz), 8.72 (1 H, d,
<italic>J</italic>
 = 2.4 Hz), 9.39 (1 H, s);
<sup>13 </sup>
C{
<sup>1</sup>
H} NMR ((CD
<sub>3</sub>
)
<sub>2</sub>
SO, 151 MHz)
<italic>δ</italic>
18.43, 18.68, 24.38, 24.44, 25.43, 29.41, 33.36, 35.02, 36.04, 37.40, 37.99, 44.89, 50.15, 123.99, 124.37, 126.79, 134.85, 143.90, 144.75, 145.50, 145.57, 147.26, 151.88, 167.45; MS [M + H]
<sup>+</sup>
<italic>m/z</italic>
392.2721, [M + Na]
<sup>+</sup>
<italic>m/z</italic>
414.2539 (calcd for C
<sub>25</sub>
H
<sub>33</sub>
N
<sub>3</sub>
O 391.2624). Anal. calcd for C
<sub>25</sub>
H
<sub>33</sub>
N
<sub>3</sub>
O: C, 76.69; H, 8.49; N, 10.73. Found: C, 76.57; H, 8.56; N, 10.64.</p>
</sec>
<sec id="s0020">
<label>4.2.8.</label>
<title>Synthesis of 5-methoxyl-2-pyrazine-acyl-dehydroabietylamine (L
<sup>8</sup>
)</title>
<p>A mixture of Dehydroabietylamine (
<bold>L
<sup>0</sup>
</bold>
) (10.0 mmol), 5-chloro-pyrazine-2-carboxylic acid methyl ester (10.0 mmol) was dissolved in EtOH (150 mL) and refluxed for 24 h. Then the mixture was cooled to the room temperature, removed the solvent by reduced pressure distillation, and received the orange powders. Finally, the orange powders were obtained by recrystallization from ethanol solution. (1.37 g, 65%), mp: 117.6–119.8 °C; IR (neat)
<italic>ν</italic>
<sub>max</sub>
/cm
<sup>−1</sup>
3422, 2929, 2868, 1714, 1593, 1433, 1276, 1125, 1016, 825, 620;
<sup>1 </sup>
H–NMR ((CD
<sub>3</sub>
)
<sub>2</sub>
SO, 600 MHz)
<italic>δ</italic>
0.92 (3 H, s), 1.11–1.21 (9 H, t,
<italic>J</italic>
 = 7.2 Hz), 1.22–1.26 (2 H, m), 1.38–1.49 (2 H, m), 1.52–1.64 (2 H, m), 1.64–1.72 (1 H, m), 1.88–1.92 (1 H, m), 2.23 (1 H, d,
<italic>J</italic>
 = 12.0 Hz), 2.63–2.79 (3 H, m), 3.16–3.53 (2 H, m), 3.79 (3 H, s), 6.79 (1 H, s), 6.92 (1 H, dd,
<italic>J</italic>
 = 7.8 Hz), 7.11 (1 H, d,
<italic>J</italic>
 = 7.8 Hz), 7.80 (1 H, s, –NH), 8.08 (1 H, s), 8.59 (1 H, s);
<sup>13 </sup>
C{
<sup>1</sup>
H} NMR ((CD
<sub>3</sub>
)
<sub>2</sub>
SO, 151 MHz)
<italic>δ</italic>
14.49, 18.73, 19.00, 19.25, 21.13, 24.31, 25.58, 29.97, 33.35, 36.02, 37.44, 44.35, 50.62, 51.86, 60.18, 123.92, 124.40, 126.82, 129.62, 134.04, 134.78, 145.32, 147.40, 157.09, 165.16; MS [M + H]
<sup>+</sup>
<italic>m/z</italic>
422.2804, [M + Na]
<sup>+</sup>
<italic>m/z</italic>
444.2620 (calcd for C
<sub>26</sub>
H
<sub>35</sub>
N
<sub>3</sub>
O
<sub>2</sub>
421.2729). Anal. calcd for C
<sub>26</sub>
H
<sub>35</sub>
N
<sub>3</sub>
O
<sub>2</sub>
: C, 74.07; H, 8.37; N, 9.97. Found: C, 74.01; H, 8.46; N, 9.89.</p>
</sec>
<sec id="s0021">
<label>4.2.9.</label>
<title>Synthesis of 5–methyl-2-pyrazine-acyl-dehydroabietylamine (L
<sup>9</sup>
)</title>
<p>
<bold>L
<sup>9</sup>
</bold>
was synthesized according to the method used for
<bold>L
<sup>4</sup>
</bold>
. Obtained
<bold>L
<sup>9</sup>
</bold>
is pale yellow powders. (1.66 g, 82%), mp: 130.7–133.4 °C; IR (neat)
<italic>ν</italic>
<sub>max</sub>
/cm
<sup>−1</sup>
3387, 2922, 2854, 1664, 1534, 1439, 1378, 1290, 1167, 1030, 819, 634;
<sup>1 </sup>
H–NMR (CDCl
<sub>3</sub>
, 600 MHz)
<italic>δ</italic>
1.02 (3 H, s), 1.21–1.23 (9 H, t,
<italic>J</italic>
 = 6.6 Hz), 1.38–1.42 (2 H, m), 1.51–1.53 (2 H, m), 1.67–1.73 (1 H, m), 1.70–1.81 (2 H, m),1.97–2.01 (1 H, m), 2.28 (1 H, d,
<italic>J</italic>
 = 12.0 Hz), 2.63 (3 H, s), 2.81–2.94 (3 H, m), 3.25–3.49 (2 H, dd,
<italic>J</italic>
 = 7.2 Hz), 6.88 (1 H, s), 6.98 (1 H, dd,
<italic>J</italic>
 = 1.8 Hz), 7.16 (1 H, d,
<italic>J</italic>
 = 7.2 Hz), 7.85(1 H, s, –NH), 8.34(1 H, d,
<italic>J</italic>
 = 3.0 Hz), 9.25 (1 H, d,
<italic>J</italic>
 = 1.8 Hz);
<sup>13 </sup>
C{
<sup>1</sup>
H} NMR (CDCl
<sub>3</sub>
, 151 MHz)
<italic>δ</italic>
18.92, 19.12, 21.77, 23.94, 24.92, 25.47, 30.43, 33.91, 36.31, 37.58, 37.83, 38.28, 45.42, 49.75, 123.87, 124.24, 126.95, 134.84, 141.80, 142.22, 143.39, 145.61, 147.07, 156.91, 163.28; MS [M + H]
<sup>+</sup>
<italic>m/z</italic>
406.2879, [M + Na]
<sup>+</sup>
<italic>m/z</italic>
428.2698 (calcd for C
<sub>26</sub>
H
<sub>35</sub>
N
<sub>3</sub>
O 405.2780). Anal. calcd for C
<sub>26</sub>
H
<sub>35</sub>
N
<sub>3</sub>
O: C, 77.00; H, 8.70; N, 10.36. Found: C, 76.92; H, 8.62; N, 10.44.</p>
</sec>
<sec id="s0022">
<label>4.2.10.</label>
<title>Synthesis of 5-chloro-2-pyrazine-acyl-dehydroabietylamine (L
<sup>10</sup>
)</title>
<p>The condensation reaction yielded pale yellow powders, which was synthesized according to the method used for
<bold>L
<sup>4</sup>
</bold>
. (1.59 g, 75%), mp: 152.4–154.5 °C; IR (neat)
<italic>ν</italic>
<sub>max</sub>
/cm
<sup>−1</sup>
3387, 2929, 2860, 1664, 1529, 1447, 1282, 1167, 1125, 1022, 825, 620;
<sup>1 </sup>
H–NMR ((CD
<sub>3</sub>
)
<sub>2</sub>
SO, 600 MHz)
<italic>δ</italic>
0.90 (3 H, s), 1.12–1.18 (9 H, t,
<italic>J</italic>
 = 7.2 Hz), 1.32–1.42 (3 H, m), 1.57–1.76 (4 H, m), 2.01–2.04 (1 H, m), 2.24 (1 H, d,
<italic>J</italic>
 = 13.8 Hz), 2.73–2.81 (3 H, m), 3.09–3.44 (2 H, dd,
<italic>J</italic>
 = 6.6 Hz), 6.83 (1 H, s), 6.92 (1 H, dd,
<italic>J</italic>
 = 7.8 Hz), 7.11 (1 H, d,
<italic>J</italic>
 = 7.8 Hz), 7.12 (1 H, d,
<italic>J</italic>
 = 8.4 Hz), 7.60 (1 H, d,
<italic>J</italic>
 = 3.6 Hz), 8.60 (1 H, s, –NH), 8.83 (1 H, s), 9.00 (1 H, s);
<sup>13 </sup>
C{
<sup>1</sup>
H} NMR ((CD
<sub>3</sub>
)
<sub>2</sub>
SO, 151 MHz)
<italic>δ</italic>
18.66, 19.08, 19.20, 24.30, 25.66, 30.18, 33.27, 36.31, 37.53, 38.36, 38.47, 40.62, 45.39, 49.76, 123.94, 124.36, 126.86, 134.91, 143.47, 143.83, 144.14, 145.35, 147.44, 151.13, 162.78; MS [M + Na]
<sup>+</sup>
<italic>m/z</italic>
448.2146 (calcd for C
<sub>25</sub>
H
<sub>32</sub>
ClN
<sub>3</sub>
O 425.2234). Anal. calcd for C
<sub>25</sub>
H
<sub>32</sub>
ClN
<sub>3</sub>
O: C, 70.49; H, 7.57; N, 9.86. Found: C, 70.37; H, 7.48; N, 9.94.</p>
</sec>
</sec>
<sec id="s0023">
<label>4.3.</label>
<title>Biological assays</title>
<sec id="s0024">
<label>4.3.1.</label>
<title>Cell culture, antiproliferative activities and cytotoxicity assay</title>
<p>Reagents and compounds Dulbecco’s Modified Eagle’s Medium (DMEM) and 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT), fetal bovine serum (FBS) and penicillin/streptomycin were all commercially purchased.</p>
<p>Hela, HepG2, MCF-7, A549, and HUVEC cells were used in the antiproliferative activity assay. Cancer cells were seeded in 96-well plates with a density of 10
<sup>4</sup>
cells per well, after 12 hours of incubation at 5% CO
<sub>2</sub>
and 37 °C, the culture media was removed and cells were incubated with
<bold>L
<sup>1</sup>
−L
<sup>10</sup>
</bold>
dissolved in DMEM at different concentrations (each concentration repeated 3 times) for 36 h at 5% CO
<sub>2</sub>
and 37 °C. Subsequently, removed the culture media and the new culture medium containing MTT (1 mg/mL) was added, followed by incubating for 4 h to allow the formation of formazan dye (Xia et al.,
<xref rid="CIT0055" ref-type="bibr">2015</xref>
; Zhao et al.,
<xref rid="CIT0058" ref-type="bibr">2018</xref>
). After removing the medium, 200 μL DMSO was added to each well to dissolve the formazan crystals. Absorbance was measured at 595 nm in a microplate photometer. Cell viability values were determined (at least three times) according to the following formulae: cell viability (%) = the absorbance of experimental group/the absorbance of blank control group ×100%.</p>
</sec>
<sec id="s0025">
<label>4.3.2.</label>
<title>Induction of apoptosis by flow-cytometric analysis</title>
<p>Induction apoptosis assay was operated by Becton Dickinson Ultra-high speed separation flow-cytometry instrument and Annexin V-FITC/PI was purchased from Nanjing Keygen Biotech Co. Ltd.</p>
<p>We further investigated whether
<bold>L
<sup>1</sup>
</bold>
and
<bold>L
<sup>3</sup>
</bold>
could induce apoptosis; DMSO was used as negative control. HepG2 cells (1 × 10
<sup>6</sup>
) were cultured in 35 mm dishes and incubated at 37 °C for 24 h. After incubation with DMSO at 5 
<italic>μ</italic>
g/mL,
<bold>L
<sup>1</sup>
</bold>
at 1, 2, 5 
<italic>μ</italic>
g/mL, and
<bold>L
<sup>3</sup>
</bold>
at 0.1, 1, 5 
<italic>μ</italic>
g/mL for 24 h (each concentration repeated 3 times, the incubation time is optimum), the treated cells were washed, trypsinized (non-EDTA), and centrifuged (2000 rpm/min). Then the cells were collected and resuspended in 500 μL of buffer solutions loaded with Annexin V-FITC apoptosis detection reagent (with 5 μL Annexin V-FITC and 5 μL PI). The Annexin V-FITC-stained cells were incubated for 5–15 min in the dark, and approximate 10
<sup>4</sup>
cells were collected for flow-cytometry analysis with a single 488 nm argon laser.</p>
</sec>
<sec id="s0026">
<label>4.3.3.</label>
<title>In vivo experiment</title>
<p>
<italic>In vivo</italic>
experiment was taken by Nanjing Keygen Biotech Co. Ltd. For developing the tumor model, 1 × 10
<sup>6</sup>
HepG2 cells were subcutaneously injected into the right armpit of every Balb/C nude mouse. And then two groups of HepG2-tumor-bearing mice with five mice per group were randomly chosen in our experiment: (1) PBS (as a control) and (2) compound
<bold>L
<sup>1</sup>
</bold>
. After the size of tumors reached 80 mm
<sup>3</sup>
, all agents including PBS, compound
<bold>L
<sup>1</sup>
</bold>
solutions were administrated via an intravenous injection (dose = 0.6 mg/kg), respectively. During the next 25 days, the tumor size of every mouse in our experiments was measured by a vernier caliper every 3 days. Moreover, to accurately evaluate the growth inhibition of tumors, the mice were sacrificed after 25 days, and then their tumors were collected, photographed, and weighed. In addition, the sections of tumor, heart, kidney, liver, lung, and spleen tissues of different groups harvested on the 25th day were observed using H&E staining, and then examined by a pathologist. The tumor size was calculated as the volume = 0.5 × (tumor length) × (tumor width)
<sup>2</sup>
. The inhibition efficiency of tumor growth was calculated according to the following equation:
<disp-formula id="M0001">
<alternatives>
<graphic xlink:href="IDRD_A_1716879_M0001.jpg" position="float" orientation="portrait"></graphic>
<mml:math id="d1e3984">
<mml:mrow>
<mml:mtext>inhibition</mml:mtext>
<mml:mtext>  efficiency</mml:mtext>
<mml:mrow>
<mml:mo>(</mml:mo>
<mml:mi>%</mml:mi>
<mml:mo>)</mml:mo>
</mml:mrow>
<mml:mo>=</mml:mo>
<mml:mrow>
<mml:mo>(</mml:mo>
<mml:mrow>
<mml:mn>1</mml:mn>
<mml:mo></mml:mo>
<mml:mtext>the</mml:mtext>
<mml:mtext>  weight</mml:mtext>
<mml:mtext>  of</mml:mtext>
<mml:mtext>  experimental</mml:mtext>
<mml:mtext>  group</mml:mtext>
<mml:mo>/</mml:mo>
<mml:mtext>the</mml:mtext>
<mml:mtext>  weight</mml:mtext>
<mml:mtext>  of</mml:mtext>
<mml:mtext>control  </mml:mtext>
<mml:mtext>group</mml:mtext>
</mml:mrow>
<mml:mo>)</mml:mo>
</mml:mrow>
<mml:mo>×</mml:mo>
<mml:mn>100</mml:mn>
<mml:mi>%</mml:mi>
</mml:mrow>
</mml:math>
</alternatives>
</disp-formula>
</p>
<p>CD31 immumohistochemical staining with mice was conducted on the 25th day after an intravenous injection of compound
<bold>L
<sup>1</sup>
</bold>
(0.6 mg/kg) and PBS control.</p>
</sec>
</sec>
</sec>
<sec sec-type="supplementary-material">
<title>Supplementary Material</title>
<supplementary-material content-type="local-data" id="SM4759">
<caption>
<title>Supplemental Material</title>
</caption>
<media mimetype="application" mime-subtype="docx" xlink:href="IDRD_A_1716879_SM4759.docx" orientation="portrait" id="d37e254" position="anchor"></media>
</supplementary-material>
</sec>
</body>
<back>
<sec id="s0027">
<title>Disclosure statement</title>
<p>No potential conflict of interest was reported by the authors.</p>
</sec>
<ref-list>
<title>References</title>
<ref id="CIT0001">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name name-style="western">
<surname>Ahmed</surname>
<given-names>HEA</given-names>
</name>
,
<name name-style="western">
<surname>Ihmaid</surname>
<given-names>SK</given-names>
</name>
,
<name name-style="western">
<surname>Omar</surname>
<given-names>AM</given-names>
</name>
,
<etal>et al.</etal>
</person-group>
(
<year>2018</year>
).
<article-title>Design, synthesis, molecular docking of new lipophilic acetamide derivatives affording potential anticancer and antimicrobial agents</article-title>
.
<source>Bioorg Chem</source>
<volume>76</volume>
:
<fpage>332</fpage>
<lpage>42</lpage>
.
<pub-id pub-id-type="pmid">29227917</pub-id>
</mixed-citation>
</ref>
<ref id="CIT0002">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name name-style="western">
<surname>Aissi</surname>
<given-names>RE</given-names>
</name>
,
<name name-style="western">
<surname>Liu</surname>
<given-names>J</given-names>
</name>
,
<name name-style="western">
<surname>Besse</surname>
<given-names>S</given-names>
</name>
,
<etal>et al.</etal>
</person-group>
(
<year>2014</year>
).
<article-title>Synthesis and biological evaluation of new quinoxaline derivatives of ICF01012 as melanoma-targeting probes</article-title>
.
<source>ACS Med Chem Lett</source>
<volume>5</volume>
:
<fpage>468</fpage>
<lpage>73</lpage>
.
<pub-id pub-id-type="pmid">24900863</pub-id>
</mixed-citation>
</ref>
<ref id="CIT0003">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name name-style="western">
<surname>Arjmand</surname>
<given-names>F</given-names>
</name>
,
<name name-style="western">
<surname>Aziz</surname>
<given-names>M</given-names>
</name>
</person-group>
(
<year>2009</year>
).
<article-title>Synthesis and characterization of dinuclear macrocyclic cobalt(II), copper(II) and zinc(II) complexes derived from 2, 2, 2′, 2′, S, S[bis(bis-N, N-2-thiobenzimidazolyloxalato-1, 2-ethane)]: DNA binding and cleavage studies</article-title>
.
<source>Eur J Med Chem</source>
<volume>44</volume>
:
<fpage>834</fpage>
<lpage>44</lpage>
.
<pub-id pub-id-type="pmid">18579258</pub-id>
</mixed-citation>
</ref>
<ref id="CIT0004">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name name-style="western">
<surname>Auxiliadora</surname>
<given-names>MDA</given-names>
</name>
,
<name name-style="western">
<surname>Pablo</surname>
<given-names>BR</given-names>
</name>
,
<name name-style="western">
<surname>Francisco</surname>
<given-names>BF</given-names>
</name>
,
<name name-style="western">
<surname>Miguel</surname>
<given-names>AG</given-names>
</name>
</person-group>
(
<year>2016</year>
).
<article-title>Synthesis and antileishmanial activity of C7- and C12-functionalized dehydroabietylamine derivatives</article-title>
.
<source>Eur J Med Chem</source>
<volume>121</volume>
:
<fpage>445</fpage>
<lpage>50</lpage>
.
<pub-id pub-id-type="pmid">27318121</pub-id>
</mixed-citation>
</ref>
<ref id="CIT0005">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name name-style="western">
<surname>Azuine</surname>
<given-names>MA</given-names>
</name>
,
<name name-style="western">
<surname>Tokuda</surname>
<given-names>H</given-names>
</name>
,
<name name-style="western">
<surname>Tokuda</surname>
<given-names>H</given-names>
</name>
,
<etal>et al.</etal>
</person-group>
(
<year>2004</year>
).
<article-title>Cancer chemopreventive effect of phenothiazines and related tri-heterocyclic analogues in the 12-O-tetradecanoylphorbol-13-acetate promoted Epstein-Barr virus early antigen activation and the mouse skin two-stage carcinogenesis models</article-title>
.
<source>Pharmacol Res</source>
<volume>49</volume>
:
<fpage>161</fpage>
<lpage>9</lpage>
.
<pub-id pub-id-type="pmid">14643696</pub-id>
</mixed-citation>
</ref>
<ref id="CIT0006">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name name-style="western">
<surname>Badrinarayanan</surname>
<given-names>S</given-names>
</name>
,
<name name-style="western">
<surname>Sperry</surname>
<given-names>J</given-names>
</name>
</person-group>
(
<year>2011</year>
).
<article-title>Biomimetic synthesis of 2,5-bis(indol-3-ylmethyl)pyrazine via intermolecular amino aldehyde cyclization</article-title>
.
<source>Synlett</source>
<volume>162</volume>
:
<fpage>2339</fpage>
<lpage>42</lpage>
.</mixed-citation>
</ref>
<ref id="CIT0007">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name name-style="western">
<surname>Bahekar</surname>
<given-names>SP</given-names>
</name>
,
<name name-style="western">
<surname>Hande</surname>
<given-names>SV</given-names>
</name>
,
<name name-style="western">
<surname>Agrawal</surname>
<given-names>NR</given-names>
</name>
,
<etal>et al.</etal>
</person-group>
(
<year>2016</year>
).
<article-title>Sulfonamide chalcones: synthesis and
<italic>in vitro</italic>
exploration for therapeutic potential Against Brugia Malayi</article-title>
.
<source>Eur J Med Chem</source>
<volume>124</volume>
:
<fpage>262</fpage>
<lpage>9</lpage>
.
<pub-id pub-id-type="pmid">27592395</pub-id>
</mixed-citation>
</ref>
<ref id="CIT0008">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name name-style="western">
<surname>Dalvie</surname>
<given-names>DK</given-names>
</name>
,
<name name-style="western">
<surname>Kalgutkar</surname>
<given-names>AS</given-names>
</name>
,
<name name-style="western">
<surname>Khojasteh-Bakht</surname>
<given-names>SC</given-names>
</name>
,
<etal>et al.</etal>
</person-group>
(
<year>2002</year>
).
<article-title>Biotransformation reactions of five membered aromatic heterocyclic rings</article-title>
.
<source>Chem Res Toxicol</source>
<volume>15</volume>
:
<fpage>269</fpage>
<lpage>99</lpage>
.
<pub-id pub-id-type="pmid">11896674</pub-id>
</mixed-citation>
</ref>
<ref id="CIT0009">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name name-style="western">
<surname>Dyreborg</surname>
<given-names>S</given-names>
</name>
,
<name name-style="western">
<surname>Arvin</surname>
<given-names>E</given-names>
</name>
,
<name name-style="western">
<surname>Broholm</surname>
<given-names>K</given-names>
</name>
</person-group>
(
<year>1996</year>
).
<article-title>Effects of creosote compounds on the aerobic bio-degradation of benzene</article-title>
.
<source>Biodegradation</source>
<volume>7</volume>
:
<fpage>191</fpage>
<lpage>201</lpage>
.
<pub-id pub-id-type="pmid">8782391</pub-id>
</mixed-citation>
</ref>
<ref id="CIT0010">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name name-style="western">
<surname>Fei</surname>
<given-names>BL</given-names>
</name>
,
<name name-style="western">
<surname>Yin</surname>
<given-names>B</given-names>
</name>
,
<name name-style="western">
<surname>Li</surname>
<given-names>DD</given-names>
</name>
,
<name name-style="western">
<surname>Xu</surname>
<given-names>WS</given-names>
</name>
,
<etal>et al.</etal>
</person-group>
(
<year>2016</year>
).
<article-title>Enantiopure copper(II) complex of natural product rosin derivative: DNA binding, DNA cleavage and cytotoxicity</article-title>
.
<source>J Biol Inorg Chem</source>
<volume>21</volume>
:
<fpage>987</fpage>
<lpage>96</lpage>
.
<pub-id pub-id-type="pmid">27628182</pub-id>
</mixed-citation>
</ref>
<ref id="CIT0011">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name name-style="western">
<surname>Gao</surname>
<given-names>EJ</given-names>
</name>
,
<name name-style="western">
<surname>Wang</surname>
<given-names>KH</given-names>
</name>
,
<name name-style="western">
<surname>Zhu</surname>
<given-names>MC</given-names>
</name>
,
<name name-style="western">
<surname>Liu</surname>
<given-names>L</given-names>
</name>
</person-group>
(
<year>2010</year>
).
<article-title>Hairpin-shaped tetranuclear palladium(II) complex: synthesis, crystal structure, DNA binding and cytotoxicity activity studies</article-title>
.
<source>Eur J Med Chem</source>
<volume>45</volume>
:
<fpage>2784</fpage>
<lpage>90</lpage>
.
<pub-id pub-id-type="pmid">20359787</pub-id>
</mixed-citation>
</ref>
<ref id="CIT0012">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name name-style="western">
<surname>Garton</surname>
<given-names>AJ</given-names>
</name>
,
<name name-style="western">
<surname>Crew</surname>
<given-names>APA</given-names>
</name>
,
<name name-style="western">
<surname>Franklin</surname>
<given-names>M</given-names>
</name>
,
<etal>et al.</etal>
</person-group>
(
<year>2006</year>
).
<article-title>OSI-930: a novel selective inhibitor of kit and kinase insert domain receptor tyrosine kinases with antitumor activity in mouse Xenograft models</article-title>
.
<source>Cancer Res</source>
<volume>66</volume>
:
<fpage>1015</fpage>
<lpage>24</lpage>
.
<pub-id pub-id-type="pmid">16424037</pub-id>
</mixed-citation>
</ref>
<ref id="CIT0013">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name name-style="western">
<surname>Ghorab</surname>
<given-names>MM</given-names>
</name>
,
<name name-style="western">
<surname>Alsaid</surname>
<given-names>MS</given-names>
</name>
,
<name name-style="western">
<surname>Al-Dosari</surname>
<given-names>MS</given-names>
</name>
,
<etal>et al.</etal>
</person-group>
(
<year>2016</year>
).
<article-title>Novel quinolines carrying pyridine, thienopyridine, isoquinoline, thiazolidine, thiazole and thiophene moieties as potential anticancer agents</article-title>
.
<source>Acta Pharm</source>
<volume>66</volume>
:
<fpage>155</fpage>
<lpage>71</lpage>
.
<pub-id pub-id-type="pmid">27279061</pub-id>
</mixed-citation>
</ref>
<ref id="CIT0014">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name name-style="western">
<surname>Hana</surname>
<given-names>HY</given-names>
</name>
,
<name name-style="western">
<surname>Khalil</surname>
<given-names>WKB</given-names>
</name>
,
<name name-style="western">
<surname>Elmakawy</surname>
<given-names>AI</given-names>
</name>
,
<name name-style="western">
<surname>Elmegeed</surname>
<given-names>GA</given-names>
</name>
</person-group>
(
<year>2008</year>
).
<article-title>Androgenic profile and genotoxicity evaluation of testosterone propionate and novel synthesized heterocyclic steroids</article-title>
.
<source>J Steroid Biochem Mol Biol</source>
<volume>110</volume>
:
<fpage>284</fpage>
<lpage>94</lpage>
.
<pub-id pub-id-type="pmid">18513952</pub-id>
</mixed-citation>
</ref>
<ref id="CIT0015">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name name-style="western">
<surname>Hande</surname>
<given-names>KR</given-names>
</name>
</person-group>
(
<year>1998</year>
).
<article-title>Clinical applications of anticancer drugs targeted to topoisomerase II</article-title>
.
<source>Biochem Biophys Acta</source>
<volume>1400</volume>
:
<fpage>173</fpage>
<lpage>84</lpage>
.
<pub-id pub-id-type="pmid">9748560</pub-id>
</mixed-citation>
</ref>
<ref id="CIT0016">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name name-style="western">
<surname>Huang</surname>
<given-names>XC</given-names>
</name>
,
<name name-style="western">
<surname>Huang</surname>
<given-names>RZ</given-names>
</name>
,
<name name-style="western">
<surname>Li</surname>
<given-names>LX</given-names>
</name>
,
<etal>et al.</etal>
</person-group>
(
<year>2017</year>
).
<article-title>Synthesis and biological evaluation of novel chalcone derivatives as a new class of microtubule destabilizing agents</article-title>
.
<source>Eur J Med Chem</source>
<volume>132</volume>
:
<fpage>11</fpage>
<lpage>25</lpage>
.
<pub-id pub-id-type="pmid">28340411</pub-id>
</mixed-citation>
</ref>
<ref id="CIT0017">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name name-style="western">
<surname>Huang</surname>
<given-names>LH</given-names>
</name>
,
<name name-style="western">
<surname>Zheng</surname>
<given-names>YF</given-names>
</name>
,
<name name-style="western">
<surname>Song</surname>
<given-names>CJ</given-names>
</name>
,
<etal>et al.</etal>
</person-group>
(
<year>2012</year>
).
<article-title>Synthesis of novel D-ring fused 70-aryl-androstano[17,16-d][1,2,4] triazolo[1,5-a]pyrimidines</article-title>
.
<source>Steroids</source>
<volume>77</volume>
:
<fpage>367</fpage>
<lpage>74</lpage>
.
<pub-id pub-id-type="pmid">22182831</pub-id>
</mixed-citation>
</ref>
<ref id="CIT0018">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name name-style="western">
<surname>Ingle</surname>
<given-names>R</given-names>
</name>
,
<name name-style="western">
<surname>Marathe</surname>
<given-names>R</given-names>
</name>
,
<name name-style="western">
<surname>Magar</surname>
<given-names>D</given-names>
</name>
,
<etal>et al.</etal>
</person-group>
(
<year>2013</year>
).
<article-title>Sulphonamidoquinoxalines: search for anticancer agent</article-title>
.
<source>Eur J Med Chem</source>
<volume>65</volume>
:
<fpage>168</fpage>
<lpage>86</lpage>
.
<pub-id pub-id-type="pmid">23708011</pub-id>
</mixed-citation>
</ref>
<ref id="CIT0019">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name name-style="western">
<surname>Iványi</surname>
<given-names>Z</given-names>
</name>
,
<name name-style="western">
<surname>Szabó</surname>
<given-names>N</given-names>
</name>
,
<name name-style="western">
<surname>Huber</surname>
<given-names>J</given-names>
</name>
,
<etal>et al.</etal>
</person-group>
(
<year>2012</year>
).
<article-title>Synthesis of dring-substituted (50R)- and (50S) 17b-pyrazolinylandrostene epimers and comparison of their potential anticancer activities</article-title>
.
<source>Steroids</source>
<volume>77</volume>
:
<fpage>566</fpage>
<lpage>74</lpage>
.
<pub-id pub-id-type="pmid">22342542</pub-id>
</mixed-citation>
</ref>
<ref id="CIT0020">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name name-style="western">
<surname>Khalil</surname>
<given-names>AM</given-names>
</name>
,
<name name-style="western">
<surname>Berghot</surname>
<given-names>MA</given-names>
</name>
,
<name name-style="western">
<surname>Ghada</surname>
<given-names>EA</given-names>
</name>
,
<name name-style="western">
<surname>Gouda</surname>
<given-names>MA</given-names>
</name>
</person-group>
(
<year>2010</year>
).
<article-title>Synthesis and antimicrobial evaluation of some new thiophene derivatives</article-title>
.
<source>Eur J Med Chem</source>
<volume>40</volume>
:
<fpage>1658</fpage>
<lpage>69</lpage>
.</mixed-citation>
</ref>
<ref id="CIT0021">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name name-style="western">
<surname>Kulandasamy</surname>
<given-names>R</given-names>
</name>
,
<name name-style="western">
<surname>Adhikari</surname>
<given-names>AV</given-names>
</name>
,
<name name-style="western">
<surname>Stables</surname>
<given-names>JP</given-names>
</name>
</person-group>
(
<year>2009</year>
).
<article-title>A new class of anticonvulsants possessing 6 Hz activity: 3,4-dialkyloxy thiophene bishydrazones</article-title>
.
<source>Eur J Med Chem</source>
<volume>44</volume>
:
<fpage>4376</fpage>
<lpage>84</lpage>
.
<pub-id pub-id-type="pmid">19556038</pub-id>
</mixed-citation>
</ref>
<ref id="CIT0022">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name name-style="western">
<surname>Lee</surname>
<given-names>SB</given-names>
</name>
,
<name name-style="western">
<surname>Park</surname>
<given-names>YI</given-names>
</name>
,
<name name-style="western">
<surname>Dong</surname>
<given-names>MS</given-names>
</name>
,
<name name-style="western">
<surname>Gong</surname>
<given-names>YD</given-names>
</name>
</person-group>
(
<year>2010</year>
).
<article-title>Identification of 2,3,6-trisubstituted quinoxaline derivatives as a Wnt2/beta-catenin pathway inhibitor in nonsmall-cell lung cancer cell lines</article-title>
.
<source>Bioorg Med Chem Lett</source>
<volume>20</volume>
:
<fpage>5900</fpage>
<lpage>4</lpage>
.
<pub-id pub-id-type="pmid">20729080</pub-id>
</mixed-citation>
</ref>
<ref id="CIT0023">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name name-style="western">
<surname>Lei</surname>
<given-names>M</given-names>
</name>
,
<name name-style="western">
<surname>Miao</surname>
<given-names>H</given-names>
</name>
,
<name name-style="western">
<surname>Wang</surname>
<given-names>XY</given-names>
</name>
,
<etal>et al.</etal>
</person-group>
(
<year>2019a</year>
).
<article-title>Trifluoromethyl aryl sulfonates (TFMS): an applicable trifluoromethoxylation reagent</article-title>
.
<source>Tetrahedron Lett</source>
<volume>60</volume>
:
<fpage>1389</fpage>
<lpage>92</lpage>
.</mixed-citation>
</ref>
<ref id="CIT0024">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name name-style="western">
<surname>Lei</surname>
<given-names>M</given-names>
</name>
,
<name name-style="western">
<surname>Sha</surname>
<given-names>SJ</given-names>
</name>
,
<name name-style="western">
<surname>Wang</surname>
<given-names>XY</given-names>
</name>
,
<etal>et al.</etal>
</person-group>
(
<year>2019b</year>
).
<article-title>Co-delivery of paclitaxel and gemcitabine via a self-assembling nanoparticle for targeted treatment of breast cancer</article-title>
.
<source>RSC Adv</source>
<volume>9</volume>
:
<fpage>5512</fpage>
<lpage>20</lpage>
.</mixed-citation>
</ref>
<ref id="CIT0025">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name name-style="western">
<surname>Lei</surname>
<given-names>M</given-names>
</name>
,
<name name-style="western">
<surname>Zhang</surname>
<given-names>HY</given-names>
</name>
,
<name name-style="western">
<surname>Miao</surname>
<given-names>H</given-names>
</name>
,
<etal>et al.</etal>
</person-group>
(
<year>2019c</year>
).
<article-title>Preparation and biological evaluation of soluble tetrapeptide epoxyketone proteasome inhibitors</article-title>
.
<source>Bioorg & Med Chem</source>
<volume>27</volume>
:
<fpage>4151</fpage>
<lpage>62</lpage>
.
<pub-id pub-id-type="pmid">31383629</pub-id>
</mixed-citation>
</ref>
<ref id="CIT0026">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name name-style="western">
<surname>Lesyk</surname>
<given-names>R</given-names>
</name>
,
<name name-style="western">
<surname>Zimenkovsky</surname>
<given-names>B</given-names>
</name>
,
<name name-style="western">
<surname>Atamanyuk</surname>
<given-names>D</given-names>
</name>
,
<etal>et al.</etal>
</person-group>
(
<year>2006</year>
).
<article-title>Anticancer thiopyrano[2,3-d][1,3]thiazol-2-ones with norbornane moiety. synthesis, cytotoxicity, physico-chemical properties and computational studies</article-title>
.
<source>Bioorg Med Chem</source>
<volume>14</volume>
:
<fpage>5230</fpage>
<lpage>40</lpage>
.
<pub-id pub-id-type="pmid">16632367</pub-id>
</mixed-citation>
</ref>
<ref id="CIT0027">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name name-style="western">
<surname>Li</surname>
<given-names>Z</given-names>
</name>
,
<name name-style="western">
<surname>Wang</surname>
<given-names>J</given-names>
</name>
,
<name name-style="western">
<surname>Zhou</surname>
<given-names>Y</given-names>
</name>
,
<name name-style="western">
<surname>Liu</surname>
<given-names>H</given-names>
</name>
</person-group>
(
<year>2014</year>
).
<article-title>Lead compound optimization strategy (3)-structure modification strategies for improving water solubility</article-title>
.
<source>Acta Pharm Sin</source>
<volume>49</volume>
:
<fpage>1238</fpage>
<lpage>47</lpage>
. −</mixed-citation>
</ref>
<ref id="CIT0028">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name name-style="western">
<surname>Li</surname>
<given-names>Q</given-names>
</name>
,
<name name-style="western">
<surname>Chu</surname>
<given-names>DTW</given-names>
</name>
,
<name name-style="western">
<surname>Claiborne</surname>
<given-names>A</given-names>
</name>
,
<etal>et al.</etal>
</person-group>
(
<year>1996</year>
).
<article-title>Synthesis and structure-activity relationships of 2-pyridones: a novel series of potent DNA gyrase inhibitors as antibacterial agents</article-title>
.
<source>J Med Chem</source>
<volume>39</volume>
:
<fpage>3070</fpage>
<lpage>88</lpage>
.
<pub-id pub-id-type="pmid">8759628</pub-id>
</mixed-citation>
</ref>
<ref id="CIT0029">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name name-style="western">
<surname>Lin</surname>
<given-names>TT</given-names>
</name>
,
<name name-style="western">
<surname>González</surname>
<given-names>MA</given-names>
</name>
,
<name name-style="western">
<surname>Carboni</surname>
<given-names>MG</given-names>
</name>
,
<etal>et al.</etal>
</person-group>
(
<year>2015</year>
).
<article-title>(+)-Dehydroabietylamine derivatives target triple-negative breast cancer</article-title>
.
<source>Eur J Med Chem</source>
<volume>102</volume>
:
<fpage>9</fpage>
<lpage>13</lpage>
.
<pub-id pub-id-type="pmid">26241873</pub-id>
</mixed-citation>
</ref>
<ref id="CIT0030">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name name-style="western">
<surname>Lindsley</surname>
<given-names>CW</given-names>
</name>
,
<name name-style="western">
<surname>Zhao</surname>
<given-names>ZJ</given-names>
</name>
,
<name name-style="western">
<surname>Leister</surname>
<given-names>WH</given-names>
</name>
,
<etal>et al.</etal>
</person-group>
(
<year>2005</year>
).
<article-title>Discovery of 2,3,5-trisubstituted pyridine derivatives as potent Akt1 and Akt2 dual inhibitors</article-title>
.
<source>Bioorg Med Chem Lett</source>
<volume>15</volume>
:
<fpage>761</fpage>
<lpage>4</lpage>
.
<pub-id pub-id-type="pmid">15664853</pub-id>
</mixed-citation>
</ref>
<ref id="CIT0031">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name name-style="western">
<surname>Liu</surname>
<given-names>CX</given-names>
</name>
,
<name name-style="western">
<surname>Lin</surname>
<given-names>ZX</given-names>
</name>
,
<name name-style="western">
<surname>Zhou</surname>
<given-names>AM</given-names>
</name>
</person-group>
(
<year>2016</year>
).
<article-title>Design, synthesis, cytotoxicities and DNA cleavage activities of dibenzoxepine and isoquinoline derivatives starting from dehydroabietylamine</article-title>
.
<source>J Asian Nat Prod Res</source>
<volume>18</volume>
:
<fpage>1169</fpage>
<lpage>77</lpage>
.
<pub-id pub-id-type="pmid">27696913</pub-id>
</mixed-citation>
</ref>
<ref id="CIT0032">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name name-style="western">
<surname>Liu</surname>
<given-names>XY</given-names>
</name>
,
<name name-style="western">
<surname>Zhang</surname>
<given-names>RH</given-names>
</name>
,
<name name-style="western">
<surname>Li</surname>
<given-names>TQ</given-names>
</name>
,
<etal>et al.</etal>
</person-group>
(
<year>2017</year>
).
<article-title>Novel fully biobased benzoxazines from rosin: synthesis and properties</article-title>
.
<source>ACS Sustainable Chem Eng</source>
<volume>5</volume>
:
<fpage>10682</fpage>
<lpage>92</lpage>
.</mixed-citation>
</ref>
<ref id="CIT0033">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name name-style="western">
<surname>Lu</surname>
<given-names>W</given-names>
</name>
,
<name name-style="western">
<surname>Yang</surname>
<given-names>SL</given-names>
</name>
,
<name name-style="western">
<surname>Xu</surname>
<given-names>L</given-names>
</name>
,
<etal>et al.</etal>
</person-group>
(
<year>2016</year>
).
<article-title>Crystal structure and magnetic properties of salicylaldehyde schiff base binuclear copper(II) complex</article-title>
.
<source>Chemical Reagents</source>
<volume>38</volume>
:
<fpage>716</fpage>
<lpage>20</lpage>
.</mixed-citation>
</ref>
<ref id="CIT0034">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name name-style="western">
<surname>Mathew</surname>
<given-names>V</given-names>
</name>
,
<name name-style="western">
<surname>Keshavayya</surname>
<given-names>J</given-names>
</name>
,
<name name-style="western">
<surname>Vaidya</surname>
<given-names>VP</given-names>
</name>
</person-group>
(
<year>2006</year>
).
<article-title>Heterocyclic system containing bridgehead nitrogen atom: synthesis and pharmacological activities of some substituted 1,2,4-triazolo[3,4-b]-1,3,4-thiadiazoles</article-title>
.
<source>Eur J Med Chem</source>
<volume>41</volume>
:
<fpage>1048</fpage>
<lpage>58</lpage>
.
<pub-id pub-id-type="pmid">16822595</pub-id>
</mixed-citation>
</ref>
<ref id="CIT0035">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name name-style="western">
<surname>Medower</surname>
<given-names>C</given-names>
</name>
,
<name name-style="western">
<surname>Wen</surname>
<given-names>L</given-names>
</name>
,
<name name-style="western">
<surname>Johnson</surname>
<given-names>WW</given-names>
</name>
</person-group>
(
<year>2008</year>
).
<article-title>Cytochrome P450 oxidation of the thiophene-containing anticancer drug 3-[(Quinolin-4-ylmethyl)-amino]-thiophene-2-carboxylic acid (4-trifluoromethoxy-phenyl)-amide to an electrophilic intermediate</article-title>
.
<source>Chem Res Toxicol</source>
<volume>21</volume>
:
<fpage>1570</fpage>
<lpage>7</lpage>
.
<pub-id pub-id-type="pmid">18672911</pub-id>
</mixed-citation>
</ref>
<ref id="CIT0036">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name name-style="western">
<surname>Mohareb</surname>
<given-names>RM</given-names>
</name>
,
<name name-style="western">
<surname>Al-Omran</surname>
<given-names>F</given-names>
</name>
</person-group>
(
<year>2012</year>
).
<article-title>Reaction of pregnenolone with cyanoacetylhydrazine: novel synthesis of hydrazide-hydrazone, pyrazole, pyridine, thiazole, thiophene derivatives and their cytotoxicity evaluations</article-title>
.
<source>Steroids</source>
<volume>77</volume>
:
<fpage>1551</fpage>
<lpage>9</lpage>
.
<pub-id pub-id-type="pmid">23064008</pub-id>
</mixed-citation>
</ref>
<ref id="CIT0037">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name name-style="western">
<surname>Mondal</surname>
<given-names>R</given-names>
</name>
,
<name name-style="western">
<surname>Ko</surname>
<given-names>S</given-names>
</name>
,
<name name-style="western">
<surname>Bao</surname>
<given-names>Z</given-names>
</name>
</person-group>
(
<year>2010</year>
).
<article-title>Fused aromatic thienopyrazines: structure, properties and function</article-title>
.
<source>J Mater Chem</source>
<volume>20</volume>
:
<fpage>10568</fpage>
<lpage>76</lpage>
.</mixed-citation>
</ref>
<ref id="CIT0038">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name name-style="western">
<surname>Muhammad</surname>
<given-names>SR</given-names>
</name>
,
<name name-style="western">
<surname>Bashir</surname>
<given-names>S</given-names>
</name>
</person-group>
(
<year>2017</year>
).
<article-title>Application of various polymers and polymers based techniques used to improve solubility of water soluble drugs: a review</article-title>
.
<source>Acta Pol Pharm</source>
<volume>74</volume>
:
<fpage>347</fpage>
<lpage>56</lpage>
.
<pub-id pub-id-type="pmid">29624239</pub-id>
</mixed-citation>
</ref>
<ref id="CIT0039">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name name-style="western">
<surname>Nomiya</surname>
<given-names>K</given-names>
</name>
,
<name name-style="western">
<surname>Noguchi</surname>
<given-names>R</given-names>
</name>
,
<name name-style="western">
<surname>Ohsawa</surname>
<given-names>K</given-names>
</name>
,
<etal>et al.</etal>
</person-group>
(
<year>2000</year>
).
<article-title>Synthesis, crystal structure and antimicrobial activities of two isomeric Gold(I) complexes with nitrogen containing heterocycle and triphenylphosphine ligands, [Au(L)(PPh
<sub>3</sub>
)] (HL = pyrazole and imidazole</article-title>
.
<source>J Inorg Biochem</source>
<volume>78</volume>
:
<fpage>363</fpage>
<lpage>70</lpage>
. ).
<pub-id pub-id-type="pmid">10857918</pub-id>
</mixed-citation>
</ref>
<ref id="CIT0040">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name name-style="western">
<surname>Petti</surname>
<given-names>F</given-names>
</name>
,
<name name-style="western">
<surname>Thelemann</surname>
<given-names>A</given-names>
</name>
,
<name name-style="western">
<surname>Kahler</surname>
<given-names>J</given-names>
</name>
,
<etal>et al.</etal>
</person-group>
(
<year>2005</year>
).
<article-title>Temporal quantitation of mutant kit tyrosine kinase signaling attenuated by a novel thiophene kinase inhibitor OSI-930</article-title>
.
<source>Mol. Cancer Ther</source>
<volume>4</volume>
:
<fpage>1186</fpage>
<lpage>97</lpage>
.
<pub-id pub-id-type="pmid">16093434</pub-id>
</mixed-citation>
</ref>
<ref id="CIT0041">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name name-style="western">
<surname>Qi</surname>
<given-names>S</given-names>
</name>
,
<name name-style="western">
<surname>Guo</surname>
<given-names>L</given-names>
</name>
,
<name name-style="western">
<surname>Yan</surname>
<given-names>S</given-names>
</name>
,
<etal>et al.</etal>
</person-group>
(
<year>2019</year>
).
<article-title>Hypocrellin A-based photodynamic action induces apoptosis in A549 cells through ROS-mediated mitochondrial signaling pathway</article-title>
.
<source>Acta Pharm Sin B</source>
<volume>9</volume>
:
<fpage>279</fpage>
<lpage>93</lpage>
.
<pub-id pub-id-type="pmid">30972277</pub-id>
</mixed-citation>
</ref>
<ref id="CIT0042">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name name-style="western">
<surname>Rajendiran</surname>
<given-names>V</given-names>
</name>
,
<name name-style="western">
<surname>Karthik</surname>
<given-names>R</given-names>
</name>
,
<name name-style="western">
<surname>Palaniandavar</surname>
<given-names>M</given-names>
</name>
,
<etal>et al.</etal>
</person-group>
(
<year>2007</year>
).
<article-title>Mixed-ligand copper(II)-phenolate complexes: effect of coligand on enhanced DNA and protein binding, DNA cleavage, and anticancer activity</article-title>
.
<source>Inorg Chem</source>
<volume>46</volume>
:
<fpage>8208</fpage>
<lpage>21</lpage>
.
<pub-id pub-id-type="pmid">17784750</pub-id>
</mixed-citation>
</ref>
<ref id="CIT0043">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name name-style="western">
<surname>Rao</surname>
<given-names>XP</given-names>
</name>
,
<name name-style="western">
<surname>Huang</surname>
<given-names>XZ</given-names>
</name>
,
<name name-style="western">
<surname>He</surname>
<given-names>L</given-names>
</name>
,
<etal>et al.</etal>
</person-group>
(
<year>2012</year>
).
<article-title>Antitumor activity and structure-activity relationship of diterpenoids with a dehydroabietyl skeleton</article-title>
.
<source>Cchts</source>
<volume>15</volume>
:
<fpage>840</fpage>
<lpage>4</lpage>
.</mixed-citation>
</ref>
<ref id="CIT0044">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name name-style="western">
<surname>Saito</surname>
<given-names>R</given-names>
</name>
,
<name name-style="western">
<surname>Matsumura</surname>
<given-names>Y</given-names>
</name>
,
<name name-style="western">
<surname>Suzuki</surname>
<given-names>S</given-names>
</name>
,
<name name-style="western">
<surname>Okazaki</surname>
<given-names>N</given-names>
</name>
</person-group>
(
<year>2010</year>
).
<article-title>Intensely blue-fluorescent 2,5-bis(benzoimidazol-2-yl)pyrazine dyes with improved solubility: their synthesis, fluorescent properties, and application as microenvironment polarity probes</article-title>
.
<source>Tetrahedron</source>
<volume>66</volume>
:
<fpage>8273</fpage>
<lpage>9</lpage>
.</mixed-citation>
</ref>
<ref id="CIT0045">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name name-style="western">
<surname>Seitz</surname>
<given-names>LE</given-names>
</name>
,
<name name-style="western">
<surname>Suling</surname>
<given-names>WJ</given-names>
</name>
,
<name name-style="western">
<surname>Reynolds</surname>
<given-names>RC</given-names>
</name>
</person-group>
(
<year>2002</year>
).
<article-title>Synthesis and antimycobacterial activity of pyrazine and quinoxaline derivatives</article-title>
.
<source>J Med Chem</source>
<volume>45</volume>
:
<fpage>5604</fpage>
<lpage>6</lpage>
.
<pub-id pub-id-type="pmid">12459027</pub-id>
</mixed-citation>
</ref>
<ref id="CIT0046">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name name-style="western">
<surname>Shi</surname>
<given-names>JC</given-names>
</name>
,
<name name-style="western">
<surname>Wen</surname>
<given-names>TF</given-names>
</name>
</person-group>
(
<year>1998</year>
).
<article-title>Intramolecular hydrogen bond between aromatic hydrogen and coordinated sulfur atom (
<italic>sp</italic>
<sup>2</sup>
C − H⋅⋅⋅S)</article-title>
.
<source>Chem J Chin Univ</source>
<volume>19</volume>
:
<fpage>1650</fpage>
<lpage>3</lpage>
.</mixed-citation>
</ref>
<ref id="CIT0047">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name name-style="western">
<surname>Singh</surname>
<given-names>N</given-names>
</name>
,
<name name-style="western">
<surname>Mishra</surname>
<given-names>BB</given-names>
</name>
,
<name name-style="western">
<surname>Bajpai</surname>
<given-names>S</given-names>
</name>
,
<name name-style="western">
<surname>Singh</surname>
<given-names>RK</given-names>
</name>
,
<etal>et al.</etal>
</person-group>
(
<year>2014</year>
).
<article-title>Natural product based leads to fight leishmaniasis</article-title>
.
<source>Bioorg Med Chem</source>
<volume>22</volume>
:
<fpage>18</fpage>
<lpage>45</lpage>
.
<pub-id pub-id-type="pmid">24355247</pub-id>
</mixed-citation>
</ref>
<ref id="CIT0048">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name name-style="western">
<surname>Smits</surname>
<given-names>RA</given-names>
</name>
,
<name name-style="western">
<surname>Lim</surname>
<given-names>HD</given-names>
</name>
,
<name name-style="western">
<surname>Hanzer</surname>
<given-names>A</given-names>
</name>
,
<etal>et al.</etal>
</person-group>
(
<year>2008</year>
).
<article-title>Fragment based design of new h
<sub>4</sub>
receptor-ligands with anti-inflammatory properties
<italic>in vivo</italic>
</article-title>
.
<source>J Med Chem</source>
<volume>51</volume>
:
<fpage>2457</fpage>
<lpage>67</lpage>
.
<pub-id pub-id-type="pmid">18357976</pub-id>
</mixed-citation>
</ref>
<ref id="CIT0049">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name name-style="western">
<surname>Soozani</surname>
<given-names>A</given-names>
</name>
,
<name name-style="western">
<surname>Keivanloo</surname>
<given-names>A</given-names>
</name>
,
<name name-style="western">
<surname>Bakherad</surname>
<given-names>M</given-names>
</name>
</person-group>
(
<year>2018</year>
).
<article-title>One-pot palladium-catalyzed synthesis of functionalized 10H-pyrido [1,2-a]quinoxalin-10-ones under copper-free conditions</article-title>
.
<source>Tetrahedron</source>
<volume>74</volume>
:
<fpage>150</fpage>
<lpage>6</lpage>
.</mixed-citation>
</ref>
<ref id="CIT0050">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name name-style="western">
<surname>Sridevi</surname>
<given-names>CH</given-names>
</name>
,
<name name-style="western">
<surname>Balaji</surname>
<given-names>K</given-names>
</name>
,
<name name-style="western">
<surname>Naidu</surname>
<given-names>A</given-names>
</name>
,
<name name-style="western">
<surname>Sudhakaran</surname>
<given-names>R</given-names>
</name>
</person-group>
(
<year>2010</year>
).
<article-title>Synthesis of some phenylpyrazolo benzimidazolo quinoxaline derivatives as potent antihistaminic agents</article-title>
.
<source>Eur J Chem</source>
<volume>7</volume>
:
<fpage>234</fpage>
<lpage>8</lpage>
.</mixed-citation>
</ref>
<ref id="CIT0051">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name name-style="western">
<surname>Sun</surname>
<given-names>J</given-names>
</name>
,
<name name-style="western">
<surname>Ye</surname>
<given-names>C</given-names>
</name>
,
<name name-style="western">
<surname>Bai</surname>
<given-names>E</given-names>
</name>
,
<etal>et al.</etal>
</person-group>
(
<year>2019</year>
).
<article-title>Co-delivery nanoparticles of doxorubicin and chloroquine for improving the anti-cancer effect
<italic>in vitro</italic>
</article-title>
.
<source>Nanotechnology</source>
<volume>30</volume>
:
<fpage>085101</fpage>
<lpage>26</lpage>
.
<pub-id pub-id-type="pmid">30523865</pub-id>
</mixed-citation>
</ref>
<ref id="CIT0052">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name name-style="western">
<surname>Vicente</surname>
<given-names>E</given-names>
</name>
,
<name name-style="western">
<surname>Duchowicz</surname>
<given-names>PR</given-names>
</name>
,
<name name-style="western">
<surname>Castro</surname>
<given-names>EA</given-names>
</name>
,
<name name-style="western">
<surname>Monge</surname>
<given-names>A</given-names>
</name>
</person-group>
(
<year>2009</year>
).
<article-title>QSAR analysis for quinoxaline-2-carboxylate1,4-di-N-oxides as anti-mycobacterial agents</article-title>
.
<source>J Mol Graph Model</source>
<volume>28</volume>
:
<fpage>28</fpage>
<lpage>36</lpage>
.
<pub-id pub-id-type="pmid">19394254</pub-id>
</mixed-citation>
</ref>
<ref id="CIT0053">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name name-style="western">
<surname>Wang</surname>
<given-names>YY</given-names>
</name>
,
<name name-style="western">
<surname>He</surname>
<given-names>Y</given-names>
</name>
,
<name name-style="western">
<surname>Yang</surname>
<given-names>LF</given-names>
</name>
,
<name name-style="western">
<surname>Peng</surname>
<given-names>SH</given-names>
</name>
,
<etal>et al.</etal>
</person-group>
(
<year>2016</year>
).
<article-title>Synthesis of novel diterpenoid analogs with in-vivo antitumor activity</article-title>
.
<source>Eur J Med Chem</source>
<volume>120</volume>
:
<fpage>13</fpage>
<lpage>25</lpage>
.
<pub-id pub-id-type="pmid">27187855</pub-id>
</mixed-citation>
</ref>
<ref id="CIT0054">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name name-style="western">
<surname>Wang</surname>
<given-names>SW</given-names>
</name>
,
<name name-style="western">
<surname>Konorev</surname>
<given-names>EA</given-names>
</name>
,
<name name-style="western">
<surname>Kotamraju</surname>
<given-names>S</given-names>
</name>
,
<etal>et al.</etal>
</person-group>
(
<year>2004</year>
).
<article-title>Doxorubicin induces apoptosis in normal and tumor cells via distinctly different mechanisms: intermediacy of H
<sub>2</sub>
O
<sub>2</sub>
- and p53-dependent pathways</article-title>
.
<source>J Biol Chem</source>
<volume>279</volume>
:
<fpage>25535</fpage>
<lpage>43</lpage>
.
<pub-id pub-id-type="pmid">15054096</pub-id>
</mixed-citation>
</ref>
<ref id="CIT0055">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name name-style="western">
<surname>Xia</surname>
<given-names>B</given-names>
</name>
,
<name name-style="western">
<surname>Wang</surname>
<given-names>B</given-names>
</name>
,
<name name-style="western">
<surname>Zhang</surname>
<given-names>WY</given-names>
</name>
,
<name name-style="western">
<surname>Shi</surname>
<given-names>JS</given-names>
</name>
</person-group>
(
<year>2015</year>
).
<article-title>High loading of doxorubicin into styrene terminated porous silicon nanoparticles via p-stacking for cancer treatments
<italic>in vitro</italic>
</article-title>
.
<source>RSC Adv</source>
<volume>5</volume>
:
<fpage>44660</fpage>
<lpage>5</lpage>
.</mixed-citation>
</ref>
<ref id="CIT0056">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name name-style="western">
<surname>Xin</surname>
<given-names>JC</given-names>
</name>
,
<name name-style="western">
<surname>Li</surname>
<given-names>N</given-names>
</name>
,
<name name-style="western">
<surname>Ma</surname>
<given-names>QS</given-names>
</name>
,
<etal>et al.</etal>
</person-group>
(
<year>2018</year>
).
<article-title>Synthesis and antitumor activity of 1-Phenyl-4-substituted phthalazine derivatives</article-title>
.
<source>Chin J Org Chem</source>
<volume>38</volume>
:
<fpage>451</fpage>
<lpage>6</lpage>
.</mixed-citation>
</ref>
<ref id="CIT0057">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name name-style="western">
<surname>Ye</surname>
<given-names>D</given-names>
</name>
,
<name name-style="western">
<surname>Zhang</surname>
<given-names>Y</given-names>
</name>
,
<name name-style="western">
<surname>Wang</surname>
<given-names>F</given-names>
</name>
,
<etal>et al.</etal>
</person-group>
(
<year>2010</year>
).
<article-title>Novel thiophene derivatives as PTP1B inhibitors with selectivity and cellular activity</article-title>
.
<source>Bioorg Med Chem</source>
<volume>18</volume>
:
<fpage>1773</fpage>
<lpage>82</lpage>
.
<pub-id pub-id-type="pmid">20153651</pub-id>
</mixed-citation>
</ref>
<ref id="CIT0058">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name name-style="western">
<surname>Zhao</surname>
<given-names>FY</given-names>
</name>
,
<name name-style="western">
<surname>Lu</surname>
<given-names>W</given-names>
</name>
,
<name name-style="western">
<surname>Su</surname>
<given-names>F</given-names>
</name>
,
<etal>et al.</etal>
</person-group>
(
<year>2018</year>
).
<article-title>Synthesis and potential antineoplastic activity of dehydroabietylamine imidazole derivatives</article-title>
.
<source>Med Chem Commun</source>
<volume>9</volume>
:
<fpage>2091</fpage>
<lpage>9</lpage>
.</mixed-citation>
</ref>
<ref id="CIT0059">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name name-style="western">
<surname>Zhao</surname>
<given-names>FY</given-names>
</name>
,
<name name-style="western">
<surname>Wang</surname>
<given-names>WF</given-names>
</name>
,
<name name-style="western">
<surname>Lu</surname>
<given-names>W</given-names>
</name>
,
<name name-style="western">
<surname>Xu</surname>
<given-names>L</given-names>
</name>
,
<etal>et al.</etal>
</person-group>
(
<year>2018</year>
).
<article-title>High anticancer potency on tumor cells of dehydroabietylamine Schiff-base derivatives and a copper(II) complex</article-title>
.
<source>Eur J Med Chem</source>
<volume>146</volume>
:
<fpage>451</fpage>
<lpage>9</lpage>
.
<pub-id pub-id-type="pmid">29407970</pub-id>
</mixed-citation>
</ref>
<ref id="CIT0060">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name name-style="western">
<surname>Zitko</surname>
<given-names>J</given-names>
</name>
,
<name name-style="western">
<surname>Dolezal</surname>
<given-names>M</given-names>
</name>
,
<name name-style="western">
<surname>Svobodova</surname>
<given-names>M</given-names>
</name>
,
<etal>et al.</etal>
</person-group>
(
<year>2011</year>
).
<article-title>Synthesis and antimycobacterial properties of N-substituted 6-amino-5-cyanopyrazine-2-carboxamides</article-title>
.
<source>Bioorg Med Chem</source>
<volume>19</volume>
:
<fpage>1471</fpage>
<lpage>6</lpage>
.
<pub-id pub-id-type="pmid">21273083</pub-id>
</mixed-citation>
</ref>
</ref-list>
</back>
</pmc>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/ChloroquineV1/Data/Pmc/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000495 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Pmc/Corpus/biblio.hfd -nk 000495 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    ChloroquineV1
   |flux=    Pmc
   |étape=   Corpus
   |type=    RBID
   |clé=     PMC:7034089
   |texte=   Synthesis of novel, DNA binding heterocyclic dehydroabietylamine derivatives
as potential antiproliferative and apoptosis-inducing agents
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Pmc/Corpus/RBID.i   -Sk "pubmed:31984809" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Pmc/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a ChloroquineV1 

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Wed Mar 25 22:43:59 2020. Site generation: Sun Jan 31 12:44:45 2021