Serveur d'exploration Chloroquine

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Trehalose Alleviates Crystalline Silica-Induced Pulmonary Fibrosis via Activation of the TFEB-Mediated Autophagy-Lysosomal System in Alveolar Macrophages

Identifieur interne : 000479 ( Pmc/Corpus ); précédent : 000478; suivant : 000480

Trehalose Alleviates Crystalline Silica-Induced Pulmonary Fibrosis via Activation of the TFEB-Mediated Autophagy-Lysosomal System in Alveolar Macrophages

Auteurs : Xiu He ; Shi Chen ; Chao Li ; Jiaqi Ban ; Yungeng Wei ; Yangyang He ; Fangwei Liu ; Ying Chen ; Jie Chen

Source :

RBID : PMC:7016807

Abstract

Silicosis is an occupational lung disease characterized by persistent inflammation and irreversible fibrosis. Crystalline silica (CS) particles are mainly phagocytized by alveolar macrophages (AMs), which trigger apoptosis, inflammation, and pulmonary fibrosis. Previously, we found that autophagy-lysosomal system dysfunction in AMs was involved in CS-induced inflammation and fibrosis. Induction of autophagy and lysosomal biogenesis by transcription factor EB (TFEB) nuclear translocation can rescue fibrotic diseases. However, the role of TFEB in silicosis is unknown. In this study, we found that CS induced TFEB nuclear localization and increased TFEB expression in macrophages both in vivo and in vitro. However, TFEB overexpression or treatment with the TFEB activator trehalose (Tre) alleviated lysosomal dysfunction and enhanced autophagic flux. It also reduced apoptosis, inflammatory cytokine levels, and fibrosis. Both pharmacologically inhibition of autophagy and TFEB knockdown in macrophages significantly abolished the antiapoptotic and anti-inflammatory effects elicited by either TFEB overexpression or Tre treatment. In conclusion, these results uncover a protective role of TFEB-mediated autophagy in silicosis. Our study suggests that restoration of autophagy-lysosomal function by Tre-induced TFEB activation may be a novel strategy for the treatment of silicosis.


Url:
DOI: 10.3390/cells9010122
PubMed: 31947943
PubMed Central: 7016807

Links to Exploration step

PMC:7016807

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Trehalose Alleviates Crystalline Silica-Induced Pulmonary Fibrosis via Activation of the TFEB-Mediated Autophagy-Lysosomal System in Alveolar Macrophages</title>
<author>
<name sortKey="He, Xiu" sort="He, Xiu" uniqKey="He X" first="Xiu" last="He">Xiu He</name>
<affiliation>
<nlm:aff id="af1-cells-09-00122">Division of Pneumoconiosis, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang 110122, China;
<email>xiuhe_cmu@163.com</email>
(X.H.);
<email>lichao@cmu.edu.cn</email>
(C.L.);
<email>17614027841@163.com</email>
(J.B.);
<email>weiyungeng1736@163.com</email>
(Y.W.);
<email>heyang129@sina.com</email>
(Y.H.);
<email>fwliu@cmu.edu.cn</email>
(F.L.);
<email>ychen25@cmu.edu.cn</email>
(Y.C.)</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Chen, Shi" sort="Chen, Shi" uniqKey="Chen S" first="Shi" last="Chen">Shi Chen</name>
<affiliation>
<nlm:aff id="af2-cells-09-00122">School of Medicine, Hunan Normal University, No.36 Lushan Road, Changsha 410013, China;
<email>chenshonest@163.com</email>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Li, Chao" sort="Li, Chao" uniqKey="Li C" first="Chao" last="Li">Chao Li</name>
<affiliation>
<nlm:aff id="af1-cells-09-00122">Division of Pneumoconiosis, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang 110122, China;
<email>xiuhe_cmu@163.com</email>
(X.H.);
<email>lichao@cmu.edu.cn</email>
(C.L.);
<email>17614027841@163.com</email>
(J.B.);
<email>weiyungeng1736@163.com</email>
(Y.W.);
<email>heyang129@sina.com</email>
(Y.H.);
<email>fwliu@cmu.edu.cn</email>
(F.L.);
<email>ychen25@cmu.edu.cn</email>
(Y.C.)</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Ban, Jiaqi" sort="Ban, Jiaqi" uniqKey="Ban J" first="Jiaqi" last="Ban">Jiaqi Ban</name>
<affiliation>
<nlm:aff id="af1-cells-09-00122">Division of Pneumoconiosis, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang 110122, China;
<email>xiuhe_cmu@163.com</email>
(X.H.);
<email>lichao@cmu.edu.cn</email>
(C.L.);
<email>17614027841@163.com</email>
(J.B.);
<email>weiyungeng1736@163.com</email>
(Y.W.);
<email>heyang129@sina.com</email>
(Y.H.);
<email>fwliu@cmu.edu.cn</email>
(F.L.);
<email>ychen25@cmu.edu.cn</email>
(Y.C.)</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Wei, Yungeng" sort="Wei, Yungeng" uniqKey="Wei Y" first="Yungeng" last="Wei">Yungeng Wei</name>
<affiliation>
<nlm:aff id="af1-cells-09-00122">Division of Pneumoconiosis, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang 110122, China;
<email>xiuhe_cmu@163.com</email>
(X.H.);
<email>lichao@cmu.edu.cn</email>
(C.L.);
<email>17614027841@163.com</email>
(J.B.);
<email>weiyungeng1736@163.com</email>
(Y.W.);
<email>heyang129@sina.com</email>
(Y.H.);
<email>fwliu@cmu.edu.cn</email>
(F.L.);
<email>ychen25@cmu.edu.cn</email>
(Y.C.)</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="He, Yangyang" sort="He, Yangyang" uniqKey="He Y" first="Yangyang" last="He">Yangyang He</name>
<affiliation>
<nlm:aff id="af1-cells-09-00122">Division of Pneumoconiosis, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang 110122, China;
<email>xiuhe_cmu@163.com</email>
(X.H.);
<email>lichao@cmu.edu.cn</email>
(C.L.);
<email>17614027841@163.com</email>
(J.B.);
<email>weiyungeng1736@163.com</email>
(Y.W.);
<email>heyang129@sina.com</email>
(Y.H.);
<email>fwliu@cmu.edu.cn</email>
(F.L.);
<email>ychen25@cmu.edu.cn</email>
(Y.C.)</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Liu, Fangwei" sort="Liu, Fangwei" uniqKey="Liu F" first="Fangwei" last="Liu">Fangwei Liu</name>
<affiliation>
<nlm:aff id="af1-cells-09-00122">Division of Pneumoconiosis, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang 110122, China;
<email>xiuhe_cmu@163.com</email>
(X.H.);
<email>lichao@cmu.edu.cn</email>
(C.L.);
<email>17614027841@163.com</email>
(J.B.);
<email>weiyungeng1736@163.com</email>
(Y.W.);
<email>heyang129@sina.com</email>
(Y.H.);
<email>fwliu@cmu.edu.cn</email>
(F.L.);
<email>ychen25@cmu.edu.cn</email>
(Y.C.)</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Chen, Ying" sort="Chen, Ying" uniqKey="Chen Y" first="Ying" last="Chen">Ying Chen</name>
<affiliation>
<nlm:aff id="af1-cells-09-00122">Division of Pneumoconiosis, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang 110122, China;
<email>xiuhe_cmu@163.com</email>
(X.H.);
<email>lichao@cmu.edu.cn</email>
(C.L.);
<email>17614027841@163.com</email>
(J.B.);
<email>weiyungeng1736@163.com</email>
(Y.W.);
<email>heyang129@sina.com</email>
(Y.H.);
<email>fwliu@cmu.edu.cn</email>
(F.L.);
<email>ychen25@cmu.edu.cn</email>
(Y.C.)</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Chen, Jie" sort="Chen, Jie" uniqKey="Chen J" first="Jie" last="Chen">Jie Chen</name>
<affiliation>
<nlm:aff id="af1-cells-09-00122">Division of Pneumoconiosis, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang 110122, China;
<email>xiuhe_cmu@163.com</email>
(X.H.);
<email>lichao@cmu.edu.cn</email>
(C.L.);
<email>17614027841@163.com</email>
(J.B.);
<email>weiyungeng1736@163.com</email>
(Y.W.);
<email>heyang129@sina.com</email>
(Y.H.);
<email>fwliu@cmu.edu.cn</email>
(F.L.);
<email>ychen25@cmu.edu.cn</email>
(Y.C.)</nlm:aff>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PMC</idno>
<idno type="pmid">31947943</idno>
<idno type="pmc">7016807</idno>
<idno type="url">http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7016807</idno>
<idno type="RBID">PMC:7016807</idno>
<idno type="doi">10.3390/cells9010122</idno>
<date when="2020">2020</date>
<idno type="wicri:Area/Pmc/Corpus">000479</idno>
<idno type="wicri:explorRef" wicri:stream="Pmc" wicri:step="Corpus" wicri:corpus="PMC">000479</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a" type="main">Trehalose Alleviates Crystalline Silica-Induced Pulmonary Fibrosis via Activation of the TFEB-Mediated Autophagy-Lysosomal System in Alveolar Macrophages</title>
<author>
<name sortKey="He, Xiu" sort="He, Xiu" uniqKey="He X" first="Xiu" last="He">Xiu He</name>
<affiliation>
<nlm:aff id="af1-cells-09-00122">Division of Pneumoconiosis, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang 110122, China;
<email>xiuhe_cmu@163.com</email>
(X.H.);
<email>lichao@cmu.edu.cn</email>
(C.L.);
<email>17614027841@163.com</email>
(J.B.);
<email>weiyungeng1736@163.com</email>
(Y.W.);
<email>heyang129@sina.com</email>
(Y.H.);
<email>fwliu@cmu.edu.cn</email>
(F.L.);
<email>ychen25@cmu.edu.cn</email>
(Y.C.)</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Chen, Shi" sort="Chen, Shi" uniqKey="Chen S" first="Shi" last="Chen">Shi Chen</name>
<affiliation>
<nlm:aff id="af2-cells-09-00122">School of Medicine, Hunan Normal University, No.36 Lushan Road, Changsha 410013, China;
<email>chenshonest@163.com</email>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Li, Chao" sort="Li, Chao" uniqKey="Li C" first="Chao" last="Li">Chao Li</name>
<affiliation>
<nlm:aff id="af1-cells-09-00122">Division of Pneumoconiosis, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang 110122, China;
<email>xiuhe_cmu@163.com</email>
(X.H.);
<email>lichao@cmu.edu.cn</email>
(C.L.);
<email>17614027841@163.com</email>
(J.B.);
<email>weiyungeng1736@163.com</email>
(Y.W.);
<email>heyang129@sina.com</email>
(Y.H.);
<email>fwliu@cmu.edu.cn</email>
(F.L.);
<email>ychen25@cmu.edu.cn</email>
(Y.C.)</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Ban, Jiaqi" sort="Ban, Jiaqi" uniqKey="Ban J" first="Jiaqi" last="Ban">Jiaqi Ban</name>
<affiliation>
<nlm:aff id="af1-cells-09-00122">Division of Pneumoconiosis, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang 110122, China;
<email>xiuhe_cmu@163.com</email>
(X.H.);
<email>lichao@cmu.edu.cn</email>
(C.L.);
<email>17614027841@163.com</email>
(J.B.);
<email>weiyungeng1736@163.com</email>
(Y.W.);
<email>heyang129@sina.com</email>
(Y.H.);
<email>fwliu@cmu.edu.cn</email>
(F.L.);
<email>ychen25@cmu.edu.cn</email>
(Y.C.)</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Wei, Yungeng" sort="Wei, Yungeng" uniqKey="Wei Y" first="Yungeng" last="Wei">Yungeng Wei</name>
<affiliation>
<nlm:aff id="af1-cells-09-00122">Division of Pneumoconiosis, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang 110122, China;
<email>xiuhe_cmu@163.com</email>
(X.H.);
<email>lichao@cmu.edu.cn</email>
(C.L.);
<email>17614027841@163.com</email>
(J.B.);
<email>weiyungeng1736@163.com</email>
(Y.W.);
<email>heyang129@sina.com</email>
(Y.H.);
<email>fwliu@cmu.edu.cn</email>
(F.L.);
<email>ychen25@cmu.edu.cn</email>
(Y.C.)</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="He, Yangyang" sort="He, Yangyang" uniqKey="He Y" first="Yangyang" last="He">Yangyang He</name>
<affiliation>
<nlm:aff id="af1-cells-09-00122">Division of Pneumoconiosis, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang 110122, China;
<email>xiuhe_cmu@163.com</email>
(X.H.);
<email>lichao@cmu.edu.cn</email>
(C.L.);
<email>17614027841@163.com</email>
(J.B.);
<email>weiyungeng1736@163.com</email>
(Y.W.);
<email>heyang129@sina.com</email>
(Y.H.);
<email>fwliu@cmu.edu.cn</email>
(F.L.);
<email>ychen25@cmu.edu.cn</email>
(Y.C.)</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Liu, Fangwei" sort="Liu, Fangwei" uniqKey="Liu F" first="Fangwei" last="Liu">Fangwei Liu</name>
<affiliation>
<nlm:aff id="af1-cells-09-00122">Division of Pneumoconiosis, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang 110122, China;
<email>xiuhe_cmu@163.com</email>
(X.H.);
<email>lichao@cmu.edu.cn</email>
(C.L.);
<email>17614027841@163.com</email>
(J.B.);
<email>weiyungeng1736@163.com</email>
(Y.W.);
<email>heyang129@sina.com</email>
(Y.H.);
<email>fwliu@cmu.edu.cn</email>
(F.L.);
<email>ychen25@cmu.edu.cn</email>
(Y.C.)</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Chen, Ying" sort="Chen, Ying" uniqKey="Chen Y" first="Ying" last="Chen">Ying Chen</name>
<affiliation>
<nlm:aff id="af1-cells-09-00122">Division of Pneumoconiosis, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang 110122, China;
<email>xiuhe_cmu@163.com</email>
(X.H.);
<email>lichao@cmu.edu.cn</email>
(C.L.);
<email>17614027841@163.com</email>
(J.B.);
<email>weiyungeng1736@163.com</email>
(Y.W.);
<email>heyang129@sina.com</email>
(Y.H.);
<email>fwliu@cmu.edu.cn</email>
(F.L.);
<email>ychen25@cmu.edu.cn</email>
(Y.C.)</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Chen, Jie" sort="Chen, Jie" uniqKey="Chen J" first="Jie" last="Chen">Jie Chen</name>
<affiliation>
<nlm:aff id="af1-cells-09-00122">Division of Pneumoconiosis, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang 110122, China;
<email>xiuhe_cmu@163.com</email>
(X.H.);
<email>lichao@cmu.edu.cn</email>
(C.L.);
<email>17614027841@163.com</email>
(J.B.);
<email>weiyungeng1736@163.com</email>
(Y.W.);
<email>heyang129@sina.com</email>
(Y.H.);
<email>fwliu@cmu.edu.cn</email>
(F.L.);
<email>ychen25@cmu.edu.cn</email>
(Y.C.)</nlm:aff>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Cells</title>
<idno type="eISSN">2073-4409</idno>
<imprint>
<date when="2020">2020</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<p>Silicosis is an occupational lung disease characterized by persistent inflammation and irreversible fibrosis. Crystalline silica (CS) particles are mainly phagocytized by alveolar macrophages (AMs), which trigger apoptosis, inflammation, and pulmonary fibrosis. Previously, we found that autophagy-lysosomal system dysfunction in AMs was involved in CS-induced inflammation and fibrosis. Induction of autophagy and lysosomal biogenesis by transcription factor EB (TFEB) nuclear translocation can rescue fibrotic diseases. However, the role of TFEB in silicosis is unknown. In this study, we found that CS induced TFEB nuclear localization and increased TFEB expression in macrophages both in vivo and in vitro. However, TFEB overexpression or treatment with the TFEB activator trehalose (Tre) alleviated lysosomal dysfunction and enhanced autophagic flux. It also reduced apoptosis, inflammatory cytokine levels, and fibrosis. Both pharmacologically inhibition of autophagy and TFEB knockdown in macrophages significantly abolished the antiapoptotic and anti-inflammatory effects elicited by either TFEB overexpression or Tre treatment. In conclusion, these results uncover a protective role of TFEB-mediated autophagy in silicosis. Our study suggests that restoration of autophagy-lysosomal function by Tre-induced TFEB activation may be a novel strategy for the treatment of silicosis.</p>
</div>
</front>
<back>
<div1 type="bibliography">
<listBibl>
<biblStruct>
<analytic>
<author>
<name sortKey="Leung, C C" uniqKey="Leung C">C.C. Leung</name>
</author>
<author>
<name sortKey="Yu, I T S" uniqKey="Yu I">I.T.S. Yu</name>
</author>
<author>
<name sortKey="Chen, W" uniqKey="Chen W">W. Chen</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Li, C" uniqKey="Li C">C. Li</name>
</author>
<author>
<name sortKey="Du, S" uniqKey="Du S">S. Du</name>
</author>
<author>
<name sortKey="Lu, Y" uniqKey="Lu Y">Y. Lu</name>
</author>
<author>
<name sortKey="Lu, X" uniqKey="Lu X">X. Lu</name>
</author>
<author>
<name sortKey="Liu, F" uniqKey="Liu F">F. Liu</name>
</author>
<author>
<name sortKey="Chen, Y" uniqKey="Chen Y">Y. Chen</name>
</author>
<author>
<name sortKey="Weng, D" uniqKey="Weng D">D. Weng</name>
</author>
<author>
<name sortKey="Chen, J" uniqKey="Chen J">J. Chen</name>
</author>
</analytic>
</biblStruct>
<biblStruct></biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Hamilton, R F" uniqKey="Hamilton R">R.F. Hamilton</name>
</author>
<author>
<name sortKey="Thakur, S A" uniqKey="Thakur S">S.A. Thakur</name>
</author>
<author>
<name sortKey="Holian, A" uniqKey="Holian A">A. Holian</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Hughes, C S" uniqKey="Hughes C">C.S. Hughes</name>
</author>
<author>
<name sortKey="Colhoun, L M" uniqKey="Colhoun L">L.M. Colhoun</name>
</author>
<author>
<name sortKey="Bains, B K" uniqKey="Bains B">B.K. Bains</name>
</author>
<author>
<name sortKey="Kilgour, J D" uniqKey="Kilgour J">J.D. Kilgour</name>
</author>
<author>
<name sortKey="Burden, R E" uniqKey="Burden R">R.E. Burden</name>
</author>
<author>
<name sortKey="Burrows, J F" uniqKey="Burrows J">J.F. Burrows</name>
</author>
<author>
<name sortKey="Lavelle, E C" uniqKey="Lavelle E">E.C. Lavelle</name>
</author>
<author>
<name sortKey="Gilmore, B F" uniqKey="Gilmore B">B.F. Gilmore</name>
</author>
<author>
<name sortKey="Scott, C J" uniqKey="Scott C">C.J. Scott</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Hornung, V" uniqKey="Hornung V">V. Hornung</name>
</author>
<author>
<name sortKey="Bauernfeind, F" uniqKey="Bauernfeind F">F. Bauernfeind</name>
</author>
<author>
<name sortKey="Halle, A" uniqKey="Halle A">A. Halle</name>
</author>
<author>
<name sortKey="Samstad, E O" uniqKey="Samstad E">E.O. Samstad</name>
</author>
<author>
<name sortKey="Kono, H" uniqKey="Kono H">H. Kono</name>
</author>
<author>
<name sortKey="Rock, K L" uniqKey="Rock K">K.L. Rock</name>
</author>
<author>
<name sortKey="Fitzgerald, K A" uniqKey="Fitzgerald K">K.A. Fitzgerald</name>
</author>
<author>
<name sortKey="Latz, E" uniqKey="Latz E">E. Latz</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Yao, S Q" uniqKey="Yao S">S.Q. Yao</name>
</author>
<author>
<name sortKey="Rojanasakul, L W" uniqKey="Rojanasakul L">L.W. Rojanasakul</name>
</author>
<author>
<name sortKey="Chen, Z Y" uniqKey="Chen Z">Z.Y. Chen</name>
</author>
<author>
<name sortKey="Xu, Y J" uniqKey="Xu Y">Y.J. Xu</name>
</author>
<author>
<name sortKey="Bai, Y P" uniqKey="Bai Y">Y.P. Bai</name>
</author>
<author>
<name sortKey="Chen, G" uniqKey="Chen G">G. Chen</name>
</author>
<author>
<name sortKey="Zhang, X Y" uniqKey="Zhang X">X.Y. Zhang</name>
</author>
<author>
<name sortKey="Zhang, C M" uniqKey="Zhang C">C.M. Zhang</name>
</author>
<author>
<name sortKey="Yu, Y Q" uniqKey="Yu Y">Y.Q. Yu</name>
</author>
<author>
<name sortKey="Shen, F H" uniqKey="Shen F">F.H. Shen</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Huaux, F" uniqKey="Huaux F">F. Huaux</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Lopes Pacheco, M" uniqKey="Lopes Pacheco M">M. Lopes-Pacheco</name>
</author>
<author>
<name sortKey="Bandeira, E" uniqKey="Bandeira E">E. Bandeira</name>
</author>
<author>
<name sortKey="Morales, M M" uniqKey="Morales M">M.M. Morales</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Mizushima, N" uniqKey="Mizushima N">N. Mizushima</name>
</author>
<author>
<name sortKey="Komatsu, M" uniqKey="Komatsu M">M. Komatsu</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Yang, Z" uniqKey="Yang Z">Z. Yang</name>
</author>
<author>
<name sortKey="Klionsky, D J" uniqKey="Klionsky D">D.J. Klionsky</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Biswas, R" uniqKey="Biswas R">R. Biswas</name>
</author>
<author>
<name sortKey="Trout, K L" uniqKey="Trout K">K.L. Trout</name>
</author>
<author>
<name sortKey="Jessop, F" uniqKey="Jessop F">F. Jessop</name>
</author>
<author>
<name sortKey="Harkema, J R" uniqKey="Harkema J">J.R. Harkema</name>
</author>
<author>
<name sortKey="Holian, A" uniqKey="Holian A">A. Holian</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Chen, S" uniqKey="Chen S">S. Chen</name>
</author>
<author>
<name sortKey="Yuan, J" uniqKey="Yuan J">J. Yuan</name>
</author>
<author>
<name sortKey="Yao, S" uniqKey="Yao S">S. Yao</name>
</author>
<author>
<name sortKey="Jin, Y" uniqKey="Jin Y">Y. Jin</name>
</author>
<author>
<name sortKey="Chen, G" uniqKey="Chen G">G. Chen</name>
</author>
<author>
<name sortKey="Tian, W" uniqKey="Tian W">W. Tian</name>
</author>
<author>
<name sortKey="Xi, J" uniqKey="Xi J">J. Xi</name>
</author>
<author>
<name sortKey="Xu, Z" uniqKey="Xu Z">Z. Xu</name>
</author>
<author>
<name sortKey="Weng, D" uniqKey="Weng D">D. Weng</name>
</author>
<author>
<name sortKey="Chen, J" uniqKey="Chen J">J. Chen</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Jessop, F" uniqKey="Jessop F">F. Jessop</name>
</author>
<author>
<name sortKey="Hamilton, R F" uniqKey="Hamilton R">R.F. Hamilton</name>
</author>
<author>
<name sortKey="Rhoderick, J F" uniqKey="Rhoderick J">J.F. Rhoderick</name>
</author>
<author>
<name sortKey="Shaw, P K" uniqKey="Shaw P">P.K. Shaw</name>
</author>
<author>
<name sortKey="Holian, A" uniqKey="Holian A">A. Holian</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Du, S" uniqKey="Du S">S. Du</name>
</author>
<author>
<name sortKey="Li, C" uniqKey="Li C">C. Li</name>
</author>
<author>
<name sortKey="Lu, Y" uniqKey="Lu Y">Y. Lu</name>
</author>
<author>
<name sortKey="Lei, X" uniqKey="Lei X">X. Lei</name>
</author>
<author>
<name sortKey="Zhang, Y" uniqKey="Zhang Y">Y. Zhang</name>
</author>
<author>
<name sortKey="Li, S" uniqKey="Li S">S. Li</name>
</author>
<author>
<name sortKey="Liu, F" uniqKey="Liu F">F. Liu</name>
</author>
<author>
<name sortKey="Chen, Y" uniqKey="Chen Y">Y. Chen</name>
</author>
<author>
<name sortKey="Weng, D" uniqKey="Weng D">D. Weng</name>
</author>
<author>
<name sortKey="Chen, J" uniqKey="Chen J">J. Chen</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Han, R" uniqKey="Han R">R. Han</name>
</author>
<author>
<name sortKey="Ji, X" uniqKey="Ji X">X. Ji</name>
</author>
<author>
<name sortKey="Rong, R" uniqKey="Rong R">R. Rong</name>
</author>
<author>
<name sortKey="Li, Y" uniqKey="Li Y">Y. Li</name>
</author>
<author>
<name sortKey="Yao, W" uniqKey="Yao W">W. Yao</name>
</author>
<author>
<name sortKey="Yuan, J" uniqKey="Yuan J">J. Yuan</name>
</author>
<author>
<name sortKey="Wu, Q" uniqKey="Wu Q">Q. Wu</name>
</author>
<author>
<name sortKey="Yang, J" uniqKey="Yang J">J. Yang</name>
</author>
<author>
<name sortKey="Yan, W" uniqKey="Yan W">W. Yan</name>
</author>
<author>
<name sortKey="Han, L" uniqKey="Han L">L. Han</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Napolitano, G" uniqKey="Napolitano G">G. Napolitano</name>
</author>
<author>
<name sortKey="Ballabio, A" uniqKey="Ballabio A">A. Ballabio</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Sardiello, M" uniqKey="Sardiello M">M. Sardiello</name>
</author>
<author>
<name sortKey="Palmieri, M" uniqKey="Palmieri M">M. Palmieri</name>
</author>
<author>
<name sortKey="Di Ronza, A" uniqKey="Di Ronza A">A. di Ronza</name>
</author>
<author>
<name sortKey="Medina, D L" uniqKey="Medina D">D.L. Medina</name>
</author>
<author>
<name sortKey="Valenza, M" uniqKey="Valenza M">M. Valenza</name>
</author>
<author>
<name sortKey="Gennarino, V A" uniqKey="Gennarino V">V.A. Gennarino</name>
</author>
<author>
<name sortKey="Di Malta, C" uniqKey="Di Malta C">C. Di Malta</name>
</author>
<author>
<name sortKey="Donaudy, F" uniqKey="Donaudy F">F. Donaudy</name>
</author>
<author>
<name sortKey="Embrione, V" uniqKey="Embrione V">V. Embrione</name>
</author>
<author>
<name sortKey="Polishchuk, R S" uniqKey="Polishchuk R">R.S. Polishchuk</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Settembre, C" uniqKey="Settembre C">C. Settembre</name>
</author>
<author>
<name sortKey="Di Malta, C" uniqKey="Di Malta C">C. Di Malta</name>
</author>
<author>
<name sortKey="Polito, V A" uniqKey="Polito V">V.A. Polito</name>
</author>
<author>
<name sortKey="Garcia Arencibia, M" uniqKey="Garcia Arencibia M">M. Garcia Arencibia</name>
</author>
<author>
<name sortKey="Vetrini, F" uniqKey="Vetrini F">F. Vetrini</name>
</author>
<author>
<name sortKey="Erdin, S" uniqKey="Erdin S">S. Erdin</name>
</author>
<author>
<name sortKey="Erdin, S U" uniqKey="Erdin S">S.U. Erdin</name>
</author>
<author>
<name sortKey="Huynh, T" uniqKey="Huynh T">T. Huynh</name>
</author>
<author>
<name sortKey="Medina, D" uniqKey="Medina D">D. Medina</name>
</author>
<author>
<name sortKey="Colella, P" uniqKey="Colella P">P. Colella</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Jia, D" uniqKey="Jia D">D. Jia</name>
</author>
<author>
<name sortKey="Wang, Y Y" uniqKey="Wang Y">Y.Y. Wang</name>
</author>
<author>
<name sortKey="Wang, P" uniqKey="Wang P">P. Wang</name>
</author>
<author>
<name sortKey="Huang, Y" uniqKey="Huang Y">Y. Huang</name>
</author>
<author>
<name sortKey="Liang, D Y" uniqKey="Liang D">D.Y. Liang</name>
</author>
<author>
<name sortKey="Wang, D" uniqKey="Wang D">D. Wang</name>
</author>
<author>
<name sortKey="Cheng, C" uniqKey="Cheng C">C. Cheng</name>
</author>
<author>
<name sortKey="Zhang, C" uniqKey="Zhang C">C. Zhang</name>
</author>
<author>
<name sortKey="Guo, L" uniqKey="Guo L">L. Guo</name>
</author>
<author>
<name sortKey="Liang, P" uniqKey="Liang P">P. Liang</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kim, S H" uniqKey="Kim S">S.H. Kim</name>
</author>
<author>
<name sortKey="Kim, G" uniqKey="Kim G">G. Kim</name>
</author>
<author>
<name sortKey="Han, D H" uniqKey="Han D">D.H. Han</name>
</author>
<author>
<name sortKey="Lee, M" uniqKey="Lee M">M. Lee</name>
</author>
<author>
<name sortKey="Kim, I" uniqKey="Kim I">I. Kim</name>
</author>
<author>
<name sortKey="Kim, B" uniqKey="Kim B">B. Kim</name>
</author>
<author>
<name sortKey="Kim, K H" uniqKey="Kim K">K.H. Kim</name>
</author>
<author>
<name sortKey="Song, Y M" uniqKey="Song Y">Y.M. Song</name>
</author>
<author>
<name sortKey="Yoo, J E" uniqKey="Yoo J">J.E. Yoo</name>
</author>
<author>
<name sortKey="Wang, H J" uniqKey="Wang H">H.J. Wang</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Emanuele, E" uniqKey="Emanuele E">E. Emanuele</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Evans, T D" uniqKey="Evans T">T.D. Evans</name>
</author>
<author>
<name sortKey="Jeong, S J" uniqKey="Jeong S">S.J. Jeong</name>
</author>
<author>
<name sortKey="Zhang, X" uniqKey="Zhang X">X. Zhang</name>
</author>
<author>
<name sortKey="Sergin, I" uniqKey="Sergin I">I. Sergin</name>
</author>
<author>
<name sortKey="Razani, B" uniqKey="Razani B">B. Razani</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Sergin, I" uniqKey="Sergin I">I. Sergin</name>
</author>
<author>
<name sortKey="Evans, T D" uniqKey="Evans T">T.D. Evans</name>
</author>
<author>
<name sortKey="Zhang, X" uniqKey="Zhang X">X. Zhang</name>
</author>
<author>
<name sortKey="Bhattacharya, S" uniqKey="Bhattacharya S">S. Bhattacharya</name>
</author>
<author>
<name sortKey="Stokes, C J" uniqKey="Stokes C">C.J. Stokes</name>
</author>
<author>
<name sortKey="Song, E" uniqKey="Song E">E. Song</name>
</author>
<author>
<name sortKey="Ali, S" uniqKey="Ali S">S. Ali</name>
</author>
<author>
<name sortKey="Dehestani, B" uniqKey="Dehestani B">B. Dehestani</name>
</author>
<author>
<name sortKey="Holloway, K B" uniqKey="Holloway K">K.B. Holloway</name>
</author>
<author>
<name sortKey="Micevych, P S" uniqKey="Micevych P">P.S. Micevych</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Li, S" uniqKey="Li S">S. Li</name>
</author>
<author>
<name sortKey="Li, C" uniqKey="Li C">C. Li</name>
</author>
<author>
<name sortKey="Zhang, Y" uniqKey="Zhang Y">Y. Zhang</name>
</author>
<author>
<name sortKey="He, X" uniqKey="He X">X. He</name>
</author>
<author>
<name sortKey="Chen, X" uniqKey="Chen X">X. Chen</name>
</author>
<author>
<name sortKey="Zeng, X" uniqKey="Zeng X">X. Zeng</name>
</author>
<author>
<name sortKey="Liu, F" uniqKey="Liu F">F. Liu</name>
</author>
<author>
<name sortKey="Chen, Y" uniqKey="Chen Y">Y. Chen</name>
</author>
<author>
<name sortKey="Chen, J" uniqKey="Chen J">J. Chen</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Li, C" uniqKey="Li C">C. Li</name>
</author>
<author>
<name sortKey="Lu, Y" uniqKey="Lu Y">Y. Lu</name>
</author>
<author>
<name sortKey="Du, S" uniqKey="Du S">S. Du</name>
</author>
<author>
<name sortKey="Li, S" uniqKey="Li S">S. Li</name>
</author>
<author>
<name sortKey="Zhang, Y" uniqKey="Zhang Y">Y. Zhang</name>
</author>
<author>
<name sortKey="Liu, F" uniqKey="Liu F">F. Liu</name>
</author>
<author>
<name sortKey="Chen, Y" uniqKey="Chen Y">Y. Chen</name>
</author>
<author>
<name sortKey="Weng, D" uniqKey="Weng D">D. Weng</name>
</author>
<author>
<name sortKey="Chen, J" uniqKey="Chen J">J. Chen</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Tai, H" uniqKey="Tai H">H. Tai</name>
</author>
<author>
<name sortKey="Wang, Z" uniqKey="Wang Z">Z. Wang</name>
</author>
<author>
<name sortKey="Gong, H" uniqKey="Gong H">H. Gong</name>
</author>
<author>
<name sortKey="Han, X" uniqKey="Han X">X. Han</name>
</author>
<author>
<name sortKey="Zhou, J" uniqKey="Zhou J">J. Zhou</name>
</author>
<author>
<name sortKey="Wang, X" uniqKey="Wang X">X. Wang</name>
</author>
<author>
<name sortKey="Wei, X" uniqKey="Wei X">X. Wei</name>
</author>
<author>
<name sortKey="Ding, Y" uniqKey="Ding Y">Y. Ding</name>
</author>
<author>
<name sortKey="Huang, N" uniqKey="Huang N">N. Huang</name>
</author>
<author>
<name sortKey="Qin, J" uniqKey="Qin J">J. Qin</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Wang, X Y" uniqKey="Wang X">X.Y. Wang</name>
</author>
<author>
<name sortKey="Yang, H" uniqKey="Yang H">H. Yang</name>
</author>
<author>
<name sortKey="Wang, M G" uniqKey="Wang M">M.G. Wang</name>
</author>
<author>
<name sortKey="Yang, D B" uniqKey="Yang D">D.B. Yang</name>
</author>
<author>
<name sortKey="Wang, Z Y" uniqKey="Wang Z">Z.Y. Wang</name>
</author>
<author>
<name sortKey="Wang, L" uniqKey="Wang L">L. Wang</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Lu, Y" uniqKey="Lu Y">Y. Lu</name>
</author>
<author>
<name sortKey="Li, C" uniqKey="Li C">C. Li</name>
</author>
<author>
<name sortKey="Du, S" uniqKey="Du S">S. Du</name>
</author>
<author>
<name sortKey="Chen, X" uniqKey="Chen X">X. Chen</name>
</author>
<author>
<name sortKey="Zeng, X" uniqKey="Zeng X">X. Zeng</name>
</author>
<author>
<name sortKey="Liu, F" uniqKey="Liu F">F. Liu</name>
</author>
<author>
<name sortKey="Chen, Y" uniqKey="Chen Y">Y. Chen</name>
</author>
<author>
<name sortKey="Chen, J" uniqKey="Chen J">J. Chen</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Aflaki, E" uniqKey="Aflaki E">E. Aflaki</name>
</author>
<author>
<name sortKey="Moaven, N" uniqKey="Moaven N">N. Moaven</name>
</author>
<author>
<name sortKey="Borger, D K" uniqKey="Borger D">D.K. Borger</name>
</author>
<author>
<name sortKey="Lopez, G" uniqKey="Lopez G">G. Lopez</name>
</author>
<author>
<name sortKey="Westbroek, W" uniqKey="Westbroek W">W. Westbroek</name>
</author>
<author>
<name sortKey="Chae, J J" uniqKey="Chae J">J.J. Chae</name>
</author>
<author>
<name sortKey="Marugan, J" uniqKey="Marugan J">J. Marugan</name>
</author>
<author>
<name sortKey="Patnaik, S" uniqKey="Patnaik S">S. Patnaik</name>
</author>
<author>
<name sortKey="Maniwang, E" uniqKey="Maniwang E">E. Maniwang</name>
</author>
<author>
<name sortKey="Gonzalez, A N" uniqKey="Gonzalez A">A.N. Gonzalez</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Puertollano, R" uniqKey="Puertollano R">R. Puertollano</name>
</author>
<author>
<name sortKey="Ferguson, S M" uniqKey="Ferguson S">S.M. Ferguson</name>
</author>
<author>
<name sortKey="Brugarolas, J" uniqKey="Brugarolas J">J. Brugarolas</name>
</author>
<author>
<name sortKey="Ballabio, A" uniqKey="Ballabio A">A. Ballabio</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Delbridge, A R" uniqKey="Delbridge A">A.R. Delbridge</name>
</author>
<author>
<name sortKey="Grabow, S" uniqKey="Grabow S">S. Grabow</name>
</author>
<author>
<name sortKey="Strasser, A" uniqKey="Strasser A">A. Strasser</name>
</author>
<author>
<name sortKey="Vaux, D L" uniqKey="Vaux D">D.L. Vaux</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Lie, P P" uniqKey="Lie P">P.P. Lie</name>
</author>
<author>
<name sortKey="Nixon, R A" uniqKey="Nixon R">R.A. Nixon</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Sahebkar, A" uniqKey="Sahebkar A">A. Sahebkar</name>
</author>
<author>
<name sortKey="Hatamipour, M" uniqKey="Hatamipour M">M. Hatamipour</name>
</author>
<author>
<name sortKey="Tabatabaei, S A" uniqKey="Tabatabaei S">S.A. Tabatabaei</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Khalifeh, M" uniqKey="Khalifeh M">M. Khalifeh</name>
</author>
<author>
<name sortKey="Barreto, G E" uniqKey="Barreto G">G.E. Barreto</name>
</author>
<author>
<name sortKey="Sahebkar, A" uniqKey="Sahebkar A">A. Sahebkar</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Lotfi, P" uniqKey="Lotfi P">P. Lotfi</name>
</author>
<author>
<name sortKey="Tse, D Y" uniqKey="Tse D">D.Y. Tse</name>
</author>
<author>
<name sortKey="Di Ronza, A" uniqKey="Di Ronza A">A. Di Ronza</name>
</author>
<author>
<name sortKey="Seymour, M L" uniqKey="Seymour M">M.L. Seymour</name>
</author>
<author>
<name sortKey="Martano, G" uniqKey="Martano G">G. Martano</name>
</author>
<author>
<name sortKey="Cooper, J D" uniqKey="Cooper J">J.D. Cooper</name>
</author>
<author>
<name sortKey="Pereira, F A" uniqKey="Pereira F">F.A. Pereira</name>
</author>
<author>
<name sortKey="Passafaro, M" uniqKey="Passafaro M">M. Passafaro</name>
</author>
<author>
<name sortKey="Wu, S M" uniqKey="Wu S">S.M. Wu</name>
</author>
<author>
<name sortKey="Sardiello, M" uniqKey="Sardiello M">M. Sardiello</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Cortes, C J" uniqKey="Cortes C">C.J. Cortes</name>
</author>
<author>
<name sortKey="La Spada, A R" uniqKey="La Spada A">A.R. La Spada</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Huynh, K" uniqKey="Huynh K">K. Huynh</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Sciarretta, S" uniqKey="Sciarretta S">S. Sciarretta</name>
</author>
<author>
<name sortKey="Yee, D" uniqKey="Yee D">D. Yee</name>
</author>
<author>
<name sortKey="Nagarajan, N" uniqKey="Nagarajan N">N. Nagarajan</name>
</author>
<author>
<name sortKey="Bianchi, F" uniqKey="Bianchi F">F. Bianchi</name>
</author>
<author>
<name sortKey="Saito, T" uniqKey="Saito T">T. Saito</name>
</author>
<author>
<name sortKey="Valenti, V" uniqKey="Valenti V">V. Valenti</name>
</author>
<author>
<name sortKey="Tong, M" uniqKey="Tong M">M. Tong</name>
</author>
<author>
<name sortKey="Del Re, D P" uniqKey="Del Re D">D.P. Del Re</name>
</author>
<author>
<name sortKey="Vecchione, C" uniqKey="Vecchione C">C. Vecchione</name>
</author>
<author>
<name sortKey="Schirone, L" uniqKey="Schirone L">L. Schirone</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Rusmini, P" uniqKey="Rusmini P">P. Rusmini</name>
</author>
<author>
<name sortKey="Cortese, K" uniqKey="Cortese K">K. Cortese</name>
</author>
<author>
<name sortKey="Crippa, V" uniqKey="Crippa V">V. Crippa</name>
</author>
<author>
<name sortKey="Cristofani, R" uniqKey="Cristofani R">R. Cristofani</name>
</author>
<author>
<name sortKey="Cicardi, M E" uniqKey="Cicardi M">M.E. Cicardi</name>
</author>
<author>
<name sortKey="Ferrari, V" uniqKey="Ferrari V">V. Ferrari</name>
</author>
<author>
<name sortKey="Vezzoli, G" uniqKey="Vezzoli G">G. Vezzoli</name>
</author>
<author>
<name sortKey="Tedesco, B" uniqKey="Tedesco B">B. Tedesco</name>
</author>
<author>
<name sortKey="Meroni, M" uniqKey="Meroni M">M. Meroni</name>
</author>
<author>
<name sortKey="Messi, E" uniqKey="Messi E">E. Messi</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Wu, H" uniqKey="Wu H">H. Wu</name>
</author>
<author>
<name sortKey="Chen, H" uniqKey="Chen H">H. Chen</name>
</author>
<author>
<name sortKey="Zheng, Z" uniqKey="Zheng Z">Z. Zheng</name>
</author>
<author>
<name sortKey="Li, J" uniqKey="Li J">J. Li</name>
</author>
<author>
<name sortKey="Ding, J" uniqKey="Ding J">J. Ding</name>
</author>
<author>
<name sortKey="Huang, Z" uniqKey="Huang Z">Z. Huang</name>
</author>
<author>
<name sortKey="Jia, C" uniqKey="Jia C">C. Jia</name>
</author>
<author>
<name sortKey="Shen, Z" uniqKey="Shen Z">Z. Shen</name>
</author>
<author>
<name sortKey="Bao, G" uniqKey="Bao G">G. Bao</name>
</author>
<author>
<name sortKey="Wu, L" uniqKey="Wu L">L. Wu</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Messer, J S" uniqKey="Messer J">J.S. Messer</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Mejias Pena, Y" uniqKey="Mejias Pena Y">Y. Mejias-Pena</name>
</author>
<author>
<name sortKey="Estebanez, B" uniqKey="Estebanez B">B. Estebanez</name>
</author>
<author>
<name sortKey="Rodriguez Miguelez, P" uniqKey="Rodriguez Miguelez P">P. Rodriguez-Miguelez</name>
</author>
<author>
<name sortKey="Fernandez Gonzalo, R" uniqKey="Fernandez Gonzalo R">R. Fernandez-Gonzalo</name>
</author>
<author>
<name sortKey="Almar, M" uniqKey="Almar M">M. Almar</name>
</author>
<author>
<name sortKey="De Paz, J A" uniqKey="De Paz J">J.A. de Paz</name>
</author>
<author>
<name sortKey="Gonzalez Gallego, J" uniqKey="Gonzalez Gallego J">J. Gonzalez-Gallego</name>
</author>
<author>
<name sortKey="Cuevas, M J" uniqKey="Cuevas M">M.J. Cuevas</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Zhu, M" uniqKey="Zhu M">M. Zhu</name>
</author>
<author>
<name sortKey="An, Y" uniqKey="An Y">Y. An</name>
</author>
<author>
<name sortKey="Zhang, X" uniqKey="Zhang X">X. Zhang</name>
</author>
<author>
<name sortKey="Wang, Z" uniqKey="Wang Z">Z. Wang</name>
</author>
<author>
<name sortKey="Duan, H" uniqKey="Duan H">H. Duan</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Di Malta, C" uniqKey="Di Malta C">C. Di Malta</name>
</author>
<author>
<name sortKey="Cinque, L" uniqKey="Cinque L">L. Cinque</name>
</author>
<author>
<name sortKey="Settembre, C" uniqKey="Settembre C">C. Settembre</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Raben, N" uniqKey="Raben N">N. Raben</name>
</author>
<author>
<name sortKey="Puertollano, R" uniqKey="Puertollano R">R. Puertollano</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Martina, J A" uniqKey="Martina J">J.A. Martina</name>
</author>
<author>
<name sortKey="Diab, H I" uniqKey="Diab H">H.I. Diab</name>
</author>
<author>
<name sortKey="Brady, O A" uniqKey="Brady O">O.A. Brady</name>
</author>
<author>
<name sortKey="Puertollano, R" uniqKey="Puertollano R">R. Puertollano</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Stein, B L" uniqKey="Stein B">B.L. Stein</name>
</author>
<author>
<name sortKey="Wexler, M J" uniqKey="Wexler M">M.J. Wexler</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Thibodeau, M S" uniqKey="Thibodeau M">M.S. Thibodeau</name>
</author>
<author>
<name sortKey="Giardina, C" uniqKey="Giardina C">C. Giardina</name>
</author>
<author>
<name sortKey="Knecht, D A" uniqKey="Knecht D">D.A. Knecht</name>
</author>
<author>
<name sortKey="Helble, J" uniqKey="Helble J">J. Helble</name>
</author>
<author>
<name sortKey="Hubbard, A K" uniqKey="Hubbard A">A.K. Hubbard</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Settembre, C" uniqKey="Settembre C">C. Settembre</name>
</author>
<author>
<name sortKey="Zoncu, R" uniqKey="Zoncu R">R. Zoncu</name>
</author>
<author>
<name sortKey="Medina, D L" uniqKey="Medina D">D.L. Medina</name>
</author>
<author>
<name sortKey="Vetrini, F" uniqKey="Vetrini F">F. Vetrini</name>
</author>
<author>
<name sortKey="Erdin, S" uniqKey="Erdin S">S. Erdin</name>
</author>
<author>
<name sortKey="Erdin, S" uniqKey="Erdin S">S. Erdin</name>
</author>
<author>
<name sortKey="Huynh, T" uniqKey="Huynh T">T. Huynh</name>
</author>
<author>
<name sortKey="Ferron, M" uniqKey="Ferron M">M. Ferron</name>
</author>
<author>
<name sortKey="Karsenty, G" uniqKey="Karsenty G">G. Karsenty</name>
</author>
<author>
<name sortKey="Vellard, M C" uniqKey="Vellard M">M.C. Vellard</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Pastore, N" uniqKey="Pastore N">N. Pastore</name>
</author>
<author>
<name sortKey="Brady, O A" uniqKey="Brady O">O.A. Brady</name>
</author>
<author>
<name sortKey="Diab, H I" uniqKey="Diab H">H.I. Diab</name>
</author>
<author>
<name sortKey="Martina, J A" uniqKey="Martina J">J.A. Martina</name>
</author>
<author>
<name sortKey="Sun, L" uniqKey="Sun L">L. Sun</name>
</author>
<author>
<name sortKey="Huynh, T" uniqKey="Huynh T">T. Huynh</name>
</author>
<author>
<name sortKey="Lim, J A" uniqKey="Lim J">J.A. Lim</name>
</author>
<author>
<name sortKey="Zare, H" uniqKey="Zare H">H. Zare</name>
</author>
<author>
<name sortKey="Raben, N" uniqKey="Raben N">N. Raben</name>
</author>
<author>
<name sortKey="Ballabio, A" uniqKey="Ballabio A">A. Ballabio</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Emanuel, R" uniqKey="Emanuel R">R. Emanuel</name>
</author>
<author>
<name sortKey="Sergin, I" uniqKey="Sergin I">I. Sergin</name>
</author>
<author>
<name sortKey="Bhattacharya, S" uniqKey="Bhattacharya S">S. Bhattacharya</name>
</author>
<author>
<name sortKey="Turner, J" uniqKey="Turner J">J. Turner</name>
</author>
<author>
<name sortKey="Epelman, S" uniqKey="Epelman S">S. Epelman</name>
</author>
<author>
<name sortKey="Settembre, C" uniqKey="Settembre C">C. Settembre</name>
</author>
<author>
<name sortKey="Diwan, A" uniqKey="Diwan A">A. Diwan</name>
</author>
<author>
<name sortKey="Ballabio, A" uniqKey="Ballabio A">A. Ballabio</name>
</author>
<author>
<name sortKey="Razani, B" uniqKey="Razani B">B. Razani</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Arguelles, J C" uniqKey="Arguelles J">J.C. Arguelles</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ohtake, S" uniqKey="Ohtake S">S. Ohtake</name>
</author>
<author>
<name sortKey="Wang, Y J" uniqKey="Wang Y">Y.J. Wang</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Palmieri, M" uniqKey="Palmieri M">M. Palmieri</name>
</author>
<author>
<name sortKey="Pal, R" uniqKey="Pal R">R. Pal</name>
</author>
<author>
<name sortKey="Nelvagal, H R" uniqKey="Nelvagal H">H.R. Nelvagal</name>
</author>
<author>
<name sortKey="Lotfi, P" uniqKey="Lotfi P">P. Lotfi</name>
</author>
<author>
<name sortKey="Stinnett, G R" uniqKey="Stinnett G">G.R. Stinnett</name>
</author>
<author>
<name sortKey="Seymour, M L" uniqKey="Seymour M">M.L. Seymour</name>
</author>
<author>
<name sortKey="Chaudhury, A" uniqKey="Chaudhury A">A. Chaudhury</name>
</author>
<author>
<name sortKey="Bajaj, L" uniqKey="Bajaj L">L. Bajaj</name>
</author>
<author>
<name sortKey="Bondar, V V" uniqKey="Bondar V">V.V. Bondar</name>
</author>
<author>
<name sortKey="Bremner, L" uniqKey="Bremner L">L. Bremner</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Mizushima, N" uniqKey="Mizushima N">N. Mizushima</name>
</author>
<author>
<name sortKey="Levine, B" uniqKey="Levine B">B. Levine</name>
</author>
<author>
<name sortKey="Cuervo, A M" uniqKey="Cuervo A">A.M. Cuervo</name>
</author>
<author>
<name sortKey="Klionsky, D J" uniqKey="Klionsky D">D.J. Klionsky</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Levine, B" uniqKey="Levine B">B. Levine</name>
</author>
<author>
<name sortKey="Klionsky, D J" uniqKey="Klionsky D">D.J. Klionsky</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Liu, H" uniqKey="Liu H">H. Liu</name>
</author>
<author>
<name sortKey="Cheng, Y" uniqKey="Cheng Y">Y. Cheng</name>
</author>
<author>
<name sortKey="Yang, J" uniqKey="Yang J">J. Yang</name>
</author>
<author>
<name sortKey="Wang, W" uniqKey="Wang W">W. Wang</name>
</author>
<author>
<name sortKey="Fang, S" uniqKey="Fang S">S. Fang</name>
</author>
<author>
<name sortKey="Zhang, W" uniqKey="Zhang W">W. Zhang</name>
</author>
<author>
<name sortKey="Han, B" uniqKey="Han B">B. Han</name>
</author>
<author>
<name sortKey="Zhou, Z" uniqKey="Zhou Z">Z. Zhou</name>
</author>
<author>
<name sortKey="Yao, H" uniqKey="Yao H">H. Yao</name>
</author>
<author>
<name sortKey="Chao, J" uniqKey="Chao J">J. Chao</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Liu, H" uniqKey="Liu H">H. Liu</name>
</author>
<author>
<name sortKey="Fang, S" uniqKey="Fang S">S. Fang</name>
</author>
<author>
<name sortKey="Wang, W" uniqKey="Wang W">W. Wang</name>
</author>
<author>
<name sortKey="Cheng, Y" uniqKey="Cheng Y">Y. Cheng</name>
</author>
<author>
<name sortKey="Zhang, Y" uniqKey="Zhang Y">Y. Zhang</name>
</author>
<author>
<name sortKey="Liao, H" uniqKey="Liao H">H. Liao</name>
</author>
<author>
<name sortKey="Yao, H" uniqKey="Yao H">H. Yao</name>
</author>
<author>
<name sortKey="Chao, J" uniqKey="Chao J">J. Chao</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Hoffmann, A C" uniqKey="Hoffmann A">A.C. Hoffmann</name>
</author>
<author>
<name sortKey="Minakaki, G" uniqKey="Minakaki G">G. Minakaki</name>
</author>
<author>
<name sortKey="Menges, S" uniqKey="Menges S">S. Menges</name>
</author>
<author>
<name sortKey="Salvi, R" uniqKey="Salvi R">R. Salvi</name>
</author>
<author>
<name sortKey="Savitskiy, S" uniqKey="Savitskiy S">S. Savitskiy</name>
</author>
<author>
<name sortKey="Kazman, A" uniqKey="Kazman A">A. Kazman</name>
</author>
<author>
<name sortKey="Vicente Miranda, H" uniqKey="Vicente Miranda H">H. Vicente Miranda</name>
</author>
<author>
<name sortKey="Mielenz, D" uniqKey="Mielenz D">D. Mielenz</name>
</author>
<author>
<name sortKey="Klucken, J" uniqKey="Klucken J">J. Klucken</name>
</author>
<author>
<name sortKey="Winkler, J" uniqKey="Winkler J">J. Winkler</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Galluzzi, L" uniqKey="Galluzzi L">L. Galluzzi</name>
</author>
<author>
<name sortKey="Bravo San Pedro, J M" uniqKey="Bravo San Pedro J">J.M. Bravo-San Pedro</name>
</author>
<author>
<name sortKey="Levine, B" uniqKey="Levine B">B. Levine</name>
</author>
<author>
<name sortKey="Green, D R" uniqKey="Green D">D.R. Green</name>
</author>
<author>
<name sortKey="Kroemer, G" uniqKey="Kroemer G">G. Kroemer</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Yu, L" uniqKey="Yu L">L. Yu</name>
</author>
<author>
<name sortKey="Chen, Y" uniqKey="Chen Y">Y. Chen</name>
</author>
<author>
<name sortKey="Tooze, S A" uniqKey="Tooze S">S.A. Tooze</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Fisher, R A" uniqKey="Fisher R">R.A. Fisher</name>
</author>
<author>
<name sortKey="Gollan, B" uniqKey="Gollan B">B. Gollan</name>
</author>
<author>
<name sortKey="Helaine, S" uniqKey="Helaine S">S. Helaine</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Rubinsztein, D C" uniqKey="Rubinsztein D">D.C. Rubinsztein</name>
</author>
<author>
<name sortKey="Cuervo, A M" uniqKey="Cuervo A">A.M. Cuervo</name>
</author>
<author>
<name sortKey="Ravikumar, B" uniqKey="Ravikumar B">B. Ravikumar</name>
</author>
<author>
<name sortKey="Sarkar, S" uniqKey="Sarkar S">S. Sarkar</name>
</author>
<author>
<name sortKey="Korolchuk, V" uniqKey="Korolchuk V">V. Korolchuk</name>
</author>
<author>
<name sortKey="Kaushik, S" uniqKey="Kaushik S">S. Kaushik</name>
</author>
<author>
<name sortKey="Klionsky, D J" uniqKey="Klionsky D">D.J. Klionsky</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Piguet, P F" uniqKey="Piguet P">P.F. Piguet</name>
</author>
<author>
<name sortKey="Collart, M A" uniqKey="Collart M">M.A. Collart</name>
</author>
<author>
<name sortKey="Grau, G E" uniqKey="Grau G">G.E. Grau</name>
</author>
<author>
<name sortKey="Sappino, A P" uniqKey="Sappino A">A.P. Sappino</name>
</author>
<author>
<name sortKey="Vassalli, P" uniqKey="Vassalli P">P. Vassalli</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Minutoli, L" uniqKey="Minutoli L">L. Minutoli</name>
</author>
<author>
<name sortKey="Altavilla, D" uniqKey="Altavilla D">D. Altavilla</name>
</author>
<author>
<name sortKey="Bitto, A" uniqKey="Bitto A">A. Bitto</name>
</author>
<author>
<name sortKey="Polito, F" uniqKey="Polito F">F. Polito</name>
</author>
<author>
<name sortKey="Bellocco, E" uniqKey="Bellocco E">E. Bellocco</name>
</author>
<author>
<name sortKey="Lagana, G" uniqKey="Lagana G">G. Lagana</name>
</author>
<author>
<name sortKey="Fiumara, T" uniqKey="Fiumara T">T. Fiumara</name>
</author>
<author>
<name sortKey="Magazu, S" uniqKey="Magazu S">S. Magazu</name>
</author>
<author>
<name sortKey="Migliardo, F" uniqKey="Migliardo F">F. Migliardo</name>
</author>
<author>
<name sortKey="Venuti, F S" uniqKey="Venuti F">F.S. Venuti</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Jurkuvenaite, A" uniqKey="Jurkuvenaite A">A. Jurkuvenaite</name>
</author>
<author>
<name sortKey="Benavides, G A" uniqKey="Benavides G">G.A. Benavides</name>
</author>
<author>
<name sortKey="Komarova, S" uniqKey="Komarova S">S. Komarova</name>
</author>
<author>
<name sortKey="Doran, S F" uniqKey="Doran S">S.F. Doran</name>
</author>
<author>
<name sortKey="Johnson, M" uniqKey="Johnson M">M. Johnson</name>
</author>
<author>
<name sortKey="Aggarwal, S" uniqKey="Aggarwal S">S. Aggarwal</name>
</author>
<author>
<name sortKey="Zhang, J" uniqKey="Zhang J">J. Zhang</name>
</author>
<author>
<name sortKey="Darley Usmar, V M" uniqKey="Darley Usmar V">V.M. Darley-Usmar</name>
</author>
<author>
<name sortKey="Matalon, S" uniqKey="Matalon S">S. Matalon</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Anding, A L" uniqKey="Anding A">A.L. Anding</name>
</author>
<author>
<name sortKey="Baehrecke, E H" uniqKey="Baehrecke E">E.H. Baehrecke</name>
</author>
</analytic>
</biblStruct>
</listBibl>
</div1>
</back>
</TEI>
<pmc article-type="research-article">
<pmc-dir>properties open_access</pmc-dir>
<front>
<journal-meta>
<journal-id journal-id-type="nlm-ta">Cells</journal-id>
<journal-id journal-id-type="iso-abbrev">Cells</journal-id>
<journal-id journal-id-type="publisher-id">cells</journal-id>
<journal-title-group>
<journal-title>Cells</journal-title>
</journal-title-group>
<issn pub-type="epub">2073-4409</issn>
<publisher>
<publisher-name>MDPI</publisher-name>
</publisher>
</journal-meta>
<article-meta>
<article-id pub-id-type="pmid">31947943</article-id>
<article-id pub-id-type="pmc">7016807</article-id>
<article-id pub-id-type="doi">10.3390/cells9010122</article-id>
<article-id pub-id-type="publisher-id">cells-09-00122</article-id>
<article-categories>
<subj-group subj-group-type="heading">
<subject>Article</subject>
</subj-group>
</article-categories>
<title-group>
<article-title>Trehalose Alleviates Crystalline Silica-Induced Pulmonary Fibrosis via Activation of the TFEB-Mediated Autophagy-Lysosomal System in Alveolar Macrophages</article-title>
</title-group>
<contrib-group>
<contrib contrib-type="author">
<name>
<surname>He</surname>
<given-names>Xiu</given-names>
</name>
<xref ref-type="aff" rid="af1-cells-09-00122">1</xref>
<xref ref-type="author-notes" rid="fn1-cells-09-00122"></xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Chen</surname>
<given-names>Shi</given-names>
</name>
<xref ref-type="aff" rid="af2-cells-09-00122">2</xref>
<xref ref-type="author-notes" rid="fn1-cells-09-00122"></xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Li</surname>
<given-names>Chao</given-names>
</name>
<xref ref-type="aff" rid="af1-cells-09-00122">1</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Ban</surname>
<given-names>Jiaqi</given-names>
</name>
<xref ref-type="aff" rid="af1-cells-09-00122">1</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Wei</surname>
<given-names>Yungeng</given-names>
</name>
<xref ref-type="aff" rid="af1-cells-09-00122">1</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>He</surname>
<given-names>Yangyang</given-names>
</name>
<xref ref-type="aff" rid="af1-cells-09-00122">1</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Liu</surname>
<given-names>Fangwei</given-names>
</name>
<xref ref-type="aff" rid="af1-cells-09-00122">1</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Chen</surname>
<given-names>Ying</given-names>
</name>
<xref ref-type="aff" rid="af1-cells-09-00122">1</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Chen</surname>
<given-names>Jie</given-names>
</name>
<xref ref-type="aff" rid="af1-cells-09-00122">1</xref>
<xref rid="c1-cells-09-00122" ref-type="corresp">*</xref>
</contrib>
</contrib-group>
<aff id="af1-cells-09-00122">
<label>1</label>
Division of Pneumoconiosis, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang 110122, China;
<email>xiuhe_cmu@163.com</email>
(X.H.);
<email>lichao@cmu.edu.cn</email>
(C.L.);
<email>17614027841@163.com</email>
(J.B.);
<email>weiyungeng1736@163.com</email>
(Y.W.);
<email>heyang129@sina.com</email>
(Y.H.);
<email>fwliu@cmu.edu.cn</email>
(F.L.);
<email>ychen25@cmu.edu.cn</email>
(Y.C.)</aff>
<aff id="af2-cells-09-00122">
<label>2</label>
School of Medicine, Hunan Normal University, No.36 Lushan Road, Changsha 410013, China;
<email>chenshonest@163.com</email>
</aff>
<author-notes>
<corresp id="c1-cells-09-00122">
<label>*</label>
Correspondence:
<email>jchen@cmu.edu.cn</email>
; Tel.: +86-24-31939079</corresp>
<fn id="fn1-cells-09-00122">
<label></label>
<p>Equal contribution to this study.</p>
</fn>
</author-notes>
<pub-date pub-type="epub">
<day>04</day>
<month>1</month>
<year>2020</year>
</pub-date>
<pub-date pub-type="collection">
<month>1</month>
<year>2020</year>
</pub-date>
<volume>9</volume>
<issue>1</issue>
<elocation-id>122</elocation-id>
<history>
<date date-type="received">
<day>19</day>
<month>11</month>
<year>2019</year>
</date>
<date date-type="accepted">
<day>01</day>
<month>1</month>
<year>2020</year>
</date>
</history>
<permissions>
<copyright-statement>© 2020 by the authors.</copyright-statement>
<copyright-year>2020</copyright-year>
<license license-type="open-access">
<license-p>Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (
<ext-link ext-link-type="uri" xlink:href="http://creativecommons.org/licenses/by/4.0/">http://creativecommons.org/licenses/by/4.0/</ext-link>
).</license-p>
</license>
</permissions>
<abstract>
<p>Silicosis is an occupational lung disease characterized by persistent inflammation and irreversible fibrosis. Crystalline silica (CS) particles are mainly phagocytized by alveolar macrophages (AMs), which trigger apoptosis, inflammation, and pulmonary fibrosis. Previously, we found that autophagy-lysosomal system dysfunction in AMs was involved in CS-induced inflammation and fibrosis. Induction of autophagy and lysosomal biogenesis by transcription factor EB (TFEB) nuclear translocation can rescue fibrotic diseases. However, the role of TFEB in silicosis is unknown. In this study, we found that CS induced TFEB nuclear localization and increased TFEB expression in macrophages both in vivo and in vitro. However, TFEB overexpression or treatment with the TFEB activator trehalose (Tre) alleviated lysosomal dysfunction and enhanced autophagic flux. It also reduced apoptosis, inflammatory cytokine levels, and fibrosis. Both pharmacologically inhibition of autophagy and TFEB knockdown in macrophages significantly abolished the antiapoptotic and anti-inflammatory effects elicited by either TFEB overexpression or Tre treatment. In conclusion, these results uncover a protective role of TFEB-mediated autophagy in silicosis. Our study suggests that restoration of autophagy-lysosomal function by Tre-induced TFEB activation may be a novel strategy for the treatment of silicosis.</p>
</abstract>
<kwd-group>
<kwd>TFEB</kwd>
<kwd>trehalose</kwd>
<kwd>silicosis</kwd>
<kwd>alveolar macrophages</kwd>
<kwd>autophagy</kwd>
<kwd>lysosome</kwd>
</kwd-group>
</article-meta>
</front>
<body>
<sec sec-type="intro" id="sec1-cells-09-00122">
<title>1. Introduction</title>
<p>Silicosis is caused by the inhalation of respirable crystalline silica (CS), which causes persistent inflammation and irreversible fibrosis. Silicosis is a progressive condition that is almost always fatal even when exposure to CS dust has ceased [
<xref rid="B1-cells-09-00122" ref-type="bibr">1</xref>
,
<xref rid="B2-cells-09-00122" ref-type="bibr">2</xref>
,
<xref rid="B3-cells-09-00122" ref-type="bibr">3</xref>
]. It is generally accepted that alveolar macrophages (AMs) are the first and main target cells to contact with CS particles [
<xref rid="B4-cells-09-00122" ref-type="bibr">4</xref>
]. The primary function of resident AMs is to keep the air spaces clear by the removal of foreign substances; however, CS cannot be degraded and eventually causes fibrosis [
<xref rid="B5-cells-09-00122" ref-type="bibr">5</xref>
,
<xref rid="B6-cells-09-00122" ref-type="bibr">6</xref>
]. Apoptosis of AMs appears to play a critical role in silicosis. Apoptotic AMs release their contents, which can aggravate apoptosis and the inflammatory response to induce tissue damage and fibrosis [
<xref rid="B7-cells-09-00122" ref-type="bibr">7</xref>
]. Moreover, apoptotic AMs release ingested CS particles that are re-phagocytosed by healthy AMs, resulting in a cycle of persistent inflammation, and lung tissue damage [
<xref rid="B8-cells-09-00122" ref-type="bibr">8</xref>
,
<xref rid="B9-cells-09-00122" ref-type="bibr">9</xref>
]. </p>
<p>Autophagy is an evolutionarily conserved cellular process that maintains cell homeostasis by disposing of denatured proteins and damaged organelles through a lysosomal degradation pathway [
<xref rid="B10-cells-09-00122" ref-type="bibr">10</xref>
,
<xref rid="B11-cells-09-00122" ref-type="bibr">11</xref>
]. Lysosomes fuse with phagosomes to degrade their contents, which contributes to lysosomal membrane permeabilization (LMP) [
<xref rid="B4-cells-09-00122" ref-type="bibr">4</xref>
,
<xref rid="B12-cells-09-00122" ref-type="bibr">12</xref>
]. Increased lysosome injury is observed in AMs in response to the uptake of CS particles. Previously, we showed that CS-induced lysosome destruction impaired autophagic substrate degradation in the AMs of silicosis patients [
<xref rid="B13-cells-09-00122" ref-type="bibr">13</xref>
]. However, the mechanism by which AM autophagy plays a role in silicosis is still unclear. An increased number of autophagosomes has been observed in the CS-induced damage to macrophages [
<xref rid="B13-cells-09-00122" ref-type="bibr">13</xref>
,
<xref rid="B14-cells-09-00122" ref-type="bibr">14</xref>
,
<xref rid="B15-cells-09-00122" ref-type="bibr">15</xref>
,
<xref rid="B16-cells-09-00122" ref-type="bibr">16</xref>
]. Therefore, restoring the autophagy-lysosomal system function and enhancing the autophagic flux could provide a molecular target to delay CS-induced persistent inflammation and fibrosis. </p>
<p>Transcription factor EB (TFEB) is a master regulator of autophagy-related gene transcription and lysosome biogenesis [
<xref rid="B17-cells-09-00122" ref-type="bibr">17</xref>
,
<xref rid="B18-cells-09-00122" ref-type="bibr">18</xref>
,
<xref rid="B19-cells-09-00122" ref-type="bibr">19</xref>
]. TFEB activation is efficacious against inflammatory and fibrotic diseases [
<xref rid="B20-cells-09-00122" ref-type="bibr">20</xref>
,
<xref rid="B21-cells-09-00122" ref-type="bibr">21</xref>
]. Trehalose (Tre) is an mTOR-independent inducer of autophagy that can improve the clinical symptoms of neurodegenerative disorders in animal models [
<xref rid="B22-cells-09-00122" ref-type="bibr">22</xref>
]. In atherosclerosis, Tre induced macrophage autophagy-lysosomal biogenesis and produced similar effects to TFEB overexpression in macrophages [
<xref rid="B23-cells-09-00122" ref-type="bibr">23</xref>
,
<xref rid="B24-cells-09-00122" ref-type="bibr">24</xref>
]. However, the roles of TFEB and Tre in CS-induced pulmonary inflammation and fibrosis have not been explored. Therefore, in this study, we assessed the role of TFEB in silicosis models and investigated whether Tre could alleviate CS-induced inflammation and fibrosis via the activation of the TFEB-mediated autophagy-lysosomal system.</p>
</sec>
<sec id="sec2-cells-09-00122">
<title>2. Materials and Methods</title>
<sec id="sec2dot1-cells-09-00122">
<title>2.1. Antibodies and Other Reagents</title>
<p>The following antibodies were used for immunofluorescence (IF), immunoblotting (IB), or immunohistochemistry (IHC) in preset study: β-Actin (4967, Cell Signaling Technology [CST], Danvers, MA, USA, 1:1000 for IB); lamin B (12987-1-AP, Proteintech, Philadelphia, PA, USA, 1:1000 for IB); F4/80 (sc-377009, Santa Cruz Biotechnology, Santa Cruz, CA, USA, 1:50 for IF); TFEB (A303-673A-M, Bethyl Laboratories, Montgomery, AL, USA, 1:1000 for IB and 133721-1-AP, Proteintech, Philadelphia, PA, USA, 1:100 for IF, 1:200 for IHC); LC3 (12741, CST, Danvers, MA, USA, 1:1000 for IB and PM036, Medical & Biological Laboratories [MBL], Aichi, Japan, 1:200 for IF); Atg5 (129994, CST, Danvers, MA, USA, 1:1000 for IB); ubiquitin (10201-2-AP, Proteintech, Philadelphia, PA, USA, 1:500 for IB and sc-8017, Santa, Santa Cruz, CA, USA;1:50 for IF); caspase-3 (Cas3) (19677-1-AP, Proteintech, Philadelphia, PA, USA, 1:1000 for IB); BAX (50599-1-lg, Proteintech, Philadelphia, PA, USA, 1:500 for IB), BCL-2 (12789-1-AP, Proteintech, Philadelphia, PA, USA, 1:1000 for IB); cathepsin B (CTSB) (31718, CST, Danvers, MA, USA, 1:1000 for IB); LAMP1 (ab24170, abcam, Cambridge, UK, 1:1000 for IB and 1:200 for IF); collagen I (Col-1) (WL0088, Wanleibio, Liaoning, China, 1:500 for IB and abs131984, Absin Bioscience, Shanghai, China, 1:100 for IHC); fibronectin (Fn) (WL03180, Wanleibio, Liaoning, China, 1:500 for IB and NBP1-91258ss, Novus biological, Littleton, CO, USA, 1:200 for IHC); Beclin 1 (3738S, CST, Danvers, MA, USA, 1:1000 for IB); p62 (ab109012, abcam, Cambridge, UK, 1:10000 for IB); peroxidase-conjugated goat anti-rabbit IgG (H+L) (ZB2301, ZSGB-BIO, Beijing, China, 1:5000 for IB); rhodamine (TRITC)-conjugated goat anti-rabbit IgG (H+L) (ZB0316, ZSGB-BIO, Beijing, China, 1:200 for IF); fluorescein-conjugated goat anti-rabbit IgG (H+L)(ZF0311, ZSGB-BIO, Beijing, China, 1:200 for IF); rhodamine (TRITC)-conjugated goat anti-mouse IgG (H+L) (ZF-0313, ZSGB-BIO, Beijing, China, 1:200 for IF); and Alexa Fluor
<sup>®</sup>
488 AffiniPure Fab Fragment Goat Anti-rabbit IgG (H+L) (111-547-003, Jackson ImmunoResearch, West Grove, PA, USA, 1:100 for IF). </p>
<p>The following reagents were used in this study: LysoTracker Red (C1046, Beyotime, Shanghai, China, 50 nmol/L); acridine orange (A6014, Sigma, Saint Louis, MO, USA, 5 μg/mL); One-Step TUNEL Apoptosis Assay Kit (C1088, Beyotime, Shanghai, China); 3-methyladenine (3MA) (HY-19312, MedChemExpress [MCE], Monmouth Junction, NJ, USA, 0.5 mmol/L); bafilomycin A1 (BAF) (HY-100558, MCE, Monmouth Junction, NJ, USA, 10 nmol/L); Cell Counting Kit-8 (HY-K0301, MCE, Monmouth Junction, NJ., USA); chloroquine (CQ) (C6628, Sigma, Saint Louis, MO, USA, 2 µmol/L); and trehalose (90210, Sigma, Saint Louis, MO, USA, 2 mg/g for animals and T0167, Sigma, Saint Louis, MO, USA, 50 mmol/L for MH-S cells). </p>
</sec>
<sec id="sec2dot2-cells-09-00122">
<title>2.2. Animals and Treatment</title>
<p>Male C57BL/6 mice (18 to 22 g, 6 to 8 weeks) were purchased from SLAC Laboratory Animal Co. Ltd. (Shanghai, China) with National Animal Use License number SYXK-LN2013-0007. All animal protocols were approved by the Animal Care and Use Committee of the China Medical University and conducted in compliance with the National Institutes of Health Guide for Care and Use of Laboratory Animals. All efforts were made to minimize the number of animals used and their suffering. In this study, the mice were randomly divided into the following four treatment groups: (1) Control (Ctrl) group, mice received saline intraperitoneally (i.p.) after intratracheal injection of saline; (2) trehalose (Tre) group, mice received 2 g/kg trehalose in saline i.p. after intratracheal injection of saline; (3) crystalline silica (CS) group, mice received saline i.p. after intratracheal injection of crystalline CS suspended in saline; and (4) crystalline silica plus trehalose (CS + Tre) group, mice received 2 g/kg trehalose i.p. after intratracheal injection of CS suspended in saline. CS particulates (Min-U-Sil 5 ground silica with size distribution of 97% < 5 μm diameter, 80% < 3 μm diameter, and median diameter 1.4 µm) were purchased form the U.S. Silica Company (Frederick, MD, USA). The pretreatment of CS and the establishment of silicosis animal models were performed as previously described [
<xref rid="B25-cells-09-00122" ref-type="bibr">25</xref>
,
<xref rid="B26-cells-09-00122" ref-type="bibr">26</xref>
]. The schematic representation for the in vivo treatment schedule is presented in
<xref ref-type="app" rid="app1-cells-09-00122">Figure S1</xref>
. Mouse lungs were collected 7 or 56 days after CS and Tre administration.</p>
</sec>
<sec id="sec2dot3-cells-09-00122">
<title>2.3. Isolation of Primary Alveolar Macrophages (AMs)</title>
<p>AMs were collected from bronchoalveolar lavage fluid (BALF) as described previously [
<xref rid="B15-cells-09-00122" ref-type="bibr">15</xref>
]. Briefly, the BALF was centrifuged at 4 °C and 1000×
<italic>g</italic>
for 10 min. The supernatant was transferred to a new centrifuge tube for the detection of protein concentration and cytokines. Cells were resuspended in RPMI-medium containing 10% fetal bovine serum (heat-inactivated), 2 mmol/L L-glutamine (Invitrogen, Waltham, MA, USA), and 1000 U/mL penicillin-streptomycin and incubated for 2 h at 37 °C and 5% CO
<sub>2</sub>
. After the incubation, the non-attached cells were discarded, and the adherent AMs were collected and used for analysis. </p>
</sec>
<sec id="sec2dot4-cells-09-00122">
<title>2.4. Cell Culture and Treatment</title>
<p>The mouse AM cell line MH-S (National Infrastructure of Cell Line Resource, Beijing, China) was cultured with RPMI medium supplemented with 10% heat-inactivated fetal calf serum, penicillin (100 U/mL), and streptomycin (100 µg/mL) in a 37 °C incubator and 5% CO
<sub>2</sub>
. For the in vitro experiments, MH-S cells were treated for 12 h with medium containing 50 μg/cm
<sup>2</sup>
CS, 50 mmol/L Tre, or both agents.</p>
</sec>
<sec id="sec2dot5-cells-09-00122">
<title>2.5. Lentiviral Short Hairpin RNA (shRNA) Transfection</title>
<p>The TFEB expression vector and TFEB or negative control lentiviral shRNA constructs were obtained from Hanbio Company (Shanghai, China). MH-S cells were transfected with lentiviral shRNA to knockdown or overexpress TFEB (multiplicity of infection, MOI = 30) according to the manufacturer’s protocols. MH-S cells were transfected with the TFEB lentiviral shRNA and negative control in the same process and dose. The shRNA sequences were as follows: TFEB, 5′- CCAAGAAGGATCTGGACTT-3′ and negative control, 5′-TTCTCCGAACGTGTCACGTAA-3′. The transfection efficiency was determined by immunoblotting (
<xref ref-type="app" rid="app1-cells-09-00122">Figure S2</xref>
). </p>
</sec>
<sec id="sec2dot6-cells-09-00122">
<title>2.6. Cell Viability Assay</title>
<p>MH-S Cell viability was determined using Cell Counting Kit-8 (CCK8). Briefly, 5 × 10
<sup>5</sup>
cells/mL were plated in 96-well plates. The cells were incubated with different concentrations of the autophagy inhibitors BAF, CQ, or 3MA (
<xref ref-type="app" rid="app1-cells-09-00122">Figure S3</xref>
) or Tre (
<xref ref-type="app" rid="app1-cells-09-00122">Figure S4</xref>
). CCK8 solution (10 μL) was added to the treated cells in each well, and the cells were incubated for 1 to 4 h at 37 °C and 5% CO
<sub>2</sub>
. The absorbance of each well was determined using a microplate reader (Tecan, Shanghai, China). </p>
</sec>
<sec id="sec2dot7-cells-09-00122">
<title>2.7. mRFP-GFP-LC3 Transfection</title>
<p>MH-S cells were transfected with adenovirus plasmid mRFP-GFP-LC3 (Hanbio Biotech, Shanghai, China), according to the manufacturer’s protocol. After the indicated treatments, cells were fixed with 4% paraformaldehyde for 5 min, and images captured using laser scanning confocal microscopy (A1R, Nikon, Tokyo, Japan). Because of the acid dissolution property of GFP, the transformation of the autophagosomes to autolysosomes can be observed as the conversion of yellow and red fluorescence in real-time [
<xref rid="B27-cells-09-00122" ref-type="bibr">27</xref>
]. </p>
</sec>
<sec id="sec2dot8-cells-09-00122">
<title>2.8. Lysotracker Red and Acridine Orange Staining</title>
<p>Lysotracker Red and acridine orange staining were used to assess the functional state of lysosomes. The MH-S cells were seeded on coverslips in 24-well plates. After treatment, the cells were incubated in medium containing 50 nmol/L Lysotracker Red or 5 μg/mL acridine orange hydrochloride for 30 min at 37 °C and 5% CO
<sub>2</sub>
[
<xref rid="B28-cells-09-00122" ref-type="bibr">28</xref>
]. The coverslips were then washed three times and observed using fluorescence microscopy (Nikon, Tokyo, Japan). </p>
</sec>
<sec id="sec2dot9-cells-09-00122">
<title>2.9. Enzyme-Linked Immunosorbent Assay (ELISA)</title>
<p>The levels of cytokines IL-6, MCP-1, TNF-α, and IL-1β in the MH-S cell supernatant and BALF were quantified by ELISA (R&D Systems, Minneapolis, MN, USA), according to the manufacturer’s instructions. For the evaluation of IL-1β levels, the cells were pretreated with LPS (25 ng/mL, Sigma, Saint Louis, MO, USA) for 3 h before treatment [
<xref rid="B29-cells-09-00122" ref-type="bibr">29</xref>
]. The absorbances at 450 nm and 570 nm were measured using a microplate reader (Tecan, Shanghai, China).</p>
</sec>
<sec id="sec2dot10-cells-09-00122">
<title>2.10. Immunoblotting</title>
<p>Nuclear and cytoplasmic proteins from mouse lung tissue or treated MH-S cells were extracted using the Nuclear and Cytoplasmic Protein Extraction Kit (P0028, Beyotime, Shanghai, China), according to the manufacturer’s instructions. Protein concentration was measured using the BCA kit (Beyotime, Shanghai, China). An equal volume of methanol and 0.25 volumes of chloroform were used to extract protein from the BALF or cell culture supernatants. Samples were vortexed and centrifuged for 10 min at 20,000×
<italic>g</italic>
. The upper phase was removed, and methanol (500 μL) was added to the interphase. The mixture was centrifuged for 10 min at 20,000×
<italic>g</italic>
, and the protein pellet was dried, resuspended in loading buffer, and boiled for 5 min at 100 °C [
<xref rid="B6-cells-09-00122" ref-type="bibr">6</xref>
,
<xref rid="B30-cells-09-00122" ref-type="bibr">30</xref>
]. The samples were diluted to a concentration of 3 μg/μL. The protein samples (30 μg) were separated on SDS-PAGE gels and then transferred onto PVDF membranes (Millipore, Billerica, MA, Germany). After blocking with 5% defatted dried milk in TBST, the membranes were incubated overnight at 4 °C with primary antibodies against TFEB, BAX, BCL-2, Beclin 1, Atg5, p62, LC3, LAMP1, caspase-3, CTSB, Col-1, Fn, β-actin, or lamin B. Subsequently, the membranes were incubated with horseradish peroxidase-conjugated secondary antibody and rinsed with TBST. The specific proteins were observed using the version C500 Bioanalytical Imaging System (Azure Biosystems, Inc., Dublin, CA, USA). Image J software was used to quantify the density of the protein bands. </p>
</sec>
<sec id="sec2dot11-cells-09-00122">
<title>2.11. Immunofluorescence</title>
<p>The lung sections were washed using phosphate-buffered saline after deparaffinization and rehydration. The treated MH-S cells were fixed in 4% formaldehyde for 30 min at room temperature and permeabilized with 0.2% Triton X-100 for 20 min. The sections and cells were blocked with 5% bovine serum albumin at room temperature. The samples were incubated with primary antibodies against TFEB, LC3, p62, LAMP1, ubiquitin, or F4/80 overnight at 4 °C followed by incubation with secondary antibodies for 2 h at room temperature in the dark. After washing, the cells were mounted with ProLong
<sup>®</sup>
Diamond Antifade Mountant, containing DAPI (ThermoFisher, Waltham, MA, USA). Images were collected by fluorescence microscopy (Nikon, Tokyo, Japan).</p>
</sec>
<sec id="sec2dot12-cells-09-00122">
<title>2.12. Quantitative PCR (qPCR)</title>
<p>Total RNA was extracted from lung tissue or treated cells using Trizol (Takara, Tokyo, Japan), according to the manufacturer’s protocol. Reverse transcription was performed using the Prime Script RT kit (Takara, Japan), and qPCR was conducted using the SYBR Green Master Mix Kit (Takara, Japan). The data were normalized to GAPDH as the endogenous control. Relative expression was calculated using the 2
<sup>−ΔΔCt</sup>
method. The specific primer sequences were as follows: TFEB, 5′-CACAGGTTACCCCGATACC-3′ and 5′-AGGGAGTCATCTAGGAGCATTA-3′; GAPDH, 5′-CAATGTGTCCGTCGTGGATCT-3′ and 5′-GTCCTCAGTGTAGCCCAAGATG-3′.</p>
</sec>
<sec id="sec2dot13-cells-09-00122">
<title>2.13. Histology and Immunohistochemistry</title>
<p>Inflammation and fibrosis were assessed by hematoxylin and eosin (HE) or Masson’s trichrome staining of paraffin sections (5 μm) of lung tissue, according to the manufacturer’s protocol. For immunochemistry, the lung sections were incubated with primary antibodies against Col-1 and Fn overnight at 4 °C. After washing, the sections were stained with HRP-conjugated secondary antibodies, followed by visualization with diaminobenzidine. Fibrosis was scored using Image-Pro Plus version 6.0 software (Media Cybernetics, Rockville, MD, USA). Three different fields within a lung section and three sections per animal (
<italic>n</italic>
= 4 to 5 mice/group) were evaluated to obtain a mean value.</p>
</sec>
<sec id="sec2dot14-cells-09-00122">
<title>2.14. TUNEL Assay</title>
<p>The percentage of apoptotic MH-S cells following treatment was determined using terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling staining (TUNEL), according to the manufacturer’s instructions. The cells were fixed with 4% paraformaldehyde and permeabilized with 0.2% Triton X-100. Images were collected using fluorescence microscopy (Nikon, Japan).</p>
</sec>
<sec id="sec2dot15-cells-09-00122">
<title>2.15. Statistical Analysis</title>
<p>All numerical data are presented as the mean ± standard deviation (SD). Statistical significance was determined using the unpaired two-sided Student’s
<italic>t</italic>
-test (for two groups) or one-way analysis of variance (ANOVA) followed by the Student–Newman–Keuls test (for multiple groups). A value of
<italic>p</italic>
< 0.05 indicated statistical significance. The statistical analyses were conducted using SPSS version 19.0 software (SPSS Inc., Chicago, IL, USA).</p>
</sec>
</sec>
<sec sec-type="results" id="sec3-cells-09-00122">
<title>3. Results</title>
<sec id="sec3dot1-cells-09-00122">
<title>3.1. CS Induces TFEB Nuclear Localization and Increases TFEB Expression In Vivo</title>
<p>TFEB belongs to the MiT-TFE family of basic helix–loop–helix leucine-zipper transcription factors, which plays a vital role in the adaptation of cell homeostasis [
<xref rid="B31-cells-09-00122" ref-type="bibr">31</xref>
]. To explore the role of TFEB in inflammation and fibrosis, we examined TFEB expression in the lungs of CS-treated or control mice on day seven (inflammation stage) or day 56 (fibrosis stage) post CS treatment. As shown in
<xref ref-type="fig" rid="cells-09-00122-f001">Figure 1</xref>
A–D, CS caused the nuclear translocation of TFEB and upregulation of TFEB expression in lung tissues. In particular, TFEB nuclear localization was more evident in alveolar macrophages (AMs) present in silicotic lesions as compared with the control tissue (
<xref ref-type="fig" rid="cells-09-00122-f001">Figure 1</xref>
D). Then, we confirmed nuclear localization and upregulated expression of TFEB in AMs of model mice by immunofluorescence and qPCR (
<xref ref-type="fig" rid="cells-09-00122-f001">Figure 1</xref>
E,F). Thus, the nuclear translocation and increased expression of TFEB in AMs could be involved in CS-induced inflammation and fibrosis.</p>
</sec>
<sec id="sec3dot2-cells-09-00122">
<title>3.2. TFEB Modulates CS-Induced Macrophages Apoptosis and Secretion of Inflammatory Cytokines In Vitro</title>
<p>Because nuclear localization of TFEB was observed in AMs in vivo after CS treatment, we explored the effects of CS exposure on TFEB in vitro. Consistent with the in vivo data, expression of TFEB was upregulated in response to CS, and TFEB protein was localized in the nucleus of MH-S cells (
<xref ref-type="fig" rid="cells-09-00122-f002">Figure 2</xref>
A–C). To further elucidate the role of TFEB in CS-treated macrophages, we established MH-S cell lines with either TFEB knockdown or overexpression. The apoptosis of AMs plays a critical role in the etiology of silicosis. BAX and BCL-2 are two members of the BCL-2 protein family, which are pro-and antiapoptotic proteins, respectively [
<xref rid="B32-cells-09-00122" ref-type="bibr">32</xref>
]. We found that CS treatment reduced BCL-2 levels but augmented BAX levels, leading to an increase apoptosis in AMs. CS treatment also increased the secretion of inflammatory cytokines, including IL-6, MCP-1, TNF-α, and IL-1β. However, TFEB knockdown markedly exacerbated the apoptosis and inflammatory cytokines secretion induced by CS treatment (
<xref ref-type="fig" rid="cells-09-00122-f002">Figure 2</xref>
D–K). In contrast, TFEB overexpression reversed the detrimental effects of CS (
<xref ref-type="fig" rid="cells-09-00122-f002">Figure 2</xref>
L–S). </p>
</sec>
<sec id="sec3dot3-cells-09-00122">
<title>3.3. TFEB Overexpression Abrogates CS-Induced Macrophage Apoptosis and Secretion of Inflammatory Cytokines via Regulation of the Autophagy-Lysosome Pathway</title>
<p>TFEB is a key regulator of the autophagy-lysosome system. Thus, we examined whether the autophagy-lysosome system was involved in the antiapoptotic and anti-inflammatory effect of TFEB overexpression. As shown in
<xref ref-type="fig" rid="cells-09-00122-f003">Figure 3</xref>
A,B, TFEB overexpression stimulated CS-induced upregulation of Atg5 and Beclin 1 in MH-S cells. In contrast, it decreased the CS-induced upregulation of LC3II. These data suggest that TFEB overexpression could promote the production of autophagy-related proteins and facilitate the degradation of autophagic substrates in CS-treated MH-S cells. We also assessed the synthesis and degradation of autophagic substrates after CS treatment using BAF and CQ. We found that the CS-induced increase in the number of autophagosomes occurred due to both autophagy activation and inhibition of cargo degradation (
<xref ref-type="app" rid="app1-cells-09-00122">Figure S5</xref>
). </p>
<p>Lysosomes are normally the degradative compartments for autophagic substrates. However, lysosomal dysfunction leads to the deposition of autophagosomes [
<xref rid="B33-cells-09-00122" ref-type="bibr">33</xref>
]. In this study, TFEB overexpression alleviated the CS-induced reduction in LAMP1 levels and red fluorescence (
<xref ref-type="fig" rid="cells-09-00122-f003">Figure 3</xref>
C–E). Furthermore, TFEB overexpression restored the colocalization of LAMP1 and LC3 that was disrupted by CS (
<xref ref-type="fig" rid="cells-09-00122-f003">Figure 3</xref>
F). These results suggest that TFEB overexpression attenuate the CS-induced inhibition of autophagosome-lysosome fusion. Lysosomal degradation of cargo is a crucial process in autophagic flux. TFEB overexpression decreased the accumulation of p62 and ubiquitinated proteins induced by CS treatment (
<xref ref-type="fig" rid="cells-09-00122-f003">Figure 3</xref>
G–I). Thus, TFEB overexpression could mitigate the inhibition of autophagic substrate degradation caused by CS treatment. To further investigate the role of TFEB in this process, we determined the effect of autophagy inhibitors (BAF, CQ, and 3-MA) on the autophagic flux mediated by TFEB overexpression. The autophagy inhibitors abolished the protective effects of TFEB overexpression on CS-induced apoptosis and inflammatory cytokine release (
<xref ref-type="fig" rid="cells-09-00122-f003">Figure 3</xref>
J–O). These results confirm that TFEB overexpression blocks CS-induced macrophage apoptosis and inflammatory cytokine secretion by regulating the autophagy-lysosome pathway.</p>
</sec>
<sec id="sec3dot4-cells-09-00122">
<title>3.4. Tre Activates TFEB and Affects Autophagy-Associated Proteins in a Silicosis Mouse Model</title>
<p>Tre is an inducer of autophagy-lysosomal biogenesis by an unclear mechanism. It has demonstrated anti-inflammatory effects in many diseases [
<xref rid="B34-cells-09-00122" ref-type="bibr">34</xref>
,
<xref rid="B35-cells-09-00122" ref-type="bibr">35</xref>
,
<xref rid="B36-cells-09-00122" ref-type="bibr">36</xref>
]. In this study, Tre induced TFEB nuclear localization and upregulated TFEB expression in the lungs (
<xref ref-type="fig" rid="cells-09-00122-f004">Figure 4</xref>
A–C) and AMs (
<xref ref-type="fig" rid="cells-09-00122-f004">Figure 4</xref>
D–E) of CS-treated mice. CS exposure caused the upregulation of LC3II, Atg5, and Beclin 1 expression in the lungs of the mice. Tre also induced the upregulation of Atg5 and Beclin 1 levels but downregulated LC3II after CS exposure (
<xref ref-type="fig" rid="cells-09-00122-f004">Figure 4</xref>
F,G). Similar results were observed with primary AMs (
<xref ref-type="fig" rid="cells-09-00122-f004">Figure 4</xref>
H–J). These data suggest that Tre could promote the degradation of autophagic substrates in CS-treated cells through its effects on TFEB nuclear localization and expression.</p>
</sec>
<sec id="sec3dot5-cells-09-00122">
<title>3.5. Tre Relieves CS-Induced Lysosome Damage and Disorder of Autophagic Substrates Degradation In Vivo</title>
<p>Tre modulates lysosomal function to accelerate the degradation of autophagic substrates [
<xref rid="B37-cells-09-00122" ref-type="bibr">37</xref>
,
<xref rid="B38-cells-09-00122" ref-type="bibr">38</xref>
]. In our study, we used LAMP1 and cathepsin B (CTSB) to monitor lysosomal function in the lungs of CS-treated mice, primary AMs, or BALF. We found that Tre reversed the decrease in LAMP1 levels caused by CS treatment in the lungs or primary AMs at 7 or 56 days post CS treatment (
<xref ref-type="fig" rid="cells-09-00122-f005">Figure 5</xref>
A–D). Furthermore, Tre alleviated the CS-induced increases in the CTSB levels in the BALF (
<xref ref-type="app" rid="app1-cells-09-00122">Figure S6A</xref>
). CS also upregulated the expression of ubiquitinated proteins in lung tissue and p62 levels in both lung tissue and primary AMs. Tre attenuated the accumulation of these proteins (
<xref ref-type="fig" rid="cells-09-00122-f005">Figure 5</xref>
E–I). These data suggest that Tre alleviates the CS-induced lysosomal damage and promotes the degradation of autophagic substrates.</p>
</sec>
<sec id="sec3dot6-cells-09-00122">
<title>3.6. Tre Activates TFEB and Relieves CS-Induced Lysosomes Damage and Disorder of Autophagic Substrate Degradation through TFEB Activation In Vitro</title>
<p>Because Tre protected the autophagy-lysosome system in CS-treated mice, we explored the possible mechanisms underlying these protective effects in vitro. CS-induced TFEB nuclear localization and expression were significantly heightened by Tre treatment (
<xref ref-type="fig" rid="cells-09-00122-f006">Figure 6</xref>
A–C). Subsequently, we used mRFP-GFP-LC3 adenovirus-infected MH-S cells to monitor autophagic flux. Because of the acid dissolution property of GFP, the transformation of the autophagosomes into autolysosomes can be visualized as a fluorescence conversion in real time. In the merged images of
<xref ref-type="fig" rid="cells-09-00122-f006">Figure 6</xref>
D, the red and yellow dots represent autolysosomes and autophagosomes, respectively. The counts of both types of fluorescent dots increased significantly after CS treatment, while Tre treatment decreased the number of yellow fluorescent dots. These data suggest that Tre alleviates the CS-induced accumulation of autophagic substrates. </p>
<p>Previous studies showed that Tre could augment lysosomal biogenesis and autophagic flux to ameliorate various disease phenotypes [
<xref rid="B23-cells-09-00122" ref-type="bibr">23</xref>
,
<xref rid="B36-cells-09-00122" ref-type="bibr">36</xref>
,
<xref rid="B39-cells-09-00122" ref-type="bibr">39</xref>
,
<xref rid="B40-cells-09-00122" ref-type="bibr">40</xref>
,
<xref rid="B41-cells-09-00122" ref-type="bibr">41</xref>
]. These effects were accompanied by the activation and nuclear translocation of TFEB. In this study, TFEB knockdown in MH-S cells reversed the protective effects of Tre against CS-induced autophagic flux damage. Tre upregulated Atg5 and Beclin 1 but downregulated LC3II in CS-treated MH-S cells, while TFEB knockdown downregulated the levels of all three proteins and inhibited autophagy (
<xref ref-type="fig" rid="cells-09-00122-f006">Figure 6</xref>
E,F). TFEB knockdown also abolished the ability of Tre to abrogate the effects of CS on LAMP1 and CTSB levels and autophagic flux (
<xref ref-type="fig" rid="cells-09-00122-f006">Figure 6</xref>
G–I and
<xref ref-type="app" rid="app1-cells-09-00122">Figure S6B</xref>
). Although the CS + Tre group further increased the colocalization of LAMP1 and LC3 as compared with the CS group, TFEB knockdown blocked this effect (
<xref ref-type="fig" rid="cells-09-00122-f006">Figure 6</xref>
J). Moreover, TFEB knockdown abolished the ability of Tre to attenuate the accumulation of p62 and ubiquitinated proteins caused by CS. (
<xref ref-type="fig" rid="cells-09-00122-f006">Figure 6</xref>
K–M). Collectively, these data suggest that Tre relieves CS-induced lysosome damage and restores autophagic substrate degradation through the activation of TFEB.</p>
</sec>
<sec id="sec3dot7-cells-09-00122">
<title>3.7. Tre Relieves CS-Induced Apoptosis and Inflammation through TFEB Activation</title>
<p>Autophagy is associated with apoptosis and inflammatory diseases. Moreover, a reduction in the apoptosis and the inflammatory responses can delay the progression of pulmonary fibrosis [
<xref rid="B42-cells-09-00122" ref-type="bibr">42</xref>
,
<xref rid="B43-cells-09-00122" ref-type="bibr">43</xref>
,
<xref rid="B44-cells-09-00122" ref-type="bibr">44</xref>
]. We found that CS treatment downregulated BCL-2 but upregulated BAX both in the lungs and the AMs of CS-treated mice. Tre markedly reduced the CS-induced effects (
<xref ref-type="fig" rid="cells-09-00122-f007">Figure 7</xref>
A–D). Tre also alleviated the CS-induced increase in the Cas3 levels in the BALF (
<xref ref-type="app" rid="app1-cells-09-00122">Figure S6C</xref>
). The results of Elisa (IL-6, MCP-1, TNF-α, and IL-1β) in the BALF and HE in the lungs of mice showed that Tre alleviated CS-induced pulmonary inflammation (
<xref ref-type="fig" rid="cells-09-00122-f007">Figure 7</xref>
E–I). Moreover, Tre markedly reduced the amount of apoptosis induced by CS treatment in MH-S cells, however, TFEB knockdown abrogated this antiapoptotic effect (
<xref ref-type="fig" rid="cells-09-00122-f007">Figure 7</xref>
J–M). TFEB knockdown also neutralized the effects of Tre on CS-induced Cas3 levels (
<xref ref-type="app" rid="app1-cells-09-00122">Figure S6D</xref>
) and inflammatory cytokines (
<xref ref-type="fig" rid="cells-09-00122-f007">Figure 7</xref>
N–Q). These observations demonstrate that Tre could relieve CS-induced apoptosis and inflammation through TFEB activation. </p>
</sec>
<sec id="sec3dot8-cells-09-00122">
<title>3.8. Tre Relieves Pulmonary Fibrosis in Silicosis Model Mice</title>
<p>Based on previous results, we explored the biological effects of Tre on CS-induced pulmonary fibrosis in a silicosis mouse model. We evaluated the effect of Tre on CS-induced lung fibrosis by analyzing the degree of collagen deposition in the lungs of mice by measuring the hydroxyproline (HYP) content (
<xref ref-type="fig" rid="cells-09-00122-f008">Figure 8</xref>
A) and evaluating Masson’s trichrome stained lung sections (
<xref ref-type="fig" rid="cells-09-00122-f008">Figure 8</xref>
F,G). We also measured the levels of Col-1 and Fn (fibrotic markers) in the lungs (
<xref ref-type="fig" rid="cells-09-00122-f008">Figure 8</xref>
B–E). On the basis of these analyses, Tre reduced the levels of collagen deposition and fibrotic markers in the lungs of CS-treated mice at day 56 post CS treatment. Moreover, the body weight of CS-treated mice was regained faster by treatment with Tre as compared with the mice treated with CS alone (
<xref ref-type="app" rid="app1-cells-09-00122">Figure S7</xref>
). Taken together, these data show that Tre could alleviate pulmonary fibrosis in the lungs of CS-treated mice. </p>
</sec>
</sec>
<sec sec-type="discussion" id="sec4-cells-09-00122">
<title>4. Discussion</title>
<p>Silicosis is a progressive and chronic inflammatory lung disease. A reduction in apoptosis and inflammation could effectively delay the progression of fibrogenesis [
<xref rid="B44-cells-09-00122" ref-type="bibr">44</xref>
]. In this study, we demonstrated that CS induced TFEB nuclear localization and upregulated TFEB expression, which could be related to macrophage lysosomal disruption. TFEB overexpression or treatment with the TFEB activator Tre restored lysosomal function, accelerated autophagic substrate degradation, and enhanced autophagic flux in CS-treated AMs in vitro and in vivo. These treatments reduced CS-induced macrophage apoptosis, pulmonary inflammation, and fibrosis. On the basis of these results, we proposed a potential molecular mechanism for the protective effect of Tre against CS-induced pulmonary fibrosis through the regulation of the autophagy-lysosome system in AMs (
<xref ref-type="fig" rid="cells-09-00122-f008">Figure 8</xref>
).</p>
<p>TFEB, a master regulator of the autophagy-lysosomal pathway, is closely associated with inflammation and fibrosis [
<xref rid="B17-cells-09-00122" ref-type="bibr">17</xref>
,
<xref rid="B45-cells-09-00122" ref-type="bibr">45</xref>
]. In resting cells, it is sequestered in the cytoplasm. Upon activation, TFEB is translocated into the nucleus, where it controls the expression of genes that regulate autophagosome formation and cargo degradation [
<xref rid="B46-cells-09-00122" ref-type="bibr">46</xref>
,
<xref rid="B47-cells-09-00122" ref-type="bibr">47</xref>
,
<xref rid="B48-cells-09-00122" ref-type="bibr">48</xref>
]. We found that TFEB is upregulated and translocated to the nucleus in the lungs of CS-treated mice, especially in the AMs (
<xref ref-type="fig" rid="cells-09-00122-f001">Figure 1</xref>
). We studied the role of TFEB in CS-treated macrophages by knocking it down or overexpressing it in MH-S cells. Surprisingly, TFEB knockdown exacerbated CS-induced cell apoptosis and the inflammatory response (
<xref ref-type="fig" rid="cells-09-00122-f002">Figure 2</xref>
D–K). Reports have indicated that AMs engulf particles through scavenger receptors, leading to lysosomal disruption and further TFEB nuclear translocation [
<xref rid="B4-cells-09-00122" ref-type="bibr">4</xref>
,
<xref rid="B31-cells-09-00122" ref-type="bibr">31</xref>
,
<xref rid="B49-cells-09-00122" ref-type="bibr">49</xref>
,
<xref rid="B50-cells-09-00122" ref-type="bibr">50</xref>
]. The nuclear translocation of TFEB in the AMs of mice with silicosis could serve a protective role against CS-induced lysosomal disruption. Conversely, knockout of TFEB dysregulates the innate immune response in LPS-injured macrophages [
<xref rid="B51-cells-09-00122" ref-type="bibr">51</xref>
]. Consistent with our hypothesis, studies in atherosclerosis and liver fibrosis have indicated that increased TFEB expression abrogates macrophage apoptosis and decreases proinflammatory cytokine levels, which reduces atherosclerosis plaque formation or fibrogenesis [
<xref rid="B20-cells-09-00122" ref-type="bibr">20</xref>
,
<xref rid="B24-cells-09-00122" ref-type="bibr">24</xref>
,
<xref rid="B52-cells-09-00122" ref-type="bibr">52</xref>
]. In this study, TFEB activation appeared to effectively alleviate CS-induced damage to AMs.</p>
<p>Tre, a disaccharide of glucose, is synthesized by some bacteria, yeast, fungi, certain plants, and invertebrate animals [
<xref rid="B53-cells-09-00122" ref-type="bibr">53</xref>
]. It is listed as a pharmaceutical reagent by the United States Pharmacopeia—National Formulary and Japanese Pharmacopeia, paving the way for its use in therapeutic products [
<xref rid="B54-cells-09-00122" ref-type="bibr">54</xref>
]. Recent studies showed that Tre could induce TFEB activation and reduce disease burden in a model of neurodegenerative disease [
<xref rid="B55-cells-09-00122" ref-type="bibr">55</xref>
]. We found Tre activated TFEB and restored the function of the autophagy-lysosomal system, in vivo and vitro. These data are consistent with the notion that Tre could induce lysophagy via the TFEB pathway [
<xref rid="B40-cells-09-00122" ref-type="bibr">40</xref>
]. TFEB knockdown counteracted the degradation of autophagic substrates induced by Tre in CS-treated animals (
<xref ref-type="fig" rid="cells-09-00122-f004">Figure 4</xref>
,
<xref ref-type="fig" rid="cells-09-00122-f005">Figure 5</xref>
and
<xref ref-type="fig" rid="cells-09-00122-f006">Figure 6</xref>
). Indeed, TFEB overexpression and Tre treatment improved lysosomal function in CS-treated macrophages. However, the exact mechanism and the role of lysophagy need to be further explored.</p>
<p>Autophagy, a “self-eating” catabolic process, is markedly essential for maintaining cell homeostasis and normal cellular function [
<xref rid="B56-cells-09-00122" ref-type="bibr">56</xref>
,
<xref rid="B57-cells-09-00122" ref-type="bibr">57</xref>
]. Our previous study showed activated autophagy and increased autophagosomes in AMs of silicosis patients and mouse model [
<xref rid="B13-cells-09-00122" ref-type="bibr">13</xref>
,
<xref rid="B15-cells-09-00122" ref-type="bibr">15</xref>
]. Studies reported that inhibition of autophagy in macrophages could relieve CS-induced pulmonary fibrosis [
<xref rid="B58-cells-09-00122" ref-type="bibr">58</xref>
,
<xref rid="B59-cells-09-00122" ref-type="bibr">59</xref>
]. However, Atg5 knockdown in mice showed that impairment of autophagy aggravated CS-induced pulmonary inflammation and fibrosis [
<xref rid="B14-cells-09-00122" ref-type="bibr">14</xref>
,
<xref rid="B15-cells-09-00122" ref-type="bibr">15</xref>
]. The results from genetically modified mice showed that autophagy is vital for maintaining lung homeostasis. Increasing LC3II expression together with enhanced autophagic flux alleviates CS-induced pulmonary fibrosis by promoting autophagy in AMs [
<xref rid="B15-cells-09-00122" ref-type="bibr">15</xref>
]. However, in this study, we found that LC3II expression was decreased in the CS + Tre-treated AMs as compared with the CS-treated alone. We reasoned that Tre might restore lysosomal function that was disrupted by CS particles, enhance the autophagic flux, and promote the degradation of autophagic substrates [
<xref rid="B60-cells-09-00122" ref-type="bibr">60</xref>
]. Indeed, the results with mRFP-GFP-LC3 adenovirus-transfected MH-S cells verified that Tre could enhance autophagic flux and alleviate CS-induced autophagosome accumulation. Previously, our group demonstrated that promoting mitophagy in AMs could alleviate CS-induced tissue injury [
<xref rid="B15-cells-09-00122" ref-type="bibr">15</xref>
]. In this study, we found that Tre could protect lysosomes to alleviate the detrimental effects induced by CS. All these conclusions are based on the premise that autophagic flux was not completely blocked in our experimental systems. A regular autophagic flux is necessary for maintaining homeostasis in cells [
<xref rid="B61-cells-09-00122" ref-type="bibr">61</xref>
].</p>
<p>Lysosomes are acid organelles for degradation at the end of the autophagic flux. Lysosomal defects disturb the degradation of autophagic substrates, leading to the accumulation of autophagosomes [
<xref rid="B62-cells-09-00122" ref-type="bibr">62</xref>
,
<xref rid="B63-cells-09-00122" ref-type="bibr">63</xref>
]. In the AMs from silicosis patients, lysosomal defects can lead to the inhibition of autophagic degradation [
<xref rid="B13-cells-09-00122" ref-type="bibr">13</xref>
]. Engulfed CS in these AMs can destroy the lysosomes, thereby blocking autophagic flux. This blockage could lead to the accumulation of autophagosomes, macrophage apoptosis, and an increased inflammatory response. In this study, we used BAF and CQ to measure autophagosomes synthesis and degradation through changes in LC3-II levels. We found that the elevated numbers of autophagosomes in CS-treated MH-S cells resulted from both the activation of autophagy and inhibition of cargo degradation (
<xref ref-type="app" rid="app1-cells-09-00122">Figure S5</xref>
) [
<xref rid="B64-cells-09-00122" ref-type="bibr">64</xref>
]. Both TFEB overexpression and Tre treatment could improve lysosomal function and accelerate autophagosome degradation. These effects alleviated the detrimental effects induced by CS. Silicosis is closely associated with apoptosis and the release of proinflammatory and profibrotic cytokines by AMs. A reduction in apoptosis and inflammation could effectively delay the progression of pulmonary fibrosis [
<xref rid="B44-cells-09-00122" ref-type="bibr">44</xref>
]. The secretion of cytokines, including IL-1β, IL-6, TNF-α, and MCP-1, plays a certain role in the pathogenesis of pulmonary fibrosis [
<xref rid="B29-cells-09-00122" ref-type="bibr">29</xref>
]. Indeed, silica-induced collagen deposition is almost completely prevented by treatment with an anti-TNF antibody [
<xref rid="B65-cells-09-00122" ref-type="bibr">65</xref>
]. Treatment with Tre effectively abrogates Cl
<sub>2</sub>
- and LPS-induced pulmonary inflammatory cascades, in the lung [
<xref rid="B66-cells-09-00122" ref-type="bibr">66</xref>
,
<xref rid="B67-cells-09-00122" ref-type="bibr">67</xref>
]. In this study, we found that TFEB overexpression or Tre treatment reduced CS-induced apoptosis and inflammation. In contrast, TFEB knockdown reversed these mitigative effects. Tre also effectively alleviated pulmonary fibrosis in the CS-treated mice. On the basis of these results, we reason that Tre exerts anti-inflammatory and antifibrotic effects by restoring lysosomal function and promoting autophagic substrate degradation. </p>
<p>In summary, the findings of this study suggest that autophagy-lysosomal system dysfunction could represent a therapeutic target against CS-induced damage. Moreover, we demonstrated a potential therapeutic strategy (i.e., Tre) that could improve lysosomal function and accelerate autophagosome degradation. This strategy could reduce the apoptosis in AMs and alleviate the inflammatory responses and fibrogenesis through the activation of TFEB-mediated autophagy-lysosome machinery. We showed that both TFEB overexpression and Tre treatment improved lysosomal function in CS-treated MH-S cells. However, understanding the exact mechanism requires further investigation. Selective autophagy of organelles (e.g., mitophagy, lysophagy, and reticulophagy) is critical for the regulation of cellular homeostasis in organisms from yeast to humans [
<xref rid="B68-cells-09-00122" ref-type="bibr">68</xref>
]. Future experiments should focus on the role of selective autophagy and the relationship between mitophagy, lysophagy, and reticulophagy in Tre-treated silicosis or TFEB-overexpressing or silenced mouse models.</p>
</sec>
</body>
<back>
<app-group>
<app id="app1-cells-09-00122">
<title>Supplementary Materials</title>
<p>The following are available online at
<uri xlink:href="https://www.mdpi.com/2073-4409/9/1/122/s1">https://www.mdpi.com/2073-4409/9/1/122/s1</uri>
, Figure S1: Administration method of trehalose in experimental mouse model of silicosis; Figure S2: Transfection efficiency of TFEB knockdown and overexpression lentivirus; Figure S3: Viability of MH-S incubated with different concentrations of BAF, CQ, and 3MA; Figure S4: Effects of CS and/or Tre on cell viabilities in MH-S cells after 12 h treatment; Figure S5: Immunoblotting analysis of LC3II after CS treatment with or without Bafilomycin A1/CQ; Figure S6: Immunoblotting analysis of protein CTSB and Cas3 in BALF or in cell supernatant; Figure S7: The body weights of animals after CS and Tre administration.</p>
<supplementary-material content-type="local-data" id="cells-09-00122-s001">
<media xlink:href="cells-09-00122-s001.pdf">
<caption>
<p>Click here for additional data file.</p>
</caption>
</media>
</supplementary-material>
</app>
</app-group>
<notes>
<title>Author Contributions</title>
<p>Conceptualization, S.C. and J.C.; funding acquisition, S.C.; project administration, X.H., S.C., C.L., J.B., Y.W., and Y.H.; software, X.H.; supervision, J.C.; writing—original draft, X.H., S.C., and C.L.; review and editing of the manuscript, X.H., C.L., F.L., Y.C., and J.C. All authors have read and agreed to the published version of the manuscript.</p>
</notes>
<notes>
<title>Funding</title>
<p>This work was supported by the National Natural Science Foundation of China (no. 81703199). </p>
</notes>
<notes notes-type="COI-statement">
<title>Conflicts of Interest</title>
<p>The authors declared that they have no competing interest exists in this manuscript. </p>
</notes>
<ref-list>
<title>References</title>
<ref id="B1-cells-09-00122">
<label>1.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Leung</surname>
<given-names>C.C.</given-names>
</name>
<name>
<surname>Yu</surname>
<given-names>I.T.S.</given-names>
</name>
<name>
<surname>Chen</surname>
<given-names>W.</given-names>
</name>
</person-group>
<article-title>Silicosis</article-title>
<source>Lancet</source>
<year>2012</year>
<volume>379</volume>
<fpage>2008</fpage>
<lpage>2018</lpage>
<pub-id pub-id-type="doi">10.1016/S0140-6736(12)60235-9</pub-id>
<pub-id pub-id-type="pmid">22534002</pub-id>
</element-citation>
</ref>
<ref id="B2-cells-09-00122">
<label>2.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Li</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>Du</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Lu</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Lu</surname>
<given-names>X.</given-names>
</name>
<name>
<surname>Liu</surname>
<given-names>F.</given-names>
</name>
<name>
<surname>Chen</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Weng</surname>
<given-names>D.</given-names>
</name>
<name>
<surname>Chen</surname>
<given-names>J.</given-names>
</name>
</person-group>
<article-title>Blocking the 4-1BB Pathway Ameliorates Crystalline Silica-induced Lung Inflammation and Fibrosis in Mice</article-title>
<source>Theranostics</source>
<year>2016</year>
<volume>6</volume>
<fpage>2052</fpage>
<lpage>2067</lpage>
<pub-id pub-id-type="doi">10.7150/thno.16180</pub-id>
<pub-id pub-id-type="pmid">27698940</pub-id>
</element-citation>
</ref>
<ref id="B3-cells-09-00122">
<label>3.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<collab>The Lancet Respiratory Medicine</collab>
</person-group>
<article-title>The world is failing on silicosis</article-title>
<source>Lancet Respir. Med.</source>
<year>2019</year>
<volume>7</volume>
<fpage>283</fpage>
<pub-id pub-id-type="doi">10.1016/S2213-2600(19)30078-5</pub-id>
<pub-id pub-id-type="pmid">30872128</pub-id>
</element-citation>
</ref>
<ref id="B4-cells-09-00122">
<label>4.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Hamilton</surname>
<given-names>R.F.</given-names>
<suffix>Jr.</suffix>
</name>
<name>
<surname>Thakur</surname>
<given-names>S.A.</given-names>
</name>
<name>
<surname>Holian</surname>
<given-names>A.</given-names>
</name>
</person-group>
<article-title>Silica binding and toxicity in alveolar macrophages</article-title>
<source>Free Radic. Biol. Med.</source>
<year>2008</year>
<volume>44</volume>
<fpage>1246</fpage>
<lpage>1258</lpage>
<pub-id pub-id-type="doi">10.1016/j.freeradbiomed.2007.12.027</pub-id>
<pub-id pub-id-type="pmid">18226603</pub-id>
</element-citation>
</ref>
<ref id="B5-cells-09-00122">
<label>5.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Hughes</surname>
<given-names>C.S.</given-names>
</name>
<name>
<surname>Colhoun</surname>
<given-names>L.M.</given-names>
</name>
<name>
<surname>Bains</surname>
<given-names>B.K.</given-names>
</name>
<name>
<surname>Kilgour</surname>
<given-names>J.D.</given-names>
</name>
<name>
<surname>Burden</surname>
<given-names>R.E.</given-names>
</name>
<name>
<surname>Burrows</surname>
<given-names>J.F.</given-names>
</name>
<name>
<surname>Lavelle</surname>
<given-names>E.C.</given-names>
</name>
<name>
<surname>Gilmore</surname>
<given-names>B.F.</given-names>
</name>
<name>
<surname>Scott</surname>
<given-names>C.J.</given-names>
</name>
</person-group>
<article-title>Extracellular cathepsin S and intracellular caspase 1 activation are surrogate biomarkers of particulate-induced lysosomal disruption in macrophages</article-title>
<source>Part. Fibre Toxicol.</source>
<year>2015</year>
<volume>13</volume>
<fpage>19</fpage>
<pub-id pub-id-type="doi">10.1186/s12989-016-0129-5</pub-id>
</element-citation>
</ref>
<ref id="B6-cells-09-00122">
<label>6.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Hornung</surname>
<given-names>V.</given-names>
</name>
<name>
<surname>Bauernfeind</surname>
<given-names>F.</given-names>
</name>
<name>
<surname>Halle</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Samstad</surname>
<given-names>E.O.</given-names>
</name>
<name>
<surname>Kono</surname>
<given-names>H.</given-names>
</name>
<name>
<surname>Rock</surname>
<given-names>K.L.</given-names>
</name>
<name>
<surname>Fitzgerald</surname>
<given-names>K.A.</given-names>
</name>
<name>
<surname>Latz</surname>
<given-names>E.</given-names>
</name>
</person-group>
<article-title>Silica crystals and aluminum salts activate the NALP3 inflammasome through phagosomal destabilization</article-title>
<source>Nat. Immunol.</source>
<year>2008</year>
<volume>9</volume>
<fpage>847</fpage>
<lpage>856</lpage>
<pub-id pub-id-type="doi">10.1038/ni.1631</pub-id>
<pub-id pub-id-type="pmid">18604214</pub-id>
</element-citation>
</ref>
<ref id="B7-cells-09-00122">
<label>7.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Yao</surname>
<given-names>S.Q.</given-names>
</name>
<name>
<surname>Rojanasakul</surname>
<given-names>L.W.</given-names>
</name>
<name>
<surname>Chen</surname>
<given-names>Z.Y.</given-names>
</name>
<name>
<surname>Xu</surname>
<given-names>Y.J.</given-names>
</name>
<name>
<surname>Bai</surname>
<given-names>Y.P.</given-names>
</name>
<name>
<surname>Chen</surname>
<given-names>G.</given-names>
</name>
<name>
<surname>Zhang</surname>
<given-names>X.Y.</given-names>
</name>
<name>
<surname>Zhang</surname>
<given-names>C.M.</given-names>
</name>
<name>
<surname>Yu</surname>
<given-names>Y.Q.</given-names>
</name>
<name>
<surname>Shen</surname>
<given-names>F.H.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Fas/FasL pathway-mediated alveolar macrophage apoptosis involved in human silicosis</article-title>
<source>Apoptosis</source>
<year>2011</year>
<volume>16</volume>
<fpage>1195</fpage>
<pub-id pub-id-type="doi">10.1007/s10495-011-0647-4</pub-id>
<pub-id pub-id-type="pmid">21910009</pub-id>
</element-citation>
</ref>
<ref id="B8-cells-09-00122">
<label>8.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Huaux</surname>
<given-names>F.</given-names>
</name>
</person-group>
<article-title>New developments in the understanding of immunology in silicosis</article-title>
<source>Curr. Opin. Allergy Clin. Immunol.</source>
<year>2007</year>
<volume>7</volume>
<fpage>168</fpage>
<lpage>173</lpage>
<pub-id pub-id-type="doi">10.1097/ACI.0b013e32802bf8a5</pub-id>
<pub-id pub-id-type="pmid">17351471</pub-id>
</element-citation>
</ref>
<ref id="B9-cells-09-00122">
<label>9.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Lopes-Pacheco</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Bandeira</surname>
<given-names>E.</given-names>
</name>
<name>
<surname>Morales</surname>
<given-names>M.M.</given-names>
</name>
</person-group>
<article-title>Cell-Based Therapy for Silicosis</article-title>
<source>Stem Cells Int.</source>
<year>2016</year>
<volume>2016</volume>
<fpage>5091838</fpage>
<pub-id pub-id-type="doi">10.1155/2016/5091838</pub-id>
<pub-id pub-id-type="pmid">27066079</pub-id>
</element-citation>
</ref>
<ref id="B10-cells-09-00122">
<label>10.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Mizushima</surname>
<given-names>N.</given-names>
</name>
<name>
<surname>Komatsu</surname>
<given-names>M.</given-names>
</name>
</person-group>
<article-title>Autophagy: Renovation of cells and tissues</article-title>
<source>Cell</source>
<year>2011</year>
<volume>147</volume>
<fpage>728</fpage>
<lpage>741</lpage>
<pub-id pub-id-type="doi">10.1016/j.cell.2011.10.026</pub-id>
<pub-id pub-id-type="pmid">22078875</pub-id>
</element-citation>
</ref>
<ref id="B11-cells-09-00122">
<label>11.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Yang</surname>
<given-names>Z.</given-names>
</name>
<name>
<surname>Klionsky</surname>
<given-names>D.J.</given-names>
</name>
</person-group>
<article-title>Mammalian autophagy: Core molecular machinery and signaling regulation</article-title>
<source>Curr. Opin. Cell Biol.</source>
<year>2010</year>
<volume>22</volume>
<fpage>124</fpage>
<lpage>131</lpage>
<pub-id pub-id-type="doi">10.1016/j.ceb.2009.11.014</pub-id>
<pub-id pub-id-type="pmid">20034776</pub-id>
</element-citation>
</ref>
<ref id="B12-cells-09-00122">
<label>12.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Biswas</surname>
<given-names>R.</given-names>
</name>
<name>
<surname>Trout</surname>
<given-names>K.L.</given-names>
</name>
<name>
<surname>Jessop</surname>
<given-names>F.</given-names>
</name>
<name>
<surname>Harkema</surname>
<given-names>J.R.</given-names>
</name>
<name>
<surname>Holian</surname>
<given-names>A.</given-names>
</name>
</person-group>
<article-title>Imipramine blocks acute silicosis in a mouse model</article-title>
<source>Part. Fibre Toxicol.</source>
<year>2017</year>
<volume>14</volume>
<fpage>36</fpage>
<pub-id pub-id-type="doi">10.1186/s12989-017-0217-1</pub-id>
<pub-id pub-id-type="pmid">28893276</pub-id>
</element-citation>
</ref>
<ref id="B13-cells-09-00122">
<label>13.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Chen</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Yuan</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Yao</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Jin</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Chen</surname>
<given-names>G.</given-names>
</name>
<name>
<surname>Tian</surname>
<given-names>W.</given-names>
</name>
<name>
<surname>Xi</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Xu</surname>
<given-names>Z.</given-names>
</name>
<name>
<surname>Weng</surname>
<given-names>D.</given-names>
</name>
<name>
<surname>Chen</surname>
<given-names>J.</given-names>
</name>
</person-group>
<article-title>Lipopolysaccharides may aggravate apoptosis through accumulation of autophagosomes in alveolar macrophages of human silicosis</article-title>
<source>Autophagy</source>
<year>2015</year>
<volume>11</volume>
<fpage>2346</fpage>
<lpage>2357</lpage>
<pub-id pub-id-type="doi">10.1080/15548627.2015.1109765</pub-id>
<pub-id pub-id-type="pmid">26553601</pub-id>
</element-citation>
</ref>
<ref id="B14-cells-09-00122">
<label>14.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Jessop</surname>
<given-names>F.</given-names>
</name>
<name>
<surname>Hamilton</surname>
<given-names>R.F.</given-names>
</name>
<name>
<surname>Rhoderick</surname>
<given-names>J.F.</given-names>
</name>
<name>
<surname>Shaw</surname>
<given-names>P.K.</given-names>
</name>
<name>
<surname>Holian</surname>
<given-names>A.</given-names>
</name>
</person-group>
<article-title>Autophagy deficiency in macrophages enhances NLRP3 inflammasome activity and chronic lung disease following silica exposure</article-title>
<source>Toxicol. Appl. Pharmacol.</source>
<year>2016</year>
<volume>309</volume>
<fpage>101</fpage>
<lpage>110</lpage>
<pub-id pub-id-type="doi">10.1016/j.taap.2016.08.029</pub-id>
<pub-id pub-id-type="pmid">27594529</pub-id>
</element-citation>
</ref>
<ref id="B15-cells-09-00122">
<label>15.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Du</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Li</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>Lu</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Lei</surname>
<given-names>X.</given-names>
</name>
<name>
<surname>Zhang</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Li</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Liu</surname>
<given-names>F.</given-names>
</name>
<name>
<surname>Chen</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Weng</surname>
<given-names>D.</given-names>
</name>
<name>
<surname>Chen</surname>
<given-names>J.</given-names>
</name>
</person-group>
<article-title>Dioscin Alleviates Crystalline Silica-Induced Pulmonary Inflammation and Fibrosis through Promoting Alveolar Macrophage Autophagy</article-title>
<source>Theranostics</source>
<year>2019</year>
<volume>9</volume>
<fpage>1878</fpage>
<lpage>1892</lpage>
<pub-id pub-id-type="doi">10.7150/thno.29682</pub-id>
<pub-id pub-id-type="pmid">31037145</pub-id>
</element-citation>
</ref>
<ref id="B16-cells-09-00122">
<label>16.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Han</surname>
<given-names>R.</given-names>
</name>
<name>
<surname>Ji</surname>
<given-names>X.</given-names>
</name>
<name>
<surname>Rong</surname>
<given-names>R.</given-names>
</name>
<name>
<surname>Li</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Yao</surname>
<given-names>W.</given-names>
</name>
<name>
<surname>Yuan</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Wu</surname>
<given-names>Q.</given-names>
</name>
<name>
<surname>Yang</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Yan</surname>
<given-names>W.</given-names>
</name>
<name>
<surname>Han</surname>
<given-names>L.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>MiR-449a regulates autophagy to inhibit silica-induced pulmonary fibrosis through targeting Bcl2</article-title>
<source>J. Mol. Med.</source>
<year>2016</year>
<volume>94</volume>
<fpage>1267</fpage>
<lpage>1279</lpage>
<pub-id pub-id-type="doi">10.1007/s00109-016-1441-0</pub-id>
<pub-id pub-id-type="pmid">27351886</pub-id>
</element-citation>
</ref>
<ref id="B17-cells-09-00122">
<label>17.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Napolitano</surname>
<given-names>G.</given-names>
</name>
<name>
<surname>Ballabio</surname>
<given-names>A.</given-names>
</name>
</person-group>
<article-title>TFEB at a glance</article-title>
<source>J. Cell Sci.</source>
<year>2016</year>
<volume>129</volume>
<fpage>2475</fpage>
<lpage>2481</lpage>
<pub-id pub-id-type="doi">10.1242/jcs.146365</pub-id>
<pub-id pub-id-type="pmid">27252382</pub-id>
</element-citation>
</ref>
<ref id="B18-cells-09-00122">
<label>18.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Sardiello</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Palmieri</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>di Ronza</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Medina</surname>
<given-names>D.L.</given-names>
</name>
<name>
<surname>Valenza</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Gennarino</surname>
<given-names>V.A.</given-names>
</name>
<name>
<surname>Di Malta</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>Donaudy</surname>
<given-names>F.</given-names>
</name>
<name>
<surname>Embrione</surname>
<given-names>V.</given-names>
</name>
<name>
<surname>Polishchuk</surname>
<given-names>R.S.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>A gene network regulating lysosomal biogenesis and function</article-title>
<source>Science</source>
<year>2009</year>
<volume>325</volume>
<fpage>473</fpage>
<lpage>477</lpage>
<pub-id pub-id-type="doi">10.1126/science.1174447</pub-id>
<pub-id pub-id-type="pmid">19556463</pub-id>
</element-citation>
</ref>
<ref id="B19-cells-09-00122">
<label>19.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Settembre</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>Di Malta</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>Polito</surname>
<given-names>V.A.</given-names>
</name>
<name>
<surname>Garcia Arencibia</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Vetrini</surname>
<given-names>F.</given-names>
</name>
<name>
<surname>Erdin</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Erdin</surname>
<given-names>S.U.</given-names>
</name>
<name>
<surname>Huynh</surname>
<given-names>T.</given-names>
</name>
<name>
<surname>Medina</surname>
<given-names>D.</given-names>
</name>
<name>
<surname>Colella</surname>
<given-names>P.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>TFEB links autophagy to lysosomal biogenesis</article-title>
<source>Science</source>
<year>2011</year>
<volume>332</volume>
<fpage>1429</fpage>
<lpage>1433</lpage>
<pub-id pub-id-type="doi">10.1126/science.1204592</pub-id>
<pub-id pub-id-type="pmid">21617040</pub-id>
</element-citation>
</ref>
<ref id="B20-cells-09-00122">
<label>20.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Jia</surname>
<given-names>D.</given-names>
</name>
<name>
<surname>Wang</surname>
<given-names>Y.Y.</given-names>
</name>
<name>
<surname>Wang</surname>
<given-names>P.</given-names>
</name>
<name>
<surname>Huang</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Liang</surname>
<given-names>D.Y.</given-names>
</name>
<name>
<surname>Wang</surname>
<given-names>D.</given-names>
</name>
<name>
<surname>Cheng</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>Zhang</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>Guo</surname>
<given-names>L.</given-names>
</name>
<name>
<surname>Liang</surname>
<given-names>P.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>SVIP alleviates CCl4-induced liver fibrosis via activating autophagy and protecting hepatocytes</article-title>
<source>Cell Death Dis.</source>
<year>2019</year>
<volume>10</volume>
<fpage>71</fpage>
<pub-id pub-id-type="doi">10.1038/s41419-019-1311-0</pub-id>
<pub-id pub-id-type="pmid">30683843</pub-id>
</element-citation>
</ref>
<ref id="B21-cells-09-00122">
<label>21.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Kim</surname>
<given-names>S.H.</given-names>
</name>
<name>
<surname>Kim</surname>
<given-names>G.</given-names>
</name>
<name>
<surname>Han</surname>
<given-names>D.H.</given-names>
</name>
<name>
<surname>Lee</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Kim</surname>
<given-names>I.</given-names>
</name>
<name>
<surname>Kim</surname>
<given-names>B.</given-names>
</name>
<name>
<surname>Kim</surname>
<given-names>K.H.</given-names>
</name>
<name>
<surname>Song</surname>
<given-names>Y.M.</given-names>
</name>
<name>
<surname>Yoo</surname>
<given-names>J.E.</given-names>
</name>
<name>
<surname>Wang</surname>
<given-names>H.J.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Ezetimibe ameliorates steatohepatitis via AMP activated protein kinase-TFEB-mediated activation of autophagy and NLRP3 inflammasome inhibition</article-title>
<source>Autophagy</source>
<year>2017</year>
<volume>13</volume>
<fpage>1767</fpage>
<lpage>1781</lpage>
<pub-id pub-id-type="doi">10.1080/15548627.2017.1356977</pub-id>
<pub-id pub-id-type="pmid">28933629</pub-id>
</element-citation>
</ref>
<ref id="B22-cells-09-00122">
<label>22.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Emanuele</surname>
<given-names>E.</given-names>
</name>
</person-group>
<article-title>Can trehalose prevent neurodegeneration? Insights from experimental studies</article-title>
<source>Curr. Drug Targets</source>
<year>2014</year>
<volume>15</volume>
<fpage>551</fpage>
<lpage>557</lpage>
<pub-id pub-id-type="doi">10.2174/1389450115666140225104705</pub-id>
<pub-id pub-id-type="pmid">24568549</pub-id>
</element-citation>
</ref>
<ref id="B23-cells-09-00122">
<label>23.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Evans</surname>
<given-names>T.D.</given-names>
</name>
<name>
<surname>Jeong</surname>
<given-names>S.J.</given-names>
</name>
<name>
<surname>Zhang</surname>
<given-names>X.</given-names>
</name>
<name>
<surname>Sergin</surname>
<given-names>I.</given-names>
</name>
<name>
<surname>Razani</surname>
<given-names>B.</given-names>
</name>
</person-group>
<article-title>TFEB and trehalose drive the macrophage autophagy-lysosome system to protect against atherosclerosis</article-title>
<source>Autophagy</source>
<year>2018</year>
<volume>14</volume>
<fpage>724</fpage>
<lpage>726</lpage>
<pub-id pub-id-type="doi">10.1080/15548627.2018.1434373</pub-id>
<pub-id pub-id-type="pmid">29394113</pub-id>
</element-citation>
</ref>
<ref id="B24-cells-09-00122">
<label>24.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Sergin</surname>
<given-names>I.</given-names>
</name>
<name>
<surname>Evans</surname>
<given-names>T.D.</given-names>
</name>
<name>
<surname>Zhang</surname>
<given-names>X.</given-names>
</name>
<name>
<surname>Bhattacharya</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Stokes</surname>
<given-names>C.J.</given-names>
</name>
<name>
<surname>Song</surname>
<given-names>E.</given-names>
</name>
<name>
<surname>Ali</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Dehestani</surname>
<given-names>B.</given-names>
</name>
<name>
<surname>Holloway</surname>
<given-names>K.B.</given-names>
</name>
<name>
<surname>Micevych</surname>
<given-names>P.S.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Exploiting macrophage autophagy-lysosomal biogenesis as a therapy for atherosclerosis</article-title>
<source>Nat. Commun.</source>
<year>2017</year>
<volume>8</volume>
<fpage>15750</fpage>
<pub-id pub-id-type="doi">10.1038/ncomms15750</pub-id>
<pub-id pub-id-type="pmid">28589926</pub-id>
</element-citation>
</ref>
<ref id="B25-cells-09-00122">
<label>25.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Li</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Li</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>Zhang</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>He</surname>
<given-names>X.</given-names>
</name>
<name>
<surname>Chen</surname>
<given-names>X.</given-names>
</name>
<name>
<surname>Zeng</surname>
<given-names>X.</given-names>
</name>
<name>
<surname>Liu</surname>
<given-names>F.</given-names>
</name>
<name>
<surname>Chen</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Chen</surname>
<given-names>J.</given-names>
</name>
</person-group>
<article-title>Targeting Mechanics-Induced Fibroblast Activation through CD44-RhoA-YAP Pathway Ameliorates Crystalline Silica-Induced Silicosis</article-title>
<source>Theranostics</source>
<year>2019</year>
<volume>9</volume>
<fpage>4993</fpage>
<lpage>5008</lpage>
<pub-id pub-id-type="doi">10.7150/thno.35665</pub-id>
<pub-id pub-id-type="pmid">31410197</pub-id>
</element-citation>
</ref>
<ref id="B26-cells-09-00122">
<label>26.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Li</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>Lu</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Du</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Li</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Zhang</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Liu</surname>
<given-names>F.</given-names>
</name>
<name>
<surname>Chen</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Weng</surname>
<given-names>D.</given-names>
</name>
<name>
<surname>Chen</surname>
<given-names>J.</given-names>
</name>
</person-group>
<article-title>Dioscin Exerts Protective Effects Against Crystalline Silica-induced Pulmonary Fibrosis in Mice</article-title>
<source>Theranostics</source>
<year>2017</year>
<volume>7</volume>
<fpage>4255</fpage>
<lpage>4275</lpage>
<pub-id pub-id-type="doi">10.7150/thno.20270</pub-id>
<pub-id pub-id-type="pmid">29158824</pub-id>
</element-citation>
</ref>
<ref id="B27-cells-09-00122">
<label>27.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Tai</surname>
<given-names>H.</given-names>
</name>
<name>
<surname>Wang</surname>
<given-names>Z.</given-names>
</name>
<name>
<surname>Gong</surname>
<given-names>H.</given-names>
</name>
<name>
<surname>Han</surname>
<given-names>X.</given-names>
</name>
<name>
<surname>Zhou</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Wang</surname>
<given-names>X.</given-names>
</name>
<name>
<surname>Wei</surname>
<given-names>X.</given-names>
</name>
<name>
<surname>Ding</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Huang</surname>
<given-names>N.</given-names>
</name>
<name>
<surname>Qin</surname>
<given-names>J.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Autophagy impairment with lysosomal and mitochondrial dysfunction is an important characteristic of oxidative stress-induced senescence</article-title>
<source>Autophagy</source>
<year>2017</year>
<volume>13</volume>
<fpage>99</fpage>
<lpage>113</lpage>
<pub-id pub-id-type="doi">10.1080/15548627.2016.1247143</pub-id>
<pub-id pub-id-type="pmid">27791464</pub-id>
</element-citation>
</ref>
<ref id="B28-cells-09-00122">
<label>28.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Wang</surname>
<given-names>X.Y.</given-names>
</name>
<name>
<surname>Yang</surname>
<given-names>H.</given-names>
</name>
<name>
<surname>Wang</surname>
<given-names>M.G.</given-names>
</name>
<name>
<surname>Yang</surname>
<given-names>D.B.</given-names>
</name>
<name>
<surname>Wang</surname>
<given-names>Z.Y.</given-names>
</name>
<name>
<surname>Wang</surname>
<given-names>L.</given-names>
</name>
</person-group>
<article-title>Trehalose protects against cadmium-induced cytotoxicity in primary rat proximal tubular cells via inhibiting apoptosis and restoring autophagic flux</article-title>
<source>Cell Death Dis.</source>
<year>2017</year>
<volume>8</volume>
<fpage>e3099</fpage>
<pub-id pub-id-type="doi">10.1038/cddis.2017.475</pub-id>
<pub-id pub-id-type="pmid">29022917</pub-id>
</element-citation>
</ref>
<ref id="B29-cells-09-00122">
<label>29.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Lu</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Li</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>Du</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Chen</surname>
<given-names>X.</given-names>
</name>
<name>
<surname>Zeng</surname>
<given-names>X.</given-names>
</name>
<name>
<surname>Liu</surname>
<given-names>F.</given-names>
</name>
<name>
<surname>Chen</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Chen</surname>
<given-names>J.</given-names>
</name>
</person-group>
<article-title>4-1BB Signaling Promotes Alveolar Macrophages-Mediated Pro-Fibrotic Responses and Crystalline Silica-Induced Pulmonary Fibrosis in Mice</article-title>
<source>Front. Immunol.</source>
<year>2018</year>
<volume>9</volume>
<fpage>1848</fpage>
<pub-id pub-id-type="doi">10.3389/fimmu.2018.01848</pub-id>
<pub-id pub-id-type="pmid">30250465</pub-id>
</element-citation>
</ref>
<ref id="B30-cells-09-00122">
<label>30.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Aflaki</surname>
<given-names>E.</given-names>
</name>
<name>
<surname>Moaven</surname>
<given-names>N.</given-names>
</name>
<name>
<surname>Borger</surname>
<given-names>D.K.</given-names>
</name>
<name>
<surname>Lopez</surname>
<given-names>G.</given-names>
</name>
<name>
<surname>Westbroek</surname>
<given-names>W.</given-names>
</name>
<name>
<surname>Chae</surname>
<given-names>J.J.</given-names>
</name>
<name>
<surname>Marugan</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Patnaik</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Maniwang</surname>
<given-names>E.</given-names>
</name>
<name>
<surname>Gonzalez</surname>
<given-names>A.N.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Lysosomal storage and impaired autophagy lead to inflammasome activation in Gaucher macrophages</article-title>
<source>Aging Cell</source>
<year>2016</year>
<volume>15</volume>
<fpage>77</fpage>
<lpage>88</lpage>
<pub-id pub-id-type="doi">10.1111/acel.12409</pub-id>
<pub-id pub-id-type="pmid">26486234</pub-id>
</element-citation>
</ref>
<ref id="B31-cells-09-00122">
<label>31.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Puertollano</surname>
<given-names>R.</given-names>
</name>
<name>
<surname>Ferguson</surname>
<given-names>S.M.</given-names>
</name>
<name>
<surname>Brugarolas</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Ballabio</surname>
<given-names>A.</given-names>
</name>
</person-group>
<article-title>The complex relationship between TFEB transcription factor phosphorylation and subcellular localization</article-title>
<source>EMBO J.</source>
<year>2018</year>
<volume>37</volume>
<fpage>e98804</fpage>
<pub-id pub-id-type="doi">10.15252/embj.201798804</pub-id>
<pub-id pub-id-type="pmid">29764979</pub-id>
</element-citation>
</ref>
<ref id="B32-cells-09-00122">
<label>32.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Delbridge</surname>
<given-names>A.R.</given-names>
</name>
<name>
<surname>Grabow</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Strasser</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Vaux</surname>
<given-names>D.L.</given-names>
</name>
</person-group>
<article-title>Thirty years of BCL-2: Translating cell death discoveries into novel cancer therapies</article-title>
<source>Nat. Rev. Cancer</source>
<year>2016</year>
<volume>16</volume>
<fpage>99</fpage>
<lpage>109</lpage>
<pub-id pub-id-type="doi">10.1038/nrc.2015.17</pub-id>
<pub-id pub-id-type="pmid">26822577</pub-id>
</element-citation>
</ref>
<ref id="B33-cells-09-00122">
<label>33.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Lie</surname>
<given-names>P.P.</given-names>
</name>
<name>
<surname>Nixon</surname>
<given-names>R.A.</given-names>
</name>
</person-group>
<article-title>Lysosome trafficking and signaling in health and neurodegenerative diseases</article-title>
<source>Neurobiol. Dis.</source>
<year>2019</year>
<volume>122</volume>
<fpage>94</fpage>
<lpage>105</lpage>
<pub-id pub-id-type="doi">10.1016/j.nbd.2018.05.015</pub-id>
<pub-id pub-id-type="pmid">29859318</pub-id>
</element-citation>
</ref>
<ref id="B34-cells-09-00122">
<label>34.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Sahebkar</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Hatamipour</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Tabatabaei</surname>
<given-names>S.A.</given-names>
</name>
</person-group>
<article-title>Trehalose administration attenuates atherosclerosis in rabbits fed a high-fat diet</article-title>
<source>J. Cell. Biochem.</source>
<year>2019</year>
<volume>120</volume>
<fpage>9455</fpage>
<lpage>9459</lpage>
<pub-id pub-id-type="doi">10.1002/jcb.28221</pub-id>
<pub-id pub-id-type="pmid">30506717</pub-id>
</element-citation>
</ref>
<ref id="B35-cells-09-00122">
<label>35.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Khalifeh</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Barreto</surname>
<given-names>G.E.</given-names>
</name>
<name>
<surname>Sahebkar</surname>
<given-names>A.</given-names>
</name>
</person-group>
<article-title>Trehalose as a promising therapeutic candidate for the treatment of Parkinson’s disease</article-title>
<source>Br. J. Pharmacol.</source>
<year>2019</year>
<volume>176</volume>
<fpage>1173</fpage>
<lpage>1189</lpage>
<pub-id pub-id-type="doi">10.1111/bph.14623</pub-id>
<pub-id pub-id-type="pmid">30767205</pub-id>
</element-citation>
</ref>
<ref id="B36-cells-09-00122">
<label>36.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Lotfi</surname>
<given-names>P.</given-names>
</name>
<name>
<surname>Tse</surname>
<given-names>D.Y.</given-names>
</name>
<name>
<surname>Di Ronza</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Seymour</surname>
<given-names>M.L.</given-names>
</name>
<name>
<surname>Martano</surname>
<given-names>G.</given-names>
</name>
<name>
<surname>Cooper</surname>
<given-names>J.D.</given-names>
</name>
<name>
<surname>Pereira</surname>
<given-names>F.A.</given-names>
</name>
<name>
<surname>Passafaro</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Wu</surname>
<given-names>S.M.</given-names>
</name>
<name>
<surname>Sardiello</surname>
<given-names>M.</given-names>
</name>
</person-group>
<article-title>Trehalose reduces retinal degeneration, neuroinflammation and storage burden caused by a lysosomal hydrolase deficiency</article-title>
<source>Autophagy</source>
<year>2018</year>
<volume>14</volume>
<fpage>1419</fpage>
<lpage>1434</lpage>
<pub-id pub-id-type="doi">10.1080/15548627.2018.1474313</pub-id>
<pub-id pub-id-type="pmid">29916295</pub-id>
</element-citation>
</ref>
<ref id="B37-cells-09-00122">
<label>37.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Cortes</surname>
<given-names>C.J.</given-names>
</name>
<name>
<surname>La Spada</surname>
<given-names>A.R.</given-names>
</name>
</person-group>
<article-title>The many faces of autophagy dysfunction in Huntington’s disease: From mechanism to therapy</article-title>
<source>Drug Discov. Today</source>
<year>2014</year>
<volume>19</volume>
<fpage>963</fpage>
<lpage>971</lpage>
<pub-id pub-id-type="doi">10.1016/j.drudis.2014.02.014</pub-id>
<pub-id pub-id-type="pmid">24632005</pub-id>
</element-citation>
</ref>
<ref id="B38-cells-09-00122">
<label>38.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Huynh</surname>
<given-names>K.</given-names>
</name>
</person-group>
<article-title>Atherosclerosis: Trehalose induces macrophage autophagy-lysosomal biogenesis</article-title>
<source>Nat. Rev. Cardiol.</source>
<year>2017</year>
<volume>14</volume>
<fpage>444</fpage>
<pub-id pub-id-type="doi">10.1038/nrcardio.2017.97</pub-id>
</element-citation>
</ref>
<ref id="B39-cells-09-00122">
<label>39.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Sciarretta</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Yee</surname>
<given-names>D.</given-names>
</name>
<name>
<surname>Nagarajan</surname>
<given-names>N.</given-names>
</name>
<name>
<surname>Bianchi</surname>
<given-names>F.</given-names>
</name>
<name>
<surname>Saito</surname>
<given-names>T.</given-names>
</name>
<name>
<surname>Valenti</surname>
<given-names>V.</given-names>
</name>
<name>
<surname>Tong</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Del Re</surname>
<given-names>D.P.</given-names>
</name>
<name>
<surname>Vecchione</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>Schirone</surname>
<given-names>L.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Trehalose-Induced Activation of Autophagy Improves Cardiac Remodeling After Myocardial Infarction</article-title>
<source>J. Am. Coll. Cardiol.</source>
<year>2018</year>
<volume>71</volume>
<fpage>1999</fpage>
<lpage>2010</lpage>
<pub-id pub-id-type="doi">10.1016/j.jacc.2018.02.066</pub-id>
<pub-id pub-id-type="pmid">29724354</pub-id>
</element-citation>
</ref>
<ref id="B40-cells-09-00122">
<label>40.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Rusmini</surname>
<given-names>P.</given-names>
</name>
<name>
<surname>Cortese</surname>
<given-names>K.</given-names>
</name>
<name>
<surname>Crippa</surname>
<given-names>V.</given-names>
</name>
<name>
<surname>Cristofani</surname>
<given-names>R.</given-names>
</name>
<name>
<surname>Cicardi</surname>
<given-names>M.E.</given-names>
</name>
<name>
<surname>Ferrari</surname>
<given-names>V.</given-names>
</name>
<name>
<surname>Vezzoli</surname>
<given-names>G.</given-names>
</name>
<name>
<surname>Tedesco</surname>
<given-names>B.</given-names>
</name>
<name>
<surname>Meroni</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Messi</surname>
<given-names>E.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Trehalose induces autophagy via lysosomal-mediated TFEB activation in models of motoneuron degeneration</article-title>
<source>Autophagy</source>
<year>2019</year>
<volume>15</volume>
<fpage>631</fpage>
<lpage>651</lpage>
<pub-id pub-id-type="doi">10.1080/15548627.2018.1535292</pub-id>
<pub-id pub-id-type="pmid">30335591</pub-id>
</element-citation>
</ref>
<ref id="B41-cells-09-00122">
<label>41.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Wu</surname>
<given-names>H.</given-names>
</name>
<name>
<surname>Chen</surname>
<given-names>H.</given-names>
</name>
<name>
<surname>Zheng</surname>
<given-names>Z.</given-names>
</name>
<name>
<surname>Li</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Ding</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Huang</surname>
<given-names>Z.</given-names>
</name>
<name>
<surname>Jia</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>Shen</surname>
<given-names>Z.</given-names>
</name>
<name>
<surname>Bao</surname>
<given-names>G.</given-names>
</name>
<name>
<surname>Wu</surname>
<given-names>L.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Trehalose promotes the survival of random-pattern skin flaps by TFEB mediated autophagy enhancement</article-title>
<source>Cell Death Dis.</source>
<year>2019</year>
<volume>10</volume>
<fpage>483</fpage>
<pub-id pub-id-type="doi">10.1038/s41419-019-1704-0</pub-id>
<pub-id pub-id-type="pmid">31522191</pub-id>
</element-citation>
</ref>
<ref id="B42-cells-09-00122">
<label>42.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Messer</surname>
<given-names>J.S.</given-names>
</name>
</person-group>
<article-title>The cellular autophagy/apoptosis checkpoint during inflammation</article-title>
<source>Cell. Mol. Life Sci.</source>
<year>2017</year>
<volume>74</volume>
<fpage>1281</fpage>
<lpage>1296</lpage>
<pub-id pub-id-type="doi">10.1007/s00018-016-2403-y</pub-id>
<pub-id pub-id-type="pmid">27837217</pub-id>
</element-citation>
</ref>
<ref id="B43-cells-09-00122">
<label>43.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Mejias-Pena</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Estebanez</surname>
<given-names>B.</given-names>
</name>
<name>
<surname>Rodriguez-Miguelez</surname>
<given-names>P.</given-names>
</name>
<name>
<surname>Fernandez-Gonzalo</surname>
<given-names>R.</given-names>
</name>
<name>
<surname>Almar</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>de Paz</surname>
<given-names>J.A.</given-names>
</name>
<name>
<surname>Gonzalez-Gallego</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Cuevas</surname>
<given-names>M.J.</given-names>
</name>
</person-group>
<article-title>Impact of resistance training on the autophagy-inflammation-apoptosis crosstalk in elderly subjects</article-title>
<source>Aging</source>
<year>2017</year>
<volume>9</volume>
<fpage>408</fpage>
<pub-id pub-id-type="doi">10.18632/aging.101167</pub-id>
<pub-id pub-id-type="pmid">28160545</pub-id>
</element-citation>
</ref>
<ref id="B44-cells-09-00122">
<label>44.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Zhu</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>An</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Zhang</surname>
<given-names>X.</given-names>
</name>
<name>
<surname>Wang</surname>
<given-names>Z.</given-names>
</name>
<name>
<surname>Duan</surname>
<given-names>H.</given-names>
</name>
</person-group>
<article-title>Experimental pulmonary fibrosis was suppressed by microRNA-506 through NF-kappa-mediated apoptosis and inflammation</article-title>
<source>Cell Tissue Res.</source>
<year>2019</year>
<volume>378</volume>
<fpage>255</fpage>
<lpage>265</lpage>
<pub-id pub-id-type="doi">10.1007/s00441-019-03054-2</pub-id>
<pub-id pub-id-type="pmid">31214773</pub-id>
</element-citation>
</ref>
<ref id="B45-cells-09-00122">
<label>45.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Di Malta</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>Cinque</surname>
<given-names>L.</given-names>
</name>
<name>
<surname>Settembre</surname>
<given-names>C.</given-names>
</name>
</person-group>
<article-title>Transcriptional Regulation of Autophagy: Mechanisms and Diseases</article-title>
<source>Front. Cell Dev. Biol.</source>
<year>2019</year>
<volume>7</volume>
<fpage>114</fpage>
<pub-id pub-id-type="doi">10.3389/fcell.2019.00114</pub-id>
<pub-id pub-id-type="pmid">31312633</pub-id>
</element-citation>
</ref>
<ref id="B46-cells-09-00122">
<label>46.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Raben</surname>
<given-names>N.</given-names>
</name>
<name>
<surname>Puertollano</surname>
<given-names>R.</given-names>
</name>
</person-group>
<article-title>TFEB and TFE3: Linking Lysosomes to Cellular Adaptation to Stress</article-title>
<source>Annu. Rev. Cell Dev. Biol.</source>
<year>2016</year>
<volume>32</volume>
<fpage>255</fpage>
<lpage>278</lpage>
<pub-id pub-id-type="doi">10.1146/annurev-cellbio-111315-125407</pub-id>
<pub-id pub-id-type="pmid">27298091</pub-id>
</element-citation>
</ref>
<ref id="B47-cells-09-00122">
<label>47.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Martina</surname>
<given-names>J.A.</given-names>
</name>
<name>
<surname>Diab</surname>
<given-names>H.I.</given-names>
</name>
<name>
<surname>Brady</surname>
<given-names>O.A.</given-names>
</name>
<name>
<surname>Puertollano</surname>
<given-names>R.</given-names>
</name>
</person-group>
<article-title>TFEB and TFE3 are novel components of the integrated stress response</article-title>
<source>EMBO J.</source>
<year>2016</year>
<volume>35</volume>
<fpage>479</fpage>
<lpage>495</lpage>
<pub-id pub-id-type="doi">10.15252/embj.201593428</pub-id>
<pub-id pub-id-type="pmid">26813791</pub-id>
</element-citation>
</ref>
<ref id="B48-cells-09-00122">
<label>48.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Stein</surname>
<given-names>B.L.</given-names>
</name>
<name>
<surname>Wexler</surname>
<given-names>M.J.</given-names>
</name>
</person-group>
<article-title>Preoperative parathyroid localization: A prospective evaluation of ultrasonography and thallium-technetium scintigraphy in hyperparathyroidism</article-title>
<source>J. Can. Chir.</source>
<year>1990</year>
<volume>33</volume>
<fpage>175</fpage>
<lpage>180</lpage>
</element-citation>
</ref>
<ref id="B49-cells-09-00122">
<label>49.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Thibodeau</surname>
<given-names>M.S.</given-names>
</name>
<name>
<surname>Giardina</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>Knecht</surname>
<given-names>D.A.</given-names>
</name>
<name>
<surname>Helble</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Hubbard</surname>
<given-names>A.K.</given-names>
</name>
</person-group>
<article-title>Silica-induced apoptosis in mouse alveolar macrophages is initiated by lysosomal enzyme activity</article-title>
<source>Toxicol. Sci.</source>
<year>2004</year>
<volume>80</volume>
<fpage>34</fpage>
<lpage>48</lpage>
<pub-id pub-id-type="doi">10.1093/toxsci/kfh121</pub-id>
<pub-id pub-id-type="pmid">15056807</pub-id>
</element-citation>
</ref>
<ref id="B50-cells-09-00122">
<label>50.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Settembre</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>Zoncu</surname>
<given-names>R.</given-names>
</name>
<name>
<surname>Medina</surname>
<given-names>D.L.</given-names>
</name>
<name>
<surname>Vetrini</surname>
<given-names>F.</given-names>
</name>
<name>
<surname>Erdin</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Erdin</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Huynh</surname>
<given-names>T.</given-names>
</name>
<name>
<surname>Ferron</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Karsenty</surname>
<given-names>G.</given-names>
</name>
<name>
<surname>Vellard</surname>
<given-names>M.C.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>A lysosome-to-nucleus signalling mechanism senses and regulates the lysosome via mTOR and TFEB</article-title>
<source>EMBO J.</source>
<year>2012</year>
<volume>31</volume>
<fpage>1095</fpage>
<lpage>1108</lpage>
<pub-id pub-id-type="doi">10.1038/emboj.2012.32</pub-id>
<pub-id pub-id-type="pmid">22343943</pub-id>
</element-citation>
</ref>
<ref id="B51-cells-09-00122">
<label>51.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Pastore</surname>
<given-names>N.</given-names>
</name>
<name>
<surname>Brady</surname>
<given-names>O.A.</given-names>
</name>
<name>
<surname>Diab</surname>
<given-names>H.I.</given-names>
</name>
<name>
<surname>Martina</surname>
<given-names>J.A.</given-names>
</name>
<name>
<surname>Sun</surname>
<given-names>L.</given-names>
</name>
<name>
<surname>Huynh</surname>
<given-names>T.</given-names>
</name>
<name>
<surname>Lim</surname>
<given-names>J.A.</given-names>
</name>
<name>
<surname>Zare</surname>
<given-names>H.</given-names>
</name>
<name>
<surname>Raben</surname>
<given-names>N.</given-names>
</name>
<name>
<surname>Ballabio</surname>
<given-names>A.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>TFEB and TFE3 cooperate in the regulation of the innate immune response in activated macrophages</article-title>
<source>Autophagy</source>
<year>2016</year>
<volume>12</volume>
<fpage>1240</fpage>
<lpage>1258</lpage>
<pub-id pub-id-type="doi">10.1080/15548627.2016.1179405</pub-id>
<pub-id pub-id-type="pmid">27171064</pub-id>
</element-citation>
</ref>
<ref id="B52-cells-09-00122">
<label>52.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Emanuel</surname>
<given-names>R.</given-names>
</name>
<name>
<surname>Sergin</surname>
<given-names>I.</given-names>
</name>
<name>
<surname>Bhattacharya</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Turner</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Epelman</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Settembre</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>Diwan</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Ballabio</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Razani</surname>
<given-names>B.</given-names>
</name>
</person-group>
<article-title>Induction of lysosomal biogenesis in atherosclerotic macrophages can rescue lipid-induced lysosomal dysfunction and downstream sequelae</article-title>
<source>Arterioscler. Thromb. Vasc. Biol.</source>
<year>2014</year>
<volume>34</volume>
<fpage>1942</fpage>
<lpage>1952</lpage>
<pub-id pub-id-type="doi">10.1161/ATVBAHA.114.303342</pub-id>
<pub-id pub-id-type="pmid">25060788</pub-id>
</element-citation>
</ref>
<ref id="B53-cells-09-00122">
<label>53.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Arguelles</surname>
<given-names>J.C.</given-names>
</name>
</person-group>
<article-title>Why can’t vertebrates synthesize trehalose?</article-title>
<source>J. Mol. Evol.</source>
<year>2014</year>
<volume>79</volume>
<fpage>111</fpage>
<lpage>116</lpage>
<pub-id pub-id-type="doi">10.1007/s00239-014-9645-9</pub-id>
<pub-id pub-id-type="pmid">25230776</pub-id>
</element-citation>
</ref>
<ref id="B54-cells-09-00122">
<label>54.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Ohtake</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Wang</surname>
<given-names>Y.J.</given-names>
</name>
</person-group>
<article-title>Trehalose: Current use and future applications</article-title>
<source>J. Pharm. Sci.</source>
<year>2011</year>
<volume>100</volume>
<fpage>2020</fpage>
<lpage>2053</lpage>
<pub-id pub-id-type="doi">10.1002/jps.22458</pub-id>
<pub-id pub-id-type="pmid">21337544</pub-id>
</element-citation>
</ref>
<ref id="B55-cells-09-00122">
<label>55.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Palmieri</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Pal</surname>
<given-names>R.</given-names>
</name>
<name>
<surname>Nelvagal</surname>
<given-names>H.R.</given-names>
</name>
<name>
<surname>Lotfi</surname>
<given-names>P.</given-names>
</name>
<name>
<surname>Stinnett</surname>
<given-names>G.R.</given-names>
</name>
<name>
<surname>Seymour</surname>
<given-names>M.L.</given-names>
</name>
<name>
<surname>Chaudhury</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Bajaj</surname>
<given-names>L.</given-names>
</name>
<name>
<surname>Bondar</surname>
<given-names>V.V.</given-names>
</name>
<name>
<surname>Bremner</surname>
<given-names>L.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>mTORC1-independent TFEB activation via Akt inhibition promotes cellular clearance in neurodegenerative storage diseases</article-title>
<source>Nat. Commun.</source>
<year>2017</year>
<volume>8</volume>
<fpage>14338</fpage>
<pub-id pub-id-type="doi">10.1038/ncomms14338</pub-id>
<pub-id pub-id-type="pmid">28165011</pub-id>
</element-citation>
</ref>
<ref id="B56-cells-09-00122">
<label>56.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Mizushima</surname>
<given-names>N.</given-names>
</name>
<name>
<surname>Levine</surname>
<given-names>B.</given-names>
</name>
<name>
<surname>Cuervo</surname>
<given-names>A.M.</given-names>
</name>
<name>
<surname>Klionsky</surname>
<given-names>D.J.</given-names>
</name>
</person-group>
<article-title>Autophagy fights disease through cellular self-digestion</article-title>
<source>Nature</source>
<year>2008</year>
<volume>451</volume>
<fpage>1069</fpage>
<lpage>1075</lpage>
<pub-id pub-id-type="doi">10.1038/nature06639</pub-id>
<pub-id pub-id-type="pmid">18305538</pub-id>
</element-citation>
</ref>
<ref id="B57-cells-09-00122">
<label>57.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Levine</surname>
<given-names>B.</given-names>
</name>
<name>
<surname>Klionsky</surname>
<given-names>D.J.</given-names>
</name>
</person-group>
<article-title>Development by self-digestion: Molecular mechanisms and biological functions of autophagy</article-title>
<source>Dev. Cell</source>
<year>2004</year>
<volume>6</volume>
<fpage>463</fpage>
<lpage>477</lpage>
<pub-id pub-id-type="doi">10.1016/S1534-5807(04)00099-1</pub-id>
<pub-id pub-id-type="pmid">15068787</pub-id>
</element-citation>
</ref>
<ref id="B58-cells-09-00122">
<label>58.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Liu</surname>
<given-names>H.</given-names>
</name>
<name>
<surname>Cheng</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Yang</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Wang</surname>
<given-names>W.</given-names>
</name>
<name>
<surname>Fang</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Zhang</surname>
<given-names>W.</given-names>
</name>
<name>
<surname>Han</surname>
<given-names>B.</given-names>
</name>
<name>
<surname>Zhou</surname>
<given-names>Z.</given-names>
</name>
<name>
<surname>Yao</surname>
<given-names>H.</given-names>
</name>
<name>
<surname>Chao</surname>
<given-names>J.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>BBC3 in macrophages promoted pulmonary fibrosis development through inducing autophagy during silicosis</article-title>
<source>Cell Death Dis.</source>
<year>2017</year>
<volume>8</volume>
<fpage>e2657</fpage>
<pub-id pub-id-type="doi">10.1038/cddis.2017.78</pub-id>
<pub-id pub-id-type="pmid">28277537</pub-id>
</element-citation>
</ref>
<ref id="B59-cells-09-00122">
<label>59.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Liu</surname>
<given-names>H.</given-names>
</name>
<name>
<surname>Fang</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Wang</surname>
<given-names>W.</given-names>
</name>
<name>
<surname>Cheng</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Zhang</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Liao</surname>
<given-names>H.</given-names>
</name>
<name>
<surname>Yao</surname>
<given-names>H.</given-names>
</name>
<name>
<surname>Chao</surname>
<given-names>J.</given-names>
</name>
</person-group>
<article-title>Macrophage-derived MCPIP1 mediates silica-induced pulmonary fibrosis via autophagy</article-title>
<source>Part. Fibre Toxicol.</source>
<year>2016</year>
<volume>13</volume>
<fpage>55</fpage>
<pub-id pub-id-type="doi">10.1186/s12989-016-0167-z</pub-id>
<pub-id pub-id-type="pmid">27782836</pub-id>
</element-citation>
</ref>
<ref id="B60-cells-09-00122">
<label>60.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Hoffmann</surname>
<given-names>A.C.</given-names>
</name>
<name>
<surname>Minakaki</surname>
<given-names>G.</given-names>
</name>
<name>
<surname>Menges</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Salvi</surname>
<given-names>R.</given-names>
</name>
<name>
<surname>Savitskiy</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Kazman</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Vicente Miranda</surname>
<given-names>H.</given-names>
</name>
<name>
<surname>Mielenz</surname>
<given-names>D.</given-names>
</name>
<name>
<surname>Klucken</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Winkler</surname>
<given-names>J.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Extracellular aggregated alpha synuclein primarily triggers lysosomal dysfunction in neural cells prevented by trehalose</article-title>
<source>Sci. Rep.</source>
<year>2019</year>
<volume>9</volume>
<fpage>544</fpage>
<pub-id pub-id-type="doi">10.1038/s41598-018-35811-8</pub-id>
<pub-id pub-id-type="pmid">30679445</pub-id>
</element-citation>
</ref>
<ref id="B61-cells-09-00122">
<label>61.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Galluzzi</surname>
<given-names>L.</given-names>
</name>
<name>
<surname>Bravo-San Pedro</surname>
<given-names>J.M.</given-names>
</name>
<name>
<surname>Levine</surname>
<given-names>B.</given-names>
</name>
<name>
<surname>Green</surname>
<given-names>D.R.</given-names>
</name>
<name>
<surname>Kroemer</surname>
<given-names>G.</given-names>
</name>
</person-group>
<article-title>Pharmacological modulation of autophagy: Therapeutic potential and persisting obstacles</article-title>
<source>Nat. Rev. Drug Discov.</source>
<year>2017</year>
<volume>16</volume>
<fpage>487</fpage>
<lpage>511</lpage>
<pub-id pub-id-type="doi">10.1038/nrd.2017.22</pub-id>
<pub-id pub-id-type="pmid">28529316</pub-id>
</element-citation>
</ref>
<ref id="B62-cells-09-00122">
<label>62.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Yu</surname>
<given-names>L.</given-names>
</name>
<name>
<surname>Chen</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Tooze</surname>
<given-names>S.A.</given-names>
</name>
</person-group>
<article-title>Autophagy pathway: Cellular and molecular mechanisms</article-title>
<source>Autophagy</source>
<year>2018</year>
<volume>14</volume>
<fpage>207</fpage>
<lpage>215</lpage>
<pub-id pub-id-type="doi">10.1080/15548627.2017.1378838</pub-id>
<pub-id pub-id-type="pmid">28933638</pub-id>
</element-citation>
</ref>
<ref id="B63-cells-09-00122">
<label>63.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Fisher</surname>
<given-names>R.A.</given-names>
</name>
<name>
<surname>Gollan</surname>
<given-names>B.</given-names>
</name>
<name>
<surname>Helaine</surname>
<given-names>S.</given-names>
</name>
</person-group>
<article-title>Persistent bacterial infections and persister cells</article-title>
<source>Nat. Rev. Microbiol.</source>
<year>2017</year>
<volume>15</volume>
<fpage>453</fpage>
<lpage>464</lpage>
<pub-id pub-id-type="doi">10.1038/nrmicro.2017.42</pub-id>
<pub-id pub-id-type="pmid">28529326</pub-id>
</element-citation>
</ref>
<ref id="B64-cells-09-00122">
<label>64.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Rubinsztein</surname>
<given-names>D.C.</given-names>
</name>
<name>
<surname>Cuervo</surname>
<given-names>A.M.</given-names>
</name>
<name>
<surname>Ravikumar</surname>
<given-names>B.</given-names>
</name>
<name>
<surname>Sarkar</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Korolchuk</surname>
<given-names>V.</given-names>
</name>
<name>
<surname>Kaushik</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Klionsky</surname>
<given-names>D.J.</given-names>
</name>
</person-group>
<article-title>In search of an “autophagomometer”</article-title>
<source>Autophagy</source>
<year>2009</year>
<volume>5</volume>
<fpage>585</fpage>
<lpage>589</lpage>
<pub-id pub-id-type="doi">10.4161/auto.5.5.8823</pub-id>
<pub-id pub-id-type="pmid">19411822</pub-id>
</element-citation>
</ref>
<ref id="B65-cells-09-00122">
<label>65.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Piguet</surname>
<given-names>P.F.</given-names>
</name>
<name>
<surname>Collart</surname>
<given-names>M.A.</given-names>
</name>
<name>
<surname>Grau</surname>
<given-names>G.E.</given-names>
</name>
<name>
<surname>Sappino</surname>
<given-names>A.P.</given-names>
</name>
<name>
<surname>Vassalli</surname>
<given-names>P.</given-names>
</name>
</person-group>
<article-title>Requirement of tumour necrosis factor for development of silica-induced pulmonary fibrosis</article-title>
<source>Nature</source>
<year>1990</year>
<volume>344</volume>
<fpage>245</fpage>
<lpage>247</lpage>
<pub-id pub-id-type="doi">10.1038/344245a0</pub-id>
<pub-id pub-id-type="pmid">2156165</pub-id>
</element-citation>
</ref>
<ref id="B66-cells-09-00122">
<label>66.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Minutoli</surname>
<given-names>L.</given-names>
</name>
<name>
<surname>Altavilla</surname>
<given-names>D.</given-names>
</name>
<name>
<surname>Bitto</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Polito</surname>
<given-names>F.</given-names>
</name>
<name>
<surname>Bellocco</surname>
<given-names>E.</given-names>
</name>
<name>
<surname>Lagana</surname>
<given-names>G.</given-names>
</name>
<name>
<surname>Fiumara</surname>
<given-names>T.</given-names>
</name>
<name>
<surname>Magazu</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Migliardo</surname>
<given-names>F.</given-names>
</name>
<name>
<surname>Venuti</surname>
<given-names>F.S.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Trehalose: A biophysics approach to modulate the inflammatory response during endotoxic shock</article-title>
<source>Eur. J. Pharmacol.</source>
<year>2008</year>
<volume>589</volume>
<fpage>272</fpage>
<lpage>280</lpage>
<pub-id pub-id-type="doi">10.1016/j.ejphar.2008.04.005</pub-id>
<pub-id pub-id-type="pmid">18555988</pub-id>
</element-citation>
</ref>
<ref id="B67-cells-09-00122">
<label>67.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Jurkuvenaite</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Benavides</surname>
<given-names>G.A.</given-names>
</name>
<name>
<surname>Komarova</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Doran</surname>
<given-names>S.F.</given-names>
</name>
<name>
<surname>Johnson</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Aggarwal</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Zhang</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Darley-Usmar</surname>
<given-names>V.M.</given-names>
</name>
<name>
<surname>Matalon</surname>
<given-names>S.</given-names>
</name>
</person-group>
<article-title>Upregulation of autophagy decreases chlorine-induced mitochondrial injury and lung inflammation</article-title>
<source>Free Radic. Biol. Med.</source>
<year>2015</year>
<volume>85</volume>
<fpage>83</fpage>
<lpage>94</lpage>
<pub-id pub-id-type="doi">10.1016/j.freeradbiomed.2015.03.039</pub-id>
<pub-id pub-id-type="pmid">25881550</pub-id>
</element-citation>
</ref>
<ref id="B68-cells-09-00122">
<label>68.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Anding</surname>
<given-names>A.L.</given-names>
</name>
<name>
<surname>Baehrecke</surname>
<given-names>E.H.</given-names>
</name>
</person-group>
<article-title>Cleaning House: Selective Autophagy of Organelles</article-title>
<source>Dev. Cell</source>
<year>2017</year>
<volume>41</volume>
<fpage>10</fpage>
<lpage>22</lpage>
<pub-id pub-id-type="doi">10.1016/j.devcel.2017.02.016</pub-id>
<pub-id pub-id-type="pmid">28399394</pub-id>
</element-citation>
</ref>
</ref-list>
</back>
<floats-group>
<fig id="cells-09-00122-f001" orientation="portrait" position="float">
<label>Figure 1</label>
<caption>
<p>Crystalline silica (CS) induces transcription factor EB (TFEB) nuclear localization and increases TFEB expression in vivo. (
<bold>A</bold>
,
<bold>B</bold>
) Immunoblotting analysis of TFEB levels in the cytosol or nucleus of lung tissue on day 7 or day 56 post CS instillation; β-actin, loading control for cytosolic proteins; and lamin B, loading control for nuclear proteins (
<italic>n</italic>
= 4). (
<bold>C</bold>
) qPCR analysis of TFEB expression in lung tissue on day 7 or day 56 (
<italic>n</italic>
= 5 to 6). (
<bold>D</bold>
) Immunofluorescence analysis of the distribution of F4/80 and TFEB in lung tissue on day 7 or 56 post saline or CS treatment. Red arrows indicate alveolar macrophages (AMs) in the lungs containing silicotic lesions with predominantly nuclear TFEB staining (scale bar = 50 μm and
<italic>n</italic>
= 5). (
<bold>E</bold>
) Immunofluorescence analysis of TFEB nucleus translocation in primary AMs from bronchoalveolar lavage fluid (BALF) (scale bar = 10 μm and
<italic>n</italic>
= 3 to 4). (
<bold>F</bold>
) qPCR analysis of TFEB expression in primary AMs on day 7 or 56 post CS instillation (
<italic>n</italic>
= 4). Data are presented as the mean ± SD. *,
<italic>p</italic>
< 0.05; **,
<italic>p</italic>
< 0.01; and ##,
<italic>p</italic>
< 0.01.</p>
</caption>
<graphic xlink:href="cells-09-00122-g001"></graphic>
</fig>
<fig id="cells-09-00122-f002" orientation="portrait" position="float">
<label>Figure 2</label>
<caption>
<p>TFEB modulates CS-induced macrophage apoptosis and inflammatory response in vitro. (
<bold>A</bold>
,
<bold>B</bold>
) Immunoblotting analysis of TFEB levels in the cytosol and nucleus of MH-S cells 12 h post saline or CS treatment; β-actin, loading control for cytosolic proteins and lamin B, loading control for nuclear proteins (
<italic>n</italic>
= 4). (
<bold>C</bold>
) qPCR analysis of TFEB expression in MH-S cells 12 h post-saline or CS treatment (
<italic>n</italic>
= 4). (
<bold>D</bold>
,
<bold>E</bold>
) TFEB knockdown deteriorates CS-induced apoptosis and inflammation. Immunoblotting analysis of BAX and BCL-2 protein levels (
<italic>n</italic>
= 3 to 4). (
<bold>F</bold>
,
<bold>G</bold>
) TUNEL (green) and DAPI (blue) staining and ratios of TUNEL-positive apoptotic cells (scale bar = 50 μm and
<italic>n</italic>
= 4). (
<bold>H</bold>
<bold>K</bold>
) ELISA analysis of IL-6, MCP-1, TNF-α, and IL-1β levels in MH-S cell supernatant (
<italic>n</italic>
= 3 to 4). (
<bold>L</bold>
,
<bold>M</bold>
) TFEB overexpression relieves CS-induced apoptosis and inflammation. Immunoblotting analysis of BAX and BCL-2 protein levels (
<italic>n</italic>
= 4). (
<bold>N</bold>
,
<bold>O</bold>
) TUNEL (green) and DAPI (blue) staining and ratios of TUNEL-positive apoptotic cells (scale bar = 50 μm and
<italic>n</italic>
= 4). (
<bold>P</bold>
<bold>S</bold>
) ELISA analysis of IL-6, MCP-1, TNF-α, and IL-1β levels in MH-S cell supernatant (
<italic>n</italic>
= 3 to 4). Data are presented as the mean ± SD. *,
<italic>p</italic>
< 0.05; **,
<italic>p</italic>
< 0.01; and ##,
<italic>p</italic>
< 0.01.</p>
</caption>
<graphic xlink:href="cells-09-00122-g002"></graphic>
</fig>
<fig id="cells-09-00122-f003" orientation="portrait" position="float">
<label>Figure 3</label>
<caption>
<p>TFEB overexpression relieves CS-induced macrophage apoptosis and inflammation via autophagic substrate degradation in vitro. (
<bold>A</bold>
,
<bold>B</bold>
) Immunoblotting analysis of LC3II, Atg5, and Beclin 1 protein levels (
<italic>n</italic>
= 4). (
<bold>C</bold>
,
<bold>D</bold>
) Immunoblotting analysis of LAMP1 protein levels (
<italic>n</italic>
= 3). (
<bold>E</bold>
) Cells were grown on coverslips and treated with CS followed by staining with 50 nmol/L Lysotracker Red or 5 μg/mL acridine orange at 37 °C for 30 min (scale bar = 10 μm and
<italic>n</italic>
= 4). (
<bold>F</bold>
) Immunofluorescence analysis of the colocalization of LAMP1 and LC3 12 h post CS treatment (scale bar = 25 μm and
<italic>n</italic>
= 4). (
<bold>G</bold>
,
<bold>H</bold>
) Immunoblotting analysis of p62 protein levels (
<italic>n</italic>
= 4). (
<bold>I</bold>
) Immunofluorescence analysis of the colocalization of the p62 and ubiquitin 12 h post CS treatment (scale bar = 25 μm and
<italic>n</italic>
= 4).
<bold>(J</bold>
,
<bold>K</bold>
) TUNEL (green) and DAPI (blue) staining and ratios of TUNEL-positive apoptotic cells (scale bar = 50 μm and
<italic>n</italic>
= 4). (
<bold>L</bold>
<bold>O</bold>
) ELISA analysis of IL-6, MCP-1, TNF-α, and IL-1β levels in MH-S cell supernatant (
<italic>n</italic>
= 3 to 4). Data are presented as the mean ± SD. *,
<italic>p</italic>
< 0.05 and **,
<italic>p</italic>
< 0.01.</p>
</caption>
<graphic xlink:href="cells-09-00122-g003"></graphic>
</fig>
<fig id="cells-09-00122-f004" orientation="portrait" position="float">
<label>Figure 4</label>
<caption>
<p>Trehalose (Tre) affects autophagy-associated proteins in the lungs and AMs of CS-treated mice. (
<bold>A</bold>
,
<bold>B</bold>
) Immunoblotting analysis of cytosol and nuclear TFEB levels in lung tissue on day 7 or 56 post CS or Tre treatment; β-actin, loading control for cytosolic proteins; and LaminB, loading control for nuclear proteins (
<italic>n</italic>
= 3 to 4). (
<bold>C</bold>
) qPCR analysis of TFEB levels in lung tissue on day 7 or 56 post-CS or Tre treatment (
<italic>n</italic>
= 4). (
<bold>D</bold>
) Immunofluorescence analysis of TFEB nuclear translocation in primary AMs in BALF on day 7 or 56 (scale bar = 10 μm and
<italic>n</italic>
= 3 to 4). (
<bold>E</bold>
) qPCR analysis of TFEB expression in AMs on day 7 or 56 post CS or Tre treatment (
<italic>n</italic>
= 4). (
<bold>F</bold>
,
<bold>G</bold>
) Immunoblotting analysis of LC3II, Atg5, and Beclin 1 protein levels in lung tissue on day 7 or 56 post CS and Tre treatment (
<italic>n</italic>
= 5 to 6). (
<bold>H</bold>
) Immunofluorescence analysis of LC3 in AMs on day 7 or 56 post CS or Tre treatment (Scale bar = 25 μm and
<italic>n</italic>
= 3). (
<bold>I</bold>
,
<bold>J</bold>
) Immunoblotting analysis of LC3II and Atg5 protein levels in AMs on day 7 or 56 post CS or Tre treatment (
<italic>n</italic>
= 3 to 4). Data are presented as the mean ± SD. *,
<italic>p</italic>
< 0.05; **,
<italic>p</italic>
< 0.01; and ##,
<italic>p</italic>
< 0.01.</p>
</caption>
<graphic xlink:href="cells-09-00122-g004"></graphic>
</fig>
<fig id="cells-09-00122-f005" orientation="portrait" position="float">
<label>Figure 5</label>
<caption>
<p>Tre relieves CS-induced lysosome damage and disorder of autophagic substrate degradation in vivo. (
<bold>A</bold>
,
<bold>B</bold>
) Immunoblotting analysis of LAMP1 protein levels in lung tissue on day 7 or 56 post CS instillation (
<italic>n</italic>
= 5 to 6). (
<bold>C</bold>
,
<bold>D</bold>
) Immunoblotting analysis of LAMP1 protein levels in AMs on day 7 or 56 post CS instillation (
<italic>n</italic>
= 3 to 4). (
<bold>E</bold>
,
<bold>F</bold>
) Immunoblotting analysis of p62 and ubiquitin protein levels in lung tissue on day 7 or 56 post CS instillation (
<italic>n</italic>
= 5 to 6). (
<bold>G</bold>
,
<bold>H</bold>
) Immunoblotting analysis of p62 protein levels in AMs on day 7 or 56 post CS instillation (
<italic>n</italic>
= 3 to 4). (
<bold>I</bold>
) Immunofluorescence analysis of p62 in AMs on day 7 or 56 post CS instillation (scale bar = 25 μm and
<italic>n</italic>
= 3). Data are presented as the mean ± SD. *,
<italic>p</italic>
< 0.05 and **,
<italic>p</italic>
< 0.01.</p>
</caption>
<graphic xlink:href="cells-09-00122-g005"></graphic>
</fig>
<fig id="cells-09-00122-f006" orientation="portrait" position="float">
<label>Figure 6</label>
<caption>
<p>Tre relieves CS-induced lysosome damage and restores autophagic substrate degradation through TFEB activation in vitro. (
<bold>A</bold>
,
<bold>B</bold>
) Immunoblotting analysis of TFEB levels in the cytosol and nucleus of MH-S cells post CS and Tre treatment and β-actin, loading control for cytosolic proteins; LaminB, loading control for nuclear proteins (
<italic>n</italic>
= 3 to 4). (
<bold>C</bold>
) qPCR analysis of TFEB expression in MH-S cells 12 h post-CS and Tre treatment (
<italic>n</italic>
= 3 to 4). (
<bold>D</bold>
) MH-S cells were transfected with the adenovirus mRFP-GFP-LC3 plasmid. LC3 puncta were observed by confocal microscopy (scale bar = 10 μm and
<italic>n</italic>
= 3). (
<bold>E</bold>
,
<bold>F</bold>
) Immunoblotting analysis of LC3II, Atg5, and Beclin 1 protein levels (
<italic>n</italic>
= 3). (
<bold>G</bold>
,
<bold>H</bold>
) Immunoblotting analysis of LAMP1 protein levels in cell lysates (
<italic>n</italic>
= 4). (
<bold>I</bold>
) Cells were grown on coverslips and stained with Lysotracker Red or acridine orange 12 h post CS and Tre treatment (scale bar = 10 μm and
<italic>n</italic>
= 3). (
<bold>J</bold>
) Immunofluorescence analysis of the colocalization of LAMP1 and LC3 12 h post CS and Tre treatment (scale bar = 25 μ and
<italic>n</italic>
= 3). (
<bold>K</bold>
<bold>M</bold>
) Immunoblotting analysis of p62 and immunofluorescence analysis of the colocalization of p62 and ubiquitin 12 h post CS and Tre treatment (scale bar = 25 μm and
<italic>n</italic>
= 3). Data are presented as the mean ± SD. *,
<italic>p</italic>
< 0.05; **,
<italic>p</italic>
< 0.01; #,
<italic>p</italic>
< 0.05; and ##,
<italic>p</italic>
< 0.01.</p>
</caption>
<graphic xlink:href="cells-09-00122-g006"></graphic>
</fig>
<fig id="cells-09-00122-f007" orientation="portrait" position="float">
<label>Figure 7</label>
<caption>
<p>Tre may relieve CS-induced apoptosis and inflammation may through TFEB activation. (
<bold>A</bold>
,
<bold>B</bold>
) Immunoblotting analysis of BAX and BCL-2 protein levels in lungs on day 7 or 56 post CS instillation (
<italic>n</italic>
= 5). (
<bold>C</bold>
,
<bold>D</bold>
) Immunoblotting analysis of BAX and BCL-2 protein levels in AMs on day 7 or 56 post CS instillation (
<italic>n</italic>
= 3). (
<bold>E–H</bold>
) ELISA analysis of IL-6, MCP-1, TNF-α, and IL-1β levels in BALF on day 7 or 56 post CS instillation (
<italic>n</italic>
= 5 to 6). (
<bold>I</bold>
) H&E staining of mouse lungs on day 7 or 56 post-CS instillation (scale bar = 100 μm and
<italic>n</italic>
= 5). (
<bold>J</bold>
,
<bold>K</bold>
) Immunoblotting analysis of BAX and BCL-2 protein levels in MH-S cell lines (
<italic>n</italic>
= 3). (
<bold>L</bold>
,
<bold>M</bold>
) TUNEL (green) and DAPI (blue) staining and ratios of TUNEL-positive apoptotic MH-S cells (scale bar = 50 μm and
<italic>n</italic>
= 3). (
<bold>N</bold>
<bold>Q</bold>
) ELISA analysis of IL-6, MCP-1, TNF-α, and IL-1β levels in MH-S cell supernatant (
<italic>n</italic>
= 3). Data are presented as the mean ± SD. *,
<italic>p</italic>
< 0.05 and **,
<italic>p</italic>
< 0.01.</p>
</caption>
<graphic xlink:href="cells-09-00122-g007"></graphic>
</fig>
<fig id="cells-09-00122-f008" orientation="portrait" position="float">
<label>Figure 8</label>
<caption>
<p>Tre relieves CS-induced pulmonary fibrosis. (
<bold>A</bold>
) HYP content in lung tissue was measured on day 56 post CS instillation (
<italic>n</italic>
= 5). (
<bold>B</bold>
,
<bold>C</bold>
) Immunoblotting analysis of Col-1 and Fn protein levels in mouse lungs on day 56 post CS treatment (
<italic>n</italic>
= 5 to 6). (
<bold>D</bold>
,
<bold>E</bold>
) Immunohistochemical staining and analysis of Col-1 and Fn levels in paraffin sections of mouse lung on day 56 post CS treatment. (
<bold>F</bold>
) Masson’s trichrome staining of mouse lungs on day 56 (scale bar = 100 μm and
<italic>n</italic>
= 5). (
<bold>G</bold>
) Fibrotic score analysis of the lung sections on day 56 post CS instillation. The fibrotic area is presented as a percentage. Data are presented as the mean ± SD. *,
<italic>p</italic>
< 0.05 and **,
<italic>p</italic>
< 0.01. (
<bold>H</bold>
) Illustration of the protective effects of Tre on CS-induced lung inflammation and fibrosis through the activation of the TFEB-dependent autophagy-lysosome machinery. CS impairs lysosomal function, inhibits autophagosome-lysosome fusion, and impairs autophagic substrate degradation. Tre induces TFEB nuclear translocation and improves the function of the autophagy-lysosomal system, leading to decreased apoptosis and secretion of inflammatory factors to alleviate CS-induced lung tissue injury and fibrosis.</p>
</caption>
<graphic xlink:href="cells-09-00122-g008"></graphic>
</fig>
</floats-group>
</pmc>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/ChloroquineV1/Data/Pmc/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000479 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Pmc/Corpus/biblio.hfd -nk 000479 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    ChloroquineV1
   |flux=    Pmc
   |étape=   Corpus
   |type=    RBID
   |clé=     PMC:7016807
   |texte=   Trehalose Alleviates Crystalline Silica-Induced Pulmonary Fibrosis via Activation of the TFEB-Mediated Autophagy-Lysosomal System in Alveolar Macrophages
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Pmc/Corpus/RBID.i   -Sk "pubmed:31947943" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Pmc/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a ChloroquineV1 

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Wed Mar 25 22:43:59 2020. Site generation: Sun Jan 31 12:44:45 2021