Serveur d'exploration Chloroquine

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Long noncoding RNA HOXA-AS2 promotes non-small cell lung cancer progression by regulating miR-520a-3p

Identifieur interne : 000434 ( Pmc/Corpus ); précédent : 000433; suivant : 000435

Long noncoding RNA HOXA-AS2 promotes non-small cell lung cancer progression by regulating miR-520a-3p

Auteurs : Yunpeng Liu ; Xingyu Lin ; Shiyao Zhou ; Peng Zhang ; Guoguang Shao ; Zhiguang Yang

Source :

RBID : PMC:6542977

Abstract

Background: The HOXA cluster antisense RNA 2 (HOXA-AS2) has recently been discovered to be involved in carcinogenesis in multiple cancers. However, the role and underlying mechanism of HOXA-AS2 in non-small cell lung cancer (NSCLC) yet need to be unraveled. Methods: HOXA-AS2 expression in NSCLC tissues and cell lines was detected using quantitative real-time PCR (qRT-PCR). Furthermore, the effects of HOXA-AS2 on NSCLC cell proliferation, apoptosis, migration, and invasion were assessed by MTS, flow cytometry, wound healing and transwell invasion assays, respectively. Starbase2.0 predicted and luciferase reporter and RNA immunoprecipitation (RIP) assays were used to validate the association of HOXA-AS2 and miR-520a-3p in NSCLC cells. Results: Our results revealed that HOXA-AS2 in NSCLC tissues were up-regulated and cell lines, and were associated with poor prognosis and overall survival. Further functional assays demonstrated that HOXA-AS2 knockdown significantly inhibited NSCLC cell proliferation, induced cell apoptosis and suppressed migration and invasion. Starbase2.0 predicted that HOXA-AS2 sponge miR-520a-3p at 3′-UTR, which was confirmed using luciferase reporter and RIP assays. miR-520a-3p expression was inversely correlated with HOXA-AS2 expression in NSCLC tissues. In addition, miR-520a-3p inhibitor attenuated the inhibitory effect of HOXD-AS2-depletion on cell proliferation, migration and invasion of NSCLC cells. Moreover, HOXA-AS2 could regulate HOXD8 and MAP3K2 expression, two known targets of miR-520a-3p in NSCLC. Conclusion: These findings implied that HOXA-AS2 promoted NSCLC progression by regulating miR-520a-3p, suggesting that HOXA-AS2 could serve as a therapeutic target for NSCLC.


Url:
DOI: 10.1042/BSR20190283
PubMed: 31064819
PubMed Central: 6542977

Links to Exploration step

PMC:6542977

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Long noncoding RNA HOXA-AS2 promotes non-small cell lung cancer progression by regulating miR-520a-3p</title>
<author>
<name sortKey="Liu, Yunpeng" sort="Liu, Yunpeng" uniqKey="Liu Y" first="Yunpeng" last="Liu">Yunpeng Liu</name>
<affiliation>
<nlm:aff id="A1">Department of Thoracic Surgery, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Lin, Xingyu" sort="Lin, Xingyu" uniqKey="Lin X" first="Xingyu" last="Lin">Xingyu Lin</name>
<affiliation>
<nlm:aff id="A1">Department of Thoracic Surgery, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Zhou, Shiyao" sort="Zhou, Shiyao" uniqKey="Zhou S" first="Shiyao" last="Zhou">Shiyao Zhou</name>
<affiliation>
<nlm:aff id="A2">Department of Anaesthesia, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Zhang, Peng" sort="Zhang, Peng" uniqKey="Zhang P" first="Peng" last="Zhang">Peng Zhang</name>
<affiliation>
<nlm:aff id="A1">Department of Thoracic Surgery, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Shao, Guoguang" sort="Shao, Guoguang" uniqKey="Shao G" first="Guoguang" last="Shao">Guoguang Shao</name>
<affiliation>
<nlm:aff id="A1">Department of Thoracic Surgery, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Yang, Zhiguang" sort="Yang, Zhiguang" uniqKey="Yang Z" first="Zhiguang" last="Yang">Zhiguang Yang</name>
<affiliation>
<nlm:aff id="A1">Department of Thoracic Surgery, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China</nlm:aff>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PMC</idno>
<idno type="pmid">31064819</idno>
<idno type="pmc">6542977</idno>
<idno type="url">http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6542977</idno>
<idno type="RBID">PMC:6542977</idno>
<idno type="doi">10.1042/BSR20190283</idno>
<date when="2019">2019</date>
<idno type="wicri:Area/Pmc/Corpus">000434</idno>
<idno type="wicri:explorRef" wicri:stream="Pmc" wicri:step="Corpus" wicri:corpus="PMC">000434</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a" type="main">Long noncoding RNA HOXA-AS2 promotes non-small cell lung cancer progression by regulating miR-520a-3p</title>
<author>
<name sortKey="Liu, Yunpeng" sort="Liu, Yunpeng" uniqKey="Liu Y" first="Yunpeng" last="Liu">Yunpeng Liu</name>
<affiliation>
<nlm:aff id="A1">Department of Thoracic Surgery, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Lin, Xingyu" sort="Lin, Xingyu" uniqKey="Lin X" first="Xingyu" last="Lin">Xingyu Lin</name>
<affiliation>
<nlm:aff id="A1">Department of Thoracic Surgery, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Zhou, Shiyao" sort="Zhou, Shiyao" uniqKey="Zhou S" first="Shiyao" last="Zhou">Shiyao Zhou</name>
<affiliation>
<nlm:aff id="A2">Department of Anaesthesia, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Zhang, Peng" sort="Zhang, Peng" uniqKey="Zhang P" first="Peng" last="Zhang">Peng Zhang</name>
<affiliation>
<nlm:aff id="A1">Department of Thoracic Surgery, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Shao, Guoguang" sort="Shao, Guoguang" uniqKey="Shao G" first="Guoguang" last="Shao">Guoguang Shao</name>
<affiliation>
<nlm:aff id="A1">Department of Thoracic Surgery, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Yang, Zhiguang" sort="Yang, Zhiguang" uniqKey="Yang Z" first="Zhiguang" last="Yang">Zhiguang Yang</name>
<affiliation>
<nlm:aff id="A1">Department of Thoracic Surgery, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China</nlm:aff>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Bioscience Reports</title>
<idno type="ISSN">0144-8463</idno>
<idno type="eISSN">1573-4935</idno>
<imprint>
<date when="2019">2019</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<p>
<bold>
<italic>Background:</italic>
</bold>
The HOXA cluster antisense RNA 2 (HOXA-AS2) has recently been discovered to be involved in carcinogenesis in multiple cancers. However, the role and underlying mechanism of HOXA-AS2 in non-small cell lung cancer (NSCLC) yet need to be unraveled.
<bold>
<italic>Methods:</italic>
</bold>
HOXA-AS2 expression in NSCLC tissues and cell lines was detected using quantitative real-time PCR (qRT-PCR). Furthermore, the effects of HOXA-AS2 on NSCLC cell proliferation, apoptosis, migration, and invasion were assessed by MTS, flow cytometry, wound healing and transwell invasion assays, respectively. Starbase2.0 predicted and luciferase reporter and RNA immunoprecipitation (RIP) assays were used to validate the association of HOXA-AS2 and miR-520a-3p in NSCLC cells.
<bold>
<italic>Results:</italic>
</bold>
Our results revealed that HOXA-AS2 in NSCLC tissues were up-regulated and cell lines, and were associated with poor prognosis and overall survival. Further functional assays demonstrated that HOXA-AS2 knockdown significantly inhibited NSCLC cell proliferation, induced cell apoptosis and suppressed migration and invasion. Starbase2.0 predicted that HOXA-AS2 sponge miR-520a-3p at 3′-UTR, which was confirmed using luciferase reporter and RIP assays. miR-520a-3p expression was inversely correlated with HOXA-AS2 expression in NSCLC tissues. In addition, miR-520a-3p inhibitor attenuated the inhibitory effect of HOXD-AS2-depletion on cell proliferation, migration and invasion of NSCLC cells. Moreover, HOXA-AS2 could regulate HOXD8 and MAP3K2 expression, two known targets of miR-520a-3p in NSCLC.
<bold>
<italic>Conclusion:</italic>
</bold>
These findings implied that HOXA-AS2 promoted NSCLC progression by regulating miR-520a-3p, suggesting that HOXA-AS2 could serve as a therapeutic target for NSCLC.</p>
</div>
</front>
<back>
<div1 type="bibliography">
<listBibl>
<biblStruct>
<analytic>
<author>
<name sortKey="Torre, L A" uniqKey="Torre L">L.A. Torre</name>
</author>
<author>
<name sortKey="Bray, F" uniqKey="Bray F">F. Bray</name>
</author>
<author>
<name sortKey="Siegel, R L" uniqKey="Siegel R">R.L. Siegel</name>
</author>
<author>
<name sortKey="Ferlay, J" uniqKey="Ferlay J">J. Ferlay</name>
</author>
<author>
<name sortKey="Lortet Tieulent, J" uniqKey="Lortet Tieulent J">J. Lortet-Tieulent</name>
</author>
<author>
<name sortKey="Jemal, A" uniqKey="Jemal A">A. Jemal</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Laskin, J J" uniqKey="Laskin J">J.J. Laskin</name>
</author>
<author>
<name sortKey="Sandler, A B" uniqKey="Sandler A">A.B. Sandler</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Mornex, F" uniqKey="Mornex F">F. Mornex</name>
</author>
<author>
<name sortKey="Girard, N" uniqKey="Girard N">N. Girard</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ponting, C P" uniqKey="Ponting C">C.P. Ponting</name>
</author>
<author>
<name sortKey="Oliver, P L" uniqKey="Oliver P">P.L. Oliver</name>
</author>
<author>
<name sortKey="Reik, W" uniqKey="Reik W">W. Reik</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Geisler, S" uniqKey="Geisler S">S. Geisler</name>
</author>
<author>
<name sortKey="Coller, J" uniqKey="Coller J">J. Coller</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kornienko, A E" uniqKey="Kornienko A">A.E. Kornienko</name>
</author>
<author>
<name sortKey="Guenzl, P M" uniqKey="Guenzl P">P.M. Guenzl</name>
</author>
<author>
<name sortKey="Barlow, D P" uniqKey="Barlow D">D.P. Barlow</name>
</author>
<author>
<name sortKey="Pauler, F M" uniqKey="Pauler F">F.M. Pauler</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Do, H" uniqKey="Do H">H. Do</name>
</author>
<author>
<name sortKey="Kim, W" uniqKey="Kim W">W. Kim</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Li, Y" uniqKey="Li Y">Y. Li</name>
</author>
<author>
<name sortKey="Egranov, S D" uniqKey="Egranov S">S.D. Egranov</name>
</author>
<author>
<name sortKey="Yang, L" uniqKey="Yang L">L. Yang</name>
</author>
<author>
<name sortKey="Lin, C" uniqKey="Lin C">C. Lin</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Dai, S P" uniqKey="Dai S">S.P. Dai</name>
</author>
<author>
<name sortKey="Jin, J" uniqKey="Jin J">J. Jin</name>
</author>
<author>
<name sortKey="Li, W M" uniqKey="Li W">W.M. Li</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Peng, W" uniqKey="Peng W">W. Peng</name>
</author>
<author>
<name sortKey="Wang, J" uniqKey="Wang J">J. Wang</name>
</author>
<author>
<name sortKey="Shan, B" uniqKey="Shan B">B. Shan</name>
</author>
<author>
<name sortKey="Peng, Z" uniqKey="Peng Z">Z. Peng</name>
</author>
<author>
<name sortKey="Dong, Y" uniqKey="Dong Y">Y. Dong</name>
</author>
<author>
<name sortKey="Shi, W" uniqKey="Shi W">W. Shi</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Wang, J" uniqKey="Wang J">J. Wang</name>
</author>
<author>
<name sortKey="Su, Z" uniqKey="Su Z">Z. Su</name>
</author>
<author>
<name sortKey="Lu, S" uniqKey="Lu S">S. Lu</name>
</author>
<author>
<name sortKey="Fu, W" uniqKey="Fu W">W. Fu</name>
</author>
<author>
<name sortKey="Liu, Z" uniqKey="Liu Z">Z. Liu</name>
</author>
<author>
<name sortKey="Jiang, X" uniqKey="Jiang X">X. Jiang</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Zhu, X" uniqKey="Zhu X">X. Zhu</name>
</author>
<author>
<name sortKey="Liu, Y" uniqKey="Liu Y">Y. Liu</name>
</author>
<author>
<name sortKey="Yu, J" uniqKey="Yu J">J. Yu</name>
</author>
<author>
<name sortKey="Du, J" uniqKey="Du J">J. Du</name>
</author>
<author>
<name sortKey="Guo, R" uniqKey="Guo R">R. Guo</name>
</author>
<author>
<name sortKey="Feng, Y" uniqKey="Feng Y">Y. Feng</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Zhu, X" uniqKey="Zhu X">X. Zhu</name>
</author>
<author>
<name sortKey="Yu, J" uniqKey="Yu J">J. Yu</name>
</author>
<author>
<name sortKey="Du, J" uniqKey="Du J">J. Du</name>
</author>
<author>
<name sortKey="Zhong, G" uniqKey="Zhong G">G. Zhong</name>
</author>
<author>
<name sortKey="Qiao, L" uniqKey="Qiao L">L. Qiao</name>
</author>
<author>
<name sortKey="Lin, J" uniqKey="Lin J">J. Lin</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Zhang, Y" uniqKey="Zhang Y">Y. Zhang</name>
</author>
<author>
<name sortKey="Xu, J" uniqKey="Xu J">J. Xu</name>
</author>
<author>
<name sortKey="Zhang, S" uniqKey="Zhang S">S. Zhang</name>
</author>
<author>
<name sortKey="An, J" uniqKey="An J">J. An</name>
</author>
<author>
<name sortKey="Zhang, J" uniqKey="Zhang J">J. Zhang</name>
</author>
<author>
<name sortKey="Huang, J" uniqKey="Huang J">J. Huang</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Wang, F" uniqKey="Wang F">F. Wang</name>
</author>
<author>
<name sortKey="Wu, D" uniqKey="Wu D">D. Wu</name>
</author>
<author>
<name sortKey="Chen, J" uniqKey="Chen J">J. Chen</name>
</author>
<author>
<name sortKey="Chen, S" uniqKey="Chen S">S. Chen</name>
</author>
<author>
<name sortKey="He, F" uniqKey="He F">F. He</name>
</author>
<author>
<name sortKey="Fu, H" uniqKey="Fu H">H. Fu</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Xia, F" uniqKey="Xia F">F. Xia</name>
</author>
<author>
<name sortKey="Chen, Y" uniqKey="Chen Y">Y. Chen</name>
</author>
<author>
<name sortKey="Jiang, B" uniqKey="Jiang B">B. Jiang</name>
</author>
<author>
<name sortKey="Du, X" uniqKey="Du X">X. Du</name>
</author>
<author>
<name sortKey="Peng, Y" uniqKey="Peng Y">Y. Peng</name>
</author>
<author>
<name sortKey="Wang, W" uniqKey="Wang W">W. Wang</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Wang, Y" uniqKey="Wang Y">Y. Wang</name>
</author>
<author>
<name sortKey="Zhang, R" uniqKey="Zhang R">R. Zhang</name>
</author>
<author>
<name sortKey="Cheng, G" uniqKey="Cheng G">G. Cheng</name>
</author>
<author>
<name sortKey="Xu, R" uniqKey="Xu R">R. Xu</name>
</author>
<author>
<name sortKey="Han, X" uniqKey="Han X">X. Han</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Lian, Y" uniqKey="Lian Y">Y. Lian</name>
</author>
<author>
<name sortKey="Li, Z" uniqKey="Li Z">Z. Li</name>
</author>
<author>
<name sortKey="Fan, Y" uniqKey="Fan Y">Y. Fan</name>
</author>
<author>
<name sortKey="Huang, Q" uniqKey="Huang Q">Q. Huang</name>
</author>
<author>
<name sortKey="Chen, J" uniqKey="Chen J">J. Chen</name>
</author>
<author>
<name sortKey="Liu, W" uniqKey="Liu W">W. Liu</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Tong, G" uniqKey="Tong G">G. Tong</name>
</author>
<author>
<name sortKey="Wu, X" uniqKey="Wu X">X. Wu</name>
</author>
<author>
<name sortKey="Cheng, B" uniqKey="Cheng B">B. Cheng</name>
</author>
<author>
<name sortKey="Li, L" uniqKey="Li L">L. Li</name>
</author>
<author>
<name sortKey="Li, X" uniqKey="Li X">X. Li</name>
</author>
<author>
<name sortKey="Li, Z" uniqKey="Li Z">Z. Li</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Fang, Y" uniqKey="Fang Y">Y. Fang</name>
</author>
<author>
<name sortKey="Wang, J" uniqKey="Wang J">J. Wang</name>
</author>
<author>
<name sortKey="Wu, F" uniqKey="Wu F">F. Wu</name>
</author>
<author>
<name sortKey="Song, Y" uniqKey="Song Y">Y. Song</name>
</author>
<author>
<name sortKey="Zhao, S" uniqKey="Zhao S">S. Zhao</name>
</author>
<author>
<name sortKey="Zhang, Q" uniqKey="Zhang Q">Q. Zhang</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Xie, M" uniqKey="Xie M">M. Xie</name>
</author>
<author>
<name sortKey="Sun, M" uniqKey="Sun M">M. Sun</name>
</author>
<author>
<name sortKey="Zhu, Y N" uniqKey="Zhu Y">Y.N. Zhu</name>
</author>
<author>
<name sortKey="Xia, R" uniqKey="Xia R">R. Xia</name>
</author>
<author>
<name sortKey="Liu, Y W" uniqKey="Liu Y">Y.W. Liu</name>
</author>
<author>
<name sortKey="Ding, J" uniqKey="Ding J">J. Ding</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Du, Z" uniqKey="Du Z">Z. Du</name>
</author>
<author>
<name sortKey="Sun, T" uniqKey="Sun T">T. Sun</name>
</author>
<author>
<name sortKey="Hacisuleyman, E" uniqKey="Hacisuleyman E">E. Hacisuleyman</name>
</author>
<author>
<name sortKey="Fei, T" uniqKey="Fei T">T. Fei</name>
</author>
<author>
<name sortKey="Wang, X" uniqKey="Wang X">X. Wang</name>
</author>
<author>
<name sortKey="Brown, M" uniqKey="Brown M">M. Brown</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Wei, D M" uniqKey="Wei D">D.M. Wei</name>
</author>
<author>
<name sortKey="Jiang, M T" uniqKey="Jiang M">M.T. Jiang</name>
</author>
<author>
<name sortKey="Lin, P" uniqKey="Lin P">P. Lin</name>
</author>
<author>
<name sortKey="Yang, H" uniqKey="Yang H">H. Yang</name>
</author>
<author>
<name sortKey="Dang, Y W" uniqKey="Dang Y">Y.W. Dang</name>
</author>
<author>
<name sortKey="Yu, Q" uniqKey="Yu Q">Q. Yu</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Liu, Y" uniqKey="Liu Y">Y. Liu</name>
</author>
<author>
<name sortKey="Miao, L" uniqKey="Miao L">L. Miao</name>
</author>
<author>
<name sortKey="Ni, R" uniqKey="Ni R">R. Ni</name>
</author>
<author>
<name sortKey="Zhang, H" uniqKey="Zhang H">H. Zhang</name>
</author>
<author>
<name sortKey="Li, L" uniqKey="Li L">L. Li</name>
</author>
<author>
<name sortKey="Wang, X" uniqKey="Wang X">X. Wang</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Yu, J" uniqKey="Yu J">J. Yu</name>
</author>
<author>
<name sortKey="Tan, Q" uniqKey="Tan Q">Q. Tan</name>
</author>
<author>
<name sortKey="Deng, B" uniqKey="Deng B">B. Deng</name>
</author>
<author>
<name sortKey="Fang, C" uniqKey="Fang C">C. Fang</name>
</author>
<author>
<name sortKey="Qi, D" uniqKey="Qi D">D. Qi</name>
</author>
<author>
<name sortKey="Wang, R" uniqKey="Wang R">R. Wang</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Zhang, C" uniqKey="Zhang C">C. Zhang</name>
</author>
<author>
<name sortKey="Su, C" uniqKey="Su C">C. Su</name>
</author>
<author>
<name sortKey="Song, Q" uniqKey="Song Q">Q. Song</name>
</author>
<author>
<name sortKey="Dong, F" uniqKey="Dong F">F. Dong</name>
</author>
<author>
<name sortKey="Yu, S" uniqKey="Yu S">S. Yu</name>
</author>
<author>
<name sortKey="Huo, J" uniqKey="Huo J">J. Huo</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Liu, Y Y" uniqKey="Liu Y">Y.Y. Liu</name>
</author>
<author>
<name sortKey="Li, B" uniqKey="Li B">B. Li</name>
</author>
<author>
<name sortKey="Guo, H" uniqKey="Guo H">H. Guo</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Jing, H" uniqKey="Jing H">H. Jing</name>
</author>
<author>
<name sortKey="Xia, H" uniqKey="Xia H">H. Xia</name>
</author>
<author>
<name sortKey="Qian, M" uniqKey="Qian M">M. Qian</name>
</author>
<author>
<name sortKey="Lv, X" uniqKey="Lv X">X. Lv</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Yuan, S" uniqKey="Yuan S">S. Yuan</name>
</author>
<author>
<name sortKey="Xiang, Y" uniqKey="Xiang Y">Y. Xiang</name>
</author>
<author>
<name sortKey="Wang, G" uniqKey="Wang G">G. Wang</name>
</author>
<author>
<name sortKey="Zhou, M" uniqKey="Zhou M">M. Zhou</name>
</author>
<author>
<name sortKey="Meng, G" uniqKey="Meng G">G. Meng</name>
</author>
<author>
<name sortKey="Liu, Q" uniqKey="Liu Q">Q. Liu</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Guo, T" uniqKey="Guo T">T. Guo</name>
</author>
<author>
<name sortKey="Li, J" uniqKey="Li J">J. Li</name>
</author>
<author>
<name sortKey="Zhang, L" uniqKey="Zhang L">L. Zhang</name>
</author>
<author>
<name sortKey="Hou, W" uniqKey="Hou W">W. Hou</name>
</author>
<author>
<name sortKey="Wang, R" uniqKey="Wang R">R. Wang</name>
</author>
<author>
<name sortKey="Zhang, J" uniqKey="Zhang J">J. Zhang</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Lv, X" uniqKey="Lv X">X. Lv</name>
</author>
<author>
<name sortKey="Li, C Y" uniqKey="Li C">C.Y. Li</name>
</author>
<author>
<name sortKey="Han, P" uniqKey="Han P">P. Han</name>
</author>
<author>
<name sortKey="Xu, X Y" uniqKey="Xu X">X.Y. Xu</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Qu, J" uniqKey="Qu J">J. Qu</name>
</author>
<author>
<name sortKey="Li, M" uniqKey="Li M">M. Li</name>
</author>
<author>
<name sortKey="Zhong, W" uniqKey="Zhong W">W. Zhong</name>
</author>
<author>
<name sortKey="Hu, C" uniqKey="Hu C">C. Hu</name>
</author>
</analytic>
</biblStruct>
</listBibl>
</div1>
</back>
</TEI>
<pmc article-type="research-article">
<pmc-dir>properties open_access</pmc-dir>
<front>
<journal-meta>
<journal-id journal-id-type="nlm-ta">Biosci Rep</journal-id>
<journal-id journal-id-type="iso-abbrev">Biosci. Rep</journal-id>
<journal-id journal-id-type="hwp">ppbioscirep</journal-id>
<journal-id journal-id-type="publisher-id">BSR</journal-id>
<journal-title-group>
<journal-title>Bioscience Reports</journal-title>
</journal-title-group>
<issn pub-type="ppub">0144-8463</issn>
<issn pub-type="epub">1573-4935</issn>
<publisher>
<publisher-name>Portland Press Ltd.</publisher-name>
</publisher>
</journal-meta>
<article-meta>
<article-id pub-id-type="pmid">31064819</article-id>
<article-id pub-id-type="pmc">6542977</article-id>
<article-id pub-id-type="doi">10.1042/BSR20190283</article-id>
<article-categories>
<subj-group subj-group-type="heading">
<subject>Research Articles</subject>
</subj-group>
<subj-group subj-group-type="overline">
<subject>Research Article</subject>
</subj-group>
<subj-group subj-group-type="hwp-journal-coll">
<subject>25</subject>
<subject>11</subject>
<subject>21</subject>
<subject>39</subject>
<subject>13</subject>
</subj-group>
</article-categories>
<title-group>
<article-title>Long noncoding RNA HOXA-AS2 promotes non-small cell lung cancer progression by regulating miR-520a-3p</article-title>
</title-group>
<contrib-group>
<contrib contrib-type="author">
<name>
<surname>Liu</surname>
<given-names>Yunpeng</given-names>
</name>
<xref ref-type="aff" rid="A1">
<sup>1</sup>
</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Lin</surname>
<given-names>Xingyu</given-names>
</name>
<xref ref-type="aff" rid="A1">
<sup>1</sup>
</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Zhou</surname>
<given-names>Shiyao</given-names>
</name>
<xref ref-type="aff" rid="A2">
<sup>2</sup>
</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Zhang</surname>
<given-names>Peng</given-names>
</name>
<xref ref-type="aff" rid="A1">
<sup>1</sup>
</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Shao</surname>
<given-names>Guoguang</given-names>
</name>
<xref ref-type="aff" rid="A1">
<sup>1</sup>
</xref>
</contrib>
<contrib contrib-type="author">
<contrib-id contrib-id-type="orcid" authenticated="false">http://orcid.org/0000-0001-7006-6134</contrib-id>
<name>
<surname>Yang</surname>
<given-names>Zhiguang</given-names>
</name>
<xref ref-type="aff" rid="A1">
<sup>1</sup>
</xref>
<xref ref-type="corresp" rid="COR1"></xref>
</contrib>
<aff id="A1">
<label>1</label>
Department of Thoracic Surgery, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China</aff>
<aff id="A2">
<label>2</label>
Department of Anaesthesia, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China</aff>
</contrib-group>
<author-notes>
<corresp id="COR1">
<bold>Correspondence:</bold>
Zhiguang Yang (
<email>yangzhiguang213@sina.com</email>
)</corresp>
</author-notes>
<pub-date pub-type="epreprint">
<day>07</day>
<month>5</month>
<year>2019</year>
</pub-date>
<pub-date pub-type="collection">
<day>31</day>
<month>5</month>
<year>2019</year>
</pub-date>
<pub-date pub-type="epub">
<day>31</day>
<month>5</month>
<year>2019</year>
</pub-date>
<volume>39</volume>
<issue>5</issue>
<elocation-id>BSR20190283</elocation-id>
<history>
<date date-type="received">
<day>04</day>
<month>2</month>
<year>2019</year>
</date>
<date date-type="rev-recd">
<day>18</day>
<month>3</month>
<year>2019</year>
</date>
<date date-type="accepted">
<day>19</day>
<month>3</month>
<year>2019</year>
</date>
</history>
<permissions>
<copyright-statement>© 2019 The Author(s).</copyright-statement>
<copyright-year>2019</copyright-year>
<license license-type="open-access">
<ali:license_ref>http://creativecommons.org/licenses/by/4.0/</ali:license_ref>
<license-p>This is an open access article published by Portland Press Limited on behalf of the Biochemical Society and distributed under the
<ext-link ext-link-type="uri" xlink:href="http://creativecommons.org/licenses/by/4.0/">Creative Commons Attribution License 4.0 (CC BY)</ext-link>
.</license-p>
</license>
</permissions>
<self-uri xlink:title="pdf" xlink:href="bsr-39-bsr20190283.pdf"></self-uri>
<abstract>
<p>
<bold>
<italic>Background:</italic>
</bold>
The HOXA cluster antisense RNA 2 (HOXA-AS2) has recently been discovered to be involved in carcinogenesis in multiple cancers. However, the role and underlying mechanism of HOXA-AS2 in non-small cell lung cancer (NSCLC) yet need to be unraveled.
<bold>
<italic>Methods:</italic>
</bold>
HOXA-AS2 expression in NSCLC tissues and cell lines was detected using quantitative real-time PCR (qRT-PCR). Furthermore, the effects of HOXA-AS2 on NSCLC cell proliferation, apoptosis, migration, and invasion were assessed by MTS, flow cytometry, wound healing and transwell invasion assays, respectively. Starbase2.0 predicted and luciferase reporter and RNA immunoprecipitation (RIP) assays were used to validate the association of HOXA-AS2 and miR-520a-3p in NSCLC cells.
<bold>
<italic>Results:</italic>
</bold>
Our results revealed that HOXA-AS2 in NSCLC tissues were up-regulated and cell lines, and were associated with poor prognosis and overall survival. Further functional assays demonstrated that HOXA-AS2 knockdown significantly inhibited NSCLC cell proliferation, induced cell apoptosis and suppressed migration and invasion. Starbase2.0 predicted that HOXA-AS2 sponge miR-520a-3p at 3′-UTR, which was confirmed using luciferase reporter and RIP assays. miR-520a-3p expression was inversely correlated with HOXA-AS2 expression in NSCLC tissues. In addition, miR-520a-3p inhibitor attenuated the inhibitory effect of HOXD-AS2-depletion on cell proliferation, migration and invasion of NSCLC cells. Moreover, HOXA-AS2 could regulate HOXD8 and MAP3K2 expression, two known targets of miR-520a-3p in NSCLC.
<bold>
<italic>Conclusion:</italic>
</bold>
These findings implied that HOXA-AS2 promoted NSCLC progression by regulating miR-520a-3p, suggesting that HOXA-AS2 could serve as a therapeutic target for NSCLC.</p>
</abstract>
<kwd-group>
<kwd>HOXA-AS2</kwd>
<kwd>Long non-coding RNA</kwd>
<kwd>miR-520a-3p</kwd>
<kwd>non-small cell lung cancer</kwd>
<kwd>proliferation</kwd>
</kwd-group>
<counts>
<page-count count="11"></page-count>
</counts>
</article-meta>
</front>
<body>
<sec sec-type="intro" id="sec1">
<title>Introduction</title>
<p>Non-small cell lung cancer (NSCLC), accounting for approximately 80% of lung cancers, is one of the most malignant tumors worldwide with a low overall 5-year survival rate [
<xref rid="B1" ref-type="bibr">1</xref>
,
<xref rid="B2" ref-type="bibr">2</xref>
]. Although great progress has been made in the study of the NSCLC, the molecular mechanism in the occurrence and progression of NSCLC still remains elusive [
<xref rid="B3" ref-type="bibr">3</xref>
]. Thus, there is an urgent need to explore molecular mechanism of pathogenesis and progression of NSCLC to find novel targets for effective therapies.</p>
<p>Long noncoding RNAs (lncRNAs) with length more than 200 nucleotides are a type of noncoding RNAs without protein-encoding ability [
<xref rid="B4" ref-type="bibr">4</xref>
]. LncRNAs have been reported to be involved in multiple cellular processes, such as cell proliferation, apoptosis, cycle and invasion [
<xref rid="B5" ref-type="bibr">5</xref>
,
<xref rid="B6" ref-type="bibr">6</xref>
]. Growing evidence demonstrated that the aberrant expression of lncRNAs were associated with tumorigenesis and development of various types of cancer, and functioned as either oncogenes or tumor suppressors [
<xref rid="B7" ref-type="bibr">7</xref>
,
<xref rid="B8" ref-type="bibr">8</xref>
]. Number of cancer-related lncRNAs was identified to play crucial roles in initiation and development of NSCLC, indicating that lncRNAs could serve as diagnostic marker and therapy target for NSCLC [
<xref rid="B9" ref-type="bibr">9</xref>
,
<xref rid="B10" ref-type="bibr">10</xref>
].</p>
<p>HOXA cluster antisense RNA 2 (HOXA-AS2), a discovered lncRNA located between the HOXA3 and HOXA4 genes in the HOXA cluster [
<xref rid="B11" ref-type="bibr">11</xref>
], has been reported to be involved in regulation of endothelium inflammation and formation of osteogenesis [
<xref rid="B12" ref-type="bibr">12</xref>
,
<xref rid="B13" ref-type="bibr">13</xref>
]. A body of evidence suggested that HOXA-AS2 expression was up-regulated in hepatocellular carcinoma [
<xref rid="B14" ref-type="bibr">14</xref>
], bladder cancer [
<xref rid="B15" ref-type="bibr">15</xref>
], papillary thyroid cancer [
<xref rid="B16" ref-type="bibr">16</xref>
], osteosarcoma [
<xref rid="B17" ref-type="bibr">17</xref>
], pancreatic cancer [
<xref rid="B18" ref-type="bibr">18</xref>
], colorectal cancer [
<xref rid="B19" ref-type="bibr">19</xref>
], breast cancer [
<xref rid="B20" ref-type="bibr">20</xref>
] and gastric cancer [
<xref rid="B21" ref-type="bibr">21</xref>
], suggesting that it played tumor-promoting role in these cancers. However, little is known about the expression status, biological function and underlying mechanism on NSCLC carcinogenesis or metastasis.</p>
<p>The aims of the current study, therefore, were to explore the role of HOXA-AS2 in the regulation of proliferation, apoptosis, migration and invasion of NSCLC and investigate the association between HOXA-AS2 and its target miRNAs to uncover the underlying regulatory mechanisms of NSCLC development.</p>
</sec>
<sec sec-type="materials|methods" id="sec2">
<title>Materials and methods</title>
<sec id="sec2-1">
<title>Tissue collection</title>
<p>Fifty-two pairs of NSCLC tissues and corresponding adjacent normal tissues were harvested from patients who were diagnosed with NSCLC and underwent surgery in Department of Thoracic Surgery, The First Hospital of Jilin University (Changchun, China). None of the patients received local or systemic therapy prior to surgery. All tissues were histologically confirmed by our hospital, and stored in liquid nitrogen until use. Clinicopathologic characteristics of these patients were listed in
<xref rid="T1" ref-type="table">Table 1</xref>
. This research was conducted as per the Declaration of Helsinki, after acceptance from the Research Ethics Committee of Jilin University. Written informed consent was signed by all patients.</p>
<table-wrap id="T1" orientation="portrait" position="float">
<label>Table 1</label>
<caption>
<title>Correlation between clinicopathological features and HOXA-AS2 expression in NSCLC</title>
</caption>
<table frame="hsides" rules="groups">
<thead>
<tr>
<th align="left" rowspan="1" colspan="1">Variables</th>
<th align="left" rowspan="1" colspan="1">Number of cases</th>
<th colspan="2" align="center" rowspan="1">HOXA-AS2 expression</th>
<th align="left" rowspan="1" colspan="1">
<italic>P</italic>
-value</th>
</tr>
<tr>
<th align="left" rowspan="1" colspan="1"></th>
<th align="left" rowspan="1" colspan="1"></th>
<th align="left" rowspan="1" colspan="1">Low</th>
<th align="left" rowspan="1" colspan="1">High</th>
<th align="left" rowspan="1" colspan="1"></th>
</tr>
</thead>
<tbody>
<tr>
<td rowspan="1" colspan="1">Age (years)</td>
<td rowspan="1" colspan="1"></td>
<td rowspan="1" colspan="1"></td>
<td rowspan="1" colspan="1"></td>
<td rowspan="1" colspan="1">
<italic>P</italic>
=0.7852</td>
</tr>
<tr>
<td rowspan="1" colspan="1"><60</td>
<td rowspan="1" colspan="1">22</td>
<td rowspan="1" colspan="1">10</td>
<td rowspan="1" colspan="1">12</td>
<td rowspan="1" colspan="1"></td>
</tr>
<tr>
<td rowspan="1" colspan="1">≥60</td>
<td rowspan="1" colspan="1">30</td>
<td rowspan="1" colspan="1">15</td>
<td rowspan="1" colspan="1">15</td>
<td rowspan="1" colspan="1"></td>
</tr>
<tr>
<td rowspan="1" colspan="1">Gender</td>
<td rowspan="1" colspan="1"></td>
<td rowspan="1" colspan="1"></td>
<td rowspan="1" colspan="1"></td>
<td rowspan="1" colspan="1">
<italic>P</italic>
=0.7804</td>
</tr>
<tr>
<td rowspan="1" colspan="1">Male</td>
<td rowspan="1" colspan="1">29</td>
<td rowspan="1" colspan="1">13</td>
<td rowspan="1" colspan="1">16</td>
<td rowspan="1" colspan="1"></td>
</tr>
<tr>
<td rowspan="1" colspan="1">Female</td>
<td rowspan="1" colspan="1">23</td>
<td rowspan="1" colspan="1">12</td>
<td rowspan="1" colspan="1">11</td>
<td rowspan="1" colspan="1"></td>
</tr>
<tr>
<td rowspan="1" colspan="1">TNM stage</td>
<td rowspan="1" colspan="1"></td>
<td rowspan="1" colspan="1"></td>
<td rowspan="1" colspan="1"></td>
<td rowspan="1" colspan="1">
<italic>P</italic>
=0.0001</td>
</tr>
<tr>
<td rowspan="1" colspan="1">T1–T2</td>
<td rowspan="1" colspan="1">37</td>
<td rowspan="1" colspan="1">24</td>
<td rowspan="1" colspan="1">13</td>
<td rowspan="1" colspan="1"></td>
</tr>
<tr>
<td rowspan="1" colspan="1">T3–T4</td>
<td rowspan="1" colspan="1">15</td>
<td rowspan="1" colspan="1">1</td>
<td rowspan="1" colspan="1">14</td>
<td rowspan="1" colspan="1"></td>
</tr>
<tr>
<td rowspan="1" colspan="1">Tumor size</td>
<td rowspan="1" colspan="1"></td>
<td rowspan="1" colspan="1"></td>
<td rowspan="1" colspan="1"></td>
<td rowspan="1" colspan="1">
<italic>P</italic>
=0.5737</td>
</tr>
<tr>
<td rowspan="1" colspan="1"><3 cm</td>
<td rowspan="1" colspan="1">33</td>
<td rowspan="1" colspan="1">17</td>
<td rowspan="1" colspan="1">16</td>
<td rowspan="1" colspan="1"></td>
</tr>
<tr>
<td rowspan="1" colspan="1">≥3 cm</td>
<td rowspan="1" colspan="1">19</td>
<td rowspan="1" colspan="1">8</td>
<td rowspan="1" colspan="1">11</td>
<td rowspan="1" colspan="1"></td>
</tr>
<tr>
<td rowspan="1" colspan="1">Lymph node metastasis</td>
<td rowspan="1" colspan="1"></td>
<td rowspan="1" colspan="1"></td>
<td rowspan="1" colspan="1"></td>
<td rowspan="1" colspan="1">
<italic>P</italic>
=0.0008</td>
</tr>
<tr>
<td rowspan="1" colspan="1">No</td>
<td rowspan="1" colspan="1">36</td>
<td rowspan="1" colspan="1">23</td>
<td rowspan="1" colspan="1">13</td>
<td rowspan="1" colspan="1"></td>
</tr>
<tr>
<td rowspan="1" colspan="1">Yes</td>
<td rowspan="1" colspan="1">16</td>
<td rowspan="1" colspan="1">2</td>
<td rowspan="1" colspan="1">14</td>
<td rowspan="1" colspan="1"></td>
</tr>
</tbody>
</table>
<table-wrap-foot>
<fn>
<p>Abbreviation: TNM, tumor-node metastasis.</p>
</fn>
</table-wrap-foot>
</table-wrap>
</sec>
<sec id="sec2-2">
<title>Cell culture and transfection</title>
<p>Four human NSCLC cell lines (SPC-A1, NCI-H358, A549 and PC9) and normal lung 16HBE epithelial cells were purchased from Shanghai Institutes for Biological Sciences, China. All cells were grown in DMEM (HyClone, Logan, UT, U.S.A.) supplemented with 10% fetal bovine serum (FBS; Gibco, NY, U.S.A.), 100 U/ml penicillin and 100 mg/ml streptomycin (Sigma, U.S.A.) in a humidified atmosphere containing 5% CO
<sub>2</sub>
at 37°C in incubator (Memmert, Germany).</p>
<p>Three small interfering RNAs (siRNAs) against HOXA-AS2 (si-HOXA-AS2#1, si-HOXA-AS2#2 and si-HOXA-AS2#3) and non-target siRNA control (si-NC) were designed and synthesized from GenePharma (Shanghai, China). The miR-520a-3p mimic, negative control mimic (miR-NC), miR-520a-3p inhibitor (miR-520a-3p in) were bought from Ribobio (Guangzhou, China). A549 cells were transfected by the above-mentioned siRNA, mimic and inhibitor using Lipofectamine 2000 (Life Technologies) as per the manufacturer’s instructions.</p>
</sec>
<sec id="sec2-3">
<title>RNA isolation and quantitative real-time PCR</title>
<p>Total RNA was extracted from cultured cells and NSCLC tissues or adjacent normal tissues using TRIzol reagent (Thermo Fisher Scientific, Carlsbad, CA, U.S.A.). RNA samples were reverse transcribed into complementary DNA (cDNA) using TaqMan MicroRNA Reverse Transcription kit (Thermo Fisher Scientific) or PrimeScript™ RT Master Mix (Takara, Dalian, China), then quantitated using TaqMan microRNA assays kits (Thermo Fisher Scientific) or FastStart Universal SYBR-Green Master Mix (Roche, Basel, Switzerland) on a 7900HTfast Real-time PCR system (Applied Biosystems, Foster City, CA). The primers used in the present study are listed in
<xref rid="T2" ref-type="table">Table 2</xref>
. The relative expression levels were calculated using 2
<sup>−ΔΔ
<italic>C</italic>
</sup>
<sub>t</sub>
method following normalization against U6 for miR-520a-3p or GAPDH for
<italic>HOXA-AS2, HOXD8</italic>
and
<italic>MAP3K2</italic>
mRNAs.</p>
<table-wrap id="T2" orientation="portrait" position="float">
<label>Table 2</label>
<caption>
<title>Real-time PCR primers used for mRNA expression analysis</title>
</caption>
<table frame="hsides" rules="groups">
<thead>
<tr>
<th align="left" rowspan="1" colspan="1">Target gene</th>
<th align="left" rowspan="1" colspan="1">Primers (5′–3′)</th>
</tr>
</thead>
<tbody>
<tr>
<td rowspan="1" colspan="1">
<italic>U6</italic>
</td>
<td rowspan="1" colspan="1">F- TCCGATCGTGAAGCGTTC</td>
</tr>
<tr>
<td rowspan="1" colspan="1"></td>
<td rowspan="1" colspan="1">R- GTGCAGGGTCCGAGGT</td>
</tr>
<tr>
<td rowspan="1" colspan="1">
<italic>miR-520a-3p</italic>
</td>
<td rowspan="1" colspan="1">F- GCCACCACCATCAGCCATAC</td>
</tr>
<tr>
<td rowspan="1" colspan="1"></td>
<td rowspan="1" colspan="1">R- GCACATTACTCTACTCAGAAGGG</td>
</tr>
<tr>
<td rowspan="1" colspan="1">
<italic>HOXA-AS2</italic>
</td>
<td rowspan="1" colspan="1">F- GAAAACCACGCTTTTCCCGT</td>
</tr>
<tr>
<td rowspan="1" colspan="1"></td>
<td rowspan="1" colspan="1">R- CCTTTAGGCCTTCGCAGACA</td>
</tr>
<tr>
<td rowspan="1" colspan="1">
<italic>HOXD8</italic>
</td>
<td rowspan="1" colspan="1">F- CCTGACTGTAAATCGTCCAGTGGTA</td>
</tr>
<tr>
<td rowspan="1" colspan="1"></td>
<td rowspan="1" colspan="1">R- AGTTTGGAAGCGACTGTAGGTTTG</td>
</tr>
<tr>
<td rowspan="1" colspan="1">
<italic>MAP3K2</italic>
</td>
<td rowspan="1" colspan="1">F- CCCCAGGTTACATTCCAGATGA</td>
</tr>
<tr>
<td rowspan="1" colspan="1"></td>
<td rowspan="1" colspan="1">R- GCATTCGTGATTTTGGATAGCTC</td>
</tr>
<tr>
<td rowspan="1" colspan="1">
<italic>GAPDH</italic>
</td>
<td rowspan="1" colspan="1">F- AAGGTGAAGGTCGGAGTCAA</td>
</tr>
<tr>
<td rowspan="1" colspan="1"></td>
<td rowspan="1" colspan="1">R- AATGAAGGGGTCATTGATGG</td>
</tr>
</tbody>
</table>
<table-wrap-foot>
<fn>
<p>Abbreviations: F, forward; mRNA, messenger RNA; PCR, polymerase chain reaction; R, reverse.</p>
</fn>
</table-wrap-foot>
</table-wrap>
</sec>
<sec id="sec2-4">
<title>Cell proliferation assay</title>
<p>Transfected cells (5 × 10
<sup>3</sup>
per well in 100 μl) were seeded into 96-well plates cultured for 24–72 h. In specific times (24, 48 and 72 h), cell proliferation was examined using CellTiter 96®AQueous One Solution Cell Proliferation Assay kit (MTS; Promega, Madison, WI, U.S.A.) following the manufacturer’s instructions. The absorbance at 490 nm was detected using a Benchmark Plus microplate spectrometer (Bio-Rad Laboratories, Hercules, CA, U.S.A.).</p>
</sec>
<sec id="sec2-5">
<title>Cell apoptosis assay</title>
<p>Cells were collected using trypsinization at 48 h post-transfection. Then cells were stained with FITC-Annexin V and Propidium iodide (PI) using an Annexin-V-FITC apoptosis detection kit (BD Bioscience, Franklin Lakes, NJ, U.S.A.). Data were acquired using an FACSCalibur flow cytometry (BD Biosciences). The apoptosis ratio was analyzed with CellQuest 3.0 software (BD Biosciences).</p>
</sec>
<sec id="sec2-6">
<title>Wound healing assay</title>
<p>To determine the effect of HOXA-AS2 on cell migration, wound healing assay was conducted. Briefly, transfected cells were seeded in 12-well plates and grown to 80–90% confluence. Then, identical wound was created using a sterile 10-μl pipette tip. To remove detached cells, cells were washed with PBS solution, following culturing in a serum-free medium for 24 h. Images were taken at 0 and 24 h after wounding using a light microscope (Olympus Corp., Tokyo, Japan).</p>
</sec>
<sec id="sec2-7">
<title>Transwell invasion assay</title>
<p>Cell invasion abilities were determined using Boyden chamber invasion assay (24-well plate format). In brief, the transfected cells (5 × 10
<sup>4</sup>
cells each well) were plated in upper well of Corning Costar Transwell 24-well plates (8-μm pores; Corning, U.S.A.) pre-coated with Matrigel (BD, Biosciences) and cultured in serum-free medium. DMEM with 20% FBS was placed in the bottom wells as a chemoattractant. After 48 h of incubation at 37°C, a cotton swab was used to remove the noninvasive cells remaining on upper well, while invaded cells were fixed and stained in 0.1% Crystal Violet for 5 min. The stained cells were captured using a light microscope (Nikon) and counted in five randomly selected fields by software Image Pro Plus 6.0.</p>
</sec>
<sec id="sec2-8">
<title>Luciferase reporter assay</title>
<p>The sequence fragment of HOXA-AS2 (WT-HOXA-AS2) containing the putative target sites for miR-520a-3p were synthesized and inserted into the pmirGLO vector (Promega Corp., Madison, WI, U.S.A.). The mutant miR-520a-3p binding sites for HOXA-AS2 (MT-HOXA-AS2) were generated using QuikChange II Site-Directed Mutagenesis Kit (Stratagene, La Jolla, CA, U.S.A.). For luciferase reporter assay, A549 cells were co-transfected with reporter vector containing WT-HOXA-AS2 or MT-HOXA-AS2 and miR-520a-3p mimic or miR-NC. At 48 h after transfection, Dual-Luciferase reporter assay system (Promega) was used to detect the activities of
<italic>Renilla</italic>
luciferase and firefly luciferase. The relative luciferase activity was standardized to
<italic>Renilla</italic>
luciferase activity.</p>
</sec>
<sec id="sec2-9">
<title>RNA immunoprecipitation assay</title>
<p>To investigate if HOXA-AS2 and miR-520a-3p were associated with the RNA-induced silencing complex (RISC), RNA immunoprecipitation (RIP) experiment was conducted using the Magna RIP Kit (Millipore, Billerica, MA, U.S.A.) with the Ago2 antibody (Abcam, U.S.A.) according to the manufacturer’s protocol. Normal mouse IgG (Abcam) used in the present study served as a control. The expression levels of HOXA-AS2 and miR-520a-3p in the precipitates were measured by quantitative real-time PCR (qRT-PCR) as mentioned above.</p>
</sec>
<sec id="sec2-10">
<title>Statistical analysis</title>
<p>Quantitative data are expressed as the mean ± standard deviation (S.D.) from at least three independent repeats of the experiments, and were analyzed using SPSS v. 19.0 (IBM Corp., Armonk, NY, U.S.A.). Student’s
<italic>t</italic>
test was used to assess significant differences between two groups. One-way analysis of variance was employed to estimate the significant differences among multiple groups. The correlation in a dataset was analyzed using Spearman’s correlation analysis. Kaplan–Meier method and the log-rank test were used to determine overall survival ratio. A
<italic>P</italic>
-value less than 0.05 was considered as statistically significant.</p>
</sec>
</sec>
<sec sec-type="results" id="sec3">
<title>Results</title>
<sec id="sec3-1">
<title>HOXA-AS2 was up-regulated and associated with poor prognosis of patients with NSCLC</title>
<p>To investigate the expression status of HOXA-AS2 in NSCLC, we detected the expression of HOXA-AS2 in NSCLC tissues and adjacent normal tissues from 52 patients with NSCLC. The results of qRT-PCR revealed that the expression of HOXA-AS2 were up-regulated in NSCLC tissues compared with adjacent normal tissues (
<xref ref-type="fig" rid="F1">Figure 1</xref>
A). In consistence, HOXA-AS2 expression was also elevated in four NSCLC cell lines (SPC-A1, NCI-H358, A549 and PC9) relative to normal lung 16HBE epithelial cells (
<xref ref-type="fig" rid="F1">Figure 1</xref>
B). Additionally, our results demonstrated that HOXA-AS2 mainly existed in the cytoplasm of NSCLC cells (
<xref ref-type="fig" rid="F1">Figure 1</xref>
C). To investigate the association with HOXA-AS2 and patient’s clinical features, we divided these NSCLC tissues into two groups: High expression of HOXA-AS2 (
<italic>n</italic>
=27) and Low expression of HOXA-AS2 groups (
<italic>n</italic>
=25) based on median level of HOXA-AS2. We found that increased HOXA-AS2 was closely associated with tumor-node metastasis (TNM) stage and lymph node metastasis (
<xref rid="T1" ref-type="table">Table 1</xref>
). However, no correlation was observed in patient’s age, gender and tumor size (
<xref rid="T1" ref-type="table">Table 1</xref>
). In addition, we found patients with high expression of HOXA-AS2 displayed poor overall survival rate (
<xref ref-type="fig" rid="F1">Figure 1</xref>
D), suggesting HOXA-AS2 might be a prognostic indicator. These results suggested that HOXA-AS2 might play a key role in NSCLC development.</p>
<fig id="F1" orientation="portrait" position="float">
<label>Figure 1</label>
<caption>
<title>HOXA-AS2 was up-regulated and associated with poor prognosis of patients with NSCLC</title>
<p>(
<bold>A</bold>
) The expression of HOXA-AS2 in 52 pairs of NSCLC tissues and adjacent normal tissues were examined by qRT-PCR. (
<bold>B</bold>
) The expression of HOXA-AS2 were measured in four NSCLC cell lines (SPC-A1, NCI-H358, A549 and PC9) and normal lung 16HBE epithelial cells by qRT-PCR. (
<bold>C</bold>
) The expression of HOXA-AS2 was measured in cytoplasm and nucleus of A549 cells by qRT-PCR. (
<bold>D</bold>
) Kaplan–Meier curve analysis revealed that NSCLC patients with high HOXA-AS2 expression had poor survival rate. **
<italic>P</italic>
<0.01.</p>
</caption>
<graphic xlink:href="bsr-39-bsr20190283-g1"></graphic>
</fig>
</sec>
<sec id="sec3-2">
<title>Knockdown of HOXA-AS2 inhibits proliferation and induces cell apoptosis of NSCLC cells</title>
<p>To investigate the effect of HOXA-AS2 on NSCLC cell biological behavior, we reduced the expression of HOXA-AS2 in A549 cells by transfection with three siRNAs (si-HOXA-AS2#1, #2 and #3). We found that these siRNAs could significantly decrease HOXA-AS2 expression in A549 cells (
<xref ref-type="fig" rid="F2">Figure 2</xref>
A). si-HOXA-AS2#1 displayed the biggest reduction in A549 cells, thus, it was selected for subsequent experiments, and named as: si-HOXA-AS2. MTS assay revealed that HOXA-AS2 depletion obviously decreased cell proliferation of A549 cells at 48–72 h (
<xref ref-type="fig" rid="F2">Figure 2</xref>
B). Moreover, flow cytometry assay showed that HOXA-AS2 knockdown significantly induced cell apoptosis of A549 cells (
<xref ref-type="fig" rid="F2">Figure 2</xref>
C).</p>
<fig id="F2" orientation="portrait" position="float">
<label>Figure 2</label>
<caption>
<title>Knockdown of HOXA-AS2 inhibits proliferation and induces cell apoptosis of NSCLC cells</title>
<p>(
<bold>A</bold>
) The expression of HOXA-AS2 was examined in A549 cells transfected with three siRNAs (si-HOXA-AS2#1, si-HOXA-AS2#2 and si-HOXA-AS2#3) or si-NC by qRT-PCR. (
<bold>B</bold>
) Cell proliferation was examined in A549 cells transfected with si-HOXA-AS2 or si-NC by MTS assay. (
<bold>C</bold>
) Cell apoptosis was detected in A549 cells transfected with si-HOXA-AS2 or si-NC by flow cytometry assay. *
<italic>P</italic>
<0.05, **
<italic>P</italic>
<0.01.</p>
</caption>
<graphic xlink:href="bsr-39-bsr20190283-g2"></graphic>
</fig>
</sec>
<sec id="sec3-3">
<title>Knockdown of HOXA-AS2 inhibits cell migration and invasion of NSCLC cells</title>
<p>To explore the effect of HOXD-AS1 on NSCLC metastasis, cell migration and invasion were determined in A549 cells transfected with si-HOXA-AS2. Wound healing assay revealed that knockdown of HOXA-AS2 obviously decreased cell migration abilities of A549 cells (
<xref ref-type="fig" rid="F3">Figure 3</xref>
A). Consistently, transwell invasion assay demonstrated the invasion capacity of A549 cells was significantly suppressed by HOXA-AS2 depletion (
<xref ref-type="fig" rid="F3">Figure 3</xref>
B).</p>
<fig id="F3" orientation="portrait" position="float">
<label>Figure 3</label>
<caption>
<title>Knockdown of HOXA-AS2 inhibits cell migration and invasion of NSCLC cells</title>
<p>(
<bold>A</bold>
) Cell migration was detected in A549 cells transfected with si-HOXA-AS2 or si-NC by wound healing assay. (
<bold>B</bold>
) Cell invasion was detected in A549 cells transfected with si-HOXA-AS2 or si-NC by transwell invasion assay. **
<italic>P</italic>
<0.01.</p>
</caption>
<graphic xlink:href="bsr-39-bsr20190283-g3"></graphic>
</fig>
</sec>
<sec id="sec3-4">
<title>miR-520a-3p is a target of HOXA-AS2 in NSCLC</title>
<p>Accumulating evidence suggested that lncNRAs exerted biological role in tumor cells via serving as miRNA sponges to negatively regulate miRNAs expression [
<xref rid="B22" ref-type="bibr">22</xref>
,
<xref rid="B23" ref-type="bibr">23</xref>
]. To investigate the possible molecular regulatory mechanism by which HOXA-AS2 exerts oncogenic role in NSCLC, we predicated target miRNA that could interact with HOXA-AS2 by Starbase2.0. We found that HOXA-AS2 contained one conserved target binding site of miR-520a-3p (
<xref ref-type="fig" rid="F4">Figure 4</xref>
A). To confirm this predication, luciferase reporter assay was conducted in A549 cells co-transfected with the reporter vector (WT/MT HOXA-AS2) and miR-520a-3p mimic or miR-NC. We found that overexpression of miR-520a-3p obviously inhibited luciferase activity of WT-HOXA-AS2 in A549 cells, but not of MT-HOXA-AS2 activity (
<xref ref-type="fig" rid="F4">Figure 4</xref>
B). RIP experiment demonstrated that HOXA-AS2 and miR-520a-3p were both enriched in Ago2 pellets compared with control IgG in A549 cells (
<xref ref-type="fig" rid="F4">Figure 4</xref>
C), suggesting that miR-520a-3p could interact with HOXA-AS2 in NSCLC cells. In addition, we found that overexpression of miR-520a-3p significantly decreased HOXA-AS2 expression in A549 cells (
<xref ref-type="fig" rid="F4">Figure 4</xref>
D). HOXA-AS2 knockdown obviously increased miR-520a-3p expression in A549 cells (
<xref ref-type="fig" rid="F4">Figure 4</xref>
E). Moreover, we found that miR-520a-3p expression was down-regulated in NSCLC tissues and cell lines (
<xref ref-type="fig" rid="F4">Figure 4</xref>
F,G), and its expression was negatively correlated with HOXA-AS2 in NSCLC tissues (
<xref ref-type="fig" rid="F4">Figure 4</xref>
H). These findings implied that miR-520a-3p might be a potential target of HOXA-AS2 in NSCLC.</p>
<fig id="F4" orientation="portrait" position="float">
<label>Figure 4</label>
<caption>
<title>miR-520a-3p is a target of HOXA-AS2 in NSCLC</title>
<p>(
<bold>A</bold>
) Potential binding site and mutant site for miR-520a-3p in HOXA-AS2 is shown. (
<bold>B</bold>
) Luciferase reporter assay was performed in A549 cells cotransfected with report vector WT-HOXA-AS2 or MT-HOXA-AS2 and miR-520a-3p mimic or miR-NC. (
<bold>C</bold>
) Cellular lysates from A549 cells were used for RIP with Ago2 antibody, and mouse IgG was used as the control. The expression of HOXA-AS2 and miR-520a-3p was examined using qRT-PCR. (
<bold>D</bold>
) The expression of HOXA-AS2 was determined in A549 cells transfected with miR-520a-3p mimic or miR-NC by qRT-PCR. (
<bold>E</bold>
) The expression of miR-520a-3p was determined in A549 cells transfected with si-HOXA-AS2 or si-NC by qRT-PCR. (
<bold>F</bold>
) The expression of miR-520a-3p in 52 pairs of NSCLC tissues and adjacent normal tissues were examined by qRT-PCR. (
<bold>G</bold>
) The expression of miR-520a-3p was measured in four NSCLC cell lines (SPC-A1, NCI-H358, A549 and PC9) and normal lung 16HBE epithelial cells by qRT-PCR. (
<bold>H</bold>
) The correlation of HOXA-AS2 and miR-520a-3p was analyzed using Spearman’s rank correlation analysis. **
<italic>P</italic>
<0.01.</p>
</caption>
<graphic xlink:href="bsr-39-bsr20190283-g4"></graphic>
</fig>
</sec>
<sec id="sec3-5">
<title>HOXA-AS2 regulates HOXD8 and MAP3K2 by sponging miR-520a-3p</title>
<p>HOXD8 and MAP3K2 have been identified to act as direct targets of miR-520a-3p in NSCLC [
<xref rid="B24" ref-type="bibr">24</xref>
,
<xref rid="B25" ref-type="bibr">25</xref>
]. To investigate whether HOXA-AS2 could affect HOXD8 and MAP3K2 expression by regulating miR-520a-3p, the levels of HOXD8 and MAP3K2 were determined by qRT-PCR and Western blot analysis in A549 cells that were transfected with si-NC, si-HOXA-AS2 with or without miR-520a-3p. As presented in
<xref ref-type="fig" rid="F5">Figure 5</xref>
A,B, knockdown of HOXA-AS2 led to a prominent reduction in HOXD8 and MAP3K2 expression in A549 cells, while miR-520a-3p partially reversed this trend. In addition, we found that
<italic>HOXD8</italic>
and
<italic>MAP3K2</italic>
expression was increased in NSCLC tissues (
<xref ref-type="fig" rid="F5">Figure 5</xref>
C,D), and their expression were positively correlated with HOXA-AS2 in NSCLC tissues (
<xref ref-type="fig" rid="F5">Figure 5</xref>
E,F).</p>
<fig id="F5" orientation="portrait" position="float">
<label>Figure 5</label>
<caption>
<title>HOXA-AS2 regulates HOXD8 and MAP3K2 by sponging miR-520a-3p</title>
<p>(
<bold>A,B</bold>
) The expression of HOXD8 and MAP3K2 on mRNA and protein levels were determined in A549 cells transfected with si-NC, si-HOXA-AS2, and si-HOXA-AS2 + miR-520a-3p inhibitor (miR-520a-3p in) by qRT-PCR and Western blot, respectively. (
<bold>C,D</bold>
) The mRNA expression of
<italic>HOXD8</italic>
and
<italic>MAP3K2</italic>
in 52 pairs of NSCLC tissues and adjacent normal tissues were examined by qRT-PCR. (
<bold>E,F</bold>
) The correlation of HOXA-AS2 and
<italic>HOXD8</italic>
or
<italic>MAP3K2</italic>
was analyzed using Spearman’s rank correlation analysis. *
<italic>P</italic>
<0.05, **
<italic>P</italic>
<0.01.</p>
</caption>
<graphic xlink:href="bsr-39-bsr20190283-g5"></graphic>
</fig>
</sec>
<sec id="sec3-6">
<title>Down-regulation of miR-520a-3p partially attenuated the effects of HOXA-AS2 on NSCLC cells</title>
<p>To validate whether HOXA-AS2 affects NSCLC cell proliferation and invasion via regulating miR-520a-3p, A549 cells with si-HOXA-AS2 or si-NC were transfected with the miR-520a-3p inhibitor, then cell proliferation, apoptosis, migration and invasion were determined. Transfection of miR-520a-3p inhibitor could decrease HOXA-AS2 expression in A549 cells transfected with si-HOXA-AS2 (
<xref ref-type="fig" rid="F6">Figure 6</xref>
A). In addition, down-regulation of miR-520a-3p expression in A549 cells partially reversed the effects of HOXA-AS2 knockdown on cell proliferation, apoptosis, migration and invasion (
<xref ref-type="fig" rid="F6">Figure 6</xref>
B–E). These data indicate that HOXA-AS2 exerts it biological function in NSCLC by regulating miR-520a-3p.</p>
<fig id="F6" orientation="portrait" position="float">
<label>Figure 6</label>
<caption>
<title>Down-regulation of miR-520a-3p partially attenuated the effects of HOXA-AS2 on NSCLC cells</title>
<p>(
<bold>A</bold>
) The expression of miR-520a-3p were determined in A549 cells transfected with si-NC, si-HOXA-AS2, and si-HOXA-AS2 + miR-520a-3p in by qRT-PCR. (
<bold>B</bold>
<bold>E</bold>
) Cell proliferation, apoptosis, migration and invasion were determined in A549 cells transfected with si-NC, si-HOXA-AS2, and si-HOXA-AS2 + miR-520a-3p. *
<italic>P</italic>
<0.05, **
<italic>P</italic>
<0.01.</p>
</caption>
<graphic xlink:href="bsr-39-bsr20190283-g6"></graphic>
</fig>
</sec>
</sec>
<sec sec-type="discussion" id="sec4">
<title>Discussion</title>
<p>LncRNAs have access to be involved in NSCLC initiation and development, and serve as tumor suppressor or promoter [
<xref rid="B9" ref-type="bibr">9</xref>
,
<xref rid="B10" ref-type="bibr">10</xref>
]. For example, Zhang et al. [
<xref rid="B26" ref-type="bibr">26</xref>
] showed that PICART1 functioned as a tumor suppressor that suppressed cell proliferation and invasion partly through regulating AKT signaling pathway.Liu et al. reported that LncRNA MAFG-AS1 could promote NSCLC cells growth and metastasis through acting as an miR-339 sponge to regulate MMP15 [
<xref rid="B27" ref-type="bibr">27</xref>
]. Jing et al. [
<xref rid="B28" ref-type="bibr">28</xref>
] demonstrated that CRNDE functioned as an oncogenic lncRNA that promoted NSCLC progression by regulating miR-338-3p. Yuan et al. [
<xref rid="B29" ref-type="bibr">29</xref>
] revealed that LINC01436 acted as a proto-oncogene in NSCLC through functioning as an miR-30a-3p sponge to regulate the its target gene
<italic>EPAS1</italic>
expression. In the present study, we showed that HOXA-AS2 expression was up-regulated in NSCLC tissues and cell lines. Increased HOXA-AS2 related to clinical features and prognosis of NSCLC patients. In addition, we also found that HOXA-AS2 functioned as a proto-oncogene that contributed to the proliferation and invasion of NSCLC cells by sponging miR-520a-3p. These results suggested that HOXA-AS2 might be a potential target for NSCLC.</p>
<p>Accumulating evidence suggested that lncRNAs exerted tumor suppressive or oncogenic role in cancers usually by regulating serving as miRNA sponges to negatively regulate miRNAs expression [
<xref rid="B30" ref-type="bibr">30</xref>
]. To test molecular mechanism that HOXA-AS2 promoted NSCLC progression, Starbase2.0 was used to predict miRNAs that interact with HOXA-AS2. Among miRNAs, miR-520a-3p was selected based on its biological role in cancer. In NSCLC, miR-520a-3p has been reported to be down-regulated, and was associated with poor prognosis [
<xref rid="B24" ref-type="bibr">24</xref>
,
<xref rid="B25" ref-type="bibr">25</xref>
,
<xref rid="B31" ref-type="bibr">31</xref>
]. Moreover, miR-520a-3p overexpression significantly decreased NSCLC growth and metastasis
<italic>in vivo</italic>
and
<italic>in vitro</italic>
[
<xref rid="B24" ref-type="bibr">24</xref>
,
<xref rid="B25" ref-type="bibr">25</xref>
,
<xref rid="B31" ref-type="bibr">31</xref>
], suggesting that miR-520a-3p played tumor suppressive role in NSCLC. Here, luciferase reporter activity and RIP assays confirmed that miR-520a-3p was a downstream target of HOXA-AS2 in NSCLC. A negative correlation with miR-520a-3p and HOXA-AS2 was observed in NSCLC tissues. Furthermore, miR-520a-3p inhibitor partially reversed the effects of HOXA-AS2 knockdown on cell proliferation, apoptosis, migration and invasion of A549 cells. These results suggested that HOXA-AS2 exerts it biological function in NSCLC by regulating miR-520a-3p.</p>
<p>It was well known that lncRNA could indirectly regulate the downstream target of miRNAs by sponging miRNAs [
<xref rid="B32" ref-type="bibr">32</xref>
]. HOXD8 and MAP3K2 were identified to act as two targets of miR-520a-3p in NSCLC [
<xref rid="B24" ref-type="bibr">24</xref>
,
<xref rid="B25" ref-type="bibr">25</xref>
]. Therefore, we investigated whether HOXA-AS2 could affect HOXD8 and MAP3K2 expression by regulating miR-520a-3p. We found that HOXD8 and MAP3K2 expression were up-regualted, and their expression was positively correlated with HOXA-AS2 in NSCLC tissues, respectively. Moreover, knockdown of HOXA-AS2 led to a prominent reduction in HOXD8 and MAP3K2 expression in A549 cells, while miR-520a-3p inhibitor partially reversed this trend. These results implied that HOXA-AS2 could regulate HOXD8 and MAP3K2 expression by sponging miR-520a-3p.</p>
<p>In conclusion, the present study identified HOXA-AS2 as an oncogene lncRNA that contributed to promoting NSCLC progression through the repression of miR-520a-3p. Furthermore, HOXA-AS2 could positively regulate HOXD8 and MAP3K2 expression through regulating miR-520a-3p in NSCLC cells. These findings suggested that HOXA-AS2 might serve as a therapeutic target for NSCLC. Since HOXA-AS2 could target multiple miRNAs or mRNAs, more clinical and experimental studies needed to be performed to further investigate molecular mechanism of HOXA-AS2 in NSCLC.</p>
</sec>
</body>
<back>
<sec id="sec5" sec-type="author-contrib">
<title>Author Contribution</title>
<p>Yunpeng Liu and Zhiguang Yang did all the experiments, analyzed all data and were major contributors in writing the manuscript. Xingyu Lin, Shiyao Zhou, Peng Zhang and Guoguang Shao did some experiment work. All authors read and approved the final manuscript.</p>
</sec>
<sec id="sec6" sec-type="COI-statement">
<title>Competing Interests</title>
<p>The authors declare that there are no competing interests associated with the manuscript.</p>
</sec>
<sec id="sec7" sec-type="funding">
<title>Funding</title>
<p>The authors declare that there are no sources of funding to be acknowledged.</p>
</sec>
<glossary>
<title>Abbreviations</title>
<def-list list-content="abbreviations">
<def-item>
<term id="G1">CRNDE</term>
<def>
<p>Colorectal Neoplasia Differentially Expressed</p>
</def>
</def-item>
<def-item>
<term id="G2">FBS</term>
<def>
<p>fetal bovine serum</p>
</def>
</def-item>
<def-item>
<term id="G3">GAPDH</term>
<def>
<p>Glyceraldehyde-3-phosphate-dehydrogenase</p>
</def>
</def-item>
<def-item>
<term id="G4">HOXA</term>
<def>
<p>Homeobox A</p>
</def>
</def-item>
<def-item>
<term id="G5">HOXA-AS2</term>
<def>
<p>HOXA cluster antisense RNA 2</p>
</def>
</def-item>
<def-item>
<term id="G6">HOXD8</term>
<def>
<p>Homeobox D8</p>
</def>
</def-item>
<def-item>
<term id="G7">lncRNA</term>
<def>
<p>long noncoding RNA</p>
</def>
</def-item>
<def-item>
<term id="G8">MAP3K2</term>
<def>
<p>Mitogen-activated protein kinase</p>
</def>
</def-item>
<def-item>
<term id="G9">NSCLC</term>
<def>
<p>non-small cell lung cancer</p>
</def>
</def-item>
<def-item>
<term id="G10">qRT-PCR</term>
<def>
<p>quantitative real-time PCR</p>
</def>
</def-item>
<def-item>
<term id="G11">RIP</term>
<def>
<p>RNA immunoprecipitation</p>
</def>
</def-item>
<def-item>
<term id="G12">si-NC</term>
<def>
<p>non-target siRNA control</p>
</def>
</def-item>
<def-item>
<term id="G13">siRNA</term>
<def>
<p>small interfering RNA</p>
</def>
</def-item>
</def-list>
</glossary>
<ref-list>
<ref id="B1">
<label>1</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Torre</surname>
<given-names>L.A.</given-names>
</name>
,
<name>
<surname>Bray</surname>
<given-names>F.</given-names>
</name>
,
<name>
<surname>Siegel</surname>
<given-names>R.L.</given-names>
</name>
,
<name>
<surname>Ferlay</surname>
<given-names>J.</given-names>
</name>
,
<name>
<surname>Lortet-Tieulent</surname>
<given-names>J.</given-names>
</name>
and
<name>
<surname>Jemal</surname>
<given-names>A.</given-names>
</name>
</person-group>
(
<year>2015</year>
)
<article-title>Global cancer statistics, 2012</article-title>
.
<source>CA Cancer J. Clin.</source>
<volume>65</volume>
,
<fpage>87</fpage>
<lpage>108</lpage>
<pub-id pub-id-type="doi">10.3322/caac.21262</pub-id>
<pub-id pub-id-type="pmid">25651787</pub-id>
</mixed-citation>
</ref>
<ref id="B2">
<label>2</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Laskin</surname>
<given-names>J.J.</given-names>
</name>
and
<name>
<surname>Sandler</surname>
<given-names>A.B.</given-names>
</name>
</person-group>
(
<year>2005</year>
)
<article-title>State of the art in therapy for non-small cell lung cancer</article-title>
.
<source>Cancer Invest.</source>
<volume>23</volume>
,
<fpage>427</fpage>
<lpage>442</lpage>
<pub-id pub-id-type="doi">10.1081/CNV-67172</pub-id>
<pub-id pub-id-type="pmid">16193643</pub-id>
</mixed-citation>
</ref>
<ref id="B3">
<label>3</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Mornex</surname>
<given-names>F.</given-names>
</name>
and
<name>
<surname>Girard</surname>
<given-names>N.</given-names>
</name>
</person-group>
(
<year>2006</year>
)
<article-title>Gemcitabine and radiation therapy in non-small cell lung cancer: state of the art</article-title>
.
<source>Ann. Oncol.</source>
<volume>17</volume>
,
<fpage>1743</fpage>
<lpage>1747</lpage>
<pub-id pub-id-type="doi">10.1093/annonc/mdl117</pub-id>
<pub-id pub-id-type="pmid">16766586</pub-id>
</mixed-citation>
</ref>
<ref id="B4">
<label>4</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Ponting</surname>
<given-names>C.P.</given-names>
</name>
,
<name>
<surname>Oliver</surname>
<given-names>P.L.</given-names>
</name>
and
<name>
<surname>Reik</surname>
<given-names>W.</given-names>
</name>
</person-group>
(
<year>2009</year>
)
<article-title>Evolution and functions of long noncoding RNAs</article-title>
.
<source>Cell</source>
<volume>136</volume>
,
<fpage>629</fpage>
<lpage>641</lpage>
<pub-id pub-id-type="doi">10.1016/j.cell.2009.02.006</pub-id>
<pub-id pub-id-type="pmid">19239885</pub-id>
</mixed-citation>
</ref>
<ref id="B5">
<label>5</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Geisler</surname>
<given-names>S.</given-names>
</name>
and
<name>
<surname>Coller</surname>
<given-names>J.</given-names>
</name>
</person-group>
(
<year>2013</year>
)
<article-title>RNA in unexpected places: long non-coding RNA functions in diverse cellular contexts</article-title>
.
<source>Nat. Rev. Mol. Cell Biol.</source>
<volume>14</volume>
,
<fpage>699</fpage>
<lpage>712</lpage>
<pub-id pub-id-type="doi">10.1038/nrm3679</pub-id>
<pub-id pub-id-type="pmid">24105322</pub-id>
</mixed-citation>
</ref>
<ref id="B6">
<label>6</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Kornienko</surname>
<given-names>A.E.</given-names>
</name>
,
<name>
<surname>Guenzl</surname>
<given-names>P.M.</given-names>
</name>
,
<name>
<surname>Barlow</surname>
<given-names>D.P.</given-names>
</name>
and
<name>
<surname>Pauler</surname>
<given-names>F.M.</given-names>
</name>
</person-group>
(
<year>2013</year>
)
<article-title>Gene regulation by the act of long non-coding RNA transcription</article-title>
.
<source>BMC Biol.</source>
<volume>11</volume>
,
<fpage>59</fpage>
<pub-id pub-id-type="doi">10.1186/1741-7007-11-59</pub-id>
<pub-id pub-id-type="pmid">23721193</pub-id>
</mixed-citation>
</ref>
<ref id="B7">
<label>7</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Do</surname>
<given-names>H.</given-names>
</name>
and
<name>
<surname>Kim</surname>
<given-names>W.</given-names>
</name>
</person-group>
(
<year>2018</year>
)
<article-title>Roles of oncogenic long non-coding RNAs in cancer development</article-title>
.
<source>Genomics Inform.</source>
<volume>16</volume>
,
<fpage>e18</fpage>
<pub-id pub-id-type="doi">10.5808/GI.2018.16.4.e18</pub-id>
<pub-id pub-id-type="pmid">30602079</pub-id>
</mixed-citation>
</ref>
<ref id="B8">
<label>8</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Li</surname>
<given-names>Y.</given-names>
</name>
,
<name>
<surname>Egranov</surname>
<given-names>S.D.</given-names>
</name>
,
<name>
<surname>Yang</surname>
<given-names>L.</given-names>
</name>
and
<name>
<surname>Lin</surname>
<given-names>C.</given-names>
</name>
</person-group>
(
<year>2018</year>
)
<article-title>Molecular mechanisms of long noncoding RNAs-mediated cancer metastasis</article-title>
.
<source>Genes Chromosomes Cancer</source>
</mixed-citation>
</ref>
<ref id="B9">
<label>9</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Dai</surname>
<given-names>S.P.</given-names>
</name>
,
<name>
<surname>Jin</surname>
<given-names>J.</given-names>
</name>
and
<name>
<surname>Li</surname>
<given-names>W.M.</given-names>
</name>
</person-group>
(
<year>2018</year>
)
<article-title>Diagnostic efficacy of long non-coding RNA in lung cancer: a systematic review and meta-analysis</article-title>
.
<source>Postgrad. Med. J.</source>
<volume>94</volume>
,
<fpage>578</fpage>
<lpage>587</lpage>
<pub-id pub-id-type="doi">10.1136/postgradmedj-2018-135862</pub-id>
<pub-id pub-id-type="pmid">30333134</pub-id>
</mixed-citation>
</ref>
<ref id="B10">
<label>10</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Peng</surname>
<given-names>W.</given-names>
</name>
,
<name>
<surname>Wang</surname>
<given-names>J.</given-names>
</name>
,
<name>
<surname>Shan</surname>
<given-names>B.</given-names>
</name>
,
<name>
<surname>Peng</surname>
<given-names>Z.</given-names>
</name>
,
<name>
<surname>Dong</surname>
<given-names>Y.</given-names>
</name>
,
<name>
<surname>Shi</surname>
<given-names>W.</given-names>
</name>
</person-group>
<etal></etal>
(
<year>2018</year>
)
<article-title>Diagnostic and prognostic potential of circulating long non-coding RNAs in non small cell lung cancer</article-title>
.
<source>Cell. Physiol. Biochem.</source>
<volume>49</volume>
,
<fpage>816</fpage>
<lpage>827</lpage>
<pub-id pub-id-type="doi">10.1159/000493043</pub-id>
<pub-id pub-id-type="pmid">30165346</pub-id>
</mixed-citation>
</ref>
<ref id="B11">
<label>11</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Wang</surname>
<given-names>J.</given-names>
</name>
,
<name>
<surname>Su</surname>
<given-names>Z.</given-names>
</name>
,
<name>
<surname>Lu</surname>
<given-names>S.</given-names>
</name>
,
<name>
<surname>Fu</surname>
<given-names>W.</given-names>
</name>
,
<name>
<surname>Liu</surname>
<given-names>Z.</given-names>
</name>
,
<name>
<surname>Jiang</surname>
<given-names>X.</given-names>
</name>
</person-group>
<etal></etal>
(
<year>2018</year>
)
<article-title>LncRNA HOXA-AS2 and its molecular mechanisms in human cancer</article-title>
.
<source>Clin. Chim. Acta</source>
<volume>485</volume>
,
<fpage>229</fpage>
<lpage>233</lpage>
<pub-id pub-id-type="doi">10.1016/j.cca.2018.07.004</pub-id>
<pub-id pub-id-type="pmid">29981289</pub-id>
</mixed-citation>
</ref>
<ref id="B12">
<label>12</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Zhu</surname>
<given-names>X.</given-names>
</name>
,
<name>
<surname>Liu</surname>
<given-names>Y.</given-names>
</name>
,
<name>
<surname>Yu</surname>
<given-names>J.</given-names>
</name>
,
<name>
<surname>Du</surname>
<given-names>J.</given-names>
</name>
,
<name>
<surname>Guo</surname>
<given-names>R.</given-names>
</name>
,
<name>
<surname>Feng</surname>
<given-names>Y.</given-names>
</name>
</person-group>
<etal></etal>
(
<year>2018</year>
)
<article-title>LncRNA HOXA-AS2 represses endothelium inflammation by regulating the activity of NF-kappaB signaling</article-title>
.
<source>Atherosclerosis</source>
<volume>281</volume>
,
<fpage>38</fpage>
<lpage>46</lpage>
<pub-id pub-id-type="doi">10.1016/j.atherosclerosis.2018.12.012</pub-id>
<pub-id pub-id-type="pmid">30658190</pub-id>
</mixed-citation>
</ref>
<ref id="B13">
<label>13</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Zhu</surname>
<given-names>X.</given-names>
</name>
,
<name>
<surname>Yu</surname>
<given-names>J.</given-names>
</name>
,
<name>
<surname>Du</surname>
<given-names>J.</given-names>
</name>
,
<name>
<surname>Zhong</surname>
<given-names>G.</given-names>
</name>
,
<name>
<surname>Qiao</surname>
<given-names>L.</given-names>
</name>
and
<name>
<surname>Lin</surname>
<given-names>J.</given-names>
</name>
</person-group>
(
<year>2018</year>
)
<article-title>LncRNA HOXA-AS2 positively regulates osteogenesis of mesenchymal stem cells through inactivating NF-kappaB signalling</article-title>
.
<source>J. Cell Mol. Med.</source>
<volume>23</volume>
,
<fpage>1325</fpage>
<lpage>1332</lpage>
<pub-id pub-id-type="doi">10.1111/jcmm.14034</pub-id>
<pub-id pub-id-type="pmid">30536618</pub-id>
</mixed-citation>
</ref>
<ref id="B14">
<label>14</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Zhang</surname>
<given-names>Y.</given-names>
</name>
,
<name>
<surname>Xu</surname>
<given-names>J.</given-names>
</name>
,
<name>
<surname>Zhang</surname>
<given-names>S.</given-names>
</name>
,
<name>
<surname>An</surname>
<given-names>J.</given-names>
</name>
,
<name>
<surname>Zhang</surname>
<given-names>J.</given-names>
</name>
,
<name>
<surname>Huang</surname>
<given-names>J.</given-names>
</name>
</person-group>
<etal></etal>
(
<year>2018</year>
)
<article-title>HOXA-AS2 promotes proliferation and induces epithelial-mesenchymal transition via the miR-520c-3p/GPC3 axis in hepatocellular carcinoma</article-title>
.
<source>Cell. Physiol. Biochem.</source>
<volume>50</volume>
,
<fpage>2124</fpage>
<lpage>2138</lpage>
<pub-id pub-id-type="doi">10.1159/000495056</pub-id>
<pub-id pub-id-type="pmid">30415263</pub-id>
</mixed-citation>
</ref>
<ref id="B15">
<label>15</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Wang</surname>
<given-names>F.</given-names>
</name>
,
<name>
<surname>Wu</surname>
<given-names>D.</given-names>
</name>
,
<name>
<surname>Chen</surname>
<given-names>J.</given-names>
</name>
,
<name>
<surname>Chen</surname>
<given-names>S.</given-names>
</name>
,
<name>
<surname>He</surname>
<given-names>F.</given-names>
</name>
,
<name>
<surname>Fu</surname>
<given-names>H.</given-names>
</name>
</person-group>
<etal></etal>
(
<year>2019</year>
)
<article-title>Long non-coding RNA HOXA-AS2 promotes the migration, invasion and stemness of bladder cancer via regulating miR-125b/Smad2 axis</article-title>
.
<source>Exp. Cell Res.</source>
<volume>375</volume>
,
<fpage>1</fpage>
<lpage>10</lpage>
<pub-id pub-id-type="doi">10.1016/j.yexcr.2018.11.005</pub-id>
<pub-id pub-id-type="pmid">30412716</pub-id>
</mixed-citation>
</ref>
<ref id="B16">
<label>16</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Xia</surname>
<given-names>F.</given-names>
</name>
,
<name>
<surname>Chen</surname>
<given-names>Y.</given-names>
</name>
,
<name>
<surname>Jiang</surname>
<given-names>B.</given-names>
</name>
,
<name>
<surname>Du</surname>
<given-names>X.</given-names>
</name>
,
<name>
<surname>Peng</surname>
<given-names>Y.</given-names>
</name>
,
<name>
<surname>Wang</surname>
<given-names>W.</given-names>
</name>
</person-group>
<etal></etal>
(
<year>2018</year>
)
<article-title>Long noncoding RNA HOXA-AS2 promotes papillary thyroid cancer progression by regulating miR-520c-3p/S100A4 pathway</article-title>
.
<source>Cell. Physiol. Biochem.</source>
<volume>50</volume>
,
<fpage>1659</fpage>
<lpage>1672</lpage>
<pub-id pub-id-type="doi">10.1159/000494786</pub-id>
<pub-id pub-id-type="pmid">30384358</pub-id>
</mixed-citation>
</ref>
<ref id="B17">
<label>17</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Wang</surname>
<given-names>Y.</given-names>
</name>
,
<name>
<surname>Zhang</surname>
<given-names>R.</given-names>
</name>
,
<name>
<surname>Cheng</surname>
<given-names>G.</given-names>
</name>
,
<name>
<surname>Xu</surname>
<given-names>R.</given-names>
</name>
and
<name>
<surname>Han</surname>
<given-names>X.</given-names>
</name>
</person-group>
(
<year>2018</year>
)
<article-title>Long non-coding RNA HOXA-AS2 promotes migration and invasion by acting as a ceRNA of miR-520c-3p in osteosarcoma cells</article-title>
.
<source>Cell Cycle</source>
<volume>17</volume>
,
<fpage>1637</fpage>
<lpage>1648</lpage>
<pub-id pub-id-type="doi">10.1080/15384101.2018.1489174</pub-id>
<pub-id pub-id-type="pmid">30081707</pub-id>
</mixed-citation>
</ref>
<ref id="B18">
<label>18</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Lian</surname>
<given-names>Y.</given-names>
</name>
,
<name>
<surname>Li</surname>
<given-names>Z.</given-names>
</name>
,
<name>
<surname>Fan</surname>
<given-names>Y.</given-names>
</name>
,
<name>
<surname>Huang</surname>
<given-names>Q.</given-names>
</name>
,
<name>
<surname>Chen</surname>
<given-names>J.</given-names>
</name>
,
<name>
<surname>Liu</surname>
<given-names>W.</given-names>
</name>
</person-group>
<etal></etal>
(
<year>2017</year>
)
<article-title>The lncRNA-HOXA-AS2/EZH2/LSD1 oncogene complex promotes cell proliferation in pancreatic cancer</article-title>
.
<source>Am. J. Transl. Res.</source>
<volume>9</volume>
,
<fpage>5496</fpage>
<lpage>5506</lpage>
<pub-id pub-id-type="pmid">29312501</pub-id>
</mixed-citation>
</ref>
<ref id="B19">
<label>19</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Tong</surname>
<given-names>G.</given-names>
</name>
,
<name>
<surname>Wu</surname>
<given-names>X.</given-names>
</name>
,
<name>
<surname>Cheng</surname>
<given-names>B.</given-names>
</name>
,
<name>
<surname>Li</surname>
<given-names>L.</given-names>
</name>
,
<name>
<surname>Li</surname>
<given-names>X.</given-names>
</name>
,
<name>
<surname>Li</surname>
<given-names>Z.</given-names>
</name>
</person-group>
<etal></etal>
(
<year>2017</year>
)
<article-title>Knockdown of HOXA-AS2 suppresses proliferation and induces apoptosis in colorectal cancer</article-title>
.
<source>Am. J. Transl. Res.</source>
<volume>9</volume>
,
<fpage>4545</fpage>
<lpage>4552</lpage>
<pub-id pub-id-type="pmid">29118916</pub-id>
</mixed-citation>
</ref>
<ref id="B20">
<label>20</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Fang</surname>
<given-names>Y.</given-names>
</name>
,
<name>
<surname>Wang</surname>
<given-names>J.</given-names>
</name>
,
<name>
<surname>Wu</surname>
<given-names>F.</given-names>
</name>
,
<name>
<surname>Song</surname>
<given-names>Y.</given-names>
</name>
,
<name>
<surname>Zhao</surname>
<given-names>S.</given-names>
</name>
and
<name>
<surname>Zhang</surname>
<given-names>Q.</given-names>
</name>
</person-group>
(
<year>2017</year>
)
<article-title>Long non-coding RNA HOXA-AS2 promotes proliferation and invasion of breast cancer by acting as a miR-520c-3p sponge</article-title>
.
<source>Oncotarget</source>
<volume>8</volume>
,
<fpage>46090</fpage>
<lpage>46103</lpage>
<pub-id pub-id-type="doi">10.18632/oncotarget.17552</pub-id>
<pub-id pub-id-type="pmid">28545023</pub-id>
</mixed-citation>
</ref>
<ref id="B21">
<label>21</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Xie</surname>
<given-names>M.</given-names>
</name>
,
<name>
<surname>Sun</surname>
<given-names>M.</given-names>
</name>
,
<name>
<surname>Zhu</surname>
<given-names>Y.N.</given-names>
</name>
,
<name>
<surname>Xia</surname>
<given-names>R.</given-names>
</name>
,
<name>
<surname>Liu</surname>
<given-names>Y.W.</given-names>
</name>
,
<name>
<surname>Ding</surname>
<given-names>J.</given-names>
</name>
</person-group>
<etal></etal>
(
<year>2015</year>
)
<article-title>Long noncoding RNA HOXA-AS2 promotes gastric cancer proliferation by epigenetically silencing P21/PLK3/DDIT3 expression</article-title>
.
<source>Oncotarget</source>
<volume>6</volume>
,
<fpage>33587</fpage>
<lpage>33601</lpage>
<pub-id pub-id-type="doi">10.18632/oncotarget.5599</pub-id>
<pub-id pub-id-type="pmid">26384350</pub-id>
</mixed-citation>
</ref>
<ref id="B22">
<label>22</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Du</surname>
<given-names>Z.</given-names>
</name>
,
<name>
<surname>Sun</surname>
<given-names>T.</given-names>
</name>
,
<name>
<surname>Hacisuleyman</surname>
<given-names>E.</given-names>
</name>
,
<name>
<surname>Fei</surname>
<given-names>T.</given-names>
</name>
,
<name>
<surname>Wang</surname>
<given-names>X.</given-names>
</name>
,
<name>
<surname>Brown</surname>
<given-names>M.</given-names>
</name>
</person-group>
<etal></etal>
(
<year>2016</year>
)
<article-title>Integrative analyses reveal a long noncoding RNA-mediated sponge regulatory network in prostate cancer</article-title>
.
<source>Nat. Commun.</source>
<volume>7</volume>
,
<fpage>10982</fpage>
<pub-id pub-id-type="doi">10.1038/ncomms10982</pub-id>
<pub-id pub-id-type="pmid">26975529</pub-id>
</mixed-citation>
</ref>
<ref id="B23">
<label>23</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Wei</surname>
<given-names>D.M.</given-names>
</name>
,
<name>
<surname>Jiang</surname>
<given-names>M.T.</given-names>
</name>
,
<name>
<surname>Lin</surname>
<given-names>P.</given-names>
</name>
,
<name>
<surname>Yang</surname>
<given-names>H.</given-names>
</name>
,
<name>
<surname>Dang</surname>
<given-names>Y.W.</given-names>
</name>
,
<name>
<surname>Yu</surname>
<given-names>Q.</given-names>
</name>
</person-group>
<etal></etal>
(
<year>2019</year>
)
<article-title>Potential ceRNA networks involved in autophagy suppression of pancreatic cancer caused by chloroquine diphosphate: a study based on differentially expressed circRNAs, lncRNAs, miRNAs and mRNAs</article-title>
.
<source>Int. J. Oncol.</source>
<volume>54</volume>
,
<fpage>600</fpage>
<lpage>626</lpage>
<pub-id pub-id-type="pmid">30570107</pub-id>
</mixed-citation>
</ref>
<ref id="B24">
<label>24</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Liu</surname>
<given-names>Y.</given-names>
</name>
,
<name>
<surname>Miao</surname>
<given-names>L.</given-names>
</name>
,
<name>
<surname>Ni</surname>
<given-names>R.</given-names>
</name>
,
<name>
<surname>Zhang</surname>
<given-names>H.</given-names>
</name>
,
<name>
<surname>Li</surname>
<given-names>L.</given-names>
</name>
,
<name>
<surname>Wang</surname>
<given-names>X.</given-names>
</name>
</person-group>
<etal></etal>
(
<year>2016</year>
)
<article-title>microRNA-520a-3p inhibits proliferation and cancer stem cell phenotype by targeting HOXD8 in non-small cell lung cancer</article-title>
.
<source>Oncol. Rep.</source>
<volume>36</volume>
,
<fpage>3529</fpage>
<lpage>3535</lpage>
<pub-id pub-id-type="doi">10.3892/or.2016.5149</pub-id>
<pub-id pub-id-type="pmid">27748920</pub-id>
</mixed-citation>
</ref>
<ref id="B25">
<label>25</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Yu</surname>
<given-names>J.</given-names>
</name>
,
<name>
<surname>Tan</surname>
<given-names>Q.</given-names>
</name>
,
<name>
<surname>Deng</surname>
<given-names>B.</given-names>
</name>
,
<name>
<surname>Fang</surname>
<given-names>C.</given-names>
</name>
,
<name>
<surname>Qi</surname>
<given-names>D.</given-names>
</name>
and
<name>
<surname>Wang</surname>
<given-names>R.</given-names>
</name>
</person-group>
(
<year>2015</year>
)
<article-title>The microRNA-520a-3p inhibits proliferation, apoptosis and metastasis by targeting MAP3K2 in non-small cell lung cancer</article-title>
.
<source>Am. J. Cancer Res.</source>
<volume>5</volume>
,
<fpage>802</fpage>
<lpage>811</lpage>
<pub-id pub-id-type="pmid">25973317</pub-id>
</mixed-citation>
</ref>
<ref id="B26">
<label>26</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Zhang</surname>
<given-names>C.</given-names>
</name>
,
<name>
<surname>Su</surname>
<given-names>C.</given-names>
</name>
,
<name>
<surname>Song</surname>
<given-names>Q.</given-names>
</name>
,
<name>
<surname>Dong</surname>
<given-names>F.</given-names>
</name>
,
<name>
<surname>Yu</surname>
<given-names>S.</given-names>
</name>
and
<name>
<surname>Huo</surname>
<given-names>J.</given-names>
</name>
</person-group>
(
<year>2018</year>
)
<article-title>LncRNA PICART1 suppressed non-small cell lung cancer cells proliferation and invasion by targeting AKT1 signaling pathway</article-title>
.
<source>Am. J. Transl. Res.</source>
<volume>10</volume>
,
<fpage>4193</fpage>
<lpage>4201</lpage>
<pub-id pub-id-type="pmid">30662662</pub-id>
</mixed-citation>
</ref>
<ref id="B27">
<label>27</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Liu</surname>
<given-names>Y.Y.</given-names>
</name>
,
<name>
<surname>Li</surname>
<given-names>B.</given-names>
</name>
and
<name>
<surname>Guo</surname>
<given-names>H.</given-names>
</name>
</person-group>
(
<year>2019</year>
)
<article-title>LncRNA MAFG-AS1 facilitates the migration and invasion of NSCLC cell via sponging miR-339-5p from MMP15</article-title>
.
<source>Cell Biol. Int.</source>
<volume>43</volume>
,
<fpage>384</fpage>
<lpage>393</lpage>
<pub-id pub-id-type="pmid">30599080</pub-id>
</mixed-citation>
</ref>
<ref id="B28">
<label>28</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Jing</surname>
<given-names>H.</given-names>
</name>
,
<name>
<surname>Xia</surname>
<given-names>H.</given-names>
</name>
,
<name>
<surname>Qian</surname>
<given-names>M.</given-names>
</name>
and
<name>
<surname>Lv</surname>
<given-names>X.</given-names>
</name>
</person-group>
(
<year>2019</year>
)
<article-title>Long noncoding RNA CRNDE promotes non-small cell lung cancer progression via sponging microRNA-338-3p</article-title>
.
<source>Biomed. Pharmacother.</source>
<volume>110</volume>
,
<fpage>825</fpage>
<lpage>833</lpage>
<pub-id pub-id-type="doi">10.1016/j.biopha.2018.12.024</pub-id>
<pub-id pub-id-type="pmid">30554121</pub-id>
</mixed-citation>
</ref>
<ref id="B29">
<label>29</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Yuan</surname>
<given-names>S.</given-names>
</name>
,
<name>
<surname>Xiang</surname>
<given-names>Y.</given-names>
</name>
,
<name>
<surname>Wang</surname>
<given-names>G.</given-names>
</name>
,
<name>
<surname>Zhou</surname>
<given-names>M.</given-names>
</name>
,
<name>
<surname>Meng</surname>
<given-names>G.</given-names>
</name>
,
<name>
<surname>Liu</surname>
<given-names>Q.</given-names>
</name>
</person-group>
<etal></etal>
(
<year>2019</year>
)
<article-title>Hypoxia-sensitive LINC01436 is regulated by E2F6 and acts as an oncogene by targeting miR-30a-3p in non-small cell lung cancer</article-title>
.
<source>Mol. Oncol.</source>
<volume>13</volume>
,
<fpage>840</fpage>
<lpage>856</lpage>
<pub-id pub-id-type="doi">10.1002/1878-0261.12437</pub-id>
<pub-id pub-id-type="pmid">30614188</pub-id>
</mixed-citation>
</ref>
<ref id="B30">
<label>30</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Guo</surname>
<given-names>T.</given-names>
</name>
,
<name>
<surname>Li</surname>
<given-names>J.</given-names>
</name>
,
<name>
<surname>Zhang</surname>
<given-names>L.</given-names>
</name>
,
<name>
<surname>Hou</surname>
<given-names>W.</given-names>
</name>
,
<name>
<surname>Wang</surname>
<given-names>R.</given-names>
</name>
,
<name>
<surname>Zhang</surname>
<given-names>J.</given-names>
</name>
</person-group>
<etal></etal>
(
<year>2019</year>
)
<article-title>Multidimensional communication of microRNAs and long non-coding RNAs in lung cancer</article-title>
.
<source>J. Cancer Res. Clin. Oncol.</source>
<volume>145</volume>
,
<fpage>31</fpage>
<lpage>48</lpage>
<pub-id pub-id-type="doi">10.1007/s00432-018-2767-5</pub-id>
<pub-id pub-id-type="pmid">30417217</pub-id>
</mixed-citation>
</ref>
<ref id="B31">
<label>31</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Lv</surname>
<given-names>X.</given-names>
</name>
,
<name>
<surname>Li</surname>
<given-names>C.Y.</given-names>
</name>
,
<name>
<surname>Han</surname>
<given-names>P.</given-names>
</name>
and
<name>
<surname>Xu</surname>
<given-names>X.Y.</given-names>
</name>
</person-group>
(
<year>2018</year>
)
<article-title>MicroRNA-520a-3p inhibits cell growth and metastasis of non-small cell lung cancer through PI3K/AKT/mTOR signaling pathway</article-title>
.
<source>Eur. Rev. Med. Pharmacol. Sci.</source>
<volume>22</volume>
,
<fpage>2321</fpage>
<lpage>2327</lpage>
<pub-id pub-id-type="pmid">29762835</pub-id>
</mixed-citation>
</ref>
<ref id="B32">
<label>32</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Qu</surname>
<given-names>J.</given-names>
</name>
,
<name>
<surname>Li</surname>
<given-names>M.</given-names>
</name>
,
<name>
<surname>Zhong</surname>
<given-names>W.</given-names>
</name>
and
<name>
<surname>Hu</surname>
<given-names>C.</given-names>
</name>
</person-group>
(
<year>2015</year>
)
<article-title>Competing endogenous RNA in cancer: a new pattern of gene expression regulation</article-title>
.
<source>Int. J. Clin. Exp. Med.</source>
<volume>8</volume>
,
<fpage>17110</fpage>
<lpage>17116</lpage>
<pub-id pub-id-type="pmid">26770304</pub-id>
</mixed-citation>
</ref>
</ref-list>
</back>
</pmc>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/ChloroquineV1/Data/Pmc/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000434 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Pmc/Corpus/biblio.hfd -nk 000434 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    ChloroquineV1
   |flux=    Pmc
   |étape=   Corpus
   |type=    RBID
   |clé=     PMC:6542977
   |texte=   Long noncoding RNA HOXA-AS2 promotes non-small cell lung cancer progression by regulating miR-520a-3p
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Pmc/Corpus/RBID.i   -Sk "pubmed:31064819" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Pmc/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a ChloroquineV1 

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Wed Mar 25 22:43:59 2020. Site generation: Sun Jan 31 12:44:45 2021