Serveur d'exploration Chloroquine

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Phenothiazinium Dyes Are Active against Trypanosoma cruzi In Vitro

Identifieur interne : 000422 ( Pmc/Corpus ); précédent : 000421; suivant : 000423

Phenothiazinium Dyes Are Active against Trypanosoma cruzi In Vitro

Auteurs : Gisele Bulh Es Portapilla ; Luiz Miguel Pereira ; Cássia Mariana Bronzon Da Costa ; Maiara Voltarelli Providello ; Pedro Alexandre Sampaio Oliveira ; Amanda Goulart ; Naira Ferreira Anchieta ; Mark Wainwright ; Gilberto Bida Leite Braga ; Sérgio De Albuquerque

Source :

RBID : PMC:6637691

Abstract

Chagas disease is a tropical illness caused by the protozoan Trypanosoma cruzi. The disease affects populations of the Americas and has been spread to other continents due to the migration process. The disease is partially controlled by two drugs, Benznidazole and Nifurtimox. These molecules are active in the acute phase of the infection but are usually ineffective during the symptomatic chronic phase. Several research groups have developed novel candidates to control Chagas disease; however, no novel commercial formulation is available. In this article, we described the anti-T. cruzi effects of phenothiazinium dyes in amastigote and trypomastigote forms of the parasite. Methylene Blue, New Methylene Blue, Toluidine Blue O, and 1,9-Dimethyl Methylene Blue inhibited the parasite proliferation at nanomolar concentrations and also demonstrated low toxicity in host cells. Moreover, combinations of phenothiazinium dyes indicated a synergic pattern against amastigotes compared to the Benznidazole counterparts. Phenothiazinium dyes levels of reactive oxygen species (ROS) and decreased the mitochondrial potential in trypomastigotes, indicating the mechanism of action of the dyes in T. cruzi. Our article offers a basis for future strategies for the control of Chagas disease using low-cost formulations, an important point for endemic underdeveloped regions.


Url:
DOI: 10.1155/2019/8301569
PubMed: 31355283
PubMed Central: 6637691

Links to Exploration step

PMC:6637691

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Phenothiazinium Dyes Are Active against
<italic> Trypanosoma cruzi</italic>
In Vitro</title>
<author>
<name sortKey="Bulh Es Portapilla, Gisele" sort="Bulh Es Portapilla, Gisele" uniqKey="Bulh Es Portapilla G" first="Gisele" last="Bulh Es Portapilla">Gisele Bulh Es Portapilla</name>
<affiliation>
<nlm:aff id="I1">Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Av do Café, sn/n, 14040-903 Ribeirão Preto, SP, Brazil</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Pereira, Luiz Miguel" sort="Pereira, Luiz Miguel" uniqKey="Pereira L" first="Luiz Miguel" last="Pereira">Luiz Miguel Pereira</name>
<affiliation>
<nlm:aff id="I1">Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Av do Café, sn/n, 14040-903 Ribeirão Preto, SP, Brazil</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Bronzon Da Costa, Cassia Mariana" sort="Bronzon Da Costa, Cassia Mariana" uniqKey="Bronzon Da Costa C" first="Cássia Mariana" last="Bronzon Da Costa">Cássia Mariana Bronzon Da Costa</name>
<affiliation>
<nlm:aff id="I1">Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Av do Café, sn/n, 14040-903 Ribeirão Preto, SP, Brazil</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Voltarelli Providello, Maiara" sort="Voltarelli Providello, Maiara" uniqKey="Voltarelli Providello M" first="Maiara" last="Voltarelli Providello">Maiara Voltarelli Providello</name>
<affiliation>
<nlm:aff id="I1">Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Av do Café, sn/n, 14040-903 Ribeirão Preto, SP, Brazil</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Sampaio Oliveira, Pedro Alexandre" sort="Sampaio Oliveira, Pedro Alexandre" uniqKey="Sampaio Oliveira P" first="Pedro Alexandre" last="Sampaio Oliveira">Pedro Alexandre Sampaio Oliveira</name>
<affiliation>
<nlm:aff id="I1">Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Av do Café, sn/n, 14040-903 Ribeirão Preto, SP, Brazil</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Goulart, Amanda" sort="Goulart, Amanda" uniqKey="Goulart A" first="Amanda" last="Goulart">Amanda Goulart</name>
<affiliation>
<nlm:aff id="I1">Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Av do Café, sn/n, 14040-903 Ribeirão Preto, SP, Brazil</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Ferreira Anchieta, Naira" sort="Ferreira Anchieta, Naira" uniqKey="Ferreira Anchieta N" first="Naira" last="Ferreira Anchieta">Naira Ferreira Anchieta</name>
<affiliation>
<nlm:aff id="I1">Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Av do Café, sn/n, 14040-903 Ribeirão Preto, SP, Brazil</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Wainwright, Mark" sort="Wainwright, Mark" uniqKey="Wainwright M" first="Mark" last="Wainwright">Mark Wainwright</name>
<affiliation>
<nlm:aff id="I2">School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool L3 3AF, UK</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Leite Braga, Gilberto Bida" sort="Leite Braga, Gilberto Bida" uniqKey="Leite Braga G" first="Gilberto Bida" last="Leite Braga">Gilberto Bida Leite Braga</name>
<affiliation>
<nlm:aff id="I1">Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Av do Café, sn/n, 14040-903 Ribeirão Preto, SP, Brazil</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="De Albuquerque, Sergio" sort="De Albuquerque, Sergio" uniqKey="De Albuquerque S" first="Sérgio" last="De Albuquerque">Sérgio De Albuquerque</name>
<affiliation>
<nlm:aff id="I1">Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Av do Café, sn/n, 14040-903 Ribeirão Preto, SP, Brazil</nlm:aff>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PMC</idno>
<idno type="pmid">31355283</idno>
<idno type="pmc">6637691</idno>
<idno type="url">http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6637691</idno>
<idno type="RBID">PMC:6637691</idno>
<idno type="doi">10.1155/2019/8301569</idno>
<date when="2019">2019</date>
<idno type="wicri:Area/Pmc/Corpus">000422</idno>
<idno type="wicri:explorRef" wicri:stream="Pmc" wicri:step="Corpus" wicri:corpus="PMC">000422</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a" type="main">Phenothiazinium Dyes Are Active against
<italic> Trypanosoma cruzi</italic>
In Vitro</title>
<author>
<name sortKey="Bulh Es Portapilla, Gisele" sort="Bulh Es Portapilla, Gisele" uniqKey="Bulh Es Portapilla G" first="Gisele" last="Bulh Es Portapilla">Gisele Bulh Es Portapilla</name>
<affiliation>
<nlm:aff id="I1">Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Av do Café, sn/n, 14040-903 Ribeirão Preto, SP, Brazil</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Pereira, Luiz Miguel" sort="Pereira, Luiz Miguel" uniqKey="Pereira L" first="Luiz Miguel" last="Pereira">Luiz Miguel Pereira</name>
<affiliation>
<nlm:aff id="I1">Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Av do Café, sn/n, 14040-903 Ribeirão Preto, SP, Brazil</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Bronzon Da Costa, Cassia Mariana" sort="Bronzon Da Costa, Cassia Mariana" uniqKey="Bronzon Da Costa C" first="Cássia Mariana" last="Bronzon Da Costa">Cássia Mariana Bronzon Da Costa</name>
<affiliation>
<nlm:aff id="I1">Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Av do Café, sn/n, 14040-903 Ribeirão Preto, SP, Brazil</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Voltarelli Providello, Maiara" sort="Voltarelli Providello, Maiara" uniqKey="Voltarelli Providello M" first="Maiara" last="Voltarelli Providello">Maiara Voltarelli Providello</name>
<affiliation>
<nlm:aff id="I1">Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Av do Café, sn/n, 14040-903 Ribeirão Preto, SP, Brazil</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Sampaio Oliveira, Pedro Alexandre" sort="Sampaio Oliveira, Pedro Alexandre" uniqKey="Sampaio Oliveira P" first="Pedro Alexandre" last="Sampaio Oliveira">Pedro Alexandre Sampaio Oliveira</name>
<affiliation>
<nlm:aff id="I1">Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Av do Café, sn/n, 14040-903 Ribeirão Preto, SP, Brazil</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Goulart, Amanda" sort="Goulart, Amanda" uniqKey="Goulart A" first="Amanda" last="Goulart">Amanda Goulart</name>
<affiliation>
<nlm:aff id="I1">Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Av do Café, sn/n, 14040-903 Ribeirão Preto, SP, Brazil</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Ferreira Anchieta, Naira" sort="Ferreira Anchieta, Naira" uniqKey="Ferreira Anchieta N" first="Naira" last="Ferreira Anchieta">Naira Ferreira Anchieta</name>
<affiliation>
<nlm:aff id="I1">Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Av do Café, sn/n, 14040-903 Ribeirão Preto, SP, Brazil</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Wainwright, Mark" sort="Wainwright, Mark" uniqKey="Wainwright M" first="Mark" last="Wainwright">Mark Wainwright</name>
<affiliation>
<nlm:aff id="I2">School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool L3 3AF, UK</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Leite Braga, Gilberto Bida" sort="Leite Braga, Gilberto Bida" uniqKey="Leite Braga G" first="Gilberto Bida" last="Leite Braga">Gilberto Bida Leite Braga</name>
<affiliation>
<nlm:aff id="I1">Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Av do Café, sn/n, 14040-903 Ribeirão Preto, SP, Brazil</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="De Albuquerque, Sergio" sort="De Albuquerque, Sergio" uniqKey="De Albuquerque S" first="Sérgio" last="De Albuquerque">Sérgio De Albuquerque</name>
<affiliation>
<nlm:aff id="I1">Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Av do Café, sn/n, 14040-903 Ribeirão Preto, SP, Brazil</nlm:aff>
</affiliation>
</author>
</analytic>
<series>
<title level="j">BioMed Research International</title>
<idno type="ISSN">2314-6133</idno>
<idno type="eISSN">2314-6141</idno>
<imprint>
<date when="2019">2019</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<p>Chagas disease is a tropical illness caused by the protozoan
<italic> Trypanosoma cruzi</italic>
. The disease affects populations of the Americas and has been spread to other continents due to the migration process. The disease is partially controlled by two drugs, Benznidazole and Nifurtimox. These molecules are active in the acute phase of the infection but are usually ineffective during the symptomatic chronic phase. Several research groups have developed novel candidates to control Chagas disease; however, no novel commercial formulation is available. In this article, we described the anti-
<italic>T. cruzi </italic>
effects of phenothiazinium dyes in amastigote and trypomastigote forms of the parasite. Methylene Blue, New Methylene Blue, Toluidine Blue O, and 1,9-Dimethyl Methylene Blue inhibited the parasite proliferation at nanomolar concentrations and also demonstrated low toxicity in host cells. Moreover, combinations of phenothiazinium dyes indicated a synergic pattern against amastigotes compared to the Benznidazole counterparts. Phenothiazinium dyes levels of reactive oxygen species (ROS) and decreased the mitochondrial potential in trypomastigotes, indicating the mechanism of action of the dyes in
<italic> T. cruzi</italic>
. Our article offers a basis for future strategies for the control of Chagas disease using low-cost formulations, an important point for endemic underdeveloped regions.</p>
</div>
</front>
<back>
<div1 type="bibliography">
<listBibl>
<biblStruct></biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Moraes, C B" uniqKey="Moraes C">C. B. Moraes</name>
</author>
<author>
<name sortKey="Franco, C H" uniqKey="Franco C">C. H. Franco</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Buckner, F S" uniqKey="Buckner F">F. S. Buckner</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Campos, M" uniqKey="Campos M">M. Campos</name>
</author>
<author>
<name sortKey="Leon, L" uniqKey="Leon L">L. Leon</name>
</author>
<author>
<name sortKey="Taylor, M" uniqKey="Taylor M">M. Taylor</name>
</author>
<author>
<name sortKey="Kelly, J M" uniqKey="Kelly J">J. M. Kelly</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Schirmer, R H" uniqKey="Schirmer R">R. H. Schirmer</name>
</author>
<author>
<name sortKey="Adler, H" uniqKey="Adler H">H. Adler</name>
</author>
<author>
<name sortKey="Pickhardt, M" uniqKey="Pickhardt M">M. Pickhardt</name>
</author>
<author>
<name sortKey="Mandelkow, E" uniqKey="Mandelkow E">E. Mandelkow</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Guttmann, P" uniqKey="Guttmann P">P. Guttmann</name>
</author>
<author>
<name sortKey="Ehrlich, P" uniqKey="Ehrlich P">P. Ehrlich</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ginimuge, P R" uniqKey="Ginimuge P">P. R. Ginimuge</name>
</author>
<author>
<name sortKey="Jyothi, S D" uniqKey="Jyothi S">S. D. Jyothi</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Suwanarusk, R" uniqKey="Suwanarusk R">R. Suwanarusk</name>
</author>
<author>
<name sortKey="Russell, B" uniqKey="Russell B">B. Russell</name>
</author>
<author>
<name sortKey="Ong, A" uniqKey="Ong A">A. Ong</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Buckner, F S" uniqKey="Buckner F">F. S. Buckner</name>
</author>
<author>
<name sortKey="Verlinde, C L M J" uniqKey="Verlinde C">C. L. M. J. Verlinde</name>
</author>
<author>
<name sortKey="La Flamme, A C" uniqKey="La Flamme A">A. C. La Flamme</name>
</author>
<author>
<name sortKey="Van Voorhis, W C" uniqKey="Van Voorhis W">W. C. Van Voorhis</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ferreira, B L" uniqKey="Ferreira B">B. L. Ferreira</name>
</author>
<author>
<name sortKey="Orikaza, C M" uniqKey="Orikaza C">C. M. Orikaza</name>
</author>
<author>
<name sortKey="Cordero, E M" uniqKey="Cordero E">E. M. Cordero</name>
</author>
<author>
<name sortKey="Mortara, R A" uniqKey="Mortara R">R. A. Mortara</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Pereira, L M" uniqKey="Pereira L">L. M. Pereira</name>
</author>
<author>
<name sortKey="De Luca, G" uniqKey="De Luca G">G. de Luca</name>
</author>
<author>
<name sortKey="Abichabki, N D L M" uniqKey="Abichabki N">N. D. L. M. Abichabki</name>
</author>
<author>
<name sortKey="Bronzon Da Costa, C M" uniqKey="Bronzon Da Costa C">C. M. Bronzon da Costa</name>
</author>
<author>
<name sortKey="Yatsuda, A P" uniqKey="Yatsuda A">A. P. Yatsuda</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Mosmann, T" uniqKey="Mosmann T">T. Mosmann</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Bellomo, G" uniqKey="Bellomo G">G. Bellomo</name>
</author>
<author>
<name sortKey="Mirabelli, F" uniqKey="Mirabelli F">F. Mirabelli</name>
</author>
<author>
<name sortKey="Vairetti, M" uniqKey="Vairetti M">M. Vairetti</name>
</author>
<author>
<name sortKey="Iosi, F" uniqKey="Iosi F">F. Iosi</name>
</author>
<author>
<name sortKey="Malorni, W" uniqKey="Malorni W">W. Malorni</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Providello, M V" uniqKey="Providello M">M. V. Providello</name>
</author>
<author>
<name sortKey="Carneiro, Z A" uniqKey="Carneiro Z">Z. A. Carneiro</name>
</author>
<author>
<name sortKey="Portapilla, G B" uniqKey="Portapilla G">G. B. Portapilla</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Chou, T" uniqKey="Chou T">T. Chou</name>
</author>
<author>
<name sortKey="Talalay, P" uniqKey="Talalay P">P. Talalay</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Alonso Padilla, J" uniqKey="Alonso Padilla J">J. Alonso-Padilla</name>
</author>
<author>
<name sortKey="Rodriguez, A" uniqKey="Rodriguez A">A. Rodríguez</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Sykes, M L" uniqKey="Sykes M">M. L. Sykes</name>
</author>
<author>
<name sortKey="Avery, V M" uniqKey="Avery V">V. M. Avery</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Clifton, J" uniqKey="Clifton J">J. Clifton</name>
</author>
<author>
<name sortKey="Leikin, J B" uniqKey="Leikin J">J. B. Leikin</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Lu, G" uniqKey="Lu G">G. Lu</name>
</author>
<author>
<name sortKey="Nagbanshi, M" uniqKey="Nagbanshi M">M. Nagbanshi</name>
</author>
<author>
<name sortKey="Goldau, N" uniqKey="Goldau N">N. Goldau</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Martins, T A F" uniqKey="Martins T">T. A. F. Martins</name>
</author>
<author>
<name sortKey="Diniz, L D F" uniqKey="Diniz L">L. D. F. Diniz</name>
</author>
<author>
<name sortKey="Mazzeti, A L" uniqKey="Mazzeti A">A. L. Mazzeti</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Diniz, L F" uniqKey="Diniz L">L. F. Diniz</name>
</author>
<author>
<name sortKey="Mazzeti, A L" uniqKey="Mazzeti A">A. L. Mazzeti</name>
</author>
<author>
<name sortKey="Caldas, I S" uniqKey="Caldas I">I. S. Caldas</name>
</author>
<author>
<name sortKey="Ribeiro, I" uniqKey="Ribeiro I">I. Ribeiro</name>
</author>
<author>
<name sortKey="Bahia, M T" uniqKey="Bahia M">M. T. Bahia</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Araujo, M S S" uniqKey="Araujo M">M. S. S. Araújo</name>
</author>
<author>
<name sortKey="Martins Filho, O A" uniqKey="Martins Filho O">O. A. Martins-Filho</name>
</author>
<author>
<name sortKey="Pereira, M E S" uniqKey="Pereira M">M. E. S. Pereira</name>
</author>
<author>
<name sortKey="Brener, Z" uniqKey="Brener Z">Z. Brener</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Alvarez, M N" uniqKey="Alvarez M">M. N. Alvarez</name>
</author>
<author>
<name sortKey="Peluffo, G" uniqKey="Peluffo G">G. Peluffo</name>
</author>
<author>
<name sortKey="Piacenza, L" uniqKey="Piacenza L">L. Piacenza</name>
</author>
<author>
<name sortKey="Radi, R" uniqKey="Radi R">R. Radi</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Piacenza, L" uniqKey="Piacenza L">L. Piacenza</name>
</author>
<author>
<name sortKey="Alvarez, M N" uniqKey="Alvarez M">M. N. Alvarez</name>
</author>
<author>
<name sortKey="Peluffo, G" uniqKey="Peluffo G">G. Peluffo</name>
</author>
<author>
<name sortKey="Radi, R" uniqKey="Radi R">R. Radi</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Paiva, C N" uniqKey="Paiva C">C. N. Paiva</name>
</author>
<author>
<name sortKey="Bozza, M T" uniqKey="Bozza M">M. T. Bozza</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Paiva, C N" uniqKey="Paiva C">C. N. Paiva</name>
</author>
<author>
<name sortKey="Medei, E" uniqKey="Medei E">E. Medei</name>
</author>
<author>
<name sortKey="Bozza, M T" uniqKey="Bozza M">M. T. Bozza</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Finzi, J K" uniqKey="Finzi J">J. K. Finzi</name>
</author>
<author>
<name sortKey="Chiavegatto, C W M" uniqKey="Chiavegatto C">C. W. M. Chiavegatto</name>
</author>
<author>
<name sortKey="Corat, K F" uniqKey="Corat K">K. F. Corat</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Jung, J Y" uniqKey="Jung J">J.-Y. Jung</name>
</author>
<author>
<name sortKey="Madan Lala, R" uniqKey="Madan Lala R">R. Madan-Lala</name>
</author>
<author>
<name sortKey="Georgieva, M" uniqKey="Georgieva M">M. Georgieva</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Jimenez L Pez, C" uniqKey="Jimenez L Pez C">C. Jiménez-López</name>
</author>
<author>
<name sortKey="Collette, J R" uniqKey="Collette J">J. R. Collette</name>
</author>
<author>
<name sortKey="Brothers, K M" uniqKey="Brothers K">K. M. Brothers</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Fraternale, A" uniqKey="Fraternale A">A. Fraternale</name>
</author>
<author>
<name sortKey="Paoletti, M F" uniqKey="Paoletti M">M. F. Paoletti</name>
</author>
<author>
<name sortKey="Casabianca, A" uniqKey="Casabianca A">A. Casabianca</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Vlahos, R" uniqKey="Vlahos R">R. Vlahos</name>
</author>
<author>
<name sortKey="Stambas, J" uniqKey="Stambas J">J. Stambas</name>
</author>
<author>
<name sortKey="Bozinovski, S" uniqKey="Bozinovski S">S. Bozinovski</name>
</author>
<author>
<name sortKey="Broughton, B R S" uniqKey="Broughton B">B. R. S. Broughton</name>
</author>
<author>
<name sortKey="Drummond, G R" uniqKey="Drummond G">G. R. Drummond</name>
</author>
<author>
<name sortKey="Selemidis, S" uniqKey="Selemidis S">S. Selemidis</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Mittra, B" uniqKey="Mittra B">B. Mittra</name>
</author>
<author>
<name sortKey="Cortez, M" uniqKey="Cortez M">M. Cortez</name>
</author>
<author>
<name sortKey="Haydock, A" uniqKey="Haydock A">A. Haydock</name>
</author>
<author>
<name sortKey="Ramasamy, G" uniqKey="Ramasamy G">G. Ramasamy</name>
</author>
<author>
<name sortKey="Myler, P J" uniqKey="Myler P">P. J. Myler</name>
</author>
<author>
<name sortKey="Andrews, N W" uniqKey="Andrews N">N. W. Andrews</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Goes, G R" uniqKey="Goes G">G. R. Goes</name>
</author>
<author>
<name sortKey="Rocha, P S" uniqKey="Rocha P">P. S. Rocha</name>
</author>
<author>
<name sortKey="Diniz, A R" uniqKey="Diniz A">A. R. Diniz</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Wilkinson, S R" uniqKey="Wilkinson S">S. R. Wilkinson</name>
</author>
<author>
<name sortKey="Taylor, M C" uniqKey="Taylor M">M. C. Taylor</name>
</author>
<author>
<name sortKey="Horn, D" uniqKey="Horn D">D. Horn</name>
</author>
<author>
<name sortKey="Kelly, J M" uniqKey="Kelly J">J. M. Kelly</name>
</author>
<author>
<name sortKey="Cheeseman, I" uniqKey="Cheeseman I">I. Cheeseman</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Xiong, Z M" uniqKey="Xiong Z">Z. M. Xiong</name>
</author>
<author>
<name sortKey="O Onovan, M" uniqKey="O Onovan M">M. O’Donovan</name>
</author>
<author>
<name sortKey="Sun, L" uniqKey="Sun L">L. Sun</name>
</author>
<author>
<name sortKey="Choi, J Y" uniqKey="Choi J">J. Y. Choi</name>
</author>
<author>
<name sortKey="Ren, M" uniqKey="Ren M">M. Ren</name>
</author>
<author>
<name sortKey="Cao, K" uniqKey="Cao K">K. Cao</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Poteet, E" uniqKey="Poteet E">E. Poteet</name>
</author>
<author>
<name sortKey="Winters, A" uniqKey="Winters A">A. Winters</name>
</author>
<author>
<name sortKey="Yan, L J" uniqKey="Yan L">L.-J. Yan</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Wen, Y" uniqKey="Wen Y">Y. Wen</name>
</author>
<author>
<name sortKey="Li, W" uniqKey="Li W">W. Li</name>
</author>
<author>
<name sortKey="Poteet, E C" uniqKey="Poteet E">E. C. Poteet</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Messier, E M" uniqKey="Messier E">E. M. Messier</name>
</author>
<author>
<name sortKey="Bahmed, K" uniqKey="Bahmed K">K. Bahmed</name>
</author>
<author>
<name sortKey="Tuder, R M" uniqKey="Tuder R">R. M. Tuder</name>
</author>
<author>
<name sortKey="Chu, H W" uniqKey="Chu H">H. W. Chu</name>
</author>
<author>
<name sortKey="Bowler, R P" uniqKey="Bowler R">R. P. Bowler</name>
</author>
<author>
<name sortKey="Kosmider, B" uniqKey="Kosmider B">B. Kosmider</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Mickle, D A" uniqKey="Mickle D">D. A. Mickle</name>
</author>
<author>
<name sortKey="Weisel, R D" uniqKey="Weisel R">R. D. Weisel</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Andreo, R" uniqKey="Andreo R">R. Andreo</name>
</author>
<author>
<name sortKey="Regasini, L O" uniqKey="Regasini L">L. O. Regasini</name>
</author>
<author>
<name sortKey="Petronio, M S" uniqKey="Petronio M">M. S. Petronio</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Loor, G" uniqKey="Loor G">G. Loor</name>
</author>
<author>
<name sortKey="Kondapalli, J" uniqKey="Kondapalli J">J. Kondapalli</name>
</author>
<author>
<name sortKey="Schriewer, J M" uniqKey="Schriewer J">J. M. Schriewer</name>
</author>
<author>
<name sortKey="Chandel, N S" uniqKey="Chandel N">N. S. Chandel</name>
</author>
<author>
<name sortKey="Vanden Hoek, T L" uniqKey="Vanden Hoek T">T. L. Vanden Hoek</name>
</author>
<author>
<name sortKey="Schumacker, P T" uniqKey="Schumacker P">P. T. Schumacker</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Cortes, L A" uniqKey="Cortes L">L. A. Cortes</name>
</author>
<author>
<name sortKey="Castro, L" uniqKey="Castro L">L. Castro</name>
</author>
<author>
<name sortKey="Pesce, B" uniqKey="Pesce B">B. Pesce</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Xiong, Z M" uniqKey="Xiong Z">Z.-M. Xiong</name>
</author>
<author>
<name sortKey="Choi, J Y" uniqKey="Choi J">J. Y. Choi</name>
</author>
<author>
<name sortKey="Wang, K" uniqKey="Wang K">K. Wang</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Duicu, O M" uniqKey="Duicu O">O. M. Duicu</name>
</author>
<author>
<name sortKey="Privistirescu, A" uniqKey="Privistirescu A">A. Privistirescu</name>
</author>
<author>
<name sortKey="Wolf, A" uniqKey="Wolf A">A. Wolf</name>
</author>
</analytic>
</biblStruct>
</listBibl>
</div1>
</back>
</TEI>
<pmc article-type="research-article">
<pmc-dir>properties open_access</pmc-dir>
<front>
<journal-meta>
<journal-id journal-id-type="nlm-ta">Biomed Res Int</journal-id>
<journal-id journal-id-type="iso-abbrev">Biomed Res Int</journal-id>
<journal-id journal-id-type="publisher-id">BMRI</journal-id>
<journal-title-group>
<journal-title>BioMed Research International</journal-title>
</journal-title-group>
<issn pub-type="ppub">2314-6133</issn>
<issn pub-type="epub">2314-6141</issn>
<publisher>
<publisher-name>Hindawi</publisher-name>
</publisher>
</journal-meta>
<article-meta>
<article-id pub-id-type="pmid">31355283</article-id>
<article-id pub-id-type="pmc">6637691</article-id>
<article-id pub-id-type="doi">10.1155/2019/8301569</article-id>
<article-categories>
<subj-group subj-group-type="heading">
<subject>Research Article</subject>
</subj-group>
</article-categories>
<title-group>
<article-title>Phenothiazinium Dyes Are Active against
<italic> Trypanosoma cruzi</italic>
In Vitro</article-title>
</title-group>
<contrib-group>
<contrib contrib-type="author">
<name>
<surname>Bulhões Portapilla</surname>
<given-names>Gisele</given-names>
</name>
<xref ref-type="aff" rid="I1">
<sup>1</sup>
</xref>
</contrib>
<contrib contrib-type="author" corresp="yes">
<contrib-id contrib-id-type="orcid" authenticated="false">https://orcid.org/0000-0001-8249-7476</contrib-id>
<name>
<surname>Pereira</surname>
<given-names>Luiz Miguel</given-names>
</name>
<email>miguepereira@usp.br</email>
<xref ref-type="aff" rid="I1">
<sup>1</sup>
</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Bronzon da Costa</surname>
<given-names>Cássia Mariana</given-names>
</name>
<xref ref-type="aff" rid="I1">
<sup>1</sup>
</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Voltarelli Providello</surname>
<given-names>Maiara</given-names>
</name>
<xref ref-type="aff" rid="I1">
<sup>1</sup>
</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Sampaio Oliveira</surname>
<given-names>Pedro Alexandre</given-names>
</name>
<xref ref-type="aff" rid="I1">
<sup>1</sup>
</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Goulart</surname>
<given-names>Amanda</given-names>
</name>
<xref ref-type="aff" rid="I1">
<sup>1</sup>
</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Ferreira Anchieta</surname>
<given-names>Naira</given-names>
</name>
<xref ref-type="aff" rid="I1">
<sup>1</sup>
</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Wainwright</surname>
<given-names>Mark</given-names>
</name>
<xref ref-type="aff" rid="I2">
<sup>2</sup>
</xref>
</contrib>
<contrib contrib-type="author">
<contrib-id contrib-id-type="orcid" authenticated="false">https://orcid.org/0000-0002-4787-4704</contrib-id>
<name>
<surname>Leite Braga</surname>
<given-names>Gilberto Úbida</given-names>
</name>
<xref ref-type="aff" rid="I1">
<sup>1</sup>
</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>de Albuquerque</surname>
<given-names>Sérgio</given-names>
</name>
<xref ref-type="aff" rid="I1">
<sup>1</sup>
</xref>
</contrib>
</contrib-group>
<aff id="I1">
<sup>1</sup>
Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Av do Café, sn/n, 14040-903 Ribeirão Preto, SP, Brazil</aff>
<aff id="I2">
<sup>2</sup>
School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool L3 3AF, UK</aff>
<author-notes>
<fn fn-type="other">
<p>Academic Editor: Marija Mostarica-Stojković</p>
</fn>
</author-notes>
<pub-date pub-type="collection">
<year>2019</year>
</pub-date>
<pub-date pub-type="epub">
<day>4</day>
<month>7</month>
<year>2019</year>
</pub-date>
<volume>2019</volume>
<elocation-id>8301569</elocation-id>
<history>
<date date-type="received">
<day>1</day>
<month>2</month>
<year>2019</year>
</date>
<date date-type="rev-recd">
<day>10</day>
<month>5</month>
<year>2019</year>
</date>
<date date-type="accepted">
<day>10</day>
<month>6</month>
<year>2019</year>
</date>
</history>
<permissions>
<copyright-statement>Copyright © 2019 Gisele Bulhões Portapilla et al.</copyright-statement>
<copyright-year>2019</copyright-year>
<license xlink:href="https://creativecommons.org/licenses/by/4.0/">
<license-p>This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.</license-p>
</license>
</permissions>
<abstract>
<p>Chagas disease is a tropical illness caused by the protozoan
<italic> Trypanosoma cruzi</italic>
. The disease affects populations of the Americas and has been spread to other continents due to the migration process. The disease is partially controlled by two drugs, Benznidazole and Nifurtimox. These molecules are active in the acute phase of the infection but are usually ineffective during the symptomatic chronic phase. Several research groups have developed novel candidates to control Chagas disease; however, no novel commercial formulation is available. In this article, we described the anti-
<italic>T. cruzi </italic>
effects of phenothiazinium dyes in amastigote and trypomastigote forms of the parasite. Methylene Blue, New Methylene Blue, Toluidine Blue O, and 1,9-Dimethyl Methylene Blue inhibited the parasite proliferation at nanomolar concentrations and also demonstrated low toxicity in host cells. Moreover, combinations of phenothiazinium dyes indicated a synergic pattern against amastigotes compared to the Benznidazole counterparts. Phenothiazinium dyes levels of reactive oxygen species (ROS) and decreased the mitochondrial potential in trypomastigotes, indicating the mechanism of action of the dyes in
<italic> T. cruzi</italic>
. Our article offers a basis for future strategies for the control of Chagas disease using low-cost formulations, an important point for endemic underdeveloped regions.</p>
</abstract>
<funding-group>
<award-group>
<funding-source>Fundação de Amparo à Pesquisa do Estado de São Paulo</funding-source>
<award-id>#14/50928-2</award-id>
</award-group>
</funding-group>
</article-meta>
</front>
<body>
<sec id="sec1">
<title>1. Introduction</title>
<p>
<italic>Trypanosoma cruzi </italic>
is the etiologic agent of the Chagas disease, endemic in the Americas. Chagas disease afflicts ~ 6 million to 7 million people and nowadays has spread to North America, Europe, Asia, and Oceania due to migration. The disease has two distinct phases; the acute phase is asymptomatic or causes unspecific symptoms. The chronic phase, when symptomatic, may lead to cardiac and/or digestive degeneration [
<xref rid="B1" ref-type="bibr">1</xref>
].</p>
<p>Despite the effort of several groups to develop novel therapies [
<xref rid="B2" ref-type="bibr">2</xref>
], there are only two commercial drugs for Chagas disease control, Benznidazole and Nifurtimox [
<xref rid="B3" ref-type="bibr">3</xref>
]. Moreover, several cases of treatment failure have been described [
<xref rid="B4" ref-type="bibr">4</xref>
], demanding new active and safe drugs. In this article, we investigated the anti-
<italic>T. cruzi</italic>
effect of phenothiazinium dyes, a low-cost family of drugs with potential against malaria [
<xref rid="B5" ref-type="bibr">5</xref>
]. Methylene Blue (MB), the most used phenothiazinium dye, has been applied against malaria since the XIX century, representing the first report of treatment with a synthetic molecule [
<xref rid="B6" ref-type="bibr">6</xref>
]. Due to the reversible side effects (green sclera and urine), MB was replaced by alternative antimalarial molecules, such as quinine, artemisinin, and chloroquine [
<xref rid="B7" ref-type="bibr">7</xref>
]. Nowadays MB has been revived for control of malaria, cancer, cyanide poisoning, and methaemoglobinaemia and recently in the treatment of patients with Alzheimer's disease [
<xref rid="B8" ref-type="bibr">8</xref>
].</p>
<p>In this study, we evaluated the potential of the phenothiazinium dyes for the control of
<italic> T. cruzi in vitro</italic>
. We also determined several synergic formulations composed by phenothiazinium dyes and/or Benznidazole. ROS production and mitochondrial activity in treated cultures were assayed by flow cytometry, in order to investigate some aspects of the mechanism of action of phenothiazinium dyes in
<italic> T. cruzi</italic>
. The screening of low-cost compounds is a key factor for the control of the Chagas disease in endemic regions, most of them being in a delicate economic state.</p>
</sec>
<sec id="sec2">
<title>2. Material and Methods</title>
<sec id="sec2.1">
<title>2.1.
<italic>T. cruzi</italic>
Culture</title>
<p>
<italic>T. cruzi </italic>
(Tulahuen strain) was maintained in cultures of LLCMK2 cells and cultivated in RMPI supplemented with 10% fetal bovine serum (FBS) at 37°C, 5% CO
<sub>2</sub>
. The parasites used in proliferation and flow cytometry assays were genetically modified to express the enzyme
<italic>β</italic>
-galactosidase (
<italic>T. cruzi</italic>
-LacZ [
<xref rid="B9" ref-type="bibr">9</xref>
]). To illustrate the inhibition of parasite proliferation, a
<italic> T. cruzi</italic>
expressing GFP (G-GFP strain [
<xref rid="B10" ref-type="bibr">10</xref>
]) was used.</p>
</sec>
<sec id="sec2.2">
<title>2.2. Compounds</title>
<p>Methylene Blue (MB), New Methylene Blue (NMB), Toluidine Blue O (TBO), and 1,9–Dimethyl Methylene Blue (DMMB) were purchased from Sigma-Aldrich and diluted in PBS at 5 mg/ml. Benznidazole (BZ) and Menadione (MN) was purchased from Sigma-Aldrich and diluted at 5 mg/ml in dimethyl sulfoxide (DMSO).</p>
</sec>
<sec id="sec2.3">
<title>2.3. Amastigote Growth Inhibition Assay</title>
<p>LLCMK2 cells were distributed in 96-well plates (5×10
<sup>4</sup>
cells/ml) and infected with
<italic> T. cruzi</italic>
-LacZ at a multiplicity of infection (MOI) of 10:1 (5×10
<sup>5</sup>
cells/ml). The cultures were incubated for 48 h, 37°C, and 5% CO
<sub>2</sub>
and washed with phosphate buffered saline (PBS). Serial dilutions of compounds (starting from 10
<italic>μ</italic>
M) in RPMI were added to the cultures in duplicate and incubated for 72 h, 37°C,and 5% CO
<sub>2</sub>
. For the drug combination assay, fractioned dilutions (2 × IC
<sub>50</sub>
, 1.6 × IC
<sub>50</sub>
, 1.3 × IC
<sub>50</sub>
, 0.7 × IC
<sub>50</sub>
, 0.5 × IC
<sub>50</sub>
, and 0.2 × IC
<sub>50</sub>
) of single and combined compounds [
<xref rid="B11" ref-type="bibr">11</xref>
] were added to the infected cultures and incubated under the same conditions. We considered 8
<italic>μ</italic>
M, 1
<italic>μ</italic>
M, 0.05
<italic>μ</italic>
M, 0.7
<italic>μ</italic>
M, and 0.04
<italic>μ</italic>
M as 2 × IC
<sub>50</sub>
for BZ, MB, NMB, TBO, and DMMB, respectively. After incubation, the media were removed and followed by the reaction with chlorophenol red-
<italic>β</italic>
-D-galactopyranoside (CPRG) buffer (200
<italic>μ</italic>
M CPRG, 2% Trion X-100, and 50 mM MgCl
<sub>2</sub>
in PBS) for 4 h, 37°C. The plates were read at 570 nm in ELISA reader (Synergy™ H1, Biotek). Three independent assays were performed.</p>
</sec>
<sec id="sec2.4">
<title>2.4. Fluorescence Microscopy</title>
<p>LLCMK2 cells (2 × 10
<sup>3</sup>
cells per well) were cultivated in 96-well, black, flat-bottomed plates for 6 h, 37°C, and 5% CO
<sub>2</sub>
. The plate was washed with PBS and the cells were infected with
<italic> T. cruzi</italic>
(G-GFP strain) at a multiplicity of infection (MOI) of 5:1 (1×10
<sup>5</sup>
cells/ml). The cultures were incubated for 24 h, 37°C, 5% CO
<sub>2,</sub>
and the wells washed 3 times with PBS in order to remove noninternalized parasites. Subsequently, IC
<sub>50</sub>
concentrations of MB, NMB, TBO, DMMB, and BZ were added to the cultures and the plates were incubated for 72 h, 37°C, and 5% CO
<sub>2</sub>
. Infected and nontreated and noninfected cells were used as negative controls and positive controls, respectively. After the incubation, the plates were fixed with 4% paraformaldehyde for 20 minutes, followed by washing with PBS. The nucleus of host cells was stained with 0.25
<italic>μ</italic>
M 4′,6-diamidine-2′-phenylindole dihydrochloride (DAPI) (Ex/Em = 340/488 nm) and the GFP
<italic> T. cruzi</italic>
parasites were detected by the green florescence (Ex/Em = 488/510 nm). The images were acquired in an Image Xpress Micro XLS Widefield High-Content Analysis System from Molecular Devices. The system also calculated the percentage of inhibition compared to the nontreated control. This was done using the number of intracellular amastigotes in twenty-five images obtained for each well.</p>
</sec>
<sec id="sec2.5">
<title>2.5. Cytotoxicity</title>
<p>The cytotoxic effects of the phenothiazinium dyes in LLCMK2 cells was measured by Thiazolyl Blue Tetrazolium Bromide (MTT) assay, as described in [
<xref rid="B12" ref-type="bibr">12</xref>
]. A suspension of LLCMK2 cells (5 × 10
<sup>4</sup>
/ml) in RPMI supplemented with 10% FBS was distributed in 96-well plates and cultivated (37°C, 5% CO
<sub>2</sub>
) to the confluence. The media were discarded and serial dilutions of the compounds were added (starting from 100
<italic>μ</italic>
M) in duplicate. The cultures were incubated for 72 h, 37°C, and 5% CO
<sub>2</sub>
. For the measurement of the cellular esterase activity, the media were carefully removed and an MTT solution (500
<italic>μ</italic>
g/ml MTT in PBS) was added. The reaction was performed for 4 h at 37°C, 5% CO
<sub>2</sub>
. After the reaction, the MTT solution was discarded and the formazan crystals solubilized with DMSO. The absorbance was measured in an ELISA reader (Synergy™ H1, Biotek) at 570 nm.</p>
</sec>
<sec id="sec2.6">
<title>2.6. ROS Measurement and Evaluation of Mitochondrial Membrane Potential Status</title>
<p>LLCMK2 cells in 75 cm
<sup>2</sup>
flasks were cultivated to confluence and were infected with 1 × 10
<sup>7</sup>
<italic> T. cruzi </italic>
trypomastigotes. The cultures were cultivated for 6 days when free trypomastigotes were observed in the supernatant. The infected cells were centrifuged for 10 min, 3000 g, and washed with PBS and suspended in trypsin to separate cells and parasites. The cultures were distributed in 1.5 ml microtubes (~ 1 × 10
<sup>6</sup>
trypomastigotes/tube) and incubated with 4 × IC
<sub>50</sub>
of compounds at 37°C, 5% CO
<sub>2</sub>
for 2 h. Menadione (MN), a classic inducer of cellular oxidative stress [
<xref rid="B13" ref-type="bibr">13</xref>
], was used as the positive control of ROS production as previously described in [
<xref rid="B14" ref-type="bibr">14</xref>
]. After treatment, the cultures were centrifuged for 10 minutes, 3000 g, and washed with PBS and suspended in trypsin. The ROS measurement was performed after incubation with 5
<italic>μ</italic>
M 2,7–dichlorofluorescin diacetate (DCFDA) for 15 minutes at room temperature in the dark. Similarly, the mitochondrial membrane potential was determined after incubation with 5
<italic>μ</italic>
M JC-1 under the same conditions. JC-1 is a cationic dye that accumulates in active mitochondria. In low concentrations, the dye exhibits a green fluorescence. In polarized mitochondria, the dye forms J-aggregates, emitting red fluorescence. The cultures were washed with PBS and analyzed in a BD FACS-Canto (BD Biosciences) flow cytometer with the FACSDiva (BD) 6.1.3 software. Due to the size, host cells (infected and noninfected) and trypomastigotes were separately analyzed by flow cytometry [
<xref rid="B11" ref-type="bibr">11</xref>
]. The median of fluorescence of oxidized DCF and the populations with active mitochondria were measured with excitation/emission at 488 nm/529 nm and 488 nm/529 nm, respectively. The percentage of DCF fluorescence or cells with polarized mitochondria was calculated in relation to the respective nontreated controls.</p>
</sec>
<sec id="sec2.7">
<title>2.7. Statistical Analysis</title>
<p>The percentages of proliferation and cytotoxicity were calculated using the mean absorbance of the compound-free control and the absorbance of each treatment. The IC
<sub>50</sub>
and the combination index (CI) were achieved using Compusyn software (
<ext-link ext-link-type="uri" xlink:href="http://www.combosyn.com/">http://www.combosyn.com/</ext-link>
) and the selective index (CC
<sub>50</sub>
/IC
<sub>50</sub>
) was also determined. From CI values, synergistic (CI < 1), and antagonistic (CI > 1) interactions were identified [
<xref rid="B15" ref-type="bibr">15</xref>
]. For oxidative stress and mitochondrial activity, data were analyzed by one-way ANOVA followed by a Dunnett's post hoc test (compared to nontreated groups) on GraphPad 5.0 software.</p>
</sec>
</sec>
<sec id="sec3">
<title>3. Results and Discussion</title>
<sec id="sec3.1">
<title>3.1. Phenothiazinium Dyes Inhibit the Amastigote Proliferation at Low Concentrations</title>
<p>The phenothiazinium dyes inhibited the amastigote proliferation at low concentrations. The MB, NMB, TBO, and DMMB IC
<sub>50</sub>
concentrations were lower compared to BZ (3.41
<italic>μ</italic>
M), reaching 0.44
<italic>μ</italic>
M, 0.09
<italic>μ</italic>
M, 0.27
<italic>μ</italic>
M, and 0.08
<italic>μ</italic>
M, respectively (
<xref rid="tab1" ref-type="table">Table 1</xref>
). Moreover, a similar inhibition pattern between BZ and phenothiazinium dyes was observed using high-content screening analysis by amastigotes counting (
<xref ref-type="fig" rid="fig1">Figure 1</xref>
). At IC
<sub>50</sub>
concentrations (
<xref rid="tab1" ref-type="table">Table 1</xref>
) all tested compounds partially inhibited parasite proliferation (Figures
<xref ref-type="fig" rid="fig1">1(c)</xref>
,
<xref ref-type="fig" rid="fig1">1(d)</xref>
,
<xref ref-type="fig" rid="fig1">1(e)</xref>
,
<xref ref-type="fig" rid="fig1">1(f)</xref>
,
<xref ref-type="fig" rid="fig1">1(g)</xref>
, and
<xref ref-type="fig" rid="fig1">1(h)</xref>
), compared to the nontreated control (
<xref ref-type="fig" rid="fig1">Figure 1(b)</xref>
). However, the phenothiazinium dyes demonstrated higher cytotoxicity (lower CC
<sub>50</sub>
) in relation to BZ (> 200
<italic>μ</italic>
M) wherein MB, NMB, TBO, and DMMB inhibited the host cell reductases at 16.82
<italic>μ</italic>
M, 4.19
<italic>μ</italic>
M, 7.93
<italic>μ</italic>
M, and 4.46
<italic>μ</italic>
M, respectively. Despite the relative higher host cell toxicity, the selective index (SI) was above 25, which is adequate compared to the index recommended for candidate drugs for Chagas disease control. In drug screening procedures against
<italic> T. cruzi</italic>
, an SI > 10 is recommended for candidates with potential for use in
<italic> in vivo</italic>
and clinical assays [
<xref rid="B16" ref-type="bibr">16</xref>
,
<xref rid="B17" ref-type="bibr">17</xref>
]. Moreover, MB has been successfully applied against malaria and to treat methemoglobinemia with few cases of toxicity [
<xref rid="B18" ref-type="bibr">18</xref>
,
<xref rid="B19" ref-type="bibr">19</xref>
], reinforcing its potential use as anti-
<italic>T. cruzi</italic>
compound in further assays.</p>
</sec>
<sec id="sec3.2">
<title>3.2. Phenothiazinium Combinations Are Synergic against Amastigotes
<italic> In Vitro</italic>
</title>
<p>The combination of compounds has an important potential for the control of the Chagas disease. Several combinations of BZ with Itraconazole, E1224 (ravuconazole prodrug), and ketoconazole have demonstrated improved anti-
<italic>T. cruzi</italic>
pattern compared to the single treatments [
<xref rid="B20" ref-type="bibr">20</xref>
<xref rid="B22" ref-type="bibr">22</xref>
]. The main aim of combinations with BZ is the decrease of dosages allied to the alleviation of side effects, which allow longer-term treatments. However, the combinations of phenothiazinium dyes with BZ resulted in an antagonist effect (CI > 1), despite the elevation of the parasite inhibition, mostly at lower concentrations (Figures
<xref ref-type="fig" rid="fig2">2(a)</xref>
,
<xref ref-type="fig" rid="fig2">2(b)</xref>
,
<xref ref-type="fig" rid="fig2">2(c)</xref>
,
<xref ref-type="fig" rid="fig2">2(d)</xref>
, and
<xref rid="tab2" ref-type="table">Table 2</xref>
). However, the combinations among phenothiazinium dyes were synergic against amastigotes (except MB + DMMB), improving the parasite inhibition in all concentrations analyzed (Figures
<xref ref-type="fig" rid="fig2">2(e)</xref>
,
<xref ref-type="fig" rid="fig2">2(f)</xref>
,
<xref ref-type="fig" rid="fig2">2(g)</xref>
,
<xref ref-type="fig" rid="fig2">2(h)</xref>
,
<xref ref-type="fig" rid="fig2">2(i)</xref>
, and
<xref ref-type="fig" rid="fig2">2(j)</xref>
). The CI of MB + NMB, MB + TBO, MB + DMMB, NMB + TBO, NMB + DMMB, and TBO + DMMB were 0.90, 0.89, 1.05, 0.74, 0.80, and 0.42, respectively (
<xref rid="tab2" ref-type="table">Table 2</xref>
). The CI values probably indicate some differences in mechanisms of action among the phenothiazinium dyes. For example, the combinations containing TBO demonstrated the lowest CI values, probably due to low structure similarity with other dyes. In contrast, MB and DMMB are structurally similar, which reflected in an antagonist pattern when combined (
<xref rid="tab2" ref-type="table">Table 2</xref>
). However, TBO demonstrated a high IC
<sub>50</sub>
(compared to NMB or DMMB), which may affect negatively further
<italic> in vivo</italic>
treatments. Therefore, a wide and complex strategy for
<italic> in vivo</italic>
procedures is demanded, once there are multiple combinations and treatment regimens (acute, chronic, and pregnant models) to test.</p>
</sec>
<sec id="sec3.3">
<title>3.3. Phenothiazinium Dyes Increase ROS in Treated Cells and Trypomastigotes</title>
<p>The literature is contradictory regarding the role of ROS produced by the host cell during
<italic> T. cruzi </italic>
infection. Several studies have implicated the host cell respiratory burst in controlling the infection [
<xref rid="B23" ref-type="bibr">23</xref>
,
<xref rid="B24" ref-type="bibr">24</xref>
]. Others have reported a positive correlation between ROS production by the host and parasite proliferation [
<xref rid="B25" ref-type="bibr">25</xref>
,
<xref rid="B26" ref-type="bibr">26</xref>
]. Also, when a sublethal hydrogen peroxide concentration was added to a
<italic> T. cruzi</italic>
infected culture, parasite proliferation increased [
<xref rid="B32" ref-type="bibr">27</xref>
]. Our results show increased ROS production in
<italic> T. cruzi</italic>
infected cells (untreated) when compared to noninfected cells (
<xref ref-type="fig" rid="fig3">Figure 3(a)</xref>
), corroborating an effect also observed for proliferating bacteria [
<xref rid="B27" ref-type="bibr">28</xref>
], fungi [
<xref rid="B28" ref-type="bibr">29</xref>
], viruses [
<xref rid="B29" ref-type="bibr">30</xref>
,
<xref rid="B30" ref-type="bibr">31</xref>
], and
<italic> Leishmania</italic>
[
<xref rid="B31" ref-type="bibr">32</xref>
]. Despite the efficient antioxidant machinery [
<xref rid="B33" ref-type="bibr">33</xref>
], we observed increased ROS production in
<italic> T. cruzi</italic>
trypomastigotes after treatment with phenothiazinium dyes (
<xref ref-type="fig" rid="fig3">Figure 3(b)</xref>
). This effect was similar to the one observed for MN a classic inducer of oxidative stress [
<xref rid="B13" ref-type="bibr">13</xref>
]. On the other hand, no ROS production was detected in trypomastigotes treated with BZ. Although BZ induces the production of free radicals and electrophilic metabolites after the reduction of its nitro group, no ROS is produced in treated parasites [
<xref rid="B34" ref-type="bibr">34</xref>
]. We have observed that treatment with phenothiazinium dyes (and to a lesser extent BZ and MN) increased ROS production in noninfected cells (
<xref ref-type="fig" rid="fig3">Figure 3(b)</xref>
). In contrast, treating
<italic> T. cruzi</italic>
infected cells with phenothiazinium dyes decreased ROS production (
<xref ref-type="fig" rid="fig3">Figure 3(b)</xref>
). Indeed, Methylene Blue scavenges ROS in several biological models such as skin and HT-22 cells, elevating oxygen consumption and mitochondrial activity [
<xref rid="B35" ref-type="bibr">35</xref>
<xref rid="B37" ref-type="bibr">37</xref>
]. Because
<italic> T. cruzi</italic>
proliferation is stimulated by ROS production [
<xref rid="B32" ref-type="bibr">27</xref>
], we speculate that scavenging of such ROS by phenothiazinium dyes impairs parasite proliferation. However, for the complete elucidation of the roles of phenothiazinium dyes in ROS scavenging, complementary assays will be required in further studies. As an example, the ability of phenothiazinium dyes to scavenge ROS may be compared to that of Trolox (6-Hydroxy-2,5,7,8-tetramethylchromane-2-carboxylic acid), a well-established ROS scavenger [
<xref rid="B38" ref-type="bibr">38</xref>
,
<xref rid="B39" ref-type="bibr">39</xref>
].</p>
</sec>
<sec id="sec3.4">
<title>3.4. Mitochondria of Trypomastigotes Are Sensitive to Phenothiazinium Dyes</title>
<p>All noninfected and infected LLCMK2 cells are positive to JC-1 accumulation, indicating the presence of active mitochondria. However, 22% of trypomastigotes were negative to mitochondrial polarization (
<xref ref-type="fig" rid="fig4">Figure 4(a)</xref>
). Moreover, phenothiazinium dyes decreased mitochondrial membrane potential in trypomastigotes, whereas the infected and noninfected cells were unaffected by incubation with the compounds (
<xref ref-type="fig" rid="fig4">Figure 4(b)</xref>
). Also, BZ and MN displayed distinct effects on the mitochondrial membrane potential of trypomastigotes. The former did not affect mitochondria whereas the latter reduced the membrane potential (
<xref ref-type="fig" rid="fig4">Figure 4(b)</xref>
). It was previously observed that BZ elevates free radical production and causes DNA damage without affecting mitochondria [
<xref rid="B40" ref-type="bibr">40</xref>
]. The effect of phenothiazinium dyes on trypomastigotes was similar to that observed for MN (
<xref ref-type="fig" rid="fig4">Figure 4(b)</xref>
), a classic mitochondrial inhibitor [
<xref rid="B41" ref-type="bibr">41</xref>
]. Thus, the increment of ROS observed in trypomastigotes under treatment with dyes may be a consequence of mitochondrial depolarization. Moreover, decreased mitochondrial activity may be also related to the ROS impairment production in infected cells treated with phenothiazinium dyes. Drugs that alter the mitochondrial activity usually lead to loss of parasite ATP production and induction of apoptosis [
<xref rid="B42" ref-type="bibr">42</xref>
]. For example, MB improves mitochondrial respiration in cells [
<xref rid="B35" ref-type="bibr">35</xref>
,
<xref rid="B43" ref-type="bibr">43</xref>
], decreasing ROS in cardiac tissue from diabetic rats [
<xref rid="B44" ref-type="bibr">44</xref>
].</p>
<p>We have observed that active and synergic combinations of phenothiazinium dyes are effective in killing
<italic> T. cruzi</italic>
. Our results also indicate the potential of phenothiazinium dyes as candidates for the control of
<italic> T. cruzi</italic>
. We speculate that phenothiazinium dyes scavenge ROS during
<italic> T. cruzi</italic>
infection thus reducing parasite proliferation. However, future assays will be necessary to elucidate the mechanism. Furthermore, the induction of apoptosis by disruption of mitochondrial polarity should also be considered as a potential mechanism operating in conjunction with the ROS scavenging by phenothiazinium dyes. The present article opens the perspective for the development of low-cost and active anti-
<italic>T. cruzi</italic>
molecules, pivotal characteristics for the control of Chagas disease in low-middle-income endemic regions.</p>
</sec>
</sec>
</body>
<back>
<ack>
<title>Acknowledgments</title>
<p>This work was developed within the framework of National Institute of Science and Technology of Pharmaceutical Nanotechnology (INCT-Nanofarma), which is supported by “Fundação de Amparo à Pesquisa do Estado de São Paulo” (Fapesp, Brazil, grant #14/50928-2) and “Conselho Nacional de Pesquisa” (CNPq, Brazil, grant #465687/2014-8). The authors also would like to thank CAPES for the Doctoral fellowship to GBP and Fabiana Rosseto de Morais (FCFRP-USP) for the technical assistance with the flow cytometry.</p>
</ack>
<sec sec-type="data-availability">
<title>Data Availability</title>
<p>The data used to support the findings of this study are included within the article.</p>
</sec>
<sec>
<title>Conflicts of Interest</title>
<p>The authors declare that they have no conflicts of interest.</p>
</sec>
<ref-list>
<ref id="B1">
<label>1</label>
<element-citation publication-type="book">
<collab>World Health Organization</collab>
<source>
<italic toggle="yes">Chagas Disease (American Trypanosomiasis)</italic>
</source>
<year>2018</year>
<comment>World Health Organization website,
<ext-link ext-link-type="uri" xlink:href="http://www.who.int/mediacentre/factsheets/fs340/en/">http://www.who.int/mediacentre/factsheets/fs340/en/</ext-link>
</comment>
</element-citation>
</ref>
<ref id="B2">
<label>2</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Moraes</surname>
<given-names>C. B.</given-names>
</name>
<name>
<surname>Franco</surname>
<given-names>C. H.</given-names>
</name>
</person-group>
<article-title>Novel drug discovery for Chagas disease</article-title>
<source>
<italic toggle="yes">Expert Opinion on Drug Discovery</italic>
</source>
<year>2016</year>
<volume>11</volume>
<issue>5</issue>
<fpage>447</fpage>
<lpage>455</lpage>
<pub-id pub-id-type="other">2-s2.0-84962074599</pub-id>
<pub-id pub-id-type="doi">10.1517/17460441.2016.1160883</pub-id>
<pub-id pub-id-type="pmid">26967915</pub-id>
</element-citation>
</ref>
<ref id="B3">
<label>3</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Buckner</surname>
<given-names>F. S.</given-names>
</name>
</person-group>
<article-title>Experimental chemotherapy and approaches to drug discovery for trypanosoma cruzi infection</article-title>
<source>
<italic toggle="yes">Advances in Parasitology</italic>
</source>
<year>2011</year>
<volume>75</volume>
<fpage>89</fpage>
<lpage>119</lpage>
<pub-id pub-id-type="doi">10.1016/B978-0-12-385863-4.00005-8</pub-id>
<pub-id pub-id-type="pmid">21820553</pub-id>
</element-citation>
</ref>
<ref id="B4">
<label>4</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Campos</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Leon</surname>
<given-names>L.</given-names>
</name>
<name>
<surname>Taylor</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Kelly</surname>
<given-names>J. M.</given-names>
</name>
</person-group>
<article-title>Benznidazole-resistance in Trypanosoma cruzi: evidence that distinct mechanisms can act in concert</article-title>
<source>
<italic toggle="yes">Molecular and Biochemical Parasitology</italic>
</source>
<year>2014</year>
<volume>193</volume>
<issue>1</issue>
<fpage>17</fpage>
<lpage>19</lpage>
<pub-id pub-id-type="pmid">24462750</pub-id>
</element-citation>
</ref>
<ref id="B5">
<label>5</label>
<element-citation publication-type="book">
<person-group person-group-type="author">
<name>
<surname>Schirmer</surname>
<given-names>R. H.</given-names>
</name>
<name>
<surname>Adler</surname>
<given-names>H.</given-names>
</name>
<name>
<surname>Pickhardt</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Mandelkow</surname>
<given-names>E.</given-names>
</name>
</person-group>
<article-title>Lest we forget you--methylene blue</article-title>
<source>
<italic toggle="yes">Neurobiology of Aging</italic>
</source>
<year>2011</year>
<publisher-loc>Atlanta, GA, USA</publisher-loc>
<publisher-name>Elsevier Inc</publisher-name>
<fpage>2325 e7</fpage>
<lpage>2325 e16</lpage>
</element-citation>
</ref>
<ref id="B6">
<label>6</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Guttmann</surname>
<given-names>P.</given-names>
</name>
<name>
<surname>Ehrlich</surname>
<given-names>P.</given-names>
</name>
</person-group>
<article-title>Ueber die wirkung des methylenblau bei malaria</article-title>
<source>
<italic toggle="yes">Berliner klinische, Wochenschrift</italic>
</source>
<year>1891</year>
<volume>28</volume>
<issue>891</issue>
<fpage>953</fpage>
<lpage>956</lpage>
</element-citation>
</ref>
<ref id="B7">
<label>7</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Ginimuge</surname>
<given-names>P. R.</given-names>
</name>
<name>
<surname>Jyothi</surname>
<given-names>S. D.</given-names>
</name>
</person-group>
<article-title>Methylene blue: revisited</article-title>
<source>
<italic toggle="yes">Journal of Anaesthesiology Clinical Pharmacology</italic>
</source>
<year>2010</year>
<volume>26</volume>
<issue>4</issue>
<fpage>517</fpage>
<lpage>20</lpage>
</element-citation>
</ref>
<ref id="B8">
<label>8</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Suwanarusk</surname>
<given-names>R.</given-names>
</name>
<name>
<surname>Russell</surname>
<given-names>B.</given-names>
</name>
<name>
<surname>Ong</surname>
<given-names>A.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Methylene blue inhibits the asexual development of vivax malaria parasites from a region of increasing chloroquine resistance</article-title>
<source>
<italic toggle="yes">Journal of Antimicrobial Chemotherapy</italic>
</source>
<year>2015</year>
<volume>70</volume>
<issue>1</issue>
<fpage>124</fpage>
<lpage>129</lpage>
<pub-id pub-id-type="other">2-s2.0-84928196581</pub-id>
<pub-id pub-id-type="doi">10.1093/jac/dku326</pub-id>
<pub-id pub-id-type="pmid">25150147</pub-id>
</element-citation>
</ref>
<ref id="B9">
<label>9</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Buckner</surname>
<given-names>F. S.</given-names>
</name>
<name>
<surname>Verlinde</surname>
<given-names>C. L. M. J.</given-names>
</name>
<name>
<surname>La Flamme</surname>
<given-names>A. C.</given-names>
</name>
<name>
<surname>Van Voorhis</surname>
<given-names>W. C.</given-names>
</name>
</person-group>
<article-title>Efficient technique for screening drugs for activity against Trypanosoma cruzi using parasites expressing
<italic>β</italic>
-galactosidase</article-title>
<source>
<italic toggle="yes">Antimicrobial Agents and Chemotherapy</italic>
</source>
<year>1996</year>
<volume>40</volume>
<issue>11</issue>
<fpage>2592</fpage>
<lpage>2597</lpage>
<pub-id pub-id-type="other">2-s2.0-0029861640</pub-id>
<pub-id pub-id-type="doi">10.1128/AAC.40.11.2592</pub-id>
<pub-id pub-id-type="pmid">8913471</pub-id>
</element-citation>
</ref>
<ref id="B10">
<label>10</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Ferreira</surname>
<given-names>B. L.</given-names>
</name>
<name>
<surname>Orikaza</surname>
<given-names>C. M.</given-names>
</name>
<name>
<surname>Cordero</surname>
<given-names>E. M.</given-names>
</name>
<name>
<surname>Mortara</surname>
<given-names>R. A.</given-names>
</name>
</person-group>
<article-title>Trypanosoma cruzi: single cell live imaging inside infected tissues</article-title>
<source>
<italic toggle="yes">Cellular Microbiology</italic>
</source>
<year>2016</year>
<volume>18</volume>
<issue>6</issue>
<fpage>779</fpage>
<lpage>783</lpage>
<pub-id pub-id-type="other">2-s2.0-84953302087</pub-id>
<pub-id pub-id-type="doi">10.1111/cmi.12553</pub-id>
<pub-id pub-id-type="pmid">26639617</pub-id>
</element-citation>
</ref>
<ref id="B11">
<label>11</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Pereira</surname>
<given-names>L. M.</given-names>
</name>
<name>
<surname>de Luca</surname>
<given-names>G.</given-names>
</name>
<name>
<surname>Abichabki</surname>
<given-names>N. D. L. M.</given-names>
</name>
<name>
<surname>Bronzon da Costa</surname>
<given-names>C. M.</given-names>
</name>
<name>
<surname>Yatsuda</surname>
<given-names>A. P.</given-names>
</name>
</person-group>
<article-title>Synergic in vitro combinations of artemisinin, pyrimethamine and methylene blue against Neospora caninum</article-title>
<source>
<italic toggle="yes">Veterinary Parasitology</italic>
</source>
<year>2018</year>
<volume>249</volume>
<fpage>92</fpage>
<lpage>97</lpage>
<pub-id pub-id-type="other">2-s2.0-85036507310</pub-id>
<pub-id pub-id-type="doi">10.1016/j.vetpar.2017.11.014</pub-id>
<pub-id pub-id-type="pmid">29279093</pub-id>
</element-citation>
</ref>
<ref id="B12">
<label>12</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Mosmann</surname>
<given-names>T.</given-names>
</name>
</person-group>
<article-title>Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays</article-title>
<source>
<italic toggle="yes">Journal of Immunological Methods</italic>
</source>
<year>1983</year>
<volume>65</volume>
<issue>1-2</issue>
<fpage>55</fpage>
<lpage>63</lpage>
<pub-id pub-id-type="doi">10.1016/0022-1759(83)90303-4</pub-id>
<pub-id pub-id-type="other">2-s2.0-0021061819</pub-id>
<pub-id pub-id-type="pmid">6606682</pub-id>
</element-citation>
</ref>
<ref id="B13">
<label>13</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Bellomo</surname>
<given-names>G.</given-names>
</name>
<name>
<surname>Mirabelli</surname>
<given-names>F.</given-names>
</name>
<name>
<surname>Vairetti</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Iosi</surname>
<given-names>F.</given-names>
</name>
<name>
<surname>Malorni</surname>
<given-names>W.</given-names>
</name>
</person-group>
<article-title>Cytoskeleton as a target in menadione-induced oxidative stress in cultured mammalian cells. I. Biochemical and immunocytochemical features</article-title>
<source>
<italic toggle="yes">Journal of Cellular Physiology</italic>
</source>
<year>1990</year>
<volume>143</volume>
<issue>1</issue>
<fpage>118</fpage>
<lpage>128</lpage>
<pub-id pub-id-type="doi">10.1002/jcp.1041430116</pub-id>
<pub-id pub-id-type="other">2-s2.0-0025267736</pub-id>
<pub-id pub-id-type="pmid">2318902</pub-id>
</element-citation>
</ref>
<ref id="B14">
<label>14</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Providello</surname>
<given-names>M. V.</given-names>
</name>
<name>
<surname>Carneiro</surname>
<given-names>Z. A.</given-names>
</name>
<name>
<surname>Portapilla</surname>
<given-names>G. B.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Benefits of ascorbic acid in association with low-dose benznidazole in treatment of chagas disease</article-title>
<source>
<italic toggle="yes">Antimicrobial Agents and Chemotherapy</italic>
</source>
<year>2018</year>
<volume>62</volume>
<issue>9</issue>
<pub-id pub-id-type="other">2-s2.0-85052218663</pub-id>
</element-citation>
</ref>
<ref id="B15">
<label>15</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Chou</surname>
<given-names>T.</given-names>
</name>
<name>
<surname>Talalay</surname>
<given-names>P.</given-names>
</name>
</person-group>
<article-title>Quantitative analysis of dose-effect relationships: the combined effects of multiple drugs or enzyme inhibitors</article-title>
<source>
<italic toggle="yes">Advances in Enzyme Regulation</italic>
</source>
<year>1984</year>
<volume>22</volume>
<fpage>27</fpage>
<lpage>55</lpage>
<pub-id pub-id-type="doi">10.1016/0065-2571(84)90007-4</pub-id>
<pub-id pub-id-type="other">2-s2.0-0021118703</pub-id>
<pub-id pub-id-type="pmid">6382953</pub-id>
</element-citation>
</ref>
<ref id="B16">
<label>16</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Alonso-Padilla</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Rodríguez</surname>
<given-names>A.</given-names>
</name>
</person-group>
<article-title>High throughput screening for anti–trypanosoma cruzi drug discovery</article-title>
<source>
<italic toggle="yes">PLOS Neglected Tropical Diseases</italic>
</source>
<year>2014</year>
<volume>8</volume>
<issue>12</issue>
<fpage>p. e3259</fpage>
<pub-id pub-id-type="doi">10.1371/journal.pntd.0003259</pub-id>
</element-citation>
</ref>
<ref id="B17">
<label>17</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Sykes</surname>
<given-names>M. L.</given-names>
</name>
<name>
<surname>Avery</surname>
<given-names>V. M.</given-names>
</name>
</person-group>
<article-title>Development and application of a sensitive, phenotypic, high-throughput image-based assay to identify compound activity against Trypanosoma cruzi amastigotes</article-title>
<source>
<italic toggle="yes">International Journal for Parasitology: Drugs and Drug Resistance</italic>
</source>
<year>2015</year>
<volume>5</volume>
<issue>3</issue>
<fpage>215</fpage>
<lpage>228</lpage>
<pub-id pub-id-type="other">2-s2.0-84948980669</pub-id>
<pub-id pub-id-type="doi">10.1016/j.ijpddr.2015.10.001</pub-id>
<pub-id pub-id-type="pmid">27120069</pub-id>
</element-citation>
</ref>
<ref id="B18">
<label>18</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Clifton</surname>
<given-names>J.</given-names>
<suffix>II</suffix>
</name>
<name>
<surname>Leikin</surname>
<given-names>J. B.</given-names>
</name>
</person-group>
<article-title>Methylene blue</article-title>
<source>
<italic toggle="yes">American Journal of Therapeutics</italic>
</source>
<year>2003</year>
<volume>10</volume>
<issue>4</issue>
<fpage>289</fpage>
<lpage>291</lpage>
<pub-id pub-id-type="doi">10.1097/00045391-200307000-00009</pub-id>
<pub-id pub-id-type="other">2-s2.0-0142182453</pub-id>
<pub-id pub-id-type="pmid">12845393</pub-id>
</element-citation>
</ref>
<ref id="B19">
<label>19</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Lu</surname>
<given-names>G.</given-names>
</name>
<name>
<surname>Nagbanshi</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Goldau</surname>
<given-names>N.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Efficacy and safety of methylene blue in the treatment of malaria: A systematic review</article-title>
<source>
<italic toggle="yes">BMC Medicine</italic>
</source>
<year>2018</year>
<volume>16</volume>
<issue>1</issue>
<fpage>p. 59</fpage>
<pub-id pub-id-type="other">2-s2.0-85045933199</pub-id>
<pub-id pub-id-type="pmid">29690878</pub-id>
</element-citation>
</ref>
<ref id="B20">
<label>20</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Martins</surname>
<given-names>T. A. F.</given-names>
</name>
<name>
<surname>Diniz</surname>
<given-names>L. D. F.</given-names>
</name>
<name>
<surname>Mazzeti</surname>
<given-names>A. L.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Benznidazole/itraconazole combination treatment enhances anti-Trypanosoma cruzi activity in experimental Chagas disease</article-title>
<source>
<italic toggle="yes">PLoS ONE</italic>
</source>
<year>2015</year>
<volume>10</volume>
<issue>6</issue>
<pub-id pub-id-type="publisher-id">e0128707</pub-id>
<pub-id pub-id-type="other">2-s2.0-84937061432</pub-id>
</element-citation>
</ref>
<ref id="B21">
<label>21</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Diniz</surname>
<given-names>L. F.</given-names>
</name>
<name>
<surname>Mazzeti</surname>
<given-names>A. L.</given-names>
</name>
<name>
<surname>Caldas</surname>
<given-names>I. S.</given-names>
</name>
<name>
<surname>Ribeiro</surname>
<given-names>I.</given-names>
</name>
<name>
<surname>Bahia</surname>
<given-names>M. T.</given-names>
</name>
</person-group>
<article-title>Outcome of E1224-Benznidazole combination treatment for infection with a multidrug-resistant trypanosoma cruzi strain in mice</article-title>
<source>
<italic toggle="yes">Antimicrobial Agents and Chemotherapy</italic>
</source>
<year>2018</year>
<volume>62</volume>
<issue>6</issue>
<pub-id pub-id-type="other">2-s2.0-85047617025</pub-id>
</element-citation>
</ref>
<ref id="B22">
<label>22</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Araújo</surname>
<given-names>M. S. S.</given-names>
</name>
<name>
<surname>Martins-Filho</surname>
<given-names>O. A.</given-names>
</name>
<name>
<surname>Pereira</surname>
<given-names>M. E. S.</given-names>
</name>
<name>
<surname>Brener</surname>
<given-names>Z.</given-names>
</name>
</person-group>
<article-title>A combination of benznidazole and ketoconazole enhances efficacy of chemotherapy of experimental Chagas' disease</article-title>
<source>
<italic toggle="yes">Journal of Antimicrobial Chemotherapy</italic>
</source>
<year>2000</year>
<volume>45</volume>
<issue>6</issue>
<fpage>819</fpage>
<lpage>824</lpage>
<pub-id pub-id-type="other">2-s2.0-0343527887</pub-id>
<pub-id pub-id-type="doi">10.1093/jac/45.6.819</pub-id>
<pub-id pub-id-type="pmid">10837436</pub-id>
</element-citation>
</ref>
<ref id="B23">
<label>23</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Alvarez</surname>
<given-names>M. N.</given-names>
</name>
<name>
<surname>Peluffo</surname>
<given-names>G.</given-names>
</name>
<name>
<surname>Piacenza</surname>
<given-names>L.</given-names>
</name>
<name>
<surname>Radi</surname>
<given-names>R.</given-names>
</name>
</person-group>
<article-title>Intraphagosomal peroxynitrite as a macrophage-derived cytotoxin against internalized Trypanosoma cruzi: Consequences for oxidative killing and role of microbial peroxiredoxins in infectivity</article-title>
<source>
<italic toggle="yes">The Journal of Biological Chemistry</italic>
</source>
<year>2011</year>
<volume>286</volume>
<issue>8</issue>
<fpage>6627</fpage>
<lpage>6640</lpage>
<pub-id pub-id-type="other">2-s2.0-79953183972</pub-id>
<pub-id pub-id-type="doi">10.1074/jbc.M110.167247</pub-id>
<pub-id pub-id-type="pmid">21098483</pub-id>
</element-citation>
</ref>
<ref id="B24">
<label>24</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Piacenza</surname>
<given-names>L.</given-names>
</name>
<name>
<surname>Alvarez</surname>
<given-names>M. N.</given-names>
</name>
<name>
<surname>Peluffo</surname>
<given-names>G.</given-names>
</name>
<name>
<surname>Radi</surname>
<given-names>R.</given-names>
</name>
</person-group>
<article-title>Fighting the oxidative assault: the Trypanosoma cruzi journey to infection</article-title>
<source>
<italic toggle="yes">Current Opinion in Microbiology</italic>
</source>
<year>2009</year>
<volume>12</volume>
<issue>4</issue>
<fpage>415</fpage>
<lpage>421</lpage>
<pub-id pub-id-type="other">2-s2.0-68049131348</pub-id>
<pub-id pub-id-type="doi">10.1016/j.mib.2009.06.011</pub-id>
<pub-id pub-id-type="pmid">19616990</pub-id>
</element-citation>
</ref>
<ref id="B25">
<label>25</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Paiva</surname>
<given-names>C. N.</given-names>
</name>
<name>
<surname>Bozza</surname>
<given-names>M. T.</given-names>
</name>
</person-group>
<article-title>Are reactive oxygen species always detrimental to pathogens?</article-title>
<source>
<italic toggle="yes">Antioxidants & Redox Signaling</italic>
</source>
<year>2014</year>
<volume>20</volume>
<issue>6</issue>
<fpage>1000</fpage>
<lpage>1037</lpage>
<pub-id pub-id-type="doi">10.1089/ars.2013.5447</pub-id>
<pub-id pub-id-type="other">2-s2.0-84893847509</pub-id>
<pub-id pub-id-type="pmid">23992156</pub-id>
</element-citation>
</ref>
<ref id="B26">
<label>26</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Paiva</surname>
<given-names>C. N.</given-names>
</name>
<name>
<surname>Medei</surname>
<given-names>E.</given-names>
</name>
<name>
<surname>Bozza</surname>
<given-names>M. T.</given-names>
</name>
</person-group>
<article-title>ROS and Trypanosoma cruzi: fuel to infection, poison to the heart</article-title>
<source>
<italic toggle="yes">PLoS Pathogens</italic>
</source>
<year>2018</year>
<volume>14</volume>
<issue>4</issue>
<pub-id pub-id-type="publisher-id">e1006928</pub-id>
<pub-id pub-id-type="other">2-s2.0-85046484767</pub-id>
</element-citation>
</ref>
<ref id="B32">
<label>27</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Finzi</surname>
<given-names>J. K.</given-names>
</name>
<name>
<surname>Chiavegatto</surname>
<given-names>C. W. M.</given-names>
</name>
<name>
<surname>Corat</surname>
<given-names>K. F.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Trypanosoma cruzi response to the oxidative stress generated by hydrogen peroxide</article-title>
<source>
<italic toggle="yes">Molecular and Biochemical Parasitology</italic>
</source>
<year>2004</year>
<volume>133</volume>
<issue>1</issue>
<fpage>37</fpage>
<lpage>43</lpage>
<pub-id pub-id-type="other">2-s2.0-0345096563</pub-id>
<pub-id pub-id-type="doi">10.1016/j.molbiopara.2003.08.011</pub-id>
<pub-id pub-id-type="pmid">14668010</pub-id>
</element-citation>
</ref>
<ref id="B27">
<label>28</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Jung</surname>
<given-names>J.-Y.</given-names>
</name>
<name>
<surname>Madan-Lala</surname>
<given-names>R.</given-names>
</name>
<name>
<surname>Georgieva</surname>
<given-names>M.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>The intracellular environment of human macrophages that produce nitric oxide promotes growth of mycobacteria</article-title>
<source>
<italic toggle="yes">Infection and Immunity</italic>
</source>
<year>2013</year>
<volume>81</volume>
<issue>9</issue>
<fpage>3198</fpage>
<lpage>3209</lpage>
<pub-id pub-id-type="other">2-s2.0-84884258229</pub-id>
<pub-id pub-id-type="doi">10.1128/IAI.00611-13</pub-id>
<pub-id pub-id-type="pmid">23774601</pub-id>
</element-citation>
</ref>
<ref id="B28">
<label>29</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Jiménez-López</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>Collette</surname>
<given-names>J. R.</given-names>
</name>
<name>
<surname>Brothers</surname>
<given-names>K. M.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>
<italic>Candida albicans</italic>
induces arginine biosynthetic genes in response to host-derived reactive oxygen species</article-title>
<source>
<italic toggle="yes">Eukaryotic Cell</italic>
</source>
<year>2013</year>
<volume>12</volume>
<issue>1</issue>
<fpage>91</fpage>
<lpage>100</lpage>
<pub-id pub-id-type="doi">10.1128/ec.00290-12</pub-id>
<pub-id pub-id-type="other">2-s2.0-84871983136</pub-id>
<pub-id pub-id-type="pmid">23143683</pub-id>
</element-citation>
</ref>
<ref id="B29">
<label>30</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Fraternale</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Paoletti</surname>
<given-names>M. F.</given-names>
</name>
<name>
<surname>Casabianca</surname>
<given-names>A.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>GSH and analogs in antiviral therapy</article-title>
<source>
<italic toggle="yes">Molecular Aspects of Medicine</italic>
</source>
<year>2009</year>
<volume>30</volume>
<issue>1-2</issue>
<fpage>99</fpage>
<lpage>110</lpage>
<pub-id pub-id-type="other">2-s2.0-65049087366</pub-id>
<pub-id pub-id-type="doi">10.1016/j.mam.2008.09.001</pub-id>
<pub-id pub-id-type="pmid">18926849</pub-id>
</element-citation>
</ref>
<ref id="B30">
<label>31</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Vlahos</surname>
<given-names>R.</given-names>
</name>
<name>
<surname>Stambas</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Bozinovski</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Broughton</surname>
<given-names>B. R. S.</given-names>
</name>
<name>
<surname>Drummond</surname>
<given-names>G. R.</given-names>
</name>
<name>
<surname>Selemidis</surname>
<given-names>S.</given-names>
</name>
</person-group>
<article-title>Inhibition of Nox2 oxidase activity ameliorates influenza a virus-induced lung inflammation</article-title>
<source>
<italic toggle="yes">PLoS Pathogens</italic>
</source>
<year>2011</year>
<volume>7</volume>
<issue>2</issue>
<pub-id pub-id-type="publisher-id">e1001271</pub-id>
<pub-id pub-id-type="other">2-s2.0-79952213095</pub-id>
</element-citation>
</ref>
<ref id="B31">
<label>32</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Mittra</surname>
<given-names>B.</given-names>
</name>
<name>
<surname>Cortez</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Haydock</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Ramasamy</surname>
<given-names>G.</given-names>
</name>
<name>
<surname>Myler</surname>
<given-names>P. J.</given-names>
</name>
<name>
<surname>Andrews</surname>
<given-names>N. W.</given-names>
</name>
</person-group>
<article-title>Iron uptake controls the generation of leishmania infective forms through regulation of ROS levels</article-title>
<source>
<italic toggle="yes">The Journal of Experimental Medicine</italic>
</source>
<year>2013</year>
<volume>210</volume>
<issue>2</issue>
<fpage>401</fpage>
<lpage>416</lpage>
<pub-id pub-id-type="other">2-s2.0-84874577556</pub-id>
<pub-id pub-id-type="doi">10.1084/jem.20121368</pub-id>
<pub-id pub-id-type="pmid">23382545</pub-id>
</element-citation>
</ref>
<ref id="B33">
<label>33</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Goes</surname>
<given-names>G. R.</given-names>
</name>
<name>
<surname>Rocha</surname>
<given-names>P. S.</given-names>
</name>
<name>
<surname>Diniz</surname>
<given-names>A. R.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Trypanosoma cruzi needs a signal provided by reactive oxygen species to infect macrophages</article-title>
<source>
<italic toggle="yes">PLOS Neglected Tropical Diseases</italic>
</source>
<year>2016</year>
<volume>10</volume>
<issue>4</issue>
<pub-id pub-id-type="publisher-id">e0004555</pub-id>
<pub-id pub-id-type="doi">10.1371/journal.pntd.0004555</pub-id>
</element-citation>
</ref>
<ref id="B34">
<label>34</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Wilkinson</surname>
<given-names>S. R.</given-names>
</name>
<name>
<surname>Taylor</surname>
<given-names>M. C.</given-names>
</name>
<name>
<surname>Horn</surname>
<given-names>D.</given-names>
</name>
<name>
<surname>Kelly</surname>
<given-names>J. M.</given-names>
</name>
<name>
<surname>Cheeseman</surname>
<given-names>I.</given-names>
</name>
</person-group>
<article-title>A mechanism for cross-resistance to nifurtimox and benznidazole in trypanosomes</article-title>
<source>
<italic toggle="yes">Proceedings of the National Acadamy of Sciences of the United States of America</italic>
</source>
<year>2008</year>
<volume>105</volume>
<issue>13</issue>
<fpage>5022</fpage>
<lpage>5027</lpage>
<pub-id pub-id-type="other">2-s2.0-42449155428</pub-id>
<pub-id pub-id-type="doi">10.1073/pnas.0711014105</pub-id>
</element-citation>
</ref>
<ref id="B35">
<label>35</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Xiong</surname>
<given-names>Z. M.</given-names>
</name>
<name>
<surname>O’Donovan</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Sun</surname>
<given-names>L.</given-names>
</name>
<name>
<surname>Choi</surname>
<given-names>J. Y.</given-names>
</name>
<name>
<surname>Ren</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Cao</surname>
<given-names>K.</given-names>
</name>
</person-group>
<article-title>Anti-aging potentials of methylene blue for human skin longevity</article-title>
<source>
<italic toggle="yes">Scientific Reports</italic>
</source>
<year>2017</year>
<volume>7</volume>
<issue>1</issue>
<pub-id pub-id-type="publisher-id">2475</pub-id>
<pub-id pub-id-type="doi">10.1038/s41598-017-02419-3</pub-id>
</element-citation>
</ref>
<ref id="B36">
<label>36</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Poteet</surname>
<given-names>E.</given-names>
</name>
<name>
<surname>Winters</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Yan</surname>
<given-names>L.-J.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Neuroprotective actions of methylene blue and its derivatives</article-title>
<source>
<italic toggle="yes">PLoS ONE</italic>
</source>
<year>2012</year>
<volume>7</volume>
<issue>10, article e48279</issue>
<pub-id pub-id-type="doi">10.1371/journal.pone.0048279</pub-id>
<pub-id pub-id-type="other">2-s2.0-84868282410</pub-id>
</element-citation>
</ref>
<ref id="B37">
<label>37</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Wen</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Li</surname>
<given-names>W.</given-names>
</name>
<name>
<surname>Poteet</surname>
<given-names>E. C.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Alternative mitochondrial electron transfer as a novel strategy for neuroprotection</article-title>
<source>
<italic toggle="yes">The Journal of Biological Chemistry</italic>
</source>
<year>2011</year>
<volume>286</volume>
<issue>18</issue>
<fpage>16504</fpage>
<lpage>16515</lpage>
<pub-id pub-id-type="doi">10.1074/jbc.M110.208447</pub-id>
<pub-id pub-id-type="other">2-s2.0-79955528923</pub-id>
<pub-id pub-id-type="pmid">21454572</pub-id>
</element-citation>
</ref>
<ref id="B38">
<label>38</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Messier</surname>
<given-names>E. M.</given-names>
</name>
<name>
<surname>Bahmed</surname>
<given-names>K.</given-names>
</name>
<name>
<surname>Tuder</surname>
<given-names>R. M.</given-names>
</name>
<name>
<surname>Chu</surname>
<given-names>H. W.</given-names>
</name>
<name>
<surname>Bowler</surname>
<given-names>R. P.</given-names>
</name>
<name>
<surname>Kosmider</surname>
<given-names>B.</given-names>
</name>
</person-group>
<article-title>Trolox contributes to Nrf2-mediated protection of human and murine primary alveolar type II cells from injury by cigarette smoke</article-title>
<source>
<italic toggle="yes">Cell Death & Disease</italic>
</source>
<year>2013</year>
<volume>4</volume>
<issue>4, article 573</issue>
<pub-id pub-id-type="doi">10.1038/cddis.2013.96</pub-id>
<pub-id pub-id-type="other">2-s2.0-84876921986</pub-id>
</element-citation>
</ref>
<ref id="B39">
<label>39</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Mickle</surname>
<given-names>D. A.</given-names>
</name>
<name>
<surname>Weisel</surname>
<given-names>R. D.</given-names>
</name>
</person-group>
<article-title>Future directions of vitamin E and its analogues in minimizing myocardial ischemia-reperfusion injury</article-title>
<source>
<italic toggle="yes">Canadian Journal of Cardiology</italic>
</source>
<year>1993</year>
<volume>9</volume>
<issue>1</issue>
<fpage>89</fpage>
<lpage>93</lpage>
<pub-id pub-id-type="pmid">8439833</pub-id>
</element-citation>
</ref>
<ref id="B40">
<label>40</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Andreo</surname>
<given-names>R.</given-names>
</name>
<name>
<surname>Regasini</surname>
<given-names>L. O.</given-names>
</name>
<name>
<surname>Petronio</surname>
<given-names>M. S.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Toxicity and loss of mitochondrial membrane potential induced by alkyl gallates in
<italic>Trypanosoma cruzi</italic>
</article-title>
<source>
<italic toggle="yes">International Scholarly Research Notices</italic>
</source>
<year>2015</year>
<volume>2015</volume>
<fpage>7</fpage>
<pub-id pub-id-type="publisher-id">924670</pub-id>
<pub-id pub-id-type="doi">10.1155/2015/924670</pub-id>
</element-citation>
</ref>
<ref id="B41">
<label>41</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Loor</surname>
<given-names>G.</given-names>
</name>
<name>
<surname>Kondapalli</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Schriewer</surname>
<given-names>J. M.</given-names>
</name>
<name>
<surname>Chandel</surname>
<given-names>N. S.</given-names>
</name>
<name>
<surname>Vanden Hoek</surname>
<given-names>T. L.</given-names>
</name>
<name>
<surname>Schumacker</surname>
<given-names>P. T.</given-names>
</name>
</person-group>
<article-title>Menadione triggers cell death through ROS-dependent mechanisms involving PARP activation without requiring apoptosis</article-title>
<source>
<italic toggle="yes">Free Radical Biology & Medicine</italic>
</source>
<year>2010</year>
<volume>49</volume>
<issue>12</issue>
<fpage>1925</fpage>
<lpage>1936</lpage>
<pub-id pub-id-type="other">2-s2.0-78650173771</pub-id>
<pub-id pub-id-type="doi">10.1016/j.freeradbiomed.2010.09.021</pub-id>
<pub-id pub-id-type="pmid">20937380</pub-id>
</element-citation>
</ref>
<ref id="B42">
<label>42</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Cortes</surname>
<given-names>L. A.</given-names>
</name>
<name>
<surname>Castro</surname>
<given-names>L.</given-names>
</name>
<name>
<surname>Pesce</surname>
<given-names>B.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Novel gallate triphenylphosphonium derivatives with potent antichagasic activity</article-title>
<source>
<italic toggle="yes">PLoS ONE</italic>
</source>
<year>2015</year>
<volume>10</volume>
<issue>8</issue>
<pub-id pub-id-type="publisher-id">e0136852</pub-id>
<pub-id pub-id-type="other">2-s2.0-84943302978</pub-id>
</element-citation>
</ref>
<ref id="B43">
<label>43</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Xiong</surname>
<given-names>Z.-M.</given-names>
</name>
<name>
<surname>Choi</surname>
<given-names>J. Y.</given-names>
</name>
<name>
<surname>Wang</surname>
<given-names>K.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Methylene blue alleviates nuclear and mitochondrial abnormalities in progeria</article-title>
<source>
<italic toggle="yes">Aging Cell</italic>
</source>
<year>2016</year>
<volume>15</volume>
<issue>2</issue>
<fpage>279</fpage>
<lpage>290</lpage>
<pub-id pub-id-type="other">2-s2.0-84960081958</pub-id>
<pub-id pub-id-type="doi">10.1111/acel.12434</pub-id>
<pub-id pub-id-type="pmid">26663466</pub-id>
</element-citation>
</ref>
<ref id="B44">
<label>44</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Duicu</surname>
<given-names>O. M.</given-names>
</name>
<name>
<surname>Privistirescu</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Wolf</surname>
<given-names>A.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Methylene blue improves mitochondrial respiration and decreases oxidative stress in a substrate-dependent manner in diabetic rat hearts</article-title>
<source>
<italic toggle="yes">Canadian Journal of Physiology and Pharmacology</italic>
</source>
<year>2017</year>
<volume>95</volume>
<issue>11</issue>
<fpage>1376</fpage>
<lpage>1382</lpage>
<pub-id pub-id-type="other">2-s2.0-85032449941</pub-id>
<pub-id pub-id-type="doi">10.1139/cjpp-2017-0074</pub-id>
<pub-id pub-id-type="pmid">28738167</pub-id>
</element-citation>
</ref>
</ref-list>
</back>
<floats-group>
<fig id="fig1" orientation="portrait" position="float">
<label>Figure 1</label>
<caption>
<p>
<italic>Detection of T. cruzi in cultures treated with phenothiazine dyes or Benznidazole. T. cruzi</italic>
was added to LLCMK2 cell monolayers and cultivated for 24 h, 37°C, 5% CO
<sub>2</sub>
. After washing with PBS, the
<italic> T. cruzi</italic>
cultures were incubated with the IC
<sub>50</sub>
concentrations of MB (0.45
<italic>μ</italic>
M), NMB (0.09
<italic>μ</italic>
M), TBO (0.28
<italic>μ</italic>
M), DMMB (0.08
<italic>μ</italic>
M), and BZ (3.5
<italic>μ</italic>
M) for 72 hours, 37°C, and 5% CO
<sub>2</sub>
. The controls were composed by noninfected (negative control) or infected and nontreated cells (positive control) and cultivated at the same conditions. After treatment, the cultures were fixed with 4% paraformaldehyde for 20 minutes and washed with PBS and then the cell nucleus was stained with DAPI (Ex/Em = 340/488 nm). The parasites were detected by the emission of green fluorescence (Ex/Em = 488/510 nm). All figures were captured and analyzed in an Image Xpress Micro XLS Widefield High-Content Analysis System from Molecular Devices. The system also calculated the number of amastigotes in twenty-five images/well (x400). (a) Noninfected control. (b) Infected and nontreated control. (c), (d), (e), (f), and (g) Infected cultures treated with MB, NMB, TBO, DMMB,and BZ, respectively. (h) Percentage of inhibition compared to the nontreated control.</p>
</caption>
<graphic xlink:href="BMRI2019-8301569.001"></graphic>
</fig>
<fig id="fig2" orientation="portrait" position="float">
<label>Figure 2</label>
<caption>
<p>
<italic>Inhibitory activity of phenothiazinium dyes combinations against T. cruzi. </italic>
Amastigotes were incubated with seven dilutions (2 × IC
<sub>50</sub>
, 1.6 × IC
<sub>50</sub>
, 1.3 × IC
<sub>50</sub>
, 0.7 × IC
<sub>50</sub>
, 0.5 × IC
<sub>50</sub>
, and 0.2 × IC
<sub>50</sub>
) of MB + BZ (a), NMB + BZ (b), TBO + BZ (c), DMMB + BZ (d), MB + NMB (e), MB + TBO (f), MB + DMMB (g), NMB + TBO (h), NMB + DMMB (i), TBO + DMMB (j), and the proliferation measured after CPRG assay. As references, isolated compounds of each combination were evaluated concomitantly in the same plate. The inhibition percentage was calculated in comparison to the nontreated group and the IC
<sub>50</sub>
and CI values were achieved using Compusyn software.</p>
</caption>
<graphic xlink:href="BMRI2019-8301569.002"></graphic>
</fig>
<fig id="fig3" orientation="portrait" position="float">
<label>Figure 3</label>
<caption>
<p>
<italic>ROS detection in T. cruzi cultures treated with phenothiazinium dyes. T. cruzi</italic>
cultures were incubated with trypsin and treated with 4 × IC
<sub>50</sub>
MB, NMB, TBO, DMMB, BZ, and MN for 2 hours, 37°C, and 5% CO
<sub>2</sub>
. The cultures were washed with PBS and incubated with 5
<italic>μ</italic>
M DCFDA for 15 minutes in the dark. The samples were analyzed in a flow cytometer and the median intensity of fluorescence used for ROS measurement. The control was composed of noninfected LLCMK2 cells processed under the same conditions. The percentage of fluorescence (% DFC fluorescence) was calculated in relation to the nontreated control. (a) Median intensity of fluorescence from nontreated LLCMK2 cells and trypomastigotes. (b) Percentage of DCF fluorescence from LLCMK2 cells (infected and noninfected) and trypomastigotes treated with phenothiazinium dyes, BZ, and MN.</p>
</caption>
<graphic xlink:href="BMRI2019-8301569.003"></graphic>
</fig>
<fig id="fig4" orientation="portrait" position="float">
<label>Figure 4</label>
<caption>
<p>
<italic>Mitochondrial activity of T. cruzi cultures treated with phenothiazinium dyes. T. cruzi</italic>
cultures were incubated with trypsin and treated with 4 × IC
<sub>50</sub>
MB, NMB, TBO, DMMB, BZ, and MN for 2 hours, 37°C, and 5% CO
<sub>2</sub>
. The cultures were washed with PBS and incubated with 5
<italic>μ</italic>
M JC-1 for 15 minutes in the dark. The samples were analyzed in a flow cytometer and the positive red fluorescent cells (PE
<sup>+</sup>
cells) determined. The control was composed of noninfected LLCMK2 cells processed under the same conditions. The percentage of positive red fluorescent cells (% PE
<sup>+</sup>
cells) was calculated in relation to the nontreated control. (a) Positive red fluorescent cells from nontreated LLCMK2 cells and trypomastigotes. (b) Percentage of positive red fluorescent cells from LLCMK2 cells (infected and noninfected) and trypomastigotes treated with phenothiazinium dyes, BZ, and MN.</p>
</caption>
<graphic xlink:href="BMRI2019-8301569.004"></graphic>
</fig>
<table-wrap id="tab1" orientation="portrait" position="float">
<label>Table 1</label>
<caption>
<p>
<italic>In vitro IC</italic>
<sub>50</sub>
<italic> and toxicity of MB, NMB, TBO, and DMMB to T. cruzi amastigotes and LLCMK2 cells.</italic>
The molecular weight (MW), IC
<sub>50</sub>
, CC
<sub>50</sub>
, and selectivity index (SI) were calculated for MB, NMB, TBO, DMMB, and BZ on
<italic>T. cruzi</italic>
and LLCMK2 cells. Amastigotes or LLCMK2 cells were incubated for 72 hours, at 37°C, with 5% CO
<sub>2</sub>
, and the proliferation (amastigotes) or toxicity (LLCMK2 cells) was measured after CRPG or MTT assays, respectively. The percentage of inhibition was calculated in comparison to the nontreated controls in three independent assays.</p>
</caption>
<table frame="hsides" rules="groups">
<thead>
<tr>
<th align="left" rowspan="1" colspan="1">Compound</th>
<th align="center" rowspan="1" colspan="1"></th>
<th align="center" rowspan="1" colspan="1">MW</th>
<th align="center" rowspan="1" colspan="1">IC
<sub>50</sub>
  
<italic>μ</italic>
M</th>
<th align="center" rowspan="1" colspan="1">CC
<sub>50</sub>
  
<italic>μ</italic>
M</th>
<th align="center" rowspan="1" colspan="1">SI</th>
</tr>
</thead>
<tbody>
<tr>
<td align="left" rowspan="1" colspan="1">MB</td>
<td align="center" rowspan="1" colspan="1">
<inline-graphic xlink:href="BMRI2019-8301569.tab1.i001.jpg"></inline-graphic>
</td>
<td align="center" rowspan="1" colspan="1">319.85</td>
<td align="center" rowspan="1" colspan="1">0.44 ± 0.15</td>
<td align="center" rowspan="1" colspan="1">16.82 ± 1.18</td>
<td align="center" rowspan="1" colspan="1">37.40</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">NMB</td>
<td align="center" rowspan="1" colspan="1">
<inline-graphic xlink:href="BMRI2019-8301569.tab1.i002.jpg"></inline-graphic>
</td>
<td align="center" rowspan="1" colspan="1">347.91</td>
<td align="center" rowspan="1" colspan="1">0.09 ± 0.01</td>
<td align="center" rowspan="1" colspan="1">4.19 ± 1.30</td>
<td align="center" rowspan="1" colspan="1">44.71</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">TBO</td>
<td align="center" rowspan="1" colspan="1">
<inline-graphic xlink:href="BMRI2019-8301569.tab1.i003.jpg"></inline-graphic>
</td>
<td align="center" rowspan="1" colspan="1">305.83</td>
<td align="center" rowspan="1" colspan="1">0.27 ± 0.11</td>
<td align="center" rowspan="1" colspan="1">7.93 ± 5.22</td>
<td align="center" rowspan="1" colspan="1">28.61</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">DMMB</td>
<td align="center" rowspan="1" colspan="1">
<inline-graphic xlink:href="BMRI2019-8301569.tab1.i004.jpg"></inline-graphic>
</td>
<td align="center" rowspan="1" colspan="1">416.05</td>
<td align="center" rowspan="1" colspan="1">0.08 ± 0.02</td>
<td align="center" rowspan="1" colspan="1">4.46 ± 0.23</td>
<td align="center" rowspan="1" colspan="1">51.26</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">BZ</td>
<td align="center" rowspan="1" colspan="1">
<inline-graphic xlink:href="BMRI2019-8301569.tab1.i005.jpg"></inline-graphic>
</td>
<td align="center" rowspan="1" colspan="1">260.25</td>
<td align="center" rowspan="1" colspan="1">3.41 ± 0.38</td>
<td align="center" rowspan="1" colspan="1">> 200</td>
<td align="center" rowspan="1" colspan="1">> 58.65</td>
</tr>
</tbody>
</table>
</table-wrap>
<table-wrap id="tab2" orientation="portrait" position="float">
<label>Table 2</label>
<caption>
<p>
<italic>Values of inhibitory concentrations (IC</italic>
<sub>50</sub>
<italic>) and Combinatory Index of the phenothiazinium combinations.</italic>
The IC
<sub>50</sub>
concentrations of the dyes alone and in combinations were calculated using the Compusyn software. The software was also used for the determination of the CI between the combined compounds.</p>
</caption>
<table frame="hsides" rules="groups">
<thead>
<tr>
<th align="left" rowspan="1" colspan="1">Combination (compound 1 + 2)</th>
<th align="center" rowspan="1" colspan="1">IC
<sub>50</sub>
   
<break></break>
(compound 1/
<italic>μ</italic>
M)</th>
<th align="center" rowspan="1" colspan="1">IC
<sub>50</sub>
   
<break></break>
(compound 2/
<italic>μ</italic>
M)</th>
<th align="center" rowspan="1" colspan="1">IC
<sub>50</sub>
   
<break></break>
(combination compound 1/
<italic>μ</italic>
M)</th>
<th align="center" rowspan="1" colspan="1">IC
<sub>50</sub>
   
<break></break>
(combination compound 2/
<italic>μ</italic>
M)</th>
<th align="center" rowspan="1" colspan="1">CI</th>
</tr>
</thead>
<tbody>
<tr>
<td align="left" rowspan="1" colspan="1">BZ + MB</td>
<td align="center" rowspan="1" colspan="1">3.315</td>
<td align="center" rowspan="1" colspan="1">0.477</td>
<td align="center" rowspan="1" colspan="1">2.262</td>
<td align="center" rowspan="1" colspan="1">0.291</td>
<td align="center" rowspan="1" colspan="1">1.29</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">BZ + NMB</td>
<td align="center" rowspan="1" colspan="1">2.937</td>
<td align="center" rowspan="1" colspan="1">0.100</td>
<td align="center" rowspan="1" colspan="1">2.091</td>
<td align="center" rowspan="1" colspan="1">0.056</td>
<td align="center" rowspan="1" colspan="1">1.26</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">BZ + TBO</td>
<td align="center" rowspan="1" colspan="1">3.024</td>
<td align="center" rowspan="1" colspan="1">0.380</td>
<td align="center" rowspan="1" colspan="1">2.259</td>
<td align="center" rowspan="1" colspan="1">0.178</td>
<td align="center" rowspan="1" colspan="1">1.40</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">BZ + DMMB</td>
<td align="center" rowspan="1" colspan="1">3.015</td>
<td align="center" rowspan="1" colspan="1">0.078</td>
<td align="center" rowspan="1" colspan="1">1.943</td>
<td align="center" rowspan="1" colspan="1">0.050</td>
<td align="center" rowspan="1" colspan="1">1.28</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">MB + NMB</td>
<td align="center" rowspan="1" colspan="1">0.560</td>
<td align="center" rowspan="1" colspan="1">0.112</td>
<td align="center" rowspan="1" colspan="1">0.247</td>
<td align="center" rowspan="1" colspan="1">0.051</td>
<td align="center" rowspan="1" colspan="1">0.90</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">MB + TBO</td>
<td align="center" rowspan="1" colspan="1">0.588</td>
<td align="center" rowspan="1" colspan="1">0.322</td>
<td align="center" rowspan="1" colspan="1">0.250</td>
<td align="center" rowspan="1" colspan="1">0.150</td>
<td align="center" rowspan="1" colspan="1">0.89</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">MB + DMMB</td>
<td align="center" rowspan="1" colspan="1">0.391</td>
<td align="center" rowspan="1" colspan="1">0.095</td>
<td align="center" rowspan="1" colspan="1">0.223</td>
<td align="center" rowspan="1" colspan="1">0.044</td>
<td align="center" rowspan="1" colspan="1">1.05</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">NMB + TBO</td>
<td align="center" rowspan="1" colspan="1">0.122</td>
<td align="center" rowspan="1" colspan="1">0.322</td>
<td align="center" rowspan="1" colspan="1">0.042</td>
<td align="center" rowspan="1" colspan="1">0.126</td>
<td align="center" rowspan="1" colspan="1">0.74</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">NMB + DMMB</td>
<td align="center" rowspan="1" colspan="1">0.101</td>
<td align="center" rowspan="1" colspan="1">0.071</td>
<td align="center" rowspan="1" colspan="1">0.034</td>
<td align="center" rowspan="1" colspan="1">0.033</td>
<td align="center" rowspan="1" colspan="1">0.80</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">TBO + DMMB</td>
<td align="center" rowspan="1" colspan="1">0.381</td>
<td align="center" rowspan="1" colspan="1">0.080</td>
<td align="center" rowspan="1" colspan="1">0.063</td>
<td align="center" rowspan="1" colspan="1">0.020</td>
<td align="center" rowspan="1" colspan="1">0.42</td>
</tr>
</tbody>
</table>
</table-wrap>
</floats-group>
</pmc>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/ChloroquineV1/Data/Pmc/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000422 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Pmc/Corpus/biblio.hfd -nk 000422 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    ChloroquineV1
   |flux=    Pmc
   |étape=   Corpus
   |type=    RBID
   |clé=     PMC:6637691
   |texte=   Phenothiazinium Dyes Are Active against Trypanosoma cruzi In Vitro
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Pmc/Corpus/RBID.i   -Sk "pubmed:31355283" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Pmc/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a ChloroquineV1 

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Wed Mar 25 22:43:59 2020. Site generation: Sun Jan 31 12:44:45 2021