Serveur d'exploration Chloroquine

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.
***** Acces problem to record *****\

Identifieur interne : 000335 ( Pmc/Corpus ); précédent : 0003349; suivant : 0003360 ***** probable Xml problem with record *****

Links to Exploration step


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Antitumoral Properties of Natural Products</title>
<author>
<name sortKey="Fabiani, Roberto" sort="Fabiani, Roberto" uniqKey="Fabiani R" first="Roberto" last="Fabiani">Roberto Fabiani</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PMC</idno>
<idno type="pmid">32028725</idno>
<idno type="pmc">7037154</idno>
<idno type="url">http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7037154</idno>
<idno type="RBID">PMC:7037154</idno>
<idno type="doi">10.3390/molecules25030650</idno>
<date when="2020">2020</date>
<idno type="wicri:Area/Pmc/Corpus">000335</idno>
<idno type="wicri:explorRef" wicri:stream="Pmc" wicri:step="Corpus" wicri:corpus="PMC">000335</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a" type="main">Antitumoral Properties of Natural Products</title>
<author>
<name sortKey="Fabiani, Roberto" sort="Fabiani, Roberto" uniqKey="Fabiani R" first="Roberto" last="Fabiani">Roberto Fabiani</name>
</author>
</analytic>
<series>
<title level="j">Molecules</title>
<idno type="eISSN">1420-3049</idno>
<imprint>
<date when="2020">2020</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<back>
<div1 type="bibliography">
<listBibl>
<biblStruct>
<analytic>
<author>
<name sortKey="Franco, Y E M" uniqKey="Franco Y">Y.E.M. Franco</name>
</author>
<author>
<name sortKey="Okubo, M Y" uniqKey="Okubo M">M.Y. Okubo</name>
</author>
<author>
<name sortKey="Torre, A D" uniqKey="Torre A">A.D. Torre</name>
</author>
<author>
<name sortKey="Paiva, P P" uniqKey="Paiva P">P.P. Paiva</name>
</author>
<author>
<name sortKey="Rosa, M N" uniqKey="Rosa M">M.N. Rosa</name>
</author>
<author>
<name sortKey="Silva, V A O" uniqKey="Silva V">V.A.O. Silva</name>
</author>
<author>
<name sortKey="Reis, R M" uniqKey="Reis R">R.M. Reis</name>
</author>
<author>
<name sortKey="Ruiz, A L T G" uniqKey="Ruiz A">A.L.T.G. Ruiz</name>
</author>
<author>
<name sortKey="Imamura, P M" uniqKey="Imamura P">P.M. Imamura</name>
</author>
<author>
<name sortKey="De Carvalho, J E" uniqKey="De Carvalho J">J.E. de Carvalho</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Silva, V A O" uniqKey="Silva V">V.A.O. Silva</name>
</author>
<author>
<name sortKey="Rosa, M N" uniqKey="Rosa M">M.N. Rosa</name>
</author>
<author>
<name sortKey="Tansini, A" uniqKey="Tansini A">A. Tansini</name>
</author>
<author>
<name sortKey="Martinho, O" uniqKey="Martinho O">O. Martinho</name>
</author>
<author>
<name sortKey="Tanuri, A" uniqKey="Tanuri A">A. Tanuri</name>
</author>
<author>
<name sortKey="Evangelista, A F" uniqKey="Evangelista A">A.F. Evangelista</name>
</author>
<author>
<name sortKey="Cruvinel Carloni, A" uniqKey="Cruvinel Carloni A">A. Cruvinel Carloni</name>
</author>
<author>
<name sortKey="Lima, J P" uniqKey="Lima J">J.P. Lima</name>
</author>
<author>
<name sortKey="Pianowski, L F" uniqKey="Pianowski L">L.F. Pianowski</name>
</author>
<author>
<name sortKey="Reis, R M" uniqKey="Reis R">R.M. Reis</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Hong, J M" uniqKey="Hong J">J.M. Hong</name>
</author>
<author>
<name sortKey="Kim, J H" uniqKey="Kim J">J.H. Kim</name>
</author>
<author>
<name sortKey="Kim, H" uniqKey="Kim H">H. Kim</name>
</author>
<author>
<name sortKey="Lee, W J" uniqKey="Lee W">W.J. Lee</name>
</author>
<author>
<name sortKey="Hwang, Y I" uniqKey="Hwang Y">Y.I. Hwang</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Bonturi, C R" uniqKey="Bonturi C">C.R. Bonturi</name>
</author>
<author>
<name sortKey="Silva, M C C" uniqKey="Silva M">M.C.C. Silva</name>
</author>
<author>
<name sortKey="Motaln, H" uniqKey="Motaln H">H. Motaln</name>
</author>
<author>
<name sortKey="Salu, B R" uniqKey="Salu B">B.R. Salu</name>
</author>
<author>
<name sortKey="Ferreira, R D S" uniqKey="Ferreira R">R.D.S. Ferreira</name>
</author>
<author>
<name sortKey="Batista, F P" uniqKey="Batista F">F.P. Batista</name>
</author>
<author>
<name sortKey="Correia, M T D S" uniqKey="Correia M">M.T.D.S. Correia</name>
</author>
<author>
<name sortKey="Paiva, P M G" uniqKey="Paiva P">P.M.G. Paiva</name>
</author>
<author>
<name sortKey="Turnsek, T L" uniqKey="Turnsek T">T.L. Turnšek</name>
</author>
<author>
<name sortKey="Oliva, M L V" uniqKey="Oliva M">M.L.V. Oliva</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Correa, A C N T F" uniqKey="Correa A">A.C.N.T.F. Corrêa</name>
</author>
<author>
<name sortKey="Vericimo, M A" uniqKey="Vericimo M">M.A. Vericimo</name>
</author>
<author>
<name sortKey="Dashevskiy, A" uniqKey="Dashevskiy A">A. Dashevskiy</name>
</author>
<author>
<name sortKey="Pereira, P R" uniqKey="Pereira P">P.R. Pereira</name>
</author>
<author>
<name sortKey="Paschoalin, V M F" uniqKey="Paschoalin V">V.M.F. Paschoalin</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Pham, D C" uniqKey="Pham D">D.C. Pham</name>
</author>
<author>
<name sortKey="Chang, Y C" uniqKey="Chang Y">Y.C. Chang</name>
</author>
<author>
<name sortKey="Lin, S R" uniqKey="Lin S">S.R. Lin</name>
</author>
<author>
<name sortKey="Fuh, Y M" uniqKey="Fuh Y">Y.M. Fuh</name>
</author>
<author>
<name sortKey="Tsai, M J" uniqKey="Tsai M">M.J. Tsai</name>
</author>
<author>
<name sortKey="Weng, C F" uniqKey="Weng C">C.F. Weng</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Yang, J S" uniqKey="Yang J">J.S. Yang</name>
</author>
<author>
<name sortKey="Lin, R C" uniqKey="Lin R">R.C. Lin</name>
</author>
<author>
<name sortKey="Hsieh, Y H" uniqKey="Hsieh Y">Y.H. Hsieh</name>
</author>
<author>
<name sortKey="Wu, H H" uniqKey="Wu H">H.H. Wu</name>
</author>
<author>
<name sortKey="Li, G C" uniqKey="Li G">G.C. Li</name>
</author>
<author>
<name sortKey="Lin, Y C" uniqKey="Lin Y">Y.C. Lin</name>
</author>
<author>
<name sortKey="Yang, S F" uniqKey="Yang S">S.F. Yang</name>
</author>
<author>
<name sortKey="Lu, K H" uniqKey="Lu K">K.H. Lu</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Yue, Z" uniqKey="Yue Z">Z. Yue</name>
</author>
<author>
<name sortKey="Guan, X" uniqKey="Guan X">X. Guan</name>
</author>
<author>
<name sortKey="Chao, R" uniqKey="Chao R">R. Chao</name>
</author>
<author>
<name sortKey="Huang, C" uniqKey="Huang C">C. Huang</name>
</author>
<author>
<name sortKey="Li, D" uniqKey="Li D">D. Li</name>
</author>
<author>
<name sortKey="Yang, P" uniqKey="Yang P">P. Yang</name>
</author>
<author>
<name sortKey="Liu, S" uniqKey="Liu S">S. Liu</name>
</author>
<author>
<name sortKey="Hasegawa, T" uniqKey="Hasegawa T">T. Hasegawa</name>
</author>
<author>
<name sortKey="Guo, J" uniqKey="Guo J">J. Guo</name>
</author>
<author>
<name sortKey="Li, M" uniqKey="Li M">M. Li</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Shen, T S" uniqKey="Shen T">T.S. Shen</name>
</author>
<author>
<name sortKey="Hsu, Y K" uniqKey="Hsu Y">Y.K. Hsu</name>
</author>
<author>
<name sortKey="Huang, Y F" uniqKey="Huang Y">Y.F. Huang</name>
</author>
<author>
<name sortKey="Chen, H Y" uniqKey="Chen H">H.Y. Chen</name>
</author>
<author>
<name sortKey="Hsieh, C P" uniqKey="Hsieh C">C.P. Hsieh</name>
</author>
<author>
<name sortKey="Chen, C L" uniqKey="Chen C">C.L. Chen</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Hsu, C T" uniqKey="Hsu C">C.T. Hsu</name>
</author>
<author>
<name sortKey="Huang, Y F" uniqKey="Huang Y">Y.F. Huang</name>
</author>
<author>
<name sortKey="Hsieh, C P" uniqKey="Hsieh C">C.P. Hsieh</name>
</author>
<author>
<name sortKey="Wu, C C" uniqKey="Wu C">C.C. Wu</name>
</author>
<author>
<name sortKey="Shen, T S" uniqKey="Shen T">T.S. Shen</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ooppachai, C" uniqKey="Ooppachai C">C. Ooppachai</name>
</author>
<author>
<name sortKey="Limtrakul Dejkriengkraikul, P" uniqKey="Limtrakul Dejkriengkraikul P">P. Limtrakul Dejkriengkraikul</name>
</author>
<author>
<name sortKey="Yodkeeree, S" uniqKey="Yodkeeree S">S. Yodkeeree</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Subkamkaew, C" uniqKey="Subkamkaew C">C. Subkamkaew</name>
</author>
<author>
<name sortKey="Limtrakul Dejkriengkraikul, P" uniqKey="Limtrakul Dejkriengkraikul P">P. Limtrakul Dejkriengkraikul</name>
</author>
<author>
<name sortKey="Yodkeeree, S" uniqKey="Yodkeeree S">S. Yodkeeree</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Yang, H" uniqKey="Yang H">H. Yang</name>
</author>
<author>
<name sortKey="Bai, X" uniqKey="Bai X">X. Bai</name>
</author>
<author>
<name sortKey="Zhang, H" uniqKey="Zhang H">H. Zhang</name>
</author>
<author>
<name sortKey="Zhang, J" uniqKey="Zhang J">J. Zhang</name>
</author>
<author>
<name sortKey="Wu, Y" uniqKey="Wu Y">Y. Wu</name>
</author>
<author>
<name sortKey="Tang, C" uniqKey="Tang C">C. Tang</name>
</author>
<author>
<name sortKey="Liu, Y" uniqKey="Liu Y">Y. Liu</name>
</author>
<author>
<name sortKey="Yang, Y" uniqKey="Yang Y">Y. Yang</name>
</author>
<author>
<name sortKey="Liu, Z" uniqKey="Liu Z">Z. Liu</name>
</author>
<author>
<name sortKey="Jia, W" uniqKey="Jia W">W. Jia</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Liu, P" uniqKey="Liu P">P. Liu</name>
</author>
<author>
<name sortKey="Xiang, Y" uniqKey="Xiang Y">Y. Xiang</name>
</author>
<author>
<name sortKey="Liu, X" uniqKey="Liu X">X. Liu</name>
</author>
<author>
<name sortKey="Zhang, T" uniqKey="Zhang T">T. Zhang</name>
</author>
<author>
<name sortKey="Yang, R" uniqKey="Yang R">R. Yang</name>
</author>
<author>
<name sortKey="Chen, S" uniqKey="Chen S">S. Chen</name>
</author>
<author>
<name sortKey="Xu, L" uniqKey="Xu L">L. Xu</name>
</author>
<author>
<name sortKey="Yu, Q" uniqKey="Yu Q">Q. Yu</name>
</author>
<author>
<name sortKey="Zhao, H" uniqKey="Zhao H">H. Zhao</name>
</author>
<author>
<name sortKey="Zhang, L" uniqKey="Zhang L">L. Zhang</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Jin, H" uniqKey="Jin H">H. Jin</name>
</author>
<author>
<name sortKey="Ko, Y S" uniqKey="Ko Y">Y.S. Ko</name>
</author>
<author>
<name sortKey="Park, S W" uniqKey="Park S">S.W. Park</name>
</author>
<author>
<name sortKey="Chang, K C" uniqKey="Chang K">K.C. Chang</name>
</author>
<author>
<name sortKey="Kim, H J" uniqKey="Kim H">H.J. Kim</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Tian, L" uniqKey="Tian L">L. Tian</name>
</author>
<author>
<name sortKey="Cheng, F" uniqKey="Cheng F">F. Cheng</name>
</author>
<author>
<name sortKey="Wang, L" uniqKey="Wang L">L. Wang</name>
</author>
<author>
<name sortKey="Qin, W" uniqKey="Qin W">W. Qin</name>
</author>
<author>
<name sortKey="Zou, K" uniqKey="Zou K">K. Zou</name>
</author>
<author>
<name sortKey="Chen, J" uniqKey="Chen J">J. Chen</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Tan, H" uniqKey="Tan H">H. Tan</name>
</author>
<author>
<name sortKey="Xing, Z" uniqKey="Xing Z">Z. Xing</name>
</author>
<author>
<name sortKey="Chen, G" uniqKey="Chen G">G. Chen</name>
</author>
<author>
<name sortKey="Tian, X" uniqKey="Tian X">X. Tian</name>
</author>
<author>
<name sortKey="Wu, Z" uniqKey="Wu Z">Z. Wu</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Yang, S" uniqKey="Yang S">S. Yang</name>
</author>
<author>
<name sortKey="Liao, Y" uniqKey="Liao Y">Y. Liao</name>
</author>
<author>
<name sortKey="Li, L" uniqKey="Li L">L. Li</name>
</author>
<author>
<name sortKey="Xu, X" uniqKey="Xu X">X. Xu</name>
</author>
<author>
<name sortKey="Cao, L" uniqKey="Cao L">L. Cao</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Bo, L Y" uniqKey="Bo L">L.Y. Bo</name>
</author>
<author>
<name sortKey="Li, T J" uniqKey="Li T">T.J. Li</name>
</author>
<author>
<name sortKey="Zhao, X H" uniqKey="Zhao X">X.H. Zhao</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Gomes, I N F" uniqKey="Gomes I">I.N.F. Gomes</name>
</author>
<author>
<name sortKey="Silva Oliveira, R J" uniqKey="Silva Oliveira R">R.J. Silva-Oliveira</name>
</author>
<author>
<name sortKey="Oliveira Silva, V A" uniqKey="Oliveira Silva V">V.A. Oliveira Silva</name>
</author>
<author>
<name sortKey="Rosa, M N" uniqKey="Rosa M">M.N. Rosa</name>
</author>
<author>
<name sortKey="Vital, P S" uniqKey="Vital P">P.S. Vital</name>
</author>
<author>
<name sortKey="Barbosa, M C S" uniqKey="Barbosa M">M.C.S. Barbosa</name>
</author>
<author>
<name sortKey="Dos Santos, F V" uniqKey="Dos Santos F">F.V. Dos Santos</name>
</author>
<author>
<name sortKey="Junqueira, J G M" uniqKey="Junqueira J">J.G.M. Junqueira</name>
</author>
<author>
<name sortKey="Severino, V G P" uniqKey="Severino V">V.G.P. Severino</name>
</author>
<author>
<name sortKey="Oliveira, B G" uniqKey="Oliveira B">B.G. Oliveira</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Lin, L T" uniqKey="Lin L">L.T. Lin</name>
</author>
<author>
<name sortKey="Uen, W C" uniqKey="Uen W">W.C. Uen</name>
</author>
<author>
<name sortKey="Choong, C Y" uniqKey="Choong C">C.Y. Choong</name>
</author>
<author>
<name sortKey="Shi, Y C" uniqKey="Shi Y">Y.C. Shi</name>
</author>
<author>
<name sortKey="Lee, B H" uniqKey="Lee B">B.H. Lee</name>
</author>
<author>
<name sortKey="Tai, C J" uniqKey="Tai C">C.J. Tai</name>
</author>
<author>
<name sortKey="Tai, C J" uniqKey="Tai C">C.J. Tai</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Wei, X" uniqKey="Wei X">X. Wei</name>
</author>
<author>
<name sortKey="Xia, L" uniqKey="Xia L">L. Xia</name>
</author>
<author>
<name sortKey="Ziyayiding, D" uniqKey="Ziyayiding D">D. Ziyayiding</name>
</author>
<author>
<name sortKey="Chen, Q" uniqKey="Chen Q">Q. Chen</name>
</author>
<author>
<name sortKey="Liu, R" uniqKey="Liu R">R. Liu</name>
</author>
<author>
<name sortKey="Xu, X" uniqKey="Xu X">X. Xu</name>
</author>
<author>
<name sortKey="Li, J" uniqKey="Li J">J. Li</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Willer, J" uniqKey="Willer J">J. Willer</name>
</author>
<author>
<name sortKey="Johrer, K" uniqKey="Johrer K">K. Jöhrer</name>
</author>
<author>
<name sortKey="Greil, R" uniqKey="Greil R">R. Greil</name>
</author>
<author>
<name sortKey="Zidorn, C" uniqKey="Zidorn C">C. Zidorn</name>
</author>
<author>
<name sortKey="Cicek, S S" uniqKey="Cicek S">S.S. Çiçek</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Huang, S Y" uniqKey="Huang S">S.Y. Huang</name>
</author>
<author>
<name sortKey="Huang, G J" uniqKey="Huang G">G.J. Huang</name>
</author>
<author>
<name sortKey="Wu, H C" uniqKey="Wu H">H.C. Wu</name>
</author>
<author>
<name sortKey="Kao, M C" uniqKey="Kao M">M.C. Kao</name>
</author>
<author>
<name sortKey="Huang, W C" uniqKey="Huang W">W.C. Huang</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ferhi, S" uniqKey="Ferhi S">S. Ferhi</name>
</author>
<author>
<name sortKey="Santaniello, S" uniqKey="Santaniello S">S. Santaniello</name>
</author>
<author>
<name sortKey="Zerizer, S" uniqKey="Zerizer S">S. Zerizer</name>
</author>
<author>
<name sortKey="Cruciani, S" uniqKey="Cruciani S">S. Cruciani</name>
</author>
<author>
<name sortKey="Fadda, A" uniqKey="Fadda A">A. Fadda</name>
</author>
<author>
<name sortKey="Sanna, D" uniqKey="Sanna D">D. Sanna</name>
</author>
<author>
<name sortKey="Dore, A" uniqKey="Dore A">A. Dore</name>
</author>
<author>
<name sortKey="Maioli, M" uniqKey="Maioli M">M. Maioli</name>
</author>
<author>
<name sortKey="D Allewin, G" uniqKey="D Allewin G">G. D’hallewin</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Elansary, H O" uniqKey="Elansary H">H.O. Elansary</name>
</author>
<author>
<name sortKey="Szopa, A" uniqKey="Szopa A">A. Szopa</name>
</author>
<author>
<name sortKey="Kubica, P" uniqKey="Kubica P">P. Kubica</name>
</author>
<author>
<name sortKey="Al Mana, F A" uniqKey="Al Mana F">F.A. Al-Mana</name>
</author>
<author>
<name sortKey="Mahmoud, E A" uniqKey="Mahmoud E">E.A. Mahmoud</name>
</author>
<author>
<name sortKey="Zin El Abedin, T K A" uniqKey="Zin El Abedin T">T.K.A. Zin El-Abedin</name>
</author>
<author>
<name sortKey="Mattar, M" uniqKey="Mattar M">M. Mattar</name>
</author>
<author>
<name sortKey="Ekiert, H" uniqKey="Ekiert H">H. Ekiert</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Yang, Y" uniqKey="Yang Y">Y. Yang</name>
</author>
<author>
<name sortKey="Bhosle, S R" uniqKey="Bhosle S">S.R. Bhosle</name>
</author>
<author>
<name sortKey="Yu, Y H" uniqKey="Yu Y">Y.H. Yu</name>
</author>
<author>
<name sortKey="Park, S Y" uniqKey="Park S">S.Y. Park</name>
</author>
<author>
<name sortKey="Zhou, R" uniqKey="Zhou R">R. Zhou</name>
</author>
<author>
<name sortKey="Ta, I" uniqKey="Ta I">I. Taş</name>
</author>
<author>
<name sortKey="Gamage, C D B" uniqKey="Gamage C">C.D.B. Gamage</name>
</author>
<author>
<name sortKey="Kim, K K" uniqKey="Kim K">K.K. Kim</name>
</author>
<author>
<name sortKey="Pereira, I" uniqKey="Pereira I">I. Pereira</name>
</author>
<author>
<name sortKey="Hur, J S" uniqKey="Hur J">J.S. Hur</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Alvarado Sansininea, J J" uniqKey="Alvarado Sansininea J">J.J. Alvarado-Sansininea</name>
</author>
<author>
<name sortKey="Sanchez Sanchez, L" uniqKey="Sanchez Sanchez L">L. Sánchez-Sánchez</name>
</author>
<author>
<name sortKey="L Pez Mu Oz, H" uniqKey="L Pez Mu Oz H">H. López-Muñoz</name>
</author>
<author>
<name sortKey="Escobar, M L" uniqKey="Escobar M">M.L. Escobar</name>
</author>
<author>
<name sortKey="Flores Guzman, F" uniqKey="Flores Guzman F">F. Flores-Guzmán</name>
</author>
<author>
<name sortKey="Tavera Hernandez, R" uniqKey="Tavera Hernandez R">R. Tavera-Hernández</name>
</author>
<author>
<name sortKey="Jimenez Estrada, M" uniqKey="Jimenez Estrada M">M. Jiménez-Estrada</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Yu, W" uniqKey="Yu W">W. Yu</name>
</author>
<author>
<name sortKey="Ren, Z" uniqKey="Ren Z">Z. Ren</name>
</author>
<author>
<name sortKey="Zhang, X" uniqKey="Zhang X">X. Zhang</name>
</author>
<author>
<name sortKey="Xing, S" uniqKey="Xing S">S. Xing</name>
</author>
<author>
<name sortKey="Tao, S" uniqKey="Tao S">S. Tao</name>
</author>
<author>
<name sortKey="Liu, C" uniqKey="Liu C">C. Liu</name>
</author>
<author>
<name sortKey="Wei, G" uniqKey="Wei G">G. Wei</name>
</author>
<author>
<name sortKey="Yuan, Y" uniqKey="Yuan Y">Y. Yuan</name>
</author>
<author>
<name sortKey="Lei, Z" uniqKey="Lei Z">Z. Lei</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Nguyen, T T H" uniqKey="Nguyen T">T.T.H. Nguyen</name>
</author>
<author>
<name sortKey="Pandey, R P" uniqKey="Pandey R">R.P. Pandey</name>
</author>
<author>
<name sortKey="Parajuli, P" uniqKey="Parajuli P">P. Parajuli</name>
</author>
<author>
<name sortKey="Han, J M" uniqKey="Han J">J.M. Han</name>
</author>
<author>
<name sortKey="Jung, H J" uniqKey="Jung H">H.J. Jung</name>
</author>
<author>
<name sortKey="Park, Y I" uniqKey="Park Y">Y.I. Park</name>
</author>
<author>
<name sortKey="Sohng, J K" uniqKey="Sohng J">J.K. Sohng</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kahnt, M" uniqKey="Kahnt M">M. Kahnt</name>
</author>
<author>
<name sortKey="Fischer Nee Heller, L" uniqKey="Fischer Nee Heller L">L. Fischer Née Heller</name>
</author>
<author>
<name sortKey="Al Harrasi, A" uniqKey="Al Harrasi A">A. Al-Harrasi</name>
</author>
<author>
<name sortKey="Csuk, R" uniqKey="Csuk R">R. Csuk</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ling, T" uniqKey="Ling T">T. Ling</name>
</author>
<author>
<name sortKey="Lang, W H" uniqKey="Lang W">W.H. Lang</name>
</author>
<author>
<name sortKey="Maier, J" uniqKey="Maier J">J. Maier</name>
</author>
<author>
<name sortKey="Quintana Centurion, M" uniqKey="Quintana Centurion M">M. Quintana Centurion</name>
</author>
<author>
<name sortKey="Rivas, F" uniqKey="Rivas F">F. Rivas</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Lim, H N" uniqKey="Lim H">H.N. Lim</name>
</author>
<author>
<name sortKey="Baek, S B" uniqKey="Baek S">S.B. Baek</name>
</author>
<author>
<name sortKey="Jung, H J" uniqKey="Jung H">H.J. Jung</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Guo, D L" uniqKey="Guo D">D.L. Guo</name>
</author>
<author>
<name sortKey="Li, X H" uniqKey="Li X">X.H. Li</name>
</author>
<author>
<name sortKey="Feng, D" uniqKey="Feng D">D. Feng</name>
</author>
<author>
<name sortKey="Jin, M Y" uniqKey="Jin M">M.Y. Jin</name>
</author>
<author>
<name sortKey="Cao, Y M" uniqKey="Cao Y">Y.M. Cao</name>
</author>
<author>
<name sortKey="Cao, Z X" uniqKey="Cao Z">Z.X. Cao</name>
</author>
<author>
<name sortKey="Gu, Y C" uniqKey="Gu Y">Y.C. Gu</name>
</author>
<author>
<name sortKey="Geng, Z" uniqKey="Geng Z">Z. Geng</name>
</author>
<author>
<name sortKey="Deng, F" uniqKey="Deng F">F. Deng</name>
</author>
<author>
<name sortKey="Deng, Y" uniqKey="Deng Y">Y. Deng</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Espindola, L S" uniqKey="Espindola L">L.S. Espindola</name>
</author>
<author>
<name sortKey="Dusi, R G" uniqKey="Dusi R">R.G. Dusi</name>
</author>
<author>
<name sortKey="Demarque, D P" uniqKey="Demarque D">D.P. Demarque</name>
</author>
<author>
<name sortKey="Braz Filho, R" uniqKey="Braz Filho R">R. Braz-Filho</name>
</author>
<author>
<name sortKey="Yan, P" uniqKey="Yan P">P. Yan</name>
</author>
<author>
<name sortKey="Bokesch, H R" uniqKey="Bokesch H">H.R. Bokesch</name>
</author>
<author>
<name sortKey="Gustafson, K R" uniqKey="Gustafson K">K.R. Gustafson</name>
</author>
<author>
<name sortKey="Beutler, J A" uniqKey="Beutler J">J.A. Beutler</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Liu, Z" uniqKey="Liu Z">Z. Liu</name>
</author>
<author>
<name sortKey="Gao, T" uniqKey="Gao T">T. Gao</name>
</author>
<author>
<name sortKey="Yang, Y" uniqKey="Yang Y">Y. Yang</name>
</author>
<author>
<name sortKey="Meng, F" uniqKey="Meng F">F. Meng</name>
</author>
<author>
<name sortKey="Zhan, F" uniqKey="Zhan F">F. Zhan</name>
</author>
<author>
<name sortKey="Jiang, Q" uniqKey="Jiang Q">Q. Jiang</name>
</author>
<author>
<name sortKey="Sun, X" uniqKey="Sun X">X. Sun</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Wang, N" uniqKey="Wang N">N. Wang</name>
</author>
<author>
<name sortKey=" Witalska, M" uniqKey=" Witalska M">M. Świtalska</name>
</author>
<author>
<name sortKey="Wang, L" uniqKey="Wang L">L. Wang</name>
</author>
<author>
<name sortKey="Shaban, E" uniqKey="Shaban E">E. Shaban</name>
</author>
<author>
<name sortKey="Hossain, M I" uniqKey="Hossain M">M.I. Hossain</name>
</author>
<author>
<name sortKey="El Sayed, I E" uniqKey="El Sayed I">I.E. El Sayed</name>
</author>
<author>
<name sortKey="Wietrzyk, J" uniqKey="Wietrzyk J">J. Wietrzyk</name>
</author>
<author>
<name sortKey="Inokuchi, T" uniqKey="Inokuchi T">T. Inokuchi</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Yang, M H" uniqKey="Yang M">M.H. Yang</name>
</author>
<author>
<name sortKey="Jung, S H" uniqKey="Jung S">S.H. Jung</name>
</author>
<author>
<name sortKey="Sethi, G" uniqKey="Sethi G">G. Sethi</name>
</author>
<author>
<name sortKey="Ahn, K S" uniqKey="Ahn K">K.S. Ahn</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Liskova, A" uniqKey="Liskova A">A. Liskova</name>
</author>
<author>
<name sortKey="Kubatka, P" uniqKey="Kubatka P">P. Kubatka</name>
</author>
<author>
<name sortKey="Samec, M" uniqKey="Samec M">M. Samec</name>
</author>
<author>
<name sortKey="Zubor, P" uniqKey="Zubor P">P. Zubor</name>
</author>
<author>
<name sortKey="Mlyncek, M" uniqKey="Mlyncek M">M. Mlyncek</name>
</author>
<author>
<name sortKey="Bielik, T" uniqKey="Bielik T">T. Bielik</name>
</author>
<author>
<name sortKey="Samuel, S M" uniqKey="Samuel S">S.M. Samuel</name>
</author>
<author>
<name sortKey="Zulli, A" uniqKey="Zulli A">A. Zulli</name>
</author>
<author>
<name sortKey="Kwon, T K" uniqKey="Kwon T">T.K. Kwon</name>
</author>
<author>
<name sortKey="Busselberg, D" uniqKey="Busselberg D">D. Büsselberg</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Girisa, S" uniqKey="Girisa S">S. Girisa</name>
</author>
<author>
<name sortKey="Shabnam, B" uniqKey="Shabnam B">B. Shabnam</name>
</author>
<author>
<name sortKey="Monisha, J" uniqKey="Monisha J">J. Monisha</name>
</author>
<author>
<name sortKey="Fan, L" uniqKey="Fan L">L. Fan</name>
</author>
<author>
<name sortKey="Halim, C E" uniqKey="Halim C">C.E. Halim</name>
</author>
<author>
<name sortKey="Arfuso, F" uniqKey="Arfuso F">F. Arfuso</name>
</author>
<author>
<name sortKey="Ahn, K S" uniqKey="Ahn K">K.S. Ahn</name>
</author>
<author>
<name sortKey="Sethi, G" uniqKey="Sethi G">G. Sethi</name>
</author>
<author>
<name sortKey="Kunnumakkara, A B" uniqKey="Kunnumakkara A">A.B. Kunnumakkara</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Choi, B Y" uniqKey="Choi B">B.Y. Choi</name>
</author>
</analytic>
</biblStruct>
</listBibl>
</div1>
</back>
</TEI>
<pmc article-type="editorial">
<pmc-dir>properties open_access</pmc-dir>
<front>
<journal-meta>
<journal-id journal-id-type="nlm-ta">Molecules</journal-id>
<journal-id journal-id-type="iso-abbrev">Molecules</journal-id>
<journal-id journal-id-type="publisher-id">molecules</journal-id>
<journal-title-group>
<journal-title>Molecules</journal-title>
</journal-title-group>
<issn pub-type="epub">1420-3049</issn>
<publisher>
<publisher-name>MDPI</publisher-name>
</publisher>
</journal-meta>
<article-meta>
<article-id pub-id-type="pmid">32028725</article-id>
<article-id pub-id-type="pmc">7037154</article-id>
<article-id pub-id-type="doi">10.3390/molecules25030650</article-id>
<article-id pub-id-type="publisher-id">molecules-25-00650</article-id>
<article-categories>
<subj-group subj-group-type="heading">
<subject>Editorial</subject>
</subj-group>
</article-categories>
<title-group>
<article-title>Antitumoral Properties of Natural Products</article-title>
</title-group>
<contrib-group>
<contrib contrib-type="author">
<contrib-id contrib-id-type="orcid" authenticated="true">https://orcid.org/0000-0003-4865-9413</contrib-id>
<name>
<surname>Fabiani</surname>
<given-names>Roberto</given-names>
</name>
</contrib>
</contrib-group>
<aff id="af1-molecules-25-00650">Department of Chemistry, Biology and Biotechnology, University of Perugia, 06126 Perugia, Italy;
<email>roberto.fabiani@unipg.it</email>
</aff>
<pub-date pub-type="epub">
<day>03</day>
<month>2</month>
<year>2020</year>
</pub-date>
<pub-date pub-type="collection">
<month>2</month>
<year>2020</year>
</pub-date>
<volume>25</volume>
<issue>3</issue>
<elocation-id>650</elocation-id>
<history>
<date date-type="received">
<day>27</day>
<month>1</month>
<year>2020</year>
</date>
<date date-type="accepted">
<day>28</day>
<month>1</month>
<year>2020</year>
</date>
</history>
<permissions>
<copyright-statement>© 2020 by the author.</copyright-statement>
<copyright-year>2020</copyright-year>
<license license-type="open-access">
<license-p>Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (
<ext-link ext-link-type="uri" xlink:href="http://creativecommons.org/licenses/by/4.0/">http://creativecommons.org/licenses/by/4.0/</ext-link>
).</license-p>
</license>
</permissions>
</article-meta>
</front>
<body>
<p>Cancer is one of the major causes of death worldwide. It is a multifactorial heterogeneous disease characterized by a multistep process initiated by genetic alterations of normal cells which become malignant cells. These cells are characterized by uncontrolled cell growth, immortality, invasiveness, and ability to form distant metastasis. Natural bioactive molecules may interfere with the carcinogenesis process by altering the tumor cell behavior and targeting several molecular abnormally activated signaling pathways.</p>
<p>Among different cancer types, glioblastoma is the most frequent and aggressive of all malignant brain tumors. Glioblastoma is highly invasive, and its treatment include surgery, radiation, and chemotherapy with temozolomide (TMZ). Nevertheless, patient prognosis remains poor and associated with a low survival rate. In this Special Issue, Franco et al. have investigated the anticancer properties of coronarin D, a diterpene isolated from a dichloromethane extract of
<italic>Hedychium coronarium</italic>
in a glioblastoma cell line (U-251) [
<xref rid="B1-molecules-25-00650" ref-type="bibr">1</xref>
]. They found that this compound was able to inhibit proliferation and induce G1 cell cycle arrest and apoptosis in U-251 cells. The authors proposed that coronarin D-induced effects were mediated by an overproduction of reactive oxygen species, which promoted phosphorylation of H2AX and ERK, increased the expression of p21, and activated caspases. Noteworthy is the observation that coronarin D was in some cases even more effective than TMZ. Similarly, Silva et al. have demonstrated that ingenol-3-dodecanoate (IngC), a semi-synthetic ingenol derivative from
<italic>Euphorbia tirucalli</italic>
, was more effective at inhibiting the growth of different glioma cell lines than TMZ [
<xref rid="B2-molecules-25-00650" ref-type="bibr">2</xref>
]. Overexpression of p21 was also observed in both GAMG and U373 glioblastoma cell lines. On the other hand, IngC promoted S-phase arrest but was not able to induce apoptosis. Worth noting is the observation that IngC promoted glioma cell autophagy as evidenced by both the accumulation of LC3B-II and the development of acidic vesicular organelles. In addition, IngC treatment resulted in potent inhibition of protein kinase C activity, showing differential actions against various PKC isotypes [
<xref rid="B2-molecules-25-00650" ref-type="bibr">2</xref>
]. Hong at al. demonstrated a cytotoxic effect of SB365, a saponin D extracted from the roots of
<italic>Pulsatilla koreana,</italic>
on U87-MG and T98G glioblastoma multiforme (GBM) cells [
<xref rid="B3-molecules-25-00650" ref-type="bibr">3</xref>
]. This compound induced caspase-independent cell death, inhibited autophagic flux, and deteriorated lysosomal stability and mitochondrial membrane potential (MMP) in U87-MG cells. Very importantly, this paper showed also an additive effect between SB365 and TMZ on glioblastoma cell proliferation both in vitro and in vivo using a mouse U87-MG xenograft model [
<xref rid="B3-molecules-25-00650" ref-type="bibr">3</xref>
]. Furthermore, Bonturi et al. have studied the effect of a plant-derived protein obtained from
<italic>Crataeva tapia</italic>
tree bark lectin (CrataBL) on U87 glioblastoma cells in co-culture with mesenchymal stem cells [
<xref rid="B4-molecules-25-00650" ref-type="bibr">4</xref>
]. They showed that the mixed cells grown in 1:1 co-culture were more sensitive to the CrataBL than each of the individual cell types with regards to both inhibition of proliferation and induction of death. Corrêa et al. have developed and characterized liposomal nanocapsules loaded with purified tarin, a lectin naturally found in taro corms (
<italic>Colocasia esculenta</italic>
), which were able to dose-dependently inhibit glioblastoma (U-87 MG) and breast (MDA-MB-231) tumor cells, while free tarin did not affect tumoral cell growth [
<xref rid="B5-molecules-25-00650" ref-type="bibr">5</xref>
]. Finally, a study by Pham et al. has investigated the effects of neferine on another brain tumor, neuroblastoma [
<xref rid="B6-molecules-25-00650" ref-type="bibr">6</xref>
]. They showed that neferine suppressed proliferation and induced both apoptosis and autophagy in human neuroblastoma IMR32 cells [
<xref rid="B6-molecules-25-00650" ref-type="bibr">6</xref>
].</p>
<p>Osteosarcoma (OS) is one of the most frequent bone tumors, with a high prevalence in teenagers and young adults. Due to its high metastatic potential, the prognosis of osteosarcoma patients is poor. Although the main treatment is surgery, anticancer strategies based on development of new agents that target particular intracellular signaling pathways in osteosarcoma cells are needed. The study of Yang et al. has shown that CLEFMA (4-[3,5-bis(2-chlorobenzylidene)-4-oxo-piperidine-1-yl]-4-oxo-2-butenoic acid), a synthetic analog of curcumin, decreased viability and induced apoptosis in human osteosarcoma U2OS and HOS cells [
<xref rid="B7-molecules-25-00650" ref-type="bibr">7</xref>
]. This compound activated both extrinsic and intrinsic apoptotic pathways and, by using specific inhibitors, the authors demonstrated that these effects were mediated by the phosphorylation of c-Jun N-terminal kinases (JNK) and p38, while the ERK pathway was not involved [
<xref rid="B7-molecules-25-00650" ref-type="bibr">7</xref>
]. Diallyl disulfide (DADs), a natural organic compound present in garlic and scallion, inhibited proliferation, induced apoptosis, and arrested the cell cycle at the G2/M phase of MG-63 osteosarcoma cells [
<xref rid="B8-molecules-25-00650" ref-type="bibr">8</xref>
]. In addition, DADs induced the formation of autophagosome as revealed by the increased expression of LC3-II protein which was reduced by the autophagy inhibitor 3-methyladenine. These anticancer effects were mediated by the ability of DADs to inhibit the PI3K/Akt/mTOR signaling pathway [
<xref rid="B8-molecules-25-00650" ref-type="bibr">8</xref>
]. Similar to DADs, Shen et al. showed that licochalcone A, a flavonoid extracted from licorice root, reduced proliferation, caused G2/M phase cell cycle arrest, and induced apoptosis and autophagy in HOS and MG-63 osteosarcoma cells [
<xref rid="B9-molecules-25-00650" ref-type="bibr">9</xref>
]. Furthermore, it was found that licochalcone A induced rapid phosphorylation of Chk2 and ATM, suggesting that the ATM–Chk2 pathway may contribute to its effect on G2/M phase arrest. By using the autophagy inhibitor chloroquine, it was also demonstrated that the observed autophagy was associated with licochalcone A-induced apoptosis [
<xref rid="B9-molecules-25-00650" ref-type="bibr">9</xref>
]. Hsu et al. have reported that coronarin D reduced the proliferation of HOS and MG-63 osteosarcoma cells while had a minor cytotoxic effect in human fibroblasts (MRC-5) [
<xref rid="B10-molecules-25-00650" ref-type="bibr">10</xref>
]. This compound induced apoptosis and mitotic phase arrest in osteosarcoma cells and JNK was found to play a crucial role in coronarin D-induced effects [
<xref rid="B10-molecules-25-00650" ref-type="bibr">10</xref>
].</p>
<p>Lung cancer is the leading cause of cancer incidence and mortality worldwide, with 2.1 million new cases and 1.8 million deaths predicted in 2018. The high mortality and low survival rate, that have remained unchanged in recent years, support the efforts to find new antineoplastic drugs to overcome this malignancy. In the present Special Issue, four papers have described the anticancer activity of different natural products on lung cancer cell in vitro [
<xref rid="B11-molecules-25-00650" ref-type="bibr">11</xref>
,
<xref rid="B12-molecules-25-00650" ref-type="bibr">12</xref>
,
<xref rid="B13-molecules-25-00650" ref-type="bibr">13</xref>
,
<xref rid="B14-molecules-25-00650" ref-type="bibr">14</xref>
]. Ooppachai et al. showed that dicentrine, an aporphine alkaloid found in the roots of
<italic>Lindera megaphylla</italic>
and several other plants, potentiated the TNF-induced apoptosis in A549 lung adenocarcinoma cells [
<xref rid="B11-molecules-25-00650" ref-type="bibr">11</xref>
]. This compound was also able to inhibit the TNF-induced invasion, migration, and expression of metastasis-associated proteins. These effects were due to, at least in part, to the suppression of TAK-1, MAPK, Akt, AP-1, and NF-kB signaling pathways [
<xref rid="B11-molecules-25-00650" ref-type="bibr">11</xref>
]. Similar effects were induced by treatment of A549 lung adenocarcinoma cells with a proanthocyanidin-rich fraction obtained from red rice [
<xref rid="B12-molecules-25-00650" ref-type="bibr">12</xref>
]. Similarly, antrodin C (ADC), a maleimide derivative isolated from mycelium of
<italic>Taiwanofungus camphoratus</italic>
, exerted its anticancer activities (antiproliferative and pro-apoptotic) by suppressing both the Akt/mTOR and AMPK signaling pathways in human lung adenocarcinoma cell line SPCA-1 [
<xref rid="B13-molecules-25-00650" ref-type="bibr">13</xref>
]. Importantly, this study showed that ADC was not toxic toward normal human lung cells BEAS-2B [
<xref rid="B13-molecules-25-00650" ref-type="bibr">13</xref>
]. Cucurbitacin B (CuB) is a natural tetracyclic triterpenoid compound mainly found in Cucurbitaceae. The study of Liu et al. reported, for the first time, that CuB induced EGFR degradation and inhibited CIP2A/PP2A/Akt activities in different in gefitinib-resistant non-small cell lung cancer cell lines [
<xref rid="B14-molecules-25-00650" ref-type="bibr">14</xref>
].</p>
<p>After lung cancer, breast cancer is the second main cause of death by cancer in women. Triple-negative breast cancer (TNBC), characterized by the absence of expression of three receptors (estrogen, progesterone, and human epidermal growth factor receptor 2), is an aggressive type of breast cancer that is difficult to treat. Jin et al. have reported the antitumoral properties of 13-ethylberberine (13EBR), a derivative of berberine (alkaloid isolated from
<italic>Cotridis rhizoma</italic>
), on MDA-MB-231 cells, which are a common model for TNBC [
<xref rid="B15-molecules-25-00650" ref-type="bibr">15</xref>
]. 13-EBR reduced proliferation and induced apoptosis in both MDA-MB-231 and radiotherapy-resistant RT-R MDA-MB-231 cells. These effects were mediated by the promotion of reactive oxygen species production and regulation of the apoptosis-related proteins involved in the intrinsic pathway [
<xref rid="B15-molecules-25-00650" ref-type="bibr">15</xref>
]. In the same cell model, Tian et al. showed antitumor activity of 4-epi-isoinuviscolide (CLE-10), a sesquiterpene lactone isolated from
<italic>Carpesium abrotanoides</italic>
L. [
<xref rid="B16-molecules-25-00650" ref-type="bibr">16</xref>
]. This compound induced pro-death autophagy and apoptosis in MDA-MB-231 cells by upregulating the protein expressions of LC3-II, p-ULK1, Bax, and Bad, and downregulating p-PI3K, p-Akt, p-mTOR, p62, Bcl-2, and Bcl-xl [
<xref rid="B16-molecules-25-00650" ref-type="bibr">16</xref>
]. Tan et al. have used another model of breast cancer (MCF-7 cells) to study the antiproliferative activity of the water soluble natural yellow
<italic>Monascus</italic>
pigments [
<xref rid="B17-molecules-25-00650" ref-type="bibr">17</xref>
]. These compounds reduced the migration and invasion of MCF-7 cells, and these activities were associated with a downregulation of the expression of matrix metalloproteinases and vascular endothelial growth factor [
<xref rid="B17-molecules-25-00650" ref-type="bibr">17</xref>
].</p>
<p>Gastric cancer is the fourth most common cancer and the second leading cause of cancer death worldwide. Several studies have been performed to find new therapeutic strategies based on bioactive phytochemicals with a lower toxicity. Zeylenone (Zey), a cyclohexene oxide isolated from the leaves of
<italic>Uvaria grandiflora</italic>
, has shown multiple anticancer activities on different cell lines. In their study, Yang et al. have demonstrated that this compound was able to induce mitochondrial apoptosis and to inhibit migration and invasion in SGC7901 and MGC803 gastric cancer cells in vitro [
<xref rid="B18-molecules-25-00650" ref-type="bibr">18</xref>
]. In addition, Zey downregulated the expression of matrix metalloproteinase 2/9 and inhibited the phosphorylation of AKT and ERK. Of particular interest is the in vivo observation that Zey effectively inhibited tumor growth in nude BALB/c mice bearing BGC823 xenografts without any evident cytotoxic effects [
<xref rid="B18-molecules-25-00650" ref-type="bibr">18</xref>
]. Bo et al. have investigated the anticancer activity of bovine lactoferrin hydrolysate (BLH) with added Cu
<sup>2+</sup>
and Mn
<sup>2+</sup>
on human gastric cancer BGC-823 cells [
<xref rid="B19-molecules-25-00650" ref-type="bibr">19</xref>
]. They showed that the fortified BLH products had higher activities than BLH alone as evidenced by induction of apoptosis and activation of the classic caspase-3-dependent apoptotic pathway [
<xref rid="B19-molecules-25-00650" ref-type="bibr">19</xref>
]. As opposed to the use of single purified molecules, several studies have highlighted the anticancer effects of plant-derived fractions and/or extracts on different cell models. Gomes at al. have demonstrated a cytotoxic effect of different
<italic>Annona coriacea</italic>
Mart. derived fractions on cisplatin-resistant cervical cancer cell lines (CaSki, HeLa, and SiHa) and on a normal keratinocyte cell line (HaCaT) [
<xref rid="B20-molecules-25-00650" ref-type="bibr">20</xref>
]. Lin et al. have investigated the tumor-suppressive effects of an ethanol extract from
<italic>Paris polyphylla</italic>
in DLD-1 human colorectal carcinoma cells [
<xref rid="B21-molecules-25-00650" ref-type="bibr">21</xref>
]. They found that cell death was induced by the upregulation of autophagy markers and treatment in combination with doxorubicin enhanced its cytotoxicity (12). Wei et al. have studied the anticancer activity of an ethanol extract from
<italic>Artemisia absinthium</italic>
and some subfractions on hepatocellular carcinoma cells [
<xref rid="B22-molecules-25-00650" ref-type="bibr">22</xref>
]. The results showed the inhibition of cells growth and induction of apoptosis which might be mediated by the endoplasmic reticulum stress and mitochondrial-dependent pathway [
<xref rid="B22-molecules-25-00650" ref-type="bibr">22</xref>
]. In addition, it was demonstrated an inhibition of tumor growth in vivo using the H22 tumor mouse model (H22 cells were subcutaneously injected in male Kunming mice and tumor sizes were monitored over time). Interestingly, the extract improved the survival of tumor mice without obvious toxicity and side effects [
<xref rid="B22-molecules-25-00650" ref-type="bibr">22</xref>
]. Willer et al. have assayed extracts and fractions derived from damiana (
<italic>Turnera diffusa</italic>
) against different myeloma cell lines (NCI-H929, U266, and MM1S) [
<xref rid="B23-molecules-25-00650" ref-type="bibr">23</xref>
]. They identified the flavanone naringenin as the most active compound able to decrease viability in particular in NCI-H929 cells. Furthermore, apigenin 7-O-(4”-O-p-E-coumaroyl)-glucoside was identified as being cytotoxic for the first time. This study also described the first validated UHPLC-DAD method for the quantification of phenolic constituents in
<italic>Turnera diffusa</italic>
[
<xref rid="B23-molecules-25-00650" ref-type="bibr">23</xref>
]. Huang et al. have found that a
<italic>Ganoderma tsugae</italic>
ethanol extract, a Chinese natural and herbal product, significantly inhibited expression of SREBP-1 and its downstream genes associated with lipogenesis in prostate cancer cells (LNCaP and C4-2) [
<xref rid="B24-molecules-25-00650" ref-type="bibr">24</xref>
]. These effects were associated to the inhibition of cell growth, migration, and invasion, and induction of apoptosis [
<xref rid="B24-molecules-25-00650" ref-type="bibr">24</xref>
]. Ferhi et al. have shown the antiproliferative effects ethanol and water extracts from grape leaves on HepG2 hepatocarcinoma, MCF-7 human breast cancer cells, and vein human umbilical (HUVEC) cells [
<xref rid="B25-molecules-25-00650" ref-type="bibr">25</xref>
]. In cancer cells, both extracts induced the expression of the pro-apoptotic gene Bax and reduced the expression of the anti-apoptotic gene Bcl-2. Interesting, the extracts did not show toxic effects on vein umbilical HUVEC cells [
<xref rid="B25-molecules-25-00650" ref-type="bibr">25</xref>
]. Elansary et al. have characterized the phenolic profiles of
<italic>Catalpa speciosa</italic>
,
<italic>Taxus cuspidata</italic>
, and
<italic>Magnolia acuminata</italic>
bark extracts and studied their antiproliferative activity against different cancer cell lines (MCF-7, HeLa, Jurkat, T24, and HT-29) [
<xref rid="B26-molecules-25-00650" ref-type="bibr">26</xref>
]. Yang et al. have screened 11 different lichen acetone extracts on the stemness potential of colorectal cancer cells and have isolated the most active compound tumidulin from
<italic>Niebla</italic>
sp. [
<xref rid="B27-molecules-25-00650" ref-type="bibr">27</xref>
]. This compound reduced spheroid formation and the mRNA expression and protein levels of different cancer stem markers (ALDH1, CD133, CD44, Lgr5, and Musashi-1) in CSC221, DLD1, and HT29 cells [
<xref rid="B27-molecules-25-00650" ref-type="bibr">27</xref>
]. Alvarado-Sansininea et al. have isolated quercetagetin and patuletin from
<italic>Tagetes erecta</italic>
and
<italic>Tagetes patula</italic>
flower ethanol extracts and tested for their antiproliferative, necrotic, and apoptotic activity on different cancer cell lines (CaSki: cervical, MDA-MB-231: breast, SK-LU-1: lung) [
<xref rid="B28-molecules-25-00650" ref-type="bibr">28</xref>
]. The structure–activity relationship study, including also quercetin for comparison, demonstrated that the presence of a methoxyl group in C6 of the A ring of flavonol patuletin enhanced its anticancer potential [
<xref rid="B28-molecules-25-00650" ref-type="bibr">28</xref>
]. Yu et al. have purified polysaccharides from the stem extract of the medicinal plant
<italic>Dendrobium officinale</italic>
grown under different planting conditions (in the greenhouse and in the wild) and compared their structure and antitumor properties on HeLa cells [
<xref rid="B29-molecules-25-00650" ref-type="bibr">29</xref>
]. Polysaccharides showed a significant activity only after oxidative degradation to smaller molecular weight species. The fractions from wild plants showed an evident antiproliferative and pro-apoptotic activities while the effects of the fractions from greenhouse plants were not significant [
<xref rid="B29-molecules-25-00650" ref-type="bibr">29</xref>
]. Nguyen et al. have biotransformed three selected anthraquinones into their O-glucoside by a bacteria glycosyltransferase, and tested these products for their antiproliferative affects against various cancer cells (AGS: gastric; HeLa: cervical; Hep-G2: liver) [
<xref rid="B30-molecules-25-00650" ref-type="bibr">30</xref>
]. They found that the glycosylated derivatives were more effective in inhibiting cell growth than their parental aglycones [
<xref rid="B30-molecules-25-00650" ref-type="bibr">30</xref>
].</p>
<p>Kahnt et al. have synthesized 28 new cytotoxic agents starting from the naturally occurring triterpenoids betulinic and ursolic acid [
<xref rid="B31-molecules-25-00650" ref-type="bibr">31</xref>
]. Different ethylenediamine derived carboxamides were tested for cytotoxicity by the sulforhodamine-B colorimetric assay in several tumor cell lines (518A2: melanoma; A2780: ovarian carcinoma; HT29: colon adenocarcinoma; MCF-7: breast adenocarcinoma; 8505C: thyroid carcinoma) and in nonmalignant mouse fibroblasts (NIH 3T3). Two betulinic acid-derived compounds were identified as the most effective with an EC
<sub>50</sub>
lower than 1 µM [
<xref rid="B31-molecules-25-00650" ref-type="bibr">31</xref>
]. Unfortunately, these compounds were not selective for tumor cells since they were toxic also toward nonmalignant fibroblasts. Ling et al. have screened a natural product library containing fractions and pure compounds for proliferation inhibition in different cancer cell models [
<xref rid="B32-molecules-25-00650" ref-type="bibr">32</xref>
]. They identified different alkaloid compounds with a potent cytotoxic effect. In particular, homoharringtonine showed an EC
<sub>50</sub>
lower that 0.1 µM and together with cephalotaxine, demonstrated potent inhibition of protein synthesis [
<xref rid="B32-molecules-25-00650" ref-type="bibr">32</xref>
]. Lim et al. have demonstrated an antimelanoma effect of bee venom (BV) and that the major active ingredient is melittin, an amphiphilic peptide containing 26 amino acid residues [
<xref rid="B33-molecules-25-00650" ref-type="bibr">33</xref>
]. These effects were mediated by the downregulation of PI3K/AKT/mTOR and MAPK signaling pathways [
<xref rid="B33-molecules-25-00650" ref-type="bibr">33</xref>
]. </p>
<p>Three new isochromanes were isolated from
<italic>Aspergillus fumigatus</italic>
fermentation broth and tested in vitro for their cytotoxic effects by MTT assay of MV4-11 cell line [
<xref rid="B34-molecules-25-00650" ref-type="bibr">34</xref>
]. Only two of them showed a moderate growth inhibition with IC
<sub>50</sub>
values of 23.95 and 32.70 µM, respectively [
<xref rid="B34-molecules-25-00650" ref-type="bibr">34</xref>
]. Similarly, four new pentacyclic triterpene were isolated from hexane extract of
<italic>Salacia crassifolia</italic>
root wood and tested for their cytotoxic activity against human cancer cell lines using the “NCI-60 cell line screen” [
<xref rid="B35-molecules-25-00650" ref-type="bibr">35</xref>
]. Among them, pristimerin showed selective inhibitory activity towards a variety of human tumor cell lines and it was primarily responsible for the cytotoxic activity of the crude extracts [
<xref rid="B35-molecules-25-00650" ref-type="bibr">35</xref>
].</p>
<p>In this Special Issue, six reviews were included aimed to summarize the antitumoral properties of different compounds isolated from several natural sources [
<xref rid="B36-molecules-25-00650" ref-type="bibr">36</xref>
,
<xref rid="B37-molecules-25-00650" ref-type="bibr">37</xref>
,
<xref rid="B38-molecules-25-00650" ref-type="bibr">38</xref>
,
<xref rid="B39-molecules-25-00650" ref-type="bibr">39</xref>
,
<xref rid="B40-molecules-25-00650" ref-type="bibr">40</xref>
,
<xref rid="B41-molecules-25-00650" ref-type="bibr">41</xref>
]. Liu et al. reviewed the anticancer activities of the compounds porphyran and carrageenan, derived from red seaweed [
<xref rid="B36-molecules-25-00650" ref-type="bibr">36</xref>
]. Possible mechanisms in the anticancer activity of these two polysaccharides were considered along with their possible cooperative actions with other anticancer chemotherapeutics [
<xref rid="B36-molecules-25-00650" ref-type="bibr">36</xref>
]. Wang et al. have reported a mini review on the anticancer activity of the naturally occurring indoloquinoline alkaloids cryptolepine, neocryptolepine, and isocryptolepine, isolated from the roots of
<italic>Cryptolepis sanguinolenta</italic>
and several of their analogues [
<xref rid="B37-molecules-25-00650" ref-type="bibr">37</xref>
]. They presented an overview of the potential of neocryptolepine and isocryptolepine as scaffolds for the design and development of new anticancer drugs [
<xref rid="B37-molecules-25-00650" ref-type="bibr">37</xref>
]. Yang et al. have reviewed diverse in vitro and in vivo pharmacological properties of capsazepine, a synthetic analogue of capsaicin (the common pungent ingredient of hot chili peppers) [
<xref rid="B38-molecules-25-00650" ref-type="bibr">38</xref>
]. In addition to having an anticancer activity, capsazepine has important anti-inflammatory effects reducing the level of some inflammatory mediators [
<xref rid="B38-molecules-25-00650" ref-type="bibr">38</xref>
]. Liskova et al. provided a comprehensive review of studies focusing on the anticancer effectiveness of dietary phytochemicals, either isolated or as mixtures, which act via targeting cancer stem cells (CSCs) [
<xref rid="B39-molecules-25-00650" ref-type="bibr">39</xref>
]. Among dietary compounds able to target CSCs and some of their abnormally activated signaling pathways, epigallocatechin-3-gallat, resveratrol, genistein, curcumin, isothiocyanates, and diallyl trisulfide have been of particular interest [
<xref rid="B39-molecules-25-00650" ref-type="bibr">39</xref>
]. Girisa et al. have considered and reviewed the potential anticancer activity of zerumbone, a sesquiterpene compound isolated from
<italic>Zingiber zerumbet</italic>
Smith [
<xref rid="B40-molecules-25-00650" ref-type="bibr">40</xref>
], while Choi has reviewed the anti-inflammatory and anticancer activities of phloretin, a chalcone polyphenol present in apple [
<xref rid="B41-molecules-25-00650" ref-type="bibr">41</xref>
].</p>
<p>Natural products are attractive sources for the development of new medicinal and therapeutic agents. Those with antitumoral potential may be more selective and have weaker adverse effects compared to conventional chemotherapy drugs actually used for cancer treatment. Clinical trials are necessary to demonstrated whether the in vitro and in vivo animal data are reproduced in human, and to allow the application of natural products in cancer prevention and treatment.</p>
</body>
<back>
<notes notes-type="COI-statement">
<title>Conflicts of Interest</title>
<p>The author declares no conflict of interest.</p>
</notes>
<ref-list>
<title>References</title>
<ref id="B1-molecules-25-00650">
<label>1.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Franco</surname>
<given-names>Y.E.M.</given-names>
</name>
<name>
<surname>Okubo</surname>
<given-names>M.Y.</given-names>
</name>
<name>
<surname>Torre</surname>
<given-names>A.D.</given-names>
</name>
<name>
<surname>Paiva</surname>
<given-names>P.P.</given-names>
</name>
<name>
<surname>Rosa</surname>
<given-names>M.N.</given-names>
</name>
<name>
<surname>Silva</surname>
<given-names>V.A.O.</given-names>
</name>
<name>
<surname>Reis</surname>
<given-names>R.M.</given-names>
</name>
<name>
<surname>Ruiz</surname>
<given-names>A.L.T.G.</given-names>
</name>
<name>
<surname>Imamura</surname>
<given-names>P.M.</given-names>
</name>
<name>
<surname>de Carvalho</surname>
<given-names>J.E.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Coronarin D Induces Apoptotic Cell Death and Cell Cycle Arrest in Human Glioblastoma Cell Line</article-title>
<source>Molecules</source>
<year>2019</year>
<volume>24</volume>
<elocation-id>4498</elocation-id>
<pub-id pub-id-type="doi">10.3390/molecules24244498</pub-id>
<pub-id pub-id-type="pmid">31818017</pub-id>
</element-citation>
</ref>
<ref id="B2-molecules-25-00650">
<label>2.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Silva</surname>
<given-names>V.A.O.</given-names>
</name>
<name>
<surname>Rosa</surname>
<given-names>M.N.</given-names>
</name>
<name>
<surname>Tansini</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Martinho</surname>
<given-names>O.</given-names>
</name>
<name>
<surname>Tanuri</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Evangelista</surname>
<given-names>A.F.</given-names>
</name>
<name>
<surname>Cruvinel Carloni</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Lima</surname>
<given-names>J.P.</given-names>
</name>
<name>
<surname>Pianowski</surname>
<given-names>L.F.</given-names>
</name>
<name>
<surname>Reis</surname>
<given-names>R.M.</given-names>
</name>
</person-group>
<article-title>Semi-Synthetic Ingenol Derivative from Euphorbia tirucalli Inhibits Protein Kinase C Isotypes and Promotes Autophagy and S-phase Arrest on Glioma Cell Lines</article-title>
<source>Molecules</source>
<year>2019</year>
<volume>24</volume>
<elocation-id>4265</elocation-id>
<pub-id pub-id-type="doi">10.3390/molecules24234265</pub-id>
<pub-id pub-id-type="pmid">31771098</pub-id>
</element-citation>
</ref>
<ref id="B3-molecules-25-00650">
<label>3.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Hong</surname>
<given-names>J.M.</given-names>
</name>
<name>
<surname>Kim</surname>
<given-names>J.H.</given-names>
</name>
<name>
<surname>Kim</surname>
<given-names>H.</given-names>
</name>
<name>
<surname>Lee</surname>
<given-names>W.J.</given-names>
</name>
<name>
<surname>Hwang</surname>
<given-names>Y.I.</given-names>
</name>
</person-group>
<article-title>SB365, Pulsatilla Saponin D Induces Caspase-Independent Cell Death and Augments the Anticancer Effect of Temozolomide in Glioblastoma Multiforme Cells</article-title>
<source>Molecules</source>
<year>2019</year>
<volume>24</volume>
<elocation-id>3230</elocation-id>
<pub-id pub-id-type="doi">10.3390/molecules24183230</pub-id>
<pub-id pub-id-type="pmid">31491945</pub-id>
</element-citation>
</ref>
<ref id="B4-molecules-25-00650">
<label>4.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Bonturi</surname>
<given-names>C.R.</given-names>
</name>
<name>
<surname>Silva</surname>
<given-names>M.C.C.</given-names>
</name>
<name>
<surname>Motaln</surname>
<given-names>H.</given-names>
</name>
<name>
<surname>Salu</surname>
<given-names>B.R.</given-names>
</name>
<name>
<surname>Ferreira</surname>
<given-names>R.D.S.</given-names>
</name>
<name>
<surname>Batista</surname>
<given-names>F.P.</given-names>
</name>
<name>
<surname>Correia</surname>
<given-names>M.T.D.S.</given-names>
</name>
<name>
<surname>Paiva</surname>
<given-names>P.M.G.</given-names>
</name>
<name>
<surname>Turnšek</surname>
<given-names>T.L.</given-names>
</name>
<name>
<surname>Oliva</surname>
<given-names>M.L.V.</given-names>
</name>
</person-group>
<article-title>A Bifunctional Molecule with Lectin and Protease Inhibitor Activities Isolated from Crataeva tapia Bark Significantly Affects Cocultures of Mesenchymal Stem Cells and Glioblastoma Cells</article-title>
<source>Molecules</source>
<year>2019</year>
<volume>24</volume>
<elocation-id>2109</elocation-id>
<pub-id pub-id-type="doi">10.3390/molecules24112109</pub-id>
</element-citation>
</ref>
<ref id="B5-molecules-25-00650">
<label>5.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Corrêa</surname>
<given-names>A.C.N.T.F.</given-names>
</name>
<name>
<surname>Vericimo</surname>
<given-names>M.A.</given-names>
</name>
<name>
<surname>Dashevskiy</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Pereira</surname>
<given-names>P.R.</given-names>
</name>
<name>
<surname>Paschoalin</surname>
<given-names>V.M.F.</given-names>
</name>
</person-group>
<article-title>Liposomal Taro Lectin Nanocapsules Control Human Glioblastoma and Mammary Adenocarcinoma Cell Proliferation</article-title>
<source>Molecules</source>
<year>2019</year>
<volume>24</volume>
<elocation-id>471</elocation-id>
<pub-id pub-id-type="doi">10.3390/molecules24030471</pub-id>
</element-citation>
</ref>
<ref id="B6-molecules-25-00650">
<label>6.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Pham</surname>
<given-names>D.C.</given-names>
</name>
<name>
<surname>Chang</surname>
<given-names>Y.C.</given-names>
</name>
<name>
<surname>Lin</surname>
<given-names>S.R.</given-names>
</name>
<name>
<surname>Fuh</surname>
<given-names>Y.M.</given-names>
</name>
<name>
<surname>Tsai</surname>
<given-names>M.J.</given-names>
</name>
<name>
<surname>Weng</surname>
<given-names>C.F.</given-names>
</name>
</person-group>
<article-title>FAK and S6K1 Inhibitor, Neferine, Dually Induces Autophagy and Apoptosis in Human Neuroblastoma Cells</article-title>
<source>Molecules</source>
<year>2019</year>
<volume>23</volume>
<elocation-id>3110</elocation-id>
<pub-id pub-id-type="doi">10.3390/molecules23123110</pub-id>
</element-citation>
</ref>
<ref id="B7-molecules-25-00650">
<label>7.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Yang</surname>
<given-names>J.S.</given-names>
</name>
<name>
<surname>Lin</surname>
<given-names>R.C.</given-names>
</name>
<name>
<surname>Hsieh</surname>
<given-names>Y.H.</given-names>
</name>
<name>
<surname>Wu</surname>
<given-names>H.H.</given-names>
</name>
<name>
<surname>Li</surname>
<given-names>G.C.</given-names>
</name>
<name>
<surname>Lin</surname>
<given-names>Y.C.</given-names>
</name>
<name>
<surname>Yang</surname>
<given-names>S.F.</given-names>
</name>
<name>
<surname>Lu</surname>
<given-names>K.H.</given-names>
</name>
</person-group>
<article-title>CLEFMA Activates the Extrinsic and Intrinsic Apoptotic Processes through JNK1/2 and p38 Pathways in Human Osteosarcoma Cells</article-title>
<source>Molecules</source>
<year>2019</year>
<volume>24</volume>
<elocation-id>3280</elocation-id>
<pub-id pub-id-type="doi">10.3390/molecules24183280</pub-id>
</element-citation>
</ref>
<ref id="B8-molecules-25-00650">
<label>8.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Yue</surname>
<given-names>Z.</given-names>
</name>
<name>
<surname>Guan</surname>
<given-names>X.</given-names>
</name>
<name>
<surname>Chao</surname>
<given-names>R.</given-names>
</name>
<name>
<surname>Huang</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>Li</surname>
<given-names>D.</given-names>
</name>
<name>
<surname>Yang</surname>
<given-names>P.</given-names>
</name>
<name>
<surname>Liu</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Hasegawa</surname>
<given-names>T.</given-names>
</name>
<name>
<surname>Guo</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Li</surname>
<given-names>M.</given-names>
</name>
</person-group>
<article-title>Diallyl Disulfide Induces Apoptosis and Autophagy in Human Osteosarcoma MG-63 Cells through the PI3K/Akt/mTOR Pathway</article-title>
<source>Molecules</source>
<year>2019</year>
<volume>24</volume>
<elocation-id>2665</elocation-id>
<pub-id pub-id-type="doi">10.3390/molecules24142665</pub-id>
</element-citation>
</ref>
<ref id="B9-molecules-25-00650">
<label>9.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Shen</surname>
<given-names>T.S.</given-names>
</name>
<name>
<surname>Hsu</surname>
<given-names>Y.K.</given-names>
</name>
<name>
<surname>Huang</surname>
<given-names>Y.F.</given-names>
</name>
<name>
<surname>Chen</surname>
<given-names>H.Y.</given-names>
</name>
<name>
<surname>Hsieh</surname>
<given-names>C.P.</given-names>
</name>
<name>
<surname>Chen</surname>
<given-names>C.L.</given-names>
</name>
</person-group>
<article-title>Licochalcone A Suppresses the Proliferation of Osteosarcoma Cells through Autophagy and ATM-Chk2 Activation</article-title>
<source>Molecules</source>
<year>2019</year>
<volume>24</volume>
<elocation-id>2435</elocation-id>
<pub-id pub-id-type="doi">10.3390/molecules24132435</pub-id>
</element-citation>
</ref>
<ref id="B10-molecules-25-00650">
<label>10.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Hsu</surname>
<given-names>C.T.</given-names>
</name>
<name>
<surname>Huang</surname>
<given-names>Y.F.</given-names>
</name>
<name>
<surname>Hsieh</surname>
<given-names>C.P.</given-names>
</name>
<name>
<surname>Wu</surname>
<given-names>C.C.</given-names>
</name>
<name>
<surname>Shen</surname>
<given-names>T.S.</given-names>
</name>
</person-group>
<article-title>JNK Inactivation Induces Polyploidy and Drug-Resistance in Coronarin D-Treated Osteosarcoma Cells</article-title>
<source>Molecules</source>
<year>2018</year>
<volume>23</volume>
<elocation-id>2121</elocation-id>
<pub-id pub-id-type="doi">10.3390/molecules23092121</pub-id>
</element-citation>
</ref>
<ref id="B11-molecules-25-00650">
<label>11.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Ooppachai</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>Limtrakul Dejkriengkraikul</surname>
<given-names>P.</given-names>
</name>
<name>
<surname>Yodkeeree</surname>
<given-names>S.</given-names>
</name>
</person-group>
<article-title>Dicentrine Potentiates TNF-α-Induced Apoptosis and Suppresses Invasion of A549 Lung Adenocarcinoma Cells via Modulation of NF-κB and AP-1 Activation</article-title>
<source>Molecules</source>
<year>2019</year>
<volume>24</volume>
<elocation-id>4100</elocation-id>
<pub-id pub-id-type="doi">10.3390/molecules24224100</pub-id>
<pub-id pub-id-type="pmid">31766230</pub-id>
</element-citation>
</ref>
<ref id="B12-molecules-25-00650">
<label>12.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Subkamkaew</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>Limtrakul Dejkriengkraikul</surname>
<given-names>P.</given-names>
</name>
<name>
<surname>Yodkeeree</surname>
<given-names>S.</given-names>
</name>
</person-group>
<article-title>Proanthocyanidin-Rich Fractions from Red Rice Extract Enhance TNF-α-Induced Cell Death and Suppress Invasion of Human Lung Adenocarcinoma Cell A549</article-title>
<source>Molecules</source>
<year>2019</year>
<volume>24</volume>
<elocation-id>3393</elocation-id>
<pub-id pub-id-type="doi">10.3390/molecules24183393</pub-id>
<pub-id pub-id-type="pmid">31540489</pub-id>
</element-citation>
</ref>
<ref id="B13-molecules-25-00650">
<label>13.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Yang</surname>
<given-names>H.</given-names>
</name>
<name>
<surname>Bai</surname>
<given-names>X.</given-names>
</name>
<name>
<surname>Zhang</surname>
<given-names>H.</given-names>
</name>
<name>
<surname>Zhang</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Wu</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Tang</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>Liu</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Yang</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Liu</surname>
<given-names>Z.</given-names>
</name>
<name>
<surname>Jia</surname>
<given-names>W.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Antrodin C, an NADPH Dependent Metabolism, Encourages Crosstalk between Autophagy and Apoptosis in Lung Carcinoma Cells by Use of an AMPK Inhibition-Independent Blockade of the Akt/mTOR Pathway</article-title>
<source>Molecules</source>
<year>2019</year>
<volume>24</volume>
<elocation-id>993</elocation-id>
<pub-id pub-id-type="doi">10.3390/molecules24050993</pub-id>
<pub-id pub-id-type="pmid">30870998</pub-id>
</element-citation>
</ref>
<ref id="B14-molecules-25-00650">
<label>14.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Liu</surname>
<given-names>P.</given-names>
</name>
<name>
<surname>Xiang</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Liu</surname>
<given-names>X.</given-names>
</name>
<name>
<surname>Zhang</surname>
<given-names>T.</given-names>
</name>
<name>
<surname>Yang</surname>
<given-names>R.</given-names>
</name>
<name>
<surname>Chen</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Xu</surname>
<given-names>L.</given-names>
</name>
<name>
<surname>Yu</surname>
<given-names>Q.</given-names>
</name>
<name>
<surname>Zhao</surname>
<given-names>H.</given-names>
</name>
<name>
<surname>Zhang</surname>
<given-names>L.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Cucurbitacin B Induces the Lysosomal Degradation of EGFR and Suppresses the CIP2A/PP2A/Akt Signaling Axis in Gefitinib-Resistant Non-Small Cell Lung Cancer</article-title>
<source>Molecules</source>
<year>2019</year>
<volume>24</volume>
<elocation-id>647</elocation-id>
<pub-id pub-id-type="doi">10.3390/molecules24030647</pub-id>
</element-citation>
</ref>
<ref id="B15-molecules-25-00650">
<label>15.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Jin</surname>
<given-names>H.</given-names>
</name>
<name>
<surname>Ko</surname>
<given-names>Y.S.</given-names>
</name>
<name>
<surname>Park</surname>
<given-names>S.W.</given-names>
</name>
<name>
<surname>Chang</surname>
<given-names>K.C.</given-names>
</name>
<name>
<surname>Kim</surname>
<given-names>H.J.</given-names>
</name>
</person-group>
<article-title>13-Ethylberberine Induces Apoptosis through the Mitochondria-Related Apoptotic Pathway in Radiotherapy-Resistant Breast Cancer Cells</article-title>
<source>Molecules</source>
<year>2019</year>
<volume>24</volume>
<elocation-id>2448</elocation-id>
<pub-id pub-id-type="doi">10.3390/molecules24132448</pub-id>
</element-citation>
</ref>
<ref id="B16-molecules-25-00650">
<label>16.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Tian</surname>
<given-names>L.</given-names>
</name>
<name>
<surname>Cheng</surname>
<given-names>F.</given-names>
</name>
<name>
<surname>Wang</surname>
<given-names>L.</given-names>
</name>
<name>
<surname>Qin</surname>
<given-names>W.</given-names>
</name>
<name>
<surname>Zou</surname>
<given-names>K.</given-names>
</name>
<name>
<surname>Chen</surname>
<given-names>J.</given-names>
</name>
</person-group>
<article-title>CLE-10 from Carpesium abrotanoides L. Suppresses the Growth of Human Breast Cancer Cells (MDA-MB-231) In Vitro by Inducing Apoptosis and Pro-Death Autophagy Via the PI3K/Akt/mTOR Signaling Pathway</article-title>
<source>Molecules</source>
<year>2019</year>
<volume>24</volume>
<elocation-id>1091</elocation-id>
<pub-id pub-id-type="doi">10.3390/molecules24061091</pub-id>
</element-citation>
</ref>
<ref id="B17-molecules-25-00650">
<label>17.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Tan</surname>
<given-names>H.</given-names>
</name>
<name>
<surname>Xing</surname>
<given-names>Z.</given-names>
</name>
<name>
<surname>Chen</surname>
<given-names>G.</given-names>
</name>
<name>
<surname>Tian</surname>
<given-names>X.</given-names>
</name>
<name>
<surname>Wu</surname>
<given-names>Z.</given-names>
</name>
</person-group>
<article-title>Evaluating Antitumor and Antioxidant Activities of Yellow Monascus Pigments from Monascus ruber Fermentation</article-title>
<source>Molecules</source>
<year>2019</year>
<volume>23</volume>
<elocation-id>3242</elocation-id>
<pub-id pub-id-type="doi">10.3390/molecules23123242</pub-id>
</element-citation>
</ref>
<ref id="B18-molecules-25-00650">
<label>18.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Yang</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Liao</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Li</surname>
<given-names>L.</given-names>
</name>
<name>
<surname>Xu</surname>
<given-names>X.</given-names>
</name>
<name>
<surname>Cao</surname>
<given-names>L.</given-names>
</name>
</person-group>
<article-title>Zeylenone Induces Mitochondrial Apoptosis and Inhibits Migration and Invasion in Gastric Cancer</article-title>
<source>Molecules</source>
<year>2018</year>
<volume>23</volume>
<elocation-id>2149</elocation-id>
<pub-id pub-id-type="doi">10.3390/molecules23092149</pub-id>
</element-citation>
</ref>
<ref id="B19-molecules-25-00650">
<label>19.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Bo</surname>
<given-names>L.Y.</given-names>
</name>
<name>
<surname>Li</surname>
<given-names>T.J.</given-names>
</name>
<name>
<surname>Zhao</surname>
<given-names>X.H.</given-names>
</name>
</person-group>
<article-title>Effect of Cu/Mn-Fortification on In Vitro Activities of the Peptic Hydrolysate of Bovine Lactoferrin against Human Gastric Cancer BGC-823 Cells</article-title>
<source>Molecules</source>
<year>2019</year>
<volume>24</volume>
<elocation-id>1195</elocation-id>
<pub-id pub-id-type="doi">10.3390/molecules24071195</pub-id>
</element-citation>
</ref>
<ref id="B20-molecules-25-00650">
<label>20.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Gomes</surname>
<given-names>I.N.F.</given-names>
</name>
<name>
<surname>Silva-Oliveira</surname>
<given-names>R.J.</given-names>
</name>
<name>
<surname>Oliveira Silva</surname>
<given-names>V.A.</given-names>
</name>
<name>
<surname>Rosa</surname>
<given-names>M.N.</given-names>
</name>
<name>
<surname>Vital</surname>
<given-names>P.S.</given-names>
</name>
<name>
<surname>Barbosa</surname>
<given-names>M.C.S.</given-names>
</name>
<name>
<surname>Dos Santos</surname>
<given-names>F.V.</given-names>
</name>
<name>
<surname>Junqueira</surname>
<given-names>J.G.M.</given-names>
</name>
<name>
<surname>Severino</surname>
<given-names>V.G.P.</given-names>
</name>
<name>
<surname>Oliveira</surname>
<given-names>B.G.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Annona coriacea Mart. Fractions Promote Cell Cycle Arrest and Inhibit Autophagic Flux in Human Cervical Cancer Cell Lines</article-title>
<source>Molecules</source>
<year>2019</year>
<volume>24</volume>
<elocation-id>3963</elocation-id>
<pub-id pub-id-type="doi">10.3390/molecules24213963</pub-id>
</element-citation>
</ref>
<ref id="B21-molecules-25-00650">
<label>21.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Lin</surname>
<given-names>L.T.</given-names>
</name>
<name>
<surname>Uen</surname>
<given-names>W.C.</given-names>
</name>
<name>
<surname>Choong</surname>
<given-names>C.Y.</given-names>
</name>
<name>
<surname>Shi</surname>
<given-names>Y.C.</given-names>
</name>
<name>
<surname>Lee</surname>
<given-names>B.H.</given-names>
</name>
<name>
<surname>Tai</surname>
<given-names>C.J.</given-names>
</name>
<name>
<surname>Tai</surname>
<given-names>C.J.</given-names>
</name>
</person-group>
<article-title>Paris Polyphylla Inhibits Colorectal Cancer Cells via Inducing Autophagy and Enhancing the Efficacy of Chemotherapeutic Drug Doxorubicin</article-title>
<source>Molecules</source>
<year>2019</year>
<volume>24</volume>
<elocation-id>2102</elocation-id>
<pub-id pub-id-type="doi">10.3390/molecules24112102</pub-id>
<pub-id pub-id-type="pmid">31163662</pub-id>
</element-citation>
</ref>
<ref id="B22-molecules-25-00650">
<label>22.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Wei</surname>
<given-names>X.</given-names>
</name>
<name>
<surname>Xia</surname>
<given-names>L.</given-names>
</name>
<name>
<surname>Ziyayiding</surname>
<given-names>D.</given-names>
</name>
<name>
<surname>Chen</surname>
<given-names>Q.</given-names>
</name>
<name>
<surname>Liu</surname>
<given-names>R.</given-names>
</name>
<name>
<surname>Xu</surname>
<given-names>X.</given-names>
</name>
<name>
<surname>Li</surname>
<given-names>J.</given-names>
</name>
</person-group>
<article-title>The Extracts of Artemisia absinthium L. Suppress the Growth of Hepatocellular Carcinoma Cells through Induction of Apoptosis via Endoplasmic Reticulum Stress and Mitochondrial-Dependent Pathway</article-title>
<source>Molecules</source>
<year>2019</year>
<volume>24</volume>
<elocation-id>913</elocation-id>
<pub-id pub-id-type="doi">10.3390/molecules24050913</pub-id>
<pub-id pub-id-type="pmid">30841648</pub-id>
</element-citation>
</ref>
<ref id="B23-molecules-25-00650">
<label>23.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Willer</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Jöhrer</surname>
<given-names>K.</given-names>
</name>
<name>
<surname>Greil</surname>
<given-names>R.</given-names>
</name>
<name>
<surname>Zidorn</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>Çiçek</surname>
<given-names>S.S.</given-names>
</name>
</person-group>
<article-title>Cytotoxic Properties of Damiana (Turnera diffusa) Extracts and Constituents and A Validated Quantitative UHPLC-DAD Assay</article-title>
<source>Molecules</source>
<year>2019</year>
<volume>24</volume>
<elocation-id>855</elocation-id>
<pub-id pub-id-type="doi">10.3390/molecules24050855</pub-id>
</element-citation>
</ref>
<ref id="B24-molecules-25-00650">
<label>24.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Huang</surname>
<given-names>S.Y.</given-names>
</name>
<name>
<surname>Huang</surname>
<given-names>G.J.</given-names>
</name>
<name>
<surname>Wu</surname>
<given-names>H.C.</given-names>
</name>
<name>
<surname>Kao</surname>
<given-names>M.C.</given-names>
</name>
<name>
<surname>Huang</surname>
<given-names>W.C.</given-names>
</name>
</person-group>
<article-title>Ganoderma tsugae Inhibits the SREBP-1/AR Axis Leading to Suppression of Cell Growth and Activation of Apoptosis in Prostate Cancer Cells</article-title>
<source>Molecules</source>
<year>2019</year>
<volume>23</volume>
<elocation-id>2539</elocation-id>
<pub-id pub-id-type="doi">10.3390/molecules23102539</pub-id>
</element-citation>
</ref>
<ref id="B25-molecules-25-00650">
<label>25.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Ferhi</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Santaniello</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Zerizer</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Cruciani</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Fadda</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Sanna</surname>
<given-names>D.</given-names>
</name>
<name>
<surname>Dore</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Maioli</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>D’hallewin</surname>
<given-names>G.</given-names>
</name>
</person-group>
<article-title>Total Phenols from Grape Leaves Counteract Cell Proliferation and Modulate Apoptosis-Related Gene Expression in MCF-7 and HepG2 Human Cancer Cell Lines</article-title>
<source>Molecules</source>
<year>2019</year>
<volume>24</volume>
<elocation-id>612</elocation-id>
<pub-id pub-id-type="doi">10.3390/molecules24030612</pub-id>
<pub-id pub-id-type="pmid">30744145</pub-id>
</element-citation>
</ref>
<ref id="B26-molecules-25-00650">
<label>26.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Elansary</surname>
<given-names>H.O.</given-names>
</name>
<name>
<surname>Szopa</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Kubica</surname>
<given-names>P.</given-names>
</name>
<name>
<surname>Al-Mana</surname>
<given-names>F.A.</given-names>
</name>
<name>
<surname>Mahmoud</surname>
<given-names>E.A.</given-names>
</name>
<name>
<surname>Zin El-Abedin</surname>
<given-names>T.K.A.</given-names>
</name>
<name>
<surname>Mattar</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Ekiert</surname>
<given-names>H.</given-names>
</name>
</person-group>
<article-title>Phenolic Compounds of Catalpa speciosa, Taxus cuspidate, and Magnolia acuminata have Antioxidant and Anticancer Activity</article-title>
<source>Molecules</source>
<year>2019</year>
<volume>24</volume>
<elocation-id>412</elocation-id>
<pub-id pub-id-type="doi">10.3390/molecules24030412</pub-id>
<pub-id pub-id-type="pmid">30678123</pub-id>
</element-citation>
</ref>
<ref id="B27-molecules-25-00650">
<label>27.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Yang</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Bhosle</surname>
<given-names>S.R.</given-names>
</name>
<name>
<surname>Yu</surname>
<given-names>Y.H.</given-names>
</name>
<name>
<surname>Park</surname>
<given-names>S.Y.</given-names>
</name>
<name>
<surname>Zhou</surname>
<given-names>R.</given-names>
</name>
<name>
<surname>Taş</surname>
<given-names>I.</given-names>
</name>
<name>
<surname>Gamage</surname>
<given-names>C.D.B.</given-names>
</name>
<name>
<surname>Kim</surname>
<given-names>K.K.</given-names>
</name>
<name>
<surname>Pereira</surname>
<given-names>I.</given-names>
</name>
<name>
<surname>Hur</surname>
<given-names>J.S.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Tumidulin, a Lichen Secondary Metabolite, Decreases the Stemness Potential of Colorectal Cancer Cells</article-title>
<source>Molecules</source>
<year>2018</year>
<volume>23</volume>
<elocation-id>2968</elocation-id>
<pub-id pub-id-type="doi">10.3390/molecules23112968</pub-id>
<pub-id pub-id-type="pmid">30441806</pub-id>
</element-citation>
</ref>
<ref id="B28-molecules-25-00650">
<label>28.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Alvarado-Sansininea</surname>
<given-names>J.J.</given-names>
</name>
<name>
<surname>Sánchez-Sánchez</surname>
<given-names>L.</given-names>
</name>
<name>
<surname>López-Muñoz</surname>
<given-names>H.</given-names>
</name>
<name>
<surname>Escobar</surname>
<given-names>M.L.</given-names>
</name>
<name>
<surname>Flores-Guzmán</surname>
<given-names>F.</given-names>
</name>
<name>
<surname>Tavera-Hernández</surname>
<given-names>R.</given-names>
</name>
<name>
<surname>Jiménez-Estrada</surname>
<given-names>M.</given-names>
</name>
</person-group>
<article-title>Quercetagetin and Patuletin: Antiproliferative, Necrotic and Apoptotic Activity in Tumor Cell Lines</article-title>
<source>Molecules</source>
<year>2018</year>
<volume>23</volume>
<elocation-id>2579</elocation-id>
<pub-id pub-id-type="doi">10.3390/molecules23102579</pub-id>
</element-citation>
</ref>
<ref id="B29-molecules-25-00650">
<label>29.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Yu</surname>
<given-names>W.</given-names>
</name>
<name>
<surname>Ren</surname>
<given-names>Z.</given-names>
</name>
<name>
<surname>Zhang</surname>
<given-names>X.</given-names>
</name>
<name>
<surname>Xing</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Tao</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Liu</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>Wei</surname>
<given-names>G.</given-names>
</name>
<name>
<surname>Yuan</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Lei</surname>
<given-names>Z.</given-names>
</name>
</person-group>
<article-title>Structural Characterization of Polysaccharides from Dendrobium officinale and Their Effects on Apoptosis of HeLa Cell Line</article-title>
<source>Molecules</source>
<year>2018</year>
<volume>23</volume>
<elocation-id>2484</elocation-id>
<pub-id pub-id-type="doi">10.3390/molecules23102484</pub-id>
</element-citation>
</ref>
<ref id="B30-molecules-25-00650">
<label>30.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Nguyen</surname>
<given-names>T.T.H.</given-names>
</name>
<name>
<surname>Pandey</surname>
<given-names>R.P.</given-names>
</name>
<name>
<surname>Parajuli</surname>
<given-names>P.</given-names>
</name>
<name>
<surname>Han</surname>
<given-names>J.M.</given-names>
</name>
<name>
<surname>Jung</surname>
<given-names>H.J.</given-names>
</name>
<name>
<surname>Park</surname>
<given-names>Y.I.</given-names>
</name>
<name>
<surname>Sohng</surname>
<given-names>J.K.</given-names>
</name>
</person-group>
<article-title>Microbial Synthesis of Non-Natural Anthraquinone Glucosides Displaying Superior Antiproliferative Properties</article-title>
<source>Molecules</source>
<year>2018</year>
<volume>23</volume>
<elocation-id>2171</elocation-id>
<pub-id pub-id-type="doi">10.3390/molecules23092171</pub-id>
</element-citation>
</ref>
<ref id="B31-molecules-25-00650">
<label>31.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Kahnt</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Fischer Née Heller</surname>
<given-names>L.</given-names>
</name>
<name>
<surname>Al-Harrasi</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Csuk</surname>
<given-names>R.</given-names>
</name>
</person-group>
<article-title>Ethylenediamine Derived Carboxamides of Betulinic and Ursolic Acid as Potential Cytotoxic Agents</article-title>
<source>Molecules</source>
<year>2018</year>
<volume>23</volume>
<elocation-id>2558</elocation-id>
<pub-id pub-id-type="doi">10.3390/molecules23102558</pub-id>
<pub-id pub-id-type="pmid">30297604</pub-id>
</element-citation>
</ref>
<ref id="B32-molecules-25-00650">
<label>32.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Ling</surname>
<given-names>T.</given-names>
</name>
<name>
<surname>Lang</surname>
<given-names>W.H.</given-names>
</name>
<name>
<surname>Maier</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Quintana Centurion</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Rivas</surname>
<given-names>F.</given-names>
</name>
</person-group>
<article-title>Cytostatic and Cytotoxic Natural Products against Cancer Cell Models</article-title>
<source>Molecules</source>
<year>2019</year>
<volume>24</volume>
<elocation-id>2012</elocation-id>
<pub-id pub-id-type="doi">10.3390/molecules24102012</pub-id>
<pub-id pub-id-type="pmid">31130671</pub-id>
</element-citation>
</ref>
<ref id="B33-molecules-25-00650">
<label>33.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Lim</surname>
<given-names>H.N.</given-names>
</name>
<name>
<surname>Baek</surname>
<given-names>S.B.</given-names>
</name>
<name>
<surname>Jung</surname>
<given-names>H.J.</given-names>
</name>
</person-group>
<article-title>Bee Venom and Its Peptide Component Melittin Suppress Growth and Migration of Melanoma Cells via Inhibition of PI3K/AKT/mTOR and MAPK Pathways</article-title>
<source>Molecules</source>
<year>2019</year>
<volume>24</volume>
<elocation-id>929</elocation-id>
<pub-id pub-id-type="doi">10.3390/molecules24050929</pub-id>
<pub-id pub-id-type="pmid">30866426</pub-id>
</element-citation>
</ref>
<ref id="B34-molecules-25-00650">
<label>34.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Guo</surname>
<given-names>D.L.</given-names>
</name>
<name>
<surname>Li</surname>
<given-names>X.H.</given-names>
</name>
<name>
<surname>Feng</surname>
<given-names>D.</given-names>
</name>
<name>
<surname>Jin</surname>
<given-names>M.Y.</given-names>
</name>
<name>
<surname>Cao</surname>
<given-names>Y.M.</given-names>
</name>
<name>
<surname>Cao</surname>
<given-names>Z.X.</given-names>
</name>
<name>
<surname>Gu</surname>
<given-names>Y.C.</given-names>
</name>
<name>
<surname>Geng</surname>
<given-names>Z.</given-names>
</name>
<name>
<surname>Deng</surname>
<given-names>F.</given-names>
</name>
<name>
<surname>Deng</surname>
<given-names>Y.</given-names>
</name>
</person-group>
<article-title>Novel Polyketides Produced by the Endophytic Fungus Aspergillus Fumigatus from Cordyceps Sinensis</article-title>
<source>Molecules</source>
<year>2018</year>
<volume>23</volume>
<elocation-id>1709</elocation-id>
<pub-id pub-id-type="doi">10.3390/molecules23071709</pub-id>
<pub-id pub-id-type="pmid">30011828</pub-id>
</element-citation>
</ref>
<ref id="B35-molecules-25-00650">
<label>35.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Espindola</surname>
<given-names>L.S.</given-names>
</name>
<name>
<surname>Dusi</surname>
<given-names>R.G.</given-names>
</name>
<name>
<surname>Demarque</surname>
<given-names>D.P.</given-names>
</name>
<name>
<surname>Braz-Filho</surname>
<given-names>R.</given-names>
</name>
<name>
<surname>Yan</surname>
<given-names>P.</given-names>
</name>
<name>
<surname>Bokesch</surname>
<given-names>H.R.</given-names>
</name>
<name>
<surname>Gustafson</surname>
<given-names>K.R.</given-names>
</name>
<name>
<surname>Beutler</surname>
<given-names>J.A.</given-names>
</name>
</person-group>
<article-title>Cytotoxic Triterpenes from Salacia crassifolia and Metabolite Profiling of Celastraceae Species</article-title>
<source>Molecules</source>
<year>2018</year>
<volume>23</volume>
<elocation-id>1494</elocation-id>
<pub-id pub-id-type="doi">10.3390/molecules23061494</pub-id>
</element-citation>
</ref>
<ref id="B36-molecules-25-00650">
<label>36.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Liu</surname>
<given-names>Z.</given-names>
</name>
<name>
<surname>Gao</surname>
<given-names>T.</given-names>
</name>
<name>
<surname>Yang</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Meng</surname>
<given-names>F.</given-names>
</name>
<name>
<surname>Zhan</surname>
<given-names>F.</given-names>
</name>
<name>
<surname>Jiang</surname>
<given-names>Q.</given-names>
</name>
<name>
<surname>Sun</surname>
<given-names>X.</given-names>
</name>
</person-group>
<article-title>Anti-Cancer Activity of Porphyran and Carrageenan from Red Seaweeds</article-title>
<source>Molecules</source>
<year>2019</year>
<volume>24</volume>
<elocation-id>4286</elocation-id>
<pub-id pub-id-type="doi">10.3390/molecules24234286</pub-id>
<pub-id pub-id-type="pmid">31775255</pub-id>
</element-citation>
</ref>
<ref id="B37-molecules-25-00650">
<label>37.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Wang</surname>
<given-names>N.</given-names>
</name>
<name>
<surname>Świtalska</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Wang</surname>
<given-names>L.</given-names>
</name>
<name>
<surname>Shaban</surname>
<given-names>E.</given-names>
</name>
<name>
<surname>Hossain</surname>
<given-names>M.I.</given-names>
</name>
<name>
<surname>El Sayed</surname>
<given-names>I.E.</given-names>
</name>
<name>
<surname>Wietrzyk</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Inokuchi</surname>
<given-names>T.</given-names>
</name>
</person-group>
<article-title>Structural Modifications of Nature-Inspired Indoloquinolines: A Mini Review of Their Potential Antiproliferative Activity</article-title>
<source>Molecules</source>
<year>2019</year>
<volume>24</volume>
<elocation-id>2121</elocation-id>
<pub-id pub-id-type="doi">10.3390/molecules24112121</pub-id>
</element-citation>
</ref>
<ref id="B38-molecules-25-00650">
<label>38.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Yang</surname>
<given-names>M.H.</given-names>
</name>
<name>
<surname>Jung</surname>
<given-names>S.H.</given-names>
</name>
<name>
<surname>Sethi</surname>
<given-names>G.</given-names>
</name>
<name>
<surname>Ahn</surname>
<given-names>K.S.</given-names>
</name>
</person-group>
<article-title>Pleiotropic Pharmacological Actions of Capsazepine, a Synthetic Analogue of Capsaicin, against Various Cancers and Inflammatory Diseases</article-title>
<source>Molecules</source>
<year>2019</year>
<volume>24</volume>
<elocation-id>995</elocation-id>
<pub-id pub-id-type="doi">10.3390/molecules24050995</pub-id>
</element-citation>
</ref>
<ref id="B39-molecules-25-00650">
<label>39.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Liskova</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Kubatka</surname>
<given-names>P.</given-names>
</name>
<name>
<surname>Samec</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Zubor</surname>
<given-names>P.</given-names>
</name>
<name>
<surname>Mlyncek</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Bielik</surname>
<given-names>T.</given-names>
</name>
<name>
<surname>Samuel</surname>
<given-names>S.M.</given-names>
</name>
<name>
<surname>Zulli</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Kwon</surname>
<given-names>T.K.</given-names>
</name>
<name>
<surname>Büsselberg</surname>
<given-names>D.</given-names>
</name>
</person-group>
<article-title>Dietary Phytochemicals Targeting Cancer Stem Cells</article-title>
<source>Molecules</source>
<year>2019</year>
<volume>24</volume>
<elocation-id>899</elocation-id>
<pub-id pub-id-type="doi">10.3390/molecules24050899</pub-id>
</element-citation>
</ref>
<ref id="B40-molecules-25-00650">
<label>40.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Girisa</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Shabnam</surname>
<given-names>B.</given-names>
</name>
<name>
<surname>Monisha</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Fan</surname>
<given-names>L.</given-names>
</name>
<name>
<surname>Halim</surname>
<given-names>C.E.</given-names>
</name>
<name>
<surname>Arfuso</surname>
<given-names>F.</given-names>
</name>
<name>
<surname>Ahn</surname>
<given-names>K.S.</given-names>
</name>
<name>
<surname>Sethi</surname>
<given-names>G.</given-names>
</name>
<name>
<surname>Kunnumakkara</surname>
<given-names>A.B.</given-names>
</name>
</person-group>
<article-title>Potential of Zerumbone as an Anti-Cancer Agent</article-title>
<source>Molecules</source>
<year>2019</year>
<volume>24</volume>
<elocation-id>734</elocation-id>
<pub-id pub-id-type="doi">10.3390/molecules24040734</pub-id>
</element-citation>
</ref>
<ref id="B41-molecules-25-00650">
<label>41.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Choi</surname>
<given-names>B.Y.</given-names>
</name>
</person-group>
<article-title>Biochemical Basis of Anti-Cancer-Effects of Phloretin-A Natural Dihydrochalcone</article-title>
<source>Molecules</source>
<year>2019</year>
<volume>24</volume>
<elocation-id>278</elocation-id>
<pub-id pub-id-type="doi">10.3390/molecules24020278</pub-id>
<pub-id pub-id-type="pmid">30642127</pub-id>
</element-citation>
</ref>
</ref-list>
</back>
</pmc>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/ChloroquineV1/Data/Pmc/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000335  | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Pmc/Corpus/biblio.hfd -nk 000335  | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    ChloroquineV1
   |flux=    Pmc
   |étape=   Corpus
   |type=    RBID
   |clé=     
   |texte=   
}}

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Wed Mar 25 22:43:59 2020. Site generation: Sun Jan 31 12:44:45 2021