Serveur d'exploration Chloroquine

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Functional complexity of hair follicle stem cell niche and therapeutic targeting of niche dysfunction for hair regeneration

Identifieur interne : 000231 ( Pmc/Corpus ); précédent : 000230; suivant : 000232

Functional complexity of hair follicle stem cell niche and therapeutic targeting of niche dysfunction for hair regeneration

Auteurs : Chih-Lung Chen ; Wen-Yen Huang ; Eddy Hsi Chun Wang ; Kang-Yu Tai ; Sung-Jan Lin

Source :

RBID : PMC:7073016

Abstract

Stem cell activity is subject to non-cell-autonomous regulation from the local microenvironment, or niche. In adaption to varying physiological conditions and the ever-changing external environment, the stem cell niche has evolved with multifunctionality that enables stem cells to detect these changes and to communicate with remote cells/tissues to tailor their activity for organismal needs. The cyclic growth of hair follicles is powered by hair follicle stem cells (HFSCs). Using HFSCs as a model, we categorize niche cells into 3 functional modules, including signaling, sensing and message-relaying. Signaling modules, such as dermal papilla cells, immune cells and adipocytes, regulate HFSC activity through short-range cell-cell contact or paracrine effects. Macrophages capacitate the HFSC niche to sense tissue injury and mechanical cues and adipocytes seem to modulate HFSC activity in response to systemic nutritional states. Sympathetic nerves implement the message-relaying function by transmitting external light signals through an ipRGC-SCN-sympathetic circuit to facilitate hair regeneration. Hair growth can be disrupted by niche pathology, e.g. dysfunction of dermal papilla cells in androgenetic alopecia and influx of auto-reacting T cells in alopecia areata and lichen planopilaris. Understanding the functions and pathological changes of the HFSC niche can provide new insight for the treatment of hair loss.


Url:
DOI: 10.1186/s12929-020-0624-8
PubMed: 32171310
PubMed Central: 7073016

Links to Exploration step

PMC:7073016

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Functional complexity of hair follicle stem cell niche and therapeutic targeting of niche dysfunction for hair regeneration</title>
<author>
<name sortKey="Chen, Chih Lung" sort="Chen, Chih Lung" uniqKey="Chen C" first="Chih-Lung" last="Chen">Chih-Lung Chen</name>
<affiliation>
<nlm:aff id="Aff1">
<institution-wrap>
<institution-id institution-id-type="GRID">grid.19188.39</institution-id>
<institution-id institution-id-type="ISNI">0000 0004 0546 0241</institution-id>
<institution>Department of Biomedical Engineering, College of Medicine and College of Engineering,</institution>
<institution>National Taiwan University,</institution>
</institution-wrap>
Taipei, Taiwan</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Huang, Wen Yen" sort="Huang, Wen Yen" uniqKey="Huang W" first="Wen-Yen" last="Huang">Wen-Yen Huang</name>
<affiliation>
<nlm:aff id="Aff1">
<institution-wrap>
<institution-id institution-id-type="GRID">grid.19188.39</institution-id>
<institution-id institution-id-type="ISNI">0000 0004 0546 0241</institution-id>
<institution>Department of Biomedical Engineering, College of Medicine and College of Engineering,</institution>
<institution>National Taiwan University,</institution>
</institution-wrap>
Taipei, Taiwan</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Wang, Eddy Hsi Chun" sort="Wang, Eddy Hsi Chun" uniqKey="Wang E" first="Eddy Hsi Chun" last="Wang">Eddy Hsi Chun Wang</name>
<affiliation>
<nlm:aff id="Aff2">
<institution-wrap>
<institution-id institution-id-type="GRID">grid.21729.3f</institution-id>
<institution-id institution-id-type="ISNI">0000000419368729</institution-id>
<institution>Department of Dermatology,</institution>
<institution>Columbia University,</institution>
</institution-wrap>
New York, NY USA</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Tai, Kang Yu" sort="Tai, Kang Yu" uniqKey="Tai K" first="Kang-Yu" last="Tai">Kang-Yu Tai</name>
<affiliation>
<nlm:aff id="Aff3">
<institution-wrap>
<institution-id institution-id-type="GRID">grid.19188.39</institution-id>
<institution-id institution-id-type="ISNI">0000 0004 0546 0241</institution-id>
<institution>Genome and Systems Biology Degree Program,</institution>
<institution>National Taiwan University and Academia Sinica,</institution>
</institution-wrap>
Taipei, Taiwan</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Lin, Sung Jan" sort="Lin, Sung Jan" uniqKey="Lin S" first="Sung-Jan" last="Lin">Sung-Jan Lin</name>
<affiliation>
<nlm:aff id="Aff1">
<institution-wrap>
<institution-id institution-id-type="GRID">grid.19188.39</institution-id>
<institution-id institution-id-type="ISNI">0000 0004 0546 0241</institution-id>
<institution>Department of Biomedical Engineering, College of Medicine and College of Engineering,</institution>
<institution>National Taiwan University,</institution>
</institution-wrap>
Taipei, Taiwan</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="Aff3">
<institution-wrap>
<institution-id institution-id-type="GRID">grid.19188.39</institution-id>
<institution-id institution-id-type="ISNI">0000 0004 0546 0241</institution-id>
<institution>Genome and Systems Biology Degree Program,</institution>
<institution>National Taiwan University and Academia Sinica,</institution>
</institution-wrap>
Taipei, Taiwan</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="Aff4">
<institution-wrap>
<institution-id institution-id-type="GRID">grid.19188.39</institution-id>
<institution-id institution-id-type="ISNI">0000 0004 0546 0241</institution-id>
<institution>Department of Dermatology,</institution>
<institution>National Taiwan University Hospital and National Taiwan University College of Medicine,</institution>
</institution-wrap>
Taipei, Taiwan</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="Aff5">
<institution-wrap>
<institution-id institution-id-type="GRID">grid.19188.39</institution-id>
<institution-id institution-id-type="ISNI">0000 0004 0546 0241</institution-id>
<institution>Research Center for Developmental Biology and Regenerative Medicine,</institution>
<institution>National Taiwan University,</institution>
</institution-wrap>
Taipei, Taiwan</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="Aff6">
<institution-wrap>
<institution-id institution-id-type="GRID">grid.19188.39</institution-id>
<institution-id institution-id-type="ISNI">0000 0004 0546 0241</institution-id>
<institution>Graduate Institute of Clinical Medicine, College of Medicine,</institution>
<institution>National Taiwan University,</institution>
</institution-wrap>
Taipei, Taiwan</nlm:aff>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PMC</idno>
<idno type="pmid">32171310</idno>
<idno type="pmc">7073016</idno>
<idno type="url">http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7073016</idno>
<idno type="RBID">PMC:7073016</idno>
<idno type="doi">10.1186/s12929-020-0624-8</idno>
<date when="2020">2020</date>
<idno type="wicri:Area/Pmc/Corpus">000231</idno>
<idno type="wicri:explorRef" wicri:stream="Pmc" wicri:step="Corpus" wicri:corpus="PMC">000231</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a" type="main">Functional complexity of hair follicle stem cell niche and therapeutic targeting of niche dysfunction for hair regeneration</title>
<author>
<name sortKey="Chen, Chih Lung" sort="Chen, Chih Lung" uniqKey="Chen C" first="Chih-Lung" last="Chen">Chih-Lung Chen</name>
<affiliation>
<nlm:aff id="Aff1">
<institution-wrap>
<institution-id institution-id-type="GRID">grid.19188.39</institution-id>
<institution-id institution-id-type="ISNI">0000 0004 0546 0241</institution-id>
<institution>Department of Biomedical Engineering, College of Medicine and College of Engineering,</institution>
<institution>National Taiwan University,</institution>
</institution-wrap>
Taipei, Taiwan</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Huang, Wen Yen" sort="Huang, Wen Yen" uniqKey="Huang W" first="Wen-Yen" last="Huang">Wen-Yen Huang</name>
<affiliation>
<nlm:aff id="Aff1">
<institution-wrap>
<institution-id institution-id-type="GRID">grid.19188.39</institution-id>
<institution-id institution-id-type="ISNI">0000 0004 0546 0241</institution-id>
<institution>Department of Biomedical Engineering, College of Medicine and College of Engineering,</institution>
<institution>National Taiwan University,</institution>
</institution-wrap>
Taipei, Taiwan</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Wang, Eddy Hsi Chun" sort="Wang, Eddy Hsi Chun" uniqKey="Wang E" first="Eddy Hsi Chun" last="Wang">Eddy Hsi Chun Wang</name>
<affiliation>
<nlm:aff id="Aff2">
<institution-wrap>
<institution-id institution-id-type="GRID">grid.21729.3f</institution-id>
<institution-id institution-id-type="ISNI">0000000419368729</institution-id>
<institution>Department of Dermatology,</institution>
<institution>Columbia University,</institution>
</institution-wrap>
New York, NY USA</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Tai, Kang Yu" sort="Tai, Kang Yu" uniqKey="Tai K" first="Kang-Yu" last="Tai">Kang-Yu Tai</name>
<affiliation>
<nlm:aff id="Aff3">
<institution-wrap>
<institution-id institution-id-type="GRID">grid.19188.39</institution-id>
<institution-id institution-id-type="ISNI">0000 0004 0546 0241</institution-id>
<institution>Genome and Systems Biology Degree Program,</institution>
<institution>National Taiwan University and Academia Sinica,</institution>
</institution-wrap>
Taipei, Taiwan</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Lin, Sung Jan" sort="Lin, Sung Jan" uniqKey="Lin S" first="Sung-Jan" last="Lin">Sung-Jan Lin</name>
<affiliation>
<nlm:aff id="Aff1">
<institution-wrap>
<institution-id institution-id-type="GRID">grid.19188.39</institution-id>
<institution-id institution-id-type="ISNI">0000 0004 0546 0241</institution-id>
<institution>Department of Biomedical Engineering, College of Medicine and College of Engineering,</institution>
<institution>National Taiwan University,</institution>
</institution-wrap>
Taipei, Taiwan</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="Aff3">
<institution-wrap>
<institution-id institution-id-type="GRID">grid.19188.39</institution-id>
<institution-id institution-id-type="ISNI">0000 0004 0546 0241</institution-id>
<institution>Genome and Systems Biology Degree Program,</institution>
<institution>National Taiwan University and Academia Sinica,</institution>
</institution-wrap>
Taipei, Taiwan</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="Aff4">
<institution-wrap>
<institution-id institution-id-type="GRID">grid.19188.39</institution-id>
<institution-id institution-id-type="ISNI">0000 0004 0546 0241</institution-id>
<institution>Department of Dermatology,</institution>
<institution>National Taiwan University Hospital and National Taiwan University College of Medicine,</institution>
</institution-wrap>
Taipei, Taiwan</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="Aff5">
<institution-wrap>
<institution-id institution-id-type="GRID">grid.19188.39</institution-id>
<institution-id institution-id-type="ISNI">0000 0004 0546 0241</institution-id>
<institution>Research Center for Developmental Biology and Regenerative Medicine,</institution>
<institution>National Taiwan University,</institution>
</institution-wrap>
Taipei, Taiwan</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="Aff6">
<institution-wrap>
<institution-id institution-id-type="GRID">grid.19188.39</institution-id>
<institution-id institution-id-type="ISNI">0000 0004 0546 0241</institution-id>
<institution>Graduate Institute of Clinical Medicine, College of Medicine,</institution>
<institution>National Taiwan University,</institution>
</institution-wrap>
Taipei, Taiwan</nlm:aff>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Journal of Biomedical Science</title>
<idno type="ISSN">1021-7770</idno>
<idno type="eISSN">1423-0127</idno>
<imprint>
<date when="2020">2020</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<p id="Par1">Stem cell activity is subject to non-cell-autonomous regulation from the local microenvironment, or niche. In adaption to varying physiological conditions and the ever-changing external environment, the stem cell niche has evolved with multifunctionality that enables stem cells to detect these changes and to communicate with remote cells/tissues to tailor their activity for organismal needs. The cyclic growth of hair follicles is powered by hair follicle stem cells (HFSCs). Using HFSCs as a model, we categorize niche cells into 3 functional modules, including signaling, sensing and message-relaying. Signaling modules, such as dermal papilla cells, immune cells and adipocytes, regulate HFSC activity through short-range cell-cell contact or paracrine effects. Macrophages capacitate the HFSC niche to sense tissue injury and mechanical cues and adipocytes seem to modulate HFSC activity in response to systemic nutritional states. Sympathetic nerves implement the message-relaying function by transmitting external light signals through an ipRGC-SCN-sympathetic circuit to facilitate hair regeneration. Hair growth can be disrupted by niche pathology, e.g. dysfunction of dermal papilla cells in androgenetic alopecia and influx of auto-reacting T cells in alopecia areata and lichen planopilaris. Understanding the functions and pathological changes of the HFSC niche can provide new insight for the treatment of hair loss.</p>
</div>
</front>
<back>
<div1 type="bibliography">
<listBibl>
<biblStruct>
<analytic>
<author>
<name sortKey="Mcgarvey, El" uniqKey="Mcgarvey E">EL McGarvey</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Cotsarelis, G" uniqKey="Cotsarelis G">G Cotsarelis</name>
</author>
<author>
<name sortKey="Sun, Tt" uniqKey="Sun T">TT Sun</name>
</author>
<author>
<name sortKey="Lavker, Rm" uniqKey="Lavker R">RM Lavker</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Greco, V" uniqKey="Greco V">V Greco</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Hsu, Yc" uniqKey="Hsu Y">YC Hsu</name>
</author>
<author>
<name sortKey="Pasolli, Ha" uniqKey="Pasolli H">HA Pasolli</name>
</author>
<author>
<name sortKey="Fuchs, E" uniqKey="Fuchs E">E Fuchs</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Chase, Hb" uniqKey="Chase H">HB Chase</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Chen, Cc" uniqKey="Chen C">CC Chen</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Hsu, Yc" uniqKey="Hsu Y">YC Hsu</name>
</author>
<author>
<name sortKey="Li, L" uniqKey="Li L">L Li</name>
</author>
<author>
<name sortKey="Fuchs, E" uniqKey="Fuchs E">E Fuchs</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Muller Rover, S" uniqKey="Muller Rover S">S Muller-Rover</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Dry, Fw" uniqKey="Dry F">FW Dry</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Paus, R" uniqKey="Paus R">R Paus</name>
</author>
<author>
<name sortKey="Cotsarelis, G" uniqKey="Cotsarelis G">G Cotsarelis</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Rahmani, W" uniqKey="Rahmani W">W Rahmani</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Mesa, Kr" uniqKey="Mesa K">KR Mesa</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Rompolas, P" uniqKey="Rompolas P">P Rompolas</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Enshell Seijffers, D" uniqKey="Enshell Seijffers D">D Enshell-Seijffers</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Jahoda, Ca" uniqKey="Jahoda C">CA Jahoda</name>
</author>
<author>
<name sortKey="Horne, Ka" uniqKey="Horne K">KA Horne</name>
</author>
<author>
<name sortKey="Oliver, Rf" uniqKey="Oliver R">RF Oliver</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Oshimori, N" uniqKey="Oshimori N">N Oshimori</name>
</author>
<author>
<name sortKey="Fuchs, E" uniqKey="Fuchs E">E Fuchs</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Myung, Ps" uniqKey="Myung P">PS Myung</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Rezza, A" uniqKey="Rezza A">A Rezza</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Rendl, M" uniqKey="Rendl M">M Rendl</name>
</author>
<author>
<name sortKey="Polak, L" uniqKey="Polak L">L Polak</name>
</author>
<author>
<name sortKey="Fuchs, E" uniqKey="Fuchs E">E Fuchs</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Blanpain, C" uniqKey="Blanpain C">C Blanpain</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Oshima, H" uniqKey="Oshima H">H Oshima</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Tumbar, T" uniqKey="Tumbar T">T Tumbar</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Hsu, Yc" uniqKey="Hsu Y">YC Hsu</name>
</author>
<author>
<name sortKey="Li, L" uniqKey="Li L">L Li</name>
</author>
<author>
<name sortKey="Fuchs, E" uniqKey="Fuchs E">E Fuchs</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Chuong, Cm" uniqKey="Chuong C">CM Chuong</name>
</author>
<author>
<name sortKey="Cotsarelis, G" uniqKey="Cotsarelis G">G Cotsarelis</name>
</author>
<author>
<name sortKey="Stenn, K" uniqKey="Stenn K">K Stenn</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Pena Jimenez, D" uniqKey="Pena Jimenez D">D Pena-Jimenez</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Brownell, I" uniqKey="Brownell I">I Brownell</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Festa, E" uniqKey="Festa E">E Festa</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Plikus, Mv" uniqKey="Plikus M">MV Plikus</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Wang, Ece" uniqKey="Wang E">ECE Wang</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Castellana, D" uniqKey="Castellana D">D Castellana</name>
</author>
<author>
<name sortKey="Paus, R" uniqKey="Paus R">R Paus</name>
</author>
<author>
<name sortKey="Perez Moreno, M" uniqKey="Perez Moreno M">M Perez-Moreno</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ali, N" uniqKey="Ali N">N Ali</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Paus, R" uniqKey="Paus R">R Paus</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Botchkarev, Va" uniqKey="Botchkarev V">VA Botchkarev</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Fan, Sm Y" uniqKey="Fan S">SM-Y Fan</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Chen, Cc" uniqKey="Chen C">CC Chen</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Yu, Z" uniqKey="Yu Z">Z Yu</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Plikus, Mv" uniqKey="Plikus M">MV Plikus</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Murray, Pj" uniqKey="Murray P">PJ Murray</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Plikus, Mv" uniqKey="Plikus M">MV Plikus</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Choi, Ys" uniqKey="Choi Y">YS Choi</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Leishman, E" uniqKey="Leishman E">E Leishman</name>
</author>
</analytic>
</biblStruct>
<biblStruct></biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Sheen, Ys" uniqKey="Sheen Y">YS Sheen</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Wu, Yf" uniqKey="Wu Y">YF Wu</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Osaka, N" uniqKey="Osaka N">N Osaka</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Sennett, R" uniqKey="Sennett R">R Sennett</name>
</author>
<author>
<name sortKey="Rendl, M" uniqKey="Rendl M">M Rendl</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Yang, H" uniqKey="Yang H">H Yang</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Enshell Seijffers, D" uniqKey="Enshell Seijffers D">D Enshell-Seijffers</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Huang, Wy" uniqKey="Huang W">WY Huang</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Huang, Wy" uniqKey="Huang W">WY Huang</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Marshall, Wa" uniqKey="Marshall W">WA Marshall</name>
</author>
<author>
<name sortKey="Tanner, Jm" uniqKey="Tanner J">JM Tanner</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Marshall, Wa" uniqKey="Marshall W">WA Marshall</name>
</author>
<author>
<name sortKey="Tanner, Jm" uniqKey="Tanner J">JM Tanner</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Nyholt, Dr" uniqKey="Nyholt D">DR Nyholt</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Azziz, R" uniqKey="Azziz R">R Azziz</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Thornton, Mj" uniqKey="Thornton M">MJ Thornton</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Randall, Va" uniqKey="Randall V">VA Randall</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Hibberts, Na" uniqKey="Hibberts N">NA Hibberts</name>
</author>
<author>
<name sortKey="Howell, Ae" uniqKey="Howell A">AE Howell</name>
</author>
<author>
<name sortKey="Randall, Va" uniqKey="Randall V">VA Randall</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ando, Y" uniqKey="Ando Y">Y Ando</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Choudhry, R" uniqKey="Choudhry R">R Choudhry</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Lai, Jj" uniqKey="Lai J">JJ Lai</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Courtois, M" uniqKey="Courtois M">M Courtois</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Matsumura, H" uniqKey="Matsumura H">H Matsumura</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Chen, W" uniqKey="Chen W">W Chen</name>
</author>
<author>
<name sortKey="Zouboulis, Cc" uniqKey="Zouboulis C">CC Zouboulis</name>
</author>
<author>
<name sortKey="Orfanos, Ce" uniqKey="Orfanos C">CE Orfanos</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Bahta, Aw" uniqKey="Bahta A">AW Bahta</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Randall, Va" uniqKey="Randall V">VA Randall</name>
</author>
<author>
<name sortKey="Hibberts, Na" uniqKey="Hibberts N">NA Hibberts</name>
</author>
<author>
<name sortKey="Hamada, K" uniqKey="Hamada K">K Hamada</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Huang, Wy" uniqKey="Huang W">WY Huang</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kwack, Mh" uniqKey="Kwack M">MH Kwack</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kwack, Mh" uniqKey="Kwack M">MH Kwack</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Inui, S" uniqKey="Inui S">S Inui</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Paus, R" uniqKey="Paus R">R Paus</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Turksen, K" uniqKey="Turksen K">K Turksen</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Mcconnell, Jd" uniqKey="Mcconnell J">JD McConnell</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Bramson, Hn" uniqKey="Bramson H">HN Bramson</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kaufman, Kd" uniqKey="Kaufman K">KD Kaufman</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Olsen, Ea" uniqKey="Olsen E">EA Olsen</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Rossi, A" uniqKey="Rossi A">A Rossi</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="De Villez, Rl" uniqKey="De Villez R">RL De Villez</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Zappacosta, Ar" uniqKey="Zappacosta A">AR Zappacosta</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Headington, Jt" uniqKey="Headington J">JT Headington</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kumamoto, T" uniqKey="Kumamoto T">T Kumamoto</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Paus, R" uniqKey="Paus R">R Paus</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Maurer, M" uniqKey="Maurer M">M Maurer</name>
</author>
<author>
<name sortKey="Paus, R" uniqKey="Paus R">R Paus</name>
</author>
<author>
<name sortKey="Czarnetzki, Bm" uniqKey="Czarnetzki B">BM Czarnetzki</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Maurer, M" uniqKey="Maurer M">M Maurer</name>
</author>
</analytic>
</biblStruct>
<biblStruct></biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Xu, X" uniqKey="Xu X">X Xu</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Michel, L" uniqKey="Michel L">L Michel</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Jameson, J" uniqKey="Jameson J">J Jameson</name>
</author>
<author>
<name sortKey="Havran, Wl" uniqKey="Havran W">WL Havran</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Lee, P" uniqKey="Lee P">P Lee</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Paus, R" uniqKey="Paus R">R Paus</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Harel, S" uniqKey="Harel S">S Harel</name>
</author>
</analytic>
</biblStruct>
<biblStruct></biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Chu, S Y" uniqKey="Chu S">S-Y Chu</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Gilhar, A" uniqKey="Gilhar A">A Gilhar</name>
</author>
<author>
<name sortKey="Paus, R" uniqKey="Paus R">R Paus</name>
</author>
<author>
<name sortKey="Kalish, Rs" uniqKey="Kalish R">RS Kalish</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Harries, Mj" uniqKey="Harries M">MJ Harries</name>
</author>
</analytic>
</biblStruct>
<biblStruct></biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Gregoriou, S" uniqKey="Gregoriou S">S Gregoriou</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Strazzulla, Lc" uniqKey="Strazzulla L">LC Strazzulla</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Wang, E" uniqKey="Wang E">E Wang</name>
</author>
<author>
<name sortKey="Mcelwee, Kj" uniqKey="Mcelwee K">KJ McElwee</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Wang, Ehc" uniqKey="Wang E">EHC Wang</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Gilhar, A" uniqKey="Gilhar A">A Gilhar</name>
</author>
</analytic>
</biblStruct>
<biblStruct></biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Strazzulla, Lc" uniqKey="Strazzulla L">LC Strazzulla</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Gilhar, A" uniqKey="Gilhar A">A Gilhar</name>
</author>
<author>
<name sortKey="Etzioni, A" uniqKey="Etzioni A">A Etzioni</name>
</author>
<author>
<name sortKey="Paus, R" uniqKey="Paus R">R Paus</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Cranwell, Wc" uniqKey="Cranwell W">WC Cranwell</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Alkhalifah, A" uniqKey="Alkhalifah A">A Alkhalifah</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Cotellessa, C" uniqKey="Cotellessa C">C Cotellessa</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Petukhova, L" uniqKey="Petukhova L">L Petukhova</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Paus, R" uniqKey="Paus R">R Paus</name>
</author>
<author>
<name sortKey="Bulfone Paus, S" uniqKey="Bulfone Paus S">S Bulfone-Paus</name>
</author>
<author>
<name sortKey="Bertolini, M" uniqKey="Bertolini M">M Bertolini</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Castela, E" uniqKey="Castela E">E Castela</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Xing, L" uniqKey="Xing L">L Xing</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Betz, Rc" uniqKey="Betz R">RC Betz</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Mackay Wiggan, J" uniqKey="Mackay Wiggan J">J Mackay-Wiggan</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Jabbari, A" uniqKey="Jabbari A">A Jabbari</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Wang, Ehc" uniqKey="Wang E">EHC Wang</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Mehregan, Da" uniqKey="Mehregan D">DA Mehregan</name>
</author>
<author>
<name sortKey="Van Hale, Hm" uniqKey="Van Hale H">HM Van Hale</name>
</author>
<author>
<name sortKey="Muller, Sa" uniqKey="Muller S">SA Muller</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kang, H" uniqKey="Kang H">H Kang</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Imanishi, H" uniqKey="Imanishi H">H Imanishi</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Spencer, La" uniqKey="Spencer L">LA Spencer</name>
</author>
<author>
<name sortKey="Hawryluk, Eb" uniqKey="Hawryluk E">EB Hawryluk</name>
</author>
<author>
<name sortKey="English, Jc" uniqKey="English J">JC English</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Chase, Hb" uniqKey="Chase H">HB Chase</name>
</author>
<author>
<name sortKey="Montagna, W" uniqKey="Montagna W">W Montagna</name>
</author>
<author>
<name sortKey="Malone, Jd" uniqKey="Malone J">JD Malone</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Hansen, Ls" uniqKey="Hansen L">LS Hansen</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Nicu, C" uniqKey="Nicu C">C Nicu</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Rodeheffer, Ms" uniqKey="Rodeheffer M">MS Rodeheffer</name>
</author>
<author>
<name sortKey="Birsoy, K" uniqKey="Birsoy K">K Birsoy</name>
</author>
<author>
<name sortKey="Friedman, Jm" uniqKey="Friedman J">JM Friedman</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Donati, G" uniqKey="Donati G">G Donati</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Zhang, B" uniqKey="Zhang B">B Zhang</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Foitzik, K" uniqKey="Foitzik K">K Foitzik</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Cote, Ja" uniqKey="Cote J">JA Cote</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Guerrero Juarez, Cf" uniqKey="Guerrero Juarez C">CF Guerrero-Juarez</name>
</author>
<author>
<name sortKey="Plikus, Mv" uniqKey="Plikus M">MV Plikus</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ambrosi, Th" uniqKey="Ambrosi T">TH Ambrosi</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Naveiras, O" uniqKey="Naveiras O">O Naveiras</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Zhang, Lj" uniqKey="Zhang L">LJ Zhang</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Goldberg, Lj" uniqKey="Goldberg L">LJ Goldberg</name>
</author>
<author>
<name sortKey="Lenzy, Y" uniqKey="Lenzy Y">Y Lenzy</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Lucas, D" uniqKey="Lucas D">D Lucas</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Chow, A" uniqKey="Chow A">A Chow</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Saxton, Ra" uniqKey="Saxton R">RA Saxton</name>
</author>
<author>
<name sortKey="Sabatini, Dm" uniqKey="Sabatini D">DM Sabatini</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Deng, Z" uniqKey="Deng Z">Z Deng</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Wang, Wh" uniqKey="Wang W">WH Wang</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Yilmaz, Oh" uniqKey="Yilmaz O">OH Yilmaz</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Yang, Cc" uniqKey="Yang C">CC Yang</name>
</author>
</analytic>
</biblStruct>
<biblStruct></biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Botchkarev, Va" uniqKey="Botchkarev V">VA Botchkarev</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Maryanovich, M" uniqKey="Maryanovich M">M Maryanovich</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Lucas, D" uniqKey="Lucas D">D Lucas</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Katayama, Y" uniqKey="Katayama Y">Y Katayama</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Lucas, D" uniqKey="Lucas D">D Lucas</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Mendez Ferrer, S" uniqKey="Mendez Ferrer S">S Mendez-Ferrer</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Mai Yi Fan, S" uniqKey="Mai Yi Fan S">S Mai-Yi Fan</name>
</author>
</analytic>
</biblStruct>
</listBibl>
</div1>
</back>
</TEI>
<pmc article-type="review-article">
<pmc-dir>properties open_access</pmc-dir>
<front>
<journal-meta>
<journal-id journal-id-type="nlm-ta">J Biomed Sci</journal-id>
<journal-id journal-id-type="iso-abbrev">J. Biomed. Sci</journal-id>
<journal-title-group>
<journal-title>Journal of Biomedical Science</journal-title>
</journal-title-group>
<issn pub-type="ppub">1021-7770</issn>
<issn pub-type="epub">1423-0127</issn>
<publisher>
<publisher-name>BioMed Central</publisher-name>
<publisher-loc>London</publisher-loc>
</publisher>
</journal-meta>
<article-meta>
<article-id pub-id-type="pmid">32171310</article-id>
<article-id pub-id-type="pmc">7073016</article-id>
<article-id pub-id-type="publisher-id">624</article-id>
<article-id pub-id-type="doi">10.1186/s12929-020-0624-8</article-id>
<article-categories>
<subj-group subj-group-type="heading">
<subject>Review</subject>
</subj-group>
</article-categories>
<title-group>
<article-title>Functional complexity of hair follicle stem cell niche and therapeutic targeting of niche dysfunction for hair regeneration</article-title>
</title-group>
<contrib-group>
<contrib contrib-type="author">
<name>
<surname>Chen</surname>
<given-names>Chih-Lung</given-names>
</name>
<xref ref-type="aff" rid="Aff1">1</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Huang</surname>
<given-names>Wen-Yen</given-names>
</name>
<xref ref-type="aff" rid="Aff1">1</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Wang</surname>
<given-names>Eddy Hsi Chun</given-names>
</name>
<xref ref-type="aff" rid="Aff2">2</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Tai</surname>
<given-names>Kang-Yu</given-names>
</name>
<xref ref-type="aff" rid="Aff3">3</xref>
</contrib>
<contrib contrib-type="author" corresp="yes">
<contrib-id contrib-id-type="orcid">http://orcid.org/0000-0003-1325-3464</contrib-id>
<name>
<surname>Lin</surname>
<given-names>Sung-Jan</given-names>
</name>
<address>
<email>drsjlin@ntu.edu.tw</email>
</address>
<xref ref-type="aff" rid="Aff1">1</xref>
<xref ref-type="aff" rid="Aff3">3</xref>
<xref ref-type="aff" rid="Aff4">4</xref>
<xref ref-type="aff" rid="Aff5">5</xref>
<xref ref-type="aff" rid="Aff6">6</xref>
</contrib>
<aff id="Aff1">
<label>1</label>
<institution-wrap>
<institution-id institution-id-type="GRID">grid.19188.39</institution-id>
<institution-id institution-id-type="ISNI">0000 0004 0546 0241</institution-id>
<institution>Department of Biomedical Engineering, College of Medicine and College of Engineering,</institution>
<institution>National Taiwan University,</institution>
</institution-wrap>
Taipei, Taiwan</aff>
<aff id="Aff2">
<label>2</label>
<institution-wrap>
<institution-id institution-id-type="GRID">grid.21729.3f</institution-id>
<institution-id institution-id-type="ISNI">0000000419368729</institution-id>
<institution>Department of Dermatology,</institution>
<institution>Columbia University,</institution>
</institution-wrap>
New York, NY USA</aff>
<aff id="Aff3">
<label>3</label>
<institution-wrap>
<institution-id institution-id-type="GRID">grid.19188.39</institution-id>
<institution-id institution-id-type="ISNI">0000 0004 0546 0241</institution-id>
<institution>Genome and Systems Biology Degree Program,</institution>
<institution>National Taiwan University and Academia Sinica,</institution>
</institution-wrap>
Taipei, Taiwan</aff>
<aff id="Aff4">
<label>4</label>
<institution-wrap>
<institution-id institution-id-type="GRID">grid.19188.39</institution-id>
<institution-id institution-id-type="ISNI">0000 0004 0546 0241</institution-id>
<institution>Department of Dermatology,</institution>
<institution>National Taiwan University Hospital and National Taiwan University College of Medicine,</institution>
</institution-wrap>
Taipei, Taiwan</aff>
<aff id="Aff5">
<label>5</label>
<institution-wrap>
<institution-id institution-id-type="GRID">grid.19188.39</institution-id>
<institution-id institution-id-type="ISNI">0000 0004 0546 0241</institution-id>
<institution>Research Center for Developmental Biology and Regenerative Medicine,</institution>
<institution>National Taiwan University,</institution>
</institution-wrap>
Taipei, Taiwan</aff>
<aff id="Aff6">
<label>6</label>
<institution-wrap>
<institution-id institution-id-type="GRID">grid.19188.39</institution-id>
<institution-id institution-id-type="ISNI">0000 0004 0546 0241</institution-id>
<institution>Graduate Institute of Clinical Medicine, College of Medicine,</institution>
<institution>National Taiwan University,</institution>
</institution-wrap>
Taipei, Taiwan</aff>
</contrib-group>
<pub-date pub-type="epub">
<day>14</day>
<month>3</month>
<year>2020</year>
</pub-date>
<pub-date pub-type="pmc-release">
<day>14</day>
<month>3</month>
<year>2020</year>
</pub-date>
<pub-date pub-type="collection">
<year>2020</year>
</pub-date>
<volume>27</volume>
<elocation-id>43</elocation-id>
<history>
<date date-type="received">
<day>15</day>
<month>10</month>
<year>2019</year>
</date>
<date date-type="accepted">
<day>23</day>
<month>1</month>
<year>2020</year>
</date>
</history>
<permissions>
<copyright-statement>© The Author(s). 2020</copyright-statement>
<license license-type="OpenAccess">
<license-p>
<bold>Open Access</bold>
This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (
<ext-link ext-link-type="uri" xlink:href="http://creativecommons.org/licenses/by/4.0/">http://creativecommons.org/licenses/by/4.0/</ext-link>
), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (
<ext-link ext-link-type="uri" xlink:href="http://creativecommons.org/publicdomain/zero/1.0/">http://creativecommons.org/publicdomain/zero/1.0/</ext-link>
) applies to the data made available in this article, unless otherwise stated.</license-p>
</license>
</permissions>
<abstract id="Abs1">
<p id="Par1">Stem cell activity is subject to non-cell-autonomous regulation from the local microenvironment, or niche. In adaption to varying physiological conditions and the ever-changing external environment, the stem cell niche has evolved with multifunctionality that enables stem cells to detect these changes and to communicate with remote cells/tissues to tailor their activity for organismal needs. The cyclic growth of hair follicles is powered by hair follicle stem cells (HFSCs). Using HFSCs as a model, we categorize niche cells into 3 functional modules, including signaling, sensing and message-relaying. Signaling modules, such as dermal papilla cells, immune cells and adipocytes, regulate HFSC activity through short-range cell-cell contact or paracrine effects. Macrophages capacitate the HFSC niche to sense tissue injury and mechanical cues and adipocytes seem to modulate HFSC activity in response to systemic nutritional states. Sympathetic nerves implement the message-relaying function by transmitting external light signals through an ipRGC-SCN-sympathetic circuit to facilitate hair regeneration. Hair growth can be disrupted by niche pathology, e.g. dysfunction of dermal papilla cells in androgenetic alopecia and influx of auto-reacting T cells in alopecia areata and lichen planopilaris. Understanding the functions and pathological changes of the HFSC niche can provide new insight for the treatment of hair loss.</p>
</abstract>
<kwd-group xml:lang="en">
<title>Keywords</title>
<kwd>Hair follicle stem cell</kwd>
<kwd>Niche</kwd>
<kwd>Function</kwd>
<kwd>Alopecia</kwd>
<kwd>Alopecia areata</kwd>
<kwd>Lichen planopilaris</kwd>
<kwd>Androgenetic alopecia</kwd>
<kwd>Therapy</kwd>
</kwd-group>
<funding-group>
<award-group>
<funding-source>
<institution-wrap>
<institution-id institution-id-type="FundRef">http://dx.doi.org/10.13039/501100004663</institution-id>
<institution>Ministry of Science and Technology, Taiwan</institution>
</institution-wrap>
</funding-source>
<award-id>MOST107-2314-B-002-064-MY3; 108-2811-B-002-583</award-id>
<principal-award-recipient>
<name>
<surname>Lin</surname>
<given-names>Sung-Jan</given-names>
</name>
</principal-award-recipient>
</award-group>
</funding-group>
<funding-group>
<award-group>
<funding-source>
<institution-wrap>
<institution-id institution-id-type="FundRef">http://dx.doi.org/10.13039/501100005762</institution-id>
<institution>National Taiwan University Hospital</institution>
</institution-wrap>
</funding-source>
<award-id>UN108-029, 107S3781, 108-T17, 109-T17</award-id>
<principal-award-recipient>
<name>
<surname>Lin</surname>
<given-names>Sung-Jan</given-names>
</name>
</principal-award-recipient>
</award-group>
</funding-group>
<funding-group>
<award-group>
<funding-source>
<institution>Taiwan National Health Research Institutes</institution>
</funding-source>
<award-id>NHRI-EX108-10811EI, NHRI-EX109-10811EI</award-id>
<principal-award-recipient>
<name>
<surname>Lin</surname>
<given-names>Sung-Jan</given-names>
</name>
</principal-award-recipient>
</award-group>
</funding-group>
<funding-group>
<award-group>
<funding-source>
<institution>Taiwan Bio-Development Foundation</institution>
</funding-source>
<award-id>nil</award-id>
<principal-award-recipient>
<name>
<surname>Lin</surname>
<given-names>Sung-Jan</given-names>
</name>
</principal-award-recipient>
</award-group>
</funding-group>
<custom-meta-group>
<custom-meta>
<meta-name>issue-copyright-statement</meta-name>
<meta-value>© The Author(s) 2020</meta-value>
</custom-meta>
</custom-meta-group>
</article-meta>
</front>
<body>
<sec id="Sec1">
<title>Background</title>
<p id="Par2">Hair forms a barrier to protect skin from external insults as well as to keep the body from temperature loss. Human hair, especially human scalp hair, also has important ornamental functions that are essential for social communication and senses of well-being. Unwanted hair loss can pose psychosocial distress to affected individuals [
<xref ref-type="bibr" rid="CR1">1</xref>
]. Hair regeneration depends on the activation of hair follicle stem cells (HFSCs) [
<xref ref-type="bibr" rid="CR2">2</xref>
<xref ref-type="bibr" rid="CR4">4</xref>
]. As the hair follicle (HF) is an integral part of skin [
<xref ref-type="bibr" rid="CR5">5</xref>
], its growth and the activity of HFSCs are regulated by various nearby cells of the HFSC niche in the skin [
<xref ref-type="bibr" rid="CR6">6</xref>
,
<xref ref-type="bibr" rid="CR7">7</xref>
]. We categorize the component cells of the HFSC niche into 3 groups according to their functions, including signaling, sensing and message-relaying. We review how HFSC activity is regulated by different signaling cells and how sensing and message-relaying cells help HFs to initiate a regenerative attempt in face of local injury and external environmental changes. In diseased states, we discuss how the pathological changes of the niche lead to dysregulated hair growth. In addition, we discuss how the influx or emergence of non-preexisting cells within the HFSC niche affects hair growth and depletes HFSCs. We also highlight the therapeutic implications of niche pathology with an aim to prevent hair loss and to promote hair growth.</p>
<sec id="Sec2">
<title>Hair follicle structure, hair cycle and HFSC</title>
<p id="Par3">The HF is one of the few organs that undergo cyclic involution and regeneration throughout life [
<xref ref-type="bibr" rid="CR5">5</xref>
,
<xref ref-type="bibr" rid="CR6">6</xref>
,
<xref ref-type="bibr" rid="CR8">8</xref>
,
<xref ref-type="bibr" rid="CR9">9</xref>
]. Structurally, HF is an epithelial organ consisting of two main parts: an epithelial cylinder composed of keratinocytes and the mesenchymal cells of dermal papilla (DP) and dermal sheath (Fig. 
<xref rid="Fig1" ref-type="fig">1</xref>
) [
<xref ref-type="bibr" rid="CR5">5</xref>
,
<xref ref-type="bibr" rid="CR10">10</xref>
]. During the hair cycle, HFs progress through anagen (growth), catagen (involution) and telogen (resting) phases and then re-enter anagen (Fig.
<xref rid="Fig1" ref-type="fig">1</xref>
) [
<xref ref-type="bibr" rid="CR5">5</xref>
,
<xref ref-type="bibr" rid="CR8">8</xref>
<xref ref-type="bibr" rid="CR11">11</xref>
]. Postnatal cycling and regeneration of HFs depend on sophisticated reciprocal epithelial-mesenchymal interaction [
<xref ref-type="bibr" rid="CR6">6</xref>
,
<xref ref-type="bibr" rid="CR12">12</xref>
<xref ref-type="bibr" rid="CR19">19</xref>
].
<fig id="Fig1">
<label>Fig. 1</label>
<caption>
<p>Hair follicle structure, hair follicle stem cell and hair cycle. Quiescent HFSCs reside in the bulge region and primed HFSCs are located in the secondary hair germ. They are transiently activated in early anagen, giving rise to progeny that grow down to form the lower portion of HFs. HFs progress through catagen (regressing phase), telogen (resting phase) and anagen (growing phase) cyclically. Matrix cells in the hair bulb actively proliferate and differentiate to support the continued elongation of the hair shaft in anagen. In catagen, the hair bulb shrinks and the lower portion of the HF regresses through a progressively shortened epithelial strand into the telogen HF. In telogen, HFSCs in the secondary hair germ and bulge remain inactivated</p>
</caption>
<graphic xlink:href="12929_2020_624_Fig1_HTML" id="MO1"></graphic>
</fig>
</p>
<p id="Par4">Over the past 3 decades, progress has been made in understanding how the growth of HFs is regulated, particularly due to the discovery of HFSCs [
<xref ref-type="bibr" rid="CR2">2</xref>
<xref ref-type="bibr" rid="CR4">4</xref>
,
<xref ref-type="bibr" rid="CR20">20</xref>
<xref ref-type="bibr" rid="CR22">22</xref>
]. HFSCs are first identified as slow-cycling label-retaining cells located in the bulge epithelium [
<xref ref-type="bibr" rid="CR2">2</xref>
,
<xref ref-type="bibr" rid="CR22">22</xref>
]. In addition to this population of relatively quiescent stem cells, HFs harbor another population of primed stem cells with faster activation dynamics in the secondary hair germ of telogen HFs [
<xref ref-type="bibr" rid="CR3">3</xref>
,
<xref ref-type="bibr" rid="CR5">5</xref>
,
<xref ref-type="bibr" rid="CR23">23</xref>
]. HF regeneration from telogen to anagen is fueled by the coordinated activation of these two cell populations: primed HFSCs in the secondary hair germ are first activated, followed by the activation of quiescent HFSCs in the bulge later [
<xref ref-type="bibr" rid="CR2">2</xref>
<xref ref-type="bibr" rid="CR5">5</xref>
].</p>
</sec>
<sec id="Sec3">
<title>Signals and signaling cells within HFSC niche</title>
<p id="Par5">By definition, HF itself does not require the existence of surrounding niche cells to become a HF [
<xref ref-type="bibr" rid="CR24">24</xref>
]. However, the integration of a variety of surrounding niche cells confer emergent functions on HFSCs, especially its ability to respond to changes of local, systemic and even external environments to begin a regenerative scheme or to remain quiescent. In diseased states, pathological infiltration of non-preexisting cells in the HFSC niche can lead to dysregulated hair growth. What constitutes the microenvironment that regulates HFSC activity and hair growth? Due to the continuous advance in hair research, more and more cell types (Fig. 
<xref rid="Fig2" ref-type="fig">2</xref>
), including DP cells, adipose tissue, lymphatic vessels, nerves and immune cells, are identified to be contributing to the HFSC niche [
<xref ref-type="bibr" rid="CR15">15</xref>
,
<xref ref-type="bibr" rid="CR16">16</xref>
,
<xref ref-type="bibr" rid="CR25">25</xref>
<xref ref-type="bibr" rid="CR36">36</xref>
], unveiling the complexity and sophistication in the interaction of HFSCs with its environment. Since activating and inhibitory signals can both be present in the HFSC niche, the probability of HFSC activation is the readout of the summation of both activating and inhibitory signals [
<xref ref-type="bibr" rid="CR37">37</xref>
,
<xref ref-type="bibr" rid="CR38">38</xref>
]. The two major counteracting signals are the bone morphogenetic protein (BMP) and Wnt/β-catenin signaling pathways [
<xref ref-type="bibr" rid="CR28">28</xref>
,
<xref ref-type="bibr" rid="CR37">37</xref>
,
<xref ref-type="bibr" rid="CR39">39</xref>
]. High BMP signaling keeps HFSCs in an inactivated state, while Wnt/β-catenin signaling promotes HFSC activation and maintains HF growth [
<xref ref-type="bibr" rid="CR17">17</xref>
,
<xref ref-type="bibr" rid="CR28">28</xref>
,
<xref ref-type="bibr" rid="CR37">37</xref>
<xref ref-type="bibr" rid="CR40">40</xref>
]. Moreover, the TGF-β2, Foxp1 and oncostatin M signaling pathways have also been shown to regulate hair cycle [
<xref ref-type="bibr" rid="CR16">16</xref>
,
<xref ref-type="bibr" rid="CR29">29</xref>
,
<xref ref-type="bibr" rid="CR37">37</xref>
,
<xref ref-type="bibr" rid="CR41">41</xref>
] . Factors that are able to tilt the balance of Wnt/β-catenin and BMP signaling can modulate HFSC activity, thereby suppressing or promoting anagen entry [
<xref ref-type="bibr" rid="CR6">6</xref>
,
<xref ref-type="bibr" rid="CR16">16</xref>
,
<xref ref-type="bibr" rid="CR29">29</xref>
,
<xref ref-type="bibr" rid="CR38">38</xref>
,
<xref ref-type="bibr" rid="CR42">42</xref>
].
<fig id="Fig2">
<label>Fig. 2</label>
<caption>
<p>Hair follicle stem cell niche. The HFSC niche is composed of various component cells, such as dermal papilla, preadipocytes, adipocytes, immune cells and nerves. Systemic hormones also regulate HFSCs directly or indirectly through the HFSC niche cells. Both activating and suppressive signals are present within the HFSC niche. The probability of HFSC activation depends on the summation of all the activating and inhibitory signals</p>
</caption>
<graphic xlink:href="12929_2020_624_Fig2_HTML" id="MO2"></graphic>
</fig>
</p>
</sec>
<sec id="Sec4">
<title>Functional categorization- signaling, sensing and message-relaying modules in HFSC niche</title>
<p id="Par6">In addition to niche cells that provide either activating or inhibitory signals in the physiological state, niche cells of other functions also exist, enabling HFSCs to sense local, systemic and even external environmental changes to adjust their activity to meet local and organismal needs [
<xref ref-type="bibr" rid="CR28">28</xref>
,
<xref ref-type="bibr" rid="CR34">34</xref>
,
<xref ref-type="bibr" rid="CR35">35</xref>
,
<xref ref-type="bibr" rid="CR43">43</xref>
<xref ref-type="bibr" rid="CR45">45</xref>
]. Since additional cells of varied functions can be incorporated singly or in combination into the HFSC niche, we think that the niche cells can be modularized and these modules can be co-opted to construct the niche (Fig. 
<xref rid="Fig3" ref-type="fig">3</xref>
). This is analogous to the design of a spaceship. The combination of different functional modules increases the functionality of the spaceship. Message-relaying modules allowed the communication between the Apollo 11 and NASA space center. The lunar module endowed Apollo 11 with an important function to land human on the moon. From this perspective, we divide HFSC niche cells into 3 functional modular categories: signaling, sensing and message-relaying (Fig.
<xref rid="Fig3" ref-type="fig">3</xref>
). Signaling cells directly provide activating or inhibitory signals for HFSCs through ligand secretion or cell-cell contact. Sensing cells detect the changes of local environmental cues and then directly or indirectly instruct HFSCs to remain quiescent or become activated. Message-relaying cells are capable of transmitting remote signals to the HFSC niche and then directly or indirectly modulate HFSC activity. Of note is that a single niche cell type can exhibit more than one function. We speculate that the co-option of various functional modules within a stem cell niche enables the animals to adapt their regenerative activity to the changing environment and to the altering physiological needs, thereby ameliorating the organismal fitness during evolution.
<fig id="Fig3">
<label>Fig. 3</label>
<caption>
<p>Functional categorization of HFSC niche cells. According to the functions of niche cells, they are categorized into 3 groups: signaling modules, sensing modules, message-relaying modules. These functionally distinct modules are assembled into a multifunctional niche. Signaling modules regulate HFSC activity via cell-cell contact or paracrine secretion. Sensory modules detect environmental cues. Message-relaying modules transmit signals from remote cells/tissues to HFSCs. Sensory modules and message-relaying modules can directly signal to HFSCs or indirectly regulate HFSC activity through the signaling modules</p>
</caption>
<graphic xlink:href="12929_2020_624_Fig3_HTML" id="MO3"></graphic>
</fig>
</p>
</sec>
<sec id="Sec5">
<title>Signals from dermal papilla for signaling and gain of testosterone-processing function in androgenetic alopecia</title>
<p id="Par7">DP cells are an essential signaling component within the HFSC niche (Fig.
<xref rid="Fig2" ref-type="fig">2</xref>
). Epithelial-mesenchymal interaction is indispensable not only for embryonic HF morphogenesis but also for postnatal hair cycling [
<xref ref-type="bibr" rid="CR12">12</xref>
,
<xref ref-type="bibr" rid="CR13">13</xref>
,
<xref ref-type="bibr" rid="CR36">36</xref>
,
<xref ref-type="bibr" rid="CR46">46</xref>
] . In the embryonic stage, interaction with the specialized mesenchymal niche of HF dermal condensate/papilla stimulates and instructs the epithelium to sequentially form placode, germ, and peg [
<xref ref-type="bibr" rid="CR46">46</xref>
]. For postnatal follicular epithelial-mesenchymal interaction, although DP cells provide signaling ligands, such as TGF-β2 and FGF-7 [
<xref ref-type="bibr" rid="CR3">3</xref>
,
<xref ref-type="bibr" rid="CR16">16</xref>
], to activate HFSCs for a new hair cycle, signals from epithelial cells are also required for proper anagen entry [
<xref ref-type="bibr" rid="CR17">17</xref>
]. After HFs reach mature anagen, DP behaves as an instructive niche by regulating the proliferation and spatially ordered differentiation of transit-amplifying progenitors for proper hair shaft elongation and hair bulb structure maintenance [
<xref ref-type="bibr" rid="CR47">47</xref>
]. Continued activation of Wnt/β-catenin signaling in DP through epithelial-mesenchymal interaction is indispensable for anagen progression [
<xref ref-type="bibr" rid="CR48">48</xref>
]. During catagen, DP is also essential for the recession of the epithelial cylinder through controlled apoptosis/cell death [
<xref ref-type="bibr" rid="CR12">12</xref>
]. In addition to physiological cycling, DP might also instruct the anagen repair process to avoid catagen entry when HFs are injured by chemo- and radiotherapy [
<xref ref-type="bibr" rid="CR49">49</xref>
,
<xref ref-type="bibr" rid="CR50">50</xref>
].</p>
<p id="Par8">Androgens are an important regulator for hair growth with paradoxical effects on HFs in different body regions. Androgens can stimulate the transformation of small vellus HFs into large terminal HFs after puberty, such as beard, pubic hair and axillary hair [
<xref ref-type="bibr" rid="CR51">51</xref>
,
<xref ref-type="bibr" rid="CR52">52</xref>
]. On the contrary, in the scalp of genetically predisposed individuals of androgenetic alopecia or male pattern baldness, androgens inhibit hair growth, leading to progressive HF miniaturization [
<xref ref-type="bibr" rid="CR53">53</xref>
]. Hyperandrogenism in females can lead to hirsutism with excessive male pattern hair growth [
<xref ref-type="bibr" rid="CR54">54</xref>
]. These paradoxical effects of androgens on human hair growth have long been a puzzle [
<xref ref-type="bibr" rid="CR55">55</xref>
,
<xref ref-type="bibr" rid="CR56">56</xref>
]. Androgens act through the intracellular androgen receptor. In HFs, androgen receptors are mainly expressed by DP [
<xref ref-type="bibr" rid="CR57">57</xref>
,
<xref ref-type="bibr" rid="CR58">58</xref>
]. In contrast, keratinocytes do not express androgen receptors or show androgen receptor-dependent signaling activation, suggesting that keratinocytes may not be the primary responding cells in HFs [
<xref ref-type="bibr" rid="CR59">59</xref>
,
<xref ref-type="bibr" rid="CR60">60</xref>
].</p>
<p id="Par9">Alopecia due to HF aging is characterized by progressive HF atrophy with hair shaft miniaturization, prolonged telogen, and even loss of the entire HFs, resulting in diminished hair amount [
<xref ref-type="bibr" rid="CR61">61</xref>
,
<xref ref-type="bibr" rid="CR62">62</xref>
]. In male, androgenetic alopecia is the most common disease of premature HF aging. With genetic predisposition in affected individuals, DP cells in the balding area exhibit higher activity of type II 5-alpha-reductase, an enzyme that are normally highly expressed in the prostate [
<xref ref-type="bibr" rid="CR58">58</xref>
]. This enzyme converts testosterone into dihydrotestosterone through 5α-reduction of testosterone [
<xref ref-type="bibr" rid="CR57">57</xref>
]. Dihydrotestosterone is a more potent androgen with a higher affinity than testosterone [
<xref ref-type="bibr" rid="CR63">63</xref>
]. Local sustained dihydrotestosterone stimulation to DP compromises its functions, leading to deteriorating hair growth, shortened anagen and prolonged telogen [
<xref ref-type="bibr" rid="CR55">55</xref>
,
<xref ref-type="bibr" rid="CR56">56</xref>
]. Therefore, the inappropriate gain of function, i.e. 5α-reducing ability to process testosterone, of these niche signaling cells in a patterned distribution is the primary cause of androgenetic alopecia.</p>
<p id="Par10">DP cells from the balding scalp of androgenetic alopecia patients exhibit signs of senescent characters, such as loss of replicative potential, changes in cell size and shape, decrease or loss of is characteristic markers/molecular signature [
<xref ref-type="bibr" rid="CR64">64</xref>
,
<xref ref-type="bibr" rid="CR65">65</xref>
]. Although the mechanisms are not fully clarified yet, dihydrotestosterone seems to induce premature senescence in DP due to persistent androgen receptor activation. The balding DP cells not only lose the ability to promote HFSC proliferation but also produce inhibitory factors that suppress HFSCs and disrupt keratinocyte proliferation [
<xref ref-type="bibr" rid="CR66">66</xref>
<xref ref-type="bibr" rid="CR69">69</xref>
]. For example, Wnt signaling is critical for anagen entry and anagen progression [
<xref ref-type="bibr" rid="CR17">17</xref>
,
<xref ref-type="bibr" rid="CR40">40</xref>
]. Dkk1, a negative regulator of Wnt signaling, is overexpressed by balding DP cells [
<xref ref-type="bibr" rid="CR68">68</xref>
]. Increased secretion of TGF-β1 from DP in catagen promotes anagen-to-catagen transition [
<xref ref-type="bibr" rid="CR12">12</xref>
,
<xref ref-type="bibr" rid="CR70">70</xref>
]. TGF-β1 production is upregulated in balding DP and can compromise keratinocyte proliferation [
<xref ref-type="bibr" rid="CR69">69</xref>
]. Additionally, balding DP cells also produce higher inflammatory cytokines, such as IL-6 [
<xref ref-type="bibr" rid="CR66">66</xref>
,
<xref ref-type="bibr" rid="CR67">67</xref>
,
<xref ref-type="bibr" rid="CR71">71</xref>
]. IL-6 not only inhibits anagen entry but also disrupts normal anagen progression [
<xref ref-type="bibr" rid="CR66">66</xref>
,
<xref ref-type="bibr" rid="CR67">67</xref>
,
<xref ref-type="bibr" rid="CR71">71</xref>
]. As a key mesenchymal signaling component in HFSC niche, targeted restoration of the normal signaling functions of DP cells can be an important strategy for the treatment of alopecia.</p>
<p id="Par11">Currently, the most effective treatment for androgenetic alopecia is to suppress local dihydrotestosterone production by inhibiting 5-α-reductases. Finasteride and dutasteride are 5α-reductase inhibitors with different specificity and potency [
<xref ref-type="bibr" rid="CR72">72</xref>
,
<xref ref-type="bibr" rid="CR73">73</xref>
]. Finasteride mainly inhibits the type-II 5α-reductase, the main 5α-reductase subtype in HFs, while dutasteride suppresses both type-I and type-II 5α-reductases. Long-term treatment with finasteride or dutasteride promotes hair growth in patients with androgenetic alopecia [
<xref ref-type="bibr" rid="CR74">74</xref>
,
<xref ref-type="bibr" rid="CR75">75</xref>
]. Another FDA-approved medication for treating baldness is minoxidil [
<xref ref-type="bibr" rid="CR76">76</xref>
,
<xref ref-type="bibr" rid="CR77">77</xref>
]. Minoxidil is a potassium channel opener originally designed for the treatment of hypertension [
<xref ref-type="bibr" rid="CR78">78</xref>
]. Though the mechanisms are still unclear, it is speculated to promote hair growth through its effects on blood vessels or potassium channels [
<xref ref-type="bibr" rid="CR79">79</xref>
].</p>
</sec>
<sec id="Sec6">
<title>Mast cells, regulatory T cells, dendritic epidermal T cells</title>
<p id="Par12">The HF maintains its own distinctive immune system, and the interplay between HFs with immune cells ensures proper hair growth and protection against autoimmunity [
<xref ref-type="bibr" rid="CR30">30</xref>
,
<xref ref-type="bibr" rid="CR35">35</xref>
,
<xref ref-type="bibr" rid="CR80">80</xref>
,
<xref ref-type="bibr" rid="CR81">81</xref>
]. The immune cells, including macrophages, mast cells, and T cells, modulate the activity of HFSCs (Fig.
<xref rid="Fig2" ref-type="fig">2</xref>
) [
<xref ref-type="bibr" rid="CR30">30</xref>
<xref ref-type="bibr" rid="CR32">32</xref>
,
<xref ref-type="bibr" rid="CR35">35</xref>
]. Mast cells are found in the perifollicular compartment of the HF [
<xref ref-type="bibr" rid="CR80">80</xref>
]. While the role of mast cells in HFSC activation and differentiation is still unclear, histochemical and ultrastructural analysis in the murine skin showed a high level of degranulation during late telogen to early anagen transition and late anagen to early catagen transition [
<xref ref-type="bibr" rid="CR32">32</xref>
,
<xref ref-type="bibr" rid="CR82">82</xref>
]. Several molecules secreted by mast cells could contribute to HF turnover, including histamine and serotonin which promote epidermal keratinocyte proliferation in situ [
<xref ref-type="bibr" rid="CR83">83</xref>
]. Mast cell activity is also suspected to contribute to hair loss disorders, such as androgenic alopecia and cicatricial alopecia [
<xref ref-type="bibr" rid="CR84">84</xref>
<xref ref-type="bibr" rid="CR86">86</xref>
].</p>
<p id="Par13">Regulatory T cells (Tregs) have been shown to reside in the HFSC epithelium and are in close contact with HFSCs [
<xref ref-type="bibr" rid="CR31">31</xref>
]. Tregs can augment HFSC proliferation and differentiation following hair plucking injury through Jagged1 (Jag1, 31]. The roles of Langerhans cells and dendritic epidermal T cells (DETC; γδ T cells), which are skin-resident antigen presenting cells and T cells respectively, in modulating HFSC activities are less defined [
<xref ref-type="bibr" rid="CR80">80</xref>
]. Langerhans cells and DETCs are found in the outer root sheath of HFs [
<xref ref-type="bibr" rid="CR80">80</xref>
]. The roles of DETCs on HFSCs have been reported in the context of wound healing. Activated DETCs not only stimulate epidermal stem cell proliferation to accelerate wound healing [
<xref ref-type="bibr" rid="CR87">87</xref>
], but also favorably promote HFSC activation for hair regrowth [
<xref ref-type="bibr" rid="CR88">88</xref>
].</p>
</sec>
<sec id="Sec7">
<title>Macrophages for signaling and for injury- and force- sensing</title>
<p id="Par14">Physiologically, clusters of skin-resident macrophages can be found in the perifollicular compartment and have been implicated in the regulation of hair cycles [
<xref ref-type="bibr" rid="CR30">30</xref>
,
<xref ref-type="bibr" rid="CR89">89</xref>
]. The number of skin-resident CD11b
<sup>+</sup>
F4/80
<sup>+</sup>
Gr1
<sup></sup>
macrophages decreases due to apoptosis prior to the onset of anagen [
<xref ref-type="bibr" rid="CR30">30</xref>
]. Upon their apoptosis, they release stimulatory factors, such as Wnt7b and Wnt10a, which promote HFSC activation and differentiation [
<xref ref-type="bibr" rid="CR30">30</xref>
]. More recently, it was reported that a different subset of TREM2
<sup>+</sup>
dermal macrophages (trichophages) have an inhibitory effect on hair growth [
<xref ref-type="bibr" rid="CR29">29</xref>
]. This study stemmed from the discovery that inhibition of JAK-STAT signaling promoted hair growth via disrupting the maintenance of HFSC quiescence [
<xref ref-type="bibr" rid="CR90">90</xref>
]. Mechanistically, oncostatin M acts upstream of JAK-STAT5 signaling to maintain HFSC quiescence and oncostatin M is produced by TREM2
<sup>+</sup>
macrophages [
<xref ref-type="bibr" rid="CR29">29</xref>
]. Depletion of this specific subset of macrophages leads to premature anagen entry [
<xref ref-type="bibr" rid="CR29">29</xref>
].</p>
<p id="Par15">Macrophages also exhibit other functions, including the sensing of skin injury and mechanical force. Wounding promotes premature anagen entry in skin [
<xref ref-type="bibr" rid="CR44">44</xref>
,
<xref ref-type="bibr" rid="CR45">45</xref>
]. When skin is wounded, macrophages are recruited and activated through the apoptosis signal-regulating kinase 1 (ASK1) [
<xref ref-type="bibr" rid="CR45">45</xref>
]. Injury to HFs by hair plucking is also a potent stimulation to HFSCs. Injured by hair plucking, HFs recruit macrophages via the release of CCL2 [
<xref ref-type="bibr" rid="CR35">35</xref>
]. TNF-α released by activated macrophages activates HFSCs by inducing AKT-dependent β-catenin accumulation [
<xref ref-type="bibr" rid="CR91">91</xref>
]. Therefore, macrophages here capacitate the HFSC niche to sense the injuries to HFs or injuries to the surrounding skin to mount a regenerative attempt for skin protection. Additionally, macrophages also mediate the sensing of mechanical cues. Stretching skin can polarizes macrophages toward a M2 phenotype [
<xref ref-type="bibr" rid="CR92">92</xref>
]. Pro-regenerative M2 macrophages stimulate hair regeneration via paracrine secretion of IGF and HGF. This demonstrates a mechanical force-macrophage axis in the regulation of tissue regeneration. Since there are multiple populations of macrophages within skin, each with distinct roles in the modulation of HFSC activation and differentiation, targeting macrophages can be a future direction for the management of hair loss.</p>
</sec>
<sec id="Sec8">
<title>Influx of auto-reacting T-cells into HFSC niche disrupts hair growth in alopecia areata and lichen planopilaris</title>
<p id="Par16">Proper HF cycling is strongly dependent on the homeostasis in the maintenance of HFSCs as well as intact immune privilege [
<xref ref-type="bibr" rid="CR81">81</xref>
]. Collapse of immune privilege as a result of environmental factors or genetic predisposition puts HFs in risk of immune/inflammatory attack [
<xref ref-type="bibr" rid="CR81">81</xref>
,
<xref ref-type="bibr" rid="CR93">93</xref>
,
<xref ref-type="bibr" rid="CR94">94</xref>
]. An active immune response with the secretion of inflammatory cytokines such as interferon-γ and TNF-α can certainly disrupt proper maintenance of HFSCs, leading to alopecia [
<xref ref-type="bibr" rid="CR94">94</xref>
,
<xref ref-type="bibr" rid="CR95">95</xref>
]. These cytokines are secreted in abundance by lymphocytes that are not usually present in the physiological state, including CD4 and CD8 T cells (αβ T cells) that surround or infiltrate the HF [
<xref ref-type="bibr" rid="CR94">94</xref>
,
<xref ref-type="bibr" rid="CR96">96</xref>
].</p>
<p id="Par17">One of the most common immunity-mediated alopecia is alopecia areata. Alopecia areata is an autoimmune form of hair loss that may be patchy on the scalp or progress into total body hair loss [
<xref ref-type="bibr" rid="CR97">97</xref>
]. Alopecia areata is reversible, indicating that HFSCs are not lost during autoimmune/inflammatory attacks [
<xref ref-type="bibr" rid="CR97">97</xref>
]. However, the exact etiopathogenesis of alopecia areata has not been completely elucidated. The development of alopecia areata is associated with the collapse of HF immune privilege which subsequently increases antigen presentation to surveying T cells that recognize HF epithelial and/or melanocyte-associated antigens as foreign, and mount autoimmune responses against HFs [
<xref ref-type="bibr" rid="CR93">93</xref>
,
<xref ref-type="bibr" rid="CR97">97</xref>
<xref ref-type="bibr" rid="CR100">100</xref>
]. There are ongoing investigations trying to identify the exact HF antigen and antigen-specific T cells involved in the onset of alopecia areata [
<xref ref-type="bibr" rid="CR99">99</xref>
,
<xref ref-type="bibr" rid="CR101">101</xref>
]. The autoimmune attack does not kill HFSCs specifically, but, instead, the lower transient portion of anagen HFs [
<xref ref-type="bibr" rid="CR97">97</xref>
]. Since HFSCs are preserved, removal of these pathogenic T cells from HFSC niche restores hair growth. Due to the wide variation of clinical presentation, such as numbers and extent of lesions, age of onset, duration of disease persistence, and unpredictable responses to treatment, there is still a lack of universal guidelines for the treatment of alopecia areata. Topical or intralesional steroids are favored in patients with limited diseases and topical minoxidil can be employed as an adjuvant therapy [
<xref ref-type="bibr" rid="CR102">102</xref>
<xref ref-type="bibr" rid="CR104">104</xref>
]. In patients with extensive hair loss, systemic steroids and other immunosuppressants, such as methotrexate, can be considered. Additionally, immunotherapy with repeated topical application of contact sensitizers, such as diphenylcyclopropenone (DPCP), has also been employed in patients with extensive hair loss [
<xref ref-type="bibr" rid="CR102">102</xref>
,
<xref ref-type="bibr" rid="CR105">105</xref>
,
<xref ref-type="bibr" rid="CR106">106</xref>
].</p>
<p id="Par18">Dysregulation of Tregs have also been suggested to be associated with the collapse of HF immune privilege in alopecia areata [
<xref ref-type="bibr" rid="CR31">31</xref>
,
<xref ref-type="bibr" rid="CR107">107</xref>
,
<xref ref-type="bibr" rid="CR108">108</xref>
]. A defect or lack of Tregs could lead to unchecked autoimmune attack on HF cells [
<xref ref-type="bibr" rid="CR108">108</xref>
]. Improvement of alopecia areata was also reported (hair regrowth and reduction of CD4 and CD8 T cells) by treating the patients with low-dose IL2 to promote recruitment of Tregs into the skin [
<xref ref-type="bibr" rid="CR109">109</xref>
].</p>
<p id="Par19">Recently, it was shown that a population of CD8
<sup>+</sup>
/NKG2D
<sup>+</sup>
T cells is necessary and sufficient for the development of alopecia areata [
<xref ref-type="bibr" rid="CR107">107</xref>
,
<xref ref-type="bibr" rid="CR110">110</xref>
,
<xref ref-type="bibr" rid="CR111">111</xref>
]. The IFN-γ response and several γ-chain (γc) cytokines are significantly upregulated in alopecia areata skin which can activate cytotoxic CD8
<sup>+</sup>
/NKG2D
<sup>+</sup>
T cell infiltration. Using anti-INF-γ antibody can efficiently block CD8
<sup>+</sup>
/NKG2D
<sup>+</sup>
T cell infiltration and prevent alopecia areata development in the mouse model [
<xref ref-type="bibr" rid="CR110">110</xref>
]. Through this research, the authors identified a small molecule inhibitor that can effectively block JAK-STAT signaling important for CD8
<sup>+</sup>
/NKG2D
<sup>+</sup>
T cell function and reverse alopecia areata in both the mouse model and human patients [
<xref ref-type="bibr" rid="CR110">110</xref>
]. This research subsequently led to two successful clinical trials repurposing FDA-approved JAK inhibitors, ruxolitinib (JAK1/2 specific) and tofacitinib (pan-JAK), to treat moderate to severe alopecia areata [
<xref ref-type="bibr" rid="CR112">112</xref>
,
<xref ref-type="bibr" rid="CR113">113</xref>
]. Because of this, more clinical trials have started with the aim to optimize treatment of alopecia areata with JAK-specific inhibitors and different routes of administration [
<xref ref-type="bibr" rid="CR114">114</xref>
]. As described above, inhibiting JAK-STAT signaling may have a direct impact on hair cycle. While alopecia areata-affected mice were treated, it was observed that the mice grew fuller hair. When the treatment was applied to wild-type mice at telogen, the mice entered anagen faster and grew fuller and darker hair [
<xref ref-type="bibr" rid="CR90">90</xref>
]. These observations implicate a dual role of JAK inhibitors in alopecia areata by inhibiting CD8
<sup>+</sup>
/NKG2D
<sup>+</sup>
T cells and promoting HFSC proliferation or differentiation.</p>
<p id="Par20">Hair loss in lichen planopilaris, also a chronic inflammatory disease of HFs, is irreversible with a final scarring change [
<xref ref-type="bibr" rid="CR94">94</xref>
,
<xref ref-type="bibr" rid="CR115">115</xref>
]. Lichen planopilaris usually runs a slowly progressive course, presenting with single or multiple patches of perifollicular erythema, scaling, follicular hyperkeratosis and eventual loss of HFs [
<xref ref-type="bibr" rid="CR116">116</xref>
]. In contrast to alopecia areata in which cytotoxic T cells target the hair bulb, lichen planopilaris is characterized by Th1-biased cytotoxic T cell infiltration around the bulge region where HFSCs reside. It is postulated that a selective collapse of immune privilege in the HFSC niche, possibly triggered by interferon-γ, contributes to the pathogenesis of lichen planopilaris [
<xref ref-type="bibr" rid="CR94">94</xref>
]. Chronic niche inflammation might deplete HFSCs by directly inducing HFSC apoptosis or indirectly altering the niche environment to a state unfavorable for the maintenance of HFSCs [
<xref ref-type="bibr" rid="CR94">94</xref>
,
<xref ref-type="bibr" rid="CR117">117</xref>
]. Depletion of HFSCs leads to loss of entire follicular structures. Therapeutically, there is also a lack of consensus for the treatment of this disease. Current treatment mainly relies on immunosuppressants, such as topical, intralesional or systemic steroids, hydroxychloroquine, cyclosporine and mycophenolate mofetil [
<xref ref-type="bibr" rid="CR116">116</xref>
,
<xref ref-type="bibr" rid="CR118">118</xref>
]. Prevention of the collapse of immune privilege of the HFSC niche can be a future direction for the treatment and prevention of this disease [
<xref ref-type="bibr" rid="CR94">94</xref>
].</p>
</sec>
<sec id="Sec9">
<title>Signals from adipose tissue and nutritional sensing</title>
<p id="Par21">Dermal white adipose tissue is a highly dynamic tissue in skin and the thickness oscillates during hair cycles [
<xref ref-type="bibr" rid="CR27">27</xref>
,
<xref ref-type="bibr" rid="CR119">119</xref>
<xref ref-type="bibr" rid="CR121">121</xref>
]. The dermal white adipose tissue becomes thickened from telogen to anagen and then decreases in thickness from anagen to catagen transition [
<xref ref-type="bibr" rid="CR120">120</xref>
]. The increase of dermal white adipose tissue thickness during telogen to anagen transition is mainly contributed by proliferation and differentiation of preadipocytes and hypertrophy of maturate adipocytes [
<xref ref-type="bibr" rid="CR27">27</xref>
,
<xref ref-type="bibr" rid="CR122">122</xref>
]. The maturation of preadipocytes with increased adipogenesis is dependent on epidermal Wnt/β-catenin and sonic hedgehog (SHH) signaling [
<xref ref-type="bibr" rid="CR123">123</xref>
,
<xref ref-type="bibr" rid="CR124">124</xref>
]. Epidermal Wnt/β-catenin signaling is a signaling cascade initiator that is required for dermal adipocyte differentiation [
<xref ref-type="bibr" rid="CR123">123</xref>
]. After anagen is initiated, the increased production of SHH by HF transit-amplifying cells promotes adipogenesis in preadipocytes via peroxisome proliferator-activated receptor γ [
<xref ref-type="bibr" rid="CR124">124</xref>
]. How the dermal white adipose tissue thickness is reduced during anagen to catagen transition is still unclear. Since no apoptosis of mature adipocytes is detected [
<xref ref-type="bibr" rid="CR27">27</xref>
], it is possible that adipocytes might undergo dedifferentiation through a lipolytic or autophagic process [
<xref ref-type="bibr" rid="CR121">121</xref>
]. During anagen to catagen transition, HFs express higher TGF-β1, which suppresses proliferation and increases apoptosis in HFs [
<xref ref-type="bibr" rid="CR125">125</xref>
]. HFs might induce adipocyte dedifferentiation through TGF-β1 signaling in catagen [
<xref ref-type="bibr" rid="CR126">126</xref>
].</p>
<p id="Par22">Adipose tissue has been shown to exhibit non-metabolic functions [
<xref ref-type="bibr" rid="CR127">127</xref>
]. In bone marrow, hematopoiesis and hematopoietic stem cell activity are suppressed when more mature adipocytes are present [
<xref ref-type="bibr" rid="CR128">128</xref>
,
<xref ref-type="bibr" rid="CR129">129</xref>
]. In skin, adipocytes and preadipocytes show opposite roles in the regulation of HFSC activity during the physiological hair cycling (Fig.
<xref rid="Fig2" ref-type="fig">2</xref>
) [
<xref ref-type="bibr" rid="CR127">127</xref>
]. Immediately after HFSCs are activated to initiate anagen growth, mature adipocytes release BMP proteins to suppress the activity of HFSCs [
<xref ref-type="bibr" rid="CR28">28</xref>
]. This might prevent overactivation of HFSCs by consolidating quiescence. On the other hand, during the transition from telogen to anagen, preadipocytes stimulate HFSCs through paracrine secretion of PDGF [
<xref ref-type="bibr" rid="CR27">27</xref>
]. The reciprocal signaling and intimate interaction between HFs and adipose tissue highlight the interdependence between HFSCs and its niche cells to maintain appropriate tissue dynamics in skin.</p>
<p id="Par23">In addition to passive fat storage, adipose tissue also exhibits other non-metabolic functions [
<xref ref-type="bibr" rid="CR127">127</xref>
]. During bacterial invasion, cutaneous adipocytes undergo reactive adipogenesis to increase the production of anti-microbial peptides against bacteria [
<xref ref-type="bibr" rid="CR130">130</xref>
]. We speculate that adipocytes in the HFSC niche might play a role in sensing environmental changes, such systemic nutritional states or local skin injury. Hair growth is affected by the systemic nutritional states [
<xref ref-type="bibr" rid="CR131">131</xref>
]. In human, impaired hair growth is observed in individuals with protein/energy malnutrition [
<xref ref-type="bibr" rid="CR132">132</xref>
]. HFs can be arrested in prolonged telogen during experimental calorie restriction [
<xref ref-type="bibr" rid="CR5">5</xref>
,
<xref ref-type="bibr" rid="CR133">133</xref>
]. How HFSCs detect the systemic nutritional states is unclear. One possibility is that HFSCs can directly sense the systemic nutritional changes. mTOR signaling is a key pathway for metabolic response to the nutritional state [
<xref ref-type="bibr" rid="CR134">134</xref>
]
<bold>,</bold>
and upregulated mTOR signaling is essential for HFSC activation in the early anagen and regeneration following ionizing radiation injury [
<xref ref-type="bibr" rid="CR135">135</xref>
,
<xref ref-type="bibr" rid="CR136">136</xref>
]. HFSCs might tune its mTOR signaling according to the changes of systemic nutrition. The other possibility is that the nutritional states are detected by niche cells, such as adipocytes. In the intestine, calorie restriction reduces mTOR activity in the niche Paneth cells [
<xref ref-type="bibr" rid="CR137">137</xref>
]. Subsequently, Paneth cells signal to intestinal SCs to increase intestinal SC numbers. Clinical observation suggests that obesity might negatively affect hair growth [
<xref ref-type="bibr" rid="CR138">138</xref>
]. Adipocytes might regulate HFSCs through the release of adipokines according the systemic nutritional states [
<xref ref-type="bibr" rid="CR127">127</xref>
].</p>
</sec>
<sec id="Sec10">
<title>Signals from sensory nerves and message-relaying function of sympathetic nerves to activate HFSCs via an ipRGC-SCN-sympathetic circuit</title>
<p id="Par24">HF is a highly innervated sensory organ. The non-encapsulated endings of sensory nerve surround HFs for the mechanosensory function [
<xref ref-type="bibr" rid="CR139">139</xref>
,
<xref ref-type="bibr" rid="CR140">140</xref>
]. In HFs, sensory nerves innervate upper bulge to form the sensory piloneural niche (Fig.
<xref rid="Fig2" ref-type="fig">2</xref>
) [
<xref ref-type="bibr" rid="CR139">139</xref>
,
<xref ref-type="bibr" rid="CR140">140</xref>
]. Through secreting SHH ligands, this sensory piloneural niche maintains higher hedgehog signaling activity in the HFSCs of the upper bulge region [
<xref ref-type="bibr" rid="CR26">26</xref>
]. Although this sensory piloneural niche does not significantly affect hair regeneration, the ability of the upper bulge cells to repair epidermal injury is dependent on the sustained upregulation of hedgehog signaling [
<xref ref-type="bibr" rid="CR26">26</xref>
].</p>
<p id="Par25">The piloerection function of HFs relies on the ordered integration of sympathetic nerves and arrector pili muscle around HFs. Sympathetic nerves not only densely surround arrector pili muscle but also loop around HFSCs [
<xref ref-type="bibr" rid="CR34">34</xref>
,
<xref ref-type="bibr" rid="CR140">140</xref>
]. It is intriguing whether sympathetic nerves around the HFs have dual roles in both piloerection (goosebumps) and HFSC regulation. In the bone marrow, sympathetic nerves control multiple functions of hematopoietic SCs, including their mobilization, maintenance of young functional signature and regeneration from chemotherapeutic injury [
<xref ref-type="bibr" rid="CR141">141</xref>
<xref ref-type="bibr" rid="CR143">143</xref>
]. Sympathetic nerves also transduce the central circadian rhythms to hematopoietic SCs for their daily rhythmic oscillating egress from the bone marrow [
<xref ref-type="bibr" rid="CR143">143</xref>
<xref ref-type="bibr" rid="CR145">145</xref>
]. Clinical observation showed that hypertrichosis in the form of “hemitrichosis” can be a result of sympathetic nerve hyperactivity due to thoracic surgical injury [
<xref ref-type="bibr" rid="CR145">145</xref>
], suggesting a stimulating effect of sympathetic nerves to hair growth. Early experiments suggested that sympathetic nerves might promote anagen progression after HFSCs are activated in the physiological state [
<xref ref-type="bibr" rid="CR140">140</xref>
]. We found that light can stimulate hair growth not only directly through cutaneous irradiation but also indirectly through the eyes [
<xref ref-type="bibr" rid="CR34">34</xref>
,
<xref ref-type="bibr" rid="CR43">43</xref>
,
<xref ref-type="bibr" rid="CR146">146</xref>
]. Light irradiation to murine eyes, a danger signal to nocturnal animals, is detected by the non-conventional photoreceptor melanopsin of intrinsically photosensitive retinal ganglion cells (ipRGCs) (Fig. 
<xref rid="Fig4" ref-type="fig">4</xref>
) [
<xref ref-type="bibr" rid="CR34">34</xref>
]. Light signals are transmitted via ipRGCs to the suprachiasmatic nucleus to activate the systemic sympathetic system. A high sympathetic tone increases local norepinephrine release which subsequently upregulates hedgehog signaling in HFSCs, promoting their activation. Therefore, sympathetic nerves are the niche gateway for internal HFSCs to communicate with the external world by relaying the external light signals to the HFSC niche. Therapeutically, stimulating adrenergic receptors of HFSCs can be a way to promote hair growth.
<fig id="Fig4">
<label>Fig. 4</label>
<caption>
<p>Sympathetic nerves relay external light signals to HFSCs. Sympathetic nerves are a gateway for the communication between internal HFSC niche and external environment. Intense light irradiation to eyes promotes HFSC activation through an ipRGC-SCN-sympathetic nervous circuit. Increased norepinephrine release from cutaneous sympathetic nerves facilitates HFSC activation by upregulating hedgehog signaling</p>
</caption>
<graphic xlink:href="12929_2020_624_Fig4_HTML" id="MO4"></graphic>
</fig>
</p>
</sec>
</sec>
<sec id="Sec11">
<title>Conclusion</title>
<p id="Par26">Since cyclic hair regeneration can be easily observed, the HF has become a favored model to explore how tissue stem cell activities are regulated. Accumulative results have helped to identify various component cells of the HFSC niche and to elucidate how these niche cells influence HFSCs. The integration of functional distinctive niche modules, such as signaling, sensing and message-relaying modules, has added the complexity of HFSC regulation and also allows HFSCs to interact with the local, systemic and external environments to adapt their activity for tissue needs. Pathological changes of the HFSC niche can lead to dysregulated hair growth or HFSC loss in diseased states. Studying how HFSCs are regulated by the niche in the physiological and diseased states can uncover new therapeutic targets to prevent hair loss as well as to promote hair regeneration.</p>
</sec>
</body>
<back>
<fn-group>
<fn>
<p>
<bold>Publisher’s Note</bold>
</p>
<p>Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.</p>
</fn>
</fn-group>
<ack>
<title>Acknowledgements</title>
<p>Not applicable.</p>
</ack>
<notes notes-type="author-contribution">
<title>Authors’ contributions</title>
<p>CLC, WYH, EHCW, KYT and SJL wrote the manuscript. All authors read and approved the final manuscript.</p>
</notes>
<notes notes-type="funding-information">
<title>Funding</title>
<p>This work was supported by Taiwan Bio-Development Foundation (TBF) (to S.J.L), Taiwan Ministry of Science and Technology (MOST107–2314-B-002-064-MY3; MOST108–2811-B-002-583), National Taiwan University Hospital (UN108–029, 107S3781, 108-T17, 109-T17) and Taiwan National Health Research Institutes (NHRI-EX108-10811EI, NHRI-EX109-10811EI).</p>
</notes>
<notes notes-type="data-availability">
<title>Availability of data and materials</title>
<p>Not applicable.</p>
</notes>
<notes>
<title>Ethics approval and consent to participate</title>
<p id="Par27">Not applicable.</p>
</notes>
<notes>
<title>Consent for publication</title>
<p id="Par28">Not applicable.</p>
</notes>
<notes notes-type="COI-statement">
<title>Competing interests</title>
<p id="Par29">The authors declare that they have no competing interests.</p>
</notes>
<ref-list id="Bib1">
<title>References</title>
<ref id="CR1">
<label>1.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>McGarvey</surname>
<given-names>EL</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Psychological sequelae and alopecia among women with cancer</article-title>
<source>Cancer Pract</source>
<year>2001</year>
<volume>9</volume>
<issue>6</issue>
<fpage>283</fpage>
<lpage>289</lpage>
<pub-id pub-id-type="doi">10.1046/j.1523-5394.2001.96007.x</pub-id>
<pub-id pub-id-type="pmid">11879330</pub-id>
</element-citation>
</ref>
<ref id="CR2">
<label>2.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Cotsarelis</surname>
<given-names>G</given-names>
</name>
<name>
<surname>Sun</surname>
<given-names>TT</given-names>
</name>
<name>
<surname>Lavker</surname>
<given-names>RM</given-names>
</name>
</person-group>
<article-title>Label-retaining cells reside in the bulge area of pilosebaceous unit: implications for follicular stem cells, hair cycle, and skin carcinogenesis</article-title>
<source>Cell</source>
<year>1990</year>
<volume>61</volume>
<issue>7</issue>
<fpage>1329</fpage>
<lpage>1337</lpage>
<pub-id pub-id-type="doi">10.1016/0092-8674(90)90696-C</pub-id>
<pub-id pub-id-type="pmid">2364430</pub-id>
</element-citation>
</ref>
<ref id="CR3">
<label>3.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Greco</surname>
<given-names>V</given-names>
</name>
<etal></etal>
</person-group>
<article-title>A two-step mechanism for stem cell activation during hair regeneration</article-title>
<source>Cell Stem Cell</source>
<year>2009</year>
<volume>4</volume>
<issue>2</issue>
<fpage>155</fpage>
<lpage>169</lpage>
<pub-id pub-id-type="doi">10.1016/j.stem.2008.12.009</pub-id>
<pub-id pub-id-type="pmid">19200804</pub-id>
</element-citation>
</ref>
<ref id="CR4">
<label>4.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Hsu</surname>
<given-names>YC</given-names>
</name>
<name>
<surname>Pasolli</surname>
<given-names>HA</given-names>
</name>
<name>
<surname>Fuchs</surname>
<given-names>E</given-names>
</name>
</person-group>
<article-title>Dynamics between stem cells, niche, and progeny in the hair follicle</article-title>
<source>Cell</source>
<year>2011</year>
<volume>144</volume>
<issue>1</issue>
<fpage>92</fpage>
<lpage>105</lpage>
<pub-id pub-id-type="doi">10.1016/j.cell.2010.11.049</pub-id>
<pub-id pub-id-type="pmid">21215372</pub-id>
</element-citation>
</ref>
<ref id="CR5">
<label>5.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Chase</surname>
<given-names>HB</given-names>
</name>
</person-group>
<article-title>Growth of the hair</article-title>
<source>Physiol Rev</source>
<year>1954</year>
<volume>34</volume>
<issue>1</issue>
<fpage>113</fpage>
<lpage>126</lpage>
<pub-id pub-id-type="doi">10.1152/physrev.1954.34.1.113</pub-id>
<pub-id pub-id-type="pmid">13120379</pub-id>
</element-citation>
</ref>
<ref id="CR6">
<label>6.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Chen</surname>
<given-names>CC</given-names>
</name>
<etal></etal>
</person-group>
<article-title>The Modulatable stem cell niche: tissue interactions during hair and feather follicle regeneration</article-title>
<source>J Mol Biol</source>
<year>2016</year>
<volume>428</volume>
<issue>7</issue>
<fpage>1423</fpage>
<lpage>1440</lpage>
<pub-id pub-id-type="doi">10.1016/j.jmb.2015.07.009</pub-id>
<pub-id pub-id-type="pmid">26196442</pub-id>
</element-citation>
</ref>
<ref id="CR7">
<label>7.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Hsu</surname>
<given-names>YC</given-names>
</name>
<name>
<surname>Li</surname>
<given-names>L</given-names>
</name>
<name>
<surname>Fuchs</surname>
<given-names>E</given-names>
</name>
</person-group>
<article-title>Emerging interactions between skin stem cells and their niches</article-title>
<source>Nat Med</source>
<year>2014</year>
<volume>20</volume>
<issue>8</issue>
<fpage>847</fpage>
<lpage>856</lpage>
<pub-id pub-id-type="doi">10.1038/nm.3643</pub-id>
<pub-id pub-id-type="pmid">25100530</pub-id>
</element-citation>
</ref>
<ref id="CR8">
<label>8.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Muller-Rover</surname>
<given-names>S</given-names>
</name>
<etal></etal>
</person-group>
<article-title>A comprehensive guide for the accurate classification of murine hair follicles in distinct hair cycle stages</article-title>
<source>J Invest Dermatol</source>
<year>2001</year>
<volume>117</volume>
<issue>1</issue>
<fpage>3</fpage>
<lpage>15</lpage>
<pub-id pub-id-type="doi">10.1046/j.0022-202x.2001.01377.x</pub-id>
<pub-id pub-id-type="pmid">11442744</pub-id>
</element-citation>
</ref>
<ref id="CR9">
<label>9.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Dry</surname>
<given-names>FW</given-names>
</name>
</person-group>
<article-title>The coat of the mouse (Mus musculus)</article-title>
<source>J Genet</source>
<year>1926</year>
<volume>16</volume>
<issue>3</issue>
<fpage>54</fpage>
<pub-id pub-id-type="doi">10.1007/BF02983004</pub-id>
</element-citation>
</ref>
<ref id="CR10">
<label>10.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Paus</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Cotsarelis</surname>
<given-names>G</given-names>
</name>
</person-group>
<article-title>The biology of hair follicles</article-title>
<source>N Engl J Med</source>
<year>1999</year>
<volume>341</volume>
<issue>7</issue>
<fpage>491</fpage>
<lpage>7</lpage>
<pub-id pub-id-type="doi">10.1056/NEJM199908123410706</pub-id>
<pub-id pub-id-type="pmid">10441606</pub-id>
</element-citation>
</ref>
<ref id="CR11">
<label>11.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Rahmani</surname>
<given-names>W</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Hair follicle dermal stem cells regenerate the dermal sheath, repopulate the dermal papilla, and modulate hair type</article-title>
<source>Dev Cell</source>
<year>2014</year>
<volume>31</volume>
<issue>5</issue>
<fpage>543</fpage>
<lpage>558</lpage>
<pub-id pub-id-type="doi">10.1016/j.devcel.2014.10.022</pub-id>
<pub-id pub-id-type="pmid">25465495</pub-id>
</element-citation>
</ref>
<ref id="CR12">
<label>12.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Mesa</surname>
<given-names>KR</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Niche-induced cell death and epithelial phagocytosis regulate hair follicle stem cell pool</article-title>
<source>Nature</source>
<year>2015</year>
<volume>522</volume>
<issue>7554</issue>
<fpage>94</fpage>
<lpage>97</lpage>
<pub-id pub-id-type="doi">10.1038/nature14306</pub-id>
<pub-id pub-id-type="pmid">25849774</pub-id>
</element-citation>
</ref>
<ref id="CR13">
<label>13.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Rompolas</surname>
<given-names>P</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Live imaging of stem cell and progeny behaviour in physiological hair-follicle regeneration</article-title>
<source>Nature</source>
<year>2012</year>
<volume>487</volume>
<issue>7408</issue>
<fpage>496</fpage>
<lpage>499</lpage>
<pub-id pub-id-type="doi">10.1038/nature11218</pub-id>
<pub-id pub-id-type="pmid">22763436</pub-id>
</element-citation>
</ref>
<ref id="CR14">
<label>14.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Enshell-Seijffers</surname>
<given-names>D</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Beta-catenin activity in the dermal papilla of the hair follicle regulates pigment-type switching</article-title>
<source>Proc Natl Acad Sci U S A</source>
<year>2010</year>
<volume>107</volume>
<issue>50</issue>
<fpage>21564</fpage>
<lpage>21569</lpage>
<pub-id pub-id-type="doi">10.1073/pnas.1007326107</pub-id>
<pub-id pub-id-type="pmid">21098273</pub-id>
</element-citation>
</ref>
<ref id="CR15">
<label>15.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Jahoda</surname>
<given-names>CA</given-names>
</name>
<name>
<surname>Horne</surname>
<given-names>KA</given-names>
</name>
<name>
<surname>Oliver</surname>
<given-names>RF</given-names>
</name>
</person-group>
<article-title>Induction of hair growth by implantation of cultured dermal papilla cells</article-title>
<source>Nature</source>
<year>1984</year>
<volume>311</volume>
<issue>5986</issue>
<fpage>560</fpage>
<lpage>562</lpage>
<pub-id pub-id-type="doi">10.1038/311560a0</pub-id>
<pub-id pub-id-type="pmid">6482967</pub-id>
</element-citation>
</ref>
<ref id="CR16">
<label>16.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Oshimori</surname>
<given-names>N</given-names>
</name>
<name>
<surname>Fuchs</surname>
<given-names>E</given-names>
</name>
</person-group>
<article-title>Paracrine TGF-beta signaling counterbalances BMP-mediated repression in hair follicle stem cell activation</article-title>
<source>Cell Stem Cell</source>
<year>2012</year>
<volume>10</volume>
<issue>1</issue>
<fpage>63</fpage>
<lpage>75</lpage>
<pub-id pub-id-type="doi">10.1016/j.stem.2011.11.005</pub-id>
<pub-id pub-id-type="pmid">22226356</pub-id>
</element-citation>
</ref>
<ref id="CR17">
<label>17.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Myung</surname>
<given-names>PS</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Epithelial Wnt ligand secretion is required for adult hair follicle growth and regeneration</article-title>
<source>J Invest Dermatol</source>
<year>2013</year>
<volume>133</volume>
<issue>1</issue>
<fpage>31</fpage>
<lpage>41</lpage>
<pub-id pub-id-type="doi">10.1038/jid.2012.230</pub-id>
<pub-id pub-id-type="pmid">22810306</pub-id>
</element-citation>
</ref>
<ref id="CR18">
<label>18.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Rezza</surname>
<given-names>A</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Signaling networks among stem cell precursors, transit-amplifying progenitors, and their niche in developing hair follicles</article-title>
<source>Cell Rep</source>
<year>2016</year>
<volume>14</volume>
<issue>12</issue>
<fpage>3001</fpage>
<lpage>3018</lpage>
<pub-id pub-id-type="doi">10.1016/j.celrep.2016.02.078</pub-id>
<pub-id pub-id-type="pmid">27009580</pub-id>
</element-citation>
</ref>
<ref id="CR19">
<label>19.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Rendl</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Polak</surname>
<given-names>L</given-names>
</name>
<name>
<surname>Fuchs</surname>
<given-names>E</given-names>
</name>
</person-group>
<article-title>BMP signaling in dermal papilla cells is required for their hair follicle-inductive properties</article-title>
<source>Genes Dev</source>
<year>2008</year>
<volume>22</volume>
<issue>4</issue>
<fpage>543</fpage>
<lpage>557</lpage>
<pub-id pub-id-type="doi">10.1101/gad.1614408</pub-id>
<pub-id pub-id-type="pmid">18281466</pub-id>
</element-citation>
</ref>
<ref id="CR20">
<label>20.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Blanpain</surname>
<given-names>C</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Self-renewal, multipotency, and the existence of two cell populations within an epithelial stem cell niche</article-title>
<source>Cell</source>
<year>2004</year>
<volume>118</volume>
<issue>5</issue>
<fpage>635</fpage>
<lpage>648</lpage>
<pub-id pub-id-type="doi">10.1016/j.cell.2004.08.012</pub-id>
<pub-id pub-id-type="pmid">15339667</pub-id>
</element-citation>
</ref>
<ref id="CR21">
<label>21.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Oshima</surname>
<given-names>H</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Morphogenesis and renewal of hair follicles from adult multipotent stem cells</article-title>
<source>Cell</source>
<year>2001</year>
<volume>104</volume>
<issue>2</issue>
<fpage>233</fpage>
<lpage>245</lpage>
<pub-id pub-id-type="doi">10.1016/S0092-8674(01)00208-2</pub-id>
<pub-id pub-id-type="pmid">11207364</pub-id>
</element-citation>
</ref>
<ref id="CR22">
<label>22.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Tumbar</surname>
<given-names>T</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Defining the epithelial stem cell niche in skin</article-title>
<source>Science</source>
<year>2004</year>
<volume>303</volume>
<issue>5656</issue>
<fpage>359</fpage>
<lpage>363</lpage>
<pub-id pub-id-type="doi">10.1126/science.1092436</pub-id>
<pub-id pub-id-type="pmid">14671312</pub-id>
</element-citation>
</ref>
<ref id="CR23">
<label>23.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Hsu</surname>
<given-names>YC</given-names>
</name>
<name>
<surname>Li</surname>
<given-names>L</given-names>
</name>
<name>
<surname>Fuchs</surname>
<given-names>E</given-names>
</name>
</person-group>
<article-title>Transit-amplifying cells orchestrate stem cell activity and tissue regeneration</article-title>
<source>Cell</source>
<year>2014</year>
<volume>157</volume>
<issue>4</issue>
<fpage>935</fpage>
<lpage>949</lpage>
<pub-id pub-id-type="doi">10.1016/j.cell.2014.02.057</pub-id>
<pub-id pub-id-type="pmid">24813615</pub-id>
</element-citation>
</ref>
<ref id="CR24">
<label>24.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Chuong</surname>
<given-names>CM</given-names>
</name>
<name>
<surname>Cotsarelis</surname>
<given-names>G</given-names>
</name>
<name>
<surname>Stenn</surname>
<given-names>K</given-names>
</name>
</person-group>
<article-title>Defining hair follicles in the age of stem cell bioengineering</article-title>
<source>J Invest Dermatol</source>
<year>2007</year>
<volume>127</volume>
<issue>9</issue>
<fpage>2098</fpage>
<lpage>2100</lpage>
<pub-id pub-id-type="doi">10.1038/sj.jid.5700947</pub-id>
<pub-id pub-id-type="pmid">17700620</pub-id>
</element-citation>
</ref>
<ref id="CR25">
<label>25.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Pena-Jimenez</surname>
<given-names>D</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Lymphatic vessels interact dynamically with the hair follicle stem cell niche during skin regeneration in vivo</article-title>
<source>EMBO J</source>
<year>2019</year>
<volume>38</volume>
<issue>19</issue>
<fpage>e101688</fpage>
<pub-id pub-id-type="doi">10.15252/embj.2019101688</pub-id>
<pub-id pub-id-type="pmid">31475747</pub-id>
</element-citation>
</ref>
<ref id="CR26">
<label>26.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Brownell</surname>
<given-names>I</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Nerve-derived sonic hedgehog defines a niche for hair follicle stem cells capable of becoming epidermal stem cells</article-title>
<source>Cell Stem Cell</source>
<year>2011</year>
<volume>8</volume>
<issue>5</issue>
<fpage>552</fpage>
<lpage>565</lpage>
<pub-id pub-id-type="doi">10.1016/j.stem.2011.02.021</pub-id>
<pub-id pub-id-type="pmid">21549329</pub-id>
</element-citation>
</ref>
<ref id="CR27">
<label>27.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Festa</surname>
<given-names>E</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Adipocyte lineage cells contribute to the skin stem cell niche to drive hair cycling</article-title>
<source>CELL</source>
<year>2011</year>
<volume>146</volume>
<issue>5</issue>
<fpage>761</fpage>
<lpage>771</lpage>
<pub-id pub-id-type="doi">10.1016/j.cell.2011.07.019</pub-id>
<pub-id pub-id-type="pmid">21884937</pub-id>
</element-citation>
</ref>
<ref id="CR28">
<label>28.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Plikus</surname>
<given-names>MV</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Cyclic dermal BMP signalling regulates stem cell activation during hair regeneration</article-title>
<source>Nature</source>
<year>2008</year>
<volume>451</volume>
<issue>7176</issue>
<fpage>340</fpage>
<lpage>344</lpage>
<pub-id pub-id-type="doi">10.1038/nature06457</pub-id>
<pub-id pub-id-type="pmid">18202659</pub-id>
</element-citation>
</ref>
<ref id="CR29">
<label>29.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Wang</surname>
<given-names>ECE</given-names>
</name>
<etal></etal>
</person-group>
<article-title>A subset of TREM2(+) dermal macrophages secretes oncostatin M to maintain hair follicle stem cell quiescence and inhibit hair growth</article-title>
<source>Cell Stem Cell</source>
<year>2019</year>
<volume>24</volume>
<issue>4</issue>
<fpage>654</fpage>
<lpage>669</lpage>
<pub-id pub-id-type="doi">10.1016/j.stem.2019.01.011</pub-id>
<pub-id pub-id-type="pmid">30930146</pub-id>
</element-citation>
</ref>
<ref id="CR30">
<label>30.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Castellana</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Paus</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Perez-Moreno</surname>
<given-names>M</given-names>
</name>
</person-group>
<article-title>Macrophages contribute to the cyclic activation of adult hair follicle stem cells</article-title>
<source>PLoS Biol</source>
<year>2014</year>
<volume>12</volume>
<issue>12</issue>
<fpage>e1002002</fpage>
<pub-id pub-id-type="doi">10.1371/journal.pbio.1002002</pub-id>
<pub-id pub-id-type="pmid">25536657</pub-id>
</element-citation>
</ref>
<ref id="CR31">
<label>31.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Ali</surname>
<given-names>N</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Regulatory T cells in skin facilitate epithelial stem cell differentiation</article-title>
<source>Cell</source>
<year>2017</year>
<volume>169</volume>
<issue>6</issue>
<fpage>1119</fpage>
<lpage>1129</lpage>
<pub-id pub-id-type="doi">10.1016/j.cell.2017.05.002</pub-id>
<pub-id pub-id-type="pmid">28552347</pub-id>
</element-citation>
</ref>
<ref id="CR32">
<label>32.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Paus</surname>
<given-names>R</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Mast cell involvement in murine hair growth</article-title>
<source>Dev Biol</source>
<year>1994</year>
<volume>163</volume>
<issue>1</issue>
<fpage>230</fpage>
<lpage>240</lpage>
<pub-id pub-id-type="doi">10.1006/dbio.1994.1139</pub-id>
<pub-id pub-id-type="pmid">8174779</pub-id>
</element-citation>
</ref>
<ref id="CR33">
<label>33.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Botchkarev</surname>
<given-names>VA</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Hair cycle-dependent changes in adrenergic skin innervation, and hair growth modulation by adrenergic drugs</article-title>
<source>J Invest Dermatol</source>
<year>1999</year>
<volume>113</volume>
<issue>6</issue>
<fpage>878</fpage>
<lpage>887</lpage>
<pub-id pub-id-type="doi">10.1046/j.1523-1747.1999.00791.x</pub-id>
<pub-id pub-id-type="pmid">10594725</pub-id>
</element-citation>
</ref>
<ref id="CR34">
<label>34.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Fan</surname>
<given-names>SM-Y</given-names>
</name>
<etal></etal>
</person-group>
<article-title>External light activates hair follicle stem cells through eyes via an ipRGC-SCN-sympathetic neural pathway</article-title>
<source>Proc Natl Acad Sci U S A</source>
<year>2018</year>
<volume>115</volume>
<issue>29</issue>
<fpage>E6880</fpage>
<lpage>E6889</lpage>
<pub-id pub-id-type="doi">10.1073/pnas.1719548115</pub-id>
<pub-id pub-id-type="pmid">29959210</pub-id>
</element-citation>
</ref>
<ref id="CR35">
<label>35.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Chen</surname>
<given-names>CC</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Organ-level quorum sensing directs regeneration in hair stem cell populations</article-title>
<source>Cell</source>
<year>2015</year>
<volume>161</volume>
<issue>2</issue>
<fpage>277</fpage>
<lpage>290</lpage>
<pub-id pub-id-type="doi">10.1016/j.cell.2015.02.016</pub-id>
<pub-id pub-id-type="pmid">25860610</pub-id>
</element-citation>
</ref>
<ref id="CR36">
<label>36.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Yu</surname>
<given-names>Z</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Hoxc-dependent mesenchymal niche heterogeneity drives regional hair follicle regeneration</article-title>
<source>Cell Stem Cell</source>
<year>2018</year>
<volume>23</volume>
<issue>4</issue>
<fpage>487</fpage>
<lpage>500 e6</lpage>
<pub-id pub-id-type="doi">10.1016/j.stem.2018.07.016</pub-id>
<pub-id pub-id-type="pmid">30122476</pub-id>
</element-citation>
</ref>
<ref id="CR37">
<label>37.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Plikus</surname>
<given-names>MV</given-names>
</name>
</person-group>
<article-title>New activators and inhibitors in the hair cycle clock: targeting stem cells’ state of competence</article-title>
<source>J Invest Dermatol</source>
<year>2012</year>
<volume>132</volume>
<issue>5</issue>
<fpage>1321</fpage>
<lpage>1324</lpage>
<pub-id pub-id-type="doi">10.1038/jid.2012.38</pub-id>
<pub-id pub-id-type="pmid">22499035</pub-id>
</element-citation>
</ref>
<ref id="CR38">
<label>38.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Murray</surname>
<given-names>PJ</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Modelling hair follicle growth dynamics as an excitable medium</article-title>
<source>PLoS Comput Biol</source>
<year>2012</year>
<volume>8</volume>
<issue>12</issue>
<fpage>e1002804</fpage>
<pub-id pub-id-type="doi">10.1371/journal.pcbi.1002804</pub-id>
<pub-id pub-id-type="pmid">23284275</pub-id>
</element-citation>
</ref>
<ref id="CR39">
<label>39.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Plikus</surname>
<given-names>MV</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Self-organizing and stochastic behaviors during the regeneration of hair stem cells</article-title>
<source>Science</source>
<year>2011</year>
<volume>332</volume>
<issue>6029</issue>
<fpage>586</fpage>
<lpage>589</lpage>
<pub-id pub-id-type="doi">10.1126/science.1201647</pub-id>
<pub-id pub-id-type="pmid">21527712</pub-id>
</element-citation>
</ref>
<ref id="CR40">
<label>40.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Choi</surname>
<given-names>YS</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Distinct functions for Wnt/beta-catenin in hair follicle stem cell proliferation and survival and interfollicular epidermal homeostasis</article-title>
<source>Cell Stem Cell</source>
<year>2013</year>
<volume>13</volume>
<issue>6</issue>
<fpage>720</fpage>
<lpage>733</lpage>
<pub-id pub-id-type="doi">10.1016/j.stem.2013.10.003</pub-id>
<pub-id pub-id-type="pmid">24315444</pub-id>
</element-citation>
</ref>
<ref id="CR41">
<label>41.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Leishman</surname>
<given-names>E</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Foxp1 maintains hair follicle stem cell quiescence through regulation of Fgf18</article-title>
<source>Development</source>
<year>2013</year>
<volume>140</volume>
<issue>18</issue>
<fpage>3809</fpage>
<lpage>18</lpage>
<pub-id pub-id-type="doi">10.1242/dev.097477</pub-id>
<pub-id pub-id-type="pmid">23946441</pub-id>
</element-citation>
</ref>
<ref id="CR42">
<label>42.</label>
<mixed-citation publication-type="other">Wang Q, et al. A multi-scale model for hair follicles reveals heterogeneous domains driving rapid spatiotemporal hair growth patterning. Elife. 2017;6:e22772.</mixed-citation>
</ref>
<ref id="CR43">
<label>43.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Sheen</surname>
<given-names>YS</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Visible red light enhances physiological anagen entry in vivo and has direct and indirect stimulative effects in vitro</article-title>
<source>Lasers Surg Med</source>
<year>2015</year>
<volume>47</volume>
<issue>1</issue>
<fpage>50</fpage>
<lpage>59</lpage>
<pub-id pub-id-type="doi">10.1002/lsm.22316</pub-id>
<pub-id pub-id-type="pmid">25557083</pub-id>
</element-citation>
</ref>
<ref id="CR44">
<label>44.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Wu</surname>
<given-names>YF</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Enhancing hair follicle regeneration by nonablative fractional laser: assessment of irradiation parameters and tissue response</article-title>
<source>Lasers Surg Med</source>
<year>2015</year>
<volume>47</volume>
<issue>4</issue>
<fpage>331</fpage>
<lpage>341</lpage>
<pub-id pub-id-type="doi">10.1002/lsm.22330</pub-id>
<pub-id pub-id-type="pmid">25866259</pub-id>
</element-citation>
</ref>
<ref id="CR45">
<label>45.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Osaka</surname>
<given-names>N</given-names>
</name>
<etal></etal>
</person-group>
<article-title>ASK1-dependent recruitment and activation of macrophages induce hair growth in skin wounds</article-title>
<source>J Cell Biol</source>
<year>2007</year>
<volume>176</volume>
<issue>7</issue>
<fpage>903</fpage>
<lpage>909</lpage>
<pub-id pub-id-type="doi">10.1083/jcb.200611015</pub-id>
<pub-id pub-id-type="pmid">17389227</pub-id>
</element-citation>
</ref>
<ref id="CR46">
<label>46.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Sennett</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Rendl</surname>
<given-names>M</given-names>
</name>
</person-group>
<article-title>Mesenchymal-epithelial interactions during hair follicle morphogenesis and cycling</article-title>
<source>Semin Cell Dev Biol</source>
<year>2012</year>
<volume>23</volume>
<issue>8</issue>
<fpage>917</fpage>
<lpage>927</lpage>
<pub-id pub-id-type="doi">10.1016/j.semcdb.2012.08.011</pub-id>
<pub-id pub-id-type="pmid">22960356</pub-id>
</element-citation>
</ref>
<ref id="CR47">
<label>47.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Yang</surname>
<given-names>H</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Epithelial-Mesenchymal micro-niches govern stem cell lineage choices</article-title>
<source>Cell</source>
<year>2017</year>
<volume>169</volume>
<issue>3</issue>
<fpage>483</fpage>
<lpage>496</lpage>
<pub-id pub-id-type="doi">10.1016/j.cell.2017.03.038</pub-id>
<pub-id pub-id-type="pmid">28413068</pub-id>
</element-citation>
</ref>
<ref id="CR48">
<label>48.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Enshell-Seijffers</surname>
<given-names>D</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Beta-catenin activity in the dermal papilla regulates morphogenesis and regeneration of hair</article-title>
<source>Dev Cell</source>
<year>2010</year>
<volume>18</volume>
<issue>4</issue>
<fpage>633</fpage>
<lpage>642</lpage>
<pub-id pub-id-type="doi">10.1016/j.devcel.2010.01.016</pub-id>
<pub-id pub-id-type="pmid">20412777</pub-id>
</element-citation>
</ref>
<ref id="CR49">
<label>49.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Huang</surname>
<given-names>WY</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Mobilizing transit-amplifying cell-derived ectopic progenitors prevents hair loss from chemotherapy or radiation therapy</article-title>
<source>Cancer Res</source>
<year>2017</year>
<volume>77</volume>
<issue>22</issue>
<fpage>6083</fpage>
<lpage>6096</lpage>
<pub-id pub-id-type="doi">10.1158/0008-5472.CAN-17-0667</pub-id>
<pub-id pub-id-type="pmid">28939680</pub-id>
</element-citation>
</ref>
<ref id="CR50">
<label>50.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Huang</surname>
<given-names>WY</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Anagen hair follicle repair: timely regenerative attempts from plastic extra-bulge epithelial cells</article-title>
<source>Exp Dermatol</source>
<year>2019</year>
<volume>28</volume>
<issue>4</issue>
<fpage>406</fpage>
<lpage>412</lpage>
<pub-id pub-id-type="doi">10.1111/exd.13889</pub-id>
<pub-id pub-id-type="pmid">30664259</pub-id>
</element-citation>
</ref>
<ref id="CR51">
<label>51.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Marshall</surname>
<given-names>WA</given-names>
</name>
<name>
<surname>Tanner</surname>
<given-names>JM</given-names>
</name>
</person-group>
<article-title>Variations in pattern of pubertal changes in girls</article-title>
<source>Arch Dis Child</source>
<year>1969</year>
<volume>44</volume>
<issue>235</issue>
<fpage>291</fpage>
<lpage>303</lpage>
<pub-id pub-id-type="doi">10.1136/adc.44.235.291</pub-id>
<pub-id pub-id-type="pmid">5785179</pub-id>
</element-citation>
</ref>
<ref id="CR52">
<label>52.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Marshall</surname>
<given-names>WA</given-names>
</name>
<name>
<surname>Tanner</surname>
<given-names>JM</given-names>
</name>
</person-group>
<article-title>Variations in the pattern of pubertal changes in boys</article-title>
<source>Arch Dis Child</source>
<year>1970</year>
<volume>45</volume>
<issue>239</issue>
<fpage>13</fpage>
<lpage>23</lpage>
<pub-id pub-id-type="doi">10.1136/adc.45.239.13</pub-id>
<pub-id pub-id-type="pmid">5440182</pub-id>
</element-citation>
</ref>
<ref id="CR53">
<label>53.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Nyholt</surname>
<given-names>DR</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Genetic basis of male pattern baldness</article-title>
<source>J Invest Dermatol</source>
<year>2003</year>
<volume>121</volume>
<issue>6</issue>
<fpage>1561</fpage>
<lpage>1564</lpage>
<pub-id pub-id-type="doi">10.1111/j.1523-1747.2003.12615.x</pub-id>
<pub-id pub-id-type="pmid">14675213</pub-id>
</element-citation>
</ref>
<ref id="CR54">
<label>54.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Azziz</surname>
<given-names>R</given-names>
</name>
</person-group>
<article-title>The evaluation and management of hirsutism</article-title>
<source>Obstet Gynecol</source>
<year>2003</year>
<volume>101</volume>
<issue>5 Pt 1</issue>
<fpage>995</fpage>
<lpage>1007</lpage>
<pub-id pub-id-type="pmid">12738163</pub-id>
</element-citation>
</ref>
<ref id="CR55">
<label>55.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Thornton</surname>
<given-names>MJ</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Differences in testosterone metabolism by beard and scalp hair follicle dermal papilla cells</article-title>
<source>Clin Endocrinol</source>
<year>1993</year>
<volume>39</volume>
<issue>6</issue>
<fpage>633</fpage>
<lpage>639</lpage>
<pub-id pub-id-type="doi">10.1111/j.1365-2265.1993.tb02420.x</pub-id>
</element-citation>
</ref>
<ref id="CR56">
<label>56.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Randall</surname>
<given-names>VA</given-names>
</name>
<etal></etal>
</person-group>
<article-title>The hair follicle: a paradoxical androgen target organ</article-title>
<source>Horm Res</source>
<year>2000</year>
<volume>54</volume>
<issue>5–6</issue>
<fpage>243</fpage>
<lpage>250</lpage>
<pub-id pub-id-type="pmid">11595812</pub-id>
</element-citation>
</ref>
<ref id="CR57">
<label>57.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Hibberts</surname>
<given-names>NA</given-names>
</name>
<name>
<surname>Howell</surname>
<given-names>AE</given-names>
</name>
<name>
<surname>Randall</surname>
<given-names>VA</given-names>
</name>
</person-group>
<article-title>Balding hair follicle dermal papilla cells contain higher levels of androgen receptors than those from non-balding scalp</article-title>
<source>J Endocrinol</source>
<year>1998</year>
<volume>156</volume>
<issue>1</issue>
<fpage>59</fpage>
<lpage>65</lpage>
<pub-id pub-id-type="doi">10.1677/joe.0.1560059</pub-id>
<pub-id pub-id-type="pmid">9496234</pub-id>
</element-citation>
</ref>
<ref id="CR58">
<label>58.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Ando</surname>
<given-names>Y</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Expression of mRNA for androgen receptor, 5alpha-reductase and 17beta-hydroxysteroid dehydrogenase in human dermal papilla cells</article-title>
<source>Br J Dermatol</source>
<year>1999</year>
<volume>141</volume>
<issue>5</issue>
<fpage>840</fpage>
<lpage>5</lpage>
<pub-id pub-id-type="doi">10.1046/j.1365-2133.1999.03156.x</pub-id>
<pub-id pub-id-type="pmid">10583164</pub-id>
</element-citation>
</ref>
<ref id="CR59">
<label>59.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Choudhry</surname>
<given-names>R</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Localization of androgen receptors in human skin by immunohistochemistry: implications for the hormonal regulation of hair growth, sebaceous glands and sweat glands</article-title>
<source>J Endocrinol</source>
<year>1992</year>
<volume>133</volume>
<issue>3</issue>
<fpage>467</fpage>
<lpage>475</lpage>
<pub-id pub-id-type="doi">10.1677/joe.0.1330467</pub-id>
<pub-id pub-id-type="pmid">1613448</pub-id>
</element-citation>
</ref>
<ref id="CR60">
<label>60.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Lai</surname>
<given-names>JJ</given-names>
</name>
<etal></etal>
</person-group>
<article-title>The role of androgen and androgen receptor in skin-related disorders</article-title>
<source>Arch Dermatol Res</source>
<year>2012</year>
<volume>304</volume>
<issue>7</issue>
<fpage>499</fpage>
<lpage>510</lpage>
<pub-id pub-id-type="doi">10.1007/s00403-012-1265-x</pub-id>
<pub-id pub-id-type="pmid">22829074</pub-id>
</element-citation>
</ref>
<ref id="CR61">
<label>61.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Courtois</surname>
<given-names>M</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Ageing and hair cycles</article-title>
<source>Br J Dermatol</source>
<year>1995</year>
<volume>132</volume>
<issue>1</issue>
<fpage>86</fpage>
<lpage>93</lpage>
<pub-id pub-id-type="doi">10.1111/j.1365-2133.1995.tb08630.x</pub-id>
<pub-id pub-id-type="pmid">7756156</pub-id>
</element-citation>
</ref>
<ref id="CR62">
<label>62.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Matsumura</surname>
<given-names>H</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Hair follicle aging is driven by transepidermal elimination of stem cells via COL17A1 proteolysis</article-title>
<source>Science</source>
<year>2016</year>
<volume>351</volume>
<issue>6273</issue>
<fpage>aad4395</fpage>
<pub-id pub-id-type="doi">10.1126/science.aad4395</pub-id>
<pub-id pub-id-type="pmid">26912707</pub-id>
</element-citation>
</ref>
<ref id="CR63">
<label>63.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Chen</surname>
<given-names>W</given-names>
</name>
<name>
<surname>Zouboulis</surname>
<given-names>CC</given-names>
</name>
<name>
<surname>Orfanos</surname>
<given-names>CE</given-names>
</name>
</person-group>
<article-title>The 5 alpha-reductase system and its inhibitors. Recent development and its perspective in treating androgen-dependent skin disorders</article-title>
<source>Dermatology</source>
<year>1996</year>
<volume>193</volume>
<issue>3</issue>
<fpage>177</fpage>
<lpage>184</lpage>
<pub-id pub-id-type="doi">10.1159/000246242</pub-id>
<pub-id pub-id-type="pmid">8944337</pub-id>
</element-citation>
</ref>
<ref id="CR64">
<label>64.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Bahta</surname>
<given-names>AW</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Premature senescence of balding dermal papilla cells in vitro is associated with p16(INK4a) expression</article-title>
<source>J Invest Dermatol</source>
<year>2008</year>
<volume>128</volume>
<issue>5</issue>
<fpage>1088</fpage>
<lpage>1094</lpage>
<pub-id pub-id-type="doi">10.1038/sj.jid.5701147</pub-id>
<pub-id pub-id-type="pmid">17989730</pub-id>
</element-citation>
</ref>
<ref id="CR65">
<label>65.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Randall</surname>
<given-names>VA</given-names>
</name>
<name>
<surname>Hibberts</surname>
<given-names>NA</given-names>
</name>
<name>
<surname>Hamada</surname>
<given-names>K</given-names>
</name>
</person-group>
<article-title>A comparison of the culture and growth of dermal papilla cells from hair follicles from non-balding and balding (androgenetic alopecia) scalp</article-title>
<source>Br J Dermatol</source>
<year>1996</year>
<volume>134</volume>
<issue>3</issue>
<fpage>437</fpage>
<lpage>444</lpage>
<pub-id pub-id-type="doi">10.1111/j.1365-2133.1996.tb16227.x</pub-id>
<pub-id pub-id-type="pmid">8731666</pub-id>
</element-citation>
</ref>
<ref id="CR66">
<label>66.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Huang</surname>
<given-names>WY</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Stress-induced premature senescence of dermal papilla cells compromises hair follicle epithelial-mesenchymal interaction</article-title>
<source>J Dermatol Sci</source>
<year>2017</year>
<volume>86</volume>
<issue>2</issue>
<fpage>114</fpage>
<lpage>122</lpage>
<pub-id pub-id-type="doi">10.1016/j.jdermsci.2017.01.003</pub-id>
<pub-id pub-id-type="pmid">28117106</pub-id>
</element-citation>
</ref>
<ref id="CR67">
<label>67.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Kwack</surname>
<given-names>MH</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Dihydrotestosterone-inducible IL-6 inhibits elongation of human hair shafts by suppressing matrix cell proliferation and promotes regression of hair follicles in mice</article-title>
<source>J Invest Dermatol</source>
<year>2012</year>
<volume>132</volume>
<issue>1</issue>
<fpage>43</fpage>
<lpage>49</lpage>
<pub-id pub-id-type="doi">10.1038/jid.2011.274</pub-id>
<pub-id pub-id-type="pmid">21881585</pub-id>
</element-citation>
</ref>
<ref id="CR68">
<label>68.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Kwack</surname>
<given-names>MH</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Dihydrotestosterone-inducible dickkopf 1 from balding dermal papilla cells causes apoptosis in follicular keratinocytes</article-title>
<source>J Invest Dermatol</source>
<year>2008</year>
<volume>128</volume>
<issue>2</issue>
<fpage>262</fpage>
<lpage>269</lpage>
<pub-id pub-id-type="doi">10.1038/sj.jid.5700999</pub-id>
<pub-id pub-id-type="pmid">17657240</pub-id>
</element-citation>
</ref>
<ref id="CR69">
<label>69.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Inui</surname>
<given-names>S</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Identification of androgen-inducible TGF-beta1 derived from dermal papilla cells as a key mediator in androgenetic alopecia</article-title>
<source>J Investig Dermatol Symp Proc</source>
<year>2003</year>
<volume>8</volume>
<issue>1</issue>
<fpage>69</fpage>
<lpage>71</lpage>
<pub-id pub-id-type="doi">10.1046/j.1523-1747.2003.12174.x</pub-id>
</element-citation>
</ref>
<ref id="CR70">
<label>70.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Paus</surname>
<given-names>R</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Transforming growth factor-beta receptor type I and type II expression during murine hair follicle development and cycling</article-title>
<source>J Invest Dermatol</source>
<year>1997</year>
<volume>109</volume>
<issue>4</issue>
<fpage>518</fpage>
<lpage>526</lpage>
<pub-id pub-id-type="doi">10.1111/1523-1747.ep12336635</pub-id>
<pub-id pub-id-type="pmid">9326384</pub-id>
</element-citation>
</ref>
<ref id="CR71">
<label>71.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Turksen</surname>
<given-names>K</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Interleukin 6: insights to its function in skin by overexpression in transgenic mice</article-title>
<source>Proc Natl Acad Sci U S A</source>
<year>1992</year>
<volume>89</volume>
<issue>11</issue>
<fpage>5068</fpage>
<lpage>5072</lpage>
<pub-id pub-id-type="doi">10.1073/pnas.89.11.5068</pub-id>
<pub-id pub-id-type="pmid">1375756</pub-id>
</element-citation>
</ref>
<ref id="CR72">
<label>72.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>McConnell</surname>
<given-names>JD</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Finasteride, an inhibitor of 5 alpha-reductase, suppresses prostatic dihydrotestosterone in men with benign prostatic hyperplasia</article-title>
<source>J Clin Endocrinol Metab</source>
<year>1992</year>
<volume>74</volume>
<issue>3</issue>
<fpage>505</fpage>
<lpage>508</lpage>
<pub-id pub-id-type="pmid">1371291</pub-id>
</element-citation>
</ref>
<ref id="CR73">
<label>73.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Bramson</surname>
<given-names>HN</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Unique preclinical characteristics of GG745, a potent dual inhibitor of 5AR</article-title>
<source>J Pharmacol Exp Ther</source>
<year>1997</year>
<volume>282</volume>
<issue>3</issue>
<fpage>1496</fpage>
<lpage>1502</lpage>
<pub-id pub-id-type="pmid">9316864</pub-id>
</element-citation>
</ref>
<ref id="CR74">
<label>74.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Kaufman</surname>
<given-names>KD</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Finasteride in the treatment of men with androgenetic alopecia. Finasteride male pattern hair loss study group</article-title>
<source>J Am Acad Dermatol</source>
<year>1998</year>
<volume>39</volume>
<issue>4 Pt 1</issue>
<fpage>578</fpage>
<lpage>589</lpage>
<pub-id pub-id-type="doi">10.1016/S0190-9622(98)70007-6</pub-id>
<pub-id pub-id-type="pmid">9777765</pub-id>
</element-citation>
</ref>
<ref id="CR75">
<label>75.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Olsen</surname>
<given-names>EA</given-names>
</name>
<etal></etal>
</person-group>
<article-title>The importance of dual 5alpha-reductase inhibition in the treatment of male pattern hair loss: results of a randomized placebo-controlled study of dutasteride versus finasteride</article-title>
<source>J Am Acad Dermatol</source>
<year>2006</year>
<volume>55</volume>
<issue>6</issue>
<fpage>1014</fpage>
<lpage>1023</lpage>
<pub-id pub-id-type="doi">10.1016/j.jaad.2006.05.007</pub-id>
<pub-id pub-id-type="pmid">17110217</pub-id>
</element-citation>
</ref>
<ref id="CR76">
<label>76.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Rossi</surname>
<given-names>A</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Minoxidil use in dermatology, side effects and recent patents</article-title>
<source>Recent Patents Inflamm Allergy Drug Discov</source>
<year>2012</year>
<volume>6</volume>
<issue>2</issue>
<fpage>130</fpage>
<lpage>136</lpage>
<pub-id pub-id-type="doi">10.2174/187221312800166859</pub-id>
</element-citation>
</ref>
<ref id="CR77">
<label>77.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>De Villez</surname>
<given-names>RL</given-names>
</name>
</person-group>
<article-title>Topical minoxidil therapy in hereditary androgenetic alopecia</article-title>
<source>Arch Dermatol</source>
<year>1985</year>
<volume>121</volume>
<issue>2</issue>
<fpage>197</fpage>
<lpage>202</lpage>
<pub-id pub-id-type="doi">10.1001/archderm.1985.01660020055017</pub-id>
<pub-id pub-id-type="pmid">3883902</pub-id>
</element-citation>
</ref>
<ref id="CR78">
<label>78.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Zappacosta</surname>
<given-names>AR</given-names>
</name>
</person-group>
<article-title>Reversal of baldness in patient receiving minoxidil for hypertension</article-title>
<source>N Engl J Med</source>
<year>1980</year>
<volume>303</volume>
<issue>25</issue>
<fpage>1480</fpage>
<lpage>1481</lpage>
</element-citation>
</ref>
<ref id="CR79">
<label>79.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Headington</surname>
<given-names>JT</given-names>
</name>
</person-group>
<article-title>Hair follicle biology and topical minoxidil: possible mechanisms of action</article-title>
<source>Dermatologica</source>
<year>1987</year>
<volume>175</volume>
<issue>Suppl 2</issue>
<fpage>19</fpage>
<lpage>22</lpage>
<pub-id pub-id-type="doi">10.1159/000248894</pub-id>
<pub-id pub-id-type="pmid">3319729</pub-id>
</element-citation>
</ref>
<ref id="CR80">
<label>80.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Kumamoto</surname>
<given-names>T</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Hair follicles serve as local reservoirs of skin mast cell precursors</article-title>
<source>Blood</source>
<year>2003</year>
<volume>102</volume>
<issue>5</issue>
<fpage>1654</fpage>
<lpage>1660</lpage>
<pub-id pub-id-type="doi">10.1182/blood-2003-02-0449</pub-id>
<pub-id pub-id-type="pmid">12738661</pub-id>
</element-citation>
</ref>
<ref id="CR81">
<label>81.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Paus</surname>
<given-names>R</given-names>
</name>
<etal></etal>
</person-group>
<article-title>The hair follicle and immune privilege</article-title>
<source>J Investig Dermatol Symp Proc</source>
<year>2003</year>
<volume>8</volume>
<issue>2</issue>
<fpage>188</fpage>
<lpage>194</lpage>
<pub-id pub-id-type="doi">10.1046/j.1087-0024.2003.00807.x</pub-id>
</element-citation>
</ref>
<ref id="CR82">
<label>82.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Maurer</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Paus</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Czarnetzki</surname>
<given-names>BM</given-names>
</name>
</person-group>
<article-title>Mast cells as modulators of hair follicle cycling</article-title>
<source>Exp Dermatol</source>
<year>1995</year>
<volume>4</volume>
<issue>4 Pt 2</issue>
<fpage>266</fpage>
<lpage>271</lpage>
<pub-id pub-id-type="doi">10.1111/j.1600-0625.1995.tb00256.x</pub-id>
<pub-id pub-id-type="pmid">8528600</pub-id>
</element-citation>
</ref>
<ref id="CR83">
<label>83.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Maurer</surname>
<given-names>M</given-names>
</name>
<etal></etal>
</person-group>
<article-title>The mast cell products histamine and serotonin stimulate and TNF-alpha inhibits the proliferation of murine epidermal keratinocytes in situ</article-title>
<source>J Dermatol Sci</source>
<year>1997</year>
<volume>16</volume>
<issue>1</issue>
<fpage>79</fpage>
<lpage>84</lpage>
<pub-id pub-id-type="doi">10.1016/S0923-1811(97)00043-1</pub-id>
<pub-id pub-id-type="pmid">9438912</pub-id>
</element-citation>
</ref>
<ref id="CR84">
<label>84.</label>
<mixed-citation publication-type="other">Hobo A, et al. IL-17-positive mast cell infiltration in the lesional skin of lichen planopilaris: Possible role of mast cells in inducing inflammation and dermal fibrosis in cicatricial alopecia. Exp Dermatol. 2020;29(3):273–77.</mixed-citation>
</ref>
<ref id="CR85">
<label>85.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Xu</surname>
<given-names>X</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Scarring alopecia associated with mastocytosis</article-title>
<source>J Cutan Pathol</source>
<year>2003</year>
<volume>30</volume>
<issue>9</issue>
<fpage>561</fpage>
<lpage>565</lpage>
<pub-id pub-id-type="doi">10.1034/j.1600-0560.2003.00093.x</pub-id>
<pub-id pub-id-type="pmid">14507404</pub-id>
</element-citation>
</ref>
<ref id="CR86">
<label>86.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Michel</surname>
<given-names>L</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Study of gene expression alteration in male androgenetic alopecia: evidence of predominant molecular signalling pathways</article-title>
<source>Br J Dermatol</source>
<year>2017</year>
<volume>177</volume>
<issue>5</issue>
<fpage>1322</fpage>
<lpage>1336</lpage>
<pub-id pub-id-type="doi">10.1111/bjd.15577</pub-id>
<pub-id pub-id-type="pmid">28403520</pub-id>
</element-citation>
</ref>
<ref id="CR87">
<label>87.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Jameson</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Havran</surname>
<given-names>WL</given-names>
</name>
</person-group>
<article-title>Skin gammadelta T-cell functions in homeostasis and wound healing</article-title>
<source>Immunol Rev</source>
<year>2007</year>
<volume>215</volume>
<issue>1</issue>
<fpage>114</fpage>
<lpage>122</lpage>
<pub-id pub-id-type="doi">10.1111/j.1600-065X.2006.00483.x</pub-id>
<pub-id pub-id-type="pmid">17291283</pub-id>
</element-citation>
</ref>
<ref id="CR88">
<label>88.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Lee</surname>
<given-names>P</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Stimulation of hair follicle stem cell proliferation through an IL-1 dependent activation of γδT-cells</article-title>
<source>eLife</source>
<year>2017</year>
<volume>6</volume>
<fpage>366</fpage>
</element-citation>
</ref>
<ref id="CR89">
<label>89.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Paus</surname>
<given-names>R</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Generation and cyclic remodeling of the hair follicle immune system in mice</article-title>
<source>J Invest Dermatol</source>
<year>1998</year>
<volume>111</volume>
<issue>1</issue>
<fpage>7</fpage>
<lpage>18</lpage>
<pub-id pub-id-type="doi">10.1046/j.1523-1747.1998.00243.x</pub-id>
<pub-id pub-id-type="pmid">9665380</pub-id>
</element-citation>
</ref>
<ref id="CR90">
<label>90.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Harel</surname>
<given-names>S</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Pharmacologic inhibition of JAK-STAT signaling promotes hair growth</article-title>
<source>Sci Adv</source>
<year>2015</year>
<volume>1</volume>
<issue>9</issue>
<fpage>e1500973</fpage>
<pub-id pub-id-type="doi">10.1126/sciadv.1500973</pub-id>
<pub-id pub-id-type="pmid">26601320</pub-id>
</element-citation>
</ref>
<ref id="CR91">
<label>91.</label>
<mixed-citation publication-type="other">Wang X, Chen H, Tian R, et al. Macrophages induce AKT/β-catenin-dependent Lgr5+ stem cell activation and hair follicle regeneration through TNF. Nat Commun. 2017;8:14091.</mixed-citation>
</ref>
<ref id="CR92">
<label>92.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Chu</surname>
<given-names>S-Y</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Mechanical stretch induces hair regeneration through the alternative activation of macrophages</article-title>
<source>Nat Commun</source>
<year>2019</year>
<volume>10</volume>
<issue>1</issue>
<fpage>1524</fpage>
<pub-id pub-id-type="doi">10.1038/s41467-019-09402-8</pub-id>
<pub-id pub-id-type="pmid">30944305</pub-id>
</element-citation>
</ref>
<ref id="CR93">
<label>93.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Gilhar</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Paus</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Kalish</surname>
<given-names>RS</given-names>
</name>
</person-group>
<article-title>Lymphocytes, neuropeptides, and genes involved in alopecia areata</article-title>
<source>J Clin Invest</source>
<year>2007</year>
<volume>117</volume>
<issue>8</issue>
<fpage>2019</fpage>
<lpage>2027</lpage>
<pub-id pub-id-type="doi">10.1172/JCI31942</pub-id>
<pub-id pub-id-type="pmid">17671634</pub-id>
</element-citation>
</ref>
<ref id="CR94">
<label>94.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Harries</surname>
<given-names>MJ</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Lichen planopilaris is characterized by immune privilege collapse of the hair follicle's epithelial stem cell niche</article-title>
<source>J Pathol</source>
<year>2013</year>
<volume>231</volume>
<issue>2</issue>
<fpage>236</fpage>
<lpage>247</lpage>
<pub-id pub-id-type="doi">10.1002/path.4233</pub-id>
<pub-id pub-id-type="pmid">23788005</pub-id>
</element-citation>
</ref>
<ref id="CR95">
<label>95.</label>
<mixed-citation publication-type="other">Anzai A, et al. Pathomechanisms of immune-mediated alopecia. Int Immunol. 2019;31(7):439–47.</mixed-citation>
</ref>
<ref id="CR96">
<label>96.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Gregoriou</surname>
<given-names>S</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Cytokines and other mediators in alopecia areata</article-title>
<source>Mediat Inflamm</source>
<year>2010</year>
<volume>2010</volume>
<fpage>928030</fpage>
<pub-id pub-id-type="doi">10.1155/2010/928030</pub-id>
</element-citation>
</ref>
<ref id="CR97">
<label>97.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Strazzulla</surname>
<given-names>LC</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Alopecia areata: disease characteristics, clinical evaluation, and new perspectives on pathogenesis</article-title>
<source>J Am Acad Dermatol</source>
<year>2018</year>
<volume>78</volume>
<issue>1</issue>
<fpage>1</fpage>
<lpage>12</lpage>
<pub-id pub-id-type="doi">10.1016/j.jaad.2017.04.1141</pub-id>
<pub-id pub-id-type="pmid">29241771</pub-id>
</element-citation>
</ref>
<ref id="CR98">
<label>98.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Wang</surname>
<given-names>E</given-names>
</name>
<name>
<surname>McElwee</surname>
<given-names>KJ</given-names>
</name>
</person-group>
<article-title>Etiopathogenesis of alopecia areata: why do our patients get it?</article-title>
<source>Dermatol Ther</source>
<year>2011</year>
<volume>24</volume>
<issue>3</issue>
<fpage>337</fpage>
<lpage>347</lpage>
<pub-id pub-id-type="doi">10.1111/j.1529-8019.2011.01416.x</pub-id>
<pub-id pub-id-type="pmid">21689243</pub-id>
</element-citation>
</ref>
<ref id="CR99">
<label>99.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Wang</surname>
<given-names>EHC</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Identification of autoantigen epitopes in alopecia areata</article-title>
<source>J Invest Dermatol</source>
<year>2016</year>
<volume>136</volume>
<issue>8</issue>
<fpage>1617</fpage>
<lpage>1626</lpage>
<pub-id pub-id-type="doi">10.1016/j.jid.2016.04.004</pub-id>
<pub-id pub-id-type="pmid">27094591</pub-id>
</element-citation>
</ref>
<ref id="CR100">
<label>100.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Gilhar</surname>
<given-names>A</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Melanocyte-associated T cell epitopes can function as autoantigens for transfer of alopecia areata to human scalp explants on Prkdc(scid) mice</article-title>
<source>J Invest Dermatol</source>
<year>2001</year>
<volume>117</volume>
<issue>6</issue>
<fpage>1357</fpage>
<lpage>1362</lpage>
<pub-id pub-id-type="doi">10.1046/j.0022-202x.2001.01583.x</pub-id>
<pub-id pub-id-type="pmid">11886495</pub-id>
</element-citation>
</ref>
<ref id="CR101">
<label>101.</label>
<mixed-citation publication-type="other">de Jong A, et al. High-throughput T cell receptor sequencing identifies clonally expanded CD8+ T cell populations in alopecia areata. JCI Insight 2018;3(19):e121949.</mixed-citation>
</ref>
<ref id="CR102">
<label>102.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Strazzulla</surname>
<given-names>LC</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Alopecia areata: an appraisal of new treatment approaches and overview of current therapies</article-title>
<source>J Am Acad Dermatol</source>
<year>2018</year>
<volume>78</volume>
<issue>1</issue>
<fpage>15</fpage>
<lpage>24</lpage>
<pub-id pub-id-type="doi">10.1016/j.jaad.2017.04.1142</pub-id>
<pub-id pub-id-type="pmid">29241773</pub-id>
</element-citation>
</ref>
<ref id="CR103">
<label>103.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Gilhar</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Etzioni</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Paus</surname>
<given-names>R</given-names>
</name>
</person-group>
<article-title>Alopecia areata</article-title>
<source>N Engl J Med</source>
<year>2012</year>
<volume>366</volume>
<issue>16</issue>
<fpage>1515</fpage>
<lpage>1525</lpage>
<pub-id pub-id-type="doi">10.1056/NEJMra1103442</pub-id>
<pub-id pub-id-type="pmid">22512484</pub-id>
</element-citation>
</ref>
<ref id="CR104">
<label>104.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Cranwell</surname>
<given-names>WC</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Treatment of alopecia areata: an Australian expert consensus statement</article-title>
<source>Australas J Dermatol</source>
<year>2019</year>
<volume>60</volume>
<issue>2</issue>
<fpage>163</fpage>
<lpage>170</lpage>
<pub-id pub-id-type="doi">10.1111/ajd.12941</pub-id>
<pub-id pub-id-type="pmid">30411329</pub-id>
</element-citation>
</ref>
<ref id="CR105">
<label>105.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Alkhalifah</surname>
<given-names>A</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Alopecia areata update: part II. Treatment</article-title>
<source>J Am Acad Dermatol</source>
<year>2010</year>
<volume>62</volume>
<issue>2</issue>
<fpage>191</fpage>
<lpage>202</lpage>
<pub-id pub-id-type="doi">10.1016/j.jaad.2009.10.031</pub-id>
<pub-id pub-id-type="pmid">20115946</pub-id>
</element-citation>
</ref>
<ref id="CR106">
<label>106.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Cotellessa</surname>
<given-names>C</given-names>
</name>
<etal></etal>
</person-group>
<article-title>The use of topical diphenylcyclopropenone for the treatment of extensive alopecia areata</article-title>
<source>J Am Acad Dermatol</source>
<year>2001</year>
<volume>44</volume>
<issue>1</issue>
<fpage>73</fpage>
<lpage>76</lpage>
<pub-id pub-id-type="doi">10.1067/mjd.2001.109309</pub-id>
<pub-id pub-id-type="pmid">11148480</pub-id>
</element-citation>
</ref>
<ref id="CR107">
<label>107.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Petukhova</surname>
<given-names>L</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Genome-wide association study in alopecia areata implicates both innate and adaptive immunity</article-title>
<source>Nature</source>
<year>2010</year>
<volume>466</volume>
<issue>7302</issue>
<fpage>113</fpage>
<lpage>117</lpage>
<pub-id pub-id-type="doi">10.1038/nature09114</pub-id>
<pub-id pub-id-type="pmid">20596022</pub-id>
</element-citation>
</ref>
<ref id="CR108">
<label>108.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Paus</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Bulfone-Paus</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Bertolini</surname>
<given-names>M</given-names>
</name>
</person-group>
<article-title>Hair follicle immune privilege revisited: the key to alopecia Areata management</article-title>
<source>J Investig Dermatol Symp Proc</source>
<year>2018</year>
<volume>19</volume>
<issue>1</issue>
<fpage>S12</fpage>
<lpage>S17</lpage>
<pub-id pub-id-type="doi">10.1016/j.jisp.2017.10.014</pub-id>
</element-citation>
</ref>
<ref id="CR109">
<label>109.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Castela</surname>
<given-names>E</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Effects of low-dose recombinant interleukin 2 to promote T-regulatory cells in alopecia areata</article-title>
<source>JAMA Dermatol</source>
<year>2014</year>
<volume>150</volume>
<issue>7</issue>
<fpage>748</fpage>
<lpage>751</lpage>
<pub-id pub-id-type="doi">10.1001/jamadermatol.2014.504</pub-id>
<pub-id pub-id-type="pmid">24872229</pub-id>
</element-citation>
</ref>
<ref id="CR110">
<label>110.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Xing</surname>
<given-names>L</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Alopecia areata is driven by cytotoxic T lymphocytes and is reversed by JAK inhibition</article-title>
<source>Nat Med</source>
<year>2014</year>
<volume>20</volume>
<issue>9</issue>
<fpage>1043</fpage>
<lpage>9</lpage>
<pub-id pub-id-type="doi">10.1038/nm.3645</pub-id>
<pub-id pub-id-type="pmid">25129481</pub-id>
</element-citation>
</ref>
<ref id="CR111">
<label>111.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Betz</surname>
<given-names>RC</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Genome-wide meta-analysis in alopecia areata resolves HLA associations and reveals two new susceptibility loci</article-title>
<source>Nat Commun</source>
<year>2015</year>
<volume>6</volume>
<fpage>5966</fpage>
<pub-id pub-id-type="doi">10.1038/ncomms6966</pub-id>
<pub-id pub-id-type="pmid">25608926</pub-id>
</element-citation>
</ref>
<ref id="CR112">
<label>112.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Mackay-Wiggan</surname>
<given-names>J</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Oral ruxolitinib induces hair regrowth in patients with moderate-to-severe alopecia areata</article-title>
<source>JCI Insight</source>
<year>2016</year>
<volume>1</volume>
<issue>15</issue>
<fpage>e89790</fpage>
<pub-id pub-id-type="doi">10.1172/jci.insight.89790</pub-id>
<pub-id pub-id-type="pmid">27699253</pub-id>
</element-citation>
</ref>
<ref id="CR113">
<label>113.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Jabbari</surname>
<given-names>A</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Treatment of an alopecia areata patient with tofacitinib results in regrowth of hair and changes in serum and skin biomarkers</article-title>
<source>Exp Dermatol</source>
<year>2016</year>
<volume>25</volume>
<issue>8</issue>
<fpage>642</fpage>
<lpage>643</lpage>
<pub-id pub-id-type="doi">10.1111/exd.13060</pub-id>
<pub-id pub-id-type="pmid">27119625</pub-id>
</element-citation>
</ref>
<ref id="CR114">
<label>114.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Wang</surname>
<given-names>EHC</given-names>
</name>
<etal></etal>
</person-group>
<article-title>JAK inhibitors for treatment of alopecia Areata</article-title>
<source>J Invest Dermatol</source>
<year>2018</year>
<volume>138</volume>
<issue>9</issue>
<fpage>1911</fpage>
<lpage>1916</lpage>
<pub-id pub-id-type="doi">10.1016/j.jid.2018.05.027</pub-id>
<pub-id pub-id-type="pmid">30057345</pub-id>
</element-citation>
</ref>
<ref id="CR115">
<label>115.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Mehregan</surname>
<given-names>DA</given-names>
</name>
<name>
<surname>Van Hale</surname>
<given-names>HM</given-names>
</name>
<name>
<surname>Muller</surname>
<given-names>SA</given-names>
</name>
</person-group>
<article-title>Lichen planopilaris: clinical and pathologic study of forty-five patients</article-title>
<source>J Am Acad Dermatol</source>
<year>1992</year>
<volume>27</volume>
<issue>6 Pt 1</issue>
<fpage>935</fpage>
<lpage>942</lpage>
<pub-id pub-id-type="doi">10.1016/0190-9622(92)70290-V</pub-id>
<pub-id pub-id-type="pmid">1479098</pub-id>
</element-citation>
</ref>
<ref id="CR116">
<label>116.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Kang</surname>
<given-names>H</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Lichen planopilaris</article-title>
<source>Dermatol Ther</source>
<year>2008</year>
<volume>21</volume>
<issue>4</issue>
<fpage>249</fpage>
<lpage>256</lpage>
<pub-id pub-id-type="doi">10.1111/j.1529-8019.2008.00206.x</pub-id>
<pub-id pub-id-type="pmid">18715294</pub-id>
</element-citation>
</ref>
<ref id="CR117">
<label>117.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Imanishi</surname>
<given-names>H</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Epithelial-to-Mesenchymal stem cell transition in a human organ: lessons from lichen Planopilaris</article-title>
<source>J Invest Dermatol</source>
<year>2018</year>
<volume>138</volume>
<issue>3</issue>
<fpage>511</fpage>
<lpage>519</lpage>
<pub-id pub-id-type="doi">10.1016/j.jid.2017.09.047</pub-id>
<pub-id pub-id-type="pmid">29106928</pub-id>
</element-citation>
</ref>
<ref id="CR118">
<label>118.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Spencer</surname>
<given-names>LA</given-names>
</name>
<name>
<surname>Hawryluk</surname>
<given-names>EB</given-names>
</name>
<name>
<surname>English</surname>
<given-names>JC</given-names>
<suffix>3rd</suffix>
</name>
</person-group>
<article-title>Lichen planopilaris: retrospective study and stepwise therapeutic approach</article-title>
<source>Arch Dermatol</source>
<year>2009</year>
<volume>145</volume>
<issue>3</issue>
<fpage>333</fpage>
<lpage>334</lpage>
<pub-id pub-id-type="doi">10.1001/archdermatol.2008.590</pub-id>
<pub-id pub-id-type="pmid">19289775</pub-id>
</element-citation>
</ref>
<ref id="CR119">
<label>119.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Chase</surname>
<given-names>HB</given-names>
</name>
<name>
<surname>Montagna</surname>
<given-names>W</given-names>
</name>
<name>
<surname>Malone</surname>
<given-names>JD</given-names>
</name>
</person-group>
<article-title>Changes in the skin in relation to the hair growth cycle</article-title>
<source>Anat Rec</source>
<year>1953</year>
<volume>116</volume>
<issue>1</issue>
<fpage>75</fpage>
<lpage>81</lpage>
<pub-id pub-id-type="doi">10.1002/ar.1091160107</pub-id>
<pub-id pub-id-type="pmid">13050993</pub-id>
</element-citation>
</ref>
<ref id="CR120">
<label>120.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Hansen</surname>
<given-names>LS</given-names>
</name>
<etal></etal>
</person-group>
<article-title>The influence of the hair cycle on the thickness of mouse skin</article-title>
<source>Anat Rec</source>
<year>1984</year>
<volume>210</volume>
<issue>4</issue>
<fpage>569</fpage>
<lpage>573</lpage>
<pub-id pub-id-type="doi">10.1002/ar.1092100404</pub-id>
<pub-id pub-id-type="pmid">6524697</pub-id>
</element-citation>
</ref>
<ref id="CR121">
<label>121.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Nicu</surname>
<given-names>C</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Do human dermal adipocytes switch from lipogenesis in anagen to lipophagy and lipolysis during catagen in the human hair cycle?</article-title>
<source>Exp Dermatol</source>
<year>2019</year>
<volume>28</volume>
<issue>4</issue>
<fpage>432</fpage>
<lpage>435</lpage>
<pub-id pub-id-type="doi">10.1111/exd.13904</pub-id>
<pub-id pub-id-type="pmid">30776154</pub-id>
</element-citation>
</ref>
<ref id="CR122">
<label>122.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Rodeheffer</surname>
<given-names>MS</given-names>
</name>
<name>
<surname>Birsoy</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Friedman</surname>
<given-names>JM</given-names>
</name>
</person-group>
<article-title>Identification of white adipocyte progenitor cells in vivo</article-title>
<source>CELL</source>
<year>2008</year>
<volume>135</volume>
<issue>2</issue>
<fpage>240</fpage>
<lpage>249</lpage>
<pub-id pub-id-type="doi">10.1016/j.cell.2008.09.036</pub-id>
<pub-id pub-id-type="pmid">18835024</pub-id>
</element-citation>
</ref>
<ref id="CR123">
<label>123.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Donati</surname>
<given-names>G</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Epidermal Wnt/beta-catenin signaling regulates adipocyte differentiation via secretion of adipogenic factors</article-title>
<source>Proc Natl Acad Sci U S A</source>
<year>2014</year>
<volume>111</volume>
<issue>15</issue>
<fpage>E1501</fpage>
<lpage>E1509</lpage>
<pub-id pub-id-type="doi">10.1073/pnas.1312880111</pub-id>
<pub-id pub-id-type="pmid">24706781</pub-id>
</element-citation>
</ref>
<ref id="CR124">
<label>124.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Zhang</surname>
<given-names>B</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Hair follicles’ transit-amplifying cells govern concurrent dermal adipocyte production through sonic hedgehog</article-title>
<source>Genes Dev</source>
<year>2016</year>
<volume>30</volume>
<issue>20</issue>
<fpage>2325</fpage>
<lpage>2338</lpage>
<pub-id pub-id-type="doi">10.1101/gad.285429.116</pub-id>
<pub-id pub-id-type="pmid">27807033</pub-id>
</element-citation>
</ref>
<ref id="CR125">
<label>125.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Foitzik</surname>
<given-names>K</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Control of murine hair follicle regression (catagen) by TGF-beta1 in vivo</article-title>
<source>FASEB J</source>
<year>2000</year>
<volume>14</volume>
<issue>5</issue>
<fpage>752</fpage>
<lpage>760</lpage>
<pub-id pub-id-type="doi">10.1096/fasebj.14.5.752</pub-id>
<pub-id pub-id-type="pmid">10744631</pub-id>
</element-citation>
</ref>
<ref id="CR126">
<label>126.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Cote</surname>
<given-names>JA</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Role of the TGF-beta pathway in dedifferentiation of human mature adipocytes</article-title>
<source>Febs Open Bio</source>
<year>2017</year>
<volume>7</volume>
<issue>8</issue>
<fpage>1092</fpage>
<lpage>1101</lpage>
<pub-id pub-id-type="doi">10.1002/2211-5463.12250</pub-id>
</element-citation>
</ref>
<ref id="CR127">
<label>127.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Guerrero-Juarez</surname>
<given-names>CF</given-names>
</name>
<name>
<surname>Plikus</surname>
<given-names>MV</given-names>
</name>
</person-group>
<article-title>Emerging nonmetabolic functions of skin fat</article-title>
<source>Nat Rev Endocrinol</source>
<year>2018</year>
<volume>14</volume>
<issue>3</issue>
<fpage>163</fpage>
<lpage>173</lpage>
<pub-id pub-id-type="doi">10.1038/nrendo.2017.162</pub-id>
<pub-id pub-id-type="pmid">29327704</pub-id>
</element-citation>
</ref>
<ref id="CR128">
<label>128.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Ambrosi</surname>
<given-names>TH</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Adipocyte Accumulation in the Bone Marrow during Obesity and Aging Impairs Stem Cell-Based Hematopoietic and Bone Regeneration</article-title>
<source>Cell Stem Cell</source>
<year>2017</year>
<volume>20</volume>
<issue>6</issue>
<fpage>771</fpage>
<lpage>784.e6</lpage>
<pub-id pub-id-type="doi">10.1016/j.stem.2017.02.009</pub-id>
<pub-id pub-id-type="pmid">28330582</pub-id>
</element-citation>
</ref>
<ref id="CR129">
<label>129.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Naveiras</surname>
<given-names>O</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Bone-marrow adipocytes as negative regulators of the haematopoietic microenvironment</article-title>
<source>Nature</source>
<year>2009</year>
<volume>460</volume>
<issue>7252</issue>
<fpage>259</fpage>
<lpage>263</lpage>
<pub-id pub-id-type="doi">10.1038/nature08099</pub-id>
<pub-id pub-id-type="pmid">19516257</pub-id>
</element-citation>
</ref>
<ref id="CR130">
<label>130.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Zhang</surname>
<given-names>LJ</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Innate immunity. Dermal adipocytes protect against invasive Staphylococcus aureus skin infection</article-title>
<source>Science</source>
<year>2015</year>
<volume>347</volume>
<issue>6217</issue>
<fpage>67</fpage>
<lpage>71</lpage>
<pub-id pub-id-type="doi">10.1126/science.1260972</pub-id>
<pub-id pub-id-type="pmid">25554785</pub-id>
</element-citation>
</ref>
<ref id="CR131">
<label>131.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Goldberg</surname>
<given-names>LJ</given-names>
</name>
<name>
<surname>Lenzy</surname>
<given-names>Y</given-names>
</name>
</person-group>
<article-title>Nutrition and hair</article-title>
<source>Clin Dermatol</source>
<year>2010</year>
<volume>28</volume>
<issue>4</issue>
<fpage>412</fpage>
<lpage>419</lpage>
<pub-id pub-id-type="doi">10.1016/j.clindermatol.2010.03.038</pub-id>
<pub-id pub-id-type="pmid">20620758</pub-id>
</element-citation>
</ref>
<ref id="CR132">
<label>132.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Lucas</surname>
<given-names>D</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Norepinephrine reuptake inhibition promotes mobilization in mice: potential impact to rescue low stem cell yields</article-title>
<source>Blood</source>
<year>2012</year>
<volume>119</volume>
<issue>17</issue>
<fpage>3962</fpage>
<lpage>3965</lpage>
<pub-id pub-id-type="doi">10.1182/blood-2011-07-367102</pub-id>
<pub-id pub-id-type="pmid">22422821</pub-id>
</element-citation>
</ref>
<ref id="CR133">
<label>133.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Chow</surname>
<given-names>A</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Bone marrow CD169+ macrophages promote the retention of hematopoietic stem and progenitor cells in the mesenchymal stem cell niche</article-title>
<source>J Exp Med</source>
<year>2011</year>
<volume>208</volume>
<issue>2</issue>
<fpage>261</fpage>
<lpage>271</lpage>
<pub-id pub-id-type="doi">10.1084/jem.20101688</pub-id>
<pub-id pub-id-type="pmid">21282381</pub-id>
</element-citation>
</ref>
<ref id="CR134">
<label>134.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Saxton</surname>
<given-names>RA</given-names>
</name>
<name>
<surname>Sabatini</surname>
<given-names>DM</given-names>
</name>
</person-group>
<article-title>mTOR signaling in growth, metabolism, and disease</article-title>
<source>Cell</source>
<year>2017</year>
<volume>169</volume>
<issue>2</issue>
<fpage>361</fpage>
<lpage>371</lpage>
<pub-id pub-id-type="doi">10.1016/j.cell.2017.03.035</pub-id>
</element-citation>
</ref>
<ref id="CR135">
<label>135.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Deng</surname>
<given-names>Z</given-names>
</name>
<etal></etal>
</person-group>
<article-title>mTOR signaling promotes stem cell activation via counterbalancing BMP-mediated suppression during hair regeneration</article-title>
<source>J Mol Cell Biol</source>
<year>2015</year>
<volume>7</volume>
<issue>1</issue>
<fpage>62</fpage>
<lpage>72</lpage>
<pub-id pub-id-type="doi">10.1093/jmcb/mjv005</pub-id>
<pub-id pub-id-type="pmid">25609845</pub-id>
</element-citation>
</ref>
<ref id="CR136">
<label>136.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Wang</surname>
<given-names>WH</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Activation of mTORC1 signaling is required for timely hair follicle regeneration from radiation injury</article-title>
<source>Radiat Res</source>
<year>2017</year>
<volume>188</volume>
<issue>6</issue>
<fpage>681</fpage>
<lpage>689</lpage>
<pub-id pub-id-type="doi">10.1667/RR14830.1</pub-id>
<pub-id pub-id-type="pmid">29019741</pub-id>
</element-citation>
</ref>
<ref id="CR137">
<label>137.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Yilmaz</surname>
<given-names>OH</given-names>
</name>
<etal></etal>
</person-group>
<article-title>mTORC1 in the Paneth cell niche couples intestinal stem-cell function to calorie intake</article-title>
<source>Nature</source>
<year>2012</year>
<volume>486</volume>
<issue>7404</issue>
<fpage>490</fpage>
<lpage>495</lpage>
<pub-id pub-id-type="doi">10.1038/nature11163</pub-id>
<pub-id pub-id-type="pmid">22722868</pub-id>
</element-citation>
</ref>
<ref id="CR138">
<label>138.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Yang</surname>
<given-names>CC</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Higher body mass index is associated with greater severity of alopecia in men with male-pattern androgenetic alopecia in Taiwan: a cross-sectional study</article-title>
<source>J Am Acad Dermatol</source>
<year>2014</year>
<volume>70</volume>
<issue>2</issue>
<fpage>297</fpage>
<lpage>302</lpage>
<pub-id pub-id-type="doi">10.1016/j.jaad.2013.09.036</pub-id>
<pub-id pub-id-type="pmid">24184140</pub-id>
</element-citation>
</ref>
<ref id="CR139">
<label>139.</label>
<mixed-citation publication-type="other">Yilmaz OH, et al. mTORC1 in the Paneth cell niche couples intestinal stem-cell function to calorie intake. Nature. 2012;486(7404):490–95.</mixed-citation>
</ref>
<ref id="CR140">
<label>140.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Botchkarev</surname>
<given-names>VA</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Hair cycle-dependent plasticity of skin and hair follicle innervation in normal murine skin</article-title>
<source>J Comp Neurol</source>
<year>1997</year>
<volume>386</volume>
<issue>3</issue>
<fpage>379</fpage>
<lpage>395</lpage>
<pub-id pub-id-type="doi">10.1002/(SICI)1096-9861(19970929)386:3<379::AID-CNE4>3.0.CO;2-Z</pub-id>
<pub-id pub-id-type="pmid">9303424</pub-id>
</element-citation>
</ref>
<ref id="CR141">
<label>141.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Maryanovich</surname>
<given-names>M</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Adrenergic nerve degeneration in bone marrow drives aging of the hematopoietic stem cell niche</article-title>
<source>Nat Med</source>
<year>2018</year>
<volume>24</volume>
<issue>6</issue>
<fpage>782</fpage>
<lpage>791</lpage>
<pub-id pub-id-type="doi">10.1038/s41591-018-0030-x</pub-id>
<pub-id pub-id-type="pmid">29736022</pub-id>
</element-citation>
</ref>
<ref id="CR142">
<label>142.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Lucas</surname>
<given-names>D</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Chemotherapy-induced bone marrow nerve injury impairs hematopoietic regeneration</article-title>
<source>Nat Med</source>
<year>2013</year>
<volume>19</volume>
<issue>6</issue>
<fpage>695</fpage>
<lpage>703</lpage>
<pub-id pub-id-type="doi">10.1038/nm.3155</pub-id>
<pub-id pub-id-type="pmid">23644514</pub-id>
</element-citation>
</ref>
<ref id="CR143">
<label>143.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Katayama</surname>
<given-names>Y</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Signals from the sympathetic nervous system regulate hematopoietic stem cell egress from bone marrow</article-title>
<source>Cell</source>
<year>2006</year>
<volume>124</volume>
<issue>2</issue>
<fpage>407</fpage>
<lpage>421</lpage>
<pub-id pub-id-type="doi">10.1016/j.cell.2005.10.041</pub-id>
<pub-id pub-id-type="pmid">16439213</pub-id>
</element-citation>
</ref>
<ref id="CR144">
<label>144.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Lucas</surname>
<given-names>D</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Mobilized hematopoietic stem cell yield depends on species-specific circadian timing</article-title>
<source>Cell Stem Cell</source>
<year>2008</year>
<volume>3</volume>
<issue>4</issue>
<fpage>364</fpage>
<lpage>366</lpage>
<pub-id pub-id-type="doi">10.1016/j.stem.2008.09.004</pub-id>
<pub-id pub-id-type="pmid">18940728</pub-id>
</element-citation>
</ref>
<ref id="CR145">
<label>145.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Mendez-Ferrer</surname>
<given-names>S</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Haematopoietic stem cell release is regulated by circadian oscillations</article-title>
<source>Nature</source>
<year>2008</year>
<volume>452</volume>
<issue>7186</issue>
<fpage>442</fpage>
<lpage>447</lpage>
<pub-id pub-id-type="doi">10.1038/nature06685</pub-id>
<pub-id pub-id-type="pmid">18256599</pub-id>
</element-citation>
</ref>
<ref id="CR146">
<label>146.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Mai-Yi Fan</surname>
<given-names>S</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Efficacy and safety of a low-level light therapy for androgenetic alopecia: a 24-week, randomized, double-blind, self-comparison, sham device-controlled trial</article-title>
<source>Dermatol Surg</source>
<year>2018</year>
<volume>44</volume>
<issue>11</issue>
<fpage>1411</fpage>
<lpage>1420</lpage>
<pub-id pub-id-type="doi">10.1097/DSS.0000000000001577</pub-id>
<pub-id pub-id-type="pmid">29957664</pub-id>
</element-citation>
</ref>
</ref-list>
</back>
</pmc>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/ChloroquineV1/Data/Pmc/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000231 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Pmc/Corpus/biblio.hfd -nk 000231 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    ChloroquineV1
   |flux=    Pmc
   |étape=   Corpus
   |type=    RBID
   |clé=     PMC:7073016
   |texte=   Functional complexity of hair follicle stem cell niche and therapeutic targeting of niche dysfunction for hair regeneration
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Pmc/Corpus/RBID.i   -Sk "pubmed:32171310" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Pmc/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a ChloroquineV1 

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Wed Mar 25 22:43:59 2020. Site generation: Sun Jan 31 12:44:45 2021