Serveur d'exploration Chloroquine

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

The molecular machinery of regulated cell death

Identifieur interne : 000224 ( Pmc/Corpus ); précédent : 000223; suivant : 000225

The molecular machinery of regulated cell death

Auteurs : Daolin Tang ; Rui Kang ; Tom Vanden Berghe ; Peter Vandenabeele ; Guido Kroemer

Source :

RBID : PMC:6796845

Abstract

Cells may die from accidental cell death (ACD) or regulated cell death (RCD). ACD is a biologically uncontrolled process, whereas RCD involves tightly structured signaling cascades and molecularly defined effector mechanisms. A growing number of novel non-apoptotic forms of RCD have been identified and are increasingly being implicated in various human pathologies. Here, we critically review the current state of the art regarding non-apoptotic types of RCD, including necroptosis, pyroptosis, ferroptosis, entotic cell death, netotic cell death, parthanatos, lysosome-dependent cell death, autophagy-dependent cell death, alkaliptosis and oxeiptosis. The in-depth comprehension of each of these lethal subroutines and their intercellular consequences may uncover novel therapeutic targets for the avoidance of pathogenic cell loss.


Url:
DOI: 10.1038/s41422-019-0164-5
PubMed: 30948788
PubMed Central: 6796845

Links to Exploration step

PMC:6796845

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">The molecular machinery of regulated cell death</title>
<author>
<name sortKey="Tang, Daolin" sort="Tang, Daolin" uniqKey="Tang D" first="Daolin" last="Tang">Daolin Tang</name>
<affiliation>
<nlm:aff id="Aff1">
<institution-wrap>
<institution-id institution-id-type="ISNI">0000 0000 8653 1072</institution-id>
<institution-id institution-id-type="GRID">grid.410737.6</institution-id>
<institution>The Third Affiliated Hospital, Protein Modification and Degradation Lab, School of Basic Medical Sciences,</institution>
<institution>Guangzhou Medical University,</institution>
</institution-wrap>
510510 Guangzhou, Guangdong China</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="Aff2">
<institution-wrap>
<institution-id institution-id-type="ISNI">0000 0000 9482 7121</institution-id>
<institution-id institution-id-type="GRID">grid.267313.2</institution-id>
<institution>Department of Surgery,</institution>
<institution>UT Southwestern Medical Center,</institution>
</institution-wrap>
Dallas, TX 75390 USA</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Kang, Rui" sort="Kang, Rui" uniqKey="Kang R" first="Rui" last="Kang">Rui Kang</name>
<affiliation>
<nlm:aff id="Aff2">
<institution-wrap>
<institution-id institution-id-type="ISNI">0000 0000 9482 7121</institution-id>
<institution-id institution-id-type="GRID">grid.267313.2</institution-id>
<institution>Department of Surgery,</institution>
<institution>UT Southwestern Medical Center,</institution>
</institution-wrap>
Dallas, TX 75390 USA</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Berghe, Tom Vanden" sort="Berghe, Tom Vanden" uniqKey="Berghe T" first="Tom Vanden" last="Berghe">Tom Vanden Berghe</name>
<affiliation>
<nlm:aff id="Aff3">
<institution-wrap>
<institution-id institution-id-type="ISNI">0000000104788040</institution-id>
<institution-id institution-id-type="GRID">grid.11486.3a</institution-id>
<institution>Molecular Signaling and Cell Death Unit, VIB-UGent Center for Inflammation Research,</institution>
<institution>Flanders Institute for Biotechnology,</institution>
</institution-wrap>
9052 Ghent, Belgium</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="Aff4">
<institution-wrap>
<institution-id institution-id-type="ISNI">0000 0001 2069 7798</institution-id>
<institution-id institution-id-type="GRID">grid.5342.0</institution-id>
<institution>Department for Biomedical Molecular Biology,</institution>
<institution>Ghent University,</institution>
</institution-wrap>
9052 Ghent, Belgium</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="Aff5">
<institution-wrap>
<institution-id institution-id-type="ISNI">0000 0001 0790 3681</institution-id>
<institution-id institution-id-type="GRID">grid.5284.b</institution-id>
<institution>Laboratory of Pathophysiology, Faculty of Biomedical Sciences,</institution>
<institution>University of Antwerp,</institution>
</institution-wrap>
2610 Wilrijk, Belgium</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Vandenabeele, Peter" sort="Vandenabeele, Peter" uniqKey="Vandenabeele P" first="Peter" last="Vandenabeele">Peter Vandenabeele</name>
<affiliation>
<nlm:aff id="Aff3">
<institution-wrap>
<institution-id institution-id-type="ISNI">0000000104788040</institution-id>
<institution-id institution-id-type="GRID">grid.11486.3a</institution-id>
<institution>Molecular Signaling and Cell Death Unit, VIB-UGent Center for Inflammation Research,</institution>
<institution>Flanders Institute for Biotechnology,</institution>
</institution-wrap>
9052 Ghent, Belgium</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="Aff4">
<institution-wrap>
<institution-id institution-id-type="ISNI">0000 0001 2069 7798</institution-id>
<institution-id institution-id-type="GRID">grid.5342.0</institution-id>
<institution>Department for Biomedical Molecular Biology,</institution>
<institution>Ghent University,</institution>
</institution-wrap>
9052 Ghent, Belgium</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="Aff6">
<institution-wrap>
<institution-id institution-id-type="ISNI">0000 0001 2069 7798</institution-id>
<institution-id institution-id-type="GRID">grid.5342.0</institution-id>
<institution>Methusalem program,</institution>
<institution>Ghent University,</institution>
</institution-wrap>
9000 Ghent, Belgium</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Kroemer, Guido" sort="Kroemer, Guido" uniqKey="Kroemer G" first="Guido" last="Kroemer">Guido Kroemer</name>
<affiliation>
<nlm:aff id="Aff7">
<institution-wrap>
<institution-id institution-id-type="ISNI">0000 0001 2188 0914</institution-id>
<institution-id institution-id-type="GRID">grid.10992.33</institution-id>
<institution>Université Paris Descartes, Sorbonne Paris Cité,</institution>
</institution-wrap>
75006 Paris, France</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="Aff8">
<institution-wrap>
<institution-id institution-id-type="GRID">grid.417925.c</institution-id>
<institution>Equipe 11 labellisée Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers,</institution>
</institution-wrap>
75006 Paris, France</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="Aff9">
<institution-wrap>
<institution-id institution-id-type="ISNI">0000000121866389</institution-id>
<institution-id institution-id-type="GRID">grid.7429.8</institution-id>
<institution>Institut National de la Santé et de la Recherche Médicale,</institution>
</institution-wrap>
U1138 Paris, France</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="Aff10">
<institution-wrap>
<institution-id institution-id-type="ISNI">0000 0001 2308 1657</institution-id>
<institution-id institution-id-type="GRID">grid.462844.8</institution-id>
<institution>Université Pierre et Marie Curie,</institution>
</institution-wrap>
75006 Paris, France</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="Aff11">
<institution-wrap>
<institution-id institution-id-type="ISNI">0000 0001 2284 9388</institution-id>
<institution-id institution-id-type="GRID">grid.14925.3b</institution-id>
<institution>Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus,</institution>
</institution-wrap>
94800 Villejuif, France</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="Aff12">
<institution-wrap>
<institution-id institution-id-type="GRID">grid.414093.b</institution-id>
<institution>Pôle de Biologie, Hôpital Européen Georges Pompidou, AP-HP,</institution>
</institution-wrap>
75015 Paris, France</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="Aff13">
<institution-wrap>
<institution-id institution-id-type="ISNI">0000 0000 9241 5705</institution-id>
<institution-id institution-id-type="GRID">grid.24381.3c</institution-id>
<institution>Department of Women’s and Children’s Health,</institution>
<institution>Karolinska University Hospital,</institution>
</institution-wrap>
17176 Stockholm, Sweden</nlm:aff>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PMC</idno>
<idno type="pmid">30948788</idno>
<idno type="pmc">6796845</idno>
<idno type="url">http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6796845</idno>
<idno type="RBID">PMC:6796845</idno>
<idno type="doi">10.1038/s41422-019-0164-5</idno>
<date when="2019">2019</date>
<idno type="wicri:Area/Pmc/Corpus">000224</idno>
<idno type="wicri:explorRef" wicri:stream="Pmc" wicri:step="Corpus" wicri:corpus="PMC">000224</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a" type="main">The molecular machinery of regulated cell death</title>
<author>
<name sortKey="Tang, Daolin" sort="Tang, Daolin" uniqKey="Tang D" first="Daolin" last="Tang">Daolin Tang</name>
<affiliation>
<nlm:aff id="Aff1">
<institution-wrap>
<institution-id institution-id-type="ISNI">0000 0000 8653 1072</institution-id>
<institution-id institution-id-type="GRID">grid.410737.6</institution-id>
<institution>The Third Affiliated Hospital, Protein Modification and Degradation Lab, School of Basic Medical Sciences,</institution>
<institution>Guangzhou Medical University,</institution>
</institution-wrap>
510510 Guangzhou, Guangdong China</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="Aff2">
<institution-wrap>
<institution-id institution-id-type="ISNI">0000 0000 9482 7121</institution-id>
<institution-id institution-id-type="GRID">grid.267313.2</institution-id>
<institution>Department of Surgery,</institution>
<institution>UT Southwestern Medical Center,</institution>
</institution-wrap>
Dallas, TX 75390 USA</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Kang, Rui" sort="Kang, Rui" uniqKey="Kang R" first="Rui" last="Kang">Rui Kang</name>
<affiliation>
<nlm:aff id="Aff2">
<institution-wrap>
<institution-id institution-id-type="ISNI">0000 0000 9482 7121</institution-id>
<institution-id institution-id-type="GRID">grid.267313.2</institution-id>
<institution>Department of Surgery,</institution>
<institution>UT Southwestern Medical Center,</institution>
</institution-wrap>
Dallas, TX 75390 USA</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Berghe, Tom Vanden" sort="Berghe, Tom Vanden" uniqKey="Berghe T" first="Tom Vanden" last="Berghe">Tom Vanden Berghe</name>
<affiliation>
<nlm:aff id="Aff3">
<institution-wrap>
<institution-id institution-id-type="ISNI">0000000104788040</institution-id>
<institution-id institution-id-type="GRID">grid.11486.3a</institution-id>
<institution>Molecular Signaling and Cell Death Unit, VIB-UGent Center for Inflammation Research,</institution>
<institution>Flanders Institute for Biotechnology,</institution>
</institution-wrap>
9052 Ghent, Belgium</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="Aff4">
<institution-wrap>
<institution-id institution-id-type="ISNI">0000 0001 2069 7798</institution-id>
<institution-id institution-id-type="GRID">grid.5342.0</institution-id>
<institution>Department for Biomedical Molecular Biology,</institution>
<institution>Ghent University,</institution>
</institution-wrap>
9052 Ghent, Belgium</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="Aff5">
<institution-wrap>
<institution-id institution-id-type="ISNI">0000 0001 0790 3681</institution-id>
<institution-id institution-id-type="GRID">grid.5284.b</institution-id>
<institution>Laboratory of Pathophysiology, Faculty of Biomedical Sciences,</institution>
<institution>University of Antwerp,</institution>
</institution-wrap>
2610 Wilrijk, Belgium</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Vandenabeele, Peter" sort="Vandenabeele, Peter" uniqKey="Vandenabeele P" first="Peter" last="Vandenabeele">Peter Vandenabeele</name>
<affiliation>
<nlm:aff id="Aff3">
<institution-wrap>
<institution-id institution-id-type="ISNI">0000000104788040</institution-id>
<institution-id institution-id-type="GRID">grid.11486.3a</institution-id>
<institution>Molecular Signaling and Cell Death Unit, VIB-UGent Center for Inflammation Research,</institution>
<institution>Flanders Institute for Biotechnology,</institution>
</institution-wrap>
9052 Ghent, Belgium</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="Aff4">
<institution-wrap>
<institution-id institution-id-type="ISNI">0000 0001 2069 7798</institution-id>
<institution-id institution-id-type="GRID">grid.5342.0</institution-id>
<institution>Department for Biomedical Molecular Biology,</institution>
<institution>Ghent University,</institution>
</institution-wrap>
9052 Ghent, Belgium</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="Aff6">
<institution-wrap>
<institution-id institution-id-type="ISNI">0000 0001 2069 7798</institution-id>
<institution-id institution-id-type="GRID">grid.5342.0</institution-id>
<institution>Methusalem program,</institution>
<institution>Ghent University,</institution>
</institution-wrap>
9000 Ghent, Belgium</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Kroemer, Guido" sort="Kroemer, Guido" uniqKey="Kroemer G" first="Guido" last="Kroemer">Guido Kroemer</name>
<affiliation>
<nlm:aff id="Aff7">
<institution-wrap>
<institution-id institution-id-type="ISNI">0000 0001 2188 0914</institution-id>
<institution-id institution-id-type="GRID">grid.10992.33</institution-id>
<institution>Université Paris Descartes, Sorbonne Paris Cité,</institution>
</institution-wrap>
75006 Paris, France</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="Aff8">
<institution-wrap>
<institution-id institution-id-type="GRID">grid.417925.c</institution-id>
<institution>Equipe 11 labellisée Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers,</institution>
</institution-wrap>
75006 Paris, France</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="Aff9">
<institution-wrap>
<institution-id institution-id-type="ISNI">0000000121866389</institution-id>
<institution-id institution-id-type="GRID">grid.7429.8</institution-id>
<institution>Institut National de la Santé et de la Recherche Médicale,</institution>
</institution-wrap>
U1138 Paris, France</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="Aff10">
<institution-wrap>
<institution-id institution-id-type="ISNI">0000 0001 2308 1657</institution-id>
<institution-id institution-id-type="GRID">grid.462844.8</institution-id>
<institution>Université Pierre et Marie Curie,</institution>
</institution-wrap>
75006 Paris, France</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="Aff11">
<institution-wrap>
<institution-id institution-id-type="ISNI">0000 0001 2284 9388</institution-id>
<institution-id institution-id-type="GRID">grid.14925.3b</institution-id>
<institution>Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus,</institution>
</institution-wrap>
94800 Villejuif, France</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="Aff12">
<institution-wrap>
<institution-id institution-id-type="GRID">grid.414093.b</institution-id>
<institution>Pôle de Biologie, Hôpital Européen Georges Pompidou, AP-HP,</institution>
</institution-wrap>
75015 Paris, France</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="Aff13">
<institution-wrap>
<institution-id institution-id-type="ISNI">0000 0000 9241 5705</institution-id>
<institution-id institution-id-type="GRID">grid.24381.3c</institution-id>
<institution>Department of Women’s and Children’s Health,</institution>
<institution>Karolinska University Hospital,</institution>
</institution-wrap>
17176 Stockholm, Sweden</nlm:aff>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Cell Research</title>
<idno type="ISSN">1001-0602</idno>
<idno type="eISSN">1748-7838</idno>
<imprint>
<date when="2019">2019</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<p id="Par1">Cells may die from accidental cell death (ACD) or regulated cell death (RCD). ACD is a biologically uncontrolled process, whereas RCD involves tightly structured signaling cascades and molecularly defined effector mechanisms. A growing number of novel non-apoptotic forms of RCD have been identified and are increasingly being implicated in various human pathologies. Here, we critically review the current state of the art regarding non-apoptotic types of RCD, including necroptosis, pyroptosis, ferroptosis, entotic cell death, netotic cell death, parthanatos, lysosome-dependent cell death, autophagy-dependent cell death, alkaliptosis and oxeiptosis. The in-depth comprehension of each of these lethal subroutines and their intercellular consequences may uncover novel therapeutic targets for the avoidance of pathogenic cell loss.</p>
</div>
</front>
<back>
<div1 type="bibliography">
<listBibl>
<biblStruct>
<analytic>
<author>
<name sortKey="Kerr, Jf" uniqKey="Kerr J">JF Kerr</name>
</author>
<author>
<name sortKey="Wyllie, Ah" uniqKey="Wyllie A">AH Wyllie</name>
</author>
<author>
<name sortKey="Currie, Ar" uniqKey="Currie A">AR Currie</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Singh, R" uniqKey="Singh R">R Singh</name>
</author>
<author>
<name sortKey="Letai, A" uniqKey="Letai A">A Letai</name>
</author>
<author>
<name sortKey="Sarosiek, K" uniqKey="Sarosiek K">K Sarosiek</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Hengartner, Mo" uniqKey="Hengartner M">MO Hengartner</name>
</author>
<author>
<name sortKey="Ellis, Re" uniqKey="Ellis R">RE Ellis</name>
</author>
<author>
<name sortKey="Horvitz, Hr" uniqKey="Horvitz H">HR Horvitz</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Hengartner, Mo" uniqKey="Hengartner M">MO Hengartner</name>
</author>
<author>
<name sortKey="Horvitz, Hr" uniqKey="Horvitz H">HR Horvitz</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Yuan, J" uniqKey="Yuan J">J Yuan</name>
</author>
<author>
<name sortKey="Horvitz, Hr" uniqKey="Horvitz H">HR Horvitz</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Schulze Osthoff, K" uniqKey="Schulze Osthoff K">K Schulze-Osthoff</name>
</author>
<author>
<name sortKey="Ferrari, D" uniqKey="Ferrari D">D Ferrari</name>
</author>
<author>
<name sortKey="Los, M" uniqKey="Los M">M Los</name>
</author>
<author>
<name sortKey="Wesselborg, S" uniqKey="Wesselborg S">S Wesselborg</name>
</author>
<author>
<name sortKey="Peter, Me" uniqKey="Peter M">ME Peter</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Bredesen, De" uniqKey="Bredesen D">DE Bredesen</name>
</author>
<author>
<name sortKey="Mehlen, P" uniqKey="Mehlen P">P Mehlen</name>
</author>
<author>
<name sortKey="Rabizadeh, S" uniqKey="Rabizadeh S">S Rabizadeh</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Chipuk, Je" uniqKey="Chipuk J">JE Chipuk</name>
</author>
<author>
<name sortKey="Bouchier Hayes, L" uniqKey="Bouchier Hayes L">L Bouchier-Hayes</name>
</author>
<author>
<name sortKey="Green, Dr" uniqKey="Green D">DR Green</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Czabotar, Pe" uniqKey="Czabotar P">PE Czabotar</name>
</author>
<author>
<name sortKey="Lessene, G" uniqKey="Lessene G">G Lessene</name>
</author>
<author>
<name sortKey="Strasser, A" uniqKey="Strasser A">A Strasser</name>
</author>
<author>
<name sortKey="Adams, Jm" uniqKey="Adams J">JM Adams</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Mcilwain, David R" uniqKey="Mcilwain D">David R. McIlwain</name>
</author>
<author>
<name sortKey="Berger, Thorsten" uniqKey="Berger T">Thorsten Berger</name>
</author>
<author>
<name sortKey="Mak, Tak W" uniqKey="Mak T">Tak W. Mak</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Galluzzi, L" uniqKey="Galluzzi L">L Galluzzi</name>
</author>
<author>
<name sortKey="Lopez Soto, A" uniqKey="Lopez Soto A">A Lopez-Soto</name>
</author>
<author>
<name sortKey="Kumar, S" uniqKey="Kumar S">S Kumar</name>
</author>
<author>
<name sortKey="Kroemer, G" uniqKey="Kroemer G">G Kroemer</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Linkermann, A" uniqKey="Linkermann A">A Linkermann</name>
</author>
<author>
<name sortKey="Stockwell, Br" uniqKey="Stockwell B">BR Stockwell</name>
</author>
<author>
<name sortKey="Krautwald, S" uniqKey="Krautwald S">S Krautwald</name>
</author>
<author>
<name sortKey="Anders, Hj" uniqKey="Anders H">HJ Anders</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Vanden Berghe, T" uniqKey="Vanden Berghe T">T Vanden Berghe</name>
</author>
<author>
<name sortKey="Linkermann, A" uniqKey="Linkermann A">A Linkermann</name>
</author>
<author>
<name sortKey="Jouan Lanhouet, S" uniqKey="Jouan Lanhouet S">S Jouan-Lanhouet</name>
</author>
<author>
<name sortKey="Walczak, H" uniqKey="Walczak H">H Walczak</name>
</author>
<author>
<name sortKey="Vandenabeele, P" uniqKey="Vandenabeele P">P Vandenabeele</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Schweichel, Ju" uniqKey="Schweichel J">JU Schweichel</name>
</author>
<author>
<name sortKey="Merker, Hj" uniqKey="Merker H">HJ Merker</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kerr, Jf" uniqKey="Kerr J">JF Kerr</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kroemer, G" uniqKey="Kroemer G">G Kroemer</name>
</author>
<author>
<name sortKey="Marino, G" uniqKey="Marino G">G Marino</name>
</author>
<author>
<name sortKey="Levine, B" uniqKey="Levine B">B Levine</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Liu, Y" uniqKey="Liu Y">Y Liu</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Nassour, Joe" uniqKey="Nassour J">Joe Nassour</name>
</author>
<author>
<name sortKey="Radford, Robert" uniqKey="Radford R">Robert Radford</name>
</author>
<author>
<name sortKey="Correia, Adriana" uniqKey="Correia A">Adriana Correia</name>
</author>
<author>
<name sortKey="Fuste, Javier Miralles" uniqKey="Fuste J">Javier Miralles Fusté</name>
</author>
<author>
<name sortKey="Schoell, Brigitte" uniqKey="Schoell B">Brigitte Schoell</name>
</author>
<author>
<name sortKey="Jauch, Anna" uniqKey="Jauch A">Anna Jauch</name>
</author>
<author>
<name sortKey="Shaw, Reuben J" uniqKey="Shaw R">Reuben J. Shaw</name>
</author>
<author>
<name sortKey="Karlseder, Jan" uniqKey="Karlseder J">Jan Karlseder</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Weinlich, R" uniqKey="Weinlich R">R Weinlich</name>
</author>
<author>
<name sortKey="Oberst, A" uniqKey="Oberst A">A Oberst</name>
</author>
<author>
<name sortKey="Beere, Hm" uniqKey="Beere H">HM Beere</name>
</author>
<author>
<name sortKey="Green, Dr" uniqKey="Green D">DR Green</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kroemer, G" uniqKey="Kroemer G">G Kroemer</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kroemer, G" uniqKey="Kroemer G">G Kroemer</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Galluzzi, L" uniqKey="Galluzzi L">L Galluzzi</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Galluzzi, L" uniqKey="Galluzzi L">L Galluzzi</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Galluzzi, L" uniqKey="Galluzzi L">L Galluzzi</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Pasparakis, M" uniqKey="Pasparakis M">M Pasparakis</name>
</author>
<author>
<name sortKey="Vandenabeele, P" uniqKey="Vandenabeele P">P Vandenabeele</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ray, Ca" uniqKey="Ray C">CA Ray</name>
</author>
<author>
<name sortKey="Pickup, Dj" uniqKey="Pickup D">DJ Pickup</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Laster, Sm" uniqKey="Laster S">SM Laster</name>
</author>
<author>
<name sortKey="Wood, Jg" uniqKey="Wood J">JG Wood</name>
</author>
<author>
<name sortKey="Gooding, Lr" uniqKey="Gooding L">LR Gooding</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Holler, N" uniqKey="Holler N">N Holler</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="He, S" uniqKey="He S">S He</name>
</author>
<author>
<name sortKey="Liang, Y" uniqKey="Liang Y">Y Liang</name>
</author>
<author>
<name sortKey="Shao, F" uniqKey="Shao F">F Shao</name>
</author>
<author>
<name sortKey="Wang, X" uniqKey="Wang X">X Wang</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Upton, Jw" uniqKey="Upton J">JW Upton</name>
</author>
<author>
<name sortKey="Kaiser, Wj" uniqKey="Kaiser W">WJ Kaiser</name>
</author>
<author>
<name sortKey="Mocarski, Es" uniqKey="Mocarski E">ES Mocarski</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Schock, Sn" uniqKey="Schock S">SN Schock</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Brault, M" uniqKey="Brault M">M Brault</name>
</author>
<author>
<name sortKey="Olsen, Tm" uniqKey="Olsen T">TM Olsen</name>
</author>
<author>
<name sortKey="Martinez, J" uniqKey="Martinez J">J Martinez</name>
</author>
<author>
<name sortKey="Stetson, Db" uniqKey="Stetson D">DB Stetson</name>
</author>
<author>
<name sortKey="Oberst, A" uniqKey="Oberst A">A Oberst</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Chen, D" uniqKey="Chen D">D Chen</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Wang, X" uniqKey="Wang X">X Wang</name>
</author>
<author>
<name sortKey="He, Z" uniqKey="He Z">Z He</name>
</author>
<author>
<name sortKey="Liu, H" uniqKey="Liu H">H Liu</name>
</author>
<author>
<name sortKey="Yousefi, S" uniqKey="Yousefi S">S Yousefi</name>
</author>
<author>
<name sortKey="Simon, Hu" uniqKey="Simon H">HU Simon</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Vercammen, D" uniqKey="Vercammen D">D Vercammen</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Degterev, A" uniqKey="Degterev A">A Degterev</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Degterev, A" uniqKey="Degterev A">A Degterev</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Zhang, Dw" uniqKey="Zhang D">DW Zhang</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="He, S" uniqKey="He S">S He</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Cho, Ys" uniqKey="Cho Y">YS Cho</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Sun, L" uniqKey="Sun L">L Sun</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Zhao, J" uniqKey="Zhao J">J Zhao</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Mompean, M" uniqKey="Mompean M">M Mompean</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Li, J" uniqKey="Li J">J Li</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Seo, J" uniqKey="Seo J">J Seo</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Xie, Y" uniqKey="Xie Y">Y Xie</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Chen, W" uniqKey="Chen W">W Chen</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Onizawa, M" uniqKey="Onizawa M">M Onizawa</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Huang, Z" uniqKey="Huang Z">Z Huang</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Thapa, Rj" uniqKey="Thapa R">RJ Thapa</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Robinson, N" uniqKey="Robinson N">N Robinson</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Wang, H" uniqKey="Wang H">H Wang</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Dondelinger, Y" uniqKey="Dondelinger Y">Y Dondelinger</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Hildebrand, Jm" uniqKey="Hildebrand J">JM Hildebrand</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Murphy, Jm" uniqKey="Murphy J">JM Murphy</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Chen, X" uniqKey="Chen X">X Chen</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Zhao, Xm" uniqKey="Zhao X">XM Zhao</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Li, D" uniqKey="Li D">D Li</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Jacobsen, Av" uniqKey="Jacobsen A">AV Jacobsen</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Bigenzahn, Jw" uniqKey="Bigenzahn J">JW Bigenzahn</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Dovey, Cm" uniqKey="Dovey C">CM Dovey</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Gong, Yn" uniqKey="Gong Y">YN Gong</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Yoon, S" uniqKey="Yoon S">S Yoon</name>
</author>
<author>
<name sortKey="Kovalenko, A" uniqKey="Kovalenko A">A Kovalenko</name>
</author>
<author>
<name sortKey="Bogdanov, K" uniqKey="Bogdanov K">K Bogdanov</name>
</author>
<author>
<name sortKey="Wallach, D" uniqKey="Wallach D">D Wallach</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Vanden Berghe, T" uniqKey="Vanden Berghe T">T Vanden Berghe</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Wang, Z" uniqKey="Wang Z">Z Wang</name>
</author>
<author>
<name sortKey="Jiang, H" uniqKey="Jiang H">H Jiang</name>
</author>
<author>
<name sortKey="Chen, S" uniqKey="Chen S">S Chen</name>
</author>
<author>
<name sortKey="Du, F" uniqKey="Du F">F Du</name>
</author>
<author>
<name sortKey="Wang, X" uniqKey="Wang X">X Wang</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Zhang, Y" uniqKey="Zhang Y">Y Zhang</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Yang, Z" uniqKey="Yang Z">Z Yang</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Remijsen, Q" uniqKey="Remijsen Q">Q Remijsen</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Yoon, S" uniqKey="Yoon S">S Yoon</name>
</author>
<author>
<name sortKey="Bogdanov, K" uniqKey="Bogdanov K">K Bogdanov</name>
</author>
<author>
<name sortKey="Kovalenko, A" uniqKey="Kovalenko A">A Kovalenko</name>
</author>
<author>
<name sortKey="Wallach, D" uniqKey="Wallach D">D Wallach</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Weber, K" uniqKey="Weber K">K Weber</name>
</author>
<author>
<name sortKey="Roelandt, R" uniqKey="Roelandt R">R Roelandt</name>
</author>
<author>
<name sortKey="Bruggeman, I" uniqKey="Bruggeman I">I Bruggeman</name>
</author>
<author>
<name sortKey="Estornes, Y" uniqKey="Estornes Y">Y Estornes</name>
</author>
<author>
<name sortKey="Vandenabeele, P" uniqKey="Vandenabeele P">P Vandenabeele</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Wang, X" uniqKey="Wang X">X Wang</name>
</author>
<author>
<name sortKey="Yousefi, S" uniqKey="Yousefi S">S Yousefi</name>
</author>
<author>
<name sortKey="Simon, Hu" uniqKey="Simon H">HU Simon</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Newton, K" uniqKey="Newton K">K Newton</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Lawlor, Ke" uniqKey="Lawlor K">KE Lawlor</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Shan, B" uniqKey="Shan B">B Shan</name>
</author>
<author>
<name sortKey="Pan, H" uniqKey="Pan H">H Pan</name>
</author>
<author>
<name sortKey="Najafov, A" uniqKey="Najafov A">A Najafov</name>
</author>
<author>
<name sortKey="Yuan, J" uniqKey="Yuan J">J Yuan</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Dillon, Cp" uniqKey="Dillon C">CP Dillon</name>
</author>
<author>
<name sortKey="Tummers, B" uniqKey="Tummers B">B Tummers</name>
</author>
<author>
<name sortKey="Baran, K" uniqKey="Baran K">K Baran</name>
</author>
<author>
<name sortKey="Green, Dr" uniqKey="Green D">DR Green</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Galluzzi, L" uniqKey="Galluzzi L">L Galluzzi</name>
</author>
<author>
<name sortKey="Kepp, O" uniqKey="Kepp O">O Kepp</name>
</author>
<author>
<name sortKey="Chan, Fk" uniqKey="Chan F">FK Chan</name>
</author>
<author>
<name sortKey="Kroemer, G" uniqKey="Kroemer G">G Kroemer</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Vanden Berghe, T" uniqKey="Vanden Berghe T">T Vanden Berghe</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Fink, Sl" uniqKey="Fink S">SL Fink</name>
</author>
<author>
<name sortKey="Cookson, Bt" uniqKey="Cookson B">BT Cookson</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Brennan, Ma" uniqKey="Brennan M">MA Brennan</name>
</author>
<author>
<name sortKey="Cookson, Bt" uniqKey="Cookson B">BT Cookson</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Hersh, D" uniqKey="Hersh D">D Hersh</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Broz, P" uniqKey="Broz P">P Broz</name>
</author>
<author>
<name sortKey="Dixit, Vm" uniqKey="Dixit V">VM Dixit</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Chen, X" uniqKey="Chen X">X Chen</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Rathkey, Joseph K" uniqKey="Rathkey J">Joseph K. Rathkey</name>
</author>
<author>
<name sortKey="Zhao, Junjie" uniqKey="Zhao J">Junjie Zhao</name>
</author>
<author>
<name sortKey="Liu, Zhonghua" uniqKey="Liu Z">Zhonghua Liu</name>
</author>
<author>
<name sortKey="Chen, Yinghua" uniqKey="Chen Y">Yinghua Chen</name>
</author>
<author>
<name sortKey="Yang, Jie" uniqKey="Yang J">Jie Yang</name>
</author>
<author>
<name sortKey="Kondolf, Hannah C" uniqKey="Kondolf H">Hannah C. Kondolf</name>
</author>
<author>
<name sortKey="Benson, Bryan L" uniqKey="Benson B">Bryan L. Benson</name>
</author>
<author>
<name sortKey="Chirieleison, Steven M" uniqKey="Chirieleison S">Steven M. Chirieleison</name>
</author>
<author>
<name sortKey="Huang, Alex Y" uniqKey="Huang A">Alex Y. Huang</name>
</author>
<author>
<name sortKey="Dubyak, George R" uniqKey="Dubyak G">George R. Dubyak</name>
</author>
<author>
<name sortKey="Xiao, Tsan S" uniqKey="Xiao T">Tsan S. Xiao</name>
</author>
<author>
<name sortKey="Li, Xiaoxia" uniqKey="Li X">Xiaoxia Li</name>
</author>
<author>
<name sortKey="Abbott, Derek W" uniqKey="Abbott D">Derek W. Abbott</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="He, Y" uniqKey="He Y">Y He</name>
</author>
<author>
<name sortKey="Zeng, My" uniqKey="Zeng M">MY Zeng</name>
</author>
<author>
<name sortKey="Yang, D" uniqKey="Yang D">D Yang</name>
</author>
<author>
<name sortKey="Motro, B" uniqKey="Motro B">B Motro</name>
</author>
<author>
<name sortKey="Nunez, G" uniqKey="Nunez G">G Nunez</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Fernandes Alnemri, T" uniqKey="Fernandes Alnemri T">T Fernandes-Alnemri</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Rathinam, Va" uniqKey="Rathinam V">VA Rathinam</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kayagaki, N" uniqKey="Kayagaki N">N Kayagaki</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Shi, J" uniqKey="Shi J">J Shi</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Hagar, Ja" uniqKey="Hagar J">JA Hagar</name>
</author>
<author>
<name sortKey="Powell, Da" uniqKey="Powell D">DA Powell</name>
</author>
<author>
<name sortKey="Aachoui, Y" uniqKey="Aachoui Y">Y Aachoui</name>
</author>
<author>
<name sortKey="Ernst, Rk" uniqKey="Ernst R">RK Ernst</name>
</author>
<author>
<name sortKey="Miao, Ea" uniqKey="Miao E">EA Miao</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kayagaki, N" uniqKey="Kayagaki N">N Kayagaki</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Vanaja, Sk" uniqKey="Vanaja S">SK Vanaja</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Deng, M" uniqKey="Deng M">M Deng</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Rathinam, Va" uniqKey="Rathinam V">VA Rathinam</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Man, Sm" uniqKey="Man S">SM Man</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Lu, B" uniqKey="Lu B">B Lu</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Xie, M" uniqKey="Xie M">M Xie</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Yang, L" uniqKey="Yang L">L Yang</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Moon, Js" uniqKey="Moon J">JS Moon</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ding, J" uniqKey="Ding J">J Ding</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Liu, X" uniqKey="Liu X">X Liu</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kayagaki, N" uniqKey="Kayagaki N">N Kayagaki</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Shi, J" uniqKey="Shi J">J Shi</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="He, Wt" uniqKey="He W">WT He</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Lee, Bl" uniqKey="Lee B">BL Lee</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kang, R" uniqKey="Kang R">R Kang</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Yang, Mei" uniqKey="Yang M">Mei Yang</name>
</author>
<author>
<name sortKey="Liang, Chen" uniqKey="Liang C">Chen Liang</name>
</author>
<author>
<name sortKey="Swaminathan, Kunchithapadam" uniqKey="Swaminathan K">Kunchithapadam Swaminathan</name>
</author>
<author>
<name sortKey="Herrlinger, Stephanie" uniqKey="Herrlinger S">Stephanie Herrlinger</name>
</author>
<author>
<name sortKey="Lai, Fan" uniqKey="Lai F">Fan Lai</name>
</author>
<author>
<name sortKey="Shiekhattar, Ramin" uniqKey="Shiekhattar R">Ramin Shiekhattar</name>
</author>
<author>
<name sortKey="Chen, Jian Fu" uniqKey="Chen J">Jian-Fu Chen</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ruhl, S" uniqKey="Ruhl S">S Ruhl</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Orning, P" uniqKey="Orning P">P Orning</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Sarhan, J" uniqKey="Sarhan J">J Sarhan</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Wang, Y" uniqKey="Wang Y">Y Wang</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kambara, H" uniqKey="Kambara H">H Kambara</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Sollberger, Gabriel" uniqKey="Sollberger G">Gabriel Sollberger</name>
</author>
<author>
<name sortKey="Choidas, Axel" uniqKey="Choidas A">Axel Choidas</name>
</author>
<author>
<name sortKey="Burn, Garth Lawrence" uniqKey="Burn G">Garth Lawrence Burn</name>
</author>
<author>
<name sortKey="Habenberger, Peter" uniqKey="Habenberger P">Peter Habenberger</name>
</author>
<author>
<name sortKey="Di Lucrezia, Raffaella" uniqKey="Di Lucrezia R">Raffaella Di Lucrezia</name>
</author>
<author>
<name sortKey="Kordes, Susanne" uniqKey="Kordes S">Susanne Kordes</name>
</author>
<author>
<name sortKey="Menninger, Sascha" uniqKey="Menninger S">Sascha Menninger</name>
</author>
<author>
<name sortKey="Eickhoff, Jan" uniqKey="Eickhoff J">Jan Eickhoff</name>
</author>
<author>
<name sortKey="Nussbaumer, Peter" uniqKey="Nussbaumer P">Peter Nussbaumer</name>
</author>
<author>
<name sortKey="Klebl, Bert" uniqKey="Klebl B">Bert Klebl</name>
</author>
<author>
<name sortKey="Kruger, Renate" uniqKey="Kruger R">Renate Krüger</name>
</author>
<author>
<name sortKey="Herzig, Alf" uniqKey="Herzig A">Alf Herzig</name>
</author>
<author>
<name sortKey="Zychlinsky, Arturo" uniqKey="Zychlinsky A">Arturo Zychlinsky</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Chen, Kaiwen W" uniqKey="Chen K">Kaiwen W. Chen</name>
</author>
<author>
<name sortKey="Monteleone, Mercedes" uniqKey="Monteleone M">Mercedes Monteleone</name>
</author>
<author>
<name sortKey="Boucher, Dave" uniqKey="Boucher D">Dave Boucher</name>
</author>
<author>
<name sortKey="Sollberger, Gabriel" uniqKey="Sollberger G">Gabriel Sollberger</name>
</author>
<author>
<name sortKey="Ramnath, Divya" uniqKey="Ramnath D">Divya Ramnath</name>
</author>
<author>
<name sortKey="Condon, Nicholas D" uniqKey="Condon N">Nicholas D. Condon</name>
</author>
<author>
<name sortKey="Von Pein, Jessica B" uniqKey="Von Pein J">Jessica B. von Pein</name>
</author>
<author>
<name sortKey="Broz, Petr" uniqKey="Broz P">Petr Broz</name>
</author>
<author>
<name sortKey="Sweet, Matthew J" uniqKey="Sweet M">Matthew J. Sweet</name>
</author>
<author>
<name sortKey="Schroder, Kate" uniqKey="Schroder K">Kate Schroder</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Evavold, Cl" uniqKey="Evavold C">CL Evavold</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="De Vasconcelos, Nathalia M" uniqKey="De Vasconcelos N">Nathalia M. de Vasconcelos</name>
</author>
<author>
<name sortKey="Van Opdenbosch, Nina" uniqKey="Van Opdenbosch N">Nina Van Opdenbosch</name>
</author>
<author>
<name sortKey="Van Gorp, Hanne" uniqKey="Van Gorp H">Hanne Van Gorp</name>
</author>
<author>
<name sortKey="Parthoens, Eef" uniqKey="Parthoens E">Eef Parthoens</name>
</author>
<author>
<name sortKey="Lamkanfi, Mohamed" uniqKey="Lamkanfi M">Mohamed Lamkanfi</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Dolma, S" uniqKey="Dolma S">S Dolma</name>
</author>
<author>
<name sortKey="Lessnick, Sl" uniqKey="Lessnick S">SL Lessnick</name>
</author>
<author>
<name sortKey="Hahn, Wc" uniqKey="Hahn W">WC Hahn</name>
</author>
<author>
<name sortKey="Stockwell, Br" uniqKey="Stockwell B">BR Stockwell</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Dixon, Sj" uniqKey="Dixon S">SJ Dixon</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Friedmann Angeli, Jp" uniqKey="Friedmann Angeli J">JP Friedmann Angeli</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Neitemeier, S" uniqKey="Neitemeier S">S Neitemeier</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Hong, Sh" uniqKey="Hong S">SH Hong</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Yang, Ws" uniqKey="Yang W">WS Yang</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Feng, H" uniqKey="Feng H">H Feng</name>
</author>
<author>
<name sortKey="Stockwell, Br" uniqKey="Stockwell B">BR Stockwell</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Hayano, M" uniqKey="Hayano M">M Hayano</name>
</author>
<author>
<name sortKey="Yang, Ws" uniqKey="Yang W">WS Yang</name>
</author>
<author>
<name sortKey="Corn, Ck" uniqKey="Corn C">CK Corn</name>
</author>
<author>
<name sortKey="Pagano, Nc" uniqKey="Pagano N">NC Pagano</name>
</author>
<author>
<name sortKey="Stockwell, Br" uniqKey="Stockwell B">BR Stockwell</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Yang, Ws" uniqKey="Yang W">WS Yang</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Woo, Jh" uniqKey="Woo J">JH Woo</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Weiwer, M" uniqKey="Weiwer M">M Weiwer</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Cao, Jy" uniqKey="Cao J">JY Cao</name>
</author>
<author>
<name sortKey="Dixon, Sj" uniqKey="Dixon S">SJ Dixon</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Gaschler, Mm" uniqKey="Gaschler M">MM Gaschler</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Hassannia, B" uniqKey="Hassannia B">B Hassannia</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Li, Q" uniqKey="Li Q">Q Li</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Yuan, H" uniqKey="Yuan H">H Yuan</name>
</author>
<author>
<name sortKey="Li, X" uniqKey="Li X">X Li</name>
</author>
<author>
<name sortKey="Zhang, X" uniqKey="Zhang X">X Zhang</name>
</author>
<author>
<name sortKey="Kang, R" uniqKey="Kang R">R Kang</name>
</author>
<author>
<name sortKey="Tang, D" uniqKey="Tang D">D Tang</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Yagoda, N" uniqKey="Yagoda N">N Yagoda</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Gao, M" uniqKey="Gao M">M Gao</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Xie, Y" uniqKey="Xie Y">Y Xie</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Seiler, A" uniqKey="Seiler A">A Seiler</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ran, Q" uniqKey="Ran Q">Q Ran</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Canli, O" uniqKey="Canli O">O Canli</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Yang, Ws" uniqKey="Yang W">WS Yang</name>
</author>
<author>
<name sortKey="Stockwell, Br" uniqKey="Stockwell B">BR Stockwell</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Doll, S" uniqKey="Doll S">S Doll</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kagan, Ve" uniqKey="Kagan V">VE Kagan</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Yuan, H" uniqKey="Yuan H">H Yuan</name>
</author>
<author>
<name sortKey="Li, X" uniqKey="Li X">X Li</name>
</author>
<author>
<name sortKey="Zhang, X" uniqKey="Zhang X">X Zhang</name>
</author>
<author>
<name sortKey="Kang, R" uniqKey="Kang R">R Kang</name>
</author>
<author>
<name sortKey="Tang, D" uniqKey="Tang D">D Tang</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Wenzel, Se" uniqKey="Wenzel S">SE Wenzel</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Sun, X" uniqKey="Sun X">X Sun</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Sun, X" uniqKey="Sun X">X Sun</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Zhu, S" uniqKey="Zhu S">S Zhu</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Gao, M" uniqKey="Gao M">M Gao</name>
</author>
<author>
<name sortKey="Monian, P" uniqKey="Monian P">P Monian</name>
</author>
<author>
<name sortKey="Quadri, N" uniqKey="Quadri N">N Quadri</name>
</author>
<author>
<name sortKey="Ramasamy, R" uniqKey="Ramasamy R">R Ramasamy</name>
</author>
<author>
<name sortKey="Jiang, X" uniqKey="Jiang X">X Jiang</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Sun, X" uniqKey="Sun X">X Sun</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Chen, D" uniqKey="Chen D">D Chen</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Chang, Lc" uniqKey="Chang L">LC Chang</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kwon, My" uniqKey="Kwon M">MY Kwon</name>
</author>
<author>
<name sortKey="Park, E" uniqKey="Park E">E Park</name>
</author>
<author>
<name sortKey="Lee, Sj" uniqKey="Lee S">SJ Lee</name>
</author>
<author>
<name sortKey="Chung, Sw" uniqKey="Chung S">SW Chung</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Jiang, L" uniqKey="Jiang L">L Jiang</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Zhang, Yilei" uniqKey="Zhang Y">Yilei Zhang</name>
</author>
<author>
<name sortKey="Shi, Jiejun" uniqKey="Shi J">Jiejun Shi</name>
</author>
<author>
<name sortKey="Liu, Xiaoguang" uniqKey="Liu X">Xiaoguang Liu</name>
</author>
<author>
<name sortKey="Feng, Li" uniqKey="Feng L">Li Feng</name>
</author>
<author>
<name sortKey="Gong, Zihua" uniqKey="Gong Z">Zihua Gong</name>
</author>
<author>
<name sortKey="Koppula, Pranavi" uniqKey="Koppula P">Pranavi Koppula</name>
</author>
<author>
<name sortKey="Sirohi, Kapil" uniqKey="Sirohi K">Kapil Sirohi</name>
</author>
<author>
<name sortKey="Li, Xu" uniqKey="Li X">Xu Li</name>
</author>
<author>
<name sortKey="Wei, Yongkun" uniqKey="Wei Y">Yongkun Wei</name>
</author>
<author>
<name sortKey="Lee, Hyemin" uniqKey="Lee H">Hyemin Lee</name>
</author>
<author>
<name sortKey="Zhuang, Li" uniqKey="Zhuang L">Li Zhuang</name>
</author>
<author>
<name sortKey="Chen, Gang" uniqKey="Chen G">Gang Chen</name>
</author>
<author>
<name sortKey="Xiao, Zhen Dong" uniqKey="Xiao Z">Zhen-Dong Xiao</name>
</author>
<author>
<name sortKey="Hung, Mien Chie" uniqKey="Hung M">Mien-Chie Hung</name>
</author>
<author>
<name sortKey="Chen, Junjie" uniqKey="Chen J">Junjie Chen</name>
</author>
<author>
<name sortKey="Huang, Peng" uniqKey="Huang P">Peng Huang</name>
</author>
<author>
<name sortKey="Li, Wei" uniqKey="Li W">Wei Li</name>
</author>
<author>
<name sortKey="Gan, Boyi" uniqKey="Gan B">Boyi Gan</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Xie, Y" uniqKey="Xie Y">Y Xie</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Tarangelo, A" uniqKey="Tarangelo A">A Tarangelo</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kang, Rui" uniqKey="Kang R">Rui Kang</name>
</author>
<author>
<name sortKey="Kroemer, Guido" uniqKey="Kroemer G">Guido Kroemer</name>
</author>
<author>
<name sortKey="Tang, Daolin" uniqKey="Tang D">Daolin Tang</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Jennis, M" uniqKey="Jennis M">M Jennis</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Wu, Z" uniqKey="Wu Z">Z Wu</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Gao, M" uniqKey="Gao M">M Gao</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Hou, W" uniqKey="Hou W">W Hou</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Song, X" uniqKey="Song X">X Song</name>
</author>
</analytic>
</biblStruct>
<biblStruct></biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Bai, Y" uniqKey="Bai Y">Y Bai</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kang, R" uniqKey="Kang R">R Kang</name>
</author>
<author>
<name sortKey="Tang, D" uniqKey="Tang D">D Tang</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Stockwell, Br" uniqKey="Stockwell B">BR Stockwell</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Tan, S" uniqKey="Tan S">S Tan</name>
</author>
<author>
<name sortKey="Schubert, D" uniqKey="Schubert D">D Schubert</name>
</author>
<author>
<name sortKey="Maher, P" uniqKey="Maher P">P Maher</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Murphy, Th" uniqKey="Murphy T">TH Murphy</name>
</author>
<author>
<name sortKey="Malouf, At" uniqKey="Malouf A">AT Malouf</name>
</author>
<author>
<name sortKey="Sastre, A" uniqKey="Sastre A">A Sastre</name>
</author>
<author>
<name sortKey="Schnaar, Rl" uniqKey="Schnaar R">RL Schnaar</name>
</author>
<author>
<name sortKey="Coyle, Jt" uniqKey="Coyle J">JT Coyle</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Lewerenz, J" uniqKey="Lewerenz J">J Lewerenz</name>
</author>
<author>
<name sortKey="Ates, G" uniqKey="Ates G">G Ates</name>
</author>
<author>
<name sortKey="Methner, A" uniqKey="Methner A">A Methner</name>
</author>
<author>
<name sortKey="Conrad, M" uniqKey="Conrad M">M Conrad</name>
</author>
<author>
<name sortKey="Maher, P" uniqKey="Maher P">P Maher</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="David, Kk" uniqKey="David K">KK David</name>
</author>
<author>
<name sortKey="Andrabi, Sa" uniqKey="Andrabi S">SA Andrabi</name>
</author>
<author>
<name sortKey="Dawson, Tm" uniqKey="Dawson T">TM Dawson</name>
</author>
<author>
<name sortKey="Dawson, Vl" uniqKey="Dawson V">VL Dawson</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Delettre, C" uniqKey="Delettre C">C Delettre</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Wang, H" uniqKey="Wang H">H Wang</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Nicholson, Dw" uniqKey="Nicholson D">DW Nicholson</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Tewari, M" uniqKey="Tewari M">M Tewari</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Wang, R" uniqKey="Wang R">R Wang</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Andrabi, Sa" uniqKey="Andrabi S">SA Andrabi</name>
</author>
<author>
<name sortKey="Dawson, Tm" uniqKey="Dawson T">TM Dawson</name>
</author>
<author>
<name sortKey="Dawson, Vl" uniqKey="Dawson V">VL Dawson</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Susin, Sa" uniqKey="Susin S">SA Susin</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Yu, Sw" uniqKey="Yu S">SW Yu</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Wang, Y" uniqKey="Wang Y">Y Wang</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Mashimo, M" uniqKey="Mashimo M">M Mashimo</name>
</author>
<author>
<name sortKey="Kato, J" uniqKey="Kato J">J Kato</name>
</author>
<author>
<name sortKey="Moss, J" uniqKey="Moss J">J Moss</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Andrabi, Sa" uniqKey="Andrabi S">SA Andrabi</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Wang, Y" uniqKey="Wang Y">Y. Wang</name>
</author>
<author>
<name sortKey="An, R" uniqKey="An R">R. An</name>
</author>
<author>
<name sortKey="Umanah, G K" uniqKey="Umanah G">G. K. Umanah</name>
</author>
<author>
<name sortKey="Park, H" uniqKey="Park H">H. Park</name>
</author>
<author>
<name sortKey="Nambiar, K" uniqKey="Nambiar K">K. Nambiar</name>
</author>
<author>
<name sortKey="Eacker, S M" uniqKey="Eacker S">S. M. Eacker</name>
</author>
<author>
<name sortKey="Kim, B" uniqKey="Kim B">B. Kim</name>
</author>
<author>
<name sortKey="Bao, L" uniqKey="Bao L">L. Bao</name>
</author>
<author>
<name sortKey="Harraz, M M" uniqKey="Harraz M">M. M. Harraz</name>
</author>
<author>
<name sortKey="Chang, C" uniqKey="Chang C">C. Chang</name>
</author>
<author>
<name sortKey="Chen, R" uniqKey="Chen R">R. Chen</name>
</author>
<author>
<name sortKey="Wang, J E" uniqKey="Wang J">J. E. Wang</name>
</author>
<author>
<name sortKey="Kam, T I" uniqKey="Kam T">T.-I. Kam</name>
</author>
<author>
<name sortKey="Jeong, J S" uniqKey="Jeong J">J. S. Jeong</name>
</author>
<author>
<name sortKey="Xie, Z" uniqKey="Xie Z">Z. Xie</name>
</author>
<author>
<name sortKey="Neifert, S" uniqKey="Neifert S">S. Neifert</name>
</author>
<author>
<name sortKey="Qian, J" uniqKey="Qian J">J. Qian</name>
</author>
<author>
<name sortKey="Andrabi, S A" uniqKey="Andrabi S">S. A. Andrabi</name>
</author>
<author>
<name sortKey="Blackshaw, S" uniqKey="Blackshaw S">S. Blackshaw</name>
</author>
<author>
<name sortKey="Zhu, H" uniqKey="Zhu H">H. Zhu</name>
</author>
<author>
<name sortKey="Song, H" uniqKey="Song H">H. Song</name>
</author>
<author>
<name sortKey="Ming, G L" uniqKey="Ming G">G.-l. Ming</name>
</author>
<author>
<name sortKey="Dawson, V L" uniqKey="Dawson V">V. L. Dawson</name>
</author>
<author>
<name sortKey="Dawson, T M" uniqKey="Dawson T">T. M. Dawson</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Jang, Kh" uniqKey="Jang K">KH Jang</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Rodriguez Vargas, Jm" uniqKey="Rodriguez Vargas J">JM Rodriguez-Vargas</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Xu, X" uniqKey="Xu X">X Xu</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Overholtzer, M" uniqKey="Overholtzer M">M Overholtzer</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Hamann, Jc" uniqKey="Hamann J">JC Hamann</name>
</author>
</analytic>
</biblStruct>
<biblStruct></biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Brouwer, M" uniqKey="Brouwer M">M Brouwer</name>
</author>
<author>
<name sortKey="De Ley, L" uniqKey="De Ley L">L de Ley</name>
</author>
<author>
<name sortKey="Feltkamp, Ca" uniqKey="Feltkamp C">CA Feltkamp</name>
</author>
<author>
<name sortKey="Elema, J" uniqKey="Elema J">J Elema</name>
</author>
<author>
<name sortKey="Jongsma, Ap" uniqKey="Jongsma A">AP Jongsma</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Krajcovic, M" uniqKey="Krajcovic M">M Krajcovic</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Durgan, J" uniqKey="Durgan J">J Durgan</name>
</author>
<author>
<name sortKey="Florey, O" uniqKey="Florey O">O Florey</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Martins, I" uniqKey="Martins I">I Martins</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Wang, M" uniqKey="Wang M">M Wang</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Sun, Q" uniqKey="Sun Q">Q Sun</name>
</author>
<author>
<name sortKey="Cibas, Es" uniqKey="Cibas E">ES Cibas</name>
</author>
<author>
<name sortKey="Huang, H" uniqKey="Huang H">H Huang</name>
</author>
<author>
<name sortKey="Hodgson, L" uniqKey="Hodgson L">L Hodgson</name>
</author>
<author>
<name sortKey="Overholtzer, M" uniqKey="Overholtzer M">M Overholtzer</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Sottile, F" uniqKey="Sottile F">F Sottile</name>
</author>
<author>
<name sortKey="Aulicino, F" uniqKey="Aulicino F">F Aulicino</name>
</author>
<author>
<name sortKey="Theka, I" uniqKey="Theka I">I Theka</name>
</author>
<author>
<name sortKey="Cosma, Mp" uniqKey="Cosma M">MP Cosma</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Wen, S" uniqKey="Wen S">S Wen</name>
</author>
<author>
<name sortKey="Shang, Z" uniqKey="Shang Z">Z Shang</name>
</author>
<author>
<name sortKey="Zhu, S" uniqKey="Zhu S">S Zhu</name>
</author>
<author>
<name sortKey="Chang, C" uniqKey="Chang C">C Chang</name>
</author>
<author>
<name sortKey="Niu, Y" uniqKey="Niu Y">Y Niu</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Sun, Q" uniqKey="Sun Q">Q Sun</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Wan, Q" uniqKey="Wan Q">Q Wan</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Xia, P" uniqKey="Xia P">P Xia</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Hinojosa, Ls" uniqKey="Hinojosa L">LS Hinojosa</name>
</author>
<author>
<name sortKey="Holst, M" uniqKey="Holst M">M Holst</name>
</author>
<author>
<name sortKey="Baarlink, C" uniqKey="Baarlink C">C Baarlink</name>
</author>
<author>
<name sortKey="Grosse, R" uniqKey="Grosse R">R Grosse</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Li, Y" uniqKey="Li Y">Y Li</name>
</author>
<author>
<name sortKey="Sun, X" uniqKey="Sun X">X Sun</name>
</author>
<author>
<name sortKey="Dey, Sk" uniqKey="Dey S">SK Dey</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Heckmann, Bl" uniqKey="Heckmann B">BL Heckmann</name>
</author>
<author>
<name sortKey="Boada Romero, E" uniqKey="Boada Romero E">E Boada-Romero</name>
</author>
<author>
<name sortKey="Cunha, Ld" uniqKey="Cunha L">LD Cunha</name>
</author>
<author>
<name sortKey="Magne, J" uniqKey="Magne J">J Magne</name>
</author>
<author>
<name sortKey="Green, Dr" uniqKey="Green D">DR Green</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Brinkmann, V" uniqKey="Brinkmann V">V Brinkmann</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Arazna, M" uniqKey="Arazna M">M Arazna</name>
</author>
<author>
<name sortKey="Pruchniak, Mp" uniqKey="Pruchniak M">MP Pruchniak</name>
</author>
<author>
<name sortKey="Demkow, U" uniqKey="Demkow U">U Demkow</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kazzaz, Nm" uniqKey="Kazzaz N">NM Kazzaz</name>
</author>
<author>
<name sortKey="Sule, G" uniqKey="Sule G">G Sule</name>
</author>
<author>
<name sortKey="Knight, Js" uniqKey="Knight J">JS Knight</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Remijsen, Q" uniqKey="Remijsen Q">Q Remijsen</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Branzk, N" uniqKey="Branzk N">N Branzk</name>
</author>
<author>
<name sortKey="Papayannopoulos, V" uniqKey="Papayannopoulos V">V Papayannopoulos</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Albrengues, Jean" uniqKey="Albrengues J">Jean Albrengues</name>
</author>
<author>
<name sortKey="Shields, Mario A" uniqKey="Shields M">Mario A. Shields</name>
</author>
<author>
<name sortKey="Ng, David" uniqKey="Ng D">David Ng</name>
</author>
<author>
<name sortKey="Park, Chun Gwon" uniqKey="Park C">Chun Gwon Park</name>
</author>
<author>
<name sortKey="Ambrico, Alexandra" uniqKey="Ambrico A">Alexandra Ambrico</name>
</author>
<author>
<name sortKey="Poindexter, Morgan E" uniqKey="Poindexter M">Morgan E. Poindexter</name>
</author>
<author>
<name sortKey="Upadhyay, Priya" uniqKey="Upadhyay P">Priya Upadhyay</name>
</author>
<author>
<name sortKey="Uyeminami, Dale L" uniqKey="Uyeminami D">Dale L. Uyeminami</name>
</author>
<author>
<name sortKey="Pommier, Arnaud" uniqKey="Pommier A">Arnaud Pommier</name>
</author>
<author>
<name sortKey="Kuttner, Victoria" uniqKey="Kuttner V">Victoria Küttner</name>
</author>
<author>
<name sortKey="Bruzas, Emilis" uniqKey="Bruzas E">Emilis Bružas</name>
</author>
<author>
<name sortKey="Maiorino, Laura" uniqKey="Maiorino L">Laura Maiorino</name>
</author>
<author>
<name sortKey="Bautista, Carmelita" uniqKey="Bautista C">Carmelita Bautista</name>
</author>
<author>
<name sortKey="Carmona, Ellese M" uniqKey="Carmona E">Ellese M. Carmona</name>
</author>
<author>
<name sortKey="Gimotty, Phyllis A" uniqKey="Gimotty P">Phyllis A. Gimotty</name>
</author>
<author>
<name sortKey="Fearon, Douglas T" uniqKey="Fearon D">Douglas T. Fearon</name>
</author>
<author>
<name sortKey="Chang, Kenneth" uniqKey="Chang K">Kenneth Chang</name>
</author>
<author>
<name sortKey="Lyons, Scott K" uniqKey="Lyons S">Scott K. Lyons</name>
</author>
<author>
<name sortKey="Pinkerton, Kent E" uniqKey="Pinkerton K">Kent E. Pinkerton</name>
</author>
<author>
<name sortKey="Trotman, Lloyd C" uniqKey="Trotman L">Lloyd C. Trotman</name>
</author>
<author>
<name sortKey="Goldberg, Michael S" uniqKey="Goldberg M">Michael S. Goldberg</name>
</author>
<author>
<name sortKey="Yeh, Johannes T H" uniqKey="Yeh J">Johannes T.-H. Yeh</name>
</author>
<author>
<name sortKey="Egeblad, Mikala" uniqKey="Egeblad M">Mikala Egeblad</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Skendros, P" uniqKey="Skendros P">P Skendros</name>
</author>
<author>
<name sortKey="Mitroulis, I" uniqKey="Mitroulis I">I Mitroulis</name>
</author>
<author>
<name sortKey="Ritis, K" uniqKey="Ritis K">K Ritis</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Remijsen, Q" uniqKey="Remijsen Q">Q Remijsen</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Yipp, Bg" uniqKey="Yipp B">BG Yipp</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Li, P" uniqKey="Li P">P Li</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Hemmers, S" uniqKey="Hemmers S">S Hemmers</name>
</author>
<author>
<name sortKey="Teijaro, Jr" uniqKey="Teijaro J">JR Teijaro</name>
</author>
<author>
<name sortKey="Arandjelovic, S" uniqKey="Arandjelovic S">S Arandjelovic</name>
</author>
<author>
<name sortKey="Mowen, Ka" uniqKey="Mowen K">KA Mowen</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Mitroulis, I" uniqKey="Mitroulis I">I Mitroulis</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Neubert, E" uniqKey="Neubert E">E Neubert</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Okubo, K" uniqKey="Okubo K">K Okubo</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Aits, S" uniqKey="Aits S">S Aits</name>
</author>
<author>
<name sortKey="Jaattela, M" uniqKey="Jaattela M">M Jaattela</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Franko, J" uniqKey="Franko J">J Franko</name>
</author>
<author>
<name sortKey="Pomfy, M" uniqKey="Pomfy M">M Pomfy</name>
</author>
<author>
<name sortKey="Prosbova, T" uniqKey="Prosbova T">T Prosbova</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kroemer, G" uniqKey="Kroemer G">G Kroemer</name>
</author>
<author>
<name sortKey="Jaattela, M" uniqKey="Jaattela M">M Jaattela</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Gao, H" uniqKey="Gao H">H Gao</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Repnik, U" uniqKey="Repnik U">U Repnik</name>
</author>
<author>
<name sortKey="Stoka, V" uniqKey="Stoka V">V Stoka</name>
</author>
<author>
<name sortKey="Turk, V" uniqKey="Turk V">V Turk</name>
</author>
<author>
<name sortKey="Turk, B" uniqKey="Turk B">B Turk</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kreuzaler, Pa" uniqKey="Kreuzaler P">PA Kreuzaler</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Wu, Gs" uniqKey="Wu G">GS Wu</name>
</author>
<author>
<name sortKey="Saftig, P" uniqKey="Saftig P">P Saftig</name>
</author>
<author>
<name sortKey="Peters, C" uniqKey="Peters C">C Peters</name>
</author>
<author>
<name sortKey="El Deiry, Ws" uniqKey="El Deiry W">WS El-Deiry</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Liu, N" uniqKey="Liu N">N Liu</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Colletti, Ga" uniqKey="Colletti G">GA Colletti</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Terman, A" uniqKey="Terman A">A Terman</name>
</author>
<author>
<name sortKey="Kurz, T" uniqKey="Kurz T">T Kurz</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Torii, S" uniqKey="Torii S">S Torii</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Platt, Fm" uniqKey="Platt F">FM Platt</name>
</author>
<author>
<name sortKey="Boland, B" uniqKey="Boland B">B Boland</name>
</author>
<author>
<name sortKey="Van Der Spoel, Ac" uniqKey="Van Der Spoel A">AC van der Spoel</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Gomez Sintes, R" uniqKey="Gomez Sintes R">R Gomez-Sintes</name>
</author>
<author>
<name sortKey="Ledesma, Md" uniqKey="Ledesma M">MD Ledesma</name>
</author>
<author>
<name sortKey="Boya, P" uniqKey="Boya P">P Boya</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Klionsky, Dj" uniqKey="Klionsky D">DJ Klionsky</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Levine, B" uniqKey="Levine B">B Levine</name>
</author>
<author>
<name sortKey="Kroemer, G" uniqKey="Kroemer G">G Kroemer</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Dikic, I" uniqKey="Dikic I">I Dikic</name>
</author>
<author>
<name sortKey="Elazar, Z" uniqKey="Elazar Z">Z Elazar</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Liu, Y" uniqKey="Liu Y">Y Liu</name>
</author>
<author>
<name sortKey="Levine, B" uniqKey="Levine B">B Levine</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Bialik, Shani" uniqKey="Bialik S">Shani Bialik</name>
</author>
<author>
<name sortKey="Dasari, Santosh K" uniqKey="Dasari S">Santosh K. Dasari</name>
</author>
<author>
<name sortKey="Kimchi, Adi" uniqKey="Kimchi A">Adi Kimchi</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Denton, Donna" uniqKey="Denton D">Donna Denton</name>
</author>
<author>
<name sortKey="Kumar, Sharad" uniqKey="Kumar S">Sharad Kumar</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kriel, Jurgen" uniqKey="Kriel J">Jurgen Kriel</name>
</author>
<author>
<name sortKey="Loos, Ben" uniqKey="Loos B">Ben Loos</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Gump, Jm" uniqKey="Gump J">JM Gump</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="He, W" uniqKey="He W">W He</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Sousa, L" uniqKey="Sousa L">L Sousa</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Song, X" uniqKey="Song X">X Song</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Zheng, Cj" uniqKey="Zheng C">CJ Zheng</name>
</author>
<author>
<name sortKey="Yang, Ll" uniqKey="Yang L">LL Yang</name>
</author>
<author>
<name sortKey="Liu, J" uniqKey="Liu J">J Liu</name>
</author>
<author>
<name sortKey="Zhong, L" uniqKey="Zhong L">L Zhong</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Pochet, Jm" uniqKey="Pochet J">JM Pochet</name>
</author>
<author>
<name sortKey="Laterre, Pf" uniqKey="Laterre P">PF Laterre</name>
</author>
<author>
<name sortKey="Jadoul, M" uniqKey="Jadoul M">M Jadoul</name>
</author>
<author>
<name sortKey="Devuyst, O" uniqKey="Devuyst O">O Devuyst</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Holze, C" uniqKey="Holze C">C Holze</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Saito, Y" uniqKey="Saito Y">Y Saito</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ingold, I" uniqKey="Ingold I">I Ingold</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Casares, N" uniqKey="Casares N">N Casares</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Green, Dr" uniqKey="Green D">DR Green</name>
</author>
<author>
<name sortKey="Ferguson, T" uniqKey="Ferguson T">T Ferguson</name>
</author>
<author>
<name sortKey="Zitvogel, L" uniqKey="Zitvogel L">L Zitvogel</name>
</author>
<author>
<name sortKey="Kroemer, G" uniqKey="Kroemer G">G Kroemer</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Obeid, M" uniqKey="Obeid M">M Obeid</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Galluzzi, L" uniqKey="Galluzzi L">L Galluzzi</name>
</author>
<author>
<name sortKey="Buque, A" uniqKey="Buque A">A Buque</name>
</author>
<author>
<name sortKey="Kepp, O" uniqKey="Kepp O">O Kepp</name>
</author>
<author>
<name sortKey="Zitvogel, L" uniqKey="Zitvogel L">L Zitvogel</name>
</author>
<author>
<name sortKey="Kroemer, G" uniqKey="Kroemer G">G Kroemer</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Tang, D" uniqKey="Tang D">D Tang</name>
</author>
<author>
<name sortKey="Kang, R" uniqKey="Kang R">R Kang</name>
</author>
<author>
<name sortKey="Coyne, Cb" uniqKey="Coyne C">CB Coyne</name>
</author>
<author>
<name sortKey="Zeh, Hj" uniqKey="Zeh H">HJ Zeh</name>
</author>
<author>
<name sortKey="Lotze, Mt" uniqKey="Lotze M">MT Lotze</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Hou, W" uniqKey="Hou W">W Hou</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Yatim, N" uniqKey="Yatim N">N Yatim</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ahn, J" uniqKey="Ahn J">J Ahn</name>
</author>
<author>
<name sortKey="Xia, T" uniqKey="Xia T">T Xia</name>
</author>
<author>
<name sortKey="Rabasa Capote, A" uniqKey="Rabasa Capote A">A Rabasa Capote</name>
</author>
<author>
<name sortKey="Betancourt, D" uniqKey="Betancourt D">D Betancourt</name>
</author>
<author>
<name sortKey="Barber, Gn" uniqKey="Barber G">GN Barber</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ma, Y" uniqKey="Ma Y">Y Ma</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ren, J" uniqKey="Ren J">J Ren</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Michaud, M" uniqKey="Michaud M">M Michaud</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Vacchelli, E" uniqKey="Vacchelli E">E Vacchelli</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Apetoh, L" uniqKey="Apetoh L">L Apetoh</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Yang, M" uniqKey="Yang M">M Yang</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kang, R" uniqKey="Kang R">R Kang</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kazama, H" uniqKey="Kazama H">H Kazama</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Li, C" uniqKey="Li C">C Li</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ito, T" uniqKey="Ito T">T Ito</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Yu, H" uniqKey="Yu H">H Yu</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Yu, Y" uniqKey="Yu Y">Y Yu</name>
</author>
<author>
<name sortKey="Tang, D" uniqKey="Tang D">D Tang</name>
</author>
<author>
<name sortKey="Kang, R" uniqKey="Kang R">R Kang</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Fridman, Js" uniqKey="Fridman J">JS Fridman</name>
</author>
<author>
<name sortKey="Lowe, Sw" uniqKey="Lowe S">SW Lowe</name>
</author>
</analytic>
</biblStruct>
<biblStruct></biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Song, X" uniqKey="Song X">X Song</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Alvarez, Sw" uniqKey="Alvarez S">SW Alvarez</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Brown, Cw" uniqKey="Brown C">CW Brown</name>
</author>
<author>
<name sortKey="Amante, Jj" uniqKey="Amante J">JJ Amante</name>
</author>
<author>
<name sortKey="Goel, Hl" uniqKey="Goel H">HL Goel</name>
</author>
<author>
<name sortKey="Mercurio, Am" uniqKey="Mercurio A">AM Mercurio</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Liu, Tong" uniqKey="Liu T">Tong Liu</name>
</author>
<author>
<name sortKey="Jiang, Le" uniqKey="Jiang L">Le Jiang</name>
</author>
<author>
<name sortKey="Tavana, Omid" uniqKey="Tavana O">Omid Tavana</name>
</author>
<author>
<name sortKey="Gu, Wei" uniqKey="Gu W">Wei Gu</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Yoneda, T" uniqKey="Yoneda T">T Yoneda</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kalai, M" uniqKey="Kalai M">M Kalai</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Haberzettl, P" uniqKey="Haberzettl P">P Haberzettl</name>
</author>
<author>
<name sortKey="Hill, Bg" uniqKey="Hill B">BG Hill</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Barany, T" uniqKey="Barany T">T Barany</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Palladino, End" uniqKey="Palladino E">END Palladino</name>
</author>
<author>
<name sortKey="Katunga, La" uniqKey="Katunga L">LA Katunga</name>
</author>
<author>
<name sortKey="Kolar, Gr" uniqKey="Kolar G">GR Kolar</name>
</author>
<author>
<name sortKey="Ford, Da" uniqKey="Ford D">DA Ford</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Zhou, R" uniqKey="Zhou R">R Zhou</name>
</author>
<author>
<name sortKey="Yazdi, As" uniqKey="Yazdi A">AS Yazdi</name>
</author>
<author>
<name sortKey="Menu, P" uniqKey="Menu P">P Menu</name>
</author>
<author>
<name sortKey="Tschopp, J" uniqKey="Tschopp J">J Tschopp</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Silke, J" uniqKey="Silke J">J Silke</name>
</author>
<author>
<name sortKey="Rickard, Ja" uniqKey="Rickard J">JA Rickard</name>
</author>
<author>
<name sortKey="Gerlic, M" uniqKey="Gerlic M">M Gerlic</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Polykratis, A" uniqKey="Polykratis A">A Polykratis</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Newton, K" uniqKey="Newton K">K Newton</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Berger, Sb" uniqKey="Berger S">SB Berger</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kondylis, V" uniqKey="Kondylis V">V Kondylis</name>
</author>
<author>
<name sortKey="Kumari, S" uniqKey="Kumari S">S Kumari</name>
</author>
<author>
<name sortKey="Vlantis, K" uniqKey="Vlantis K">K Vlantis</name>
</author>
<author>
<name sortKey="Pasparakis, M" uniqKey="Pasparakis M">M Pasparakis</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Dondelinger, Y" uniqKey="Dondelinger Y">Y Dondelinger</name>
</author>
<author>
<name sortKey="Darding, M" uniqKey="Darding M">M Darding</name>
</author>
<author>
<name sortKey="Bertrand, Mj" uniqKey="Bertrand M">MJ Bertrand</name>
</author>
<author>
<name sortKey="Walczak, H" uniqKey="Walczak H">H Walczak</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Dondelinger, Y" uniqKey="Dondelinger Y">Y Dondelinger</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Menon, Mb" uniqKey="Menon M">MB Menon</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Dondelinger, Y" uniqKey="Dondelinger Y">Y Dondelinger</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Jaco, I" uniqKey="Jaco I">I Jaco</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Geng, J" uniqKey="Geng J">J Geng</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Xu, D" uniqKey="Xu D">D Xu</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Wegner, Kw" uniqKey="Wegner K">KW Wegner</name>
</author>
<author>
<name sortKey="Saleh, D" uniqKey="Saleh D">D Saleh</name>
</author>
<author>
<name sortKey="Degterev, A" uniqKey="Degterev A">A Degterev</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Choi, Jj" uniqKey="Choi J">JJ Choi</name>
</author>
<author>
<name sortKey="Reich, Cf" uniqKey="Reich C">CF Reich</name>
</author>
<author>
<name sortKey="Pisetsky, Ds" uniqKey="Pisetsky D">DS Pisetsky</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Chen, Q" uniqKey="Chen Q">Q Chen</name>
</author>
<author>
<name sortKey="Sun, L" uniqKey="Sun L">L Sun</name>
</author>
<author>
<name sortKey="Chen, Zj" uniqKey="Chen Z">ZJ Chen</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Holm, Ck" uniqKey="Holm C">CK Holm</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Costa Franco, Mm" uniqKey="Costa Franco M">MM Costa Franco</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Defilippis, Vr" uniqKey="Defilippis V">VR DeFilippis</name>
</author>
<author>
<name sortKey="Alvarado, D" uniqKey="Alvarado D">D Alvarado</name>
</author>
<author>
<name sortKey="Sali, T" uniqKey="Sali T">T Sali</name>
</author>
<author>
<name sortKey="Rothenburg, S" uniqKey="Rothenburg S">S Rothenburg</name>
</author>
<author>
<name sortKey="Fruh, K" uniqKey="Fruh K">K Fruh</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Zhang, Z" uniqKey="Zhang Z">Z Zhang</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kondo, T" uniqKey="Kondo T">T Kondo</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Unterholzner, L" uniqKey="Unterholzner L">L Unterholzner</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Zeng, Ling" uniqKey="Zeng L">Ling Zeng</name>
</author>
<author>
<name sortKey="Kang, Rui" uniqKey="Kang R">Rui Kang</name>
</author>
<author>
<name sortKey="Zhu, Shan" uniqKey="Zhu S">Shan Zhu</name>
</author>
<author>
<name sortKey="Wang, Xiao" uniqKey="Wang X">Xiao Wang</name>
</author>
<author>
<name sortKey="Cao, Lizhi" uniqKey="Cao L">Lizhi Cao</name>
</author>
<author>
<name sortKey="Wang, Haichao" uniqKey="Wang H">Haichao Wang</name>
</author>
<author>
<name sortKey="Billiar, Timothy R" uniqKey="Billiar T">Timothy R. Billiar</name>
</author>
<author>
<name sortKey="Jiang, Jianxin" uniqKey="Jiang J">Jianxin Jiang</name>
</author>
<author>
<name sortKey="Tang, Daolin" uniqKey="Tang D">Daolin Tang</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Barber, Gn" uniqKey="Barber G">GN Barber</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ahn, J" uniqKey="Ahn J">J Ahn</name>
</author>
<author>
<name sortKey="Son, S" uniqKey="Son S">S Son</name>
</author>
<author>
<name sortKey="Oliveira, Sc" uniqKey="Oliveira S">SC Oliveira</name>
</author>
<author>
<name sortKey="Barber, Gn" uniqKey="Barber G">GN Barber</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ahn, J" uniqKey="Ahn J">J Ahn</name>
</author>
<author>
<name sortKey="Gutman, D" uniqKey="Gutman D">D Gutman</name>
</author>
<author>
<name sortKey="Saijo, S" uniqKey="Saijo S">S Saijo</name>
</author>
<author>
<name sortKey="Barber, Gn" uniqKey="Barber G">GN Barber</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Bakhoum, Sf" uniqKey="Bakhoum S">SF Bakhoum</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Sliter, Da" uniqKey="Sliter D">DA Sliter</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Larkin, B" uniqKey="Larkin B">B Larkin</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Gulen, Mf" uniqKey="Gulen M">MF Gulen</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Gaidt, Mm" uniqKey="Gaidt M">MM Gaidt</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Cunha, Larissa D" uniqKey="Cunha L">Larissa D. Cunha</name>
</author>
<author>
<name sortKey="Yang, Mao" uniqKey="Yang M">Mao Yang</name>
</author>
<author>
<name sortKey="Carter, Robert" uniqKey="Carter R">Robert Carter</name>
</author>
<author>
<name sortKey="Guy, Clifford" uniqKey="Guy C">Clifford Guy</name>
</author>
<author>
<name sortKey="Harris, Lacie" uniqKey="Harris L">Lacie Harris</name>
</author>
<author>
<name sortKey="Crawford, Jeremy C" uniqKey="Crawford J">Jeremy C. Crawford</name>
</author>
<author>
<name sortKey="Quarato, Giovanni" uniqKey="Quarato G">Giovanni Quarato</name>
</author>
<author>
<name sortKey="Boada Romero, Emilio" uniqKey="Boada Romero E">Emilio Boada-Romero</name>
</author>
<author>
<name sortKey="Kalkavan, Halime" uniqKey="Kalkavan H">Halime Kalkavan</name>
</author>
<author>
<name sortKey="Johnson, Michael D L" uniqKey="Johnson M">Michael D.L. Johnson</name>
</author>
<author>
<name sortKey="Natarajan, Sivaraman" uniqKey="Natarajan S">Sivaraman Natarajan</name>
</author>
<author>
<name sortKey="Turnis, Meghan E" uniqKey="Turnis M">Meghan E. Turnis</name>
</author>
<author>
<name sortKey="Finkelstein, David" uniqKey="Finkelstein D">David Finkelstein</name>
</author>
<author>
<name sortKey="Opferman, Joseph T" uniqKey="Opferman J">Joseph T. Opferman</name>
</author>
<author>
<name sortKey="Gawad, Charles" uniqKey="Gawad C">Charles Gawad</name>
</author>
<author>
<name sortKey="Green, Douglas R" uniqKey="Green D">Douglas R. Green</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Man, Sm" uniqKey="Man S">SM Man</name>
</author>
<author>
<name sortKey="Karki, R" uniqKey="Karki R">R Karki</name>
</author>
<author>
<name sortKey="Kanneganti, Td" uniqKey="Kanneganti T">TD Kanneganti</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Wilson, Je" uniqKey="Wilson J">JE Wilson</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kuriakose, T" uniqKey="Kuriakose T">T Kuriakose</name>
</author>
<author>
<name sortKey="Kanneganti, Td" uniqKey="Kanneganti T">TD Kanneganti</name>
</author>
</analytic>
</biblStruct>
</listBibl>
</div1>
</back>
</TEI>
<pmc article-type="review-article">
<pmc-dir>properties open_access</pmc-dir>
<front>
<journal-meta>
<journal-id journal-id-type="nlm-ta">Cell Res</journal-id>
<journal-id journal-id-type="iso-abbrev">Cell Res</journal-id>
<journal-title-group>
<journal-title>Cell Research</journal-title>
</journal-title-group>
<issn pub-type="ppub">1001-0602</issn>
<issn pub-type="epub">1748-7838</issn>
<publisher>
<publisher-name>Nature Publishing Group UK</publisher-name>
<publisher-loc>London</publisher-loc>
</publisher>
</journal-meta>
<article-meta>
<article-id pub-id-type="pmid">30948788</article-id>
<article-id pub-id-type="pmc">6796845</article-id>
<article-id pub-id-type="publisher-id">164</article-id>
<article-id pub-id-type="doi">10.1038/s41422-019-0164-5</article-id>
<article-categories>
<subj-group subj-group-type="heading">
<subject>Review Article</subject>
</subj-group>
</article-categories>
<title-group>
<article-title>The molecular machinery of regulated cell death</article-title>
</title-group>
<contrib-group>
<contrib contrib-type="author" corresp="yes" equal-contrib="yes">
<name>
<surname>Tang</surname>
<given-names>Daolin</given-names>
</name>
<address>
<email>daolin.tang@utsouthwestern.edu</email>
</address>
<xref ref-type="aff" rid="Aff1">1</xref>
<xref ref-type="aff" rid="Aff2">2</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Kang</surname>
<given-names>Rui</given-names>
</name>
<xref ref-type="aff" rid="Aff2">2</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Berghe</surname>
<given-names>Tom Vanden</given-names>
</name>
<xref ref-type="aff" rid="Aff3">3</xref>
<xref ref-type="aff" rid="Aff4">4</xref>
<xref ref-type="aff" rid="Aff5">5</xref>
</contrib>
<contrib contrib-type="author">
<contrib-id contrib-id-type="orcid">http://orcid.org/0000-0002-6669-8822</contrib-id>
<name>
<surname>Vandenabeele</surname>
<given-names>Peter</given-names>
</name>
<xref ref-type="aff" rid="Aff3">3</xref>
<xref ref-type="aff" rid="Aff4">4</xref>
<xref ref-type="aff" rid="Aff6">6</xref>
</contrib>
<contrib contrib-type="author" corresp="yes" equal-contrib="yes">
<name>
<surname>Kroemer</surname>
<given-names>Guido</given-names>
</name>
<address>
<email>kroemer@orange.fr</email>
</address>
<xref ref-type="aff" rid="Aff7">7</xref>
<xref ref-type="aff" rid="Aff8">8</xref>
<xref ref-type="aff" rid="Aff9">9</xref>
<xref ref-type="aff" rid="Aff10">10</xref>
<xref ref-type="aff" rid="Aff11">11</xref>
<xref ref-type="aff" rid="Aff12">12</xref>
<xref ref-type="aff" rid="Aff13">13</xref>
</contrib>
<aff id="Aff1">
<label>1</label>
<institution-wrap>
<institution-id institution-id-type="ISNI">0000 0000 8653 1072</institution-id>
<institution-id institution-id-type="GRID">grid.410737.6</institution-id>
<institution>The Third Affiliated Hospital, Protein Modification and Degradation Lab, School of Basic Medical Sciences,</institution>
<institution>Guangzhou Medical University,</institution>
</institution-wrap>
510510 Guangzhou, Guangdong China</aff>
<aff id="Aff2">
<label>2</label>
<institution-wrap>
<institution-id institution-id-type="ISNI">0000 0000 9482 7121</institution-id>
<institution-id institution-id-type="GRID">grid.267313.2</institution-id>
<institution>Department of Surgery,</institution>
<institution>UT Southwestern Medical Center,</institution>
</institution-wrap>
Dallas, TX 75390 USA</aff>
<aff id="Aff3">
<label>3</label>
<institution-wrap>
<institution-id institution-id-type="ISNI">0000000104788040</institution-id>
<institution-id institution-id-type="GRID">grid.11486.3a</institution-id>
<institution>Molecular Signaling and Cell Death Unit, VIB-UGent Center for Inflammation Research,</institution>
<institution>Flanders Institute for Biotechnology,</institution>
</institution-wrap>
9052 Ghent, Belgium</aff>
<aff id="Aff4">
<label>4</label>
<institution-wrap>
<institution-id institution-id-type="ISNI">0000 0001 2069 7798</institution-id>
<institution-id institution-id-type="GRID">grid.5342.0</institution-id>
<institution>Department for Biomedical Molecular Biology,</institution>
<institution>Ghent University,</institution>
</institution-wrap>
9052 Ghent, Belgium</aff>
<aff id="Aff5">
<label>5</label>
<institution-wrap>
<institution-id institution-id-type="ISNI">0000 0001 0790 3681</institution-id>
<institution-id institution-id-type="GRID">grid.5284.b</institution-id>
<institution>Laboratory of Pathophysiology, Faculty of Biomedical Sciences,</institution>
<institution>University of Antwerp,</institution>
</institution-wrap>
2610 Wilrijk, Belgium</aff>
<aff id="Aff6">
<label>6</label>
<institution-wrap>
<institution-id institution-id-type="ISNI">0000 0001 2069 7798</institution-id>
<institution-id institution-id-type="GRID">grid.5342.0</institution-id>
<institution>Methusalem program,</institution>
<institution>Ghent University,</institution>
</institution-wrap>
9000 Ghent, Belgium</aff>
<aff id="Aff7">
<label>7</label>
<institution-wrap>
<institution-id institution-id-type="ISNI">0000 0001 2188 0914</institution-id>
<institution-id institution-id-type="GRID">grid.10992.33</institution-id>
<institution>Université Paris Descartes, Sorbonne Paris Cité,</institution>
</institution-wrap>
75006 Paris, France</aff>
<aff id="Aff8">
<label>8</label>
<institution-wrap>
<institution-id institution-id-type="GRID">grid.417925.c</institution-id>
<institution>Equipe 11 labellisée Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers,</institution>
</institution-wrap>
75006 Paris, France</aff>
<aff id="Aff9">
<label>9</label>
<institution-wrap>
<institution-id institution-id-type="ISNI">0000000121866389</institution-id>
<institution-id institution-id-type="GRID">grid.7429.8</institution-id>
<institution>Institut National de la Santé et de la Recherche Médicale,</institution>
</institution-wrap>
U1138 Paris, France</aff>
<aff id="Aff10">
<label>10</label>
<institution-wrap>
<institution-id institution-id-type="ISNI">0000 0001 2308 1657</institution-id>
<institution-id institution-id-type="GRID">grid.462844.8</institution-id>
<institution>Université Pierre et Marie Curie,</institution>
</institution-wrap>
75006 Paris, France</aff>
<aff id="Aff11">
<label>11</label>
<institution-wrap>
<institution-id institution-id-type="ISNI">0000 0001 2284 9388</institution-id>
<institution-id institution-id-type="GRID">grid.14925.3b</institution-id>
<institution>Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus,</institution>
</institution-wrap>
94800 Villejuif, France</aff>
<aff id="Aff12">
<label>12</label>
<institution-wrap>
<institution-id institution-id-type="GRID">grid.414093.b</institution-id>
<institution>Pôle de Biologie, Hôpital Européen Georges Pompidou, AP-HP,</institution>
</institution-wrap>
75015 Paris, France</aff>
<aff id="Aff13">
<label>13</label>
<institution-wrap>
<institution-id institution-id-type="ISNI">0000 0000 9241 5705</institution-id>
<institution-id institution-id-type="GRID">grid.24381.3c</institution-id>
<institution>Department of Women’s and Children’s Health,</institution>
<institution>Karolinska University Hospital,</institution>
</institution-wrap>
17176 Stockholm, Sweden</aff>
</contrib-group>
<pub-date pub-type="epub">
<day>4</day>
<month>4</month>
<year>2019</year>
</pub-date>
<pub-date pub-type="pmc-release">
<day>4</day>
<month>4</month>
<year>2019</year>
</pub-date>
<pub-date pub-type="ppub">
<month>5</month>
<year>2019</year>
</pub-date>
<volume>29</volume>
<issue>5</issue>
<fpage>347</fpage>
<lpage>364</lpage>
<history>
<date date-type="received">
<day>29</day>
<month>1</month>
<year>2019</year>
</date>
<date date-type="accepted">
<day>19</day>
<month>3</month>
<year>2019</year>
</date>
</history>
<permissions>
<copyright-statement>© The Author(s) 2019</copyright-statement>
<license license-type="OpenAccess">
<license-p>
<bold>Open Access</bold>
This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit
<ext-link ext-link-type="uri" xlink:href="http://creativecommons.org/licenses/by/4.0/">http://creativecommons.org/licenses/by/4.0/</ext-link>
.</license-p>
</license>
</permissions>
<abstract id="Abs1">
<p id="Par1">Cells may die from accidental cell death (ACD) or regulated cell death (RCD). ACD is a biologically uncontrolled process, whereas RCD involves tightly structured signaling cascades and molecularly defined effector mechanisms. A growing number of novel non-apoptotic forms of RCD have been identified and are increasingly being implicated in various human pathologies. Here, we critically review the current state of the art regarding non-apoptotic types of RCD, including necroptosis, pyroptosis, ferroptosis, entotic cell death, netotic cell death, parthanatos, lysosome-dependent cell death, autophagy-dependent cell death, alkaliptosis and oxeiptosis. The in-depth comprehension of each of these lethal subroutines and their intercellular consequences may uncover novel therapeutic targets for the avoidance of pathogenic cell loss.</p>
</abstract>
<kwd-group kwd-group-type="npg-subject">
<title>Subject terms</title>
<kwd>Cell signalling</kwd>
<kwd>Cell death</kwd>
</kwd-group>
<custom-meta-group>
<custom-meta>
<meta-name>issue-copyright-statement</meta-name>
<meta-value>© IBCB, SIBS, CAS 2019</meta-value>
</custom-meta>
</custom-meta-group>
</article-meta>
</front>
<body>
<sec id="Sec1" sec-type="introduction">
<title>Introduction</title>
<p id="Par2">The scientific observation of regulated cell death (RCD) historically began in 1842 when Karl Vogt noticed dying cells in toads. However, the surge in RCD research only started when the term “apoptosis” was coined in 1972 by John Kerr, Andrew Wyllie, and Alastair Currie
<sup>
<xref ref-type="bibr" rid="CR1">1</xref>
</sup>
(Fig. 
<xref rid="Fig1" ref-type="fig">1</xref>
). Kerr et al. defined apoptosis as a form of programmed cell death (PCD) with morphological changes that differ from necrosis.
<sup>
<xref ref-type="bibr" rid="CR1">1</xref>
</sup>
Apoptosis and its dysregulation underlies various pathological and physiological processes, including cell homeostasis, tissue remodelling, and tumorigenesis.
<sup>
<xref ref-type="bibr" rid="CR2">2</xref>
</sup>
The identification of CED9 (also known as BCL2 in mammalian cells) and CED4 (also known as apoptotic peptidase-activating factor 1 [APAF1] in mammalian cells) from the studies of
<italic>Caenorhabditis elegans</italic>
development in the 1990s
<sup>
<xref ref-type="bibr" rid="CR3">3</xref>
<xref ref-type="bibr" rid="CR5">5</xref>
</sup>
marks the beginning of an era of molecular apoptosis research that triggered the rapid expansion of RCD research. The molecular mechanisms regulating apoptosis have been extensively investigated in multiple organisms over the last 30 years. It is now established that apoptosis consists of two major subtypes, namely extrinsic and intrinsic apoptosis (Fig. 
<xref rid="Fig2" ref-type="fig">2</xref>
). Extrinsic apoptosis is mediated by membrane receptors, especially by death receptors (e.g., fas cell surface death receptor [FAS, also known as CD95] and TNF receptor superfamily member 1A [TNFRSF1A, also known as TNFR1]), and is driven by initiator caspases CASP8 (also known as caspase 8) and CASP10 (also known as caspase 10).
<sup>
<xref ref-type="bibr" rid="CR6">6</xref>
</sup>
Alternatively, dependence receptors (e.g., unc-5 netrin receptor B [UNC5B, also known as UNC5H2] and DCC netrin 1 receptor [DCC]) may ignite extrinsic apoptosis via the activation of the initiator caspase CASP9 or dephosphorylation of death-associated protein kinase 1 (DAPK1, also known as DAPK) following the withdrawal of their ligands.
<sup>
<xref ref-type="bibr" rid="CR7">7</xref>
</sup>
In contrast, intrinsic apoptosis is ignited by mitochondrial outer membrane permeabilization (MOMP) that leads to the release of the mitochondrial proteins (e.g., cytochrome C, somatic [CYCS], diablo IAP-binding mitochondrial protein [DIABLO, also known as Smac], and HtrA serine peptidase 2 [HTRA2]) and subsequent activation of initiator caspase CASP9.
<sup>
<xref ref-type="bibr" rid="CR8">8</xref>
</sup>
MOMP is tightly controlled by the BCL2 family, including pro-apoptotic (e.g., BCL2 associated X, apoptosis regulator [BAX], BCL2 antagonist/killer 1 [BAK1, also known as BAK]), and anti-apoptotic (e.g., BCL2 and BCL2 like 1 [BCL2L1, also known as BCL-XL]) members.
<sup>
<xref ref-type="bibr" rid="CR2">2</xref>
,
<xref ref-type="bibr" rid="CR9">9</xref>
</sup>
Although caspase activation does not guarantee cell death, CASP3, CASP6, and CASP7 are considered as important executioners due to their function in substrate cleavage and the destruction of subcellular structures
<sup>
<xref ref-type="bibr" rid="CR10">10</xref>
,
<xref ref-type="bibr" rid="CR11">11</xref>
</sup>
(Box 
<xref rid="Sec2" ref-type="sec">1</xref>
), culminating in the acquisition of the apoptotic morphotype.
<fig id="Fig1">
<label>Fig. 1</label>
<caption>
<p>Timeline of the terms used in cell death research</p>
</caption>
<graphic xlink:href="41422_2019_164_Fig1_HTML" id="d29e471"></graphic>
</fig>
<fig id="Fig2">
<label>Fig. 2</label>
<caption>
<p>Extrinsic and intrinsic apoptosis. Extrinsic apoptosis is induced by the addition of death receptor ligands or by the withdrawal of dependence receptor ligands. CASP8 and CASP10 initiate death receptor-mediated extrinsic apoptosis, whereas CASP9 initiates the withdrawal of dependence receptor ligand-mediated extrinsic apoptosis. Pro-CASP8 and pro-CASP10 are enzymatically inactive until they interact with FADD (Fas-associated via death domain), which is activated upon binding to cell death receptors responding to their ligands. DNA damage, hypoxia, metabolic stress, and other factors can induce intrinsic apoptosis, which begins with MOMP and leads to the release of mitochondrial proteins (e.g., CYCS) into the cytosol. Cytosolic CYCS interacts with APAF1, which recruits pro-CASP9 to form the apoptosome. MOMP is tightly controlled by the BCL2 family, including its pro-apoptotic and anti-apoptotic members. CASP3, CASP6, and CASP7 are considered the common effector caspases for both extrinsic and intrinsic apoptosis. In addition, the extrinsic pathway can trigger intrinsic mitochondrial apoptosis through the generation of truncated BID (tBID) by activated CASP8. tBID can further translocate to mitochondria and cause MOMP through the activation of BAX and BAK1</p>
</caption>
<graphic xlink:href="41422_2019_164_Fig2_HTML" id="d29e480"></graphic>
</fig>
</p>
<p id="Par3">Cell death may occur in multiple forms in response to different stresses, especially oxidative stress (Box 
<xref rid="Sec3" ref-type="sec">2</xref>
). The loss of control over single or mixed types of cell death contributes to human diseases such as cancer, neurodegeneration, autoimmune diseases, and infectious diseases.
<sup>
<xref ref-type="bibr" rid="CR12">12</xref>
,
<xref ref-type="bibr" rid="CR13">13</xref>
</sup>
During the past few decades, many novel forms of non-apoptotic RCD have been identified. In this review, we discuss our current understanding of the molecular machinery of each of the main types of non-apoptotic RCD, including necroptosis, pyroptosis, ferroptosis, entotic cell death, netotic cell death, parthanatos, lysosome-dependent cell death, autophagy-dependent cell death, alkaliptosis, and oxeiptosis, all of which can be inhibited by small-molecule compounds or drugs (Table 
<xref rid="Tab1" ref-type="table">1</xref>
). Finally, we describe the immunogenicity of cell death, which affects immune surveillance, inflammatory responses, tissue regeneration, and tumor therapy.
<table-wrap id="Tab1">
<label>Table 1</label>
<caption>
<p>Hallmarks of major types of RCD</p>
</caption>
<table frame="hsides" rules="groups">
<thead>
<tr>
<th>Type</th>
<th>Morphological features</th>
<th>Biochemical features</th>
<th>Immune features</th>
<th>Major regulators</th>
<th>Major inhibitors (target)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Apoptosis</td>
<td>Cell rounding; nuclear condensation; membrane blebbing; apoptotic body formation</td>
<td>Activation of caspases; DNA fragmentation; ΔΨm dissipation; phosphatidylserine exposure</td>
<td>TCD or ICD</td>
<td>Positive: initiator caspase (CASP2, CASP8, CASP9, and CASP10); effector caspase (CASP3, CASP6, and CASP7); pro-apoptotic BCL2 family (e.g., BAK1, BAX, BOK, BCL2L11, BBC3, PMAIP1, and BID)
<sup>
<xref ref-type="bibr" rid="CR2">2</xref>
,
<xref ref-type="bibr" rid="CR9">9</xref>
</sup>
; TP53
<sup>
<xref ref-type="bibr" rid="CR264">264</xref>
</sup>
</td>
<td>Z-VAD-FMK (pan caspase); emricasan (pan caspase); Q-VD-OPh (pan caspase); Z-VAD(OH)-FMK (pan caspase); Z-DEVD-FMK (CASP3, CASP6, CASP7, and CASP10); Z-VDVAD-FMK (CASP2); ivachtin (CASP3); Q-DEVD-OPh (CASP3); Ac-DEVD-CHO (CASP3 and CASP7); Z-IETD-FMK (CASP8); Q-LEHD-OPh (CASP9)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Negative: anti-apoptotic BCL2 family (BCL2, BCL2L1, MCL1, BCL2L2, and BCL2L10)
<sup>
<xref ref-type="bibr" rid="CR2">2</xref>
,
<xref ref-type="bibr" rid="CR9">9</xref>
</sup>
</td>
<td></td>
</tr>
<tr>
<td>Necroptosis</td>
<td>Cell swelling; rupture of plasma membrane; moderate chromatin condensation</td>
<td>Activation of RIPK1, RIPK3, and MLKL; cytosolic necrosome formation</td>
<td>ICD</td>
<td>
<p>Positive: RIPK1, RIPK3, and MLKL</p>
<p>Negative: ESCRT-III, cIAPs, LUBAC, PPM1B, and AURKA</p>
</td>
<td>Necrostatin-1 (RIPK1); GSK872 (RIPK3); HS-1371 (RIPK3); necrosulfonamide (MLKL)</td>
</tr>
<tr>
<td>Pyroptosis</td>
<td>Lack of cell swelling; rupture of plasma membrane; bubbling; moderate chromatin condensation</td>
<td>Activation of CASP1, CASP3, and GSDMD; GSDMD cleavage; GSDMD-N–induced pore formation; IL1B release</td>
<td>ICD</td>
<td>
<p>Positive: CASP1, CASP11, and GSDMD</p>
<p>Negative: GPX4, ESCRT-III, PKA</p>
</td>
<td>Ac-YVAD-cmk (CASP1); Z-YVAD (OMe)-FMK (CASP1); VX765 (CASP1); wedelolactone (CASP11); Ac-FLTD-CMK (GSDMD cleavage); MCC950 (NLRP3-inflammasome); isoliquiritigenin (NLRP3-inflammasome); glybenclamide (NLRP3-inflammasome); CY-09 (NLRP3-inflammasome); oridonin (NLRP3-inflammasome)</td>
</tr>
<tr>
<td>Ferroptosis</td>
<td>Smaller mitochondria; reduced mitochondria crista; elevated mitochondrial membrane densities; increased rupture of mitochondrial membrane</td>
<td>Iron accumulation; lipid peroxidation; ΔΨm dissipation; MAP1LC3B-I to MAP1LC3B-II conversion; glutaminolysis; caspase-independent</td>
<td>ICD</td>
<td>
<p>Positive: TFRC, ACSL4, LPCAT3, ALOX15, GLS2, DPP4, NCOA4, BAP1, BECN1, PEBP1, CARS,
<sup>
<xref ref-type="bibr" rid="CR122">122</xref>
</sup>
VDAC2/3, RAB7A, HSP90, and ALK4/5
<sup>
<xref ref-type="bibr" rid="CR265">265</xref>
</sup>
</p>
<p>Negative: SLC7A11, GPX4, NFE2L2, HSPB1, HSPA5, FANCD2,
<sup>
<xref ref-type="bibr" rid="CR266">266</xref>
</sup>
NFS1,
<sup>
<xref ref-type="bibr" rid="CR267">267</xref>
</sup>
ITGA6,
<sup>
<xref ref-type="bibr" rid="CR268">268</xref>
</sup>
ITGB4,
<sup>
<xref ref-type="bibr" rid="CR268">268</xref>
</sup>
and OTUB1
<sup>
<xref ref-type="bibr" rid="CR269">269</xref>
</sup>
</p>
<p>Dual: TP53</p>
</td>
<td>Deferoxamine (Fe); cyclipirox (Fe), deferiprone (Fe); ferrostatin-1 (ROS); liproxstatin-1 (ROS); β-mercaptoethanol (ROS); vitamin E (ROS); β-carotene (ROS); NAC (ROS); XJB-5-131 (ROS); zileuton (ROS); CoQ10 (ROS); baicalein (ROS); vildagliptin (DPP4); alogliptin (DPP4); linagliptin (DPP4); thiazolidinedione (ACSL4); rosiglitazone (ACSL4); selenium (GPX4)</td>
</tr>
<tr>
<td>Parthanatos</td>
<td>Chromatin condensation; large DNA fragmentation; lack of apoptotic body and small-scale DNA fragments; loss of membrane integrity; lack of cell swelling</td>
<td>Excessive activation of PARP1; ΔΨm dissipation; caspase-independent; NAD+ and ATP depletion; accumulation of poly ADP-ribose (PAR) polymers; AIFM1 release from mitochondria to nucleus</td>
<td>ICD</td>
<td>
<p>Positive: PARP1, AIFM1, MIF, and OGG1</p>
<p>Negative: ADPRHL2 and RNF146</p>
</td>
<td>BYK204165 (PARP1); AG-14361 (PARP1); iniparib (PARP1)</td>
</tr>
<tr>
<td>Entotic cell death</td>
<td>Cell-in-cell structure</td>
<td>Activation of adhesion proteins and actomyosin; LC3-associated phagocytosis</td>
<td>TCD or ICD</td>
<td>
<p>Positive: CDH1, CTNNA1, AMPK, RHOA, ROCK, myosin, ATG5, ATG7, PI3KC3, BECN1, CYBB, UVRAG, and RUBCN</p>
<p>Negative: CDC42 and RNF146</p>
</td>
<td>C3-toxin (RHOA), Y-27632 (ROCK), blebbistatin (myosin)</td>
</tr>
<tr>
<td>Netotic cell death</td>
<td>Plasma membrane rupture; nuclear membrane collapse; chromatin fibre release</td>
<td>Formation of NETs; release and translocation of granular enzymes; histone citrullination</td>
<td>TCD or ICD</td>
<td>Positive: ELANE, MMP, MPO, CAMP/LL37, and PADI4</td>
<td>Tetrahydroisoquinolines (NETs); cl-amidine (PADI4); lactoferrin (NETs); DNase (NETs)</td>
</tr>
<tr>
<td>Lysosome-dependent cell death</td>
<td>Lysosome and plasma membrane rupture</td>
<td>Lysosomal membrane permeabilization; release of lysosomal hydrolytic enzymes; lysosomal iron-induced oxidative injury</td>
<td>ICD</td>
<td>
<p>Positive: cathepsins, STAT3, and TP53</p>
<p>Negative: NF-κB and MCOLN1</p>
</td>
<td>CA-074Me (CTSB); deferoxamine (Fe); NAC (ROS)</td>
</tr>
<tr>
<td>Autophagy-dependent cell death</td>
<td>Autophagic vacuolization</td>
<td>MAP1LC3B-I to MAP1LC3B-II conversion; increased autophagic flux and lysosomal activity</td>
<td>ICD</td>
<td>
<p>Positive: BECN1, Na
<sup>+</sup>
/K
<sup>+</sup>
-ATPase and AMPK</p>
<p>Negative: mTOR</p>
</td>
<td>Chloroquine (lysosomal inhibitor); bafilomycin A1 (H
<sup>+</sup>
-ATPase inhibitor); concanamycin A (H
<sup>+</sup>
-ATPase inhibitor), 3-methyladenine (class III PI 3-kinase); spautin 1 (USP10 and USP13); wortmannin (PI 3-kinase)</td>
</tr>
<tr>
<td>Alkaliptosis</td>
<td>Necrosis-like morphology</td>
<td>Intracellular alkalinization; activation of NF-κB; caspase-independent</td>
<td>ICD</td>
<td>
<p>Positive: IKBKB and NF-κB</p>
<p>Negative: CA9</p>
</td>
<td>NAC (pH), N-acetyl alanine acid (pH); IMD0354 (IKBKB); CAY10657 (IKBKB); SC514 (IKBKB)</td>
</tr>
<tr>
<td>Oxeiptosis</td>
<td>Apoptosis-like morphology</td>
<td>ROS-dependent; activation of KEAP1; NFE2L2-independent; caspase-independent; lack of nuclear translocation of AIFM1</td>
<td>TCD</td>
<td>Positive: KEAP1, PGAM5, and AIFM1</td>
<td>NAC (ROS)</td>
</tr>
</tbody>
</table>
</table-wrap>
</p>
<sec id="Sec2">
<boxed-text>
<label>Box 1 Caspases in cell death</label>
<p id="Par4">Caspases are a family of cysteine-dependent aspartate-specific proteases that play a critical role in the regulation of cell death, connecting to development, inflammation, and immunity.
<sup>
<xref ref-type="bibr" rid="CR10">10</xref>
,
<xref ref-type="bibr" rid="CR11">11</xref>
</sup>
RCD is therefore categorized into two groups: caspase-dependent (e.g., apoptosis and pyroptosis) and caspase-independent RCD (e.g., necroptosis, ferroptosis, parthanatos, alkaliptosis, and oxeiptosis). In mammalian cells, caspases can be divided into four groups: initiator caspases (CASP2, CASP8, CASP9, and CASP10), effector caspases (CASP3, CASP6, and CASP7), inflammatory caspases (CASP1, CASP4, CASP5, CASP11, and CASP12), and the keratinization-relevant caspase (CASP14). Human CASP4 and CASP5 are functional orthologues of mouse CASP11 and CASP12, respectively. The mouse genome lacks CASP10.</p>
<p id="Par5">Like many proteases, caspases initially exist as inactive zymogens, namely, procaspases. CASP8 and CASP10 have four domain structures, including the small subunit, large subunit, caspase activation and recruitment domain (CARD), and death effector domain (DED). CASP1, CASP2, CASP4, CASP5, CASP9, and CASP12 lack the DED motif, but contain other domains. In contrast, effector caspases (CASP3, CASP6, and CASP7) and CASP14 require cleavage by other caspases into small subunits and large subunits that assemble into active enzyme. These activated caspases can cleave substrates such as downstream caspases, cellular structural proteins, and immune molecules to cause cell death and inflammation. Caspases recognize at least four contiguous amino acids in their substrates, namely P4-P3-P2-P1. These substrates are cleaved by caspases after the C-terminal residue (P1), usually an Asp residue.</p>
<p id="Par6">Initiator and effector caspases regulate apoptosis, whereas inflammatory caspases control pyroptosis. CASP3, CASP6, and CASP7 are essential executioner caspases in various types of apoptosis. They are usually activated by CASP8 and CASP9 in the extrinsic and intrinsic pathways, respectively. CASP8 coordinates the response to TNF in the induction of inflammation, apoptosis, and necroptosis. TNF is one of the most potent physiological inducers of the NF-κB pathway to transactivate genes coding for cytokines and pro-survival factors. This effect is achieved through the TNFRSF1A complex including FADD. Active CASP8 inactivates the TNFRSF1A complex activity by cleaving RIPK1, thus favoring the activation of CASP3 or CASP7 and subsequent apoptosis. In contrast, the inhibition of CASP8 by the pan-caspase inhibitor Z-VAD-FMK or genetic inactivation of either CASP8 or FADD leads to TNF-induced necroptosis via the activation of the RIPK1-RIPK3-MLKL pathway.
<sup>
<xref ref-type="bibr" rid="CR19">19</xref>
,
<xref ref-type="bibr" rid="CR35">35</xref>
</sup>
CASP2 and CASP10 are alternative initiator caspases contributing to RCD under certain conditions, but the underlying mechanism remains unclear. CASP1, CASP4, CASP5, and CASP11 ignite pyroptosis by cleaving members of the gasdermin family, especially GSDMD, to induce pore formation and plasma membrane rupture.
<sup>
<xref ref-type="bibr" rid="CR82">82</xref>
,
<xref ref-type="bibr" rid="CR99">99</xref>
<xref ref-type="bibr" rid="CR103">103</xref>
</sup>
CASP12 is involved in endoplasmic reticulum stress-associated RCD
<sup>
<xref ref-type="bibr" rid="CR270">270</xref>
</sup>
(although this finding did not result in follow-up papers and has been disputed
<sup>
<xref ref-type="bibr" rid="CR271">271</xref>
</sup>
) and functions as an anti-inflammatory regulator partly due to the inhibition of CASP1 inflammasome and the NF-κB pathway.
<sup>
<xref ref-type="bibr" rid="CR10">10</xref>
,
<xref ref-type="bibr" rid="CR11">11</xref>
</sup>
</p>
</boxed-text>
</sec>
<sec id="Sec3">
<boxed-text>
<label>Box 2 Oxidative stress in cell death</label>
<p id="Par7">Oxidative stress results from an imbalance between the production of ROS and the antioxidant capacity. ROS include superoxide anion (O
<sub>2</sub>
<sup>•-</sup>
), hydroxyl radical (
<sup></sup>
OH), H
<sub>2</sub>
O
<sub>2</sub>
, and singlet oxygen (
<sup>1</sup>
O
<sub>2</sub>
). O
<sub>2</sub>
<sup>•-</sup>
is the one-electron reduction, whereas H
<sub>2</sub>
O
<sub>2</sub>
is the two-electron reduction product of molecular oxygen.
<sup></sup>
OH, a major initiator of lipoperoxidation, can be produced from iron-mediated Fenton reactions or high-energy ionizing radiation.
<sup>1</sup>
O
<sub>2</sub>
is an atypical ROS that is produced by the irradiation of molecular oxygen in the presence of photosensitizer pigments. Apart from mitochondria, other subcellular structures or organelles, including the plasma membrane, endoplasmic reticulum, and peroxisomes contribute to the production of ROS.</p>
<p id="Par8">The antioxidant system may rely on enzymatic and non-enzymatic reactions. The enzymatic system comprises superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPX), and glutathione-S-transferase (GST). SOD isoenzymes, which include SOD1 in the cytoplasm and nucleus, SOD2 in mitochondria, and SOD3 in the extracellular space, catalyse the dismutation of O
<sub>2</sub>
<sup>•-</sup>
into either O
<sub>2</sub>
or H
<sub>2</sub>
O
<sub>2.</sub>
CAT is mostly located in peroxisomes and is responsible for converting H
<sub>2</sub>
O
<sub>2</sub>
into water and oxygen. GPX has eight members (GPX1-GPX8) in mitochondria, cytoplasm, and nuclei, and it functions to reduce lipid hydroperoxides to alcohols and to reduce H
<sub>2</sub>
O
<sub>2</sub>
to H
<sub>2</sub>
O. The activity of GPX relies on the presence of the oligoelement selenium. GST detoxifies xenobiotic electrophilic substrates by conjugating them to reduced GSH. The major intracellular non-enzymatic antioxidants include GSH, metal-binding proteins, melatonin, bilirubin, and polyamines. GSH is considered as the most important endogenous antioxidant capable of directly interacting with ROS or electrophiles and by functioning as a cofactor for various enzymes, including GPX.</p>
<p id="Par9">Oxidative damage is not only a cause, but also a consequence of various types of cell death. Excessive ROS can result in lipid peroxidation and damage to proteins and DNA. Peroxidation of membrane lipids not only leads to functional changes, but also causes structural damage, which finally results in cell rupture. Beyond its implication in apoptosis, lipid peroxidation is involved in various types of RCD such as ferroptosis,
<sup>
<xref ref-type="bibr" rid="CR117">117</xref>
</sup>
pyroptosis,
<sup>
<xref ref-type="bibr" rid="CR105">105</xref>
</sup>
necroptosis,
<sup>
<xref ref-type="bibr" rid="CR137">137</xref>
</sup>
autophagy-dependent death,
<sup>
<xref ref-type="bibr" rid="CR272">272</xref>
</sup>
parthanatos,
<sup>
<xref ref-type="bibr" rid="CR273">273</xref>
</sup>
and netotic cell death.
<sup>
<xref ref-type="bibr" rid="CR274">274</xref>
</sup>
DNA damage by oxidation is a major reason for genomic instability in the development of age-associated diseases. Apoptosis
<sup>
<xref ref-type="bibr" rid="CR13">13</xref>
</sup>
and parthanatos
<sup>
<xref ref-type="bibr" rid="CR180">180</xref>
</sup>
are usually associated with DNA damage. ROS may stimulate cell death pathways and trigger inflammation, resulting in inflammasome activation and pyroptosis.
<sup>
<xref ref-type="bibr" rid="CR275">275</xref>
</sup>
Therefore, the suppression of ROS could have crucial anti-inflammatory effects.</p>
</boxed-text>
</sec>
</sec>
<sec id="Sec4">
<title>Classification of cell death</title>
<p id="Par10">Early classifications of cell death modalities depended on the morphological and structural details of individual tissues and cells. Accordingly, Schweichel and Merker published in 1973 a morphological hallmark system for classifying cell death into types I, II, and III in prenatal tissues treated with various embryotoxic substances.
<sup>
<xref ref-type="bibr" rid="CR14">14</xref>
</sup>
Type I cell death corresponds to apoptosis, and is characterized by cell shrinkage (pyknosis), membrane blebbing, apoptotic body formation, DNA fragmentation (karyorrhexis), and chromatin condensation. Apoptosis was also termed “shrinkage necrosis,” a form of nonpathologic cell death, by John Kerr in 1971.
<sup>
<xref ref-type="bibr" rid="CR15">15</xref>
</sup>
Type II cell death is often referred to as autophagy-dependent cell death, with the formation of large-scale autophagic vacuolization-containing cytosolic materials and organelles. Although there is no doubt that autophagy promotes cell survival in most cases,
<sup>
<xref ref-type="bibr" rid="CR16">16</xref>
</sup>
autophagy can also cause cell death, namely autophagy-dependent cell death, in specific circumstances.
<sup>
<xref ref-type="bibr" rid="CR17">17</xref>
,
<xref ref-type="bibr" rid="CR18">18</xref>
</sup>
Type III cell death, namely necrosis, is characterized by the loss of membrane integrity and swelling of subcellular organelles (oncosis). Necrosis has long been considered as an uncontrolled type of cell death. In contrast, regulated types of necrosis such as necroptosis occur in a controlled manner.
<sup>
<xref ref-type="bibr" rid="CR12">12</xref>
,
<xref ref-type="bibr" rid="CR13">13</xref>
,
<xref ref-type="bibr" rid="CR19">19</xref>
</sup>
</p>
<p id="Par11">The current classification system of cell death has been updated by the Nomenclature Committee on Cell Death (NCCD), which formulates guidelines for the definition and interpretation of all aspects of cell death since 2005.
<sup>
<xref ref-type="bibr" rid="CR20">20</xref>
</sup>
The NCCD has released five position papers dealing with the classification of cell death (2005 and 2009),
<sup>
<xref ref-type="bibr" rid="CR20">20</xref>
,
<xref ref-type="bibr" rid="CR21">21</xref>
</sup>
the molecular definitions of cell death subroutines (2012),
<sup>
<xref ref-type="bibr" rid="CR22">22</xref>
</sup>
essential versus accessory aspects of cell death (2015),
<sup>
<xref ref-type="bibr" rid="CR23">23</xref>
</sup>
and molecular mechanisms of cell death (2018).
<sup>
<xref ref-type="bibr" rid="CR24">24</xref>
</sup>
Currently, cell death can be fundamentally divided into accidental cell death (ACD) and RCD, based on functional aspects.
<sup>
<xref ref-type="bibr" rid="CR23">23</xref>
</sup>
ACD can be triggered by unexpected attack and injury that overwhelms any possible control mechanisms. In contrast, RCD involves precise signaling cascades, is executed by a set of defined effector molecules and has unique biochemical, functional, and immunological consequences (Table 
<xref rid="Tab1" ref-type="table">1</xref>
). RCD is also known as PCD when it occurs in physiological conditions.
<sup>
<xref ref-type="bibr" rid="CR23">23</xref>
</sup>
Based on its molecular characteristics, RCD can be classified into multiple subroutines, a few of which have clear physiological bearing (like necroptosis and pyropotosis, which are observed during development and/or in the context of viral infections) while others (like ferroptosis, entotic cell death, netotic cell death, parthanatos, lysosome-dependent cell death, autophagy-dependent cell death, alkaliptosis, and oxeiptosis) are less well-studied and may actually be limited to cellular responses to specific toxins that do not reflect normal physiology. Here, we adopt the viewpoint that cell death involves some kind of “regulation” (hence “RCD”) as long as specific genetic or pharmacological manipulations are able to interrupt the lethal cascade-causing cellular dismantling in response to external stimuli.</p>
</sec>
<sec id="Sec5">
<title>Necroptosis</title>
<p id="Par12">Necroptosis, a programmed form of necrosis showing morphological features similar to necrosis,
<sup>
<xref ref-type="bibr" rid="CR25">25</xref>
</sup>
was first observed in 1996 in pig kidney cells infected by the cowpox virus that expresses cytokine response modifier A (CrmA), a viral CASP1 and CASP8 inhibitor.
<sup>
<xref ref-type="bibr" rid="CR26">26</xref>
</sup>
In 1998, this observation was extended when L-M cells (a mouse fibroblast cell line) were found to be strongly sensitized to tumor necrosis factor (TNF, also known as TNFα)-induced necrotic cell death, suggesting that CASP8 negatively controls this type of cell death.
<sup>
<xref ref-type="bibr" rid="CR27">27</xref>
</sup>
Today it is known that necroptosis can be triggered by multiple stimuli, including the activation of death receptors (e.g., FAS and TNFRSF1A),
<sup>
<xref ref-type="bibr" rid="CR28">28</xref>
</sup>
toll-like receptors (e.g., toll-like receptor 3 [TLR3] and TLR4),
<sup>
<xref ref-type="bibr" rid="CR29">29</xref>
</sup>
nucleic acid sensors (e.g., Z-DNA–binding protein 1 [ZBP1, also known as DAI],
<sup>
<xref ref-type="bibr" rid="CR30">30</xref>
</sup>
retinoic acid receptor responder 3 [RARRES3, also known as RIG1],
<sup>
<xref ref-type="bibr" rid="CR31">31</xref>
</sup>
transmembrane protein 173 [TMEM173, also known as STING]
<sup>
<xref ref-type="bibr" rid="CR32">32</xref>
,
<xref ref-type="bibr" rid="CR33">33</xref>
</sup>
), and adhesion receptors.
<sup>
<xref ref-type="bibr" rid="CR34">34</xref>
</sup>
The same ligands (e.g., TNF, TNF superfamily member 10 [TNFSF10, also known as TRAIL], and Fas ligand [FASLG, also known as FasL or CD95L]) that ignite the extrinsic apoptosis pathway can trigger necroptosis when CASP8 activation at the death-inducing signaling complex (DISC) is prevented by means of caspase inhibitors (such as Z-VAD-FMK) or by the depletion of fas-associated via death domain (FADD).
<sup>
<xref ref-type="bibr" rid="CR35">35</xref>
</sup>
</p>
<p id="Par13">The era of molecular necroptosis research began in 2000 with the discovery of receptor-interacting serine/threonine kinase 1 (RIPK1) as a regulator of FASLG-induced necroptosis in T cells.
<sup>
<xref ref-type="bibr" rid="CR28">28</xref>
</sup>
RIPK1 is indeed a multifunctional signal kinase at the crossroads between inflammation, immunity, cell stress, cell survival, and cell death (Box 
<xref rid="Sec6" ref-type="sec">3</xref>
). Subsequently, the identification of the pharmacological RIPK1 inhibitor necrostatin-1 led to the coining of the term “necroptosis.”
<sup>
<xref ref-type="bibr" rid="CR36">36</xref>
,
<xref ref-type="bibr" rid="CR37">37</xref>
</sup>
Later, receptor-interacting serine/threonine kinase 3 (RIPK3) was unravelled as a downstream mediator of RIPK1 in death receptor-induced necroptosis.
<sup>
<xref ref-type="bibr" rid="CR38">38</xref>
<xref ref-type="bibr" rid="CR40">40</xref>
</sup>
The subsequent discovery of mixed lineage kinase domain-like pseudokinase (MLKL) as the effector of necroptosis has largely enhanced our understanding of the molecular process of necroptosis.
<sup>
<xref ref-type="bibr" rid="CR41">41</xref>
,
<xref ref-type="bibr" rid="CR42">42</xref>
</sup>
</p>
<p id="Par14">An array of signaling pathways facilitate RIPK3 activation in several distinct ways (Fig. 
<xref rid="Fig3" ref-type="fig">3a</xref>
) involving the homotypic interaction of RIP homotypic interaction motif (RHIM) domain-containing receptors, adaptors and kinases (ZBP1, toll-like receptor adaptor molecule 1 [TICAM1, also known as TRIF], RIPK1, and RIPK3). These RHIM domains of RIPK1 and RIPK3 mediate the formation of large hetero-amyloid signaling complexes that are initiated by different ligands.
<sup>
<xref ref-type="bibr" rid="CR43">43</xref>
,
<xref ref-type="bibr" rid="CR44">44</xref>
</sup>
First, death receptor ligands induce the RHIM-mediated binding of RIPK1 to RIPK3, triggering the formation of specific signaling complexes, the “necrosomes,” ultimately resulting in MLKL activation.
<sup>
<xref ref-type="bibr" rid="CR38">38</xref>
<xref ref-type="bibr" rid="CR40">40</xref>
</sup>
This process requires protein posttranslational modifications that are regulated by the ubiquitin ligase STIP1 homology and u-box containing protein 1 (STUB1, also known as CHIP),
<sup>
<xref ref-type="bibr" rid="CR45">45</xref>
</sup>
the aurora kinase A (AURKA),
<sup>
<xref ref-type="bibr" rid="CR46">46</xref>
</sup>
the protein phosphatase Mg
<sup>2+</sup>
/Mn
<sup>2+</sup>
-dependent 1B (PPM1B, also known as PP2CB),
<sup>
<xref ref-type="bibr" rid="CR47">47</xref>
</sup>
and the deubiquitinase TNF alpha-induced protein 3 (TNFAIP3, also known as A20).
<sup>
<xref ref-type="bibr" rid="CR48">48</xref>
</sup>
Second, TICAM1, but not RIPK1, is required for RIPK3-MLKL–dependent necroptosis in response to TLR ligands.
<sup>
<xref ref-type="bibr" rid="CR29">29</xref>
</sup>
Third, certain viruses can directly bind to RIPK3
<sup>
<xref ref-type="bibr" rid="CR49">49</xref>
</sup>
or promote the binding of the host protein ZBP1 to RIPK3 and subsequent MLKL activation.
<sup>
<xref ref-type="bibr" rid="CR30">30</xref>
</sup>
Fourth, RIPK3 activation by interferon alpha receptor or adhesion receptor occurs through an alternative pathway that does not require RIPK1, TICAM1 nor ZBP1.
<sup>
<xref ref-type="bibr" rid="CR34">34</xref>
,
<xref ref-type="bibr" rid="CR50">50</xref>
,
<xref ref-type="bibr" rid="CR51">51</xref>
</sup>
<fig id="Fig3">
<label>Fig. 3</label>
<caption>
<p>Core molecular mechanism of non-apoptotic regulated cell death.
<bold>a</bold>
RIPK3-stimulated MLKL is necessary for membrane rupture formation in necroptosis. Upstream elicitors include DR, TLR, and viruses, which induce RIPK3 activation through RIPK1, TICAM1, and ZBP1, respectively. In addition, RIPK3 is activated by AR via an unknown adaptor protein or kinases.
<bold>b</bold>
Pyroptosis is mostly driven by GSDMD after cleavage of this protein by CASP1 and CASP11 in response to PAMPs and DAMPs, or cytosolic LPS.
<bold>c</bold>
Ferroptosis is a form of cell death that relies on the balance between iron accumulation-induced ROS production and the antioxidant system during lipid peroxidation. The ACSL4-LPCAT3-ALOX15 pathway mediates lipid peroxidation. In contrast, several antioxidant systems, especially system xc
<sup>-</sup>
that includes the core components SLC7A11, GPX4, and NFE2L2, inhibit this process.
<bold>d</bold>
Parthanatos is a PARP1-dependent form of cell death that relies on the AIFM1-MIF pathway.
<bold>e</bold>
Entotic cell death is a form of cellular cannibalism through the activation of entosis followed by the engulfing and killing of cells through LAP and the lysosomal degradation pathway. RHOA, ROCK, myosin, and CDC42 are required for entosis.
<bold>f</bold>
Netotic cell death is driven by NET release, which is regulated by NADPH oxidase-mediated ROS production and histone citrullination.
<bold>g</bold>
Lysosome-dependent cell death is mediated by releasing hydrolytic enzymes (cathepsins) or iron upon LMP.
<bold>h</bold>
Autophagy-dependent cell death is driven by the molecular machinery of autophagy.
<bold>i</bold>
Alkaliptosis is driven by intracellular alkalinization after IKBKB-NF-κB pathway-dependent downregulation of CA9.
<bold>j</bold>
Oxeiptosis is an oxygen radical-induced form of cell death driven by the activation of the KEAP1-PGAM5-AIFM1 pathway</p>
</caption>
<graphic xlink:href="41422_2019_164_Fig3_HTML" id="d29e1240"></graphic>
</fig>
</p>
<p id="Par15">The phosphorylation of MLKL by RIPK3 at different residues in the C-terminal pseudokinase domain (S345/S347/T349 in mouse and S357/T358 in human) results in a conformational change and binding of inositolhexaphosphate (IP6) with positively charged patches in the N-terminal part of MLKL, followed by its recruitment to phosphatidylinosites, and insertion and multimerization in the plasma membrane, resulting in plasma membrane permeabilization.
<sup>
<xref ref-type="bibr" rid="CR41">41</xref>
,
<xref ref-type="bibr" rid="CR42">42</xref>
,
<xref ref-type="bibr" rid="CR52">52</xref>
<xref ref-type="bibr" rid="CR56">56</xref>
</sup>
MLKL oligomerization and translocation to the plasma membrane can be enhanced by interactions with the molecular chaperone heat shock protein 90 alpha family class A member 1 (HSP90AA1, also known as HSP90)
<sup>
<xref ref-type="bibr" rid="CR57">57</xref>
<xref ref-type="bibr" rid="CR60">60</xref>
</sup>
or by the local accumulation of inositol phosphates resulting from the activation of inositol phosphate kinase (e.g., inositol polyphosphate multikinase [IPMK] and inositol-tetrakisphosphate 1-kinase [ITPK1]).
<sup>
<xref ref-type="bibr" rid="CR61">61</xref>
</sup>
Strikingly, the endosomal sorting complexes required for transport (ESCRT)-III complex, a membrane scission machine, limits MLKL-mediated necroptosis and promotes membrane repair.
<sup>
<xref ref-type="bibr" rid="CR62">62</xref>
</sup>
MLKL has also been shown to regulate endosomal trafficking and extracellular vesicle generation.
<sup>
<xref ref-type="bibr" rid="CR63">63</xref>
</sup>
Thus, a fine balance between membrane injury and repair ultimately decides cell fate in necroptosis.</p>
<p id="Par16">Early studies have revealed that mitochondrial events such as the production of mitochondrial reactive oxygen species (ROS),
<sup>
<xref ref-type="bibr" rid="CR64">64</xref>
</sup>
the activation of the mitochondrial phosphatase PGAM family member 5 (PGAM5, mitochondrial serine/threonine protein phosphatase), or the presence of a mitochondrial permeability transition may trigger necroptosis.
<sup>
<xref ref-type="bibr" rid="CR65">65</xref>
</sup>
How exactly mitochondrial ROS production contributes to necroptosis induction is still unsolved, but it may involve a redox sensing upstream of RIPK1 activation and RIPK3 recruitment.
<sup>
<xref ref-type="bibr" rid="CR66">66</xref>
</sup>
A connection between aerobic metabolism and necroptosis sensitivity might exist, as evidenced by RIPK3-mediated positive regulation of glutaminolysis and pyruvate dehydrogenase activity.
<sup>
<xref ref-type="bibr" rid="CR38">38</xref>
,
<xref ref-type="bibr" rid="CR67">67</xref>
</sup>
However, other studies demonstrate that mitochondria are dispensable for necroptosis induced by death receptor signaling using PGAM5 knockdown cells.
<sup>
<xref ref-type="bibr" rid="CR55">55</xref>
,
<xref ref-type="bibr" rid="CR68">68</xref>
</sup>
It has also been suggested that the formation of necrosomes with RIPK1, RIPK3, and MLKL in the nucleus may increase MLKL activity in plasma membranes.
<sup>
<xref ref-type="bibr" rid="CR69">69</xref>
,
<xref ref-type="bibr" rid="CR70">70</xref>
</sup>
Moreover, nicotinamide adenine dinucleotide phosphate (NADPH) oxidase-derived ROS have been implicated in necroptosis in neutrophils.
<sup>
<xref ref-type="bibr" rid="CR71">71</xref>
</sup>
The functional significance of different ROS sources in necroptosis and how they impact the signal transduction remain to be further investigated.</p>
<p id="Par17">In conclusion, RIPK3 and its substrate MLKL are necessary for necroptosis, whereas upstream RIPK1 contributes to this process in some cases (e.g., death receptor activation). RIPK3, independent of its kinase activity and independent of MLKL, also plays a regulatory role in apoptosis
<sup>
<xref ref-type="bibr" rid="CR72">72</xref>
</sup>
and in NLRP3-inflammasome activation and pyroptosis.
<sup>
<xref ref-type="bibr" rid="CR73">73</xref>
</sup>
Neither RIPK3 nor MLKL knockout mice show deficiency in embryogenesis, development, and homeostasis, suggesting no major role of necroptosis in nonchallenged conditions.
<sup>
<xref ref-type="bibr" rid="CR74">74</xref>
,
<xref ref-type="bibr" rid="CR75">75</xref>
</sup>
A role for necroptosis in development and homeostasis is only revealed in conditions of FADD or CASP8 deficiency, demonstrating the important checkpoint function of CASP8 in controlling necroptosis in vivo.
<sup>
<xref ref-type="bibr" rid="CR74">74</xref>
,
<xref ref-type="bibr" rid="CR75">75</xref>
</sup>
In contrast to the apparent absence of function during development and homeostasis, necroptosis is implicated in neurodegenerative diseases, chemotherapy responses, and tissue injury.
<sup>
<xref ref-type="bibr" rid="CR76">76</xref>
</sup>
Of note, data obtained from conditional knockout mice should be favoured over the use of systemic knockout mice that were generated using different sources of ES cells (129, C57BL/6J, or C57BL/6N) to avoid phenotypic interference of passenger mutations.
<sup>
<xref ref-type="bibr" rid="CR77">77</xref>
</sup>
</p>
<sec id="Sec6">
<boxed-text>
<label>Box 3 Regulation of RIPK1 in survival and cell death function</label>
<p id="Par18">When cells undergo cellular stress (endoplasmic reticulum stress, oxidative stress, DNA damage, pro-inflammatory stimuli) the default outcome is an adaptive response involving de novo expression of numerous genes and posttranslational modifications of target proteins (proteolysis, phosphorylation, and ubiquitylation) to maintain homeostasis or to induce cell death if the cellular stress remains unmitigated. RIPK1 is a central hub downstream of many cellular stress and immune receptor pathways such as TLR and TNF receptor family members, where it regulates the induction of pro-survival genes (e.g., BCL2, XIAP, and FLIP), inflammatory genes (cytokines and chemokines), and cell death through kinase-independent and kinase-dependent mechanisms.
<sup>
<xref ref-type="bibr" rid="CR276">276</xref>
</sup>
RIPK1 has two major faces. As a scaffold it recruits in an ubiquitylation-dependent way factors that initiate the activation of NF-κB and the MAPK cascade, and prevents CASP8-dependent apoptosis and RIPK3/MLKL-dependent necroptosis. As a kinase following its enzymatic activation, RIPK1 induces CASP8-mediated apoptosis and RIPK3/MLKL-mediated necroptosis. Transgenic knockin mice of kinase dead RIPK1 do not show a spontaneous phenotype but are resistant to TNF-induced systemic inflammatory response syndrome and show decreased pathogenesis in several inflammatory and degenerative diseases, suggesting that cell death may be an important etiologic factor in these pathologies.
<sup>
<xref ref-type="bibr" rid="CR72">72</xref>
,
<xref ref-type="bibr" rid="CR277">277</xref>
<xref ref-type="bibr" rid="CR279">279</xref>
</sup>
On the other hand, kinase dead RIPK1 knockin mice show increased sensitivity to infection, demonstrating the importance of RIPK1-driven cell death in immunosurveillance.
<sup>
<xref ref-type="bibr" rid="CR277">277</xref>
,
<xref ref-type="bibr" rid="CR279">279</xref>
,
<xref ref-type="bibr" rid="CR280">280</xref>
</sup>
What determines the switch between the RIPK1 scaffold and kinase functions that have such an impact on pathophysiological conditions? The most detailed insights into the regulation of these two opposing functions of RIPK1 were obtained from studying TNF-induced signaling pathways. TNF binding to TNFRSF1A causes in the first instance the formation of a receptor-associated complex I containing TRADD, RIPK1, and E3 ligases (TRAF2, cIAP1/2, and LUBAC), adding K63 and linear ubiquityl chains on RIPK1. This network of polyubiquityl chains forms a platform that recruits the IKK complex and MAP3K7/TAK1 complex controlling the NF-κB and MAPK signaling pathways and leading to pro-survival and pro-inflammatory gene induction.
<sup>
<xref ref-type="bibr" rid="CR281">281</xref>
</sup>
However, recently it was found that both IKK and MAPKAPK2/MK2 (activated by the TAK1/p38 MAPK axis) phosphorylate RIPK1 at distinct sites, preventing its catalytic autoactivation.
<sup>
<xref ref-type="bibr" rid="CR282">282</xref>
<xref ref-type="bibr" rid="CR286">286</xref>
</sup>
When these phosphorylation-dependent brakes are absent, RIPK1 is recruited in complex II and will by default propagate apoptosis (complex IIb) or, in conditions of CASP8 deficiency, trigger RIPK1/RIPK3 necrosome formation and necroptosis. TBK1, a master integrator of stress and immune receptor signaling, also leads to the inactivation of RIPK1 kinase activity, suggesting that RIPK1 survival regulation goes beyond TNF signaling.
<sup>
<xref ref-type="bibr" rid="CR287">287</xref>
</sup>
As a consequence, conditions of the absence or inhibition of IAPs or LUBAC, absence of NEMO, inhibition of IKK, MAP3K7, or TBK1 strongly favor the catalytic autoactivation of RIPK1.
<sup>
<xref ref-type="bibr" rid="CR280">280</xref>
</sup>
It is hypothesized that pathological conditions, by regulating these survival checkpoints, may lead to enhanced sensitization of RIPK1-dependent apoptosis and necroptosis, contributing to inflammatory and degenerative diseases.
<sup>
<xref ref-type="bibr" rid="CR288">288</xref>
</sup>
</p>
</boxed-text>
</sec>
</sec>
<sec id="Sec7">
<title>Pyroptosis</title>
<p id="Par19">Pyroptosis is a form of RCD driven by the activation of inflammasome, a cytosolic multiprotein complex responsible for the release of interleukin (IL) 1 family members (e.g., interleukin-1β [IL1B] and IL18), the formation of ASC (apoptosis-associated speck-like protein containing a CARD, also called PYCARD or PYRIN and CARD domain-containing) specks, and the activation of pro-inflammatory caspases. The term pyroptosis was coined by Brad Cookson and coworkers
<sup>
<xref ref-type="bibr" rid="CR78">78</xref>
</sup>
to describe CASP1-dependent PCD in macrophages infected by
<italic>Salmonella</italic>
or
<italic>Shigella</italic>
and associated with the release of IL1B (IL1 was historically called leukocytic pyrogen, inspiring the name pyroptosis).
<sup>
<xref ref-type="bibr" rid="CR79">79</xref>
,
<xref ref-type="bibr" rid="CR80">80</xref>
</sup>
CASP1 mediates the proteolytic processing of pro-IL1B and pro-IL18 into mature IL1B and IL18, respectively. This type of inflammatory cell death can be triggered by the activation of CASP1 or CASP11 in mice (the latter corresponding to CASP4 and CASP5 in humans) in macrophages, monocytes and other cells
<sup>
<xref ref-type="bibr" rid="CR81">81</xref>
</sup>
(Fig. 
<xref rid="Fig3" ref-type="fig">3b</xref>
). Pyroptosis is morphologically distinct from apoptosis. Pyroptosis is characterized by the absence of DNA fragmentation in vitro, but by the presence of nuclear condensation coupled to cell swelling and the formation of large bubbles at the plasma membrane that eventually ruptures.
<sup>
<xref ref-type="bibr" rid="CR82">82</xref>
,
<xref ref-type="bibr" rid="CR83">83</xref>
</sup>
</p>
<p id="Par20">The activation of inflammasomes in macrophages or monocytes requires two signals: a priming signal (that may be mediated by TLR ligands and IFN signaling) that induces the transcriptional upregulation of inflammasome components through nuclear factor of κB (NF-κB), and then a sensing signal (e.g., adenosine triphosphate [ATP] and lipopolysaccharide [LPS]) that triggers pro-inflammatory caspase-mediated pyroptosis. Inflammasomes that include canonical and noncanonical types can be activated in the context of infection, tissue injury, or metabolic imbalances.
<sup>
<xref ref-type="bibr" rid="CR81">81</xref>
</sup>
Canonical CASP1-dependent inflammasomes are divided into two subtypes, Nod-like receptors (NLR, e.g., NLR family pyrin domain-containing 1 [NLRP1], NLRP2, NLRP3, NLRP6, NLRP7, NLR family CARD domain-containing 4 [NLRC4]) and non-NLR (e.g., absent in melanoma 2 [AIM2]). They can be selectively activated by pathogen-associated molecular patterns (PAMPs), damage-associated molecular patterns (DAMPs), or other immune challenges. For example, NLRP3, the most intensively studied inflammasome, can be activated by a wide range of inflammatory stimuli such as bacterial peptidoglycans, extracellular ATP, and uric acid crystals, facilitated by the kinase NIMA-related kinase 7 (NEK7).
<sup>
<xref ref-type="bibr" rid="CR84">84</xref>
</sup>
The non-NLR inflammasome involving AIM2 is activated by cytosolic double-stranded DNA from bacteria or host cells.
<sup>
<xref ref-type="bibr" rid="CR85">85</xref>
,
<xref ref-type="bibr" rid="CR86">86</xref>
</sup>
The CASP11-dependent noncanonical inflammasome is activated by cytosolic LPS from invading Gram-negative bacteria in macrophages, monocytes, or other cells.
<sup>
<xref ref-type="bibr" rid="CR87">87</xref>
</sup>
Lipid A moiety is required for cytosolic LPS binding to CASP11’s CARD domain, which causes CASP11 oligomerization.
<sup>
<xref ref-type="bibr" rid="CR88">88</xref>
</sup>
TLR4, a cell membrane receptor for LPS, is not required for cytosolic LPS-induced CASP11 activation.
<sup>
<xref ref-type="bibr" rid="CR89">89</xref>
,
<xref ref-type="bibr" rid="CR90">90</xref>
</sup>
The cytoplasmic delivery of LPS requires the release of bacterial outer membrane vesicles (OMVs) by Gram-negative bacteria
<sup>
<xref ref-type="bibr" rid="CR91">91</xref>
</sup>
or the binding of LPS with high-mobility group Box 
<xref rid="Sec2" ref-type="sec">1</xref>
(HMGB1).
<sup>
<xref ref-type="bibr" rid="CR92">92</xref>
</sup>
The interplay between canonical (e.g., NLRP3- and AIM2-dependent) and noncanonical inflammasome pathways can amplify the inflammatory response and pyroptosis.
<sup>
<xref ref-type="bibr" rid="CR93">93</xref>
,
<xref ref-type="bibr" rid="CR94">94</xref>
</sup>
Although eukaryotic translation initiation factor 2 alpha kinase 2 (EIF2AK2)/PKR and glycolysis may participate in CASP1-dependent inflammasome activation under certain conditions,
<sup>
<xref ref-type="bibr" rid="CR95">95</xref>
<xref ref-type="bibr" rid="CR98">98</xref>
</sup>
their roles in CASP11 inflammasome remain unclear.</p>
<p id="Par21">Several recent breakthroughs indicate that gasdermin D (GSDMD) is the key effector of pyroptosis
<sup>
<xref ref-type="bibr" rid="CR82">82</xref>
,
<xref ref-type="bibr" rid="CR99">99</xref>
<xref ref-type="bibr" rid="CR103">103</xref>
</sup>
(Fig. 
<xref rid="Fig3" ref-type="fig">3b</xref>
). GSDMD is cleaved by CASP11 or CASP1 to produce a 22 kDa C- (GSDMD-C) and a 3l kDa N-terminal fragment (GSDMD-N).
<sup>
<xref ref-type="bibr" rid="CR101">101</xref>
<xref ref-type="bibr" rid="CR103">103</xref>
</sup>
CASP11 auto-cleavage at the inter-subunit linker is essential for optimal catalytic activity and subsequent GSDMD cleavage.
<sup>
<xref ref-type="bibr" rid="CR104">104</xref>
</sup>
Once formed, GSDMD-N translocates to the inner leaflet of the plasma membrane and binds phospholipids, thus inducing the formation of pores that ultimately cause membrane lysis.
<sup>
<xref ref-type="bibr" rid="CR99">99</xref>
</sup>
In contrast, GSDMD-C inhibits GSDMD-N activity.
<sup>
<xref ref-type="bibr" rid="CR99">99</xref>
,
<xref ref-type="bibr" rid="CR100">100</xref>
</sup>
While deficiency of the phospholipid hydroperoxidase glutathione peroxidase 4 (GPX4) in myeloid-derived cells increases CASP1- or CASP11-mediated GSDMD-N production, pyroptosis, and lethality after cecal ligation and puncture (CLP)-induced sepsis, the pharmacological inhibition of phospholipid hydrolysing enzyme phospholipase C gamma 1 (PLCG1) strongly protects against pyroptosis and CLP-induced septic death,
<sup>
<xref ref-type="bibr" rid="CR105">105</xref>
</sup>
indicating that lipid peroxidation promotes pyroptosis. Protein kinase A (PKA) is a major cyclic adenosine monophosphate (cAMP) effector to directly block CASP11-mediated GSDMD-N production in macrophages.
<sup>
<xref ref-type="bibr" rid="CR106">106</xref>
</sup>
Like necroptosis, ESCRT-III is also recruited to the plasma membrane to trigger membrane repair upon GSDMD activation.
<sup>
<xref ref-type="bibr" rid="CR107">107</xref>
</sup>
Other members of the gasdermin family (GSDMA, GSDMB, GSDMC, GSDME/DFNA5, and GSDMA3) have similar functions in membrane-disrupting cytotoxicity.
<sup>
<xref ref-type="bibr" rid="CR99">99</xref>
</sup>
It has been shown that following the blockage or deficiency of the bona fide pyroptosis pathway (ASC-CASP1/4), the induction of pyroptosis can be engaged through mechanisms such as CASP8-GSDMD
<sup>
<xref ref-type="bibr" rid="CR108">108</xref>
,
<xref ref-type="bibr" rid="CR109">109</xref>
</sup>
and CASP3-GSDME,
<sup>
<xref ref-type="bibr" rid="CR110">110</xref>
</sup>
although the contribution of these alternative pathways to pyroptosis elicited by different triggers remains to be established in vivo.</p>
<p id="Par22">Neutrophil elastase (ELANE), one of the antibacterial serine proteases, triggers GSDMD cleavage at a site that is closer to the N-terminus than the caspase cleavage site.
<sup>
<xref ref-type="bibr" rid="CR111">111</xref>
</sup>
Elastase-mediated GSDMD-N production induces neutrophil death as well as the formation of neutrophil extracellular traps (NETs) to intercept invading microorganisms.
<sup>
<xref ref-type="bibr" rid="CR112">112</xref>
,
<xref ref-type="bibr" rid="CR113">113</xref>
</sup>
In addition, GSDMD-N can directly lyse bacteria (such as
<italic>Escherichia coli, Staphylococcus aureus</italic>
, and
<italic>Listeria monocytogenes</italic>
) after binding to cardiolipin and forming pores in their membranes.
<sup>
<xref ref-type="bibr" rid="CR100">100</xref>
</sup>
CASP1 and CASP11 also play a pyroptosis-independent role in antibacterial host defence. The formation of GSDMD pores can directly trigger IL1B secretion by macrophages before the cells undergo pyroptosis,
<sup>
<xref ref-type="bibr" rid="CR114">114</xref>
</sup>
indicating that distinct activation thresholds may control the active IL1B release by live cells and its passive shedding from dead cells once the cell explodes. The dynamics of pore formation and interaction with ion channels allow the existence of different stages and extents of plasma membrane permeabilization, resulting in the release of IL1B prior to spilling of DAMPs following full permeabilization.
<sup>
<xref ref-type="bibr" rid="CR115">115</xref>
</sup>
</p>
<p id="Par23">In summary, pyroptosis is a form of GSDMD-mediated RCD that plays a cell type-dependent role in inflammation and immunity. Of note, the first
<italic>Casp1</italic>
<sup>
<italic>-/-</italic>
</sup>
mice were established from 129 embryonic stem cells carrying an inactivating passenger mutation of the
<italic>Casp11</italic>
locus.
<sup>
<xref ref-type="bibr" rid="CR87">87</xref>
</sup>
Thus, the phenotype reported for
<italic>Casp1</italic>
<sup>
<italic>-/-</italic>
</sup>
mice actually results from deficiencies in both CASP1 and CASP11. Novel individual or combined transgenic mice are required to distinguish the contributions of CASP1 and CASP11 to pyroptotic signaling in a variety of different diseases that were studied in the past using the unintended double knockout.</p>
</sec>
<sec id="Sec8">
<title>Ferroptosis</title>
<p id="Par24">Ferroptosis is an iron- and lipotoxicity-dependent form of RCD. It was originally observed in 2003 using erastin (a cell-permeable compound from high-content screening) to selectively kill genetically-engineered cells with an oncogenic RAS mutation, but not normal cells
<sup>
<xref ref-type="bibr" rid="CR116">116</xref>
</sup>
In 2012, the term ferroptosis was formally used by Brent Stockwell to describe an iron-dependent form of non-apoptotic RCD induced by erastin.
<sup>
<xref ref-type="bibr" rid="CR117">117</xref>
</sup>
The morphology of erastin-induced ferroptotic cells is characterized by dysmorphic small mitochondria with decreased crista, as well as condensed, ruptured outer membranes,
<sup>
<xref ref-type="bibr" rid="CR117">117</xref>
,
<xref ref-type="bibr" rid="CR118">118</xref>
</sup>
which might be under control of the pro-apoptotic BCL2 family members such as BH3-interacting domain death agonist (BID)
<sup>
<xref ref-type="bibr" rid="CR119">119</xref>
</sup>
and BCL2-binding component 3 (BBC3, also known as PUMA),
<sup>
<xref ref-type="bibr" rid="CR120">120</xref>
</sup>
but not BAX or BAK1.
<sup>
<xref ref-type="bibr" rid="CR117">117</xref>
</sup>
Mechanistically, these dying cells do not display any hallmarks of apoptosis or necroptosis.
<sup>
<xref ref-type="bibr" rid="CR117">117</xref>
,
<xref ref-type="bibr" rid="CR118">118</xref>
</sup>
Instead, ferroptosis occurs via an iron-catalyzed process of lipid peroxidation initiated through non-enzymatic (Fenton reactions) and enzymatic mechanisms (lipoxygenases) (Fig. 
<xref rid="Fig3" ref-type="fig">3c</xref>
). Polyunsaturated fatty acids (PUFAs) are the prime targets of lipid peroxidation of membranes.
<sup>
<xref ref-type="bibr" rid="CR121">121</xref>
</sup>
The deleterious effects of lipid peroxidation in ferroptosis execution can be neutralized by lipophilic radical traps such as vitamin E, ferrostatin-1, and liproxstatin-1.
<sup>
<xref ref-type="bibr" rid="CR117">117</xref>
,
<xref ref-type="bibr" rid="CR118">118</xref>
</sup>
The mechanistic consequences of uncontrolled lipid peroxidation leading to ferroptotic cell death are still elusive. Using molecular dynamics models, it is hypothesized that membrane thinning and increased curvature drives a vicious cycle of access by oxidants, which ultimately destabilizes the membrane leading to pore and micelle formation.
<sup>
<xref ref-type="bibr" rid="CR122">122</xref>
</sup>
Additionally, lipid hydroperoxides decompose to reactive toxic aldehydes such as 4-hydroxy-2-nonenals or malondialdehydes, which may inactivate proteins through crosslinking
<sup>
<xref ref-type="bibr" rid="CR122">122</xref>
</sup>
.</p>
<p id="Par25">Essentially, ferroptosis can be induced in a canonical way by either inactivating GPX4, the major protective mechanism of biomembranes against peroxidation damage, or in a noncanonical way by increasing the labile iron pool. Two mechanisms have been described to inactivate GPX4: (1) an indirect way by the deprivation of the cofactor glutathione (GSH) through the depletion of the precursor Cys, as a result of the inhibition of the cystine/glutamate antiporter system xc
<sup>-117</sup>
or the transsulfuration pathway,
<sup>
<xref ref-type="bibr" rid="CR123">123</xref>
</sup>
and (2) a direct way by binding and inactivating GPX4 by compounds such as RSL3, ML162, FINO
<sub>2</sub>
, withaferin A, or the FDA-approved anticancer agent altretamine.
<sup>
<xref ref-type="bibr" rid="CR121">121</xref>
,
<xref ref-type="bibr" rid="CR124">124</xref>
<xref ref-type="bibr" rid="CR129">129</xref>
</sup>
In addition, recent findings have proposed a noncanonical ferroptosis induction pathway upon iron overload using, for example, iron chloride, hemoglobin, hemin, or ferrous ammonium sulfate, which suffices to induce ferroptosis.
<sup>
<xref ref-type="bibr" rid="CR129">129</xref>
,
<xref ref-type="bibr" rid="CR130">130</xref>
</sup>
CDGSH iron sulphur domain 1 (CISD1), a mitochondrial iron export protein, also inhibits ferroptosis by preventing mitochondrial iron accumulation and ROS production.
<sup>
<xref ref-type="bibr" rid="CR131">131</xref>
</sup>
The mitochondrial outer membrane proteins voltage-dependent anion channel 2 (VDAC2) and VDAC3 have been identified as direct targets of erastin that modulate mitochondrial function and contribute to ferroptosis.
<sup>
<xref ref-type="bibr" rid="CR132">132</xref>
</sup>
However, the contribution of mitochondria to ferroptosis remains controversial and may be context-dependent.
<sup>
<xref ref-type="bibr" rid="CR133">133</xref>
</sup>
</p>
<p id="Par26">System xc
<sup>-</sup>
is composed of a regulatory subunit solute carrier family 3 member 2 (SLC3A2) and a catalytic subunit solute carrier family 7 member 11 (SLC7A11). This complex promotes the exchange of extracellular cystine and intracellular glutamate across the plasma membrane. Cystine in the cell is reduced to cysteine, which is required for the production of GSH. GPX4 uses GSH to eliminate the production of phospholipid hydroperoxides (PLOOH), the major mediator of chain reactions in lipoxygenases (Fig. 
<xref rid="Fig3" ref-type="fig">3c</xref>
). System xc
<sup>-</sup>
inhibitors (e.g., erastin, sulfasalazine, sorafenib, and glutamate) are considered as class I ferroptosis inducers (FINs), whereas direct GPX4 inhibitors are referred to class II FINs.
<sup>
<xref ref-type="bibr" rid="CR134">134</xref>
</sup>
Of note, GPX4 depletion was also shown to confer sensitivity to apoptosis,
<sup>
<xref ref-type="bibr" rid="CR135">135</xref>
,
<xref ref-type="bibr" rid="CR136">136</xref>
</sup>
necroptosis,
<sup>
<xref ref-type="bibr" rid="CR137">137</xref>
</sup>
and pyroptosis.
<sup>
<xref ref-type="bibr" rid="CR105">105</xref>
</sup>
These findings suggest that lipid peroxidation can accelerate an array of distinct RCD modalities.</p>
<p id="Par27">The likelihood of ferroptosis is determined by the balance between iron accumulation-induced ROS production and the antioxidant system that avoids lipid peroxidation (Fig. 
<xref rid="Fig3" ref-type="fig">3c</xref>
). Increased iron uptake by transferrin receptor (TFRC, also known as TFR1) and reduced iron export by ferroportin favor oxidative damage and ferroptosis.
<sup>
<xref ref-type="bibr" rid="CR138">138</xref>
</sup>
Lipid peroxidation is influenced by several lipids and enzymes. Thus, the oxidation of PUFAs, including arachidonic acid (AA), by a catalytic pathway involving acyl-CoA synthetase long chain family member 4 (ACSL4), lysophosphatidylcholine acyltransferase 3 (LPCAT3), and arachidonate lipoxygenases (ALOXs, especially ALOX15) is required for lipotoxicity in ferroptosis.
<sup>
<xref ref-type="bibr" rid="CR121">121</xref>
,
<xref ref-type="bibr" rid="CR139">139</xref>
<xref ref-type="bibr" rid="CR142">142</xref>
</sup>
Phosphatidylethanolamine binding protein 1 (PEBP1, also known as RKIP), a scaffold protein inhibitor of protein kinase cascades, is required for the enzymatic activity of ALOX15 in ferroptosis.
<sup>
<xref ref-type="bibr" rid="CR142">142</xref>
</sup>
The upregulation of ACSL4, but not other ACSL members, seems to be a marker of ferroptosis.
<sup>
<xref ref-type="bibr" rid="CR141">141</xref>
</sup>
In addition to system xc
<sup>-</sup>
and GPX4, several integrated antioxidant and pro-survival proteins such as the transcription factor nuclear factor, erythroid 2 like 2 (NFE2L2, also known as NRF2)
<sup>
<xref ref-type="bibr" rid="CR143">143</xref>
</sup>
and certain heat shock proteins (HSPs),
<sup>
<xref ref-type="bibr" rid="CR144">144</xref>
,
<xref ref-type="bibr" rid="CR145">145</xref>
</sup>
can inhibit lipid peroxidation in ferroptosis. In contrast, ROS generated during glutaminase 2 (GLS2)-mediated glutaminolysis may promote ferroptosis.
<sup>
<xref ref-type="bibr" rid="CR146">146</xref>
</sup>
</p>
<p id="Par28">NFE2L2 is a key transcription factor that regulates antioxidant defence or detoxification in the context of various stressors. NFE2L2-mediated transactivation of metallothionein 1G (MT1G, a cysteine-rich protein with a high affinity for divalent heavy metal ions), SLC7A11, and heme oxygenase 1 (HMOX1) limits ferroptosis.
<sup>
<xref ref-type="bibr" rid="CR143">143</xref>
,
<xref ref-type="bibr" rid="CR147">147</xref>
,
<xref ref-type="bibr" rid="CR148">148</xref>
</sup>
However, upon excessive activation of NRF2, HMOX1 gets hyperactivated and induces ferroptosis through increasing the labile iron pool upon metabolizing heme.
<sup>
<xref ref-type="bibr" rid="CR129">129</xref>
,
<xref ref-type="bibr" rid="CR149">149</xref>
,
<xref ref-type="bibr" rid="CR150">150</xref>
</sup>
Thus, the protective effect of HMOX1 is attributed to its antioxidant activity, while its toxic effect is mediated through the generation of ferrous iron that might boost Fenton-mediated decomposition of peroxides in case of insufficient buffering capacity by ferritin.</p>
<p id="Par29">The tumor suppressor tumor protein p53 (TP53)
<sup>
<xref ref-type="bibr" rid="CR151">151</xref>
</sup>
and BRCA1-associated protein 1 (BAP1)
<sup>
<xref ref-type="bibr" rid="CR152">152</xref>
</sup>
can promote ferroptosis through the downregulation of SLC7A11 via transcriptional and epigenetic mechanisms, respectively. TP53 may also suppress ferroptosis by directly inhibiting the enzymatic activity of membrane-bound glycoprotein dipeptidyl peptidase 4 (DPP4, also known as CD26)
<sup>
<xref ref-type="bibr" rid="CR153">153</xref>
</sup>
or by increasing the expression of cell-cycle regulator cyclin-dependent kinase inhibitor 1A (CDKN1A, also known as p21).
<sup>
<xref ref-type="bibr" rid="CR154">154</xref>
</sup>
This has been observed in some cancers, in particular colorectal carcinoma, suggesting a context-dependent role of TP53 in the regulation of ferroptosis.
<sup>
<xref ref-type="bibr" rid="CR155">155</xref>
</sup>
An African-specific coding region variant of TP53, namely Pro47Ser, also affects ferroptosis senstivity and tumor supression.
<sup>
<xref ref-type="bibr" rid="CR156">156</xref>
</sup>
</p>
<p id="Par30">HSPs are a family of highly conserved molecular chaperones that are expressed in response to environmental stresses and render cells resistant to different types of cell death, including ferroptosis. In particular, heat shock protein family B [small] member (HSPB1, also known as HSP25 or HSP27)-mediated actin cytoskeleton protection inhibits ferroptosis via reducing iron uptake and subsequent oxidative injury.
<sup>
<xref ref-type="bibr" rid="CR144">144</xref>
</sup>
Heat shock protein family A [Hsp70] member 5 (HSPA5, also known as BIP or GRP78), an endoplasmic reticulum (ER)-sessile chaperone, binds and stabilizes GPX4, thus indirectly counteracting lipid peroxidation in ferroptosis.
<sup>
<xref ref-type="bibr" rid="CR145">145</xref>
</sup>
However, 2-amino-5-chloro-N,3-dimethylbenzamide (CDDO), an HSP90 inhibitor, can inhibit ferroptosis in cancer cells, indicating that HSP90 may play a different role in ferroptosis.
<sup>
<xref ref-type="bibr" rid="CR157">157</xref>
</sup>
</p>
<p id="Par31">The term “autophagy-dependent cell death” was originally used to describe cell death associated with autophagy based on morphological observation.
<sup>
<xref ref-type="bibr" rid="CR14">14</xref>
</sup>
It is now defined by the NCCD as a type of RCD that can be blocked by the suppression of autophagy.
<sup>
<xref ref-type="bibr" rid="CR24">24</xref>
</sup>
Recent findings indicate that ferroptosis induction is coupled to an increase in the turnover of lipidated microtubule-associated protein 1 light chain 3 beta (MAP1LC3B, also known as LC3, a marker of autophagosome) as well as the fusion of the autophagosome with lysosomes (namely, autolysosome formation, an important stage of autophagic flux), consistent with the notion that lipid oxidation stimulates autophagy.
<sup>
<xref ref-type="bibr" rid="CR158">158</xref>
,
<xref ref-type="bibr" rid="CR159">159</xref>
</sup>
The genetic depletion of core autophagy effector molecules such as autophagy-related 5 (ATG5) and ATG7 block cell death by ferroptosis.
<sup>
<xref ref-type="bibr" rid="CR158">158</xref>
,
<xref ref-type="bibr" rid="CR159">159</xref>
</sup>
Tat-Beclin 1, a strong direct inducer of autophagy, also enhances ferroptosis in cancer cells.
<sup>
<xref ref-type="bibr" rid="CR160">160</xref>
</sup>
The molecular mechanisms through which autophagy may contribute to ferroptotic demise may involve multiple pathways,
<sup>
<xref ref-type="bibr" rid="CR161">161</xref>
</sup>
such as the degradation of ferritin via nuclear receptor coactivator 4 (NCOA4)-dependent ferritinophagy (e.g., ferritin-specific autophagy),
<sup>
<xref ref-type="bibr" rid="CR158">158</xref>
,
<xref ref-type="bibr" rid="CR159">159</xref>
</sup>
the inhibition of system xc
<sup>-</sup>
activity via the formation of a BECN1-SLC7A11 protein complex,
<sup>
<xref ref-type="bibr" rid="CR160">160</xref>
</sup>
and the degradation of lipid droplets via ras-associated protein RAB7 (RAB7A)-dependent lipophagy.
<sup>
<xref ref-type="bibr" rid="CR162">162</xref>
</sup>
In addition, chaperone-mediated autophagy promotes GPX4 degradation and subsequent ferroptosis.
<sup>
<xref ref-type="bibr" rid="CR157">157</xref>
</sup>
</p>
<p id="Par32">In summary, ferroptosis is an non-apoptotic form of RCD driven by iron accumulation and lipid peroxidation, which can also involve autophagic processes, depending on the trigger.
<sup>
<xref ref-type="bibr" rid="CR163">163</xref>
</sup>
Excessive ferroptosis is likely to occur in certain human diseases, especially neurodegenerative and iron overload disorders, calling for its therapeutic suppression.
<sup>
<xref ref-type="bibr" rid="CR164">164</xref>
</sup>
In contrast, the induction of ferroptosis constitutes a potential strategy in cancer therapy.
<sup>
<xref ref-type="bibr" rid="CR164">164</xref>
</sup>
Note that almost 30 years ago a calcium-dependent non-apoptotic form of neuronal cell death, glutamate-induced toxicity, was coined as oxytosis that could be initiated by system xc
<sup>-</sup>
inhibition and GSH depletion,
<sup>
<xref ref-type="bibr" rid="CR165">165</xref>
,
<xref ref-type="bibr" rid="CR166">166</xref>
</sup>
and it was recently suggested that oxytosis and ferroptosis should be regarded as the same or at least a highly overlapping cell death pathway.
<sup>
<xref ref-type="bibr" rid="CR167">167</xref>
</sup>
That said, it remains to be determined whether ferroptosis is involved in “normal” physiology (e.g., development) or whether it only occurs in the context of pathologogical distortions (e.g., tissue injury) or pharmacological manipulations (e.g., anticancer therapy). Further evidence is required to understand this point. This general caveat applies to all modalities of RCD that are discussed below.</p>
</sec>
<sec id="Sec9">
<title>Parthanatos</title>
<p id="Par33">Parthanatos is a poly [ADP-Ribose] polymerase 1 (PARP1)-dependent RCD that is activated by oxidative stress-induced DNA damage and chromatinolysis (Fig. 
<xref rid="Fig3" ref-type="fig">3d</xref>
). The term was coined by Valina and Ted Dawson in 2009.
<sup>
<xref ref-type="bibr" rid="CR168">168</xref>
</sup>
Unlike apoptosis, parthanatotic cell death occurs without the formation of an apoptotic body and small-size DNA fragments.
<sup>
<xref ref-type="bibr" rid="CR169">169</xref>
</sup>
Parthanatos also occurs in the absence of cell swelling, but is accompanied by plasma membrane rupture.
<sup>
<xref ref-type="bibr" rid="CR170">170</xref>
</sup>
PARP1 is a chromatin-associated nuclear protein that plays a critical role in the repair of DNA single-strand or double-strand breaks. PARP1 can recognize DNA breaks and use nicotinamide adenine dinucleotide (NAD
<sup>+</sup>
) and ATP to trigger poly (ADP-ribose)-sylation. The cleavage-mediated inactivation of PARP1 by caspases has been considered as a marker of apoptotic cell death.
<sup>
<xref ref-type="bibr" rid="CR171">171</xref>
,
<xref ref-type="bibr" rid="CR172">172</xref>
</sup>
In contrast, 8-oxo-7,8-dihydroguanine, the common DNA base modification resulting from oxidative injury (e.g., ROS, ultraviolet light, and alkylating agents), triggers PARP1 hyperactivation.
<sup>
<xref ref-type="bibr" rid="CR173">173</xref>
</sup>
Hyperactivated PARP1 mediates parthanatos through at least two mechanisms, namely, the depletion of NAD
<sup>+</sup>
and ATP (as it occurs during necrosis) and the dissipation of the mitochondrial inner transmembrane potential (an event commonly associated with apoptosis).
<sup>
<xref ref-type="bibr" rid="CR174">174</xref>
</sup>
</p>
<p id="Par34">Mechanistically, apoptosis-inducing factor mitochondria-associated 1 (AIFM1, also known as AIF),
<sup>
<xref ref-type="bibr" rid="CR175">175</xref>
</sup>
but not caspases and apoptotic DNase endonuclease G (ENDOG), is required for parthanatos execution.
<sup>
<xref ref-type="bibr" rid="CR176">176</xref>
</sup>
Hyperactive PARP1 binds AIFM1, which leads to AIFM1 release from mitochondria into the nucleus to produce parthanatotic chromatinolysis.
<sup>
<xref ref-type="bibr" rid="CR177">177</xref>
</sup>
This process can be negatively controlled by blocking PARP1 activity via the poly (ADP-ribose)-degrading protein ADP-ribosylhydrolase-like 2 (ADPRHL2, also known as ARH3)
<sup>
<xref ref-type="bibr" rid="CR178">178</xref>
</sup>
and the poly (ADP-ribose)-binding protein ring finger protein 146 (RNF146, also known as IDUNA),
<sup>
<xref ref-type="bibr" rid="CR179">179</xref>
</sup>
whereas it is positively regulated by enhancing PARP1 activity by the DNA glycosylase enzyme 8-oxoguanine DNA glycosylase (OGG1).
<sup>
<xref ref-type="bibr" rid="CR173">173</xref>
</sup>
More recently, macrophage migration inhibitory factor (MIF) has been identified as an AIFM1-binding protein with nuclease activity to produce large DNA fragments in the induction of parthanatos.
<sup>
<xref ref-type="bibr" rid="CR180">180</xref>
</sup>
AIFM1-independent parthanatos may also occur in some conditions such as dry macular degeneration.
<sup>
<xref ref-type="bibr" rid="CR181">181</xref>
</sup>
The interplay between AIFM1-dependent and -independent parthanatos with other RCDs such as autophagy-dependent cell death
<sup>
<xref ref-type="bibr" rid="CR182">182</xref>
</sup>
and necroptosis
<sup>
<xref ref-type="bibr" rid="CR183">183</xref>
</sup>
may be involved in various types of oxidative DNA damage-associated diseases, including neurodegenerative disease, myocardial infarction, and diabetes.</p>
</sec>
<sec id="Sec10">
<title>Entotic cell death</title>
<p id="Par35">Entotic cell death is a form of cell cannibalism in which one cell engulfs and kills another cell. The term entosis was coined in 2007 by Joan Brugge.
<sup>
<xref ref-type="bibr" rid="CR184">184</xref>
</sup>
Entosis and entotic cell death occur mostly in epithelial tumor cells in the contexts of aberrant proliferation,
<sup>
<xref ref-type="bibr" rid="CR184">184</xref>
</sup>
glucose starvation,
<sup>
<xref ref-type="bibr" rid="CR185">185</xref>
</sup>
matrix deadhesion,
<sup>
<xref ref-type="bibr" rid="CR184">184</xref>
</sup>
or mitotic stress.
<sup>
<xref ref-type="bibr" rid="CR186">186</xref>
</sup>
Entosis is characterized by the formation of cell-in-cell structures,
<sup>
<xref ref-type="bibr" rid="CR184">184</xref>
</sup>
which have also been observed in the urine and ascites from tumor patients.
<sup>
<xref ref-type="bibr" rid="CR187">187</xref>
</sup>
Entosis plays an ambiguous role in tumorigenesis, since it may trigger aneuploidy in engulfing cells
<sup>
<xref ref-type="bibr" rid="CR188">188</xref>
</sup>
and provide nutritional support for tumor growth,
<sup>
<xref ref-type="bibr" rid="CR185">185</xref>
</sup>
but may also mediate the removal of cancer cells by healthy neighbouring cells.
<sup>
<xref ref-type="bibr" rid="CR186">186</xref>
</sup>
</p>
<p id="Par36">Although their underlying mechanisms are not well-understood, cell adhesion and cytoskeletal rearrangement pathways play a central role in the control of entosis induction.
<sup>
<xref ref-type="bibr" rid="CR189">189</xref>
,
<xref ref-type="bibr" rid="CR190">190</xref>
</sup>
The invasion of a live cell into a neighbouring cell during entosis requires the formation of adherent junctions, which is mediated by adhesion proteins cadherin 1 (CDH1, also known as E-cadherin) and catenin alpha 1 (CTNNA1), but not integrin receptors.
<sup>
<xref ref-type="bibr" rid="CR184">184</xref>
,
<xref ref-type="bibr" rid="CR191">191</xref>
,
<xref ref-type="bibr" rid="CR192">192</xref>
</sup>
Both intact actin and microtubules are required for cytoskeletal rearrangement during entosis. In particular, actomyosin, the actin-myosin complex in the cytoskeleton, is essential for the formation of cell-in-cell structures in entosis. The generation and activity of actomyosin is spatiotemporally controlled by ras homolog family member A (RHOA), rho-associated coiled-coil containing protein kinase (ROCK), and the myosin pathway
<sup>
<xref ref-type="bibr" rid="CR184">184</xref>
,
<xref ref-type="bibr" rid="CR185">185</xref>
,
<xref ref-type="bibr" rid="CR192">192</xref>
<xref ref-type="bibr" rid="CR196">196</xref>
</sup>
(Fig. 
<xref rid="Fig3" ref-type="fig">3e</xref>
). Consequently, pharmacologically targeting these core pathways by inhibitors such as C3-toxin, Y-27632, and blebbistatin diminishes entosis in vitro and in vivo.
<sup>
<xref ref-type="bibr" rid="CR189">189</xref>
</sup>
</p>
<p id="Par37">In addition to cell adhesion and cytoskeletal rearrangement pathways, other signaling molecules and regulators are also involved in the regulation of entosis through different mechanisms.
<sup>
<xref ref-type="bibr" rid="CR189">189</xref>
</sup>
For example, cell division cycle 42 (CDC42) depletion enhances changes in mitotic morphology and subsequent entosis.
<sup>
<xref ref-type="bibr" rid="CR186">186</xref>
</sup>
AURKA
<sup>
<xref ref-type="bibr" rid="CR197">197</xref>
</sup>
and the AMP-activated protein kinase (AMPK)
<sup>
<xref ref-type="bibr" rid="CR185">185</xref>
</sup>
promote entosis through the control of microtubule plasticity or energy metabolism, respectively. The chromatin-binding protein nuclear protein 1 (NUPR1, also known as P8), a transcriptional regulator, negatively regulates entosis through modulating AURKA activity or autophagy.
<sup>
<xref ref-type="bibr" rid="CR198">198</xref>
</sup>
</p>
<p id="Par38">The possible fates of the engulfed cells include cell division, release, or death. Entotic cell death involves the digestion of the engulfed cells by the host cells, which requires LC3-associated phagocytosis (LAP) and the cathepsin B (CTSB)-mediated lysosomal degradation pathway
<sup>
<xref ref-type="bibr" rid="CR189">189</xref>
,
<xref ref-type="bibr" rid="CR190">190</xref>
</sup>
(Fig. 
<xref rid="Fig3" ref-type="fig">3e</xref>
). However, entosis does not involve apoptosis effector caspases and is not regulated by proteins of the BCL2 family.
<sup>
<xref ref-type="bibr" rid="CR189">189</xref>
,
<xref ref-type="bibr" rid="CR199">199</xref>
</sup>
LAP bridges phagocytosis and autophagy; this process is regulated by the core LC3 lipidation machinery (e.g., ATG5, ATG7, class III phosphatidylinositol 3-kinase complex [e.g., phosphatidylinositol 3-kinase catalytic subunit type 3 (PI3KC3), also known as VPS34], phosphoinositide-3-kinase regulatory subunit 4 [PIK3R4, also known as VPS15], and BECN1), cytochrome B-245 beta chain (CYBB, also known as NOX2)-mediated ROS production, other autophagy regulators (e.g., UV radiation resistance-associated [UVRAG] and RUN domain and cysteine-rich domain-containing beclin 1 interacting protein [RUBCN, also known as Rubicon]).
<sup>
<xref ref-type="bibr" rid="CR200">200</xref>
</sup>
Entosis is often observed in neoplasia and its frequency correlates with tumor stage, calling for a further in-depth evaluation of the possibility of targeting this phenomenon. However, at this stage, there are no reagents available that would allow us to inhibit or induce entosis in a selective fashion, i.e., without influencing other cell death modalities.</p>
</sec>
<sec id="Sec11">
<title>Netotic cell death</title>
<p id="Par39">Netotic cell death is a form of RCD driven by NET release. NETs are extracellular net-like DNA-protein structures released by cells in response to infection or injury. NET formation and release, or NETosis, was first observed in neutrophils upon exposure to phorbol myristate acetate or IL8 by Arturo Zychlinsky’s lab in 2004.
<sup>
<xref ref-type="bibr" rid="CR201">201</xref>
</sup>
NETs can also be generated by other leukocyte populations (e.g., mast cells, eosinophils, and basophils), epithelial cells, and cancer cells in response to various stresses.
<sup>
<xref ref-type="bibr" rid="CR202">202</xref>
<xref ref-type="bibr" rid="CR204">204</xref>
</sup>
Elevated NETosis not only acts against the spread of infection by trapping pathogenic microorganisms (e.g., bacteria and viruses), but also promotes DAMP release, thus possibly contributing to the pathogenesis of autoimmune disorders (e.g., systemic lupus erythematosus, rheumatoid arthritis, asthma, vessel vasculitis, and psoriasis), ischemia-reperfusion injury, and tumor development.
<sup>
<xref ref-type="bibr" rid="CR205">205</xref>
</sup>
A recent study indicates that inflammation-associated NET production can awaken nearby dormant cancer cells to redivide.
<sup>
<xref ref-type="bibr" rid="CR206">206</xref>
</sup>
This effect may rely on the degradation of laminins, a major adhesive component of basement membranes
<sup>
<xref ref-type="bibr" rid="CR206">206</xref>
</sup>
; however, this needs further mechanistic exploration.</p>
<p id="Par40">NETosis is a dynamic process and relies on multiple signals and steps including NADPH oxidase-mediated ROS production, autophagy, the release and translocation of granular enzymes (e.g., elastase, neutrophil expressed [ELANE], matrix metalloproteinase [MMP], and myeloperoxidase [MPO]) and peptides from the cathelecidin family (e.g., cathelicidin antimicrobial peptide [CAMP, also known as LL37]) from the cytosol to the nucleus.
<sup>
<xref ref-type="bibr" rid="CR207">207</xref>
,
<xref ref-type="bibr" rid="CR208">208</xref>
</sup>
This is followed by histone citrullination, favoring chromatin decondensation, the destruction of the nuclear envelope, and the release of chromatin fibres
<sup>
<xref ref-type="bibr" rid="CR209">209</xref>
</sup>
(Fig. 
<xref rid="Fig3" ref-type="fig">3f</xref>
). Peptidyl arginine deiminase 4 (PADI4, also known as PAD4) is the enzyme responsible for catalyzing the conversion of arginine to citrullin residues in histones.
<sup>
<xref ref-type="bibr" rid="CR210">210</xref>
</sup>
A recently discovered pathway of PADI4-independent NETosis
<sup>
<xref ref-type="bibr" rid="CR211">211</xref>
</sup>
may occur downstream of death signals that are normally involved in other types of RCD such as pyroptosis, necroptosis, and autophagy-dependent cell death.
<sup>
<xref ref-type="bibr" rid="CR212">212</xref>
</sup>
The alterations of cell surface associated to netotic cell death are initiated by entropic swelling of chromatin through a yet elusive mechanism.
<sup>
<xref ref-type="bibr" rid="CR213">213</xref>
</sup>
Of note, lactoferrin, a component of neutrophil granules, can block netotic cell death and inflammation both in vitro and in vivo.
<sup>
<xref ref-type="bibr" rid="CR214">214</xref>
</sup>
In addition to the key role of GSDMD in pyroptosis, GSDMD is also involved in the induction of NETosis to digest the pathogen,
<sup>
<xref ref-type="bibr" rid="CR112">112</xref>
,
<xref ref-type="bibr" rid="CR113">113</xref>
</sup>
indicating a crosstalk between pyroptosis and NETosis pathways in the innate immunity.</p>
</sec>
<sec id="Sec12">
<title>Lysosome-dependent cell death</title>
<p id="Par41">Lysosome-dependent cell death (LCD), also known as lysosomal cell death, is a type of RCD mediated by hydrolytic enzymes that are released into the cytosol after lysosomal membrane permeabilization (Fig. 
<xref rid="Fig3" ref-type="fig">3g</xref>
).
<sup>
<xref ref-type="bibr" rid="CR215">215</xref>
</sup>
The idea of LCD was first expressed by Christian de Duve, who discovered lysosomes as the cellular degradation machinery in 1955, and the term “lysosomal cell death” was coined in 2000.
<sup>
<xref ref-type="bibr" rid="CR216">216</xref>
</sup>
Lysosomes are acidic cellular organelles that can degrade a variety of heterophagic and autophagic cargos, including unused intracellular macromolecules (nucleic acids, proteins, lipids, and carbohydrates), entire organelles (e.g., mitochondria), and invading pathogens.</p>
<p id="Par42">Lysosomes become leaky when cells are exposed to lysosomotropic detergents (e.g., O-methyl-serine dodecylamide hydrochloride), dipeptide methyl esters (e.g., Leu-Leu-OMe), lipid metabolites (e.g., sphingosine and phosphatidic acid), and ROS.
<sup>
<xref ref-type="bibr" rid="CR215">215</xref>
</sup>
Lysosomal membrane permeabilization may also amplify or initiate cell death signaling in the context of apoptosis, autophagy-dependent cell death, and ferroptosis.
<sup>
<xref ref-type="bibr" rid="CR217">217</xref>
,
<xref ref-type="bibr" rid="CR218">218</xref>
</sup>
</p>
<p id="Par43">Among lysosomal hydrolases, cathepsins (a large family of cysteine peptidases) play a major role in LCD. Different cathepsins are responsible for the initiation and execution of LCD, depending on the context of lysosomal membrane permeabilization.
<sup>
<xref ref-type="bibr" rid="CR219">219</xref>
</sup>
The transcription factors signal transducer and activator of transcription 3 (STAT3)
<sup>
<xref ref-type="bibr" rid="CR220">220</xref>
</sup>
and TP53
<sup>
<xref ref-type="bibr" rid="CR221">221</xref>
</sup>
may favor LCD induction through the selective upregulation of cathepsins (e.g., CTSB, cathepsin L [CTSL] and cathepsin D [CTSD]) expression. In contrast, the NF-κB–elicited expression of serpin family A member 3 (SERPINA3) results in the inhibition of CTSB and CTSL.
<sup>
<xref ref-type="bibr" rid="CR222">222</xref>
</sup>
Moreover, the suppression of mucolipin 1, an ion channel in the lysosome (MCOLN1, also known as TRPML1) results in a lysosomal trafficking defect, which promotes CTSB release and consequent LCD.
<sup>
<xref ref-type="bibr" rid="CR223">223</xref>
</sup>
</p>
<p id="Par44">Blocking cathepsin expression or activity can block LCD. However, cathepsins are not the sole effectors of LCD because lysosomes store abundant iron, meaning that lysosomal membrane permeabilization can result in the release of this toxic metal into the cytosol,
<sup>
<xref ref-type="bibr" rid="CR224">224</xref>
</sup>
thus contributing to ferroptosis.
<sup>
<xref ref-type="bibr" rid="CR218">218</xref>
,
<xref ref-type="bibr" rid="CR225">225</xref>
</sup>
Impaired lysosomal degradation and the LCD pathway are associated with increased oxidative injury and contribute to lysosomal storage disorders and age-associated diseases.
<sup>
<xref ref-type="bibr" rid="CR226">226</xref>
,
<xref ref-type="bibr" rid="CR227">227</xref>
</sup>
Based on the cellular context, LCD can adopt necrotic, apoptotic, autophagic, or ferroptotic-like features, adding complexity to this cell death pathway.
<sup>
<xref ref-type="bibr" rid="CR215">215</xref>
,
<xref ref-type="bibr" rid="CR217">217</xref>
,
<xref ref-type="bibr" rid="CR218">218</xref>
</sup>
</p>
</sec>
<sec id="Sec13">
<title>Autophagy-dependent cell death</title>
<p id="Par45">Autophagy-dependent cell death is a type of RCD driven by the molecular machinery of autophagy (Fig. 
<xref rid="Fig3" ref-type="fig">3h</xref>
). Macroautophagy (hereafter called “autophagy”) is an evolutionarily conserved degradation pathway and has been implicated in human disease and aging.
<sup>
<xref ref-type="bibr" rid="CR228">228</xref>
,
<xref ref-type="bibr" rid="CR229">229</xref>
</sup>
The process of autophagy involves the sequential formation of three unique membrane structures, namely the phagophore, autophagosome, and autolysosome. Over 40 autophagy-related genes/proteins (ATGs) play key roles in autophagic membrane dynamics and processes.
<sup>
<xref ref-type="bibr" rid="CR230">230</xref>
</sup>
</p>
<p id="Par46">As a dynamic recycling system, the bulk and nonselective autophagy process is generally considered as a pro-survival mechanism in response to multiple types of cellular stresses.
<sup>
<xref ref-type="bibr" rid="CR16">16</xref>
</sup>
Nevertheless, autophagy can selectively degrade pro-survival proteins related to other types of RCD, thereby tipping the balance from life to death.
<sup>
<xref ref-type="bibr" rid="CR231">231</xref>
<xref ref-type="bibr" rid="CR234">234</xref>
</sup>
Ferritinophagy causes ferroptosis due to the selective degradation of ferritin (an iron storage protein), consequently causing iron release and oxidative injury.
<sup>
<xref ref-type="bibr" rid="CR158">158</xref>
,
<xref ref-type="bibr" rid="CR159">159</xref>
</sup>
The degradation of protein tyrosine phosphatase, nonreceptor type 13 (PTPN13, a negative regulator of extrinsic apoptosis)
<sup>
<xref ref-type="bibr" rid="CR235">235</xref>
</sup>
favors apoptosis, while autophagic digestion of baculoregulator repeat containing 2 (BIRC2, also known as cIAP1, a negative regulator of necroptosis)
<sup>
<xref ref-type="bibr" rid="CR236">236</xref>
</sup>
facilitates the ignition of necroptosis.</p>
<p id="Par47">In 2013, Beth Levine described “autosis” as a subtype of autophagy-dependent cell death induced by nutrient deprivation or by Tat-Beclin 1, an autophagy-inducing peptide fusing amino acids from BECN1 and HIV Tat protein.
<sup>
<xref ref-type="bibr" rid="CR17">17</xref>
</sup>
Autosis is morphologically characterized by enhanced cell-substrate adherence, fragmented or vanished ER structure, focal swelling of the perinuclear space, and mild chromatin condensation.
<sup>
<xref ref-type="bibr" rid="CR17">17</xref>
</sup>
At the molecular level, Tat-Beclin 1–induced autosis can be inhibited by blocking upstream Na
<sup>+</sup>
/K
<sup>+</sup>
-ATPase, a plasma pump linking ion homeostasis and ER stress.
<sup>
<xref ref-type="bibr" rid="CR17">17</xref>
</sup>
Interestingly, iron overload stimulates Na
<sup>+</sup>
/K
<sup>+</sup>
-ATPase activity in the human erythrocyte membrane,
<sup>
<xref ref-type="bibr" rid="CR237">237</xref>
</sup>
which may lead to ferroptosis. However, the exact relationship between autosis and ferroptosis remains to be determined.</p>
<p id="Par48">Autophagy-dependent cell death probably plays a pathogenic role in neurotoxicity and hypoxia-ischemia-induced neuronal death,
<sup>
<xref ref-type="bibr" rid="CR232">232</xref>
<xref ref-type="bibr" rid="CR234">234</xref>
</sup>
indicating that this type of RCD can possibly be targeted for neuroprotection.</p>
</sec>
<sec id="Sec14">
<title>Alkaliptosis</title>
<p id="Par49">Alkaliptosis is a novel type of RCD driven by intracellular alkalinisation.
<sup>
<xref ref-type="bibr" rid="CR238">238</xref>
</sup>
The word “alkaliptosis” was termed in 2018 by our group.
<sup>
<xref ref-type="bibr" rid="CR238">238</xref>
</sup>
A screen of small-molecule compound library targeting G-protein coupled receptors (GPCR) for cytotoxic activity on a human pancreatic cancer cell line led to the idenfication of JTC801. The latter is an opioid analgesic drug that efficiently kills a panel of human pancreas, kidney, prostate, skin, and brain cancer cell lines,
<sup>
<xref ref-type="bibr" rid="CR238">238</xref>
</sup>
and these cytotoxic effects were not related to apoptosis, necroptosis, autophagy, or ferroptosis, because genetically or pharmacologically blocking these forms of RCD failed to reverse JTC801-induced cell death.
<sup>
<xref ref-type="bibr" rid="CR238">238</xref>
</sup>
In contrast, the inhibition of intracellular alkalinization by N-acetyl cysteine, N-acetyl alanine acid, and acidic culture media blocked JTC801-induced cell death.
<sup>
<xref ref-type="bibr" rid="CR238">238</xref>
</sup>
At the molecular levels, alkaliptosis requires inhibitor of nuclear factor kappa B kinase subunit beta (IKBKB, also known as IKKβ)-NF-κB pathway-dependent downregulation of carbonic anhydrase 9 (CA9), an enzyme participating in pH regulation (Fig. 
<xref rid="Fig3" ref-type="fig">3i</xref>
). Opioid-related nociceptin receptor 1 (OPRL1), the target that accounts for the analgesic activity of JTC801, is dispensable for alkaliptosis.
<sup>
<xref ref-type="bibr" rid="CR238">238</xref>
</sup>
Of note, JTC801 has also been reported to induce apoptosis in human osteosarcoma cells,
<sup>
<xref ref-type="bibr" rid="CR239">239</xref>
</sup>
suggesting that the type of RCD triggered by JTC801 depends on the cellular context.</p>
<p id="Par50">It should be noted that the pathological significance of alkaliptosis in human disease remains fully elusive although metabolic alkalosis is a unique acid-base disorder with kidney or lung injury.
<sup>
<xref ref-type="bibr" rid="CR240">240</xref>
</sup>
The significance of the core effector molecules of alkaliptosis also remains unclear.</p>
</sec>
<sec id="Sec15">
<title>Oxeiptosis</title>
<p id="Par51">Oxeiptosis is a novel oxygen radical-induced caspase-independent RCD driven by the activation of the KEAP1-PGAM5-AIFM1 pathway (Fig. 
<xref rid="Fig3" ref-type="fig">3j</xref>
).
<sup>
<xref ref-type="bibr" rid="CR241">241</xref>
</sup>
This term was introduced in 2018 by Andreas Pichlmair’s lab in a study reporting on the response of mice to ozone and that of cultured fibroblasts and epithelial cells to hydrogen peroxide (H
<sub>2</sub>
O
<sub>2</sub>
).
<sup>
<xref ref-type="bibr" rid="CR241">241</xref>
</sup>
Ozone- or H
<sub>2</sub>
O
<sub>2</sub>
-induced oxeiptosis is independent of apoptotic or pyroptotic caspases, necroptosis, autophagy, and ferroptosis.
<sup>
<xref ref-type="bibr" rid="CR241">241</xref>
</sup>
The KEAP1-NFE2L2 pathway has been known to mediate cytoprotective responses to oxidative injury.
<sup>
<xref ref-type="bibr" rid="CR241">241</xref>
</sup>
However, hyperactivated KEAP1 can mediate H
<sub>2</sub>
O
<sub>2</sub>
-induced oxeiptosis in an NFE2L2-independent manner,
<sup>
<xref ref-type="bibr" rid="CR241">241</xref>
</sup>
through a pathway that involves KEAP1 interaction partner PGAM5, a mitochondrial serine-threonine phosphatase that dephosphorylates AIFM1 at Ser116.
<sup>
<xref ref-type="bibr" rid="CR241">241</xref>
</sup>
Unlike AIFM1-mediated caspase-independent apoptosis and parthanatos, dephosphorylated AIFM1-mediated oxeiptosis does not require the translocation of AIFM1 from mitochondria to the nucleus.
<sup>
<xref ref-type="bibr" rid="CR241">241</xref>
</sup>
In vivo,
<italic>Pgam5</italic>
<sup>
<italic>–/–</italic>
</sup>
mice are more sensitive to inflammation and injury following ozone treatment or viral infection, indicating that oxeiptosis may suppress inflammation.
<sup>
<xref ref-type="bibr" rid="CR241">241</xref>
</sup>
However, it remains an open conundrum how H
<sub>2</sub>
O
<sub>2</sub>
may induce so many different cell death modalities including oxeiptosis,
<sup>
<xref ref-type="bibr" rid="CR241">241</xref>
</sup>
apoptosis,
<sup>
<xref ref-type="bibr" rid="CR242">242</xref>
</sup>
necrosis,
<sup>
<xref ref-type="bibr" rid="CR242">242</xref>
</sup>
and ferroptosis.
<sup>
<xref ref-type="bibr" rid="CR243">243</xref>
</sup>
Understanding the location- and modification-dependent role of AIFM1 may help us to distinguish these different types of RCD. The role of oxeiptosis in pathological cell death in human diseases also remains largely unknown.</p>
</sec>
<sec id="Sec16">
<title>Immunological consequences of cell death</title>
<p id="Par52">Cell death induced by stimuli may occur in a way that the immune system is alerted, triggering immunity against dead-cell antigens. This “immunogenic cell death” (ICD), a term coined in 2005,
<sup>
<xref ref-type="bibr" rid="CR244">244</xref>
</sup>
contrasts with silent efferocytosis, in which dying and dead cells are cleared by phagocytosis without any inflammatory or immune reaction, as well as with tolerogenic cell death (TCD) that actively inhibits immune responses.
<sup>
<xref ref-type="bibr" rid="CR245">245</xref>
</sup>
Although apoptosis has generally been considered as a TCD, accumulating evidence suggests that apoptosis can be an ICD when induced under certain conditions.
<sup>
<xref ref-type="bibr" rid="CR246">246</xref>
</sup>
An acute or chronic inflammatory response elicited by dying cells not only promotes tissue regeneration and limits infection, but may also cause tissue injury and disease.
<sup>
<xref ref-type="bibr" rid="CR247">247</xref>
</sup>
Given the fundamental role of inflammation in a variety of human diseases, it is important to understand the key mediators and pathways that drive this response.</p>
<p id="Par53">There is no doubt that the release of DAMPs by dead or dying cells is an important factor regulating the balance between ICD and TCD. The immune system can recognize two types of danger signals.
<sup>
<xref ref-type="bibr" rid="CR248">248</xref>
</sup>
PAMPs from microbes are recognized by pattern recognition receptors (PRRs). Endogenous DAMPs, which act on the same PRRs as the PAMPs, can be proteins (e.g., HMGB1, histones, and transcription factor A, mitochondrial [TFAM]) and nonproteaceous entities (e.g., DNA, RNA, and extracellular ATP). The release of DAMPs is a hallmark of various types of cell death, although they may exhibit distinct expression profiles in response to different stimuli.
<sup>
<xref ref-type="bibr" rid="CR249">249</xref>
</sup>
DAMPs activate different PRRs, such as TLRs, advanced glycosylation end-product specific receptor (AGER, also known as RAGE), and DNA sensors (Box 
<xref rid="Sec17" ref-type="sec">4</xref>
) that are widely expressed in leukocytes and other cell types.
<sup>
<xref ref-type="bibr" rid="CR248">248</xref>
</sup>
A number of inflammation-related pathways, involving for example the RIPK1-NF-κB,
<sup>
<xref ref-type="bibr" rid="CR250">250</xref>
</sup>
DNA-TMEM173 (Fig. 
<xref rid="Fig4" ref-type="fig">4</xref>
),
<sup>
<xref ref-type="bibr" rid="CR251">251</xref>
</sup>
and IL-17A–IL-17R
<sup>
<xref ref-type="bibr" rid="CR252">252</xref>
</sup>
pathways have been documented to mediate the ICD-associated immune response. However, another study suggests that the immunogenicity of necroptotic cells does not correlate with the activation of the RIPK3-RIPK1-NF-κB pathway.
<sup>
<xref ref-type="bibr" rid="CR253">253</xref>
</sup>
<fig id="Fig4">
<label>Fig. 4</label>
<caption>
<p>Central role of TMEM173 in inflammation, immunity, and cell death. TMEM173 can be activated by cytosolic DNA sensors (e.g., CGAS, DDX41, MRE11, and IFI16), or cell surface receptors (e.g., ALK and EGFR) in response to various DNAs from the pathogen and host. The activation of STING not only promotes inflammation and the immune response through TBK1-mediated transcription factor activation, but also ignites various cell death pathways, including apoptosis, necroptosis, pyroptosis, and lysosome-dependent cell death</p>
</caption>
<graphic xlink:href="41422_2019_164_Fig4_HTML" id="d29e2580"></graphic>
</fig>
</p>
<p id="Par54">The pathophysiological role of ICD has amply been documented in the context of chemotherapy-induced anticancer immune responses.
<sup>
<xref ref-type="bibr" rid="CR244">244</xref>
</sup>
Several cytotoxic antineoplastics stimulate the immune system by stressing and killing cancer cells in a way that results in the exposure of DAMPs such as calreticulin
<sup>
<xref ref-type="bibr" rid="CR246">246</xref>
</sup>
at the surface or the release of DAMPs such as ATP,
<sup>
<xref ref-type="bibr" rid="CR254">254</xref>
</sup>
annexin A1,
<sup>
<xref ref-type="bibr" rid="CR255">255</xref>
</sup>
HMGB1,
<sup>
<xref ref-type="bibr" rid="CR256">256</xref>
</sup>
and TFAM
<sup>
<xref ref-type="bibr" rid="CR257">257</xref>
</sup>
into the extracellular space. ICD may occur in the context of apoptosis and necroptosis, meaning that the immunological consequences are not tied to the cell death modality itself but rather to the exposure/release of DAMPs that may occur as a consequence of premortem stress responses.
<sup>
<xref ref-type="bibr" rid="CR247">247</xref>
</sup>
Thus, calreticulin exposure is tied to a partial endoplasmic reticulum stress response,
<sup>
<xref ref-type="bibr" rid="CR246">246</xref>
</sup>
while ATP release occurs through an autophagy-dependent mechanism.
<sup>
<xref ref-type="bibr" rid="CR254">254</xref>
</sup>
ICD of malignant cells favors the cross-presentation of tumor-associated antigens by dendritic cells, resulting in the induction of cytotoxic T lymphocytes that then play an essential role in keeping tumors in check.
<sup>
<xref ref-type="bibr" rid="CR247">247</xref>
</sup>
In addition to cancer, ICD is also implicated in infectious disease.
<sup>
<xref ref-type="bibr" rid="CR247">247</xref>
</sup>
</p>
<p id="Par55">It is interesting to note that the redox status of DAMPs may affect their immune activity as this has been exemplified for HMGB1, a protein that is usually present in the nucleus yet can translocate to the cytoplasm and undergo cell death-associated release. Extracellular HMGB1 remarkably initiates, amplifies, and perpetuates the inflammatory response if it is nonoxidized.
<sup>
<xref ref-type="bibr" rid="CR258">258</xref>
</sup>
However, the oxidized form of HMGB1 favors the induction of immune tolerance in antigen-presenting cells
<sup>
<xref ref-type="bibr" rid="CR259">259</xref>
</sup>
and may also promote the expression of immune checkpoint molecules (such as CD274, also known as PD-L1) to limit anticancer immunity.
<sup>
<xref ref-type="bibr" rid="CR260">260</xref>
</sup>
The proteolytic cleavage or degradation of HMGB1 also limits its immunostimulatory activity under some conditions.
<sup>
<xref ref-type="bibr" rid="CR261">261</xref>
,
<xref ref-type="bibr" rid="CR262">262</xref>
</sup>
Thus, HMGB1 may act as a tightly controlled universal DAMP that mediates both ICD and TCD depending on its abundance and oxidation status.
<sup>
<xref ref-type="bibr" rid="CR263">263</xref>
</sup>
</p>
<p id="Par56">In spite of the wealth of information on the rules governing the immunological consequences of cell death, a systematic exploration of non-apoptotic RCD subroutines with respect to their immunogenicity is still elusive.</p>
<sec id="Sec17">
<boxed-text>
<label>Box 4 DNA sensors in cell death</label>
<p id="Par57">The release of genomic or mitochondrial DNA into the cytoplasm or into the extracellular space is a hallmark of RCD.
<sup>
<xref ref-type="bibr" rid="CR289">289</xref>
</sup>
Emerging evidence has revealed that TMEM173 (Fig. 
<xref rid="Fig4" ref-type="fig">4</xref>
), AIM2, and ZBP1 are major DNA-sensing pathways in the regulation of inflammatory and immune responses. TMEM173 is an endoplasmic reticulum protein and recognizes various DNA products from bacteria, viruses, and dead or dying host cells through both CGAS (also known as cGAS)-dependent and -independent pathways.
<sup>
<xref ref-type="bibr" rid="CR290">290</xref>
<xref ref-type="bibr" rid="CR292">292</xref>
</sup>
In addition, the activation of other cytosolic nucleic acid sensors (DDX41, MRE11, IFI16, and ZBP1)
<sup>
<xref ref-type="bibr" rid="CR293">293</xref>
<xref ref-type="bibr" rid="CR296">296</xref>
</sup>
as well as membrane receptors (ALK receptor tyrosine kinase [ALK] and epidermal growth factor receptor [EGFR])
<sup>
<xref ref-type="bibr" rid="CR297">297</xref>
</sup>
can function as upstream signals to initiate TMEM173 activation in response to xenogenic DNA from pathogens or ectopic DNA from the host. Mechanistically, TMEM173 binds to TBK1 and then triggers the activation of transcription factors such as interferon regulatory factor 3 (IRF3), NF-κB, and signal transducer and activator of transcription 6 (STAT6), thus promoting type I IFN and cytokine production and the consequent inflammation and immune responses.
<sup>
<xref ref-type="bibr" rid="CR298">298</xref>
</sup>
TMEM173 knockout mice are resistant to lethal infection,
<sup>
<xref ref-type="bibr" rid="CR297">297</xref>
</sup>
sterile inflammation,
<sup>
<xref ref-type="bibr" rid="CR299">299</xref>
,
<xref ref-type="bibr" rid="CR300">300</xref>
</sup>
and inflammation-driven carcinogenesis and tumor metastasis,
<sup>
<xref ref-type="bibr" rid="CR301">301</xref>
</sup>
as well as to inflammation-driven age-associated diseases.
<sup>
<xref ref-type="bibr" rid="CR302">302</xref>
</sup>
At least in some settings, the excessive activation of TMEM173 in T lymphocytes and myeloid cells can cause apoptosis, necroptosis, pyroptosis or LCD, although the role of TBK1 in these settings remains unidentified.
<sup>
<xref ref-type="bibr" rid="CR303">303</xref>
<xref ref-type="bibr" rid="CR305">305</xref>
</sup>
Moreover, TMEM173 contributes to the ICD-mediated antitumor immune response.
<sup>
<xref ref-type="bibr" rid="CR251">251</xref>
,
<xref ref-type="bibr" rid="CR306">306</xref>
</sup>
These observations point to TMEM173 as an important DNA sensor that acts both in immune and non-immune cells.</p>
<p id="Par58">AIM2 was originally identified as a receptor of pathogen double-stranded DNA from
<italic>Francisella</italic>
,
<italic>Listeria</italic>
,
<italic>Mycobacterium</italic>
, mouse cytomegalovirus, vaccinia virus,
<italic>Aspergillus</italic>
, and
<italic>Plasmodium</italic>
species. AIM2 may also detect cytoplasmic or nuclear self-DNA from necrotic cells for inflammation activation and pyroptosis, thus contributing to autoimmune and inflammatory diseases such as dermatitis, arthritis, pancreatitis and radiation-induced inflammation.
<sup>
<xref ref-type="bibr" rid="CR307">307</xref>
</sup>
AIM2 may promote or limit tumor development in a cancer type-dependent fashion.
<sup>
<xref ref-type="bibr" rid="CR260">260</xref>
,
<xref ref-type="bibr" rid="CR308">308</xref>
</sup>
</p>
<p id="Par59">ZBP1 acts as a cytosolic sensor for viral DNA or RNA and stimulates inflammatory and immune response through the activation of RIPK3-MLKL–dependent necroptosis, as well as the TMEM173 pathway.
<sup>
<xref ref-type="bibr" rid="CR309">309</xref>
</sup>
Nonetheless, the role of ZBP1 in tumor immunity remains unclear.</p>
</boxed-text>
</sec>
</sec>
<sec id="Sec18">
<title>Conclusions and perspectives</title>
<p id="Par60">RCD occurs through a variety of subroutines that cause cells to be dismantled in different ways, hence producing distinct morphological changes and immunological consequences. In spite of this “biodiversity,” the evolutionary relationship between distinct RCD pathways remains unknown. Oxidative stress can lead to various types of RCD, while the sources of ROS as well as the efficacy of antioxidant defences are context-dependent. It will be important to assemble a standard panel of biomarkers and functional tests including genetic and pharmacological inhibition studies to accurately distinguish between different forms of RCD that may occur in a “pure” form or in “mixed” variants, in which distinct lethal subroutines come into action in a parallel and sometimes hierarchized fashion. It is well known that the suppression of apoptosis by caspase inhibition may reveal necroptotic pathways, and similar backup systems might come into action when other cell death modalities are inhibited. It is plausible that RCD does not only play a housekeeping role in maintaining organismal homeostasis, and that it may play a major role in unwarranted cellular demise. The release of DAMPs during RCD provides potent signals to stimulate local inflammatory or systemic immune responses. The development of novel drugs for selectively intercepting (or, in sharp contrast, activating) the RCD pathway holds great promise for preventing and treating human diseases in which cell loss must be avoided (or when the elimination of malignant cells is a therapeutic goal). More research on RCD is needed to define the interplay between distinct cell death signaling pathways, identify unique molecular effectors for each type of RCD, and evaluate pro-survival or reprogramming mechanisms against RCD. In addition, more research is needed to define the critical point of no return of each RCD subroutine and to investigate the role of excessive or deficient RCD in human disease.</p>
</sec>
</body>
<back>
<ack>
<title>Acknowledgements</title>
<p>We thank Christine Burr (Department of Surgery, University of Pittsburgh) and Dave Primm (Department of Surgery, University of Texas Southwestern Medical Center) for their critical reading of the manuscript. We apologize to all researchers whose great work could not be cited in this review due to space limitations. G.K. is supported by the Ligue contre le Cancer Comité de Charente-Maritime (équipe labelisée); Agence National de la Recherche (ANR) – Projets blancs; ANR under the frame of E-Rare-2, the ERA-Net for Research on Rare Diseases; Association pour la recherche sur le cancer (ARC); Cancéropôle Ile-de-France; Chancelerie des universités de Paris (Legs Poix), Fondation pour la Recherche Médicale (FRM); the European Commission (ArtForce); the European Research Council (ERC); Fondation Carrefour; Institut National du Cancer (INCa); Inserm (HTE); Institut Universitaire de France; LeDucq Foundation; the LabEx Immuno-Oncology; the RHU Torino Lumière, the Searave Foundation; the SIRIC Stratified Oncology Cell DNA Repair and Tumor Immune Elimination (SOCRATE); the SIRIC Cancer Research and Personalized Medicine (CARPEM); and the Paris Alliance of Cancer Research Institutes (PACRI).</p>
</ack>
<notes notes-type="author-contribution">
<title>Author contributions</title>
<p>D.T. and G.K. took the lead in writing the manuscript. R.K., T.V.B., and P.V. discussed the contents and edited the manuscript.</p>
</notes>
<notes notes-type="COI-statement">
<title>Competing interests</title>
<p id="Par61">The authors declare that they have no competing interests.</p>
</notes>
<ref-list id="Bib1">
<title>References</title>
<ref id="CR1">
<label>1.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Kerr</surname>
<given-names>JF</given-names>
</name>
<name>
<surname>Wyllie</surname>
<given-names>AH</given-names>
</name>
<name>
<surname>Currie</surname>
<given-names>AR</given-names>
</name>
</person-group>
<article-title>Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics</article-title>
<source>Br. J. Cancer</source>
<year>1972</year>
<volume>26</volume>
<fpage>239</fpage>
<lpage>257</lpage>
<pub-id pub-id-type="doi">10.1038/bjc.1972.33</pub-id>
<pub-id pub-id-type="pmid">4561027</pub-id>
</element-citation>
</ref>
<ref id="CR2">
<label>2.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Singh</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Letai</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Sarosiek</surname>
<given-names>K</given-names>
</name>
</person-group>
<article-title>Regulation of apoptosis in health and disease: the balancing act of BCL-2 family proteins</article-title>
<source>Nat. Rev. Mol. Cell Biol.</source>
<year>2019</year>
<volume>20</volume>
<fpage>175</fpage>
<lpage>193</lpage>
<pub-id pub-id-type="doi">10.1038/s41580-018-0089-8</pub-id>
<pub-id pub-id-type="pmid">30655609</pub-id>
</element-citation>
</ref>
<ref id="CR3">
<label>3.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Hengartner</surname>
<given-names>MO</given-names>
</name>
<name>
<surname>Ellis</surname>
<given-names>RE</given-names>
</name>
<name>
<surname>Horvitz</surname>
<given-names>HR</given-names>
</name>
</person-group>
<article-title>Caenorhabditis elegans gene ced-9 protects cells from programmed cell death</article-title>
<source>Nature</source>
<year>1992</year>
<volume>356</volume>
<fpage>494</fpage>
<lpage>499</lpage>
<pub-id pub-id-type="doi">10.1038/356494a0</pub-id>
<pub-id pub-id-type="pmid">1560823</pub-id>
</element-citation>
</ref>
<ref id="CR4">
<label>4.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Hengartner</surname>
<given-names>MO</given-names>
</name>
<name>
<surname>Horvitz</surname>
<given-names>HR</given-names>
</name>
</person-group>
<article-title>C. elegans cell survival gene ced-9 encodes a functional homolog of the mammalian proto-oncogene bcl-2</article-title>
<source>Cell</source>
<year>1994</year>
<volume>76</volume>
<fpage>665</fpage>
<lpage>676</lpage>
<pub-id pub-id-type="doi">10.1016/0092-8674(94)90506-1</pub-id>
<pub-id pub-id-type="pmid">7907274</pub-id>
</element-citation>
</ref>
<ref id="CR5">
<label>5.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Yuan</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Horvitz</surname>
<given-names>HR</given-names>
</name>
</person-group>
<article-title>The Caenorhabditis elegans cell death gene ced-4 encodes a novel protein and is expressed during the period of extensive programmed cell death</article-title>
<source>Development</source>
<year>1992</year>
<volume>116</volume>
<fpage>309</fpage>
<lpage>320</lpage>
<pub-id pub-id-type="pmid">1286611</pub-id>
</element-citation>
</ref>
<ref id="CR6">
<label>6.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Schulze-Osthoff</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Ferrari</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Los</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Wesselborg</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Peter</surname>
<given-names>ME</given-names>
</name>
</person-group>
<article-title>Apoptosis signaling by death receptors</article-title>
<source>Eur. J. Biochem.</source>
<year>1998</year>
<volume>254</volume>
<fpage>439</fpage>
<lpage>459</lpage>
<pub-id pub-id-type="doi">10.1046/j.1432-1327.1998.2540439.x</pub-id>
<pub-id pub-id-type="pmid">9688254</pub-id>
</element-citation>
</ref>
<ref id="CR7">
<label>7.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Bredesen</surname>
<given-names>DE</given-names>
</name>
<name>
<surname>Mehlen</surname>
<given-names>P</given-names>
</name>
<name>
<surname>Rabizadeh</surname>
<given-names>S</given-names>
</name>
</person-group>
<article-title>Apoptosis and dependence receptors: a molecular basis for cellular addiction</article-title>
<source>Physiol. Rev.</source>
<year>2004</year>
<volume>84</volume>
<fpage>411</fpage>
<lpage>430</lpage>
<pub-id pub-id-type="doi">10.1152/physrev.00027.2003</pub-id>
<pub-id pub-id-type="pmid">15044679</pub-id>
</element-citation>
</ref>
<ref id="CR8">
<label>8.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Chipuk</surname>
<given-names>JE</given-names>
</name>
<name>
<surname>Bouchier-Hayes</surname>
<given-names>L</given-names>
</name>
<name>
<surname>Green</surname>
<given-names>DR</given-names>
</name>
</person-group>
<article-title>Mitochondrial outer membrane permeabilization during apoptosis: the innocent bystander scenario</article-title>
<source>Cell Death Differ.</source>
<year>2006</year>
<volume>13</volume>
<fpage>1396</fpage>
<lpage>1402</lpage>
<pub-id pub-id-type="doi">10.1038/sj.cdd.4401963</pub-id>
<pub-id pub-id-type="pmid">16710362</pub-id>
</element-citation>
</ref>
<ref id="CR9">
<label>9.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Czabotar</surname>
<given-names>PE</given-names>
</name>
<name>
<surname>Lessene</surname>
<given-names>G</given-names>
</name>
<name>
<surname>Strasser</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Adams</surname>
<given-names>JM</given-names>
</name>
</person-group>
<article-title>Control of apoptosis by the BCL-2 protein family: implications for physiology and therapy</article-title>
<source>Nat. Rev. Mol. Cell Biol.</source>
<year>2014</year>
<volume>15</volume>
<fpage>49</fpage>
<lpage>63</lpage>
<pub-id pub-id-type="doi">10.1038/nrm3722</pub-id>
<pub-id pub-id-type="pmid">24355989</pub-id>
</element-citation>
</ref>
<ref id="CR10">
<label>10.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>McIlwain</surname>
<given-names>David R.</given-names>
</name>
<name>
<surname>Berger</surname>
<given-names>Thorsten</given-names>
</name>
<name>
<surname>Mak</surname>
<given-names>Tak W.</given-names>
</name>
</person-group>
<article-title>Caspase Functions in Cell Death and Disease: Figure 1</article-title>
<source>Cold Spring Harbor Perspectives in Biology</source>
<year>2015</year>
<volume>7</volume>
<issue>4</issue>
<fpage>a026716</fpage>
<pub-id pub-id-type="doi">10.1101/cshperspect.a026716</pub-id>
<pub-id pub-id-type="pmid">25833847</pub-id>
</element-citation>
</ref>
<ref id="CR11">
<label>11.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Galluzzi</surname>
<given-names>L</given-names>
</name>
<name>
<surname>Lopez-Soto</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Kumar</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Kroemer</surname>
<given-names>G</given-names>
</name>
</person-group>
<article-title>Caspases connect cell-death signaling to organismal homeostasis</article-title>
<source>Immunity</source>
<year>2016</year>
<volume>44</volume>
<fpage>221</fpage>
<lpage>231</lpage>
<pub-id pub-id-type="doi">10.1016/j.immuni.2016.01.020</pub-id>
<pub-id pub-id-type="pmid">26885855</pub-id>
</element-citation>
</ref>
<ref id="CR12">
<label>12.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Linkermann</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Stockwell</surname>
<given-names>BR</given-names>
</name>
<name>
<surname>Krautwald</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Anders</surname>
<given-names>HJ</given-names>
</name>
</person-group>
<article-title>Regulated cell death and inflammation: an auto-amplification loop causes organ failure</article-title>
<source>Nat. Rev. Immunol.</source>
<year>2014</year>
<volume>14</volume>
<fpage>759</fpage>
<lpage>767</lpage>
<pub-id pub-id-type="doi">10.1038/nri3743</pub-id>
<pub-id pub-id-type="pmid">25324125</pub-id>
</element-citation>
</ref>
<ref id="CR13">
<label>13.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Vanden Berghe</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Linkermann</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Jouan-Lanhouet</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Walczak</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Vandenabeele</surname>
<given-names>P</given-names>
</name>
</person-group>
<article-title>Regulated necrosis: the expanding network of non-apoptotic cell death pathways</article-title>
<source>Nat. Rev. Mol. Cell Biol.</source>
<year>2014</year>
<volume>15</volume>
<fpage>135</fpage>
<lpage>147</lpage>
<pub-id pub-id-type="doi">10.1038/nrm3737</pub-id>
<pub-id pub-id-type="pmid">24452471</pub-id>
</element-citation>
</ref>
<ref id="CR14">
<label>14.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Schweichel</surname>
<given-names>JU</given-names>
</name>
<name>
<surname>Merker</surname>
<given-names>HJ</given-names>
</name>
</person-group>
<article-title>The morphology of various types of cell death in prenatal tissues</article-title>
<source>Teratology</source>
<year>1973</year>
<volume>7</volume>
<fpage>253</fpage>
<lpage>266</lpage>
<pub-id pub-id-type="doi">10.1002/tera.1420070306</pub-id>
<pub-id pub-id-type="pmid">4807128</pub-id>
</element-citation>
</ref>
<ref id="CR15">
<label>15.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Kerr</surname>
<given-names>JF</given-names>
</name>
</person-group>
<article-title>Shrinkage necrosis: a distinct mode of cellular death</article-title>
<source>J. Pathol.</source>
<year>1971</year>
<volume>105</volume>
<fpage>13</fpage>
<lpage>20</lpage>
<pub-id pub-id-type="doi">10.1002/path.1711050103</pub-id>
<pub-id pub-id-type="pmid">4108566</pub-id>
</element-citation>
</ref>
<ref id="CR16">
<label>16.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Kroemer</surname>
<given-names>G</given-names>
</name>
<name>
<surname>Marino</surname>
<given-names>G</given-names>
</name>
<name>
<surname>Levine</surname>
<given-names>B</given-names>
</name>
</person-group>
<article-title>Autophagy and the integrated stress response</article-title>
<source>Mol. Cell</source>
<year>2010</year>
<volume>40</volume>
<fpage>280</fpage>
<lpage>293</lpage>
<pub-id pub-id-type="doi">10.1016/j.molcel.2010.09.023</pub-id>
<pub-id pub-id-type="pmid">20965422</pub-id>
</element-citation>
</ref>
<ref id="CR17">
<label>17.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Liu</surname>
<given-names>Y</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Autosis is a Na+,K+-ATPase-regulated form of cell death triggered by autophagy-inducing peptides, starvation, and hypoxia-ischemia</article-title>
<source>Proc. Natl Acad. Sci. USA</source>
<year>2013</year>
<volume>110</volume>
<fpage>20364</fpage>
<lpage>20371</lpage>
<pub-id pub-id-type="doi">10.1073/pnas.1319661110</pub-id>
<pub-id pub-id-type="pmid">24277826</pub-id>
</element-citation>
</ref>
<ref id="CR18">
<label>18.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Nassour</surname>
<given-names>Joe</given-names>
</name>
<name>
<surname>Radford</surname>
<given-names>Robert</given-names>
</name>
<name>
<surname>Correia</surname>
<given-names>Adriana</given-names>
</name>
<name>
<surname>Fusté</surname>
<given-names>Javier Miralles</given-names>
</name>
<name>
<surname>Schoell</surname>
<given-names>Brigitte</given-names>
</name>
<name>
<surname>Jauch</surname>
<given-names>Anna</given-names>
</name>
<name>
<surname>Shaw</surname>
<given-names>Reuben J.</given-names>
</name>
<name>
<surname>Karlseder</surname>
<given-names>Jan</given-names>
</name>
</person-group>
<article-title>Autophagic cell death restricts chromosomal instability during replicative crisis</article-title>
<source>Nature</source>
<year>2019</year>
<volume>565</volume>
<issue>7741</issue>
<fpage>659</fpage>
<lpage>663</lpage>
<pub-id pub-id-type="doi">10.1038/s41586-019-0885-0</pub-id>
<pub-id pub-id-type="pmid">30675059</pub-id>
</element-citation>
</ref>
<ref id="CR19">
<label>19.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Weinlich</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Oberst</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Beere</surname>
<given-names>HM</given-names>
</name>
<name>
<surname>Green</surname>
<given-names>DR</given-names>
</name>
</person-group>
<article-title>Necroptosis in development, inflammation and disease</article-title>
<source>Nat. Rev. Mol. Cell Biol.</source>
<year>2017</year>
<volume>18</volume>
<fpage>127</fpage>
<lpage>136</lpage>
<pub-id pub-id-type="doi">10.1038/nrm.2016.149</pub-id>
<pub-id pub-id-type="pmid">27999438</pub-id>
</element-citation>
</ref>
<ref id="CR20">
<label>20.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Kroemer</surname>
<given-names>G</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Classification of cell death: recommendations of the Nomenclature Committee on Cell Death</article-title>
<source>Cell Death Differ.</source>
<year>2005</year>
<volume>12</volume>
<fpage>1463</fpage>
<lpage>1467</lpage>
<pub-id pub-id-type="doi">10.1038/sj.cdd.4401724</pub-id>
<pub-id pub-id-type="pmid">16247491</pub-id>
</element-citation>
</ref>
<ref id="CR21">
<label>21.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Kroemer</surname>
<given-names>G</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Classification of cell death: recommendations of the Nomenclature Committee on Cell Death 2009</article-title>
<source>Cell Death Differ.</source>
<year>2009</year>
<volume>16</volume>
<fpage>3</fpage>
<lpage>11</lpage>
<pub-id pub-id-type="doi">10.1038/cdd.2008.150</pub-id>
<pub-id pub-id-type="pmid">18846107</pub-id>
</element-citation>
</ref>
<ref id="CR22">
<label>22.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Galluzzi</surname>
<given-names>L</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Molecular definitions of cell death subroutines: recommendations of the Nomenclature Committee on Cell Death 2012</article-title>
<source>Cell Death Differ.</source>
<year>2012</year>
<volume>19</volume>
<fpage>107</fpage>
<lpage>120</lpage>
<pub-id pub-id-type="doi">10.1038/cdd.2011.96</pub-id>
<pub-id pub-id-type="pmid">21760595</pub-id>
</element-citation>
</ref>
<ref id="CR23">
<label>23.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Galluzzi</surname>
<given-names>L</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Essential versus accessory aspects of cell death: recommendations of the NCCD 2015</article-title>
<source>Cell Death Differ.</source>
<year>2015</year>
<volume>22</volume>
<fpage>58</fpage>
<lpage>73</lpage>
<pub-id pub-id-type="doi">10.1038/cdd.2014.137</pub-id>
<pub-id pub-id-type="pmid">25236395</pub-id>
</element-citation>
</ref>
<ref id="CR24">
<label>24.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Galluzzi</surname>
<given-names>L</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Molecular mechanisms of cell death: recommendations of the Nomenclature Committee on Cell Death 2018</article-title>
<source>Cell Death Differ.</source>
<year>2018</year>
<volume>25</volume>
<fpage>486</fpage>
<lpage>541</lpage>
<pub-id pub-id-type="doi">10.1038/s41418-017-0012-4</pub-id>
<pub-id pub-id-type="pmid">29362479</pub-id>
</element-citation>
</ref>
<ref id="CR25">
<label>25.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Pasparakis</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Vandenabeele</surname>
<given-names>P</given-names>
</name>
</person-group>
<article-title>Necroptosis and its role in inflammation</article-title>
<source>Nature</source>
<year>2015</year>
<volume>517</volume>
<fpage>311</fpage>
<lpage>320</lpage>
<pub-id pub-id-type="doi">10.1038/nature14191</pub-id>
<pub-id pub-id-type="pmid">25592536</pub-id>
</element-citation>
</ref>
<ref id="CR26">
<label>26.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Ray</surname>
<given-names>CA</given-names>
</name>
<name>
<surname>Pickup</surname>
<given-names>DJ</given-names>
</name>
</person-group>
<article-title>The mode of death of pig kidney cells infected with cowpox virus is governed by the expression of the crmA gene</article-title>
<source>Virology</source>
<year>1996</year>
<volume>217</volume>
<fpage>384</fpage>
<lpage>391</lpage>
<pub-id pub-id-type="doi">10.1006/viro.1996.0128</pub-id>
<pub-id pub-id-type="pmid">8599227</pub-id>
</element-citation>
</ref>
<ref id="CR27">
<label>27.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Laster</surname>
<given-names>SM</given-names>
</name>
<name>
<surname>Wood</surname>
<given-names>JG</given-names>
</name>
<name>
<surname>Gooding</surname>
<given-names>LR</given-names>
</name>
</person-group>
<article-title>Tumor necrosis factor can induce both apoptic and necrotic forms of cell lysis</article-title>
<source>J. Immunol.</source>
<year>1988</year>
<volume>141</volume>
<fpage>2629</fpage>
<lpage>2634</lpage>
<pub-id pub-id-type="pmid">3171180</pub-id>
</element-citation>
</ref>
<ref id="CR28">
<label>28.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Holler</surname>
<given-names>N</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Fas triggers an alternative, caspase-8-independent cell death pathway using the kinase RIP as effector molecule</article-title>
<source>Nat. Immunol.</source>
<year>2000</year>
<volume>1</volume>
<fpage>489</fpage>
<lpage>495</lpage>
<pub-id pub-id-type="doi">10.1038/82732</pub-id>
<pub-id pub-id-type="pmid">11101870</pub-id>
</element-citation>
</ref>
<ref id="CR29">
<label>29.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>He</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Liang</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Shao</surname>
<given-names>F</given-names>
</name>
<name>
<surname>Wang</surname>
<given-names>X</given-names>
</name>
</person-group>
<article-title>Toll-like receptors activate programmed necrosis in macrophages through a receptor-interacting kinase-3-mediated pathway</article-title>
<source>Proc. Natl Acad. Sci. USA</source>
<year>2011</year>
<volume>108</volume>
<fpage>20054</fpage>
<lpage>20059</lpage>
<pub-id pub-id-type="doi">10.1073/pnas.1116302108</pub-id>
<pub-id pub-id-type="pmid">22123964</pub-id>
</element-citation>
</ref>
<ref id="CR30">
<label>30.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Upton</surname>
<given-names>JW</given-names>
</name>
<name>
<surname>Kaiser</surname>
<given-names>WJ</given-names>
</name>
<name>
<surname>Mocarski</surname>
<given-names>ES</given-names>
</name>
</person-group>
<article-title>DAI/ZBP1/DLM-1 complexes with RIP3 to mediate virus-induced programmed necrosis that is targeted by murine cytomegalovirus vIRA</article-title>
<source>Cell Host. Microbe.</source>
<year>2012</year>
<volume>11</volume>
<fpage>290</fpage>
<lpage>297</lpage>
<pub-id pub-id-type="doi">10.1016/j.chom.2012.01.016</pub-id>
<pub-id pub-id-type="pmid">22423968</pub-id>
</element-citation>
</ref>
<ref id="CR31">
<label>31.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Schock</surname>
<given-names>SN</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Induction of necroptotic cell death by viral activation of the RIG-I or STING pathway</article-title>
<source>Cell Death Differ.</source>
<year>2017</year>
<volume>24</volume>
<fpage>615</fpage>
<lpage>625</lpage>
<pub-id pub-id-type="doi">10.1038/cdd.2016.153</pub-id>
<pub-id pub-id-type="pmid">28060376</pub-id>
</element-citation>
</ref>
<ref id="CR32">
<label>32.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Brault</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Olsen</surname>
<given-names>TM</given-names>
</name>
<name>
<surname>Martinez</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Stetson</surname>
<given-names>DB</given-names>
</name>
<name>
<surname>Oberst</surname>
<given-names>A</given-names>
</name>
</person-group>
<article-title>Intracellular nucleic acid sensing triggers necroptosis through synergistic type I IFN and TNF signaling</article-title>
<source>J. Immunol.</source>
<year>2018</year>
<volume>200</volume>
<fpage>2748</fpage>
<lpage>2756</lpage>
<pub-id pub-id-type="doi">10.4049/jimmunol.1701492</pub-id>
<pub-id pub-id-type="pmid">29540580</pub-id>
</element-citation>
</ref>
<ref id="CR33">
<label>33.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Chen</surname>
<given-names>D</given-names>
</name>
<etal></etal>
</person-group>
<article-title>PUMA amplifies necroptosis signaling by activating cytosolic DNA sensors</article-title>
<source>Proc. Natl Acad. Sci. USA</source>
<year>2018</year>
<volume>115</volume>
<fpage>3930</fpage>
<lpage>3935</lpage>
<pub-id pub-id-type="doi">10.1073/pnas.1717190115</pub-id>
<pub-id pub-id-type="pmid">29581256</pub-id>
</element-citation>
</ref>
<ref id="CR34">
<label>34.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Wang</surname>
<given-names>X</given-names>
</name>
<name>
<surname>He</surname>
<given-names>Z</given-names>
</name>
<name>
<surname>Liu</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Yousefi</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Simon</surname>
<given-names>HU</given-names>
</name>
</person-group>
<article-title>Neutrophil necroptosis is triggered by ligation of adhesion molecules following GM-CSF priming</article-title>
<source>J. Immunol.</source>
<year>2016</year>
<volume>197</volume>
<fpage>4090</fpage>
<lpage>4100</lpage>
<pub-id pub-id-type="doi">10.4049/jimmunol.1600051</pub-id>
<pub-id pub-id-type="pmid">27815445</pub-id>
</element-citation>
</ref>
<ref id="CR35">
<label>35.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Vercammen</surname>
<given-names>D</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Inhibition of caspases increases the sensitivity of L929 cells to necrosis mediated by tumor necrosis factor</article-title>
<source>J. Exp. Med.</source>
<year>1998</year>
<volume>187</volume>
<fpage>1477</fpage>
<lpage>1485</lpage>
<pub-id pub-id-type="doi">10.1084/jem.187.9.1477</pub-id>
<pub-id pub-id-type="pmid">9565639</pub-id>
</element-citation>
</ref>
<ref id="CR36">
<label>36.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Degterev</surname>
<given-names>A</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Chemical inhibitor of nonapoptotic cell death with therapeutic potential for ischemic brain injury</article-title>
<source>Nat. Chem. Biol.</source>
<year>2005</year>
<volume>1</volume>
<fpage>112</fpage>
<lpage>119</lpage>
<pub-id pub-id-type="doi">10.1038/nchembio711</pub-id>
<pub-id pub-id-type="pmid">16408008</pub-id>
</element-citation>
</ref>
<ref id="CR37">
<label>37.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Degterev</surname>
<given-names>A</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Identification of RIP1 kinase as a specific cellular target of necrostatins</article-title>
<source>Nat. Chem. Biol.</source>
<year>2008</year>
<volume>4</volume>
<fpage>313</fpage>
<lpage>321</lpage>
<pub-id pub-id-type="doi">10.1038/nchembio.83</pub-id>
<pub-id pub-id-type="pmid">18408713</pub-id>
</element-citation>
</ref>
<ref id="CR38">
<label>38.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Zhang</surname>
<given-names>DW</given-names>
</name>
<etal></etal>
</person-group>
<article-title>RIP3, an energy metabolism regulator that switches TNF-induced cell death from apoptosis to necrosis</article-title>
<source>Science</source>
<year>2009</year>
<volume>325</volume>
<fpage>332</fpage>
<lpage>336</lpage>
<pub-id pub-id-type="doi">10.1126/science.1172308</pub-id>
<pub-id pub-id-type="pmid">19498109</pub-id>
</element-citation>
</ref>
<ref id="CR39">
<label>39.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>He</surname>
<given-names>S</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Receptor interacting protein kinase-3 determines cellular necrotic response to TNF-alpha</article-title>
<source>Cell</source>
<year>2009</year>
<volume>137</volume>
<fpage>1100</fpage>
<lpage>1111</lpage>
<pub-id pub-id-type="doi">10.1016/j.cell.2009.05.021</pub-id>
<pub-id pub-id-type="pmid">19524512</pub-id>
</element-citation>
</ref>
<ref id="CR40">
<label>40.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Cho</surname>
<given-names>YS</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Phosphorylation-driven assembly of the RIP1-RIP3 complex regulates programmed necrosis and virus-induced inflammation</article-title>
<source>Cell</source>
<year>2009</year>
<volume>137</volume>
<fpage>1112</fpage>
<lpage>1123</lpage>
<pub-id pub-id-type="doi">10.1016/j.cell.2009.05.037</pub-id>
<pub-id pub-id-type="pmid">19524513</pub-id>
</element-citation>
</ref>
<ref id="CR41">
<label>41.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Sun</surname>
<given-names>L</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Mixed lineage kinase domain-like protein mediates necrosis signaling downstream of RIP3 kinase</article-title>
<source>Cell</source>
<year>2012</year>
<volume>148</volume>
<fpage>213</fpage>
<lpage>227</lpage>
<pub-id pub-id-type="doi">10.1016/j.cell.2011.11.031</pub-id>
<pub-id pub-id-type="pmid">22265413</pub-id>
</element-citation>
</ref>
<ref id="CR42">
<label>42.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Zhao</surname>
<given-names>J</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Mixed lineage kinase domain-like is a key receptor interacting protein 3 downstream component of TNF-induced necrosis</article-title>
<source>Proc. Natl Acad. Sci. USA</source>
<year>2012</year>
<volume>109</volume>
<fpage>5322</fpage>
<lpage>5327</lpage>
<pub-id pub-id-type="doi">10.1073/pnas.1200012109</pub-id>
<pub-id pub-id-type="pmid">22421439</pub-id>
</element-citation>
</ref>
<ref id="CR43">
<label>43.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Mompean</surname>
<given-names>M</given-names>
</name>
<etal></etal>
</person-group>
<article-title>The structure of the necrosome RIPK1-RIPK3 core, a human hetero-amyloid signaling complex</article-title>
<source>Cell</source>
<year>2018</year>
<volume>173</volume>
<fpage>1244</fpage>
<lpage>1253 e1210</lpage>
<pub-id pub-id-type="doi">10.1016/j.cell.2018.03.032</pub-id>
<pub-id pub-id-type="pmid">29681455</pub-id>
</element-citation>
</ref>
<ref id="CR44">
<label>44.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Li</surname>
<given-names>J</given-names>
</name>
<etal></etal>
</person-group>
<article-title>The RIP1/RIP3 necrosome forms a functional amyloid signaling complex required for programmed necrosis</article-title>
<source>Cell</source>
<year>2012</year>
<volume>150</volume>
<fpage>339</fpage>
<lpage>350</lpage>
<pub-id pub-id-type="doi">10.1016/j.cell.2012.06.019</pub-id>
<pub-id pub-id-type="pmid">22817896</pub-id>
</element-citation>
</ref>
<ref id="CR45">
<label>45.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Seo</surname>
<given-names>J</given-names>
</name>
<etal></etal>
</person-group>
<article-title>CHIP controls necroptosis through ubiquitylation- and lysosome-dependent degradation of RIPK3</article-title>
<source>Nat. Cell Biol.</source>
<year>2016</year>
<volume>18</volume>
<fpage>291</fpage>
<lpage>302</lpage>
<pub-id pub-id-type="doi">10.1038/ncb3314</pub-id>
<pub-id pub-id-type="pmid">26900751</pub-id>
</element-citation>
</ref>
<ref id="CR46">
<label>46.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Xie</surname>
<given-names>Y</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Inhibition of aurora kinase A induces necroptosis in pancreatic carcinoma</article-title>
<source>Gastroenterology</source>
<year>2017</year>
<volume>153</volume>
<fpage>1429</fpage>
<lpage>1443 e1425</lpage>
<pub-id pub-id-type="doi">10.1053/j.gastro.2017.07.036</pub-id>
<pub-id pub-id-type="pmid">28764929</pub-id>
</element-citation>
</ref>
<ref id="CR47">
<label>47.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Chen</surname>
<given-names>W</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Ppm1b negatively regulates necroptosis through dephosphorylating Rip3</article-title>
<source>Nat. Cell Biol.</source>
<year>2015</year>
<volume>17</volume>
<fpage>434</fpage>
<lpage>444</lpage>
<pub-id pub-id-type="doi">10.1038/ncb3120</pub-id>
<pub-id pub-id-type="pmid">25751141</pub-id>
</element-citation>
</ref>
<ref id="CR48">
<label>48.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Onizawa</surname>
<given-names>M</given-names>
</name>
<etal></etal>
</person-group>
<article-title>The ubiquitin-modifying enzyme A20 restricts ubiquitination of the kinase RIPK3 and protects cells from necroptosis</article-title>
<source>Nat. Immunol.</source>
<year>2015</year>
<volume>16</volume>
<fpage>618</fpage>
<lpage>627</lpage>
<pub-id pub-id-type="doi">10.1038/ni.3172</pub-id>
<pub-id pub-id-type="pmid">25939025</pub-id>
</element-citation>
</ref>
<ref id="CR49">
<label>49.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Huang</surname>
<given-names>Z</given-names>
</name>
<etal></etal>
</person-group>
<article-title>RIP1/RIP3 binding to HSV-1 ICP6 initiates necroptosis to restrict virus propagation in mice</article-title>
<source>Cell Host. Microbe.</source>
<year>2015</year>
<volume>17</volume>
<fpage>229</fpage>
<lpage>242</lpage>
<pub-id pub-id-type="doi">10.1016/j.chom.2015.01.002</pub-id>
<pub-id pub-id-type="pmid">25674982</pub-id>
</element-citation>
</ref>
<ref id="CR50">
<label>50.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Thapa</surname>
<given-names>RJ</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Interferon-induced RIP1/RIP3-mediated necrosis requires PKR and is licensed by FADD and caspases</article-title>
<source>Proc. Natl Acad. Sci. USA</source>
<year>2013</year>
<volume>110</volume>
<fpage>E3109</fpage>
<lpage>E3118</lpage>
<pub-id pub-id-type="doi">10.1073/pnas.1301218110</pub-id>
<pub-id pub-id-type="pmid">23898178</pub-id>
</element-citation>
</ref>
<ref id="CR51">
<label>51.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Robinson</surname>
<given-names>N</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Type I interferon induces necroptosis in macrophages during infection with Salmonella enterica serovar Typhimurium</article-title>
<source>Nat. Immunol.</source>
<year>2012</year>
<volume>13</volume>
<fpage>954</fpage>
<lpage>962</lpage>
<pub-id pub-id-type="doi">10.1038/ni.2397</pub-id>
<pub-id pub-id-type="pmid">22922364</pub-id>
</element-citation>
</ref>
<ref id="CR52">
<label>52.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Wang</surname>
<given-names>H</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Mixed lineage kinase domain-like protein MLKL causes necrotic membrane disruption upon phosphorylation by RIP3</article-title>
<source>Mol. Cell</source>
<year>2014</year>
<volume>54</volume>
<fpage>133</fpage>
<lpage>146</lpage>
<pub-id pub-id-type="doi">10.1016/j.molcel.2014.03.003</pub-id>
<pub-id pub-id-type="pmid">24703947</pub-id>
</element-citation>
</ref>
<ref id="CR53">
<label>53.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Dondelinger</surname>
<given-names>Y</given-names>
</name>
<etal></etal>
</person-group>
<article-title>MLKL compromises plasma membrane integrity by binding to phosphatidylinositol phosphates</article-title>
<source>Cell Rep</source>
<year>2014</year>
<volume>7</volume>
<fpage>971</fpage>
<lpage>981</lpage>
<pub-id pub-id-type="doi">10.1016/j.celrep.2014.04.026</pub-id>
<pub-id pub-id-type="pmid">24813885</pub-id>
</element-citation>
</ref>
<ref id="CR54">
<label>54.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Hildebrand</surname>
<given-names>JM</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Activation of the pseudokinase MLKL unleashes the four-helix bundle domain to induce membrane localization and necroptotic cell death</article-title>
<source>Proc. Natl Acad. Sci. USA</source>
<year>2014</year>
<volume>111</volume>
<fpage>15072</fpage>
<lpage>15077</lpage>
<pub-id pub-id-type="doi">10.1073/pnas.1408987111</pub-id>
<pub-id pub-id-type="pmid">25288762</pub-id>
</element-citation>
</ref>
<ref id="CR55">
<label>55.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Murphy</surname>
<given-names>JM</given-names>
</name>
<etal></etal>
</person-group>
<article-title>The pseudokinase MLKL mediates necroptosis via a molecular switch mechanism</article-title>
<source>Immunity</source>
<year>2013</year>
<volume>39</volume>
<fpage>443</fpage>
<lpage>453</lpage>
<pub-id pub-id-type="doi">10.1016/j.immuni.2013.06.018</pub-id>
<pub-id pub-id-type="pmid">24012422</pub-id>
</element-citation>
</ref>
<ref id="CR56">
<label>56.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Chen</surname>
<given-names>X</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Translocation of mixed lineage kinase domain-like protein to plasma membrane leads to necrotic cell death</article-title>
<source>Cell Res.</source>
<year>2014</year>
<volume>24</volume>
<fpage>105</fpage>
<lpage>121</lpage>
<pub-id pub-id-type="doi">10.1038/cr.2013.171</pub-id>
<pub-id pub-id-type="pmid">24366341</pub-id>
</element-citation>
</ref>
<ref id="CR57">
<label>57.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Zhao</surname>
<given-names>XM</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Hsp90 modulates the stability of MLKL and is required for TNF-induced necroptosis</article-title>
<source>Cell Death Dis.</source>
<year>2016</year>
<volume>7</volume>
<fpage>e2089</fpage>
<pub-id pub-id-type="doi">10.1038/cddis.2015.390</pub-id>
<pub-id pub-id-type="pmid">26866270</pub-id>
</element-citation>
</ref>
<ref id="CR58">
<label>58.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Li</surname>
<given-names>D</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Natural product kongensin A is a non-canonical HSP90 inhibitor that blocks RIP3-dependent necroptosis</article-title>
<source>Cell Chem Biol</source>
<year>2016</year>
<volume>23</volume>
<fpage>257</fpage>
<lpage>266</lpage>
<pub-id pub-id-type="doi">10.1016/j.chembiol.2015.08.018</pub-id>
<pub-id pub-id-type="pmid">27028885</pub-id>
</element-citation>
</ref>
<ref id="CR59">
<label>59.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Jacobsen</surname>
<given-names>AV</given-names>
</name>
<etal></etal>
</person-group>
<article-title>HSP90 activity is required for MLKL oligomerisation and membrane translocation and the induction of necroptotic cell death</article-title>
<source>Cell Death Dis.</source>
<year>2016</year>
<volume>7</volume>
<fpage>e2051</fpage>
<pub-id pub-id-type="doi">10.1038/cddis.2015.386</pub-id>
<pub-id pub-id-type="pmid">26775703</pub-id>
</element-citation>
</ref>
<ref id="CR60">
<label>60.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Bigenzahn</surname>
<given-names>JW</given-names>
</name>
<etal></etal>
</person-group>
<article-title>An inducible retroviral expression system for tandem affinity purification mass-spectrometry-based proteomics identifies mixed lineage kinase domain-like protein (MLKL) as an heat shock protein 90 (HSP90) client</article-title>
<source>Mol. Cell. Proteomics.</source>
<year>2016</year>
<volume>15</volume>
<fpage>1139</fpage>
<lpage>1150</lpage>
<pub-id pub-id-type="doi">10.1074/mcp.O115.055350</pub-id>
<pub-id pub-id-type="pmid">26933192</pub-id>
</element-citation>
</ref>
<ref id="CR61">
<label>61.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Dovey</surname>
<given-names>CM</given-names>
</name>
<etal></etal>
</person-group>
<article-title>MLKL requires the inositol phosphate code to execute necroptosis</article-title>
<source>Mol. Cell</source>
<year>2018</year>
<volume>70</volume>
<fpage>936</fpage>
<lpage>948 e937</lpage>
<pub-id pub-id-type="doi">10.1016/j.molcel.2018.05.010</pub-id>
<pub-id pub-id-type="pmid">29883610</pub-id>
</element-citation>
</ref>
<ref id="CR62">
<label>62.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Gong</surname>
<given-names>YN</given-names>
</name>
<etal></etal>
</person-group>
<article-title>ESCRT-III acts downstream of MLKL to regulate necroptotic cell death and its consequences</article-title>
<source>Cell</source>
<year>2017</year>
<volume>169</volume>
<fpage>286</fpage>
<lpage>300 e216</lpage>
<pub-id pub-id-type="doi">10.1016/j.cell.2017.03.020</pub-id>
<pub-id pub-id-type="pmid">28388412</pub-id>
</element-citation>
</ref>
<ref id="CR63">
<label>63.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Yoon</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Kovalenko</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Bogdanov</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Wallach</surname>
<given-names>D</given-names>
</name>
</person-group>
<article-title>MLKL, the protein that mediates necroptosis, also regulates endosomal trafficking and extracellular vesicle generation</article-title>
<source>Immunity</source>
<year>2017</year>
<volume>47</volume>
<fpage>51</fpage>
<lpage>65 e57</lpage>
<pub-id pub-id-type="doi">10.1016/j.immuni.2017.06.001</pub-id>
<pub-id pub-id-type="pmid">28666573</pub-id>
</element-citation>
</ref>
<ref id="CR64">
<label>64.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Vanden Berghe</surname>
<given-names>T</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Necroptosis, necrosis and secondary necrosis converge on similar cellular disintegration features</article-title>
<source>Cell Death Differ.</source>
<year>2010</year>
<volume>17</volume>
<fpage>922</fpage>
<lpage>930</lpage>
<pub-id pub-id-type="doi">10.1038/cdd.2009.184</pub-id>
<pub-id pub-id-type="pmid">20010783</pub-id>
</element-citation>
</ref>
<ref id="CR65">
<label>65.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Wang</surname>
<given-names>Z</given-names>
</name>
<name>
<surname>Jiang</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Chen</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Du</surname>
<given-names>F</given-names>
</name>
<name>
<surname>Wang</surname>
<given-names>X</given-names>
</name>
</person-group>
<article-title>The mitochondrial phosphatase PGAM5 functions at the convergence point of multiple necrotic death pathways</article-title>
<source>Cell</source>
<year>2012</year>
<volume>148</volume>
<fpage>228</fpage>
<lpage>243</lpage>
<pub-id pub-id-type="doi">10.1016/j.cell.2011.11.030</pub-id>
<pub-id pub-id-type="pmid">22265414</pub-id>
</element-citation>
</ref>
<ref id="CR66">
<label>66.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Zhang</surname>
<given-names>Y</given-names>
</name>
<etal></etal>
</person-group>
<article-title>RIP1 autophosphorylation is promoted by mitochondrial ROS and is essential for RIP3 recruitment into necrosome</article-title>
<source>Nat. Commun.</source>
<year>2017</year>
<volume>8</volume>
<fpage>14329</fpage>
<pub-id pub-id-type="doi">10.1038/ncomms14329</pub-id>
<pub-id pub-id-type="pmid">28176780</pub-id>
</element-citation>
</ref>
<ref id="CR67">
<label>67.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Yang</surname>
<given-names>Z</given-names>
</name>
<etal></etal>
</person-group>
<article-title>RIP3 targets pyruvate dehydrogenase complex to increase aerobic respiration in TNF-induced necroptosis</article-title>
<source>Nat. Cell Biol.</source>
<year>2018</year>
<volume>20</volume>
<fpage>186</fpage>
<lpage>197</lpage>
<pub-id pub-id-type="doi">10.1038/s41556-017-0022-y</pub-id>
<pub-id pub-id-type="pmid">29358703</pub-id>
</element-citation>
</ref>
<ref id="CR68">
<label>68.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Remijsen</surname>
<given-names>Q</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Depletion of RIPK3 or MLKL blocks TNF-driven necroptosis and switches towards a delayed RIPK1 kinase-dependent apoptosis</article-title>
<source>Cell Death Dis.</source>
<year>2014</year>
<volume>5</volume>
<fpage>e1004</fpage>
<pub-id pub-id-type="doi">10.1038/cddis.2013.531</pub-id>
<pub-id pub-id-type="pmid">24434512</pub-id>
</element-citation>
</ref>
<ref id="CR69">
<label>69.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Yoon</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Bogdanov</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Kovalenko</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Wallach</surname>
<given-names>D</given-names>
</name>
</person-group>
<article-title>Necroptosis is preceded by nuclear translocation of the signaling proteins that induce it</article-title>
<source>Cell Death Differ.</source>
<year>2016</year>
<volume>23</volume>
<fpage>253</fpage>
<lpage>260</lpage>
<pub-id pub-id-type="doi">10.1038/cdd.2015.92</pub-id>
<pub-id pub-id-type="pmid">26184911</pub-id>
</element-citation>
</ref>
<ref id="CR70">
<label>70.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Weber</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Roelandt</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Bruggeman</surname>
<given-names>I</given-names>
</name>
<name>
<surname>Estornes</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Vandenabeele</surname>
<given-names>P</given-names>
</name>
</person-group>
<article-title>Nuclear RIPK3 and MLKL contribute to cytosolic necrosome formation and necroptosis</article-title>
<source>Commun Biol</source>
<year>2018</year>
<volume>1</volume>
<fpage>6</fpage>
<pub-id pub-id-type="doi">10.1038/s42003-017-0007-1</pub-id>
<pub-id pub-id-type="pmid">30271893</pub-id>
</element-citation>
</ref>
<ref id="CR71">
<label>71.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Wang</surname>
<given-names>X</given-names>
</name>
<name>
<surname>Yousefi</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Simon</surname>
<given-names>HU</given-names>
</name>
</person-group>
<article-title>Necroptosis and neutrophil-associated disorders</article-title>
<source>Cell Death Dis.</source>
<year>2018</year>
<volume>9</volume>
<fpage>111</fpage>
<pub-id pub-id-type="doi">10.1038/s41419-017-0058-8</pub-id>
<pub-id pub-id-type="pmid">29371616</pub-id>
</element-citation>
</ref>
<ref id="CR72">
<label>72.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Newton</surname>
<given-names>K</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Activity of protein kinase RIPK3 determines whether cells die by necroptosis or apoptosis</article-title>
<source>Science</source>
<year>2014</year>
<volume>343</volume>
<fpage>1357</fpage>
<lpage>1360</lpage>
<pub-id pub-id-type="doi">10.1126/science.1249361</pub-id>
<pub-id pub-id-type="pmid">24557836</pub-id>
</element-citation>
</ref>
<ref id="CR73">
<label>73.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Lawlor</surname>
<given-names>KE</given-names>
</name>
<etal></etal>
</person-group>
<article-title>RIPK3 promotes cell death and NLRP3 inflammasome activation in the absence of MLKL</article-title>
<source>Nat. Commun.</source>
<year>2015</year>
<volume>6</volume>
<fpage>6282</fpage>
<pub-id pub-id-type="doi">10.1038/ncomms7282</pub-id>
<pub-id pub-id-type="pmid">25693118</pub-id>
</element-citation>
</ref>
<ref id="CR74">
<label>74.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Shan</surname>
<given-names>B</given-names>
</name>
<name>
<surname>Pan</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Najafov</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Yuan</surname>
<given-names>J</given-names>
</name>
</person-group>
<article-title>Necroptosis in development and diseases</article-title>
<source>Genes Dev.</source>
<year>2018</year>
<volume>32</volume>
<fpage>327</fpage>
<lpage>340</lpage>
<pub-id pub-id-type="doi">10.1101/gad.312561.118</pub-id>
<pub-id pub-id-type="pmid">29593066</pub-id>
</element-citation>
</ref>
<ref id="CR75">
<label>75.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Dillon</surname>
<given-names>CP</given-names>
</name>
<name>
<surname>Tummers</surname>
<given-names>B</given-names>
</name>
<name>
<surname>Baran</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Green</surname>
<given-names>DR</given-names>
</name>
</person-group>
<article-title>Developmental checkpoints guarded by regulated necrosis</article-title>
<source>Cell. Mol. Life Sci.</source>
<year>2016</year>
<volume>73</volume>
<fpage>2125</fpage>
<lpage>2136</lpage>
<pub-id pub-id-type="doi">10.1007/s00018-016-2188-z</pub-id>
<pub-id pub-id-type="pmid">27056574</pub-id>
</element-citation>
</ref>
<ref id="CR76">
<label>76.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Galluzzi</surname>
<given-names>L</given-names>
</name>
<name>
<surname>Kepp</surname>
<given-names>O</given-names>
</name>
<name>
<surname>Chan</surname>
<given-names>FK</given-names>
</name>
<name>
<surname>Kroemer</surname>
<given-names>G</given-names>
</name>
</person-group>
<article-title>Necroptosis: mechanisms and relevance to disease</article-title>
<source>Annu. Rev. Pathol.</source>
<year>2017</year>
<volume>12</volume>
<fpage>103</fpage>
<lpage>130</lpage>
<pub-id pub-id-type="doi">10.1146/annurev-pathol-052016-100247</pub-id>
<pub-id pub-id-type="pmid">27959630</pub-id>
</element-citation>
</ref>
<ref id="CR77">
<label>77.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Vanden Berghe</surname>
<given-names>T</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Passenger mutations confound interpretation of all genetically modified congenic mice</article-title>
<source>Immunity</source>
<year>2015</year>
<volume>43</volume>
<fpage>200</fpage>
<lpage>209</lpage>
<pub-id pub-id-type="doi">10.1016/j.immuni.2015.06.011</pub-id>
<pub-id pub-id-type="pmid">26163370</pub-id>
</element-citation>
</ref>
<ref id="CR78">
<label>78.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Fink</surname>
<given-names>SL</given-names>
</name>
<name>
<surname>Cookson</surname>
<given-names>BT</given-names>
</name>
</person-group>
<article-title>Apoptosis, pyroptosis, and necrosis: mechanistic description of dead and dying eukaryotic cells</article-title>
<source>Infect. Immun.</source>
<year>2005</year>
<volume>73</volume>
<fpage>1907</fpage>
<lpage>1916</lpage>
<pub-id pub-id-type="doi">10.1128/IAI.73.4.1907-1916.2005</pub-id>
<pub-id pub-id-type="pmid">15784530</pub-id>
</element-citation>
</ref>
<ref id="CR79">
<label>79.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Brennan</surname>
<given-names>MA</given-names>
</name>
<name>
<surname>Cookson</surname>
<given-names>BT</given-names>
</name>
</person-group>
<article-title>Salmonella induces macrophage death by caspase-1-dependent necrosis</article-title>
<source>Mol. Microbiol.</source>
<year>2000</year>
<volume>38</volume>
<fpage>31</fpage>
<lpage>40</lpage>
<pub-id pub-id-type="doi">10.1046/j.1365-2958.2000.02103.x</pub-id>
<pub-id pub-id-type="pmid">11029688</pub-id>
</element-citation>
</ref>
<ref id="CR80">
<label>80.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Hersh</surname>
<given-names>D</given-names>
</name>
<etal></etal>
</person-group>
<article-title>The Salmonella invasin SipB induces macrophage apoptosis by binding to caspase-1</article-title>
<source>Proc. Natl Acad. Sci. USA</source>
<year>1999</year>
<volume>96</volume>
<fpage>2396</fpage>
<lpage>2401</lpage>
<pub-id pub-id-type="doi">10.1073/pnas.96.5.2396</pub-id>
<pub-id pub-id-type="pmid">10051653</pub-id>
</element-citation>
</ref>
<ref id="CR81">
<label>81.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Broz</surname>
<given-names>P</given-names>
</name>
<name>
<surname>Dixit</surname>
<given-names>VM</given-names>
</name>
</person-group>
<article-title>Inflammasomes: mechanism of assembly, regulation and signalling</article-title>
<source>Nat. Rev. Immunol.</source>
<year>2016</year>
<volume>16</volume>
<fpage>407</fpage>
<lpage>420</lpage>
<pub-id pub-id-type="doi">10.1038/nri.2016.58</pub-id>
<pub-id pub-id-type="pmid">27291964</pub-id>
</element-citation>
</ref>
<ref id="CR82">
<label>82.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Chen</surname>
<given-names>X</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Pyroptosis is driven by non-selective gasdermin-D pore and its morphology is different from MLKL channel-mediated necroptosis</article-title>
<source>Cell Res.</source>
<year>2016</year>
<volume>26</volume>
<fpage>1007</fpage>
<lpage>1020</lpage>
<pub-id pub-id-type="doi">10.1038/cr.2016.100</pub-id>
<pub-id pub-id-type="pmid">27573174</pub-id>
</element-citation>
</ref>
<ref id="CR83">
<label>83.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Rathkey</surname>
<given-names>Joseph K.</given-names>
</name>
<name>
<surname>Zhao</surname>
<given-names>Junjie</given-names>
</name>
<name>
<surname>Liu</surname>
<given-names>Zhonghua</given-names>
</name>
<name>
<surname>Chen</surname>
<given-names>Yinghua</given-names>
</name>
<name>
<surname>Yang</surname>
<given-names>Jie</given-names>
</name>
<name>
<surname>Kondolf</surname>
<given-names>Hannah C.</given-names>
</name>
<name>
<surname>Benson</surname>
<given-names>Bryan L.</given-names>
</name>
<name>
<surname>Chirieleison</surname>
<given-names>Steven M.</given-names>
</name>
<name>
<surname>Huang</surname>
<given-names>Alex Y.</given-names>
</name>
<name>
<surname>Dubyak</surname>
<given-names>George R.</given-names>
</name>
<name>
<surname>Xiao</surname>
<given-names>Tsan S.</given-names>
</name>
<name>
<surname>Li</surname>
<given-names>Xiaoxia</given-names>
</name>
<name>
<surname>Abbott</surname>
<given-names>Derek W.</given-names>
</name>
</person-group>
<article-title>Chemical disruption of the pyroptotic pore-forming protein gasdermin D inhibits inflammatory cell death and sepsis</article-title>
<source>Science Immunology</source>
<year>2018</year>
<volume>3</volume>
<issue>26</issue>
<fpage>eaat2738</fpage>
<pub-id pub-id-type="doi">10.1126/sciimmunol.aat2738</pub-id>
<pub-id pub-id-type="pmid">30143556</pub-id>
</element-citation>
</ref>
<ref id="CR84">
<label>84.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>He</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Zeng</surname>
<given-names>MY</given-names>
</name>
<name>
<surname>Yang</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Motro</surname>
<given-names>B</given-names>
</name>
<name>
<surname>Nunez</surname>
<given-names>G</given-names>
</name>
</person-group>
<article-title>NEK7 is an essential mediator of NLRP3 activation downstream of potassium efflux</article-title>
<source>Nature</source>
<year>2016</year>
<volume>530</volume>
<fpage>354</fpage>
<lpage>357</lpage>
<pub-id pub-id-type="doi">10.1038/nature16959</pub-id>
<pub-id pub-id-type="pmid">26814970</pub-id>
</element-citation>
</ref>
<ref id="CR85">
<label>85.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Fernandes-Alnemri</surname>
<given-names>T</given-names>
</name>
<etal></etal>
</person-group>
<article-title>The AIM2 inflammasome is critical for innate immunity to Francisella tularensis</article-title>
<source>Nat. Immunol.</source>
<year>2010</year>
<volume>11</volume>
<fpage>385</fpage>
<lpage>393</lpage>
<pub-id pub-id-type="doi">10.1038/ni.1859</pub-id>
<pub-id pub-id-type="pmid">20351693</pub-id>
</element-citation>
</ref>
<ref id="CR86">
<label>86.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Rathinam</surname>
<given-names>VA</given-names>
</name>
<etal></etal>
</person-group>
<article-title>The AIM2 inflammasome is essential for host defense against cytosolic bacteria and DNA viruses</article-title>
<source>Nat. Immunol.</source>
<year>2010</year>
<volume>11</volume>
<fpage>395</fpage>
<lpage>402</lpage>
<pub-id pub-id-type="doi">10.1038/ni.1864</pub-id>
<pub-id pub-id-type="pmid">20351692</pub-id>
</element-citation>
</ref>
<ref id="CR87">
<label>87.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Kayagaki</surname>
<given-names>N</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Non-canonical inflammasome activation targets caspase-11</article-title>
<source>Nature</source>
<year>2011</year>
<volume>479</volume>
<fpage>117</fpage>
<lpage>121</lpage>
<pub-id pub-id-type="doi">10.1038/nature10558</pub-id>
<pub-id pub-id-type="pmid">22002608</pub-id>
</element-citation>
</ref>
<ref id="CR88">
<label>88.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Shi</surname>
<given-names>J</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Inflammatory caspases are innate immune receptors for intracellular LPS</article-title>
<source>Nature</source>
<year>2014</year>
<volume>514</volume>
<fpage>187</fpage>
<lpage>192</lpage>
<pub-id pub-id-type="doi">10.1038/nature13683</pub-id>
<pub-id pub-id-type="pmid">25119034</pub-id>
</element-citation>
</ref>
<ref id="CR89">
<label>89.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Hagar</surname>
<given-names>JA</given-names>
</name>
<name>
<surname>Powell</surname>
<given-names>DA</given-names>
</name>
<name>
<surname>Aachoui</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Ernst</surname>
<given-names>RK</given-names>
</name>
<name>
<surname>Miao</surname>
<given-names>EA</given-names>
</name>
</person-group>
<article-title>Cytoplasmic LPS activates caspase-11: implications in TLR4-independent endotoxic shock</article-title>
<source>Science</source>
<year>2013</year>
<volume>341</volume>
<fpage>1250</fpage>
<lpage>1253</lpage>
<pub-id pub-id-type="doi">10.1126/science.1240988</pub-id>
<pub-id pub-id-type="pmid">24031018</pub-id>
</element-citation>
</ref>
<ref id="CR90">
<label>90.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Kayagaki</surname>
<given-names>N</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Noncanonical inflammasome activation by intracellular LPS independent of TLR4</article-title>
<source>Science</source>
<year>2013</year>
<volume>341</volume>
<fpage>1246</fpage>
<lpage>1249</lpage>
<pub-id pub-id-type="doi">10.1126/science.1240248</pub-id>
<pub-id pub-id-type="pmid">23887873</pub-id>
</element-citation>
</ref>
<ref id="CR91">
<label>91.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Vanaja</surname>
<given-names>SK</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Bacterial outer membrane vesicles mediate cytosolic localization of LPS and caspase-11 activation</article-title>
<source>Cell</source>
<year>2016</year>
<volume>165</volume>
<fpage>1106</fpage>
<lpage>1119</lpage>
<pub-id pub-id-type="doi">10.1016/j.cell.2016.04.015</pub-id>
<pub-id pub-id-type="pmid">27156449</pub-id>
</element-citation>
</ref>
<ref id="CR92">
<label>92.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Deng</surname>
<given-names>M</given-names>
</name>
<etal></etal>
</person-group>
<article-title>The endotoxin delivery protein HMGB1 mediates caspase-11-dependent lethality in sepsis</article-title>
<source>Immunity</source>
<year>2018</year>
<volume>49</volume>
<fpage>740</fpage>
<lpage>753 e747</lpage>
<pub-id pub-id-type="doi">10.1016/j.immuni.2018.08.016</pub-id>
<pub-id pub-id-type="pmid">30314759</pub-id>
</element-citation>
</ref>
<ref id="CR93">
<label>93.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Rathinam</surname>
<given-names>VA</given-names>
</name>
<etal></etal>
</person-group>
<article-title>TRIF licenses caspase-11-dependent NLRP3 inflammasome activation by gram-negative bacteria</article-title>
<source>Cell</source>
<year>2012</year>
<volume>150</volume>
<fpage>606</fpage>
<lpage>619</lpage>
<pub-id pub-id-type="doi">10.1016/j.cell.2012.07.007</pub-id>
<pub-id pub-id-type="pmid">22819539</pub-id>
</element-citation>
</ref>
<ref id="CR94">
<label>94.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Man</surname>
<given-names>SM</given-names>
</name>
<etal></etal>
</person-group>
<article-title>IRGB10 Liberates Bacterial Ligands For Sensing by the AIM2 and Caspase-11-NLRP3 Inflammasomes</article-title>
<source>Cell</source>
<year>2016</year>
<volume>167</volume>
<fpage>382</fpage>
<lpage>396 e317</lpage>
<pub-id pub-id-type="doi">10.1016/j.cell.2016.09.012</pub-id>
<pub-id pub-id-type="pmid">27693356</pub-id>
</element-citation>
</ref>
<ref id="CR95">
<label>95.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Lu</surname>
<given-names>B</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Novel role of PKR in inflammasome activation and HMGB1 release</article-title>
<source>Nature</source>
<year>2012</year>
<volume>488</volume>
<fpage>670</fpage>
<lpage>674</lpage>
<pub-id pub-id-type="doi">10.1038/nature11290</pub-id>
<pub-id pub-id-type="pmid">22801494</pub-id>
</element-citation>
</ref>
<ref id="CR96">
<label>96.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Xie</surname>
<given-names>M</given-names>
</name>
<etal></etal>
</person-group>
<article-title>PKM2-dependent glycolysis promotes NLRP3 and AIM2 inflammasome activation</article-title>
<source>Nat. Commun.</source>
<year>2016</year>
<volume>7</volume>
<fpage>13280</fpage>
<pub-id pub-id-type="doi">10.1038/ncomms13280</pub-id>
<pub-id pub-id-type="pmid">27779186</pub-id>
</element-citation>
</ref>
<ref id="CR97">
<label>97.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Yang</surname>
<given-names>L</given-names>
</name>
<etal></etal>
</person-group>
<article-title>PKM2 regulates the Warburg effect and promotes HMGB1 release in sepsis</article-title>
<source>Nat. Commun.</source>
<year>2014</year>
<volume>5</volume>
<fpage>4436</fpage>
<pub-id pub-id-type="doi">10.1038/ncomms5436</pub-id>
<pub-id pub-id-type="pmid">25019241</pub-id>
</element-citation>
</ref>
<ref id="CR98">
<label>98.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Moon</surname>
<given-names>JS</given-names>
</name>
<etal></etal>
</person-group>
<article-title>mTORC1-Induced HK1-dependent glycolysis regulates NLRP3 inflammasome activation</article-title>
<source>Cell Rep</source>
<year>2015</year>
<volume>12</volume>
<fpage>102</fpage>
<lpage>115</lpage>
<pub-id pub-id-type="doi">10.1016/j.celrep.2015.05.046</pub-id>
<pub-id pub-id-type="pmid">26119735</pub-id>
</element-citation>
</ref>
<ref id="CR99">
<label>99.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Ding</surname>
<given-names>J</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Pore-forming activity and structural autoinhibition of the gasdermin family</article-title>
<source>Nature</source>
<year>2016</year>
<volume>535</volume>
<fpage>111</fpage>
<lpage>116</lpage>
<pub-id pub-id-type="doi">10.1038/nature18590</pub-id>
<pub-id pub-id-type="pmid">27281216</pub-id>
</element-citation>
</ref>
<ref id="CR100">
<label>100.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Liu</surname>
<given-names>X</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Inflammasome-activated gasdermin D causes pyroptosis by forming membrane pores</article-title>
<source>Nature</source>
<year>2016</year>
<volume>535</volume>
<fpage>153</fpage>
<lpage>158</lpage>
<pub-id pub-id-type="doi">10.1038/nature18629</pub-id>
<pub-id pub-id-type="pmid">27383986</pub-id>
</element-citation>
</ref>
<ref id="CR101">
<label>101.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Kayagaki</surname>
<given-names>N</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Caspase-11 cleaves gasdermin D for non-canonical inflammasome signalling</article-title>
<source>Nature</source>
<year>2015</year>
<volume>526</volume>
<fpage>666</fpage>
<lpage>671</lpage>
<pub-id pub-id-type="doi">10.1038/nature15541</pub-id>
<pub-id pub-id-type="pmid">26375259</pub-id>
</element-citation>
</ref>
<ref id="CR102">
<label>102.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Shi</surname>
<given-names>J</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Cleavage of GSDMD by inflammatory caspases determines pyroptotic cell death</article-title>
<source>Nature</source>
<year>2015</year>
<volume>526</volume>
<fpage>660</fpage>
<lpage>665</lpage>
<pub-id pub-id-type="doi">10.1038/nature15514</pub-id>
<pub-id pub-id-type="pmid">26375003</pub-id>
</element-citation>
</ref>
<ref id="CR103">
<label>103.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>He</surname>
<given-names>WT</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Gasdermin D is an executor of pyroptosis and required for interleukin-1beta secretion</article-title>
<source>Cell Res.</source>
<year>2015</year>
<volume>25</volume>
<fpage>1285</fpage>
<lpage>1298</lpage>
<pub-id pub-id-type="doi">10.1038/cr.2015.139</pub-id>
<pub-id pub-id-type="pmid">26611636</pub-id>
</element-citation>
</ref>
<ref id="CR104">
<label>104.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Lee</surname>
<given-names>BL</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Caspase-11 auto-proteolysis is crucial for noncanonical inflammasome activation</article-title>
<source>J. Exp. Med.</source>
<year>2018</year>
<volume>215</volume>
<fpage>2279</fpage>
<lpage>2288</lpage>
<pub-id pub-id-type="doi">10.1084/jem.20180589</pub-id>
<pub-id pub-id-type="pmid">30135078</pub-id>
</element-citation>
</ref>
<ref id="CR105">
<label>105.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Kang</surname>
<given-names>R</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Lipid peroxidation drives gasdermin D-mediated pyroptosis in lethal polymicrobial sepsis</article-title>
<source>Cell Host. Microbe.</source>
<year>2018</year>
<volume>24</volume>
<fpage>97</fpage>
<lpage>108 e104</lpage>
<pub-id pub-id-type="doi">10.1016/j.chom.2018.05.009</pub-id>
<pub-id pub-id-type="pmid">29937272</pub-id>
</element-citation>
</ref>
<ref id="CR106">
<label>106.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Yang</surname>
<given-names>Mei</given-names>
</name>
<name>
<surname>Liang</surname>
<given-names>Chen</given-names>
</name>
<name>
<surname>Swaminathan</surname>
<given-names>Kunchithapadam</given-names>
</name>
<name>
<surname>Herrlinger</surname>
<given-names>Stephanie</given-names>
</name>
<name>
<surname>Lai</surname>
<given-names>Fan</given-names>
</name>
<name>
<surname>Shiekhattar</surname>
<given-names>Ramin</given-names>
</name>
<name>
<surname>Chen</surname>
<given-names>Jian-Fu</given-names>
</name>
</person-group>
<article-title>A C9ORF72/SMCR8-containing complex regulates ULK1 and plays a dual role in autophagy</article-title>
<source>Science Advances</source>
<year>2016</year>
<volume>2</volume>
<issue>9</issue>
<fpage>e1601167</fpage>
<pub-id pub-id-type="doi">10.1126/sciadv.1601167</pub-id>
<pub-id pub-id-type="pmid">27617292</pub-id>
</element-citation>
</ref>
<ref id="CR107">
<label>107.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Ruhl</surname>
<given-names>S</given-names>
</name>
<etal></etal>
</person-group>
<article-title>ESCRT-dependent membrane repair negatively regulates pyroptosis downstream of GSDMD activation</article-title>
<source>Science</source>
<year>2018</year>
<volume>362</volume>
<fpage>956</fpage>
<lpage>960</lpage>
<pub-id pub-id-type="doi">10.1126/science.aar7607</pub-id>
<pub-id pub-id-type="pmid">30467171</pub-id>
</element-citation>
</ref>
<ref id="CR108">
<label>108.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Orning</surname>
<given-names>P</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Pathogen blockade of TAK1 triggers caspase-8-dependent cleavage of gasdermin D and cell death</article-title>
<source>Science</source>
<year>2018</year>
<volume>362</volume>
<fpage>1064</fpage>
<lpage>1069</lpage>
<pub-id pub-id-type="doi">10.1126/science.aau2818</pub-id>
<pub-id pub-id-type="pmid">30361383</pub-id>
</element-citation>
</ref>
<ref id="CR109">
<label>109.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Sarhan</surname>
<given-names>J</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Caspase-8 induces cleavage of gasdermin D to elicit pyroptosis during Yersinia infection</article-title>
<source>Proc. Natl Acad. Sci. USA</source>
<year>2018</year>
<volume>115</volume>
<fpage>E10888</fpage>
<lpage>E10897</lpage>
<pub-id pub-id-type="doi">10.1073/pnas.1809548115</pub-id>
<pub-id pub-id-type="pmid">30381458</pub-id>
</element-citation>
</ref>
<ref id="CR110">
<label>110.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Wang</surname>
<given-names>Y</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Chemotherapy drugs induce pyroptosis through caspase-3 cleavage of a gasdermin</article-title>
<source>Nature</source>
<year>2017</year>
<volume>547</volume>
<fpage>99</fpage>
<lpage>103</lpage>
<pub-id pub-id-type="doi">10.1038/nature22393</pub-id>
<pub-id pub-id-type="pmid">28459430</pub-id>
</element-citation>
</ref>
<ref id="CR111">
<label>111.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Kambara</surname>
<given-names>H</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Gasdermin D exerts anti-inflammatory effects by promoting neutrophil death</article-title>
<source>Cell Rep</source>
<year>2018</year>
<volume>22</volume>
<fpage>2924</fpage>
<lpage>2936</lpage>
<pub-id pub-id-type="doi">10.1016/j.celrep.2018.02.067</pub-id>
<pub-id pub-id-type="pmid">29539421</pub-id>
</element-citation>
</ref>
<ref id="CR112">
<label>112.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Sollberger</surname>
<given-names>Gabriel</given-names>
</name>
<name>
<surname>Choidas</surname>
<given-names>Axel</given-names>
</name>
<name>
<surname>Burn</surname>
<given-names>Garth Lawrence</given-names>
</name>
<name>
<surname>Habenberger</surname>
<given-names>Peter</given-names>
</name>
<name>
<surname>Di Lucrezia</surname>
<given-names>Raffaella</given-names>
</name>
<name>
<surname>Kordes</surname>
<given-names>Susanne</given-names>
</name>
<name>
<surname>Menninger</surname>
<given-names>Sascha</given-names>
</name>
<name>
<surname>Eickhoff</surname>
<given-names>Jan</given-names>
</name>
<name>
<surname>Nussbaumer</surname>
<given-names>Peter</given-names>
</name>
<name>
<surname>Klebl</surname>
<given-names>Bert</given-names>
</name>
<name>
<surname>Krüger</surname>
<given-names>Renate</given-names>
</name>
<name>
<surname>Herzig</surname>
<given-names>Alf</given-names>
</name>
<name>
<surname>Zychlinsky</surname>
<given-names>Arturo</given-names>
</name>
</person-group>
<article-title>Gasdermin D plays a vital role in the generation of neutrophil extracellular traps</article-title>
<source>Science Immunology</source>
<year>2018</year>
<volume>3</volume>
<issue>26</issue>
<fpage>eaar6689</fpage>
<pub-id pub-id-type="doi">10.1126/sciimmunol.aar6689</pub-id>
<pub-id pub-id-type="pmid">30143555</pub-id>
</element-citation>
</ref>
<ref id="CR113">
<label>113.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Chen</surname>
<given-names>Kaiwen W.</given-names>
</name>
<name>
<surname>Monteleone</surname>
<given-names>Mercedes</given-names>
</name>
<name>
<surname>Boucher</surname>
<given-names>Dave</given-names>
</name>
<name>
<surname>Sollberger</surname>
<given-names>Gabriel</given-names>
</name>
<name>
<surname>Ramnath</surname>
<given-names>Divya</given-names>
</name>
<name>
<surname>Condon</surname>
<given-names>Nicholas D.</given-names>
</name>
<name>
<surname>von Pein</surname>
<given-names>Jessica B.</given-names>
</name>
<name>
<surname>Broz</surname>
<given-names>Petr</given-names>
</name>
<name>
<surname>Sweet</surname>
<given-names>Matthew J.</given-names>
</name>
<name>
<surname>Schroder</surname>
<given-names>Kate</given-names>
</name>
</person-group>
<article-title>Noncanonical inflammasome signaling elicits gasdermin D–dependent neutrophil extracellular traps</article-title>
<source>Science Immunology</source>
<year>2018</year>
<volume>3</volume>
<issue>26</issue>
<fpage>eaar6676</fpage>
<pub-id pub-id-type="doi">10.1126/sciimmunol.aar6676</pub-id>
<pub-id pub-id-type="pmid">30143554</pub-id>
</element-citation>
</ref>
<ref id="CR114">
<label>114.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Evavold</surname>
<given-names>CL</given-names>
</name>
<etal></etal>
</person-group>
<article-title>The pore-forming protein gasdermin D regulates interleukin-1 secretion from living macrophages</article-title>
<source>Immunity</source>
<year>2018</year>
<volume>48</volume>
<fpage>35</fpage>
<lpage>44 e36</lpage>
<pub-id pub-id-type="doi">10.1016/j.immuni.2017.11.013</pub-id>
<pub-id pub-id-type="pmid">29195811</pub-id>
</element-citation>
</ref>
<ref id="CR115">
<label>115.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>de Vasconcelos</surname>
<given-names>Nathalia M.</given-names>
</name>
<name>
<surname>Van Opdenbosch</surname>
<given-names>Nina</given-names>
</name>
<name>
<surname>Van Gorp</surname>
<given-names>Hanne</given-names>
</name>
<name>
<surname>Parthoens</surname>
<given-names>Eef</given-names>
</name>
<name>
<surname>Lamkanfi</surname>
<given-names>Mohamed</given-names>
</name>
</person-group>
<article-title>Single-cell analysis of pyroptosis dynamics reveals conserved GSDMD-mediated subcellular events that precede plasma membrane rupture</article-title>
<source>Cell Death & Differentiation</source>
<year>2018</year>
<volume>26</volume>
<issue>1</issue>
<fpage>146</fpage>
<lpage>161</lpage>
<pub-id pub-id-type="doi">10.1038/s41418-018-0106-7</pub-id>
<pub-id pub-id-type="pmid">29666477</pub-id>
</element-citation>
</ref>
<ref id="CR116">
<label>116.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Dolma</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Lessnick</surname>
<given-names>SL</given-names>
</name>
<name>
<surname>Hahn</surname>
<given-names>WC</given-names>
</name>
<name>
<surname>Stockwell</surname>
<given-names>BR</given-names>
</name>
</person-group>
<article-title>Identification of genotype-selective antitumor agents using synthetic lethal chemical screening in engineered human tumor cells</article-title>
<source>Cancer Cell.</source>
<year>2003</year>
<volume>3</volume>
<fpage>285</fpage>
<lpage>296</lpage>
<pub-id pub-id-type="doi">10.1016/S1535-6108(03)00050-3</pub-id>
<pub-id pub-id-type="pmid">12676586</pub-id>
</element-citation>
</ref>
<ref id="CR117">
<label>117.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Dixon</surname>
<given-names>SJ</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Ferroptosis: an iron-dependent form of nonapoptotic cell death</article-title>
<source>Cell</source>
<year>2012</year>
<volume>149</volume>
<fpage>1060</fpage>
<lpage>1072</lpage>
<pub-id pub-id-type="doi">10.1016/j.cell.2012.03.042</pub-id>
<pub-id pub-id-type="pmid">22632970</pub-id>
</element-citation>
</ref>
<ref id="CR118">
<label>118.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Friedmann Angeli</surname>
<given-names>JP</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Inactivation of the ferroptosis regulator Gpx4 triggers acute renal failure in mice</article-title>
<source>Nat. Cell Biol.</source>
<year>2014</year>
<volume>16</volume>
<fpage>1180</fpage>
<lpage>1191</lpage>
<pub-id pub-id-type="doi">10.1038/ncb3064</pub-id>
<pub-id pub-id-type="pmid">25402683</pub-id>
</element-citation>
</ref>
<ref id="CR119">
<label>119.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Neitemeier</surname>
<given-names>S</given-names>
</name>
<etal></etal>
</person-group>
<article-title>BID links ferroptosis to mitochondrial cell death pathways</article-title>
<source>Redox Biol.</source>
<year>2017</year>
<volume>12</volume>
<fpage>558</fpage>
<lpage>570</lpage>
<pub-id pub-id-type="doi">10.1016/j.redox.2017.03.007</pub-id>
<pub-id pub-id-type="pmid">28384611</pub-id>
</element-citation>
</ref>
<ref id="CR120">
<label>120.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Hong</surname>
<given-names>SH</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Molecular crosstalk between ferroptosis and apoptosis: emerging role of ER stress-induced p53-independent PUMA expression</article-title>
<source>Oncotarget</source>
<year>2017</year>
<volume>8</volume>
<fpage>115164</fpage>
<lpage>115178</lpage>
<pub-id pub-id-type="pmid">29383150</pub-id>
</element-citation>
</ref>
<ref id="CR121">
<label>121.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Yang</surname>
<given-names>WS</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Peroxidation of polyunsaturated fatty acids by lipoxygenases drives ferroptosis</article-title>
<source>Proc. Natl Acad. Sci. USA</source>
<year>2016</year>
<volume>113</volume>
<fpage>E4966</fpage>
<lpage>E4975</lpage>
<pub-id pub-id-type="doi">10.1073/pnas.1603244113</pub-id>
<pub-id pub-id-type="pmid">27506793</pub-id>
</element-citation>
</ref>
<ref id="CR122">
<label>122.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Feng</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Stockwell</surname>
<given-names>BR</given-names>
</name>
</person-group>
<article-title>Unsolved mysteries: how does lipid peroxidation cause ferroptosis?</article-title>
<source>PLoS Biol.</source>
<year>2018</year>
<volume>16</volume>
<fpage>e2006203</fpage>
<pub-id pub-id-type="doi">10.1371/journal.pbio.2006203</pub-id>
<pub-id pub-id-type="pmid">29795546</pub-id>
</element-citation>
</ref>
<ref id="CR123">
<label>123.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Hayano</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Yang</surname>
<given-names>WS</given-names>
</name>
<name>
<surname>Corn</surname>
<given-names>CK</given-names>
</name>
<name>
<surname>Pagano</surname>
<given-names>NC</given-names>
</name>
<name>
<surname>Stockwell</surname>
<given-names>BR</given-names>
</name>
</person-group>
<article-title>Loss of cysteinyl-tRNA synthetase (CARS) induces the transsulfuration pathway and inhibits ferroptosis induced by cystine deprivation</article-title>
<source>Cell Death Differ.</source>
<year>2016</year>
<volume>23</volume>
<fpage>270</fpage>
<lpage>278</lpage>
<pub-id pub-id-type="doi">10.1038/cdd.2015.93</pub-id>
<pub-id pub-id-type="pmid">26184909</pub-id>
</element-citation>
</ref>
<ref id="CR124">
<label>124.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Yang</surname>
<given-names>WS</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Regulation of ferroptotic cancer cell death by GPX4</article-title>
<source>Cell</source>
<year>2014</year>
<volume>156</volume>
<fpage>317</fpage>
<lpage>331</lpage>
<pub-id pub-id-type="doi">10.1016/j.cell.2013.12.010</pub-id>
<pub-id pub-id-type="pmid">24439385</pub-id>
</element-citation>
</ref>
<ref id="CR125">
<label>125.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Woo</surname>
<given-names>JH</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Elucidating compound mechanism of action by network perturbation analysis</article-title>
<source>Cell</source>
<year>2015</year>
<volume>162</volume>
<fpage>441</fpage>
<lpage>451</lpage>
<pub-id pub-id-type="doi">10.1016/j.cell.2015.05.056</pub-id>
<pub-id pub-id-type="pmid">26186195</pub-id>
</element-citation>
</ref>
<ref id="CR126">
<label>126.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Weiwer</surname>
<given-names>M</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Development of small-molecule probes that selectively kill cells induced to express mutant RAS</article-title>
<source>Bioorg. Med. Chem. Lett.</source>
<year>2012</year>
<volume>22</volume>
<fpage>1822</fpage>
<lpage>1826</lpage>
<pub-id pub-id-type="doi">10.1016/j.bmcl.2011.09.047</pub-id>
<pub-id pub-id-type="pmid">22297109</pub-id>
</element-citation>
</ref>
<ref id="CR127">
<label>127.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Cao</surname>
<given-names>JY</given-names>
</name>
<name>
<surname>Dixon</surname>
<given-names>SJ</given-names>
</name>
</person-group>
<article-title>Mechanisms of ferroptosis</article-title>
<source>Cell. Mol. Life Sci.</source>
<year>2016</year>
<volume>73</volume>
<fpage>2195</fpage>
<lpage>2209</lpage>
<pub-id pub-id-type="doi">10.1007/s00018-016-2194-1</pub-id>
<pub-id pub-id-type="pmid">27048822</pub-id>
</element-citation>
</ref>
<ref id="CR128">
<label>128.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Gaschler</surname>
<given-names>MM</given-names>
</name>
<etal></etal>
</person-group>
<article-title>FINO2 initiates ferroptosis through GPX4 inactivation and iron oxidation</article-title>
<source>Nat. Chem. Biol.</source>
<year>2018</year>
<volume>14</volume>
<fpage>507</fpage>
<lpage>515</lpage>
<pub-id pub-id-type="doi">10.1038/s41589-018-0031-6</pub-id>
<pub-id pub-id-type="pmid">29610484</pub-id>
</element-citation>
</ref>
<ref id="CR129">
<label>129.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Hassannia</surname>
<given-names>B</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Nano-targeted induction of dual ferroptotic mechanisms eradicates high-risk neuroblastoma</article-title>
<source>J. Clin. Invest.</source>
<year>2018</year>
<volume>128</volume>
<fpage>3341</fpage>
<lpage>3355</lpage>
<pub-id pub-id-type="doi">10.1172/JCI99032</pub-id>
<pub-id pub-id-type="pmid">29939160</pub-id>
</element-citation>
</ref>
<ref id="CR130">
<label>130.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Li</surname>
<given-names>Q</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Inhibition of neuronal ferroptosis protects hemorrhagic brain</article-title>
<source>JCI Insight</source>
<year>2017</year>
<volume>2</volume>
<fpage>e90777</fpage>
<pub-id pub-id-type="doi">10.1172/jci.insight.90777</pub-id>
<pub-id pub-id-type="pmid">28405617</pub-id>
</element-citation>
</ref>
<ref id="CR131">
<label>131.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Yuan</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Li</surname>
<given-names>X</given-names>
</name>
<name>
<surname>Zhang</surname>
<given-names>X</given-names>
</name>
<name>
<surname>Kang</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Tang</surname>
<given-names>D</given-names>
</name>
</person-group>
<article-title>CISD1 inhibits ferroptosis by protection against mitochondrial lipid peroxidation</article-title>
<source>Biochem. Biophys. Res. Commun.</source>
<year>2016</year>
<volume>478</volume>
<fpage>838</fpage>
<lpage>844</lpage>
<pub-id pub-id-type="doi">10.1016/j.bbrc.2016.08.034</pub-id>
<pub-id pub-id-type="pmid">27510639</pub-id>
</element-citation>
</ref>
<ref id="CR132">
<label>132.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Yagoda</surname>
<given-names>N</given-names>
</name>
<etal></etal>
</person-group>
<article-title>RAS-RAF-MEK-dependent oxidative cell death involving voltage-dependent anion channels</article-title>
<source>Nature</source>
<year>2007</year>
<volume>447</volume>
<fpage>864</fpage>
<lpage>868</lpage>
<pub-id pub-id-type="doi">10.1038/nature05859</pub-id>
<pub-id pub-id-type="pmid">17568748</pub-id>
</element-citation>
</ref>
<ref id="CR133">
<label>133.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Gao</surname>
<given-names>M</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Role of mitochondria in ferroptosis</article-title>
<source>Mol. Cell</source>
<year>2019</year>
<volume>73</volume>
<fpage>354</fpage>
<lpage>363 e353</lpage>
<pub-id pub-id-type="doi">10.1016/j.molcel.2018.10.042</pub-id>
<pub-id pub-id-type="pmid">30581146</pub-id>
</element-citation>
</ref>
<ref id="CR134">
<label>134.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Xie</surname>
<given-names>Y</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Ferroptosis: process and function</article-title>
<source>Cell Death Differ.</source>
<year>2016</year>
<volume>23</volume>
<fpage>369</fpage>
<lpage>379</lpage>
<pub-id pub-id-type="doi">10.1038/cdd.2015.158</pub-id>
<pub-id pub-id-type="pmid">26794443</pub-id>
</element-citation>
</ref>
<ref id="CR135">
<label>135.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Seiler</surname>
<given-names>A</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Glutathione peroxidase 4 senses and translates oxidative stress into 12/15-lipoxygenase dependent- and AIF-mediated cell death</article-title>
<source>Cell Metab.</source>
<year>2008</year>
<volume>8</volume>
<fpage>237</fpage>
<lpage>248</lpage>
<pub-id pub-id-type="doi">10.1016/j.cmet.2008.07.005</pub-id>
<pub-id pub-id-type="pmid">18762024</pub-id>
</element-citation>
</ref>
<ref id="CR136">
<label>136.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Ran</surname>
<given-names>Q</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Embryonic fibroblasts from Gpx4+/- mice: a novel model for studying the role of membrane peroxidation in biological processes</article-title>
<source>Free Radic. Biol. Med.</source>
<year>2003</year>
<volume>35</volume>
<fpage>1101</fpage>
<lpage>1109</lpage>
<pub-id pub-id-type="doi">10.1016/S0891-5849(03)00466-0</pub-id>
<pub-id pub-id-type="pmid">14572612</pub-id>
</element-citation>
</ref>
<ref id="CR137">
<label>137.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Canli</surname>
<given-names>O</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Glutathione peroxidase 4 prevents necroptosis in mouse erythroid precursors</article-title>
<source>Blood</source>
<year>2016</year>
<volume>127</volume>
<fpage>139</fpage>
<lpage>148</lpage>
<pub-id pub-id-type="doi">10.1182/blood-2015-06-654194</pub-id>
<pub-id pub-id-type="pmid">26463424</pub-id>
</element-citation>
</ref>
<ref id="CR138">
<label>138.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Yang</surname>
<given-names>WS</given-names>
</name>
<name>
<surname>Stockwell</surname>
<given-names>BR</given-names>
</name>
</person-group>
<article-title>Synthetic lethal screening identifies compounds activating iron-dependent, nonapoptotic cell death in oncogenic-RAS-harboring cancer cells</article-title>
<source>Chem. Biol.</source>
<year>2008</year>
<volume>15</volume>
<fpage>234</fpage>
<lpage>245</lpage>
<pub-id pub-id-type="doi">10.1016/j.chembiol.2008.02.010</pub-id>
<pub-id pub-id-type="pmid">18355723</pub-id>
</element-citation>
</ref>
<ref id="CR139">
<label>139.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Doll</surname>
<given-names>S</given-names>
</name>
<etal></etal>
</person-group>
<article-title>ACSL4 dictates ferroptosis sensitivity by shaping cellular lipid composition</article-title>
<source>Nat. Chem. Biol.</source>
<year>2017</year>
<volume>13</volume>
<fpage>91</fpage>
<lpage>98</lpage>
<pub-id pub-id-type="doi">10.1038/nchembio.2239</pub-id>
<pub-id pub-id-type="pmid">27842070</pub-id>
</element-citation>
</ref>
<ref id="CR140">
<label>140.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Kagan</surname>
<given-names>VE</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Oxidized arachidonic and adrenic PEs navigate cells to ferroptosis</article-title>
<source>Nat. Chem. Biol.</source>
<year>2017</year>
<volume>13</volume>
<fpage>81</fpage>
<lpage>90</lpage>
<pub-id pub-id-type="doi">10.1038/nchembio.2238</pub-id>
<pub-id pub-id-type="pmid">27842066</pub-id>
</element-citation>
</ref>
<ref id="CR141">
<label>141.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Yuan</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Li</surname>
<given-names>X</given-names>
</name>
<name>
<surname>Zhang</surname>
<given-names>X</given-names>
</name>
<name>
<surname>Kang</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Tang</surname>
<given-names>D</given-names>
</name>
</person-group>
<article-title>Identification of ACSL4 as a biomarker and contributor of ferroptosis</article-title>
<source>Biochem. Biophys. Res. Commun.</source>
<year>2016</year>
<volume>478</volume>
<fpage>1338</fpage>
<lpage>1343</lpage>
<pub-id pub-id-type="doi">10.1016/j.bbrc.2016.08.124</pub-id>
<pub-id pub-id-type="pmid">27565726</pub-id>
</element-citation>
</ref>
<ref id="CR142">
<label>142.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Wenzel</surname>
<given-names>SE</given-names>
</name>
<etal></etal>
</person-group>
<article-title>PEBP1 wardens ferroptosis by enabling lipoxygenase generation of lipid death signals</article-title>
<source>Cell</source>
<year>2017</year>
<volume>171</volume>
<fpage>628</fpage>
<lpage>641 e626</lpage>
<pub-id pub-id-type="doi">10.1016/j.cell.2017.09.044</pub-id>
<pub-id pub-id-type="pmid">29053969</pub-id>
</element-citation>
</ref>
<ref id="CR143">
<label>143.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Sun</surname>
<given-names>X</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Activation of the p62-Keap1-NRF2 pathway protects against ferroptosis in hepatocellular carcinoma cells</article-title>
<source>Hepatology</source>
<year>2016</year>
<volume>63</volume>
<fpage>173</fpage>
<lpage>184</lpage>
<pub-id pub-id-type="doi">10.1002/hep.28251</pub-id>
<pub-id pub-id-type="pmid">26403645</pub-id>
</element-citation>
</ref>
<ref id="CR144">
<label>144.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Sun</surname>
<given-names>X</given-names>
</name>
<etal></etal>
</person-group>
<article-title>HSPB1 as a novel regulator of ferroptotic cancer cell death</article-title>
<source>Oncogene</source>
<year>2015</year>
<volume>34</volume>
<fpage>5617</fpage>
<lpage>5625</lpage>
<pub-id pub-id-type="doi">10.1038/onc.2015.32</pub-id>
<pub-id pub-id-type="pmid">25728673</pub-id>
</element-citation>
</ref>
<ref id="CR145">
<label>145.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Zhu</surname>
<given-names>S</given-names>
</name>
<etal></etal>
</person-group>
<article-title>HSPA5 regulates ferroptotic cell death in cancer cells</article-title>
<source>Cancer Res.</source>
<year>2017</year>
<volume>77</volume>
<fpage>2064</fpage>
<lpage>2077</lpage>
<pub-id pub-id-type="doi">10.1158/0008-5472.CAN-16-1979</pub-id>
<pub-id pub-id-type="pmid">28130223</pub-id>
</element-citation>
</ref>
<ref id="CR146">
<label>146.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Gao</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Monian</surname>
<given-names>P</given-names>
</name>
<name>
<surname>Quadri</surname>
<given-names>N</given-names>
</name>
<name>
<surname>Ramasamy</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Jiang</surname>
<given-names>X</given-names>
</name>
</person-group>
<article-title>Glutaminolysis and transferrin regulate ferroptosis</article-title>
<source>Mol. Cell</source>
<year>2015</year>
<volume>59</volume>
<fpage>298</fpage>
<lpage>308</lpage>
<pub-id pub-id-type="doi">10.1016/j.molcel.2015.06.011</pub-id>
<pub-id pub-id-type="pmid">26166707</pub-id>
</element-citation>
</ref>
<ref id="CR147">
<label>147.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Sun</surname>
<given-names>X</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Metallothionein-1G facilitates sorafenib resistance through inhibition of ferroptosis</article-title>
<source>Hepatology</source>
<year>2016</year>
<volume>64</volume>
<fpage>488</fpage>
<lpage>500</lpage>
<pub-id pub-id-type="doi">10.1002/hep.28574</pub-id>
<pub-id pub-id-type="pmid">27015352</pub-id>
</element-citation>
</ref>
<ref id="CR148">
<label>148.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Chen</surname>
<given-names>D</given-names>
</name>
<etal></etal>
</person-group>
<article-title>NRF2 is a major target of ARF in p53-independent tumor suppression</article-title>
<source>Mol. Cell</source>
<year>2017</year>
<volume>68</volume>
<fpage>224</fpage>
<lpage>232 e224</lpage>
<pub-id pub-id-type="doi">10.1016/j.molcel.2017.09.009</pub-id>
<pub-id pub-id-type="pmid">28985506</pub-id>
</element-citation>
</ref>
<ref id="CR149">
<label>149.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Chang</surname>
<given-names>LC</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Heme oxygenase-1 mediates BAY 11-7085 induced ferroptosis</article-title>
<source>Cancer Lett.</source>
<year>2018</year>
<volume>416</volume>
<fpage>124</fpage>
<lpage>137</lpage>
<pub-id pub-id-type="doi">10.1016/j.canlet.2017.12.025</pub-id>
<pub-id pub-id-type="pmid">29274359</pub-id>
</element-citation>
</ref>
<ref id="CR150">
<label>150.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Kwon</surname>
<given-names>MY</given-names>
</name>
<name>
<surname>Park</surname>
<given-names>E</given-names>
</name>
<name>
<surname>Lee</surname>
<given-names>SJ</given-names>
</name>
<name>
<surname>Chung</surname>
<given-names>SW</given-names>
</name>
</person-group>
<article-title>Heme oxygenase-1 accelerates erastin-induced ferroptotic cell death</article-title>
<source>Oncotarget</source>
<year>2015</year>
<volume>6</volume>
<fpage>24393</fpage>
<lpage>24403</lpage>
<pub-id pub-id-type="pmid">26405158</pub-id>
</element-citation>
</ref>
<ref id="CR151">
<label>151.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Jiang</surname>
<given-names>L</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Ferroptosis as a p53-mediated activity during tumour suppression</article-title>
<source>Nature</source>
<year>2015</year>
<volume>520</volume>
<fpage>57</fpage>
<lpage>62</lpage>
<pub-id pub-id-type="doi">10.1038/nature14344</pub-id>
<pub-id pub-id-type="pmid">25799988</pub-id>
</element-citation>
</ref>
<ref id="CR152">
<label>152.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Zhang</surname>
<given-names>Yilei</given-names>
</name>
<name>
<surname>Shi</surname>
<given-names>Jiejun</given-names>
</name>
<name>
<surname>Liu</surname>
<given-names>Xiaoguang</given-names>
</name>
<name>
<surname>Feng</surname>
<given-names>Li</given-names>
</name>
<name>
<surname>Gong</surname>
<given-names>Zihua</given-names>
</name>
<name>
<surname>Koppula</surname>
<given-names>Pranavi</given-names>
</name>
<name>
<surname>Sirohi</surname>
<given-names>Kapil</given-names>
</name>
<name>
<surname>Li</surname>
<given-names>Xu</given-names>
</name>
<name>
<surname>Wei</surname>
<given-names>Yongkun</given-names>
</name>
<name>
<surname>Lee</surname>
<given-names>Hyemin</given-names>
</name>
<name>
<surname>Zhuang</surname>
<given-names>Li</given-names>
</name>
<name>
<surname>Chen</surname>
<given-names>Gang</given-names>
</name>
<name>
<surname>Xiao</surname>
<given-names>Zhen-Dong</given-names>
</name>
<name>
<surname>Hung</surname>
<given-names>Mien-Chie</given-names>
</name>
<name>
<surname>Chen</surname>
<given-names>Junjie</given-names>
</name>
<name>
<surname>Huang</surname>
<given-names>Peng</given-names>
</name>
<name>
<surname>Li</surname>
<given-names>Wei</given-names>
</name>
<name>
<surname>Gan</surname>
<given-names>Boyi</given-names>
</name>
</person-group>
<article-title>BAP1 links metabolic regulation of ferroptosis to tumour suppression</article-title>
<source>Nature Cell Biology</source>
<year>2018</year>
<volume>20</volume>
<issue>10</issue>
<fpage>1181</fpage>
<lpage>1192</lpage>
<pub-id pub-id-type="doi">10.1038/s41556-018-0178-0</pub-id>
<pub-id pub-id-type="pmid">30202049</pub-id>
</element-citation>
</ref>
<ref id="CR153">
<label>153.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Xie</surname>
<given-names>Y</given-names>
</name>
<etal></etal>
</person-group>
<article-title>The tumor suppressor p53 limits ferroptosis by blocking DPP4 activity</article-title>
<source>Cell Rep</source>
<year>2017</year>
<volume>20</volume>
<fpage>1692</fpage>
<lpage>1704</lpage>
<pub-id pub-id-type="doi">10.1016/j.celrep.2017.07.055</pub-id>
<pub-id pub-id-type="pmid">28813679</pub-id>
</element-citation>
</ref>
<ref id="CR154">
<label>154.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Tarangelo</surname>
<given-names>A</given-names>
</name>
<etal></etal>
</person-group>
<article-title>p53 suppresses metabolic stress-induced ferroptosis in cancer cells</article-title>
<source>Cell Rep</source>
<year>2018</year>
<volume>22</volume>
<fpage>569</fpage>
<lpage>575</lpage>
<pub-id pub-id-type="doi">10.1016/j.celrep.2017.12.077</pub-id>
<pub-id pub-id-type="pmid">29346757</pub-id>
</element-citation>
</ref>
<ref id="CR155">
<label>155.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Kang</surname>
<given-names>Rui</given-names>
</name>
<name>
<surname>Kroemer</surname>
<given-names>Guido</given-names>
</name>
<name>
<surname>Tang</surname>
<given-names>Daolin</given-names>
</name>
</person-group>
<article-title>The tumor suppressor protein p53 and the ferroptosis network</article-title>
<source>Free Radical Biology and Medicine</source>
<year>2019</year>
<volume>133</volume>
<fpage>162</fpage>
<lpage>168</lpage>
<pub-id pub-id-type="doi">10.1016/j.freeradbiomed.2018.05.074</pub-id>
<pub-id pub-id-type="pmid">29800655</pub-id>
</element-citation>
</ref>
<ref id="CR156">
<label>156.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Jennis</surname>
<given-names>M</given-names>
</name>
<etal></etal>
</person-group>
<article-title>An African-specific polymorphism in the TP53 gene impairs p53 tumor suppressor function in a mouse model</article-title>
<source>Genes Dev.</source>
<year>2016</year>
<volume>30</volume>
<fpage>918</fpage>
<lpage>930</lpage>
<pub-id pub-id-type="doi">10.1101/gad.275891.115</pub-id>
<pub-id pub-id-type="pmid">27034505</pub-id>
</element-citation>
</ref>
<ref id="CR157">
<label>157.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Wu</surname>
<given-names>Z</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Chaperone-mediated autophagy is involved in the execution of ferroptosis</article-title>
<source>Proc. Natl Acad. Sci. USA</source>
<year>2019</year>
<volume>116</volume>
<fpage>2996</fpage>
<lpage>3005</lpage>
<pub-id pub-id-type="doi">10.1073/pnas.1819728116</pub-id>
<pub-id pub-id-type="pmid">30718432</pub-id>
</element-citation>
</ref>
<ref id="CR158">
<label>158.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Gao</surname>
<given-names>M</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Ferroptosis is an autophagic cell death process</article-title>
<source>Cell Res.</source>
<year>2016</year>
<volume>26</volume>
<fpage>1021</fpage>
<lpage>1032</lpage>
<pub-id pub-id-type="doi">10.1038/cr.2016.95</pub-id>
<pub-id pub-id-type="pmid">27514700</pub-id>
</element-citation>
</ref>
<ref id="CR159">
<label>159.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Hou</surname>
<given-names>W</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Autophagy promotes ferroptosis by degradation of ferritin</article-title>
<source>Autophagy.</source>
<year>2016</year>
<volume>12</volume>
<fpage>1425</fpage>
<lpage>1428</lpage>
<pub-id pub-id-type="doi">10.1080/15548627.2016.1187366</pub-id>
<pub-id pub-id-type="pmid">27245739</pub-id>
</element-citation>
</ref>
<ref id="CR160">
<label>160.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Song</surname>
<given-names>X</given-names>
</name>
<etal></etal>
</person-group>
<article-title>AMPK-mediated BECN1 phosphorylation promotes ferroptosis by directly blocking system Xc(-) activity</article-title>
<source>Curr. Biol.</source>
<year>2018</year>
<volume>28</volume>
<fpage>2388</fpage>
<lpage>2399 e2385</lpage>
<pub-id pub-id-type="doi">10.1016/j.cub.2018.05.094</pub-id>
<pub-id pub-id-type="pmid">30057310</pub-id>
</element-citation>
</ref>
<ref id="CR161">
<label>161.</label>
<mixed-citation publication-type="other">Zhou, B. et al. Ferroptosis is a type of autophagy-dependent cell death.
<italic>Sem. Cancer Biol</italic>
. pii: S1044-579X(19)30006-9. 10.1016/j.semcancer.2019.03.002 (2019).</mixed-citation>
</ref>
<ref id="CR162">
<label>162.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Bai</surname>
<given-names>Y</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Lipid storage and lipophagy regulates ferroptosis</article-title>
<source>Biochem. Biophys. Res. Commun.</source>
<year>2019</year>
<volume>508</volume>
<fpage>997</fpage>
<lpage>1003</lpage>
<pub-id pub-id-type="doi">10.1016/j.bbrc.2018.12.039</pub-id>
<pub-id pub-id-type="pmid">30545638</pub-id>
</element-citation>
</ref>
<ref id="CR163">
<label>163.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Kang</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Tang</surname>
<given-names>D</given-names>
</name>
</person-group>
<article-title>Autophagy and ferroptosis - what’s the connection?</article-title>
<source>Curr Pathobiol Rep</source>
<year>2017</year>
<volume>5</volume>
<fpage>153</fpage>
<lpage>159</lpage>
<pub-id pub-id-type="doi">10.1007/s40139-017-0139-5</pub-id>
<pub-id pub-id-type="pmid">29038744</pub-id>
</element-citation>
</ref>
<ref id="CR164">
<label>164.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Stockwell</surname>
<given-names>BR</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Ferroptosis: a regulated cell death nexus linking metabolism, redox biology, and disease</article-title>
<source>Cell</source>
<year>2017</year>
<volume>171</volume>
<fpage>273</fpage>
<lpage>285</lpage>
<pub-id pub-id-type="doi">10.1016/j.cell.2017.09.021</pub-id>
<pub-id pub-id-type="pmid">28985560</pub-id>
</element-citation>
</ref>
<ref id="CR165">
<label>165.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Tan</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Schubert</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Maher</surname>
<given-names>P</given-names>
</name>
</person-group>
<article-title>Oxytosis: a novel form of programmed cell death</article-title>
<source>Curr. Top. Med. Chem.</source>
<year>2001</year>
<volume>1</volume>
<fpage>497</fpage>
<lpage>506</lpage>
<pub-id pub-id-type="doi">10.2174/1568026013394741</pub-id>
<pub-id pub-id-type="pmid">11895126</pub-id>
</element-citation>
</ref>
<ref id="CR166">
<label>166.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Murphy</surname>
<given-names>TH</given-names>
</name>
<name>
<surname>Malouf</surname>
<given-names>AT</given-names>
</name>
<name>
<surname>Sastre</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Schnaar</surname>
<given-names>RL</given-names>
</name>
<name>
<surname>Coyle</surname>
<given-names>JT</given-names>
</name>
</person-group>
<article-title>Calcium-dependent glutamate cytotoxicity in a neuronal cell line</article-title>
<source>Brain Res.</source>
<year>1988</year>
<volume>444</volume>
<fpage>325</fpage>
<lpage>332</lpage>
<pub-id pub-id-type="doi">10.1016/0006-8993(88)90941-9</pub-id>
<pub-id pub-id-type="pmid">2896063</pub-id>
</element-citation>
</ref>
<ref id="CR167">
<label>167.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Lewerenz</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Ates</surname>
<given-names>G</given-names>
</name>
<name>
<surname>Methner</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Conrad</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Maher</surname>
<given-names>P</given-names>
</name>
</person-group>
<article-title>Oxytosis/ferroptosis-(Re-) emerging roles for oxidative stress-dependent non-apoptotic cell death in diseases of the central nervous system</article-title>
<source>Front. Neurosci.</source>
<year>2018</year>
<volume>12</volume>
<fpage>214</fpage>
<pub-id pub-id-type="doi">10.3389/fnins.2018.00214</pub-id>
<pub-id pub-id-type="pmid">29731704</pub-id>
</element-citation>
</ref>
<ref id="CR168">
<label>168.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>David</surname>
<given-names>KK</given-names>
</name>
<name>
<surname>Andrabi</surname>
<given-names>SA</given-names>
</name>
<name>
<surname>Dawson</surname>
<given-names>TM</given-names>
</name>
<name>
<surname>Dawson</surname>
<given-names>VL</given-names>
</name>
</person-group>
<article-title>Parthanatos, a messenger of death</article-title>
<source>Front. Biosci. (Landmark Ed)</source>
<year>2009</year>
<volume>14</volume>
<fpage>1116</fpage>
<lpage>1128</lpage>
<pub-id pub-id-type="doi">10.2741/3297</pub-id>
<pub-id pub-id-type="pmid">19273119</pub-id>
</element-citation>
</ref>
<ref id="CR169">
<label>169.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Delettre</surname>
<given-names>C</given-names>
</name>
<etal></etal>
</person-group>
<article-title>AIFsh, a novel apoptosis-inducing factor (AIF) pro-apoptotic isoform with potential pathological relevance in human cancer</article-title>
<source>J. Biol. Chem.</source>
<year>2006</year>
<volume>281</volume>
<fpage>6413</fpage>
<lpage>6427</lpage>
<pub-id pub-id-type="doi">10.1074/jbc.M509884200</pub-id>
<pub-id pub-id-type="pmid">16365034</pub-id>
</element-citation>
</ref>
<ref id="CR170">
<label>170.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Wang</surname>
<given-names>H</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Apoptosis-inducing factor substitutes for caspase executioners in NMDA-triggered excitotoxic neuronal death</article-title>
<source>J. Neurosci.</source>
<year>2004</year>
<volume>24</volume>
<fpage>10963</fpage>
<lpage>10973</lpage>
<pub-id pub-id-type="doi">10.1523/JNEUROSCI.3461-04.2004</pub-id>
<pub-id pub-id-type="pmid">15574746</pub-id>
</element-citation>
</ref>
<ref id="CR171">
<label>171.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Nicholson</surname>
<given-names>DW</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Identification and inhibition of the ICE/CED-3 protease necessary for mammalian apoptosis</article-title>
<source>Nature</source>
<year>1995</year>
<volume>376</volume>
<fpage>37</fpage>
<lpage>43</lpage>
<pub-id pub-id-type="doi">10.1038/376037a0</pub-id>
<pub-id pub-id-type="pmid">7596430</pub-id>
</element-citation>
</ref>
<ref id="CR172">
<label>172.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Tewari</surname>
<given-names>M</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Yama/CPP32 beta, a mammalian homolog of CED-3, is a CrmA-inhibitable protease that cleaves the death substrate poly(ADP-ribose) polymerase</article-title>
<source>Cell</source>
<year>1995</year>
<volume>81</volume>
<fpage>801</fpage>
<lpage>809</lpage>
<pub-id pub-id-type="doi">10.1016/0092-8674(95)90541-3</pub-id>
<pub-id pub-id-type="pmid">7774019</pub-id>
</element-citation>
</ref>
<ref id="CR173">
<label>173.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Wang</surname>
<given-names>R</given-names>
</name>
<etal></etal>
</person-group>
<article-title>OGG1-initiated base excision repair exacerbates oxidative stress-induced parthanatos</article-title>
<source>Cell Death Dis.</source>
<year>2018</year>
<volume>9</volume>
<fpage>628</fpage>
<pub-id pub-id-type="doi">10.1038/s41419-018-0680-0</pub-id>
<pub-id pub-id-type="pmid">29795387</pub-id>
</element-citation>
</ref>
<ref id="CR174">
<label>174.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Andrabi</surname>
<given-names>SA</given-names>
</name>
<name>
<surname>Dawson</surname>
<given-names>TM</given-names>
</name>
<name>
<surname>Dawson</surname>
<given-names>VL</given-names>
</name>
</person-group>
<article-title>Mitochondrial and nuclear cross talk in cell death: parthanatos</article-title>
<source>Ann. N. Y. Acad. Sci.</source>
<year>2008</year>
<volume>1147</volume>
<fpage>233</fpage>
<lpage>241</lpage>
<pub-id pub-id-type="doi">10.1196/annals.1427.014</pub-id>
<pub-id pub-id-type="pmid">19076445</pub-id>
</element-citation>
</ref>
<ref id="CR175">
<label>175.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Susin</surname>
<given-names>SA</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Molecular characterization of mitochondrial apoptosis-inducing factor</article-title>
<source>Nature</source>
<year>1999</year>
<volume>397</volume>
<fpage>441</fpage>
<lpage>446</lpage>
<pub-id pub-id-type="doi">10.1038/17135</pub-id>
<pub-id pub-id-type="pmid">9989411</pub-id>
</element-citation>
</ref>
<ref id="CR176">
<label>176.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Yu</surname>
<given-names>SW</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Mediation of poly(ADP-ribose) polymerase-1-dependent cell death by apoptosis-inducing factor</article-title>
<source>Science</source>
<year>2002</year>
<volume>297</volume>
<fpage>259</fpage>
<lpage>263</lpage>
<pub-id pub-id-type="doi">10.1126/science.1072221</pub-id>
<pub-id pub-id-type="pmid">12114629</pub-id>
</element-citation>
</ref>
<ref id="CR177">
<label>177.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Wang</surname>
<given-names>Y</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Poly(ADP-ribose) (PAR) binding to apoptosis-inducing factor is critical for PAR polymerase-1-dependent cell death (parthanatos)</article-title>
<source>Sci. Signal.</source>
<year>2011</year>
<volume>4</volume>
<fpage>ra20</fpage>
<pub-id pub-id-type="pmid">21467298</pub-id>
</element-citation>
</ref>
<ref id="CR178">
<label>178.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Mashimo</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Kato</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Moss</surname>
<given-names>J</given-names>
</name>
</person-group>
<article-title>ADP-ribosyl-acceptor hydrolase 3 regulates poly (ADP-ribose) degradation and cell death during oxidative stress</article-title>
<source>Proc. Natl Acad. Sci. USA</source>
<year>2013</year>
<volume>110</volume>
<fpage>18964</fpage>
<lpage>18969</lpage>
<pub-id pub-id-type="doi">10.1073/pnas.1312783110</pub-id>
<pub-id pub-id-type="pmid">24191052</pub-id>
</element-citation>
</ref>
<ref id="CR179">
<label>179.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Andrabi</surname>
<given-names>SA</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Iduna protects the brain from glutamate excitotoxicity and stroke by interfering with poly(ADP-ribose) polymer-induced cell death</article-title>
<source>Nat. Med.</source>
<year>2011</year>
<volume>17</volume>
<fpage>692</fpage>
<lpage>699</lpage>
<pub-id pub-id-type="doi">10.1038/nm.2387</pub-id>
<pub-id pub-id-type="pmid">21602803</pub-id>
</element-citation>
</ref>
<ref id="CR180">
<label>180.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Wang</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>An</surname>
<given-names>R.</given-names>
</name>
<name>
<surname>Umanah</surname>
<given-names>G. K.</given-names>
</name>
<name>
<surname>Park</surname>
<given-names>H.</given-names>
</name>
<name>
<surname>Nambiar</surname>
<given-names>K.</given-names>
</name>
<name>
<surname>Eacker</surname>
<given-names>S. M.</given-names>
</name>
<name>
<surname>Kim</surname>
<given-names>B.</given-names>
</name>
<name>
<surname>Bao</surname>
<given-names>L.</given-names>
</name>
<name>
<surname>Harraz</surname>
<given-names>M. M.</given-names>
</name>
<name>
<surname>Chang</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>Chen</surname>
<given-names>R.</given-names>
</name>
<name>
<surname>Wang</surname>
<given-names>J. E.</given-names>
</name>
<name>
<surname>Kam</surname>
<given-names>T.-I.</given-names>
</name>
<name>
<surname>Jeong</surname>
<given-names>J. S.</given-names>
</name>
<name>
<surname>Xie</surname>
<given-names>Z.</given-names>
</name>
<name>
<surname>Neifert</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Qian</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Andrabi</surname>
<given-names>S. A.</given-names>
</name>
<name>
<surname>Blackshaw</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Zhu</surname>
<given-names>H.</given-names>
</name>
<name>
<surname>Song</surname>
<given-names>H.</given-names>
</name>
<name>
<surname>Ming</surname>
<given-names>G.-l.</given-names>
</name>
<name>
<surname>Dawson</surname>
<given-names>V. L.</given-names>
</name>
<name>
<surname>Dawson</surname>
<given-names>T. M.</given-names>
</name>
</person-group>
<article-title>A nuclease that mediates cell death induced by DNA damage and poly(ADP-ribose) polymerase-1</article-title>
<source>Science</source>
<year>2016</year>
<volume>354</volume>
<issue>6308</issue>
<fpage>aad6872</fpage>
<lpage>aad6872</lpage>
<pub-id pub-id-type="doi">10.1126/science.aad6872</pub-id>
<pub-id pub-id-type="pmid">27846469</pub-id>
</element-citation>
</ref>
<ref id="CR181">
<label>181.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Jang</surname>
<given-names>KH</given-names>
</name>
<etal></etal>
</person-group>
<article-title>AIF-independent parthanatos in the pathogenesis of dry age-related macular degeneration</article-title>
<source>Cell Death Dis.</source>
<year>2017</year>
<volume>8</volume>
<fpage>e2526</fpage>
<pub-id pub-id-type="doi">10.1038/cddis.2016.437</pub-id>
<pub-id pub-id-type="pmid">28055012</pub-id>
</element-citation>
</ref>
<ref id="CR182">
<label>182.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Rodriguez-Vargas</surname>
<given-names>JM</given-names>
</name>
<etal></etal>
</person-group>
<article-title>ROS-induced DNA damage and PARP-1 are required for optimal induction of starvation-induced autophagy</article-title>
<source>Cell Res.</source>
<year>2012</year>
<volume>22</volume>
<fpage>1181</fpage>
<lpage>1198</lpage>
<pub-id pub-id-type="doi">10.1038/cr.2012.70</pub-id>
<pub-id pub-id-type="pmid">22525338</pub-id>
</element-citation>
</ref>
<ref id="CR183">
<label>183.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Xu</surname>
<given-names>X</given-names>
</name>
<etal></etal>
</person-group>
<article-title>The role of PARP activation in glutamate-induced necroptosis in HT-22 cells</article-title>
<source>Brain Res.</source>
<year>2010</year>
<volume>1343</volume>
<fpage>206</fpage>
<lpage>212</lpage>
<pub-id pub-id-type="doi">10.1016/j.brainres.2010.04.080</pub-id>
<pub-id pub-id-type="pmid">20451505</pub-id>
</element-citation>
</ref>
<ref id="CR184">
<label>184.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Overholtzer</surname>
<given-names>M</given-names>
</name>
<etal></etal>
</person-group>
<article-title>A nonapoptotic cell death process, entosis, that occurs by cell-in-cell invasion</article-title>
<source>Cell</source>
<year>2007</year>
<volume>131</volume>
<fpage>966</fpage>
<lpage>979</lpage>
<pub-id pub-id-type="doi">10.1016/j.cell.2007.10.040</pub-id>
<pub-id pub-id-type="pmid">18045538</pub-id>
</element-citation>
</ref>
<ref id="CR185">
<label>185.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Hamann</surname>
<given-names>JC</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Entosis Is Induced by Glucose Starvation</article-title>
<source>Cell Rep</source>
<year>2017</year>
<volume>20</volume>
<fpage>201</fpage>
<lpage>210</lpage>
<pub-id pub-id-type="doi">10.1016/j.celrep.2017.06.037</pub-id>
<pub-id pub-id-type="pmid">28683313</pub-id>
</element-citation>
</ref>
<ref id="CR186">
<label>186.</label>
<mixed-citation publication-type="other">Durgan, J. et al. Mitosis can drive cell cannibalism through entosis.
<italic>Elife</italic>
10.7554/eLife.27134 (2017).</mixed-citation>
</ref>
<ref id="CR187">
<label>187.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Brouwer</surname>
<given-names>M</given-names>
</name>
<name>
<surname>de Ley</surname>
<given-names>L</given-names>
</name>
<name>
<surname>Feltkamp</surname>
<given-names>CA</given-names>
</name>
<name>
<surname>Elema</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Jongsma</surname>
<given-names>AP</given-names>
</name>
</person-group>
<article-title>Serum-dependent “cannibalism” and autodestruction in cultures of human small cell carcinoma of the lung</article-title>
<source>Cancer Res.</source>
<year>1984</year>
<volume>44</volume>
<fpage>2947</fpage>
<lpage>2951</lpage>
<pub-id pub-id-type="pmid">6327030</pub-id>
</element-citation>
</ref>
<ref id="CR188">
<label>188.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Krajcovic</surname>
<given-names>M</given-names>
</name>
<etal></etal>
</person-group>
<article-title>A non-genetic route to aneuploidy in human cancers</article-title>
<source>Nat. Cell Biol.</source>
<year>2011</year>
<volume>13</volume>
<fpage>324</fpage>
<lpage>330</lpage>
<pub-id pub-id-type="doi">10.1038/ncb2174</pub-id>
<pub-id pub-id-type="pmid">21336303</pub-id>
</element-citation>
</ref>
<ref id="CR189">
<label>189.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Durgan</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Florey</surname>
<given-names>O</given-names>
</name>
</person-group>
<article-title>Cancer cell cannibalism: multiple triggers emerge for entosis</article-title>
<source>Biochim. Biophys. Acta Mol. Cell Res.</source>
<year>2018</year>
<volume>1865</volume>
<fpage>831</fpage>
<lpage>841</lpage>
<pub-id pub-id-type="doi">10.1016/j.bbamcr.2018.03.004</pub-id>
<pub-id pub-id-type="pmid">29548938</pub-id>
</element-citation>
</ref>
<ref id="CR190">
<label>190.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Martins</surname>
<given-names>I</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Entosis: the emerging face of non-cell-autonomous type IV programmed death</article-title>
<source>Biomed J</source>
<year>2017</year>
<volume>40</volume>
<fpage>133</fpage>
<lpage>140</lpage>
<pub-id pub-id-type="doi">10.1016/j.bj.2017.05.001</pub-id>
<pub-id pub-id-type="pmid">28651734</pub-id>
</element-citation>
</ref>
<ref id="CR191">
<label>191.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Wang</surname>
<given-names>M</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Impaired formation of homotypic cell-in-cell structures in human tumor cells lacking alpha-catenin expression</article-title>
<source>Sci. Rep.</source>
<year>2015</year>
<volume>5</volume>
<fpage>12223</fpage>
<pub-id pub-id-type="doi">10.1038/srep12223</pub-id>
<pub-id pub-id-type="pmid">26192076</pub-id>
</element-citation>
</ref>
<ref id="CR192">
<label>192.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Sun</surname>
<given-names>Q</given-names>
</name>
<name>
<surname>Cibas</surname>
<given-names>ES</given-names>
</name>
<name>
<surname>Huang</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Hodgson</surname>
<given-names>L</given-names>
</name>
<name>
<surname>Overholtzer</surname>
<given-names>M</given-names>
</name>
</person-group>
<article-title>Induction of entosis by epithelial cadherin expression</article-title>
<source>Cell Res.</source>
<year>2014</year>
<volume>24</volume>
<fpage>1288</fpage>
<lpage>1298</lpage>
<pub-id pub-id-type="doi">10.1038/cr.2014.137</pub-id>
<pub-id pub-id-type="pmid">25342558</pub-id>
</element-citation>
</ref>
<ref id="CR193">
<label>193.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Sottile</surname>
<given-names>F</given-names>
</name>
<name>
<surname>Aulicino</surname>
<given-names>F</given-names>
</name>
<name>
<surname>Theka</surname>
<given-names>I</given-names>
</name>
<name>
<surname>Cosma</surname>
<given-names>MP</given-names>
</name>
</person-group>
<article-title>Mesenchymal stem cells generate distinct functional hybrids in vitro via cell fusion or entosis</article-title>
<source>Sci. Rep.</source>
<year>2016</year>
<volume>6</volume>
<fpage>36863</fpage>
<pub-id pub-id-type="doi">10.1038/srep36863</pub-id>
<pub-id pub-id-type="pmid">27827439</pub-id>
</element-citation>
</ref>
<ref id="CR194">
<label>194.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Wen</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Shang</surname>
<given-names>Z</given-names>
</name>
<name>
<surname>Zhu</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Chang</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Niu</surname>
<given-names>Y</given-names>
</name>
</person-group>
<article-title>Androgen receptor enhances entosis, a non-apoptotic cell death, through modulation of Rho/ROCK pathway in prostate cancer cells</article-title>
<source>Prostate</source>
<year>2013</year>
<volume>73</volume>
<fpage>1306</fpage>
<lpage>1315</lpage>
<pub-id pub-id-type="doi">10.1002/pros.22676</pub-id>
<pub-id pub-id-type="pmid">23775364</pub-id>
</element-citation>
</ref>
<ref id="CR195">
<label>195.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Sun</surname>
<given-names>Q</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Competition between human cells by entosis</article-title>
<source>Cell Res.</source>
<year>2014</year>
<volume>24</volume>
<fpage>1299</fpage>
<lpage>1310</lpage>
<pub-id pub-id-type="doi">10.1038/cr.2014.138</pub-id>
<pub-id pub-id-type="pmid">25342560</pub-id>
</element-citation>
</ref>
<ref id="CR196">
<label>196.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Wan</surname>
<given-names>Q</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Regulation of myosin activation during cell-cell contact formation by Par3-Lgl antagonism: entosis without matrix detachment</article-title>
<source>Mol. Biol. Cell.</source>
<year>2012</year>
<volume>23</volume>
<fpage>2076</fpage>
<lpage>2091</lpage>
<pub-id pub-id-type="doi">10.1091/mbc.e11-11-0940</pub-id>
<pub-id pub-id-type="pmid">22496418</pub-id>
</element-citation>
</ref>
<ref id="CR197">
<label>197.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Xia</surname>
<given-names>P</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Aurora A orchestrates entosis by regulating a dynamic MCAK-TIP150 interaction</article-title>
<source>J. Mol. Cell Biol.</source>
<year>2014</year>
<volume>6</volume>
<fpage>240</fpage>
<lpage>254</lpage>
<pub-id pub-id-type="doi">10.1093/jmcb/mju016</pub-id>
<pub-id pub-id-type="pmid">24847103</pub-id>
</element-citation>
</ref>
<ref id="CR198">
<label>198.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Hinojosa</surname>
<given-names>LS</given-names>
</name>
<name>
<surname>Holst</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Baarlink</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Grosse</surname>
<given-names>R</given-names>
</name>
</person-group>
<article-title>MRTF transcription and Ezrin-dependent plasma membrane blebbing are required for entotic invasion</article-title>
<source>J. Cell. Biol.</source>
<year>2017</year>
<volume>216</volume>
<fpage>3087</fpage>
<lpage>3095</lpage>
<pub-id pub-id-type="doi">10.1083/jcb.201702010</pub-id>
<pub-id pub-id-type="pmid">28774893</pub-id>
</element-citation>
</ref>
<ref id="CR199">
<label>199.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Li</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Sun</surname>
<given-names>X</given-names>
</name>
<name>
<surname>Dey</surname>
<given-names>SK</given-names>
</name>
</person-group>
<article-title>Entosis allows timely elimination of the luminal epithelial barrier for embryo implantation</article-title>
<source>Cell Rep</source>
<year>2015</year>
<volume>11</volume>
<fpage>358</fpage>
<lpage>365</lpage>
<pub-id pub-id-type="doi">10.1016/j.celrep.2015.03.035</pub-id>
<pub-id pub-id-type="pmid">25865893</pub-id>
</element-citation>
</ref>
<ref id="CR200">
<label>200.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Heckmann</surname>
<given-names>BL</given-names>
</name>
<name>
<surname>Boada-Romero</surname>
<given-names>E</given-names>
</name>
<name>
<surname>Cunha</surname>
<given-names>LD</given-names>
</name>
<name>
<surname>Magne</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Green</surname>
<given-names>DR</given-names>
</name>
</person-group>
<article-title>LC3-associated phagocytosis and inflammation</article-title>
<source>J. Mol. Biol.</source>
<year>2017</year>
<volume>429</volume>
<fpage>3561</fpage>
<lpage>3576</lpage>
<pub-id pub-id-type="doi">10.1016/j.jmb.2017.08.012</pub-id>
<pub-id pub-id-type="pmid">28847720</pub-id>
</element-citation>
</ref>
<ref id="CR201">
<label>201.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Brinkmann</surname>
<given-names>V</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Neutrophil extracellular traps kill bacteria</article-title>
<source>Science</source>
<year>2004</year>
<volume>303</volume>
<fpage>1532</fpage>
<lpage>1535</lpage>
<pub-id pub-id-type="doi">10.1126/science.1092385</pub-id>
<pub-id pub-id-type="pmid">15001782</pub-id>
</element-citation>
</ref>
<ref id="CR202">
<label>202.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Arazna</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Pruchniak</surname>
<given-names>MP</given-names>
</name>
<name>
<surname>Demkow</surname>
<given-names>U</given-names>
</name>
</person-group>
<article-title>Reactive Oxygen Species, Granulocytes, and NETosis</article-title>
<source>Adv. Exp. Med. Biol.</source>
<year>2015</year>
<volume>836</volume>
<fpage>1</fpage>
<lpage>7</lpage>
<pub-id pub-id-type="pmid">25310939</pub-id>
</element-citation>
</ref>
<ref id="CR203">
<label>203.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Kazzaz</surname>
<given-names>NM</given-names>
</name>
<name>
<surname>Sule</surname>
<given-names>G</given-names>
</name>
<name>
<surname>Knight</surname>
<given-names>JS</given-names>
</name>
</person-group>
<article-title>Intercellular interactions as regulators of NETosis</article-title>
<source>Front. Immunol.</source>
<year>2016</year>
<volume>7</volume>
<fpage>453</fpage>
<pub-id pub-id-type="doi">10.3389/fimmu.2016.00453</pub-id>
<pub-id pub-id-type="pmid">27895638</pub-id>
</element-citation>
</ref>
<ref id="CR204">
<label>204.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Remijsen</surname>
<given-names>Q</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Dying for a cause: NETosis, mechanisms behind an antimicrobial cell death modality</article-title>
<source>Cell Death Differ.</source>
<year>2011</year>
<volume>18</volume>
<fpage>581</fpage>
<lpage>588</lpage>
<pub-id pub-id-type="doi">10.1038/cdd.2011.1</pub-id>
<pub-id pub-id-type="pmid">21293492</pub-id>
</element-citation>
</ref>
<ref id="CR205">
<label>205.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Branzk</surname>
<given-names>N</given-names>
</name>
<name>
<surname>Papayannopoulos</surname>
<given-names>V</given-names>
</name>
</person-group>
<article-title>Molecular mechanisms regulating NETosis in infection and disease</article-title>
<source>Semin. Immunopathol.</source>
<year>2013</year>
<volume>35</volume>
<fpage>513</fpage>
<lpage>530</lpage>
<pub-id pub-id-type="doi">10.1007/s00281-013-0384-6</pub-id>
<pub-id pub-id-type="pmid">23732507</pub-id>
</element-citation>
</ref>
<ref id="CR206">
<label>206.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Albrengues</surname>
<given-names>Jean</given-names>
</name>
<name>
<surname>Shields</surname>
<given-names>Mario A.</given-names>
</name>
<name>
<surname>Ng</surname>
<given-names>David</given-names>
</name>
<name>
<surname>Park</surname>
<given-names>Chun Gwon</given-names>
</name>
<name>
<surname>Ambrico</surname>
<given-names>Alexandra</given-names>
</name>
<name>
<surname>Poindexter</surname>
<given-names>Morgan E.</given-names>
</name>
<name>
<surname>Upadhyay</surname>
<given-names>Priya</given-names>
</name>
<name>
<surname>Uyeminami</surname>
<given-names>Dale L.</given-names>
</name>
<name>
<surname>Pommier</surname>
<given-names>Arnaud</given-names>
</name>
<name>
<surname>Küttner</surname>
<given-names>Victoria</given-names>
</name>
<name>
<surname>Bružas</surname>
<given-names>Emilis</given-names>
</name>
<name>
<surname>Maiorino</surname>
<given-names>Laura</given-names>
</name>
<name>
<surname>Bautista</surname>
<given-names>Carmelita</given-names>
</name>
<name>
<surname>Carmona</surname>
<given-names>Ellese M.</given-names>
</name>
<name>
<surname>Gimotty</surname>
<given-names>Phyllis A.</given-names>
</name>
<name>
<surname>Fearon</surname>
<given-names>Douglas T.</given-names>
</name>
<name>
<surname>Chang</surname>
<given-names>Kenneth</given-names>
</name>
<name>
<surname>Lyons</surname>
<given-names>Scott K.</given-names>
</name>
<name>
<surname>Pinkerton</surname>
<given-names>Kent E.</given-names>
</name>
<name>
<surname>Trotman</surname>
<given-names>Lloyd C.</given-names>
</name>
<name>
<surname>Goldberg</surname>
<given-names>Michael S.</given-names>
</name>
<name>
<surname>Yeh</surname>
<given-names>Johannes T.-H.</given-names>
</name>
<name>
<surname>Egeblad</surname>
<given-names>Mikala</given-names>
</name>
</person-group>
<article-title>Neutrophil extracellular traps produced during inflammation awaken dormant cancer cells in mice</article-title>
<source>Science</source>
<year>2018</year>
<volume>361</volume>
<issue>6409</issue>
<fpage>eaao4227</fpage>
<pub-id pub-id-type="doi">10.1126/science.aao4227</pub-id>
<pub-id pub-id-type="pmid">30262472</pub-id>
</element-citation>
</ref>
<ref id="CR207">
<label>207.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Skendros</surname>
<given-names>P</given-names>
</name>
<name>
<surname>Mitroulis</surname>
<given-names>I</given-names>
</name>
<name>
<surname>Ritis</surname>
<given-names>K</given-names>
</name>
</person-group>
<article-title>Autophagy in neutrophils: from granulopoiesis to neutrophil extracellular traps</article-title>
<source>Front. Cell. Dev. Biol.</source>
<year>2018</year>
<volume>6</volume>
<fpage>109</fpage>
<pub-id pub-id-type="doi">10.3389/fcell.2018.00109</pub-id>
<pub-id pub-id-type="pmid">30234114</pub-id>
</element-citation>
</ref>
<ref id="CR208">
<label>208.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Remijsen</surname>
<given-names>Q</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Neutrophil extracellular trap cell death requires both autophagy and superoxide generation</article-title>
<source>Cell Res.</source>
<year>2011</year>
<volume>21</volume>
<fpage>290</fpage>
<lpage>304</lpage>
<pub-id pub-id-type="doi">10.1038/cr.2010.150</pub-id>
<pub-id pub-id-type="pmid">21060338</pub-id>
</element-citation>
</ref>
<ref id="CR209">
<label>209.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Yipp</surname>
<given-names>BG</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Infection-induced NETosis is a dynamic process involving neutrophil multitasking in vivo</article-title>
<source>Nat. Med.</source>
<year>2012</year>
<volume>18</volume>
<fpage>1386</fpage>
<lpage>1393</lpage>
<pub-id pub-id-type="doi">10.1038/nm.2847</pub-id>
<pub-id pub-id-type="pmid">22922410</pub-id>
</element-citation>
</ref>
<ref id="CR210">
<label>210.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Li</surname>
<given-names>P</given-names>
</name>
<etal></etal>
</person-group>
<article-title>PAD4 is essential for antibacterial innate immunity mediated by neutrophil extracellular traps</article-title>
<source>J. Exp. Med.</source>
<year>2010</year>
<volume>207</volume>
<fpage>1853</fpage>
<lpage>1862</lpage>
<pub-id pub-id-type="doi">10.1084/jem.20100239</pub-id>
<pub-id pub-id-type="pmid">20733033</pub-id>
</element-citation>
</ref>
<ref id="CR211">
<label>211.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Hemmers</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Teijaro</surname>
<given-names>JR</given-names>
</name>
<name>
<surname>Arandjelovic</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Mowen</surname>
<given-names>KA</given-names>
</name>
</person-group>
<article-title>PAD4-mediated neutrophil extracellular trap formation is not required for immunity against influenza infection</article-title>
<source>PLoS One</source>
<year>2011</year>
<volume>6</volume>
<fpage>e22043</fpage>
<pub-id pub-id-type="doi">10.1371/journal.pone.0022043</pub-id>
<pub-id pub-id-type="pmid">21779371</pub-id>
</element-citation>
</ref>
<ref id="CR212">
<label>212.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Mitroulis</surname>
<given-names>I</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Neutrophil extracellular trap formation is associated with IL-1beta and autophagy-related signaling in gout</article-title>
<source>PLoS One</source>
<year>2011</year>
<volume>6</volume>
<fpage>e29318</fpage>
<pub-id pub-id-type="doi">10.1371/journal.pone.0029318</pub-id>
<pub-id pub-id-type="pmid">22195044</pub-id>
</element-citation>
</ref>
<ref id="CR213">
<label>213.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Neubert</surname>
<given-names>E</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Chromatin swelling drives neutrophil extracellular trap release</article-title>
<source>Nat. Commun.</source>
<year>2018</year>
<volume>9</volume>
<fpage>3767</fpage>
<pub-id pub-id-type="doi">10.1038/s41467-018-06263-5</pub-id>
<pub-id pub-id-type="pmid">30218080</pub-id>
</element-citation>
</ref>
<ref id="CR214">
<label>214.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Okubo</surname>
<given-names>K</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Lactoferrin suppresses neutrophil extracellular traps release in inflammation</article-title>
<source>EBioMedicine</source>
<year>2016</year>
<volume>10</volume>
<fpage>204</fpage>
<lpage>215</lpage>
<pub-id pub-id-type="doi">10.1016/j.ebiom.2016.07.012</pub-id>
<pub-id pub-id-type="pmid">27453322</pub-id>
</element-citation>
</ref>
<ref id="CR215">
<label>215.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Aits</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Jaattela</surname>
<given-names>M</given-names>
</name>
</person-group>
<article-title>Lysosomal cell death at a glance</article-title>
<source>J. Cell. Sci.</source>
<year>2013</year>
<volume>126</volume>
<fpage>1905</fpage>
<lpage>1912</lpage>
<pub-id pub-id-type="doi">10.1242/jcs.091181</pub-id>
<pub-id pub-id-type="pmid">23720375</pub-id>
</element-citation>
</ref>
<ref id="CR216">
<label>216.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Franko</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Pomfy</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Prosbova</surname>
<given-names>T</given-names>
</name>
</person-group>
<article-title>Apoptosis and cell death (mechanisms, pharmacology and promise for the future)</article-title>
<source>Acta Medica (Hradec. Kralove)</source>
<year>2000</year>
<volume>43</volume>
<fpage>63</fpage>
<lpage>68</lpage>
</element-citation>
</ref>
<ref id="CR217">
<label>217.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Kroemer</surname>
<given-names>G</given-names>
</name>
<name>
<surname>Jaattela</surname>
<given-names>M</given-names>
</name>
</person-group>
<article-title>Lysosomes and autophagy in cell death control</article-title>
<source>Nat. Rev. Cancer</source>
<year>2005</year>
<volume>5</volume>
<fpage>886</fpage>
<lpage>897</lpage>
<pub-id pub-id-type="doi">10.1038/nrc1738</pub-id>
<pub-id pub-id-type="pmid">16239905</pub-id>
</element-citation>
</ref>
<ref id="CR218">
<label>218.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Gao</surname>
<given-names>H</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Ferroptosis is a lysosomal cell death process</article-title>
<source>Biochem. Biophys. Res. Commun.</source>
<year>2018</year>
<volume>503</volume>
<fpage>1550</fpage>
<lpage>1556</lpage>
<pub-id pub-id-type="doi">10.1016/j.bbrc.2018.07.078</pub-id>
<pub-id pub-id-type="pmid">30031610</pub-id>
</element-citation>
</ref>
<ref id="CR219">
<label>219.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Repnik</surname>
<given-names>U</given-names>
</name>
<name>
<surname>Stoka</surname>
<given-names>V</given-names>
</name>
<name>
<surname>Turk</surname>
<given-names>V</given-names>
</name>
<name>
<surname>Turk</surname>
<given-names>B</given-names>
</name>
</person-group>
<article-title>Lysosomes and lysosomal cathepsins in cell death</article-title>
<source>Biochim. Biophys. Acta</source>
<year>2012</year>
<volume>1824</volume>
<fpage>22</fpage>
<lpage>33</lpage>
<pub-id pub-id-type="doi">10.1016/j.bbapap.2011.08.016</pub-id>
<pub-id pub-id-type="pmid">21914490</pub-id>
</element-citation>
</ref>
<ref id="CR220">
<label>220.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Kreuzaler</surname>
<given-names>PA</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Stat3 controls lysosomal-mediated cell death in vivo</article-title>
<source>Nat. Cell Biol.</source>
<year>2011</year>
<volume>13</volume>
<fpage>303</fpage>
<lpage>309</lpage>
<pub-id pub-id-type="doi">10.1038/ncb2171</pub-id>
<pub-id pub-id-type="pmid">21336304</pub-id>
</element-citation>
</ref>
<ref id="CR221">
<label>221.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Wu</surname>
<given-names>GS</given-names>
</name>
<name>
<surname>Saftig</surname>
<given-names>P</given-names>
</name>
<name>
<surname>Peters</surname>
<given-names>C</given-names>
</name>
<name>
<surname>El-Deiry</surname>
<given-names>WS</given-names>
</name>
</person-group>
<article-title>Potential role for cathepsin D in p53-dependent tumor suppression and chemosensitivity</article-title>
<source>Oncogene</source>
<year>1998</year>
<volume>16</volume>
<fpage>2177</fpage>
<lpage>2183</lpage>
<pub-id pub-id-type="doi">10.1038/sj.onc.1201755</pub-id>
<pub-id pub-id-type="pmid">9619826</pub-id>
</element-citation>
</ref>
<ref id="CR222">
<label>222.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Liu</surname>
<given-names>N</given-names>
</name>
<etal></etal>
</person-group>
<article-title>NF-kappaB protects from the lysosomal pathway of cell death</article-title>
<source>EMBO J.</source>
<year>2003</year>
<volume>22</volume>
<fpage>5313</fpage>
<lpage>5322</lpage>
<pub-id pub-id-type="doi">10.1093/emboj/cdg510</pub-id>
<pub-id pub-id-type="pmid">14517268</pub-id>
</element-citation>
</ref>
<ref id="CR223">
<label>223.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Colletti</surname>
<given-names>GA</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Loss of lysosomal ion channel transient receptor potential channel mucolipin-1 (TRPML1) leads to cathepsin B-dependent apoptosis</article-title>
<source>J. Biol. Chem.</source>
<year>2012</year>
<volume>287</volume>
<fpage>8082</fpage>
<lpage>8091</lpage>
<pub-id pub-id-type="doi">10.1074/jbc.M111.285536</pub-id>
<pub-id pub-id-type="pmid">22262857</pub-id>
</element-citation>
</ref>
<ref id="CR224">
<label>224.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Terman</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Kurz</surname>
<given-names>T</given-names>
</name>
</person-group>
<article-title>Lysosomal iron, iron chelation, and cell death</article-title>
<source>Antioxid. Redox. Signal.</source>
<year>2013</year>
<volume>18</volume>
<fpage>888</fpage>
<lpage>898</lpage>
<pub-id pub-id-type="doi">10.1089/ars.2012.4885</pub-id>
<pub-id pub-id-type="pmid">22909065</pub-id>
</element-citation>
</ref>
<ref id="CR225">
<label>225.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Torii</surname>
<given-names>S</given-names>
</name>
<etal></etal>
</person-group>
<article-title>An essential role for functional lysosomes in ferroptosis of cancer cells</article-title>
<source>Biochem. J.</source>
<year>2016</year>
<volume>473</volume>
<fpage>769</fpage>
<lpage>777</lpage>
<pub-id pub-id-type="doi">10.1042/BJ20150658</pub-id>
<pub-id pub-id-type="pmid">26759376</pub-id>
</element-citation>
</ref>
<ref id="CR226">
<label>226.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Platt</surname>
<given-names>FM</given-names>
</name>
<name>
<surname>Boland</surname>
<given-names>B</given-names>
</name>
<name>
<surname>van der Spoel</surname>
<given-names>AC</given-names>
</name>
</person-group>
<article-title>The cell biology of disease: lysosomal storage disorders: the cellular impact of lysosomal dysfunction</article-title>
<source>J. Cell. Biol.</source>
<year>2012</year>
<volume>199</volume>
<fpage>723</fpage>
<lpage>734</lpage>
<pub-id pub-id-type="doi">10.1083/jcb.201208152</pub-id>
<pub-id pub-id-type="pmid">23185029</pub-id>
</element-citation>
</ref>
<ref id="CR227">
<label>227.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Gomez-Sintes</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Ledesma</surname>
<given-names>MD</given-names>
</name>
<name>
<surname>Boya</surname>
<given-names>P</given-names>
</name>
</person-group>
<article-title>Lysosomal cell death mechanisms in aging</article-title>
<source>Ageing Res. Rev.</source>
<year>2016</year>
<volume>32</volume>
<fpage>150</fpage>
<lpage>168</lpage>
<pub-id pub-id-type="doi">10.1016/j.arr.2016.02.009</pub-id>
<pub-id pub-id-type="pmid">26947122</pub-id>
</element-citation>
</ref>
<ref id="CR228">
<label>228.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Klionsky</surname>
<given-names>DJ</given-names>
</name>
</person-group>
<article-title>Autophagy: from phenomenology to molecular understanding in less than a decade</article-title>
<source>Nat. Rev. Mol. Cell Biol.</source>
<year>2007</year>
<volume>8</volume>
<fpage>931</fpage>
<lpage>937</lpage>
<pub-id pub-id-type="doi">10.1038/nrm2245</pub-id>
<pub-id pub-id-type="pmid">17712358</pub-id>
</element-citation>
</ref>
<ref id="CR229">
<label>229.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Levine</surname>
<given-names>B</given-names>
</name>
<name>
<surname>Kroemer</surname>
<given-names>G</given-names>
</name>
</person-group>
<article-title>Biological functions of autophagy genes: a disease perspective</article-title>
<source>Cell</source>
<year>2019</year>
<volume>176</volume>
<fpage>11</fpage>
<lpage>42</lpage>
<pub-id pub-id-type="doi">10.1016/j.cell.2018.09.048</pub-id>
<pub-id pub-id-type="pmid">30633901</pub-id>
</element-citation>
</ref>
<ref id="CR230">
<label>230.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Dikic</surname>
<given-names>I</given-names>
</name>
<name>
<surname>Elazar</surname>
<given-names>Z</given-names>
</name>
</person-group>
<article-title>Mechanism and medical implications of mammalian autophagy</article-title>
<source>Nat. Rev. Mol. Cell Biol.</source>
<year>2018</year>
<volume>19</volume>
<fpage>349</fpage>
<lpage>364</lpage>
<pub-id pub-id-type="doi">10.1038/s41580-018-0003-4</pub-id>
<pub-id pub-id-type="pmid">29618831</pub-id>
</element-citation>
</ref>
<ref id="CR231">
<label>231.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Liu</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Levine</surname>
<given-names>B</given-names>
</name>
</person-group>
<article-title>Autosis and autophagic cell death: the dark side of autophagy</article-title>
<source>Cell Death Differ.</source>
<year>2015</year>
<volume>22</volume>
<fpage>367</fpage>
<lpage>376</lpage>
<pub-id pub-id-type="doi">10.1038/cdd.2014.143</pub-id>
<pub-id pub-id-type="pmid">25257169</pub-id>
</element-citation>
</ref>
<ref id="CR232">
<label>232.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Bialik</surname>
<given-names>Shani</given-names>
</name>
<name>
<surname>Dasari</surname>
<given-names>Santosh K.</given-names>
</name>
<name>
<surname>Kimchi</surname>
<given-names>Adi</given-names>
</name>
</person-group>
<article-title>Autophagy-dependent cell death – where, how and why a cell eats itself to death</article-title>
<source>Journal of Cell Science</source>
<year>2018</year>
<volume>131</volume>
<issue>18</issue>
<fpage>jcs215152</fpage>
<pub-id pub-id-type="doi">10.1242/jcs.215152</pub-id>
<pub-id pub-id-type="pmid">30237248</pub-id>
</element-citation>
</ref>
<ref id="CR233">
<label>233.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Denton</surname>
<given-names>Donna</given-names>
</name>
<name>
<surname>Kumar</surname>
<given-names>Sharad</given-names>
</name>
</person-group>
<article-title>Autophagy-dependent cell death</article-title>
<source>Cell Death & Differentiation</source>
<year>2018</year>
<volume>26</volume>
<issue>4</issue>
<fpage>605</fpage>
<lpage>616</lpage>
<pub-id pub-id-type="doi">10.1038/s41418-018-0252-y</pub-id>
<pub-id pub-id-type="pmid">30568239</pub-id>
</element-citation>
</ref>
<ref id="CR234">
<label>234.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Kriel</surname>
<given-names>Jurgen</given-names>
</name>
<name>
<surname>Loos</surname>
<given-names>Ben</given-names>
</name>
</person-group>
<article-title>The good, the bad and the autophagosome: exploring unanswered questions of autophagy-dependent cell death</article-title>
<source>Cell Death & Differentiation</source>
<year>2019</year>
<volume>26</volume>
<issue>4</issue>
<fpage>640</fpage>
<lpage>652</lpage>
<pub-id pub-id-type="doi">10.1038/s41418-018-0267-4</pub-id>
<pub-id pub-id-type="pmid">30659234</pub-id>
</element-citation>
</ref>
<ref id="CR235">
<label>235.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Gump</surname>
<given-names>JM</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Autophagy variation within a cell population determines cell fate through selective degradation of Fap-1</article-title>
<source>Nat. Cell Biol.</source>
<year>2014</year>
<volume>16</volume>
<fpage>47</fpage>
<lpage>54</lpage>
<pub-id pub-id-type="doi">10.1038/ncb2886</pub-id>
<pub-id pub-id-type="pmid">24316673</pub-id>
</element-citation>
</ref>
<ref id="CR236">
<label>236.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>He</surname>
<given-names>W</given-names>
</name>
<etal></etal>
</person-group>
<article-title>A JNK-mediated autophagy pathway that triggers c-IAP degradation and necroptosis for anticancer chemotherapy</article-title>
<source>Oncogene</source>
<year>2014</year>
<volume>33</volume>
<fpage>3004</fpage>
<lpage>3013</lpage>
<pub-id pub-id-type="doi">10.1038/onc.2013.256</pub-id>
<pub-id pub-id-type="pmid">23831571</pub-id>
</element-citation>
</ref>
<ref id="CR237">
<label>237.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Sousa</surname>
<given-names>L</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Effects of iron overload on the activity of Na,K-ATPase and lipid profile of the human erythrocyte membrane</article-title>
<source>PLoS One</source>
<year>2015</year>
<volume>10</volume>
<fpage>e0132852</fpage>
<pub-id pub-id-type="doi">10.1371/journal.pone.0132852</pub-id>
<pub-id pub-id-type="pmid">26197432</pub-id>
</element-citation>
</ref>
<ref id="CR238">
<label>238.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Song</surname>
<given-names>X</given-names>
</name>
<etal></etal>
</person-group>
<article-title>JTC801 induces pH-dependent death specifically in cancer cells and slows growth of tumors in mice</article-title>
<source>Gastroenterology</source>
<year>2018</year>
<volume>154</volume>
<fpage>1480</fpage>
<lpage>1493</lpage>
<pub-id pub-id-type="doi">10.1053/j.gastro.2017.12.004</pub-id>
<pub-id pub-id-type="pmid">29248440</pub-id>
</element-citation>
</ref>
<ref id="CR239">
<label>239.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Zheng</surname>
<given-names>CJ</given-names>
</name>
<name>
<surname>Yang</surname>
<given-names>LL</given-names>
</name>
<name>
<surname>Liu</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Zhong</surname>
<given-names>L</given-names>
</name>
</person-group>
<article-title>JTC-801 exerts anti-proliferative effects in human osteosarcoma cells by inducing apoptosis</article-title>
<source>J. Recept. Signal. Transduct. Res.</source>
<year>2018</year>
<volume>38</volume>
<fpage>133</fpage>
<lpage>140</lpage>
<pub-id pub-id-type="doi">10.1080/10799893.2018.1436561</pub-id>
<pub-id pub-id-type="pmid">29447541</pub-id>
</element-citation>
</ref>
<ref id="CR240">
<label>240.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Pochet</surname>
<given-names>JM</given-names>
</name>
<name>
<surname>Laterre</surname>
<given-names>PF</given-names>
</name>
<name>
<surname>Jadoul</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Devuyst</surname>
<given-names>O</given-names>
</name>
</person-group>
<article-title>Metabolic alkalosis in the intensive care unit</article-title>
<source>Acta Clin. Belg.</source>
<year>2001</year>
<volume>56</volume>
<fpage>2</fpage>
<lpage>9</lpage>
<pub-id pub-id-type="doi">10.1179/acb.2001.002</pub-id>
<pub-id pub-id-type="pmid">11307479</pub-id>
</element-citation>
</ref>
<ref id="CR241">
<label>241.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Holze</surname>
<given-names>C</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Oxeiptosis, a ROS-induced caspase-independent apoptosis-like cell-death pathway</article-title>
<source>Nat. Immunol.</source>
<year>2018</year>
<volume>19</volume>
<fpage>130</fpage>
<lpage>140</lpage>
<pub-id pub-id-type="doi">10.1038/s41590-017-0013-y</pub-id>
<pub-id pub-id-type="pmid">29255269</pub-id>
</element-citation>
</ref>
<ref id="CR242">
<label>242.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Saito</surname>
<given-names>Y</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Turning point in apoptosis/necrosis induced by hydrogen peroxide</article-title>
<source>Free. Radic. Res.</source>
<year>2006</year>
<volume>40</volume>
<fpage>619</fpage>
<lpage>630</lpage>
<pub-id pub-id-type="doi">10.1080/10715760600632552</pub-id>
<pub-id pub-id-type="pmid">16753840</pub-id>
</element-citation>
</ref>
<ref id="CR243">
<label>243.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Ingold</surname>
<given-names>I</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Selenium Utilization by GPX4 is required to prevent hydroperoxide-induced ferroptosis</article-title>
<source>Cell</source>
<year>2018</year>
<volume>172</volume>
<fpage>409</fpage>
<lpage>422 e421</lpage>
<pub-id pub-id-type="doi">10.1016/j.cell.2017.11.048</pub-id>
<pub-id pub-id-type="pmid">29290465</pub-id>
</element-citation>
</ref>
<ref id="CR244">
<label>244.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Casares</surname>
<given-names>N</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Caspase-dependent immunogenicity of doxorubicin-induced tumor cell death</article-title>
<source>J. Exp. Med.</source>
<year>2005</year>
<volume>202</volume>
<fpage>1691</fpage>
<lpage>1701</lpage>
<pub-id pub-id-type="doi">10.1084/jem.20050915</pub-id>
<pub-id pub-id-type="pmid">16365148</pub-id>
</element-citation>
</ref>
<ref id="CR245">
<label>245.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Green</surname>
<given-names>DR</given-names>
</name>
<name>
<surname>Ferguson</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Zitvogel</surname>
<given-names>L</given-names>
</name>
<name>
<surname>Kroemer</surname>
<given-names>G</given-names>
</name>
</person-group>
<article-title>Immunogenic and tolerogenic cell death</article-title>
<source>Nat. Rev. Immunol.</source>
<year>2009</year>
<volume>9</volume>
<fpage>353</fpage>
<lpage>363</lpage>
<pub-id pub-id-type="doi">10.1038/nri2545</pub-id>
<pub-id pub-id-type="pmid">19365408</pub-id>
</element-citation>
</ref>
<ref id="CR246">
<label>246.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Obeid</surname>
<given-names>M</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Calreticulin exposure dictates the immunogenicity of cancer cell death</article-title>
<source>Nat. Med.</source>
<year>2007</year>
<volume>13</volume>
<fpage>54</fpage>
<lpage>61</lpage>
<pub-id pub-id-type="doi">10.1038/nm1523</pub-id>
<pub-id pub-id-type="pmid">17187072</pub-id>
</element-citation>
</ref>
<ref id="CR247">
<label>247.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Galluzzi</surname>
<given-names>L</given-names>
</name>
<name>
<surname>Buque</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Kepp</surname>
<given-names>O</given-names>
</name>
<name>
<surname>Zitvogel</surname>
<given-names>L</given-names>
</name>
<name>
<surname>Kroemer</surname>
<given-names>G</given-names>
</name>
</person-group>
<article-title>Immunogenic cell death in cancer and infectious disease</article-title>
<source>Nat. Rev. Immunol.</source>
<year>2017</year>
<volume>17</volume>
<fpage>97</fpage>
<lpage>111</lpage>
<pub-id pub-id-type="doi">10.1038/nri.2016.107</pub-id>
<pub-id pub-id-type="pmid">27748397</pub-id>
</element-citation>
</ref>
<ref id="CR248">
<label>248.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Tang</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Kang</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Coyne</surname>
<given-names>CB</given-names>
</name>
<name>
<surname>Zeh</surname>
<given-names>HJ</given-names>
</name>
<name>
<surname>Lotze</surname>
<given-names>MT</given-names>
</name>
</person-group>
<article-title>PAMPs and DAMPs: signal 0s that spur autophagy and immunity</article-title>
<source>Immunol. Rev.</source>
<year>2012</year>
<volume>249</volume>
<fpage>158</fpage>
<lpage>175</lpage>
<pub-id pub-id-type="doi">10.1111/j.1600-065X.2012.01146.x</pub-id>
<pub-id pub-id-type="pmid">22889221</pub-id>
</element-citation>
</ref>
<ref id="CR249">
<label>249.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Hou</surname>
<given-names>W</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Strange attractors: DAMPs and autophagy link tumor cell death and immunity</article-title>
<source>Cell Death Dis.</source>
<year>2013</year>
<volume>4</volume>
<fpage>e966</fpage>
<pub-id pub-id-type="doi">10.1038/cddis.2013.493</pub-id>
<pub-id pub-id-type="pmid">24336086</pub-id>
</element-citation>
</ref>
<ref id="CR250">
<label>250.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Yatim</surname>
<given-names>N</given-names>
</name>
<etal></etal>
</person-group>
<article-title>RIPK1 and NF-kappaB signaling in dying cells determines cross-priming of CD8(+) T cells</article-title>
<source>Science</source>
<year>2015</year>
<volume>350</volume>
<fpage>328</fpage>
<lpage>334</lpage>
<pub-id pub-id-type="doi">10.1126/science.aad0395</pub-id>
<pub-id pub-id-type="pmid">26405229</pub-id>
</element-citation>
</ref>
<ref id="CR251">
<label>251.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Ahn</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Xia</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Rabasa Capote</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Betancourt</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Barber</surname>
<given-names>GN</given-names>
</name>
</person-group>
<article-title>Extrinsic Phagocyte-dependent STING signaling dictates the immunogenicity of dying cells</article-title>
<source>Cancer Cell.</source>
<year>2018</year>
<volume>33</volume>
<fpage>862</fpage>
<lpage>873 e865</lpage>
<pub-id pub-id-type="doi">10.1016/j.ccell.2018.03.027</pub-id>
<pub-id pub-id-type="pmid">29706455</pub-id>
</element-citation>
</ref>
<ref id="CR252">
<label>252.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Ma</surname>
<given-names>Y</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Contribution of IL-17-producing gamma delta T cells to the efficacy of anticancer chemotherapy</article-title>
<source>J. Exp. Med.</source>
<year>2011</year>
<volume>208</volume>
<fpage>491</fpage>
<lpage>503</lpage>
<pub-id pub-id-type="doi">10.1084/jem.20100269</pub-id>
<pub-id pub-id-type="pmid">21383056</pub-id>
</element-citation>
</ref>
<ref id="CR253">
<label>253.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Ren</surname>
<given-names>J</given-names>
</name>
<etal></etal>
</person-group>
<article-title>The RIP3-RIP1-NF-kappaB signaling axis is dispensable for necroptotic cells to elicit cross-priming of CD8(+) T cells</article-title>
<source>Cell. Mol. Immunol.</source>
<year>2017</year>
<volume>14</volume>
<fpage>639</fpage>
<lpage>642</lpage>
<pub-id pub-id-type="doi">10.1038/cmi.2017.31</pub-id>
<pub-id pub-id-type="pmid">28626232</pub-id>
</element-citation>
</ref>
<ref id="CR254">
<label>254.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Michaud</surname>
<given-names>M</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Autophagy-dependent anticancer immune responses induced by chemotherapeutic agents in mice</article-title>
<source>Science</source>
<year>2011</year>
<volume>334</volume>
<fpage>1573</fpage>
<lpage>1577</lpage>
<pub-id pub-id-type="doi">10.1126/science.1208347</pub-id>
<pub-id pub-id-type="pmid">22174255</pub-id>
</element-citation>
</ref>
<ref id="CR255">
<label>255.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Vacchelli</surname>
<given-names>E</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Chemotherapy-induced antitumor immunity requires formyl peptide receptor 1</article-title>
<source>Science</source>
<year>2015</year>
<volume>350</volume>
<fpage>972</fpage>
<lpage>978</lpage>
<pub-id pub-id-type="doi">10.1126/science.aad0779</pub-id>
<pub-id pub-id-type="pmid">26516201</pub-id>
</element-citation>
</ref>
<ref id="CR256">
<label>256.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Apetoh</surname>
<given-names>L</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Toll-like receptor 4-dependent contribution of the immune system to anticancer chemotherapy and radiotherapy</article-title>
<source>Nat. Med.</source>
<year>2007</year>
<volume>13</volume>
<fpage>1050</fpage>
<lpage>1059</lpage>
<pub-id pub-id-type="doi">10.1038/nm1622</pub-id>
<pub-id pub-id-type="pmid">17704786</pub-id>
</element-citation>
</ref>
<ref id="CR257">
<label>257.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Yang</surname>
<given-names>M</given-names>
</name>
<etal></etal>
</person-group>
<article-title>TFAM is a novel mediator of immunogenic cancer cell death</article-title>
<source>Oncoimmunology</source>
<year>2018</year>
<volume>7</volume>
<fpage>e1431086</fpage>
<pub-id pub-id-type="doi">10.1080/2162402X.2018.1431086</pub-id>
<pub-id pub-id-type="pmid">29872558</pub-id>
</element-citation>
</ref>
<ref id="CR258">
<label>258.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Kang</surname>
<given-names>R</given-names>
</name>
<etal></etal>
</person-group>
<article-title>HMGB1 in health and disease</article-title>
<source>Mol. Aspects. Med.</source>
<year>2014</year>
<volume>40</volume>
<fpage>1</fpage>
<lpage>116</lpage>
<pub-id pub-id-type="doi">10.1016/j.mam.2014.05.001</pub-id>
<pub-id pub-id-type="pmid">25010388</pub-id>
</element-citation>
</ref>
<ref id="CR259">
<label>259.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Kazama</surname>
<given-names>H</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Induction of immunological tolerance by apoptotic cells requires caspase-dependent oxidation of high-mobility group box-1 protein</article-title>
<source>Immunity</source>
<year>2008</year>
<volume>29</volume>
<fpage>21</fpage>
<lpage>32</lpage>
<pub-id pub-id-type="doi">10.1016/j.immuni.2008.05.013</pub-id>
<pub-id pub-id-type="pmid">18631454</pub-id>
</element-citation>
</ref>
<ref id="CR260">
<label>260.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Li</surname>
<given-names>C</given-names>
</name>
<etal></etal>
</person-group>
<article-title>PINK1 and PARK2 suppress pancreatic tumorigenesis through control of mitochondrial iron-mediated immunometabolism</article-title>
<source>Dev. Cell.</source>
<year>2018</year>
<volume>46</volume>
<fpage>441</fpage>
<lpage>455 e448</lpage>
<pub-id pub-id-type="doi">10.1016/j.devcel.2018.07.012</pub-id>
<pub-id pub-id-type="pmid">30100261</pub-id>
</element-citation>
</ref>
<ref id="CR261">
<label>261.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Ito</surname>
<given-names>T</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Proteolytic cleavage of high mobility group Box 1 protein by thrombin-thrombomodulin complexes</article-title>
<source>Arterioscler. Thromb. Vasc. Biol.</source>
<year>2008</year>
<volume>28</volume>
<fpage>1825</fpage>
<lpage>1830</lpage>
<pub-id pub-id-type="doi">10.1161/ATVBAHA.107.150631</pub-id>
<pub-id pub-id-type="pmid">18599803</pub-id>
</element-citation>
</ref>
<ref id="CR262">
<label>262.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Yu</surname>
<given-names>H</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Role of high-mobility group Box 1 protein and poly(ADP-ribose) polymerase 1 degradation in Chlamydia trachomatis-induced cytopathicity</article-title>
<source>Infect. Immun.</source>
<year>2010</year>
<volume>78</volume>
<fpage>3288</fpage>
<lpage>3297</lpage>
<pub-id pub-id-type="doi">10.1128/IAI.01404-09</pub-id>
<pub-id pub-id-type="pmid">20421386</pub-id>
</element-citation>
</ref>
<ref id="CR263">
<label>263.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Yu</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Tang</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Kang</surname>
<given-names>R</given-names>
</name>
</person-group>
<article-title>Oxidative stress-mediated HMGB1 biology</article-title>
<source>Front. Physiol.</source>
<year>2015</year>
<volume>6</volume>
<fpage>93</fpage>
<pub-id pub-id-type="doi">10.3389/fphys.2015.00093</pub-id>
<pub-id pub-id-type="pmid">25904867</pub-id>
</element-citation>
</ref>
<ref id="CR264">
<label>264.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Fridman</surname>
<given-names>JS</given-names>
</name>
<name>
<surname>Lowe</surname>
<given-names>SW</given-names>
</name>
</person-group>
<article-title>Control of apoptosis by p53</article-title>
<source>Oncogene</source>
<year>2003</year>
<volume>22</volume>
<fpage>9030</fpage>
<lpage>9040</lpage>
<pub-id pub-id-type="doi">10.1038/sj.onc.1207116</pub-id>
<pub-id pub-id-type="pmid">14663481</pub-id>
</element-citation>
</ref>
<ref id="CR265">
<label>265.</label>
<mixed-citation publication-type="other">Fujiki, K., Inamura, H., Sugaya, T. & Matsuoka, M. Blockade of ALK4/5 signaling suppresses cadmium- and erastin-induced cell death in renal proximal tubular epithelial cells via distinct signaling mechanisms.
<italic>Cell Death Differ.</italic>
10.1038/s41418-019-0307-8 (2019).</mixed-citation>
</ref>
<ref id="CR266">
<label>266.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Song</surname>
<given-names>X</given-names>
</name>
<etal></etal>
</person-group>
<article-title>FANCD2 protects against bone marrow injury from ferroptosis</article-title>
<source>Biochem. Biophys. Res. Commun.</source>
<year>2016</year>
<volume>480</volume>
<fpage>443</fpage>
<lpage>449</lpage>
<pub-id pub-id-type="doi">10.1016/j.bbrc.2016.10.068</pub-id>
<pub-id pub-id-type="pmid">27773819</pub-id>
</element-citation>
</ref>
<ref id="CR267">
<label>267.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Alvarez</surname>
<given-names>SW</given-names>
</name>
<etal></etal>
</person-group>
<article-title>NFS1 undergoes positive selection in lung tumours and protects cells from ferroptosis</article-title>
<source>Nature</source>
<year>2017</year>
<volume>551</volume>
<fpage>639</fpage>
<lpage>643</lpage>
<pub-id pub-id-type="doi">10.1038/nature24637</pub-id>
<pub-id pub-id-type="pmid">29168506</pub-id>
</element-citation>
</ref>
<ref id="CR268">
<label>268.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Brown</surname>
<given-names>CW</given-names>
</name>
<name>
<surname>Amante</surname>
<given-names>JJ</given-names>
</name>
<name>
<surname>Goel</surname>
<given-names>HL</given-names>
</name>
<name>
<surname>Mercurio</surname>
<given-names>AM</given-names>
</name>
</person-group>
<article-title>The alpha6beta4 integrin promotes resistance to ferroptosis</article-title>
<source>J. Cell. Biol.</source>
<year>2017</year>
<volume>216</volume>
<fpage>4287</fpage>
<lpage>4297</lpage>
<pub-id pub-id-type="doi">10.1083/jcb.201701136</pub-id>
<pub-id pub-id-type="pmid">28972104</pub-id>
</element-citation>
</ref>
<ref id="CR269">
<label>269.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Liu</surname>
<given-names>Tong</given-names>
</name>
<name>
<surname>Jiang</surname>
<given-names>Le</given-names>
</name>
<name>
<surname>Tavana</surname>
<given-names>Omid</given-names>
</name>
<name>
<surname>Gu</surname>
<given-names>Wei</given-names>
</name>
</person-group>
<article-title>The Deubiquitylase OTUB1 Mediates Ferroptosis via Stabilization of SLC7A11</article-title>
<source>Cancer Research</source>
<year>2019</year>
<volume>79</volume>
<issue>8</issue>
<fpage>1913</fpage>
<lpage>1924</lpage>
<pub-id pub-id-type="doi">10.1158/0008-5472.CAN-18-3037</pub-id>
<pub-id pub-id-type="pmid">30709928</pub-id>
</element-citation>
</ref>
<ref id="CR270">
<label>270.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Yoneda</surname>
<given-names>T</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Activation of caspase-12, an endoplastic reticulum (ER) resident caspase, through tumor necrosis factor receptor-associated factor 2-dependent mechanism in response to the ER stress</article-title>
<source>J. Biol. Chem.</source>
<year>2001</year>
<volume>276</volume>
<fpage>13935</fpage>
<lpage>13940</lpage>
<pub-id pub-id-type="doi">10.1074/jbc.M010677200</pub-id>
<pub-id pub-id-type="pmid">11278723</pub-id>
</element-citation>
</ref>
<ref id="CR271">
<label>271.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Kalai</surname>
<given-names>M</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Regulation of the expression and processing of caspase-12</article-title>
<source>J. Cell. Biol.</source>
<year>2003</year>
<volume>162</volume>
<fpage>457</fpage>
<lpage>467</lpage>
<pub-id pub-id-type="doi">10.1083/jcb.200303157</pub-id>
<pub-id pub-id-type="pmid">12885762</pub-id>
</element-citation>
</ref>
<ref id="CR272">
<label>272.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Haberzettl</surname>
<given-names>P</given-names>
</name>
<name>
<surname>Hill</surname>
<given-names>BG</given-names>
</name>
</person-group>
<article-title>Oxidized lipids activate autophagy in a JNK-dependent manner by stimulating the endoplasmic reticulum stress response</article-title>
<source>Redox Biol.</source>
<year>2013</year>
<volume>1</volume>
<fpage>56</fpage>
<lpage>64</lpage>
<pub-id pub-id-type="doi">10.1016/j.redox.2012.10.003</pub-id>
<pub-id pub-id-type="pmid">24024137</pub-id>
</element-citation>
</ref>
<ref id="CR273">
<label>273.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Barany</surname>
<given-names>T</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Oxidative stress-related parthanatos of circulating mononuclear leukocytes in heart failure</article-title>
<source>Oxid. Med. Cell Longev.</source>
<year>2017</year>
<volume>2017</volume>
<fpage>1249614</fpage>
<pub-id pub-id-type="doi">10.1155/2017/1249614</pub-id>
<pub-id pub-id-type="pmid">29250299</pub-id>
</element-citation>
</ref>
<ref id="CR274">
<label>274.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Palladino</surname>
<given-names>END</given-names>
</name>
<name>
<surname>Katunga</surname>
<given-names>LA</given-names>
</name>
<name>
<surname>Kolar</surname>
<given-names>GR</given-names>
</name>
<name>
<surname>Ford</surname>
<given-names>DA</given-names>
</name>
</person-group>
<article-title>2-Chlorofatty acids: lipid mediators of neutrophil extracellular trap formation</article-title>
<source>J. Lipid Res.</source>
<year>2018</year>
<volume>59</volume>
<fpage>1424</fpage>
<lpage>1432</lpage>
<pub-id pub-id-type="doi">10.1194/jlr.M084731</pub-id>
<pub-id pub-id-type="pmid">29739865</pub-id>
</element-citation>
</ref>
<ref id="CR275">
<label>275.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Zhou</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Yazdi</surname>
<given-names>AS</given-names>
</name>
<name>
<surname>Menu</surname>
<given-names>P</given-names>
</name>
<name>
<surname>Tschopp</surname>
<given-names>J</given-names>
</name>
</person-group>
<article-title>A role for mitochondria in NLRP3 inflammasome activation</article-title>
<source>Nature</source>
<year>2011</year>
<volume>469</volume>
<fpage>221</fpage>
<lpage>225</lpage>
<pub-id pub-id-type="doi">10.1038/nature09663</pub-id>
<pub-id pub-id-type="pmid">21124315</pub-id>
</element-citation>
</ref>
<ref id="CR276">
<label>276.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Silke</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Rickard</surname>
<given-names>JA</given-names>
</name>
<name>
<surname>Gerlic</surname>
<given-names>M</given-names>
</name>
</person-group>
<article-title>The diverse role of RIP kinases in necroptosis and inflammation</article-title>
<source>Nat. Immunol.</source>
<year>2015</year>
<volume>16</volume>
<fpage>689</fpage>
<lpage>697</lpage>
<pub-id pub-id-type="doi">10.1038/ni.3206</pub-id>
<pub-id pub-id-type="pmid">26086143</pub-id>
</element-citation>
</ref>
<ref id="CR277">
<label>277.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Polykratis</surname>
<given-names>A</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Cutting edge: RIPK1 Kinase inactive mice are viable and protected from TNF-induced necroptosis in vivo</article-title>
<source>J. Immunol.</source>
<year>2014</year>
<volume>193</volume>
<fpage>1539</fpage>
<lpage>1543</lpage>
<pub-id pub-id-type="doi">10.4049/jimmunol.1400590</pub-id>
<pub-id pub-id-type="pmid">25015821</pub-id>
</element-citation>
</ref>
<ref id="CR278">
<label>278.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Newton</surname>
<given-names>K</given-names>
</name>
<etal></etal>
</person-group>
<article-title>RIPK3 deficiency or catalytically inactive RIPK1 provides greater benefit than MLKL deficiency in mouse models of inflammation and tissue injury</article-title>
<source>Cell Death Differ.</source>
<year>2016</year>
<volume>23</volume>
<fpage>1565</fpage>
<lpage>1576</lpage>
<pub-id pub-id-type="doi">10.1038/cdd.2016.46</pub-id>
<pub-id pub-id-type="pmid">27177019</pub-id>
</element-citation>
</ref>
<ref id="CR279">
<label>279.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Berger</surname>
<given-names>SB</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Cutting Edge: RIP1 kinase activity is dispensable for normal development but is a key regulator of inflammation in SHARPIN-deficient mice</article-title>
<source>J. Immunol.</source>
<year>2014</year>
<volume>192</volume>
<fpage>5476</fpage>
<lpage>5480</lpage>
<pub-id pub-id-type="doi">10.4049/jimmunol.1400499</pub-id>
<pub-id pub-id-type="pmid">24821972</pub-id>
</element-citation>
</ref>
<ref id="CR280">
<label>280.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Kondylis</surname>
<given-names>V</given-names>
</name>
<name>
<surname>Kumari</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Vlantis</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Pasparakis</surname>
<given-names>M</given-names>
</name>
</person-group>
<article-title>The interplay of IKK, NF-kappaB and RIPK1 signaling in the regulation of cell death, tissue homeostasis and inflammation</article-title>
<source>Immunol. Rev.</source>
<year>2017</year>
<volume>277</volume>
<fpage>113</fpage>
<lpage>127</lpage>
<pub-id pub-id-type="doi">10.1111/imr.12550</pub-id>
<pub-id pub-id-type="pmid">28462531</pub-id>
</element-citation>
</ref>
<ref id="CR281">
<label>281.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Dondelinger</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Darding</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Bertrand</surname>
<given-names>MJ</given-names>
</name>
<name>
<surname>Walczak</surname>
<given-names>H</given-names>
</name>
</person-group>
<article-title>Poly-ubiquitination in TNFR1-mediated necroptosis</article-title>
<source>Cell. Mol. Life Sci.</source>
<year>2016</year>
<volume>73</volume>
<fpage>2165</fpage>
<lpage>2176</lpage>
<pub-id pub-id-type="doi">10.1007/s00018-016-2191-4</pub-id>
<pub-id pub-id-type="pmid">27066894</pub-id>
</element-citation>
</ref>
<ref id="CR282">
<label>282.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Dondelinger</surname>
<given-names>Y</given-names>
</name>
<etal></etal>
</person-group>
<article-title>NF-kappaB-independent role of IKKalpha/IKKbeta in preventing RIPK1 kinase-dependent apoptotic and necroptotic cell death during TNF signaling</article-title>
<source>Mol. Cell</source>
<year>2015</year>
<volume>60</volume>
<fpage>63</fpage>
<lpage>76</lpage>
<pub-id pub-id-type="doi">10.1016/j.molcel.2015.07.032</pub-id>
<pub-id pub-id-type="pmid">26344099</pub-id>
</element-citation>
</ref>
<ref id="CR283">
<label>283.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Menon</surname>
<given-names>MB</given-names>
</name>
<etal></etal>
</person-group>
<article-title>p38(MAPK)/MK2-dependent phosphorylation controls cytotoxic RIPK1 signalling in inflammation and infection</article-title>
<source>Nat. Cell Biol.</source>
<year>2017</year>
<volume>19</volume>
<fpage>1248</fpage>
<lpage>1259</lpage>
<pub-id pub-id-type="doi">10.1038/ncb3614</pub-id>
<pub-id pub-id-type="pmid">28920954</pub-id>
</element-citation>
</ref>
<ref id="CR284">
<label>284.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Dondelinger</surname>
<given-names>Y</given-names>
</name>
<etal></etal>
</person-group>
<article-title>MK2 phosphorylation of RIPK1 regulates TNF-mediated cell death</article-title>
<source>Nat. Cell Biol.</source>
<year>2017</year>
<volume>19</volume>
<fpage>1237</fpage>
<lpage>1247</lpage>
<pub-id pub-id-type="doi">10.1038/ncb3608</pub-id>
<pub-id pub-id-type="pmid">28920952</pub-id>
</element-citation>
</ref>
<ref id="CR285">
<label>285.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Jaco</surname>
<given-names>I</given-names>
</name>
<etal></etal>
</person-group>
<article-title>MK2 phosphorylates RIPK1 to prevent TNF-induced cell death</article-title>
<source>Mol. Cell</source>
<year>2017</year>
<volume>66</volume>
<fpage>698</fpage>
<lpage>710 e695</lpage>
<pub-id pub-id-type="doi">10.1016/j.molcel.2017.05.003</pub-id>
<pub-id pub-id-type="pmid">28506461</pub-id>
</element-citation>
</ref>
<ref id="CR286">
<label>286.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Geng</surname>
<given-names>J</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Regulation of RIPK1 activation by TAK1-mediated phosphorylation dictates apoptosis and necroptosis</article-title>
<source>Nat. Commun.</source>
<year>2017</year>
<volume>8</volume>
<fpage>359</fpage>
<pub-id pub-id-type="doi">10.1038/s41467-017-00406-w</pub-id>
<pub-id pub-id-type="pmid">28842570</pub-id>
</element-citation>
</ref>
<ref id="CR287">
<label>287.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Xu</surname>
<given-names>D</given-names>
</name>
<etal></etal>
</person-group>
<article-title>TBK1 suppresses RIPK1-driven apoptosis and inflammation during development and in aging</article-title>
<source>Cell</source>
<year>2018</year>
<volume>174</volume>
<fpage>1477</fpage>
<lpage>1491 e1419</lpage>
<pub-id pub-id-type="doi">10.1016/j.cell.2018.07.041</pub-id>
<pub-id pub-id-type="pmid">30146158</pub-id>
</element-citation>
</ref>
<ref id="CR288">
<label>288.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Wegner</surname>
<given-names>KW</given-names>
</name>
<name>
<surname>Saleh</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Degterev</surname>
<given-names>A</given-names>
</name>
</person-group>
<article-title>Complex pathologic roles of RIPK1 and RIPK3: moving beyond necroptosis</article-title>
<source>Trends Pharmacol. Sci.</source>
<year>2017</year>
<volume>38</volume>
<fpage>202</fpage>
<lpage>225</lpage>
<pub-id pub-id-type="doi">10.1016/j.tips.2016.12.005</pub-id>
<pub-id pub-id-type="pmid">28126382</pub-id>
</element-citation>
</ref>
<ref id="CR289">
<label>289.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Choi</surname>
<given-names>JJ</given-names>
</name>
<name>
<surname>Reich</surname>
<given-names>CF</given-names>
<suffix>3rd</suffix>
</name>
<name>
<surname>Pisetsky</surname>
<given-names>DS</given-names>
</name>
</person-group>
<article-title>Release of DNA from dead and dying lymphocyte and monocyte cell lines in vitro</article-title>
<source>Scand. J. Immunol.</source>
<year>2004</year>
<volume>60</volume>
<fpage>159</fpage>
<lpage>166</lpage>
<pub-id pub-id-type="doi">10.1111/j.0300-9475.2004.01470.x</pub-id>
<pub-id pub-id-type="pmid">15238085</pub-id>
</element-citation>
</ref>
<ref id="CR290">
<label>290.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Chen</surname>
<given-names>Q</given-names>
</name>
<name>
<surname>Sun</surname>
<given-names>L</given-names>
</name>
<name>
<surname>Chen</surname>
<given-names>ZJ</given-names>
</name>
</person-group>
<article-title>Regulation and function of the cGAS-STING pathway of cytosolic DNA sensing</article-title>
<source>Nat. Immunol.</source>
<year>2016</year>
<volume>17</volume>
<fpage>1142</fpage>
<lpage>1149</lpage>
<pub-id pub-id-type="doi">10.1038/ni.3558</pub-id>
<pub-id pub-id-type="pmid">27648547</pub-id>
</element-citation>
</ref>
<ref id="CR291">
<label>291.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Holm</surname>
<given-names>CK</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Influenza A virus targets a cGAS-independent STING pathway that controls enveloped RNA viruses</article-title>
<source>Nat. Commun.</source>
<year>2016</year>
<volume>7</volume>
<fpage>10680</fpage>
<pub-id pub-id-type="doi">10.1038/ncomms10680</pub-id>
<pub-id pub-id-type="pmid">26893169</pub-id>
</element-citation>
</ref>
<ref id="CR292">
<label>292.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Costa Franco</surname>
<given-names>MM</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Brucella abortus triggers a cGAS-independent STING pathway to induce host protection that involves guanylate-binding proteins and inflammasome activation</article-title>
<source>J. Immunol.</source>
<year>2018</year>
<volume>200</volume>
<fpage>607</fpage>
<lpage>622</lpage>
<pub-id pub-id-type="doi">10.4049/jimmunol.1700725</pub-id>
<pub-id pub-id-type="pmid">29203515</pub-id>
</element-citation>
</ref>
<ref id="CR293">
<label>293.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>DeFilippis</surname>
<given-names>VR</given-names>
</name>
<name>
<surname>Alvarado</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Sali</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Rothenburg</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Fruh</surname>
<given-names>K</given-names>
</name>
</person-group>
<article-title>Human cytomegalovirus induces the interferon response via the DNA sensor ZBP1</article-title>
<source>J. Virol.</source>
<year>2010</year>
<volume>84</volume>
<fpage>585</fpage>
<lpage>598</lpage>
<pub-id pub-id-type="doi">10.1128/JVI.01748-09</pub-id>
<pub-id pub-id-type="pmid">19846511</pub-id>
</element-citation>
</ref>
<ref id="CR294">
<label>294.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Zhang</surname>
<given-names>Z</given-names>
</name>
<etal></etal>
</person-group>
<article-title>The helicase DDX41 senses intracellular DNA mediated by the adaptor STING in dendritic cells</article-title>
<source>Nat. Immunol.</source>
<year>2011</year>
<volume>12</volume>
<fpage>959</fpage>
<lpage>965</lpage>
<pub-id pub-id-type="doi">10.1038/ni.2091</pub-id>
<pub-id pub-id-type="pmid">21892174</pub-id>
</element-citation>
</ref>
<ref id="CR295">
<label>295.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Kondo</surname>
<given-names>T</given-names>
</name>
<etal></etal>
</person-group>
<article-title>DNA damage sensor MRE11 recognizes cytosolic double-stranded DNA and induces type I interferon by regulating STING trafficking</article-title>
<source>Proc. Natl Acad. Sci. USA</source>
<year>2013</year>
<volume>110</volume>
<fpage>2969</fpage>
<lpage>2974</lpage>
<pub-id pub-id-type="doi">10.1073/pnas.1222694110</pub-id>
<pub-id pub-id-type="pmid">23388631</pub-id>
</element-citation>
</ref>
<ref id="CR296">
<label>296.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Unterholzner</surname>
<given-names>L</given-names>
</name>
<etal></etal>
</person-group>
<article-title>IFI16 is an innate immune sensor for intracellular DNA</article-title>
<source>Nat. Immunol.</source>
<year>2010</year>
<volume>11</volume>
<fpage>997</fpage>
<lpage>1004</lpage>
<pub-id pub-id-type="doi">10.1038/ni.1932</pub-id>
<pub-id pub-id-type="pmid">20890285</pub-id>
</element-citation>
</ref>
<ref id="CR297">
<label>297.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Zeng</surname>
<given-names>Ling</given-names>
</name>
<name>
<surname>Kang</surname>
<given-names>Rui</given-names>
</name>
<name>
<surname>Zhu</surname>
<given-names>Shan</given-names>
</name>
<name>
<surname>Wang</surname>
<given-names>Xiao</given-names>
</name>
<name>
<surname>Cao</surname>
<given-names>Lizhi</given-names>
</name>
<name>
<surname>Wang</surname>
<given-names>Haichao</given-names>
</name>
<name>
<surname>Billiar</surname>
<given-names>Timothy R.</given-names>
</name>
<name>
<surname>Jiang</surname>
<given-names>Jianxin</given-names>
</name>
<name>
<surname>Tang</surname>
<given-names>Daolin</given-names>
</name>
</person-group>
<article-title>ALK is a therapeutic target for lethal sepsis</article-title>
<source>Science Translational Medicine</source>
<year>2017</year>
<volume>9</volume>
<issue>412</issue>
<fpage>eaan5689</fpage>
<pub-id pub-id-type="doi">10.1126/scitranslmed.aan5689</pub-id>
<pub-id pub-id-type="pmid">29046432</pub-id>
</element-citation>
</ref>
<ref id="CR298">
<label>298.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Barber</surname>
<given-names>GN</given-names>
</name>
</person-group>
<article-title>STING: infection, inflammation and cancer</article-title>
<source>Nat. Rev. Immunol.</source>
<year>2015</year>
<volume>15</volume>
<fpage>760</fpage>
<lpage>770</lpage>
<pub-id pub-id-type="doi">10.1038/nri3921</pub-id>
<pub-id pub-id-type="pmid">26603901</pub-id>
</element-citation>
</ref>
<ref id="CR299">
<label>299.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Ahn</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Son</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Oliveira</surname>
<given-names>SC</given-names>
</name>
<name>
<surname>Barber</surname>
<given-names>GN</given-names>
</name>
</person-group>
<article-title>STING-dependent signaling underlies IL-10 controlled inflammatory colitis</article-title>
<source>Cell Rep</source>
<year>2017</year>
<volume>21</volume>
<fpage>3873</fpage>
<lpage>3884</lpage>
<pub-id pub-id-type="doi">10.1016/j.celrep.2017.11.101</pub-id>
<pub-id pub-id-type="pmid">29281834</pub-id>
</element-citation>
</ref>
<ref id="CR300">
<label>300.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Ahn</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Gutman</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Saijo</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Barber</surname>
<given-names>GN</given-names>
</name>
</person-group>
<article-title>STING manifests self DNA-dependent inflammatory disease</article-title>
<source>Proc. Natl Acad. Sci. USA</source>
<year>2012</year>
<volume>109</volume>
<fpage>19386</fpage>
<lpage>19391</lpage>
<pub-id pub-id-type="doi">10.1073/pnas.1215006109</pub-id>
<pub-id pub-id-type="pmid">23132945</pub-id>
</element-citation>
</ref>
<ref id="CR301">
<label>301.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Bakhoum</surname>
<given-names>SF</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Chromosomal instability drives metastasis through a cytosolic DNA response</article-title>
<source>Nature</source>
<year>2018</year>
<volume>553</volume>
<fpage>467</fpage>
<lpage>472</lpage>
<pub-id pub-id-type="doi">10.1038/nature25432</pub-id>
<pub-id pub-id-type="pmid">29342134</pub-id>
</element-citation>
</ref>
<ref id="CR302">
<label>302.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Sliter</surname>
<given-names>DA</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Parkin and PINK1 mitigate STING-induced inflammation</article-title>
<source>Nature</source>
<year>2018</year>
<volume>561</volume>
<fpage>258</fpage>
<lpage>262</lpage>
<pub-id pub-id-type="doi">10.1038/s41586-018-0448-9</pub-id>
<pub-id pub-id-type="pmid">30135585</pub-id>
</element-citation>
</ref>
<ref id="CR303">
<label>303.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Larkin</surname>
<given-names>B</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Cutting edge: activation of STING in T cells induces type I IFN responses and cell death</article-title>
<source>J. Immunol.</source>
<year>2017</year>
<volume>199</volume>
<fpage>397</fpage>
<lpage>402</lpage>
<pub-id pub-id-type="doi">10.4049/jimmunol.1601999</pub-id>
<pub-id pub-id-type="pmid">28615418</pub-id>
</element-citation>
</ref>
<ref id="CR304">
<label>304.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Gulen</surname>
<given-names>MF</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Signalling strength determines proapoptotic functions of STING</article-title>
<source>Nat. Commun.</source>
<year>2017</year>
<volume>8</volume>
<fpage>427</fpage>
<pub-id pub-id-type="doi">10.1038/s41467-017-00573-w</pub-id>
<pub-id pub-id-type="pmid">28874664</pub-id>
</element-citation>
</ref>
<ref id="CR305">
<label>305.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Gaidt</surname>
<given-names>MM</given-names>
</name>
<etal></etal>
</person-group>
<article-title>TheDNA inflammasome in human myeloid cells is initiated by a STING-cell death program upstream of NLRP3</article-title>
<source>Cell</source>
<year>2017</year>
<volume>171</volume>
<fpage>1110</fpage>
<lpage>1124 e1118</lpage>
<pub-id pub-id-type="doi">10.1016/j.cell.2017.09.039</pub-id>
<pub-id pub-id-type="pmid">29033128</pub-id>
</element-citation>
</ref>
<ref id="CR306">
<label>306.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Cunha</surname>
<given-names>Larissa D.</given-names>
</name>
<name>
<surname>Yang</surname>
<given-names>Mao</given-names>
</name>
<name>
<surname>Carter</surname>
<given-names>Robert</given-names>
</name>
<name>
<surname>Guy</surname>
<given-names>Clifford</given-names>
</name>
<name>
<surname>Harris</surname>
<given-names>Lacie</given-names>
</name>
<name>
<surname>Crawford</surname>
<given-names>Jeremy C.</given-names>
</name>
<name>
<surname>Quarato</surname>
<given-names>Giovanni</given-names>
</name>
<name>
<surname>Boada-Romero</surname>
<given-names>Emilio</given-names>
</name>
<name>
<surname>Kalkavan</surname>
<given-names>Halime</given-names>
</name>
<name>
<surname>Johnson</surname>
<given-names>Michael D.L.</given-names>
</name>
<name>
<surname>Natarajan</surname>
<given-names>Sivaraman</given-names>
</name>
<name>
<surname>Turnis</surname>
<given-names>Meghan E.</given-names>
</name>
<name>
<surname>Finkelstein</surname>
<given-names>David</given-names>
</name>
<name>
<surname>Opferman</surname>
<given-names>Joseph T.</given-names>
</name>
<name>
<surname>Gawad</surname>
<given-names>Charles</given-names>
</name>
<name>
<surname>Green</surname>
<given-names>Douglas R.</given-names>
</name>
</person-group>
<article-title>LC3-Associated Phagocytosis in Myeloid Cells Promotes Tumor Immune Tolerance</article-title>
<source>Cell</source>
<year>2018</year>
<volume>175</volume>
<issue>2</issue>
<fpage>429-441.e16</fpage>
<pub-id pub-id-type="doi">10.1016/j.cell.2018.08.061</pub-id>
<pub-id pub-id-type="pmid">30245008</pub-id>
</element-citation>
</ref>
<ref id="CR307">
<label>307.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Man</surname>
<given-names>SM</given-names>
</name>
<name>
<surname>Karki</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Kanneganti</surname>
<given-names>TD</given-names>
</name>
</person-group>
<article-title>AIM2 inflammasome in infection, cancer, and autoimmunity: role in DNA sensing, inflammation, and innate immunity</article-title>
<source>Eur. J. Immunol.</source>
<year>2016</year>
<volume>46</volume>
<fpage>269</fpage>
<lpage>280</lpage>
<pub-id pub-id-type="doi">10.1002/eji.201545839</pub-id>
<pub-id pub-id-type="pmid">26626159</pub-id>
</element-citation>
</ref>
<ref id="CR308">
<label>308.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Wilson</surname>
<given-names>JE</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Inflammasome-independent role of AIM2 in suppressing colon tumorigenesis via DNA-PK and Akt</article-title>
<source>Nat. Med.</source>
<year>2015</year>
<volume>21</volume>
<fpage>906</fpage>
<lpage>913</lpage>
<pub-id pub-id-type="doi">10.1038/nm.3908</pub-id>
<pub-id pub-id-type="pmid">26107252</pub-id>
</element-citation>
</ref>
<ref id="CR309">
<label>309.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Kuriakose</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Kanneganti</surname>
<given-names>TD</given-names>
</name>
</person-group>
<article-title>ZBP1: innate sensor regulating cell death and inflammation</article-title>
<source>Trends Immunol.</source>
<year>2018</year>
<volume>39</volume>
<fpage>123</fpage>
<lpage>134</lpage>
<pub-id pub-id-type="doi">10.1016/j.it.2017.11.002</pub-id>
<pub-id pub-id-type="pmid">29236673</pub-id>
</element-citation>
</ref>
</ref-list>
</back>
</pmc>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/ChloroquineV1/Data/Pmc/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000224 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Pmc/Corpus/biblio.hfd -nk 000224 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    ChloroquineV1
   |flux=    Pmc
   |étape=   Corpus
   |type=    RBID
   |clé=     PMC:6796845
   |texte=   The molecular machinery of regulated cell death
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Pmc/Corpus/RBID.i   -Sk "pubmed:30948788" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Pmc/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a ChloroquineV1 

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Wed Mar 25 22:43:59 2020. Site generation: Sun Jan 31 12:44:45 2021