Serveur d'exploration Chloroquine

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

“Iron free” zinc oxide nanoparticles with ion-leaking properties disrupt intracellular ROS and iron homeostasis to induce ferroptosis

Identifieur interne : 000086 ( Pmc/Corpus ); précédent : 000085; suivant : 000087

“Iron free” zinc oxide nanoparticles with ion-leaking properties disrupt intracellular ROS and iron homeostasis to induce ferroptosis

Auteurs : Changping Zhang ; Zixuan Liu ; Yuhao Zhang ; Liang Ma ; Erqun Song ; Yang Song

Source :

RBID : PMC:7070056

Abstract

Exposure to nanomaterials (NMs) is an emerging threat to human health, and the understanding of their intracellular behavior and related toxic effects is urgently needed. Ferroptosis is a newly discovered, iron-mediated cell death that is distinctive from apoptosis or other cell-death pathways. No evidence currently exists for the effect of “iron free” engineered NMs on ferroptosis. We showed by several approaches that (1) zinc oxide nanoparticles (ZnO NPs)-induced cell death involves ferroptosis; (2) ZnO NPs-triggered ferroptosis is associated with elevation of reactive oxygen species (ROS) and lipid peroxidation, along with depletion of glutathione (GSH) and downregulation of glutathione peroxidase 4 (GPx4); (3) ZnO NPs disrupt intracellular iron homeostasis by orchestrating iron uptake, storage and export; (4) p53 largely participates in ZnO NPs-induced ferroptosis; and (5) ZnO particle remnants and dissolved zinc ion both contribute to ferroptosis. In conclusion, our data provide a new mechanistic rationale for ferroptosis as a novel cell-death phenotype induced by engineered NMs.


Url:
DOI: 10.1038/s41419-020-2384-5
PubMed: 32170066
PubMed Central: 7070056

Links to Exploration step

PMC:7070056

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">“Iron free” zinc oxide nanoparticles with ion-leaking properties disrupt intracellular ROS and iron homeostasis to induce ferroptosis</title>
<author>
<name sortKey="Zhang, Changping" sort="Zhang, Changping" uniqKey="Zhang C" first="Changping" last="Zhang">Changping Zhang</name>
<affiliation>
<nlm:aff id="Aff1">
<institution-wrap>
<institution-id institution-id-type="GRID">grid.263906.8</institution-id>
<institution>Key Laboratory of Luminescence and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, College of Food Science,</institution>
<institution>Southwest University,</institution>
</institution-wrap>
Chongqing, 400715 People’s Republic of China</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Liu, Zixuan" sort="Liu, Zixuan" uniqKey="Liu Z" first="Zixuan" last="Liu">Zixuan Liu</name>
<affiliation>
<nlm:aff id="Aff2">
<institution-wrap>
<institution-id institution-id-type="GRID">grid.263906.8</institution-id>
<institution>Key Laboratory of Luminescence and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, College of Pharmaceutical Sciences,</institution>
<institution>Southwest University,</institution>
</institution-wrap>
Chongqing, 400715 People’s Republic of China</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Zhang, Yuhao" sort="Zhang, Yuhao" uniqKey="Zhang Y" first="Yuhao" last="Zhang">Yuhao Zhang</name>
<affiliation>
<nlm:aff id="Aff1">
<institution-wrap>
<institution-id institution-id-type="GRID">grid.263906.8</institution-id>
<institution>Key Laboratory of Luminescence and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, College of Food Science,</institution>
<institution>Southwest University,</institution>
</institution-wrap>
Chongqing, 400715 People’s Republic of China</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Ma, Liang" sort="Ma, Liang" uniqKey="Ma L" first="Liang" last="Ma">Liang Ma</name>
<affiliation>
<nlm:aff id="Aff1">
<institution-wrap>
<institution-id institution-id-type="GRID">grid.263906.8</institution-id>
<institution>Key Laboratory of Luminescence and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, College of Food Science,</institution>
<institution>Southwest University,</institution>
</institution-wrap>
Chongqing, 400715 People’s Republic of China</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Song, Erqun" sort="Song, Erqun" uniqKey="Song E" first="Erqun" last="Song">Erqun Song</name>
<affiliation>
<nlm:aff id="Aff2">
<institution-wrap>
<institution-id institution-id-type="GRID">grid.263906.8</institution-id>
<institution>Key Laboratory of Luminescence and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, College of Pharmaceutical Sciences,</institution>
<institution>Southwest University,</institution>
</institution-wrap>
Chongqing, 400715 People’s Republic of China</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Song, Yang" sort="Song, Yang" uniqKey="Song Y" first="Yang" last="Song">Yang Song</name>
<affiliation>
<nlm:aff id="Aff2">
<institution-wrap>
<institution-id institution-id-type="GRID">grid.263906.8</institution-id>
<institution>Key Laboratory of Luminescence and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, College of Pharmaceutical Sciences,</institution>
<institution>Southwest University,</institution>
</institution-wrap>
Chongqing, 400715 People’s Republic of China</nlm:aff>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PMC</idno>
<idno type="pmid">32170066</idno>
<idno type="pmc">7070056</idno>
<idno type="url">http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7070056</idno>
<idno type="RBID">PMC:7070056</idno>
<idno type="doi">10.1038/s41419-020-2384-5</idno>
<date when="2020">2020</date>
<idno type="wicri:Area/Pmc/Corpus">000086</idno>
<idno type="wicri:explorRef" wicri:stream="Pmc" wicri:step="Corpus" wicri:corpus="PMC">000086</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a" type="main">“Iron free” zinc oxide nanoparticles with ion-leaking properties disrupt intracellular ROS and iron homeostasis to induce ferroptosis</title>
<author>
<name sortKey="Zhang, Changping" sort="Zhang, Changping" uniqKey="Zhang C" first="Changping" last="Zhang">Changping Zhang</name>
<affiliation>
<nlm:aff id="Aff1">
<institution-wrap>
<institution-id institution-id-type="GRID">grid.263906.8</institution-id>
<institution>Key Laboratory of Luminescence and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, College of Food Science,</institution>
<institution>Southwest University,</institution>
</institution-wrap>
Chongqing, 400715 People’s Republic of China</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Liu, Zixuan" sort="Liu, Zixuan" uniqKey="Liu Z" first="Zixuan" last="Liu">Zixuan Liu</name>
<affiliation>
<nlm:aff id="Aff2">
<institution-wrap>
<institution-id institution-id-type="GRID">grid.263906.8</institution-id>
<institution>Key Laboratory of Luminescence and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, College of Pharmaceutical Sciences,</institution>
<institution>Southwest University,</institution>
</institution-wrap>
Chongqing, 400715 People’s Republic of China</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Zhang, Yuhao" sort="Zhang, Yuhao" uniqKey="Zhang Y" first="Yuhao" last="Zhang">Yuhao Zhang</name>
<affiliation>
<nlm:aff id="Aff1">
<institution-wrap>
<institution-id institution-id-type="GRID">grid.263906.8</institution-id>
<institution>Key Laboratory of Luminescence and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, College of Food Science,</institution>
<institution>Southwest University,</institution>
</institution-wrap>
Chongqing, 400715 People’s Republic of China</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Ma, Liang" sort="Ma, Liang" uniqKey="Ma L" first="Liang" last="Ma">Liang Ma</name>
<affiliation>
<nlm:aff id="Aff1">
<institution-wrap>
<institution-id institution-id-type="GRID">grid.263906.8</institution-id>
<institution>Key Laboratory of Luminescence and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, College of Food Science,</institution>
<institution>Southwest University,</institution>
</institution-wrap>
Chongqing, 400715 People’s Republic of China</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Song, Erqun" sort="Song, Erqun" uniqKey="Song E" first="Erqun" last="Song">Erqun Song</name>
<affiliation>
<nlm:aff id="Aff2">
<institution-wrap>
<institution-id institution-id-type="GRID">grid.263906.8</institution-id>
<institution>Key Laboratory of Luminescence and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, College of Pharmaceutical Sciences,</institution>
<institution>Southwest University,</institution>
</institution-wrap>
Chongqing, 400715 People’s Republic of China</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Song, Yang" sort="Song, Yang" uniqKey="Song Y" first="Yang" last="Song">Yang Song</name>
<affiliation>
<nlm:aff id="Aff2">
<institution-wrap>
<institution-id institution-id-type="GRID">grid.263906.8</institution-id>
<institution>Key Laboratory of Luminescence and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, College of Pharmaceutical Sciences,</institution>
<institution>Southwest University,</institution>
</institution-wrap>
Chongqing, 400715 People’s Republic of China</nlm:aff>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Cell Death & Disease</title>
<idno type="eISSN">2041-4889</idno>
<imprint>
<date when="2020">2020</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<p id="Par1">Exposure to nanomaterials (NMs) is an emerging threat to human health, and the understanding of their intracellular behavior and related toxic effects is urgently needed. Ferroptosis is a newly discovered, iron-mediated cell death that is distinctive from apoptosis or other cell-death pathways. No evidence currently exists for the effect of “iron free” engineered NMs on ferroptosis. We showed by several approaches that (1) zinc oxide nanoparticles (ZnO NPs)-induced cell death involves ferroptosis; (2) ZnO NPs-triggered ferroptosis is associated with elevation of reactive oxygen species (ROS) and lipid peroxidation, along with depletion of glutathione (GSH) and downregulation of glutathione peroxidase 4 (GPx4); (3) ZnO NPs disrupt intracellular iron homeostasis by orchestrating iron uptake, storage and export; (4) p53 largely participates in ZnO NPs-induced ferroptosis; and (5) ZnO particle remnants and dissolved zinc ion both contribute to ferroptosis. In conclusion, our data provide a new mechanistic rationale for ferroptosis as a novel cell-death phenotype induced by engineered NMs.</p>
</div>
</front>
<back>
<div1 type="bibliography">
<listBibl>
<biblStruct>
<analytic>
<author>
<name sortKey="Zhao, F" uniqKey="Zhao F">F Zhao</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Nel, A" uniqKey="Nel A">A Nel</name>
</author>
<author>
<name sortKey="Xia, T" uniqKey="Xia T">T Xia</name>
</author>
<author>
<name sortKey="Madler, L" uniqKey="Madler L">L Madler</name>
</author>
<author>
<name sortKey="Li, N" uniqKey="Li N">N Li</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Galluzzi, L" uniqKey="Galluzzi L">L Galluzzi</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Dixon, Sj" uniqKey="Dixon S">SJ Dixon</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Dixon, Sj" uniqKey="Dixon S">SJ Dixon</name>
</author>
<author>
<name sortKey="Stockwell, Br" uniqKey="Stockwell B">BR Stockwell</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Xie, Y" uniqKey="Xie Y">Y Xie</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Shen, Z" uniqKey="Shen Z">Z Shen</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kim, Se" uniqKey="Kim S">SE Kim</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ou, W" uniqKey="Ou W">W Ou</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Szwed, M" uniqKey="Szwed M">M Szwed</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Liu, J" uniqKey="Liu J">J Liu</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Gliga, Ar" uniqKey="Gliga A">AR Gliga</name>
</author>
<author>
<name sortKey="Skoglund, S" uniqKey="Skoglund S">S Skoglund</name>
</author>
<author>
<name sortKey="Wallinder, Io" uniqKey="Wallinder I">IO Wallinder</name>
</author>
<author>
<name sortKey="Fadeel, B" uniqKey="Fadeel B">B Fadeel</name>
</author>
<author>
<name sortKey="Karlsson, Hl" uniqKey="Karlsson H">HL Karlsson</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Samet, Jm" uniqKey="Samet J">JM Samet</name>
</author>
<author>
<name sortKey="Dominici, F" uniqKey="Dominici F">F Dominici</name>
</author>
<author>
<name sortKey="Curriero, Fc" uniqKey="Curriero F">FC Curriero</name>
</author>
<author>
<name sortKey="Coursac, I" uniqKey="Coursac I">I Coursac</name>
</author>
<author>
<name sortKey="Zeger, Sl" uniqKey="Zeger S">SL Zeger</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Gojova, A" uniqKey="Gojova A">A Gojova</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Akhtar, Mj" uniqKey="Akhtar M">MJ Akhtar</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Johnson, Bm" uniqKey="Johnson B">BM Johnson</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Garciahevia, L" uniqKey="Garciahevia L">L Garcíahevia</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Yang, Ws" uniqKey="Yang W">WS Yang</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Doll, S" uniqKey="Doll S">S Doll</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kagan, Ve" uniqKey="Kagan V">VE Kagan</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Donovan, A" uniqKey="Donovan A">A Donovan</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Drakesmith, H" uniqKey="Drakesmith H">H Drakesmith</name>
</author>
<author>
<name sortKey="Nemeth, E" uniqKey="Nemeth E">E Nemeth</name>
</author>
<author>
<name sortKey="Ganz, T" uniqKey="Ganz T">T Ganz</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Marro, S" uniqKey="Marro S">S Marro</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Nemeth, E" uniqKey="Nemeth E">E Nemeth</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Fleming, Re" uniqKey="Fleming R">RE Fleming</name>
</author>
<author>
<name sortKey="Ponka, P" uniqKey="Ponka P">P Ponka</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Eaton, Jw" uniqKey="Eaton J">JW Eaton</name>
</author>
<author>
<name sortKey="Qian, M" uniqKey="Qian M">M Qian</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Yagoda, N" uniqKey="Yagoda N">N Yagoda</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Dolma, S" uniqKey="Dolma S">S Dolma</name>
</author>
<author>
<name sortKey="Lessnick, Sl" uniqKey="Lessnick S">SL Lessnick</name>
</author>
<author>
<name sortKey="Hahn, Wc" uniqKey="Hahn W">WC Hahn</name>
</author>
<author>
<name sortKey="Stockwell, Br" uniqKey="Stockwell B">BR Stockwell</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Jiang, L" uniqKey="Jiang L">L Jiang</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Wang, Sj" uniqKey="Wang S">SJ Wang</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kumar, A" uniqKey="Kumar A">A Kumar</name>
</author>
<author>
<name sortKey="Najafzadeh, M" uniqKey="Najafzadeh M">M Najafzadeh</name>
</author>
<author>
<name sortKey="Jacob, Bk" uniqKey="Jacob B">BK Jacob</name>
</author>
<author>
<name sortKey="Dhawan, A" uniqKey="Dhawan A">A Dhawan</name>
</author>
<author>
<name sortKey="Anderson, D" uniqKey="Anderson D">D Anderson</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ng, Kw" uniqKey="Ng K">KW Ng</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Roy, R" uniqKey="Roy R">R Roy</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Setyawati, Mi" uniqKey="Setyawati M">MI Setyawati</name>
</author>
<author>
<name sortKey="Tay, Cy" uniqKey="Tay C">CY Tay</name>
</author>
<author>
<name sortKey="Leong, Dt" uniqKey="Leong D">DT Leong</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Stockwell, Br" uniqKey="Stockwell B">BR Stockwell</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ou, Y" uniqKey="Ou Y">Y Ou</name>
</author>
<author>
<name sortKey="Wang, Sj" uniqKey="Wang S">SJ Wang</name>
</author>
<author>
<name sortKey="Li, D" uniqKey="Li D">D Li</name>
</author>
<author>
<name sortKey="Chu, B" uniqKey="Chu B">B Chu</name>
</author>
<author>
<name sortKey="Gu, W" uniqKey="Gu W">W Gu</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Murphy, Me" uniqKey="Murphy M">ME Murphy</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Zhu, X" uniqKey="Zhu X">X Zhu</name>
</author>
<author>
<name sortKey="Wang, J" uniqKey="Wang J">J Wang</name>
</author>
<author>
<name sortKey="Zhang, X" uniqKey="Zhang X">X Zhang</name>
</author>
<author>
<name sortKey="Chang, Y" uniqKey="Chang Y">Y Chang</name>
</author>
<author>
<name sortKey="Chen, Y" uniqKey="Chen Y">Y Chen</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Moos, Pj" uniqKey="Moos P">PJ Moos</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Meeusen, Jw" uniqKey="Meeusen J">JW Meeusen</name>
</author>
<author>
<name sortKey="Tomasiewicz, H" uniqKey="Tomasiewicz H">H Tomasiewicz</name>
</author>
<author>
<name sortKey="Nowakowski, A" uniqKey="Nowakowski A">A Nowakowski</name>
</author>
<author>
<name sortKey="Petering, Dh" uniqKey="Petering D">DH Petering</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kao, Yy" uniqKey="Kao Y">YY Kao</name>
</author>
<author>
<name sortKey="Chen, Yc" uniqKey="Chen Y">YC Chen</name>
</author>
<author>
<name sortKey="Cheng, Tj" uniqKey="Cheng T">TJ Cheng</name>
</author>
<author>
<name sortKey="Chiung, Ym" uniqKey="Chiung Y">YM Chiung</name>
</author>
<author>
<name sortKey="Liu, Ps" uniqKey="Liu P">PS Liu</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Pasquet, J" uniqKey="Pasquet J">J Pasquet</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Xia, T" uniqKey="Xia T">T Xia</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Yang, Ws" uniqKey="Yang W">WS Yang</name>
</author>
<author>
<name sortKey="Stockwell, Br" uniqKey="Stockwell B">BR Stockwell</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Shen, Z" uniqKey="Shen Z">Z Shen</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Zhou, Z" uniqKey="Zhou Z">Z Zhou</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Sadli, N" uniqKey="Sadli N">N Sadli</name>
</author>
<author>
<name sortKey="Barrow, Cj" uniqKey="Barrow C">CJ Barrow</name>
</author>
<author>
<name sortKey="Mcgee, S" uniqKey="Mcgee S">S McGee</name>
</author>
<author>
<name sortKey="Suphioglu, C" uniqKey="Suphioglu C">C Suphioglu</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Gazaryan, Ig" uniqKey="Gazaryan I">IG Gazaryan</name>
</author>
<author>
<name sortKey="Krasinskaya, Ip" uniqKey="Krasinskaya I">IP Krasinskaya</name>
</author>
<author>
<name sortKey="Kristal, Bs" uniqKey="Kristal B">BS Kristal</name>
</author>
<author>
<name sortKey="Brown, Am" uniqKey="Brown A">AM Brown</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Slepchenko, Kg" uniqKey="Slepchenko K">KG Slepchenko</name>
</author>
<author>
<name sortKey="Lu, Q" uniqKey="Lu Q">Q Lu</name>
</author>
<author>
<name sortKey="Li, Yv" uniqKey="Li Y">YV Li</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Finney, La" uniqKey="Finney L">LA Finney</name>
</author>
<author>
<name sortKey="O Alloran, Tv" uniqKey="O Alloran T">TV O’Halloran</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Huang, Cc" uniqKey="Huang C">CC Huang</name>
</author>
<author>
<name sortKey="Aronstam, Rs" uniqKey="Aronstam R">RS Aronstam</name>
</author>
<author>
<name sortKey="Chen, Dr" uniqKey="Chen D">DR Chen</name>
</author>
<author>
<name sortKey="Huang, Yw" uniqKey="Huang Y">YW Huang</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Guo, D" uniqKey="Guo D">D Guo</name>
</author>
<author>
<name sortKey="Du, Y" uniqKey="Du Y">Y Du</name>
</author>
<author>
<name sortKey="Wu, Q" uniqKey="Wu Q">Q Wu</name>
</author>
<author>
<name sortKey="Jiang, W" uniqKey="Jiang W">W Jiang</name>
</author>
<author>
<name sortKey="Bi, H" uniqKey="Bi H">H Bi</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Vander Jagt, Ta" uniqKey="Vander Jagt T">TA Vander Jagt</name>
</author>
<author>
<name sortKey="Connor, Ja" uniqKey="Connor J">JA Connor</name>
</author>
<author>
<name sortKey="Weiss, Jh" uniqKey="Weiss J">JH Weiss</name>
</author>
<author>
<name sortKey="Shuttleworth, Cw" uniqKey="Shuttleworth C">CW Shuttleworth</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kang, R" uniqKey="Kang R">R Kang</name>
</author>
<author>
<name sortKey="Kroemer, G" uniqKey="Kroemer G">G Kroemer</name>
</author>
<author>
<name sortKey="Tang, D" uniqKey="Tang D">D Tang</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ostrakhovitch, Ea" uniqKey="Ostrakhovitch E">EA Ostrakhovitch</name>
</author>
<author>
<name sortKey="Cherian, Mg" uniqKey="Cherian M">MG Cherian</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Pagani, Ma" uniqKey="Pagani M">MA Pagani</name>
</author>
<author>
<name sortKey="Casamayor, A" uniqKey="Casamayor A">A Casamayor</name>
</author>
<author>
<name sortKey="Serrano, R" uniqKey="Serrano R">R Serrano</name>
</author>
<author>
<name sortKey="Atrian, S" uniqKey="Atrian S">S Atrian</name>
</author>
<author>
<name sortKey="Arino, J" uniqKey="Arino J">J Arino</name>
</author>
</analytic>
</biblStruct>
</listBibl>
</div1>
</back>
</TEI>
<pmc article-type="research-article">
<pmc-dir>properties open_access</pmc-dir>
<front>
<journal-meta>
<journal-id journal-id-type="nlm-ta">Cell Death Dis</journal-id>
<journal-id journal-id-type="iso-abbrev">Cell Death Dis</journal-id>
<journal-title-group>
<journal-title>Cell Death & Disease</journal-title>
</journal-title-group>
<issn pub-type="epub">2041-4889</issn>
<publisher>
<publisher-name>Nature Publishing Group UK</publisher-name>
<publisher-loc>London</publisher-loc>
</publisher>
</journal-meta>
<article-meta>
<article-id pub-id-type="pmid">32170066</article-id>
<article-id pub-id-type="pmc">7070056</article-id>
<article-id pub-id-type="publisher-id">2384</article-id>
<article-id pub-id-type="doi">10.1038/s41419-020-2384-5</article-id>
<article-categories>
<subj-group subj-group-type="heading">
<subject>Article</subject>
</subj-group>
</article-categories>
<title-group>
<article-title>“Iron free” zinc oxide nanoparticles with ion-leaking properties disrupt intracellular ROS and iron homeostasis to induce ferroptosis</article-title>
</title-group>
<contrib-group>
<contrib contrib-type="author">
<name>
<surname>Zhang</surname>
<given-names>Changping</given-names>
</name>
<xref ref-type="aff" rid="Aff1">1</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Liu</surname>
<given-names>Zixuan</given-names>
</name>
<xref ref-type="aff" rid="Aff2">2</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Zhang</surname>
<given-names>Yuhao</given-names>
</name>
<xref ref-type="aff" rid="Aff1">1</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Ma</surname>
<given-names>Liang</given-names>
</name>
<xref ref-type="aff" rid="Aff1">1</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Song</surname>
<given-names>Erqun</given-names>
</name>
<xref ref-type="aff" rid="Aff2">2</xref>
</contrib>
<contrib contrib-type="author" corresp="yes">
<contrib-id contrib-id-type="orcid">http://orcid.org/0000-0001-7716-9216</contrib-id>
<name>
<surname>Song</surname>
<given-names>Yang</given-names>
</name>
<address>
<email>ysong@swu.edu.cn</email>
</address>
<xref ref-type="aff" rid="Aff2">2</xref>
</contrib>
<aff id="Aff1">
<label>1</label>
<institution-wrap>
<institution-id institution-id-type="GRID">grid.263906.8</institution-id>
<institution>Key Laboratory of Luminescence and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, College of Food Science,</institution>
<institution>Southwest University,</institution>
</institution-wrap>
Chongqing, 400715 People’s Republic of China</aff>
<aff id="Aff2">
<label>2</label>
<institution-wrap>
<institution-id institution-id-type="GRID">grid.263906.8</institution-id>
<institution>Key Laboratory of Luminescence and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, College of Pharmaceutical Sciences,</institution>
<institution>Southwest University,</institution>
</institution-wrap>
Chongqing, 400715 People’s Republic of China</aff>
</contrib-group>
<pub-date pub-type="epub">
<day>13</day>
<month>3</month>
<year>2020</year>
</pub-date>
<pub-date pub-type="pmc-release">
<day>13</day>
<month>3</month>
<year>2020</year>
</pub-date>
<pub-date pub-type="collection">
<month>3</month>
<year>2020</year>
</pub-date>
<volume>11</volume>
<issue>3</issue>
<elocation-id>183</elocation-id>
<history>
<date date-type="received">
<day>11</day>
<month>11</month>
<year>2019</year>
</date>
<date date-type="rev-recd">
<day>24</day>
<month>2</month>
<year>2020</year>
</date>
<date date-type="accepted">
<day>25</day>
<month>2</month>
<year>2020</year>
</date>
</history>
<permissions>
<copyright-statement>© The Author(s) 2020</copyright-statement>
<license license-type="OpenAccess">
<license-p>
<bold>Open Access</bold>
This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit
<ext-link ext-link-type="uri" xlink:href="http://creativecommons.org/licenses/by/4.0/">http://creativecommons.org/licenses/by/4.0/</ext-link>
.</license-p>
</license>
</permissions>
<abstract id="Abs1">
<p id="Par1">Exposure to nanomaterials (NMs) is an emerging threat to human health, and the understanding of their intracellular behavior and related toxic effects is urgently needed. Ferroptosis is a newly discovered, iron-mediated cell death that is distinctive from apoptosis or other cell-death pathways. No evidence currently exists for the effect of “iron free” engineered NMs on ferroptosis. We showed by several approaches that (1) zinc oxide nanoparticles (ZnO NPs)-induced cell death involves ferroptosis; (2) ZnO NPs-triggered ferroptosis is associated with elevation of reactive oxygen species (ROS) and lipid peroxidation, along with depletion of glutathione (GSH) and downregulation of glutathione peroxidase 4 (GPx4); (3) ZnO NPs disrupt intracellular iron homeostasis by orchestrating iron uptake, storage and export; (4) p53 largely participates in ZnO NPs-induced ferroptosis; and (5) ZnO particle remnants and dissolved zinc ion both contribute to ferroptosis. In conclusion, our data provide a new mechanistic rationale for ferroptosis as a novel cell-death phenotype induced by engineered NMs.</p>
</abstract>
<kwd-group kwd-group-type="npg-subject">
<title>Subject terms</title>
<kwd>Biophysical chemistry</kwd>
<kwd>Stress signalling</kwd>
</kwd-group>
<funding-group>
<award-group>
<funding-source>
<institution-wrap>
<institution-id institution-id-type="FundRef">https://doi.org/10.13039/501100001809</institution-id>
<institution>National Natural Science Foundation of China (National Science Foundation of China)</institution>
</institution-wrap>
</funding-source>
<award-id>21622704</award-id>
<award-id>31671881</award-id>
<award-id>21575118</award-id>
<principal-award-recipient>
<name>
<surname>Ma</surname>
<given-names>Liang</given-names>
</name>
<name>
<surname>Song</surname>
<given-names>Erqun</given-names>
</name>
<name>
<surname>Song</surname>
<given-names>Yang</given-names>
</name>
</principal-award-recipient>
</award-group>
</funding-group>
<custom-meta-group>
<custom-meta>
<meta-name>issue-copyright-statement</meta-name>
<meta-value>© The Author(s) 2020</meta-value>
</custom-meta>
</custom-meta-group>
</article-meta>
</front>
<body>
<sec id="Sec1" sec-type="introduction">
<title>Introduction</title>
<p id="Par2">Nanomaterials (NMs) readily enter the human body through respiratory inhalation, oral ingestion or a dermal route, cross the plasma membrane and reach the inside of cells, ultimately triggering cell death
<sup>
<xref ref-type="bibr" rid="CR1">1</xref>
</sup>
. The disruption of cell-death homeostasis is associated with various diseases, including neurodegenerative diseases, immune disorders, diabetes and cancers. Thereafter, it is important to elaborate the molecular processes of NMs-regulated cell death
<sup>
<xref ref-type="bibr" rid="CR2">2</xref>
,
<xref ref-type="bibr" rid="CR3">3</xref>
</sup>
. Among them, the majority of cell-death modalities are associated with NMs-induced cytotoxicities.</p>
<p id="Par3">Ferroptosis is a recently recognized cell death with unique morphological, genetic and biochemical characteristics that are distinct from apoptosis, autophagy or necrosis
<sup>
<xref ref-type="bibr" rid="CR4">4</xref>
,
<xref ref-type="bibr" rid="CR5">5</xref>
</sup>
. Ferroptosis is an iron-dependent accumulation of lipid reactive oxygen species (ROS) process. Small molecule inducers or inhibitors of ferroptosis through targeting iron metabolism or lipid peroxidation have been extensively studied
<sup>
<xref ref-type="bibr" rid="CR6">6</xref>
</sup>
.</p>
<p id="Par4">Advances in nanotechnology have stimulated the enthusiasm in the designing of multifunctional NMs for cancerous therapeutic applications through ferroptotic mechanisms
<sup>
<xref ref-type="bibr" rid="CR7">7</xref>
</sup>
. However, most of the studies used iron or iron-oxide-based NMs
<sup>
<xref ref-type="bibr" rid="CR8">8</xref>
<xref ref-type="bibr" rid="CR10">10</xref>
</sup>
. Nevertheless, in addition to biomedical applications, human beings are unconsciously exposed to numerous of engineered NMs through consumer products. To this end, from a safety perspective, we ought to assess whether ferroptosis occurs upon “iron free” engineered NMs exposure and decipher the corresponding mechanism(s).</p>
<p id="Par5">ZnO nanoparticles (ZnO NPs) are often used in food additives for nutritional purposes, sunscreen cream for absorbance of UV light, and antimicrobial agents for skin protection. In addition, ZnO NPs have been applied to many medical applications, such as drug delivery, tissue regeneration and bioimaging
<sup>
<xref ref-type="bibr" rid="CR11">11</xref>
</sup>
. Although ZnO NPs are listed as safe materials by the United States Food and Drug Administration (USFDA), they are one of the most toxic metallic oxide nanoparticles
<sup>
<xref ref-type="bibr" rid="CR11">11</xref>
</sup>
. Using ZnO NPs as a model, we demonstrated that ferroptosis is a novel form of cell death induced by NMs. Moreover, the possibilities of other “iron free” NMs (metal oxide, carbon, gold, and silver-based) on ferroptosis are also discussed.</p>
</sec>
<sec id="Sec2" sec-type="materials|methods">
<title>Materials and methods</title>
<sec id="Sec3">
<title>Chemical and reagents</title>
<p id="Par6">Cell Counting Kit-8 (CCK8) assay kit was purchased from Bimake Inc. (USA). 2′,7′-dichlorofluorescein diacetate (DCFH-DA) was purchased from Sigma-Aldrich Inc. (Sigma, USA). MitoTracker® Deep Red FM, Lyso Tracker Red, 1,1′-dioctadecyl-3,3,3′,3′-tetramethylindotricarbocyanine perchlorate (DiI), JC-1 staining kit and propidium iodide (PI) were purchased from YE SEN Inc. (Shanghai, China). N-(6-methoxy-8-quinolyl)-
<italic>p</italic>
-toluenesul fonamide (TSQ) was purchased from AAT BIOQUEST (USA). Annexin V-FITC/PI, lactate dehydrogenase (LDH), the cleaved caspase 8 and caspase 3 polyclonal primary antibodies from Wanleibio (Nanjing, China). Malondialdehyde (MDA), glutathione (GSH), and Glutathione peroxidase (GPx) assay kit were purchased from Nanjing Jiancheng Bioengineering Institute (Nanjing, China). Acridine orange-ethidium bromide (AO-EB) double stain kit and Lillie divalent iron staining solution were supplied by Solarbio Inc. (Beijing, China). Ferrostatin-1 (Fer-1), desferrioxamine (DFO), Liproxstatin-1 (LIP-1), (E)-Necrosulfonamide (NSA), chloroquine (CQ), and Z-VAD-FMK were supplied by MedChemExpress (Shanghai, China). Necrostatin-1 (Nec-1) and 3-methyladenine (3-MA) were purchased from Target Mol (Boston, USA). The mouse p53, ferritin heteropolymers ferritin light chain (FTL) and ferritin heavy chain (FTH), iron importers transferrin receptor protein 1 (TFRC), SLC7A11, and GPx4 polyclonal primary antibodies were purchased from Santa Cruz Biotechnology (USA). The mouse SAT1 and DMT1 polyclonal primary antibodies were purchased from Bioss (Beijing, China). β-Actin polyclonal primary antibody, goat-anti-rabbit IgG-HRP conjugated secondary antibody, and goat-anti-mouse IgG-HRP conjugated secondary antibody were supplied by Sangon Biotech Co, Ltd. (Shanghai, China). ZnO NPs (>99.9% purity) and ZnCl
<sub>2</sub>
standard solution (0.1 M) were purchased from Aladdin Reagent Database Inc. (Shanghai, China).</p>
</sec>
<sec id="Sec4">
<title>Fluorescent labeling of ZnO NPs</title>
<p id="Par7">Briefly, 20 mg ZnO NPs were dispersed in 15 mL absolute ethanol. A solution of 30 μL APTS diluted in 1 mL absolute ethanol was added to the particle suspensions, sonicated and stirred under nitrogen atmosphere at room temperature for 20 h. The modified NPs were collected by centrifuging and removing the supernatant. After washing, the modified NPs were resuspended in 15 mL absolute ethanol and mixed with a solution contain 1 mg FITC and 0.5 mL absolute ethanol. The suspension was stirred for 4 h and fluorescein isothiocyanate (FITC)-labeled (F-ZnO) NPs were collected by centrifugation. After thorough washing of the labeled materials with absolute ethanol, the particles were dried under vacuum to remove the organic solvent and stored as dry powders. The maximum absorption peak of synthesized F-ZnO NPs is 539 nm.</p>
</sec>
<sec id="Sec5">
<title>Characterization of ZnO and F-ZnO NPs</title>
<p id="Par8">ZnO NPs and F-ZnO NPs were characterized by TEM (JEM1200EX, Japan). The sample was diluted with water, dropped on a carbon film copper mesh, and the sample was dried and stained with uranyl acetate, and naturally dried in a fume hood. The dried sample was placed in an observation room with an accelerating voltage of 120 kV and photographed. The crystalline nature of ZnO NPs was carried out by XRD (BRUCKER D8, Germany). Place the sample into the sample stage and compact it into a flat surface. The tube current is 40 mA, the tube voltage is 40 kV, the Cu target wavelength is 1.5406 Å, and the Co target wavelength is 1.75926 Å. The X-ray patterns were matched literature. Hydrodynamic diameter, PDI and zeta potential of ZnO and F-ZnO NPs were determined using a Mastersizer Micro (Malvern, UK) in pure water and RPMI1640 medium. ZnO NPs and F-ZnO NPs were dispersed in water at a concentration of 15 µg/mL, respectively. Then, the suspensions were sonicated using a sonicator bath at room temperature for 10 min at 80 W.</p>
</sec>
<sec id="Sec6">
<title>Cell culture</title>
<p id="Par9">HUVECs, LO2, and RAW264.7 obtained from the American Type Culture Collection (ATCC, USA), cultured in complete RPMI1640 medium containing 10% fetal bovine serum (FBS). MDA-MB231, Hepa 1-6, and Hela obtained from the American Type Culture Collection (ATCC, USA), cultured in complete DMEM medium containing 10% fetal bovine serum (FBS). PC12, obtained from the American Type Culture Collection (ATCC, USA), was cultured in complete RPMI1640 medium containing 10% newborn calf serum (NCS). MDA-MB-453 was cultured in complete L15 medium containing 10% NCS. BT-474, obtained from cell bank of the Chinese Academy of Sciences, was cultured in complete RPMI1640 medium containing 15% FBS. Cells were incubated at 37 °C in a humidified atmosphere of 5% CO
<sub>2</sub>
in air.</p>
</sec>
<sec id="Sec7">
<title>Cell viability assay</title>
<p id="Par10">Cell viability was determined by CCK8 assay. HUVECs (5 × 10
<sup>4</sup>
/well) were seeded in a 96-well plate overnight before treatment with ZnO NPs for 24 h with or without other co-treatment. Subsequently, 100 μL of CCK8 solution (10%) was added to each well and incubated at 37 °C for 2 h. The absorbance of each culture well was measured with a microplate reader (BioTek, USA) at a wavelength of 450 nm.</p>
</sec>
<sec id="Sec8">
<title>LDH release assay</title>
<p id="Par11">Briefly, cells were cultured in 24-well plates with ~8 × 10
<sup>4</sup>
cells per well. After 12 h of growth, cells were then treated with ZnO NPs at concentrations of 0, 5, 10, and 15 μg/mL for 24 h. The supernatants were collected, 100 μL cell medium was used for LDH activity analysis, the absorbance at 450 nm was measured by microplate reader (BioTek ELX800, USA). The amount of LDH released is expressed as LDH activity (U/L) in culture media.</p>
</sec>
<sec id="Sec9">
<title>Annexin V-FITC/PI staining analysis</title>
<p id="Par12">Annexin V-FITC/PI staining was performed on a BD FACS Melody
<sup>TM</sup>
flow cytometry. After 24 h of growth, cells were treated by ZnO NPs at concentrations of 0, 5, 10, and 15 μg/mL for 24 h. In each group, at least 1 × 10
<sup>4</sup>
cells were analyzed to determine the percentage of apoptotic cells. The results are presented as percentage of apoptotic cells (including early and late apoptotic cells).</p>
</sec>
<sec id="Sec10">
<title>PI staining analysis</title>
<p id="Par13">Approximately 1 × 10
<sup>6</sup>
 cells/well were seeded in 6-well plates overnight followed by the treatment of ZnO NPs for 24 h. Corresponding inhibitors or activators were introduced 1 h prior to ZnO NPs (10 μg/mL) treatment. Cells were incubated with PI staining in the dark at 37 °C for 15 min. Cells were washed twice with PBS. The cellular fluorescence was analyzed by a BD FACS Melody
<sup>TM</sup>
flow cytometry. A total of 1 × 10
<sup>4</sup>
event was acquired for each sample from three independent experiments.</p>
</sec>
<sec id="Sec11">
<title>AO-EB double staining</title>
<p id="Par14">Cells were cultured in confocal cell culture dish with ~8 × 10
<sup>4</sup>
cells per well. After 24 h of growth, cells were treated by ZnO NPs at concentrations of 0, 5, 10, and 15 μg/mL for 24 h. Then, cells were washed twice with PBS; then, they were incubated with AO-EB staining in the dark at 37 °C for 5 min. After the stained cells were rinsed three times with PBS, the cells were examined under a reversed fluorescence microscope (Olympus IX71).</p>
</sec>
<sec id="Sec12">
<title>Mitochondrial membrane potential (ΔΨm, MMP) assay</title>
<p id="Par15">Cells were cultured in confocal cell culture dish with ~8 × 10
<sup>4</sup>
cells per well. After 24 h of growth, cells were treated with ZnO NPs at concentrations of 0, 5, 10, and 15 μg/mL for 24 h. The changes in ΔΨ
<sub>m</sub>
were monitored after staining with JC-1 (1 μg/mL) probe. Analysis was performed on a BD FACS Melody
<sup>TM</sup>
flow cytometry.</p>
</sec>
<sec id="Sec13">
<title>Mitochondrial morphology analysis</title>
<p id="Par16">Cells were cultured in confocal cell culture dish, with ~8 × 10
<sup>4</sup>
cells per well. After 24 h of growth, cells were treated by ZnO NPs at concentrations of 10 μg/mL for additional 24 h. Erastin (25 μM) was used as a positive control. Cells were washed twice with PBS, then, cells were incubated with Mito Tracker® Deep Red FM in the dark at 37 °C for 30 min. After the stained cells were rinsed three times with PBS, cells were imaged under confocal microscope (Nikon N-SIM).</p>
</sec>
<sec id="Sec14">
<title>TEM analysis of cells</title>
<p id="Par17">TEM analysis was performed to observe the morphology and microstructure of ZnO NPs-treated HUVECs. Briefly, HUVECs were treated with ZnO NPs (10 μg/mL) or erastin (25 μM) for 24 h. Before cells collection, cells were washed twice with PBS and fixed in 4% glutaraldehyde at room temperature for 1 h followed by 4 °C for additional 12 h. Next, cells were post-fixed with 1% OsO
<sub>4</sub>
and embedded in epon. Then, ultrathin sections were stained with uranyl acetate/lead citrate and visualized in a Hitachi-7500 TEM instrument (Hitachi, Tokyo, Japan).</p>
</sec>
<sec id="Sec15">
<title>Lillie divalent iron staining</title>
<p id="Par18">Cells were cultured in confocal cell culture dish, with ~8 × 10
<sup>4</sup>
cells per well. After 24 h of growth, cells were treated by NPs or ZnCl
<sub>2</sub>
for additional 24 h. After washed twice with PBS, cells were incubated with Lillie divalent iron staining reagent in the dark at 37 °C for 1 h. After rinsed three times with PBS, the cells were examined under a reversed fluorescence microscope (Olympus IX71).</p>
</sec>
<sec id="Sec16">
<title>ROS level measurement</title>
<p id="Par19">Approximately 1 × 10
<sup>6</sup>
 cells/well were seeded in 6-well plates overnight followed by the treatment of ZnO NPs for 24 h. Corresponding inhibitors or activators were introduced 1 h prior to ZnO NPs treatment. Cells were incubated with DCFH-DA indicator in the dark at 37 °C for 30 min. Cells were washed twice with PBS. The cellular fluorescence was analyzed by a BD FACS Melody
<sup>TM</sup>
flow cytometry. A total of 1 × 10
<sup>4</sup>
events were acquired for each sample from three independent experiments. Data were analyzed by FlowJo V10.</p>
</sec>
<sec id="Sec17">
<title>GSH level measurement</title>
<p id="Par20">HUVECs at a concentration of 2 × 10
<sup>5</sup>
 cells/well were seeded in 6-well plates. Cells were treated with ZnO NPs (0, 5, and 10 μg/mL) for 24 h. Cells were harvested and cell number were determined. Total GSH was measured by a commercial GSH kit according to the manufacturer’s instructions.</p>
</sec>
<sec id="Sec18">
<title>MDA level measurement</title>
<p id="Par21">HUVECs at a concentration of 2 × 10
<sup>5</sup>
 cells/well were seeded in 6-well plates. Cells were treated as ZnO NPs (0, 5, and 10 μg/mL) for 24 h. Cells were harvested and cell numbers were determined. MDA level was measured by a commercial MDA kit according to the manufacturer’s instructions.</p>
</sec>
<sec id="Sec19">
<title>siRNA interference</title>
<p id="Par22">HUVECs were transfected with 25 nM siRNA for P53, SAT1, ACSL4, ALOX15 or scrambled siRNA using siRNA-mate transfection reagent according to the manufacturer’s protocol. The sense-strand sequences of siRNA duplexes were listed in Supplementary Table
<xref rid="MOESM1" ref-type="media">3</xref>
.</p>
</sec>
<sec id="Sec20">
<title>Western blotting assay</title>
<p id="Par23">HUVECs at a concentration of 2 × 10
<sup>5</sup>
 cells/well were seeded in 6-well plates. Cells were treated with ZnO NPs (0, 5, and 10 μg/mL) for 24 h. After harvest, the protein concentrations were detected by the BCA protein assay according to the manufacturer’s instruction. Thirty micrograms of cellular protein from each group was blotted onto PVDF membrane following separation on 12.5% SDS-PAGE. The immuno-blot was incubated with the blocking solution (8% skim milk) at room temperature for 2 h, followed by incubation with a corresponding primary antibody at 37 °C for 3 h. After washing with Tween 20/Tris-buffered saline (TBST), the immune-blot was incubated with respective secondary antibody (1:5000) for 2 h at room temperature. Followed by visualization using the ECL system. Representative images were chosen from at least three independent experiments. Protein expression levels were standardized by β-actin in different cell substrates.</p>
</sec>
<sec id="Sec21">
<title>RNA extraction and real-time quantitative PCR (RT-qPCR)</title>
<p id="Par24">Total RNA was extracted with a total RNA purification kit (BioTeke, Beijing, China) as described in the manufacturer’s instructions. The purified RNA (2 μg) was reverse transcribed into cDNA with the transcriptor first strand cDNA synthesis kit (Roche, Switzerland). Then, cDNA was used to perform RT-qPCR analysis using the Light Cycler 96 instrument protocol with FastStart Essential DNA Green Master (Roche, Switzerland). Subsequently, 35 cycles of PCR were carried out with denaturation at 94 °C for 20 s, annealing at the most suitable temperature for 30 s and extension at 72 °C for 30 s, followed by a final incubation at 72 °C for 10 min. The primers used for the amplification were listed in Supplementary Table
<xref rid="MOESM1" ref-type="media">4</xref>
.</p>
</sec>
<sec id="Sec22">
<title>Atomic absorption spectroscopy (AAS) assay</title>
<p id="Par25">HUVECs were seeded in 10 cm plates and exposed to ZnO NPs or ZnCl
<sub>2</sub>
dispersions for 24 h. Then, cells were thoroughly washed, harvested, and counted. The supernatant and total Zn
<sup>2+</sup>
concentration in solution was determined using AAS in the graphite furnace mode (TAS-990, Persee, China). For dissociated Zn
<sup>2+</sup>
concentration measurement, the cell lysate was centrifuged at 30,000 × 
<italic>g</italic>
for 1 h and supernatant was collected. For total Zn
<sup>2+</sup>
concentration measurement, the cell lysate was acidified to pH < 2 with 65% HNO
<sub>3</sub>
, followed by digestion (1 mL sample + 1 mL 30 wt% H
<sub>2</sub>
O
<sub>2</sub>
, 3 mL 65 wt% HNO
<sub>3</sub>
via water bath 75 °C for 6 h). Each experiment was performed in triplicate.</p>
</sec>
<sec id="Sec23">
<title>Zn
<sup>2+</sup>
release in PBS and ALF</title>
<p id="Par26">The Zn
<sup>2+</sup>
release was also measured in PBS or ALF (artificial lysosomal fluid). The PBS (pH of 7.4) was used to mimic the physiological environment. The ALF (pH of 4.5) was intended to mimic the lysosomal acidic environment. ALF composition is according to previous publication
<sup>
<xref ref-type="bibr" rid="CR12">12</xref>
</sup>
. ZnO NPs dispersions were prepared in PBS or ALF and kept at 37 °C. After 24 h samples were centrifuged for 1 h at 15,000 × 
<italic>g</italic>
, 4 °C, the supernatant was collected and analyzed by AAS.</p>
</sec>
<sec id="Sec24">
<title>Intracellular zinc imaging</title>
<p id="Par27">HUVECs was pretreated in a culture medium containing 10 μg/mL of F-ZnO NPs for 24 h. After permeabilization and fixation, cells were then rinsed three times with PBS and stained in a PBS solution contains cellular membrane marker DiI (20 μM) or Zn
<sup>2+</sup>
-specific fluorescent dye TSQ (30 μM) for 30 min. The cells were examined under a super-resolution confocal microscope (Nikon N-SIM) with an excitation wavelength of 405 nm. The average fluorescence intensity was quantitatively measured to reflect the intracellular Zn
<sup>2+</sup>
concentration in HUVECs. The lysosomes were stained by 1 μM Lyso Tracker Red (YE SEN, China) and visualized with an excitation wavelength of 635 nm for the determination of subcellular location of ZnO NPs. F-ZnO NPs was visualized at an excitation wavelength of 488 nm.</p>
</sec>
<sec id="Sec25">
<title>Statistical analysis</title>
<p id="Par28">All statistical analyses were evaluated by a one-way ANOVA and followed by a Tukey’s multiple-comparisons test.
<italic>P</italic>
 < 0.05 was considered statistically significant. All the dates were expressed as mean ± standard deviations (S.D.).</p>
</sec>
</sec>
<sec id="Sec26" sec-type="results">
<title>Results</title>
<sec id="Sec27">
<title>Characterization of ZnO and fluorescein isothiocyanate (FITC)-labeled (F-ZnO) NPs</title>
<p id="Par29">The morphology and average size of ZnO NPs were determined by transmission electron microscopy (TEM). ZnO NPs have a near-spherical shape with an average primary diameter of 30 ± 10 nm (Supplementary Fig.
<xref rid="MOESM1" ref-type="media">1</xref>
). ZnO NPs characterized by X-ray diffraction (XRD) with CuKα radiation revealed a crystalline nature structure which is consistent with the standard zincite, JCPDS 5-0664 (Supplementary Fig.
<xref rid="MOESM1" ref-type="media">2</xref>
). The hydrodynamic sizes and zeta potentials of ZnO and F-ZnO NPs were measured in ultrapure water and RPMI1640 medium after incubation at 37 °C (Supplementary Table
<xref rid="MOESM1" ref-type="media">1</xref>
). Both ZnO and F-ZnO NPs have a relatively uniform size with a low polydispersity index (PDI).</p>
</sec>
<sec id="Sec28">
<title>Cytotoxicity of ZnO NPs on human umbilical vein endothelial cells (HUVECs)</title>
<p id="Par30">Epidemiologic and experimental studies have both demonstrated a correlation between NMs exposure and an increased incidence of cardiovascular diseases
<sup>
<xref ref-type="bibr" rid="CR13">13</xref>
,
<xref ref-type="bibr" rid="CR14">14</xref>
</sup>
. The current study was mainly conducted in HUVECs due to their cardiovascular relevance. ZnO NPs caused obvious decreases in cell viability (
<italic>P</italic>
 < 0.01 in the 10 μg/mL group and
<italic>P</italic>
 < 0.001 in the 15 μg/mL group) (Supplementary Fig.
<xref rid="MOESM1" ref-type="media">3</xref>
). A dose-dependent increase in LDH release after ZnO NPs treatment suggested ZnO NPs-induced cell death (Supplementary Fig.
<xref rid="MOESM1" ref-type="media">4</xref>
). Then, annexin V-FITC/propidium iodide (PI) staining results revealed a dose-dependent increase in annexin V-FITC/PI-positive cells after ZnO NPs challenge (~39% in the 15 μg/mL group) (Supplementary Fig.
<xref rid="MOESM1" ref-type="media">5</xref>
). An acridine orange-ethidium bromide (AO-EB) staining assay revealed reduced green fluorescence and an increased orange fluorescence, suggesting necrotic-like cell death (Supplementary Fig.
<xref rid="MOESM1" ref-type="media">6</xref>
). Moreover, mitochondrial damage after exposure to ZnO NPs further confirmed ZnO NPs-associated cytotoxicity in HUVECs (Supplementary Fig.
<xref rid="MOESM1" ref-type="media">7</xref>
). Consistently, we also observed the cleavage of caspase 8 and 3, which are hallmarks of apoptosis activation parthanatos (Supplementary Fig.
<xref rid="MOESM1" ref-type="media">8</xref>
). For the following experiments, the maximum concentration of ZnO NPs exposure was set as 10 μg/mL (except for Zn
<sup>2+</sup>
concentration measurement) to maintain >80% viable cells.</p>
</sec>
<sec id="Sec29">
<title>ZnO NPs trigger oxidative stress-dependent, iron-mediated ferroptosis</title>
<p id="Par31">ROS generation and antioxidant depletion are common in ZnO NPs-treated cells
<sup>
<xref ref-type="bibr" rid="CR15">15</xref>
</sup>
. Our results established that ZnO NPs cause glutathione (GSH) (Fig.
<xref rid="Fig1" ref-type="fig">1a</xref>
) and glutathione peroxidase (GPx) depletion (Fig.
<xref rid="Fig1" ref-type="fig">1b</xref>
). Using the DFCH-DA probe as an ROS indicator, the results showed that ZnO NPs increase ROS levels in a dose-dependent manner (Fig.
<xref rid="Fig1" ref-type="fig">1c</xref>
). Consistently, malondialdehyde (MDA) levels were dramatically increased (Fig.
<xref rid="Fig1" ref-type="fig">1d</xref>
). Together, these results indicated ROS elevation caused by ZnO NPs.
<fig id="Fig1">
<label>Fig. 1</label>
<caption>
<title>ZnO NPs trigger oxidative stress-dependent, iron-mediated ferroptosis.</title>
<p>HUVECs were treated with ZnO NPs (0, 5, and 10 μg/mL) for 24 h.
<bold>a</bold>
GSH,
<bold>b</bold>
GPx,
<bold>c</bold>
ROS, and
<bold>d</bold>
MDA levels were measured. Total RNA was extracted for the analysis of mRNA levels of interest using qRT-PCR.
<bold>e</bold>
GPx4,
<bold>f</bold>
ACSL4,
<bold>g</bold>
ALOX15, and
<bold>h</bold>
PTGS2 mRNA. HUVECs were pretreated with DFO (100 μM) for 1 h in the presence of 10 μg/mL ZnO NPs.
<bold>i</bold>
The generation of ROS was determined by the DCFH-DA probe, MFI: mean fluorescence intensity.
<bold>j</bold>
Cell viability analysis.
<bold>k</bold>
LDH leakage assay. Data are shown as the mean ± S.D. from three independent experiments.</p>
</caption>
<graphic xlink:href="41419_2020_2384_Fig1_HTML" id="d29e688"></graphic>
</fig>
</p>
<p id="Par32">Previous studies have described that not only apoptosis, but also necrosis and autophagy were induced by ZnO NPs
<sup>
<xref ref-type="bibr" rid="CR11">11</xref>
,
<xref ref-type="bibr" rid="CR16">16</xref>
,
<xref ref-type="bibr" rid="CR17">17</xref>
</sup>
. Here, we questioned the involvement of ferroptosis in ZnO NPs-mediated cell death. We observed that the addition of specific cell-death inhibitors decreased the relative PI fluorescence induced by ZnO NPs (10 μg/mL) (Supplementary Fig.
<xref rid="MOESM1" ref-type="media">9</xref>
). The rescue effects of various inhibitors are consistent with previous studies that showed ZnO NPs-induced apoptosis, necroptosis, and autophagy
<sup>
<xref ref-type="bibr" rid="CR16">16</xref>
,
<xref ref-type="bibr" rid="CR17">17</xref>
</sup>
. Ferroptosis has its distinctive characteristics
<sup>
<xref ref-type="bibr" rid="CR6">6</xref>
,
<xref ref-type="bibr" rid="CR18">18</xref>
</sup>
, we further evaluated whether ZnO NPs lead to lipid peroxidation by measuring GPx4 levels at the transcriptional and posttranscriptional levels. Indeed, ZnO NPs decreased GPx4 mRNA (Fig.
<xref rid="Fig1" ref-type="fig">1e</xref>
) and protein levels (Supplementary Fig.
<xref rid="MOESM1" ref-type="media">10</xref>
), respectively. Together, the inhibition of system X
<sub>c</sub>
<sup></sup>
and promotion of lipid peroxidation are critical events of ZnO NPs exposure, implying the occurrence of ferroptosis. Acyl-CoA synthetase long-chain family member 4 (ACSL4) contributes to the accumulation of lipid intermediates during ferroptosis and the loss of ACSL4 gene resulted in ferroptosis resistance
<sup>
<xref ref-type="bibr" rid="CR19">19</xref>
</sup>
. Alternatively, ferroptosis is promoted by lipoxygenase (LOX)-catalyzed lipid hydroperoxide generation
<sup>
<xref ref-type="bibr" rid="CR20">20</xref>
</sup>
. Therefore, we analyzed ACSL4 and ALOX15 genes by qRT-PCR, and the results indicated upregulation of expression of both genes (Fig.
<xref rid="Fig1" ref-type="fig">1f, g</xref>
). Furthermore, silencing of ACSL4 and ALOX15 decreased ZnO NPs-induced elevation of DCF fluorescence intensity, indicated the inhibition of intracellular ROS (Supplementary Fig.
<xref rid="MOESM1" ref-type="media">11</xref>
). The upregulation of prostaglandin-endoperoxide synthase 2 (PTGS2) has recently been identified as a potential molecular marker of ferroptosis
<sup>
<xref ref-type="bibr" rid="CR18">18</xref>
</sup>
. In accordance, PTGS2 was found to be remarkably upregulated when HUVECs were treated with ZnO NPs (Fig.
<xref rid="Fig1" ref-type="fig">1h</xref>
).</p>
<p id="Par33">Next, we revealed whether ferrous iron was required for ZnO NPs’ action through the co-treatment of cells with the potent iron chelator desferrioxamine (DFO). ZnO NPs-increased ROS level was almost completed attenuated in the presence of DFO (Fig.
<xref rid="Fig1" ref-type="fig">1i</xref>
). The co-treatment of DFO prevented cell death and LDH release triggered by ZnO NPs (Fig.
<xref rid="Fig1" ref-type="fig">1j, k</xref>
). The occurrence of ferroptosis in HUVECs line was confirmed by erastin (Supplementary Fig.
<xref rid="MOESM1" ref-type="media">12</xref>
). The combination of these results provides solid evidence of the ZnO NPs-induced susceptibility of HUVECs to ferroptosis.</p>
</sec>
<sec id="Sec30">
<title>ZnO NPs exposure disrupts iron homeostasis</title>
<p id="Par34">Since the iron chelator DFO rescues ZnO NPs-induced cell death, we further studied the effect of ZnO NPs on iron homeostasis. Cellular iron homeostasis is orchestrated perfectly through three processes, i.e., uptake, storage and export
<sup>
<xref ref-type="bibr" rid="CR6">6</xref>
</sup>
. As shown, the mRNA levels of iron importers transferrin receptor protein 1 (TFRC) (mediates iron import) and divalent metal transporter 1 (DMT1) [facilitates Fe
<sup>2+</sup>
transport to a labile iron pool (LIP) in the cytoplasm] were both significantly upregulated (Fig.
<xref rid="Fig2" ref-type="fig">2a, b</xref>
). Iron export is controlled solely by the iron efflux pump ferroportin (FPN1)
<sup>
<xref ref-type="bibr" rid="CR21">21</xref>
</sup>
. In addition to increasing iron uptake, ZnO NPs increase intracellular iron by modulating the iron-export gene levels. Therefore, systemic iron homeostasis is governed by the hepcidin-ferroportin signaling axis. We discovered a noticeable increase in FPN1 at the transcriptional level by ZnO NPs (Fig.
<xref rid="Fig2" ref-type="fig">2c</xref>
). FPN1 can be regulated at the transcriptional, posttranscriptional and posttranslational levels
<sup>
<xref ref-type="bibr" rid="CR22">22</xref>
,
<xref ref-type="bibr" rid="CR23">23</xref>
</sup>
. Hepcidin, an iron-regulatory hormone, posttranslationally regulates FPN1 through its binding and proteolysis of FPN1 in lysosomes
<sup>
<xref ref-type="bibr" rid="CR24">24</xref>
</sup>
. However, contradictory effects were obtained, e.g., increased Bach1 and MZF1 mRNA levels upon ZnO NPs exposure (Supplementary Fig.
<xref rid="MOESM1" ref-type="media">13</xref>
).
<fig id="Fig2">
<label>Fig. 2</label>
<caption>
<title>ZnO NPs exposure disrupts iron homeostasis.</title>
<p>HUVECs were treated with ZnO NPs (5 or 10 μg/mL) for 24 h and total RNA was extracted for the analysis of
<bold>a</bold>
TFRC,
<bold>b</bold>
DMT1, and
<bold>c</bold>
FPN1 mRNA levels.
<bold>d</bold>
Lillie divalent iron staining. Scale bar = 20 μm.
<bold>e</bold>
FTH and
<bold>f</bold>
FTL mRNA levels. Data are shown as the mean ± S.D. from three independent experiments.</p>
</caption>
<graphic xlink:href="41419_2020_2384_Fig2_HTML" id="d29e829"></graphic>
</fig>
</p>
<p id="Par35">A direct measurement of free iron in the cellular compartment is necessary for reveal the effect of ZnO NPs on iron homeostasis. A commonly used calcein-AM assay for LIP measurement is not suitable in our study due to the effect of Zn
<sup>2+</sup>
released by ZnO NPs. We thus investigated ferrous iron accumulation by Lillie ferrous iron staining assay. The obvious increases in deep blue
<italic>foci</italic>
in the ZnO NPs groups are evidence of an increase in ferrous iron (Fig.
<xref rid="Fig2" ref-type="fig">2d</xref>
). Consistently, the mRNA levels of FTH and FTL were significantly downregulated by ZnO NPs (Fig.
<xref rid="Fig2" ref-type="fig">2e, f</xref>
). Consistently, the iron inbound protein TFRC and DMT1 expressions were upregulated, and the iron outbound protein FTH and FTL expressions were downregulated (Supplementary Fig.
<xref rid="MOESM1" ref-type="media">14</xref>
). Undoubtedly, these results suggested defects in mitochondrial iron transport and utilization that suggested mitochondrial iron overload
<sup>
<xref ref-type="bibr" rid="CR25">25</xref>
</sup>
.</p>
</sec>
<sec id="Sec31">
<title>ZnO NPs exposure dysregulates mitochondrial dynamics</title>
<p id="Par36">Iron overload is usually accompanied by mitochondrial oxidative stress, leading to mitochondrial dysfunction
<sup>
<xref ref-type="bibr" rid="CR26">26</xref>
</sup>
. The typical cell morphology of ferroptosis is smaller mitochondria with condensed mitochondrial membrane densities, reduction or vanishing of mitochondria crista, as well as outer mitochondrial membrane rupture
<sup>
<xref ref-type="bibr" rid="CR6">6</xref>
</sup>
. Currently, ZnO NPs-treated cells showed shrunk mitochondria and fused mitochondrial cristae (Fig.
<xref rid="Fig3" ref-type="fig">3a</xref>
), which are reminiscent of ferroptotic cancer cells observed in response to erastin
<sup>
<xref ref-type="bibr" rid="CR4">4</xref>
,
<xref ref-type="bibr" rid="CR27">27</xref>
,
<xref ref-type="bibr" rid="CR28">28</xref>
</sup>
. One of the direct molecular targets of erastin is the mitochondrial voltage-dependent anion channel (VDAC) protein, which mediates mitochondrial iron uptake and enhances ferroptosis
<sup>
<xref ref-type="bibr" rid="CR27">27</xref>
</sup>
. Indeed, VDAC2 and VDAC3 expression was considerably upregulated with ZnO NPs (Fig.
<xref rid="Fig3" ref-type="fig">3b, c</xref>
). The ZnO NPs-treated group showed a large number of fragmented, smaller and short-tubular mitochondria that resemble erastin treatment (Fig.
<xref rid="Fig3" ref-type="fig">3d</xref>
).
<fig id="Fig3">
<label>Fig. 3</label>
<caption>
<title>ZnO NPs exposure dysregulates mitochondrial dynamics.</title>
<p>HUVECs were treated with ZnO NPs (10 μg/mL) or erastin (25 μM) for 24 h.
<bold>a</bold>
Typical TEM morphological images of ZnO NPs or erastin-treated cells. Scale bar = 1 μm. Total RNA was extracted for the analysis of (
<bold>b</bold>
) VDAC2 and (
<bold>c</bold>
) VDAC3 mRNA levels using qRT-PCR.
<bold>d</bold>
Representative MitoTracker ® Deep Red FM staining (50 nM) to assess the mitochondrial morphology in HUVECs. Cells were subjected to super-resolution confocal microscopy. Scale bar = 10 μm. Data are shown as the mean ± S.D. of three independent experiments.</p>
</caption>
<graphic xlink:href="41419_2020_2384_Fig3_HTML" id="d29e911"></graphic>
</fig>
</p>
<p id="Par37">Mitochondria are highly dynamic organelles with variable morphology, number and distribution within cells. Mitochondrial fusion includes the fusion of the outer and inner membranes, which is manipulated by three dynamin-related GTPases, i.e., mitofusin 1 (MFN1), MFN2, and optic atrophy 1 protein (OPA1). Mitochondrial fission is mainly controlled by dynamin-related proteins (DRPs) in eukaryotes, members of which are large self-assembling GTPases. The downregulation of the MFN1 and OPA1 genes, as well as the upregulation of the DRP1 gene (Supplementary Fig.
<xref rid="MOESM1" ref-type="media">15</xref>
) by ZnO NPs, explains the fragmented mitochondria. This result is consistent with the conclusions from TEM and MitoTracker® Deep Red FM staining. Together, these results further demonstrated that ZnO NPs-induced ferroptosis is a mitochondrial-driven cell death.</p>
</sec>
<sec id="Sec32">
<title>P53 functions as a pivotal master gene in ZnO NPs-induced ferroptosis</title>
<p id="Par38">A pioneering study by Jiang et al. implicated that p53 sensitizes cells to ferroptosis
<sup>
<xref ref-type="bibr" rid="CR29">29</xref>
</sup>
. P53 acetylation is crucial for its activity mediating ferroptosis
<sup>
<xref ref-type="bibr" rid="CR30">30</xref>
</sup>
. Interestingly, the activation of p53 by ZnO NPs has been reported in different occasions
<sup>
<xref ref-type="bibr" rid="CR31">31</xref>
<xref ref-type="bibr" rid="CR34">34</xref>
</sup>
. qRT-PCR and western blotting results showed that ZnO NPs increased p53 mRNA and protein expression, respectively (Fig.
<xref rid="Fig4" ref-type="fig">4a, b</xref>
). A reduced apoptosis rate was achieved using p53 siRNA in ZnO NPs-treated HUVECs, further illustrating that the abrogation of p53 enhanced cellular tolerance toward ZnO NPs (Fig.
<xref rid="Fig4" ref-type="fig">4c</xref>
). The induction of p53 was presumed to be associated with oxidative stress
<sup>
<xref ref-type="bibr" rid="CR34">34</xref>
</sup>
. After inhibiting p53 expression using siRNA, we found that the mRNA level of the ferroptosis biomarker PTGS2 was significantly downregulated by ZnO NPs (Fig.
<xref rid="Fig4" ref-type="fig">4d</xref>
). DCFH-DA analysis showed that p53 siRNA reduced intracellular ROS levels (Fig.
<xref rid="Fig4" ref-type="fig">4e</xref>
).
<fig id="Fig4">
<label>Fig. 4</label>
<caption>
<title>P53 functions as a pivotal master gene in ZnO NPs-induced ferroptosis.</title>
<p>HUVECs were treated with ZnO NPs (5 or 10 μg/mL) for 24 h.
<bold>a</bold>
Total RNA was extracted for p53 mRNA analysis using qRT-PCR.
<bold>b</bold>
Western blotting analysis for the expression of p53. HUVECs were transiently transfected with p53 siRNA and subjected to the following analysis.
<bold>c</bold>
Annexin-V/PI staining.
<bold>d</bold>
PTGS2 mRNA analysis.
<bold>e</bold>
ROS determination by DCFH-DA probe, MFI: mean fluorescence intensity.
<bold>f</bold>
SLC7A11 mRNA analysis and
<bold>g</bold>
SAT1 mRNA analysis. Data are shown as the mean ± S.D. of three independent experiments.</p>
</caption>
<graphic xlink:href="41419_2020_2384_Fig4_HTML" id="d29e986"></graphic>
</fig>
</p>
<p id="Par39">GSH depletion and lipid peroxidation are major hallmarks of ferroptotic cell death. P53 binds to the system X
<sub>c</sub>
<sup></sup>
transporter subunit cystine/glutamate transporter (SLC7A11) and negatively regulates SLC7A11 by decreasing cystine import and reducing GSH levels
<sup>
<xref ref-type="bibr" rid="CR29">29</xref>
,
<xref ref-type="bibr" rid="CR35">35</xref>
,
<xref ref-type="bibr" rid="CR36">36</xref>
</sup>
. ZnO NPs-treated group had decreased SLC7A11 mRNA level compared with the control group (Fig.
<xref rid="Fig4" ref-type="fig">4f</xref>
). Again, ZnO NPs exposure increased the level of SAT1 while p53 siRNA abrogated this effect (Fig.
<xref rid="Fig4" ref-type="fig">4g</xref>
). The protein expression levels of SLC7A11 and SAT1 correspond to their mRNA levels (Supplementary Fig.
<xref rid="MOESM1" ref-type="media">16</xref>
). SAT1 siRNA treatment inhibited ALOX15 and PTGS2 mRNA levels, suggesting the inhibition of ferroptosis, whereas no increase was observed in the levels of the other two lipoxygenases, arachidonate 5-lipoxygenase (ALOX5) and arachidonate 12-lipoxygenase (ALOX12) (Supplementary Fig.
<xref rid="MOESM1" ref-type="media">17</xref>
). Notably, although accumulating evidence supports the activity of p53 in the regulation of ferroptosis, p53 alone is incapable of inducing ferroptosis
<sup>
<xref ref-type="bibr" rid="CR37">37</xref>
</sup>
.</p>
</sec>
<sec id="Sec33">
<title>Particle remnants and Zn
<sup>2+</sup>
ions both contribute to ZnO NPs-induced ferroptosis</title>
<p id="Par40">In addition to reported variations in cytotoxicity, there is no consensus on the underlying mechanisms that drive the toxicity of ZnO NPs, i.e., the ZnO particles per se, the released Zn
<sup>2+</sup>
or their combination. Zn
<sup>2+</sup>
is released from the surface of ZnO NPs when they are suspended in aqueous state, both in medium and organelles with low pH
<sup>
<xref ref-type="bibr" rid="CR38">38</xref>
</sup>
.</p>
<p id="Par41">To more precisely follow particle processing behavior in cells, fluorescent-labeled F-ZnO NPs were generated by grafting the particle surface with (3-aminopropyl)triethoxysilane (APTS), followed by the addition of the amine-reactive dye fluorescein isothiocyanate (FITC)
<sup>
<xref ref-type="bibr" rid="CR39">39</xref>
</sup>
. Green fluorescent spots indicated the uptake of F-ZnO NPs by cells (Fig.
<xref rid="Fig5" ref-type="fig">5a</xref>
). To test whether ZnO NPs-induced ferroptosis is associated with Zn
<sup>2+</sup>
release inside cells, we performed cellular staining with Zn
<sup>2+</sup>
-specific fluorescent dye N-(6-methoxy-8-quinolyl)-
<italic>p</italic>
-toluenesul fonamide (TSQ)
<sup>
<xref ref-type="bibr" rid="CR40">40</xref>
</sup>
. Compared with the low intensity staining of untreated HUVECs, F-ZnO NPs-treated cells showed a generalized increase in blue fluorescence with prominent staining of the cellular membrane that was stained by DiI, suggesting that Zn
<sup>2+</sup>
derived from the particle remnants concentrates in the cells (Fig.
<xref rid="Fig5" ref-type="fig">5b</xref>
). Next, we discuss the subcellular localization of F-ZnO NPs in cells
<sup>
<xref ref-type="bibr" rid="CR41">41</xref>
</sup>
. After incubation with F-ZnO NPs for 24 h, F-ZnO NPs were colocalized with lysosomal fluorescent spots, resulted in a composite orange fluorescence profile (Fig.
<xref rid="Fig5" ref-type="fig">5c</xref>
). In addition, the overlap of fluorescent signals from TSQ and Lyso Tracker Red suggested that Zn
<sup>2+</sup>
derived from the particles concentrates in the lysosomal compartment (Fig.
<xref rid="Fig5" ref-type="fig">5d</xref>
).
<fig id="Fig5">
<label>Fig. 5</label>
<caption>
<title>Particle remnants and Zn
<sup>2+</sup>
ions both contribute to ZnO NPs-induced ferroptosis.</title>
<p>Super-resolution confocal microscopy was used to study the uptake of F-ZnO NPs and the cellular distribution of Zn
<sup>2+</sup>
. HUVECs were treated with F-ZnO NPs at concentrations of 10 μg/mL for 24 h. After permeabilization and fixation, cells were stained with
<bold>a</bold>
the cellular membrane marker DiI (20 μM),
<bold>b</bold>
DiI (20 μM) and Zn
<sup>2+</sup>
-specific fluorescent dye TSQ (30 μM),
<bold>c</bold>
Lyso Tracker Red (1 μM), or
<bold>d</bold>
Lyso Tracker Red (1 μM) and TSQ (30 μM). Then, cells were subjected to super-resolution confocal microscopy. Scale bar = 10 μm.
<bold>e</bold>
ZnO NPs were exposed to PBS at pH 7.4 and artificial lysosomal fluid (ALF) at pH 4.5 for 24 h and the free Zn
<sup>2+</sup>
content was analyzed by AAS.
<bold>f</bold>
HUVECs were exposed to ZnO NPs for 24 h, and the dissolved Zn
<sup>2+</sup>
and total Zn
<sup>2+</sup>
contents were analyzed by AAS. Zn
<sup>2+</sup>
content is expressed as pg/cell.
<bold>g</bold>
HUVECs were exposed to ZnO NPs or ZnCl
<sub>2</sub>
for 24 h and the dissolved Zn
<sup>2+</sup>
content was analyzed by AAS. Zn
<sup>2+</sup>
content is expressed as pg/cell. The results are presented as the mean ± S.D. of four replicates.
<bold>h</bold>
HUVECs were exposed to 10 μg/mL ZnO NPs or 31.9 μg/mL ZnCl
<sub>2</sub>
(stoichiometric equivalent of Zn
<sup>2+</sup>
inside the cells, compared with 10 μg/mL ZnO NPs) for 24 h. Lillie divalent iron staining analysis was performed. Scale bar = 20 μm.</p>
</caption>
<graphic xlink:href="41419_2020_2384_Fig5_HTML" id="d29e1155"></graphic>
</fig>
</p>
<p id="Par42">We then attempted to mimic the intracellular behavior of ZnO NPs by investigating Zn
<sup>2+</sup>
release in PBS at pH 7.4 and artificial lysosomal fluid (ALF) at pH 4.5. As presented in Fig.
<xref rid="Fig5" ref-type="fig">5e</xref>
, the overall amount of released Zn
<sup>2+</sup>
present in PBS solution was considerably lower than corresponding amount measured in ALF. At the highest concentration of ZnO NPs exposure (15 µg/mL), Zn
<sup>2+</sup>
concentrations corresponding to the dissolution of the NPs were 54% (in ALF) and 11% (in PBS). This result implied the massive degradation of ZnO NPs in lysosomes. For comparative purposes, the concentration of Zn
<sup>2+</sup>
inside the cell was also evaluated. The measurement resulted in an average Zn
<sup>2+</sup>
concentration per cell after 24 h of ZnO NPs incubation. The supernatant zinc concentration represented dissolved Zn
<sup>2+</sup>
, while the total zinc (including particle remnants and dissolved Zn
<sup>2+</sup>
) was achieved by acidification (Fig.
<xref rid="Fig5" ref-type="fig">5f</xref>
). From the data of the dissolved Zn
<sup>2+</sup>
to total Zn
<sup>2+</sup>
ratio, we conclude that the majority (~60%) of ZnO NPs rapidly degraded into Zn
<sup>2+</sup>
after entering the cells (presumably in the acidic lysosomal compartment), which is similar to that found in the ALF simulation. The dissolution of ZnO NPs into Zn
<sup>2+</sup>
is dependent on the properties of the particles as well as the media
<sup>
<xref ref-type="bibr" rid="CR42">42</xref>
</sup>
.</p>
<p id="Par43">Zinc is mostly bound to proteins or sequestered in lysosomes; however, no Zn
<sup>2+</sup>
signal in the control group indicates that intrinsic zinc does not affect this measurement (Fig.
<xref rid="Fig5" ref-type="fig">5f</xref>
). To rule out a surface effect of ZnO NPs, i.e., the formation of ZnO NPs agglomerates and interaction with the cell membrane, we compared the uptake of particle (ZnO NPs) and dissolved Zn
<sup>2+</sup>
(ZnCl
<sub>2</sub>
), at concentrations normalized to Zn
<sup>2+</sup>
ion. From Fig.
<xref rid="Fig5" ref-type="fig">5g</xref>
, ZnO NPs show nearly 2-fold efficiency for internalization of Zn
<sup>2+</sup>
compared with ZnCl
<sub>2</sub>
. The current data clearly demonstrate that HUVECs take up both particles and dissolved Zn
<sup>2+</sup>
. Divalent ion chelators, e.g., DFO, are not suitable for the elimination of free Zn
<sup>2+</sup>
because they chelate Fe
<sup>2+</sup>
spontaneously. To determine whether Zn
<sup>2+</sup>
induces ferroptosis similar to ZnO NPs, HUVECs were treated with ZnCl
<sub>2</sub>
, calibrated by the amount of Zn
<sup>2+</sup>
in the cells. Figure
<xref rid="Fig5" ref-type="fig">5h</xref>
shows that Zn
<sup>2+</sup>
induces comparable staining when compared with stoichiometric equivalent ZnO NPs (inside the cells), which confirms that Zn
<sup>2+</sup>
induces ferroptosis by direct ZnCl
<sub>2</sub>
exposure. To further nail the effect of dissolved Zn
<sup>2+</sup>
on ferroptosis, a set of parallel experiments were conducted by direct exposure of cells to ZnCl
<sub>2</sub>
(equal amount of Zn
<sup>2+</sup>
in the cells) and comparable results were obtained, compared with ZnO NPs (Supplementary Fig.
<xref rid="MOESM1" ref-type="media">18</xref>
).</p>
<p id="Par44">The amount of Zn
<sup>2+</sup>
leached from the ZnO NPs then taken up by cells seems to be insignificant, as the majority of dissolved Zn
<sup>2+</sup>
was found in the acidic compartment (Fig.
<xref rid="Fig5" ref-type="fig">5e</xref>
) and the internalization of zinc was weakened for Zn
<sup>2+</sup>
form (Fig.
<xref rid="Fig5" ref-type="fig">5g</xref>
). Therefore, in the case of ZnO NPs exposure, dissolved Zn
<sup>2+</sup>
plays the dominant role in ferroptosis. The dynamic equilibrium of zinc dissolution is not discussed here, therefore, an independent study demonstrated that the dissolution of ZnO NPs reached 80% of the maximum dissolved Zn
<sup>2+</sup>
within 3 h
<sup>
<xref ref-type="bibr" rid="CR43">43</xref>
</sup>
. Together, it is safely concluded that the ZnO NPs-induced ferroptosis is primarily due to the enhancement of the intracellular concentration of Zn
<sup>2+</sup>
.</p>
</sec>
<sec id="Sec34">
<title>Ferroptosis is a general form of cell death induced by NMs</title>
<p id="Par45">We next ask whether only ZnO NPs, or only ion-leaking NPs, has the ability of triggering ferroptosis. Therefore, we performed an intracellular ferrous iron staining analysis with 21 different NMs. Most of the NMs used are 0-dimensional, but there are also 1-dimensional carbon nanotubes and 2-dimensional graphene oxide (Supplementary Table
<xref rid="MOESM1" ref-type="media">2</xref>
). The primary size of these NMs are between 5 and 200 nm. These NMs are positively or negatively charged with good dispersities, both in PBS and in RPMI1640 medium. Most of NMs have a certain degree of influence on the accumulation of iron in HUVECs, suggesting a specific proferroptotic effect of NMs (Fig.
<xref rid="Fig6" ref-type="fig">6</xref>
), and related quantification was provided in Supplementary Fig.
<xref rid="MOESM1" ref-type="media">19</xref>
. This effect cannot be attributed to metal ions released from the NPs. Although a similar downstream cell-death phenotype was found, ferroptosis inducers may activate different signal pathway; for example, erastin modulates VDAC2/3
<sup>
<xref ref-type="bibr" rid="CR27">27</xref>
</sup>
and system X
<sub>c</sub>
<sup>− </sup>
<sup>
<xref ref-type="bibr" rid="CR4">4</xref>
</sup>
to trigger ferroptosis, while Ras-selective lethal small molecule 3 (RSL 3) does not affect these factors
<sup>
<xref ref-type="bibr" rid="CR44">44</xref>
</sup>
. As shown, most of NMs upregulated ferroptotic gene expressions (Supplementary Fig.
<xref rid="MOESM1" ref-type="media">20</xref>
), however, whether these NMs with different characteristics (composition, size, shape, and surface charge) share the same ferroptotic mechanism as ZnO NPs is currently unknown. To prove the universal principle that applies in ZnO NPs-induced cell death, multiple cell lines with different resources were tested. The results resemble those found with HUVECs in appearance (Supplementary Fig.
<xref rid="MOESM1" ref-type="media">21</xref>
). Nevertheless, the nature of the death signal responsible due to ZnO NPs exposure (along with other NMs) has not been completely defined. Further investigation would be beneficial for improving the understanding of the mechanisms governing NMs-induced cell death.
<fig id="Fig6">
<label>Fig. 6</label>
<caption>
<title>Nanomaterials cause intracellular Fe
<sup>2+</sup>
elevation in HUVECs.</title>
<p>HUVECs were exposed to 10 μg/ml of listed nanomaterials or 25 μM erastin for 24 h, and subjected to Lillie divalent iron staining. Red circled images indicated insignificant staining. Scale bar = 20 μm.</p>
</caption>
<graphic xlink:href="41419_2020_2384_Fig6_HTML" id="d29e1355"></graphic>
</fig>
</p>
</sec>
</sec>
<sec id="Sec35" sec-type="discussion">
<title>Discussion</title>
<p id="Par46">As usage of NMs rapidly grows, it is urgent and important to assess their safety. Previous in vitro and in vivo studies demonstrated the association of ZnO NPs exposure with various cell-death pathways; however, whether ZnO NPs, along with other “iron free” NMs induce ferroptosis has not been reported. In the present work, we identified that ferroptosis is a general cell death caused by NMs. The occurrence of ferroptosis is evidenced biologically, genetically, and morphologically.</p>
<p id="Par47">The most important finding in the current study is, unlike previous findings, our data support that “iron free” NMs trigger ferroptosis. Thus, we attempt to address its fundamental principle. Considering the different compositions and properties (size, shape, and zeta potential) of NMs, the common mechanism that leads to ferroptosis is excess ROS. After their internalization, NMs favorably mobilize to mitochondria and dysregulate the mitochondrial antioxidant defense system. Alternatively, the proinflammatory effect is an intrinsic nature of NMs that may cause ROS. These two mechanisms are applied to the majority of NMs regardless of their composition or other characteristics. Although gold and silver-constituent NMs are relatively chemically inert, their exposures to cells are also linked with the promotion of ROS. Another vital finding in the current study is that ZnO NPs-induced dysregulation of iron homeostasis. Elements have redox properties, such as iron, may catalyze the production of ROS. By taking advantage of the Fenton reaction and Haber-Weiss reaction, iron-oxide-based NMs were designed and synthesized for anticancer therapy
<sup>
<xref ref-type="bibr" rid="CR45">45</xref>
,
<xref ref-type="bibr" rid="CR46">46</xref>
</sup>
. In fact, numerous examples of damage to cells, in which iron are implicated. However, “iron free” ZnO NPs do not provide iron essentially, the source of iron under physiological condition, where iron availability is relative low, need to be discussed. Lysosomes (the main NMs-targeting organelle) and mitochondria may release iron from the LIP. Although ZnO NPs exhibited rather complicated regulation on iron uptake, storage and export related gene expressions, however, an overall consequence of ZnO NPs exposure is iron accumulation, which implied that the iron-dysregulation mechanism plays an important role in ZnO NPs-induced ROS formation. Alternatively, ROS-mediated mitochondrial damage may defect heme and iron–sulfur cluster-containing proteins synthesis, and in turn accumulates “free” iron in mitochondria. Therefore, ROS formation and the dysregulation of iron homeostasis is an interdependent event. Dixon and Stockwell summarized how iron and ROS contribute to a variety of cell-death pathways, including ferroptosis
<sup>
<xref ref-type="bibr" rid="CR5">5</xref>
</sup>
. Of note, we have no intention to attribute NMs-induced ferroptosis solely to ROS, individual investigations of different NMs are encouraged.</p>
<p id="Par48">The third interesting finding in the current study is that ZnO NPs-induced dysregulation of iron homeostasis partially due to dissolved Zn
<sup>2+</sup>
. Although Zn
<sup>2+</sup>
is an inert cation and does not undergo a redox reaction, Zn
<sup>2+</sup>
overload is closely related to ROS and subsequently mitochondrial injuries
<sup>
<xref ref-type="bibr" rid="CR47">47</xref>
,
<xref ref-type="bibr" rid="CR48">48</xref>
</sup>
. The aberrant homeostasis of transition metal ions, e.g., Fe
<sup>2+</sup>
/Fe
<sup>3+</sup>
, Zn
<sup>2+</sup>
, and Ca
<sup>2+</sup>
, plays important roles in the pathogenesis of various diseases. For instance, a recent study has highlighted the interaction of Zn
<sup>2+</sup>
homeostasis and ROS signaling suggesting their interdependence
<sup>
<xref ref-type="bibr" rid="CR49">49</xref>
</sup>
. Mitochondria contain dynamic pools of these metal ions that are incorporated into corresponding metalloproteins
<sup>
<xref ref-type="bibr" rid="CR50">50</xref>
</sup>
. Thus, Zn
<sup>2+</sup>
overload-triggered mitochondrial injuries may exaggerate the dysregulation of dynamic metal pools (including the LIP), resulting in the elevation of intracellular iron and ultimately ferroptosis. Interestingly, both ZnO NPs and Zn
<sup>2+</sup>
were reported to disrupt intracellular Ca
<sup>2+</sup>
homeostasis, which activates Ca
<sup>2+</sup>
-dependent pro-death signaling
<sup>
<xref ref-type="bibr" rid="CR51">51</xref>
<xref ref-type="bibr" rid="CR53">53</xref>
</sup>
. Our current results facilitate the understanding of the cell-death mechanism involved in the disruption of metal ion homeostasis.</p>
<p id="Par49">A recent review summarized the effect of p53 on the regulation of ferroptosis network
<sup>
<xref ref-type="bibr" rid="CR54">54</xref>
</sup>
. Specifically, the pro-death function of p53 in ferroptosis was mutually found in previous
<sup>
<xref ref-type="bibr" rid="CR29">29</xref>
</sup>
and current study, includes the inhibition of SLC7A11 expression and the promotion of SAT1 expression. On the contrary, the pro-survival function of p53 in ferroptosis have been also reported
<sup>
<xref ref-type="bibr" rid="CR54">54</xref>
</sup>
, suggested the bipolar regulation of p53 on cell death. Interestingly, there are several reports in which zinc can either block or accelerate apoptosis, due to different experimental settings. Under mild ROS conditions, p53 stimulates the expression of antioxidant genes to restore oxidative homeostasis, whilst extreme ROS level initiate apoptosis through p53
<sup>
<xref ref-type="bibr" rid="CR34">34</xref>
</sup>
. Notably, the activation of p53 may in turn induce ROS production by regulating certain genes
<sup>
<xref ref-type="bibr" rid="CR55">55</xref>
</sup>
. ZnO NPs-induced signaling that associated with p53 has been reviewed
<sup>
<xref ref-type="bibr" rid="CR11">11</xref>
</sup>
. At last but not least, the current study, for the first time, demonstrated that ZnO NPs-induced ferroptosis is p53-dependent; however, whether p53 has other functions in ZnO-induced ferroptosis is unknown. For instance, other work reported that acute exposure of eukaryotes to Zn
<sup>2+</sup>
decreased intracellular iron content; however, no information regarding to p53 regulation and ferroptosis has been released
<sup>
<xref ref-type="bibr" rid="CR56">56</xref>
</sup>
. In addition, it is commonly accepted that p53 involved in multiple line of cell death, including apoptosis, necrosis and autophagy, however, the activities of p53 in ZnO NPs (or Zn
<sup>2+</sup>
)-induced cell death are indistinct; since several cell death share ROS/p53 axis collectively, whether these are pivotal molecules that manipulate the cross talk of these cell death is not currently understood.</p>
<p id="Par50">In summary, the current study demonstrated that ZnO NPs-induced cell death coincides with the definition of ferroptosis. We conclude that HUVECs death induced by ZnO NPs includes ferroptosis, in addition to apoptosis, autophagy, and necroptosis. ZnO NPs cause ferroptosis by disrupting iron metabolism (iron overload), mitochondrial dynamics (increased mitochondrial fission) and redox homeostasis (GSH depletion and lipid peroxidation generation), which appears to be a p53-driven process (mechanism summarized in Fig.
<xref rid="Fig7" ref-type="fig">7</xref>
). This is the first comprehensive investigation on the role of “iron free” NMs in ferroptotic cell death, which emphasizes the importance of understanding NMs-induced cell death.
<fig id="Fig7">
<label>Fig. 7</label>
<caption>
<title>Proposed mechanism of ZnO NPs-induced ferroptosis.</title>
<p>Ferroptosis is initiated via various signal pathways, such as Fe
<sup>2+</sup>
accumulation, glutathione depletion and lipid peroxidation. The ZnO NPs can be endocytosed into lysosomal compartments where ZnO dissolves and releases zinc ions into the cytoplasm. ZnO NPs and zinc ions in the cytoplasm can activate p53, which may repress the transcription of SLC7A11, a component of the cystine/glutamate antiporter and glutathione depletion, and trigger SAT1 gene expression is enhanced in the presence of activated p53. Similarly, ZnO NPs and zinc ions in the cytoplasm can also impair organelles such as mitochondria and disrupting iron metabolism. and subsequent ferroptosis can occur by over-accumulation of lipid ROS.</p>
</caption>
<graphic xlink:href="41419_2020_2384_Fig7_HTML" id="d29e1491"></graphic>
</fig>
</p>
</sec>
<sec sec-type="supplementary-material">
<title>Supplementary information</title>
<sec id="Sec36">
<p>
<supplementary-material content-type="local-data" id="MOESM1">
<media xlink:href="41419_2020_2384_MOESM1_ESM.docx">
<caption>
<p>Supplementary Information</p>
</caption>
</media>
</supplementary-material>
</p>
</sec>
</sec>
</body>
<back>
<fn-group>
<fn>
<p>Edited by L. Sun</p>
</fn>
<fn>
<p>
<bold>Publisher’s note</bold>
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.</p>
</fn>
</fn-group>
<sec>
<title>Supplementary information</title>
<p>
<bold>Supplementary Information</bold>
accompanies this paper at (10.1038/s41419-020-2384-5).</p>
</sec>
<ack>
<title>Acknowledgements</title>
<p>This work is supported by The National Key Research and Development Program of China (2016YFD0400200), National Natural Science Foundation of China (21622704, 21575118 and 31671881), Fundamental Research Funds for the Central Universities (XDJK2019TJ001) and Basic Science and Frontier Technology Research Project of Chongqing (cstc2015jcyjBX0116 and cstc2018jcyjA0939).</p>
</ack>
<notes notes-type="COI-statement">
<title>Conflict of interest</title>
<p id="Par51">The authors declare that they have no conflict of interest.</p>
</notes>
<ref-list id="Bib1">
<title>References</title>
<ref id="CR1">
<label>1.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Zhao</surname>
<given-names>F</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Cellular uptake, intracellular trafficking, and cytotoxicity of nanomaterials</article-title>
<source>Small</source>
<year>2011</year>
<volume>7</volume>
<fpage>1322</fpage>
<lpage>1337</lpage>
<pub-id pub-id-type="doi">10.1002/smll.201100001</pub-id>
<pub-id pub-id-type="pmid">21520409</pub-id>
</element-citation>
</ref>
<ref id="CR2">
<label>2.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Nel</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Xia</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Madler</surname>
<given-names>L</given-names>
</name>
<name>
<surname>Li</surname>
<given-names>N</given-names>
</name>
</person-group>
<article-title>Toxic potential of materials at the nanolevel</article-title>
<source>Science</source>
<year>2006</year>
<volume>311</volume>
<fpage>622</fpage>
<lpage>627</lpage>
<pub-id pub-id-type="doi">10.1126/science.1114397</pub-id>
<pub-id pub-id-type="pmid">16456071</pub-id>
</element-citation>
</ref>
<ref id="CR3">
<label>3.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Galluzzi</surname>
<given-names>L</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Molecular mechanisms of cell death: recommendations of the Nomenclature Committee on Cell Death 2018</article-title>
<source>Cell Death Differ.</source>
<year>2018</year>
<volume>25</volume>
<fpage>486</fpage>
<lpage>541</lpage>
<pub-id pub-id-type="doi">10.1038/s41418-017-0012-4</pub-id>
<pub-id pub-id-type="pmid">29362479</pub-id>
</element-citation>
</ref>
<ref id="CR4">
<label>4.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Dixon</surname>
<given-names>SJ</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Ferroptosis: an iron-dependent form of nonapoptotic cell death</article-title>
<source>Cell</source>
<year>2012</year>
<volume>149</volume>
<fpage>1060</fpage>
<lpage>1072</lpage>
<pub-id pub-id-type="doi">10.1016/j.cell.2012.03.042</pub-id>
<pub-id pub-id-type="pmid">22632970</pub-id>
</element-citation>
</ref>
<ref id="CR5">
<label>5.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Dixon</surname>
<given-names>SJ</given-names>
</name>
<name>
<surname>Stockwell</surname>
<given-names>BR</given-names>
</name>
</person-group>
<article-title>The role of iron and reactive oxygen species in cell death</article-title>
<source>Nat. Chem. Biol.</source>
<year>2014</year>
<volume>10</volume>
<fpage>9</fpage>
<lpage>17</lpage>
<pub-id pub-id-type="doi">10.1038/nchembio.1416</pub-id>
<pub-id pub-id-type="pmid">24346035</pub-id>
</element-citation>
</ref>
<ref id="CR6">
<label>6.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Xie</surname>
<given-names>Y</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Ferroptosis: process and function</article-title>
<source>Cell Death Differ.</source>
<year>2016</year>
<volume>23</volume>
<fpage>369</fpage>
<lpage>379</lpage>
<pub-id pub-id-type="doi">10.1038/cdd.2015.158</pub-id>
<pub-id pub-id-type="pmid">26794443</pub-id>
</element-citation>
</ref>
<ref id="CR7">
<label>7.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Shen</surname>
<given-names>Z</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Emerging strategies of cancer therapy based on ferroptosis</article-title>
<source>Adv. Mater.</source>
<year>2018</year>
<volume>30</volume>
<fpage>e1704007</fpage>
<pub-id pub-id-type="doi">10.1002/adma.201704007</pub-id>
<pub-id pub-id-type="pmid">29356212</pub-id>
</element-citation>
</ref>
<ref id="CR8">
<label>8.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Kim</surname>
<given-names>SE</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Ultrasmall nanoparticles induce ferroptosis in nutrient-deprived cancer cells and suppress tumour growth</article-title>
<source>Nat. Nanotechnol.</source>
<year>2016</year>
<volume>11</volume>
<fpage>977</fpage>
<lpage>985</lpage>
<pub-id pub-id-type="doi">10.1038/nnano.2016.164</pub-id>
<pub-id pub-id-type="pmid">27668796</pub-id>
</element-citation>
</ref>
<ref id="CR9">
<label>9.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Ou</surname>
<given-names>W</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Low-density lipoprotein docosahexaenoic acid nanoparticles induce ferroptotic cell death in hepatocellular carcinoma</article-title>
<source>Free Radic. Biol. Med.</source>
<year>2017</year>
<volume>112</volume>
<fpage>597</fpage>
<lpage>607</lpage>
<pub-id pub-id-type="doi">10.1016/j.freeradbiomed.2017.09.002</pub-id>
<pub-id pub-id-type="pmid">28893626</pub-id>
</element-citation>
</ref>
<ref id="CR10">
<label>10.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Szwed</surname>
<given-names>M</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Small variations in nanoparticle structure dictate differential cellular stress responses and mode of cell death</article-title>
<source>Nanotoxicology</source>
<year>2019</year>
<volume>13</volume>
<fpage>761</fpage>
<lpage>782</lpage>
<pub-id pub-id-type="doi">10.1080/17435390.2019.1576238</pub-id>
<pub-id pub-id-type="pmid">30760074</pub-id>
</element-citation>
</ref>
<ref id="CR11">
<label>11.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Liu</surname>
<given-names>J</given-names>
</name>
<etal></etal>
</person-group>
<article-title>The toxicology of ion-shedding zinc oxide nanoparticles</article-title>
<source>Crit. Rev. Toxicol.</source>
<year>2016</year>
<volume>46</volume>
<fpage>348</fpage>
<lpage>384</lpage>
<pub-id pub-id-type="doi">10.3109/10408444.2015.1137864</pub-id>
<pub-id pub-id-type="pmid">26963861</pub-id>
</element-citation>
</ref>
<ref id="CR12">
<label>12.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Gliga</surname>
<given-names>AR</given-names>
</name>
<name>
<surname>Skoglund</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Wallinder</surname>
<given-names>IO</given-names>
</name>
<name>
<surname>Fadeel</surname>
<given-names>B</given-names>
</name>
<name>
<surname>Karlsson</surname>
<given-names>HL</given-names>
</name>
</person-group>
<article-title>Size-dependent cytotoxicity of silver nanoparticles in human lung cells: the role of cellular uptake, agglomeration and Ag release</article-title>
<source>Part Fibre Toxicol.</source>
<year>2014</year>
<volume>11</volume>
<fpage>11</fpage>
<pub-id pub-id-type="doi">10.1186/1743-8977-11-11</pub-id>
<pub-id pub-id-type="pmid">24529161</pub-id>
</element-citation>
</ref>
<ref id="CR13">
<label>13.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Samet</surname>
<given-names>JM</given-names>
</name>
<name>
<surname>Dominici</surname>
<given-names>F</given-names>
</name>
<name>
<surname>Curriero</surname>
<given-names>FC</given-names>
</name>
<name>
<surname>Coursac</surname>
<given-names>I</given-names>
</name>
<name>
<surname>Zeger</surname>
<given-names>SL</given-names>
</name>
</person-group>
<article-title>Fine particulate air pollution and mortality in 20 U.S. cities, 1987–1994</article-title>
<source>N. Engl. J. Med.</source>
<year>2000</year>
<volume>343</volume>
<fpage>1742</fpage>
<lpage>1749</lpage>
<pub-id pub-id-type="doi">10.1056/NEJM200012143432401</pub-id>
<pub-id pub-id-type="pmid">11114312</pub-id>
</element-citation>
</ref>
<ref id="CR14">
<label>14.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Gojova</surname>
<given-names>A</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Induction of inflammation in vascular endothelial cells by metal oxide nanoparticles: effect of particle composition</article-title>
<source>Environ. Health Perspect.</source>
<year>2007</year>
<volume>115</volume>
<fpage>403</fpage>
<lpage>409</lpage>
<pub-id pub-id-type="doi">10.1289/ehp.8497</pub-id>
<pub-id pub-id-type="pmid">17431490</pub-id>
</element-citation>
</ref>
<ref id="CR15">
<label>15.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Akhtar</surname>
<given-names>MJ</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Zinc oxide nanoparticles selectively induce apoptosis in human cancer cells through reactive oxygen species</article-title>
<source>Int J. Nanomed.</source>
<year>2012</year>
<volume>7</volume>
<fpage>845</fpage>
<lpage>857</lpage>
</element-citation>
</ref>
<ref id="CR16">
<label>16.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Johnson</surname>
<given-names>BM</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Acute exposure to ZnO nanoparticles induces autophagic immune cell death</article-title>
<source>Nanotoxicology</source>
<year>2015</year>
<volume>9</volume>
<fpage>737</fpage>
<lpage>748</lpage>
<pub-id pub-id-type="doi">10.3109/17435390.2014.974709</pub-id>
<pub-id pub-id-type="pmid">25378273</pub-id>
</element-citation>
</ref>
<ref id="CR17">
<label>17.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Garcíahevia</surname>
<given-names>L</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Nano-ZnO leads to tubulin macrotube assembly and actin bundling, triggering cytoskeletal catastrophe and cell necrosis</article-title>
<source>Nanoscale</source>
<year>2016</year>
<volume>8</volume>
<fpage>10963</fpage>
<lpage>10973</lpage>
<pub-id pub-id-type="doi">10.1039/C6NR00391E</pub-id>
<pub-id pub-id-type="pmid">27228212</pub-id>
</element-citation>
</ref>
<ref id="CR18">
<label>18.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Yang</surname>
<given-names>WS</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Regulation of ferroptotic cancer cell death by GPX4</article-title>
<source>Cell</source>
<year>2014</year>
<volume>156</volume>
<fpage>317</fpage>
<lpage>331</lpage>
<pub-id pub-id-type="doi">10.1016/j.cell.2013.12.010</pub-id>
<pub-id pub-id-type="pmid">24439385</pub-id>
</element-citation>
</ref>
<ref id="CR19">
<label>19.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Doll</surname>
<given-names>S</given-names>
</name>
<etal></etal>
</person-group>
<article-title>ACSL4 dictates ferroptosis sensitivity by shaping cellular lipid composition</article-title>
<source>Nat. Chem. Biol.</source>
<year>2017</year>
<volume>13</volume>
<fpage>91</fpage>
<lpage>98</lpage>
<pub-id pub-id-type="doi">10.1038/nchembio.2239</pub-id>
<pub-id pub-id-type="pmid">27842070</pub-id>
</element-citation>
</ref>
<ref id="CR20">
<label>20.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Kagan</surname>
<given-names>VE</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Oxidized arachidonic and adrenic PEs navigate cells to ferroptosis</article-title>
<source>Nat. Chem. Biol.</source>
<year>2017</year>
<volume>13</volume>
<fpage>81</fpage>
<lpage>90</lpage>
<pub-id pub-id-type="doi">10.1038/nchembio.2238</pub-id>
<pub-id pub-id-type="pmid">27842066</pub-id>
</element-citation>
</ref>
<ref id="CR21">
<label>21.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Donovan</surname>
<given-names>A</given-names>
</name>
<etal></etal>
</person-group>
<article-title>The iron exporter ferroportin/Slc40a1 is essential for iron homeostasis</article-title>
<source>Cell Metab.</source>
<year>2005</year>
<volume>1</volume>
<fpage>191</fpage>
<lpage>200</lpage>
<pub-id pub-id-type="doi">10.1016/j.cmet.2005.01.003</pub-id>
<pub-id pub-id-type="pmid">16054062</pub-id>
</element-citation>
</ref>
<ref id="CR22">
<label>22.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Drakesmith</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Nemeth</surname>
<given-names>E</given-names>
</name>
<name>
<surname>Ganz</surname>
<given-names>T</given-names>
</name>
</person-group>
<article-title>Ironing out ferroportin</article-title>
<source>Cell Metab.</source>
<year>2015</year>
<volume>22</volume>
<fpage>777</fpage>
<lpage>787</lpage>
<pub-id pub-id-type="doi">10.1016/j.cmet.2015.09.006</pub-id>
<pub-id pub-id-type="pmid">26437604</pub-id>
</element-citation>
</ref>
<ref id="CR23">
<label>23.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Marro</surname>
<given-names>S</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Heme controls ferroportin1 (FPN1) transcription involving Bach1, Nrf2 and a MARE/ARE sequence motif at position -7007 of the FPN1 promoter</article-title>
<source>Haematologica</source>
<year>2010</year>
<volume>95</volume>
<fpage>1261</fpage>
<lpage>1268</lpage>
<pub-id pub-id-type="doi">10.3324/haematol.2009.020123</pub-id>
<pub-id pub-id-type="pmid">20179090</pub-id>
</element-citation>
</ref>
<ref id="CR24">
<label>24.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Nemeth</surname>
<given-names>E</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Hepcidin regulates cellular iron efflux by binding to ferroportin and inducing its internalization</article-title>
<source>Science</source>
<year>2004</year>
<volume>306</volume>
<fpage>2090</fpage>
<lpage>2093</lpage>
<pub-id pub-id-type="doi">10.1126/science.1104742</pub-id>
<pub-id pub-id-type="pmid">15514116</pub-id>
</element-citation>
</ref>
<ref id="CR25">
<label>25.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Fleming</surname>
<given-names>RE</given-names>
</name>
<name>
<surname>Ponka</surname>
<given-names>P</given-names>
</name>
</person-group>
<article-title>Iron overload in human disease</article-title>
<source>N. Engl. J. Med.</source>
<year>2012</year>
<volume>366</volume>
<fpage>348</fpage>
<lpage>359</lpage>
<pub-id pub-id-type="doi">10.1056/NEJMra1004967</pub-id>
<pub-id pub-id-type="pmid">22276824</pub-id>
</element-citation>
</ref>
<ref id="CR26">
<label>26.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Eaton</surname>
<given-names>JW</given-names>
</name>
<name>
<surname>Qian</surname>
<given-names>M</given-names>
</name>
</person-group>
<article-title>Molecular bases of cellular iron toxicity</article-title>
<source>Free Radic. Biol. Med.</source>
<year>2002</year>
<volume>32</volume>
<fpage>833</fpage>
<lpage>840</lpage>
<pub-id pub-id-type="doi">10.1016/S0891-5849(02)00772-4</pub-id>
<pub-id pub-id-type="pmid">11978485</pub-id>
</element-citation>
</ref>
<ref id="CR27">
<label>27.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Yagoda</surname>
<given-names>N</given-names>
</name>
<etal></etal>
</person-group>
<article-title>RAS-RAF-MEK-dependent oxidative cell death involving voltage-dependent anion channels</article-title>
<source>Nature</source>
<year>2007</year>
<volume>447</volume>
<fpage>864</fpage>
<lpage>868</lpage>
<pub-id pub-id-type="doi">10.1038/nature05859</pub-id>
<pub-id pub-id-type="pmid">17568748</pub-id>
</element-citation>
</ref>
<ref id="CR28">
<label>28.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Dolma</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Lessnick</surname>
<given-names>SL</given-names>
</name>
<name>
<surname>Hahn</surname>
<given-names>WC</given-names>
</name>
<name>
<surname>Stockwell</surname>
<given-names>BR</given-names>
</name>
</person-group>
<article-title>Identification of genotype-selective antitumor agents using synthetic lethal chemical screening in engineered human tumor cells</article-title>
<source>Cancer Cell.</source>
<year>2003</year>
<volume>3</volume>
<fpage>285</fpage>
<lpage>296</lpage>
<pub-id pub-id-type="doi">10.1016/S1535-6108(03)00050-3</pub-id>
<pub-id pub-id-type="pmid">12676586</pub-id>
</element-citation>
</ref>
<ref id="CR29">
<label>29.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Jiang</surname>
<given-names>L</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Ferroptosis as a p53-mediated activity during tumour suppression</article-title>
<source>Nature</source>
<year>2015</year>
<volume>520</volume>
<fpage>57</fpage>
<lpage>62</lpage>
<pub-id pub-id-type="doi">10.1038/nature14344</pub-id>
<pub-id pub-id-type="pmid">25799988</pub-id>
</element-citation>
</ref>
<ref id="CR30">
<label>30.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Wang</surname>
<given-names>SJ</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Acetylation is crucial for p53-mediated ferroptosis and tumor suppression</article-title>
<source>Cell Rep.</source>
<year>2016</year>
<volume>17</volume>
<fpage>366</fpage>
<lpage>373</lpage>
<pub-id pub-id-type="doi">10.1016/j.celrep.2016.09.022</pub-id>
<pub-id pub-id-type="pmid">27705786</pub-id>
</element-citation>
</ref>
<ref id="CR31">
<label>31.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Kumar</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Najafzadeh</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Jacob</surname>
<given-names>BK</given-names>
</name>
<name>
<surname>Dhawan</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Anderson</surname>
<given-names>D</given-names>
</name>
</person-group>
<article-title>Zinc oxide nanoparticles affect the expression of p53, Ras p21 and JNKs: an ex vivo/in vitro exposure study in respiratory disease patients</article-title>
<source>Mutagenesis</source>
<year>2015</year>
<volume>30</volume>
<fpage>237</fpage>
<lpage>245</lpage>
<pub-id pub-id-type="doi">10.1093/mutage/geu064</pub-id>
<pub-id pub-id-type="pmid">25381309</pub-id>
</element-citation>
</ref>
<ref id="CR32">
<label>32.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Ng</surname>
<given-names>KW</given-names>
</name>
<etal></etal>
</person-group>
<article-title>The role of the tumor suppressor p53 pathway in the cellular DNA damage response to zinc oxide nanoparticles</article-title>
<source>Biomaterials</source>
<year>2011</year>
<volume>32</volume>
<fpage>8218</fpage>
<lpage>8225</lpage>
<pub-id pub-id-type="doi">10.1016/j.biomaterials.2011.07.036</pub-id>
<pub-id pub-id-type="pmid">21807406</pub-id>
</element-citation>
</ref>
<ref id="CR33">
<label>33.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Roy</surname>
<given-names>R</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Zinc oxide nanoparticles induce apoptosis by enhancement of autophagy via PI3K/Akt/mTOR inhibition</article-title>
<source>Toxicol Lett.</source>
<year>2014</year>
<volume>227</volume>
<fpage>29</fpage>
<lpage>40</lpage>
<pub-id pub-id-type="doi">10.1016/j.toxlet.2014.02.024</pub-id>
<pub-id pub-id-type="pmid">24614525</pub-id>
</element-citation>
</ref>
<ref id="CR34">
<label>34.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Setyawati</surname>
<given-names>MI</given-names>
</name>
<name>
<surname>Tay</surname>
<given-names>CY</given-names>
</name>
<name>
<surname>Leong</surname>
<given-names>DT</given-names>
</name>
</person-group>
<article-title>Effect of zinc oxide nanomaterials-induced oxidative stress on the p53 pathway</article-title>
<source>Biomaterials</source>
<year>2013</year>
<volume>34</volume>
<fpage>10133</fpage>
<lpage>10142</lpage>
<pub-id pub-id-type="doi">10.1016/j.biomaterials.2013.09.024</pub-id>
<pub-id pub-id-type="pmid">24090840</pub-id>
</element-citation>
</ref>
<ref id="CR35">
<label>35.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Stockwell</surname>
<given-names>BR</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Ferroptosis: a regulated cell death nexus linking metabolism, redox biology, and disease</article-title>
<source>Cell</source>
<year>2017</year>
<volume>171</volume>
<fpage>273</fpage>
<lpage>285</lpage>
<pub-id pub-id-type="doi">10.1016/j.cell.2017.09.021</pub-id>
<pub-id pub-id-type="pmid">28985560</pub-id>
</element-citation>
</ref>
<ref id="CR36">
<label>36.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Ou</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Wang</surname>
<given-names>SJ</given-names>
</name>
<name>
<surname>Li</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Chu</surname>
<given-names>B</given-names>
</name>
<name>
<surname>Gu</surname>
<given-names>W</given-names>
</name>
</person-group>
<article-title>Activation of SAT1 engages polyamine metabolism with p53-mediated ferroptotic responses</article-title>
<source>Proc. Natl Acad. Sci. USA</source>
<year>2016</year>
<volume>113</volume>
<fpage>E6806</fpage>
<lpage>E6812</lpage>
<pub-id pub-id-type="doi">10.1073/pnas.1607152113</pub-id>
<pub-id pub-id-type="pmid">27698118</pub-id>
</element-citation>
</ref>
<ref id="CR37">
<label>37.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Murphy</surname>
<given-names>ME</given-names>
</name>
</person-group>
<article-title>Ironing out how p53 regulates ferroptosis</article-title>
<source>Proc. Natl Acad. Sci. USA</source>
<year>2016</year>
<volume>113</volume>
<fpage>12350</fpage>
<lpage>12352</lpage>
<pub-id pub-id-type="doi">10.1073/pnas.1615159113</pub-id>
<pub-id pub-id-type="pmid">27791175</pub-id>
</element-citation>
</ref>
<ref id="CR38">
<label>38.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Zhu</surname>
<given-names>X</given-names>
</name>
<name>
<surname>Wang</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Zhang</surname>
<given-names>X</given-names>
</name>
<name>
<surname>Chang</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Chen</surname>
<given-names>Y</given-names>
</name>
</person-group>
<article-title>The impact of ZnO nanoparticle aggregates on the embryonic development of zebrafish (Danio rerio)</article-title>
<source>Nanotechnology</source>
<year>2009</year>
<volume>20</volume>
<fpage>195103</fpage>
<pub-id pub-id-type="doi">10.1088/0957-4484/20/19/195103</pub-id>
<pub-id pub-id-type="pmid">19420631</pub-id>
</element-citation>
</ref>
<ref id="CR39">
<label>39.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Moos</surname>
<given-names>PJ</given-names>
</name>
<etal></etal>
</person-group>
<article-title>ZnO particulate matter requires cell contact for toxicity in human colon cancer cells</article-title>
<source>Chem. Res. Toxicol.</source>
<year>2010</year>
<volume>23</volume>
<fpage>733</fpage>
<lpage>739</lpage>
<pub-id pub-id-type="doi">10.1021/tx900203v</pub-id>
<pub-id pub-id-type="pmid">20155942</pub-id>
</element-citation>
</ref>
<ref id="CR40">
<label>40.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Meeusen</surname>
<given-names>JW</given-names>
</name>
<name>
<surname>Tomasiewicz</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Nowakowski</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Petering</surname>
<given-names>DH</given-names>
</name>
</person-group>
<article-title>TSQ (6-methoxy-8-p-toluenesulfonamido-quinoline), a common fluorescent sensor for cellular zinc, images zinc proteins</article-title>
<source>Inorg. Chem.</source>
<year>2011</year>
<volume>50</volume>
<fpage>7563</fpage>
<lpage>7573</lpage>
<pub-id pub-id-type="doi">10.1021/ic200478q</pub-id>
<pub-id pub-id-type="pmid">21774459</pub-id>
</element-citation>
</ref>
<ref id="CR41">
<label>41.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Kao</surname>
<given-names>YY</given-names>
</name>
<name>
<surname>Chen</surname>
<given-names>YC</given-names>
</name>
<name>
<surname>Cheng</surname>
<given-names>TJ</given-names>
</name>
<name>
<surname>Chiung</surname>
<given-names>YM</given-names>
</name>
<name>
<surname>Liu</surname>
<given-names>PS</given-names>
</name>
</person-group>
<article-title>Zinc oxide nanoparticles interfere with zinc ion homeostasis to cause cytotoxicity</article-title>
<source>Toxicol. Sci.</source>
<year>2012</year>
<volume>125</volume>
<fpage>462</fpage>
<lpage>472</lpage>
<pub-id pub-id-type="doi">10.1093/toxsci/kfr319</pub-id>
<pub-id pub-id-type="pmid">22112499</pub-id>
</element-citation>
</ref>
<ref id="CR42">
<label>42.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Pasquet</surname>
<given-names>J</given-names>
</name>
<etal></etal>
</person-group>
<article-title>The contribution of zinc ions to the antimicrobial activity of zinc oxide</article-title>
<source>Colloid Surf. A</source>
<year>2014</year>
<volume>457</volume>
<fpage>263</fpage>
<lpage>274</lpage>
<pub-id pub-id-type="doi">10.1016/j.colsurfa.2014.05.057</pub-id>
</element-citation>
</ref>
<ref id="CR43">
<label>43.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Xia</surname>
<given-names>T</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Comparison of the mechanism of toxicity of zinc oxide and cerium oxide nanoparticles based on dissolution and oxidative stress properties</article-title>
<source>ACS Nano.</source>
<year>2008</year>
<volume>2</volume>
<fpage>2121</fpage>
<lpage>2134</lpage>
<pub-id pub-id-type="doi">10.1021/nn800511k</pub-id>
<pub-id pub-id-type="pmid">19206459</pub-id>
</element-citation>
</ref>
<ref id="CR44">
<label>44.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Yang</surname>
<given-names>WS</given-names>
</name>
<name>
<surname>Stockwell</surname>
<given-names>BR</given-names>
</name>
</person-group>
<article-title>Synthetic lethal screening identifies compounds activating iron-dependent, nonapoptotic cell death in oncogenic-RAS-harboring cancer cells</article-title>
<source>Chem Biol.</source>
<year>2008</year>
<volume>15</volume>
<fpage>234</fpage>
<lpage>245</lpage>
<pub-id pub-id-type="doi">10.1016/j.chembiol.2008.02.010</pub-id>
<pub-id pub-id-type="pmid">18355723</pub-id>
</element-citation>
</ref>
<ref id="CR45">
<label>45.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Shen</surname>
<given-names>Z</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Fenton-reaction-acceleratable magnetic nanoparticles for ferroptosis therapy of orthotopic brain tumors</article-title>
<source>ACS Nano.</source>
<year>2018</year>
<volume>12</volume>
<fpage>11355</fpage>
<lpage>11365</lpage>
<pub-id pub-id-type="doi">10.1021/acsnano.8b06201</pub-id>
<pub-id pub-id-type="pmid">30375848</pub-id>
</element-citation>
</ref>
<ref id="CR46">
<label>46.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Zhou</surname>
<given-names>Z</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Activatable singlet oxygen generation from lipid hydroperoxide nanoparticles for cancer therapy</article-title>
<source>. Angew Chem. Int. Ed. Engl.</source>
<year>2017</year>
<volume>56</volume>
<fpage>6492</fpage>
<lpage>6496</lpage>
<pub-id pub-id-type="doi">10.1002/anie.201701181</pub-id>
<pub-id pub-id-type="pmid">28470979</pub-id>
</element-citation>
</ref>
<ref id="CR47">
<label>47.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Sadli</surname>
<given-names>N</given-names>
</name>
<name>
<surname>Barrow</surname>
<given-names>CJ</given-names>
</name>
<name>
<surname>McGee</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Suphioglu</surname>
<given-names>C</given-names>
</name>
</person-group>
<article-title>Effect of DHA and coenzymeQ10 against Abeta- and zinc-induced mitochondrial dysfunction in human neuronal cells</article-title>
<source>Cell Physiol. Biochem.</source>
<year>2013</year>
<volume>32</volume>
<fpage>243</fpage>
<lpage>252</lpage>
<pub-id pub-id-type="doi">10.1159/000354433</pub-id>
<pub-id pub-id-type="pmid">23942088</pub-id>
</element-citation>
</ref>
<ref id="CR48">
<label>48.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Gazaryan</surname>
<given-names>IG</given-names>
</name>
<name>
<surname>Krasinskaya</surname>
<given-names>IP</given-names>
</name>
<name>
<surname>Kristal</surname>
<given-names>BS</given-names>
</name>
<name>
<surname>Brown</surname>
<given-names>AM</given-names>
</name>
</person-group>
<article-title>Zinc irreversibly damages major enzymes of energy production and antioxidant defense prior to mitochondrial permeability transition</article-title>
<source>J. Biol. Chem.</source>
<year>2007</year>
<volume>282</volume>
<fpage>24373</fpage>
<lpage>24380</lpage>
<pub-id pub-id-type="doi">10.1074/jbc.M611376200</pub-id>
<pub-id pub-id-type="pmid">17565998</pub-id>
</element-citation>
</ref>
<ref id="CR49">
<label>49.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Slepchenko</surname>
<given-names>KG</given-names>
</name>
<name>
<surname>Lu</surname>
<given-names>Q</given-names>
</name>
<name>
<surname>Li</surname>
<given-names>YV</given-names>
</name>
</person-group>
<article-title>Crosstalk between increased intracellular zinc (Zn(2+)) and accumulation of reactive oxygen species in chemical ischemia</article-title>
<source>Am. J. Physiol. Cell Physiol.</source>
<year>2017</year>
<volume>313</volume>
<fpage>C448</fpage>
<lpage>C459</lpage>
<pub-id pub-id-type="doi">10.1152/ajpcell.00048.2017</pub-id>
<pub-id pub-id-type="pmid">28747335</pub-id>
</element-citation>
</ref>
<ref id="CR50">
<label>50.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Finney</surname>
<given-names>LA</given-names>
</name>
<name>
<surname>O’Halloran</surname>
<given-names>TV</given-names>
</name>
</person-group>
<article-title>Transition metal speciation in the cell: insights from the chemistry of metal ion receptors</article-title>
<source>Science</source>
<year>2003</year>
<volume>300</volume>
<fpage>931</fpage>
<lpage>936</lpage>
<pub-id pub-id-type="doi">10.1126/science.1085049</pub-id>
<pub-id pub-id-type="pmid">12738850</pub-id>
</element-citation>
</ref>
<ref id="CR51">
<label>51.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Huang</surname>
<given-names>CC</given-names>
</name>
<name>
<surname>Aronstam</surname>
<given-names>RS</given-names>
</name>
<name>
<surname>Chen</surname>
<given-names>DR</given-names>
</name>
<name>
<surname>Huang</surname>
<given-names>YW</given-names>
</name>
</person-group>
<article-title>Oxidative stress, calcium homeostasis, and altered gene expression in human lung epithelial cells exposed to ZnO nanoparticles</article-title>
<source>Toxicol. Vitr.</source>
<year>2010</year>
<volume>24</volume>
<fpage>45</fpage>
<lpage>55</lpage>
<pub-id pub-id-type="doi">10.1016/j.tiv.2009.09.007</pub-id>
</element-citation>
</ref>
<ref id="CR52">
<label>52.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Guo</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Du</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Wu</surname>
<given-names>Q</given-names>
</name>
<name>
<surname>Jiang</surname>
<given-names>W</given-names>
</name>
<name>
<surname>Bi</surname>
<given-names>H</given-names>
</name>
</person-group>
<article-title>Disrupted calcium homeostasis is involved in elevated zinc ion-induced photoreceptor cell death</article-title>
<source>Arch Biochem Biophys.</source>
<year>2014</year>
<volume>560</volume>
<fpage>44</fpage>
<lpage>51</lpage>
<pub-id pub-id-type="doi">10.1016/j.abb.2014.07.014</pub-id>
<pub-id pub-id-type="pmid">25051343</pub-id>
</element-citation>
</ref>
<ref id="CR53">
<label>53.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Vander Jagt</surname>
<given-names>TA</given-names>
</name>
<name>
<surname>Connor</surname>
<given-names>JA</given-names>
</name>
<name>
<surname>Weiss</surname>
<given-names>JH</given-names>
</name>
<name>
<surname>Shuttleworth</surname>
<given-names>CW</given-names>
</name>
</person-group>
<article-title>Intracellular Zn
<sup>2+</sup>
increases contribute to the progression of excitotoxic Ca
<sup>2+</sup>
increases in apical dendrites of CA1 pyramidal neurons</article-title>
<source>Neuroscience</source>
<year>2009</year>
<volume>159</volume>
<fpage>104</fpage>
<lpage>114</lpage>
<pub-id pub-id-type="doi">10.1016/j.neuroscience.2008.11.052</pub-id>
<pub-id pub-id-type="pmid">19135505</pub-id>
</element-citation>
</ref>
<ref id="CR54">
<label>54.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Kang</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Kroemer</surname>
<given-names>G</given-names>
</name>
<name>
<surname>Tang</surname>
<given-names>D</given-names>
</name>
</person-group>
<article-title>The tumor suppressor protein p53 and the ferroptosis network</article-title>
<source>Free Radic. Biol. Med.</source>
<year>2019</year>
<volume>133</volume>
<fpage>162</fpage>
<lpage>168</lpage>
<pub-id pub-id-type="doi">10.1016/j.freeradbiomed.2018.05.074</pub-id>
<pub-id pub-id-type="pmid">29800655</pub-id>
</element-citation>
</ref>
<ref id="CR55">
<label>55.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Ostrakhovitch</surname>
<given-names>EA</given-names>
</name>
<name>
<surname>Cherian</surname>
<given-names>MG</given-names>
</name>
</person-group>
<article-title>Differential regulation of signal transduction pathways in wild type and mutated p53 breast cancer epithelial cells by copper and zinc</article-title>
<source>Arch. Biochem. Biophys.</source>
<year>2004</year>
<volume>423</volume>
<fpage>351</fpage>
<lpage>361</lpage>
<pub-id pub-id-type="doi">10.1016/j.abb.2004.01.004</pub-id>
<pub-id pub-id-type="pmid">15001399</pub-id>
</element-citation>
</ref>
<ref id="CR56">
<label>56.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Pagani</surname>
<given-names>MA</given-names>
</name>
<name>
<surname>Casamayor</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Serrano</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Atrian</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Arino</surname>
<given-names>J</given-names>
</name>
</person-group>
<article-title>Disruption of iron homeostasis in
<italic>Saccharomyces cerevisiae</italic>
by high zinc levels: a genome-wide study</article-title>
<source>Mol. Microbiol.</source>
<year>2007</year>
<volume>65</volume>
<fpage>521</fpage>
<lpage>537</lpage>
<pub-id pub-id-type="doi">10.1111/j.1365-2958.2007.05807.x</pub-id>
<pub-id pub-id-type="pmid">17630978</pub-id>
</element-citation>
</ref>
</ref-list>
</back>
</pmc>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/ChloroquineV1/Data/Pmc/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000086 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Pmc/Corpus/biblio.hfd -nk 000086 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    ChloroquineV1
   |flux=    Pmc
   |étape=   Corpus
   |type=    RBID
   |clé=     PMC:7070056
   |texte=   “Iron free” zinc oxide nanoparticles with ion-leaking properties disrupt intracellular ROS and iron homeostasis to induce ferroptosis
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Pmc/Corpus/RBID.i   -Sk "pubmed:32170066" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Pmc/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a ChloroquineV1 

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Wed Mar 25 22:43:59 2020. Site generation: Sun Jan 31 12:44:45 2021