Serveur d'exploration Chloroquine

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.
***** Acces problem to record *****\

Identifieur interne : 000081 ( Pmc/Corpus ); précédent : 0000809; suivant : 0000820 ***** probable Xml problem with record *****

Links to Exploration step


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Tetrahydrobenzimidazole TMQ0153 triggers apoptosis, autophagy and necroptosis crosstalk in chronic myeloid leukemia</title>
<author>
<name sortKey="Song, Sungmi" sort="Song, Sungmi" uniqKey="Song S" first="Sungmi" last="Song">Sungmi Song</name>
<affiliation>
<nlm:aff id="Aff1">
<institution-wrap>
<institution-id institution-id-type="ISNI">0000 0004 0470 5905</institution-id>
<institution-id institution-id-type="GRID">grid.31501.36</institution-id>
<institution>College of Pharmacy,</institution>
<institution>Seoul National University,</institution>
</institution-wrap>
1 Gwanak-ro, Gwanak-gu, Seoul, 08626 Korea</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Lee, Jin Young" sort="Lee, Jin Young" uniqKey="Lee J" first="Jin-Young" last="Lee">Jin-Young Lee</name>
<affiliation>
<nlm:aff id="Aff1">
<institution-wrap>
<institution-id institution-id-type="ISNI">0000 0004 0470 5905</institution-id>
<institution-id institution-id-type="GRID">grid.31501.36</institution-id>
<institution>College of Pharmacy,</institution>
<institution>Seoul National University,</institution>
</institution-wrap>
1 Gwanak-ro, Gwanak-gu, Seoul, 08626 Korea</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Ermolenko, Ludmila" sort="Ermolenko, Ludmila" uniqKey="Ermolenko L" first="Ludmila" last="Ermolenko">Ludmila Ermolenko</name>
<affiliation>
<nlm:aff id="Aff2">Département SNCM (Substances Naturelles et Chimie Médicinale), ICSN-CNRS, LabEx LERMIT, Centre de Recherche de Gif-sur-Yvette, Avenue de la Terrasse (Bat. 27), 91190 Gif-sur-Yvette, France</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Mazumder, Aloran" sort="Mazumder, Aloran" uniqKey="Mazumder A" first="Aloran" last="Mazumder">Aloran Mazumder</name>
<affiliation>
<nlm:aff id="Aff1">
<institution-wrap>
<institution-id institution-id-type="ISNI">0000 0004 0470 5905</institution-id>
<institution-id institution-id-type="GRID">grid.31501.36</institution-id>
<institution>College of Pharmacy,</institution>
<institution>Seoul National University,</institution>
</institution-wrap>
1 Gwanak-ro, Gwanak-gu, Seoul, 08626 Korea</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Ji, Seungwon" sort="Ji, Seungwon" uniqKey="Ji S" first="Seungwon" last="Ji">Seungwon Ji</name>
<affiliation>
<nlm:aff id="Aff1">
<institution-wrap>
<institution-id institution-id-type="ISNI">0000 0004 0470 5905</institution-id>
<institution-id institution-id-type="GRID">grid.31501.36</institution-id>
<institution>College of Pharmacy,</institution>
<institution>Seoul National University,</institution>
</institution-wrap>
1 Gwanak-ro, Gwanak-gu, Seoul, 08626 Korea</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Ryu, Heeju" sort="Ryu, Heeju" uniqKey="Ryu H" first="Heeju" last="Ryu">Heeju Ryu</name>
<affiliation>
<nlm:aff id="Aff1">
<institution-wrap>
<institution-id institution-id-type="ISNI">0000 0004 0470 5905</institution-id>
<institution-id institution-id-type="GRID">grid.31501.36</institution-id>
<institution>College of Pharmacy,</institution>
<institution>Seoul National University,</institution>
</institution-wrap>
1 Gwanak-ro, Gwanak-gu, Seoul, 08626 Korea</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Kim, Hyejin" sort="Kim, Hyejin" uniqKey="Kim H" first="Hyejin" last="Kim">Hyejin Kim</name>
<affiliation>
<nlm:aff id="Aff1">
<institution-wrap>
<institution-id institution-id-type="ISNI">0000 0004 0470 5905</institution-id>
<institution-id institution-id-type="GRID">grid.31501.36</institution-id>
<institution>College of Pharmacy,</institution>
<institution>Seoul National University,</institution>
</institution-wrap>
1 Gwanak-ro, Gwanak-gu, Seoul, 08626 Korea</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Kim, Dong Wook" sort="Kim, Dong Wook" uniqKey="Kim D" first="Dong-Wook" last="Kim">Dong-Wook Kim</name>
<affiliation>
<nlm:aff id="Aff3">
<institution-wrap>
<institution-id institution-id-type="ISNI">0000 0004 0470 4224</institution-id>
<institution-id institution-id-type="GRID">grid.411947.e</institution-id>
<institution>Catholic University, Seoul St. Mary’s Hospital,</institution>
</institution-wrap>
Banpo dong 505, Seocho Gu, Seoul, Korea</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Lee, Jung Weon" sort="Lee, Jung Weon" uniqKey="Lee J" first="Jung Weon" last="Lee">Jung Weon Lee</name>
<affiliation>
<nlm:aff id="Aff1">
<institution-wrap>
<institution-id institution-id-type="ISNI">0000 0004 0470 5905</institution-id>
<institution-id institution-id-type="GRID">grid.31501.36</institution-id>
<institution>College of Pharmacy,</institution>
<institution>Seoul National University,</institution>
</institution-wrap>
1 Gwanak-ro, Gwanak-gu, Seoul, 08626 Korea</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Dicato, Mario" sort="Dicato, Mario" uniqKey="Dicato M" first="Mario" last="Dicato">Mario Dicato</name>
<affiliation>
<nlm:aff id="Aff4">
<institution-wrap>
<institution-id institution-id-type="ISNI">0000 0004 0613 2450</institution-id>
<institution-id institution-id-type="GRID">grid.414194.d</institution-id>
<institution>Laboratoire de Biologie Moléculaire du Cancer, Hôpital Kirchberg,</institution>
</institution-wrap>
9, rue Edward Steichen, L-2540 Luxembourg, Luxembourg</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Christov, Christo" sort="Christov, Christo" uniqKey="Christov C" first="Christo" last="Christov">Christo Christov</name>
<affiliation>
<nlm:aff id="Aff5">
<institution-wrap>
<institution-id institution-id-type="ISNI">0000 0001 2194 6418</institution-id>
<institution-id institution-id-type="GRID">grid.29172.3f</institution-id>
<institution>Service d’Histologie, Faculté de Médicine,</institution>
<institution>Université de Lorraine, and INSERM U1256 NGERE,</institution>
</institution-wrap>
54000 Nancy, France</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Schnekenburger, Michael" sort="Schnekenburger, Michael" uniqKey="Schnekenburger M" first="Michael" last="Schnekenburger">Michael Schnekenburger</name>
<affiliation>
<nlm:aff id="Aff4">
<institution-wrap>
<institution-id institution-id-type="ISNI">0000 0004 0613 2450</institution-id>
<institution-id institution-id-type="GRID">grid.414194.d</institution-id>
<institution>Laboratoire de Biologie Moléculaire du Cancer, Hôpital Kirchberg,</institution>
</institution-wrap>
9, rue Edward Steichen, L-2540 Luxembourg, Luxembourg</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Cerella, Claudia" sort="Cerella, Claudia" uniqKey="Cerella C" first="Claudia" last="Cerella">Claudia Cerella</name>
<affiliation>
<nlm:aff id="Aff1">
<institution-wrap>
<institution-id institution-id-type="ISNI">0000 0004 0470 5905</institution-id>
<institution-id institution-id-type="GRID">grid.31501.36</institution-id>
<institution>College of Pharmacy,</institution>
<institution>Seoul National University,</institution>
</institution-wrap>
1 Gwanak-ro, Gwanak-gu, Seoul, 08626 Korea</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="Aff4">
<institution-wrap>
<institution-id institution-id-type="ISNI">0000 0004 0613 2450</institution-id>
<institution-id institution-id-type="GRID">grid.414194.d</institution-id>
<institution>Laboratoire de Biologie Moléculaire du Cancer, Hôpital Kirchberg,</institution>
</institution-wrap>
9, rue Edward Steichen, L-2540 Luxembourg, Luxembourg</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Gerard, Deborah" sort="Gerard, Deborah" uniqKey="Gerard D" first="Déborah" last="Gérard">Déborah Gérard</name>
<affiliation>
<nlm:aff id="Aff4">
<institution-wrap>
<institution-id institution-id-type="ISNI">0000 0004 0613 2450</institution-id>
<institution-id institution-id-type="GRID">grid.414194.d</institution-id>
<institution>Laboratoire de Biologie Moléculaire du Cancer, Hôpital Kirchberg,</institution>
</institution-wrap>
9, rue Edward Steichen, L-2540 Luxembourg, Luxembourg</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Orlikova Boyer, Barbora" sort="Orlikova Boyer, Barbora" uniqKey="Orlikova Boyer B" first="Barbora" last="Orlikova-Boyer">Barbora Orlikova-Boyer</name>
<affiliation>
<nlm:aff id="Aff1">
<institution-wrap>
<institution-id institution-id-type="ISNI">0000 0004 0470 5905</institution-id>
<institution-id institution-id-type="GRID">grid.31501.36</institution-id>
<institution>College of Pharmacy,</institution>
<institution>Seoul National University,</institution>
</institution-wrap>
1 Gwanak-ro, Gwanak-gu, Seoul, 08626 Korea</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="Aff4">
<institution-wrap>
<institution-id institution-id-type="ISNI">0000 0004 0613 2450</institution-id>
<institution-id institution-id-type="GRID">grid.414194.d</institution-id>
<institution>Laboratoire de Biologie Moléculaire du Cancer, Hôpital Kirchberg,</institution>
</institution-wrap>
9, rue Edward Steichen, L-2540 Luxembourg, Luxembourg</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Al Mourabit, Ali" sort="Al Mourabit, Ali" uniqKey="Al Mourabit A" first="Ali" last="Al-Mourabit">Ali Al-Mourabit</name>
<affiliation>
<nlm:aff id="Aff2">Département SNCM (Substances Naturelles et Chimie Médicinale), ICSN-CNRS, LabEx LERMIT, Centre de Recherche de Gif-sur-Yvette, Avenue de la Terrasse (Bat. 27), 91190 Gif-sur-Yvette, France</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Diederich, Marc" sort="Diederich, Marc" uniqKey="Diederich M" first="Marc" last="Diederich">Marc Diederich</name>
<affiliation>
<nlm:aff id="Aff1">
<institution-wrap>
<institution-id institution-id-type="ISNI">0000 0004 0470 5905</institution-id>
<institution-id institution-id-type="GRID">grid.31501.36</institution-id>
<institution>College of Pharmacy,</institution>
<institution>Seoul National University,</institution>
</institution-wrap>
1 Gwanak-ro, Gwanak-gu, Seoul, 08626 Korea</nlm:aff>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PMC</idno>
<idno type="pmid">32034134</idno>
<idno type="pmc">7007439</idno>
<idno type="url">http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7007439</idno>
<idno type="RBID">PMC:7007439</idno>
<idno type="doi">10.1038/s41419-020-2304-8</idno>
<date when="2020">2020</date>
<idno type="wicri:Area/Pmc/Corpus">000081</idno>
<idno type="wicri:explorRef" wicri:stream="Pmc" wicri:step="Corpus" wicri:corpus="PMC">000081</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a" type="main">Tetrahydrobenzimidazole TMQ0153 triggers apoptosis, autophagy and necroptosis crosstalk in chronic myeloid leukemia</title>
<author>
<name sortKey="Song, Sungmi" sort="Song, Sungmi" uniqKey="Song S" first="Sungmi" last="Song">Sungmi Song</name>
<affiliation>
<nlm:aff id="Aff1">
<institution-wrap>
<institution-id institution-id-type="ISNI">0000 0004 0470 5905</institution-id>
<institution-id institution-id-type="GRID">grid.31501.36</institution-id>
<institution>College of Pharmacy,</institution>
<institution>Seoul National University,</institution>
</institution-wrap>
1 Gwanak-ro, Gwanak-gu, Seoul, 08626 Korea</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Lee, Jin Young" sort="Lee, Jin Young" uniqKey="Lee J" first="Jin-Young" last="Lee">Jin-Young Lee</name>
<affiliation>
<nlm:aff id="Aff1">
<institution-wrap>
<institution-id institution-id-type="ISNI">0000 0004 0470 5905</institution-id>
<institution-id institution-id-type="GRID">grid.31501.36</institution-id>
<institution>College of Pharmacy,</institution>
<institution>Seoul National University,</institution>
</institution-wrap>
1 Gwanak-ro, Gwanak-gu, Seoul, 08626 Korea</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Ermolenko, Ludmila" sort="Ermolenko, Ludmila" uniqKey="Ermolenko L" first="Ludmila" last="Ermolenko">Ludmila Ermolenko</name>
<affiliation>
<nlm:aff id="Aff2">Département SNCM (Substances Naturelles et Chimie Médicinale), ICSN-CNRS, LabEx LERMIT, Centre de Recherche de Gif-sur-Yvette, Avenue de la Terrasse (Bat. 27), 91190 Gif-sur-Yvette, France</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Mazumder, Aloran" sort="Mazumder, Aloran" uniqKey="Mazumder A" first="Aloran" last="Mazumder">Aloran Mazumder</name>
<affiliation>
<nlm:aff id="Aff1">
<institution-wrap>
<institution-id institution-id-type="ISNI">0000 0004 0470 5905</institution-id>
<institution-id institution-id-type="GRID">grid.31501.36</institution-id>
<institution>College of Pharmacy,</institution>
<institution>Seoul National University,</institution>
</institution-wrap>
1 Gwanak-ro, Gwanak-gu, Seoul, 08626 Korea</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Ji, Seungwon" sort="Ji, Seungwon" uniqKey="Ji S" first="Seungwon" last="Ji">Seungwon Ji</name>
<affiliation>
<nlm:aff id="Aff1">
<institution-wrap>
<institution-id institution-id-type="ISNI">0000 0004 0470 5905</institution-id>
<institution-id institution-id-type="GRID">grid.31501.36</institution-id>
<institution>College of Pharmacy,</institution>
<institution>Seoul National University,</institution>
</institution-wrap>
1 Gwanak-ro, Gwanak-gu, Seoul, 08626 Korea</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Ryu, Heeju" sort="Ryu, Heeju" uniqKey="Ryu H" first="Heeju" last="Ryu">Heeju Ryu</name>
<affiliation>
<nlm:aff id="Aff1">
<institution-wrap>
<institution-id institution-id-type="ISNI">0000 0004 0470 5905</institution-id>
<institution-id institution-id-type="GRID">grid.31501.36</institution-id>
<institution>College of Pharmacy,</institution>
<institution>Seoul National University,</institution>
</institution-wrap>
1 Gwanak-ro, Gwanak-gu, Seoul, 08626 Korea</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Kim, Hyejin" sort="Kim, Hyejin" uniqKey="Kim H" first="Hyejin" last="Kim">Hyejin Kim</name>
<affiliation>
<nlm:aff id="Aff1">
<institution-wrap>
<institution-id institution-id-type="ISNI">0000 0004 0470 5905</institution-id>
<institution-id institution-id-type="GRID">grid.31501.36</institution-id>
<institution>College of Pharmacy,</institution>
<institution>Seoul National University,</institution>
</institution-wrap>
1 Gwanak-ro, Gwanak-gu, Seoul, 08626 Korea</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Kim, Dong Wook" sort="Kim, Dong Wook" uniqKey="Kim D" first="Dong-Wook" last="Kim">Dong-Wook Kim</name>
<affiliation>
<nlm:aff id="Aff3">
<institution-wrap>
<institution-id institution-id-type="ISNI">0000 0004 0470 4224</institution-id>
<institution-id institution-id-type="GRID">grid.411947.e</institution-id>
<institution>Catholic University, Seoul St. Mary’s Hospital,</institution>
</institution-wrap>
Banpo dong 505, Seocho Gu, Seoul, Korea</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Lee, Jung Weon" sort="Lee, Jung Weon" uniqKey="Lee J" first="Jung Weon" last="Lee">Jung Weon Lee</name>
<affiliation>
<nlm:aff id="Aff1">
<institution-wrap>
<institution-id institution-id-type="ISNI">0000 0004 0470 5905</institution-id>
<institution-id institution-id-type="GRID">grid.31501.36</institution-id>
<institution>College of Pharmacy,</institution>
<institution>Seoul National University,</institution>
</institution-wrap>
1 Gwanak-ro, Gwanak-gu, Seoul, 08626 Korea</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Dicato, Mario" sort="Dicato, Mario" uniqKey="Dicato M" first="Mario" last="Dicato">Mario Dicato</name>
<affiliation>
<nlm:aff id="Aff4">
<institution-wrap>
<institution-id institution-id-type="ISNI">0000 0004 0613 2450</institution-id>
<institution-id institution-id-type="GRID">grid.414194.d</institution-id>
<institution>Laboratoire de Biologie Moléculaire du Cancer, Hôpital Kirchberg,</institution>
</institution-wrap>
9, rue Edward Steichen, L-2540 Luxembourg, Luxembourg</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Christov, Christo" sort="Christov, Christo" uniqKey="Christov C" first="Christo" last="Christov">Christo Christov</name>
<affiliation>
<nlm:aff id="Aff5">
<institution-wrap>
<institution-id institution-id-type="ISNI">0000 0001 2194 6418</institution-id>
<institution-id institution-id-type="GRID">grid.29172.3f</institution-id>
<institution>Service d’Histologie, Faculté de Médicine,</institution>
<institution>Université de Lorraine, and INSERM U1256 NGERE,</institution>
</institution-wrap>
54000 Nancy, France</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Schnekenburger, Michael" sort="Schnekenburger, Michael" uniqKey="Schnekenburger M" first="Michael" last="Schnekenburger">Michael Schnekenburger</name>
<affiliation>
<nlm:aff id="Aff4">
<institution-wrap>
<institution-id institution-id-type="ISNI">0000 0004 0613 2450</institution-id>
<institution-id institution-id-type="GRID">grid.414194.d</institution-id>
<institution>Laboratoire de Biologie Moléculaire du Cancer, Hôpital Kirchberg,</institution>
</institution-wrap>
9, rue Edward Steichen, L-2540 Luxembourg, Luxembourg</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Cerella, Claudia" sort="Cerella, Claudia" uniqKey="Cerella C" first="Claudia" last="Cerella">Claudia Cerella</name>
<affiliation>
<nlm:aff id="Aff1">
<institution-wrap>
<institution-id institution-id-type="ISNI">0000 0004 0470 5905</institution-id>
<institution-id institution-id-type="GRID">grid.31501.36</institution-id>
<institution>College of Pharmacy,</institution>
<institution>Seoul National University,</institution>
</institution-wrap>
1 Gwanak-ro, Gwanak-gu, Seoul, 08626 Korea</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="Aff4">
<institution-wrap>
<institution-id institution-id-type="ISNI">0000 0004 0613 2450</institution-id>
<institution-id institution-id-type="GRID">grid.414194.d</institution-id>
<institution>Laboratoire de Biologie Moléculaire du Cancer, Hôpital Kirchberg,</institution>
</institution-wrap>
9, rue Edward Steichen, L-2540 Luxembourg, Luxembourg</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Gerard, Deborah" sort="Gerard, Deborah" uniqKey="Gerard D" first="Déborah" last="Gérard">Déborah Gérard</name>
<affiliation>
<nlm:aff id="Aff4">
<institution-wrap>
<institution-id institution-id-type="ISNI">0000 0004 0613 2450</institution-id>
<institution-id institution-id-type="GRID">grid.414194.d</institution-id>
<institution>Laboratoire de Biologie Moléculaire du Cancer, Hôpital Kirchberg,</institution>
</institution-wrap>
9, rue Edward Steichen, L-2540 Luxembourg, Luxembourg</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Orlikova Boyer, Barbora" sort="Orlikova Boyer, Barbora" uniqKey="Orlikova Boyer B" first="Barbora" last="Orlikova-Boyer">Barbora Orlikova-Boyer</name>
<affiliation>
<nlm:aff id="Aff1">
<institution-wrap>
<institution-id institution-id-type="ISNI">0000 0004 0470 5905</institution-id>
<institution-id institution-id-type="GRID">grid.31501.36</institution-id>
<institution>College of Pharmacy,</institution>
<institution>Seoul National University,</institution>
</institution-wrap>
1 Gwanak-ro, Gwanak-gu, Seoul, 08626 Korea</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="Aff4">
<institution-wrap>
<institution-id institution-id-type="ISNI">0000 0004 0613 2450</institution-id>
<institution-id institution-id-type="GRID">grid.414194.d</institution-id>
<institution>Laboratoire de Biologie Moléculaire du Cancer, Hôpital Kirchberg,</institution>
</institution-wrap>
9, rue Edward Steichen, L-2540 Luxembourg, Luxembourg</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Al Mourabit, Ali" sort="Al Mourabit, Ali" uniqKey="Al Mourabit A" first="Ali" last="Al-Mourabit">Ali Al-Mourabit</name>
<affiliation>
<nlm:aff id="Aff2">Département SNCM (Substances Naturelles et Chimie Médicinale), ICSN-CNRS, LabEx LERMIT, Centre de Recherche de Gif-sur-Yvette, Avenue de la Terrasse (Bat. 27), 91190 Gif-sur-Yvette, France</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Diederich, Marc" sort="Diederich, Marc" uniqKey="Diederich M" first="Marc" last="Diederich">Marc Diederich</name>
<affiliation>
<nlm:aff id="Aff1">
<institution-wrap>
<institution-id institution-id-type="ISNI">0000 0004 0470 5905</institution-id>
<institution-id institution-id-type="GRID">grid.31501.36</institution-id>
<institution>College of Pharmacy,</institution>
<institution>Seoul National University,</institution>
</institution-wrap>
1 Gwanak-ro, Gwanak-gu, Seoul, 08626 Korea</nlm:aff>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Cell Death & Disease</title>
<idno type="eISSN">2041-4889</idno>
<imprint>
<date when="2020">2020</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<p id="Par1">By comparing imatinib-sensitive and -resistant chronic myeloid leukemia (CML) cell models, we investigated the molecular mechanisms by which tetrahydrobenzimidazole derivative TMQ0153 triggered caspase-dependent apoptosis at low concentrations accompanied by loss of mitochondrial membrane potential (MMP) and increase of cytosolic free Ca
<sup>2+</sup>
levels. Interestingly, at higher concentrations, TMQ0153 induced necroptotic cell death with accumulation of ROS, both preventable by
<italic>N</italic>
-acetyl-L-cysteine (NAC) pretreatment. At necroptosis-inducing concentrations, we observed increased ROS and decreased ATP and GSH levels, concomitant with protective autophagy induction. Inhibitors such as bafilomycin A1 (baf-A1) and siRNA against beclin 1 abrogated autophagy, sensitized CML cells against TMQ0153 and enhanced necroptotic cell death. Importantly, TMQ153-induced necrosis led to cell surface exposure of calreticulin (CRT) and ERp57 as well as the release of extracellular ATP and high mobility group box (HMGB1) demonstrating the capacity of this compound to release immunogenic cell death (ICD) markers. We validated the anti-cancer potential of TMQ0153 by in vivo inhibition of K562 microtumor formation in zebrafish. Taken together, our findings provide evidence that cellular stress and redox modulation by TMQ0153 concentration-dependently leads to different cell death modalities including controlled necrosis in CML cell models.</p>
</div>
</front>
<back>
<div1 type="bibliography">
<listBibl>
<biblStruct>
<analytic>
<author>
<name sortKey="Druker, Bj" uniqKey="Druker B">BJ Druker</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kantarjian, H" uniqKey="Kantarjian H">H Kantarjian</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Talpaz, M" uniqKey="Talpaz M">M Talpaz</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Boulos, N" uniqKey="Boulos N">N Boulos</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Landry, Wd" uniqKey="Landry W">WD Landry</name>
</author>
<author>
<name sortKey="Woolley, Jf" uniqKey="Woolley J">JF Woolley</name>
</author>
<author>
<name sortKey="Cotter, Tg" uniqKey="Cotter T">TG Cotter</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Heckmann, Bl" uniqKey="Heckmann B">BL Heckmann</name>
</author>
<author>
<name sortKey="Tummers, B" uniqKey="Tummers B">B Tummers</name>
</author>
<author>
<name sortKey="Green, Dr" uniqKey="Green D">DR Green</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kroemer, G" uniqKey="Kroemer G">G Kroemer</name>
</author>
<author>
<name sortKey="Galluzzi, L" uniqKey="Galluzzi L">L Galluzzi</name>
</author>
<author>
<name sortKey="Kepp, O" uniqKey="Kepp O">O Kepp</name>
</author>
<author>
<name sortKey="Zitvogel, L" uniqKey="Zitvogel L">L Zitvogel</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Garg, Ad" uniqKey="Garg A">AD Garg</name>
</author>
<author>
<name sortKey="Dudek Peric, Am" uniqKey="Dudek Peric A">AM Dudek-Peric</name>
</author>
<author>
<name sortKey="Romano, E" uniqKey="Romano E">E Romano</name>
</author>
<author>
<name sortKey="Agostinis, P" uniqKey="Agostinis P">P Agostinis</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Radogna, F" uniqKey="Radogna F">F Radogna</name>
</author>
<author>
<name sortKey="Diederich, M" uniqKey="Diederich M">M Diederich</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Pampliega, O" uniqKey="Pampliega O">O Pampliega</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Shen, Hm" uniqKey="Shen H">HM Shen</name>
</author>
<author>
<name sortKey="Codogno, P" uniqKey="Codogno P">P Codogno</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Tran, Mq" uniqKey="Tran M">MQ Tran</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Mazumder, A" uniqKey="Mazumder A">A Mazumder</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Schneider, Nfz" uniqKey="Schneider N">NFZ Schneider</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Lee, Jy" uniqKey="Lee J">JY Lee</name>
</author>
</analytic>
</biblStruct>
<biblStruct></biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Schindelin, J" uniqKey="Schindelin J">J Schindelin</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ji, S" uniqKey="Ji S">S Ji</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Seidel, C" uniqKey="Seidel C">C Seidel</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Radogna, F" uniqKey="Radogna F">F Radogna</name>
</author>
</analytic>
</biblStruct>
<biblStruct></biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Haferlach, T" uniqKey="Haferlach T">T Haferlach</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kohlmann, A" uniqKey="Kohlmann A">A Kohlmann</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Gautier, L" uniqKey="Gautier L">L Gautier</name>
</author>
<author>
<name sortKey="Cope, L" uniqKey="Cope L">L Cope</name>
</author>
<author>
<name sortKey="Bolstad, Bm" uniqKey="Bolstad B">BM Bolstad</name>
</author>
<author>
<name sortKey="Irizarry, Ra" uniqKey="Irizarry R">RA Irizarry</name>
</author>
</analytic>
</biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Degterev, A" uniqKey="Degterev A">A Degterev</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Koo, Gb" uniqKey="Koo G">GB Koo</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Nauseef, Wm" uniqKey="Nauseef W">WM Nauseef</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Reddy, Mm" uniqKey="Reddy M">MM Reddy</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Florean, C" uniqKey="Florean C">C Florean</name>
</author>
<author>
<name sortKey="Song, S" uniqKey="Song S">S Song</name>
</author>
<author>
<name sortKey="Dicato, M" uniqKey="Dicato M">M Dicato</name>
</author>
<author>
<name sortKey="Diederich, M" uniqKey="Diederich M">M Diederich</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Lucio, M" uniqKey="Lucio M">M Lúcio</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Oyewole, Ao" uniqKey="Oyewole A">AO Oyewole</name>
</author>
<author>
<name sortKey="Birch Machin, Ma" uniqKey="Birch Machin M">MA Birch-Machin</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Franco, R" uniqKey="Franco R">R Franco</name>
</author>
<author>
<name sortKey="Cidlowski, Ja" uniqKey="Cidlowski J">JA Cidlowski</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Vanden Berghe, T" uniqKey="Vanden Berghe T">T Vanden Berghe</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Radogna, F" uniqKey="Radogna F">F Radogna</name>
</author>
<author>
<name sortKey="Dicato, M" uniqKey="Dicato M">M Dicato</name>
</author>
<author>
<name sortKey="Diederich, M" uniqKey="Diederich M">M Diederich</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Jabbour, E" uniqKey="Jabbour E">E Jabbour</name>
</author>
<author>
<name sortKey="Kantarjian, H" uniqKey="Kantarjian H">H Kantarjian</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Koptyra, M" uniqKey="Koptyra M">M Koptyra</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Tai, Cj" uniqKey="Tai C">CJ Tai</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Gaascht, F" uniqKey="Gaascht F">F Gaascht</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Munoz, Fm" uniqKey="Munoz F">FM Munoz</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Park, Ej" uniqKey="Park E">EJ Park</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Karvela, M" uniqKey="Karvela M">M Karvela</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Chen, Yf" uniqKey="Chen Y">YF Chen</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ianniciello, A" uniqKey="Ianniciello A">A Ianniciello</name>
</author>
<author>
<name sortKey="Rattigan, Km" uniqKey="Rattigan K">KM Rattigan</name>
</author>
<author>
<name sortKey="Helgason, Gv" uniqKey="Helgason G">GV Helgason</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Fan, Qw" uniqKey="Fan Q">QW Fan</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kim, Hj" uniqKey="Kim H">HJ Kim</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Onodera, J" uniqKey="Onodera J">J Onodera</name>
</author>
<author>
<name sortKey="Ohsumi, Y" uniqKey="Ohsumi Y">Y Ohsumi</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Mancilla, H" uniqKey="Mancilla H">H Mancilla</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Sun, Y" uniqKey="Sun Y">Y Sun</name>
</author>
<author>
<name sortKey="Zheng, Y" uniqKey="Zheng Y">Y Zheng</name>
</author>
<author>
<name sortKey="Wang, C" uniqKey="Wang C">C Wang</name>
</author>
<author>
<name sortKey="Liu, Y" uniqKey="Liu Y">Y Liu</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Armstrong, Ja" uniqKey="Armstrong J">JA Armstrong</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Liu, S" uniqKey="Liu S">S Liu</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Sun, Sy" uniqKey="Sun S">SY Sun</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Hamad, I" uniqKey="Hamad I">I Hamad</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Krishna, Cm" uniqKey="Krishna C">CM Krishna</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Wright, Dj" uniqKey="Wright D">DJ Wright</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Wiedmer, T" uniqKey="Wiedmer T">T Wiedmer</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Galluzzi, L" uniqKey="Galluzzi L">L Galluzzi</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Liu, Cc" uniqKey="Liu C">CC Liu</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Long, Js" uniqKey="Long J">JS Long</name>
</author>
<author>
<name sortKey="Ryan, Km" uniqKey="Ryan K">KM Ryan</name>
</author>
</analytic>
</biblStruct>
</listBibl>
</div1>
</back>
</TEI>
<pmc article-type="research-article">
<pmc-dir>properties open_access</pmc-dir>
<front>
<journal-meta>
<journal-id journal-id-type="nlm-ta">Cell Death Dis</journal-id>
<journal-id journal-id-type="iso-abbrev">Cell Death Dis</journal-id>
<journal-title-group>
<journal-title>Cell Death & Disease</journal-title>
</journal-title-group>
<issn pub-type="epub">2041-4889</issn>
<publisher>
<publisher-name>Nature Publishing Group UK</publisher-name>
<publisher-loc>London</publisher-loc>
</publisher>
</journal-meta>
<article-meta>
<article-id pub-id-type="pmid">32034134</article-id>
<article-id pub-id-type="pmc">7007439</article-id>
<article-id pub-id-type="publisher-id">2304</article-id>
<article-id pub-id-type="doi">10.1038/s41419-020-2304-8</article-id>
<article-categories>
<subj-group subj-group-type="heading">
<subject>Article</subject>
</subj-group>
</article-categories>
<title-group>
<article-title>Tetrahydrobenzimidazole TMQ0153 triggers apoptosis, autophagy and necroptosis crosstalk in chronic myeloid leukemia</article-title>
</title-group>
<contrib-group>
<contrib contrib-type="author">
<name>
<surname>Song</surname>
<given-names>Sungmi</given-names>
</name>
<xref ref-type="aff" rid="Aff1">1</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Lee</surname>
<given-names>Jin-Young</given-names>
</name>
<xref ref-type="aff" rid="Aff1">1</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Ermolenko</surname>
<given-names>Ludmila</given-names>
</name>
<xref ref-type="aff" rid="Aff2">2</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Mazumder</surname>
<given-names>Aloran</given-names>
</name>
<xref ref-type="aff" rid="Aff1">1</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Ji</surname>
<given-names>Seungwon</given-names>
</name>
<xref ref-type="aff" rid="Aff1">1</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Ryu</surname>
<given-names>Heeju</given-names>
</name>
<xref ref-type="aff" rid="Aff1">1</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Kim</surname>
<given-names>HyeJin</given-names>
</name>
<xref ref-type="aff" rid="Aff1">1</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Kim</surname>
<given-names>Dong-Wook</given-names>
</name>
<xref ref-type="aff" rid="Aff3">3</xref>
</contrib>
<contrib contrib-type="author">
<contrib-id contrib-id-type="orcid">http://orcid.org/0000-0003-2722-8200</contrib-id>
<name>
<surname>Lee</surname>
<given-names>Jung Weon</given-names>
</name>
<xref ref-type="aff" rid="Aff1">1</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Dicato</surname>
<given-names>Mario</given-names>
</name>
<xref ref-type="aff" rid="Aff4">4</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Christov</surname>
<given-names>Christo</given-names>
</name>
<xref ref-type="aff" rid="Aff5">5</xref>
</contrib>
<contrib contrib-type="author">
<contrib-id contrib-id-type="orcid">http://orcid.org/0000-0003-0550-9538</contrib-id>
<name>
<surname>Schnekenburger</surname>
<given-names>Michael</given-names>
</name>
<xref ref-type="aff" rid="Aff4">4</xref>
</contrib>
<contrib contrib-type="author">
<contrib-id contrib-id-type="orcid">http://orcid.org/0000-0001-9308-8176</contrib-id>
<name>
<surname>Cerella</surname>
<given-names>Claudia</given-names>
</name>
<xref ref-type="aff" rid="Aff1">1</xref>
<xref ref-type="aff" rid="Aff4">4</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Gérard</surname>
<given-names>Déborah</given-names>
</name>
<xref ref-type="aff" rid="Aff4">4</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Orlikova-Boyer</surname>
<given-names>Barbora</given-names>
</name>
<xref ref-type="aff" rid="Aff1">1</xref>
<xref ref-type="aff" rid="Aff4">4</xref>
</contrib>
<contrib contrib-type="author" corresp="yes">
<name>
<surname>Al-Mourabit</surname>
<given-names>Ali</given-names>
</name>
<address>
<email>ali.almourabit@cnrs.fr</email>
</address>
<xref ref-type="aff" rid="Aff2">2</xref>
</contrib>
<contrib contrib-type="author" corresp="yes">
<name>
<surname>Diederich</surname>
<given-names>Marc</given-names>
</name>
<address>
<email>marcdiederich@snu.ac.kr</email>
</address>
<xref ref-type="aff" rid="Aff1">1</xref>
</contrib>
<aff id="Aff1">
<label>1</label>
<institution-wrap>
<institution-id institution-id-type="ISNI">0000 0004 0470 5905</institution-id>
<institution-id institution-id-type="GRID">grid.31501.36</institution-id>
<institution>College of Pharmacy,</institution>
<institution>Seoul National University,</institution>
</institution-wrap>
1 Gwanak-ro, Gwanak-gu, Seoul, 08626 Korea</aff>
<aff id="Aff2">
<label>2</label>
Département SNCM (Substances Naturelles et Chimie Médicinale), ICSN-CNRS, LabEx LERMIT, Centre de Recherche de Gif-sur-Yvette, Avenue de la Terrasse (Bat. 27), 91190 Gif-sur-Yvette, France</aff>
<aff id="Aff3">
<label>3</label>
<institution-wrap>
<institution-id institution-id-type="ISNI">0000 0004 0470 4224</institution-id>
<institution-id institution-id-type="GRID">grid.411947.e</institution-id>
<institution>Catholic University, Seoul St. Mary’s Hospital,</institution>
</institution-wrap>
Banpo dong 505, Seocho Gu, Seoul, Korea</aff>
<aff id="Aff4">
<label>4</label>
<institution-wrap>
<institution-id institution-id-type="ISNI">0000 0004 0613 2450</institution-id>
<institution-id institution-id-type="GRID">grid.414194.d</institution-id>
<institution>Laboratoire de Biologie Moléculaire du Cancer, Hôpital Kirchberg,</institution>
</institution-wrap>
9, rue Edward Steichen, L-2540 Luxembourg, Luxembourg</aff>
<aff id="Aff5">
<label>5</label>
<institution-wrap>
<institution-id institution-id-type="ISNI">0000 0001 2194 6418</institution-id>
<institution-id institution-id-type="GRID">grid.29172.3f</institution-id>
<institution>Service d’Histologie, Faculté de Médicine,</institution>
<institution>Université de Lorraine, and INSERM U1256 NGERE,</institution>
</institution-wrap>
54000 Nancy, France</aff>
</contrib-group>
<pub-date pub-type="epub">
<day>7</day>
<month>2</month>
<year>2020</year>
</pub-date>
<pub-date pub-type="pmc-release">
<day>7</day>
<month>2</month>
<year>2020</year>
</pub-date>
<pub-date pub-type="collection">
<month>2</month>
<year>2020</year>
</pub-date>
<volume>11</volume>
<issue>2</issue>
<elocation-id>109</elocation-id>
<history>
<date date-type="received">
<day>11</day>
<month>10</month>
<year>2019</year>
</date>
<date date-type="rev-recd">
<day>15</day>
<month>1</month>
<year>2020</year>
</date>
<date date-type="accepted">
<day>16</day>
<month>1</month>
<year>2020</year>
</date>
</history>
<permissions>
<copyright-statement>© The Author(s) 2020</copyright-statement>
<license license-type="OpenAccess">
<license-p>
<bold>Open Access</bold>
This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit
<ext-link ext-link-type="uri" xlink:href="http://creativecommons.org/licenses/by/4.0/">http://creativecommons.org/licenses/by/4.0/</ext-link>
.</license-p>
</license>
</permissions>
<abstract id="Abs1">
<p id="Par1">By comparing imatinib-sensitive and -resistant chronic myeloid leukemia (CML) cell models, we investigated the molecular mechanisms by which tetrahydrobenzimidazole derivative TMQ0153 triggered caspase-dependent apoptosis at low concentrations accompanied by loss of mitochondrial membrane potential (MMP) and increase of cytosolic free Ca
<sup>2+</sup>
levels. Interestingly, at higher concentrations, TMQ0153 induced necroptotic cell death with accumulation of ROS, both preventable by
<italic>N</italic>
-acetyl-L-cysteine (NAC) pretreatment. At necroptosis-inducing concentrations, we observed increased ROS and decreased ATP and GSH levels, concomitant with protective autophagy induction. Inhibitors such as bafilomycin A1 (baf-A1) and siRNA against beclin 1 abrogated autophagy, sensitized CML cells against TMQ0153 and enhanced necroptotic cell death. Importantly, TMQ153-induced necrosis led to cell surface exposure of calreticulin (CRT) and ERp57 as well as the release of extracellular ATP and high mobility group box (HMGB1) demonstrating the capacity of this compound to release immunogenic cell death (ICD) markers. We validated the anti-cancer potential of TMQ0153 by in vivo inhibition of K562 microtumor formation in zebrafish. Taken together, our findings provide evidence that cellular stress and redox modulation by TMQ0153 concentration-dependently leads to different cell death modalities including controlled necrosis in CML cell models.</p>
</abstract>
<kwd-group kwd-group-type="npg-subject">
<title>Subject terms</title>
<kwd>Chronic myeloid leukaemia</kwd>
<kwd>Chronic myeloid leukaemia</kwd>
</kwd-group>
<custom-meta-group>
<custom-meta>
<meta-name>issue-copyright-statement</meta-name>
<meta-value>© The Author(s) 2020</meta-value>
</custom-meta>
</custom-meta-group>
</article-meta>
</front>
<body>
<sec id="Sec1" sec-type="introduction">
<title>Introduction</title>
<p id="Par2">Imatinib kills leukemic cells essentially via apoptosis but triggers primary or secondary resistance in approximately 20–30% of patients
<sup>
<xref ref-type="bibr" rid="CR1">1</xref>
</sup>
. Second-generation tyrosine kinase inhibitors (TKIs) such as dasatinib and nilotinib re-activate apoptotic cell death induction
<sup>
<xref ref-type="bibr" rid="CR2">2</xref>
,
<xref ref-type="bibr" rid="CR3">3</xref>
</sup>
in patients with imatinib resistance, however, de novo resistance against these TKIs was also reported
<sup>
<xref ref-type="bibr" rid="CR4">4</xref>
</sup>
.</p>
<p id="Par3">Pharmacological agents that target BCR-ABL-independent molecular targets in CML by initiating non-apoptotic cell death may overcome both BCR-ABL- and apoptosis-related resistance mechanisms by targeting unrelated vulnerabilities of CML cells specifically related to oxidative and metabolic stress metabolism. Transformation of leukemic cells by Bcr-Abl is associated with metabolic alterations and increased reactive oxygen species (ROS) generation. In addition, ROS levels are tightly regulated in normal hematopoiesis but are chronically elevated in CML. Koptyra et al. showed that Bcr-Abl kinase stimulates ROS that cause oxidative DNA damage that results in the mutation of the kinase domain, leading to imatinib resistance. In addition, Landry et al.
<sup>
<xref ref-type="bibr" rid="CR5">5</xref>
</sup>
published that NADPH oxidase (Nox) activity affects intracellular ROS levels in Bcr-Abl positive cells, enhancing survival signaling. Therefore, targeting the altered metabolism and accumulation of ROS in CML cells could be of therapeutic interest as exacerbation of intracellular ROS levels constitute one of the main mechanisms of most chemo- and radio-therapeutic agents, eventually killing cells whether by apoptosis or programmed necrosis, depending on the metabolic status of the cell. Apoptosis and necroptosis are major cell death mechanisms that result in opposite immune responses
<sup>
<xref ref-type="bibr" rid="CR6">6</xref>
</sup>
. Whereas apoptotic cell death was described to trigger immunotolerant responses, necroptotic cell death releases molecules that are related to inflammation and activate immune responses as implicated to ICD
<sup>
<xref ref-type="bibr" rid="CR7">7</xref>
</sup>
. ICD is also triggered by stress response mechanisms such as autophagy, ROS, and endoplasmic reticulum (ER) stress and unfolded protein response (UPR)
<sup>
<xref ref-type="bibr" rid="CR8">8</xref>
</sup>
. These stress responses further lead to cell death and DAMP release that are required for the activation of anticancer immune response by elevating immunogenicity of dying cells via ICD
<sup>
<xref ref-type="bibr" rid="CR9">9</xref>
</sup>
.</p>
<p id="Par4">Controlled necrosis pathways cause a disequilibrium of the redox metabolome leading to depletion of ATP and glutathione (GSH) eventually triggering an energetic catastrophe. The crosstalk between the redox metabolism, autophagy and necroptosis offers an interesting therapeutic target in CML. Under oxidative and metabolic stress, autophagy becomes a cellular homeostasis mechanism that aims to re-establish the cellular energy balance, among others
<sup>
<xref ref-type="bibr" rid="CR10">10</xref>
</sup>
allowing cell survival under stress conditions. Moreover, autophagy cross-talks with apoptosis at the level of caspase-8 degradation as well as with non-apoptotic or necrotic programmed cell death mechanisms
<sup>
<xref ref-type="bibr" rid="CR11">11</xref>
</sup>
.</p>
<p id="Par5">We previously reported the synthesis of various tetrahydrobenzimidazole derivatives and investigated their cytotoxic potential against hematopoietic cancer cell lines. Among these derivatives, the quinone TMQ0153 exhibited significant differential cytotoxicity against cancer cells
<sup>
<xref ref-type="bibr" rid="CR12">12</xref>
</sup>
. The usefulness of such quinones as inducers of non-canonical cell death in CML remains to be investigated.</p>
</sec>
<sec id="Sec2" sec-type="materials|methods">
<title>Materials and methods</title>
<sec id="Sec3">
<title>Compounds</title>
<p id="Par6">Tetrahydrobenzimidazole (TMQ) 0153 was synthetized from p-benzoquinone as previously described
<sup>
<xref ref-type="bibr" rid="CR12">12</xref>
</sup>
. 2′-deoxy-5-azacytidine (5-aza; A3656), 3-methyladenine (3-MA; M9281), bafilomycin (baf-A1; #B1793), N-acetyl-L-cysteine (NAC; LAA21), thapsigargin (TSG; T9033), PP242 (P0037), shikonin (SHK; S7576) and necrostatin-1 (Nec-1; N9037) were purchased from Sigma-Aldrich (St. Louis, MO, USA). Chloroquine (CQ; NZ-51031-K200) was purchased from Enzo Life Science (ENZ-51031-0050). Tiron (SC-253669), Trolox (SC-200810), buthionine sulfoximine (BSO) (SC-200824) were obtained from Santa-Cruz Biotechnology (CA, USA). Hydrogen peroxide (H
<sub>2</sub>
O
<sub>2</sub>
) was purchased from Junsei Chemical (23150-0350) (Tokyo, Japan).</p>
</sec>
<sec id="Sec4">
<title>Cell culture</title>
<p id="Par7">Chronic myeloid leukemia cell lines K562, KBM-5, and MEG01 were cultured in RPMI 1640 medium (Lonza, Walkersville, MD, USA) supplemented with 10% (v/v) fetal calf serum (FCS; Biowest, Riverside, MO, USA) and 1% (v/v) antibiotic–antimycotics (Lonza, Walkersville, MD, USA) at 37 °C and 5% of CO
<sub>2</sub>
. KBM-5 cells were kindly donated by Dr. Bharat B. Aggarwal. Imatinib-resistant KBM5-T315I cells (KBM5R) cells were obtained by sequentially increasing the concentration of imatinib from 0.25, to 1 µM imatinib in IMDM media supplemented with 10% (v/v) fetal calf serum and 1% (v/v) antibiotic–antimycotics
<sup>
<xref ref-type="bibr" rid="CR13">13</xref>
</sup>
. Imatinib-resistant K562 (K562R) cells were a gift of the Catholic University of Seoul and cultured in RPMI 1640 medium with 25 mM HEPES (Lonza) supplemented with 10% (v/v) FCS and 1% (v/v) antibiotic–antimycotics. Both resistant cell types were cultured with 1 µM of imatinib and washed three times before each experiment. Lung carcinoma A549 and breast adenocarcinoma MCF7 cells were obtained from the American Type Culture Collection (ATCC, Manassas, USA) were cultured in RPMI 1640 medium (Lonza, Walkersville, MD, USA) supplemented with 10% (v/v) fetal calf serum (FCS; Biowest, Riverside, MO, USA) and 1% (v/v) antibiotic–antimycotics (Lonza, Walkersville, MD, USA). Normal B lymphocyte RPMI-1788 from the Korean cell line Bank (KCLB, Seoul, South Korea) were cultured in RPMI 1640 medium (Lonza, Walkersville, MD, USA) supplemented with 10% (v/v) fetal calf serum (FCS; Biowest, Riverside, MO, USA) and 1% (v/v) antibiotic–antimycotics (Lonza, Walkersville, MD, USA) at 37 °C and 5% of CO
<sub>2</sub>
. All cells were cultured according to standard procedures. Mycoplasma testing was done bi-monthly. STR profiling was done bi-annually.</p>
<p id="Par8">Peripheral blood mononuclear cells (PBMCs) were isolated by density gradient centrifugation using Ficoll-Hypaque (GE Healthcare, Roosendaal, The Netherlands) from freshly collected buffy coats as previously described
<sup>
<xref ref-type="bibr" rid="CR13">13</xref>
,
<xref ref-type="bibr" rid="CR14">14</xref>
</sup>
, obtained from healthy adult human volunteers (Red Cross, Luxembourg, Luxembourg) after ethical approval as well as written informed consent from each volunteer. After isolation, cells were incubated overnight at 2 × 10
<sup>6</sup>
 cells/mL in RPMI 1640 (supplemented with 1% antibiotic–antimycotic and 10% FCS (BioWhittaker, Verviers, Belgium) at 37 °C and 5% CO
<sub>2</sub>
in a humidified atmosphere. The day after, cell concentration was adjusted at 1 × 10
<sup>6</sup>
cells/mL using the same fresh complete medium and then treated as indicated.</p>
</sec>
<sec id="Sec5">
<title>Cell viability and cell death assessment</title>
<p id="Par9">A Trypan blue exclusion assay (Lonza) was used to assess cell viability and IC
<sub>50</sub>
values were also calculated on data obtained from Trypan blue assay. The mode of cell death was determined and quantified after determination of the nuclear morphology was evaluated under fluorescence microscopy (Nikon Eclipse Ti-U, Nikon Instruments Korea, South Korea) after cell staining with 1 µg/mL Hoechst 33342 (Sigma-Aldrich,) and 1 μg/mL propidium iodide staining (Sigma-Aldrich). Caspase 3/7 activity was assessed by Caspase-Glo 3/7 Assay (Promega, Madison, WI, USA), and intracellular ATP levels were measured using the CellTiter-Glo Luminescent Cell Viability Assay (Promega, Madison, WI, USA).</p>
</sec>
<sec id="Sec6">
<title>Colony formation assays</title>
<p id="Par10">Colony formation assays were performed as previously published
<sup>
<xref ref-type="bibr" rid="CR15">15</xref>
</sup>
.</p>
</sec>
<sec id="Sec7">
<title>Protein extraction and western blotting</title>
<p id="Par11">Whole-cell extracts were prepared using M-PER
<sup>®</sup>
(Thermofisher, R7007, Waltham, MA, USA) supplemented by 1× protease inhibitor cocktail (Complete EDTA-free; Roche, Basal, Switzerland) according to the manufacturer’s instructions. Western blots were performed using the following primary antibodies: anti-caspase 7 (9494S), anti-caspase 9 (9502S), anti-caspase 8 (9746), anti-PARP-1 (9542), anti-Mcl-1 (4572S), anti-LC3B (2775), anti-p62 (5114), anti-Beclin 1 (3738) and anti-RIP3 (#13526) from Cell Signaling (Danvers, MA, USA); anti-caspase 3 (sc-56053), anti-PARP-1 (C2-10; sc-53643) from Santa Cruz Biotechnology (CA, USA); anti-Bcl-xL (610212), anti-RIP1 (610458) from BD Pharmingen (San Jose, CA, USA); anti-beta actin (5441) from Sigma Aldrich. Bands were quantified using Image Quant TL (GE Healthcare, Pittsburgh, PA, USA).</p>
</sec>
<sec id="Sec8">
<title>Morphology analysis</title>
<p id="Par12">For Giemsa staining, cells were spun onto a glass slide for 5 min at 800 × 
<italic>g</italic>
using a cytopad with caps (ELITech Biomedical Systems, USA). Cells were then fixed and stained with the Diff-Quik staining kit (Dade Behring S.A., USA) according to the manufacturer’s protocol and pictures were taken under a microscope (Nikon Eclipse Ti-U, Nikon Instruments Korea, South Korea). A total of 50 cells were counted in one area, and three independent areas were counted for each set of three independent experiments.</p>
</sec>
<sec id="Sec9">
<title>Transmission electron microscopy</title>
<p id="Par13">For transmission electron microscopy (TEM), 5 × 10
<sup>6</sup>
cells were pelleted and fixed in 2.5% glutaraldehyde (Electron Microscopy Sciences, USA) diluted in 0.1 M sodium cacodylate buffer, pH 7.2 (Electron Microscopy Sciences, USA) overnight. Cells were then rinsed with sodium cacodylate buffer twice and post-fixed in 2% osmium tetroxide for 2 h at room temperature. Samples were washed with distilled water and then stained with 0.5% uranyl acetate at 4 °C for overnight. After 24 h, samples were dehydrated through a graded series of ethanol solutions to water followed by propylene oxide, and then infiltrated in 1:1 propylene oxide/Spurr’s resin. Samples were kept overnight embedded in Spurr’s resin, mounted in molds and left to polymerize in an oven at 56 °C for 48 h. Ultrathin sections (70–90 nm) were obtained with ultramicrotome, EM UC7 (Leica, Germany). Sections were stained with uranyl acetate and lead citrate and subsequently examined with a JEM1010 transmission electron microscope (JEOL, Japan).</p>
</sec>
<sec id="Sec10">
<title>Analyses of autophagic vesicles</title>
<p id="Par14">For fluorescence microscopy analysis, 3 × 10
<sup>6</sup>
cells were stained with Cyto-ID® Green dye and Hoechst 33342, according to manufacturer’s instructions (Enzo Life Science). Cells were observed by confocal microscopy (Leica TCS SP8, Germany). Segmentation of objects of interest was based on 31 parameters assessing color, texture and edge and was carried out in Ilastik, version 1.3.0 (
<ext-link ext-link-type="uri" xlink:href="https://www.ilastik.org/">https://www.ilastik.org/</ext-link>
), developed by the European Molecular Biology Laboratory, Heidelberg
<sup>
<xref ref-type="bibr" rid="CR16">16</xref>
</sup>
. Classifiers trained for these parameters on a set of representative images were then applied to batch process multiple images as described in Ilastik’s user manual. Binary masks thus obtained were measured in FIJI
<sup>
<xref ref-type="bibr" rid="CR17">17</xref>
</sup>
after applying a size filter to remove small size artefacts resulting from segmentation. Results were compared by Kruskal–Wallis test followed by Conover post-test further adjusted by the Benjamini-Hochberg FDR method (
<ext-link ext-link-type="uri" xlink:href="http://www.astatsa.com">www.astatsa.com</ext-link>
). Overall, the number of images evaluated in the different groups was as follows: control group
<italic>n</italic>
 = 7, 4 h group
<italic>n</italic>
 = 7, 8 h group
<italic>n</italic>
 = 6, and PP242 treated group
<italic>n</italic>
 = 5.</p>
</sec>
<sec id="Sec11">
<title>Measurement of cytosolic calcium levels</title>
<p id="Par15">Experiments were based on published procedures with modifications
<sup>
<xref ref-type="bibr" rid="CR18">18</xref>
</sup>
. Cells were stained with 500 nM Fluo-3-AM (Thermo Fisher, R7007, Waltham, MA, USA) for 25 min at 37 °C. After 15 min at room temperature, cytosolic Ca
<sup>2+</sup>
levels were assessed by flow cytometry (FACS Calibur, Becton Dickinson, San Jose, CA, USA) and data were recorded statistically (10,000 events/sample) using the CellQuest Pro software (BD, Biosciences). Data were analyzed using the Flow-Jo 8.8.7 software (Tree Star, Inc., Ashland, OR, USA) and results were expressed as mean fluorescence intensity (MFI).</p>
</sec>
<sec id="Sec12">
<title>Determination of the oxygen consumption rate</title>
<p id="Par16">The oxygen consumption rate (OCR) was measured using a Seahorse XFp cell mito stress Assay (#103010-100, Agilent, USA) ran on a Seahorse XFp analyzer (Agilent, Yongsan-gu, Seoul) according to manufacturer’s instructions. Briefly, cells were seeded at 200,000 cells per well and treated with TMQ0153 for 4 h in 175 μL medium. Before measurements, plates were equilibrated in a CO
<sub>2</sub>
-free incubator at 37 °C for 1 h. Analysis were performed using 1.5 µM oligomycin, 0.5 µM carbonyl cyanide-4-(trifluoromethoxy)phenylhydrazone (FCCP), and 1 µM rotenone/antimycin A as indicated. Data were analyzed using the Seahorse XF Cell Mito stress rest report generator software (Agilent).</p>
</sec>
<sec id="Sec13">
<title>Transfections</title>
<p id="Par17">Cells were transfected with 4.5 µL HiPerFect Transfection reagent (HPF; Qiagen, Germantown, MD, USA,) and 5 nM small interfering RNAs (siRNAs; Qiagen) targeting the human beclin 1 (BCN-1) gene [NM003766; SiBEC-1_1: Hs_BECN1_1 (SI00055573) and 10 nM SiBEC-1_2: Hs_BECN1_2 (SI00055580)] or non-targeting (AllStars Negative Control siRNA) as described elsewhere
<sup>
<xref ref-type="bibr" rid="CR19">19</xref>
</sup>
. 24 h post-transfection, medium was replaced, and cells were treated as indicated on figures.</p>
</sec>
<sec id="Sec14">
<title>Analysis of ROS, mitochondrial membrane potential, mitochondrial and lysosomal membrane mass</title>
<p id="Par18">ROS levels were probed by using 10 μM on 2-7-dichlorodihydrofluorescein diacetate (H
<sub>2</sub>
DCF-DA; Life Technologies, Carlsbad, USA) and analyzed by flow cytometry as previously described
<sup>
<xref ref-type="bibr" rid="CR20">20</xref>
</sup>
. To monitor lysosomal mass, mitochondrial membrane potential, and mitochondrial mass, cells were incubated at 37 °C for 30 min with 20 nM LysoTracker Red DND-99, 50 nM MitoTracker Red CMXRos (all from Molecular Probes, Invitrogen, Grand Island, NY, USA), respectively, and then analyzed by flow cytometry. Data were recorded statistically (10,000 events/sample) using the CellQuest Pro software. Data were analyzed using the Flow-Jo 8.8.7 software and results were expressed as mean fluorescence intensity (MFI).</p>
</sec>
<sec id="Sec15">
<title>Glutathione measurements</title>
<p id="Par19">Reduced (GSH) and oxidized (GSSG) glutathione measurements were performed using the GSH/GSSG-Glo™ Assay kit (Promega, Madison, WI, USA) following the manufacturer’s instructions. The luminescence signal was acquired using with a microplate luminometer Centro LB 960 and data were recorded using the MikroWin 2000 software package (Berthold Technologies, Bad Wildbad, Germany).</p>
</sec>
<sec id="Sec16">
<title>Quantification of HMGB1 release</title>
<p id="Par20">Quantification of HMGB1 release in cell culture supernatants was assessed by enzyme-linked immunosorbent assay kit from Shino-Test-Corporation (Jinbocho, Chiyoda-ku, Tokyo, Japan) according to the manufacturer’s instructions. Absorbance data were collected using with a SpectraMax i3x microplate reader and data were recorded using the SoftMax Pro 7.0 software package (Sunnyvale, California, USA).</p>
</sec>
<sec id="Sec17">
<title>Measurement of extracellular ATP content</title>
<p id="Par21">Extracellular ATP levels in the supernatant were assessed by the ENLITEN® ATP Assay system bioluminescence detection kit (Promega, Madison, WI, USA) following the manufacturer’s protocol. Luminescence signal was acquired with a microplate luminometer Centro LB 960 and data were recorded using the MikroWin 2000 software package (Berthold Technologies, Bad Wildbad, Germany).</p>
</sec>
<sec id="Sec18">
<title>Analysis of calreticulin and ERp57 exposure</title>
<p id="Par22">Cells were collected, washed twice with 1x PBS and fixed in 0.25% paraformaldehyde in 1x PBS at 4 °C. After 5 min incubation, cells we washed twice in cold 1× PBS and incubated for 30 min at RT with anti-calreticulin (CRT; Ab2907, Abcam, Cambridge, UK) or ERp57 (Ab10287, Abcam) primary antibody diluted (1:50) in cold blocking buffer (2% FCS in 1× PBS) and then incubated for 30 min with an Alexa488-conjugated monoclonal secondary antibody (A11034) diluted (1:50) in blocking buffer. Isotype-matched Alexa488-conjugated IgG antibodies were used as a control. Samples were then analyzed by flow cytometry. Data were recorded statistically (10,000 events/sample) using the CellQuest Pro software and analyzed using the Flow-Jo 8.8.7 software Results were expressed as mean fluorescence intensity (MFI). Samples were also analyzed by fluorescence microscopy (Nikon Eclipse Ti-U, Nikon Instruments Korea, South Korea).</p>
</sec>
<sec id="Sec19">
<title>Zebrafish toxicity assays and cancer cell xenografts</title>
<p id="Par23">Cancer xenograft assays were performed as previously published
<sup>
<xref ref-type="bibr" rid="CR21">21</xref>
</sup>
. Briefly, 200 K562 cells were stained for 2 h by 4 µM of Cell tracker CM-Dil dye (Invitrogen, Grand Island, NY, USA), then treated with TMQ0153 at indicated concentrations for 8 h and injected as described. Fertilized zebrafish eggs were used up to 5 days post fertilization. Sample size for toxicity assays was 10 zebrafish (
<italic>Danio rerio</italic>
) per condition. Sample size for microinjection assays was 9 zebrafish per condition. No zebrafish were excluded from the study. Experiments were performed in agreement with the animal research committee of the College of Pharmacy of Seoul National University.</p>
</sec>
<sec id="Sec20">
<title>In silico drug-likeness properties</title>
<p id="Par24">In silico drug-likeness properties according to Lipinski’s ‘rule-of-five’ and other parameters for drug-likeness and oral bioavailability were evaluated by using the SCFBio website (
<ext-link ext-link-type="uri" xlink:href="http://www.scfbio-iitd.res.in/">www.scfbio-iitd.res.in/</ext-link>
).</p>
</sec>
<sec id="Sec21">
<title>Bioinformatics analysis</title>
<p id="Par25">The Microarray Innovations in Leukemia (MILE) dataset
<sup>
<xref ref-type="bibr" rid="CR22">22</xref>
,
<xref ref-type="bibr" rid="CR23">23</xref>
</sup>
(GSE13159) was downloaded from the Gene Expression Omnibus repository
<sup>
<xref ref-type="bibr" rid="CR22">22</xref>
</sup>
and normalized using the Robust Multichip Average (RMA) algorithm from the affy R package (version 1.62.0)
<sup>
<xref ref-type="bibr" rid="CR24">24</xref>
</sup>
. Boxplot was generated using the
<italic>ggboxplot</italic>
function of the ggpubr R package (version 0.2.2) in R 3.6.0
<sup>
<xref ref-type="bibr" rid="CR25">25</xref>
</sup>
and RStudio
<sup>
<xref ref-type="bibr" rid="CR26">26</xref>
</sup>
.</p>
</sec>
<sec id="Sec22">
<title>Statistical analysis</title>
<p id="Par26">All experiments are randomized and blinded. Block randomization was used to randomize samples/zebra fish larvae into groups of indicated sample size. No zebrafish were excluded from analysis. Data are expressed as the mean ± S.D. and significance was estimated by using one-way or two-way ANOVA tests using Prism 8 software, GraphPad Software (La Jolla, CA, USA). Statistical significances were evaluated at
<italic>p</italic>
-values below 0.05 and represented by the following legend: *
<italic>p</italic>
 ≤ 0.05, **
<italic>p</italic>
 ≤ 0.01, ***
<italic>p</italic>
 ≤ 0.001; post hoc analyses Dunnett; Sidak; Tukey). All histograms represent the mean ± SD of at least three independent experiments. Statistical power analysis was used to ensure adequate sample size for detecting significant difference between samples. The variance is similar between groups that are being statistically compared.</p>
</sec>
</sec>
<sec id="Sec23" sec-type="results">
<title>Results</title>
<sec id="Sec24">
<title>Cellular uptake and drug-likeness potential of TMQ0153 in human leukemia cells</title>
<p id="Par27">We first assessed the uptake of the auto-fluorescent compound TMQ0153
<sup>
<xref ref-type="bibr" rid="CR12">12</xref>
</sup>
by K562 cells using flow cytometry after 8, 24, 48, and 72 h of treatment with concentrations up to 50 µM. Auto-fluorescence was detected in all three channels (FL1-530/30 nm, FL2-585/42 nm, and FL3-670LP) up to 72 h (Supplementary Fig.
<xref rid="MOESM3" ref-type="media">1A</xref>
) and TMQ0153 (50 µM) was detected by confocal microscopy after 24 h of treatment when cell viability was 25% (Supplementary Fig.
<xref rid="MOESM3" ref-type="media">1B</xref>
), validating the time- and dose-dependent uptake of TMQ153. Moreover, TMQ153 follows Lipinski’s ‘rule of five’ (Supplementary Table
<xref rid="MOESM2" ref-type="media">I</xref>
), confirming its potential drug-likeness properties.</p>
</sec>
<sec id="Sec25">
<title>TMQ0153 inhibits cell viability, proliferation and colony formation capacity of drug-sensitive and -resistant cancer cells</title>
<p id="Par28">We then validated the effect of TMQ0153 (Fig.
<xref rid="Fig1" ref-type="fig">1a</xref>
) on imatinib-sensitive (Fig.
<xref rid="Fig1" ref-type="fig">1b, c</xref>
) and -resistant K562 (K562R), KBM5, imatinib-resistant KBM5 (KBM5R) and MEG01 cells (Supplementary Fig.
<xref rid="MOESM4" ref-type="media">2A–D</xref>
). We also compared the capacity of imatinib to induce cell death in K562 and K562R (Supplementary Fig.
<xref rid="MOESM5" ref-type="media">3</xref>
). Moreover, TMQ0153 decreased the colony formation capacity of various imatinib-sensitive and resistant CML cell types (Fig.
<xref rid="Fig1" ref-type="fig">1d</xref>
and Supplementary Fig.
<xref rid="MOESM4" ref-type="media">2E</xref>
). To extend our findings to an in vivo situation, zebrafish K562 xenograft formation was dose-dependently reduced by TMQ153, compared to controls (Supplementary Fig.
<xref rid="MOESM6" ref-type="media">4</xref>
). To assess for acute toxic side effects, no morphological alterations or toxicity of developing zebrafish larvae were observed at concentrations up to 50 µM, confirming the safety of this compound (Fig.
<xref rid="Fig1" ref-type="fig">1e</xref>
). We generalized our findings by using solid tumor cell lines lung A549, prostate PC3 and breast MCF7 cancer cells where TMQ153 also induced cell death (Supplementary Table
<xref rid="MOESM2" ref-type="media">II</xref>
). Next, we evaluated the selectivity of TMQ0153. We conducted viability assays on peripheral blood mononuclear cells (PBMCs) isolated from healthy donors (Fig.
<xref rid="Fig1" ref-type="fig">1f</xref>
). Viability of TMQ0153-treated PBMCs was dose-dependently impacted. We then evaluated the differential toxicity. After 72 h of treatment, TMQ0153 at 40 and 50 µM was 6.8 and 149-fold more selective to K562 cells compared to PBMCs, respectively (Fig.
<xref rid="Fig1" ref-type="fig">1f</xref>
; Supplementary Table
<xref rid="MOESM2" ref-type="media">III</xref>
). Considering the anti-cancer potential and differential toxicity, we selected CML models to further elucidate the mechanisms of action of TMQ0153.
<fig id="Fig1">
<label>Fig. 1</label>
<caption>
<title>Effect of TMQ0153 on chronic myeloid leukemia cell viability.</title>
<p>
<bold>a</bold>
Chemical structure of TMQ0153.
<bold>b</bold>
Time- and
<bold>c</bold>
dose-dependent effect of TMQ0153 on K562 cell proliferation (left panel) and viability (right panel).
<bold>d</bold>
Inhibitory effect of increasing concentrations of TMQ0153 on the colony forming capacities of the indicated CML cell lines. Upper panel: pictures representative of three independent experiments. Lower panel: quantification of the colony numbers.
<bold>a–d</bold>
All data represent mean (±S.D.) of three independent experiments.
<bold>e</bold>
Acute toxicity assay on zebrafish embryos after 24 h of treatment with increasing concentrations of TMQ0153. Pictures are representative of 10 fishes used for each condition (left panel) and the corresponding quantification of viable embryos (right panel). Ethanol (EtOH, 70%) was used as a positive control for toxicity.
<bold>f</bold>
Cytotoxicity of TMQ0153 on human peripheral blood mononuclear cells (PBMCs) by Trypan blue assay after 24, 48, and 72 h of treatment (PBMC data represent the mean (±S.D.) of five independent experiments). Statistical significance was assessed as *
<italic>p</italic>
 < 0.05, **
<italic>p</italic>
 < 0.01, ***
<italic>p</italic>
 < 0.001 compared to untreated cells. Two-way ANOVA (Cell viability); post hoc: Sidak’s test. One-way ANOVA (Colony formation); post hoc: Sidak’s test. Two-way ANOVA (PBMC toxicity); post hoc: Dunnett’s test.</p>
</caption>
<graphic xlink:href="41419_2020_2304_Fig1_HTML" id="d29e815"></graphic>
</fig>
</p>
</sec>
<sec id="Sec26">
<title>TMQ0153 induces concentration-dependent differential cell death modalities</title>
<p id="Par29">We then investigated the cell death mechanism induced by TMQ0153. Altogether, as shown in Fig.
<xref rid="Fig2" ref-type="fig">2a</xref>
and Supplementary Figs
<xref rid="MOESM7" ref-type="media">5A</xref>
and
<xref rid="MOESM7" ref-type="media">D</xref>
, apoptotic cell death was induced at concentrations up to 20 μM after 24 h, rescued by z-VAD pretreatment. Non-apoptotic, z-VAD-insensitive cell death was dose-dependently induced at concentrations over 30 μM after 8, 24, 48, and 72 h (Fig.
<xref rid="Fig2" ref-type="fig">2a</xref>
and Supplementary Fig.
<xref rid="MOESM7" ref-type="media">5C–H</xref>
) confirming a concentration-dependent induction of caspase-dependent and -independent cell death modalities in both K562 and K562R cells. As shown in Fig.
<xref rid="Fig2" ref-type="fig">2b</xref>
, after 24 h of treatment with TMQ0153, procaspase-9, -8 and -3 were significantly activated leading to PARP-1 cleavage. TMQ0153 treatment led also to a decrease of the anti-apoptotic proteins myeloid cell leukemia (Mcl)−1 and B-cell lymphoma-extra large (Bcl-xL) in a dose-dependent manner (Fig.
<xref rid="Fig2" ref-type="fig">2c</xref>
). We confirmed our findings by measuring an increased caspase 3/7 activity following a treatment with up to 20 µM TMQ0153 for 24 h, which was abrogated in the presence of z-VAD (Fig.
<xref rid="Fig2" ref-type="fig">2d</xref>
).
<fig id="Fig2">
<label>Fig. 2</label>
<caption>
<title>TMQ0153 triggered a concentration-dependent induction of caspase-dependent and independent non-apoptotic cell death in K562 cells.</title>
<p>
<bold>a–d</bold>
K562 cells were treated with various concentrations of TMQ0153 in presence or absence of the pan caspase inhibitor carbobenzoxy-valyl-alanyl-aspartyl-[O-methyl]-fluoromethylketone (z-VAD; 50 μM).
<bold>a</bold>
After 8, 24, 48, and 72 h of treatment the type of cell death triggered by TMQ0153 was characterized by fluorescence microscopy after Hoechst/propidium iodide (PI) staining. Pictures representative of three independent experiments (top panel). Etoposide (Eto; 100 µM, 24 h) was used as a positive control for apoptosis induction. Scale bar: 25 µM.
<bold>b</bold>
Analysis of caspase and poly [ADP-ribose] polymerase (PARP)-1 cleavage by western blot after 24 h of treatment.
<bold>c</bold>
Effect of 24 h of treatment on Mcl-1 and Bcl-xL protein expression levels (top panels) and the corresponding densitometric analysis (middle and lower panels).
<bold>b</bold>
,
<bold>c</bold>
β–actin was used as loading control.
<bold>d</bold>
Quantification of caspase-3/7 activity levels after 24 h of treatment. Etoposide (Eto; 100 µM, 24 h) was used as a positive control for apoptosis induction. All pictures are representative of three independent experiments and graphs represent the mean (±S.D.) of three independent experiments. Statistical significance was assessed as *
<italic>p</italic>
 < 0.05, **
<italic>p</italic>
 < 0.01, ***
<italic>p</italic>
 < 0.001 compared to untreated cells. Two-way ANOVA (microscopy analysis); post hoc: Sidak’s test. One-way ANOVA (caspase-3/7 assay); post hoc: Tukey’s test. One-way ANOVA (western blot quantification); post hoc: Dunnett’s test.</p>
</caption>
<graphic xlink:href="41419_2020_2304_Fig2_HTML" id="d29e886"></graphic>
</fig>
</p>
</sec>
<sec id="Sec27">
<title>TMQ0153 activates necrostatin-1 sensitive necroptotic cell death</title>
<p id="Par30">We then investigated the mechanisms involved in TMQ0153-mediated non-apoptotic cell death at higher concentrations (i.e., from 30 µM) after 8 and 24 h in K562 cells. We pre-treated K562 cells with the RIP1 inhibitor Nec-1 to assess for necroptosis induction. Briefly, we confirmed that Nec-1 had no effect on apoptosis at lower concentrations after 24 h in K562 cells (i.e., up to 20 µM) by TMQ0153 treatment. Results are shown in Supplementary Fig.
<xref rid="MOESM8" ref-type="media">6</xref>
. TMQ0153 induced over 50% of non-apoptotic, PI positive cells after 24 h of treatment with 50 µM. Nec-1 pretreatment significantly prevented non-apoptotic cell death induction between 30–50 µM after 24 h, compared to shikonin, used as a positive control (Fig.
<xref rid="Fig3" ref-type="fig">3a</xref>
). These results indicated that TMQ0153 induced cell death in K562 cells via the necroptotic cell death pathway.
<fig id="Fig3">
<label>Fig. 3</label>
<caption>
<title>TMQ0153 induced a necrostatin-1-sensitive type of cell death in K562 cells.</title>
<p>
<bold>a</bold>
K562 cells were incubated in presence or absence of 60 µM necrostatin (Nec)-1 for 1 h before a treatment with the indicated concentrations of TMQ0153. Shikonin (SHK; 5 µM) was used as a positive control for necrosis induction.
<bold>a</bold>
Nuclear morphology analyses by fluorescence microscopy following Hoechst/ propidium iodide (PI) staining after 8 and 24 h of treatment. Pictures representative of three independent experiments (left panels) and the corresponding quantification (right panels).
<bold>b</bold>
Measurement of intracellular ATP levels at the indicated concentrations and time points.
<bold>c</bold>
Receptor-interacting protein kinase (RIP)1 protein level and PARP-1 cleavage (left panel) were determined by western blotting using C2-10 antibody and the corresponding densitometric analysis (right panel). Shikonin (SHK; 5 µM, 24 h) and necrostatin (Nec)−1 (60 µM, 1 h) were used as a positive control and inhibitor for RIP1. Etoposide (Eto; 100 µM, 24 h) and ethanol (EtOH; 10 %, 2 h) were used as positive controls for apoptotic and necrotic PARP-1 cleavage, respectively.
<bold>d</bold>
Cytosolic Ca2
<sup>+</sup>
levels were measured using Fluo-3-AM after 24 h (left panel) and time-dependently measured Ca
<sup>2+</sup>
levels at 30 μM (right panel). Thapsigargin (TSG; 300 nM, 24 h) was used as a positive control for intracellular Ca
<sup>2+</sup>
accumulation. β–actin was used as loading control. All pictures are representative of three independent experiments and all graphs represent the mean (±S.D.) of three independent experiments. Statistical significance was assessed as *
<italic>p</italic>
 < 0.05, **
<italic>p</italic>
 < 0.01, ***
<italic>p</italic>
 < 0.001 for the indicated comparisons. Two-way ANOVA (microscopy analysis, cell viability); post hoc: Sidak’s test. Two-way ANOVA (Cell Titer Glo assay); post hoc; Tukey’s test. One-way ANOVA (intracellular Ca
<sup>2+</sup>
assay); post hoc; Dunnett’s test. One-way ANOVA (western blot quantification); post hoc; Dunnett’s test.</p>
</caption>
<graphic xlink:href="41419_2020_2304_Fig3_HTML" id="d29e944"></graphic>
</fig>
</p>
<p id="Par31">Necroptosis is known to be accompanied by a modulation of intracellular ATP, increased expression levels of RIP1 and the appearance of a non-apoptotic cleavage fragment of PARP-1 between 50 and 75 kDa
<sup>
<xref ref-type="bibr" rid="CR27">27</xref>
</sup>
. Our results showed a significant decrease in intracellular ATP levels after 4, 8, 16 and 24 h at 30 µM TMQ0153 compared to 20 µM (Fig.
<xref rid="Fig3" ref-type="fig">3b</xref>
). Western blot results confirmed that TMQ0153-treated cells presented increased RIP1 expression levels and this expression was inhibited by a Nec-1 pretreatment. Also, the differentially cleaved necrotic PARP1 fragment revealed by the C2-10 antibody, supported that TMQ0153 induced necrotic cell death at 30 µM after 24 h of treatment (Fig.
<xref rid="Fig3" ref-type="fig">3c</xref>
). Besides, we observed a concomitant accumulation of cytosolic Ca
<sup>2+</sup>
levels at 30 and 50 µM TMQ0153 after 24 h (Fig.
<xref rid="Fig3" ref-type="fig">3d</xref>
). Hematopoietic cell lines largely lack RIP3 expression and this loss of RIP3 may reduce sensitivity against cytotoxic agents
<sup>
<xref ref-type="bibr" rid="CR28">28</xref>
</sup>
.</p>
<p id="Par32">We then investigated the basal expression levels of RIP3 by western blot analysis in different cancer cell types with known RIP3 expression levels. As expected, RIP3 was silenced in K562, A549, PC3 and MCF7 cells (Supplementary Fig.
<xref rid="MOESM9" ref-type="media">7A</xref>
). We then treated K562 cells with the DNA hypomethylating agent 5-aza-2’-deoxycytidine (5-aza) at 1 µM for 6 days to re-express RIP3. As shown in Supplementary Figs
<xref rid="MOESM9" ref-type="media">7B</xref>
, 5-aza treatments increased RIP3 protein expression levels. We then co-treated these cells with TMQ0153 to investigate potential sensitization. Results showed that TMQ0153 treatment of 5-aza-pretreated K562 cells led to significantly enhanced cell death levels (54%) compared to TMQ0153 treatment alone (21%). Overall, our results indicated that the cytotoxicity of TMQ0153 in K562 cells is mediated by necroptosis at higher concentrations. In addition, a pretreatment with DNA hypomethylating agents like 5-aza may further potentialize the effect of TMQ0153 in CML cells devoid of RIP3.</p>
</sec>
<sec id="Sec28">
<title>TMQ0153 induces an early onset of autophagy in K562 cells followed by controlled necrosis</title>
<p id="Par33">As we observed extensive vacuole formation (Supplementary Fig.
<xref rid="MOESM10" ref-type="media">8A</xref>
) in treated K562 cells prior to cell death induction, we hypothesized that TMQ0153 was triggering an initial intracellular stress reaction, potentially via autophagy. TMQ0153 dose-dependently and progressively induced the conversion of LC3-I to LC3-II between 10 and 50 µM after 2 h by western blot analysis. Results showed that TMQ0153 significantly increased LC3-II levels at 10 µM (Supplementary Fig.
<xref rid="MOESM10" ref-type="media">8B</xref>
). In addition, there is a significant increase of LC3 conversion between 10 and 30 µM potentially reflecting the differential ATP levels in the treated cells. Based on these results, an initial morphological analysis of TMQ0153-treated K562 cells by confocal microscopy and Diff-Quik staining allowed quantifying early vesicle formation (Supplementary Fig.
<xref rid="MOESM10" ref-type="media">8C</xref>
). Treatment of K562 cells with TMQ0153 at necroptosis-inducing concentrations (30 µM) for 0, 4, 8 h compared to PP242 showed the onset of vesicle formation by confocal microscopy after CYTO-ID staining, further ascertaining autophagic activity (Fig.
<xref rid="Fig4" ref-type="fig">4a</xref>
). Western blot analysis demonstrated that TMQ0153 time-dependently induced the conversion of LC3-I to LC3-II at 30 µM after 2, 4, 6, and 8 h, prior to necroptosis induction. In agreement with these results, sequestosome-1 (SQST)M1/p62 (Fig.
<xref rid="Fig4" ref-type="fig">4b</xref>
) was degraded. Moreover, in the presence of the lysosome inhibitor baf-A1, we observed an enhanced accumulation of LC3-II and p62 levels in TMQ0153-treated cells after 2 and 4 h confirming an active autophagic flux (Fig.
<xref rid="Fig4" ref-type="fig">4c</xref>
). Results were confirmed by transmission electron microscopy (TEM) confirming extensive vacuolization (Fig.
<xref rid="Fig4" ref-type="fig">4d</xref>
).
<fig id="Fig4">
<label>Fig. 4</label>
<caption>
<title>TMQ0153 stimulated autophagy prior to necroptosis.</title>
<p>
<bold>a</bold>
Confocal UV microscopy analysis after staining with Cyto-ID (left panel). Representative images of FITC stained images in the 4 groups accompanied by the corresponding pseudocolor masks (red: FITC signal, green: cell area) used for calculation and the corresponding quantification of fluorescence intensity (right panel). Statistical results were compared by Kruskal–Wallis test followed by Conover post-test further adjusted by the Benjamini-Hochberg FDR method. 0 h vs. 4 h and vs 8 h (
<italic>p</italic>
 < 0.0004 and
<italic>p</italic>
 < 0.00006, respectively), 4 h vs.8 h (
<italic>p</italic>
 < 0.002).
<bold>b</bold>
Western blot detection of LC3 and p62 protein levels (left panel) and the corresponding densitometric analysis (right panel).
<bold>c</bold>
Similar analysis in cells pretreated with 40 nM bafilomycin A1 (baf-A1) for 1 h (upper panel) and the corresponding densitometric analysis (lower panel). 10 µM PP242 for 4 h was used as a positive control for autophagy induction.
<bold>d</bold>
Transmission electron microscopy at ×12.000 and ×25.000 magnification: arrows indicate autophagolysosomes. Statistical significance was assessed as *
<italic>p</italic>
 < 0.05, **
<italic>p</italic>
 < 0.01, ***
<italic>p</italic>
 < 0.001 compared to untreated cells unless otherwise specified. One-way ANOVA (western blot quantification); post hoc; Tukey’s test. Two-way ANOVA (mito stress test); post hoc; Sidak’s test.</p>
</caption>
<graphic xlink:href="41419_2020_2304_Fig4_HTML" id="d29e1043"></graphic>
</fig>
</p>
<p id="Par34">To investigate the effect of TMQ0153 on cellular metabolism, we used a Seahorse XF Analyzer. Our results showed a significant decrease in the oxygen consumption rate (OCR) upon 4 h of treatment with 30 µM TMQ0153 (Fig.
<xref rid="Fig5" ref-type="fig">5a</xref>
), which precedes necroptosis induction. As these results indicated that TMQ0153 disrupted mitochondrial bioenergetics, we further detected mitochondria with damaged morphologies by TEM (4 h, 30 µM) in line with the observed metabolic alterations.
<fig id="Fig5">
<label>Fig. 5</label>
<caption>
<title>Effect of TMQ0153 on cellular metabolism.</title>
<p>
<bold>a</bold>
Oxygen consumption rate (OCR) was measured by Seahorse XFp analyzer.
<bold>b</bold>
Caspase 8 analysis by western blot (upper panel) and the corresponding densitometric analysis (lower panel). Etoposide (Eto; 100 µM, 24 h) was used as a positive control for apoptotic caspase cleavage.
<bold>c</bold>
Caspase 8 analysis by western blot (upper panel) in the presence or absence of autophagy inhibitors: 40 nM baf-A1, 10 mM, 3-methyladenine (3-MA) and 75 μM chloroquine (CQ) and the corresponding densitometric analysis (lower panel). In western blot analyses, β-actin was used as a loading control.
<bold>d</bold>
Quantification of caspases-3/7 (left graph) and -9 activity (right graph) levels at 30 µM of TMQ0153 treatment. Etoposide (Eto; 100 µM, 24 h) was used as a positive control for apoptosis induction. All pictures are representative of three independent experiments and data represent mean (±S.D.) of three independent experiments. Statistical significance was assessed as *
<italic>p</italic>
 < 0.05, **
<italic>p</italic>
 < 0.01, ***
<italic>p</italic>
 < 0.001 compared to untreated cells unless otherwise specified. One-way ANOVA (Caspase-3/7 and -9 assay); post hoc; Tukey’s test. Two-way ANOVA (mito stress test); post hoc; Sidak’s test. One-way ANOVA (western blot quantification); post hoc; Dunnett’s test.</p>
</caption>
<graphic xlink:href="41419_2020_2304_Fig5_HTML" id="d29e1080"></graphic>
</fig>
</p>
<p id="Par35">We then investigated the effect of autophagy induction on caspase-8 expression levels. Our results showed a progressive reduction of pro-caspase-8 levels during autophagy induction between 2 and 8 h with 30 µM TMQ0153 (Fig.
<xref rid="Fig5" ref-type="fig">5b</xref>
). Despite the progressive degradation of pro-caspase-8 after treatment, Fig.
<xref rid="Fig5" ref-type="fig">5c</xref>
shows that chemical inhibition of autophagy at 8 h by Baf-A1, 3-MA and CQ does not allow to significantly rescue pro-caspase-8 levels. Noteworthy, under the same conditions, caspase-3/7 and -9 activities significantly decreased (Fig.
<xref rid="Fig5" ref-type="fig">5d</xref>
).</p>
</sec>
<sec id="Sec29">
<title>Autophagic inhibitors augment necroptosis induced by TMQ0153 in K562 cells</title>
<p id="Par36">To investigate the relationship between TMQ0153 induced autophagy and necroptosis, K562 cells were treated with TMQ0153 in the presence of autophagic inhibitors. Nuclear morphology analyses showed that the inhibition of TMQ0153-induced autophagy by baf-A1 significantly enhanced necroptosis in K562 cells compared to cells treated with TMQ0153 alone (Fig.
<xref rid="Fig6" ref-type="fig">6a</xref>
). In addition, baf-A1-, 3-MA- and CQ-mediated inhibition of autophagy led to necroptotic cell death in line with a switch from apoptotic to necrotic cell demise and concomitant with the reduction of procaspase-8 levels (Fig.
<xref rid="Fig5" ref-type="fig">5b</xref>
).
<fig id="Fig6">
<label>Fig. 6</label>
<caption>
<title>Inhibition of autophagy increases TMQ0153-induced necroptosis.</title>
<p>
<bold>a</bold>
Effect of autophagy inhibitors (40 nM baf-A1, 10 mM, 3-methyladenine (3-MA) and 75 μM chloroquine (CQ)) on death of K562 cells treated with 30 µM of TMQ0153 assessed by nuclear morphology analysis after 8 h of treatment.
<bold>b-e</bold>
K562 cells were transfected with specific small interfering (si)RNAs against beclin 1 [(SiBCN-1), 5 nM SiBCN-1_1 and 10 nM SiBCN-1_2] for 24 h.
<bold>b</bold>
Upper panel: effect of siRNA on beclin 1 protein expression level. After quantification of the bands, beclin 1 levels were normalized to β-actin. Lower panel: transfected cells were treated with 30 μM of TMQ0153 and a nuclear morphology analysis was carried out after 8 h of treatment.
<bold>c-e</bold>
Effect of siRNA on TMQ0153-induced autophagy quantified by flow cytometry after Cyto-ID staining (
<bold>c</bold>
); on caspase-3/7 activity (
<bold>d</bold>
), and PARP-1 cleavage using C2-10 antibody (
<bold>e</bold>
). Etoposide (Eto; 100 µM, 24 h) and EtOH (10 %, 2 h) were used as positive controls for apoptotic and necrotic PARP-1 cleavage (upper panel) and the corresponding densitometric analysis of necrotic cleavage (lower panel) is visualized. In western blot analyses, β-actin was used as a loading control. All pictures are representative of three independent experiments and data represent mean (±S.D.) of three independent experiments Statistical significance was assessed as *
<italic>p</italic>
 < 0.05, **
<italic>p</italic>
 < 0.01, ***
<italic>p</italic>
 < 0.001 for the indicated comparisons. Two-way ANOVA (nuclear morphology analysis); post hoc; Sidak’s test. One-way ANOVA (Cyto-ID assay); post hoc; Dunnett’s test. One-way ANOVA (caspase 3/7 assay); post hoc; Tukey’s test. One-way ANOVA (western blot quantification); post hoc; Dunnett’s test.</p>
</caption>
<graphic xlink:href="41419_2020_2304_Fig6_HTML" id="d29e1143"></graphic>
</fig>
</p>
<p id="Par37">To avoid non-specific effects of chemical inhibitors, we then also investigated the effect of TMQ0153-induced autophagy in beclin 1-siRNA-transfected cells. Silencing beclin 1 enhanced necroptosis (Fig.
<xref rid="Fig6" ref-type="fig">6b</xref>
) and decreased autophagy (Fig.
<xref rid="Fig6" ref-type="fig">6c</xref>
). Moreover, enhanced levels of necrotic PARP-1 cleavage products (50–75 kD) were detected when using the C2-10 anti-PARP antibody (Fig.
<xref rid="Fig6" ref-type="fig">6d, e</xref>
). Altogether, whereas inhibition of autophagy did not allow a significant switch towards apoptosis, it caused increased levels of necrosis, most likely due to induction of energetic catastrophe.</p>
</sec>
<sec id="Sec30">
<title>CML patient cells are characterized by increased expression levels of genes involved in oxidative stress</title>
<p id="Par38">We wanted to further document the status of activated redox metabolism by using patient data. Further exacerbation of this status should facilitate cell death induction in agreement with the concept of pro-oxidant CML therapy. Indeed. CML patient cells are characterized by increased expression levels of genes involved in oxidative stress. We used a patient cohort regrouping 74 healthy donors and leukemia patients including 76 patients that were diagnosed with CML
<sup>
<xref ref-type="bibr" rid="CR22">22</xref>
,
<xref ref-type="bibr" rid="CR23">23</xref>
</sup>
to assess the gene expression level of oxidative stress-related genes. In particular, we were interested in assessing the gene expression level of the NADPH oxidases (NOX) family constituted of 7 members (NOX1-NOX5, DUOX1, DUOX2), as they are largely responsible for the production of ROS
<sup>
<xref ref-type="bibr" rid="CR29">29</xref>
</sup>
. Our results show that the expression level of NOX regulator cytochrome b-245 heavy chain (CYBB) was more elevated in CML patients compared to healthy donors (Supplementary Fig.
<xref rid="MOESM11" ref-type="media">9</xref>
) leading to an increased NOX activity and thus an increase in ROS production
<sup>
<xref ref-type="bibr" rid="CR30">30</xref>
</sup>
. Based on these observations, we hypothesized that the resulting increased ROS levels in CML patient cells could be therapeutically targeted by exacerbation of intracellular ROS levels by TMQ0153 leading to a pro-oxidant treatment approach. Indeed, from a chemical point of view, TMQ0153 can be redox active similar to quinones and afford radical anions leading to the formation of reactive superoxide.</p>
</sec>
<sec id="Sec31">
<title>TMQ0153 depolarizes mitochondrial membrane potential and triggers necroptotic cell death through ROS formation</title>
<p id="Par39">Accumulation of intracellular ROS is known to depolarize the mitochondrial membrane potential (MMP). First, we performed a morphological analysis of mitochondria by TEM after treatment of K562 with TMQ0153 (30 µM). Our results showed that 30 µM TMQ0153 induced mitochondrial morphological changes such as enlarged and swollen mitochondria compared to control after 8 h (Fig.
<xref rid="Fig7" ref-type="fig">7a</xref>
and Supplementary Fig.
<xref rid="MOESM12" ref-type="media">10A, B</xref>
). Next, we measured the MMP in K562 cells after 24 h of treatment with TMQ0153. Results demonstrated that TMQ0153 increased the proportion of cells with low MMP in a dose-dependent manner (Fig.
<xref rid="Fig7" ref-type="fig">7b</xref>
). In addition, TMQ0153-mediated reduced cell viability and MMP loss were prevented by the ROS scavenger NAC (Fig.
<xref rid="Fig7" ref-type="fig">7c</xref>
) and also prevented by the RIP1 inhibitor Nec-1 (Supplementary Fig.
<xref rid="MOESM12" ref-type="media">10C</xref>
). Next, we investigated the implication of ROS in the generation of necroptotic cell death
<sup>
<xref ref-type="bibr" rid="CR31">31</xref>
</sup>
. To identify the nature and roles of intracellular ROS induced by TMQ0153, K562 cells were pretreated with and without antioxidants NAC, Trolox and Tiron. Apoptotic concentrations of TMQ0153 (20 µM) did not induce significant levels of ROS compared to a necrosis-inducing concentration (30 µM) after 4 and 8 h whereas pretreatment with NAC significantly abrogated ROS formation at 30 µM (Fig.
<xref rid="Fig8" ref-type="fig">8a</xref>
and Supplementary Fig.
<xref rid="MOESM13" ref-type="media">11A</xref>
) in both K562 and K562R cells. Vitamin E derivative Trolox that reduces the levels of lipid peroxidation when the oxidation was initiated inside the plasma membrane
<sup>
<xref ref-type="bibr" rid="CR32">32</xref>
</sup>
or mitochondrially-localized Tiron
<sup>
<xref ref-type="bibr" rid="CR33">33</xref>
</sup>
did not significantly reduce ROS levels (Supplementary Fig.
<xref rid="MOESM13" ref-type="media">11B</xref>
).
<fig id="Fig7">
<label>Fig. 7</label>
<caption>
<title>TMQ0153 induced mitochondrial dysfunction and MMP in K562 cells.</title>
<p>
<bold>a</bold>
Cells were treated with TMQ0153 for 8 h and mitochondrial morphology was assessed by TEM at 12.000x and 25.000x magnification. Single arrows and double arrows indicate respectively dilated and giant mitochondria, asterisks indicate autophagophores.
<bold>b</bold>
Mitochondrial membrane potential (MMP) analysis in cells treated with increasing concentrations of TMQ0153 for 24 h. The fraction of low MMP presenting cells is depicted.
<bold>c</bold>
Cells were pre-incubated for 1 h in presence or absence of 50 mM N-acetyl-L-cysteine (NAC) followed by a treatment with the indicated concentrations of TMQ0153. After 24 h of treatment, MMP (upper panel) cell viability (bottom panel) were assessed by trypan blue assay and flow cytometry, respectively. All pictures are representative of three independent experiments and data represent the mean (±S.D.) of three independent experiments. Statistical significance was assessed as *
<italic>p</italic>
 < 0.05, **
<italic>p</italic>
 < 0.01, ***
<italic>p</italic>
 < 0.001 compared to untreated cells unless otherwise specified. One-way ANOVA (mitochondrial membrane); post hoc; Dunnett’s test. One-way ANOVA (cell viability); post hoc; Tukey’s test.</p>
</caption>
<graphic xlink:href="41419_2020_2304_Fig7_HTML" id="d29e1248"></graphic>
</fig>
<fig id="Fig8">
<label>Fig. 8</label>
<caption>
<title>TMQ0153 triggers necroptotic cell death through decreased GSH levels, involvement of LMP and ROS formation.</title>
<p>
<bold>a</bold>
Cells were pre-incubated for 1 h in presence or absence of 50 mM NAC or 60 µM necrostatin (Nec)−1. After 4 and 8 h of treatment with TMQ0153 at 20 and 30 µM, reactive oxygen species (ROS) levels were measured by flow cytometry following dichlorofluorescein diacetate (H
<sub>2</sub>
DCFDA) staining. H
<sub>2</sub>
O
<sub>2</sub>
was used as a positive control for ROS induction.
<bold>b</bold>
Quantification of total GSH levels (left panel) and GSH (glutathione)/glutathione disulfide (GSSG) ratio (right panel). 50 µM Buthionine sulfoximine (BSO) was used as a positive control for the inhibition of GSH synthesis.
<bold>c</bold>
Cells were stained with Hoechst and Lysotracker Red and analyzed by fluorescence microscopy. Lysotracker Red fluorescence intensity was quantified using Image J 1.8.0 software (upper panel). Lysotracker Red intensity was quantified by FACS (bottom panel). Chloroquine (CQ; 75 μM, 4 h), PP242 (PP, 10 μM, 4 h) and baf-A1 (40 nM, 4 h) were used as a positive and negative controls for autophagy inhibition and induction, respectively. All pictures are representative of three independent experiments and data represent the mean (±S.D.) of three independent experiments. Statistical significance was assessed as *
<italic>p</italic>
 < 0.05, **
<italic>p</italic>
 < 0.01, ***
<italic>p</italic>
 < 0.001 compared to untreated cells unless otherwise specified. One-way ANOVA (LMP); post hoc; Dunnett’s test. One-way ANOVA (ROS, GSH assay); post hoc; Tukey’s test.</p>
</caption>
<graphic xlink:href="41419_2020_2304_Fig8_HTML" id="d29e1286"></graphic>
</fig>
</p>
<p id="Par40">Since the balance of intracellular reduced and oxidized glutathione (GSH) levels reflects the redox state of the cells, we evaluated total GSH levels and the GSH/GSSG ratio after 4 and 24 h of treatment. Results revealed that both total GSH levels and GSH/GSSG ratio were significantly reduced upon 30 µM TMQ0153 treatment (Fig.
<xref rid="Fig8" ref-type="fig">8b</xref>
). After GSH depletion, redox and cellular stress are considered to be potent inducers of mitochondrial dysfunction through ROS accumulation
<sup>
<xref ref-type="bibr" rid="CR34">34</xref>
</sup>
. Therefore, we examined the effect of Nec-1 on intracellular ROS accumulation by TMQ0153 and found that Nec-1 pretreatment decreased cellular ROS levels in TMQ0153-treated K562 cells after 4 and 8 h (Fig.
<xref rid="Fig8" ref-type="fig">8a</xref>
). This finding could suggest that Nec-1 protects against TMQ0153-induced necroptosis by suppressing the intracellular burden of ROS formation after necroptosis induction. Finally, ROS-induced lysosomal membrane potential (LMP) is increasing in K562 cells after TMQ0153-induced necroptotic cell death in a time-dependent manner at 30 µM as demonstrated by fluorescence microscopy and FACS (Fig.
<xref rid="Fig8" ref-type="fig">8c</xref>
).</p>
</sec>
<sec id="Sec32">
<title>TMQ0153-treated K562 cells release immunogenic cell death markers</title>
<p id="Par41">Our results showed a decrease in intracellular ATP levels and increased mitochondrial ROS and cytoplasmic Ca
<sup>2+</sup>
levels eventually concomitant with necroptosis induction
<sup>
<xref ref-type="bibr" rid="CR35">35</xref>
</sup>
. Since these changes were described to contribute to the immunogenicity of the dying cells
<sup>
<xref ref-type="bibr" rid="CR36">36</xref>
</sup>
, we also assessed the release of HMGB1 and demonstrated that TMQ0153 triggered accumulation HMGB1 in the supernatant in a dose- and time-dependent manner in K562 cells (Supplementary Fig.
<xref rid="MOESM14" ref-type="media">12A</xref>
). In addition, 24 h of treatment with TMQ0153 induced extracellular ATP secretion into the supernatant of K562 cells at 30 and 50 µM (Supplementary Fig.
<xref rid="MOESM14" ref-type="media">12B</xref>
). Furthermore, the potential immunogenic signal from dying cells also includes proteins that are exposed at the surface of stressed or dying cells. Results showed that TMQ0153-treated cells increased significantly the ectopic expression of calreticulin (Ecto-CRT) (Supplementary Fig.
<xref rid="MOESM14" ref-type="media">12C</xref>
) and Ecto-ERp57 (Supplementary Fig.
<xref rid="MOESM14" ref-type="media">12D</xref>
) by fluorescent microscopy and FACS. These results indicate that TMQ0153-induced necroptosis could further augment immunogenicity of dying K562 cells.</p>
</sec>
</sec>
<sec id="Sec33" sec-type="discussion">
<title>Discussion</title>
<p id="Par42">CML still has high morbidity and mortality among the leukemia patients
<sup>
<xref ref-type="bibr" rid="CR37">37</xref>
</sup>
. Even though the development of TKIs is an effective treatment against CML, severe side effects and mutations of BCR-ABL are considered as one of main reasons for drug resistance
<sup>
<xref ref-type="bibr" rid="CR38">38</xref>
</sup>
. For this reason, novel therapies that target the molecular or metabolic characteristics of CML are highly required.</p>
<p id="Par43">In the present study, we attempted to address the interplay between apoptosis, autophagy, and necroptosis in CML cell models, by using an experimental pro-oxidant therapeutic approach with the cytotoxic synthetic hydroquinone derivative TMQ0153 aiming to disrupt oxidative and metabolic stress homeostasis. As a result, we observed a ROS- and concentration-dependent induction of protective autophagy eventually leading to Nec-1-sensitive necroptosis, whereas low TMQ0153 concentrations do not trigger any significant increase in ROS levels and led to caspase-dependent apoptosis. We also observed different levels of ATP during the induction of apoptosis and necroptosis. Indeed, ATP is required for caspase activation and induction of apoptosis
<sup>
<xref ref-type="bibr" rid="CR39">39</xref>
</sup>
. Therefore, high levels of ROS can lead to necroptotic cell death whereas low levels of ROS induce apoptotic cell death.</p>
<p id="Par44">Quinone derivatives such as 5-hydroxy-2-methyl-1,4-naphthoquinone (plumbagin) induce apoptosis or necrosis in AML by producing ROS and decreasing Mcl-1 and Bcl-2 anti-apoptotic protein abundance
<sup>
<xref ref-type="bibr" rid="CR40">40</xref>
</sup>
. However, the effect of quinone-induced ROS on the apoptotic machinery remains largely unknown. In our study, 20 µM TMQ0153 induced apoptosis in K562 cells along with caspase 8, 9 and 3 cleavage, that are both prevented in the presence of z-VAD. In addition, we found that apoptosis was associated with an early downregulation of anti-apoptotic protein Mcl-1 and Bcl-xL after TMQ0153 treatment.</p>
<p id="Par45">We showed that TMQ0153 induces cell death in K562 cells
<italic>via</italic>
a RIP1-dependent necroptotic cell death pathway. 2,3,5-tris-hydroquinone was reported to induce ROS production and increase intracellular Ca
<sup>2+</sup>
levels that contribute to PARP-1-mediated necrosis in HK-2 cells
<sup>
<xref ref-type="bibr" rid="CR41">41</xref>
</sup>
. β-lapachone is reduced to β-lapachone hydroquinone, which induces programmed necrosis through the ROS production and a RIP1-dependent cell death pathway in human hepatocellular carcinoma
<sup>
<xref ref-type="bibr" rid="CR42">42</xref>
</sup>
. Here, TMQ0153 is acting as a pro-oxidant and induces necroptosis through downstream mediators including RIP1 leading to mitochondrial dysfunction as a response to energy depletion. Previous research investigated that cells lacking RIP3 expression were resistant to typical programmed necrotic stimuli but became sensitive when RIP3 is re-expressed
<sup>
<xref ref-type="bibr" rid="CR28">28</xref>
</sup>
. Our results supported these results as we observed a sensitization against TMQ0153 by the re-expression of RIP3 after treatment with the DNA demethylating agent 5-azacitidine
<sup>
<xref ref-type="bibr" rid="CR28">28</xref>
</sup>
.</p>
<p id="Par46">Despite the successful use of TKIs in CML therapy, a better understanding of the physiology of CML cells remains important. According to Karvela et al.
<sup>
<xref ref-type="bibr" rid="CR43">43</xref>
</sup>
, CML cells show elevated rates of a basal autophagic flux due to upregulation of autophagy genes including ATG7. In addition, higher levels of ROS and autophagy were shown to be implicated in the development of CML and closely involved in drug resistance in leukemia
<sup>
<xref ref-type="bibr" rid="CR44">44</xref>
,
<xref ref-type="bibr" rid="CR45">45</xref>
</sup>
. Our results confirmed the elevated basal levels of autophagosome formation in K562 cells. Autophagy is triggered as a pro-survival strategy in human cancer cells treated with mammalian target of rapamycin (mTOR) inhibitor rapamycin
<sup>
<xref ref-type="bibr" rid="CR46">46</xref>
</sup>
, sarco/endoplasmic reticulum (ER) Ca
<sup>2+</sup>
-ATPase (SERCA) inhibitor stemphol
<sup>
<xref ref-type="bibr" rid="CR18">18</xref>
</sup>
or the naphthoquinone shikonin
<sup>
<xref ref-type="bibr" rid="CR47">47</xref>
</sup>
. Indeed, the inhibition of shikonin-induced autophagy increased necroptosis as well as PARP-1-mediated cell death in A549
<sup>
<xref ref-type="bibr" rid="CR47">47</xref>
</sup>
. Our results support the idea that autophagy protects against necroptosis in TMQ0153-treated K562 as we confirmed that autophagy was detected at early time points before the induction of necroptotic cell death with 30 µM TMQ0153 most likely due to an early cellular stress response in K562 cells.</p>
<p id="Par47">In cancer cells, metabolic stress may arise from insufficient energy or oxygen supply. Autophagy can be induced as an alternative source of energy and metabolites
<sup>
<xref ref-type="bibr" rid="CR48">48</xref>
</sup>
. Our results showed that K562 cells treated with autophagy inhibitors such as baf-A1 enhanced necroptotic cell death concomitantly with a non-apoptotic degradation of caspase-8, thus preventing canonical apoptosis induction. These results were confirmed by a profile of PARP-1 degradation typical of necrosis/necroptosis.</p>
<p id="Par48">In beclin 1-silenced K562 cells, TMQ0153 induced the appearance of necrotic PARP-1 band and enhanced necroptotic cell population suggesting that autophagy serves a protective role. In addition, we observed that TMQ0153 induced autophagic responses in K562 cells as evidenced by LC3-positive autophagy like vacuoles, and the increased conversion of LC3-I to LC3-II. We also found that pretreatment with baf-A1, which blocks autophagosomal degradation, increased the formation of LC3-II in K562 cells after treatment with TMQ0153.</p>
<p id="Par49">We provided evidence that TMQ0153 induced the dysfunction of mitochondria as shown by TEM and OCR analysis, as well as oxidative stress
<italic>via</italic>
increasing ROS levels and triggering accumulation of cytoplasmic Ca
<sup>2+</sup>
levels. GSH is an important antioxidant in cellular metabolism and the reduction of GSH levels was described to induce autophagy, apoptotic or necrotic/necroptotic cell death
<sup>
<xref ref-type="bibr" rid="CR49">49</xref>
,
<xref ref-type="bibr" rid="CR50">50</xref>
</sup>
. We observed that intracellular GSH levels decreased during the onset of autophagy and necroptosis induced by TMQ0153. TMQ0153, as a pro-oxidant compound, amplifies ROS stress in K562 cells prior to necroptosis induction. Therefore, necroptotic cell death potentially further exacerbates ROS generation. The change of oxidative stress levels by TMQ0153 affects mitochondria homeostasis leading to different forms of cell death. A shift from apoptosis to necroptosis appears to be associated with decreased mitochondrial function and ATP production
<sup>
<xref ref-type="bibr" rid="CR51">51</xref>
</sup>
. Other mechanisms may involve Ca
<sup>2+</sup>
accumulation known to trigger necroptotic cell death
<sup>
<xref ref-type="bibr" rid="CR14">14</xref>
</sup>
.</p>
<p id="Par50">Weak release of lysosomal enzymes leads to apoptosis, whereas a massive release of lysosomal enzymes results in necrosis
<sup>
<xref ref-type="bibr" rid="CR52">52</xref>
</sup>
. In our study, TMQ0153 induced increased ROS and LMP at early time points which are decreased later when necroptosis is induced. Interestingly, increased ROS levels are specifically reduced by the pre-treatment by NAC but not by Trolox and Tiron. These compounds possess different antioxidant capacities. NAC is a precursor of glutathione and can scavenge different types of ROS
<sup>
<xref ref-type="bibr" rid="CR53">53</xref>
</sup>
. Trolox neutralizes lipid-derived radicals
<sup>
<xref ref-type="bibr" rid="CR54">54</xref>
</sup>
whereas Tiron is a metal chelator
<sup>
<xref ref-type="bibr" rid="CR55">55</xref>
</sup>
. Considering our results, ROS induced by TMQ0153 which is preventable by NAC, must be generated in the mitochondria considering the specific antioxidant effects of NAC
<sup>
<xref ref-type="bibr" rid="CR56">56</xref>
</sup>
.</p>
<p id="Par51">Wiedmer et al. showed that autophagy is upregulated for the clearance of damaged lysosomes, leading to cell recovery, thus playing a pro-survival role
<sup>
<xref ref-type="bibr" rid="CR57">57</xref>
</sup>
. Hence, lysosomal instability triggered by TMQ0153 contributes to final steps of necroptosis. Besides LMP, mitochondrial dysfunction is another executioner of necroptosis
<sup>
<xref ref-type="bibr" rid="CR31">31</xref>
</sup>
. Our results showed that TMQ0153 treatment generated mitochondrial alterations and dysfunction associated with a loss of MMP.</p>
<p id="Par52">Necroptosis triggers cell membrane rupture and the release of cellular cytoplasmic contents into the extracellular spaces such as HMGB1 and ATP
<sup>
<xref ref-type="bibr" rid="CR13">13</xref>
</sup>
. TMQ0153 treatment significantly released HMGB1 and increased extracellular ATP levels. Immunogenic cell death (ICD) is a form of chemotherapy-induced tumor cell death, which is mediated by damage associated molecular patterns (DAMPs) that triggers effective antitumor immune responses
<sup>
<xref ref-type="bibr" rid="CR58">58</xref>
</sup>
. ICD-inducers are able to mediate endoplasmic reticulum (ER) stress resulting in the cell surface presentation of calreticulin and ERp57
<sup>
<xref ref-type="bibr" rid="CR13">13</xref>
,
<xref ref-type="bibr" rid="CR59">59</xref>
</sup>
. Here, we showed that TMQ0153 treatment led to CRT and ERp57 surface expression. These results provided evidence that TMQ0153 released ICD markers as an essential feature of this chemotherapeutic compound.</p>
<p id="Par53">In summary (Supplementary Fig.
<xref rid="MOESM15" ref-type="media">13</xref>
, based on
<sup>
<xref ref-type="bibr" rid="CR60">60</xref>
</sup>
with modifications), TMQ0153 possesses a potent pro-oxidant capacity against imatinib-sensitive and -resistant CML cells underlining the interest of TMQ0153 as an experimental pre-clinical therapeutic agent accompanied by release of ICD markers.</p>
</sec>
<sec sec-type="supplementary-material">
<title>Supplementary information</title>
<sec id="Sec34">
<p>
<supplementary-material content-type="local-data" id="MOESM1">
<media xlink:href="41419_2020_2304_MOESM1_ESM.docx">
<caption>
<p>Supplementary figure legends</p>
</caption>
</media>
</supplementary-material>
<supplementary-material content-type="local-data" id="MOESM2">
<media xlink:href="41419_2020_2304_MOESM2_ESM.docx">
<caption>
<p>Supplementary tables</p>
</caption>
</media>
</supplementary-material>
<supplementary-material content-type="local-data" id="MOESM3">
<media xlink:href="41419_2020_2304_MOESM3_ESM.tif">
<caption>
<p>Supplementary figure 1</p>
</caption>
</media>
</supplementary-material>
<supplementary-material content-type="local-data" id="MOESM4">
<media xlink:href="41419_2020_2304_MOESM4_ESM.tif">
<caption>
<p>Supplementary figure 2</p>
</caption>
</media>
</supplementary-material>
<supplementary-material content-type="local-data" id="MOESM5">
<media xlink:href="41419_2020_2304_MOESM5_ESM.tif">
<caption>
<p>Supplementary figure 3</p>
</caption>
</media>
</supplementary-material>
<supplementary-material content-type="local-data" id="MOESM6">
<media xlink:href="41419_2020_2304_MOESM6_ESM.tif">
<caption>
<p>Supplementary figure 4</p>
</caption>
</media>
</supplementary-material>
<supplementary-material content-type="local-data" id="MOESM7">
<media xlink:href="41419_2020_2304_MOESM7_ESM.tif">
<caption>
<p>Supplementary figure 5</p>
</caption>
</media>
</supplementary-material>
<supplementary-material content-type="local-data" id="MOESM8">
<media xlink:href="41419_2020_2304_MOESM8_ESM.tif">
<caption>
<p>Supplementary figure 6</p>
</caption>
</media>
</supplementary-material>
<supplementary-material content-type="local-data" id="MOESM9">
<media xlink:href="41419_2020_2304_MOESM9_ESM.tif">
<caption>
<p>Supplementary figure 7</p>
</caption>
</media>
</supplementary-material>
<supplementary-material content-type="local-data" id="MOESM10">
<media xlink:href="41419_2020_2304_MOESM10_ESM.tif">
<caption>
<p>Supplementary figure 8</p>
</caption>
</media>
</supplementary-material>
<supplementary-material content-type="local-data" id="MOESM11">
<media xlink:href="41419_2020_2304_MOESM11_ESM.tif">
<caption>
<p>Supplementary figure 9</p>
</caption>
</media>
</supplementary-material>
<supplementary-material content-type="local-data" id="MOESM12">
<media xlink:href="41419_2020_2304_MOESM12_ESM.tif">
<caption>
<p>Supplementary figure 10</p>
</caption>
</media>
</supplementary-material>
<supplementary-material content-type="local-data" id="MOESM13">
<media xlink:href="41419_2020_2304_MOESM13_ESM.tif">
<caption>
<p>Supplementary figure 11</p>
</caption>
</media>
</supplementary-material>
<supplementary-material content-type="local-data" id="MOESM14">
<media xlink:href="41419_2020_2304_MOESM14_ESM.tif">
<caption>
<p>Supplementary figure 12</p>
</caption>
</media>
</supplementary-material>
<supplementary-material content-type="local-data" id="MOESM15">
<media xlink:href="41419_2020_2304_MOESM15_ESM.tif">
<caption>
<p>Supplementary figure 13</p>
</caption>
</media>
</supplementary-material>
</p>
</sec>
</sec>
</body>
<back>
<fn-group>
<fn>
<p>Edited by G.M. Fimia</p>
</fn>
<fn>
<p>
<bold>Publisher’s note</bold>
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.</p>
</fn>
</fn-group>
<sec>
<title>Supplementary information</title>
<p>
<bold>Supplementary Information</bold>
accompanies this paper at (10.1038/s41419-020-2304-8).</p>
</sec>
<ack>
<title>Acknowledgements</title>
<p>S.S., J.Y.L., A.M., C.C., B.O. and M.D. are supported by NRF grants 019R1A2C1009231 and 2011-0030001 (Tumor Microenvironment Global Core Research Center, GCRC); Brain Korea (BK21) PLUS; Creative-Pioneering Researchers Program at SNU [Funding number: 370C-20160062]. C.C. was supported by a Waxweiler grant for cancer prevention research from the Action Lions “Vaincre le Cancer”. C.C. and B.O. were supported by Télévie Luxembourg. LBMCC is supported by “Recherche Cancer et Sang” Foundation, “Recherches Scientifiques Luxembourg”, “En Häerz fir kriibskrank Kanner”, and Télévie Luxembourg. L.E. and A.A.M. acknowledge support by the Centre National de la Recherche Scientifique (CNRS).</p>
</ack>
<notes notes-type="COI-statement">
<title>Conflict of interest</title>
<p id="Par54">The authors declare that they have no conflict of interest.</p>
</notes>
<ref-list id="Bib1">
<title>References</title>
<ref id="CR1">
<label>1.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Druker</surname>
<given-names>BJ</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Five-year follow-up of patients receiving imatinib for chronic myeloid leukemia</article-title>
<source>N. Engl. J. Med</source>
<year>2006</year>
<volume>355</volume>
<fpage>2408</fpage>
<lpage>2417</lpage>
<pub-id pub-id-type="doi">10.1056/NEJMoa062867</pub-id>
<pub-id pub-id-type="pmid">17151364</pub-id>
</element-citation>
</ref>
<ref id="CR2">
<label>2.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Kantarjian</surname>
<given-names>H</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Decitabine improves patient outcomes in myelodysplastic syndromes: results of a phase III randomized study</article-title>
<source>Cancer</source>
<year>2006</year>
<volume>106</volume>
<fpage>1794</fpage>
<lpage>1803</lpage>
<pub-id pub-id-type="doi">10.1002/cncr.21792</pub-id>
<pub-id pub-id-type="pmid">16532500</pub-id>
</element-citation>
</ref>
<ref id="CR3">
<label>3.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Talpaz</surname>
<given-names>M</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Dasatinib in imatinib-resistant Philadelphia chromosome-positive leukemias</article-title>
<source>N. Engl. J. Med.</source>
<year>2006</year>
<volume>354</volume>
<fpage>2531</fpage>
<lpage>2541</lpage>
<pub-id pub-id-type="doi">10.1056/NEJMoa055229</pub-id>
<pub-id pub-id-type="pmid">16775234</pub-id>
</element-citation>
</ref>
<ref id="CR4">
<label>4.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Boulos</surname>
<given-names>N</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Chemotherapeutic agents circumvent emergence of dasatinib-resistant BCR-ABL kinase mutations in a precise mouse model of Philadelphia chromosome-positive acute lymphoblastic leukemia</article-title>
<source>Blood</source>
<year>2011</year>
<volume>117</volume>
<fpage>3585</fpage>
<lpage>3595</lpage>
<pub-id pub-id-type="doi">10.1182/blood-2010-08-301267</pub-id>
<pub-id pub-id-type="pmid">21263154</pub-id>
</element-citation>
</ref>
<ref id="CR5">
<label>5.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Landry</surname>
<given-names>WD</given-names>
</name>
<name>
<surname>Woolley</surname>
<given-names>JF</given-names>
</name>
<name>
<surname>Cotter</surname>
<given-names>TG</given-names>
</name>
</person-group>
<article-title>Imatinib and Nilotinib inhibit Bcr-Abl-induced ROS through targeted degradation of the NADPH oxidase subunit p22phox</article-title>
<source>Leuk. Res.</source>
<year>2013</year>
<volume>37</volume>
<fpage>183</fpage>
<lpage>189</lpage>
<pub-id pub-id-type="doi">10.1016/j.leukres.2012.11.003</pub-id>
<pub-id pub-id-type="pmid">23218026</pub-id>
</element-citation>
</ref>
<ref id="CR6">
<label>6.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Heckmann</surname>
<given-names>BL</given-names>
</name>
<name>
<surname>Tummers</surname>
<given-names>B</given-names>
</name>
<name>
<surname>Green</surname>
<given-names>DR</given-names>
</name>
</person-group>
<article-title>Crashing the computer: apoptosis vs. necroptosis in neuroinflammation</article-title>
<source>Cell Death Differ.</source>
<year>2019</year>
<volume>26</volume>
<fpage>41</fpage>
<lpage>52</lpage>
<pub-id pub-id-type="doi">10.1038/s41418-018-0195-3</pub-id>
<pub-id pub-id-type="pmid">30341422</pub-id>
</element-citation>
</ref>
<ref id="CR7">
<label>7.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Kroemer</surname>
<given-names>G</given-names>
</name>
<name>
<surname>Galluzzi</surname>
<given-names>L</given-names>
</name>
<name>
<surname>Kepp</surname>
<given-names>O</given-names>
</name>
<name>
<surname>Zitvogel</surname>
<given-names>L</given-names>
</name>
</person-group>
<article-title>Immunogenic cell death in cancer therapy</article-title>
<source>Annu. Rev. Immunol.</source>
<year>2013</year>
<volume>31</volume>
<fpage>51</fpage>
<lpage>72</lpage>
<pub-id pub-id-type="doi">10.1146/annurev-immunol-032712-100008</pub-id>
<pub-id pub-id-type="pmid">23157435</pub-id>
</element-citation>
</ref>
<ref id="CR8">
<label>8.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Garg</surname>
<given-names>AD</given-names>
</name>
<name>
<surname>Dudek-Peric</surname>
<given-names>AM</given-names>
</name>
<name>
<surname>Romano</surname>
<given-names>E</given-names>
</name>
<name>
<surname>Agostinis</surname>
<given-names>P</given-names>
</name>
</person-group>
<article-title>Immunogenic cell death</article-title>
<source>Int. J. Dev. Biol.</source>
<year>2015</year>
<volume>59</volume>
<fpage>131</fpage>
<lpage>140</lpage>
<pub-id pub-id-type="doi">10.1387/ijdb.150061pa</pub-id>
<pub-id pub-id-type="pmid">26374534</pub-id>
</element-citation>
</ref>
<ref id="CR9">
<label>9.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Radogna</surname>
<given-names>F</given-names>
</name>
<name>
<surname>Diederich</surname>
<given-names>M</given-names>
</name>
</person-group>
<article-title>Stress-induced cellular responses in immunogenic cell death: Implications for cancer immunotherapy</article-title>
<source>Biochem. Pharmacol.</source>
<year>2018</year>
<volume>153</volume>
<fpage>12</fpage>
<lpage>23</lpage>
<pub-id pub-id-type="doi">10.1016/j.bcp.2018.02.006</pub-id>
<pub-id pub-id-type="pmid">29438676</pub-id>
</element-citation>
</ref>
<ref id="CR10">
<label>10.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Pampliega</surname>
<given-names>O</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Functional interaction between autophagy and ciliogenesis</article-title>
<source>Nature</source>
<year>2013</year>
<volume>502</volume>
<fpage>194</fpage>
<lpage>200</lpage>
<pub-id pub-id-type="doi">10.1038/nature12639</pub-id>
<pub-id pub-id-type="pmid">24089209</pub-id>
</element-citation>
</ref>
<ref id="CR11">
<label>11.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Shen</surname>
<given-names>HM</given-names>
</name>
<name>
<surname>Codogno</surname>
<given-names>P</given-names>
</name>
</person-group>
<article-title>Autophagic cell death: Loch Ness monster or endangered species?</article-title>
<source>Autophagy</source>
<year>2011</year>
<volume>7</volume>
<fpage>457</fpage>
<lpage>465</lpage>
<pub-id pub-id-type="doi">10.4161/auto.7.5.14226</pub-id>
<pub-id pub-id-type="pmid">21150268</pub-id>
</element-citation>
</ref>
<ref id="CR12">
<label>12.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Tran</surname>
<given-names>MQ</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Unaromatized tetrahydrobenzimidazole synthesis from p-benzoquinoneand N-arylamidines and their cytotoxic potential</article-title>
<source>Eur. J. Org. Chem.</source>
<year>2018</year>
<volume>2018</volume>
<fpage>5878</fpage>
<lpage>5884</lpage>
<pub-id pub-id-type="doi">10.1002/ejoc.201801077</pub-id>
</element-citation>
</ref>
<ref id="CR13">
<label>13.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Mazumder</surname>
<given-names>A</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Hydroxycoumarin OT-55 kills CML cells alone or in synergy with imatinib or Synribo: Involvement of ER stress and DAMP release</article-title>
<source>Cancer Lett.</source>
<year>2018</year>
<volume>438</volume>
<fpage>197</fpage>
<lpage>218</lpage>
<pub-id pub-id-type="doi">10.1016/j.canlet.2018.07.041</pub-id>
<pub-id pub-id-type="pmid">30205168</pub-id>
</element-citation>
</ref>
<ref id="CR14">
<label>14.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Schneider</surname>
<given-names>NFZ</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Cardiac glycoside glucoevatromonoside induces cancer type-specific cell death</article-title>
<source>Front Pharm.</source>
<year>2018</year>
<volume>9</volume>
<fpage>70</fpage>
<pub-id pub-id-type="doi">10.3389/fphar.2018.00070</pub-id>
</element-citation>
</ref>
<ref id="CR15">
<label>15.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Lee</surname>
<given-names>JY</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Cytostatic hydroxycoumarin OT52 induces ER/Golgi stress and STAT3 inhibition triggering non-canonical cell death and synergy with BH3 mimetics in lung cancer</article-title>
<source>Cancer Lett.</source>
<year>2018</year>
<volume>416</volume>
<fpage>94</fpage>
<lpage>108</lpage>
<pub-id pub-id-type="doi">10.1016/j.canlet.2017.12.007</pub-id>
<pub-id pub-id-type="pmid">29247826</pub-id>
</element-citation>
</ref>
<ref id="CR16">
<label>16.</label>
<mixed-citation publication-type="other">Sommer, C., Straehle, C., Köthe, U. & Hamprecht, F. A. Ilastik: Interactive learning and segmentation toolkit. 2011 IEEE International Symposium on Biomedical Imaging: From Nano to Macro; 2011 30 March-2 April 2011; 2011. p. 230–233.</mixed-citation>
</ref>
<ref id="CR17">
<label>17.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Schindelin</surname>
<given-names>J</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Fiji: an open-source platform for biological-image analysis</article-title>
<source>Nat. Methods</source>
<year>2012</year>
<volume>9</volume>
<fpage>676</fpage>
<lpage>682</lpage>
<pub-id pub-id-type="doi">10.1038/nmeth.2019</pub-id>
<pub-id pub-id-type="pmid">22743772</pub-id>
</element-citation>
</ref>
<ref id="CR18">
<label>18.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Ji</surname>
<given-names>S</given-names>
</name>
<etal></etal>
</person-group>
<article-title>The dialkyl resorcinol stemphol disrupts calcium homeostasis to trigger programmed immunogenic necrosis in cancer</article-title>
<source>Cancer Lett.</source>
<year>2018</year>
<volume>416</volume>
<fpage>109</fpage>
<lpage>123</lpage>
<pub-id pub-id-type="doi">10.1016/j.canlet.2017.12.011</pub-id>
<pub-id pub-id-type="pmid">29246646</pub-id>
</element-citation>
</ref>
<ref id="CR19">
<label>19.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Seidel</surname>
<given-names>C</given-names>
</name>
<etal></etal>
</person-group>
<article-title>4-Hydroxybenzoic acid derivatives as HDAC6-specific inhibitors modulating microtubular structure and HSP90alpha chaperone activity against prostate cancer</article-title>
<source>Biochem. Pharmacol.</source>
<year>2016</year>
<volume>99</volume>
<fpage>31</fpage>
<lpage>52</lpage>
<pub-id pub-id-type="doi">10.1016/j.bcp.2015.11.005</pub-id>
<pub-id pub-id-type="pmid">26549368</pub-id>
</element-citation>
</ref>
<ref id="CR20">
<label>20.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Radogna</surname>
<given-names>F</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Lipoxygenase-mediated pro-radical effect of melatonin via stimulation of arachidonic acid metabolism</article-title>
<source>Toxicol. Appl. Pharmacol.</source>
<year>2009</year>
<volume>238</volume>
<fpage>170</fpage>
<lpage>177</lpage>
<pub-id pub-id-type="doi">10.1016/j.taap.2009.05.011</pub-id>
<pub-id pub-id-type="pmid">19460395</pub-id>
</element-citation>
</ref>
<ref id="CR21">
<label>21.</label>
<mixed-citation publication-type="other">Lee, J. Y., Mazumder, A. & Diederich, M. Preclinical assessment of the bioactivity of the anticancer coumarin OT48 by Spheroids, colony formation assays, and zebrafish xenografts.
<italic>J. Vis. Exp.</italic>
e57490 (2018).</mixed-citation>
</ref>
<ref id="CR22">
<label>22.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Haferlach</surname>
<given-names>T</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Clinical utility of microarray-based gene expression profiling in the diagnosis and subclassification of leukemia: report from the International Microarray Innovations in Leukemia Study Group</article-title>
<source>J. Clin. Oncol.</source>
<year>2010</year>
<volume>28</volume>
<fpage>2529</fpage>
<lpage>2537</lpage>
<pub-id pub-id-type="doi">10.1200/JCO.2009.23.4732</pub-id>
<pub-id pub-id-type="pmid">20406941</pub-id>
</element-citation>
</ref>
<ref id="CR23">
<label>23.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Kohlmann</surname>
<given-names>A</given-names>
</name>
<etal></etal>
</person-group>
<article-title>An international standardization programme towards the application of gene expression profiling in routine leukaemia diagnostics: the Microarray Innovations in Leukemia study prephase</article-title>
<source>Br. J. Haematol.</source>
<year>2008</year>
<volume>142</volume>
<fpage>802</fpage>
<lpage>807</lpage>
<pub-id pub-id-type="doi">10.1111/j.1365-2141.2008.07261.x</pub-id>
<pub-id pub-id-type="pmid">18573112</pub-id>
</element-citation>
</ref>
<ref id="CR24">
<label>24.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Gautier</surname>
<given-names>L</given-names>
</name>
<name>
<surname>Cope</surname>
<given-names>L</given-names>
</name>
<name>
<surname>Bolstad</surname>
<given-names>BM</given-names>
</name>
<name>
<surname>Irizarry</surname>
<given-names>RA</given-names>
</name>
</person-group>
<article-title>affy–analysis of Affymetrix GeneChip data at the probe level</article-title>
<source>Bioinformatics</source>
<year>2004</year>
<volume>20</volume>
<fpage>307</fpage>
<lpage>315</lpage>
<pub-id pub-id-type="doi">10.1093/bioinformatics/btg405</pub-id>
<pub-id pub-id-type="pmid">14960456</pub-id>
</element-citation>
</ref>
<ref id="CR25">
<label>25.</label>
<mixed-citation publication-type="other">R Development Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing (2010).</mixed-citation>
</ref>
<ref id="CR26">
<label>26.</label>
<mixed-citation publication-type="other">RStudio Team. RStudio: Integrated Development for R. 2015.</mixed-citation>
</ref>
<ref id="CR27">
<label>27.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Degterev</surname>
<given-names>A</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Chemical inhibitor of nonapoptotic cell death with therapeutic potential for ischemic brain injury</article-title>
<source>Nat. Chem. Biol.</source>
<year>2005</year>
<volume>1</volume>
<fpage>112</fpage>
<lpage>119</lpage>
<pub-id pub-id-type="doi">10.1038/nchembio711</pub-id>
<pub-id pub-id-type="pmid">16408008</pub-id>
</element-citation>
</ref>
<ref id="CR28">
<label>28.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Koo</surname>
<given-names>GB</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Methylation-dependent loss of RIP3 expression in cancer represses programmed necrosis in response to chemotherapeutics</article-title>
<source>Cell Res.</source>
<year>2015</year>
<volume>25</volume>
<fpage>707</fpage>
<lpage>725</lpage>
<pub-id pub-id-type="doi">10.1038/cr.2015.56</pub-id>
<pub-id pub-id-type="pmid">25952668</pub-id>
</element-citation>
</ref>
<ref id="CR29">
<label>29.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Nauseef</surname>
<given-names>WM</given-names>
</name>
</person-group>
<article-title>Biological roles for the NOX family NADPH oxidases</article-title>
<source>J. Biol. Chem.</source>
<year>2008</year>
<volume>283</volume>
<fpage>16961</fpage>
<lpage>16965</lpage>
<pub-id pub-id-type="doi">10.1074/jbc.R700045200</pub-id>
<pub-id pub-id-type="pmid">18420576</pub-id>
</element-citation>
</ref>
<ref id="CR30">
<label>30.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Reddy</surname>
<given-names>MM</given-names>
</name>
<etal></etal>
</person-group>
<article-title>NADPH oxidases regulate cell growth and migration in myeloid cells transformed by oncogenic tyrosine kinases</article-title>
<source>Leukemia</source>
<year>2011</year>
<volume>25</volume>
<fpage>281</fpage>
<lpage>289</lpage>
<pub-id pub-id-type="doi">10.1038/leu.2010.263</pub-id>
<pub-id pub-id-type="pmid">21072051</pub-id>
</element-citation>
</ref>
<ref id="CR31">
<label>31.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Florean</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Song</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Dicato</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Diederich</surname>
<given-names>M</given-names>
</name>
</person-group>
<article-title>Redox biology of regulated cell death in cancer: a focus on necroptosis and ferroptosis</article-title>
<source>Free Radic. Biol. Med</source>
<year>2019</year>
<volume>134</volume>
<fpage>177</fpage>
<lpage>189</lpage>
<pub-id pub-id-type="doi">10.1016/j.freeradbiomed.2019.01.008</pub-id>
<pub-id pub-id-type="pmid">30639617</pub-id>
</element-citation>
</ref>
<ref id="CR32">
<label>32.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Lúcio</surname>
<given-names>M</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Antioxidant activity of vitamin E and Trolox: understanding of the factors that govern lipid peroxidation studies in vitro</article-title>
<source>Food Biophys.</source>
<year>2009</year>
<volume>4</volume>
<fpage>312</fpage>
<lpage>320</lpage>
<pub-id pub-id-type="doi">10.1007/s11483-009-9129-4</pub-id>
</element-citation>
</ref>
<ref id="CR33">
<label>33.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Oyewole</surname>
<given-names>AO</given-names>
</name>
<name>
<surname>Birch-Machin</surname>
<given-names>MA</given-names>
</name>
</person-group>
<article-title>Mitochondria-targeted antioxidants</article-title>
<source>FASEB J.</source>
<year>2015</year>
<volume>29</volume>
<fpage>4766</fpage>
<lpage>4771</lpage>
<pub-id pub-id-type="doi">10.1096/fj.15-275404</pub-id>
<pub-id pub-id-type="pmid">26253366</pub-id>
</element-citation>
</ref>
<ref id="CR34">
<label>34.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Franco</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Cidlowski</surname>
<given-names>JA</given-names>
</name>
</person-group>
<article-title>Glutathione efflux and cell death</article-title>
<source>Antioxid. Redox Signal.</source>
<year>2012</year>
<volume>17</volume>
<fpage>1694</fpage>
<lpage>1713</lpage>
<pub-id pub-id-type="doi">10.1089/ars.2012.4553</pub-id>
<pub-id pub-id-type="pmid">22656858</pub-id>
</element-citation>
</ref>
<ref id="CR35">
<label>35.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Vanden Berghe</surname>
<given-names>T</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Regulated necrosis: the expanding network of non-apoptotic cell death pathways</article-title>
<source>Nat. Rev. Mol. Cell Biol.</source>
<year>2014</year>
<volume>15</volume>
<fpage>135</fpage>
<lpage>147</lpage>
<pub-id pub-id-type="doi">10.1038/nrm3737</pub-id>
<pub-id pub-id-type="pmid">24452471</pub-id>
</element-citation>
</ref>
<ref id="CR36">
<label>36.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Radogna</surname>
<given-names>F</given-names>
</name>
<name>
<surname>Dicato</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Diederich</surname>
<given-names>M</given-names>
</name>
</person-group>
<article-title>Natural modulators of the hallmarks of immunogenic cell death</article-title>
<source>Biochem. Pharmacol.</source>
<year>2019</year>
<volume>162</volume>
<fpage>55</fpage>
<lpage>70</lpage>
<pub-id pub-id-type="doi">10.1016/j.bcp.2018.12.016</pub-id>
<pub-id pub-id-type="pmid">30615863</pub-id>
</element-citation>
</ref>
<ref id="CR37">
<label>37.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Jabbour</surname>
<given-names>E</given-names>
</name>
<name>
<surname>Kantarjian</surname>
<given-names>H</given-names>
</name>
</person-group>
<article-title>Chronic myeloid leukemia: 2018 update on diagnosis, therapy and monitoring</article-title>
<source>Am. J. Hematol.</source>
<year>2018</year>
<volume>93</volume>
<fpage>442</fpage>
<lpage>459</lpage>
<pub-id pub-id-type="doi">10.1002/ajh.25011</pub-id>
<pub-id pub-id-type="pmid">29411417</pub-id>
</element-citation>
</ref>
<ref id="CR38">
<label>38.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Koptyra</surname>
<given-names>M</given-names>
</name>
<etal></etal>
</person-group>
<article-title>BCR/ABL kinase induces self-mutagenesis via reactive oxygen species to encode imatinib resistance</article-title>
<source>Blood</source>
<year>2006</year>
<volume>108</volume>
<fpage>319</fpage>
<lpage>327</lpage>
<pub-id pub-id-type="doi">10.1182/blood-2005-07-2815</pub-id>
<pub-id pub-id-type="pmid">16527898</pub-id>
</element-citation>
</ref>
<ref id="CR39">
<label>39.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Tai</surname>
<given-names>CJ</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Adenosine triphosphate induces activation of caspase-3 in apoptosis of human granulosa-luteal cells</article-title>
<source>Endocr. J.</source>
<year>2005</year>
<volume>52</volume>
<fpage>327</fpage>
<lpage>335</lpage>
<pub-id pub-id-type="doi">10.1507/endocrj.52.327</pub-id>
<pub-id pub-id-type="pmid">16006727</pub-id>
</element-citation>
</ref>
<ref id="CR40">
<label>40.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Gaascht</surname>
<given-names>F</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Plumbagin modulates leukemia cell redox status</article-title>
<source>Molecules</source>
<year>2014</year>
<volume>19</volume>
<fpage>10011</fpage>
<lpage>10032</lpage>
<pub-id pub-id-type="doi">10.3390/molecules190710011</pub-id>
<pub-id pub-id-type="pmid">25014531</pub-id>
</element-citation>
</ref>
<ref id="CR41">
<label>41.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Munoz</surname>
<given-names>FM</given-names>
</name>
<etal></etal>
</person-group>
<article-title>From the cover: ROS-Induced store-operated Ca2+ entry coupled to PARP-1 hyperactivation is independent of PARG activity in necrotic cell death</article-title>
<source>Toxicol. Sci.</source>
<year>2017</year>
<volume>158</volume>
<fpage>444</fpage>
<lpage>453</lpage>
<pub-id pub-id-type="doi">10.1093/toxsci/kfx106</pub-id>
<pub-id pub-id-type="pmid">28525621</pub-id>
</element-citation>
</ref>
<ref id="CR42">
<label>42.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Park</surname>
<given-names>EJ</given-names>
</name>
<etal></etal>
</person-group>
<article-title>beta-Lapachone induces programmed necrosis through the RIP1-PARP-AIF-dependent pathway in human hepatocellular carcinoma SK-Hep1 cells</article-title>
<source>Cell Death Dis.</source>
<year>2014</year>
<volume>5</volume>
<fpage>e1230</fpage>
<pub-id pub-id-type="doi">10.1038/cddis.2014.202</pub-id>
<pub-id pub-id-type="pmid">24832602</pub-id>
</element-citation>
</ref>
<ref id="CR43">
<label>43.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Karvela</surname>
<given-names>M</given-names>
</name>
<etal></etal>
</person-group>
<article-title>ATG7 regulates energy metabolism, differentiation and survival of Philadelphia-chromosome-positive cells</article-title>
<source>Autophagy</source>
<year>2016</year>
<volume>12</volume>
<fpage>936</fpage>
<lpage>948</lpage>
<pub-id pub-id-type="doi">10.1080/15548627.2016.1162359</pub-id>
<pub-id pub-id-type="pmid">27168493</pub-id>
</element-citation>
</ref>
<ref id="CR44">
<label>44.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Chen</surname>
<given-names>YF</given-names>
</name>
<etal></etal>
</person-group>
<article-title>The roles of reactive oxygen species (ROS) and autophagy in the survival and death of leukemia cells</article-title>
<source>Crit. Rev. Oncol. Hematol.</source>
<year>2017</year>
<volume>112</volume>
<fpage>21</fpage>
<lpage>30</lpage>
<pub-id pub-id-type="doi">10.1016/j.critrevonc.2017.02.004</pub-id>
<pub-id pub-id-type="pmid">28325262</pub-id>
</element-citation>
</ref>
<ref id="CR45">
<label>45.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Ianniciello</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Rattigan</surname>
<given-names>KM</given-names>
</name>
<name>
<surname>Helgason</surname>
<given-names>GV</given-names>
</name>
</person-group>
<article-title>The ins and outs of autophagy and metabolism in hematopoietic and leukemic stem cells: food for thought</article-title>
<source>Front Cell Dev. Biol.</source>
<year>2018</year>
<volume>6</volume>
<fpage>120</fpage>
<pub-id pub-id-type="doi">10.3389/fcell.2018.00120</pub-id>
<pub-id pub-id-type="pmid">30320108</pub-id>
</element-citation>
</ref>
<ref id="CR46">
<label>46.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Fan</surname>
<given-names>QW</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Akt and autophagy cooperate to promote survival of drug-resistant glioma</article-title>
<source>Sci. Signal</source>
<year>2010</year>
<volume>3</volume>
<fpage>ra81</fpage>
<pub-id pub-id-type="doi">10.1126/scisignal.2001017</pub-id>
<pub-id pub-id-type="pmid">21062993</pub-id>
</element-citation>
</ref>
<ref id="CR47">
<label>47.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Kim</surname>
<given-names>HJ</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Shikonin-induced necroptosis is enhanced by the inhibition of autophagy in non-small cell lung cancer cells</article-title>
<source>J. Transl. Med</source>
<year>2017</year>
<volume>15</volume>
<fpage>123</fpage>
<pub-id pub-id-type="doi">10.1186/s12967-017-1223-7</pub-id>
<pub-id pub-id-type="pmid">28569199</pub-id>
</element-citation>
</ref>
<ref id="CR48">
<label>48.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Onodera</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Ohsumi</surname>
<given-names>Y</given-names>
</name>
</person-group>
<article-title>Autophagy is required for maintenance of amino acid levels and protein synthesis under nitrogen starvation</article-title>
<source>J. Biol. Chem.</source>
<year>2005</year>
<volume>280</volume>
<fpage>31582</fpage>
<lpage>31586</lpage>
<pub-id pub-id-type="doi">10.1074/jbc.M506736200</pub-id>
<pub-id pub-id-type="pmid">16027116</pub-id>
</element-citation>
</ref>
<ref id="CR49">
<label>49.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Mancilla</surname>
<given-names>H</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Glutathione depletion induces spermatogonial cell autophagy</article-title>
<source>J. Cell. Biochem.</source>
<year>2015</year>
<volume>116</volume>
<fpage>2283</fpage>
<lpage>2292</lpage>
<pub-id pub-id-type="doi">10.1002/jcb.25178</pub-id>
<pub-id pub-id-type="pmid">25833220</pub-id>
</element-citation>
</ref>
<ref id="CR50">
<label>50.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Sun</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Zheng</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Wang</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Liu</surname>
<given-names>Y</given-names>
</name>
</person-group>
<article-title>Glutathione depletion induces ferroptosis, autophagy, and premature cell senescence in retinal pigment epithelial cells</article-title>
<source>Cell Death Dis.</source>
<year>2018</year>
<volume>9</volume>
<fpage>753</fpage>
<pub-id pub-id-type="doi">10.1038/s41419-018-0794-4</pub-id>
<pub-id pub-id-type="pmid">29988039</pub-id>
</element-citation>
</ref>
<ref id="CR51">
<label>51.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Armstrong</surname>
<given-names>JA</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Oxidative stress alters mitochondrial bioenergetics and modifies pancreatic cell death independently of cyclophilin D, resulting in an apoptosis-to-necrosis shift</article-title>
<source>J. Biol. Chem.</source>
<year>2018</year>
<volume>293</volume>
<fpage>8032</fpage>
<lpage>8047</lpage>
<pub-id pub-id-type="doi">10.1074/jbc.RA118.003200</pub-id>
<pub-id pub-id-type="pmid">29626097</pub-id>
</element-citation>
</ref>
<ref id="CR52">
<label>52.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Liu</surname>
<given-names>S</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Lysosomal damage after spinal cord injury causes accumulation of RIPK1 and RIPK3 proteins and potentiation of necroptosis</article-title>
<source>Cell Death Dis.</source>
<year>2018</year>
<volume>9</volume>
<fpage>476</fpage>
<pub-id pub-id-type="doi">10.1038/s41419-018-0469-1</pub-id>
<pub-id pub-id-type="pmid">29686269</pub-id>
</element-citation>
</ref>
<ref id="CR53">
<label>53.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Sun</surname>
<given-names>SY</given-names>
</name>
</person-group>
<article-title>N-acetylcysteine, reactive oxygen species and beyond</article-title>
<source>Cancer Biol. Ther.</source>
<year>2010</year>
<volume>9</volume>
<fpage>109</fpage>
<lpage>110</lpage>
<pub-id pub-id-type="doi">10.4161/cbt.9.2.10583</pub-id>
<pub-id pub-id-type="pmid">19949311</pub-id>
</element-citation>
</ref>
<ref id="CR54">
<label>54.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Hamad</surname>
<given-names>I</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Intracellular scavenging activity of Trolox (6-hydroxy-2,5,7,8-tetramethylchromane-2-carboxylic acid) in the fission yeast, Schizosaccharomyces pombe</article-title>
<source>J. Nat. Sci. Biol. Med</source>
<year>2010</year>
<volume>1</volume>
<fpage>16</fpage>
<lpage>21</lpage>
<pub-id pub-id-type="doi">10.4103/0976-9668.71667</pub-id>
<pub-id pub-id-type="pmid">22096330</pub-id>
</element-citation>
</ref>
<ref id="CR55">
<label>55.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Krishna</surname>
<given-names>CM</given-names>
</name>
<etal></etal>
</person-group>
<article-title>The catecholic metal sequestering agent 1,2-dihydroxybenzene-3,5-disulfonate confers protection against oxidative cell damage</article-title>
<source>Arch. Biochem Biophys.</source>
<year>1992</year>
<volume>294</volume>
<fpage>98</fpage>
<lpage>106</lpage>
<pub-id pub-id-type="doi">10.1016/0003-9861(92)90142-J</pub-id>
<pub-id pub-id-type="pmid">1312813</pub-id>
</element-citation>
</ref>
<ref id="CR56">
<label>56.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Wright</surname>
<given-names>DJ</given-names>
</name>
<etal></etal>
</person-group>
<article-title>N-Acetylcysteine improves mitochondrial function and ameliorates behavioral deficits in the R6/1 mouse model of Huntington’s disease</article-title>
<source>Transl. Psychiatry</source>
<year>2015</year>
<volume>5</volume>
<fpage>e492</fpage>
<pub-id pub-id-type="doi">10.1038/tp.2014.131</pub-id>
<pub-id pub-id-type="pmid">25562842</pub-id>
</element-citation>
</ref>
<ref id="CR57">
<label>57.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Wiedmer</surname>
<given-names>T</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Autophagy inhibition improves sunitinib efficacy in pancreatic neuroendocrine tumors via a lysosome-dependent mechanism</article-title>
<source>Mol. Cancer Ther.</source>
<year>2017</year>
<volume>16</volume>
<fpage>2502</fpage>
<lpage>2515</lpage>
<pub-id pub-id-type="doi">10.1158/1535-7163.MCT-17-0136</pub-id>
<pub-id pub-id-type="pmid">28729403</pub-id>
</element-citation>
</ref>
<ref id="CR58">
<label>58.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Galluzzi</surname>
<given-names>L</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Molecular mechanisms of cell death: recommendations of the Nomenclature Committee on Cell Death 2018</article-title>
<source>Cell Death Differ.</source>
<year>2018</year>
<volume>25</volume>
<fpage>486</fpage>
<lpage>541</lpage>
<pub-id pub-id-type="doi">10.1038/s41418-017-0012-4</pub-id>
<pub-id pub-id-type="pmid">29362479</pub-id>
</element-citation>
</ref>
<ref id="CR59">
<label>59.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Liu</surname>
<given-names>CC</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Integrins and ERp57 Coordinate to regulate cell surface calreticulin in immunogenic cell death</article-title>
<source>Front Oncol.</source>
<year>2019</year>
<volume>9</volume>
<fpage>411</fpage>
<pub-id pub-id-type="doi">10.3389/fonc.2019.00411</pub-id>
<pub-id pub-id-type="pmid">31192123</pub-id>
</element-citation>
</ref>
<ref id="CR60">
<label>60.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Long</surname>
<given-names>JS</given-names>
</name>
<name>
<surname>Ryan</surname>
<given-names>KM</given-names>
</name>
</person-group>
<article-title>New frontiers in promoting tumour cell death: targeting apoptosis, necroptosis and autophagy</article-title>
<source>Oncogene</source>
<year>2012</year>
<volume>31</volume>
<fpage>5045</fpage>
<lpage>5060</lpage>
<pub-id pub-id-type="doi">10.1038/onc.2012.7</pub-id>
<pub-id pub-id-type="pmid">22310284</pub-id>
</element-citation>
</ref>
</ref-list>
</back>
</pmc>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/ChloroquineV1/Data/Pmc/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000081  | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Pmc/Corpus/biblio.hfd -nk 000081  | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    ChloroquineV1
   |flux=    Pmc
   |étape=   Corpus
   |type=    RBID
   |clé=     
   |texte=   
}}

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Wed Mar 25 22:43:59 2020. Site generation: Sun Jan 31 12:44:45 2021