Serveur d'exploration Chloroquine

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

TAS2R activation promotes airway smooth muscle relaxation despite β2-adrenergic receptor tachyphylaxis

Identifieur interne : 000009 ( PascalFrancis/Checkpoint ); précédent : 000008; suivant : 000010

TAS2R activation promotes airway smooth muscle relaxation despite β2-adrenergic receptor tachyphylaxis

Auteurs : Steven S. An [États-Unis] ; Wayne C. H. Wang [États-Unis] ; Cynthia J. Koziol-White [États-Unis] ; Kwangmi Ahn [États-Unis] ; Danielle Y. Lee [États-Unis] ; Richard C. Kurten [États-Unis] ; Reynold A. Jr Panettieri [États-Unis] ; Stephen B. Liggett [États-Unis]

Source :

RBID : Pascal:12-0423718

Descripteurs français

English descriptors

Abstract

Recently, bitter taste receptors (TAS2Rs) were found in the lung and act to relax airway smooth muscle (ASM) via intracellular Ca2+ concentration signaling generated from restricted phospholipase C activation. As potential therapy, TAS2R agonists could be add-on treatment when patients fail to achieve adequate bronchodilation with chronic β-agonists. The β2-adrenergic receptor (β2AR) of ASM undergoes extensive functional desensitization. It remains unknown whether this desensitization affects TAS2R function, by cross talk at the receptors or distal common components in the relaxation machinery. We studied intracellular signaling and cell mechanics using isolated human ASM, mouse tracheal responses, and human bronchial responses to characterize TAS2R relaxation in the context of β2AR desensitization. In isolated human ASM, magnetic twisting cytometry revealed >90% loss of isoproterenol-promoted decrease in cell stiffness after 18-h exposure to albuterol. Under these same conditions of β2AR desensitization, the TAS2R agonist chloroquine relaxation response was unaffected. TAS2R-mediated stimulation of intracellular Ca2+ concentration in human ASM was unaltered by albuterol pretreatment, in contrast to cAMP signaling, which was desensitized by >90%. In mouse trachea, β2AR desensitization by β-agonist amounted to 92 ± 6.0% (P < 0.001), while, under these same conditions, TAS2R desensitization was not significant (11 ± 3.5%). In human lung slices, chronic β-agonist exposure culminated in 64 ± 5.7% (P < 0.001) desensitization of β2AR-mediated dilation of carbachol-constricted airways that was reversed by chloroquine. We conclude that there is no evidence for physiologically relevant cross-desensitization of TAS2R-mediated ASM relaxation from chronic P-agonist treatment. These findings portend a favorable therapeutic profile for TAS2R agonists for the treatment of bronchospasm in asthma or chronic obstructive lung disease.


Affiliations:


Links toward previous steps (curation, corpus...)


Links to Exploration step

Pascal:12-0423718

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">TAS2R activation promotes airway smooth muscle relaxation despite β
<sub>2</sub>
-adrenergic receptor tachyphylaxis</title>
<author>
<name sortKey="An, Steven S" sort="An, Steven S" uniqKey="An S" first="Steven S." last="An">Steven S. An</name>
<affiliation wicri:level="2">
<inist:fA14 i1="01">
<s1>Program in Respiratory Biology and Lung Disease, Johns Hopkins University, Bloomberg School of Public Health</s1>
<s2>Baltimore, Maryland</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
<placeName>
<region type="state">Maryland</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Wang, Wayne C H" sort="Wang, Wayne C H" uniqKey="Wang W" first="Wayne C. H." last="Wang">Wayne C. H. Wang</name>
<affiliation wicri:level="2">
<inist:fA14 i1="02">
<s1>Department of Medicine, University of Maryland School of Medicine</s1>
<s2>Baltimore, Maryland</s2>
<s3>USA</s3>
<sZ>2 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
<placeName>
<region type="state">Maryland</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Koziol White, Cynthia J" sort="Koziol White, Cynthia J" uniqKey="Koziol White C" first="Cynthia J." last="Koziol-White">Cynthia J. Koziol-White</name>
<affiliation wicri:level="2">
<inist:fA14 i1="03">
<s1>Division of Pulmonary, Allergy and Critical Care, Airways Biology Initiative, University of Pennsylvania Medical Center</s1>
<s2>Philadelphia, Pennsylvania</s2>
<s3>USA</s3>
<sZ>3 aut.</sZ>
<sZ>7 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
<placeName>
<region type="state">Pennsylvanie</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Ahn, Kwangmi" sort="Ahn, Kwangmi" uniqKey="Ahn K" first="Kwangmi" last="Ahn">Kwangmi Ahn</name>
<affiliation wicri:level="2">
<inist:fA14 i1="04">
<s1>National Institutes of Health</s1>
<s2>Bethesda, Maryland</s2>
<s3>USA</s3>
<sZ>4 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
<placeName>
<region type="state">Maryland</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Lee, Danielle Y" sort="Lee, Danielle Y" uniqKey="Lee D" first="Danielle Y." last="Lee">Danielle Y. Lee</name>
<affiliation wicri:level="2">
<inist:fA14 i1="01">
<s1>Program in Respiratory Biology and Lung Disease, Johns Hopkins University, Bloomberg School of Public Health</s1>
<s2>Baltimore, Maryland</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
<placeName>
<region type="state">Maryland</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Kurten, Richard C" sort="Kurten, Richard C" uniqKey="Kurten R" first="Richard C." last="Kurten">Richard C. Kurten</name>
<affiliation wicri:level="2">
<inist:fA14 i1="05">
<s1>Department of Physiology and Biophysics, University of Arkansas for Medical Sciences</s1>
<s2>Little Rock, Arkansas</s2>
<s3>USA</s3>
<sZ>6 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
<placeName>
<region type="state">Arkansas</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Panettieri, Reynold A Jr" sort="Panettieri, Reynold A Jr" uniqKey="Panettieri R" first="Reynold A. Jr" last="Panettieri">Reynold A. Jr Panettieri</name>
<affiliation wicri:level="2">
<inist:fA14 i1="03">
<s1>Division of Pulmonary, Allergy and Critical Care, Airways Biology Initiative, University of Pennsylvania Medical Center</s1>
<s2>Philadelphia, Pennsylvania</s2>
<s3>USA</s3>
<sZ>3 aut.</sZ>
<sZ>7 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
<placeName>
<region type="state">Pennsylvanie</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Liggett, Stephen B" sort="Liggett, Stephen B" uniqKey="Liggett S" first="Stephen B." last="Liggett">Stephen B. Liggett</name>
<affiliation wicri:level="2">
<inist:fA14 i1="06">
<s1>Personalized Medicine Institute, University of South Florida Morsani College of Medicine</s1>
<s2>, Tampa, Florida</s2>
<s3>USA</s3>
<sZ>8 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
<placeName>
<region type="state">Floride</region>
</placeName>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">INIST</idno>
<idno type="inist">12-0423718</idno>
<date when="2012">2012</date>
<idno type="stanalyst">PASCAL 12-0423718 INIST</idno>
<idno type="RBID">Pascal:12-0423718</idno>
<idno type="wicri:Area/PascalFrancis/Corpus">000007</idno>
<idno type="wicri:Area/PascalFrancis/Curation">000059</idno>
<idno type="wicri:Area/PascalFrancis/Checkpoint">000009</idno>
<idno type="wicri:explorRef" wicri:stream="PascalFrancis" wicri:step="Checkpoint">000009</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a">TAS2R activation promotes airway smooth muscle relaxation despite β
<sub>2</sub>
-adrenergic receptor tachyphylaxis</title>
<author>
<name sortKey="An, Steven S" sort="An, Steven S" uniqKey="An S" first="Steven S." last="An">Steven S. An</name>
<affiliation wicri:level="2">
<inist:fA14 i1="01">
<s1>Program in Respiratory Biology and Lung Disease, Johns Hopkins University, Bloomberg School of Public Health</s1>
<s2>Baltimore, Maryland</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
<placeName>
<region type="state">Maryland</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Wang, Wayne C H" sort="Wang, Wayne C H" uniqKey="Wang W" first="Wayne C. H." last="Wang">Wayne C. H. Wang</name>
<affiliation wicri:level="2">
<inist:fA14 i1="02">
<s1>Department of Medicine, University of Maryland School of Medicine</s1>
<s2>Baltimore, Maryland</s2>
<s3>USA</s3>
<sZ>2 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
<placeName>
<region type="state">Maryland</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Koziol White, Cynthia J" sort="Koziol White, Cynthia J" uniqKey="Koziol White C" first="Cynthia J." last="Koziol-White">Cynthia J. Koziol-White</name>
<affiliation wicri:level="2">
<inist:fA14 i1="03">
<s1>Division of Pulmonary, Allergy and Critical Care, Airways Biology Initiative, University of Pennsylvania Medical Center</s1>
<s2>Philadelphia, Pennsylvania</s2>
<s3>USA</s3>
<sZ>3 aut.</sZ>
<sZ>7 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
<placeName>
<region type="state">Pennsylvanie</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Ahn, Kwangmi" sort="Ahn, Kwangmi" uniqKey="Ahn K" first="Kwangmi" last="Ahn">Kwangmi Ahn</name>
<affiliation wicri:level="2">
<inist:fA14 i1="04">
<s1>National Institutes of Health</s1>
<s2>Bethesda, Maryland</s2>
<s3>USA</s3>
<sZ>4 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
<placeName>
<region type="state">Maryland</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Lee, Danielle Y" sort="Lee, Danielle Y" uniqKey="Lee D" first="Danielle Y." last="Lee">Danielle Y. Lee</name>
<affiliation wicri:level="2">
<inist:fA14 i1="01">
<s1>Program in Respiratory Biology and Lung Disease, Johns Hopkins University, Bloomberg School of Public Health</s1>
<s2>Baltimore, Maryland</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
<placeName>
<region type="state">Maryland</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Kurten, Richard C" sort="Kurten, Richard C" uniqKey="Kurten R" first="Richard C." last="Kurten">Richard C. Kurten</name>
<affiliation wicri:level="2">
<inist:fA14 i1="05">
<s1>Department of Physiology and Biophysics, University of Arkansas for Medical Sciences</s1>
<s2>Little Rock, Arkansas</s2>
<s3>USA</s3>
<sZ>6 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
<placeName>
<region type="state">Arkansas</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Panettieri, Reynold A Jr" sort="Panettieri, Reynold A Jr" uniqKey="Panettieri R" first="Reynold A. Jr" last="Panettieri">Reynold A. Jr Panettieri</name>
<affiliation wicri:level="2">
<inist:fA14 i1="03">
<s1>Division of Pulmonary, Allergy and Critical Care, Airways Biology Initiative, University of Pennsylvania Medical Center</s1>
<s2>Philadelphia, Pennsylvania</s2>
<s3>USA</s3>
<sZ>3 aut.</sZ>
<sZ>7 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
<placeName>
<region type="state">Pennsylvanie</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Liggett, Stephen B" sort="Liggett, Stephen B" uniqKey="Liggett S" first="Stephen B." last="Liggett">Stephen B. Liggett</name>
<affiliation wicri:level="2">
<inist:fA14 i1="06">
<s1>Personalized Medicine Institute, University of South Florida Morsani College of Medicine</s1>
<s2>, Tampa, Florida</s2>
<s3>USA</s3>
<sZ>8 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
<placeName>
<region type="state">Floride</region>
</placeName>
</affiliation>
</author>
</analytic>
<series>
<title level="j" type="main">American journal of physiology. Lung cellular and molecular physiology</title>
<title level="j" type="abbreviated">Am. j. physiol., Lung cell. mol. physiol.</title>
<idno type="ISSN">1040-0605</idno>
<imprint>
<date when="2012">2012</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<title level="j" type="main">American journal of physiology. Lung cellular and molecular physiology</title>
<title level="j" type="abbreviated">Am. j. physiol., Lung cell. mol. physiol.</title>
<idno type="ISSN">1040-0605</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Activation</term>
<term>Asthma</term>
<term>Biological receptor</term>
<term>Chloroquine</term>
<term>Desensitization</term>
<term>Mammalia</term>
<term>Relaxation</term>
<term>Respiratory system</term>
<term>Respiratory tract</term>
<term>Smooth muscle</term>
<term>Tachyphylaxis</term>
<term>Taste</term>
<term>β2-Adrenergic receptor</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Activation</term>
<term>Voie respiratoire</term>
<term>Muscle lisse</term>
<term>Relaxation</term>
<term>Récepteur β2-adrénergique</term>
<term>Tachyphylaxie</term>
<term>Asthme</term>
<term>Désensibilisation</term>
<term>Chloroquine</term>
<term>Saveur</term>
<term>Récepteur biologique</term>
<term>Mammalia</term>
<term>Appareil respiratoire</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Recently, bitter taste receptors (TAS2Rs) were found in the lung and act to relax airway smooth muscle (ASM) via intracellular Ca
<sup>2+</sup>
concentration signaling generated from restricted phospholipase C activation. As potential therapy, TAS2R agonists could be add-on treatment when patients fail to achieve adequate bronchodilation with chronic β-agonists. The β
<sub>2</sub>
-adrenergic receptor (β
<sub>2</sub>
AR) of ASM undergoes extensive functional desensitization. It remains unknown whether this desensitization affects TAS2R function, by cross talk at the receptors or distal common components in the relaxation machinery. We studied intracellular signaling and cell mechanics using isolated human ASM, mouse tracheal responses, and human bronchial responses to characterize TAS2R relaxation in the context of β
<sub>2</sub>
AR desensitization. In isolated human ASM, magnetic twisting cytometry revealed >90% loss of isoproterenol-promoted decrease in cell stiffness after 18-h exposure to albuterol. Under these same conditions of β
<sub>2</sub>
AR desensitization, the TAS2R agonist chloroquine relaxation response was unaffected. TAS2R-mediated stimulation of intracellular Ca
<sup>2+</sup>
concentration in human ASM was unaltered by albuterol pretreatment, in contrast to cAMP signaling, which was desensitized by >90%. In mouse trachea, β
<sub>2</sub>
AR desensitization by β-agonist amounted to 92 ± 6.0% (P < 0.001), while, under these same conditions, TAS2R desensitization was not significant (11 ± 3.5%). In human lung slices, chronic β-agonist exposure culminated in 64 ± 5.7% (P < 0.001) desensitization of β
<sub>2</sub>
AR-mediated dilation of carbachol-constricted airways that was reversed by chloroquine. We conclude that there is no evidence for physiologically relevant cross-desensitization of TAS2R-mediated ASM relaxation from chronic P-agonist treatment. These findings portend a favorable therapeutic profile for TAS2R agonists for the treatment of bronchospasm in asthma or chronic obstructive lung disease.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>1040-0605</s0>
</fA01>
<fA02 i1="01">
<s0>APLPE7</s0>
</fA02>
<fA03 i2="1">
<s0>Am. j. physiol., Lung cell. mol. physiol.</s0>
</fA03>
<fA05>
<s2>47</s2>
</fA05>
<fA06>
<s2>2</s2>
</fA06>
<fA08 i1="01" i2="1" l="ENG">
<s1>TAS2R activation promotes airway smooth muscle relaxation despite β
<sub>2</sub>
-adrenergic receptor tachyphylaxis</s1>
</fA08>
<fA11 i1="01" i2="1">
<s1>AN (Steven S.)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>WANG (Wayne C. H.)</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>KOZIOL-WHITE (Cynthia J.)</s1>
</fA11>
<fA11 i1="04" i2="1">
<s1>AHN (Kwangmi)</s1>
</fA11>
<fA11 i1="05" i2="1">
<s1>LEE (Danielle Y.)</s1>
</fA11>
<fA11 i1="06" i2="1">
<s1>KURTEN (Richard C.)</s1>
</fA11>
<fA11 i1="07" i2="1">
<s1>PANETTIERI (Reynold A. JR)</s1>
</fA11>
<fA11 i1="08" i2="1">
<s1>LIGGETT (Stephen B.)</s1>
</fA11>
<fA14 i1="01">
<s1>Program in Respiratory Biology and Lung Disease, Johns Hopkins University, Bloomberg School of Public Health</s1>
<s2>Baltimore, Maryland</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>5 aut.</sZ>
</fA14>
<fA14 i1="02">
<s1>Department of Medicine, University of Maryland School of Medicine</s1>
<s2>Baltimore, Maryland</s2>
<s3>USA</s3>
<sZ>2 aut.</sZ>
</fA14>
<fA14 i1="03">
<s1>Division of Pulmonary, Allergy and Critical Care, Airways Biology Initiative, University of Pennsylvania Medical Center</s1>
<s2>Philadelphia, Pennsylvania</s2>
<s3>USA</s3>
<sZ>3 aut.</sZ>
<sZ>7 aut.</sZ>
</fA14>
<fA14 i1="04">
<s1>National Institutes of Health</s1>
<s2>Bethesda, Maryland</s2>
<s3>USA</s3>
<sZ>4 aut.</sZ>
</fA14>
<fA14 i1="05">
<s1>Department of Physiology and Biophysics, University of Arkansas for Medical Sciences</s1>
<s2>Little Rock, Arkansas</s2>
<s3>USA</s3>
<sZ>6 aut.</sZ>
</fA14>
<fA14 i1="06">
<s1>Personalized Medicine Institute, University of South Florida Morsani College of Medicine</s1>
<s2>, Tampa, Florida</s2>
<s3>USA</s3>
<sZ>8 aut.</sZ>
</fA14>
<fA20>
<s2>L304-L311</s2>
</fA20>
<fA21>
<s1>2012</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>22200</s2>
<s5>354000502064330150</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2012 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>46 ref.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>12-0423718</s0>
</fA47>
<fA60>
<s1>P</s1>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>American journal of physiology. Lung cellular and molecular physiology</s0>
</fA64>
<fA66 i1="01">
<s0>USA</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>Recently, bitter taste receptors (TAS2Rs) were found in the lung and act to relax airway smooth muscle (ASM) via intracellular Ca
<sup>2+</sup>
concentration signaling generated from restricted phospholipase C activation. As potential therapy, TAS2R agonists could be add-on treatment when patients fail to achieve adequate bronchodilation with chronic β-agonists. The β
<sub>2</sub>
-adrenergic receptor (β
<sub>2</sub>
AR) of ASM undergoes extensive functional desensitization. It remains unknown whether this desensitization affects TAS2R function, by cross talk at the receptors or distal common components in the relaxation machinery. We studied intracellular signaling and cell mechanics using isolated human ASM, mouse tracheal responses, and human bronchial responses to characterize TAS2R relaxation in the context of β
<sub>2</sub>
AR desensitization. In isolated human ASM, magnetic twisting cytometry revealed >90% loss of isoproterenol-promoted decrease in cell stiffness after 18-h exposure to albuterol. Under these same conditions of β
<sub>2</sub>
AR desensitization, the TAS2R agonist chloroquine relaxation response was unaffected. TAS2R-mediated stimulation of intracellular Ca
<sup>2+</sup>
concentration in human ASM was unaltered by albuterol pretreatment, in contrast to cAMP signaling, which was desensitized by >90%. In mouse trachea, β
<sub>2</sub>
AR desensitization by β-agonist amounted to 92 ± 6.0% (P < 0.001), while, under these same conditions, TAS2R desensitization was not significant (11 ± 3.5%). In human lung slices, chronic β-agonist exposure culminated in 64 ± 5.7% (P < 0.001) desensitization of β
<sub>2</sub>
AR-mediated dilation of carbachol-constricted airways that was reversed by chloroquine. We conclude that there is no evidence for physiologically relevant cross-desensitization of TAS2R-mediated ASM relaxation from chronic P-agonist treatment. These findings portend a favorable therapeutic profile for TAS2R agonists for the treatment of bronchospasm in asthma or chronic obstructive lung disease.</s0>
</fC01>
<fC02 i1="01" i2="X">
<s0>002A20</s0>
</fC02>
<fC02 i1="02" i2="X">
<s0>002B11B</s0>
</fC02>
<fC03 i1="01" i2="X" l="FRE">
<s0>Activation</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="ENG">
<s0>Activation</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="SPA">
<s0>Activación</s0>
<s5>01</s5>
</fC03>
<fC03 i1="02" i2="X" l="FRE">
<s0>Voie respiratoire</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="ENG">
<s0>Respiratory tract</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="SPA">
<s0>Vía respiratoria</s0>
<s5>02</s5>
</fC03>
<fC03 i1="03" i2="X" l="FRE">
<s0>Muscle lisse</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="X" l="ENG">
<s0>Smooth muscle</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="X" l="SPA">
<s0>Músculo liso</s0>
<s5>03</s5>
</fC03>
<fC03 i1="04" i2="X" l="FRE">
<s0>Relaxation</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="X" l="ENG">
<s0>Relaxation</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="X" l="SPA">
<s0>Relajación</s0>
<s5>04</s5>
</fC03>
<fC03 i1="05" i2="X" l="FRE">
<s0>Récepteur β2-adrénergique</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="X" l="ENG">
<s0>β2-Adrenergic receptor</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="X" l="SPA">
<s0>Receptor β2-adrenérgico</s0>
<s5>05</s5>
</fC03>
<fC03 i1="06" i2="X" l="FRE">
<s0>Tachyphylaxie</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="X" l="ENG">
<s0>Tachyphylaxis</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="X" l="SPA">
<s0>Taquifilaxia</s0>
<s5>06</s5>
</fC03>
<fC03 i1="07" i2="X" l="FRE">
<s0>Asthme</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="X" l="ENG">
<s0>Asthma</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="X" l="SPA">
<s0>Asma</s0>
<s5>07</s5>
</fC03>
<fC03 i1="08" i2="X" l="FRE">
<s0>Désensibilisation</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="X" l="ENG">
<s0>Desensitization</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="X" l="SPA">
<s0>Desensibilización</s0>
<s5>08</s5>
</fC03>
<fC03 i1="09" i2="X" l="FRE">
<s0>Chloroquine</s0>
<s2>NK</s2>
<s2>FR</s2>
<s5>10</s5>
</fC03>
<fC03 i1="09" i2="X" l="ENG">
<s0>Chloroquine</s0>
<s2>NK</s2>
<s2>FR</s2>
<s5>10</s5>
</fC03>
<fC03 i1="09" i2="X" l="SPA">
<s0>Cloroquina</s0>
<s2>NK</s2>
<s2>FR</s2>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="X" l="FRE">
<s0>Saveur</s0>
<s5>11</s5>
</fC03>
<fC03 i1="10" i2="X" l="ENG">
<s0>Taste</s0>
<s5>11</s5>
</fC03>
<fC03 i1="10" i2="X" l="SPA">
<s0>Sabor</s0>
<s5>11</s5>
</fC03>
<fC03 i1="11" i2="X" l="FRE">
<s0>Récepteur biologique</s0>
<s5>13</s5>
</fC03>
<fC03 i1="11" i2="X" l="ENG">
<s0>Biological receptor</s0>
<s5>13</s5>
</fC03>
<fC03 i1="11" i2="X" l="SPA">
<s0>Receptor biológico</s0>
<s5>13</s5>
</fC03>
<fC03 i1="12" i2="X" l="FRE">
<s0>Mammalia</s0>
<s2>NS</s2>
<s5>14</s5>
</fC03>
<fC03 i1="12" i2="X" l="ENG">
<s0>Mammalia</s0>
<s2>NS</s2>
<s5>14</s5>
</fC03>
<fC03 i1="12" i2="X" l="SPA">
<s0>Mammalia</s0>
<s2>NS</s2>
<s5>14</s5>
</fC03>
<fC03 i1="13" i2="X" l="FRE">
<s0>Appareil respiratoire</s0>
<s5>57</s5>
</fC03>
<fC03 i1="13" i2="X" l="ENG">
<s0>Respiratory system</s0>
<s5>57</s5>
</fC03>
<fC03 i1="13" i2="X" l="SPA">
<s0>Aparato respiratorio</s0>
<s5>57</s5>
</fC03>
<fC07 i1="01" i2="X" l="FRE">
<s0>Vertebrata</s0>
<s2>NS</s2>
</fC07>
<fC07 i1="01" i2="X" l="ENG">
<s0>Vertebrata</s0>
<s2>NS</s2>
</fC07>
<fC07 i1="01" i2="X" l="SPA">
<s0>Vertebrata</s0>
<s2>NS</s2>
</fC07>
<fC07 i1="02" i2="X" l="FRE">
<s0>Pathologie de l'appareil respiratoire</s0>
<s5>20</s5>
</fC07>
<fC07 i1="02" i2="X" l="ENG">
<s0>Respiratory disease</s0>
<s5>20</s5>
</fC07>
<fC07 i1="02" i2="X" l="SPA">
<s0>Aparato respiratorio patología</s0>
<s5>20</s5>
</fC07>
<fC07 i1="03" i2="X" l="FRE">
<s0>Bronchopneumopathie obstructive</s0>
<s5>21</s5>
</fC07>
<fC07 i1="03" i2="X" l="ENG">
<s0>Obstructive pulmonary disease</s0>
<s5>21</s5>
</fC07>
<fC07 i1="03" i2="X" l="SPA">
<s0>Enfermedad pulmonar obstructiva</s0>
<s5>21</s5>
</fC07>
<fC07 i1="04" i2="X" l="FRE">
<s0>Gustation</s0>
<s5>22</s5>
</fC07>
<fC07 i1="04" i2="X" l="ENG">
<s0>Gustation</s0>
<s5>22</s5>
</fC07>
<fC07 i1="04" i2="X" l="SPA">
<s0>Gusto</s0>
<s5>22</s5>
</fC07>
<fC07 i1="05" i2="X" l="FRE">
<s0>Système gustatif</s0>
<s5>23</s5>
</fC07>
<fC07 i1="05" i2="X" l="ENG">
<s0>Gustative system</s0>
<s5>23</s5>
</fC07>
<fC07 i1="05" i2="X" l="SPA">
<s0>Sistema gustativo</s0>
<s5>23</s5>
</fC07>
<fC07 i1="06" i2="X" l="FRE">
<s0>Pathologie des bronches</s0>
<s5>24</s5>
</fC07>
<fC07 i1="06" i2="X" l="ENG">
<s0>Bronchus disease</s0>
<s5>24</s5>
</fC07>
<fC07 i1="06" i2="X" l="SPA">
<s0>Bronquio patología</s0>
<s5>24</s5>
</fC07>
<fC07 i1="07" i2="X" l="FRE">
<s0>Pathologie des poumons</s0>
<s5>25</s5>
</fC07>
<fC07 i1="07" i2="X" l="ENG">
<s0>Lung disease</s0>
<s5>25</s5>
</fC07>
<fC07 i1="07" i2="X" l="SPA">
<s0>Pulmón patología</s0>
<s5>25</s5>
</fC07>
<fN21>
<s1>331</s1>
</fN21>
<fN44 i1="01">
<s1>OTO</s1>
</fN44>
<fN82>
<s1>OTO</s1>
</fN82>
</pA>
</standard>
</inist>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
<region>
<li>Arkansas</li>
<li>Floride</li>
<li>Maryland</li>
<li>Pennsylvanie</li>
</region>
</list>
<tree>
<country name="États-Unis">
<region name="Maryland">
<name sortKey="An, Steven S" sort="An, Steven S" uniqKey="An S" first="Steven S." last="An">Steven S. An</name>
</region>
<name sortKey="Ahn, Kwangmi" sort="Ahn, Kwangmi" uniqKey="Ahn K" first="Kwangmi" last="Ahn">Kwangmi Ahn</name>
<name sortKey="Koziol White, Cynthia J" sort="Koziol White, Cynthia J" uniqKey="Koziol White C" first="Cynthia J." last="Koziol-White">Cynthia J. Koziol-White</name>
<name sortKey="Kurten, Richard C" sort="Kurten, Richard C" uniqKey="Kurten R" first="Richard C." last="Kurten">Richard C. Kurten</name>
<name sortKey="Lee, Danielle Y" sort="Lee, Danielle Y" uniqKey="Lee D" first="Danielle Y." last="Lee">Danielle Y. Lee</name>
<name sortKey="Liggett, Stephen B" sort="Liggett, Stephen B" uniqKey="Liggett S" first="Stephen B." last="Liggett">Stephen B. Liggett</name>
<name sortKey="Panettieri, Reynold A Jr" sort="Panettieri, Reynold A Jr" uniqKey="Panettieri R" first="Reynold A. Jr" last="Panettieri">Reynold A. Jr Panettieri</name>
<name sortKey="Wang, Wayne C H" sort="Wang, Wayne C H" uniqKey="Wang W" first="Wayne C. H." last="Wang">Wayne C. H. Wang</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/ChloroquineV1/Data/PascalFrancis/Checkpoint
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000009 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PascalFrancis/Checkpoint/biblio.hfd -nk 000009 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    ChloroquineV1
   |flux=    PascalFrancis
   |étape=   Checkpoint
   |type=    RBID
   |clé=     Pascal:12-0423718
   |texte=   TAS2R activation promotes airway smooth muscle relaxation despite β2-adrenergic receptor tachyphylaxis
}}

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Wed Mar 25 22:43:59 2020. Site generation: Sun Jan 31 12:44:45 2021