Serveur d'exploration Chloroquine

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Modulating lysosomal function through lysosome membrane permeabilization or autophagy suppression restores sensitivity to cisplatin in refractory non-small-cell lung cancer cells.

Identifieur interne : 000405 ( Ncbi/Merge ); précédent : 000404; suivant : 000406

Modulating lysosomal function through lysosome membrane permeabilization or autophagy suppression restores sensitivity to cisplatin in refractory non-small-cell lung cancer cells.

Auteurs : Magdalena Circu [États-Unis] ; James Cardelli [États-Unis] ; Martin P. Barr [Irlande (pays)] ; Kenneth O'Byrne [Australie] ; Glenn Mills [États-Unis] ; Hazem El-Osta [États-Unis]

Source :

RBID : pubmed:28945807

Descripteurs français

English descriptors

Abstract

Lung cancer is the leading cause of cancer-related deaths. Most patients develop resistance to platinum within several months of treatment. We investigated whether triggering lysosomal membrane permeabilization (LMP) or suppressing autophagy can restore cisplatin susceptibility in lung cancer with acquired chemoresistance. Cisplatin IC50 in A549Pt (parental) and A549cisR (cisplatin resistant) cells was 13 μM and 47 μM, respectively. Following cisplatin exposure, A549cisR cells failed to elicit an apoptotic response. This was manifested by diminished Annexin-V staining, caspase 3 and 9, BAX and BAK activation in resistant but not in parental cells. Chloroquine preferentially promoted LMP in A549cisR cells, revealed by leakage of FITC-dextran into the cytosol as detected by immunofluorescence microscopy. This was confirmed by increased cytosolic cathepsin D signal on Immunoblot. Cell viability of cisplatin-treated A549cisR cells was decreased when co-treated with chloroquine, corresponding to a combination index below 0.8, suggesting synergism between the two drugs. Notably, chloroquine activated the mitochondrial cell death pathway as indicated by increase in caspase 9 activity. Interestingly, inhibition of lysosomal proteases using E64 conferred cytoprotection against cisplatin and chloroquine co-treatment, suggesting that chloroquine-induced cell death occurred in a cathepsin-mediated mechanism. Likewise, blockage of caspases partially rescued A549cisR cells against the cytotoxicity of cisplatin and chloroquine combination. Cisplatin promoted a dose-dependent autophagic flux induction preferentially in A549cisR cells, as evidenced by a surge in LC3-II/α-tubulin following pre-treatment with E64 and increase in p62 degradation. Compared to untreated cells, cisplatin induced an increase in cyto-ID-loaded autophagosomes in A549cisR cells that was further amplified by chloroquine, pointing toward autophagic flux activation by cisplatin. Interestingly, this effect was less pronounced in A549Pt cells. Blocking autophagy by ATG5 depletion using siRNA markedly enhances susceptibility to cisplatin in A549cisR cells. Taken together, our results underscore the utility of targeting lysosomal function in overcoming acquired cisplatin refractoriness in lung cancer.

DOI: 10.1371/journal.pone.0184922
PubMed: 28945807

Links toward previous steps (curation, corpus...)


Links to Exploration step

pubmed:28945807

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Modulating lysosomal function through lysosome membrane permeabilization or autophagy suppression restores sensitivity to cisplatin in refractory non-small-cell lung cancer cells.</title>
<author>
<name sortKey="Circu, Magdalena" sort="Circu, Magdalena" uniqKey="Circu M" first="Magdalena" last="Circu">Magdalena Circu</name>
<affiliation wicri:level="2">
<nlm:affiliation>Feist-Weiller Cancer Center, Louisiana State University Health Sciences Center-Shreveport, Shreveport, Louisiana, United States of America.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Feist-Weiller Cancer Center, Louisiana State University Health Sciences Center-Shreveport, Shreveport, Louisiana</wicri:regionArea>
<placeName>
<region type="state">Louisiane</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Cardelli, James" sort="Cardelli, James" uniqKey="Cardelli J" first="James" last="Cardelli">James Cardelli</name>
<affiliation wicri:level="2">
<nlm:affiliation>Segue Therapeutics, LLC, Shreveport, Louisiana, United States of America.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Segue Therapeutics, LLC, Shreveport, Louisiana</wicri:regionArea>
<placeName>
<region type="state">Louisiane</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Barr, Martin P" sort="Barr, Martin P" uniqKey="Barr M" first="Martin P" last="Barr">Martin P. Barr</name>
<affiliation wicri:level="1">
<nlm:affiliation>Thoracic Oncology Research Group, Trinity Translational Medicine Institute, Trinity Centre for Health Sciences, St. James's Hospital & Trinity College Dublin, Dublin, Ireland.</nlm:affiliation>
<country xml:lang="fr">Irlande (pays)</country>
<wicri:regionArea>Thoracic Oncology Research Group, Trinity Translational Medicine Institute, Trinity Centre for Health Sciences, St. James's Hospital & Trinity College Dublin, Dublin</wicri:regionArea>
<wicri:noRegion>Dublin</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="O Byrne, Kenneth" sort="O Byrne, Kenneth" uniqKey="O Byrne K" first="Kenneth" last="O'Byrne">Kenneth O'Byrne</name>
<affiliation wicri:level="1">
<nlm:affiliation>Cancer & Ageing Research Program, Queensland University of Technology, Brisbane, Australia.</nlm:affiliation>
<country xml:lang="fr">Australie</country>
<wicri:regionArea>Cancer & Ageing Research Program, Queensland University of Technology, Brisbane</wicri:regionArea>
<wicri:noRegion>Brisbane</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Mills, Glenn" sort="Mills, Glenn" uniqKey="Mills G" first="Glenn" last="Mills">Glenn Mills</name>
<affiliation wicri:level="2">
<nlm:affiliation>Feist-Weiller Cancer Center, Louisiana State University Health Sciences Center-Shreveport, Shreveport, Louisiana, United States of America.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Feist-Weiller Cancer Center, Louisiana State University Health Sciences Center-Shreveport, Shreveport, Louisiana</wicri:regionArea>
<placeName>
<region type="state">Louisiane</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="El Osta, Hazem" sort="El Osta, Hazem" uniqKey="El Osta H" first="Hazem" last="El-Osta">Hazem El-Osta</name>
<affiliation wicri:level="2">
<nlm:affiliation>Feist-Weiller Cancer Center, Louisiana State University Health Sciences Center-Shreveport, Shreveport, Louisiana, United States of America.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Feist-Weiller Cancer Center, Louisiana State University Health Sciences Center-Shreveport, Shreveport, Louisiana</wicri:regionArea>
<placeName>
<region type="state">Louisiane</region>
</placeName>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2017">2017</date>
<idno type="RBID">pubmed:28945807</idno>
<idno type="pmid">28945807</idno>
<idno type="doi">10.1371/journal.pone.0184922</idno>
<idno type="wicri:Area/PubMed/Corpus">000147</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">000147</idno>
<idno type="wicri:Area/PubMed/Curation">000147</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Curation">000147</idno>
<idno type="wicri:Area/PubMed/Checkpoint">000157</idno>
<idno type="wicri:explorRef" wicri:stream="Checkpoint" wicri:step="PubMed">000157</idno>
<idno type="wicri:Area/Ncbi/Merge">000405</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Modulating lysosomal function through lysosome membrane permeabilization or autophagy suppression restores sensitivity to cisplatin in refractory non-small-cell lung cancer cells.</title>
<author>
<name sortKey="Circu, Magdalena" sort="Circu, Magdalena" uniqKey="Circu M" first="Magdalena" last="Circu">Magdalena Circu</name>
<affiliation wicri:level="2">
<nlm:affiliation>Feist-Weiller Cancer Center, Louisiana State University Health Sciences Center-Shreveport, Shreveport, Louisiana, United States of America.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Feist-Weiller Cancer Center, Louisiana State University Health Sciences Center-Shreveport, Shreveport, Louisiana</wicri:regionArea>
<placeName>
<region type="state">Louisiane</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Cardelli, James" sort="Cardelli, James" uniqKey="Cardelli J" first="James" last="Cardelli">James Cardelli</name>
<affiliation wicri:level="2">
<nlm:affiliation>Segue Therapeutics, LLC, Shreveport, Louisiana, United States of America.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Segue Therapeutics, LLC, Shreveport, Louisiana</wicri:regionArea>
<placeName>
<region type="state">Louisiane</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Barr, Martin P" sort="Barr, Martin P" uniqKey="Barr M" first="Martin P" last="Barr">Martin P. Barr</name>
<affiliation wicri:level="1">
<nlm:affiliation>Thoracic Oncology Research Group, Trinity Translational Medicine Institute, Trinity Centre for Health Sciences, St. James's Hospital & Trinity College Dublin, Dublin, Ireland.</nlm:affiliation>
<country xml:lang="fr">Irlande (pays)</country>
<wicri:regionArea>Thoracic Oncology Research Group, Trinity Translational Medicine Institute, Trinity Centre for Health Sciences, St. James's Hospital & Trinity College Dublin, Dublin</wicri:regionArea>
<wicri:noRegion>Dublin</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="O Byrne, Kenneth" sort="O Byrne, Kenneth" uniqKey="O Byrne K" first="Kenneth" last="O'Byrne">Kenneth O'Byrne</name>
<affiliation wicri:level="1">
<nlm:affiliation>Cancer & Ageing Research Program, Queensland University of Technology, Brisbane, Australia.</nlm:affiliation>
<country xml:lang="fr">Australie</country>
<wicri:regionArea>Cancer & Ageing Research Program, Queensland University of Technology, Brisbane</wicri:regionArea>
<wicri:noRegion>Brisbane</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Mills, Glenn" sort="Mills, Glenn" uniqKey="Mills G" first="Glenn" last="Mills">Glenn Mills</name>
<affiliation wicri:level="2">
<nlm:affiliation>Feist-Weiller Cancer Center, Louisiana State University Health Sciences Center-Shreveport, Shreveport, Louisiana, United States of America.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Feist-Weiller Cancer Center, Louisiana State University Health Sciences Center-Shreveport, Shreveport, Louisiana</wicri:regionArea>
<placeName>
<region type="state">Louisiane</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="El Osta, Hazem" sort="El Osta, Hazem" uniqKey="El Osta H" first="Hazem" last="El-Osta">Hazem El-Osta</name>
<affiliation wicri:level="2">
<nlm:affiliation>Feist-Weiller Cancer Center, Louisiana State University Health Sciences Center-Shreveport, Shreveport, Louisiana, United States of America.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Feist-Weiller Cancer Center, Louisiana State University Health Sciences Center-Shreveport, Shreveport, Louisiana</wicri:regionArea>
<placeName>
<region type="state">Louisiane</region>
</placeName>
</affiliation>
</author>
</analytic>
<series>
<title level="j">PloS one</title>
<idno type="eISSN">1932-6203</idno>
<imprint>
<date when="2017" type="published">2017</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>A549 Cells</term>
<term>Antineoplastic Agents (therapeutic use)</term>
<term>Apoptosis (drug effects)</term>
<term>Apoptosis (physiology)</term>
<term>Autophagy (drug effects)</term>
<term>Autophagy (physiology)</term>
<term>Carcinoma, Non-Small-Cell Lung (drug therapy)</term>
<term>Chloroquine (pharmacology)</term>
<term>Cisplatin (therapeutic use)</term>
<term>Drug Resistance, Neoplasm</term>
<term>Humans</term>
<term>Intracellular Membranes (drug effects)</term>
<term>Intracellular Membranes (physiology)</term>
<term>Lung Neoplasms (drug therapy)</term>
<term>Lysosomes (drug effects)</term>
<term>Lysosomes (physiology)</term>
<term>Microscopy, Fluorescence</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Antinéoplasiques (usage thérapeutique)</term>
<term>Apoptose ()</term>
<term>Apoptose (physiologie)</term>
<term>Autophagie ()</term>
<term>Autophagie (physiologie)</term>
<term>Carcinome pulmonaire non à petites cellules (traitement médicamenteux)</term>
<term>Cellules A549</term>
<term>Chloroquine (pharmacologie)</term>
<term>Cisplatine (usage thérapeutique)</term>
<term>Humains</term>
<term>Lysosomes ()</term>
<term>Lysosomes (physiologie)</term>
<term>Membranes intracellulaires ()</term>
<term>Membranes intracellulaires (physiologie)</term>
<term>Microscopie de fluorescence</term>
<term>Résistance aux médicaments antinéoplasiques</term>
<term>Tumeurs du poumon (traitement médicamenteux)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="pharmacology" xml:lang="en">
<term>Chloroquine</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="therapeutic use" xml:lang="en">
<term>Antineoplastic Agents</term>
<term>Cisplatin</term>
</keywords>
<keywords scheme="MESH" qualifier="drug effects" xml:lang="en">
<term>Apoptosis</term>
<term>Autophagy</term>
<term>Intracellular Membranes</term>
<term>Lysosomes</term>
</keywords>
<keywords scheme="MESH" qualifier="drug therapy" xml:lang="en">
<term>Carcinoma, Non-Small-Cell Lung</term>
<term>Lung Neoplasms</term>
</keywords>
<keywords scheme="MESH" qualifier="pharmacologie" xml:lang="fr">
<term>Chloroquine</term>
</keywords>
<keywords scheme="MESH" qualifier="physiologie" xml:lang="fr">
<term>Apoptose</term>
<term>Autophagie</term>
<term>Lysosomes</term>
<term>Membranes intracellulaires</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>Apoptosis</term>
<term>Autophagy</term>
<term>Intracellular Membranes</term>
<term>Lysosomes</term>
</keywords>
<keywords scheme="MESH" qualifier="traitement médicamenteux" xml:lang="fr">
<term>Carcinome pulmonaire non à petites cellules</term>
<term>Tumeurs du poumon</term>
</keywords>
<keywords scheme="MESH" qualifier="usage thérapeutique" xml:lang="fr">
<term>Antinéoplasiques</term>
<term>Cisplatine</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>A549 Cells</term>
<term>Drug Resistance, Neoplasm</term>
<term>Humans</term>
<term>Microscopy, Fluorescence</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Apoptose</term>
<term>Autophagie</term>
<term>Cellules A549</term>
<term>Humains</term>
<term>Lysosomes</term>
<term>Membranes intracellulaires</term>
<term>Microscopie de fluorescence</term>
<term>Résistance aux médicaments antinéoplasiques</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Lung cancer is the leading cause of cancer-related deaths. Most patients develop resistance to platinum within several months of treatment. We investigated whether triggering lysosomal membrane permeabilization (LMP) or suppressing autophagy can restore cisplatin susceptibility in lung cancer with acquired chemoresistance. Cisplatin IC50 in A549Pt (parental) and A549cisR (cisplatin resistant) cells was 13 μM and 47 μM, respectively. Following cisplatin exposure, A549cisR cells failed to elicit an apoptotic response. This was manifested by diminished Annexin-V staining, caspase 3 and 9, BAX and BAK activation in resistant but not in parental cells. Chloroquine preferentially promoted LMP in A549cisR cells, revealed by leakage of FITC-dextran into the cytosol as detected by immunofluorescence microscopy. This was confirmed by increased cytosolic cathepsin D signal on Immunoblot. Cell viability of cisplatin-treated A549cisR cells was decreased when co-treated with chloroquine, corresponding to a combination index below 0.8, suggesting synergism between the two drugs. Notably, chloroquine activated the mitochondrial cell death pathway as indicated by increase in caspase 9 activity. Interestingly, inhibition of lysosomal proteases using E64 conferred cytoprotection against cisplatin and chloroquine co-treatment, suggesting that chloroquine-induced cell death occurred in a cathepsin-mediated mechanism. Likewise, blockage of caspases partially rescued A549cisR cells against the cytotoxicity of cisplatin and chloroquine combination. Cisplatin promoted a dose-dependent autophagic flux induction preferentially in A549cisR cells, as evidenced by a surge in LC3-II/α-tubulin following pre-treatment with E64 and increase in p62 degradation. Compared to untreated cells, cisplatin induced an increase in cyto-ID-loaded autophagosomes in A549cisR cells that was further amplified by chloroquine, pointing toward autophagic flux activation by cisplatin. Interestingly, this effect was less pronounced in A549Pt cells. Blocking autophagy by ATG5 depletion using siRNA markedly enhances susceptibility to cisplatin in A549cisR cells. Taken together, our results underscore the utility of targeting lysosomal function in overcoming acquired cisplatin refractoriness in lung cancer.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">28945807</PMID>
<DateCompleted>
<Year>2017</Year>
<Month>10</Month>
<Day>17</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Electronic-eCollection">
<Journal>
<ISSN IssnType="Electronic">1932-6203</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>12</Volume>
<Issue>9</Issue>
<PubDate>
<Year>2017</Year>
</PubDate>
</JournalIssue>
<Title>PloS one</Title>
<ISOAbbreviation>PLoS ONE</ISOAbbreviation>
</Journal>
<ArticleTitle>Modulating lysosomal function through lysosome membrane permeabilization or autophagy suppression restores sensitivity to cisplatin in refractory non-small-cell lung cancer cells.</ArticleTitle>
<Pagination>
<MedlinePgn>e0184922</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1371/journal.pone.0184922</ELocationID>
<Abstract>
<AbstractText>Lung cancer is the leading cause of cancer-related deaths. Most patients develop resistance to platinum within several months of treatment. We investigated whether triggering lysosomal membrane permeabilization (LMP) or suppressing autophagy can restore cisplatin susceptibility in lung cancer with acquired chemoresistance. Cisplatin IC50 in A549Pt (parental) and A549cisR (cisplatin resistant) cells was 13 μM and 47 μM, respectively. Following cisplatin exposure, A549cisR cells failed to elicit an apoptotic response. This was manifested by diminished Annexin-V staining, caspase 3 and 9, BAX and BAK activation in resistant but not in parental cells. Chloroquine preferentially promoted LMP in A549cisR cells, revealed by leakage of FITC-dextran into the cytosol as detected by immunofluorescence microscopy. This was confirmed by increased cytosolic cathepsin D signal on Immunoblot. Cell viability of cisplatin-treated A549cisR cells was decreased when co-treated with chloroquine, corresponding to a combination index below 0.8, suggesting synergism between the two drugs. Notably, chloroquine activated the mitochondrial cell death pathway as indicated by increase in caspase 9 activity. Interestingly, inhibition of lysosomal proteases using E64 conferred cytoprotection against cisplatin and chloroquine co-treatment, suggesting that chloroquine-induced cell death occurred in a cathepsin-mediated mechanism. Likewise, blockage of caspases partially rescued A549cisR cells against the cytotoxicity of cisplatin and chloroquine combination. Cisplatin promoted a dose-dependent autophagic flux induction preferentially in A549cisR cells, as evidenced by a surge in LC3-II/α-tubulin following pre-treatment with E64 and increase in p62 degradation. Compared to untreated cells, cisplatin induced an increase in cyto-ID-loaded autophagosomes in A549cisR cells that was further amplified by chloroquine, pointing toward autophagic flux activation by cisplatin. Interestingly, this effect was less pronounced in A549Pt cells. Blocking autophagy by ATG5 depletion using siRNA markedly enhances susceptibility to cisplatin in A549cisR cells. Taken together, our results underscore the utility of targeting lysosomal function in overcoming acquired cisplatin refractoriness in lung cancer.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Circu</LastName>
<ForeName>Magdalena</ForeName>
<Initials>M</Initials>
<AffiliationInfo>
<Affiliation>Feist-Weiller Cancer Center, Louisiana State University Health Sciences Center-Shreveport, Shreveport, Louisiana, United States of America.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Cardelli</LastName>
<ForeName>James</ForeName>
<Initials>J</Initials>
<AffiliationInfo>
<Affiliation>Segue Therapeutics, LLC, Shreveport, Louisiana, United States of America.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Barr</LastName>
<ForeName>Martin P</ForeName>
<Initials>MP</Initials>
<AffiliationInfo>
<Affiliation>Thoracic Oncology Research Group, Trinity Translational Medicine Institute, Trinity Centre for Health Sciences, St. James's Hospital & Trinity College Dublin, Dublin, Ireland.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>O'Byrne</LastName>
<ForeName>Kenneth</ForeName>
<Initials>K</Initials>
<AffiliationInfo>
<Affiliation>Cancer & Ageing Research Program, Queensland University of Technology, Brisbane, Australia.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Mills</LastName>
<ForeName>Glenn</ForeName>
<Initials>G</Initials>
<AffiliationInfo>
<Affiliation>Feist-Weiller Cancer Center, Louisiana State University Health Sciences Center-Shreveport, Shreveport, Louisiana, United States of America.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>El-Osta</LastName>
<ForeName>Hazem</ForeName>
<Initials>H</Initials>
<Identifier Source="ORCID">0000-0003-1825-2815</Identifier>
<AffiliationInfo>
<Affiliation>Feist-Weiller Cancer Center, Louisiana State University Health Sciences Center-Shreveport, Shreveport, Louisiana, United States of America.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2017</Year>
<Month>09</Month>
<Day>25</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>PLoS One</MedlineTA>
<NlmUniqueID>101285081</NlmUniqueID>
<ISSNLinking>1932-6203</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D000970">Antineoplastic Agents</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>886U3H6UFF</RegistryNumber>
<NameOfSubstance UI="D002738">Chloroquine</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>Q20Q21Q62J</RegistryNumber>
<NameOfSubstance UI="D002945">Cisplatin</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<CommentsCorrectionsList>
<CommentsCorrections RefType="ErratumIn">
<RefSource>PLoS One. 2018 May 2;13(5):e0197016</RefSource>
<PMID Version="1">29718985</PMID>
</CommentsCorrections>
</CommentsCorrectionsList>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000072283" MajorTopicYN="N">A549 Cells</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000970" MajorTopicYN="N">Antineoplastic Agents</DescriptorName>
<QualifierName UI="Q000627" MajorTopicYN="Y">therapeutic use</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017209" MajorTopicYN="N">Apoptosis</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001343" MajorTopicYN="N">Autophagy</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002289" MajorTopicYN="N">Carcinoma, Non-Small-Cell Lung</DescriptorName>
<QualifierName UI="Q000188" MajorTopicYN="Y">drug therapy</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002738" MajorTopicYN="N">Chloroquine</DescriptorName>
<QualifierName UI="Q000494" MajorTopicYN="N">pharmacology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002945" MajorTopicYN="N">Cisplatin</DescriptorName>
<QualifierName UI="Q000627" MajorTopicYN="Y">therapeutic use</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D019008" MajorTopicYN="N">Drug Resistance, Neoplasm</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D007425" MajorTopicYN="N">Intracellular Membranes</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008175" MajorTopicYN="N">Lung Neoplasms</DescriptorName>
<QualifierName UI="Q000188" MajorTopicYN="Y">drug therapy</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008247" MajorTopicYN="N">Lysosomes</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008856" MajorTopicYN="N">Microscopy, Fluorescence</DescriptorName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2017</Year>
<Month>01</Month>
<Day>19</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2017</Year>
<Month>09</Month>
<Day>02</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2017</Year>
<Month>9</Month>
<Day>26</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2017</Year>
<Month>9</Month>
<Day>26</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2017</Year>
<Month>10</Month>
<Day>19</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">28945807</ArticleId>
<ArticleId IdType="doi">10.1371/journal.pone.0184922</ArticleId>
<ArticleId IdType="pii">PONE-D-17-02559</ArticleId>
<ArticleId IdType="pmc">PMC5612465</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Cell Cycle. 2013 Jan 15;12(2):278-88</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23255126</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Mol Cell Biol. 2007 Nov;8(11):931-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17712358</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem Biophys Res Commun. 2016 Apr 29;473(2):490-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26996126</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>N Engl J Med. 2014 Dec 4;371(23):2167-77</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25470694</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2010 Feb 5;140(3):313-26</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20144757</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cancer Lett. 2015 Aug 1;364(1):70-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25937299</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cancer Metab. 2014 Sep 11;2:14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25215185</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Phytomedicine. 2016 Dec 1;23 (13):1566-1573</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27823620</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Mol Cell Biol. 2014 Jan;15(1):49-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24355989</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Gynecol Oncol. 2015 Jun;137(3):538-45</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25842161</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cancer Res. 2005 Apr 15;65(8):2993-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15833821</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Oncotarget. 2015 Jun 20;6(17 ):15551-65</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26036632</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2015 Apr 29;10(4):e0126147</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25923669</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cancer Biother Radiopharm. 2010 Feb;25(1):75-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20187799</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cancer Lett. 2013 May 28;332(2):265-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20598437</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cytokine Growth Factor Rev. 2008 Jun-Aug;19(3-4):325-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18495520</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cancer Res. 2008 Mar 1;68(5):1485-94</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18316613</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Neoplasia. 2006 May;8(5):402-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16790089</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Mol Cell Biol. 2007 Aug;8(8):622-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17637737</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2010 Apr 2;285(14 ):10850-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20123989</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eur J Pharmacol. 2014 Oct 5;740:364-78</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25058905</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2005 Jan 4;102(1):192-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15618392</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Clin Cancer Res. 2011 Feb 15;17(4):654-66</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21325294</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Clin Invest. 2013 Jan;123(1):315-28</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23202731</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Pharmacol Ther. 2000 Mar;85(3):217-29</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10739876</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Br J Cancer. 1997;76(4):474-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9275024</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cancer Res. 2014 Feb 1;74(3):647-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24459182</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2016 Jan 19;11(1):e0146931</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26784896</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Clin Cancer Res. 2011 May 15;17(10):3248-58</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21288924</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Oncol Lett. 2013 Apr;5(4):1261-1265</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23599776</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Autophagy. 2016;12 (1):1-222</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26799652</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Biol Int. 2012 Mar 1;36(3):261-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22397496</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>N Engl J Med. 2016 Nov 10;375(19):1823-1833</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27718847</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>N Engl J Med. 2002 Jan 10;346(2):92-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11784875</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Cancer. 2005 Sep;5(9):726-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16148885</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Sci Rep. 2015 Jul 23;5:12291</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26201611</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Cancer. 2005 Nov;5(11):886-97</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16239905</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cancer Lett. 2012 Dec 30;326(2):143-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22863539</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2001 Oct;75(19):9177-86</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11533181</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Death Discov. 2016 Nov 14;2:16087</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27867537</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cold Spring Harb Protoc. 2015 Nov 02;2015(11):975-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26527770</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Autophagy. 2007 Nov-Dec;3(6):542-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17611390</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biochem. 2012 Jan;359(1-2):389-98</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21874542</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Cancer. 2010 Nov;10(11):760-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20966921</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Drug Des Devel Ther. 2016 Mar 07;10 :1035-45</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27022243</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Cell Biol. 2013 Aug;5(4):214-26</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23918283</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Anticancer Drugs. 2013 Jan;24(1):14-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23111416</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Med. 2003 May 19;197(10):1323-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12756268</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Clin Oncol. 2009 Dec 20;27(36):6251-66</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19917871</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Int J Cancer. 2013 Jun 1;132(11):2682-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23151917</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>CA Cancer J Clin. 2016 Jan-Feb;66(1):7-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26742998</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Drug Discov. 2010 Jun;9(6):447-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20467424</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Dev Reprod. 2014 Dec;18(4):225-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25949192</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Oncogene. 2008 Oct 27;27(50):6434-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18955971</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2013;8(1):e54193</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23349823</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Pharmacol Rev. 2012 Jul;64(3):706-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22659329</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cancer Lett. 2014 Dec 1;355(1):34-45</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25236911</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Oncotarget. 2016 May 3;7(18):24995-5009</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27107419</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Oncogene. 2006 Aug 7;25(34):4798-811</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16892092</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Australie</li>
<li>Irlande (pays)</li>
<li>États-Unis</li>
</country>
<region>
<li>Louisiane</li>
</region>
</list>
<tree>
<country name="États-Unis">
<region name="Louisiane">
<name sortKey="Circu, Magdalena" sort="Circu, Magdalena" uniqKey="Circu M" first="Magdalena" last="Circu">Magdalena Circu</name>
</region>
<name sortKey="Cardelli, James" sort="Cardelli, James" uniqKey="Cardelli J" first="James" last="Cardelli">James Cardelli</name>
<name sortKey="El Osta, Hazem" sort="El Osta, Hazem" uniqKey="El Osta H" first="Hazem" last="El-Osta">Hazem El-Osta</name>
<name sortKey="Mills, Glenn" sort="Mills, Glenn" uniqKey="Mills G" first="Glenn" last="Mills">Glenn Mills</name>
</country>
<country name="Irlande (pays)">
<noRegion>
<name sortKey="Barr, Martin P" sort="Barr, Martin P" uniqKey="Barr M" first="Martin P" last="Barr">Martin P. Barr</name>
</noRegion>
</country>
<country name="Australie">
<noRegion>
<name sortKey="O Byrne, Kenneth" sort="O Byrne, Kenneth" uniqKey="O Byrne K" first="Kenneth" last="O'Byrne">Kenneth O'Byrne</name>
</noRegion>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/ChloroquineV1/Data/Ncbi/Merge
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000405 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Ncbi/Merge/biblio.hfd -nk 000405 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    ChloroquineV1
   |flux=    Ncbi
   |étape=   Merge
   |type=    RBID
   |clé=     pubmed:28945807
   |texte=   Modulating lysosomal function through lysosome membrane permeabilization or autophagy suppression restores sensitivity to cisplatin in refractory non-small-cell lung cancer cells.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Ncbi/Merge/RBID.i   -Sk "pubmed:28945807" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Ncbi/Merge/biblio.hfd   \
       | NlmPubMed2Wicri -a ChloroquineV1 

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Wed Mar 25 22:43:59 2020. Site generation: Sun Jan 31 12:44:45 2021