Serveur d'exploration Chloroquine

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Tet38 Efflux Pump Affects Staphylococcus aureus Internalization by Epithelial Cells through Interaction with CD36 and Contributes to Bacterial Escape from Acidic and Nonacidic Phagolysosomes.

Identifieur interne : 000366 ( Ncbi/Merge ); précédent : 000365; suivant : 000367

Tet38 Efflux Pump Affects Staphylococcus aureus Internalization by Epithelial Cells through Interaction with CD36 and Contributes to Bacterial Escape from Acidic and Nonacidic Phagolysosomes.

Auteurs : Q C Truong-Bolduc [États-Unis] ; N S Khan [États-Unis] ; J M Vyas [États-Unis] ; D C Hooper [États-Unis]

Source :

RBID : pubmed:27956597

Descripteurs français

English descriptors

Abstract

We previously reported that the Tet38 efflux pump is involved in internalization of Staphylococcus aureus by A549 lung epithelial cells. A lack of tet38 reduced bacterial uptake by A549 cells to 36% of that of the parental strain RN6390. Using invasion assays coupled with confocal microscopy imaging, we studied the host cell receptor(s) responsible for bacterial uptake via interaction with Tet38. We also assessed the ability of S. aureus to survive following alkalinization of the phagolysosomes by chloroquine. Antibody to the scavenger receptor CD36 reduced the internalization of S. aureus RN6390 by A549 cells, but the dependence on CD36 was reduced in QT7 tet38, suggesting that an interaction between Tet38 and CD36 contributed to S. aureus internalization. Following fusion of the S. aureus-associated endosomes with lysosomes, alkalinization of the acidic environment with chloroquine led to a rapid increase in the number of S. aureus RN6390 bacteria in the cytosol, followed by a decrease shortly thereafter. This effect of chloroquine was not seen in the absence of intact Tet38 in mutant QT7. These data taken together suggest that Tet38 plays a role both in bacterial internalization via interaction with CD36 and in bacterial escape from the phagolysosomes.

DOI: 10.1128/IAI.00862-16
PubMed: 27956597

Links toward previous steps (curation, corpus...)


Links to Exploration step

pubmed:27956597

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Tet38 Efflux Pump Affects Staphylococcus aureus Internalization by Epithelial Cells through Interaction with CD36 and Contributes to Bacterial Escape from Acidic and Nonacidic Phagolysosomes.</title>
<author>
<name sortKey="Truong Bolduc, Q C" sort="Truong Bolduc, Q C" uniqKey="Truong Bolduc Q" first="Q C" last="Truong-Bolduc">Q C Truong-Bolduc</name>
<affiliation wicri:level="2">
<nlm:affiliation>Division of Infectious Diseases, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Division of Infectious Diseases, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts</wicri:regionArea>
<placeName>
<region type="state">Massachusetts</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Khan, N S" sort="Khan, N S" uniqKey="Khan N" first="N S" last="Khan">N S Khan</name>
<affiliation wicri:level="2">
<nlm:affiliation>Division of Infectious Diseases, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Division of Infectious Diseases, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts</wicri:regionArea>
<placeName>
<region type="state">Massachusetts</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Vyas, J M" sort="Vyas, J M" uniqKey="Vyas J" first="J M" last="Vyas">J M Vyas</name>
<affiliation wicri:level="2">
<nlm:affiliation>Division of Infectious Diseases, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Division of Infectious Diseases, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts</wicri:regionArea>
<placeName>
<region type="state">Massachusetts</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Hooper, D C" sort="Hooper, D C" uniqKey="Hooper D" first="D C" last="Hooper">D C Hooper</name>
<affiliation wicri:level="2">
<nlm:affiliation>Division of Infectious Diseases, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA dhooper@mgh.harvard.edu.</nlm:affiliation>
<country wicri:rule="url">États-Unis</country>
<wicri:regionArea>Division of Infectious Diseases, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts</wicri:regionArea>
<placeName>
<region type="state">Massachusetts</region>
</placeName>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2017">2017</date>
<idno type="RBID">pubmed:27956597</idno>
<idno type="pmid">27956597</idno>
<idno type="doi">10.1128/IAI.00862-16</idno>
<idno type="wicri:Area/PubMed/Corpus">000185</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">000185</idno>
<idno type="wicri:Area/PubMed/Curation">000185</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Curation">000185</idno>
<idno type="wicri:Area/PubMed/Checkpoint">000143</idno>
<idno type="wicri:explorRef" wicri:stream="Checkpoint" wicri:step="PubMed">000143</idno>
<idno type="wicri:Area/Ncbi/Merge">000366</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Tet38 Efflux Pump Affects Staphylococcus aureus Internalization by Epithelial Cells through Interaction with CD36 and Contributes to Bacterial Escape from Acidic and Nonacidic Phagolysosomes.</title>
<author>
<name sortKey="Truong Bolduc, Q C" sort="Truong Bolduc, Q C" uniqKey="Truong Bolduc Q" first="Q C" last="Truong-Bolduc">Q C Truong-Bolduc</name>
<affiliation wicri:level="2">
<nlm:affiliation>Division of Infectious Diseases, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Division of Infectious Diseases, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts</wicri:regionArea>
<placeName>
<region type="state">Massachusetts</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Khan, N S" sort="Khan, N S" uniqKey="Khan N" first="N S" last="Khan">N S Khan</name>
<affiliation wicri:level="2">
<nlm:affiliation>Division of Infectious Diseases, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Division of Infectious Diseases, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts</wicri:regionArea>
<placeName>
<region type="state">Massachusetts</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Vyas, J M" sort="Vyas, J M" uniqKey="Vyas J" first="J M" last="Vyas">J M Vyas</name>
<affiliation wicri:level="2">
<nlm:affiliation>Division of Infectious Diseases, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Division of Infectious Diseases, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts</wicri:regionArea>
<placeName>
<region type="state">Massachusetts</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Hooper, D C" sort="Hooper, D C" uniqKey="Hooper D" first="D C" last="Hooper">D C Hooper</name>
<affiliation wicri:level="2">
<nlm:affiliation>Division of Infectious Diseases, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA dhooper@mgh.harvard.edu.</nlm:affiliation>
<country wicri:rule="url">États-Unis</country>
<wicri:regionArea>Division of Infectious Diseases, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts</wicri:regionArea>
<placeName>
<region type="state">Massachusetts</region>
</placeName>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Infection and immunity</title>
<idno type="eISSN">1098-5522</idno>
<imprint>
<date when="2017" type="published">2017</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Antibodies, Monoclonal (pharmacology)</term>
<term>Bacterial Proteins (metabolism)</term>
<term>CD36 Antigens (antagonists & inhibitors)</term>
<term>CD36 Antigens (metabolism)</term>
<term>Cell Line</term>
<term>Chloroquine (pharmacology)</term>
<term>Epithelial Cells (immunology)</term>
<term>Epithelial Cells (metabolism)</term>
<term>Epithelial Cells (microbiology)</term>
<term>Host-Pathogen Interactions</term>
<term>Humans</term>
<term>Microbial Viability (drug effects)</term>
<term>Phagosomes (microbiology)</term>
<term>Protein Binding</term>
<term>Staphylococcal Infections (metabolism)</term>
<term>Staphylococcal Infections (microbiology)</term>
<term>Staphylococcus aureus (physiology)</term>
<term>Toll-Like Receptor 2 (antagonists & inhibitors)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Anticorps monoclonaux (pharmacologie)</term>
<term>Cellules épithéliales (immunologie)</term>
<term>Cellules épithéliales (microbiologie)</term>
<term>Cellules épithéliales (métabolisme)</term>
<term>Chloroquine (pharmacologie)</term>
<term>Humains</term>
<term>Infections à staphylocoques (microbiologie)</term>
<term>Infections à staphylocoques (métabolisme)</term>
<term>Interactions hôte-pathogène</term>
<term>Liaison aux protéines</term>
<term>Lignée cellulaire</term>
<term>Phagosomes (microbiologie)</term>
<term>Protéines bactériennes (métabolisme)</term>
<term>Récepteur de type Toll-2 (antagonistes et inhibiteurs)</term>
<term>Staphylococcus aureus (physiologie)</term>
<term>Viabilité microbienne ()</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="antagonists & inhibitors" xml:lang="en">
<term>CD36 Antigens</term>
<term>Toll-Like Receptor 2</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Bacterial Proteins</term>
<term>CD36 Antigens</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="pharmacology" xml:lang="en">
<term>Antibodies, Monoclonal</term>
<term>Chloroquine</term>
</keywords>
<keywords scheme="MESH" qualifier="antagonistes et inhibiteurs" xml:lang="fr">
<term>Récepteur de type Toll-2</term>
</keywords>
<keywords scheme="MESH" qualifier="drug effects" xml:lang="en">
<term>Microbial Viability</term>
</keywords>
<keywords scheme="MESH" qualifier="immunologie" xml:lang="fr">
<term>Cellules épithéliales</term>
</keywords>
<keywords scheme="MESH" qualifier="immunology" xml:lang="en">
<term>Epithelial Cells</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Epithelial Cells</term>
<term>Staphylococcal Infections</term>
</keywords>
<keywords scheme="MESH" qualifier="microbiologie" xml:lang="fr">
<term>Cellules épithéliales</term>
<term>Infections à staphylocoques</term>
<term>Phagosomes</term>
</keywords>
<keywords scheme="MESH" qualifier="microbiology" xml:lang="en">
<term>Epithelial Cells</term>
<term>Phagosomes</term>
<term>Staphylococcal Infections</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Cellules épithéliales</term>
<term>Infections à staphylocoques</term>
<term>Protéines bactériennes</term>
</keywords>
<keywords scheme="MESH" qualifier="pharmacologie" xml:lang="fr">
<term>Anticorps monoclonaux</term>
<term>Chloroquine</term>
</keywords>
<keywords scheme="MESH" qualifier="physiologie" xml:lang="fr">
<term>Staphylococcus aureus</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>Staphylococcus aureus</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Cell Line</term>
<term>Host-Pathogen Interactions</term>
<term>Humans</term>
<term>Protein Binding</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Humains</term>
<term>Interactions hôte-pathogène</term>
<term>Liaison aux protéines</term>
<term>Lignée cellulaire</term>
<term>Viabilité microbienne</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">We previously reported that the Tet38 efflux pump is involved in internalization of Staphylococcus aureus by A549 lung epithelial cells. A lack of tet38 reduced bacterial uptake by A549 cells to 36% of that of the parental strain RN6390. Using invasion assays coupled with confocal microscopy imaging, we studied the host cell receptor(s) responsible for bacterial uptake via interaction with Tet38. We also assessed the ability of S. aureus to survive following alkalinization of the phagolysosomes by chloroquine. Antibody to the scavenger receptor CD36 reduced the internalization of S. aureus RN6390 by A549 cells, but the dependence on CD36 was reduced in QT7 tet38, suggesting that an interaction between Tet38 and CD36 contributed to S. aureus internalization. Following fusion of the S. aureus-associated endosomes with lysosomes, alkalinization of the acidic environment with chloroquine led to a rapid increase in the number of S. aureus RN6390 bacteria in the cytosol, followed by a decrease shortly thereafter. This effect of chloroquine was not seen in the absence of intact Tet38 in mutant QT7. These data taken together suggest that Tet38 plays a role both in bacterial internalization via interaction with CD36 and in bacterial escape from the phagolysosomes.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">27956597</PMID>
<DateCompleted>
<Year>2017</Year>
<Month>05</Month>
<Day>18</Day>
</DateCompleted>
<DateRevised>
<Year>2019</Year>
<Month>03</Month>
<Day>29</Day>
</DateRevised>
<Article PubModel="Electronic-Print">
<Journal>
<ISSN IssnType="Electronic">1098-5522</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>85</Volume>
<Issue>2</Issue>
<PubDate>
<Year>2017</Year>
<Month>02</Month>
</PubDate>
</JournalIssue>
<Title>Infection and immunity</Title>
<ISOAbbreviation>Infect. Immun.</ISOAbbreviation>
</Journal>
<ArticleTitle>Tet38 Efflux Pump Affects Staphylococcus aureus Internalization by Epithelial Cells through Interaction with CD36 and Contributes to Bacterial Escape from Acidic and Nonacidic Phagolysosomes.</ArticleTitle>
<ELocationID EIdType="pii" ValidYN="Y">e00862-16</ELocationID>
<ELocationID EIdType="doi" ValidYN="Y">10.1128/IAI.00862-16</ELocationID>
<Abstract>
<AbstractText>We previously reported that the Tet38 efflux pump is involved in internalization of Staphylococcus aureus by A549 lung epithelial cells. A lack of tet38 reduced bacterial uptake by A549 cells to 36% of that of the parental strain RN6390. Using invasion assays coupled with confocal microscopy imaging, we studied the host cell receptor(s) responsible for bacterial uptake via interaction with Tet38. We also assessed the ability of S. aureus to survive following alkalinization of the phagolysosomes by chloroquine. Antibody to the scavenger receptor CD36 reduced the internalization of S. aureus RN6390 by A549 cells, but the dependence on CD36 was reduced in QT7 tet38, suggesting that an interaction between Tet38 and CD36 contributed to S. aureus internalization. Following fusion of the S. aureus-associated endosomes with lysosomes, alkalinization of the acidic environment with chloroquine led to a rapid increase in the number of S. aureus RN6390 bacteria in the cytosol, followed by a decrease shortly thereafter. This effect of chloroquine was not seen in the absence of intact Tet38 in mutant QT7. These data taken together suggest that Tet38 plays a role both in bacterial internalization via interaction with CD36 and in bacterial escape from the phagolysosomes.</AbstractText>
<CopyrightInformation>Copyright © 2017 American Society for Microbiology.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Truong-Bolduc</LastName>
<ForeName>Q C</ForeName>
<Initials>QC</Initials>
<AffiliationInfo>
<Affiliation>Division of Infectious Diseases, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Khan</LastName>
<ForeName>N S</ForeName>
<Initials>NS</Initials>
<AffiliationInfo>
<Affiliation>Division of Infectious Diseases, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Vyas</LastName>
<ForeName>J M</ForeName>
<Initials>JM</Initials>
<Identifier Source="ORCID">http://orcid.org/0000-0002-9985-9565</Identifier>
<AffiliationInfo>
<Affiliation>Division of Infectious Diseases, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Hooper</LastName>
<ForeName>D C</ForeName>
<Initials>DC</Initials>
<AffiliationInfo>
<Affiliation>Division of Infectious Diseases, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA dhooper@mgh.harvard.edu.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>P01 AI083214</GrantID>
<Acronym>AI</Acronym>
<Agency>NIAID NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>R37 AI023988</GrantID>
<Acronym>AI</Acronym>
<Agency>NIAID NIH HHS</Agency>
<Country>United States</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D052061">Research Support, N.I.H., Extramural</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2017</Year>
<Month>01</Month>
<Day>26</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Infect Immun</MedlineTA>
<NlmUniqueID>0246127</NlmUniqueID>
<ISSNLinking>0019-9567</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D000911">Antibodies, Monoclonal</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D001426">Bacterial Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D018955">CD36 Antigens</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D051195">Toll-Like Receptor 2</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>886U3H6UFF</RegistryNumber>
<NameOfSubstance UI="D002738">Chloroquine</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000911" MajorTopicYN="N">Antibodies, Monoclonal</DescriptorName>
<QualifierName UI="Q000494" MajorTopicYN="N">pharmacology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001426" MajorTopicYN="N">Bacterial Proteins</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018955" MajorTopicYN="N">CD36 Antigens</DescriptorName>
<QualifierName UI="Q000037" MajorTopicYN="N">antagonists & inhibitors</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002460" MajorTopicYN="N">Cell Line</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002738" MajorTopicYN="N">Chloroquine</DescriptorName>
<QualifierName UI="Q000494" MajorTopicYN="N">pharmacology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004847" MajorTopicYN="N">Epithelial Cells</DescriptorName>
<QualifierName UI="Q000276" MajorTopicYN="N">immunology</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
<QualifierName UI="Q000382" MajorTopicYN="Y">microbiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D054884" MajorTopicYN="Y">Host-Pathogen Interactions</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D050296" MajorTopicYN="N">Microbial Viability</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010588" MajorTopicYN="N">Phagosomes</DescriptorName>
<QualifierName UI="Q000382" MajorTopicYN="Y">microbiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011485" MajorTopicYN="N">Protein Binding</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013203" MajorTopicYN="N">Staphylococcal Infections</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
<QualifierName UI="Q000382" MajorTopicYN="N">microbiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013211" MajorTopicYN="N">Staphylococcus aureus</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D051195" MajorTopicYN="N">Toll-Like Receptor 2</DescriptorName>
<QualifierName UI="Q000037" MajorTopicYN="N">antagonists & inhibitors</QualifierName>
</MeshHeading>
</MeshHeadingList>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="Y">CD36</Keyword>
<Keyword MajorTopicYN="Y">S. aureus</Keyword>
<Keyword MajorTopicYN="Y">endosomes</Keyword>
<Keyword MajorTopicYN="Y">internalization</Keyword>
<Keyword MajorTopicYN="Y">survival</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2016</Year>
<Month>10</Month>
<Day>12</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2016</Year>
<Month>12</Month>
<Day>04</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2016</Year>
<Month>12</Month>
<Day>14</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2017</Year>
<Month>5</Month>
<Day>19</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2016</Year>
<Month>12</Month>
<Day>14</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">27956597</ArticleId>
<ArticleId IdType="pii">IAI.00862-16</ArticleId>
<ArticleId IdType="doi">10.1128/IAI.00862-16</ArticleId>
<ArticleId IdType="pmc">PMC5278174</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Int Forum Allergy Rhinol. 2014 Dec;4(12):953-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25271410</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Microbiol. 1998 Dec;6(12):484-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10036727</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 2016 Oct;1860(10):1461-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27090938</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Immunol. 2008 Nov 15;181(10):7147-56</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18981136</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 2003 Mar;185(6):2031-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12618470</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Infection. 2000 Jan-Feb;28(1):53-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10697795</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Genomics. 2007 Jun 14;8:171</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17570841</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Infect Dis. 2016 Jan 15;213(2):305-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26188074</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Sci Signal. 2009 May 26;2(72):re3</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19471024</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Infect Immun. 2016 Aug 19;84(9):2586-94</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27354444</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Diagn Microbiol Infect Dis. 1992 Sep-Oct;15(7):601-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1424517</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Integr Biol (Camb). 2012 Feb;4(2):220-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22200052</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Infect Immun. 1998 Dec;66(12):5994-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9826383</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Pharm Des. 2012;18(5):696-725</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22229574</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Microbiol. 2013 Jun;15(6):1026-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23279065</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 2001 Jul;183(13):3999-4003</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11395464</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Immunol. 2012 Mar 15;188(6):2749-58</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22327076</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 1996 Mar 22;84(6):923-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8601315</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1990 Dec 5;265(34):21099-107</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2147429</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Microbiol Methods. 2009 Jun;77(3):251-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19264102</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Hum Mol Genet. 2013 Sep 15;22(18):3667-79</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23669347</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 2012 Apr;194(7):1823-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22287526</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2005 Feb 3;433(7025):523-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15690042</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Microbiol Biotechnol. 2001 Aug;56(3-4):361-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11549002</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1996 Mar 29;271(13):7781-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8631821</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 2005 Apr;187(7):2395-405</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15774883</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antimicrob Agents Chemother. 2006 Jul;50(7):2448-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16801425</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Infect Dis. 2014 May 1;209(9):1485-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24280365</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biomed Res Int. 2014;2014:538546</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24826382</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Clin Infect Dis. 1997 Sep;25(3):647-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9314454</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Microbiology. 1999 Dec;145 ( Pt 12):3477-86</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10627045</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEMS Immunol Med Microbiol. 2010 Dec;60(3):208-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21039920</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Infect Immun. 2000 Nov;68(11):6321-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11035741</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Biol. 2005 Aug 1;170(3):477-85</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16061696</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Clin Infect Dis. 2002 Jan 15;34(2):211-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11740710</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Leukoc Biol. 2008 Jul;84(1):280-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18458151</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Lancet Infect Dis. 2005 Oct;5(10):653-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16183520</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Med Microbiol. 1998 Mar;47(3):265-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9511832</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Infect Immun. 2015 Nov;83(11):4362-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26324534</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Gene. 2000 Sep 19;255(2):297-305</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11024290</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Infect Immun. 2000 Sep;68(9):5385-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10948168</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
<region>
<li>Massachusetts</li>
</region>
</list>
<tree>
<country name="États-Unis">
<region name="Massachusetts">
<name sortKey="Truong Bolduc, Q C" sort="Truong Bolduc, Q C" uniqKey="Truong Bolduc Q" first="Q C" last="Truong-Bolduc">Q C Truong-Bolduc</name>
</region>
<name sortKey="Hooper, D C" sort="Hooper, D C" uniqKey="Hooper D" first="D C" last="Hooper">D C Hooper</name>
<name sortKey="Khan, N S" sort="Khan, N S" uniqKey="Khan N" first="N S" last="Khan">N S Khan</name>
<name sortKey="Vyas, J M" sort="Vyas, J M" uniqKey="Vyas J" first="J M" last="Vyas">J M Vyas</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/ChloroquineV1/Data/Ncbi/Merge
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000366 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Ncbi/Merge/biblio.hfd -nk 000366 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    ChloroquineV1
   |flux=    Ncbi
   |étape=   Merge
   |type=    RBID
   |clé=     pubmed:27956597
   |texte=   Tet38 Efflux Pump Affects Staphylococcus aureus Internalization by Epithelial Cells through Interaction with CD36 and Contributes to Bacterial Escape from Acidic and Nonacidic Phagolysosomes.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Ncbi/Merge/RBID.i   -Sk "pubmed:27956597" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Ncbi/Merge/biblio.hfd   \
       | NlmPubMed2Wicri -a ChloroquineV1 

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Wed Mar 25 22:43:59 2020. Site generation: Sun Jan 31 12:44:45 2021